xref: /freebsd/sys/dev/bxe/bxe.c (revision d356ca0c3ffa363d5bfbc237b44f53b3f88fd415)
1 /*-
2  * Copyright (c) 2007-2014 QLogic Corporation. All rights reserved.
3  *
4  * Redistribution and use in source and binary forms, with or without
5  * modification, are permitted provided that the following conditions
6  * are met:
7  *
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS'
15  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS
18  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
19  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
20  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
21  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
22  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
23  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
24  * THE POSSIBILITY OF SUCH DAMAGE.
25  */
26 
27 #include <sys/cdefs.h>
28 __FBSDID("$FreeBSD$");
29 
30 #define BXE_DRIVER_VERSION "1.78.79"
31 
32 #include "bxe.h"
33 #include "ecore_sp.h"
34 #include "ecore_init.h"
35 #include "ecore_init_ops.h"
36 
37 #include "57710_int_offsets.h"
38 #include "57711_int_offsets.h"
39 #include "57712_int_offsets.h"
40 
41 /*
42  * CTLTYPE_U64 and sysctl_handle_64 were added in r217616. Define these
43  * explicitly here for older kernels that don't include this changeset.
44  */
45 #ifndef CTLTYPE_U64
46 #define CTLTYPE_U64      CTLTYPE_QUAD
47 #define sysctl_handle_64 sysctl_handle_quad
48 #endif
49 
50 /*
51  * CSUM_TCP_IPV6 and CSUM_UDP_IPV6 were added in r236170. Define these
52  * here as zero(0) for older kernels that don't include this changeset
53  * thereby masking the functionality.
54  */
55 #ifndef CSUM_TCP_IPV6
56 #define CSUM_TCP_IPV6 0
57 #define CSUM_UDP_IPV6 0
58 #endif
59 
60 /*
61  * pci_find_cap was added in r219865. Re-define this at pci_find_extcap
62  * for older kernels that don't include this changeset.
63  */
64 #if __FreeBSD_version < 900035
65 #define pci_find_cap pci_find_extcap
66 #endif
67 
68 #define BXE_DEF_SB_ATT_IDX 0x0001
69 #define BXE_DEF_SB_IDX     0x0002
70 
71 /*
72  * FLR Support - bxe_pf_flr_clnup() is called during nic_load in the per
73  * function HW initialization.
74  */
75 #define FLR_WAIT_USEC     10000 /* 10 msecs */
76 #define FLR_WAIT_INTERVAL 50    /* usecs */
77 #define FLR_POLL_CNT      (FLR_WAIT_USEC / FLR_WAIT_INTERVAL) /* 200 */
78 
79 struct pbf_pN_buf_regs {
80     int pN;
81     uint32_t init_crd;
82     uint32_t crd;
83     uint32_t crd_freed;
84 };
85 
86 struct pbf_pN_cmd_regs {
87     int pN;
88     uint32_t lines_occup;
89     uint32_t lines_freed;
90 };
91 
92 /*
93  * PCI Device ID Table used by bxe_probe().
94  */
95 #define BXE_DEVDESC_MAX 64
96 static struct bxe_device_type bxe_devs[] = {
97     {
98         BRCM_VENDORID,
99         CHIP_NUM_57710,
100         PCI_ANY_ID, PCI_ANY_ID,
101         "QLogic NetXtreme II BCM57710 10GbE"
102     },
103     {
104         BRCM_VENDORID,
105         CHIP_NUM_57711,
106         PCI_ANY_ID, PCI_ANY_ID,
107         "QLogic NetXtreme II BCM57711 10GbE"
108     },
109     {
110         BRCM_VENDORID,
111         CHIP_NUM_57711E,
112         PCI_ANY_ID, PCI_ANY_ID,
113         "QLogic NetXtreme II BCM57711E 10GbE"
114     },
115     {
116         BRCM_VENDORID,
117         CHIP_NUM_57712,
118         PCI_ANY_ID, PCI_ANY_ID,
119         "QLogic NetXtreme II BCM57712 10GbE"
120     },
121     {
122         BRCM_VENDORID,
123         CHIP_NUM_57712_MF,
124         PCI_ANY_ID, PCI_ANY_ID,
125         "QLogic NetXtreme II BCM57712 MF 10GbE"
126     },
127 #if 0
128     {
129         BRCM_VENDORID,
130         CHIP_NUM_57712_VF,
131         PCI_ANY_ID, PCI_ANY_ID,
132         "QLogic NetXtreme II BCM57712 VF 10GbE"
133     },
134 #endif
135     {
136         BRCM_VENDORID,
137         CHIP_NUM_57800,
138         PCI_ANY_ID, PCI_ANY_ID,
139         "QLogic NetXtreme II BCM57800 10GbE"
140     },
141     {
142         BRCM_VENDORID,
143         CHIP_NUM_57800_MF,
144         PCI_ANY_ID, PCI_ANY_ID,
145         "QLogic NetXtreme II BCM57800 MF 10GbE"
146     },
147 #if 0
148     {
149         BRCM_VENDORID,
150         CHIP_NUM_57800_VF,
151         PCI_ANY_ID, PCI_ANY_ID,
152         "QLogic NetXtreme II BCM57800 VF 10GbE"
153     },
154 #endif
155     {
156         BRCM_VENDORID,
157         CHIP_NUM_57810,
158         PCI_ANY_ID, PCI_ANY_ID,
159         "QLogic NetXtreme II BCM57810 10GbE"
160     },
161     {
162         BRCM_VENDORID,
163         CHIP_NUM_57810_MF,
164         PCI_ANY_ID, PCI_ANY_ID,
165         "QLogic NetXtreme II BCM57810 MF 10GbE"
166     },
167 #if 0
168     {
169         BRCM_VENDORID,
170         CHIP_NUM_57810_VF,
171         PCI_ANY_ID, PCI_ANY_ID,
172         "QLogic NetXtreme II BCM57810 VF 10GbE"
173     },
174 #endif
175     {
176         BRCM_VENDORID,
177         CHIP_NUM_57811,
178         PCI_ANY_ID, PCI_ANY_ID,
179         "QLogic NetXtreme II BCM57811 10GbE"
180     },
181     {
182         BRCM_VENDORID,
183         CHIP_NUM_57811_MF,
184         PCI_ANY_ID, PCI_ANY_ID,
185         "QLogic NetXtreme II BCM57811 MF 10GbE"
186     },
187 #if 0
188     {
189         BRCM_VENDORID,
190         CHIP_NUM_57811_VF,
191         PCI_ANY_ID, PCI_ANY_ID,
192         "QLogic NetXtreme II BCM57811 VF 10GbE"
193     },
194 #endif
195     {
196         BRCM_VENDORID,
197         CHIP_NUM_57840_4_10,
198         PCI_ANY_ID, PCI_ANY_ID,
199         "QLogic NetXtreme II BCM57840 4x10GbE"
200     },
201 #if 0
202     {
203         BRCM_VENDORID,
204         CHIP_NUM_57840_2_20,
205         PCI_ANY_ID, PCI_ANY_ID,
206         "QLogic NetXtreme II BCM57840 2x20GbE"
207     },
208 #endif
209     {
210         BRCM_VENDORID,
211         CHIP_NUM_57840_MF,
212         PCI_ANY_ID, PCI_ANY_ID,
213         "QLogic NetXtreme II BCM57840 MF 10GbE"
214     },
215 #if 0
216     {
217         BRCM_VENDORID,
218         CHIP_NUM_57840_VF,
219         PCI_ANY_ID, PCI_ANY_ID,
220         "QLogic NetXtreme II BCM57840 VF 10GbE"
221     },
222 #endif
223     {
224         0, 0, 0, 0, NULL
225     }
226 };
227 
228 MALLOC_DECLARE(M_BXE_ILT);
229 MALLOC_DEFINE(M_BXE_ILT, "bxe_ilt", "bxe ILT pointer");
230 
231 /*
232  * FreeBSD device entry points.
