1 /*- 2 * Copyright (c) 2007-2014 QLogic Corporation. All rights reserved. 3 * 4 * Redistribution and use in source and binary forms, with or without 5 * modification, are permitted provided that the following conditions 6 * are met: 7 * 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 14 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS' 15 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 17 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS 18 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 19 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 20 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 21 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 22 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 23 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF 24 * THE POSSIBILITY OF SUCH DAMAGE. 25 */ 26 27 #include <sys/cdefs.h> 28 __FBSDID("$FreeBSD$"); 29 30 #define BXE_DRIVER_VERSION "1.78.89" 31 32 #include "bxe.h" 33 #include "ecore_sp.h" 34 #include "ecore_init.h" 35 #include "ecore_init_ops.h" 36 37 #include "57710_int_offsets.h" 38 #include "57711_int_offsets.h" 39 #include "57712_int_offsets.h" 40 41 /* 42 * CTLTYPE_U64 and sysctl_handle_64 were added in r217616. Define these 43 * explicitly here for older kernels that don't include this changeset. 44 */ 45 #ifndef CTLTYPE_U64 46 #define CTLTYPE_U64 CTLTYPE_QUAD 47 #define sysctl_handle_64 sysctl_handle_quad 48 #endif 49 50 /* 51 * CSUM_TCP_IPV6 and CSUM_UDP_IPV6 were added in r236170. Define these 52 * here as zero(0) for older kernels that don't include this changeset 53 * thereby masking the functionality. 54 */ 55 #ifndef CSUM_TCP_IPV6 56 #define CSUM_TCP_IPV6 0 57 #define CSUM_UDP_IPV6 0 58 #endif 59 60 /* 61 * pci_find_cap was added in r219865. Re-define this at pci_find_extcap 62 * for older kernels that don't include this changeset. 63 */ 64 #if __FreeBSD_version < 900035 65 #define pci_find_cap pci_find_extcap 66 #endif 67 68 #define BXE_DEF_SB_ATT_IDX 0x0001 69 #define BXE_DEF_SB_IDX 0x0002 70 71 /* 72 * FLR Support - bxe_pf_flr_clnup() is called during nic_load in the per 73 * function HW initialization. 74 */ 75 #define FLR_WAIT_USEC 10000 /* 10 msecs */ 76 #define FLR_WAIT_INTERVAL 50 /* usecs */ 77 #define FLR_POLL_CNT (FLR_WAIT_USEC / FLR_WAIT_INTERVAL) /* 200 */ 78 79 struct pbf_pN_buf_regs { 80 int pN; 81 uint32_t init_crd; 82 uint32_t crd; 83 uint32_t crd_freed; 84 }; 85 86 struct pbf_pN_cmd_regs { 87 int pN; 88 uint32_t lines_occup; 89 uint32_t lines_freed; 90 }; 91 92 /* 93 * PCI Device ID Table used by bxe_probe(). 94 */ 95 #define BXE_DEVDESC_MAX 64 96 static struct bxe_device_type bxe_devs[] = { 97 { 98 BRCM_VENDORID, 99 CHIP_NUM_57710, 100 PCI_ANY_ID, PCI_ANY_ID, 101 "QLogic NetXtreme II BCM57710 10GbE" 102 }, 103 { 104 BRCM_VENDORID, 105 CHIP_NUM_57711, 106 PCI_ANY_ID, PCI_ANY_ID, 107 "QLogic NetXtreme II BCM57711 10GbE" 108 }, 109 { 110 BRCM_VENDORID, 111 CHIP_NUM_57711E, 112 PCI_ANY_ID, PCI_ANY_ID, 113 "QLogic NetXtreme II BCM57711E 10GbE" 114 }, 115 { 116 BRCM_VENDORID, 117 CHIP_NUM_57712, 118 PCI_ANY_ID, PCI_ANY_ID, 119 "QLogic NetXtreme II BCM57712 10GbE" 120 }, 121 { 122 BRCM_VENDORID, 123 CHIP_NUM_57712_MF, 124 PCI_ANY_ID, PCI_ANY_ID, 125 "QLogic NetXtreme II BCM57712 MF 10GbE" 126 }, 127 { 128 BRCM_VENDORID, 129 CHIP_NUM_57800, 130 PCI_ANY_ID, PCI_ANY_ID, 131 "QLogic NetXtreme II BCM57800 10GbE" 132 }, 133 { 134 BRCM_VENDORID, 135 CHIP_NUM_57800_MF, 136 PCI_ANY_ID, PCI_ANY_ID, 137 "QLogic NetXtreme II BCM57800 MF 10GbE" 138 }, 139 { 140 BRCM_VENDORID, 141 CHIP_NUM_57810, 142 PCI_ANY_ID, PCI_ANY_ID, 143 "QLogic NetXtreme II BCM57810 10GbE" 144 }, 145 { 146 BRCM_VENDORID, 147 CHIP_NUM_57810_MF, 148 PCI_ANY_ID, PCI_ANY_ID, 149 "QLogic NetXtreme II BCM57810 MF 10GbE" 150 }, 151 { 152 BRCM_VENDORID, 153 CHIP_NUM_57811, 154 PCI_ANY_ID, PCI_ANY_ID, 155 "QLogic NetXtreme II BCM57811 10GbE" 156 }, 157 { 158 BRCM_VENDORID, 159 CHIP_NUM_57811_MF, 160 PCI_ANY_ID, PCI_ANY_ID, 161 "QLogic NetXtreme II BCM57811 MF 10GbE" 162 }, 163 { 164 BRCM_VENDORID, 165 CHIP_NUM_57840_4_10, 166 PCI_ANY_ID, PCI_ANY_ID, 167 "QLogic NetXtreme II BCM57840 4x10GbE" 168 }, 169 { 170 BRCM_VENDORID, 171 CHIP_NUM_57840_MF, 172 PCI_ANY_ID, PCI_ANY_ID, 173 "QLogic NetXtreme II BCM57840 MF 10GbE" 174 }, 175 { 176 0, 0, 0, 0, NULL 177 } 178 }; 179 180 MALLOC_DECLARE(M_BXE_ILT); 181 MALLOC_DEFINE(M_BXE_ILT, "bxe_ilt", "bxe ILT pointer"); 182 183 /* 184 * FreeBSD device entry points. 185 */ 186 static int bxe_probe(device_t); 187 static int bxe_attach(device_t); 188 static int bxe_detach(device_t); 189 static int bxe_shutdown(device_t); 190 191 /* 192 * FreeBSD KLD module/device interface event handler method. 193 */ 194 static device_method_t bxe_methods[] = { 195 /* Device interface (device_if.h) */ 196 DEVMETHOD(device_probe, bxe_probe), 197 DEVMETHOD(device_attach, bxe_attach), 198 DEVMETHOD(device_detach, bxe_detach), 199 DEVMETHOD(device_shutdown, bxe_shutdown), 200 /* Bus interface (bus_if.h) */ 201 DEVMETHOD(bus_print_child, bus_generic_print_child), 202 DEVMETHOD(bus_driver_added, bus_generic_driver_added), 203 KOBJMETHOD_END 204 }; 205 206 /* 207 * FreeBSD KLD Module data declaration 208 */ 209 static driver_t bxe_driver = { 210 "bxe", /* module name */ 211 bxe_methods, /* event handler */ 212 sizeof(struct bxe_softc) /* extra data */ 213 }; 214 215 /* 216 * FreeBSD dev class is needed to manage dev instances and 217 * to associate with a bus type 218 */ 219 static devclass_t bxe_devclass; 220 221 MODULE_DEPEND(bxe, pci, 1, 1, 1); 222 MODULE_DEPEND(bxe, ether, 1, 1, 1); 223 DRIVER_MODULE(bxe, pci, bxe_driver, bxe_devclass, 0, 0); 224 225 /* resources needed for unloading a previously loaded device */ 226 227 #define BXE_PREV_WAIT_NEEDED 1 228 struct mtx bxe_prev_mtx; 229 MTX_SYSINIT(bxe_prev_mtx, &bxe_prev_mtx, "bxe_prev_lock", MTX_DEF); 230 struct bxe_prev_list_node { 231 LIST_ENTRY(bxe_prev_list_node) node; 232 uint8_t bus; 233 uint8_t slot; 234 uint8_t path; 235 uint8_t aer; /* XXX automatic error recovery */ 236 uint8_t undi; 237 }; 238 static LIST_HEAD(, bxe_prev_list_node) bxe_prev_list = LIST_HEAD_INITIALIZER(bxe_prev_list); 239 240 static int load_count[2][3] = { {0} }; /* per-path: 0-common, 1-port0, 2-port1 */ 241 242 /* Tunable device values... */ 243 244 SYSCTL_NODE(_hw, OID_AUTO, bxe, CTLFLAG_RD, 0, "bxe driver parameters"); 245 246 /* Debug */ 247 unsigned long bxe_debug = 0; 248 SYSCTL_ULONG(_hw_bxe, OID_AUTO, debug, CTLFLAG_RDTUN, 249 &bxe_debug, 0, "Debug logging mode"); 250 251 /* Interrupt Mode: 0 (IRQ), 1 (MSI/IRQ), and 2 (MSI-X/MSI/IRQ) */ 252 static int bxe_interrupt_mode = INTR_MODE_MSIX; 253 SYSCTL_INT(_hw_bxe, OID_AUTO, interrupt_mode, CTLFLAG_RDTUN, 254 &bxe_interrupt_mode, 0, "Interrupt (MSI-X/MSI/INTx) mode"); 255 256 /* Number of Queues: 0 (Auto) or 1 to 16 (fixed queue number) */ 257 static int bxe_queue_count = 4; 258 SYSCTL_INT(_hw_bxe, OID_AUTO, queue_count, CTLFLAG_RDTUN, 259 &bxe_queue_count, 0, "Multi-Queue queue count"); 260 261 /* max number of buffers per queue (default RX_BD_USABLE) */ 262 static int bxe_max_rx_bufs = 0; 263 SYSCTL_INT(_hw_bxe, OID_AUTO, max_rx_bufs, CTLFLAG_RDTUN, 264 &bxe_max_rx_bufs, 0, "Maximum Number of Rx Buffers Per Queue"); 265 266 /* Host interrupt coalescing RX tick timer (usecs) */ 267 static int bxe_hc_rx_ticks = 25; 268 SYSCTL_INT(_hw_bxe, OID_AUTO, hc_rx_ticks, CTLFLAG_RDTUN, 269 &bxe_hc_rx_ticks, 0, "Host Coalescing Rx ticks"); 270 271 /* Host interrupt coalescing TX tick timer (usecs) */ 272 static int bxe_hc_tx_ticks = 50; 273 SYSCTL_INT(_hw_bxe, OID_AUTO, hc_tx_ticks, CTLFLAG_RDTUN, 274 &bxe_hc_tx_ticks, 0, "Host Coalescing Tx ticks"); 275 276 /* Maximum number of Rx packets to process at a time */ 277 static int bxe_rx_budget = 0xffffffff; 278 SYSCTL_INT(_hw_bxe, OID_AUTO, rx_budget, CTLFLAG_TUN, 279 &bxe_rx_budget, 0, "Rx processing budget"); 280 281 /* Maximum LRO aggregation size */ 282 static int bxe_max_aggregation_size = 0; 283 SYSCTL_INT(_hw_bxe, OID_AUTO, max_aggregation_size, CTLFLAG_TUN, 284 &bxe_max_aggregation_size, 0, "max aggregation size"); 285 286 /* PCI MRRS: -1 (Auto), 0 (128B), 1 (256B), 2 (512B), 3 (1KB) */ 287 static int bxe_mrrs = -1; 288 SYSCTL_INT(_hw_bxe, OID_AUTO, mrrs, CTLFLAG_RDTUN, 289 &bxe_mrrs, 0, "PCIe maximum read request size"); 290 291 /* AutoGrEEEn: 0 (hardware default), 1 (force on), 2 (force off) */ 292 static int bxe_autogreeen = 0; 293 SYSCTL_INT(_hw_bxe, OID_AUTO, autogreeen, CTLFLAG_RDTUN, 294 &bxe_autogreeen, 0, "AutoGrEEEn support"); 295 296 /* 4-tuple RSS support for UDP: 0 (disabled), 1 (enabled) */ 297 static int bxe_udp_rss = 0; 298 SYSCTL_INT(_hw_bxe, OID_AUTO, udp_rss, CTLFLAG_RDTUN, 299 &bxe_udp_rss, 0, "UDP RSS support"); 300 301 302 #define STAT_NAME_LEN 32 /* no stat names below can be longer than this */ 303 304 #define STATS_OFFSET32(stat_name) \ 305 (offsetof(struct bxe_eth_stats, stat_name) / 4) 306 307 #define Q_STATS_OFFSET32(stat_name) \ 308 (offsetof(struct bxe_eth_q_stats, stat_name) / 4) 309 310 static const struct { 311 uint32_t offset; 312 uint32_t size; 313 uint32_t flags; 314 #define STATS_FLAGS_PORT 1 315 #define STATS_FLAGS_FUNC 2 /* MF only cares about function stats */ 316 #define STATS_FLAGS_BOTH (STATS_FLAGS_FUNC | STATS_FLAGS_PORT) 317 char string[STAT_NAME_LEN]; 318 } bxe_eth_stats_arr[] = { 319 { STATS_OFFSET32(total_bytes_received_hi), 320 8, STATS_FLAGS_BOTH, "rx_bytes" }, 321 { STATS_OFFSET32(error_bytes_received_hi), 322 8, STATS_FLAGS_BOTH, "rx_error_bytes" }, 323 { STATS_OFFSET32(total_unicast_packets_received_hi), 324 8, STATS_FLAGS_BOTH, "rx_ucast_packets" }, 325 { STATS_OFFSET32(total_multicast_packets_received_hi), 326 8, STATS_FLAGS_BOTH, "rx_mcast_packets" }, 327 { STATS_OFFSET32(total_broadcast_packets_received_hi), 328 8, STATS_FLAGS_BOTH, "rx_bcast_packets" }, 329 { STATS_OFFSET32(rx_stat_dot3statsfcserrors_hi), 330 8, STATS_FLAGS_PORT, "rx_crc_errors" }, 331 { STATS_OFFSET32(rx_stat_dot3statsalignmenterrors_hi), 332 8, STATS_FLAGS_PORT, "rx_align_errors" }, 333 { STATS_OFFSET32(rx_stat_etherstatsundersizepkts_hi), 334 8, STATS_FLAGS_PORT, "rx_undersize_packets" }, 335 { STATS_OFFSET32(etherstatsoverrsizepkts_hi), 336 8, STATS_FLAGS_PORT, "rx_oversize_packets" }, 337 { STATS_OFFSET32(rx_stat_etherstatsfragments_hi), 338 8, STATS_FLAGS_PORT, "rx_fragments" }, 339 { STATS_OFFSET32(rx_stat_etherstatsjabbers_hi), 340 8, STATS_FLAGS_PORT, "rx_jabbers" }, 341 { STATS_OFFSET32(no_buff_discard_hi), 342 8, STATS_FLAGS_BOTH, "rx_discards" }, 343 { STATS_OFFSET32(mac_filter_discard), 344 4, STATS_FLAGS_PORT, "rx_filtered_packets" }, 345 { STATS_OFFSET32(mf_tag_discard), 346 4, STATS_FLAGS_PORT, "rx_mf_tag_discard" }, 347 { STATS_OFFSET32(pfc_frames_received_hi), 348 8, STATS_FLAGS_PORT, "pfc_frames_received" }, 349 { STATS_OFFSET32(pfc_frames_sent_hi), 350 8, STATS_FLAGS_PORT, "pfc_frames_sent" }, 351 { STATS_OFFSET32(brb_drop_hi), 352 8, STATS_FLAGS_PORT, "rx_brb_discard" }, 353 { STATS_OFFSET32(brb_truncate_hi), 354 8, STATS_FLAGS_PORT, "rx_brb_truncate" }, 355 { STATS_OFFSET32(pause_frames_received_hi), 356 8, STATS_FLAGS_PORT, "rx_pause_frames" }, 357 { STATS_OFFSET32(rx_stat_maccontrolframesreceived_hi), 358 8, STATS_FLAGS_PORT, "rx_mac_ctrl_frames" }, 359 { STATS_OFFSET32(nig_timer_max), 360 4, STATS_FLAGS_PORT, "rx_constant_pause_events" }, 361 { STATS_OFFSET32(total_bytes_transmitted_hi), 362 8, STATS_FLAGS_BOTH, "tx_bytes" }, 363 { STATS_OFFSET32(tx_stat_ifhcoutbadoctets_hi), 364 8, STATS_FLAGS_PORT, "tx_error_bytes" }, 365 { STATS_OFFSET32(total_unicast_packets_transmitted_hi), 366 8, STATS_FLAGS_BOTH, "tx_ucast_packets" }, 367 { STATS_OFFSET32(total_multicast_packets_transmitted_hi), 368 8, STATS_FLAGS_BOTH, "tx_mcast_packets" }, 369 { STATS_OFFSET32(total_broadcast_packets_transmitted_hi), 370 8, STATS_FLAGS_BOTH, "tx_bcast_packets" }, 371 { STATS_OFFSET32(tx_stat_dot3statsinternalmactransmiterrors_hi), 372 8, STATS_FLAGS_PORT, "tx_mac_errors" }, 373 { STATS_OFFSET32(rx_stat_dot3statscarriersenseerrors_hi), 374 8, STATS_FLAGS_PORT, "tx_carrier_errors" }, 375 { STATS_OFFSET32(tx_stat_dot3statssinglecollisionframes_hi), 376 8, STATS_FLAGS_PORT, "tx_single_collisions" }, 377 { STATS_OFFSET32(tx_stat_dot3statsmultiplecollisionframes_hi), 378 8, STATS_FLAGS_PORT, "tx_multi_collisions" }, 379 { STATS_OFFSET32(tx_stat_dot3statsdeferredtransmissions_hi), 380 8, STATS_FLAGS_PORT, "tx_deferred" }, 381 { STATS_OFFSET32(tx_stat_dot3statsexcessivecollisions_hi), 382 8, STATS_FLAGS_PORT, "tx_excess_collisions" }, 383 { STATS_OFFSET32(tx_stat_dot3statslatecollisions_hi), 384 8, STATS_FLAGS_PORT, "tx_late_collisions" }, 385 { STATS_OFFSET32(tx_stat_etherstatscollisions_hi), 386 8, STATS_FLAGS_PORT, "tx_total_collisions" }, 387 { STATS_OFFSET32(tx_stat_etherstatspkts64octets_hi), 388 8, STATS_FLAGS_PORT, "tx_64_byte_packets" }, 389 { STATS_OFFSET32(tx_stat_etherstatspkts65octetsto127octets_hi), 390 8, STATS_FLAGS_PORT, "tx_65_to_127_byte_packets" }, 391 { STATS_OFFSET32(tx_stat_etherstatspkts128octetsto255octets_hi), 392 8, STATS_FLAGS_PORT, "tx_128_to_255_byte_packets" }, 393 { STATS_OFFSET32(tx_stat_etherstatspkts256octetsto511octets_hi), 394 8, STATS_FLAGS_PORT, "tx_256_to_511_byte_packets" }, 395 { STATS_OFFSET32(tx_stat_etherstatspkts512octetsto1023octets_hi), 396 8, STATS_FLAGS_PORT, "tx_512_to_1023_byte_packets" }, 397 { STATS_OFFSET32(etherstatspkts1024octetsto1522octets_hi), 398 8, STATS_FLAGS_PORT, "tx_1024_to_1522_byte_packets" }, 399 { STATS_OFFSET32(etherstatspktsover1522octets_hi), 400 8, STATS_FLAGS_PORT, "tx_1523_to_9022_byte_packets" }, 401 { STATS_OFFSET32(pause_frames_sent_hi), 402 8, STATS_FLAGS_PORT, "tx_pause_frames" }, 403 { STATS_OFFSET32(total_tpa_aggregations_hi), 404 8, STATS_FLAGS_FUNC, "tpa_aggregations" }, 405 { STATS_OFFSET32(total_tpa_aggregated_frames_hi), 406 8, STATS_FLAGS_FUNC, "tpa_aggregated_frames"}, 407 { STATS_OFFSET32(total_tpa_bytes_hi), 408 8, STATS_FLAGS_FUNC, "tpa_bytes"}, 409 { STATS_OFFSET32(eee_tx_lpi), 410 4, STATS_FLAGS_PORT, "eee_tx_lpi"}, 411 { STATS_OFFSET32(rx_calls), 412 4, STATS_FLAGS_FUNC, "rx_calls"}, 413 { STATS_OFFSET32(rx_pkts), 414 4, STATS_FLAGS_FUNC, "rx_pkts"}, 415 { STATS_OFFSET32(rx_tpa_pkts), 416 4, STATS_FLAGS_FUNC, "rx_tpa_pkts"}, 417 { STATS_OFFSET32(rx_erroneous_jumbo_sge_pkts), 418 4, STATS_FLAGS_FUNC, "rx_erroneous_jumbo_sge_pkts"}, 419 { STATS_OFFSET32(rx_bxe_service_rxsgl), 420 4, STATS_FLAGS_FUNC, "rx_bxe_service_rxsgl"}, 421 { STATS_OFFSET32(rx_jumbo_sge_pkts), 422 4, STATS_FLAGS_FUNC, "rx_jumbo_sge_pkts"}, 423 { STATS_OFFSET32(rx_soft_errors), 424 4, STATS_FLAGS_FUNC, "rx_soft_errors"}, 425 { STATS_OFFSET32(rx_hw_csum_errors), 426 4, STATS_FLAGS_FUNC, "rx_hw_csum_errors"}, 427 { STATS_OFFSET32(rx_ofld_frames_csum_ip), 428 4, STATS_FLAGS_FUNC, "rx_ofld_frames_csum_ip"}, 429 { STATS_OFFSET32(rx_ofld_frames_csum_tcp_udp), 430 4, STATS_FLAGS_FUNC, "rx_ofld_frames_csum_tcp_udp"}, 431 { STATS_OFFSET32(rx_budget_reached), 432 4, STATS_FLAGS_FUNC, "rx_budget_reached"}, 433 { STATS_OFFSET32(tx_pkts), 434 4, STATS_FLAGS_FUNC, "tx_pkts"}, 435 { STATS_OFFSET32(tx_soft_errors), 436 4, STATS_FLAGS_FUNC, "tx_soft_errors"}, 437 { STATS_OFFSET32(tx_ofld_frames_csum_ip), 438 4, STATS_FLAGS_FUNC, "tx_ofld_frames_csum_ip"}, 439 { STATS_OFFSET32(tx_ofld_frames_csum_tcp), 440 4, STATS_FLAGS_FUNC, "tx_ofld_frames_csum_tcp"}, 441 { STATS_OFFSET32(tx_ofld_frames_csum_udp), 442 4, STATS_FLAGS_FUNC, "tx_ofld_frames_csum_udp"}, 443 { STATS_OFFSET32(tx_ofld_frames_lso), 444 4, STATS_FLAGS_FUNC, "tx_ofld_frames_lso"}, 445 { STATS_OFFSET32(tx_ofld_frames_lso_hdr_splits), 446 4, STATS_FLAGS_FUNC, "tx_ofld_frames_lso_hdr_splits"}, 447 { STATS_OFFSET32(tx_encap_failures), 448 4, STATS_FLAGS_FUNC, "tx_encap_failures"}, 449 { STATS_OFFSET32(tx_hw_queue_full), 450 4, STATS_FLAGS_FUNC, "tx_hw_queue_full"}, 451 { STATS_OFFSET32(tx_hw_max_queue_depth), 452 4, STATS_FLAGS_FUNC, "tx_hw_max_queue_depth"}, 453 { STATS_OFFSET32(tx_dma_mapping_failure), 454 4, STATS_FLAGS_FUNC, "tx_dma_mapping_failure"}, 455 { STATS_OFFSET32(tx_max_drbr_queue_depth), 456 4, STATS_FLAGS_FUNC, "tx_max_drbr_queue_depth"}, 457 { STATS_OFFSET32(tx_window_violation_std), 458 4, STATS_FLAGS_FUNC, "tx_window_violation_std"}, 459 { STATS_OFFSET32(tx_window_violation_tso), 460 4, STATS_FLAGS_FUNC, "tx_window_violation_tso"}, 461 { STATS_OFFSET32(tx_chain_lost_mbuf), 462 4, STATS_FLAGS_FUNC, "tx_chain_lost_mbuf"}, 463 { STATS_OFFSET32(tx_frames_deferred), 464 4, STATS_FLAGS_FUNC, "tx_frames_deferred"}, 465 { STATS_OFFSET32(tx_queue_xoff), 466 4, STATS_FLAGS_FUNC, "tx_queue_xoff"}, 467 { STATS_OFFSET32(mbuf_defrag_attempts), 468 4, STATS_FLAGS_FUNC, "mbuf_defrag_attempts"}, 469 { STATS_OFFSET32(mbuf_defrag_failures), 470 4, STATS_FLAGS_FUNC, "mbuf_defrag_failures"}, 471 { STATS_OFFSET32(mbuf_rx_bd_alloc_failed), 472 4, STATS_FLAGS_FUNC, "mbuf_rx_bd_alloc_failed"}, 473 { STATS_OFFSET32(mbuf_rx_bd_mapping_failed), 474 4, STATS_FLAGS_FUNC, "mbuf_rx_bd_mapping_failed"}, 475 { STATS_OFFSET32(mbuf_rx_tpa_alloc_failed), 476 4, STATS_FLAGS_FUNC, "mbuf_rx_tpa_alloc_failed"}, 477 { STATS_OFFSET32(mbuf_rx_tpa_mapping_failed), 478 4, STATS_FLAGS_FUNC, "mbuf_rx_tpa_mapping_failed"}, 479 { STATS_OFFSET32(mbuf_rx_sge_alloc_failed), 480 4, STATS_FLAGS_FUNC, "mbuf_rx_sge_alloc_failed"}, 481 { STATS_OFFSET32(mbuf_rx_sge_mapping_failed), 482 4, STATS_FLAGS_FUNC, "mbuf_rx_sge_mapping_failed"}, 483 { STATS_OFFSET32(mbuf_alloc_tx), 484 4, STATS_FLAGS_FUNC, "mbuf_alloc_tx"}, 485 { STATS_OFFSET32(mbuf_alloc_rx), 486 4, STATS_FLAGS_FUNC, "mbuf_alloc_rx"}, 487 { STATS_OFFSET32(mbuf_alloc_sge), 488 4, STATS_FLAGS_FUNC, "mbuf_alloc_sge"}, 489 { STATS_OFFSET32(mbuf_alloc_tpa), 490 4, STATS_FLAGS_FUNC, "mbuf_alloc_tpa"}, 491 { STATS_OFFSET32(tx_queue_full_return), 492 4, STATS_FLAGS_FUNC, "tx_queue_full_return"}, 493 { STATS_OFFSET32(tx_request_link_down_failures), 494 4, STATS_FLAGS_FUNC, "tx_request_link_down_failures"}, 495 { STATS_OFFSET32(bd_avail_too_less_failures), 496 4, STATS_FLAGS_FUNC, "bd_avail_too_less_failures"}, 497 { STATS_OFFSET32(tx_mq_not_empty), 498 4, STATS_FLAGS_FUNC, "tx_mq_not_empty"} 499 500 }; 501 502 static const struct { 503 uint32_t offset; 504 uint32_t size; 505 char string[STAT_NAME_LEN]; 506 } bxe_eth_q_stats_arr[] = { 507 { Q_STATS_OFFSET32(total_bytes_received_hi), 508 8, "rx_bytes" }, 509 { Q_STATS_OFFSET32(total_unicast_packets_received_hi), 510 8, "rx_ucast_packets" }, 511 { Q_STATS_OFFSET32(total_multicast_packets_received_hi), 512 8, "rx_mcast_packets" }, 513 { Q_STATS_OFFSET32(total_broadcast_packets_received_hi), 514 8, "rx_bcast_packets" }, 515 { Q_STATS_OFFSET32(no_buff_discard_hi), 516 8, "rx_discards" }, 517 { Q_STATS_OFFSET32(total_bytes_transmitted_hi), 518 8, "tx_bytes" }, 519 { Q_STATS_OFFSET32(total_unicast_packets_transmitted_hi), 520 8, "tx_ucast_packets" }, 521 { Q_STATS_OFFSET32(total_multicast_packets_transmitted_hi), 522 8, "tx_mcast_packets" }, 523 { Q_STATS_OFFSET32(total_broadcast_packets_transmitted_hi), 524 8, "tx_bcast_packets" }, 525 { Q_STATS_OFFSET32(total_tpa_aggregations_hi), 526 8, "tpa_aggregations" }, 527 { Q_STATS_OFFSET32(total_tpa_aggregated_frames_hi), 528 8, "tpa_aggregated_frames"}, 529 { Q_STATS_OFFSET32(total_tpa_bytes_hi), 530 8, "tpa_bytes"}, 531 { Q_STATS_OFFSET32(rx_calls), 532 4, "rx_calls"}, 533 { Q_STATS_OFFSET32(rx_pkts), 534 4, "rx_pkts"}, 535 { Q_STATS_OFFSET32(rx_tpa_pkts), 536 4, "rx_tpa_pkts"}, 537 { Q_STATS_OFFSET32(rx_erroneous_jumbo_sge_pkts), 538 4, "rx_erroneous_jumbo_sge_pkts"}, 539 { Q_STATS_OFFSET32(rx_bxe_service_rxsgl), 540 4, "rx_bxe_service_rxsgl"}, 541 { Q_STATS_OFFSET32(rx_jumbo_sge_pkts), 542 4, "rx_jumbo_sge_pkts"}, 543 { Q_STATS_OFFSET32(rx_soft_errors), 544 4, "rx_soft_errors"}, 545 { Q_STATS_OFFSET32(rx_hw_csum_errors), 546 4, "rx_hw_csum_errors"}, 547 { Q_STATS_OFFSET32(rx_ofld_frames_csum_ip), 548 4, "rx_ofld_frames_csum_ip"}, 549 { Q_STATS_OFFSET32(rx_ofld_frames_csum_tcp_udp), 550 4, "rx_ofld_frames_csum_tcp_udp"}, 551 { Q_STATS_OFFSET32(rx_budget_reached), 552 4, "rx_budget_reached"}, 553 { Q_STATS_OFFSET32(tx_pkts), 554 4, "tx_pkts"}, 555 { Q_STATS_OFFSET32(tx_soft_errors), 556 4, "tx_soft_errors"}, 557 { Q_STATS_OFFSET32(tx_ofld_frames_csum_ip), 558 4, "tx_ofld_frames_csum_ip"}, 559 { Q_STATS_OFFSET32(tx_ofld_frames_csum_tcp), 560 4, "tx_ofld_frames_csum_tcp"}, 561 { Q_STATS_OFFSET32(tx_ofld_frames_csum_udp), 562 4, "tx_ofld_frames_csum_udp"}, 563 { Q_STATS_OFFSET32(tx_ofld_frames_lso), 564 4, "tx_ofld_frames_lso"}, 565 { Q_STATS_OFFSET32(tx_ofld_frames_lso_hdr_splits), 566 4, "tx_ofld_frames_lso_hdr_splits"}, 567 { Q_STATS_OFFSET32(tx_encap_failures), 568 4, "tx_encap_failures"}, 569 { Q_STATS_OFFSET32(tx_hw_queue_full), 570 4, "tx_hw_queue_full"}, 571 { Q_STATS_OFFSET32(tx_hw_max_queue_depth), 572 4, "tx_hw_max_queue_depth"}, 573 { Q_STATS_OFFSET32(tx_dma_mapping_failure), 574 4, "tx_dma_mapping_failure"}, 575 { Q_STATS_OFFSET32(tx_max_drbr_queue_depth), 576 4, "tx_max_drbr_queue_depth"}, 577 { Q_STATS_OFFSET32(tx_window_violation_std), 578 4, "tx_window_violation_std"}, 579 { Q_STATS_OFFSET32(tx_window_violation_tso), 580 4, "tx_window_violation_tso"}, 581 { Q_STATS_OFFSET32(tx_chain_lost_mbuf), 582 4, "tx_chain_lost_mbuf"}, 583 { Q_STATS_OFFSET32(tx_frames_deferred), 584 4, "tx_frames_deferred"}, 585 { Q_STATS_OFFSET32(tx_queue_xoff), 586 4, "tx_queue_xoff"}, 587 { Q_STATS_OFFSET32(mbuf_defrag_attempts), 588 4, "mbuf_defrag_attempts"}, 589 { Q_STATS_OFFSET32(mbuf_defrag_failures), 590 4, "mbuf_defrag_failures"}, 591 { Q_STATS_OFFSET32(mbuf_rx_bd_alloc_failed), 592 4, "mbuf_rx_bd_alloc_failed"}, 593 { Q_STATS_OFFSET32(mbuf_rx_bd_mapping_failed), 594 4, "mbuf_rx_bd_mapping_failed"}, 595 { Q_STATS_OFFSET32(mbuf_rx_tpa_alloc_failed), 596 4, "mbuf_rx_tpa_alloc_failed"}, 597 { Q_STATS_OFFSET32(mbuf_rx_tpa_mapping_failed), 598 4, "mbuf_rx_tpa_mapping_failed"}, 599 { Q_STATS_OFFSET32(mbuf_rx_sge_alloc_failed), 600 4, "mbuf_rx_sge_alloc_failed"}, 601 { Q_STATS_OFFSET32(mbuf_rx_sge_mapping_failed), 602 4, "mbuf_rx_sge_mapping_failed"}, 603 { Q_STATS_OFFSET32(mbuf_alloc_tx), 604 4, "mbuf_alloc_tx"}, 605 { Q_STATS_OFFSET32(mbuf_alloc_rx), 606 4, "mbuf_alloc_rx"}, 607 { Q_STATS_OFFSET32(mbuf_alloc_sge), 608 4, "mbuf_alloc_sge"}, 609 { Q_STATS_OFFSET32(mbuf_alloc_tpa), 610 4, "mbuf_alloc_tpa"}, 611 { Q_STATS_OFFSET32(tx_queue_full_return), 612 4, "tx_queue_full_return"}, 613 { Q_STATS_OFFSET32(tx_request_link_down_failures), 614 4, "tx_request_link_down_failures"}, 615 { Q_STATS_OFFSET32(bd_avail_too_less_failures), 616 4, "bd_avail_too_less_failures"}, 617 { Q_STATS_OFFSET32(tx_mq_not_empty), 618 4, "tx_mq_not_empty"} 619 620 }; 621 622 #define BXE_NUM_ETH_STATS ARRAY_SIZE(bxe_eth_stats_arr) 623 #define BXE_NUM_ETH_Q_STATS ARRAY_SIZE(bxe_eth_q_stats_arr) 624 625 626 static void bxe_cmng_fns_init(struct bxe_softc *sc, 627 uint8_t read_cfg, 628 uint8_t cmng_type); 629 static int bxe_get_cmng_fns_mode(struct bxe_softc *sc); 630 static void storm_memset_cmng(struct bxe_softc *sc, 631 struct cmng_init *cmng, 632 uint8_t port); 633 static void bxe_set_reset_global(struct bxe_softc *sc); 634 static void bxe_set_reset_in_progress(struct bxe_softc *sc); 635 static uint8_t bxe_reset_is_done(struct bxe_softc *sc, 636 int engine); 637 static uint8_t bxe_clear_pf_load(struct bxe_softc *sc); 638 static uint8_t bxe_chk_parity_attn(struct bxe_softc *sc, 639 uint8_t *global, 640 uint8_t print); 641 static void bxe_int_disable(struct bxe_softc *sc); 642 static int bxe_release_leader_lock(struct bxe_softc *sc); 643 static void bxe_pf_disable(struct bxe_softc *sc); 644 static void bxe_free_fp_buffers(struct bxe_softc *sc); 645 static inline void bxe_update_rx_prod(struct bxe_softc *sc, 646 struct bxe_fastpath *fp, 647 uint16_t rx_bd_prod, 648 uint16_t rx_cq_prod, 649 uint16_t rx_sge_prod); 650 static void bxe_link_report_locked(struct bxe_softc *sc); 651 static void bxe_link_report(struct bxe_softc *sc); 652 static void bxe_link_status_update(struct bxe_softc *sc); 653 static void bxe_periodic_callout_func(void *xsc); 654 static void bxe_periodic_start(struct bxe_softc *sc); 655 static void bxe_periodic_stop(struct bxe_softc *sc); 656 static int bxe_alloc_rx_bd_mbuf(struct bxe_fastpath *fp, 657 uint16_t prev_index, 658 uint16_t index); 659 static int bxe_alloc_rx_tpa_mbuf(struct bxe_fastpath *fp, 660 int queue); 661 static int bxe_alloc_rx_sge_mbuf(struct bxe_fastpath *fp, 662 uint16_t index); 663 static uint8_t bxe_txeof(struct bxe_softc *sc, 664 struct bxe_fastpath *fp); 665 static void bxe_task_fp(struct bxe_fastpath *fp); 666 static __noinline void bxe_dump_mbuf(struct bxe_softc *sc, 667 struct mbuf *m, 668 uint8_t contents); 669 static int bxe_alloc_mem(struct bxe_softc *sc); 670 static void bxe_free_mem(struct bxe_softc *sc); 671 static int bxe_alloc_fw_stats_mem(struct bxe_softc *sc); 672 static void bxe_free_fw_stats_mem(struct bxe_softc *sc); 673 static int bxe_interrupt_attach(struct bxe_softc *sc); 674 static void bxe_interrupt_detach(struct bxe_softc *sc); 675 static void bxe_set_rx_mode(struct bxe_softc *sc); 676 static int bxe_init_locked(struct bxe_softc *sc); 677 static int bxe_stop_locked(struct bxe_softc *sc); 678 static __noinline int bxe_nic_load(struct bxe_softc *sc, 679 int load_mode); 680 static __noinline int bxe_nic_unload(struct bxe_softc *sc, 681 uint32_t unload_mode, 682 uint8_t keep_link); 683 684 static void bxe_handle_sp_tq(void *context, int pending); 685 static void bxe_handle_fp_tq(void *context, int pending); 686 687 static int bxe_add_cdev(struct bxe_softc *sc); 688 static void bxe_del_cdev(struct bxe_softc *sc); 689 static int bxe_alloc_buf_rings(struct bxe_softc *sc); 690 static void bxe_free_buf_rings(struct bxe_softc *sc); 691 692 /* calculate crc32 on a buffer (NOTE: crc32_length MUST be aligned to 8) */ 693 uint32_t 694 calc_crc32(uint8_t *crc32_packet, 695 uint32_t crc32_length, 696 uint32_t crc32_seed, 697 uint8_t complement) 698 { 699 uint32_t byte = 0; 700 uint32_t bit = 0; 701 uint8_t msb = 0; 702 uint32_t temp = 0; 703 uint32_t shft = 0; 704 uint8_t current_byte = 0; 705 uint32_t crc32_result = crc32_seed; 706 const uint32_t CRC32_POLY = 0x1edc6f41; 707 708 if ((crc32_packet == NULL) || 709 (crc32_length == 0) || 710 ((crc32_length % 8) != 0)) 711 { 712 return (crc32_result); 713 } 714 715 for (byte = 0; byte < crc32_length; byte = byte + 1) 716 { 717 current_byte = crc32_packet[byte]; 718 for (bit = 0; bit < 8; bit = bit + 1) 719 { 720 /* msb = crc32_result[31]; */ 721 msb = (uint8_t)(crc32_result >> 31); 722 723 crc32_result = crc32_result << 1; 724 725 /* it (msb != current_byte[bit]) */ 726 if (msb != (0x1 & (current_byte >> bit))) 727 { 728 crc32_result = crc32_result ^ CRC32_POLY; 729 /* crc32_result[0] = 1 */ 730 crc32_result |= 1; 731 } 732 } 733 } 734 735 /* Last step is to: 736 * 1. "mirror" every bit 737 * 2. swap the 4 bytes 738 * 3. complement each bit 739 */ 740 741 /* Mirror */ 742 temp = crc32_result; 743 shft = sizeof(crc32_result) * 8 - 1; 744 745 for (crc32_result >>= 1; crc32_result; crc32_result >>= 1) 746 { 747 temp <<= 1; 748 temp |= crc32_result & 1; 749 shft-- ; 750 } 751 752 /* temp[31-bit] = crc32_result[bit] */ 753 temp <<= shft; 754 755 /* Swap */ 756 /* crc32_result = {temp[7:0], temp[15:8], temp[23:16], temp[31:24]} */ 757 { 758 uint32_t t0, t1, t2, t3; 759 t0 = (0x000000ff & (temp >> 24)); 760 t1 = (0x0000ff00 & (temp >> 8)); 761 t2 = (0x00ff0000 & (temp << 8)); 762 t3 = (0xff000000 & (temp << 24)); 763 crc32_result = t0 | t1 | t2 | t3; 764 } 765 766 /* Complement */ 767 if (complement) 768 { 769 crc32_result = ~crc32_result; 770 } 771 772 return (crc32_result); 773 } 774 775 int 776 bxe_test_bit(int nr, 777 volatile unsigned long *addr) 778 { 779 return ((atomic_load_acq_long(addr) & (1 << nr)) != 0); 780 } 781 782 void 783 bxe_set_bit(unsigned int nr, 784 volatile unsigned long *addr) 785 { 786 atomic_set_acq_long(addr, (1 << nr)); 787 } 788 789 void 790 bxe_clear_bit(int nr, 791 volatile unsigned long *addr) 792 { 793 atomic_clear_acq_long(addr, (1 << nr)); 794 } 795 796 int 797 bxe_test_and_set_bit(int nr, 798 volatile unsigned long *addr) 799 { 800 unsigned long x; 801 nr = (1 << nr); 802 do { 803 x = *addr; 804 } while (atomic_cmpset_acq_long(addr, x, x | nr) == 0); 805 // if (x & nr) bit_was_set; else bit_was_not_set; 806 return (x & nr); 807 } 808 809 int 810 bxe_test_and_clear_bit(int nr, 811 volatile unsigned long *addr) 812 { 813 unsigned long x; 814 nr = (1 << nr); 815 do { 816 x = *addr; 817 } while (atomic_cmpset_acq_long(addr, x, x & ~nr) == 0); 818 // if (x & nr) bit_was_set; else bit_was_not_set; 819 return (x & nr); 820 } 821 822 int 823 bxe_cmpxchg(volatile int *addr, 824 int old, 825 int new) 826 { 827 int x; 828 do { 829 x = *addr; 830 } while (atomic_cmpset_acq_int(addr, old, new) == 0); 831 return (x); 832 } 833 834 /* 835 * Get DMA memory from the OS. 836 * 837 * Validates that the OS has provided DMA buffers in response to a 838 * bus_dmamap_load call and saves the physical address of those buffers. 839 * When the callback is used the OS will return 0 for the mapping function 840 * (bus_dmamap_load) so we use the value of map_arg->maxsegs to pass any 841 * failures back to the caller. 842 * 843 * Returns: 844 * Nothing. 845 */ 846 static void 847 bxe_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error) 848 { 849 struct bxe_dma *dma = arg; 850 851 if (error) { 852 dma->paddr = 0; 853 dma->nseg = 0; 854 BLOGE(dma->sc, "Failed DMA alloc '%s' (%d)!\n", dma->msg, error); 855 } else { 856 dma->paddr = segs->ds_addr; 857 dma->nseg = nseg; 858 } 859 } 860 861 /* 862 * Allocate a block of memory and map it for DMA. No partial completions 863 * allowed and release any resources acquired if we can't acquire all 864 * resources. 865 * 866 * Returns: 867 * 0 = Success, !0 = Failure 868 */ 869 int 870 bxe_dma_alloc(struct bxe_softc *sc, 871 bus_size_t size, 872 struct bxe_dma *dma, 873 const char *msg) 874 { 875 int rc; 876 877 if (dma->size > 0) { 878 BLOGE(sc, "dma block '%s' already has size %lu\n", msg, 879 (unsigned long)dma->size); 880 return (1); 881 } 882 883 memset(dma, 0, sizeof(*dma)); /* sanity */ 884 dma->sc = sc; 885 dma->size = size; 886 snprintf(dma->msg, sizeof(dma->msg), "%s", msg); 887 888 rc = bus_dma_tag_create(sc->parent_dma_tag, /* parent tag */ 889 BCM_PAGE_SIZE, /* alignment */ 890 0, /* boundary limit */ 891 BUS_SPACE_MAXADDR, /* restricted low */ 892 BUS_SPACE_MAXADDR, /* restricted hi */ 893 NULL, /* addr filter() */ 894 NULL, /* addr filter() arg */ 895 size, /* max map size */ 896 1, /* num discontinuous */ 897 size, /* max seg size */ 898 BUS_DMA_ALLOCNOW, /* flags */ 899 NULL, /* lock() */ 900 NULL, /* lock() arg */ 901 &dma->tag); /* returned dma tag */ 902 if (rc != 0) { 903 BLOGE(sc, "Failed to create dma tag for '%s' (%d)\n", msg, rc); 904 memset(dma, 0, sizeof(*dma)); 905 return (1); 906 } 907 908 rc = bus_dmamem_alloc(dma->tag, 909 (void **)&dma->vaddr, 910 (BUS_DMA_NOWAIT | BUS_DMA_ZERO), 911 &dma->map); 912 if (rc != 0) { 913 BLOGE(sc, "Failed to alloc dma mem for '%s' (%d)\n", msg, rc); 914 bus_dma_tag_destroy(dma->tag); 915 memset(dma, 0, sizeof(*dma)); 916 return (1); 917 } 918 919 rc = bus_dmamap_load(dma->tag, 920 dma->map, 921 dma->vaddr, 922 size, 923 bxe_dma_map_addr, /* BLOGD in here */ 924 dma, 925 BUS_DMA_NOWAIT); 926 if (rc != 0) { 927 BLOGE(sc, "Failed to load dma map for '%s' (%d)\n", msg, rc); 928 bus_dmamem_free(dma->tag, dma->vaddr, dma->map); 929 bus_dma_tag_destroy(dma->tag); 930 memset(dma, 0, sizeof(*dma)); 931 return (1); 932 } 933 934 return (0); 935 } 936 937 void 938 bxe_dma_free(struct bxe_softc *sc, 939 struct bxe_dma *dma) 940 { 941 if (dma->size > 0) { 942 DBASSERT(sc, (dma->tag != NULL), ("dma tag is NULL")); 943 944 bus_dmamap_sync(dma->tag, dma->map, 945 (BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE)); 946 bus_dmamap_unload(dma->tag, dma->map); 947 bus_dmamem_free(dma->tag, dma->vaddr, dma->map); 948 bus_dma_tag_destroy(dma->tag); 949 } 950 951 memset(dma, 0, sizeof(*dma)); 952 } 953 954 /* 955 * These indirect read and write routines are only during init. 956 * The locking is handled by the MCP. 957 */ 958 959 void 960 bxe_reg_wr_ind(struct bxe_softc *sc, 961 uint32_t addr, 962 uint32_t val) 963 { 964 pci_write_config(sc->dev, PCICFG_GRC_ADDRESS, addr, 4); 965 pci_write_config(sc->dev, PCICFG_GRC_DATA, val, 4); 966 pci_write_config(sc->dev, PCICFG_GRC_ADDRESS, 0, 4); 967 } 968 969 uint32_t 970 bxe_reg_rd_ind(struct bxe_softc *sc, 971 uint32_t addr) 972 { 973 uint32_t val; 974 975 pci_write_config(sc->dev, PCICFG_GRC_ADDRESS, addr, 4); 976 val = pci_read_config(sc->dev, PCICFG_GRC_DATA, 4); 977 pci_write_config(sc->dev, PCICFG_GRC_ADDRESS, 0, 4); 978 979 return (val); 980 } 981 982 static int 983 bxe_acquire_hw_lock(struct bxe_softc *sc, 984 uint32_t resource) 985 { 986 uint32_t lock_status; 987 uint32_t resource_bit = (1 << resource); 988 int func = SC_FUNC(sc); 989 uint32_t hw_lock_control_reg; 990 int cnt; 991 992 /* validate the resource is within range */ 993 if (resource > HW_LOCK_MAX_RESOURCE_VALUE) { 994 BLOGE(sc, "(resource 0x%x > HW_LOCK_MAX_RESOURCE_VALUE)" 995 " resource_bit 0x%x\n", resource, resource_bit); 996 return (-1); 997 } 998 999 if (func <= 5) { 1000 hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + (func * 8)); 1001 } else { 1002 hw_lock_control_reg = 1003 (MISC_REG_DRIVER_CONTROL_7 + ((func - 6) * 8)); 1004 } 1005 1006 /* validate the resource is not already taken */ 1007 lock_status = REG_RD(sc, hw_lock_control_reg); 1008 if (lock_status & resource_bit) { 1009 BLOGE(sc, "resource (0x%x) in use (status 0x%x bit 0x%x)\n", 1010 resource, lock_status, resource_bit); 1011 return (-1); 1012 } 1013 1014 /* try every 5ms for 5 seconds */ 1015 for (cnt = 0; cnt < 1000; cnt++) { 1016 REG_WR(sc, (hw_lock_control_reg + 4), resource_bit); 1017 lock_status = REG_RD(sc, hw_lock_control_reg); 1018 if (lock_status & resource_bit) { 1019 return (0); 1020 } 1021 DELAY(5000); 1022 } 1023 1024 BLOGE(sc, "Resource 0x%x resource_bit 0x%x lock timeout!\n", 1025 resource, resource_bit); 1026 return (-1); 1027 } 1028 1029 static int 1030 bxe_release_hw_lock(struct bxe_softc *sc, 1031 uint32_t resource) 1032 { 1033 uint32_t lock_status; 1034 uint32_t resource_bit = (1 << resource); 1035 int func = SC_FUNC(sc); 1036 uint32_t hw_lock_control_reg; 1037 1038 /* validate the resource is within range */ 1039 if (resource > HW_LOCK_MAX_RESOURCE_VALUE) { 1040 BLOGE(sc, "(resource 0x%x > HW_LOCK_MAX_RESOURCE_VALUE)" 1041 " resource_bit 0x%x\n", resource, resource_bit); 1042 return (-1); 1043 } 1044 1045 if (func <= 5) { 1046 hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + (func * 8)); 1047 } else { 1048 hw_lock_control_reg = 1049 (MISC_REG_DRIVER_CONTROL_7 + ((func - 6) * 8)); 1050 } 1051 1052 /* validate the resource is currently taken */ 1053 lock_status = REG_RD(sc, hw_lock_control_reg); 1054 if (!(lock_status & resource_bit)) { 1055 BLOGE(sc, "resource (0x%x) not in use (status 0x%x bit 0x%x)\n", 1056 resource, lock_status, resource_bit); 1057 return (-1); 1058 } 1059 1060 REG_WR(sc, hw_lock_control_reg, resource_bit); 1061 return (0); 1062 } 1063 static void bxe_acquire_phy_lock(struct bxe_softc *sc) 1064 { 1065 BXE_PHY_LOCK(sc); 1066 bxe_acquire_hw_lock(sc,HW_LOCK_RESOURCE_MDIO); 1067 } 1068 1069 static void bxe_release_phy_lock(struct bxe_softc *sc) 1070 { 1071 bxe_release_hw_lock(sc,HW_LOCK_RESOURCE_MDIO); 1072 BXE_PHY_UNLOCK(sc); 1073 } 1074 /* 1075 * Per pf misc lock must be acquired before the per port mcp lock. Otherwise, 1076 * had we done things the other way around, if two pfs from the same port 1077 * would attempt to access nvram at the same time, we could run into a 1078 * scenario such as: 1079 * pf A takes the port lock. 1080 * pf B succeeds in taking the same lock since they are from the same port. 1081 * pf A takes the per pf misc lock. Performs eeprom access. 1082 * pf A finishes. Unlocks the per pf misc lock. 1083 * Pf B takes the lock and proceeds to perform it's own access. 1084 * pf A unlocks the per port lock, while pf B is still working (!). 1085 * mcp takes the per port lock and corrupts pf B's access (and/or has it's own 1086 * access corrupted by pf B).* 1087 */ 1088 static int 1089 bxe_acquire_nvram_lock(struct bxe_softc *sc) 1090 { 1091 int port = SC_PORT(sc); 1092 int count, i; 1093 uint32_t val = 0; 1094 1095 /* acquire HW lock: protect against other PFs in PF Direct Assignment */ 1096 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_NVRAM); 1097 1098 /* adjust timeout for emulation/FPGA */ 1099 count = NVRAM_TIMEOUT_COUNT; 1100 if (CHIP_REV_IS_SLOW(sc)) { 1101 count *= 100; 1102 } 1103 1104 /* request access to nvram interface */ 1105 REG_WR(sc, MCP_REG_MCPR_NVM_SW_ARB, 1106 (MCPR_NVM_SW_ARB_ARB_REQ_SET1 << port)); 1107 1108 for (i = 0; i < count*10; i++) { 1109 val = REG_RD(sc, MCP_REG_MCPR_NVM_SW_ARB); 1110 if (val & (MCPR_NVM_SW_ARB_ARB_ARB1 << port)) { 1111 break; 1112 } 1113 1114 DELAY(5); 1115 } 1116 1117 if (!(val & (MCPR_NVM_SW_ARB_ARB_ARB1 << port))) { 1118 BLOGE(sc, "Cannot get access to nvram interface " 1119 "port %d val 0x%x (MCPR_NVM_SW_ARB_ARB_ARB1 << port)\n", 1120 port, val); 1121 return (-1); 1122 } 1123 1124 return (0); 1125 } 1126 1127 static int 1128 bxe_release_nvram_lock(struct bxe_softc *sc) 1129 { 1130 int port = SC_PORT(sc); 1131 int count, i; 1132 uint32_t val = 0; 1133 1134 /* adjust timeout for emulation/FPGA */ 1135 count = NVRAM_TIMEOUT_COUNT; 1136 if (CHIP_REV_IS_SLOW(sc)) { 1137 count *= 100; 1138 } 1139 1140 /* relinquish nvram interface */ 1141 REG_WR(sc, MCP_REG_MCPR_NVM_SW_ARB, 1142 (MCPR_NVM_SW_ARB_ARB_REQ_CLR1 << port)); 1143 1144 for (i = 0; i < count*10; i++) { 1145 val = REG_RD(sc, MCP_REG_MCPR_NVM_SW_ARB); 1146 if (!(val & (MCPR_NVM_SW_ARB_ARB_ARB1 << port))) { 1147 break; 1148 } 1149 1150 DELAY(5); 1151 } 1152 1153 if (val & (MCPR_NVM_SW_ARB_ARB_ARB1 << port)) { 1154 BLOGE(sc, "Cannot free access to nvram interface " 1155 "port %d val 0x%x (MCPR_NVM_SW_ARB_ARB_ARB1 << port)\n", 1156 port, val); 1157 return (-1); 1158 } 1159 1160 /* release HW lock: protect against other PFs in PF Direct Assignment */ 1161 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_NVRAM); 1162 1163 return (0); 1164 } 1165 1166 static void 1167 bxe_enable_nvram_access(struct bxe_softc *sc) 1168 { 1169 uint32_t val; 1170 1171 val = REG_RD(sc, MCP_REG_MCPR_NVM_ACCESS_ENABLE); 1172 1173 /* enable both bits, even on read */ 1174 REG_WR(sc, MCP_REG_MCPR_NVM_ACCESS_ENABLE, 1175 (val | MCPR_NVM_ACCESS_ENABLE_EN | MCPR_NVM_ACCESS_ENABLE_WR_EN)); 1176 } 1177 1178 static void 1179 bxe_disable_nvram_access(struct bxe_softc *sc) 1180 { 1181 uint32_t val; 1182 1183 val = REG_RD(sc, MCP_REG_MCPR_NVM_ACCESS_ENABLE); 1184 1185 /* disable both bits, even after read */ 1186 REG_WR(sc, MCP_REG_MCPR_NVM_ACCESS_ENABLE, 1187 (val & ~(MCPR_NVM_ACCESS_ENABLE_EN | 1188 MCPR_NVM_ACCESS_ENABLE_WR_EN))); 1189 } 1190 1191 static int 1192 bxe_nvram_read_dword(struct bxe_softc *sc, 1193 uint32_t offset, 1194 uint32_t *ret_val, 1195 uint32_t cmd_flags) 1196 { 1197 int count, i, rc; 1198 uint32_t val; 1199 1200 /* build the command word */ 1201 cmd_flags |= MCPR_NVM_COMMAND_DOIT; 1202 1203 /* need to clear DONE bit separately */ 1204 REG_WR(sc, MCP_REG_MCPR_NVM_COMMAND, MCPR_NVM_COMMAND_DONE); 1205 1206 /* address of the NVRAM to read from */ 1207 REG_WR(sc, MCP_REG_MCPR_NVM_ADDR, 1208 (offset & MCPR_NVM_ADDR_NVM_ADDR_VALUE)); 1209 1210 /* issue a read command */ 1211 REG_WR(sc, MCP_REG_MCPR_NVM_COMMAND, cmd_flags); 1212 1213 /* adjust timeout for emulation/FPGA */ 1214 count = NVRAM_TIMEOUT_COUNT; 1215 if (CHIP_REV_IS_SLOW(sc)) { 1216 count *= 100; 1217 } 1218 1219 /* wait for completion */ 1220 *ret_val = 0; 1221 rc = -1; 1222 for (i = 0; i < count; i++) { 1223 DELAY(5); 1224 val = REG_RD(sc, MCP_REG_MCPR_NVM_COMMAND); 1225 1226 if (val & MCPR_NVM_COMMAND_DONE) { 1227 val = REG_RD(sc, MCP_REG_MCPR_NVM_READ); 1228 /* we read nvram data in cpu order 1229 * but ethtool sees it as an array of bytes 1230 * converting to big-endian will do the work 1231 */ 1232 *ret_val = htobe32(val); 1233 rc = 0; 1234 break; 1235 } 1236 } 1237 1238 if (rc == -1) { 1239 BLOGE(sc, "nvram read timeout expired " 1240 "(offset 0x%x cmd_flags 0x%x val 0x%x)\n", 1241 offset, cmd_flags, val); 1242 } 1243 1244 return (rc); 1245 } 1246 1247 static int 1248 bxe_nvram_read(struct bxe_softc *sc, 1249 uint32_t offset, 1250 uint8_t *ret_buf, 1251 int buf_size) 1252 { 1253 uint32_t cmd_flags; 1254 uint32_t val; 1255 int rc; 1256 1257 if ((offset & 0x03) || (buf_size & 0x03) || (buf_size == 0)) { 1258 BLOGE(sc, "Invalid parameter, offset 0x%x buf_size 0x%x\n", 1259 offset, buf_size); 1260 return (-1); 1261 } 1262 1263 if ((offset + buf_size) > sc->devinfo.flash_size) { 1264 BLOGE(sc, "Invalid parameter, " 1265 "offset 0x%x + buf_size 0x%x > flash_size 0x%x\n", 1266 offset, buf_size, sc->devinfo.flash_size); 1267 return (-1); 1268 } 1269 1270 /* request access to nvram interface */ 1271 rc = bxe_acquire_nvram_lock(sc); 1272 if (rc) { 1273 return (rc); 1274 } 1275 1276 /* enable access to nvram interface */ 1277 bxe_enable_nvram_access(sc); 1278 1279 /* read the first word(s) */ 1280 cmd_flags = MCPR_NVM_COMMAND_FIRST; 1281 while ((buf_size > sizeof(uint32_t)) && (rc == 0)) { 1282 rc = bxe_nvram_read_dword(sc, offset, &val, cmd_flags); 1283 memcpy(ret_buf, &val, 4); 1284 1285 /* advance to the next dword */ 1286 offset += sizeof(uint32_t); 1287 ret_buf += sizeof(uint32_t); 1288 buf_size -= sizeof(uint32_t); 1289 cmd_flags = 0; 1290 } 1291 1292 if (rc == 0) { 1293 cmd_flags |= MCPR_NVM_COMMAND_LAST; 1294 rc = bxe_nvram_read_dword(sc, offset, &val, cmd_flags); 1295 memcpy(ret_buf, &val, 4); 1296 } 1297 1298 /* disable access to nvram interface */ 1299 bxe_disable_nvram_access(sc); 1300 bxe_release_nvram_lock(sc); 1301 1302 return (rc); 1303 } 1304 1305 static int 1306 bxe_nvram_write_dword(struct bxe_softc *sc, 1307 uint32_t offset, 1308 uint32_t val, 1309 uint32_t cmd_flags) 1310 { 1311 int count, i, rc; 1312 1313 /* build the command word */ 1314 cmd_flags |= (MCPR_NVM_COMMAND_DOIT | MCPR_NVM_COMMAND_WR); 1315 1316 /* need to clear DONE bit separately */ 1317 REG_WR(sc, MCP_REG_MCPR_NVM_COMMAND, MCPR_NVM_COMMAND_DONE); 1318 1319 /* write the data */ 1320 REG_WR(sc, MCP_REG_MCPR_NVM_WRITE, val); 1321 1322 /* address of the NVRAM to write to */ 1323 REG_WR(sc, MCP_REG_MCPR_NVM_ADDR, 1324 (offset & MCPR_NVM_ADDR_NVM_ADDR_VALUE)); 1325 1326 /* issue the write command */ 1327 REG_WR(sc, MCP_REG_MCPR_NVM_COMMAND, cmd_flags); 1328 1329 /* adjust timeout for emulation/FPGA */ 1330 count = NVRAM_TIMEOUT_COUNT; 1331 if (CHIP_REV_IS_SLOW(sc)) { 1332 count *= 100; 1333 } 1334 1335 /* wait for completion */ 1336 rc = -1; 1337 for (i = 0; i < count; i++) { 1338 DELAY(5); 1339 val = REG_RD(sc, MCP_REG_MCPR_NVM_COMMAND); 1340 if (val & MCPR_NVM_COMMAND_DONE) { 1341 rc = 0; 1342 break; 1343 } 1344 } 1345 1346 if (rc == -1) { 1347 BLOGE(sc, "nvram write timeout expired " 1348 "(offset 0x%x cmd_flags 0x%x val 0x%x)\n", 1349 offset, cmd_flags, val); 1350 } 1351 1352 return (rc); 1353 } 1354 1355 #define BYTE_OFFSET(offset) (8 * (offset & 0x03)) 1356 1357 static int 1358 bxe_nvram_write1(struct bxe_softc *sc, 1359 uint32_t offset, 1360 uint8_t *data_buf, 1361 int buf_size) 1362 { 1363 uint32_t cmd_flags; 1364 uint32_t align_offset; 1365 uint32_t val; 1366 int rc; 1367 1368 if ((offset + buf_size) > sc->devinfo.flash_size) { 1369 BLOGE(sc, "Invalid parameter, " 1370 "offset 0x%x + buf_size 0x%x > flash_size 0x%x\n", 1371 offset, buf_size, sc->devinfo.flash_size); 1372 return (-1); 1373 } 1374 1375 /* request access to nvram interface */ 1376 rc = bxe_acquire_nvram_lock(sc); 1377 if (rc) { 1378 return (rc); 1379 } 1380 1381 /* enable access to nvram interface */ 1382 bxe_enable_nvram_access(sc); 1383 1384 cmd_flags = (MCPR_NVM_COMMAND_FIRST | MCPR_NVM_COMMAND_LAST); 1385 align_offset = (offset & ~0x03); 1386 rc = bxe_nvram_read_dword(sc, align_offset, &val, cmd_flags); 1387 1388 if (rc == 0) { 1389 val &= ~(0xff << BYTE_OFFSET(offset)); 1390 val |= (*data_buf << BYTE_OFFSET(offset)); 1391 1392 /* nvram data is returned as an array of bytes 1393 * convert it back to cpu order 1394 */ 1395 val = be32toh(val); 1396 1397 rc = bxe_nvram_write_dword(sc, align_offset, val, cmd_flags); 1398 } 1399 1400 /* disable access to nvram interface */ 1401 bxe_disable_nvram_access(sc); 1402 bxe_release_nvram_lock(sc); 1403 1404 return (rc); 1405 } 1406 1407 static int 1408 bxe_nvram_write(struct bxe_softc *sc, 1409 uint32_t offset, 1410 uint8_t *data_buf, 1411 int buf_size) 1412 { 1413 uint32_t cmd_flags; 1414 uint32_t val; 1415 uint32_t written_so_far; 1416 int rc; 1417 1418 if (buf_size == 1) { 1419 return (bxe_nvram_write1(sc, offset, data_buf, buf_size)); 1420 } 1421 1422 if ((offset & 0x03) || (buf_size & 0x03) /* || (buf_size == 0) */) { 1423 BLOGE(sc, "Invalid parameter, offset 0x%x buf_size 0x%x\n", 1424 offset, buf_size); 1425 return (-1); 1426 } 1427 1428 if (buf_size == 0) { 1429 return (0); /* nothing to do */ 1430 } 1431 1432 if ((offset + buf_size) > sc->devinfo.flash_size) { 1433 BLOGE(sc, "Invalid parameter, " 1434 "offset 0x%x + buf_size 0x%x > flash_size 0x%x\n", 1435 offset, buf_size, sc->devinfo.flash_size); 1436 return (-1); 1437 } 1438 1439 /* request access to nvram interface */ 1440 rc = bxe_acquire_nvram_lock(sc); 1441 if (rc) { 1442 return (rc); 1443 } 1444 1445 /* enable access to nvram interface */ 1446 bxe_enable_nvram_access(sc); 1447 1448 written_so_far = 0; 1449 cmd_flags = MCPR_NVM_COMMAND_FIRST; 1450 while ((written_so_far < buf_size) && (rc == 0)) { 1451 if (written_so_far == (buf_size - sizeof(uint32_t))) { 1452 cmd_flags |= MCPR_NVM_COMMAND_LAST; 1453 } else if (((offset + 4) % NVRAM_PAGE_SIZE) == 0) { 1454 cmd_flags |= MCPR_NVM_COMMAND_LAST; 1455 } else if ((offset % NVRAM_PAGE_SIZE) == 0) { 1456 cmd_flags |= MCPR_NVM_COMMAND_FIRST; 1457 } 1458 1459 memcpy(&val, data_buf, 4); 1460 1461 rc = bxe_nvram_write_dword(sc, offset, val, cmd_flags); 1462 1463 /* advance to the next dword */ 1464 offset += sizeof(uint32_t); 1465 data_buf += sizeof(uint32_t); 1466 written_so_far += sizeof(uint32_t); 1467 cmd_flags = 0; 1468 } 1469 1470 /* disable access to nvram interface */ 1471 bxe_disable_nvram_access(sc); 1472 bxe_release_nvram_lock(sc); 1473 1474 return (rc); 1475 } 1476 1477 /* copy command into DMAE command memory and set DMAE command Go */ 1478 void 1479 bxe_post_dmae(struct bxe_softc *sc, 1480 struct dmae_cmd *dmae, 1481 int idx) 1482 { 1483 uint32_t cmd_offset; 1484 int i; 1485 1486 cmd_offset = (DMAE_REG_CMD_MEM + (sizeof(struct dmae_cmd) * idx)); 1487 for (i = 0; i < ((sizeof(struct dmae_cmd) / 4)); i++) { 1488 REG_WR(sc, (cmd_offset + (i * 4)), *(((uint32_t *)dmae) + i)); 1489 } 1490 1491 REG_WR(sc, dmae_reg_go_c[idx], 1); 1492 } 1493 1494 uint32_t 1495 bxe_dmae_opcode_add_comp(uint32_t opcode, 1496 uint8_t comp_type) 1497 { 1498 return (opcode | ((comp_type << DMAE_CMD_C_DST_SHIFT) | 1499 DMAE_CMD_C_TYPE_ENABLE)); 1500 } 1501 1502 uint32_t 1503 bxe_dmae_opcode_clr_src_reset(uint32_t opcode) 1504 { 1505 return (opcode & ~DMAE_CMD_SRC_RESET); 1506 } 1507 1508 uint32_t 1509 bxe_dmae_opcode(struct bxe_softc *sc, 1510 uint8_t src_type, 1511 uint8_t dst_type, 1512 uint8_t with_comp, 1513 uint8_t comp_type) 1514 { 1515 uint32_t opcode = 0; 1516 1517 opcode |= ((src_type << DMAE_CMD_SRC_SHIFT) | 1518 (dst_type << DMAE_CMD_DST_SHIFT)); 1519 1520 opcode |= (DMAE_CMD_SRC_RESET | DMAE_CMD_DST_RESET); 1521 1522 opcode |= (SC_PORT(sc) ? DMAE_CMD_PORT_1 : DMAE_CMD_PORT_0); 1523 1524 opcode |= ((SC_VN(sc) << DMAE_CMD_E1HVN_SHIFT) | 1525 (SC_VN(sc) << DMAE_CMD_DST_VN_SHIFT)); 1526 1527 opcode |= (DMAE_COM_SET_ERR << DMAE_CMD_ERR_POLICY_SHIFT); 1528 1529 #ifdef __BIG_ENDIAN 1530 opcode |= DMAE_CMD_ENDIANITY_B_DW_SWAP; 1531 #else 1532 opcode |= DMAE_CMD_ENDIANITY_DW_SWAP; 1533 #endif 1534 1535 if (with_comp) { 1536 opcode = bxe_dmae_opcode_add_comp(opcode, comp_type); 1537 } 1538 1539 return (opcode); 1540 } 1541 1542 static void 1543 bxe_prep_dmae_with_comp(struct bxe_softc *sc, 1544 struct dmae_cmd *dmae, 1545 uint8_t src_type, 1546 uint8_t dst_type) 1547 { 1548 memset(dmae, 0, sizeof(struct dmae_cmd)); 1549 1550 /* set the opcode */ 1551 dmae->opcode = bxe_dmae_opcode(sc, src_type, dst_type, 1552 TRUE, DMAE_COMP_PCI); 1553 1554 /* fill in the completion parameters */ 1555 dmae->comp_addr_lo = U64_LO(BXE_SP_MAPPING(sc, wb_comp)); 1556 dmae->comp_addr_hi = U64_HI(BXE_SP_MAPPING(sc, wb_comp)); 1557 dmae->comp_val = DMAE_COMP_VAL; 1558 } 1559 1560 /* issue a DMAE command over the init channel and wait for completion */ 1561 static int 1562 bxe_issue_dmae_with_comp(struct bxe_softc *sc, 1563 struct dmae_cmd *dmae) 1564 { 1565 uint32_t *wb_comp = BXE_SP(sc, wb_comp); 1566 int timeout = CHIP_REV_IS_SLOW(sc) ? 400000 : 4000; 1567 1568 BXE_DMAE_LOCK(sc); 1569 1570 /* reset completion */ 1571 *wb_comp = 0; 1572 1573 /* post the command on the channel used for initializations */ 1574 bxe_post_dmae(sc, dmae, INIT_DMAE_C(sc)); 1575 1576 /* wait for completion */ 1577 DELAY(5); 1578 1579 while ((*wb_comp & ~DMAE_PCI_ERR_FLAG) != DMAE_COMP_VAL) { 1580 if (!timeout || 1581 (sc->recovery_state != BXE_RECOVERY_DONE && 1582 sc->recovery_state != BXE_RECOVERY_NIC_LOADING)) { 1583 BLOGE(sc, "DMAE timeout! *wb_comp 0x%x recovery_state 0x%x\n", 1584 *wb_comp, sc->recovery_state); 1585 BXE_DMAE_UNLOCK(sc); 1586 return (DMAE_TIMEOUT); 1587 } 1588 1589 timeout--; 1590 DELAY(50); 1591 } 1592 1593 if (*wb_comp & DMAE_PCI_ERR_FLAG) { 1594 BLOGE(sc, "DMAE PCI error! *wb_comp 0x%x recovery_state 0x%x\n", 1595 *wb_comp, sc->recovery_state); 1596 BXE_DMAE_UNLOCK(sc); 1597 return (DMAE_PCI_ERROR); 1598 } 1599 1600 BXE_DMAE_UNLOCK(sc); 1601 return (0); 1602 } 1603 1604 void 1605 bxe_read_dmae(struct bxe_softc *sc, 1606 uint32_t src_addr, 1607 uint32_t len32) 1608 { 1609 struct dmae_cmd dmae; 1610 uint32_t *data; 1611 int i, rc; 1612 1613 DBASSERT(sc, (len32 <= 4), ("DMAE read length is %d", len32)); 1614 1615 if (!sc->dmae_ready) { 1616 data = BXE_SP(sc, wb_data[0]); 1617 1618 for (i = 0; i < len32; i++) { 1619 data[i] = (CHIP_IS_E1(sc)) ? 1620 bxe_reg_rd_ind(sc, (src_addr + (i * 4))) : 1621 REG_RD(sc, (src_addr + (i * 4))); 1622 } 1623 1624 return; 1625 } 1626 1627 /* set opcode and fixed command fields */ 1628 bxe_prep_dmae_with_comp(sc, &dmae, DMAE_SRC_GRC, DMAE_DST_PCI); 1629 1630 /* fill in addresses and len */ 1631 dmae.src_addr_lo = (src_addr >> 2); /* GRC addr has dword resolution */ 1632 dmae.src_addr_hi = 0; 1633 dmae.dst_addr_lo = U64_LO(BXE_SP_MAPPING(sc, wb_data)); 1634 dmae.dst_addr_hi = U64_HI(BXE_SP_MAPPING(sc, wb_data)); 1635 dmae.len = len32; 1636 1637 /* issue the command and wait for completion */ 1638 if ((rc = bxe_issue_dmae_with_comp(sc, &dmae)) != 0) { 1639 bxe_panic(sc, ("DMAE failed (%d)\n", rc)); 1640 } 1641 } 1642 1643 void 1644 bxe_write_dmae(struct bxe_softc *sc, 1645 bus_addr_t dma_addr, 1646 uint32_t dst_addr, 1647 uint32_t len32) 1648 { 1649 struct dmae_cmd dmae; 1650 int rc; 1651 1652 if (!sc->dmae_ready) { 1653 DBASSERT(sc, (len32 <= 4), ("DMAE not ready and length is %d", len32)); 1654 1655 if (CHIP_IS_E1(sc)) { 1656 ecore_init_ind_wr(sc, dst_addr, BXE_SP(sc, wb_data[0]), len32); 1657 } else { 1658 ecore_init_str_wr(sc, dst_addr, BXE_SP(sc, wb_data[0]), len32); 1659 } 1660 1661 return; 1662 } 1663 1664 /* set opcode and fixed command fields */ 1665 bxe_prep_dmae_with_comp(sc, &dmae, DMAE_SRC_PCI, DMAE_DST_GRC); 1666 1667 /* fill in addresses and len */ 1668 dmae.src_addr_lo = U64_LO(dma_addr); 1669 dmae.src_addr_hi = U64_HI(dma_addr); 1670 dmae.dst_addr_lo = (dst_addr >> 2); /* GRC addr has dword resolution */ 1671 dmae.dst_addr_hi = 0; 1672 dmae.len = len32; 1673 1674 /* issue the command and wait for completion */ 1675 if ((rc = bxe_issue_dmae_with_comp(sc, &dmae)) != 0) { 1676 bxe_panic(sc, ("DMAE failed (%d)\n", rc)); 1677 } 1678 } 1679 1680 void 1681 bxe_write_dmae_phys_len(struct bxe_softc *sc, 1682 bus_addr_t phys_addr, 1683 uint32_t addr, 1684 uint32_t len) 1685 { 1686 int dmae_wr_max = DMAE_LEN32_WR_MAX(sc); 1687 int offset = 0; 1688 1689 while (len > dmae_wr_max) { 1690 bxe_write_dmae(sc, 1691 (phys_addr + offset), /* src DMA address */ 1692 (addr + offset), /* dst GRC address */ 1693 dmae_wr_max); 1694 offset += (dmae_wr_max * 4); 1695 len -= dmae_wr_max; 1696 } 1697 1698 bxe_write_dmae(sc, 1699 (phys_addr + offset), /* src DMA address */ 1700 (addr + offset), /* dst GRC address */ 1701 len); 1702 } 1703 1704 void 1705 bxe_set_ctx_validation(struct bxe_softc *sc, 1706 struct eth_context *cxt, 1707 uint32_t cid) 1708 { 1709 /* ustorm cxt validation */ 1710 cxt->ustorm_ag_context.cdu_usage = 1711 CDU_RSRVD_VALUE_TYPE_A(HW_CID(sc, cid), 1712 CDU_REGION_NUMBER_UCM_AG, ETH_CONNECTION_TYPE); 1713 /* xcontext validation */ 1714 cxt->xstorm_ag_context.cdu_reserved = 1715 CDU_RSRVD_VALUE_TYPE_A(HW_CID(sc, cid), 1716 CDU_REGION_NUMBER_XCM_AG, ETH_CONNECTION_TYPE); 1717 } 1718 1719 static void 1720 bxe_storm_memset_hc_timeout(struct bxe_softc *sc, 1721 uint8_t port, 1722 uint8_t fw_sb_id, 1723 uint8_t sb_index, 1724 uint8_t ticks) 1725 { 1726 uint32_t addr = 1727 (BAR_CSTRORM_INTMEM + 1728 CSTORM_STATUS_BLOCK_DATA_TIMEOUT_OFFSET(fw_sb_id, sb_index)); 1729 1730 REG_WR8(sc, addr, ticks); 1731 1732 BLOGD(sc, DBG_LOAD, 1733 "port %d fw_sb_id %d sb_index %d ticks %d\n", 1734 port, fw_sb_id, sb_index, ticks); 1735 } 1736 1737 static void 1738 bxe_storm_memset_hc_disable(struct bxe_softc *sc, 1739 uint8_t port, 1740 uint16_t fw_sb_id, 1741 uint8_t sb_index, 1742 uint8_t disable) 1743 { 1744 uint32_t enable_flag = 1745 (disable) ? 0 : (1 << HC_INDEX_DATA_HC_ENABLED_SHIFT); 1746 uint32_t addr = 1747 (BAR_CSTRORM_INTMEM + 1748 CSTORM_STATUS_BLOCK_DATA_FLAGS_OFFSET(fw_sb_id, sb_index)); 1749 uint8_t flags; 1750 1751 /* clear and set */ 1752 flags = REG_RD8(sc, addr); 1753 flags &= ~HC_INDEX_DATA_HC_ENABLED; 1754 flags |= enable_flag; 1755 REG_WR8(sc, addr, flags); 1756 1757 BLOGD(sc, DBG_LOAD, 1758 "port %d fw_sb_id %d sb_index %d disable %d\n", 1759 port, fw_sb_id, sb_index, disable); 1760 } 1761 1762 void 1763 bxe_update_coalesce_sb_index(struct bxe_softc *sc, 1764 uint8_t fw_sb_id, 1765 uint8_t sb_index, 1766 uint8_t disable, 1767 uint16_t usec) 1768 { 1769 int port = SC_PORT(sc); 1770 uint8_t ticks = (usec / 4); /* XXX ??? */ 1771 1772 bxe_storm_memset_hc_timeout(sc, port, fw_sb_id, sb_index, ticks); 1773 1774 disable = (disable) ? 1 : ((usec) ? 0 : 1); 1775 bxe_storm_memset_hc_disable(sc, port, fw_sb_id, sb_index, disable); 1776 } 1777 1778 void 1779 elink_cb_udelay(struct bxe_softc *sc, 1780 uint32_t usecs) 1781 { 1782 DELAY(usecs); 1783 } 1784 1785 uint32_t 1786 elink_cb_reg_read(struct bxe_softc *sc, 1787 uint32_t reg_addr) 1788 { 1789 return (REG_RD(sc, reg_addr)); 1790 } 1791 1792 void 1793 elink_cb_reg_write(struct bxe_softc *sc, 1794 uint32_t reg_addr, 1795 uint32_t val) 1796 { 1797 REG_WR(sc, reg_addr, val); 1798 } 1799 1800 void 1801 elink_cb_reg_wb_write(struct bxe_softc *sc, 1802 uint32_t offset, 1803 uint32_t *wb_write, 1804 uint16_t len) 1805 { 1806 REG_WR_DMAE(sc, offset, wb_write, len); 1807 } 1808 1809 void 1810 elink_cb_reg_wb_read(struct bxe_softc *sc, 1811 uint32_t offset, 1812 uint32_t *wb_write, 1813 uint16_t len) 1814 { 1815 REG_RD_DMAE(sc, offset, wb_write, len); 1816 } 1817 1818 uint8_t 1819 elink_cb_path_id(struct bxe_softc *sc) 1820 { 1821 return (SC_PATH(sc)); 1822 } 1823 1824 void 1825 elink_cb_event_log(struct bxe_softc *sc, 1826 const elink_log_id_t elink_log_id, 1827 ...) 1828 { 1829 /* XXX */ 1830 BLOGI(sc, "ELINK EVENT LOG (%d)\n", elink_log_id); 1831 } 1832 1833 static int 1834 bxe_set_spio(struct bxe_softc *sc, 1835 int spio, 1836 uint32_t mode) 1837 { 1838 uint32_t spio_reg; 1839 1840 /* Only 2 SPIOs are configurable */ 1841 if ((spio != MISC_SPIO_SPIO4) && (spio != MISC_SPIO_SPIO5)) { 1842 BLOGE(sc, "Invalid SPIO 0x%x mode 0x%x\n", spio, mode); 1843 return (-1); 1844 } 1845 1846 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_SPIO); 1847 1848 /* read SPIO and mask except the float bits */ 1849 spio_reg = (REG_RD(sc, MISC_REG_SPIO) & MISC_SPIO_FLOAT); 1850 1851 switch (mode) { 1852 case MISC_SPIO_OUTPUT_LOW: 1853 BLOGD(sc, DBG_LOAD, "Set SPIO 0x%x -> output low\n", spio); 1854 /* clear FLOAT and set CLR */ 1855 spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS); 1856 spio_reg |= (spio << MISC_SPIO_CLR_POS); 1857 break; 1858 1859 case MISC_SPIO_OUTPUT_HIGH: 1860 BLOGD(sc, DBG_LOAD, "Set SPIO 0x%x -> output high\n", spio); 1861 /* clear FLOAT and set SET */ 1862 spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS); 1863 spio_reg |= (spio << MISC_SPIO_SET_POS); 1864 break; 1865 1866 case MISC_SPIO_INPUT_HI_Z: 1867 BLOGD(sc, DBG_LOAD, "Set SPIO 0x%x -> input\n", spio); 1868 /* set FLOAT */ 1869 spio_reg |= (spio << MISC_SPIO_FLOAT_POS); 1870 break; 1871 1872 default: 1873 break; 1874 } 1875 1876 REG_WR(sc, MISC_REG_SPIO, spio_reg); 1877 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_SPIO); 1878 1879 return (0); 1880 } 1881 1882 static int 1883 bxe_gpio_read(struct bxe_softc *sc, 1884 int gpio_num, 1885 uint8_t port) 1886 { 1887 /* The GPIO should be swapped if swap register is set and active */ 1888 int gpio_port = ((REG_RD(sc, NIG_REG_PORT_SWAP) && 1889 REG_RD(sc, NIG_REG_STRAP_OVERRIDE)) ^ port); 1890 int gpio_shift = (gpio_num + 1891 (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0)); 1892 uint32_t gpio_mask = (1 << gpio_shift); 1893 uint32_t gpio_reg; 1894 1895 if (gpio_num > MISC_REGISTERS_GPIO_3) { 1896 BLOGE(sc, "Invalid GPIO %d port 0x%x gpio_port %d gpio_shift %d" 1897 " gpio_mask 0x%x\n", gpio_num, port, gpio_port, gpio_shift, 1898 gpio_mask); 1899 return (-1); 1900 } 1901 1902 /* read GPIO value */ 1903 gpio_reg = REG_RD(sc, MISC_REG_GPIO); 1904 1905 /* get the requested pin value */ 1906 return ((gpio_reg & gpio_mask) == gpio_mask) ? 1 : 0; 1907 } 1908 1909 static int 1910 bxe_gpio_write(struct bxe_softc *sc, 1911 int gpio_num, 1912 uint32_t mode, 1913 uint8_t port) 1914 { 1915 /* The GPIO should be swapped if swap register is set and active */ 1916 int gpio_port = ((REG_RD(sc, NIG_REG_PORT_SWAP) && 1917 REG_RD(sc, NIG_REG_STRAP_OVERRIDE)) ^ port); 1918 int gpio_shift = (gpio_num + 1919 (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0)); 1920 uint32_t gpio_mask = (1 << gpio_shift); 1921 uint32_t gpio_reg; 1922 1923 if (gpio_num > MISC_REGISTERS_GPIO_3) { 1924 BLOGE(sc, "Invalid GPIO %d mode 0x%x port 0x%x gpio_port %d" 1925 " gpio_shift %d gpio_mask 0x%x\n", 1926 gpio_num, mode, port, gpio_port, gpio_shift, gpio_mask); 1927 return (-1); 1928 } 1929 1930 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_GPIO); 1931 1932 /* read GPIO and mask except the float bits */ 1933 gpio_reg = (REG_RD(sc, MISC_REG_GPIO) & MISC_REGISTERS_GPIO_FLOAT); 1934 1935 switch (mode) { 1936 case MISC_REGISTERS_GPIO_OUTPUT_LOW: 1937 BLOGD(sc, DBG_PHY, 1938 "Set GPIO %d (shift %d) -> output low\n", 1939 gpio_num, gpio_shift); 1940 /* clear FLOAT and set CLR */ 1941 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS); 1942 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_CLR_POS); 1943 break; 1944 1945 case MISC_REGISTERS_GPIO_OUTPUT_HIGH: 1946 BLOGD(sc, DBG_PHY, 1947 "Set GPIO %d (shift %d) -> output high\n", 1948 gpio_num, gpio_shift); 1949 /* clear FLOAT and set SET */ 1950 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS); 1951 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_SET_POS); 1952 break; 1953 1954 case MISC_REGISTERS_GPIO_INPUT_HI_Z: 1955 BLOGD(sc, DBG_PHY, 1956 "Set GPIO %d (shift %d) -> input\n", 1957 gpio_num, gpio_shift); 1958 /* set FLOAT */ 1959 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS); 1960 break; 1961 1962 default: 1963 break; 1964 } 1965 1966 REG_WR(sc, MISC_REG_GPIO, gpio_reg); 1967 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_GPIO); 1968 1969 return (0); 1970 } 1971 1972 static int 1973 bxe_gpio_mult_write(struct bxe_softc *sc, 1974 uint8_t pins, 1975 uint32_t mode) 1976 { 1977 uint32_t gpio_reg; 1978 1979 /* any port swapping should be handled by caller */ 1980 1981 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_GPIO); 1982 1983 /* read GPIO and mask except the float bits */ 1984 gpio_reg = REG_RD(sc, MISC_REG_GPIO); 1985 gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_FLOAT_POS); 1986 gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_CLR_POS); 1987 gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_SET_POS); 1988 1989 switch (mode) { 1990 case MISC_REGISTERS_GPIO_OUTPUT_LOW: 1991 BLOGD(sc, DBG_PHY, "Set GPIO 0x%x -> output low\n", pins); 1992 /* set CLR */ 1993 gpio_reg |= (pins << MISC_REGISTERS_GPIO_CLR_POS); 1994 break; 1995 1996 case MISC_REGISTERS_GPIO_OUTPUT_HIGH: 1997 BLOGD(sc, DBG_PHY, "Set GPIO 0x%x -> output high\n", pins); 1998 /* set SET */ 1999 gpio_reg |= (pins << MISC_REGISTERS_GPIO_SET_POS); 2000 break; 2001 2002 case MISC_REGISTERS_GPIO_INPUT_HI_Z: 2003 BLOGD(sc, DBG_PHY, "Set GPIO 0x%x -> input\n", pins); 2004 /* set FLOAT */ 2005 gpio_reg |= (pins << MISC_REGISTERS_GPIO_FLOAT_POS); 2006 break; 2007 2008 default: 2009 BLOGE(sc, "Invalid GPIO mode assignment pins 0x%x mode 0x%x" 2010 " gpio_reg 0x%x\n", pins, mode, gpio_reg); 2011 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_GPIO); 2012 return (-1); 2013 } 2014 2015 REG_WR(sc, MISC_REG_GPIO, gpio_reg); 2016 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_GPIO); 2017 2018 return (0); 2019 } 2020 2021 static int 2022 bxe_gpio_int_write(struct bxe_softc *sc, 2023 int gpio_num, 2024 uint32_t mode, 2025 uint8_t port) 2026 { 2027 /* The GPIO should be swapped if swap register is set and active */ 2028 int gpio_port = ((REG_RD(sc, NIG_REG_PORT_SWAP) && 2029 REG_RD(sc, NIG_REG_STRAP_OVERRIDE)) ^ port); 2030 int gpio_shift = (gpio_num + 2031 (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0)); 2032 uint32_t gpio_mask = (1 << gpio_shift); 2033 uint32_t gpio_reg; 2034 2035 if (gpio_num > MISC_REGISTERS_GPIO_3) { 2036 BLOGE(sc, "Invalid GPIO %d mode 0x%x port 0x%x gpio_port %d" 2037 " gpio_shift %d gpio_mask 0x%x\n", 2038 gpio_num, mode, port, gpio_port, gpio_shift, gpio_mask); 2039 return (-1); 2040 } 2041 2042 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_GPIO); 2043 2044 /* read GPIO int */ 2045 gpio_reg = REG_RD(sc, MISC_REG_GPIO_INT); 2046 2047 switch (mode) { 2048 case MISC_REGISTERS_GPIO_INT_OUTPUT_CLR: 2049 BLOGD(sc, DBG_PHY, 2050 "Clear GPIO INT %d (shift %d) -> output low\n", 2051 gpio_num, gpio_shift); 2052 /* clear SET and set CLR */ 2053 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS); 2054 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS); 2055 break; 2056 2057 case MISC_REGISTERS_GPIO_INT_OUTPUT_SET: 2058 BLOGD(sc, DBG_PHY, 2059 "Set GPIO INT %d (shift %d) -> output high\n", 2060 gpio_num, gpio_shift); 2061 /* clear CLR and set SET */ 2062 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS); 2063 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS); 2064 break; 2065 2066 default: 2067 break; 2068 } 2069 2070 REG_WR(sc, MISC_REG_GPIO_INT, gpio_reg); 2071 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_GPIO); 2072 2073 return (0); 2074 } 2075 2076 uint32_t 2077 elink_cb_gpio_read(struct bxe_softc *sc, 2078 uint16_t gpio_num, 2079 uint8_t port) 2080 { 2081 return (bxe_gpio_read(sc, gpio_num, port)); 2082 } 2083 2084 uint8_t 2085 elink_cb_gpio_write(struct bxe_softc *sc, 2086 uint16_t gpio_num, 2087 uint8_t mode, /* 0=low 1=high */ 2088 uint8_t port) 2089 { 2090 return (bxe_gpio_write(sc, gpio_num, mode, port)); 2091 } 2092 2093 uint8_t 2094 elink_cb_gpio_mult_write(struct bxe_softc *sc, 2095 uint8_t pins, 2096 uint8_t mode) /* 0=low 1=high */ 2097 { 2098 return (bxe_gpio_mult_write(sc, pins, mode)); 2099 } 2100 2101 uint8_t 2102 elink_cb_gpio_int_write(struct bxe_softc *sc, 2103 uint16_t gpio_num, 2104 uint8_t mode, /* 0=low 1=high */ 2105 uint8_t port) 2106 { 2107 return (bxe_gpio_int_write(sc, gpio_num, mode, port)); 2108 } 2109 2110 void 2111 elink_cb_notify_link_changed(struct bxe_softc *sc) 2112 { 2113 REG_WR(sc, (MISC_REG_AEU_GENERAL_ATTN_12 + 2114 (SC_FUNC(sc) * sizeof(uint32_t))), 1); 2115 } 2116 2117 /* send the MCP a request, block until there is a reply */ 2118 uint32_t 2119 elink_cb_fw_command(struct bxe_softc *sc, 2120 uint32_t command, 2121 uint32_t param) 2122 { 2123 int mb_idx = SC_FW_MB_IDX(sc); 2124 uint32_t seq; 2125 uint32_t rc = 0; 2126 uint32_t cnt = 1; 2127 uint8_t delay = CHIP_REV_IS_SLOW(sc) ? 100 : 10; 2128 2129 BXE_FWMB_LOCK(sc); 2130 2131 seq = ++sc->fw_seq; 2132 SHMEM_WR(sc, func_mb[mb_idx].drv_mb_param, param); 2133 SHMEM_WR(sc, func_mb[mb_idx].drv_mb_header, (command | seq)); 2134 2135 BLOGD(sc, DBG_PHY, 2136 "wrote command 0x%08x to FW MB param 0x%08x\n", 2137 (command | seq), param); 2138 2139 /* Let the FW do it's magic. GIve it up to 5 seconds... */ 2140 do { 2141 DELAY(delay * 1000); 2142 rc = SHMEM_RD(sc, func_mb[mb_idx].fw_mb_header); 2143 } while ((seq != (rc & FW_MSG_SEQ_NUMBER_MASK)) && (cnt++ < 500)); 2144 2145 BLOGD(sc, DBG_PHY, 2146 "[after %d ms] read 0x%x seq 0x%x from FW MB\n", 2147 cnt*delay, rc, seq); 2148 2149 /* is this a reply to our command? */ 2150 if (seq == (rc & FW_MSG_SEQ_NUMBER_MASK)) { 2151 rc &= FW_MSG_CODE_MASK; 2152 } else { 2153 /* Ruh-roh! */ 2154 BLOGE(sc, "FW failed to respond!\n"); 2155 // XXX bxe_fw_dump(sc); 2156 rc = 0; 2157 } 2158 2159 BXE_FWMB_UNLOCK(sc); 2160 return (rc); 2161 } 2162 2163 static uint32_t 2164 bxe_fw_command(struct bxe_softc *sc, 2165 uint32_t command, 2166 uint32_t param) 2167 { 2168 return (elink_cb_fw_command(sc, command, param)); 2169 } 2170 2171 static void 2172 __storm_memset_dma_mapping(struct bxe_softc *sc, 2173 uint32_t addr, 2174 bus_addr_t mapping) 2175 { 2176 REG_WR(sc, addr, U64_LO(mapping)); 2177 REG_WR(sc, (addr + 4), U64_HI(mapping)); 2178 } 2179 2180 static void 2181 storm_memset_spq_addr(struct bxe_softc *sc, 2182 bus_addr_t mapping, 2183 uint16_t abs_fid) 2184 { 2185 uint32_t addr = (XSEM_REG_FAST_MEMORY + 2186 XSTORM_SPQ_PAGE_BASE_OFFSET(abs_fid)); 2187 __storm_memset_dma_mapping(sc, addr, mapping); 2188 } 2189 2190 static void 2191 storm_memset_vf_to_pf(struct bxe_softc *sc, 2192 uint16_t abs_fid, 2193 uint16_t pf_id) 2194 { 2195 REG_WR8(sc, (BAR_XSTRORM_INTMEM + XSTORM_VF_TO_PF_OFFSET(abs_fid)), pf_id); 2196 REG_WR8(sc, (BAR_CSTRORM_INTMEM + CSTORM_VF_TO_PF_OFFSET(abs_fid)), pf_id); 2197 REG_WR8(sc, (BAR_TSTRORM_INTMEM + TSTORM_VF_TO_PF_OFFSET(abs_fid)), pf_id); 2198 REG_WR8(sc, (BAR_USTRORM_INTMEM + USTORM_VF_TO_PF_OFFSET(abs_fid)), pf_id); 2199 } 2200 2201 static void 2202 storm_memset_func_en(struct bxe_softc *sc, 2203 uint16_t abs_fid, 2204 uint8_t enable) 2205 { 2206 REG_WR8(sc, (BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(abs_fid)), enable); 2207 REG_WR8(sc, (BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(abs_fid)), enable); 2208 REG_WR8(sc, (BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(abs_fid)), enable); 2209 REG_WR8(sc, (BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(abs_fid)), enable); 2210 } 2211 2212 static void 2213 storm_memset_eq_data(struct bxe_softc *sc, 2214 struct event_ring_data *eq_data, 2215 uint16_t pfid) 2216 { 2217 uint32_t addr; 2218 size_t size; 2219 2220 addr = (BAR_CSTRORM_INTMEM + CSTORM_EVENT_RING_DATA_OFFSET(pfid)); 2221 size = sizeof(struct event_ring_data); 2222 ecore_storm_memset_struct(sc, addr, size, (uint32_t *)eq_data); 2223 } 2224 2225 static void 2226 storm_memset_eq_prod(struct bxe_softc *sc, 2227 uint16_t eq_prod, 2228 uint16_t pfid) 2229 { 2230 uint32_t addr = (BAR_CSTRORM_INTMEM + 2231 CSTORM_EVENT_RING_PROD_OFFSET(pfid)); 2232 REG_WR16(sc, addr, eq_prod); 2233 } 2234 2235 /* 2236 * Post a slowpath command. 2237 * 2238 * A slowpath command is used to propagate a configuration change through 2239 * the controller in a controlled manner, allowing each STORM processor and 2240 * other H/W blocks to phase in the change. The commands sent on the 2241 * slowpath are referred to as ramrods. Depending on the ramrod used the 2242 * completion of the ramrod will occur in different ways. Here's a 2243 * breakdown of ramrods and how they complete: 2244 * 2245 * RAMROD_CMD_ID_ETH_PORT_SETUP 2246 * Used to setup the leading connection on a port. Completes on the 2247 * Receive Completion Queue (RCQ) of that port (typically fp[0]). 2248 * 2249 * RAMROD_CMD_ID_ETH_CLIENT_SETUP 2250 * Used to setup an additional connection on a port. Completes on the 2251 * RCQ of the multi-queue/RSS connection being initialized. 2252 * 2253 * RAMROD_CMD_ID_ETH_STAT_QUERY 2254 * Used to force the storm processors to update the statistics database 2255 * in host memory. This ramrod is send on the leading connection CID and 2256 * completes as an index increment of the CSTORM on the default status 2257 * block. 2258 * 2259 * RAMROD_CMD_ID_ETH_UPDATE 2260 * Used to update the state of the leading connection, usually to udpate 2261 * the RSS indirection table. Completes on the RCQ of the leading 2262 * connection. (Not currently used under FreeBSD until OS support becomes 2263 * available.) 2264 * 2265 * RAMROD_CMD_ID_ETH_HALT 2266 * Used when tearing down a connection prior to driver unload. Completes 2267 * on the RCQ of the multi-queue/RSS connection being torn down. Don't 2268 * use this on the leading connection. 2269 * 2270 * RAMROD_CMD_ID_ETH_SET_MAC 2271 * Sets the Unicast/Broadcast/Multicast used by the port. Completes on 2272 * the RCQ of the leading connection. 2273 * 2274 * RAMROD_CMD_ID_ETH_CFC_DEL 2275 * Used when tearing down a conneciton prior to driver unload. Completes 2276 * on the RCQ of the leading connection (since the current connection 2277 * has been completely removed from controller memory). 2278 * 2279 * RAMROD_CMD_ID_ETH_PORT_DEL 2280 * Used to tear down the leading connection prior to driver unload, 2281 * typically fp[0]. Completes as an index increment of the CSTORM on the 2282 * default status block. 2283 * 2284 * RAMROD_CMD_ID_ETH_FORWARD_SETUP 2285 * Used for connection offload. Completes on the RCQ of the multi-queue 2286 * RSS connection that is being offloaded. (Not currently used under 2287 * FreeBSD.) 2288 * 2289 * There can only be one command pending per function. 2290 * 2291 * Returns: 2292 * 0 = Success, !0 = Failure. 2293 */ 2294 2295 /* must be called under the spq lock */ 2296 static inline 2297 struct eth_spe *bxe_sp_get_next(struct bxe_softc *sc) 2298 { 2299 struct eth_spe *next_spe = sc->spq_prod_bd; 2300 2301 if (sc->spq_prod_bd == sc->spq_last_bd) { 2302 /* wrap back to the first eth_spq */ 2303 sc->spq_prod_bd = sc->spq; 2304 sc->spq_prod_idx = 0; 2305 } else { 2306 sc->spq_prod_bd++; 2307 sc->spq_prod_idx++; 2308 } 2309 2310 return (next_spe); 2311 } 2312 2313 /* must be called under the spq lock */ 2314 static inline 2315 void bxe_sp_prod_update(struct bxe_softc *sc) 2316 { 2317 int func = SC_FUNC(sc); 2318 2319 /* 2320 * Make sure that BD data is updated before writing the producer. 2321 * BD data is written to the memory, the producer is read from the 2322 * memory, thus we need a full memory barrier to ensure the ordering. 2323 */ 2324 mb(); 2325 2326 REG_WR16(sc, (BAR_XSTRORM_INTMEM + XSTORM_SPQ_PROD_OFFSET(func)), 2327 sc->spq_prod_idx); 2328 2329 bus_space_barrier(sc->bar[BAR0].tag, sc->bar[BAR0].handle, 0, 0, 2330 BUS_SPACE_BARRIER_WRITE); 2331 } 2332 2333 /** 2334 * bxe_is_contextless_ramrod - check if the current command ends on EQ 2335 * 2336 * @cmd: command to check 2337 * @cmd_type: command type 2338 */ 2339 static inline 2340 int bxe_is_contextless_ramrod(int cmd, 2341 int cmd_type) 2342 { 2343 if ((cmd_type == NONE_CONNECTION_TYPE) || 2344 (cmd == RAMROD_CMD_ID_ETH_FORWARD_SETUP) || 2345 (cmd == RAMROD_CMD_ID_ETH_CLASSIFICATION_RULES) || 2346 (cmd == RAMROD_CMD_ID_ETH_FILTER_RULES) || 2347 (cmd == RAMROD_CMD_ID_ETH_MULTICAST_RULES) || 2348 (cmd == RAMROD_CMD_ID_ETH_SET_MAC) || 2349 (cmd == RAMROD_CMD_ID_ETH_RSS_UPDATE)) { 2350 return (TRUE); 2351 } else { 2352 return (FALSE); 2353 } 2354 } 2355 2356 /** 2357 * bxe_sp_post - place a single command on an SP ring 2358 * 2359 * @sc: driver handle 2360 * @command: command to place (e.g. SETUP, FILTER_RULES, etc.) 2361 * @cid: SW CID the command is related to 2362 * @data_hi: command private data address (high 32 bits) 2363 * @data_lo: command private data address (low 32 bits) 2364 * @cmd_type: command type (e.g. NONE, ETH) 2365 * 2366 * SP data is handled as if it's always an address pair, thus data fields are 2367 * not swapped to little endian in upper functions. Instead this function swaps 2368 * data as if it's two uint32 fields. 