1 /*- 2 * Copyright (c) 2007-2013 Broadcom Corporation. All rights reserved. 3 * 4 * Eric Davis <edavis@broadcom.com> 5 * David Christensen <davidch@broadcom.com> 6 * Gary Zambrano <zambrano@broadcom.com> 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 12 * 1. Redistributions of source code must retain the above copyright 13 * notice, this list of conditions and the following disclaimer. 14 * 2. Redistributions in binary form must reproduce the above copyright 15 * notice, this list of conditions and the following disclaimer in the 16 * documentation and/or other materials provided with the distribution. 17 * 3. Neither the name of Broadcom Corporation nor the name of its contributors 18 * may be used to endorse or promote products derived from this software 19 * without specific prior written consent. 20 * 21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS' 22 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 24 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS 25 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 26 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 27 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 28 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 29 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 30 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF 31 * THE POSSIBILITY OF SUCH DAMAGE. 32 */ 33 34 #include <sys/cdefs.h> 35 __FBSDID("$FreeBSD$"); 36 37 #define BXE_DRIVER_VERSION "1.78.78" 38 39 #include "bxe.h" 40 #include "ecore_sp.h" 41 #include "ecore_init.h" 42 #include "ecore_init_ops.h" 43 44 #include "57710_int_offsets.h" 45 #include "57711_int_offsets.h" 46 #include "57712_int_offsets.h" 47 48 /* 49 * CTLTYPE_U64 and sysctl_handle_64 were added in r217616. Define these 50 * explicitly here for older kernels that don't include this changeset. 51 */ 52 #ifndef CTLTYPE_U64 53 #define CTLTYPE_U64 CTLTYPE_QUAD 54 #define sysctl_handle_64 sysctl_handle_quad 55 #endif 56 57 /* 58 * CSUM_TCP_IPV6 and CSUM_UDP_IPV6 were added in r236170. Define these 59 * here as zero(0) for older kernels that don't include this changeset 60 * thereby masking the functionality. 61 */ 62 #ifndef CSUM_TCP_IPV6 63 #define CSUM_TCP_IPV6 0 64 #define CSUM_UDP_IPV6 0 65 #endif 66 67 /* 68 * pci_find_cap was added in r219865. Re-define this at pci_find_extcap 69 * for older kernels that don't include this changeset. 70 */ 71 #if __FreeBSD_version < 900035 72 #define pci_find_cap pci_find_extcap 73 #endif 74 75 #define BXE_DEF_SB_ATT_IDX 0x0001 76 #define BXE_DEF_SB_IDX 0x0002 77 78 /* 79 * FLR Support - bxe_pf_flr_clnup() is called during nic_load in the per 80 * function HW initialization. 81 */ 82 #define FLR_WAIT_USEC 10000 /* 10 msecs */ 83 #define FLR_WAIT_INTERVAL 50 /* usecs */ 84 #define FLR_POLL_CNT (FLR_WAIT_USEC / FLR_WAIT_INTERVAL) /* 200 */ 85 86 struct pbf_pN_buf_regs { 87 int pN; 88 uint32_t init_crd; 89 uint32_t crd; 90 uint32_t crd_freed; 91 }; 92 93 struct pbf_pN_cmd_regs { 94 int pN; 95 uint32_t lines_occup; 96 uint32_t lines_freed; 97 }; 98 99 /* 100 * PCI Device ID Table used by bxe_probe(). 101 */ 102 #define BXE_DEVDESC_MAX 64 103 static struct bxe_device_type bxe_devs[] = { 104 { 105 BRCM_VENDORID, 106 CHIP_NUM_57710, 107 PCI_ANY_ID, PCI_ANY_ID, 108 "Broadcom NetXtreme II BCM57710 10GbE" 109 }, 110 { 111 BRCM_VENDORID, 112 CHIP_NUM_57711, 113 PCI_ANY_ID, PCI_ANY_ID, 114 "Broadcom NetXtreme II BCM57711 10GbE" 115 }, 116 { 117 BRCM_VENDORID, 118 CHIP_NUM_57711E, 119 PCI_ANY_ID, PCI_ANY_ID, 120 "Broadcom NetXtreme II BCM57711E 10GbE" 121 }, 122 { 123 BRCM_VENDORID, 124 CHIP_NUM_57712, 125 PCI_ANY_ID, PCI_ANY_ID, 126 "Broadcom NetXtreme II BCM57712 10GbE" 127 }, 128 { 129 BRCM_VENDORID, 130 CHIP_NUM_57712_MF, 131 PCI_ANY_ID, PCI_ANY_ID, 132 "Broadcom NetXtreme II BCM57712 MF 10GbE" 133 }, 134 #if 0 135 { 136 BRCM_VENDORID, 137 CHIP_NUM_57712_VF, 138 PCI_ANY_ID, PCI_ANY_ID, 139 "Broadcom NetXtreme II BCM57712 VF 10GbE" 140 }, 141 #endif 142 { 143 BRCM_VENDORID, 144 CHIP_NUM_57800, 145 PCI_ANY_ID, PCI_ANY_ID, 146 "Broadcom NetXtreme II BCM57800 10GbE" 147 }, 148 { 149 BRCM_VENDORID, 150 CHIP_NUM_57800_MF, 151 PCI_ANY_ID, PCI_ANY_ID, 152 "Broadcom NetXtreme II BCM57800 MF 10GbE" 153 }, 154 #if 0 155 { 156 BRCM_VENDORID, 157 CHIP_NUM_57800_VF, 158 PCI_ANY_ID, PCI_ANY_ID, 159 "Broadcom NetXtreme II BCM57800 VF 10GbE" 160 }, 161 #endif 162 { 163 BRCM_VENDORID, 164 CHIP_NUM_57810, 165 PCI_ANY_ID, PCI_ANY_ID, 166 "Broadcom NetXtreme II BCM57810 10GbE" 167 }, 168 { 169 BRCM_VENDORID, 170 CHIP_NUM_57810_MF, 171 PCI_ANY_ID, PCI_ANY_ID, 172 "Broadcom NetXtreme II BCM57810 MF 10GbE" 173 }, 174 #if 0 175 { 176 BRCM_VENDORID, 177 CHIP_NUM_57810_VF, 178 PCI_ANY_ID, PCI_ANY_ID, 179 "Broadcom NetXtreme II BCM57810 VF 10GbE" 180 }, 181 #endif 182 { 183 BRCM_VENDORID, 184 CHIP_NUM_57811, 185 PCI_ANY_ID, PCI_ANY_ID, 186 "Broadcom NetXtreme II BCM57811 10GbE" 187 }, 188 { 189 BRCM_VENDORID, 190 CHIP_NUM_57811_MF, 191 PCI_ANY_ID, PCI_ANY_ID, 192 "Broadcom NetXtreme II BCM57811 MF 10GbE" 193 }, 194 #if 0 195 { 196 BRCM_VENDORID, 197 CHIP_NUM_57811_VF, 198 PCI_ANY_ID, PCI_ANY_ID, 199 "Broadcom NetXtreme II BCM57811 VF 10GbE" 200 }, 201 #endif 202 { 203 BRCM_VENDORID, 204 CHIP_NUM_57840_4_10, 205 PCI_ANY_ID, PCI_ANY_ID, 206 "Broadcom NetXtreme II BCM57840 4x10GbE" 207 }, 208 #if 0 209 { 210 BRCM_VENDORID, 211 CHIP_NUM_57840_2_20, 212 PCI_ANY_ID, PCI_ANY_ID, 213 "Broadcom NetXtreme II BCM57840 2x20GbE" 214 }, 215 #endif 216 { 217 BRCM_VENDORID, 218 CHIP_NUM_57840_MF, 219 PCI_ANY_ID, PCI_ANY_ID, 220 "Broadcom NetXtreme II BCM57840 MF 10GbE" 221 }, 222 #if 0 223 { 224 BRCM_VENDORID, 225 CHIP_NUM_57840_VF, 226 PCI_ANY_ID, PCI_ANY_ID, 227 "Broadcom NetXtreme II BCM57840 VF 10GbE" 228 }, 229 #endif 230 { 231 0, 0, 0, 0, NULL 232 } 233 }; 234 235 MALLOC_DECLARE(M_BXE_ILT); 236 MALLOC_DEFINE(M_BXE_ILT, "bxe_ilt", "bxe ILT pointer"); 237 238 /* 239 * FreeBSD device entry points. 240 */ 241 static int bxe_probe(device_t); 242 static int bxe_attach(device_t); 243 static int bxe_detach(device_t); 244 static int bxe_shutdown(device_t); 245 246 /* 247 * FreeBSD KLD module/device interface event handler method. 248 */ 249 static device_method_t bxe_methods[] = { 250 /* Device interface (device_if.h) */ 251 DEVMETHOD(device_probe, bxe_probe), 252 DEVMETHOD(device_attach, bxe_attach), 253 DEVMETHOD(device_detach, bxe_detach), 254 DEVMETHOD(device_shutdown, bxe_shutdown), 255 #if 0 256 DEVMETHOD(device_suspend, bxe_suspend), 257 DEVMETHOD(device_resume, bxe_resume), 258 #endif 259 /* Bus interface (bus_if.h) */ 260 DEVMETHOD(bus_print_child, bus_generic_print_child), 261 DEVMETHOD(bus_driver_added, bus_generic_driver_added), 262 KOBJMETHOD_END 263 }; 264 265 /* 266 * FreeBSD KLD Module data declaration 267 */ 268 static driver_t bxe_driver = { 269 "bxe", /* module name */ 270 bxe_methods, /* event handler */ 271 sizeof(struct bxe_softc) /* extra data */ 272 }; 273 274 /* 275 * FreeBSD dev class is needed to manage dev instances and 276 * to associate with a bus type 277 */ 278 static devclass_t bxe_devclass; 279 280 MODULE_DEPEND(bxe, pci, 1, 1, 1); 281 MODULE_DEPEND(bxe, ether, 1, 1, 1); 282 DRIVER_MODULE(bxe, pci, bxe_driver, bxe_devclass, 0, 0); 283 284 /* resources needed for unloading a previously loaded device */ 285 286 #define BXE_PREV_WAIT_NEEDED 1 287 struct mtx bxe_prev_mtx; 288 MTX_SYSINIT(bxe_prev_mtx, &bxe_prev_mtx, "bxe_prev_lock", MTX_DEF); 289 struct bxe_prev_list_node { 290 LIST_ENTRY(bxe_prev_list_node) node; 291 uint8_t bus; 292 uint8_t slot; 293 uint8_t path; 294 uint8_t aer; /* XXX automatic error recovery */ 295 uint8_t undi; 296 }; 297 static LIST_HEAD(, bxe_prev_list_node) bxe_prev_list = LIST_HEAD_INITIALIZER(bxe_prev_list); 298 299 static int load_count[2][3] = { {0} }; /* per-path: 0-common, 1-port0, 2-port1 */ 300 301 /* Tunable device values... */ 302 303 SYSCTL_NODE(_hw, OID_AUTO, bxe, CTLFLAG_RD, 0, "bxe driver parameters"); 304 305 /* Debug */ 306 unsigned long bxe_debug = 0; 307 TUNABLE_ULONG("hw.bxe.debug", &bxe_debug); 308 SYSCTL_ULONG(_hw_bxe, OID_AUTO, debug, (CTLFLAG_RDTUN), 309 &bxe_debug, 0, "Debug logging mode"); 310 311 /* Interrupt Mode: 0 (IRQ), 1 (MSI/IRQ), and 2 (MSI-X/MSI/IRQ) */ 312 static int bxe_interrupt_mode = INTR_MODE_MSIX; 313 TUNABLE_INT("hw.bxe.interrupt_mode", &bxe_interrupt_mode); 314 SYSCTL_INT(_hw_bxe, OID_AUTO, interrupt_mode, CTLFLAG_RDTUN, 315 &bxe_interrupt_mode, 0, "Interrupt (MSI-X/MSI/INTx) mode"); 316 317 /* Number of Queues: 0 (Auto) or 1 to 16 (fixed queue number) */ 318 static int bxe_queue_count = 4; 319 TUNABLE_INT("hw.bxe.queue_count", &bxe_queue_count); 320 SYSCTL_INT(_hw_bxe, OID_AUTO, queue_count, CTLFLAG_RDTUN, 321 &bxe_queue_count, 0, "Multi-Queue queue count"); 322 323 /* max number of buffers per queue (default RX_BD_USABLE) */ 324 static int bxe_max_rx_bufs = 0; 325 TUNABLE_INT("hw.bxe.max_rx_bufs", &bxe_max_rx_bufs); 326 SYSCTL_INT(_hw_bxe, OID_AUTO, max_rx_bufs, CTLFLAG_RDTUN, 327 &bxe_max_rx_bufs, 0, "Maximum Number of Rx Buffers Per Queue"); 328 329 /* Host interrupt coalescing RX tick timer (usecs) */ 330 static int bxe_hc_rx_ticks = 25; 331 TUNABLE_INT("hw.bxe.hc_rx_ticks", &bxe_hc_rx_ticks); 332 SYSCTL_INT(_hw_bxe, OID_AUTO, hc_rx_ticks, CTLFLAG_RDTUN, 333 &bxe_hc_rx_ticks, 0, "Host Coalescing Rx ticks"); 334 335 /* Host interrupt coalescing TX tick timer (usecs) */ 336 static int bxe_hc_tx_ticks = 50; 337 TUNABLE_INT("hw.bxe.hc_tx_ticks", &bxe_hc_tx_ticks); 338 SYSCTL_INT(_hw_bxe, OID_AUTO, hc_tx_ticks, CTLFLAG_RDTUN, 339 &bxe_hc_tx_ticks, 0, "Host Coalescing Tx ticks"); 340 341 /* Maximum number of Rx packets to process at a time */ 342 static int bxe_rx_budget = 0xffffffff; 343 TUNABLE_INT("hw.bxe.rx_budget", &bxe_rx_budget); 344 SYSCTL_INT(_hw_bxe, OID_AUTO, rx_budget, CTLFLAG_TUN, 345 &bxe_rx_budget, 0, "Rx processing budget"); 346 347 /* Maximum LRO aggregation size */ 348 static int bxe_max_aggregation_size = 0; 349 TUNABLE_INT("hw.bxe.max_aggregation_size", &bxe_max_aggregation_size); 350 SYSCTL_INT(_hw_bxe, OID_AUTO, max_aggregation_size, CTLFLAG_TUN, 351 &bxe_max_aggregation_size, 0, "max aggregation size"); 352 353 /* PCI MRRS: -1 (Auto), 0 (128B), 1 (256B), 2 (512B), 3 (1KB) */ 354 static int bxe_mrrs = -1; 355 TUNABLE_INT("hw.bxe.mrrs", &bxe_mrrs); 356 SYSCTL_INT(_hw_bxe, OID_AUTO, mrrs, CTLFLAG_RDTUN, 357 &bxe_mrrs, 0, "PCIe maximum read request size"); 358 359 /* AutoGrEEEn: 0 (hardware default), 1 (force on), 2 (force off) */ 360 static int bxe_autogreeen = 0; 361 TUNABLE_INT("hw.bxe.autogreeen", &bxe_autogreeen); 362 SYSCTL_INT(_hw_bxe, OID_AUTO, autogreeen, CTLFLAG_RDTUN, 363 &bxe_autogreeen, 0, "AutoGrEEEn support"); 364 365 /* 4-tuple RSS support for UDP: 0 (disabled), 1 (enabled) */ 366 static int bxe_udp_rss = 0; 367 TUNABLE_INT("hw.bxe.udp_rss", &bxe_udp_rss); 368 SYSCTL_INT(_hw_bxe, OID_AUTO, udp_rss, CTLFLAG_RDTUN, 369 &bxe_udp_rss, 0, "UDP RSS support"); 370 371 372 #define STAT_NAME_LEN 32 /* no stat names below can be longer than this */ 373 374 #define STATS_OFFSET32(stat_name) \ 375 (offsetof(struct bxe_eth_stats, stat_name) / 4) 376 377 #define Q_STATS_OFFSET32(stat_name) \ 378 (offsetof(struct bxe_eth_q_stats, stat_name) / 4) 379 380 static const struct { 381 uint32_t offset; 382 uint32_t size; 383 uint32_t flags; 384 #define STATS_FLAGS_PORT 1 385 #define STATS_FLAGS_FUNC 2 /* MF only cares about function stats */ 386 #define STATS_FLAGS_BOTH (STATS_FLAGS_FUNC | STATS_FLAGS_PORT) 387 char string[STAT_NAME_LEN]; 388 } bxe_eth_stats_arr[] = { 389 { STATS_OFFSET32(total_bytes_received_hi), 390 8, STATS_FLAGS_BOTH, "rx_bytes" }, 391 { STATS_OFFSET32(error_bytes_received_hi), 392 8, STATS_FLAGS_BOTH, "rx_error_bytes" }, 393 { STATS_OFFSET32(total_unicast_packets_received_hi), 394 8, STATS_FLAGS_BOTH, "rx_ucast_packets" }, 395 { STATS_OFFSET32(total_multicast_packets_received_hi), 396 8, STATS_FLAGS_BOTH, "rx_mcast_packets" }, 397 { STATS_OFFSET32(total_broadcast_packets_received_hi), 398 8, STATS_FLAGS_BOTH, "rx_bcast_packets" }, 399 { STATS_OFFSET32(rx_stat_dot3statsfcserrors_hi), 400 8, STATS_FLAGS_PORT, "rx_crc_errors" }, 401 { STATS_OFFSET32(rx_stat_dot3statsalignmenterrors_hi), 402 8, STATS_FLAGS_PORT, "rx_align_errors" }, 403 { STATS_OFFSET32(rx_stat_etherstatsundersizepkts_hi), 404 8, STATS_FLAGS_PORT, "rx_undersize_packets" }, 405 { STATS_OFFSET32(etherstatsoverrsizepkts_hi), 406 8, STATS_FLAGS_PORT, "rx_oversize_packets" }, 407 { STATS_OFFSET32(rx_stat_etherstatsfragments_hi), 408 8, STATS_FLAGS_PORT, "rx_fragments" }, 409 { STATS_OFFSET32(rx_stat_etherstatsjabbers_hi), 410 8, STATS_FLAGS_PORT, "rx_jabbers" }, 411 { STATS_OFFSET32(no_buff_discard_hi), 412 8, STATS_FLAGS_BOTH, "rx_discards" }, 413 { STATS_OFFSET32(mac_filter_discard), 414 4, STATS_FLAGS_PORT, "rx_filtered_packets" }, 415 { STATS_OFFSET32(mf_tag_discard), 416 4, STATS_FLAGS_PORT, "rx_mf_tag_discard" }, 417 { STATS_OFFSET32(pfc_frames_received_hi), 418 8, STATS_FLAGS_PORT, "pfc_frames_received" }, 419 { STATS_OFFSET32(pfc_frames_sent_hi), 420 8, STATS_FLAGS_PORT, "pfc_frames_sent" }, 421 { STATS_OFFSET32(brb_drop_hi), 422 8, STATS_FLAGS_PORT, "rx_brb_discard" }, 423 { STATS_OFFSET32(brb_truncate_hi), 424 8, STATS_FLAGS_PORT, "rx_brb_truncate" }, 425 { STATS_OFFSET32(pause_frames_received_hi), 426 8, STATS_FLAGS_PORT, "rx_pause_frames" }, 427 { STATS_OFFSET32(rx_stat_maccontrolframesreceived_hi), 428 8, STATS_FLAGS_PORT, "rx_mac_ctrl_frames" }, 429 { STATS_OFFSET32(nig_timer_max), 430 4, STATS_FLAGS_PORT, "rx_constant_pause_events" }, 431 { STATS_OFFSET32(total_bytes_transmitted_hi), 432 8, STATS_FLAGS_BOTH, "tx_bytes" }, 433 { STATS_OFFSET32(tx_stat_ifhcoutbadoctets_hi), 434 8, STATS_FLAGS_PORT, "tx_error_bytes" }, 435 { STATS_OFFSET32(total_unicast_packets_transmitted_hi), 436 8, STATS_FLAGS_BOTH, "tx_ucast_packets" }, 437 { STATS_OFFSET32(total_multicast_packets_transmitted_hi), 438 8, STATS_FLAGS_BOTH, "tx_mcast_packets" }, 439 { STATS_OFFSET32(total_broadcast_packets_transmitted_hi), 440 8, STATS_FLAGS_BOTH, "tx_bcast_packets" }, 441 { STATS_OFFSET32(tx_stat_dot3statsinternalmactransmiterrors_hi), 442 8, STATS_FLAGS_PORT, "tx_mac_errors" }, 443 { STATS_OFFSET32(rx_stat_dot3statscarriersenseerrors_hi), 444 8, STATS_FLAGS_PORT, "tx_carrier_errors" }, 445 { STATS_OFFSET32(tx_stat_dot3statssinglecollisionframes_hi), 446 8, STATS_FLAGS_PORT, "tx_single_collisions" }, 447 { STATS_OFFSET32(tx_stat_dot3statsmultiplecollisionframes_hi), 448 8, STATS_FLAGS_PORT, "tx_multi_collisions" }, 449 { STATS_OFFSET32(tx_stat_dot3statsdeferredtransmissions_hi), 450 8, STATS_FLAGS_PORT, "tx_deferred" }, 451 { STATS_OFFSET32(tx_stat_dot3statsexcessivecollisions_hi), 452 8, STATS_FLAGS_PORT, "tx_excess_collisions" }, 453 { STATS_OFFSET32(tx_stat_dot3statslatecollisions_hi), 454 8, STATS_FLAGS_PORT, "tx_late_collisions" }, 455 { STATS_OFFSET32(tx_stat_etherstatscollisions_hi), 456 8, STATS_FLAGS_PORT, "tx_total_collisions" }, 457 { STATS_OFFSET32(tx_stat_etherstatspkts64octets_hi), 458 8, STATS_FLAGS_PORT, "tx_64_byte_packets" }, 459 { STATS_OFFSET32(tx_stat_etherstatspkts65octetsto127octets_hi), 460 8, STATS_FLAGS_PORT, "tx_65_to_127_byte_packets" }, 461 { STATS_OFFSET32(tx_stat_etherstatspkts128octetsto255octets_hi), 462 8, STATS_FLAGS_PORT, "tx_128_to_255_byte_packets" }, 463 { STATS_OFFSET32(tx_stat_etherstatspkts256octetsto511octets_hi), 464 8, STATS_FLAGS_PORT, "tx_256_to_511_byte_packets" }, 465 { STATS_OFFSET32(tx_stat_etherstatspkts512octetsto1023octets_hi), 466 8, STATS_FLAGS_PORT, "tx_512_to_1023_byte_packets" }, 467 { STATS_OFFSET32(etherstatspkts1024octetsto1522octets_hi), 468 8, STATS_FLAGS_PORT, "tx_1024_to_1522_byte_packets" }, 469 { STATS_OFFSET32(etherstatspktsover1522octets_hi), 470 8, STATS_FLAGS_PORT, "tx_1523_to_9022_byte_packets" }, 471 { STATS_OFFSET32(pause_frames_sent_hi), 472 8, STATS_FLAGS_PORT, "tx_pause_frames" }, 473 { STATS_OFFSET32(total_tpa_aggregations_hi), 474 8, STATS_FLAGS_FUNC, "tpa_aggregations" }, 475 { STATS_OFFSET32(total_tpa_aggregated_frames_hi), 476 8, STATS_FLAGS_FUNC, "tpa_aggregated_frames"}, 477 { STATS_OFFSET32(total_tpa_bytes_hi), 478 8, STATS_FLAGS_FUNC, "tpa_bytes"}, 479 #if 0 480 { STATS_OFFSET32(recoverable_error), 481 4, STATS_FLAGS_FUNC, "recoverable_errors" }, 482 { STATS_OFFSET32(unrecoverable_error), 483 4, STATS_FLAGS_FUNC, "unrecoverable_errors" }, 484 #endif 485 { STATS_OFFSET32(eee_tx_lpi), 486 4, STATS_FLAGS_PORT, "eee_tx_lpi"}, 487 { STATS_OFFSET32(rx_calls), 488 4, STATS_FLAGS_FUNC, "rx_calls"}, 489 { STATS_OFFSET32(rx_pkts), 490 4, STATS_FLAGS_FUNC, "rx_pkts"}, 491 { STATS_OFFSET32(rx_tpa_pkts), 492 4, STATS_FLAGS_FUNC, "rx_tpa_pkts"}, 493 { STATS_OFFSET32(rx_soft_errors), 494 4, STATS_FLAGS_FUNC, "rx_soft_errors"}, 495 { STATS_OFFSET32(rx_hw_csum_errors), 496 4, STATS_FLAGS_FUNC, "rx_hw_csum_errors"}, 497 { STATS_OFFSET32(rx_ofld_frames_csum_ip), 498 4, STATS_FLAGS_FUNC, "rx_ofld_frames_csum_ip"}, 499 { STATS_OFFSET32(rx_ofld_frames_csum_tcp_udp), 500 4, STATS_FLAGS_FUNC, "rx_ofld_frames_csum_tcp_udp"}, 501 { STATS_OFFSET32(rx_budget_reached), 502 4, STATS_FLAGS_FUNC, "rx_budget_reached"}, 503 { STATS_OFFSET32(tx_pkts), 504 4, STATS_FLAGS_FUNC, "tx_pkts"}, 505 { STATS_OFFSET32(tx_soft_errors), 506 4, STATS_FLAGS_FUNC, "tx_soft_errors"}, 507 { STATS_OFFSET32(tx_ofld_frames_csum_ip), 508 4, STATS_FLAGS_FUNC, "tx_ofld_frames_csum_ip"}, 509 { STATS_OFFSET32(tx_ofld_frames_csum_tcp), 510 4, STATS_FLAGS_FUNC, "tx_ofld_frames_csum_tcp"}, 511 { STATS_OFFSET32(tx_ofld_frames_csum_udp), 512 4, STATS_FLAGS_FUNC, "tx_ofld_frames_csum_udp"}, 513 { STATS_OFFSET32(tx_ofld_frames_lso), 514 4, STATS_FLAGS_FUNC, "tx_ofld_frames_lso"}, 515 { STATS_OFFSET32(tx_ofld_frames_lso_hdr_splits), 516 4, STATS_FLAGS_FUNC, "tx_ofld_frames_lso_hdr_splits"}, 517 { STATS_OFFSET32(tx_encap_failures), 518 4, STATS_FLAGS_FUNC, "tx_encap_failures"}, 519 { STATS_OFFSET32(tx_hw_queue_full), 520 4, STATS_FLAGS_FUNC, "tx_hw_queue_full"}, 521 { STATS_OFFSET32(tx_hw_max_queue_depth), 522 4, STATS_FLAGS_FUNC, "tx_hw_max_queue_depth"}, 523 { STATS_OFFSET32(tx_dma_mapping_failure), 524 4, STATS_FLAGS_FUNC, "tx_dma_mapping_failure"}, 525 { STATS_OFFSET32(tx_max_drbr_queue_depth), 526 4, STATS_FLAGS_FUNC, "tx_max_drbr_queue_depth"}, 527 { STATS_OFFSET32(tx_window_violation_std), 528 4, STATS_FLAGS_FUNC, "tx_window_violation_std"}, 529 { STATS_OFFSET32(tx_window_violation_tso), 530 4, STATS_FLAGS_FUNC, "tx_window_violation_tso"}, 531 #if 0 532 { STATS_OFFSET32(tx_unsupported_tso_request_ipv6), 533 4, STATS_FLAGS_FUNC, "tx_unsupported_tso_request_ipv6"}, 534 { STATS_OFFSET32(tx_unsupported_tso_request_not_tcp), 535 4, STATS_FLAGS_FUNC, "tx_unsupported_tso_request_not_tcp"}, 536 #endif 537 { STATS_OFFSET32(tx_chain_lost_mbuf), 538 4, STATS_FLAGS_FUNC, "tx_chain_lost_mbuf"}, 539 { STATS_OFFSET32(tx_frames_deferred), 540 4, STATS_FLAGS_FUNC, "tx_frames_deferred"}, 541 { STATS_OFFSET32(tx_queue_xoff), 542 4, STATS_FLAGS_FUNC, "tx_queue_xoff"}, 543 { STATS_OFFSET32(mbuf_defrag_attempts), 544 4, STATS_FLAGS_FUNC, "mbuf_defrag_attempts"}, 545 { STATS_OFFSET32(mbuf_defrag_failures), 546 4, STATS_FLAGS_FUNC, "mbuf_defrag_failures"}, 547 { STATS_OFFSET32(mbuf_rx_bd_alloc_failed), 548 4, STATS_FLAGS_FUNC, "mbuf_rx_bd_alloc_failed"}, 549 { STATS_OFFSET32(mbuf_rx_bd_mapping_failed), 550 4, STATS_FLAGS_FUNC, "mbuf_rx_bd_mapping_failed"}, 551 { STATS_OFFSET32(mbuf_rx_tpa_alloc_failed), 552 4, STATS_FLAGS_FUNC, "mbuf_rx_tpa_alloc_failed"}, 553 { STATS_OFFSET32(mbuf_rx_tpa_mapping_failed), 554 4, STATS_FLAGS_FUNC, "mbuf_rx_tpa_mapping_failed"}, 555 { STATS_OFFSET32(mbuf_rx_sge_alloc_failed), 556 4, STATS_FLAGS_FUNC, "mbuf_rx_sge_alloc_failed"}, 557 { STATS_OFFSET32(mbuf_rx_sge_mapping_failed), 558 4, STATS_FLAGS_FUNC, "mbuf_rx_sge_mapping_failed"}, 559 { STATS_OFFSET32(mbuf_alloc_tx), 560 4, STATS_FLAGS_FUNC, "mbuf_alloc_tx"}, 561 { STATS_OFFSET32(mbuf_alloc_rx), 562 4, STATS_FLAGS_FUNC, "mbuf_alloc_rx"}, 563 { STATS_OFFSET32(mbuf_alloc_sge), 564 4, STATS_FLAGS_FUNC, "mbuf_alloc_sge"}, 565 { STATS_OFFSET32(mbuf_alloc_tpa), 566 4, STATS_FLAGS_FUNC, "mbuf_alloc_tpa"} 567 }; 568 569 static const struct { 570 uint32_t offset; 571 uint32_t size; 572 char string[STAT_NAME_LEN]; 573 } bxe_eth_q_stats_arr[] = { 574 { Q_STATS_OFFSET32(total_bytes_received_hi), 575 8, "rx_bytes" }, 576 { Q_STATS_OFFSET32(total_unicast_packets_received_hi), 577 8, "rx_ucast_packets" }, 578 { Q_STATS_OFFSET32(total_multicast_packets_received_hi), 579 8, "rx_mcast_packets" }, 580 { Q_STATS_OFFSET32(total_broadcast_packets_received_hi), 581 8, "rx_bcast_packets" }, 582 { Q_STATS_OFFSET32(no_buff_discard_hi), 583 8, "rx_discards" }, 584 { Q_STATS_OFFSET32(total_bytes_transmitted_hi), 585 8, "tx_bytes" }, 586 { Q_STATS_OFFSET32(total_unicast_packets_transmitted_hi), 587 8, "tx_ucast_packets" }, 588 { Q_STATS_OFFSET32(total_multicast_packets_transmitted_hi), 589 8, "tx_mcast_packets" }, 590 { Q_STATS_OFFSET32(total_broadcast_packets_transmitted_hi), 591 8, "tx_bcast_packets" }, 592 { Q_STATS_OFFSET32(total_tpa_aggregations_hi), 593 8, "tpa_aggregations" }, 594 { Q_STATS_OFFSET32(total_tpa_aggregated_frames_hi), 595 8, "tpa_aggregated_frames"}, 596 { Q_STATS_OFFSET32(total_tpa_bytes_hi), 597 8, "tpa_bytes"}, 598 { Q_STATS_OFFSET32(rx_calls), 599 4, "rx_calls"}, 600 { Q_STATS_OFFSET32(rx_pkts), 601 4, "rx_pkts"}, 602 { Q_STATS_OFFSET32(rx_tpa_pkts), 603 4, "rx_tpa_pkts"}, 604 { Q_STATS_OFFSET32(rx_soft_errors), 605 4, "rx_soft_errors"}, 606 { Q_STATS_OFFSET32(rx_hw_csum_errors), 607 4, "rx_hw_csum_errors"}, 608 { Q_STATS_OFFSET32(rx_ofld_frames_csum_ip), 609 4, "rx_ofld_frames_csum_ip"}, 610 { Q_STATS_OFFSET32(rx_ofld_frames_csum_tcp_udp), 611 4, "rx_ofld_frames_csum_tcp_udp"}, 612 { Q_STATS_OFFSET32(rx_budget_reached), 613 4, "rx_budget_reached"}, 614 { Q_STATS_OFFSET32(tx_pkts), 615 4, "tx_pkts"}, 616 { Q_STATS_OFFSET32(tx_soft_errors), 617 4, "tx_soft_errors"}, 618 { Q_STATS_OFFSET32(tx_ofld_frames_csum_ip), 619 4, "tx_ofld_frames_csum_ip"}, 620 { Q_STATS_OFFSET32(tx_ofld_frames_csum_tcp), 621 4, "tx_ofld_frames_csum_tcp"}, 622 { Q_STATS_OFFSET32(tx_ofld_frames_csum_udp), 623 4, "tx_ofld_frames_csum_udp"}, 624 { Q_STATS_OFFSET32(tx_ofld_frames_lso), 625 4, "tx_ofld_frames_lso"}, 626 { Q_STATS_OFFSET32(tx_ofld_frames_lso_hdr_splits), 627 4, "tx_ofld_frames_lso_hdr_splits"}, 628 { Q_STATS_OFFSET32(tx_encap_failures), 629 4, "tx_encap_failures"}, 630 { Q_STATS_OFFSET32(tx_hw_queue_full), 631 4, "tx_hw_queue_full"}, 632 { Q_STATS_OFFSET32(tx_hw_max_queue_depth), 633 4, "tx_hw_max_queue_depth"}, 634 { Q_STATS_OFFSET32(tx_dma_mapping_failure), 635 4, "tx_dma_mapping_failure"}, 636 { Q_STATS_OFFSET32(tx_max_drbr_queue_depth), 637 4, "tx_max_drbr_queue_depth"}, 638 { Q_STATS_OFFSET32(tx_window_violation_std), 639 4, "tx_window_violation_std"}, 640 { Q_STATS_OFFSET32(tx_window_violation_tso), 641 4, "tx_window_violation_tso"}, 642 #if 0 643 { Q_STATS_OFFSET32(tx_unsupported_tso_request_ipv6), 644 4, "tx_unsupported_tso_request_ipv6"}, 645 { Q_STATS_OFFSET32(tx_unsupported_tso_request_not_tcp), 646 4, "tx_unsupported_tso_request_not_tcp"}, 647 #endif 648 { Q_STATS_OFFSET32(tx_chain_lost_mbuf), 649 4, "tx_chain_lost_mbuf"}, 650 { Q_STATS_OFFSET32(tx_frames_deferred), 651 4, "tx_frames_deferred"}, 652 { Q_STATS_OFFSET32(tx_queue_xoff), 653 4, "tx_queue_xoff"}, 654 { Q_STATS_OFFSET32(mbuf_defrag_attempts), 655 4, "mbuf_defrag_attempts"}, 656 { Q_STATS_OFFSET32(mbuf_defrag_failures), 657 4, "mbuf_defrag_failures"}, 658 { Q_STATS_OFFSET32(mbuf_rx_bd_alloc_failed), 659 4, "mbuf_rx_bd_alloc_failed"}, 660 { Q_STATS_OFFSET32(mbuf_rx_bd_mapping_failed), 661 4, "mbuf_rx_bd_mapping_failed"}, 662 { Q_STATS_OFFSET32(mbuf_rx_tpa_alloc_failed), 663 4, "mbuf_rx_tpa_alloc_failed"}, 664 { Q_STATS_OFFSET32(mbuf_rx_tpa_mapping_failed), 665 4, "mbuf_rx_tpa_mapping_failed"}, 666 { Q_STATS_OFFSET32(mbuf_rx_sge_alloc_failed), 667 4, "mbuf_rx_sge_alloc_failed"}, 668 { Q_STATS_OFFSET32(mbuf_rx_sge_mapping_failed), 669 4, "mbuf_rx_sge_mapping_failed"}, 670 { Q_STATS_OFFSET32(mbuf_alloc_tx), 671 4, "mbuf_alloc_tx"}, 672 { Q_STATS_OFFSET32(mbuf_alloc_rx), 673 4, "mbuf_alloc_rx"}, 674 { Q_STATS_OFFSET32(mbuf_alloc_sge), 675 4, "mbuf_alloc_sge"}, 676 { Q_STATS_OFFSET32(mbuf_alloc_tpa), 677 4, "mbuf_alloc_tpa"} 678 }; 679 680 #define BXE_NUM_ETH_STATS ARRAY_SIZE(bxe_eth_stats_arr) 681 #define BXE_NUM_ETH_Q_STATS ARRAY_SIZE(bxe_eth_q_stats_arr) 682 683 684 static void bxe_cmng_fns_init(struct bxe_softc *sc, 685 uint8_t read_cfg, 686 uint8_t cmng_type); 687 static int bxe_get_cmng_fns_mode(struct bxe_softc *sc); 688 static void storm_memset_cmng(struct bxe_softc *sc, 689 struct cmng_init *cmng, 690 uint8_t port); 691 static void bxe_set_reset_global(struct bxe_softc *sc); 692 static void bxe_set_reset_in_progress(struct bxe_softc *sc); 693 static uint8_t bxe_reset_is_done(struct bxe_softc *sc, 694 int engine); 695 static uint8_t bxe_clear_pf_load(struct bxe_softc *sc); 696 static uint8_t bxe_chk_parity_attn(struct bxe_softc *sc, 697 uint8_t *global, 698 uint8_t print); 699 static void bxe_int_disable(struct bxe_softc *sc); 700 static int bxe_release_leader_lock(struct bxe_softc *sc); 701 static void bxe_pf_disable(struct bxe_softc *sc); 702 static void bxe_free_fp_buffers(struct bxe_softc *sc); 703 static inline void bxe_update_rx_prod(struct bxe_softc *sc, 704 struct bxe_fastpath *fp, 705 uint16_t rx_bd_prod, 706 uint16_t rx_cq_prod, 707 uint16_t rx_sge_prod); 708 static void bxe_link_report_locked(struct bxe_softc *sc); 709 static void bxe_link_report(struct bxe_softc *sc); 710 static void bxe_link_status_update(struct bxe_softc *sc); 711 static void bxe_periodic_callout_func(void *xsc); 712 static void bxe_periodic_start(struct bxe_softc *sc); 713 static void bxe_periodic_stop(struct bxe_softc *sc); 714 static int bxe_alloc_rx_bd_mbuf(struct bxe_fastpath *fp, 715 uint16_t prev_index, 716 uint16_t index); 717 static int bxe_alloc_rx_tpa_mbuf(struct bxe_fastpath *fp, 718 int queue); 719 static int bxe_alloc_rx_sge_mbuf(struct bxe_fastpath *fp, 720 uint16_t index); 721 static uint8_t bxe_txeof(struct bxe_softc *sc, 722 struct bxe_fastpath *fp); 723 static void bxe_task_fp(struct bxe_fastpath *fp); 724 static __noinline void bxe_dump_mbuf(struct bxe_softc *sc, 725 struct mbuf *m, 726 uint8_t contents); 727 static int bxe_alloc_mem(struct bxe_softc *sc); 728 static void bxe_free_mem(struct bxe_softc *sc); 729 static int bxe_alloc_fw_stats_mem(struct bxe_softc *sc); 730 static void bxe_free_fw_stats_mem(struct bxe_softc *sc); 731 static int bxe_interrupt_attach(struct bxe_softc *sc); 732 static void bxe_interrupt_detach(struct bxe_softc *sc); 733 static void bxe_set_rx_mode(struct bxe_softc *sc); 734 static int bxe_init_locked(struct bxe_softc *sc); 735 static int bxe_stop_locked(struct bxe_softc *sc); 736 static __noinline int bxe_nic_load(struct bxe_softc *sc, 737 int load_mode); 738 static __noinline int bxe_nic_unload(struct bxe_softc *sc, 739 uint32_t unload_mode, 740 uint8_t keep_link); 741 742 static void bxe_handle_sp_tq(void *context, int pending); 743 static void bxe_handle_rx_mode_tq(void *context, int pending); 744 static void bxe_handle_fp_tq(void *context, int pending); 745 746 747 /* calculate crc32 on a buffer (NOTE: crc32_length MUST be aligned to 8) */ 748 uint32_t 749 calc_crc32(uint8_t *crc32_packet, 750 uint32_t crc32_length, 751 uint32_t crc32_seed, 752 uint8_t complement) 753 { 754 uint32_t byte = 0; 755 uint32_t bit = 0; 756 uint8_t msb = 0; 757 uint32_t temp = 0; 758 uint32_t shft = 0; 759 uint8_t current_byte = 0; 760 uint32_t crc32_result = crc32_seed; 761 const uint32_t CRC32_POLY = 0x1edc6f41; 762 763 if ((crc32_packet == NULL) || 764 (crc32_length == 0) || 765 ((crc32_length % 8) != 0)) 766 { 767 return (crc32_result); 768 } 769 770 for (byte = 0; byte < crc32_length; byte = byte + 1) 771 { 772 current_byte = crc32_packet[byte]; 773 for (bit = 0; bit < 8; bit = bit + 1) 774 { 775 /* msb = crc32_result[31]; */ 776 msb = (uint8_t)(crc32_result >> 31); 777 778 crc32_result = crc32_result << 1; 779 780 /* it (msb != current_byte[bit]) */ 781 if (msb != (0x1 & (current_byte >> bit))) 782 { 783 crc32_result = crc32_result ^ CRC32_POLY; 784 /* crc32_result[0] = 1 */ 785 crc32_result |= 1; 786 } 787 } 788 } 789 790 /* Last step is to: 791 * 1. "mirror" every bit 792 * 2. swap the 4 bytes 793 * 3. complement each bit 794 */ 795 796 /* Mirror */ 797 temp = crc32_result; 798 shft = sizeof(crc32_result) * 8 - 1; 799 800 for (crc32_result >>= 1; crc32_result; crc32_result >>= 1) 801 { 802 temp <<= 1; 803 temp |= crc32_result & 1; 804 shft-- ; 805 } 806 807 /* temp[31-bit] = crc32_result[bit] */ 808 temp <<= shft; 809 810 /* Swap */ 811 /* crc32_result = {temp[7:0], temp[15:8], temp[23:16], temp[31:24]} */ 812 { 813 uint32_t t0, t1, t2, t3; 814 t0 = (0x000000ff & (temp >> 24)); 815 t1 = (0x0000ff00 & (temp >> 8)); 816 t2 = (0x00ff0000 & (temp << 8)); 817 t3 = (0xff000000 & (temp << 24)); 818 crc32_result = t0 | t1 | t2 | t3; 819 } 820 821 /* Complement */ 822 if (complement) 823 { 824 crc32_result = ~crc32_result; 825 } 826 827 return (crc32_result); 828 } 829 830 int 831 bxe_test_bit(int nr, 832 volatile unsigned long *addr) 833 { 834 return ((atomic_load_acq_long(addr) & (1 << nr)) != 0); 835 } 836 837 void 838 bxe_set_bit(unsigned int nr, 839 volatile unsigned long *addr) 840 { 841 atomic_set_acq_long(addr, (1 << nr)); 842 } 843 844 void 845 bxe_clear_bit(int nr, 846 volatile unsigned long *addr) 847 { 848 atomic_clear_acq_long(addr, (1 << nr)); 849 } 850 851 int 852 bxe_test_and_set_bit(int nr, 853 volatile unsigned long *addr) 854 { 855 unsigned long x; 856 nr = (1 << nr); 857 do { 858 x = *addr; 859 } while (atomic_cmpset_acq_long(addr, x, x | nr) == 0); 860 // if (x & nr) bit_was_set; else bit_was_not_set; 861 return (x & nr); 862 } 863 864 int 865 bxe_test_and_clear_bit(int nr, 866 volatile unsigned long *addr) 867 { 868 unsigned long x; 869 nr = (1 << nr); 870 do { 871 x = *addr; 872 } while (atomic_cmpset_acq_long(addr, x, x & ~nr) == 0); 873 // if (x & nr) bit_was_set; else bit_was_not_set; 874 return (x & nr); 875 } 876 877 int 878 bxe_cmpxchg(volatile int *addr, 879 int old, 880 int new) 881 { 882 int x; 883 do { 884 x = *addr; 885 } while (atomic_cmpset_acq_int(addr, old, new) == 0); 886 return (x); 887 } 888 889 /* 890 * Get DMA memory from the OS. 891 * 892 * Validates that the OS has provided DMA buffers in response to a 893 * bus_dmamap_load call and saves the physical address of those buffers. 894 * When the callback is used the OS will return 0 for the mapping function 895 * (bus_dmamap_load) so we use the value of map_arg->maxsegs to pass any 896 * failures back to the caller. 897 * 898 * Returns: 899 * Nothing. 900 */ 901 static void 902 bxe_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error) 903 { 904 struct bxe_dma *dma = arg; 905 906 if (error) { 907 dma->paddr = 0; 908 dma->nseg = 0; 909 BLOGE(dma->sc, "Failed DMA alloc '%s' (%d)!\n", dma->msg, error); 910 } else { 911 dma->paddr = segs->ds_addr; 912 dma->nseg = nseg; 913 #if 0 914 BLOGD(dma->sc, DBG_LOAD, 915 "DMA alloc '%s': vaddr=%p paddr=%p nseg=%d size=%lu\n", 916 dma->msg, dma->vaddr, (void *)dma->paddr, 917 dma->nseg, dma->size); 918 #endif 919 } 920 } 921 922 /* 923 * Allocate a block of memory and map it for DMA. No partial completions 924 * allowed and release any resources acquired if we can't acquire all 925 * resources. 926 * 927 * Returns: 928 * 0 = Success, !0 = Failure 929 */ 930 int 931 bxe_dma_alloc(struct bxe_softc *sc, 932 bus_size_t size, 933 struct bxe_dma *dma, 934 const char *msg) 935 { 936 int rc; 937 938 if (dma->size > 0) { 939 BLOGE(sc, "dma block '%s' already has size %lu\n", msg, 940 (unsigned long)dma->size); 941 return (1); 942 } 943 944 memset(dma, 0, sizeof(*dma)); /* sanity */ 945 dma->sc = sc; 946 dma->size = size; 947 snprintf(dma->msg, sizeof(dma->msg), "%s", msg); 948 949 rc = bus_dma_tag_create(sc->parent_dma_tag, /* parent tag */ 950 BCM_PAGE_SIZE, /* alignment */ 951 0, /* boundary limit */ 952 BUS_SPACE_MAXADDR, /* restricted low */ 953 BUS_SPACE_MAXADDR, /* restricted hi */ 954 NULL, /* addr filter() */ 955 NULL, /* addr filter() arg */ 956 size, /* max map size */ 957 1, /* num discontinuous */ 958 size, /* max seg size */ 959 BUS_DMA_ALLOCNOW, /* flags */ 960 NULL, /* lock() */ 961 NULL, /* lock() arg */ 962 &dma->tag); /* returned dma tag */ 963 if (rc != 0) { 964 BLOGE(sc, "Failed to create dma tag for '%s' (%d)\n", msg, rc); 965 memset(dma, 0, sizeof(*dma)); 966 return (1); 967 } 968 969 rc = bus_dmamem_alloc(dma->tag, 970 (void **)&dma->vaddr, 971 (BUS_DMA_NOWAIT | BUS_DMA_ZERO), 972 &dma->map); 973 if (rc != 0) { 974 BLOGE(sc, "Failed to alloc dma mem for '%s' (%d)\n", msg, rc); 975 bus_dma_tag_destroy(dma->tag); 976 memset(dma, 0, sizeof(*dma)); 977 return (1); 978 } 979 980 rc = bus_dmamap_load(dma->tag, 981 dma->map, 982 dma->vaddr, 983 size, 984 bxe_dma_map_addr, /* BLOGD in here */ 985 dma, 986 BUS_DMA_NOWAIT); 987 if (rc != 0) { 988 BLOGE(sc, "Failed to load dma map for '%s' (%d)\n", msg, rc); 989 bus_dmamem_free(dma->tag, dma->vaddr, dma->map); 990 bus_dma_tag_destroy(dma->tag); 991 memset(dma, 0, sizeof(*dma)); 992 return (1); 993 } 994 995 return (0); 996 } 997 998 void 999 bxe_dma_free(struct bxe_softc *sc, 1000 struct bxe_dma *dma) 1001 { 1002 if (dma->size > 0) { 1003 #if 0 1004 BLOGD(sc, DBG_LOAD, 1005 "DMA free '%s': vaddr=%p paddr=%p nseg=%d size=%lu\n", 1006 dma->msg, dma->vaddr, (void *)dma->paddr, 1007 dma->nseg, dma->size); 1008 #endif 1009 1010 DBASSERT(sc, (dma->tag != NULL), ("dma tag is NULL")); 1011 1012 bus_dmamap_sync(dma->tag, dma->map, 1013 (BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE)); 1014 bus_dmamap_unload(dma->tag, dma->map); 1015 bus_dmamem_free(dma->tag, dma->vaddr, dma->map); 1016 bus_dma_tag_destroy(dma->tag); 1017 } 1018 1019 memset(dma, 0, sizeof(*dma)); 1020 } 1021 1022 /* 1023 * These indirect read and write routines are only during init. 1024 * The locking is handled by the MCP. 1025 */ 1026 1027 void 1028 bxe_reg_wr_ind(struct bxe_softc *sc, 1029 uint32_t addr, 1030 uint32_t val) 1031 { 1032 pci_write_config(sc->dev, PCICFG_GRC_ADDRESS, addr, 4); 1033 pci_write_config(sc->dev, PCICFG_GRC_DATA, val, 4); 1034 pci_write_config(sc->dev, PCICFG_GRC_ADDRESS, 0, 4); 1035 } 1036 1037 uint32_t 1038 bxe_reg_rd_ind(struct bxe_softc *sc, 1039 uint32_t addr) 1040 { 1041 uint32_t val; 1042 1043 pci_write_config(sc->dev, PCICFG_GRC_ADDRESS, addr, 4); 1044 val = pci_read_config(sc->dev, PCICFG_GRC_DATA, 4); 1045 pci_write_config(sc->dev, PCICFG_GRC_ADDRESS, 0, 4); 1046 1047 return (val); 1048 } 1049 1050 #if 0 1051 void bxe_dp_dmae(struct bxe_softc *sc, struct dmae_command *dmae, int msglvl) 1052 { 1053 uint32_t src_type = dmae->opcode & DMAE_COMMAND_SRC; 1054 1055 switch (dmae->opcode & DMAE_COMMAND_DST) { 1056 case DMAE_CMD_DST_PCI: 1057 if (src_type == DMAE_CMD_SRC_PCI) 1058 DP(msglvl, "DMAE: opcode 0x%08x\n" 1059 "src [%x:%08x], len [%d*4], dst [%x:%08x]\n" 1060 "comp_addr [%x:%08x], comp_val 0x%08x\n", 1061 dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo, 1062 dmae->len, dmae->dst_addr_hi, dmae->dst_addr_lo, 1063 dmae->comp_addr_hi, dmae->comp_addr_lo, 1064 dmae->comp_val); 1065 else 1066 DP(msglvl, "DMAE: opcode 0x%08x\n" 1067 "src [%08x], len [%d*4], dst [%x:%08x]\n" 1068 "comp_addr [%x:%08x], comp_val 0x%08x\n", 1069 dmae->opcode, dmae->src_addr_lo >> 2, 1070 dmae->len, dmae->dst_addr_hi, dmae->dst_addr_lo, 1071 dmae->comp_addr_hi, dmae->comp_addr_lo, 1072 dmae->comp_val); 1073 break; 1074 case DMAE_CMD_DST_GRC: 1075 if (src_type == DMAE_CMD_SRC_PCI) 1076 DP(msglvl, "DMAE: opcode 0x%08x\n" 1077 "src [%x:%08x], len [%d*4], dst_addr [%08x]\n" 1078 "comp_addr [%x:%08x], comp_val 0x%08x\n", 1079 dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo, 1080 dmae->len, dmae->dst_addr_lo >> 2, 1081 dmae->comp_addr_hi, dmae->comp_addr_lo, 1082 dmae->comp_val); 1083 else 1084 DP(msglvl, "DMAE: opcode 0x%08x\n" 1085 "src [%08x], len [%d*4], dst [%08x]\n" 1086 "comp_addr [%x:%08x], comp_val 0x%08x\n", 1087 dmae->opcode, dmae->src_addr_lo >> 2, 1088 dmae->len, dmae->dst_addr_lo >> 2, 1089 dmae->comp_addr_hi, dmae->comp_addr_lo, 1090 dmae->comp_val); 1091 break; 1092 default: 1093 if (src_type == DMAE_CMD_SRC_PCI) 1094 DP(msglvl, "DMAE: opcode 0x%08x\n" 1095 "src_addr [%x:%08x] len [%d * 4] dst_addr [none]\n" 1096 "comp_addr [%x:%08x] comp_val 0x%08x\n", 1097 dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo, 1098 dmae->len, dmae->comp_addr_hi, dmae->comp_addr_lo, 1099 dmae->comp_val); 1100 else 1101 DP(msglvl, "DMAE: opcode 0x%08x\n" 1102 "src_addr [%08x] len [%d * 4] dst_addr [none]\n" 1103 "comp_addr [%x:%08x] comp_val 0x%08x\n", 1104 dmae->opcode, dmae->src_addr_lo >> 2, 1105 dmae->len, dmae->comp_addr_hi, dmae->comp_addr_lo, 1106 dmae->comp_val); 1107 break; 1108 } 1109 1110 } 1111 #endif 1112 1113 static int 1114 bxe_acquire_hw_lock(struct bxe_softc *sc, 1115 uint32_t resource) 1116 { 1117 uint32_t lock_status; 1118 uint32_t resource_bit = (1 << resource); 1119 int func = SC_FUNC(sc); 1120 uint32_t hw_lock_control_reg; 1121 int cnt; 1122 1123 /* validate the resource is within range */ 1124 if (resource > HW_LOCK_MAX_RESOURCE_VALUE) { 1125 BLOGE(sc, "resource 0x%x > HW_LOCK_MAX_RESOURCE_VALUE\n", resource); 1126 return (-1); 1127 } 1128 1129 if (func <= 5) { 1130 hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + (func * 8)); 1131 } else { 1132 hw_lock_control_reg = 1133 (MISC_REG_DRIVER_CONTROL_7 + ((func - 6) * 8)); 1134 } 1135 1136 /* validate the resource is not already taken */ 1137 lock_status = REG_RD(sc, hw_lock_control_reg); 1138 if (lock_status & resource_bit) { 1139 BLOGE(sc, "resource in use (status 0x%x bit 0x%x)\n", 1140 lock_status, resource_bit); 1141 return (-1); 1142 } 1143 1144 /* try every 5ms for 5 seconds */ 1145 for (cnt = 0; cnt < 1000; cnt++) { 1146 REG_WR(sc, (hw_lock_control_reg + 4), resource_bit); 1147 lock_status = REG_RD(sc, hw_lock_control_reg); 1148 if (lock_status & resource_bit) { 1149 return (0); 1150 } 1151 DELAY(5000); 1152 } 1153 1154 BLOGE(sc, "Resource lock timeout!\n"); 1155 return (-1); 1156 } 1157 1158 static int 1159 bxe_release_hw_lock(struct bxe_softc *sc, 1160 uint32_t resource) 1161 { 1162 uint32_t lock_status; 1163 uint32_t resource_bit = (1 << resource); 1164 int func = SC_FUNC(sc); 1165 uint32_t hw_lock_control_reg; 1166 1167 /* validate the resource is within range */ 1168 if (resource > HW_LOCK_MAX_RESOURCE_VALUE) { 1169 BLOGE(sc, "resource 0x%x > HW_LOCK_MAX_RESOURCE_VALUE\n", resource); 1170 return (-1); 1171 } 1172 1173 if (func <= 5) { 1174 hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + (func * 8)); 1175 } else { 1176 hw_lock_control_reg = 1177 (MISC_REG_DRIVER_CONTROL_7 + ((func - 6) * 8)); 1178 } 1179 1180 /* validate the resource is currently taken */ 1181 lock_status = REG_RD(sc, hw_lock_control_reg); 1182 if (!(lock_status & resource_bit)) { 1183 BLOGE(sc, "resource not in use (status 0x%x bit 0x%x)\n", 1184 lock_status, resource_bit); 1185 return (-1); 1186 } 1187 1188 REG_WR(sc, hw_lock_control_reg, resource_bit); 1189 return (0); 1190 } 1191 1192 /* 1193 * Per pf misc lock must be acquired before the per port mcp lock. Otherwise, 1194 * had we done things the other way around, if two pfs from the same port 1195 * would attempt to access nvram at the same time, we could run into a 1196 * scenario such as: 1197 * pf A takes the port lock. 1198 * pf B succeeds in taking the same lock since they are from the same port. 1199 * pf A takes the per pf misc lock. Performs eeprom access. 1200 * pf A finishes. Unlocks the per pf misc lock. 1201 * Pf B takes the lock and proceeds to perform it's own access. 1202 * pf A unlocks the per port lock, while pf B is still working (!). 1203 * mcp takes the per port lock and corrupts pf B's access (and/or has it's own 1204 * access corrupted by pf B).* 1205 */ 1206 static int 1207 bxe_acquire_nvram_lock(struct bxe_softc *sc) 1208 { 1209 int port = SC_PORT(sc); 1210 int count, i; 1211 uint32_t val = 0; 1212 1213 /* acquire HW lock: protect against other PFs in PF Direct Assignment */ 1214 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_NVRAM); 1215 1216 /* adjust timeout for emulation/FPGA */ 1217 count = NVRAM_TIMEOUT_COUNT; 1218 if (CHIP_REV_IS_SLOW(sc)) { 1219 count *= 100; 1220 } 1221 1222 /* request access to nvram interface */ 1223 REG_WR(sc, MCP_REG_MCPR_NVM_SW_ARB, 1224 (MCPR_NVM_SW_ARB_ARB_REQ_SET1 << port)); 1225 1226 for (i = 0; i < count*10; i++) { 1227 val = REG_RD(sc, MCP_REG_MCPR_NVM_SW_ARB); 1228 if (val & (MCPR_NVM_SW_ARB_ARB_ARB1 << port)) { 1229 break; 1230 } 1231 1232 DELAY(5); 1233 } 1234 1235 if (!(val & (MCPR_NVM_SW_ARB_ARB_ARB1 << port))) { 1236 BLOGE(sc, "Cannot get access to nvram interface\n"); 1237 return (-1); 1238 } 1239 1240 return (0); 1241 } 1242 1243 static int 1244 bxe_release_nvram_lock(struct bxe_softc *sc) 1245 { 1246 int port = SC_PORT(sc); 1247 int count, i; 1248 uint32_t val = 0; 1249 1250 /* adjust timeout for emulation/FPGA */ 1251 count = NVRAM_TIMEOUT_COUNT; 1252 if (CHIP_REV_IS_SLOW(sc)) { 1253 count *= 100; 1254 } 1255 1256 /* relinquish nvram interface */ 1257 REG_WR(sc, MCP_REG_MCPR_NVM_SW_ARB, 1258 (MCPR_NVM_SW_ARB_ARB_REQ_CLR1 << port)); 1259 1260 for (i = 0; i < count*10; i++) { 1261 val = REG_RD(sc, MCP_REG_MCPR_NVM_SW_ARB); 1262 if (!(val & (MCPR_NVM_SW_ARB_ARB_ARB1 << port))) { 1263 break; 1264 } 1265 1266 DELAY(5); 1267 } 1268 1269 if (val & (MCPR_NVM_SW_ARB_ARB_ARB1 << port)) { 1270 BLOGE(sc, "Cannot free access to nvram interface\n"); 1271 return (-1); 1272 } 1273 1274 /* release HW lock: protect against other PFs in PF Direct Assignment */ 1275 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_NVRAM); 1276 1277 return (0); 1278 } 1279 1280 static void 1281 bxe_enable_nvram_access(struct bxe_softc *sc) 1282 { 1283 uint32_t val; 1284 1285 val = REG_RD(sc, MCP_REG_MCPR_NVM_ACCESS_ENABLE); 1286 1287 /* enable both bits, even on read */ 1288 REG_WR(sc, MCP_REG_MCPR_NVM_ACCESS_ENABLE, 1289 (val | MCPR_NVM_ACCESS_ENABLE_EN | MCPR_NVM_ACCESS_ENABLE_WR_EN)); 1290 } 1291 1292 static void 1293 bxe_disable_nvram_access(struct bxe_softc *sc) 1294 { 1295 uint32_t val; 1296 1297 val = REG_RD(sc, MCP_REG_MCPR_NVM_ACCESS_ENABLE); 1298 1299 /* disable both bits, even after read */ 1300 REG_WR(sc, MCP_REG_MCPR_NVM_ACCESS_ENABLE, 1301 (val & ~(MCPR_NVM_ACCESS_ENABLE_EN | 1302 MCPR_NVM_ACCESS_ENABLE_WR_EN))); 1303 } 1304 1305 static int 1306 bxe_nvram_read_dword(struct bxe_softc *sc, 1307 uint32_t offset, 1308 uint32_t *ret_val, 1309 uint32_t cmd_flags) 1310 { 1311 int count, i, rc; 1312 uint32_t val; 1313 1314 /* build the command word */ 1315 cmd_flags |= MCPR_NVM_COMMAND_DOIT; 1316 1317 /* need to clear DONE bit separately */ 1318 REG_WR(sc, MCP_REG_MCPR_NVM_COMMAND, MCPR_NVM_COMMAND_DONE); 1319 1320 /* address of the NVRAM to read from */ 1321 REG_WR(sc, MCP_REG_MCPR_NVM_ADDR, 1322 (offset & MCPR_NVM_ADDR_NVM_ADDR_VALUE)); 1323 1324 /* issue a read command */ 1325 REG_WR(sc, MCP_REG_MCPR_NVM_COMMAND, cmd_flags); 1326 1327 /* adjust timeout for emulation/FPGA */ 1328 count = NVRAM_TIMEOUT_COUNT; 1329 if (CHIP_REV_IS_SLOW(sc)) { 1330 count *= 100; 1331 } 1332 1333 /* wait for completion */ 1334 *ret_val = 0; 1335 rc = -1; 1336 for (i = 0; i < count; i++) { 1337 DELAY(5); 1338 val = REG_RD(sc, MCP_REG_MCPR_NVM_COMMAND); 1339 1340 if (val & MCPR_NVM_COMMAND_DONE) { 1341 val = REG_RD(sc, MCP_REG_MCPR_NVM_READ); 1342 /* we read nvram data in cpu order 1343 * but ethtool sees it as an array of bytes 1344 * converting to big-endian will do the work 1345 */ 1346 *ret_val = htobe32(val); 1347 rc = 0; 1348 break; 1349 } 1350 } 1351 1352 if (rc == -1) { 1353 BLOGE(sc, "nvram read timeout expired\n"); 1354 } 1355 1356 return (rc); 1357 } 1358 1359 static int 1360 bxe_nvram_read(struct bxe_softc *sc, 1361 uint32_t offset, 1362 uint8_t *ret_buf, 1363 int buf_size) 1364 { 1365 uint32_t cmd_flags; 1366 uint32_t val; 1367 int rc; 1368 1369 if ((offset & 0x03) || (buf_size & 0x03) || (buf_size == 0)) { 1370 BLOGE(sc, "Invalid parameter, offset 0x%x buf_size 0x%x\n", 1371 offset, buf_size); 1372 return (-1); 1373 } 1374 1375 if ((offset + buf_size) > sc->devinfo.flash_size) { 1376 BLOGE(sc, "Invalid parameter, " 1377 "offset 0x%x + buf_size 0x%x > flash_size 0x%x\n", 1378 offset, buf_size, sc->devinfo.flash_size); 1379 return (-1); 1380 } 1381 1382 /* request access to nvram interface */ 1383 rc = bxe_acquire_nvram_lock(sc); 1384 if (rc) { 1385 return (rc); 1386 } 1387 1388 /* enable access to nvram interface */ 1389 bxe_enable_nvram_access(sc); 1390 1391 /* read the first word(s) */ 1392 cmd_flags = MCPR_NVM_COMMAND_FIRST; 1393 while ((buf_size > sizeof(uint32_t)) && (rc == 0)) { 1394 rc = bxe_nvram_read_dword(sc, offset, &val, cmd_flags); 1395 memcpy(ret_buf, &val, 4); 1396 1397 /* advance to the next dword */ 1398 offset += sizeof(uint32_t); 1399 ret_buf += sizeof(uint32_t); 1400 buf_size -= sizeof(uint32_t); 1401 cmd_flags = 0; 1402 } 1403 1404 if (rc == 0) { 1405 cmd_flags |= MCPR_NVM_COMMAND_LAST; 1406 rc = bxe_nvram_read_dword(sc, offset, &val, cmd_flags); 1407 memcpy(ret_buf, &val, 4); 1408 } 1409 1410 /* disable access to nvram interface */ 1411 bxe_disable_nvram_access(sc); 1412 bxe_release_nvram_lock(sc); 1413 1414 return (rc); 1415 } 1416 1417 static int 1418 bxe_nvram_write_dword(struct bxe_softc *sc, 1419 uint32_t offset, 1420 uint32_t val, 1421 uint32_t cmd_flags) 1422 { 1423 int count, i, rc; 1424 1425 /* build the command word */ 1426 cmd_flags |= (MCPR_NVM_COMMAND_DOIT | MCPR_NVM_COMMAND_WR); 1427 1428 /* need to clear DONE bit separately */ 1429 REG_WR(sc, MCP_REG_MCPR_NVM_COMMAND, MCPR_NVM_COMMAND_DONE); 1430 1431 /* write the data */ 1432 REG_WR(sc, MCP_REG_MCPR_NVM_WRITE, val); 1433 1434 /* address of the NVRAM to write to */ 1435 REG_WR(sc, MCP_REG_MCPR_NVM_ADDR, 1436 (offset & MCPR_NVM_ADDR_NVM_ADDR_VALUE)); 1437 1438 /* issue the write command */ 1439 REG_WR(sc, MCP_REG_MCPR_NVM_COMMAND, cmd_flags); 1440 1441 /* adjust timeout for emulation/FPGA */ 1442 count = NVRAM_TIMEOUT_COUNT; 1443 if (CHIP_REV_IS_SLOW(sc)) { 1444 count *= 100; 1445 } 1446 1447 /* wait for completion */ 1448 rc = -1; 1449 for (i = 0; i < count; i++) { 1450 DELAY(5); 1451 val = REG_RD(sc, MCP_REG_MCPR_NVM_COMMAND); 1452 if (val & MCPR_NVM_COMMAND_DONE) { 1453 rc = 0; 1454 break; 1455 } 1456 } 1457 1458 if (rc == -1) { 1459 BLOGE(sc, "nvram write timeout expired\n"); 1460 } 1461 1462 return (rc); 1463 } 1464 1465 #define BYTE_OFFSET(offset) (8 * (offset & 0x03)) 1466 1467 static int 1468 bxe_nvram_write1(struct bxe_softc *sc, 1469 uint32_t offset, 1470 uint8_t *data_buf, 1471 int buf_size) 1472 { 1473 uint32_t cmd_flags; 1474 uint32_t align_offset; 1475 uint32_t val; 1476 int rc; 1477 1478 if ((offset + buf_size) > sc->devinfo.flash_size) { 1479 BLOGE(sc, "Invalid parameter, " 1480 "offset 0x%x + buf_size 0x%x > flash_size 0x%x\n", 1481 offset, buf_size, sc->devinfo.flash_size); 1482 return (-1); 1483 } 1484 1485 /* request access to nvram interface */ 1486 rc = bxe_acquire_nvram_lock(sc); 1487 if (rc) { 1488 return (rc); 1489 } 1490 1491 /* enable access to nvram interface */ 1492 bxe_enable_nvram_access(sc); 1493 1494 cmd_flags = (MCPR_NVM_COMMAND_FIRST | MCPR_NVM_COMMAND_LAST); 1495 align_offset = (offset & ~0x03); 1496 rc = bxe_nvram_read_dword(sc, align_offset, &val, cmd_flags); 1497 1498 if (rc == 0) { 1499 val &= ~(0xff << BYTE_OFFSET(offset)); 1500 val |= (*data_buf << BYTE_OFFSET(offset)); 1501 1502 /* nvram data is returned as an array of bytes 1503 * convert it back to cpu order 1504 */ 1505 val = be32toh(val); 1506 1507 rc = bxe_nvram_write_dword(sc, align_offset, val, cmd_flags); 1508 } 1509 1510 /* disable access to nvram interface */ 1511 bxe_disable_nvram_access(sc); 1512 bxe_release_nvram_lock(sc); 1513 1514 return (rc); 1515 } 1516 1517 static int 1518 bxe_nvram_write(struct bxe_softc *sc, 1519 uint32_t offset, 1520 uint8_t *data_buf, 1521 int buf_size) 1522 { 1523 uint32_t cmd_flags; 1524 uint32_t val; 1525 uint32_t written_so_far; 1526 int rc; 1527 1528 if (buf_size == 1) { 1529 return (bxe_nvram_write1(sc, offset, data_buf, buf_size)); 1530 } 1531 1532 if ((offset & 0x03) || (buf_size & 0x03) /* || (buf_size == 0) */) { 1533 BLOGE(sc, "Invalid parameter, offset 0x%x buf_size 0x%x\n", 1534 offset, buf_size); 1535 return (-1); 1536 } 1537 1538 if (buf_size == 0) { 1539 return (0); /* nothing to do */ 1540 } 1541 1542 if ((offset + buf_size) > sc->devinfo.flash_size) { 1543 BLOGE(sc, "Invalid parameter, " 1544 "offset 0x%x + buf_size 0x%x > flash_size 0x%x\n", 1545 offset, buf_size, sc->devinfo.flash_size); 1546 return (-1); 1547 } 1548 1549 /* request access to nvram interface */ 1550 rc = bxe_acquire_nvram_lock(sc); 1551 if (rc) { 1552 return (rc); 1553 } 1554 1555 /* enable access to nvram interface */ 1556 bxe_enable_nvram_access(sc); 1557 1558 written_so_far = 0; 1559 cmd_flags = MCPR_NVM_COMMAND_FIRST; 1560 while ((written_so_far < buf_size) && (rc == 0)) { 1561 if (written_so_far == (buf_size - sizeof(uint32_t))) { 1562 cmd_flags |= MCPR_NVM_COMMAND_LAST; 1563 } else if (((offset + 4) % NVRAM_PAGE_SIZE) == 0) { 1564 cmd_flags |= MCPR_NVM_COMMAND_LAST; 1565 } else if ((offset % NVRAM_PAGE_SIZE) == 0) { 1566 cmd_flags |= MCPR_NVM_COMMAND_FIRST; 1567 } 1568 1569 memcpy(&val, data_buf, 4); 1570 1571 rc = bxe_nvram_write_dword(sc, offset, val, cmd_flags); 1572 1573 /* advance to the next dword */ 1574 offset += sizeof(uint32_t); 1575 data_buf += sizeof(uint32_t); 1576 written_so_far += sizeof(uint32_t); 1577 cmd_flags = 0; 1578 } 1579 1580 /* disable access to nvram interface */ 1581 bxe_disable_nvram_access(sc); 1582 bxe_release_nvram_lock(sc); 1583 1584 return (rc); 1585 } 1586 1587 /* copy command into DMAE command memory and set DMAE command Go */ 1588 void 1589 bxe_post_dmae(struct bxe_softc *sc, 1590 struct dmae_command *dmae, 1591 int idx) 1592 { 1593 uint32_t cmd_offset; 1594 int i; 1595 1596 cmd_offset = (DMAE_REG_CMD_MEM + (sizeof(struct dmae_command) * idx)); 1597 for (i = 0; i < ((sizeof(struct dmae_command) / 4)); i++) { 1598 REG_WR(sc, (cmd_offset + (i * 4)), *(((uint32_t *)dmae) + i)); 1599 } 1600 1601 REG_WR(sc, dmae_reg_go_c[idx], 1); 1602 } 1603 1604 uint32_t 1605 bxe_dmae_opcode_add_comp(uint32_t opcode, 1606 uint8_t comp_type) 1607 { 1608 return (opcode | ((comp_type << DMAE_COMMAND_C_DST_SHIFT) | 1609 DMAE_COMMAND_C_TYPE_ENABLE)); 1610 } 1611 1612 uint32_t 1613 bxe_dmae_opcode_clr_src_reset(uint32_t opcode) 1614 { 1615 return (opcode & ~DMAE_COMMAND_SRC_RESET); 1616 } 1617 1618 uint32_t 1619 bxe_dmae_opcode(struct bxe_softc *sc, 1620 uint8_t src_type, 1621 uint8_t dst_type, 1622 uint8_t with_comp, 1623 uint8_t comp_type) 1624 { 1625 uint32_t opcode = 0; 1626 1627 opcode |= ((src_type << DMAE_COMMAND_SRC_SHIFT) | 1628 (dst_type << DMAE_COMMAND_DST_SHIFT)); 1629 1630 opcode |= (DMAE_COMMAND_SRC_RESET | DMAE_COMMAND_DST_RESET); 1631 1632 opcode |= (SC_PORT(sc) ? DMAE_CMD_PORT_1 : DMAE_CMD_PORT_0); 1633 1634 opcode |= ((SC_VN(sc) << DMAE_COMMAND_E1HVN_SHIFT) | 1635 (SC_VN(sc) << DMAE_COMMAND_DST_VN_SHIFT)); 1636 1637 opcode |= (DMAE_COM_SET_ERR << DMAE_COMMAND_ERR_POLICY_SHIFT); 1638 1639 #ifdef __BIG_ENDIAN 1640 opcode |= DMAE_CMD_ENDIANITY_B_DW_SWAP; 1641 #else 1642 opcode |= DMAE_CMD_ENDIANITY_DW_SWAP; 1643 #endif 1644 1645 if (with_comp) { 1646 opcode = bxe_dmae_opcode_add_comp(opcode, comp_type); 1647 } 1648 1649 return (opcode); 1650 } 1651 1652 static void 1653 bxe_prep_dmae_with_comp(struct bxe_softc *sc, 1654 struct dmae_command *dmae, 1655 uint8_t src_type, 1656 uint8_t dst_type) 1657 { 1658 memset(dmae, 0, sizeof(struct dmae_command)); 1659 1660 /* set the opcode */ 1661 dmae->opcode = bxe_dmae_opcode(sc, src_type, dst_type, 1662 TRUE, DMAE_COMP_PCI); 1663 1664 /* fill in the completion parameters */ 1665 dmae->comp_addr_lo = U64_LO(BXE_SP_MAPPING(sc, wb_comp)); 1666 dmae->comp_addr_hi = U64_HI(BXE_SP_MAPPING(sc, wb_comp)); 1667 dmae->comp_val = DMAE_COMP_VAL; 1668 } 1669 1670 /* issue a DMAE command over the init channel and wait for completion */ 1671 static int 1672 bxe_issue_dmae_with_comp(struct bxe_softc *sc, 1673 struct dmae_command *dmae) 1674 { 1675 uint32_t *wb_comp = BXE_SP(sc, wb_comp); 1676 int timeout = CHIP_REV_IS_SLOW(sc) ? 400000 : 4000; 1677 1678 BXE_DMAE_LOCK(sc); 1679 1680 /* reset completion */ 1681 *wb_comp = 0; 1682 1683 /* post the command on the channel used for initializations */ 1684 bxe_post_dmae(sc, dmae, INIT_DMAE_C(sc)); 1685 1686 /* wait for completion */ 1687 DELAY(5); 1688 1689 while ((*wb_comp & ~DMAE_PCI_ERR_FLAG) != DMAE_COMP_VAL) { 1690 if (!timeout || 1691 (sc->recovery_state != BXE_RECOVERY_DONE && 1692 sc->recovery_state != BXE_RECOVERY_NIC_LOADING)) { 1693 BLOGE(sc, "DMAE timeout!\n"); 1694 BXE_DMAE_UNLOCK(sc); 1695 return (DMAE_TIMEOUT); 1696 } 1697 1698 timeout--; 1699 DELAY(50); 1700 } 1701 1702 if (*wb_comp & DMAE_PCI_ERR_FLAG) { 1703 BLOGE(sc, "DMAE PCI error!\n"); 1704 BXE_DMAE_UNLOCK(sc); 1705 return (DMAE_PCI_ERROR); 1706 } 1707 1708 BXE_DMAE_UNLOCK(sc); 1709 return (0); 1710 } 1711 1712 void 1713 bxe_read_dmae(struct bxe_softc *sc, 1714 uint32_t src_addr, 1715 uint32_t len32) 1716 { 1717 struct dmae_command dmae; 1718 uint32_t *data; 1719 int i, rc; 1720 1721 DBASSERT(sc, (len32 <= 4), ("DMAE read length is %d", len32)); 1722 1723 if (!sc->dmae_ready) { 1724 data = BXE_SP(sc, wb_data[0]); 1725 1726 for (i = 0; i < len32; i++) { 1727 data[i] = (CHIP_IS_E1(sc)) ? 1728 bxe_reg_rd_ind(sc, (src_addr + (i * 4))) : 1729 REG_RD(sc, (src_addr + (i * 4))); 1730 } 1731 1732 return; 1733 } 1734 1735 /* set opcode and fixed command fields */ 1736 bxe_prep_dmae_with_comp(sc, &dmae, DMAE_SRC_GRC, DMAE_DST_PCI); 1737 1738 /* fill in addresses and len */ 1739 dmae.src_addr_lo = (src_addr >> 2); /* GRC addr has dword resolution */ 1740 dmae.src_addr_hi = 0; 1741 dmae.dst_addr_lo = U64_LO(BXE_SP_MAPPING(sc, wb_data)); 1742 dmae.dst_addr_hi = U64_HI(BXE_SP_MAPPING(sc, wb_data)); 1743 dmae.len = len32; 1744 1745 /* issue the command and wait for completion */ 1746 if ((rc = bxe_issue_dmae_with_comp(sc, &dmae)) != 0) { 1747 bxe_panic(sc, ("DMAE failed (%d)\n", rc)); 1748 }; 1749 } 1750 1751 void 1752 bxe_write_dmae(struct bxe_softc *sc, 1753 bus_addr_t dma_addr, 1754 uint32_t dst_addr, 1755 uint32_t len32) 1756 { 1757 struct dmae_command dmae; 1758 int rc; 1759 1760 if (!sc->dmae_ready) { 1761 DBASSERT(sc, (len32 <= 4), ("DMAE not ready and length is %d", len32)); 1762 1763 if (CHIP_IS_E1(sc)) { 1764 ecore_init_ind_wr(sc, dst_addr, BXE_SP(sc, wb_data[0]), len32); 1765 } else { 1766 ecore_init_str_wr(sc, dst_addr, BXE_SP(sc, wb_data[0]), len32); 1767 } 1768 1769 return; 1770 } 1771 1772 /* set opcode and fixed command fields */ 1773 bxe_prep_dmae_with_comp(sc, &dmae, DMAE_SRC_PCI, DMAE_DST_GRC); 1774 1775 /* fill in addresses and len */ 1776 dmae.src_addr_lo = U64_LO(dma_addr); 1777 dmae.src_addr_hi = U64_HI(dma_addr); 1778 dmae.dst_addr_lo = (dst_addr >> 2); /* GRC addr has dword resolution */ 1779 dmae.dst_addr_hi = 0; 1780 dmae.len = len32; 1781 1782 /* issue the command and wait for completion */ 1783 if ((rc = bxe_issue_dmae_with_comp(sc, &dmae)) != 0) { 1784 bxe_panic(sc, ("DMAE failed (%d)\n", rc)); 1785 } 1786 } 1787 1788 void 1789 bxe_write_dmae_phys_len(struct bxe_softc *sc, 1790 bus_addr_t phys_addr, 1791 uint32_t addr, 1792 uint32_t len) 1793 { 1794 int dmae_wr_max = DMAE_LEN32_WR_MAX(sc); 1795 int offset = 0; 1796 1797 while (len > dmae_wr_max) { 1798 bxe_write_dmae(sc, 1799 (phys_addr + offset), /* src DMA address */ 1800 (addr + offset), /* dst GRC address */ 1801 dmae_wr_max); 1802 offset += (dmae_wr_max * 4); 1803 len -= dmae_wr_max; 1804 } 1805 1806 bxe_write_dmae(sc, 1807 (phys_addr + offset), /* src DMA address */ 1808 (addr + offset), /* dst GRC address */ 1809 len); 1810 } 1811 1812 void 1813 bxe_set_ctx_validation(struct bxe_softc *sc, 1814 struct eth_context *cxt, 1815 uint32_t cid) 1816 { 1817 /* ustorm cxt validation */ 1818 cxt->ustorm_ag_context.cdu_usage = 1819 CDU_RSRVD_VALUE_TYPE_A(HW_CID(sc, cid), 1820 CDU_REGION_NUMBER_UCM_AG, ETH_CONNECTION_TYPE); 1821 /* xcontext validation */ 1822 cxt->xstorm_ag_context.cdu_reserved = 1823 CDU_RSRVD_VALUE_TYPE_A(HW_CID(sc, cid), 1824 CDU_REGION_NUMBER_XCM_AG, ETH_CONNECTION_TYPE); 1825 } 1826 1827 static void 1828 bxe_storm_memset_hc_timeout(struct bxe_softc *sc, 1829 uint8_t port, 1830 uint8_t fw_sb_id, 1831 uint8_t sb_index, 1832 uint8_t ticks) 1833 { 1834 uint32_t addr = 1835 (BAR_CSTRORM_INTMEM + 1836 CSTORM_STATUS_BLOCK_DATA_TIMEOUT_OFFSET(fw_sb_id, sb_index)); 1837 1838 REG_WR8(sc, addr, ticks); 1839 1840 BLOGD(sc, DBG_LOAD, 1841 "port %d fw_sb_id %d sb_index %d ticks %d\n", 1842 port, fw_sb_id, sb_index, ticks); 1843 } 1844 1845 static void 1846 bxe_storm_memset_hc_disable(struct bxe_softc *sc, 1847 uint8_t port, 1848 uint16_t fw_sb_id, 1849 uint8_t sb_index, 1850 uint8_t disable) 1851 { 1852 uint32_t enable_flag = 1853 (disable) ? 0 : (1 << HC_INDEX_DATA_HC_ENABLED_SHIFT); 1854 uint32_t addr = 1855 (BAR_CSTRORM_INTMEM + 1856 CSTORM_STATUS_BLOCK_DATA_FLAGS_OFFSET(fw_sb_id, sb_index)); 1857 uint8_t flags; 1858 1859 /* clear and set */ 1860 flags = REG_RD8(sc, addr); 1861 flags &= ~HC_INDEX_DATA_HC_ENABLED; 1862 flags |= enable_flag; 1863 REG_WR8(sc, addr, flags); 1864 1865 BLOGD(sc, DBG_LOAD, 1866 "port %d fw_sb_id %d sb_index %d disable %d\n", 1867 port, fw_sb_id, sb_index, disable); 1868 } 1869 1870 void 1871 bxe_update_coalesce_sb_index(struct bxe_softc *sc, 1872 uint8_t fw_sb_id, 1873 uint8_t sb_index, 1874 uint8_t disable, 1875 uint16_t usec) 1876 { 1877 int port = SC_PORT(sc); 1878 uint8_t ticks = (usec / 4); /* XXX ??? */ 1879 1880 bxe_storm_memset_hc_timeout(sc, port, fw_sb_id, sb_index, ticks); 1881 1882 disable = (disable) ? 1 : ((usec) ? 0 : 1); 1883 bxe_storm_memset_hc_disable(sc, port, fw_sb_id, sb_index, disable); 1884 } 1885 1886 void 1887 elink_cb_udelay(struct bxe_softc *sc, 1888 uint32_t usecs) 1889 { 1890 DELAY(usecs); 1891 } 1892 1893 uint32_t 1894 elink_cb_reg_read(struct bxe_softc *sc, 1895 uint32_t reg_addr) 1896 { 1897 return (REG_RD(sc, reg_addr)); 1898 } 1899 1900 void 1901 elink_cb_reg_write(struct bxe_softc *sc, 1902 uint32_t reg_addr, 1903 uint32_t val) 1904 { 1905 REG_WR(sc, reg_addr, val); 1906 } 1907 1908 void 1909 elink_cb_reg_wb_write(struct bxe_softc *sc, 1910 uint32_t offset, 1911 uint32_t *wb_write, 1912 uint16_t len) 1913 { 1914 REG_WR_DMAE(sc, offset, wb_write, len); 1915 } 1916 1917 void 1918 elink_cb_reg_wb_read(struct bxe_softc *sc, 1919 uint32_t offset, 1920 uint32_t *wb_write, 1921 uint16_t len) 1922 { 1923 REG_RD_DMAE(sc, offset, wb_write, len); 1924 } 1925 1926 uint8_t 1927 elink_cb_path_id(struct bxe_softc *sc) 1928 { 1929 return (SC_PATH(sc)); 1930 } 1931 1932 void 1933 elink_cb_event_log(struct bxe_softc *sc, 1934 const elink_log_id_t elink_log_id, 1935 ...) 1936 { 1937 /* XXX */ 1938 #if 0 1939 //va_list ap; 1940 va_start(ap, elink_log_id); 1941 _XXX_(sc, lm_log_id, ap); 1942 va_end(ap); 1943 #endif 1944 BLOGI(sc, "ELINK EVENT LOG (%d)\n", elink_log_id); 1945 } 1946 1947 static int 1948 bxe_set_spio(struct bxe_softc *sc, 1949 int spio, 1950 uint32_t mode) 1951 { 1952 uint32_t spio_reg; 1953 1954 /* Only 2 SPIOs are configurable */ 1955 if ((spio != MISC_SPIO_SPIO4) && (spio != MISC_SPIO_SPIO5)) { 1956 BLOGE(sc, "Invalid SPIO 0x%x\n", spio); 1957 return (-1); 1958 } 1959 1960 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_SPIO); 1961 1962 /* read SPIO and mask except the float bits */ 1963 spio_reg = (REG_RD(sc, MISC_REG_SPIO) & MISC_SPIO_FLOAT); 1964 1965 switch (mode) { 1966 case MISC_SPIO_OUTPUT_LOW: 1967 BLOGD(sc, DBG_LOAD, "Set SPIO 0x%x -> output low\n", spio); 1968 /* clear FLOAT and set CLR */ 1969 spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS); 1970 spio_reg |= (spio << MISC_SPIO_CLR_POS); 1971 break; 1972 1973 case MISC_SPIO_OUTPUT_HIGH: 1974 BLOGD(sc, DBG_LOAD, "Set SPIO 0x%x -> output high\n", spio); 1975 /* clear FLOAT and set SET */ 1976 spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS); 1977 spio_reg |= (spio << MISC_SPIO_SET_POS); 1978 break; 1979 1980 case MISC_SPIO_INPUT_HI_Z: 1981 BLOGD(sc, DBG_LOAD, "Set SPIO 0x%x -> input\n", spio); 1982 /* set FLOAT */ 1983 spio_reg |= (spio << MISC_SPIO_FLOAT_POS); 1984 break; 1985 1986 default: 1987 break; 1988 } 1989 1990 REG_WR(sc, MISC_REG_SPIO, spio_reg); 1991 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_SPIO); 1992 1993 return (0); 1994 } 1995 1996 static int 1997 bxe_gpio_read(struct bxe_softc *sc, 1998 int gpio_num, 1999 uint8_t port) 2000 { 2001 /* The GPIO should be swapped if swap register is set and active */ 2002 int gpio_port = ((REG_RD(sc, NIG_REG_PORT_SWAP) && 2003 REG_RD(sc, NIG_REG_STRAP_OVERRIDE)) ^ port); 2004 int gpio_shift = (gpio_num + 2005 (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0)); 2006 uint32_t gpio_mask = (1 << gpio_shift); 2007 uint32_t gpio_reg; 2008 2009 if (gpio_num > MISC_REGISTERS_GPIO_3) { 2010 BLOGE(sc, "Invalid GPIO %d\n", gpio_num); 2011 return (-1); 2012 } 2013 2014 /* read GPIO value */ 2015 gpio_reg = REG_RD(sc, MISC_REG_GPIO); 2016 2017 /* get the requested pin value */ 2018 return ((gpio_reg & gpio_mask) == gpio_mask) ? 1 : 0; 2019 } 2020 2021 static int 2022 bxe_gpio_write(struct bxe_softc *sc, 2023 int gpio_num, 2024 uint32_t mode, 2025 uint8_t port) 2026 { 2027 /* The GPIO should be swapped if swap register is set and active */ 2028 int gpio_port = ((REG_RD(sc, NIG_REG_PORT_SWAP) && 2029 REG_RD(sc, NIG_REG_STRAP_OVERRIDE)) ^ port); 2030 int gpio_shift = (gpio_num + 2031 (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0)); 2032 uint32_t gpio_mask = (1 << gpio_shift); 2033 uint32_t gpio_reg; 2034 2035 if (gpio_num > MISC_REGISTERS_GPIO_3) { 2036 BLOGE(sc, "Invalid GPIO %d\n", gpio_num); 2037 return (-1); 2038 } 2039 2040 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_GPIO); 2041 2042 /* read GPIO and mask except the float bits */ 2043 gpio_reg = (REG_RD(sc, MISC_REG_GPIO) & MISC_REGISTERS_GPIO_FLOAT); 2044 2045 switch (mode) { 2046 case MISC_REGISTERS_GPIO_OUTPUT_LOW: 2047 BLOGD(sc, DBG_PHY, 2048 "Set GPIO %d (shift %d) -> output low\n", 2049 gpio_num, gpio_shift); 2050 /* clear FLOAT and set CLR */ 2051 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS); 2052 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_CLR_POS); 2053 break; 2054 2055 case MISC_REGISTERS_GPIO_OUTPUT_HIGH: 2056 BLOGD(sc, DBG_PHY, 2057 "Set GPIO %d (shift %d) -> output high\n", 2058 gpio_num, gpio_shift); 2059 /* clear FLOAT and set SET */ 2060 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS); 2061 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_SET_POS); 2062 break; 2063 2064 case MISC_REGISTERS_GPIO_INPUT_HI_Z: 2065 BLOGD(sc, DBG_PHY, 2066 "Set GPIO %d (shift %d) -> input\n", 2067 gpio_num, gpio_shift); 2068 /* set FLOAT */ 2069 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS); 2070 break; 2071 2072 default: 2073 break; 2074 } 2075 2076 REG_WR(sc, MISC_REG_GPIO, gpio_reg); 2077 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_GPIO); 2078 2079 return (0); 2080 } 2081 2082 static int 2083 bxe_gpio_mult_write(struct bxe_softc *sc, 2084 uint8_t pins, 2085 uint32_t mode) 2086 { 2087 uint32_t gpio_reg; 2088 2089 /* any port swapping should be handled by caller */ 2090 2091 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_GPIO); 2092 2093 /* read GPIO and mask except the float bits */ 2094 gpio_reg = REG_RD(sc, MISC_REG_GPIO); 2095 gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_FLOAT_POS); 2096 gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_CLR_POS); 2097 gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_SET_POS); 2098 2099 switch (mode) { 2100 case MISC_REGISTERS_GPIO_OUTPUT_LOW: 2101 BLOGD(sc, DBG_PHY, "Set GPIO 0x%x -> output low\n", pins); 2102 /* set CLR */ 2103 gpio_reg |= (pins << MISC_REGISTERS_GPIO_CLR_POS); 2104 break; 2105 2106 case MISC_REGISTERS_GPIO_OUTPUT_HIGH: 2107 BLOGD(sc, DBG_PHY, "Set GPIO 0x%x -> output high\n", pins); 2108 /* set SET */ 2109 gpio_reg |= (pins << MISC_REGISTERS_GPIO_SET_POS); 2110 break; 2111 2112 case MISC_REGISTERS_GPIO_INPUT_HI_Z: 2113 BLOGD(sc, DBG_PHY, "Set GPIO 0x%x -> input\n", pins); 2114 /* set FLOAT */ 2115 gpio_reg |= (pins << MISC_REGISTERS_GPIO_FLOAT_POS); 2116 break; 2117 2118 default: 2119 BLOGE(sc, "Invalid GPIO mode assignment %d\n", mode); 2120 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_GPIO); 2121 return (-1); 2122 } 2123 2124 REG_WR(sc, MISC_REG_GPIO, gpio_reg); 2125 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_GPIO); 2126 2127 return (0); 2128 } 2129 2130 static int 2131 bxe_gpio_int_write(struct bxe_softc *sc, 2132 int gpio_num, 2133 uint32_t mode, 2134 uint8_t port) 2135 { 2136 /* The GPIO should be swapped if swap register is set and active */ 2137 int gpio_port = ((REG_RD(sc, NIG_REG_PORT_SWAP) && 2138 REG_RD(sc, NIG_REG_STRAP_OVERRIDE)) ^ port); 2139 int gpio_shift = (gpio_num + 2140 (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0)); 2141 uint32_t gpio_mask = (1 << gpio_shift); 2142 uint32_t gpio_reg; 2143 2144 if (gpio_num > MISC_REGISTERS_GPIO_3) { 2145 BLOGE(sc, "Invalid GPIO %d\n", gpio_num); 2146 return (-1); 2147 } 2148 2149 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_GPIO); 2150 2151 /* read GPIO int */ 2152 gpio_reg = REG_RD(sc, MISC_REG_GPIO_INT); 2153 2154 switch (mode) { 2155 case MISC_REGISTERS_GPIO_INT_OUTPUT_CLR: 2156 BLOGD(sc, DBG_PHY, 2157 "Clear GPIO INT %d (shift %d) -> output low\n", 2158 gpio_num, gpio_shift); 2159 /* clear SET and set CLR */ 2160 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS); 2161 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS); 2162 break; 2163 2164 case MISC_REGISTERS_GPIO_INT_OUTPUT_SET: 2165 BLOGD(sc, DBG_PHY, 2166 "Set GPIO INT %d (shift %d) -> output high\n", 2167 gpio_num, gpio_shift); 2168 /* clear CLR and set SET */ 2169 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS); 2170 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS); 2171 break; 2172 2173 default: 2174 break; 2175 } 2176 2177 REG_WR(sc, MISC_REG_GPIO_INT, gpio_reg); 2178 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_GPIO); 2179 2180 return (0); 2181 } 2182 2183 uint32_t 2184 elink_cb_gpio_read(struct bxe_softc *sc, 2185 uint16_t gpio_num, 2186 uint8_t port) 2187 { 2188 return (bxe_gpio_read(sc, gpio_num, port)); 2189 } 2190 2191 uint8_t 2192 elink_cb_gpio_write(struct bxe_softc *sc, 2193 uint16_t gpio_num, 2194 uint8_t mode, /* 0=low 1=high */ 2195 uint8_t port) 2196 { 2197 return (bxe_gpio_write(sc, gpio_num, mode, port)); 2198 } 2199 2200 uint8_t 2201 elink_cb_gpio_mult_write(struct bxe_softc *sc, 2202 uint8_t pins, 2203 uint8_t mode) /* 0=low 1=high */ 2204 { 2205 return (bxe_gpio_mult_write(sc, pins, mode)); 2206 } 2207 2208 uint8_t 2209 elink_cb_gpio_int_write(struct bxe_softc *sc, 2210 uint16_t gpio_num, 2211 uint8_t mode, /* 0=low 1=high */ 2212 uint8_t port) 2213 { 2214 return (bxe_gpio_int_write(sc, gpio_num, mode, port)); 2215 } 2216 2217 void 2218 elink_cb_notify_link_changed(struct bxe_softc *sc) 2219 { 2220 REG_WR(sc, (MISC_REG_AEU_GENERAL_ATTN_12 + 2221 (SC_FUNC(sc) * sizeof(uint32_t))), 1); 2222 } 2223 2224 /* send the MCP a request, block until there is a reply */ 2225 uint32_t 2226 elink_cb_fw_command(struct bxe_softc *sc, 2227 uint32_t command, 2228 uint32_t param) 2229 { 2230 int mb_idx = SC_FW_MB_IDX(sc); 2231 uint32_t seq; 2232 uint32_t rc = 0; 2233 uint32_t cnt = 1; 2234 uint8_t delay = CHIP_REV_IS_SLOW(sc) ? 100 : 10; 2235 2236 BXE_FWMB_LOCK(sc); 2237 2238 seq = ++sc->fw_seq; 2239 SHMEM_WR(sc, func_mb[mb_idx].drv_mb_param, param); 2240 SHMEM_WR(sc, func_mb[mb_idx].drv_mb_header, (command | seq)); 2241 2242 BLOGD(sc, DBG_PHY, 2243 "wrote command 0x%08x to FW MB param 0x%08x\n", 2244 (command | seq), param); 2245 2246 /* Let the FW do it's magic. GIve it up to 5 seconds... */ 2247 do { 2248 DELAY(delay * 1000); 2249 rc = SHMEM_RD(sc, func_mb[mb_idx].fw_mb_header); 2250 } while ((seq != (rc & FW_MSG_SEQ_NUMBER_MASK)) && (cnt++ < 500)); 2251 2252 BLOGD(sc, DBG_PHY, 2253 "[after %d ms] read 0x%x seq 0x%x from FW MB\n", 2254 cnt*delay, rc, seq); 2255 2256 /* is this a reply to our command? */ 2257 if (seq == (rc & FW_MSG_SEQ_NUMBER_MASK)) { 2258 rc &= FW_MSG_CODE_MASK; 2259 } else { 2260 /* Ruh-roh! */ 2261 BLOGE(sc, "FW failed to respond!\n"); 2262 // XXX bxe_fw_dump(sc); 2263 rc = 0; 2264 } 2265 2266 BXE_FWMB_UNLOCK(sc); 2267 return (rc); 2268 } 2269 2270 static uint32_t 2271 bxe_fw_command(struct bxe_softc *sc, 2272 uint32_t command, 2273 uint32_t param) 2274 { 2275 return (elink_cb_fw_command(sc, command, param)); 2276 } 2277 2278 static void 2279 __storm_memset_dma_mapping(struct bxe_softc *sc, 2280 uint32_t addr, 2281 bus_addr_t mapping) 2282 { 2283 REG_WR(sc, addr, U64_LO(mapping)); 2284 REG_WR(sc, (addr + 4), U64_HI(mapping)); 2285 } 2286 2287 static void 2288 storm_memset_spq_addr(struct bxe_softc *sc, 2289 bus_addr_t mapping, 2290 uint16_t abs_fid) 2291 { 2292 uint32_t addr = (XSEM_REG_FAST_MEMORY + 2293 XSTORM_SPQ_PAGE_BASE_OFFSET(abs_fid)); 2294 __storm_memset_dma_mapping(sc, addr, mapping); 2295 } 2296 2297 static void 2298 storm_memset_vf_to_pf(struct bxe_softc *sc, 2299 uint16_t abs_fid, 2300 uint16_t pf_id) 2301 { 2302 REG_WR8(sc, (BAR_XSTRORM_INTMEM + XSTORM_VF_TO_PF_OFFSET(abs_fid)), pf_id); 2303 REG_WR8(sc, (BAR_CSTRORM_INTMEM + CSTORM_VF_TO_PF_OFFSET(abs_fid)), pf_id); 2304 REG_WR8(sc, (BAR_TSTRORM_INTMEM + TSTORM_VF_TO_PF_OFFSET(abs_fid)), pf_id); 2305 REG_WR8(sc, (BAR_USTRORM_INTMEM + USTORM_VF_TO_PF_OFFSET(abs_fid)), pf_id); 2306 } 2307 2308 static void 2309 storm_memset_func_en(struct bxe_softc *sc, 2310 uint16_t abs_fid, 2311 uint8_t enable) 2312 { 2313 REG_WR8(sc, (BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(abs_fid)), enable); 2314 REG_WR8(sc, (BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(abs_fid)), enable); 2315 REG_WR8(sc, (BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(abs_fid)), enable); 2316 REG_WR8(sc, (BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(abs_fid)), enable); 2317 } 2318 2319 static void 2320 storm_memset_eq_data(struct bxe_softc *sc, 2321 struct event_ring_data *eq_data, 2322 uint16_t pfid) 2323 { 2324 uint32_t addr; 2325 size_t size; 2326 2327 addr = (BAR_CSTRORM_INTMEM + CSTORM_EVENT_RING_DATA_OFFSET(pfid)); 2328 size = sizeof(struct event_ring_data); 2329 ecore_storm_memset_struct(sc, addr, size, (uint32_t *)eq_data); 2330 } 2331 2332 static void 2333 storm_memset_eq_prod(struct bxe_softc *sc, 2334 uint16_t eq_prod, 2335 uint16_t pfid) 2336 { 2337 uint32_t addr = (BAR_CSTRORM_INTMEM + 2338 CSTORM_EVENT_RING_PROD_OFFSET(pfid)); 2339 REG_WR16(sc, addr, eq_prod); 2340 } 2341 2342 /* 2343 * Post a slowpath command. 2344 * 2345 * A slowpath command is used to propogate a configuration change through 2346 * the controller in a controlled manner, allowing each STORM processor and 2347 * other H/W blocks to phase in the change. The commands sent on the 2348 * slowpath are referred to as ramrods. Depending on the ramrod used the 2349 * completion of the ramrod will occur in different ways. Here's a 2350 * breakdown of ramrods and how they complete: 2351 * 2352 * RAMROD_CMD_ID_ETH_PORT_SETUP 2353 * Used to setup the leading connection on a port. Completes on the 2354 * Receive Completion Queue (RCQ) of that port (typically fp[0]). 