233  */
234 static int bxe_probe(device_t);
235 static int bxe_attach(device_t);
236 static int bxe_detach(device_t);
237 static int bxe_shutdown(device_t);
238 
239 /*
240  * FreeBSD KLD module/device interface event handler method.
241  */
242 static device_method_t bxe_methods[] = {
243     /* Device interface (device_if.h) */
244     DEVMETHOD(device_probe,     bxe_probe),
245     DEVMETHOD(device_attach,    bxe_attach),
246     DEVMETHOD(device_detach,    bxe_detach),
247     DEVMETHOD(device_shutdown,  bxe_shutdown),
248 #if 0
249     DEVMETHOD(device_suspend,   bxe_suspend),
250     DEVMETHOD(device_resume,    bxe_resume),
251 #endif
252     /* Bus interface (bus_if.h) */
253     DEVMETHOD(bus_print_child,  bus_generic_print_child),
254     DEVMETHOD(bus_driver_added, bus_generic_driver_added),
255     KOBJMETHOD_END
256 };
257 
258 /*
259  * FreeBSD KLD Module data declaration
260  */
261 static driver_t bxe_driver = {
262     "bxe",                   /* module name */
263     bxe_methods,             /* event handler */
264     sizeof(struct bxe_softc) /* extra data */
265 };
266 
267 /*
268  * FreeBSD dev class is needed to manage dev instances and
269  * to associate with a bus type
270  */
271 static devclass_t bxe_devclass;
272 
273 MODULE_DEPEND(bxe, pci, 1, 1, 1);
274 MODULE_DEPEND(bxe, ether, 1, 1, 1);
275 DRIVER_MODULE(bxe, pci, bxe_driver, bxe_devclass, 0, 0);
276 
277 /* resources needed for unloading a previously loaded device */
278 
279 #define BXE_PREV_WAIT_NEEDED 1
280 struct mtx bxe_prev_mtx;
281 MTX_SYSINIT(bxe_prev_mtx, &bxe_prev_mtx, "bxe_prev_lock", MTX_DEF);
282 struct bxe_prev_list_node {
283     LIST_ENTRY(bxe_prev_list_node) node;
284     uint8_t bus;
285     uint8_t slot;
286     uint8_t path;
287     uint8_t aer; /* XXX automatic error recovery */
288     uint8_t undi;
289 };
290 static LIST_HEAD(, bxe_prev_list_node) bxe_prev_list = LIST_HEAD_INITIALIZER(bxe_prev_list);
291 
292 static int load_count[2][3] = { {0} }; /* per-path: 0-common, 1-port0, 2-port1 */
293 
294 /* Tunable device values... */
295 
296 SYSCTL_NODE(_hw, OID_AUTO, bxe, CTLFLAG_RD, 0, "bxe driver parameters");
297 
298 /* Debug */
299 unsigned long bxe_debug = 0;
300 SYSCTL_ULONG(_hw_bxe, OID_AUTO, debug, CTLFLAG_RDTUN,
301              &bxe_debug, 0, "Debug logging mode");
302 
303 /* Interrupt Mode: 0 (IRQ), 1 (MSI/IRQ), and 2 (MSI-X/MSI/IRQ) */
304 static int bxe_interrupt_mode = INTR_MODE_MSIX;
305 SYSCTL_INT(_hw_bxe, OID_AUTO, interrupt_mode, CTLFLAG_RDTUN,
306            &bxe_interrupt_mode, 0, "Interrupt (MSI-X/MSI/INTx) mode");
307 
308 /* Number of Queues: 0 (Auto) or 1 to 16 (fixed queue number) */
309 static int bxe_queue_count = 4;
310 SYSCTL_INT(_hw_bxe, OID_AUTO, queue_count, CTLFLAG_RDTUN,
311            &bxe_queue_count, 0, "Multi-Queue queue count");
312 
313 /* max number of buffers per queue (default RX_BD_USABLE) */
314 static int bxe_max_rx_bufs = 0;
315 SYSCTL_INT(_hw_bxe, OID_AUTO, max_rx_bufs, CTLFLAG_RDTUN,
316            &bxe_max_rx_bufs, 0, "Maximum Number of Rx Buffers Per Queue");
317 
318 /* Host interrupt coalescing RX tick timer (usecs) */
319 static int bxe_hc_rx_ticks = 25;
320 SYSCTL_INT(_hw_bxe, OID_AUTO, hc_rx_ticks, CTLFLAG_RDTUN,
321            &bxe_hc_rx_ticks, 0, "Host Coalescing Rx ticks");
322 
323 /* Host interrupt coalescing TX tick timer (usecs) */
324 static int bxe_hc_tx_ticks = 50;
325 SYSCTL_INT(_hw_bxe, OID_AUTO, hc_tx_ticks, CTLFLAG_RDTUN,
326            &bxe_hc_tx_ticks, 0, "Host Coalescing Tx ticks");
327 
328 /* Maximum number of Rx packets to process at a time */
329 static int bxe_rx_budget = 0xffffffff;
330 SYSCTL_INT(_hw_bxe, OID_AUTO, rx_budget, CTLFLAG_TUN,
331            &bxe_rx_budget, 0, "Rx processing budget");
332 
333 /* Maximum LRO aggregation size */
334 static int bxe_max_aggregation_size = 0;
335 SYSCTL_INT(_hw_bxe, OID_AUTO, max_aggregation_size, CTLFLAG_TUN,
336            &bxe_max_aggregation_size, 0, "max aggregation size");
337 
338 /* PCI MRRS: -1 (Auto), 0 (128B), 1 (256B), 2 (512B), 3 (1KB) */
339 static int bxe_mrrs = -1;
340 SYSCTL_INT(_hw_bxe, OID_AUTO, mrrs, CTLFLAG_RDTUN,
341            &bxe_mrrs, 0, "PCIe maximum read request size");
342 
343 /* AutoGrEEEn: 0 (hardware default), 1 (force on), 2 (force off) */
344 static int bxe_autogreeen = 0;
345 SYSCTL_INT(_hw_bxe, OID_AUTO, autogreeen, CTLFLAG_RDTUN,
346            &bxe_autogreeen, 0, "AutoGrEEEn support");
347 
348 /* 4-tuple RSS support for UDP: 0 (disabled), 1 (enabled) */
349 static int bxe_udp_rss = 0;
350 SYSCTL_INT(_hw_bxe, OID_AUTO, udp_rss, CTLFLAG_RDTUN,
351            &bxe_udp_rss, 0, "UDP RSS support");
352 
353 
354 #define STAT_NAME_LEN 32 /* no stat names below can be longer than this */
355 
356 #define STATS_OFFSET32(stat_name)                   \
357     (offsetof(struct bxe_eth_stats, stat_name) / 4)
358 
359 #define Q_STATS_OFFSET32(stat_name)                   \
360     (offsetof(struct bxe_eth_q_stats, stat_name) / 4)
361 
362 static const struct {
363     uint32_t offset;
364     uint32_t size;
365     uint32_t flags;
366 #define STATS_FLAGS_PORT  1
367 #define STATS_FLAGS_FUNC  2 /* MF only cares about function stats */
368 #define STATS_FLAGS_BOTH  (STATS_FLAGS_FUNC | STATS_FLAGS_PORT)
369     char string[STAT_NAME_LEN];
370 } bxe_eth_stats_arr[] = {
371     { STATS_OFFSET32(total_bytes_received_hi),
372                 8, STATS_FLAGS_BOTH, "rx_bytes" },
373     { STATS_OFFSET32(error_bytes_received_hi),
374                 8, STATS_FLAGS_BOTH, "rx_error_bytes" },
375     { STATS_OFFSET32(total_unicast_packets_received_hi),
376                 8, STATS_FLAGS_BOTH, "rx_ucast_packets" },
377     { STATS_OFFSET32(total_multicast_packets_received_hi),
378                 8, STATS_FLAGS_BOTH, "rx_mcast_packets" },
379     { STATS_OFFSET32(total_broadcast_packets_received_hi),
380                 8, STATS_FLAGS_BOTH, "rx_bcast_packets" },
381     { STATS_OFFSET32(rx_stat_dot3statsfcserrors_hi),
382                 8, STATS_FLAGS_PORT, "rx_crc_errors" },
383     { STATS_OFFSET32(rx_stat_dot3statsalignmenterrors_hi),