2369 */ 2370 int 2371 bxe_sp_post(struct bxe_softc *sc, 2372 int command, 2373 int cid, 2374 uint32_t data_hi, 2375 uint32_t data_lo, 2376 int cmd_type) 2377 { 2378 struct eth_spe *spe; 2379 uint16_t type; 2380 int common; 2381 2382 common = bxe_is_contextless_ramrod(command, cmd_type); 2383 2384 BXE_SP_LOCK(sc); 2385 2386 if (common) { 2387 if (!atomic_load_acq_long(&sc->eq_spq_left)) { 2388 BLOGE(sc, "EQ ring is full!\n"); 2389 BXE_SP_UNLOCK(sc); 2390 return (-1); 2391 } 2392 } else { 2393 if (!atomic_load_acq_long(&sc->cq_spq_left)) { 2394 BLOGE(sc, "SPQ ring is full!\n"); 2395 BXE_SP_UNLOCK(sc); 2396 return (-1); 2397 } 2398 } 2399 2400 spe = bxe_sp_get_next(sc); 2401 2402 /* CID needs port number to be encoded int it */ 2403 spe->hdr.conn_and_cmd_data = 2404 htole32((command << SPE_HDR_T_CMD_ID_SHIFT) | HW_CID(sc, cid)); 2405 2406 type = (cmd_type << SPE_HDR_T_CONN_TYPE_SHIFT) & SPE_HDR_T_CONN_TYPE; 2407 2408 /* TBD: Check if it works for VFs */ 2409 type |= ((SC_FUNC(sc) << SPE_HDR_T_FUNCTION_ID_SHIFT) & 2410 SPE_HDR_T_FUNCTION_ID); 2411 2412 spe->hdr.type = htole16(type); 2413 2414 spe->data.update_data_addr.hi = htole32(data_hi); 2415 spe->data.update_data_addr.lo = htole32(data_lo); 2416 2417 /* 2418 * It's ok if the actual decrement is issued towards the memory 2419 * somewhere between the lock and unlock. Thus no more explict 2420 * memory barrier is needed. 2421 */ 2422 if (common) { 2423 atomic_subtract_acq_long(&sc->eq_spq_left, 1); 2424 } else { 2425 atomic_subtract_acq_long(&sc->cq_spq_left, 1); 2426 } 2427 2428 BLOGD(sc, DBG_SP, "SPQE -> %#jx\n", (uintmax_t)sc->spq_dma.paddr); 2429 BLOGD(sc, DBG_SP, "FUNC_RDATA -> %p / %#jx\n", 2430 BXE_SP(sc, func_rdata), (uintmax_t)BXE_SP_MAPPING(sc, func_rdata)); 2431 BLOGD(sc, DBG_SP, 2432 "SPQE[%x] (%x:%x) (cmd, common?) (%d,%d) hw_cid %x data (%x:%x) type(0x%x) left (CQ, EQ) (%lx,%lx)\n", 2433 sc->spq_prod_idx, 2434 (uint32_t)U64_HI(sc->spq_dma.paddr), 2435 (uint32_t)(U64_LO(sc->spq_dma.paddr) + (uint8_t *)sc->spq_prod_bd - (uint8_t *)sc->spq), 2436 command, 2437 common, 2438 HW_CID(sc, cid), 2439 data_hi, 2440 data_lo, 2441 type, 2442 atomic_load_acq_long(&sc->cq_spq_left), 2443 atomic_load_acq_long(&sc->eq_spq_left)); 2444 2445 bxe_sp_prod_update(sc); 2446 2447 BXE_SP_UNLOCK(sc); 2448 return (0); 2449 } 2450 2451 /** 2452 * bxe_debug_print_ind_table - prints the indirection table configuration. 2453 * 2454 * @sc: driver hanlde 2455 * @p: pointer to rss configuration 2456 */ 2457 2458 /* 2459 * FreeBSD Device probe function. 2460 * 2461 * Compares the device found to the driver's list of supported devices and 2462 * reports back to the bsd loader whether this is the right driver for the device. 2463 * This is the driver entry function called from the "kldload" command. 2464 * 2465 * Returns: 2466 * BUS_PROBE_DEFAULT on success, positive value on failure. 2467 */ 2468 static int 2469 bxe_probe(device_t dev) 2470 { 2471 struct bxe_device_type *t; 2472 char *descbuf; 2473 uint16_t did, sdid, svid, vid; 2474 2475 /* Find our device structure */ 2476 t = bxe_devs; 2477 2478 /* Get the data for the device to be probed. */ 2479 vid = pci_get_vendor(dev); 2480 did = pci_get_device(dev); 2481 svid = pci_get_subvendor(dev); 2482 sdid = pci_get_subdevice(dev); 2483 2484 /* Look through the list of known devices for a match. */ 2485 while (t->bxe_name != NULL) { 2486 if ((vid == t->bxe_vid) && (did == t->bxe_did) && 2487 ((svid == t->bxe_svid) || (t->bxe_svid == PCI_ANY_ID)) && 2488 ((sdid == t->bxe_sdid) || (t->bxe_sdid == PCI_ANY_ID))) { 2489 descbuf = malloc(BXE_DEVDESC_MAX, M_TEMP, M_NOWAIT); 2490 if (descbuf == NULL) 2491 return (ENOMEM); 2492 2493 /* Print out the device identity. */ 2494 snprintf(descbuf, BXE_DEVDESC_MAX, 2495 "%s (%c%d) BXE v:%s\n", t->bxe_name, 2496 (((pci_read_config(dev, PCIR_REVID, 4) & 2497 0xf0) >> 4) + 'A'), 2498 (pci_read_config(dev, PCIR_REVID, 4) & 0xf), 2499 BXE_DRIVER_VERSION); 2500 2501 device_set_desc_copy(dev, descbuf); 2502 free(descbuf, M_TEMP); 2503 return (BUS_PROBE_DEFAULT); 2504 } 2505 t++; 2506 } 2507 2508 return (ENXIO); 2509 } 2510 2511 static void 2512 bxe_init_mutexes(struct bxe_softc *sc) 2513 { 2514 #ifdef BXE_CORE_LOCK_SX 2515 snprintf(sc->core_sx_name, sizeof(sc->core_sx_name), 2516 "bxe%d_core_lock", sc->unit); 2517 sx_init(&sc->core_sx, sc->core_sx_name); 2518 #else 2519 snprintf(sc->core_mtx_name, sizeof(sc->core_mtx_name), 2520 "bxe%d_core_lock", sc->unit); 2521 mtx_init(&sc->core_mtx, sc->core_mtx_name, NULL, MTX_DEF); 2522 #endif 2523 2524 snprintf(sc->sp_mtx_name, sizeof(sc->sp_mtx_name), 2525 "bxe%d_sp_lock", sc->unit); 2526 mtx_init(&sc->sp_mtx, sc->sp_mtx_name, NULL, MTX_DEF); 2527 2528 snprintf(sc->dmae_mtx_name, sizeof(sc->dmae_mtx_name), 2529 "bxe%d_dmae_lock", sc->unit); 2530 mtx_init(&sc->dmae_mtx, sc->dmae_mtx_name, NULL, MTX_DEF); 2531 2532 snprintf(sc->port.phy_mtx_name, sizeof(sc->port.phy_mtx_name), 2533 "bxe%d_phy_lock", sc->unit); 2534 mtx_init(&sc->port.phy_mtx, sc->port.phy_mtx_name, NULL, MTX_DEF); 2535 2536 snprintf(sc->fwmb_mtx_name, sizeof(sc->fwmb_mtx_name), 2537 "bxe%d_fwmb_lock", sc->unit); 2538 mtx_init(&sc->fwmb_mtx, sc->fwmb_mtx_name, NULL, MTX_DEF); 2539 2540 snprintf(sc->print_mtx_name, sizeof(sc->print_mtx_name), 2541 "bxe%d_print_lock", sc->unit); 2542 mtx_init(&(sc->print_mtx), sc->print_mtx_name, NULL, MTX_DEF); 2543 2544 snprintf(sc->stats_mtx_name, sizeof(sc->stats_mtx_name), 2545 "bxe%d_stats_lock", sc->unit); 2546 mtx_init(&(sc->stats_mtx), sc->stats_mtx_name, NULL, MTX_DEF); 2547 2548 snprintf(sc->mcast_mtx_name, sizeof(sc->mcast_mtx_name), 2549 "bxe%d_mcast_lock", sc->unit); 2550 mtx_init(&(sc->mcast_mtx), sc->mcast_mtx_name, NULL, MTX_DEF); 2551 } 2552 2553 static void 2554 bxe_release_mutexes(struct bxe_softc *sc) 2555 { 2556 #ifdef BXE_CORE_LOCK_SX 2557 sx_destroy(&sc->core_sx); 2558 #else 2559 if (mtx_initialized(&sc->core_mtx)) { 2560 mtx_destroy(&sc->core_mtx); 2561 } 2562 #endif 2563 2564 if (mtx_initialized(&sc->sp_mtx)) { 2565 mtx_destroy(&sc->sp_mtx); 2566 } 2567 2568 if (mtx_initialized(&sc->dmae_mtx)) { 2569 mtx_destroy(&sc->dmae_mtx); 2570 } 2571 2572 if (mtx_initialized(&sc->port.phy_mtx)) { 2573 mtx_destroy(&sc->port.phy_mtx); 2574 } 2575 2576 if (mtx_initialized(&sc->fwmb_mtx)) { 2577 mtx_destroy(&sc->fwmb_mtx); 2578 } 2579 2580 if (mtx_initialized(&sc->print_mtx)) { 2581 mtx_destroy(&sc->print_mtx); 2582 } 2583 2584 if (mtx_initialized(&sc->stats_mtx)) { 2585 mtx_destroy(&sc->stats_mtx); 2586 } 2587 2588 if (mtx_initialized(&sc->mcast_mtx)) { 2589 mtx_destroy(&sc->mcast_mtx); 2590 } 2591 } 2592 2593 static void 2594 bxe_tx_disable(struct bxe_softc* sc) 2595 { 2596 if_t ifp = sc->ifp; 2597 2598 /* tell the stack the driver is stopped and TX queue is full */ 2599 if (ifp != NULL) { 2600 if_setdrvflags(ifp, 0); 2601 } 2602 } 2603 2604 static void 2605 bxe_drv_pulse(struct bxe_softc *sc) 2606 { 2607 SHMEM_WR(sc, func_mb[SC_FW_MB_IDX(sc)].drv_pulse_mb, 2608 sc->fw_drv_pulse_wr_seq); 2609 } 2610 2611 static inline uint16_t 2612 bxe_tx_avail(struct bxe_softc *sc, 2613 struct bxe_fastpath *fp) 2614 { 2615 int16_t used; 2616 uint16_t prod; 2617 uint16_t cons; 2618 2619 prod = fp->tx_bd_prod; 2620 cons = fp->tx_bd_cons; 2621 2622 used = SUB_S16(prod, cons); 2623 2624 return (int16_t)(sc->tx_ring_size) - used; 2625 } 2626 2627 static inline int 2628 bxe_tx_queue_has_work(struct bxe_fastpath *fp) 2629 { 2630 uint16_t hw_cons; 2631 2632 mb(); /* status block fields can change */ 2633 hw_cons = le16toh(*fp->tx_cons_sb); 2634 return (hw_cons != fp->tx_pkt_cons); 2635 } 2636 2637 static inline uint8_t 2638 bxe_has_tx_work(struct bxe_fastpath *fp) 2639 { 2640 /* expand this for multi-cos if ever supported */ 2641 return (bxe_tx_queue_has_work(fp)) ? TRUE : FALSE; 2642 } 2643 2644 static inline int 2645 bxe_has_rx_work(struct bxe_fastpath *fp) 2646 { 2647 uint16_t rx_cq_cons_sb; 2648 2649 mb(); /* status block fields can change */ 2650 rx_cq_cons_sb = le16toh(*fp->rx_cq_cons_sb); 2651 if ((rx_cq_cons_sb & RCQ_MAX) == RCQ_MAX) 2652 rx_cq_cons_sb++; 2653 return (fp->rx_cq_cons != rx_cq_cons_sb); 2654 } 2655 2656 static void 2657 bxe_sp_event(struct bxe_softc *sc, 2658 struct bxe_fastpath *fp, 2659 union eth_rx_cqe *rr_cqe) 2660 { 2661 int cid = SW_CID(rr_cqe->ramrod_cqe.conn_and_cmd_data); 2662 int command = CQE_CMD(rr_cqe->ramrod_cqe.conn_and_cmd_data); 2663 enum ecore_queue_cmd drv_cmd = ECORE_Q_CMD_MAX; 2664 struct ecore_queue_sp_obj *q_obj = &BXE_SP_OBJ(sc, fp).q_obj; 2665 2666 BLOGD(sc, DBG_SP, "fp=%d cid=%d got ramrod #%d state is %x type is %d\n", 2667 fp->index, cid, command, sc->state, rr_cqe->ramrod_cqe.ramrod_type); 2668 2669 switch (command) { 2670 case (RAMROD_CMD_ID_ETH_CLIENT_UPDATE): 2671 BLOGD(sc, DBG_SP, "got UPDATE ramrod. CID %d\n", cid); 2672 drv_cmd = ECORE_Q_CMD_UPDATE; 2673 break; 2674 2675 case (RAMROD_CMD_ID_ETH_CLIENT_SETUP): 2676 BLOGD(sc, DBG_SP, "got MULTI[%d] setup ramrod\n", cid); 2677 drv_cmd = ECORE_Q_CMD_SETUP; 2678 break; 2679 2680 case (RAMROD_CMD_ID_ETH_TX_QUEUE_SETUP): 2681 BLOGD(sc, DBG_SP, "got MULTI[%d] tx-only setup ramrod\n", cid); 2682 drv_cmd = ECORE_Q_CMD_SETUP_TX_ONLY; 2683 break; 2684 2685 case (RAMROD_CMD_ID_ETH_HALT): 2686 BLOGD(sc, DBG_SP, "got MULTI[%d] halt ramrod\n", cid); 2687 drv_cmd = ECORE_Q_CMD_HALT; 2688 break; 2689 2690 case (RAMROD_CMD_ID_ETH_TERMINATE): 2691 BLOGD(sc, DBG_SP, "got MULTI[%d] teminate ramrod\n", cid); 2692 drv_cmd = ECORE_Q_CMD_TERMINATE; 2693 break; 2694 2695 case (RAMROD_CMD_ID_ETH_EMPTY): 2696 BLOGD(sc, DBG_SP, "got MULTI[%d] empty ramrod\n", cid); 2697 drv_cmd = ECORE_Q_CMD_EMPTY; 2698 break; 2699 2700 default: 2701 BLOGD(sc, DBG_SP, "ERROR: unexpected MC reply (%d) on fp[%d]\n", 2702 command, fp->index); 2703 return; 2704 } 2705 2706 if ((drv_cmd != ECORE_Q_CMD_MAX) && 2707 q_obj->complete_cmd(sc, q_obj, drv_cmd)) { 2708 /* 2709 * q_obj->complete_cmd() failure means that this was 2710 * an unexpected completion. 2711 * 2712 * In this case we don't want to increase the sc->spq_left 2713 * because apparently we haven't sent this command the first 2714 * place. 2715 */ 2716 // bxe_panic(sc, ("Unexpected SP completion\n")); 2717 return; 2718 } 2719 2720 atomic_add_acq_long(&sc->cq_spq_left, 1); 2721 2722 BLOGD(sc, DBG_SP, "sc->cq_spq_left 0x%lx\n", 2723 atomic_load_acq_long(&sc->cq_spq_left)); 2724 } 2725 2726 /* 2727 * The current mbuf is part of an aggregation. Move the mbuf into the TPA 2728 * aggregation queue, put an empty mbuf back onto the receive chain, and mark 2729 * the current aggregation queue as in-progress. 2730 */ 2731 static void 2732 bxe_tpa_start(struct bxe_softc *sc, 2733 struct bxe_fastpath *fp, 2734 uint16_t queue, 2735 uint16_t cons, 2736 uint16_t prod, 2737 struct eth_fast_path_rx_cqe *cqe) 2738 { 2739 struct bxe_sw_rx_bd tmp_bd; 2740 struct bxe_sw_rx_bd *rx_buf; 2741 struct eth_rx_bd *rx_bd; 2742 int max_agg_queues; 2743 struct bxe_sw_tpa_info *tpa_info = &fp->rx_tpa_info[queue]; 2744 uint16_t index; 2745 2746 BLOGD(sc, DBG_LRO, "fp[%02d].tpa[%02d] TPA START " 2747 "cons=%d prod=%d\n", 2748 fp->index, queue, cons, prod); 2749 2750 max_agg_queues = MAX_AGG_QS(sc); 2751 2752 KASSERT((queue < max_agg_queues), 2753 ("fp[%02d] invalid aggr queue (%d >= %d)!", 2754 fp->index, queue, max_agg_queues)); 2755 2756 KASSERT((tpa_info->state == BXE_TPA_STATE_STOP), 2757 ("fp[%02d].tpa[%02d] starting aggr on queue not stopped!", 2758 fp->index, queue)); 2759 2760 /* copy the existing mbuf and mapping from the TPA pool */ 2761 tmp_bd = tpa_info->bd; 2762 2763 if (tmp_bd.m == NULL) { 2764 uint32_t *tmp; 2765 2766 tmp = (uint32_t *)cqe; 2767 2768 BLOGE(sc, "fp[%02d].tpa[%02d] cons[%d] prod[%d]mbuf not allocated!\n", 2769 fp->index, queue, cons, prod); 2770 BLOGE(sc, "cqe [0x%08x 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x]\n", 2771 *tmp, *(tmp+1), *(tmp+2), *(tmp+3), *(tmp+4), *(tmp+5), *(tmp+6), *(tmp+7)); 2772 2773 /* XXX Error handling? */ 2774 return; 2775 } 2776 2777 /* change the TPA queue to the start state */ 2778 tpa_info->state = BXE_TPA_STATE_START; 2779 tpa_info->placement_offset = cqe->placement_offset; 2780 tpa_info->parsing_flags = le16toh(cqe->pars_flags.flags); 2781 tpa_info->vlan_tag = le16toh(cqe->vlan_tag); 2782 tpa_info->len_on_bd = le16toh(cqe->len_on_bd); 2783 2784 fp->rx_tpa_queue_used |= (1 << queue); 2785 2786 /* 2787 * If all the buffer descriptors are filled with mbufs then fill in 2788 * the current consumer index with a new BD. Else if a maximum Rx 2789 * buffer limit is imposed then fill in the next producer index. 2790 */ 2791 index = (sc->max_rx_bufs != RX_BD_USABLE) ? 2792 prod : cons; 2793 2794 /* move the received mbuf and mapping to TPA pool */ 2795 tpa_info->bd = fp->rx_mbuf_chain[cons]; 2796 2797 /* release any existing RX BD mbuf mappings */ 2798 if (cons != index) { 2799 rx_buf = &fp->rx_mbuf_chain[cons]; 2800 2801 if (rx_buf->m_map != NULL) { 2802 bus_dmamap_sync(fp->rx_mbuf_tag, rx_buf->m_map, 2803 BUS_DMASYNC_POSTREAD); 2804 bus_dmamap_unload(fp->rx_mbuf_tag, rx_buf->m_map); 2805 } 2806 2807 /* 2808 * We get here when the maximum number of rx buffers is less than 2809 * RX_BD_USABLE. The mbuf is already saved above so it's OK to NULL 2810 * it out here without concern of a memory leak. 2811 */ 2812 fp->rx_mbuf_chain[cons].m = NULL; 2813 } 2814 2815 /* update the Rx SW BD with the mbuf info from the TPA pool */ 2816 fp->rx_mbuf_chain[index] = tmp_bd; 2817 2818 /* update the Rx BD with the empty mbuf phys address from the TPA pool */ 2819 rx_bd = &fp->rx_chain[index]; 2820 rx_bd->addr_hi = htole32(U64_HI(tpa_info->seg.ds_addr)); 2821 rx_bd->addr_lo = htole32(U64_LO(tpa_info->seg.ds_addr)); 2822 } 2823 2824 /* 2825 * When a TPA aggregation is completed, loop through the individual mbufs 2826 * of the aggregation, combining them into a single mbuf which will be sent 2827 * up the stack. Refill all freed SGEs with mbufs as we go along. 2828 */ 2829 static int 2830 bxe_fill_frag_mbuf(struct bxe_softc *sc, 2831 struct bxe_fastpath *fp, 2832 struct bxe_sw_tpa_info *tpa_info, 2833 uint16_t queue, 2834 uint16_t pages, 2835 struct mbuf *m, 2836 struct eth_end_agg_rx_cqe *cqe, 2837 uint16_t cqe_idx) 2838 { 2839 struct mbuf *m_frag; 2840 uint32_t frag_len, frag_size, i; 2841 uint16_t sge_idx; 2842 int rc = 0; 2843 int j; 2844 2845 frag_size = le16toh(cqe->pkt_len) - tpa_info->len_on_bd; 2846 2847 BLOGD(sc, DBG_LRO, 2848 "fp[%02d].tpa[%02d] TPA fill len_on_bd=%d frag_size=%d pages=%d\n", 2849 fp->index, queue, tpa_info->len_on_bd, frag_size, pages); 2850 2851 /* make sure the aggregated frame is not too big to handle */ 2852 if (pages > 8 * PAGES_PER_SGE) { 2853 2854 uint32_t *tmp = (uint32_t *)cqe; 2855 2856 BLOGE(sc, "fp[%02d].sge[0x%04x] has too many pages (%d)! " 2857 "pkt_len=%d len_on_bd=%d frag_size=%d\n", 2858 fp->index, cqe_idx, pages, le16toh(cqe->pkt_len), 2859 tpa_info->len_on_bd, frag_size); 2860 2861 BLOGE(sc, "cqe [0x%08x 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x]\n", 2862 *tmp, *(tmp+1), *(tmp+2), *(tmp+3), *(tmp+4), *(tmp+5), *(tmp+6), *(tmp+7)); 2863 2864 bxe_panic(sc, ("sge page count error\n")); 2865 return (EINVAL); 2866 } 2867 2868 /* 2869 * Scan through the scatter gather list pulling individual mbufs into a 2870 * single mbuf for the host stack. 2871 */ 2872 for (i = 0, j = 0; i < pages; i += PAGES_PER_SGE, j++) { 2873 sge_idx = RX_SGE(le16toh(cqe->sgl_or_raw_data.sgl[j])); 2874 2875 /* 2876 * Firmware gives the indices of the SGE as if the ring is an array 2877 * (meaning that the "next" element will consume 2 indices). 2878 */ 2879 frag_len = min(frag_size, (uint32_t)(SGE_PAGES)); 2880 2881 BLOGD(sc, DBG_LRO, "fp[%02d].tpa[%02d] TPA fill i=%d j=%d " 2882 "sge_idx=%d frag_size=%d frag_len=%d\n", 2883 fp->index, queue, i, j, sge_idx, frag_size, frag_len); 2884 2885 m_frag = fp->rx_sge_mbuf_chain[sge_idx].m; 2886 2887 /* allocate a new mbuf for the SGE */ 2888 rc = bxe_alloc_rx_sge_mbuf(fp, sge_idx); 2889 if (rc) { 2890 /* Leave all remaining SGEs in the ring! */ 2891 return (rc); 2892 } 2893 2894 /* update the fragment length */ 2895 m_frag->m_len = frag_len; 2896 2897 /* concatenate the fragment to the head mbuf */ 2898 m_cat(m, m_frag); 2899 fp->eth_q_stats.mbuf_alloc_sge--; 2900 2901 /* update the TPA mbuf size and remaining fragment size */ 2902 m->m_pkthdr.len += frag_len; 2903 frag_size -= frag_len; 2904 } 2905 2906 BLOGD(sc, DBG_LRO, 2907 "fp[%02d].tpa[%02d] TPA fill done frag_size=%d\n", 2908 fp->index, queue, frag_size); 2909 2910 return (rc); 2911 } 2912 2913 static inline void 2914 bxe_clear_sge_mask_next_elems(struct bxe_fastpath *fp) 2915 { 2916 int i, j; 2917 2918 for (i = 1; i <= RX_SGE_NUM_PAGES; i++) { 2919 int idx = RX_SGE_TOTAL_PER_PAGE * i - 1; 2920 2921 for (j = 0; j < 2; j++) { 2922 BIT_VEC64_CLEAR_BIT(fp->sge_mask, idx); 2923 idx--; 2924 } 2925 } 2926 } 2927 2928 static inline void 2929 bxe_init_sge_ring_bit_mask(struct bxe_fastpath *fp) 2930 { 2931 /* set the mask to all 1's, it's faster to compare to 0 than to 0xf's */ 2932 memset(fp->sge_mask, 0xff, sizeof(fp->sge_mask)); 2933 2934 /* 2935 * Clear the two last indices in the page to 1. These are the indices that 2936 * correspond to the "next" element, hence will never be indicated and 2937 * should be removed from the calculations. 2938 */ 2939 bxe_clear_sge_mask_next_elems(fp); 2940 } 2941 2942 static inline void 2943 bxe_update_last_max_sge(struct bxe_fastpath *fp, 2944 uint16_t idx) 2945 { 2946 uint16_t last_max = fp->last_max_sge; 2947 2948 if (SUB_S16(idx, last_max) > 0) { 2949 fp->last_max_sge = idx; 2950 } 2951 } 2952 2953 static inline void 2954 bxe_update_sge_prod(struct bxe_softc *sc, 2955 struct bxe_fastpath *fp, 2956 uint16_t sge_len, 2957 union eth_sgl_or_raw_data *cqe) 2958 { 2959 uint16_t last_max, last_elem, first_elem; 2960 uint16_t delta = 0; 2961 uint16_t i; 2962 2963 if (!sge_len) { 2964 return; 2965 } 2966 2967 /* first mark all used pages */ 2968 for (i = 0; i < sge_len; i++) { 2969 BIT_VEC64_CLEAR_BIT(fp->sge_mask, 2970 RX_SGE(le16toh(cqe->sgl[i]))); 2971 } 2972 2973 BLOGD(sc, DBG_LRO, 2974 "fp[%02d] fp_cqe->sgl[%d] = %d\n", 2975 fp->index, sge_len - 1, 2976 le16toh(cqe->sgl[sge_len - 1])); 2977 2978 /* assume that the last SGE index is the biggest */ 2979 bxe_update_last_max_sge(fp, 2980 le16toh(cqe->sgl[sge_len - 1])); 2981 2982 last_max = RX_SGE(fp->last_max_sge); 2983 last_elem = last_max >> BIT_VEC64_ELEM_SHIFT; 2984 first_elem = RX_SGE(fp->rx_sge_prod) >> BIT_VEC64_ELEM_SHIFT; 2985 2986 /* if ring is not full */ 2987 if (last_elem + 1 != first_elem) { 2988 last_elem++; 2989 } 2990 2991 /* now update the prod */ 2992 for (i = first_elem; i != last_elem; i = RX_SGE_NEXT_MASK_ELEM(i)) { 2993 if (__predict_true(fp->sge_mask[i])) { 2994 break; 2995 } 2996 2997 fp->sge_mask[i] = BIT_VEC64_ELEM_ONE_MASK; 2998 delta += BIT_VEC64_ELEM_SZ; 2999 } 3000 3001 if (delta > 0) { 3002 fp->rx_sge_prod += delta; 3003 /* clear page-end entries */ 3004 bxe_clear_sge_mask_next_elems(fp); 3005 } 3006 3007 BLOGD(sc, DBG_LRO, 3008 "fp[%02d] fp->last_max_sge=%d fp->rx_sge_prod=%d\n", 3009 fp->index, fp->last_max_sge, fp->rx_sge_prod); 3010 } 3011 3012 /* 3013 * The aggregation on the current TPA queue has completed. Pull the individual 3014 * mbuf fragments together into a single mbuf, perform all necessary checksum 3015 * calculations, and send the resuting mbuf to the stack. 3016 */ 3017 static void 3018 bxe_tpa_stop(struct bxe_softc *sc, 3019 struct bxe_fastpath *fp, 3020 struct bxe_sw_tpa_info *tpa_info, 3021 uint16_t queue, 3022 uint16_t pages, 3023 struct eth_end_agg_rx_cqe *cqe, 3024 uint16_t cqe_idx) 3025 { 3026 if_t ifp = sc->ifp; 3027 struct mbuf *m; 3028 int rc = 0; 3029 3030 BLOGD(sc, DBG_LRO, 3031 "fp[%02d].tpa[%02d] pad=%d pkt_len=%d pages=%d vlan=%d\n", 3032 fp->index, queue, tpa_info->placement_offset, 3033 le16toh(cqe->pkt_len), pages, tpa_info->vlan_tag); 3034 3035 m = tpa_info->bd.m; 3036 3037 /* allocate a replacement before modifying existing mbuf */ 3038 rc = bxe_alloc_rx_tpa_mbuf(fp, queue); 3039 if (rc) { 3040 /* drop the frame and log an error */ 3041 fp->eth_q_stats.rx_soft_errors++; 3042 goto bxe_tpa_stop_exit; 3043 } 3044 3045 /* we have a replacement, fixup the current mbuf */ 3046 m_adj(m, tpa_info->placement_offset); 3047 m->m_pkthdr.len = m->m_len = tpa_info->len_on_bd; 3048 3049 /* mark the checksums valid (taken care of by the firmware) */ 3050 fp->eth_q_stats.rx_ofld_frames_csum_ip++; 3051 fp->eth_q_stats.rx_ofld_frames_csum_tcp_udp++; 3052 m->m_pkthdr.csum_data = 0xffff; 3053 m->m_pkthdr.csum_flags |= (CSUM_IP_CHECKED | 3054 CSUM_IP_VALID | 3055 CSUM_DATA_VALID | 3056 CSUM_PSEUDO_HDR); 3057 3058 /* aggregate all of the SGEs into a single mbuf */ 3059 rc = bxe_fill_frag_mbuf(sc, fp, tpa_info, queue, pages, m, cqe, cqe_idx); 3060 if (rc) { 3061 /* drop the packet and log an error */ 3062 fp->eth_q_stats.rx_soft_errors++; 3063 m_freem(m); 3064 } else { 3065 if (tpa_info->parsing_flags & PARSING_FLAGS_INNER_VLAN_EXIST) { 3066 m->m_pkthdr.ether_vtag = tpa_info->vlan_tag; 3067 m->m_flags |= M_VLANTAG; 3068 } 3069 3070 /* assign packet to this interface interface */ 3071 if_setrcvif(m, ifp); 3072 3073 #if __FreeBSD_version >= 800000 3074 /* specify what RSS queue was used for this flow */ 3075 m->m_pkthdr.flowid = fp->index; 3076 BXE_SET_FLOWID(m); 3077 #endif 3078 3079 if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1); 3080 fp->eth_q_stats.rx_tpa_pkts++; 3081 3082 /* pass the frame to the stack */ 3083 if_input(ifp, m); 3084 } 3085 3086 /* we passed an mbuf up the stack or dropped the frame */ 3087 fp->eth_q_stats.mbuf_alloc_tpa--; 3088 3089 bxe_tpa_stop_exit: 3090 3091 fp->rx_tpa_info[queue].state = BXE_TPA_STATE_STOP; 3092 fp->rx_tpa_queue_used &= ~(1 << queue); 3093 } 3094 3095 static uint8_t 3096 bxe_service_rxsgl( 3097 struct bxe_fastpath *fp, 3098 uint16_t len, 3099 uint16_t lenonbd, 3100 struct mbuf *m, 3101 struct eth_fast_path_rx_cqe *cqe_fp) 3102 { 3103 struct mbuf *m_frag; 3104 uint16_t frags, frag_len; 3105 uint16_t sge_idx = 0; 3106 uint16_t j; 3107 uint8_t i, rc = 0; 3108 uint32_t frag_size; 3109 3110 /* adjust the mbuf */ 3111 m->m_len = lenonbd; 3112 3113 frag_size = len - lenonbd; 3114 frags = SGE_PAGE_ALIGN(frag_size) >> SGE_PAGE_SHIFT; 3115 3116 for (i = 0, j = 0; i < frags; i += PAGES_PER_SGE, j++) { 3117 sge_idx = RX_SGE(le16toh(cqe_fp->sgl_or_raw_data.sgl[j])); 3118 3119 m_frag = fp->rx_sge_mbuf_chain[sge_idx].m; 3120 frag_len = min(frag_size, (uint32_t)(SGE_PAGE_SIZE)); 3121 m_frag->m_len = frag_len; 3122 3123 /* allocate a new mbuf for the SGE */ 3124 rc = bxe_alloc_rx_sge_mbuf(fp, sge_idx); 3125 if (rc) { 3126 /* Leave all remaining SGEs in the ring! */ 3127 return (rc); 3128 } 3129 fp->eth_q_stats.mbuf_alloc_sge--; 3130 3131 /* concatenate the fragment to the head mbuf */ 3132 m_cat(m, m_frag); 3133 3134 frag_size -= frag_len; 3135 } 3136 3137 bxe_update_sge_prod(fp->sc, fp, frags, &cqe_fp->sgl_or_raw_data); 3138 3139 return rc; 3140 } 3141 3142 static uint8_t 3143 bxe_rxeof(struct bxe_softc *sc, 3144 struct bxe_fastpath *fp) 3145 { 3146 if_t ifp = sc->ifp; 3147 uint16_t bd_cons, bd_prod, bd_prod_fw, comp_ring_cons; 3148 uint16_t hw_cq_cons, sw_cq_cons, sw_cq_prod; 3149 int rx_pkts = 0; 3150 int rc = 0; 3151 3152 BXE_FP_RX_LOCK(fp); 3153 3154 /* CQ "next element" is of the size of the regular element */ 3155 hw_cq_cons = le16toh(*fp->rx_cq_cons_sb); 3156 if ((hw_cq_cons & RCQ_USABLE_PER_PAGE) == RCQ_USABLE_PER_PAGE) { 3157 hw_cq_cons++; 3158 } 3159 3160 bd_cons = fp->rx_bd_cons; 3161 bd_prod = fp->rx_bd_prod; 3162 bd_prod_fw = bd_prod; 3163 sw_cq_cons = fp->rx_cq_cons; 3164 sw_cq_prod = fp->rx_cq_prod; 3165 3166 /* 3167 * Memory barrier necessary as speculative reads of the rx 3168 * buffer can be ahead of the index in the status block 3169 */ 3170 rmb(); 3171 3172 BLOGD(sc, DBG_RX, 3173 "fp[%02d] Rx START hw_cq_cons=%u sw_cq_cons=%u\n", 3174 fp->index, hw_cq_cons, sw_cq_cons); 3175 3176 while (sw_cq_cons != hw_cq_cons) { 3177 struct bxe_sw_rx_bd *rx_buf = NULL; 3178 union eth_rx_cqe *cqe; 3179 struct eth_fast_path_rx_cqe *cqe_fp; 3180 uint8_t cqe_fp_flags; 3181 enum eth_rx_cqe_type cqe_fp_type; 3182 uint16_t len, lenonbd, pad; 3183 struct mbuf *m = NULL; 3184 3185 comp_ring_cons = RCQ(sw_cq_cons); 3186 bd_prod = RX_BD(bd_prod); 3187 bd_cons = RX_BD(bd_cons); 3188 3189 cqe = &fp->rcq_chain[comp_ring_cons]; 3190 cqe_fp = &cqe->fast_path_cqe; 3191 cqe_fp_flags = cqe_fp->type_error_flags; 3192 cqe_fp_type = cqe_fp_flags & ETH_FAST_PATH_RX_CQE_TYPE; 3193 3194 BLOGD(sc, DBG_RX, 3195 "fp[%02d] Rx hw_cq_cons=%d hw_sw_cons=%d " 3196 "BD prod=%d cons=%d CQE type=0x%x err=0x%x " 3197 "status=0x%x rss_hash=0x%x vlan=0x%x len=%u lenonbd=%u\n", 3198 fp->index, 3199 hw_cq_cons, 3200 sw_cq_cons, 3201 bd_prod, 3202 bd_cons, 3203 CQE_TYPE(cqe_fp_flags), 3204 cqe_fp_flags, 3205 cqe_fp->status_flags, 3206 le32toh(cqe_fp->rss_hash_result), 3207 le16toh(cqe_fp->vlan_tag), 3208 le16toh(cqe_fp->pkt_len_or_gro_seg_len), 3209 le16toh(cqe_fp->len_on_bd)); 3210 3211 /* is this a slowpath msg? */ 3212 if (__predict_false(CQE_TYPE_SLOW(cqe_fp_type))) { 3213 bxe_sp_event(sc, fp, cqe); 3214 goto next_cqe; 3215 } 3216 3217 rx_buf = &fp->rx_mbuf_chain[bd_cons]; 3218 3219 if (!CQE_TYPE_FAST(cqe_fp_type)) { 3220 struct bxe_sw_tpa_info *tpa_info; 3221 uint16_t frag_size, pages; 3222 uint8_t queue; 3223 3224 if (CQE_TYPE_START(cqe_fp_type)) { 3225 bxe_tpa_start(sc, fp, cqe_fp->queue_index, 3226 bd_cons, bd_prod, cqe_fp); 3227 m = NULL; /* packet not ready yet */ 3228 goto next_rx; 3229 } 3230 3231 KASSERT(CQE_TYPE_STOP(cqe_fp_type), 3232 ("CQE type is not STOP! (0x%x)\n", cqe_fp_type)); 3233 3234 queue = cqe->end_agg_cqe.queue_index; 3235 tpa_info = &fp->rx_tpa_info[queue]; 3236 3237 BLOGD(sc, DBG_LRO, "fp[%02d].tpa[%02d] TPA STOP\n", 3238 fp->index, queue); 3239 3240 frag_size = (le16toh(cqe->end_agg_cqe.pkt_len) - 3241 tpa_info->len_on_bd); 3242 pages = SGE_PAGE_ALIGN(frag_size) >> SGE_PAGE_SHIFT; 3243 3244 bxe_tpa_stop(sc, fp, tpa_info, queue, pages, 3245 &cqe->end_agg_cqe, comp_ring_cons); 3246 3247 bxe_update_sge_prod(sc, fp, pages, &cqe->end_agg_cqe.sgl_or_raw_data); 3248 3249 goto next_cqe; 3250 } 3251 3252 /* non TPA */ 3253 3254 /* is this an error packet? */ 3255 if (__predict_false(cqe_fp_flags & 3256 ETH_FAST_PATH_RX_CQE_PHY_DECODE_ERR_FLG)) { 3257 BLOGE(sc, "flags 0x%x rx packet %u\n", cqe_fp_flags, sw_cq_cons); 3258 fp->eth_q_stats.rx_soft_errors++; 3259 goto next_rx; 3260 } 3261 3262 len = le16toh(cqe_fp->pkt_len_or_gro_seg_len); 3263 lenonbd = le16toh(cqe_fp->len_on_bd); 3264 pad = cqe_fp->placement_offset; 3265 3266 m = rx_buf->m; 3267 3268 if (__predict_false(m == NULL)) { 3269 BLOGE(sc, "No mbuf in rx chain descriptor %d for fp[%02d]\n", 3270 bd_cons, fp->index); 3271 goto next_rx; 3272 } 3273 3274 /* XXX double copy if packet length under a threshold */ 3275 3276 /* 3277 * If all the buffer descriptors are filled with mbufs then fill in 3278 * the current consumer index with a new BD. Else if a maximum Rx 3279 * buffer limit is imposed then fill in the next producer index. 3280 */ 3281 rc = bxe_alloc_rx_bd_mbuf(fp, bd_cons, 3282 (sc->max_rx_bufs != RX_BD_USABLE) ? 3283 bd_prod : bd_cons); 3284 if (rc != 0) { 3285 3286 /* we simply reuse the received mbuf and don't post it to the stack */ 3287 m = NULL; 3288 3289 BLOGE(sc, "mbuf alloc fail for fp[%02d] rx chain (%d)\n", 3290 fp->index, rc); 3291 fp->eth_q_stats.rx_soft_errors++; 3292 3293 if (sc->max_rx_bufs != RX_BD_USABLE) { 3294 /* copy this consumer index to the producer index */ 3295 memcpy(&fp->rx_mbuf_chain[bd_prod], rx_buf, 3296 sizeof(struct bxe_sw_rx_bd)); 3297 memset(rx_buf, 0, sizeof(struct bxe_sw_rx_bd)); 3298 } 3299 3300 goto next_rx; 3301 } 3302 3303 /* current mbuf was detached from the bd */ 3304 fp->eth_q_stats.mbuf_alloc_rx--; 3305 3306 /* we allocated a replacement mbuf, fixup the current one */ 3307 m_adj(m, pad); 3308 m->m_pkthdr.len = m->m_len = len; 3309 3310 if ((len > 60) && (len > lenonbd)) { 3311 fp->eth_q_stats.rx_bxe_service_rxsgl++; 3312 rc = bxe_service_rxsgl(fp, len, lenonbd, m, cqe_fp); 3313 if (rc) 3314 break; 3315 fp->eth_q_stats.rx_jumbo_sge_pkts++; 3316 } else if (lenonbd < len) { 3317 fp->eth_q_stats.rx_erroneous_jumbo_sge_pkts++; 3318 } 3319 3320 /* assign packet to this interface interface */ 3321 if_setrcvif(m, ifp); 3322 3323 /* assume no hardware checksum has complated */ 3324 m->m_pkthdr.csum_flags = 0; 3325 3326 /* validate checksum if offload enabled */ 3327 if (if_getcapenable(ifp) & IFCAP_RXCSUM) { 3328 /* check for a valid IP frame */ 3329 if (!(cqe->fast_path_cqe.status_flags & 3330 ETH_FAST_PATH_RX_CQE_IP_XSUM_NO_VALIDATION_FLG)) { 3331 m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED; 3332 if (__predict_false(cqe_fp_flags & 3333 ETH_FAST_PATH_RX_CQE_IP_BAD_XSUM_FLG)) { 3334 fp->eth_q_stats.rx_hw_csum_errors++; 3335 } else { 3336 fp->eth_q_stats.rx_ofld_frames_csum_ip++; 3337 m->m_pkthdr.csum_flags |= CSUM_IP_VALID; 3338 } 3339 } 3340 3341 /* check for a valid TCP/UDP frame */ 3342 if (!(cqe->fast_path_cqe.status_flags & 3343 ETH_FAST_PATH_RX_CQE_L4_XSUM_NO_VALIDATION_FLG)) { 3344 if (__predict_false(cqe_fp_flags & 3345 ETH_FAST_PATH_RX_CQE_L4_BAD_XSUM_FLG)) { 3346 fp->eth_q_stats.rx_hw_csum_errors++; 3347 } else { 3348 fp->eth_q_stats.rx_ofld_frames_csum_tcp_udp++; 3349 m->m_pkthdr.csum_data = 0xFFFF; 3350 m->m_pkthdr.csum_flags |= (CSUM_DATA_VALID | 3351 CSUM_PSEUDO_HDR); 3352 } 3353 } 3354 } 3355 3356 /* if there is a VLAN tag then flag that info */ 3357 if (cqe->fast_path_cqe.pars_flags.flags & PARSING_FLAGS_INNER_VLAN_EXIST) { 3358 m->m_pkthdr.ether_vtag = cqe->fast_path_cqe.vlan_tag; 3359 m->m_flags |= M_VLANTAG; 3360 } 3361 3362 #if __FreeBSD_version >= 800000 3363 /* specify what RSS queue was used for this flow */ 3364 m->m_pkthdr.flowid = fp->index; 3365 BXE_SET_FLOWID(m); 3366 #endif 3367 3368 next_rx: 3369 3370 bd_cons = RX_BD_NEXT(bd_cons); 3371 bd_prod = RX_BD_NEXT(bd_prod); 3372 bd_prod_fw = RX_BD_NEXT(bd_prod_fw); 3373 3374 /* pass the frame to the stack */ 3375 if (__predict_true(m != NULL)) { 3376 if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1); 3377 rx_pkts++; 3378 if_input(ifp, m); 3379 } 3380 3381 next_cqe: 3382 3383 sw_cq_prod = RCQ_NEXT(sw_cq_prod); 3384 sw_cq_cons = RCQ_NEXT(sw_cq_cons); 3385 3386 /* limit spinning on the queue */ 3387 if (rc != 0) 3388 break; 3389 3390 if (rx_pkts == sc->rx_budget) { 3391 fp->eth_q_stats.rx_budget_reached++; 3392 break; 3393 } 3394 } /* while work to do */ 3395 3396 fp->rx_bd_cons = bd_cons; 3397 fp->rx_bd_prod = bd_prod_fw; 3398 fp->rx_cq_cons = sw_cq_cons; 3399 fp->rx_cq_prod = sw_cq_prod; 3400 3401 /* Update producers */ 3402 bxe_update_rx_prod(sc, fp, bd_prod_fw, sw_cq_prod, fp->rx_sge_prod); 3403 3404 fp->eth_q_stats.rx_pkts += rx_pkts; 3405 fp->eth_q_stats.rx_calls++; 3406 3407 BXE_FP_RX_UNLOCK(fp); 3408 3409 return (sw_cq_cons != hw_cq_cons); 3410 } 3411 3412 static uint16_t 3413 bxe_free_tx_pkt(struct bxe_softc *sc, 3414 struct bxe_fastpath *fp, 3415 uint16_t idx) 3416 { 3417 struct bxe_sw_tx_bd *tx_buf = &fp->tx_mbuf_chain[idx]; 3418 struct eth_tx_start_bd *tx_start_bd; 3419 uint16_t bd_idx = TX_BD(tx_buf->first_bd); 3420 uint16_t new_cons; 3421 int nbd; 3422 3423 /* unmap the mbuf from non-paged memory */ 3424 bus_dmamap_unload(fp->tx_mbuf_tag, tx_buf->m_map); 3425 3426 tx_start_bd = &fp->tx_chain[bd_idx].start_bd; 3427 nbd = le16toh(tx_start_bd->nbd) - 1; 3428 3429 new_cons = (tx_buf->first_bd + nbd); 3430 3431 /* free the mbuf */ 3432 if (__predict_true(tx_buf->m != NULL)) { 3433 m_freem(tx_buf->m); 3434 fp->eth_q_stats.mbuf_alloc_tx--; 3435 } else { 3436 fp->eth_q_stats.tx_chain_lost_mbuf++; 3437 } 3438 3439 tx_buf->m = NULL; 3440 tx_buf->first_bd = 0; 3441 3442 return (new_cons); 3443 } 3444 3445 /* transmit timeout watchdog */ 3446 static int 3447 bxe_watchdog(struct bxe_softc *sc, 3448 struct bxe_fastpath *fp) 3449 { 3450 BXE_FP_TX_LOCK(fp); 3451 3452 if ((fp->watchdog_timer == 0) || (--fp->watchdog_timer)) { 3453 BXE_FP_TX_UNLOCK(fp); 3454 return (0); 3455 } 3456 3457 BLOGE(sc, "TX watchdog timeout on fp[%02d], resetting!\n", fp->index); 3458 if(sc->trigger_grcdump) { 3459 /* taking grcdump */ 3460 bxe_grc_dump(sc); 3461 } 3462 3463 BXE_FP_TX_UNLOCK(fp); 3464 3465 atomic_store_rel_long(&sc->chip_tq_flags, CHIP_TQ_REINIT); 3466 taskqueue_enqueue(sc->chip_tq, &sc->chip_tq_task); 3467 3468 return (-1); 3469 } 3470 3471 /* processes transmit completions */ 3472 static uint8_t 3473 bxe_txeof(struct bxe_softc *sc, 3474 struct bxe_fastpath *fp) 3475 { 3476 if_t ifp = sc->ifp; 3477 uint16_t bd_cons, hw_cons, sw_cons, pkt_cons; 3478 uint16_t tx_bd_avail; 3479 3480 BXE_FP_TX_LOCK_ASSERT(fp); 3481 3482 bd_cons = fp->tx_bd_cons; 3483 hw_cons = le16toh(*fp->tx_cons_sb); 3484 sw_cons = fp->tx_pkt_cons; 3485 3486 while (sw_cons != hw_cons) { 3487 pkt_cons = TX_BD(sw_cons); 3488 3489 BLOGD(sc, DBG_TX, 3490 "TX: fp[%d]: hw_cons=%u sw_cons=%u pkt_cons=%u\n", 3491 fp->index, hw_cons, sw_cons, pkt_cons); 3492 3493 bd_cons = bxe_free_tx_pkt(sc, fp, pkt_cons); 3494 3495 sw_cons++; 3496 } 3497 3498 fp->tx_pkt_cons = sw_cons; 3499 fp->tx_bd_cons = bd_cons; 3500 3501 BLOGD(sc, DBG_TX, 3502 "TX done: fp[%d]: hw_cons=%u sw_cons=%u sw_prod=%u\n", 3503 fp->index, hw_cons, fp->tx_pkt_cons, fp->tx_pkt_prod); 3504 3505 mb(); 3506 3507 tx_bd_avail = bxe_tx_avail(sc, fp); 3508 3509 if (tx_bd_avail < BXE_TX_CLEANUP_THRESHOLD) { 3510 if_setdrvflagbits(ifp, IFF_DRV_OACTIVE, 0); 3511 } else { 3512 if_setdrvflagbits(ifp, 0, IFF_DRV_OACTIVE); 3513 } 3514 3515 if (fp->tx_pkt_prod != fp->tx_pkt_cons) { 3516 /* reset the watchdog timer if there are pending transmits */ 3517 fp->watchdog_timer = BXE_TX_TIMEOUT; 3518 return (TRUE); 3519 } else { 3520 /* clear watchdog when there are no pending transmits */ 3521 fp->watchdog_timer = 0; 3522 return (FALSE); 3523 } 3524 } 3525 3526 static void 3527 bxe_drain_tx_queues(struct bxe_softc *sc) 3528 { 3529 struct bxe_fastpath *fp; 3530 int i, count; 3531 3532 /* wait until all TX fastpath tasks have completed */ 3533 for (i = 0; i < sc->num_queues; i++) { 3534 fp = &sc->fp[i]; 3535 3536 count = 1000; 3537 3538 while (bxe_has_tx_work(fp)) { 3539 3540 BXE_FP_TX_LOCK(fp); 3541 bxe_txeof(sc, fp); 3542 BXE_FP_TX_UNLOCK(fp); 3543 3544 if (count == 0) { 3545 BLOGE(sc, "Timeout waiting for fp[%d] " 3546 "transmits to complete!\n", i); 3547 bxe_panic(sc, ("tx drain failure\n")); 3548 return; 3549 } 3550 3551 count--; 3552 DELAY(1000); 3553 rmb(); 3554 } 3555 } 3556 3557 return; 3558 } 3559 3560 static int 3561 bxe_del_all_macs(struct bxe_softc *sc, 3562 struct ecore_vlan_mac_obj *mac_obj, 3563 int mac_type, 3564 uint8_t wait_for_comp) 3565 { 3566 unsigned long ramrod_flags = 0, vlan_mac_flags = 0; 3567 int rc; 3568 3569 /* wait for completion of requested */ 3570 if (wait_for_comp) { 3571 bxe_set_bit(RAMROD_COMP_WAIT, &ramrod_flags); 3572 } 3573 3574 /* Set the mac type of addresses we want to clear */ 3575 bxe_set_bit(mac_type, &vlan_mac_flags); 3576 3577 rc = mac_obj->delete_all(sc, mac_obj, &vlan_mac_flags, &ramrod_flags); 3578 if (rc < 0) { 3579 BLOGE(sc, "Failed to delete MACs (%d) mac_type %d wait_for_comp 0x%x\n", 3580 rc, mac_type, wait_for_comp); 3581 } 3582 3583 return (rc); 3584 } 3585 3586 static int 3587 bxe_fill_accept_flags(struct bxe_softc *sc, 3588 uint32_t rx_mode, 3589 unsigned long *rx_accept_flags, 3590 unsigned long *tx_accept_flags) 3591 { 3592 /* Clear the flags first */ 3593 *rx_accept_flags = 0; 3594 *tx_accept_flags = 0; 3595 3596 switch (rx_mode) { 3597 case BXE_RX_MODE_NONE: 3598 /* 3599 * 'drop all' supersedes any accept flags that may have been 3600 * passed to the function. 3601 */ 3602 break; 3603 3604 case BXE_RX_MODE_NORMAL: 3605 bxe_set_bit(ECORE_ACCEPT_UNICAST, rx_accept_flags); 3606 bxe_set_bit(ECORE_ACCEPT_MULTICAST, rx_accept_flags); 3607 bxe_set_bit(ECORE_ACCEPT_BROADCAST, rx_accept_flags); 3608 3609 /* internal switching mode */ 3610 bxe_set_bit(ECORE_ACCEPT_UNICAST, tx_accept_flags); 3611 bxe_set_bit(ECORE_ACCEPT_MULTICAST, tx_accept_flags); 3612 bxe_set_bit(ECORE_ACCEPT_BROADCAST, tx_accept_flags); 3613 3614 break; 3615 3616 case BXE_RX_MODE_ALLMULTI: 3617 bxe_set_bit(ECORE_ACCEPT_UNICAST, rx_accept_flags); 3618 bxe_set_bit(ECORE_ACCEPT_ALL_MULTICAST, rx_accept_flags); 3619 bxe_set_bit(ECORE_ACCEPT_BROADCAST, rx_accept_flags); 3620 3621 /* internal switching mode */ 3622 bxe_set_bit(ECORE_ACCEPT_UNICAST, tx_accept_flags); 3623 bxe_set_bit(ECORE_ACCEPT_ALL_MULTICAST, tx_accept_flags); 3624 bxe_set_bit(ECORE_ACCEPT_BROADCAST, tx_accept_flags); 3625 3626 break; 3627 3628 case BXE_RX_MODE_PROMISC: 3629 /* 3630 * According to deffinition of SI mode, iface in promisc mode 3631 * should receive matched and unmatched (in resolution of port) 3632 * unicast packets. 3633 */ 3634 bxe_set_bit(ECORE_ACCEPT_UNMATCHED, rx_accept_flags); 3635 bxe_set_bit(ECORE_ACCEPT_UNICAST, rx_accept_flags); 3636 bxe_set_bit(ECORE_ACCEPT_ALL_MULTICAST, rx_accept_flags); 3637 bxe_set_bit(ECORE_ACCEPT_BROADCAST, rx_accept_flags); 3638 3639 /* internal switching mode */ 3640 bxe_set_bit(ECORE_ACCEPT_ALL_MULTICAST, tx_accept_flags); 3641 bxe_set_bit(ECORE_ACCEPT_BROADCAST, tx_accept_flags); 3642 3643 if (IS_MF_SI(sc)) { 3644 bxe_set_bit(ECORE_ACCEPT_ALL_UNICAST, tx_accept_flags); 3645 } else { 3646 bxe_set_bit(ECORE_ACCEPT_UNICAST, tx_accept_flags); 3647 } 3648 3649 break; 3650 3651 default: 3652 BLOGE(sc, "Unknown rx_mode (0x%x)\n", rx_mode); 3653 return (-1); 3654 } 3655 3656 /* Set ACCEPT_ANY_VLAN as we do not enable filtering by VLAN */ 3657 if (rx_mode != BXE_RX_MODE_NONE) { 3658 bxe_set_bit(ECORE_ACCEPT_ANY_VLAN, rx_accept_flags); 3659 bxe_set_bit(ECORE_ACCEPT_ANY_VLAN, tx_accept_flags); 3660 } 3661 3662 return (0); 3663 } 3664 3665 static int 3666 bxe_set_q_rx_mode(struct bxe_softc *sc, 3667 uint8_t cl_id, 3668 unsigned long rx_mode_flags, 3669 unsigned long rx_accept_flags, 3670 unsigned long tx_accept_flags, 3671 unsigned long ramrod_flags) 3672 { 3673 struct ecore_rx_mode_ramrod_params ramrod_param; 3674 int rc; 3675 3676 memset(&ramrod_param, 0, sizeof(ramrod_param)); 3677 3678 /* Prepare ramrod parameters */ 3679 ramrod_param.cid = 0; 3680 ramrod_param.cl_id = cl_id; 3681 ramrod_param.rx_mode_obj = &sc->rx_mode_obj; 3682 ramrod_param.func_id = SC_FUNC(sc); 3683 3684 ramrod_param.pstate = &sc->sp_state; 3685 ramrod_param.state = ECORE_FILTER_RX_MODE_PENDING; 3686 3687 ramrod_param.rdata = BXE_SP(sc, rx_mode_rdata); 3688 ramrod_param.rdata_mapping = BXE_SP_MAPPING(sc, rx_mode_rdata); 3689 3690 bxe_set_bit(ECORE_FILTER_RX_MODE_PENDING, &sc->sp_state); 3691 3692 ramrod_param.ramrod_flags = ramrod_flags; 3693 ramrod_param.rx_mode_flags = rx_mode_flags; 3694 3695 ramrod_param.rx_accept_flags = rx_accept_flags; 3696 ramrod_param.tx_accept_flags = tx_accept_flags; 3697 3698 rc = ecore_config_rx_mode(sc, &ramrod_param); 3699 if (rc < 0) { 3700 BLOGE(sc, "Set rx_mode %d cli_id 0x%x rx_mode_flags 0x%x " 3701 "rx_accept_flags 0x%x tx_accept_flags 0x%x " 3702 "ramrod_flags 0x%x rc %d failed\n", sc->rx_mode, cl_id, 3703 (uint32_t)rx_mode_flags, (uint32_t)rx_accept_flags, 3704 (uint32_t)tx_accept_flags, (uint32_t)ramrod_flags, rc); 3705 return (rc); 3706 } 3707 3708 return (0); 3709 } 3710 3711 static int 3712 bxe_set_storm_rx_mode(struct bxe_softc *sc) 3713 { 3714 unsigned long rx_mode_flags = 0, ramrod_flags = 0; 3715 unsigned long rx_accept_flags = 0, tx_accept_flags = 0; 3716 int rc; 3717 3718 rc = bxe_fill_accept_flags(sc, sc->rx_mode, &rx_accept_flags, 3719 &tx_accept_flags); 3720 if (rc) { 3721 return (rc); 3722 } 3723 3724 bxe_set_bit(RAMROD_RX, &ramrod_flags); 3725 bxe_set_bit(RAMROD_TX, &ramrod_flags); 3726 3727 /* XXX ensure all fastpath have same cl_id and/or move it to bxe_softc */ 3728 return (bxe_set_q_rx_mode(sc, sc->fp[0].cl_id, rx_mode_flags, 3729 rx_accept_flags, tx_accept_flags, 3730 ramrod_flags)); 3731 } 3732 3733 /* returns the "mcp load_code" according to global load_count array */ 3734 static int 3735 bxe_nic_load_no_mcp(struct bxe_softc *sc) 3736 { 3737 int path = SC_PATH(sc); 3738 int port = SC_PORT(sc); 3739 3740 BLOGI(sc, "NO MCP - load counts[%d] %d, %d, %d\n", 3741 path, load_count[path][0], load_count[path][1], 3742 load_count[path][2]); 3743 load_count[path][0]++; 3744 load_count[path][1 + port]++; 3745 BLOGI(sc, "NO MCP - new load counts[%d] %d, %d, %d\n", 3746 path, load_count[path][0], load_count[path][1], 3747 load_count[path][2]); 3748 if (load_count[path][0] == 1) { 3749 return (FW_MSG_CODE_DRV_LOAD_COMMON); 3750 } else if (load_count[path][1 + port] == 1) { 3751 return (FW_MSG_CODE_DRV_LOAD_PORT); 3752 } else { 3753 return (FW_MSG_CODE_DRV_LOAD_FUNCTION); 3754 } 3755 } 3756 3757 /* returns the "mcp load_code" according to global load_count array */ 3758 static int 3759 bxe_nic_unload_no_mcp(struct bxe_softc *sc) 3760 { 3761 int port = SC_PORT(sc); 3762 int path = SC_PATH(sc); 3763 3764 BLOGI(sc, "NO MCP - load counts[%d] %d, %d, %d\n", 3765 path, load_count[path][0], load_count[path][1], 3766 load_count[path][2]); 3767 load_count[path][0]--; 3768 load_count[path][1 + port]--; 3769 BLOGI(sc, "NO MCP - new load counts[%d] %d, %d, %d\n", 3770 path, load_count[path][0], load_count[path][1], 3771 load_count[path][2]); 3772 if (load_count[path][0] == 0) { 3773 return (FW_MSG_CODE_DRV_UNLOAD_COMMON); 3774 } else if (load_count[path][1 + port] == 0) { 3775 return (FW_MSG_CODE_DRV_UNLOAD_PORT); 3776 } else { 3777 return (FW_MSG_CODE_DRV_UNLOAD_FUNCTION); 3778 } 3779 } 3780 3781 /* request unload mode from the MCP: COMMON, PORT or FUNCTION */ 3782 static uint32_t 3783 bxe_send_unload_req(struct bxe_softc *sc, 3784 int unload_mode) 3785 { 3786 uint32_t reset_code = 0; 3787 3788 /* Select the UNLOAD request mode */ 3789 if (unload_mode == UNLOAD_NORMAL) { 3790 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS; 3791 } else { 3792 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS; 3793 } 3794 3795 /* Send the request to the MCP */ 3796 if (!BXE_NOMCP(sc)) { 3797 reset_code = bxe_fw_command(sc, reset_code, 0); 3798 } else { 3799 reset_code = bxe_nic_unload_no_mcp(sc); 3800 } 3801 3802 return (reset_code); 3803 } 3804 3805 /* send UNLOAD_DONE command to the MCP */ 3806 static void 3807 bxe_send_unload_done(struct bxe_softc *sc, 3808 uint8_t keep_link) 3809 { 3810 uint32_t reset_param = 3811 keep_link ? DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET : 0; 3812 3813 /* Report UNLOAD_DONE to MCP */ 3814 if (!BXE_NOMCP(sc)) { 3815 bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_DONE, reset_param); 3816 } 3817 } 3818 3819 static int 3820 bxe_func_wait_started(struct bxe_softc *sc) 3821 { 3822 int tout = 50; 3823 3824 if (!sc->port.pmf) { 3825 return (0); 3826 } 3827 3828 /* 3829 * (assumption: No Attention from MCP at this stage) 3830 * PMF probably in the middle of TX disable/enable transaction 3831 * 1. Sync IRS for default SB 3832 * 2. Sync SP queue - this guarantees us that attention handling started 3833 * 3. Wait, that TX disable/enable transaction completes 3834 * 3835 * 1+2 guarantee that if DCBX attention was scheduled it already changed 3836 * pending bit of transaction from STARTED-->TX_STOPPED, if we already 3837 * received completion for the transaction the state is TX_STOPPED. 3838 * State will return to STARTED after completion of TX_STOPPED-->STARTED 3839 * transaction. 3840 */ 3841 3842 /* XXX make sure default SB ISR is done */ 3843 /* need a way to synchronize an irq (intr_mtx?) */ 3844 3845 /* XXX flush any work queues */ 3846 3847 while (ecore_func_get_state(sc, &sc->func_obj) != 3848 ECORE_F_STATE_STARTED && tout--) { 3849 DELAY(20000); 3850 } 3851 3852 if (ecore_func_get_state(sc, &sc->func_obj) != ECORE_F_STATE_STARTED) { 3853 /* 3854 * Failed to complete the transaction in a "good way" 3855 * Force both transactions with CLR bit. 3856 */ 3857 struct ecore_func_state_params func_params = { NULL }; 3858 3859 BLOGE(sc, "Unexpected function state! " 3860 "Forcing STARTED-->TX_STOPPED-->STARTED\n"); 3861 3862 func_params.f_obj = &sc->func_obj; 3863 bxe_set_bit(RAMROD_DRV_CLR_ONLY, &func_params.ramrod_flags); 3864 3865 /* STARTED-->TX_STOPPED */ 3866 func_params.cmd = ECORE_F_CMD_TX_STOP; 3867 ecore_func_state_change(sc, &func_params); 3868 3869 /* TX_STOPPED-->STARTED */ 3870 func_params.cmd = ECORE_F_CMD_TX_START; 3871 return (ecore_func_state_change(sc, &func_params)); 3872 } 3873 3874 return (0); 3875 } 3876 3877 static int 3878 bxe_stop_queue(struct bxe_softc *sc, 3879 int index) 3880 { 3881 struct bxe_fastpath *fp = &sc->fp[index]; 3882 struct ecore_queue_state_params q_params = { NULL }; 3883 int rc; 3884 3885 BLOGD(sc, DBG_LOAD, "stopping queue %d cid %d\n", index, fp->index); 3886 3887 q_params.q_obj = &sc->sp_objs[fp->index].q_obj; 3888 /* We want to wait for completion in this context */ 3889 bxe_set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags); 3890 3891 /* Stop the primary connection: */ 3892 3893 /* ...halt the connection */ 3894 q_params.cmd = ECORE_Q_CMD_HALT; 3895 rc = ecore_queue_state_change(sc, &q_params); 3896 if (rc) { 3897 return (rc); 3898 } 3899 3900 /* ...terminate the connection */ 3901 q_params.cmd = ECORE_Q_CMD_TERMINATE; 3902 memset(&q_params.params.terminate, 0, sizeof(q_params.params.terminate)); 3903 q_params.params.terminate.cid_index = FIRST_TX_COS_INDEX; 3904 rc = ecore_queue_state_change(sc, &q_params); 3905 if (rc) { 3906 return (rc); 3907 } 3908 3909 /* ...delete cfc entry */ 3910 q_params.cmd = ECORE_Q_CMD_CFC_DEL; 3911 memset(&q_params.params.cfc_del, 0, sizeof(q_params.params.cfc_del)); 3912 q_params.params.cfc_del.cid_index = FIRST_TX_COS_INDEX; 3913 return (ecore_queue_state_change(sc, &q_params)); 3914 } 3915 3916 /* wait for the outstanding SP commands */ 3917 static inline uint8_t 3918 bxe_wait_sp_comp(struct bxe_softc *sc, 3919 unsigned long mask) 3920 { 3921 unsigned long tmp; 3922 int tout = 5000; /* wait for 5 secs tops */ 3923 3924 while (tout--) { 3925 mb(); 3926 if (!(atomic_load_acq_long(&sc->sp_state) & mask)) { 3927 return (TRUE); 3928 } 3929 3930 DELAY(1000); 3931 } 3932 3933 mb(); 3934 3935 tmp = atomic_load_acq_long(&sc->sp_state); 3936 if (tmp & mask) { 3937 BLOGE(sc, "Filtering completion timed out: " 3938 "sp_state 0x%lx, mask 0x%lx\n", 3939 tmp, mask); 3940 return (FALSE); 3941 } 3942 3943 return (FALSE); 3944 } 3945 3946 static int 3947 bxe_func_stop(struct bxe_softc *sc) 3948 { 3949 struct ecore_func_state_params func_params = { NULL }; 3950 int rc; 3951 3952 /* prepare parameters for function state transitions */ 3953 bxe_set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags); 3954 func_params.f_obj = &sc->func_obj; 3955 func_params.cmd = ECORE_F_CMD_STOP; 3956 3957 /* 3958 * Try to stop the function the 'good way'. If it fails (in case 3959 * of a parity error during bxe_chip_cleanup()) and we are 3960 * not in a debug mode, perform a state transaction in order to 3961 * enable further HW_RESET transaction. 3962 */ 3963 rc = ecore_func_state_change(sc, &func_params); 3964 if (rc) { 3965 BLOGE(sc, "FUNC_STOP ramrod failed. " 3966 "Running a dry transaction (%d)\n", rc); 3967 bxe_set_bit(RAMROD_DRV_CLR_ONLY, &func_params.ramrod_flags); 3968 return (ecore_func_state_change(sc, &func_params)); 3969 } 3970 3971 return (0); 3972 } 3973 3974 static int 3975 bxe_reset_hw(struct bxe_softc *sc, 3976 uint32_t load_code) 3977 { 3978 struct ecore_func_state_params func_params = { NULL }; 3979 3980 /* Prepare parameters for function state transitions */ 3981 bxe_set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags); 3982 3983 func_params.f_obj = &sc->func_obj; 3984 func_params.cmd = ECORE_F_CMD_HW_RESET; 3985 3986 func_params.params.hw_init.load_phase = load_code; 3987 3988 return (ecore_func_state_change(sc, &func_params)); 3989 } 3990 3991 static void 3992 bxe_int_disable_sync(struct bxe_softc *sc, 3993 int disable_hw) 3994 { 3995 if (disable_hw) { 3996 /* prevent the HW from sending interrupts */ 3997 bxe_int_disable(sc); 3998 } 3999 4000 /* XXX need a way to synchronize ALL irqs (intr_mtx?) */ 4001 /* make sure all ISRs are done */ 4002 4003 /* XXX make sure sp_task is not running */ 4004 /* cancel and flush work queues */ 4005 } 4006 4007 static void 4008 bxe_chip_cleanup(struct bxe_softc *sc, 4009 uint32_t unload_mode, 4010 uint8_t keep_link) 4011 { 4012 int port = SC_PORT(sc); 4013 struct ecore_mcast_ramrod_params rparam = { NULL }; 4014 uint32_t reset_code; 4015 int i, rc = 0; 4016 4017 bxe_drain_tx_queues(sc); 4018 4019 /* give HW time to discard old tx messages */ 4020 DELAY(1000); 4021 4022 /* Clean all ETH MACs */ 4023 rc = bxe_del_all_macs(sc, &sc->sp_objs[0].mac_obj, ECORE_ETH_MAC, FALSE); 4024 if (rc < 0) { 4025 BLOGE(sc, "Failed to delete all ETH MACs (%d)\n", rc); 4026 } 4027 4028 /* Clean up UC list */ 4029 rc = bxe_del_all_macs(sc, &sc->sp_objs[0].mac_obj, ECORE_UC_LIST_MAC, TRUE); 4030 if (rc < 0) { 4031 BLOGE(sc, "Failed to delete UC MACs list (%d)\n", rc); 4032 } 4033 4034 /* Disable LLH */ 4035 if (!CHIP_IS_E1(sc)) { 4036 REG_WR(sc, NIG_REG_LLH0_FUNC_EN + port*8, 0); 4037 } 4038 4039 /* Set "drop all" to stop Rx */ 4040 4041 /* 4042 * We need to take the BXE_MCAST_LOCK() here in order to prevent 4043 * a race between the completion code and this code. 4044 */ 4045 BXE_MCAST_LOCK(sc); 4046 4047 if (bxe_test_bit(ECORE_FILTER_RX_MODE_PENDING, &sc->sp_state)) { 4048 bxe_set_bit(ECORE_FILTER_RX_MODE_SCHED, &sc->sp_state); 4049 } else { 4050 bxe_set_storm_rx_mode(sc); 4051 } 4052 4053 /* Clean up multicast configuration */ 4054 rparam.mcast_obj = &sc->mcast_obj; 4055 rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_DEL); 4056 if (rc < 0) { 4057 BLOGE(sc, "Failed to send DEL MCAST command (%d)\n", rc); 4058 } 4059 4060 BXE_MCAST_UNLOCK(sc); 4061 4062 // XXX bxe_iov_chip_cleanup(sc); 4063 4064 /* 4065 * Send the UNLOAD_REQUEST to the MCP. This will return if 4066 * this function should perform FUNCTION, PORT, or COMMON HW 4067 * reset. 4068 */ 4069 reset_code = bxe_send_unload_req(sc, unload_mode); 4070 4071 /* 4072 * (assumption: No Attention from MCP at this stage) 4073 * PMF probably in the middle of TX disable/enable transaction 4074 */ 4075 rc = bxe_func_wait_started(sc); 4076 if (rc) { 4077 BLOGE(sc, "bxe_func_wait_started failed (%d)\n", rc); 4078 } 4079 4080 /* 4081 * Close multi and leading connections 4082 * Completions for ramrods are collected in a synchronous way 4083 */ 4084 for (i = 0; i < sc->num_queues; i++) { 4085 if (bxe_stop_queue(sc, i)) { 4086 goto unload_error; 4087 } 4088 } 4089 4090 /* 4091 * If SP settings didn't get completed so far - something 4092 * very wrong has happen. 4093 */ 4094 if (!bxe_wait_sp_comp(sc, ~0x0UL)) { 4095 BLOGE(sc, "Common slow path ramrods got stuck!(%d)\n", rc); 4096 } 4097 4098 unload_error: 4099 4100 rc = bxe_func_stop(sc); 4101 if (rc) { 4102 BLOGE(sc, "Function stop failed!(%d)\n", rc); 4103 } 4104 4105 /* disable HW interrupts */ 4106 bxe_int_disable_sync(sc, TRUE); 4107 4108 /* detach interrupts */ 4109 bxe_interrupt_detach(sc); 4110 4111 /* Reset the chip */ 4112 rc = bxe_reset_hw(sc, reset_code); 4113 if (rc) { 4114 BLOGE(sc, "Hardware reset failed(%d)\n", rc); 4115 } 4116 4117 /* Report UNLOAD_DONE to MCP */ 4118 bxe_send_unload_done(sc, keep_link); 4119 } 4120 4121 static void 4122 bxe_disable_close_the_gate(struct bxe_softc *sc) 4123 { 4124 uint32_t val; 4125 int port = SC_PORT(sc); 4126 4127 BLOGD(sc, DBG_LOAD, 4128 "Disabling 'close the gates'\n"); 4129 4130 if (CHIP_IS_E1(sc)) { 4131 uint32_t addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 : 4132 MISC_REG_AEU_MASK_ATTN_FUNC_0; 4133 val = REG_RD(sc, addr); 4134 val &= ~(0x300); 4135 REG_WR(sc, addr, val); 4136 } else { 4137 val = REG_RD(sc, MISC_REG_AEU_GENERAL_MASK); 4138 val &= ~(MISC_AEU_GENERAL_MASK_REG_AEU_PXP_CLOSE_MASK | 4139 MISC_AEU_GENERAL_MASK_REG_AEU_NIG_CLOSE_MASK); 4140 REG_WR(sc, MISC_REG_AEU_GENERAL_MASK, val); 4141 } 4142 } 4143 4144 /* 4145 * Cleans the object that have internal lists without sending 4146 * ramrods. Should be run when interrutps are disabled. 4147 */ 4148 static void 4149 bxe_squeeze_objects(struct bxe_softc *sc) 4150 { 4151 unsigned long ramrod_flags = 0, vlan_mac_flags = 0; 4152 struct ecore_mcast_ramrod_params rparam = { NULL }; 4153 struct ecore_vlan_mac_obj *mac_obj = &sc->sp_objs->mac_obj; 4154 int rc; 4155 4156 /* Cleanup MACs' object first... */ 4157 4158 /* Wait for completion of requested */ 4159 bxe_set_bit(RAMROD_COMP_WAIT, &ramrod_flags); 4160 /* Perform a dry cleanup */ 4161 bxe_set_bit(RAMROD_DRV_CLR_ONLY, &ramrod_flags); 4162 4163 /* Clean ETH primary MAC */ 4164 bxe_set_bit(ECORE_ETH_MAC, &vlan_mac_flags); 4165 rc = mac_obj->delete_all(sc, &sc->sp_objs->mac_obj, &vlan_mac_flags, 4166 &ramrod_flags); 4167 if (rc != 0) { 4168 BLOGE(sc, "Failed to clean ETH MACs (%d)\n", rc); 4169 } 4170 4171 /* Cleanup UC list */ 4172 vlan_mac_flags = 0; 4173 bxe_set_bit(ECORE_UC_LIST_MAC, &vlan_mac_flags); 4174 rc = mac_obj->delete_all(sc, mac_obj, &vlan_mac_flags, 4175 &ramrod_flags); 4176 if (rc != 0) { 4177 BLOGE(sc, "Failed to clean UC list MACs (%d)\n", rc); 4178 } 4179 4180 /* Now clean mcast object... */ 4181 4182 rparam.mcast_obj = &sc->mcast_obj; 4183 bxe_set_bit(RAMROD_DRV_CLR_ONLY, &rparam.ramrod_flags); 4184 4185 /* Add a DEL command... */ 4186 rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_DEL); 4187 if (rc < 0) { 4188 BLOGE(sc, "Failed to send DEL MCAST command (%d)\n", rc); 4189 } 4190 4191 /* now wait until all pending commands are cleared */ 4192 4193 rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_CONT); 4194 while (rc != 0) { 4195 if (rc < 0) { 4196 BLOGE(sc, "Failed to clean MCAST object (%d)\n", rc); 4197 return; 4198 } 4199 4200 rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_CONT); 4201 } 4202 } 4203 4204 /* stop the controller */ 4205 static __noinline int 4206 bxe_nic_unload(struct bxe_softc *sc, 4207 uint32_t unload_mode, 4208 uint8_t keep_link) 4209 { 4210 uint8_t global = FALSE; 4211 uint32_t val; 4212 int i; 4213 4214 BXE_CORE_LOCK_ASSERT(sc); 4215 4216 if_setdrvflagbits(sc->ifp, 0, IFF_DRV_RUNNING); 4217 4218 for (i = 0; i < sc->num_queues; i++) { 4219 struct bxe_fastpath *fp; 4220 4221 fp = &sc->fp[i]; 4222 BXE_FP_TX_LOCK(fp); 4223 BXE_FP_TX_UNLOCK(fp); 4224 } 4225 4226 BLOGD(sc, DBG_LOAD, "Starting NIC unload...\n"); 4227 4228 /* mark driver as unloaded in shmem2 */ 4229 if (IS_PF(sc) && SHMEM2_HAS(sc, drv_capabilities_flag)) { 4230 val = SHMEM2_RD(sc, drv_capabilities_flag[SC_FW_MB_IDX(sc)]); 4231 SHMEM2_WR(sc, drv_capabilities_flag[SC_FW_MB_IDX(sc)], 4232 val & ~DRV_FLAGS_CAPABILITIES_LOADED_L2); 4233 } 4234 4235 if (IS_PF(sc) && sc->recovery_state != BXE_RECOVERY_DONE && 4236 (sc->state == BXE_STATE_CLOSED || sc->state == BXE_STATE_ERROR)) { 4237 /* 4238 * We can get here if the driver has been unloaded 4239 * during parity error recovery and is either waiting for a 4240 * leader to complete or for other functions to unload and 4241 * then ifconfig down has been issued. In this case we want to 4242 * unload and let other functions to complete a recovery 4243 * process. 4244 */ 4245 sc->recovery_state = BXE_RECOVERY_DONE; 4246 sc->is_leader = 0; 4247 bxe_release_leader_lock(sc); 4248 mb(); 4249 4250 BLOGD(sc, DBG_LOAD, "Releasing a leadership...\n"); 4251 BLOGE(sc, "Can't unload in closed or error state recover_state 0x%x" 4252 " state = 0x%x\n", sc->recovery_state, sc->state); 4253 return (-1); 4254 } 4255 4256 /* 4257 * Nothing to do during unload if previous bxe_nic_load() 4258 * did not completed successfully - all resourses are released. 4259 */ 4260 if ((sc->state == BXE_STATE_CLOSED) || 4261 (sc->state == BXE_STATE_ERROR)) { 4262 return (0); 4263 } 4264 4265 sc->state = BXE_STATE_CLOSING_WAITING_HALT; 4266 mb(); 4267 4268 /* stop tx */ 4269 bxe_tx_disable(sc); 4270 4271 sc->rx_mode = BXE_RX_MODE_NONE; 4272 /* XXX set rx mode ??? */ 4273 4274 if (IS_PF(sc) && !sc->grcdump_done) { 4275 /* set ALWAYS_ALIVE bit in shmem */ 4276 sc->fw_drv_pulse_wr_seq |= DRV_PULSE_ALWAYS_ALIVE; 4277 4278 bxe_drv_pulse(sc); 4279 4280 bxe_stats_handle(sc, STATS_EVENT_STOP); 4281 bxe_save_statistics(sc); 4282 } 4283 4284 /* wait till consumers catch up with producers in all queues */ 4285 bxe_drain_tx_queues(sc); 4286 4287 /* if VF indicate to PF this function is going down (PF will delete sp 4288 * elements and clear initializations 4289 */ 4290 if (IS_VF(sc)) { 4291 ; /* bxe_vfpf_close_vf(sc); */ 4292 } else if (unload_mode != UNLOAD_RECOVERY) { 4293 /* if this is a normal/close unload need to clean up chip */ 4294 if (!sc->grcdump_done) 4295 bxe_chip_cleanup(sc, unload_mode, keep_link); 4296 } else { 4297 /* Send the UNLOAD_REQUEST to the MCP */ 4298 bxe_send_unload_req(sc, unload_mode); 4299 4300 /* 4301 * Prevent transactions to host from the functions on the 4302 * engine that doesn't reset global blocks in case of global 4303 * attention once gloabl blocks are reset and gates are opened 4304 * (the engine which leader will perform the recovery 4305 * last). 4306 */ 4307 if (!CHIP_IS_E1x(sc)) { 4308 bxe_pf_disable(sc); 4309 } 4310 4311 /* disable HW interrupts */ 4312 bxe_int_disable_sync(sc, TRUE); 4313 4314 /* detach interrupts */ 4315 bxe_interrupt_detach(sc); 4316 4317 /* Report UNLOAD_DONE to MCP */ 4318 bxe_send_unload_done(sc, FALSE); 4319 } 4320 4321 /* 4322 * At this stage no more interrupts will arrive so we may safely clean 4323 * the queue'able objects here in case they failed to get cleaned so far. 4324 */ 4325 if (IS_PF(sc)) { 4326 bxe_squeeze_objects(sc); 4327 } 4328 4329 /* There should be no more pending SP commands at this stage */ 4330 sc->sp_state = 0; 4331 4332 sc->port.pmf = 0; 4333 4334 bxe_free_fp_buffers(sc); 4335 4336 if (IS_PF(sc)) { 4337 bxe_free_mem(sc); 4338 } 4339 4340 bxe_free_fw_stats_mem(sc); 4341 4342 sc->state = BXE_STATE_CLOSED; 4343 4344 /* 4345 * Check if there are pending parity attentions. If there are - set 4346 * RECOVERY_IN_PROGRESS. 4347 */ 4348 if (IS_PF(sc) && bxe_chk_parity_attn(sc, &global, FALSE)) { 4349 bxe_set_reset_in_progress(sc); 4350 4351 /* Set RESET_IS_GLOBAL if needed */ 4352 if (global) { 4353 bxe_set_reset_global(sc); 4354 } 4355 } 4356 4357 /* 4358 * The last driver must disable a "close the gate" if there is no 4359 * parity attention or "process kill" pending. 4360 */ 4361 if (IS_PF(sc) && !bxe_clear_pf_load(sc) && 4362 bxe_reset_is_done(sc, SC_PATH(sc))) { 4363 bxe_disable_close_the_gate(sc); 4364 } 4365 4366 BLOGD(sc, DBG_LOAD, "Ended NIC unload\n"); 4367 4368 return (0); 4369 } 4370 4371 /* 4372 * Called by the OS to set various media options (i.e. link, speed, etc.) when 4373 * the user runs "ifconfig bxe media ..." or "ifconfig bxe mediaopt ...". 4374 */ 4375 static int 4376 bxe_ifmedia_update(struct ifnet *ifp) 4377 { 4378 struct bxe_softc *sc = (struct bxe_softc *)if_getsoftc(ifp); 4379 struct ifmedia *ifm; 4380 4381 ifm = &sc->ifmedia; 4382 4383 /* We only support Ethernet media type. */ 4384 if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER) { 4385 return (EINVAL); 4386 } 4387 4388 switch (IFM_SUBTYPE(ifm->ifm_media)) { 4389 case IFM_AUTO: 4390 break; 4391 case IFM_10G_CX4: 4392 case IFM_10G_SR: 4393 case IFM_10G_T: 4394 case IFM_10G_TWINAX: 4395 default: 4396 /* We don't support changing the media type. */ 4397 BLOGD(sc, DBG_LOAD, "Invalid media type (%d)\n", 4398 IFM_SUBTYPE(ifm->ifm_media)); 4399 return (EINVAL); 4400 } 4401 4402 return (0); 4403 } 4404 4405 /* 4406 * Called by the OS to get the current media status (i.e. link, speed, etc.). 4407 */ 4408 static void 4409 bxe_ifmedia_status(struct ifnet *ifp, struct ifmediareq *ifmr) 4410 { 4411 struct bxe_softc *sc = if_getsoftc(ifp); 4412 4413 /* Report link down if the driver isn't running. */ 4414 if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) == 0) { 4415 ifmr->ifm_active |= IFM_NONE; 4416 return; 4417 } 4418 4419 /* Setup the default interface info. */ 4420 ifmr->ifm_status = IFM_AVALID; 4421 ifmr->ifm_active = IFM_ETHER; 4422 4423 if (sc->link_vars.link_up) { 4424 ifmr->ifm_status |= IFM_ACTIVE; 4425 } else { 4426 ifmr->ifm_active |= IFM_NONE; 4427 return; 4428 } 4429 4430 ifmr->ifm_active |= sc->media; 4431 4432 if (sc->link_vars.duplex == DUPLEX_FULL) { 4433 ifmr->ifm_active |= IFM_FDX; 4434 } else { 4435 ifmr->ifm_active |= IFM_HDX; 4436 } 4437 } 4438 4439 static void 4440 bxe_handle_chip_tq(void *context, 4441 int pending) 4442 { 4443 struct bxe_softc *sc = (struct bxe_softc *)context; 4444 long work = atomic_load_acq_long(&sc->chip_tq_flags); 4445 4446 switch (work) 4447 { 4448 4449 case CHIP_TQ_REINIT: 4450 if (if_getdrvflags(sc->ifp) & IFF_DRV_RUNNING) { 4451 /* restart the interface */ 4452 BLOGD(sc, DBG_LOAD, "Restarting the interface...\n"); 4453 bxe_periodic_stop(sc); 4454 BXE_CORE_LOCK(sc); 4455 bxe_stop_locked(sc); 4456 bxe_init_locked(sc); 4457 BXE_CORE_UNLOCK(sc); 4458 } 4459 break; 4460 4461 default: 4462 break; 4463 } 4464 } 4465 4466 /* 4467 * Handles any IOCTL calls from the operating system. 4468 * 4469 * Returns: 4470 * 0 = Success, >0 Failure 4471 */ 4472 static int 4473 bxe_ioctl(if_t ifp, 4474 u_long command, 4475 caddr_t data) 4476 { 4477 struct bxe_softc *sc = if_getsoftc(ifp); 4478 struct ifreq *ifr = (struct ifreq *)data; 4479 int mask = 0; 4480 int reinit = 0; 4481 int error = 0; 4482 4483 int mtu_min = (ETH_MIN_PACKET_SIZE - ETH_HLEN); 4484 int mtu_max = (MJUM9BYTES - ETH_OVERHEAD - IP_HEADER_ALIGNMENT_PADDING); 4485 4486 switch (command) 4487 { 4488 case SIOCSIFMTU: 4489 BLOGD(sc, DBG_IOCTL, "Received SIOCSIFMTU ioctl (mtu=%d)\n", 4490 ifr->ifr_mtu); 4491 4492 if (sc->mtu == ifr->ifr_mtu) { 4493 /* nothing to change */ 4494 break; 4495 } 4496 4497 if ((ifr->ifr_mtu < mtu_min) || (ifr->ifr_mtu > mtu_max)) { 4498 BLOGE(sc, "Unsupported MTU size %d (range is %d-%d)\n", 4499 ifr->ifr_mtu, mtu_min, mtu_max); 4500 error = EINVAL; 4501 break; 4502 } 4503 4504 atomic_store_rel_int((volatile unsigned int *)&sc->mtu, 4505 (unsigned long)ifr->ifr_mtu); 4506 /* 4507 atomic_store_rel_long((volatile unsigned long *)&if_getmtu(ifp), 4508 (unsigned long)ifr->ifr_mtu); 4509 XXX - Not sure why it needs to be atomic 4510 */ 4511 if_setmtu(ifp, ifr->ifr_mtu); 4512 reinit = 1; 4513 break; 4514 4515 case SIOCSIFFLAGS: 4516 /* toggle the interface state up or down */ 4517 BLOGD(sc, DBG_IOCTL, "Received SIOCSIFFLAGS ioctl\n"); 4518 4519 BXE_CORE_LOCK(sc); 4520 /* check if the interface is up */ 4521 if (if_getflags(ifp) & IFF_UP) { 4522 if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) { 4523 /* set the receive mode flags */ 4524 bxe_set_rx_mode(sc); 4525 } else if(sc->state != BXE_STATE_DISABLED) { 4526 bxe_init_locked(sc); 4527 } 4528 } else { 4529 if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) { 4530 bxe_periodic_stop(sc); 4531 bxe_stop_locked(sc); 4532 } 4533 } 4534 BXE_CORE_UNLOCK(sc); 4535 4536 break; 4537 4538 case SIOCADDMULTI: 4539 case SIOCDELMULTI: 4540 /* add/delete multicast addresses */ 4541 BLOGD(sc, DBG_IOCTL, "Received SIOCADDMULTI/SIOCDELMULTI ioctl\n"); 4542 4543 /* check if the interface is up */ 4544 if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) { 4545 /* set the receive mode flags */ 4546 BXE_CORE_LOCK(sc); 4547 bxe_set_rx_mode(sc); 4548 BXE_CORE_UNLOCK(sc); 4549 } 4550 4551 break; 4552 4553 case SIOCSIFCAP: 4554 /* find out which capabilities have changed */ 4555 mask = (ifr->ifr_reqcap ^ if_getcapenable(ifp)); 4556 4557 BLOGD(sc, DBG_IOCTL, "Received SIOCSIFCAP ioctl (mask=0x%08x)\n", 4558 mask); 4559 4560 /* toggle the LRO capabilites enable flag */ 4561 if (mask & IFCAP_LRO) { 4562 if_togglecapenable(ifp, IFCAP_LRO); 4563 BLOGD(sc, DBG_IOCTL, "Turning LRO %s\n", 4564 (if_getcapenable(ifp) & IFCAP_LRO) ? "ON" : "OFF"); 4565 reinit = 1; 4566 } 4567 4568 /* toggle the TXCSUM checksum capabilites enable flag */ 4569 if (mask & IFCAP_TXCSUM) { 4570 if_togglecapenable(ifp, IFCAP_TXCSUM); 4571 BLOGD(sc, DBG_IOCTL, "Turning TXCSUM %s\n", 4572 (if_getcapenable(ifp) & IFCAP_TXCSUM) ? "ON" : "OFF"); 4573 if (if_getcapenable(ifp) & IFCAP_TXCSUM) { 4574 if_sethwassistbits(ifp, (CSUM_IP | 4575 CSUM_TCP | 4576 CSUM_UDP | 4577 CSUM_TSO | 4578 CSUM_TCP_IPV6 | 4579 CSUM_UDP_IPV6), 0); 4580 } else { 4581 if_clearhwassist(ifp); /* XXX */ 4582 } 4583 } 4584 4585 /* toggle the RXCSUM checksum capabilities enable flag */ 4586 if (mask & IFCAP_RXCSUM) { 4587 if_togglecapenable(ifp, IFCAP_RXCSUM); 4588 BLOGD(sc, DBG_IOCTL, "Turning RXCSUM %s\n", 4589 (if_getcapenable(ifp) & IFCAP_RXCSUM) ? "ON" : "OFF"); 4590 if (if_getcapenable(ifp) & IFCAP_RXCSUM) { 4591 if_sethwassistbits(ifp, (CSUM_IP | 4592 CSUM_TCP | 4593 CSUM_UDP | 4594 CSUM_TSO | 4595 CSUM_TCP_IPV6 | 4596 CSUM_UDP_IPV6), 0); 4597 } else { 4598 if_clearhwassist(ifp); /* XXX */ 4599 } 4600 } 4601 4602 /* toggle TSO4 capabilities enabled flag */ 4603 if (mask & IFCAP_TSO4) { 4604 if_togglecapenable(ifp, IFCAP_TSO4); 4605 BLOGD(sc, DBG_IOCTL, "Turning TSO4 %s\n", 4606 (if_getcapenable(ifp) & IFCAP_TSO4) ? "ON" : "OFF"); 4607 } 4608 4609 /* toggle TSO6 capabilities enabled flag */ 4610 if (mask & IFCAP_TSO6) { 4611 if_togglecapenable(ifp, IFCAP_TSO6); 4612 BLOGD(sc, DBG_IOCTL, "Turning TSO6 %s\n", 4613 (if_getcapenable(ifp) & IFCAP_TSO6) ? "ON" : "OFF"); 4614 } 4615 4616 /* toggle VLAN_HWTSO capabilities enabled flag */ 4617 if (mask & IFCAP_VLAN_HWTSO) { 4618 4619 if_togglecapenable(ifp, IFCAP_VLAN_HWTSO); 4620 BLOGD(sc, DBG_IOCTL, "Turning VLAN_HWTSO %s\n", 4621 (if_getcapenable(ifp) & IFCAP_VLAN_HWTSO) ? "ON" : "OFF"); 4622 } 4623 4624 /* toggle VLAN_HWCSUM capabilities enabled flag */ 4625 if (mask & IFCAP_VLAN_HWCSUM) { 4626 /* XXX investigate this... */ 4627 BLOGE(sc, "Changing VLAN_HWCSUM is not supported!\n"); 4628 error = EINVAL; 4629 } 4630 4631 /* toggle VLAN_MTU capabilities enable flag */ 4632 if (mask & IFCAP_VLAN_MTU) { 4633 /* XXX investigate this... */ 4634 BLOGE(sc, "Changing VLAN_MTU is not supported!\n"); 4635 error = EINVAL; 4636 } 4637 4638 /* toggle VLAN_HWTAGGING capabilities enabled flag */ 4639 if (mask & IFCAP_VLAN_HWTAGGING) { 4640 /* XXX investigate this... */ 4641 BLOGE(sc, "Changing VLAN_HWTAGGING is not supported!\n"); 4642 error = EINVAL; 4643 } 4644 4645 /* toggle VLAN_HWFILTER capabilities enabled flag */ 4646 if (mask & IFCAP_VLAN_HWFILTER) { 4647 /* XXX investigate this... */ 4648 BLOGE(sc, "Changing VLAN_HWFILTER is not supported!\n"); 4649 error = EINVAL; 4650 } 4651 4652 /* XXX not yet... 4653 * IFCAP_WOL_MAGIC 4654 */ 4655 4656 break; 4657 4658 case SIOCSIFMEDIA: 4659 case SIOCGIFMEDIA: 4660 /* set/get interface media */ 4661 BLOGD(sc, DBG_IOCTL, 4662 "Received SIOCSIFMEDIA/SIOCGIFMEDIA ioctl (cmd=%lu)\n", 4663 (command & 0xff)); 4664 error = ifmedia_ioctl(ifp, ifr, &sc->ifmedia, command); 4665 break; 4666 4667 default: 4668 BLOGD(sc, DBG_IOCTL, "Received Unknown Ioctl (cmd=%lu)\n", 4669 (command & 0xff)); 4670 error = ether_ioctl(ifp, command, data); 4671 break; 4672 } 4673 4674 if (reinit && (if_getdrvflags(sc->ifp) & IFF_DRV_RUNNING)) { 4675 BLOGD(sc, DBG_LOAD | DBG_IOCTL, 4676 "Re-initializing hardware from IOCTL change\n"); 4677 bxe_periodic_stop(sc); 4678 BXE_CORE_LOCK(sc); 4679 bxe_stop_locked(sc); 4680 bxe_init_locked(sc); 4681 BXE_CORE_UNLOCK(sc); 4682 } 4683 4684 return (error); 4685 } 4686 4687 static __noinline void 4688 bxe_dump_mbuf(struct bxe_softc *sc, 4689 struct mbuf *m, 4690 uint8_t contents) 4691 { 4692 char * type; 4693 int i = 0; 4694 4695 if (!(sc->debug & DBG_MBUF)) { 4696 return; 4697 } 4698 4699 if (m == NULL) { 4700 BLOGD(sc, DBG_MBUF, "mbuf: null pointer\n"); 4701 return; 4702 } 4703 4704 while (m) { 4705 4706 #if __FreeBSD_version >= 1000000 4707 BLOGD(sc, DBG_MBUF, 4708 "%02d: mbuf=%p m_len=%d m_flags=0x%b m_data=%p\n", 4709 i, m, m->m_len, m->m_flags, M_FLAG_BITS, m->m_data); 4710 4711 if (m->m_flags & M_PKTHDR) { 4712 BLOGD(sc, DBG_MBUF, 4713 "%02d: - m_pkthdr: tot_len=%d flags=0x%b csum_flags=%b\n", 4714 i, m->m_pkthdr.len, m->m_flags, M_FLAG_BITS, 4715 (int)m->m_pkthdr.csum_flags, CSUM_BITS); 4716 } 4717 #else 4718 BLOGD(sc, DBG_MBUF, 4719 "%02d: mbuf=%p m_len=%d m_flags=0x%b m_data=%p\n", 4720 i, m, m->m_len, m->m_flags, 4721 "\20\1M_EXT\2M_PKTHDR\3M_EOR\4M_RDONLY", m->m_data); 4722 4723 if (m->m_flags & M_PKTHDR) { 4724 BLOGD(sc, DBG_MBUF, 4725 "%02d: - m_pkthdr: tot_len=%d flags=0x%b csum_flags=%b\n", 4726 i, m->m_pkthdr.len, m->m_flags, 4727 "\20\12M_BCAST\13M_MCAST\14M_FRAG" 4728 "\15M_FIRSTFRAG\16M_LASTFRAG\21M_VLANTAG" 4729 "\22M_PROMISC\23M_NOFREE", 4730 (int)m->m_pkthdr.csum_flags, 4731 "\20\1CSUM_IP\2CSUM_TCP\3CSUM_UDP\4CSUM_IP_FRAGS" 4732 "\5CSUM_FRAGMENT\6CSUM_TSO\11CSUM_IP_CHECKED" 4733 "\12CSUM_IP_VALID\13CSUM_DATA_VALID" 4734 "\14CSUM_PSEUDO_HDR"); 4735 } 4736 #endif /* #if __FreeBSD_version >= 1000000 */ 4737 4738 if (m->m_flags & M_EXT) { 4739 switch (m->m_ext.ext_type) { 4740 case EXT_CLUSTER: type = "EXT_CLUSTER"; break; 4741 case EXT_SFBUF: type = "EXT_SFBUF"; break; 4742 case EXT_JUMBOP: type = "EXT_JUMBOP"; break; 4743 case EXT_JUMBO9: type = "EXT_JUMBO9"; break; 4744 case EXT_JUMBO16: type = "EXT_JUMBO16"; break; 4745 case EXT_PACKET: type = "EXT_PACKET"; break; 4746 case EXT_MBUF: type = "EXT_MBUF"; break; 4747 case EXT_NET_DRV: type = "EXT_NET_DRV"; break; 4748 case EXT_MOD_TYPE: type = "EXT_MOD_TYPE"; break; 4749 case EXT_DISPOSABLE: type = "EXT_DISPOSABLE"; break; 4750 case EXT_EXTREF: type = "EXT_EXTREF"; break; 4751 default: type = "UNKNOWN"; break; 4752 } 4753 4754 BLOGD(sc, DBG_MBUF, 4755 "%02d: - m_ext: %p ext_size=%d type=%s\n", 4756 i, m->m_ext.ext_buf, m->m_ext.ext_size, type); 4757 } 4758 4759 if (contents) { 4760 bxe_dump_mbuf_data(sc, "mbuf data", m, TRUE); 4761 } 4762 4763 m = m->m_next; 4764 i++; 4765 } 4766 } 4767 4768 /* 4769 * Checks to ensure the 13 bd sliding window is >= MSS for TSO. 4770 * Check that (13 total bds - 3 bds) = 10 bd window >= MSS. 4771 * The window: 3 bds are = 1 for headers BD + 2 for parse BD and last BD 4772 * The headers comes in a separate bd in FreeBSD so 13-3=10. 4773 * Returns: 0 if OK to send, 1 if packet needs further defragmentation 4774 */ 4775 static int 4776 bxe_chktso_window(struct bxe_softc *sc, 4777 int nsegs, 4778 bus_dma_segment_t *segs, 4779 struct mbuf *m) 4780 { 4781 uint32_t num_wnds, wnd_size, wnd_sum; 4782 int32_t frag_idx, wnd_idx; 4783 unsigned short lso_mss; 4784 int defrag; 4785 4786 defrag = 0; 4787 wnd_sum = 0; 4788 wnd_size = 10; 4789 num_wnds = nsegs - wnd_size; 4790 lso_mss = htole16(m->m_pkthdr.tso_segsz); 4791 4792 /* 4793 * Total header lengths Eth+IP+TCP in first FreeBSD mbuf so calculate the 4794 * first window sum of data while skipping the first assuming it is the 4795 * header in FreeBSD. 