2355 * 2356 * RAMROD_CMD_ID_ETH_CLIENT_SETUP 2357 * Used to setup an additional connection on a port. Completes on the 2358 * RCQ of the multi-queue/RSS connection being initialized. 2359 * 2360 * RAMROD_CMD_ID_ETH_STAT_QUERY 2361 * Used to force the storm processors to update the statistics database 2362 * in host memory. This ramrod is send on the leading connection CID and 2363 * completes as an index increment of the CSTORM on the default status 2364 * block. 2365 * 2366 * RAMROD_CMD_ID_ETH_UPDATE 2367 * Used to update the state of the leading connection, usually to udpate 2368 * the RSS indirection table. Completes on the RCQ of the leading 2369 * connection. (Not currently used under FreeBSD until OS support becomes 2370 * available.) 2371 * 2372 * RAMROD_CMD_ID_ETH_HALT 2373 * Used when tearing down a connection prior to driver unload. Completes 2374 * on the RCQ of the multi-queue/RSS connection being torn down. Don't 2375 * use this on the leading connection. 2376 * 2377 * RAMROD_CMD_ID_ETH_SET_MAC 2378 * Sets the Unicast/Broadcast/Multicast used by the port. Completes on 2379 * the RCQ of the leading connection. 2380 * 2381 * RAMROD_CMD_ID_ETH_CFC_DEL 2382 * Used when tearing down a conneciton prior to driver unload. Completes 2383 * on the RCQ of the leading connection (since the current connection 2384 * has been completely removed from controller memory). 2385 * 2386 * RAMROD_CMD_ID_ETH_PORT_DEL 2387 * Used to tear down the leading connection prior to driver unload, 2388 * typically fp[0]. Completes as an index increment of the CSTORM on the 2389 * default status block. 2390 * 2391 * RAMROD_CMD_ID_ETH_FORWARD_SETUP 2392 * Used for connection offload. Completes on the RCQ of the multi-queue 2393 * RSS connection that is being offloaded. (Not currently used under 2394 * FreeBSD.) 2395 * 2396 * There can only be one command pending per function. 2397 * 2398 * Returns: 2399 * 0 = Success, !0 = Failure. 2400 */ 2401 2402 /* must be called under the spq lock */ 2403 static inline 2404 struct eth_spe *bxe_sp_get_next(struct bxe_softc *sc) 2405 { 2406 struct eth_spe *next_spe = sc->spq_prod_bd; 2407 2408 if (sc->spq_prod_bd == sc->spq_last_bd) { 2409 /* wrap back to the first eth_spq */ 2410 sc->spq_prod_bd = sc->spq; 2411 sc->spq_prod_idx = 0; 2412 } else { 2413 sc->spq_prod_bd++; 2414 sc->spq_prod_idx++; 2415 } 2416 2417 return (next_spe); 2418 } 2419 2420 /* must be called under the spq lock */ 2421 static inline 2422 void bxe_sp_prod_update(struct bxe_softc *sc) 2423 { 2424 int func = SC_FUNC(sc); 2425 2426 /* 2427 * Make sure that BD data is updated before writing the producer. 2428 * BD data is written to the memory, the producer is read from the 2429 * memory, thus we need a full memory barrier to ensure the ordering. 2430 */ 2431 mb(); 2432 2433 REG_WR16(sc, (BAR_XSTRORM_INTMEM + XSTORM_SPQ_PROD_OFFSET(func)), 2434 sc->spq_prod_idx); 2435 2436 bus_space_barrier(sc->bar[BAR0].tag, sc->bar[BAR0].handle, 0, 0, 2437 BUS_SPACE_BARRIER_WRITE); 2438 } 2439 2440 /** 2441 * bxe_is_contextless_ramrod - check if the current command ends on EQ 2442 * 2443 * @cmd: command to check 2444 * @cmd_type: command type 2445 */ 2446 static inline 2447 int bxe_is_contextless_ramrod(int cmd, 2448 int cmd_type) 2449 { 2450 if ((cmd_type == NONE_CONNECTION_TYPE) || 2451 (cmd == RAMROD_CMD_ID_ETH_FORWARD_SETUP) || 2452 (cmd == RAMROD_CMD_ID_ETH_CLASSIFICATION_RULES) || 2453 (cmd == RAMROD_CMD_ID_ETH_FILTER_RULES) || 2454 (cmd == RAMROD_CMD_ID_ETH_MULTICAST_RULES) || 2455 (cmd == RAMROD_CMD_ID_ETH_SET_MAC) || 2456 (cmd == RAMROD_CMD_ID_ETH_RSS_UPDATE)) { 2457 return (TRUE); 2458 } else { 2459 return (FALSE); 2460 } 2461 } 2462 2463 /** 2464 * bxe_sp_post - place a single command on an SP ring 2465 * 2466 * @sc: driver handle 2467 * @command: command to place (e.g. SETUP, FILTER_RULES, etc.) 2468 * @cid: SW CID the command is related to 2469 * @data_hi: command private data address (high 32 bits) 2470 * @data_lo: command private data address (low 32 bits) 2471 * @cmd_type: command type (e.g. NONE, ETH) 2472 * 2473 * SP data is handled as if it's always an address pair, thus data fields are 2474 * not swapped to little endian in upper functions. Instead this function swaps 2475 * data as if it's two uint32 fields. 2476 */ 2477 int 2478 bxe_sp_post(struct bxe_softc *sc, 2479 int command, 2480 int cid, 2481 uint32_t data_hi, 2482 uint32_t data_lo, 2483 int cmd_type) 2484 { 2485 struct eth_spe *spe; 2486 uint16_t type; 2487 int common; 2488 2489 common = bxe_is_contextless_ramrod(command, cmd_type); 2490 2491 BXE_SP_LOCK(sc); 2492 2493 if (common) { 2494 if (!atomic_load_acq_long(&sc->eq_spq_left)) { 2495 BLOGE(sc, "EQ ring is full!\n"); 2496 BXE_SP_UNLOCK(sc); 2497 return (-1); 2498 } 2499 } else { 2500 if (!atomic_load_acq_long(&sc->cq_spq_left)) { 2501 BLOGE(sc, "SPQ ring is full!\n"); 2502 BXE_SP_UNLOCK(sc); 2503 return (-1); 2504 } 2505 } 2506 2507 spe = bxe_sp_get_next(sc); 2508 2509 /* CID needs port number to be encoded int it */ 2510 spe->hdr.conn_and_cmd_data = 2511 htole32((command << SPE_HDR_CMD_ID_SHIFT) | HW_CID(sc, cid)); 2512 2513 type = (cmd_type << SPE_HDR_CONN_TYPE_SHIFT) & SPE_HDR_CONN_TYPE; 2514 2515 /* TBD: Check if it works for VFs */ 2516 type |= ((SC_FUNC(sc) << SPE_HDR_FUNCTION_ID_SHIFT) & 2517 SPE_HDR_FUNCTION_ID); 2518 2519 spe->hdr.type = htole16(type); 2520 2521 spe->data.update_data_addr.hi = htole32(data_hi); 2522 spe->data.update_data_addr.lo = htole32(data_lo); 2523 2524 /* 2525 * It's ok if the actual decrement is issued towards the memory 2526 * somewhere between the lock and unlock. Thus no more explict 2527 * memory barrier is needed. 2528 */ 2529 if (common) { 2530 atomic_subtract_acq_long(&sc->eq_spq_left, 1); 2531 } else { 2532 atomic_subtract_acq_long(&sc->cq_spq_left, 1); 2533 } 2534 2535 BLOGD(sc, DBG_SP, "SPQE -> %#jx\n", (uintmax_t)sc->spq_dma.paddr); 2536 BLOGD(sc, DBG_SP, "FUNC_RDATA -> %p / %#jx\n", 2537 BXE_SP(sc, func_rdata), (uintmax_t)BXE_SP_MAPPING(sc, func_rdata)); 2538 BLOGD(sc, DBG_SP, 2539 "SPQE[%x] (%x:%x) (cmd, common?) (%d,%d) hw_cid %x data (%x:%x) type(0x%x) left (CQ, EQ) (%lx,%lx)\n", 2540 sc->spq_prod_idx, 2541 (uint32_t)U64_HI(sc->spq_dma.paddr), 2542 (uint32_t)(U64_LO(sc->spq_dma.paddr) + (uint8_t *)sc->spq_prod_bd - (uint8_t *)sc->spq), 2543 command, 2544 common, 2545 HW_CID(sc, cid), 2546 data_hi, 2547 data_lo, 2548 type, 2549 atomic_load_acq_long(&sc->cq_spq_left), 2550 atomic_load_acq_long(&sc->eq_spq_left)); 2551 2552 bxe_sp_prod_update(sc); 2553 2554 BXE_SP_UNLOCK(sc); 2555 return (0); 2556 } 2557 2558 /** 2559 * bxe_debug_print_ind_table - prints the indirection table configuration. 2560 * 2561 * @sc: driver hanlde 2562 * @p: pointer to rss configuration 2563 */ 2564 #if 0 2565 static void 2566 bxe_debug_print_ind_table(struct bxe_softc *sc, 2567 struct ecore_config_rss_params *p) 2568 { 2569 int i; 2570 2571 BLOGD(sc, DBG_LOAD, "Setting indirection table to:\n"); 2572 BLOGD(sc, DBG_LOAD, " 0x0000: "); 2573 for (i = 0; i < T_ETH_INDIRECTION_TABLE_SIZE; i++) { 2574 BLOGD(sc, DBG_LOAD, "0x%02x ", p->ind_table[i]); 2575 2576 /* Print 4 bytes in a line */ 2577 if ((i + 1 < T_ETH_INDIRECTION_TABLE_SIZE) && 2578 (((i + 1) & 0x3) == 0)) { 2579 BLOGD(sc, DBG_LOAD, "\n"); 2580 BLOGD(sc, DBG_LOAD, "0x%04x: ", i + 1); 2581 } 2582 } 2583 2584 BLOGD(sc, DBG_LOAD, "\n"); 2585 } 2586 #endif 2587 2588 /* 2589 * FreeBSD Device probe function. 2590 * 2591 * Compares the device found to the driver's list of supported devices and 2592 * reports back to the bsd loader whether this is the right driver for the device. 2593 * This is the driver entry function called from the "kldload" command. 2594 * 2595 * Returns: 2596 * BUS_PROBE_DEFAULT on success, positive value on failure. 2597 */ 2598 static int 2599 bxe_probe(device_t dev) 2600 { 2601 struct bxe_softc *sc; 2602 struct bxe_device_type *t; 2603 char *descbuf; 2604 uint16_t did, sdid, svid, vid; 2605 2606 /* Find our device structure */ 2607 sc = device_get_softc(dev); 2608 sc->dev = dev; 2609 t = bxe_devs; 2610 2611 /* Get the data for the device to be probed. */ 2612 vid = pci_get_vendor(dev); 2613 did = pci_get_device(dev); 2614 svid = pci_get_subvendor(dev); 2615 sdid = pci_get_subdevice(dev); 2616 2617 BLOGD(sc, DBG_LOAD, 2618 "%s(); VID = 0x%04X, DID = 0x%04X, SVID = 0x%04X, " 2619 "SDID = 0x%04X\n", __FUNCTION__, vid, did, svid, sdid); 2620 2621 /* Look through the list of known devices for a match. */ 2622 while (t->bxe_name != NULL) { 2623 if ((vid == t->bxe_vid) && (did == t->bxe_did) && 2624 ((svid == t->bxe_svid) || (t->bxe_svid == PCI_ANY_ID)) && 2625 ((sdid == t->bxe_sdid) || (t->bxe_sdid == PCI_ANY_ID))) { 2626 descbuf = malloc(BXE_DEVDESC_MAX, M_TEMP, M_NOWAIT); 2627 if (descbuf == NULL) 2628 return (ENOMEM); 2629 2630 /* Print out the device identity. */ 2631 snprintf(descbuf, BXE_DEVDESC_MAX, 2632 "%s (%c%d) BXE v:%s\n", t->bxe_name, 2633 (((pci_read_config(dev, PCIR_REVID, 4) & 2634 0xf0) >> 4) + 'A'), 2635 (pci_read_config(dev, PCIR_REVID, 4) & 0xf), 2636 BXE_DRIVER_VERSION); 2637 2638 device_set_desc_copy(dev, descbuf); 2639 free(descbuf, M_TEMP); 2640 return (BUS_PROBE_DEFAULT); 2641 } 2642 t++; 2643 } 2644 2645 return (ENXIO); 2646 } 2647 2648 static void 2649 bxe_init_mutexes(struct bxe_softc *sc) 2650 { 2651 #ifdef BXE_CORE_LOCK_SX 2652 snprintf(sc->core_sx_name, sizeof(sc->core_sx_name), 2653 "bxe%d_core_lock", sc->unit); 2654 sx_init(&sc->core_sx, sc->core_sx_name); 2655 #else 2656 snprintf(sc->core_mtx_name, sizeof(sc->core_mtx_name), 2657 "bxe%d_core_lock", sc->unit); 2658 mtx_init(&sc->core_mtx, sc->core_mtx_name, NULL, MTX_DEF); 2659 #endif 2660 2661 snprintf(sc->sp_mtx_name, sizeof(sc->sp_mtx_name), 2662 "bxe%d_sp_lock", sc->unit); 2663 mtx_init(&sc->sp_mtx, sc->sp_mtx_name, NULL, MTX_DEF); 2664 2665 snprintf(sc->dmae_mtx_name, sizeof(sc->dmae_mtx_name), 2666 "bxe%d_dmae_lock", sc->unit); 2667 mtx_init(&sc->dmae_mtx, sc->dmae_mtx_name, NULL, MTX_DEF); 2668 2669 snprintf(sc->port.phy_mtx_name, sizeof(sc->port.phy_mtx_name), 2670 "bxe%d_phy_lock", sc->unit); 2671 mtx_init(&sc->port.phy_mtx, sc->port.phy_mtx_name, NULL, MTX_DEF); 2672 2673 snprintf(sc->fwmb_mtx_name, sizeof(sc->fwmb_mtx_name), 2674 "bxe%d_fwmb_lock", sc->unit); 2675 mtx_init(&sc->fwmb_mtx, sc->fwmb_mtx_name, NULL, MTX_DEF); 2676 2677 snprintf(sc->print_mtx_name, sizeof(sc->print_mtx_name), 2678 "bxe%d_print_lock", sc->unit); 2679 mtx_init(&(sc->print_mtx), sc->print_mtx_name, NULL, MTX_DEF); 2680 2681 snprintf(sc->stats_mtx_name, sizeof(sc->stats_mtx_name), 2682 "bxe%d_stats_lock", sc->unit); 2683 mtx_init(&(sc->stats_mtx), sc->stats_mtx_name, NULL, MTX_DEF); 2684 2685 snprintf(sc->mcast_mtx_name, sizeof(sc->mcast_mtx_name), 2686 "bxe%d_mcast_lock", sc->unit); 2687 mtx_init(&(sc->mcast_mtx), sc->mcast_mtx_name, NULL, MTX_DEF); 2688 } 2689 2690 static void 2691 bxe_release_mutexes(struct bxe_softc *sc) 2692 { 2693 #ifdef BXE_CORE_LOCK_SX 2694 sx_destroy(&sc->core_sx); 2695 #else 2696 if (mtx_initialized(&sc->core_mtx)) { 2697 mtx_destroy(&sc->core_mtx); 2698 } 2699 #endif 2700 2701 if (mtx_initialized(&sc->sp_mtx)) { 2702 mtx_destroy(&sc->sp_mtx); 2703 } 2704 2705 if (mtx_initialized(&sc->dmae_mtx)) { 2706 mtx_destroy(&sc->dmae_mtx); 2707 } 2708 2709 if (mtx_initialized(&sc->port.phy_mtx)) { 2710 mtx_destroy(&sc->port.phy_mtx); 2711 } 2712 2713 if (mtx_initialized(&sc->fwmb_mtx)) { 2714 mtx_destroy(&sc->fwmb_mtx); 2715 } 2716 2717 if (mtx_initialized(&sc->print_mtx)) { 2718 mtx_destroy(&sc->print_mtx); 2719 } 2720 2721 if (mtx_initialized(&sc->stats_mtx)) { 2722 mtx_destroy(&sc->stats_mtx); 2723 } 2724 2725 if (mtx_initialized(&sc->mcast_mtx)) { 2726 mtx_destroy(&sc->mcast_mtx); 2727 } 2728 } 2729 2730 static void 2731 bxe_tx_disable(struct bxe_softc* sc) 2732 { 2733 struct ifnet *ifp = sc->ifnet; 2734 2735 /* tell the stack the driver is stopped and TX queue is full */ 2736 if (ifp != NULL) { 2737 ifp->if_drv_flags = 0; 2738 } 2739 } 2740 2741 static void 2742 bxe_drv_pulse(struct bxe_softc *sc) 2743 { 2744 SHMEM_WR(sc, func_mb[SC_FW_MB_IDX(sc)].drv_pulse_mb, 2745 sc->fw_drv_pulse_wr_seq); 2746 } 2747 2748 static inline uint16_t 2749 bxe_tx_avail(struct bxe_softc *sc, 2750 struct bxe_fastpath *fp) 2751 { 2752 int16_t used; 2753 uint16_t prod; 2754 uint16_t cons; 2755 2756 prod = fp->tx_bd_prod; 2757 cons = fp->tx_bd_cons; 2758 2759 used = SUB_S16(prod, cons); 2760 2761 #if 0 2762 KASSERT((used < 0), ("used tx bds < 0")); 2763 KASSERT((used > sc->tx_ring_size), ("used tx bds > tx_ring_size")); 2764 KASSERT(((sc->tx_ring_size - used) > MAX_TX_AVAIL), 2765 ("invalid number of tx bds used")); 2766 #endif 2767 2768 return (int16_t)(sc->tx_ring_size) - used; 2769 } 2770 2771 static inline int 2772 bxe_tx_queue_has_work(struct bxe_fastpath *fp) 2773 { 2774 uint16_t hw_cons; 2775 2776 mb(); /* status block fields can change */ 2777 hw_cons = le16toh(*fp->tx_cons_sb); 2778 return (hw_cons != fp->tx_pkt_cons); 2779 } 2780 2781 static inline uint8_t 2782 bxe_has_tx_work(struct bxe_fastpath *fp) 2783 { 2784 /* expand this for multi-cos if ever supported */ 2785 return (bxe_tx_queue_has_work(fp)) ? TRUE : FALSE; 2786 } 2787 2788 static inline int 2789 bxe_has_rx_work(struct bxe_fastpath *fp) 2790 { 2791 uint16_t rx_cq_cons_sb; 2792 2793 mb(); /* status block fields can change */ 2794 rx_cq_cons_sb = le16toh(*fp->rx_cq_cons_sb); 2795 if ((rx_cq_cons_sb & RCQ_MAX) == RCQ_MAX) 2796 rx_cq_cons_sb++; 2797 return (fp->rx_cq_cons != rx_cq_cons_sb); 2798 } 2799 2800 static void 2801 bxe_sp_event(struct bxe_softc *sc, 2802 struct bxe_fastpath *fp, 2803 union eth_rx_cqe *rr_cqe) 2804 { 2805 int cid = SW_CID(rr_cqe->ramrod_cqe.conn_and_cmd_data); 2806 int command = CQE_CMD(rr_cqe->ramrod_cqe.conn_and_cmd_data); 2807 enum ecore_queue_cmd drv_cmd = ECORE_Q_CMD_MAX; 2808 struct ecore_queue_sp_obj *q_obj = &BXE_SP_OBJ(sc, fp).q_obj; 2809 2810 BLOGD(sc, DBG_SP, "fp=%d cid=%d got ramrod #%d state is %x type is %d\n", 2811 fp->index, cid, command, sc->state, rr_cqe->ramrod_cqe.ramrod_type); 2812 2813 #if 0 2814 /* 2815 * If cid is within VF range, replace the slowpath object with the 2816 * one corresponding to this VF 2817 */ 2818 if ((cid >= BXE_FIRST_VF_CID) && (cid < BXE_FIRST_VF_CID + BXE_VF_CIDS)) { 2819 bxe_iov_set_queue_sp_obj(sc, cid, &q_obj); 2820 } 2821 #endif 2822 2823 switch (command) { 2824 case (RAMROD_CMD_ID_ETH_CLIENT_UPDATE): 2825 BLOGD(sc, DBG_SP, "got UPDATE ramrod. CID %d\n", cid); 2826 drv_cmd = ECORE_Q_CMD_UPDATE; 2827 break; 2828 2829 case (RAMROD_CMD_ID_ETH_CLIENT_SETUP): 2830 BLOGD(sc, DBG_SP, "got MULTI[%d] setup ramrod\n", cid); 2831 drv_cmd = ECORE_Q_CMD_SETUP; 2832 break; 2833 2834 case (RAMROD_CMD_ID_ETH_TX_QUEUE_SETUP): 2835 BLOGD(sc, DBG_SP, "got MULTI[%d] tx-only setup ramrod\n", cid); 2836 drv_cmd = ECORE_Q_CMD_SETUP_TX_ONLY; 2837 break; 2838 2839 case (RAMROD_CMD_ID_ETH_HALT): 2840 BLOGD(sc, DBG_SP, "got MULTI[%d] halt ramrod\n", cid); 2841 drv_cmd = ECORE_Q_CMD_HALT; 2842 break; 2843 2844 case (RAMROD_CMD_ID_ETH_TERMINATE): 2845 BLOGD(sc, DBG_SP, "got MULTI[%d] teminate ramrod\n", cid); 2846 drv_cmd = ECORE_Q_CMD_TERMINATE; 2847 break; 2848 2849 case (RAMROD_CMD_ID_ETH_EMPTY): 2850 BLOGD(sc, DBG_SP, "got MULTI[%d] empty ramrod\n", cid); 2851 drv_cmd = ECORE_Q_CMD_EMPTY; 2852 break; 2853 2854 default: 2855 BLOGD(sc, DBG_SP, "ERROR: unexpected MC reply (%d) on fp[%d]\n", 2856 command, fp->index); 2857 return; 2858 } 2859 2860 if ((drv_cmd != ECORE_Q_CMD_MAX) && 2861 q_obj->complete_cmd(sc, q_obj, drv_cmd)) { 2862 /* 2863 * q_obj->complete_cmd() failure means that this was 2864 * an unexpected completion. 2865 * 2866 * In this case we don't want to increase the sc->spq_left 2867 * because apparently we haven't sent this command the first 2868 * place. 2869 */ 2870 // bxe_panic(sc, ("Unexpected SP completion\n")); 2871 return; 2872 } 2873 2874 #if 0 2875 /* SRIOV: reschedule any 'in_progress' operations */ 2876 bxe_iov_sp_event(sc, cid, TRUE); 2877 #endif 2878 2879 atomic_add_acq_long(&sc->cq_spq_left, 1); 2880 2881 BLOGD(sc, DBG_SP, "sc->cq_spq_left 0x%lx\n", 2882 atomic_load_acq_long(&sc->cq_spq_left)); 2883 2884 #if 0 2885 if ((drv_cmd == ECORE_Q_CMD_UPDATE) && (IS_FCOE_FP(fp)) && 2886 (!!bxe_test_bit(ECORE_AFEX_FCOE_Q_UPDATE_PENDING, &sc->sp_state))) { 2887 /* 2888 * If Queue update ramrod is completed for last Queue in AFEX VIF set 2889 * flow, then ACK MCP at the end. Mark pending ACK to MCP bit to 2890 * prevent case that both bits are cleared. At the end of load/unload 2891 * driver checks that sp_state is cleared and this order prevents 2892 * races. 2893 */ 2894 bxe_set_bit(ECORE_AFEX_PENDING_VIFSET_MCP_ACK, &sc->sp_state); 2895 wmb(); 2896 bxe_clear_bit(ECORE_AFEX_FCOE_Q_UPDATE_PENDING, &sc->sp_state); 2897 2898 /* schedule the sp task as MCP ack is required */ 2899 bxe_schedule_sp_task(sc); 2900 } 2901 #endif 2902 } 2903 2904 /* 2905 * The current mbuf is part of an aggregation. Move the mbuf into the TPA 2906 * aggregation queue, put an empty mbuf back onto the receive chain, and mark 2907 * the current aggregation queue as in-progress. 2908 */ 2909 static void 2910 bxe_tpa_start(struct bxe_softc *sc, 2911 struct bxe_fastpath *fp, 2912 uint16_t queue, 2913 uint16_t cons, 2914 uint16_t prod, 2915 struct eth_fast_path_rx_cqe *cqe) 2916 { 2917 struct bxe_sw_rx_bd tmp_bd; 2918 struct bxe_sw_rx_bd *rx_buf; 2919 struct eth_rx_bd *rx_bd; 2920 int max_agg_queues; 2921 struct bxe_sw_tpa_info *tpa_info = &fp->rx_tpa_info[queue]; 2922 uint16_t index; 2923 2924 BLOGD(sc, DBG_LRO, "fp[%02d].tpa[%02d] TPA START " 2925 "cons=%d prod=%d\n", 2926 fp->index, queue, cons, prod); 2927 2928 max_agg_queues = MAX_AGG_QS(sc); 2929 2930 KASSERT((queue < max_agg_queues), 2931 ("fp[%02d] invalid aggr queue (%d >= %d)!", 2932 fp->index, queue, max_agg_queues)); 2933 2934 KASSERT((tpa_info->state == BXE_TPA_STATE_STOP), 2935 ("fp[%02d].tpa[%02d] starting aggr on queue not stopped!", 2936 fp->index, queue)); 2937 2938 /* copy the existing mbuf and mapping from the TPA pool */ 2939 tmp_bd = tpa_info->bd; 2940 2941 if (tmp_bd.m == NULL) { 2942 BLOGE(sc, "fp[%02d].tpa[%02d] mbuf not allocated!\n", 2943 fp->index, queue); 2944 /* XXX Error handling? */ 2945 return; 2946 } 2947 2948 /* change the TPA queue to the start state */ 2949 tpa_info->state = BXE_TPA_STATE_START; 2950 tpa_info->placement_offset = cqe->placement_offset; 2951 tpa_info->parsing_flags = le16toh(cqe->pars_flags.flags); 2952 tpa_info->vlan_tag = le16toh(cqe->vlan_tag); 2953 tpa_info->len_on_bd = le16toh(cqe->len_on_bd); 2954 2955 fp->rx_tpa_queue_used |= (1 << queue); 2956 2957 /* 2958 * If all the buffer descriptors are filled with mbufs then fill in 2959 * the current consumer index with a new BD. Else if a maximum Rx 2960 * buffer limit is imposed then fill in the next producer index. 2961 */ 2962 index = (sc->max_rx_bufs != RX_BD_USABLE) ? 2963 prod : cons; 2964 2965 /* move the received mbuf and mapping to TPA pool */ 2966 tpa_info->bd = fp->rx_mbuf_chain[cons]; 2967 2968 /* release any existing RX BD mbuf mappings */ 2969 if (cons != index) { 2970 rx_buf = &fp->rx_mbuf_chain[cons]; 2971 2972 if (rx_buf->m_map != NULL) { 2973 bus_dmamap_sync(fp->rx_mbuf_tag, rx_buf->m_map, 2974 BUS_DMASYNC_POSTREAD); 2975 bus_dmamap_unload(fp->rx_mbuf_tag, rx_buf->m_map); 2976 } 2977 2978 /* 2979 * We get here when the maximum number of rx buffers is less than 2980 * RX_BD_USABLE. The mbuf is already saved above so it's OK to NULL 2981 * it out here without concern of a memory leak. 2982 */ 2983 fp->rx_mbuf_chain[cons].m = NULL; 2984 } 2985 2986 /* update the Rx SW BD with the mbuf info from the TPA pool */ 2987 fp->rx_mbuf_chain[index] = tmp_bd; 2988 2989 /* update the Rx BD with the empty mbuf phys address from the TPA pool */ 2990 rx_bd = &fp->rx_chain[index]; 2991 rx_bd->addr_hi = htole32(U64_HI(tpa_info->seg.ds_addr)); 2992 rx_bd->addr_lo = htole32(U64_LO(tpa_info->seg.ds_addr)); 2993 } 2994 2995 /* 2996 * When a TPA aggregation is completed, loop through the individual mbufs 2997 * of the aggregation, combining them into a single mbuf which will be sent 2998 * up the stack. Refill all freed SGEs with mbufs as we go along. 2999 */ 3000 static int 3001 bxe_fill_frag_mbuf(struct bxe_softc *sc, 3002 struct bxe_fastpath *fp, 3003 struct bxe_sw_tpa_info *tpa_info, 3004 uint16_t queue, 3005 uint16_t pages, 3006 struct mbuf *m, 3007 struct eth_end_agg_rx_cqe *cqe, 3008 uint16_t cqe_idx) 3009 { 3010 struct mbuf *m_frag; 3011 uint32_t frag_len, frag_size, i; 3012 uint16_t sge_idx; 3013 int rc = 0; 3014 int j; 3015 3016 frag_size = le16toh(cqe->pkt_len) - tpa_info->len_on_bd; 3017 3018 BLOGD(sc, DBG_LRO, 3019 "fp[%02d].tpa[%02d] TPA fill len_on_bd=%d frag_size=%d pages=%d\n", 3020 fp->index, queue, tpa_info->len_on_bd, frag_size, pages); 3021 3022 /* make sure the aggregated frame is not too big to handle */ 3023 if (pages > 8 * PAGES_PER_SGE) { 3024 BLOGE(sc, "fp[%02d].sge[0x%04x] has too many pages (%d)! " 3025 "pkt_len=%d len_on_bd=%d frag_size=%d\n", 3026 fp->index, cqe_idx, pages, le16toh(cqe->pkt_len), 3027 tpa_info->len_on_bd, frag_size); 3028 bxe_panic(sc, ("sge page count error\n")); 3029 return (EINVAL); 3030 } 3031 3032 /* 3033 * Scan through the scatter gather list pulling individual mbufs into a 3034 * single mbuf for the host stack. 3035 */ 3036 for (i = 0, j = 0; i < pages; i += PAGES_PER_SGE, j++) { 3037 sge_idx = RX_SGE(le16toh(cqe->sgl_or_raw_data.sgl[j])); 3038 3039 /* 3040 * Firmware gives the indices of the SGE as if the ring is an array 3041 * (meaning that the "next" element will consume 2 indices). 3042 */ 3043 frag_len = min(frag_size, (uint32_t)(SGE_PAGES)); 3044 3045 BLOGD(sc, DBG_LRO, "fp[%02d].tpa[%02d] TPA fill i=%d j=%d " 3046 "sge_idx=%d frag_size=%d frag_len=%d\n", 3047 fp->index, queue, i, j, sge_idx, frag_size, frag_len); 3048 3049 m_frag = fp->rx_sge_mbuf_chain[sge_idx].m; 3050 3051 /* allocate a new mbuf for the SGE */ 3052 rc = bxe_alloc_rx_sge_mbuf(fp, sge_idx); 3053 if (rc) { 3054 /* Leave all remaining SGEs in the ring! */ 3055 return (rc); 3056 } 3057 3058 /* update the fragment length */ 3059 m_frag->m_len = frag_len; 3060 3061 /* concatenate the fragment to the head mbuf */ 3062 m_cat(m, m_frag); 3063 fp->eth_q_stats.mbuf_alloc_sge--; 3064 3065 /* update the TPA mbuf size and remaining fragment size */ 3066 m->m_pkthdr.len += frag_len; 3067 frag_size -= frag_len; 3068 } 3069 3070 BLOGD(sc, DBG_LRO, 3071 "fp[%02d].tpa[%02d] TPA fill done frag_size=%d\n", 3072 fp->index, queue, frag_size); 3073 3074 return (rc); 3075 } 3076 3077 static inline void 3078 bxe_clear_sge_mask_next_elems(struct bxe_fastpath *fp) 3079 { 3080 int i, j; 3081 3082 for (i = 1; i <= RX_SGE_NUM_PAGES; i++) { 3083 int idx = RX_SGE_TOTAL_PER_PAGE * i - 1; 3084 3085 for (j = 0; j < 2; j++) { 3086 BIT_VEC64_CLEAR_BIT(fp->sge_mask, idx); 3087 idx--; 3088 } 3089 } 3090 } 3091 3092 static inline void 3093 bxe_init_sge_ring_bit_mask(struct bxe_fastpath *fp) 3094 { 3095 /* set the mask to all 1's, it's faster to compare to 0 than to 0xf's */ 3096 memset(fp->sge_mask, 0xff, sizeof(fp->sge_mask)); 3097 3098 /* 3099 * Clear the two last indices in the page to 1. These are the indices that 3100 * correspond to the "next" element, hence will never be indicated and 3101 * should be removed from the calculations. 3102 */ 3103 bxe_clear_sge_mask_next_elems(fp); 3104 } 3105 3106 static inline void 3107 bxe_update_last_max_sge(struct bxe_fastpath *fp, 3108 uint16_t idx) 3109 { 3110 uint16_t last_max = fp->last_max_sge; 3111 3112 if (SUB_S16(idx, last_max) > 0) { 3113 fp->last_max_sge = idx; 3114 } 3115 } 3116 3117 static inline void 3118 bxe_update_sge_prod(struct bxe_softc *sc, 3119 struct bxe_fastpath *fp, 3120 uint16_t sge_len, 3121 struct eth_end_agg_rx_cqe *cqe) 3122 { 3123 uint16_t last_max, last_elem, first_elem; 3124 uint16_t delta = 0; 3125 uint16_t i; 3126 3127 if (!sge_len) { 3128 return; 3129 } 3130 3131 /* first mark all used pages */ 3132 for (i = 0; i < sge_len; i++) { 3133 BIT_VEC64_CLEAR_BIT(fp->sge_mask, 3134 RX_SGE(le16toh(cqe->sgl_or_raw_data.sgl[i]))); 3135 } 3136 3137 BLOGD(sc, DBG_LRO, 3138 "fp[%02d] fp_cqe->sgl[%d] = %d\n", 3139 fp->index, sge_len - 1, 3140 le16toh(cqe->sgl_or_raw_data.sgl[sge_len - 1])); 3141 3142 /* assume that the last SGE index is the biggest */ 3143 bxe_update_last_max_sge(fp, 3144 le16toh(cqe->sgl_or_raw_data.sgl[sge_len - 1])); 3145 3146 last_max = RX_SGE(fp->last_max_sge); 3147 last_elem = last_max >> BIT_VEC64_ELEM_SHIFT; 3148 first_elem = RX_SGE(fp->rx_sge_prod) >> BIT_VEC64_ELEM_SHIFT; 3149 3150 /* if ring is not full */ 3151 if (last_elem + 1 != first_elem) { 3152 last_elem++; 3153 } 3154 3155 /* now update the prod */ 3156 for (i = first_elem; i != last_elem; i = RX_SGE_NEXT_MASK_ELEM(i)) { 3157 if (__predict_true(fp->sge_mask[i])) { 3158 break; 3159 } 3160 3161 fp->sge_mask[i] = BIT_VEC64_ELEM_ONE_MASK; 3162 delta += BIT_VEC64_ELEM_SZ; 3163 } 3164 3165 if (delta > 0) { 3166 fp->rx_sge_prod += delta; 3167 /* clear page-end entries */ 3168 bxe_clear_sge_mask_next_elems(fp); 3169 } 3170 3171 BLOGD(sc, DBG_LRO, 3172 "fp[%02d] fp->last_max_sge=%d fp->rx_sge_prod=%d\n", 3173 fp->index, fp->last_max_sge, fp->rx_sge_prod); 3174 } 3175 3176 /* 3177 * The aggregation on the current TPA queue has completed. Pull the individual 3178 * mbuf fragments together into a single mbuf, perform all necessary checksum 3179 * calculations, and send the resuting mbuf to the stack. 3180 */ 3181 static void 3182 bxe_tpa_stop(struct bxe_softc *sc, 3183 struct bxe_fastpath *fp, 3184 struct bxe_sw_tpa_info *tpa_info, 3185 uint16_t queue, 3186 uint16_t pages, 3187 struct eth_end_agg_rx_cqe *cqe, 3188 uint16_t cqe_idx) 3189 { 3190 struct ifnet *ifp = sc->ifnet; 3191 struct mbuf *m; 3192 int rc = 0; 3193 3194 BLOGD(sc, DBG_LRO, 3195 "fp[%02d].tpa[%02d] pad=%d pkt_len=%d pages=%d vlan=%d\n", 3196 fp->index, queue, tpa_info->placement_offset, 3197 le16toh(cqe->pkt_len), pages, tpa_info->vlan_tag); 3198 3199 m = tpa_info->bd.m; 3200 3201 /* allocate a replacement before modifying existing mbuf */ 3202 rc = bxe_alloc_rx_tpa_mbuf(fp, queue); 3203 if (rc) { 3204 /* drop the frame and log an error */ 3205 fp->eth_q_stats.rx_soft_errors++; 3206 goto bxe_tpa_stop_exit; 3207 } 3208 3209 /* we have a replacement, fixup the current mbuf */ 3210 m_adj(m, tpa_info->placement_offset); 3211 m->m_pkthdr.len = m->m_len = tpa_info->len_on_bd; 3212 3213 /* mark the checksums valid (taken care of by the firmware) */ 3214 fp->eth_q_stats.rx_ofld_frames_csum_ip++; 3215 fp->eth_q_stats.rx_ofld_frames_csum_tcp_udp++; 3216 m->m_pkthdr.csum_data = 0xffff; 3217 m->m_pkthdr.csum_flags |= (CSUM_IP_CHECKED | 3218 CSUM_IP_VALID | 3219 CSUM_DATA_VALID | 3220 CSUM_PSEUDO_HDR); 3221 3222 /* aggregate all of the SGEs into a single mbuf */ 3223 rc = bxe_fill_frag_mbuf(sc, fp, tpa_info, queue, pages, m, cqe, cqe_idx); 3224 if (rc) { 3225 /* drop the packet and log an error */ 3226 fp->eth_q_stats.rx_soft_errors++; 3227 m_freem(m); 3228 } else { 3229 if (tpa_info->parsing_flags & PARSING_FLAGS_VLAN) { 3230 m->m_pkthdr.ether_vtag = tpa_info->vlan_tag; 3231 m->m_flags |= M_VLANTAG; 3232 } 3233 3234 /* assign packet to this interface interface */ 3235 m->m_pkthdr.rcvif = ifp; 3236 3237 #if __FreeBSD_version >= 800000 3238 /* specify what RSS queue was used for this flow */ 3239 m->m_pkthdr.flowid = fp->index; 3240 m->m_flags |= M_FLOWID; 3241 #endif 3242 3243 ifp->if_ipackets++; 3244 fp->eth_q_stats.rx_tpa_pkts++; 3245 3246 /* pass the frame to the stack */ 3247 (*ifp->if_input)(ifp, m); 3248 } 3249 3250 /* we passed an mbuf up the stack or dropped the frame */ 3251 fp->eth_q_stats.mbuf_alloc_tpa--; 3252 3253 bxe_tpa_stop_exit: 3254 3255 fp->rx_tpa_info[queue].state = BXE_TPA_STATE_STOP; 3256 fp->rx_tpa_queue_used &= ~(1 << queue); 3257 } 3258 3259 static uint8_t 3260 bxe_rxeof(struct bxe_softc *sc, 3261 struct bxe_fastpath *fp) 3262 { 3263 struct ifnet *ifp = sc->ifnet; 3264 uint16_t bd_cons, bd_prod, bd_prod_fw, comp_ring_cons; 3265 uint16_t hw_cq_cons, sw_cq_cons, sw_cq_prod; 3266 int rx_pkts = 0; 3267 int rc; 3268 3269 BXE_FP_RX_LOCK(fp); 3270 3271 /* CQ "next element" is of the size of the regular element */ 3272 hw_cq_cons = le16toh(*fp->rx_cq_cons_sb); 3273 if ((hw_cq_cons & RCQ_USABLE_PER_PAGE) == RCQ_USABLE_PER_PAGE) { 3274 hw_cq_cons++; 3275 } 3276 3277 bd_cons = fp->rx_bd_cons; 3278 bd_prod = fp->rx_bd_prod; 3279 bd_prod_fw = bd_prod; 3280 sw_cq_cons = fp->rx_cq_cons; 3281 sw_cq_prod = fp->rx_cq_prod; 3282 3283 /* 3284 * Memory barrier necessary as speculative reads of the rx 3285 * buffer can be ahead of the index in the status block 3286 */ 3287 rmb(); 3288 3289 BLOGD(sc, DBG_RX, 3290 "fp[%02d] Rx START hw_cq_cons=%u sw_cq_cons=%u\n", 3291 fp->index, hw_cq_cons, sw_cq_cons); 3292 3293 while (sw_cq_cons != hw_cq_cons) { 3294 struct bxe_sw_rx_bd *rx_buf = NULL; 3295 union eth_rx_cqe *cqe; 3296 struct eth_fast_path_rx_cqe *cqe_fp; 3297 uint8_t cqe_fp_flags; 3298 enum eth_rx_cqe_type cqe_fp_type; 3299 uint16_t len, pad; 3300 struct mbuf *m = NULL; 3301 3302 comp_ring_cons = RCQ(sw_cq_cons); 3303 bd_prod = RX_BD(bd_prod); 3304 bd_cons = RX_BD(bd_cons); 3305 3306 cqe = &fp->rcq_chain[comp_ring_cons]; 3307 cqe_fp = &cqe->fast_path_cqe; 3308 cqe_fp_flags = cqe_fp->type_error_flags; 3309 cqe_fp_type = cqe_fp_flags & ETH_FAST_PATH_RX_CQE_TYPE; 3310 3311 BLOGD(sc, DBG_RX, 3312 "fp[%02d] Rx hw_cq_cons=%d hw_sw_cons=%d " 3313 "BD prod=%d cons=%d CQE type=0x%x err=0x%x " 3314 "status=0x%x rss_hash=0x%x vlan=0x%x len=%u\n", 3315 fp->index, 3316 hw_cq_cons, 3317 sw_cq_cons, 3318 bd_prod, 3319 bd_cons, 3320 CQE_TYPE(cqe_fp_flags), 3321 cqe_fp_flags, 3322 cqe_fp->status_flags, 3323 le32toh(cqe_fp->rss_hash_result), 3324 le16toh(cqe_fp->vlan_tag), 3325 le16toh(cqe_fp->pkt_len_or_gro_seg_len)); 3326 3327 /* is this a slowpath msg? */ 3328 if (__predict_false(CQE_TYPE_SLOW(cqe_fp_type))) { 3329 bxe_sp_event(sc, fp, cqe); 3330 goto next_cqe; 3331 } 3332 3333 rx_buf = &fp->rx_mbuf_chain[bd_cons]; 3334 3335 if (!CQE_TYPE_FAST(cqe_fp_type)) { 3336 struct bxe_sw_tpa_info *tpa_info; 3337 uint16_t frag_size, pages; 3338 uint8_t queue; 3339 3340 #if 0 3341 /* sanity check */ 3342 if (!fp->tpa_enable && 3343 (CQE_TYPE_START(cqe_fp_type) || CQE_TYPE_STOP(cqe_fp_type))) { 3344 BLOGE(sc, "START/STOP packet while !tpa_enable type (0x%x)\n", 3345 CQE_TYPE(cqe_fp_type)); 3346 } 3347 #endif 3348 3349 if (CQE_TYPE_START(cqe_fp_type)) { 3350 bxe_tpa_start(sc, fp, cqe_fp->queue_index, 3351 bd_cons, bd_prod, cqe_fp); 3352 m = NULL; /* packet not ready yet */ 3353 goto next_rx; 3354 } 3355 3356 KASSERT(CQE_TYPE_STOP(cqe_fp_type), 3357 ("CQE type is not STOP! (0x%x)\n", cqe_fp_type)); 3358 3359 queue = cqe->end_agg_cqe.queue_index; 3360 tpa_info = &fp->rx_tpa_info[queue]; 3361 3362 BLOGD(sc, DBG_LRO, "fp[%02d].tpa[%02d] TPA STOP\n", 3363 fp->index, queue); 3364 3365 frag_size = (le16toh(cqe->end_agg_cqe.pkt_len) - 3366 tpa_info->len_on_bd); 3367 pages = SGE_PAGE_ALIGN(frag_size) >> SGE_PAGE_SHIFT; 3368 3369 bxe_tpa_stop(sc, fp, tpa_info, queue, pages, 3370 &cqe->end_agg_cqe, comp_ring_cons); 3371 3372 bxe_update_sge_prod(sc, fp, pages, &cqe->end_agg_cqe); 3373 3374 goto next_cqe; 3375 } 3376 3377 /* non TPA */ 3378 3379 /* is this an error packet? */ 3380 if (__predict_false(cqe_fp_flags & 3381 ETH_FAST_PATH_RX_CQE_PHY_DECODE_ERR_FLG)) { 3382 BLOGE(sc, "flags 0x%x rx packet %u\n", cqe_fp_flags, sw_cq_cons); 3383 fp->eth_q_stats.rx_soft_errors++; 3384 goto next_rx; 3385 } 3386 3387 len = le16toh(cqe_fp->pkt_len_or_gro_seg_len); 3388 pad = cqe_fp->placement_offset; 3389 3390 m = rx_buf->m; 3391 3392 if (__predict_false(m == NULL)) { 3393 BLOGE(sc, "No mbuf in rx chain descriptor %d for fp[%02d]\n", 3394 bd_cons, fp->index); 3395 goto next_rx; 3396 } 3397 3398 /* XXX double copy if packet length under a threshold */ 3399 3400 /* 3401 * If all the buffer descriptors are filled with mbufs then fill in 3402 * the current consumer index with a new BD. Else if a maximum Rx 3403 * buffer limit is imposed then fill in the next producer index. 3404 */ 3405 rc = bxe_alloc_rx_bd_mbuf(fp, bd_cons, 3406 (sc->max_rx_bufs != RX_BD_USABLE) ? 3407 bd_prod : bd_cons); 3408 if (rc != 0) { 3409 BLOGE(sc, "mbuf alloc fail for fp[%02d] rx chain (%d)\n", 3410 fp->index, rc); 3411 fp->eth_q_stats.rx_soft_errors++; 3412 3413 if (sc->max_rx_bufs != RX_BD_USABLE) { 3414 /* copy this consumer index to the producer index */ 3415 memcpy(&fp->rx_mbuf_chain[bd_prod], rx_buf, 3416 sizeof(struct bxe_sw_rx_bd)); 3417 memset(rx_buf, 0, sizeof(struct bxe_sw_rx_bd)); 3418 } 3419 3420 goto next_rx; 3421 } 3422 3423 /* current mbuf was detached from the bd */ 3424 fp->eth_q_stats.mbuf_alloc_rx--; 3425 3426 /* we allocated a replacement mbuf, fixup the current one */ 3427 m_adj(m, pad); 3428 m->m_pkthdr.len = m->m_len = len; 3429 3430 /* assign packet to this interface interface */ 3431 m->m_pkthdr.rcvif = ifp; 3432 3433 /* assume no hardware checksum has complated */ 3434 m->m_pkthdr.csum_flags = 0; 3435 3436 /* validate checksum if offload enabled */ 3437 if (ifp->if_capenable & IFCAP_RXCSUM) { 3438 /* check for a valid IP frame */ 3439 if (!(cqe->fast_path_cqe.status_flags & 3440 ETH_FAST_PATH_RX_CQE_IP_XSUM_NO_VALIDATION_FLG)) { 3441 m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED; 3442 if (__predict_false(cqe_fp_flags & 3443 ETH_FAST_PATH_RX_CQE_IP_BAD_XSUM_FLG)) { 3444 fp->eth_q_stats.rx_hw_csum_errors++; 3445 } else { 3446 fp->eth_q_stats.rx_ofld_frames_csum_ip++; 3447 m->m_pkthdr.csum_flags |= CSUM_IP_VALID; 3448 } 3449 } 3450 3451 /* check for a valid TCP/UDP frame */ 3452 if (!(cqe->fast_path_cqe.status_flags & 3453 ETH_FAST_PATH_RX_CQE_L4_XSUM_NO_VALIDATION_FLG)) { 3454 if (__predict_false(cqe_fp_flags & 3455 ETH_FAST_PATH_RX_CQE_L4_BAD_XSUM_FLG)) { 3456 fp->eth_q_stats.rx_hw_csum_errors++; 3457 } else { 3458 fp->eth_q_stats.rx_ofld_frames_csum_tcp_udp++; 3459 m->m_pkthdr.csum_data = 0xFFFF; 3460 m->m_pkthdr.csum_flags |= (CSUM_DATA_VALID | 3461 CSUM_PSEUDO_HDR); 3462 } 3463 } 3464 } 3465 3466 /* if there is a VLAN tag then flag that info */ 3467 if (cqe->fast_path_cqe.pars_flags.flags & PARSING_FLAGS_VLAN) { 3468 m->m_pkthdr.ether_vtag = cqe->fast_path_cqe.vlan_tag; 3469 m->m_flags |= M_VLANTAG; 3470 } 3471 3472 #if __FreeBSD_version >= 800000 3473 /* specify what RSS queue was used for this flow */ 3474 m->m_pkthdr.flowid = fp->index; 3475 m->m_flags |= M_FLOWID; 3476 #endif 3477 3478 next_rx: 3479 3480 bd_cons = RX_BD_NEXT(bd_cons); 3481 bd_prod = RX_BD_NEXT(bd_prod); 3482 bd_prod_fw = RX_BD_NEXT(bd_prod_fw); 3483 3484 /* pass the frame to the stack */ 3485 if (__predict_true(m != NULL)) { 3486 ifp->if_ipackets++; 3487 rx_pkts++; 3488 (*ifp->if_input)(ifp, m); 3489 } 3490 3491 next_cqe: 3492 3493 sw_cq_prod = RCQ_NEXT(sw_cq_prod); 3494 sw_cq_cons = RCQ_NEXT(sw_cq_cons); 3495 3496 /* limit spinning on the queue */ 3497 if (rx_pkts == sc->rx_budget) { 3498 fp->eth_q_stats.rx_budget_reached++; 3499 break; 3500 } 3501 } /* while work to do */ 3502 3503 fp->rx_bd_cons = bd_cons; 3504 fp->rx_bd_prod = bd_prod_fw; 3505 fp->rx_cq_cons = sw_cq_cons; 3506 fp->rx_cq_prod = sw_cq_prod; 3507 3508 /* Update producers */ 3509 bxe_update_rx_prod(sc, fp, bd_prod_fw, sw_cq_prod, fp->rx_sge_prod); 3510 3511 fp->eth_q_stats.rx_pkts += rx_pkts; 3512 fp->eth_q_stats.rx_calls++; 3513 3514 BXE_FP_RX_UNLOCK(fp); 3515 3516 return (sw_cq_cons != hw_cq_cons); 3517 } 3518 3519 static uint16_t 3520 bxe_free_tx_pkt(struct bxe_softc *sc, 3521 struct bxe_fastpath *fp, 3522 uint16_t idx) 3523 { 3524 struct bxe_sw_tx_bd *tx_buf = &fp->tx_mbuf_chain[idx]; 3525 struct eth_tx_start_bd *tx_start_bd; 3526 uint16_t bd_idx = TX_BD(tx_buf->first_bd); 3527 uint16_t new_cons; 3528 int nbd; 3529 3530 /* unmap the mbuf from non-paged memory */ 3531 bus_dmamap_unload(fp->tx_mbuf_tag, tx_buf->m_map); 3532 3533 tx_start_bd = &fp->tx_chain[bd_idx].start_bd; 3534 nbd = le16toh(tx_start_bd->nbd) - 1; 3535 3536 #if 0 3537 if ((nbd - 1) > (MAX_MBUF_FRAGS + 2)) { 3538 bxe_panic(sc, ("BAD nbd!\n")); 3539 } 3540 #endif 3541 3542 new_cons = (tx_buf->first_bd + nbd); 3543 3544 #if 0 3545 struct eth_tx_bd *tx_data_bd; 3546 3547 /* 3548 * The following code doesn't do anything but is left here 3549 * for clarity on what the new value of new_cons skipped. 3550 */ 3551 3552 /* get the next bd */ 3553 bd_idx = TX_BD(TX_BD_NEXT(bd_idx)); 3554 3555 /* skip the parse bd */ 3556 --nbd; 3557 bd_idx = TX_BD(TX_BD_NEXT(bd_idx)); 3558 3559 /* skip the TSO split header bd since they have no mapping */ 3560 if (tx_buf->flags & BXE_TSO_SPLIT_BD) { 3561 --nbd; 3562 bd_idx = TX_BD(TX_BD_NEXT(bd_idx)); 3563 } 3564 3565 /* now free frags */ 3566 while (nbd > 0) { 3567 tx_data_bd = &fp->tx_chain[bd_idx].reg_bd; 3568 if (--nbd) { 3569 bd_idx = TX_BD(TX_BD_NEXT(bd_idx)); 3570 } 3571 } 3572 #endif 3573 3574 /* free the mbuf */ 3575 if (__predict_true(tx_buf->m != NULL)) { 3576 m_freem(tx_buf->m); 3577 fp->eth_q_stats.mbuf_alloc_tx--; 3578 } else { 3579 fp->eth_q_stats.tx_chain_lost_mbuf++; 3580 } 3581 3582 tx_buf->m = NULL; 3583 tx_buf->first_bd = 0; 3584 3585 return (new_cons); 3586 } 3587 3588 /* transmit timeout watchdog */ 3589 static int 3590 bxe_watchdog(struct bxe_softc *sc, 3591 struct bxe_fastpath *fp) 3592 { 3593 BXE_FP_TX_LOCK(fp); 3594 3595 if ((fp->watchdog_timer == 0) || (--fp->watchdog_timer)) { 3596 BXE_FP_TX_UNLOCK(fp); 3597 return (0); 3598 } 3599 3600 BLOGE(sc, "TX watchdog timeout on fp[%02d], resetting!\n", fp->index); 3601 3602 BXE_FP_TX_UNLOCK(fp); 3603 3604 atomic_store_rel_long(&sc->chip_tq_flags, CHIP_TQ_REINIT); 3605 taskqueue_enqueue(sc->chip_tq, &sc->chip_tq_task); 3606 3607 return (-1); 3608 } 3609 3610 /* processes transmit completions */ 3611 static uint8_t 3612 bxe_txeof(struct bxe_softc *sc, 3613 struct bxe_fastpath *fp) 3614 { 3615 struct ifnet *ifp = sc->ifnet; 3616 uint16_t bd_cons, hw_cons, sw_cons, pkt_cons; 3617 uint16_t tx_bd_avail; 3618 3619 BXE_FP_TX_LOCK_ASSERT(fp); 3620 3621 bd_cons = fp->tx_bd_cons; 3622 hw_cons = le16toh(*fp->tx_cons_sb); 3623 sw_cons = fp->tx_pkt_cons; 3624 3625 while (sw_cons != hw_cons) { 3626 pkt_cons = TX_BD(sw_cons); 3627 3628 BLOGD(sc, DBG_TX, 3629 "TX: fp[%d]: hw_cons=%u sw_cons=%u pkt_cons=%u\n", 3630 fp->index, hw_cons, sw_cons, pkt_cons); 3631 3632 bd_cons = bxe_free_tx_pkt(sc, fp, pkt_cons); 3633 3634 sw_cons++; 3635 } 3636 3637 fp->tx_pkt_cons = sw_cons; 3638 fp->tx_bd_cons = bd_cons; 3639 3640 BLOGD(sc, DBG_TX, 3641 "TX done: fp[%d]: hw_cons=%u sw_cons=%u sw_prod=%u\n", 3642 fp->index, hw_cons, fp->tx_pkt_cons, fp->tx_pkt_prod); 3643 3644 mb(); 3645 3646 tx_bd_avail = bxe_tx_avail(sc, fp); 3647 3648 if (tx_bd_avail < BXE_TX_CLEANUP_THRESHOLD) { 3649 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 3650 } else { 3651 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 3652 } 3653 3654 if (fp->tx_pkt_prod != fp->tx_pkt_cons) { 3655 /* reset the watchdog timer if there are pending transmits */ 3656 fp->watchdog_timer = BXE_TX_TIMEOUT; 3657 return (TRUE); 3658 } else { 3659 /* clear watchdog when there are no pending transmits */ 3660 fp->watchdog_timer = 0; 3661 return (FALSE); 3662 } 3663 } 3664 3665 static void 3666 bxe_drain_tx_queues(struct bxe_softc *sc) 3667 { 3668 struct bxe_fastpath *fp; 3669 int i, count; 3670 3671 /* wait until all TX fastpath tasks have completed */ 3672 for (i = 0; i < sc->num_queues; i++) { 3673 fp = &sc->fp[i]; 3674 3675 count = 1000; 3676 3677 while (bxe_has_tx_work(fp)) { 3678 3679 BXE_FP_TX_LOCK(fp); 3680 bxe_txeof(sc, fp); 3681 BXE_FP_TX_UNLOCK(fp); 3682 3683 if (count == 0) { 3684 BLOGE(sc, "Timeout waiting for fp[%d] " 3685 "transmits to complete!\n", i); 3686 bxe_panic(sc, ("tx drain failure\n")); 3687 return; 3688 } 3689 3690 count--; 3691 DELAY(1000); 3692 rmb(); 3693 } 3694 } 3695 3696 return; 3697 } 3698 3699 static int 3700 bxe_del_all_macs(struct bxe_softc *sc, 3701 struct ecore_vlan_mac_obj *mac_obj, 3702 int mac_type, 3703 uint8_t wait_for_comp) 3704 { 3705 unsigned long ramrod_flags = 0, vlan_mac_flags = 0; 3706 int rc; 3707 3708 /* wait for completion of requested */ 3709 if (wait_for_comp) { 3710 bxe_set_bit(RAMROD_COMP_WAIT, &ramrod_flags); 3711 } 3712 3713 /* Set the mac type of addresses we want to clear */ 3714 bxe_set_bit(mac_type, &vlan_mac_flags); 3715 3716 rc = mac_obj->delete_all(sc, mac_obj, &vlan_mac_flags, &ramrod_flags); 3717 if (rc < 0) { 3718 BLOGE(sc, "Failed to delete MACs (%d)\n", rc); 3719 } 3720 3721 return (rc); 3722 } 3723 3724 static int 3725 bxe_fill_accept_flags(struct bxe_softc *sc, 3726 uint32_t rx_mode, 3727 unsigned long *rx_accept_flags, 3728 unsigned long *tx_accept_flags) 3729 { 3730 /* Clear the flags first */ 3731 *rx_accept_flags = 0; 3732 *tx_accept_flags = 0; 3733 3734 switch (rx_mode) { 3735 case BXE_RX_MODE_NONE: 3736 /* 3737 * 'drop all' supersedes any accept flags that may have been 3738 * passed to the function. 3739 */ 3740 break; 3741 3742 case BXE_RX_MODE_NORMAL: 3743 bxe_set_bit(ECORE_ACCEPT_UNICAST, rx_accept_flags); 3744 bxe_set_bit(ECORE_ACCEPT_MULTICAST, rx_accept_flags); 3745 bxe_set_bit(ECORE_ACCEPT_BROADCAST, rx_accept_flags); 3746 3747 /* internal switching mode */ 3748 bxe_set_bit(ECORE_ACCEPT_UNICAST, tx_accept_flags); 3749 bxe_set_bit(ECORE_ACCEPT_MULTICAST, tx_accept_flags); 3750 bxe_set_bit(ECORE_ACCEPT_BROADCAST, tx_accept_flags); 3751 3752 break; 3753 3754 case BXE_RX_MODE_ALLMULTI: 3755 bxe_set_bit(ECORE_ACCEPT_UNICAST, rx_accept_flags); 3756 bxe_set_bit(ECORE_ACCEPT_ALL_MULTICAST, rx_accept_flags); 3757 bxe_set_bit(ECORE_ACCEPT_BROADCAST, rx_accept_flags); 3758 3759 /* internal switching mode */ 3760 bxe_set_bit(ECORE_ACCEPT_UNICAST, tx_accept_flags); 3761 bxe_set_bit(ECORE_ACCEPT_ALL_MULTICAST, tx_accept_flags); 3762 bxe_set_bit(ECORE_ACCEPT_BROADCAST, tx_accept_flags); 3763 3764 break; 3765 3766 case BXE_RX_MODE_PROMISC: 3767 /* 3768 * According to deffinition of SI mode, iface in promisc mode 3769 * should receive matched and unmatched (in resolution of port) 3770 * unicast packets. 3771 */ 3772 bxe_set_bit(ECORE_ACCEPT_UNMATCHED, rx_accept_flags); 3773 bxe_set_bit(ECORE_ACCEPT_UNICAST, rx_accept_flags); 3774 bxe_set_bit(ECORE_ACCEPT_ALL_MULTICAST, rx_accept_flags); 3775 bxe_set_bit(ECORE_ACCEPT_BROADCAST, rx_accept_flags); 3776 3777 /* internal switching mode */ 3778 bxe_set_bit(ECORE_ACCEPT_ALL_MULTICAST, tx_accept_flags); 3779 bxe_set_bit(ECORE_ACCEPT_BROADCAST, tx_accept_flags); 3780 3781 if (IS_MF_SI(sc)) { 3782 bxe_set_bit(ECORE_ACCEPT_ALL_UNICAST, tx_accept_flags); 3783 } else { 3784 bxe_set_bit(ECORE_ACCEPT_UNICAST, tx_accept_flags); 3785 } 3786 3787 break; 3788 3789 default: 3790 BLOGE(sc, "Unknown rx_mode (%d)\n", rx_mode); 3791 return (-1); 3792 } 3793 3794 /* Set ACCEPT_ANY_VLAN as we do not enable filtering by VLAN */ 3795 if (rx_mode != BXE_RX_MODE_NONE) { 3796 bxe_set_bit(ECORE_ACCEPT_ANY_VLAN, rx_accept_flags); 3797 bxe_set_bit(ECORE_ACCEPT_ANY_VLAN, tx_accept_flags); 3798 } 3799 3800 return (0); 3801 } 3802 3803 static int 3804 bxe_set_q_rx_mode(struct bxe_softc *sc, 3805 uint8_t cl_id, 3806 unsigned long rx_mode_flags, 3807 unsigned long rx_accept_flags, 3808 unsigned long tx_accept_flags, 3809 unsigned long ramrod_flags) 3810 { 3811 struct ecore_rx_mode_ramrod_params ramrod_param; 3812 int rc; 3813 3814 memset(&ramrod_param, 0, sizeof(ramrod_param)); 3815 3816 /* Prepare ramrod parameters */ 3817 ramrod_param.cid = 0; 3818 ramrod_param.cl_id = cl_id; 3819 ramrod_param.rx_mode_obj = &sc->rx_mode_obj; 3820 ramrod_param.func_id = SC_FUNC(sc); 3821 3822 ramrod_param.pstate = &sc->sp_state; 3823 ramrod_param.state = ECORE_FILTER_RX_MODE_PENDING; 3824 3825 ramrod_param.rdata = BXE_SP(sc, rx_mode_rdata); 3826 ramrod_param.rdata_mapping = BXE_SP_MAPPING(sc, rx_mode_rdata); 3827 3828 bxe_set_bit(ECORE_FILTER_RX_MODE_PENDING, &sc->sp_state); 3829 3830 ramrod_param.ramrod_flags = ramrod_flags; 3831 ramrod_param.rx_mode_flags = rx_mode_flags; 3832 3833 ramrod_param.rx_accept_flags = rx_accept_flags; 3834 ramrod_param.tx_accept_flags = tx_accept_flags; 3835 3836 rc = ecore_config_rx_mode(sc, &ramrod_param); 3837 if (rc < 0) { 3838 BLOGE(sc, "Set rx_mode %d failed\n", sc->rx_mode); 3839 return (rc); 3840 } 3841 3842 return (0); 3843 } 3844 3845 static int 3846 bxe_set_storm_rx_mode(struct bxe_softc *sc) 3847 { 3848 unsigned long rx_mode_flags = 0, ramrod_flags = 0; 3849 unsigned long rx_accept_flags = 0, tx_accept_flags = 0; 3850 int rc; 3851 3852 rc = bxe_fill_accept_flags(sc, sc->rx_mode, &rx_accept_flags, 3853 &tx_accept_flags); 3854 if (rc) { 3855 return (rc); 3856 } 3857 3858 bxe_set_bit(RAMROD_RX, &ramrod_flags); 3859 bxe_set_bit(RAMROD_TX, &ramrod_flags); 3860 3861 /* XXX ensure all fastpath have same cl_id and/or move it to bxe_softc */ 3862 return (bxe_set_q_rx_mode(sc, sc->fp[0].cl_id, rx_mode_flags, 3863 rx_accept_flags, tx_accept_flags, 3864 ramrod_flags)); 3865 } 3866 3867 /* returns the "mcp load_code" according to global load_count array */ 3868 static int 3869 bxe_nic_load_no_mcp(struct bxe_softc *sc) 3870 { 3871 int path = SC_PATH(sc); 3872 int port = SC_PORT(sc); 3873 3874 BLOGI(sc, "NO MCP - load counts[%d] %d, %d, %d\n", 3875 path, load_count[path][0], load_count[path][1], 3876 load_count[path][2]); 3877 load_count[path][0]++; 3878 load_count[path][1 + port]++; 3879 BLOGI(sc, "NO MCP - new load counts[%d] %d, %d, %d\n", 3880 path, load_count[path][0], load_count[path][1], 3881 load_count[path][2]); 3882 if (load_count[path][0] == 1) { 3883 return (FW_MSG_CODE_DRV_LOAD_COMMON); 3884 } else if (load_count[path][1 + port] == 1) { 3885 return (FW_MSG_CODE_DRV_LOAD_PORT); 3886 } else { 3887 return (FW_MSG_CODE_DRV_LOAD_FUNCTION); 3888 } 3889 } 3890 3891 /* returns the "mcp load_code" according to global load_count array */ 3892 static int 3893 bxe_nic_unload_no_mcp(struct bxe_softc *sc) 3894 { 3895 int port = SC_PORT(sc); 3896 int path = SC_PATH(sc); 3897 3898 BLOGI(sc, "NO MCP - load counts[%d] %d, %d, %d\n", 3899 path, load_count[path][0], load_count[path][1], 3900 load_count[path][2]); 3901 load_count[path][0]--; 3902 load_count[path][1 + port]--; 3903 BLOGI(sc, "NO MCP - new load counts[%d] %d, %d, %d\n", 3904 path, load_count[path][0], load_count[path][1], 3905 load_count[path][2]); 3906 if (load_count[path][0] == 0) { 3907 return (FW_MSG_CODE_DRV_UNLOAD_COMMON); 3908 } else if (load_count[path][1 + port] == 0) { 3909 return (FW_MSG_CODE_DRV_UNLOAD_PORT); 3910 } else { 3911 return (FW_MSG_CODE_DRV_UNLOAD_FUNCTION); 3912 } 3913 } 3914 3915 /* request unload mode from the MCP: COMMON, PORT or FUNCTION */ 3916 static uint32_t 3917 bxe_send_unload_req(struct bxe_softc *sc, 3918 int unload_mode) 3919 { 3920 uint32_t reset_code = 0; 3921 #if 0 3922 int port = SC_PORT(sc); 3923 int path = SC_PATH(sc); 3924 #endif 3925 3926 /* Select the UNLOAD request mode */ 3927 if (unload_mode == UNLOAD_NORMAL) { 3928 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS; 3929 } 3930 #if 0 3931 else if (sc->flags & BXE_NO_WOL_FLAG) { 3932 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP; 3933 } else if (sc->wol) { 3934 uint32_t emac_base = port ? GRCBASE_EMAC1 : GRCBASE_EMAC0; 3935 uint8_t *mac_addr = sc->dev->dev_addr; 3936 uint32_t val; 3937 uint16_t pmc; 3938 3939 /* 3940 * The mac address is written to entries 1-4 to 3941 * preserve entry 0 which is used by the PMF 3942 */ 3943 uint8_t entry = (SC_VN(sc) + 1)*8; 3944 3945 val = (mac_addr[0] << 8) | mac_addr[1]; 3946 EMAC_WR(sc, EMAC_REG_EMAC_MAC_MATCH + entry, val); 3947 3948 val = (mac_addr[2] << 24) | (mac_addr[3] << 16) | 3949 (mac_addr[4] << 8) | mac_addr[5]; 3950 EMAC_WR(sc, EMAC_REG_EMAC_MAC_MATCH + entry + 4, val); 3951 3952 /* Enable the PME and clear the status */ 3953 pmc = pci_read_config(sc->dev, 3954 (sc->devinfo.pcie_pm_cap_reg + 3955 PCIR_POWER_STATUS), 3956 2); 3957 pmc |= PCIM_PSTAT_PMEENABLE | PCIM_PSTAT_PME; 3958 pci_write_config(sc->dev, 3959 (sc->devinfo.pcie_pm_cap_reg + 3960 PCIR_POWER_STATUS), 3961 pmc, 4); 3962 3963 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_EN; 3964 } 3965 #endif 3966 else { 3967 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS; 3968 } 3969 3970 /* Send the request to the MCP */ 3971 if (!BXE_NOMCP(sc)) { 3972 reset_code = bxe_fw_command(sc, reset_code, 0); 3973 } else { 3974 reset_code = bxe_nic_unload_no_mcp(sc); 3975 } 3976 3977 return (reset_code); 3978 } 3979 3980 /* send UNLOAD_DONE command to the MCP */ 3981 static void 3982 bxe_send_unload_done(struct bxe_softc *sc, 3983 uint8_t keep_link) 3984 { 3985 uint32_t reset_param = 3986 keep_link ? DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET : 0; 3987 3988 /* Report UNLOAD_DONE to MCP */ 3989 if (!BXE_NOMCP(sc)) { 3990 bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_DONE, reset_param); 3991 } 3992 } 3993 3994 static int 3995 bxe_func_wait_started(struct bxe_softc *sc) 3996 { 3997 int tout = 50; 3998 3999 if (!sc->port.pmf) { 4000 return (0); 4001 } 4002 4003 /* 4004 * (assumption: No Attention from MCP at this stage) 4005 * PMF probably in the middle of TX disable/enable transaction 4006 * 1. Sync IRS for default SB 4007 * 2. Sync SP queue - this guarantees us that attention handling started 4008 * 3. Wait, that TX disable/enable transaction completes 4009 * 4010 * 1+2 guarantee that if DCBX attention was scheduled it already changed 4011 * pending bit of transaction from STARTED-->TX_STOPPED, if we already 4012 * received completion for the transaction the state is TX_STOPPED. 4013 * State will return to STARTED after completion of TX_STOPPED-->STARTED 4014 * transaction. 4015 */ 4016 4017 /* XXX make sure default SB ISR is done */ 4018 /* need a way to synchronize an irq (intr_mtx?) */ 4019 4020 /* XXX flush any work queues */ 4021 4022 while (ecore_func_get_state(sc, &sc->func_obj) != 4023 ECORE_F_STATE_STARTED && tout--) { 4024 DELAY(20000); 4025 } 4026 4027 if (ecore_func_get_state(sc, &sc->func_obj) != ECORE_F_STATE_STARTED) { 4028 /* 4029 * Failed to complete the transaction in a "good way" 4030 * Force both transactions with CLR bit. 4031 */ 4032 struct ecore_func_state_params func_params = { NULL }; 4033 4034 BLOGE(sc, "Unexpected function state! " 4035 "Forcing STARTED-->TX_STOPPED-->STARTED\n"); 4036 4037 func_params.f_obj = &sc->func_obj; 4038 bxe_set_bit(RAMROD_DRV_CLR_ONLY, &func_params.ramrod_flags); 4039 4040 /* STARTED-->TX_STOPPED */ 4041 func_params.cmd = ECORE_F_CMD_TX_STOP; 4042 ecore_func_state_change(sc, &func_params); 4043 4044 /* TX_STOPPED-->STARTED */ 4045 func_params.cmd = ECORE_F_CMD_TX_START; 4046 return (ecore_func_state_change(sc, &func_params)); 4047 } 4048 4049 return (0); 4050 } 4051 4052 static int 4053 bxe_stop_queue(struct bxe_softc *sc, 4054 int index) 4055 { 4056 struct bxe_fastpath *fp = &sc->fp[index]; 4057 struct ecore_queue_state_params q_params = { NULL }; 4058 int rc; 4059 4060 BLOGD(sc, DBG_LOAD, "stopping queue %d cid %d\n", index, fp->index); 4061 4062 q_params.q_obj = &sc->sp_objs[fp->index].q_obj; 4063 /* We want to wait for completion in this context */ 4064 bxe_set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags); 4065 4066 /* Stop the primary connection: */ 4067 4068 /* ...halt the connection */ 4069 q_params.cmd = ECORE_Q_CMD_HALT; 4070 rc = ecore_queue_state_change(sc, &q_params); 4071 if (rc) { 4072 return (rc); 4073 } 4074 4075 /* ...terminate the connection */ 4076 q_params.cmd = ECORE_Q_CMD_TERMINATE; 4077 memset(&q_params.params.terminate, 0, sizeof(q_params.params.terminate)); 4078 q_params.params.terminate.cid_index = FIRST_TX_COS_INDEX; 4079 rc = ecore_queue_state_change(sc, &q_params); 4080 if (rc) { 4081 return (rc); 4082 } 4083 4084 /* ...delete cfc entry */ 4085 q_params.cmd = ECORE_Q_CMD_CFC_DEL; 4086 memset(&q_params.params.cfc_del, 0, sizeof(q_params.params.cfc_del)); 4087 q_params.params.cfc_del.cid_index = FIRST_TX_COS_INDEX; 4088 return (ecore_queue_state_change(sc, &q_params)); 4089 } 4090 4091 /* wait for the outstanding SP commands */ 4092 static inline uint8_t 4093 bxe_wait_sp_comp(struct bxe_softc *sc, 4094 unsigned long mask) 4095 { 4096 unsigned long tmp; 4097 int tout = 5000; /* wait for 5 secs tops */ 4098 4099 while (tout--) { 4100 mb(); 4101 if (!(atomic_load_acq_long(&sc->sp_state) & mask)) { 4102 return (TRUE); 4103 } 4104 4105 DELAY(1000); 4106 } 4107 4108 mb(); 4109 4110 tmp = atomic_load_acq_long(&sc->sp_state); 4111 if (tmp & mask) { 4112 BLOGE(sc, "Filtering completion timed out: " 4113 "sp_state 0x%lx, mask 0x%lx\n", 4114 tmp, mask); 4115 return (FALSE); 4116 } 4117 4118 return (FALSE); 4119 } 4120 4121 static int 4122 bxe_func_stop(struct bxe_softc *sc) 4123 { 4124 struct ecore_func_state_params func_params = { NULL }; 4125 int rc; 4126 4127 /* prepare parameters for function state transitions */ 4128 bxe_set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags); 4129 func_params.f_obj = &sc->func_obj; 4130 func_params.cmd = ECORE_F_CMD_STOP; 4131 4132 /* 4133 * Try to stop the function the 'good way'. If it fails (in case 4134 * of a parity error during bxe_chip_cleanup()) and we are 4135 * not in a debug mode, perform a state transaction in order to 4136 * enable further HW_RESET transaction. 4137 */ 4138 rc = ecore_func_state_change(sc, &func_params); 4139 if (rc) { 4140 BLOGE(sc, "FUNC_STOP ramrod failed. " 4141 "Running a dry transaction\n"); 4142 bxe_set_bit(RAMROD_DRV_CLR_ONLY, &func_params.ramrod_flags); 4143 return (ecore_func_state_change(sc, &func_params)); 4144 } 4145 4146 return (0); 4147 } 4148 4149 static int 4150 bxe_reset_hw(struct bxe_softc *sc, 4151 uint32_t load_code) 4152 { 4153 struct ecore_func_state_params func_params = { NULL }; 4154 4155 /* Prepare parameters for function state transitions */ 4156 bxe_set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags); 4157 4158 func_params.f_obj = &sc->func_obj; 4159 func_params.cmd = ECORE_F_CMD_HW_RESET; 4160 4161 func_params.params.hw_init.load_phase = load_code; 4162 4163 return (ecore_func_state_change(sc, &func_params)); 4164 } 4165 4166 static void 4167 bxe_int_disable_sync(struct bxe_softc *sc, 4168 int disable_hw) 4169 { 4170 if (disable_hw) { 4171 /* prevent the HW from sending interrupts */ 4172 bxe_int_disable(sc); 4173 } 4174 4175 /* XXX need a way to synchronize ALL irqs (intr_mtx?) */ 4176 /* make sure all ISRs are done */ 4177 4178 /* XXX make sure sp_task is not running */ 4179 /* cancel and flush work queues */ 4180 } 4181 4182 static void 4183 bxe_chip_cleanup(struct bxe_softc *sc, 4184 uint32_t unload_mode, 4185 uint8_t keep_link) 4186 { 4187 int port = SC_PORT(sc); 4188 struct ecore_mcast_ramrod_params rparam = { NULL }; 4189 uint32_t reset_code; 4190 int i, rc = 0; 4191 4192 bxe_drain_tx_queues(sc); 4193 4194 /* give HW time to discard old tx messages */ 4195 DELAY(1000); 4196 4197 /* Clean all ETH MACs */ 4198 rc = bxe_del_all_macs(sc, &sc->sp_objs[0].mac_obj, ECORE_ETH_MAC, FALSE); 4199 if (rc < 0) { 4200 BLOGE(sc, "Failed to delete all ETH MACs (%d)\n", rc); 4201 } 4202 4203 /* Clean up UC list */ 4204 rc = bxe_del_all_macs(sc, &sc->sp_objs[0].mac_obj, ECORE_UC_LIST_MAC, TRUE); 4205 if (rc < 0) { 4206 BLOGE(sc, "Failed to delete UC MACs list (%d)\n", rc); 4207 } 4208 4209 /* Disable LLH */ 4210 if (!CHIP_IS_E1(sc)) { 4211 REG_WR(sc, NIG_REG_LLH0_FUNC_EN + port*8, 0); 4212 } 4213 4214 /* Set "drop all" to stop Rx */ 4215 4216 /* 4217 * We need to take the BXE_MCAST_LOCK() here in order to prevent 4218 * a race between the completion code and this code. 4219 */ 4220 BXE_MCAST_LOCK(sc); 4221 4222 if (bxe_test_bit(ECORE_FILTER_RX_MODE_PENDING, &sc->sp_state)) { 4223 bxe_set_bit(ECORE_FILTER_RX_MODE_SCHED, &sc->sp_state); 4224 } else { 4225 bxe_set_storm_rx_mode(sc); 4226 } 4227 4228 /* Clean up multicast configuration */ 4229 rparam.mcast_obj = &sc->mcast_obj; 4230 rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_DEL); 4231 if (rc < 0) { 4232 BLOGE(sc, "Failed to send DEL MCAST command (%d)\n", rc); 4233 } 4234 4235 BXE_MCAST_UNLOCK(sc); 4236 4237 // XXX bxe_iov_chip_cleanup(sc); 4238 4239 /* 4240 * Send the UNLOAD_REQUEST to the MCP. This will return if 4241 * this function should perform FUNCTION, PORT, or COMMON HW 4242 * reset. 4243 */ 4244 reset_code = bxe_send_unload_req(sc, unload_mode); 4245 4246 /* 4247 * (assumption: No Attention from MCP at this stage) 4248 * PMF probably in the middle of TX disable/enable transaction 4249 */ 4250 rc = bxe_func_wait_started(sc); 4251 if (rc) { 4252 BLOGE(sc, "bxe_func_wait_started failed\n"); 4253 } 4254 4255 /* 4256 * Close multi and leading connections 4257 * Completions for ramrods are collected in a synchronous way 4258 */ 4259 for (i = 0; i < sc->num_queues; i++) { 4260 if (bxe_stop_queue(sc, i)) { 4261 goto unload_error; 4262 } 4263 } 4264 4265 /* 4266 * If SP settings didn't get completed so far - something 4267 * very wrong has happen. 4268 */ 4269 if (!bxe_wait_sp_comp(sc, ~0x0UL)) { 4270 BLOGE(sc, "Common slow path ramrods got stuck!\n"); 4271 } 4272 4273 unload_error: 4274 4275 rc = bxe_func_stop(sc); 4276 if (rc) { 4277 BLOGE(sc, "Function stop failed!\n"); 4278 } 4279 4280 /* disable HW interrupts */ 4281 bxe_int_disable_sync(sc, TRUE); 4282 4283 /* detach interrupts */ 4284 bxe_interrupt_detach(sc); 4285 4286 /* Reset the chip */ 4287 rc = bxe_reset_hw(sc, reset_code); 4288 if (rc) { 4289 BLOGE(sc, "Hardware reset failed\n"); 4290 } 4291 4292 /* Report UNLOAD_DONE to MCP */ 4293 bxe_send_unload_done(sc, keep_link); 4294 } 4295 4296 static void 4297 bxe_disable_close_the_gate(struct bxe_softc *sc) 4298 { 4299 uint32_t val; 4300 int port = SC_PORT(sc); 4301 4302 BLOGD(sc, DBG_LOAD, 4303 "Disabling 'close the gates'\n"); 4304 4305 if (CHIP_IS_E1(sc)) { 4306 uint32_t addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 : 4307 MISC_REG_AEU_MASK_ATTN_FUNC_0; 4308 val = REG_RD(sc, addr); 4309 val &= ~(0x300); 4310 REG_WR(sc, addr, val); 4311 } else { 4312 val = REG_RD(sc, MISC_REG_AEU_GENERAL_MASK); 4313 val &= ~(MISC_AEU_GENERAL_MASK_REG_AEU_PXP_CLOSE_MASK | 4314 MISC_AEU_GENERAL_MASK_REG_AEU_NIG_CLOSE_MASK); 4315 REG_WR(sc, MISC_REG_AEU_GENERAL_MASK, val); 4316 } 4317 } 4318 4319 /* 4320 * Cleans the object that have internal lists without sending 4321 * ramrods. Should be run when interrutps are disabled. 4322 */ 4323 static void 4324 bxe_squeeze_objects(struct bxe_softc *sc) 4325 { 4326 unsigned long ramrod_flags = 0, vlan_mac_flags = 0; 4327 struct ecore_mcast_ramrod_params rparam = { NULL }; 4328 struct ecore_vlan_mac_obj *mac_obj = &sc->sp_objs->mac_obj; 4329 int rc; 4330 4331 /* Cleanup MACs' object first... */ 4332 4333 /* Wait for completion of requested */ 4334 bxe_set_bit(RAMROD_COMP_WAIT, &ramrod_flags); 4335 /* Perform a dry cleanup */ 4336 bxe_set_bit(RAMROD_DRV_CLR_ONLY, &ramrod_flags); 4337 4338 /* Clean ETH primary MAC */ 4339 bxe_set_bit(ECORE_ETH_MAC, &vlan_mac_flags); 4340 rc = mac_obj->delete_all(sc, &sc->sp_objs->mac_obj, &vlan_mac_flags, 4341 &ramrod_flags); 4342 if (rc != 0) { 4343 BLOGE(sc, "Failed to clean ETH MACs (%d)\n", rc); 4344 } 4345 4346 /* Cleanup UC list */ 4347 vlan_mac_flags = 0; 4348 bxe_set_bit(ECORE_UC_LIST_MAC, &vlan_mac_flags); 4349 rc = mac_obj->delete_all(sc, mac_obj, &vlan_mac_flags, 4350 &ramrod_flags); 4351 if (rc != 0) { 4352 BLOGE(sc, "Failed to clean UC list MACs (%d)\n", rc); 4353 } 4354 4355 /* Now clean mcast object... */ 4356 4357 rparam.mcast_obj = &sc->mcast_obj; 4358 bxe_set_bit(RAMROD_DRV_CLR_ONLY, &rparam.ramrod_flags); 4359 4360 /* Add a DEL command... */ 4361 rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_DEL); 4362 if (rc < 0) { 4363 BLOGE(sc, "Failed to send DEL MCAST command (%d)\n", rc); 4364 } 4365 4366 /* now wait until all pending commands are cleared */ 4367 4368 rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_CONT); 4369 while (rc != 0) { 4370 if (rc < 0) { 4371 BLOGE(sc, "Failed to clean MCAST object (%d)\n", rc); 4372 return; 4373 } 4374 4375 rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_CONT); 4376 } 4377 } 4378 4379 /* stop the controller */ 4380 static __noinline int 4381 bxe_nic_unload(struct bxe_softc *sc, 4382 uint32_t unload_mode, 4383 uint8_t keep_link) 4384 { 4385 uint8_t global = FALSE; 4386 uint32_t val; 4387 4388 BXE_CORE_LOCK_ASSERT(sc); 4389 4390 BLOGD(sc, DBG_LOAD, "Starting NIC unload...\n"); 4391 4392 /* mark driver as unloaded in shmem2 */ 4393 if (IS_PF(sc) && SHMEM2_HAS(sc, drv_capabilities_flag)) { 4394 val = SHMEM2_RD(sc, drv_capabilities_flag[SC_FW_MB_IDX(sc)]); 4395 SHMEM2_WR(sc, drv_capabilities_flag[SC_FW_MB_IDX(sc)], 4396 val & ~DRV_FLAGS_CAPABILITIES_LOADED_L2); 4397 } 4398 4399 if (IS_PF(sc) && sc->recovery_state != BXE_RECOVERY_DONE && 4400 (sc->state == BXE_STATE_CLOSED || sc->state == BXE_STATE_ERROR)) { 4401 /* 4402 * We can get here if the driver has been unloaded 4403 * during parity error recovery and is either waiting for a 4404 * leader to complete or for other functions to unload and 4405 * then ifconfig down has been issued. In this case we want to 4406 * unload and let other functions to complete a recovery 4407 * process. 4408 */ 4409 sc->recovery_state = BXE_RECOVERY_DONE; 4410 sc->is_leader = 0; 4411 bxe_release_leader_lock(sc); 4412 mb(); 4413 4414 BLOGD(sc, DBG_LOAD, "Releasing a leadership...\n"); 4415 BLOGE(sc, "Can't unload in closed or error state\n"); 4416 return (-1); 4417 } 4418 4419 /* 4420 * Nothing to do during unload if previous bxe_nic_load() 4421 * did not completed succesfully - all resourses are released. 4422 */ 4423 if ((sc->state == BXE_STATE_CLOSED) || 4424 (sc->state == BXE_STATE_ERROR)) { 4425 return (0); 4426 } 4427 4428 sc->state = BXE_STATE_CLOSING_WAITING_HALT; 4429 mb(); 4430 4431 /* stop tx */ 4432 bxe_tx_disable(sc); 4433 4434 sc->rx_mode = BXE_RX_MODE_NONE; 4435 /* XXX set rx mode ??? */ 4436 4437 if (IS_PF(sc)) { 4438 /* set ALWAYS_ALIVE bit in shmem */ 4439 sc->fw_drv_pulse_wr_seq |= DRV_PULSE_ALWAYS_ALIVE; 4440 4441 bxe_drv_pulse(sc); 4442 4443 bxe_stats_handle(sc, STATS_EVENT_STOP); 4444 bxe_save_statistics(sc); 4445 } 4446 4447 /* wait till consumers catch up with producers in all queues */ 4448 bxe_drain_tx_queues(sc); 4449 4450 /* if VF indicate to PF this function is going down (PF will delete sp 4451 * elements and clear initializations 4452 */ 4453 if (IS_VF(sc)) { 4454 ; /* bxe_vfpf_close_vf(sc); */ 4455 } else if (unload_mode != UNLOAD_RECOVERY) { 4456 /* if this is a normal/close unload need to clean up chip */ 4457 bxe_chip_cleanup(sc, unload_mode, keep_link); 4458 } else { 4459 /* Send the UNLOAD_REQUEST to the MCP */ 4460 bxe_send_unload_req(sc, unload_mode); 4461 4462 /* 4463 * Prevent transactions to host from the functions on the 4464 * engine that doesn't reset global blocks in case of global 4465 * attention once gloabl blocks are reset and gates are opened 4466 * (the engine which leader will perform the recovery 4467 * last). 4468 */ 4469 if (!CHIP_IS_E1x(sc)) { 4470 bxe_pf_disable(sc); 4471 } 4472 4473 /* disable HW interrupts */ 4474 bxe_int_disable_sync(sc, TRUE); 4475 4476 /* detach interrupts */ 4477 bxe_interrupt_detach(sc); 4478 4479 /* Report UNLOAD_DONE to MCP */ 4480 bxe_send_unload_done(sc, FALSE); 4481 } 4482 4483 /* 4484 * At this stage no more interrupts will arrive so we may safely clean 4485 * the queue'able objects here in case they failed to get cleaned so far. 4486 */ 4487 if (IS_PF(sc)) { 4488 bxe_squeeze_objects(sc); 4489 } 4490 4491 /* There should be no more pending SP commands at this stage */ 4492 sc->sp_state = 0; 4493 4494 sc->port.pmf = 0; 4495 4496 bxe_free_fp_buffers(sc); 4497 4498 if (IS_PF(sc)) { 4499 bxe_free_mem(sc); 4500 } 4501 4502 bxe_free_fw_stats_mem(sc); 4503 4504 sc->state = BXE_STATE_CLOSED; 4505 4506 /* 4507 * Check if there are pending parity attentions. If there are - set 4508 * RECOVERY_IN_PROGRESS. 4509 */ 4510 if (IS_PF(sc) && bxe_chk_parity_attn(sc, &global, FALSE)) { 4511 bxe_set_reset_in_progress(sc); 4512 4513 /* Set RESET_IS_GLOBAL if needed */ 4514 if (global) { 4515 bxe_set_reset_global(sc); 4516 } 4517 } 4518 4519 /* 4520 * The last driver must disable a "close the gate" if there is no 4521 * parity attention or "process kill" pending. 4522 */ 4523 if (IS_PF(sc) && !bxe_clear_pf_load(sc) && 4524 bxe_reset_is_done(sc, SC_PATH(sc))) { 4525 bxe_disable_close_the_gate(sc); 4526 } 4527 4528 BLOGD(sc, DBG_LOAD, "Ended NIC unload\n"); 4529 4530 return (0); 4531 } 4532 4533 /* 4534 * Called by the OS to set various media options (i.e. link, speed, etc.) when 4535 * the user runs "ifconfig bxe media ..." or "ifconfig bxe mediaopt ...". 4536 */ 4537 static int 4538 bxe_ifmedia_update(struct ifnet *ifp) 4539 { 4540 struct bxe_softc *sc = (struct bxe_softc *)ifp->if_softc; 4541 struct ifmedia *ifm; 4542 4543 ifm = &sc->ifmedia; 4544 4545 /* We only support Ethernet media type. */ 4546 if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER) { 4547 return (EINVAL); 4548 } 4549 4550 switch (IFM_SUBTYPE(ifm->ifm_media)) { 4551 case IFM_AUTO: 4552 break; 4553 case IFM_10G_CX4: 4554 case IFM_10G_SR: 4555 case IFM_10G_T: 4556 case IFM_10G_TWINAX: 4557 default: 4558 /* We don't support changing the media type. */ 4559 BLOGD(sc, DBG_LOAD, "Invalid media type (%d)\n", 4560 IFM_SUBTYPE(ifm->ifm_media)); 4561 return (EINVAL); 4562 } 4563 4564 return (0); 4565 } 4566 4567 /* 4568 * Called by the OS to get the current media status (i.e. link, speed, etc.). 4569 */ 4570 static void 4571 bxe_ifmedia_status(struct ifnet *ifp, struct ifmediareq *ifmr) 4572 { 4573 struct bxe_softc *sc = ifp->if_softc; 4574 4575 /* Report link down if the driver isn't running. */ 4576 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) { 4577 ifmr->ifm_active |= IFM_NONE; 4578 return; 4579 } 4580 4581 /* Setup the default interface info. */ 4582 ifmr->ifm_status = IFM_AVALID; 4583 ifmr->ifm_active = IFM_ETHER; 4584 4585 if (sc->link_vars.link_up) { 4586 ifmr->ifm_status |= IFM_ACTIVE; 4587 } else { 4588 ifmr->ifm_active |= IFM_NONE; 4589 return; 4590 } 4591 4592 ifmr->ifm_active |= sc->media; 4593 4594 if (sc->link_vars.duplex == DUPLEX_FULL) { 4595 ifmr->ifm_active |= IFM_FDX; 4596 } else { 4597 ifmr->ifm_active |= IFM_HDX; 4598 } 4599 } 4600 4601 static int 4602 bxe_ioctl_nvram(struct bxe_softc *sc, 4603 uint32_t priv_op, 4604 struct ifreq *ifr) 4605 { 4606 struct bxe_nvram_data nvdata_base; 4607 struct bxe_nvram_data *nvdata; 4608 int len; 4609 int error = 0; 4610 4611 copyin(ifr->ifr_data, &nvdata_base, sizeof(nvdata_base)); 4612 4613 len = (sizeof(struct bxe_nvram_data) + 4614 nvdata_base.len - 4615 sizeof(uint32_t)); 4616 4617 if (len > sizeof(struct bxe_nvram_data)) { 4618 if ((nvdata = (struct bxe_nvram_data *) 4619 malloc(len, M_DEVBUF, 4620 (M_NOWAIT | M_ZERO))) == NULL) { 4621 BLOGE(sc, "BXE_IOC_RD_NVRAM malloc failed\n"); 4622 return (1); 4623 } 4624 memcpy(nvdata, &nvdata_base, sizeof(struct bxe_nvram_data)); 4625 } else { 4626 nvdata = &nvdata_base; 4627 } 4628 4629 if (priv_op == BXE_IOC_RD_NVRAM) { 4630 BLOGD(sc, DBG_IOCTL, "IOC_RD_NVRAM 0x%x %d\n", 4631 nvdata->offset, nvdata->len); 4632 error = bxe_nvram_read(sc, 4633 nvdata->offset, 4634 (uint8_t *)nvdata->value, 4635 nvdata->len); 4636 copyout(nvdata, ifr->ifr_data, len); 4637 } else { /* BXE_IOC_WR_NVRAM */ 4638 BLOGD(sc, DBG_IOCTL, "IOC_WR_NVRAM 0x%x %d\n", 4639 nvdata->offset, nvdata->len); 4640 copyin(ifr->ifr_data, nvdata, len); 4641 error = bxe_nvram_write(sc, 4642 nvdata->offset, 4643 (uint8_t *)nvdata->value, 4644 nvdata->len); 4645 } 4646 4647 if (len > sizeof(struct bxe_nvram_data)) { 4648 free(nvdata, M_DEVBUF); 4649 } 4650 4651 return (error); 4652 } 4653 4654 static int 4655 bxe_ioctl_stats_show(struct bxe_softc *sc, 4656 uint32_t priv_op, 4657 struct ifreq *ifr) 4658 { 4659 const size_t str_size = (BXE_NUM_ETH_STATS * STAT_NAME_LEN); 4660 const size_t stats_size = (BXE_NUM_ETH_STATS * sizeof(uint64_t)); 4661 caddr_t p_tmp; 4662 uint32_t *offset; 4663 int i; 4664 4665 switch (priv_op) 4666 { 4667 case BXE_IOC_STATS_SHOW_NUM: 4668 memset(ifr->ifr_data, 0, sizeof(union bxe_stats_show_data)); 4669 ((union bxe_stats_show_data *)ifr->ifr_data)->desc.num = 4670 BXE_NUM_ETH_STATS; 4671 ((union bxe_stats_show_data *)ifr->ifr_data)->desc.len = 4672 STAT_NAME_LEN; 4673 return (0); 4674 4675 case BXE_IOC_STATS_SHOW_STR: 4676 memset(ifr->ifr_data, 0, str_size); 4677 p_tmp = ifr->ifr_data; 4678 for (i = 0; i < BXE_NUM_ETH_STATS; i++) { 4679 strcpy(p_tmp, bxe_eth_stats_arr[i].string); 4680 p_tmp += STAT_NAME_LEN; 4681 } 4682 return (0); 4683 4684 case BXE_IOC_STATS_SHOW_CNT: 4685 memset(ifr->ifr_data, 0, stats_size); 4686 p_tmp = ifr->ifr_data; 4687 for (i = 0; i < BXE_NUM_ETH_STATS; i++) { 4688 offset = ((uint32_t *)&sc->eth_stats + 4689 bxe_eth_stats_arr[i].offset); 4690 switch (bxe_eth_stats_arr[i].size) { 4691 case 4: 4692 *((uint64_t *)p_tmp) = (uint64_t)*offset; 4693 break; 4694 case 8: 4695 *((uint64_t *)p_tmp) = HILO_U64(*offset, *(offset + 1)); 4696 break; 4697 default: 4698 *((uint64_t *)p_tmp) = 0; 4699 } 4700 p_tmp += sizeof(uint64_t); 4701 } 4702 return (0); 4703 4704 default: 4705 return (-1); 4706 } 4707 } 4708 4709 static void 4710 bxe_handle_chip_tq(void *context, 4711 int pending) 4712 { 4713 struct bxe_softc *sc = (struct bxe_softc *)context; 4714 long work = atomic_load_acq_long(&sc->chip_tq_flags); 4715 4716 switch (work) 4717 { 4718 case CHIP_TQ_START: 4719 if ((sc->ifnet->if_flags & IFF_UP) && 4720 !(sc->ifnet->if_drv_flags & IFF_DRV_RUNNING)) { 4721 /* start the interface */ 4722 BLOGD(sc, DBG_LOAD, "Starting the interface...\n"); 4723 BXE_CORE_LOCK(sc); 4724 bxe_init_locked(sc); 4725 BXE_CORE_UNLOCK(sc); 4726 } 4727 break; 4728 4729 case CHIP_TQ_STOP: 4730 if (!(sc->ifnet->if_flags & IFF_UP) && 4731 (sc->ifnet->if_drv_flags & IFF_DRV_RUNNING)) { 4732 /* bring down the interface */ 4733 BLOGD(sc, DBG_LOAD, "Stopping the interface...\n"); 4734 bxe_periodic_stop(sc); 4735 BXE_CORE_LOCK(sc); 4736 bxe_stop_locked(sc); 4737 BXE_CORE_UNLOCK(sc); 4738 } 4739 break; 4740 4741 case CHIP_TQ_REINIT: 4742 if (sc->ifnet->if_drv_flags & IFF_DRV_RUNNING) { 4743 /* restart the interface */ 4744 BLOGD(sc, DBG_LOAD, "Restarting the interface...\n"); 4745 bxe_periodic_stop(sc); 4746 BXE_CORE_LOCK(sc); 4747 bxe_stop_locked(sc); 4748 bxe_init_locked(sc); 4749 BXE_CORE_UNLOCK(sc); 4750 } 4751 break; 4752 4753 default: 4754 break; 4755 } 4756 } 4757 4758 /* 4759 * Handles any IOCTL calls from the operating system. 