384                 8, STATS_FLAGS_PORT, "rx_align_errors" },
385     { STATS_OFFSET32(rx_stat_etherstatsundersizepkts_hi),
386                 8, STATS_FLAGS_PORT, "rx_undersize_packets" },
387     { STATS_OFFSET32(etherstatsoverrsizepkts_hi),
388                 8, STATS_FLAGS_PORT, "rx_oversize_packets" },
389     { STATS_OFFSET32(rx_stat_etherstatsfragments_hi),
390                 8, STATS_FLAGS_PORT, "rx_fragments" },
391     { STATS_OFFSET32(rx_stat_etherstatsjabbers_hi),
392                 8, STATS_FLAGS_PORT, "rx_jabbers" },
393     { STATS_OFFSET32(no_buff_discard_hi),
394                 8, STATS_FLAGS_BOTH, "rx_discards" },
395     { STATS_OFFSET32(mac_filter_discard),
396                 4, STATS_FLAGS_PORT, "rx_filtered_packets" },
397     { STATS_OFFSET32(mf_tag_discard),
398                 4, STATS_FLAGS_PORT, "rx_mf_tag_discard" },
399     { STATS_OFFSET32(pfc_frames_received_hi),
400                 8, STATS_FLAGS_PORT, "pfc_frames_received" },
401     { STATS_OFFSET32(pfc_frames_sent_hi),
402                 8, STATS_FLAGS_PORT, "pfc_frames_sent" },
403     { STATS_OFFSET32(brb_drop_hi),
404                 8, STATS_FLAGS_PORT, "rx_brb_discard" },
405     { STATS_OFFSET32(brb_truncate_hi),
406                 8, STATS_FLAGS_PORT, "rx_brb_truncate" },
407     { STATS_OFFSET32(pause_frames_received_hi),
408                 8, STATS_FLAGS_PORT, "rx_pause_frames" },
409     { STATS_OFFSET32(rx_stat_maccontrolframesreceived_hi),
410                 8, STATS_FLAGS_PORT, "rx_mac_ctrl_frames" },
411     { STATS_OFFSET32(nig_timer_max),
412                 4, STATS_FLAGS_PORT, "rx_constant_pause_events" },
413     { STATS_OFFSET32(total_bytes_transmitted_hi),
414                 8, STATS_FLAGS_BOTH, "tx_bytes" },
415     { STATS_OFFSET32(tx_stat_ifhcoutbadoctets_hi),
416                 8, STATS_FLAGS_PORT, "tx_error_bytes" },
417     { STATS_OFFSET32(total_unicast_packets_transmitted_hi),
418                 8, STATS_FLAGS_BOTH, "tx_ucast_packets" },
419     { STATS_OFFSET32(total_multicast_packets_transmitted_hi),
420                 8, STATS_FLAGS_BOTH, "tx_mcast_packets" },
421     { STATS_OFFSET32(total_broadcast_packets_transmitted_hi),
422                 8, STATS_FLAGS_BOTH, "tx_bcast_packets" },
423     { STATS_OFFSET32(tx_stat_dot3statsinternalmactransmiterrors_hi),
424                 8, STATS_FLAGS_PORT, "tx_mac_errors" },
425     { STATS_OFFSET32(rx_stat_dot3statscarriersenseerrors_hi),
426                 8, STATS_FLAGS_PORT, "tx_carrier_errors" },
427     { STATS_OFFSET32(tx_stat_dot3statssinglecollisionframes_hi),
428                 8, STATS_FLAGS_PORT, "tx_single_collisions" },
429     { STATS_OFFSET32(tx_stat_dot3statsmultiplecollisionframes_hi),
430                 8, STATS_FLAGS_PORT, "tx_multi_collisions" },
431     { STATS_OFFSET32(tx_stat_dot3statsdeferredtransmissions_hi),
432                 8, STATS_FLAGS_PORT, "tx_deferred" },
433     { STATS_OFFSET32(tx_stat_dot3statsexcessivecollisions_hi),
434                 8, STATS_FLAGS_PORT, "tx_excess_collisions" },
435     { STATS_OFFSET32(tx_stat_dot3statslatecollisions_hi),
436                 8, STATS_FLAGS_PORT, "tx_late_collisions" },
437     { STATS_OFFSET32(tx_stat_etherstatscollisions_hi),
438                 8, STATS_FLAGS_PORT, "tx_total_collisions" },
439     { STATS_OFFSET32(tx_stat_etherstatspkts64octets_hi),
440                 8, STATS_FLAGS_PORT, "tx_64_byte_packets" },
441     { STATS_OFFSET32(tx_stat_etherstatspkts65octetsto127octets_hi),
442                 8, STATS_FLAGS_PORT, "tx_65_to_127_byte_packets" },
443     { STATS_OFFSET32(tx_stat_etherstatspkts128octetsto255octets_hi),
444                 8, STATS_FLAGS_PORT, "tx_128_to_255_byte_packets" },
445     { STATS_OFFSET32(tx_stat_etherstatspkts256octetsto511octets_hi),
446                 8, STATS_FLAGS_PORT, "tx_256_to_511_byte_packets" },
447     { STATS_OFFSET32(tx_stat_etherstatspkts512octetsto1023octets_hi),
448                 8, STATS_FLAGS_PORT, "tx_512_to_1023_byte_packets" },
449     { STATS_OFFSET32(etherstatspkts1024octetsto1522octets_hi),
450                 8, STATS_FLAGS_PORT, "tx_1024_to_1522_byte_packets" },
451     { STATS_OFFSET32(etherstatspktsover1522octets_hi),
452                 8, STATS_FLAGS_PORT, "tx_1523_to_9022_byte_packets" },
453     { STATS_OFFSET32(pause_frames_sent_hi),
454                 8, STATS_FLAGS_PORT, "tx_pause_frames" },
455     { STATS_OFFSET32(total_tpa_aggregations_hi),
456                 8, STATS_FLAGS_FUNC, "tpa_aggregations" },
457     { STATS_OFFSET32(total_tpa_aggregated_frames_hi),
458                 8, STATS_FLAGS_FUNC, "tpa_aggregated_frames"},
459     { STATS_OFFSET32(total_tpa_bytes_hi),
460                 8, STATS_FLAGS_FUNC, "tpa_bytes"},
461 #if 0
462     { STATS_OFFSET32(recoverable_error),
463                 4, STATS_FLAGS_FUNC, "recoverable_errors" },
464     { STATS_OFFSET32(unrecoverable_error),
465                 4, STATS_FLAGS_FUNC, "unrecoverable_errors" },
466 #endif
467     { STATS_OFFSET32(eee_tx_lpi),
468                 4, STATS_FLAGS_PORT, "eee_tx_lpi"},
469     { STATS_OFFSET32(rx_calls),
470                 4, STATS_FLAGS_FUNC, "rx_calls"},
471     { STATS_OFFSET32(rx_pkts),
472                 4, STATS_FLAGS_FUNC, "rx_pkts"},
473     { STATS_OFFSET32(rx_tpa_pkts),
474                 4, STATS_FLAGS_FUNC, "rx_tpa_pkts"},
475     { STATS_OFFSET32(rx_erroneous_jumbo_sge_pkts),
476                 4, STATS_FLAGS_FUNC, "rx_erroneous_jumbo_sge_pkts"},
477     { STATS_OFFSET32(rx_bxe_service_rxsgl),
478                 4, STATS_FLAGS_FUNC, "rx_bxe_service_rxsgl"},
479     { STATS_OFFSET32(rx_jumbo_sge_pkts),
480                 4, STATS_FLAGS_FUNC, "rx_jumbo_sge_pkts"},
481     { STATS_OFFSET32(rx_soft_errors),
482                 4, STATS_FLAGS_FUNC, "rx_soft_errors"},
483     { STATS_OFFSET32(rx_hw_csum_errors),
484                 4, STATS_FLAGS_FUNC, "rx_hw_csum_errors"},
485     { STATS_OFFSET32(rx_ofld_frames_csum_ip),
486                 4, STATS_FLAGS_FUNC, "rx_ofld_frames_csum_ip"},
487     { STATS_OFFSET32(rx_ofld_frames_csum_tcp_udp),
488                 4, STATS_FLAGS_FUNC, "rx_ofld_frames_csum_tcp_udp"},