4796 */ 4797 for (frag_idx = 1; (frag_idx <= wnd_size); frag_idx++) { 4798 wnd_sum += htole16(segs[frag_idx].ds_len); 4799 } 4800 4801 /* check the first 10 bd window size */ 4802 if (wnd_sum < lso_mss) { 4803 return (1); 4804 } 4805 4806 /* run through the windows */ 4807 for (wnd_idx = 0; wnd_idx < num_wnds; wnd_idx++, frag_idx++) { 4808 /* subtract the first mbuf->m_len of the last wndw(-header) */ 4809 wnd_sum -= htole16(segs[wnd_idx+1].ds_len); 4810 /* add the next mbuf len to the len of our new window */ 4811 wnd_sum += htole16(segs[frag_idx].ds_len); 4812 if (wnd_sum < lso_mss) { 4813 return (1); 4814 } 4815 } 4816 4817 return (0); 4818 } 4819 4820 static uint8_t 4821 bxe_set_pbd_csum_e2(struct bxe_fastpath *fp, 4822 struct mbuf *m, 4823 uint32_t *parsing_data) 4824 { 4825 struct ether_vlan_header *eh = NULL; 4826 struct ip *ip4 = NULL; 4827 struct ip6_hdr *ip6 = NULL; 4828 caddr_t ip = NULL; 4829 struct tcphdr *th = NULL; 4830 int e_hlen, ip_hlen, l4_off; 4831 uint16_t proto; 4832 4833 if (m->m_pkthdr.csum_flags == CSUM_IP) { 4834 /* no L4 checksum offload needed */ 4835 return (0); 4836 } 4837 4838 /* get the Ethernet header */ 4839 eh = mtod(m, struct ether_vlan_header *); 4840 4841 /* handle VLAN encapsulation if present */ 4842 if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) { 4843 e_hlen = (ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN); 4844 proto = ntohs(eh->evl_proto); 4845 } else { 4846 e_hlen = ETHER_HDR_LEN; 4847 proto = ntohs(eh->evl_encap_proto); 4848 } 4849 4850 switch (proto) { 4851 case ETHERTYPE_IP: 4852 /* get the IP header, if mbuf len < 20 then header in next mbuf */ 4853 ip4 = (m->m_len < sizeof(struct ip)) ? 4854 (struct ip *)m->m_next->m_data : 4855 (struct ip *)(m->m_data + e_hlen); 4856 /* ip_hl is number of 32-bit words */ 4857 ip_hlen = (ip4->ip_hl << 2); 4858 ip = (caddr_t)ip4; 4859 break; 4860 case ETHERTYPE_IPV6: 4861 /* get the IPv6 header, if mbuf len < 40 then header in next mbuf */ 4862 ip6 = (m->m_len < sizeof(struct ip6_hdr)) ? 4863 (struct ip6_hdr *)m->m_next->m_data : 4864 (struct ip6_hdr *)(m->m_data + e_hlen); 4865 /* XXX cannot support offload with IPv6 extensions */ 4866 ip_hlen = sizeof(struct ip6_hdr); 4867 ip = (caddr_t)ip6; 4868 break; 4869 default: 4870 /* We can't offload in this case... */ 4871 /* XXX error stat ??? */ 4872 return (0); 4873 } 4874 4875 /* XXX assuming L4 header is contiguous to IPv4/IPv6 in the same mbuf */ 4876 l4_off = (e_hlen + ip_hlen); 4877 4878 *parsing_data |= 4879 (((l4_off >> 1) << ETH_TX_PARSE_BD_E2_L4_HDR_START_OFFSET_W_SHIFT) & 4880 ETH_TX_PARSE_BD_E2_L4_HDR_START_OFFSET_W); 4881 4882 if (m->m_pkthdr.csum_flags & (CSUM_TCP | 4883 CSUM_TSO | 4884 CSUM_TCP_IPV6)) { 4885 fp->eth_q_stats.tx_ofld_frames_csum_tcp++; 4886 th = (struct tcphdr *)(ip + ip_hlen); 4887 /* th_off is number of 32-bit words */ 4888 *parsing_data |= ((th->th_off << 4889 ETH_TX_PARSE_BD_E2_TCP_HDR_LENGTH_DW_SHIFT) & 4890 ETH_TX_PARSE_BD_E2_TCP_HDR_LENGTH_DW); 4891 return (l4_off + (th->th_off << 2)); /* entire header length */ 4892 } else if (m->m_pkthdr.csum_flags & (CSUM_UDP | 4893 CSUM_UDP_IPV6)) { 4894 fp->eth_q_stats.tx_ofld_frames_csum_udp++; 4895 return (l4_off + sizeof(struct udphdr)); /* entire header length */ 4896 } else { 4897 /* XXX error stat ??? */ 4898 return (0); 4899 } 4900 } 4901 4902 static uint8_t 4903 bxe_set_pbd_csum(struct bxe_fastpath *fp, 4904 struct mbuf *m, 4905 struct eth_tx_parse_bd_e1x *pbd) 4906 { 4907 struct ether_vlan_header *eh = NULL; 4908 struct ip *ip4 = NULL; 4909 struct ip6_hdr *ip6 = NULL; 4910 caddr_t ip = NULL; 4911 struct tcphdr *th = NULL; 4912 struct udphdr *uh = NULL; 4913 int e_hlen, ip_hlen; 4914 uint16_t proto; 4915 uint8_t hlen; 4916 uint16_t tmp_csum; 4917 uint32_t *tmp_uh; 4918 4919 /* get the Ethernet header */ 4920 eh = mtod(m, struct ether_vlan_header *); 4921 4922 /* handle VLAN encapsulation if present */ 4923 if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) { 4924 e_hlen = (ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN); 4925 proto = ntohs(eh->evl_proto); 4926 } else { 4927 e_hlen = ETHER_HDR_LEN; 4928 proto = ntohs(eh->evl_encap_proto); 4929 } 4930 4931 switch (proto) { 4932 case ETHERTYPE_IP: 4933 /* get the IP header, if mbuf len < 20 then header in next mbuf */ 4934 ip4 = (m->m_len < sizeof(struct ip)) ? 4935 (struct ip *)m->m_next->m_data : 4936 (struct ip *)(m->m_data + e_hlen); 4937 /* ip_hl is number of 32-bit words */ 4938 ip_hlen = (ip4->ip_hl << 1); 4939 ip = (caddr_t)ip4; 4940 break; 4941 case ETHERTYPE_IPV6: 4942 /* get the IPv6 header, if mbuf len < 40 then header in next mbuf */ 4943 ip6 = (m->m_len < sizeof(struct ip6_hdr)) ? 4944 (struct ip6_hdr *)m->m_next->m_data : 4945 (struct ip6_hdr *)(m->m_data + e_hlen); 4946 /* XXX cannot support offload with IPv6 extensions */ 4947 ip_hlen = (sizeof(struct ip6_hdr) >> 1); 4948 ip = (caddr_t)ip6; 4949 break; 4950 default: 4951 /* We can't offload in this case... */ 4952 /* XXX error stat ??? */ 4953 return (0); 4954 } 4955 4956 hlen = (e_hlen >> 1); 4957 4958 /* note that rest of global_data is indirectly zeroed here */ 4959 if (m->m_flags & M_VLANTAG) { 4960 pbd->global_data = 4961 htole16(hlen | (1 << ETH_TX_PARSE_BD_E1X_LLC_SNAP_EN_SHIFT)); 4962 } else { 4963 pbd->global_data = htole16(hlen); 4964 } 4965 4966 pbd->ip_hlen_w = ip_hlen; 4967 4968 hlen += pbd->ip_hlen_w; 4969 4970 /* XXX assuming L4 header is contiguous to IPv4/IPv6 in the same mbuf */ 4971 4972 if (m->m_pkthdr.csum_flags & (CSUM_TCP | 4973 CSUM_TSO | 4974 CSUM_TCP_IPV6)) { 4975 th = (struct tcphdr *)(ip + (ip_hlen << 1)); 4976 /* th_off is number of 32-bit words */ 4977 hlen += (uint16_t)(th->th_off << 1); 4978 } else if (m->m_pkthdr.csum_flags & (CSUM_UDP | 4979 CSUM_UDP_IPV6)) { 4980 uh = (struct udphdr *)(ip + (ip_hlen << 1)); 4981 hlen += (sizeof(struct udphdr) / 2); 4982 } else { 4983 /* valid case as only CSUM_IP was set */ 4984 return (0); 4985 } 4986 4987 pbd->total_hlen_w = htole16(hlen); 4988 4989 if (m->m_pkthdr.csum_flags & (CSUM_TCP | 4990 CSUM_TSO | 4991 CSUM_TCP_IPV6)) { 4992 fp->eth_q_stats.tx_ofld_frames_csum_tcp++; 4993 pbd->tcp_pseudo_csum = ntohs(th->th_sum); 4994 } else if (m->m_pkthdr.csum_flags & (CSUM_UDP | 4995 CSUM_UDP_IPV6)) { 4996 fp->eth_q_stats.tx_ofld_frames_csum_udp++; 4997 4998 /* 4999 * Everest1 (i.e. 57710, 57711, 57711E) does not natively support UDP 5000 * checksums and does not know anything about the UDP header and where 5001 * the checksum field is located. It only knows about TCP. Therefore 5002 * we "lie" to the hardware for outgoing UDP packets w/ checksum 5003 * offload. Since the checksum field offset for TCP is 16 bytes and 5004 * for UDP it is 6 bytes we pass a pointer to the hardware that is 10 5005 * bytes less than the start of the UDP header. This allows the 5006 * hardware to write the checksum in the correct spot. But the 5007 * hardware will compute a checksum which includes the last 10 bytes 5008 * of the IP header. To correct this we tweak the stack computed 5009 * pseudo checksum by folding in the calculation of the inverse 5010 * checksum for those final 10 bytes of the IP header. This allows 5011 * the correct checksum to be computed by the hardware. 5012 */ 5013 5014 /* set pointer 10 bytes before UDP header */ 5015 tmp_uh = (uint32_t *)((uint8_t *)uh - 10); 5016 5017 /* calculate a pseudo header checksum over the first 10 bytes */ 5018 tmp_csum = in_pseudo(*tmp_uh, 5019 *(tmp_uh + 1), 5020 *(uint16_t *)(tmp_uh + 2)); 5021 5022 pbd->tcp_pseudo_csum = ntohs(in_addword(uh->uh_sum, ~tmp_csum)); 5023 } 5024 5025 return (hlen * 2); /* entire header length, number of bytes */ 5026 } 5027 5028 static void 5029 bxe_set_pbd_lso_e2(struct mbuf *m, 5030 uint32_t *parsing_data) 5031 { 5032 *parsing_data |= ((m->m_pkthdr.tso_segsz << 5033 ETH_TX_PARSE_BD_E2_LSO_MSS_SHIFT) & 5034 ETH_TX_PARSE_BD_E2_LSO_MSS); 5035 5036 /* XXX test for IPv6 with extension header... */ 5037 } 5038 5039 static void 5040 bxe_set_pbd_lso(struct mbuf *m, 5041 struct eth_tx_parse_bd_e1x *pbd) 5042 { 5043 struct ether_vlan_header *eh = NULL; 5044 struct ip *ip = NULL; 5045 struct tcphdr *th = NULL; 5046 int e_hlen; 5047 5048 /* get the Ethernet header */ 5049 eh = mtod(m, struct ether_vlan_header *); 5050 5051 /* handle VLAN encapsulation if present */ 5052 e_hlen = (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) ? 5053 (ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN) : ETHER_HDR_LEN; 5054 5055 /* get the IP and TCP header, with LSO entire header in first mbuf */ 5056 /* XXX assuming IPv4 */ 5057 ip = (struct ip *)(m->m_data + e_hlen); 5058 th = (struct tcphdr *)((caddr_t)ip + (ip->ip_hl << 2)); 5059 5060 pbd->lso_mss = htole16(m->m_pkthdr.tso_segsz); 5061 pbd->tcp_send_seq = ntohl(th->th_seq); 5062 pbd->tcp_flags = ((ntohl(((uint32_t *)th)[3]) >> 16) & 0xff); 5063 5064 #if 1 5065 /* XXX IPv4 */ 5066 pbd->ip_id = ntohs(ip->ip_id); 5067 pbd->tcp_pseudo_csum = 5068 ntohs(in_pseudo(ip->ip_src.s_addr, 5069 ip->ip_dst.s_addr, 5070 htons(IPPROTO_TCP))); 5071 #else 5072 /* XXX IPv6 */ 5073 pbd->tcp_pseudo_csum = 5074 ntohs(in_pseudo(&ip6->ip6_src, 5075 &ip6->ip6_dst, 5076 htons(IPPROTO_TCP))); 5077 #endif 5078 5079 pbd->global_data |= 5080 htole16(ETH_TX_PARSE_BD_E1X_PSEUDO_CS_WITHOUT_LEN); 5081 } 5082 5083 /* 5084 * Encapsulte an mbuf cluster into the tx bd chain and makes the memory 5085 * visible to the controller. 5086 * 5087 * If an mbuf is submitted to this routine and cannot be given to the 5088 * controller (e.g. it has too many fragments) then the function may free 5089 * the mbuf and return to the caller. 5090 * 5091 * Returns: 5092 * 0 = Success, !0 = Failure 5093 * Note the side effect that an mbuf may be freed if it causes a problem. 5094 */ 5095 static int 5096 bxe_tx_encap(struct bxe_fastpath *fp, struct mbuf **m_head) 5097 { 5098 bus_dma_segment_t segs[32]; 5099 struct mbuf *m0; 5100 struct bxe_sw_tx_bd *tx_buf; 5101 struct eth_tx_parse_bd_e1x *pbd_e1x = NULL; 5102 struct eth_tx_parse_bd_e2 *pbd_e2 = NULL; 5103 /* struct eth_tx_parse_2nd_bd *pbd2 = NULL; */ 5104 struct eth_tx_bd *tx_data_bd; 5105 struct eth_tx_bd *tx_total_pkt_size_bd; 5106 struct eth_tx_start_bd *tx_start_bd; 5107 uint16_t bd_prod, pkt_prod, total_pkt_size; 5108 uint8_t mac_type; 5109 int defragged, error, nsegs, rc, nbds, vlan_off, ovlan; 5110 struct bxe_softc *sc; 5111 uint16_t tx_bd_avail; 5112 struct ether_vlan_header *eh; 5113 uint32_t pbd_e2_parsing_data = 0; 5114 uint8_t hlen = 0; 5115 int tmp_bd; 5116 int i; 5117 5118 sc = fp->sc; 5119 5120 #if __FreeBSD_version >= 800000 5121 M_ASSERTPKTHDR(*m_head); 5122 #endif /* #if __FreeBSD_version >= 800000 */ 5123 5124 m0 = *m_head; 5125 rc = defragged = nbds = ovlan = vlan_off = total_pkt_size = 0; 5126 tx_start_bd = NULL; 5127 tx_data_bd = NULL; 5128 tx_total_pkt_size_bd = NULL; 5129 5130 /* get the H/W pointer for packets and BDs */ 5131 pkt_prod = fp->tx_pkt_prod; 5132 bd_prod = fp->tx_bd_prod; 5133 5134 mac_type = UNICAST_ADDRESS; 5135 5136 /* map the mbuf into the next open DMAable memory */ 5137 tx_buf = &fp->tx_mbuf_chain[TX_BD(pkt_prod)]; 5138 error = bus_dmamap_load_mbuf_sg(fp->tx_mbuf_tag, 5139 tx_buf->m_map, m0, 5140 segs, &nsegs, BUS_DMA_NOWAIT); 5141 5142 /* mapping errors */ 5143 if(__predict_false(error != 0)) { 5144 fp->eth_q_stats.tx_dma_mapping_failure++; 5145 if (error == ENOMEM) { 5146 /* resource issue, try again later */ 5147 rc = ENOMEM; 5148 } else if (error == EFBIG) { 5149 /* possibly recoverable with defragmentation */ 5150 fp->eth_q_stats.mbuf_defrag_attempts++; 5151 m0 = m_defrag(*m_head, M_NOWAIT); 5152 if (m0 == NULL) { 5153 fp->eth_q_stats.mbuf_defrag_failures++; 5154 rc = ENOBUFS; 5155 } else { 5156 /* defrag successful, try mapping again */ 5157 *m_head = m0; 5158 error = bus_dmamap_load_mbuf_sg(fp->tx_mbuf_tag, 5159 tx_buf->m_map, m0, 5160 segs, &nsegs, BUS_DMA_NOWAIT); 5161 if (error) { 5162 fp->eth_q_stats.tx_dma_mapping_failure++; 5163 rc = error; 5164 } 5165 } 5166 } else { 5167 /* unknown, unrecoverable mapping error */ 5168 BLOGE(sc, "Unknown TX mapping error rc=%d\n", error); 5169 bxe_dump_mbuf(sc, m0, FALSE); 5170 rc = error; 5171 } 5172 5173 goto bxe_tx_encap_continue; 5174 } 5175 5176 tx_bd_avail = bxe_tx_avail(sc, fp); 5177 5178 /* make sure there is enough room in the send queue */ 5179 if (__predict_false(tx_bd_avail < (nsegs + 2))) { 5180 /* Recoverable, try again later. */ 5181 fp->eth_q_stats.tx_hw_queue_full++; 5182 bus_dmamap_unload(fp->tx_mbuf_tag, tx_buf->m_map); 5183 rc = ENOMEM; 5184 goto bxe_tx_encap_continue; 5185 } 5186 5187 /* capture the current H/W TX chain high watermark */ 5188 if (__predict_false(fp->eth_q_stats.tx_hw_max_queue_depth < 5189 (TX_BD_USABLE - tx_bd_avail))) { 5190 fp->eth_q_stats.tx_hw_max_queue_depth = (TX_BD_USABLE - tx_bd_avail); 5191 } 5192 5193 /* make sure it fits in the packet window */ 5194 if (__predict_false(nsegs > BXE_MAX_SEGMENTS)) { 5195 /* 5196 * The mbuf may be to big for the controller to handle. If the frame 5197 * is a TSO frame we'll need to do an additional check. 5198 */ 5199 if (m0->m_pkthdr.csum_flags & CSUM_TSO) { 5200 if (bxe_chktso_window(sc, nsegs, segs, m0) == 0) { 5201 goto bxe_tx_encap_continue; /* OK to send */ 5202 } else { 5203 fp->eth_q_stats.tx_window_violation_tso++; 5204 } 5205 } else { 5206 fp->eth_q_stats.tx_window_violation_std++; 5207 } 5208 5209 /* lets try to defragment this mbuf and remap it */ 5210 fp->eth_q_stats.mbuf_defrag_attempts++; 5211 bus_dmamap_unload(fp->tx_mbuf_tag, tx_buf->m_map); 5212 5213 m0 = m_defrag(*m_head, M_NOWAIT); 5214 if (m0 == NULL) { 5215 fp->eth_q_stats.mbuf_defrag_failures++; 5216 /* Ugh, just drop the frame... :( */ 5217 rc = ENOBUFS; 5218 } else { 5219 /* defrag successful, try mapping again */ 5220 *m_head = m0; 5221 error = bus_dmamap_load_mbuf_sg(fp->tx_mbuf_tag, 5222 tx_buf->m_map, m0, 5223 segs, &nsegs, BUS_DMA_NOWAIT); 5224 if (error) { 5225 fp->eth_q_stats.tx_dma_mapping_failure++; 5226 /* No sense in trying to defrag/copy chain, drop it. :( */ 5227 rc = error; 5228 } 5229 else { 5230 /* if the chain is still too long then drop it */ 5231 if (__predict_false(nsegs > BXE_MAX_SEGMENTS)) { 5232 bus_dmamap_unload(fp->tx_mbuf_tag, tx_buf->m_map); 5233 rc = ENODEV; 5234 } 5235 } 5236 } 5237 } 5238 5239 bxe_tx_encap_continue: 5240 5241 /* Check for errors */ 5242 if (rc) { 5243 if (rc == ENOMEM) { 5244 /* recoverable try again later */ 5245 } else { 5246 fp->eth_q_stats.tx_soft_errors++; 5247 fp->eth_q_stats.mbuf_alloc_tx--; 5248 m_freem(*m_head); 5249 *m_head = NULL; 5250 } 5251 5252 return (rc); 5253 } 5254 5255 /* set flag according to packet type (UNICAST_ADDRESS is default) */ 5256 if (m0->m_flags & M_BCAST) { 5257 mac_type = BROADCAST_ADDRESS; 5258 } else if (m0->m_flags & M_MCAST) { 5259 mac_type = MULTICAST_ADDRESS; 5260 } 5261 5262 /* store the mbuf into the mbuf ring */ 5263 tx_buf->m = m0; 5264 tx_buf->first_bd = fp->tx_bd_prod; 5265 tx_buf->flags = 0; 5266 5267 /* prepare the first transmit (start) BD for the mbuf */ 5268 tx_start_bd = &fp->tx_chain[TX_BD(bd_prod)].start_bd; 5269 5270 BLOGD(sc, DBG_TX, 5271 "sending pkt_prod=%u tx_buf=%p next_idx=%u bd=%u tx_start_bd=%p\n", 5272 pkt_prod, tx_buf, fp->tx_pkt_prod, bd_prod, tx_start_bd); 5273 5274 tx_start_bd->addr_lo = htole32(U64_LO(segs[0].ds_addr)); 5275 tx_start_bd->addr_hi = htole32(U64_HI(segs[0].ds_addr)); 5276 tx_start_bd->nbytes = htole16(segs[0].ds_len); 5277 total_pkt_size += tx_start_bd->nbytes; 5278 tx_start_bd->bd_flags.as_bitfield = ETH_TX_BD_FLAGS_START_BD; 5279 5280 tx_start_bd->general_data = (1 << ETH_TX_START_BD_HDR_NBDS_SHIFT); 5281 5282 /* all frames have at least Start BD + Parsing BD */ 5283 nbds = nsegs + 1; 5284 tx_start_bd->nbd = htole16(nbds); 5285 5286 if (m0->m_flags & M_VLANTAG) { 5287 tx_start_bd->vlan_or_ethertype = htole16(m0->m_pkthdr.ether_vtag); 5288 tx_start_bd->bd_flags.as_bitfield |= 5289 (X_ETH_OUTBAND_VLAN << ETH_TX_BD_FLAGS_VLAN_MODE_SHIFT); 5290 } else { 5291 /* vf tx, start bd must hold the ethertype for fw to enforce it */ 5292 if (IS_VF(sc)) { 5293 /* map ethernet header to find type and header length */ 5294 eh = mtod(m0, struct ether_vlan_header *); 5295 tx_start_bd->vlan_or_ethertype = eh->evl_encap_proto; 5296 } else { 5297 /* used by FW for packet accounting */ 5298 tx_start_bd->vlan_or_ethertype = htole16(fp->tx_pkt_prod); 5299 } 5300 } 5301 5302 /* 5303 * add a parsing BD from the chain. The parsing BD is always added 5304 * though it is only used for TSO and chksum 5305 */ 5306 bd_prod = TX_BD_NEXT(bd_prod); 5307 5308 if (m0->m_pkthdr.csum_flags) { 5309 if (m0->m_pkthdr.csum_flags & CSUM_IP) { 5310 fp->eth_q_stats.tx_ofld_frames_csum_ip++; 5311 tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_IP_CSUM; 5312 } 5313 5314 if (m0->m_pkthdr.csum_flags & CSUM_TCP_IPV6) { 5315 tx_start_bd->bd_flags.as_bitfield |= (ETH_TX_BD_FLAGS_IPV6 | 5316 ETH_TX_BD_FLAGS_L4_CSUM); 5317 } else if (m0->m_pkthdr.csum_flags & CSUM_UDP_IPV6) { 5318 tx_start_bd->bd_flags.as_bitfield |= (ETH_TX_BD_FLAGS_IPV6 | 5319 ETH_TX_BD_FLAGS_IS_UDP | 5320 ETH_TX_BD_FLAGS_L4_CSUM); 5321 } else if ((m0->m_pkthdr.csum_flags & CSUM_TCP) || 5322 (m0->m_pkthdr.csum_flags & CSUM_TSO)) { 5323 tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_L4_CSUM; 5324 } else if (m0->m_pkthdr.csum_flags & CSUM_UDP) { 5325 tx_start_bd->bd_flags.as_bitfield |= (ETH_TX_BD_FLAGS_L4_CSUM | 5326 ETH_TX_BD_FLAGS_IS_UDP); 5327 } 5328 } 5329 5330 if (!CHIP_IS_E1x(sc)) { 5331 pbd_e2 = &fp->tx_chain[TX_BD(bd_prod)].parse_bd_e2; 5332 memset(pbd_e2, 0, sizeof(struct eth_tx_parse_bd_e2)); 5333 5334 if (m0->m_pkthdr.csum_flags) { 5335 hlen = bxe_set_pbd_csum_e2(fp, m0, &pbd_e2_parsing_data); 5336 } 5337 5338 SET_FLAG(pbd_e2_parsing_data, ETH_TX_PARSE_BD_E2_ETH_ADDR_TYPE, 5339 mac_type); 5340 } else { 5341 uint16_t global_data = 0; 5342 5343 pbd_e1x = &fp->tx_chain[TX_BD(bd_prod)].parse_bd_e1x; 5344 memset(pbd_e1x, 0, sizeof(struct eth_tx_parse_bd_e1x)); 5345 5346 if (m0->m_pkthdr.csum_flags) { 5347 hlen = bxe_set_pbd_csum(fp, m0, pbd_e1x); 5348 } 5349 5350 SET_FLAG(global_data, 5351 ETH_TX_PARSE_BD_E1X_ETH_ADDR_TYPE, mac_type); 5352 pbd_e1x->global_data |= htole16(global_data); 5353 } 5354 5355 /* setup the parsing BD with TSO specific info */ 5356 if (m0->m_pkthdr.csum_flags & CSUM_TSO) { 5357 fp->eth_q_stats.tx_ofld_frames_lso++; 5358 tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_SW_LSO; 5359 5360 if (__predict_false(tx_start_bd->nbytes > hlen)) { 5361 fp->eth_q_stats.tx_ofld_frames_lso_hdr_splits++; 5362 5363 /* split the first BD into header/data making the fw job easy */ 5364 nbds++; 5365 tx_start_bd->nbd = htole16(nbds); 5366 tx_start_bd->nbytes = htole16(hlen); 5367 5368 bd_prod = TX_BD_NEXT(bd_prod); 5369 5370 /* new transmit BD after the tx_parse_bd */ 5371 tx_data_bd = &fp->tx_chain[TX_BD(bd_prod)].reg_bd; 5372 tx_data_bd->addr_hi = htole32(U64_HI(segs[0].ds_addr + hlen)); 5373 tx_data_bd->addr_lo = htole32(U64_LO(segs[0].ds_addr + hlen)); 5374 tx_data_bd->nbytes = htole16(segs[0].ds_len - hlen); 5375 if (tx_total_pkt_size_bd == NULL) { 5376 tx_total_pkt_size_bd = tx_data_bd; 5377 } 5378 5379 BLOGD(sc, DBG_TX, 5380 "TSO split header size is %d (%x:%x) nbds %d\n", 5381 le16toh(tx_start_bd->nbytes), 5382 le32toh(tx_start_bd->addr_hi), 5383 le32toh(tx_start_bd->addr_lo), 5384 nbds); 5385 } 5386 5387 if (!CHIP_IS_E1x(sc)) { 5388 bxe_set_pbd_lso_e2(m0, &pbd_e2_parsing_data); 5389 } else { 5390 bxe_set_pbd_lso(m0, pbd_e1x); 5391 } 5392 } 5393 5394 if (pbd_e2_parsing_data) { 5395 pbd_e2->parsing_data = htole32(pbd_e2_parsing_data); 5396 } 5397 5398 /* prepare remaining BDs, start tx bd contains first seg/frag */ 5399 for (i = 1; i < nsegs ; i++) { 5400 bd_prod = TX_BD_NEXT(bd_prod); 5401 tx_data_bd = &fp->tx_chain[TX_BD(bd_prod)].reg_bd; 5402 tx_data_bd->addr_lo = htole32(U64_LO(segs[i].ds_addr)); 5403 tx_data_bd->addr_hi = htole32(U64_HI(segs[i].ds_addr)); 5404 tx_data_bd->nbytes = htole16(segs[i].ds_len); 5405 if (tx_total_pkt_size_bd == NULL) { 5406 tx_total_pkt_size_bd = tx_data_bd; 5407 } 5408 total_pkt_size += tx_data_bd->nbytes; 5409 } 5410 5411 BLOGD(sc, DBG_TX, "last bd %p\n", tx_data_bd); 5412 5413 if (tx_total_pkt_size_bd != NULL) { 5414 tx_total_pkt_size_bd->total_pkt_bytes = total_pkt_size; 5415 } 5416 5417 if (__predict_false(sc->debug & DBG_TX)) { 5418 tmp_bd = tx_buf->first_bd; 5419 for (i = 0; i < nbds; i++) 5420 { 5421 if (i == 0) { 5422 BLOGD(sc, DBG_TX, 5423 "TX Strt: %p bd=%d nbd=%d vlan=0x%x " 5424 "bd_flags=0x%x hdr_nbds=%d\n", 5425 tx_start_bd, 5426 tmp_bd, 5427 le16toh(tx_start_bd->nbd), 5428 le16toh(tx_start_bd->vlan_or_ethertype), 5429 tx_start_bd->bd_flags.as_bitfield, 5430 (tx_start_bd->general_data & ETH_TX_START_BD_HDR_NBDS)); 5431 } else if (i == 1) { 5432 if (pbd_e1x) { 5433 BLOGD(sc, DBG_TX, 5434 "-> Prse: %p bd=%d global=0x%x ip_hlen_w=%u " 5435 "ip_id=%u lso_mss=%u tcp_flags=0x%x csum=0x%x " 5436 "tcp_seq=%u total_hlen_w=%u\n", 5437 pbd_e1x, 5438 tmp_bd, 5439 pbd_e1x->global_data, 5440 pbd_e1x->ip_hlen_w, 5441 pbd_e1x->ip_id, 5442 pbd_e1x->lso_mss, 5443 pbd_e1x->tcp_flags, 5444 pbd_e1x->tcp_pseudo_csum, 5445 pbd_e1x->tcp_send_seq, 5446 le16toh(pbd_e1x->total_hlen_w)); 5447 } else { /* if (pbd_e2) */ 5448 BLOGD(sc, DBG_TX, 5449 "-> Parse: %p bd=%d dst=%02x:%02x:%02x " 5450 "src=%02x:%02x:%02x parsing_data=0x%x\n", 5451 pbd_e2, 5452 tmp_bd, 5453 pbd_e2->data.mac_addr.dst_hi, 5454 pbd_e2->data.mac_addr.dst_mid, 5455 pbd_e2->data.mac_addr.dst_lo, 5456 pbd_e2->data.mac_addr.src_hi, 5457 pbd_e2->data.mac_addr.src_mid, 5458 pbd_e2->data.mac_addr.src_lo, 5459 pbd_e2->parsing_data); 5460 } 5461 } 5462 5463 if (i != 1) { /* skip parse db as it doesn't hold data */ 5464 tx_data_bd = &fp->tx_chain[TX_BD(tmp_bd)].reg_bd; 5465 BLOGD(sc, DBG_TX, 5466 "-> Frag: %p bd=%d nbytes=%d hi=0x%x lo: 0x%x\n", 5467 tx_data_bd, 5468 tmp_bd, 5469 le16toh(tx_data_bd->nbytes), 5470 le32toh(tx_data_bd->addr_hi), 5471 le32toh(tx_data_bd->addr_lo)); 5472 } 5473 5474 tmp_bd = TX_BD_NEXT(tmp_bd); 5475 } 5476 } 5477 5478 BLOGD(sc, DBG_TX, "doorbell: nbds=%d bd=%u\n", nbds, bd_prod); 5479 5480 /* update TX BD producer index value for next TX */ 5481 bd_prod = TX_BD_NEXT(bd_prod); 5482 5483 /* 5484 * If the chain of tx_bd's describing this frame is adjacent to or spans 5485 * an eth_tx_next_bd element then we need to increment the nbds value. 5486 */ 5487 if (TX_BD_IDX(bd_prod) < nbds) { 5488 nbds++; 5489 } 5490 5491 /* don't allow reordering of writes for nbd and packets */ 5492 mb(); 5493 5494 fp->tx_db.data.prod += nbds; 5495 5496 /* producer points to the next free tx_bd at this point */ 5497 fp->tx_pkt_prod++; 5498 fp->tx_bd_prod = bd_prod; 5499 5500 DOORBELL(sc, fp->index, fp->tx_db.raw); 5501 5502 fp->eth_q_stats.tx_pkts++; 5503 5504 /* Prevent speculative reads from getting ahead of the status block. */ 5505 bus_space_barrier(sc->bar[BAR0].tag, sc->bar[BAR0].handle, 5506 0, 0, BUS_SPACE_BARRIER_READ); 5507 5508 /* Prevent speculative reads from getting ahead of the doorbell. */ 5509 bus_space_barrier(sc->bar[BAR2].tag, sc->bar[BAR2].handle, 5510 0, 0, BUS_SPACE_BARRIER_READ); 5511 5512 return (0); 5513 } 5514 5515 static void 5516 bxe_tx_start_locked(struct bxe_softc *sc, 5517 if_t ifp, 5518 struct bxe_fastpath *fp) 5519 { 5520 struct mbuf *m = NULL; 5521 int tx_count = 0; 5522 uint16_t tx_bd_avail; 5523 5524 BXE_FP_TX_LOCK_ASSERT(fp); 5525 5526 /* keep adding entries while there are frames to send */ 5527 while (!if_sendq_empty(ifp)) { 5528 5529 /* 5530 * check for any frames to send 5531 * dequeue can still be NULL even if queue is not empty 5532 */ 5533 m = if_dequeue(ifp); 5534 if (__predict_false(m == NULL)) { 5535 break; 5536 } 5537 5538 /* the mbuf now belongs to us */ 5539 fp->eth_q_stats.mbuf_alloc_tx++; 5540 5541 /* 5542 * Put the frame into the transmit ring. If we don't have room, 5543 * place the mbuf back at the head of the TX queue, set the 5544 * OACTIVE flag, and wait for the NIC to drain the chain. 5545 */ 5546 if (__predict_false(bxe_tx_encap(fp, &m))) { 5547 fp->eth_q_stats.tx_encap_failures++; 5548 if (m != NULL) { 5549 /* mark the TX queue as full and return the frame */ 5550 if_setdrvflagbits(ifp, IFF_DRV_OACTIVE, 0); 5551 if_sendq_prepend(ifp, m); 5552 fp->eth_q_stats.mbuf_alloc_tx--; 5553 fp->eth_q_stats.tx_queue_xoff++; 5554 } 5555 5556 /* stop looking for more work */ 5557 break; 5558 } 5559 5560 /* the frame was enqueued successfully */ 5561 tx_count++; 5562 5563 /* send a copy of the frame to any BPF listeners. */ 5564 if_etherbpfmtap(ifp, m); 5565 5566 tx_bd_avail = bxe_tx_avail(sc, fp); 5567 5568 /* handle any completions if we're running low */ 5569 if (tx_bd_avail < BXE_TX_CLEANUP_THRESHOLD) { 5570 /* bxe_txeof will set IFF_DRV_OACTIVE appropriately */ 5571 bxe_txeof(sc, fp); 5572 if (if_getdrvflags(ifp) & IFF_DRV_OACTIVE) { 5573 break; 5574 } 5575 } 5576 } 5577 5578 /* all TX packets were dequeued and/or the tx ring is full */ 5579 if (tx_count > 0) { 5580 /* reset the TX watchdog timeout timer */ 5581 fp->watchdog_timer = BXE_TX_TIMEOUT; 5582 } 5583 } 5584 5585 /* Legacy (non-RSS) dispatch routine */ 5586 static void 5587 bxe_tx_start(if_t ifp) 5588 { 5589 struct bxe_softc *sc; 5590 struct bxe_fastpath *fp; 5591 5592 sc = if_getsoftc(ifp); 5593 5594 if (!(if_getdrvflags(ifp) & IFF_DRV_RUNNING)) { 5595 BLOGW(sc, "Interface not running, ignoring transmit request\n"); 5596 return; 5597 } 5598 5599 if (!sc->link_vars.link_up) { 5600 BLOGW(sc, "Interface link is down, ignoring transmit request\n"); 5601 return; 5602 } 5603 5604 fp = &sc->fp[0]; 5605 5606 if (ifp->if_drv_flags & IFF_DRV_OACTIVE) { 5607 fp->eth_q_stats.tx_queue_full_return++; 5608 return; 5609 } 5610 5611 BXE_FP_TX_LOCK(fp); 5612 bxe_tx_start_locked(sc, ifp, fp); 5613 BXE_FP_TX_UNLOCK(fp); 5614 } 5615 5616 #if __FreeBSD_version >= 901504 5617 5618 static int 5619 bxe_tx_mq_start_locked(struct bxe_softc *sc, 5620 if_t ifp, 5621 struct bxe_fastpath *fp, 5622 struct mbuf *m) 5623 { 5624 struct buf_ring *tx_br = fp->tx_br; 5625 struct mbuf *next; 5626 int depth, rc, tx_count; 5627 uint16_t tx_bd_avail; 5628 5629 rc = tx_count = 0; 5630 5631 BXE_FP_TX_LOCK_ASSERT(fp); 5632 5633 if (!tx_br) { 5634 BLOGE(sc, "Multiqueue TX and no buf_ring!\n"); 5635 return (EINVAL); 5636 } 5637 5638 if (m != NULL) { 5639 rc = drbr_enqueue(ifp, tx_br, m); 5640 if (rc != 0) { 5641 fp->eth_q_stats.tx_soft_errors++; 5642 goto bxe_tx_mq_start_locked_exit; 5643 } 5644 } 5645 5646 if (!sc->link_vars.link_up || !(ifp->if_drv_flags & IFF_DRV_RUNNING)) { 5647 fp->eth_q_stats.tx_request_link_down_failures++; 5648 goto bxe_tx_mq_start_locked_exit; 5649 } 5650 5651 /* fetch the depth of the driver queue */ 5652 depth = drbr_inuse_drv(ifp, tx_br); 5653 if (depth > fp->eth_q_stats.tx_max_drbr_queue_depth) { 5654 fp->eth_q_stats.tx_max_drbr_queue_depth = depth; 5655 } 5656 5657 /* keep adding entries while there are frames to send */ 5658 while ((next = drbr_peek(ifp, tx_br)) != NULL) { 5659 /* handle any completions if we're running low */ 5660 tx_bd_avail = bxe_tx_avail(sc, fp); 5661 if (tx_bd_avail < BXE_TX_CLEANUP_THRESHOLD) { 5662 /* bxe_txeof will set IFF_DRV_OACTIVE appropriately */ 5663 bxe_txeof(sc, fp); 5664 tx_bd_avail = bxe_tx_avail(sc, fp); 5665 if (tx_bd_avail < (BXE_TSO_MAX_SEGMENTS + 1)) { 5666 fp->eth_q_stats.bd_avail_too_less_failures++; 5667 m_freem(next); 5668 drbr_advance(ifp, tx_br); 5669 rc = ENOBUFS; 5670 break; 5671 } 5672 } 5673 5674 /* the mbuf now belongs to us */ 5675 fp->eth_q_stats.mbuf_alloc_tx++; 5676 5677 /* 5678 * Put the frame into the transmit ring. If we don't have room, 5679 * place the mbuf back at the head of the TX queue, set the 5680 * OACTIVE flag, and wait for the NIC to drain the chain. 5681 */ 5682 rc = bxe_tx_encap(fp, &next); 5683 if (__predict_false(rc != 0)) { 5684 fp->eth_q_stats.tx_encap_failures++; 5685 if (next != NULL) { 5686 /* mark the TX queue as full and save the frame */ 5687 if_setdrvflagbits(ifp, IFF_DRV_OACTIVE, 0); 5688 drbr_putback(ifp, tx_br, next); 5689 fp->eth_q_stats.mbuf_alloc_tx--; 5690 fp->eth_q_stats.tx_frames_deferred++; 5691 } else 5692 drbr_advance(ifp, tx_br); 5693 5694 /* stop looking for more work */ 5695 break; 5696 } 5697 5698 /* the transmit frame was enqueued successfully */ 5699 tx_count++; 5700 5701 /* send a copy of the frame to any BPF listeners */ 5702 if_etherbpfmtap(ifp, next); 5703 5704 drbr_advance(ifp, tx_br); 5705 } 5706 5707 /* all TX packets were dequeued and/or the tx ring is full */ 5708 if (tx_count > 0) { 5709 /* reset the TX watchdog timeout timer */ 5710 fp->watchdog_timer = BXE_TX_TIMEOUT; 5711 } 5712 5713 bxe_tx_mq_start_locked_exit: 5714 /* If we didn't drain the drbr, enqueue a task in the future to do it. */ 5715 if (!drbr_empty(ifp, tx_br)) { 5716 fp->eth_q_stats.tx_mq_not_empty++; 5717 taskqueue_enqueue_timeout(fp->tq, &fp->tx_timeout_task, 1); 5718 } 5719 5720 return (rc); 5721 } 5722 5723 static void 5724 bxe_tx_mq_start_deferred(void *arg, 5725 int pending) 5726 { 5727 struct bxe_fastpath *fp = (struct bxe_fastpath *)arg; 5728 struct bxe_softc *sc = fp->sc; 5729 if_t ifp = sc->ifp; 5730 5731 BXE_FP_TX_LOCK(fp); 5732 bxe_tx_mq_start_locked(sc, ifp, fp, NULL); 5733 BXE_FP_TX_UNLOCK(fp); 5734 } 5735 5736 /* Multiqueue (TSS) dispatch routine. */ 5737 static int 5738 bxe_tx_mq_start(struct ifnet *ifp, 5739 struct mbuf *m) 5740 { 5741 struct bxe_softc *sc = if_getsoftc(ifp); 5742 struct bxe_fastpath *fp; 5743 int fp_index, rc; 5744 5745 fp_index = 0; /* default is the first queue */ 5746 5747 /* check if flowid is set */ 5748 5749 if (BXE_VALID_FLOWID(m)) 5750 fp_index = (m->m_pkthdr.flowid % sc->num_queues); 5751 5752 fp = &sc->fp[fp_index]; 5753 5754 if (BXE_FP_TX_TRYLOCK(fp)) { 5755 rc = bxe_tx_mq_start_locked(sc, ifp, fp, m); 5756 BXE_FP_TX_UNLOCK(fp); 5757 } else { 5758 rc = drbr_enqueue(ifp, fp->tx_br, m); 5759 taskqueue_enqueue(fp->tq, &fp->tx_task); 5760 } 5761 5762 return (rc); 5763 } 5764 5765 static void 5766 bxe_mq_flush(struct ifnet *ifp) 5767 { 5768 struct bxe_softc *sc = if_getsoftc(ifp); 5769 struct bxe_fastpath *fp; 5770 struct mbuf *m; 5771 int i; 5772 5773 for (i = 0; i < sc->num_queues; i++) { 5774 fp = &sc->fp[i]; 5775 5776 if (fp->state != BXE_FP_STATE_OPEN) { 5777 BLOGD(sc, DBG_LOAD, "Not clearing fp[%02d] buf_ring (state=%d)\n", 5778 fp->index, fp->state); 5779 continue; 5780 } 5781 5782 if (fp->tx_br != NULL) { 5783 BLOGD(sc, DBG_LOAD, "Clearing fp[%02d] buf_ring\n", fp->index); 5784 BXE_FP_TX_LOCK(fp); 5785 while ((m = buf_ring_dequeue_sc(fp->tx_br)) != NULL) { 5786 m_freem(m); 5787 } 5788 BXE_FP_TX_UNLOCK(fp); 5789 } 5790 } 5791 5792 if_qflush(ifp); 5793 } 5794 5795 #endif /* FreeBSD_version >= 901504 */ 5796 5797 static uint16_t 5798 bxe_cid_ilt_lines(struct bxe_softc *sc) 5799 { 5800 if (IS_SRIOV(sc)) { 5801 return ((BXE_FIRST_VF_CID + BXE_VF_CIDS) / ILT_PAGE_CIDS); 5802 } 5803 return (L2_ILT_LINES(sc)); 5804 } 5805 5806 static void 5807 bxe_ilt_set_info(struct bxe_softc *sc) 5808 { 5809 struct ilt_client_info *ilt_client; 5810 struct ecore_ilt *ilt = sc->ilt; 5811 uint16_t line = 0; 5812 5813 ilt->start_line = FUNC_ILT_BASE(SC_FUNC(sc)); 5814 BLOGD(sc, DBG_LOAD, "ilt starts at line %d\n", ilt->start_line); 5815 5816 /* CDU */ 5817 ilt_client = &ilt->clients[ILT_CLIENT_CDU]; 5818 ilt_client->client_num = ILT_CLIENT_CDU; 5819 ilt_client->page_size = CDU_ILT_PAGE_SZ; 5820 ilt_client->flags = ILT_CLIENT_SKIP_MEM; 5821 ilt_client->start = line; 5822 line += bxe_cid_ilt_lines(sc); 5823 5824 if (CNIC_SUPPORT(sc)) { 5825 line += CNIC_ILT_LINES; 5826 } 5827 5828 ilt_client->end = (line - 1); 5829 5830 BLOGD(sc, DBG_LOAD, 5831 "ilt client[CDU]: start %d, end %d, " 5832 "psz 0x%x, flags 0x%x, hw psz %d\n", 5833 ilt_client->start, ilt_client->end, 5834 ilt_client->page_size, 5835 ilt_client->flags, 5836 ilog2(ilt_client->page_size >> 12)); 5837 5838 /* QM */ 5839 if (QM_INIT(sc->qm_cid_count)) { 5840 ilt_client = &ilt->clients[ILT_CLIENT_QM]; 5841 ilt_client->client_num = ILT_CLIENT_QM; 5842 ilt_client->page_size = QM_ILT_PAGE_SZ; 5843 ilt_client->flags = 0; 5844 ilt_client->start = line; 5845 5846 /* 4 bytes for each cid */ 5847 line += DIV_ROUND_UP(sc->qm_cid_count * QM_QUEUES_PER_FUNC * 4, 5848 QM_ILT_PAGE_SZ); 5849 5850 ilt_client->end = (line - 1); 5851 5852 BLOGD(sc, DBG_LOAD, 5853 "ilt client[QM]: start %d, end %d, " 5854 "psz 0x%x, flags 0x%x, hw psz %d\n", 5855 ilt_client->start, ilt_client->end, 5856 ilt_client->page_size, ilt_client->flags, 5857 ilog2(ilt_client->page_size >> 12)); 5858 } 5859 5860 if (CNIC_SUPPORT(sc)) { 5861 /* SRC */ 5862 ilt_client = &ilt->clients[ILT_CLIENT_SRC]; 5863 ilt_client->client_num = ILT_CLIENT_SRC; 5864 ilt_client->page_size = SRC_ILT_PAGE_SZ; 5865 ilt_client->flags = 0; 5866 ilt_client->start = line; 5867 line += SRC_ILT_LINES; 5868 ilt_client->end = (line - 1); 5869 5870 BLOGD(sc, DBG_LOAD, 5871 "ilt client[SRC]: start %d, end %d, " 5872 "psz 0x%x, flags 0x%x, hw psz %d\n", 5873 ilt_client->start, ilt_client->end, 5874 ilt_client->page_size, ilt_client->flags, 5875 ilog2(ilt_client->page_size >> 12)); 5876 5877 /* TM */ 5878 ilt_client = &ilt->clients[ILT_CLIENT_TM]; 5879 ilt_client->client_num = ILT_CLIENT_TM; 5880 ilt_client->page_size = TM_ILT_PAGE_SZ; 5881 ilt_client->flags = 0; 5882 ilt_client->start = line; 5883 line += TM_ILT_LINES; 5884 ilt_client->end = (line - 1); 5885 5886 BLOGD(sc, DBG_LOAD, 5887 "ilt client[TM]: start %d, end %d, " 5888 "psz 0x%x, flags 0x%x, hw psz %d\n", 5889 ilt_client->start, ilt_client->end, 5890 ilt_client->page_size, ilt_client->flags, 5891 ilog2(ilt_client->page_size >> 12)); 5892 } 5893 5894 KASSERT((line <= ILT_MAX_LINES), ("Invalid number of ILT lines!")); 5895 } 5896 5897 static void 5898 bxe_set_fp_rx_buf_size(struct bxe_softc *sc) 5899 { 5900 int i; 5901 uint32_t rx_buf_size; 5902 5903 rx_buf_size = (IP_HEADER_ALIGNMENT_PADDING + ETH_OVERHEAD + sc->mtu); 5904 5905 for (i = 0; i < sc->num_queues; i++) { 5906 if(rx_buf_size <= MCLBYTES){ 5907 sc->fp[i].rx_buf_size = rx_buf_size; 5908 sc->fp[i].mbuf_alloc_size = MCLBYTES; 5909 }else if (rx_buf_size <= MJUMPAGESIZE){ 5910 sc->fp[i].rx_buf_size = rx_buf_size; 5911 sc->fp[i].mbuf_alloc_size = MJUMPAGESIZE; 5912 }else if (rx_buf_size <= (MJUMPAGESIZE + MCLBYTES)){ 5913 sc->fp[i].rx_buf_size = MCLBYTES; 5914 sc->fp[i].mbuf_alloc_size = MCLBYTES; 5915 }else if (rx_buf_size <= (2 * MJUMPAGESIZE)){ 5916 sc->fp[i].rx_buf_size = MJUMPAGESIZE; 5917 sc->fp[i].mbuf_alloc_size = MJUMPAGESIZE; 5918 }else { 5919 sc->fp[i].rx_buf_size = MCLBYTES; 5920 sc->fp[i].mbuf_alloc_size = MCLBYTES; 5921 } 5922 } 5923 } 5924 5925 static int 5926 bxe_alloc_ilt_mem(struct bxe_softc *sc) 5927 { 5928 int rc = 0; 5929 5930 if ((sc->ilt = 5931 (struct ecore_ilt *)malloc(sizeof(struct ecore_ilt), 5932 M_BXE_ILT, 5933 (M_NOWAIT | M_ZERO))) == NULL) { 5934 rc = 1; 5935 } 5936 5937 return (rc); 5938 } 5939 5940 static int 5941 bxe_alloc_ilt_lines_mem(struct bxe_softc *sc) 5942 { 5943 int rc = 0; 5944 5945 if ((sc->ilt->lines = 5946 (struct ilt_line *)malloc((sizeof(struct ilt_line) * ILT_MAX_LINES), 5947 M_BXE_ILT, 5948 (M_NOWAIT | M_ZERO))) == NULL) { 5949 rc = 1; 5950 } 5951 5952 return (rc); 5953 } 5954 5955 static void 5956 bxe_free_ilt_mem(struct bxe_softc *sc) 5957 { 5958 if (sc->ilt != NULL) { 5959 free(sc->ilt, M_BXE_ILT); 5960 sc->ilt = NULL; 5961 } 5962 } 5963 5964 static void 5965 bxe_free_ilt_lines_mem(struct bxe_softc *sc) 5966 { 5967 if (sc->ilt->lines != NULL) { 5968 free(sc->ilt->lines, M_BXE_ILT); 5969 sc->ilt->lines = NULL; 5970 } 5971 } 5972 5973 static void 5974 bxe_free_mem(struct bxe_softc *sc) 5975 { 5976 int i; 5977 5978 for (i = 0; i < L2_ILT_LINES(sc); i++) { 5979 bxe_dma_free(sc, &sc->context[i].vcxt_dma); 5980 sc->context[i].vcxt = NULL; 5981 sc->context[i].size = 0; 5982 } 5983 5984 ecore_ilt_mem_op(sc, ILT_MEMOP_FREE); 5985 5986 bxe_free_ilt_lines_mem(sc); 5987 5988 } 5989 5990 static int 5991 bxe_alloc_mem(struct bxe_softc *sc) 5992 { 5993 int context_size; 5994 int allocated; 5995 int i; 5996 5997 /* 5998 * Allocate memory for CDU context: 5999 * This memory is allocated separately and not in the generic ILT 6000 * functions because CDU differs in few aspects: 6001 * 1. There can be multiple entities allocating memory for context - 6002 * regular L2, CNIC, and SRIOV drivers. Each separately controls 6003 * its own ILT lines. 6004 * 2. Since CDU page-size is not a single 4KB page (which is the case 6005 * for the other ILT clients), to be efficient we want to support 6006 * allocation of sub-page-size in the last entry. 6007 * 3. Context pointers are used by the driver to pass to FW / update 6008 * the context (for the other ILT clients the pointers are used just to 6009 * free the memory during unload). 6010 */ 6011 context_size = (sizeof(union cdu_context) * BXE_L2_CID_COUNT(sc)); 6012 for (i = 0, allocated = 0; allocated < context_size; i++) { 6013 sc->context[i].size = min(CDU_ILT_PAGE_SZ, 6014 (context_size - allocated)); 6015 6016 if (bxe_dma_alloc(sc, sc->context[i].size, 6017 &sc->context[i].vcxt_dma, 6018 "cdu context") != 0) { 6019 bxe_free_mem(sc); 6020 return (-1); 6021 } 6022 6023 sc->context[i].vcxt = 6024 (union cdu_context *)sc->context[i].vcxt_dma.vaddr; 6025 6026 allocated += sc->context[i].size; 6027 } 6028 6029 bxe_alloc_ilt_lines_mem(sc); 6030 6031 BLOGD(sc, DBG_LOAD, "ilt=%p start_line=%u lines=%p\n", 6032 sc->ilt, sc->ilt->start_line, sc->ilt->lines); 6033 { 6034 for (i = 0; i < 4; i++) { 6035 BLOGD(sc, DBG_LOAD, 6036 "c%d page_size=%u start=%u end=%u num=%u flags=0x%x\n", 6037 i, 6038 sc->ilt->clients[i].page_size, 6039 sc->ilt->clients[i].start, 6040 sc->ilt->clients[i].end, 6041 sc->ilt->clients[i].client_num, 6042 sc->ilt->clients[i].flags); 6043 } 6044 } 6045 if (ecore_ilt_mem_op(sc, ILT_MEMOP_ALLOC)) { 6046 BLOGE(sc, "ecore_ilt_mem_op ILT_MEMOP_ALLOC failed\n"); 6047 bxe_free_mem(sc); 6048 return (-1); 6049 } 6050 6051 return (0); 6052 } 6053 6054 static void 6055 bxe_free_rx_bd_chain(struct bxe_fastpath *fp) 6056 { 6057 struct bxe_softc *sc; 6058 int i; 6059 6060 sc = fp->sc; 6061 6062 if (fp->rx_mbuf_tag == NULL) { 6063 return; 6064 } 6065 6066 /* free all mbufs and unload all maps */ 6067 for (i = 0; i < RX_BD_TOTAL; i++) { 6068 if (fp->rx_mbuf_chain[i].m_map != NULL) { 6069 bus_dmamap_sync(fp->rx_mbuf_tag, 6070 fp->rx_mbuf_chain[i].m_map, 6071 BUS_DMASYNC_POSTREAD); 6072 bus_dmamap_unload(fp->rx_mbuf_tag, 6073 fp->rx_mbuf_chain[i].m_map); 6074 } 6075 6076 if (fp->rx_mbuf_chain[i].m != NULL) { 6077 m_freem(fp->rx_mbuf_chain[i].m); 6078 fp->rx_mbuf_chain[i].m = NULL; 6079 fp->eth_q_stats.mbuf_alloc_rx--; 6080 } 6081 } 6082 } 6083 6084 static void 6085 bxe_free_tpa_pool(struct bxe_fastpath *fp) 6086 { 6087 struct bxe_softc *sc; 6088 int i, max_agg_queues; 6089 6090 sc = fp->sc; 6091 6092 if (fp->rx_mbuf_tag == NULL) { 6093 return; 6094 } 6095 6096 max_agg_queues = MAX_AGG_QS(sc); 6097 6098 /* release all mbufs and unload all DMA maps in the TPA pool */ 6099 for (i = 0; i < max_agg_queues; i++) { 6100 if (fp->rx_tpa_info[i].bd.m_map != NULL) { 6101 bus_dmamap_sync(fp->rx_mbuf_tag, 6102 fp->rx_tpa_info[i].bd.m_map, 6103 BUS_DMASYNC_POSTREAD); 6104 bus_dmamap_unload(fp->rx_mbuf_tag, 6105 fp->rx_tpa_info[i].bd.m_map); 6106 } 6107 6108 if (fp->rx_tpa_info[i].bd.m != NULL) { 6109 m_freem(fp->rx_tpa_info[i].bd.m); 6110 fp->rx_tpa_info[i].bd.m = NULL; 6111 fp->eth_q_stats.mbuf_alloc_tpa--; 6112 } 6113 } 6114 } 6115 6116 static void 6117 bxe_free_sge_chain(struct bxe_fastpath *fp) 6118 { 6119 struct bxe_softc *sc; 6120 int i; 6121 6122 sc = fp->sc; 6123 6124 if (fp->rx_sge_mbuf_tag == NULL) { 6125 return; 6126 } 6127 6128 /* rree all mbufs and unload all maps */ 6129 for (i = 0; i < RX_SGE_TOTAL; i++) { 6130 if (fp->rx_sge_mbuf_chain[i].m_map != NULL) { 6131 bus_dmamap_sync(fp->rx_sge_mbuf_tag, 6132 fp->rx_sge_mbuf_chain[i].m_map, 6133 BUS_DMASYNC_POSTREAD); 6134 bus_dmamap_unload(fp->rx_sge_mbuf_tag, 6135 fp->rx_sge_mbuf_chain[i].m_map); 6136 } 6137 6138 if (fp->rx_sge_mbuf_chain[i].m != NULL) { 6139 m_freem(fp->rx_sge_mbuf_chain[i].m); 6140 fp->rx_sge_mbuf_chain[i].m = NULL; 6141 fp->eth_q_stats.mbuf_alloc_sge--; 6142 } 6143 } 6144 } 6145 6146 static void 6147 bxe_free_fp_buffers(struct bxe_softc *sc) 6148 { 6149 struct bxe_fastpath *fp; 6150 int i; 6151 6152 for (i = 0; i < sc->num_queues; i++) { 6153 fp = &sc->fp[i]; 6154 6155 #if __FreeBSD_version >= 901504 6156 if (fp->tx_br != NULL) { 6157 /* just in case bxe_mq_flush() wasn't called */ 6158 if (mtx_initialized(&fp->tx_mtx)) { 6159 struct mbuf *m; 6160 6161 BXE_FP_TX_LOCK(fp); 6162 while ((m = buf_ring_dequeue_sc(fp->tx_br)) != NULL) 6163 m_freem(m); 6164 BXE_FP_TX_UNLOCK(fp); 6165 } 6166 } 6167 #endif 6168 6169 /* free all RX buffers */ 6170 bxe_free_rx_bd_chain(fp); 6171 bxe_free_tpa_pool(fp); 6172 bxe_free_sge_chain(fp); 6173 6174 if (fp->eth_q_stats.mbuf_alloc_rx != 0) { 6175 BLOGE(sc, "failed to claim all rx mbufs (%d left)\n", 6176 fp->eth_q_stats.mbuf_alloc_rx); 6177 } 6178 6179 if (fp->eth_q_stats.mbuf_alloc_sge != 0) { 6180 BLOGE(sc, "failed to claim all sge mbufs (%d left)\n", 6181 fp->eth_q_stats.mbuf_alloc_sge); 6182 } 6183 6184 if (fp->eth_q_stats.mbuf_alloc_tpa != 0) { 6185 BLOGE(sc, "failed to claim all sge mbufs (%d left)\n", 6186 fp->eth_q_stats.mbuf_alloc_tpa); 6187 } 6188 6189 if (fp->eth_q_stats.mbuf_alloc_tx != 0) { 6190 BLOGE(sc, "failed to release tx mbufs (%d left)\n", 6191 fp->eth_q_stats.mbuf_alloc_tx); 6192 } 6193 6194 /* XXX verify all mbufs were reclaimed */ 6195 } 6196 } 6197 6198 static int 6199 bxe_alloc_rx_bd_mbuf(struct bxe_fastpath *fp, 6200 uint16_t prev_index, 6201 uint16_t index) 6202 { 6203 struct bxe_sw_rx_bd *rx_buf; 6204 struct eth_rx_bd *rx_bd; 6205 bus_dma_segment_t segs[1]; 6206 bus_dmamap_t map; 6207 struct mbuf *m; 6208 int nsegs, rc; 6209 6210 rc = 0; 6211 6212 /* allocate the new RX BD mbuf */ 6213 m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, fp->mbuf_alloc_size); 6214 if (__predict_false(m == NULL)) { 6215 fp->eth_q_stats.mbuf_rx_bd_alloc_failed++; 6216 return (ENOBUFS); 6217 } 6218 6219 fp->eth_q_stats.mbuf_alloc_rx++; 6220 6221 /* initialize the mbuf buffer length */ 6222 m->m_pkthdr.len = m->m_len = fp->rx_buf_size; 6223 6224 /* map the mbuf into non-paged pool */ 6225 rc = bus_dmamap_load_mbuf_sg(fp->rx_mbuf_tag, 6226 fp->rx_mbuf_spare_map, 6227 m, segs, &nsegs, BUS_DMA_NOWAIT); 6228 if (__predict_false(rc != 0)) { 6229 fp->eth_q_stats.mbuf_rx_bd_mapping_failed++; 6230 m_freem(m); 6231 fp->eth_q_stats.mbuf_alloc_rx--; 6232 return (rc); 6233 } 6234 6235 /* all mbufs must map to a single segment */ 6236 KASSERT((nsegs == 1), ("Too many segments, %d returned!", nsegs)); 6237 6238 /* release any existing RX BD mbuf mappings */ 6239 6240 if (prev_index != index) { 6241 rx_buf = &fp->rx_mbuf_chain[prev_index]; 6242 6243 if (rx_buf->m_map != NULL) { 6244 bus_dmamap_sync(fp->rx_mbuf_tag, rx_buf->m_map, 6245 BUS_DMASYNC_POSTREAD); 6246 bus_dmamap_unload(fp->rx_mbuf_tag, rx_buf->m_map); 6247 } 6248 6249 /* 6250 * We only get here from bxe_rxeof() when the maximum number 6251 * of rx buffers is less than RX_BD_USABLE. bxe_rxeof() already 6252 * holds the mbuf in the prev_index so it's OK to NULL it out 6253 * here without concern of a memory leak. 6254 */ 6255 fp->rx_mbuf_chain[prev_index].m = NULL; 6256 } 6257 6258 rx_buf = &fp->rx_mbuf_chain[index]; 6259 6260 if (rx_buf->m_map != NULL) { 6261 bus_dmamap_sync(fp->rx_mbuf_tag, rx_buf->m_map, 6262 BUS_DMASYNC_POSTREAD); 6263 bus_dmamap_unload(fp->rx_mbuf_tag, rx_buf->m_map); 6264 } 6265 6266 /* save the mbuf and mapping info for a future packet */ 6267 map = (prev_index != index) ? 6268 fp->rx_mbuf_chain[prev_index].m_map : rx_buf->m_map; 6269 rx_buf->m_map = fp->rx_mbuf_spare_map; 6270 fp->rx_mbuf_spare_map = map; 6271 bus_dmamap_sync(fp->rx_mbuf_tag, rx_buf->m_map, 6272 BUS_DMASYNC_PREREAD); 6273 rx_buf->m = m; 6274 6275 rx_bd = &fp->rx_chain[index]; 6276 rx_bd->addr_hi = htole32(U64_HI(segs[0].ds_addr)); 6277 rx_bd->addr_lo = htole32(U64_LO(segs[0].ds_addr)); 6278 6279 return (rc); 6280 } 6281 6282 static int 6283 bxe_alloc_rx_tpa_mbuf(struct bxe_fastpath *fp, 6284 int queue) 6285 { 6286 struct bxe_sw_tpa_info *tpa_info = &fp->rx_tpa_info[queue]; 6287 bus_dma_segment_t segs[1]; 6288 bus_dmamap_t map; 6289 struct mbuf *m; 6290 int nsegs; 6291 int rc = 0; 6292 6293 /* allocate the new TPA mbuf */ 6294 m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, fp->mbuf_alloc_size); 6295 if (__predict_false(m == NULL)) { 6296 fp->eth_q_stats.mbuf_rx_tpa_alloc_failed++; 6297 return (ENOBUFS); 6298 } 6299 6300 fp->eth_q_stats.mbuf_alloc_tpa++; 6301 6302 /* initialize the mbuf buffer length */ 6303 m->m_pkthdr.len = m->m_len = fp->rx_buf_size; 6304 6305 /* map the mbuf into non-paged pool */ 6306 rc = bus_dmamap_load_mbuf_sg(fp->rx_mbuf_tag, 6307 fp->rx_tpa_info_mbuf_spare_map, 6308 m, segs, &nsegs, BUS_DMA_NOWAIT); 6309 if (__predict_false(rc != 0)) { 6310 fp->eth_q_stats.mbuf_rx_tpa_mapping_failed++; 6311 m_free(m); 6312 fp->eth_q_stats.mbuf_alloc_tpa--; 6313 return (rc); 6314 } 6315 6316 /* all mbufs must map to a single segment */ 6317 KASSERT((nsegs == 1), ("Too many segments, %d returned!", nsegs)); 6318 6319 /* release any existing TPA mbuf mapping */ 6320 if (tpa_info->bd.m_map != NULL) { 6321 bus_dmamap_sync(fp->rx_mbuf_tag, tpa_info->bd.m_map, 6322 BUS_DMASYNC_POSTREAD); 6323 bus_dmamap_unload(fp->rx_mbuf_tag, tpa_info->bd.m_map); 6324 } 6325 6326 /* save the mbuf and mapping info for the TPA mbuf */ 6327 map = tpa_info->bd.m_map; 6328 tpa_info->bd.m_map = fp->rx_tpa_info_mbuf_spare_map; 6329 fp->rx_tpa_info_mbuf_spare_map = map; 6330 bus_dmamap_sync(fp->rx_mbuf_tag, tpa_info->bd.m_map, 6331 BUS_DMASYNC_PREREAD); 6332 tpa_info->bd.m = m; 6333 tpa_info->seg = segs[0]; 6334 6335 return (rc); 6336 } 6337 6338 /* 6339 * Allocate an mbuf and assign it to the receive scatter gather chain. The 6340 * caller must take care to save a copy of the existing mbuf in the SG mbuf 6341 * chain. 6342 */ 6343 static int 6344 bxe_alloc_rx_sge_mbuf(struct bxe_fastpath *fp, 6345 uint16_t index) 6346 { 6347 struct bxe_sw_rx_bd *sge_buf; 6348 struct eth_rx_sge *sge; 6349 bus_dma_segment_t segs[1]; 6350 bus_dmamap_t map; 6351 struct mbuf *m; 6352 int nsegs; 6353 int rc = 0; 6354 6355 /* allocate a new SGE mbuf */ 6356 m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, SGE_PAGE_SIZE); 6357 if (__predict_false(m == NULL)) { 6358 fp->eth_q_stats.mbuf_rx_sge_alloc_failed++; 6359 return (ENOMEM); 6360 } 6361 6362 fp->eth_q_stats.mbuf_alloc_sge++; 6363 6364 /* initialize the mbuf buffer length */ 6365 m->m_pkthdr.len = m->m_len = SGE_PAGE_SIZE; 6366 6367 /* map the SGE mbuf into non-paged pool */ 6368 rc = bus_dmamap_load_mbuf_sg(fp->rx_sge_mbuf_tag, 6369 fp->rx_sge_mbuf_spare_map, 6370 m, segs, &nsegs, BUS_DMA_NOWAIT); 6371 if (__predict_false(rc != 0)) { 6372 fp->eth_q_stats.mbuf_rx_sge_mapping_failed++; 6373 m_freem(m); 6374 fp->eth_q_stats.mbuf_alloc_sge--; 6375 return (rc); 6376 } 6377 6378 /* all mbufs must map to a single segment */ 6379 KASSERT((nsegs == 1), ("Too many segments, %d returned!", nsegs)); 6380 6381 sge_buf = &fp->rx_sge_mbuf_chain[index]; 6382 6383 /* release any existing SGE mbuf mapping */ 6384 if (sge_buf->m_map != NULL) { 6385 bus_dmamap_sync(fp->rx_sge_mbuf_tag, sge_buf->m_map, 6386 BUS_DMASYNC_POSTREAD); 6387 bus_dmamap_unload(fp->rx_sge_mbuf_tag, sge_buf->m_map); 6388 } 6389 6390 /* save the mbuf and mapping info for a future packet */ 6391 map = sge_buf->m_map; 6392 sge_buf->m_map = fp->rx_sge_mbuf_spare_map; 6393 fp->rx_sge_mbuf_spare_map = map; 6394 bus_dmamap_sync(fp->rx_sge_mbuf_tag, sge_buf->m_map, 6395 BUS_DMASYNC_PREREAD); 6396 sge_buf->m = m; 6397 6398 sge = &fp->rx_sge_chain[index]; 6399 sge->addr_hi = htole32(U64_HI(segs[0].ds_addr)); 6400 sge->addr_lo = htole32(U64_LO(segs[0].ds_addr)); 6401 6402 return (rc); 6403 } 6404 6405 static __noinline int 6406 bxe_alloc_fp_buffers(struct bxe_softc *sc) 6407 { 6408 struct bxe_fastpath *fp; 6409 int i, j, rc = 0; 6410 int ring_prod, cqe_ring_prod; 6411 int max_agg_queues; 6412 6413 for (i = 0; i < sc->num_queues; i++) { 6414 fp = &sc->fp[i]; 6415 6416 ring_prod = cqe_ring_prod = 0; 6417 fp->rx_bd_cons = 0; 6418 fp->rx_cq_cons = 0; 6419 6420 /* allocate buffers for the RX BDs in RX BD chain */ 6421 for (j = 0; j < sc->max_rx_bufs; j++) { 6422 rc = bxe_alloc_rx_bd_mbuf(fp, ring_prod, ring_prod); 6423 if (rc != 0) { 6424 BLOGE(sc, "mbuf alloc fail for fp[%02d] rx chain (%d)\n", 6425 i, rc); 6426 goto bxe_alloc_fp_buffers_error; 6427 } 6428 6429 ring_prod = RX_BD_NEXT(ring_prod); 6430 cqe_ring_prod = RCQ_NEXT(cqe_ring_prod); 6431 } 6432 6433 fp->rx_bd_prod = ring_prod; 6434 fp->rx_cq_prod = cqe_ring_prod; 6435 fp->eth_q_stats.rx_calls = fp->eth_q_stats.rx_pkts = 0; 6436 6437 max_agg_queues = MAX_AGG_QS(sc); 6438 6439 fp->tpa_enable = TRUE; 6440 6441 /* fill the TPA pool */ 6442 for (j = 0; j < max_agg_queues; j++) { 6443 rc = bxe_alloc_rx_tpa_mbuf(fp, j); 6444 if (rc != 0) { 6445 BLOGE(sc, "mbuf alloc fail for fp[%02d] TPA queue %d\n", 6446 i, j); 6447 fp->tpa_enable = FALSE; 6448 goto bxe_alloc_fp_buffers_error; 6449 } 6450 6451 fp->rx_tpa_info[j].state = BXE_TPA_STATE_STOP; 6452 } 6453 6454 if (fp->tpa_enable) { 6455 /* fill the RX SGE chain */ 6456 ring_prod = 0; 6457 for (j = 0; j < RX_SGE_USABLE; j++) { 6458 rc = bxe_alloc_rx_sge_mbuf(fp, ring_prod); 6459 if (rc != 0) { 6460 BLOGE(sc, "mbuf alloc fail for fp[%02d] SGE %d\n", 6461 i, ring_prod); 6462 fp->tpa_enable = FALSE; 6463 ring_prod = 0; 6464 goto bxe_alloc_fp_buffers_error; 6465 } 6466 6467 ring_prod = RX_SGE_NEXT(ring_prod); 6468 } 6469 6470 fp->rx_sge_prod = ring_prod; 6471 } 6472 } 6473 6474 return (0); 6475 6476 bxe_alloc_fp_buffers_error: 6477 6478 /* unwind what was already allocated */ 6479 bxe_free_rx_bd_chain(fp); 6480 bxe_free_tpa_pool(fp); 6481 bxe_free_sge_chain(fp); 6482 6483 return (ENOBUFS); 6484 } 6485 6486 static void 6487 bxe_free_fw_stats_mem(struct bxe_softc *sc) 6488 { 6489 bxe_dma_free(sc, &sc->fw_stats_dma); 6490 6491 sc->fw_stats_num = 0; 6492 6493 sc->fw_stats_req_size = 0; 6494 sc->fw_stats_req = NULL; 6495 sc->fw_stats_req_mapping = 0; 6496 6497 sc->fw_stats_data_size = 0; 6498 sc->fw_stats_data = NULL; 6499 sc->fw_stats_data_mapping = 0; 6500 } 6501 6502 static int 6503 bxe_alloc_fw_stats_mem(struct bxe_softc *sc) 6504 { 6505 uint8_t num_queue_stats; 6506 int num_groups; 6507 6508 /* number of queues for statistics is number of eth queues */ 6509 num_queue_stats = BXE_NUM_ETH_QUEUES(sc); 6510 6511 /* 6512 * Total number of FW statistics requests = 6513 * 1 for port stats + 1 for PF stats + num of queues 6514 */ 6515 sc->fw_stats_num = (2 + num_queue_stats); 6516 6517 /* 6518 * Request is built from stats_query_header and an array of 6519 * stats_query_cmd_group each of which contains STATS_QUERY_CMD_COUNT 6520 * rules. The real number or requests is configured in the 6521 * stats_query_header. 6522 */ 6523 num_groups = 6524 ((sc->fw_stats_num / STATS_QUERY_CMD_COUNT) + 6525 ((sc->fw_stats_num % STATS_QUERY_CMD_COUNT) ? 1 : 0)); 6526 6527 BLOGD(sc, DBG_LOAD, "stats fw_stats_num %d num_groups %d\n", 6528 sc->fw_stats_num, num_groups); 6529 6530 sc->fw_stats_req_size = 6531 (sizeof(struct stats_query_header) + 6532 (num_groups * sizeof(struct stats_query_cmd_group))); 6533 6534 /* 6535 * Data for statistics requests + stats_counter. 6536 * stats_counter holds per-STORM counters that are incremented when 6537 * STORM has finished with the current request. Memory for FCoE 6538 * offloaded statistics are counted anyway, even if they will not be sent. 6539 * VF stats are not accounted for here as the data of VF stats is stored 6540 * in memory allocated by the VF, not here. 6541 */ 6542 sc->fw_stats_data_size = 6543 (sizeof(struct stats_counter) + 6544 sizeof(struct per_port_stats) + 6545 sizeof(struct per_pf_stats) + 6546 /* sizeof(struct fcoe_statistics_params) + */ 6547 (sizeof(struct per_queue_stats) * num_queue_stats)); 6548 6549 if (bxe_dma_alloc(sc, (sc->fw_stats_req_size + sc->fw_stats_data_size), 6550 &sc->fw_stats_dma, "fw stats") != 0) { 6551 bxe_free_fw_stats_mem(sc); 6552 return (-1); 6553 } 6554 6555 /* set up the shortcuts */ 6556 6557 sc->fw_stats_req = 6558 (struct bxe_fw_stats_req *)sc->fw_stats_dma.vaddr; 6559 sc->fw_stats_req_mapping = sc->fw_stats_dma.paddr; 6560 6561 sc->fw_stats_data = 6562 (struct bxe_fw_stats_data *)((uint8_t *)sc->fw_stats_dma.vaddr + 6563 sc->fw_stats_req_size); 6564 sc->fw_stats_data_mapping = (sc->fw_stats_dma.paddr + 6565 sc->fw_stats_req_size); 6566 6567 BLOGD(sc, DBG_LOAD, "statistics request base address set to %#jx\n", 6568 (uintmax_t)sc->fw_stats_req_mapping); 6569 6570 BLOGD(sc, DBG_LOAD, "statistics data base address set to %#jx\n", 6571 (uintmax_t)sc->fw_stats_data_mapping); 6572 6573 return (0); 6574 } 6575 6576 /* 6577 * Bits map: 6578 * 0-7 - Engine0 load counter. 6579 * 8-15 - Engine1 load counter. 6580 * 16 - Engine0 RESET_IN_PROGRESS bit. 6581 * 17 - Engine1 RESET_IN_PROGRESS bit. 6582 * 18 - Engine0 ONE_IS_LOADED. Set when there is at least one active 6583 * function on the engine 6584 * 19 - Engine1 ONE_IS_LOADED. 6585 * 20 - Chip reset flow bit. When set none-leader must wait for both engines 6586 * leader to complete (check for both RESET_IN_PROGRESS bits and not 6587 * for just the one belonging to its engine). 6588 */ 6589 #define BXE_RECOVERY_GLOB_REG MISC_REG_GENERIC_POR_1 6590 #define BXE_PATH0_LOAD_CNT_MASK 0x000000ff 6591 #define BXE_PATH0_LOAD_CNT_SHIFT 0 6592 #define BXE_PATH1_LOAD_CNT_MASK 0x0000ff00 6593 #define BXE_PATH1_LOAD_CNT_SHIFT 8 6594 #define BXE_PATH0_RST_IN_PROG_BIT 0x00010000 6595 #define BXE_PATH1_RST_IN_PROG_BIT 0x00020000 6596 #define BXE_GLOBAL_RESET_BIT 0x00040000 6597 6598 /* set the GLOBAL_RESET bit, should be run under rtnl lock */ 6599 static void 6600 bxe_set_reset_global(struct bxe_softc *sc) 6601 { 6602 uint32_t val; 6603 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG); 6604 val = REG_RD(sc, BXE_RECOVERY_GLOB_REG); 6605 REG_WR(sc, BXE_RECOVERY_GLOB_REG, val | BXE_GLOBAL_RESET_BIT); 6606 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG); 6607 } 6608 6609 /* clear the GLOBAL_RESET bit, should be run under rtnl lock */ 6610 static void 6611 bxe_clear_reset_global(struct bxe_softc *sc) 6612 { 6613 uint32_t val; 6614 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG); 6615 val = REG_RD(sc, BXE_RECOVERY_GLOB_REG); 6616 REG_WR(sc, BXE_RECOVERY_GLOB_REG, val & (~BXE_GLOBAL_RESET_BIT)); 6617 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG); 6618 } 6619 6620 /* checks the GLOBAL_RESET bit, should be run under rtnl lock */ 6621 static uint8_t 6622 bxe_reset_is_global(struct bxe_softc *sc) 6623 { 6624 uint32_t val = REG_RD(sc, BXE_RECOVERY_GLOB_REG); 6625 BLOGD(sc, DBG_LOAD, "GLOB_REG=0x%08x\n", val); 6626 return (val & BXE_GLOBAL_RESET_BIT) ? TRUE : FALSE; 6627 } 6628 6629 /* clear RESET_IN_PROGRESS bit for the engine, should be run under rtnl lock */ 6630 static void 6631 bxe_set_reset_done(struct bxe_softc *sc) 6632 { 6633 uint32_t val; 6634 uint32_t bit = SC_PATH(sc) ? BXE_PATH1_RST_IN_PROG_BIT : 6635 BXE_PATH0_RST_IN_PROG_BIT; 6636 6637 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG); 6638 6639 val = REG_RD(sc, BXE_RECOVERY_GLOB_REG); 6640 /* Clear the bit */ 6641 val &= ~bit; 6642 REG_WR(sc, BXE_RECOVERY_GLOB_REG, val); 6643 6644 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG); 6645 } 6646 6647 /* set RESET_IN_PROGRESS for the engine, should be run under rtnl lock */ 6648 static void 6649 bxe_set_reset_in_progress(struct bxe_softc *sc) 6650 { 6651 uint32_t val; 6652 uint32_t bit = SC_PATH(sc) ? BXE_PATH1_RST_IN_PROG_BIT : 6653 BXE_PATH0_RST_IN_PROG_BIT; 6654 6655 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG); 6656 6657 val = REG_RD(sc, BXE_RECOVERY_GLOB_REG); 6658 /* Set the bit */ 6659 val |= bit; 6660 REG_WR(sc, BXE_RECOVERY_GLOB_REG, val); 6661 6662 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG); 6663 } 6664 6665 /* check RESET_IN_PROGRESS bit for an engine, should be run under rtnl lock */ 6666 static uint8_t 6667 bxe_reset_is_done(struct bxe_softc *sc, 6668 int engine) 6669 { 6670 uint32_t val = REG_RD(sc, BXE_RECOVERY_GLOB_REG); 6671 uint32_t bit = engine ? BXE_PATH1_RST_IN_PROG_BIT : 6672 BXE_PATH0_RST_IN_PROG_BIT; 6673 6674 /* return false if bit is set */ 6675 return (val & bit) ? FALSE : TRUE; 6676 } 6677 6678 /* get the load status for an engine, should be run under rtnl lock */ 6679 static uint8_t 6680 bxe_get_load_status(struct bxe_softc *sc, 6681 int engine) 6682 { 6683 uint32_t mask = engine ? BXE_PATH1_LOAD_CNT_MASK : 6684 BXE_PATH0_LOAD_CNT_MASK; 6685 uint32_t shift = engine ? BXE_PATH1_LOAD_CNT_SHIFT : 6686 BXE_PATH0_LOAD_CNT_SHIFT; 6687 uint32_t val = REG_RD(sc, BXE_RECOVERY_GLOB_REG); 6688 6689 BLOGD(sc, DBG_LOAD, "Old value for GLOB_REG=0x%08x\n", val); 6690 6691 val = ((val & mask) >> shift); 6692 6693 BLOGD(sc, DBG_LOAD, "Load mask engine %d = 0x%08x\n", engine, val); 6694 6695 return (val != 0); 6696 } 6697 6698 /* set pf load mark */ 6699 /* XXX needs to be under rtnl lock */ 6700 static void 6701 bxe_set_pf_load(struct bxe_softc *sc) 6702 { 6703 uint32_t val; 6704 uint32_t val1; 6705 uint32_t mask = SC_PATH(sc) ? BXE_PATH1_LOAD_CNT_MASK : 6706 BXE_PATH0_LOAD_CNT_MASK; 6707 uint32_t shift = SC_PATH(sc) ? BXE_PATH1_LOAD_CNT_SHIFT : 6708 BXE_PATH0_LOAD_CNT_SHIFT; 6709 6710 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG); 6711 6712 val = REG_RD(sc, BXE_RECOVERY_GLOB_REG); 6713 BLOGD(sc, DBG_LOAD, "Old value for GLOB_REG=0x%08x\n", val); 6714 6715 /* get the current counter value */ 6716 val1 = ((val & mask) >> shift); 6717 6718 /* set bit of this PF */ 6719 val1 |= (1 << SC_ABS_FUNC(sc)); 6720 6721 /* clear the old value */ 6722 val &= ~mask; 6723 6724 /* set the new one */ 6725 val |= ((val1 << shift) & mask); 6726 6727 REG_WR(sc, BXE_RECOVERY_GLOB_REG, val); 6728 6729 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG); 6730 } 6731 6732 /* clear pf load mark */ 6733 /* XXX needs to be under rtnl lock */ 6734 static uint8_t 6735 bxe_clear_pf_load(struct bxe_softc *sc) 6736 { 6737 uint32_t val1, val; 6738 uint32_t mask = SC_PATH(sc) ? BXE_PATH1_LOAD_CNT_MASK : 6739 BXE_PATH0_LOAD_CNT_MASK; 6740 uint32_t shift = SC_PATH(sc) ? BXE_PATH1_LOAD_CNT_SHIFT : 6741 BXE_PATH0_LOAD_CNT_SHIFT; 6742 6743 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG); 6744 val = REG_RD(sc, BXE_RECOVERY_GLOB_REG); 6745 BLOGD(sc, DBG_LOAD, "Old GEN_REG_VAL=0x%08x\n", val); 6746 6747 /* get the current counter value */ 6748 val1 = (val & mask) >> shift; 6749 6750 /* clear bit of that PF */ 6751 val1 &= ~(1 << SC_ABS_FUNC(sc)); 6752 6753 /* clear the old value */ 6754 val &= ~mask; 6755 6756 /* set the new one */ 6757 val |= ((val1 << shift) & mask); 6758 6759 REG_WR(sc, BXE_RECOVERY_GLOB_REG, val); 6760 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG); 6761 return (val1 != 0); 6762 } 6763 6764 /* send load requrest to mcp and analyze response */ 6765 static int 6766 bxe_nic_load_request(struct bxe_softc *sc, 6767 uint32_t *load_code) 6768 { 6769 /* init fw_seq */ 6770 sc->fw_seq = 6771 (SHMEM_RD(sc, func_mb[SC_FW_MB_IDX(sc)].drv_mb_header) & 6772 DRV_MSG_SEQ_NUMBER_MASK); 6773 6774 BLOGD(sc, DBG_LOAD, "initial fw_seq 0x%04x\n", sc->fw_seq); 6775 6776 /* get the current FW pulse sequence */ 6777 sc->fw_drv_pulse_wr_seq = 6778 (SHMEM_RD(sc, func_mb[SC_FW_MB_IDX(sc)].drv_pulse_mb) & 6779 DRV_PULSE_SEQ_MASK); 6780 6781 BLOGD(sc, DBG_LOAD, "initial drv_pulse 0x%04x\n", 6782 sc->fw_drv_pulse_wr_seq); 6783 6784 /* load request */ 6785 (*load_code) = bxe_fw_command(sc, DRV_MSG_CODE_LOAD_REQ, 6786 DRV_MSG_CODE_LOAD_REQ_WITH_LFA); 6787 6788 /* if the MCP fails to respond we must abort */ 6789 if (!(*load_code)) { 6790 BLOGE(sc, "MCP response failure!\n"); 6791 return (-1); 6792 } 6793 6794 /* if MCP refused then must abort */ 6795 if ((*load_code) == FW_MSG_CODE_DRV_LOAD_REFUSED) { 6796 BLOGE(sc, "MCP refused load request\n"); 6797 return (-1); 6798 } 6799 6800 return (0); 6801 } 6802 6803 /* 6804 * Check whether another PF has already loaded FW to chip. In virtualized 6805 * environments a pf from anoth VM may have already initialized the device 6806 * including loading FW. 6807 */ 6808 static int 6809 bxe_nic_load_analyze_req(struct bxe_softc *sc, 6810 uint32_t load_code) 6811 { 6812 uint32_t my_fw, loaded_fw; 6813 6814 /* is another pf loaded on this engine? */ 6815 if ((load_code != FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) && 6816 (load_code != FW_MSG_CODE_DRV_LOAD_COMMON)) { 6817 /* build my FW version dword */ 6818 my_fw = (BCM_5710_FW_MAJOR_VERSION + 6819 (BCM_5710_FW_MINOR_VERSION << 8 ) + 6820 (BCM_5710_FW_REVISION_VERSION << 16) + 6821 (BCM_5710_FW_ENGINEERING_VERSION << 24)); 6822 6823 /* read loaded FW from chip */ 6824 loaded_fw = REG_RD(sc, XSEM_REG_PRAM); 6825 BLOGD(sc, DBG_LOAD, "loaded FW 0x%08x / my FW 0x%08x\n", 6826 loaded_fw, my_fw); 6827 6828 /* abort nic load if version mismatch */ 6829 if (my_fw != loaded_fw) { 6830 BLOGE(sc, "FW 0x%08x already loaded (mine is 0x%08x)", 6831 loaded_fw, my_fw); 6832 return (-1); 6833 } 6834 } 6835 6836 return (0); 6837 } 6838 6839 /* mark PMF if applicable */ 6840 static void 6841 bxe_nic_load_pmf(struct bxe_softc *sc, 6842 uint32_t load_code) 6843 { 6844 uint32_t ncsi_oem_data_addr; 6845 6846 if ((load_code == FW_MSG_CODE_DRV_LOAD_COMMON) || 6847 (load_code == FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) || 6848 (load_code == FW_MSG_CODE_DRV_LOAD_PORT)) { 6849 /* 6850 * Barrier here for ordering between the writing to sc->port.pmf here 6851 * and reading it from the periodic task. 6852 */ 6853 sc->port.pmf = 1; 6854 mb(); 6855 } else { 6856 sc->port.pmf = 0; 6857 } 6858 6859 BLOGD(sc, DBG_LOAD, "pmf %d\n", sc->port.pmf); 6860 6861 /* XXX needed? */ 6862 if (load_code == FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) { 6863 if (SHMEM2_HAS(sc, ncsi_oem_data_addr)) { 6864 ncsi_oem_data_addr = SHMEM2_RD(sc, ncsi_oem_data_addr); 6865 if (ncsi_oem_data_addr) { 6866 REG_WR(sc, 6867 (ncsi_oem_data_addr + 6868 offsetof(struct glob_ncsi_oem_data, driver_version)), 6869 0); 6870 } 6871 } 6872 } 6873 } 6874 6875 static void 6876 bxe_read_mf_cfg(struct bxe_softc *sc) 6877 { 6878 int n = (CHIP_IS_MODE_4_PORT(sc) ? 2 : 1); 6879 int abs_func; 6880 int vn; 6881 6882 if (BXE_NOMCP(sc)) { 6883 return; /* what should be the default bvalue in this case */ 6884 } 6885 6886 /* 6887 * The formula for computing the absolute function number is... 6888 * For 2 port configuration (4 functions per port): 6889 * abs_func = 2 * vn + SC_PORT + SC_PATH 6890 * For 4 port configuration (2 functions per port): 6891 * abs_func = 4 * vn + 2 * SC_PORT + SC_PATH 6892 */ 6893 for (vn = VN_0; vn < SC_MAX_VN_NUM(sc); vn++) { 6894 abs_func = (n * (2 * vn + SC_PORT(sc)) + SC_PATH(sc)); 6895 if (abs_func >= E1H_FUNC_MAX) { 6896 break; 6897 } 6898 sc->devinfo.mf_info.mf_config[vn] = 6899 MFCFG_RD(sc, func_mf_config[abs_func].config); 6900 } 6901 6902 if (sc->devinfo.mf_info.mf_config[SC_VN(sc)] & 6903 FUNC_MF_CFG_FUNC_DISABLED) { 6904 BLOGD(sc, DBG_LOAD, "mf_cfg function disabled\n"); 6905 sc->flags |= BXE_MF_FUNC_DIS; 6906 } else { 6907 BLOGD(sc, DBG_LOAD, "mf_cfg function enabled\n"); 6908 sc->flags &= ~BXE_MF_FUNC_DIS; 6909 } 6910 } 6911 6912 /* acquire split MCP access lock register */ 6913 static int bxe_acquire_alr(struct bxe_softc *sc) 6914 { 6915 uint32_t j, val; 6916 6917 for (j = 0; j < 1000; j++) { 6918 val = (1UL << 31); 6919 REG_WR(sc, GRCBASE_MCP + 0x9c, val); 6920 val = REG_RD(sc, GRCBASE_MCP + 0x9c); 6921 if (val & (1L << 31)) 6922 break; 6923 6924 DELAY(5000); 6925 } 6926 6927 if (!(val & (1L << 31))) { 6928 BLOGE(sc, "Cannot acquire MCP access lock register\n"); 6929 return (-1); 6930 } 6931 6932 return (0); 6933 } 6934 6935 /* release split MCP access lock register */ 6936 static void bxe_release_alr(struct bxe_softc *sc) 6937 { 6938 REG_WR(sc, GRCBASE_MCP + 0x9c, 0); 6939 } 6940 6941 static void 6942 bxe_fan_failure(struct bxe_softc *sc) 6943 { 6944 int port = SC_PORT(sc); 6945 uint32_t ext_phy_config; 6946 6947 /* mark the failure */ 6948 ext_phy_config = 6949 SHMEM_RD(sc, dev_info.port_hw_config[port].external_phy_config); 6950 6951 ext_phy_config &= ~PORT_HW_CFG_XGXS_EXT_PHY_TYPE_MASK; 6952 ext_phy_config |= PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE; 6953 SHMEM_WR(sc, dev_info.port_hw_config[port].external_phy_config, 6954 ext_phy_config); 6955 6956 /* log the failure */ 6957 BLOGW(sc, "Fan Failure has caused the driver to shutdown " 6958 "the card to prevent permanent damage. " 6959 "Please contact OEM Support for assistance\n"); 6960 6961 /* XXX */ 6962 #if 1 6963 bxe_panic(sc, ("Schedule task to handle fan failure\n")); 6964 #else 6965 /* 6966 * Schedule device reset (unload) 6967 * This is due to some boards consuming sufficient power when driver is 6968 * up to overheat if fan fails. 6969 */ 6970 bxe_set_bit(BXE_SP_RTNL_FAN_FAILURE, &sc->sp_rtnl_state); 6971 schedule_delayed_work(&sc->sp_rtnl_task, 0); 6972 #endif 6973 } 6974 6975 /* this function is called upon a link interrupt */ 6976 static void 6977 bxe_link_attn(struct bxe_softc *sc) 6978 { 6979 uint32_t pause_enabled = 0; 6980 struct host_port_stats *pstats; 6981 int cmng_fns; 6982 struct bxe_fastpath *fp; 6983 int i; 6984 6985 /* Make sure that we are synced with the current statistics */ 6986 bxe_stats_handle(sc, STATS_EVENT_STOP); 6987 6988 elink_link_update(&sc->link_params, &sc->link_vars); 6989 6990 if (sc->link_vars.link_up) { 6991 6992 /* dropless flow control */ 6993 if (!CHIP_IS_E1(sc) && sc->dropless_fc) { 6994 pause_enabled = 0; 6995 6996 if (sc->link_vars.flow_ctrl & ELINK_FLOW_CTRL_TX) { 6997 pause_enabled = 1; 6998 } 6999 7000 REG_WR(sc, 7001 (BAR_USTRORM_INTMEM + 7002 USTORM_ETH_PAUSE_ENABLED_OFFSET(SC_PORT(sc))), 7003 pause_enabled); 7004 } 7005 7006 if (sc->link_vars.mac_type != ELINK_MAC_TYPE_EMAC) { 7007 pstats = BXE_SP(sc, port_stats); 7008 /* reset old mac stats */ 7009 memset(&(pstats->mac_stx[0]), 0, sizeof(struct mac_stx)); 7010 } 7011 7012 if (sc->state == BXE_STATE_OPEN) { 7013 bxe_stats_handle(sc, STATS_EVENT_LINK_UP); 7014 } 7015 7016 /* Restart tx when the link comes back. */ 7017 FOR_EACH_ETH_QUEUE(sc, i) { 7018 fp = &sc->fp[i]; 7019 taskqueue_enqueue(fp->tq, &fp->tx_task); 7020 } 7021 } 7022 7023 if (sc->link_vars.link_up && sc->link_vars.line_speed) { 7024 cmng_fns = bxe_get_cmng_fns_mode(sc); 7025 7026 if (cmng_fns != CMNG_FNS_NONE) { 7027 bxe_cmng_fns_init(sc, FALSE, cmng_fns); 7028 storm_memset_cmng(sc, &sc->cmng, SC_PORT(sc)); 7029 } else { 7030 /* rate shaping and fairness are disabled */ 7031 BLOGD(sc, DBG_LOAD, "single function mode without fairness\n"); 7032 } 7033 } 7034 7035 bxe_link_report_locked(sc); 7036 7037 if (IS_MF(sc)) { 7038 ; // XXX bxe_link_sync_notify(sc); 7039 } 7040 } 7041 7042 static void 7043 bxe_attn_int_asserted(struct bxe_softc *sc, 7044 uint32_t asserted) 7045 { 7046 int port = SC_PORT(sc); 7047 uint32_t aeu_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 : 7048 MISC_REG_AEU_MASK_ATTN_FUNC_0; 7049 uint32_t nig_int_mask_addr = port ? NIG_REG_MASK_INTERRUPT_PORT1 : 7050 NIG_REG_MASK_INTERRUPT_PORT0; 7051 uint32_t aeu_mask; 7052 uint32_t nig_mask = 0; 7053 uint32_t reg_addr; 7054 uint32_t igu_acked; 7055 uint32_t cnt; 7056 7057 if (sc->attn_state & asserted) { 7058 BLOGE(sc, "IGU ERROR attn=0x%08x\n", asserted); 7059 } 7060 7061 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port); 7062 7063 aeu_mask = REG_RD(sc, aeu_addr); 7064 7065 BLOGD(sc, DBG_INTR, "aeu_mask 0x%08x newly asserted 0x%08x\n", 7066 aeu_mask, asserted); 7067 7068 aeu_mask &= ~(asserted & 0x3ff); 7069 7070 BLOGD(sc, DBG_INTR, "new mask 0x%08x\n", aeu_mask); 7071 7072 REG_WR(sc, aeu_addr, aeu_mask); 7073 7074 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port); 7075 7076 BLOGD(sc, DBG_INTR, "attn_state 0x%08x\n", sc->attn_state); 7077 sc->attn_state |= asserted; 7078 BLOGD(sc, DBG_INTR, "new state 0x%08x\n", sc->attn_state); 7079 7080 if (asserted & ATTN_HARD_WIRED_MASK) { 7081 if (asserted & ATTN_NIG_FOR_FUNC) { 7082 7083 bxe_acquire_phy_lock(sc); 7084 /* save nig interrupt mask */ 7085 nig_mask = REG_RD(sc, nig_int_mask_addr); 7086 7087 /* If nig_mask is not set, no need to call the update function */ 7088 if (nig_mask) { 7089 REG_WR(sc, nig_int_mask_addr, 0); 7090 7091 bxe_link_attn(sc); 7092 } 7093 7094 /* handle unicore attn? */ 7095 } 7096 7097 if (asserted & ATTN_SW_TIMER_4_FUNC) { 7098 BLOGD(sc, DBG_INTR, "ATTN_SW_TIMER_4_FUNC!\n"); 7099 } 7100 7101 if (asserted & GPIO_2_FUNC) { 7102 BLOGD(sc, DBG_INTR, "GPIO_2_FUNC!\n"); 7103 } 7104 7105 if (asserted & GPIO_3_FUNC) { 7106 BLOGD(sc, DBG_INTR, "GPIO_3_FUNC!\n"); 7107 } 7108 7109 if (asserted & GPIO_4_FUNC) { 7110 BLOGD(sc, DBG_INTR, "GPIO_4_FUNC!\n"); 7111 } 7112 7113 if (port == 0) { 7114 if (asserted & ATTN_GENERAL_ATTN_1) { 7115 BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_1!\n"); 7116 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_1, 0x0); 7117 } 7118 if (asserted & ATTN_GENERAL_ATTN_2) { 7119 BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_2!\n"); 7120 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_2, 0x0); 7121 } 7122 if (asserted & ATTN_GENERAL_ATTN_3) { 7123 BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_3!\n"); 7124 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_3, 0x0); 7125 } 7126 } else { 7127 if (asserted & ATTN_GENERAL_ATTN_4) { 7128 BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_4!\n"); 7129 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_4, 0x0); 7130 } 7131 if (asserted & ATTN_GENERAL_ATTN_5) { 7132 BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_5!\n"); 7133 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_5, 0x0); 7134 } 7135 if (asserted & ATTN_GENERAL_ATTN_6) { 7136 BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_6!\n"); 7137 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_6, 0x0); 7138 } 7139 } 7140 } /* hardwired */ 7141 7142 if (sc->devinfo.int_block == INT_BLOCK_HC) { 7143 reg_addr = (HC_REG_COMMAND_REG + port*32 + COMMAND_REG_ATTN_BITS_SET); 7144 } else { 7145 reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_SET_UPPER*8); 7146 } 7147 7148 BLOGD(sc, DBG_INTR, "about to mask 0x%08x at %s addr 0x%08x\n", 7149 asserted, 7150 (sc->devinfo.