4760 * 4761 * Returns: 4762 * 0 = Success, >0 Failure 4763 */ 4764 static int 4765 bxe_ioctl(struct ifnet *ifp, 4766 u_long command, 4767 caddr_t data) 4768 { 4769 struct bxe_softc *sc = ifp->if_softc; 4770 struct ifreq *ifr = (struct ifreq *)data; 4771 struct bxe_nvram_data *nvdata; 4772 uint32_t priv_op; 4773 int mask = 0; 4774 int reinit = 0; 4775 int error = 0; 4776 4777 int mtu_min = (ETH_MIN_PACKET_SIZE - ETH_HLEN); 4778 int mtu_max = (MJUM9BYTES - ETH_OVERHEAD - IP_HEADER_ALIGNMENT_PADDING); 4779 4780 switch (command) 4781 { 4782 case SIOCSIFMTU: 4783 BLOGD(sc, DBG_IOCTL, "Received SIOCSIFMTU ioctl (mtu=%d)\n", 4784 ifr->ifr_mtu); 4785 4786 if (sc->mtu == ifr->ifr_mtu) { 4787 /* nothing to change */ 4788 break; 4789 } 4790 4791 if ((ifr->ifr_mtu < mtu_min) || (ifr->ifr_mtu > mtu_max)) { 4792 BLOGE(sc, "Unsupported MTU size %d (range is %d-%d)\n", 4793 ifr->ifr_mtu, mtu_min, mtu_max); 4794 error = EINVAL; 4795 break; 4796 } 4797 4798 atomic_store_rel_int((volatile unsigned int *)&sc->mtu, 4799 (unsigned long)ifr->ifr_mtu); 4800 atomic_store_rel_long((volatile unsigned long *)&ifp->if_mtu, 4801 (unsigned long)ifr->ifr_mtu); 4802 4803 reinit = 1; 4804 break; 4805 4806 case SIOCSIFFLAGS: 4807 /* toggle the interface state up or down */ 4808 BLOGD(sc, DBG_IOCTL, "Received SIOCSIFFLAGS ioctl\n"); 4809 4810 /* check if the interface is up */ 4811 if (ifp->if_flags & IFF_UP) { 4812 if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 4813 /* set the receive mode flags */ 4814 bxe_set_rx_mode(sc); 4815 } else { 4816 atomic_store_rel_long(&sc->chip_tq_flags, CHIP_TQ_START); 4817 taskqueue_enqueue(sc->chip_tq, &sc->chip_tq_task); 4818 } 4819 } else { 4820 if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 4821 atomic_store_rel_long(&sc->chip_tq_flags, CHIP_TQ_STOP); 4822 taskqueue_enqueue(sc->chip_tq, &sc->chip_tq_task); 4823 } 4824 } 4825 4826 break; 4827 4828 case SIOCADDMULTI: 4829 case SIOCDELMULTI: 4830 /* add/delete multicast addresses */ 4831 BLOGD(sc, DBG_IOCTL, "Received SIOCADDMULTI/SIOCDELMULTI ioctl\n"); 4832 4833 /* check if the interface is up */ 4834 if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 4835 /* set the receive mode flags */ 4836 bxe_set_rx_mode(sc); 4837 } 4838 4839 break; 4840 4841 case SIOCSIFCAP: 4842 /* find out which capabilities have changed */ 4843 mask = (ifr->ifr_reqcap ^ ifp->if_capenable); 4844 4845 BLOGD(sc, DBG_IOCTL, "Received SIOCSIFCAP ioctl (mask=0x%08x)\n", 4846 mask); 4847 4848 /* toggle the LRO capabilites enable flag */ 4849 if (mask & IFCAP_LRO) { 4850 ifp->if_capenable ^= IFCAP_LRO; 4851 BLOGD(sc, DBG_IOCTL, "Turning LRO %s\n", 4852 (ifp->if_capenable & IFCAP_LRO) ? "ON" : "OFF"); 4853 reinit = 1; 4854 } 4855 4856 /* toggle the TXCSUM checksum capabilites enable flag */ 4857 if (mask & IFCAP_TXCSUM) { 4858 ifp->if_capenable ^= IFCAP_TXCSUM; 4859 BLOGD(sc, DBG_IOCTL, "Turning TXCSUM %s\n", 4860 (ifp->if_capenable & IFCAP_TXCSUM) ? "ON" : "OFF"); 4861 if (ifp->if_capenable & IFCAP_TXCSUM) { 4862 ifp->if_hwassist = (CSUM_IP | 4863 CSUM_TCP | 4864 CSUM_UDP | 4865 CSUM_TSO | 4866 CSUM_TCP_IPV6 | 4867 CSUM_UDP_IPV6); 4868 } else { 4869 ifp->if_hwassist = 0; 4870 } 4871 } 4872 4873 /* toggle the RXCSUM checksum capabilities enable flag */ 4874 if (mask & IFCAP_RXCSUM) { 4875 ifp->if_capenable ^= IFCAP_RXCSUM; 4876 BLOGD(sc, DBG_IOCTL, "Turning RXCSUM %s\n", 4877 (ifp->if_capenable & IFCAP_RXCSUM) ? "ON" : "OFF"); 4878 if (ifp->if_capenable & IFCAP_RXCSUM) { 4879 ifp->if_hwassist = (CSUM_IP | 4880 CSUM_TCP | 4881 CSUM_UDP | 4882 CSUM_TSO | 4883 CSUM_TCP_IPV6 | 4884 CSUM_UDP_IPV6); 4885 } else { 4886 ifp->if_hwassist = 0; 4887 } 4888 } 4889 4890 /* toggle TSO4 capabilities enabled flag */ 4891 if (mask & IFCAP_TSO4) { 4892 ifp->if_capenable ^= IFCAP_TSO4; 4893 BLOGD(sc, DBG_IOCTL, "Turning TSO4 %s\n", 4894 (ifp->if_capenable & IFCAP_TSO4) ? "ON" : "OFF"); 4895 } 4896 4897 /* toggle TSO6 capabilities enabled flag */ 4898 if (mask & IFCAP_TSO6) { 4899 ifp->if_capenable ^= IFCAP_TSO6; 4900 BLOGD(sc, DBG_IOCTL, "Turning TSO6 %s\n", 4901 (ifp->if_capenable & IFCAP_TSO6) ? "ON" : "OFF"); 4902 } 4903 4904 /* toggle VLAN_HWTSO capabilities enabled flag */ 4905 if (mask & IFCAP_VLAN_HWTSO) { 4906 ifp->if_capenable ^= IFCAP_VLAN_HWTSO; 4907 BLOGD(sc, DBG_IOCTL, "Turning VLAN_HWTSO %s\n", 4908 (ifp->if_capenable & IFCAP_VLAN_HWTSO) ? "ON" : "OFF"); 4909 } 4910 4911 /* toggle VLAN_HWCSUM capabilities enabled flag */ 4912 if (mask & IFCAP_VLAN_HWCSUM) { 4913 /* XXX investigate this... */ 4914 BLOGE(sc, "Changing VLAN_HWCSUM is not supported!\n"); 4915 error = EINVAL; 4916 } 4917 4918 /* toggle VLAN_MTU capabilities enable flag */ 4919 if (mask & IFCAP_VLAN_MTU) { 4920 /* XXX investigate this... */ 4921 BLOGE(sc, "Changing VLAN_MTU is not supported!\n"); 4922 error = EINVAL; 4923 } 4924 4925 /* toggle VLAN_HWTAGGING capabilities enabled flag */ 4926 if (mask & IFCAP_VLAN_HWTAGGING) { 4927 /* XXX investigate this... */ 4928 BLOGE(sc, "Changing VLAN_HWTAGGING is not supported!\n"); 4929 error = EINVAL; 4930 } 4931 4932 /* toggle VLAN_HWFILTER capabilities enabled flag */ 4933 if (mask & IFCAP_VLAN_HWFILTER) { 4934 /* XXX investigate this... */ 4935 BLOGE(sc, "Changing VLAN_HWFILTER is not supported!\n"); 4936 error = EINVAL; 4937 } 4938 4939 /* XXX not yet... 4940 * IFCAP_WOL_MAGIC 4941 */ 4942 4943 break; 4944 4945 case SIOCSIFMEDIA: 4946 case SIOCGIFMEDIA: 4947 /* set/get interface media */ 4948 BLOGD(sc, DBG_IOCTL, 4949 "Received SIOCSIFMEDIA/SIOCGIFMEDIA ioctl (cmd=%lu)\n", 4950 (command & 0xff)); 4951 error = ifmedia_ioctl(ifp, ifr, &sc->ifmedia, command); 4952 break; 4953 4954 case SIOCGPRIVATE_0: 4955 copyin(ifr->ifr_data, &priv_op, sizeof(priv_op)); 4956 4957 switch (priv_op) 4958 { 4959 case BXE_IOC_RD_NVRAM: 4960 case BXE_IOC_WR_NVRAM: 4961 nvdata = (struct bxe_nvram_data *)ifr->ifr_data; 4962 BLOGD(sc, DBG_IOCTL, 4963 "Received Private NVRAM ioctl addr=0x%x size=%u\n", 4964 nvdata->offset, nvdata->len); 4965 error = bxe_ioctl_nvram(sc, priv_op, ifr); 4966 break; 4967 4968 case BXE_IOC_STATS_SHOW_NUM: 4969 case BXE_IOC_STATS_SHOW_STR: 4970 case BXE_IOC_STATS_SHOW_CNT: 4971 BLOGD(sc, DBG_IOCTL, "Received Private Stats ioctl (%d)\n", 4972 priv_op); 4973 error = bxe_ioctl_stats_show(sc, priv_op, ifr); 4974 break; 4975 4976 default: 4977 BLOGW(sc, "Received Private Unknown ioctl (%d)\n", priv_op); 4978 error = EINVAL; 4979 break; 4980 } 4981 4982 break; 4983 4984 default: 4985 BLOGD(sc, DBG_IOCTL, "Received Unknown Ioctl (cmd=%lu)\n", 4986 (command & 0xff)); 4987 error = ether_ioctl(ifp, command, data); 4988 break; 4989 } 4990 4991 if (reinit && (sc->ifnet->if_drv_flags & IFF_DRV_RUNNING)) { 4992 BLOGD(sc, DBG_LOAD | DBG_IOCTL, 4993 "Re-initializing hardware from IOCTL change\n"); 4994 atomic_store_rel_long(&sc->chip_tq_flags, CHIP_TQ_REINIT); 4995 taskqueue_enqueue(sc->chip_tq, &sc->chip_tq_task); 4996 } 4997 4998 return (error); 4999 } 5000 5001 static __noinline void 5002 bxe_dump_mbuf(struct bxe_softc *sc, 5003 struct mbuf *m, 5004 uint8_t contents) 5005 { 5006 char * type; 5007 int i = 0; 5008 5009 if (!(sc->debug & DBG_MBUF)) { 5010 return; 5011 } 5012 5013 if (m == NULL) { 5014 BLOGD(sc, DBG_MBUF, "mbuf: null pointer\n"); 5015 return; 5016 } 5017 5018 while (m) { 5019 BLOGD(sc, DBG_MBUF, 5020 "%02d: mbuf=%p m_len=%d m_flags=0x%b m_data=%p\n", 5021 i, m, m->m_len, m->m_flags, M_FLAG_BITS, m->m_data); 5022 5023 if (m->m_flags & M_PKTHDR) { 5024 BLOGD(sc, DBG_MBUF, 5025 "%02d: - m_pkthdr: tot_len=%d flags=0x%b csum_flags=%b\n", 5026 i, m->m_pkthdr.len, m->m_flags, M_FLAG_BITS, 5027 (int)m->m_pkthdr.csum_flags, CSUM_BITS); 5028 } 5029 5030 if (m->m_flags & M_EXT) { 5031 switch (m->m_ext.ext_type) { 5032 case EXT_CLUSTER: type = "EXT_CLUSTER"; break; 5033 case EXT_SFBUF: type = "EXT_SFBUF"; break; 5034 case EXT_JUMBOP: type = "EXT_JUMBOP"; break; 5035 case EXT_JUMBO9: type = "EXT_JUMBO9"; break; 5036 case EXT_JUMBO16: type = "EXT_JUMBO16"; break; 5037 case EXT_PACKET: type = "EXT_PACKET"; break; 5038 case EXT_MBUF: type = "EXT_MBUF"; break; 5039 case EXT_NET_DRV: type = "EXT_NET_DRV"; break; 5040 case EXT_MOD_TYPE: type = "EXT_MOD_TYPE"; break; 5041 case EXT_DISPOSABLE: type = "EXT_DISPOSABLE"; break; 5042 case EXT_EXTREF: type = "EXT_EXTREF"; break; 5043 default: type = "UNKNOWN"; break; 5044 } 5045 5046 BLOGD(sc, DBG_MBUF, 5047 "%02d: - m_ext: %p ext_size=%d type=%s\n", 5048 i, m->m_ext.ext_buf, m->m_ext.ext_size, type); 5049 } 5050 5051 if (contents) { 5052 bxe_dump_mbuf_data(sc, "mbuf data", m, TRUE); 5053 } 5054 5055 m = m->m_next; 5056 i++; 5057 } 5058 } 5059 5060 /* 5061 * Checks to ensure the 13 bd sliding window is >= MSS for TSO. 5062 * Check that (13 total bds - 3 bds) = 10 bd window >= MSS. 5063 * The window: 3 bds are = 1 for headers BD + 2 for parse BD and last BD 5064 * The headers comes in a seperate bd in FreeBSD so 13-3=10. 5065 * Returns: 0 if OK to send, 1 if packet needs further defragmentation 5066 */ 5067 static int 5068 bxe_chktso_window(struct bxe_softc *sc, 5069 int nsegs, 5070 bus_dma_segment_t *segs, 5071 struct mbuf *m) 5072 { 5073 uint32_t num_wnds, wnd_size, wnd_sum; 5074 int32_t frag_idx, wnd_idx; 5075 unsigned short lso_mss; 5076 int defrag; 5077 5078 defrag = 0; 5079 wnd_sum = 0; 5080 wnd_size = 10; 5081 num_wnds = nsegs - wnd_size; 5082 lso_mss = htole16(m->m_pkthdr.tso_segsz); 5083 5084 /* 5085 * Total header lengths Eth+IP+TCP in first FreeBSD mbuf so calculate the 5086 * first window sum of data while skipping the first assuming it is the 5087 * header in FreeBSD. 5088 */ 5089 for (frag_idx = 1; (frag_idx <= wnd_size); frag_idx++) { 5090 wnd_sum += htole16(segs[frag_idx].ds_len); 5091 } 5092 5093 /* check the first 10 bd window size */ 5094 if (wnd_sum < lso_mss) { 5095 return (1); 5096 } 5097 5098 /* run through the windows */ 5099 for (wnd_idx = 0; wnd_idx < num_wnds; wnd_idx++, frag_idx++) { 5100 /* subtract the first mbuf->m_len of the last wndw(-header) */ 5101 wnd_sum -= htole16(segs[wnd_idx+1].ds_len); 5102 /* add the next mbuf len to the len of our new window */ 5103 wnd_sum += htole16(segs[frag_idx].ds_len); 5104 if (wnd_sum < lso_mss) { 5105 return (1); 5106 } 5107 } 5108 5109 return (0); 5110 } 5111 5112 static uint8_t 5113 bxe_set_pbd_csum_e2(struct bxe_fastpath *fp, 5114 struct mbuf *m, 5115 uint32_t *parsing_data) 5116 { 5117 struct ether_vlan_header *eh = NULL; 5118 struct ip *ip4 = NULL; 5119 struct ip6_hdr *ip6 = NULL; 5120 caddr_t ip = NULL; 5121 struct tcphdr *th = NULL; 5122 int e_hlen, ip_hlen, l4_off; 5123 uint16_t proto; 5124 5125 if (m->m_pkthdr.csum_flags == CSUM_IP) { 5126 /* no L4 checksum offload needed */ 5127 return (0); 5128 } 5129 5130 /* get the Ethernet header */ 5131 eh = mtod(m, struct ether_vlan_header *); 5132 5133 /* handle VLAN encapsulation if present */ 5134 if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) { 5135 e_hlen = (ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN); 5136 proto = ntohs(eh->evl_proto); 5137 } else { 5138 e_hlen = ETHER_HDR_LEN; 5139 proto = ntohs(eh->evl_encap_proto); 5140 } 5141 5142 switch (proto) { 5143 case ETHERTYPE_IP: 5144 /* get the IP header, if mbuf len < 20 then header in next mbuf */ 5145 ip4 = (m->m_len < sizeof(struct ip)) ? 5146 (struct ip *)m->m_next->m_data : 5147 (struct ip *)(m->m_data + e_hlen); 5148 /* ip_hl is number of 32-bit words */ 5149 ip_hlen = (ip4->ip_hl << 2); 5150 ip = (caddr_t)ip4; 5151 break; 5152 case ETHERTYPE_IPV6: 5153 /* get the IPv6 header, if mbuf len < 40 then header in next mbuf */ 5154 ip6 = (m->m_len < sizeof(struct ip6_hdr)) ? 5155 (struct ip6_hdr *)m->m_next->m_data : 5156 (struct ip6_hdr *)(m->m_data + e_hlen); 5157 /* XXX cannot support offload with IPv6 extensions */ 5158 ip_hlen = sizeof(struct ip6_hdr); 5159 ip = (caddr_t)ip6; 5160 break; 5161 default: 5162 /* We can't offload in this case... */ 5163 /* XXX error stat ??? */ 5164 return (0); 5165 } 5166 5167 /* XXX assuming L4 header is contiguous to IPv4/IPv6 in the same mbuf */ 5168 l4_off = (e_hlen + ip_hlen); 5169 5170 *parsing_data |= 5171 (((l4_off >> 1) << ETH_TX_PARSE_BD_E2_L4_HDR_START_OFFSET_W_SHIFT) & 5172 ETH_TX_PARSE_BD_E2_L4_HDR_START_OFFSET_W); 5173 5174 if (m->m_pkthdr.csum_flags & (CSUM_TCP | 5175 CSUM_TSO | 5176 CSUM_TCP_IPV6)) { 5177 fp->eth_q_stats.tx_ofld_frames_csum_tcp++; 5178 th = (struct tcphdr *)(ip + ip_hlen); 5179 /* th_off is number of 32-bit words */ 5180 *parsing_data |= ((th->th_off << 5181 ETH_TX_PARSE_BD_E2_TCP_HDR_LENGTH_DW_SHIFT) & 5182 ETH_TX_PARSE_BD_E2_TCP_HDR_LENGTH_DW); 5183 return (l4_off + (th->th_off << 2)); /* entire header length */ 5184 } else if (m->m_pkthdr.csum_flags & (CSUM_UDP | 5185 CSUM_UDP_IPV6)) { 5186 fp->eth_q_stats.tx_ofld_frames_csum_udp++; 5187 return (l4_off + sizeof(struct udphdr)); /* entire header length */ 5188 } else { 5189 /* XXX error stat ??? */ 5190 return (0); 5191 } 5192 } 5193 5194 static uint8_t 5195 bxe_set_pbd_csum(struct bxe_fastpath *fp, 5196 struct mbuf *m, 5197 struct eth_tx_parse_bd_e1x *pbd) 5198 { 5199 struct ether_vlan_header *eh = NULL; 5200 struct ip *ip4 = NULL; 5201 struct ip6_hdr *ip6 = NULL; 5202 caddr_t ip = NULL; 5203 struct tcphdr *th = NULL; 5204 struct udphdr *uh = NULL; 5205 int e_hlen, ip_hlen; 5206 uint16_t proto; 5207 uint8_t hlen; 5208 uint16_t tmp_csum; 5209 uint32_t *tmp_uh; 5210 5211 /* get the Ethernet header */ 5212 eh = mtod(m, struct ether_vlan_header *); 5213 5214 /* handle VLAN encapsulation if present */ 5215 if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) { 5216 e_hlen = (ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN); 5217 proto = ntohs(eh->evl_proto); 5218 } else { 5219 e_hlen = ETHER_HDR_LEN; 5220 proto = ntohs(eh->evl_encap_proto); 5221 } 5222 5223 switch (proto) { 5224 case ETHERTYPE_IP: 5225 /* get the IP header, if mbuf len < 20 then header in next mbuf */ 5226 ip4 = (m->m_len < sizeof(struct ip)) ? 5227 (struct ip *)m->m_next->m_data : 5228 (struct ip *)(m->m_data + e_hlen); 5229 /* ip_hl is number of 32-bit words */ 5230 ip_hlen = (ip4->ip_hl << 1); 5231 ip = (caddr_t)ip4; 5232 break; 5233 case ETHERTYPE_IPV6: 5234 /* get the IPv6 header, if mbuf len < 40 then header in next mbuf */ 5235 ip6 = (m->m_len < sizeof(struct ip6_hdr)) ? 5236 (struct ip6_hdr *)m->m_next->m_data : 5237 (struct ip6_hdr *)(m->m_data + e_hlen); 5238 /* XXX cannot support offload with IPv6 extensions */ 5239 ip_hlen = (sizeof(struct ip6_hdr) >> 1); 5240 ip = (caddr_t)ip6; 5241 break; 5242 default: 5243 /* We can't offload in this case... */ 5244 /* XXX error stat ??? */ 5245 return (0); 5246 } 5247 5248 hlen = (e_hlen >> 1); 5249 5250 /* note that rest of global_data is indirectly zeroed here */ 5251 if (m->m_flags & M_VLANTAG) { 5252 pbd->global_data = 5253 htole16(hlen | (1 << ETH_TX_PARSE_BD_E1X_LLC_SNAP_EN_SHIFT)); 5254 } else { 5255 pbd->global_data = htole16(hlen); 5256 } 5257 5258 pbd->ip_hlen_w = ip_hlen; 5259 5260 hlen += pbd->ip_hlen_w; 5261 5262 /* XXX assuming L4 header is contiguous to IPv4/IPv6 in the same mbuf */ 5263 5264 if (m->m_pkthdr.csum_flags & (CSUM_TCP | 5265 CSUM_TSO | 5266 CSUM_TCP_IPV6)) { 5267 th = (struct tcphdr *)(ip + (ip_hlen << 1)); 5268 /* th_off is number of 32-bit words */ 5269 hlen += (uint16_t)(th->th_off << 1); 5270 } else if (m->m_pkthdr.csum_flags & (CSUM_UDP | 5271 CSUM_UDP_IPV6)) { 5272 uh = (struct udphdr *)(ip + (ip_hlen << 1)); 5273 hlen += (sizeof(struct udphdr) / 2); 5274 } else { 5275 /* valid case as only CSUM_IP was set */ 5276 return (0); 5277 } 5278 5279 pbd->total_hlen_w = htole16(hlen); 5280 5281 if (m->m_pkthdr.csum_flags & (CSUM_TCP | 5282 CSUM_TSO | 5283 CSUM_TCP_IPV6)) { 5284 fp->eth_q_stats.tx_ofld_frames_csum_tcp++; 5285 pbd->tcp_pseudo_csum = ntohs(th->th_sum); 5286 } else if (m->m_pkthdr.csum_flags & (CSUM_UDP | 5287 CSUM_UDP_IPV6)) { 5288 fp->eth_q_stats.tx_ofld_frames_csum_udp++; 5289 5290 /* 5291 * Everest1 (i.e. 57710, 57711, 57711E) does not natively support UDP 5292 * checksums and does not know anything about the UDP header and where 5293 * the checksum field is located. It only knows about TCP. Therefore 5294 * we "lie" to the hardware for outgoing UDP packets w/ checksum 5295 * offload. Since the checksum field offset for TCP is 16 bytes and 5296 * for UDP it is 6 bytes we pass a pointer to the hardware that is 10 5297 * bytes less than the start of the UDP header. This allows the 5298 * hardware to write the checksum in the correct spot. But the 5299 * hardware will compute a checksum which includes the last 10 bytes 5300 * of the IP header. To correct this we tweak the stack computed 5301 * pseudo checksum by folding in the calculation of the inverse 5302 * checksum for those final 10 bytes of the IP header. This allows 5303 * the correct checksum to be computed by the hardware. 5304 */ 5305 5306 /* set pointer 10 bytes before UDP header */ 5307 tmp_uh = (uint32_t *)((uint8_t *)uh - 10); 5308 5309 /* calculate a pseudo header checksum over the first 10 bytes */ 5310 tmp_csum = in_pseudo(*tmp_uh, 5311 *(tmp_uh + 1), 5312 *(uint16_t *)(tmp_uh + 2)); 5313 5314 pbd->tcp_pseudo_csum = ntohs(in_addword(uh->uh_sum, ~tmp_csum)); 5315 } 5316 5317 return (hlen * 2); /* entire header length, number of bytes */ 5318 } 5319 5320 static void 5321 bxe_set_pbd_lso_e2(struct mbuf *m, 5322 uint32_t *parsing_data) 5323 { 5324 *parsing_data |= ((m->m_pkthdr.tso_segsz << 5325 ETH_TX_PARSE_BD_E2_LSO_MSS_SHIFT) & 5326 ETH_TX_PARSE_BD_E2_LSO_MSS); 5327 5328 /* XXX test for IPv6 with extension header... */ 5329 #if 0 5330 struct ip6_hdr *ip6; 5331 if (ip6 && ip6->ip6_nxt == 'some ipv6 extension header') 5332 *parsing_data |= ETH_TX_PARSE_BD_E2_IPV6_WITH_EXT_HDR; 5333 #endif 5334 } 5335 5336 static void 5337 bxe_set_pbd_lso(struct mbuf *m, 5338 struct eth_tx_parse_bd_e1x *pbd) 5339 { 5340 struct ether_vlan_header *eh = NULL; 5341 struct ip *ip = NULL; 5342 struct tcphdr *th = NULL; 5343 int e_hlen; 5344 5345 /* get the Ethernet header */ 5346 eh = mtod(m, struct ether_vlan_header *); 5347 5348 /* handle VLAN encapsulation if present */ 5349 e_hlen = (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) ? 5350 (ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN) : ETHER_HDR_LEN; 5351 5352 /* get the IP and TCP header, with LSO entire header in first mbuf */ 5353 /* XXX assuming IPv4 */ 5354 ip = (struct ip *)(m->m_data + e_hlen); 5355 th = (struct tcphdr *)((caddr_t)ip + (ip->ip_hl << 2)); 5356 5357 pbd->lso_mss = htole16(m->m_pkthdr.tso_segsz); 5358 pbd->tcp_send_seq = ntohl(th->th_seq); 5359 pbd->tcp_flags = ((ntohl(((uint32_t *)th)[3]) >> 16) & 0xff); 5360 5361 #if 1 5362 /* XXX IPv4 */ 5363 pbd->ip_id = ntohs(ip->ip_id); 5364 pbd->tcp_pseudo_csum = 5365 ntohs(in_pseudo(ip->ip_src.s_addr, 5366 ip->ip_dst.s_addr, 5367 htons(IPPROTO_TCP))); 5368 #else 5369 /* XXX IPv6 */ 5370 pbd->tcp_pseudo_csum = 5371 ntohs(in_pseudo(&ip6->ip6_src, 5372 &ip6->ip6_dst, 5373 htons(IPPROTO_TCP))); 5374 #endif 5375 5376 pbd->global_data |= 5377 htole16(ETH_TX_PARSE_BD_E1X_PSEUDO_CS_WITHOUT_LEN); 5378 } 5379 5380 /* 5381 * Encapsulte an mbuf cluster into the tx bd chain and makes the memory 5382 * visible to the controller. 5383 * 5384 * If an mbuf is submitted to this routine and cannot be given to the 5385 * controller (e.g. it has too many fragments) then the function may free 5386 * the mbuf and return to the caller. 5387 * 5388 * Returns: 5389 * 0 = Success, !0 = Failure 5390 * Note the side effect that an mbuf may be freed if it causes a problem. 5391 */ 5392 static int 5393 bxe_tx_encap(struct bxe_fastpath *fp, struct mbuf **m_head) 5394 { 5395 bus_dma_segment_t segs[32]; 5396 struct mbuf *m0; 5397 struct bxe_sw_tx_bd *tx_buf; 5398 struct eth_tx_parse_bd_e1x *pbd_e1x = NULL; 5399 struct eth_tx_parse_bd_e2 *pbd_e2 = NULL; 5400 /* struct eth_tx_parse_2nd_bd *pbd2 = NULL; */ 5401 struct eth_tx_bd *tx_data_bd; 5402 struct eth_tx_bd *tx_total_pkt_size_bd; 5403 struct eth_tx_start_bd *tx_start_bd; 5404 uint16_t bd_prod, pkt_prod, total_pkt_size; 5405 uint8_t mac_type; 5406 int defragged, error, nsegs, rc, nbds, vlan_off, ovlan; 5407 struct bxe_softc *sc; 5408 uint16_t tx_bd_avail; 5409 struct ether_vlan_header *eh; 5410 uint32_t pbd_e2_parsing_data = 0; 5411 uint8_t hlen = 0; 5412 int tmp_bd; 5413 int i; 5414 5415 sc = fp->sc; 5416 5417 M_ASSERTPKTHDR(*m_head); 5418 5419 m0 = *m_head; 5420 rc = defragged = nbds = ovlan = vlan_off = total_pkt_size = 0; 5421 tx_start_bd = NULL; 5422 tx_data_bd = NULL; 5423 tx_total_pkt_size_bd = NULL; 5424 5425 /* get the H/W pointer for packets and BDs */ 5426 pkt_prod = fp->tx_pkt_prod; 5427 bd_prod = fp->tx_bd_prod; 5428 5429 mac_type = UNICAST_ADDRESS; 5430 5431 /* map the mbuf into the next open DMAable memory */ 5432 tx_buf = &fp->tx_mbuf_chain[TX_BD(pkt_prod)]; 5433 error = bus_dmamap_load_mbuf_sg(fp->tx_mbuf_tag, 5434 tx_buf->m_map, m0, 5435 segs, &nsegs, BUS_DMA_NOWAIT); 5436 5437 /* mapping errors */ 5438 if(__predict_false(error != 0)) { 5439 fp->eth_q_stats.tx_dma_mapping_failure++; 5440 if (error == ENOMEM) { 5441 /* resource issue, try again later */ 5442 rc = ENOMEM; 5443 } else if (error == EFBIG) { 5444 /* possibly recoverable with defragmentation */ 5445 fp->eth_q_stats.mbuf_defrag_attempts++; 5446 m0 = m_defrag(*m_head, M_NOWAIT); 5447 if (m0 == NULL) { 5448 fp->eth_q_stats.mbuf_defrag_failures++; 5449 rc = ENOBUFS; 5450 } else { 5451 /* defrag successful, try mapping again */ 5452 *m_head = m0; 5453 error = bus_dmamap_load_mbuf_sg(fp->tx_mbuf_tag, 5454 tx_buf->m_map, m0, 5455 segs, &nsegs, BUS_DMA_NOWAIT); 5456 if (error) { 5457 fp->eth_q_stats.tx_dma_mapping_failure++; 5458 rc = error; 5459 } 5460 } 5461 } else { 5462 /* unknown, unrecoverable mapping error */ 5463 BLOGE(sc, "Unknown TX mapping error rc=%d\n", error); 5464 bxe_dump_mbuf(sc, m0, FALSE); 5465 rc = error; 5466 } 5467 5468 goto bxe_tx_encap_continue; 5469 } 5470 5471 tx_bd_avail = bxe_tx_avail(sc, fp); 5472 5473 /* make sure there is enough room in the send queue */ 5474 if (__predict_false(tx_bd_avail < (nsegs + 2))) { 5475 /* Recoverable, try again later. */ 5476 fp->eth_q_stats.tx_hw_queue_full++; 5477 bus_dmamap_unload(fp->tx_mbuf_tag, tx_buf->m_map); 5478 rc = ENOMEM; 5479 goto bxe_tx_encap_continue; 5480 } 5481 5482 /* capture the current H/W TX chain high watermark */ 5483 if (__predict_false(fp->eth_q_stats.tx_hw_max_queue_depth < 5484 (TX_BD_USABLE - tx_bd_avail))) { 5485 fp->eth_q_stats.tx_hw_max_queue_depth = (TX_BD_USABLE - tx_bd_avail); 5486 } 5487 5488 /* make sure it fits in the packet window */ 5489 if (__predict_false(nsegs > BXE_MAX_SEGMENTS)) { 5490 /* 5491 * The mbuf may be to big for the controller to handle. If the frame 5492 * is a TSO frame we'll need to do an additional check. 5493 */ 5494 if (m0->m_pkthdr.csum_flags & CSUM_TSO) { 5495 if (bxe_chktso_window(sc, nsegs, segs, m0) == 0) { 5496 goto bxe_tx_encap_continue; /* OK to send */ 5497 } else { 5498 fp->eth_q_stats.tx_window_violation_tso++; 5499 } 5500 } else { 5501 fp->eth_q_stats.tx_window_violation_std++; 5502 } 5503 5504 /* lets try to defragment this mbuf and remap it */ 5505 fp->eth_q_stats.mbuf_defrag_attempts++; 5506 bus_dmamap_unload(fp->tx_mbuf_tag, tx_buf->m_map); 5507 5508 m0 = m_defrag(*m_head, M_NOWAIT); 5509 if (m0 == NULL) { 5510 fp->eth_q_stats.mbuf_defrag_failures++; 5511 /* Ugh, just drop the frame... :( */ 5512 rc = ENOBUFS; 5513 } else { 5514 /* defrag successful, try mapping again */ 5515 *m_head = m0; 5516 error = bus_dmamap_load_mbuf_sg(fp->tx_mbuf_tag, 5517 tx_buf->m_map, m0, 5518 segs, &nsegs, BUS_DMA_NOWAIT); 5519 if (error) { 5520 fp->eth_q_stats.tx_dma_mapping_failure++; 5521 /* No sense in trying to defrag/copy chain, drop it. :( */ 5522 rc = error; 5523 } 5524 else { 5525 /* if the chain is still too long then drop it */ 5526 if (__predict_false(nsegs > BXE_MAX_SEGMENTS)) { 5527 bus_dmamap_unload(fp->tx_mbuf_tag, tx_buf->m_map); 5528 rc = ENODEV; 5529 } 5530 } 5531 } 5532 } 5533 5534 bxe_tx_encap_continue: 5535 5536 /* Check for errors */ 5537 if (rc) { 5538 if (rc == ENOMEM) { 5539 /* recoverable try again later */ 5540 } else { 5541 fp->eth_q_stats.tx_soft_errors++; 5542 fp->eth_q_stats.mbuf_alloc_tx--; 5543 m_freem(*m_head); 5544 *m_head = NULL; 5545 } 5546 5547 return (rc); 5548 } 5549 5550 /* set flag according to packet type (UNICAST_ADDRESS is default) */ 5551 if (m0->m_flags & M_BCAST) { 5552 mac_type = BROADCAST_ADDRESS; 5553 } else if (m0->m_flags & M_MCAST) { 5554 mac_type = MULTICAST_ADDRESS; 5555 } 5556 5557 /* store the mbuf into the mbuf ring */ 5558 tx_buf->m = m0; 5559 tx_buf->first_bd = fp->tx_bd_prod; 5560 tx_buf->flags = 0; 5561 5562 /* prepare the first transmit (start) BD for the mbuf */ 5563 tx_start_bd = &fp->tx_chain[TX_BD(bd_prod)].start_bd; 5564 5565 BLOGD(sc, DBG_TX, 5566 "sending pkt_prod=%u tx_buf=%p next_idx=%u bd=%u tx_start_bd=%p\n", 5567 pkt_prod, tx_buf, fp->tx_pkt_prod, bd_prod, tx_start_bd); 5568 5569 tx_start_bd->addr_lo = htole32(U64_LO(segs[0].ds_addr)); 5570 tx_start_bd->addr_hi = htole32(U64_HI(segs[0].ds_addr)); 5571 tx_start_bd->nbytes = htole16(segs[0].ds_len); 5572 total_pkt_size += tx_start_bd->nbytes; 5573 tx_start_bd->bd_flags.as_bitfield = ETH_TX_BD_FLAGS_START_BD; 5574 5575 tx_start_bd->general_data = (1 << ETH_TX_START_BD_HDR_NBDS_SHIFT); 5576 5577 /* all frames have at least Start BD + Parsing BD */ 5578 nbds = nsegs + 1; 5579 tx_start_bd->nbd = htole16(nbds); 5580 5581 if (m0->m_flags & M_VLANTAG) { 5582 tx_start_bd->vlan_or_ethertype = htole16(m0->m_pkthdr.ether_vtag); 5583 tx_start_bd->bd_flags.as_bitfield |= 5584 (X_ETH_OUTBAND_VLAN << ETH_TX_BD_FLAGS_VLAN_MODE_SHIFT); 5585 } else { 5586 /* vf tx, start bd must hold the ethertype for fw to enforce it */ 5587 if (IS_VF(sc)) { 5588 /* map ethernet header to find type and header length */ 5589 eh = mtod(m0, struct ether_vlan_header *); 5590 tx_start_bd->vlan_or_ethertype = eh->evl_encap_proto; 5591 } else { 5592 /* used by FW for packet accounting */ 5593 tx_start_bd->vlan_or_ethertype = htole16(fp->tx_pkt_prod); 5594 #if 0 5595 /* 5596 * If NPAR-SD is active then FW should do the tagging regardless 5597 * of value of priority. Otherwise, if priority indicates this is 5598 * a control packet we need to indicate to FW to avoid tagging. 5599 */ 5600 if (!IS_MF_AFEX(sc) && (mbuf priority == PRIO_CONTROL)) { 5601 SET_FLAG(tx_start_bd->general_data, 5602 ETH_TX_START_BD_FORCE_VLAN_MODE, 1); 5603 } 5604 #endif 5605 } 5606 } 5607 5608 /* 5609 * add a parsing BD from the chain. The parsing BD is always added 5610 * though it is only used for TSO and chksum 5611 */ 5612 bd_prod = TX_BD_NEXT(bd_prod); 5613 5614 if (m0->m_pkthdr.csum_flags) { 5615 if (m0->m_pkthdr.csum_flags & CSUM_IP) { 5616 fp->eth_q_stats.tx_ofld_frames_csum_ip++; 5617 tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_IP_CSUM; 5618 } 5619 5620 if (m0->m_pkthdr.csum_flags & CSUM_TCP_IPV6) { 5621 tx_start_bd->bd_flags.as_bitfield |= (ETH_TX_BD_FLAGS_IPV6 | 5622 ETH_TX_BD_FLAGS_L4_CSUM); 5623 } else if (m0->m_pkthdr.csum_flags & CSUM_UDP_IPV6) { 5624 tx_start_bd->bd_flags.as_bitfield |= (ETH_TX_BD_FLAGS_IPV6 | 5625 ETH_TX_BD_FLAGS_IS_UDP | 5626 ETH_TX_BD_FLAGS_L4_CSUM); 5627 } else if ((m0->m_pkthdr.csum_flags & CSUM_TCP) || 5628 (m0->m_pkthdr.csum_flags & CSUM_TSO)) { 5629 tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_L4_CSUM; 5630 } else if (m0->m_pkthdr.csum_flags & CSUM_UDP) { 5631 tx_start_bd->bd_flags.as_bitfield |= (ETH_TX_BD_FLAGS_L4_CSUM | 5632 ETH_TX_BD_FLAGS_IS_UDP); 5633 } 5634 } 5635 5636 if (!CHIP_IS_E1x(sc)) { 5637 pbd_e2 = &fp->tx_chain[TX_BD(bd_prod)].parse_bd_e2; 5638 memset(pbd_e2, 0, sizeof(struct eth_tx_parse_bd_e2)); 5639 5640 if (m0->m_pkthdr.csum_flags) { 5641 hlen = bxe_set_pbd_csum_e2(fp, m0, &pbd_e2_parsing_data); 5642 } 5643 5644 #if 0 5645 /* 5646 * Add the MACs to the parsing BD if the module param was 5647 * explicitly set, if this is a vf, or in switch independent 5648 * mode. 5649 */ 5650 if (sc->flags & BXE_TX_SWITCHING || IS_VF(sc) || IS_MF_SI(sc)) { 5651 eh = mtod(m0, struct ether_vlan_header *); 5652 bxe_set_fw_mac_addr(&pbd_e2->data.mac_addr.src_hi, 5653 &pbd_e2->data.mac_addr.src_mid, 5654 &pbd_e2->data.mac_addr.src_lo, 5655 eh->evl_shost); 5656 bxe_set_fw_mac_addr(&pbd_e2->data.mac_addr.dst_hi, 5657 &pbd_e2->data.mac_addr.dst_mid, 5658 &pbd_e2->data.mac_addr.dst_lo, 5659 eh->evl_dhost); 5660 } 5661 #endif 5662 5663 SET_FLAG(pbd_e2_parsing_data, ETH_TX_PARSE_BD_E2_ETH_ADDR_TYPE, 5664 mac_type); 5665 } else { 5666 uint16_t global_data = 0; 5667 5668 pbd_e1x = &fp->tx_chain[TX_BD(bd_prod)].parse_bd_e1x; 5669 memset(pbd_e1x, 0, sizeof(struct eth_tx_parse_bd_e1x)); 5670 5671 if (m0->m_pkthdr.csum_flags) { 5672 hlen = bxe_set_pbd_csum(fp, m0, pbd_e1x); 5673 } 5674 5675 SET_FLAG(global_data, 5676 ETH_TX_PARSE_BD_E1X_ETH_ADDR_TYPE, mac_type); 5677 pbd_e1x->global_data |= htole16(global_data); 5678 } 5679 5680 /* setup the parsing BD with TSO specific info */ 5681 if (m0->m_pkthdr.csum_flags & CSUM_TSO) { 5682 fp->eth_q_stats.tx_ofld_frames_lso++; 5683 tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_SW_LSO; 5684 5685 if (__predict_false(tx_start_bd->nbytes > hlen)) { 5686 fp->eth_q_stats.tx_ofld_frames_lso_hdr_splits++; 5687 5688 /* split the first BD into header/data making the fw job easy */ 5689 nbds++; 5690 tx_start_bd->nbd = htole16(nbds); 5691 tx_start_bd->nbytes = htole16(hlen); 5692 5693 bd_prod = TX_BD_NEXT(bd_prod); 5694 5695 /* new transmit BD after the tx_parse_bd */ 5696 tx_data_bd = &fp->tx_chain[TX_BD(bd_prod)].reg_bd; 5697 tx_data_bd->addr_hi = htole32(U64_HI(segs[0].ds_addr + hlen)); 5698 tx_data_bd->addr_lo = htole32(U64_LO(segs[0].ds_addr + hlen)); 5699 tx_data_bd->nbytes = htole16(segs[0].ds_len - hlen); 5700 if (tx_total_pkt_size_bd == NULL) { 5701 tx_total_pkt_size_bd = tx_data_bd; 5702 } 5703 5704 BLOGD(sc, DBG_TX, 5705 "TSO split header size is %d (%x:%x) nbds %d\n", 5706 le16toh(tx_start_bd->nbytes), 5707 le32toh(tx_start_bd->addr_hi), 5708 le32toh(tx_start_bd->addr_lo), 5709 nbds); 5710 } 5711 5712 if (!CHIP_IS_E1x(sc)) { 5713 bxe_set_pbd_lso_e2(m0, &pbd_e2_parsing_data); 5714 } else { 5715 bxe_set_pbd_lso(m0, pbd_e1x); 5716 } 5717 } 5718 5719 if (pbd_e2_parsing_data) { 5720 pbd_e2->parsing_data = htole32(pbd_e2_parsing_data); 5721 } 5722 5723 /* prepare remaining BDs, start tx bd contains first seg/frag */ 5724 for (i = 1; i < nsegs ; i++) { 5725 bd_prod = TX_BD_NEXT(bd_prod); 5726 tx_data_bd = &fp->tx_chain[TX_BD(bd_prod)].reg_bd; 5727 tx_data_bd->addr_lo = htole32(U64_LO(segs[i].ds_addr)); 5728 tx_data_bd->addr_hi = htole32(U64_HI(segs[i].ds_addr)); 5729 tx_data_bd->nbytes = htole16(segs[i].ds_len); 5730 if (tx_total_pkt_size_bd == NULL) { 5731 tx_total_pkt_size_bd = tx_data_bd; 5732 } 5733 total_pkt_size += tx_data_bd->nbytes; 5734 } 5735 5736 BLOGD(sc, DBG_TX, "last bd %p\n", tx_data_bd); 5737 5738 if (tx_total_pkt_size_bd != NULL) { 5739 tx_total_pkt_size_bd->total_pkt_bytes = total_pkt_size; 5740 } 5741 5742 if (__predict_false(sc->debug & DBG_TX)) { 5743 tmp_bd = tx_buf->first_bd; 5744 for (i = 0; i < nbds; i++) 5745 { 5746 if (i == 0) { 5747 BLOGD(sc, DBG_TX, 5748 "TX Strt: %p bd=%d nbd=%d vlan=0x%x " 5749 "bd_flags=0x%x hdr_nbds=%d\n", 5750 tx_start_bd, 5751 tmp_bd, 5752 le16toh(tx_start_bd->nbd), 5753 le16toh(tx_start_bd->vlan_or_ethertype), 5754 tx_start_bd->bd_flags.as_bitfield, 5755 (tx_start_bd->general_data & ETH_TX_START_BD_HDR_NBDS)); 5756 } else if (i == 1) { 5757 if (pbd_e1x) { 5758 BLOGD(sc, DBG_TX, 5759 "-> Prse: %p bd=%d global=0x%x ip_hlen_w=%u " 5760 "ip_id=%u lso_mss=%u tcp_flags=0x%x csum=0x%x " 5761 "tcp_seq=%u total_hlen_w=%u\n", 5762 pbd_e1x, 5763 tmp_bd, 5764 pbd_e1x->global_data, 5765 pbd_e1x->ip_hlen_w, 5766 pbd_e1x->ip_id, 5767 pbd_e1x->lso_mss, 5768 pbd_e1x->tcp_flags, 5769 pbd_e1x->tcp_pseudo_csum, 5770 pbd_e1x->tcp_send_seq, 5771 le16toh(pbd_e1x->total_hlen_w)); 5772 } else { /* if (pbd_e2) */ 5773 BLOGD(sc, DBG_TX, 5774 "-> Parse: %p bd=%d dst=%02x:%02x:%02x " 5775 "src=%02x:%02x:%02x parsing_data=0x%x\n", 5776 pbd_e2, 5777 tmp_bd, 5778 pbd_e2->data.mac_addr.dst_hi, 5779 pbd_e2->data.mac_addr.dst_mid, 5780 pbd_e2->data.mac_addr.dst_lo, 5781 pbd_e2->data.mac_addr.src_hi, 5782 pbd_e2->data.mac_addr.src_mid, 5783 pbd_e2->data.mac_addr.src_lo, 5784 pbd_e2->parsing_data); 5785 } 5786 } 5787 5788 if (i != 1) { /* skip parse db as it doesn't hold data */ 5789 tx_data_bd = &fp->tx_chain[TX_BD(tmp_bd)].reg_bd; 5790 BLOGD(sc, DBG_TX, 5791 "-> Frag: %p bd=%d nbytes=%d hi=0x%x lo: 0x%x\n", 5792 tx_data_bd, 5793 tmp_bd, 5794 le16toh(tx_data_bd->nbytes), 5795 le32toh(tx_data_bd->addr_hi), 5796 le32toh(tx_data_bd->addr_lo)); 5797 } 5798 5799 tmp_bd = TX_BD_NEXT(tmp_bd); 5800 } 5801 } 5802 5803 BLOGD(sc, DBG_TX, "doorbell: nbds=%d bd=%u\n", nbds, bd_prod); 5804 5805 /* update TX BD producer index value for next TX */ 5806 bd_prod = TX_BD_NEXT(bd_prod); 5807 5808 /* 5809 * If the chain of tx_bd's describing this frame is adjacent to or spans 5810 * an eth_tx_next_bd element then we need to increment the nbds value. 5811 */ 5812 if (TX_BD_IDX(bd_prod) < nbds) { 5813 nbds++; 5814 } 5815 5816 /* don't allow reordering of writes for nbd and packets */ 5817 mb(); 5818 5819 fp->tx_db.data.prod += nbds; 5820 5821 /* producer points to the next free tx_bd at this point */ 5822 fp->tx_pkt_prod++; 5823 fp->tx_bd_prod = bd_prod; 5824 5825 DOORBELL(sc, fp->index, fp->tx_db.raw); 5826 5827 fp->eth_q_stats.tx_pkts++; 5828 5829 /* Prevent speculative reads from getting ahead of the status block. */ 5830 bus_space_barrier(sc->bar[BAR0].tag, sc->bar[BAR0].handle, 5831 0, 0, BUS_SPACE_BARRIER_READ); 5832 5833 /* Prevent speculative reads from getting ahead of the doorbell. */ 5834 bus_space_barrier(sc->bar[BAR2].tag, sc->bar[BAR2].handle, 5835 0, 0, BUS_SPACE_BARRIER_READ); 5836 5837 return (0); 5838 } 5839 5840 static void 5841 bxe_tx_start_locked(struct bxe_softc *sc, 5842 struct ifnet *ifp, 5843 struct bxe_fastpath *fp) 5844 { 5845 struct mbuf *m = NULL; 5846 int tx_count = 0; 5847 uint16_t tx_bd_avail; 5848 5849 BXE_FP_TX_LOCK_ASSERT(fp); 5850 5851 /* keep adding entries while there are frames to send */ 5852 while (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)) { 5853 5854 /* 5855 * check for any frames to send 5856 * dequeue can still be NULL even if queue is not empty 5857 */ 5858 IFQ_DRV_DEQUEUE(&ifp->if_snd, m); 5859 if (__predict_false(m == NULL)) { 5860 break; 5861 } 5862 5863 /* the mbuf now belongs to us */ 5864 fp->eth_q_stats.mbuf_alloc_tx++; 5865 5866 /* 5867 * Put the frame into the transmit ring. If we don't have room, 5868 * place the mbuf back at the head of the TX queue, set the 5869 * OACTIVE flag, and wait for the NIC to drain the chain. 5870 */ 5871 if (__predict_false(bxe_tx_encap(fp, &m))) { 5872 fp->eth_q_stats.tx_encap_failures++; 5873 if (m != NULL) { 5874 /* mark the TX queue as full and return the frame */ 5875 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 5876 IFQ_DRV_PREPEND(&ifp->if_snd, m); 5877 fp->eth_q_stats.mbuf_alloc_tx--; 5878 fp->eth_q_stats.tx_queue_xoff++; 5879 } 5880 5881 /* stop looking for more work */ 5882 break; 5883 } 5884 5885 /* the frame was enqueued successfully */ 5886 tx_count++; 5887 5888 /* send a copy of the frame to any BPF listeners. */ 5889 BPF_MTAP(ifp, m); 5890 5891 tx_bd_avail = bxe_tx_avail(sc, fp); 5892 5893 /* handle any completions if we're running low */ 5894 if (tx_bd_avail < BXE_TX_CLEANUP_THRESHOLD) { 5895 /* bxe_txeof will set IFF_DRV_OACTIVE appropriately */ 5896 bxe_txeof(sc, fp); 5897 if (ifp->if_drv_flags & IFF_DRV_OACTIVE) { 5898 break; 5899 } 5900 } 5901 } 5902 5903 /* all TX packets were dequeued and/or the tx ring is full */ 5904 if (tx_count > 0) { 5905 /* reset the TX watchdog timeout timer */ 5906 fp->watchdog_timer = BXE_TX_TIMEOUT; 5907 } 5908 } 5909 5910 /* Legacy (non-RSS) dispatch routine */ 5911 static void 5912 bxe_tx_start(struct ifnet *ifp) 5913 { 5914 struct bxe_softc *sc; 5915 struct bxe_fastpath *fp; 5916 5917 sc = ifp->if_softc; 5918 5919 if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) { 5920 BLOGW(sc, "Interface not running, ignoring transmit request\n"); 5921 return; 5922 } 5923 5924 if (ifp->if_drv_flags & IFF_DRV_OACTIVE) { 5925 BLOGW(sc, "Interface TX queue is full, ignoring transmit request\n"); 5926 return; 5927 } 5928 5929 if (!sc->link_vars.link_up) { 5930 BLOGW(sc, "Interface link is down, ignoring transmit request\n"); 5931 return; 5932 } 5933 5934 fp = &sc->fp[0]; 5935 5936 BXE_FP_TX_LOCK(fp); 5937 bxe_tx_start_locked(sc, ifp, fp); 5938 BXE_FP_TX_UNLOCK(fp); 5939 } 5940 5941 #if __FreeBSD_version >= 800000 5942 5943 static int 5944 bxe_tx_mq_start_locked(struct bxe_softc *sc, 5945 struct ifnet *ifp, 5946 struct bxe_fastpath *fp, 5947 struct mbuf *m) 5948 { 5949 struct buf_ring *tx_br = fp->tx_br; 5950 struct mbuf *next; 5951 int depth, rc, tx_count; 5952 uint16_t tx_bd_avail; 5953 5954 rc = tx_count = 0; 5955 5956 if (!tx_br) { 5957 BLOGE(sc, "Multiqueue TX and no buf_ring!\n"); 5958 return (EINVAL); 5959 } 5960 5961 /* fetch the depth of the driver queue */ 5962 depth = drbr_inuse(ifp, tx_br); 5963 if (depth > fp->eth_q_stats.tx_max_drbr_queue_depth) { 5964 fp->eth_q_stats.tx_max_drbr_queue_depth = depth; 5965 } 5966 5967 BXE_FP_TX_LOCK_ASSERT(fp); 5968 5969 if (m == NULL) { 5970 /* no new work, check for pending frames */ 5971 next = drbr_dequeue(ifp, tx_br); 5972 } else if (drbr_needs_enqueue(ifp, tx_br)) { 5973 /* have both new and pending work, maintain packet order */ 5974 rc = drbr_enqueue(ifp, tx_br, m); 5975 if (rc != 0) { 5976 fp->eth_q_stats.tx_soft_errors++; 5977 goto bxe_tx_mq_start_locked_exit; 5978 } 5979 next = drbr_dequeue(ifp, tx_br); 5980 } else { 5981 /* new work only and nothing pending */ 5982 next = m; 5983 } 5984 5985 /* keep adding entries while there are frames to send */ 5986 while (next != NULL) { 5987 5988 /* the mbuf now belongs to us */ 5989 fp->eth_q_stats.mbuf_alloc_tx++; 5990 5991 /* 5992 * Put the frame into the transmit ring. If we don't have room, 5993 * place the mbuf back at the head of the TX queue, set the 5994 * OACTIVE flag, and wait for the NIC to drain the chain. 5995 */ 5996 rc = bxe_tx_encap(fp, &next); 5997 if (__predict_false(rc != 0)) { 5998 fp->eth_q_stats.tx_encap_failures++; 5999 if (next != NULL) { 6000 /* mark the TX queue as full and save the frame */ 6001 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 6002 /* XXX this may reorder the frame */ 6003 rc = drbr_enqueue(ifp, tx_br, next); 6004 fp->eth_q_stats.mbuf_alloc_tx--; 6005 fp->eth_q_stats.tx_frames_deferred++; 6006 } 6007 6008 /* stop looking for more work */ 6009 break; 6010 } 6011 6012 /* the transmit frame was enqueued successfully */ 6013 tx_count++; 6014 6015 /* send a copy of the frame to any BPF listeners */ 6016 BPF_MTAP(ifp, next); 6017 6018 tx_bd_avail = bxe_tx_avail(sc, fp); 6019 6020 /* handle any completions if we're running low */ 6021 if (tx_bd_avail < BXE_TX_CLEANUP_THRESHOLD) { 6022 /* bxe_txeof will set IFF_DRV_OACTIVE appropriately */ 6023 bxe_txeof(sc, fp); 6024 if (ifp->if_drv_flags & IFF_DRV_OACTIVE) { 6025 break; 6026 } 6027 } 6028 6029 next = drbr_dequeue(ifp, tx_br); 6030 } 6031 6032 /* all TX packets were dequeued and/or the tx ring is full */ 6033 if (tx_count > 0) { 6034 /* reset the TX watchdog timeout timer */ 6035 fp->watchdog_timer = BXE_TX_TIMEOUT; 6036 } 6037 6038 bxe_tx_mq_start_locked_exit: 6039 6040 return (rc); 6041 } 6042 6043 /* Multiqueue (TSS) dispatch routine. */ 6044 static int 6045 bxe_tx_mq_start(struct ifnet *ifp, 6046 struct mbuf *m) 6047 { 6048 struct bxe_softc *sc = ifp->if_softc; 6049 struct bxe_fastpath *fp; 6050 int fp_index, rc; 6051 6052 fp_index = 0; /* default is the first queue */ 6053 6054 /* change the queue if using flow ID */ 6055 if ((m->m_flags & M_FLOWID) != 0) { 6056 fp_index = (m->m_pkthdr.flowid % sc->num_queues); 6057 } 6058 6059 fp = &sc->fp[fp_index]; 6060 6061 if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) { 6062 BLOGW(sc, "Interface not running, ignoring transmit request\n"); 6063 return (ENETDOWN); 6064 } 6065 6066 if (ifp->if_drv_flags & IFF_DRV_OACTIVE) { 6067 BLOGW(sc, "Interface TX queue is full, ignoring transmit request\n"); 6068 return (EBUSY); 6069 } 6070 6071 if (!sc->link_vars.link_up) { 6072 BLOGW(sc, "Interface link is down, ignoring transmit request\n"); 6073 return (ENETDOWN); 6074 } 6075 6076 /* XXX change to TRYLOCK here and if failed then schedule taskqueue */ 6077 6078 BXE_FP_TX_LOCK(fp); 6079 rc = bxe_tx_mq_start_locked(sc, ifp, fp, m); 6080 BXE_FP_TX_UNLOCK(fp); 6081 6082 return (rc); 6083 } 6084 6085 static void 6086 bxe_mq_flush(struct ifnet *ifp) 6087 { 6088 struct bxe_softc *sc = ifp->if_softc; 6089 struct bxe_fastpath *fp; 6090 struct mbuf *m; 6091 int i; 6092 6093 for (i = 0; i < sc->num_queues; i++) { 6094 fp = &sc->fp[i]; 6095 6096 if (fp->state != BXE_FP_STATE_OPEN) { 6097 BLOGD(sc, DBG_LOAD, "Not clearing fp[%02d] buf_ring (state=%d)\n", 6098 fp->index, fp->state); 6099 continue; 6100 } 6101 6102 if (fp->tx_br != NULL) { 6103 BLOGD(sc, DBG_LOAD, "Clearing fp[%02d] buf_ring\n", fp->index); 6104 BXE_FP_TX_LOCK(fp); 6105 while ((m = buf_ring_dequeue_sc(fp->tx_br)) != NULL) { 6106 m_freem(m); 6107 } 6108 BXE_FP_TX_UNLOCK(fp); 6109 } 6110 } 6111 6112 if_qflush(ifp); 6113 } 6114 6115 #endif /* FreeBSD_version >= 800000 */ 6116 6117 static uint16_t 6118 bxe_cid_ilt_lines(struct bxe_softc *sc) 6119 { 6120 if (IS_SRIOV(sc)) { 6121 return ((BXE_FIRST_VF_CID + BXE_VF_CIDS) / ILT_PAGE_CIDS); 6122 } 6123 return (L2_ILT_LINES(sc)); 6124 } 6125 6126 static void 6127 bxe_ilt_set_info(struct bxe_softc *sc) 6128 { 6129 struct ilt_client_info *ilt_client; 6130 struct ecore_ilt *ilt = sc->ilt; 6131 uint16_t line = 0; 6132 6133 ilt->start_line = FUNC_ILT_BASE(SC_FUNC(sc)); 6134 BLOGD(sc, DBG_LOAD, "ilt starts at line %d\n", ilt->start_line); 6135 6136 /* CDU */ 6137 ilt_client = &ilt->clients[ILT_CLIENT_CDU]; 6138 ilt_client->client_num = ILT_CLIENT_CDU; 6139 ilt_client->page_size = CDU_ILT_PAGE_SZ; 6140 ilt_client->flags = ILT_CLIENT_SKIP_MEM; 6141 ilt_client->start = line; 6142 line += bxe_cid_ilt_lines(sc); 6143 6144 if (CNIC_SUPPORT(sc)) { 6145 line += CNIC_ILT_LINES; 6146 } 6147 6148 ilt_client->end = (line - 1); 6149 6150 BLOGD(sc, DBG_LOAD, 6151 "ilt client[CDU]: start %d, end %d, " 6152 "psz 0x%x, flags 0x%x, hw psz %d\n", 6153 ilt_client->start, ilt_client->end, 6154 ilt_client->page_size, 6155 ilt_client->flags, 6156 ilog2(ilt_client->page_size >> 12)); 6157 6158 /* QM */ 6159 if (QM_INIT(sc->qm_cid_count)) { 6160 ilt_client = &ilt->clients[ILT_CLIENT_QM]; 6161 ilt_client->client_num = ILT_CLIENT_QM; 6162 ilt_client->page_size = QM_ILT_PAGE_SZ; 6163 ilt_client->flags = 0; 6164 ilt_client->start = line; 6165 6166 /* 4 bytes for each cid */ 6167 line += DIV_ROUND_UP(sc->qm_cid_count * QM_QUEUES_PER_FUNC * 4, 6168 QM_ILT_PAGE_SZ); 6169 6170 ilt_client->end = (line - 1); 6171 6172 BLOGD(sc, DBG_LOAD, 6173 "ilt client[QM]: start %d, end %d, " 6174 "psz 0x%x, flags 0x%x, hw psz %d\n", 6175 ilt_client->start, ilt_client->end, 6176 ilt_client->page_size, ilt_client->flags, 6177 ilog2(ilt_client->page_size >> 12)); 6178 } 6179 6180 if (CNIC_SUPPORT(sc)) { 6181 /* SRC */ 6182 ilt_client = &ilt->clients[ILT_CLIENT_SRC]; 6183 ilt_client->client_num = ILT_CLIENT_SRC; 6184 ilt_client->page_size = SRC_ILT_PAGE_SZ; 6185 ilt_client->flags = 0; 6186 ilt_client->start = line; 6187 line += SRC_ILT_LINES; 6188 ilt_client->end = (line - 1); 6189 6190 BLOGD(sc, DBG_LOAD, 6191 "ilt client[SRC]: start %d, end %d, " 6192 "psz 0x%x, flags 0x%x, hw psz %d\n", 6193 ilt_client->start, ilt_client->end, 6194 ilt_client->page_size, ilt_client->flags, 6195 ilog2(ilt_client->page_size >> 12)); 6196 6197 /* TM */ 6198 ilt_client = &ilt->clients[ILT_CLIENT_TM]; 6199 ilt_client->client_num = ILT_CLIENT_TM; 6200 ilt_client->page_size = TM_ILT_PAGE_SZ; 6201 ilt_client->flags = 0; 6202 ilt_client->start = line; 6203 line += TM_ILT_LINES; 6204 ilt_client->end = (line - 1); 6205 6206 BLOGD(sc, DBG_LOAD, 6207 "ilt client[TM]: start %d, end %d, " 6208 "psz 0x%x, flags 0x%x, hw psz %d\n", 6209 ilt_client->start, ilt_client->end, 6210 ilt_client->page_size, ilt_client->flags, 6211 ilog2(ilt_client->page_size >> 12)); 6212 } 6213 6214 KASSERT((line <= ILT_MAX_LINES), ("Invalid number of ILT lines!")); 6215 } 6216 6217 static void 6218 bxe_set_fp_rx_buf_size(struct bxe_softc *sc) 6219 { 6220 int i; 6221 6222 BLOGD(sc, DBG_LOAD, "mtu = %d\n", sc->mtu); 6223 6224 for (i = 0; i < sc->num_queues; i++) { 6225 /* get the Rx buffer size for RX frames */ 6226 sc->fp[i].rx_buf_size = 6227 (IP_HEADER_ALIGNMENT_PADDING + 6228 ETH_OVERHEAD + 6229 sc->mtu); 6230 6231 BLOGD(sc, DBG_LOAD, "rx_buf_size for fp[%02d] = %d\n", 6232 i, sc->fp[i].rx_buf_size); 6233 6234 /* get the mbuf allocation size for RX frames */ 6235 if (sc->fp[i].rx_buf_size <= MCLBYTES) { 6236 sc->fp[i].mbuf_alloc_size = MCLBYTES; 6237 } else if (sc->fp[i].rx_buf_size <= BCM_PAGE_SIZE) { 6238 sc->fp[i].mbuf_alloc_size = PAGE_SIZE; 6239 } else { 6240 sc->fp[i].mbuf_alloc_size = MJUM9BYTES; 6241 } 6242 6243 BLOGD(sc, DBG_LOAD, "mbuf_alloc_size for fp[%02d] = %d\n", 6244 i, sc->fp[i].mbuf_alloc_size); 6245 } 6246 } 6247 6248 static int 6249 bxe_alloc_ilt_mem(struct bxe_softc *sc) 6250 { 6251 int rc = 0; 6252 6253 if ((sc->ilt = 6254 (struct ecore_ilt *)malloc(sizeof(struct ecore_ilt), 6255 M_BXE_ILT, 6256 (M_NOWAIT | M_ZERO))) == NULL) { 6257 rc = 1; 6258 } 6259 6260 return (rc); 6261 } 6262 6263 static int 6264 bxe_alloc_ilt_lines_mem(struct bxe_softc *sc) 6265 { 6266 int rc = 0; 6267 6268 if ((sc->ilt->lines = 6269 (struct ilt_line *)malloc((sizeof(struct ilt_line) * ILT_MAX_LINES), 6270 M_BXE_ILT, 6271 (M_NOWAIT | M_ZERO))) == NULL) { 6272 rc = 1; 6273 } 6274 6275 return (rc); 6276 } 6277 6278 static void 6279 bxe_free_ilt_mem(struct bxe_softc *sc) 6280 { 6281 if (sc->ilt != NULL) { 6282 free(sc->ilt, M_BXE_ILT); 6283 sc->ilt = NULL; 6284 } 6285 } 6286 6287 static void 6288 bxe_free_ilt_lines_mem(struct bxe_softc *sc) 6289 { 6290 if (sc->ilt->lines != NULL) { 6291 free(sc->ilt->lines, M_BXE_ILT); 6292 sc->ilt->lines = NULL; 6293 } 6294 } 6295 6296 static void 6297 bxe_free_mem(struct bxe_softc *sc) 6298 { 6299 int i; 6300 6301 #if 0 6302 if (!CONFIGURE_NIC_MODE(sc)) { 6303 /* free searcher T2 table */ 6304 bxe_dma_free(sc, &sc->t2); 6305 } 6306 #endif 6307 6308 for (i = 0; i < L2_ILT_LINES(sc); i++) { 6309 bxe_dma_free(sc, &sc->context[i].vcxt_dma); 6310 sc->context[i].vcxt = NULL; 6311 sc->context[i].size = 0; 6312 } 6313 6314 ecore_ilt_mem_op(sc, ILT_MEMOP_FREE); 6315 6316 bxe_free_ilt_lines_mem(sc); 6317 6318 #if 0 6319 bxe_iov_free_mem(sc); 6320 #endif 6321 } 6322 6323 static int 6324 bxe_alloc_mem(struct bxe_softc *sc) 6325 { 6326 int context_size; 6327 int allocated; 6328 int i; 6329 6330 #if 0 6331 if (!CONFIGURE_NIC_MODE(sc)) { 6332 /* allocate searcher T2 table */ 6333 if (bxe_dma_alloc(sc, SRC_T2_SZ, 6334 &sc->t2, "searcher t2 table") != 0) { 6335 return (-1); 6336 } 6337 } 6338 #endif 6339 6340 /* 6341 * Allocate memory for CDU context: 6342 * This memory is allocated separately and not in the generic ILT 6343 * functions because CDU differs in few aspects: 6344 * 1. There can be multiple entities allocating memory for context - 6345 * regular L2, CNIC, and SRIOV drivers. Each separately controls 6346 * its own ILT lines. 6347 * 2. Since CDU page-size is not a single 4KB page (which is the case 6348 * for the other ILT clients), to be efficient we want to support 6349 * allocation of sub-page-size in the last entry. 6350 * 3. Context pointers are used by the driver to pass to FW / update 6351 * the context (for the other ILT clients the pointers are used just to 6352 * free the memory during unload). 6353 */ 6354 context_size = (sizeof(union cdu_context) * BXE_L2_CID_COUNT(sc)); 6355 for (i = 0, allocated = 0; allocated < context_size; i++) { 6356 sc->context[i].size = min(CDU_ILT_PAGE_SZ, 6357 (context_size - allocated)); 6358 6359 if (bxe_dma_alloc(sc, sc->context[i].size, 6360 &sc->context[i].vcxt_dma, 6361 "cdu context") != 0) { 6362 bxe_free_mem(sc); 6363 return (-1); 6364 } 6365 6366 sc->context[i].vcxt = 6367 (union cdu_context *)sc->context[i].vcxt_dma.vaddr; 6368 6369 allocated += sc->context[i].size; 6370 } 6371 6372 bxe_alloc_ilt_lines_mem(sc); 6373 6374 BLOGD(sc, DBG_LOAD, "ilt=%p start_line=%u lines=%p\n", 6375 sc->ilt, sc->ilt->start_line, sc->ilt->lines); 6376 { 6377 for (i = 0; i < 4; i++) { 6378 BLOGD(sc, DBG_LOAD, 6379 "c%d page_size=%u start=%u end=%u num=%u flags=0x%x\n", 6380 i, 6381 sc->ilt->clients[i].page_size, 6382 sc->ilt->clients[i].start, 6383 sc->ilt->clients[i].end, 6384 sc->ilt->clients[i].client_num, 6385 sc->ilt->clients[i].flags); 6386 } 6387 } 6388 if (ecore_ilt_mem_op(sc, ILT_MEMOP_ALLOC)) { 6389 BLOGE(sc, "ecore_ilt_mem_op ILT_MEMOP_ALLOC failed\n"); 6390 bxe_free_mem(sc); 6391 return (-1); 6392 } 6393 6394 #if 0 6395 if (bxe_iov_alloc_mem(sc)) { 6396 BLOGE(sc, "Failed to allocate memory for SRIOV\n"); 6397 bxe_free_mem(sc); 6398 return (-1); 6399 } 6400 #endif 6401 6402 return (0); 6403 } 6404 6405 static void 6406 bxe_free_rx_bd_chain(struct bxe_fastpath *fp) 6407 { 6408 struct bxe_softc *sc; 6409 int i; 6410 6411 sc = fp->sc; 6412 6413 if (fp->rx_mbuf_tag == NULL) { 6414 return; 6415 } 6416 6417 /* free all mbufs and unload all maps */ 6418 for (i = 0; i < RX_BD_TOTAL; i++) { 6419 if (fp->rx_mbuf_chain[i].m_map != NULL) { 6420 bus_dmamap_sync(fp->rx_mbuf_tag, 6421 fp->rx_mbuf_chain[i].m_map, 6422 BUS_DMASYNC_POSTREAD); 6423 bus_dmamap_unload(fp->rx_mbuf_tag, 6424 fp->rx_mbuf_chain[i].m_map); 6425 } 6426 6427 if (fp->rx_mbuf_chain[i].m != NULL) { 6428 m_freem(fp->rx_mbuf_chain[i].m); 6429 fp->rx_mbuf_chain[i].m = NULL; 6430 fp->eth_q_stats.mbuf_alloc_rx--; 6431 } 6432 } 6433 } 6434 6435 static void 6436 bxe_free_tpa_pool(struct bxe_fastpath *fp) 6437 { 6438 struct bxe_softc *sc; 6439 int i, max_agg_queues; 6440 6441 sc = fp->sc; 6442 6443 if (fp->rx_mbuf_tag == NULL) { 6444 return; 6445 } 6446 6447 max_agg_queues = MAX_AGG_QS(sc); 6448 6449 /* release all mbufs and unload all DMA maps in the TPA pool */ 6450 for (i = 0; i < max_agg_queues; i++) { 6451 if (fp->rx_tpa_info[i].bd.m_map != NULL) { 6452 bus_dmamap_sync(fp->rx_mbuf_tag, 6453 fp->rx_tpa_info[i].bd.m_map, 6454 BUS_DMASYNC_POSTREAD); 6455 bus_dmamap_unload(fp->rx_mbuf_tag, 6456 fp->rx_tpa_info[i].bd.m_map); 6457 } 6458 6459 if (fp->rx_tpa_info[i].bd.m != NULL) { 6460 m_freem(fp->rx_tpa_info[i].bd.m); 6461 fp->rx_tpa_info[i].bd.m = NULL; 6462 fp->eth_q_stats.mbuf_alloc_tpa--; 6463 } 6464 } 6465 } 6466 6467 static void 6468 bxe_free_sge_chain(struct bxe_fastpath *fp) 6469 { 6470 struct bxe_softc *sc; 6471 int i; 6472 6473 sc = fp->sc; 6474 6475 if (fp->rx_sge_mbuf_tag == NULL) { 6476 return; 6477 } 6478 6479 /* rree all mbufs and unload all maps */ 6480 for (i = 0; i < RX_SGE_TOTAL; i++) { 6481 if (fp->rx_sge_mbuf_chain[i].m_map != NULL) { 6482 bus_dmamap_sync(fp->rx_sge_mbuf_tag, 6483 fp->rx_sge_mbuf_chain[i].m_map, 6484 BUS_DMASYNC_POSTREAD); 6485 bus_dmamap_unload(fp->rx_sge_mbuf_tag, 6486 fp->rx_sge_mbuf_chain[i].m_map); 6487 } 6488 6489 if (fp->rx_sge_mbuf_chain[i].m != NULL) { 6490 m_freem(fp->rx_sge_mbuf_chain[i].m); 6491 fp->rx_sge_mbuf_chain[i].m = NULL; 6492 fp->eth_q_stats.mbuf_alloc_sge--; 6493 } 6494 } 6495 } 6496 6497 static void 6498 bxe_free_fp_buffers(struct bxe_softc *sc) 6499 { 6500 struct bxe_fastpath *fp; 6501 int i; 6502 6503 for (i = 0; i < sc->num_queues; i++) { 6504 fp = &sc->fp[i]; 6505 6506 #if __FreeBSD_version >= 800000 6507 if (fp->tx_br != NULL) { 6508 struct mbuf *m; 6509 /* just in case bxe_mq_flush() wasn't called */ 6510 while ((m = buf_ring_dequeue_sc(fp->tx_br)) != NULL) { 6511 m_freem(m); 6512 } 6513 buf_ring_free(fp->tx_br, M_DEVBUF); 6514 fp->tx_br = NULL; 6515 } 6516 #endif 6517 6518 /* free all RX buffers */ 6519 bxe_free_rx_bd_chain(fp); 6520 bxe_free_tpa_pool(fp); 6521 bxe_free_sge_chain(fp); 6522 6523 if (fp->eth_q_stats.mbuf_alloc_rx != 0) { 6524 BLOGE(sc, "failed to claim all rx mbufs (%d left)\n", 6525 fp->eth_q_stats.mbuf_alloc_rx); 6526 } 6527 6528 if (fp->eth_q_stats.mbuf_alloc_sge != 0) { 6529 BLOGE(sc, "failed to claim all sge mbufs (%d left)\n", 6530 fp->eth_q_stats.mbuf_alloc_sge); 6531 } 6532 6533 if (fp->eth_q_stats.mbuf_alloc_tpa != 0) { 6534 BLOGE(sc, "failed to claim all sge mbufs (%d left)\n", 6535 fp->eth_q_stats.mbuf_alloc_tpa); 6536 } 6537 6538 if (fp->eth_q_stats.mbuf_alloc_tx != 0) { 6539 BLOGE(sc, "failed to release tx mbufs (%d left)\n", 6540 fp->eth_q_stats.mbuf_alloc_tx); 6541 } 6542 6543 /* XXX verify all mbufs were reclaimed */ 6544 6545 if (mtx_initialized(&fp->tx_mtx)) { 6546 mtx_destroy(&fp->tx_mtx); 6547 } 6548 6549 if (mtx_initialized(&fp->rx_mtx)) { 6550 mtx_destroy(&fp->rx_mtx); 6551 } 6552 } 6553 } 6554 6555 static int 6556 bxe_alloc_rx_bd_mbuf(struct bxe_fastpath *fp, 6557 uint16_t prev_index, 6558 uint16_t index) 6559 { 6560 struct bxe_sw_rx_bd *rx_buf; 6561 struct eth_rx_bd *rx_bd; 6562 bus_dma_segment_t segs[1]; 6563 bus_dmamap_t map; 6564 struct mbuf *m; 6565 int nsegs, rc; 6566 6567 rc = 0; 6568 6569 /* allocate the new RX BD mbuf */ 6570 m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, fp->mbuf_alloc_size); 6571 if (__predict_false(m == NULL)) { 6572 fp->eth_q_stats.mbuf_rx_bd_alloc_failed++; 6573 return (ENOBUFS); 6574 } 6575 6576 fp->eth_q_stats.mbuf_alloc_rx++; 6577 6578 /* initialize the mbuf buffer length */ 6579 m->m_pkthdr.len = m->m_len = fp->rx_buf_size; 6580 6581 /* map the mbuf into non-paged pool */ 6582 rc = bus_dmamap_load_mbuf_sg(fp->rx_mbuf_tag, 6583 fp->rx_mbuf_spare_map, 6584 m, segs, &nsegs, BUS_DMA_NOWAIT); 6585 if (__predict_false(rc != 0)) { 6586 fp->eth_q_stats.mbuf_rx_bd_mapping_failed++; 6587 m_freem(m); 6588 fp->eth_q_stats.mbuf_alloc_rx--; 6589 return (rc); 6590 } 6591 6592 /* all mbufs must map to a single segment */ 6593 KASSERT((nsegs == 1), ("Too many segments, %d returned!", nsegs)); 6594 6595 /* release any existing RX BD mbuf mappings */ 6596 6597 if (prev_index != index) { 6598 rx_buf = &fp->rx_mbuf_chain[prev_index]; 6599 6600 if (rx_buf->m_map != NULL) { 6601 bus_dmamap_sync(fp->rx_mbuf_tag, rx_buf->m_map, 6602 BUS_DMASYNC_POSTREAD); 6603 bus_dmamap_unload(fp->rx_mbuf_tag, rx_buf->m_map); 6604 } 6605 6606 /* 6607 * We only get here from bxe_rxeof() when the maximum number 6608 * of rx buffers is less than RX_BD_USABLE. bxe_rxeof() already 6609 * holds the mbuf in the prev_index so it's OK to NULL it out 6610 * here without concern of a memory leak. 6611 */ 6612 fp->rx_mbuf_chain[prev_index].m = NULL; 6613 } 6614 6615 rx_buf = &fp->rx_mbuf_chain[index]; 6616 6617 if (rx_buf->m_map != NULL) { 6618 bus_dmamap_sync(fp->rx_mbuf_tag, rx_buf->m_map, 6619 BUS_DMASYNC_POSTREAD); 6620 bus_dmamap_unload(fp->rx_mbuf_tag, rx_buf->m_map); 6621 } 6622 6623 /* save the mbuf and mapping info for a future packet */ 6624 map = (prev_index != index) ? 6625 fp->rx_mbuf_chain[prev_index].m_map : rx_buf->m_map; 6626 rx_buf->m_map = fp->rx_mbuf_spare_map; 6627 fp->rx_mbuf_spare_map = map; 6628 bus_dmamap_sync(fp->rx_mbuf_tag, rx_buf->m_map, 6629 BUS_DMASYNC_PREREAD); 6630 rx_buf->m = m; 6631 6632 rx_bd = &fp->rx_chain[index]; 6633 rx_bd->addr_hi = htole32(U64_HI(segs[0].ds_addr)); 6634 rx_bd->addr_lo = htole32(U64_LO(segs[0].ds_addr)); 6635 6636 return (rc); 6637 } 6638 6639 static int 6640 bxe_alloc_rx_tpa_mbuf(struct bxe_fastpath *fp, 6641 int queue) 6642 { 6643 struct bxe_sw_tpa_info *tpa_info = &fp->rx_tpa_info[queue]; 6644 bus_dma_segment_t segs[1]; 6645 bus_dmamap_t map; 6646 struct mbuf *m; 6647 int nsegs; 6648 int rc = 0; 6649 6650 /* allocate the new TPA mbuf */ 6651 m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, fp->mbuf_alloc_size); 6652 if (__predict_false(m == NULL)) { 6653 fp->eth_q_stats.mbuf_rx_tpa_alloc_failed++; 6654 return (ENOBUFS); 6655 } 6656 6657 fp->eth_q_stats.mbuf_alloc_tpa++; 6658 6659 /* initialize the mbuf buffer length */ 6660 m->m_pkthdr.len = m->m_len = fp->rx_buf_size; 6661 6662 /* map the mbuf into non-paged pool */ 6663 rc = bus_dmamap_load_mbuf_sg(fp->rx_mbuf_tag, 6664 fp->rx_tpa_info_mbuf_spare_map, 6665 m, segs, &nsegs, BUS_DMA_NOWAIT); 6666 if (__predict_false(rc != 0)) { 6667 fp->eth_q_stats.mbuf_rx_tpa_mapping_failed++; 6668 m_free(m); 6669 fp->eth_q_stats.mbuf_alloc_tpa--; 6670 return (rc); 6671 } 6672 6673 /* all mbufs must map to a single segment */ 6674 KASSERT((nsegs == 1), ("Too many segments, %d returned!", nsegs)); 6675 6676 /* release any existing TPA mbuf mapping */ 6677 if (tpa_info->bd.m_map != NULL) { 6678 bus_dmamap_sync(fp->rx_mbuf_tag, tpa_info->bd.m_map, 6679 BUS_DMASYNC_POSTREAD); 6680 bus_dmamap_unload(fp->rx_mbuf_tag, tpa_info->bd.m_map); 6681 } 6682 6683 /* save the mbuf and mapping info for the TPA mbuf */ 6684 map = tpa_info->bd.m_map; 6685 tpa_info->bd.m_map = fp->rx_tpa_info_mbuf_spare_map; 6686 fp->rx_tpa_info_mbuf_spare_map = map; 6687 bus_dmamap_sync(fp->rx_mbuf_tag, tpa_info->bd.m_map, 6688 BUS_DMASYNC_PREREAD); 6689 tpa_info->bd.m = m; 6690 tpa_info->seg = segs[0]; 6691 6692 return (rc); 6693 } 6694 6695 /* 6696 * Allocate an mbuf and assign it to the receive scatter gather chain. The 6697 * caller must take care to save a copy of the existing mbuf in the SG mbuf 6698 * chain. 6699 */ 6700 static int 6701 bxe_alloc_rx_sge_mbuf(struct bxe_fastpath *fp, 6702 uint16_t index) 6703 { 6704 struct bxe_sw_rx_bd *sge_buf; 6705 struct eth_rx_sge *sge; 6706 bus_dma_segment_t segs[1]; 6707 bus_dmamap_t map; 6708 struct mbuf *m; 6709 int nsegs; 6710 int rc = 0; 6711 6712 /* allocate a new SGE mbuf */ 6713 m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, SGE_PAGE_SIZE); 6714 if (__predict_false(m == NULL)) { 6715 fp->eth_q_stats.mbuf_rx_sge_alloc_failed++; 6716 return (ENOMEM); 6717 } 6718 6719 fp->eth_q_stats.mbuf_alloc_sge++; 6720 6721 /* initialize the mbuf buffer length */ 6722 m->m_pkthdr.len = m->m_len = SGE_PAGE_SIZE; 6723 6724 /* map the SGE mbuf into non-paged pool */ 6725 rc = bus_dmamap_load_mbuf_sg(fp->rx_sge_mbuf_tag, 6726 fp->rx_sge_mbuf_spare_map, 6727 m, segs, &nsegs, BUS_DMA_NOWAIT); 6728 if (__predict_false(rc != 0)) { 6729 fp->eth_q_stats.mbuf_rx_sge_mapping_failed++; 6730 m_freem(m); 6731 fp->eth_q_stats.mbuf_alloc_sge--; 6732 return (rc); 6733 } 6734 6735 /* all mbufs must map to a single segment */ 6736 KASSERT((nsegs == 1), ("Too many segments, %d returned!", nsegs)); 6737 6738 sge_buf = &fp->rx_sge_mbuf_chain[index]; 6739 6740 /* release any existing SGE mbuf mapping */ 6741 if (sge_buf->m_map != NULL) { 6742 bus_dmamap_sync(fp->rx_sge_mbuf_tag, sge_buf->m_map, 6743 BUS_DMASYNC_POSTREAD); 6744 bus_dmamap_unload(fp->rx_sge_mbuf_tag, sge_buf->m_map); 6745 } 6746 6747 /* save the mbuf and mapping info for a future packet */ 6748 map = sge_buf->m_map; 6749 sge_buf->m_map = fp->rx_sge_mbuf_spare_map; 6750 fp->rx_sge_mbuf_spare_map = map; 6751 bus_dmamap_sync(fp->rx_sge_mbuf_tag, sge_buf->m_map, 6752 BUS_DMASYNC_PREREAD); 6753 sge_buf->m = m; 6754 6755 sge = &fp->rx_sge_chain[index]; 6756 sge->addr_hi = htole32(U64_HI(segs[0].ds_addr)); 6757 sge->addr_lo = htole32(U64_LO(segs[0].ds_addr)); 6758 6759 return (rc); 6760 } 6761 6762 static __noinline int 6763 bxe_alloc_fp_buffers(struct bxe_softc *sc) 6764 { 6765 struct bxe_fastpath *fp; 6766 int i, j, rc = 0; 6767 int ring_prod, cqe_ring_prod; 6768 int max_agg_queues; 6769 6770 for (i = 0; i < sc->num_queues; i++) { 6771 fp = &sc->fp[i]; 6772 6773 #if __FreeBSD_version >= 800000 6774 fp->tx_br = buf_ring_alloc(BXE_BR_SIZE, M_DEVBUF, 6775 M_NOWAIT, &fp->tx_mtx); 6776 if (fp->tx_br == NULL) { 6777 BLOGE(sc, "buf_ring alloc fail for fp[%02d]\n", i); 6778 goto bxe_alloc_fp_buffers_error; 6779 } 6780 #endif 6781 6782 ring_prod = cqe_ring_prod = 0; 6783 fp->rx_bd_cons = 0; 6784 fp->rx_cq_cons = 0; 6785 6786 /* allocate buffers for the RX BDs in RX BD chain */ 6787 for (j = 0; j < sc->max_rx_bufs; j++) { 6788 rc = bxe_alloc_rx_bd_mbuf(fp, ring_prod, ring_prod); 6789 if (rc != 0) { 6790 BLOGE(sc, "mbuf alloc fail for fp[%02d] rx chain (%d)\n", 6791 i, rc); 6792 goto bxe_alloc_fp_buffers_error; 6793 } 6794 6795 ring_prod = RX_BD_NEXT(ring_prod); 6796 cqe_ring_prod = RCQ_NEXT(cqe_ring_prod); 6797 } 6798 6799 fp->rx_bd_prod = ring_prod; 6800 fp->rx_cq_prod = cqe_ring_prod; 6801 fp->eth_q_stats.rx_calls = fp->eth_q_stats.rx_pkts = 0; 6802 6803 if (sc->ifnet->if_capenable & IFCAP_LRO) { 6804 max_agg_queues = MAX_AGG_QS(sc); 6805 6806 fp->tpa_enable = TRUE; 6807 6808 /* fill the TPA pool */ 6809 for (j = 0; j < max_agg_queues; j++) { 6810 rc = bxe_alloc_rx_tpa_mbuf(fp, j); 6811 if (rc != 0) { 6812 BLOGE(sc, "mbuf alloc fail for fp[%02d] TPA queue %d\n", 6813 i, j); 6814 fp->tpa_enable = FALSE; 6815 goto bxe_alloc_fp_buffers_error; 6816 } 6817 6818 fp->rx_tpa_info[j].state = BXE_TPA_STATE_STOP; 6819 } 6820 6821 if (fp->tpa_enable) { 6822 /* fill the RX SGE chain */ 6823 ring_prod = 0; 6824 for (j = 0; j < RX_SGE_USABLE; j++) { 6825 rc = bxe_alloc_rx_sge_mbuf(fp, ring_prod); 6826 if (rc != 0) { 6827 BLOGE(sc, "mbuf alloc fail for fp[%02d] SGE %d\n", 6828 i, ring_prod); 6829 fp->tpa_enable = FALSE; 6830 ring_prod = 0; 6831 goto bxe_alloc_fp_buffers_error; 6832 } 6833 6834 ring_prod = RX_SGE_NEXT(ring_prod); 6835 } 6836 6837 fp->rx_sge_prod = ring_prod; 6838 } 6839 } 6840 } 6841 6842 return (0); 6843 6844 bxe_alloc_fp_buffers_error: 6845 6846 /* unwind what was already allocated */ 6847 bxe_free_rx_bd_chain(fp); 6848 bxe_free_tpa_pool(fp); 6849 bxe_free_sge_chain(fp); 6850 6851 return (ENOBUFS); 6852 } 6853 6854 static void 6855 bxe_free_fw_stats_mem(struct bxe_softc *sc) 6856 { 6857 bxe_dma_free(sc, &sc->fw_stats_dma); 6858 6859 sc->fw_stats_num = 0; 6860 6861 sc->fw_stats_req_size = 0; 6862 sc->fw_stats_req = NULL; 6863 sc->fw_stats_req_mapping = 0; 6864 6865 sc->fw_stats_data_size = 0; 6866 sc->fw_stats_data = NULL; 6867 sc->fw_stats_data_mapping = 0; 6868 } 6869 6870 static int 6871 bxe_alloc_fw_stats_mem(struct bxe_softc *sc) 6872 { 6873 uint8_t num_queue_stats; 6874 int num_groups; 6875 6876 /* number of queues for statistics is number of eth queues */ 6877 num_queue_stats = BXE_NUM_ETH_QUEUES(sc); 6878 6879 /* 6880 * Total number of FW statistics requests = 6881 * 1 for port stats + 1 for PF stats + num of queues 6882 */ 6883 sc->fw_stats_num = (2 + num_queue_stats); 6884 6885 /* 6886 * Request is built from stats_query_header and an array of 6887 * stats_query_cmd_group each of which contains STATS_QUERY_CMD_COUNT 6888 * rules. The real number or requests is configured in the 6889 * stats_query_header. 6890 */ 6891 num_groups = 6892 ((sc->fw_stats_num / STATS_QUERY_CMD_COUNT) + 6893 ((sc->fw_stats_num % STATS_QUERY_CMD_COUNT) ? 1 : 0)); 6894 6895 BLOGD(sc, DBG_LOAD, "stats fw_stats_num %d num_groups %d\n", 6896 sc->fw_stats_num, num_groups); 6897 6898 sc->fw_stats_req_size = 6899 (sizeof(struct stats_query_header) + 6900 (num_groups * sizeof(struct stats_query_cmd_group))); 6901 6902 /* 6903 * Data for statistics requests + stats_counter. 6904 * stats_counter holds per-STORM counters that are incremented when 6905 * STORM has finished with the current request. Memory for FCoE 6906 * offloaded statistics are counted anyway, even if they will not be sent. 6907 * VF stats are not accounted for here as the data of VF stats is stored 6908 * in memory allocated by the VF, not here. 6909 */ 6910 sc->fw_stats_data_size = 6911 (sizeof(struct stats_counter) + 6912 sizeof(struct per_port_stats) + 6913 sizeof(struct per_pf_stats) + 6914 /* sizeof(struct fcoe_statistics_params) + */ 6915 (sizeof(struct per_queue_stats) * num_queue_stats)); 6916 6917 if (bxe_dma_alloc(sc, (sc->fw_stats_req_size + sc->fw_stats_data_size), 6918 &sc->fw_stats_dma, "fw stats") != 0) { 6919 bxe_free_fw_stats_mem(sc); 6920 return (-1); 6921 } 6922 6923 /* set up the shortcuts */ 6924 6925 sc->fw_stats_req = 6926 (struct bxe_fw_stats_req *)sc->fw_stats_dma.vaddr; 6927 sc->fw_stats_req_mapping = sc->fw_stats_dma.paddr; 6928 6929 sc->fw_stats_data = 6930 (struct bxe_fw_stats_data *)((uint8_t *)sc->fw_stats_dma.vaddr + 6931 sc->fw_stats_req_size); 6932 sc->fw_stats_data_mapping = (sc->fw_stats_dma.paddr + 6933 sc->fw_stats_req_size); 6934 6935 BLOGD(sc, DBG_LOAD, "statistics request base address set to %#jx\n", 6936 (uintmax_t)sc->fw_stats_req_mapping); 6937 6938 BLOGD(sc, DBG_LOAD, "statistics data base address set to %#jx\n", 6939 (uintmax_t)sc->fw_stats_data_mapping); 6940 6941 return (0); 6942 } 6943 6944 /* 6945 * Bits map: 6946 * 0-7 - Engine0 load counter. 6947 * 8-15 - Engine1 load counter. 6948 * 16 - Engine0 RESET_IN_PROGRESS bit. 6949 * 17 - Engine1 RESET_IN_PROGRESS bit. 6950 * 18 - Engine0 ONE_IS_LOADED. Set when there is at least one active 6951 * function on the engine 6952 * 19 - Engine1 ONE_IS_LOADED. 6953 * 20 - Chip reset flow bit. When set none-leader must wait for both engines 6954 * leader to complete (check for both RESET_IN_PROGRESS bits and not 6955 * for just the one belonging to its engine). 6956 */ 6957 #define BXE_RECOVERY_GLOB_REG MISC_REG_GENERIC_POR_1 6958 #define BXE_PATH0_LOAD_CNT_MASK 0x000000ff 6959 #define BXE_PATH0_LOAD_CNT_SHIFT 0 6960 #define BXE_PATH1_LOAD_CNT_MASK 0x0000ff00 6961 #define BXE_PATH1_LOAD_CNT_SHIFT 8 6962 #define BXE_PATH0_RST_IN_PROG_BIT 0x00010000 6963 #define BXE_PATH1_RST_IN_PROG_BIT 0x00020000 6964 #define BXE_GLOBAL_RESET_BIT 0x00040000 6965 6966 /* set the GLOBAL_RESET bit, should be run under rtnl lock */ 6967 static void 6968 bxe_set_reset_global(struct bxe_softc *sc) 6969 { 6970 uint32_t val; 6971 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG); 6972 val = REG_RD(sc, BXE_RECOVERY_GLOB_REG); 6973 REG_WR(sc, BXE_RECOVERY_GLOB_REG, val | BXE_GLOBAL_RESET_BIT); 6974 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG); 6975 } 6976 6977 /* clear the GLOBAL_RESET bit, should be run under rtnl lock */ 6978 static void 6979 bxe_clear_reset_global(struct bxe_softc *sc) 6980 { 6981 uint32_t val; 6982 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG); 6983 val = REG_RD(sc, BXE_RECOVERY_GLOB_REG); 6984 REG_WR(sc, BXE_RECOVERY_GLOB_REG, val & (~BXE_GLOBAL_RESET_BIT)); 6985 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG); 6986 } 6987 6988 /* checks the GLOBAL_RESET bit, should be run under rtnl lock */ 6989 static uint8_t 6990 bxe_reset_is_global(struct bxe_softc *sc) 6991 { 6992 uint32_t val = REG_RD(sc, BXE_RECOVERY_GLOB_REG); 6993 BLOGD(sc, DBG_LOAD, "GLOB_REG=0x%08x\n", val); 6994 return (val & BXE_GLOBAL_RESET_BIT) ? TRUE : FALSE; 6995 } 6996 6997 /* clear RESET_IN_PROGRESS bit for the engine, should be run under rtnl lock */ 6998 static void 6999 bxe_set_reset_done(struct bxe_softc *sc) 7000 { 7001 uint32_t val; 7002 uint32_t bit = SC_PATH(sc) ? BXE_PATH1_RST_IN_PROG_BIT : 7003 BXE_PATH0_RST_IN_PROG_BIT; 7004 7005 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG); 7006 7007 val = REG_RD(sc, BXE_RECOVERY_GLOB_REG); 7008 /* Clear the bit */ 7009 val &= ~bit; 7010 REG_WR(sc, BXE_RECOVERY_GLOB_REG, val); 7011 7012 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG); 7013 } 7014 7015 /* set RESET_IN_PROGRESS for the engine, should be run under rtnl lock */ 7016 static void 7017 bxe_set_reset_in_progress(struct bxe_softc *sc) 7018 { 7019 uint32_t val; 7020 uint32_t bit = SC_PATH(sc) ? BXE_PATH1_RST_IN_PROG_BIT : 7021 BXE_PATH0_RST_IN_PROG_BIT; 7022 7023 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG); 7024 7025 val = REG_RD(sc, BXE_RECOVERY_GLOB_REG); 7026 /* Set the bit */ 7027 val |= bit; 7028 REG_WR(sc, BXE_RECOVERY_GLOB_REG, val); 7029 7030 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG); 7031 } 7032 7033 /* check RESET_IN_PROGRESS bit for an engine, should be run under rtnl lock */ 7034 static uint8_t 7035 bxe_reset_is_done(struct bxe_softc *sc, 7036 int engine) 7037 { 7038 uint32_t val = REG_RD(sc, BXE_RECOVERY_GLOB_REG); 7039 uint32_t bit = engine ? BXE_PATH1_RST_IN_PROG_BIT : 7040 BXE_PATH0_RST_IN_PROG_BIT; 7041 7042 /* return false if bit is set */ 7043 return (val & bit) ? FALSE : TRUE; 7044 } 7045 7046 /* get the load status for an engine, should be run under rtnl lock */ 7047 static uint8_t 7048 bxe_get_load_status(struct bxe_softc *sc, 7049 int engine) 7050 { 7051 uint32_t mask = engine ? BXE_PATH1_LOAD_CNT_MASK : 7052 BXE_PATH0_LOAD_CNT_MASK; 7053 uint32_t shift = engine ? BXE_PATH1_LOAD_CNT_SHIFT : 7054 BXE_PATH0_LOAD_CNT_SHIFT; 7055 uint32_t val = REG_RD(sc, BXE_RECOVERY_GLOB_REG); 7056 7057 BLOGD(sc, DBG_LOAD, "Old value for GLOB_REG=0x%08x\n", val); 7058 7059 val = ((val & mask) >> shift); 7060 7061 BLOGD(sc, DBG_LOAD, "Load mask engine %d = 0x%08x\n", engine, val); 7062 7063 return (val != 0); 7064 } 7065 7066 /* set pf load mark */ 7067 /* XXX needs to be under rtnl lock */ 7068 static void 7069 bxe_set_pf_load(struct bxe_softc *sc) 7070 { 7071 uint32_t val; 7072 uint32_t val1; 7073 uint32_t mask = SC_PATH(sc) ? BXE_PATH1_LOAD_CNT_MASK : 7074 BXE_PATH0_LOAD_CNT_MASK; 7075 uint32_t shift = SC_PATH(sc) ? BXE_PATH1_LOAD_CNT_SHIFT : 7076 BXE_PATH0_LOAD_CNT_SHIFT; 7077 7078 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG); 7079 7080 val = REG_RD(sc, BXE_RECOVERY_GLOB_REG); 7081 BLOGD(sc, DBG_LOAD, "Old value for GLOB_REG=0x%08x\n", val); 7082 7083 /* get the current counter value */ 7084 val1 = ((val & mask) >> shift); 7085 7086 /* set bit of this PF */ 7087 val1 |= (1 << SC_ABS_FUNC(sc)); 7088 7089 /* clear the old value */ 7090 val &= ~mask; 7091 7092 /* set the new one */ 7093 val |= ((val1 << shift) & mask); 7094 7095 REG_WR(sc, BXE_RECOVERY_GLOB_REG, val); 7096 7097 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG); 7098 } 7099 7100 /* clear pf load mark */ 7101 /* XXX needs to be under rtnl lock */ 7102 static uint8_t 7103 bxe_clear_pf_load(struct bxe_softc *sc) 7104 { 7105 uint32_t val1, val; 7106 uint32_t mask = SC_PATH(sc) ? BXE_PATH1_LOAD_CNT_MASK : 7107 BXE_PATH0_LOAD_CNT_MASK; 7108 uint32_t shift = SC_PATH(sc) ? BXE_PATH1_LOAD_CNT_SHIFT : 7109 BXE_PATH0_LOAD_CNT_SHIFT; 7110 7111 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG); 7112 val = REG_RD(sc, BXE_RECOVERY_GLOB_REG); 7113 BLOGD(sc, DBG_LOAD, "Old GEN_REG_VAL=0x%08x\n", val); 7114 7115 /* get the current counter value */ 7116 val1 = (val & mask) >> shift; 7117 7118 /* clear bit of that PF */ 7119 val1 &= ~(1 << SC_ABS_FUNC(sc)); 7120 7121 /* clear the old value */ 7122 val &= ~mask; 7123 7124 /* set the new one */ 7125 val |= ((val1 << shift) & mask); 7126 7127 REG_WR(sc, BXE_RECOVERY_GLOB_REG, val); 7128 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG); 7129 return (val1 != 0); 7130 } 7131 7132 /* send load requrest to mcp and analyze response */ 7133 static int 7134 bxe_nic_load_request(struct bxe_softc *sc, 7135 uint32_t *load_code) 7136 { 7137 /* init fw_seq */ 7138 sc->fw_seq = 7139 (SHMEM_RD(sc, func_mb[SC_FW_MB_IDX(sc)].drv_mb_header) & 7140 DRV_MSG_SEQ_NUMBER_MASK); 7141 7142 BLOGD(sc, DBG_LOAD, "initial fw_seq 0x%04x\n", sc->fw_seq); 7143 7144 /* get the current FW pulse sequence */ 7145 sc->fw_drv_pulse_wr_seq = 7146 (SHMEM_RD(sc, func_mb[SC_FW_MB_IDX(sc)].drv_pulse_mb) & 7147 DRV_PULSE_SEQ_MASK); 7148 7149 BLOGD(sc, DBG_LOAD, "initial drv_pulse 0x%04x\n", 7150 sc->fw_drv_pulse_wr_seq); 7151 7152 /* load request */ 7153 (*load_code) = bxe_fw_command(sc, DRV_MSG_CODE_LOAD_REQ, 7154 DRV_MSG_CODE_LOAD_REQ_WITH_LFA); 7155 7156 /* if the MCP fails to respond we must abort */ 7157 if (!(*load_code)) { 7158 BLOGE(sc, "MCP response failure!