489     { STATS_OFFSET32(rx_budget_reached),
490                 4, STATS_FLAGS_FUNC, "rx_budget_reached"},
491     { STATS_OFFSET32(tx_pkts),
492                 4, STATS_FLAGS_FUNC, "tx_pkts"},
493     { STATS_OFFSET32(tx_soft_errors),
494                 4, STATS_FLAGS_FUNC, "tx_soft_errors"},
495     { STATS_OFFSET32(tx_ofld_frames_csum_ip),
496                 4, STATS_FLAGS_FUNC, "tx_ofld_frames_csum_ip"},
497     { STATS_OFFSET32(tx_ofld_frames_csum_tcp),
498                 4, STATS_FLAGS_FUNC, "tx_ofld_frames_csum_tcp"},
499     { STATS_OFFSET32(tx_ofld_frames_csum_udp),
500                 4, STATS_FLAGS_FUNC, "tx_ofld_frames_csum_udp"},
501     { STATS_OFFSET32(tx_ofld_frames_lso),
502                 4, STATS_FLAGS_FUNC, "tx_ofld_frames_lso"},
503     { STATS_OFFSET32(tx_ofld_frames_lso_hdr_splits),
504                 4, STATS_FLAGS_FUNC, "tx_ofld_frames_lso_hdr_splits"},
505     { STATS_OFFSET32(tx_encap_failures),
506                 4, STATS_FLAGS_FUNC, "tx_encap_failures"},
507     { STATS_OFFSET32(tx_hw_queue_full),
508                 4, STATS_FLAGS_FUNC, "tx_hw_queue_full"},
509     { STATS_OFFSET32(tx_hw_max_queue_depth),
510                 4, STATS_FLAGS_FUNC, "tx_hw_max_queue_depth"},
511     { STATS_OFFSET32(tx_dma_mapping_failure),
512                 4, STATS_FLAGS_FUNC, "tx_dma_mapping_failure"},
513     { STATS_OFFSET32(tx_max_drbr_queue_depth),
514                 4, STATS_FLAGS_FUNC, "tx_max_drbr_queue_depth"},
515     { STATS_OFFSET32(tx_window_violation_std),
516                 4, STATS_FLAGS_FUNC, "tx_window_violation_std"},
517     { STATS_OFFSET32(tx_window_violation_tso),
518                 4, STATS_FLAGS_FUNC, "tx_window_violation_tso"},
519 #if 0
520     { STATS_OFFSET32(tx_unsupported_tso_request_ipv6),
521                 4, STATS_FLAGS_FUNC, "tx_unsupported_tso_request_ipv6"},
522     { STATS_OFFSET32(tx_unsupported_tso_request_not_tcp),
523                 4, STATS_FLAGS_FUNC, "tx_unsupported_tso_request_not_tcp"},
524 #endif
525     { STATS_OFFSET32(tx_chain_lost_mbuf),
526                 4, STATS_FLAGS_FUNC, "tx_chain_lost_mbuf"},
527     { STATS_OFFSET32(tx_frames_deferred),
528                 4, STATS_FLAGS_FUNC, "tx_frames_deferred"},
529     { STATS_OFFSET32(tx_queue_xoff),
530                 4, STATS_FLAGS_FUNC, "tx_queue_xoff"},
531     { STATS_OFFSET32(mbuf_defrag_attempts),
532                 4, STATS_FLAGS_FUNC, "mbuf_defrag_attempts"},
533     { STATS_OFFSET32(mbuf_defrag_failures),
534                 4, STATS_FLAGS_FUNC, "mbuf_defrag_failures"},
535     { STATS_OFFSET32(mbuf_rx_bd_alloc_failed),
536                 4, STATS_FLAGS_FUNC, "mbuf_rx_bd_alloc_failed"},
537     { STATS_OFFSET32(mbuf_rx_bd_mapping_failed),
538                 4, STATS_FLAGS_FUNC, "mbuf_rx_bd_mapping_failed"},
539     { STATS_OFFSET32(mbuf_rx_tpa_alloc_failed),
540                 4, STATS_FLAGS_FUNC, "mbuf_rx_tpa_alloc_failed"},
541     { STATS_OFFSET32(mbuf_rx_tpa_mapping_failed),
542                 4, STATS_FLAGS_FUNC, "mbuf_rx_tpa_mapping_failed"},
543     { STATS_OFFSET32(mbuf_rx_sge_alloc_failed),
544                 4, STATS_FLAGS_FUNC, "mbuf_rx_sge_alloc_failed"},
545     { STATS_OFFSET32(mbuf_rx_sge_mapping_failed),
546                 4, STATS_FLAGS_FUNC, "mbuf_rx_sge_mapping_failed"},
547     { STATS_OFFSET32(mbuf_alloc_tx),
548                 4, STATS_FLAGS_FUNC, "mbuf_alloc_tx"},
549     { STATS_OFFSET32(mbuf_alloc_rx),
550                 4, STATS_FLAGS_FUNC, "mbuf_alloc_rx"},
551     { STATS_OFFSET32(mbuf_alloc_sge),
552                 4, STATS_FLAGS_FUNC, "mbuf_alloc_sge"},
553     { STATS_OFFSET32(mbuf_alloc_tpa),
554                 4, STATS_FLAGS_FUNC, "mbuf_alloc_tpa"}
555 };
556 
557 static const struct {
558     uint32_t offset;
559     uint32_t size;
560     char string[STAT_NAME_LEN];
561 } bxe_eth_q_stats_arr[] = {
562     { Q_STATS_OFFSET32(total_bytes_received_hi),
563                 8, "rx_bytes" },
564     { Q_STATS_OFFSET32(total_unicast_packets_received_hi),
565                 8, "rx_ucast_packets" },
566     { Q_STATS_OFFSET32(total_multicast_packets_received_hi),
567                 8, "rx_mcast_packets" },
568     { Q_STATS_OFFSET32(total_broadcast_packets_received_hi),
569                 8, "rx_bcast_packets" },
570     { Q_STATS_OFFSET32(no_buff_discard_hi),
571                 8, "rx_discards" },
572     { Q_STATS_OFFSET32(total_bytes_transmitted_hi),
573                 8, "tx_bytes" },
574     { Q_STATS_OFFSET32(total_unicast_packets_transmitted_hi),
575                 8, "tx_ucast_packets" },
576     { Q_STATS_OFFSET32(total_multicast_packets_transmitted_hi),
577                 8, "tx_mcast_packets" },
578     { Q_STATS_OFFSET32(total_broadcast_packets_transmitted_hi),
579                 8, "tx_bcast_packets" },
580     { Q_STATS_OFFSET32(total_tpa_aggregations_hi),
581                 8, "tpa_aggregations" },
582     { Q_STATS_OFFSET32(total_tpa_aggregated_frames_hi),
583                 8, "tpa_aggregated_frames"},
584     { Q_STATS_OFFSET32(total_tpa_bytes_hi),
585                 8, "tpa_bytes"},
586     { Q_STATS_OFFSET32(rx_calls),
587                 4, "rx_calls"},
588     { Q_STATS_OFFSET32(rx_pkts),
589                 4, "rx_pkts"},
590     { Q_STATS_OFFSET32(rx_tpa_pkts),
591                 4, "rx_tpa_pkts"},
592     { Q_STATS_OFFSET32(rx_erroneous_jumbo_sge_pkts),
593                 4, "rx_erroneous_jumbo_sge_pkts"},
594     { Q_STATS_OFFSET32(rx_bxe_service_rxsgl),
595                 4, "rx_bxe_service_rxsgl"},
596     { Q_STATS_OFFSET32(rx_jumbo_sge_pkts),
597                 4, "rx_jumbo_sge_pkts"},
598     { Q_STATS_OFFSET32(rx_soft_errors),
599                 4, "rx_soft_errors"},
600     { Q_STATS_OFFSET32(rx_hw_csum_errors),
601                 4, "rx_hw_csum_errors"},
602     { Q_STATS_OFFSET32(rx_ofld_frames_csum_ip),
603                 4, "rx_ofld_frames_csum_ip"},
604     { Q_STATS_OFFSET32(rx_ofld_frames_csum_tcp_udp),
605                 4, "rx_ofld_frames_csum_tcp_udp"},
606     { Q_STATS_OFFSET32(rx_budget_reached),
607                 4, "rx_budget_reached"},