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr); 7151 REG_WR(sc, reg_addr, asserted); 7152 7153 /* now set back the mask */ 7154 if (asserted & ATTN_NIG_FOR_FUNC) { 7155 /* 7156 * Verify that IGU ack through BAR was written before restoring 7157 * NIG mask. This loop should exit after 2-3 iterations max. 7158 */ 7159 if (sc->devinfo.int_block != INT_BLOCK_HC) { 7160 cnt = 0; 7161 7162 do { 7163 igu_acked = REG_RD(sc, IGU_REG_ATTENTION_ACK_BITS); 7164 } while (((igu_acked & ATTN_NIG_FOR_FUNC) == 0) && 7165 (++cnt < MAX_IGU_ATTN_ACK_TO)); 7166 7167 if (!igu_acked) { 7168 BLOGE(sc, "Failed to verify IGU ack on time\n"); 7169 } 7170 7171 mb(); 7172 } 7173 7174 REG_WR(sc, nig_int_mask_addr, nig_mask); 7175 7176 bxe_release_phy_lock(sc); 7177 } 7178 } 7179 7180 static void 7181 bxe_print_next_block(struct bxe_softc *sc, 7182 int idx, 7183 const char *blk) 7184 { 7185 BLOGI(sc, "%s%s", idx ? ", " : "", blk); 7186 } 7187 7188 static int 7189 bxe_check_blocks_with_parity0(struct bxe_softc *sc, 7190 uint32_t sig, 7191 int par_num, 7192 uint8_t print) 7193 { 7194 uint32_t cur_bit = 0; 7195 int i = 0; 7196 7197 for (i = 0; sig; i++) { 7198 cur_bit = ((uint32_t)0x1 << i); 7199 if (sig & cur_bit) { 7200 switch (cur_bit) { 7201 case AEU_INPUTS_ATTN_BITS_BRB_PARITY_ERROR: 7202 if (print) 7203 bxe_print_next_block(sc, par_num++, "BRB"); 7204 break; 7205 case AEU_INPUTS_ATTN_BITS_PARSER_PARITY_ERROR: 7206 if (print) 7207 bxe_print_next_block(sc, par_num++, "PARSER"); 7208 break; 7209 case AEU_INPUTS_ATTN_BITS_TSDM_PARITY_ERROR: 7210 if (print) 7211 bxe_print_next_block(sc, par_num++, "TSDM"); 7212 break; 7213 case AEU_INPUTS_ATTN_BITS_SEARCHER_PARITY_ERROR: 7214 if (print) 7215 bxe_print_next_block(sc, par_num++, "SEARCHER"); 7216 break; 7217 case AEU_INPUTS_ATTN_BITS_TCM_PARITY_ERROR: 7218 if (print) 7219 bxe_print_next_block(sc, par_num++, "TCM"); 7220 break; 7221 case AEU_INPUTS_ATTN_BITS_TSEMI_PARITY_ERROR: 7222 if (print) 7223 bxe_print_next_block(sc, par_num++, "TSEMI"); 7224 break; 7225 case AEU_INPUTS_ATTN_BITS_PBCLIENT_PARITY_ERROR: 7226 if (print) 7227 bxe_print_next_block(sc, par_num++, "XPB"); 7228 break; 7229 } 7230 7231 /* Clear the bit */ 7232 sig &= ~cur_bit; 7233 } 7234 } 7235 7236 return (par_num); 7237 } 7238 7239 static int 7240 bxe_check_blocks_with_parity1(struct bxe_softc *sc, 7241 uint32_t sig, 7242 int par_num, 7243 uint8_t *global, 7244 uint8_t print) 7245 { 7246 int i = 0; 7247 uint32_t cur_bit = 0; 7248 for (i = 0; sig; i++) { 7249 cur_bit = ((uint32_t)0x1 << i); 7250 if (sig & cur_bit) { 7251 switch (cur_bit) { 7252 case AEU_INPUTS_ATTN_BITS_PBF_PARITY_ERROR: 7253 if (print) 7254 bxe_print_next_block(sc, par_num++, "PBF"); 7255 break; 7256 case AEU_INPUTS_ATTN_BITS_QM_PARITY_ERROR: 7257 if (print) 7258 bxe_print_next_block(sc, par_num++, "QM"); 7259 break; 7260 case AEU_INPUTS_ATTN_BITS_TIMERS_PARITY_ERROR: 7261 if (print) 7262 bxe_print_next_block(sc, par_num++, "TM"); 7263 break; 7264 case AEU_INPUTS_ATTN_BITS_XSDM_PARITY_ERROR: 7265 if (print) 7266 bxe_print_next_block(sc, par_num++, "XSDM"); 7267 break; 7268 case AEU_INPUTS_ATTN_BITS_XCM_PARITY_ERROR: 7269 if (print) 7270 bxe_print_next_block(sc, par_num++, "XCM"); 7271 break; 7272 case AEU_INPUTS_ATTN_BITS_XSEMI_PARITY_ERROR: 7273 if (print) 7274 bxe_print_next_block(sc, par_num++, "XSEMI"); 7275 break; 7276 case AEU_INPUTS_ATTN_BITS_DOORBELLQ_PARITY_ERROR: 7277 if (print) 7278 bxe_print_next_block(sc, par_num++, "DOORBELLQ"); 7279 break; 7280 case AEU_INPUTS_ATTN_BITS_NIG_PARITY_ERROR: 7281 if (print) 7282 bxe_print_next_block(sc, par_num++, "NIG"); 7283 break; 7284 case AEU_INPUTS_ATTN_BITS_VAUX_PCI_CORE_PARITY_ERROR: 7285 if (print) 7286 bxe_print_next_block(sc, par_num++, "VAUX PCI CORE"); 7287 *global = TRUE; 7288 break; 7289 case AEU_INPUTS_ATTN_BITS_DEBUG_PARITY_ERROR: 7290 if (print) 7291 bxe_print_next_block(sc, par_num++, "DEBUG"); 7292 break; 7293 case AEU_INPUTS_ATTN_BITS_USDM_PARITY_ERROR: 7294 if (print) 7295 bxe_print_next_block(sc, par_num++, "USDM"); 7296 break; 7297 case AEU_INPUTS_ATTN_BITS_UCM_PARITY_ERROR: 7298 if (print) 7299 bxe_print_next_block(sc, par_num++, "UCM"); 7300 break; 7301 case AEU_INPUTS_ATTN_BITS_USEMI_PARITY_ERROR: 7302 if (print) 7303 bxe_print_next_block(sc, par_num++, "USEMI"); 7304 break; 7305 case AEU_INPUTS_ATTN_BITS_UPB_PARITY_ERROR: 7306 if (print) 7307 bxe_print_next_block(sc, par_num++, "UPB"); 7308 break; 7309 case AEU_INPUTS_ATTN_BITS_CSDM_PARITY_ERROR: 7310 if (print) 7311 bxe_print_next_block(sc, par_num++, "CSDM"); 7312 break; 7313 case AEU_INPUTS_ATTN_BITS_CCM_PARITY_ERROR: 7314 if (print) 7315 bxe_print_next_block(sc, par_num++, "CCM"); 7316 break; 7317 } 7318 7319 /* Clear the bit */ 7320 sig &= ~cur_bit; 7321 } 7322 } 7323 7324 return (par_num); 7325 } 7326 7327 static int 7328 bxe_check_blocks_with_parity2(struct bxe_softc *sc, 7329 uint32_t sig, 7330 int par_num, 7331 uint8_t print) 7332 { 7333 uint32_t cur_bit = 0; 7334 int i = 0; 7335 7336 for (i = 0; sig; i++) { 7337 cur_bit = ((uint32_t)0x1 << i); 7338 if (sig & cur_bit) { 7339 switch (cur_bit) { 7340 case AEU_INPUTS_ATTN_BITS_CSEMI_PARITY_ERROR: 7341 if (print) 7342 bxe_print_next_block(sc, par_num++, "CSEMI"); 7343 break; 7344 case AEU_INPUTS_ATTN_BITS_PXP_PARITY_ERROR: 7345 if (print) 7346 bxe_print_next_block(sc, par_num++, "PXP"); 7347 break; 7348 case AEU_IN_ATTN_BITS_PXPPCICLOCKCLIENT_PARITY_ERROR: 7349 if (print) 7350 bxe_print_next_block(sc, par_num++, "PXPPCICLOCKCLIENT"); 7351 break; 7352 case AEU_INPUTS_ATTN_BITS_CFC_PARITY_ERROR: 7353 if (print) 7354 bxe_print_next_block(sc, par_num++, "CFC"); 7355 break; 7356 case AEU_INPUTS_ATTN_BITS_CDU_PARITY_ERROR: 7357 if (print) 7358 bxe_print_next_block(sc, par_num++, "CDU"); 7359 break; 7360 case AEU_INPUTS_ATTN_BITS_DMAE_PARITY_ERROR: 7361 if (print) 7362 bxe_print_next_block(sc, par_num++, "DMAE"); 7363 break; 7364 case AEU_INPUTS_ATTN_BITS_IGU_PARITY_ERROR: 7365 if (print) 7366 bxe_print_next_block(sc, par_num++, "IGU"); 7367 break; 7368 case AEU_INPUTS_ATTN_BITS_MISC_PARITY_ERROR: 7369 if (print) 7370 bxe_print_next_block(sc, par_num++, "MISC"); 7371 break; 7372 } 7373 7374 /* Clear the bit */ 7375 sig &= ~cur_bit; 7376 } 7377 } 7378 7379 return (par_num); 7380 } 7381 7382 static int 7383 bxe_check_blocks_with_parity3(struct bxe_softc *sc, 7384 uint32_t sig, 7385 int par_num, 7386 uint8_t *global, 7387 uint8_t print) 7388 { 7389 uint32_t cur_bit = 0; 7390 int i = 0; 7391 7392 for (i = 0; sig; i++) { 7393 cur_bit = ((uint32_t)0x1 << i); 7394 if (sig & cur_bit) { 7395 switch (cur_bit) { 7396 case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_ROM_PARITY: 7397 if (print) 7398 bxe_print_next_block(sc, par_num++, "MCP ROM"); 7399 *global = TRUE; 7400 break; 7401 case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_RX_PARITY: 7402 if (print) 7403 bxe_print_next_block(sc, par_num++, 7404 "MCP UMP RX"); 7405 *global = TRUE; 7406 break; 7407 case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_TX_PARITY: 7408 if (print) 7409 bxe_print_next_block(sc, par_num++, 7410 "MCP UMP TX"); 7411 *global = TRUE; 7412 break; 7413 case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY: 7414 if (print) 7415 bxe_print_next_block(sc, par_num++, 7416 "MCP SCPAD"); 7417 *global = TRUE; 7418 break; 7419 } 7420 7421 /* Clear the bit */ 7422 sig &= ~cur_bit; 7423 } 7424 } 7425 7426 return (par_num); 7427 } 7428 7429 static int 7430 bxe_check_blocks_with_parity4(struct bxe_softc *sc, 7431 uint32_t sig, 7432 int par_num, 7433 uint8_t print) 7434 { 7435 uint32_t cur_bit = 0; 7436 int i = 0; 7437 7438 for (i = 0; sig; i++) { 7439 cur_bit = ((uint32_t)0x1 << i); 7440 if (sig & cur_bit) { 7441 switch (cur_bit) { 7442 case AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR: 7443 if (print) 7444 bxe_print_next_block(sc, par_num++, "PGLUE_B"); 7445 break; 7446 case AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR: 7447 if (print) 7448 bxe_print_next_block(sc, par_num++, "ATC"); 7449 break; 7450 } 7451 7452 /* Clear the bit */ 7453 sig &= ~cur_bit; 7454 } 7455 } 7456 7457 return (par_num); 7458 } 7459 7460 static uint8_t 7461 bxe_parity_attn(struct bxe_softc *sc, 7462 uint8_t *global, 7463 uint8_t print, 7464 uint32_t *sig) 7465 { 7466 int par_num = 0; 7467 7468 if ((sig[0] & HW_PRTY_ASSERT_SET_0) || 7469 (sig[1] & HW_PRTY_ASSERT_SET_1) || 7470 (sig[2] & HW_PRTY_ASSERT_SET_2) || 7471 (sig[3] & HW_PRTY_ASSERT_SET_3) || 7472 (sig[4] & HW_PRTY_ASSERT_SET_4)) { 7473 BLOGE(sc, "Parity error: HW block parity attention:\n" 7474 "[0]:0x%08x [1]:0x%08x [2]:0x%08x [3]:0x%08x [4]:0x%08x\n", 7475 (uint32_t)(sig[0] & HW_PRTY_ASSERT_SET_0), 7476 (uint32_t)(sig[1] & HW_PRTY_ASSERT_SET_1), 7477 (uint32_t)(sig[2] & HW_PRTY_ASSERT_SET_2), 7478 (uint32_t)(sig[3] & HW_PRTY_ASSERT_SET_3), 7479 (uint32_t)(sig[4] & HW_PRTY_ASSERT_SET_4)); 7480 7481 if (print) 7482 BLOGI(sc, "Parity errors detected in blocks: "); 7483 7484 par_num = 7485 bxe_check_blocks_with_parity0(sc, sig[0] & 7486 HW_PRTY_ASSERT_SET_0, 7487 par_num, print); 7488 par_num = 7489 bxe_check_blocks_with_parity1(sc, sig[1] & 7490 HW_PRTY_ASSERT_SET_1, 7491 par_num, global, print); 7492 par_num = 7493 bxe_check_blocks_with_parity2(sc, sig[2] & 7494 HW_PRTY_ASSERT_SET_2, 7495 par_num, print); 7496 par_num = 7497 bxe_check_blocks_with_parity3(sc, sig[3] & 7498 HW_PRTY_ASSERT_SET_3, 7499 par_num, global, print); 7500 par_num = 7501 bxe_check_blocks_with_parity4(sc, sig[4] & 7502 HW_PRTY_ASSERT_SET_4, 7503 par_num, print); 7504 7505 if (print) 7506 BLOGI(sc, "\n"); 7507 7508 return (TRUE); 7509 } 7510 7511 return (FALSE); 7512 } 7513 7514 static uint8_t 7515 bxe_chk_parity_attn(struct bxe_softc *sc, 7516 uint8_t *global, 7517 uint8_t print) 7518 { 7519 struct attn_route attn = { {0} }; 7520 int port = SC_PORT(sc); 7521 7522 attn.sig[0] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + port*4); 7523 attn.sig[1] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 + port*4); 7524 attn.sig[2] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 + port*4); 7525 attn.sig[3] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 + port*4); 7526 7527 /* 7528 * Since MCP attentions can't be disabled inside the block, we need to 7529 * read AEU registers to see whether they're currently disabled 7530 */ 7531 attn.sig[3] &= ((REG_RD(sc, (!port ? MISC_REG_AEU_ENABLE4_FUNC_0_OUT_0 7532 : MISC_REG_AEU_ENABLE4_FUNC_1_OUT_0)) & 7533 MISC_AEU_ENABLE_MCP_PRTY_BITS) | 7534 ~MISC_AEU_ENABLE_MCP_PRTY_BITS); 7535 7536 7537 if (!CHIP_IS_E1x(sc)) 7538 attn.sig[4] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 + port*4); 7539 7540 return (bxe_parity_attn(sc, global, print, attn.sig)); 7541 } 7542 7543 static void 7544 bxe_attn_int_deasserted4(struct bxe_softc *sc, 7545 uint32_t attn) 7546 { 7547 uint32_t val; 7548 7549 if (attn & AEU_INPUTS_ATTN_BITS_PGLUE_HW_INTERRUPT) { 7550 val = REG_RD(sc, PGLUE_B_REG_PGLUE_B_INT_STS_CLR); 7551 BLOGE(sc, "PGLUE hw attention 0x%08x\n", val); 7552 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR) 7553 BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR\n"); 7554 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR) 7555 BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR\n"); 7556 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN) 7557 BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN\n"); 7558 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN) 7559 BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN\n"); 7560 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN) 7561 BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN\n"); 7562 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN) 7563 BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN\n"); 7564 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN) 7565 BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN\n"); 7566 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN) 7567 BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN\n"); 7568 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW) 7569 BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW\n"); 7570 } 7571 7572 if (attn & AEU_INPUTS_ATTN_BITS_ATC_HW_INTERRUPT) { 7573 val = REG_RD(sc, ATC_REG_ATC_INT_STS_CLR); 7574 BLOGE(sc, "ATC hw attention 0x%08x\n", val); 7575 if (val & ATC_ATC_INT_STS_REG_ADDRESS_ERROR) 7576 BLOGE(sc, "ATC_ATC_INT_STS_REG_ADDRESS_ERROR\n"); 7577 if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND) 7578 BLOGE(sc, "ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND\n"); 7579 if (val & ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS) 7580 BLOGE(sc, "ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS\n"); 7581 if (val & ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT) 7582 BLOGE(sc, "ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT\n"); 7583 if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR) 7584 BLOGE(sc, "ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR\n"); 7585 if (val & ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU) 7586 BLOGE(sc, "ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU\n"); 7587 } 7588 7589 if (attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR | 7590 AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)) { 7591 BLOGE(sc, "FATAL parity attention set4 0x%08x\n", 7592 (uint32_t)(attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR | 7593 AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR))); 7594 } 7595 } 7596 7597 static void 7598 bxe_e1h_disable(struct bxe_softc *sc) 7599 { 7600 int port = SC_PORT(sc); 7601 7602 bxe_tx_disable(sc); 7603 7604 REG_WR(sc, NIG_REG_LLH0_FUNC_EN + port*8, 0); 7605 } 7606 7607 static void 7608 bxe_e1h_enable(struct bxe_softc *sc) 7609 { 7610 int port = SC_PORT(sc); 7611 7612 REG_WR(sc, NIG_REG_LLH0_FUNC_EN + port*8, 1); 7613 7614 // XXX bxe_tx_enable(sc); 7615 } 7616 7617 /* 7618 * called due to MCP event (on pmf): 7619 * reread new bandwidth configuration 7620 * configure FW 7621 * notify others function about the change 7622 */ 7623 static void 7624 bxe_config_mf_bw(struct bxe_softc *sc) 7625 { 7626 if (sc->link_vars.link_up) { 7627 bxe_cmng_fns_init(sc, TRUE, CMNG_FNS_MINMAX); 7628 // XXX bxe_link_sync_notify(sc); 7629 } 7630 7631 storm_memset_cmng(sc, &sc->cmng, SC_PORT(sc)); 7632 } 7633 7634 static void 7635 bxe_set_mf_bw(struct bxe_softc *sc) 7636 { 7637 bxe_config_mf_bw(sc); 7638 bxe_fw_command(sc, DRV_MSG_CODE_SET_MF_BW_ACK, 0); 7639 } 7640 7641 static void 7642 bxe_handle_eee_event(struct bxe_softc *sc) 7643 { 7644 BLOGD(sc, DBG_INTR, "EEE - LLDP event\n"); 7645 bxe_fw_command(sc, DRV_MSG_CODE_EEE_RESULTS_ACK, 0); 7646 } 7647 7648 #define DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED 3 7649 7650 static void 7651 bxe_drv_info_ether_stat(struct bxe_softc *sc) 7652 { 7653 struct eth_stats_info *ether_stat = 7654 &sc->sp->drv_info_to_mcp.ether_stat; 7655 7656 strlcpy(ether_stat->version, BXE_DRIVER_VERSION, 7657 ETH_STAT_INFO_VERSION_LEN); 7658 7659 /* XXX (+ MAC_PAD) taken from other driver... verify this is right */ 7660 sc->sp_objs[0].mac_obj.get_n_elements(sc, &sc->sp_objs[0].mac_obj, 7661 DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED, 7662 ether_stat->mac_local + MAC_PAD, 7663 MAC_PAD, ETH_ALEN); 7664 7665 ether_stat->mtu_size = sc->mtu; 7666 7667 ether_stat->feature_flags |= FEATURE_ETH_CHKSUM_OFFLOAD_MASK; 7668 if (if_getcapenable(sc->ifp) & (IFCAP_TSO4 | IFCAP_TSO6)) { 7669 ether_stat->feature_flags |= FEATURE_ETH_LSO_MASK; 7670 } 7671 7672 // XXX ether_stat->feature_flags |= ???; 7673 7674 ether_stat->promiscuous_mode = 0; // (flags & PROMISC) ? 1 : 0; 7675 7676 ether_stat->txq_size = sc->tx_ring_size; 7677 ether_stat->rxq_size = sc->rx_ring_size; 7678 } 7679 7680 static void 7681 bxe_handle_drv_info_req(struct bxe_softc *sc) 7682 { 7683 enum drv_info_opcode op_code; 7684 uint32_t drv_info_ctl = SHMEM2_RD(sc, drv_info_control); 7685 7686 /* if drv_info version supported by MFW doesn't match - send NACK */ 7687 if ((drv_info_ctl & DRV_INFO_CONTROL_VER_MASK) != DRV_INFO_CUR_VER) { 7688 bxe_fw_command(sc, DRV_MSG_CODE_DRV_INFO_NACK, 0); 7689 return; 7690 } 7691 7692 op_code = ((drv_info_ctl & DRV_INFO_CONTROL_OP_CODE_MASK) >> 7693 DRV_INFO_CONTROL_OP_CODE_SHIFT); 7694 7695 memset(&sc->sp->drv_info_to_mcp, 0, sizeof(union drv_info_to_mcp)); 7696 7697 switch (op_code) { 7698 case ETH_STATS_OPCODE: 7699 bxe_drv_info_ether_stat(sc); 7700 break; 7701 case FCOE_STATS_OPCODE: 7702 case ISCSI_STATS_OPCODE: 7703 default: 7704 /* if op code isn't supported - send NACK */ 7705 bxe_fw_command(sc, DRV_MSG_CODE_DRV_INFO_NACK, 0); 7706 return; 7707 } 7708 7709 /* 7710 * If we got drv_info attn from MFW then these fields are defined in 7711 * shmem2 for sure 7712 */ 7713 SHMEM2_WR(sc, drv_info_host_addr_lo, 7714 U64_LO(BXE_SP_MAPPING(sc, drv_info_to_mcp))); 7715 SHMEM2_WR(sc, drv_info_host_addr_hi, 7716 U64_HI(BXE_SP_MAPPING(sc, drv_info_to_mcp))); 7717 7718 bxe_fw_command(sc, DRV_MSG_CODE_DRV_INFO_ACK, 0); 7719 } 7720 7721 static void 7722 bxe_dcc_event(struct bxe_softc *sc, 7723 uint32_t dcc_event) 7724 { 7725 BLOGD(sc, DBG_INTR, "dcc_event 0x%08x\n", dcc_event); 7726 7727 if (dcc_event & DRV_STATUS_DCC_DISABLE_ENABLE_PF) { 7728 /* 7729 * This is the only place besides the function initialization 7730 * where the sc->flags can change so it is done without any 7731 * locks 7732 */ 7733 if (sc->devinfo.mf_info.mf_config[SC_VN(sc)] & FUNC_MF_CFG_FUNC_DISABLED) { 7734 BLOGD(sc, DBG_INTR, "mf_cfg function disabled\n"); 7735 sc->flags |= BXE_MF_FUNC_DIS; 7736 bxe_e1h_disable(sc); 7737 } else { 7738 BLOGD(sc, DBG_INTR, "mf_cfg function enabled\n"); 7739 sc->flags &= ~BXE_MF_FUNC_DIS; 7740 bxe_e1h_enable(sc); 7741 } 7742 dcc_event &= ~DRV_STATUS_DCC_DISABLE_ENABLE_PF; 7743 } 7744 7745 if (dcc_event & DRV_STATUS_DCC_BANDWIDTH_ALLOCATION) { 7746 bxe_config_mf_bw(sc); 7747 dcc_event &= ~DRV_STATUS_DCC_BANDWIDTH_ALLOCATION; 7748 } 7749 7750 /* Report results to MCP */ 7751 if (dcc_event) 7752 bxe_fw_command(sc, DRV_MSG_CODE_DCC_FAILURE, 0); 7753 else 7754 bxe_fw_command(sc, DRV_MSG_CODE_DCC_OK, 0); 7755 } 7756 7757 static void 7758 bxe_pmf_update(struct bxe_softc *sc) 7759 { 7760 int port = SC_PORT(sc); 7761 uint32_t val; 7762 7763 sc->port.pmf = 1; 7764 BLOGD(sc, DBG_INTR, "pmf %d\n", sc->port.pmf); 7765 7766 /* 7767 * We need the mb() to ensure the ordering between the writing to 7768 * sc->port.pmf here and reading it from the bxe_periodic_task(). 7769 */ 7770 mb(); 7771 7772 /* queue a periodic task */ 7773 // XXX schedule task... 7774 7775 // XXX bxe_dcbx_pmf_update(sc); 7776 7777 /* enable nig attention */ 7778 val = (0xff0f | (1 << (SC_VN(sc) + 4))); 7779 if (sc->devinfo.int_block == INT_BLOCK_HC) { 7780 REG_WR(sc, HC_REG_TRAILING_EDGE_0 + port*8, val); 7781 REG_WR(sc, HC_REG_LEADING_EDGE_0 + port*8, val); 7782 } else if (!CHIP_IS_E1x(sc)) { 7783 REG_WR(sc, IGU_REG_TRAILING_EDGE_LATCH, val); 7784 REG_WR(sc, IGU_REG_LEADING_EDGE_LATCH, val); 7785 } 7786 7787 bxe_stats_handle(sc, STATS_EVENT_PMF); 7788 } 7789 7790 static int 7791 bxe_mc_assert(struct bxe_softc *sc) 7792 { 7793 char last_idx; 7794 int i, rc = 0; 7795 uint32_t row0, row1, row2, row3; 7796 7797 /* XSTORM */ 7798 last_idx = REG_RD8(sc, BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_INDEX_OFFSET); 7799 if (last_idx) 7800 BLOGE(sc, "XSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx); 7801 7802 /* print the asserts */ 7803 for (i = 0; i < STORM_ASSERT_ARRAY_SIZE; i++) { 7804 7805 row0 = REG_RD(sc, BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_OFFSET(i)); 7806 row1 = REG_RD(sc, BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_OFFSET(i) + 4); 7807 row2 = REG_RD(sc, BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_OFFSET(i) + 8); 7808 row3 = REG_RD(sc, BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_OFFSET(i) + 12); 7809 7810 if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) { 7811 BLOGE(sc, "XSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n", 7812 i, row3, row2, row1, row0); 7813 rc++; 7814 } else { 7815 break; 7816 } 7817 } 7818 7819 /* TSTORM */ 7820 last_idx = REG_RD8(sc, BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_INDEX_OFFSET); 7821 if (last_idx) { 7822 BLOGE(sc, "TSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx); 7823 } 7824 7825 /* print the asserts */ 7826 for (i = 0; i < STORM_ASSERT_ARRAY_SIZE; i++) { 7827 7828 row0 = REG_RD(sc, BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_OFFSET(i)); 7829 row1 = REG_RD(sc, BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_OFFSET(i) + 4); 7830 row2 = REG_RD(sc, BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_OFFSET(i) + 8); 7831 row3 = REG_RD(sc, BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_OFFSET(i) + 12); 7832 7833 if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) { 7834 BLOGE(sc, "TSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n", 7835 i, row3, row2, row1, row0); 7836 rc++; 7837 } else { 7838 break; 7839 } 7840 } 7841 7842 /* CSTORM */ 7843 last_idx = REG_RD8(sc, BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_INDEX_OFFSET); 7844 if (last_idx) { 7845 BLOGE(sc, "CSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx); 7846 } 7847 7848 /* print the asserts */ 7849 for (i = 0; i < STORM_ASSERT_ARRAY_SIZE; i++) { 7850 7851 row0 = REG_RD(sc, BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_OFFSET(i)); 7852 row1 = REG_RD(sc, BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_OFFSET(i) + 4); 7853 row2 = REG_RD(sc, BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_OFFSET(i) + 8); 7854 row3 = REG_RD(sc, BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_OFFSET(i) + 12); 7855 7856 if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) { 7857 BLOGE(sc, "CSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n", 7858 i, row3, row2, row1, row0); 7859 rc++; 7860 } else { 7861 break; 7862 } 7863 } 7864 7865 /* USTORM */ 7866 last_idx = REG_RD8(sc, BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_INDEX_OFFSET); 7867 if (last_idx) { 7868 BLOGE(sc, "USTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx); 7869 } 7870 7871 /* print the asserts */ 7872 for (i = 0; i < STORM_ASSERT_ARRAY_SIZE; i++) { 7873 7874 row0 = REG_RD(sc, BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_OFFSET(i)); 7875 row1 = REG_RD(sc, BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_OFFSET(i) + 4); 7876 row2 = REG_RD(sc, BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_OFFSET(i) + 8); 7877 row3 = REG_RD(sc, BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_OFFSET(i) + 12); 7878 7879 if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) { 7880 BLOGE(sc, "USTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n", 7881 i, row3, row2, row1, row0); 7882 rc++; 7883 } else { 7884 break; 7885 } 7886 } 7887 7888 return (rc); 7889 } 7890 7891 static void 7892 bxe_attn_int_deasserted3(struct bxe_softc *sc, 7893 uint32_t attn) 7894 { 7895 int func = SC_FUNC(sc); 7896 uint32_t val; 7897 7898 if (attn & EVEREST_GEN_ATTN_IN_USE_MASK) { 7899 7900 if (attn & BXE_PMF_LINK_ASSERT(sc)) { 7901 7902 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0); 7903 bxe_read_mf_cfg(sc); 7904 sc->devinfo.mf_info.mf_config[SC_VN(sc)] = 7905 MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].config); 7906 val = SHMEM_RD(sc, func_mb[SC_FW_MB_IDX(sc)].drv_status); 7907 7908 if (val & DRV_STATUS_DCC_EVENT_MASK) 7909 bxe_dcc_event(sc, (val & DRV_STATUS_DCC_EVENT_MASK)); 7910 7911 if (val & DRV_STATUS_SET_MF_BW) 7912 bxe_set_mf_bw(sc); 7913 7914 if (val & DRV_STATUS_DRV_INFO_REQ) 7915 bxe_handle_drv_info_req(sc); 7916 7917 if ((sc->port.pmf == 0) && (val & DRV_STATUS_PMF)) 7918 bxe_pmf_update(sc); 7919 7920 if (val & DRV_STATUS_EEE_NEGOTIATION_RESULTS) 7921 bxe_handle_eee_event(sc); 7922 7923 if (sc->link_vars.periodic_flags & 7924 ELINK_PERIODIC_FLAGS_LINK_EVENT) { 7925 /* sync with link */ 7926 bxe_acquire_phy_lock(sc); 7927 sc->link_vars.periodic_flags &= 7928 ~ELINK_PERIODIC_FLAGS_LINK_EVENT; 7929 bxe_release_phy_lock(sc); 7930 if (IS_MF(sc)) 7931 ; // XXX bxe_link_sync_notify(sc); 7932 bxe_link_report(sc); 7933 } 7934 7935 /* 7936 * Always call it here: bxe_link_report() will 7937 * prevent the link indication duplication. 7938 */ 7939 bxe_link_status_update(sc); 7940 7941 } else if (attn & BXE_MC_ASSERT_BITS) { 7942 7943 BLOGE(sc, "MC assert!\n"); 7944 bxe_mc_assert(sc); 7945 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_10, 0); 7946 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_9, 0); 7947 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_8, 0); 7948 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_7, 0); 7949 bxe_panic(sc, ("MC assert!\n")); 7950 7951 } else if (attn & BXE_MCP_ASSERT) { 7952 7953 BLOGE(sc, "MCP assert!\n"); 7954 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_11, 0); 7955 // XXX bxe_fw_dump(sc); 7956 7957 } else { 7958 BLOGE(sc, "Unknown HW assert! (attn 0x%08x)\n", attn); 7959 } 7960 } 7961 7962 if (attn & EVEREST_LATCHED_ATTN_IN_USE_MASK) { 7963 BLOGE(sc, "LATCHED attention 0x%08x (masked)\n", attn); 7964 if (attn & BXE_GRC_TIMEOUT) { 7965 val = CHIP_IS_E1(sc) ? 0 : REG_RD(sc, MISC_REG_GRC_TIMEOUT_ATTN); 7966 BLOGE(sc, "GRC time-out 0x%08x\n", val); 7967 } 7968 if (attn & BXE_GRC_RSV) { 7969 val = CHIP_IS_E1(sc) ? 0 : REG_RD(sc, MISC_REG_GRC_RSV_ATTN); 7970 BLOGE(sc, "GRC reserved 0x%08x\n", val); 7971 } 7972 REG_WR(sc, MISC_REG_AEU_CLR_LATCH_SIGNAL, 0x7ff); 7973 } 7974 } 7975 7976 static void 7977 bxe_attn_int_deasserted2(struct bxe_softc *sc, 7978 uint32_t attn) 7979 { 7980 int port = SC_PORT(sc); 7981 int reg_offset; 7982 uint32_t val0, mask0, val1, mask1; 7983 uint32_t val; 7984 7985 if (attn & AEU_INPUTS_ATTN_BITS_CFC_HW_INTERRUPT) { 7986 val = REG_RD(sc, CFC_REG_CFC_INT_STS_CLR); 7987 BLOGE(sc, "CFC hw attention 0x%08x\n", val); 7988 /* CFC error attention */ 7989 if (val & 0x2) { 7990 BLOGE(sc, "FATAL error from CFC\n"); 7991 } 7992 } 7993 7994 if (attn & AEU_INPUTS_ATTN_BITS_PXP_HW_INTERRUPT) { 7995 val = REG_RD(sc, PXP_REG_PXP_INT_STS_CLR_0); 7996 BLOGE(sc, "PXP hw attention-0 0x%08x\n", val); 7997 /* RQ_USDMDP_FIFO_OVERFLOW */ 7998 if (val & 0x18000) { 7999 BLOGE(sc, "FATAL error from PXP\n"); 8000 } 8001 8002 if (!CHIP_IS_E1x(sc)) { 8003 val = REG_RD(sc, PXP_REG_PXP_INT_STS_CLR_1); 8004 BLOGE(sc, "PXP hw attention-1 0x%08x\n", val); 8005 } 8006 } 8007 8008 #define PXP2_EOP_ERROR_BIT PXP2_PXP2_INT_STS_CLR_0_REG_WR_PGLUE_EOP_ERROR 8009 #define AEU_PXP2_HW_INT_BIT AEU_INPUTS_ATTN_BITS_PXPPCICLOCKCLIENT_HW_INTERRUPT 8010 8011 if (attn & AEU_PXP2_HW_INT_BIT) { 8012 /* CQ47854 workaround do not panic on 8013 * PXP2_PXP2_INT_STS_0_REG_WR_PGLUE_EOP_ERROR 8014 */ 8015 if (!CHIP_IS_E1x(sc)) { 8016 mask0 = REG_RD(sc, PXP2_REG_PXP2_INT_MASK_0); 8017 val1 = REG_RD(sc, PXP2_REG_PXP2_INT_STS_1); 8018 mask1 = REG_RD(sc, PXP2_REG_PXP2_INT_MASK_1); 8019 val0 = REG_RD(sc, PXP2_REG_PXP2_INT_STS_0); 8020 /* 8021 * If the only PXP2_EOP_ERROR_BIT is set in 8022 * STS0 and STS1 - clear it 8023 * 8024 * probably we lose additional attentions between 8025 * STS0 and STS_CLR0, in this case user will not 8026 * be notified about them 8027 */ 8028 if (val0 & mask0 & PXP2_EOP_ERROR_BIT && 8029 !(val1 & mask1)) 8030 val0 = REG_RD(sc, PXP2_REG_PXP2_INT_STS_CLR_0); 8031 8032 /* print the register, since no one can restore it */ 8033 BLOGE(sc, "PXP2_REG_PXP2_INT_STS_CLR_0 0x%08x\n", val0); 8034 8035 /* 8036 * if PXP2_PXP2_INT_STS_0_REG_WR_PGLUE_EOP_ERROR 8037 * then notify 8038 */ 8039 if (val0 & PXP2_EOP_ERROR_BIT) { 8040 BLOGE(sc, "PXP2_WR_PGLUE_EOP_ERROR\n"); 8041 8042 /* 8043 * if only PXP2_PXP2_INT_STS_0_REG_WR_PGLUE_EOP_ERROR is 8044 * set then clear attention from PXP2 block without panic 8045 */ 8046 if (((val0 & mask0) == PXP2_EOP_ERROR_BIT) && 8047 ((val1 & mask1) == 0)) 8048 attn &= ~AEU_PXP2_HW_INT_BIT; 8049 } 8050 } 8051 } 8052 8053 if (attn & HW_INTERRUT_ASSERT_SET_2) { 8054 reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_2 : 8055 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_2); 8056 8057 val = REG_RD(sc, reg_offset); 8058 val &= ~(attn & HW_INTERRUT_ASSERT_SET_2); 8059 REG_WR(sc, reg_offset, val); 8060 8061 BLOGE(sc, "FATAL HW block attention set2 0x%x\n", 8062 (uint32_t)(attn & HW_INTERRUT_ASSERT_SET_2)); 8063 bxe_panic(sc, ("HW block attention set2\n")); 8064 } 8065 } 8066 8067 static void 8068 bxe_attn_int_deasserted1(struct bxe_softc *sc, 8069 uint32_t attn) 8070 { 8071 int port = SC_PORT(sc); 8072 int reg_offset; 8073 uint32_t val; 8074 8075 if (attn & AEU_INPUTS_ATTN_BITS_DOORBELLQ_HW_INTERRUPT) { 8076 val = REG_RD(sc, DORQ_REG_DORQ_INT_STS_CLR); 8077 BLOGE(sc, "DB hw attention 0x%08x\n", val); 8078 /* DORQ discard attention */ 8079 if (val & 0x2) { 8080 BLOGE(sc, "FATAL error from DORQ\n"); 8081 } 8082 } 8083 8084 if (attn & HW_INTERRUT_ASSERT_SET_1) { 8085 reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_1 : 8086 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_1); 8087 8088 val = REG_RD(sc, reg_offset); 8089 val &= ~(attn & HW_INTERRUT_ASSERT_SET_1); 8090 REG_WR(sc, reg_offset, val); 8091 8092 BLOGE(sc, "FATAL HW block attention set1 0x%08x\n", 8093 (uint32_t)(attn & HW_INTERRUT_ASSERT_SET_1)); 8094 bxe_panic(sc, ("HW block attention set1\n")); 8095 } 8096 } 8097 8098 static void 8099 bxe_attn_int_deasserted0(struct bxe_softc *sc, 8100 uint32_t attn) 8101 { 8102 int port = SC_PORT(sc); 8103 int reg_offset; 8104 uint32_t val; 8105 8106 reg_offset = (port) ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 : 8107 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0; 8108 8109 if (attn & AEU_INPUTS_ATTN_BITS_SPIO5) { 8110 val = REG_RD(sc, reg_offset); 8111 val &= ~AEU_INPUTS_ATTN_BITS_SPIO5; 8112 REG_WR(sc, reg_offset, val); 8113 8114 BLOGW(sc, "SPIO5 hw attention\n"); 8115 8116 /* Fan failure attention */ 8117 elink_hw_reset_phy(&sc->link_params); 8118 bxe_fan_failure(sc); 8119 } 8120 8121 if ((attn & sc->link_vars.aeu_int_mask) && sc->port.pmf) { 8122 bxe_acquire_phy_lock(sc); 8123 elink_handle_module_detect_int(&sc->link_params); 8124 bxe_release_phy_lock(sc); 8125 } 8126 8127 if (attn & HW_INTERRUT_ASSERT_SET_0) { 8128 val = REG_RD(sc, reg_offset); 8129 val &= ~(attn & HW_INTERRUT_ASSERT_SET_0); 8130 REG_WR(sc, reg_offset, val); 8131 8132 bxe_panic(sc, ("FATAL HW block attention set0 0x%lx\n", 8133 (attn & HW_INTERRUT_ASSERT_SET_0))); 8134 } 8135 } 8136 8137 static void 8138 bxe_attn_int_deasserted(struct bxe_softc *sc, 8139 uint32_t deasserted) 8140 { 8141 struct attn_route attn; 8142 struct attn_route *group_mask; 8143 int port = SC_PORT(sc); 8144 int index; 8145 uint32_t reg_addr; 8146 uint32_t val; 8147 uint32_t aeu_mask; 8148 uint8_t global = FALSE; 8149 8150 /* 8151 * Need to take HW lock because MCP or other port might also 8152 * try to handle this event. 8153 */ 8154 bxe_acquire_alr(sc); 8155 8156 if (bxe_chk_parity_attn(sc, &global, TRUE)) { 8157 /* XXX 8158 * In case of parity errors don't handle attentions so that 8159 * other function would "see" parity errors. 8160 */ 8161 sc->recovery_state = BXE_RECOVERY_INIT; 8162 // XXX schedule a recovery task... 8163 /* disable HW interrupts */ 8164 bxe_int_disable(sc); 8165 bxe_release_alr(sc); 8166 return; 8167 } 8168 8169 attn.sig[0] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + port*4); 8170 attn.sig[1] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 + port*4); 8171 attn.sig[2] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 + port*4); 8172 attn.sig[3] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 + port*4); 8173 if (!CHIP_IS_E1x(sc)) { 8174 attn.sig[4] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 + port*4); 8175 } else { 8176 attn.sig[4] = 0; 8177 } 8178 8179 BLOGD(sc, DBG_INTR, "attn: 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x\n", 8180 attn.sig[0], attn.sig[1], attn.sig[2], attn.sig[3], attn.sig[4]); 8181 8182 for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) { 8183 if (deasserted & (1 << index)) { 8184 group_mask = &sc->attn_group[index]; 8185 8186 BLOGD(sc, DBG_INTR, 8187 "group[%d]: 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x\n", index, 8188 group_mask->sig[0], group_mask->sig[1], 8189 group_mask->sig[2], group_mask->sig[3], 8190 group_mask->sig[4]); 8191 8192 bxe_attn_int_deasserted4(sc, attn.sig[4] & group_mask->sig[4]); 8193 bxe_attn_int_deasserted3(sc, attn.sig[3] & group_mask->sig[3]); 8194 bxe_attn_int_deasserted1(sc, attn.sig[1] & group_mask->sig[1]); 8195 bxe_attn_int_deasserted2(sc, attn.sig[2] & group_mask->sig[2]); 8196 bxe_attn_int_deasserted0(sc, attn.sig[0] & group_mask->sig[0]); 8197 } 8198 } 8199 8200 bxe_release_alr(sc); 8201 8202 if (sc->devinfo.int_block == INT_BLOCK_HC) { 8203 reg_addr = (HC_REG_COMMAND_REG + port*32 + 8204 COMMAND_REG_ATTN_BITS_CLR); 8205 } else { 8206 reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_CLR_UPPER*8); 8207 } 8208 8209 val = ~deasserted; 8210 BLOGD(sc, DBG_INTR, 8211 "about to mask 0x%08x at %s addr 0x%08x\n", val, 8212 (sc->devinfo.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr); 8213 REG_WR(sc, reg_addr, val); 8214 8215 if (~sc->attn_state & deasserted) { 8216 BLOGE(sc, "IGU error\n"); 8217 } 8218 8219 reg_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 : 8220 MISC_REG_AEU_MASK_ATTN_FUNC_0; 8221 8222 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port); 8223 8224 aeu_mask = REG_RD(sc, reg_addr); 8225 8226 BLOGD(sc, DBG_INTR, "aeu_mask 0x%08x newly deasserted 0x%08x\n", 8227 aeu_mask, deasserted); 8228 aeu_mask |= (deasserted & 0x3ff); 8229 BLOGD(sc, DBG_INTR, "new mask 0x%08x\n", aeu_mask); 8230 8231 REG_WR(sc, reg_addr, aeu_mask); 8232 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port); 8233 8234 BLOGD(sc, DBG_INTR, "attn_state 0x%08x\n", sc->attn_state); 8235 sc->attn_state &= ~deasserted; 8236 BLOGD(sc, DBG_INTR, "new state 0x%08x\n", sc->attn_state); 8237 } 8238 8239 static void 8240 bxe_attn_int(struct bxe_softc *sc) 8241 { 8242 /* read local copy of bits */ 8243 uint32_t attn_bits = le32toh(sc->def_sb->atten_status_block.attn_bits); 8244 uint32_t attn_ack = le32toh(sc->def_sb->atten_status_block.attn_bits_ack); 8245 uint32_t attn_state = sc->attn_state; 8246 8247 /* look for changed bits */ 8248 uint32_t asserted = attn_bits & ~attn_ack & ~attn_state; 8249 uint32_t deasserted = ~attn_bits & attn_ack & attn_state; 8250 8251 BLOGD(sc, DBG_INTR, 8252 "attn_bits 0x%08x attn_ack 0x%08x asserted 0x%08x deasserted 0x%08x\n", 8253 attn_bits, attn_ack, asserted, deasserted); 8254 8255 if (~(attn_bits ^ attn_ack) & (attn_bits ^ attn_state)) { 8256 BLOGE(sc, "BAD attention state\n"); 8257 } 8258 8259 /* handle bits that were raised */ 8260 if (asserted) { 8261 bxe_attn_int_asserted(sc, asserted); 8262 } 8263 8264 if (deasserted) { 8265 bxe_attn_int_deasserted(sc, deasserted); 8266 } 8267 } 8268 8269 static uint16_t 8270 bxe_update_dsb_idx(struct bxe_softc *sc) 8271 { 8272 struct host_sp_status_block *def_sb = sc->def_sb; 8273 uint16_t rc = 0; 8274 8275 mb(); /* status block is written to by the chip */ 8276 8277 if (sc->def_att_idx != def_sb->atten_status_block.attn_bits_index) { 8278 sc->def_att_idx = def_sb->atten_status_block.attn_bits_index; 8279 rc |= BXE_DEF_SB_ATT_IDX; 8280 } 8281 8282 if (sc->def_idx != def_sb->sp_sb.running_index) { 8283 sc->def_idx = def_sb->sp_sb.running_index; 8284 rc |= BXE_DEF_SB_IDX; 8285 } 8286 8287 mb(); 8288 8289 return (rc); 8290 } 8291 8292 static inline struct ecore_queue_sp_obj * 8293 bxe_cid_to_q_obj(struct bxe_softc *sc, 8294 uint32_t cid) 8295 { 8296 BLOGD(sc, DBG_SP, "retrieving fp from cid %d\n", cid); 8297 return (&sc->sp_objs[CID_TO_FP(cid, sc)].q_obj); 8298 } 8299 8300 static void 8301 bxe_handle_mcast_eqe(struct bxe_softc *sc) 8302 { 8303 struct ecore_mcast_ramrod_params rparam; 8304 int rc; 8305 8306 memset(&rparam, 0, sizeof(rparam)); 8307 8308 rparam.mcast_obj = &sc->mcast_obj; 8309 8310 BXE_MCAST_LOCK(sc); 8311 8312 /* clear pending state for the last command */ 8313 sc->mcast_obj.raw.clear_pending(&sc->mcast_obj.raw); 8314 8315 /* if there are pending mcast commands - send them */ 8316 if (sc->mcast_obj.check_pending(&sc->mcast_obj)) { 8317 rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_CONT); 8318 if (rc < 0) { 8319 BLOGD(sc, DBG_SP, 8320 "ERROR: Failed to send pending mcast commands (%d)\n", rc); 8321 } 8322 } 8323 8324 BXE_MCAST_UNLOCK(sc); 8325 } 8326 8327 static void 8328 bxe_handle_classification_eqe(struct bxe_softc *sc, 8329 union event_ring_elem *elem) 8330 { 8331 unsigned long ramrod_flags = 0; 8332 int rc = 0; 8333 uint32_t cid = elem->message.data.eth_event.echo & BXE_SWCID_MASK; 8334 struct ecore_vlan_mac_obj *vlan_mac_obj; 8335 8336 /* always push next commands out, don't wait here */ 8337 bit_set(&ramrod_flags, RAMROD_CONT); 8338 8339 switch (le32toh(elem->message.data.eth_event.echo) >> BXE_SWCID_SHIFT) { 8340 case ECORE_FILTER_MAC_PENDING: 8341 BLOGD(sc, DBG_SP, "Got SETUP_MAC completions\n"); 8342 vlan_mac_obj = &sc->sp_objs[cid].mac_obj; 8343 break; 8344 8345 case ECORE_FILTER_MCAST_PENDING: 8346 BLOGD(sc, DBG_SP, "Got SETUP_MCAST completions\n"); 8347 /* 8348 * This is only relevant for 57710 where multicast MACs are 8349 * configured as unicast MACs using the same ramrod. 8350 */ 8351 bxe_handle_mcast_eqe(sc); 8352 return; 8353 8354 default: 8355 BLOGE(sc, "Unsupported classification command: %d\n", 8356 elem->message.data.eth_event.echo); 8357 return; 8358 } 8359 8360 rc = vlan_mac_obj->complete(sc, vlan_mac_obj, elem, &ramrod_flags); 8361 8362 if (rc < 0) { 8363 BLOGE(sc, "Failed to schedule new commands (%d)\n", rc); 8364 } else if (rc > 0) { 8365 BLOGD(sc, DBG_SP, "Scheduled next pending commands...\n"); 8366 } 8367 } 8368 8369 static void 8370 bxe_handle_rx_mode_eqe(struct bxe_softc *sc, 8371 union event_ring_elem *elem) 8372 { 8373 bxe_clear_bit(ECORE_FILTER_RX_MODE_PENDING, &sc->sp_state); 8374 8375 /* send rx_mode command again if was requested */ 8376 if (bxe_test_and_clear_bit(ECORE_FILTER_RX_MODE_SCHED, 8377 &sc->sp_state)) { 8378 bxe_set_storm_rx_mode(sc); 8379 } 8380 } 8381 8382 static void 8383 bxe_update_eq_prod(struct bxe_softc *sc, 8384 uint16_t prod) 8385 { 8386 storm_memset_eq_prod(sc, prod, SC_FUNC(sc)); 8387 wmb(); /* keep prod updates ordered */ 8388 } 8389 8390 static void 8391 bxe_eq_int(struct bxe_softc *sc) 8392 { 8393 uint16_t hw_cons, sw_cons, sw_prod; 8394 union event_ring_elem *elem; 8395 uint8_t echo; 8396 uint32_t cid; 8397 uint8_t opcode; 8398 int spqe_cnt = 0; 8399 struct ecore_queue_sp_obj *q_obj; 8400 struct ecore_func_sp_obj *f_obj = &sc->func_obj; 8401 struct ecore_raw_obj *rss_raw = &sc->rss_conf_obj.raw; 8402 8403 hw_cons = le16toh(*sc->eq_cons_sb); 8404 8405 /* 8406 * The hw_cons range is 1-255, 257 - the sw_cons range is 0-254, 256. 8407 * when we get to the next-page we need to adjust so the loop 8408 * condition below will be met. The next element is the size of a 8409 * regular element and hence incrementing by 1 8410 */ 8411 if ((hw_cons & EQ_DESC_MAX_PAGE) == EQ_DESC_MAX_PAGE) { 8412 hw_cons++; 8413 } 8414 8415 /* 8416 * This function may never run in parallel with itself for a 8417 * specific sc and no need for a read memory barrier here. 8418 */ 8419 sw_cons = sc->eq_cons; 8420 sw_prod = sc->eq_prod; 8421 8422 BLOGD(sc, DBG_SP,"EQ: hw_cons=%u sw_cons=%u eq_spq_left=0x%lx\n", 8423 hw_cons, sw_cons, atomic_load_acq_long(&sc->eq_spq_left)); 8424 8425 for (; 8426 sw_cons != hw_cons; 8427 sw_prod = NEXT_EQ_IDX(sw_prod), sw_cons = NEXT_EQ_IDX(sw_cons)) { 8428 8429 elem = &sc->eq[EQ_DESC(sw_cons)]; 8430 8431 /* elem CID originates from FW, actually LE */ 8432 cid = SW_CID(elem->message.data.cfc_del_event.cid); 8433 opcode = elem->message.opcode; 8434 8435 /* handle eq element */ 8436 switch (opcode) { 8437 8438 case EVENT_RING_OPCODE_STAT_QUERY: 8439 BLOGD(sc, DBG_SP, "got statistics completion event %d\n", 8440 sc->stats_comp++); 8441 /* nothing to do with stats comp */ 8442 goto next_spqe; 8443 8444 case EVENT_RING_OPCODE_CFC_DEL: 8445 /* handle according to cid range */ 8446 /* we may want to verify here that the sc state is HALTING */ 8447 BLOGD(sc, DBG_SP, "got delete ramrod for MULTI[%d]\n", cid); 8448 q_obj = bxe_cid_to_q_obj(sc, cid); 8449 if (q_obj->complete_cmd(sc, q_obj, ECORE_Q_CMD_CFC_DEL)) { 8450 break; 8451 } 8452 goto next_spqe; 8453 8454 case EVENT_RING_OPCODE_STOP_TRAFFIC: 8455 BLOGD(sc, DBG_SP, "got STOP TRAFFIC\n"); 8456 if (f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_TX_STOP)) { 8457 break; 8458 } 8459 // XXX bxe_dcbx_set_params(sc, BXE_DCBX_STATE_TX_PAUSED); 8460 goto next_spqe; 8461 8462 case EVENT_RING_OPCODE_START_TRAFFIC: 8463 BLOGD(sc, DBG_SP, "got START TRAFFIC\n"); 8464 if (f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_TX_START)) { 8465 break; 8466 } 8467 // XXX bxe_dcbx_set_params(sc, BXE_DCBX_STATE_TX_RELEASED); 8468 goto next_spqe; 8469 8470 case EVENT_RING_OPCODE_FUNCTION_UPDATE: 8471 echo = elem->message.data.function_update_event.echo; 8472 if (echo == SWITCH_UPDATE) { 8473 BLOGD(sc, DBG_SP, "got FUNC_SWITCH_UPDATE ramrod\n"); 8474 if (f_obj->complete_cmd(sc, f_obj, 8475 ECORE_F_CMD_SWITCH_UPDATE)) { 8476 break; 8477 } 8478 } 8479 else { 8480 BLOGD(sc, DBG_SP, 8481 "AFEX: ramrod completed FUNCTION_UPDATE\n"); 8482 } 8483 goto next_spqe; 8484 8485 case EVENT_RING_OPCODE_FORWARD_SETUP: 8486 q_obj = &bxe_fwd_sp_obj(sc, q_obj); 8487 if (q_obj->complete_cmd(sc, q_obj, 8488 ECORE_Q_CMD_SETUP_TX_ONLY)) { 8489 break; 8490 } 8491 goto next_spqe; 8492 8493 case EVENT_RING_OPCODE_FUNCTION_START: 8494 BLOGD(sc, DBG_SP, "got FUNC_START ramrod\n"); 8495 if (f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_START)) { 8496 break; 8497 } 8498 goto next_spqe; 8499 8500 case EVENT_RING_OPCODE_FUNCTION_STOP: 8501 BLOGD(sc, DBG_SP, "got FUNC_STOP ramrod\n"); 8502 if (f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_STOP)) { 8503 break; 8504 } 8505 goto next_spqe; 8506 } 8507 8508 switch (opcode | sc->state) { 8509 case (EVENT_RING_OPCODE_RSS_UPDATE_RULES | BXE_STATE_OPEN): 8510 case (EVENT_RING_OPCODE_RSS_UPDATE_RULES | BXE_STATE_OPENING_WAITING_PORT): 8511 cid = elem->message.data.eth_event.echo & BXE_SWCID_MASK; 8512 BLOGD(sc, DBG_SP, "got RSS_UPDATE ramrod. CID %d\n", cid); 8513 rss_raw->clear_pending(rss_raw); 8514 break; 8515 8516 case (EVENT_RING_OPCODE_SET_MAC | BXE_STATE_OPEN): 8517 case (EVENT_RING_OPCODE_SET_MAC | BXE_STATE_DIAG): 8518 case (EVENT_RING_OPCODE_SET_MAC | BXE_STATE_CLOSING_WAITING_HALT): 8519 case (EVENT_RING_OPCODE_CLASSIFICATION_RULES | BXE_STATE_OPEN): 8520 case (EVENT_RING_OPCODE_CLASSIFICATION_RULES | BXE_STATE_DIAG): 8521 case (EVENT_RING_OPCODE_CLASSIFICATION_RULES | BXE_STATE_CLOSING_WAITING_HALT): 8522 BLOGD(sc, DBG_SP, "got (un)set mac ramrod\n"); 8523 bxe_handle_classification_eqe(sc, elem); 8524 break; 8525 8526 case (EVENT_RING_OPCODE_MULTICAST_RULES | BXE_STATE_OPEN): 8527 case (EVENT_RING_OPCODE_MULTICAST_RULES | BXE_STATE_DIAG): 8528 case (EVENT_RING_OPCODE_MULTICAST_RULES | BXE_STATE_CLOSING_WAITING_HALT): 8529 BLOGD(sc, DBG_SP, "got mcast ramrod\n"); 8530 bxe_handle_mcast_eqe(sc); 8531 break; 8532 8533 case (EVENT_RING_OPCODE_FILTERS_RULES | BXE_STATE_OPEN): 8534 case (EVENT_RING_OPCODE_FILTERS_RULES | BXE_STATE_DIAG): 8535 case (EVENT_RING_OPCODE_FILTERS_RULES | BXE_STATE_CLOSING_WAITING_HALT): 8536 BLOGD(sc, DBG_SP, "got rx_mode ramrod\n"); 8537 bxe_handle_rx_mode_eqe(sc, elem); 8538 break; 8539 8540 default: 8541 /* unknown event log error and continue */ 8542 BLOGE(sc, "Unknown EQ event %d, sc->state 0x%x\n", 8543 elem->message.opcode, sc->state); 8544 } 8545 8546 next_spqe: 8547 spqe_cnt++; 8548 } /* for */ 8549 8550 mb(); 8551 atomic_add_acq_long(&sc->eq_spq_left, spqe_cnt); 8552 8553 sc->eq_cons = sw_cons; 8554 sc->eq_prod = sw_prod; 8555 8556 /* make sure that above mem writes were issued towards the memory */ 8557 wmb(); 8558 8559 /* update producer */ 8560 bxe_update_eq_prod(sc, sc->eq_prod); 8561 } 8562 8563 static void 8564 bxe_handle_sp_tq(void *context, 8565 int pending) 8566 { 8567 struct bxe_softc *sc = (struct bxe_softc *)context; 8568 uint16_t status; 8569 8570 BLOGD(sc, DBG_SP, "---> SP TASK <---\n"); 8571 8572 /* what work needs to be performed? */ 8573 status = bxe_update_dsb_idx(sc); 8574 8575 BLOGD(sc, DBG_SP, "dsb status 0x%04x\n", status); 8576 8577 /* HW attentions */ 8578 if (status & BXE_DEF_SB_ATT_IDX) { 8579 BLOGD(sc, DBG_SP, "---> ATTN INTR <---\n"); 8580 bxe_attn_int(sc); 8581 status &= ~BXE_DEF_SB_ATT_IDX; 8582 } 8583 8584 /* SP events: STAT_QUERY and others */ 8585 if (status & BXE_DEF_SB_IDX) { 8586 /* handle EQ completions */ 8587 BLOGD(sc, DBG_SP, "---> EQ INTR <---\n"); 8588 bxe_eq_int(sc); 8589 bxe_ack_sb(sc, sc->igu_dsb_id, USTORM_ID, 8590 le16toh(sc->def_idx), IGU_INT_NOP, 1); 8591 status &= ~BXE_DEF_SB_IDX; 8592 } 8593 8594 /* if status is non zero then something went wrong */ 8595 if (__predict_false(status)) { 8596 BLOGE(sc, "Got an unknown SP interrupt! (0x%04x)\n", status); 8597 } 8598 8599 /* ack status block only if something was actually handled */ 8600 bxe_ack_sb(sc, sc->igu_dsb_id, ATTENTION_ID, 8601 le16toh(sc->def_att_idx), IGU_INT_ENABLE, 1); 8602 8603 /* 8604 * Must be called after the EQ processing (since eq leads to sriov 8605 * ramrod completion flows). 8606 * This flow may have been scheduled by the arrival of a ramrod 8607 * completion, or by the sriov code rescheduling itself. 8608 */ 8609 // XXX bxe_iov_sp_task(sc); 8610 8611 } 8612 8613 static void 8614 bxe_handle_fp_tq(void *context, 8615 int pending) 8616 { 8617 struct bxe_fastpath *fp = (struct bxe_fastpath *)context; 8618 struct bxe_softc *sc = fp->sc; 8619 uint8_t more_tx = FALSE; 8620 uint8_t more_rx = FALSE; 8621 8622 BLOGD(sc, DBG_INTR, "---> FP TASK QUEUE (%d) <---\n", fp->index); 8623 8624 /* XXX 8625 * IFF_DRV_RUNNING state can't be checked here since we process 8626 * slowpath events on a client queue during setup. Instead 8627 * we need to add a "process/continue" flag here that the driver 8628 * can use to tell the task here not to do anything. 8629 */ 8630 #if 0 8631 if (!(if_getdrvflags(sc->ifp) & IFF_DRV_RUNNING)) { 8632 return; 8633 } 8634 #endif 8635 8636 /* update the fastpath index */ 8637 bxe_update_fp_sb_idx(fp); 8638 8639 /* XXX add loop here if ever support multiple tx CoS */ 8640 /* fp->txdata[cos] */ 8641 if (bxe_has_tx_work(fp)) { 8642 BXE_FP_TX_LOCK(fp); 8643 more_tx = bxe_txeof(sc, fp); 8644 BXE_FP_TX_UNLOCK(fp); 8645 } 8646 8647 if (bxe_has_rx_work(fp)) { 8648 more_rx = bxe_rxeof(sc, fp); 8649 } 8650 8651 if (more_rx /*|| more_tx*/) { 8652 /* still more work to do */ 8653 taskqueue_enqueue(fp->tq, &fp->tq_task); 8654 return; 8655 } 8656 8657 bxe_ack_sb(sc, fp->igu_sb_id, USTORM_ID, 8658 le16toh(fp->fp_hc_idx), IGU_INT_ENABLE, 1); 8659 } 8660 8661 static void 8662 bxe_task_fp(struct bxe_fastpath *fp) 8663 { 8664 struct bxe_softc *sc = fp->sc; 8665 uint8_t more_tx = FALSE; 8666 uint8_t more_rx = FALSE; 8667 8668 BLOGD(sc, DBG_INTR, "---> FP TASK ISR (%d) <---\n", fp->index); 8669 8670 /* update the fastpath index */ 8671 bxe_update_fp_sb_idx(fp); 8672 8673 /* XXX add loop here if ever support multiple tx CoS */ 8674 /* fp->txdata[cos] */ 8675 if (bxe_has_tx_work(fp)) { 8676 BXE_FP_TX_LOCK(fp); 8677 more_tx = bxe_txeof(sc, fp); 8678 BXE_FP_TX_UNLOCK(fp); 8679 } 8680 8681 if (bxe_has_rx_work(fp)) { 8682 more_rx = bxe_rxeof(sc, fp); 8683 } 8684 8685 if (more_rx /*|| more_tx*/) { 8686 /* still more work to do, bail out if this ISR and process later */ 8687 taskqueue_enqueue(fp->tq, &fp->tq_task); 8688 return; 8689 } 8690 8691 /* 8692 * Here we write the fastpath index taken before doing any tx or rx work. 8693 * It is very well possible other hw events occurred up to this point and 8694 * they were actually processed accordingly above. Since we're going to 8695 * write an older fastpath index, an interrupt is coming which we might 8696 * not do any work in. 8697 */ 8698 bxe_ack_sb(sc, fp->igu_sb_id, USTORM_ID, 8699 le16toh(fp->fp_hc_idx), IGU_INT_ENABLE, 1); 8700 } 8701 8702 /* 8703 * Legacy interrupt entry point. 8704 * 8705 * Verifies that the controller generated the interrupt and 8706 * then calls a separate routine to handle the various 8707 * interrupt causes: link, RX, and TX. 8708 */ 8709 static void 8710 bxe_intr_legacy(void *xsc) 8711 { 8712 struct bxe_softc *sc = (struct bxe_softc *)xsc; 8713 struct bxe_fastpath *fp; 8714 uint16_t status, mask; 8715 int i; 8716 8717 BLOGD(sc, DBG_INTR, "---> BXE INTx <---\n"); 8718 8719 /* 8720 * 0 for ustorm, 1 for cstorm 8721 * the bits returned from ack_int() are 0-15 8722 * bit 0 = attention status block 8723 * bit 1 = fast path status block 8724 * a mask of 0x2 or more = tx/rx event 8725 * a mask of 1 = slow path event 8726 */ 8727 8728 status = bxe_ack_int(sc); 8729 8730 /* the interrupt is not for us */ 8731 if (__predict_false(status == 0)) { 8732 BLOGD(sc, DBG_INTR, "Not our interrupt!\n"); 8733 return; 8734 } 8735 8736 BLOGD(sc, DBG_INTR, "Interrupt status 0x%04x\n", status); 8737 8738 FOR_EACH_ETH_QUEUE(sc, i) { 8739 fp = &sc->fp[i]; 8740 mask = (0x2 << (fp->index + CNIC_SUPPORT(sc))); 8741 if (status & mask) { 8742 /* acknowledge and disable further fastpath interrupts */ 8743 bxe_ack_sb(sc, fp->igu_sb_id, USTORM_ID, 0, IGU_INT_DISABLE, 0); 8744 bxe_task_fp(fp); 8745 status &= ~mask; 8746 } 8747 } 8748 8749 if (__predict_false(status & 0x1)) { 8750 /* acknowledge and disable further slowpath interrupts */ 8751 bxe_ack_sb(sc, sc->igu_dsb_id, USTORM_ID, 0, IGU_INT_DISABLE, 0); 8752 8753 /* schedule slowpath handler */ 8754 taskqueue_enqueue(sc->sp_tq, &sc->sp_tq_task); 8755 8756 status &= ~0x1; 8757 } 8758 8759 if (__predict_false(status)) { 8760 BLOGW(sc, "Unexpected fastpath status (0x%08x)!\n", status); 8761 } 8762 } 8763 8764 /* slowpath interrupt entry point */ 8765 static void 8766 bxe_intr_sp(void *xsc) 8767 { 8768 struct bxe_softc *sc = (struct bxe_softc *)xsc; 8769 8770 BLOGD(sc, (DBG_INTR | DBG_SP), "---> SP INTR <---\n"); 8771 8772 /* acknowledge and disable further slowpath interrupts */ 8773 bxe_ack_sb(sc, sc->igu_dsb_id, USTORM_ID, 0, IGU_INT_DISABLE, 0); 8774 8775 /* schedule slowpath handler */ 8776 taskqueue_enqueue(sc->sp_tq, &sc->sp_tq_task); 8777 } 8778 8779 /* fastpath interrupt entry point */ 8780 static void 8781 bxe_intr_fp(void *xfp) 8782 { 8783 struct bxe_fastpath *fp = (struct bxe_fastpath *)xfp; 8784 struct bxe_softc *sc = fp->sc; 8785 8786 BLOGD(sc, DBG_INTR, "---> FP INTR %d <---\n", fp->index); 8787 8788 BLOGD(sc, DBG_INTR, 8789 "(cpu=%d) MSI-X fp=%d fw_sb=%d igu_sb=%d\n", 8790 curcpu, fp->index, fp->fw_sb_id, fp->igu_sb_id); 8791 8792 /* acknowledge and disable further fastpath interrupts */ 8793 bxe_ack_sb(sc, fp->igu_sb_id, USTORM_ID, 0, IGU_INT_DISABLE, 0); 8794 8795 bxe_task_fp(fp); 8796 } 8797 8798 /* Release all interrupts allocated by the driver. */ 8799 static void 8800 bxe_interrupt_free(struct bxe_softc *sc) 8801 { 8802 int i; 8803 8804 switch (sc->interrupt_mode) { 8805 case INTR_MODE_INTX: 8806 BLOGD(sc, DBG_LOAD, "Releasing legacy INTx vector\n"); 8807 if (sc->intr[0].resource != NULL) { 8808 bus_release_resource(sc->dev, 8809 SYS_RES_IRQ, 8810 sc->intr[0].rid, 8811 sc->intr[0].resource); 8812 } 8813 break; 8814 case INTR_MODE_MSI: 8815 for (i = 0; i < sc->intr_count; i++) { 8816 BLOGD(sc, DBG_LOAD, "Releasing MSI vector %d\n", i); 8817 if (sc->intr[i].resource && sc->intr[i].rid) { 8818 bus_release_resource(sc->dev, 8819 SYS_RES_IRQ, 8820 sc->intr[i].rid, 8821 sc->intr[i].resource); 8822 } 8823 } 8824 pci_release_msi(sc->dev); 8825 break; 8826 case INTR_MODE_MSIX: 8827 for (i = 0; i < sc->intr_count; i++) { 8828 BLOGD(sc, DBG_LOAD, "Releasing MSI-X vector %d\n", i); 8829 if (sc->intr[i].resource && sc->intr[i].rid) { 8830 bus_release_resource(sc->dev, 8831 SYS_RES_IRQ, 8832 sc->intr[i].rid, 8833 sc->intr[i].resource); 8834 } 8835 } 8836 pci_release_msi(sc->dev); 8837 break; 8838 default: 8839 /* nothing to do as initial allocation failed */ 8840 break; 8841 } 8842 } 8843 8844 /* 8845 * This function determines and allocates the appropriate 8846 * interrupt based on system capabilites and user request. 8847 * 8848 * The user may force a particular interrupt mode, specify 8849 * the number of receive queues, specify the method for 8850 * distribuitng received frames to receive queues, or use 8851 * the default settings which will automatically select the 8852 * best supported combination. In addition, the OS may or 8853 * may not support certain combinations of these settings. 8854 * This routine attempts to reconcile the settings requested 8855 * by the user with the capabilites available from the system 8856 * to select the optimal combination of features. 8857 * 8858 * Returns: 8859 * 0 = Success, !0 = Failure. 8860 */ 8861 static int 8862 bxe_interrupt_alloc(struct bxe_softc *sc) 8863 { 8864 int msix_count = 0; 8865 int msi_count = 0; 8866 int num_requested = 0; 8867 int num_allocated = 0; 8868 int rid, i, j; 8869 int rc; 8870 8871 /* get the number of available MSI/MSI-X interrupts from the OS */ 8872 if (sc->interrupt_mode > 0) { 8873 if (sc->devinfo.pcie_cap_flags & BXE_MSIX_CAPABLE_FLAG) { 8874 msix_count = pci_msix_count(sc->dev); 8875 } 8876 8877 if (sc->devinfo.pcie_cap_flags & BXE_MSI_CAPABLE_FLAG) { 8878 msi_count = pci_msi_count(sc->dev); 8879 } 8880 8881 BLOGD(sc, DBG_LOAD, "%d MSI and %d MSI-X vectors available\n", 8882 msi_count, msix_count); 8883 } 8884 8885 do { /* try allocating MSI-X interrupt resources (at least 2) */ 8886 if (sc->interrupt_mode != INTR_MODE_MSIX) { 8887 break; 8888 } 8889 8890 if (((sc->devinfo.pcie_cap_flags & BXE_MSIX_CAPABLE_FLAG) == 0) || 8891 (msix_count < 2)) { 8892 sc->interrupt_mode = INTR_MODE_MSI; /* try MSI next */ 8893 break; 8894 } 8895 8896 /* ask for the necessary number of MSI-X vectors */ 8897 num_requested = min((sc->num_queues + 1), msix_count); 8898 8899 BLOGD(sc, DBG_LOAD, "Requesting %d MSI-X vectors\n", num_requested); 8900 8901 num_allocated = num_requested; 8902 if ((rc = pci_alloc_msix(sc->dev, &num_allocated)) != 0) { 8903 BLOGE(sc, "MSI-X alloc failed! (%d)\n", rc); 8904 sc->interrupt_mode = INTR_MODE_MSI; /* try MSI next */ 8905 break; 8906 } 8907 8908 if (num_allocated < 2) { /* possible? */ 8909 BLOGE(sc, "MSI-X allocation less than 2!\n"); 8910 sc->interrupt_mode = INTR_MODE_MSI; /* try MSI next */ 8911 pci_release_msi(sc->dev); 8912 break; 8913 } 8914 8915 BLOGI(sc, "MSI-X vectors Requested %d and Allocated %d\n", 8916 num_requested, num_allocated); 8917 8918 /* best effort so use the number of vectors allocated to us */ 8919 sc->intr_count = num_allocated; 8920 sc->num_queues = num_allocated - 1; 8921 8922 rid = 1; /* initial resource identifier */ 8923 8924 /* allocate the MSI-X vectors */ 8925 for (i = 0; i < num_allocated; i++) { 8926 sc->intr[i].rid = (rid + i); 8927 8928 if ((sc->intr[i].resource = 8929 bus_alloc_resource_any(sc->dev, 8930 SYS_RES_IRQ, 8931 &sc->intr[i].rid, 8932 RF_ACTIVE)) == NULL) { 8933 BLOGE(sc, "Failed to map MSI-X[%d] (rid=%d)!\n", 8934 i, (rid + i)); 8935 8936 for (j = (i - 1); j >= 0; j--) { 8937 bus_release_resource(sc->dev, 8938 SYS_RES_IRQ, 8939 sc->intr[j].rid, 8940 sc->intr[j].resource); 8941 } 8942 8943 sc->intr_count = 0; 8944 sc->num_queues = 0; 8945 sc->interrupt_mode = INTR_MODE_MSI; /* try MSI next */ 8946 pci_release_msi(sc->dev); 8947 break; 8948 } 8949 8950 BLOGD(sc, DBG_LOAD, "Mapped MSI-X[%d] (rid=%d)\n", i, (rid + i)); 8951 } 8952 } while (0); 8953 8954 do { /* try allocating MSI vector resources (at least 2) */ 8955 if (sc->interrupt_mode != INTR_MODE_MSI) { 8956 break; 8957 } 8958 8959 if (((sc->devinfo.pcie_cap_flags & BXE_MSI_CAPABLE_FLAG) == 0) || 8960 (msi_count < 1)) { 8961 sc->interrupt_mode = INTR_MODE_INTX; /* try INTx next */ 8962 break; 8963 } 8964 8965 /* ask for a single MSI vector */ 8966 num_requested = 1; 8967 8968 BLOGD(sc, DBG_LOAD, "Requesting %d MSI vectors\n", num_requested); 8969 8970 num_allocated = num_requested; 8971 if ((rc = pci_alloc_msi(sc->dev, &num_allocated)) != 0) { 8972 BLOGE(sc, "MSI alloc failed (%d)!\n", rc); 8973 sc->interrupt_mode = INTR_MODE_INTX; /* try INTx next */ 8974 break; 8975 } 8976 8977 if (num_allocated != 1) { /* possible? */ 8978 BLOGE(sc, "MSI allocation is not 1!\n"); 8979 sc->interrupt_mode = INTR_MODE_INTX; /* try INTx next */ 8980 pci_release_msi(sc->dev); 8981 break; 8982 } 8983 8984 BLOGI(sc, "MSI vectors Requested %d and Allocated %d\n", 8985 num_requested, num_allocated); 8986 8987 /* best effort so use the number of vectors allocated to us */ 8988 sc->intr_count = num_allocated; 8989 sc->num_queues = num_allocated; 8990 8991 rid = 1; /* initial resource identifier */ 8992 8993 sc->intr[0].rid = rid; 8994 8995 if ((sc->intr[0].resource = 8996 bus_alloc_resource_any(sc->dev, 8997 SYS_RES_IRQ, 8998 &sc->intr[0].rid, 8999 RF_ACTIVE)) == NULL) { 9000 BLOGE(sc, "Failed to map MSI[0] (rid=%d)!\n", rid); 9001 sc->intr_count = 0; 9002 sc->num_queues = 0; 9003 sc->interrupt_mode = INTR_MODE_INTX; /* try INTx next */ 9004 pci_release_msi(sc->dev); 9005 break; 9006 } 9007 9008 BLOGD(sc, DBG_LOAD, "Mapped MSI[0] (rid=%d)\n", rid); 9009 } while (0); 9010 9011 do { /* try allocating INTx vector resources */ 9012 if (sc->interrupt_mode != INTR_MODE_INTX) { 9013 break; 9014 } 9015 9016 BLOGD(sc, DBG_LOAD, "Requesting legacy INTx interrupt\n"); 9017 9018 /* only one vector for INTx */ 9019 sc->intr_count = 1; 9020 sc->num_queues = 1; 9021 9022 rid = 0; /* initial resource identifier */ 9023 9024 sc->intr[0].rid = rid; 9025 9026 if ((sc->intr[0].resource = 9027 bus_alloc_resource_any(sc->dev, 9028 SYS_RES_IRQ, 9029 &sc->intr[0].rid, 9030 (RF_ACTIVE | RF_SHAREABLE))) == NULL) { 9031 BLOGE(sc, "Failed to map INTx (rid=%d)!\n", rid); 9032 sc->intr_count = 0; 9033 sc->num_queues = 0; 9034 sc->interrupt_mode = -1; /* Failed! */ 9035 break; 9036 } 9037 9038 BLOGD(sc, DBG_LOAD, "Mapped INTx (rid=%d)\n", rid); 9039 } while (0); 9040 9041 if (sc->interrupt_mode == -1) { 9042 BLOGE(sc, "Interrupt Allocation: FAILED!!!\n"); 9043 rc = 1; 9044 } else { 9045 BLOGD(sc, DBG_LOAD, 9046 "Interrupt Allocation: interrupt_mode=%d, num_queues=%d\n", 9047 sc->interrupt_mode, sc->num_queues); 9048 rc = 0; 9049 } 9050 9051 return (rc); 9052 } 9053 9054 static void 9055 bxe_interrupt_detach(struct bxe_softc *sc) 9056 { 9057 struct bxe_fastpath *fp; 9058 int i; 9059 9060 /* release interrupt resources */ 9061 for (i = 0; i < sc->intr_count; i++) { 9062 if (sc->intr[i].resource && sc->intr[i].tag) { 9063 BLOGD(sc, DBG_LOAD, "Disabling interrupt vector %d\n", i); 9064 bus_teardown_intr(sc->dev, sc->intr[i].resource, sc->intr[i].tag); 9065 } 9066 } 9067 9068 for (i = 0; i < sc->num_queues; i++) { 9069 fp = &sc->fp[i]; 9070 if (fp->tq) { 9071 taskqueue_drain(fp->tq, &fp->tq_task); 9072 taskqueue_drain(fp->tq, &fp->tx_task); 9073 while (taskqueue_cancel_timeout(fp->tq, &fp->tx_timeout_task, 9074 NULL)) 9075 taskqueue_drain_timeout(fp->tq, &fp->tx_timeout_task); 9076 taskqueue_free(fp->tq); 9077 fp->tq = NULL; 9078 } 9079 } 9080 9081 9082 if (sc->sp_tq) { 9083 taskqueue_drain(sc->sp_tq, &sc->sp_tq_task); 9084 taskqueue_free(sc->sp_tq); 9085 sc->sp_tq = NULL; 9086 } 9087 } 9088 9089 /* 9090 * Enables interrupts and attach to the ISR. 9091 * 9092 * When using multiple MSI/MSI-X vectors the first vector 9093 * is used for slowpath operations while all remaining 9094 * vectors are used for fastpath operations. If only a 9095 * single MSI/MSI-X vector is used (SINGLE_ISR) then the 9096 * ISR must look for both slowpath and fastpath completions. 9097 */ 9098 static int 9099 bxe_interrupt_attach(struct bxe_softc *sc) 9100 { 9101 struct bxe_fastpath *fp; 9102 int rc = 0; 9103 int i; 9104 9105 snprintf(sc->sp_tq_name, sizeof(sc->sp_tq_name), 9106 "bxe%d_sp_tq", sc->unit); 9107 TASK_INIT(&sc->sp_tq_task, 0, bxe_handle_sp_tq, sc); 9108 sc->sp_tq = taskqueue_create(sc->sp_tq_name, M_NOWAIT, 9109 taskqueue_thread_enqueue, 9110 &sc->sp_tq); 9111 taskqueue_start_threads(&sc->sp_tq, 1, PWAIT, /* lower priority */ 9112 "%s", sc->sp_tq_name); 9113 9114 9115 for (i = 0; i < sc->num_queues; i++) { 9116 fp = &sc->fp[i]; 9117 snprintf(fp->tq_name, sizeof(fp->tq_name), 9118 "bxe%d_fp%d_tq", sc->unit, i); 9119 TASK_INIT(&fp->tq_task, 0, bxe_handle_fp_tq, fp); 9120 TASK_INIT(&fp->tx_task, 0, bxe_tx_mq_start_deferred, fp); 9121 fp->tq = taskqueue_create(fp->tq_name, M_NOWAIT, 9122 taskqueue_thread_enqueue, 9123 &fp->tq); 9124 TIMEOUT_TASK_INIT(fp->tq, &fp->tx_timeout_task, 0, 9125 bxe_tx_mq_start_deferred, fp); 9126 taskqueue_start_threads(&fp->tq, 1, PI_NET, /* higher priority */ 9127 "%s", fp->tq_name); 9128 } 9129 9130 /* setup interrupt handlers */ 9131 if (sc->interrupt_mode == INTR_MODE_MSIX) { 9132 BLOGD(sc, DBG_LOAD, "Enabling slowpath MSI-X[0] vector\n"); 9133 9134 /* 9135 * Setup the interrupt handler. Note that we pass the driver instance 9136 * to the interrupt handler for the slowpath. 9137 */ 9138 if ((rc = bus_setup_intr(sc->dev, sc->intr[0].resource, 9139 (INTR_TYPE_NET | INTR_MPSAFE), 9140 NULL, bxe_intr_sp, sc, 9141 &sc->intr[0].tag)) != 0) { 9142 BLOGE(sc, "Failed to allocate MSI-X[0] vector (%d)\n", rc); 9143 goto bxe_interrupt_attach_exit; 9144 } 9145 9146 bus_describe_intr(sc->dev, sc->intr[0].resource, 9147 sc->intr[0].tag, "sp"); 9148 9149 /* bus_bind_intr(sc->dev, sc->intr[0].resource, 0); */ 9150 9151 /* initialize the fastpath vectors (note the first was used for sp) */ 9152 for (i = 0; i < sc->num_queues; i++) { 9153 fp = &sc->fp[i]; 9154 BLOGD(sc, DBG_LOAD, "Enabling MSI-X[%d] vector\n", (i + 1)); 9155 9156 /* 9157 * Setup the interrupt handler. Note that we pass the 9158 * fastpath context to the interrupt handler in this 9159 * case. 9160 */ 9161 if ((rc = bus_setup_intr(sc->dev, sc->intr[i + 1].resource, 9162 (INTR_TYPE_NET | INTR_MPSAFE), 9163 NULL, bxe_intr_fp, fp, 9164 &sc->intr[i + 1].tag)) != 0) { 9165 BLOGE(sc, "Failed to allocate MSI-X[%d] vector (%d)\n", 9166 (i + 1), rc); 9167 goto bxe_interrupt_attach_exit; 9168 } 9169 9170 bus_describe_intr(sc->dev, sc->intr[i + 1].resource, 9171 sc->intr[i + 1].tag, "fp%02d", i); 9172 9173 /* bind the fastpath instance to a cpu */ 9174 if (sc->num_queues > 1) { 9175 bus_bind_intr(sc->dev, sc->intr[i + 1].resource, i); 9176 } 9177 9178 fp->state = BXE_FP_STATE_IRQ; 9179 } 9180 } else if (sc->interrupt_mode == INTR_MODE_MSI) { 9181 BLOGD(sc, DBG_LOAD, "Enabling MSI[0] vector\n"); 9182 9183 /* 9184 * Setup the interrupt handler. Note that we pass the 9185 * driver instance to the interrupt handler which 9186 * will handle both the slowpath and fastpath. 9187 */ 9188 if ((rc = bus_setup_intr(sc->dev, sc->intr[0].resource, 9189 (INTR_TYPE_NET | INTR_MPSAFE), 9190 NULL, bxe_intr_legacy, sc, 9191 &sc->intr[0].tag)) != 0) { 9192 BLOGE(sc, "Failed to allocate MSI[0] vector (%d)\n", rc); 9193 goto bxe_interrupt_attach_exit; 9194 } 9195 9196 } else { /* (sc->interrupt_mode == INTR_MODE_INTX) */ 9197 BLOGD(sc, DBG_LOAD, "Enabling INTx interrupts\n"); 9198 9199 /* 9200 * Setup the interrupt handler. Note that we pass the 9201 * driver instance to the interrupt handler which 9202 * will handle both the slowpath and fastpath. 9203 */ 9204 if ((rc = bus_setup_intr(sc->dev, sc->intr[0].resource, 9205 (INTR_TYPE_NET | INTR_MPSAFE), 9206 NULL, bxe_intr_legacy, sc, 9207 &sc->intr[0].tag)) != 0) { 9208 BLOGE(sc, "Failed to allocate INTx interrupt (%d)\n", rc); 9209 goto bxe_interrupt_attach_exit; 9210 } 9211 } 9212 9213 bxe_interrupt_attach_exit: 9214 9215 return (rc); 9216 } 9217 9218 static int bxe_init_hw_common_chip(struct bxe_softc *sc); 9219 static int bxe_init_hw_common(struct bxe_softc *sc); 9220 static int bxe_init_hw_port(struct bxe_softc *sc); 9221 static int bxe_init_hw_func(struct bxe_softc *sc); 9222 static void bxe_reset_common(struct bxe_softc *sc); 9223 static void bxe_reset_port(struct bxe_softc *sc); 9224 static void bxe_reset_func(struct bxe_softc *sc); 9225 static int bxe_gunzip_init(struct bxe_softc *sc); 9226 static void bxe_gunzip_end(struct bxe_softc *sc); 9227 static int bxe_init_firmware(struct bxe_softc *sc); 9228 static void bxe_release_firmware(struct bxe_softc *sc); 9229 9230 static struct 9231 ecore_func_sp_drv_ops bxe_func_sp_drv = { 9232 .init_hw_cmn_chip = bxe_init_hw_common_chip, 9233 .init_hw_cmn = bxe_init_hw_common, 9234 .init_hw_port = bxe_init_hw_port, 9235 .init_hw_func = bxe_init_hw_func, 9236 9237 .reset_hw_cmn = bxe_reset_common, 9238 .reset_hw_port = bxe_reset_port, 9239 .reset_hw_func = bxe_reset_func, 9240 9241 .gunzip_init = bxe_gunzip_init, 9242 .gunzip_end = bxe_gunzip_end, 9243 9244 .init_fw = bxe_init_firmware, 9245 .release_fw = bxe_release_firmware, 9246 }; 9247 9248 static void 9249 bxe_init_func_obj(struct bxe_softc *sc) 9250 { 9251 sc->dmae_ready = 0; 9252 9253 ecore_init_func_obj(sc, 9254 &sc->func_obj, 9255 BXE_SP(sc, func_rdata), 9256 BXE_SP_MAPPING(sc, func_rdata), 9257 BXE_SP(sc, func_afex_rdata), 9258 BXE_SP_MAPPING(sc, func_afex_rdata), 9259 &bxe_func_sp_drv); 9260 } 9261 9262 static int 9263 bxe_init_hw(struct bxe_softc *sc, 9264 uint32_t load_code) 9265 { 9266 struct ecore_func_state_params func_params = { NULL }; 9267 int rc; 9268 9269 /* prepare the parameters for function state transitions */ 9270 bit_set(&func_params.ramrod_flags, RAMROD_COMP_WAIT); 9271 9272 func_params.f_obj = &sc->func_obj; 9273 func_params.cmd = ECORE_F_CMD_HW_INIT; 9274 9275 func_params.params.hw_init.load_phase = load_code; 9276 9277 /* 9278 * Via a plethora of function pointers, we will eventually reach 9279 * bxe_init_hw_common(), bxe_init_hw_port(), or bxe_init_hw_func(). 9280 */ 9281 rc = ecore_func_state_change(sc, &func_params); 9282 9283 return (rc); 9284 } 9285 9286 static void 9287 bxe_fill(struct bxe_softc *sc, 9288 uint32_t addr, 9289 int fill, 9290 uint32_t len) 9291 { 9292 uint32_t i; 9293 9294 if (!(len % 4) && !(addr % 4)) { 9295 for (i = 0; i < len; i += 4) { 9296 REG_WR(sc, (addr + i), fill); 9297 } 9298 } else { 9299 for (i = 0; i < len; i++) { 9300 REG_WR8(sc, (addr + i), fill); 9301 } 9302 } 9303 } 9304 9305 /* writes FP SP data to FW - data_size in dwords */ 9306 static void 9307 bxe_wr_fp_sb_data(struct bxe_softc *sc, 9308 int fw_sb_id, 9309 uint32_t *sb_data_p, 9310 uint32_t data_size) 9311 { 9312 int index; 9313 9314 for (index = 0; index < data_size; index++) { 9315 REG_WR(sc, 9316 (BAR_CSTRORM_INTMEM + 9317 CSTORM_STATUS_BLOCK_DATA_OFFSET(fw_sb_id) + 9318 (sizeof(uint32_t) * index)), 9319 *(sb_data_p + index)); 9320 } 9321 } 9322 9323 static void 9324 bxe_zero_fp_sb(struct bxe_softc *sc, 9325 int fw_sb_id) 9326 { 9327 struct hc_status_block_data_e2 sb_data_e2; 9328 struct hc_status_block_data_e1x sb_data_e1x; 9329 uint32_t *sb_data_p; 9330 uint32_t data_size = 0; 9331 9332 if (!CHIP_IS_E1x(sc)) { 9333 memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2)); 9334 sb_data_e2.common.state = SB_DISABLED; 9335 sb_data_e2.common.p_func.vf_valid = FALSE; 9336 sb_data_p = (uint32_t *)&sb_data_e2; 9337 data_size = (sizeof(struct hc_status_block_data_e2) / 9338 sizeof(uint32_t)); 9339 } else { 9340 memset(&sb_data_e1x, 0, sizeof(struct hc_status_block_data_e1x)); 9341 sb_data_e1x.common.state = SB_DISABLED; 9342 sb_data_e1x.common.p_func.vf_valid = FALSE; 9343 sb_data_p = (uint32_t *)&sb_data_e1x; 9344 data_size = (sizeof(struct hc_status_block_data_e1x) / 9345 sizeof(uint32_t)); 9346 } 9347 9348 bxe_wr_fp_sb_data(sc, fw_sb_id, sb_data_p, data_size); 9349 9350 bxe_fill(sc, (BAR_CSTRORM_INTMEM + CSTORM_STATUS_BLOCK_OFFSET(fw_sb_id)), 9351 0, CSTORM_STATUS_BLOCK_SIZE); 9352 bxe_fill(sc, (BAR_CSTRORM_INTMEM + CSTORM_SYNC_BLOCK_OFFSET(fw_sb_id)), 9353 0, CSTORM_SYNC_BLOCK_SIZE); 9354 } 9355 9356 static void 9357 bxe_wr_sp_sb_data(struct bxe_softc *sc, 9358 struct hc_sp_status_block_data *sp_sb_data) 9359 { 9360 int i; 9361 9362 for (i = 0; 9363 i < (sizeof(struct hc_sp_status_block_data) / sizeof(uint32_t)); 9364 i++) { 9365 REG_WR(sc, 9366 (BAR_CSTRORM_INTMEM + 9367 CSTORM_SP_STATUS_BLOCK_DATA_OFFSET(SC_FUNC(sc)) + 9368 (i * sizeof(uint32_t))), 9369 *((uint32_t *)sp_sb_data + i)); 9370 } 9371 } 9372 9373 static void 9374 bxe_zero_sp_sb(struct bxe_softc *sc) 9375 { 9376 struct hc_sp_status_block_data sp_sb_data; 9377 9378 memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data)); 9379 9380 sp_sb_data.state = SB_DISABLED; 9381 sp_sb_data.p_func.vf_valid = FALSE; 9382 9383 bxe_wr_sp_sb_data(sc, &sp_sb_data); 9384 9385 bxe_fill(sc, 9386 (BAR_CSTRORM_INTMEM + 9387 CSTORM_SP_STATUS_BLOCK_OFFSET(SC_FUNC(sc))), 9388 0, CSTORM_SP_STATUS_BLOCK_SIZE); 9389 bxe_fill(sc, 9390 (BAR_CSTRORM_INTMEM + 9391 CSTORM_SP_SYNC_BLOCK_OFFSET(SC_FUNC(sc))), 9392 0, CSTORM_SP_SYNC_BLOCK_SIZE); 9393 } 9394 9395 static void 9396 bxe_setup_ndsb_state_machine(struct hc_status_block_sm *hc_sm, 9397 int igu_sb_id, 9398 int igu_seg_id) 9399 { 9400 hc_sm->igu_sb_id = igu_sb_id; 9401 hc_sm->igu_seg_id = igu_seg_id; 9402 hc_sm->timer_value = 0xFF; 9403 hc_sm->time_to_expire = 0xFFFFFFFF; 9404 } 9405 9406 static void 9407 bxe_map_sb_state_machines(struct hc_index_data *index_data) 9408 { 9409 /* zero out state machine indices */ 9410 9411 /* rx indices */ 9412 index_data[HC_INDEX_ETH_RX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID; 9413 9414 /* tx indices */ 9415 index_data[HC_INDEX_OOO_TX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID; 9416 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags &= ~HC_INDEX_DATA_SM_ID; 9417 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags &= ~HC_INDEX_DATA_SM_ID; 9418 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags &= ~HC_INDEX_DATA_SM_ID; 9419 9420 /* map indices */ 9421 9422 /* rx indices */ 9423 index_data[HC_INDEX_ETH_RX_CQ_CONS].flags |= 9424 (SM_RX_ID << HC_INDEX_DATA_SM_ID_SHIFT); 9425 9426 /* tx indices */ 9427 index_data[HC_INDEX_OOO_TX_CQ_CONS].flags |= 9428 (SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT); 9429 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags |= 9430 (SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT); 9431 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags |= 9432 (SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT); 9433 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags |= 9434 (SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT); 9435 } 9436 9437 static void 9438 bxe_init_sb(struct bxe_softc *sc, 9439 bus_addr_t busaddr, 9440 int vfid, 9441 uint8_t vf_valid, 9442 int fw_sb_id, 9443 int igu_sb_id) 9444 { 9445 struct hc_status_block_data_e2 sb_data_e2; 9446 struct hc_status_block_data_e1x sb_data_e1x; 9447 struct hc_status_block_sm *hc_sm_p; 9448 uint32_t *sb_data_p; 9449 int igu_seg_id; 9450 int data_size; 9451 9452 if (CHIP_INT_MODE_IS_BC(sc)) { 9453 igu_seg_id = HC_SEG_ACCESS_NORM; 9454 } else { 9455 igu_seg_id = IGU_SEG_ACCESS_NORM; 9456 } 9457 9458 bxe_zero_fp_sb(sc, fw_sb_id); 9459 9460 if (!CHIP_IS_E1x(sc)) { 9461 memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2)); 9462 sb_data_e2.common.state = SB_ENABLED; 9463 sb_data_e2.common.p_func.pf_id = SC_FUNC(sc); 9464 sb_data_e2.common.p_func.vf_id = vfid; 9465 sb_data_e2.common.p_func.vf_valid = vf_valid; 9466 sb_data_e2.common.p_func.vnic_id = SC_VN(sc); 9467 sb_data_e2.common.same_igu_sb_1b = TRUE; 9468 sb_data_e2.common.host_sb_addr.hi = U64_HI(busaddr); 9469 sb_data_e2.common.host_sb_addr.lo = U64_LO(busaddr); 9470 hc_sm_p = sb_data_e2.common.state_machine; 9471 sb_data_p = (uint32_t *)&sb_data_e2; 9472 data_size = (sizeof(struct hc_status_block_data_e2) / 9473 sizeof(uint32_t)); 9474 bxe_map_sb_state_machines(sb_data_e2.index_data); 9475 } else { 9476 memset(&sb_data_e1x, 0, sizeof(struct hc_status_block_data_e1x)); 9477 sb_data_e1x.common.state = SB_ENABLED; 9478 sb_data_e1x.common.p_func.pf_id = SC_FUNC(sc); 9479 sb_data_e1x.common.p_func.vf_id = 0xff; 9480 sb_data_e1x.common.p_func.vf_valid = FALSE; 9481 sb_data_e1x.common.p_func.vnic_id = SC_VN(sc); 9482 sb_data_e1x.common.same_igu_sb_1b = TRUE; 9483 sb_data_e1x.common.host_sb_addr.hi = U64_HI(busaddr); 9484 sb_data_e1x.common.host_sb_addr.lo = U64_LO(busaddr); 9485 hc_sm_p = sb_data_e1x.common.state_machine; 9486 sb_data_p = (uint32_t *)&sb_data_e1x; 9487 data_size = (sizeof(struct hc_status_block_data_e1x) / 9488 sizeof(uint32_t)); 9489 bxe_map_sb_state_machines(sb_data_e1x.index_data); 9490 } 9491 9492 bxe_setup_ndsb_state_machine(&hc_sm_p[SM_RX_ID], igu_sb_id, igu_seg_id); 9493 bxe_setup_ndsb_state_machine(&hc_sm_p[SM_TX_ID], igu_sb_id, igu_seg_id); 9494 9495 BLOGD(sc, DBG_LOAD, "Init FW SB %d\n", fw_sb_id); 9496 9497 /* write indices to HW - PCI guarantees endianity of regpairs */ 9498 bxe_wr_fp_sb_data(sc, fw_sb_id, sb_data_p, data_size); 9499 } 9500 9501 static inline uint8_t 9502 bxe_fp_qzone_id(struct bxe_fastpath *fp) 9503 { 9504 if (CHIP_IS_E1x(fp->sc)) { 9505 return (fp->cl_id + SC_PORT(fp->sc) * ETH_MAX_RX_CLIENTS_E1H); 9506 } else { 9507 return (fp->cl_id); 9508 } 9509 } 9510 9511 static inline uint32_t 9512 bxe_rx_ustorm_prods_offset(struct bxe_softc *sc, 9513 struct bxe_fastpath *fp) 9514 { 9515 uint32_t offset = BAR_USTRORM_INTMEM; 9516 9517 if (!CHIP_IS_E1x(sc)) { 9518 offset += USTORM_RX_PRODS_E2_OFFSET(fp->cl_qzone_id); 9519 } else { 9520 offset += USTORM_RX_PRODS_E1X_OFFSET(SC_PORT(sc), fp->cl_id); 9521 } 9522 9523 return (offset); 9524 } 9525 9526 static void 9527 bxe_init_eth_fp(struct bxe_softc *sc, 9528 int idx) 9529 { 9530 struct bxe_fastpath *fp = &sc->fp[idx]; 9531 uint32_t cids[ECORE_MULTI_TX_COS] = { 0 }; 9532 unsigned long q_type = 0; 9533 int cos; 9534 9535 fp->sc = sc; 9536 fp->index = idx; 9537 9538 fp->igu_sb_id = (sc->igu_base_sb + idx + CNIC_SUPPORT(sc)); 9539 fp->fw_sb_id = (sc->base_fw_ndsb + idx + CNIC_SUPPORT(sc)); 9540 9541 fp->cl_id = (CHIP_IS_E1x(sc)) ? 