\n"); 7159 return (-1); 7160 } 7161 7162 /* if MCP refused then must abort */ 7163 if ((*load_code) == FW_MSG_CODE_DRV_LOAD_REFUSED) { 7164 BLOGE(sc, "MCP refused load request\n"); 7165 return (-1); 7166 } 7167 7168 return (0); 7169 } 7170 7171 /* 7172 * Check whether another PF has already loaded FW to chip. In virtualized 7173 * environments a pf from anoth VM may have already initialized the device 7174 * including loading FW. 7175 */ 7176 static int 7177 bxe_nic_load_analyze_req(struct bxe_softc *sc, 7178 uint32_t load_code) 7179 { 7180 uint32_t my_fw, loaded_fw; 7181 7182 /* is another pf loaded on this engine? */ 7183 if ((load_code != FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) && 7184 (load_code != FW_MSG_CODE_DRV_LOAD_COMMON)) { 7185 /* build my FW version dword */ 7186 my_fw = (BCM_5710_FW_MAJOR_VERSION + 7187 (BCM_5710_FW_MINOR_VERSION << 8 ) + 7188 (BCM_5710_FW_REVISION_VERSION << 16) + 7189 (BCM_5710_FW_ENGINEERING_VERSION << 24)); 7190 7191 /* read loaded FW from chip */ 7192 loaded_fw = REG_RD(sc, XSEM_REG_PRAM); 7193 BLOGD(sc, DBG_LOAD, "loaded FW 0x%08x / my FW 0x%08x\n", 7194 loaded_fw, my_fw); 7195 7196 /* abort nic load if version mismatch */ 7197 if (my_fw != loaded_fw) { 7198 BLOGE(sc, "FW 0x%08x already loaded (mine is 0x%08x)", 7199 loaded_fw, my_fw); 7200 return (-1); 7201 } 7202 } 7203 7204 return (0); 7205 } 7206 7207 /* mark PMF if applicable */ 7208 static void 7209 bxe_nic_load_pmf(struct bxe_softc *sc, 7210 uint32_t load_code) 7211 { 7212 uint32_t ncsi_oem_data_addr; 7213 7214 if ((load_code == FW_MSG_CODE_DRV_LOAD_COMMON) || 7215 (load_code == FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) || 7216 (load_code == FW_MSG_CODE_DRV_LOAD_PORT)) { 7217 /* 7218 * Barrier here for ordering between the writing to sc->port.pmf here 7219 * and reading it from the periodic task. 7220 */ 7221 sc->port.pmf = 1; 7222 mb(); 7223 } else { 7224 sc->port.pmf = 0; 7225 } 7226 7227 BLOGD(sc, DBG_LOAD, "pmf %d\n", sc->port.pmf); 7228 7229 /* XXX needed? */ 7230 if (load_code == FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) { 7231 if (SHMEM2_HAS(sc, ncsi_oem_data_addr)) { 7232 ncsi_oem_data_addr = SHMEM2_RD(sc, ncsi_oem_data_addr); 7233 if (ncsi_oem_data_addr) { 7234 REG_WR(sc, 7235 (ncsi_oem_data_addr + 7236 offsetof(struct glob_ncsi_oem_data, driver_version)), 7237 0); 7238 } 7239 } 7240 } 7241 } 7242 7243 static void 7244 bxe_read_mf_cfg(struct bxe_softc *sc) 7245 { 7246 int n = (CHIP_IS_MODE_4_PORT(sc) ? 2 : 1); 7247 int abs_func; 7248 int vn; 7249 7250 if (BXE_NOMCP(sc)) { 7251 return; /* what should be the default bvalue in this case */ 7252 } 7253 7254 /* 7255 * The formula for computing the absolute function number is... 7256 * For 2 port configuration (4 functions per port): 7257 * abs_func = 2 * vn + SC_PORT + SC_PATH 7258 * For 4 port configuration (2 functions per port): 7259 * abs_func = 4 * vn + 2 * SC_PORT + SC_PATH 7260 */ 7261 for (vn = VN_0; vn < SC_MAX_VN_NUM(sc); vn++) { 7262 abs_func = (n * (2 * vn + SC_PORT(sc)) + SC_PATH(sc)); 7263 if (abs_func >= E1H_FUNC_MAX) { 7264 break; 7265 } 7266 sc->devinfo.mf_info.mf_config[vn] = 7267 MFCFG_RD(sc, func_mf_config[abs_func].config); 7268 } 7269 7270 if (sc->devinfo.mf_info.mf_config[SC_VN(sc)] & 7271 FUNC_MF_CFG_FUNC_DISABLED) { 7272 BLOGD(sc, DBG_LOAD, "mf_cfg function disabled\n"); 7273 sc->flags |= BXE_MF_FUNC_DIS; 7274 } else { 7275 BLOGD(sc, DBG_LOAD, "mf_cfg function enabled\n"); 7276 sc->flags &= ~BXE_MF_FUNC_DIS; 7277 } 7278 } 7279 7280 /* acquire split MCP access lock register */ 7281 static int bxe_acquire_alr(struct bxe_softc *sc) 7282 { 7283 uint32_t j, val; 7284 7285 for (j = 0; j < 1000; j++) { 7286 val = (1UL << 31); 7287 REG_WR(sc, GRCBASE_MCP + 0x9c, val); 7288 val = REG_RD(sc, GRCBASE_MCP + 0x9c); 7289 if (val & (1L << 31)) 7290 break; 7291 7292 DELAY(5000); 7293 } 7294 7295 if (!(val & (1L << 31))) { 7296 BLOGE(sc, "Cannot acquire MCP access lock register\n"); 7297 return (-1); 7298 } 7299 7300 return (0); 7301 } 7302 7303 /* release split MCP access lock register */ 7304 static void bxe_release_alr(struct bxe_softc *sc) 7305 { 7306 REG_WR(sc, GRCBASE_MCP + 0x9c, 0); 7307 } 7308 7309 static void 7310 bxe_fan_failure(struct bxe_softc *sc) 7311 { 7312 int port = SC_PORT(sc); 7313 uint32_t ext_phy_config; 7314 7315 /* mark the failure */ 7316 ext_phy_config = 7317 SHMEM_RD(sc, dev_info.port_hw_config[port].external_phy_config); 7318 7319 ext_phy_config &= ~PORT_HW_CFG_XGXS_EXT_PHY_TYPE_MASK; 7320 ext_phy_config |= PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE; 7321 SHMEM_WR(sc, dev_info.port_hw_config[port].external_phy_config, 7322 ext_phy_config); 7323 7324 /* log the failure */ 7325 BLOGW(sc, "Fan Failure has caused the driver to shutdown " 7326 "the card to prevent permanent damage. " 7327 "Please contact OEM Support for assistance\n"); 7328 7329 /* XXX */ 7330 #if 1 7331 bxe_panic(sc, ("Schedule task to handle fan failure\n")); 7332 #else 7333 /* 7334 * Schedule device reset (unload) 7335 * This is due to some boards consuming sufficient power when driver is 7336 * up to overheat if fan fails. 7337 */ 7338 bxe_set_bit(BXE_SP_RTNL_FAN_FAILURE, &sc->sp_rtnl_state); 7339 schedule_delayed_work(&sc->sp_rtnl_task, 0); 7340 #endif 7341 } 7342 7343 /* this function is called upon a link interrupt */ 7344 static void 7345 bxe_link_attn(struct bxe_softc *sc) 7346 { 7347 uint32_t pause_enabled = 0; 7348 struct host_port_stats *pstats; 7349 int cmng_fns; 7350 7351 /* Make sure that we are synced with the current statistics */ 7352 bxe_stats_handle(sc, STATS_EVENT_STOP); 7353 7354 elink_link_update(&sc->link_params, &sc->link_vars); 7355 7356 if (sc->link_vars.link_up) { 7357 7358 /* dropless flow control */ 7359 if (!CHIP_IS_E1(sc) && sc->dropless_fc) { 7360 pause_enabled = 0; 7361 7362 if (sc->link_vars.flow_ctrl & ELINK_FLOW_CTRL_TX) { 7363 pause_enabled = 1; 7364 } 7365 7366 REG_WR(sc, 7367 (BAR_USTRORM_INTMEM + 7368 USTORM_ETH_PAUSE_ENABLED_OFFSET(SC_PORT(sc))), 7369 pause_enabled); 7370 } 7371 7372 if (sc->link_vars.mac_type != ELINK_MAC_TYPE_EMAC) { 7373 pstats = BXE_SP(sc, port_stats); 7374 /* reset old mac stats */ 7375 memset(&(pstats->mac_stx[0]), 0, sizeof(struct mac_stx)); 7376 } 7377 7378 if (sc->state == BXE_STATE_OPEN) { 7379 bxe_stats_handle(sc, STATS_EVENT_LINK_UP); 7380 } 7381 } 7382 7383 if (sc->link_vars.link_up && sc->link_vars.line_speed) { 7384 cmng_fns = bxe_get_cmng_fns_mode(sc); 7385 7386 if (cmng_fns != CMNG_FNS_NONE) { 7387 bxe_cmng_fns_init(sc, FALSE, cmng_fns); 7388 storm_memset_cmng(sc, &sc->cmng, SC_PORT(sc)); 7389 } else { 7390 /* rate shaping and fairness are disabled */ 7391 BLOGD(sc, DBG_LOAD, "single function mode without fairness\n"); 7392 } 7393 } 7394 7395 bxe_link_report_locked(sc); 7396 7397 if (IS_MF(sc)) { 7398 ; // XXX bxe_link_sync_notify(sc); 7399 } 7400 } 7401 7402 static void 7403 bxe_attn_int_asserted(struct bxe_softc *sc, 7404 uint32_t asserted) 7405 { 7406 int port = SC_PORT(sc); 7407 uint32_t aeu_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 : 7408 MISC_REG_AEU_MASK_ATTN_FUNC_0; 7409 uint32_t nig_int_mask_addr = port ? NIG_REG_MASK_INTERRUPT_PORT1 : 7410 NIG_REG_MASK_INTERRUPT_PORT0; 7411 uint32_t aeu_mask; 7412 uint32_t nig_mask = 0; 7413 uint32_t reg_addr; 7414 uint32_t igu_acked; 7415 uint32_t cnt; 7416 7417 if (sc->attn_state & asserted) { 7418 BLOGE(sc, "IGU ERROR attn=0x%08x\n", asserted); 7419 } 7420 7421 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port); 7422 7423 aeu_mask = REG_RD(sc, aeu_addr); 7424 7425 BLOGD(sc, DBG_INTR, "aeu_mask 0x%08x newly asserted 0x%08x\n", 7426 aeu_mask, asserted); 7427 7428 aeu_mask &= ~(asserted & 0x3ff); 7429 7430 BLOGD(sc, DBG_INTR, "new mask 0x%08x\n", aeu_mask); 7431 7432 REG_WR(sc, aeu_addr, aeu_mask); 7433 7434 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port); 7435 7436 BLOGD(sc, DBG_INTR, "attn_state 0x%08x\n", sc->attn_state); 7437 sc->attn_state |= asserted; 7438 BLOGD(sc, DBG_INTR, "new state 0x%08x\n", sc->attn_state); 7439 7440 if (asserted & ATTN_HARD_WIRED_MASK) { 7441 if (asserted & ATTN_NIG_FOR_FUNC) { 7442 7443 BXE_PHY_LOCK(sc); 7444 7445 /* save nig interrupt mask */ 7446 nig_mask = REG_RD(sc, nig_int_mask_addr); 7447 7448 /* If nig_mask is not set, no need to call the update function */ 7449 if (nig_mask) { 7450 REG_WR(sc, nig_int_mask_addr, 0); 7451 7452 bxe_link_attn(sc); 7453 } 7454 7455 /* handle unicore attn? */ 7456 } 7457 7458 if (asserted & ATTN_SW_TIMER_4_FUNC) { 7459 BLOGD(sc, DBG_INTR, "ATTN_SW_TIMER_4_FUNC!\n"); 7460 } 7461 7462 if (asserted & GPIO_2_FUNC) { 7463 BLOGD(sc, DBG_INTR, "GPIO_2_FUNC!\n"); 7464 } 7465 7466 if (asserted & GPIO_3_FUNC) { 7467 BLOGD(sc, DBG_INTR, "GPIO_3_FUNC!\n"); 7468 } 7469 7470 if (asserted & GPIO_4_FUNC) { 7471 BLOGD(sc, DBG_INTR, "GPIO_4_FUNC!\n"); 7472 } 7473 7474 if (port == 0) { 7475 if (asserted & ATTN_GENERAL_ATTN_1) { 7476 BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_1!\n"); 7477 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_1, 0x0); 7478 } 7479 if (asserted & ATTN_GENERAL_ATTN_2) { 7480 BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_2!\n"); 7481 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_2, 0x0); 7482 } 7483 if (asserted & ATTN_GENERAL_ATTN_3) { 7484 BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_3!\n"); 7485 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_3, 0x0); 7486 } 7487 } else { 7488 if (asserted & ATTN_GENERAL_ATTN_4) { 7489 BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_4!\n"); 7490 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_4, 0x0); 7491 } 7492 if (asserted & ATTN_GENERAL_ATTN_5) { 7493 BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_5!\n"); 7494 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_5, 0x0); 7495 } 7496 if (asserted & ATTN_GENERAL_ATTN_6) { 7497 BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_6!\n"); 7498 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_6, 0x0); 7499 } 7500 } 7501 } /* hardwired */ 7502 7503 if (sc->devinfo.int_block == INT_BLOCK_HC) { 7504 reg_addr = (HC_REG_COMMAND_REG + port*32 + COMMAND_REG_ATTN_BITS_SET); 7505 } else { 7506 reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_SET_UPPER*8); 7507 } 7508 7509 BLOGD(sc, DBG_INTR, "about to mask 0x%08x at %s addr 0x%08x\n", 7510 asserted, 7511 (sc->devinfo.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr); 7512 REG_WR(sc, reg_addr, asserted); 7513 7514 /* now set back the mask */ 7515 if (asserted & ATTN_NIG_FOR_FUNC) { 7516 /* 7517 * Verify that IGU ack through BAR was written before restoring 7518 * NIG mask. This loop should exit after 2-3 iterations max. 7519 */ 7520 if (sc->devinfo.int_block != INT_BLOCK_HC) { 7521 cnt = 0; 7522 7523 do { 7524 igu_acked = REG_RD(sc, IGU_REG_ATTENTION_ACK_BITS); 7525 } while (((igu_acked & ATTN_NIG_FOR_FUNC) == 0) && 7526 (++cnt < MAX_IGU_ATTN_ACK_TO)); 7527 7528 if (!igu_acked) { 7529 BLOGE(sc, "Failed to verify IGU ack on time\n"); 7530 } 7531 7532 mb(); 7533 } 7534 7535 REG_WR(sc, nig_int_mask_addr, nig_mask); 7536 7537 BXE_PHY_UNLOCK(sc); 7538 } 7539 } 7540 7541 static void 7542 bxe_print_next_block(struct bxe_softc *sc, 7543 int idx, 7544 const char *blk) 7545 { 7546 BLOGI(sc, "%s%s", idx ? ", " : "", blk); 7547 } 7548 7549 static int 7550 bxe_check_blocks_with_parity0(struct bxe_softc *sc, 7551 uint32_t sig, 7552 int par_num, 7553 uint8_t print) 7554 { 7555 uint32_t cur_bit = 0; 7556 int i = 0; 7557 7558 for (i = 0; sig; i++) { 7559 cur_bit = ((uint32_t)0x1 << i); 7560 if (sig & cur_bit) { 7561 switch (cur_bit) { 7562 case AEU_INPUTS_ATTN_BITS_BRB_PARITY_ERROR: 7563 if (print) 7564 bxe_print_next_block(sc, par_num++, "BRB"); 7565 break; 7566 case AEU_INPUTS_ATTN_BITS_PARSER_PARITY_ERROR: 7567 if (print) 7568 bxe_print_next_block(sc, par_num++, "PARSER"); 7569 break; 7570 case AEU_INPUTS_ATTN_BITS_TSDM_PARITY_ERROR: 7571 if (print) 7572 bxe_print_next_block(sc, par_num++, "TSDM"); 7573 break; 7574 case AEU_INPUTS_ATTN_BITS_SEARCHER_PARITY_ERROR: 7575 if (print) 7576 bxe_print_next_block(sc, par_num++, "SEARCHER"); 7577 break; 7578 case AEU_INPUTS_ATTN_BITS_TCM_PARITY_ERROR: 7579 if (print) 7580 bxe_print_next_block(sc, par_num++, "TCM"); 7581 break; 7582 case AEU_INPUTS_ATTN_BITS_TSEMI_PARITY_ERROR: 7583 if (print) 7584 bxe_print_next_block(sc, par_num++, "TSEMI"); 7585 break; 7586 case AEU_INPUTS_ATTN_BITS_PBCLIENT_PARITY_ERROR: 7587 if (print) 7588 bxe_print_next_block(sc, par_num++, "XPB"); 7589 break; 7590 } 7591 7592 /* Clear the bit */ 7593 sig &= ~cur_bit; 7594 } 7595 } 7596 7597 return (par_num); 7598 } 7599 7600 static int 7601 bxe_check_blocks_with_parity1(struct bxe_softc *sc, 7602 uint32_t sig, 7603 int par_num, 7604 uint8_t *global, 7605 uint8_t print) 7606 { 7607 int i = 0; 7608 uint32_t cur_bit = 0; 7609 for (i = 0; sig; i++) { 7610 cur_bit = ((uint32_t)0x1 << i); 7611 if (sig & cur_bit) { 7612 switch (cur_bit) { 7613 case AEU_INPUTS_ATTN_BITS_PBF_PARITY_ERROR: 7614 if (print) 7615 bxe_print_next_block(sc, par_num++, "PBF"); 7616 break; 7617 case AEU_INPUTS_ATTN_BITS_QM_PARITY_ERROR: 7618 if (print) 7619 bxe_print_next_block(sc, par_num++, "QM"); 7620 break; 7621 case AEU_INPUTS_ATTN_BITS_TIMERS_PARITY_ERROR: 7622 if (print) 7623 bxe_print_next_block(sc, par_num++, "TM"); 7624 break; 7625 case AEU_INPUTS_ATTN_BITS_XSDM_PARITY_ERROR: 7626 if (print) 7627 bxe_print_next_block(sc, par_num++, "XSDM"); 7628 break; 7629 case AEU_INPUTS_ATTN_BITS_XCM_PARITY_ERROR: 7630 if (print) 7631 bxe_print_next_block(sc, par_num++, "XCM"); 7632 break; 7633 case AEU_INPUTS_ATTN_BITS_XSEMI_PARITY_ERROR: 7634 if (print) 7635 bxe_print_next_block(sc, par_num++, "XSEMI"); 7636 break; 7637 case AEU_INPUTS_ATTN_BITS_DOORBELLQ_PARITY_ERROR: 7638 if (print) 7639 bxe_print_next_block(sc, par_num++, "DOORBELLQ"); 7640 break; 7641 case AEU_INPUTS_ATTN_BITS_NIG_PARITY_ERROR: 7642 if (print) 7643 bxe_print_next_block(sc, par_num++, "NIG"); 7644 break; 7645 case AEU_INPUTS_ATTN_BITS_VAUX_PCI_CORE_PARITY_ERROR: 7646 if (print) 7647 bxe_print_next_block(sc, par_num++, "VAUX PCI CORE"); 7648 *global = TRUE; 7649 break; 7650 case AEU_INPUTS_ATTN_BITS_DEBUG_PARITY_ERROR: 7651 if (print) 7652 bxe_print_next_block(sc, par_num++, "DEBUG"); 7653 break; 7654 case AEU_INPUTS_ATTN_BITS_USDM_PARITY_ERROR: 7655 if (print) 7656 bxe_print_next_block(sc, par_num++, "USDM"); 7657 break; 7658 case AEU_INPUTS_ATTN_BITS_UCM_PARITY_ERROR: 7659 if (print) 7660 bxe_print_next_block(sc, par_num++, "UCM"); 7661 break; 7662 case AEU_INPUTS_ATTN_BITS_USEMI_PARITY_ERROR: 7663 if (print) 7664 bxe_print_next_block(sc, par_num++, "USEMI"); 7665 break; 7666 case AEU_INPUTS_ATTN_BITS_UPB_PARITY_ERROR: 7667 if (print) 7668 bxe_print_next_block(sc, par_num++, "UPB"); 7669 break; 7670 case AEU_INPUTS_ATTN_BITS_CSDM_PARITY_ERROR: 7671 if (print) 7672 bxe_print_next_block(sc, par_num++, "CSDM"); 7673 break; 7674 case AEU_INPUTS_ATTN_BITS_CCM_PARITY_ERROR: 7675 if (print) 7676 bxe_print_next_block(sc, par_num++, "CCM"); 7677 break; 7678 } 7679 7680 /* Clear the bit */ 7681 sig &= ~cur_bit; 7682 } 7683 } 7684 7685 return (par_num); 7686 } 7687 7688 static int 7689 bxe_check_blocks_with_parity2(struct bxe_softc *sc, 7690 uint32_t sig, 7691 int par_num, 7692 uint8_t print) 7693 { 7694 uint32_t cur_bit = 0; 7695 int i = 0; 7696 7697 for (i = 0; sig; i++) { 7698 cur_bit = ((uint32_t)0x1 << i); 7699 if (sig & cur_bit) { 7700 switch (cur_bit) { 7701 case AEU_INPUTS_ATTN_BITS_CSEMI_PARITY_ERROR: 7702 if (print) 7703 bxe_print_next_block(sc, par_num++, "CSEMI"); 7704 break; 7705 case AEU_INPUTS_ATTN_BITS_PXP_PARITY_ERROR: 7706 if (print) 7707 bxe_print_next_block(sc, par_num++, "PXP"); 7708 break; 7709 case AEU_IN_ATTN_BITS_PXPPCICLOCKCLIENT_PARITY_ERROR: 7710 if (print) 7711 bxe_print_next_block(sc, par_num++, "PXPPCICLOCKCLIENT"); 7712 break; 7713 case AEU_INPUTS_ATTN_BITS_CFC_PARITY_ERROR: 7714 if (print) 7715 bxe_print_next_block(sc, par_num++, "CFC"); 7716 break; 7717 case AEU_INPUTS_ATTN_BITS_CDU_PARITY_ERROR: 7718 if (print) 7719 bxe_print_next_block(sc, par_num++, "CDU"); 7720 break; 7721 case AEU_INPUTS_ATTN_BITS_DMAE_PARITY_ERROR: 7722 if (print) 7723 bxe_print_next_block(sc, par_num++, "DMAE"); 7724 break; 7725 case AEU_INPUTS_ATTN_BITS_IGU_PARITY_ERROR: 7726 if (print) 7727 bxe_print_next_block(sc, par_num++, "IGU"); 7728 break; 7729 case AEU_INPUTS_ATTN_BITS_MISC_PARITY_ERROR: 7730 if (print) 7731 bxe_print_next_block(sc, par_num++, "MISC"); 7732 break; 7733 } 7734 7735 /* Clear the bit */ 7736 sig &= ~cur_bit; 7737 } 7738 } 7739 7740 return (par_num); 7741 } 7742 7743 static int 7744 bxe_check_blocks_with_parity3(struct bxe_softc *sc, 7745 uint32_t sig, 7746 int par_num, 7747 uint8_t *global, 7748 uint8_t print) 7749 { 7750 uint32_t cur_bit = 0; 7751 int i = 0; 7752 7753 for (i = 0; sig; i++) { 7754 cur_bit = ((uint32_t)0x1 << i); 7755 if (sig & cur_bit) { 7756 switch (cur_bit) { 7757 case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_ROM_PARITY: 7758 if (print) 7759 bxe_print_next_block(sc, par_num++, "MCP ROM"); 7760 *global = TRUE; 7761 break; 7762 case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_RX_PARITY: 7763 if (print) 7764 bxe_print_next_block(sc, par_num++, 7765 "MCP UMP RX"); 7766 *global = TRUE; 7767 break; 7768 case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_TX_PARITY: 7769 if (print) 7770 bxe_print_next_block(sc, par_num++, 7771 "MCP UMP TX"); 7772 *global = TRUE; 7773 break; 7774 case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY: 7775 if (print) 7776 bxe_print_next_block(sc, par_num++, 7777 "MCP SCPAD"); 7778 *global = TRUE; 7779 break; 7780 } 7781 7782 /* Clear the bit */ 7783 sig &= ~cur_bit; 7784 } 7785 } 7786 7787 return (par_num); 7788 } 7789 7790 static int 7791 bxe_check_blocks_with_parity4(struct bxe_softc *sc, 7792 uint32_t sig, 7793 int par_num, 7794 uint8_t print) 7795 { 7796 uint32_t cur_bit = 0; 7797 int i = 0; 7798 7799 for (i = 0; sig; i++) { 7800 cur_bit = ((uint32_t)0x1 << i); 7801 if (sig & cur_bit) { 7802 switch (cur_bit) { 7803 case AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR: 7804 if (print) 7805 bxe_print_next_block(sc, par_num++, "PGLUE_B"); 7806 break; 7807 case AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR: 7808 if (print) 7809 bxe_print_next_block(sc, par_num++, "ATC"); 7810 break; 7811 } 7812 7813 /* Clear the bit */ 7814 sig &= ~cur_bit; 7815 } 7816 } 7817 7818 return (par_num); 7819 } 7820 7821 static uint8_t 7822 bxe_parity_attn(struct bxe_softc *sc, 7823 uint8_t *global, 7824 uint8_t print, 7825 uint32_t *sig) 7826 { 7827 int par_num = 0; 7828 7829 if ((sig[0] & HW_PRTY_ASSERT_SET_0) || 7830 (sig[1] & HW_PRTY_ASSERT_SET_1) || 7831 (sig[2] & HW_PRTY_ASSERT_SET_2) || 7832 (sig[3] & HW_PRTY_ASSERT_SET_3) || 7833 (sig[4] & HW_PRTY_ASSERT_SET_4)) { 7834 BLOGE(sc, "Parity error: HW block parity attention:\n" 7835 "[0]:0x%08x [1]:0x%08x [2]:0x%08x [3]:0x%08x [4]:0x%08x\n", 7836 (uint32_t)(sig[0] & HW_PRTY_ASSERT_SET_0), 7837 (uint32_t)(sig[1] & HW_PRTY_ASSERT_SET_1), 7838 (uint32_t)(sig[2] & HW_PRTY_ASSERT_SET_2), 7839 (uint32_t)(sig[3] & HW_PRTY_ASSERT_SET_3), 7840 (uint32_t)(sig[4] & HW_PRTY_ASSERT_SET_4)); 7841 7842 if (print) 7843 BLOGI(sc, "Parity errors detected in blocks: "); 7844 7845 par_num = 7846 bxe_check_blocks_with_parity0(sc, sig[0] & 7847 HW_PRTY_ASSERT_SET_0, 7848 par_num, print); 7849 par_num = 7850 bxe_check_blocks_with_parity1(sc, sig[1] & 7851 HW_PRTY_ASSERT_SET_1, 7852 par_num, global, print); 7853 par_num = 7854 bxe_check_blocks_with_parity2(sc, sig[2] & 7855 HW_PRTY_ASSERT_SET_2, 7856 par_num, print); 7857 par_num = 7858 bxe_check_blocks_with_parity3(sc, sig[3] & 7859 HW_PRTY_ASSERT_SET_3, 7860 par_num, global, print); 7861 par_num = 7862 bxe_check_blocks_with_parity4(sc, sig[4] & 7863 HW_PRTY_ASSERT_SET_4, 7864 par_num, print); 7865 7866 if (print) 7867 BLOGI(sc, "\n"); 7868 7869 return (TRUE); 7870 } 7871 7872 return (FALSE); 7873 } 7874 7875 static uint8_t 7876 bxe_chk_parity_attn(struct bxe_softc *sc, 7877 uint8_t *global, 7878 uint8_t print) 7879 { 7880 struct attn_route attn = { {0} }; 7881 int port = SC_PORT(sc); 7882 7883 attn.sig[0] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + port*4); 7884 attn.sig[1] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 + port*4); 7885 attn.sig[2] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 + port*4); 7886 attn.sig[3] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 + port*4); 7887 7888 if (!CHIP_IS_E1x(sc)) 7889 attn.sig[4] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 + port*4); 7890 7891 return (bxe_parity_attn(sc, global, print, attn.sig)); 7892 } 7893 7894 static void 7895 bxe_attn_int_deasserted4(struct bxe_softc *sc, 7896 uint32_t attn) 7897 { 7898 uint32_t val; 7899 7900 if (attn & AEU_INPUTS_ATTN_BITS_PGLUE_HW_INTERRUPT) { 7901 val = REG_RD(sc, PGLUE_B_REG_PGLUE_B_INT_STS_CLR); 7902 BLOGE(sc, "PGLUE hw attention 0x%08x\n", val); 7903 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR) 7904 BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR\n"); 7905 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR) 7906 BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR\n"); 7907 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN) 7908 BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN\n"); 7909 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN) 7910 BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN\n"); 7911 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN) 7912 BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN\n"); 7913 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN) 7914 BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN\n"); 7915 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN) 7916 BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN\n"); 7917 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN) 7918 BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN\n"); 7919 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW) 7920 BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW\n"); 7921 } 7922 7923 if (attn & AEU_INPUTS_ATTN_BITS_ATC_HW_INTERRUPT) { 7924 val = REG_RD(sc, ATC_REG_ATC_INT_STS_CLR); 7925 BLOGE(sc, "ATC hw attention 0x%08x\n", val); 7926 if (val & ATC_ATC_INT_STS_REG_ADDRESS_ERROR) 7927 BLOGE(sc, "ATC_ATC_INT_STS_REG_ADDRESS_ERROR\n"); 7928 if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND) 7929 BLOGE(sc, "ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND\n"); 7930 if (val & ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS) 7931 BLOGE(sc, "ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS\n"); 7932 if (val & ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT) 7933 BLOGE(sc, "ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT\n"); 7934 if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR) 7935 BLOGE(sc, "ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR\n"); 7936 if (val & ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU) 7937 BLOGE(sc, "ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU\n"); 7938 } 7939 7940 if (attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR | 7941 AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)) { 7942 BLOGE(sc, "FATAL parity attention set4 0x%08x\n", 7943 (uint32_t)(attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR | 7944 AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR))); 7945 } 7946 } 7947 7948 static void 7949 bxe_e1h_disable(struct bxe_softc *sc) 7950 { 7951 int port = SC_PORT(sc); 7952 7953 bxe_tx_disable(sc); 7954 7955 REG_WR(sc, NIG_REG_LLH0_FUNC_EN + port*8, 0); 7956 } 7957 7958 static void 7959 bxe_e1h_enable(struct bxe_softc *sc) 7960 { 7961 int port = SC_PORT(sc); 7962 7963 REG_WR(sc, NIG_REG_LLH0_FUNC_EN + port*8, 1); 7964 7965 // XXX bxe_tx_enable(sc); 7966 } 7967 7968 /* 7969 * called due to MCP event (on pmf): 7970 * reread new bandwidth configuration 7971 * configure FW 7972 * notify others function about the change 7973 */ 7974 static void 7975 bxe_config_mf_bw(struct bxe_softc *sc) 7976 { 7977 if (sc->link_vars.link_up) { 7978 bxe_cmng_fns_init(sc, TRUE, CMNG_FNS_MINMAX); 7979 // XXX bxe_link_sync_notify(sc); 7980 } 7981 7982 storm_memset_cmng(sc, &sc->cmng, SC_PORT(sc)); 7983 } 7984 7985 static void 7986 bxe_set_mf_bw(struct bxe_softc *sc) 7987 { 7988 bxe_config_mf_bw(sc); 7989 bxe_fw_command(sc, DRV_MSG_CODE_SET_MF_BW_ACK, 0); 7990 } 7991 7992 static void 7993 bxe_handle_eee_event(struct bxe_softc *sc) 7994 { 7995 BLOGD(sc, DBG_INTR, "EEE - LLDP event\n"); 7996 bxe_fw_command(sc, DRV_MSG_CODE_EEE_RESULTS_ACK, 0); 7997 } 7998 7999 #define DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED 3 8000 8001 static void 8002 bxe_drv_info_ether_stat(struct bxe_softc *sc) 8003 { 8004 struct eth_stats_info *ether_stat = 8005 &sc->sp->drv_info_to_mcp.ether_stat; 8006 8007 strlcpy(ether_stat->version, BXE_DRIVER_VERSION, 8008 ETH_STAT_INFO_VERSION_LEN); 8009 8010 /* XXX (+ MAC_PAD) taken from other driver... verify this is right */ 8011 sc->sp_objs[0].mac_obj.get_n_elements(sc, &sc->sp_objs[0].mac_obj, 8012 DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED, 8013 ether_stat->mac_local + MAC_PAD, 8014 MAC_PAD, ETH_ALEN); 8015 8016 ether_stat->mtu_size = sc->mtu; 8017 8018 ether_stat->feature_flags |= FEATURE_ETH_CHKSUM_OFFLOAD_MASK; 8019 if (sc->ifnet->if_capenable & (IFCAP_TSO4 | IFCAP_TSO6)) { 8020 ether_stat->feature_flags |= FEATURE_ETH_LSO_MASK; 8021 } 8022 8023 // XXX ether_stat->feature_flags |= ???; 8024 8025 ether_stat->promiscuous_mode = 0; // (flags & PROMISC) ? 1 : 0; 8026 8027 ether_stat->txq_size = sc->tx_ring_size; 8028 ether_stat->rxq_size = sc->rx_ring_size; 8029 } 8030 8031 static void 8032 bxe_handle_drv_info_req(struct bxe_softc *sc) 8033 { 8034 enum drv_info_opcode op_code; 8035 uint32_t drv_info_ctl = SHMEM2_RD(sc, drv_info_control); 8036 8037 /* if drv_info version supported by MFW doesn't match - send NACK */ 8038 if ((drv_info_ctl & DRV_INFO_CONTROL_VER_MASK) != DRV_INFO_CUR_VER) { 8039 bxe_fw_command(sc, DRV_MSG_CODE_DRV_INFO_NACK, 0); 8040 return; 8041 } 8042 8043 op_code = ((drv_info_ctl & DRV_INFO_CONTROL_OP_CODE_MASK) >> 8044 DRV_INFO_CONTROL_OP_CODE_SHIFT); 8045 8046 memset(&sc->sp->drv_info_to_mcp, 0, sizeof(union drv_info_to_mcp)); 8047 8048 switch (op_code) { 8049 case ETH_STATS_OPCODE: 8050 bxe_drv_info_ether_stat(sc); 8051 break; 8052 case FCOE_STATS_OPCODE: 8053 case ISCSI_STATS_OPCODE: 8054 default: 8055 /* if op code isn't supported - send NACK */ 8056 bxe_fw_command(sc, DRV_MSG_CODE_DRV_INFO_NACK, 0); 8057 return; 8058 } 8059 8060 /* 8061 * If we got drv_info attn from MFW then these fields are defined in 8062 * shmem2 for sure 8063 */ 8064 SHMEM2_WR(sc, drv_info_host_addr_lo, 8065 U64_LO(BXE_SP_MAPPING(sc, drv_info_to_mcp))); 8066 SHMEM2_WR(sc, drv_info_host_addr_hi, 8067 U64_HI(BXE_SP_MAPPING(sc, drv_info_to_mcp))); 8068 8069 bxe_fw_command(sc, DRV_MSG_CODE_DRV_INFO_ACK, 0); 8070 } 8071 8072 static void 8073 bxe_dcc_event(struct bxe_softc *sc, 8074 uint32_t dcc_event) 8075 { 8076 BLOGD(sc, DBG_INTR, "dcc_event 0x%08x\n", dcc_event); 8077 8078 if (dcc_event & DRV_STATUS_DCC_DISABLE_ENABLE_PF) { 8079 /* 8080 * This is the only place besides the function initialization 8081 * where the sc->flags can change so it is done without any 8082 * locks 8083 */ 8084 if (sc->devinfo.mf_info.mf_config[SC_VN(sc)] & FUNC_MF_CFG_FUNC_DISABLED) { 8085 BLOGD(sc, DBG_INTR, "mf_cfg function disabled\n"); 8086 sc->flags |= BXE_MF_FUNC_DIS; 8087 bxe_e1h_disable(sc); 8088 } else { 8089 BLOGD(sc, DBG_INTR, "mf_cfg function enabled\n"); 8090 sc->flags &= ~BXE_MF_FUNC_DIS; 8091 bxe_e1h_enable(sc); 8092 } 8093 dcc_event &= ~DRV_STATUS_DCC_DISABLE_ENABLE_PF; 8094 } 8095 8096 if (dcc_event & DRV_STATUS_DCC_BANDWIDTH_ALLOCATION) { 8097 bxe_config_mf_bw(sc); 8098 dcc_event &= ~DRV_STATUS_DCC_BANDWIDTH_ALLOCATION; 8099 } 8100 8101 /* Report results to MCP */ 8102 if (dcc_event) 8103 bxe_fw_command(sc, DRV_MSG_CODE_DCC_FAILURE, 0); 8104 else 8105 bxe_fw_command(sc, DRV_MSG_CODE_DCC_OK, 0); 8106 } 8107 8108 static void 8109 bxe_pmf_update(struct bxe_softc *sc) 8110 { 8111 int port = SC_PORT(sc); 8112 uint32_t val; 8113 8114 sc->port.pmf = 1; 8115 BLOGD(sc, DBG_INTR, "pmf %d\n", sc->port.pmf); 8116 8117 /* 8118 * We need the mb() to ensure the ordering between the writing to 8119 * sc->port.pmf here and reading it from the bxe_periodic_task(). 8120 */ 8121 mb(); 8122 8123 /* queue a periodic task */ 8124 // XXX schedule task... 8125 8126 // XXX bxe_dcbx_pmf_update(sc); 8127 8128 /* enable nig attention */ 8129 val = (0xff0f | (1 << (SC_VN(sc) + 4))); 8130 if (sc->devinfo.int_block == INT_BLOCK_HC) { 8131 REG_WR(sc, HC_REG_TRAILING_EDGE_0 + port*8, val); 8132 REG_WR(sc, HC_REG_LEADING_EDGE_0 + port*8, val); 8133 } else if (!CHIP_IS_E1x(sc)) { 8134 REG_WR(sc, IGU_REG_TRAILING_EDGE_LATCH, val); 8135 REG_WR(sc, IGU_REG_LEADING_EDGE_LATCH, val); 8136 } 8137 8138 bxe_stats_handle(sc, STATS_EVENT_PMF); 8139 } 8140 8141 static int 8142 bxe_mc_assert(struct bxe_softc *sc) 8143 { 8144 char last_idx; 8145 int i, rc = 0; 8146 uint32_t row0, row1, row2, row3; 8147 8148 /* XSTORM */ 8149 last_idx = REG_RD8(sc, BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_INDEX_OFFSET); 8150 if (last_idx) 8151 BLOGE(sc, "XSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx); 8152 8153 /* print the asserts */ 8154 for (i = 0; i < STORM_ASSERT_ARRAY_SIZE; i++) { 8155 8156 row0 = REG_RD(sc, BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_OFFSET(i)); 8157 row1 = REG_RD(sc, BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_OFFSET(i) + 4); 8158 row2 = REG_RD(sc, BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_OFFSET(i) + 8); 8159 row3 = REG_RD(sc, BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_OFFSET(i) + 12); 8160 8161 if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) { 8162 BLOGE(sc, "XSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n", 8163 i, row3, row2, row1, row0); 8164 rc++; 8165 } else { 8166 break; 8167 } 8168 } 8169 8170 /* TSTORM */ 8171 last_idx = REG_RD8(sc, BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_INDEX_OFFSET); 8172 if (last_idx) { 8173 BLOGE(sc, "TSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx); 8174 } 8175 8176 /* print the asserts */ 8177 for (i = 0; i < STORM_ASSERT_ARRAY_SIZE; i++) { 8178 8179 row0 = REG_RD(sc, BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_OFFSET(i)); 8180 row1 = REG_RD(sc, BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_OFFSET(i) + 4); 8181 row2 = REG_RD(sc, BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_OFFSET(i) + 8); 8182 row3 = REG_RD(sc, BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_OFFSET(i) + 12); 8183 8184 if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) { 8185 BLOGE(sc, "TSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n", 8186 i, row3, row2, row1, row0); 8187 rc++; 8188 } else { 8189 break; 8190 } 8191 } 8192 8193 /* CSTORM */ 8194 last_idx = REG_RD8(sc, BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_INDEX_OFFSET); 8195 if (last_idx) { 8196 BLOGE(sc, "CSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx); 8197 } 8198 8199 /* print the asserts */ 8200 for (i = 0; i < STORM_ASSERT_ARRAY_SIZE; i++) { 8201 8202 row0 = REG_RD(sc, BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_OFFSET(i)); 8203 row1 = REG_RD(sc, BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_OFFSET(i) + 4); 8204 row2 = REG_RD(sc, BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_OFFSET(i) + 8); 8205 row3 = REG_RD(sc, BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_OFFSET(i) + 12); 8206 8207 if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) { 8208 BLOGE(sc, "CSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n", 8209 i, row3, row2, row1, row0); 8210 rc++; 8211 } else { 8212 break; 8213 } 8214 } 8215 8216 /* USTORM */ 8217 last_idx = REG_RD8(sc, BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_INDEX_OFFSET); 8218 if (last_idx) { 8219 BLOGE(sc, "USTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx); 8220 } 8221 8222 /* print the asserts */ 8223 for (i = 0; i < STORM_ASSERT_ARRAY_SIZE; i++) { 8224 8225 row0 = REG_RD(sc, BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_OFFSET(i)); 8226 row1 = REG_RD(sc, BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_OFFSET(i) + 4); 8227 row2 = REG_RD(sc, BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_OFFSET(i) + 8); 8228 row3 = REG_RD(sc, BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_OFFSET(i) + 12); 8229 8230 if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) { 8231 BLOGE(sc, "USTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n", 8232 i, row3, row2, row1, row0); 8233 rc++; 8234 } else { 8235 break; 8236 } 8237 } 8238 8239 return (rc); 8240 } 8241 8242 static void 8243 bxe_attn_int_deasserted3(struct bxe_softc *sc, 8244 uint32_t attn) 8245 { 8246 int func = SC_FUNC(sc); 8247 uint32_t val; 8248 8249 if (attn & EVEREST_GEN_ATTN_IN_USE_MASK) { 8250 8251 if (attn & BXE_PMF_LINK_ASSERT(sc)) { 8252 8253 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0); 8254 bxe_read_mf_cfg(sc); 8255 sc->devinfo.mf_info.mf_config[SC_VN(sc)] = 8256 MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].config); 8257 val = SHMEM_RD(sc, func_mb[SC_FW_MB_IDX(sc)].drv_status); 8258 8259 if (val & DRV_STATUS_DCC_EVENT_MASK) 8260 bxe_dcc_event(sc, (val & DRV_STATUS_DCC_EVENT_MASK)); 8261 8262 if (val & DRV_STATUS_SET_MF_BW) 8263 bxe_set_mf_bw(sc); 8264 8265 if (val & DRV_STATUS_DRV_INFO_REQ) 8266 bxe_handle_drv_info_req(sc); 8267 8268 #if 0 8269 if (val & DRV_STATUS_VF_DISABLED) 8270 bxe_vf_handle_flr_event(sc); 8271 #endif 8272 8273 if ((sc->port.pmf == 0) && (val & DRV_STATUS_PMF)) 8274 bxe_pmf_update(sc); 8275 8276 #if 0 8277 if (sc->port.pmf && 8278 (val & DRV_STATUS_DCBX_NEGOTIATION_RESULTS) && 8279 (sc->dcbx_enabled > 0)) 8280 /* start dcbx state machine */ 8281 bxe_dcbx_set_params(sc, BXE_DCBX_STATE_NEG_RECEIVED); 8282 #endif 8283 8284 #if 0 8285 if (val & DRV_STATUS_AFEX_EVENT_MASK) 8286 bxe_handle_afex_cmd(sc, val & DRV_STATUS_AFEX_EVENT_MASK); 8287 #endif 8288 8289 if (val & DRV_STATUS_EEE_NEGOTIATION_RESULTS) 8290 bxe_handle_eee_event(sc); 8291 8292 if (sc->link_vars.periodic_flags & 8293 ELINK_PERIODIC_FLAGS_LINK_EVENT) { 8294 /* sync with link */ 8295 BXE_PHY_LOCK(sc); 8296 sc->link_vars.periodic_flags &= 8297 ~ELINK_PERIODIC_FLAGS_LINK_EVENT; 8298 BXE_PHY_UNLOCK(sc); 8299 if (IS_MF(sc)) 8300 ; // XXX bxe_link_sync_notify(sc); 8301 bxe_link_report(sc); 8302 } 8303 8304 /* 8305 * Always call it here: bxe_link_report() will 8306 * prevent the link indication duplication. 8307 */ 8308 bxe_link_status_update(sc); 8309 8310 } else if (attn & BXE_MC_ASSERT_BITS) { 8311 8312 BLOGE(sc, "MC assert!\n"); 8313 bxe_mc_assert(sc); 8314 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_10, 0); 8315 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_9, 0); 8316 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_8, 0); 8317 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_7, 0); 8318 bxe_panic(sc, ("MC assert!\n")); 8319 8320 } else if (attn & BXE_MCP_ASSERT) { 8321 8322 BLOGE(sc, "MCP assert!\n"); 8323 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_11, 0); 8324 // XXX bxe_fw_dump(sc); 8325 8326 } else { 8327 BLOGE(sc, "Unknown HW assert! (attn 0x%08x)\n", attn); 8328 } 8329 } 8330 8331 if (attn & EVEREST_LATCHED_ATTN_IN_USE_MASK) { 8332 BLOGE(sc, "LATCHED attention 0x%08x (masked)\n", attn); 8333 if (attn & BXE_GRC_TIMEOUT) { 8334 val = CHIP_IS_E1(sc) ? 0 : REG_RD(sc, MISC_REG_GRC_TIMEOUT_ATTN); 8335 BLOGE(sc, "GRC time-out 0x%08x\n", val); 8336 } 8337 if (attn & BXE_GRC_RSV) { 8338 val = CHIP_IS_E1(sc) ? 0 : REG_RD(sc, MISC_REG_GRC_RSV_ATTN); 8339 BLOGE(sc, "GRC reserved 0x%08x\n", val); 8340 } 8341 REG_WR(sc, MISC_REG_AEU_CLR_LATCH_SIGNAL, 0x7ff); 8342 } 8343 } 8344 8345 static void 8346 bxe_attn_int_deasserted2(struct bxe_softc *sc, 8347 uint32_t attn) 8348 { 8349 int port = SC_PORT(sc); 8350 int reg_offset; 8351 uint32_t val0, mask0, val1, mask1; 8352 uint32_t val; 8353 8354 if (attn & AEU_INPUTS_ATTN_BITS_CFC_HW_INTERRUPT) { 8355 val = REG_RD(sc, CFC_REG_CFC_INT_STS_CLR); 8356 BLOGE(sc, "CFC hw attention 0x%08x\n", val); 8357 /* CFC error attention */ 8358 if (val & 0x2) { 8359 BLOGE(sc, "FATAL error from CFC\n"); 8360 } 8361 } 8362 8363 if (attn & AEU_INPUTS_ATTN_BITS_PXP_HW_INTERRUPT) { 8364 val = REG_RD(sc, PXP_REG_PXP_INT_STS_CLR_0); 8365 BLOGE(sc, "PXP hw attention-0 0x%08x\n", val); 8366 /* RQ_USDMDP_FIFO_OVERFLOW */ 8367 if (val & 0x18000) { 8368 BLOGE(sc, "FATAL error from PXP\n"); 8369 } 8370 8371 if (!CHIP_IS_E1x(sc)) { 8372 val = REG_RD(sc, PXP_REG_PXP_INT_STS_CLR_1); 8373 BLOGE(sc, "PXP hw attention-1 0x%08x\n", val); 8374 } 8375 } 8376 8377 #define PXP2_EOP_ERROR_BIT PXP2_PXP2_INT_STS_CLR_0_REG_WR_PGLUE_EOP_ERROR 8378 #define AEU_PXP2_HW_INT_BIT AEU_INPUTS_ATTN_BITS_PXPPCICLOCKCLIENT_HW_INTERRUPT 8379 8380 if (attn & AEU_PXP2_HW_INT_BIT) { 8381 /* CQ47854 workaround do not panic on 8382 * PXP2_PXP2_INT_STS_0_REG_WR_PGLUE_EOP_ERROR 8383 */ 8384 if (!CHIP_IS_E1x(sc)) { 8385 mask0 = REG_RD(sc, PXP2_REG_PXP2_INT_MASK_0); 8386 val1 = REG_RD(sc, PXP2_REG_PXP2_INT_STS_1); 8387 mask1 = REG_RD(sc, PXP2_REG_PXP2_INT_MASK_1); 8388 val0 = REG_RD(sc, PXP2_REG_PXP2_INT_STS_0); 8389 /* 8390 * If the olny PXP2_EOP_ERROR_BIT is set in 8391 * STS0 and STS1 - clear it 8392 * 8393 * probably we lose additional attentions between 8394 * STS0 and STS_CLR0, in this case user will not 8395 * be notified about them 8396 */ 8397 if (val0 & mask0 & PXP2_EOP_ERROR_BIT && 8398 !(val1 & mask1)) 8399 val0 = REG_RD(sc, PXP2_REG_PXP2_INT_STS_CLR_0); 8400 8401 /* print the register, since no one can restore it */ 8402 BLOGE(sc, "PXP2_REG_PXP2_INT_STS_CLR_0 0x%08x\n", val0); 8403 8404 /* 8405 * if PXP2_PXP2_INT_STS_0_REG_WR_PGLUE_EOP_ERROR 8406 * then notify 8407 */ 8408 if (val0 & PXP2_EOP_ERROR_BIT) { 8409 BLOGE(sc, "PXP2_WR_PGLUE_EOP_ERROR\n"); 8410 8411 /* 8412 * if only PXP2_PXP2_INT_STS_0_REG_WR_PGLUE_EOP_ERROR is 8413 * set then clear attention from PXP2 block without panic 8414 */ 8415 if (((val0 & mask0) == PXP2_EOP_ERROR_BIT) && 8416 ((val1 & mask1) == 0)) 8417 attn &= ~AEU_PXP2_HW_INT_BIT; 8418 } 8419 } 8420 } 8421 8422 if (attn & HW_INTERRUT_ASSERT_SET_2) { 8423 reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_2 : 8424 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_2); 8425 8426 val = REG_RD(sc, reg_offset); 8427 val &= ~(attn & HW_INTERRUT_ASSERT_SET_2); 8428 REG_WR(sc, reg_offset, val); 8429 8430 BLOGE(sc, "FATAL HW block attention set2 0x%x\n", 8431 (uint32_t)(attn & HW_INTERRUT_ASSERT_SET_2)); 8432 bxe_panic(sc, ("HW block attention set2\n")); 8433 } 8434 } 8435 8436 static void 8437 bxe_attn_int_deasserted1(struct bxe_softc *sc, 8438 uint32_t attn) 8439 { 8440 int port = SC_PORT(sc); 8441 int reg_offset; 8442 uint32_t val; 8443 8444 if (attn & AEU_INPUTS_ATTN_BITS_DOORBELLQ_HW_INTERRUPT) { 8445 val = REG_RD(sc, DORQ_REG_DORQ_INT_STS_CLR); 8446 BLOGE(sc, "DB hw attention 0x%08x\n", val); 8447 /* DORQ discard attention */ 8448 if (val & 0x2) { 8449 BLOGE(sc, "FATAL error from DORQ\n"); 8450 } 8451 } 8452 8453 if (attn & HW_INTERRUT_ASSERT_SET_1) { 8454 reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_1 : 8455 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_1); 8456 8457 val = REG_RD(sc, reg_offset); 8458 val &= ~(attn & HW_INTERRUT_ASSERT_SET_1); 8459 REG_WR(sc, reg_offset, val); 8460 8461 BLOGE(sc, "FATAL HW block attention set1 0x%08x\n", 8462 (uint32_t)(attn & HW_INTERRUT_ASSERT_SET_1)); 8463 bxe_panic(sc, ("HW block attention set1\n")); 8464 } 8465 } 8466 8467 static void 8468 bxe_attn_int_deasserted0(struct bxe_softc *sc, 8469 uint32_t attn) 8470 { 8471 int port = SC_PORT(sc); 8472 int reg_offset; 8473 uint32_t val; 8474 8475 reg_offset = (port) ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 : 8476 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0; 8477 8478 if (attn & AEU_INPUTS_ATTN_BITS_SPIO5) { 8479 val = REG_RD(sc, reg_offset); 8480 val &= ~AEU_INPUTS_ATTN_BITS_SPIO5; 8481 REG_WR(sc, reg_offset, val); 8482 8483 BLOGW(sc, "SPIO5 hw attention\n"); 8484 8485 /* Fan failure attention */ 8486 elink_hw_reset_phy(&sc->link_params); 8487 bxe_fan_failure(sc); 8488 } 8489 8490 if ((attn & sc->link_vars.aeu_int_mask) && sc->port.pmf) { 8491 BXE_PHY_LOCK(sc); 8492 elink_handle_module_detect_int(&sc->link_params); 8493 BXE_PHY_UNLOCK(sc); 8494 } 8495 8496 if (attn & HW_INTERRUT_ASSERT_SET_0) { 8497 val = REG_RD(sc, reg_offset); 8498 val &= ~(attn & HW_INTERRUT_ASSERT_SET_0); 8499 REG_WR(sc, reg_offset, val); 8500 8501 bxe_panic(sc, ("FATAL HW block attention set0 0x%lx\n", 8502 (attn & HW_INTERRUT_ASSERT_SET_0))); 8503 } 8504 } 8505 8506 static void 8507 bxe_attn_int_deasserted(struct bxe_softc *sc, 8508 uint32_t deasserted) 8509 { 8510 struct attn_route attn; 8511 struct attn_route *group_mask; 8512 int port = SC_PORT(sc); 8513 int index; 8514 uint32_t reg_addr; 8515 uint32_t val; 8516 uint32_t aeu_mask; 8517 uint8_t global = FALSE; 8518 8519 /* 8520 * Need to take HW lock because MCP or other port might also 8521 * try to handle this event. 8522 */ 8523 bxe_acquire_alr(sc); 8524 8525 if (bxe_chk_parity_attn(sc, &global, TRUE)) { 8526 /* XXX 8527 * In case of parity errors don't handle attentions so that 8528 * other function would "see" parity errors. 8529 */ 8530 sc->recovery_state = BXE_RECOVERY_INIT; 8531 // XXX schedule a recovery task... 8532 /* disable HW interrupts */ 8533 bxe_int_disable(sc); 8534 bxe_release_alr(sc); 8535 return; 8536 } 8537 8538 attn.sig[0] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + port*4); 8539 attn.sig[1] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 + port*4); 8540 attn.sig[2] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 + port*4); 8541 attn.sig[3] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 + port*4); 8542 if (!CHIP_IS_E1x(sc)) { 8543 attn.sig[4] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 + port*4); 8544 } else { 8545 attn.sig[4] = 0; 8546 } 8547 8548 BLOGD(sc, DBG_INTR, "attn: 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x\n", 8549 attn.sig[0], attn.sig[1], attn.sig[2], attn.sig[3], attn.sig[4]); 8550 8551 for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) { 8552 if (deasserted & (1 << index)) { 8553 group_mask = &sc->attn_group[index]; 8554 8555 BLOGD(sc, DBG_INTR, 8556 "group[%d]: 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x\n", index, 8557 group_mask->sig[0], group_mask->sig[1], 8558 group_mask->sig[2], group_mask->sig[3], 8559 group_mask->sig[4]); 8560 8561 bxe_attn_int_deasserted4(sc, attn.sig[4] & group_mask->sig[4]); 8562 bxe_attn_int_deasserted3(sc, attn.sig[3] & group_mask->sig[3]); 8563 bxe_attn_int_deasserted1(sc, attn.sig[1] & group_mask->sig[1]); 8564 bxe_attn_int_deasserted2(sc, attn.sig[2] & group_mask->sig[2]); 8565 bxe_attn_int_deasserted0(sc, attn.sig[0] & group_mask->sig[0]); 8566 } 8567 } 8568 8569 bxe_release_alr(sc); 8570 8571 if (sc->devinfo.int_block == INT_BLOCK_HC) { 8572 reg_addr = (HC_REG_COMMAND_REG + port*32 + 8573 COMMAND_REG_ATTN_BITS_CLR); 8574 } else { 8575 reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_CLR_UPPER*8); 8576 } 8577 8578 val = ~deasserted; 8579 BLOGD(sc, DBG_INTR, 8580 "about to mask 0x%08x at %s addr 0x%08x\n", val, 8581 (sc->devinfo.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr); 8582 REG_WR(sc, reg_addr, val); 8583 8584 if (~sc->attn_state & deasserted) { 8585 BLOGE(sc, "IGU error\n"); 8586 } 8587 8588 reg_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 : 8589 MISC_REG_AEU_MASK_ATTN_FUNC_0; 8590 8591 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port); 8592 8593 aeu_mask = REG_RD(sc, reg_addr); 8594 8595 BLOGD(sc, DBG_INTR, "aeu_mask 0x%08x newly deasserted 0x%08x\n", 8596 aeu_mask, deasserted); 8597 aeu_mask |= (deasserted & 0x3ff); 8598 BLOGD(sc, DBG_INTR, "new mask 0x%08x\n", aeu_mask); 8599 8600 REG_WR(sc, reg_addr, aeu_mask); 8601 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port); 8602 8603 BLOGD(sc, DBG_INTR, "attn_state 0x%08x\n", sc->attn_state); 8604 sc->attn_state &= ~deasserted; 8605 BLOGD(sc, DBG_INTR, "new state 0x%08x\n", sc->attn_state); 8606 } 8607 8608 static void 8609 bxe_attn_int(struct bxe_softc *sc) 8610 { 8611 /* read local copy of bits */ 8612 uint32_t attn_bits = le32toh(sc->def_sb->atten_status_block.attn_bits); 8613 uint32_t attn_ack = le32toh(sc->def_sb->atten_status_block.attn_bits_ack); 8614 uint32_t attn_state = sc->attn_state; 8615 8616 /* look for changed bits */ 8617 uint32_t asserted = attn_bits & ~attn_ack & ~attn_state; 8618 uint32_t deasserted = ~attn_bits & attn_ack & attn_state; 8619 8620 BLOGD(sc, DBG_INTR, 8621 "attn_bits 0x%08x attn_ack 0x%08x asserted 0x%08x deasserted 0x%08x\n", 8622 attn_bits, attn_ack, asserted, deasserted); 8623 8624 if (~(attn_bits ^ attn_ack) & (attn_bits ^ attn_state)) { 8625 BLOGE(sc, "BAD attention state\n"); 8626 } 8627 8628 /* handle bits that were raised */ 8629 if (asserted) { 8630 bxe_attn_int_asserted(sc, asserted); 8631 } 8632 8633 if (deasserted) { 8634 bxe_attn_int_deasserted(sc, deasserted); 8635 } 8636 } 8637 8638 static uint16_t 8639 bxe_update_dsb_idx(struct bxe_softc *sc) 8640 { 8641 struct host_sp_status_block *def_sb = sc->def_sb; 8642 uint16_t rc = 0; 8643 8644 mb(); /* status block is written to by the chip */ 8645 8646 if (sc->def_att_idx != def_sb->atten_status_block.attn_bits_index) { 8647 sc->def_att_idx = def_sb->atten_status_block.attn_bits_index; 8648 rc |= BXE_DEF_SB_ATT_IDX; 8649 } 8650 8651 if (sc->def_idx != def_sb->sp_sb.running_index) { 8652 sc->def_idx = def_sb->sp_sb.running_index; 8653 rc |= BXE_DEF_SB_IDX; 8654 } 8655 8656 mb(); 8657 8658 return (rc); 8659 } 8660 8661 static inline struct ecore_queue_sp_obj * 8662 bxe_cid_to_q_obj(struct bxe_softc *sc, 8663 uint32_t cid) 8664 { 8665 BLOGD(sc, DBG_SP, "retrieving fp from cid %d\n", cid); 8666 return (&sc->sp_objs[CID_TO_FP(cid, sc)].q_obj); 8667 } 8668 8669 static void 8670 bxe_handle_mcast_eqe(struct bxe_softc *sc) 8671 { 8672 struct ecore_mcast_ramrod_params rparam; 8673 int rc; 8674 8675 memset(&rparam, 0, sizeof(rparam)); 8676 8677 rparam.mcast_obj = &sc->mcast_obj; 8678 8679 BXE_MCAST_LOCK(sc); 8680 8681 /* clear pending state for the last command */ 8682 sc->mcast_obj.raw.clear_pending(&sc->mcast_obj.raw); 8683 8684 /* if there are pending mcast commands - send them */ 8685 if (sc->mcast_obj.check_pending(&sc->mcast_obj)) { 8686 rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_CONT); 8687 if (rc < 0) { 8688 BLOGD(sc, DBG_SP, 8689 "ERROR: Failed to send pending mcast commands (%d)\n", 8690 rc); 8691 } 8692 } 8693 8694 BXE_MCAST_UNLOCK(sc); 8695 } 8696 8697 static void 8698 bxe_handle_classification_eqe(struct bxe_softc *sc, 8699 union event_ring_elem *elem) 8700 { 8701 unsigned long ramrod_flags = 0; 8702 int rc = 0; 8703 uint32_t cid = elem->message.data.eth_event.echo & BXE_SWCID_MASK; 8704 struct ecore_vlan_mac_obj *vlan_mac_obj; 8705 8706 /* always push next commands out, don't wait here */ 8707 bit_set(&ramrod_flags, RAMROD_CONT); 8708 8709 switch (le32toh(elem->message.data.eth_event.echo) >> BXE_SWCID_SHIFT) { 8710 case ECORE_FILTER_MAC_PENDING: 8711 BLOGD(sc, DBG_SP, "Got SETUP_MAC completions\n"); 8712 vlan_mac_obj = &sc->sp_objs[cid].mac_obj; 8713 break; 8714 8715 case ECORE_FILTER_MCAST_PENDING: 8716 BLOGD(sc, DBG_SP, "Got SETUP_MCAST completions\n"); 8717 /* 8718 * This is only relevant for 57710 where multicast MACs are 8719 * configured as unicast MACs using the same ramrod. 8720 */ 8721 bxe_handle_mcast_eqe(sc); 8722 return; 8723 8724 default: 8725 BLOGE(sc, "Unsupported classification command: %d\n", 8726 elem->message.data.eth_event.echo); 8727 return; 8728 } 8729 8730 rc = vlan_mac_obj->complete(sc, vlan_mac_obj, elem, &ramrod_flags); 8731 8732 if (rc < 0) { 8733 BLOGE(sc, "Failed to schedule new commands (%d)\n", rc); 8734 } else if (rc > 0) { 8735 BLOGD(sc, DBG_SP, "Scheduled next pending commands...\n"); 8736 } 8737 } 8738 8739 static void 8740 bxe_handle_rx_mode_eqe(struct bxe_softc *sc, 8741 union event_ring_elem *elem) 8742 { 8743 bxe_clear_bit(ECORE_FILTER_RX_MODE_PENDING, &sc->sp_state); 8744 8745 /* send rx_mode command again if was requested */ 8746 if (bxe_test_and_clear_bit(ECORE_FILTER_RX_MODE_SCHED, 8747 &sc->sp_state)) { 8748 bxe_set_storm_rx_mode(sc); 8749 } 8750 #if 0 8751 else if (bxe_test_and_clear_bit(ECORE_FILTER_ISCSI_ETH_START_SCHED, 8752 &sc->sp_state)) { 8753 bxe_set_iscsi_eth_rx_mode(sc, TRUE); 8754 } 8755 else if (bxe_test_and_clear_bit(ECORE_FILTER_ISCSI_ETH_STOP_SCHED, 8756 &sc->sp_state)) { 8757 bxe_set_iscsi_eth_rx_mode(sc, FALSE); 8758 } 8759 #endif 8760 } 8761 8762 static void 8763 bxe_update_eq_prod(struct bxe_softc *sc, 8764 uint16_t prod) 8765 { 8766 storm_memset_eq_prod(sc, prod, SC_FUNC(sc)); 8767 wmb(); /* keep prod updates ordered */ 8768 } 8769 8770 static void 8771 bxe_eq_int(struct bxe_softc *sc) 8772 { 8773 uint16_t hw_cons, sw_cons, sw_prod; 8774 union event_ring_elem *elem; 8775 uint8_t echo; 8776 uint32_t cid; 8777 uint8_t opcode; 8778 int spqe_cnt = 0; 8779 struct ecore_queue_sp_obj *q_obj; 8780 struct ecore_func_sp_obj *f_obj = &sc->func_obj; 8781 struct ecore_raw_obj *rss_raw = &sc->rss_conf_obj.raw; 8782 8783 hw_cons = le16toh(*sc->eq_cons_sb); 8784 8785 /* 8786 * The hw_cons range is 1-255, 257 - the sw_cons range is 0-254, 256. 8787 * when we get to the next-page we need to adjust so the loop 8788 * condition below will be met. The next element is the size of a 8789 * regular element and hence incrementing by 1 8790 */ 8791 if ((hw_cons & EQ_DESC_MAX_PAGE) == EQ_DESC_MAX_PAGE) { 8792 hw_cons++; 8793 } 8794 8795 /* 8796 * This function may never run in parallel with itself for a 8797 * specific sc and no need for a read memory barrier here. 8798 */ 8799 sw_cons = sc->eq_cons; 8800 sw_prod = sc->eq_prod; 8801 8802 BLOGD(sc, DBG_SP,"EQ: hw_cons=%u sw_cons=%u eq_spq_left=0x%lx\n", 8803 hw_cons, sw_cons, atomic_load_acq_long(&sc->eq_spq_left)); 8804 8805 for (; 8806 sw_cons != hw_cons; 8807 sw_prod = NEXT_EQ_IDX(sw_prod), sw_cons = NEXT_EQ_IDX(sw_cons)) { 8808 8809 elem = &sc->eq[EQ_DESC(sw_cons)]; 8810 8811 #if 0 8812 int rc; 8813 rc = bxe_iov_eq_sp_event(sc, elem); 8814 if (!rc) { 8815 BLOGE(sc, "bxe_iov_eq_sp_event returned %d\n", rc); 8816 goto next_spqe; 8817 } 8818 #endif 8819 8820 /* elem CID originates from FW, actually LE */ 8821 cid = SW_CID(elem->message.data.cfc_del_event.cid); 8822 opcode = elem->message.opcode; 8823 8824 /* handle eq element */ 8825 switch (opcode) { 8826 #if 0 8827 case EVENT_RING_OPCODE_VF_PF_CHANNEL: 8828 BLOGD(sc, DBG_SP, "vf/pf channel element on eq\n"); 8829 bxe_vf_mbx(sc, &elem->message.data.vf_pf_event); 8830 continue; 8831 #endif 8832 8833 case EVENT_RING_OPCODE_STAT_QUERY: 8834 BLOGD(sc, DBG_SP, "got statistics completion event %d\n", 8835 sc->stats_comp++); 8836 /* nothing to do with stats comp */ 8837 goto next_spqe; 8838 8839 case EVENT_RING_OPCODE_CFC_DEL: 8840 /* handle according to cid range */ 8841 /* we may want to verify here that the sc state is HALTING */ 8842 BLOGD(sc, DBG_SP, "got delete ramrod for MULTI[%d]\n", cid); 8843 q_obj = bxe_cid_to_q_obj(sc, cid); 8844 if (q_obj->complete_cmd(sc, q_obj, ECORE_Q_CMD_CFC_DEL)) { 8845 break; 8846 } 8847 goto next_spqe; 8848 8849 case EVENT_RING_OPCODE_STOP_TRAFFIC: 8850 BLOGD(sc, DBG_SP, "got STOP TRAFFIC\n"); 8851 if (f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_TX_STOP)) { 8852 break; 8853 } 8854 // XXX bxe_dcbx_set_params(sc, BXE_DCBX_STATE_TX_PAUSED); 8855 goto next_spqe; 8856 8857 case EVENT_RING_OPCODE_START_TRAFFIC: 8858 BLOGD(sc, DBG_SP, "got START TRAFFIC\n"); 8859 if (f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_TX_START)) { 8860 break; 8861 } 8862 // XXX bxe_dcbx_set_params(sc, BXE_DCBX_STATE_TX_RELEASED); 8863 goto next_spqe; 8864 8865 case EVENT_RING_OPCODE_FUNCTION_UPDATE: 8866 echo = elem->message.data.function_update_event.echo; 8867 if (echo == SWITCH_UPDATE) { 8868 BLOGD(sc, DBG_SP, "got FUNC_SWITCH_UPDATE ramrod\n"); 8869 if (f_obj->complete_cmd(sc, f_obj, 8870 ECORE_F_CMD_SWITCH_UPDATE)) { 8871 break; 8872 } 8873 } 8874 else { 8875 BLOGD(sc, DBG_SP, 8876 "AFEX: ramrod completed FUNCTION_UPDATE\n"); 8877 #if 0 8878 f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_AFEX_UPDATE); 8879 /* 8880 * We will perform the queues update from the sp_core_task as 8881 * all queue SP operations should run with CORE_LOCK. 8882 */ 8883 bxe_set_bit(BXE_SP_CORE_AFEX_F_UPDATE, &sc->sp_core_state); 8884 taskqueue_enqueue(sc->sp_tq, &sc->sp_tq_task); 8885 #endif 8886 } 8887 goto next_spqe; 8888 8889 #if 0 8890 case EVENT_RING_OPCODE_AFEX_VIF_LISTS: 8891 f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_AFEX_VIFLISTS); 8892 bxe_after_afex_vif_lists(sc, elem); 8893 goto next_spqe; 8894 #endif 8895 8896 case EVENT_RING_OPCODE_FORWARD_SETUP: 8897 q_obj = &bxe_fwd_sp_obj(sc, q_obj); 8898 if (q_obj->complete_cmd(sc, q_obj, 8899 ECORE_Q_CMD_SETUP_TX_ONLY)) { 8900 break; 8901 } 8902 goto next_spqe; 8903 8904 case EVENT_RING_OPCODE_FUNCTION_START: 8905 BLOGD(sc, DBG_SP, "got FUNC_START ramrod\n"); 8906 if (f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_START)) { 8907 break; 8908 } 8909 goto next_spqe; 8910 8911 case EVENT_RING_OPCODE_FUNCTION_STOP: 8912 BLOGD(sc, DBG_SP, "got FUNC_STOP ramrod\n"); 8913 if (f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_STOP)) { 8914 break; 8915 } 8916 goto next_spqe; 8917 } 8918 8919 switch (opcode | sc->state) { 8920 case (EVENT_RING_OPCODE_RSS_UPDATE_RULES | BXE_STATE_OPEN): 8921 case (EVENT_RING_OPCODE_RSS_UPDATE_RULES | BXE_STATE_OPENING_WAITING_PORT): 8922 cid = elem->message.data.eth_event.echo & BXE_SWCID_MASK; 8923 BLOGD(sc, DBG_SP, "got RSS_UPDATE ramrod. CID %d\n", cid); 8924 rss_raw->clear_pending(rss_raw); 8925 break; 8926 8927 case (EVENT_RING_OPCODE_SET_MAC | BXE_STATE_OPEN): 8928 case (EVENT_RING_OPCODE_SET_MAC | BXE_STATE_DIAG): 8929 case (EVENT_RING_OPCODE_SET_MAC | BXE_STATE_CLOSING_WAITING_HALT): 8930 case (EVENT_RING_OPCODE_CLASSIFICATION_RULES | BXE_STATE_OPEN): 8931 case (EVENT_RING_OPCODE_CLASSIFICATION_RULES | BXE_STATE_DIAG): 8932 case (EVENT_RING_OPCODE_CLASSIFICATION_RULES | BXE_STATE_CLOSING_WAITING_HALT): 8933 BLOGD(sc, DBG_SP, "got (un)set mac ramrod\n"); 8934 bxe_handle_classification_eqe(sc, elem); 8935 break; 8936 8937 case (EVENT_RING_OPCODE_MULTICAST_RULES | BXE_STATE_OPEN): 8938 case (EVENT_RING_OPCODE_MULTICAST_RULES | BXE_STATE_DIAG): 8939 case (EVENT_RING_OPCODE_MULTICAST_RULES | BXE_STATE_CLOSING_WAITING_HALT): 8940 BLOGD(sc, DBG_SP, "got mcast ramrod\n"); 8941 bxe_handle_mcast_eqe(sc); 8942 break; 8943 8944 case (EVENT_RING_OPCODE_FILTERS_RULES | BXE_STATE_OPEN): 8945 case (EVENT_RING_OPCODE_FILTERS_RULES | BXE_STATE_DIAG): 8946 case (EVENT_RING_OPCODE_FILTERS_RULES | BXE_STATE_CLOSING_WAITING_HALT): 8947 BLOGD(sc, DBG_SP, "got rx_mode ramrod\n"); 8948 bxe_handle_rx_mode_eqe(sc, elem); 8949 break; 8950 8951 default: 8952 /* unknown event log error and continue */ 8953 BLOGE(sc, "Unknown EQ event %d, sc->state 0x%x\n", 8954 elem->message.opcode, sc->state); 8955 } 8956 8957 next_spqe: 8958 spqe_cnt++; 8959 } /* for */ 8960 8961 mb(); 8962 atomic_add_acq_long(&sc->eq_spq_left, spqe_cnt); 8963 8964 sc->eq_cons = sw_cons; 8965 sc->eq_prod = sw_prod; 8966 8967 /* make sure that above mem writes were issued towards the memory */ 8968 wmb(); 8969 8970 /* update producer */ 8971 bxe_update_eq_prod(sc, sc->eq_prod); 8972 } 8973 8974 static void 8975 bxe_handle_sp_tq(void *context, 8976 int pending) 8977 { 8978 struct bxe_softc *sc = (struct bxe_softc *)context; 8979 uint16_t status; 8980 8981 BLOGD(sc, DBG_SP, "---> SP TASK <---\n"); 8982 8983 /* what work needs to be performed? */ 8984 status = bxe_update_dsb_idx(sc); 8985 8986 BLOGD(sc, DBG_SP, "dsb status 0x%04x\n", status); 8987 8988 /* HW attentions */ 8989 if (status & BXE_DEF_SB_ATT_IDX) { 8990 BLOGD(sc, DBG_SP, "---> ATTN INTR <---\n"); 8991 bxe_attn_int(sc); 8992 status &= ~BXE_DEF_SB_ATT_IDX; 8993 } 8994 8995 /* SP events: STAT_QUERY and others */ 8996 if (status & BXE_DEF_SB_IDX) { 8997 /* handle EQ completions */ 8998 BLOGD(sc, DBG_SP, "---> EQ INTR <---\n"); 8999 bxe_eq_int(sc); 9000 bxe_ack_sb(sc, sc->igu_dsb_id, USTORM_ID, 9001 le16toh(sc->def_idx), IGU_INT_NOP, 1); 9002 status &= ~BXE_DEF_SB_IDX; 9003 } 9004 9005 /* if status is non zero then something went wrong */ 9006 if (__predict_false(status)) { 9007 BLOGE(sc, "Got an unknown SP interrupt! (0x%04x)\n", status); 9008 } 9009 9010 /* ack status block only if something was actually handled */ 9011 bxe_ack_sb(sc, sc->igu_dsb_id, ATTENTION_ID, 9012 le16toh(sc->def_att_idx), IGU_INT_ENABLE, 1); 9013 9014 /* 9015 * Must be called after the EQ processing (since eq leads to sriov 9016 * ramrod completion flows). 9017 * This flow may have been scheduled by the arrival of a ramrod 9018 * completion, or by the sriov code rescheduling itself. 9019 */ 9020 // XXX bxe_iov_sp_task(sc); 9021 9022 #if 0 9023 /* AFEX - poll to check if VIFSET_ACK should be sent to MFW */ 9024 if (bxe_test_and_clear_bit(ECORE_AFEX_PENDING_VIFSET_MCP_ACK, 9025 &sc->sp_state)) { 9026 bxe_link_report(sc); 9027 bxe_fw_command(sc, DRV_MSG_CODE_AFEX_VIFSET_ACK, 0); 9028 } 9029 #endif 9030 } 9031 9032 static void 9033 bxe_handle_fp_tq(void *context, 9034 int pending) 9035 { 9036 struct bxe_fastpath *fp = (struct bxe_fastpath *)context; 9037 struct bxe_softc *sc = fp->sc; 9038 uint8_t more_tx = FALSE; 9039 uint8_t more_rx = FALSE; 9040 9041 BLOGD(sc, DBG_INTR, "---> FP TASK QUEUE (%d) <---\n", fp->index); 9042 9043 /* XXX 9044 * IFF_DRV_RUNNING state can't be checked here since we process 9045 * slowpath events on a client queue during setup. Instead 9046 * we need to add a "process/continue" flag here that the driver 9047 * can use to tell the task here not to do anything. 9048 */ 9049 #if 0 9050 if (!(sc->ifnet->if_drv_flags & IFF_DRV_RUNNING)) { 9051 return; 9052 } 9053 #endif 9054 9055 /* update the fastpath index */ 9056 bxe_update_fp_sb_idx(fp); 9057 9058 /* XXX add loop here if ever support multiple tx CoS */ 9059 /* fp->txdata[cos] */ 9060 if (bxe_has_tx_work(fp)) { 9061 BXE_FP_TX_LOCK(fp); 9062 more_tx = bxe_txeof(sc, fp); 9063 BXE_FP_TX_UNLOCK(fp); 9064 } 9065 9066 if (bxe_has_rx_work(fp)) { 9067 more_rx = bxe_rxeof(sc, fp); 9068 } 9069 9070 if (more_rx /*|| more_tx*/) { 9071 /* still more work to do */ 9072 taskqueue_enqueue_fast(fp->tq, &fp->tq_task); 9073 return; 9074 } 9075 9076 bxe_ack_sb(sc, fp->igu_sb_id, USTORM_ID, 9077 le16toh(fp->fp_hc_idx), IGU_INT_ENABLE, 1); 9078 } 9079 9080 static void 9081 bxe_task_fp(struct bxe_fastpath *fp) 9082 { 9083 struct bxe_softc *sc = fp->sc; 9084 uint8_t more_tx = FALSE; 9085 uint8_t more_rx = FALSE; 9086 9087 BLOGD(sc, DBG_INTR, "---> FP TASK ISR (%d) <---\n", fp->index); 9088 9089 /* update the fastpath index */ 9090 bxe_update_fp_sb_idx(fp); 9091 9092 /* XXX add loop here if ever support multiple tx CoS */ 9093 /* fp->txdata[cos] */ 9094 if (bxe_has_tx_work(fp)) { 9095 BXE_FP_TX_LOCK(fp); 9096 more_tx = bxe_txeof(sc, fp); 9097 BXE_FP_TX_UNLOCK(fp); 9098 } 9099 9100 if (bxe_has_rx_work(fp)) { 9101 more_rx = bxe_rxeof(sc, fp); 9102 } 9103 9104 if (more_rx /*|| more_tx*/) { 9105 /* still more work to do, bail out if this ISR and process later */ 9106 taskqueue_enqueue_fast(fp->tq, &fp->tq_task); 9107 return; 9108 } 9109 9110 /* 9111 * Here we write the fastpath index taken before doing any tx or rx work. 9112 * It is very well possible other hw events occurred up to this point and 9113 * they were actually processed accordingly above. Since we're going to 9114 * write an older fastpath index, an interrupt is coming which we might 9115 * not do any work in. 9116 */ 9117 bxe_ack_sb(sc, fp->igu_sb_id, USTORM_ID, 9118 le16toh(fp->fp_hc_idx), IGU_INT_ENABLE, 1); 9119 } 9120 9121 /* 9122 * Legacy interrupt entry point. 9123 * 9124 * Verifies that the controller generated the interrupt and 9125 * then calls a separate routine to handle the various 9126 * interrupt causes: link, RX, and TX. 9127 */ 9128 static void 9129 bxe_intr_legacy(void *xsc) 9130 { 9131 struct bxe_softc *sc = (struct bxe_softc *)xsc; 9132 struct bxe_fastpath *fp; 9133 uint16_t status, mask; 9134 int i; 9135 9136 BLOGD(sc, DBG_INTR, "---> BXE INTx <---\n"); 9137 9138 #if 0 9139 /* Don't handle any interrupts if we're not ready. */ 9140 if (__predict_false(sc->intr_sem != 0)) { 9141 return; 9142 } 9143 #endif 9144 9145 /* 9146 * 0 for ustorm, 1 for cstorm 9147 * the bits returned from ack_int() are 0-15 9148 * bit 0 = attention status block 9149 * bit 1 = fast path status block 9150 * a mask of 0x2 or more = tx/rx event 9151 * a mask of 1 = slow path event 9152 */ 9153 9154 status = bxe_ack_int(sc); 9155 9156 /* the interrupt is not for us */ 9157 if (__predict_false(status == 0)) { 9158 BLOGD(sc, DBG_INTR, "Not our interrupt!\n"); 9159 return; 9160 } 9161 9162 BLOGD(sc, DBG_INTR, "Interrupt status 0x%04x\n", status); 9163 9164 FOR_EACH_ETH_QUEUE(sc, i) { 9165 fp = &sc->fp[i]; 9166 mask = (0x2 << (fp->index + CNIC_SUPPORT(sc))); 9167 if (status & mask) { 9168 /* acknowledge and disable further fastpath interrupts */ 9169 bxe_ack_sb(sc, fp->igu_sb_id, USTORM_ID, 0, IGU_INT_DISABLE, 0); 9170 bxe_task_fp(fp); 9171 status &= ~mask; 9172 } 9173 } 9174 9175 #if 0 9176 if (CNIC_SUPPORT(sc)) { 9177 mask = 0x2; 9178 if (status & (mask | 0x1)) { 9179 ... 9180 status &= ~mask; 9181 } 9182 } 9183 #endif 9184 9185 if (__predict_false(status & 0x1)) { 9186 /* acknowledge and disable further slowpath interrupts */ 9187 bxe_ack_sb(sc, sc->igu_dsb_id, USTORM_ID, 0, IGU_INT_DISABLE, 0); 9188 9189 /* schedule slowpath handler */ 9190 taskqueue_enqueue_fast(sc->sp_tq, &sc->sp_tq_task); 9191 9192 status &= ~0x1; 9193 } 9194 9195 if (__predict_false(status)) { 9196 BLOGW(sc, "Unexpected fastpath status (0x%08x)!\n", status); 9197 } 9198 } 9199 9200 /* slowpath interrupt entry point */ 9201 static void 9202 bxe_intr_sp(void *xsc) 9203 { 9204 struct bxe_softc *sc = (struct bxe_softc *)xsc; 9205 9206 BLOGD(sc, (DBG_INTR | DBG_SP), "---> SP INTR <---\n"); 9207 9208 /* acknowledge and disable further slowpath interrupts */ 9209 bxe_ack_sb(sc, sc->igu_dsb_id, USTORM_ID, 0, IGU_INT_DISABLE, 0); 9210 9211 /* schedule slowpath handler */ 9212 taskqueue_enqueue_fast(sc->sp_tq, &sc->sp_tq_task); 9213 } 9214 9215 /* fastpath interrupt entry point */ 9216 static void 9217 bxe_intr_fp(void *xfp) 9218 { 9219 struct bxe_fastpath *fp = (struct bxe_fastpath *)xfp; 9220 struct bxe_softc *sc = fp->sc; 9221 9222 BLOGD(sc, DBG_INTR, "---> FP INTR %d <---\n", fp->index); 9223 9224 BLOGD(sc, DBG_INTR, 9225 "(cpu=%d) MSI-X fp=%d fw_sb=%d igu_sb=%d\n", 9226 curcpu, fp->index, fp->fw_sb_id, fp->igu_sb_id); 9227 9228 #if 0 9229 /* Don't handle any interrupts if we're not ready. */ 9230 if (__predict_false(sc->intr_sem != 0)) { 9231 return; 9232 } 9233 #endif 9234 9235 /* acknowledge and disable further fastpath interrupts */ 9236 bxe_ack_sb(sc, fp->igu_sb_id, USTORM_ID, 0, IGU_INT_DISABLE, 0); 9237 9238 bxe_task_fp(fp); 9239 } 9240 9241 /* Release all interrupts allocated by the driver. */ 9242 static void 9243 bxe_interrupt_free(struct bxe_softc *sc) 9244 { 9245 int i; 9246 9247 switch (sc->interrupt_mode) { 9248 case INTR_MODE_INTX: 9249 BLOGD(sc, DBG_LOAD, "Releasing legacy INTx vector\n"); 9250 if (sc->intr[0].resource != NULL) { 9251 bus_release_resource(sc->dev, 9252 SYS_RES_IRQ, 9253 sc->intr[0].rid, 9254 sc->intr[0].resource); 9255 } 9256 break; 9257 case INTR_MODE_MSI: 9258 for (i = 0; i < sc->intr_count; i++) { 9259 BLOGD(sc, DBG_LOAD, "Releasing MSI vector %d\n", i); 9260 if (sc->intr[i].resource && sc->intr[i].rid) { 9261 bus_release_resource(sc->dev, 9262 SYS_RES_IRQ, 9263 sc->intr[i].rid, 9264 sc->intr[i].resource); 9265 } 9266 } 9267 pci_release_msi(sc->dev); 9268 break; 9269 case INTR_MODE_MSIX: 9270 for (i = 0; i < sc->intr_count; i++) { 9271 BLOGD(sc, DBG_LOAD, "Releasing MSI-X vector %d\n", i); 9272 if (sc->intr[i].resource && sc->intr[i].rid) { 9273 bus_release_resource(sc->dev, 9274 SYS_RES_IRQ, 9275 sc->intr[i].rid, 9276 sc->intr[i].resource); 9277 } 9278 } 9279 pci_release_msi(sc->dev); 9280 break; 9281 default: 9282 /* nothing to do as initial allocation failed */ 9283 break; 9284 } 9285 } 9286 9287 /* 9288 * This function determines and allocates the appropriate 9289 * interrupt based on system capabilites and user request. 9290 * 9291 * The user may force a particular interrupt mode, specify 9292 * the number of receive queues, specify the method for 9293 * distribuitng received frames to receive queues, or use 9294 * the default settings which will automatically select the 9295 * best supported combination. In addition, the OS may or 9296 * may not support certain combinations of these settings. 9297 * This routine attempts to reconcile the settings requested 9298 * by the user with the capabilites available from the system 9299 * to select the optimal combination of features. 9300 * 9301 * Returns: 9302 * 0 = Success, !0 = Failure. 9303 */ 9304 static int 9305 bxe_interrupt_alloc(struct bxe_softc *sc) 9306 { 9307 int msix_count = 0; 9308 int msi_count = 0; 9309 int num_requested = 0; 9310 int num_allocated = 0; 9311 int rid, i, j; 9312 int rc; 9313 9314 /* get the number of available MSI/MSI-X interrupts from the OS */ 9315 if (sc->interrupt_mode > 0) { 9316 if (sc->devinfo.pcie_cap_flags & BXE_MSIX_CAPABLE_FLAG) { 9317 msix_count = pci_msix_count(sc->dev); 9318 } 9319 9320 if (sc->devinfo.pcie_cap_flags & BXE_MSI_CAPABLE_FLAG) { 9321 msi_count = pci_msi_count(sc->dev); 9322 } 9323 9324 BLOGD(sc, DBG_LOAD, "%d MSI and %d MSI-X vectors available\n", 9325 msi_count, msix_count); 9326 } 9327 9328 do { /* try allocating MSI-X interrupt resources (at least 2) */ 9329 if (sc->interrupt_mode != INTR_MODE_MSIX) { 9330 break; 9331 } 9332 9333 if (((sc->devinfo.pcie_cap_flags & BXE_MSIX_CAPABLE_FLAG) == 0) || 9334 (msix_count < 2)) { 9335 sc->interrupt_mode = INTR_MODE_MSI; /* try MSI next */ 9336 break; 9337 } 9338 9339 /* ask for the necessary number of MSI-X vectors */ 9340 num_requested = min((sc->num_queues + 1), msix_count); 9341 9342 BLOGD(sc, DBG_LOAD, "Requesting %d MSI-X vectors\n", num_requested); 9343 9344 num_allocated = num_requested; 9345 if ((rc = pci_alloc_msix(sc->dev, &num_allocated)) != 0) { 9346 BLOGE(sc, "MSI-X alloc failed! (%d)\n", rc); 9347 sc->interrupt_mode = INTR_MODE_MSI; /* try MSI next */ 9348 break; 9349 } 9350 9351 if (num_allocated < 2) { /* possible? */ 9352 BLOGE(sc, "MSI-X allocation less than 2!\n"); 9353 sc->interrupt_mode = INTR_MODE_MSI; /* try MSI next */ 9354 pci_release_msi(sc->dev); 9355 break; 9356 } 9357 9358 BLOGI(sc, "MSI-X vectors Requested %d and Allocated %d\n", 9359 num_requested, num_allocated); 9360 9361 /* best effort so use the number of vectors allocated to us */ 9362 sc->intr_count = num_allocated; 9363 sc->num_queues = num_allocated - 1; 9364 9365 rid = 1; /* initial resource identifier */ 9366 9367 /* allocate the MSI-X vectors */ 9368 for (i = 0; i < num_allocated; i++) { 9369 sc->intr[i].rid = (rid + i); 9370 9371 if ((sc->intr[i].resource = 9372 bus_alloc_resource_any(sc->dev, 9373 SYS_RES_IRQ, 9374 &sc->intr[i].rid, 9375 RF_ACTIVE)) == NULL) { 9376 BLOGE(sc, "Failed to map MSI-X[%d] (rid=%d)!\n", 9377 i, (rid + i)); 9378 9379 for (j = (i - 1); j >= 0; j--) { 9380 bus_release_resource(sc->dev, 9381 SYS_RES_IRQ, 9382 sc->intr[j].rid, 9383 sc->intr[j].resource); 9384 } 9385 9386 sc->intr_count = 0; 9387 sc->num_queues = 0; 9388 sc->interrupt_mode = INTR_MODE_MSI; /* try MSI next */ 9389 pci_release_msi(sc->dev); 9390 break; 9391 } 9392 9393 BLOGD(sc, DBG_LOAD, "Mapped MSI-X[%d] (rid=%d)\n", i, (rid + i)); 9394 } 9395 } while (0); 9396 9397 do { /* try allocating MSI vector resources (at least 2) */ 9398 if (sc->interrupt_mode != INTR_MODE_MSI) { 9399 break; 9400 } 9401 9402 if (((sc->devinfo.pcie_cap_flags & BXE_MSI_CAPABLE_FLAG) == 0) || 9403 (msi_count < 1)) { 9404 sc->interrupt_mode = INTR_MODE_INTX; /* try INTx next */ 9405 break; 9406 } 9407 9408 /* ask for a single MSI vector */ 9409 num_requested = 1; 9410 9411 BLOGD(sc, DBG_LOAD, "Requesting %d MSI vectors\n", num_requested); 9412 9413 num_allocated = num_requested; 9414 if ((rc = pci_alloc_msi(sc->dev, &num_allocated)) != 0) { 9415 BLOGE(sc, "MSI alloc failed (%d)!\n", rc); 9416 sc->interrupt_mode = INTR_MODE_INTX; /* try INTx next */ 9417 break; 9418 } 9419 9420 if (num_allocated != 1) { /* possible? */ 9421 BLOGE(sc, "MSI allocation is not 1!\n"); 9422 sc->interrupt_mode = INTR_MODE_INTX; /* try INTx next */ 9423 pci_release_msi(sc->dev); 9424 break; 9425 } 9426 9427 BLOGI(sc, "MSI vectors Requested %d and Allocated %d\n", 9428 num_requested, num_allocated); 9429 9430 /* best effort so use the number of vectors allocated to us */ 9431 sc->intr_count = num_allocated; 9432 sc->num_queues = num_allocated; 9433 9434 rid = 1; /* initial resource identifier */ 9435 9436 sc->intr[0].rid = rid; 9437 9438 if ((sc->intr[0].resource = 9439 bus_alloc_resource_any(sc->dev, 9440 SYS_RES_IRQ, 9441 &sc->intr[0].rid, 9442 RF_ACTIVE)) == NULL) { 9443 BLOGE(sc, "Failed to map MSI[0] (rid=%d)!\n", rid); 9444 sc->intr_count = 0; 9445 sc->num_queues = 0; 9446 sc->interrupt_mode = INTR_MODE_INTX; /* try INTx next */ 9447 pci_release_msi(sc->dev); 9448 break; 9449 } 9450 9451 BLOGD(sc, DBG_LOAD, "Mapped MSI[0] (rid=%d)\n", rid); 9452 } while (0); 9453 9454 do { /* try allocating INTx vector resources */ 9455 if (sc->interrupt_mode != INTR_MODE_INTX) { 9456 break; 9457 } 9458 9459 BLOGD(sc, DBG_LOAD, "Requesting legacy INTx interrupt\n"); 9460 9461 /* only one vector for INTx */ 9462 sc->intr_count = 1; 9463 sc->num_queues = 1; 9464 9465 rid = 0; /* initial resource identifier */ 9466 9467 sc->intr[0].rid = rid; 9468 9469 if ((sc->intr[0].resource = 9470 bus_alloc_resource_any(sc->dev, 9471 SYS_RES_IRQ, 9472 &sc->intr[0].rid, 9473 (RF_ACTIVE | RF_SHAREABLE))) == NULL) { 9474 BLOGE(sc, "Failed to map INTx (rid=%d)!\n", rid); 9475 sc->intr_count = 0; 9476 sc->num_queues = 0; 9477 sc->interrupt_mode = -1; /* Failed! */ 9478 break; 9479 } 9480 9481 BLOGD(sc, DBG_LOAD, "Mapped INTx (rid=%d)\n", rid); 9482 } while (0); 9483 9484 if (sc->interrupt_mode == -1) { 9485 BLOGE(sc, "Interrupt Allocation: FAILED!!!\n"); 9486 rc = 1; 9487 } else { 9488 BLOGD(sc, DBG_LOAD, 9489 "Interrupt Allocation: interrupt_mode=%d, num_queues=%d\n", 9490 sc->interrupt_mode, sc->num_queues); 9491 rc = 0; 9492 } 9493 9494 return (rc); 9495 } 9496 9497 static void 9498 bxe_interrupt_detach(struct bxe_softc *sc) 9499 { 9500 struct bxe_fastpath *fp; 9501 int i; 9502 9503 /* release interrupt resources */ 9504 for (i = 0; i < sc->intr_count; i++) { 9505 if (sc->intr[i].resource && sc->intr[i].tag) { 9506 BLOGD(sc, DBG_LOAD, "Disabling interrupt vector %d\n", i); 9507 bus_teardown_intr(sc->dev, sc->intr[i].resource, sc->intr[i].tag); 9508 } 9509 } 9510 9511 for (i = 0; i < sc->num_queues; i++) { 9512 fp = &sc->fp[i]; 9513 if (fp->tq) { 9514 taskqueue_drain(fp->tq, &fp->tq_task); 9515 taskqueue_free(fp->tq); 9516 fp->tq = NULL; 9517 } 9518 } 9519 9520 if (sc->rx_mode_tq) { 9521 taskqueue_drain(sc->rx_mode_tq, &sc->rx_mode_tq_task); 9522 taskqueue_free(sc->rx_mode_tq); 9523 sc->rx_mode_tq = NULL; 9524 } 9525 9526 if (sc->sp_tq) { 9527 taskqueue_drain(sc->sp_tq, &sc->sp_tq_task); 9528 taskqueue_free(sc->sp_tq); 9529 sc->sp_tq = NULL; 9530 } 9531 } 9532 9533 /* 9534 * Enables interrupts and attach to the ISR. 9535 * 9536 * When using multiple MSI/MSI-X vectors the first vector 9537 * is used for slowpath operations while all remaining 9538 * vectors are used for fastpath operations. If only a 9539 * single MSI/MSI-X vector is used (SINGLE_ISR) then the 9540 * ISR must look for both slowpath and fastpath completions. 