608     { Q_STATS_OFFSET32(tx_pkts),
609                 4, "tx_pkts"},
610     { Q_STATS_OFFSET32(tx_soft_errors),
611                 4, "tx_soft_errors"},
612     { Q_STATS_OFFSET32(tx_ofld_frames_csum_ip),
613                 4, "tx_ofld_frames_csum_ip"},
614     { Q_STATS_OFFSET32(tx_ofld_frames_csum_tcp),
615                 4, "tx_ofld_frames_csum_tcp"},
616     { Q_STATS_OFFSET32(tx_ofld_frames_csum_udp),
617                 4, "tx_ofld_frames_csum_udp"},
618     { Q_STATS_OFFSET32(tx_ofld_frames_lso),
619                 4, "tx_ofld_frames_lso"},
620     { Q_STATS_OFFSET32(tx_ofld_frames_lso_hdr_splits),
621                 4, "tx_ofld_frames_lso_hdr_splits"},
622     { Q_STATS_OFFSET32(tx_encap_failures),
623                 4, "tx_encap_failures"},
624     { Q_STATS_OFFSET32(tx_hw_queue_full),
625                 4, "tx_hw_queue_full"},
626     { Q_STATS_OFFSET32(tx_hw_max_queue_depth),
627                 4, "tx_hw_max_queue_depth"},
628     { Q_STATS_OFFSET32(tx_dma_mapping_failure),
629                 4, "tx_dma_mapping_failure"},
630     { Q_STATS_OFFSET32(tx_max_drbr_queue_depth),
631                 4, "tx_max_drbr_queue_depth"},
632     { Q_STATS_OFFSET32(tx_window_violation_std),
633                 4, "tx_window_violation_std"},
634     { Q_STATS_OFFSET32(tx_window_violation_tso),
635                 4, "tx_window_violation_tso"},
636 #if 0
637     { Q_STATS_OFFSET32(tx_unsupported_tso_request_ipv6),
638                 4, "tx_unsupported_tso_request_ipv6"},
639     { Q_STATS_OFFSET32(tx_unsupported_tso_request_not_tcp),
640                 4, "tx_unsupported_tso_request_not_tcp"},
641 #endif
642     { Q_STATS_OFFSET32(tx_chain_lost_mbuf),
643                 4, "tx_chain_lost_mbuf"},
644     { Q_STATS_OFFSET32(tx_frames_deferred),
645                 4, "tx_frames_deferred"},
646     { Q_STATS_OFFSET32(tx_queue_xoff),
647                 4, "tx_queue_xoff"},
648     { Q_STATS_OFFSET32(mbuf_defrag_attempts),
649                 4, "mbuf_defrag_attempts"},
650     { Q_STATS_OFFSET32(mbuf_defrag_failures),
651                 4, "mbuf_defrag_failures"},
652     { Q_STATS_OFFSET32(mbuf_rx_bd_alloc_failed),
653                 4, "mbuf_rx_bd_alloc_failed"},
654     { Q_STATS_OFFSET32(mbuf_rx_bd_mapping_failed),
655                 4, "mbuf_rx_bd_mapping_failed"},
656     { Q_STATS_OFFSET32(mbuf_rx_tpa_alloc_failed),
657                 4, "mbuf_rx_tpa_alloc_failed"},
658     { Q_STATS_OFFSET32(mbuf_rx_tpa_mapping_failed),
659                 4, "mbuf_rx_tpa_mapping_failed"},
660     { Q_STATS_OFFSET32(mbuf_rx_sge_alloc_failed),
661                 4, "mbuf_rx_sge_alloc_failed"},
662     { Q_STATS_OFFSET32(mbuf_rx_sge_mapping_failed),
663                 4, "mbuf_rx_sge_mapping_failed"},
664     { Q_STATS_OFFSET32(mbuf_alloc_tx),
665                 4, "mbuf_alloc_tx"},
666     { Q_STATS_OFFSET32(mbuf_alloc_rx),
667                 4, "mbuf_alloc_rx"},
668     { Q_STATS_OFFSET32(mbuf_alloc_sge),
669                 4, "mbuf_alloc_sge"},
670     { Q_STATS_OFFSET32(mbuf_alloc_tpa),
671                 4, "mbuf_alloc_tpa"}
672 };
673 
674 #define BXE_NUM_ETH_STATS   ARRAY_SIZE(bxe_eth_stats_arr)
675 #define BXE_NUM_ETH_Q_STATS ARRAY_SIZE(bxe_eth_q_stats_arr)
676 
677 
678 static void    bxe_cmng_fns_init(struct bxe_softc *sc,
679                                  uint8_t          read_cfg,
680                                  uint8_t          cmng_type);
681 static int     bxe_get_cmng_fns_mode(struct bxe_softc *sc);
682 static void    storm_memset_cmng(struct bxe_softc *sc,
683                                  struct cmng_init *cmng,
684                                  uint8_t          port);
685 static void    bxe_set_reset_global(struct bxe_softc *sc);
686 static void    bxe_set_reset_in_progress(struct bxe_softc *sc);
687 static uint8_t bxe_reset_is_done(struct bxe_softc *sc,
688                                  int              engine);
689 static uint8_t bxe_clear_pf_load(struct bxe_softc *sc);
690 static uint8_t bxe_chk_parity_attn(struct bxe_softc *sc,
691                                    uint8_t          *global,
692                                    uint8_t          print);
693 static void    bxe_int_disable(struct bxe_softc *sc);
694 static int     bxe_release_leader_lock(struct bxe_softc *sc);
695 static void    bxe_pf_disable(struct bxe_softc *sc);
696 static void    bxe_free_fp_buffers(struct bxe_softc *sc);
697 static inline void bxe_update_rx_prod(struct bxe_softc    *sc,
698                                       struct bxe_fastpath *fp,
699                                       uint16_t            rx_bd_prod,
700                                       uint16_t            rx_cq_prod,
701                                       uint16_t            rx_sge_prod);
702 static void    bxe_link_report_locked(struct bxe_softc *sc);
703 static void    bxe_link_report(struct bxe_softc *sc);
704 static void    bxe_link_status_update(struct bxe_softc *sc);
705 static void    bxe_periodic_callout_func(void *xsc);
706 static void    bxe_periodic_start(struct bxe_softc *sc);
707 static void    bxe_periodic_stop(struct bxe_softc *sc);
708 static int     bxe_alloc_rx_bd_mbuf(struct bxe_fastpath *fp,
709                                     uint16_t prev_index,
710                                     uint16_t index);
711 static int     bxe_alloc_rx_tpa_mbuf(struct bxe_fastpath *fp,
712                                      int                 queue);
713 static int     bxe_alloc_rx_sge_mbuf(struct bxe_fastpath *fp,
714                                      uint16_t            index);
715 static uint8_t bxe_txeof(struct bxe_softc *sc,
716                          struct bxe_fastpath *fp);
717 static void    bxe_task_fp(struct bxe_fastpath *fp);
718 static __noinline void bxe_dump_mbuf(struct bxe_softc *sc,
719                                      struct mbuf      *m,
720                                      uint8_t          contents);
721 static int     bxe_alloc_mem(struct bxe_softc *sc);
722 static void    bxe_free_mem(struct bxe_softc *sc);
723 static int     bxe_alloc_fw_stats_mem(struct bxe_softc *sc);