9542 (SC_L_ID(sc) + idx) : 9543 /* want client ID same as IGU SB ID for non-E1 */ 9544 fp->igu_sb_id; 9545 fp->cl_qzone_id = bxe_fp_qzone_id(fp); 9546 9547 /* setup sb indices */ 9548 if (!CHIP_IS_E1x(sc)) { 9549 fp->sb_index_values = fp->status_block.e2_sb->sb.index_values; 9550 fp->sb_running_index = fp->status_block.e2_sb->sb.running_index; 9551 } else { 9552 fp->sb_index_values = fp->status_block.e1x_sb->sb.index_values; 9553 fp->sb_running_index = fp->status_block.e1x_sb->sb.running_index; 9554 } 9555 9556 /* init shortcut */ 9557 fp->ustorm_rx_prods_offset = bxe_rx_ustorm_prods_offset(sc, fp); 9558 9559 fp->rx_cq_cons_sb = &fp->sb_index_values[HC_INDEX_ETH_RX_CQ_CONS]; 9560 9561 /* 9562 * XXX If multiple CoS is ever supported then each fastpath structure 9563 * will need to maintain tx producer/consumer/dma/etc values *per* CoS. 9564 */ 9565 for (cos = 0; cos < sc->max_cos; cos++) { 9566 cids[cos] = idx; 9567 } 9568 fp->tx_cons_sb = &fp->sb_index_values[HC_INDEX_ETH_TX_CQ_CONS_COS0]; 9569 9570 /* nothing more for a VF to do */ 9571 if (IS_VF(sc)) { 9572 return; 9573 } 9574 9575 bxe_init_sb(sc, fp->sb_dma.paddr, BXE_VF_ID_INVALID, FALSE, 9576 fp->fw_sb_id, fp->igu_sb_id); 9577 9578 bxe_update_fp_sb_idx(fp); 9579 9580 /* Configure Queue State object */ 9581 bit_set(&q_type, ECORE_Q_TYPE_HAS_RX); 9582 bit_set(&q_type, ECORE_Q_TYPE_HAS_TX); 9583 9584 ecore_init_queue_obj(sc, 9585 &sc->sp_objs[idx].q_obj, 9586 fp->cl_id, 9587 cids, 9588 sc->max_cos, 9589 SC_FUNC(sc), 9590 BXE_SP(sc, q_rdata), 9591 BXE_SP_MAPPING(sc, q_rdata), 9592 q_type); 9593 9594 /* configure classification DBs */ 9595 ecore_init_mac_obj(sc, 9596 &sc->sp_objs[idx].mac_obj, 9597 fp->cl_id, 9598 idx, 9599 SC_FUNC(sc), 9600 BXE_SP(sc, mac_rdata), 9601 BXE_SP_MAPPING(sc, mac_rdata), 9602 ECORE_FILTER_MAC_PENDING, 9603 &sc->sp_state, 9604 ECORE_OBJ_TYPE_RX_TX, 9605 &sc->macs_pool); 9606 9607 BLOGD(sc, DBG_LOAD, "fp[%d]: sb=%p cl_id=%d fw_sb=%d igu_sb=%d\n", 9608 idx, fp->status_block.e2_sb, fp->cl_id, fp->fw_sb_id, fp->igu_sb_id); 9609 } 9610 9611 static inline void 9612 bxe_update_rx_prod(struct bxe_softc *sc, 9613 struct bxe_fastpath *fp, 9614 uint16_t rx_bd_prod, 9615 uint16_t rx_cq_prod, 9616 uint16_t rx_sge_prod) 9617 { 9618 struct ustorm_eth_rx_producers rx_prods = { 0 }; 9619 uint32_t i; 9620 9621 /* update producers */ 9622 rx_prods.bd_prod = rx_bd_prod; 9623 rx_prods.cqe_prod = rx_cq_prod; 9624 rx_prods.sge_prod = rx_sge_prod; 9625 9626 /* 9627 * Make sure that the BD and SGE data is updated before updating the 9628 * producers since FW might read the BD/SGE right after the producer 9629 * is updated. 9630 * This is only applicable for weak-ordered memory model archs such 9631 * as IA-64. The following barrier is also mandatory since FW will 9632 * assumes BDs must have buffers. 9633 */ 9634 wmb(); 9635 9636 for (i = 0; i < (sizeof(rx_prods) / 4); i++) { 9637 REG_WR(sc, 9638 (fp->ustorm_rx_prods_offset + (i * 4)), 9639 ((uint32_t *)&rx_prods)[i]); 9640 } 9641 9642 wmb(); /* keep prod updates ordered */ 9643 9644 BLOGD(sc, DBG_RX, 9645 "RX fp[%d]: wrote prods bd_prod=%u cqe_prod=%u sge_prod=%u\n", 9646 fp->index, rx_bd_prod, rx_cq_prod, rx_sge_prod); 9647 } 9648 9649 static void 9650 bxe_init_rx_rings(struct bxe_softc *sc) 9651 { 9652 struct bxe_fastpath *fp; 9653 int i; 9654 9655 for (i = 0; i < sc->num_queues; i++) { 9656 fp = &sc->fp[i]; 9657 9658 fp->rx_bd_cons = 0; 9659 9660 /* 9661 * Activate the BD ring... 9662 * Warning, this will generate an interrupt (to the TSTORM) 9663 * so this can only be done after the chip is initialized 9664 */ 9665 bxe_update_rx_prod(sc, fp, 9666 fp->rx_bd_prod, 9667 fp->rx_cq_prod, 9668 fp->rx_sge_prod); 9669 9670 if (i != 0) { 9671 continue; 9672 } 9673 9674 if (CHIP_IS_E1(sc)) { 9675 REG_WR(sc, 9676 (BAR_USTRORM_INTMEM + 9677 USTORM_MEM_WORKAROUND_ADDRESS_OFFSET(SC_FUNC(sc))), 9678 U64_LO(fp->rcq_dma.paddr)); 9679 REG_WR(sc, 9680 (BAR_USTRORM_INTMEM + 9681 USTORM_MEM_WORKAROUND_ADDRESS_OFFSET(SC_FUNC(sc)) + 4), 9682 U64_HI(fp->rcq_dma.paddr)); 9683 } 9684 } 9685 } 9686 9687 static void 9688 bxe_init_tx_ring_one(struct bxe_fastpath *fp) 9689 { 9690 SET_FLAG(fp->tx_db.data.header.data, DOORBELL_HDR_T_DB_TYPE, 1); 9691 fp->tx_db.data.zero_fill1 = 0; 9692 fp->tx_db.data.prod = 0; 9693 9694 fp->tx_pkt_prod = 0; 9695 fp->tx_pkt_cons = 0; 9696 fp->tx_bd_prod = 0; 9697 fp->tx_bd_cons = 0; 9698 fp->eth_q_stats.tx_pkts = 0; 9699 } 9700 9701 static inline void 9702 bxe_init_tx_rings(struct bxe_softc *sc) 9703 { 9704 int i; 9705 9706 for (i = 0; i < sc->num_queues; i++) { 9707 bxe_init_tx_ring_one(&sc->fp[i]); 9708 } 9709 } 9710 9711 static void 9712 bxe_init_def_sb(struct bxe_softc *sc) 9713 { 9714 struct host_sp_status_block *def_sb = sc->def_sb; 9715 bus_addr_t mapping = sc->def_sb_dma.paddr; 9716 int igu_sp_sb_index; 9717 int igu_seg_id; 9718 int port = SC_PORT(sc); 9719 int func = SC_FUNC(sc); 9720 int reg_offset, reg_offset_en5; 9721 uint64_t section; 9722 int index, sindex; 9723 struct hc_sp_status_block_data sp_sb_data; 9724 9725 memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data)); 9726 9727 if (CHIP_INT_MODE_IS_BC(sc)) { 9728 igu_sp_sb_index = DEF_SB_IGU_ID; 9729 igu_seg_id = HC_SEG_ACCESS_DEF; 9730 } else { 9731 igu_sp_sb_index = sc->igu_dsb_id; 9732 igu_seg_id = IGU_SEG_ACCESS_DEF; 9733 } 9734 9735 /* attentions */ 9736 section = ((uint64_t)mapping + 9737 offsetof(struct host_sp_status_block, atten_status_block)); 9738 def_sb->atten_status_block.status_block_id = igu_sp_sb_index; 9739 sc->attn_state = 0; 9740 9741 reg_offset = (port) ? 9742 MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 : 9743 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0; 9744 reg_offset_en5 = (port) ? 9745 MISC_REG_AEU_ENABLE5_FUNC_1_OUT_0 : 9746 MISC_REG_AEU_ENABLE5_FUNC_0_OUT_0; 9747 9748 for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) { 9749 /* take care of sig[0]..sig[4] */ 9750 for (sindex = 0; sindex < 4; sindex++) { 9751 sc->attn_group[index].sig[sindex] = 9752 REG_RD(sc, (reg_offset + (sindex * 0x4) + (0x10 * index))); 9753 } 9754 9755 if (!CHIP_IS_E1x(sc)) { 9756 /* 9757 * enable5 is separate from the rest of the registers, 9758 * and the address skip is 4 and not 16 between the 9759 * different groups 9760 */ 9761 sc->attn_group[index].sig[4] = 9762 REG_RD(sc, (reg_offset_en5 + (0x4 * index))); 9763 } else { 9764 sc->attn_group[index].sig[4] = 0; 9765 } 9766 } 9767 9768 if (sc->devinfo.int_block == INT_BLOCK_HC) { 9769 reg_offset = (port) ? 9770 HC_REG_ATTN_MSG1_ADDR_L : 9771 HC_REG_ATTN_MSG0_ADDR_L; 9772 REG_WR(sc, reg_offset, U64_LO(section)); 9773 REG_WR(sc, (reg_offset + 4), U64_HI(section)); 9774 } else if (!CHIP_IS_E1x(sc)) { 9775 REG_WR(sc, IGU_REG_ATTN_MSG_ADDR_L, U64_LO(section)); 9776 REG_WR(sc, IGU_REG_ATTN_MSG_ADDR_H, U64_HI(section)); 9777 } 9778 9779 section = ((uint64_t)mapping + 9780 offsetof(struct host_sp_status_block, sp_sb)); 9781 9782 bxe_zero_sp_sb(sc); 9783 9784 /* PCI guarantees endianity of regpair */ 9785 sp_sb_data.state = SB_ENABLED; 9786 sp_sb_data.host_sb_addr.lo = U64_LO(section); 9787 sp_sb_data.host_sb_addr.hi = U64_HI(section); 9788 sp_sb_data.igu_sb_id = igu_sp_sb_index; 9789 sp_sb_data.igu_seg_id = igu_seg_id; 9790 sp_sb_data.p_func.pf_id = func; 9791 sp_sb_data.p_func.vnic_id = SC_VN(sc); 9792 sp_sb_data.p_func.vf_id = 0xff; 9793 9794 bxe_wr_sp_sb_data(sc, &sp_sb_data); 9795 9796 bxe_ack_sb(sc, sc->igu_dsb_id, USTORM_ID, 0, IGU_INT_ENABLE, 0); 9797 } 9798 9799 static void 9800 bxe_init_sp_ring(struct bxe_softc *sc) 9801 { 9802 atomic_store_rel_long(&sc->cq_spq_left, MAX_SPQ_PENDING); 9803 sc->spq_prod_idx = 0; 9804 sc->dsb_sp_prod = &sc->def_sb->sp_sb.index_values[HC_SP_INDEX_ETH_DEF_CONS]; 9805 sc->spq_prod_bd = sc->spq; 9806 sc->spq_last_bd = (sc->spq_prod_bd + MAX_SP_DESC_CNT); 9807 } 9808 9809 static void 9810 bxe_init_eq_ring(struct bxe_softc *sc) 9811 { 9812 union event_ring_elem *elem; 9813 int i; 9814 9815 for (i = 1; i <= NUM_EQ_PAGES; i++) { 9816 elem = &sc->eq[EQ_DESC_CNT_PAGE * i - 1]; 9817 9818 elem->next_page.addr.hi = htole32(U64_HI(sc->eq_dma.paddr + 9819 BCM_PAGE_SIZE * 9820 (i % NUM_EQ_PAGES))); 9821 elem->next_page.addr.lo = htole32(U64_LO(sc->eq_dma.paddr + 9822 BCM_PAGE_SIZE * 9823 (i % NUM_EQ_PAGES))); 9824 } 9825 9826 sc->eq_cons = 0; 9827 sc->eq_prod = NUM_EQ_DESC; 9828 sc->eq_cons_sb = &sc->def_sb->sp_sb.index_values[HC_SP_INDEX_EQ_CONS]; 9829 9830 atomic_store_rel_long(&sc->eq_spq_left, 9831 (min((MAX_SP_DESC_CNT - MAX_SPQ_PENDING), 9832 NUM_EQ_DESC) - 1)); 9833 } 9834 9835 static void 9836 bxe_init_internal_common(struct bxe_softc *sc) 9837 { 9838 int i; 9839 9840 /* 9841 * Zero this manually as its initialization is currently missing 9842 * in the initTool. 9843 */ 9844 for (i = 0; i < (USTORM_AGG_DATA_SIZE >> 2); i++) { 9845 REG_WR(sc, 9846 (BAR_USTRORM_INTMEM + USTORM_AGG_DATA_OFFSET + (i * 4)), 9847 0); 9848 } 9849 9850 if (!CHIP_IS_E1x(sc)) { 9851 REG_WR8(sc, (BAR_CSTRORM_INTMEM + CSTORM_IGU_MODE_OFFSET), 9852 CHIP_INT_MODE_IS_BC(sc) ? HC_IGU_BC_MODE : HC_IGU_NBC_MODE); 9853 } 9854 } 9855 9856 static void 9857 bxe_init_internal(struct bxe_softc *sc, 9858 uint32_t load_code) 9859 { 9860 switch (load_code) { 9861 case FW_MSG_CODE_DRV_LOAD_COMMON: 9862 case FW_MSG_CODE_DRV_LOAD_COMMON_CHIP: 9863 bxe_init_internal_common(sc); 9864 /* no break */ 9865 9866 case FW_MSG_CODE_DRV_LOAD_PORT: 9867 /* nothing to do */ 9868 /* no break */ 9869 9870 case FW_MSG_CODE_DRV_LOAD_FUNCTION: 9871 /* internal memory per function is initialized inside bxe_pf_init */ 9872 break; 9873 9874 default: 9875 BLOGE(sc, "Unknown load_code (0x%x) from MCP\n", load_code); 9876 break; 9877 } 9878 } 9879 9880 static void 9881 storm_memset_func_cfg(struct bxe_softc *sc, 9882 struct tstorm_eth_function_common_config *tcfg, 9883 uint16_t abs_fid) 9884 { 9885 uint32_t addr; 9886 size_t size; 9887 9888 addr = (BAR_TSTRORM_INTMEM + 9889 TSTORM_FUNCTION_COMMON_CONFIG_OFFSET(abs_fid)); 9890 size = sizeof(struct tstorm_eth_function_common_config); 9891 ecore_storm_memset_struct(sc, addr, size, (uint32_t *)tcfg); 9892 } 9893 9894 static void 9895 bxe_func_init(struct bxe_softc *sc, 9896 struct bxe_func_init_params *p) 9897 { 9898 struct tstorm_eth_function_common_config tcfg = { 0 }; 9899 9900 if (CHIP_IS_E1x(sc)) { 9901 storm_memset_func_cfg(sc, &tcfg, p->func_id); 9902 } 9903 9904 /* Enable the function in the FW */ 9905 storm_memset_vf_to_pf(sc, p->func_id, p->pf_id); 9906 storm_memset_func_en(sc, p->func_id, 1); 9907 9908 /* spq */ 9909 if (p->func_flgs & FUNC_FLG_SPQ) { 9910 storm_memset_spq_addr(sc, p->spq_map, p->func_id); 9911 REG_WR(sc, 9912 (XSEM_REG_FAST_MEMORY + XSTORM_SPQ_PROD_OFFSET(p->func_id)), 9913 p->spq_prod); 9914 } 9915 } 9916 9917 /* 9918 * Calculates the sum of vn_min_rates. 9919 * It's needed for further normalizing of the min_rates. 9920 * Returns: 9921 * sum of vn_min_rates. 9922 * or 9923 * 0 - if all the min_rates are 0. 9924 * In the later case fainess algorithm should be deactivated. 9925 * If all min rates are not zero then those that are zeroes will be set to 1. 9926 */ 9927 static void 9928 bxe_calc_vn_min(struct bxe_softc *sc, 9929 struct cmng_init_input *input) 9930 { 9931 uint32_t vn_cfg; 9932 uint32_t vn_min_rate; 9933 int all_zero = 1; 9934 int vn; 9935 9936 for (vn = VN_0; vn < SC_MAX_VN_NUM(sc); vn++) { 9937 vn_cfg = sc->devinfo.mf_info.mf_config[vn]; 9938 vn_min_rate = (((vn_cfg & FUNC_MF_CFG_MIN_BW_MASK) >> 9939 FUNC_MF_CFG_MIN_BW_SHIFT) * 100); 9940 9941 if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE) { 9942 /* skip hidden VNs */ 9943 vn_min_rate = 0; 9944 } else if (!vn_min_rate) { 9945 /* If min rate is zero - set it to 100 */ 9946 vn_min_rate = DEF_MIN_RATE; 9947 } else { 9948 all_zero = 0; 9949 } 9950 9951 input->vnic_min_rate[vn] = vn_min_rate; 9952 } 9953 9954 /* if ETS or all min rates are zeros - disable fairness */ 9955 if (BXE_IS_ETS_ENABLED(sc)) { 9956 input->flags.cmng_enables &= ~CMNG_FLAGS_PER_PORT_FAIRNESS_VN; 9957 BLOGD(sc, DBG_LOAD, "Fairness disabled (ETS)\n"); 9958 } else if (all_zero) { 9959 input->flags.cmng_enables &= ~CMNG_FLAGS_PER_PORT_FAIRNESS_VN; 9960 BLOGD(sc, DBG_LOAD, 9961 "Fariness disabled (all MIN values are zeroes)\n"); 9962 } else { 9963 input->flags.cmng_enables |= CMNG_FLAGS_PER_PORT_FAIRNESS_VN; 9964 } 9965 } 9966 9967 static inline uint16_t 9968 bxe_extract_max_cfg(struct bxe_softc *sc, 9969 uint32_t mf_cfg) 9970 { 9971 uint16_t max_cfg = ((mf_cfg & FUNC_MF_CFG_MAX_BW_MASK) >> 9972 FUNC_MF_CFG_MAX_BW_SHIFT); 9973 9974 if (!max_cfg) { 9975 BLOGD(sc, DBG_LOAD, "Max BW configured to 0 - using 100 instead\n"); 9976 max_cfg = 100; 9977 } 9978 9979 return (max_cfg); 9980 } 9981 9982 static void 9983 bxe_calc_vn_max(struct bxe_softc *sc, 9984 int vn, 9985 struct cmng_init_input *input) 9986 { 9987 uint16_t vn_max_rate; 9988 uint32_t vn_cfg = sc->devinfo.mf_info.mf_config[vn]; 9989 uint32_t max_cfg; 9990 9991 if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE) { 9992 vn_max_rate = 0; 9993 } else { 9994 max_cfg = bxe_extract_max_cfg(sc, vn_cfg); 9995 9996 if (IS_MF_SI(sc)) { 9997 /* max_cfg in percents of linkspeed */ 9998 vn_max_rate = ((sc->link_vars.line_speed * max_cfg) / 100); 9999 } else { /* SD modes */ 10000 /* max_cfg is absolute in 100Mb units */ 10001 vn_max_rate = (max_cfg * 100); 10002 } 10003 } 10004 10005 BLOGD(sc, DBG_LOAD, "vn %d: vn_max_rate %d\n", vn, vn_max_rate); 10006 10007 input->vnic_max_rate[vn] = vn_max_rate; 10008 } 10009 10010 static void 10011 bxe_cmng_fns_init(struct bxe_softc *sc, 10012 uint8_t read_cfg, 10013 uint8_t cmng_type) 10014 { 10015 struct cmng_init_input input; 10016 int vn; 10017 10018 memset(&input, 0, sizeof(struct cmng_init_input)); 10019 10020 input.port_rate = sc->link_vars.line_speed; 10021 10022 if (cmng_type == CMNG_FNS_MINMAX) { 10023 /* read mf conf from shmem */ 10024 if (read_cfg) { 10025 bxe_read_mf_cfg(sc); 10026 } 10027 10028 /* get VN min rate and enable fairness if not 0 */ 10029 bxe_calc_vn_min(sc, &input); 10030 10031 /* get VN max rate */ 10032 if (sc->port.pmf) { 10033 for (vn = VN_0; vn < SC_MAX_VN_NUM(sc); vn++) { 10034 bxe_calc_vn_max(sc, vn, &input); 10035 } 10036 } 10037 10038 /* always enable rate shaping and fairness */ 10039 input.flags.cmng_enables |= CMNG_FLAGS_PER_PORT_RATE_SHAPING_VN; 10040 10041 ecore_init_cmng(&input, &sc->cmng); 10042 return; 10043 } 10044 10045 /* rate shaping and fairness are disabled */ 10046 BLOGD(sc, DBG_LOAD, "rate shaping and fairness have been disabled\n"); 10047 } 10048 10049 static int 10050 bxe_get_cmng_fns_mode(struct bxe_softc *sc) 10051 { 10052 if (CHIP_REV_IS_SLOW(sc)) { 10053 return (CMNG_FNS_NONE); 10054 } 10055 10056 if (IS_MF(sc)) { 10057 return (CMNG_FNS_MINMAX); 10058 } 10059 10060 return (CMNG_FNS_NONE); 10061 } 10062 10063 static void 10064 storm_memset_cmng(struct bxe_softc *sc, 10065 struct cmng_init *cmng, 10066 uint8_t port) 10067 { 10068 int vn; 10069 int func; 10070 uint32_t addr; 10071 size_t size; 10072 10073 addr = (BAR_XSTRORM_INTMEM + 10074 XSTORM_CMNG_PER_PORT_VARS_OFFSET(port)); 10075 size = sizeof(struct cmng_struct_per_port); 10076 ecore_storm_memset_struct(sc, addr, size, (uint32_t *)&cmng->port); 10077 10078 for (vn = VN_0; vn < SC_MAX_VN_NUM(sc); vn++) { 10079 func = func_by_vn(sc, vn); 10080 10081 addr = (BAR_XSTRORM_INTMEM + 10082 XSTORM_RATE_SHAPING_PER_VN_VARS_OFFSET(func)); 10083 size = sizeof(struct rate_shaping_vars_per_vn); 10084 ecore_storm_memset_struct(sc, addr, size, 10085 (uint32_t *)&cmng->vnic.vnic_max_rate[vn]); 10086 10087 addr = (BAR_XSTRORM_INTMEM + 10088 XSTORM_FAIRNESS_PER_VN_VARS_OFFSET(func)); 10089 size = sizeof(struct fairness_vars_per_vn); 10090 ecore_storm_memset_struct(sc, addr, size, 10091 (uint32_t *)&cmng->vnic.vnic_min_rate[vn]); 10092 } 10093 } 10094 10095 static void 10096 bxe_pf_init(struct bxe_softc *sc) 10097 { 10098 struct bxe_func_init_params func_init = { 0 }; 10099 struct event_ring_data eq_data = { { 0 } }; 10100 uint16_t flags; 10101 10102 if (!CHIP_IS_E1x(sc)) { 10103 /* reset IGU PF statistics: MSIX + ATTN */ 10104 /* PF */ 10105 REG_WR(sc, 10106 (IGU_REG_STATISTIC_NUM_MESSAGE_SENT + 10107 (BXE_IGU_STAS_MSG_VF_CNT * 4) + 10108 ((CHIP_IS_MODE_4_PORT(sc) ? SC_FUNC(sc) : SC_VN(sc)) * 4)), 10109 0); 10110 /* ATTN */ 10111 REG_WR(sc, 10112 (IGU_REG_STATISTIC_NUM_MESSAGE_SENT + 10113 (BXE_IGU_STAS_MSG_VF_CNT * 4) + 10114 (BXE_IGU_STAS_MSG_PF_CNT * 4) + 10115 ((CHIP_IS_MODE_4_PORT(sc) ? SC_FUNC(sc) : SC_VN(sc)) * 4)), 10116 0); 10117 } 10118 10119 /* function setup flags */ 10120 flags = (FUNC_FLG_STATS | FUNC_FLG_LEADING | FUNC_FLG_SPQ); 10121 10122 /* 10123 * This flag is relevant for E1x only. 10124 * E2 doesn't have a TPA configuration in a function level. 10125 */ 10126 flags |= (if_getcapenable(sc->ifp) & IFCAP_LRO) ? FUNC_FLG_TPA : 0; 10127 10128 func_init.func_flgs = flags; 10129 func_init.pf_id = SC_FUNC(sc); 10130 func_init.func_id = SC_FUNC(sc); 10131 func_init.spq_map = sc->spq_dma.paddr; 10132 func_init.spq_prod = sc->spq_prod_idx; 10133 10134 bxe_func_init(sc, &func_init); 10135 10136 memset(&sc->cmng, 0, sizeof(struct cmng_struct_per_port)); 10137 10138 /* 10139 * Congestion management values depend on the link rate. 10140 * There is no active link so initial link rate is set to 10Gbps. 10141 * When the link comes up the congestion management values are 10142 * re-calculated according to the actual link rate. 10143 */ 10144 sc->link_vars.line_speed = SPEED_10000; 10145 bxe_cmng_fns_init(sc, TRUE, bxe_get_cmng_fns_mode(sc)); 10146 10147 /* Only the PMF sets the HW */ 10148 if (sc->port.pmf) { 10149 storm_memset_cmng(sc, &sc->cmng, SC_PORT(sc)); 10150 } 10151 10152 /* init Event Queue - PCI bus guarantees correct endainity */ 10153 eq_data.base_addr.hi = U64_HI(sc->eq_dma.paddr); 10154 eq_data.base_addr.lo = U64_LO(sc->eq_dma.paddr); 10155 eq_data.producer = sc->eq_prod; 10156 eq_data.index_id = HC_SP_INDEX_EQ_CONS; 10157 eq_data.sb_id = DEF_SB_ID; 10158 storm_memset_eq_data(sc, &eq_data, SC_FUNC(sc)); 10159 } 10160 10161 static void 10162 bxe_hc_int_enable(struct bxe_softc *sc) 10163 { 10164 int port = SC_PORT(sc); 10165 uint32_t addr = (port) ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0; 10166 uint32_t val = REG_RD(sc, addr); 10167 uint8_t msix = (sc->interrupt_mode == INTR_MODE_MSIX) ? TRUE : FALSE; 10168 uint8_t single_msix = ((sc->interrupt_mode == INTR_MODE_MSIX) && 10169 (sc->intr_count == 1)) ? TRUE : FALSE; 10170 uint8_t msi = (sc->interrupt_mode == INTR_MODE_MSI) ? TRUE : FALSE; 10171 10172 if (msix) { 10173 val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 | 10174 HC_CONFIG_0_REG_INT_LINE_EN_0); 10175 val |= (HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 | 10176 HC_CONFIG_0_REG_ATTN_BIT_EN_0); 10177 if (single_msix) { 10178 val |= HC_CONFIG_0_REG_SINGLE_ISR_EN_0; 10179 } 10180 } else if (msi) { 10181 val &= ~HC_CONFIG_0_REG_INT_LINE_EN_0; 10182 val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 | 10183 HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 | 10184 HC_CONFIG_0_REG_ATTN_BIT_EN_0); 10185 } else { 10186 val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 | 10187 HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 | 10188 HC_CONFIG_0_REG_INT_LINE_EN_0 | 10189 HC_CONFIG_0_REG_ATTN_BIT_EN_0); 10190 10191 if (!CHIP_IS_E1(sc)) { 10192 BLOGD(sc, DBG_INTR, "write %x to HC %d (addr 0x%x)\n", 10193 val, port, addr); 10194 10195 REG_WR(sc, addr, val); 10196 10197 val &= ~HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0; 10198 } 10199 } 10200 10201 if (CHIP_IS_E1(sc)) { 10202 REG_WR(sc, (HC_REG_INT_MASK + port*4), 0x1FFFF); 10203 } 10204 10205 BLOGD(sc, DBG_INTR, "write %x to HC %d (addr 0x%x) mode %s\n", 10206 val, port, addr, ((msix) ? "MSI-X" : ((msi) ? "MSI" : "INTx"))); 10207 10208 REG_WR(sc, addr, val); 10209 10210 /* ensure that HC_CONFIG is written before leading/trailing edge config */ 10211 mb(); 10212 10213 if (!CHIP_IS_E1(sc)) { 10214 /* init leading/trailing edge */ 10215 if (IS_MF(sc)) { 10216 val = (0xee0f | (1 << (SC_VN(sc) + 4))); 10217 if (sc->port.pmf) { 10218 /* enable nig and gpio3 attention */ 10219 val |= 0x1100; 10220 } 10221 } else { 10222 val = 0xffff; 10223 } 10224 10225 REG_WR(sc, (HC_REG_TRAILING_EDGE_0 + port*8), val); 10226 REG_WR(sc, (HC_REG_LEADING_EDGE_0 + port*8), val); 10227 } 10228 10229 /* make sure that interrupts are indeed enabled from here on */ 10230 mb(); 10231 } 10232 10233 static void 10234 bxe_igu_int_enable(struct bxe_softc *sc) 10235 { 10236 uint32_t val; 10237 uint8_t msix = (sc->interrupt_mode == INTR_MODE_MSIX) ? TRUE : FALSE; 10238 uint8_t single_msix = ((sc->interrupt_mode == INTR_MODE_MSIX) && 10239 (sc->intr_count == 1)) ? TRUE : FALSE; 10240 uint8_t msi = (sc->interrupt_mode == INTR_MODE_MSI) ? TRUE : FALSE; 10241 10242 val = REG_RD(sc, IGU_REG_PF_CONFIGURATION); 10243 10244 if (msix) { 10245 val &= ~(IGU_PF_CONF_INT_LINE_EN | 10246 IGU_PF_CONF_SINGLE_ISR_EN); 10247 val |= (IGU_PF_CONF_MSI_MSIX_EN | 10248 IGU_PF_CONF_ATTN_BIT_EN); 10249 if (single_msix) { 10250 val |= IGU_PF_CONF_SINGLE_ISR_EN; 10251 } 10252 } else if (msi) { 10253 val &= ~IGU_PF_CONF_INT_LINE_EN; 10254 val |= (IGU_PF_CONF_MSI_MSIX_EN | 10255 IGU_PF_CONF_ATTN_BIT_EN | 10256 IGU_PF_CONF_SINGLE_ISR_EN); 10257 } else { 10258 val &= ~IGU_PF_CONF_MSI_MSIX_EN; 10259 val |= (IGU_PF_CONF_INT_LINE_EN | 10260 IGU_PF_CONF_ATTN_BIT_EN | 10261 IGU_PF_CONF_SINGLE_ISR_EN); 10262 } 10263 10264 /* clean previous status - need to configure igu prior to ack*/ 10265 if ((!msix) || single_msix) { 10266 REG_WR(sc, IGU_REG_PF_CONFIGURATION, val); 10267 bxe_ack_int(sc); 10268 } 10269 10270 val |= IGU_PF_CONF_FUNC_EN; 10271 10272 BLOGD(sc, DBG_INTR, "write 0x%x to IGU mode %s\n", 10273 val, ((msix) ? "MSI-X" : ((msi) ? "MSI" : "INTx"))); 10274 10275 REG_WR(sc, IGU_REG_PF_CONFIGURATION, val); 10276 10277 mb(); 10278 10279 /* init leading/trailing edge */ 10280 if (IS_MF(sc)) { 10281 val = (0xee0f | (1 << (SC_VN(sc) + 4))); 10282 if (sc->port.pmf) { 10283 /* enable nig and gpio3 attention */ 10284 val |= 0x1100; 10285 } 10286 } else { 10287 val = 0xffff; 10288 } 10289 10290 REG_WR(sc, IGU_REG_TRAILING_EDGE_LATCH, val); 10291 REG_WR(sc, IGU_REG_LEADING_EDGE_LATCH, val); 10292 10293 /* make sure that interrupts are indeed enabled from here on */ 10294 mb(); 10295 } 10296 10297 static void 10298 bxe_int_enable(struct bxe_softc *sc) 10299 { 10300 if (sc->devinfo.int_block == INT_BLOCK_HC) { 10301 bxe_hc_int_enable(sc); 10302 } else { 10303 bxe_igu_int_enable(sc); 10304 } 10305 } 10306 10307 static void 10308 bxe_hc_int_disable(struct bxe_softc *sc) 10309 { 10310 int port = SC_PORT(sc); 10311 uint32_t addr = (port) ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0; 10312 uint32_t val = REG_RD(sc, addr); 10313 10314 /* 10315 * In E1 we must use only PCI configuration space to disable MSI/MSIX 10316 * capablility. It's forbidden to disable IGU_PF_CONF_MSI_MSIX_EN in HC 10317 * block 10318 */ 10319 if (CHIP_IS_E1(sc)) { 10320 /* 10321 * Since IGU_PF_CONF_MSI_MSIX_EN still always on use mask register 10322 * to prevent from HC sending interrupts after we exit the function 10323 */ 10324 REG_WR(sc, (HC_REG_INT_MASK + port*4), 0); 10325 10326 val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 | 10327 HC_CONFIG_0_REG_INT_LINE_EN_0 | 10328 HC_CONFIG_0_REG_ATTN_BIT_EN_0); 10329 } else { 10330 val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 | 10331 HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 | 10332 HC_CONFIG_0_REG_INT_LINE_EN_0 | 10333 HC_CONFIG_0_REG_ATTN_BIT_EN_0); 10334 } 10335 10336 BLOGD(sc, DBG_INTR, "write %x to HC %d (addr 0x%x)\n", val, port, addr); 10337 10338 /* flush all outstanding writes */ 10339 mb(); 10340 10341 REG_WR(sc, addr, val); 10342 if (REG_RD(sc, addr) != val) { 10343 BLOGE(sc, "proper val not read from HC IGU!\n"); 10344 } 10345 } 10346 10347 static void 10348 bxe_igu_int_disable(struct bxe_softc *sc) 10349 { 10350 uint32_t val = REG_RD(sc, IGU_REG_PF_CONFIGURATION); 10351 10352 val &= ~(IGU_PF_CONF_MSI_MSIX_EN | 10353 IGU_PF_CONF_INT_LINE_EN | 10354 IGU_PF_CONF_ATTN_BIT_EN); 10355 10356 BLOGD(sc, DBG_INTR, "write %x to IGU\n", val); 10357 10358 /* flush all outstanding writes */ 10359 mb(); 10360 10361 REG_WR(sc, IGU_REG_PF_CONFIGURATION, val); 10362 if (REG_RD(sc, IGU_REG_PF_CONFIGURATION) != val) { 10363 BLOGE(sc, "proper val not read from IGU!\n"); 10364 } 10365 } 10366 10367 static void 10368 bxe_int_disable(struct bxe_softc *sc) 10369 { 10370 if (sc->devinfo.int_block == INT_BLOCK_HC) { 10371 bxe_hc_int_disable(sc); 10372 } else { 10373 bxe_igu_int_disable(sc); 10374 } 10375 } 10376 10377 static void 10378 bxe_nic_init(struct bxe_softc *sc, 10379 int load_code) 10380 { 10381 int i; 10382 10383 for (i = 0; i < sc->num_queues; i++) { 10384 bxe_init_eth_fp(sc, i); 10385 } 10386 10387 rmb(); /* ensure status block indices were read */ 10388 10389 bxe_init_rx_rings(sc); 10390 bxe_init_tx_rings(sc); 10391 10392 if (IS_VF(sc)) { 10393 return; 10394 } 10395 10396 /* initialize MOD_ABS interrupts */ 10397 elink_init_mod_abs_int(sc, &sc->link_vars, 10398 sc->devinfo.chip_id, 10399 sc->devinfo.shmem_base, 10400 sc->devinfo.shmem2_base, 10401 SC_PORT(sc)); 10402 10403 bxe_init_def_sb(sc); 10404 bxe_update_dsb_idx(sc); 10405 bxe_init_sp_ring(sc); 10406 bxe_init_eq_ring(sc); 10407 bxe_init_internal(sc, load_code); 10408 bxe_pf_init(sc); 10409 bxe_stats_init(sc); 10410 10411 /* flush all before enabling interrupts */ 10412 mb(); 10413 10414 bxe_int_enable(sc); 10415 10416 /* check for SPIO5 */ 10417 bxe_attn_int_deasserted0(sc, 10418 REG_RD(sc, 10419 (MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + 10420 SC_PORT(sc)*4)) & 10421 AEU_INPUTS_ATTN_BITS_SPIO5); 10422 } 10423 10424 static inline void 10425 bxe_init_objs(struct bxe_softc *sc) 10426 { 10427 /* mcast rules must be added to tx if tx switching is enabled */ 10428 ecore_obj_type o_type = 10429 (sc->flags & BXE_TX_SWITCHING) ? ECORE_OBJ_TYPE_RX_TX : 10430 ECORE_OBJ_TYPE_RX; 10431 10432 /* RX_MODE controlling object */ 10433 ecore_init_rx_mode_obj(sc, &sc->rx_mode_obj); 10434 10435 /* multicast configuration controlling object */ 10436 ecore_init_mcast_obj(sc, 10437 &sc->mcast_obj, 10438 sc->fp[0].cl_id, 10439 sc->fp[0].index, 10440 SC_FUNC(sc), 10441 SC_FUNC(sc), 10442 BXE_SP(sc, mcast_rdata), 10443 BXE_SP_MAPPING(sc, mcast_rdata), 10444 ECORE_FILTER_MCAST_PENDING, 10445 &sc->sp_state, 10446 o_type); 10447 10448 /* Setup CAM credit pools */ 10449 ecore_init_mac_credit_pool(sc, 10450 &sc->macs_pool, 10451 SC_FUNC(sc), 10452 CHIP_IS_E1x(sc) ? VNICS_PER_PORT(sc) : 10453 VNICS_PER_PATH(sc)); 10454 10455 ecore_init_vlan_credit_pool(sc, 10456 &sc->vlans_pool, 10457 SC_ABS_FUNC(sc) >> 1, 10458 CHIP_IS_E1x(sc) ? VNICS_PER_PORT(sc) : 10459 VNICS_PER_PATH(sc)); 10460 10461 /* RSS configuration object */ 10462 ecore_init_rss_config_obj(sc, 10463 &sc->rss_conf_obj, 10464 sc->fp[0].cl_id, 10465 sc->fp[0].index, 10466 SC_FUNC(sc), 10467 SC_FUNC(sc), 10468 BXE_SP(sc, rss_rdata), 10469 BXE_SP_MAPPING(sc, rss_rdata), 10470 ECORE_FILTER_RSS_CONF_PENDING, 10471 &sc->sp_state, ECORE_OBJ_TYPE_RX); 10472 } 10473 10474 /* 10475 * Initialize the function. This must be called before sending CLIENT_SETUP 10476 * for the first client. 10477 */ 10478 static inline int 10479 bxe_func_start(struct bxe_softc *sc) 10480 { 10481 struct ecore_func_state_params func_params = { NULL }; 10482 struct ecore_func_start_params *start_params = &func_params.params.start; 10483 10484 /* Prepare parameters for function state transitions */ 10485 bit_set(&func_params.ramrod_flags, RAMROD_COMP_WAIT); 10486 10487 func_params.f_obj = &sc->func_obj; 10488 func_params.cmd = ECORE_F_CMD_START; 10489 10490 /* Function parameters */ 10491 start_params->mf_mode = sc->devinfo.mf_info.mf_mode; 10492 start_params->sd_vlan_tag = OVLAN(sc); 10493 10494 if (CHIP_IS_E2(sc) || CHIP_IS_E3(sc)) { 10495 start_params->network_cos_mode = STATIC_COS; 10496 } else { /* CHIP_IS_E1X */ 10497 start_params->network_cos_mode = FW_WRR; 10498 } 10499 10500 //start_params->gre_tunnel_mode = 0; 10501 //start_params->gre_tunnel_rss = 0; 10502 10503 return (ecore_func_state_change(sc, &func_params)); 10504 } 10505 10506 static int 10507 bxe_set_power_state(struct bxe_softc *sc, 10508 uint8_t state) 10509 { 10510 uint16_t pmcsr; 10511 10512 /* If there is no power capability, silently succeed */ 10513 if (!(sc->devinfo.pcie_cap_flags & BXE_PM_CAPABLE_FLAG)) { 10514 BLOGW(sc, "No power capability\n"); 10515 return (0); 10516 } 10517 10518 pmcsr = pci_read_config(sc->dev, 10519 (sc->devinfo.pcie_pm_cap_reg + PCIR_POWER_STATUS), 10520 2); 10521 10522 switch (state) { 10523 case PCI_PM_D0: 10524 pci_write_config(sc->dev, 10525 (sc->devinfo.pcie_pm_cap_reg + PCIR_POWER_STATUS), 10526 ((pmcsr & ~PCIM_PSTAT_DMASK) | PCIM_PSTAT_PME), 2); 10527 10528 if (pmcsr & PCIM_PSTAT_DMASK) { 10529 /* delay required during transition out of D3hot */ 10530 DELAY(20000); 10531 } 10532 10533 break; 10534 10535 case PCI_PM_D3hot: 10536 /* XXX if there are other clients above don't shut down the power */ 10537 10538 /* don't shut down the power for emulation and FPGA */ 10539 if (CHIP_REV_IS_SLOW(sc)) { 10540 return (0); 10541 } 10542 10543 pmcsr &= ~PCIM_PSTAT_DMASK; 10544 pmcsr |= PCIM_PSTAT_D3; 10545 10546 if (sc->wol) { 10547 pmcsr |= PCIM_PSTAT_PMEENABLE; 10548 } 10549 10550 pci_write_config(sc->dev, 10551 (sc->devinfo.pcie_pm_cap_reg + PCIR_POWER_STATUS), 10552 pmcsr, 4); 10553 10554 /* 10555 * No more memory access after this point until device is brought back 10556 * to D0 state. 10557 */ 10558 break; 10559 10560 default: 10561 BLOGE(sc, "Can't support PCI power state = 0x%x pmcsr 0x%x\n", 10562 state, pmcsr); 10563 return (-1); 10564 } 10565 10566 return (0); 10567 } 10568 10569 10570 /* return true if succeeded to acquire the lock */ 10571 static uint8_t 10572 bxe_trylock_hw_lock(struct bxe_softc *sc, 10573 uint32_t resource) 10574 { 10575 uint32_t lock_status; 10576 uint32_t resource_bit = (1 << resource); 10577 int func = SC_FUNC(sc); 10578 uint32_t hw_lock_control_reg; 10579 10580 BLOGD(sc, DBG_LOAD, "Trying to take a resource lock 0x%x\n", resource); 10581 10582 /* Validating that the resource is within range */ 10583 if (resource > HW_LOCK_MAX_RESOURCE_VALUE) { 10584 BLOGD(sc, DBG_LOAD, 10585 "resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n", 10586 resource, HW_LOCK_MAX_RESOURCE_VALUE); 10587 return (FALSE); 10588 } 10589 10590 if (func <= 5) { 10591 hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8); 10592 } else { 10593 hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8); 10594 } 10595 10596 /* try to acquire the lock */ 10597 REG_WR(sc, hw_lock_control_reg + 4, resource_bit); 10598 lock_status = REG_RD(sc, hw_lock_control_reg); 10599 if (lock_status & resource_bit) { 10600 return (TRUE); 10601 } 10602 10603 BLOGE(sc, "Failed to get a resource lock 0x%x func %d " 10604 "lock_status 0x%x resource_bit 0x%x\n", resource, func, 10605 lock_status, resource_bit); 10606 10607 return (FALSE); 10608 } 10609 10610 /* 10611 * Get the recovery leader resource id according to the engine this function 10612 * belongs to. Currently only only 2 engines is supported. 10613 */ 10614 static int 10615 bxe_get_leader_lock_resource(struct bxe_softc *sc) 10616 { 10617 if (SC_PATH(sc)) { 10618 return (HW_LOCK_RESOURCE_RECOVERY_LEADER_1); 10619 } else { 10620 return (HW_LOCK_RESOURCE_RECOVERY_LEADER_0); 10621 } 10622 } 10623 10624 /* try to acquire a leader lock for current engine */ 10625 static uint8_t 10626 bxe_trylock_leader_lock(struct bxe_softc *sc) 10627 { 10628 return (bxe_trylock_hw_lock(sc, bxe_get_leader_lock_resource(sc))); 10629 } 10630 10631 static int 10632 bxe_release_leader_lock(struct bxe_softc *sc) 10633 { 10634 return (bxe_release_hw_lock(sc, bxe_get_leader_lock_resource(sc))); 10635 } 10636 10637 /* close gates #2, #3 and #4 */ 10638 static void 10639 bxe_set_234_gates(struct bxe_softc *sc, 10640 uint8_t close) 10641 { 10642 uint32_t val; 10643 10644 /* gates #2 and #4a are closed/opened for "not E1" only */ 10645 if (!CHIP_IS_E1(sc)) { 10646 /* #4 */ 10647 REG_WR(sc, PXP_REG_HST_DISCARD_DOORBELLS, !!close); 10648 /* #2 */ 10649 REG_WR(sc, PXP_REG_HST_DISCARD_INTERNAL_WRITES, !!close); 10650 } 10651 10652 /* #3 */ 10653 if (CHIP_IS_E1x(sc)) { 10654 /* prevent interrupts from HC on both ports */ 10655 val = REG_RD(sc, HC_REG_CONFIG_1); 10656 REG_WR(sc, HC_REG_CONFIG_1, 10657 (!close) ? (val | HC_CONFIG_1_REG_BLOCK_DISABLE_1) : 10658 (val & ~(uint32_t)HC_CONFIG_1_REG_BLOCK_DISABLE_1)); 10659 10660 val = REG_RD(sc, HC_REG_CONFIG_0); 10661 REG_WR(sc, HC_REG_CONFIG_0, 10662 (!close) ? (val | HC_CONFIG_0_REG_BLOCK_DISABLE_0) : 10663 (val & ~(uint32_t)HC_CONFIG_0_REG_BLOCK_DISABLE_0)); 10664 } else { 10665 /* Prevent incoming interrupts in IGU */ 10666 val = REG_RD(sc, IGU_REG_BLOCK_CONFIGURATION); 10667 10668 REG_WR(sc, IGU_REG_BLOCK_CONFIGURATION, 10669 (!close) ? 10670 (val | IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE) : 10671 (val & ~(uint32_t)IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE)); 10672 } 10673 10674 BLOGD(sc, DBG_LOAD, "%s gates #2, #3 and #4\n", 10675 close ? "closing" : "opening"); 10676 10677 wmb(); 10678 } 10679 10680 /* poll for pending writes bit, it should get cleared in no more than 1s */ 10681 static int 10682 bxe_er_poll_igu_vq(struct bxe_softc *sc) 10683 { 10684 uint32_t cnt = 1000; 10685 uint32_t pend_bits = 0; 10686 10687 do { 10688 pend_bits = REG_RD(sc, IGU_REG_PENDING_BITS_STATUS); 10689 10690 if (pend_bits == 0) { 10691 break; 10692 } 10693 10694 DELAY(1000); 10695 } while (--cnt > 0); 10696 10697 if (cnt == 0) { 10698 BLOGE(sc, "Still pending IGU requests bits=0x%08x!\n", pend_bits); 10699 return (-1); 10700 } 10701 10702 return (0); 10703 } 10704 10705 #define SHARED_MF_CLP_MAGIC 0x80000000 /* 'magic' bit */ 10706 10707 static void 10708 bxe_clp_reset_prep(struct bxe_softc *sc, 10709 uint32_t *magic_val) 10710 { 10711 /* Do some magic... */ 10712 uint32_t val = MFCFG_RD(sc, shared_mf_config.clp_mb); 10713 *magic_val = val & SHARED_MF_CLP_MAGIC; 10714 MFCFG_WR(sc, shared_mf_config.clp_mb, val | SHARED_MF_CLP_MAGIC); 10715 } 10716 10717 /* restore the value of the 'magic' bit */ 10718 static void 10719 bxe_clp_reset_done(struct bxe_softc *sc, 10720 uint32_t magic_val) 10721 { 10722 /* Restore the 'magic' bit value... */ 10723 uint32_t val = MFCFG_RD(sc, shared_mf_config.clp_mb); 10724 MFCFG_WR(sc, shared_mf_config.clp_mb, 10725 (val & (~SHARED_MF_CLP_MAGIC)) | magic_val); 10726 } 10727 10728 /* prepare for MCP reset, takes care of CLP configurations */ 10729 static void 10730 bxe_reset_mcp_prep(struct bxe_softc *sc, 10731 uint32_t *magic_val) 10732 { 10733 uint32_t shmem; 10734 uint32_t validity_offset; 10735 10736 /* set `magic' bit in order to save MF config */ 10737 if (!CHIP_IS_E1(sc)) { 10738 bxe_clp_reset_prep(sc, magic_val); 10739 } 10740 10741 /* get shmem offset */ 10742 shmem = REG_RD(sc, MISC_REG_SHARED_MEM_ADDR); 10743 validity_offset = 10744 offsetof(struct shmem_region, validity_map[SC_PORT(sc)]); 10745 10746 /* Clear validity map flags */ 10747 if (shmem > 0) { 10748 REG_WR(sc, shmem + validity_offset, 0); 10749 } 10750 } 10751 10752 #define MCP_TIMEOUT 5000 /* 5 seconds (in ms) */ 10753 #define MCP_ONE_TIMEOUT 100 /* 100 ms */ 10754 10755 static void 10756 bxe_mcp_wait_one(struct bxe_softc *sc) 10757 { 10758 /* special handling for emulation and FPGA (10 times longer) */ 10759 if (CHIP_REV_IS_SLOW(sc)) { 10760 DELAY((MCP_ONE_TIMEOUT*10) * 1000); 10761 } else { 10762 DELAY((MCP_ONE_TIMEOUT) * 1000); 10763 } 10764 } 10765 10766 /* initialize shmem_base and waits for validity signature to appear */ 10767 static int 10768 bxe_init_shmem(struct bxe_softc *sc) 10769 { 10770 int cnt = 0; 10771 uint32_t val = 0; 10772 10773 do { 10774 sc->devinfo.shmem_base = 10775 sc->link_params.shmem_base = 10776 REG_RD(sc, MISC_REG_SHARED_MEM_ADDR); 10777 10778 if (sc->devinfo.shmem_base) { 10779 val = SHMEM_RD(sc, validity_map[SC_PORT(sc)]); 10780 if (val & SHR_MEM_VALIDITY_MB) 10781 return (0); 10782 } 10783 10784 bxe_mcp_wait_one(sc); 10785 10786 } while (cnt++ < (MCP_TIMEOUT / MCP_ONE_TIMEOUT)); 10787 10788 BLOGE(sc, "BAD MCP validity signature\n"); 10789 10790 return (-1); 10791 } 10792 10793 static int 10794 bxe_reset_mcp_comp(struct bxe_softc *sc, 10795 uint32_t magic_val) 10796 { 10797 int rc = bxe_init_shmem(sc); 10798 10799 /* Restore the `magic' bit value */ 10800 if (!CHIP_IS_E1(sc)) { 10801 bxe_clp_reset_done(sc, magic_val); 10802 } 10803 10804 return (rc); 10805 } 10806 10807 static void 10808 bxe_pxp_prep(struct bxe_softc *sc) 10809 { 10810 if (!CHIP_IS_E1(sc)) { 10811 REG_WR(sc, PXP2_REG_RD_START_INIT, 0); 10812 REG_WR(sc, PXP2_REG_RQ_RBC_DONE, 0); 10813 wmb(); 10814 } 10815 } 10816 10817 /* 10818 * Reset the whole chip except for: 10819 * - PCIE core 10820 * - PCI Glue, PSWHST, PXP/PXP2 RF (all controlled by one reset bit) 10821 * - IGU 10822 * - MISC (including AEU) 10823 * - GRC 10824 * - RBCN, RBCP 10825 */ 10826 static void 10827 bxe_process_kill_chip_reset(struct bxe_softc *sc, 10828 uint8_t global) 10829 { 10830 uint32_t not_reset_mask1, reset_mask1, not_reset_mask2, reset_mask2; 10831 uint32_t global_bits2, stay_reset2; 10832 10833 /* 10834 * Bits that have to be set in reset_mask2 if we want to reset 'global' 10835 * (per chip) blocks. 10836 */ 10837 global_bits2 = 10838 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CPU | 10839 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CORE; 10840 10841 /* 10842 * Don't reset the following blocks. 10843 * Important: per port blocks (such as EMAC, BMAC, UMAC) can't be 10844 * reset, as in 4 port device they might still be owned 10845 * by the MCP (there is only one leader per path). 10846 */ 10847 not_reset_mask1 = 10848 MISC_REGISTERS_RESET_REG_1_RST_HC | 10849 MISC_REGISTERS_RESET_REG_1_RST_PXPV | 10850 MISC_REGISTERS_RESET_REG_1_RST_PXP; 10851 10852 not_reset_mask2 = 10853 MISC_REGISTERS_RESET_REG_2_RST_PCI_MDIO | 10854 MISC_REGISTERS_RESET_REG_2_RST_EMAC0_HARD_CORE | 10855 MISC_REGISTERS_RESET_REG_2_RST_EMAC1_HARD_CORE | 10856 MISC_REGISTERS_RESET_REG_2_RST_MISC_CORE | 10857 MISC_REGISTERS_RESET_REG_2_RST_RBCN | 10858 MISC_REGISTERS_RESET_REG_2_RST_GRC | 10859 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_REG_HARD_CORE | 10860 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_HARD_CORE_RST_B | 10861 MISC_REGISTERS_RESET_REG_2_RST_ATC | 10862 MISC_REGISTERS_RESET_REG_2_PGLC | 10863 MISC_REGISTERS_RESET_REG_2_RST_BMAC0 | 10864 MISC_REGISTERS_RESET_REG_2_RST_BMAC1 | 10865 MISC_REGISTERS_RESET_REG_2_RST_EMAC0 | 10866 MISC_REGISTERS_RESET_REG_2_RST_EMAC1 | 10867 MISC_REGISTERS_RESET_REG_2_UMAC0 | 10868 MISC_REGISTERS_RESET_REG_2_UMAC1; 10869 10870 /* 10871 * Keep the following blocks in reset: 10872 * - all xxMACs are handled by the elink code. 10873 */ 10874 stay_reset2 = 10875 MISC_REGISTERS_RESET_REG_2_XMAC | 10876 MISC_REGISTERS_RESET_REG_2_XMAC_SOFT; 10877 10878 /* Full reset masks according to the chip */ 10879 reset_mask1 = 0xffffffff; 10880 10881 if (CHIP_IS_E1(sc)) 10882 reset_mask2 = 0xffff; 10883 else if (CHIP_IS_E1H(sc)) 10884 reset_mask2 = 0x1ffff; 10885 else if (CHIP_IS_E2(sc)) 10886 reset_mask2 = 0xfffff; 10887 else /* CHIP_IS_E3 */ 10888 reset_mask2 = 0x3ffffff; 10889 10890 /* Don't reset global blocks unless we need to */ 10891 if (!global) 10892 reset_mask2 &= ~global_bits2; 10893 10894 /* 10895 * In case of attention in the QM, we need to reset PXP 10896 * (MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR) before QM 10897 * because otherwise QM reset would release 'close the gates' shortly 10898 * before resetting the PXP, then the PSWRQ would send a write 10899 * request to PGLUE. Then when PXP is reset, PGLUE would try to 10900 * read the payload data from PSWWR, but PSWWR would not 10901 * respond. The write queue in PGLUE would stuck, dmae commands 10902 * would not return. Therefore it's important to reset the second 10903 * reset register (containing the 10904 * MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR bit) before the 10905 * first one (containing the MISC_REGISTERS_RESET_REG_1_RST_QM 10906 * bit). 10907 */ 10908 REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR, 10909 reset_mask2 & (~not_reset_mask2)); 10910 10911 REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 10912 reset_mask1 & (~not_reset_mask1)); 10913 10914 mb(); 10915 wmb(); 10916 10917 REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET, 10918 reset_mask2 & (~stay_reset2)); 10919 10920 mb(); 10921 wmb(); 10922 10923 REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, reset_mask1); 10924 wmb(); 10925 } 10926 10927 static int 10928 bxe_process_kill(struct bxe_softc *sc, 10929 uint8_t global) 10930 { 10931 int cnt = 1000; 10932 uint32_t val = 0; 10933 uint32_t sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1, pgl_exp_rom2; 10934 uint32_t tags_63_32 = 0; 10935 10936 /* Empty the Tetris buffer, wait for 1s */ 10937 do { 10938 sr_cnt = REG_RD(sc, PXP2_REG_RD_SR_CNT); 10939 blk_cnt = REG_RD(sc, PXP2_REG_RD_BLK_CNT); 10940 port_is_idle_0 = REG_RD(sc, PXP2_REG_RD_PORT_IS_IDLE_0); 10941 port_is_idle_1 = REG_RD(sc, PXP2_REG_RD_PORT_IS_IDLE_1); 10942 pgl_exp_rom2 = REG_RD(sc, PXP2_REG_PGL_EXP_ROM2); 10943 if (CHIP_IS_E3(sc)) { 10944 tags_63_32 = REG_RD(sc, PGLUE_B_REG_TAGS_63_32); 10945 } 10946 10947 if ((sr_cnt == 0x7e) && (blk_cnt == 0xa0) && 10948 ((port_is_idle_0 & 0x1) == 0x1) && 10949 ((port_is_idle_1 & 0x1) == 0x1) && 10950 (pgl_exp_rom2 == 0xffffffff) && 10951 (!CHIP_IS_E3(sc) || (tags_63_32 == 0xffffffff))) 10952 break; 10953 DELAY(1000); 10954 } while (cnt-- > 0); 10955 10956 if (cnt <= 0) { 10957 BLOGE(sc, "ERROR: Tetris buffer didn't get empty or there " 10958 "are still outstanding read requests after 1s! " 10959 "sr_cnt=0x%08x, blk_cnt=0x%08x, port_is_idle_0=0x%08x, " 10960 "port_is_idle_1=0x%08x, pgl_exp_rom2=0x%08x\n", 10961 sr_cnt, blk_cnt, port_is_idle_0, 10962 port_is_idle_1, pgl_exp_rom2); 10963 return (-1); 10964 } 10965 10966 mb(); 10967 10968 /* Close gates #2, #3 and #4 */ 10969 bxe_set_234_gates(sc, TRUE); 10970 10971 /* Poll for IGU VQs for 57712 and newer chips */ 10972 if (!CHIP_IS_E1x(sc) && bxe_er_poll_igu_vq(sc)) { 10973 return (-1); 10974 } 10975 10976 /* XXX indicate that "process kill" is in progress to MCP */ 10977 10978 /* clear "unprepared" bit */ 10979 REG_WR(sc, MISC_REG_UNPREPARED, 0); 10980 mb(); 10981 10982 /* Make sure all is written to the chip before the reset */ 10983 wmb(); 10984 10985 /* 10986 * Wait for 1ms to empty GLUE and PCI-E core queues, 10987 * PSWHST, GRC and PSWRD Tetris buffer. 10988 */ 10989 DELAY(1000); 10990 10991 /* Prepare to chip reset: */ 10992 /* MCP */ 10993 if (global) { 10994 bxe_reset_mcp_prep(sc, &val); 10995 } 10996 10997 /* PXP */ 10998 bxe_pxp_prep(sc); 10999 mb(); 11000 11001 /* reset the chip */ 11002 bxe_process_kill_chip_reset(sc, global); 11003 mb(); 11004 11005 /* clear errors in PGB */ 11006 if (!CHIP_IS_E1(sc)) 11007 REG_WR(sc, PGLUE_B_REG_LATCHED_ERRORS_CLR, 0x7f); 11008 11009 /* Recover after reset: */ 11010 /* MCP */ 11011 if (global && bxe_reset_mcp_comp(sc, val)) { 11012 return (-1); 11013 } 11014 11015 /* XXX add resetting the NO_MCP mode DB here */ 11016 11017 /* Open the gates #2, #3 and #4 */ 11018 bxe_set_234_gates(sc, FALSE); 11019 11020 /* XXX 11021 * IGU/AEU preparation bring back the AEU/IGU to a reset state 11022 * re-enable attentions 11023 */ 11024 11025 return (0); 11026 } 11027 11028 static int 11029 bxe_leader_reset(struct bxe_softc *sc) 11030 { 11031 int rc = 0; 11032 uint8_t global = bxe_reset_is_global(sc); 11033 uint32_t load_code; 11034 11035 /* 11036 * If not going to reset MCP, load "fake" driver to reset HW while 11037 * driver is owner of the HW. 11038 */ 11039 if (!global && !BXE_NOMCP(sc)) { 11040 load_code = bxe_fw_command(sc, DRV_MSG_CODE_LOAD_REQ, 11041 DRV_MSG_CODE_LOAD_REQ_WITH_LFA); 11042 if (!load_code) { 11043 BLOGE(sc, "MCP response failure, aborting\n"); 11044 rc = -1; 11045 goto exit_leader_reset; 11046 } 11047 11048 if ((load_code != FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) && 11049 (load_code != FW_MSG_CODE_DRV_LOAD_COMMON)) { 11050 BLOGE(sc, "MCP unexpected response, aborting\n"); 11051 rc = -1; 11052 goto exit_leader_reset2; 11053 } 11054 11055 load_code = bxe_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0); 11056 if (!load_code) { 11057 BLOGE(sc, "MCP response failure, aborting\n"); 11058 rc = -1; 11059 goto exit_leader_reset2; 11060 } 11061 } 11062 11063 /* try to recover after the failure */ 11064 if (bxe_process_kill(sc, global)) { 11065 BLOGE(sc, "Something bad occurred on engine %d!\n", SC_PATH(sc)); 11066 rc = -1; 11067 goto exit_leader_reset2; 11068 } 11069 11070 /* 11071 * Clear the RESET_IN_PROGRESS and RESET_GLOBAL bits and update the driver 11072 * state. 11073 */ 11074 bxe_set_reset_done(sc); 11075 if (global) { 11076 bxe_clear_reset_global(sc); 11077 } 11078 11079 exit_leader_reset2: 11080 11081 /* unload "fake driver" if it was loaded */ 11082 if (!global && !BXE_NOMCP(sc)) { 11083 bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP, 0); 11084 bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_DONE, 0); 11085 } 11086 11087 exit_leader_reset: 11088 11089 sc->is_leader = 0; 11090 bxe_release_leader_lock(sc); 11091 11092 mb(); 11093 return (rc); 11094 } 11095 11096 /* 11097 * prepare INIT transition, parameters configured: 11098 * - HC configuration 11099 * - Queue's CDU context 11100 */ 11101 static void 11102 bxe_pf_q_prep_init(struct bxe_softc *sc, 11103 struct bxe_fastpath *fp, 11104 struct ecore_queue_init_params *init_params) 11105 { 11106 uint8_t cos; 11107 int cxt_index, cxt_offset; 11108 11109 bxe_set_bit(ECORE_Q_FLG_HC, &init_params->rx.flags); 11110 bxe_set_bit(ECORE_Q_FLG_HC, &init_params->tx.flags); 11111 11112 bxe_set_bit(ECORE_Q_FLG_HC_EN, &init_params->rx.flags); 11113 bxe_set_bit(ECORE_Q_FLG_HC_EN, &init_params->tx.flags); 11114 11115 /* HC rate */ 11116 init_params->rx.hc_rate = 11117 sc->hc_rx_ticks ? (1000000 / sc->hc_rx_ticks) : 0; 11118 init_params->tx.hc_rate = 11119 sc->hc_tx_ticks ? (1000000 / sc->hc_tx_ticks) : 0; 11120 11121 /* FW SB ID */ 11122 init_params->rx.fw_sb_id = init_params->tx.fw_sb_id = fp->fw_sb_id; 11123 11124 /* CQ index among the SB indices */ 11125 init_params->rx.sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS; 11126 init_params->tx.sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS; 11127 11128 /* set maximum number of COSs supported by this queue */ 11129 init_params->max_cos = sc->max_cos; 11130 11131 BLOGD(sc, DBG_LOAD, "fp %d setting queue params max cos to %d\n", 11132 fp->index, init_params->max_cos); 11133 11134 /* set the context pointers queue object */ 11135 for (cos = FIRST_TX_COS_INDEX; cos < init_params->max_cos; cos++) { 11136 /* XXX change index/cid here if ever support multiple tx CoS */ 11137 /* fp->txdata[cos]->cid */ 11138 cxt_index = fp->index / ILT_PAGE_CIDS; 11139 cxt_offset = fp->index - (cxt_index * ILT_PAGE_CIDS); 11140 init_params->cxts[cos] = &sc->context[cxt_index].vcxt[cxt_offset].eth; 11141 } 11142 } 11143 11144 /* set flags that are common for the Tx-only and not normal connections */ 11145 static unsigned long 11146 bxe_get_common_flags(struct bxe_softc *sc, 11147 struct bxe_fastpath *fp, 11148 uint8_t zero_stats) 11149 { 11150 unsigned long flags = 0; 11151 11152 /* PF driver will always initialize the Queue to an ACTIVE state */ 11153 bxe_set_bit(ECORE_Q_FLG_ACTIVE, &flags); 11154 11155 /* 11156 * tx only connections collect statistics (on the same index as the 11157 * parent connection). The statistics are zeroed when the parent 11158 * connection is initialized. 11159 */ 11160 11161 bxe_set_bit(ECORE_Q_FLG_STATS, &flags); 11162 if (zero_stats) { 11163 bxe_set_bit(ECORE_Q_FLG_ZERO_STATS, &flags); 11164 } 11165 11166 /* 11167 * tx only connections can support tx-switching, though their 11168 * CoS-ness doesn't survive the loopback 11169 */ 11170 if (sc->flags & BXE_TX_SWITCHING) { 11171 bxe_set_bit(ECORE_Q_FLG_TX_SWITCH, &flags); 11172 } 11173 11174 bxe_set_bit(ECORE_Q_FLG_PCSUM_ON_PKT, &flags); 11175 11176 return (flags); 11177 } 11178 11179 static unsigned long 11180 bxe_get_q_flags(struct bxe_softc *sc, 11181 struct bxe_fastpath *fp, 11182 uint8_t leading) 11183 { 11184 unsigned long flags = 0; 11185 11186 if (IS_MF_SD(sc)) { 11187 bxe_set_bit(ECORE_Q_FLG_OV, &flags); 11188 } 11189 11190 if (if_getcapenable(sc->ifp) & IFCAP_LRO) { 11191 bxe_set_bit(ECORE_Q_FLG_TPA, &flags); 11192 bxe_set_bit(ECORE_Q_FLG_TPA_IPV6, &flags); 11193 } 11194 11195 if (leading) { 11196 bxe_set_bit(ECORE_Q_FLG_LEADING_RSS, &flags); 11197 bxe_set_bit(ECORE_Q_FLG_MCAST, &flags); 11198 } 11199 11200 bxe_set_bit(ECORE_Q_FLG_VLAN, &flags); 11201 11202 /* merge with common flags */ 11203 return (flags | bxe_get_common_flags(sc, fp, TRUE)); 11204 } 11205 11206 static void 11207 bxe_pf_q_prep_general(struct bxe_softc *sc, 11208 struct bxe_fastpath *fp, 11209 struct ecore_general_setup_params *gen_init, 11210 uint8_t cos) 11211 { 11212 gen_init->stat_id = bxe_stats_id(fp); 11213 gen_init->spcl_id = fp->cl_id; 11214 gen_init->mtu = sc->mtu; 11215 gen_init->cos = cos; 11216 } 11217 11218 static void 11219 bxe_pf_rx_q_prep(struct bxe_softc *sc, 11220 struct bxe_fastpath *fp, 11221 struct rxq_pause_params *pause, 11222 struct ecore_rxq_setup_params *rxq_init) 11223 { 11224 uint8_t max_sge = 0; 11225 uint16_t sge_sz = 0; 11226 uint16_t tpa_agg_size = 0; 11227 11228 pause->sge_th_lo = SGE_TH_LO(sc); 11229 pause->sge_th_hi = SGE_TH_HI(sc); 11230 11231 /* validate SGE ring has enough to cross high threshold */ 11232 if (sc->dropless_fc && 11233 (pause->sge_th_hi + FW_PREFETCH_CNT) > 11234 (RX_SGE_USABLE_PER_PAGE * RX_SGE_NUM_PAGES)) { 11235 BLOGW(sc, "sge ring threshold limit\n"); 11236 } 11237 11238 /* minimum max_aggregation_size is 2*MTU (two full buffers) */ 11239 tpa_agg_size = (2 * sc->mtu); 11240 if (tpa_agg_size < sc->max_aggregation_size) { 11241 tpa_agg_size = sc->max_aggregation_size; 11242 } 11243 11244 max_sge = SGE_PAGE_ALIGN(sc->mtu) >> SGE_PAGE_SHIFT; 11245 max_sge = ((max_sge + PAGES_PER_SGE - 1) & 11246 (~(PAGES_PER_SGE - 1))) >> PAGES_PER_SGE_SHIFT; 11247 sge_sz = (uint16_t)min(SGE_PAGES, 0xffff); 11248 11249 /* pause - not for e1 */ 11250 if (!CHIP_IS_E1(sc)) { 11251 pause->bd_th_lo = BD_TH_LO(sc); 11252 pause->bd_th_hi = BD_TH_HI(sc); 11253 11254 pause->rcq_th_lo = RCQ_TH_LO(sc); 11255 pause->rcq_th_hi = RCQ_TH_HI(sc); 11256 11257 /* validate rings have enough entries to cross high thresholds */ 11258 if (sc->dropless_fc && 11259 pause->bd_th_hi + FW_PREFETCH_CNT > 11260 sc->rx_ring_size) { 11261 BLOGW(sc, "rx bd ring threshold limit\n"); 11262 } 11263 11264 if (sc->dropless_fc && 11265 pause->rcq_th_hi + FW_PREFETCH_CNT > 11266 RCQ_NUM_PAGES * RCQ_USABLE_PER_PAGE) { 11267 BLOGW(sc, "rcq ring threshold limit\n"); 11268 } 11269 11270 pause->pri_map = 1; 11271 } 11272 11273 /* rxq setup */ 11274 rxq_init->dscr_map = fp->rx_dma.paddr; 11275 rxq_init->sge_map = fp->rx_sge_dma.paddr; 11276 rxq_init->rcq_map = fp->rcq_dma.paddr; 11277 rxq_init->rcq_np_map = (fp->rcq_dma.paddr + BCM_PAGE_SIZE); 11278 11279 /* 11280 * This should be a maximum number of data bytes that may be 11281 * placed on the BD (not including paddings). 11282 */ 11283 rxq_init->buf_sz = (fp->rx_buf_size - 11284 IP_HEADER_ALIGNMENT_PADDING); 11285 11286 rxq_init->cl_qzone_id = fp->cl_qzone_id; 11287 rxq_init->tpa_agg_sz = tpa_agg_size; 11288 rxq_init->sge_buf_sz = sge_sz; 11289 rxq_init->max_sges_pkt = max_sge; 11290 rxq_init->rss_engine_id = SC_FUNC(sc); 11291 rxq_init->mcast_engine_id = SC_FUNC(sc); 11292 11293 /* 11294 * Maximum number or simultaneous TPA aggregation for this Queue. 11295 * For PF Clients it should be the maximum available number. 11296 * VF driver(s) may want to define it to a smaller value. 11297 */ 11298 rxq_init->max_tpa_queues = MAX_AGG_QS(sc); 11299 11300 rxq_init->cache_line_log = BXE_RX_ALIGN_SHIFT; 11301 rxq_init->fw_sb_id = fp->fw_sb_id; 11302 11303 rxq_init->sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS; 11304 11305 /* 11306 * configure silent vlan removal 11307 * if multi function mode is afex, then mask default vlan 11308 */ 11309 if (IS_MF_AFEX(sc)) { 11310 rxq_init->silent_removal_value = 11311 sc->devinfo.mf_info.afex_def_vlan_tag; 11312 rxq_init->silent_removal_mask = EVL_VLID_MASK; 11313 } 11314 } 11315 11316 static void 11317 bxe_pf_tx_q_prep(struct bxe_softc *sc, 11318 struct bxe_fastpath *fp, 11319 struct ecore_txq_setup_params *txq_init, 11320 uint8_t cos) 11321 { 11322 /* 11323 * XXX If multiple CoS is ever supported then each fastpath structure 11324 * will need to maintain tx producer/consumer/dma/etc values *per* CoS. 11325 * fp->txdata[cos]->tx_dma.paddr; 11326 */ 11327 txq_init->dscr_map = fp->tx_dma.paddr; 11328 txq_init->sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS + cos; 11329 txq_init->traffic_type = LLFC_TRAFFIC_TYPE_NW; 11330 txq_init->fw_sb_id = fp->fw_sb_id; 11331 11332 /* 11333 * set the TSS leading client id for TX classfication to the 11334 * leading RSS client id 11335 */ 11336 txq_init->tss_leading_cl_id = BXE_FP(sc, 0, cl_id); 11337 } 11338 11339 /* 11340 * This function performs 2 steps in a queue state machine: 11341 * 1) RESET->INIT 11342 * 2) INIT->SETUP 11343 */ 11344 static int 11345 bxe_setup_queue(struct bxe_softc *sc, 11346 struct bxe_fastpath *fp, 11347 uint8_t leading) 11348 { 11349 struct ecore_queue_state_params q_params = { NULL }; 11350 struct ecore_queue_setup_params *setup_params = 11351 &q_params.params.setup; 11352 int rc; 11353 11354 BLOGD(sc, DBG_LOAD, "setting up queue %d\n", fp->index); 11355 11356 bxe_ack_sb(sc, fp->igu_sb_id, USTORM_ID, 0, IGU_INT_ENABLE, 0); 11357 11358 q_params.q_obj = &BXE_SP_OBJ(sc, fp).q_obj; 11359 11360 /* we want to wait for completion in this context */ 11361 bxe_set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags); 11362 11363 /* prepare the INIT parameters */ 11364 bxe_pf_q_prep_init(sc, fp, &q_params.params.init); 11365 11366 /* Set the command */ 11367 q_params.cmd = ECORE_Q_CMD_INIT; 11368 11369 /* Change the state to INIT */ 11370 rc = ecore_queue_state_change(sc, &q_params); 11371 if (rc) { 11372 BLOGE(sc, "Queue(%d) INIT failed rc = %d\n", fp->index, rc); 11373 return (rc); 11374 } 11375 11376 BLOGD(sc, DBG_LOAD, "init complete\n"); 11377 11378 /* now move the Queue to the SETUP state */ 11379 memset(setup_params, 0, sizeof(*setup_params)); 11380 11381 /* set Queue flags */ 11382 setup_params->flags = bxe_get_q_flags(sc, fp, leading); 11383 11384 /* set general SETUP parameters */ 11385 bxe_pf_q_prep_general(sc, fp, &setup_params->gen_params, 11386 FIRST_TX_COS_INDEX); 11387 11388 bxe_pf_rx_q_prep(sc, fp, 11389 &setup_params->pause_params, 11390 &setup_params->rxq_params); 11391 11392 bxe_pf_tx_q_prep(sc, fp, 11393 &setup_params->txq_params, 11394 FIRST_TX_COS_INDEX); 11395 11396 /* Set the command */ 11397 q_params.cmd = ECORE_Q_CMD_SETUP; 11398 11399 /* change the state to SETUP */ 11400 rc = ecore_queue_state_change(sc, &q_params); 11401 if (rc) { 11402 BLOGE(sc, "Queue(%d) SETUP failed (rc = %d)\n", fp->index, rc); 11403 return (rc); 11404 } 11405 11406 return (rc); 11407 } 11408 11409 static int 11410 bxe_setup_leading(struct bxe_softc *sc) 11411 { 11412 return (bxe_setup_queue(sc, &sc->fp[0], TRUE)); 11413 } 11414 11415 static int 11416 bxe_config_rss_pf(struct bxe_softc *sc, 11417 struct ecore_rss_config_obj *rss_obj, 11418 uint8_t config_hash) 11419 { 11420 struct ecore_config_rss_params params = { NULL }; 11421 int i; 11422 11423 /* 11424 * Although RSS is meaningless when there is a single HW queue we 11425 * still need it enabled in order to have HW Rx hash generated. 11426 */ 11427 11428 params.rss_obj = rss_obj; 11429 11430 bxe_set_bit(RAMROD_COMP_WAIT, ¶ms.ramrod_flags); 11431 11432 bxe_set_bit(ECORE_RSS_MODE_REGULAR, ¶ms.rss_flags); 11433 11434 /* RSS configuration */ 11435 bxe_set_bit(ECORE_RSS_IPV4, ¶ms.rss_flags); 11436 bxe_set_bit(ECORE_RSS_IPV4_TCP, ¶ms.rss_flags); 11437 bxe_set_bit(ECORE_RSS_IPV6, ¶ms.rss_flags); 11438 bxe_set_bit(ECORE_RSS_IPV6_TCP, ¶ms.rss_flags); 11439 if (rss_obj->udp_rss_v4) { 11440 bxe_set_bit(ECORE_RSS_IPV4_UDP, ¶ms.rss_flags); 11441 } 11442 if (rss_obj->udp_rss_v6) { 11443 bxe_set_bit(ECORE_RSS_IPV6_UDP, ¶ms.rss_flags); 11444 } 11445 11446 /* Hash bits */ 11447 params.rss_result_mask = MULTI_MASK; 11448 11449 memcpy(params.ind_table, rss_obj->ind_table, sizeof(params.ind_table)); 11450 11451 if (config_hash) { 11452 /* RSS keys */ 11453 for (i = 0; i < sizeof(params.rss_key) / 4; i++) { 11454 params.rss_key[i] = arc4random(); 11455 } 11456 11457 bxe_set_bit(ECORE_RSS_SET_SRCH, ¶ms.rss_flags); 11458 } 11459 11460 return (ecore_config_rss(sc, ¶ms)); 11461 } 11462 11463 static int 11464 bxe_config_rss_eth(struct bxe_softc *sc, 11465 uint8_t config_hash) 11466 { 11467 return (bxe_config_rss_pf(sc, &sc->rss_conf_obj, config_hash)); 11468 } 11469 11470 static int 11471 bxe_init_rss_pf(struct bxe_softc *sc) 11472 { 11473 uint8_t num_eth_queues = BXE_NUM_ETH_QUEUES(sc); 11474 int i; 11475 11476 /* 11477 * Prepare the initial contents of the indirection table if 11478 * RSS is enabled 11479 */ 11480 for (i = 0; i < sizeof(sc->rss_conf_obj.ind_table); i++) { 11481 sc->rss_conf_obj.ind_table[i] = 11482 (sc->fp->cl_id + (i % num_eth_queues)); 11483 } 11484 11485 if (sc->udp_rss) { 11486 sc->rss_conf_obj.udp_rss_v4 = sc->rss_conf_obj.udp_rss_v6 = 1; 11487 } 11488 11489 /* 11490 * For 57710 and 57711 SEARCHER configuration (rss_keys) is 11491 * per-port, so if explicit configuration is needed, do it only 11492 * for a PMF. 11493 * 11494 * For 57712 and newer it's a per-function configuration. 11495 */ 11496 return (bxe_config_rss_eth(sc, sc->port.pmf || !CHIP_IS_E1x(sc))); 11497 } 11498 11499 static int 11500 bxe_set_mac_one(struct bxe_softc *sc, 11501 uint8_t *mac, 11502 struct ecore_vlan_mac_obj *obj, 11503 uint8_t set, 11504 int mac_type, 11505 unsigned long *ramrod_flags) 11506 { 11507 struct ecore_vlan_mac_ramrod_params ramrod_param; 11508 int rc; 11509 11510 memset(&ramrod_param, 0, sizeof(ramrod_param)); 11511 11512 /* fill in general parameters */ 11513 ramrod_param.vlan_mac_obj = obj; 11514 ramrod_param.ramrod_flags = *ramrod_flags; 11515 11516 /* fill a user request section if needed */ 11517 if (!bxe_test_bit(RAMROD_CONT, ramrod_flags)) { 11518 memcpy(ramrod_param.user_req.u.mac.mac, mac, ETH_ALEN); 11519 11520 bxe_set_bit(mac_type, &ramrod_param.user_req.vlan_mac_flags); 11521 11522 /* Set the command: ADD or DEL */ 11523 ramrod_param.user_req.cmd = (set) ? ECORE_VLAN_MAC_ADD : 11524 ECORE_VLAN_MAC_DEL; 11525 } 11526 11527 rc = ecore_config_vlan_mac(sc, &ramrod_param); 11528 11529 if (rc == ECORE_EXISTS) { 11530 BLOGD(sc, DBG_SP, "Failed to schedule ADD operations (EEXIST)\n"); 11531 /* do not treat adding same MAC as error */ 11532 rc = 0; 11533 } else if (rc < 0) { 11534 BLOGE(sc, "%s MAC failed (%d)\n", (set ? "Set" : "Delete"), rc); 11535 } 11536 11537 return (rc); 11538 } 11539 11540 static int 11541 bxe_set_eth_mac(struct bxe_softc *sc, 11542 uint8_t set) 11543 { 11544 unsigned long ramrod_flags = 0; 11545 11546 BLOGD(sc, DBG_LOAD, "Adding Ethernet MAC\n"); 11547 11548 bxe_set_bit(RAMROD_COMP_WAIT, &ramrod_flags); 11549 11550 /* Eth MAC is set on RSS leading client (fp[0]) */ 11551 return (bxe_set_mac_one(sc, sc->link_params.mac_addr, 11552 &sc->sp_objs->mac_obj, 11553 set, ECORE_ETH_MAC, &ramrod_flags)); 11554 } 11555 11556 static int 11557 bxe_get_cur_phy_idx(struct bxe_softc *sc) 11558 { 11559 uint32_t sel_phy_idx = 0; 11560 11561 if (sc->link_params.num_phys <= 1) { 11562 return (ELINK_INT_PHY); 11563 } 11564 11565 if (sc->link_vars.link_up) { 11566 sel_phy_idx = ELINK_EXT_PHY1; 11567 /* In case link is SERDES, check if the ELINK_EXT_PHY2 is the one */ 11568 if ((sc->link_vars.link_status & LINK_STATUS_SERDES_LINK) && 11569 (sc->link_params.phy[ELINK_EXT_PHY2].supported & 11570 ELINK_SUPPORTED_FIBRE)) 11571 sel_phy_idx = ELINK_EXT_PHY2; 11572 } else { 11573 switch (elink_phy_selection(&sc->link_params)) { 11574 case PORT_HW_CFG_PHY_SELECTION_HARDWARE_DEFAULT: 11575 case PORT_HW_CFG_PHY_SELECTION_FIRST_PHY: 11576 case PORT_HW_CFG_PHY_SELECTION_FIRST_PHY_PRIORITY: 11577 sel_phy_idx = ELINK_EXT_PHY1; 11578 break; 11579 case PORT_HW_CFG_PHY_SELECTION_SECOND_PHY: 11580 case PORT_HW_CFG_PHY_SELECTION_SECOND_PHY_PRIORITY: 11581 sel_phy_idx = ELINK_EXT_PHY2; 11582 break; 11583 } 11584 } 11585 11586 return (sel_phy_idx); 11587 } 11588 11589 static int 11590 bxe_get_link_cfg_idx(struct bxe_softc *sc) 11591 { 11592 uint32_t sel_phy_idx = bxe_get_cur_phy_idx(sc); 11593 11594 /* 11595 * The selected activated PHY is always after swapping (in case PHY 11596 * swapping is enabled). So when swapping is enabled, we need to reverse 11597 * the configuration 11598 */ 11599 11600 if (sc->link_params.multi_phy_config & PORT_HW_CFG_PHY_SWAPPED_ENABLED) { 11601 if (sel_phy_idx == ELINK_EXT_PHY1) 11602 sel_phy_idx = ELINK_EXT_PHY2; 11603 else if (sel_phy_idx == ELINK_EXT_PHY2) 11604 sel_phy_idx = ELINK_EXT_PHY1; 11605 } 11606 11607 return (ELINK_LINK_CONFIG_IDX(sel_phy_idx)); 11608 } 11609 11610 static void 11611 bxe_set_requested_fc(struct bxe_softc *sc) 11612 { 11613 /* 11614 * Initialize link parameters structure variables 11615 * It is recommended to turn off RX FC for jumbo frames 11616 * for better performance 11617 */ 11618 if (CHIP_IS_E1x(sc) && (sc->mtu > 5000)) { 11619 sc->link_params.req_fc_auto_adv = ELINK_FLOW_CTRL_TX; 11620 } else { 11621 sc->link_params.req_fc_auto_adv = ELINK_FLOW_CTRL_BOTH; 11622 } 11623 } 11624 11625 static void 11626 bxe_calc_fc_adv(struct bxe_softc *sc) 11627 { 11628 uint8_t cfg_idx = bxe_get_link_cfg_idx(sc); 11629 switch (sc->link_vars.ieee_fc & 11630 MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_MASK) { 11631 case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_NONE: 11632 default: 11633 sc->port.advertising[cfg_idx] &= ~(ADVERTISED_Asym_Pause | 11634 ADVERTISED_Pause); 11635 break; 11636 11637 case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_BOTH: 11638 sc->port.advertising[cfg_idx] |= (ADVERTISED_Asym_Pause | 11639 ADVERTISED_Pause); 11640 break; 11641 11642 case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_ASYMMETRIC: 11643 sc->port.advertising[cfg_idx] |= ADVERTISED_Asym_Pause; 11644 break; 11645 } 11646 } 11647 11648 static uint16_t 11649 bxe_get_mf_speed(struct bxe_softc *sc) 11650 { 11651 uint16_t line_speed = sc->link_vars.line_speed; 11652 if (IS_MF(sc)) { 11653 uint16_t maxCfg = 11654 bxe_extract_max_cfg(sc, sc->devinfo.mf_info.mf_config[SC_VN(sc)]); 11655 11656 /* calculate the current MAX line speed limit for the MF devices */ 11657 if (IS_MF_SI(sc)) { 11658 line_speed = (line_speed * maxCfg) / 100; 11659 } else { /* SD mode */ 11660 uint16_t vn_max_rate = maxCfg * 100; 11661 11662 if (vn_max_rate < line_speed) { 11663 line_speed = vn_max_rate; 11664 } 11665 } 11666 } 11667 11668 return (line_speed); 11669 } 11670 11671 static void 11672 bxe_fill_report_data(struct bxe_softc *sc, 11673 struct bxe_link_report_data *data) 11674 { 11675 uint16_t line_speed = bxe_get_mf_speed(sc); 11676 11677 memset(data, 0, sizeof(*data)); 11678 11679 /* fill the report data with the effective line speed */ 11680 data->line_speed = line_speed; 11681 11682 /* Link is down */ 11683 if (!sc->link_vars.link_up || (sc->flags & BXE_MF_FUNC_DIS)) { 11684 bxe_set_bit(BXE_LINK_REPORT_LINK_DOWN, &data->link_report_flags); 11685 } 11686 11687 /* Full DUPLEX */ 11688 if (sc->link_vars.duplex == DUPLEX_FULL) { 11689 bxe_set_bit(BXE_LINK_REPORT_FULL_DUPLEX, &data->link_report_flags); 11690 } 11691 11692 /* Rx Flow Control is ON */ 11693 if (sc->link_vars.flow_ctrl & ELINK_FLOW_CTRL_RX) { 11694 bxe_set_bit(BXE_LINK_REPORT_RX_FC_ON, &data->link_report_flags); 11695 } 11696 11697 /* Tx Flow Control is ON */ 11698 if (sc->link_vars.flow_ctrl & ELINK_FLOW_CTRL_TX) { 11699 bxe_set_bit(BXE_LINK_REPORT_TX_FC_ON, &data->link_report_flags); 11700 } 11701 } 11702 11703 /* report link status to OS, should be called under phy_lock */ 11704 static void 11705 bxe_link_report_locked(struct bxe_softc *sc) 11706 { 11707 struct bxe_link_report_data cur_data; 11708 11709 /* reread mf_cfg */ 11710 if (IS_PF(sc) && !CHIP_IS_E1(sc)) { 11711 bxe_read_mf_cfg(sc); 11712 } 11713 11714 /* Read the current link report info */ 11715 bxe_fill_report_data(sc, &cur_data); 11716 11717 /* Don't report link down or exactly the same link status twice */ 11718 if (!memcmp(&cur_data, &sc->last_reported_link, sizeof(cur_data)) || 11719 (bxe_test_bit(BXE_LINK_REPORT_LINK_DOWN, 11720 &sc->last_reported_link.link_report_flags) && 11721 bxe_test_bit(BXE_LINK_REPORT_LINK_DOWN, 11722 &cur_data.link_report_flags))) { 11723 return; 11724 } 11725 11726 sc->link_cnt++; 11727 11728 /* report new link params and remember the state for the next time */ 11729 memcpy(&sc->last_reported_link, &cur_data, sizeof(cur_data)); 11730 11731 if (bxe_test_bit(BXE_LINK_REPORT_LINK_DOWN, 11732 &cur_data.link_report_flags)) { 11733 if_link_state_change(sc->ifp, LINK_STATE_DOWN); 11734 BLOGI(sc, "NIC Link is Down\n"); 11735 } else { 11736 const char *duplex; 11737 const char *flow; 11738 11739 if (bxe_test_and_clear_bit(BXE_LINK_REPORT_FULL_DUPLEX, 11740 &cur_data.link_report_flags)) { 11741 duplex = "full"; 11742 } else { 11743 duplex = "half"; 11744 } 11745 11746 /* 11747 * Handle the FC at the end so that only these flags would be 11748 * possibly set. This way we may easily check if there is no FC 11749 * enabled. 11750 */ 11751 if (cur_data.link_report_flags) { 11752 if (bxe_test_bit(BXE_LINK_REPORT_RX_FC_ON, 11753 &cur_data.link_report_flags) && 11754 bxe_test_bit(BXE_LINK_REPORT_TX_FC_ON, 11755 &cur_data.link_report_flags)) { 11756 flow = "ON - receive & transmit"; 11757 } else if (bxe_test_bit(BXE_LINK_REPORT_RX_FC_ON, 11758 &cur_data.link_report_flags) && 11759 !bxe_test_bit(BXE_LINK_REPORT_TX_FC_ON, 11760 &cur_data.link_report_flags)) { 11761 flow = "ON - receive"; 11762 } else if (!bxe_test_bit(BXE_LINK_REPORT_RX_FC_ON, 11763 &cur_data.link_report_flags) && 11764 bxe_test_bit(BXE_LINK_REPORT_TX_FC_ON, 11765 &cur_data.link_report_flags)) { 11766 flow = "ON - transmit"; 11767 } else { 11768 flow = "none"; /* possible? */ 11769 } 11770 } else { 11771 flow = "none"; 11772 } 11773 11774 if_link_state_change(sc->ifp, LINK_STATE_UP); 11775 BLOGI(sc, "NIC Link is Up, %d Mbps %s duplex, Flow control: %s\n", 11776 cur_data.line_speed, duplex, flow); 11777 } 11778 } 11779 11780 static void 11781 bxe_link_report(struct bxe_softc *sc) 11782 { 11783 bxe_acquire_phy_lock(sc); 11784 bxe_link_report_locked(sc); 11785 bxe_release_phy_lock(sc); 11786 } 11787 11788 static void 11789 bxe_link_status_update(struct bxe_softc *sc) 11790 { 11791 if (sc->state != BXE_STATE_OPEN) { 11792 return; 11793 } 11794 11795 if (IS_PF(sc) && !CHIP_REV_IS_SLOW(sc)) { 11796 elink_link_status_update(&sc->link_params, &sc->link_vars); 11797 } else { 11798 sc->port.supported[0] |= (ELINK_SUPPORTED_10baseT_Half | 11799 ELINK_SUPPORTED_10baseT_Full | 11800 ELINK_SUPPORTED_100baseT_Half | 11801 ELINK_SUPPORTED_100baseT_Full | 11802 ELINK_SUPPORTED_1000baseT_Full | 11803 ELINK_SUPPORTED_2500baseX_Full | 11804 ELINK_SUPPORTED_10000baseT_Full | 11805 ELINK_SUPPORTED_TP | 11806 ELINK_SUPPORTED_FIBRE | 11807 ELINK_SUPPORTED_Autoneg | 11808 ELINK_SUPPORTED_Pause | 11809 ELINK_SUPPORTED_Asym_Pause); 11810 sc->port.advertising[0] = sc->port.supported[0]; 11811 11812 sc->link_params.sc = sc; 11813 sc->link_params.port = SC_PORT(sc); 11814 sc->link_params.req_duplex[0] = DUPLEX_FULL; 11815 sc->link_params.req_flow_ctrl[0] = ELINK_FLOW_CTRL_NONE; 11816 sc->link_params.req_line_speed[0] = SPEED_10000; 11817 sc->link_params.speed_cap_mask[0] = 0x7f0000; 11818 sc->link_params.switch_cfg = ELINK_SWITCH_CFG_10G; 11819 11820 if (CHIP_REV_IS_FPGA(sc)) { 11821 sc->link_vars.mac_type = ELINK_MAC_TYPE_EMAC; 11822 sc->link_vars.line_speed = ELINK_SPEED_1000; 11823 sc->link_vars.link_status = (LINK_STATUS_LINK_UP | 11824 LINK_STATUS_SPEED_AND_DUPLEX_1000TFD); 11825 } else { 11826 sc->link_vars.mac_type = ELINK_MAC_TYPE_BMAC; 11827 sc->link_vars.line_speed = ELINK_SPEED_10000; 11828 sc->link_vars.link_status = (LINK_STATUS_LINK_UP | 11829 LINK_STATUS_SPEED_AND_DUPLEX_10GTFD); 11830 } 11831 11832 sc->link_vars.link_up = 1; 11833 11834 sc->link_vars.duplex = DUPLEX_FULL; 11835 sc->link_vars.flow_ctrl = ELINK_FLOW_CTRL_NONE; 11836 11837 if (IS_PF(sc)) { 11838 REG_WR(sc, NIG_REG_EGRESS_DRAIN0_MODE + sc->link_params.port*4, 0); 11839 bxe_stats_handle(sc, STATS_EVENT_LINK_UP); 11840 bxe_link_report(sc); 11841 } 11842 } 11843 11844 if (IS_PF(sc)) { 11845 if (sc->link_vars.link_up) { 11846 bxe_stats_handle(sc, STATS_EVENT_LINK_UP); 11847 } else { 11848 bxe_stats_handle(sc, STATS_EVENT_STOP); 11849 } 11850 bxe_link_report(sc); 11851 } else { 11852 bxe_link_report(sc); 11853 bxe_stats_handle(sc, STATS_EVENT_LINK_UP); 11854 } 11855 } 11856 11857 static int 11858 bxe_initial_phy_init(struct bxe_softc *sc, 11859 int load_mode) 11860 { 11861 int rc, cfg_idx = bxe_get_link_cfg_idx(sc); 11862 uint16_t req_line_speed = sc->link_params.req_line_speed[cfg_idx]; 11863 struct elink_params *lp = &sc->link_params; 11864 11865 bxe_set_requested_fc(sc); 11866 11867 if (CHIP_REV_IS_SLOW(sc)) { 11868 uint32_t bond = CHIP_BOND_ID(sc); 11869 uint32_t feat = 0; 11870 11871 if (CHIP_IS_E2(sc) && CHIP_IS_MODE_4_PORT(sc)) { 11872 feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_BMAC; 11873 } else if (bond & 0x4) { 11874 if (CHIP_IS_E3(sc)) { 11875 feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_XMAC; 11876 } else { 11877 feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_BMAC; 11878 } 11879 } else if (bond & 0x8) { 11880 if (CHIP_IS_E3(sc)) { 11881 feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_UMAC; 11882 } else { 11883 feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_EMAC; 11884 } 11885 } 11886 11887 /* disable EMAC for E3 and above */ 11888 if (bond & 0x2) { 11889 feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_EMAC; 11890 } 11891 11892 sc->link_params.feature_config_flags |= feat; 11893 } 11894 11895 bxe_acquire_phy_lock(sc); 11896 11897 if (load_mode == LOAD_DIAG) { 11898 lp->loopback_mode = ELINK_LOOPBACK_XGXS; 11899 /* Prefer doing PHY loopback at 10G speed, if possible */ 11900 if (lp->req_line_speed[cfg_idx] < ELINK_SPEED_10000) { 11901 if (lp->speed_cap_mask[cfg_idx] & 11902 PORT_HW_CFG_SPEED_CAPABILITY_D0_10G) { 11903 lp->req_line_speed[cfg_idx] = ELINK_SPEED_10000; 11904 } else { 11905 lp->req_line_speed[cfg_idx] = ELINK_SPEED_1000; 11906 } 11907 } 11908 } 11909 11910 if (load_mode == LOAD_LOOPBACK_EXT) { 11911 lp->loopback_mode = ELINK_LOOPBACK_EXT; 11912 } 11913 11914 rc = elink_phy_init(&sc->link_params, &sc->link_vars); 11915 11916 bxe_release_phy_lock(sc); 11917 11918 bxe_calc_fc_adv(sc); 11919 11920 if (sc->link_vars.link_up) { 11921 bxe_stats_handle(sc, STATS_EVENT_LINK_UP); 11922 bxe_link_report(sc); 11923 } 11924 11925 if (!CHIP_REV_IS_SLOW(sc)) { 11926 bxe_periodic_start(sc); 11927 } 11928 11929 sc->link_params.req_line_speed[cfg_idx] = req_line_speed; 11930 return (rc); 11931 } 11932 11933 /* must be called under IF_ADDR_LOCK */ 11934 11935 static int 11936 bxe_set_mc_list(struct bxe_softc *sc) 11937 { 11938 struct ecore_mcast_ramrod_params rparam = { NULL }; 11939 int rc = 0; 11940 int mc_count = 0; 11941 int mcnt, i; 11942 struct ecore_mcast_list_elem *mc_mac, *mc_mac_start; 11943 unsigned char *mta; 11944 if_t ifp = sc->ifp; 11945 11946 mc_count = if_multiaddr_count(ifp, -1);/* XXX they don't have a limit */ 11947 if (!mc_count) 11948 return (0); 11949 11950 mta = malloc(sizeof(unsigned char) * ETHER_ADDR_LEN * 11951 mc_count, M_DEVBUF, M_NOWAIT); 11952 11953 if(mta == NULL) { 11954 BLOGE(sc, "Failed to allocate temp mcast list\n"); 11955 return (-1); 11956 } 11957 bzero(mta, (sizeof(unsigned char) * ETHER_ADDR_LEN * mc_count)); 11958 11959 mc_mac = malloc(sizeof(*mc_mac) * mc_count, M_DEVBUF, (M_NOWAIT | M_ZERO)); 11960 mc_mac_start = mc_mac; 11961 11962 if (!mc_mac) { 11963 free(mta, M_DEVBUF); 11964 BLOGE(sc, "Failed to allocate temp mcast list\n"); 11965 return (-1); 11966 } 11967 bzero(mc_mac, (sizeof(*mc_mac) * mc_count)); 11968 11969 /* mta and mcnt not expected to be different */ 11970 if_multiaddr_array(ifp, mta, &mcnt, mc_count); 11971 11972 11973 rparam.mcast_obj = &sc->mcast_obj; 11974 ECORE_LIST_INIT(&rparam.mcast_list); 11975 11976 for(i=0; i< mcnt; i++) { 11977 11978 mc_mac->mac = (uint8_t *)(mta + (i * ETHER_ADDR_LEN)); 11979 ECORE_LIST_PUSH_TAIL(&mc_mac->link, &rparam.mcast_list); 11980 11981 BLOGD(sc, DBG_LOAD, 11982 "Setting MCAST %02X:%02X:%02X:%02X:%02X:%02X\n", 11983 mc_mac->mac[0], mc_mac->mac[1], mc_mac->mac[2], 11984 mc_mac->mac[3], mc_mac->mac[4], mc_mac->mac[5]); 11985 11986 mc_mac++; 11987 } 11988 rparam.mcast_list_len = mc_count; 11989 11990 BXE_MCAST_LOCK(sc); 11991 11992 /* first, clear all configured multicast MACs */ 11993 rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_DEL); 11994 if (rc < 0) { 11995 BLOGE(sc, "Failed to clear multicast configuration: %d\n", rc); 11996 BXE_MCAST_UNLOCK(sc); 11997 free(mc_mac_start, M_DEVBUF); 11998 free(mta, M_DEVBUF); 11999 return (rc); 12000 } 12001 12002 /* Now add the new MACs */ 12003 rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_ADD); 12004 if (rc < 0) { 12005 BLOGE(sc, "Failed to set new mcast config (%d)\n", rc); 12006 } 12007 12008 BXE_MCAST_UNLOCK(sc); 12009 12010 free(mc_mac_start, M_DEVBUF); 12011 free(mta, M_DEVBUF); 12012 12013 return (rc); 12014 } 12015 12016 static int 12017 bxe_set_uc_list(struct bxe_softc *sc) 12018 { 12019 if_t ifp = sc->ifp; 12020 struct ecore_vlan_mac_obj *mac_obj = &sc->sp_objs->mac_obj; 12021 struct ifaddr *ifa; 12022 unsigned long ramrod_flags = 0; 12023 int rc; 12024 12025 #if __FreeBSD_version < 800000 12026 IF_ADDR_LOCK(ifp); 12027 #else 12028 if_addr_rlock(ifp); 12029 #endif 12030 12031 /* first schedule a cleanup up of old configuration */ 12032 rc = bxe_del_all_macs(sc, mac_obj, ECORE_UC_LIST_MAC, FALSE); 12033 if (rc < 0) { 12034 BLOGE(sc, "Failed to schedule delete of all ETH MACs (%d)\n", rc); 12035 #if __FreeBSD_version < 800000 12036 IF_ADDR_UNLOCK(ifp); 12037 #else 12038 if_addr_runlock(ifp); 12039 #endif 12040 return (rc); 12041 } 12042 12043 ifa = if_getifaddr(ifp); /* XXX Is this structure */ 12044 while (ifa) { 12045 if (ifa->ifa_addr->sa_family != AF_LINK) { 12046 ifa = TAILQ_NEXT(ifa, ifa_link); 12047 continue; 12048 } 12049 12050 rc = bxe_set_mac_one(sc, (uint8_t *)LLADDR((struct sockaddr_dl *)ifa->ifa_addr), 12051 mac_obj, TRUE, ECORE_UC_LIST_MAC, &ramrod_flags); 12052 if (rc == -EEXIST) { 12053 BLOGD(sc, DBG_SP, "Failed to schedule ADD operations (EEXIST)\n"); 12054 /* do not treat adding same MAC as an error */ 12055 rc = 0; 12056 } else if (rc < 0) { 12057 BLOGE(sc, "Failed to schedule ADD operations (%d)\n", rc); 12058 #if __FreeBSD_version < 800000 12059 IF_ADDR_UNLOCK(ifp); 12060 #else 12061 if_addr_runlock(ifp); 12062 #endif 12063 return (rc); 12064 } 12065 12066 ifa = TAILQ_NEXT(ifa, ifa_link); 12067 } 12068 12069 #if __FreeBSD_version < 800000 12070 IF_ADDR_UNLOCK(ifp); 12071 #else 12072 if_addr_runlock(ifp); 12073 #endif 12074 12075 /* Execute the pending commands */ 12076 bit_set(&ramrod_flags, RAMROD_CONT); 12077 return (bxe_set_mac_one(sc, NULL, mac_obj, FALSE /* don't care */, 12078 ECORE_UC_LIST_MAC, &ramrod_flags)); 12079 } 12080 12081 static void 12082 bxe_set_rx_mode(struct bxe_softc *sc) 12083 { 12084 if_t ifp = sc->ifp; 12085 uint32_t rx_mode = BXE_RX_MODE_NORMAL; 12086 12087 if (sc->state != BXE_STATE_OPEN) { 12088 BLOGD(sc, DBG_SP, "state is %x, returning\n", sc->state); 12089 return; 12090 } 12091 12092 BLOGD(sc, DBG_SP, "if_flags(ifp)=0x%x\n", if_getflags(sc->ifp)); 12093 12094 if (if_getflags(ifp) & IFF_PROMISC) { 12095 rx_mode = BXE_RX_MODE_PROMISC; 12096 } else if ((if_getflags(ifp) & IFF_ALLMULTI) || 12097 ((if_getamcount(ifp) > BXE_MAX_MULTICAST) && 12098 CHIP_IS_E1(sc))) { 12099 rx_mode = BXE_RX_MODE_ALLMULTI; 12100 } else { 12101 if (IS_PF(sc)) { 12102 /* some multicasts */ 12103 if (bxe_set_mc_list(sc) < 0) { 12104 rx_mode = BXE_RX_MODE_ALLMULTI; 12105 } 12106 if (bxe_set_uc_list(sc) < 0) { 12107 rx_mode = BXE_RX_MODE_PROMISC; 12108 } 12109 } 12110 } 12111 12112 sc->rx_mode = rx_mode; 12113 12114 /* schedule the rx_mode command */ 12115 if (bxe_test_bit(ECORE_FILTER_RX_MODE_PENDING, &sc->sp_state)) { 12116 BLOGD(sc, DBG_LOAD, "Scheduled setting rx_mode with ECORE...