9541 */ 9542 static int 9543 bxe_interrupt_attach(struct bxe_softc *sc) 9544 { 9545 struct bxe_fastpath *fp; 9546 int rc = 0; 9547 int i; 9548 9549 snprintf(sc->sp_tq_name, sizeof(sc->sp_tq_name), 9550 "bxe%d_sp_tq", sc->unit); 9551 TASK_INIT(&sc->sp_tq_task, 0, bxe_handle_sp_tq, sc); 9552 sc->sp_tq = taskqueue_create_fast(sc->sp_tq_name, M_NOWAIT, 9553 taskqueue_thread_enqueue, 9554 &sc->sp_tq); 9555 taskqueue_start_threads(&sc->sp_tq, 1, PWAIT, /* lower priority */ 9556 "%s", sc->sp_tq_name); 9557 9558 snprintf(sc->rx_mode_tq_name, sizeof(sc->rx_mode_tq_name), 9559 "bxe%d_rx_mode_tq", sc->unit); 9560 TASK_INIT(&sc->rx_mode_tq_task, 0, bxe_handle_rx_mode_tq, sc); 9561 sc->rx_mode_tq = taskqueue_create_fast(sc->rx_mode_tq_name, M_NOWAIT, 9562 taskqueue_thread_enqueue, 9563 &sc->rx_mode_tq); 9564 taskqueue_start_threads(&sc->rx_mode_tq, 1, PWAIT, /* lower priority */ 9565 "%s", sc->rx_mode_tq_name); 9566 9567 for (i = 0; i < sc->num_queues; i++) { 9568 fp = &sc->fp[i]; 9569 snprintf(fp->tq_name, sizeof(fp->tq_name), 9570 "bxe%d_fp%d_tq", sc->unit, i); 9571 TASK_INIT(&fp->tq_task, 0, bxe_handle_fp_tq, fp); 9572 fp->tq = taskqueue_create_fast(fp->tq_name, M_NOWAIT, 9573 taskqueue_thread_enqueue, 9574 &fp->tq); 9575 taskqueue_start_threads(&fp->tq, 1, PI_NET, /* higher priority */ 9576 "%s", fp->tq_name); 9577 } 9578 9579 /* setup interrupt handlers */ 9580 if (sc->interrupt_mode == INTR_MODE_MSIX) { 9581 BLOGD(sc, DBG_LOAD, "Enabling slowpath MSI-X[0] vector\n"); 9582 9583 /* 9584 * Setup the interrupt handler. Note that we pass the driver instance 9585 * to the interrupt handler for the slowpath. 9586 */ 9587 if ((rc = bus_setup_intr(sc->dev, sc->intr[0].resource, 9588 (INTR_TYPE_NET | INTR_MPSAFE), 9589 NULL, bxe_intr_sp, sc, 9590 &sc->intr[0].tag)) != 0) { 9591 BLOGE(sc, "Failed to allocate MSI-X[0] vector (%d)\n", rc); 9592 goto bxe_interrupt_attach_exit; 9593 } 9594 9595 bus_describe_intr(sc->dev, sc->intr[0].resource, 9596 sc->intr[0].tag, "sp"); 9597 9598 /* bus_bind_intr(sc->dev, sc->intr[0].resource, 0); */ 9599 9600 /* initialize the fastpath vectors (note the first was used for sp) */ 9601 for (i = 0; i < sc->num_queues; i++) { 9602 fp = &sc->fp[i]; 9603 BLOGD(sc, DBG_LOAD, "Enabling MSI-X[%d] vector\n", (i + 1)); 9604 9605 /* 9606 * Setup the interrupt handler. Note that we pass the 9607 * fastpath context to the interrupt handler in this 9608 * case. 9609 */ 9610 if ((rc = bus_setup_intr(sc->dev, sc->intr[i + 1].resource, 9611 (INTR_TYPE_NET | INTR_MPSAFE), 9612 NULL, bxe_intr_fp, fp, 9613 &sc->intr[i + 1].tag)) != 0) { 9614 BLOGE(sc, "Failed to allocate MSI-X[%d] vector (%d)\n", 9615 (i + 1), rc); 9616 goto bxe_interrupt_attach_exit; 9617 } 9618 9619 bus_describe_intr(sc->dev, sc->intr[i + 1].resource, 9620 sc->intr[i + 1].tag, "fp%02d", i); 9621 9622 /* bind the fastpath instance to a cpu */ 9623 if (sc->num_queues > 1) { 9624 bus_bind_intr(sc->dev, sc->intr[i + 1].resource, i); 9625 } 9626 9627 fp->state = BXE_FP_STATE_IRQ; 9628 } 9629 } else if (sc->interrupt_mode == INTR_MODE_MSI) { 9630 BLOGD(sc, DBG_LOAD, "Enabling MSI[0] vector\n"); 9631 9632 /* 9633 * Setup the interrupt handler. Note that we pass the 9634 * driver instance to the interrupt handler which 9635 * will handle both the slowpath and fastpath. 9636 */ 9637 if ((rc = bus_setup_intr(sc->dev, sc->intr[0].resource, 9638 (INTR_TYPE_NET | INTR_MPSAFE), 9639 NULL, bxe_intr_legacy, sc, 9640 &sc->intr[0].tag)) != 0) { 9641 BLOGE(sc, "Failed to allocate MSI[0] vector (%d)\n", rc); 9642 goto bxe_interrupt_attach_exit; 9643 } 9644 9645 } else { /* (sc->interrupt_mode == INTR_MODE_INTX) */ 9646 BLOGD(sc, DBG_LOAD, "Enabling INTx interrupts\n"); 9647 9648 /* 9649 * Setup the interrupt handler. Note that we pass the 9650 * driver instance to the interrupt handler which 9651 * will handle both the slowpath and fastpath. 9652 */ 9653 if ((rc = bus_setup_intr(sc->dev, sc->intr[0].resource, 9654 (INTR_TYPE_NET | INTR_MPSAFE), 9655 NULL, bxe_intr_legacy, sc, 9656 &sc->intr[0].tag)) != 0) { 9657 BLOGE(sc, "Failed to allocate INTx interrupt (%d)\n", rc); 9658 goto bxe_interrupt_attach_exit; 9659 } 9660 } 9661 9662 bxe_interrupt_attach_exit: 9663 9664 return (rc); 9665 } 9666 9667 static int bxe_init_hw_common_chip(struct bxe_softc *sc); 9668 static int bxe_init_hw_common(struct bxe_softc *sc); 9669 static int bxe_init_hw_port(struct bxe_softc *sc); 9670 static int bxe_init_hw_func(struct bxe_softc *sc); 9671 static void bxe_reset_common(struct bxe_softc *sc); 9672 static void bxe_reset_port(struct bxe_softc *sc); 9673 static void bxe_reset_func(struct bxe_softc *sc); 9674 static int bxe_gunzip_init(struct bxe_softc *sc); 9675 static void bxe_gunzip_end(struct bxe_softc *sc); 9676 static int bxe_init_firmware(struct bxe_softc *sc); 9677 static void bxe_release_firmware(struct bxe_softc *sc); 9678 9679 static struct 9680 ecore_func_sp_drv_ops bxe_func_sp_drv = { 9681 .init_hw_cmn_chip = bxe_init_hw_common_chip, 9682 .init_hw_cmn = bxe_init_hw_common, 9683 .init_hw_port = bxe_init_hw_port, 9684 .init_hw_func = bxe_init_hw_func, 9685 9686 .reset_hw_cmn = bxe_reset_common, 9687 .reset_hw_port = bxe_reset_port, 9688 .reset_hw_func = bxe_reset_func, 9689 9690 .gunzip_init = bxe_gunzip_init, 9691 .gunzip_end = bxe_gunzip_end, 9692 9693 .init_fw = bxe_init_firmware, 9694 .release_fw = bxe_release_firmware, 9695 }; 9696 9697 static void 9698 bxe_init_func_obj(struct bxe_softc *sc) 9699 { 9700 sc->dmae_ready = 0; 9701 9702 ecore_init_func_obj(sc, 9703 &sc->func_obj, 9704 BXE_SP(sc, func_rdata), 9705 BXE_SP_MAPPING(sc, func_rdata), 9706 BXE_SP(sc, func_afex_rdata), 9707 BXE_SP_MAPPING(sc, func_afex_rdata), 9708 &bxe_func_sp_drv); 9709 } 9710 9711 static int 9712 bxe_init_hw(struct bxe_softc *sc, 9713 uint32_t load_code) 9714 { 9715 struct ecore_func_state_params func_params = { NULL }; 9716 int rc; 9717 9718 /* prepare the parameters for function state transitions */ 9719 bit_set(&func_params.ramrod_flags, RAMROD_COMP_WAIT); 9720 9721 func_params.f_obj = &sc->func_obj; 9722 func_params.cmd = ECORE_F_CMD_HW_INIT; 9723 9724 func_params.params.hw_init.load_phase = load_code; 9725 9726 /* 9727 * Via a plethora of function pointers, we will eventually reach 9728 * bxe_init_hw_common(), bxe_init_hw_port(), or bxe_init_hw_func(). 9729 */ 9730 rc = ecore_func_state_change(sc, &func_params); 9731 9732 return (rc); 9733 } 9734 9735 static void 9736 bxe_fill(struct bxe_softc *sc, 9737 uint32_t addr, 9738 int fill, 9739 uint32_t len) 9740 { 9741 uint32_t i; 9742 9743 if (!(len % 4) && !(addr % 4)) { 9744 for (i = 0; i < len; i += 4) { 9745 REG_WR(sc, (addr + i), fill); 9746 } 9747 } else { 9748 for (i = 0; i < len; i++) { 9749 REG_WR8(sc, (addr + i), fill); 9750 } 9751 } 9752 } 9753 9754 /* writes FP SP data to FW - data_size in dwords */ 9755 static void 9756 bxe_wr_fp_sb_data(struct bxe_softc *sc, 9757 int fw_sb_id, 9758 uint32_t *sb_data_p, 9759 uint32_t data_size) 9760 { 9761 int index; 9762 9763 for (index = 0; index < data_size; index++) { 9764 REG_WR(sc, 9765 (BAR_CSTRORM_INTMEM + 9766 CSTORM_STATUS_BLOCK_DATA_OFFSET(fw_sb_id) + 9767 (sizeof(uint32_t) * index)), 9768 *(sb_data_p + index)); 9769 } 9770 } 9771 9772 static void 9773 bxe_zero_fp_sb(struct bxe_softc *sc, 9774 int fw_sb_id) 9775 { 9776 struct hc_status_block_data_e2 sb_data_e2; 9777 struct hc_status_block_data_e1x sb_data_e1x; 9778 uint32_t *sb_data_p; 9779 uint32_t data_size = 0; 9780 9781 if (!CHIP_IS_E1x(sc)) { 9782 memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2)); 9783 sb_data_e2.common.state = SB_DISABLED; 9784 sb_data_e2.common.p_func.vf_valid = FALSE; 9785 sb_data_p = (uint32_t *)&sb_data_e2; 9786 data_size = (sizeof(struct hc_status_block_data_e2) / 9787 sizeof(uint32_t)); 9788 } else { 9789 memset(&sb_data_e1x, 0, sizeof(struct hc_status_block_data_e1x)); 9790 sb_data_e1x.common.state = SB_DISABLED; 9791 sb_data_e1x.common.p_func.vf_valid = FALSE; 9792 sb_data_p = (uint32_t *)&sb_data_e1x; 9793 data_size = (sizeof(struct hc_status_block_data_e1x) / 9794 sizeof(uint32_t)); 9795 } 9796 9797 bxe_wr_fp_sb_data(sc, fw_sb_id, sb_data_p, data_size); 9798 9799 bxe_fill(sc, (BAR_CSTRORM_INTMEM + CSTORM_STATUS_BLOCK_OFFSET(fw_sb_id)), 9800 0, CSTORM_STATUS_BLOCK_SIZE); 9801 bxe_fill(sc, (BAR_CSTRORM_INTMEM + CSTORM_SYNC_BLOCK_OFFSET(fw_sb_id)), 9802 0, CSTORM_SYNC_BLOCK_SIZE); 9803 } 9804 9805 static void 9806 bxe_wr_sp_sb_data(struct bxe_softc *sc, 9807 struct hc_sp_status_block_data *sp_sb_data) 9808 { 9809 int i; 9810 9811 for (i = 0; 9812 i < (sizeof(struct hc_sp_status_block_data) / sizeof(uint32_t)); 9813 i++) { 9814 REG_WR(sc, 9815 (BAR_CSTRORM_INTMEM + 9816 CSTORM_SP_STATUS_BLOCK_DATA_OFFSET(SC_FUNC(sc)) + 9817 (i * sizeof(uint32_t))), 9818 *((uint32_t *)sp_sb_data + i)); 9819 } 9820 } 9821 9822 static void 9823 bxe_zero_sp_sb(struct bxe_softc *sc) 9824 { 9825 struct hc_sp_status_block_data sp_sb_data; 9826 9827 memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data)); 9828 9829 sp_sb_data.state = SB_DISABLED; 9830 sp_sb_data.p_func.vf_valid = FALSE; 9831 9832 bxe_wr_sp_sb_data(sc, &sp_sb_data); 9833 9834 bxe_fill(sc, 9835 (BAR_CSTRORM_INTMEM + 9836 CSTORM_SP_STATUS_BLOCK_OFFSET(SC_FUNC(sc))), 9837 0, CSTORM_SP_STATUS_BLOCK_SIZE); 9838 bxe_fill(sc, 9839 (BAR_CSTRORM_INTMEM + 9840 CSTORM_SP_SYNC_BLOCK_OFFSET(SC_FUNC(sc))), 9841 0, CSTORM_SP_SYNC_BLOCK_SIZE); 9842 } 9843 9844 static void 9845 bxe_setup_ndsb_state_machine(struct hc_status_block_sm *hc_sm, 9846 int igu_sb_id, 9847 int igu_seg_id) 9848 { 9849 hc_sm->igu_sb_id = igu_sb_id; 9850 hc_sm->igu_seg_id = igu_seg_id; 9851 hc_sm->timer_value = 0xFF; 9852 hc_sm->time_to_expire = 0xFFFFFFFF; 9853 } 9854 9855 static void 9856 bxe_map_sb_state_machines(struct hc_index_data *index_data) 9857 { 9858 /* zero out state machine indices */ 9859 9860 /* rx indices */ 9861 index_data[HC_INDEX_ETH_RX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID; 9862 9863 /* tx indices */ 9864 index_data[HC_INDEX_OOO_TX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID; 9865 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags &= ~HC_INDEX_DATA_SM_ID; 9866 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags &= ~HC_INDEX_DATA_SM_ID; 9867 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags &= ~HC_INDEX_DATA_SM_ID; 9868 9869 /* map indices */ 9870 9871 /* rx indices */ 9872 index_data[HC_INDEX_ETH_RX_CQ_CONS].flags |= 9873 (SM_RX_ID << HC_INDEX_DATA_SM_ID_SHIFT); 9874 9875 /* tx indices */ 9876 index_data[HC_INDEX_OOO_TX_CQ_CONS].flags |= 9877 (SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT); 9878 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags |= 9879 (SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT); 9880 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags |= 9881 (SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT); 9882 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags |= 9883 (SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT); 9884 } 9885 9886 static void 9887 bxe_init_sb(struct bxe_softc *sc, 9888 bus_addr_t busaddr, 9889 int vfid, 9890 uint8_t vf_valid, 9891 int fw_sb_id, 9892 int igu_sb_id) 9893 { 9894 struct hc_status_block_data_e2 sb_data_e2; 9895 struct hc_status_block_data_e1x sb_data_e1x; 9896 struct hc_status_block_sm *hc_sm_p; 9897 uint32_t *sb_data_p; 9898 int igu_seg_id; 9899 int data_size; 9900 9901 if (CHIP_INT_MODE_IS_BC(sc)) { 9902 igu_seg_id = HC_SEG_ACCESS_NORM; 9903 } else { 9904 igu_seg_id = IGU_SEG_ACCESS_NORM; 9905 } 9906 9907 bxe_zero_fp_sb(sc, fw_sb_id); 9908 9909 if (!CHIP_IS_E1x(sc)) { 9910 memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2)); 9911 sb_data_e2.common.state = SB_ENABLED; 9912 sb_data_e2.common.p_func.pf_id = SC_FUNC(sc); 9913 sb_data_e2.common.p_func.vf_id = vfid; 9914 sb_data_e2.common.p_func.vf_valid = vf_valid; 9915 sb_data_e2.common.p_func.vnic_id = SC_VN(sc); 9916 sb_data_e2.common.same_igu_sb_1b = TRUE; 9917 sb_data_e2.common.host_sb_addr.hi = U64_HI(busaddr); 9918 sb_data_e2.common.host_sb_addr.lo = U64_LO(busaddr); 9919 hc_sm_p = sb_data_e2.common.state_machine; 9920 sb_data_p = (uint32_t *)&sb_data_e2; 9921 data_size = (sizeof(struct hc_status_block_data_e2) / 9922 sizeof(uint32_t)); 9923 bxe_map_sb_state_machines(sb_data_e2.index_data); 9924 } else { 9925 memset(&sb_data_e1x, 0, sizeof(struct hc_status_block_data_e1x)); 9926 sb_data_e1x.common.state = SB_ENABLED; 9927 sb_data_e1x.common.p_func.pf_id = SC_FUNC(sc); 9928 sb_data_e1x.common.p_func.vf_id = 0xff; 9929 sb_data_e1x.common.p_func.vf_valid = FALSE; 9930 sb_data_e1x.common.p_func.vnic_id = SC_VN(sc); 9931 sb_data_e1x.common.same_igu_sb_1b = TRUE; 9932 sb_data_e1x.common.host_sb_addr.hi = U64_HI(busaddr); 9933 sb_data_e1x.common.host_sb_addr.lo = U64_LO(busaddr); 9934 hc_sm_p = sb_data_e1x.common.state_machine; 9935 sb_data_p = (uint32_t *)&sb_data_e1x; 9936 data_size = (sizeof(struct hc_status_block_data_e1x) / 9937 sizeof(uint32_t)); 9938 bxe_map_sb_state_machines(sb_data_e1x.index_data); 9939 } 9940 9941 bxe_setup_ndsb_state_machine(&hc_sm_p[SM_RX_ID], igu_sb_id, igu_seg_id); 9942 bxe_setup_ndsb_state_machine(&hc_sm_p[SM_TX_ID], igu_sb_id, igu_seg_id); 9943 9944 BLOGD(sc, DBG_LOAD, "Init FW SB %d\n", fw_sb_id); 9945 9946 /* write indices to HW - PCI guarantees endianity of regpairs */ 9947 bxe_wr_fp_sb_data(sc, fw_sb_id, sb_data_p, data_size); 9948 } 9949 9950 static inline uint8_t 9951 bxe_fp_qzone_id(struct bxe_fastpath *fp) 9952 { 9953 if (CHIP_IS_E1x(fp->sc)) { 9954 return (fp->cl_id + SC_PORT(fp->sc) * ETH_MAX_RX_CLIENTS_E1H); 9955 } else { 9956 return (fp->cl_id); 9957 } 9958 } 9959 9960 static inline uint32_t 9961 bxe_rx_ustorm_prods_offset(struct bxe_softc *sc, 9962 struct bxe_fastpath *fp) 9963 { 9964 uint32_t offset = BAR_USTRORM_INTMEM; 9965 9966 #if 0 9967 if (IS_VF(sc)) { 9968 return (PXP_VF_ADDR_USDM_QUEUES_START + 9969 (sc->acquire_resp.resc.hw_qid[fp->index] * 9970 sizeof(struct ustorm_queue_zone_data))); 9971 } else 9972 #endif 9973 if (!CHIP_IS_E1x(sc)) { 9974 offset += USTORM_RX_PRODS_E2_OFFSET(fp->cl_qzone_id); 9975 } else { 9976 offset += USTORM_RX_PRODS_E1X_OFFSET(SC_PORT(sc), fp->cl_id); 9977 } 9978 9979 return (offset); 9980 } 9981 9982 static void 9983 bxe_init_eth_fp(struct bxe_softc *sc, 9984 int idx) 9985 { 9986 struct bxe_fastpath *fp = &sc->fp[idx]; 9987 uint32_t cids[ECORE_MULTI_TX_COS] = { 0 }; 9988 unsigned long q_type = 0; 9989 int cos; 9990 9991 fp->sc = sc; 9992 fp->index = idx; 9993 9994 snprintf(fp->tx_mtx_name, sizeof(fp->tx_mtx_name), 9995 "bxe%d_fp%d_tx_lock", sc->unit, idx); 9996 mtx_init(&fp->tx_mtx, fp->tx_mtx_name, NULL, MTX_DEF); 9997 9998 snprintf(fp->rx_mtx_name, sizeof(fp->rx_mtx_name), 9999 "bxe%d_fp%d_rx_lock", sc->unit, idx); 10000 mtx_init(&fp->rx_mtx, fp->rx_mtx_name, NULL, MTX_DEF); 10001 10002 fp->igu_sb_id = (sc->igu_base_sb + idx + CNIC_SUPPORT(sc)); 10003 fp->fw_sb_id = (sc->base_fw_ndsb + idx + CNIC_SUPPORT(sc)); 10004 10005 fp->cl_id = (CHIP_IS_E1x(sc)) ? 10006 (SC_L_ID(sc) + idx) : 10007 /* want client ID same as IGU SB ID for non-E1 */ 10008 fp->igu_sb_id; 10009 fp->cl_qzone_id = bxe_fp_qzone_id(fp); 10010 10011 /* setup sb indices */ 10012 if (!CHIP_IS_E1x(sc)) { 10013 fp->sb_index_values = fp->status_block.e2_sb->sb.index_values; 10014 fp->sb_running_index = fp->status_block.e2_sb->sb.running_index; 10015 } else { 10016 fp->sb_index_values = fp->status_block.e1x_sb->sb.index_values; 10017 fp->sb_running_index = fp->status_block.e1x_sb->sb.running_index; 10018 } 10019 10020 /* init shortcut */ 10021 fp->ustorm_rx_prods_offset = bxe_rx_ustorm_prods_offset(sc, fp); 10022 10023 fp->rx_cq_cons_sb = &fp->sb_index_values[HC_INDEX_ETH_RX_CQ_CONS]; 10024 10025 /* 10026 * XXX If multiple CoS is ever supported then each fastpath structure 10027 * will need to maintain tx producer/consumer/dma/etc values *per* CoS. 10028 */ 10029 for (cos = 0; cos < sc->max_cos; cos++) { 10030 cids[cos] = idx; 10031 } 10032 fp->tx_cons_sb = &fp->sb_index_values[HC_INDEX_ETH_TX_CQ_CONS_COS0]; 10033 10034 /* nothing more for a VF to do */ 10035 if (IS_VF(sc)) { 10036 return; 10037 } 10038 10039 bxe_init_sb(sc, fp->sb_dma.paddr, BXE_VF_ID_INVALID, FALSE, 10040 fp->fw_sb_id, fp->igu_sb_id); 10041 10042 bxe_update_fp_sb_idx(fp); 10043 10044 /* Configure Queue State object */ 10045 bit_set(&q_type, ECORE_Q_TYPE_HAS_RX); 10046 bit_set(&q_type, ECORE_Q_TYPE_HAS_TX); 10047 10048 ecore_init_queue_obj(sc, 10049 &sc->sp_objs[idx].q_obj, 10050 fp->cl_id, 10051 cids, 10052 sc->max_cos, 10053 SC_FUNC(sc), 10054 BXE_SP(sc, q_rdata), 10055 BXE_SP_MAPPING(sc, q_rdata), 10056 q_type); 10057 10058 /* configure classification DBs */ 10059 ecore_init_mac_obj(sc, 10060 &sc->sp_objs[idx].mac_obj, 10061 fp->cl_id, 10062 idx, 10063 SC_FUNC(sc), 10064 BXE_SP(sc, mac_rdata), 10065 BXE_SP_MAPPING(sc, mac_rdata), 10066 ECORE_FILTER_MAC_PENDING, 10067 &sc->sp_state, 10068 ECORE_OBJ_TYPE_RX_TX, 10069 &sc->macs_pool); 10070 10071 BLOGD(sc, DBG_LOAD, "fp[%d]: sb=%p cl_id=%d fw_sb=%d igu_sb=%d\n", 10072 idx, fp->status_block.e2_sb, fp->cl_id, fp->fw_sb_id, fp->igu_sb_id); 10073 } 10074 10075 static inline void 10076 bxe_update_rx_prod(struct bxe_softc *sc, 10077 struct bxe_fastpath *fp, 10078 uint16_t rx_bd_prod, 10079 uint16_t rx_cq_prod, 10080 uint16_t rx_sge_prod) 10081 { 10082 struct ustorm_eth_rx_producers rx_prods = { 0 }; 10083 uint32_t i; 10084 10085 /* update producers */ 10086 rx_prods.bd_prod = rx_bd_prod; 10087 rx_prods.cqe_prod = rx_cq_prod; 10088 rx_prods.sge_prod = rx_sge_prod; 10089 10090 /* 10091 * Make sure that the BD and SGE data is updated before updating the 10092 * producers since FW might read the BD/SGE right after the producer 10093 * is updated. 10094 * This is only applicable for weak-ordered memory model archs such 10095 * as IA-64. The following barrier is also mandatory since FW will 10096 * assumes BDs must have buffers. 10097 */ 10098 wmb(); 10099 10100 for (i = 0; i < (sizeof(rx_prods) / 4); i++) { 10101 REG_WR(sc, 10102 (fp->ustorm_rx_prods_offset + (i * 4)), 10103 ((uint32_t *)&rx_prods)[i]); 10104 } 10105 10106 wmb(); /* keep prod updates ordered */ 10107 10108 BLOGD(sc, DBG_RX, 10109 "RX fp[%d]: wrote prods bd_prod=%u cqe_prod=%u sge_prod=%u\n", 10110 fp->index, rx_bd_prod, rx_cq_prod, rx_sge_prod); 10111 } 10112 10113 static void 10114 bxe_init_rx_rings(struct bxe_softc *sc) 10115 { 10116 struct bxe_fastpath *fp; 10117 int i; 10118 10119 for (i = 0; i < sc->num_queues; i++) { 10120 fp = &sc->fp[i]; 10121 10122 fp->rx_bd_cons = 0; 10123 10124 /* 10125 * Activate the BD ring... 10126 * Warning, this will generate an interrupt (to the TSTORM) 10127 * so this can only be done after the chip is initialized 10128 */ 10129 bxe_update_rx_prod(sc, fp, 10130 fp->rx_bd_prod, 10131 fp->rx_cq_prod, 10132 fp->rx_sge_prod); 10133 10134 if (i != 0) { 10135 continue; 10136 } 10137 10138 if (CHIP_IS_E1(sc)) { 10139 REG_WR(sc, 10140 (BAR_USTRORM_INTMEM + 10141 USTORM_MEM_WORKAROUND_ADDRESS_OFFSET(SC_FUNC(sc))), 10142 U64_LO(fp->rcq_dma.paddr)); 10143 REG_WR(sc, 10144 (BAR_USTRORM_INTMEM + 10145 USTORM_MEM_WORKAROUND_ADDRESS_OFFSET(SC_FUNC(sc)) + 4), 10146 U64_HI(fp->rcq_dma.paddr)); 10147 } 10148 } 10149 } 10150 10151 static void 10152 bxe_init_tx_ring_one(struct bxe_fastpath *fp) 10153 { 10154 SET_FLAG(fp->tx_db.data.header.header, DOORBELL_HDR_DB_TYPE, 1); 10155 fp->tx_db.data.zero_fill1 = 0; 10156 fp->tx_db.data.prod = 0; 10157 10158 fp->tx_pkt_prod = 0; 10159 fp->tx_pkt_cons = 0; 10160 fp->tx_bd_prod = 0; 10161 fp->tx_bd_cons = 0; 10162 fp->eth_q_stats.tx_pkts = 0; 10163 } 10164 10165 static inline void 10166 bxe_init_tx_rings(struct bxe_softc *sc) 10167 { 10168 int i; 10169 10170 for (i = 0; i < sc->num_queues; i++) { 10171 #if 0 10172 uint8_t cos; 10173 for (cos = 0; cos < sc->max_cos; cos++) { 10174 bxe_init_tx_ring_one(&sc->fp[i].txdata[cos]); 10175 } 10176 #else 10177 bxe_init_tx_ring_one(&sc->fp[i]); 10178 #endif 10179 } 10180 } 10181 10182 static void 10183 bxe_init_def_sb(struct bxe_softc *sc) 10184 { 10185 struct host_sp_status_block *def_sb = sc->def_sb; 10186 bus_addr_t mapping = sc->def_sb_dma.paddr; 10187 int igu_sp_sb_index; 10188 int igu_seg_id; 10189 int port = SC_PORT(sc); 10190 int func = SC_FUNC(sc); 10191 int reg_offset, reg_offset_en5; 10192 uint64_t section; 10193 int index, sindex; 10194 struct hc_sp_status_block_data sp_sb_data; 10195 10196 memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data)); 10197 10198 if (CHIP_INT_MODE_IS_BC(sc)) { 10199 igu_sp_sb_index = DEF_SB_IGU_ID; 10200 igu_seg_id = HC_SEG_ACCESS_DEF; 10201 } else { 10202 igu_sp_sb_index = sc->igu_dsb_id; 10203 igu_seg_id = IGU_SEG_ACCESS_DEF; 10204 } 10205 10206 /* attentions */ 10207 section = ((uint64_t)mapping + 10208 offsetof(struct host_sp_status_block, atten_status_block)); 10209 def_sb->atten_status_block.status_block_id = igu_sp_sb_index; 10210 sc->attn_state = 0; 10211 10212 reg_offset = (port) ? 10213 MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 : 10214 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0; 10215 reg_offset_en5 = (port) ? 10216 MISC_REG_AEU_ENABLE5_FUNC_1_OUT_0 : 10217 MISC_REG_AEU_ENABLE5_FUNC_0_OUT_0; 10218 10219 for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) { 10220 /* take care of sig[0]..sig[4] */ 10221 for (sindex = 0; sindex < 4; sindex++) { 10222 sc->attn_group[index].sig[sindex] = 10223 REG_RD(sc, (reg_offset + (sindex * 0x4) + (0x10 * index))); 10224 } 10225 10226 if (!CHIP_IS_E1x(sc)) { 10227 /* 10228 * enable5 is separate from the rest of the registers, 10229 * and the address skip is 4 and not 16 between the 10230 * different groups 10231 */ 10232 sc->attn_group[index].sig[4] = 10233 REG_RD(sc, (reg_offset_en5 + (0x4 * index))); 10234 } else { 10235 sc->attn_group[index].sig[4] = 0; 10236 } 10237 } 10238 10239 if (sc->devinfo.int_block == INT_BLOCK_HC) { 10240 reg_offset = (port) ? 10241 HC_REG_ATTN_MSG1_ADDR_L : 10242 HC_REG_ATTN_MSG0_ADDR_L; 10243 REG_WR(sc, reg_offset, U64_LO(section)); 10244 REG_WR(sc, (reg_offset + 4), U64_HI(section)); 10245 } else if (!CHIP_IS_E1x(sc)) { 10246 REG_WR(sc, IGU_REG_ATTN_MSG_ADDR_L, U64_LO(section)); 10247 REG_WR(sc, IGU_REG_ATTN_MSG_ADDR_H, U64_HI(section)); 10248 } 10249 10250 section = ((uint64_t)mapping + 10251 offsetof(struct host_sp_status_block, sp_sb)); 10252 10253 bxe_zero_sp_sb(sc); 10254 10255 /* PCI guarantees endianity of regpair */ 10256 sp_sb_data.state = SB_ENABLED; 10257 sp_sb_data.host_sb_addr.lo = U64_LO(section); 10258 sp_sb_data.host_sb_addr.hi = U64_HI(section); 10259 sp_sb_data.igu_sb_id = igu_sp_sb_index; 10260 sp_sb_data.igu_seg_id = igu_seg_id; 10261 sp_sb_data.p_func.pf_id = func; 10262 sp_sb_data.p_func.vnic_id = SC_VN(sc); 10263 sp_sb_data.p_func.vf_id = 0xff; 10264 10265 bxe_wr_sp_sb_data(sc, &sp_sb_data); 10266 10267 bxe_ack_sb(sc, sc->igu_dsb_id, USTORM_ID, 0, IGU_INT_ENABLE, 0); 10268 } 10269 10270 static void 10271 bxe_init_sp_ring(struct bxe_softc *sc) 10272 { 10273 atomic_store_rel_long(&sc->cq_spq_left, MAX_SPQ_PENDING); 10274 sc->spq_prod_idx = 0; 10275 sc->dsb_sp_prod = &sc->def_sb->sp_sb.index_values[HC_SP_INDEX_ETH_DEF_CONS]; 10276 sc->spq_prod_bd = sc->spq; 10277 sc->spq_last_bd = (sc->spq_prod_bd + MAX_SP_DESC_CNT); 10278 } 10279 10280 static void 10281 bxe_init_eq_ring(struct bxe_softc *sc) 10282 { 10283 union event_ring_elem *elem; 10284 int i; 10285 10286 for (i = 1; i <= NUM_EQ_PAGES; i++) { 10287 elem = &sc->eq[EQ_DESC_CNT_PAGE * i - 1]; 10288 10289 elem->next_page.addr.hi = htole32(U64_HI(sc->eq_dma.paddr + 10290 BCM_PAGE_SIZE * 10291 (i % NUM_EQ_PAGES))); 10292 elem->next_page.addr.lo = htole32(U64_LO(sc->eq_dma.paddr + 10293 BCM_PAGE_SIZE * 10294 (i % NUM_EQ_PAGES))); 10295 } 10296 10297 sc->eq_cons = 0; 10298 sc->eq_prod = NUM_EQ_DESC; 10299 sc->eq_cons_sb = &sc->def_sb->sp_sb.index_values[HC_SP_INDEX_EQ_CONS]; 10300 10301 atomic_store_rel_long(&sc->eq_spq_left, 10302 (min((MAX_SP_DESC_CNT - MAX_SPQ_PENDING), 10303 NUM_EQ_DESC) - 1)); 10304 } 10305 10306 static void 10307 bxe_init_internal_common(struct bxe_softc *sc) 10308 { 10309 int i; 10310 10311 if (IS_MF_SI(sc)) { 10312 /* 10313 * In switch independent mode, the TSTORM needs to accept 10314 * packets that failed classification, since approximate match 10315 * mac addresses aren't written to NIG LLH. 10316 */ 10317 REG_WR8(sc, 10318 (BAR_TSTRORM_INTMEM + TSTORM_ACCEPT_CLASSIFY_FAILED_OFFSET), 10319 2); 10320 } else if (!CHIP_IS_E1(sc)) { /* 57710 doesn't support MF */ 10321 REG_WR8(sc, 10322 (BAR_TSTRORM_INTMEM + TSTORM_ACCEPT_CLASSIFY_FAILED_OFFSET), 10323 0); 10324 } 10325 10326 /* 10327 * Zero this manually as its initialization is currently missing 10328 * in the initTool. 10329 */ 10330 for (i = 0; i < (USTORM_AGG_DATA_SIZE >> 2); i++) { 10331 REG_WR(sc, 10332 (BAR_USTRORM_INTMEM + USTORM_AGG_DATA_OFFSET + (i * 4)), 10333 0); 10334 } 10335 10336 if (!CHIP_IS_E1x(sc)) { 10337 REG_WR8(sc, (BAR_CSTRORM_INTMEM + CSTORM_IGU_MODE_OFFSET), 10338 CHIP_INT_MODE_IS_BC(sc) ? HC_IGU_BC_MODE : HC_IGU_NBC_MODE); 10339 } 10340 } 10341 10342 static void 10343 bxe_init_internal(struct bxe_softc *sc, 10344 uint32_t load_code) 10345 { 10346 switch (load_code) { 10347 case FW_MSG_CODE_DRV_LOAD_COMMON: 10348 case FW_MSG_CODE_DRV_LOAD_COMMON_CHIP: 10349 bxe_init_internal_common(sc); 10350 /* no break */ 10351 10352 case FW_MSG_CODE_DRV_LOAD_PORT: 10353 /* nothing to do */ 10354 /* no break */ 10355 10356 case FW_MSG_CODE_DRV_LOAD_FUNCTION: 10357 /* internal memory per function is initialized inside bxe_pf_init */ 10358 break; 10359 10360 default: 10361 BLOGE(sc, "Unknown load_code (0x%x) from MCP\n", load_code); 10362 break; 10363 } 10364 } 10365 10366 static void 10367 storm_memset_func_cfg(struct bxe_softc *sc, 10368 struct tstorm_eth_function_common_config *tcfg, 10369 uint16_t abs_fid) 10370 { 10371 uint32_t addr; 10372 size_t size; 10373 10374 addr = (BAR_TSTRORM_INTMEM + 10375 TSTORM_FUNCTION_COMMON_CONFIG_OFFSET(abs_fid)); 10376 size = sizeof(struct tstorm_eth_function_common_config); 10377 ecore_storm_memset_struct(sc, addr, size, (uint32_t *)tcfg); 10378 } 10379 10380 static void 10381 bxe_func_init(struct bxe_softc *sc, 10382 struct bxe_func_init_params *p) 10383 { 10384 struct tstorm_eth_function_common_config tcfg = { 0 }; 10385 10386 if (CHIP_IS_E1x(sc)) { 10387 storm_memset_func_cfg(sc, &tcfg, p->func_id); 10388 } 10389 10390 /* Enable the function in the FW */ 10391 storm_memset_vf_to_pf(sc, p->func_id, p->pf_id); 10392 storm_memset_func_en(sc, p->func_id, 1); 10393 10394 /* spq */ 10395 if (p->func_flgs & FUNC_FLG_SPQ) { 10396 storm_memset_spq_addr(sc, p->spq_map, p->func_id); 10397 REG_WR(sc, 10398 (XSEM_REG_FAST_MEMORY + XSTORM_SPQ_PROD_OFFSET(p->func_id)), 10399 p->spq_prod); 10400 } 10401 } 10402 10403 /* 10404 * Calculates the sum of vn_min_rates. 10405 * It's needed for further normalizing of the min_rates. 10406 * Returns: 10407 * sum of vn_min_rates. 10408 * or 10409 * 0 - if all the min_rates are 0. 10410 * In the later case fainess algorithm should be deactivated. 10411 * If all min rates are not zero then those that are zeroes will be set to 1. 10412 */ 10413 static void 10414 bxe_calc_vn_min(struct bxe_softc *sc, 10415 struct cmng_init_input *input) 10416 { 10417 uint32_t vn_cfg; 10418 uint32_t vn_min_rate; 10419 int all_zero = 1; 10420 int vn; 10421 10422 for (vn = VN_0; vn < SC_MAX_VN_NUM(sc); vn++) { 10423 vn_cfg = sc->devinfo.mf_info.mf_config[vn]; 10424 vn_min_rate = (((vn_cfg & FUNC_MF_CFG_MIN_BW_MASK) >> 10425 FUNC_MF_CFG_MIN_BW_SHIFT) * 100); 10426 10427 if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE) { 10428 /* skip hidden VNs */ 10429 vn_min_rate = 0; 10430 } else if (!vn_min_rate) { 10431 /* If min rate is zero - set it to 100 */ 10432 vn_min_rate = DEF_MIN_RATE; 10433 } else { 10434 all_zero = 0; 10435 } 10436 10437 input->vnic_min_rate[vn] = vn_min_rate; 10438 } 10439 10440 /* if ETS or all min rates are zeros - disable fairness */ 10441 if (BXE_IS_ETS_ENABLED(sc)) { 10442 input->flags.cmng_enables &= ~CMNG_FLAGS_PER_PORT_FAIRNESS_VN; 10443 BLOGD(sc, DBG_LOAD, "Fairness disabled (ETS)\n"); 10444 } else if (all_zero) { 10445 input->flags.cmng_enables &= ~CMNG_FLAGS_PER_PORT_FAIRNESS_VN; 10446 BLOGD(sc, DBG_LOAD, 10447 "Fariness disabled (all MIN values are zeroes)\n"); 10448 } else { 10449 input->flags.cmng_enables |= CMNG_FLAGS_PER_PORT_FAIRNESS_VN; 10450 } 10451 } 10452 10453 static inline uint16_t 10454 bxe_extract_max_cfg(struct bxe_softc *sc, 10455 uint32_t mf_cfg) 10456 { 10457 uint16_t max_cfg = ((mf_cfg & FUNC_MF_CFG_MAX_BW_MASK) >> 10458 FUNC_MF_CFG_MAX_BW_SHIFT); 10459 10460 if (!max_cfg) { 10461 BLOGD(sc, DBG_LOAD, "Max BW configured to 0 - using 100 instead\n"); 10462 max_cfg = 100; 10463 } 10464 10465 return (max_cfg); 10466 } 10467 10468 static void 10469 bxe_calc_vn_max(struct bxe_softc *sc, 10470 int vn, 10471 struct cmng_init_input *input) 10472 { 10473 uint16_t vn_max_rate; 10474 uint32_t vn_cfg = sc->devinfo.mf_info.mf_config[vn]; 10475 uint32_t max_cfg; 10476 10477 if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE) { 10478 vn_max_rate = 0; 10479 } else { 10480 max_cfg = bxe_extract_max_cfg(sc, vn_cfg); 10481 10482 if (IS_MF_SI(sc)) { 10483 /* max_cfg in percents of linkspeed */ 10484 vn_max_rate = ((sc->link_vars.line_speed * max_cfg) / 100); 10485 } else { /* SD modes */ 10486 /* max_cfg is absolute in 100Mb units */ 10487 vn_max_rate = (max_cfg * 100); 10488 } 10489 } 10490 10491 BLOGD(sc, DBG_LOAD, "vn %d: vn_max_rate %d\n", vn, vn_max_rate); 10492 10493 input->vnic_max_rate[vn] = vn_max_rate; 10494 } 10495 10496 static void 10497 bxe_cmng_fns_init(struct bxe_softc *sc, 10498 uint8_t read_cfg, 10499 uint8_t cmng_type) 10500 { 10501 struct cmng_init_input input; 10502 int vn; 10503 10504 memset(&input, 0, sizeof(struct cmng_init_input)); 10505 10506 input.port_rate = sc->link_vars.line_speed; 10507 10508 if (cmng_type == CMNG_FNS_MINMAX) { 10509 /* read mf conf from shmem */ 10510 if (read_cfg) { 10511 bxe_read_mf_cfg(sc); 10512 } 10513 10514 /* get VN min rate and enable fairness if not 0 */ 10515 bxe_calc_vn_min(sc, &input); 10516 10517 /* get VN max rate */ 10518 if (sc->port.pmf) { 10519 for (vn = VN_0; vn < SC_MAX_VN_NUM(sc); vn++) { 10520 bxe_calc_vn_max(sc, vn, &input); 10521 } 10522 } 10523 10524 /* always enable rate shaping and fairness */ 10525 input.flags.cmng_enables |= CMNG_FLAGS_PER_PORT_RATE_SHAPING_VN; 10526 10527 ecore_init_cmng(&input, &sc->cmng); 10528 return; 10529 } 10530 10531 /* rate shaping and fairness are disabled */ 10532 BLOGD(sc, DBG_LOAD, "rate shaping and fairness have been disabled\n"); 10533 } 10534 10535 static int 10536 bxe_get_cmng_fns_mode(struct bxe_softc *sc) 10537 { 10538 if (CHIP_REV_IS_SLOW(sc)) { 10539 return (CMNG_FNS_NONE); 10540 } 10541 10542 if (IS_MF(sc)) { 10543 return (CMNG_FNS_MINMAX); 10544 } 10545 10546 return (CMNG_FNS_NONE); 10547 } 10548 10549 static void 10550 storm_memset_cmng(struct bxe_softc *sc, 10551 struct cmng_init *cmng, 10552 uint8_t port) 10553 { 10554 int vn; 10555 int func; 10556 uint32_t addr; 10557 size_t size; 10558 10559 addr = (BAR_XSTRORM_INTMEM + 10560 XSTORM_CMNG_PER_PORT_VARS_OFFSET(port)); 10561 size = sizeof(struct cmng_struct_per_port); 10562 ecore_storm_memset_struct(sc, addr, size, (uint32_t *)&cmng->port); 10563 10564 for (vn = VN_0; vn < SC_MAX_VN_NUM(sc); vn++) { 10565 func = func_by_vn(sc, vn); 10566 10567 addr = (BAR_XSTRORM_INTMEM + 10568 XSTORM_RATE_SHAPING_PER_VN_VARS_OFFSET(func)); 10569 size = sizeof(struct rate_shaping_vars_per_vn); 10570 ecore_storm_memset_struct(sc, addr, size, 10571 (uint32_t *)&cmng->vnic.vnic_max_rate[vn]); 10572 10573 addr = (BAR_XSTRORM_INTMEM + 10574 XSTORM_FAIRNESS_PER_VN_VARS_OFFSET(func)); 10575 size = sizeof(struct fairness_vars_per_vn); 10576 ecore_storm_memset_struct(sc, addr, size, 10577 (uint32_t *)&cmng->vnic.vnic_min_rate[vn]); 10578 } 10579 } 10580 10581 static void 10582 bxe_pf_init(struct bxe_softc *sc) 10583 { 10584 struct bxe_func_init_params func_init = { 0 }; 10585 struct event_ring_data eq_data = { { 0 } }; 10586 uint16_t flags; 10587 10588 if (!CHIP_IS_E1x(sc)) { 10589 /* reset IGU PF statistics: MSIX + ATTN */ 10590 /* PF */ 10591 REG_WR(sc, 10592 (IGU_REG_STATISTIC_NUM_MESSAGE_SENT + 10593 (BXE_IGU_STAS_MSG_VF_CNT * 4) + 10594 ((CHIP_IS_MODE_4_PORT(sc) ? SC_FUNC(sc) : SC_VN(sc)) * 4)), 10595 0); 10596 /* ATTN */ 10597 REG_WR(sc, 10598 (IGU_REG_STATISTIC_NUM_MESSAGE_SENT + 10599 (BXE_IGU_STAS_MSG_VF_CNT * 4) + 10600 (BXE_IGU_STAS_MSG_PF_CNT * 4) + 10601 ((CHIP_IS_MODE_4_PORT(sc) ? SC_FUNC(sc) : SC_VN(sc)) * 4)), 10602 0); 10603 } 10604 10605 /* function setup flags */ 10606 flags = (FUNC_FLG_STATS | FUNC_FLG_LEADING | FUNC_FLG_SPQ); 10607 10608 /* 10609 * This flag is relevant for E1x only. 10610 * E2 doesn't have a TPA configuration in a function level. 10611 */ 10612 flags |= (sc->ifnet->if_capenable & IFCAP_LRO) ? FUNC_FLG_TPA : 0; 10613 10614 func_init.func_flgs = flags; 10615 func_init.pf_id = SC_FUNC(sc); 10616 func_init.func_id = SC_FUNC(sc); 10617 func_init.spq_map = sc->spq_dma.paddr; 10618 func_init.spq_prod = sc->spq_prod_idx; 10619 10620 bxe_func_init(sc, &func_init); 10621 10622 memset(&sc->cmng, 0, sizeof(struct cmng_struct_per_port)); 10623 10624 /* 10625 * Congestion management values depend on the link rate. 10626 * There is no active link so initial link rate is set to 10Gbps. 10627 * When the link comes up the congestion management values are 10628 * re-calculated according to the actual link rate. 10629 */ 10630 sc->link_vars.line_speed = SPEED_10000; 10631 bxe_cmng_fns_init(sc, TRUE, bxe_get_cmng_fns_mode(sc)); 10632 10633 /* Only the PMF sets the HW */ 10634 if (sc->port.pmf) { 10635 storm_memset_cmng(sc, &sc->cmng, SC_PORT(sc)); 10636 } 10637 10638 /* init Event Queue - PCI bus guarantees correct endainity */ 10639 eq_data.base_addr.hi = U64_HI(sc->eq_dma.paddr); 10640 eq_data.base_addr.lo = U64_LO(sc->eq_dma.paddr); 10641 eq_data.producer = sc->eq_prod; 10642 eq_data.index_id = HC_SP_INDEX_EQ_CONS; 10643 eq_data.sb_id = DEF_SB_ID; 10644 storm_memset_eq_data(sc, &eq_data, SC_FUNC(sc)); 10645 } 10646 10647 static void 10648 bxe_hc_int_enable(struct bxe_softc *sc) 10649 { 10650 int port = SC_PORT(sc); 10651 uint32_t addr = (port) ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0; 10652 uint32_t val = REG_RD(sc, addr); 10653 uint8_t msix = (sc->interrupt_mode == INTR_MODE_MSIX) ? TRUE : FALSE; 10654 uint8_t single_msix = ((sc->interrupt_mode == INTR_MODE_MSIX) && 10655 (sc->intr_count == 1)) ? TRUE : FALSE; 10656 uint8_t msi = (sc->interrupt_mode == INTR_MODE_MSI) ? TRUE : FALSE; 10657 10658 if (msix) { 10659 val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 | 10660 HC_CONFIG_0_REG_INT_LINE_EN_0); 10661 val |= (HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 | 10662 HC_CONFIG_0_REG_ATTN_BIT_EN_0); 10663 if (single_msix) { 10664 val |= HC_CONFIG_0_REG_SINGLE_ISR_EN_0; 10665 } 10666 } else if (msi) { 10667 val &= ~HC_CONFIG_0_REG_INT_LINE_EN_0; 10668 val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 | 10669 HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 | 10670 HC_CONFIG_0_REG_ATTN_BIT_EN_0); 10671 } else { 10672 val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 | 10673 HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 | 10674 HC_CONFIG_0_REG_INT_LINE_EN_0 | 10675 HC_CONFIG_0_REG_ATTN_BIT_EN_0); 10676 10677 if (!CHIP_IS_E1(sc)) { 10678 BLOGD(sc, DBG_INTR, "write %x to HC %d (addr 0x%x)\n", 10679 val, port, addr); 10680 10681 REG_WR(sc, addr, val); 10682 10683 val &= ~HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0; 10684 } 10685 } 10686 10687 if (CHIP_IS_E1(sc)) { 10688 REG_WR(sc, (HC_REG_INT_MASK + port*4), 0x1FFFF); 10689 } 10690 10691 BLOGD(sc, DBG_INTR, "write %x to HC %d (addr 0x%x) mode %s\n", 10692 val, port, addr, ((msix) ? "MSI-X" : ((msi) ? "MSI" : "INTx"))); 10693 10694 REG_WR(sc, addr, val); 10695 10696 /* ensure that HC_CONFIG is written before leading/trailing edge config */ 10697 mb(); 10698 10699 if (!CHIP_IS_E1(sc)) { 10700 /* init leading/trailing edge */ 10701 if (IS_MF(sc)) { 10702 val = (0xee0f | (1 << (SC_VN(sc) + 4))); 10703 if (sc->port.pmf) { 10704 /* enable nig and gpio3 attention */ 10705 val |= 0x1100; 10706 } 10707 } else { 10708 val = 0xffff; 10709 } 10710 10711 REG_WR(sc, (HC_REG_TRAILING_EDGE_0 + port*8), val); 10712 REG_WR(sc, (HC_REG_LEADING_EDGE_0 + port*8), val); 10713 } 10714 10715 /* make sure that interrupts are indeed enabled from here on */ 10716 mb(); 10717 } 10718 10719 static void 10720 bxe_igu_int_enable(struct bxe_softc *sc) 10721 { 10722 uint32_t val; 10723 uint8_t msix = (sc->interrupt_mode == INTR_MODE_MSIX) ? TRUE : FALSE; 10724 uint8_t single_msix = ((sc->interrupt_mode == INTR_MODE_MSIX) && 10725 (sc->intr_count == 1)) ? TRUE : FALSE; 10726 uint8_t msi = (sc->interrupt_mode == INTR_MODE_MSI) ? TRUE : FALSE; 10727 10728 val = REG_RD(sc, IGU_REG_PF_CONFIGURATION); 10729 10730 if (msix) { 10731 val &= ~(IGU_PF_CONF_INT_LINE_EN | 10732 IGU_PF_CONF_SINGLE_ISR_EN); 10733 val |= (IGU_PF_CONF_MSI_MSIX_EN | 10734 IGU_PF_CONF_ATTN_BIT_EN); 10735 if (single_msix) { 10736 val |= IGU_PF_CONF_SINGLE_ISR_EN; 10737 } 10738 } else if (msi) { 10739 val &= ~IGU_PF_CONF_INT_LINE_EN; 10740 val |= (IGU_PF_CONF_MSI_MSIX_EN | 10741 IGU_PF_CONF_ATTN_BIT_EN | 10742 IGU_PF_CONF_SINGLE_ISR_EN); 10743 } else { 10744 val &= ~IGU_PF_CONF_MSI_MSIX_EN; 10745 val |= (IGU_PF_CONF_INT_LINE_EN | 10746 IGU_PF_CONF_ATTN_BIT_EN | 10747 IGU_PF_CONF_SINGLE_ISR_EN); 10748 } 10749 10750 /* clean previous status - need to configure igu prior to ack*/ 10751 if ((!msix) || single_msix) { 10752 REG_WR(sc, IGU_REG_PF_CONFIGURATION, val); 10753 bxe_ack_int(sc); 10754 } 10755 10756 val |= IGU_PF_CONF_FUNC_EN; 10757 10758 BLOGD(sc, DBG_INTR, "write 0x%x to IGU mode %s\n", 10759 val, ((msix) ? "MSI-X" : ((msi) ? "MSI" : "INTx"))); 10760 10761 REG_WR(sc, IGU_REG_PF_CONFIGURATION, val); 10762 10763 mb(); 10764 10765 /* init leading/trailing edge */ 10766 if (IS_MF(sc)) { 10767 val = (0xee0f | (1 << (SC_VN(sc) + 4))); 10768 if (sc->port.pmf) { 10769 /* enable nig and gpio3 attention */ 10770 val |= 0x1100; 10771 } 10772 } else { 10773 val = 0xffff; 10774 } 10775 10776 REG_WR(sc, IGU_REG_TRAILING_EDGE_LATCH, val); 10777 REG_WR(sc, IGU_REG_LEADING_EDGE_LATCH, val); 10778 10779 /* make sure that interrupts are indeed enabled from here on */ 10780 mb(); 10781 } 10782 10783 static void 10784 bxe_int_enable(struct bxe_softc *sc) 10785 { 10786 if (sc->devinfo.int_block == INT_BLOCK_HC) { 10787 bxe_hc_int_enable(sc); 10788 } else { 10789 bxe_igu_int_enable(sc); 10790 } 10791 } 10792 10793 static void 10794 bxe_hc_int_disable(struct bxe_softc *sc) 10795 { 10796 int port = SC_PORT(sc); 10797 uint32_t addr = (port) ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0; 10798 uint32_t val = REG_RD(sc, addr); 10799 10800 /* 10801 * In E1 we must use only PCI configuration space to disable MSI/MSIX 10802 * capablility. It's forbidden to disable IGU_PF_CONF_MSI_MSIX_EN in HC 10803 * block 10804 */ 10805 if (CHIP_IS_E1(sc)) { 10806 /* 10807 * Since IGU_PF_CONF_MSI_MSIX_EN still always on use mask register 10808 * to prevent from HC sending interrupts after we exit the function 10809 */ 10810 REG_WR(sc, (HC_REG_INT_MASK + port*4), 0); 10811 10812 val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 | 10813 HC_CONFIG_0_REG_INT_LINE_EN_0 | 10814 HC_CONFIG_0_REG_ATTN_BIT_EN_0); 10815 } else { 10816 val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 | 10817 HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 | 10818 HC_CONFIG_0_REG_INT_LINE_EN_0 | 10819 HC_CONFIG_0_REG_ATTN_BIT_EN_0); 10820 } 10821 10822 BLOGD(sc, DBG_INTR, "write %x to HC %d (addr 0x%x)\n", val, port, addr); 10823 10824 /* flush all outstanding writes */ 10825 mb(); 10826 10827 REG_WR(sc, addr, val); 10828 if (REG_RD(sc, addr) != val) { 10829 BLOGE(sc, "proper val not read from HC IGU!\n"); 10830 } 10831 } 10832 10833 static void 10834 bxe_igu_int_disable(struct bxe_softc *sc) 10835 { 10836 uint32_t val = REG_RD(sc, IGU_REG_PF_CONFIGURATION); 10837 10838 val &= ~(IGU_PF_CONF_MSI_MSIX_EN | 10839 IGU_PF_CONF_INT_LINE_EN | 10840 IGU_PF_CONF_ATTN_BIT_EN); 10841 10842 BLOGD(sc, DBG_INTR, "write %x to IGU\n", val); 10843 10844 /* flush all outstanding writes */ 10845 mb(); 10846 10847 REG_WR(sc, IGU_REG_PF_CONFIGURATION, val); 10848 if (REG_RD(sc, IGU_REG_PF_CONFIGURATION) != val) { 10849 BLOGE(sc, "proper val not read from IGU!\n"); 10850 } 10851 } 10852 10853 static void 10854 bxe_int_disable(struct bxe_softc *sc) 10855 { 10856 if (sc->devinfo.int_block == INT_BLOCK_HC) { 10857 bxe_hc_int_disable(sc); 10858 } else { 10859 bxe_igu_int_disable(sc); 10860 } 10861 } 10862 10863 static void 10864 bxe_nic_init(struct bxe_softc *sc, 10865 int load_code) 10866 { 10867 int i; 10868 10869 for (i = 0; i < sc->num_queues; i++) { 10870 bxe_init_eth_fp(sc, i); 10871 } 10872 10873 rmb(); /* ensure status block indices were read */ 10874 10875 bxe_init_rx_rings(sc); 10876 bxe_init_tx_rings(sc); 10877 10878 if (IS_VF(sc)) { 10879 return; 10880 } 10881 10882 /* initialize MOD_ABS interrupts */ 10883 elink_init_mod_abs_int(sc, &sc->link_vars, 10884 sc->devinfo.chip_id, 10885 sc->devinfo.shmem_base, 10886 sc->devinfo.shmem2_base, 10887 SC_PORT(sc)); 10888 10889 bxe_init_def_sb(sc); 10890 bxe_update_dsb_idx(sc); 10891 bxe_init_sp_ring(sc); 10892 bxe_init_eq_ring(sc); 10893 bxe_init_internal(sc, load_code); 10894 bxe_pf_init(sc); 10895 bxe_stats_init(sc); 10896 10897 /* flush all before enabling interrupts */ 10898 mb(); 10899 10900 bxe_int_enable(sc); 10901 10902 /* check for SPIO5 */ 10903 bxe_attn_int_deasserted0(sc, 10904 REG_RD(sc, 10905 (MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + 10906 SC_PORT(sc)*4)) & 10907 AEU_INPUTS_ATTN_BITS_SPIO5); 10908 } 10909 10910 static inline void 10911 bxe_init_objs(struct bxe_softc *sc) 10912 { 10913 /* mcast rules must be added to tx if tx switching is enabled */ 10914 ecore_obj_type o_type = 10915 (sc->flags & BXE_TX_SWITCHING) ? ECORE_OBJ_TYPE_RX_TX : 10916 ECORE_OBJ_TYPE_RX; 10917 10918 /* RX_MODE controlling object */ 10919 ecore_init_rx_mode_obj(sc, &sc->rx_mode_obj); 10920 10921 /* multicast configuration controlling object */ 10922 ecore_init_mcast_obj(sc, 10923 &sc->mcast_obj, 10924 sc->fp[0].cl_id, 10925 sc->fp[0].index, 10926 SC_FUNC(sc), 10927 SC_FUNC(sc), 10928 BXE_SP(sc, mcast_rdata), 10929 BXE_SP_MAPPING(sc, mcast_rdata), 10930 ECORE_FILTER_MCAST_PENDING, 10931 &sc->sp_state, 10932 o_type); 10933 10934 /* Setup CAM credit pools */ 10935 ecore_init_mac_credit_pool(sc, 10936 &sc->macs_pool, 10937 SC_FUNC(sc), 10938 CHIP_IS_E1x(sc) ? VNICS_PER_PORT(sc) : 10939 VNICS_PER_PATH(sc)); 10940 10941 ecore_init_vlan_credit_pool(sc, 10942 &sc->vlans_pool, 10943 SC_ABS_FUNC(sc) >> 1, 10944 CHIP_IS_E1x(sc) ? VNICS_PER_PORT(sc) : 10945 VNICS_PER_PATH(sc)); 10946 10947 /* RSS configuration object */ 10948 ecore_init_rss_config_obj(sc, 10949 &sc->rss_conf_obj, 10950 sc->fp[0].cl_id, 10951 sc->fp[0].index, 10952 SC_FUNC(sc), 10953 SC_FUNC(sc), 10954 BXE_SP(sc, rss_rdata), 10955 BXE_SP_MAPPING(sc, rss_rdata), 10956 ECORE_FILTER_RSS_CONF_PENDING, 10957 &sc->sp_state, ECORE_OBJ_TYPE_RX); 10958 } 10959 10960 /* 10961 * Initialize the function. This must be called before sending CLIENT_SETUP 10962 * for the first client. 10963 */ 10964 static inline int 10965 bxe_func_start(struct bxe_softc *sc) 10966 { 10967 struct ecore_func_state_params func_params = { NULL }; 10968 struct ecore_func_start_params *start_params = &func_params.params.start; 10969 10970 /* Prepare parameters for function state transitions */ 10971 bit_set(&func_params.ramrod_flags, RAMROD_COMP_WAIT); 10972 10973 func_params.f_obj = &sc->func_obj; 10974 func_params.cmd = ECORE_F_CMD_START; 10975 10976 /* Function parameters */ 10977 start_params->mf_mode = sc->devinfo.mf_info.mf_mode; 10978 start_params->sd_vlan_tag = OVLAN(sc); 10979 10980 if (CHIP_IS_E2(sc) || CHIP_IS_E3(sc)) { 10981 start_params->network_cos_mode = STATIC_COS; 10982 } else { /* CHIP_IS_E1X */ 10983 start_params->network_cos_mode = FW_WRR; 10984 } 10985 10986 start_params->gre_tunnel_mode = 0; 10987 start_params->gre_tunnel_rss = 0; 10988 10989 return (ecore_func_state_change(sc, &func_params)); 10990 } 10991 10992 static int 10993 bxe_set_power_state(struct bxe_softc *sc, 10994 uint8_t state) 10995 { 10996 uint16_t pmcsr; 10997 10998 /* If there is no power capability, silently succeed */ 10999 if (!(sc->devinfo.pcie_cap_flags & BXE_PM_CAPABLE_FLAG)) { 11000 BLOGW(sc, "No power capability\n"); 11001 return (0); 11002 } 11003 11004 pmcsr = pci_read_config(sc->dev, 11005 (sc->devinfo.pcie_pm_cap_reg + PCIR_POWER_STATUS), 11006 2); 11007 11008 switch (state) { 11009 case PCI_PM_D0: 11010 pci_write_config(sc->dev, 11011 (sc->devinfo.pcie_pm_cap_reg + PCIR_POWER_STATUS), 11012 ((pmcsr & ~PCIM_PSTAT_DMASK) | PCIM_PSTAT_PME), 2); 11013 11014 if (pmcsr & PCIM_PSTAT_DMASK) { 11015 /* delay required during transition out of D3hot */ 11016 DELAY(20000); 11017 } 11018 11019 break; 11020 11021 case PCI_PM_D3hot: 11022 /* XXX if there are other clients above don't shut down the power */ 11023 11024 /* don't shut down the power for emulation and FPGA */ 11025 if (CHIP_REV_IS_SLOW(sc)) { 11026 return (0); 11027 } 11028 11029 pmcsr &= ~PCIM_PSTAT_DMASK; 11030 pmcsr |= PCIM_PSTAT_D3; 11031 11032 if (sc->wol) { 11033 pmcsr |= PCIM_PSTAT_PMEENABLE; 11034 } 11035 11036 pci_write_config(sc->dev, 11037 (sc->devinfo.pcie_pm_cap_reg + PCIR_POWER_STATUS), 11038 pmcsr, 4); 11039 11040 /* 11041 * No more memory access after this point until device is brought back 11042 * to D0 state. 11043 */ 11044 break; 11045 11046 default: 11047 BLOGE(sc, "Can't support PCI power state = %d\n", state); 11048 return (-1); 11049 } 11050 11051 return (0); 11052 } 11053 11054 11055 /* return true if succeeded to acquire the lock */ 11056 static uint8_t 11057 bxe_trylock_hw_lock(struct bxe_softc *sc, 11058 uint32_t resource) 11059 { 11060 uint32_t lock_status; 11061 uint32_t resource_bit = (1 << resource); 11062 int func = SC_FUNC(sc); 11063 uint32_t hw_lock_control_reg; 11064 11065 BLOGD(sc, DBG_LOAD, "Trying to take a resource lock 0x%x\n", resource); 11066 11067 /* Validating that the resource is within range */ 11068 if (resource > HW_LOCK_MAX_RESOURCE_VALUE) { 11069 BLOGD(sc, DBG_LOAD, 11070 "resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n", 11071 resource, HW_LOCK_MAX_RESOURCE_VALUE); 11072 return (FALSE); 11073 } 11074 11075 if (func <= 5) { 11076 hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8); 11077 } else { 11078 hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8); 11079 } 11080 11081 /* try to acquire the lock */ 11082 REG_WR(sc, hw_lock_control_reg + 4, resource_bit); 11083 lock_status = REG_RD(sc, hw_lock_control_reg); 11084 if (lock_status & resource_bit) { 11085 return (TRUE); 11086 } 11087 11088 BLOGE(sc, "Failed to get a resource lock 0x%x\n", resource); 11089 11090 return (FALSE); 11091 } 11092 11093 /* 11094 * Get the recovery leader resource id according to the engine this function 11095 * belongs to. Currently only only 2 engines is supported. 11096 */ 11097 static int 11098 bxe_get_leader_lock_resource(struct bxe_softc *sc) 11099 { 11100 if (SC_PATH(sc)) { 11101 return (HW_LOCK_RESOURCE_RECOVERY_LEADER_1); 11102 } else { 11103 return (HW_LOCK_RESOURCE_RECOVERY_LEADER_0); 11104 } 11105 } 11106 11107 /* try to acquire a leader lock for current engine */ 11108 static uint8_t 11109 bxe_trylock_leader_lock(struct bxe_softc *sc) 11110 { 11111 return (bxe_trylock_hw_lock(sc, bxe_get_leader_lock_resource(sc))); 11112 } 11113 11114 static int 11115 bxe_release_leader_lock(struct bxe_softc *sc) 11116 { 11117 return (bxe_release_hw_lock(sc, bxe_get_leader_lock_resource(sc))); 11118 } 11119 11120 /* close gates #2, #3 and #4 */ 11121 static void 11122 bxe_set_234_gates(struct bxe_softc *sc, 11123 uint8_t close) 11124 { 11125 uint32_t val; 11126 11127 /* gates #2 and #4a are closed/opened for "not E1" only */ 11128 if (!CHIP_IS_E1(sc)) { 11129 /* #4 */ 11130 REG_WR(sc, PXP_REG_HST_DISCARD_DOORBELLS, !!close); 11131 /* #2 */ 11132 REG_WR(sc, PXP_REG_HST_DISCARD_INTERNAL_WRITES, !!close); 11133 } 11134 11135 /* #3 */ 11136 if (CHIP_IS_E1x(sc)) { 11137 /* prevent interrupts from HC on both ports */ 11138 val = REG_RD(sc, HC_REG_CONFIG_1); 11139 REG_WR(sc, HC_REG_CONFIG_1, 11140 (!close) ? (val | HC_CONFIG_1_REG_BLOCK_DISABLE_1) : 11141 (val & ~(uint32_t)HC_CONFIG_1_REG_BLOCK_DISABLE_1)); 11142 11143 val = REG_RD(sc, HC_REG_CONFIG_0); 11144 REG_WR(sc, HC_REG_CONFIG_0, 11145 (!close) ? (val | HC_CONFIG_0_REG_BLOCK_DISABLE_0) : 11146 (val & ~(uint32_t)HC_CONFIG_0_REG_BLOCK_DISABLE_0)); 11147 } else { 11148 /* Prevent incomming interrupts in IGU */ 11149 val = REG_RD(sc, IGU_REG_BLOCK_CONFIGURATION); 11150 11151 REG_WR(sc, IGU_REG_BLOCK_CONFIGURATION, 11152 (!close) ? 11153 (val | IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE) : 11154 (val & ~(uint32_t)IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE)); 11155 } 11156 11157 BLOGD(sc, DBG_LOAD, "%s gates #2, #3 and #4\n", 11158 close ? "closing" : "opening"); 11159 11160 wmb(); 11161 } 11162 11163 /* poll for pending writes bit, it should get cleared in no more than 1s */ 11164 static int 11165 bxe_er_poll_igu_vq(struct bxe_softc *sc) 11166 { 11167 uint32_t cnt = 1000; 11168 uint32_t pend_bits = 0; 11169 11170 do { 11171 pend_bits = REG_RD(sc, IGU_REG_PENDING_BITS_STATUS); 11172 11173 if (pend_bits == 0) { 11174 break; 11175 } 11176 11177 DELAY(1000); 11178 } while (--cnt > 0); 11179 11180 if (cnt == 0) { 11181 BLOGE(sc, "Still pending IGU requests bits=0x%08x!\n", pend_bits); 11182 return (-1); 11183 } 11184 11185 return (0); 11186 } 11187 11188 #define SHARED_MF_CLP_MAGIC 0x80000000 /* 'magic' bit */ 11189 11190 static void 11191 bxe_clp_reset_prep(struct bxe_softc *sc, 11192 uint32_t *magic_val) 11193 { 11194 /* Do some magic... */ 11195 uint32_t val = MFCFG_RD(sc, shared_mf_config.clp_mb); 11196 *magic_val = val & SHARED_MF_CLP_MAGIC; 11197 MFCFG_WR(sc, shared_mf_config.clp_mb, val | SHARED_MF_CLP_MAGIC); 11198 } 11199 11200 /* restore the value of the 'magic' bit */ 11201 static void 11202 bxe_clp_reset_done(struct bxe_softc *sc, 11203 uint32_t magic_val) 11204 { 11205 /* Restore the 'magic' bit value... */ 11206 uint32_t val = MFCFG_RD(sc, shared_mf_config.clp_mb); 11207 MFCFG_WR(sc, shared_mf_config.clp_mb, 11208 (val & (~SHARED_MF_CLP_MAGIC)) | magic_val); 11209 } 11210 11211 /* prepare for MCP reset, takes care of CLP configurations */ 11212 static void 11213 bxe_reset_mcp_prep(struct bxe_softc *sc, 11214 uint32_t *magic_val) 11215 { 11216 uint32_t shmem; 11217 uint32_t validity_offset; 11218 11219 /* set `magic' bit in order to save MF config */ 11220 if (!CHIP_IS_E1(sc)) { 11221 bxe_clp_reset_prep(sc, magic_val); 11222 } 11223 11224 /* get shmem offset */ 11225 shmem = REG_RD(sc, MISC_REG_SHARED_MEM_ADDR); 11226 validity_offset = 11227 offsetof(struct shmem_region, validity_map[SC_PORT(sc)]); 11228 11229 /* Clear validity map flags */ 11230 if (shmem > 0) { 11231 REG_WR(sc, shmem + validity_offset, 0); 11232 } 11233 } 11234 11235 #define MCP_TIMEOUT 5000 /* 5 seconds (in ms) */ 11236 #define MCP_ONE_TIMEOUT 100 /* 100 ms */ 11237 11238 static void 11239 bxe_mcp_wait_one(struct bxe_softc *sc) 11240 { 11241 /* special handling for emulation and FPGA (10 times longer) */ 11242 if (CHIP_REV_IS_SLOW(sc)) { 11243 DELAY((MCP_ONE_TIMEOUT*10) * 1000); 11244 } else { 11245 DELAY((MCP_ONE_TIMEOUT) * 1000); 11246 } 11247 } 11248 11249 /* initialize shmem_base and waits for validity signature to appear */ 11250 static int 11251 bxe_init_shmem(struct bxe_softc *sc) 11252 { 11253 int cnt = 0; 11254 uint32_t val = 0; 11255 11256 do { 11257 sc->devinfo.shmem_base = 11258 sc->link_params.shmem_base = 11259 REG_RD(sc, MISC_REG_SHARED_MEM_ADDR); 11260 11261 if (sc->devinfo.shmem_base) { 11262 val = SHMEM_RD(sc, validity_map[SC_PORT(sc)]); 11263 if (val & SHR_MEM_VALIDITY_MB) 11264 return (0); 11265 } 11266 11267 bxe_mcp_wait_one(sc); 11268 11269 } while (cnt++ < (MCP_TIMEOUT / MCP_ONE_TIMEOUT)); 11270 11271 BLOGE(sc, "BAD MCP validity signature\n"); 11272 11273 return (-1); 11274 } 11275 11276 static int 11277 bxe_reset_mcp_comp(struct bxe_softc *sc, 11278 uint32_t magic_val) 11279 { 11280 int rc = bxe_init_shmem(sc); 11281 11282 /* Restore the `magic' bit value */ 11283 if (!CHIP_IS_E1(sc)) { 11284 bxe_clp_reset_done(sc, magic_val); 11285 } 11286 11287 return (rc); 11288 } 11289 11290 static void 11291 bxe_pxp_prep(struct bxe_softc *sc) 11292 { 11293 if (!CHIP_IS_E1(sc)) { 11294 REG_WR(sc, PXP2_REG_RD_START_INIT, 0); 11295 REG_WR(sc, PXP2_REG_RQ_RBC_DONE, 0); 11296 wmb(); 11297 } 11298 } 11299 11300 /* 11301 * Reset the whole chip except for: 11302 * - PCIE core 11303 * - PCI Glue, PSWHST, PXP/PXP2 RF (all controlled by one reset bit) 11304 * - IGU 11305 * - MISC (including AEU) 11306 * - GRC 11307 * - RBCN, RBCP 11308 */ 11309 static void 11310 bxe_process_kill_chip_reset(struct bxe_softc *sc, 11311 uint8_t global) 11312 { 11313 uint32_t not_reset_mask1, reset_mask1, not_reset_mask2, reset_mask2; 11314 uint32_t global_bits2, stay_reset2; 11315 11316 /* 11317 * Bits that have to be set in reset_mask2 if we want to reset 'global' 11318 * (per chip) blocks. 11319 */ 11320 global_bits2 = 11321 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CPU | 11322 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CORE; 11323 11324 /* 11325 * Don't reset the following blocks. 11326 * Important: per port blocks (such as EMAC, BMAC, UMAC) can't be 11327 * reset, as in 4 port device they might still be owned 11328 * by the MCP (there is only one leader per path). 11329 */ 11330 not_reset_mask1 = 11331 MISC_REGISTERS_RESET_REG_1_RST_HC | 11332 MISC_REGISTERS_RESET_REG_1_RST_PXPV | 11333 MISC_REGISTERS_RESET_REG_1_RST_PXP; 11334 11335 not_reset_mask2 = 11336 MISC_REGISTERS_RESET_REG_2_RST_PCI_MDIO | 11337 MISC_REGISTERS_RESET_REG_2_RST_EMAC0_HARD_CORE | 11338 MISC_REGISTERS_RESET_REG_2_RST_EMAC1_HARD_CORE | 11339 MISC_REGISTERS_RESET_REG_2_RST_MISC_CORE | 11340 MISC_REGISTERS_RESET_REG_2_RST_RBCN | 11341 MISC_REGISTERS_RESET_REG_2_RST_GRC | 11342 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_REG_HARD_CORE | 11343 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_HARD_CORE_RST_B | 11344 MISC_REGISTERS_RESET_REG_2_RST_ATC | 11345 MISC_REGISTERS_RESET_REG_2_PGLC | 11346 MISC_REGISTERS_RESET_REG_2_RST_BMAC0 | 11347 MISC_REGISTERS_RESET_REG_2_RST_BMAC1 | 11348 MISC_REGISTERS_RESET_REG_2_RST_EMAC0 | 11349 MISC_REGISTERS_RESET_REG_2_RST_EMAC1 | 11350 MISC_REGISTERS_RESET_REG_2_UMAC0 | 11351 MISC_REGISTERS_RESET_REG_2_UMAC1; 11352 11353 /* 11354 * Keep the following blocks in reset: 11355 * - all xxMACs are handled by the elink code. 11356 */ 11357 stay_reset2 = 11358 MISC_REGISTERS_RESET_REG_2_XMAC | 11359 MISC_REGISTERS_RESET_REG_2_XMAC_SOFT; 11360 11361 /* Full reset masks according to the chip */ 11362 reset_mask1 = 0xffffffff; 11363 11364 if (CHIP_IS_E1(sc)) 11365 reset_mask2 = 0xffff; 11366 else if (CHIP_IS_E1H(sc)) 11367 reset_mask2 = 0x1ffff; 11368 else if (CHIP_IS_E2(sc)) 11369 reset_mask2 = 0xfffff; 11370 else /* CHIP_IS_E3 */ 11371 reset_mask2 = 0x3ffffff; 11372 11373 /* Don't reset global blocks unless we need to */ 11374 if (!global) 11375 reset_mask2 &= ~global_bits2; 11376 11377 /* 11378 * In case of attention in the QM, we need to reset PXP 11379 * (MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR) before QM 11380 * because otherwise QM reset would release 'close the gates' shortly 11381 * before resetting the PXP, then the PSWRQ would send a write 11382 * request to PGLUE. Then when PXP is reset, PGLUE would try to 11383 * read the payload data from PSWWR, but PSWWR would not 11384 * respond. The write queue in PGLUE would stuck, dmae commands 11385 * would not return. Therefore it's important to reset the second 11386 * reset register (containing the 11387 * MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR bit) before the 11388 * first one (containing the MISC_REGISTERS_RESET_REG_1_RST_QM 11389 * bit). 11390 */ 11391 REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR, 11392 reset_mask2 & (~not_reset_mask2)); 11393 11394 REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 11395 reset_mask1 & (~not_reset_mask1)); 11396 11397 mb(); 11398 wmb(); 11399 11400 REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET, 11401 reset_mask2 & (~stay_reset2)); 11402 11403 mb(); 11404 wmb(); 11405 11406 REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, reset_mask1); 11407 wmb(); 11408 } 11409 11410 static int 11411 bxe_process_kill(struct bxe_softc *sc, 11412 uint8_t global) 11413 { 11414 int cnt = 1000; 11415 uint32_t val = 0; 11416 uint32_t sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1, pgl_exp_rom2; 11417 uint32_t tags_63_32 = 0; 11418 11419 /* Empty the Tetris buffer, wait for 1s */ 11420 do { 11421 sr_cnt = REG_RD(sc, PXP2_REG_RD_SR_CNT); 11422 blk_cnt = REG_RD(sc, PXP2_REG_RD_BLK_CNT); 11423 port_is_idle_0 = REG_RD(sc, PXP2_REG_RD_PORT_IS_IDLE_0); 11424 port_is_idle_1 = REG_RD(sc, PXP2_REG_RD_PORT_IS_IDLE_1); 11425 pgl_exp_rom2 = REG_RD(sc, PXP2_REG_PGL_EXP_ROM2); 11426 if (CHIP_IS_E3(sc)) { 11427 tags_63_32 = REG_RD(sc, PGLUE_B_REG_TAGS_63_32); 11428 } 11429 11430 if ((sr_cnt == 0x7e) && (blk_cnt == 0xa0) && 11431 ((port_is_idle_0 & 0x1) == 0x1) && 11432 ((port_is_idle_1 & 0x1) == 0x1) && 11433 (pgl_exp_rom2 == 0xffffffff) && 11434 (!CHIP_IS_E3(sc) || (tags_63_32 == 0xffffffff))) 11435 break; 11436 DELAY(1000); 11437 } while (cnt-- > 0); 11438 11439 if (cnt <= 0) { 11440 BLOGE(sc, "ERROR: Tetris buffer didn't get empty or there " 11441 "are still outstanding read requests after 1s! " 11442 "sr_cnt=0x%08x, blk_cnt=0x%08x, port_is_idle_0=0x%08x, " 11443 "port_is_idle_1=0x%08x, pgl_exp_rom2=0x%08x\n", 11444 sr_cnt, blk_cnt, port_is_idle_0, 11445 port_is_idle_1, pgl_exp_rom2); 11446 return (-1); 11447 } 11448 11449 mb(); 11450 11451 /* Close gates #2, #3 and #4 */ 11452 bxe_set_234_gates(sc, TRUE); 11453 11454 /* Poll for IGU VQs for 57712 and newer chips */ 11455 if (!CHIP_IS_E1x(sc) && bxe_er_poll_igu_vq(sc)) { 11456 return (-1); 11457 } 11458 11459 /* XXX indicate that "process kill" is in progress to MCP */ 11460 11461 /* clear "unprepared" bit */ 11462 REG_WR(sc, MISC_REG_UNPREPARED, 0); 11463 mb(); 11464 11465 /* Make sure all is written to the chip before the reset */ 11466 wmb(); 11467 11468 /* 11469 * Wait for 1ms to empty GLUE and PCI-E core queues, 11470 * PSWHST, GRC and PSWRD Tetris buffer. 11471 */ 11472 DELAY(1000); 11473 11474 /* Prepare to chip reset: */ 11475 /* MCP */ 11476 if (global) { 11477 bxe_reset_mcp_prep(sc, &val); 11478 } 11479 11480 /* PXP */ 11481 bxe_pxp_prep(sc); 11482 mb(); 11483 11484 /* reset the chip */ 11485 bxe_process_kill_chip_reset(sc, global); 11486 mb(); 11487 11488 /* Recover after reset: */ 11489 /* MCP */ 11490 if (global && bxe_reset_mcp_comp(sc, val)) { 11491 return (-1); 11492 } 11493 11494 /* XXX add resetting the NO_MCP mode DB here */ 11495 11496 /* Open the gates #2, #3 and #4 */ 11497 bxe_set_234_gates(sc, FALSE); 11498 11499 /* XXX 11500 * IGU/AEU preparation bring back the AEU/IGU to a reset state 11501 * re-enable attentions 11502 */ 11503 11504 return (0); 11505 } 11506 11507 static int 11508 bxe_leader_reset(struct bxe_softc *sc) 11509 { 11510 int rc = 0; 11511 uint8_t global = bxe_reset_is_global(sc); 11512 uint32_t load_code; 11513 11514 /* 11515 * If not going to reset MCP, load "fake" driver to reset HW while 11516 * driver is owner of the HW. 11517 */ 11518 if (!global && !BXE_NOMCP(sc)) { 11519 load_code = bxe_fw_command(sc, DRV_MSG_CODE_LOAD_REQ, 11520 DRV_MSG_CODE_LOAD_REQ_WITH_LFA); 11521 if (!load_code) { 11522 BLOGE(sc, "MCP response failure, aborting\n"); 11523 rc = -1; 11524 goto exit_leader_reset; 11525 } 11526 11527 if ((load_code != FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) && 11528 (load_code != FW_MSG_CODE_DRV_LOAD_COMMON)) { 11529 BLOGE(sc, "MCP unexpected response, aborting\n"); 11530 rc = -1; 11531 goto exit_leader_reset2; 11532 } 11533 11534 load_code = bxe_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0); 11535 if (!load_code) { 11536 BLOGE(sc, "MCP response failure, aborting\n"); 11537 rc = -1; 11538 goto exit_leader_reset2; 11539 } 11540 } 11541 11542 /* try to recover after the failure */ 11543 if (bxe_process_kill(sc, global)) { 11544 BLOGE(sc, "Something bad occurred on engine %d!\n", SC_PATH(sc)); 11545 rc = -1; 11546 goto exit_leader_reset2; 11547 } 11548 11549 /* 11550 * Clear the RESET_IN_PROGRESS and RESET_GLOBAL bits and update the driver 11551 * state. 11552 */ 11553 bxe_set_reset_done(sc); 11554 if (global) { 11555 bxe_clear_reset_global(sc); 11556 } 11557 11558 exit_leader_reset2: 11559 11560 /* unload "fake driver" if it was loaded */ 11561 if (!global && !BXE_NOMCP(sc)) { 11562 bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP, 0); 11563 bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_DONE, 0); 11564 } 11565 11566 exit_leader_reset: 11567 11568 sc->is_leader = 0; 11569 bxe_release_leader_lock(sc); 11570 11571 mb(); 11572 return (rc); 11573 } 11574 11575 /* 11576 * prepare INIT transition, parameters configured: 11577 * - HC configuration 11578 * - Queue's CDU context 11579 */ 11580 static void 11581 bxe_pf_q_prep_init(struct bxe_softc *sc, 11582 struct bxe_fastpath *fp, 11583 struct ecore_queue_init_params *init_params) 11584 { 11585 uint8_t cos; 11586 int cxt_index, cxt_offset; 11587 11588 bxe_set_bit(ECORE_Q_FLG_HC, &init_params->rx.flags); 11589 bxe_set_bit(ECORE_Q_FLG_HC, &init_params->tx.flags); 11590 11591 bxe_set_bit(ECORE_Q_FLG_HC_EN, &init_params->rx.flags); 11592 bxe_set_bit(ECORE_Q_FLG_HC_EN, &init_params->tx.flags); 11593 11594 /* HC rate */ 11595 init_params->rx.hc_rate = 11596 sc->hc_rx_ticks ? (1000000 / sc->hc_rx_ticks) : 0; 11597 init_params->tx.hc_rate = 11598 sc->hc_tx_ticks ? (1000000 / sc->hc_tx_ticks) : 0; 11599 11600 /* FW SB ID */ 11601 init_params->rx.fw_sb_id = init_params->tx.fw_sb_id = fp->fw_sb_id; 11602 11603 /* CQ index among the SB indices */ 11604 init_params->rx.sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS; 11605 init_params->tx.sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS; 11606 11607 /* set maximum number of COSs supported by this queue */ 11608 init_params->max_cos = sc->max_cos; 11609 11610 BLOGD(sc, DBG_LOAD, "fp %d setting queue params max cos to %d\n", 11611 fp->index, init_params->max_cos); 11612 11613 /* set the context pointers queue object */ 11614 for (cos = FIRST_TX_COS_INDEX; cos < init_params->max_cos; cos++) { 11615 /* XXX change index/cid here if ever support multiple tx CoS */ 11616 /* fp->txdata[cos]->cid */ 11617 cxt_index = fp->index / ILT_PAGE_CIDS; 11618 cxt_offset = fp->index - (cxt_index * ILT_PAGE_CIDS); 11619 init_params->cxts[cos] = &sc->context[cxt_index].vcxt[cxt_offset].eth; 11620 } 11621 } 11622 11623 /* set flags that are common for the Tx-only and not normal connections */ 11624 static unsigned long 11625 bxe_get_common_flags(struct bxe_softc *sc, 11626 struct bxe_fastpath *fp, 11627 uint8_t zero_stats) 11628 { 11629 unsigned long flags = 0; 11630 11631 /* PF driver will always initialize the Queue to an ACTIVE state */ 11632 bxe_set_bit(ECORE_Q_FLG_ACTIVE, &flags); 11633 11634 /* 11635 * tx only connections collect statistics (on the same index as the 11636 * parent connection). The statistics are zeroed when the parent 11637 * connection is initialized. 11638 */ 11639 11640 bxe_set_bit(ECORE_Q_FLG_STATS, &flags); 11641 if (zero_stats) { 11642 bxe_set_bit(ECORE_Q_FLG_ZERO_STATS, &flags); 11643 } 11644 11645 /* 11646 * tx only connections can support tx-switching, though their 11647 * CoS-ness doesn't survive the loopback 11648 */ 11649 if (sc->flags & BXE_TX_SWITCHING) { 11650 bxe_set_bit(ECORE_Q_FLG_TX_SWITCH, &flags); 11651 } 11652 11653 bxe_set_bit(ECORE_Q_FLG_PCSUM_ON_PKT, &flags); 11654 11655 return (flags); 11656 } 11657 11658 static unsigned long 11659 bxe_get_q_flags(struct bxe_softc *sc, 11660 struct bxe_fastpath *fp, 11661 uint8_t leading) 11662 { 11663 unsigned long flags = 0; 11664 11665 if (IS_MF_SD(sc)) { 11666 bxe_set_bit(ECORE_Q_FLG_OV, &flags); 11667 } 11668 11669 if (sc->ifnet->if_capenable & IFCAP_LRO) { 11670 bxe_set_bit(ECORE_Q_FLG_TPA, &flags); 11671 bxe_set_bit(ECORE_Q_FLG_TPA_IPV6, &flags); 11672 #if 0 11673 if (fp->mode == TPA_MODE_GRO) 11674 __set_bit(ECORE_Q_FLG_TPA_GRO, &flags); 11675 #endif 11676 } 11677 11678 if (leading) { 11679 bxe_set_bit(ECORE_Q_FLG_LEADING_RSS, &flags); 11680 bxe_set_bit(ECORE_Q_FLG_MCAST, &flags); 11681 } 11682 11683 bxe_set_bit(ECORE_Q_FLG_VLAN, &flags); 11684 11685 #if 0 11686 /* configure silent vlan removal */ 11687 if (IS_MF_AFEX(sc)) { 11688 bxe_set_bit(ECORE_Q_FLG_SILENT_VLAN_REM, &flags); 11689 } 11690 #endif 11691 11692 /* merge with common flags */ 11693 return (flags | bxe_get_common_flags(sc, fp, TRUE)); 11694 } 11695 11696 static void 11697 bxe_pf_q_prep_general(struct bxe_softc *sc, 11698 struct bxe_fastpath *fp, 11699 struct ecore_general_setup_params *gen_init, 11700 uint8_t cos) 11701 { 11702 gen_init->stat_id = bxe_stats_id(fp); 11703 gen_init->spcl_id = fp->cl_id; 11704 gen_init->mtu = sc->mtu; 11705 gen_init->cos = cos; 11706 } 11707 11708 static void 11709 bxe_pf_rx_q_prep(struct bxe_softc *sc, 11710 struct bxe_fastpath *fp, 11711 struct rxq_pause_params *pause, 11712 struct ecore_rxq_setup_params *rxq_init) 11713 { 11714 uint8_t max_sge = 0; 11715 uint16_t sge_sz = 0; 11716 uint16_t tpa_agg_size = 0; 11717 11718 if (sc->ifnet->if_capenable & IFCAP_LRO) { 11719 pause->sge_th_lo = SGE_TH_LO(sc); 11720 pause->sge_th_hi = SGE_TH_HI(sc); 11721 11722 /* validate SGE ring has enough to cross high threshold */ 11723 if (sc->dropless_fc && 11724 (pause->sge_th_hi + FW_PREFETCH_CNT) > 11725 (RX_SGE_USABLE_PER_PAGE * RX_SGE_NUM_PAGES)) { 11726 BLOGW(sc, "sge ring threshold limit\n"); 11727 } 11728 11729 /* minimum max_aggregation_size is 2*MTU (two full buffers) */ 11730 tpa_agg_size = (2 * sc->mtu); 11731 if (tpa_agg_size < sc->max_aggregation_size) { 11732 tpa_agg_size = sc->max_aggregation_size; 11733 } 11734 11735 max_sge = SGE_PAGE_ALIGN(sc->mtu) >> SGE_PAGE_SHIFT; 11736 max_sge = ((max_sge + PAGES_PER_SGE - 1) & 11737 (~(PAGES_PER_SGE - 1))) >> PAGES_PER_SGE_SHIFT; 11738 sge_sz = (uint16_t)min(SGE_PAGES, 0xffff); 11739 } 11740 11741 /* pause - not for e1 */ 11742 if (!CHIP_IS_E1(sc)) { 11743 pause->bd_th_lo = BD_TH_LO(sc); 11744 pause->bd_th_hi = BD_TH_HI(sc); 11745 11746 pause->rcq_th_lo = RCQ_TH_LO(sc); 11747 pause->rcq_th_hi = RCQ_TH_HI(sc); 11748 11749 /* validate rings have enough entries to cross high thresholds */ 11750 if (sc->dropless_fc && 11751 pause->bd_th_hi + FW_PREFETCH_CNT > 11752 sc->rx_ring_size) { 11753 BLOGW(sc, "rx bd ring threshold limit\n"); 11754 } 11755 11756 if (sc->dropless_fc && 11757 pause->rcq_th_hi + FW_PREFETCH_CNT > 11758 RCQ_NUM_PAGES * RCQ_USABLE_PER_PAGE) { 11759 BLOGW(sc, "rcq ring threshold limit\n"); 11760 } 11761 11762 pause->pri_map = 1; 11763 } 11764 11765 /* rxq setup */ 11766 rxq_init->dscr_map = fp->rx_dma.paddr; 11767 rxq_init->sge_map = fp->rx_sge_dma.paddr; 11768 rxq_init->rcq_map = fp->rcq_dma.paddr; 11769 rxq_init->rcq_np_map = (fp->rcq_dma.paddr + BCM_PAGE_SIZE); 11770 11771 /* 11772 * This should be a maximum number of data bytes that may be 11773 * placed on the BD (not including paddings). 11774 */ 11775 rxq_init->buf_sz = (fp->rx_buf_size - 11776 IP_HEADER_ALIGNMENT_PADDING); 11777 11778 rxq_init->cl_qzone_id = fp->cl_qzone_id; 11779 rxq_init->tpa_agg_sz = tpa_agg_size; 11780 rxq_init->sge_buf_sz = sge_sz; 11781 rxq_init->max_sges_pkt = max_sge; 11782 rxq_init->rss_engine_id = SC_FUNC(sc); 11783 rxq_init->mcast_engine_id = SC_FUNC(sc); 11784 11785 /* 11786 * Maximum number or simultaneous TPA aggregation for this Queue. 11787 * For PF Clients it should be the maximum available number. 11788 * VF driver(s) may want to define it to a smaller value. 11789 */ 11790 rxq_init->max_tpa_queues = MAX_AGG_QS(sc); 11791 11792 rxq_init->cache_line_log = BXE_RX_ALIGN_SHIFT; 11793 rxq_init->fw_sb_id = fp->fw_sb_id; 11794 11795 rxq_init->sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS; 11796 11797 /* 11798 * configure silent vlan removal 11799 * if multi function mode is afex, then mask default vlan 11800 */ 11801 if (IS_MF_AFEX(sc)) { 11802 rxq_init->silent_removal_value = 11803 sc->devinfo.mf_info.afex_def_vlan_tag; 11804 rxq_init->silent_removal_mask = EVL_VLID_MASK; 11805 } 11806 } 11807 11808 static void 11809 bxe_pf_tx_q_prep(struct bxe_softc *sc, 11810 struct bxe_fastpath *fp, 11811 struct ecore_txq_setup_params *txq_init, 11812 uint8_t cos) 11813 { 11814 /* 11815 * XXX If multiple CoS is ever supported then each fastpath structure 11816 * will need to maintain tx producer/consumer/dma/etc values *per* CoS. 11817 * fp->txdata[cos]->tx_dma.paddr; 11818 */ 11819 txq_init->dscr_map = fp->tx_dma.paddr; 11820 txq_init->sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS + cos; 11821 txq_init->traffic_type = LLFC_TRAFFIC_TYPE_NW; 11822 txq_init->fw_sb_id = fp->fw_sb_id; 11823 11824 /* 11825 * set the TSS leading client id for TX classfication to the 11826 * leading RSS client id 11827 */ 11828 txq_init->tss_leading_cl_id = BXE_FP(sc, 0, cl_id); 11829 } 11830 11831 /* 11832 * This function performs 2 steps in a queue state machine: 11833 * 1) RESET->INIT 11834 * 2) INIT->SETUP 11835 */ 11836 static int 11837 bxe_setup_queue(struct bxe_softc *sc, 11838 struct bxe_fastpath *fp, 11839 uint8_t leading) 11840 { 11841 struct ecore_queue_state_params q_params = { NULL }; 11842 struct ecore_queue_setup_params *setup_params = 11843 &q_params.params.setup; 11844 #if 0 11845 struct ecore_queue_setup_tx_only_params *tx_only_params = 11846 &q_params.params.tx_only; 11847 uint8_t tx_index; 11848 #endif 11849 int rc; 11850 11851 BLOGD(sc, DBG_LOAD, "setting up queue %d\n", fp->index); 11852 11853 bxe_ack_sb(sc, fp->igu_sb_id, USTORM_ID, 0, IGU_INT_ENABLE, 0); 11854 11855 q_params.q_obj = &BXE_SP_OBJ(sc, fp).q_obj; 11856 11857 /* we want to wait for completion in this context */ 11858 bxe_set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags); 11859 11860 /* prepare the INIT parameters */ 11861 bxe_pf_q_prep_init(sc, fp, &q_params.params.init); 11862 11863 /* Set the command */ 11864 q_params.cmd = ECORE_Q_CMD_INIT; 11865 11866 /* Change the state to INIT */ 11867 rc = ecore_queue_state_change(sc, &q_params); 11868 if (rc) { 11869 BLOGE(sc, "Queue(%d) INIT failed\n", fp->index); 11870 return (rc); 11871 } 11872 11873 BLOGD(sc, DBG_LOAD, "init complete\n"); 11874 11875 /* now move the Queue to the SETUP state */ 11876 memset(setup_params, 0, sizeof(*setup_params)); 11877 11878 /* set Queue flags */ 11879 setup_params->flags = bxe_get_q_flags(sc, fp, leading); 11880 11881 /* set general SETUP parameters */ 11882 bxe_pf_q_prep_general(sc, fp, &setup_params->gen_params, 11883 FIRST_TX_COS_INDEX); 11884 11885 bxe_pf_rx_q_prep(sc, fp, 11886 &setup_params->pause_params, 11887 &setup_params->rxq_params); 11888 11889 bxe_pf_tx_q_prep(sc, fp, 11890 &setup_params->txq_params, 11891 FIRST_TX_COS_INDEX); 11892 11893 /* Set the command */ 11894 q_params.cmd = ECORE_Q_CMD_SETUP; 11895 11896 /* change the state to SETUP */ 11897 rc = ecore_queue_state_change(sc, &q_params); 11898 if (rc) { 11899 BLOGE(sc, "Queue(%d) SETUP failed\n", fp->index); 11900 return (rc); 11901 } 11902 11903 #if 0 11904 /* loop through the relevant tx-only indices */ 11905 for (tx_index = FIRST_TX_ONLY_COS_INDEX; 11906 tx_index < sc->max_cos; 11907 tx_index++) { 11908 /* prepare and send tx-only ramrod*/ 11909 rc = bxe_setup_tx_only(sc, fp, &q_params, 11910 tx_only_params, tx_index, leading); 11911 if (rc) { 11912 BLOGE(sc, "Queue(%d.