724 static void    bxe_free_fw_stats_mem(struct bxe_softc *sc);
725 static int     bxe_interrupt_attach(struct bxe_softc *sc);
726 static void    bxe_interrupt_detach(struct bxe_softc *sc);
727 static void    bxe_set_rx_mode(struct bxe_softc *sc);
728 static int     bxe_init_locked(struct bxe_softc *sc);
729 static int     bxe_stop_locked(struct bxe_softc *sc);
730 static __noinline int bxe_nic_load(struct bxe_softc *sc,
731                                    int              load_mode);
732 static __noinline int bxe_nic_unload(struct bxe_softc *sc,
733                                      uint32_t         unload_mode,
734                                      uint8_t          keep_link);
735 
736 static void bxe_handle_sp_tq(void *context, int pending);
737 static void bxe_handle_fp_tq(void *context, int pending);
738 
739 static int bxe_add_cdev(struct bxe_softc *sc);
740 static void bxe_del_cdev(struct bxe_softc *sc);
741 
742 /* calculate crc32 on a buffer (NOTE: crc32_length MUST be aligned to 8) */
743 uint32_t
744 calc_crc32(uint8_t  *crc32_packet,
745            uint32_t crc32_length,
746            uint32_t crc32_seed,
747            uint8_t  complement)
748 {
749    uint32_t byte         = 0;
750    uint32_t bit          = 0;
751    uint8_t  msb          = 0;
752    uint32_t temp         = 0;
753    uint32_t shft         = 0;
754    uint8_t  current_byte = 0;
755    uint32_t crc32_result = crc32_seed;
756    const uint32_t CRC32_POLY = 0x1edc6f41;
757 
758    if ((crc32_packet == NULL) ||
759        (crc32_length == 0) ||
760        ((crc32_length % 8) != 0))
761     {
762         return (crc32_result);
763     }
764 
765     for (byte = 0; byte < crc32_length; byte = byte + 1)
766     {
767         current_byte = crc32_packet[byte];
768         for (bit = 0; bit < 8; bit = bit + 1)
769         {
770             /* msb = crc32_result[31]; */
771             msb = (uint8_t)(crc32_result >> 31);
772 
773             crc32_result = crc32_result << 1;
774 
775             /* it (msb != current_byte[bit]) */
776             if (msb != (0x1 & (current_byte >> bit)))
777             {
778                 crc32_result = crc32_result ^ CRC32_POLY;
779                 /* crc32_result[0] = 1 */
780                 crc32_result |= 1;
781             }
782         }
783     }
784 
785     /* Last step is to:
786      * 1. "mirror" every bit
787      * 2. swap the 4 bytes
788      * 3. complement each bit
789      */
790 
791     /* Mirror */
792     temp = crc32_result;
793     shft = sizeof(crc32_result) * 8 - 1;
794 
795     for (crc32_result >>= 1; crc32_result; crc32_result >>= 1)
796     {
797         temp <<= 1;
798         temp |= crc32_result & 1;
799         shft-- ;
800     }
801 
802     /* temp[31-bit] = crc32_result[bit] */
803     temp <<= shft;
804 
805     /* Swap */
806     /* crc32_result = {temp[7:0], temp[15:8], temp[23:16], temp[31:24]} */
807     {
808         uint32_t t0, t1, t2, t3;
809         t0 = (0x000000ff & (temp >> 24));
810         t1 = (0x0000ff00 & (temp >> 8));
811         t2 = (0x00ff0000 & (temp << 8));
812         t3 = (0xff000000 & (temp << 24));
813         crc32_result = t0 | t1 | t2 | t3;
814     }
815 
816     /* Complement */
817     if (complement)
818     {
819         crc32_result = ~crc32_result;
820     }
821 
822     return (crc32_result);
823 }
824 
825 int
826 bxe_test_bit(int                    nr,
827              volatile unsigned long *addr)
828 {
829     return ((atomic_load_acq_long(addr) & (1 << nr)) != 0);
830 }
831 
832 void
833 bxe_set_bit(unsigned int           nr,
834             volatile unsigned long *addr)
835 {
836     atomic_set_acq_long(addr, (1 << nr));
837 }
838 
839 void
840 bxe_clear_bit(int                    nr,
841               volatile unsigned long *addr)
842 {
843     atomic_clear_acq_long(addr, (1 << nr));
844 }
845 
846 int
847 bxe_test_and_set_bit(int                    nr,
848                        volatile unsigned long *addr)
849 {
850     unsigned long x;
851     nr = (1 << nr);
852     do {
853         x = *addr;
854     } while (atomic_cmpset_acq_long(addr, x, x | nr) == 0);
855     // if (x & nr) bit_was_set; else bit_was_not_set;
856     return (x & nr);
857 }
858 
859 int
860 bxe_test_and_clear_bit(int                    nr,
861                        volatile unsigned long *addr)
862 {
863     unsigned long x;
864     nr = (1 << nr);
865     do {
866         x = *addr;
867     } while (atomic_cmpset_acq_long(addr, x, x & ~nr) == 0);
868     // if (x & nr) bit_was_set; else bit_was_not_set;
869     return (x & nr);
870 }
871 
872 int
873 bxe_cmpxchg(volatile int *addr,
874             int          old,
875             int          new)
876 {
877     int x;
878     do {
879         x = *addr;
880     } while (atomic_cmpset_acq_int(addr, old, new) == 0);
881     return (x);
882 }
883 
884 /*
885  * Get DMA memory from the OS.
886  *
887  * Validates that the OS has provided DMA buffers in response to a
888  * bus_dmamap_load call and saves the physical address of those buffers.
889  * When the callback is used the OS will return 0 for the mapping function
890  * (bus_dmamap_load) so we use the value of map_arg->maxsegs to pass any
891  * failures back to the caller.
892  *
893  * Returns:
894  *   Nothing.
895  */
896 static void
897 bxe_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
898 {
899     struct bxe_dma *dma = arg;
900 
901     if (error) {
902         dma->paddr = 0;
903         dma->nseg  = 0;
904         BLOGE(dma->sc, "Failed DMA alloc '%s' (%d)!\n", dma->msg, error);
905     } else {
906         dma->paddr = segs->ds_addr;
907         dma->nseg  = nseg;
908 #if 0
909         BLOGD(dma->sc, DBG_LOAD,
910               "DMA alloc '%s': vaddr=%p paddr=%p nseg=%d size=%lu\n",
911               dma->msg, dma->vaddr, (void *)dma->paddr,
912               dma->nseg, dma->size);
913 #endif
914     }
915 }
916 
917 /*
918  * Allocate a block of memory and map it for DMA. No partial completions
919  * allowed and release any resources acquired if we can't acquire all
920  * resources.