\n"); 12117 bxe_set_bit(ECORE_FILTER_RX_MODE_SCHED, &sc->sp_state); 12118 return; 12119 } 12120 12121 if (IS_PF(sc)) { 12122 bxe_set_storm_rx_mode(sc); 12123 } 12124 } 12125 12126 12127 /* update flags in shmem */ 12128 static void 12129 bxe_update_drv_flags(struct bxe_softc *sc, 12130 uint32_t flags, 12131 uint32_t set) 12132 { 12133 uint32_t drv_flags; 12134 12135 if (SHMEM2_HAS(sc, drv_flags)) { 12136 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_DRV_FLAGS); 12137 drv_flags = SHMEM2_RD(sc, drv_flags); 12138 12139 if (set) { 12140 SET_FLAGS(drv_flags, flags); 12141 } else { 12142 RESET_FLAGS(drv_flags, flags); 12143 } 12144 12145 SHMEM2_WR(sc, drv_flags, drv_flags); 12146 BLOGD(sc, DBG_LOAD, "drv_flags 0x%08x\n", drv_flags); 12147 12148 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_DRV_FLAGS); 12149 } 12150 } 12151 12152 /* periodic timer callout routine, only runs when the interface is up */ 12153 12154 static void 12155 bxe_periodic_callout_func(void *xsc) 12156 { 12157 struct bxe_softc *sc = (struct bxe_softc *)xsc; 12158 int i; 12159 12160 if (!BXE_CORE_TRYLOCK(sc)) { 12161 /* just bail and try again next time */ 12162 12163 if ((sc->state == BXE_STATE_OPEN) && 12164 (atomic_load_acq_long(&sc->periodic_flags) == PERIODIC_GO)) { 12165 /* schedule the next periodic callout */ 12166 callout_reset(&sc->periodic_callout, hz, 12167 bxe_periodic_callout_func, sc); 12168 } 12169 12170 return; 12171 } 12172 12173 if ((sc->state != BXE_STATE_OPEN) || 12174 (atomic_load_acq_long(&sc->periodic_flags) == PERIODIC_STOP)) { 12175 BLOGW(sc, "periodic callout exit (state=0x%x)\n", sc->state); 12176 BXE_CORE_UNLOCK(sc); 12177 return; 12178 } 12179 12180 12181 /* Check for TX timeouts on any fastpath. */ 12182 FOR_EACH_QUEUE(sc, i) { 12183 if (bxe_watchdog(sc, &sc->fp[i]) != 0) { 12184 /* Ruh-Roh, chip was reset! */ 12185 break; 12186 } 12187 } 12188 12189 if (!CHIP_REV_IS_SLOW(sc)) { 12190 /* 12191 * This barrier is needed to ensure the ordering between the writing 12192 * to the sc->port.pmf in the bxe_nic_load() or bxe_pmf_update() and 12193 * the reading here. 12194 */ 12195 mb(); 12196 if (sc->port.pmf) { 12197 bxe_acquire_phy_lock(sc); 12198 elink_period_func(&sc->link_params, &sc->link_vars); 12199 bxe_release_phy_lock(sc); 12200 } 12201 } 12202 12203 if (IS_PF(sc) && !(sc->flags & BXE_NO_PULSE)) { 12204 int mb_idx = SC_FW_MB_IDX(sc); 12205 uint32_t drv_pulse; 12206 uint32_t mcp_pulse; 12207 12208 ++sc->fw_drv_pulse_wr_seq; 12209 sc->fw_drv_pulse_wr_seq &= DRV_PULSE_SEQ_MASK; 12210 12211 drv_pulse = sc->fw_drv_pulse_wr_seq; 12212 bxe_drv_pulse(sc); 12213 12214 mcp_pulse = (SHMEM_RD(sc, func_mb[mb_idx].mcp_pulse_mb) & 12215 MCP_PULSE_SEQ_MASK); 12216 12217 /* 12218 * The delta between driver pulse and mcp response should 12219 * be 1 (before mcp response) or 0 (after mcp response). 12220 */ 12221 if ((drv_pulse != mcp_pulse) && 12222 (drv_pulse != ((mcp_pulse + 1) & MCP_PULSE_SEQ_MASK))) { 12223 /* someone lost a heartbeat... */ 12224 BLOGE(sc, "drv_pulse (0x%x) != mcp_pulse (0x%x)\n", 12225 drv_pulse, mcp_pulse); 12226 } 12227 } 12228 12229 /* state is BXE_STATE_OPEN */ 12230 bxe_stats_handle(sc, STATS_EVENT_UPDATE); 12231 12232 BXE_CORE_UNLOCK(sc); 12233 12234 if ((sc->state == BXE_STATE_OPEN) && 12235 (atomic_load_acq_long(&sc->periodic_flags) == PERIODIC_GO)) { 12236 /* schedule the next periodic callout */ 12237 callout_reset(&sc->periodic_callout, hz, 12238 bxe_periodic_callout_func, sc); 12239 } 12240 } 12241 12242 static void 12243 bxe_periodic_start(struct bxe_softc *sc) 12244 { 12245 atomic_store_rel_long(&sc->periodic_flags, PERIODIC_GO); 12246 callout_reset(&sc->periodic_callout, hz, bxe_periodic_callout_func, sc); 12247 } 12248 12249 static void 12250 bxe_periodic_stop(struct bxe_softc *sc) 12251 { 12252 atomic_store_rel_long(&sc->periodic_flags, PERIODIC_STOP); 12253 callout_drain(&sc->periodic_callout); 12254 } 12255 12256 /* start the controller */ 12257 static __noinline int 12258 bxe_nic_load(struct bxe_softc *sc, 12259 int load_mode) 12260 { 12261 uint32_t val; 12262 int load_code = 0; 12263 int i, rc = 0; 12264 12265 BXE_CORE_LOCK_ASSERT(sc); 12266 12267 BLOGD(sc, DBG_LOAD, "Starting NIC load...\n"); 12268 12269 sc->state = BXE_STATE_OPENING_WAITING_LOAD; 12270 12271 if (IS_PF(sc)) { 12272 /* must be called before memory allocation and HW init */ 12273 bxe_ilt_set_info(sc); 12274 } 12275 12276 sc->last_reported_link_state = LINK_STATE_UNKNOWN; 12277 12278 bxe_set_fp_rx_buf_size(sc); 12279 12280 if (bxe_alloc_fp_buffers(sc) != 0) { 12281 BLOGE(sc, "Failed to allocate fastpath memory\n"); 12282 sc->state = BXE_STATE_CLOSED; 12283 rc = ENOMEM; 12284 goto bxe_nic_load_error0; 12285 } 12286 12287 if (bxe_alloc_mem(sc) != 0) { 12288 sc->state = BXE_STATE_CLOSED; 12289 rc = ENOMEM; 12290 goto bxe_nic_load_error0; 12291 } 12292 12293 if (bxe_alloc_fw_stats_mem(sc) != 0) { 12294 sc->state = BXE_STATE_CLOSED; 12295 rc = ENOMEM; 12296 goto bxe_nic_load_error0; 12297 } 12298 12299 if (IS_PF(sc)) { 12300 /* set pf load just before approaching the MCP */ 12301 bxe_set_pf_load(sc); 12302 12303 /* if MCP exists send load request and analyze response */ 12304 if (!BXE_NOMCP(sc)) { 12305 /* attempt to load pf */ 12306 if (bxe_nic_load_request(sc, &load_code) != 0) { 12307 sc->state = BXE_STATE_CLOSED; 12308 rc = ENXIO; 12309 goto bxe_nic_load_error1; 12310 } 12311 12312 /* what did the MCP say? */ 12313 if (bxe_nic_load_analyze_req(sc, load_code) != 0) { 12314 bxe_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0); 12315 sc->state = BXE_STATE_CLOSED; 12316 rc = ENXIO; 12317 goto bxe_nic_load_error2; 12318 } 12319 } else { 12320 BLOGI(sc, "Device has no MCP!\n"); 12321 load_code = bxe_nic_load_no_mcp(sc); 12322 } 12323 12324 /* mark PMF if applicable */ 12325 bxe_nic_load_pmf(sc, load_code); 12326 12327 /* Init Function state controlling object */ 12328 bxe_init_func_obj(sc); 12329 12330 /* Initialize HW */ 12331 if (bxe_init_hw(sc, load_code) != 0) { 12332 BLOGE(sc, "HW init failed\n"); 12333 bxe_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0); 12334 sc->state = BXE_STATE_CLOSED; 12335 rc = ENXIO; 12336 goto bxe_nic_load_error2; 12337 } 12338 } 12339 12340 /* set ALWAYS_ALIVE bit in shmem */ 12341 sc->fw_drv_pulse_wr_seq |= DRV_PULSE_ALWAYS_ALIVE; 12342 bxe_drv_pulse(sc); 12343 sc->flags |= BXE_NO_PULSE; 12344 12345 /* attach interrupts */ 12346 if (bxe_interrupt_attach(sc) != 0) { 12347 sc->state = BXE_STATE_CLOSED; 12348 rc = ENXIO; 12349 goto bxe_nic_load_error2; 12350 } 12351 12352 bxe_nic_init(sc, load_code); 12353 12354 /* Init per-function objects */ 12355 if (IS_PF(sc)) { 12356 bxe_init_objs(sc); 12357 // XXX bxe_iov_nic_init(sc); 12358 12359 /* set AFEX default VLAN tag to an invalid value */ 12360 sc->devinfo.mf_info.afex_def_vlan_tag = -1; 12361 // XXX bxe_nic_load_afex_dcc(sc, load_code); 12362 12363 sc->state = BXE_STATE_OPENING_WAITING_PORT; 12364 rc = bxe_func_start(sc); 12365 if (rc) { 12366 BLOGE(sc, "Function start failed! rc = %d\n", rc); 12367 bxe_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0); 12368 sc->state = BXE_STATE_ERROR; 12369 goto bxe_nic_load_error3; 12370 } 12371 12372 /* send LOAD_DONE command to MCP */ 12373 if (!BXE_NOMCP(sc)) { 12374 load_code = bxe_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0); 12375 if (!load_code) { 12376 BLOGE(sc, "MCP response failure, aborting\n"); 12377 sc->state = BXE_STATE_ERROR; 12378 rc = ENXIO; 12379 goto bxe_nic_load_error3; 12380 } 12381 } 12382 12383 rc = bxe_setup_leading(sc); 12384 if (rc) { 12385 BLOGE(sc, "Setup leading failed! rc = %d\n", rc); 12386 sc->state = BXE_STATE_ERROR; 12387 goto bxe_nic_load_error3; 12388 } 12389 12390 FOR_EACH_NONDEFAULT_ETH_QUEUE(sc, i) { 12391 rc = bxe_setup_queue(sc, &sc->fp[i], FALSE); 12392 if (rc) { 12393 BLOGE(sc, "Queue(%d) setup failed rc = %d\n", i, rc); 12394 sc->state = BXE_STATE_ERROR; 12395 goto bxe_nic_load_error3; 12396 } 12397 } 12398 12399 rc = bxe_init_rss_pf(sc); 12400 if (rc) { 12401 BLOGE(sc, "PF RSS init failed\n"); 12402 sc->state = BXE_STATE_ERROR; 12403 goto bxe_nic_load_error3; 12404 } 12405 } 12406 /* XXX VF */ 12407 12408 /* now when Clients are configured we are ready to work */ 12409 sc->state = BXE_STATE_OPEN; 12410 12411 /* Configure a ucast MAC */ 12412 if (IS_PF(sc)) { 12413 rc = bxe_set_eth_mac(sc, TRUE); 12414 } 12415 if (rc) { 12416 BLOGE(sc, "Setting Ethernet MAC failed rc = %d\n", rc); 12417 sc->state = BXE_STATE_ERROR; 12418 goto bxe_nic_load_error3; 12419 } 12420 12421 if (sc->port.pmf) { 12422 rc = bxe_initial_phy_init(sc, /* XXX load_mode */LOAD_OPEN); 12423 if (rc) { 12424 sc->state = BXE_STATE_ERROR; 12425 goto bxe_nic_load_error3; 12426 } 12427 } 12428 12429 sc->link_params.feature_config_flags &= 12430 ~ELINK_FEATURE_CONFIG_BOOT_FROM_SAN; 12431 12432 /* start fast path */ 12433 12434 /* Initialize Rx filter */ 12435 bxe_set_rx_mode(sc); 12436 12437 /* start the Tx */ 12438 switch (/* XXX load_mode */LOAD_OPEN) { 12439 case LOAD_NORMAL: 12440 case LOAD_OPEN: 12441 break; 12442 12443 case LOAD_DIAG: 12444 case LOAD_LOOPBACK_EXT: 12445 sc->state = BXE_STATE_DIAG; 12446 break; 12447 12448 default: 12449 break; 12450 } 12451 12452 if (sc->port.pmf) { 12453 bxe_update_drv_flags(sc, 1 << DRV_FLAGS_PORT_MASK, 0); 12454 } else { 12455 bxe_link_status_update(sc); 12456 } 12457 12458 /* start the periodic timer callout */ 12459 bxe_periodic_start(sc); 12460 12461 if (IS_PF(sc) && SHMEM2_HAS(sc, drv_capabilities_flag)) { 12462 /* mark driver is loaded in shmem2 */ 12463 val = SHMEM2_RD(sc, drv_capabilities_flag[SC_FW_MB_IDX(sc)]); 12464 SHMEM2_WR(sc, drv_capabilities_flag[SC_FW_MB_IDX(sc)], 12465 (val | 12466 DRV_FLAGS_CAPABILITIES_LOADED_SUPPORTED | 12467 DRV_FLAGS_CAPABILITIES_LOADED_L2)); 12468 } 12469 12470 /* wait for all pending SP commands to complete */ 12471 if (IS_PF(sc) && !bxe_wait_sp_comp(sc, ~0x0UL)) { 12472 BLOGE(sc, "Timeout waiting for all SPs to complete!\n"); 12473 bxe_periodic_stop(sc); 12474 bxe_nic_unload(sc, UNLOAD_CLOSE, FALSE); 12475 return (ENXIO); 12476 } 12477 12478 /* Tell the stack the driver is running! */ 12479 if_setdrvflags(sc->ifp, IFF_DRV_RUNNING); 12480 12481 BLOGD(sc, DBG_LOAD, "NIC successfully loaded\n"); 12482 12483 return (0); 12484 12485 bxe_nic_load_error3: 12486 12487 if (IS_PF(sc)) { 12488 bxe_int_disable_sync(sc, 1); 12489 12490 /* clean out queued objects */ 12491 bxe_squeeze_objects(sc); 12492 } 12493 12494 bxe_interrupt_detach(sc); 12495 12496 bxe_nic_load_error2: 12497 12498 if (IS_PF(sc) && !BXE_NOMCP(sc)) { 12499 bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP, 0); 12500 bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_DONE, 0); 12501 } 12502 12503 sc->port.pmf = 0; 12504 12505 bxe_nic_load_error1: 12506 12507 /* clear pf_load status, as it was already set */ 12508 if (IS_PF(sc)) { 12509 bxe_clear_pf_load(sc); 12510 } 12511 12512 bxe_nic_load_error0: 12513 12514 bxe_free_fw_stats_mem(sc); 12515 bxe_free_fp_buffers(sc); 12516 bxe_free_mem(sc); 12517 12518 return (rc); 12519 } 12520 12521 static int 12522 bxe_init_locked(struct bxe_softc *sc) 12523 { 12524 int other_engine = SC_PATH(sc) ? 0 : 1; 12525 uint8_t other_load_status, load_status; 12526 uint8_t global = FALSE; 12527 int rc; 12528 12529 BXE_CORE_LOCK_ASSERT(sc); 12530 12531 /* check if the driver is already running */ 12532 if (if_getdrvflags(sc->ifp) & IFF_DRV_RUNNING) { 12533 BLOGD(sc, DBG_LOAD, "Init called while driver is running!\n"); 12534 return (0); 12535 } 12536 12537 bxe_set_power_state(sc, PCI_PM_D0); 12538 12539 /* 12540 * If parity occurred during the unload, then attentions and/or 12541 * RECOVERY_IN_PROGRES may still be set. If so we want the first function 12542 * loaded on the current engine to complete the recovery. Parity recovery 12543 * is only relevant for PF driver. 12544 */ 12545 if (IS_PF(sc)) { 12546 other_load_status = bxe_get_load_status(sc, other_engine); 12547 load_status = bxe_get_load_status(sc, SC_PATH(sc)); 12548 12549 if (!bxe_reset_is_done(sc, SC_PATH(sc)) || 12550 bxe_chk_parity_attn(sc, &global, TRUE)) { 12551 do { 12552 /* 12553 * If there are attentions and they are in global blocks, set 12554 * the GLOBAL_RESET bit regardless whether it will be this 12555 * function that will complete the recovery or not. 12556 */ 12557 if (global) { 12558 bxe_set_reset_global(sc); 12559 } 12560 12561 /* 12562 * Only the first function on the current engine should try 12563 * to recover in open. In case of attentions in global blocks 12564 * only the first in the chip should try to recover. 12565 */ 12566 if ((!load_status && (!global || !other_load_status)) && 12567 bxe_trylock_leader_lock(sc) && !bxe_leader_reset(sc)) { 12568 BLOGI(sc, "Recovered during init\n"); 12569 break; 12570 } 12571 12572 /* recovery has failed... */ 12573 bxe_set_power_state(sc, PCI_PM_D3hot); 12574 sc->recovery_state = BXE_RECOVERY_FAILED; 12575 12576 BLOGE(sc, "Recovery flow hasn't properly " 12577 "completed yet, try again later. " 12578 "If you still see this message after a " 12579 "few retries then power cycle is required.\n"); 12580 12581 rc = ENXIO; 12582 goto bxe_init_locked_done; 12583 } while (0); 12584 } 12585 } 12586 12587 sc->recovery_state = BXE_RECOVERY_DONE; 12588 12589 rc = bxe_nic_load(sc, LOAD_OPEN); 12590 12591 bxe_init_locked_done: 12592 12593 if (rc) { 12594 /* Tell the stack the driver is NOT running! */ 12595 BLOGE(sc, "Initialization failed, " 12596 "stack notified driver is NOT running!\n"); 12597 if_setdrvflagbits(sc->ifp, 0, IFF_DRV_RUNNING); 12598 } 12599 12600 return (rc); 12601 } 12602 12603 static int 12604 bxe_stop_locked(struct bxe_softc *sc) 12605 { 12606 BXE_CORE_LOCK_ASSERT(sc); 12607 return (bxe_nic_unload(sc, UNLOAD_NORMAL, TRUE)); 12608 } 12609 12610 /* 12611 * Handles controller initialization when called from an unlocked routine. 12612 * ifconfig calls this function. 12613 * 12614 * Returns: 12615 * void 12616 */ 12617 static void 12618 bxe_init(void *xsc) 12619 { 12620 struct bxe_softc *sc = (struct bxe_softc *)xsc; 12621 12622 BXE_CORE_LOCK(sc); 12623 bxe_init_locked(sc); 12624 BXE_CORE_UNLOCK(sc); 12625 } 12626 12627 static int 12628 bxe_init_ifnet(struct bxe_softc *sc) 12629 { 12630 if_t ifp; 12631 int capabilities; 12632 12633 /* ifconfig entrypoint for media type/status reporting */ 12634 ifmedia_init(&sc->ifmedia, IFM_IMASK, 12635 bxe_ifmedia_update, 12636 bxe_ifmedia_status); 12637 12638 /* set the default interface values */ 12639 ifmedia_add(&sc->ifmedia, (IFM_ETHER | IFM_FDX | sc->media), 0, NULL); 12640 ifmedia_add(&sc->ifmedia, (IFM_ETHER | IFM_AUTO), 0, NULL); 12641 ifmedia_set(&sc->ifmedia, (IFM_ETHER | IFM_AUTO)); 12642 12643 sc->ifmedia.ifm_media = sc->ifmedia.ifm_cur->ifm_media; /* XXX ? */ 12644 12645 /* allocate the ifnet structure */ 12646 if ((ifp = if_gethandle(IFT_ETHER)) == NULL) { 12647 BLOGE(sc, "Interface allocation failed!\n"); 12648 return (ENXIO); 12649 } 12650 12651 if_setsoftc(ifp, sc); 12652 if_initname(ifp, device_get_name(sc->dev), device_get_unit(sc->dev)); 12653 if_setflags(ifp, (IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST)); 12654 if_setioctlfn(ifp, bxe_ioctl); 12655 if_setstartfn(ifp, bxe_tx_start); 12656 if_setgetcounterfn(ifp, bxe_get_counter); 12657 #if __FreeBSD_version >= 901504 12658 if_settransmitfn(ifp, bxe_tx_mq_start); 12659 if_setqflushfn(ifp, bxe_mq_flush); 12660 #endif 12661 #ifdef FreeBSD8_0 12662 if_settimer(ifp, 0); 12663 #endif 12664 if_setinitfn(ifp, bxe_init); 12665 if_setmtu(ifp, sc->mtu); 12666 if_sethwassist(ifp, (CSUM_IP | 12667 CSUM_TCP | 12668 CSUM_UDP | 12669 CSUM_TSO | 12670 CSUM_TCP_IPV6 | 12671 CSUM_UDP_IPV6)); 12672 12673 capabilities = 12674 #if __FreeBSD_version < 700000 12675 (IFCAP_VLAN_MTU | 12676 IFCAP_VLAN_HWTAGGING | 12677 IFCAP_HWCSUM | 12678 IFCAP_JUMBO_MTU | 12679 IFCAP_LRO); 12680 #else 12681 (IFCAP_VLAN_MTU | 12682 IFCAP_VLAN_HWTAGGING | 12683 IFCAP_VLAN_HWTSO | 12684 IFCAP_VLAN_HWFILTER | 12685 IFCAP_VLAN_HWCSUM | 12686 IFCAP_HWCSUM | 12687 IFCAP_JUMBO_MTU | 12688 IFCAP_LRO | 12689 IFCAP_TSO4 | 12690 IFCAP_TSO6 | 12691 IFCAP_WOL_MAGIC); 12692 #endif 12693 if_setcapabilitiesbit(ifp, capabilities, 0); /* XXX */ 12694 if_setbaudrate(ifp, IF_Gbps(10)); 12695 /* XXX */ 12696 if_setsendqlen(ifp, sc->tx_ring_size); 12697 if_setsendqready(ifp); 12698 /* XXX */ 12699 12700 sc->ifp = ifp; 12701 12702 /* attach to the Ethernet interface list */ 12703 ether_ifattach(ifp, sc->link_params.mac_addr); 12704 12705 return (0); 12706 } 12707 12708 static void 12709 bxe_deallocate_bars(struct bxe_softc *sc) 12710 { 12711 int i; 12712 12713 for (i = 0; i < MAX_BARS; i++) { 12714 if (sc->bar[i].resource != NULL) { 12715 bus_release_resource(sc->dev, 12716 SYS_RES_MEMORY, 12717 sc->bar[i].rid, 12718 sc->bar[i].resource); 12719 BLOGD(sc, DBG_LOAD, "Released PCI BAR%d [%02x] memory\n", 12720 i, PCIR_BAR(i)); 12721 } 12722 } 12723 } 12724 12725 static int 12726 bxe_allocate_bars(struct bxe_softc *sc) 12727 { 12728 u_int flags; 12729 int i; 12730 12731 memset(sc->bar, 0, sizeof(sc->bar)); 12732 12733 for (i = 0; i < MAX_BARS; i++) { 12734 12735 /* memory resources reside at BARs 0, 2, 4 */ 12736 /* Run `pciconf -lb` to see mappings */ 12737 if ((i != 0) && (i != 2) && (i != 4)) { 12738 continue; 12739 } 12740 12741 sc->bar[i].rid = PCIR_BAR(i); 12742 12743 flags = RF_ACTIVE; 12744 if (i == 0) { 12745 flags |= RF_SHAREABLE; 12746 } 12747 12748 if ((sc->bar[i].resource = 12749 bus_alloc_resource_any(sc->dev, 12750 SYS_RES_MEMORY, 12751 &sc->bar[i].rid, 12752 flags)) == NULL) { 12753 return (0); 12754 } 12755 12756 sc->bar[i].tag = rman_get_bustag(sc->bar[i].resource); 12757 sc->bar[i].handle = rman_get_bushandle(sc->bar[i].resource); 12758 sc->bar[i].kva = (vm_offset_t)rman_get_virtual(sc->bar[i].resource); 12759 12760 BLOGI(sc, "PCI BAR%d [%02x] memory allocated: %p-%p (%jd) -> %p\n", 12761 i, PCIR_BAR(i), 12762 (void *)rman_get_start(sc->bar[i].resource), 12763 (void *)rman_get_end(sc->bar[i].resource), 12764 rman_get_size(sc->bar[i].resource), 12765 (void *)sc->bar[i].kva); 12766 } 12767 12768 return (0); 12769 } 12770 12771 static void 12772 bxe_get_function_num(struct bxe_softc *sc) 12773 { 12774 uint32_t val = 0; 12775 12776 /* 12777 * Read the ME register to get the function number. The ME register 12778 * holds the relative-function number and absolute-function number. The 12779 * absolute-function number appears only in E2 and above. Before that 12780 * these bits always contained zero, therefore we cannot blindly use them. 12781 */ 12782 12783 val = REG_RD(sc, BAR_ME_REGISTER); 12784 12785 sc->pfunc_rel = 12786 (uint8_t)((val & ME_REG_PF_NUM) >> ME_REG_PF_NUM_SHIFT); 12787 sc->path_id = 12788 (uint8_t)((val & ME_REG_ABS_PF_NUM) >> ME_REG_ABS_PF_NUM_SHIFT) & 1; 12789 12790 if (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) { 12791 sc->pfunc_abs = ((sc->pfunc_rel << 1) | sc->path_id); 12792 } else { 12793 sc->pfunc_abs = (sc->pfunc_rel | sc->path_id); 12794 } 12795 12796 BLOGD(sc, DBG_LOAD, 12797 "Relative function %d, Absolute function %d, Path %d\n", 12798 sc->pfunc_rel, sc->pfunc_abs, sc->path_id); 12799 } 12800 12801 static uint32_t 12802 bxe_get_shmem_mf_cfg_base(struct bxe_softc *sc) 12803 { 12804 uint32_t shmem2_size; 12805 uint32_t offset; 12806 uint32_t mf_cfg_offset_value; 12807 12808 /* Non 57712 */ 12809 offset = (SHMEM_RD(sc, func_mb) + 12810 (MAX_FUNC_NUM * sizeof(struct drv_func_mb))); 12811 12812 /* 57712 plus */ 12813 if (sc->devinfo.shmem2_base != 0) { 12814 shmem2_size = SHMEM2_RD(sc, size); 12815 if (shmem2_size > offsetof(struct shmem2_region, mf_cfg_addr)) { 12816 mf_cfg_offset_value = SHMEM2_RD(sc, mf_cfg_addr); 12817 if (SHMEM_MF_CFG_ADDR_NONE != mf_cfg_offset_value) { 12818 offset = mf_cfg_offset_value; 12819 } 12820 } 12821 } 12822 12823 return (offset); 12824 } 12825 12826 static uint32_t 12827 bxe_pcie_capability_read(struct bxe_softc *sc, 12828 int reg, 12829 int width) 12830 { 12831 int pcie_reg; 12832 12833 /* ensure PCIe capability is enabled */ 12834 if (pci_find_cap(sc->dev, PCIY_EXPRESS, &pcie_reg) == 0) { 12835 if (pcie_reg != 0) { 12836 BLOGD(sc, DBG_LOAD, "PCIe capability at 0x%04x\n", pcie_reg); 12837 return (pci_read_config(sc->dev, (pcie_reg + reg), width)); 12838 } 12839 } 12840 12841 BLOGE(sc, "PCIe capability NOT FOUND!!!\n"); 12842 12843 return (0); 12844 } 12845 12846 static uint8_t 12847 bxe_is_pcie_pending(struct bxe_softc *sc) 12848 { 12849 return (bxe_pcie_capability_read(sc, PCIR_EXPRESS_DEVICE_STA, 2) & 12850 PCIM_EXP_STA_TRANSACTION_PND); 12851 } 12852 12853 /* 12854 * Walk the PCI capabiites list for the device to find what features are 12855 * supported. These capabilites may be enabled/disabled by firmware so it's 12856 * best to walk the list rather than make assumptions. 12857 */ 12858 static void 12859 bxe_probe_pci_caps(struct bxe_softc *sc) 12860 { 12861 uint16_t link_status; 12862 int reg; 12863 12864 /* check if PCI Power Management is enabled */ 12865 if (pci_find_cap(sc->dev, PCIY_PMG, ®) == 0) { 12866 if (reg != 0) { 12867 BLOGD(sc, DBG_LOAD, "Found PM capability at 0x%04x\n", reg); 12868 12869 sc->devinfo.pcie_cap_flags |= BXE_PM_CAPABLE_FLAG; 12870 sc->devinfo.pcie_pm_cap_reg = (uint16_t)reg; 12871 } 12872 } 12873 12874 link_status = bxe_pcie_capability_read(sc, PCIR_EXPRESS_LINK_STA, 2); 12875 12876 /* handle PCIe 2.0 workarounds for 57710 */ 12877 if (CHIP_IS_E1(sc)) { 12878 /* workaround for 57710 errata E4_57710_27462 */ 12879 sc->devinfo.pcie_link_speed = 12880 (REG_RD(sc, 0x3d04) & (1 << 24)) ? 2 : 1; 12881 12882 /* workaround for 57710 errata E4_57710_27488 */ 12883 sc->devinfo.pcie_link_width = 12884 ((link_status & PCIM_LINK_STA_WIDTH) >> 4); 12885 if (sc->devinfo.pcie_link_speed > 1) { 12886 sc->devinfo.pcie_link_width = 12887 ((link_status & PCIM_LINK_STA_WIDTH) >> 4) >> 1; 12888 } 12889 } else { 12890 sc->devinfo.pcie_link_speed = 12891 (link_status & PCIM_LINK_STA_SPEED); 12892 sc->devinfo.pcie_link_width = 12893 ((link_status & PCIM_LINK_STA_WIDTH) >> 4); 12894 } 12895 12896 BLOGD(sc, DBG_LOAD, "PCIe link speed=%d width=%d\n", 12897 sc->devinfo.pcie_link_speed, sc->devinfo.pcie_link_width); 12898 12899 sc->devinfo.pcie_cap_flags |= BXE_PCIE_CAPABLE_FLAG; 12900 sc->devinfo.pcie_pcie_cap_reg = (uint16_t)reg; 12901 12902 /* check if MSI capability is enabled */ 12903 if (pci_find_cap(sc->dev, PCIY_MSI, ®) == 0) { 12904 if (reg != 0) { 12905 BLOGD(sc, DBG_LOAD, "Found MSI capability at 0x%04x\n", reg); 12906 12907 sc->devinfo.pcie_cap_flags |= BXE_MSI_CAPABLE_FLAG; 12908 sc->devinfo.pcie_msi_cap_reg = (uint16_t)reg; 12909 } 12910 } 12911 12912 /* check if MSI-X capability is enabled */ 12913 if (pci_find_cap(sc->dev, PCIY_MSIX, ®) == 0) { 12914 if (reg != 0) { 12915 BLOGD(sc, DBG_LOAD, "Found MSI-X capability at 0x%04x\n", reg); 12916 12917 sc->devinfo.pcie_cap_flags |= BXE_MSIX_CAPABLE_FLAG; 12918 sc->devinfo.pcie_msix_cap_reg = (uint16_t)reg; 12919 } 12920 } 12921 } 12922 12923 static int 12924 bxe_get_shmem_mf_cfg_info_sd(struct bxe_softc *sc) 12925 { 12926 struct bxe_mf_info *mf_info = &sc->devinfo.mf_info; 12927 uint32_t val; 12928 12929 /* get the outer vlan if we're in switch-dependent mode */ 12930 12931 val = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].e1hov_tag); 12932 mf_info->ext_id = (uint16_t)val; 12933 12934 mf_info->multi_vnics_mode = 1; 12935 12936 if (!VALID_OVLAN(mf_info->ext_id)) { 12937 BLOGE(sc, "Invalid VLAN (%d)\n", mf_info->ext_id); 12938 return (1); 12939 } 12940 12941 /* get the capabilities */ 12942 if ((mf_info->mf_config[SC_VN(sc)] & FUNC_MF_CFG_PROTOCOL_MASK) == 12943 FUNC_MF_CFG_PROTOCOL_ISCSI) { 12944 mf_info->mf_protos_supported |= MF_PROTO_SUPPORT_ISCSI; 12945 } else if ((mf_info->mf_config[SC_VN(sc)] & FUNC_MF_CFG_PROTOCOL_MASK) == 12946 FUNC_MF_CFG_PROTOCOL_FCOE) { 12947 mf_info->mf_protos_supported |= MF_PROTO_SUPPORT_FCOE; 12948 } else { 12949 mf_info->mf_protos_supported |= MF_PROTO_SUPPORT_ETHERNET; 12950 } 12951 12952 mf_info->vnics_per_port = 12953 (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) ? 2 : 4; 12954 12955 return (0); 12956 } 12957 12958 static uint32_t 12959 bxe_get_shmem_ext_proto_support_flags(struct bxe_softc *sc) 12960 { 12961 uint32_t retval = 0; 12962 uint32_t val; 12963 12964 val = MFCFG_RD(sc, func_ext_config[SC_ABS_FUNC(sc)].func_cfg); 12965 12966 if (val & MACP_FUNC_CFG_FLAGS_ENABLED) { 12967 if (val & MACP_FUNC_CFG_FLAGS_ETHERNET) { 12968 retval |= MF_PROTO_SUPPORT_ETHERNET; 12969 } 12970 if (val & MACP_FUNC_CFG_FLAGS_ISCSI_OFFLOAD) { 12971 retval |= MF_PROTO_SUPPORT_ISCSI; 12972 } 12973 if (val & MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD) { 12974 retval |= MF_PROTO_SUPPORT_FCOE; 12975 } 12976 } 12977 12978 return (retval); 12979 } 12980 12981 static int 12982 bxe_get_shmem_mf_cfg_info_si(struct bxe_softc *sc) 12983 { 12984 struct bxe_mf_info *mf_info = &sc->devinfo.mf_info; 12985 uint32_t val; 12986 12987 /* 12988 * There is no outer vlan if we're in switch-independent mode. 12989 * If the mac is valid then assume multi-function. 12990 */ 12991 12992 val = MFCFG_RD(sc, func_ext_config[SC_ABS_FUNC(sc)].func_cfg); 12993 12994 mf_info->multi_vnics_mode = ((val & MACP_FUNC_CFG_FLAGS_MASK) != 0); 12995 12996 mf_info->mf_protos_supported = bxe_get_shmem_ext_proto_support_flags(sc); 12997 12998 mf_info->vnics_per_port = 12999 (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) ? 2 : 4; 13000 13001 return (0); 13002 } 13003 13004 static int 13005 bxe_get_shmem_mf_cfg_info_niv(struct bxe_softc *sc) 13006 { 13007 struct bxe_mf_info *mf_info = &sc->devinfo.mf_info; 13008 uint32_t e1hov_tag; 13009 uint32_t func_config; 13010 uint32_t niv_config; 13011 13012 mf_info->multi_vnics_mode = 1; 13013 13014 e1hov_tag = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].e1hov_tag); 13015 func_config = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].config); 13016 niv_config = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].afex_config); 13017 13018 mf_info->ext_id = 13019 (uint16_t)((e1hov_tag & FUNC_MF_CFG_E1HOV_TAG_MASK) >> 13020 FUNC_MF_CFG_E1HOV_TAG_SHIFT); 13021 13022 mf_info->default_vlan = 13023 (uint16_t)((e1hov_tag & FUNC_MF_CFG_AFEX_VLAN_MASK) >> 13024 FUNC_MF_CFG_AFEX_VLAN_SHIFT); 13025 13026 mf_info->niv_allowed_priorities = 13027 (uint8_t)((niv_config & FUNC_MF_CFG_AFEX_COS_FILTER_MASK) >> 13028 FUNC_MF_CFG_AFEX_COS_FILTER_SHIFT); 13029 13030 mf_info->niv_default_cos = 13031 (uint8_t)((func_config & FUNC_MF_CFG_TRANSMIT_PRIORITY_MASK) >> 13032 FUNC_MF_CFG_TRANSMIT_PRIORITY_SHIFT); 13033 13034 mf_info->afex_vlan_mode = 13035 ((niv_config & FUNC_MF_CFG_AFEX_VLAN_MODE_MASK) >> 13036 FUNC_MF_CFG_AFEX_VLAN_MODE_SHIFT); 13037 13038 mf_info->niv_mba_enabled = 13039 ((niv_config & FUNC_MF_CFG_AFEX_MBA_ENABLED_MASK) >> 13040 FUNC_MF_CFG_AFEX_MBA_ENABLED_SHIFT); 13041 13042 mf_info->mf_protos_supported = bxe_get_shmem_ext_proto_support_flags(sc); 13043 13044 mf_info->vnics_per_port = 13045 (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) ? 2 : 4; 13046 13047 return (0); 13048 } 13049 13050 static int 13051 bxe_check_valid_mf_cfg(struct bxe_softc *sc) 13052 { 13053 struct bxe_mf_info *mf_info = &sc->devinfo.mf_info; 13054 uint32_t mf_cfg1; 13055 uint32_t mf_cfg2; 13056 uint32_t ovlan1; 13057 uint32_t ovlan2; 13058 uint8_t i, j; 13059 13060 BLOGD(sc, DBG_LOAD, "MF config parameters for function %d\n", 13061 SC_PORT(sc)); 13062 BLOGD(sc, DBG_LOAD, "\tmf_config=0x%x\n", 13063 mf_info->mf_config[SC_VN(sc)]); 13064 BLOGD(sc, DBG_LOAD, "\tmulti_vnics_mode=%d\n", 13065 mf_info->multi_vnics_mode); 13066 BLOGD(sc, DBG_LOAD, "\tvnics_per_port=%d\n", 13067 mf_info->vnics_per_port); 13068 BLOGD(sc, DBG_LOAD, "\tovlan/vifid=%d\n", 13069 mf_info->ext_id); 13070 BLOGD(sc, DBG_LOAD, "\tmin_bw=%d/%d/%d/%d\n", 13071 mf_info->min_bw[0], mf_info->min_bw[1], 13072 mf_info->min_bw[2], mf_info->min_bw[3]); 13073 BLOGD(sc, DBG_LOAD, "\tmax_bw=%d/%d/%d/%d\n", 13074 mf_info->max_bw[0], mf_info->max_bw[1], 13075 mf_info->max_bw[2], mf_info->max_bw[3]); 13076 BLOGD(sc, DBG_LOAD, "\tmac_addr: %s\n", 13077 sc->mac_addr_str); 13078 13079 /* various MF mode sanity checks... */ 13080 13081 if (mf_info->mf_config[SC_VN(sc)] & FUNC_MF_CFG_FUNC_HIDE) { 13082 BLOGE(sc, "Enumerated function %d is marked as hidden\n", 13083 SC_PORT(sc)); 13084 return (1); 13085 } 13086 13087 if ((mf_info->vnics_per_port > 1) && !mf_info->multi_vnics_mode) { 13088 BLOGE(sc, "vnics_per_port=%d multi_vnics_mode=%d\n", 13089 mf_info->vnics_per_port, mf_info->multi_vnics_mode); 13090 return (1); 13091 } 13092 13093 if (mf_info->mf_mode == MULTI_FUNCTION_SD) { 13094 /* vnic id > 0 must have valid ovlan in switch-dependent mode */ 13095 if ((SC_VN(sc) > 0) && !VALID_OVLAN(OVLAN(sc))) { 13096 BLOGE(sc, "mf_mode=SD vnic_id=%d ovlan=%d\n", 13097 SC_VN(sc), OVLAN(sc)); 13098 return (1); 13099 } 13100 13101 if (!VALID_OVLAN(OVLAN(sc)) && mf_info->multi_vnics_mode) { 13102 BLOGE(sc, "mf_mode=SD multi_vnics_mode=%d ovlan=%d\n", 13103 mf_info->multi_vnics_mode, OVLAN(sc)); 13104 return (1); 13105 } 13106 13107 /* 13108 * Verify all functions are either MF or SF mode. If MF, make sure 13109 * sure that all non-hidden functions have a valid ovlan. If SF, 13110 * make sure that all non-hidden functions have an invalid ovlan. 13111 */ 13112 FOREACH_ABS_FUNC_IN_PORT(sc, i) { 13113 mf_cfg1 = MFCFG_RD(sc, func_mf_config[i].config); 13114 ovlan1 = MFCFG_RD(sc, func_mf_config[i].e1hov_tag); 13115 if (!(mf_cfg1 & FUNC_MF_CFG_FUNC_HIDE) && 13116 (((mf_info->multi_vnics_mode) && !VALID_OVLAN(ovlan1)) || 13117 ((!mf_info->multi_vnics_mode) && VALID_OVLAN(ovlan1)))) { 13118 BLOGE(sc, "mf_mode=SD function %d MF config " 13119 "mismatch, multi_vnics_mode=%d ovlan=%d\n", 13120 i, mf_info->multi_vnics_mode, ovlan1); 13121 return (1); 13122 } 13123 } 13124 13125 /* Verify all funcs on the same port each have a different ovlan. */ 13126 FOREACH_ABS_FUNC_IN_PORT(sc, i) { 13127 mf_cfg1 = MFCFG_RD(sc, func_mf_config[i].config); 13128 ovlan1 = MFCFG_RD(sc, func_mf_config[i].e1hov_tag); 13129 /* iterate from the next function on the port to the max func */ 13130 for (j = i + 2; j < MAX_FUNC_NUM; j += 2) { 13131 mf_cfg2 = MFCFG_RD(sc, func_mf_config[j].config); 13132 ovlan2 = MFCFG_RD(sc, func_mf_config[j].e1hov_tag); 13133 if (!(mf_cfg1 & FUNC_MF_CFG_FUNC_HIDE) && 13134 VALID_OVLAN(ovlan1) && 13135 !(mf_cfg2 & FUNC_MF_CFG_FUNC_HIDE) && 13136 VALID_OVLAN(ovlan2) && 13137 (ovlan1 == ovlan2)) { 13138 BLOGE(sc, "mf_mode=SD functions %d and %d " 13139 "have the same ovlan (%d)\n", 13140 i, j, ovlan1); 13141 return (1); 13142 } 13143 } 13144 } 13145 } /* MULTI_FUNCTION_SD */ 13146 13147 return (0); 13148 } 13149 13150 static int 13151 bxe_get_mf_cfg_info(struct bxe_softc *sc) 13152 { 13153 struct bxe_mf_info *mf_info = &sc->devinfo.mf_info; 13154 uint32_t val, mac_upper; 13155 uint8_t i, vnic; 13156 13157 /* initialize mf_info defaults */ 13158 mf_info->vnics_per_port = 1; 13159 mf_info->multi_vnics_mode = FALSE; 13160 mf_info->path_has_ovlan = FALSE; 13161 mf_info->mf_mode = SINGLE_FUNCTION; 13162 13163 if (!CHIP_IS_MF_CAP(sc)) { 13164 return (0); 13165 } 13166 13167 if (sc->devinfo.mf_cfg_base == SHMEM_MF_CFG_ADDR_NONE) { 13168 BLOGE(sc, "Invalid mf_cfg_base!\n"); 13169 return (1); 13170 } 13171 13172 /* get the MF mode (switch dependent / independent / single-function) */ 13173 13174 val = SHMEM_RD(sc, dev_info.shared_feature_config.config); 13175 13176 switch (val & SHARED_FEAT_CFG_FORCE_SF_MODE_MASK) 13177 { 13178 case SHARED_FEAT_CFG_FORCE_SF_MODE_SWITCH_INDEPT: 13179 13180 mac_upper = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].mac_upper); 13181 13182 /* check for legal upper mac bytes */ 13183 if (mac_upper != FUNC_MF_CFG_UPPERMAC_DEFAULT) { 13184 mf_info->mf_mode = MULTI_FUNCTION_SI; 13185 } else { 13186 BLOGE(sc, "Invalid config for Switch Independent mode\n"); 13187 } 13188 13189 break; 13190 13191 case SHARED_FEAT_CFG_FORCE_SF_MODE_MF_ALLOWED: 13192 case SHARED_FEAT_CFG_FORCE_SF_MODE_SPIO4: 13193 13194 /* get outer vlan configuration */ 13195 val = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].e1hov_tag); 13196 13197 if ((val & FUNC_MF_CFG_E1HOV_TAG_MASK) != 13198 FUNC_MF_CFG_E1HOV_TAG_DEFAULT) { 13199 mf_info->mf_mode = MULTI_FUNCTION_SD; 13200 } else { 13201 BLOGE(sc, "Invalid config for Switch Dependent mode\n"); 13202 } 13203 13204 break; 13205 13206 case SHARED_FEAT_CFG_FORCE_SF_MODE_FORCED_SF: 13207 13208 /* not in MF mode, vnics_per_port=1 and multi_vnics_mode=FALSE */ 13209 return (0); 13210 13211 case SHARED_FEAT_CFG_FORCE_SF_MODE_AFEX_MODE: 13212 13213 /* 13214 * Mark MF mode as NIV if MCP version includes NPAR-SD support 13215 * and the MAC address is valid. 13216 */ 13217 mac_upper = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].mac_upper); 13218 13219 if ((SHMEM2_HAS(sc, afex_driver_support)) && 13220 (mac_upper != FUNC_MF_CFG_UPPERMAC_DEFAULT)) { 13221 mf_info->mf_mode = MULTI_FUNCTION_AFEX; 13222 } else { 13223 BLOGE(sc, "Invalid config for AFEX mode\n"); 13224 } 13225 13226 break; 13227 13228 default: 13229 13230 BLOGE(sc, "Unknown MF mode (0x%08x)\n", 13231 (val & SHARED_FEAT_CFG_FORCE_SF_MODE_MASK)); 13232 13233 return (1); 13234 } 13235 13236 /* set path mf_mode (which could be different than function mf_mode) */ 13237 if (mf_info->mf_mode == MULTI_FUNCTION_SD) { 13238 mf_info->path_has_ovlan = TRUE; 13239 } else if (mf_info->mf_mode == SINGLE_FUNCTION) { 13240 /* 13241 * Decide on path multi vnics mode. If we're not in MF mode and in 13242 * 4-port mode, this is good enough to check vnic-0 of the other port 13243 * on the same path 13244 */ 13245 if (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) { 13246 uint8_t other_port = !(PORT_ID(sc) & 1); 13247 uint8_t abs_func_other_port = (SC_PATH(sc) + (2 * other_port)); 13248 13249 val = MFCFG_RD(sc, func_mf_config[abs_func_other_port].e1hov_tag); 13250 13251 mf_info->path_has_ovlan = VALID_OVLAN((uint16_t)val) ? 1 : 0; 13252 } 13253 } 13254 13255 if (mf_info->mf_mode == SINGLE_FUNCTION) { 13256 /* invalid MF config */ 13257 if (SC_VN(sc) >= 1) { 13258 BLOGE(sc, "VNIC ID >= 1 in SF mode\n"); 13259 return (1); 13260 } 13261 13262 return (0); 13263 } 13264 13265 /* get the MF configuration */ 13266 mf_info->mf_config[SC_VN(sc)] = 13267 MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].config); 13268 13269 switch(mf_info->mf_mode) 13270 { 13271 case MULTI_FUNCTION_SD: 13272 13273 bxe_get_shmem_mf_cfg_info_sd(sc); 13274 break; 13275 13276 case MULTI_FUNCTION_SI: 13277 13278 bxe_get_shmem_mf_cfg_info_si(sc); 13279 break; 13280 13281 case MULTI_FUNCTION_AFEX: 13282 13283 bxe_get_shmem_mf_cfg_info_niv(sc); 13284 break; 13285 13286 default: 13287 13288 BLOGE(sc, "Get MF config failed (mf_mode=0x%08x)\n", 13289 mf_info->mf_mode); 13290 return (1); 13291 } 13292 13293 /* get the congestion management parameters */ 13294 13295 vnic = 0; 13296 FOREACH_ABS_FUNC_IN_PORT(sc, i) { 13297 /* get min/max bw */ 13298 val = MFCFG_RD(sc, func_mf_config[i].config); 13299 mf_info->min_bw[vnic] = 13300 ((val & FUNC_MF_CFG_MIN_BW_MASK) >> FUNC_MF_CFG_MIN_BW_SHIFT); 13301 mf_info->max_bw[vnic] = 13302 ((val & FUNC_MF_CFG_MAX_BW_MASK) >> FUNC_MF_CFG_MAX_BW_SHIFT); 13303 vnic++; 13304 } 13305 13306 return (bxe_check_valid_mf_cfg(sc)); 13307 } 13308 13309 static int 13310 bxe_get_shmem_info(struct bxe_softc *sc) 13311 { 13312 int port; 13313 uint32_t mac_hi, mac_lo, val; 13314 13315 port = SC_PORT(sc); 13316 mac_hi = mac_lo = 0; 13317 13318 sc->link_params.sc = sc; 13319 sc->link_params.port = port; 13320 13321 /* get the hardware config info */ 13322 sc->devinfo.hw_config = 13323 SHMEM_RD(sc, dev_info.shared_hw_config.config); 13324 sc->devinfo.hw_config2 = 13325 SHMEM_RD(sc, dev_info.shared_hw_config.config2); 13326 13327 sc->link_params.hw_led_mode = 13328 ((sc->devinfo.hw_config & SHARED_HW_CFG_LED_MODE_MASK) >> 13329 SHARED_HW_CFG_LED_MODE_SHIFT); 13330 13331 /* get the port feature config */ 13332 sc->port.config = 13333 SHMEM_RD(sc, dev_info.port_feature_config[port].config); 13334 13335 /* get the link params */ 13336 sc->link_params.speed_cap_mask[0] = 13337 SHMEM_RD(sc, dev_info.port_hw_config[port].speed_capability_mask); 13338 sc->link_params.speed_cap_mask[1] = 13339 SHMEM_RD(sc, dev_info.port_hw_config[port].speed_capability_mask2); 13340 13341 /* get the lane config */ 13342 sc->link_params.lane_config = 13343 SHMEM_RD(sc, dev_info.port_hw_config[port].lane_config); 13344 13345 /* get the link config */ 13346 val = SHMEM_RD(sc, dev_info.port_feature_config[port].link_config); 13347 sc->port.link_config[ELINK_INT_PHY] = val; 13348 sc->link_params.switch_cfg = (val & PORT_FEATURE_CONNECTED_SWITCH_MASK); 13349 sc->port.link_config[ELINK_EXT_PHY1] = 13350 SHMEM_RD(sc, dev_info.port_feature_config[port].link_config2); 13351 13352 /* get the override preemphasis flag and enable it or turn it off */ 13353 val = SHMEM_RD(sc, dev_info.shared_feature_config.config); 13354 if (val & SHARED_FEAT_CFG_OVERRIDE_PREEMPHASIS_CFG_ENABLED) { 13355 sc->link_params.feature_config_flags |= 13356 ELINK_FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED; 13357 } else { 13358 sc->link_params.feature_config_flags &= 13359 ~ELINK_FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED; 13360 } 13361 13362 /* get the initial value of the link params */ 13363 sc->link_params.multi_phy_config = 13364 SHMEM_RD(sc, dev_info.port_hw_config[port].multi_phy_config); 13365 13366 /* get external phy info */ 13367 sc->port.ext_phy_config = 13368 SHMEM_RD(sc, dev_info.port_hw_config[port].external_phy_config); 13369 13370 /* get the multifunction configuration */ 13371 bxe_get_mf_cfg_info(sc); 13372 13373 /* get the mac address */ 13374 if (IS_MF(sc)) { 13375 mac_hi = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].mac_upper); 13376 mac_lo = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].mac_lower); 13377 } else { 13378 mac_hi = SHMEM_RD(sc, dev_info.port_hw_config[port].mac_upper); 13379 mac_lo = SHMEM_RD(sc, dev_info.port_hw_config[port].mac_lower); 13380 } 13381 13382 if ((mac_lo == 0) && (mac_hi == 0)) { 13383 *sc->mac_addr_str = 0; 13384 BLOGE(sc, "No Ethernet address programmed!\n"); 13385 } else { 13386 sc->link_params.mac_addr[0] = (uint8_t)(mac_hi >> 8); 13387 sc->link_params.mac_addr[1] = (uint8_t)(mac_hi); 13388 sc->link_params.mac_addr[2] = (uint8_t)(mac_lo >> 24); 13389 sc->link_params.mac_addr[3] = (uint8_t)(mac_lo >> 16); 13390 sc->link_params.mac_addr[4] = (uint8_t)(mac_lo >> 8); 13391 sc->link_params.mac_addr[5] = (uint8_t)(mac_lo); 13392 snprintf(sc->mac_addr_str, sizeof(sc->mac_addr_str), 13393 "%02x:%02x:%02x:%02x:%02x:%02x", 13394 sc->link_params.mac_addr[0], sc->link_params.mac_addr[1], 13395 sc->link_params.mac_addr[2], sc->link_params.mac_addr[3], 13396 sc->link_params.mac_addr[4], sc->link_params.mac_addr[5]); 13397 BLOGD(sc, DBG_LOAD, "Ethernet address: %s\n", sc->mac_addr_str); 13398 } 13399 13400 return (0); 13401 } 13402 13403 static void 13404 bxe_get_tunable_params(struct bxe_softc *sc) 13405 { 13406 /* sanity checks */ 13407 13408 if ((bxe_interrupt_mode != INTR_MODE_INTX) && 13409 (bxe_interrupt_mode != INTR_MODE_MSI) && 13410 (bxe_interrupt_mode != INTR_MODE_MSIX)) { 13411 BLOGW(sc, "invalid interrupt_mode value (%d)\n", bxe_interrupt_mode); 13412 bxe_interrupt_mode = INTR_MODE_MSIX; 13413 } 13414 13415 if ((bxe_queue_count < 0) || (bxe_queue_count > MAX_RSS_CHAINS)) { 13416 BLOGW(sc, "invalid queue_count value (%d)\n", bxe_queue_count); 13417 bxe_queue_count = 0; 13418 } 13419 13420 if ((bxe_max_rx_bufs < 1) || (bxe_max_rx_bufs > RX_BD_USABLE)) { 13421 if (bxe_max_rx_bufs == 0) { 13422 bxe_max_rx_bufs = RX_BD_USABLE; 13423 } else { 13424 BLOGW(sc, "invalid max_rx_bufs (%d)\n", bxe_max_rx_bufs); 13425 bxe_max_rx_bufs = 2048; 13426 } 13427 } 13428 13429 if ((bxe_hc_rx_ticks < 1) || (bxe_hc_rx_ticks > 100)) { 13430 BLOGW(sc, "invalid hc_rx_ticks (%d)\n", bxe_hc_rx_ticks); 13431 bxe_hc_rx_ticks = 25; 13432 } 13433 13434 if ((bxe_hc_tx_ticks < 1) || (bxe_hc_tx_ticks > 100)) { 13435 BLOGW(sc, "invalid hc_tx_ticks (%d)\n", bxe_hc_tx_ticks); 13436 bxe_hc_tx_ticks = 50; 13437 } 13438 13439 if (bxe_max_aggregation_size == 0) { 13440 bxe_max_aggregation_size = TPA_AGG_SIZE; 13441 } 13442 13443 if (bxe_max_aggregation_size > 0xffff) { 13444 BLOGW(sc, "invalid max_aggregation_size (%d)\n", 13445 bxe_max_aggregation_size); 13446 bxe_max_aggregation_size = TPA_AGG_SIZE; 13447 } 13448 13449 if ((bxe_mrrs < -1) || (bxe_mrrs > 3)) { 13450 BLOGW(sc, "invalid mrrs (%d)\n", bxe_mrrs); 13451 bxe_mrrs = -1; 13452 } 13453 13454 if ((bxe_autogreeen < 0) || (bxe_autogreeen > 2)) { 13455 BLOGW(sc, "invalid autogreeen (%d)\n", bxe_autogreeen); 13456 bxe_autogreeen = 0; 13457 } 13458 13459 if ((bxe_udp_rss < 0) || (bxe_udp_rss > 1)) { 13460 BLOGW(sc, "invalid udp_rss (%d)\n", bxe_udp_rss); 13461 bxe_udp_rss = 0; 13462 } 13463 13464 /* pull in user settings */ 13465 13466 sc->interrupt_mode = bxe_interrupt_mode; 13467 sc->max_rx_bufs = bxe_max_rx_bufs; 13468 sc->hc_rx_ticks = bxe_hc_rx_ticks; 13469 sc->hc_tx_ticks = bxe_hc_tx_ticks; 13470 sc->max_aggregation_size = bxe_max_aggregation_size; 13471 sc->mrrs = bxe_mrrs; 13472 sc->autogreeen = bxe_autogreeen; 13473 sc->udp_rss = bxe_udp_rss; 13474 13475 if (bxe_interrupt_mode == INTR_MODE_INTX) { 13476 sc->num_queues = 1; 13477 } else { /* INTR_MODE_MSI or INTR_MODE_MSIX */ 13478 sc->num_queues = 13479 min((bxe_queue_count ? bxe_queue_count : mp_ncpus), 13480 MAX_RSS_CHAINS); 13481 if (sc->num_queues > mp_ncpus) { 13482 sc->num_queues = mp_ncpus; 13483 } 13484 } 13485 13486 BLOGD(sc, DBG_LOAD, 13487 "User Config: " 13488 "debug=0x%lx " 13489 "interrupt_mode=%d " 13490 "queue_count=%d " 13491 "hc_rx_ticks=%d " 13492 "hc_tx_ticks=%d " 13493 "rx_budget=%d " 13494 "max_aggregation_size=%d " 13495 "mrrs=%d " 13496 "autogreeen=%d " 13497 "udp_rss=%d\n", 13498 bxe_debug, 13499 sc->interrupt_mode, 13500 sc->num_queues, 13501 sc->hc_rx_ticks, 13502 sc->hc_tx_ticks, 13503 bxe_rx_budget, 13504 sc->max_aggregation_size, 13505 sc->mrrs, 13506 sc->autogreeen, 13507 sc->udp_rss); 13508 } 13509 13510 static int 13511 bxe_media_detect(struct bxe_softc *sc) 13512 { 13513 int port_type; 13514 uint32_t phy_idx = bxe_get_cur_phy_idx(sc); 13515 13516 switch (sc->link_params.phy[phy_idx].media_type) { 13517 case ELINK_ETH_PHY_SFPP_10G_FIBER: 13518 case ELINK_ETH_PHY_XFP_FIBER: 13519 BLOGI(sc, "Found 10Gb Fiber media.\n"); 13520 sc->media = IFM_10G_SR; 13521 port_type = PORT_FIBRE; 13522 break; 13523 case ELINK_ETH_PHY_SFP_1G_FIBER: 13524 BLOGI(sc, "Found 1Gb Fiber media.\n"); 13525 sc->media = IFM_1000_SX; 13526 port_type = PORT_FIBRE; 13527 break; 13528 case ELINK_ETH_PHY_KR: 13529 case ELINK_ETH_PHY_CX4: 13530 BLOGI(sc, "Found 10GBase-CX4 media.\n"); 13531 sc->media = IFM_10G_CX4; 13532 port_type = PORT_FIBRE; 13533 break; 13534 case ELINK_ETH_PHY_DA_TWINAX: 13535 BLOGI(sc, "Found 10Gb Twinax media.\n"); 13536 sc->media = IFM_10G_TWINAX; 13537 port_type = PORT_DA; 13538 break; 13539 case ELINK_ETH_PHY_BASE_T: 13540 if (sc->link_params.speed_cap_mask[0] & 13541 PORT_HW_CFG_SPEED_CAPABILITY_D0_10G) { 13542 BLOGI(sc, "Found 10GBase-T media.\n"); 13543 sc->media = IFM_10G_T; 13544 port_type = PORT_TP; 13545 } else { 13546 BLOGI(sc, "Found 1000Base-T media.\n"); 13547 sc->media = IFM_1000_T; 13548 port_type = PORT_TP; 13549 } 13550 break; 13551 case ELINK_ETH_PHY_NOT_PRESENT: 13552 BLOGI(sc, "Media not present.\n"); 13553 sc->media = 0; 13554 port_type = PORT_OTHER; 13555 break; 13556 case ELINK_ETH_PHY_UNSPECIFIED: 13557 default: 13558 BLOGI(sc, "Unknown media!\n"); 13559 sc->media = 0; 13560 port_type = PORT_OTHER; 13561 break; 13562 } 13563 return port_type; 13564 } 13565 13566 #define GET_FIELD(value, fname) \ 13567 (((value) & (fname##_MASK)) >> (fname##_SHIFT)) 13568 #define IGU_FID(val) GET_FIELD((val), IGU_REG_MAPPING_MEMORY_FID) 13569 #define IGU_VEC(val) GET_FIELD((val), IGU_REG_MAPPING_MEMORY_VECTOR) 13570 13571 static int 13572 bxe_get_igu_cam_info(struct bxe_softc *sc) 13573 { 13574 int pfid = SC_FUNC(sc); 13575 int igu_sb_id; 13576 uint32_t val; 13577 uint8_t fid, igu_sb_cnt = 0; 13578 13579 sc->igu_base_sb = 0xff; 13580 13581 if (CHIP_INT_MODE_IS_BC(sc)) { 13582 int vn = SC_VN(sc); 13583 igu_sb_cnt = sc->igu_sb_cnt; 13584 sc->igu_base_sb = ((CHIP_IS_MODE_4_PORT(sc) ? pfid : vn) * 13585 FP_SB_MAX_E1x); 13586 sc->igu_dsb_id = (E1HVN_MAX * FP_SB_MAX_E1x + 13587 (CHIP_IS_MODE_4_PORT(sc) ? pfid : vn)); 13588 return (0); 13589 } 13590 13591 /* IGU in normal mode - read CAM */ 13592 for (igu_sb_id = 0; 13593 igu_sb_id < IGU_REG_MAPPING_MEMORY_SIZE; 13594 igu_sb_id++) { 13595 val = REG_RD(sc, IGU_REG_MAPPING_MEMORY + igu_sb_id * 4); 13596 if (!(val & IGU_REG_MAPPING_MEMORY_VALID)) { 13597 continue; 13598 } 13599 fid = IGU_FID(val); 13600 if ((fid & IGU_FID_ENCODE_IS_PF)) { 13601 if ((fid & IGU_FID_PF_NUM_MASK) != pfid) { 13602 continue; 13603 } 13604 if (IGU_VEC(val) == 0) { 13605 /* default status block */ 13606 sc->igu_dsb_id = igu_sb_id; 13607 } else { 13608 if (sc->igu_base_sb == 0xff) { 13609 sc->igu_base_sb = igu_sb_id; 13610 } 13611 igu_sb_cnt++; 13612 } 13613 } 13614 } 13615 13616 /* 13617 * Due to new PF resource allocation by MFW T7.4 and above, it's optional 13618 * that number of CAM entries will not be equal to the value advertised in 13619 * PCI. Driver should use the minimal value of both as the actual status 13620 * block count 13621 */ 13622 sc->igu_sb_cnt = min(sc->igu_sb_cnt, igu_sb_cnt); 13623 13624 if (igu_sb_cnt == 0) { 13625 BLOGE(sc, "CAM configuration error\n"); 13626 return (-1); 13627 } 13628 13629 return (0); 13630 } 13631 13632 /* 13633 * Gather various information from the device config space, the device itself, 13634 * shmem, and the user input. 13635 */ 13636 static int 13637 bxe_get_device_info(struct bxe_softc *sc) 13638 { 13639 uint32_t val; 13640 int rc; 13641 13642 /* Get the data for the device */ 13643 sc->devinfo.vendor_id = pci_get_vendor(sc->dev); 13644 sc->devinfo.device_id = pci_get_device(sc->dev); 13645 sc->devinfo.subvendor_id = pci_get_subvendor(sc->dev); 13646 sc->devinfo.subdevice_id = pci_get_subdevice(sc->dev); 13647 13648 /* get the chip revision (chip metal comes from pci config space) */ 13649 sc->devinfo.chip_id = 13650 sc->link_params.chip_id = 13651 (((REG_RD(sc, MISC_REG_CHIP_NUM) & 0xffff) << 16) | 13652 ((REG_RD(sc, MISC_REG_CHIP_REV) & 0xf) << 12) | 13653 (((REG_RD(sc, PCICFG_OFFSET + PCI_ID_VAL3) >> 24) & 0xf) << 4) | 13654 ((REG_RD(sc, MISC_REG_BOND_ID) & 0xf) << 0)); 13655 13656 /* force 57811 according to MISC register */ 13657 if (REG_RD(sc, MISC_REG_CHIP_TYPE) & MISC_REG_CHIP_TYPE_57811_MASK) { 13658 if (CHIP_IS_57810(sc)) { 13659 sc->devinfo.chip_id = ((CHIP_NUM_57811 << 16) | 13660 (sc->devinfo.chip_id & 0x0000ffff)); 13661 } else if (CHIP_IS_57810_MF(sc)) { 13662 sc->devinfo.chip_id = ((CHIP_NUM_57811_MF << 16) | 13663 (sc->devinfo.chip_id & 0x0000ffff)); 13664 } 13665 sc->devinfo.chip_id |= 0x1; 13666 } 13667 13668 BLOGD(sc, DBG_LOAD, 13669 "chip_id=0x%08x (num=0x%04x rev=0x%01x metal=0x%02x bond=0x%01x)\n", 13670 sc->devinfo.chip_id, 13671 ((sc->devinfo.chip_id >> 16) & 0xffff), 13672 ((sc->devinfo.chip_id >> 12) & 0xf), 13673 ((sc->devinfo.chip_id >> 4) & 0xff), 13674 ((sc->devinfo.chip_id >> 0) & 0xf)); 13675 13676 val = (REG_RD(sc, 0x2874) & 0x55); 13677 if ((sc->devinfo.chip_id & 0x1) || 13678 (CHIP_IS_E1(sc) && val) || 13679 (CHIP_IS_E1H(sc) && (val == 0x55))) { 13680 sc->flags |= BXE_ONE_PORT_FLAG; 13681 BLOGD(sc, DBG_LOAD, "single port device\n"); 13682 } 13683 13684 /* set the doorbell size */ 13685 sc->doorbell_size = (1 << BXE_DB_SHIFT); 13686 13687 /* determine whether the device is in 2 port or 4 port mode */ 13688 sc->devinfo.chip_port_mode = CHIP_PORT_MODE_NONE; /* E1 & E1h*/ 13689 if (CHIP_IS_E2E3(sc)) { 13690 /* 13691 * Read port4mode_en_ovwr[0]: 13692 * If 1, four port mode is in port4mode_en_ovwr[1]. 13693 * If 0, four port mode is in port4mode_en[0]. 13694 */ 13695 val = REG_RD(sc, MISC_REG_PORT4MODE_EN_OVWR); 13696 if (val & 1) { 13697 val = ((val >> 1) & 1); 13698 } else { 13699 val = REG_RD(sc, MISC_REG_PORT4MODE_EN); 13700 } 13701 13702 sc->devinfo.chip_port_mode = 13703 (val) ? CHIP_4_PORT_MODE : CHIP_2_PORT_MODE; 13704 13705 BLOGD(sc, DBG_LOAD, "Port mode = %s\n", (val) ? "4" : "2"); 13706 } 13707 13708 /* get the function and path info for the device */ 13709 bxe_get_function_num(sc); 13710 13711 /* get the shared memory base address */ 13712 sc->devinfo.shmem_base = 13713 sc->link_params.shmem_base = 13714 REG_RD(sc, MISC_REG_SHARED_MEM_ADDR); 13715 sc->devinfo.shmem2_base = 13716 REG_RD(sc, (SC_PATH(sc) ? MISC_REG_GENERIC_CR_1 : 13717 MISC_REG_GENERIC_CR_0)); 13718 13719 BLOGD(sc, DBG_LOAD, "shmem_base=0x%08x, shmem2_base=0x%08x\n", 13720 sc->devinfo.shmem_base, sc->devinfo.shmem2_base); 13721 13722 if (!sc->devinfo.shmem_base) { 13723 /* this should ONLY prevent upcoming shmem reads */ 13724 BLOGI(sc, "MCP not active\n"); 13725 sc->flags |= BXE_NO_MCP_FLAG; 13726 return (0); 13727 } 13728 13729 /* make sure the shared memory contents are valid */ 13730 val = SHMEM_RD(sc, validity_map[SC_PORT(sc)]); 13731 if ((val & (SHR_MEM_VALIDITY_DEV_INFO | SHR_MEM_VALIDITY_MB)) != 13732 (SHR_MEM_VALIDITY_DEV_INFO | SHR_MEM_VALIDITY_MB)) { 13733 BLOGE(sc, "Invalid SHMEM validity signature: 0x%08x\n", val); 13734 return (0); 13735 } 13736 BLOGD(sc, DBG_LOAD, "Valid SHMEM validity signature: 0x%08x\n", val); 13737 13738 /* get the bootcode version */ 13739 sc->devinfo.bc_ver = SHMEM_RD(sc, dev_info.bc_rev); 13740 snprintf(sc->devinfo.bc_ver_str, 13741 sizeof(sc->devinfo.bc_ver_str), 13742 "%d.%d.%d", 13743 ((sc->devinfo.bc_ver >> 24) & 0xff), 13744 ((sc->devinfo.bc_ver >> 16) & 0xff), 13745 ((sc->devinfo.bc_ver >> 8) & 0xff)); 13746 BLOGD(sc, DBG_LOAD, "Bootcode version: %s\n", sc->devinfo.bc_ver_str); 13747 13748 /* get the bootcode shmem address */ 13749 sc->devinfo.mf_cfg_base = bxe_get_shmem_mf_cfg_base(sc); 13750 BLOGD(sc, DBG_LOAD, "mf_cfg_base=0x08%x \n", sc->devinfo.mf_cfg_base); 13751 13752 /* clean indirect addresses as they're not used */ 13753 pci_write_config(sc->dev, PCICFG_GRC_ADDRESS, 0, 4); 13754 if (IS_PF(sc)) { 13755 REG_WR(sc, PXP2_REG_PGL_ADDR_88_F0, 0); 13756 REG_WR(sc, PXP2_REG_PGL_ADDR_8C_F0, 0); 13757 REG_WR(sc, PXP2_REG_PGL_ADDR_90_F0, 0); 13758 REG_WR(sc, PXP2_REG_PGL_ADDR_94_F0, 0); 13759 if (CHIP_IS_E1x(sc)) { 13760 REG_WR(sc, PXP2_REG_PGL_ADDR_88_F1, 0); 13761 REG_WR(sc, PXP2_REG_PGL_ADDR_8C_F1, 0); 13762 REG_WR(sc, PXP2_REG_PGL_ADDR_90_F1, 0); 13763 REG_WR(sc, PXP2_REG_PGL_ADDR_94_F1, 0); 13764 } 13765 13766 /* 13767 * Enable internal target-read (in case we are probed after PF 13768 * FLR). Must be done prior to any BAR read access. Only for 13769 * 57712 and up 13770 */ 13771 if (!CHIP_IS_E1x(sc)) { 13772 REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1); 13773 } 13774 } 13775 13776 /* get the nvram size */ 13777 val = REG_RD(sc, MCP_REG_MCPR_NVM_CFG4); 13778 sc->devinfo.flash_size = 13779 (NVRAM_1MB_SIZE << (val & MCPR_NVM_CFG4_FLASH_SIZE)); 13780 BLOGD(sc, DBG_LOAD, "nvram flash size: %d\n", sc->devinfo.flash_size); 13781 13782 /* get PCI capabilites */ 13783 bxe_probe_pci_caps(sc); 13784 13785 bxe_set_power_state(sc, PCI_PM_D0); 13786 13787 /* get various configuration parameters from shmem */ 13788 bxe_get_shmem_info(sc); 13789 13790 if (sc->devinfo.pcie_msix_cap_reg != 0) { 13791 val = pci_read_config(sc->dev, 13792 (sc->devinfo.pcie_msix_cap_reg + 13793 PCIR_MSIX_CTRL), 13794 2); 13795 sc->igu_sb_cnt = (val & PCIM_MSIXCTRL_TABLE_SIZE); 13796 } else { 13797 sc->igu_sb_cnt = 1; 13798 } 13799 13800 sc->igu_base_addr = BAR_IGU_INTMEM; 13801 13802 /* initialize IGU parameters */ 13803 if (CHIP_IS_E1x(sc)) { 13804 sc->devinfo.int_block = INT_BLOCK_HC; 13805 sc->igu_dsb_id = DEF_SB_IGU_ID; 13806 sc->igu_base_sb = 0; 13807 } else { 13808 sc->devinfo.int_block = INT_BLOCK_IGU; 13809 13810 /* do not allow device reset during IGU info preocessing */ 13811 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RESET); 13812 13813 val = REG_RD(sc, IGU_REG_BLOCK_CONFIGURATION); 13814 13815 if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) { 13816 int tout = 5000; 13817 13818 BLOGD(sc, DBG_LOAD, "FORCING IGU Normal Mode\n"); 13819 13820 val &= ~(IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN); 13821 REG_WR(sc, IGU_REG_BLOCK_CONFIGURATION, val); 13822 REG_WR(sc, IGU_REG_RESET_MEMORIES, 0x7f); 13823 13824 while (tout && REG_RD(sc, IGU_REG_RESET_MEMORIES)) { 13825 tout--; 13826 DELAY(1000); 13827 } 13828 13829 if (REG_RD(sc, IGU_REG_RESET_MEMORIES)) { 13830 BLOGD(sc, DBG_LOAD, "FORCING IGU Normal Mode failed!!!\n"); 13831 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RESET); 13832 return (-1); 13833 } 13834 } 13835 13836 if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) { 13837 BLOGD(sc, DBG_LOAD, "IGU Backward Compatible Mode\n"); 13838 sc->devinfo.int_block |= INT_BLOCK_MODE_BW_COMP; 13839 } else { 13840 BLOGD(sc, DBG_LOAD, "IGU Normal Mode\n"); 13841 } 13842 13843 rc = bxe_get_igu_cam_info(sc); 13844 13845 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RESET); 13846 13847 if (rc) { 13848 return (rc); 13849 } 13850 } 13851 13852 /* 13853 * Get base FW non-default (fast path) status block ID. This value is 13854 * used to initialize the fw_sb_id saved on the fp/queue structure to 13855 * determine the id used by the FW. 13856 */ 13857 if (CHIP_IS_E1x(sc)) { 13858 sc->base_fw_ndsb = ((SC_PORT(sc) * FP_SB_MAX_E1x) + SC_L_ID(sc)); 13859 } else { 13860 /* 13861 * 57712+ - We currently use one FW SB per IGU SB (Rx and Tx of 13862 * the same queue are indicated on the same IGU SB). So we prefer 13863 * FW and IGU SBs to be the same value. 13864 */ 13865 sc->base_fw_ndsb = sc->igu_base_sb; 13866 } 13867 13868 BLOGD(sc, DBG_LOAD, 13869 "igu_dsb_id=%d igu_base_sb=%d igu_sb_cnt=%d base_fw_ndsb=%d\n", 13870 sc->igu_dsb_id, sc->igu_base_sb, 13871 sc->igu_sb_cnt, sc->base_fw_ndsb); 13872 13873 elink_phy_probe(&sc->link_params); 13874 13875 return (0); 13876 } 13877 13878 static void 13879 bxe_link_settings_supported(struct bxe_softc *sc, 13880 uint32_t switch_cfg) 13881 { 13882 uint32_t cfg_size = 0; 13883 uint32_t idx; 13884 uint8_t port = SC_PORT(sc); 13885 13886 /* aggregation of supported attributes of all external phys */ 13887 sc->port.supported[0] = 0; 13888 sc->port.supported[1] = 0; 13889 13890 switch (sc->link_params.num_phys) { 13891 case 1: 13892 sc->port.supported[0] = sc->link_params.phy[ELINK_INT_PHY].supported; 13893 cfg_size = 1; 13894 break; 13895 case 2: 13896 sc->port.supported[0] = sc->link_params.phy[ELINK_EXT_PHY1].supported; 13897 cfg_size = 1; 13898 break; 13899 case 3: 13900 if (sc->link_params.multi_phy_config & 13901 PORT_HW_CFG_PHY_SWAPPED_ENABLED) { 13902 sc->port.supported[1] = 13903 sc->link_params.phy[ELINK_EXT_PHY1].supported; 13904 sc->port.supported[0] = 13905 sc->link_params.phy[ELINK_EXT_PHY2].supported; 13906 } else { 13907 sc->port.supported[0] = 13908 sc->link_params.phy[ELINK_EXT_PHY1].supported; 13909 sc->port.supported[1] = 13910 sc->link_params.phy[ELINK_EXT_PHY2].supported; 13911 } 13912 cfg_size = 2; 13913 break; 13914 } 13915 13916 if (!(sc->port.supported[0] || sc->port.supported[1])) { 13917 BLOGE(sc, "Invalid phy config in NVRAM (PHY1=0x%08x PHY2=0x%08x)\n", 13918 SHMEM_RD(sc, 13919 dev_info.port_hw_config[port].external_phy_config), 13920 SHMEM_RD(sc, 13921 dev_info.port_hw_config[port].external_phy_config2)); 13922 return; 13923 } 13924 13925 if (CHIP_IS_E3(sc)) 13926 sc->port.phy_addr = REG_RD(sc, MISC_REG_WC0_CTRL_PHY_ADDR); 13927 else { 13928 switch (switch_cfg) { 13929 case ELINK_SWITCH_CFG_1G: 13930 sc->port.phy_addr = 13931 REG_RD(sc, NIG_REG_SERDES0_CTRL_PHY_ADDR + port*0x10); 13932 break; 13933 case ELINK_SWITCH_CFG_10G: 13934 sc->port.phy_addr = 13935 REG_RD(sc, NIG_REG_XGXS0_CTRL_PHY_ADDR + port*0x18); 13936 break; 13937 default: 13938 BLOGE(sc, "Invalid switch config in link_config=0x%08x\n", 13939 sc->port.link_config[0]); 13940 return; 13941 } 13942 } 13943 13944 BLOGD(sc, DBG_LOAD, "PHY addr 0x%08x\n", sc->port.phy_addr); 13945 13946 /* mask what we support according to speed_cap_mask per configuration */ 13947 for (idx = 0; idx < cfg_size; idx++) { 13948 if (!(sc->link_params.speed_cap_mask[idx] & 13949 PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_HALF)) { 13950 sc->port.supported[idx] &= ~ELINK_SUPPORTED_10baseT_Half; 13951 } 13952 13953 if (!(sc->link_params.speed_cap_mask[idx] & 13954 PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_FULL)) { 13955 sc->port.supported[idx] &= ~ELINK_SUPPORTED_10baseT_Full; 13956 } 13957 13958 if (!(sc->link_params.speed_cap_mask[idx] & 13959 PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_HALF)) { 13960 sc->port.supported[idx] &= ~ELINK_SUPPORTED_100baseT_Half; 13961 } 13962 13963 if (!(sc->link_params.speed_cap_mask[idx] & 13964 PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_FULL)) { 13965 sc->port.supported[idx] &= ~ELINK_SUPPORTED_100baseT_Full; 13966 } 13967 13968 if (!(sc->link_params.speed_cap_mask[idx] & 13969 PORT_HW_CFG_SPEED_CAPABILITY_D0_1G)) { 13970 sc->port.supported[idx] &= ~ELINK_SUPPORTED_1000baseT_Full; 13971 } 13972 13973 if (!(sc->link_params.speed_cap_mask[idx] & 13974 PORT_HW_CFG_SPEED_CAPABILITY_D0_2_5G)) { 13975 sc->port.supported[idx] &= ~ELINK_SUPPORTED_2500baseX_Full; 13976 } 13977 13978 if (!(sc->link_params.speed_cap_mask[idx] & 13979 PORT_HW_CFG_SPEED_CAPABILITY_D0_10G)) { 13980 sc->port.supported[idx] &= ~ELINK_SUPPORTED_10000baseT_Full; 13981 } 13982 13983 if (!(sc->link_params.speed_cap_mask[idx] & 13984 PORT_HW_CFG_SPEED_CAPABILITY_D0_20G)) { 13985 sc->port.supported[idx] &= ~ELINK_SUPPORTED_20000baseKR2_Full; 13986 } 13987 } 13988 13989 BLOGD(sc, DBG_LOAD, "PHY supported 0=0x%08x 1=0x%08x\n", 13990 sc->port.supported[0], sc->port.supported[1]); 13991 } 13992 13993 static void 13994 bxe_link_settings_requested(struct bxe_softc *sc) 13995 { 13996 uint32_t link_config; 13997 uint32_t idx; 13998 uint32_t cfg_size = 0; 13999 14000 sc->port.advertising[0] = 0; 14001 sc->port.advertising[1] = 0; 14002 14003 switch (sc->link_params.num_phys) { 14004 case 1: 14005 case 2: 14006 cfg_size = 1; 14007 break; 14008 case 3: 14009 cfg_size = 2; 14010 break; 14011 } 14012 14013 for (idx = 0; idx < cfg_size; idx++) { 14014 sc->link_params.req_duplex[idx] = DUPLEX_FULL; 14015 link_config = sc->port.link_config[idx]; 14016 14017 switch (link_config & PORT_FEATURE_LINK_SPEED_MASK) { 14018 case PORT_FEATURE_LINK_SPEED_AUTO: 14019 if (sc->port.supported[idx] & ELINK_SUPPORTED_Autoneg) { 14020 sc->link_params.req_line_speed[idx] = ELINK_SPEED_AUTO_NEG; 14021 sc->port.advertising[idx] |= sc->port.supported[idx]; 14022 if (sc->link_params.phy[ELINK_EXT_PHY1].type == 14023 PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM84833) 14024 sc->port.advertising[idx] |= 14025 (ELINK_SUPPORTED_100baseT_Half | 14026 ELINK_SUPPORTED_100baseT_Full); 14027 } else { 14028 /* force 10G, no AN */ 14029 sc->link_params.req_line_speed[idx] = ELINK_SPEED_10000; 14030 sc->port.advertising[idx] |= 14031 (ADVERTISED_10000baseT_Full | ADVERTISED_FIBRE); 14032 continue; 14033 } 14034 break; 14035 14036 case PORT_FEATURE_LINK_SPEED_10M_FULL: 14037 if (sc->port.supported[idx] & ELINK_SUPPORTED_10baseT_Full) { 14038 sc->link_params.req_line_speed[idx] = ELINK_SPEED_10; 14039 sc->port.advertising[idx] |= (ADVERTISED_10baseT_Full | 14040 ADVERTISED_TP); 14041 } else { 14042 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x " 14043 "speed_cap_mask=0x%08x\n", 14044 link_config, sc->link_params.speed_cap_mask[idx]); 14045 return; 14046 } 14047 break; 14048 14049 case PORT_FEATURE_LINK_SPEED_10M_HALF: 14050 if (sc->port.supported[idx] & ELINK_SUPPORTED_10baseT_Half) { 14051 sc->link_params.req_line_speed[idx] = ELINK_SPEED_10; 14052 sc->link_params.req_duplex[idx] = DUPLEX_HALF; 14053 sc->port.advertising[idx] |= (ADVERTISED_10baseT_Half | 14054 ADVERTISED_TP); 14055 } else { 14056 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x " 14057 "speed_cap_mask=0x%08x\n", 14058 link_config, sc->link_params.speed_cap_mask[idx]); 14059 return; 14060 } 14061 break; 14062 14063 case PORT_FEATURE_LINK_SPEED_100M_FULL: 14064 if (sc->port.supported[idx] & ELINK_SUPPORTED_100baseT_Full) { 14065 sc->link_params.req_line_speed[idx] = ELINK_SPEED_100; 14066 sc->port.advertising[idx] |= (ADVERTISED_100baseT_Full | 14067 ADVERTISED_TP); 14068 } else { 14069 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x " 14070 "speed_cap_mask=0x%08x\n", 14071 link_config, sc->link_params.speed_cap_mask[idx]); 14072 return; 14073 } 14074 break; 14075 14076 case PORT_FEATURE_LINK_SPEED_100M_HALF: 14077 if (sc->port.supported[idx] & ELINK_SUPPORTED_100baseT_Half) { 14078 sc->link_params.req_line_speed[idx] = ELINK_SPEED_100; 14079 sc->link_params.req_duplex[idx] = DUPLEX_HALF; 14080 sc->port.advertising[idx] |= (ADVERTISED_100baseT_Half | 14081 ADVERTISED_TP); 14082 } else { 14083 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x " 14084 "speed_cap_mask=0x%08x\n", 14085 link_config, sc->link_params.speed_cap_mask[idx]); 14086 return; 14087 } 14088 break; 14089 14090 case PORT_FEATURE_LINK_SPEED_1G: 14091 if (sc->port.supported[idx] & ELINK_SUPPORTED_1000baseT_Full) { 14092 sc->link_params.req_line_speed[idx] = ELINK_SPEED_1000; 14093 sc->port.advertising[idx] |= (ADVERTISED_1000baseT_Full | 14094 ADVERTISED_TP); 14095 } else { 14096 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x " 14097 "speed_cap_mask=0x%08x\n", 14098 link_config, sc->link_params.speed_cap_mask[idx]); 14099 return; 14100 } 14101 break; 14102 14103 case PORT_FEATURE_LINK_SPEED_2_5G: 14104 if (sc->port.supported[idx] & ELINK_SUPPORTED_2500baseX_Full) { 14105 sc->link_params.req_line_speed[idx] = ELINK_SPEED_2500; 14106 sc->port.advertising[idx] |= (ADVERTISED_2500baseX_Full | 14107 ADVERTISED_TP); 14108 } else { 14109 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x " 14110 "speed_cap_mask=0x%08x\n", 14111 link_config, sc->link_params.speed_cap_mask[idx]); 14112 return; 14113 } 14114 break; 14115 14116 case PORT_FEATURE_LINK_SPEED_10G_CX4: 14117 if (sc->port.supported[idx] & ELINK_SUPPORTED_10000baseT_Full) { 14118 sc->link_params.req_line_speed[idx] = ELINK_SPEED_10000; 14119 sc->port.advertising[idx] |= (ADVERTISED_10000baseT_Full | 14120 ADVERTISED_FIBRE); 14121 } else { 14122 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x " 14123 "speed_cap_mask=0x%08x\n", 14124 link_config, sc->link_params.speed_cap_mask[idx]); 14125 return; 14126 } 14127 break; 14128 14129 case PORT_FEATURE_LINK_SPEED_20G: 14130 sc->link_params.req_line_speed[idx] = ELINK_SPEED_20000; 14131 break; 14132 14133 default: 14134 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x " 14135 "speed_cap_mask=0x%08x\n", 14136 link_config, sc->link_params.speed_cap_mask[idx]); 14137 sc->link_params.req_line_speed[idx] = ELINK_SPEED_AUTO_NEG; 14138 sc->port.advertising[idx] = sc->port.supported[idx]; 14139 break; 14140 } 14141 14142 sc->link_params.req_flow_ctrl[idx] = 14143 (link_config & PORT_FEATURE_FLOW_CONTROL_MASK); 14144 14145 if (sc->link_params.req_flow_ctrl[idx] == ELINK_FLOW_CTRL_AUTO) { 14146 if (!(sc->port.supported[idx] & ELINK_SUPPORTED_Autoneg)) { 14147 sc->link_params.req_flow_ctrl[idx] = ELINK_FLOW_CTRL_NONE; 14148 } else { 14149 bxe_set_requested_fc(sc); 14150 } 14151 } 14152 14153 BLOGD(sc, DBG_LOAD, "req_line_speed=%d req_duplex=%d " 14154 "req_flow_ctrl=0x%x advertising=0x%x\n", 14155 sc->link_params.req_line_speed[idx], 14156 sc->link_params.req_duplex[idx], 14157 sc->link_params.req_flow_ctrl[idx], 14158 sc->port.advertising[idx]); 14159 } 14160 } 14161 14162 static void 14163 bxe_get_phy_info(struct bxe_softc *sc) 14164 { 14165 uint8_t port = SC_PORT(sc); 14166 uint32_t config = sc->port.config; 14167 uint32_t eee_mode; 14168 14169 /* shmem data already read in bxe_get_shmem_info() */ 14170 14171 BLOGD(sc, DBG_LOAD, "lane_config=0x%08x speed_cap_mask0=0x%08x " 14172 "link_config0=0x%08x\n", 14173 sc->link_params.lane_config, 14174 sc->link_params.speed_cap_mask[0], 14175 sc->port.link_config[0]); 14176 14177 bxe_link_settings_supported(sc, sc->link_params.switch_cfg); 14178 bxe_link_settings_requested(sc); 14179 14180 if (sc->autogreeen == AUTO_GREEN_FORCE_ON) { 14181 sc->link_params.feature_config_flags |= 14182 ELINK_FEATURE_CONFIG_AUTOGREEEN_ENABLED; 14183 } else if (sc->autogreeen == AUTO_GREEN_FORCE_OFF) { 14184 sc->link_params.feature_config_flags &= 14185 ~ELINK_FEATURE_CONFIG_AUTOGREEEN_ENABLED; 14186 } else if (config & PORT_FEAT_CFG_AUTOGREEEN_ENABLED) { 14187 sc->link_params.feature_config_flags |= 14188 ELINK_FEATURE_CONFIG_AUTOGREEEN_ENABLED; 14189 } 14190 14191 /* configure link feature according to nvram value */ 14192 eee_mode = 14193 (((SHMEM_RD(sc, dev_info.port_feature_config[port].eee_power_mode)) & 14194 PORT_FEAT_CFG_EEE_POWER_MODE_MASK) >> 14195 PORT_FEAT_CFG_EEE_POWER_MODE_SHIFT); 14196 if (eee_mode != PORT_FEAT_CFG_EEE_POWER_MODE_DISABLED) { 14197 sc->link_params.eee_mode = (ELINK_EEE_MODE_ADV_LPI | 14198 ELINK_EEE_MODE_ENABLE_LPI | 14199 ELINK_EEE_MODE_OUTPUT_TIME); 14200 } else { 14201 sc->link_params.eee_mode = 0; 14202 } 14203 14204 /* get the media type */ 14205 bxe_media_detect(sc); 14206 } 14207 14208 static void 14209 bxe_get_params(struct bxe_softc *sc) 14210 { 14211 /* get user tunable params */ 14212 bxe_get_tunable_params(sc); 14213 14214 /* select the RX and TX ring sizes */ 14215 sc->tx_ring_size = TX_BD_USABLE; 14216 sc->rx_ring_size = RX_BD_USABLE; 14217 14218 /* XXX disable WoL */ 14219 sc->wol = 0; 14220 } 14221 14222 static void 14223 bxe_set_modes_bitmap(struct bxe_softc *sc) 14224 { 14225 uint32_t flags = 0; 14226 14227 if (CHIP_REV_IS_FPGA(sc)) { 14228 SET_FLAGS(flags, MODE_FPGA); 14229 } else if (CHIP_REV_IS_EMUL(sc)) { 14230 SET_FLAGS(flags, MODE_EMUL); 14231 } else { 14232 SET_FLAGS(flags, MODE_ASIC); 14233 } 14234 14235 if (CHIP_IS_MODE_4_PORT(sc)) { 14236 SET_FLAGS(flags, MODE_PORT4); 14237 } else { 14238 SET_FLAGS(flags, MODE_PORT2); 14239 } 14240 14241 if (CHIP_IS_E2(sc)) { 14242 SET_FLAGS(flags, MODE_E2); 14243 } else if (CHIP_IS_E3(sc)) { 14244 SET_FLAGS(flags, MODE_E3); 14245 if (CHIP_REV(sc) == CHIP_REV_Ax) { 14246 SET_FLAGS(flags, MODE_E3_A0); 14247 } else /*if (CHIP_REV(sc) == CHIP_REV_Bx)*/ { 14248 SET_FLAGS(flags, MODE_E3_B0 | MODE_COS3); 14249 } 14250 } 14251 14252 if (IS_MF(sc)) { 14253 SET_FLAGS(flags, MODE_MF); 14254 switch (sc->devinfo.mf_info.mf_mode) { 14255 case MULTI_FUNCTION_SD: 14256 SET_FLAGS(flags, MODE_MF_SD); 14257 break; 14258 case MULTI_FUNCTION_SI: 14259 SET_FLAGS(flags, MODE_MF_SI); 14260 break; 14261 case MULTI_FUNCTION_AFEX: 14262 SET_FLAGS(flags, MODE_MF_AFEX); 14263 break; 14264 } 14265 } else { 14266 SET_FLAGS(flags, MODE_SF); 14267 } 14268 14269 #if defined(__LITTLE_ENDIAN) 14270 SET_FLAGS(flags, MODE_LITTLE_ENDIAN); 14271 #else /* __BIG_ENDIAN */ 14272 SET_FLAGS(flags, MODE_BIG_ENDIAN); 14273 #endif 14274 14275 INIT_MODE_FLAGS(sc) = flags; 14276 } 14277 14278 static int 14279 bxe_alloc_hsi_mem(struct bxe_softc *sc) 14280 { 14281 struct bxe_fastpath *fp; 14282 bus_addr_t busaddr; 14283 int max_agg_queues; 14284 int max_segments; 14285 bus_size_t max_size; 14286 bus_size_t max_seg_size; 14287 char buf[32]; 14288 int rc; 14289 int i, j; 14290 14291 /* XXX zero out all vars here and call bxe_alloc_hsi_mem on error */ 14292 14293 /* allocate the parent bus DMA tag */ 14294 rc = bus_dma_tag_create(bus_get_dma_tag(sc->dev), /* parent tag */ 14295 1, /* alignment */ 14296 0, /* boundary limit */ 14297 BUS_SPACE_MAXADDR, /* restricted low */ 14298 BUS_SPACE_MAXADDR, /* restricted hi */ 14299 NULL, /* addr filter() */ 14300 NULL, /* addr filter() arg */ 14301 BUS_SPACE_MAXSIZE_32BIT, /* max map size */ 14302 BUS_SPACE_UNRESTRICTED, /* num discontinuous */ 14303 BUS_SPACE_MAXSIZE_32BIT, /* max seg size */ 14304 0, /* flags */ 14305 NULL, /* lock() */ 14306 NULL, /* lock() arg */ 14307 &sc->parent_dma_tag); /* returned dma tag */ 14308 if (rc != 0) { 14309 BLOGE(sc, "Failed to alloc parent DMA tag (%d)!