%d) TX_ONLY_SETUP failed\n", 11913 fp->index, tx_index); 11914 return (rc); 11915 } 11916 } 11917 #endif 11918 11919 return (rc); 11920 } 11921 11922 static int 11923 bxe_setup_leading(struct bxe_softc *sc) 11924 { 11925 return (bxe_setup_queue(sc, &sc->fp[0], TRUE)); 11926 } 11927 11928 static int 11929 bxe_config_rss_pf(struct bxe_softc *sc, 11930 struct ecore_rss_config_obj *rss_obj, 11931 uint8_t config_hash) 11932 { 11933 struct ecore_config_rss_params params = { NULL }; 11934 int i; 11935 11936 /* 11937 * Although RSS is meaningless when there is a single HW queue we 11938 * still need it enabled in order to have HW Rx hash generated. 11939 */ 11940 11941 params.rss_obj = rss_obj; 11942 11943 bxe_set_bit(RAMROD_COMP_WAIT, ¶ms.ramrod_flags); 11944 11945 bxe_set_bit(ECORE_RSS_MODE_REGULAR, ¶ms.rss_flags); 11946 11947 /* RSS configuration */ 11948 bxe_set_bit(ECORE_RSS_IPV4, ¶ms.rss_flags); 11949 bxe_set_bit(ECORE_RSS_IPV4_TCP, ¶ms.rss_flags); 11950 bxe_set_bit(ECORE_RSS_IPV6, ¶ms.rss_flags); 11951 bxe_set_bit(ECORE_RSS_IPV6_TCP, ¶ms.rss_flags); 11952 if (rss_obj->udp_rss_v4) { 11953 bxe_set_bit(ECORE_RSS_IPV4_UDP, ¶ms.rss_flags); 11954 } 11955 if (rss_obj->udp_rss_v6) { 11956 bxe_set_bit(ECORE_RSS_IPV6_UDP, ¶ms.rss_flags); 11957 } 11958 11959 /* Hash bits */ 11960 params.rss_result_mask = MULTI_MASK; 11961 11962 memcpy(params.ind_table, rss_obj->ind_table, sizeof(params.ind_table)); 11963 11964 if (config_hash) { 11965 /* RSS keys */ 11966 for (i = 0; i < sizeof(params.rss_key) / 4; i++) { 11967 params.rss_key[i] = arc4random(); 11968 } 11969 11970 bxe_set_bit(ECORE_RSS_SET_SRCH, ¶ms.rss_flags); 11971 } 11972 11973 return (ecore_config_rss(sc, ¶ms)); 11974 } 11975 11976 static int 11977 bxe_config_rss_eth(struct bxe_softc *sc, 11978 uint8_t config_hash) 11979 { 11980 return (bxe_config_rss_pf(sc, &sc->rss_conf_obj, config_hash)); 11981 } 11982 11983 static int 11984 bxe_init_rss_pf(struct bxe_softc *sc) 11985 { 11986 uint8_t num_eth_queues = BXE_NUM_ETH_QUEUES(sc); 11987 int i; 11988 11989 /* 11990 * Prepare the initial contents of the indirection table if 11991 * RSS is enabled 11992 */ 11993 for (i = 0; i < sizeof(sc->rss_conf_obj.ind_table); i++) { 11994 sc->rss_conf_obj.ind_table[i] = 11995 (sc->fp->cl_id + (i % num_eth_queues)); 11996 } 11997 11998 if (sc->udp_rss) { 11999 sc->rss_conf_obj.udp_rss_v4 = sc->rss_conf_obj.udp_rss_v6 = 1; 12000 } 12001 12002 /* 12003 * For 57710 and 57711 SEARCHER configuration (rss_keys) is 12004 * per-port, so if explicit configuration is needed, do it only 12005 * for a PMF. 12006 * 12007 * For 57712 and newer it's a per-function configuration. 12008 */ 12009 return (bxe_config_rss_eth(sc, sc->port.pmf || !CHIP_IS_E1x(sc))); 12010 } 12011 12012 static int 12013 bxe_set_mac_one(struct bxe_softc *sc, 12014 uint8_t *mac, 12015 struct ecore_vlan_mac_obj *obj, 12016 uint8_t set, 12017 int mac_type, 12018 unsigned long *ramrod_flags) 12019 { 12020 struct ecore_vlan_mac_ramrod_params ramrod_param; 12021 int rc; 12022 12023 memset(&ramrod_param, 0, sizeof(ramrod_param)); 12024 12025 /* fill in general parameters */ 12026 ramrod_param.vlan_mac_obj = obj; 12027 ramrod_param.ramrod_flags = *ramrod_flags; 12028 12029 /* fill a user request section if needed */ 12030 if (!bxe_test_bit(RAMROD_CONT, ramrod_flags)) { 12031 memcpy(ramrod_param.user_req.u.mac.mac, mac, ETH_ALEN); 12032 12033 bxe_set_bit(mac_type, &ramrod_param.user_req.vlan_mac_flags); 12034 12035 /* Set the command: ADD or DEL */ 12036 ramrod_param.user_req.cmd = (set) ? ECORE_VLAN_MAC_ADD : 12037 ECORE_VLAN_MAC_DEL; 12038 } 12039 12040 rc = ecore_config_vlan_mac(sc, &ramrod_param); 12041 12042 if (rc == ECORE_EXISTS) { 12043 BLOGD(sc, DBG_SP, "Failed to schedule ADD operations (EEXIST)\n"); 12044 /* do not treat adding same MAC as error */ 12045 rc = 0; 12046 } else if (rc < 0) { 12047 BLOGE(sc, "%s MAC failed (%d)\n", (set ? "Set" : "Delete"), rc); 12048 } 12049 12050 return (rc); 12051 } 12052 12053 static int 12054 bxe_set_eth_mac(struct bxe_softc *sc, 12055 uint8_t set) 12056 { 12057 unsigned long ramrod_flags = 0; 12058 12059 BLOGD(sc, DBG_LOAD, "Adding Ethernet MAC\n"); 12060 12061 bxe_set_bit(RAMROD_COMP_WAIT, &ramrod_flags); 12062 12063 /* Eth MAC is set on RSS leading client (fp[0]) */ 12064 return (bxe_set_mac_one(sc, sc->link_params.mac_addr, 12065 &sc->sp_objs->mac_obj, 12066 set, ECORE_ETH_MAC, &ramrod_flags)); 12067 } 12068 12069 #if 0 12070 static void 12071 bxe_update_max_mf_config(struct bxe_softc *sc, 12072 uint32_t value) 12073 { 12074 /* load old values */ 12075 uint32_t mf_cfg = sc->devinfo.mf_info.mf_config[SC_VN(sc)]; 12076 12077 if (value != bxe_extract_max_cfg(sc, mf_cfg)) { 12078 /* leave all but MAX value */ 12079 mf_cfg &= ~FUNC_MF_CFG_MAX_BW_MASK; 12080 12081 /* set new MAX value */ 12082 mf_cfg |= ((value << FUNC_MF_CFG_MAX_BW_SHIFT) & 12083 FUNC_MF_CFG_MAX_BW_MASK); 12084 12085 bxe_fw_command(sc, DRV_MSG_CODE_SET_MF_BW, mf_cfg); 12086 } 12087 } 12088 #endif 12089 12090 static int 12091 bxe_get_cur_phy_idx(struct bxe_softc *sc) 12092 { 12093 uint32_t sel_phy_idx = 0; 12094 12095 if (sc->link_params.num_phys <= 1) { 12096 return (ELINK_INT_PHY); 12097 } 12098 12099 if (sc->link_vars.link_up) { 12100 sel_phy_idx = ELINK_EXT_PHY1; 12101 /* In case link is SERDES, check if the ELINK_EXT_PHY2 is the one */ 12102 if ((sc->link_vars.link_status & LINK_STATUS_SERDES_LINK) && 12103 (sc->link_params.phy[ELINK_EXT_PHY2].supported & 12104 ELINK_SUPPORTED_FIBRE)) 12105 sel_phy_idx = ELINK_EXT_PHY2; 12106 } else { 12107 switch (elink_phy_selection(&sc->link_params)) { 12108 case PORT_HW_CFG_PHY_SELECTION_HARDWARE_DEFAULT: 12109 case PORT_HW_CFG_PHY_SELECTION_FIRST_PHY: 12110 case PORT_HW_CFG_PHY_SELECTION_FIRST_PHY_PRIORITY: 12111 sel_phy_idx = ELINK_EXT_PHY1; 12112 break; 12113 case PORT_HW_CFG_PHY_SELECTION_SECOND_PHY: 12114 case PORT_HW_CFG_PHY_SELECTION_SECOND_PHY_PRIORITY: 12115 sel_phy_idx = ELINK_EXT_PHY2; 12116 break; 12117 } 12118 } 12119 12120 return (sel_phy_idx); 12121 } 12122 12123 static int 12124 bxe_get_link_cfg_idx(struct bxe_softc *sc) 12125 { 12126 uint32_t sel_phy_idx = bxe_get_cur_phy_idx(sc); 12127 12128 /* 12129 * The selected activated PHY is always after swapping (in case PHY 12130 * swapping is enabled). So when swapping is enabled, we need to reverse 12131 * the configuration 12132 */ 12133 12134 if (sc->link_params.multi_phy_config & PORT_HW_CFG_PHY_SWAPPED_ENABLED) { 12135 if (sel_phy_idx == ELINK_EXT_PHY1) 12136 sel_phy_idx = ELINK_EXT_PHY2; 12137 else if (sel_phy_idx == ELINK_EXT_PHY2) 12138 sel_phy_idx = ELINK_EXT_PHY1; 12139 } 12140 12141 return (ELINK_LINK_CONFIG_IDX(sel_phy_idx)); 12142 } 12143 12144 static void 12145 bxe_set_requested_fc(struct bxe_softc *sc) 12146 { 12147 /* 12148 * Initialize link parameters structure variables 12149 * It is recommended to turn off RX FC for jumbo frames 12150 * for better performance 12151 */ 12152 if (CHIP_IS_E1x(sc) && (sc->mtu > 5000)) { 12153 sc->link_params.req_fc_auto_adv = ELINK_FLOW_CTRL_TX; 12154 } else { 12155 sc->link_params.req_fc_auto_adv = ELINK_FLOW_CTRL_BOTH; 12156 } 12157 } 12158 12159 static void 12160 bxe_calc_fc_adv(struct bxe_softc *sc) 12161 { 12162 uint8_t cfg_idx = bxe_get_link_cfg_idx(sc); 12163 switch (sc->link_vars.ieee_fc & 12164 MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_MASK) { 12165 case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_NONE: 12166 default: 12167 sc->port.advertising[cfg_idx] &= ~(ADVERTISED_Asym_Pause | 12168 ADVERTISED_Pause); 12169 break; 12170 12171 case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_BOTH: 12172 sc->port.advertising[cfg_idx] |= (ADVERTISED_Asym_Pause | 12173 ADVERTISED_Pause); 12174 break; 12175 12176 case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_ASYMMETRIC: 12177 sc->port.advertising[cfg_idx] |= ADVERTISED_Asym_Pause; 12178 break; 12179 } 12180 } 12181 12182 static uint16_t 12183 bxe_get_mf_speed(struct bxe_softc *sc) 12184 { 12185 uint16_t line_speed = sc->link_vars.line_speed; 12186 if (IS_MF(sc)) { 12187 uint16_t maxCfg = 12188 bxe_extract_max_cfg(sc, sc->devinfo.mf_info.mf_config[SC_VN(sc)]); 12189 12190 /* calculate the current MAX line speed limit for the MF devices */ 12191 if (IS_MF_SI(sc)) { 12192 line_speed = (line_speed * maxCfg) / 100; 12193 } else { /* SD mode */ 12194 uint16_t vn_max_rate = maxCfg * 100; 12195 12196 if (vn_max_rate < line_speed) { 12197 line_speed = vn_max_rate; 12198 } 12199 } 12200 } 12201 12202 return (line_speed); 12203 } 12204 12205 static void 12206 bxe_fill_report_data(struct bxe_softc *sc, 12207 struct bxe_link_report_data *data) 12208 { 12209 uint16_t line_speed = bxe_get_mf_speed(sc); 12210 12211 memset(data, 0, sizeof(*data)); 12212 12213 /* fill the report data with the effective line speed */ 12214 data->line_speed = line_speed; 12215 12216 /* Link is down */ 12217 if (!sc->link_vars.link_up || (sc->flags & BXE_MF_FUNC_DIS)) { 12218 bxe_set_bit(BXE_LINK_REPORT_LINK_DOWN, &data->link_report_flags); 12219 } 12220 12221 /* Full DUPLEX */ 12222 if (sc->link_vars.duplex == DUPLEX_FULL) { 12223 bxe_set_bit(BXE_LINK_REPORT_FULL_DUPLEX, &data->link_report_flags); 12224 } 12225 12226 /* Rx Flow Control is ON */ 12227 if (sc->link_vars.flow_ctrl & ELINK_FLOW_CTRL_RX) { 12228 bxe_set_bit(BXE_LINK_REPORT_RX_FC_ON, &data->link_report_flags); 12229 } 12230 12231 /* Tx Flow Control is ON */ 12232 if (sc->link_vars.flow_ctrl & ELINK_FLOW_CTRL_TX) { 12233 bxe_set_bit(BXE_LINK_REPORT_TX_FC_ON, &data->link_report_flags); 12234 } 12235 } 12236 12237 /* report link status to OS, should be called under phy_lock */ 12238 static void 12239 bxe_link_report_locked(struct bxe_softc *sc) 12240 { 12241 struct bxe_link_report_data cur_data; 12242 12243 /* reread mf_cfg */ 12244 if (IS_PF(sc) && !CHIP_IS_E1(sc)) { 12245 bxe_read_mf_cfg(sc); 12246 } 12247 12248 /* Read the current link report info */ 12249 bxe_fill_report_data(sc, &cur_data); 12250 12251 /* Don't report link down or exactly the same link status twice */ 12252 if (!memcmp(&cur_data, &sc->last_reported_link, sizeof(cur_data)) || 12253 (bxe_test_bit(BXE_LINK_REPORT_LINK_DOWN, 12254 &sc->last_reported_link.link_report_flags) && 12255 bxe_test_bit(BXE_LINK_REPORT_LINK_DOWN, 12256 &cur_data.link_report_flags))) { 12257 return; 12258 } 12259 12260 sc->link_cnt++; 12261 12262 /* report new link params and remember the state for the next time */ 12263 memcpy(&sc->last_reported_link, &cur_data, sizeof(cur_data)); 12264 12265 if (bxe_test_bit(BXE_LINK_REPORT_LINK_DOWN, 12266 &cur_data.link_report_flags)) { 12267 if_link_state_change(sc->ifnet, LINK_STATE_DOWN); 12268 BLOGI(sc, "NIC Link is Down\n"); 12269 } else { 12270 const char *duplex; 12271 const char *flow; 12272 12273 if (bxe_test_and_clear_bit(BXE_LINK_REPORT_FULL_DUPLEX, 12274 &cur_data.link_report_flags)) { 12275 duplex = "full"; 12276 } else { 12277 duplex = "half"; 12278 } 12279 12280 /* 12281 * Handle the FC at the end so that only these flags would be 12282 * possibly set. This way we may easily check if there is no FC 12283 * enabled. 12284 */ 12285 if (cur_data.link_report_flags) { 12286 if (bxe_test_bit(BXE_LINK_REPORT_RX_FC_ON, 12287 &cur_data.link_report_flags) && 12288 bxe_test_bit(BXE_LINK_REPORT_TX_FC_ON, 12289 &cur_data.link_report_flags)) { 12290 flow = "ON - receive & transmit"; 12291 } else if (bxe_test_bit(BXE_LINK_REPORT_RX_FC_ON, 12292 &cur_data.link_report_flags) && 12293 !bxe_test_bit(BXE_LINK_REPORT_TX_FC_ON, 12294 &cur_data.link_report_flags)) { 12295 flow = "ON - receive"; 12296 } else if (!bxe_test_bit(BXE_LINK_REPORT_RX_FC_ON, 12297 &cur_data.link_report_flags) && 12298 bxe_test_bit(BXE_LINK_REPORT_TX_FC_ON, 12299 &cur_data.link_report_flags)) { 12300 flow = "ON - transmit"; 12301 } else { 12302 flow = "none"; /* possible? */ 12303 } 12304 } else { 12305 flow = "none"; 12306 } 12307 12308 if_link_state_change(sc->ifnet, LINK_STATE_UP); 12309 BLOGI(sc, "NIC Link is Up, %d Mbps %s duplex, Flow control: %s\n", 12310 cur_data.line_speed, duplex, flow); 12311 } 12312 } 12313 12314 static void 12315 bxe_link_report(struct bxe_softc *sc) 12316 { 12317 BXE_PHY_LOCK(sc); 12318 bxe_link_report_locked(sc); 12319 BXE_PHY_UNLOCK(sc); 12320 } 12321 12322 static void 12323 bxe_link_status_update(struct bxe_softc *sc) 12324 { 12325 if (sc->state != BXE_STATE_OPEN) { 12326 return; 12327 } 12328 12329 #if 0 12330 /* read updated dcb configuration */ 12331 if (IS_PF(sc)) 12332 bxe_dcbx_pmf_update(sc); 12333 #endif 12334 12335 if (IS_PF(sc) && !CHIP_REV_IS_SLOW(sc)) { 12336 elink_link_status_update(&sc->link_params, &sc->link_vars); 12337 } else { 12338 sc->port.supported[0] |= (ELINK_SUPPORTED_10baseT_Half | 12339 ELINK_SUPPORTED_10baseT_Full | 12340 ELINK_SUPPORTED_100baseT_Half | 12341 ELINK_SUPPORTED_100baseT_Full | 12342 ELINK_SUPPORTED_1000baseT_Full | 12343 ELINK_SUPPORTED_2500baseX_Full | 12344 ELINK_SUPPORTED_10000baseT_Full | 12345 ELINK_SUPPORTED_TP | 12346 ELINK_SUPPORTED_FIBRE | 12347 ELINK_SUPPORTED_Autoneg | 12348 ELINK_SUPPORTED_Pause | 12349 ELINK_SUPPORTED_Asym_Pause); 12350 sc->port.advertising[0] = sc->port.supported[0]; 12351 12352 sc->link_params.sc = sc; 12353 sc->link_params.port = SC_PORT(sc); 12354 sc->link_params.req_duplex[0] = DUPLEX_FULL; 12355 sc->link_params.req_flow_ctrl[0] = ELINK_FLOW_CTRL_NONE; 12356 sc->link_params.req_line_speed[0] = SPEED_10000; 12357 sc->link_params.speed_cap_mask[0] = 0x7f0000; 12358 sc->link_params.switch_cfg = ELINK_SWITCH_CFG_10G; 12359 12360 if (CHIP_REV_IS_FPGA(sc)) { 12361 sc->link_vars.mac_type = ELINK_MAC_TYPE_EMAC; 12362 sc->link_vars.line_speed = ELINK_SPEED_1000; 12363 sc->link_vars.link_status = (LINK_STATUS_LINK_UP | 12364 LINK_STATUS_SPEED_AND_DUPLEX_1000TFD); 12365 } else { 12366 sc->link_vars.mac_type = ELINK_MAC_TYPE_BMAC; 12367 sc->link_vars.line_speed = ELINK_SPEED_10000; 12368 sc->link_vars.link_status = (LINK_STATUS_LINK_UP | 12369 LINK_STATUS_SPEED_AND_DUPLEX_10GTFD); 12370 } 12371 12372 sc->link_vars.link_up = 1; 12373 12374 sc->link_vars.duplex = DUPLEX_FULL; 12375 sc->link_vars.flow_ctrl = ELINK_FLOW_CTRL_NONE; 12376 12377 if (IS_PF(sc)) { 12378 REG_WR(sc, NIG_REG_EGRESS_DRAIN0_MODE + sc->link_params.port*4, 0); 12379 bxe_stats_handle(sc, STATS_EVENT_LINK_UP); 12380 bxe_link_report(sc); 12381 } 12382 } 12383 12384 if (IS_PF(sc)) { 12385 if (sc->link_vars.link_up) { 12386 bxe_stats_handle(sc, STATS_EVENT_LINK_UP); 12387 } else { 12388 bxe_stats_handle(sc, STATS_EVENT_STOP); 12389 } 12390 bxe_link_report(sc); 12391 } else { 12392 bxe_link_report(sc); 12393 bxe_stats_handle(sc, STATS_EVENT_LINK_UP); 12394 } 12395 } 12396 12397 static int 12398 bxe_initial_phy_init(struct bxe_softc *sc, 12399 int load_mode) 12400 { 12401 int rc, cfg_idx = bxe_get_link_cfg_idx(sc); 12402 uint16_t req_line_speed = sc->link_params.req_line_speed[cfg_idx]; 12403 struct elink_params *lp = &sc->link_params; 12404 12405 bxe_set_requested_fc(sc); 12406 12407 if (CHIP_REV_IS_SLOW(sc)) { 12408 uint32_t bond = CHIP_BOND_ID(sc); 12409 uint32_t feat = 0; 12410 12411 if (CHIP_IS_E2(sc) && CHIP_IS_MODE_4_PORT(sc)) { 12412 feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_BMAC; 12413 } else if (bond & 0x4) { 12414 if (CHIP_IS_E3(sc)) { 12415 feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_XMAC; 12416 } else { 12417 feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_BMAC; 12418 } 12419 } else if (bond & 0x8) { 12420 if (CHIP_IS_E3(sc)) { 12421 feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_UMAC; 12422 } else { 12423 feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_EMAC; 12424 } 12425 } 12426 12427 /* disable EMAC for E3 and above */ 12428 if (bond & 0x2) { 12429 feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_EMAC; 12430 } 12431 12432 sc->link_params.feature_config_flags |= feat; 12433 } 12434 12435 BXE_PHY_LOCK(sc); 12436 12437 if (load_mode == LOAD_DIAG) { 12438 lp->loopback_mode = ELINK_LOOPBACK_XGXS; 12439 /* Prefer doing PHY loopback at 10G speed, if possible */ 12440 if (lp->req_line_speed[cfg_idx] < ELINK_SPEED_10000) { 12441 if (lp->speed_cap_mask[cfg_idx] & 12442 PORT_HW_CFG_SPEED_CAPABILITY_D0_10G) { 12443 lp->req_line_speed[cfg_idx] = ELINK_SPEED_10000; 12444 } else { 12445 lp->req_line_speed[cfg_idx] = ELINK_SPEED_1000; 12446 } 12447 } 12448 } 12449 12450 if (load_mode == LOAD_LOOPBACK_EXT) { 12451 lp->loopback_mode = ELINK_LOOPBACK_EXT; 12452 } 12453 12454 rc = elink_phy_init(&sc->link_params, &sc->link_vars); 12455 12456 BXE_PHY_UNLOCK(sc); 12457 12458 bxe_calc_fc_adv(sc); 12459 12460 if (sc->link_vars.link_up) { 12461 bxe_stats_handle(sc, STATS_EVENT_LINK_UP); 12462 bxe_link_report(sc); 12463 } 12464 12465 if (!CHIP_REV_IS_SLOW(sc)) { 12466 bxe_periodic_start(sc); 12467 } 12468 12469 sc->link_params.req_line_speed[cfg_idx] = req_line_speed; 12470 return (rc); 12471 } 12472 12473 /* must be called under IF_ADDR_LOCK */ 12474 static int 12475 bxe_init_mcast_macs_list(struct bxe_softc *sc, 12476 struct ecore_mcast_ramrod_params *p) 12477 { 12478 struct ifnet *ifp = sc->ifnet; 12479 int mc_count = 0; 12480 struct ifmultiaddr *ifma; 12481 struct ecore_mcast_list_elem *mc_mac; 12482 12483 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 12484 if (ifma->ifma_addr->sa_family != AF_LINK) { 12485 continue; 12486 } 12487 12488 mc_count++; 12489 } 12490 12491 ECORE_LIST_INIT(&p->mcast_list); 12492 p->mcast_list_len = 0; 12493 12494 if (!mc_count) { 12495 return (0); 12496 } 12497 12498 mc_mac = malloc(sizeof(*mc_mac) * mc_count, M_DEVBUF, 12499 (M_NOWAIT | M_ZERO)); 12500 if (!mc_mac) { 12501 BLOGE(sc, "Failed to allocate temp mcast list\n"); 12502 return (-1); 12503 } 12504 12505 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 12506 if (ifma->ifma_addr->sa_family != AF_LINK) { 12507 continue; 12508 } 12509 12510 mc_mac->mac = (uint8_t *)LLADDR((struct sockaddr_dl *)ifma->ifma_addr); 12511 ECORE_LIST_PUSH_TAIL(&mc_mac->link, &p->mcast_list); 12512 12513 BLOGD(sc, DBG_LOAD, 12514 "Setting MCAST %02X:%02X:%02X:%02X:%02X:%02X\n", 12515 mc_mac->mac[0], mc_mac->mac[1], mc_mac->mac[2], 12516 mc_mac->mac[3], mc_mac->mac[4], mc_mac->mac[5]); 12517 12518 mc_mac++; 12519 } 12520 12521 p->mcast_list_len = mc_count; 12522 12523 return (0); 12524 } 12525 12526 static void 12527 bxe_free_mcast_macs_list(struct ecore_mcast_ramrod_params *p) 12528 { 12529 struct ecore_mcast_list_elem *mc_mac = 12530 ECORE_LIST_FIRST_ENTRY(&p->mcast_list, 12531 struct ecore_mcast_list_elem, 12532 link); 12533 12534 if (mc_mac) { 12535 /* only a single free as all mc_macs are in the same heap array */ 12536 free(mc_mac, M_DEVBUF); 12537 } 12538 } 12539 12540 static int 12541 bxe_set_mc_list(struct bxe_softc *sc) 12542 { 12543 struct ecore_mcast_ramrod_params rparam = { NULL }; 12544 int rc = 0; 12545 12546 rparam.mcast_obj = &sc->mcast_obj; 12547 12548 BXE_MCAST_LOCK(sc); 12549 12550 /* first, clear all configured multicast MACs */ 12551 rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_DEL); 12552 if (rc < 0) { 12553 BLOGE(sc, "Failed to clear multicast configuration: %d\n", rc); 12554 return (rc); 12555 } 12556 12557 /* configure a new MACs list */ 12558 rc = bxe_init_mcast_macs_list(sc, &rparam); 12559 if (rc) { 12560 BLOGE(sc, "Failed to create mcast MACs list (%d)\n", rc); 12561 BXE_MCAST_UNLOCK(sc); 12562 return (rc); 12563 } 12564 12565 /* Now add the new MACs */ 12566 rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_ADD); 12567 if (rc < 0) { 12568 BLOGE(sc, "Failed to set new mcast config (%d)\n", rc); 12569 } 12570 12571 bxe_free_mcast_macs_list(&rparam); 12572 12573 BXE_MCAST_UNLOCK(sc); 12574 12575 return (rc); 12576 } 12577 12578 static int 12579 bxe_set_uc_list(struct bxe_softc *sc) 12580 { 12581 struct ifnet *ifp = sc->ifnet; 12582 struct ecore_vlan_mac_obj *mac_obj = &sc->sp_objs->mac_obj; 12583 struct ifaddr *ifa; 12584 unsigned long ramrod_flags = 0; 12585 int rc; 12586 12587 #if __FreeBSD_version < 800000 12588 IF_ADDR_LOCK(ifp); 12589 #else 12590 if_addr_rlock(ifp); 12591 #endif 12592 12593 /* first schedule a cleanup up of old configuration */ 12594 rc = bxe_del_all_macs(sc, mac_obj, ECORE_UC_LIST_MAC, FALSE); 12595 if (rc < 0) { 12596 BLOGE(sc, "Failed to schedule delete of all ETH MACs (%d)\n", rc); 12597 #if __FreeBSD_version < 800000 12598 IF_ADDR_UNLOCK(ifp); 12599 #else 12600 if_addr_runlock(ifp); 12601 #endif 12602 return (rc); 12603 } 12604 12605 ifa = ifp->if_addr; 12606 while (ifa) { 12607 if (ifa->ifa_addr->sa_family != AF_LINK) { 12608 ifa = TAILQ_NEXT(ifa, ifa_link); 12609 continue; 12610 } 12611 12612 rc = bxe_set_mac_one(sc, (uint8_t *)LLADDR((struct sockaddr_dl *)ifa->ifa_addr), 12613 mac_obj, TRUE, ECORE_UC_LIST_MAC, &ramrod_flags); 12614 if (rc == -EEXIST) { 12615 BLOGD(sc, DBG_SP, "Failed to schedule ADD operations (EEXIST)\n"); 12616 /* do not treat adding same MAC as an error */ 12617 rc = 0; 12618 } else if (rc < 0) { 12619 BLOGE(sc, "Failed to schedule ADD operations (%d)\n", rc); 12620 #if __FreeBSD_version < 800000 12621 IF_ADDR_UNLOCK(ifp); 12622 #else 12623 if_addr_runlock(ifp); 12624 #endif 12625 return (rc); 12626 } 12627 12628 ifa = TAILQ_NEXT(ifa, ifa_link); 12629 } 12630 12631 #if __FreeBSD_version < 800000 12632 IF_ADDR_UNLOCK(ifp); 12633 #else 12634 if_addr_runlock(ifp); 12635 #endif 12636 12637 /* Execute the pending commands */ 12638 bit_set(&ramrod_flags, RAMROD_CONT); 12639 return (bxe_set_mac_one(sc, NULL, mac_obj, FALSE /* don't care */, 12640 ECORE_UC_LIST_MAC, &ramrod_flags)); 12641 } 12642 12643 static void 12644 bxe_handle_rx_mode_tq(void *context, 12645 int pending) 12646 { 12647 struct bxe_softc *sc = (struct bxe_softc *)context; 12648 struct ifnet *ifp = sc->ifnet; 12649 uint32_t rx_mode = BXE_RX_MODE_NORMAL; 12650 12651 BXE_CORE_LOCK(sc); 12652 12653 if (sc->state != BXE_STATE_OPEN) { 12654 BLOGD(sc, DBG_SP, "state is %x, returning\n", sc->state); 12655 BXE_CORE_UNLOCK(sc); 12656 return; 12657 } 12658 12659 BLOGD(sc, DBG_SP, "ifp->if_flags=0x%x\n", ifp->if_flags); 12660 12661 if (ifp->if_flags & IFF_PROMISC) { 12662 rx_mode = BXE_RX_MODE_PROMISC; 12663 } else if ((ifp->if_flags & IFF_ALLMULTI) || 12664 ((ifp->if_amcount > BXE_MAX_MULTICAST) && 12665 CHIP_IS_E1(sc))) { 12666 rx_mode = BXE_RX_MODE_ALLMULTI; 12667 } else { 12668 if (IS_PF(sc)) { 12669 /* some multicasts */ 12670 if (bxe_set_mc_list(sc) < 0) { 12671 rx_mode = BXE_RX_MODE_ALLMULTI; 12672 } 12673 if (bxe_set_uc_list(sc) < 0) { 12674 rx_mode = BXE_RX_MODE_PROMISC; 12675 } 12676 } 12677 #if 0 12678 else { 12679 /* 12680 * Configuring mcast to a VF involves sleeping (when we 12681 * wait for the PF's response). Since this function is 12682 * called from a non sleepable context we must schedule 12683 * a work item for this purpose 12684 */ 12685 bxe_set_bit(BXE_SP_RTNL_VFPF_MCAST, &sc->sp_rtnl_state); 12686 schedule_delayed_work(&sc->sp_rtnl_task, 0); 12687 } 12688 #endif 12689 } 12690 12691 sc->rx_mode = rx_mode; 12692 12693 /* schedule the rx_mode command */ 12694 if (bxe_test_bit(ECORE_FILTER_RX_MODE_PENDING, &sc->sp_state)) { 12695 BLOGD(sc, DBG_LOAD, "Scheduled setting rx_mode with ECORE...\n"); 12696 bxe_set_bit(ECORE_FILTER_RX_MODE_SCHED, &sc->sp_state); 12697 BXE_CORE_UNLOCK(sc); 12698 return; 12699 } 12700 12701 if (IS_PF(sc)) { 12702 bxe_set_storm_rx_mode(sc); 12703 } 12704 #if 0 12705 else { 12706 /* 12707 * Configuring mcast to a VF involves sleeping (when we 12708 * wait for the PF's response). Since this function is 12709 * called from a non sleepable context we must schedule 12710 * a work item for this purpose 12711 */ 12712 bxe_set_bit(BXE_SP_RTNL_VFPF_STORM_RX_MODE, &sc->sp_rtnl_state); 12713 schedule_delayed_work(&sc->sp_rtnl_task, 0); 12714 } 12715 #endif 12716 12717 BXE_CORE_UNLOCK(sc); 12718 } 12719 12720 static void 12721 bxe_set_rx_mode(struct bxe_softc *sc) 12722 { 12723 taskqueue_enqueue(sc->rx_mode_tq, &sc->rx_mode_tq_task); 12724 } 12725 12726 /* update flags in shmem */ 12727 static void 12728 bxe_update_drv_flags(struct bxe_softc *sc, 12729 uint32_t flags, 12730 uint32_t set) 12731 { 12732 uint32_t drv_flags; 12733 12734 if (SHMEM2_HAS(sc, drv_flags)) { 12735 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_DRV_FLAGS); 12736 drv_flags = SHMEM2_RD(sc, drv_flags); 12737 12738 if (set) { 12739 SET_FLAGS(drv_flags, flags); 12740 } else { 12741 RESET_FLAGS(drv_flags, flags); 12742 } 12743 12744 SHMEM2_WR(sc, drv_flags, drv_flags); 12745 BLOGD(sc, DBG_LOAD, "drv_flags 0x%08x\n", drv_flags); 12746 12747 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_DRV_FLAGS); 12748 } 12749 } 12750 12751 /* periodic timer callout routine, only runs when the interface is up */ 12752 12753 static void 12754 bxe_periodic_callout_func(void *xsc) 12755 { 12756 struct bxe_softc *sc = (struct bxe_softc *)xsc; 12757 int i; 12758 12759 if (!BXE_CORE_TRYLOCK(sc)) { 12760 /* just bail and try again next time */ 12761 12762 if ((sc->state == BXE_STATE_OPEN) && 12763 (atomic_load_acq_long(&sc->periodic_flags) == PERIODIC_GO)) { 12764 /* schedule the next periodic callout */ 12765 callout_reset(&sc->periodic_callout, hz, 12766 bxe_periodic_callout_func, sc); 12767 } 12768 12769 return; 12770 } 12771 12772 if ((sc->state != BXE_STATE_OPEN) || 12773 (atomic_load_acq_long(&sc->periodic_flags) == PERIODIC_STOP)) { 12774 BLOGW(sc, "periodic callout exit (state=0x%x)\n", sc->state); 12775 BXE_CORE_UNLOCK(sc); 12776 return; 12777 } 12778 12779 /* Check for TX timeouts on any fastpath. */ 12780 FOR_EACH_QUEUE(sc, i) { 12781 if (bxe_watchdog(sc, &sc->fp[i]) != 0) { 12782 /* Ruh-Roh, chip was reset! */ 12783 break; 12784 } 12785 } 12786 12787 if (!CHIP_REV_IS_SLOW(sc)) { 12788 /* 12789 * This barrier is needed to ensure the ordering between the writing 12790 * to the sc->port.pmf in the bxe_nic_load() or bxe_pmf_update() and 12791 * the reading here. 12792 */ 12793 mb(); 12794 if (sc->port.pmf) { 12795 BXE_PHY_LOCK(sc); 12796 elink_period_func(&sc->link_params, &sc->link_vars); 12797 BXE_PHY_UNLOCK(sc); 12798 } 12799 } 12800 12801 if (IS_PF(sc) && !BXE_NOMCP(sc)) { 12802 int mb_idx = SC_FW_MB_IDX(sc); 12803 uint32_t drv_pulse; 12804 uint32_t mcp_pulse; 12805 12806 ++sc->fw_drv_pulse_wr_seq; 12807 sc->fw_drv_pulse_wr_seq &= DRV_PULSE_SEQ_MASK; 12808 12809 drv_pulse = sc->fw_drv_pulse_wr_seq; 12810 bxe_drv_pulse(sc); 12811 12812 mcp_pulse = (SHMEM_RD(sc, func_mb[mb_idx].mcp_pulse_mb) & 12813 MCP_PULSE_SEQ_MASK); 12814 12815 /* 12816 * The delta between driver pulse and mcp response should 12817 * be 1 (before mcp response) or 0 (after mcp response). 12818 */ 12819 if ((drv_pulse != mcp_pulse) && 12820 (drv_pulse != ((mcp_pulse + 1) & MCP_PULSE_SEQ_MASK))) { 12821 /* someone lost a heartbeat... */ 12822 BLOGE(sc, "drv_pulse (0x%x) != mcp_pulse (0x%x)\n", 12823 drv_pulse, mcp_pulse); 12824 } 12825 } 12826 12827 /* state is BXE_STATE_OPEN */ 12828 bxe_stats_handle(sc, STATS_EVENT_UPDATE); 12829 12830 #if 0 12831 /* sample VF bulletin board for new posts from PF */ 12832 if (IS_VF(sc)) { 12833 bxe_sample_bulletin(sc); 12834 } 12835 #endif 12836 12837 BXE_CORE_UNLOCK(sc); 12838 12839 if ((sc->state == BXE_STATE_OPEN) && 12840 (atomic_load_acq_long(&sc->periodic_flags) == PERIODIC_GO)) { 12841 /* schedule the next periodic callout */ 12842 callout_reset(&sc->periodic_callout, hz, 12843 bxe_periodic_callout_func, sc); 12844 } 12845 } 12846 12847 static void 12848 bxe_periodic_start(struct bxe_softc *sc) 12849 { 12850 atomic_store_rel_long(&sc->periodic_flags, PERIODIC_GO); 12851 callout_reset(&sc->periodic_callout, hz, bxe_periodic_callout_func, sc); 12852 } 12853 12854 static void 12855 bxe_periodic_stop(struct bxe_softc *sc) 12856 { 12857 atomic_store_rel_long(&sc->periodic_flags, PERIODIC_STOP); 12858 callout_drain(&sc->periodic_callout); 12859 } 12860 12861 /* start the controller */ 12862 static __noinline int 12863 bxe_nic_load(struct bxe_softc *sc, 12864 int load_mode) 12865 { 12866 uint32_t val; 12867 int load_code = 0; 12868 int i, rc = 0; 12869 12870 BXE_CORE_LOCK_ASSERT(sc); 12871 12872 BLOGD(sc, DBG_LOAD, "Starting NIC load...\n"); 12873 12874 sc->state = BXE_STATE_OPENING_WAITING_LOAD; 12875 12876 if (IS_PF(sc)) { 12877 /* must be called before memory allocation and HW init */ 12878 bxe_ilt_set_info(sc); 12879 } 12880 12881 sc->last_reported_link_state = LINK_STATE_UNKNOWN; 12882 12883 bxe_set_fp_rx_buf_size(sc); 12884 12885 if (bxe_alloc_fp_buffers(sc) != 0) { 12886 BLOGE(sc, "Failed to allocate fastpath memory\n"); 12887 sc->state = BXE_STATE_CLOSED; 12888 rc = ENOMEM; 12889 goto bxe_nic_load_error0; 12890 } 12891 12892 if (bxe_alloc_mem(sc) != 0) { 12893 sc->state = BXE_STATE_CLOSED; 12894 rc = ENOMEM; 12895 goto bxe_nic_load_error0; 12896 } 12897 12898 if (bxe_alloc_fw_stats_mem(sc) != 0) { 12899 sc->state = BXE_STATE_CLOSED; 12900 rc = ENOMEM; 12901 goto bxe_nic_load_error0; 12902 } 12903 12904 if (IS_PF(sc)) { 12905 /* set pf load just before approaching the MCP */ 12906 bxe_set_pf_load(sc); 12907 12908 /* if MCP exists send load request and analyze response */ 12909 if (!BXE_NOMCP(sc)) { 12910 /* attempt to load pf */ 12911 if (bxe_nic_load_request(sc, &load_code) != 0) { 12912 sc->state = BXE_STATE_CLOSED; 12913 rc = ENXIO; 12914 goto bxe_nic_load_error1; 12915 } 12916 12917 /* what did the MCP say? */ 12918 if (bxe_nic_load_analyze_req(sc, load_code) != 0) { 12919 bxe_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0); 12920 sc->state = BXE_STATE_CLOSED; 12921 rc = ENXIO; 12922 goto bxe_nic_load_error2; 12923 } 12924 } else { 12925 BLOGI(sc, "Device has no MCP!\n"); 12926 load_code = bxe_nic_load_no_mcp(sc); 12927 } 12928 12929 /* mark PMF if applicable */ 12930 bxe_nic_load_pmf(sc, load_code); 12931 12932 /* Init Function state controlling object */ 12933 bxe_init_func_obj(sc); 12934 12935 /* Initialize HW */ 12936 if (bxe_init_hw(sc, load_code) != 0) { 12937 BLOGE(sc, "HW init failed\n"); 12938 bxe_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0); 12939 sc->state = BXE_STATE_CLOSED; 12940 rc = ENXIO; 12941 goto bxe_nic_load_error2; 12942 } 12943 } 12944 12945 /* attach interrupts */ 12946 if (bxe_interrupt_attach(sc) != 0) { 12947 sc->state = BXE_STATE_CLOSED; 12948 rc = ENXIO; 12949 goto bxe_nic_load_error2; 12950 } 12951 12952 bxe_nic_init(sc, load_code); 12953 12954 /* Init per-function objects */ 12955 if (IS_PF(sc)) { 12956 bxe_init_objs(sc); 12957 // XXX bxe_iov_nic_init(sc); 12958 12959 /* set AFEX default VLAN tag to an invalid value */ 12960 sc->devinfo.mf_info.afex_def_vlan_tag = -1; 12961 // XXX bxe_nic_load_afex_dcc(sc, load_code); 12962 12963 sc->state = BXE_STATE_OPENING_WAITING_PORT; 12964 rc = bxe_func_start(sc); 12965 if (rc) { 12966 BLOGE(sc, "Function start failed!\n"); 12967 bxe_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0); 12968 sc->state = BXE_STATE_ERROR; 12969 goto bxe_nic_load_error3; 12970 } 12971 12972 /* send LOAD_DONE command to MCP */ 12973 if (!BXE_NOMCP(sc)) { 12974 load_code = bxe_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0); 12975 if (!load_code) { 12976 BLOGE(sc, "MCP response failure, aborting\n"); 12977 sc->state = BXE_STATE_ERROR; 12978 rc = ENXIO; 12979 goto bxe_nic_load_error3; 12980 } 12981 } 12982 12983 rc = bxe_setup_leading(sc); 12984 if (rc) { 12985 BLOGE(sc, "Setup leading failed!\n"); 12986 sc->state = BXE_STATE_ERROR; 12987 goto bxe_nic_load_error3; 12988 } 12989 12990 FOR_EACH_NONDEFAULT_ETH_QUEUE(sc, i) { 12991 rc = bxe_setup_queue(sc, &sc->fp[i], FALSE); 12992 if (rc) { 12993 BLOGE(sc, "Queue(%d) setup failed\n", i); 12994 sc->state = BXE_STATE_ERROR; 12995 goto bxe_nic_load_error3; 12996 } 12997 } 12998 12999 rc = bxe_init_rss_pf(sc); 13000 if (rc) { 13001 BLOGE(sc, "PF RSS init failed\n"); 13002 sc->state = BXE_STATE_ERROR; 13003 goto bxe_nic_load_error3; 13004 } 13005 } 13006 /* XXX VF */ 13007 #if 0 13008 else { /* VF */ 13009 FOR_EACH_ETH_QUEUE(sc, i) { 13010 rc = bxe_vfpf_setup_q(sc, i); 13011 if (rc) { 13012 BLOGE(sc, "Queue(%d) setup failed\n", i); 13013 sc->state = BXE_STATE_ERROR; 13014 goto bxe_nic_load_error3; 13015 } 13016 } 13017 } 13018 #endif 13019 13020 /* now when Clients are configured we are ready to work */ 13021 sc->state = BXE_STATE_OPEN; 13022 13023 /* Configure a ucast MAC */ 13024 if (IS_PF(sc)) { 13025 rc = bxe_set_eth_mac(sc, TRUE); 13026 } 13027 #if 0 13028 else { /* IS_VF(sc) */ 13029 rc = bxe_vfpf_set_mac(sc); 13030 } 13031 #endif 13032 if (rc) { 13033 BLOGE(sc, "Setting Ethernet MAC failed\n"); 13034 sc->state = BXE_STATE_ERROR; 13035 goto bxe_nic_load_error3; 13036 } 13037 13038 #if 0 13039 if (IS_PF(sc) && sc->pending_max) { 13040 /* for AFEX */ 13041 bxe_update_max_mf_config(sc, sc->pending_max); 13042 sc->pending_max = 0; 13043 } 13044 #endif 13045 13046 if (sc->port.pmf) { 13047 rc = bxe_initial_phy_init(sc, /* XXX load_mode */LOAD_OPEN); 13048 if (rc) { 13049 sc->state = BXE_STATE_ERROR; 13050 goto bxe_nic_load_error3; 13051 } 13052 } 13053 13054 sc->link_params.feature_config_flags &= 13055 ~ELINK_FEATURE_CONFIG_BOOT_FROM_SAN; 13056 13057 /* start fast path */ 13058 13059 /* Initialize Rx filter */ 13060 bxe_set_rx_mode(sc); 13061 13062 /* start the Tx */ 13063 switch (/* XXX load_mode */LOAD_OPEN) { 13064 case LOAD_NORMAL: 13065 case LOAD_OPEN: 13066 break; 13067 13068 case LOAD_DIAG: 13069 case LOAD_LOOPBACK_EXT: 13070 sc->state = BXE_STATE_DIAG; 13071 break; 13072 13073 default: 13074 break; 13075 } 13076 13077 if (sc->port.pmf) { 13078 bxe_update_drv_flags(sc, 1 << DRV_FLAGS_PORT_MASK, 0); 13079 } else { 13080 bxe_link_status_update(sc); 13081 } 13082 13083 /* start the periodic timer callout */ 13084 bxe_periodic_start(sc); 13085 13086 if (IS_PF(sc) && SHMEM2_HAS(sc, drv_capabilities_flag)) { 13087 /* mark driver is loaded in shmem2 */ 13088 val = SHMEM2_RD(sc, drv_capabilities_flag[SC_FW_MB_IDX(sc)]); 13089 SHMEM2_WR(sc, drv_capabilities_flag[SC_FW_MB_IDX(sc)], 13090 (val | 13091 DRV_FLAGS_CAPABILITIES_LOADED_SUPPORTED | 13092 DRV_FLAGS_CAPABILITIES_LOADED_L2)); 13093 } 13094 13095 /* wait for all pending SP commands to complete */ 13096 if (IS_PF(sc) && !bxe_wait_sp_comp(sc, ~0x0UL)) { 13097 BLOGE(sc, "Timeout waiting for all SPs to complete!\n"); 13098 bxe_periodic_stop(sc); 13099 bxe_nic_unload(sc, UNLOAD_CLOSE, FALSE); 13100 return (ENXIO); 13101 } 13102 13103 #if 0 13104 /* If PMF - send ADMIN DCBX msg to MFW to initiate DCBX FSM */ 13105 if (sc->port.pmf && (sc->state != BXE_STATE_DIAG)) { 13106 bxe_dcbx_init(sc, FALSE); 13107 } 13108 #endif 13109 13110 /* Tell the stack the driver is running! */ 13111 sc->ifnet->if_drv_flags = IFF_DRV_RUNNING; 13112 13113 BLOGD(sc, DBG_LOAD, "NIC successfully loaded\n"); 13114 13115 return (0); 13116 13117 bxe_nic_load_error3: 13118 13119 if (IS_PF(sc)) { 13120 bxe_int_disable_sync(sc, 1); 13121 13122 /* clean out queued objects */ 13123 bxe_squeeze_objects(sc); 13124 } 13125 13126 bxe_interrupt_detach(sc); 13127 13128 bxe_nic_load_error2: 13129 13130 if (IS_PF(sc) && !BXE_NOMCP(sc)) { 13131 bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP, 0); 13132 bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_DONE, 0); 13133 } 13134 13135 sc->port.pmf = 0; 13136 13137 bxe_nic_load_error1: 13138 13139 /* clear pf_load status, as it was already set */ 13140 if (IS_PF(sc)) { 13141 bxe_clear_pf_load(sc); 13142 } 13143 13144 bxe_nic_load_error0: 13145 13146 bxe_free_fw_stats_mem(sc); 13147 bxe_free_fp_buffers(sc); 13148 bxe_free_mem(sc); 13149 13150 return (rc); 13151 } 13152 13153 static int 13154 bxe_init_locked(struct bxe_softc *sc) 13155 { 13156 int other_engine = SC_PATH(sc) ? 0 : 1; 13157 uint8_t other_load_status, load_status; 13158 uint8_t global = FALSE; 13159 int rc; 13160 13161 BXE_CORE_LOCK_ASSERT(sc); 13162 13163 /* check if the driver is already running */ 13164 if (sc->ifnet->if_drv_flags & IFF_DRV_RUNNING) { 13165 BLOGD(sc, DBG_LOAD, "Init called while driver is running!\n"); 13166 return (0); 13167 } 13168 13169 bxe_set_power_state(sc, PCI_PM_D0); 13170 13171 /* 13172 * If parity occurred during the unload, then attentions and/or 13173 * RECOVERY_IN_PROGRES may still be set. If so we want the first function 13174 * loaded on the current engine to complete the recovery. Parity recovery 13175 * is only relevant for PF driver. 13176 */ 13177 if (IS_PF(sc)) { 13178 other_load_status = bxe_get_load_status(sc, other_engine); 13179 load_status = bxe_get_load_status(sc, SC_PATH(sc)); 13180 13181 if (!bxe_reset_is_done(sc, SC_PATH(sc)) || 13182 bxe_chk_parity_attn(sc, &global, TRUE)) { 13183 do { 13184 /* 13185 * If there are attentions and they are in global blocks, set 13186 * the GLOBAL_RESET bit regardless whether it will be this 13187 * function that will complete the recovery or not. 13188 */ 13189 if (global) { 13190 bxe_set_reset_global(sc); 13191 } 13192 13193 /* 13194 * Only the first function on the current engine should try 13195 * to recover in open. In case of attentions in global blocks 13196 * only the first in the chip should try to recover. 13197 */ 13198 if ((!load_status && (!global || !other_load_status)) && 13199 bxe_trylock_leader_lock(sc) && !bxe_leader_reset(sc)) { 13200 BLOGI(sc, "Recovered during init\n"); 13201 break; 13202 } 13203 13204 /* recovery has failed... */ 13205 bxe_set_power_state(sc, PCI_PM_D3hot); 13206 sc->recovery_state = BXE_RECOVERY_FAILED; 13207 13208 BLOGE(sc, "Recovery flow hasn't properly " 13209 "completed yet, try again later. " 13210 "If you still see this message after a " 13211 "few retries then power cycle is required.\n"); 13212 13213 rc = ENXIO; 13214 goto bxe_init_locked_done; 13215 } while (0); 13216 } 13217 } 13218 13219 sc->recovery_state = BXE_RECOVERY_DONE; 13220 13221 rc = bxe_nic_load(sc, LOAD_OPEN); 13222 13223 bxe_init_locked_done: 13224 13225 if (rc) { 13226 /* Tell the stack the driver is NOT running! */ 13227 BLOGE(sc, "Initialization failed, " 13228 "stack notified driver is NOT running!\n"); 13229 sc->ifnet->if_drv_flags &= ~IFF_DRV_RUNNING; 13230 } 13231 13232 return (rc); 13233 } 13234 13235 static int 13236 bxe_stop_locked(struct bxe_softc *sc) 13237 { 13238 BXE_CORE_LOCK_ASSERT(sc); 13239 return (bxe_nic_unload(sc, UNLOAD_NORMAL, TRUE)); 13240 } 13241 13242 /* 13243 * Handles controller initialization when called from an unlocked routine. 13244 * ifconfig calls this function. 13245 * 13246 * Returns: 13247 * void 13248 */ 13249 static void 13250 bxe_init(void *xsc) 13251 { 13252 struct bxe_softc *sc = (struct bxe_softc *)xsc; 13253 13254 BXE_CORE_LOCK(sc); 13255 bxe_init_locked(sc); 13256 BXE_CORE_UNLOCK(sc); 13257 } 13258 13259 static int 13260 bxe_init_ifnet(struct bxe_softc *sc) 13261 { 13262 struct ifnet *ifp; 13263 13264 /* ifconfig entrypoint for media type/status reporting */ 13265 ifmedia_init(&sc->ifmedia, IFM_IMASK, 13266 bxe_ifmedia_update, 13267 bxe_ifmedia_status); 13268 13269 /* set the default interface values */ 13270 ifmedia_add(&sc->ifmedia, (IFM_ETHER | IFM_FDX | sc->media), 0, NULL); 13271 ifmedia_add(&sc->ifmedia, (IFM_ETHER | IFM_AUTO), 0, NULL); 13272 ifmedia_set(&sc->ifmedia, (IFM_ETHER | IFM_AUTO)); 13273 13274 sc->ifmedia.ifm_media = sc->ifmedia.ifm_cur->ifm_media; /* XXX ? */ 13275 13276 /* allocate the ifnet structure */ 13277 if ((ifp = if_alloc(IFT_ETHER)) == NULL) { 13278 BLOGE(sc, "Interface allocation failed!\n"); 13279 return (ENXIO); 13280 } 13281 13282 ifp->if_softc = sc; 13283 if_initname(ifp, device_get_name(sc->dev), device_get_unit(sc->dev)); 13284 ifp->if_flags = (IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST); 13285 ifp->if_ioctl = bxe_ioctl; 13286 ifp->if_start = bxe_tx_start; 13287 #if __FreeBSD_version >= 800000 13288 ifp->if_transmit = bxe_tx_mq_start; 13289 ifp->if_qflush = bxe_mq_flush; 13290 #endif 13291 #ifdef FreeBSD8_0 13292 ifp->if_timer = 0; 13293 #endif 13294 ifp->if_init = bxe_init; 13295 ifp->if_mtu = sc->mtu; 13296 ifp->if_hwassist = (CSUM_IP | 13297 CSUM_TCP | 13298 CSUM_UDP | 13299 CSUM_TSO | 13300 CSUM_TCP_IPV6 | 13301 CSUM_UDP_IPV6); 13302 ifp->if_capabilities = 13303 #if __FreeBSD_version < 700000 13304 (IFCAP_VLAN_MTU | 13305 IFCAP_VLAN_HWTAGGING | 13306 IFCAP_HWCSUM | 13307 IFCAP_JUMBO_MTU | 13308 IFCAP_LRO); 13309 #else 13310 (IFCAP_VLAN_MTU | 13311 IFCAP_VLAN_HWTAGGING | 13312 IFCAP_VLAN_HWTSO | 13313 IFCAP_VLAN_HWFILTER | 13314 IFCAP_VLAN_HWCSUM | 13315 IFCAP_HWCSUM | 13316 IFCAP_JUMBO_MTU | 13317 IFCAP_LRO | 13318 IFCAP_TSO4 | 13319 IFCAP_TSO6 | 13320 IFCAP_WOL_MAGIC); 13321 #endif 13322 ifp->if_capenable = ifp->if_capabilities; 13323 ifp->if_capenable &= ~IFCAP_WOL_MAGIC; /* XXX not yet... */ 13324 ifp->if_baudrate = IF_Gbps(10); 13325 ifp->if_snd.ifq_drv_maxlen = sc->tx_ring_size; 13326 13327 IFQ_SET_MAXLEN(&ifp->if_snd, ifp->if_snd.ifq_drv_maxlen); 13328 IFQ_SET_READY(&ifp->if_snd); 13329 13330 sc->ifnet = ifp; 13331 13332 /* attach to the Ethernet interface list */ 13333 ether_ifattach(ifp, sc->link_params.mac_addr); 13334 13335 return (0); 13336 } 13337 13338 static void 13339 bxe_deallocate_bars(struct bxe_softc *sc) 13340 { 13341 int i; 13342 13343 for (i = 0; i < MAX_BARS; i++) { 13344 if (sc->bar[i].resource != NULL) { 13345 bus_release_resource(sc->dev, 13346 SYS_RES_MEMORY, 13347 sc->bar[i].rid, 13348 sc->bar[i].resource); 13349 BLOGD(sc, DBG_LOAD, "Released PCI BAR%d [%02x] memory\n", 13350 i, PCIR_BAR(i)); 13351 } 13352 } 13353 } 13354 13355 static int 13356 bxe_allocate_bars(struct bxe_softc *sc) 13357 { 13358 u_int flags; 13359 int i; 13360 13361 memset(sc->bar, 0, sizeof(sc->bar)); 13362 13363 for (i = 0; i < MAX_BARS; i++) { 13364 13365 /* memory resources reside at BARs 0, 2, 4 */ 13366 /* Run `pciconf -lb` to see mappings */ 13367 if ((i != 0) && (i != 2) && (i != 4)) { 13368 continue; 13369 } 13370 13371 sc->bar[i].rid = PCIR_BAR(i); 13372 13373 flags = RF_ACTIVE; 13374 if (i == 0) { 13375 flags |= RF_SHAREABLE; 13376 } 13377 13378 if ((sc->bar[i].resource = 13379 bus_alloc_resource_any(sc->dev, 13380 SYS_RES_MEMORY, 13381 &sc->bar[i].rid, 13382 flags)) == NULL) { 13383 #if 0 13384 /* BAR4 doesn't exist for E1 */ 13385 BLOGE(sc, "PCI BAR%d [%02x] memory allocation failed\n", 13386 i, PCIR_BAR(i)); 13387 #endif 13388 return (0); 13389 } 13390 13391 sc->bar[i].tag = rman_get_bustag(sc->bar[i].resource); 13392 sc->bar[i].handle = rman_get_bushandle(sc->bar[i].resource); 13393 sc->bar[i].kva = (vm_offset_t)rman_get_virtual(sc->bar[i].resource); 13394 13395 BLOGI(sc, "PCI BAR%d [%02x] memory allocated: %p-%p (%ld) -> %p\n", 13396 i, PCIR_BAR(i), 13397 (void *)rman_get_start(sc->bar[i].resource), 13398 (void *)rman_get_end(sc->bar[i].resource), 13399 rman_get_size(sc->bar[i].resource), 13400 (void *)sc->bar[i].kva); 13401 } 13402 13403 return (0); 13404 } 13405 13406 static void 13407 bxe_get_function_num(struct bxe_softc *sc) 13408 { 13409 uint32_t val = 0; 13410 13411 /* 13412 * Read the ME register to get the function number. The ME register 13413 * holds the relative-function number and absolute-function number. The 13414 * absolute-function number appears only in E2 and above. Before that 13415 * these bits always contained zero, therefore we cannot blindly use them. 13416 */ 13417 13418 val = REG_RD(sc, BAR_ME_REGISTER); 13419 13420 sc->pfunc_rel = 13421 (uint8_t)((val & ME_REG_PF_NUM) >> ME_REG_PF_NUM_SHIFT); 13422 sc->path_id = 13423 (uint8_t)((val & ME_REG_ABS_PF_NUM) >> ME_REG_ABS_PF_NUM_SHIFT) & 1; 13424 13425 if (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) { 13426 sc->pfunc_abs = ((sc->pfunc_rel << 1) | sc->path_id); 13427 } else { 13428 sc->pfunc_abs = (sc->pfunc_rel | sc->path_id); 13429 } 13430 13431 BLOGD(sc, DBG_LOAD, 13432 "Relative function %d, Absolute function %d, Path %d\n", 13433 sc->pfunc_rel, sc->pfunc_abs, sc->path_id); 13434 } 13435 13436 static uint32_t 13437 bxe_get_shmem_mf_cfg_base(struct bxe_softc *sc) 13438 { 13439 uint32_t shmem2_size; 13440 uint32_t offset; 13441 uint32_t mf_cfg_offset_value; 13442 13443 /* Non 57712 */ 13444 offset = (SHMEM_RD(sc, func_mb) + 13445 (MAX_FUNC_NUM * sizeof(struct drv_func_mb))); 13446 13447 /* 57712 plus */ 13448 if (sc->devinfo.shmem2_base != 0) { 13449 shmem2_size = SHMEM2_RD(sc, size); 13450 if (shmem2_size > offsetof(struct shmem2_region, mf_cfg_addr)) { 13451 mf_cfg_offset_value = SHMEM2_RD(sc, mf_cfg_addr); 13452 if (SHMEM_MF_CFG_ADDR_NONE != mf_cfg_offset_value) { 13453 offset = mf_cfg_offset_value; 13454 } 13455 } 13456 } 13457 13458 return (offset); 13459 } 13460 13461 static uint32_t 13462 bxe_pcie_capability_read(struct bxe_softc *sc, 13463 int reg, 13464 int width) 13465 { 13466 int pcie_reg; 13467 13468 /* ensure PCIe capability is enabled */ 13469 if (pci_find_cap(sc->dev, PCIY_EXPRESS, &pcie_reg) == 0) { 13470 if (pcie_reg != 0) { 13471 BLOGD(sc, DBG_LOAD, "PCIe capability at 0x%04x\n", pcie_reg); 13472 return (pci_read_config(sc->dev, (pcie_reg + reg), width)); 13473 } 13474 } 13475 13476 BLOGE(sc, "PCIe capability NOT FOUND!!!\n"); 13477 13478 return (0); 13479 } 13480 13481 static uint8_t 13482 bxe_is_pcie_pending(struct bxe_softc *sc) 13483 { 13484 return (bxe_pcie_capability_read(sc, PCIR_EXPRESS_DEVICE_STA, 2) & 13485 PCIM_EXP_STA_TRANSACTION_PND); 13486 } 13487 13488 /* 13489 * Walk the PCI capabiites list for the device to find what features are 13490 * supported. These capabilites may be enabled/disabled by firmware so it's 13491 * best to walk the list rather than make assumptions. 13492 */ 13493 static void 13494 bxe_probe_pci_caps(struct bxe_softc *sc) 13495 { 13496 uint16_t link_status; 13497 int reg; 13498 13499 /* check if PCI Power Management is enabled */ 13500 if (pci_find_cap(sc->dev, PCIY_PMG, ®) == 0) { 13501 if (reg != 0) { 13502 BLOGD(sc, DBG_LOAD, "Found PM capability at 0x%04x\n", reg); 13503 13504 sc->devinfo.pcie_cap_flags |= BXE_PM_CAPABLE_FLAG; 13505 sc->devinfo.pcie_pm_cap_reg = (uint16_t)reg; 13506 } 13507 } 13508 13509 link_status = bxe_pcie_capability_read(sc, PCIR_EXPRESS_LINK_STA, 2); 13510 13511 /* handle PCIe 2.0 workarounds for 57710 */ 13512 if (CHIP_IS_E1(sc)) { 13513 /* workaround for 57710 errata E4_57710_27462 */ 13514 sc->devinfo.pcie_link_speed = 13515 (REG_RD(sc, 0x3d04) & (1 << 24)) ? 2 : 1; 13516 13517 /* workaround for 57710 errata E4_57710_27488 */ 13518 sc->devinfo.pcie_link_width = 13519 ((link_status & PCIM_LINK_STA_WIDTH) >> 4); 13520 if (sc->devinfo.pcie_link_speed > 1) { 13521 sc->devinfo.pcie_link_width = 13522 ((link_status & PCIM_LINK_STA_WIDTH) >> 4) >> 1; 13523 } 13524 } else { 13525 sc->devinfo.pcie_link_speed = 13526 (link_status & PCIM_LINK_STA_SPEED); 13527 sc->devinfo.pcie_link_width = 13528 ((link_status & PCIM_LINK_STA_WIDTH) >> 4); 13529 } 13530 13531 BLOGD(sc, DBG_LOAD, "PCIe link speed=%d width=%d\n", 13532 sc->devinfo.pcie_link_speed, sc->devinfo.pcie_link_width); 13533 13534 sc->devinfo.pcie_cap_flags |= BXE_PCIE_CAPABLE_FLAG; 13535 sc->devinfo.pcie_pcie_cap_reg = (uint16_t)reg; 13536 13537 /* check if MSI capability is enabled */ 13538 if (pci_find_cap(sc->dev, PCIY_MSI, ®) == 0) { 13539 if (reg != 0) { 13540 BLOGD(sc, DBG_LOAD, "Found MSI capability at 0x%04x\n", reg); 13541 13542 sc->devinfo.pcie_cap_flags |= BXE_MSI_CAPABLE_FLAG; 13543 sc->devinfo.pcie_msi_cap_reg = (uint16_t)reg; 13544 } 13545 } 13546 13547 /* check if MSI-X capability is enabled */ 13548 if (pci_find_cap(sc->dev, PCIY_MSIX, ®) == 0) { 13549 if (reg != 0) { 13550 BLOGD(sc, DBG_LOAD, "Found MSI-X capability at 0x%04x\n", reg); 13551 13552 sc->devinfo.pcie_cap_flags |= BXE_MSIX_CAPABLE_FLAG; 13553 sc->devinfo.pcie_msix_cap_reg = (uint16_t)reg; 13554 } 13555 } 13556 } 13557 13558 static int 13559 bxe_get_shmem_mf_cfg_info_sd(struct bxe_softc *sc) 13560 { 13561 struct bxe_mf_info *mf_info = &sc->devinfo.mf_info; 13562 uint32_t val; 13563 13564 /* get the outer vlan if we're in switch-dependent mode */ 13565 13566 val = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].e1hov_tag); 13567 mf_info->ext_id = (uint16_t)val; 13568 13569 mf_info->multi_vnics_mode = 1; 13570 13571 if (!VALID_OVLAN(mf_info->ext_id)) { 13572 BLOGE(sc, "Invalid VLAN (%d)\n", mf_info->ext_id); 13573 return (1); 13574 } 13575 13576 /* get the capabilities */ 13577 if ((mf_info->mf_config[SC_VN(sc)] & FUNC_MF_CFG_PROTOCOL_MASK) == 13578 FUNC_MF_CFG_PROTOCOL_ISCSI) { 13579 mf_info->mf_protos_supported |= MF_PROTO_SUPPORT_ISCSI; 13580 } else if ((mf_info->mf_config[SC_VN(sc)] & FUNC_MF_CFG_PROTOCOL_MASK) == 13581 FUNC_MF_CFG_PROTOCOL_FCOE) { 13582 mf_info->mf_protos_supported |= MF_PROTO_SUPPORT_FCOE; 13583 } else { 13584 mf_info->mf_protos_supported |= MF_PROTO_SUPPORT_ETHERNET; 13585 } 13586 13587 mf_info->vnics_per_port = 13588 (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) ? 2 : 4; 13589 13590 return (0); 13591 } 13592 13593 static uint32_t 13594 bxe_get_shmem_ext_proto_support_flags(struct bxe_softc *sc) 13595 { 13596 uint32_t retval = 0; 13597 uint32_t val; 13598 13599 val = MFCFG_RD(sc, func_ext_config[SC_ABS_FUNC(sc)].func_cfg); 13600 13601 if (val & MACP_FUNC_CFG_FLAGS_ENABLED) { 13602 if (val & MACP_FUNC_CFG_FLAGS_ETHERNET) { 13603 retval |= MF_PROTO_SUPPORT_ETHERNET; 13604 } 13605 if (val & MACP_FUNC_CFG_FLAGS_ISCSI_OFFLOAD) { 13606 retval |= MF_PROTO_SUPPORT_ISCSI; 13607 } 13608 if (val & MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD) { 13609 retval |= MF_PROTO_SUPPORT_FCOE; 13610 } 13611 } 13612 13613 return (retval); 13614 } 13615 13616 static int 13617 bxe_get_shmem_mf_cfg_info_si(struct bxe_softc *sc) 13618 { 13619 struct bxe_mf_info *mf_info = &sc->devinfo.mf_info; 13620 uint32_t val; 13621 13622 /* 13623 * There is no outer vlan if we're in switch-independent mode. 13624 * If the mac is valid then assume multi-function. 13625 */ 13626 13627 val = MFCFG_RD(sc, func_ext_config[SC_ABS_FUNC(sc)].func_cfg); 13628 13629 mf_info->multi_vnics_mode = ((val & MACP_FUNC_CFG_FLAGS_MASK) != 0); 13630 13631 mf_info->mf_protos_supported = bxe_get_shmem_ext_proto_support_flags(sc); 13632 13633 mf_info->vnics_per_port = 13634 (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) ? 2 : 4; 13635 13636 return (0); 13637 } 13638 13639 static int 13640 bxe_get_shmem_mf_cfg_info_niv(struct bxe_softc *sc) 13641 { 13642 struct bxe_mf_info *mf_info = &sc->devinfo.mf_info; 13643 uint32_t e1hov_tag; 13644 uint32_t func_config; 13645 uint32_t niv_config; 13646 13647 mf_info->multi_vnics_mode = 1; 13648 13649 e1hov_tag = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].e1hov_tag); 13650 func_config = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].config); 13651 niv_config = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].afex_config); 13652 13653 mf_info->ext_id = 13654 (uint16_t)((e1hov_tag & FUNC_MF_CFG_E1HOV_TAG_MASK) >> 13655 FUNC_MF_CFG_E1HOV_TAG_SHIFT); 13656 13657 mf_info->default_vlan = 13658 (uint16_t)((e1hov_tag & FUNC_MF_CFG_AFEX_VLAN_MASK) >> 13659 FUNC_MF_CFG_AFEX_VLAN_SHIFT); 13660 13661 mf_info->niv_allowed_priorities = 13662 (uint8_t)((niv_config & FUNC_MF_CFG_AFEX_COS_FILTER_MASK) >> 13663 FUNC_MF_CFG_AFEX_COS_FILTER_SHIFT); 13664 13665 mf_info->niv_default_cos = 13666 (uint8_t)((func_config & FUNC_MF_CFG_TRANSMIT_PRIORITY_MASK) >> 13667 FUNC_MF_CFG_TRANSMIT_PRIORITY_SHIFT); 13668 13669 mf_info->afex_vlan_mode = 13670 ((niv_config & FUNC_MF_CFG_AFEX_VLAN_MODE_MASK) >> 13671 FUNC_MF_CFG_AFEX_VLAN_MODE_SHIFT); 13672 13673 mf_info->niv_mba_enabled = 13674 ((niv_config & FUNC_MF_CFG_AFEX_MBA_ENABLED_MASK) >> 13675 FUNC_MF_CFG_AFEX_MBA_ENABLED_SHIFT); 13676 13677 mf_info->mf_protos_supported = bxe_get_shmem_ext_proto_support_flags(sc); 13678 13679 mf_info->vnics_per_port = 13680 (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) ? 2 : 4; 13681 13682 return (0); 13683 } 13684 13685 static int 13686 bxe_check_valid_mf_cfg(struct bxe_softc *sc) 13687 { 13688 struct bxe_mf_info *mf_info = &sc->devinfo.mf_info; 13689 uint32_t mf_cfg1; 13690 uint32_t mf_cfg2; 13691 uint32_t ovlan1; 13692 uint32_t ovlan2; 13693 uint8_t i, j; 13694 13695 BLOGD(sc, DBG_LOAD, "MF config parameters for function %d\n", 13696 SC_PORT(sc)); 13697 BLOGD(sc, DBG_LOAD, "\tmf_config=0x%x\n", 13698 mf_info->mf_config[SC_VN(sc)]); 13699 BLOGD(sc, DBG_LOAD, "\tmulti_vnics_mode=%d\n", 13700 mf_info->multi_vnics_mode); 13701 BLOGD(sc, DBG_LOAD, "\tvnics_per_port=%d\n", 13702 mf_info->vnics_per_port); 13703 BLOGD(sc, DBG_LOAD, "\tovlan/vifid=%d\n", 13704 mf_info->ext_id); 13705 BLOGD(sc, DBG_LOAD, "\tmin_bw=%d/%d/%d/%d\n", 13706 mf_info->min_bw[0], mf_info->min_bw[1], 13707 mf_info->min_bw[2], mf_info->min_bw[3]); 13708 BLOGD(sc, DBG_LOAD, "\tmax_bw=%d/%d/%d/%d\n", 13709 mf_info->max_bw[0], mf_info->max_bw[1], 13710 mf_info->max_bw[2], mf_info->max_bw[3]); 13711 BLOGD(sc, DBG_LOAD, "\tmac_addr: %s\n", 13712 sc->mac_addr_str); 13713 13714 /* various MF mode sanity checks... */ 13715 13716 if (mf_info->mf_config[SC_VN(sc)] & FUNC_MF_CFG_FUNC_HIDE) { 13717 BLOGE(sc, "Enumerated function %d is marked as hidden\n", 13718 SC_PORT(sc)); 13719 return (1); 13720 } 13721 13722 if ((mf_info->vnics_per_port > 1) && !mf_info->multi_vnics_mode) { 13723 BLOGE(sc, "vnics_per_port=%d multi_vnics_mode=%d\n", 13724 mf_info->vnics_per_port, mf_info->multi_vnics_mode); 13725 return (1); 13726 } 13727 13728 if (mf_info->mf_mode == MULTI_FUNCTION_SD) { 13729 /* vnic id > 0 must have valid ovlan in switch-dependent mode */ 13730 if ((SC_VN(sc) > 0) && !VALID_OVLAN(OVLAN(sc))) { 13731 BLOGE(sc, "mf_mode=SD vnic_id=%d ovlan=%d\n", 13732 SC_VN(sc), OVLAN(sc)); 13733 return (1); 13734 } 13735 13736 if (!VALID_OVLAN(OVLAN(sc)) && mf_info->multi_vnics_mode) { 13737 BLOGE(sc, "mf_mode=SD multi_vnics_mode=%d ovlan=%d\n", 13738 mf_info->multi_vnics_mode, OVLAN(sc)); 13739 return (1); 13740 } 13741 13742 /* 13743 * Verify all functions are either MF or SF mode. If MF, make sure 13744 * sure that all non-hidden functions have a valid ovlan. If SF, 13745 * make sure that all non-hidden functions have an invalid ovlan. 13746 */ 13747 FOREACH_ABS_FUNC_IN_PORT(sc, i) { 13748 mf_cfg1 = MFCFG_RD(sc, func_mf_config[i].config); 13749 ovlan1 = MFCFG_RD(sc, func_mf_config[i].e1hov_tag); 13750 if (!(mf_cfg1 & FUNC_MF_CFG_FUNC_HIDE) && 13751 (((mf_info->multi_vnics_mode) && !VALID_OVLAN(ovlan1)) || 13752 ((!mf_info->multi_vnics_mode) && VALID_OVLAN(ovlan1)))) { 13753 BLOGE(sc, "mf_mode=SD function %d MF config " 13754 "mismatch, multi_vnics_mode=%d ovlan=%d\n", 13755 i, mf_info->multi_vnics_mode, ovlan1); 13756 return (1); 13757 } 13758 } 13759 13760 /* Verify all funcs on the same port each have a different ovlan. */ 13761 FOREACH_ABS_FUNC_IN_PORT(sc, i) { 13762 mf_cfg1 = MFCFG_RD(sc, func_mf_config[i].config); 13763 ovlan1 = MFCFG_RD(sc, func_mf_config[i].e1hov_tag); 13764 /* iterate from the next function on the port to the max func */ 13765 for (j = i + 2; j < MAX_FUNC_NUM; j += 2) { 13766 mf_cfg2 = MFCFG_RD(sc, func_mf_config[j].config); 13767 ovlan2 = MFCFG_RD(sc, func_mf_config[j].e1hov_tag); 13768 if (!(mf_cfg1 & FUNC_MF_CFG_FUNC_HIDE) && 13769 VALID_OVLAN(ovlan1) && 13770 !(mf_cfg2 & FUNC_MF_CFG_FUNC_HIDE) && 13771 VALID_OVLAN(ovlan2) && 13772 (ovlan1 == ovlan2)) { 13773 BLOGE(sc, "mf_mode=SD functions %d and %d " 13774 "have the same ovlan (%d)\n", 13775 i, j, ovlan1); 13776 return (1); 13777 } 13778 } 13779 } 13780 } /* MULTI_FUNCTION_SD */ 13781 13782 return (0); 13783 } 13784 13785 static int 13786 bxe_get_mf_cfg_info(struct bxe_softc *sc) 13787 { 13788 struct bxe_mf_info *mf_info = &sc->devinfo.mf_info; 13789 uint32_t val, mac_upper; 13790 uint8_t i, vnic; 13791 13792 /* initialize mf_info defaults */ 13793 mf_info->vnics_per_port = 1; 13794 mf_info->multi_vnics_mode = FALSE; 13795 mf_info->path_has_ovlan = FALSE; 13796 mf_info->mf_mode = SINGLE_FUNCTION; 13797 13798 if (!CHIP_IS_MF_CAP(sc)) { 13799 return (0); 13800 } 13801 13802 if (sc->devinfo.mf_cfg_base == SHMEM_MF_CFG_ADDR_NONE) { 13803 BLOGE(sc, "Invalid mf_cfg_base!\n"); 13804 return (1); 13805 } 13806 13807 /* get the MF mode (switch dependent / independent / single-function) */ 13808 13809 val = SHMEM_RD(sc, dev_info.shared_feature_config.config); 13810 13811 switch (val & SHARED_FEAT_CFG_FORCE_SF_MODE_MASK) 13812 { 13813 case SHARED_FEAT_CFG_FORCE_SF_MODE_SWITCH_INDEPT: 13814 13815 mac_upper = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].mac_upper); 13816 13817 /* check for legal upper mac bytes */ 13818 if (mac_upper != FUNC_MF_CFG_UPPERMAC_DEFAULT) { 13819 mf_info->mf_mode = MULTI_FUNCTION_SI; 13820 } else { 13821 BLOGE(sc, "Invalid config for Switch Independent mode\n"); 13822 } 13823 13824 break; 13825 13826 case SHARED_FEAT_CFG_FORCE_SF_MODE_MF_ALLOWED: 13827 case SHARED_FEAT_CFG_FORCE_SF_MODE_SPIO4: 13828 13829 /* get outer vlan configuration */ 13830 val = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].e1hov_tag); 13831 13832 if ((val & FUNC_MF_CFG_E1HOV_TAG_MASK) != 13833 FUNC_MF_CFG_E1HOV_TAG_DEFAULT) { 13834 mf_info->mf_mode = MULTI_FUNCTION_SD; 13835 } else { 13836 BLOGE(sc, "Invalid config for Switch Dependent mode\n"); 13837 } 13838 13839 break; 13840 13841 case SHARED_FEAT_CFG_FORCE_SF_MODE_FORCED_SF: 13842 13843 /* not in MF mode, vnics_per_port=1 and multi_vnics_mode=FALSE */ 13844 return (0); 13845 13846 case SHARED_FEAT_CFG_FORCE_SF_MODE_AFEX_MODE: 13847 13848 /* 13849 * Mark MF mode as NIV if MCP version includes NPAR-SD support 13850 * and the MAC address is valid. 13851 */ 13852 mac_upper = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].mac_upper); 13853 13854 if ((SHMEM2_HAS(sc, afex_driver_support)) && 13855 (mac_upper != FUNC_MF_CFG_UPPERMAC_DEFAULT)) { 13856 mf_info->mf_mode = MULTI_FUNCTION_AFEX; 13857 } else { 13858 BLOGE(sc, "Invalid config for AFEX mode\n"); 13859 } 13860 13861 break; 13862 13863 default: 13864 13865 BLOGE(sc, "Unknown MF mode (0x%08x)\n", 13866 (val & SHARED_FEAT_CFG_FORCE_SF_MODE_MASK)); 13867 13868 return (1); 13869 } 13870 13871 /* set path mf_mode (which could be different than function mf_mode) */ 13872 if (mf_info->mf_mode == MULTI_FUNCTION_SD) { 13873 mf_info->path_has_ovlan = TRUE; 13874 } else if (mf_info->mf_mode == SINGLE_FUNCTION) { 13875 /* 13876 * Decide on path multi vnics mode. If we're not in MF mode and in 13877 * 4-port mode, this is good enough to check vnic-0 of the other port 13878 * on the same path 13879 */ 13880 if (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) { 13881 uint8_t other_port = !(PORT_ID(sc) & 1); 13882 uint8_t abs_func_other_port = (SC_PATH(sc) + (2 * other_port)); 13883 13884 val = MFCFG_RD(sc, func_mf_config[abs_func_other_port].e1hov_tag); 13885 13886 mf_info->path_has_ovlan = VALID_OVLAN((uint16_t)val) ? 1 : 0; 13887 } 13888 } 13889 13890 if (mf_info->mf_mode == SINGLE_FUNCTION) { 13891 /* invalid MF config */ 13892 if (SC_VN(sc) >= 1) { 13893 BLOGE(sc, "VNIC ID >= 1 in SF mode\n"); 13894 return (1); 13895 } 13896 13897 return (0); 13898 } 13899 13900 /* get the MF configuration */ 13901 mf_info->mf_config[SC_VN(sc)] = 13902 MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].config); 13903 13904 switch(mf_info->mf_mode) 13905 { 13906 case MULTI_FUNCTION_SD: 13907 13908 bxe_get_shmem_mf_cfg_info_sd(sc); 13909 break; 13910 13911 case MULTI_FUNCTION_SI: 13912 13913 bxe_get_shmem_mf_cfg_info_si(sc); 13914 break; 13915 13916 case MULTI_FUNCTION_AFEX: 13917 13918 bxe_get_shmem_mf_cfg_info_niv(sc); 13919 break; 13920 13921 default: 13922 13923 BLOGE(sc, "Get MF config failed (mf_mode=0x%08x)\n", 13924 mf_info->mf_mode); 13925 return (1); 13926 } 13927 13928 /* get the congestion management parameters */ 13929 13930 vnic = 0; 13931 FOREACH_ABS_FUNC_IN_PORT(sc, i) { 13932 /* get min/max bw */ 13933 val = MFCFG_RD(sc, func_mf_config[i].config); 13934 mf_info->min_bw[vnic] = 13935 ((val & FUNC_MF_CFG_MIN_BW_MASK) >> FUNC_MF_CFG_MIN_BW_SHIFT); 13936 mf_info->max_bw[vnic] = 13937 ((val & FUNC_MF_CFG_MAX_BW_MASK) >> FUNC_MF_CFG_MAX_BW_SHIFT); 13938 vnic++; 13939 } 13940 13941 return (bxe_check_valid_mf_cfg(sc)); 13942 } 13943 13944 static int 13945 bxe_get_shmem_info(struct bxe_softc *sc) 13946 { 13947 int port; 13948 uint32_t mac_hi, mac_lo, val; 13949 13950 port = SC_PORT(sc); 13951 mac_hi = mac_lo = 0; 13952 13953 sc->link_params.sc = sc; 13954 sc->link_params.port = port; 13955 13956 /* get the hardware config info */ 13957 sc->devinfo.hw_config = 13958 SHMEM_RD(sc, dev_info.shared_hw_config.config); 13959 sc->devinfo.hw_config2 = 13960 SHMEM_RD(sc, dev_info.shared_hw_config.config2); 13961 13962 sc->link_params.hw_led_mode = 13963 ((sc->devinfo.hw_config & SHARED_HW_CFG_LED_MODE_MASK) >> 13964 SHARED_HW_CFG_LED_MODE_SHIFT); 13965 13966 /* get the port feature config */ 13967 sc->port.config = 13968 SHMEM_RD(sc, dev_info.port_feature_config[port].config), 13969 13970 /* get the link params */ 13971 sc->link_params.speed_cap_mask[0] = 13972 SHMEM_RD(sc, dev_info.port_hw_config[port].speed_capability_mask); 13973 sc->link_params.speed_cap_mask[1] = 13974 SHMEM_RD(sc, dev_info.port_hw_config[port].speed_capability_mask2); 13975 13976 /* get the lane config */ 13977 sc->link_params.lane_config = 13978 SHMEM_RD(sc, dev_info.port_hw_config[port].lane_config); 13979 13980 /* get the link config */ 13981 val = SHMEM_RD(sc, dev_info.port_feature_config[port].link_config); 13982 sc->port.link_config[ELINK_INT_PHY] = val; 13983 sc->link_params.switch_cfg = (val & PORT_FEATURE_CONNECTED_SWITCH_MASK); 13984 sc->port.link_config[ELINK_EXT_PHY1] = 13985 SHMEM_RD(sc, dev_info.port_feature_config[port].link_config2); 13986 13987 /* get the override preemphasis flag and enable it or turn it off */ 13988 val = SHMEM_RD(sc, dev_info.shared_feature_config.config); 13989 if (val & SHARED_FEAT_CFG_OVERRIDE_PREEMPHASIS_CFG_ENABLED) { 13990 sc->link_params.feature_config_flags |= 13991 ELINK_FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED; 13992 } else { 13993 sc->link_params.feature_config_flags &= 13994 ~ELINK_FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED; 13995 } 13996 13997 /* get the initial value of the link params */ 13998 sc->link_params.multi_phy_config = 13999 SHMEM_RD(sc, dev_info.port_hw_config[port].multi_phy_config); 14000 14001 /* get external phy info */ 14002 sc->port.ext_phy_config = 14003 SHMEM_RD(sc, dev_info.port_hw_config[port].external_phy_config); 14004 14005 /* get the multifunction configuration */ 14006 bxe_get_mf_cfg_info(sc); 14007 14008 /* get the mac address */ 14009 if (IS_MF(sc)) { 14010 mac_hi = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].mac_upper); 14011 mac_lo = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].mac_lower); 14012 } else { 14013 mac_hi = SHMEM_RD(sc, dev_info.port_hw_config[port].mac_upper); 14014 mac_lo = SHMEM_RD(sc, dev_info.port_hw_config[port].mac_lower); 14015 } 14016 14017 if ((mac_lo == 0) && (mac_hi == 0)) { 14018 *sc->mac_addr_str = 0; 14019 BLOGE(sc, "No Ethernet address programmed!\n"); 14020 } else { 14021 sc->link_params.mac_addr[0] = (uint8_t)(mac_hi >> 8); 14022 sc->link_params.mac_addr[1] = (uint8_t)(mac_hi); 14023 sc->link_params.mac_addr[2] = (uint8_t)(mac_lo >> 24); 14024 sc->link_params.mac_addr[3] = (uint8_t)(mac_lo >> 16); 14025 sc->link_params.mac_addr[4] = (uint8_t)(mac_lo >> 8); 14026 sc->link_params.mac_addr[5] = (uint8_t)(mac_lo); 14027 snprintf(sc->mac_addr_str, sizeof(sc->mac_addr_str), 14028 "%02x:%02x:%02x:%02x:%02x:%02x", 14029 sc->link_params.mac_addr[0], sc->link_params.mac_addr[1], 14030 sc->link_params.mac_addr[2], sc->link_params.mac_addr[3], 14031 sc->link_params.mac_addr[4], sc->link_params.mac_addr[5]); 14032 BLOGD(sc, DBG_LOAD, "Ethernet address: %s\n", sc->mac_addr_str); 14033 } 14034 14035 #if 0 14036 if (!IS_MF(sc) && 14037 ((sc->port.config & PORT_FEAT_CFG_STORAGE_PERSONALITY_MASK) == 14038 PORT_FEAT_CFG_STORAGE_PERSONALITY_FCOE)) { 14039 sc->flags |= BXE_NO_ISCSI; 14040 } 14041 if (!IS_MF(sc) && 14042 ((sc->port.config & PORT_FEAT_CFG_STORAGE_PERSONALITY_MASK) == 14043 PORT_FEAT_CFG_STORAGE_PERSONALITY_ISCSI)) { 14044 sc->flags |= BXE_NO_FCOE_FLAG; 14045 } 14046 #endif 14047 14048 return (0); 14049 } 14050 14051 static void 14052 bxe_get_tunable_params(struct bxe_softc *sc) 14053 { 14054 /* sanity checks */ 14055 14056 if ((bxe_interrupt_mode != INTR_MODE_INTX) && 14057 (bxe_interrupt_mode != INTR_MODE_MSI) && 14058 (bxe_interrupt_mode != INTR_MODE_MSIX)) { 14059 BLOGW(sc, "invalid interrupt_mode value (%d)\n", bxe_interrupt_mode); 14060 bxe_interrupt_mode = INTR_MODE_MSIX; 14061 } 14062 14063 if ((bxe_queue_count < 0) || (bxe_queue_count > MAX_RSS_CHAINS)) { 14064 BLOGW(sc, "invalid queue_count value (%d)\n", bxe_queue_count); 14065 bxe_queue_count = 0; 14066 } 14067 14068 if ((bxe_max_rx_bufs < 1) || (bxe_max_rx_bufs > RX_BD_USABLE)) { 14069 if (bxe_max_rx_bufs == 0) { 14070 bxe_max_rx_bufs = RX_BD_USABLE; 14071 } else { 14072 BLOGW(sc, "invalid max_rx_bufs (%d)\n", bxe_max_rx_bufs); 14073 bxe_max_rx_bufs = 2048; 14074 } 14075 } 14076 14077 if ((bxe_hc_rx_ticks < 1) || (bxe_hc_rx_ticks > 100)) { 14078 BLOGW(sc, "invalid hc_rx_ticks (%d)\n", bxe_hc_rx_ticks); 14079 bxe_hc_rx_ticks = 25; 14080 } 14081 14082 if ((bxe_hc_tx_ticks < 1) || (bxe_hc_tx_ticks > 100)) { 14083 BLOGW(sc, "invalid hc_tx_ticks (%d)\n", bxe_hc_tx_ticks); 14084 bxe_hc_tx_ticks = 50; 14085 } 14086 14087 if (bxe_max_aggregation_size == 0) { 14088 bxe_max_aggregation_size = TPA_AGG_SIZE; 14089 } 14090 14091 if (bxe_max_aggregation_size > 0xffff) { 14092 BLOGW(sc, "invalid max_aggregation_size (%d)\n", 14093 bxe_max_aggregation_size); 14094 bxe_max_aggregation_size = TPA_AGG_SIZE; 14095 } 14096 14097 if ((bxe_mrrs < -1) || (bxe_mrrs > 3)) { 14098 BLOGW(sc, "invalid mrrs (%d)\n", bxe_mrrs); 14099 bxe_mrrs = -1; 14100 } 14101 14102 if ((bxe_autogreeen < 0) || (bxe_autogreeen > 2)) { 14103 BLOGW(sc, "invalid autogreeen (%d)\n", bxe_autogreeen); 14104 bxe_autogreeen = 0; 14105 } 14106 14107 if ((bxe_udp_rss < 0) || (bxe_udp_rss > 1)) { 14108 BLOGW(sc, "invalid udp_rss (%d)\n", bxe_udp_rss); 14109 bxe_udp_rss = 0; 14110 } 14111 14112 /* pull in user settings */ 14113 14114 sc->interrupt_mode = bxe_interrupt_mode; 14115 sc->max_rx_bufs = bxe_max_rx_bufs; 14116 sc->hc_rx_ticks = bxe_hc_rx_ticks; 14117 sc->hc_tx_ticks = bxe_hc_tx_ticks; 14118 sc->max_aggregation_size = bxe_max_aggregation_size; 14119 sc->mrrs = bxe_mrrs; 14120 sc->autogreeen = bxe_autogreeen; 14121 sc->udp_rss = bxe_udp_rss; 14122 14123 if (bxe_interrupt_mode == INTR_MODE_INTX) { 14124 sc->num_queues = 1; 14125 } else { /* INTR_MODE_MSI or INTR_MODE_MSIX */ 14126 sc->num_queues = 14127 min((bxe_queue_count ? bxe_queue_count : mp_ncpus), 14128 MAX_RSS_CHAINS); 14129 if (sc->num_queues > mp_ncpus) { 14130 sc->num_queues = mp_ncpus; 14131 } 14132 } 14133 14134 BLOGD(sc, DBG_LOAD, 14135 "User Config: " 14136 "debug=0x%lx " 14137 "interrupt_mode=%d " 14138 "queue_count=%d " 14139 "hc_rx_ticks=%d " 14140 "hc_tx_ticks=%d " 14141 "rx_budget=%d " 14142 "max_aggregation_size=%d " 14143 "mrrs=%d " 14144 "autogreeen=%d " 14145 "udp_rss=%d\n", 14146 bxe_debug, 14147 sc->interrupt_mode, 14148 sc->num_queues, 14149 sc->hc_rx_ticks, 14150 sc->hc_tx_ticks, 14151 bxe_rx_budget, 14152 sc->max_aggregation_size, 14153 sc->mrrs, 14154 sc->autogreeen, 14155 sc->udp_rss); 14156 } 14157 14158 static void 14159 bxe_media_detect(struct bxe_softc *sc) 14160 { 14161 uint32_t phy_idx = bxe_get_cur_phy_idx(sc); 14162 switch (sc->link_params.phy[phy_idx].media_type) { 14163 case ELINK_ETH_PHY_SFPP_10G_FIBER: 14164 case ELINK_ETH_PHY_XFP_FIBER: 14165 BLOGI(sc, "Found 10Gb Fiber media.\n"); 14166 sc->media = IFM_10G_SR; 14167 break; 14168 case ELINK_ETH_PHY_SFP_1G_FIBER: 14169 BLOGI(sc, "Found 1Gb Fiber media.\n"); 14170 sc->media = IFM_1000_SX; 14171 break; 14172 case ELINK_ETH_PHY_KR: 14173 case ELINK_ETH_PHY_CX4: 14174 BLOGI(sc, "Found 10GBase-CX4 media.\n"); 14175 sc->media = IFM_10G_CX4; 14176 break; 14177 case ELINK_ETH_PHY_DA_TWINAX: 14178 BLOGI(sc, "Found 10Gb Twinax media.\n"); 14179 sc->media = IFM_10G_TWINAX; 14180 break; 14181 case ELINK_ETH_PHY_BASE_T: 14182 if (sc->link_params.speed_cap_mask[0] & 14183 PORT_HW_CFG_SPEED_CAPABILITY_D0_10G) { 14184 BLOGI(sc, "Found 10GBase-T media.\n"); 14185 sc->media = IFM_10G_T; 14186 } else { 14187 BLOGI(sc, "Found 1000Base-T media.\n"); 14188 sc->media = IFM_1000_T; 14189 } 14190 break; 14191 case ELINK_ETH_PHY_NOT_PRESENT: 14192 BLOGI(sc, "Media not present.\n"); 14193 sc->media = 0; 14194 break; 14195 case ELINK_ETH_PHY_UNSPECIFIED: 14196 default: 14197 BLOGI(sc, "Unknown media!\n"); 14198 sc->media = 0; 14199 break; 14200 } 14201 } 14202 14203 #define GET_FIELD(value, fname) \ 14204 (((value) & (fname##_MASK)) >> (fname##_SHIFT)) 14205 #define IGU_FID(val) GET_FIELD((val), IGU_REG_MAPPING_MEMORY_FID) 14206 #define IGU_VEC(val) GET_FIELD((val), IGU_REG_MAPPING_MEMORY_VECTOR) 14207 14208 static int 14209 bxe_get_igu_cam_info(struct bxe_softc *sc) 14210 { 14211 int pfid = SC_FUNC(sc); 14212 int igu_sb_id; 14213 uint32_t val; 14214 uint8_t fid, igu_sb_cnt = 0; 14215 14216 sc->igu_base_sb = 0xff; 14217 14218 if (CHIP_INT_MODE_IS_BC(sc)) { 14219 int vn = SC_VN(sc); 14220 igu_sb_cnt = sc->igu_sb_cnt; 14221 sc->igu_base_sb = ((CHIP_IS_MODE_4_PORT(sc) ? pfid : vn) * 14222 FP_SB_MAX_E1x); 14223 sc->igu_dsb_id = (E1HVN_MAX * FP_SB_MAX_E1x + 14224 (CHIP_IS_MODE_4_PORT(sc) ? pfid : vn)); 14225 return (0); 14226 } 14227 14228 /* IGU in normal mode - read CAM */ 14229 for (igu_sb_id = 0; 14230 igu_sb_id < IGU_REG_MAPPING_MEMORY_SIZE; 14231 igu_sb_id++) { 14232 val = REG_RD(sc, IGU_REG_MAPPING_MEMORY + igu_sb_id * 4); 14233 if (!(val & IGU_REG_MAPPING_MEMORY_VALID)) { 14234 continue; 14235 } 14236 fid = IGU_FID(val); 14237 if ((fid & IGU_FID_ENCODE_IS_PF)) { 14238 if ((fid & IGU_FID_PF_NUM_MASK) != pfid) { 14239 continue; 14240 } 14241 if (IGU_VEC(val) == 0) { 14242 /* default status block */ 14243 sc->igu_dsb_id = igu_sb_id; 14244 } else { 14245 if (sc->igu_base_sb == 0xff) { 14246 sc->igu_base_sb = igu_sb_id; 14247 } 14248 igu_sb_cnt++; 14249 } 14250 } 14251 } 14252 14253 /* 14254 * Due to new PF resource allocation by MFW T7.4 and above, it's optional 14255 * that number of CAM entries will not be equal to the value advertised in 14256 * PCI. Driver should use the minimal value of both as the actual status 14257 * block count 14258 */ 14259 sc->igu_sb_cnt = min(sc->igu_sb_cnt, igu_sb_cnt); 14260 14261 if (igu_sb_cnt == 0) { 14262 BLOGE(sc, "CAM configuration error\n"); 14263 return (-1); 14264 } 14265 14266 return (0); 14267 } 14268 14269 /* 14270 * Gather various information from the device config space, the device itself, 14271 * shmem, and the user input. 