921  *
922  * Returns:
923  *   0 = Success, !0 = Failure
924  */
925 int
926 bxe_dma_alloc(struct bxe_softc *sc,
927               bus_size_t       size,
928               struct bxe_dma   *dma,
929               const char       *msg)
930 {
931     int rc;
932 
933     if (dma->size > 0) {
934         BLOGE(sc, "dma block '%s' already has size %lu\n", msg,
935               (unsigned long)dma->size);
936         return (1);
937     }
938 
939     memset(dma, 0, sizeof(*dma)); /* sanity */
940     dma->sc   = sc;
941     dma->size = size;
942     snprintf(dma->msg, sizeof(dma->msg), "%s", msg);
943 
944     rc = bus_dma_tag_create(sc->parent_dma_tag, /* parent tag */
945                             BCM_PAGE_SIZE,      /* alignment */
946                             0,                  /* boundary limit */
947                             BUS_SPACE_MAXADDR,  /* restricted low */
948                             BUS_SPACE_MAXADDR,  /* restricted hi */
949                             NULL,               /* addr filter() */
950                             NULL,               /* addr filter() arg */
951                             size,               /* max map size */
952                             1,                  /* num discontinuous */
953                             size,               /* max seg size */
954                             BUS_DMA_ALLOCNOW,   /* flags */
955                             NULL,               /* lock() */
956                             NULL,               /* lock() arg */
957                             &dma->tag);         /* returned dma tag */
958     if (rc != 0) {
959         BLOGE(sc, "Failed to create dma tag for '%s' (%d)\n", msg, rc);
960         memset(dma, 0, sizeof(*dma));
961         return (1);
962     }
963 
964     rc = bus_dmamem_alloc(dma->tag,
965                           (void **)&dma->vaddr,
966                           (BUS_DMA_NOWAIT | BUS_DMA_ZERO),
967                           &dma->map);
968     if (rc != 0) {
969         BLOGE(sc, "Failed to alloc dma mem for '%s' (%d)\n", msg, rc);
970         bus_dma_tag_destroy(dma->tag);
971         memset(dma, 0, sizeof(*dma));
972         return (1);
973     }
974 
975     rc = bus_dmamap_load(dma->tag,
976                          dma->map,
977                          dma->vaddr,
978                          size,
979                          bxe_dma_map_addr, /* BLOGD in here */
980                          dma,
981                          BUS_DMA_NOWAIT);
982     if (rc != 0) {
983         BLOGE(sc, "Failed to load dma map for '%s' (%d)\n", msg, rc);
984         bus_dmamem_free(dma->tag, dma->vaddr, dma->map);
985         bus_dma_tag_destroy(dma->tag);
986         memset(dma, 0, sizeof(*dma));
987         return (1);
988     }
989 
990     return (0);
991 }
992 
993 void
994 bxe_dma_free(struct bxe_softc *sc,
995              struct bxe_dma   *dma)
996 {
997     if (dma->size > 0) {
998 #if 0
999         BLOGD(sc, DBG_LOAD,
1000               "DMA free '%s': vaddr=%p paddr=%p nseg=%d size=%lu\n",
1001               dma->msg, dma->vaddr, (void *)dma->paddr,
1002               dma->nseg, dma->size);
1003 #endif
1004 
1005         DBASSERT(sc, (dma->tag != NULL), ("dma tag is NULL"));
1006 
1007         bus_dmamap_sync(dma->tag, dma->map,
1008                         (BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE));
1009         bus_dmamap_unload(dma->tag, dma->map);
1010         bus_dmamem_free(dma->tag, dma->vaddr, dma->map);
1011         bus_dma_tag_destroy(dma->tag);
1012     }
1013 
1014     memset(dma, 0, sizeof(*dma));
1015 }
1016 
1017 /*
1018  * These indirect read and write routines are only during init.
1019  * The locking is handled by the MCP.
1020  */
1021 
1022 void
1023 bxe_reg_wr_ind(struct bxe_softc *sc,
1024                uint32_t         addr,
1025                uint32_t         val)
1026 {
1027     pci_write_config(sc->dev, PCICFG_GRC_ADDRESS, addr, 4);
1028     pci_write_config(sc->dev, PCICFG_GRC_DATA, val, 4);
1029     pci_write_config(sc->dev, PCICFG_GRC_ADDRESS, 0, 4);
1030 }
1031 
1032 uint32_t
1033 bxe_reg_rd_ind(struct bxe_softc *sc,
1034                uint32_t         addr)
1035 {
1036     uint32_t val;
1037 
1038     pci_write_config(sc->dev, PCICFG_GRC_ADDRESS, addr, 4);
1039     val = pci_read_config(sc->dev, PCICFG_GRC_DATA, 4);
1040     pci_write_config(sc->dev, PCICFG_GRC_ADDRESS, 0, 4);
1041 
1042     return (val);
1043 }
1044 
1045 #if 0
1046 void bxe_dp_dmae(struct bxe_softc *sc, struct dmae_command *dmae, int msglvl)
1047 {
1048     uint32_t src_type = dmae->opcode & DMAE_COMMAND_SRC;
1049 
1050     switch (dmae->opcode & DMAE_COMMAND_DST) {
1051     case DMAE_CMD_DST_PCI:
1052         if (src_type == DMAE_CMD_SRC_PCI)
1053             DP(msglvl, "DMAE: opcode 0x%08x\n"
1054                "src [%x:%08x], len [%d*4], dst [%x:%08x]\n"
1055                "comp_addr [%x:%08x], comp_val 0x%08x\n",
1056                dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
1057                dmae->len, dmae->dst_addr_hi, dmae->dst_addr_lo,
1058                dmae->comp_addr_hi, dmae->comp_addr_lo,
1059                dmae->comp_val);
1060         else
1061             DP(msglvl, "DMAE: opcode 0x%08x\n"
1062                "src [%08x], len [%d*4], dst [%x:%08x]\n"
1063                "comp_addr [%x:%08x], comp_val 0x%08x\n",
1064                dmae->opcode, dmae->src_addr_lo >> 2,
1065                dmae->len, dmae->dst_addr_hi, dmae->dst_addr_lo,
1066                dmae->comp_addr_hi, dmae->comp_addr_lo,
1067                dmae->comp_val);
1068         break;
1069     case DMAE_CMD_DST_GRC:
1070         if (src_type == DMAE_CMD_SRC_PCI)
1071             DP(msglvl, "DMAE: opcode 0x%08x\n"
1072                "src [%x:%08x], len [%d*4], dst_addr [%08x]\n"
1073                "comp_addr [%x:%08x], comp_val 0x%08x\n",
1074                dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
1075                dmae->len, dmae->dst_addr_lo >> 2,
1076                dmae->comp_addr_hi, dmae->comp_addr_lo,
1077                dmae->comp_val);
1078         else
1079             DP(msglvl, "DMAE: opcode 0x%08x\n"
1080                "src [%08x], len [%d*4], dst [%08x]\n"
1081                "comp_addr [%x:%08x], comp_val 0x%08x\n",
1082                dmae->opcode, dmae->src_addr_lo >> 2,
1083                dmae->len, dmae->dst_addr_lo >> 2,
1084                dmae->comp_addr_hi, dmae->comp_addr_lo,
1085                dmae->comp_val);
1086         break;
1087     default:
1088         if (src_type == DMAE_CMD_SRC_PCI)
1089             DP(msglvl, "DMAE: opcode 0x%08x\n"
1090                "src_addr [%x:%08x]  len [%d * 4]  dst_addr [none]\n"