\n", rc); 14310 return (1); 14311 } 14312 14313 /************************/ 14314 /* DEFAULT STATUS BLOCK */ 14315 /************************/ 14316 14317 if (bxe_dma_alloc(sc, sizeof(struct host_sp_status_block), 14318 &sc->def_sb_dma, "default status block") != 0) { 14319 /* XXX */ 14320 bus_dma_tag_destroy(sc->parent_dma_tag); 14321 return (1); 14322 } 14323 14324 sc->def_sb = (struct host_sp_status_block *)sc->def_sb_dma.vaddr; 14325 14326 /***************/ 14327 /* EVENT QUEUE */ 14328 /***************/ 14329 14330 if (bxe_dma_alloc(sc, BCM_PAGE_SIZE, 14331 &sc->eq_dma, "event queue") != 0) { 14332 /* XXX */ 14333 bxe_dma_free(sc, &sc->def_sb_dma); 14334 sc->def_sb = NULL; 14335 bus_dma_tag_destroy(sc->parent_dma_tag); 14336 return (1); 14337 } 14338 14339 sc->eq = (union event_ring_elem * )sc->eq_dma.vaddr; 14340 14341 /*************/ 14342 /* SLOW PATH */ 14343 /*************/ 14344 14345 if (bxe_dma_alloc(sc, sizeof(struct bxe_slowpath), 14346 &sc->sp_dma, "slow path") != 0) { 14347 /* XXX */ 14348 bxe_dma_free(sc, &sc->eq_dma); 14349 sc->eq = NULL; 14350 bxe_dma_free(sc, &sc->def_sb_dma); 14351 sc->def_sb = NULL; 14352 bus_dma_tag_destroy(sc->parent_dma_tag); 14353 return (1); 14354 } 14355 14356 sc->sp = (struct bxe_slowpath *)sc->sp_dma.vaddr; 14357 14358 /*******************/ 14359 /* SLOW PATH QUEUE */ 14360 /*******************/ 14361 14362 if (bxe_dma_alloc(sc, BCM_PAGE_SIZE, 14363 &sc->spq_dma, "slow path queue") != 0) { 14364 /* XXX */ 14365 bxe_dma_free(sc, &sc->sp_dma); 14366 sc->sp = NULL; 14367 bxe_dma_free(sc, &sc->eq_dma); 14368 sc->eq = NULL; 14369 bxe_dma_free(sc, &sc->def_sb_dma); 14370 sc->def_sb = NULL; 14371 bus_dma_tag_destroy(sc->parent_dma_tag); 14372 return (1); 14373 } 14374 14375 sc->spq = (struct eth_spe *)sc->spq_dma.vaddr; 14376 14377 /***************************/ 14378 /* FW DECOMPRESSION BUFFER */ 14379 /***************************/ 14380 14381 if (bxe_dma_alloc(sc, FW_BUF_SIZE, &sc->gz_buf_dma, 14382 "fw decompression buffer") != 0) { 14383 /* XXX */ 14384 bxe_dma_free(sc, &sc->spq_dma); 14385 sc->spq = NULL; 14386 bxe_dma_free(sc, &sc->sp_dma); 14387 sc->sp = NULL; 14388 bxe_dma_free(sc, &sc->eq_dma); 14389 sc->eq = NULL; 14390 bxe_dma_free(sc, &sc->def_sb_dma); 14391 sc->def_sb = NULL; 14392 bus_dma_tag_destroy(sc->parent_dma_tag); 14393 return (1); 14394 } 14395 14396 sc->gz_buf = (void *)sc->gz_buf_dma.vaddr; 14397 14398 if ((sc->gz_strm = 14399 malloc(sizeof(*sc->gz_strm), M_DEVBUF, M_NOWAIT)) == NULL) { 14400 /* XXX */ 14401 bxe_dma_free(sc, &sc->gz_buf_dma); 14402 sc->gz_buf = NULL; 14403 bxe_dma_free(sc, &sc->spq_dma); 14404 sc->spq = NULL; 14405 bxe_dma_free(sc, &sc->sp_dma); 14406 sc->sp = NULL; 14407 bxe_dma_free(sc, &sc->eq_dma); 14408 sc->eq = NULL; 14409 bxe_dma_free(sc, &sc->def_sb_dma); 14410 sc->def_sb = NULL; 14411 bus_dma_tag_destroy(sc->parent_dma_tag); 14412 return (1); 14413 } 14414 14415 /*************/ 14416 /* FASTPATHS */ 14417 /*************/ 14418 14419 /* allocate DMA memory for each fastpath structure */ 14420 for (i = 0; i < sc->num_queues; i++) { 14421 fp = &sc->fp[i]; 14422 fp->sc = sc; 14423 fp->index = i; 14424 14425 /*******************/ 14426 /* FP STATUS BLOCK */ 14427 /*******************/ 14428 14429 snprintf(buf, sizeof(buf), "fp %d status block", i); 14430 if (bxe_dma_alloc(sc, sizeof(union bxe_host_hc_status_block), 14431 &fp->sb_dma, buf) != 0) { 14432 /* XXX unwind and free previous fastpath allocations */ 14433 BLOGE(sc, "Failed to alloc %s\n", buf); 14434 return (1); 14435 } else { 14436 if (CHIP_IS_E2E3(sc)) { 14437 fp->status_block.e2_sb = 14438 (struct host_hc_status_block_e2 *)fp->sb_dma.vaddr; 14439 } else { 14440 fp->status_block.e1x_sb = 14441 (struct host_hc_status_block_e1x *)fp->sb_dma.vaddr; 14442 } 14443 } 14444 14445 /******************/ 14446 /* FP TX BD CHAIN */ 14447 /******************/ 14448 14449 snprintf(buf, sizeof(buf), "fp %d tx bd chain", i); 14450 if (bxe_dma_alloc(sc, (BCM_PAGE_SIZE * TX_BD_NUM_PAGES), 14451 &fp->tx_dma, buf) != 0) { 14452 /* XXX unwind and free previous fastpath allocations */ 14453 BLOGE(sc, "Failed to alloc %s\n", buf); 14454 return (1); 14455 } else { 14456 fp->tx_chain = (union eth_tx_bd_types *)fp->tx_dma.vaddr; 14457 } 14458 14459 /* link together the tx bd chain pages */ 14460 for (j = 1; j <= TX_BD_NUM_PAGES; j++) { 14461 /* index into the tx bd chain array to last entry per page */ 14462 struct eth_tx_next_bd *tx_next_bd = 14463 &fp->tx_chain[TX_BD_TOTAL_PER_PAGE * j - 1].next_bd; 14464 /* point to the next page and wrap from last page */ 14465 busaddr = (fp->tx_dma.paddr + 14466 (BCM_PAGE_SIZE * (j % TX_BD_NUM_PAGES))); 14467 tx_next_bd->addr_hi = htole32(U64_HI(busaddr)); 14468 tx_next_bd->addr_lo = htole32(U64_LO(busaddr)); 14469 } 14470 14471 /******************/ 14472 /* FP RX BD CHAIN */ 14473 /******************/ 14474 14475 snprintf(buf, sizeof(buf), "fp %d rx bd chain", i); 14476 if (bxe_dma_alloc(sc, (BCM_PAGE_SIZE * RX_BD_NUM_PAGES), 14477 &fp->rx_dma, buf) != 0) { 14478 /* XXX unwind and free previous fastpath allocations */ 14479 BLOGE(sc, "Failed to alloc %s\n", buf); 14480 return (1); 14481 } else { 14482 fp->rx_chain = (struct eth_rx_bd *)fp->rx_dma.vaddr; 14483 } 14484 14485 /* link together the rx bd chain pages */ 14486 for (j = 1; j <= RX_BD_NUM_PAGES; j++) { 14487 /* index into the rx bd chain array to last entry per page */ 14488 struct eth_rx_bd *rx_bd = 14489 &fp->rx_chain[RX_BD_TOTAL_PER_PAGE * j - 2]; 14490 /* point to the next page and wrap from last page */ 14491 busaddr = (fp->rx_dma.paddr + 14492 (BCM_PAGE_SIZE * (j % RX_BD_NUM_PAGES))); 14493 rx_bd->addr_hi = htole32(U64_HI(busaddr)); 14494 rx_bd->addr_lo = htole32(U64_LO(busaddr)); 14495 } 14496 14497 /*******************/ 14498 /* FP RX RCQ CHAIN */ 14499 /*******************/ 14500 14501 snprintf(buf, sizeof(buf), "fp %d rcq chain", i); 14502 if (bxe_dma_alloc(sc, (BCM_PAGE_SIZE * RCQ_NUM_PAGES), 14503 &fp->rcq_dma, buf) != 0) { 14504 /* XXX unwind and free previous fastpath allocations */ 14505 BLOGE(sc, "Failed to alloc %s\n", buf); 14506 return (1); 14507 } else { 14508 fp->rcq_chain = (union eth_rx_cqe *)fp->rcq_dma.vaddr; 14509 } 14510 14511 /* link together the rcq chain pages */ 14512 for (j = 1; j <= RCQ_NUM_PAGES; j++) { 14513 /* index into the rcq chain array to last entry per page */ 14514 struct eth_rx_cqe_next_page *rx_cqe_next = 14515 (struct eth_rx_cqe_next_page *) 14516 &fp->rcq_chain[RCQ_TOTAL_PER_PAGE * j - 1]; 14517 /* point to the next page and wrap from last page */ 14518 busaddr = (fp->rcq_dma.paddr + 14519 (BCM_PAGE_SIZE * (j % RCQ_NUM_PAGES))); 14520 rx_cqe_next->addr_hi = htole32(U64_HI(busaddr)); 14521 rx_cqe_next->addr_lo = htole32(U64_LO(busaddr)); 14522 } 14523 14524 /*******************/ 14525 /* FP RX SGE CHAIN */ 14526 /*******************/ 14527 14528 snprintf(buf, sizeof(buf), "fp %d sge chain", i); 14529 if (bxe_dma_alloc(sc, (BCM_PAGE_SIZE * RX_SGE_NUM_PAGES), 14530 &fp->rx_sge_dma, buf) != 0) { 14531 /* XXX unwind and free previous fastpath allocations */ 14532 BLOGE(sc, "Failed to alloc %s\n", buf); 14533 return (1); 14534 } else { 14535 fp->rx_sge_chain = (struct eth_rx_sge *)fp->rx_sge_dma.vaddr; 14536 } 14537 14538 /* link together the sge chain pages */ 14539 for (j = 1; j <= RX_SGE_NUM_PAGES; j++) { 14540 /* index into the rcq chain array to last entry per page */ 14541 struct eth_rx_sge *rx_sge = 14542 &fp->rx_sge_chain[RX_SGE_TOTAL_PER_PAGE * j - 2]; 14543 /* point to the next page and wrap from last page */ 14544 busaddr = (fp->rx_sge_dma.paddr + 14545 (BCM_PAGE_SIZE * (j % RX_SGE_NUM_PAGES))); 14546 rx_sge->addr_hi = htole32(U64_HI(busaddr)); 14547 rx_sge->addr_lo = htole32(U64_LO(busaddr)); 14548 } 14549 14550 /***********************/ 14551 /* FP TX MBUF DMA MAPS */ 14552 /***********************/ 14553 14554 /* set required sizes before mapping to conserve resources */ 14555 if (if_getcapenable(sc->ifp) & (IFCAP_TSO4 | IFCAP_TSO6)) { 14556 max_size = BXE_TSO_MAX_SIZE; 14557 max_segments = BXE_TSO_MAX_SEGMENTS; 14558 max_seg_size = BXE_TSO_MAX_SEG_SIZE; 14559 } else { 14560 max_size = (MCLBYTES * BXE_MAX_SEGMENTS); 14561 max_segments = BXE_MAX_SEGMENTS; 14562 max_seg_size = MCLBYTES; 14563 } 14564 14565 /* create a dma tag for the tx mbufs */ 14566 rc = bus_dma_tag_create(sc->parent_dma_tag, /* parent tag */ 14567 1, /* alignment */ 14568 0, /* boundary limit */ 14569 BUS_SPACE_MAXADDR, /* restricted low */ 14570 BUS_SPACE_MAXADDR, /* restricted hi */ 14571 NULL, /* addr filter() */ 14572 NULL, /* addr filter() arg */ 14573 max_size, /* max map size */ 14574 max_segments, /* num discontinuous */ 14575 max_seg_size, /* max seg size */ 14576 0, /* flags */ 14577 NULL, /* lock() */ 14578 NULL, /* lock() arg */ 14579 &fp->tx_mbuf_tag); /* returned dma tag */ 14580 if (rc != 0) { 14581 /* XXX unwind and free previous fastpath allocations */ 14582 BLOGE(sc, "Failed to create dma tag for " 14583 "'fp %d tx mbufs' (%d)\n", i, rc); 14584 return (1); 14585 } 14586 14587 /* create dma maps for each of the tx mbuf clusters */ 14588 for (j = 0; j < TX_BD_TOTAL; j++) { 14589 if (bus_dmamap_create(fp->tx_mbuf_tag, 14590 BUS_DMA_NOWAIT, 14591 &fp->tx_mbuf_chain[j].m_map)) { 14592 /* XXX unwind and free previous fastpath allocations */ 14593 BLOGE(sc, "Failed to create dma map for " 14594 "'fp %d tx mbuf %d' (%d)\n", i, j, rc); 14595 return (1); 14596 } 14597 } 14598 14599 /***********************/ 14600 /* FP RX MBUF DMA MAPS */ 14601 /***********************/ 14602 14603 /* create a dma tag for the rx mbufs */ 14604 rc = bus_dma_tag_create(sc->parent_dma_tag, /* parent tag */ 14605 1, /* alignment */ 14606 0, /* boundary limit */ 14607 BUS_SPACE_MAXADDR, /* restricted low */ 14608 BUS_SPACE_MAXADDR, /* restricted hi */ 14609 NULL, /* addr filter() */ 14610 NULL, /* addr filter() arg */ 14611 MJUM9BYTES, /* max map size */ 14612 1, /* num discontinuous */ 14613 MJUM9BYTES, /* max seg size */ 14614 0, /* flags */ 14615 NULL, /* lock() */ 14616 NULL, /* lock() arg */ 14617 &fp->rx_mbuf_tag); /* returned dma tag */ 14618 if (rc != 0) { 14619 /* XXX unwind and free previous fastpath allocations */ 14620 BLOGE(sc, "Failed to create dma tag for " 14621 "'fp %d rx mbufs' (%d)\n", i, rc); 14622 return (1); 14623 } 14624 14625 /* create dma maps for each of the rx mbuf clusters */ 14626 for (j = 0; j < RX_BD_TOTAL; j++) { 14627 if (bus_dmamap_create(fp->rx_mbuf_tag, 14628 BUS_DMA_NOWAIT, 14629 &fp->rx_mbuf_chain[j].m_map)) { 14630 /* XXX unwind and free previous fastpath allocations */ 14631 BLOGE(sc, "Failed to create dma map for " 14632 "'fp %d rx mbuf %d' (%d)\n", i, j, rc); 14633 return (1); 14634 } 14635 } 14636 14637 /* create dma map for the spare rx mbuf cluster */ 14638 if (bus_dmamap_create(fp->rx_mbuf_tag, 14639 BUS_DMA_NOWAIT, 14640 &fp->rx_mbuf_spare_map)) { 14641 /* XXX unwind and free previous fastpath allocations */ 14642 BLOGE(sc, "Failed to create dma map for " 14643 "'fp %d spare rx mbuf' (%d)\n", i, rc); 14644 return (1); 14645 } 14646 14647 /***************************/ 14648 /* FP RX SGE MBUF DMA MAPS */ 14649 /***************************/ 14650 14651 /* create a dma tag for the rx sge mbufs */ 14652 rc = bus_dma_tag_create(sc->parent_dma_tag, /* parent tag */ 14653 1, /* alignment */ 14654 0, /* boundary limit */ 14655 BUS_SPACE_MAXADDR, /* restricted low */ 14656 BUS_SPACE_MAXADDR, /* restricted hi */ 14657 NULL, /* addr filter() */ 14658 NULL, /* addr filter() arg */ 14659 BCM_PAGE_SIZE, /* max map size */ 14660 1, /* num discontinuous */ 14661 BCM_PAGE_SIZE, /* max seg size */ 14662 0, /* flags */ 14663 NULL, /* lock() */ 14664 NULL, /* lock() arg */ 14665 &fp->rx_sge_mbuf_tag); /* returned dma tag */ 14666 if (rc != 0) { 14667 /* XXX unwind and free previous fastpath allocations */ 14668 BLOGE(sc, "Failed to create dma tag for " 14669 "'fp %d rx sge mbufs' (%d)\n", i, rc); 14670 return (1); 14671 } 14672 14673 /* create dma maps for the rx sge mbuf clusters */ 14674 for (j = 0; j < RX_SGE_TOTAL; j++) { 14675 if (bus_dmamap_create(fp->rx_sge_mbuf_tag, 14676 BUS_DMA_NOWAIT, 14677 &fp->rx_sge_mbuf_chain[j].m_map)) { 14678 /* XXX unwind and free previous fastpath allocations */ 14679 BLOGE(sc, "Failed to create dma map for " 14680 "'fp %d rx sge mbuf %d' (%d)\n", i, j, rc); 14681 return (1); 14682 } 14683 } 14684 14685 /* create dma map for the spare rx sge mbuf cluster */ 14686 if (bus_dmamap_create(fp->rx_sge_mbuf_tag, 14687 BUS_DMA_NOWAIT, 14688 &fp->rx_sge_mbuf_spare_map)) { 14689 /* XXX unwind and free previous fastpath allocations */ 14690 BLOGE(sc, "Failed to create dma map for " 14691 "'fp %d spare rx sge mbuf' (%d)\n", i, rc); 14692 return (1); 14693 } 14694 14695 /***************************/ 14696 /* FP RX TPA MBUF DMA MAPS */ 14697 /***************************/ 14698 14699 /* create dma maps for the rx tpa mbuf clusters */ 14700 max_agg_queues = MAX_AGG_QS(sc); 14701 14702 for (j = 0; j < max_agg_queues; j++) { 14703 if (bus_dmamap_create(fp->rx_mbuf_tag, 14704 BUS_DMA_NOWAIT, 14705 &fp->rx_tpa_info[j].bd.m_map)) { 14706 /* XXX unwind and free previous fastpath allocations */ 14707 BLOGE(sc, "Failed to create dma map for " 14708 "'fp %d rx tpa mbuf %d' (%d)\n", i, j, rc); 14709 return (1); 14710 } 14711 } 14712 14713 /* create dma map for the spare rx tpa mbuf cluster */ 14714 if (bus_dmamap_create(fp->rx_mbuf_tag, 14715 BUS_DMA_NOWAIT, 14716 &fp->rx_tpa_info_mbuf_spare_map)) { 14717 /* XXX unwind and free previous fastpath allocations */ 14718 BLOGE(sc, "Failed to create dma map for " 14719 "'fp %d spare rx tpa mbuf' (%d)\n", i, rc); 14720 return (1); 14721 } 14722 14723 bxe_init_sge_ring_bit_mask(fp); 14724 } 14725 14726 return (0); 14727 } 14728 14729 static void 14730 bxe_free_hsi_mem(struct bxe_softc *sc) 14731 { 14732 struct bxe_fastpath *fp; 14733 int max_agg_queues; 14734 int i, j; 14735 14736 if (sc->parent_dma_tag == NULL) { 14737 return; /* assume nothing was allocated */ 14738 } 14739 14740 for (i = 0; i < sc->num_queues; i++) { 14741 fp = &sc->fp[i]; 14742 14743 /*******************/ 14744 /* FP STATUS BLOCK */ 14745 /*******************/ 14746 14747 bxe_dma_free(sc, &fp->sb_dma); 14748 memset(&fp->status_block, 0, sizeof(fp->status_block)); 14749 14750 /******************/ 14751 /* FP TX BD CHAIN */ 14752 /******************/ 14753 14754 bxe_dma_free(sc, &fp->tx_dma); 14755 fp->tx_chain = NULL; 14756 14757 /******************/ 14758 /* FP RX BD CHAIN */ 14759 /******************/ 14760 14761 bxe_dma_free(sc, &fp->rx_dma); 14762 fp->rx_chain = NULL; 14763 14764 /*******************/ 14765 /* FP RX RCQ CHAIN */ 14766 /*******************/ 14767 14768 bxe_dma_free(sc, &fp->rcq_dma); 14769 fp->rcq_chain = NULL; 14770 14771 /*******************/ 14772 /* FP RX SGE CHAIN */ 14773 /*******************/ 14774 14775 bxe_dma_free(sc, &fp->rx_sge_dma); 14776 fp->rx_sge_chain = NULL; 14777 14778 /***********************/ 14779 /* FP TX MBUF DMA MAPS */ 14780 /***********************/ 14781 14782 if (fp->tx_mbuf_tag != NULL) { 14783 for (j = 0; j < TX_BD_TOTAL; j++) { 14784 if (fp->tx_mbuf_chain[j].m_map != NULL) { 14785 bus_dmamap_unload(fp->tx_mbuf_tag, 14786 fp->tx_mbuf_chain[j].m_map); 14787 bus_dmamap_destroy(fp->tx_mbuf_tag, 14788 fp->tx_mbuf_chain[j].m_map); 14789 } 14790 } 14791 14792 bus_dma_tag_destroy(fp->tx_mbuf_tag); 14793 fp->tx_mbuf_tag = NULL; 14794 } 14795 14796 /***********************/ 14797 /* FP RX MBUF DMA MAPS */ 14798 /***********************/ 14799 14800 if (fp->rx_mbuf_tag != NULL) { 14801 for (j = 0; j < RX_BD_TOTAL; j++) { 14802 if (fp->rx_mbuf_chain[j].m_map != NULL) { 14803 bus_dmamap_unload(fp->rx_mbuf_tag, 14804 fp->rx_mbuf_chain[j].m_map); 14805 bus_dmamap_destroy(fp->rx_mbuf_tag, 14806 fp->rx_mbuf_chain[j].m_map); 14807 } 14808 } 14809 14810 if (fp->rx_mbuf_spare_map != NULL) { 14811 bus_dmamap_unload(fp->rx_mbuf_tag, fp->rx_mbuf_spare_map); 14812 bus_dmamap_destroy(fp->rx_mbuf_tag, fp->rx_mbuf_spare_map); 14813 } 14814 14815 /***************************/ 14816 /* FP RX TPA MBUF DMA MAPS */ 14817 /***************************/ 14818 14819 max_agg_queues = MAX_AGG_QS(sc); 14820 14821 for (j = 0; j < max_agg_queues; j++) { 14822 if (fp->rx_tpa_info[j].bd.m_map != NULL) { 14823 bus_dmamap_unload(fp->rx_mbuf_tag, 14824 fp->rx_tpa_info[j].bd.m_map); 14825 bus_dmamap_destroy(fp->rx_mbuf_tag, 14826 fp->rx_tpa_info[j].bd.m_map); 14827 } 14828 } 14829 14830 if (fp->rx_tpa_info_mbuf_spare_map != NULL) { 14831 bus_dmamap_unload(fp->rx_mbuf_tag, 14832 fp->rx_tpa_info_mbuf_spare_map); 14833 bus_dmamap_destroy(fp->rx_mbuf_tag, 14834 fp->rx_tpa_info_mbuf_spare_map); 14835 } 14836 14837 bus_dma_tag_destroy(fp->rx_mbuf_tag); 14838 fp->rx_mbuf_tag = NULL; 14839 } 14840 14841 /***************************/ 14842 /* FP RX SGE MBUF DMA MAPS */ 14843 /***************************/ 14844 14845 if (fp->rx_sge_mbuf_tag != NULL) { 14846 for (j = 0; j < RX_SGE_TOTAL; j++) { 14847 if (fp->rx_sge_mbuf_chain[j].m_map != NULL) { 14848 bus_dmamap_unload(fp->rx_sge_mbuf_tag, 14849 fp->rx_sge_mbuf_chain[j].m_map); 14850 bus_dmamap_destroy(fp->rx_sge_mbuf_tag, 14851 fp->rx_sge_mbuf_chain[j].m_map); 14852 } 14853 } 14854 14855 if (fp->rx_sge_mbuf_spare_map != NULL) { 14856 bus_dmamap_unload(fp->rx_sge_mbuf_tag, 14857 fp->rx_sge_mbuf_spare_map); 14858 bus_dmamap_destroy(fp->rx_sge_mbuf_tag, 14859 fp->rx_sge_mbuf_spare_map); 14860 } 14861 14862 bus_dma_tag_destroy(fp->rx_sge_mbuf_tag); 14863 fp->rx_sge_mbuf_tag = NULL; 14864 } 14865 } 14866 14867 /***************************/ 14868 /* FW DECOMPRESSION BUFFER */ 14869 /***************************/ 14870 14871 bxe_dma_free(sc, &sc->gz_buf_dma); 14872 sc->gz_buf = NULL; 14873 free(sc->gz_strm, M_DEVBUF); 14874 sc->gz_strm = NULL; 14875 14876 /*******************/ 14877 /* SLOW PATH QUEUE */ 14878 /*******************/ 14879 14880 bxe_dma_free(sc, &sc->spq_dma); 14881 sc->spq = NULL; 14882 14883 /*************/ 14884 /* SLOW PATH */ 14885 /*************/ 14886 14887 bxe_dma_free(sc, &sc->sp_dma); 14888 sc->sp = NULL; 14889 14890 /***************/ 14891 /* EVENT QUEUE */ 14892 /***************/ 14893 14894 bxe_dma_free(sc, &sc->eq_dma); 14895 sc->eq = NULL; 14896 14897 /************************/ 14898 /* DEFAULT STATUS BLOCK */ 14899 /************************/ 14900 14901 bxe_dma_free(sc, &sc->def_sb_dma); 14902 sc->def_sb = NULL; 14903 14904 bus_dma_tag_destroy(sc->parent_dma_tag); 14905 sc->parent_dma_tag = NULL; 14906 } 14907 14908 /* 14909 * Previous driver DMAE transaction may have occurred when pre-boot stage 14910 * ended and boot began. This would invalidate the addresses of the 14911 * transaction, resulting in was-error bit set in the PCI causing all 14912 * hw-to-host PCIe transactions to timeout. If this happened we want to clear 14913 * the interrupt which detected this from the pglueb and the was-done bit 14914 */ 14915 static void 14916 bxe_prev_interrupted_dmae(struct bxe_softc *sc) 14917 { 14918 uint32_t val; 14919 14920 if (!CHIP_IS_E1x(sc)) { 14921 val = REG_RD(sc, PGLUE_B_REG_PGLUE_B_INT_STS); 14922 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN) { 14923 BLOGD(sc, DBG_LOAD, 14924 "Clearing 'was-error' bit that was set in pglueb"); 14925 REG_WR(sc, PGLUE_B_REG_WAS_ERROR_PF_7_0_CLR, 1 << SC_FUNC(sc)); 14926 } 14927 } 14928 } 14929 14930 static int 14931 bxe_prev_mcp_done(struct bxe_softc *sc) 14932 { 14933 uint32_t rc = bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_DONE, 14934 DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET); 14935 if (!rc) { 14936 BLOGE(sc, "MCP response failure, aborting\n"); 14937 return (-1); 14938 } 14939 14940 return (0); 14941 } 14942 14943 static struct bxe_prev_list_node * 14944 bxe_prev_path_get_entry(struct bxe_softc *sc) 14945 { 14946 struct bxe_prev_list_node *tmp; 14947 14948 LIST_FOREACH(tmp, &bxe_prev_list, node) { 14949 if ((sc->pcie_bus == tmp->bus) && 14950 (sc->pcie_device == tmp->slot) && 14951 (SC_PATH(sc) == tmp->path)) { 14952 return (tmp); 14953 } 14954 } 14955 14956 return (NULL); 14957 } 14958 14959 static uint8_t 14960 bxe_prev_is_path_marked(struct bxe_softc *sc) 14961 { 14962 struct bxe_prev_list_node *tmp; 14963 int rc = FALSE; 14964 14965 mtx_lock(&bxe_prev_mtx); 14966 14967 tmp = bxe_prev_path_get_entry(sc); 14968 if (tmp) { 14969 if (tmp->aer) { 14970 BLOGD(sc, DBG_LOAD, 14971 "Path %d/%d/%d was marked by AER\n", 14972 sc->pcie_bus, sc->pcie_device, SC_PATH(sc)); 14973 } else { 14974 rc = TRUE; 14975 BLOGD(sc, DBG_LOAD, 14976 "Path %d/%d/%d was already cleaned from previous drivers\n", 14977 sc->pcie_bus, sc->pcie_device, SC_PATH(sc)); 14978 } 14979 } 14980 14981 mtx_unlock(&bxe_prev_mtx); 14982 14983 return (rc); 14984 } 14985 14986 static int 14987 bxe_prev_mark_path(struct bxe_softc *sc, 14988 uint8_t after_undi) 14989 { 14990 struct bxe_prev_list_node *tmp; 14991 14992 mtx_lock(&bxe_prev_mtx); 14993 14994 /* Check whether the entry for this path already exists */ 14995 tmp = bxe_prev_path_get_entry(sc); 14996 if (tmp) { 14997 if (!tmp->aer) { 14998 BLOGD(sc, DBG_LOAD, 14999 "Re-marking AER in path %d/%d/%d\n", 15000 sc->pcie_bus, sc->pcie_device, SC_PATH(sc)); 15001 } else { 15002 BLOGD(sc, DBG_LOAD, 15003 "Removing AER indication from path %d/%d/%d\n", 15004 sc->pcie_bus, sc->pcie_device, SC_PATH(sc)); 15005 tmp->aer = 0; 15006 } 15007 15008 mtx_unlock(&bxe_prev_mtx); 15009 return (0); 15010 } 15011 15012 mtx_unlock(&bxe_prev_mtx); 15013 15014 /* Create an entry for this path and add it */ 15015 tmp = malloc(sizeof(struct bxe_prev_list_node), M_DEVBUF, 15016 (M_NOWAIT | M_ZERO)); 15017 if (!tmp) { 15018 BLOGE(sc, "Failed to allocate 'bxe_prev_list_node'\n"); 15019 return (-1); 15020 } 15021 15022 tmp->bus = sc->pcie_bus; 15023 tmp->slot = sc->pcie_device; 15024 tmp->path = SC_PATH(sc); 15025 tmp->aer = 0; 15026 tmp->undi = after_undi ? (1 << SC_PORT(sc)) : 0; 15027 15028 mtx_lock(&bxe_prev_mtx); 15029 15030 BLOGD(sc, DBG_LOAD, 15031 "Marked path %d/%d/%d - finished previous unload\n", 15032 sc->pcie_bus, sc->pcie_device, SC_PATH(sc)); 15033 LIST_INSERT_HEAD(&bxe_prev_list, tmp, node); 15034 15035 mtx_unlock(&bxe_prev_mtx); 15036 15037 return (0); 15038 } 15039 15040 static int 15041 bxe_do_flr(struct bxe_softc *sc) 15042 { 15043 int i; 15044 15045 /* only E2 and onwards support FLR */ 15046 if (CHIP_IS_E1x(sc)) { 15047 BLOGD(sc, DBG_LOAD, "FLR not supported in E1/E1H\n"); 15048 return (-1); 15049 } 15050 15051 /* only bootcode REQ_BC_VER_4_INITIATE_FLR and onwards support flr */ 15052 if (sc->devinfo.bc_ver < REQ_BC_VER_4_INITIATE_FLR) { 15053 BLOGD(sc, DBG_LOAD, "FLR not supported by BC_VER: 0x%08x\n", 15054 sc->devinfo.bc_ver); 15055 return (-1); 15056 } 15057 15058 /* Wait for Transaction Pending bit clean */ 15059 for (i = 0; i < 4; i++) { 15060 if (i) { 15061 DELAY(((1 << (i - 1)) * 100) * 1000); 15062 } 15063 15064 if (!bxe_is_pcie_pending(sc)) { 15065 goto clear; 15066 } 15067 } 15068 15069 BLOGE(sc, "PCIE transaction is not cleared, " 15070 "proceeding with reset anyway\n"); 15071 15072 clear: 15073 15074 BLOGD(sc, DBG_LOAD, "Initiating FLR\n"); 15075 bxe_fw_command(sc, DRV_MSG_CODE_INITIATE_FLR, 0); 15076 15077 return (0); 15078 } 15079 15080 struct bxe_mac_vals { 15081 uint32_t xmac_addr; 15082 uint32_t xmac_val; 15083 uint32_t emac_addr; 15084 uint32_t emac_val; 15085 uint32_t umac_addr; 15086 uint32_t umac_val; 15087 uint32_t bmac_addr; 15088 uint32_t bmac_val[2]; 15089 }; 15090 15091 static void 15092 bxe_prev_unload_close_mac(struct bxe_softc *sc, 15093 struct bxe_mac_vals *vals) 15094 { 15095 uint32_t val, base_addr, offset, mask, reset_reg; 15096 uint8_t mac_stopped = FALSE; 15097 uint8_t port = SC_PORT(sc); 15098 uint32_t wb_data[2]; 15099 15100 /* reset addresses as they also mark which values were changed */ 15101 vals->bmac_addr = 0; 15102 vals->umac_addr = 0; 15103 vals->xmac_addr = 0; 15104 vals->emac_addr = 0; 15105 15106 reset_reg = REG_RD(sc, MISC_REG_RESET_REG_2); 15107 15108 if (!CHIP_IS_E3(sc)) { 15109 val = REG_RD(sc, NIG_REG_BMAC0_REGS_OUT_EN + port * 4); 15110 mask = MISC_REGISTERS_RESET_REG_2_RST_BMAC0 << port; 15111 if ((mask & reset_reg) && val) { 15112 BLOGD(sc, DBG_LOAD, "Disable BMAC Rx\n"); 15113 base_addr = SC_PORT(sc) ? NIG_REG_INGRESS_BMAC1_MEM 15114 : NIG_REG_INGRESS_BMAC0_MEM; 15115 offset = CHIP_IS_E2(sc) ? BIGMAC2_REGISTER_BMAC_CONTROL 15116 : BIGMAC_REGISTER_BMAC_CONTROL; 15117 15118 /* 15119 * use rd/wr since we cannot use dmae. This is safe 15120 * since MCP won't access the bus due to the request 15121 * to unload, and no function on the path can be 15122 * loaded at this time. 15123 */ 15124 wb_data[0] = REG_RD(sc, base_addr + offset); 15125 wb_data[1] = REG_RD(sc, base_addr + offset + 0x4); 15126 vals->bmac_addr = base_addr + offset; 15127 vals->bmac_val[0] = wb_data[0]; 15128 vals->bmac_val[1] = wb_data[1]; 15129 wb_data[0] &= ~ELINK_BMAC_CONTROL_RX_ENABLE; 15130 REG_WR(sc, vals->bmac_addr, wb_data[0]); 15131 REG_WR(sc, vals->bmac_addr + 0x4, wb_data[1]); 15132 } 15133 15134 BLOGD(sc, DBG_LOAD, "Disable EMAC Rx\n"); 15135 vals->emac_addr = NIG_REG_NIG_EMAC0_EN + SC_PORT(sc)*4; 15136 vals->emac_val = REG_RD(sc, vals->emac_addr); 15137 REG_WR(sc, vals->emac_addr, 0); 15138 mac_stopped = TRUE; 15139 } else { 15140 if (reset_reg & MISC_REGISTERS_RESET_REG_2_XMAC) { 15141 BLOGD(sc, DBG_LOAD, "Disable XMAC Rx\n"); 15142 base_addr = SC_PORT(sc) ? GRCBASE_XMAC1 : GRCBASE_XMAC0; 15143 val = REG_RD(sc, base_addr + XMAC_REG_PFC_CTRL_HI); 15144 REG_WR(sc, base_addr + XMAC_REG_PFC_CTRL_HI, val & ~(1 << 1)); 15145 REG_WR(sc, base_addr + XMAC_REG_PFC_CTRL_HI, val | (1 << 1)); 15146 vals->xmac_addr = base_addr + XMAC_REG_CTRL; 15147 vals->xmac_val = REG_RD(sc, vals->xmac_addr); 15148 REG_WR(sc, vals->xmac_addr, 0); 15149 mac_stopped = TRUE; 15150 } 15151 15152 mask = MISC_REGISTERS_RESET_REG_2_UMAC0 << port; 15153 if (mask & reset_reg) { 15154 BLOGD(sc, DBG_LOAD, "Disable UMAC Rx\n"); 15155 base_addr = SC_PORT(sc) ? GRCBASE_UMAC1 : GRCBASE_UMAC0; 15156 vals->umac_addr = base_addr + UMAC_REG_COMMAND_CONFIG; 15157 vals->umac_val = REG_RD(sc, vals->umac_addr); 15158 REG_WR(sc, vals->umac_addr, 0); 15159 mac_stopped = TRUE; 15160 } 15161 } 15162 15163 if (mac_stopped) { 15164 DELAY(20000); 15165 } 15166 } 15167 15168 #define BXE_PREV_UNDI_PROD_ADDR(p) (BAR_TSTRORM_INTMEM + 0x1508 + ((p) << 4)) 15169 #define BXE_PREV_UNDI_RCQ(val) ((val) & 0xffff) 15170 #define BXE_PREV_UNDI_BD(val) ((val) >> 16 & 0xffff) 15171 #define BXE_PREV_UNDI_PROD(rcq, bd) ((bd) << 16 | (rcq)) 15172 15173 static void 15174 bxe_prev_unload_undi_inc(struct bxe_softc *sc, 15175 uint8_t port, 15176 uint8_t inc) 15177 { 15178 uint16_t rcq, bd; 15179 uint32_t tmp_reg = REG_RD(sc, BXE_PREV_UNDI_PROD_ADDR(port)); 15180 15181 rcq = BXE_PREV_UNDI_RCQ(tmp_reg) + inc; 15182 bd = BXE_PREV_UNDI_BD(tmp_reg) + inc; 15183 15184 tmp_reg = BXE_PREV_UNDI_PROD(rcq, bd); 15185 REG_WR(sc, BXE_PREV_UNDI_PROD_ADDR(port), tmp_reg); 15186 15187 BLOGD(sc, DBG_LOAD, 15188 "UNDI producer [%d] rings bd -> 0x%04x, rcq -> 0x%04x\n", 15189 port, bd, rcq); 15190 } 15191 15192 static int 15193 bxe_prev_unload_common(struct bxe_softc *sc) 15194 { 15195 uint32_t reset_reg, tmp_reg = 0, rc; 15196 uint8_t prev_undi = FALSE; 15197 struct bxe_mac_vals mac_vals; 15198 uint32_t timer_count = 1000; 15199 uint32_t prev_brb; 15200 15201 /* 15202 * It is possible a previous function received 'common' answer, 15203 * but hasn't loaded yet, therefore creating a scenario of 15204 * multiple functions receiving 'common' on the same path. 15205 */ 15206 BLOGD(sc, DBG_LOAD, "Common unload Flow\n"); 15207 15208 memset(&mac_vals, 0, sizeof(mac_vals)); 15209 15210 if (bxe_prev_is_path_marked(sc)) { 15211 return (bxe_prev_mcp_done(sc)); 15212 } 15213 15214 reset_reg = REG_RD(sc, MISC_REG_RESET_REG_1); 15215 15216 /* Reset should be performed after BRB is emptied */ 15217 if (reset_reg & MISC_REGISTERS_RESET_REG_1_RST_BRB1) { 15218 /* Close the MAC Rx to prevent BRB from filling up */ 15219 bxe_prev_unload_close_mac(sc, &mac_vals); 15220 15221 /* close LLH filters towards the BRB */ 15222 elink_set_rx_filter(&sc->link_params, 0); 15223 15224 /* 15225 * Check if the UNDI driver was previously loaded. 15226 * UNDI driver initializes CID offset for normal bell to 0x7 15227 */ 15228 if (reset_reg & MISC_REGISTERS_RESET_REG_1_RST_DORQ) { 15229 tmp_reg = REG_RD(sc, DORQ_REG_NORM_CID_OFST); 15230 if (tmp_reg == 0x7) { 15231 BLOGD(sc, DBG_LOAD, "UNDI previously loaded\n"); 15232 prev_undi = TRUE; 15233 /* clear the UNDI indication */ 15234 REG_WR(sc, DORQ_REG_NORM_CID_OFST, 0); 15235 /* clear possible idle check errors */ 15236 REG_RD(sc, NIG_REG_NIG_INT_STS_CLR_0); 15237 } 15238 } 15239 15240 /* wait until BRB is empty */ 15241 tmp_reg = REG_RD(sc, BRB1_REG_NUM_OF_FULL_BLOCKS); 15242 while (timer_count) { 15243 prev_brb = tmp_reg; 15244 15245 tmp_reg = REG_RD(sc, BRB1_REG_NUM_OF_FULL_BLOCKS); 15246 if (!tmp_reg) { 15247 break; 15248 } 15249 15250 BLOGD(sc, DBG_LOAD, "BRB still has 0x%08x\n", tmp_reg); 15251 15252 /* reset timer as long as BRB actually gets emptied */ 15253 if (prev_brb > tmp_reg) { 15254 timer_count = 1000; 15255 } else { 15256 timer_count--; 15257 } 15258 15259 /* If UNDI resides in memory, manually increment it */ 15260 if (prev_undi) { 15261 bxe_prev_unload_undi_inc(sc, SC_PORT(sc), 1); 15262 } 15263 15264 DELAY(10); 15265 } 15266 15267 if (!timer_count) { 15268 BLOGE(sc, "Failed to empty BRB\n"); 15269 } 15270 } 15271 15272 /* No packets are in the pipeline, path is ready for reset */ 15273 bxe_reset_common(sc); 15274 15275 if (mac_vals.xmac_addr) { 15276 REG_WR(sc, mac_vals.xmac_addr, mac_vals.xmac_val); 15277 } 15278 if (mac_vals.umac_addr) { 15279 REG_WR(sc, mac_vals.umac_addr, mac_vals.umac_val); 15280 } 15281 if (mac_vals.emac_addr) { 15282 REG_WR(sc, mac_vals.emac_addr, mac_vals.emac_val); 15283 } 15284 if (mac_vals.bmac_addr) { 15285 REG_WR(sc, mac_vals.bmac_addr, mac_vals.bmac_val[0]); 15286 REG_WR(sc, mac_vals.bmac_addr + 4, mac_vals.bmac_val[1]); 15287 } 15288 15289 rc = bxe_prev_mark_path(sc, prev_undi); 15290 if (rc) { 15291 bxe_prev_mcp_done(sc); 15292 return (rc); 15293 } 15294 15295 return (bxe_prev_mcp_done(sc)); 15296 } 15297 15298 static int 15299 bxe_prev_unload_uncommon(struct bxe_softc *sc) 15300 { 15301 int rc; 15302 15303 BLOGD(sc, DBG_LOAD, "Uncommon unload Flow\n"); 15304 15305 /* Test if previous unload process was already finished for this path */ 15306 if (bxe_prev_is_path_marked(sc)) { 15307 return (bxe_prev_mcp_done(sc)); 15308 } 15309 15310 BLOGD(sc, DBG_LOAD, "Path is unmarked\n"); 15311 15312 /* 15313 * If function has FLR capabilities, and existing FW version matches 15314 * the one required, then FLR will be sufficient to clean any residue 15315 * left by previous driver 15316 */ 15317 rc = bxe_nic_load_analyze_req(sc, FW_MSG_CODE_DRV_LOAD_FUNCTION); 15318 if (!rc) { 15319 /* fw version is good */ 15320 BLOGD(sc, DBG_LOAD, "FW version matches our own, attempting FLR\n"); 15321 rc = bxe_do_flr(sc); 15322 } 15323 15324 if (!rc) { 15325 /* FLR was performed */ 15326 BLOGD(sc, DBG_LOAD, "FLR successful\n"); 15327 return (0); 15328 } 15329 15330 BLOGD(sc, DBG_LOAD, "Could not FLR\n"); 15331 15332 /* Close the MCP request, return failure*/ 15333 rc = bxe_prev_mcp_done(sc); 15334 if (!rc) { 15335 rc = BXE_PREV_WAIT_NEEDED; 15336 } 15337 15338 return (rc); 15339 } 15340 15341 static int 15342 bxe_prev_unload(struct bxe_softc *sc) 15343 { 15344 int time_counter = 10; 15345 uint32_t fw, hw_lock_reg, hw_lock_val; 15346 uint32_t rc = 0; 15347 15348 /* 15349 * Clear HW from errors which may have resulted from an interrupted 15350 * DMAE transaction. 15351 */ 15352 bxe_prev_interrupted_dmae(sc); 15353 15354 /* Release previously held locks */ 15355 hw_lock_reg = 15356 (SC_FUNC(sc) <= 5) ? 15357 (MISC_REG_DRIVER_CONTROL_1 + SC_FUNC(sc) * 8) : 15358 (MISC_REG_DRIVER_CONTROL_7 + (SC_FUNC(sc) - 6) * 8); 15359 15360 hw_lock_val = (REG_RD(sc, hw_lock_reg)); 15361 if (hw_lock_val) { 15362 if (hw_lock_val & HW_LOCK_RESOURCE_NVRAM) { 15363 BLOGD(sc, DBG_LOAD, "Releasing previously held NVRAM lock\n"); 15364 REG_WR(sc, MCP_REG_MCPR_NVM_SW_ARB, 15365 (MCPR_NVM_SW_ARB_ARB_REQ_CLR1 << SC_PORT(sc))); 15366 } 15367 BLOGD(sc, DBG_LOAD, "Releasing previously held HW lock\n"); 15368 REG_WR(sc, hw_lock_reg, 0xffffffff); 15369 } else { 15370 BLOGD(sc, DBG_LOAD, "No need to release HW/NVRAM locks\n"); 15371 } 15372 15373 if (MCPR_ACCESS_LOCK_LOCK & REG_RD(sc, MCP_REG_MCPR_ACCESS_LOCK)) { 15374 BLOGD(sc, DBG_LOAD, "Releasing previously held ALR\n"); 15375 REG_WR(sc, MCP_REG_MCPR_ACCESS_LOCK, 0); 15376 } 15377 15378 do { 15379 /* Lock MCP using an unload request */ 15380 fw = bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS, 0); 15381 if (!fw) { 15382 BLOGE(sc, "MCP response failure, aborting\n"); 15383 rc = -1; 15384 break; 15385 } 15386 15387 if (fw == FW_MSG_CODE_DRV_UNLOAD_COMMON) { 15388 rc = bxe_prev_unload_common(sc); 15389 break; 15390 } 15391 15392 /* non-common reply from MCP night require looping */ 15393 rc = bxe_prev_unload_uncommon(sc); 15394 if (rc != BXE_PREV_WAIT_NEEDED) { 15395 break; 15396 } 15397 15398 DELAY(20000); 15399 } while (--time_counter); 15400 15401 if (!time_counter || rc) { 15402 BLOGE(sc, "Failed to unload previous driver!" 15403 " time_counter %d rc %d\n", time_counter, rc); 15404 rc = -1; 15405 } 15406 15407 return (rc); 15408 } 15409 15410 void 15411 bxe_dcbx_set_state(struct bxe_softc *sc, 15412 uint8_t dcb_on, 15413 uint32_t dcbx_enabled) 15414 { 15415 if (!CHIP_IS_E1x(sc)) { 15416 sc->dcb_state = dcb_on; 15417 sc->dcbx_enabled = dcbx_enabled; 15418 } else { 15419 sc->dcb_state = FALSE; 15420 sc->dcbx_enabled = BXE_DCBX_ENABLED_INVALID; 15421 } 15422 BLOGD(sc, DBG_LOAD, 15423 "DCB state [%s:%s]\n", 15424 dcb_on ? "ON" : "OFF", 15425 (dcbx_enabled == BXE_DCBX_ENABLED_OFF) ? "user-mode" : 15426 (dcbx_enabled == BXE_DCBX_ENABLED_ON_NEG_OFF) ? "on-chip static" : 15427 (dcbx_enabled == BXE_DCBX_ENABLED_ON_NEG_ON) ? 15428 "on-chip with negotiation" : "invalid"); 15429 } 15430 15431 /* must be called after sriov-enable */ 15432 static int 15433 bxe_set_qm_cid_count(struct bxe_softc *sc) 15434 { 15435 int cid_count = BXE_L2_MAX_CID(sc); 15436 15437 if (IS_SRIOV(sc)) { 15438 cid_count += BXE_VF_CIDS; 15439 } 15440 15441 if (CNIC_SUPPORT(sc)) { 15442 cid_count += CNIC_CID_MAX; 15443 } 15444 15445 return (roundup(cid_count, QM_CID_ROUND)); 15446 } 15447 15448 static void 15449 bxe_init_multi_cos(struct bxe_softc *sc) 15450 { 15451 int pri, cos; 15452 15453 uint32_t pri_map = 0; /* XXX change to user config */ 15454 15455 for (pri = 0; pri < BXE_MAX_PRIORITY; pri++) { 15456 cos = ((pri_map & (0xf << (pri * 4))) >> (pri * 4)); 15457 if (cos < sc->max_cos) { 15458 sc->prio_to_cos[pri] = cos; 15459 } else { 15460 BLOGW(sc, "Invalid COS %d for priority %d " 15461 "(max COS is %d), setting to 0\n", 15462 cos, pri, (sc->max_cos - 1)); 15463 sc->prio_to_cos[pri] = 0; 15464 } 15465 } 15466 } 15467 15468 static int 15469 bxe_sysctl_state(SYSCTL_HANDLER_ARGS) 15470 { 15471 struct bxe_softc *sc; 15472 int error, result; 15473 15474 result = 0; 15475 error = sysctl_handle_int(oidp, &result, 0, req); 15476 15477 if (error || !req->newptr) { 15478 return (error); 15479 } 15480 15481 if (result == 1) { 15482 uint32_t temp; 15483 sc = (struct bxe_softc *)arg1; 15484 15485 BLOGI(sc, "... dumping driver state ...\n"); 15486 temp = SHMEM2_RD(sc, temperature_in_half_celsius); 15487 BLOGI(sc, "\t Device Temperature = %d Celsius\n", (temp/2)); 15488 } 15489 15490 return (error); 15491 } 15492 15493 static int 15494 bxe_sysctl_eth_stat(SYSCTL_HANDLER_ARGS) 15495 { 15496 struct bxe_softc *sc = (struct bxe_softc *)arg1; 15497 uint32_t *eth_stats = (uint32_t *)&sc->eth_stats; 15498 uint32_t *offset; 15499 uint64_t value = 0; 15500 int index = (int)arg2; 15501 15502 if (index >= BXE_NUM_ETH_STATS) { 15503 BLOGE(sc, "bxe_eth_stats index out of range (%d)\n", index); 15504 return (-1); 15505 } 15506 15507 offset = (eth_stats + bxe_eth_stats_arr[index].offset); 15508 15509 switch (bxe_eth_stats_arr[index].size) { 15510 case 4: 15511 value = (uint64_t)*offset; 15512 break; 15513 case 8: 15514 value = HILO_U64(*offset, *(offset + 1)); 15515 break; 15516 default: 15517 BLOGE(sc, "Invalid bxe_eth_stats size (index=%d size=%d)\n", 15518 index, bxe_eth_stats_arr[index].size); 15519 return (-1); 15520 } 15521 15522 return (sysctl_handle_64(oidp, &value, 0, req)); 15523 } 15524 15525 static int 15526 bxe_sysctl_eth_q_stat(SYSCTL_HANDLER_ARGS) 15527 { 15528 struct bxe_softc *sc = (struct bxe_softc *)arg1; 15529 uint32_t *eth_stats; 15530 uint32_t *offset; 15531 uint64_t value = 0; 15532 uint32_t q_stat = (uint32_t)arg2; 15533 uint32_t fp_index = ((q_stat >> 16) & 0xffff); 15534 uint32_t index = (q_stat & 0xffff); 15535 15536 eth_stats = (uint32_t *)&sc->fp[fp_index].eth_q_stats; 15537 15538 if (index >= BXE_NUM_ETH_Q_STATS) { 15539 BLOGE(sc, "bxe_eth_q_stats index out of range (%d)\n", index); 15540 return (-1); 15541 } 15542 15543 offset = (eth_stats + bxe_eth_q_stats_arr[index].offset); 15544 15545 switch (bxe_eth_q_stats_arr[index].size) { 15546 case 4: 15547 value = (uint64_t)*offset; 15548 break; 15549 case 8: 15550 value = HILO_U64(*offset, *(offset + 1)); 15551 break; 15552 default: 15553 BLOGE(sc, "Invalid bxe_eth_q_stats size (index=%d size=%d)\n", 15554 index, bxe_eth_q_stats_arr[index].size); 15555 return (-1); 15556 } 15557 15558 return (sysctl_handle_64(oidp, &value, 0, req)); 15559 } 15560 15561 static void 15562 bxe_add_sysctls(struct bxe_softc *sc) 15563 { 15564 struct sysctl_ctx_list *ctx; 15565 struct sysctl_oid_list *children; 15566 struct sysctl_oid *queue_top, *queue; 15567 struct sysctl_oid_list *queue_top_children, *queue_children; 15568 char queue_num_buf[32]; 15569 uint32_t q_stat; 15570 int i, j; 15571 15572 ctx = device_get_sysctl_ctx(sc->dev); 15573 children = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev)); 15574 15575 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "version", 15576 CTLFLAG_RD, BXE_DRIVER_VERSION, 0, 15577 "version"); 15578 15579 snprintf(sc->fw_ver_str, sizeof(sc->fw_ver_str), "%d.%d.%d.%d", 15580 BCM_5710_FW_MAJOR_VERSION, 15581 BCM_5710_FW_MINOR_VERSION, 15582 BCM_5710_FW_REVISION_VERSION, 15583 BCM_5710_FW_ENGINEERING_VERSION); 15584 15585 snprintf(sc->mf_mode_str, sizeof(sc->mf_mode_str), "%s", 15586 ((sc->devinfo.mf_info.mf_mode == SINGLE_FUNCTION) ? "Single" : 15587 (sc->devinfo.mf_info.mf_mode == MULTI_FUNCTION_SD) ? "MF-SD" : 15588 (sc->devinfo.mf_info.mf_mode == MULTI_FUNCTION_SI) ? "MF-SI" : 15589 (sc->devinfo.mf_info.mf_mode == MULTI_FUNCTION_AFEX) ? "MF-AFEX" : 15590 "Unknown")); 15591 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "mf_vnics", 15592 CTLFLAG_RD, &sc->devinfo.mf_info.vnics_per_port, 0, 15593 "multifunction vnics per port"); 15594 15595 snprintf(sc->pci_link_str, sizeof(sc->pci_link_str), "%s x%d", 15596 ((sc->devinfo.pcie_link_speed == 1) ? "2.5GT/s" : 15597 (sc->devinfo.pcie_link_speed == 2) ? "5.0GT/s" : 15598 (sc->devinfo.pcie_link_speed == 4) ? "8.0GT/s" : 15599 "???GT/s"), 15600 sc->devinfo.pcie_link_width); 15601 15602 sc->debug = bxe_debug; 15603 15604 #if __FreeBSD_version >= 900000 15605 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "bc_version", 15606 CTLFLAG_RD, sc->devinfo.bc_ver_str, 0, 15607 "bootcode version"); 15608 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "fw_version", 15609 CTLFLAG_RD, sc->fw_ver_str, 0, 15610 "firmware version"); 15611 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "mf_mode", 15612 CTLFLAG_RD, sc->mf_mode_str, 0, 15613 "multifunction mode"); 15614 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "mac_addr", 15615 CTLFLAG_RD, sc->mac_addr_str, 0, 15616 "mac address"); 15617 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "pci_link", 15618 CTLFLAG_RD, sc->pci_link_str, 0, 15619 "pci link status"); 15620 SYSCTL_ADD_ULONG(ctx, children, OID_AUTO, "debug", 15621 CTLFLAG_RW, &sc->debug, 15622 "debug logging mode"); 15623 #else 15624 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "bc_version", 15625 CTLFLAG_RD, &sc->devinfo.bc_ver_str, 0, 15626 "bootcode version"); 15627 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "fw_version", 15628 CTLFLAG_RD, &sc->fw_ver_str, 0, 15629 "firmware version"); 15630 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "mf_mode", 15631 CTLFLAG_RD, &sc->mf_mode_str, 0, 15632 "multifunction mode"); 15633 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "mac_addr", 15634 CTLFLAG_RD, &sc->mac_addr_str, 0, 15635 "mac address"); 15636 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "pci_link", 15637 CTLFLAG_RD, &sc->pci_link_str, 0, 15638 "pci link status"); 15639 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "debug", 15640 CTLFLAG_RW, &sc->debug, 0, 15641 "debug logging mode"); 15642 #endif /* #if __FreeBSD_version >= 900000 */ 15643 15644 sc->trigger_grcdump = 0; 15645 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "trigger_grcdump", 15646 CTLFLAG_RW, &sc->trigger_grcdump, 0, 15647 "trigger grcdump should be invoked" 15648 " before collecting grcdump"); 15649 15650 sc->grcdump_started = 0; 15651 sc->grcdump_done = 0; 15652 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "grcdump_done", 15653 CTLFLAG_RD, &sc->grcdump_done, 0, 15654 "set by driver when grcdump is done"); 15655 15656 sc->rx_budget = bxe_rx_budget; 15657 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "rx_budget", 15658 CTLFLAG_RW, &sc->rx_budget, 0, 15659 "rx processing budget"); 15660 15661 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "state", 15662 CTLTYPE_UINT | CTLFLAG_RW, sc, 0, 15663 bxe_sysctl_state, "IU", "dump driver state"); 15664 15665 for (i = 0; i < BXE_NUM_ETH_STATS; i++) { 15666 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, 15667 bxe_eth_stats_arr[i].string, 15668 CTLTYPE_U64 | CTLFLAG_RD, sc, i, 15669 bxe_sysctl_eth_stat, "LU", 15670 bxe_eth_stats_arr[i].string); 15671 } 15672 15673 /* add a new parent node for all queues "dev.bxe.#.queue" */ 15674 queue_top = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "queue", 15675 CTLFLAG_RD, NULL, "queue"); 15676 queue_top_children = SYSCTL_CHILDREN(queue_top); 15677 15678 for (i = 0; i < sc->num_queues; i++) { 15679 /* add a new parent node for a single queue "dev.bxe.#.queue.#" */ 15680 snprintf(queue_num_buf, sizeof(queue_num_buf), "%d", i); 15681 queue = SYSCTL_ADD_NODE(ctx, queue_top_children, OID_AUTO, 15682 queue_num_buf, CTLFLAG_RD, NULL, 15683 "single queue"); 15684 queue_children = SYSCTL_CHILDREN(queue); 15685 15686 for (j = 0; j < BXE_NUM_ETH_Q_STATS; j++) { 15687 q_stat = ((i << 16) | j); 15688 SYSCTL_ADD_PROC(ctx, queue_children, OID_AUTO, 15689 bxe_eth_q_stats_arr[j].string, 15690 CTLTYPE_U64 | CTLFLAG_RD, sc, q_stat, 15691 bxe_sysctl_eth_q_stat, "LU", 15692 bxe_eth_q_stats_arr[j].string); 15693 } 15694 } 15695 } 15696 15697 static int 15698 bxe_alloc_buf_rings(struct bxe_softc *sc) 15699 { 15700 #if __FreeBSD_version >= 901504 15701 15702 int i; 15703 struct bxe_fastpath *fp; 15704 15705 for (i = 0; i < sc->num_queues; i++) { 15706 15707 fp = &sc->fp[i]; 15708 15709 fp->tx_br = buf_ring_alloc(BXE_BR_SIZE, M_DEVBUF, 15710 M_NOWAIT, &fp->tx_mtx); 15711 if (fp->tx_br == NULL) 15712 return (-1); 15713 } 15714 #endif 15715 return (0); 15716 } 15717 15718 static void 15719 bxe_free_buf_rings(struct bxe_softc *sc) 15720 { 15721 #if __FreeBSD_version >= 901504 15722 15723 int i; 15724 struct bxe_fastpath *fp; 15725 15726 for (i = 0; i < sc->num_queues; i++) { 15727 15728 fp = &sc->fp[i]; 15729 15730 if (fp->tx_br) { 15731 buf_ring_free(fp->tx_br, M_DEVBUF); 15732 fp->tx_br = NULL; 15733 } 15734 } 15735 15736 #endif 15737 } 15738 15739 static void 15740 bxe_init_fp_mutexs(struct bxe_softc *sc) 15741 { 15742 int i; 15743 struct bxe_fastpath *fp; 15744 15745 for (i = 0; i < sc->num_queues; i++) { 15746 15747 fp = &sc->fp[i]; 15748 15749 snprintf(fp->tx_mtx_name, sizeof(fp->tx_mtx_name), 15750 "bxe%d_fp%d_tx_lock", sc->unit, i); 15751 mtx_init(&fp->tx_mtx, fp->tx_mtx_name, NULL, MTX_DEF); 15752 15753 snprintf(fp->rx_mtx_name, sizeof(fp->rx_mtx_name), 15754 "bxe%d_fp%d_rx_lock", sc->unit, i); 15755 mtx_init(&fp->rx_mtx, fp->rx_mtx_name, NULL, MTX_DEF); 15756 } 15757 } 15758 15759 static void 15760 bxe_destroy_fp_mutexs(struct bxe_softc *sc) 15761 { 15762 int i; 15763 struct bxe_fastpath *fp; 15764 15765 for (i = 0; i < sc->num_queues; i++) { 15766 15767 fp = &sc->fp[i]; 15768 15769 if (mtx_initialized(&fp->tx_mtx)) { 15770 mtx_destroy(&fp->tx_mtx); 15771 } 15772 15773 if (mtx_initialized(&fp->rx_mtx)) { 15774 mtx_destroy(&fp->rx_mtx); 15775 } 15776 } 15777 } 15778 15779 15780 /* 15781 * Device attach function. 15782 * 15783 * Allocates device resources, performs secondary chip identification, and 15784 * initializes driver instance variables. This function is called from driver 15785 * load after a successful probe. 15786 * 15787 * Returns: 15788 * 0 = Success, >0 = Failure 15789 */ 15790 static int 15791 bxe_attach(device_t dev) 15792 { 15793 struct bxe_softc *sc; 15794 15795 sc = device_get_softc(dev); 15796 15797 BLOGD(sc, DBG_LOAD, "Starting attach...\n"); 15798 15799 sc->state = BXE_STATE_CLOSED; 15800 15801 sc->dev = dev; 15802 sc->unit = device_get_unit(dev); 15803 15804 BLOGD(sc, DBG_LOAD, "softc = %p\n", sc); 15805 15806 sc->pcie_bus = pci_get_bus(dev); 15807 sc->pcie_device = pci_get_slot(dev); 15808 sc->pcie_func = pci_get_function(dev); 15809 15810 /* enable bus master capability */ 15811 pci_enable_busmaster(dev); 15812 15813 /* get the BARs */ 15814 if (bxe_allocate_bars(sc) != 0) { 15815 return (ENXIO); 15816 } 15817 15818 /* initialize the mutexes */ 15819 bxe_init_mutexes(sc); 15820 15821 /* prepare the periodic callout */ 15822 callout_init(&sc->periodic_callout, 0); 15823 15824 /* prepare the chip taskqueue */ 15825 sc->chip_tq_flags = CHIP_TQ_NONE; 15826 snprintf(sc->chip_tq_name, sizeof(sc->chip_tq_name), 15827 "bxe%d_chip_tq", sc->unit); 15828 TASK_INIT(&sc->chip_tq_task, 0, bxe_handle_chip_tq, sc); 15829 sc->chip_tq = taskqueue_create(sc->chip_tq_name, M_NOWAIT, 15830 taskqueue_thread_enqueue, 15831 &sc->chip_tq); 15832 taskqueue_start_threads(&sc->chip_tq, 1, PWAIT, /* lower priority */ 15833 "%s", sc->chip_tq_name); 15834 15835 /* get device info and set params */ 15836 if (bxe_get_device_info(sc) != 0) { 15837 BLOGE(sc, "getting device info\n"); 15838 bxe_deallocate_bars(sc); 15839 pci_disable_busmaster(dev); 15840 return (ENXIO); 15841 } 15842 15843 /* get final misc params */ 15844 bxe_get_params(sc); 15845 15846 /* set the default MTU (changed via ifconfig) */ 15847 sc->mtu = ETHERMTU; 15848 15849 bxe_set_modes_bitmap(sc); 15850 15851 /* XXX 15852 * If in AFEX mode and the function is configured for FCoE 15853 * then bail... no L2 allowed. 15854 */ 15855 15856 /* get phy settings from shmem and 'and' against admin settings */ 15857 bxe_get_phy_info(sc); 15858 15859 /* initialize the FreeBSD ifnet interface */ 15860 if (bxe_init_ifnet(sc) != 0) { 15861 bxe_release_mutexes(sc); 15862 bxe_deallocate_bars(sc); 15863 pci_disable_busmaster(dev); 15864 return (ENXIO); 15865 } 15866 15867 if (bxe_add_cdev(sc) != 0) { 15868 if (sc->ifp != NULL) { 15869 ether_ifdetach(sc->ifp); 15870 } 15871 ifmedia_removeall(&sc->ifmedia); 15872 bxe_release_mutexes(sc); 15873 bxe_deallocate_bars(sc); 15874 pci_disable_busmaster(dev); 15875 return (ENXIO); 15876 } 15877 15878 /* allocate device interrupts */ 15879 if (bxe_interrupt_alloc(sc) != 0) { 15880 bxe_del_cdev(sc); 15881 if (sc->ifp != NULL) { 15882 ether_ifdetach(sc->ifp); 15883 } 15884 ifmedia_removeall(&sc->ifmedia); 15885 bxe_release_mutexes(sc); 15886 bxe_deallocate_bars(sc); 15887 pci_disable_busmaster(dev); 15888 return (ENXIO); 15889 } 15890 15891 bxe_init_fp_mutexs(sc); 15892 15893 if (bxe_alloc_buf_rings(sc) != 0) { 15894 bxe_free_buf_rings(sc); 15895 bxe_interrupt_free(sc); 15896 bxe_del_cdev(sc); 15897 if (sc->ifp != NULL) { 15898 ether_ifdetach(sc->ifp); 15899 } 15900 ifmedia_removeall(&sc->ifmedia); 15901 bxe_release_mutexes(sc); 15902 bxe_deallocate_bars(sc); 15903 pci_disable_busmaster(dev); 15904 return (ENXIO); 15905 } 15906 15907 /* allocate ilt */ 15908 if (bxe_alloc_ilt_mem(sc) != 0) { 15909 bxe_free_buf_rings(sc); 15910 bxe_interrupt_free(sc); 15911 bxe_del_cdev(sc); 15912 if (sc->ifp != NULL) { 15913 ether_ifdetach(sc->ifp); 15914 } 15915 ifmedia_removeall(&sc->ifmedia); 15916 bxe_release_mutexes(sc); 15917 bxe_deallocate_bars(sc); 15918 pci_disable_busmaster(dev); 15919 return (ENXIO); 15920 } 15921 15922 /* allocate the host hardware/software hsi structures */ 15923 if (bxe_alloc_hsi_mem(sc) != 0) { 15924 bxe_free_ilt_mem(sc); 15925 bxe_free_buf_rings(sc); 15926 bxe_interrupt_free(sc); 15927 bxe_del_cdev(sc); 15928 if (sc->ifp != NULL) { 15929 ether_ifdetach(sc->ifp); 15930 } 15931 ifmedia_removeall(&sc->ifmedia); 15932 bxe_release_mutexes(sc); 15933 bxe_deallocate_bars(sc); 15934 pci_disable_busmaster(dev); 15935 return (ENXIO); 15936 } 15937 15938 /* need to reset chip if UNDI was active */ 15939 if (IS_PF(sc) && !BXE_NOMCP(sc)) { 15940 /* init fw_seq */ 15941 sc->fw_seq = 15942 (SHMEM_RD(sc, func_mb[SC_FW_MB_IDX(sc)].drv_mb_header) & 15943 DRV_MSG_SEQ_NUMBER_MASK); 15944 BLOGD(sc, DBG_LOAD, "prev unload fw_seq 0x%04x\n", sc->fw_seq); 15945 bxe_prev_unload(sc); 15946 } 15947 15948 #if 1 15949 /* XXX */ 15950 bxe_dcbx_set_state(sc, FALSE, BXE_DCBX_ENABLED_OFF); 15951 #else 15952 if (SHMEM2_HAS(sc, dcbx_lldp_params_offset) && 15953 SHMEM2_HAS(sc, dcbx_lldp_dcbx_stat_offset) && 15954 SHMEM2_RD(sc, dcbx_lldp_params_offset) && 15955 SHMEM2_RD(sc, dcbx_lldp_dcbx_stat_offset)) { 15956 bxe_dcbx_set_state(sc, TRUE, BXE_DCBX_ENABLED_ON_NEG_ON); 15957 bxe_dcbx_init_params(sc); 15958 } else { 15959 bxe_dcbx_set_state(sc, FALSE, BXE_DCBX_ENABLED_OFF); 15960 } 15961 #endif 15962 15963 /* calculate qm_cid_count */ 15964 sc->qm_cid_count = bxe_set_qm_cid_count(sc); 15965 BLOGD(sc, DBG_LOAD, "qm_cid_count=%d\n", sc->qm_cid_count); 15966 15967 sc->max_cos = 1; 15968 bxe_init_multi_cos(sc); 15969 15970 bxe_add_sysctls(sc); 15971 15972 return (0); 15973 } 15974 15975 /* 15976 * Device detach function. 15977 * 15978 * Stops the controller, resets the controller, and releases resources. 15979 * 15980 * Returns: 15981 * 0 = Success, >0 = Failure 15982 */ 15983 static int 15984 bxe_detach(device_t dev) 15985 { 15986 struct bxe_softc *sc; 15987 if_t ifp; 15988 15989 sc = device_get_softc(dev); 15990 15991 BLOGD(sc, DBG_LOAD, "Starting detach...\n"); 15992 15993 ifp = sc->ifp; 15994 if (ifp != NULL && if_vlantrunkinuse(ifp)) { 15995 BLOGE(sc, "Cannot detach while VLANs are in use.\n"); 15996 return(EBUSY); 15997 } 15998 15999 bxe_del_cdev(sc); 16000 16001 /* stop the periodic callout */ 16002 bxe_periodic_stop(sc); 16003 16004 /* stop the chip taskqueue */ 16005 atomic_store_rel_long(&sc->chip_tq_flags, CHIP_TQ_NONE); 16006 if (sc->chip_tq) { 16007 taskqueue_drain(sc->chip_tq, &sc->chip_tq_task); 16008 taskqueue_free(sc->chip_tq); 16009 sc->chip_tq = NULL; 16010 } 16011 16012 /* stop and reset the controller if it was open */ 16013 if (sc->state != BXE_STATE_CLOSED) { 16014 BXE_CORE_LOCK(sc); 16015 bxe_nic_unload(sc, UNLOAD_CLOSE, TRUE); 16016 sc->state = BXE_STATE_DISABLED; 16017 BXE_CORE_UNLOCK(sc); 16018 } 16019 16020 /* release the network interface */ 16021 if (ifp != NULL) { 16022 ether_ifdetach(ifp); 16023 } 16024 ifmedia_removeall(&sc->ifmedia); 16025 16026 /* XXX do the following based on driver state... */ 16027 16028 /* free the host hardware/software hsi structures */ 16029 bxe_free_hsi_mem(sc); 16030 16031 /* free ilt */ 16032 bxe_free_ilt_mem(sc); 16033 16034 bxe_free_buf_rings(sc); 16035 16036 /* release the interrupts */ 16037 bxe_interrupt_free(sc); 16038 16039 /* Release the mutexes*/ 16040 bxe_destroy_fp_mutexs(sc); 16041 bxe_release_mutexes(sc); 16042 16043 16044 /* Release the PCIe BAR mapped memory */ 16045 bxe_deallocate_bars(sc); 16046 16047 /* Release the FreeBSD interface. */ 16048 if (sc->ifp != NULL) { 16049 if_free(sc->ifp); 16050 } 16051 16052 pci_disable_busmaster(dev); 16053 16054 return (0); 16055 } 16056 16057 /* 16058 * Device shutdown function. 16059 * 16060 * Stops and resets the controller. 16061 * 16062 * Returns: 16063 * Nothing 16064 */ 16065 static int 16066 bxe_shutdown(device_t dev) 16067 { 16068 struct bxe_softc *sc; 16069 16070 sc = device_get_softc(dev); 16071 16072 BLOGD(sc, DBG_LOAD, "Starting shutdown...\n"); 16073 16074 /* stop the periodic callout */ 16075 bxe_periodic_stop(sc); 16076 16077 BXE_CORE_LOCK(sc); 16078 bxe_nic_unload(sc, UNLOAD_NORMAL, FALSE); 16079 BXE_CORE_UNLOCK(sc); 16080 16081 return (0); 16082 } 16083 16084 void 16085 bxe_igu_ack_sb(struct bxe_softc *sc, 16086 uint8_t igu_sb_id, 16087 uint8_t segment, 16088 uint16_t index, 16089 uint8_t op, 16090 uint8_t update) 16091 { 16092 uint32_t igu_addr = sc->igu_base_addr; 16093 igu_addr += (IGU_CMD_INT_ACK_BASE + igu_sb_id)*8; 16094 bxe_igu_ack_sb_gen(sc, igu_sb_id, segment, index, op, update, igu_addr); 16095 } 16096 16097 static void 16098 bxe_igu_clear_sb_gen(struct bxe_softc *sc, 16099 uint8_t func, 16100 uint8_t idu_sb_id, 16101 uint8_t is_pf) 16102 { 16103 uint32_t data, ctl, cnt = 100; 16104 uint32_t igu_addr_data = IGU_REG_COMMAND_REG_32LSB_DATA; 16105 uint32_t igu_addr_ctl = IGU_REG_COMMAND_REG_CTRL; 16106 uint32_t igu_addr_ack = IGU_REG_CSTORM_TYPE_0_SB_CLEANUP + (idu_sb_id/32)*4; 16107 uint32_t sb_bit = 1 << (idu_sb_id%32); 16108 uint32_t func_encode = func | (is_pf ? 1 : 0) << IGU_FID_ENCODE_IS_PF_SHIFT; 16109 uint32_t addr_encode = IGU_CMD_E2_PROD_UPD_BASE + idu_sb_id; 16110 16111 /* Not supported in BC mode */ 16112 if (CHIP_INT_MODE_IS_BC(sc)) { 16113 return; 16114 } 16115 16116 data = ((IGU_USE_REGISTER_cstorm_type_0_sb_cleanup << 16117 IGU_REGULAR_CLEANUP_TYPE_SHIFT) | 16118 IGU_REGULAR_CLEANUP_SET | 16119 IGU_REGULAR_BCLEANUP); 16120 16121 ctl = ((addr_encode << IGU_CTRL_REG_ADDRESS_SHIFT) | 16122 (func_encode << IGU_CTRL_REG_FID_SHIFT) | 16123 (IGU_CTRL_CMD_TYPE_WR << IGU_CTRL_REG_TYPE_SHIFT)); 16124 16125 BLOGD(sc, DBG_LOAD, "write 0x%08x to IGU(via GRC) addr 0x%x\n", 16126 data, igu_addr_data); 16127 REG_WR(sc, igu_addr_data, data); 16128 16129 bus_space_barrier(sc->bar[BAR0].tag, sc->bar[BAR0].handle, 0, 0, 16130 BUS_SPACE_BARRIER_WRITE); 16131 mb(); 16132 16133 BLOGD(sc, DBG_LOAD, "write 0x%08x to IGU(via GRC) addr 0x%x\n", 16134 ctl, igu_addr_ctl); 16135 REG_WR(sc, igu_addr_ctl, ctl); 16136 16137 bus_space_barrier(sc->bar[BAR0].tag, sc->bar[BAR0].handle, 0, 0, 16138 BUS_SPACE_BARRIER_WRITE); 16139 mb(); 16140 16141 /* wait for clean up to finish */ 16142 while (!(REG_RD(sc, igu_addr_ack) & sb_bit) && --cnt) { 16143 DELAY(20000); 16144 } 16145 16146 if (!(REG_RD(sc, igu_addr_ack) & sb_bit)) { 16147 BLOGD(sc, DBG_LOAD, 16148 "Unable to finish IGU cleanup: " 16149 "idu_sb_id %d offset %d bit %d (cnt %d)\n", 16150 idu_sb_id, idu_sb_id/32, idu_sb_id%32, cnt); 16151 } 16152 } 16153 16154 static void 16155 bxe_igu_clear_sb(struct bxe_softc *sc, 16156 uint8_t idu_sb_id) 16157 { 16158 bxe_igu_clear_sb_gen(sc, SC_FUNC(sc), idu_sb_id, TRUE /*PF*/); 16159 } 16160 16161 16162 16163 16164 16165 16166 16167 /*******************/ 16168 /* ECORE CALLBACKS */ 16169 /*******************/ 16170 16171 static void 16172 bxe_reset_common(struct bxe_softc *sc) 16173 { 16174 uint32_t val = 0x1400; 16175 16176 /* reset_common */ 16177 REG_WR(sc, (GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR), 0xd3ffff7f); 16178 16179 if (CHIP_IS_E3(sc)) { 16180 val |= MISC_REGISTERS_RESET_REG_2_MSTAT0; 16181 val |= MISC_REGISTERS_RESET_REG_2_MSTAT1; 16182 } 16183 16184 REG_WR(sc, (GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR), val); 16185 } 16186 16187 static void 16188 bxe_common_init_phy(struct bxe_softc *sc) 16189 { 16190 uint32_t shmem_base[2]; 16191 uint32_t shmem2_base[2]; 16192 16193 /* Avoid common init in case MFW supports LFA */ 16194 if (SHMEM2_RD(sc, size) > 16195 (uint32_t)offsetof(struct shmem2_region, 16196 lfa_host_addr[SC_PORT(sc)])) { 16197 return; 16198 } 16199 16200 shmem_base[0] = sc->devinfo.shmem_base; 16201 shmem2_base[0] = sc->devinfo.shmem2_base; 16202 16203 if (!CHIP_IS_E1x(sc)) { 16204 shmem_base[1] = SHMEM2_RD(sc, other_shmem_base_addr); 16205 shmem2_base[1] = SHMEM2_RD(sc, other_shmem2_base_addr); 16206 } 16207 16208 bxe_acquire_phy_lock(sc); 16209 elink_common_init_phy(sc, shmem_base, shmem2_base, 16210 sc->devinfo.chip_id, 0); 16211 bxe_release_phy_lock(sc); 16212 } 16213 16214 static void 16215 bxe_pf_disable(struct bxe_softc *sc) 16216 { 16217 uint32_t val = REG_RD(sc, IGU_REG_PF_CONFIGURATION); 16218 16219 val &= ~IGU_PF_CONF_FUNC_EN; 16220 16221 REG_WR(sc, IGU_REG_PF_CONFIGURATION, val); 16222 REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0); 16223 REG_WR(sc, CFC_REG_WEAK_ENABLE_PF, 0); 16224 } 16225 16226 static void 16227 bxe_init_pxp(struct bxe_softc *sc) 16228 { 16229 uint16_t devctl; 16230 int r_order, w_order; 16231 16232 devctl = bxe_pcie_capability_read(sc, PCIR_EXPRESS_DEVICE_CTL, 2); 16233 16234 BLOGD(sc, DBG_LOAD, "read 0x%08x from devctl\n", devctl); 16235 16236 w_order = ((devctl & PCIM_EXP_CTL_MAX_PAYLOAD) >> 5); 16237 16238 if (sc->mrrs == -1) { 16239 r_order = ((devctl & PCIM_EXP_CTL_MAX_READ_REQUEST) >> 12); 16240 } else { 16241 BLOGD(sc, DBG_LOAD, "forcing read order to %d\n", sc->mrrs); 16242 r_order = sc->mrrs; 16243 } 16244 16245 ecore_init_pxp_arb(sc, r_order, w_order); 16246 } 16247 16248 static uint32_t 16249 bxe_get_pretend_reg(struct bxe_softc *sc) 16250 { 16251 uint32_t base = PXP2_REG_PGL_PRETEND_FUNC_F0; 16252 uint32_t stride = (PXP2_REG_PGL_PRETEND_FUNC_F1 - base); 16253 return (base + (SC_ABS_FUNC(sc)) * stride); 16254 } 16255 16256 /* 16257 * Called only on E1H or E2. 16258 * When pretending to be PF, the pretend value is the function number 0..7. 16259 * When pretending to be VF, the pretend val is the PF-num:VF-valid:ABS-VFID 16260 * combination. 16261 */ 16262 static int 16263 bxe_pretend_func(struct bxe_softc *sc, 16264 uint16_t pretend_func_val) 16265 { 16266 uint32_t pretend_reg; 16267 16268 if (CHIP_IS_E1H(sc) && (pretend_func_val > E1H_FUNC_MAX)) { 16269 return (-1); 16270 } 16271 16272 /* get my own pretend register */ 16273 pretend_reg = bxe_get_pretend_reg(sc); 16274 REG_WR(sc, pretend_reg, pretend_func_val); 16275 REG_RD(sc, pretend_reg); 16276 return (0); 16277 } 16278 16279 static void 16280 bxe_iov_init_dmae(struct bxe_softc *sc) 16281 { 16282 return; 16283 } 16284 16285 static void 16286 bxe_iov_init_dq(struct bxe_softc *sc) 16287 { 16288 return; 16289 } 16290 16291 /* send a NIG loopback debug packet */ 16292 static void 16293 bxe_lb_pckt(struct bxe_softc *sc) 16294 { 16295 uint32_t wb_write[3]; 16296 16297 /* Ethernet source and destination addresses */ 16298 wb_write[0] = 0x55555555; 16299 wb_write[1] = 0x55555555; 16300 wb_write[2] = 0x20; /* SOP */ 16301 REG_WR_DMAE(sc, NIG_REG_DEBUG_PACKET_LB, wb_write, 3); 16302 16303 /* NON-IP protocol */ 16304 wb_write[0] = 0x09000000; 16305 wb_write[1] = 0x55555555; 16306 wb_write[2] = 0x10; /* EOP, eop_bvalid = 0 */ 16307 REG_WR_DMAE(sc, NIG_REG_DEBUG_PACKET_LB, wb_write, 3); 16308 } 16309 16310 /* 16311 * Some of the internal memories are not directly readable from the driver. 16312 * To test them we send debug packets. 16313 */ 16314 static int 16315 bxe_int_mem_test(struct bxe_softc *sc) 16316 { 16317 int factor; 16318 int count, i; 16319 uint32_t val = 0; 16320 16321 if (CHIP_REV_IS_FPGA(sc)) { 16322 factor = 120; 16323 } else if (CHIP_REV_IS_EMUL(sc)) { 16324 factor = 200; 16325 } else { 16326 factor = 1; 16327 } 16328 16329 /* disable inputs of parser neighbor blocks */ 16330 REG_WR(sc, TSDM_REG_ENABLE_IN1, 0x0); 16331 REG_WR(sc, TCM_REG_PRS_IFEN, 0x0); 16332 REG_WR(sc, CFC_REG_DEBUG0, 0x1); 16333 REG_WR(sc, NIG_REG_PRS_REQ_IN_EN, 0x0); 16334 16335 /* write 0 to parser credits for CFC search request */ 16336 REG_WR(sc, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0); 16337 16338 /* send Ethernet packet */ 16339 bxe_lb_pckt(sc); 16340 16341 /* TODO do i reset NIG statistic? */ 16342 /* Wait until NIG register shows 1 packet of size 0x10 */ 16343 count = 1000 * factor; 16344 while (count) { 16345 bxe_read_dmae(sc, NIG_REG_STAT2_BRB_OCTET, 2); 16346 val = *BXE_SP(sc, wb_data[0]); 16347 if (val == 0x10) { 16348 break; 16349 } 16350 16351 DELAY(10000); 16352 count--; 16353 } 16354 16355 if (val != 0x10) { 16356 BLOGE(sc, "NIG timeout val=0x%x\n", val); 16357 return (-1); 16358 } 16359 16360 /* wait until PRS register shows 1 packet */ 16361 count = (1000 * factor); 16362 while (count) { 16363 val = REG_RD(sc, PRS_REG_NUM_OF_PACKETS); 16364 if (val == 1) { 16365 break; 16366 } 16367 16368 DELAY(10000); 16369 count--; 16370 } 16371 16372 if (val != 0x1) { 16373 BLOGE(sc, "PRS timeout val=0x%x\n", val); 16374 return (-2); 16375 } 16376 16377 /* Reset and init BRB, PRS */ 16378 REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03); 16379 DELAY(50000); 16380 REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03); 16381 DELAY(50000); 16382 ecore_init_block(sc, BLOCK_BRB1, PHASE_COMMON); 16383 ecore_init_block(sc, BLOCK_PRS, PHASE_COMMON); 16384 16385 /* Disable inputs of parser neighbor blocks */ 16386 REG_WR(sc, TSDM_REG_ENABLE_IN1, 0x0); 16387 REG_WR(sc, TCM_REG_PRS_IFEN, 0x0); 16388 REG_WR(sc, CFC_REG_DEBUG0, 0x1); 16389 REG_WR(sc, NIG_REG_PRS_REQ_IN_EN, 0x0); 16390 16391 /* Write 0 to parser credits for CFC search request */ 16392 REG_WR(sc, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0); 16393 16394 /* send 10 Ethernet packets */ 16395 for (i = 0; i < 10; i++) { 16396 bxe_lb_pckt(sc); 16397 } 16398 16399 /* Wait until NIG register shows 10+1 packets of size 11*0x10 = 0xb0 */ 16400 count = (1000 * factor); 16401 while (count) { 16402 bxe_read_dmae(sc, NIG_REG_STAT2_BRB_OCTET, 2); 16403 val = *BXE_SP(sc, wb_data[0]); 16404 if (val == 0xb0) { 16405 break; 16406 } 16407 16408 DELAY(10000); 16409 count--; 16410 } 16411 16412 if (val != 0xb0) { 16413 BLOGE(sc, "NIG timeout val=0x%x\n", val); 16414 return (-3); 16415 } 16416 16417 /* Wait until PRS register shows 2 packets */ 16418 val = REG_RD(sc, PRS_REG_NUM_OF_PACKETS); 16419 if (val != 2) { 16420 BLOGE(sc, "PRS timeout val=0x%x\n", val); 16421 } 16422 16423 /* Write 1 to parser credits for CFC search request */ 16424 REG_WR(sc, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x1); 16425 16426 /* Wait until PRS register shows 3 packets */ 16427 DELAY(10000 * factor); 16428 16429 /* Wait until NIG register shows 1 packet of size 0x10 */ 16430 val = REG_RD(sc, PRS_REG_NUM_OF_PACKETS); 16431 if (val != 3) { 16432 BLOGE(sc, "PRS timeout val=0x%x\n", val); 16433 } 16434 16435 /* clear NIG EOP FIFO */ 16436 for (i = 0; i < 11; i++) { 16437 REG_RD(sc, NIG_REG_INGRESS_EOP_LB_FIFO); 16438 } 16439 16440 val = REG_RD(sc, NIG_REG_INGRESS_EOP_LB_EMPTY); 16441 if (val != 1) { 16442 BLOGE(sc, "clear of NIG failed val=0x%x\n", val); 16443 return (-4); 16444 } 16445 16446 /* Reset and init BRB, PRS, NIG */ 16447 REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03); 16448 DELAY(50000); 16449 REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03); 16450 DELAY(50000); 16451 ecore_init_block(sc, BLOCK_BRB1, PHASE_COMMON); 16452 ecore_init_block(sc, BLOCK_PRS, PHASE_COMMON); 16453 if (!CNIC_SUPPORT(sc)) { 16454 /* set NIC mode */ 16455 REG_WR(sc, PRS_REG_NIC_MODE, 1); 16456 } 16457 16458 /* Enable inputs of parser neighbor blocks */ 16459 REG_WR(sc, TSDM_REG_ENABLE_IN1, 0x7fffffff); 16460 REG_WR(sc, TCM_REG_PRS_IFEN, 0x1); 16461 REG_WR(sc, CFC_REG_DEBUG0, 0x0); 16462 REG_WR(sc, NIG_REG_PRS_REQ_IN_EN, 0x1); 16463 16464 return (0); 16465 } 16466 16467 static void 16468 bxe_setup_fan_failure_detection(struct bxe_softc *sc) 16469 { 16470 int is_required; 16471 uint32_t val; 16472 int port; 16473 16474 is_required = 0; 16475 val = (SHMEM_RD(sc, dev_info.shared_hw_config.config2) & 16476 SHARED_HW_CFG_FAN_FAILURE_MASK); 16477 16478 if (val == SHARED_HW_CFG_FAN_FAILURE_ENABLED) { 16479 is_required = 1; 16480 } 16481 /* 16482 * The fan failure mechanism is usually related to the PHY type since 16483 * the power consumption of the board is affected by the PHY. Currently, 16484 * fan is required for most designs with SFX7101, BCM8727 and BCM8481. 16485 */ 16486 else if (val == SHARED_HW_CFG_FAN_FAILURE_PHY_TYPE) { 16487 for (port = PORT_0; port < PORT_MAX; port++) { 16488 is_required |= elink_fan_failure_det_req(sc, 16489 sc->devinfo.shmem_base, 16490 sc->devinfo.shmem2_base, 16491 port); 16492 } 16493 } 16494 16495 BLOGD(sc, DBG_LOAD, "fan detection setting: %d\n", is_required); 16496 16497 if (is_required == 0) { 16498 return; 16499 } 16500 16501 /* Fan failure is indicated by SPIO 5 */ 16502 bxe_set_spio(sc, MISC_SPIO_SPIO5, MISC_SPIO_INPUT_HI_Z); 16503 16504 /* set to active low mode */ 16505 val = REG_RD(sc, MISC_REG_SPIO_INT); 16506 val |= (MISC_SPIO_SPIO5 << MISC_SPIO_INT_OLD_SET_POS); 16507 REG_WR(sc, MISC_REG_SPIO_INT, val); 16508 16509 /* enable interrupt to signal the IGU */ 16510 val = REG_RD(sc, MISC_REG_SPIO_EVENT_EN); 16511 val |= MISC_SPIO_SPIO5; 16512 REG_WR(sc, MISC_REG_SPIO_EVENT_EN, val); 16513 } 16514 16515 static void 16516 bxe_enable_blocks_attention(struct bxe_softc *sc) 16517 { 16518 uint32_t val; 16519 16520 REG_WR(sc, PXP_REG_PXP_INT_MASK_0, 0); 16521 if (!CHIP_IS_E1x(sc)) { 16522 REG_WR(sc, PXP_REG_PXP_INT_MASK_1, 0x40); 16523 } else { 16524 REG_WR(sc, PXP_REG_PXP_INT_MASK_1, 0); 16525 } 16526 REG_WR(sc, DORQ_REG_DORQ_INT_MASK, 0); 16527 REG_WR(sc, CFC_REG_CFC_INT_MASK, 0); 16528 /* 16529 * mask read length error interrupts in brb for parser 16530 * (parsing unit and 'checksum and crc' unit) 16531 * these errors are legal (PU reads fixed length and CAC can cause 16532 * read length error on truncated packets) 16533 */ 16534 REG_WR(sc, BRB1_REG_BRB1_INT_MASK, 0xFC00); 16535 REG_WR(sc, QM_REG_QM_INT_MASK, 0); 16536 REG_WR(sc, TM_REG_TM_INT_MASK, 0); 16537 REG_WR(sc, XSDM_REG_XSDM_INT_MASK_0, 0); 16538 REG_WR(sc, XSDM_REG_XSDM_INT_MASK_1, 0); 16539 REG_WR(sc, XCM_REG_XCM_INT_MASK, 0); 16540 /* REG_WR(sc, XSEM_REG_XSEM_INT_MASK_0, 0); */ 16541 /* REG_WR(sc, XSEM_REG_XSEM_INT_MASK_1, 0); */ 16542 REG_WR(sc, USDM_REG_USDM_INT_MASK_0, 0); 16543 REG_WR(sc, USDM_REG_USDM_INT_MASK_1, 0); 16544 REG_WR(sc, UCM_REG_UCM_INT_MASK, 0); 16545 /* REG_WR(sc, USEM_REG_USEM_INT_MASK_0, 0); */ 16546 /* REG_WR(sc, USEM_REG_USEM_INT_MASK_1, 0); */ 16547 REG_WR(sc, GRCBASE_UPB + PB_REG_PB_INT_MASK, 0); 16548 REG_WR(sc, CSDM_REG_CSDM_INT_MASK_0, 0); 16549 REG_WR(sc, CSDM_REG_CSDM_INT_MASK_1, 0); 16550 REG_WR(sc, CCM_REG_CCM_INT_MASK, 0); 16551 /* REG_WR(sc, CSEM_REG_CSEM_INT_MASK_0, 0); */ 16552 /* REG_WR(sc, CSEM_REG_CSEM_INT_MASK_1, 0); */ 16553 16554 val = (PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_AFT | 16555 PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_OF | 16556 PXP2_PXP2_INT_MASK_0_REG_PGL_PCIE_ATTN); 16557 if (!CHIP_IS_E1x(sc)) { 16558 val |= (PXP2_PXP2_INT_MASK_0_REG_PGL_READ_BLOCKED | 16559 PXP2_PXP2_INT_MASK_0_REG_PGL_WRITE_BLOCKED); 16560 } 16561 REG_WR(sc, PXP2_REG_PXP2_INT_MASK_0, val); 16562 16563 REG_WR(sc, TSDM_REG_TSDM_INT_MASK_0, 0); 16564 REG_WR(sc, TSDM_REG_TSDM_INT_MASK_1, 0); 16565 REG_WR(sc, TCM_REG_TCM_INT_MASK, 0); 16566 /* REG_WR(sc, TSEM_REG_TSEM_INT_MASK_0, 0); */ 16567 16568 if (!CHIP_IS_E1x(sc)) { 16569 /* enable VFC attentions: bits 11 and 12, bits 31:13 reserved */ 16570 REG_WR(sc, TSEM_REG_TSEM_INT_MASK_1, 0x07ff); 16571 } 16572 16573 REG_WR(sc, CDU_REG_CDU_INT_MASK, 0); 16574 REG_WR(sc, DMAE_REG_DMAE_INT_MASK, 0); 16575 /* REG_WR(sc, MISC_REG_MISC_INT_MASK, 0); */ 16576 REG_WR(sc, PBF_REG_PBF_INT_MASK, 0x18); /* bit 3,4 masked */ 16577 } 16578 16579 /** 16580 * bxe_init_hw_common - initialize the HW at the COMMON phase. 16581 * 16582 * @sc: driver handle 16583 */ 16584 static int 16585 bxe_init_hw_common(struct bxe_softc *sc) 16586 { 16587 uint8_t abs_func_id; 16588 uint32_t val; 16589 16590 BLOGD(sc, DBG_LOAD, "starting common init for func %d\n", 16591 SC_ABS_FUNC(sc)); 16592 16593 /* 16594 * take the RESET lock to protect undi_unload flow from accessing 16595 * registers while we are resetting the chip 16596 */ 16597 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RESET); 16598 16599 bxe_reset_common(sc); 16600 16601 REG_WR(sc, (GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET), 0xffffffff); 16602 16603 val = 0xfffc; 16604 if (CHIP_IS_E3(sc)) { 16605 val |= MISC_REGISTERS_RESET_REG_2_MSTAT0; 16606 val |= MISC_REGISTERS_RESET_REG_2_MSTAT1; 16607 } 16608 16609 REG_WR(sc, (GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET), val); 16610 16611 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RESET); 16612 16613 ecore_init_block(sc, BLOCK_MISC, PHASE_COMMON); 16614 BLOGD(sc, DBG_LOAD, "after misc block init\n"); 16615 16616 if (!CHIP_IS_E1x(sc)) { 16617 /* 16618 * 4-port mode or 2-port mode we need to turn off master-enable for 16619 * everyone. After that we turn it back on for self. So, we disregard 16620 * multi-function, and always disable all functions on the given path, 16621 * this means 0,2,4,6 for path 0 and 1,3,5,7 for path 1 16622 */ 16623 for (abs_func_id = SC_PATH(sc); 16624 abs_func_id < (E2_FUNC_MAX * 2); 16625 abs_func_id += 2) { 16626 if (abs_func_id == SC_ABS_FUNC(sc)) { 16627 REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1); 16628 continue; 16629 } 16630 16631 bxe_pretend_func(sc, abs_func_id); 16632 16633 /* clear pf enable */ 16634 bxe_pf_disable(sc); 16635 16636 bxe_pretend_func(sc, SC_ABS_FUNC(sc)); 16637 } 16638 } 16639 16640 BLOGD(sc, DBG_LOAD, "after pf disable\n"); 16641 16642 ecore_init_block(sc, BLOCK_PXP, PHASE_COMMON); 16643 16644 if (CHIP_IS_E1(sc)) { 16645 /* 16646 * enable HW interrupt from PXP on USDM overflow 16647 * bit 16 on INT_MASK_0 16648 */ 16649 REG_WR(sc, PXP_REG_PXP_INT_MASK_0, 0); 16650 } 16651 16652 ecore_init_block(sc, BLOCK_PXP2, PHASE_COMMON); 16653 bxe_init_pxp(sc); 16654 16655 #ifdef __BIG_ENDIAN 16656 REG_WR(sc, PXP2_REG_RQ_QM_ENDIAN_M, 1); 16657 REG_WR(sc, PXP2_REG_RQ_TM_ENDIAN_M, 1); 16658 REG_WR(sc, PXP2_REG_RQ_SRC_ENDIAN_M, 1); 16659 REG_WR(sc, PXP2_REG_RQ_CDU_ENDIAN_M, 1); 16660 REG_WR(sc, PXP2_REG_RQ_DBG_ENDIAN_M, 1); 16661 /* make sure this value is 0 */ 16662 REG_WR(sc, PXP2_REG_RQ_HC_ENDIAN_M, 0); 16663 16664 //REG_WR(sc, PXP2_REG_RD_PBF_SWAP_MODE, 1); 16665 REG_WR(sc, PXP2_REG_RD_QM_SWAP_MODE, 1); 16666 REG_WR(sc, PXP2_REG_RD_TM_SWAP_MODE, 1); 16667 REG_WR(sc, PXP2_REG_RD_SRC_SWAP_MODE, 1); 16668 REG_WR(sc, PXP2_REG_RD_CDURD_SWAP_MODE, 1); 16669 #endif 16670 16671 ecore_ilt_init_page_size(sc, INITOP_SET); 16672 16673 if (CHIP_REV_IS_FPGA(sc) && CHIP_IS_E1H(sc)) { 16674 REG_WR(sc, PXP2_REG_PGL_TAGS_LIMIT, 0x1); 16675 } 16676 16677 /* let the HW do it's magic... */ 16678 DELAY(100000); 16679 16680 /* finish PXP init */ 16681 val = REG_RD(sc, PXP2_REG_RQ_CFG_DONE); 16682 if (val != 1) { 16683 BLOGE(sc, "PXP2 CFG failed PXP2_REG_RQ_CFG_DONE val = 0x%x\n", 16684 val); 16685 return (-1); 16686 } 16687 val = REG_RD(sc, PXP2_REG_RD_INIT_DONE); 16688 if (val != 1) { 16689 BLOGE(sc, "PXP2 RD_INIT failed val = 0x%x\n", val); 16690 return (-1); 16691 } 16692 16693 BLOGD(sc, DBG_LOAD, "after pxp init\n"); 16694 16695 /* 16696 * Timer bug workaround for E2 only. We need to set the entire ILT to have 16697 * entries with value "0" and valid bit on. This needs to be done by the 16698 * first PF that is loaded in a path (i.e. common phase) 16699 */ 16700 if (!CHIP_IS_E1x(sc)) { 16701 /* 16702 * In E2 there is a bug in the timers block that can cause function 6 / 7 16703 * (i.e. vnic3) to start even if it is marked as "scan-off". 16704 * This occurs when a different function (func2,3) is being marked 16705 * as "scan-off". Real-life scenario for example: if a driver is being 16706 * load-unloaded while func6,7 are down. This will cause the timer to access 16707 * the ilt, translate to a logical address and send a request to read/write. 16708 * Since the ilt for the function that is down is not valid, this will cause 16709 * a translation error which is unrecoverable. 16710 * The Workaround is intended to make sure that when this happens nothing 16711 * fatal will occur. The workaround: 16712 * 1. First PF driver which loads on a path will: 16713 * a. After taking the chip out of reset, by using pretend, 16714 * it will write "0" to the following registers of 16715 * the other vnics. 