14272 */ 14273 static int 14274 bxe_get_device_info(struct bxe_softc *sc) 14275 { 14276 uint32_t val; 14277 int rc; 14278 14279 /* Get the data for the device */ 14280 sc->devinfo.vendor_id = pci_get_vendor(sc->dev); 14281 sc->devinfo.device_id = pci_get_device(sc->dev); 14282 sc->devinfo.subvendor_id = pci_get_subvendor(sc->dev); 14283 sc->devinfo.subdevice_id = pci_get_subdevice(sc->dev); 14284 14285 /* get the chip revision (chip metal comes from pci config space) */ 14286 sc->devinfo.chip_id = 14287 sc->link_params.chip_id = 14288 (((REG_RD(sc, MISC_REG_CHIP_NUM) & 0xffff) << 16) | 14289 ((REG_RD(sc, MISC_REG_CHIP_REV) & 0xf) << 12) | 14290 (((REG_RD(sc, PCICFG_OFFSET + PCI_ID_VAL3) >> 24) & 0xf) << 4) | 14291 ((REG_RD(sc, MISC_REG_BOND_ID) & 0xf) << 0)); 14292 14293 /* force 57811 according to MISC register */ 14294 if (REG_RD(sc, MISC_REG_CHIP_TYPE) & MISC_REG_CHIP_TYPE_57811_MASK) { 14295 if (CHIP_IS_57810(sc)) { 14296 sc->devinfo.chip_id = ((CHIP_NUM_57811 << 16) | 14297 (sc->devinfo.chip_id & 0x0000ffff)); 14298 } else if (CHIP_IS_57810_MF(sc)) { 14299 sc->devinfo.chip_id = ((CHIP_NUM_57811_MF << 16) | 14300 (sc->devinfo.chip_id & 0x0000ffff)); 14301 } 14302 sc->devinfo.chip_id |= 0x1; 14303 } 14304 14305 BLOGD(sc, DBG_LOAD, 14306 "chip_id=0x%08x (num=0x%04x rev=0x%01x metal=0x%02x bond=0x%01x)\n", 14307 sc->devinfo.chip_id, 14308 ((sc->devinfo.chip_id >> 16) & 0xffff), 14309 ((sc->devinfo.chip_id >> 12) & 0xf), 14310 ((sc->devinfo.chip_id >> 4) & 0xff), 14311 ((sc->devinfo.chip_id >> 0) & 0xf)); 14312 14313 val = (REG_RD(sc, 0x2874) & 0x55); 14314 if ((sc->devinfo.chip_id & 0x1) || 14315 (CHIP_IS_E1(sc) && val) || 14316 (CHIP_IS_E1H(sc) && (val == 0x55))) { 14317 sc->flags |= BXE_ONE_PORT_FLAG; 14318 BLOGD(sc, DBG_LOAD, "single port device\n"); 14319 } 14320 14321 /* set the doorbell size */ 14322 sc->doorbell_size = (1 << BXE_DB_SHIFT); 14323 14324 /* determine whether the device is in 2 port or 4 port mode */ 14325 sc->devinfo.chip_port_mode = CHIP_PORT_MODE_NONE; /* E1 & E1h*/ 14326 if (CHIP_IS_E2E3(sc)) { 14327 /* 14328 * Read port4mode_en_ovwr[0]: 14329 * If 1, four port mode is in port4mode_en_ovwr[1]. 14330 * If 0, four port mode is in port4mode_en[0]. 14331 */ 14332 val = REG_RD(sc, MISC_REG_PORT4MODE_EN_OVWR); 14333 if (val & 1) { 14334 val = ((val >> 1) & 1); 14335 } else { 14336 val = REG_RD(sc, MISC_REG_PORT4MODE_EN); 14337 } 14338 14339 sc->devinfo.chip_port_mode = 14340 (val) ? CHIP_4_PORT_MODE : CHIP_2_PORT_MODE; 14341 14342 BLOGD(sc, DBG_LOAD, "Port mode = %s\n", (val) ? "4" : "2"); 14343 } 14344 14345 /* get the function and path info for the device */ 14346 bxe_get_function_num(sc); 14347 14348 /* get the shared memory base address */ 14349 sc->devinfo.shmem_base = 14350 sc->link_params.shmem_base = 14351 REG_RD(sc, MISC_REG_SHARED_MEM_ADDR); 14352 sc->devinfo.shmem2_base = 14353 REG_RD(sc, (SC_PATH(sc) ? MISC_REG_GENERIC_CR_1 : 14354 MISC_REG_GENERIC_CR_0)); 14355 14356 BLOGD(sc, DBG_LOAD, "shmem_base=0x%08x, shmem2_base=0x%08x\n", 14357 sc->devinfo.shmem_base, sc->devinfo.shmem2_base); 14358 14359 if (!sc->devinfo.shmem_base) { 14360 /* this should ONLY prevent upcoming shmem reads */ 14361 BLOGI(sc, "MCP not active\n"); 14362 sc->flags |= BXE_NO_MCP_FLAG; 14363 return (0); 14364 } 14365 14366 /* make sure the shared memory contents are valid */ 14367 val = SHMEM_RD(sc, validity_map[SC_PORT(sc)]); 14368 if ((val & (SHR_MEM_VALIDITY_DEV_INFO | SHR_MEM_VALIDITY_MB)) != 14369 (SHR_MEM_VALIDITY_DEV_INFO | SHR_MEM_VALIDITY_MB)) { 14370 BLOGE(sc, "Invalid SHMEM validity signature: 0x%08x\n", val); 14371 return (0); 14372 } 14373 BLOGD(sc, DBG_LOAD, "Valid SHMEM validity signature: 0x%08x\n", val); 14374 14375 /* get the bootcode version */ 14376 sc->devinfo.bc_ver = SHMEM_RD(sc, dev_info.bc_rev); 14377 snprintf(sc->devinfo.bc_ver_str, 14378 sizeof(sc->devinfo.bc_ver_str), 14379 "%d.%d.%d", 14380 ((sc->devinfo.bc_ver >> 24) & 0xff), 14381 ((sc->devinfo.bc_ver >> 16) & 0xff), 14382 ((sc->devinfo.bc_ver >> 8) & 0xff)); 14383 BLOGD(sc, DBG_LOAD, "Bootcode version: %s\n", sc->devinfo.bc_ver_str); 14384 14385 /* get the bootcode shmem address */ 14386 sc->devinfo.mf_cfg_base = bxe_get_shmem_mf_cfg_base(sc); 14387 BLOGD(sc, DBG_LOAD, "mf_cfg_base=0x08%x \n", sc->devinfo.mf_cfg_base); 14388 14389 /* clean indirect addresses as they're not used */ 14390 pci_write_config(sc->dev, PCICFG_GRC_ADDRESS, 0, 4); 14391 if (IS_PF(sc)) { 14392 REG_WR(sc, PXP2_REG_PGL_ADDR_88_F0, 0); 14393 REG_WR(sc, PXP2_REG_PGL_ADDR_8C_F0, 0); 14394 REG_WR(sc, PXP2_REG_PGL_ADDR_90_F0, 0); 14395 REG_WR(sc, PXP2_REG_PGL_ADDR_94_F0, 0); 14396 if (CHIP_IS_E1x(sc)) { 14397 REG_WR(sc, PXP2_REG_PGL_ADDR_88_F1, 0); 14398 REG_WR(sc, PXP2_REG_PGL_ADDR_8C_F1, 0); 14399 REG_WR(sc, PXP2_REG_PGL_ADDR_90_F1, 0); 14400 REG_WR(sc, PXP2_REG_PGL_ADDR_94_F1, 0); 14401 } 14402 14403 /* 14404 * Enable internal target-read (in case we are probed after PF 14405 * FLR). Must be done prior to any BAR read access. Only for 14406 * 57712 and up 14407 */ 14408 if (!CHIP_IS_E1x(sc)) { 14409 REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1); 14410 } 14411 } 14412 14413 /* get the nvram size */ 14414 val = REG_RD(sc, MCP_REG_MCPR_NVM_CFG4); 14415 sc->devinfo.flash_size = 14416 (NVRAM_1MB_SIZE << (val & MCPR_NVM_CFG4_FLASH_SIZE)); 14417 BLOGD(sc, DBG_LOAD, "nvram flash size: %d\n", sc->devinfo.flash_size); 14418 14419 /* get PCI capabilites */ 14420 bxe_probe_pci_caps(sc); 14421 14422 bxe_set_power_state(sc, PCI_PM_D0); 14423 14424 /* get various configuration parameters from shmem */ 14425 bxe_get_shmem_info(sc); 14426 14427 if (sc->devinfo.pcie_msix_cap_reg != 0) { 14428 val = pci_read_config(sc->dev, 14429 (sc->devinfo.pcie_msix_cap_reg + 14430 PCIR_MSIX_CTRL), 14431 2); 14432 sc->igu_sb_cnt = (val & PCIM_MSIXCTRL_TABLE_SIZE); 14433 } else { 14434 sc->igu_sb_cnt = 1; 14435 } 14436 14437 sc->igu_base_addr = BAR_IGU_INTMEM; 14438 14439 /* initialize IGU parameters */ 14440 if (CHIP_IS_E1x(sc)) { 14441 sc->devinfo.int_block = INT_BLOCK_HC; 14442 sc->igu_dsb_id = DEF_SB_IGU_ID; 14443 sc->igu_base_sb = 0; 14444 } else { 14445 sc->devinfo.int_block = INT_BLOCK_IGU; 14446 14447 /* do not allow device reset during IGU info preocessing */ 14448 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RESET); 14449 14450 val = REG_RD(sc, IGU_REG_BLOCK_CONFIGURATION); 14451 14452 if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) { 14453 int tout = 5000; 14454 14455 BLOGD(sc, DBG_LOAD, "FORCING IGU Normal Mode\n"); 14456 14457 val &= ~(IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN); 14458 REG_WR(sc, IGU_REG_BLOCK_CONFIGURATION, val); 14459 REG_WR(sc, IGU_REG_RESET_MEMORIES, 0x7f); 14460 14461 while (tout && REG_RD(sc, IGU_REG_RESET_MEMORIES)) { 14462 tout--; 14463 DELAY(1000); 14464 } 14465 14466 if (REG_RD(sc, IGU_REG_RESET_MEMORIES)) { 14467 BLOGD(sc, DBG_LOAD, "FORCING IGU Normal Mode failed!!!\n"); 14468 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RESET); 14469 return (-1); 14470 } 14471 } 14472 14473 if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) { 14474 BLOGD(sc, DBG_LOAD, "IGU Backward Compatible Mode\n"); 14475 sc->devinfo.int_block |= INT_BLOCK_MODE_BW_COMP; 14476 } else { 14477 BLOGD(sc, DBG_LOAD, "IGU Normal Mode\n"); 14478 } 14479 14480 rc = bxe_get_igu_cam_info(sc); 14481 14482 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RESET); 14483 14484 if (rc) { 14485 return (rc); 14486 } 14487 } 14488 14489 /* 14490 * Get base FW non-default (fast path) status block ID. This value is 14491 * used to initialize the fw_sb_id saved on the fp/queue structure to 14492 * determine the id used by the FW. 14493 */ 14494 if (CHIP_IS_E1x(sc)) { 14495 sc->base_fw_ndsb = ((SC_PORT(sc) * FP_SB_MAX_E1x) + SC_L_ID(sc)); 14496 } else { 14497 /* 14498 * 57712+ - We currently use one FW SB per IGU SB (Rx and Tx of 14499 * the same queue are indicated on the same IGU SB). So we prefer 14500 * FW and IGU SBs to be the same value. 14501 */ 14502 sc->base_fw_ndsb = sc->igu_base_sb; 14503 } 14504 14505 BLOGD(sc, DBG_LOAD, 14506 "igu_dsb_id=%d igu_base_sb=%d igu_sb_cnt=%d base_fw_ndsb=%d\n", 14507 sc->igu_dsb_id, sc->igu_base_sb, 14508 sc->igu_sb_cnt, sc->base_fw_ndsb); 14509 14510 elink_phy_probe(&sc->link_params); 14511 14512 return (0); 14513 } 14514 14515 static void 14516 bxe_link_settings_supported(struct bxe_softc *sc, 14517 uint32_t switch_cfg) 14518 { 14519 uint32_t cfg_size = 0; 14520 uint32_t idx; 14521 uint8_t port = SC_PORT(sc); 14522 14523 /* aggregation of supported attributes of all external phys */ 14524 sc->port.supported[0] = 0; 14525 sc->port.supported[1] = 0; 14526 14527 switch (sc->link_params.num_phys) { 14528 case 1: 14529 sc->port.supported[0] = sc->link_params.phy[ELINK_INT_PHY].supported; 14530 cfg_size = 1; 14531 break; 14532 case 2: 14533 sc->port.supported[0] = sc->link_params.phy[ELINK_EXT_PHY1].supported; 14534 cfg_size = 1; 14535 break; 14536 case 3: 14537 if (sc->link_params.multi_phy_config & 14538 PORT_HW_CFG_PHY_SWAPPED_ENABLED) { 14539 sc->port.supported[1] = 14540 sc->link_params.phy[ELINK_EXT_PHY1].supported; 14541 sc->port.supported[0] = 14542 sc->link_params.phy[ELINK_EXT_PHY2].supported; 14543 } else { 14544 sc->port.supported[0] = 14545 sc->link_params.phy[ELINK_EXT_PHY1].supported; 14546 sc->port.supported[1] = 14547 sc->link_params.phy[ELINK_EXT_PHY2].supported; 14548 } 14549 cfg_size = 2; 14550 break; 14551 } 14552 14553 if (!(sc->port.supported[0] || sc->port.supported[1])) { 14554 BLOGE(sc, "Invalid phy config in NVRAM (PHY1=0x%08x PHY2=0x%08x)\n", 14555 SHMEM_RD(sc, 14556 dev_info.port_hw_config[port].external_phy_config), 14557 SHMEM_RD(sc, 14558 dev_info.port_hw_config[port].external_phy_config2)); 14559 return; 14560 } 14561 14562 if (CHIP_IS_E3(sc)) 14563 sc->port.phy_addr = REG_RD(sc, MISC_REG_WC0_CTRL_PHY_ADDR); 14564 else { 14565 switch (switch_cfg) { 14566 case ELINK_SWITCH_CFG_1G: 14567 sc->port.phy_addr = 14568 REG_RD(sc, NIG_REG_SERDES0_CTRL_PHY_ADDR + port*0x10); 14569 break; 14570 case ELINK_SWITCH_CFG_10G: 14571 sc->port.phy_addr = 14572 REG_RD(sc, NIG_REG_XGXS0_CTRL_PHY_ADDR + port*0x18); 14573 break; 14574 default: 14575 BLOGE(sc, "Invalid switch config in link_config=0x%08x\n", 14576 sc->port.link_config[0]); 14577 return; 14578 } 14579 } 14580 14581 BLOGD(sc, DBG_LOAD, "PHY addr 0x%08x\n", sc->port.phy_addr); 14582 14583 /* mask what we support according to speed_cap_mask per configuration */ 14584 for (idx = 0; idx < cfg_size; idx++) { 14585 if (!(sc->link_params.speed_cap_mask[idx] & 14586 PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_HALF)) { 14587 sc->port.supported[idx] &= ~ELINK_SUPPORTED_10baseT_Half; 14588 } 14589 14590 if (!(sc->link_params.speed_cap_mask[idx] & 14591 PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_FULL)) { 14592 sc->port.supported[idx] &= ~ELINK_SUPPORTED_10baseT_Full; 14593 } 14594 14595 if (!(sc->link_params.speed_cap_mask[idx] & 14596 PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_HALF)) { 14597 sc->port.supported[idx] &= ~ELINK_SUPPORTED_100baseT_Half; 14598 } 14599 14600 if (!(sc->link_params.speed_cap_mask[idx] & 14601 PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_FULL)) { 14602 sc->port.supported[idx] &= ~ELINK_SUPPORTED_100baseT_Full; 14603 } 14604 14605 if (!(sc->link_params.speed_cap_mask[idx] & 14606 PORT_HW_CFG_SPEED_CAPABILITY_D0_1G)) { 14607 sc->port.supported[idx] &= ~ELINK_SUPPORTED_1000baseT_Full; 14608 } 14609 14610 if (!(sc->link_params.speed_cap_mask[idx] & 14611 PORT_HW_CFG_SPEED_CAPABILITY_D0_2_5G)) { 14612 sc->port.supported[idx] &= ~ELINK_SUPPORTED_2500baseX_Full; 14613 } 14614 14615 if (!(sc->link_params.speed_cap_mask[idx] & 14616 PORT_HW_CFG_SPEED_CAPABILITY_D0_10G)) { 14617 sc->port.supported[idx] &= ~ELINK_SUPPORTED_10000baseT_Full; 14618 } 14619 14620 if (!(sc->link_params.speed_cap_mask[idx] & 14621 PORT_HW_CFG_SPEED_CAPABILITY_D0_20G)) { 14622 sc->port.supported[idx] &= ~ELINK_SUPPORTED_20000baseKR2_Full; 14623 } 14624 } 14625 14626 BLOGD(sc, DBG_LOAD, "PHY supported 0=0x%08x 1=0x%08x\n", 14627 sc->port.supported[0], sc->port.supported[1]); 14628 } 14629 14630 static void 14631 bxe_link_settings_requested(struct bxe_softc *sc) 14632 { 14633 uint32_t link_config; 14634 uint32_t idx; 14635 uint32_t cfg_size = 0; 14636 14637 sc->port.advertising[0] = 0; 14638 sc->port.advertising[1] = 0; 14639 14640 switch (sc->link_params.num_phys) { 14641 case 1: 14642 case 2: 14643 cfg_size = 1; 14644 break; 14645 case 3: 14646 cfg_size = 2; 14647 break; 14648 } 14649 14650 for (idx = 0; idx < cfg_size; idx++) { 14651 sc->link_params.req_duplex[idx] = DUPLEX_FULL; 14652 link_config = sc->port.link_config[idx]; 14653 14654 switch (link_config & PORT_FEATURE_LINK_SPEED_MASK) { 14655 case PORT_FEATURE_LINK_SPEED_AUTO: 14656 if (sc->port.supported[idx] & ELINK_SUPPORTED_Autoneg) { 14657 sc->link_params.req_line_speed[idx] = ELINK_SPEED_AUTO_NEG; 14658 sc->port.advertising[idx] |= sc->port.supported[idx]; 14659 if (sc->link_params.phy[ELINK_EXT_PHY1].type == 14660 PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM84833) 14661 sc->port.advertising[idx] |= 14662 (ELINK_SUPPORTED_100baseT_Half | 14663 ELINK_SUPPORTED_100baseT_Full); 14664 } else { 14665 /* force 10G, no AN */ 14666 sc->link_params.req_line_speed[idx] = ELINK_SPEED_10000; 14667 sc->port.advertising[idx] |= 14668 (ADVERTISED_10000baseT_Full | ADVERTISED_FIBRE); 14669 continue; 14670 } 14671 break; 14672 14673 case PORT_FEATURE_LINK_SPEED_10M_FULL: 14674 if (sc->port.supported[idx] & ELINK_SUPPORTED_10baseT_Full) { 14675 sc->link_params.req_line_speed[idx] = ELINK_SPEED_10; 14676 sc->port.advertising[idx] |= (ADVERTISED_10baseT_Full | 14677 ADVERTISED_TP); 14678 } else { 14679 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x " 14680 "speed_cap_mask=0x%08x\n", 14681 link_config, sc->link_params.speed_cap_mask[idx]); 14682 return; 14683 } 14684 break; 14685 14686 case PORT_FEATURE_LINK_SPEED_10M_HALF: 14687 if (sc->port.supported[idx] & ELINK_SUPPORTED_10baseT_Half) { 14688 sc->link_params.req_line_speed[idx] = ELINK_SPEED_10; 14689 sc->link_params.req_duplex[idx] = DUPLEX_HALF; 14690 sc->port.advertising[idx] |= (ADVERTISED_10baseT_Half | 14691 ADVERTISED_TP); 14692 } else { 14693 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x " 14694 "speed_cap_mask=0x%08x\n", 14695 link_config, sc->link_params.speed_cap_mask[idx]); 14696 return; 14697 } 14698 break; 14699 14700 case PORT_FEATURE_LINK_SPEED_100M_FULL: 14701 if (sc->port.supported[idx] & ELINK_SUPPORTED_100baseT_Full) { 14702 sc->link_params.req_line_speed[idx] = ELINK_SPEED_100; 14703 sc->port.advertising[idx] |= (ADVERTISED_100baseT_Full | 14704 ADVERTISED_TP); 14705 } else { 14706 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x " 14707 "speed_cap_mask=0x%08x\n", 14708 link_config, sc->link_params.speed_cap_mask[idx]); 14709 return; 14710 } 14711 break; 14712 14713 case PORT_FEATURE_LINK_SPEED_100M_HALF: 14714 if (sc->port.supported[idx] & ELINK_SUPPORTED_100baseT_Half) { 14715 sc->link_params.req_line_speed[idx] = ELINK_SPEED_100; 14716 sc->link_params.req_duplex[idx] = DUPLEX_HALF; 14717 sc->port.advertising[idx] |= (ADVERTISED_100baseT_Half | 14718 ADVERTISED_TP); 14719 } else { 14720 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x " 14721 "speed_cap_mask=0x%08x\n", 14722 link_config, sc->link_params.speed_cap_mask[idx]); 14723 return; 14724 } 14725 break; 14726 14727 case PORT_FEATURE_LINK_SPEED_1G: 14728 if (sc->port.supported[idx] & ELINK_SUPPORTED_1000baseT_Full) { 14729 sc->link_params.req_line_speed[idx] = ELINK_SPEED_1000; 14730 sc->port.advertising[idx] |= (ADVERTISED_1000baseT_Full | 14731 ADVERTISED_TP); 14732 } else { 14733 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x " 14734 "speed_cap_mask=0x%08x\n", 14735 link_config, sc->link_params.speed_cap_mask[idx]); 14736 return; 14737 } 14738 break; 14739 14740 case PORT_FEATURE_LINK_SPEED_2_5G: 14741 if (sc->port.supported[idx] & ELINK_SUPPORTED_2500baseX_Full) { 14742 sc->link_params.req_line_speed[idx] = ELINK_SPEED_2500; 14743 sc->port.advertising[idx] |= (ADVERTISED_2500baseX_Full | 14744 ADVERTISED_TP); 14745 } else { 14746 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x " 14747 "speed_cap_mask=0x%08x\n", 14748 link_config, sc->link_params.speed_cap_mask[idx]); 14749 return; 14750 } 14751 break; 14752 14753 case PORT_FEATURE_LINK_SPEED_10G_CX4: 14754 if (sc->port.supported[idx] & ELINK_SUPPORTED_10000baseT_Full) { 14755 sc->link_params.req_line_speed[idx] = ELINK_SPEED_10000; 14756 sc->port.advertising[idx] |= (ADVERTISED_10000baseT_Full | 14757 ADVERTISED_FIBRE); 14758 } else { 14759 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x " 14760 "speed_cap_mask=0x%08x\n", 14761 link_config, sc->link_params.speed_cap_mask[idx]); 14762 return; 14763 } 14764 break; 14765 14766 case PORT_FEATURE_LINK_SPEED_20G: 14767 sc->link_params.req_line_speed[idx] = ELINK_SPEED_20000; 14768 break; 14769 14770 default: 14771 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x " 14772 "speed_cap_mask=0x%08x\n", 14773 link_config, sc->link_params.speed_cap_mask[idx]); 14774 sc->link_params.req_line_speed[idx] = ELINK_SPEED_AUTO_NEG; 14775 sc->port.advertising[idx] = sc->port.supported[idx]; 14776 break; 14777 } 14778 14779 sc->link_params.req_flow_ctrl[idx] = 14780 (link_config & PORT_FEATURE_FLOW_CONTROL_MASK); 14781 14782 if (sc->link_params.req_flow_ctrl[idx] == ELINK_FLOW_CTRL_AUTO) { 14783 if (!(sc->port.supported[idx] & ELINK_SUPPORTED_Autoneg)) { 14784 sc->link_params.req_flow_ctrl[idx] = ELINK_FLOW_CTRL_NONE; 14785 } else { 14786 bxe_set_requested_fc(sc); 14787 } 14788 } 14789 14790 BLOGD(sc, DBG_LOAD, "req_line_speed=%d req_duplex=%d " 14791 "req_flow_ctrl=0x%x advertising=0x%x\n", 14792 sc->link_params.req_line_speed[idx], 14793 sc->link_params.req_duplex[idx], 14794 sc->link_params.req_flow_ctrl[idx], 14795 sc->port.advertising[idx]); 14796 } 14797 } 14798 14799 static void 14800 bxe_get_phy_info(struct bxe_softc *sc) 14801 { 14802 uint8_t port = SC_PORT(sc); 14803 uint32_t config = sc->port.config; 14804 uint32_t eee_mode; 14805 14806 /* shmem data already read in bxe_get_shmem_info() */ 14807 14808 BLOGD(sc, DBG_LOAD, "lane_config=0x%08x speed_cap_mask0=0x%08x " 14809 "link_config0=0x%08x\n", 14810 sc->link_params.lane_config, 14811 sc->link_params.speed_cap_mask[0], 14812 sc->port.link_config[0]); 14813 14814 bxe_link_settings_supported(sc, sc->link_params.switch_cfg); 14815 bxe_link_settings_requested(sc); 14816 14817 if (sc->autogreeen == AUTO_GREEN_FORCE_ON) { 14818 sc->link_params.feature_config_flags |= 14819 ELINK_FEATURE_CONFIG_AUTOGREEEN_ENABLED; 14820 } else if (sc->autogreeen == AUTO_GREEN_FORCE_OFF) { 14821 sc->link_params.feature_config_flags &= 14822 ~ELINK_FEATURE_CONFIG_AUTOGREEEN_ENABLED; 14823 } else if (config & PORT_FEAT_CFG_AUTOGREEEN_ENABLED) { 14824 sc->link_params.feature_config_flags |= 14825 ELINK_FEATURE_CONFIG_AUTOGREEEN_ENABLED; 14826 } 14827 14828 /* configure link feature according to nvram value */ 14829 eee_mode = 14830 (((SHMEM_RD(sc, dev_info.port_feature_config[port].eee_power_mode)) & 14831 PORT_FEAT_CFG_EEE_POWER_MODE_MASK) >> 14832 PORT_FEAT_CFG_EEE_POWER_MODE_SHIFT); 14833 if (eee_mode != PORT_FEAT_CFG_EEE_POWER_MODE_DISABLED) { 14834 sc->link_params.eee_mode = (ELINK_EEE_MODE_ADV_LPI | 14835 ELINK_EEE_MODE_ENABLE_LPI | 14836 ELINK_EEE_MODE_OUTPUT_TIME); 14837 } else { 14838 sc->link_params.eee_mode = 0; 14839 } 14840 14841 /* get the media type */ 14842 bxe_media_detect(sc); 14843 } 14844 14845 static void 14846 bxe_get_params(struct bxe_softc *sc) 14847 { 14848 /* get user tunable params */ 14849 bxe_get_tunable_params(sc); 14850 14851 /* select the RX and TX ring sizes */ 14852 sc->tx_ring_size = TX_BD_USABLE; 14853 sc->rx_ring_size = RX_BD_USABLE; 14854 14855 /* XXX disable WoL */ 14856 sc->wol = 0; 14857 } 14858 14859 static void 14860 bxe_set_modes_bitmap(struct bxe_softc *sc) 14861 { 14862 uint32_t flags = 0; 14863 14864 if (CHIP_REV_IS_FPGA(sc)) { 14865 SET_FLAGS(flags, MODE_FPGA); 14866 } else if (CHIP_REV_IS_EMUL(sc)) { 14867 SET_FLAGS(flags, MODE_EMUL); 14868 } else { 14869 SET_FLAGS(flags, MODE_ASIC); 14870 } 14871 14872 if (CHIP_IS_MODE_4_PORT(sc)) { 14873 SET_FLAGS(flags, MODE_PORT4); 14874 } else { 14875 SET_FLAGS(flags, MODE_PORT2); 14876 } 14877 14878 if (CHIP_IS_E2(sc)) { 14879 SET_FLAGS(flags, MODE_E2); 14880 } else if (CHIP_IS_E3(sc)) { 14881 SET_FLAGS(flags, MODE_E3); 14882 if (CHIP_REV(sc) == CHIP_REV_Ax) { 14883 SET_FLAGS(flags, MODE_E3_A0); 14884 } else /*if (CHIP_REV(sc) == CHIP_REV_Bx)*/ { 14885 SET_FLAGS(flags, MODE_E3_B0 | MODE_COS3); 14886 } 14887 } 14888 14889 if (IS_MF(sc)) { 14890 SET_FLAGS(flags, MODE_MF); 14891 switch (sc->devinfo.mf_info.mf_mode) { 14892 case MULTI_FUNCTION_SD: 14893 SET_FLAGS(flags, MODE_MF_SD); 14894 break; 14895 case MULTI_FUNCTION_SI: 14896 SET_FLAGS(flags, MODE_MF_SI); 14897 break; 14898 case MULTI_FUNCTION_AFEX: 14899 SET_FLAGS(flags, MODE_MF_AFEX); 14900 break; 14901 } 14902 } else { 14903 SET_FLAGS(flags, MODE_SF); 14904 } 14905 14906 #if defined(__LITTLE_ENDIAN) 14907 SET_FLAGS(flags, MODE_LITTLE_ENDIAN); 14908 #else /* __BIG_ENDIAN */ 14909 SET_FLAGS(flags, MODE_BIG_ENDIAN); 14910 #endif 14911 14912 INIT_MODE_FLAGS(sc) = flags; 14913 } 14914 14915 static int 14916 bxe_alloc_hsi_mem(struct bxe_softc *sc) 14917 { 14918 struct bxe_fastpath *fp; 14919 bus_addr_t busaddr; 14920 int max_agg_queues; 14921 int max_segments; 14922 bus_size_t max_size; 14923 bus_size_t max_seg_size; 14924 char buf[32]; 14925 int rc; 14926 int i, j; 14927 14928 /* XXX zero out all vars here and call bxe_alloc_hsi_mem on error */ 14929 14930 /* allocate the parent bus DMA tag */ 14931 rc = bus_dma_tag_create(bus_get_dma_tag(sc->dev), /* parent tag */ 14932 1, /* alignment */ 14933 0, /* boundary limit */ 14934 BUS_SPACE_MAXADDR, /* restricted low */ 14935 BUS_SPACE_MAXADDR, /* restricted hi */ 14936 NULL, /* addr filter() */ 14937 NULL, /* addr filter() arg */ 14938 BUS_SPACE_MAXSIZE_32BIT, /* max map size */ 14939 BUS_SPACE_UNRESTRICTED, /* num discontinuous */ 14940 BUS_SPACE_MAXSIZE_32BIT, /* max seg size */ 14941 0, /* flags */ 14942 NULL, /* lock() */ 14943 NULL, /* lock() arg */ 14944 &sc->parent_dma_tag); /* returned dma tag */ 14945 if (rc != 0) { 14946 BLOGE(sc, "Failed to alloc parent DMA tag (%d)!\n", rc); 14947 return (1); 14948 } 14949 14950 /************************/ 14951 /* DEFAULT STATUS BLOCK */ 14952 /************************/ 14953 14954 if (bxe_dma_alloc(sc, sizeof(struct host_sp_status_block), 14955 &sc->def_sb_dma, "default status block") != 0) { 14956 /* XXX */ 14957 bus_dma_tag_destroy(sc->parent_dma_tag); 14958 return (1); 14959 } 14960 14961 sc->def_sb = (struct host_sp_status_block *)sc->def_sb_dma.vaddr; 14962 14963 /***************/ 14964 /* EVENT QUEUE */ 14965 /***************/ 14966 14967 if (bxe_dma_alloc(sc, BCM_PAGE_SIZE, 14968 &sc->eq_dma, "event queue") != 0) { 14969 /* XXX */ 14970 bxe_dma_free(sc, &sc->def_sb_dma); 14971 sc->def_sb = NULL; 14972 bus_dma_tag_destroy(sc->parent_dma_tag); 14973 return (1); 14974 } 14975 14976 sc->eq = (union event_ring_elem * )sc->eq_dma.vaddr; 14977 14978 /*************/ 14979 /* SLOW PATH */ 14980 /*************/ 14981 14982 if (bxe_dma_alloc(sc, sizeof(struct bxe_slowpath), 14983 &sc->sp_dma, "slow path") != 0) { 14984 /* XXX */ 14985 bxe_dma_free(sc, &sc->eq_dma); 14986 sc->eq = NULL; 14987 bxe_dma_free(sc, &sc->def_sb_dma); 14988 sc->def_sb = NULL; 14989 bus_dma_tag_destroy(sc->parent_dma_tag); 14990 return (1); 14991 } 14992 14993 sc->sp = (struct bxe_slowpath *)sc->sp_dma.vaddr; 14994 14995 /*******************/ 14996 /* SLOW PATH QUEUE */ 14997 /*******************/ 14998 14999 if (bxe_dma_alloc(sc, BCM_PAGE_SIZE, 15000 &sc->spq_dma, "slow path queue") != 0) { 15001 /* XXX */ 15002 bxe_dma_free(sc, &sc->sp_dma); 15003 sc->sp = NULL; 15004 bxe_dma_free(sc, &sc->eq_dma); 15005 sc->eq = NULL; 15006 bxe_dma_free(sc, &sc->def_sb_dma); 15007 sc->def_sb = NULL; 15008 bus_dma_tag_destroy(sc->parent_dma_tag); 15009 return (1); 15010 } 15011 15012 sc->spq = (struct eth_spe *)sc->spq_dma.vaddr; 15013 15014 /***************************/ 15015 /* FW DECOMPRESSION BUFFER */ 15016 /***************************/ 15017 15018 if (bxe_dma_alloc(sc, FW_BUF_SIZE, &sc->gz_buf_dma, 15019 "fw decompression buffer") != 0) { 15020 /* XXX */ 15021 bxe_dma_free(sc, &sc->spq_dma); 15022 sc->spq = NULL; 15023 bxe_dma_free(sc, &sc->sp_dma); 15024 sc->sp = NULL; 15025 bxe_dma_free(sc, &sc->eq_dma); 15026 sc->eq = NULL; 15027 bxe_dma_free(sc, &sc->def_sb_dma); 15028 sc->def_sb = NULL; 15029 bus_dma_tag_destroy(sc->parent_dma_tag); 15030 return (1); 15031 } 15032 15033 sc->gz_buf = (void *)sc->gz_buf_dma.vaddr; 15034 15035 if ((sc->gz_strm = 15036 malloc(sizeof(*sc->gz_strm), M_DEVBUF, M_NOWAIT)) == NULL) { 15037 /* XXX */ 15038 bxe_dma_free(sc, &sc->gz_buf_dma); 15039 sc->gz_buf = NULL; 15040 bxe_dma_free(sc, &sc->spq_dma); 15041 sc->spq = NULL; 15042 bxe_dma_free(sc, &sc->sp_dma); 15043 sc->sp = NULL; 15044 bxe_dma_free(sc, &sc->eq_dma); 15045 sc->eq = NULL; 15046 bxe_dma_free(sc, &sc->def_sb_dma); 15047 sc->def_sb = NULL; 15048 bus_dma_tag_destroy(sc->parent_dma_tag); 15049 return (1); 15050 } 15051 15052 /*************/ 15053 /* FASTPATHS */ 15054 /*************/ 15055 15056 /* allocate DMA memory for each fastpath structure */ 15057 for (i = 0; i < sc->num_queues; i++) { 15058 fp = &sc->fp[i]; 15059 fp->sc = sc; 15060 fp->index = i; 15061 15062 /*******************/ 15063 /* FP STATUS BLOCK */ 15064 /*******************/ 15065 15066 snprintf(buf, sizeof(buf), "fp %d status block", i); 15067 if (bxe_dma_alloc(sc, sizeof(union bxe_host_hc_status_block), 15068 &fp->sb_dma, buf) != 0) { 15069 /* XXX unwind and free previous fastpath allocations */ 15070 BLOGE(sc, "Failed to alloc %s\n", buf); 15071 return (1); 15072 } else { 15073 if (CHIP_IS_E2E3(sc)) { 15074 fp->status_block.e2_sb = 15075 (struct host_hc_status_block_e2 *)fp->sb_dma.vaddr; 15076 } else { 15077 fp->status_block.e1x_sb = 15078 (struct host_hc_status_block_e1x *)fp->sb_dma.vaddr; 15079 } 15080 } 15081 15082 /******************/ 15083 /* FP TX BD CHAIN */ 15084 /******************/ 15085 15086 snprintf(buf, sizeof(buf), "fp %d tx bd chain", i); 15087 if (bxe_dma_alloc(sc, (BCM_PAGE_SIZE * TX_BD_NUM_PAGES), 15088 &fp->tx_dma, buf) != 0) { 15089 /* XXX unwind and free previous fastpath allocations */ 15090 BLOGE(sc, "Failed to alloc %s\n", buf); 15091 return (1); 15092 } else { 15093 fp->tx_chain = (union eth_tx_bd_types *)fp->tx_dma.vaddr; 15094 } 15095 15096 /* link together the tx bd chain pages */ 15097 for (j = 1; j <= TX_BD_NUM_PAGES; j++) { 15098 /* index into the tx bd chain array to last entry per page */ 15099 struct eth_tx_next_bd *tx_next_bd = 15100 &fp->tx_chain[TX_BD_TOTAL_PER_PAGE * j - 1].next_bd; 15101 /* point to the next page and wrap from last page */ 15102 busaddr = (fp->tx_dma.paddr + 15103 (BCM_PAGE_SIZE * (j % TX_BD_NUM_PAGES))); 15104 tx_next_bd->addr_hi = htole32(U64_HI(busaddr)); 15105 tx_next_bd->addr_lo = htole32(U64_LO(busaddr)); 15106 } 15107 15108 /******************/ 15109 /* FP RX BD CHAIN */ 15110 /******************/ 15111 15112 snprintf(buf, sizeof(buf), "fp %d rx bd chain", i); 15113 if (bxe_dma_alloc(sc, (BCM_PAGE_SIZE * RX_BD_NUM_PAGES), 15114 &fp->rx_dma, buf) != 0) { 15115 /* XXX unwind and free previous fastpath allocations */ 15116 BLOGE(sc, "Failed to alloc %s\n", buf); 15117 return (1); 15118 } else { 15119 fp->rx_chain = (struct eth_rx_bd *)fp->rx_dma.vaddr; 15120 } 15121 15122 /* link together the rx bd chain pages */ 15123 for (j = 1; j <= RX_BD_NUM_PAGES; j++) { 15124 /* index into the rx bd chain array to last entry per page */ 15125 struct eth_rx_bd *rx_bd = 15126 &fp->rx_chain[RX_BD_TOTAL_PER_PAGE * j - 2]; 15127 /* point to the next page and wrap from last page */ 15128 busaddr = (fp->rx_dma.paddr + 15129 (BCM_PAGE_SIZE * (j % RX_BD_NUM_PAGES))); 15130 rx_bd->addr_hi = htole32(U64_HI(busaddr)); 15131 rx_bd->addr_lo = htole32(U64_LO(busaddr)); 15132 } 15133 15134 /*******************/ 15135 /* FP RX RCQ CHAIN */ 15136 /*******************/ 15137 15138 snprintf(buf, sizeof(buf), "fp %d rcq chain", i); 15139 if (bxe_dma_alloc(sc, (BCM_PAGE_SIZE * RCQ_NUM_PAGES), 15140 &fp->rcq_dma, buf) != 0) { 15141 /* XXX unwind and free previous fastpath allocations */ 15142 BLOGE(sc, "Failed to alloc %s\n", buf); 15143 return (1); 15144 } else { 15145 fp->rcq_chain = (union eth_rx_cqe *)fp->rcq_dma.vaddr; 15146 } 15147 15148 /* link together the rcq chain pages */ 15149 for (j = 1; j <= RCQ_NUM_PAGES; j++) { 15150 /* index into the rcq chain array to last entry per page */ 15151 struct eth_rx_cqe_next_page *rx_cqe_next = 15152 (struct eth_rx_cqe_next_page *) 15153 &fp->rcq_chain[RCQ_TOTAL_PER_PAGE * j - 1]; 15154 /* point to the next page and wrap from last page */ 15155 busaddr = (fp->rcq_dma.paddr + 15156 (BCM_PAGE_SIZE * (j % RCQ_NUM_PAGES))); 15157 rx_cqe_next->addr_hi = htole32(U64_HI(busaddr)); 15158 rx_cqe_next->addr_lo = htole32(U64_LO(busaddr)); 15159 } 15160 15161 /*******************/ 15162 /* FP RX SGE CHAIN */ 15163 /*******************/ 15164 15165 snprintf(buf, sizeof(buf), "fp %d sge chain", i); 15166 if (bxe_dma_alloc(sc, (BCM_PAGE_SIZE * RX_SGE_NUM_PAGES), 15167 &fp->rx_sge_dma, buf) != 0) { 15168 /* XXX unwind and free previous fastpath allocations */ 15169 BLOGE(sc, "Failed to alloc %s\n", buf); 15170 return (1); 15171 } else { 15172 fp->rx_sge_chain = (struct eth_rx_sge *)fp->rx_sge_dma.vaddr; 15173 } 15174 15175 /* link together the sge chain pages */ 15176 for (j = 1; j <= RX_SGE_NUM_PAGES; j++) { 15177 /* index into the rcq chain array to last entry per page */ 15178 struct eth_rx_sge *rx_sge = 15179 &fp->rx_sge_chain[RX_SGE_TOTAL_PER_PAGE * j - 2]; 15180 /* point to the next page and wrap from last page */ 15181 busaddr = (fp->rx_sge_dma.paddr + 15182 (BCM_PAGE_SIZE * (j % RX_SGE_NUM_PAGES))); 15183 rx_sge->addr_hi = htole32(U64_HI(busaddr)); 15184 rx_sge->addr_lo = htole32(U64_LO(busaddr)); 15185 } 15186 15187 /***********************/ 15188 /* FP TX MBUF DMA MAPS */ 15189 /***********************/ 15190 15191 /* set required sizes before mapping to conserve resources */ 15192 if (sc->ifnet->if_capenable & (IFCAP_TSO4 | IFCAP_TSO6)) { 15193 max_size = BXE_TSO_MAX_SIZE; 15194 max_segments = BXE_TSO_MAX_SEGMENTS; 15195 max_seg_size = BXE_TSO_MAX_SEG_SIZE; 15196 } else { 15197 max_size = (MCLBYTES * BXE_MAX_SEGMENTS); 15198 max_segments = BXE_MAX_SEGMENTS; 15199 max_seg_size = MCLBYTES; 15200 } 15201 15202 /* create a dma tag for the tx mbufs */ 15203 rc = bus_dma_tag_create(sc->parent_dma_tag, /* parent tag */ 15204 1, /* alignment */ 15205 0, /* boundary limit */ 15206 BUS_SPACE_MAXADDR, /* restricted low */ 15207 BUS_SPACE_MAXADDR, /* restricted hi */ 15208 NULL, /* addr filter() */ 15209 NULL, /* addr filter() arg */ 15210 max_size, /* max map size */ 15211 max_segments, /* num discontinuous */ 15212 max_seg_size, /* max seg size */ 15213 0, /* flags */ 15214 NULL, /* lock() */ 15215 NULL, /* lock() arg */ 15216 &fp->tx_mbuf_tag); /* returned dma tag */ 15217 if (rc != 0) { 15218 /* XXX unwind and free previous fastpath allocations */ 15219 BLOGE(sc, "Failed to create dma tag for " 15220 "'fp %d tx mbufs' (%d)\n", 15221 i, rc); 15222 return (1); 15223 } 15224 15225 /* create dma maps for each of the tx mbuf clusters */ 15226 for (j = 0; j < TX_BD_TOTAL; j++) { 15227 if (bus_dmamap_create(fp->tx_mbuf_tag, 15228 BUS_DMA_NOWAIT, 15229 &fp->tx_mbuf_chain[j].m_map)) { 15230 /* XXX unwind and free previous fastpath allocations */ 15231 BLOGE(sc, "Failed to create dma map for " 15232 "'fp %d tx mbuf %d' (%d)\n", 15233 i, j, rc); 15234 return (1); 15235 } 15236 } 15237 15238 /***********************/ 15239 /* FP RX MBUF DMA MAPS */ 15240 /***********************/ 15241 15242 /* create a dma tag for the rx mbufs */ 15243 rc = bus_dma_tag_create(sc->parent_dma_tag, /* parent tag */ 15244 1, /* alignment */ 15245 0, /* boundary limit */ 15246 BUS_SPACE_MAXADDR, /* restricted low */ 15247 BUS_SPACE_MAXADDR, /* restricted hi */ 15248 NULL, /* addr filter() */ 15249 NULL, /* addr filter() arg */ 15250 MJUM9BYTES, /* max map size */ 15251 1, /* num discontinuous */ 15252 MJUM9BYTES, /* max seg size */ 15253 0, /* flags */ 15254 NULL, /* lock() */ 15255 NULL, /* lock() arg */ 15256 &fp->rx_mbuf_tag); /* returned dma tag */ 15257 if (rc != 0) { 15258 /* XXX unwind and free previous fastpath allocations */ 15259 BLOGE(sc, "Failed to create dma tag for " 15260 "'fp %d rx mbufs' (%d)\n", 15261 i, rc); 15262 return (1); 15263 } 15264 15265 /* create dma maps for each of the rx mbuf clusters */ 15266 for (j = 0; j < RX_BD_TOTAL; j++) { 15267 if (bus_dmamap_create(fp->rx_mbuf_tag, 15268 BUS_DMA_NOWAIT, 15269 &fp->rx_mbuf_chain[j].m_map)) { 15270 /* XXX unwind and free previous fastpath allocations */ 15271 BLOGE(sc, "Failed to create dma map for " 15272 "'fp %d rx mbuf %d' (%d)\n", 15273 i, j, rc); 15274 return (1); 15275 } 15276 } 15277 15278 /* create dma map for the spare rx mbuf cluster */ 15279 if (bus_dmamap_create(fp->rx_mbuf_tag, 15280 BUS_DMA_NOWAIT, 15281 &fp->rx_mbuf_spare_map)) { 15282 /* XXX unwind and free previous fastpath allocations */ 15283 BLOGE(sc, "Failed to create dma map for " 15284 "'fp %d spare rx mbuf' (%d)\n", 15285 i, rc); 15286 return (1); 15287 } 15288 15289 /***************************/ 15290 /* FP RX SGE MBUF DMA MAPS */ 15291 /***************************/ 15292 15293 /* create a dma tag for the rx sge mbufs */ 15294 rc = bus_dma_tag_create(sc->parent_dma_tag, /* parent tag */ 15295 1, /* alignment */ 15296 0, /* boundary limit */ 15297 BUS_SPACE_MAXADDR, /* restricted low */ 15298 BUS_SPACE_MAXADDR, /* restricted hi */ 15299 NULL, /* addr filter() */ 15300 NULL, /* addr filter() arg */ 15301 BCM_PAGE_SIZE, /* max map size */ 15302 1, /* num discontinuous */ 15303 BCM_PAGE_SIZE, /* max seg size */ 15304 0, /* flags */ 15305 NULL, /* lock() */ 15306 NULL, /* lock() arg */ 15307 &fp->rx_sge_mbuf_tag); /* returned dma tag */ 15308 if (rc != 0) { 15309 /* XXX unwind and free previous fastpath allocations */ 15310 BLOGE(sc, "Failed to create dma tag for " 15311 "'fp %d rx sge mbufs' (%d)\n", 15312 i, rc); 15313 return (1); 15314 } 15315 15316 /* create dma maps for the rx sge mbuf clusters */ 15317 for (j = 0; j < RX_SGE_TOTAL; j++) { 15318 if (bus_dmamap_create(fp->rx_sge_mbuf_tag, 15319 BUS_DMA_NOWAIT, 15320 &fp->rx_sge_mbuf_chain[j].m_map)) { 15321 /* XXX unwind and free previous fastpath allocations */ 15322 BLOGE(sc, "Failed to create dma map for " 15323 "'fp %d rx sge mbuf %d' (%d)\n", 15324 i, j, rc); 15325 return (1); 15326 } 15327 } 15328 15329 /* create dma map for the spare rx sge mbuf cluster */ 15330 if (bus_dmamap_create(fp->rx_sge_mbuf_tag, 15331 BUS_DMA_NOWAIT, 15332 &fp->rx_sge_mbuf_spare_map)) { 15333 /* XXX unwind and free previous fastpath allocations */ 15334 BLOGE(sc, "Failed to create dma map for " 15335 "'fp %d spare rx sge mbuf' (%d)\n", 15336 i, rc); 15337 return (1); 15338 } 15339 15340 /***************************/ 15341 /* FP RX TPA MBUF DMA MAPS */ 15342 /***************************/ 15343 15344 /* create dma maps for the rx tpa mbuf clusters */ 15345 max_agg_queues = MAX_AGG_QS(sc); 15346 15347 for (j = 0; j < max_agg_queues; j++) { 15348 if (bus_dmamap_create(fp->rx_mbuf_tag, 15349 BUS_DMA_NOWAIT, 15350 &fp->rx_tpa_info[j].bd.m_map)) { 15351 /* XXX unwind and free previous fastpath allocations */ 15352 BLOGE(sc, "Failed to create dma map for " 15353 "'fp %d rx tpa mbuf %d' (%d)\n", 15354 i, j, rc); 15355 return (1); 15356 } 15357 } 15358 15359 /* create dma map for the spare rx tpa mbuf cluster */ 15360 if (bus_dmamap_create(fp->rx_mbuf_tag, 15361 BUS_DMA_NOWAIT, 15362 &fp->rx_tpa_info_mbuf_spare_map)) { 15363 /* XXX unwind and free previous fastpath allocations */ 15364 BLOGE(sc, "Failed to create dma map for " 15365 "'fp %d spare rx tpa mbuf' (%d)\n", 15366 i, rc); 15367 return (1); 15368 } 15369 15370 bxe_init_sge_ring_bit_mask(fp); 15371 } 15372 15373 return (0); 15374 } 15375 15376 static void 15377 bxe_free_hsi_mem(struct bxe_softc *sc) 15378 { 15379 struct bxe_fastpath *fp; 15380 int max_agg_queues; 15381 int i, j; 15382 15383 if (sc->parent_dma_tag == NULL) { 15384 return; /* assume nothing was allocated */ 15385 } 15386 15387 for (i = 0; i < sc->num_queues; i++) { 15388 fp = &sc->fp[i]; 15389 15390 /*******************/ 15391 /* FP STATUS BLOCK */ 15392 /*******************/ 15393 15394 bxe_dma_free(sc, &fp->sb_dma); 15395 memset(&fp->status_block, 0, sizeof(fp->status_block)); 15396 15397 /******************/ 15398 /* FP TX BD CHAIN */ 15399 /******************/ 15400 15401 bxe_dma_free(sc, &fp->tx_dma); 15402 fp->tx_chain = NULL; 15403 15404 /******************/ 15405 /* FP RX BD CHAIN */ 15406 /******************/ 15407 15408 bxe_dma_free(sc, &fp->rx_dma); 15409 fp->rx_chain = NULL; 15410 15411 /*******************/ 15412 /* FP RX RCQ CHAIN */ 15413 /*******************/ 15414 15415 bxe_dma_free(sc, &fp->rcq_dma); 15416 fp->rcq_chain = NULL; 15417 15418 /*******************/ 15419 /* FP RX SGE CHAIN */ 15420 /*******************/ 15421 15422 bxe_dma_free(sc, &fp->rx_sge_dma); 15423 fp->rx_sge_chain = NULL; 15424 15425 /***********************/ 15426 /* FP TX MBUF DMA MAPS */ 15427 /***********************/ 15428 15429 if (fp->tx_mbuf_tag != NULL) { 15430 for (j = 0; j < TX_BD_TOTAL; j++) { 15431 if (fp->tx_mbuf_chain[j].m_map != NULL) { 15432 bus_dmamap_unload(fp->tx_mbuf_tag, 15433 fp->tx_mbuf_chain[j].m_map); 15434 bus_dmamap_destroy(fp->tx_mbuf_tag, 15435 fp->tx_mbuf_chain[j].m_map); 15436 } 15437 } 15438 15439 bus_dma_tag_destroy(fp->tx_mbuf_tag); 15440 fp->tx_mbuf_tag = NULL; 15441 } 15442 15443 /***********************/ 15444 /* FP RX MBUF DMA MAPS */ 15445 /***********************/ 15446 15447 if (fp->rx_mbuf_tag != NULL) { 15448 for (j = 0; j < RX_BD_TOTAL; j++) { 15449 if (fp->rx_mbuf_chain[j].m_map != NULL) { 15450 bus_dmamap_unload(fp->rx_mbuf_tag, 15451 fp->rx_mbuf_chain[j].m_map); 15452 bus_dmamap_destroy(fp->rx_mbuf_tag, 15453 fp->rx_mbuf_chain[j].m_map); 15454 } 15455 } 15456 15457 if (fp->rx_mbuf_spare_map != NULL) { 15458 bus_dmamap_unload(fp->rx_mbuf_tag, fp->rx_mbuf_spare_map); 15459 bus_dmamap_destroy(fp->rx_mbuf_tag, fp->rx_mbuf_spare_map); 15460 } 15461 15462 /***************************/ 15463 /* FP RX TPA MBUF DMA MAPS */ 15464 /***************************/ 15465 15466 max_agg_queues = MAX_AGG_QS(sc); 15467 15468 for (j = 0; j < max_agg_queues; j++) { 15469 if (fp->rx_tpa_info[j].bd.m_map != NULL) { 15470 bus_dmamap_unload(fp->rx_mbuf_tag, 15471 fp->rx_tpa_info[j].bd.m_map); 15472 bus_dmamap_destroy(fp->rx_mbuf_tag, 15473 fp->rx_tpa_info[j].bd.m_map); 15474 } 15475 } 15476 15477 if (fp->rx_tpa_info_mbuf_spare_map != NULL) { 15478 bus_dmamap_unload(fp->rx_mbuf_tag, 15479 fp->rx_tpa_info_mbuf_spare_map); 15480 bus_dmamap_destroy(fp->rx_mbuf_tag, 15481 fp->rx_tpa_info_mbuf_spare_map); 15482 } 15483 15484 bus_dma_tag_destroy(fp->rx_mbuf_tag); 15485 fp->rx_mbuf_tag = NULL; 15486 } 15487 15488 /***************************/ 15489 /* FP RX SGE MBUF DMA MAPS */ 15490 /***************************/ 15491 15492 if (fp->rx_sge_mbuf_tag != NULL) { 15493 for (j = 0; j < RX_SGE_TOTAL; j++) { 15494 if (fp->rx_sge_mbuf_chain[j].m_map != NULL) { 15495 bus_dmamap_unload(fp->rx_sge_mbuf_tag, 15496 fp->rx_sge_mbuf_chain[j].m_map); 15497 bus_dmamap_destroy(fp->rx_sge_mbuf_tag, 15498 fp->rx_sge_mbuf_chain[j].m_map); 15499 } 15500 } 15501 15502 if (fp->rx_sge_mbuf_spare_map != NULL) { 15503 bus_dmamap_unload(fp->rx_sge_mbuf_tag, 15504 fp->rx_sge_mbuf_spare_map); 15505 bus_dmamap_destroy(fp->rx_sge_mbuf_tag, 15506 fp->rx_sge_mbuf_spare_map); 15507 } 15508 15509 bus_dma_tag_destroy(fp->rx_sge_mbuf_tag); 15510 fp->rx_sge_mbuf_tag = NULL; 15511 } 15512 } 15513 15514 /***************************/ 15515 /* FW DECOMPRESSION BUFFER */ 15516 /***************************/ 15517 15518 bxe_dma_free(sc, &sc->gz_buf_dma); 15519 sc->gz_buf = NULL; 15520 free(sc->gz_strm, M_DEVBUF); 15521 sc->gz_strm = NULL; 15522 15523 /*******************/ 15524 /* SLOW PATH QUEUE */ 15525 /*******************/ 15526 15527 bxe_dma_free(sc, &sc->spq_dma); 15528 sc->spq = NULL; 15529 15530 /*************/ 15531 /* SLOW PATH */ 15532 /*************/ 15533 15534 bxe_dma_free(sc, &sc->sp_dma); 15535 sc->sp = NULL; 15536 15537 /***************/ 15538 /* EVENT QUEUE */ 15539 /***************/ 15540 15541 bxe_dma_free(sc, &sc->eq_dma); 15542 sc->eq = NULL; 15543 15544 /************************/ 15545 /* DEFAULT STATUS BLOCK */ 15546 /************************/ 15547 15548 bxe_dma_free(sc, &sc->def_sb_dma); 15549 sc->def_sb = NULL; 15550 15551 bus_dma_tag_destroy(sc->parent_dma_tag); 15552 sc->parent_dma_tag = NULL; 15553 } 15554 15555 /* 15556 * Previous driver DMAE transaction may have occurred when pre-boot stage 15557 * ended and boot began. This would invalidate the addresses of the 15558 * transaction, resulting in was-error bit set in the PCI causing all 15559 * hw-to-host PCIe transactions to timeout. If this happened we want to clear 15560 * the interrupt which detected this from the pglueb and the was-done bit 15561 */ 15562 static void 15563 bxe_prev_interrupted_dmae(struct bxe_softc *sc) 15564 { 15565 uint32_t val; 15566 15567 if (!CHIP_IS_E1x(sc)) { 15568 val = REG_RD(sc, PGLUE_B_REG_PGLUE_B_INT_STS); 15569 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN) { 15570 BLOGD(sc, DBG_LOAD, 15571 "Clearing 'was-error' bit that was set in pglueb"); 15572 REG_WR(sc, PGLUE_B_REG_WAS_ERROR_PF_7_0_CLR, 1 << SC_FUNC(sc)); 15573 } 15574 } 15575 } 15576 15577 static int 15578 bxe_prev_mcp_done(struct bxe_softc *sc) 15579 { 15580 uint32_t rc = bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_DONE, 15581 DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET); 15582 if (!rc) { 15583 BLOGE(sc, "MCP response failure, aborting\n"); 15584 return (-1); 15585 } 15586 15587 return (0); 15588 } 15589 15590 static struct bxe_prev_list_node * 15591 bxe_prev_path_get_entry(struct bxe_softc *sc) 15592 { 15593 struct bxe_prev_list_node *tmp; 15594 15595 LIST_FOREACH(tmp, &bxe_prev_list, node) { 15596 if ((sc->pcie_bus == tmp->bus) && 15597 (sc->pcie_device == tmp->slot) && 15598 (SC_PATH(sc) == tmp->path)) { 15599 return (tmp); 15600 } 15601 } 15602 15603 return (NULL); 15604 } 15605 15606 static uint8_t 15607 bxe_prev_is_path_marked(struct bxe_softc *sc) 15608 { 15609 struct bxe_prev_list_node *tmp; 15610 int rc = FALSE; 15611 15612 mtx_lock(&bxe_prev_mtx); 15613 15614 tmp = bxe_prev_path_get_entry(sc); 15615 if (tmp) { 15616 if (tmp->aer) { 15617 BLOGD(sc, DBG_LOAD, 15618 "Path %d/%d/%d was marked by AER\n", 15619 sc->pcie_bus, sc->pcie_device, SC_PATH(sc)); 15620 } else { 15621 rc = TRUE; 15622 BLOGD(sc, DBG_LOAD, 15623 "Path %d/%d/%d was already cleaned from previous drivers\n", 15624 sc->pcie_bus, sc->pcie_device, SC_PATH(sc)); 15625 } 15626 } 15627 15628 mtx_unlock(&bxe_prev_mtx); 15629 15630 return (rc); 15631 } 15632 15633 static int 15634 bxe_prev_mark_path(struct bxe_softc *sc, 15635 uint8_t after_undi) 15636 { 15637 struct bxe_prev_list_node *tmp; 15638 15639 mtx_lock(&bxe_prev_mtx); 15640 15641 /* Check whether the entry for this path already exists */ 15642 tmp = bxe_prev_path_get_entry(sc); 15643 if (tmp) { 15644 if (!tmp->aer) { 15645 BLOGD(sc, DBG_LOAD, 15646 "Re-marking AER in path %d/%d/%d\n", 15647 sc->pcie_bus, sc->pcie_device, SC_PATH(sc)); 15648 } else { 15649 BLOGD(sc, DBG_LOAD, 15650 "Removing AER indication from path %d/%d/%d\n", 15651 sc->pcie_bus, sc->pcie_device, SC_PATH(sc)); 15652 tmp->aer = 0; 15653 } 15654 15655 mtx_unlock(&bxe_prev_mtx); 15656 return (0); 15657 } 15658 15659 mtx_unlock(&bxe_prev_mtx); 15660 15661 /* Create an entry for this path and add it */ 15662 tmp = malloc(sizeof(struct bxe_prev_list_node), M_DEVBUF, 15663 (M_NOWAIT | M_ZERO)); 15664 if (!tmp) { 15665 BLOGE(sc, "Failed to allocate 'bxe_prev_list_node'\n"); 15666 return (-1); 15667 } 15668 15669 tmp->bus = sc->pcie_bus; 15670 tmp->slot = sc->pcie_device; 15671 tmp->path = SC_PATH(sc); 15672 tmp->aer = 0; 15673 tmp->undi = after_undi ? (1 << SC_PORT(sc)) : 0; 15674 15675 mtx_lock(&bxe_prev_mtx); 15676 15677 BLOGD(sc, DBG_LOAD, 15678 "Marked path %d/%d/%d - finished previous unload\n", 15679 sc->pcie_bus, sc->pcie_device, SC_PATH(sc)); 15680 LIST_INSERT_HEAD(&bxe_prev_list, tmp, node); 15681 15682 mtx_unlock(&bxe_prev_mtx); 15683 15684 return (0); 15685 } 15686 15687 static int 15688 bxe_do_flr(struct bxe_softc *sc) 15689 { 15690 int i; 15691 15692 /* only E2 and onwards support FLR */ 15693 if (CHIP_IS_E1x(sc)) { 15694 BLOGD(sc, DBG_LOAD, "FLR not supported in E1/E1H\n"); 15695 return (-1); 15696 } 15697 15698 /* only bootcode REQ_BC_VER_4_INITIATE_FLR and onwards support flr */ 15699 if (sc->devinfo.bc_ver < REQ_BC_VER_4_INITIATE_FLR) { 15700 BLOGD(sc, DBG_LOAD, "FLR not supported by BC_VER: 0x%08x\n", 15701 sc->devinfo.bc_ver); 15702 return (-1); 15703 } 15704 15705 /* Wait for Transaction Pending bit clean */ 15706 for (i = 0; i < 4; i++) { 15707 if (i) { 15708 DELAY(((1 << (i - 1)) * 100) * 1000); 15709 } 15710 15711 if (!bxe_is_pcie_pending(sc)) { 15712 goto clear; 15713 } 15714 } 15715 15716 BLOGE(sc, "PCIE transaction is not cleared, " 15717 "proceeding with reset anyway\n"); 15718 15719 clear: 15720 15721 BLOGD(sc, DBG_LOAD, "Initiating FLR\n"); 15722 bxe_fw_command(sc, DRV_MSG_CODE_INITIATE_FLR, 0); 15723 15724 return (0); 15725 } 15726 15727 struct bxe_mac_vals { 15728 uint32_t xmac_addr; 15729 uint32_t xmac_val; 15730 uint32_t emac_addr; 15731 uint32_t emac_val; 15732 uint32_t umac_addr; 15733 uint32_t umac_val; 15734 uint32_t bmac_addr; 15735 uint32_t bmac_val[2]; 15736 }; 15737 15738 static void 15739 bxe_prev_unload_close_mac(struct bxe_softc *sc, 15740 struct bxe_mac_vals *vals) 15741 { 15742 uint32_t val, base_addr, offset, mask, reset_reg; 15743 uint8_t mac_stopped = FALSE; 15744 uint8_t port = SC_PORT(sc); 15745 uint32_t wb_data[2]; 15746 15747 /* reset addresses as they also mark which values were changed */ 15748 vals->bmac_addr = 0; 15749 vals->umac_addr = 0; 15750 vals->xmac_addr = 0; 15751 vals->emac_addr = 0; 15752 15753 reset_reg = REG_RD(sc, MISC_REG_RESET_REG_2); 15754 15755 if (!CHIP_IS_E3(sc)) { 15756 val = REG_RD(sc, NIG_REG_BMAC0_REGS_OUT_EN + port * 4); 15757 mask = MISC_REGISTERS_RESET_REG_2_RST_BMAC0 << port; 15758 if ((mask & reset_reg) && val) { 15759 BLOGD(sc, DBG_LOAD, "Disable BMAC Rx\n"); 15760 base_addr = SC_PORT(sc) ? NIG_REG_INGRESS_BMAC1_MEM 15761 : NIG_REG_INGRESS_BMAC0_MEM; 15762 offset = CHIP_IS_E2(sc) ? BIGMAC2_REGISTER_BMAC_CONTROL 15763 : BIGMAC_REGISTER_BMAC_CONTROL; 15764 15765 /* 15766 * use rd/wr since we cannot use dmae. This is safe 15767 * since MCP won't access the bus due to the request 15768 * to unload, and no function on the path can be 15769 * loaded at this time. 15770 */ 15771 wb_data[0] = REG_RD(sc, base_addr + offset); 15772 wb_data[1] = REG_RD(sc, base_addr + offset + 0x4); 15773 vals->bmac_addr = base_addr + offset; 15774 vals->bmac_val[0] = wb_data[0]; 15775 vals->bmac_val[1] = wb_data[1]; 15776 wb_data[0] &= ~ELINK_BMAC_CONTROL_RX_ENABLE; 15777 REG_WR(sc, vals->bmac_addr, wb_data[0]); 15778 REG_WR(sc, vals->bmac_addr + 0x4, wb_data[1]); 15779 } 15780 15781 BLOGD(sc, DBG_LOAD, "Disable EMAC Rx\n"); 15782 vals->emac_addr = NIG_REG_NIG_EMAC0_EN + SC_PORT(sc)*4; 15783 vals->emac_val = REG_RD(sc, vals->emac_addr); 15784 REG_WR(sc, vals->emac_addr, 0); 15785 mac_stopped = TRUE; 15786 } else { 15787 if (reset_reg & MISC_REGISTERS_RESET_REG_2_XMAC) { 15788 BLOGD(sc, DBG_LOAD, "Disable XMAC Rx\n"); 15789 base_addr = SC_PORT(sc) ? GRCBASE_XMAC1 : GRCBASE_XMAC0; 15790 val = REG_RD(sc, base_addr + XMAC_REG_PFC_CTRL_HI); 15791 REG_WR(sc, base_addr + XMAC_REG_PFC_CTRL_HI, val & ~(1 << 1)); 15792 REG_WR(sc, base_addr + XMAC_REG_PFC_CTRL_HI, val | (1 << 1)); 15793 vals->xmac_addr = base_addr + XMAC_REG_CTRL; 15794 vals->xmac_val = REG_RD(sc, vals->xmac_addr); 15795 REG_WR(sc, vals->xmac_addr, 0); 15796 mac_stopped = TRUE; 15797 } 15798 15799 mask = MISC_REGISTERS_RESET_REG_2_UMAC0 << port; 15800 if (mask & reset_reg) { 15801 BLOGD(sc, DBG_LOAD, "Disable UMAC Rx\n"); 15802 base_addr = SC_PORT(sc) ? GRCBASE_UMAC1 : GRCBASE_UMAC0; 15803 vals->umac_addr = base_addr + UMAC_REG_COMMAND_CONFIG; 15804 vals->umac_val = REG_RD(sc, vals->umac_addr); 15805 REG_WR(sc, vals->umac_addr, 0); 15806 mac_stopped = TRUE; 15807 } 15808 } 15809 15810 if (mac_stopped) { 15811 DELAY(20000); 15812 } 15813 } 15814 15815 #define BXE_PREV_UNDI_PROD_ADDR(p) (BAR_TSTRORM_INTMEM + 0x1508 + ((p) << 4)) 15816 #define BXE_PREV_UNDI_RCQ(val) ((val) & 0xffff) 15817 #define BXE_PREV_UNDI_BD(val) ((val) >> 16 & 0xffff) 15818 #define BXE_PREV_UNDI_PROD(rcq, bd) ((bd) << 16 | (rcq)) 15819 15820 static void 15821 bxe_prev_unload_undi_inc(struct bxe_softc *sc, 15822 uint8_t port, 15823 uint8_t inc) 15824 { 15825 uint16_t rcq, bd; 15826 uint32_t tmp_reg = REG_RD(sc, BXE_PREV_UNDI_PROD_ADDR(port)); 15827 15828 rcq = BXE_PREV_UNDI_RCQ(tmp_reg) + inc; 15829 bd = BXE_PREV_UNDI_BD(tmp_reg) + inc; 15830 15831 tmp_reg = BXE_PREV_UNDI_PROD(rcq, bd); 15832 REG_WR(sc, BXE_PREV_UNDI_PROD_ADDR(port), tmp_reg); 15833 15834 BLOGD(sc, DBG_LOAD, 15835 "UNDI producer [%d] rings bd -> 0x%04x, rcq -> 0x%04x\n", 15836 port, bd, rcq); 15837 } 15838 15839 static int 15840 bxe_prev_unload_common(struct bxe_softc *sc) 15841 { 15842 uint32_t reset_reg, tmp_reg = 0, rc; 15843 uint8_t prev_undi = FALSE; 15844 struct bxe_mac_vals mac_vals; 15845 uint32_t timer_count = 1000; 15846 uint32_t prev_brb; 15847 15848 /* 15849 * It is possible a previous function received 'common' answer, 15850 * but hasn't loaded yet, therefore creating a scenario of 15851 * multiple functions receiving 'common' on the same path. 15852 */ 15853 BLOGD(sc, DBG_LOAD, "Common unload Flow\n"); 15854 15855 memset(&mac_vals, 0, sizeof(mac_vals)); 15856 15857 if (bxe_prev_is_path_marked(sc)) { 15858 return (bxe_prev_mcp_done(sc)); 15859 } 15860 15861 reset_reg = REG_RD(sc, MISC_REG_RESET_REG_1); 15862 15863 /* Reset should be performed after BRB is emptied */ 15864 if (reset_reg & MISC_REGISTERS_RESET_REG_1_RST_BRB1) { 15865 /* Close the MAC Rx to prevent BRB from filling up */ 15866 bxe_prev_unload_close_mac(sc, &mac_vals); 15867 15868 /* close LLH filters towards the BRB */ 15869 elink_set_rx_filter(&sc->link_params, 0); 15870 15871 /* 15872 * Check if the UNDI driver was previously loaded. 15873 * UNDI driver initializes CID offset for normal bell to 0x7 15874 */ 15875 if (reset_reg & MISC_REGISTERS_RESET_REG_1_RST_DORQ) { 15876 tmp_reg = REG_RD(sc, DORQ_REG_NORM_CID_OFST); 15877 if (tmp_reg == 0x7) { 15878 BLOGD(sc, DBG_LOAD, "UNDI previously loaded\n"); 15879 prev_undi = TRUE; 15880 /* clear the UNDI indication */ 15881 REG_WR(sc, DORQ_REG_NORM_CID_OFST, 0); 15882 /* clear possible idle check errors */ 15883 REG_RD(sc, NIG_REG_NIG_INT_STS_CLR_0); 15884 } 15885 } 15886 15887 /* wait until BRB is empty */ 15888 tmp_reg = REG_RD(sc, BRB1_REG_NUM_OF_FULL_BLOCKS); 15889 while (timer_count) { 15890 prev_brb = tmp_reg; 15891 15892 tmp_reg = REG_RD(sc, BRB1_REG_NUM_OF_FULL_BLOCKS); 15893 if (!tmp_reg) { 15894 break; 15895 } 15896 15897 BLOGD(sc, DBG_LOAD, "BRB still has 0x%08x\n", tmp_reg); 15898 15899 /* reset timer as long as BRB actually gets emptied */ 15900 if (prev_brb > tmp_reg) { 15901 timer_count = 1000; 15902 } else { 15903 timer_count--; 15904 } 15905 15906 /* If UNDI resides in memory, manually increment it */ 15907 if (prev_undi) { 15908 bxe_prev_unload_undi_inc(sc, SC_PORT(sc), 1); 15909 } 15910 15911 DELAY(10); 15912 } 15913 15914 if (!timer_count) { 15915 BLOGE(sc, "Failed to empty BRB\n"); 15916 } 15917 } 15918 15919 /* No packets are in the pipeline, path is ready for reset */ 15920 bxe_reset_common(sc); 15921 15922 if (mac_vals.xmac_addr) { 15923 REG_WR(sc, mac_vals.xmac_addr, mac_vals.xmac_val); 15924 } 15925 if (mac_vals.umac_addr) { 15926 REG_WR(sc, mac_vals.umac_addr, mac_vals.umac_val); 15927 } 15928 if (mac_vals.emac_addr) { 15929 REG_WR(sc, mac_vals.emac_addr, mac_vals.emac_val); 15930 } 15931 if (mac_vals.bmac_addr) { 15932 REG_WR(sc, mac_vals.bmac_addr, mac_vals.bmac_val[0]); 15933 REG_WR(sc, mac_vals.bmac_addr + 4, mac_vals.bmac_val[1]); 15934 } 15935 15936 rc = bxe_prev_mark_path(sc, prev_undi); 15937 if (rc) { 15938 bxe_prev_mcp_done(sc); 15939 return (rc); 15940 } 15941 15942 return (bxe_prev_mcp_done(sc)); 15943 } 15944 15945 static int 15946 bxe_prev_unload_uncommon(struct bxe_softc *sc) 15947 { 15948 int rc; 15949 15950 BLOGD(sc, DBG_LOAD, "Uncommon unload Flow\n"); 15951 15952 /* Test if previous unload process was already finished for this path */ 15953 if (bxe_prev_is_path_marked(sc)) { 15954 return (bxe_prev_mcp_done(sc)); 15955 } 15956 15957 BLOGD(sc, DBG_LOAD, "Path is unmarked\n"); 15958 15959 /* 15960 * If function has FLR capabilities, and existing FW version matches 15961 * the one required, then FLR will be sufficient to clean any residue 15962 * left by previous driver 15963 */ 15964 rc = bxe_nic_load_analyze_req(sc, FW_MSG_CODE_DRV_LOAD_FUNCTION); 15965 if (!rc) { 15966 /* fw version is good */ 15967 BLOGD(sc, DBG_LOAD, "FW version matches our own, attempting FLR\n"); 15968 rc = bxe_do_flr(sc); 15969 } 15970 15971 if (!rc) { 15972 /* FLR was performed */ 15973 BLOGD(sc, DBG_LOAD, "FLR successful\n"); 15974 return (0); 15975 } 15976 15977 BLOGD(sc, DBG_LOAD, "Could not FLR\n"); 15978 15979 /* Close the MCP request, return failure*/ 15980 rc = bxe_prev_mcp_done(sc); 15981 if (!rc) { 15982 rc = BXE_PREV_WAIT_NEEDED; 15983 } 15984 15985 return (rc); 15986 } 15987 15988 static int 15989 bxe_prev_unload(struct bxe_softc *sc) 15990 { 15991 int time_counter = 10; 15992 uint32_t fw, hw_lock_reg, hw_lock_val; 15993 uint32_t rc = 0; 15994 15995 /* 15996 * Clear HW from errors which may have resulted from an interrupted 15997 * DMAE transaction. 15998 */ 15999 bxe_prev_interrupted_dmae(sc); 16000 16001 /* Release previously held locks */ 16002 hw_lock_reg = 16003 (SC_FUNC(sc) <= 5) ? 16004 (MISC_REG_DRIVER_CONTROL_1 + SC_FUNC(sc) * 8) : 16005 (MISC_REG_DRIVER_CONTROL_7 + (SC_FUNC(sc) - 6) * 8); 16006 16007 hw_lock_val = (REG_RD(sc, hw_lock_reg)); 16008 if (hw_lock_val) { 16009 if (hw_lock_val & HW_LOCK_RESOURCE_NVRAM) { 16010 BLOGD(sc, DBG_LOAD, "Releasing previously held NVRAM lock\n"); 16011 REG_WR(sc, MCP_REG_MCPR_NVM_SW_ARB, 16012 (MCPR_NVM_SW_ARB_ARB_REQ_CLR1 << SC_PORT(sc))); 16013 } 16014 BLOGD(sc, DBG_LOAD, "Releasing previously held HW lock\n"); 16015 REG_WR(sc, hw_lock_reg, 0xffffffff); 16016 } else { 16017 BLOGD(sc, DBG_LOAD, "No need to release HW/NVRAM locks\n"); 16018 } 16019 16020 if (MCPR_ACCESS_LOCK_LOCK & REG_RD(sc, MCP_REG_MCPR_ACCESS_LOCK)) { 16021 BLOGD(sc, DBG_LOAD, "Releasing previously held ALR\n"); 16022 REG_WR(sc, MCP_REG_MCPR_ACCESS_LOCK, 0); 16023 } 16024 16025 do { 16026 /* Lock MCP using an unload request */ 16027 fw = bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS, 0); 16028 if (!fw) { 16029 BLOGE(sc, "MCP response failure, aborting\n"); 16030 rc = -1; 16031 break; 16032 } 16033 16034 if (fw == FW_MSG_CODE_DRV_UNLOAD_COMMON) { 16035 rc = bxe_prev_unload_common(sc); 16036 break; 16037 } 16038 16039 /* non-common reply from MCP night require looping */ 16040 rc = bxe_prev_unload_uncommon(sc); 16041 if (rc != BXE_PREV_WAIT_NEEDED) { 16042 break; 16043 } 16044 16045 DELAY(20000); 16046 } while (--time_counter); 16047 16048 if (!time_counter || rc) { 16049 BLOGE(sc, "Failed to unload previous driver!\n"); 16050 rc = -1; 16051 } 16052 16053 return (rc); 16054 } 16055 16056 void 16057 bxe_dcbx_set_state(struct bxe_softc *sc, 16058 uint8_t dcb_on, 16059 uint32_t dcbx_enabled) 16060 { 16061 if (!CHIP_IS_E1x(sc)) { 16062 sc->dcb_state = dcb_on; 16063 sc->dcbx_enabled = dcbx_enabled; 16064 } else { 16065 sc->dcb_state = FALSE; 16066 sc->dcbx_enabled = BXE_DCBX_ENABLED_INVALID; 16067 } 16068 BLOGD(sc, DBG_LOAD, 16069 "DCB state [%s:%s]\n", 16070 dcb_on ? "ON" : "OFF", 16071 (dcbx_enabled == BXE_DCBX_ENABLED_OFF) ? "user-mode" : 16072 (dcbx_enabled == BXE_DCBX_ENABLED_ON_NEG_OFF) ? "on-chip static" : 16073 (dcbx_enabled == BXE_DCBX_ENABLED_ON_NEG_ON) ? 16074 "on-chip with negotiation" : "invalid"); 16075 } 16076 16077 /* must be called after sriov-enable */ 16078 static int 16079 bxe_set_qm_cid_count(struct bxe_softc *sc) 16080 { 16081 int cid_count = BXE_L2_MAX_CID(sc); 16082 16083 if (IS_SRIOV(sc)) { 16084 cid_count += BXE_VF_CIDS; 16085 } 16086 16087 if (CNIC_SUPPORT(sc)) { 16088 cid_count += CNIC_CID_MAX; 16089 } 16090 16091 return (roundup(cid_count, QM_CID_ROUND)); 16092 } 16093 16094 static void 16095 bxe_init_multi_cos(struct bxe_softc *sc) 16096 { 16097 int pri, cos; 16098 16099 uint32_t pri_map = 0; /* XXX change to user config */ 16100 16101 for (pri = 0; pri < BXE_MAX_PRIORITY; pri++) { 16102 cos = ((pri_map & (0xf << (pri * 4))) >> (pri * 4)); 16103 if (cos < sc->max_cos) { 16104 sc->prio_to_cos[pri] = cos; 16105 } else { 16106 BLOGW(sc, "Invalid COS %d for priority %d " 16107 "(max COS is %d), setting to 0\n", 16108 cos, pri, (sc->max_cos - 1)); 16109 sc->prio_to_cos[pri] = 0; 16110 } 16111 } 16112 } 16113 16114 static int 16115 bxe_sysctl_state(SYSCTL_HANDLER_ARGS) 16116 { 16117 struct bxe_softc *sc; 16118 int error, result; 16119 16120 result = 0; 16121 error = sysctl_handle_int(oidp, &result, 0, req); 16122 16123 if (error || !req->newptr) { 16124 return (error); 16125 } 16126 16127 if (result == 1) { 16128 sc = (struct bxe_softc *)arg1; 16129 BLOGI(sc, "... dumping driver state ...\n"); 16130 /* XXX */ 16131 } 16132 16133 return (error); 16134 } 16135 16136 static int 16137 bxe_sysctl_eth_stat(SYSCTL_HANDLER_ARGS) 16138 { 16139 struct bxe_softc *sc = (struct bxe_softc *)arg1; 16140 uint32_t *eth_stats = (uint32_t *)&sc->eth_stats; 16141 uint32_t *offset; 16142 uint64_t value = 0; 16143 int index = (int)arg2; 16144 16145 if (index >= BXE_NUM_ETH_STATS) { 16146 BLOGE(sc, "bxe_eth_stats index out of range (%d)\n", index); 16147 return (-1); 16148 } 16149 16150 offset = (eth_stats + bxe_eth_stats_arr[index].offset); 16151 16152 switch (bxe_eth_stats_arr[index].size) { 16153 case 4: 16154 value = (uint64_t)*offset; 16155 break; 16156 case 8: 16157 value = HILO_U64(*offset, *(offset + 1)); 16158 break; 16159 default: 16160 BLOGE(sc, "Invalid bxe_eth_stats size (index=%d size=%d)\n", 16161 index, bxe_eth_stats_arr[index].size); 16162 return (-1); 16163 } 16164 16165 return (sysctl_handle_64(oidp, &value, 0, req)); 16166 } 16167 16168 static int 16169 bxe_sysctl_eth_q_stat(SYSCTL_HANDLER_ARGS) 16170 { 16171 struct bxe_softc *sc = (struct bxe_softc *)arg1; 16172 uint32_t *eth_stats; 16173 uint32_t *offset; 16174 uint64_t value = 0; 16175 uint32_t q_stat = (uint32_t)arg2; 16176 uint32_t fp_index = ((q_stat >> 16) & 0xffff); 16177 uint32_t index = (q_stat & 0xffff); 16178 16179 eth_stats = (uint32_t *)&sc->fp[fp_index].eth_q_stats; 16180 16181 if (index >= BXE_NUM_ETH_Q_STATS) { 16182 BLOGE(sc, "bxe_eth_q_stats index out of range (%d)\n", index); 16183 return (-1); 16184 } 16185 16186 offset = (eth_stats + bxe_eth_q_stats_arr[index].offset); 16187 16188 switch (bxe_eth_q_stats_arr[index].size) { 16189 case 4: 16190 value = (uint64_t)*offset; 16191 break; 16192 case 8: 16193 value = HILO_U64(*offset, *(offset + 1)); 16194 break; 16195 default: 16196 BLOGE(sc, "Invalid bxe_eth_q_stats size (index=%d size=%d)\n", 16197 index, bxe_eth_q_stats_arr[index].size); 16198 return (-1); 16199 } 16200 16201 return (sysctl_handle_64(oidp, &value, 0, req)); 16202 } 16203 16204 static void 16205 bxe_add_sysctls(struct bxe_softc *sc) 16206 { 16207 struct sysctl_ctx_list *ctx; 16208 struct sysctl_oid_list *children; 16209 struct sysctl_oid *queue_top, *queue; 16210 struct sysctl_oid_list *queue_top_children, *queue_children; 16211 char queue_num_buf[32]; 16212 uint32_t q_stat; 16213 int i, j; 16214 16215 ctx = device_get_sysctl_ctx(sc->dev); 16216 children = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev)); 16217 16218 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "version", 16219 CTLFLAG_RD, BXE_DRIVER_VERSION, 0, 16220 "version"); 16221 16222 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "bc_version", 16223 CTLFLAG_RD, &sc->devinfo.bc_ver_str, 0, 16224 "bootcode version"); 16225 16226 snprintf(sc->fw_ver_str, sizeof(sc->fw_ver_str), "%d.%d.%d.%d", 16227 BCM_5710_FW_MAJOR_VERSION, 16228 BCM_5710_FW_MINOR_VERSION, 16229 BCM_5710_FW_REVISION_VERSION, 16230 BCM_5710_FW_ENGINEERING_VERSION); 16231 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "fw_version", 16232 CTLFLAG_RD, &sc->fw_ver_str, 0, 16233 "firmware version"); 16234 16235 snprintf(sc->mf_mode_str, sizeof(sc->mf_mode_str), "%s", 16236 ((sc->devinfo.mf_info.mf_mode == SINGLE_FUNCTION) ? "Single" : 16237 (sc->devinfo.mf_info.mf_mode == MULTI_FUNCTION_SD) ? "MF-SD" : 16238 (sc->devinfo.mf_info.mf_mode == MULTI_FUNCTION_SI) ? "MF-SI" : 16239 (sc->devinfo.mf_info.mf_mode == MULTI_FUNCTION_AFEX) ? "MF-AFEX" : 16240 "Unknown")); 16241 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "mf_mode", 16242 CTLFLAG_RD, &sc->mf_mode_str, 0, 16243 "multifunction mode"); 16244 16245 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "mf_vnics", 16246 CTLFLAG_RD, &sc->devinfo.mf_info.vnics_per_port, 0, 16247 "multifunction vnics per port"); 16248 16249 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "mac_addr", 16250 CTLFLAG_RD, &sc->mac_addr_str, 0, 16251 "mac address"); 16252 16253 snprintf(sc->pci_link_str, sizeof(sc->pci_link_str), "%s x%d", 16254 ((sc->devinfo.pcie_link_speed == 1) ? "2.5GT/s" : 16255 (sc->devinfo.pcie_link_speed == 2) ? "5.0GT/s" : 16256 (sc->devinfo.pcie_link_speed == 4) ? "8.0GT/s" : 16257 "???GT/s"), 16258 sc->devinfo.pcie_link_width); 16259 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "pci_link", 16260 CTLFLAG_RD, &sc->pci_link_str, 0, 16261 "pci link status"); 16262 16263 sc->debug = bxe_debug; 16264 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "debug", 16265 CTLFLAG_RW, &sc->debug, 0, 16266 "debug logging mode"); 16267 16268 sc->rx_budget = bxe_rx_budget; 16269 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "rx_budget", 16270 CTLFLAG_RW, &sc->rx_budget, 0, 16271 "rx processing budget"); 16272 16273 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "state", 16274 CTLTYPE_UINT | CTLFLAG_RW, sc, 0, 16275 bxe_sysctl_state, "IU", "dump driver state"); 16276 16277 for (i = 0; i < BXE_NUM_ETH_STATS; i++) { 16278 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, 16279 bxe_eth_stats_arr[i].string, 16280 CTLTYPE_U64 | CTLFLAG_RD, sc, i, 16281 bxe_sysctl_eth_stat, "LU", 16282 bxe_eth_stats_arr[i].string); 16283 } 16284 16285 /* add a new parent node for all queues "dev.bxe.#.queue" */ 16286 queue_top = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "queue", 16287 CTLFLAG_RD, NULL, "queue"); 16288 queue_top_children = SYSCTL_CHILDREN(queue_top); 16289 16290 for (i = 0; i < sc->num_queues; i++) { 16291 /* add a new parent node for a single queue "dev.bxe.#.queue.#" */ 16292 snprintf(queue_num_buf, sizeof(queue_num_buf), "%d", i); 16293 queue = SYSCTL_ADD_NODE(ctx, queue_top_children, OID_AUTO, 16294 queue_num_buf, CTLFLAG_RD, NULL, 16295 "single queue"); 16296 queue_children = SYSCTL_CHILDREN(queue); 16297 16298 for (j = 0; j < BXE_NUM_ETH_Q_STATS; j++) { 16299 q_stat = ((i << 16) | j); 16300 SYSCTL_ADD_PROC(ctx, queue_children, OID_AUTO, 16301 bxe_eth_q_stats_arr[j].string, 16302 CTLTYPE_U64 | CTLFLAG_RD, sc, q_stat, 16303 bxe_sysctl_eth_q_stat, "LU", 16304 bxe_eth_q_stats_arr[j].string); 16305 } 16306 } 16307 } 16308 16309 /* 16310 * Device attach function. 16311 * 16312 * Allocates device resources, performs secondary chip identification, and 16313 * initializes driver instance variables. This function is called from driver 16314 * load after a successful probe. 16315 * 16316 * Returns: 16317 * 0 = Success, >0 = Failure 16318 */ 16319 static int 16320 bxe_attach(device_t dev) 16321 { 16322 struct bxe_softc *sc; 16323 16324 sc = device_get_softc(dev); 16325 16326 BLOGD(sc, DBG_LOAD, "Starting attach...\n"); 16327 16328 sc->state = BXE_STATE_CLOSED; 16329 16330 sc->dev = dev; 16331 sc->unit = device_get_unit(dev); 16332 16333 BLOGD(sc, DBG_LOAD, "softc = %p\n", sc); 16334 16335 sc->pcie_bus = pci_get_bus(dev); 16336 sc->pcie_device = pci_get_slot(dev); 16337 sc->pcie_func = pci_get_function(dev); 16338 16339 /* enable bus master capability */ 16340 pci_enable_busmaster(dev); 16341 16342 /* get the BARs */ 16343 if (bxe_allocate_bars(sc) != 0) { 16344 return (ENXIO); 16345 } 16346 16347 /* initialize the mutexes */ 16348 bxe_init_mutexes(sc); 16349 16350 /* prepare the periodic callout */ 16351 callout_init(&sc->periodic_callout, 0); 16352 16353 /* prepare the chip taskqueue */ 16354 sc->chip_tq_flags = CHIP_TQ_NONE; 16355 snprintf(sc->chip_tq_name, sizeof(sc->chip_tq_name), 16356 "bxe%d_chip_tq", sc->unit); 16357 TASK_INIT(&sc->chip_tq_task, 0, bxe_handle_chip_tq, sc); 16358 sc->chip_tq = taskqueue_create(sc->chip_tq_name, M_NOWAIT, 16359 taskqueue_thread_enqueue, 16360 &sc->chip_tq); 16361 taskqueue_start_threads(&sc->chip_tq, 1, PWAIT, /* lower priority */ 16362 "%s", sc->chip_tq_name); 16363 16364 /* get device info and set params */ 16365 if (bxe_get_device_info(sc) != 0) { 16366 BLOGE(sc, "getting device info\n"); 16367 bxe_deallocate_bars(sc); 16368 pci_disable_busmaster(dev); 16369 return (ENXIO); 16370 } 16371 16372 /* get final misc params */ 16373 bxe_get_params(sc); 16374 16375 /* set the default MTU (changed via ifconfig) */ 16376 sc->mtu = ETHERMTU; 16377 16378 bxe_set_modes_bitmap(sc); 16379 16380 /* XXX 16381 * If in AFEX mode and the function is configured for FCoE 16382 * then bail... no L2 allowed. 16383 */ 16384 16385 /* get phy settings from shmem and 'and' against admin settings */ 16386 bxe_get_phy_info(sc); 16387 16388 /* initialize the FreeBSD ifnet interface */ 16389 if (bxe_init_ifnet(sc) != 0) { 16390 bxe_release_mutexes(sc); 16391 bxe_deallocate_bars(sc); 16392 pci_disable_busmaster(dev); 16393 return (ENXIO); 16394 } 16395 16396 /* allocate device interrupts */ 16397 if (bxe_interrupt_alloc(sc) != 0) { 16398 if (sc->ifnet != NULL) { 16399 ether_ifdetach(sc->ifnet); 16400 } 16401 ifmedia_removeall(&sc->ifmedia); 16402 bxe_release_mutexes(sc); 16403 bxe_deallocate_bars(sc); 16404 pci_disable_busmaster(dev); 16405 return (ENXIO); 16406 } 16407 16408 /* allocate ilt */ 16409 if (bxe_alloc_ilt_mem(sc) != 0) { 16410 bxe_interrupt_free(sc); 16411 if (sc->ifnet != NULL) { 16412 ether_ifdetach(sc->ifnet); 16413 } 16414 ifmedia_removeall(&sc->ifmedia); 16415 bxe_release_mutexes(sc); 16416 bxe_deallocate_bars(sc); 16417 pci_disable_busmaster(dev); 16418 return (ENXIO); 16419 } 16420 16421 /* allocate the host hardware/software hsi structures */ 16422 if (bxe_alloc_hsi_mem(sc) != 0) { 16423 bxe_free_ilt_mem(sc); 16424 bxe_interrupt_free(sc); 16425 if (sc->ifnet != NULL) { 16426 ether_ifdetach(sc->ifnet); 16427 } 16428 ifmedia_removeall(&sc->ifmedia); 16429 bxe_release_mutexes(sc); 16430 bxe_deallocate_bars(sc); 16431 pci_disable_busmaster(dev); 16432 return (ENXIO); 16433 } 16434 16435 /* need to reset chip if UNDI was active */ 16436 if (IS_PF(sc) && !BXE_NOMCP(sc)) { 16437 /* init fw_seq */ 16438 sc->fw_seq = 16439 (SHMEM_RD(sc, func_mb[SC_FW_MB_IDX(sc)].drv_mb_header) & 16440 DRV_MSG_SEQ_NUMBER_MASK); 16441 BLOGD(sc, DBG_LOAD, "prev unload fw_seq 0x%04x\n", sc->fw_seq); 16442 bxe_prev_unload(sc); 16443 } 16444 16445 #if 1 16446 /* XXX */ 16447 bxe_dcbx_set_state(sc, FALSE, BXE_DCBX_ENABLED_OFF); 16448 #else 16449 if (SHMEM2_HAS(sc, dcbx_lldp_params_offset) && 16450 SHMEM2_HAS(sc, dcbx_lldp_dcbx_stat_offset) && 16451 SHMEM2_RD(sc, dcbx_lldp_params_offset) && 16452 SHMEM2_RD(sc, dcbx_lldp_dcbx_stat_offset)) { 16453 bxe_dcbx_set_state(sc, TRUE, BXE_DCBX_ENABLED_ON_NEG_ON); 16454 bxe_dcbx_init_params(sc); 16455 } else { 16456 bxe_dcbx_set_state(sc, FALSE, BXE_DCBX_ENABLED_OFF); 16457 } 16458 #endif 16459 16460 /* calculate qm_cid_count */ 16461 sc->qm_cid_count = bxe_set_qm_cid_count(sc); 16462 BLOGD(sc, DBG_LOAD, "qm_cid_count=%d\n", sc->qm_cid_count); 16463 16464 sc->max_cos = 1; 16465 bxe_init_multi_cos(sc); 16466 16467 bxe_add_sysctls(sc); 16468 16469 return (0); 16470 } 16471 16472 /* 16473 * Device detach function. 16474 * 16475 * Stops the controller, resets the controller, and releases resources. 16476 * 16477 * Returns: 16478 * 0 = Success, >0 = Failure 16479 */ 16480 static int 16481 bxe_detach(device_t dev) 16482 { 16483 struct bxe_softc *sc; 16484 struct ifnet *ifp; 16485 16486 sc = device_get_softc(dev); 16487 16488 BLOGD(sc, DBG_LOAD, "Starting detach...\n"); 16489 16490 ifp = sc->ifnet; 16491 if (ifp != NULL && ifp->if_vlantrunk != NULL) { 16492 BLOGE(sc, "Cannot detach while VLANs are in use.\n"); 16493 return(EBUSY); 16494 } 16495 16496 /* stop the periodic callout */ 16497 bxe_periodic_stop(sc); 16498 16499 /* stop the chip taskqueue */ 16500 atomic_store_rel_long(&sc->chip_tq_flags, CHIP_TQ_NONE); 16501 if (sc->chip_tq) { 16502 taskqueue_drain(sc->chip_tq, &sc->chip_tq_task); 16503 taskqueue_free(sc->chip_tq); 16504 sc->chip_tq = NULL; 16505 } 16506 16507 /* stop and reset the controller if it was open */ 16508 if (sc->state != BXE_STATE_CLOSED) { 16509 BXE_CORE_LOCK(sc); 16510 bxe_nic_unload(sc, UNLOAD_CLOSE, TRUE); 16511 BXE_CORE_UNLOCK(sc); 16512 } 16513 16514 /* release the network interface */ 16515 if (ifp != NULL) { 16516 ether_ifdetach(ifp); 16517 } 16518 ifmedia_removeall(&sc->ifmedia); 16519 16520 /* XXX do the following based on driver state... */ 16521 16522 /* free the host hardware/software hsi structures */ 16523 bxe_free_hsi_mem(sc); 16524 16525 /* free ilt */ 16526 bxe_free_ilt_mem(sc); 16527 16528 /* release the interrupts */ 16529 bxe_interrupt_free(sc); 16530 16531 /* Release the mutexes*/ 16532 bxe_release_mutexes(sc); 16533 16534 /* Release the PCIe BAR mapped memory */ 16535 bxe_deallocate_bars(sc); 16536 16537 /* Release the FreeBSD interface. */ 16538 if (sc->ifnet != NULL) { 16539 if_free(sc->ifnet); 16540 } 16541 16542 pci_disable_busmaster(dev); 16543 16544 return (0); 16545 } 16546 16547 /* 16548 * Device shutdown function. 16549 * 16550 * Stops and resets the controller. 16551 * 16552 * Returns: 16553 * Nothing 16554 */ 16555 static int 16556 bxe_shutdown(device_t dev) 16557 { 16558 struct bxe_softc *sc; 16559 16560 sc = device_get_softc(dev); 16561 16562 BLOGD(sc, DBG_LOAD, "Starting shutdown...\n"); 16563 16564 /* stop the periodic callout */ 16565 bxe_periodic_stop(sc); 16566 16567 BXE_CORE_LOCK(sc); 16568 bxe_nic_unload(sc, UNLOAD_NORMAL, FALSE); 16569 BXE_CORE_UNLOCK(sc); 16570 16571 return (0); 16572 } 16573 16574 void 16575 bxe_igu_ack_sb(struct bxe_softc *sc, 16576 uint8_t igu_sb_id, 16577 uint8_t segment, 16578 uint16_t index, 16579 uint8_t op, 16580 uint8_t update) 16581 { 16582 uint32_t igu_addr = sc->igu_base_addr; 16583 igu_addr += (IGU_CMD_INT_ACK_BASE + igu_sb_id)*8; 16584 bxe_igu_ack_sb_gen(sc, igu_sb_id, segment, index, op, update, igu_addr); 16585 } 16586 16587 static void 16588 bxe_igu_clear_sb_gen(struct bxe_softc *sc, 16589 uint8_t func, 16590 uint8_t idu_sb_id, 16591 uint8_t is_pf) 16592 { 16593 uint32_t data, ctl, cnt = 100; 16594 uint32_t igu_addr_data = IGU_REG_COMMAND_REG_32LSB_DATA; 16595 uint32_t igu_addr_ctl = IGU_REG_COMMAND_REG_CTRL; 16596 uint32_t igu_addr_ack = IGU_REG_CSTORM_TYPE_0_SB_CLEANUP + (idu_sb_id/32)*4; 16597 uint32_t sb_bit = 1 << (idu_sb_id%32); 16598 uint32_t func_encode = func | (is_pf ? 1 : 0) << IGU_FID_ENCODE_IS_PF_SHIFT; 16599 uint32_t addr_encode = IGU_CMD_E2_PROD_UPD_BASE + idu_sb_id; 16600 16601 /* Not supported in BC mode */ 16602 if (CHIP_INT_MODE_IS_BC(sc)) { 16603 return; 16604 } 16605 16606 data = ((IGU_USE_REGISTER_cstorm_type_0_sb_cleanup << 16607 IGU_REGULAR_CLEANUP_TYPE_SHIFT) | 16608 IGU_REGULAR_CLEANUP_SET | 16609 IGU_REGULAR_BCLEANUP); 16610 16611 ctl = ((addr_encode << IGU_CTRL_REG_ADDRESS_SHIFT) | 16612 (func_encode << IGU_CTRL_REG_FID_SHIFT) | 16613 (IGU_CTRL_CMD_TYPE_WR << IGU_CTRL_REG_TYPE_SHIFT)); 16614 16615 BLOGD(sc, DBG_LOAD, "write 0x%08x to IGU(via GRC) addr 0x%x\n", 16616 data, igu_addr_data); 16617 REG_WR(sc, igu_addr_data, data); 16618 16619 bus_space_barrier(sc->bar[BAR0].tag, sc->bar[BAR0].handle, 0, 0, 16620 BUS_SPACE_BARRIER_WRITE); 16621 mb(); 16622 16623 BLOGD(sc, DBG_LOAD, "write 0x%08x to IGU(via GRC) addr 0x%x\n", 16624 ctl, igu_addr_ctl); 16625 REG_WR(sc, igu_addr_ctl, ctl); 16626 16627 bus_space_barrier(sc->bar[BAR0].tag, sc->bar[BAR0].handle, 0, 0, 16628 BUS_SPACE_BARRIER_WRITE); 16629 mb(); 16630 16631 /* wait for clean up to finish */ 16632 while (!(REG_RD(sc, igu_addr_ack) & sb_bit) && --cnt) { 16633 DELAY(20000); 16634 } 16635 16636 if (!(REG_RD(sc, igu_addr_ack) & sb_bit)) { 16637 BLOGD(sc, DBG_LOAD, 16638 "Unable to finish IGU cleanup: " 16639 "idu_sb_id %d offset %d bit %d (cnt %d)\n", 16640 idu_sb_id, idu_sb_id/32, idu_sb_id%32, cnt); 16641 } 16642 } 16643 16644 static void 16645 bxe_igu_clear_sb(struct bxe_softc *sc, 16646 uint8_t idu_sb_id) 16647 { 16648 bxe_igu_clear_sb_gen(sc, SC_FUNC(sc), idu_sb_id, TRUE /*PF*/); 16649 } 16650 16651 16652 16653 16654 16655 16656 16657 /*******************/ 16658 /* ECORE CALLBACKS */ 16659 /*******************/ 16660 16661 static void 16662 bxe_reset_common(struct bxe_softc *sc) 16663 { 16664 uint32_t val = 0x1400; 16665 16666 /* reset_common */ 16667 REG_WR(sc, (GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR), 0xd3ffff7f); 16668 16669 if (CHIP_IS_E3(sc)) { 16670 val |= MISC_REGISTERS_RESET_REG_2_MSTAT0; 16671 val |= MISC_REGISTERS_RESET_REG_2_MSTAT1; 16672 } 16673 16674 REG_WR(sc, (GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR), val); 16675 } 16676 16677 static void 16678 bxe_common_init_phy(struct bxe_softc *sc) 16679 { 16680 uint32_t shmem_base[2]; 16681 uint32_t shmem2_base[2]; 16682 16683 /* Avoid common init in case MFW supports LFA */ 16684 if (SHMEM2_RD(sc, size) > 16685 (uint32_t)offsetof(struct shmem2_region, 16686 lfa_host_addr[SC_PORT(sc)])) { 16687 return; 16688 } 16689 16690 shmem_base[0] = sc->devinfo.shmem_base; 16691 shmem2_base[0] = sc->devinfo.shmem2_base; 16692 16693 if (!CHIP_IS_E1x(sc)) { 16694 shmem_base[1] = SHMEM2_RD(sc, other_shmem_base_addr); 16695 shmem2_base[1] = SHMEM2_RD(sc, other_shmem2_base_addr); 16696 } 16697 16698 BXE_PHY_LOCK(sc); 16699 elink_common_init_phy(sc, shmem_base, shmem2_base, 16700 sc->devinfo.chip_id, 0); 16701 BXE_PHY_UNLOCK(sc); 16702 } 16703 16704 static void 16705 bxe_pf_disable(struct bxe_softc *sc) 16706 { 16707 uint32_t val = REG_RD(sc, IGU_REG_PF_CONFIGURATION); 16708 16709 val &= ~IGU_PF_CONF_FUNC_EN; 16710 16711 REG_WR(sc, IGU_REG_PF_CONFIGURATION, val); 16712 REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0); 16713 REG_WR(sc, CFC_REG_WEAK_ENABLE_PF, 0); 16714 } 16715 16716 static void 16717 bxe_init_pxp(struct bxe_softc *sc) 16718 { 16719 uint16_t devctl; 16720 int r_order, w_order; 16721 16722 devctl = bxe_pcie_capability_read(sc, PCIR_EXPRESS_DEVICE_CTL, 2); 16723 16724 BLOGD(sc, DBG_LOAD, "read 0x%08x from devctl\n", devctl); 16725 16726 w_order = ((devctl & PCIM_EXP_CTL_MAX_PAYLOAD) >> 5); 16727 16728 if (sc->mrrs == -1) { 16729 r_order = ((devctl & PCIM_EXP_CTL_MAX_READ_REQUEST) >> 12); 16730 } else { 16731 BLOGD(sc, DBG_LOAD, "forcing read order to %d\n", sc->mrrs); 16732 r_order = sc->mrrs; 16733 } 16734 16735 ecore_init_pxp_arb(sc, r_order, w_order); 16736 } 16737 16738 static uint32_t 16739 bxe_get_pretend_reg(struct bxe_softc *sc) 16740 { 16741 uint32_t base = PXP2_REG_PGL_PRETEND_FUNC_F0; 16742 uint32_t stride = (PXP2_REG_PGL_PRETEND_FUNC_F1 - base); 16743 return (base + (SC_ABS_FUNC(sc)) * stride); 16744 } 16745 16746 /* 16747 * Called only on E1H or E2. 16748 * When pretending to be PF, the pretend value is the function number 0..7. 16749 * When pretending to be VF, the pretend val is the PF-num:VF-valid:ABS-VFID 16750 * combination. 16751 */ 16752 static int 16753 bxe_pretend_func(struct bxe_softc *sc, 16754 uint16_t pretend_func_val) 16755 { 16756 uint32_t pretend_reg; 16757 16758 if (CHIP_IS_E1H(sc) && (pretend_func_val > E1H_FUNC_MAX)) { 16759 return (-1); 16760 } 16761 16762 /* get my own pretend register */ 16763 pretend_reg = bxe_get_pretend_reg(sc); 16764 REG_WR(sc, pretend_reg, pretend_func_val); 16765 REG_RD(sc, pretend_reg); 16766 return (0); 16767 } 16768 16769 static void 16770 bxe_iov_init_dmae(struct bxe_softc *sc) 16771 { 16772 return; 16773 #if 0 16774 BLOGD(sc, DBG_LOAD, "SRIOV is %s\n", IS_SRIOV(sc) ? "ON" : "OFF"); 16775 16776 if (!IS_SRIOV(sc)) { 16777 return; 16778 } 16779 16780 REG_WR(sc, DMAE_REG_BACKWARD_COMP_EN, 0); 16781 #endif 16782 } 16783 16784 #if 0 16785 static int 16786 bxe_iov_init_ilt(struct bxe_softc *sc, 16787 uint16_t line) 16788 { 16789 return (line); 16790 #if 0 16791 int i; 16792 struct ecore_ilt* ilt = sc->ilt; 16793 16794 if (!IS_SRIOV(sc)) { 16795 return (line); 16796 } 16797 16798 /* set vfs ilt lines */ 16799 for (i = 0; i < BXE_VF_CIDS/ILT_PAGE_CIDS ; i++) { 16800 struct hw_dma *hw_cxt = SC_VF_CXT_PAGE(sc,i); 16801 ilt->lines[line+i].page = hw_cxt->addr; 16802 ilt->lines[line+i].page_mapping = hw_cxt->mapping; 16803 ilt->lines[line+i].size = hw_cxt->size; /* doesn't matter */ 16804 } 16805 return (line+i); 16806 #endif 16807 } 16808 #endif 16809 16810 static void 16811 bxe_iov_init_dq(struct bxe_softc *sc) 16812 { 16813 return; 16814 #if 0 16815 if (!IS_SRIOV(sc)) { 16816 return; 16817 } 16818 16819 /* Set the DQ such that the CID reflect the abs_vfid */ 16820 REG_WR(sc, DORQ_REG_VF_NORM_VF_BASE, 0); 16821 REG_WR(sc, DORQ_REG_MAX_RVFID_SIZE, ilog2(BNX2X_MAX_NUM_OF_VFS)); 16822 16823 /* 16824 * Set VFs starting CID. If its > 0 the preceding CIDs are belong to 16825 * the PF L2 queues 16826 */ 16827 REG_WR(sc, DORQ_REG_VF_NORM_CID_BASE, BNX2X_FIRST_VF_CID); 16828 16829 /* The VF window size is the log2 of the max number of CIDs per VF */ 16830 REG_WR(sc, DORQ_REG_VF_NORM_CID_WND_SIZE, BNX2X_VF_CID_WND); 16831 16832 /* 16833 * The VF doorbell size 0 - *B, 4 - 128B. We set it here to match 16834 * the Pf doorbell size although the 2 are independent. 16835 */ 16836 REG_WR(sc, DORQ_REG_VF_NORM_CID_OFST, 16837 BNX2X_DB_SHIFT - BNX2X_DB_MIN_SHIFT); 16838 16839 /* 16840 * No security checks for now - 16841 * configure single rule (out of 16) mask = 0x1, value = 0x0, 16842 * CID range 0 - 0x1ffff 16843 */ 16844 REG_WR(sc, DORQ_REG_VF_TYPE_MASK_0, 1); 16845 REG_WR(sc, DORQ_REG_VF_TYPE_VALUE_0, 0); 16846 REG_WR(sc, DORQ_REG_VF_TYPE_MIN_MCID_0, 0); 16847 REG_WR(sc, DORQ_REG_VF_TYPE_MAX_MCID_0, 0x1ffff); 16848 16849 /* set the number of VF alllowed doorbells to the full DQ range */ 16850 REG_WR(sc, DORQ_REG_VF_NORM_MAX_CID_COUNT, 0x20000); 16851 16852 /* set the VF doorbell threshold */ 16853 REG_WR(sc, DORQ_REG_VF_USAGE_CT_LIMIT, 4); 16854 #endif 16855 } 16856 16857 /* send a NIG loopback debug packet */ 16858 static void 16859 bxe_lb_pckt(struct bxe_softc *sc) 16860 { 16861 uint32_t wb_write[3]; 16862 16863 /* Ethernet source and destination addresses */ 16864 wb_write[0] = 0x55555555; 16865 wb_write[1] = 0x55555555; 16866 wb_write[2] = 0x20; /* SOP */ 16867 REG_WR_DMAE(sc, NIG_REG_DEBUG_PACKET_LB, wb_write, 3); 16868 16869 /* NON-IP protocol */ 16870 wb_write[0] = 0x09000000; 16871 wb_write[1] = 0x55555555; 16872 wb_write[2] = 0x10; /* EOP, eop_bvalid = 0 */ 16873 REG_WR_DMAE(sc, NIG_REG_DEBUG_PACKET_LB, wb_write, 3); 16874 } 16875 16876 /* 16877 * Some of the internal memories are not directly readable from the driver. 16878 * To test them we send debug packets. 16879 */ 16880 static int 16881 bxe_int_mem_test(struct bxe_softc *sc) 16882 { 16883 int factor; 16884 int count, i; 16885 uint32_t val = 0; 16886 16887 if (CHIP_REV_IS_FPGA(sc)) { 16888 factor = 120; 16889 } else if (CHIP_REV_IS_EMUL(sc)) { 16890 factor = 200; 16891 } else { 16892 factor = 1; 16893 } 16894 16895 /* disable inputs of parser neighbor blocks */ 16896 REG_WR(sc, TSDM_REG_ENABLE_IN1, 0x0); 16897 REG_WR(sc, TCM_REG_PRS_IFEN, 0x0); 16898 REG_WR(sc, CFC_REG_DEBUG0, 0x1); 16899 REG_WR(sc, NIG_REG_PRS_REQ_IN_EN, 0x0); 16900 16901 /* write 0 to parser credits for CFC search request */ 16902 REG_WR(sc, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0); 16903 16904 /* send Ethernet packet */ 16905 bxe_lb_pckt(sc); 16906 16907 /* TODO do i reset NIG statistic? */ 16908 /* Wait until NIG register shows 1 packet of size 0x10 */ 16909 count = 1000 * factor; 16910 while (count) { 16911 bxe_read_dmae(sc, NIG_REG_STAT2_BRB_OCTET, 2); 16912 val = *BXE_SP(sc, wb_data[0]); 16913 if (val == 0x10) { 16914 break; 16915 } 16916 16917 DELAY(10000); 16918 count--; 16919 } 16920 16921 if (val != 0x10) { 16922 BLOGE(sc, "NIG timeout val=0x%x\n", val); 16923 return (-1); 16924 } 16925 16926 /* wait until PRS register shows 1 packet */ 16927 count = (1000 * factor); 16928 while (count) { 16929 val = REG_RD(sc, PRS_REG_NUM_OF_PACKETS); 16930 if (val == 1) { 16931 break; 16932 } 16933 16934 DELAY(10000); 16935 count--; 16936 } 16937 16938 if (val != 0x1) { 16939 BLOGE(sc, "PRS timeout val=0x%x\n", val); 16940 return (-2); 16941 } 16942 16943 /* Reset and init BRB, PRS */ 16944 REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03); 16945 DELAY(50000); 16946 REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03); 16947 DELAY(50000); 16948 ecore_init_block(sc, BLOCK_BRB1, PHASE_COMMON); 16949 ecore_init_block(sc, BLOCK_PRS, PHASE_COMMON); 16950 16951 /* Disable inputs of parser neighbor blocks */ 16952 REG_WR(sc, TSDM_REG_ENABLE_IN1, 0x0); 16953 REG_WR(sc, TCM_REG_PRS_IFEN, 0x0); 16954 REG_WR(sc, CFC_REG_DEBUG0, 0x1); 16955 REG_WR(sc, NIG_REG_PRS_REQ_IN_EN, 0x0); 16956 16957 /* Write 0 to parser credits for CFC search request */ 16958 REG_WR(sc, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0); 16959 16960 /* send 10 Ethernet packets */ 16961 for (i = 0; i < 10; i++) { 16962 bxe_lb_pckt(sc); 16963 } 16964 16965 /* Wait until NIG register shows 10+1 packets of size 11*0x10 = 0xb0 */ 16966 count = (1000 * factor); 16967 while (count) { 16968 bxe_read_dmae(sc, NIG_REG_STAT2_BRB_OCTET, 2); 16969 val = *BXE_SP(sc, wb_data[0]); 16970 if (val == 0xb0) { 16971 break; 16972 } 16973 16974 DELAY(10000); 16975 count--; 16976 } 16977 16978 if (val != 0xb0) { 16979 BLOGE(sc, "NIG timeout val=0x%x\n", val); 16980 return (-3); 16981 } 16982 16983 /* Wait until PRS register shows 2 packets */ 16984 val = REG_RD(sc, PRS_REG_NUM_OF_PACKETS); 16985 if (val != 2) { 16986 BLOGE(sc, "PRS timeout val=0x%x\n", val); 16987 } 16988 16989 /* Write 1 to parser credits for CFC search request */ 16990 REG_WR(sc, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x1); 16991 16992 /* Wait until PRS register shows 3 packets */ 16993 DELAY(10000 * factor); 16994 16995 /* Wait until NIG register shows 1 packet of size 0x10 */ 16996 val = REG_RD(sc, PRS_REG_NUM_OF_PACKETS); 16997 if (val != 3) { 16998 BLOGE(sc, "PRS timeout val=0x%x\n", val); 16999 } 17000 17001 /* clear NIG EOP FIFO */ 17002 for (i = 0; i < 11; i++) { 17003 REG_RD(sc, NIG_REG_INGRESS_EOP_LB_FIFO); 17004 } 17005 17006 val = REG_RD(sc, NIG_REG_INGRESS_EOP_LB_EMPTY); 17007 if (val != 1) { 17008 BLOGE(sc, "clear of NIG failed\n"); 17009 return (-4); 17010 } 17011 17012 /* Reset and init BRB, PRS, NIG */ 17013 REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03); 17014 DELAY(50000); 17015 REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03); 17016 DELAY(50000); 17017 ecore_init_block(sc, BLOCK_BRB1, PHASE_COMMON); 17018 ecore_init_block(sc, BLOCK_PRS, PHASE_COMMON); 17019 if (!CNIC_SUPPORT(sc)) { 17020 /* set NIC mode */ 17021 REG_WR(sc, PRS_REG_NIC_MODE, 1); 17022 } 17023 17024 /* Enable inputs of parser neighbor blocks */ 17025 REG_WR(sc, TSDM_REG_ENABLE_IN1, 0x7fffffff); 17026 REG_WR(sc, TCM_REG_PRS_IFEN, 0x1); 17027 REG_WR(sc, CFC_REG_DEBUG0, 0x0); 17028 REG_WR(sc, NIG_REG_PRS_REQ_IN_EN, 0x1); 17029 17030 return (0); 17031 } 17032 17033 static void 17034 bxe_setup_fan_failure_detection(struct bxe_softc *sc) 17035 { 17036 int is_required; 17037 uint32_t val; 17038 int port; 17039 17040 is_required = 0; 17041 val = (SHMEM_RD(sc, dev_info.shared_hw_config.config2) & 17042 SHARED_HW_CFG_FAN_FAILURE_MASK); 17043 17044 if (val == SHARED_HW_CFG_FAN_FAILURE_ENABLED) { 17045 is_required = 1; 17046 } 17047 /* 17048 * The fan failure mechanism is usually related to the PHY type since 17049 * the power consumption of the board is affected by the PHY. Currently, 17050 * fan is required for most designs with SFX7101, BCM8727 and BCM8481. 17051 */ 17052 else if (val == SHARED_HW_CFG_FAN_FAILURE_PHY_TYPE) { 17053 for (port = PORT_0; port < PORT_MAX; port++) { 17054 is_required |= elink_fan_failure_det_req(sc, 17055 sc->devinfo.shmem_base, 17056 sc->devinfo.shmem2_base, 17057 port); 17058 } 17059 } 17060 17061 BLOGD(sc, DBG_LOAD, "fan detection setting: %d\n", is_required); 17062 17063 if (is_required == 0) { 17064 return; 17065 } 17066 17067 /* Fan failure is indicated by SPIO 5 */ 17068 bxe_set_spio(sc, MISC_SPIO_SPIO5, MISC_SPIO_INPUT_HI_Z); 17069 17070 /* set to active low mode */ 17071 val = REG_RD(sc, MISC_REG_SPIO_INT); 17072 val |= (MISC_SPIO_SPIO5 << MISC_SPIO_INT_OLD_SET_POS); 17073 REG_WR(sc, MISC_REG_SPIO_INT, val); 17074 17075 /* enable interrupt to signal the IGU */ 17076 val = REG_RD(sc, MISC_REG_SPIO_EVENT_EN); 17077 val |= MISC_SPIO_SPIO5; 17078 REG_WR(sc, MISC_REG_SPIO_EVENT_EN, val); 17079 } 17080 17081 static void 17082 bxe_enable_blocks_attention(struct bxe_softc *sc) 17083 { 17084 uint32_t val; 17085 17086 REG_WR(sc, PXP_REG_PXP_INT_MASK_0, 0); 17087 if (!CHIP_IS_E1x(sc)) { 17088 REG_WR(sc, PXP_REG_PXP_INT_MASK_1, 0x40); 17089 } else { 17090 REG_WR(sc, PXP_REG_PXP_INT_MASK_1, 0); 17091 } 17092 REG_WR(sc, DORQ_REG_DORQ_INT_MASK, 0); 17093 REG_WR(sc, CFC_REG_CFC_INT_MASK, 0); 17094 /* 17095 * mask read length error interrupts in brb for parser 17096 * (parsing unit and 'checksum and crc' unit) 17097 * these errors are legal (PU reads fixed length and CAC can cause 17098 * read length error on truncated packets) 17099 */ 17100 REG_WR(sc, BRB1_REG_BRB1_INT_MASK, 0xFC00); 17101 REG_WR(sc, QM_REG_QM_INT_MASK, 0); 17102 REG_WR(sc, TM_REG_TM_INT_MASK, 0); 17103 REG_WR(sc, XSDM_REG_XSDM_INT_MASK_0, 0); 17104 REG_WR(sc, XSDM_REG_XSDM_INT_MASK_1, 0); 17105 REG_WR(sc, XCM_REG_XCM_INT_MASK, 0); 17106 /* REG_WR(sc, XSEM_REG_XSEM_INT_MASK_0, 0); */ 17107 /* REG_WR(sc, XSEM_REG_XSEM_INT_MASK_1, 0); */ 17108 REG_WR(sc, USDM_REG_USDM_INT_MASK_0, 0); 17109 REG_WR(sc, USDM_REG_USDM_INT_MASK_1, 0); 17110 REG_WR(sc, UCM_REG_UCM_INT_MASK, 0); 17111 /* REG_WR(sc, USEM_REG_USEM_INT_MASK_0, 0); */ 17112 /* REG_WR(sc, USEM_REG_USEM_INT_MASK_1, 0); */ 17113 REG_WR(sc, GRCBASE_UPB + PB_REG_PB_INT_MASK, 0); 17114 REG_WR(sc, CSDM_REG_CSDM_INT_MASK_0, 0); 17115 REG_WR(sc, CSDM_REG_CSDM_INT_MASK_1, 0); 17116 REG_WR(sc, CCM_REG_CCM_INT_MASK, 0); 17117 /* REG_WR(sc, CSEM_REG_CSEM_INT_MASK_0, 0); */ 17118 /* REG_WR(sc, CSEM_REG_CSEM_INT_MASK_1, 0); */ 17119 17120 val = (PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_AFT | 17121 PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_OF | 17122 PXP2_PXP2_INT_MASK_0_REG_PGL_PCIE_ATTN); 17123 if (!CHIP_IS_E1x(sc)) { 17124 val |= (PXP2_PXP2_INT_MASK_0_REG_PGL_READ_BLOCKED | 17125 PXP2_PXP2_INT_MASK_0_REG_PGL_WRITE_BLOCKED); 17126 } 17127 REG_WR(sc, PXP2_REG_PXP2_INT_MASK_0, val); 17128 17129 REG_WR(sc, TSDM_REG_TSDM_INT_MASK_0, 0); 17130 REG_WR(sc, TSDM_REG_TSDM_INT_MASK_1, 0); 17131 REG_WR(sc, TCM_REG_TCM_INT_MASK, 0); 17132 /* REG_WR(sc, TSEM_REG_TSEM_INT_MASK_0, 0); */ 17133 17134 if (!CHIP_IS_E1x(sc)) { 17135 /* enable VFC attentions: bits 11 and 12, bits 31:13 reserved */ 17136 REG_WR(sc, TSEM_REG_TSEM_INT_MASK_1, 0x07ff); 17137 } 17138 17139 REG_WR(sc, CDU_REG_CDU_INT_MASK, 0); 17140 REG_WR(sc, DMAE_REG_DMAE_INT_MASK, 0); 17141 /* REG_WR(sc, MISC_REG_MISC_INT_MASK, 0); */ 17142 REG_WR(sc, PBF_REG_PBF_INT_MASK, 0x18); /* bit 3,4 masked */ 17143 } 17144 17145 /** 17146 * bxe_init_hw_common - initialize the HW at the COMMON phase. 17147 * 17148 * @sc: driver handle 17149 */ 17150 static int 17151 bxe_init_hw_common(struct bxe_softc *sc) 17152 { 17153 uint8_t abs_func_id; 17154 uint32_t val; 17155 17156 BLOGD(sc, DBG_LOAD, "starting common init for func %d\n", 17157 SC_ABS_FUNC(sc)); 17158 17159 /* 17160 * take the RESET lock to protect undi_unload flow from accessing 17161 * registers while we are resetting the chip 17162 */ 17163 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RESET); 17164 17165 bxe_reset_common(sc); 17166 17167 REG_WR(sc, (GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET), 0xffffffff); 17168 17169 val = 0xfffc; 17170 if (CHIP_IS_E3(sc)) { 17171 val |= MISC_REGISTERS_RESET_REG_2_MSTAT0; 17172 val |= MISC_REGISTERS_RESET_REG_2_MSTAT1; 17173 } 17174 17175 REG_WR(sc, (GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET), val); 17176 17177 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RESET); 17178 17179 ecore_init_block(sc, BLOCK_MISC, PHASE_COMMON); 17180 BLOGD(sc, DBG_LOAD, "after misc block init\n"); 17181 17182 if (!CHIP_IS_E1x(sc)) { 17183 /* 17184 * 4-port mode or 2-port mode we need to turn off master-enable for 17185 * everyone. After that we turn it back on for self. So, we disregard 17186 * multi-function, and always disable all functions on the given path, 17187 * this means 0,2,4,6 for path 0 and 1,3,5,7 for path 1 17188 */ 17189 for (abs_func_id = SC_PATH(sc); 17190 abs_func_id < (E2_FUNC_MAX * 2); 17191 abs_func_id += 2) { 17192 if (abs_func_id == SC_ABS_FUNC(sc)) { 17193 REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1); 17194 continue; 17195 } 17196 17197 bxe_pretend_func(sc, abs_func_id); 17198 17199 /* clear pf enable */ 17200 bxe_pf_disable(sc); 17201 17202 bxe_pretend_func(sc, SC_ABS_FUNC(sc)); 17203 } 17204 } 17205 17206 BLOGD(sc, DBG_LOAD, "after pf disable\n"); 17207 17208 ecore_init_block(sc, BLOCK_PXP, PHASE_COMMON); 17209 17210 if (CHIP_IS_E1(sc)) { 17211 /* 17212 * enable HW interrupt from PXP on USDM overflow 17213 * bit 16 on INT_MASK_0 17214 */ 17215 REG_WR(sc, PXP_REG_PXP_INT_MASK_0, 0); 17216 } 17217 17218 ecore_init_block(sc, BLOCK_PXP2, PHASE_COMMON); 17219 bxe_init_pxp(sc); 17220 17221 #ifdef __BIG_ENDIAN 17222 REG_WR(sc, PXP2_REG_RQ_QM_ENDIAN_M, 1); 17223 REG_WR(sc, PXP2_REG_RQ_TM_ENDIAN_M, 1); 17224 REG_WR(sc, PXP2_REG_RQ_SRC_ENDIAN_M, 1); 17225 REG_WR(sc, PXP2_REG_RQ_CDU_ENDIAN_M, 1); 17226 REG_WR(sc, PXP2_REG_RQ_DBG_ENDIAN_M, 1); 17227 /* make sure this value is 0 */ 17228 REG_WR(sc, PXP2_REG_RQ_HC_ENDIAN_M, 0); 17229 17230 //REG_WR(sc, PXP2_REG_RD_PBF_SWAP_MODE, 1); 17231 REG_WR(sc, PXP2_REG_RD_QM_SWAP_MODE, 1); 17232 REG_WR(sc, PXP2_REG_RD_TM_SWAP_MODE, 1); 17233 REG_WR(sc, PXP2_REG_RD_SRC_SWAP_MODE, 1); 17234 REG_WR(sc, PXP2_REG_RD_CDURD_SWAP_MODE, 1); 17235 #endif 17236 17237 ecore_ilt_init_page_size(sc, INITOP_SET); 17238 17239 if (CHIP_REV_IS_FPGA(sc) && CHIP_IS_E1H(sc)) { 17240 REG_WR(sc, PXP2_REG_PGL_TAGS_LIMIT, 0x1); 17241 } 17242 17243 /* let the HW do it's magic... */ 17244 DELAY(100000); 17245 17246 /* finish PXP init */ 17247 val = REG_RD(sc, PXP2_REG_RQ_CFG_DONE); 17248 if (val != 1) { 17249 BLOGE(sc, "PXP2 CFG failed\n"); 17250 return (-1); 17251 } 17252 val = REG_RD(sc, PXP2_REG_RD_INIT_DONE); 17253 if (val != 1) { 17254 BLOGE(sc, "PXP2 RD_INIT failed\n"); 17255 return (-1); 17256 } 17257 17258 BLOGD(sc, DBG_LOAD, "after pxp init\n"); 17259 17260 /* 17261 * Timer bug workaround for E2 only. We need to set the entire ILT to have 17262 * entries with value "0" and valid bit on. This needs to be done by the 17263 * first PF that is loaded in a path (i.e. common phase) 17264 */ 17265 if (!CHIP_IS_E1x(sc)) { 17266 /* 17267 * In E2 there is a bug in the timers block that can cause function 6 / 7 17268 * (i.e. vnic3) to start even if it is marked as "scan-off". 17269 * This occurs when a different function (func2,3) is being marked 17270 * as "scan-off". Real-life scenario for example: if a driver is being 17271 * load-unloaded while func6,7 are down. This will cause the timer to access 17272 * the ilt, translate to a logical address and send a request to read/write. 17273 * Since the ilt for the function that is down is not valid, this will cause 17274 * a translation error which is unrecoverable. 17275 * The Workaround is intended to make sure that when this happens nothing 17276 * fatal will occur. The workaround: 17277 * 1. First PF driver which loads on a path will: 17278 * a. After taking the chip out of reset, by using pretend, 17279 * it will write "0" to the following registers of 17280 * the other vnics. 17281 * REG_WR(pdev, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0); 17282 * REG_WR(pdev, CFC_REG_WEAK_ENABLE_PF,0); 17283 * REG_WR(pdev, CFC_REG_STRONG_ENABLE_PF,0); 17284 * And for itself it will write '1' to 17285 * PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER to enable 17286 * dmae-operations (writing to pram for example.) 17287 * note: can be done for only function 6,7 but cleaner this 17288 * way. 17289 * b. Write zero+valid to the entire ILT. 17290 * c. Init the first_timers_ilt_entry, last_timers_ilt_entry of 17291 * VNIC3 (of that port). The range allocated will be the 17292 * entire ILT. This is needed to prevent ILT range error. 17293 * 2. Any PF driver load flow: 17294 * a. ILT update with the physical addresses of the allocated 17295 * logical pages. 17296 * b. Wait 20msec. - note that this timeout is needed to make 17297 * sure there are no requests in one of the PXP internal 17298 * queues with "old" ILT addresses. 17299 * c. PF enable in the PGLC. 17300 * d. Clear the was_error of the PF in the PGLC. (could have 17301 * occurred while driver was down) 17302 * e. PF enable in the CFC (WEAK + STRONG) 17303 * f. Timers scan enable 17304 * 3. PF driver unload flow: 17305 * a. Clear the Timers scan_en. 17306 * b. Polling for scan_on=0 for that PF. 17307 * c. Clear the PF enable bit in the PXP. 17308 * d. Clear the PF enable in the CFC (WEAK + STRONG) 17309 * e. Write zero+valid to all ILT entries (The valid bit must 17310 * stay set) 17311 * f. If this is VNIC 3 of a port then also init 17312 * first_timers_ilt_entry to zero and last_timers_ilt_entry 17313 * to the last enrty in the ILT. 17314 * 17315 * Notes: 17316 * Currently the PF error in the PGLC is non recoverable. 17317 * In the future the there will be a recovery routine for this error. 17318 * Currently attention is masked. 17319 * Having an MCP lock on the load/unload process does not guarantee that 17320 * there is no Timer disable during Func6/7 enable. This is because the 17321 * Timers scan is currently being cleared by the MCP on FLR. 17322 * Step 2.d can be done only for PF6/7 and the driver can also check if 17323 * there is error before clearing it. But the flow above is simpler and 17324 * more general. 17325 * All ILT entries are written by zero+valid and not just PF6/7 17326 * ILT entries since in the future the ILT entries allocation for 17327 * PF-s might be dynamic. 17328 */ 17329 struct ilt_client_info ilt_cli; 17330 struct ecore_ilt ilt; 17331 17332 memset(&ilt_cli, 0, sizeof(struct ilt_client_info)); 17333 memset(&ilt, 0, sizeof(struct ecore_ilt)); 17334 17335 /* initialize dummy TM client */ 17336 ilt_cli.start = 0; 17337 ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1; 17338 ilt_cli.client_num = ILT_CLIENT_TM; 17339 17340 /* 17341 * Step 1: set zeroes to all ilt page entries with valid bit on 17342 * Step 2: set the timers first/last ilt entry to point 17343 * to the entire range to prevent ILT range error for 3rd/4th 17344 * vnic (this code assumes existence of the vnic) 17345 * 17346 * both steps performed by call to ecore_ilt_client_init_op() 17347 * with dummy TM client 17348 * 17349 * we must use pretend since PXP2_REG_RQ_##blk##_FIRST_ILT 17350 * and his brother are split registers 17351 */ 17352 17353 bxe_pretend_func(sc, (SC_PATH(sc) + 6)); 17354 ecore_ilt_client_init_op_ilt(sc, &ilt, &ilt_cli, INITOP_CLEAR); 17355 bxe_pretend_func(sc, SC_ABS_FUNC(sc)); 17356 17357 REG_WR(sc, PXP2_REG_RQ_DRAM_ALIGN, BXE_PXP_DRAM_ALIGN); 17358 REG_WR(sc, PXP2_REG_RQ_DRAM_ALIGN_RD, BXE_PXP_DRAM_ALIGN); 17359 REG_WR(sc, PXP2_REG_RQ_DRAM_ALIGN_SEL, 1); 17360 } 17361 17362 REG_WR(sc, PXP2_REG_RQ_DISABLE_INPUTS, 0); 17363 REG_WR(sc, PXP2_REG_RD_DISABLE_INPUTS, 0); 17364 17365 if (!CHIP_IS_E1x(sc)) { 17366 int factor = CHIP_REV_IS_EMUL(sc) ? 1000 : 17367 (CHIP_REV_IS_FPGA(sc) ? 400 : 0); 17368 17369 ecore_init_block(sc, BLOCK_PGLUE_B, PHASE_COMMON); 17370 ecore_init_block(sc, BLOCK_ATC, PHASE_COMMON); 17371 17372 /* let the HW do it's magic... */ 17373 do { 17374 DELAY(200000); 17375 val = REG_RD(sc, ATC_REG_ATC_INIT_DONE); 17376 } while (factor-- && (val != 1)); 17377 17378 if (val != 1) { 17379 BLOGE(sc, "ATC_INIT failed\n"); 17380 return (-1); 17381 } 17382 } 17383 17384 BLOGD(sc, DBG_LOAD, "after pglue and atc init\n"); 17385 17386 ecore_init_block(sc, BLOCK_DMAE, PHASE_COMMON); 17387 17388 bxe_iov_init_dmae(sc); 17389 17390 /* clean the DMAE memory */ 17391 sc->dmae_ready = 1; 17392 ecore_init_fill(sc, TSEM_REG_PRAM, 0, 8, 1); 17393 17394 ecore_init_block(sc, BLOCK_TCM, PHASE_COMMON); 17395 17396 ecore_init_block(sc, BLOCK_UCM, PHASE_COMMON); 17397 17398 ecore_init_block(sc, BLOCK_CCM, PHASE_COMMON); 17399 17400 ecore_init_block(sc, BLOCK_XCM, PHASE_COMMON); 17401 17402 bxe_read_dmae(sc, XSEM_REG_PASSIVE_BUFFER, 3); 17403 bxe_read_dmae(sc, CSEM_REG_PASSIVE_BUFFER, 3); 17404 bxe_read_dmae(sc, TSEM_REG_PASSIVE_BUFFER, 3); 17405 bxe_read_dmae(sc, USEM_REG_PASSIVE_BUFFER, 3); 17406 17407 ecore_init_block(sc, BLOCK_QM, PHASE_COMMON); 17408 17409 /* QM queues pointers table */ 17410 ecore_qm_init_ptr_table(sc, sc->qm_cid_count, INITOP_SET); 17411 17412 /* soft reset pulse */ 17413 REG_WR(sc, QM_REG_SOFT_RESET, 1); 17414 REG_WR(sc, QM_REG_SOFT_RESET, 0); 17415 17416 if (CNIC_SUPPORT(sc)) 17417 ecore_init_block(sc, BLOCK_TM, PHASE_COMMON); 17418 17419 ecore_init_block(sc, BLOCK_DORQ, PHASE_COMMON); 17420 REG_WR(sc, DORQ_REG_DPM_CID_OFST, BXE_DB_SHIFT); 17421 if (!CHIP_REV_IS_SLOW(sc)) { 17422 /* enable hw interrupt from doorbell Q */ 17423 REG_WR(sc, DORQ_REG_DORQ_INT_MASK, 0); 17424 } 17425 17426 ecore_init_block(sc, BLOCK_BRB1, PHASE_COMMON); 17427 17428 ecore_init_block(sc, BLOCK_PRS, PHASE_COMMON); 17429 REG_WR(sc, PRS_REG_A_PRSU_20, 0xf); 17430 17431 if (!CHIP_IS_E1(sc)) { 17432 REG_WR(sc, PRS_REG_E1HOV_MODE, sc->devinfo.mf_info.path_has_ovlan); 17433 } 17434 17435 if (!CHIP_IS_E1x(sc) && !CHIP_IS_E3B0(sc)) { 17436 if (IS_MF_AFEX(sc)) { 17437 /* 17438 * configure that AFEX and VLAN headers must be 17439 * received in AFEX mode 17440 */ 17441 REG_WR(sc, PRS_REG_HDRS_AFTER_BASIC, 0xE); 17442 REG_WR(sc, PRS_REG_MUST_HAVE_HDRS, 0xA); 17443 REG_WR(sc, PRS_REG_HDRS_AFTER_TAG_0, 0x6); 17444 REG_WR(sc, PRS_REG_TAG_ETHERTYPE_0, 0x8926); 17445 REG_WR(sc, PRS_REG_TAG_LEN_0, 0x4); 17446 } else { 17447 /* 17448 * Bit-map indicating which L2 hdrs may appear 17449 * after the basic Ethernet header 17450 */ 17451 REG_WR(sc, PRS_REG_HDRS_AFTER_BASIC, 17452 sc->devinfo.mf_info.path_has_ovlan ? 7 : 6); 17453 } 17454 } 17455 17456 ecore_init_block(sc, BLOCK_TSDM, PHASE_COMMON); 17457 ecore_init_block(sc, BLOCK_CSDM, PHASE_COMMON); 17458 ecore_init_block(sc, BLOCK_USDM, PHASE_COMMON); 17459 ecore_init_block(sc, BLOCK_XSDM, PHASE_COMMON); 17460 17461 if (!CHIP_IS_E1x(sc)) { 17462 /* reset VFC memories */ 17463 REG_WR(sc, TSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST, 17464 VFC_MEMORIES_RST_REG_CAM_RST | 17465 VFC_MEMORIES_RST_REG_RAM_RST); 17466 REG_WR(sc, XSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST, 17467 VFC_MEMORIES_RST_REG_CAM_RST | 17468 VFC_MEMORIES_RST_REG_RAM_RST); 17469 17470 DELAY(20000); 17471 } 17472 17473 ecore_init_block(sc, BLOCK_TSEM, PHASE_COMMON); 17474 ecore_init_block(sc, BLOCK_USEM, PHASE_COMMON); 17475 ecore_init_block(sc, BLOCK_CSEM, PHASE_COMMON); 17476 ecore_init_block(sc, BLOCK_XSEM, PHASE_COMMON); 17477 17478 /* sync semi rtc */ 17479 REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 17480 0x80000000); 17481 REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 17482 0x80000000); 17483 17484 ecore_init_block(sc, BLOCK_UPB, PHASE_COMMON); 17485 ecore_init_block(sc, BLOCK_XPB, PHASE_COMMON); 17486 ecore_init_block(sc, BLOCK_PBF, PHASE_COMMON); 17487 17488 if (!CHIP_IS_E1x(sc)) { 17489 if (IS_MF_AFEX(sc)) { 17490 /* 17491 * configure that AFEX and VLAN headers must be 17492 * sent in AFEX mode 17493 */ 17494 REG_WR(sc, PBF_REG_HDRS_AFTER_BASIC, 0xE); 17495 REG_WR(sc, PBF_REG_MUST_HAVE_HDRS, 0xA); 17496 REG_WR(sc, PBF_REG_HDRS_AFTER_TAG_0, 0x6); 17497 REG_WR(sc, PBF_REG_TAG_ETHERTYPE_0, 0x8926); 17498 REG_WR(sc, PBF_REG_TAG_LEN_0, 0x4); 17499 } else { 17500 REG_WR(sc, PBF_REG_HDRS_AFTER_BASIC, 17501 sc->devinfo.mf_info.path_has_ovlan ? 7 : 6); 17502 } 17503 } 17504 17505 REG_WR(sc, SRC_REG_SOFT_RST, 1); 17506 17507 ecore_init_block(sc, BLOCK_SRC, PHASE_COMMON); 17508 17509 if (CNIC_SUPPORT(sc)) { 17510 REG_WR(sc, SRC_REG_KEYSEARCH_0, 0x63285672); 17511 REG_WR(sc, SRC_REG_KEYSEARCH_1, 0x24b8f2cc); 17512 REG_WR(sc, SRC_REG_KEYSEARCH_2, 0x223aef9b); 17513 REG_WR(sc, SRC_REG_KEYSEARCH_3, 0x26001e3a); 17514 REG_WR(sc, SRC_REG_KEYSEARCH_4, 0x7ae91116); 17515 REG_WR(sc, SRC_REG_KEYSEARCH_5, 0x5ce5230b); 17516 REG_WR(sc, SRC_REG_KEYSEARCH_6, 0x298d8adf); 17517 REG_WR(sc, SRC_REG_KEYSEARCH_7, 0x6eb0ff09); 17518 REG_WR(sc, SRC_REG_KEYSEARCH_8, 0x1830f82f); 17519 REG_WR(sc, SRC_REG_KEYSEARCH_9, 0x01e46be7); 17520 } 17521 REG_WR(sc, SRC_REG_SOFT_RST, 0); 17522 17523 if (sizeof(union cdu_context) != 1024) { 17524 /* we currently assume that a context is 1024 bytes */ 17525 BLOGE(sc, "please adjust the size of cdu_context(%ld)\n", 17526 (long)sizeof(union cdu_context)); 17527 } 17528 17529 ecore_init_block(sc, BLOCK_CDU, PHASE_COMMON); 17530 val = (4 << 24) + (0 << 12) + 1024; 17531 REG_WR(sc, CDU_REG_CDU_GLOBAL_PARAMS, val); 17532 17533 ecore_init_block(sc, BLOCK_CFC, PHASE_COMMON); 17534 17535 REG_WR(sc, CFC_REG_INIT_REG, 0x7FF); 17536 /* enable context validation interrupt from CFC */ 17537 REG_WR(sc, CFC_REG_CFC_INT_MASK, 0); 17538 17539 /* set the thresholds to prevent CFC/CDU race */ 17540 REG_WR(sc, CFC_REG_DEBUG0, 0x20020000); 17541 ecore_init_block(sc, BLOCK_HC, PHASE_COMMON); 17542 17543 if (!CHIP_IS_E1x(sc) && BXE_NOMCP(sc)) { 17544 REG_WR(sc, IGU_REG_RESET_MEMORIES, 0x36); 17545 } 17546 17547 ecore_init_block(sc, BLOCK_IGU, PHASE_COMMON); 17548 ecore_init_block(sc, BLOCK_MISC_AEU, PHASE_COMMON); 17549 17550 /* Reset PCIE errors for debug */ 17551 REG_WR(sc, 0x2814, 0xffffffff); 17552 REG_WR(sc, 0x3820, 0xffffffff); 17553 17554 if (!CHIP_IS_E1x(sc)) { 17555 REG_WR(sc, PCICFG_OFFSET + PXPCS_TL_CONTROL_5, 17556 (PXPCS_TL_CONTROL_5_ERR_UNSPPORT1 | 17557 PXPCS_TL_CONTROL_5_ERR_UNSPPORT)); 17558 REG_WR(sc, PCICFG_OFFSET + PXPCS_TL_FUNC345_STAT, 17559 (PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT4 | 17560 PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT3 | 17561 PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT2)); 17562 REG_WR(sc, PCICFG_OFFSET + PXPCS_TL_FUNC678_STAT, 17563 (PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT7 | 17564 PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT6 | 17565 PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT5)); 17566 } 17567 17568 ecore_init_block(sc, BLOCK_NIG, PHASE_COMMON); 17569 17570 if (!CHIP_IS_E1(sc)) { 17571 /* in E3 this done in per-port section */ 17572 if (!CHIP_IS_E3(sc)) 17573 REG_WR(sc, NIG_REG_LLH_MF_MODE, IS_MF(sc)); 17574 } 17575 17576 if (CHIP_IS_E1H(sc)) { 17577 /* not applicable for E2 (and above ...) */ 17578 REG_WR(sc, NIG_REG_LLH_E1HOV_MODE, IS_MF_SD(sc)); 17579 } 17580 17581 if (CHIP_REV_IS_SLOW(sc)) { 17582 DELAY(200000); 17583 } 17584 17585 /* finish CFC init */ 17586 val = reg_poll(sc, CFC_REG_LL_INIT_DONE, 1, 100, 10); 17587 if (val != 1) { 17588 BLOGE(sc, "CFC LL_INIT failed\n"); 17589 return (-1); 17590 } 17591 val = reg_poll(sc, CFC_REG_AC_INIT_DONE, 1, 100, 10); 17592 if (val != 1) { 17593 BLOGE(sc, "CFC AC_INIT failed\n"); 17594 return (-1); 17595 } 17596 val = reg_poll(sc, CFC_REG_CAM_INIT_DONE, 1, 100, 10); 17597 if (val != 1) { 17598 BLOGE(sc, "CFC CAM_INIT failed\n"); 17599 return (-1); 17600 } 17601 REG_WR(sc, CFC_REG_DEBUG0, 0); 17602 17603 if (CHIP_IS_E1(sc)) { 17604 /* read NIG statistic to see if this is our first up since powerup */ 17605 bxe_read_dmae(sc, NIG_REG_STAT2_BRB_OCTET, 2); 17606 val = *BXE_SP(sc, wb_data[0]); 17607 17608 /* do internal memory self test */ 17609 if ((val == 0) && bxe_int_mem_test(sc)) { 17610 BLOGE(sc, "internal mem self test failed\n"); 17611 return (-1); 17612 } 17613 } 17614 17615 bxe_setup_fan_failure_detection(sc); 17616 17617 /* clear PXP2 attentions */ 17618 REG_RD(sc, PXP2_REG_PXP2_INT_STS_CLR_0); 17619 17620 bxe_enable_blocks_attention(sc); 17621 17622 if (!CHIP_REV_IS_SLOW(sc)) { 17623 ecore_enable_blocks_parity(sc); 17624 } 17625 17626 if (!BXE_NOMCP(sc)) { 17627 if (CHIP_IS_E1x(sc)) { 17628 bxe_common_init_phy(sc); 17629 } 17630 } 17631 17632 return (0); 17633 } 17634 17635 /** 17636 * bxe_init_hw_common_chip - init HW at the COMMON_CHIP phase. 17637 * 17638 * @sc: driver handle 17639 */ 17640 static int 17641 bxe_init_hw_common_chip(struct bxe_softc *sc) 17642 { 17643 int rc = bxe_init_hw_common(sc); 17644 17645 if (rc) { 17646 return (rc); 17647 } 17648 17649 /* In E2 2-PORT mode, same ext phy is used for the two paths */ 17650 if (!BXE_NOMCP(sc)) { 17651 bxe_common_init_phy(sc); 17652 } 17653 17654 return (0); 17655 } 17656 17657 static int 17658 bxe_init_hw_port(struct bxe_softc *sc) 17659 { 17660 int port = SC_PORT(sc); 17661 int init_phase = port ? PHASE_PORT1 : PHASE_PORT0; 17662 uint32_t low, high; 17663 uint32_t val; 17664 17665 BLOGD(sc, DBG_LOAD, "starting port init for port %d\n", port); 17666 17667 REG_WR(sc, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0); 17668 17669 ecore_init_block(sc, BLOCK_MISC, init_phase); 17670 ecore_init_block(sc, BLOCK_PXP, init_phase); 17671 ecore_init_block(sc, BLOCK_PXP2, init_phase); 17672 17673 /* 17674 * Timers bug workaround: disables the pf_master bit in pglue at 17675 * common phase, we need to enable it here before any dmae access are 17676 * attempted. Therefore we manually added the enable-master to the 17677 * port phase (it also happens in the function phase) 17678 */ 17679 if (!CHIP_IS_E1x(sc)) { 17680 REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1); 17681 } 17682 17683 ecore_init_block(sc, BLOCK_ATC, init_phase); 17684 ecore_init_block(sc, BLOCK_DMAE, init_phase); 17685 ecore_init_block(sc, BLOCK_PGLUE_B, init_phase); 17686 ecore_init_block(sc, BLOCK_QM, init_phase); 17687 17688 ecore_init_block(sc, BLOCK_TCM, init_phase); 17689 ecore_init_block(sc, BLOCK_UCM, init_phase); 17690 ecore_init_block(sc, BLOCK_CCM, init_phase); 17691 ecore_init_block(sc, BLOCK_XCM, init_phase); 17692 17693 /* QM cid (connection) count */ 17694 ecore_qm_init_cid_count(sc, sc->qm_cid_count, INITOP_SET); 17695 17696 if (CNIC_SUPPORT(sc)) { 17697 ecore_init_block(sc, BLOCK_TM, init_phase); 17698 REG_WR(sc, TM_REG_LIN0_SCAN_TIME + port*4, 20); 17699 REG_WR(sc, TM_REG_LIN0_MAX_ACTIVE_CID + port*4, 31); 17700 } 17701 17702 ecore_init_block(sc, BLOCK_DORQ, init_phase); 17703 17704 ecore_init_block(sc, BLOCK_BRB1, init_phase); 17705 17706 if (CHIP_IS_E1(sc) || CHIP_IS_E1H(sc)) { 17707 if (IS_MF(sc)) { 17708 low = (BXE_ONE_PORT(sc) ? 160 : 246); 17709 } else if (sc->mtu > 4096) { 17710 if (BXE_ONE_PORT(sc)) { 17711 low = 160; 17712 } else { 17713 val = sc->mtu; 17714 /* (24*1024 + val*4)/256 */ 17715 low = (96 + (val / 64) + ((val % 64) ? 1 : 0)); 17716 } 17717 } else { 17718 low = (BXE_ONE_PORT(sc) ? 80 : 160); 17719 } 17720 high = (low + 56); /* 14*1024/256 */ 17721 REG_WR(sc, BRB1_REG_PAUSE_LOW_THRESHOLD_0 + port*4, low); 17722 REG_WR(sc, BRB1_REG_PAUSE_HIGH_THRESHOLD_0 + port*4, high); 17723 } 17724 17725 if (CHIP_IS_MODE_4_PORT(sc)) { 17726 REG_WR(sc, SC_PORT(sc) ? 17727 BRB1_REG_MAC_GUARANTIED_1 : 17728 BRB1_REG_MAC_GUARANTIED_0, 40); 17729 } 17730 17731 ecore_init_block(sc, BLOCK_PRS, init_phase); 17732 if (CHIP_IS_E3B0(sc)) { 17733 if (IS_MF_AFEX(sc)) { 17734 /* configure headers for AFEX mode */ 17735 REG_WR(sc, SC_PORT(sc) ? 17736 PRS_REG_HDRS_AFTER_BASIC_PORT_1 : 17737 PRS_REG_HDRS_AFTER_BASIC_PORT_0, 0xE); 17738 REG_WR(sc, SC_PORT(sc) ? 17739 PRS_REG_HDRS_AFTER_TAG_0_PORT_1 : 17740 PRS_REG_HDRS_AFTER_TAG_0_PORT_0, 0x6); 17741 REG_WR(sc, SC_PORT(sc) ? 17742 PRS_REG_MUST_HAVE_HDRS_PORT_1 : 17743 PRS_REG_MUST_HAVE_HDRS_PORT_0, 0xA); 17744 } else { 17745 /* Ovlan exists only if we are in multi-function + 17746 * switch-dependent mode, in switch-independent there 17747 * is no ovlan headers 17748 */ 17749 REG_WR(sc, SC_PORT(sc) ? 17750 PRS_REG_HDRS_AFTER_BASIC_PORT_1 : 17751 PRS_REG_HDRS_AFTER_BASIC_PORT_0, 17752 (sc->devinfo.mf_info.path_has_ovlan ? 7 : 6)); 17753 } 17754 } 17755 17756 ecore_init_block(sc, BLOCK_TSDM, init_phase); 17757 ecore_init_block(sc, BLOCK_CSDM, init_phase); 17758 ecore_init_block(sc, BLOCK_USDM, init_phase); 17759 ecore_init_block(sc, BLOCK_XSDM, init_phase); 17760 17761 ecore_init_block(sc, BLOCK_TSEM, init_phase); 17762 ecore_init_block(sc, BLOCK_USEM, init_phase); 17763 ecore_init_block(sc, BLOCK_CSEM, init_phase); 17764 ecore_init_block(sc, BLOCK_XSEM, init_phase); 17765 17766 ecore_init_block(sc, BLOCK_UPB, init_phase); 17767 ecore_init_block(sc, BLOCK_XPB, init_phase); 17768 17769 ecore_init_block(sc, BLOCK_PBF, init_phase); 17770 17771 if (CHIP_IS_E1x(sc)) { 17772 /* configure PBF to work without PAUSE mtu 9000 */ 17773 REG_WR(sc, PBF_REG_P0_PAUSE_ENABLE + port*4, 0); 17774 17775 /* update threshold */ 17776 REG_WR(sc, PBF_REG_P0_ARB_THRSH + port*4, (9040/16)); 17777 /* update init credit */ 17778 REG_WR(sc, PBF_REG_P0_INIT_CRD + port*4, (9040/16) + 553 - 22); 17779 17780 /* probe changes */ 17781 REG_WR(sc, PBF_REG_INIT_P0 + port*4, 1); 17782 DELAY(50); 17783 REG_WR(sc, PBF_REG_INIT_P0 + port*4, 0); 17784 } 17785 17786 if (CNIC_SUPPORT(sc)) { 17787 ecore_init_block(sc, BLOCK_SRC, init_phase); 17788 } 17789 17790 ecore_init_block(sc, BLOCK_CDU, init_phase); 17791 ecore_init_block(sc, BLOCK_CFC, init_phase); 17792 17793 if (CHIP_IS_E1(sc)) { 17794 REG_WR(sc, HC_REG_LEADING_EDGE_0 + port*8, 0); 17795 REG_WR(sc, HC_REG_TRAILING_EDGE_0 + port*8, 0); 17796 } 17797 ecore_init_block(sc, BLOCK_HC, init_phase); 17798 17799 ecore_init_block(sc, BLOCK_IGU, init_phase); 17800 17801 ecore_init_block(sc, BLOCK_MISC_AEU, init_phase); 17802 /* init aeu_mask_attn_func_0/1: 17803 * - SF mode: bits 3-7 are masked. only bits 0-2 are in use 17804 * - MF mode: bit 3 is masked. bits 0-2 are in use as in SF 17805 * bits 4-7 are used for "per vn group attention" */ 17806 val = IS_MF(sc) ? 0xF7 : 0x7; 17807 /* Enable DCBX attention for all but E1 */ 17808 val |= CHIP_IS_E1(sc) ? 0 : 0x10; 17809 REG_WR(sc, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, val); 17810 17811 ecore_init_block(sc, BLOCK_NIG, init_phase); 17812 17813 if (!CHIP_IS_E1x(sc)) { 17814 /* Bit-map indicating which L2 hdrs may appear after the 17815 * basic Ethernet header 17816 */ 17817 if (IS_MF_AFEX(sc)) { 17818 REG_WR(sc, SC_PORT(sc) ? 17819 NIG_REG_P1_HDRS_AFTER_BASIC : 17820 NIG_REG_P0_HDRS_AFTER_BASIC, 0xE); 17821 } else { 17822 REG_WR(sc, SC_PORT(sc) ? 17823 NIG_REG_P1_HDRS_AFTER_BASIC : 17824 NIG_REG_P0_HDRS_AFTER_BASIC, 17825 IS_MF_SD(sc) ? 7 : 6); 17826 } 17827 17828 if (CHIP_IS_E3(sc)) { 17829 REG_WR(sc, SC_PORT(sc) ? 17830 NIG_REG_LLH1_MF_MODE : 17831 NIG_REG_LLH_MF_MODE, IS_MF(sc)); 17832 } 17833 } 17834 if (!CHIP_IS_E3(sc)) { 17835 REG_WR(sc, NIG_REG_XGXS_SERDES0_MODE_SEL + port*4, 1); 17836 } 17837 17838 if (!CHIP_IS_E1(sc)) { 17839 /* 0x2 disable mf_ov, 0x1 enable */ 17840 REG_WR(sc, NIG_REG_LLH0_BRB1_DRV_MASK_MF + port*4, 17841 (IS_MF_SD(sc) ? 0x1 : 0x2)); 17842 17843 if (!CHIP_IS_E1x(sc)) { 17844 val = 0; 17845 switch (sc->devinfo.mf_info.mf_mode) { 17846 case MULTI_FUNCTION_SD: 17847 val = 1; 17848 break; 17849 case MULTI_FUNCTION_SI: 17850 case MULTI_FUNCTION_AFEX: 17851 val = 2; 17852 break; 17853 } 17854 17855 REG_WR(sc, (SC_PORT(sc) ? NIG_REG_LLH1_CLS_TYPE : 17856 NIG_REG_LLH0_CLS_TYPE), val); 17857 } 17858 REG_WR(sc, NIG_REG_LLFC_ENABLE_0 + port*4, 0); 17859 REG_WR(sc, NIG_REG_LLFC_OUT_EN_0 + port*4, 0); 17860 REG_WR(sc, NIG_REG_PAUSE_ENABLE_0 + port*4, 1); 17861 } 17862 17863 /* If SPIO5 is set to generate interrupts, enable it for this port */ 17864 val = REG_RD(sc, MISC_REG_SPIO_EVENT_EN); 17865 if (val & MISC_SPIO_SPIO5) { 17866 uint32_t reg_addr = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 : 17867 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0); 17868 val = REG_RD(sc, reg_addr); 17869 val |= AEU_INPUTS_ATTN_BITS_SPIO5; 17870 REG_WR(sc, reg_addr, val); 17871 } 17872 17873 return (0); 17874 } 17875 17876 static uint32_t 17877 bxe_flr_clnup_reg_poll(struct bxe_softc *sc, 17878 uint32_t reg, 17879 uint32_t expected, 17880 uint32_t poll_count) 17881 { 17882 uint32_t cur_cnt = poll_count; 17883 uint32_t val; 17884 17885 while ((val = REG_RD(sc, reg)) != expected && cur_cnt--) { 17886 DELAY(FLR_WAIT_INTERVAL); 17887 } 17888 17889 return (val); 17890 } 17891 17892 static int 17893 bxe_flr_clnup_poll_hw_counter(struct bxe_softc *sc, 17894 uint32_t reg, 17895 char *msg, 17896 uint32_t poll_cnt) 17897 { 17898 uint32_t val = bxe_flr_clnup_reg_poll(sc, reg, 0, poll_cnt); 17899 17900 if (val != 0) { 17901 BLOGE(sc, "%s usage count=%d\n", msg, val); 17902 return (1); 17903 } 17904 17905 return (0); 17906 } 17907 17908 /* Common routines with VF FLR cleanup */ 17909 static uint32_t 17910 bxe_flr_clnup_poll_count(struct bxe_softc *sc) 17911 { 17912 /* adjust polling timeout */ 17913 if (CHIP_REV_IS_EMUL(sc)) { 17914 return (FLR_POLL_CNT * 2000); 17915 } 17916 17917 if (CHIP_REV_IS_FPGA(sc)) { 17918 return (FLR_POLL_CNT * 120); 17919 } 17920 17921 return (FLR_POLL_CNT); 17922 } 17923 17924 static int 17925 bxe_poll_hw_usage_counters(struct bxe_softc *sc, 17926 uint32_t poll_cnt) 17927 { 17928 /* wait for CFC PF usage-counter to zero (includes all the VFs) */ 17929 if (bxe_flr_clnup_poll_hw_counter(sc, 17930 CFC_REG_NUM_LCIDS_INSIDE_PF, 17931 "CFC PF usage counter timed out", 17932 poll_cnt)) { 17933 return (1); 17934 } 17935 17936 /* Wait for DQ PF usage-counter to zero (until DQ cleanup) */ 17937 if (bxe_flr_clnup_poll_hw_counter(sc, 17938 DORQ_REG_PF_USAGE_CNT, 17939 "DQ PF usage counter timed out", 17940 poll_cnt)) { 17941 return (1); 17942 } 17943 17944 /* Wait for QM PF usage-counter to zero (until DQ cleanup) */ 17945 if (bxe_flr_clnup_poll_hw_counter(sc, 17946 QM_REG_PF_USG_CNT_0 + 4*SC_FUNC(sc), 17947 "QM PF usage counter timed out", 17948 poll_cnt)) { 17949 return (1); 17950 } 17951 17952 /* Wait for Timer PF usage-counters to zero (until DQ cleanup) */ 17953 if (bxe_flr_clnup_poll_hw_counter(sc, 17954 TM_REG_LIN0_VNIC_UC + 4*SC_PORT(sc), 17955 "Timers VNIC usage counter timed out", 17956 poll_cnt)) { 17957 return (1); 17958 } 17959 17960 if (bxe_flr_clnup_poll_hw_counter(sc, 17961 TM_REG_LIN0_NUM_SCANS + 4*SC_PORT(sc), 17962 "Timers NUM_SCANS usage counter timed out", 17963 poll_cnt)) { 17964 return (1); 17965 } 17966 17967 /* Wait DMAE PF usage counter to zero */ 17968 if (bxe_flr_clnup_poll_hw_counter(sc, 17969 dmae_reg_go_c[INIT_DMAE_C(sc)], 17970 "DMAE dommand register timed out", 17971 poll_cnt)) { 17972 return (1); 17973 } 17974 17975 return (0); 17976 } 17977 17978 #define OP_GEN_PARAM(param) \ 17979 (((param) << SDM_OP_GEN_COMP_PARAM_SHIFT) & SDM_OP_GEN_COMP_PARAM) 17980 #define OP_GEN_TYPE(type) \ 17981 (((type) << SDM_OP_GEN_COMP_TYPE_SHIFT) & SDM_OP_GEN_COMP_TYPE) 17982 #define OP_GEN_AGG_VECT(index) \ 17983 (((index) << SDM_OP_GEN_AGG_VECT_IDX_SHIFT) & SDM_OP_GEN_AGG_VECT_IDX) 17984 17985 static int 17986 bxe_send_final_clnup(struct bxe_softc *sc, 17987 uint8_t clnup_func, 17988 uint32_t poll_cnt) 17989 { 17990 uint32_t op_gen_command = 0; 17991 uint32_t comp_addr = (BAR_CSTRORM_INTMEM + 17992 CSTORM_FINAL_CLEANUP_COMPLETE_OFFSET(clnup_func)); 17993 int ret = 0; 17994 17995 if (REG_RD(sc, comp_addr)) { 17996 BLOGE(sc, "Cleanup complete was not 0 before sending\n"); 17997 return (1); 17998 } 17999 18000 op_gen_command |= OP_GEN_PARAM(XSTORM_AGG_INT_FINAL_CLEANUP_INDEX); 18001 op_gen_command |= OP_GEN_TYPE(XSTORM_AGG_INT_FINAL_CLEANUP_COMP_TYPE); 18002 op_gen_command |= OP_GEN_AGG_VECT(clnup_func); 18003 op_gen_command |= 1 << SDM_OP_GEN_AGG_VECT_IDX_VALID_SHIFT; 18004 18005 BLOGD(sc, DBG_LOAD, "sending FW Final cleanup\n"); 18006 REG_WR(sc, XSDM_REG_OPERATION_GEN, op_gen_command); 18007 18008 if (bxe_flr_clnup_reg_poll(sc, comp_addr, 1, poll_cnt) != 1) { 18009 BLOGE(sc, "FW final cleanup did not succeed\n"); 18010 BLOGD(sc, DBG_LOAD, "At timeout completion address contained %x\n", 18011 (REG_RD(sc, comp_addr))); 18012 bxe_panic(sc, ("FLR cleanup failed\n")); 18013 return (1); 18014 } 18015 18016 /* Zero completion for nxt FLR */ 18017 REG_WR(sc, comp_addr, 0); 18018 18019 return (ret); 18020 } 18021 18022 static void 18023 bxe_pbf_pN_buf_flushed(struct bxe_softc *sc, 18024 struct pbf_pN_buf_regs *regs, 18025 uint32_t poll_count) 18026 { 18027 uint32_t init_crd, crd, crd_start, crd_freed, crd_freed_start; 18028 uint32_t cur_cnt = poll_count; 18029 18030 crd_freed = crd_freed_start = REG_RD(sc, regs->crd_freed); 18031 crd = crd_start = REG_RD(sc, regs->crd); 18032 init_crd = REG_RD(sc, regs->init_crd); 18033 18034 BLOGD(sc, DBG_LOAD, "INIT CREDIT[%d] : %x\n", regs->pN, init_crd); 18035 BLOGD(sc, DBG_LOAD, "CREDIT[%d] : s:%x\n", regs->pN, crd); 18036 BLOGD(sc, DBG_LOAD, "CREDIT_FREED[%d]: s:%x\n", regs->pN, crd_freed); 18037 18038 while ((crd != init_crd) && 18039 ((uint32_t)((int32_t)crd_freed - (int32_t)crd_freed_start) < 18040 (init_crd - crd_start))) { 18041 if (cur_cnt--) { 18042 DELAY(FLR_WAIT_INTERVAL); 18043 crd = REG_RD(sc, regs->crd); 18044 crd_freed = REG_RD(sc, regs->crd_freed); 18045 } else { 18046 BLOGD(sc, DBG_LOAD, "PBF tx buffer[%d] timed out\n", regs->pN); 18047 BLOGD(sc, DBG_LOAD, "CREDIT[%d] : c:%x\n", regs->pN, crd); 18048 BLOGD(sc, DBG_LOAD, "CREDIT_FREED[%d]: c:%x\n", regs->pN, crd_freed); 18049 break; 18050 } 18051 } 18052 18053 BLOGD(sc, DBG_LOAD, "Waited %d*%d usec for PBF tx buffer[%d]\n", 18054 poll_count-cur_cnt, FLR_WAIT_INTERVAL, regs->pN); 18055 } 18056 18057 static void 18058 bxe_pbf_pN_cmd_flushed(struct bxe_softc *sc, 18059 struct pbf_pN_cmd_regs *regs, 18060 uint32_t poll_count) 18061 { 18062 uint32_t occup, to_free, freed, freed_start; 18063 uint32_t cur_cnt = poll_count; 18064 18065 occup = to_free = REG_RD(sc, regs->lines_occup); 18066 freed = freed_start = REG_RD(sc, regs->lines_freed); 18067 18068 BLOGD(sc, DBG_LOAD, "OCCUPANCY[%d] : s:%x\n", regs->pN, occup); 18069 BLOGD(sc, DBG_LOAD, "LINES_FREED[%d] : s:%x\n", regs->pN, freed); 18070 18071 while (occup && 18072 ((uint32_t)((int32_t)freed - (int32_t)freed_start) < to_free)) { 18073 if (cur_cnt--) { 18074 DELAY(FLR_WAIT_INTERVAL); 18075 occup = REG_RD(sc, regs->lines_occup); 18076 freed = REG_RD(sc, regs->lines_freed); 18077 } else { 18078 BLOGD(sc, DBG_LOAD, "PBF cmd queue[%d] timed out\n", regs->pN); 18079 BLOGD(sc, DBG_LOAD, "OCCUPANCY[%d] : s:%x\n", regs->pN, occup); 18080 BLOGD(sc, DBG_LOAD, "LINES_FREED[%d] : s:%x\n", regs->pN, freed); 18081 break; 18082 } 18083 } 18084 18085 BLOGD(sc, DBG_LOAD, "Waited %d*%d usec for PBF cmd queue[%d]\n", 18086 poll_count - cur_cnt, FLR_WAIT_INTERVAL, regs->pN); 18087 } 18088 18089 static void 18090 bxe_tx_hw_flushed(struct bxe_softc *sc, uint32_t poll_count) 18091 { 18092 struct pbf_pN_cmd_regs cmd_regs[] = { 18093 {0, (CHIP_IS_E3B0(sc)) ? 18094 PBF_REG_TQ_OCCUPANCY_Q0 : 18095 PBF_REG_P0_TQ_OCCUPANCY, 18096 (CHIP_IS_E3B0(sc)) ? 18097 PBF_REG_TQ_LINES_FREED_CNT_Q0 : 18098 PBF_REG_P0_TQ_LINES_FREED_CNT}, 18099 {1, (CHIP_IS_E3B0(sc)) ? 18100 PBF_REG_TQ_OCCUPANCY_Q1 : 18101 PBF_REG_P1_TQ_OCCUPANCY, 18102 (CHIP_IS_E3B0(sc)) ? 18103 PBF_REG_TQ_LINES_FREED_CNT_Q1 : 18104 PBF_REG_P1_TQ_LINES_FREED_CNT}, 18105 {4, (CHIP_IS_E3B0(sc)) ? 18106 PBF_REG_TQ_OCCUPANCY_LB_Q : 18107 PBF_REG_P4_TQ_OCCUPANCY, 18108 (CHIP_IS_E3B0(sc)) ? 18109 PBF_REG_TQ_LINES_FREED_CNT_LB_Q : 18110 PBF_REG_P4_TQ_LINES_FREED_CNT} 18111 }; 18112 18113 struct pbf_pN_buf_regs buf_regs[] = { 18114 {0, (CHIP_IS_E3B0(sc)) ? 18115 PBF_REG_INIT_CRD_Q0 : 18116 PBF_REG_P0_INIT_CRD , 18117 (CHIP_IS_E3B0(sc)) ? 18118 PBF_REG_CREDIT_Q0 : 18119 PBF_REG_P0_CREDIT, 18120 (CHIP_IS_E3B0(sc)) ? 18121 PBF_REG_INTERNAL_CRD_FREED_CNT_Q0 : 18122 PBF_REG_P0_INTERNAL_CRD_FREED_CNT}, 18123 {1, (CHIP_IS_E3B0(sc)) ? 18124 PBF_REG_INIT_CRD_Q1 : 18125 PBF_REG_P1_INIT_CRD, 18126 (CHIP_IS_E3B0(sc)) ? 18127 PBF_REG_CREDIT_Q1 : 18128 PBF_REG_P1_CREDIT, 18129 (CHIP_IS_E3B0(sc)) ? 18130 PBF_REG_INTERNAL_CRD_FREED_CNT_Q1 : 18131 PBF_REG_P1_INTERNAL_CRD_FREED_CNT}, 18132 {4, (CHIP_IS_E3B0(sc)) ? 18133 PBF_REG_INIT_CRD_LB_Q : 18134 PBF_REG_P4_INIT_CRD, 18135 (CHIP_IS_E3B0(sc)) ? 18136 PBF_REG_CREDIT_LB_Q : 18137 PBF_REG_P4_CREDIT, 18138 (CHIP_IS_E3B0(sc)) ? 18139 PBF_REG_INTERNAL_CRD_FREED_CNT_LB_Q : 18140 PBF_REG_P4_INTERNAL_CRD_FREED_CNT}, 18141 }; 18142 18143 int i; 18144 18145 /* Verify the command queues are flushed P0, P1, P4 */ 18146 for (i = 0; i < ARRAY_SIZE(cmd_regs); i++) { 18147 bxe_pbf_pN_cmd_flushed(sc, &cmd_regs[i], poll_count); 18148 } 18149 18150 /* Verify the transmission buffers are flushed P0, P1, P4 */ 18151 for (i = 0; i < ARRAY_SIZE(buf_regs); i++) { 18152 bxe_pbf_pN_buf_flushed(sc, &buf_regs[i], poll_count); 18153 } 18154 } 18155 18156 static void 18157 bxe_hw_enable_status(struct bxe_softc *sc) 18158 { 18159 uint32_t val; 18160 18161 val = REG_RD(sc, CFC_REG_WEAK_ENABLE_PF); 18162 BLOGD(sc, DBG_LOAD, "CFC_REG_WEAK_ENABLE_PF is 0x%x\n", val); 18163 18164 val = REG_RD(sc, PBF_REG_DISABLE_PF); 18165 BLOGD(sc, DBG_LOAD, "PBF_REG_DISABLE_PF is 0x%x\n", val); 18166 18167 val = REG_RD(sc, IGU_REG_PCI_PF_MSI_EN); 18168 BLOGD(sc, DBG_LOAD, "IGU_REG_PCI_PF_MSI_EN is 0x%x\n", val); 18169 18170 val = REG_RD(sc, IGU_REG_PCI_PF_MSIX_EN); 18171 BLOGD(sc, DBG_LOAD, "IGU_REG_PCI_PF_MSIX_EN is 0x%x\n", val); 18172 18173 val = REG_RD(sc, IGU_REG_PCI_PF_MSIX_FUNC_MASK); 18174 BLOGD(sc, DBG_LOAD, "IGU_REG_PCI_PF_MSIX_FUNC_MASK is 0x%x\n", val); 18175 18176 val = REG_RD(sc, PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR); 18177 BLOGD(sc, DBG_LOAD, "PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR is 0x%x\n", val); 18178 18179 val = REG_RD(sc, PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR); 18180 BLOGD(sc, DBG_LOAD, "PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR is 0x%x\n", val); 18181 18182 val = REG_RD(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER); 18183 BLOGD(sc, DBG_LOAD, "PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER is 0x%x\n", val); 18184 } 18185 18186 static int 18187 bxe_pf_flr_clnup(struct bxe_softc *sc) 18188 { 18189 uint32_t poll_cnt = bxe_flr_clnup_poll_count(sc); 18190 18191 BLOGD(sc, DBG_LOAD, "Cleanup after FLR PF[%d]\n", SC_ABS_FUNC(sc)); 18192 18193 /* Re-enable PF target read access */ 18194 REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1); 18195 18196 /* Poll HW usage counters */ 18197 BLOGD(sc, DBG_LOAD, "Polling usage counters\n"); 18198 if (bxe_poll_hw_usage_counters(sc, poll_cnt)) { 18199 return (-1); 18200 } 18201 18202 /* Zero the igu 'trailing edge' and 'leading edge' */ 18203 18204 /* Send the FW cleanup command */ 18205 if (bxe_send_final_clnup(sc, (uint8_t)SC_FUNC(sc), poll_cnt)) { 18206 return (-1); 18207 } 18208 18209 /* ATC cleanup */ 18210 18211 /* Verify TX hw is flushed */ 18212 bxe_tx_hw_flushed(sc, poll_cnt); 18213 18214 /* Wait 100ms (not adjusted according to platform) */ 18215 DELAY(100000); 18216 18217 /* Verify no pending pci transactions */ 18218 if (bxe_is_pcie_pending(sc)) { 18219 BLOGE(sc, "PCIE Transactions still pending\n"); 18220 } 18221 18222 /* Debug */ 18223 bxe_hw_enable_status(sc); 18224 18225 /* 18226 * Master enable - Due to WB DMAE writes performed before this 18227 * register is re-initialized as part of the regular function init 18228 */ 18229 REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1); 18230 18231 return (0); 18232 } 18233 18234 #if 0 18235 static void 18236 bxe_init_searcher(struct bxe_softc *sc) 18237 { 18238 int port = SC_PORT(sc); 18239 ecore_src_init_t2(sc, sc->t2, sc->t2_mapping, SRC_CONN_NUM); 18240 /* T1 hash bits value determines the T1 number of entries */ 18241 REG_WR(sc, SRC_REG_NUMBER_HASH_BITS0 + port*4, SRC_HASH_BITS); 18242 } 18243 #endif 18244 18245 static int 18246 bxe_init_hw_func(struct bxe_softc *sc) 18247 { 18248 int port = SC_PORT(sc); 18249 int func = SC_FUNC(sc); 18250 int init_phase = PHASE_PF0 + func; 18251 struct ecore_ilt *ilt = sc->ilt; 18252 uint16_t cdu_ilt_start; 18253 uint32_t addr, val; 18254 uint32_t main_mem_base, main_mem_size, main_mem_prty_clr; 18255 int i, main_mem_width, rc; 18256 18257 BLOGD(sc, DBG_LOAD, "starting func init for func %d\n", func); 18258 18259 /* FLR cleanup */ 18260 if (!CHIP_IS_E1x(sc)) { 18261 rc = bxe_pf_flr_clnup(sc); 18262 if (rc) { 18263 BLOGE(sc, "FLR cleanup failed!\n"); 18264 // XXX bxe_fw_dump(sc); 18265 // XXX bxe_idle_chk(sc); 18266 return (rc); 18267 } 18268 } 18269 18270 /* set MSI reconfigure capability */ 18271 if (sc->devinfo.int_block == INT_BLOCK_HC) { 18272 addr = (port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0); 18273 val = REG_RD(sc, addr); 18274 val |= HC_CONFIG_0_REG_MSI_ATTN_EN_0; 18275 REG_WR(sc, addr, val); 18276 } 18277 18278 ecore_init_block(sc, BLOCK_PXP, init_phase); 18279 ecore_init_block(sc, BLOCK_PXP2, init_phase); 18280 18281 ilt = sc->ilt; 18282 cdu_ilt_start = ilt->clients[ILT_CLIENT_CDU].start; 18283 18284 #if 0 18285 if (IS_SRIOV(sc)) { 18286 cdu_ilt_start += BXE_FIRST_VF_CID/ILT_PAGE_CIDS; 18287 } 18288 cdu_ilt_start = bxe_iov_init_ilt(sc, cdu_ilt_start); 18289 18290 #if (BXE_FIRST_VF_CID > 0) 18291 /* 18292 * If BXE_FIRST_VF_CID > 0 then the PF L2 cids precedes 18293 * those of the VFs, so start line should be reset 18294 */ 18295 cdu_ilt_start = ilt->clients[ILT_CLIENT_CDU].start; 18296 #endif 18297 #endif 18298 18299 for (i = 0; i < L2_ILT_LINES(sc); i++) { 18300 ilt->lines[cdu_ilt_start + i].page = sc->context[i].vcxt; 18301 ilt->lines[cdu_ilt_start + i].page_mapping = 18302 sc->context[i].vcxt_dma.paddr; 18303 ilt->lines[cdu_ilt_start + i].size = sc->context[i].size; 18304 } 18305 ecore_ilt_init_op(sc, INITOP_SET); 18306 18307 #if 0 18308 if (!CONFIGURE_NIC_MODE(sc)) { 18309 bxe_init_searcher(sc); 18310 REG_WR(sc, PRS_REG_NIC_MODE, 0); 18311 BLOGD(sc, DBG_LOAD, "NIC MODE disabled\n"); 18312 } else 18313 #endif 18314 { 18315 /* Set NIC mode */ 18316 REG_WR(sc, PRS_REG_NIC_MODE, 1); 18317 BLOGD(sc, DBG_LOAD, "NIC MODE configured\n"); 18318 } 18319 18320 if (!CHIP_IS_E1x(sc)) { 18321 uint32_t pf_conf = IGU_PF_CONF_FUNC_EN; 18322 18323 /* Turn on a single ISR mode in IGU if driver is going to use 18324 * INT#x or MSI 18325 */ 18326 if (sc->interrupt_mode != INTR_MODE_MSIX) { 18327 pf_conf |= IGU_PF_CONF_SINGLE_ISR_EN; 18328 } 18329 18330 /* 18331 * Timers workaround bug: function init part. 18332 * Need to wait 20msec after initializing ILT, 18333 * needed to make sure there are no requests in 18334 * one of the PXP internal queues with "old" ILT addresses 18335 */ 18336 DELAY(20000); 18337 18338 /* 18339 * Master enable - Due to WB DMAE writes performed before this 18340 * register is re-initialized as part of the regular function 18341 * init 18342 */ 18343 REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1); 18344 /* Enable the function in IGU */ 18345 REG_WR(sc, IGU_REG_PF_CONFIGURATION, pf_conf); 18346 } 18347 18348 sc->dmae_ready = 1; 18349 18350 ecore_init_block(sc, BLOCK_PGLUE_B, init_phase); 18351 18352 if (!CHIP_IS_E1x(sc)) 18353 REG_WR(sc, PGLUE_B_REG_WAS_ERROR_PF_7_0_CLR, func); 18354 18355 ecore_init_block(sc, BLOCK_ATC, init_phase); 18356 ecore_init_block(sc, BLOCK_DMAE, init_phase); 18357 ecore_init_block(sc, BLOCK_NIG, init_phase); 18358 ecore_init_block(sc, BLOCK_SRC, init_phase); 18359 ecore_init_block(sc, BLOCK_MISC, init_phase); 18360 ecore_init_block(sc, BLOCK_TCM, init_phase); 18361 ecore_init_block(sc, BLOCK_UCM, init_phase); 18362 ecore_init_block(sc, BLOCK_CCM, init_phase); 18363 ecore_init_block(sc, BLOCK_XCM, init_phase); 18364 ecore_init_block(sc, BLOCK_TSEM, init_phase); 18365 ecore_init_block(sc, BLOCK_USEM, init_phase); 18366 ecore_init_block(sc, BLOCK_CSEM, init_phase); 18367 ecore_init_block(sc, BLOCK_XSEM, init_phase); 18368 18369 if (!CHIP_IS_E1x(sc)) 18370 REG_WR(sc, QM_REG_PF_EN, 1); 18371 18372 if (!CHIP_IS_E1x(sc)) { 18373 REG_WR(sc, TSEM_REG_VFPF_ERR_NUM, BXE_MAX_NUM_OF_VFS + func); 18374 REG_WR(sc, USEM_REG_VFPF_ERR_NUM, BXE_MAX_NUM_OF_VFS + func); 18375 REG_WR(sc, CSEM_REG_VFPF_ERR_NUM, BXE_MAX_NUM_OF_VFS + func); 18376 REG_WR(sc, XSEM_REG_VFPF_ERR_NUM, BXE_MAX_NUM_OF_VFS + func); 18377 } 18378 ecore_init_block(sc, BLOCK_QM, init_phase); 18379 18380 ecore_init_block(sc, BLOCK_TM, init_phase); 18381 ecore_init_block(sc, BLOCK_DORQ, init_phase); 18382 18383 bxe_iov_init_dq(sc); 18384 18385 ecore_init_block(sc, BLOCK_BRB1, init_phase); 18386 ecore_init_block(sc, BLOCK_PRS, init_phase); 18387 ecore_init_block(sc, BLOCK_TSDM, init_phase); 18388 ecore_init_block(sc, BLOCK_CSDM, init_phase); 18389 ecore_init_block(sc, BLOCK_USDM, init_phase); 18390 ecore_init_block(sc, BLOCK_XSDM, init_phase); 18391 ecore_init_block(sc, BLOCK_UPB, init_phase); 18392 ecore_init_block(sc, BLOCK_XPB, init_phase); 18393 ecore_init_block(sc, BLOCK_PBF, init_phase); 18394 if (!CHIP_IS_E1x(sc)) 18395 REG_WR(sc, PBF_REG_DISABLE_PF, 0); 18396 18397 ecore_init_block(sc, BLOCK_CDU, init_phase); 18398 18399 ecore_init_block(sc, BLOCK_CFC, init_phase); 18400 18401 if (!CHIP_IS_E1x(sc)) 18402 REG_WR(sc, CFC_REG_WEAK_ENABLE_PF, 1); 18403 18404 if (IS_MF(sc)) { 18405 REG_WR(sc, NIG_REG_LLH0_FUNC_EN + port*8, 1); 18406 REG_WR(sc, NIG_REG_LLH0_FUNC_VLAN_ID + port*8, OVLAN(sc)); 18407 } 18408 18409 ecore_init_block(sc, BLOCK_MISC_AEU, init_phase); 18410 18411 /* HC init per function */ 18412 if (sc->devinfo.int_block == INT_BLOCK_HC) { 18413 if (CHIP_IS_E1H(sc)) { 18414 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0); 18415 18416 REG_WR(sc, HC_REG_LEADING_EDGE_0 + port*8, 0); 18417 REG_WR(sc, HC_REG_TRAILING_EDGE_0 + port*8, 0); 18418 } 18419 ecore_init_block(sc, BLOCK_HC, init_phase); 18420 18421 } else { 18422 int num_segs, sb_idx, prod_offset; 18423 18424 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0); 18425 18426 if (!CHIP_IS_E1x(sc)) { 18427 REG_WR(sc, IGU_REG_LEADING_EDGE_LATCH, 0); 18428 REG_WR(sc, IGU_REG_TRAILING_EDGE_LATCH, 0); 18429 } 18430 18431 ecore_init_block(sc, BLOCK_IGU, init_phase); 18432 18433 if (!CHIP_IS_E1x(sc)) { 18434 int dsb_idx = 0; 18435 /** 18436 * Producer memory: 18437 * E2 mode: address 0-135 match to the mapping memory; 18438 * 136 - PF0 default prod; 137 - PF1 default prod; 18439 * 138 - PF2 default prod; 139 - PF3 default prod; 18440 * 140 - PF0 attn prod; 141 - PF1 attn prod; 18441 * 142 - PF2 attn prod; 143 - PF3 attn prod; 18442 * 144-147 reserved. 18443 * 18444 * E1.5 mode - In backward compatible mode; 18445 * for non default SB; each even line in the memory 18446 * holds the U producer and each odd line hold 18447 * the C producer. The first 128 producers are for 18448 * NDSB (PF0 - 0-31; PF1 - 32-63 and so on). The last 20 18449 * producers are for the DSB for each PF. 18450 * Each PF has five segments: (the order inside each 18451 * segment is PF0; PF1; PF2; PF3) - 128-131 U prods; 18452 * 132-135 C prods; 136-139 X prods; 140-143 T prods; 18453 * 144-147 attn prods; 18454 */ 18455 /* non-default-status-blocks */ 18456 num_segs = CHIP_INT_MODE_IS_BC(sc) ? 18457 IGU_BC_NDSB_NUM_SEGS : IGU_NORM_NDSB_NUM_SEGS; 18458 for (sb_idx = 0; sb_idx < sc->igu_sb_cnt; sb_idx++) { 18459 prod_offset = (sc->igu_base_sb + sb_idx) * 18460 num_segs; 18461 18462 for (i = 0; i < num_segs; i++) { 18463 addr = IGU_REG_PROD_CONS_MEMORY + 18464 (prod_offset + i) * 4; 18465 REG_WR(sc, addr, 0); 18466 } 18467 /* send consumer update with value 0 */ 18468 bxe_ack_sb(sc, sc->igu_base_sb + sb_idx, 18469 USTORM_ID, 0, IGU_INT_NOP, 1); 18470 bxe_igu_clear_sb(sc, sc->igu_base_sb + sb_idx); 18471 } 18472 18473 /* default-status-blocks */ 18474 num_segs = CHIP_INT_MODE_IS_BC(sc) ? 18475 IGU_BC_DSB_NUM_SEGS : IGU_NORM_DSB_NUM_SEGS; 18476 18477 if (CHIP_IS_MODE_4_PORT(sc)) 18478 dsb_idx = SC_FUNC(sc); 18479 else 18480 dsb_idx = SC_VN(sc); 18481 18482 prod_offset = (CHIP_INT_MODE_IS_BC(sc) ? 18483 IGU_BC_BASE_DSB_PROD + dsb_idx : 18484 IGU_NORM_BASE_DSB_PROD + dsb_idx); 18485 18486 /* 18487 * igu prods come in chunks of E1HVN_MAX (4) - 18488 * does not matters what is the current chip mode 18489 */ 18490 for (i = 0; i < (num_segs * E1HVN_MAX); 18491 i += E1HVN_MAX) { 18492 addr = IGU_REG_PROD_CONS_MEMORY + 18493 (prod_offset + i)*4; 18494 REG_WR(sc, addr, 0); 18495 } 18496 /* send consumer update with 0 */ 18497 if (CHIP_INT_MODE_IS_BC(sc)) { 18498 bxe_ack_sb(sc, sc->igu_dsb_id, 18499 USTORM_ID, 0, IGU_INT_NOP, 1); 18500 bxe_ack_sb(sc, sc->igu_dsb_id, 18501 CSTORM_ID, 0, IGU_INT_NOP, 1); 18502 bxe_ack_sb(sc, sc->igu_dsb_id, 18503 XSTORM_ID, 0, IGU_INT_NOP, 1); 18504 bxe_ack_sb(sc, sc->igu_dsb_id, 18505 TSTORM_ID, 0, IGU_INT_NOP, 1); 18506 bxe_ack_sb(sc, sc->igu_dsb_id, 18507 ATTENTION_ID, 0, IGU_INT_NOP, 1); 18508 } else { 18509 bxe_ack_sb(sc, sc->igu_dsb_id, 18510 USTORM_ID, 0, IGU_INT_NOP, 1); 18511 bxe_ack_sb(sc, sc->igu_dsb_id, 18512 ATTENTION_ID, 0, IGU_INT_NOP, 1); 18513 } 18514 bxe_igu_clear_sb(sc, sc->igu_dsb_id); 18515 18516 /* !!! these should become driver const once 18517 rf-tool supports split-68 const */ 18518 REG_WR(sc, IGU_REG_SB_INT_BEFORE_MASK_LSB, 0); 18519 REG_WR(sc, IGU_REG_SB_INT_BEFORE_MASK_MSB, 0); 18520 REG_WR(sc, IGU_REG_SB_MASK_LSB, 0); 18521 REG_WR(sc, IGU_REG_SB_MASK_MSB, 0); 18522 REG_WR(sc, IGU_REG_PBA_STATUS_LSB, 0); 18523 REG_WR(sc, IGU_REG_PBA_STATUS_MSB, 0); 18524 } 18525 } 18526 18527 /* Reset PCIE errors for debug */ 18528 REG_WR(sc, 0x2114, 0xffffffff); 18529 REG_WR(sc, 0x2120, 0xffffffff); 18530 18531 if (CHIP_IS_E1x(sc)) { 18532 main_mem_size = HC_REG_MAIN_MEMORY_SIZE / 2; /*dwords*/ 18533 main_mem_base = HC_REG_MAIN_MEMORY + 18534 SC_PORT(sc) * (main_mem_size * 4); 18535 main_mem_prty_clr = HC_REG_HC_PRTY_STS_CLR; 18536 main_mem_width = 8; 18537 18538 val = REG_RD(sc, main_mem_prty_clr); 18539 if (val) { 18540 BLOGD(sc, DBG_LOAD, 18541 "Parity errors in HC block during function init (0x%x)!\n", 18542 val); 18543 } 18544 18545 /* Clear "false" parity errors in MSI-X table */ 18546 for (i = main_mem_base; 18547 i < main_mem_base + main_mem_size * 4; 18548 i += main_mem_width) { 18549 bxe_read_dmae(sc, i, main_mem_width / 4); 18550 bxe_write_dmae(sc, BXE_SP_MAPPING(sc, wb_data), 18551 i, main_mem_width / 4); 18552 } 18553 /* Clear HC parity attention */ 18554 REG_RD(sc, main_mem_prty_clr); 18555 } 18556 18557 #if 1 18558 /* Enable STORMs SP logging */ 18559 REG_WR8(sc, BAR_USTRORM_INTMEM + 18560 USTORM_RECORD_SLOW_PATH_OFFSET(SC_FUNC(sc)), 1); 18561 REG_WR8(sc, BAR_TSTRORM_INTMEM + 18562 TSTORM_RECORD_SLOW_PATH_OFFSET(SC_FUNC(sc)), 1); 18563 REG_WR8(sc, BAR_CSTRORM_INTMEM + 18564 CSTORM_RECORD_SLOW_PATH_OFFSET(SC_FUNC(sc)), 1); 18565 REG_WR8(sc, BAR_XSTRORM_INTMEM + 18566 XSTORM_RECORD_SLOW_PATH_OFFSET(SC_FUNC(sc)), 1); 18567 #endif 18568 18569 elink_phy_probe(&sc->link_params); 18570 18571 return (0); 18572 } 18573 18574 static void 18575 bxe_link_reset(struct bxe_softc *sc) 18576 { 18577 if (!BXE_NOMCP(sc)) { 18578 BXE_PHY_LOCK(sc); 18579 elink_lfa_reset(&sc->link_params, &sc->link_vars); 18580 BXE_PHY_UNLOCK(sc); 18581 } else { 18582 if (!CHIP_REV_IS_SLOW(sc)) { 18583 BLOGW(sc, "Bootcode is missing - cannot reset link\n"); 18584 } 18585 } 18586 } 18587 18588 static void 18589 bxe_reset_port(struct bxe_softc *sc) 18590 { 18591 int port = SC_PORT(sc); 18592 uint32_t val; 18593 18594 /* reset physical Link */ 18595 bxe_link_reset(sc); 18596 18597 REG_WR(sc, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0); 18598 18599 /* Do not rcv packets to BRB */ 18600 REG_WR(sc, NIG_REG_LLH0_BRB1_DRV_MASK + port*4, 0x0); 18601 /* Do not direct rcv packets that are not for MCP to the BRB */ 18602 REG_WR(sc, (port ? NIG_REG_LLH1_BRB1_NOT_MCP : 18603 NIG_REG_LLH0_BRB1_NOT_MCP), 0x0); 18604 18605 /* Configure AEU */ 18606 REG_WR(sc, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, 0); 18607 18608 DELAY(100000); 18609 18610 /* Check for BRB port occupancy */ 18611 val = REG_RD(sc, BRB1_REG_PORT_NUM_OCC_BLOCKS_0 + port*4); 18612 if (val) { 18613 BLOGD(sc, DBG_LOAD, 18614 "BRB1 is not empty, %d blocks are occupied\n", val); 18615 } 18616 18617 /* TODO: Close Doorbell port? */ 18618 } 18619 18620 static void 18621 bxe_ilt_wr(struct bxe_softc *sc, 18622 uint32_t index, 18623 bus_addr_t addr) 18624 { 18625 int reg; 18626 uint32_t wb_write[2]; 18627 18628 if (CHIP_IS_E1(sc)) { 18629 reg = PXP2_REG_RQ_ONCHIP_AT + index*8; 18630 } else { 18631 reg = PXP2_REG_RQ_ONCHIP_AT_B0 + index*8; 18632 } 18633 18634 wb_write[0] = ONCHIP_ADDR1(addr); 18635 wb_write[1] = ONCHIP_ADDR2(addr); 18636 REG_WR_DMAE(sc, reg, wb_write, 2); 18637 } 18638 18639 static void 18640 bxe_clear_func_ilt(struct bxe_softc *sc, 18641 uint32_t func) 18642 { 18643 uint32_t i, base = FUNC_ILT_BASE(func); 18644 for (i = base; i < base + ILT_PER_FUNC; i++) { 18645 bxe_ilt_wr(sc, i, 0); 18646 } 18647 } 18648 18649 static void 18650 bxe_reset_func(struct bxe_softc *sc) 18651 { 18652 struct bxe_fastpath *fp; 18653 int port = SC_PORT(sc); 18654 int func = SC_FUNC(sc); 18655 int i; 18656 18657 /* Disable the function in the FW */ 18658 REG_WR8(sc, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(func), 0); 18659 REG_WR8(sc, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(func), 0); 18660 REG_WR8(sc, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(func), 0); 18661 REG_WR8(sc, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(func), 0); 18662 18663 /* FP SBs */ 18664 FOR_EACH_ETH_QUEUE(sc, i) { 18665 fp = &sc->fp[i]; 18666 REG_WR8(sc, BAR_CSTRORM_INTMEM + 18667 CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET(fp->fw_sb_id), 18668 SB_DISABLED); 18669 } 18670 18671 #if 0 18672 if (CNIC_LOADED(sc)) { 18673 /* CNIC SB */ 18674 REG_WR8(sc, BAR_CSTRORM_INTMEM + 18675 CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET 18676 (bxe_cnic_fw_sb_id(sc)), SB_DISABLED); 18677 } 18678 #endif 18679 18680 /* SP SB */ 18681 REG_WR8(sc, BAR_CSTRORM_INTMEM + 18682 CSTORM_SP_STATUS_BLOCK_DATA_STATE_OFFSET(func), 18683 SB_DISABLED); 18684 18685 for (i = 0; i < XSTORM_SPQ_DATA_SIZE / 4; i++) { 18686 REG_WR(sc, BAR_XSTRORM_INTMEM + XSTORM_SPQ_DATA_OFFSET(func), 0); 18687 } 18688 18689 /* Configure IGU */ 18690 if (sc->devinfo.int_block == INT_BLOCK_HC) { 18691 REG_WR(sc, HC_REG_LEADING_EDGE_0 + port*8, 0); 18692 REG_WR(sc, HC_REG_TRAILING_EDGE_0 + port*8, 0); 18693 } else { 18694 REG_WR(sc, IGU_REG_LEADING_EDGE_LATCH, 0); 18695 REG_WR(sc, IGU_REG_TRAILING_EDGE_LATCH, 0); 18696 } 18697 18698 if (CNIC_LOADED(sc)) { 18699 /* Disable Timer scan */ 18700 REG_WR(sc, TM_REG_EN_LINEAR0_TIMER + port*4, 0); 18701 /* 18702 * Wait for at least 10ms and up to 2 second for the timers 18703 * scan to complete 18704 */ 18705 for (i = 0; i < 200; i++) { 18706 DELAY(10000); 18707 if (!REG_RD(sc, TM_REG_LIN0_SCAN_ON + port*4)) 18708 break; 18709 } 18710 } 18711 18712 /* Clear ILT */ 18713 bxe_clear_func_ilt(sc, func); 18714 18715 /* 18716 * Timers workaround bug for E2: if this is vnic-3, 18717 * we need to set the entire ilt range for this timers. 18718 */ 18719 if (!CHIP_IS_E1x(sc) && SC_VN(sc) == 3) { 18720 struct ilt_client_info ilt_cli; 18721 /* use dummy TM client */ 18722 memset(&ilt_cli, 0, sizeof(struct ilt_client_info)); 18723 ilt_cli.start = 0; 18724 ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1; 18725 ilt_cli.client_num = ILT_CLIENT_TM; 18726 18727 ecore_ilt_boundry_init_op(sc, &ilt_cli, 0, INITOP_CLEAR); 18728 } 18729 18730 /* this assumes that reset_port() called before reset_func()*/ 18731 if (!CHIP_IS_E1x(sc)) { 18732 bxe_pf_disable(sc); 18733 } 18734 18735 sc->dmae_ready = 0; 18736 } 18737 18738 static int 18739 bxe_gunzip_init(struct bxe_softc *sc) 18740 { 18741 return (0); 18742 } 18743 18744 static void 18745 bxe_gunzip_end(struct bxe_softc *sc) 18746 { 18747 return; 18748 } 18749 18750 static int 18751 bxe_init_firmware(struct bxe_softc *sc) 18752 { 18753 if (CHIP_IS_E1(sc)) { 18754 ecore_init_e1_firmware(sc); 18755 sc->iro_array = e1_iro_arr; 18756 } else if (CHIP_IS_E1H(sc)) { 18757 ecore_init_e1h_firmware(sc); 18758 sc->iro_array = e1h_iro_arr; 18759 } else if (!CHIP_IS_E1x(sc)) { 18760 ecore_init_e2_firmware(sc); 18761 sc->iro_array = e2_iro_arr; 18762 } else { 18763 BLOGE(sc, "Unsupported chip revision\n"); 18764 return (-1); 18765 } 18766 18767 return (0); 18768 } 18769 18770 static void 18771 bxe_release_firmware(struct bxe_softc *sc) 18772 { 18773 /* Do nothing */ 18774 return; 18775 } 18776 18777 static int 18778 ecore_gunzip(struct bxe_softc *sc, 18779 const uint8_t *zbuf, 18780 int len) 18781 { 18782 /* XXX : Implement... */ 18783 BLOGD(sc, DBG_LOAD, "ECORE_GUNZIP NOT IMPLEMENTED\n"); 18784 return (FALSE); 18785 } 18786 18787 static void 18788 ecore_reg_wr_ind(struct bxe_softc *sc, 18789 uint32_t addr, 18790 uint32_t val) 18791 { 18792 bxe_reg_wr_ind(sc, addr, val); 18793 } 18794 18795 static void 18796 ecore_write_dmae_phys_len(struct bxe_softc *sc, 18797 bus_addr_t phys_addr, 18798 uint32_t addr, 18799 uint32_t len) 18800 { 18801 bxe_write_dmae_phys_len(sc, phys_addr, addr, len); 18802 } 18803 18804 void 18805 ecore_storm_memset_struct(struct bxe_softc *sc, 18806 uint32_t addr, 18807 size_t size, 18808 uint32_t *data) 18809 { 18810 uint8_t i; 18811 for (i = 0; i < size/4; i++) { 18812 REG_WR(sc, addr + (i * 4), data[i]); 18813 } 18814 } 18815 18816