16716 * REG_WR(pdev, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0); 16717 * REG_WR(pdev, CFC_REG_WEAK_ENABLE_PF,0); 16718 * REG_WR(pdev, CFC_REG_STRONG_ENABLE_PF,0); 16719 * And for itself it will write '1' to 16720 * PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER to enable 16721 * dmae-operations (writing to pram for example.) 16722 * note: can be done for only function 6,7 but cleaner this 16723 * way. 16724 * b. Write zero+valid to the entire ILT. 16725 * c. Init the first_timers_ilt_entry, last_timers_ilt_entry of 16726 * VNIC3 (of that port). The range allocated will be the 16727 * entire ILT. This is needed to prevent ILT range error. 16728 * 2. Any PF driver load flow: 16729 * a. ILT update with the physical addresses of the allocated 16730 * logical pages. 16731 * b. Wait 20msec. - note that this timeout is needed to make 16732 * sure there are no requests in one of the PXP internal 16733 * queues with "old" ILT addresses. 16734 * c. PF enable in the PGLC. 16735 * d. Clear the was_error of the PF in the PGLC. (could have 16736 * occurred while driver was down) 16737 * e. PF enable in the CFC (WEAK + STRONG) 16738 * f. Timers scan enable 16739 * 3. PF driver unload flow: 16740 * a. Clear the Timers scan_en. 16741 * b. Polling for scan_on=0 for that PF. 16742 * c. Clear the PF enable bit in the PXP. 16743 * d. Clear the PF enable in the CFC (WEAK + STRONG) 16744 * e. Write zero+valid to all ILT entries (The valid bit must 16745 * stay set) 16746 * f. If this is VNIC 3 of a port then also init 16747 * first_timers_ilt_entry to zero and last_timers_ilt_entry 16748 * to the last enrty in the ILT. 16749 * 16750 * Notes: 16751 * Currently the PF error in the PGLC is non recoverable. 16752 * In the future the there will be a recovery routine for this error. 16753 * Currently attention is masked. 16754 * Having an MCP lock on the load/unload process does not guarantee that 16755 * there is no Timer disable during Func6/7 enable. This is because the 16756 * Timers scan is currently being cleared by the MCP on FLR. 16757 * Step 2.d can be done only for PF6/7 and the driver can also check if 16758 * there is error before clearing it. But the flow above is simpler and 16759 * more general. 16760 * All ILT entries are written by zero+valid and not just PF6/7 16761 * ILT entries since in the future the ILT entries allocation for 16762 * PF-s might be dynamic. 16763 */ 16764 struct ilt_client_info ilt_cli; 16765 struct ecore_ilt ilt; 16766 16767 memset(&ilt_cli, 0, sizeof(struct ilt_client_info)); 16768 memset(&ilt, 0, sizeof(struct ecore_ilt)); 16769 16770 /* initialize dummy TM client */ 16771 ilt_cli.start = 0; 16772 ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1; 16773 ilt_cli.client_num = ILT_CLIENT_TM; 16774 16775 /* 16776 * Step 1: set zeroes to all ilt page entries with valid bit on 16777 * Step 2: set the timers first/last ilt entry to point 16778 * to the entire range to prevent ILT range error for 3rd/4th 16779 * vnic (this code assumes existence of the vnic) 16780 * 16781 * both steps performed by call to ecore_ilt_client_init_op() 16782 * with dummy TM client 16783 * 16784 * we must use pretend since PXP2_REG_RQ_##blk##_FIRST_ILT 16785 * and his brother are split registers 16786 */ 16787 16788 bxe_pretend_func(sc, (SC_PATH(sc) + 6)); 16789 ecore_ilt_client_init_op_ilt(sc, &ilt, &ilt_cli, INITOP_CLEAR); 16790 bxe_pretend_func(sc, SC_ABS_FUNC(sc)); 16791 16792 REG_WR(sc, PXP2_REG_RQ_DRAM_ALIGN, BXE_PXP_DRAM_ALIGN); 16793 REG_WR(sc, PXP2_REG_RQ_DRAM_ALIGN_RD, BXE_PXP_DRAM_ALIGN); 16794 REG_WR(sc, PXP2_REG_RQ_DRAM_ALIGN_SEL, 1); 16795 } 16796 16797 REG_WR(sc, PXP2_REG_RQ_DISABLE_INPUTS, 0); 16798 REG_WR(sc, PXP2_REG_RD_DISABLE_INPUTS, 0); 16799 16800 if (!CHIP_IS_E1x(sc)) { 16801 int factor = CHIP_REV_IS_EMUL(sc) ? 1000 : 16802 (CHIP_REV_IS_FPGA(sc) ? 400 : 0); 16803 16804 ecore_init_block(sc, BLOCK_PGLUE_B, PHASE_COMMON); 16805 ecore_init_block(sc, BLOCK_ATC, PHASE_COMMON); 16806 16807 /* let the HW do it's magic... */ 16808 do { 16809 DELAY(200000); 16810 val = REG_RD(sc, ATC_REG_ATC_INIT_DONE); 16811 } while (factor-- && (val != 1)); 16812 16813 if (val != 1) { 16814 BLOGE(sc, "ATC_INIT failed val = 0x%x\n", val); 16815 return (-1); 16816 } 16817 } 16818 16819 BLOGD(sc, DBG_LOAD, "after pglue and atc init\n"); 16820 16821 ecore_init_block(sc, BLOCK_DMAE, PHASE_COMMON); 16822 16823 bxe_iov_init_dmae(sc); 16824 16825 /* clean the DMAE memory */ 16826 sc->dmae_ready = 1; 16827 ecore_init_fill(sc, TSEM_REG_PRAM, 0, 8, 1); 16828 16829 ecore_init_block(sc, BLOCK_TCM, PHASE_COMMON); 16830 16831 ecore_init_block(sc, BLOCK_UCM, PHASE_COMMON); 16832 16833 ecore_init_block(sc, BLOCK_CCM, PHASE_COMMON); 16834 16835 ecore_init_block(sc, BLOCK_XCM, PHASE_COMMON); 16836 16837 bxe_read_dmae(sc, XSEM_REG_PASSIVE_BUFFER, 3); 16838 bxe_read_dmae(sc, CSEM_REG_PASSIVE_BUFFER, 3); 16839 bxe_read_dmae(sc, TSEM_REG_PASSIVE_BUFFER, 3); 16840 bxe_read_dmae(sc, USEM_REG_PASSIVE_BUFFER, 3); 16841 16842 ecore_init_block(sc, BLOCK_QM, PHASE_COMMON); 16843 16844 /* QM queues pointers table */ 16845 ecore_qm_init_ptr_table(sc, sc->qm_cid_count, INITOP_SET); 16846 16847 /* soft reset pulse */ 16848 REG_WR(sc, QM_REG_SOFT_RESET, 1); 16849 REG_WR(sc, QM_REG_SOFT_RESET, 0); 16850 16851 if (CNIC_SUPPORT(sc)) 16852 ecore_init_block(sc, BLOCK_TM, PHASE_COMMON); 16853 16854 ecore_init_block(sc, BLOCK_DORQ, PHASE_COMMON); 16855 REG_WR(sc, DORQ_REG_DPM_CID_OFST, BXE_DB_SHIFT); 16856 if (!CHIP_REV_IS_SLOW(sc)) { 16857 /* enable hw interrupt from doorbell Q */ 16858 REG_WR(sc, DORQ_REG_DORQ_INT_MASK, 0); 16859 } 16860 16861 ecore_init_block(sc, BLOCK_BRB1, PHASE_COMMON); 16862 16863 ecore_init_block(sc, BLOCK_PRS, PHASE_COMMON); 16864 REG_WR(sc, PRS_REG_A_PRSU_20, 0xf); 16865 16866 if (!CHIP_IS_E1(sc)) { 16867 REG_WR(sc, PRS_REG_E1HOV_MODE, sc->devinfo.mf_info.path_has_ovlan); 16868 } 16869 16870 if (!CHIP_IS_E1x(sc) && !CHIP_IS_E3B0(sc)) { 16871 if (IS_MF_AFEX(sc)) { 16872 /* 16873 * configure that AFEX and VLAN headers must be 16874 * received in AFEX mode 16875 */ 16876 REG_WR(sc, PRS_REG_HDRS_AFTER_BASIC, 0xE); 16877 REG_WR(sc, PRS_REG_MUST_HAVE_HDRS, 0xA); 16878 REG_WR(sc, PRS_REG_HDRS_AFTER_TAG_0, 0x6); 16879 REG_WR(sc, PRS_REG_TAG_ETHERTYPE_0, 0x8926); 16880 REG_WR(sc, PRS_REG_TAG_LEN_0, 0x4); 16881 } else { 16882 /* 16883 * Bit-map indicating which L2 hdrs may appear 16884 * after the basic Ethernet header 16885 */ 16886 REG_WR(sc, PRS_REG_HDRS_AFTER_BASIC, 16887 sc->devinfo.mf_info.path_has_ovlan ? 7 : 6); 16888 } 16889 } 16890 16891 ecore_init_block(sc, BLOCK_TSDM, PHASE_COMMON); 16892 ecore_init_block(sc, BLOCK_CSDM, PHASE_COMMON); 16893 ecore_init_block(sc, BLOCK_USDM, PHASE_COMMON); 16894 ecore_init_block(sc, BLOCK_XSDM, PHASE_COMMON); 16895 16896 if (!CHIP_IS_E1x(sc)) { 16897 /* reset VFC memories */ 16898 REG_WR(sc, TSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST, 16899 VFC_MEMORIES_RST_REG_CAM_RST | 16900 VFC_MEMORIES_RST_REG_RAM_RST); 16901 REG_WR(sc, XSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST, 16902 VFC_MEMORIES_RST_REG_CAM_RST | 16903 VFC_MEMORIES_RST_REG_RAM_RST); 16904 16905 DELAY(20000); 16906 } 16907 16908 ecore_init_block(sc, BLOCK_TSEM, PHASE_COMMON); 16909 ecore_init_block(sc, BLOCK_USEM, PHASE_COMMON); 16910 ecore_init_block(sc, BLOCK_CSEM, PHASE_COMMON); 16911 ecore_init_block(sc, BLOCK_XSEM, PHASE_COMMON); 16912 16913 /* sync semi rtc */ 16914 REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 16915 0x80000000); 16916 REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 16917 0x80000000); 16918 16919 ecore_init_block(sc, BLOCK_UPB, PHASE_COMMON); 16920 ecore_init_block(sc, BLOCK_XPB, PHASE_COMMON); 16921 ecore_init_block(sc, BLOCK_PBF, PHASE_COMMON); 16922 16923 if (!CHIP_IS_E1x(sc)) { 16924 if (IS_MF_AFEX(sc)) { 16925 /* 16926 * configure that AFEX and VLAN headers must be 16927 * sent in AFEX mode 16928 */ 16929 REG_WR(sc, PBF_REG_HDRS_AFTER_BASIC, 0xE); 16930 REG_WR(sc, PBF_REG_MUST_HAVE_HDRS, 0xA); 16931 REG_WR(sc, PBF_REG_HDRS_AFTER_TAG_0, 0x6); 16932 REG_WR(sc, PBF_REG_TAG_ETHERTYPE_0, 0x8926); 16933 REG_WR(sc, PBF_REG_TAG_LEN_0, 0x4); 16934 } else { 16935 REG_WR(sc, PBF_REG_HDRS_AFTER_BASIC, 16936 sc->devinfo.mf_info.path_has_ovlan ? 7 : 6); 16937 } 16938 } 16939 16940 REG_WR(sc, SRC_REG_SOFT_RST, 1); 16941 16942 ecore_init_block(sc, BLOCK_SRC, PHASE_COMMON); 16943 16944 if (CNIC_SUPPORT(sc)) { 16945 REG_WR(sc, SRC_REG_KEYSEARCH_0, 0x63285672); 16946 REG_WR(sc, SRC_REG_KEYSEARCH_1, 0x24b8f2cc); 16947 REG_WR(sc, SRC_REG_KEYSEARCH_2, 0x223aef9b); 16948 REG_WR(sc, SRC_REG_KEYSEARCH_3, 0x26001e3a); 16949 REG_WR(sc, SRC_REG_KEYSEARCH_4, 0x7ae91116); 16950 REG_WR(sc, SRC_REG_KEYSEARCH_5, 0x5ce5230b); 16951 REG_WR(sc, SRC_REG_KEYSEARCH_6, 0x298d8adf); 16952 REG_WR(sc, SRC_REG_KEYSEARCH_7, 0x6eb0ff09); 16953 REG_WR(sc, SRC_REG_KEYSEARCH_8, 0x1830f82f); 16954 REG_WR(sc, SRC_REG_KEYSEARCH_9, 0x01e46be7); 16955 } 16956 REG_WR(sc, SRC_REG_SOFT_RST, 0); 16957 16958 if (sizeof(union cdu_context) != 1024) { 16959 /* we currently assume that a context is 1024 bytes */ 16960 BLOGE(sc, "please adjust the size of cdu_context(%ld)\n", 16961 (long)sizeof(union cdu_context)); 16962 } 16963 16964 ecore_init_block(sc, BLOCK_CDU, PHASE_COMMON); 16965 val = (4 << 24) + (0 << 12) + 1024; 16966 REG_WR(sc, CDU_REG_CDU_GLOBAL_PARAMS, val); 16967 16968 ecore_init_block(sc, BLOCK_CFC, PHASE_COMMON); 16969 16970 REG_WR(sc, CFC_REG_INIT_REG, 0x7FF); 16971 /* enable context validation interrupt from CFC */ 16972 REG_WR(sc, CFC_REG_CFC_INT_MASK, 0); 16973 16974 /* set the thresholds to prevent CFC/CDU race */ 16975 REG_WR(sc, CFC_REG_DEBUG0, 0x20020000); 16976 ecore_init_block(sc, BLOCK_HC, PHASE_COMMON); 16977 16978 if (!CHIP_IS_E1x(sc) && BXE_NOMCP(sc)) { 16979 REG_WR(sc, IGU_REG_RESET_MEMORIES, 0x36); 16980 } 16981 16982 ecore_init_block(sc, BLOCK_IGU, PHASE_COMMON); 16983 ecore_init_block(sc, BLOCK_MISC_AEU, PHASE_COMMON); 16984 16985 /* Reset PCIE errors for debug */ 16986 REG_WR(sc, 0x2814, 0xffffffff); 16987 REG_WR(sc, 0x3820, 0xffffffff); 16988 16989 if (!CHIP_IS_E1x(sc)) { 16990 REG_WR(sc, PCICFG_OFFSET + PXPCS_TL_CONTROL_5, 16991 (PXPCS_TL_CONTROL_5_ERR_UNSPPORT1 | 16992 PXPCS_TL_CONTROL_5_ERR_UNSPPORT)); 16993 REG_WR(sc, PCICFG_OFFSET + PXPCS_TL_FUNC345_STAT, 16994 (PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT4 | 16995 PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT3 | 16996 PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT2)); 16997 REG_WR(sc, PCICFG_OFFSET + PXPCS_TL_FUNC678_STAT, 16998 (PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT7 | 16999 PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT6 | 17000 PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT5)); 17001 } 17002 17003 ecore_init_block(sc, BLOCK_NIG, PHASE_COMMON); 17004 17005 if (!CHIP_IS_E1(sc)) { 17006 /* in E3 this done in per-port section */ 17007 if (!CHIP_IS_E3(sc)) 17008 REG_WR(sc, NIG_REG_LLH_MF_MODE, IS_MF(sc)); 17009 } 17010 17011 if (CHIP_IS_E1H(sc)) { 17012 /* not applicable for E2 (and above ...) */ 17013 REG_WR(sc, NIG_REG_LLH_E1HOV_MODE, IS_MF_SD(sc)); 17014 } 17015 17016 if (CHIP_REV_IS_SLOW(sc)) { 17017 DELAY(200000); 17018 } 17019 17020 /* finish CFC init */ 17021 val = reg_poll(sc, CFC_REG_LL_INIT_DONE, 1, 100, 10); 17022 if (val != 1) { 17023 BLOGE(sc, "CFC LL_INIT failed val=0x%x\n", val); 17024 return (-1); 17025 } 17026 val = reg_poll(sc, CFC_REG_AC_INIT_DONE, 1, 100, 10); 17027 if (val != 1) { 17028 BLOGE(sc, "CFC AC_INIT failed val=0x%x\n", val); 17029 return (-1); 17030 } 17031 val = reg_poll(sc, CFC_REG_CAM_INIT_DONE, 1, 100, 10); 17032 if (val != 1) { 17033 BLOGE(sc, "CFC CAM_INIT failed val=0x%x\n", val); 17034 return (-1); 17035 } 17036 REG_WR(sc, CFC_REG_DEBUG0, 0); 17037 17038 if (CHIP_IS_E1(sc)) { 17039 /* read NIG statistic to see if this is our first up since powerup */ 17040 bxe_read_dmae(sc, NIG_REG_STAT2_BRB_OCTET, 2); 17041 val = *BXE_SP(sc, wb_data[0]); 17042 17043 /* do internal memory self test */ 17044 if ((val == 0) && bxe_int_mem_test(sc)) { 17045 BLOGE(sc, "internal mem self test failed val=0x%x\n", val); 17046 return (-1); 17047 } 17048 } 17049 17050 bxe_setup_fan_failure_detection(sc); 17051 17052 /* clear PXP2 attentions */ 17053 REG_RD(sc, PXP2_REG_PXP2_INT_STS_CLR_0); 17054 17055 bxe_enable_blocks_attention(sc); 17056 17057 if (!CHIP_REV_IS_SLOW(sc)) { 17058 ecore_enable_blocks_parity(sc); 17059 } 17060 17061 if (!BXE_NOMCP(sc)) { 17062 if (CHIP_IS_E1x(sc)) { 17063 bxe_common_init_phy(sc); 17064 } 17065 } 17066 17067 return (0); 17068 } 17069 17070 /** 17071 * bxe_init_hw_common_chip - init HW at the COMMON_CHIP phase. 17072 * 17073 * @sc: driver handle 17074 */ 17075 static int 17076 bxe_init_hw_common_chip(struct bxe_softc *sc) 17077 { 17078 int rc = bxe_init_hw_common(sc); 17079 17080 if (rc) { 17081 BLOGE(sc, "bxe_init_hw_common failed rc=%d\n", rc); 17082 return (rc); 17083 } 17084 17085 /* In E2 2-PORT mode, same ext phy is used for the two paths */ 17086 if (!BXE_NOMCP(sc)) { 17087 bxe_common_init_phy(sc); 17088 } 17089 17090 return (0); 17091 } 17092 17093 static int 17094 bxe_init_hw_port(struct bxe_softc *sc) 17095 { 17096 int port = SC_PORT(sc); 17097 int init_phase = port ? PHASE_PORT1 : PHASE_PORT0; 17098 uint32_t low, high; 17099 uint32_t val; 17100 17101 BLOGD(sc, DBG_LOAD, "starting port init for port %d\n", port); 17102 17103 REG_WR(sc, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0); 17104 17105 ecore_init_block(sc, BLOCK_MISC, init_phase); 17106 ecore_init_block(sc, BLOCK_PXP, init_phase); 17107 ecore_init_block(sc, BLOCK_PXP2, init_phase); 17108 17109 /* 17110 * Timers bug workaround: disables the pf_master bit in pglue at 17111 * common phase, we need to enable it here before any dmae access are 17112 * attempted. Therefore we manually added the enable-master to the 17113 * port phase (it also happens in the function phase) 17114 */ 17115 if (!CHIP_IS_E1x(sc)) { 17116 REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1); 17117 } 17118 17119 ecore_init_block(sc, BLOCK_ATC, init_phase); 17120 ecore_init_block(sc, BLOCK_DMAE, init_phase); 17121 ecore_init_block(sc, BLOCK_PGLUE_B, init_phase); 17122 ecore_init_block(sc, BLOCK_QM, init_phase); 17123 17124 ecore_init_block(sc, BLOCK_TCM, init_phase); 17125 ecore_init_block(sc, BLOCK_UCM, init_phase); 17126 ecore_init_block(sc, BLOCK_CCM, init_phase); 17127 ecore_init_block(sc, BLOCK_XCM, init_phase); 17128 17129 /* QM cid (connection) count */ 17130 ecore_qm_init_cid_count(sc, sc->qm_cid_count, INITOP_SET); 17131 17132 if (CNIC_SUPPORT(sc)) { 17133 ecore_init_block(sc, BLOCK_TM, init_phase); 17134 REG_WR(sc, TM_REG_LIN0_SCAN_TIME + port*4, 20); 17135 REG_WR(sc, TM_REG_LIN0_MAX_ACTIVE_CID + port*4, 31); 17136 } 17137 17138 ecore_init_block(sc, BLOCK_DORQ, init_phase); 17139 17140 ecore_init_block(sc, BLOCK_BRB1, init_phase); 17141 17142 if (CHIP_IS_E1(sc) || CHIP_IS_E1H(sc)) { 17143 if (IS_MF(sc)) { 17144 low = (BXE_ONE_PORT(sc) ? 160 : 246); 17145 } else if (sc->mtu > 4096) { 17146 if (BXE_ONE_PORT(sc)) { 17147 low = 160; 17148 } else { 17149 val = sc->mtu; 17150 /* (24*1024 + val*4)/256 */ 17151 low = (96 + (val / 64) + ((val % 64) ? 1 : 0)); 17152 } 17153 } else { 17154 low = (BXE_ONE_PORT(sc) ? 80 : 160); 17155 } 17156 high = (low + 56); /* 14*1024/256 */ 17157 REG_WR(sc, BRB1_REG_PAUSE_LOW_THRESHOLD_0 + port*4, low); 17158 REG_WR(sc, BRB1_REG_PAUSE_HIGH_THRESHOLD_0 + port*4, high); 17159 } 17160 17161 if (CHIP_IS_MODE_4_PORT(sc)) { 17162 REG_WR(sc, SC_PORT(sc) ? 17163 BRB1_REG_MAC_GUARANTIED_1 : 17164 BRB1_REG_MAC_GUARANTIED_0, 40); 17165 } 17166 17167 ecore_init_block(sc, BLOCK_PRS, init_phase); 17168 if (CHIP_IS_E3B0(sc)) { 17169 if (IS_MF_AFEX(sc)) { 17170 /* configure headers for AFEX mode */ 17171 REG_WR(sc, SC_PORT(sc) ? 17172 PRS_REG_HDRS_AFTER_BASIC_PORT_1 : 17173 PRS_REG_HDRS_AFTER_BASIC_PORT_0, 0xE); 17174 REG_WR(sc, SC_PORT(sc) ? 17175 PRS_REG_HDRS_AFTER_TAG_0_PORT_1 : 17176 PRS_REG_HDRS_AFTER_TAG_0_PORT_0, 0x6); 17177 REG_WR(sc, SC_PORT(sc) ? 17178 PRS_REG_MUST_HAVE_HDRS_PORT_1 : 17179 PRS_REG_MUST_HAVE_HDRS_PORT_0, 0xA); 17180 } else { 17181 /* Ovlan exists only if we are in multi-function + 17182 * switch-dependent mode, in switch-independent there 17183 * is no ovlan headers 17184 */ 17185 REG_WR(sc, SC_PORT(sc) ? 17186 PRS_REG_HDRS_AFTER_BASIC_PORT_1 : 17187 PRS_REG_HDRS_AFTER_BASIC_PORT_0, 17188 (sc->devinfo.mf_info.path_has_ovlan ? 7 : 6)); 17189 } 17190 } 17191 17192 ecore_init_block(sc, BLOCK_TSDM, init_phase); 17193 ecore_init_block(sc, BLOCK_CSDM, init_phase); 17194 ecore_init_block(sc, BLOCK_USDM, init_phase); 17195 ecore_init_block(sc, BLOCK_XSDM, init_phase); 17196 17197 ecore_init_block(sc, BLOCK_TSEM, init_phase); 17198 ecore_init_block(sc, BLOCK_USEM, init_phase); 17199 ecore_init_block(sc, BLOCK_CSEM, init_phase); 17200 ecore_init_block(sc, BLOCK_XSEM, init_phase); 17201 17202 ecore_init_block(sc, BLOCK_UPB, init_phase); 17203 ecore_init_block(sc, BLOCK_XPB, init_phase); 17204 17205 ecore_init_block(sc, BLOCK_PBF, init_phase); 17206 17207 if (CHIP_IS_E1x(sc)) { 17208 /* configure PBF to work without PAUSE mtu 9000 */ 17209 REG_WR(sc, PBF_REG_P0_PAUSE_ENABLE + port*4, 0); 17210 17211 /* update threshold */ 17212 REG_WR(sc, PBF_REG_P0_ARB_THRSH + port*4, (9040/16)); 17213 /* update init credit */ 17214 REG_WR(sc, PBF_REG_P0_INIT_CRD + port*4, (9040/16) + 553 - 22); 17215 17216 /* probe changes */ 17217 REG_WR(sc, PBF_REG_INIT_P0 + port*4, 1); 17218 DELAY(50); 17219 REG_WR(sc, PBF_REG_INIT_P0 + port*4, 0); 17220 } 17221 17222 if (CNIC_SUPPORT(sc)) { 17223 ecore_init_block(sc, BLOCK_SRC, init_phase); 17224 } 17225 17226 ecore_init_block(sc, BLOCK_CDU, init_phase); 17227 ecore_init_block(sc, BLOCK_CFC, init_phase); 17228 17229 if (CHIP_IS_E1(sc)) { 17230 REG_WR(sc, HC_REG_LEADING_EDGE_0 + port*8, 0); 17231 REG_WR(sc, HC_REG_TRAILING_EDGE_0 + port*8, 0); 17232 } 17233 ecore_init_block(sc, BLOCK_HC, init_phase); 17234 17235 ecore_init_block(sc, BLOCK_IGU, init_phase); 17236 17237 ecore_init_block(sc, BLOCK_MISC_AEU, init_phase); 17238 /* init aeu_mask_attn_func_0/1: 17239 * - SF mode: bits 3-7 are masked. only bits 0-2 are in use 17240 * - MF mode: bit 3 is masked. bits 0-2 are in use as in SF 17241 * bits 4-7 are used for "per vn group attention" */ 17242 val = IS_MF(sc) ? 0xF7 : 0x7; 17243 /* Enable DCBX attention for all but E1 */ 17244 val |= CHIP_IS_E1(sc) ? 0 : 0x10; 17245 REG_WR(sc, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, val); 17246 17247 ecore_init_block(sc, BLOCK_NIG, init_phase); 17248 17249 if (!CHIP_IS_E1x(sc)) { 17250 /* Bit-map indicating which L2 hdrs may appear after the 17251 * basic Ethernet header 17252 */ 17253 if (IS_MF_AFEX(sc)) { 17254 REG_WR(sc, SC_PORT(sc) ? 17255 NIG_REG_P1_HDRS_AFTER_BASIC : 17256 NIG_REG_P0_HDRS_AFTER_BASIC, 0xE); 17257 } else { 17258 REG_WR(sc, SC_PORT(sc) ? 17259 NIG_REG_P1_HDRS_AFTER_BASIC : 17260 NIG_REG_P0_HDRS_AFTER_BASIC, 17261 IS_MF_SD(sc) ? 7 : 6); 17262 } 17263 17264 if (CHIP_IS_E3(sc)) { 17265 REG_WR(sc, SC_PORT(sc) ? 17266 NIG_REG_LLH1_MF_MODE : 17267 NIG_REG_LLH_MF_MODE, IS_MF(sc)); 17268 } 17269 } 17270 if (!CHIP_IS_E3(sc)) { 17271 REG_WR(sc, NIG_REG_XGXS_SERDES0_MODE_SEL + port*4, 1); 17272 } 17273 17274 if (!CHIP_IS_E1(sc)) { 17275 /* 0x2 disable mf_ov, 0x1 enable */ 17276 REG_WR(sc, NIG_REG_LLH0_BRB1_DRV_MASK_MF + port*4, 17277 (IS_MF_SD(sc) ? 0x1 : 0x2)); 17278 17279 if (!CHIP_IS_E1x(sc)) { 17280 val = 0; 17281 switch (sc->devinfo.mf_info.mf_mode) { 17282 case MULTI_FUNCTION_SD: 17283 val = 1; 17284 break; 17285 case MULTI_FUNCTION_SI: 17286 case MULTI_FUNCTION_AFEX: 17287 val = 2; 17288 break; 17289 } 17290 17291 REG_WR(sc, (SC_PORT(sc) ? NIG_REG_LLH1_CLS_TYPE : 17292 NIG_REG_LLH0_CLS_TYPE), val); 17293 } 17294 REG_WR(sc, NIG_REG_LLFC_ENABLE_0 + port*4, 0); 17295 REG_WR(sc, NIG_REG_LLFC_OUT_EN_0 + port*4, 0); 17296 REG_WR(sc, NIG_REG_PAUSE_ENABLE_0 + port*4, 1); 17297 } 17298 17299 /* If SPIO5 is set to generate interrupts, enable it for this port */ 17300 val = REG_RD(sc, MISC_REG_SPIO_EVENT_EN); 17301 if (val & MISC_SPIO_SPIO5) { 17302 uint32_t reg_addr = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 : 17303 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0); 17304 val = REG_RD(sc, reg_addr); 17305 val |= AEU_INPUTS_ATTN_BITS_SPIO5; 17306 REG_WR(sc, reg_addr, val); 17307 } 17308 17309 return (0); 17310 } 17311 17312 static uint32_t 17313 bxe_flr_clnup_reg_poll(struct bxe_softc *sc, 17314 uint32_t reg, 17315 uint32_t expected, 17316 uint32_t poll_count) 17317 { 17318 uint32_t cur_cnt = poll_count; 17319 uint32_t val; 17320 17321 while ((val = REG_RD(sc, reg)) != expected && cur_cnt--) { 17322 DELAY(FLR_WAIT_INTERVAL); 17323 } 17324 17325 return (val); 17326 } 17327 17328 static int 17329 bxe_flr_clnup_poll_hw_counter(struct bxe_softc *sc, 17330 uint32_t reg, 17331 char *msg, 17332 uint32_t poll_cnt) 17333 { 17334 uint32_t val = bxe_flr_clnup_reg_poll(sc, reg, 0, poll_cnt); 17335 17336 if (val != 0) { 17337 BLOGE(sc, "%s usage count=%d\n", msg, val); 17338 return (1); 17339 } 17340 17341 return (0); 17342 } 17343 17344 /* Common routines with VF FLR cleanup */ 17345 static uint32_t 17346 bxe_flr_clnup_poll_count(struct bxe_softc *sc) 17347 { 17348 /* adjust polling timeout */ 17349 if (CHIP_REV_IS_EMUL(sc)) { 17350 return (FLR_POLL_CNT * 2000); 17351 } 17352 17353 if (CHIP_REV_IS_FPGA(sc)) { 17354 return (FLR_POLL_CNT * 120); 17355 } 17356 17357 return (FLR_POLL_CNT); 17358 } 17359 17360 static int 17361 bxe_poll_hw_usage_counters(struct bxe_softc *sc, 17362 uint32_t poll_cnt) 17363 { 17364 /* wait for CFC PF usage-counter to zero (includes all the VFs) */ 17365 if (bxe_flr_clnup_poll_hw_counter(sc, 17366 CFC_REG_NUM_LCIDS_INSIDE_PF, 17367 "CFC PF usage counter timed out", 17368 poll_cnt)) { 17369 return (1); 17370 } 17371 17372 /* Wait for DQ PF usage-counter to zero (until DQ cleanup) */ 17373 if (bxe_flr_clnup_poll_hw_counter(sc, 17374 DORQ_REG_PF_USAGE_CNT, 17375 "DQ PF usage counter timed out", 17376 poll_cnt)) { 17377 return (1); 17378 } 17379 17380 /* Wait for QM PF usage-counter to zero (until DQ cleanup) */ 17381 if (bxe_flr_clnup_poll_hw_counter(sc, 17382 QM_REG_PF_USG_CNT_0 + 4*SC_FUNC(sc), 17383 "QM PF usage counter timed out", 17384 poll_cnt)) { 17385 return (1); 17386 } 17387 17388 /* Wait for Timer PF usage-counters to zero (until DQ cleanup) */ 17389 if (bxe_flr_clnup_poll_hw_counter(sc, 17390 TM_REG_LIN0_VNIC_UC + 4*SC_PORT(sc), 17391 "Timers VNIC usage counter timed out", 17392 poll_cnt)) { 17393 return (1); 17394 } 17395 17396 if (bxe_flr_clnup_poll_hw_counter(sc, 17397 TM_REG_LIN0_NUM_SCANS + 4*SC_PORT(sc), 17398 "Timers NUM_SCANS usage counter timed out", 17399 poll_cnt)) { 17400 return (1); 17401 } 17402 17403 /* Wait DMAE PF usage counter to zero */ 17404 if (bxe_flr_clnup_poll_hw_counter(sc, 17405 dmae_reg_go_c[INIT_DMAE_C(sc)], 17406 "DMAE dommand register timed out", 17407 poll_cnt)) { 17408 return (1); 17409 } 17410 17411 return (0); 17412 } 17413 17414 #define OP_GEN_PARAM(param) \ 17415 (((param) << SDM_OP_GEN_COMP_PARAM_SHIFT) & SDM_OP_GEN_COMP_PARAM) 17416 #define OP_GEN_TYPE(type) \ 17417 (((type) << SDM_OP_GEN_COMP_TYPE_SHIFT) & SDM_OP_GEN_COMP_TYPE) 17418 #define OP_GEN_AGG_VECT(index) \ 17419 (((index) << SDM_OP_GEN_AGG_VECT_IDX_SHIFT) & SDM_OP_GEN_AGG_VECT_IDX) 17420 17421 static int 17422 bxe_send_final_clnup(struct bxe_softc *sc, 17423 uint8_t clnup_func, 17424 uint32_t poll_cnt) 17425 { 17426 uint32_t op_gen_command = 0; 17427 uint32_t comp_addr = (BAR_CSTRORM_INTMEM + 17428 CSTORM_FINAL_CLEANUP_COMPLETE_OFFSET(clnup_func)); 17429 int ret = 0; 17430 17431 if (REG_RD(sc, comp_addr)) { 17432 BLOGE(sc, "Cleanup complete was not 0 before sending\n"); 17433 return (1); 17434 } 17435 17436 op_gen_command |= OP_GEN_PARAM(XSTORM_AGG_INT_FINAL_CLEANUP_INDEX); 17437 op_gen_command |= OP_GEN_TYPE(XSTORM_AGG_INT_FINAL_CLEANUP_COMP_TYPE); 17438 op_gen_command |= OP_GEN_AGG_VECT(clnup_func); 17439 op_gen_command |= 1 << SDM_OP_GEN_AGG_VECT_IDX_VALID_SHIFT; 17440 17441 BLOGD(sc, DBG_LOAD, "sending FW Final cleanup\n"); 17442 REG_WR(sc, XSDM_REG_OPERATION_GEN, op_gen_command); 17443 17444 if (bxe_flr_clnup_reg_poll(sc, comp_addr, 1, poll_cnt) != 1) { 17445 BLOGE(sc, "FW final cleanup did not succeed\n"); 17446 BLOGD(sc, DBG_LOAD, "At timeout completion address contained %x\n", 17447 (REG_RD(sc, comp_addr))); 17448 bxe_panic(sc, ("FLR cleanup failed\n")); 17449 return (1); 17450 } 17451 17452 /* Zero completion for nxt FLR */ 17453 REG_WR(sc, comp_addr, 0); 17454 17455 return (ret); 17456 } 17457 17458 static void 17459 bxe_pbf_pN_buf_flushed(struct bxe_softc *sc, 17460 struct pbf_pN_buf_regs *regs, 17461 uint32_t poll_count) 17462 { 17463 uint32_t init_crd, crd, crd_start, crd_freed, crd_freed_start; 17464 uint32_t cur_cnt = poll_count; 17465 17466 crd_freed = crd_freed_start = REG_RD(sc, regs->crd_freed); 17467 crd = crd_start = REG_RD(sc, regs->crd); 17468 init_crd = REG_RD(sc, regs->init_crd); 17469 17470 BLOGD(sc, DBG_LOAD, "INIT CREDIT[%d] : %x\n", regs->pN, init_crd); 17471 BLOGD(sc, DBG_LOAD, "CREDIT[%d] : s:%x\n", regs->pN, crd); 17472 BLOGD(sc, DBG_LOAD, "CREDIT_FREED[%d]: s:%x\n", regs->pN, crd_freed); 17473 17474 while ((crd != init_crd) && 17475 ((uint32_t)((int32_t)crd_freed - (int32_t)crd_freed_start) < 17476 (init_crd - crd_start))) { 17477 if (cur_cnt--) { 17478 DELAY(FLR_WAIT_INTERVAL); 17479 crd = REG_RD(sc, regs->crd); 17480 crd_freed = REG_RD(sc, regs->crd_freed); 17481 } else { 17482 BLOGD(sc, DBG_LOAD, "PBF tx buffer[%d] timed out\n", regs->pN); 17483 BLOGD(sc, DBG_LOAD, "CREDIT[%d] : c:%x\n", regs->pN, crd); 17484 BLOGD(sc, DBG_LOAD, "CREDIT_FREED[%d]: c:%x\n", regs->pN, crd_freed); 17485 break; 17486 } 17487 } 17488 17489 BLOGD(sc, DBG_LOAD, "Waited %d*%d usec for PBF tx buffer[%d]\n", 17490 poll_count-cur_cnt, FLR_WAIT_INTERVAL, regs->pN); 17491 } 17492 17493 static void 17494 bxe_pbf_pN_cmd_flushed(struct bxe_softc *sc, 17495 struct pbf_pN_cmd_regs *regs, 17496 uint32_t poll_count) 17497 { 17498 uint32_t occup, to_free, freed, freed_start; 17499 uint32_t cur_cnt = poll_count; 17500 17501 occup = to_free = REG_RD(sc, regs->lines_occup); 17502 freed = freed_start = REG_RD(sc, regs->lines_freed); 17503 17504 BLOGD(sc, DBG_LOAD, "OCCUPANCY[%d] : s:%x\n", regs->pN, occup); 17505 BLOGD(sc, DBG_LOAD, "LINES_FREED[%d] : s:%x\n", regs->pN, freed); 17506 17507 while (occup && 17508 ((uint32_t)((int32_t)freed - (int32_t)freed_start) < to_free)) { 17509 if (cur_cnt--) { 17510 DELAY(FLR_WAIT_INTERVAL); 17511 occup = REG_RD(sc, regs->lines_occup); 17512 freed = REG_RD(sc, regs->lines_freed); 17513 } else { 17514 BLOGD(sc, DBG_LOAD, "PBF cmd queue[%d] timed out\n", regs->pN); 17515 BLOGD(sc, DBG_LOAD, "OCCUPANCY[%d] : s:%x\n", regs->pN, occup); 17516 BLOGD(sc, DBG_LOAD, "LINES_FREED[%d] : s:%x\n", regs->pN, freed); 17517 break; 17518 } 17519 } 17520 17521 BLOGD(sc, DBG_LOAD, "Waited %d*%d usec for PBF cmd queue[%d]\n", 17522 poll_count - cur_cnt, FLR_WAIT_INTERVAL, regs->pN); 17523 } 17524 17525 static void 17526 bxe_tx_hw_flushed(struct bxe_softc *sc, uint32_t poll_count) 17527 { 17528 struct pbf_pN_cmd_regs cmd_regs[] = { 17529 {0, (CHIP_IS_E3B0(sc)) ? 17530 PBF_REG_TQ_OCCUPANCY_Q0 : 17531 PBF_REG_P0_TQ_OCCUPANCY, 17532 (CHIP_IS_E3B0(sc)) ? 17533 PBF_REG_TQ_LINES_FREED_CNT_Q0 : 17534 PBF_REG_P0_TQ_LINES_FREED_CNT}, 17535 {1, (CHIP_IS_E3B0(sc)) ? 17536 PBF_REG_TQ_OCCUPANCY_Q1 : 17537 PBF_REG_P1_TQ_OCCUPANCY, 17538 (CHIP_IS_E3B0(sc)) ? 17539 PBF_REG_TQ_LINES_FREED_CNT_Q1 : 17540 PBF_REG_P1_TQ_LINES_FREED_CNT}, 17541 {4, (CHIP_IS_E3B0(sc)) ? 17542 PBF_REG_TQ_OCCUPANCY_LB_Q : 17543 PBF_REG_P4_TQ_OCCUPANCY, 17544 (CHIP_IS_E3B0(sc)) ? 17545 PBF_REG_TQ_LINES_FREED_CNT_LB_Q : 17546 PBF_REG_P4_TQ_LINES_FREED_CNT} 17547 }; 17548 17549 struct pbf_pN_buf_regs buf_regs[] = { 17550 {0, (CHIP_IS_E3B0(sc)) ? 17551 PBF_REG_INIT_CRD_Q0 : 17552 PBF_REG_P0_INIT_CRD , 17553 (CHIP_IS_E3B0(sc)) ? 17554 PBF_REG_CREDIT_Q0 : 17555 PBF_REG_P0_CREDIT, 17556 (CHIP_IS_E3B0(sc)) ? 17557 PBF_REG_INTERNAL_CRD_FREED_CNT_Q0 : 17558 PBF_REG_P0_INTERNAL_CRD_FREED_CNT}, 17559 {1, (CHIP_IS_E3B0(sc)) ? 17560 PBF_REG_INIT_CRD_Q1 : 17561 PBF_REG_P1_INIT_CRD, 17562 (CHIP_IS_E3B0(sc)) ? 17563 PBF_REG_CREDIT_Q1 : 17564 PBF_REG_P1_CREDIT, 17565 (CHIP_IS_E3B0(sc)) ? 17566 PBF_REG_INTERNAL_CRD_FREED_CNT_Q1 : 17567 PBF_REG_P1_INTERNAL_CRD_FREED_CNT}, 17568 {4, (CHIP_IS_E3B0(sc)) ? 17569 PBF_REG_INIT_CRD_LB_Q : 17570 PBF_REG_P4_INIT_CRD, 17571 (CHIP_IS_E3B0(sc)) ? 17572 PBF_REG_CREDIT_LB_Q : 17573 PBF_REG_P4_CREDIT, 17574 (CHIP_IS_E3B0(sc)) ? 17575 PBF_REG_INTERNAL_CRD_FREED_CNT_LB_Q : 17576 PBF_REG_P4_INTERNAL_CRD_FREED_CNT}, 17577 }; 17578 17579 int i; 17580 17581 /* Verify the command queues are flushed P0, P1, P4 */ 17582 for (i = 0; i < ARRAY_SIZE(cmd_regs); i++) { 17583 bxe_pbf_pN_cmd_flushed(sc, &cmd_regs[i], poll_count); 17584 } 17585 17586 /* Verify the transmission buffers are flushed P0, P1, P4 */ 17587 for (i = 0; i < ARRAY_SIZE(buf_regs); i++) { 17588 bxe_pbf_pN_buf_flushed(sc, &buf_regs[i], poll_count); 17589 } 17590 } 17591 17592 static void 17593 bxe_hw_enable_status(struct bxe_softc *sc) 17594 { 17595 uint32_t val; 17596 17597 val = REG_RD(sc, CFC_REG_WEAK_ENABLE_PF); 17598 BLOGD(sc, DBG_LOAD, "CFC_REG_WEAK_ENABLE_PF is 0x%x\n", val); 17599 17600 val = REG_RD(sc, PBF_REG_DISABLE_PF); 17601 BLOGD(sc, DBG_LOAD, "PBF_REG_DISABLE_PF is 0x%x\n", val); 17602 17603 val = REG_RD(sc, IGU_REG_PCI_PF_MSI_EN); 17604 BLOGD(sc, DBG_LOAD, "IGU_REG_PCI_PF_MSI_EN is 0x%x\n", val); 17605 17606 val = REG_RD(sc, IGU_REG_PCI_PF_MSIX_EN); 17607 BLOGD(sc, DBG_LOAD, "IGU_REG_PCI_PF_MSIX_EN is 0x%x\n", val); 17608 17609 val = REG_RD(sc, IGU_REG_PCI_PF_MSIX_FUNC_MASK); 17610 BLOGD(sc, DBG_LOAD, "IGU_REG_PCI_PF_MSIX_FUNC_MASK is 0x%x\n", val); 17611 17612 val = REG_RD(sc, PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR); 17613 BLOGD(sc, DBG_LOAD, "PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR is 0x%x\n", val); 17614 17615 val = REG_RD(sc, PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR); 17616 BLOGD(sc, DBG_LOAD, "PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR is 0x%x\n", val); 17617 17618 val = REG_RD(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER); 17619 BLOGD(sc, DBG_LOAD, "PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER is 0x%x\n", val); 17620 } 17621 17622 static int 17623 bxe_pf_flr_clnup(struct bxe_softc *sc) 17624 { 17625 uint32_t poll_cnt = bxe_flr_clnup_poll_count(sc); 17626 17627 BLOGD(sc, DBG_LOAD, "Cleanup after FLR PF[%d]\n", SC_ABS_FUNC(sc)); 17628 17629 /* Re-enable PF target read access */ 17630 REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1); 17631 17632 /* Poll HW usage counters */ 17633 BLOGD(sc, DBG_LOAD, "Polling usage counters\n"); 17634 if (bxe_poll_hw_usage_counters(sc, poll_cnt)) { 17635 return (-1); 17636 } 17637 17638 /* Zero the igu 'trailing edge' and 'leading edge' */ 17639 17640 /* Send the FW cleanup command */ 17641 if (bxe_send_final_clnup(sc, (uint8_t)SC_FUNC(sc), poll_cnt)) { 17642 return (-1); 17643 } 17644 17645 /* ATC cleanup */ 17646 17647 /* Verify TX hw is flushed */ 17648 bxe_tx_hw_flushed(sc, poll_cnt); 17649 17650 /* Wait 100ms (not adjusted according to platform) */ 17651 DELAY(100000); 17652 17653 /* Verify no pending pci transactions */ 17654 if (bxe_is_pcie_pending(sc)) { 17655 BLOGE(sc, "PCIE Transactions still pending\n"); 17656 } 17657 17658 /* Debug */ 17659 bxe_hw_enable_status(sc); 17660 17661 /* 17662 * Master enable - Due to WB DMAE writes performed before this 17663 * register is re-initialized as part of the regular function init 17664 */ 17665 REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1); 17666 17667 return (0); 17668 } 17669 17670 static int 17671 bxe_init_hw_func(struct bxe_softc *sc) 17672 { 17673 int port = SC_PORT(sc); 17674 int func = SC_FUNC(sc); 17675 int init_phase = PHASE_PF0 + func; 17676 struct ecore_ilt *ilt = sc->ilt; 17677 uint16_t cdu_ilt_start; 17678 uint32_t addr, val; 17679 uint32_t main_mem_base, main_mem_size, main_mem_prty_clr; 17680 int i, main_mem_width, rc; 17681 17682 BLOGD(sc, DBG_LOAD, "starting func init for func %d\n", func); 17683 17684 /* FLR cleanup */ 17685 if (!CHIP_IS_E1x(sc)) { 17686 rc = bxe_pf_flr_clnup(sc); 17687 if (rc) { 17688 BLOGE(sc, "FLR cleanup failed!\n"); 17689 // XXX bxe_fw_dump(sc); 17690 // XXX bxe_idle_chk(sc); 17691 return (rc); 17692 } 17693 } 17694 17695 /* set MSI reconfigure capability */ 17696 if (sc->devinfo.int_block == INT_BLOCK_HC) { 17697 addr = (port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0); 17698 val = REG_RD(sc, addr); 17699 val |= HC_CONFIG_0_REG_MSI_ATTN_EN_0; 17700 REG_WR(sc, addr, val); 17701 } 17702 17703 ecore_init_block(sc, BLOCK_PXP, init_phase); 17704 ecore_init_block(sc, BLOCK_PXP2, init_phase); 17705 17706 ilt = sc->ilt; 17707 cdu_ilt_start = ilt->clients[ILT_CLIENT_CDU].start; 17708 17709 for (i = 0; i < L2_ILT_LINES(sc); i++) { 17710 ilt->lines[cdu_ilt_start + i].page = sc->context[i].vcxt; 17711 ilt->lines[cdu_ilt_start + i].page_mapping = 17712 sc->context[i].vcxt_dma.paddr; 17713 ilt->lines[cdu_ilt_start + i].size = sc->context[i].size; 17714 } 17715 ecore_ilt_init_op(sc, INITOP_SET); 17716 17717 /* Set NIC mode */ 17718 REG_WR(sc, PRS_REG_NIC_MODE, 1); 17719 BLOGD(sc, DBG_LOAD, "NIC MODE configured\n"); 17720 17721 if (!CHIP_IS_E1x(sc)) { 17722 uint32_t pf_conf = IGU_PF_CONF_FUNC_EN; 17723 17724 /* Turn on a single ISR mode in IGU if driver is going to use 17725 * INT#x or MSI 17726 */ 17727 if (sc->interrupt_mode != INTR_MODE_MSIX) { 17728 pf_conf |= IGU_PF_CONF_SINGLE_ISR_EN; 17729 } 17730 17731 /* 17732 * Timers workaround bug: function init part. 17733 * Need to wait 20msec after initializing ILT, 17734 * needed to make sure there are no requests in 17735 * one of the PXP internal queues with "old" ILT addresses 17736 */ 17737 DELAY(20000); 17738 17739 /* 17740 * Master enable - Due to WB DMAE writes performed before this 17741 * register is re-initialized as part of the regular function 17742 * init 17743 */ 17744 REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1); 17745 /* Enable the function in IGU */ 17746 REG_WR(sc, IGU_REG_PF_CONFIGURATION, pf_conf); 17747 } 17748 17749 sc->dmae_ready = 1; 17750 17751 ecore_init_block(sc, BLOCK_PGLUE_B, init_phase); 17752 17753 if (!CHIP_IS_E1x(sc)) 17754 REG_WR(sc, PGLUE_B_REG_WAS_ERROR_PF_7_0_CLR, func); 17755 17756 ecore_init_block(sc, BLOCK_ATC, init_phase); 17757 ecore_init_block(sc, BLOCK_DMAE, init_phase); 17758 ecore_init_block(sc, BLOCK_NIG, init_phase); 17759 ecore_init_block(sc, BLOCK_SRC, init_phase); 17760 ecore_init_block(sc, BLOCK_MISC, init_phase); 17761 ecore_init_block(sc, BLOCK_TCM, init_phase); 17762 ecore_init_block(sc, BLOCK_UCM, init_phase); 17763 ecore_init_block(sc, BLOCK_CCM, init_phase); 17764 ecore_init_block(sc, BLOCK_XCM, init_phase); 17765 ecore_init_block(sc, BLOCK_TSEM, init_phase); 17766 ecore_init_block(sc, BLOCK_USEM, init_phase); 17767 ecore_init_block(sc, BLOCK_CSEM, init_phase); 17768 ecore_init_block(sc, BLOCK_XSEM, init_phase); 17769 17770 if (!CHIP_IS_E1x(sc)) 17771 REG_WR(sc, QM_REG_PF_EN, 1); 17772 17773 if (!CHIP_IS_E1x(sc)) { 17774 REG_WR(sc, TSEM_REG_VFPF_ERR_NUM, BXE_MAX_NUM_OF_VFS + func); 17775 REG_WR(sc, USEM_REG_VFPF_ERR_NUM, BXE_MAX_NUM_OF_VFS + func); 17776 REG_WR(sc, CSEM_REG_VFPF_ERR_NUM, BXE_MAX_NUM_OF_VFS + func); 17777 REG_WR(sc, XSEM_REG_VFPF_ERR_NUM, BXE_MAX_NUM_OF_VFS + func); 17778 } 17779 ecore_init_block(sc, BLOCK_QM, init_phase); 17780 17781 ecore_init_block(sc, BLOCK_TM, init_phase); 17782 ecore_init_block(sc, BLOCK_DORQ, init_phase); 17783 17784 bxe_iov_init_dq(sc); 17785 17786 ecore_init_block(sc, BLOCK_BRB1, init_phase); 17787 ecore_init_block(sc, BLOCK_PRS, init_phase); 17788 ecore_init_block(sc, BLOCK_TSDM, init_phase); 17789 ecore_init_block(sc, BLOCK_CSDM, init_phase); 17790 ecore_init_block(sc, BLOCK_USDM, init_phase); 17791 ecore_init_block(sc, BLOCK_XSDM, init_phase); 17792 ecore_init_block(sc, BLOCK_UPB, init_phase); 17793 ecore_init_block(sc, BLOCK_XPB, init_phase); 17794 ecore_init_block(sc, BLOCK_PBF, init_phase); 17795 if (!CHIP_IS_E1x(sc)) 17796 REG_WR(sc, PBF_REG_DISABLE_PF, 0); 17797 17798 ecore_init_block(sc, BLOCK_CDU, init_phase); 17799 17800 ecore_init_block(sc, BLOCK_CFC, init_phase); 17801 17802 if (!CHIP_IS_E1x(sc)) 17803 REG_WR(sc, CFC_REG_WEAK_ENABLE_PF, 1); 17804 17805 if (IS_MF(sc)) { 17806 REG_WR(sc, NIG_REG_LLH0_FUNC_EN + port*8, 1); 17807 REG_WR(sc, NIG_REG_LLH0_FUNC_VLAN_ID + port*8, OVLAN(sc)); 17808 } 17809 17810 ecore_init_block(sc, BLOCK_MISC_AEU, init_phase); 17811 17812 /* HC init per function */ 17813 if (sc->devinfo.int_block == INT_BLOCK_HC) { 17814 if (CHIP_IS_E1H(sc)) { 17815 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0); 17816 17817 REG_WR(sc, HC_REG_LEADING_EDGE_0 + port*8, 0); 17818 REG_WR(sc, HC_REG_TRAILING_EDGE_0 + port*8, 0); 17819 } 17820 ecore_init_block(sc, BLOCK_HC, init_phase); 17821 17822 } else { 17823 int num_segs, sb_idx, prod_offset; 17824 17825 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0); 17826 17827 if (!CHIP_IS_E1x(sc)) { 17828 REG_WR(sc, IGU_REG_LEADING_EDGE_LATCH, 0); 17829 REG_WR(sc, IGU_REG_TRAILING_EDGE_LATCH, 0); 17830 } 17831 17832 ecore_init_block(sc, BLOCK_IGU, init_phase); 17833 17834 if (!CHIP_IS_E1x(sc)) { 17835 int dsb_idx = 0; 17836 /** 17837 * Producer memory: 17838 * E2 mode: address 0-135 match to the mapping memory; 17839 * 136 - PF0 default prod; 137 - PF1 default prod; 17840 * 138 - PF2 default prod; 139 - PF3 default prod; 17841 * 140 - PF0 attn prod; 141 - PF1 attn prod; 17842 * 142 - PF2 attn prod; 143 - PF3 attn prod; 17843 * 144-147 reserved. 17844 * 17845 * E1.5 mode - In backward compatible mode; 17846 * for non default SB; each even line in the memory 17847 * holds the U producer and each odd line hold 17848 * the C producer. The first 128 producers are for 17849 * NDSB (PF0 - 0-31; PF1 - 32-63 and so on). The last 20 17850 * producers are for the DSB for each PF. 17851 * Each PF has five segments: (the order inside each 17852 * segment is PF0; PF1; PF2; PF3) - 128-131 U prods; 17853 * 132-135 C prods; 136-139 X prods; 140-143 T prods; 17854 * 144-147 attn prods; 17855 */ 17856 /* non-default-status-blocks */ 17857 num_segs = CHIP_INT_MODE_IS_BC(sc) ? 17858 IGU_BC_NDSB_NUM_SEGS : IGU_NORM_NDSB_NUM_SEGS; 17859 for (sb_idx = 0; sb_idx < sc->igu_sb_cnt; sb_idx++) { 17860 prod_offset = (sc->igu_base_sb + sb_idx) * 17861 num_segs; 17862 17863 for (i = 0; i < num_segs; i++) { 17864 addr = IGU_REG_PROD_CONS_MEMORY + 17865 (prod_offset + i) * 4; 17866 REG_WR(sc, addr, 0); 17867 } 17868 /* send consumer update with value 0 */ 17869 bxe_ack_sb(sc, sc->igu_base_sb + sb_idx, 17870 USTORM_ID, 0, IGU_INT_NOP, 1); 17871 bxe_igu_clear_sb(sc, sc->igu_base_sb + sb_idx); 17872 } 17873 17874 /* default-status-blocks */ 17875 num_segs = CHIP_INT_MODE_IS_BC(sc) ? 17876 IGU_BC_DSB_NUM_SEGS : IGU_NORM_DSB_NUM_SEGS; 17877 17878 if (CHIP_IS_MODE_4_PORT(sc)) 17879 dsb_idx = SC_FUNC(sc); 17880 else 17881 dsb_idx = SC_VN(sc); 17882 17883 prod_offset = (CHIP_INT_MODE_IS_BC(sc) ? 17884 IGU_BC_BASE_DSB_PROD + dsb_idx : 17885 IGU_NORM_BASE_DSB_PROD + dsb_idx); 17886 17887 /* 17888 * igu prods come in chunks of E1HVN_MAX (4) - 17889 * does not matters what is the current chip mode 17890 */ 17891 for (i = 0; i < (num_segs * E1HVN_MAX); 17892 i += E1HVN_MAX) { 17893 addr = IGU_REG_PROD_CONS_MEMORY + 17894 (prod_offset + i)*4; 17895 REG_WR(sc, addr, 0); 17896 } 17897 /* send consumer update with 0 */ 17898 if (CHIP_INT_MODE_IS_BC(sc)) { 17899 bxe_ack_sb(sc, sc->igu_dsb_id, 17900 USTORM_ID, 0, IGU_INT_NOP, 1); 17901 bxe_ack_sb(sc, sc->igu_dsb_id, 17902 CSTORM_ID, 0, IGU_INT_NOP, 1); 17903 bxe_ack_sb(sc, sc->igu_dsb_id, 17904 XSTORM_ID, 0, IGU_INT_NOP, 1); 17905 bxe_ack_sb(sc, sc->igu_dsb_id, 17906 TSTORM_ID, 0, IGU_INT_NOP, 1); 17907 bxe_ack_sb(sc, sc->igu_dsb_id, 17908 ATTENTION_ID, 0, IGU_INT_NOP, 1); 17909 } else { 17910 bxe_ack_sb(sc, sc->igu_dsb_id, 17911 USTORM_ID, 0, IGU_INT_NOP, 1); 17912 bxe_ack_sb(sc, sc->igu_dsb_id, 17913 ATTENTION_ID, 0, IGU_INT_NOP, 1); 17914 } 17915 bxe_igu_clear_sb(sc, sc->igu_dsb_id); 17916 17917 /* !!! these should become driver const once 17918 rf-tool supports split-68 const */ 17919 REG_WR(sc, IGU_REG_SB_INT_BEFORE_MASK_LSB, 0); 17920 REG_WR(sc, IGU_REG_SB_INT_BEFORE_MASK_MSB, 0); 17921 REG_WR(sc, IGU_REG_SB_MASK_LSB, 0); 17922 REG_WR(sc, IGU_REG_SB_MASK_MSB, 0); 17923 REG_WR(sc, IGU_REG_PBA_STATUS_LSB, 0); 17924 REG_WR(sc, IGU_REG_PBA_STATUS_MSB, 0); 17925 } 17926 } 17927 17928 /* Reset PCIE errors for debug */ 17929 REG_WR(sc, 0x2114, 0xffffffff); 17930 REG_WR(sc, 0x2120, 0xffffffff); 17931 17932 if (CHIP_IS_E1x(sc)) { 17933 main_mem_size = HC_REG_MAIN_MEMORY_SIZE / 2; /*dwords*/ 17934 main_mem_base = HC_REG_MAIN_MEMORY + 17935 SC_PORT(sc) * (main_mem_size * 4); 17936 main_mem_prty_clr = HC_REG_HC_PRTY_STS_CLR; 17937 main_mem_width = 8; 17938 17939 val = REG_RD(sc, main_mem_prty_clr); 17940 if (val) { 17941 BLOGD(sc, DBG_LOAD, 17942 "Parity errors in HC block during function init (0x%x)!\n", 17943 val); 17944 } 17945 17946 /* Clear "false" parity errors in MSI-X table */ 17947 for (i = main_mem_base; 17948 i < main_mem_base + main_mem_size * 4; 17949 i += main_mem_width) { 17950 bxe_read_dmae(sc, i, main_mem_width / 4); 17951 bxe_write_dmae(sc, BXE_SP_MAPPING(sc, wb_data), 17952 i, main_mem_width / 4); 17953 } 17954 /* Clear HC parity attention */ 17955 REG_RD(sc, main_mem_prty_clr); 17956 } 17957 17958 #if 1 17959 /* Enable STORMs SP logging */ 17960 REG_WR8(sc, BAR_USTRORM_INTMEM + 17961 USTORM_RECORD_SLOW_PATH_OFFSET(SC_FUNC(sc)), 1); 17962 REG_WR8(sc, BAR_TSTRORM_INTMEM + 17963 TSTORM_RECORD_SLOW_PATH_OFFSET(SC_FUNC(sc)), 1); 17964 REG_WR8(sc, BAR_CSTRORM_INTMEM + 17965 CSTORM_RECORD_SLOW_PATH_OFFSET(SC_FUNC(sc)), 1); 17966 REG_WR8(sc, BAR_XSTRORM_INTMEM + 17967 XSTORM_RECORD_SLOW_PATH_OFFSET(SC_FUNC(sc)), 1); 17968 #endif 17969 17970 elink_phy_probe(&sc->link_params); 17971 17972 return (0); 17973 } 17974 17975 static void 17976 bxe_link_reset(struct bxe_softc *sc) 17977 { 17978 if (!BXE_NOMCP(sc)) { 17979 bxe_acquire_phy_lock(sc); 17980 elink_lfa_reset(&sc->link_params, &sc->link_vars); 17981 bxe_release_phy_lock(sc); 17982 } else { 17983 if (!CHIP_REV_IS_SLOW(sc)) { 17984 BLOGW(sc, "Bootcode is missing - cannot reset link\n"); 17985 } 17986 } 17987 } 17988 17989 static void 17990 bxe_reset_port(struct bxe_softc *sc) 17991 { 17992 int port = SC_PORT(sc); 17993 uint32_t val; 17994 17995 /* reset physical Link */ 17996 bxe_link_reset(sc); 17997 17998 REG_WR(sc, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0); 17999 18000 /* Do not rcv packets to BRB */ 18001 REG_WR(sc, NIG_REG_LLH0_BRB1_DRV_MASK + port*4, 0x0); 18002 /* Do not direct rcv packets that are not for MCP to the BRB */ 18003 REG_WR(sc, (port ? NIG_REG_LLH1_BRB1_NOT_MCP : 18004 NIG_REG_LLH0_BRB1_NOT_MCP), 0x0); 18005 18006 /* Configure AEU */ 18007 REG_WR(sc, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, 0); 18008 18009 DELAY(100000); 18010 18011 /* Check for BRB port occupancy */ 18012 val = REG_RD(sc, BRB1_REG_PORT_NUM_OCC_BLOCKS_0 + port*4); 18013 if (val) { 18014 BLOGD(sc, DBG_LOAD, 18015 "BRB1 is not empty, %d blocks are occupied\n", val); 18016 } 18017 18018 /* TODO: Close Doorbell port? */ 18019 } 18020 18021 static void 18022 bxe_ilt_wr(struct bxe_softc *sc, 18023 uint32_t index, 18024 bus_addr_t addr) 18025 { 18026 int reg; 18027 uint32_t wb_write[2]; 18028 18029 if (CHIP_IS_E1(sc)) { 18030 reg = PXP2_REG_RQ_ONCHIP_AT + index*8; 18031 } else { 18032 reg = PXP2_REG_RQ_ONCHIP_AT_B0 + index*8; 18033 } 18034 18035 wb_write[0] = ONCHIP_ADDR1(addr); 18036 wb_write[1] = ONCHIP_ADDR2(addr); 18037 REG_WR_DMAE(sc, reg, wb_write, 2); 18038 } 18039 18040 static void 18041 bxe_clear_func_ilt(struct bxe_softc *sc, 18042 uint32_t func) 18043 { 18044 uint32_t i, base = FUNC_ILT_BASE(func); 18045 for (i = base; i < base + ILT_PER_FUNC; i++) { 18046 bxe_ilt_wr(sc, i, 0); 18047 } 18048 } 18049 18050 static void 18051 bxe_reset_func(struct bxe_softc *sc) 18052 { 18053 struct bxe_fastpath *fp; 18054 int port = SC_PORT(sc); 18055 int func = SC_FUNC(sc); 18056 int i; 18057 18058 /* Disable the function in the FW */ 18059 REG_WR8(sc, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(func), 0); 18060 REG_WR8(sc, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(func), 0); 18061 REG_WR8(sc, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(func), 0); 18062 REG_WR8(sc, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(func), 0); 18063 18064 /* FP SBs */ 18065 FOR_EACH_ETH_QUEUE(sc, i) { 18066 fp = &sc->fp[i]; 18067 REG_WR8(sc, BAR_CSTRORM_INTMEM + 18068 CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET(fp->fw_sb_id), 18069 SB_DISABLED); 18070 } 18071 18072 /* SP SB */ 18073 REG_WR8(sc, BAR_CSTRORM_INTMEM + 18074 CSTORM_SP_STATUS_BLOCK_DATA_STATE_OFFSET(func), 18075 SB_DISABLED); 18076 18077 for (i = 0; i < XSTORM_SPQ_DATA_SIZE / 4; i++) { 18078 REG_WR(sc, BAR_XSTRORM_INTMEM + XSTORM_SPQ_DATA_OFFSET(func), 0); 18079 } 18080 18081 /* Configure IGU */ 18082 if (sc->devinfo.int_block == INT_BLOCK_HC) { 18083 REG_WR(sc, HC_REG_LEADING_EDGE_0 + port*8, 0); 18084 REG_WR(sc, HC_REG_TRAILING_EDGE_0 + port*8, 0); 18085 } else { 18086 REG_WR(sc, IGU_REG_LEADING_EDGE_LATCH, 0); 18087 REG_WR(sc, IGU_REG_TRAILING_EDGE_LATCH, 0); 18088 } 18089 18090 if (CNIC_LOADED(sc)) { 18091 /* Disable Timer scan */ 18092 REG_WR(sc, TM_REG_EN_LINEAR0_TIMER + port*4, 0); 18093 /* 18094 * Wait for at least 10ms and up to 2 second for the timers 18095 * scan to complete 18096 */ 18097 for (i = 0; i < 200; i++) { 18098 DELAY(10000); 18099 if (!REG_RD(sc, TM_REG_LIN0_SCAN_ON + port*4)) 18100 break; 18101 } 18102 } 18103 18104 /* Clear ILT */ 18105 bxe_clear_func_ilt(sc, func); 18106 18107 /* 18108 * Timers workaround bug for E2: if this is vnic-3, 18109 * we need to set the entire ilt range for this timers. 18110 */ 18111 if (!CHIP_IS_E1x(sc) && SC_VN(sc) == 3) { 18112 struct ilt_client_info ilt_cli; 18113 /* use dummy TM client */ 18114 memset(&ilt_cli, 0, sizeof(struct ilt_client_info)); 18115 ilt_cli.start = 0; 18116 ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1; 18117 ilt_cli.client_num = ILT_CLIENT_TM; 18118 18119 ecore_ilt_boundry_init_op(sc, &ilt_cli, 0, INITOP_CLEAR); 18120 } 18121 18122 /* this assumes that reset_port() called before reset_func()*/ 18123 if (!CHIP_IS_E1x(sc)) { 18124 bxe_pf_disable(sc); 18125 } 18126 18127 sc->dmae_ready = 0; 18128 } 18129 18130 static int 18131 bxe_gunzip_init(struct bxe_softc *sc) 18132 { 18133 return (0); 18134 } 18135 18136 static void 18137 bxe_gunzip_end(struct bxe_softc *sc) 18138 { 18139 return; 18140 } 18141 18142 static int 18143 bxe_init_firmware(struct bxe_softc *sc) 18144 { 18145 if (CHIP_IS_E1(sc)) { 18146 ecore_init_e1_firmware(sc); 18147 sc->iro_array = e1_iro_arr; 18148 } else if (CHIP_IS_E1H(sc)) { 18149 ecore_init_e1h_firmware(sc); 18150 sc->iro_array = e1h_iro_arr; 18151 } else if (!CHIP_IS_E1x(sc)) { 18152 ecore_init_e2_firmware(sc); 18153 sc->iro_array = e2_iro_arr; 18154 } else { 18155 BLOGE(sc, "Unsupported chip revision\n"); 18156 return (-1); 18157 } 18158 18159 return (0); 18160 } 18161 18162 static void 18163 bxe_release_firmware(struct bxe_softc *sc) 18164 { 18165 /* Do nothing */ 18166 return; 18167 } 18168 18169 static int 18170 ecore_gunzip(struct bxe_softc *sc, 18171 const uint8_t *zbuf, 18172 int len) 18173 { 18174 /* XXX : Implement... */ 18175 BLOGD(sc, DBG_LOAD, "ECORE_GUNZIP NOT IMPLEMENTED\n"); 18176 return (FALSE); 18177 } 18178 18179 static void 18180 ecore_reg_wr_ind(struct bxe_softc *sc, 18181 uint32_t addr, 18182 uint32_t val) 18183 { 18184 bxe_reg_wr_ind(sc, addr, val); 18185 } 18186 18187 static void 18188 ecore_write_dmae_phys_len(struct bxe_softc *sc, 18189 bus_addr_t phys_addr, 18190 uint32_t addr, 18191 uint32_t len) 18192 { 18193 bxe_write_dmae_phys_len(sc, phys_addr, addr, len); 18194 } 18195 18196 void 18197 ecore_storm_memset_struct(struct bxe_softc *sc, 18198 uint32_t addr, 18199 size_t size, 18200 uint32_t *data) 18201 { 18202 uint8_t i; 18203 for (i = 0; i < size/4; i++) { 18204 REG_WR(sc, addr + (i * 4), data[i]); 18205 } 18206 } 18207 18208 18209 /* 18210 * character device - ioctl interface definitions 18211 */ 18212 18213 18214 #include "bxe_dump.h" 18215 #include "bxe_ioctl.h" 18216 #include <sys/conf.h> 18217 18218 static int bxe_eioctl(struct cdev *dev, u_long cmd, caddr_t data, int fflag, 18219 struct thread *td); 18220 18221 static struct cdevsw bxe_cdevsw = { 18222 .d_version = D_VERSION, 18223 .d_ioctl = bxe_eioctl, 18224 .d_name = "bxecnic", 18225 }; 18226 18227 #define BXE_PATH(sc) (CHIP_IS_E1x(sc) ? 0 : (sc->pcie_func & 1)) 18228 18229 18230 #define DUMP_ALL_PRESETS 0x1FFF 18231 #define DUMP_MAX_PRESETS 13 18232 #define IS_E1_REG(chips) ((chips & DUMP_CHIP_E1) == DUMP_CHIP_E1) 18233 #define IS_E1H_REG(chips) ((chips & DUMP_CHIP_E1H) == DUMP_CHIP_E1H) 18234 #define IS_E2_REG(chips) ((chips & DUMP_CHIP_E2) == DUMP_CHIP_E2) 18235 #define IS_E3A0_REG(chips) ((chips & DUMP_CHIP_E3A0) == DUMP_CHIP_E3A0) 18236 #define IS_E3B0_REG(chips) ((chips & DUMP_CHIP_E3B0) == DUMP_CHIP_E3B0) 18237 18238 #define IS_REG_IN_PRESET(presets, idx) \ 18239 ((presets & (1 << (idx-1))) == (1 << (idx-1))) 18240 18241 18242 static int 18243 bxe_get_preset_regs_len(struct bxe_softc *sc, uint32_t preset) 18244 { 18245 if (CHIP_IS_E1(sc)) 18246 return dump_num_registers[0][preset-1]; 18247 else if (CHIP_IS_E1H(sc)) 18248 return dump_num_registers[1][preset-1]; 18249 else if (CHIP_IS_E2(sc)) 18250 return dump_num_registers[2][preset-1]; 18251 else if (CHIP_IS_E3A0(sc)) 18252 return dump_num_registers[3][preset-1]; 18253 else if (CHIP_IS_E3B0(sc)) 18254 return dump_num_registers[4][preset-1]; 18255 else 18256 return 0; 18257 } 18258 18259 static int 18260 bxe_get_total_regs_len32(struct bxe_softc *sc) 18261 { 18262 uint32_t preset_idx; 18263 int regdump_len32 = 0; 18264 18265 18266 /* Calculate the total preset regs length */ 18267 for (preset_idx = 1; preset_idx <= DUMP_MAX_PRESETS; preset_idx++) { 18268 regdump_len32 += bxe_get_preset_regs_len(sc, preset_idx); 18269 } 18270 18271 return regdump_len32; 18272 } 18273 18274 static const uint32_t * 18275 __bxe_get_page_addr_ar(struct bxe_softc *sc) 18276 { 18277 if (CHIP_IS_E2(sc)) 18278 return page_vals_e2; 18279 else if (CHIP_IS_E3(sc)) 18280 return page_vals_e3; 18281 else 18282 return NULL; 18283 } 18284 18285 static uint32_t 18286 __bxe_get_page_reg_num(struct bxe_softc *sc) 18287 { 18288 if (CHIP_IS_E2(sc)) 18289 return PAGE_MODE_VALUES_E2; 18290 else if (CHIP_IS_E3(sc)) 18291 return PAGE_MODE_VALUES_E3; 18292 else 18293 return 0; 18294 } 18295 18296 static const uint32_t * 18297 __bxe_get_page_write_ar(struct bxe_softc *sc) 18298 { 18299 if (CHIP_IS_E2(sc)) 18300 return page_write_regs_e2; 18301 else if (CHIP_IS_E3(sc)) 18302 return page_write_regs_e3; 18303 else 18304 return NULL; 18305 } 18306 18307 static uint32_t 18308 __bxe_get_page_write_num(struct bxe_softc *sc) 18309 { 18310 if (CHIP_IS_E2(sc)) 18311 return PAGE_WRITE_REGS_E2; 18312 else if (CHIP_IS_E3(sc)) 18313 return PAGE_WRITE_REGS_E3; 18314 else 18315 return 0; 18316 } 18317 18318 static const struct reg_addr * 18319 __bxe_get_page_read_ar(struct bxe_softc *sc) 18320 { 18321 if (CHIP_IS_E2(sc)) 18322 return page_read_regs_e2; 18323 else if (CHIP_IS_E3(sc)) 18324 return page_read_regs_e3; 18325 else 18326 return NULL; 18327 } 18328 18329 static uint32_t 18330 __bxe_get_page_read_num(struct bxe_softc *sc) 18331 { 18332 if (CHIP_IS_E2(sc)) 18333 return PAGE_READ_REGS_E2; 18334 else if (CHIP_IS_E3(sc)) 18335 return PAGE_READ_REGS_E3; 18336 else 18337 return 0; 18338 } 18339 18340 static bool 18341 bxe_is_reg_in_chip(struct bxe_softc *sc, const struct reg_addr *reg_info) 18342 { 18343 if (CHIP_IS_E1(sc)) 18344 return IS_E1_REG(reg_info->chips); 18345 else if (CHIP_IS_E1H(sc)) 18346 return IS_E1H_REG(reg_info->chips); 18347 else if (CHIP_IS_E2(sc)) 18348 return IS_E2_REG(reg_info->chips); 18349 else if (CHIP_IS_E3A0(sc)) 18350 return IS_E3A0_REG(reg_info->chips); 18351 else if (CHIP_IS_E3B0(sc)) 18352 return IS_E3B0_REG(reg_info->chips); 18353 else 18354 return 0; 18355 } 18356 18357 static bool 18358 bxe_is_wreg_in_chip(struct bxe_softc *sc, const struct wreg_addr *wreg_info) 18359 { 18360 if (CHIP_IS_E1(sc)) 18361 return IS_E1_REG(wreg_info->chips); 18362 else if (CHIP_IS_E1H(sc)) 18363 return IS_E1H_REG(wreg_info->chips); 18364 else if (CHIP_IS_E2(sc)) 18365 return IS_E2_REG(wreg_info->chips); 18366 else if (CHIP_IS_E3A0(sc)) 18367 return IS_E3A0_REG(wreg_info->chips); 18368 else if (CHIP_IS_E3B0(sc)) 18369 return IS_E3B0_REG(wreg_info->chips); 18370 else 18371 return 0; 18372 } 18373 18374 /** 18375 * bxe_read_pages_regs - read "paged" registers 18376 * 18377 * @bp device handle 18378 * @p output buffer 18379 * 18380 * Reads "paged" memories: memories that may only be read by first writing to a 18381 * specific address ("write address") and then reading from a specific address 18382 * ("read address"). There may be more than one write address per "page" and 18383 * more than one read address per write address. 18384 */ 18385 static void 18386 bxe_read_pages_regs(struct bxe_softc *sc, uint32_t *p, uint32_t preset) 18387 { 18388 uint32_t i, j, k, n; 18389 18390 /* addresses of the paged registers */ 18391 const uint32_t *page_addr = __bxe_get_page_addr_ar(sc); 18392 /* number of paged registers */ 18393 int num_pages = __bxe_get_page_reg_num(sc); 18394 /* write addresses */ 18395 const uint32_t *write_addr = __bxe_get_page_write_ar(sc); 18396 /* number of write addresses */ 18397 int write_num = __bxe_get_page_write_num(sc); 18398 /* read addresses info */ 18399 const struct reg_addr *read_addr = __bxe_get_page_read_ar(sc); 18400 /* number of read addresses */ 18401 int read_num = __bxe_get_page_read_num(sc); 18402 uint32_t addr, size; 18403 18404 for (i = 0; i < num_pages; i++) { 18405 for (j = 0; j < write_num; j++) { 18406 REG_WR(sc, write_addr[j], page_addr[i]); 18407 18408 for (k = 0; k < read_num; k++) { 18409 if (IS_REG_IN_PRESET(read_addr[k].presets, preset)) { 18410 size = read_addr[k].size; 18411 for (n = 0; n < size; n++) { 18412 addr = read_addr[k].addr + n*4; 18413 *p++ = REG_RD(sc, addr); 18414 } 18415 } 18416 } 18417 } 18418 } 18419 return; 18420 } 18421 18422 18423 static int 18424 bxe_get_preset_regs(struct bxe_softc *sc, uint32_t *p, uint32_t preset) 18425 { 18426 uint32_t i, j, addr; 18427 const struct wreg_addr *wreg_addr_p = NULL; 18428 18429 if (CHIP_IS_E1(sc)) 18430 wreg_addr_p = &wreg_addr_e1; 18431 else if (CHIP_IS_E1H(sc)) 18432 wreg_addr_p = &wreg_addr_e1h; 18433 else if (CHIP_IS_E2(sc)) 18434 wreg_addr_p = &wreg_addr_e2; 18435 else if (CHIP_IS_E3A0(sc)) 18436 wreg_addr_p = &wreg_addr_e3; 18437 else if (CHIP_IS_E3B0(sc)) 18438 wreg_addr_p = &wreg_addr_e3b0; 18439 else 18440 return (-1); 18441 18442 /* Read the idle_chk registers */ 18443 for (i = 0; i < IDLE_REGS_COUNT; i++) { 18444 if (bxe_is_reg_in_chip(sc, &idle_reg_addrs[i]) && 18445 IS_REG_IN_PRESET(idle_reg_addrs[i].presets, preset)) { 18446 for (j = 0; j < idle_reg_addrs[i].size; j++) 18447 *p++ = REG_RD(sc, idle_reg_addrs[i].addr + j*4); 18448 } 18449 } 18450 18451 /* Read the regular registers */ 18452 for (i = 0; i < REGS_COUNT; i++) { 18453 if (bxe_is_reg_in_chip(sc, ®_addrs[i]) && 18454 IS_REG_IN_PRESET(reg_addrs[i].presets, preset)) { 18455 for (j = 0; j < reg_addrs[i].size; j++) 18456 *p++ = REG_RD(sc, reg_addrs[i].addr + j*4); 18457 } 18458 } 18459 18460 /* Read the CAM registers */ 18461 if (bxe_is_wreg_in_chip(sc, wreg_addr_p) && 18462 IS_REG_IN_PRESET(wreg_addr_p->presets, preset)) { 18463 for (i = 0; i < wreg_addr_p->size; i++) { 18464 *p++ = REG_RD(sc, wreg_addr_p->addr + i*4); 18465 18466 /* In case of wreg_addr register, read additional 18467 registers from read_regs array 18468 */ 18469 for (j = 0; j < wreg_addr_p->read_regs_count; j++) { 18470 addr = *(wreg_addr_p->read_regs); 18471 *p++ = REG_RD(sc, addr + j*4); 18472 } 18473 } 18474 } 18475 18476 /* Paged registers are supported in E2 & E3 only */ 18477 if (CHIP_IS_E2(sc) || CHIP_IS_E3(sc)) { 18478 /* Read "paged" registers */ 18479 bxe_read_pages_regs(sc, p, preset); 18480 } 18481 18482 return 0; 18483 } 18484 18485 int 18486 bxe_grc_dump(struct bxe_softc *sc) 18487 { 18488 int rval = 0; 18489 uint32_t preset_idx; 18490 uint8_t *buf; 18491 uint32_t size; 18492 struct dump_header *d_hdr; 18493 uint32_t i; 18494 uint32_t reg_val; 18495 uint32_t reg_addr; 18496 uint32_t cmd_offset; 18497 int context_size; 18498 int allocated; 18499 struct ecore_ilt *ilt = SC_ILT(sc); 18500 struct bxe_fastpath *fp; 18501 struct ilt_client_info *ilt_cli; 18502 int grc_dump_size; 18503 18504 18505 if (sc->grcdump_done || sc->grcdump_started) 18506 return (rval); 18507 18508 sc->grcdump_started = 1; 18509 BLOGI(sc, "Started collecting grcdump\n"); 18510 18511 grc_dump_size = (bxe_get_total_regs_len32(sc) * sizeof(uint32_t)) + 18512 sizeof(struct dump_header); 18513 18514 sc->grc_dump = malloc(grc_dump_size, M_DEVBUF, M_NOWAIT); 18515 18516 if (sc->grc_dump == NULL) { 18517 BLOGW(sc, "Unable to allocate memory for grcdump collection\n"); 18518 return(ENOMEM); 18519 } 18520 18521 18522 18523 /* Disable parity attentions as long as following dump may 18524 * cause false alarms by reading never written registers. We 18525 * will re-enable parity attentions right after the dump. 18526 */ 18527 18528 /* Disable parity on path 0 */ 18529 bxe_pretend_func(sc, 0); 18530 18531 ecore_disable_blocks_parity(sc); 18532 18533 /* Disable parity on path 1 */ 18534 bxe_pretend_func(sc, 1); 18535 ecore_disable_blocks_parity(sc); 18536 18537 /* Return to current function */ 18538 bxe_pretend_func(sc, SC_ABS_FUNC(sc)); 18539 18540 buf = sc->grc_dump; 18541 d_hdr = sc->grc_dump; 18542 18543 d_hdr->header_size = (sizeof(struct dump_header) >> 2) - 1; 18544 d_hdr->version = BNX2X_DUMP_VERSION; 18545 d_hdr->preset = DUMP_ALL_PRESETS; 18546 18547 if (CHIP_IS_E1(sc)) { 18548 d_hdr->dump_meta_data = DUMP_CHIP_E1; 18549 } else if (CHIP_IS_E1H(sc)) { 18550 d_hdr->dump_meta_data = DUMP_CHIP_E1H; 18551 } else if (CHIP_IS_E2(sc)) { 18552 d_hdr->dump_meta_data = DUMP_CHIP_E2 | 18553 (BXE_PATH(sc) ? DUMP_PATH_1 : DUMP_PATH_0); 18554 } else if (CHIP_IS_E3A0(sc)) { 18555 d_hdr->dump_meta_data = DUMP_CHIP_E3A0 | 18556 (BXE_PATH(sc) ? DUMP_PATH_1 : DUMP_PATH_0); 18557 } else if (CHIP_IS_E3B0(sc)) { 18558 d_hdr->dump_meta_data = DUMP_CHIP_E3B0 | 18559 (BXE_PATH(sc) ? DUMP_PATH_1 : DUMP_PATH_0); 18560 } 18561 18562 buf += sizeof(struct dump_header); 18563 18564 for (preset_idx = 1; preset_idx <= DUMP_MAX_PRESETS; preset_idx++) { 18565 18566 /* Skip presets with IOR */ 18567 if ((preset_idx == 2) || (preset_idx == 5) || (preset_idx == 8) || 18568 (preset_idx == 11)) 18569 continue; 18570 18571 rval = bxe_get_preset_regs(sc, (uint32_t *)buf, preset_idx); 18572 18573 if (rval) 18574 break; 18575 18576 size = bxe_get_preset_regs_len(sc, preset_idx) * (sizeof (uint32_t)); 18577 18578 buf += size; 18579 } 18580 18581 bxe_pretend_func(sc, 0); 18582 ecore_clear_blocks_parity(sc); 18583 ecore_enable_blocks_parity(sc); 18584 18585 bxe_pretend_func(sc, 1); 18586 ecore_clear_blocks_parity(sc); 18587 ecore_enable_blocks_parity(sc); 18588 18589 /* Return to current function */ 18590 bxe_pretend_func(sc, SC_ABS_FUNC(sc)); 18591 18592 18593 context_size = (sizeof(union cdu_context) * BXE_L2_CID_COUNT(sc)); 18594 for (i = 0, allocated = 0; allocated < context_size; i++) { 18595 18596 BLOGI(sc, "cdu_context i %d paddr %#jx vaddr %p size 0x%zx\n", i, 18597 (uintmax_t)sc->context[i].vcxt_dma.paddr, 18598 sc->context[i].vcxt_dma.vaddr, 18599 sc->context[i].size); 18600 allocated += sc->context[i].size; 18601 } 18602 BLOGI(sc, "fw stats start_paddr %#jx end_paddr %#jx vaddr %p size 0x%x\n", 18603 (uintmax_t)sc->fw_stats_req_mapping, 18604 (uintmax_t)sc->fw_stats_data_mapping, 18605 sc->fw_stats_req, (sc->fw_stats_req_size + sc->fw_stats_data_size)); 18606 BLOGI(sc, "def_status_block paddr %p vaddr %p size 0x%zx\n", 18607 (void *)sc->def_sb_dma.paddr, sc->def_sb, 18608 sizeof(struct host_sp_status_block)); 18609 BLOGI(sc, "event_queue paddr %#jx vaddr %p size 0x%x\n", 18610 (uintmax_t)sc->eq_dma.paddr, sc->eq_dma.vaddr, BCM_PAGE_SIZE); 18611 BLOGI(sc, "slow path paddr %#jx vaddr %p size 0x%zx\n", 18612 (uintmax_t)sc->sp_dma.paddr, sc->sp_dma.vaddr, 18613 sizeof(struct bxe_slowpath)); 18614 BLOGI(sc, "slow path queue paddr %#jx vaddr %p size 0x%x\n", 18615 (uintmax_t)sc->spq_dma.paddr, sc->spq_dma.vaddr, BCM_PAGE_SIZE); 18616 BLOGI(sc, "fw_buf paddr %#jx vaddr %p size 0x%x\n", 18617 (uintmax_t)sc->gz_buf_dma.paddr, sc->gz_buf_dma.vaddr, 18618 FW_BUF_SIZE); 18619 for (i = 0; i < sc->num_queues; i++) { 18620 fp = &sc->fp[i]; 18621 BLOGI(sc, "FP status block fp %d paddr %#jx vaddr %p size 0x%zx\n", i, 18622 (uintmax_t)fp->sb_dma.paddr, fp->sb_dma.vaddr, 18623 sizeof(union bxe_host_hc_status_block)); 18624 BLOGI(sc, "TX BD CHAIN fp %d paddr %#jx vaddr %p size 0x%x\n", i, 18625 (uintmax_t)fp->tx_dma.paddr, fp->tx_dma.vaddr, 18626 (BCM_PAGE_SIZE * TX_BD_NUM_PAGES)); 18627 BLOGI(sc, "RX BD CHAIN fp %d paddr %#jx vaddr %p size 0x%x\n", i, 18628 (uintmax_t)fp->rx_dma.paddr, fp->rx_dma.vaddr, 18629 (BCM_PAGE_SIZE * RX_BD_NUM_PAGES)); 18630 BLOGI(sc, "RX RCQ CHAIN fp %d paddr %#jx vaddr %p size 0x%zx\n", i, 18631 (uintmax_t)fp->rcq_dma.paddr, fp->rcq_dma.vaddr, 18632 (BCM_PAGE_SIZE * RCQ_NUM_PAGES)); 18633 BLOGI(sc, "RX SGE CHAIN fp %d paddr %#jx vaddr %p size 0x%x\n", i, 18634 (uintmax_t)fp->rx_sge_dma.paddr, fp->rx_sge_dma.vaddr, 18635 (BCM_PAGE_SIZE * RX_SGE_NUM_PAGES)); 18636 } 18637 18638 ilt_cli = &ilt->clients[1]; 18639 for (i = ilt_cli->start; i <= ilt_cli->end; i++) { 18640 BLOGI(sc, "ECORE_ILT paddr %#jx vaddr %p size 0x%x\n", 18641 (uintmax_t)(((struct bxe_dma *)((&ilt->lines[i])->page))->paddr), 18642 ((struct bxe_dma *)((&ilt->lines[i])->page))->vaddr, BCM_PAGE_SIZE); 18643 } 18644 18645 18646 cmd_offset = DMAE_REG_CMD_MEM; 18647 for (i = 0; i < 224; i++) { 18648 reg_addr = (cmd_offset +(i * 4)); 18649 reg_val = REG_RD(sc, reg_addr); 18650 BLOGI(sc, "DMAE_REG_CMD_MEM i=%d reg_addr 0x%x reg_val 0x%08x\n",i, 18651 reg_addr, reg_val); 18652 } 18653 18654 18655 BLOGI(sc, "Collection of grcdump done\n"); 18656 sc->grcdump_done = 1; 18657 return(rval); 18658 } 18659 18660 static int 18661 bxe_add_cdev(struct bxe_softc *sc) 18662 { 18663 sc->eeprom = malloc(BXE_EEPROM_MAX_DATA_LEN, M_DEVBUF, M_NOWAIT); 18664 18665 if (sc->eeprom == NULL) { 18666 BLOGW(sc, "Unable to alloc for eeprom size buffer\n"); 18667 return (-1); 18668 } 18669 18670 sc->ioctl_dev = make_dev(&bxe_cdevsw, 18671 sc->ifp->if_dunit, 18672 UID_ROOT, 18673 GID_WHEEL, 18674 0600, 18675 "%s", 18676 if_name(sc->ifp)); 18677 18678 if (sc->ioctl_dev == NULL) { 18679 free(sc->eeprom, M_DEVBUF); 18680 sc->eeprom = NULL; 18681 return (-1); 18682 } 18683 18684 sc->ioctl_dev->si_drv1 = sc; 18685 18686 return (0); 18687 } 18688 18689 static void 18690 bxe_del_cdev(struct bxe_softc *sc) 18691 { 18692 if (sc->ioctl_dev != NULL) 18693 destroy_dev(sc->ioctl_dev); 18694 18695 if (sc->eeprom != NULL) { 18696 free(sc->eeprom, M_DEVBUF); 18697 sc->eeprom = NULL; 18698 } 18699 sc->ioctl_dev = NULL; 18700 18701 return; 18702 } 18703 18704 static bool bxe_is_nvram_accessible(struct bxe_softc *sc) 18705 { 18706 18707 if ((if_getdrvflags(sc->ifp) & IFF_DRV_RUNNING) == 0) 18708 return FALSE; 18709 18710 return TRUE; 18711 } 18712 18713 18714 static int 18715 bxe_wr_eeprom(struct bxe_softc *sc, void *data, uint32_t offset, uint32_t len) 18716 { 18717 int rval = 0; 18718 18719 if(!bxe_is_nvram_accessible(sc)) { 18720 BLOGW(sc, "Cannot access eeprom when interface is down\n"); 18721 return (-EAGAIN); 18722 } 18723 rval = bxe_nvram_write(sc, offset, (uint8_t *)data, len); 18724 18725 18726 return (rval); 18727 } 18728 18729 static int 18730 bxe_rd_eeprom(struct bxe_softc *sc, void *data, uint32_t offset, uint32_t len) 18731 { 18732 int rval = 0; 18733 18734 if(!bxe_is_nvram_accessible(sc)) { 18735 BLOGW(sc, "Cannot access eeprom when interface is down\n"); 18736 return (-EAGAIN); 18737 } 18738 rval = bxe_nvram_read(sc, offset, (uint8_t *)data, len); 18739 18740 return (rval); 18741 } 18742 18743 static int 18744 bxe_eeprom_rd_wr(struct bxe_softc *sc, bxe_eeprom_t *eeprom) 18745 { 18746 int rval = 0; 18747 18748 switch (eeprom->eeprom_cmd) { 18749 18750 case BXE_EEPROM_CMD_SET_EEPROM: 18751 18752 rval = copyin(eeprom->eeprom_data, sc->eeprom, 18753 eeprom->eeprom_data_len); 18754 18755 if (rval) 18756 break; 18757 18758 rval = bxe_wr_eeprom(sc, sc->eeprom, eeprom->eeprom_offset, 18759 eeprom->eeprom_data_len); 18760 break; 18761 18762 case BXE_EEPROM_CMD_GET_EEPROM: 18763 18764 rval = bxe_rd_eeprom(sc, sc->eeprom, eeprom->eeprom_offset, 18765 eeprom->eeprom_data_len); 18766 18767 if (rval) { 18768 break; 18769 } 18770 18771 rval = copyout(sc->eeprom, eeprom->eeprom_data, 18772 eeprom->eeprom_data_len); 18773 break; 18774 18775 default: 18776 rval = EINVAL; 18777 break; 18778 } 18779 18780 if (rval) { 18781 BLOGW(sc, "ioctl cmd %d failed rval %d\n", eeprom->eeprom_cmd, rval); 18782 } 18783 18784 return (rval); 18785 } 18786 18787 static int 18788 bxe_get_settings(struct bxe_softc *sc, bxe_dev_setting_t *dev_p) 18789 { 18790 uint32_t ext_phy_config; 18791 int port = SC_PORT(sc); 18792 int cfg_idx = bxe_get_link_cfg_idx(sc); 18793 18794 dev_p->supported = sc->port.supported[cfg_idx] | 18795 (sc->port.supported[cfg_idx ^ 1] & 18796 (ELINK_SUPPORTED_TP | ELINK_SUPPORTED_FIBRE)); 18797 dev_p->advertising = sc->port.advertising[cfg_idx]; 18798 if(sc->link_params.phy[bxe_get_cur_phy_idx(sc)].media_type == 18799 ELINK_ETH_PHY_SFP_1G_FIBER) { 18800 dev_p->supported = ~(ELINK_SUPPORTED_10000baseT_Full); 18801 dev_p->advertising &= ~(ADVERTISED_10000baseT_Full); 18802 } 18803 if ((sc->state == BXE_STATE_OPEN) && sc->link_vars.link_up && 18804 !(sc->flags & BXE_MF_FUNC_DIS)) { 18805 dev_p->duplex = sc->link_vars.duplex; 18806 if (IS_MF(sc) && !BXE_NOMCP(sc)) 18807 dev_p->speed = bxe_get_mf_speed(sc); 18808 else 18809 dev_p->speed = sc->link_vars.line_speed; 18810 } else { 18811 dev_p->duplex = DUPLEX_UNKNOWN; 18812 dev_p->speed = SPEED_UNKNOWN; 18813 } 18814 18815 dev_p->port = bxe_media_detect(sc); 18816 18817 ext_phy_config = SHMEM_RD(sc, 18818 dev_info.port_hw_config[port].external_phy_config); 18819 if((ext_phy_config & PORT_HW_CFG_XGXS_EXT_PHY_TYPE_MASK) == 18820 PORT_HW_CFG_XGXS_EXT_PHY_TYPE_DIRECT) 18821 dev_p->phy_address = sc->port.phy_addr; 18822 else if(((ext_phy_config & PORT_HW_CFG_XGXS_EXT_PHY_TYPE_MASK) != 18823 PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE) && 18824 ((ext_phy_config & PORT_HW_CFG_XGXS_EXT_PHY_TYPE_MASK) != 18825 PORT_HW_CFG_XGXS_EXT_PHY_TYPE_NOT_CONN)) 18826 dev_p->phy_address = ELINK_XGXS_EXT_PHY_ADDR(ext_phy_config); 18827 else 18828 dev_p->phy_address = 0; 18829 18830 if(sc->link_params.req_line_speed[cfg_idx] == ELINK_SPEED_AUTO_NEG) 18831 dev_p->autoneg = AUTONEG_ENABLE; 18832 else 18833 dev_p->autoneg = AUTONEG_DISABLE; 18834 18835 18836 return 0; 18837 } 18838 18839 static int 18840 bxe_eioctl(struct cdev *dev, u_long cmd, caddr_t data, int fflag, 18841 struct thread *td) 18842 { 18843 struct bxe_softc *sc; 18844 int rval = 0; 18845 device_t pci_dev; 18846 bxe_grcdump_t *dump = NULL; 18847 int grc_dump_size; 18848 bxe_drvinfo_t *drv_infop = NULL; 18849 bxe_dev_setting_t *dev_p; 18850 bxe_dev_setting_t dev_set; 18851 bxe_get_regs_t *reg_p; 18852 bxe_reg_rdw_t *reg_rdw_p; 18853 bxe_pcicfg_rdw_t *cfg_rdw_p; 18854 bxe_perm_mac_addr_t *mac_addr_p; 18855 18856 18857 if ((sc = (struct bxe_softc *)dev->si_drv1) == NULL) 18858 return ENXIO; 18859 18860 pci_dev= sc->dev; 18861 18862 dump = (bxe_grcdump_t *)data; 18863 18864 switch(cmd) { 18865 18866 case BXE_GRC_DUMP_SIZE: 18867 dump->pci_func = sc->pcie_func; 18868 dump->grcdump_size = 18869 (bxe_get_total_regs_len32(sc) * sizeof(uint32_t)) + 18870 sizeof(struct dump_header); 18871 break; 18872 18873 case BXE_GRC_DUMP: 18874 18875 grc_dump_size = (bxe_get_total_regs_len32(sc) * sizeof(uint32_t)) + 18876 sizeof(struct dump_header); 18877 if ((!sc->trigger_grcdump) || (dump->grcdump == NULL) || 18878 (dump->grcdump_size < grc_dump_size)) { 18879 rval = EINVAL; 18880 break; 18881 } 18882 18883 if((sc->trigger_grcdump) && (!sc->grcdump_done) && 18884 (!sc->grcdump_started)) { 18885 rval = bxe_grc_dump(sc); 18886 } 18887 18888 if((!rval) && (sc->grcdump_done) && (sc->grcdump_started) && 18889 (sc->grc_dump != NULL)) { 18890 dump->grcdump_dwords = grc_dump_size >> 2; 18891 rval = copyout(sc->grc_dump, dump->grcdump, grc_dump_size); 18892 free(sc->grc_dump, M_DEVBUF); 18893 sc->grc_dump = NULL; 18894 sc->grcdump_started = 0; 18895 sc->grcdump_done = 0; 18896 } 18897 18898 break; 18899 18900 case BXE_DRV_INFO: 18901 drv_infop = (bxe_drvinfo_t *)data; 18902 snprintf(drv_infop->drv_name, BXE_DRV_NAME_LENGTH, "%s", "bxe"); 18903 snprintf(drv_infop->drv_version, BXE_DRV_VERSION_LENGTH, "v:%s", 18904 BXE_DRIVER_VERSION); 18905 snprintf(drv_infop->mfw_version, BXE_MFW_VERSION_LENGTH, "%s", 18906 sc->devinfo.bc_ver_str); 18907 snprintf(drv_infop->stormfw_version, BXE_STORMFW_VERSION_LENGTH, 18908 "%s", sc->fw_ver_str); 18909 drv_infop->eeprom_dump_len = sc->devinfo.flash_size; 18910 drv_infop->reg_dump_len = 18911 (bxe_get_total_regs_len32(sc) * sizeof(uint32_t)) 18912 + sizeof(struct dump_header); 18913 snprintf(drv_infop->bus_info, BXE_BUS_INFO_LENGTH, "%d:%d:%d", 18914 sc->pcie_bus, sc->pcie_device, sc->pcie_func); 18915 break; 18916 18917 case BXE_DEV_SETTING: 18918 dev_p = (bxe_dev_setting_t *)data; 18919 bxe_get_settings(sc, &dev_set); 18920 dev_p->supported = dev_set.supported; 18921 dev_p->advertising = dev_set.advertising; 18922 dev_p->speed = dev_set.speed; 18923 dev_p->duplex = dev_set.duplex; 18924 dev_p->port = dev_set.port; 18925 dev_p->phy_address = dev_set.phy_address; 18926 dev_p->autoneg = dev_set.autoneg; 18927 18928 break; 18929 18930 case BXE_GET_REGS: 18931 18932 reg_p = (bxe_get_regs_t *)data; 18933 grc_dump_size = reg_p->reg_buf_len; 18934 18935 if((!sc->grcdump_done) && (!sc->grcdump_started)) { 18936 bxe_grc_dump(sc); 18937 } 18938 if((sc->grcdump_done) && (sc->grcdump_started) && 18939 (sc->grc_dump != NULL)) { 18940 rval = copyout(sc->grc_dump, reg_p->reg_buf, grc_dump_size); 18941 free(sc->grc_dump, M_DEVBUF); 18942 sc->grc_dump = NULL; 18943 sc->grcdump_started = 0; 18944 sc->grcdump_done = 0; 18945 } 18946 18947 break; 18948 18949 case BXE_RDW_REG: 18950 reg_rdw_p = (bxe_reg_rdw_t *)data; 18951 if((reg_rdw_p->reg_cmd == BXE_READ_REG_CMD) && 18952 (reg_rdw_p->reg_access_type == BXE_REG_ACCESS_DIRECT)) 18953 reg_rdw_p->reg_val = REG_RD(sc, reg_rdw_p->reg_id); 18954 18955 if((reg_rdw_p->reg_cmd == BXE_WRITE_REG_CMD) && 18956 (reg_rdw_p->reg_access_type == BXE_REG_ACCESS_DIRECT)) 18957 REG_WR(sc, reg_rdw_p->reg_id, reg_rdw_p->reg_val); 18958 18959 break; 18960 18961 case BXE_RDW_PCICFG: 18962 cfg_rdw_p = (bxe_pcicfg_rdw_t *)data; 18963 if(cfg_rdw_p->cfg_cmd == BXE_READ_PCICFG) { 18964 18965 cfg_rdw_p->cfg_val = pci_read_config(sc->dev, cfg_rdw_p->cfg_id, 18966 cfg_rdw_p->cfg_width); 18967 18968 } else if(cfg_rdw_p->cfg_cmd == BXE_WRITE_PCICFG) { 18969 pci_write_config(sc->dev, cfg_rdw_p->cfg_id, cfg_rdw_p->cfg_val, 18970 cfg_rdw_p->cfg_width); 18971 } else { 18972 BLOGW(sc, "BXE_RDW_PCICFG ioctl wrong cmd passed\n"); 18973 } 18974 break; 18975 18976 case BXE_MAC_ADDR: 18977 mac_addr_p = (bxe_perm_mac_addr_t *)data; 18978 snprintf(mac_addr_p->mac_addr_str, sizeof(sc->mac_addr_str), "%s", 18979 sc->mac_addr_str); 18980 break; 18981 18982 case BXE_EEPROM: 18983 rval = bxe_eeprom_rd_wr(sc, (bxe_eeprom_t *)data); 18984 break; 18985 18986 18987 default: 18988 break; 18989 } 18990 18991 return (rval); 18992 } 18993