1091                "comp_addr [%x:%08x]  comp_val 0x%08x\n",
1092                dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
1093                dmae->len, dmae->comp_addr_hi, dmae->comp_addr_lo,
1094                dmae->comp_val);
1095         else
1096             DP(msglvl, "DMAE: opcode 0x%08x\n"
1097                "src_addr [%08x]  len [%d * 4]  dst_addr [none]\n"
1098                "comp_addr [%x:%08x]  comp_val 0x%08x\n",
1099                dmae->opcode, dmae->src_addr_lo >> 2,
1100                dmae->len, dmae->comp_addr_hi, dmae->comp_addr_lo,
1101                dmae->comp_val);
1102         break;
1103     }
1104 
1105 }
1106 #endif
1107 
1108 static int
1109 bxe_acquire_hw_lock(struct bxe_softc *sc,
1110                     uint32_t         resource)
1111 {
1112     uint32_t lock_status;
1113     uint32_t resource_bit = (1 << resource);
1114     int func = SC_FUNC(sc);
1115     uint32_t hw_lock_control_reg;
1116     int cnt;
1117 
1118     /* validate the resource is within range */
1119     if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
1120         BLOGE(sc, "resource 0x%x > HW_LOCK_MAX_RESOURCE_VALUE\n", resource);
1121         return (-1);
1122     }
1123 
1124     if (func <= 5) {
1125         hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + (func * 8));
1126     } else {
1127         hw_lock_control_reg =
1128                 (MISC_REG_DRIVER_CONTROL_7 + ((func - 6) * 8));
1129     }
1130 
1131     /* validate the resource is not already taken */
1132     lock_status = REG_RD(sc, hw_lock_control_reg);
1133     if (lock_status & resource_bit) {
1134         BLOGE(sc, "resource in use (status 0x%x bit 0x%x)\n",
1135               lock_status, resource_bit);
1136         return (-1);
1137     }
1138 
1139     /* try every 5ms for 5 seconds */
1140     for (cnt = 0; cnt < 1000; cnt++) {
1141         REG_WR(sc, (hw_lock_control_reg + 4), resource_bit);
1142         lock_status = REG_RD(sc, hw_lock_control_reg);
1143         if (lock_status & resource_bit) {
1144             return (0);
1145         }
1146         DELAY(5000);
1147     }
1148 
1149     BLOGE(sc, "Resource lock timeout!\n");
1150     return (-1);
1151 }
1152 
1153 static int
1154 bxe_release_hw_lock(struct bxe_softc *sc,
1155                     uint32_t         resource)
1156 {
1157     uint32_t lock_status;
1158     uint32_t resource_bit = (1 << resource);
1159     int func = SC_FUNC(sc);
1160     uint32_t hw_lock_control_reg;
1161 
1162     /* validate the resource is within range */
1163     if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
1164         BLOGE(sc, "resource 0x%x > HW_LOCK_MAX_RESOURCE_VALUE\n", resource);
1165         return (-1);
1166     }
1167 
1168     if (func <= 5) {
1169         hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + (func * 8));
1170     } else {
1171         hw_lock_control_reg =
1172                 (MISC_REG_DRIVER_CONTROL_7 + ((func - 6) * 8));
1173     }
1174 
1175     /* validate the resource is currently taken */
1176     lock_status = REG_RD(sc, hw_lock_control_reg);
1177     if (!(lock_status & resource_bit)) {
1178         BLOGE(sc, "resource not in use (status 0x%x bit 0x%x)\n",
1179               lock_status, resource_bit);
1180         return (-1);
1181     }
1182 
1183     REG_WR(sc, hw_lock_control_reg, resource_bit);
1184     return (0);
1185 }
1186 static void bxe_acquire_phy_lock(struct bxe_softc *sc)
1187 {
1188 	BXE_PHY_LOCK(sc);
1189 	bxe_acquire_hw_lock(sc,HW_LOCK_RESOURCE_MDIO);
1190 }
1191 
1192 static void bxe_release_phy_lock(struct bxe_softc *sc)
1193 {
1194 	bxe_release_hw_lock(sc,HW_LOCK_RESOURCE_MDIO);
1195 	BXE_PHY_UNLOCK(sc);
1196 }
1197 /*
1198  * Per pf misc lock must be acquired before the per port mcp lock. Otherwise,
1199  * had we done things the other way around, if two pfs from the same port
1200  * would attempt to access nvram at the same time, we could run into a
1201  * scenario such as:
1202  * pf A takes the port lock.
1203  * pf B succeeds in taking the same lock since they are from the same port.
1204  * pf A takes the per pf misc lock. Performs eeprom access.
1205  * pf A finishes. Unlocks the per pf misc lock.
1206  * Pf B takes the lock and proceeds to perform it's own access.
1207  * pf A unlocks the per port lock, while pf B is still working (!).
1208  * mcp takes the per port lock and corrupts pf B's access (and/or has it's own
1209  * access corrupted by pf B).*
1210  */
1211 static int
1212 bxe_acquire_nvram_lock(struct bxe_softc *sc)
1213 {
1214     int port = SC_PORT(sc);
1215     int count, i;
1216     uint32_t val = 0;
1217 
1218     /* acquire HW lock: protect against other PFs in PF Direct Assignment */
1219     bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_NVRAM);
1220 
1221     /* adjust timeout for emulation/FPGA */
1222     count = NVRAM_TIMEOUT_COUNT;
1223     if (CHIP_REV_IS_SLOW(sc)) {
1224         count *= 100;
1225     }
1226 
1227     /* request access to nvram interface */
1228     REG_WR(sc, MCP_REG_MCPR_NVM_SW_ARB,
1229            (MCPR_NVM_SW_ARB_ARB_REQ_SET1 << port));
1230 
1231     for (i = 0; i < count*10; i++) {
1232         val = REG_RD(sc, MCP_REG_MCPR_NVM_SW_ARB);
1233         if (val & (MCPR_NVM_SW_ARB_ARB_ARB1 << port)) {
1234             break;
1235         }
1236 
1237         DELAY(5);
1238     }
1239 
1240     if (!(val & (MCPR_NVM_SW_ARB_ARB_ARB1 << port))) {
1241         BLOGE(sc, "Cannot get access to nvram interface\n");
1242         return (-1);
1243     }
1244 
1245     return (0);
1246 }
1247 
1248 static int
1249 bxe_release_nvram_lock(struct bxe_softc *sc)
1250 {
1251     int port = SC_PORT(sc);
1252     int count, i;
1253     uint32_t val = 0;
1254 
1255     /* adjust timeout for emulation/FPGA */
1256     count = NVRAM_TIMEOUT_COUNT;
1257     if (CHIP_REV_IS_SLOW(sc)) {
1258         count *= 100;
1259     }
1260 
1261     /* relinquish nvram interface */
1262     REG_WR(sc, MCP_REG_MCPR_NVM_SW_ARB,
1263            (MCPR_NVM_SW_ARB_ARB_REQ_CLR1 << port));
1264 
1265     for (i = 0; i < count*10; i++) {
1266         val = REG_RD(sc, MCP_REG_MCPR_NVM_SW_ARB);
1267         if (!(val & (MCPR_NVM_SW_ARB_ARB_ARB1 << port))) {
1268             break;
1269         }
1270 
1271         DELAY(5);
1272     }
1273 
1274     if (val & (MCPR_NVM_SW_ARB_ARB_ARB1 << port)) {
1275         BLOGE(sc, "Cannot free access to nvram interface\n");
1276         return (-1);
1277     }
1278 
1279     /* release HW lock: protect against other PFs in PF Direct Assignment */
1280     bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_NVRAM);
1281 
1282     return (0);
1283 }
1284 
1285 static void
1286 bxe_enable_nvram_access(struct bxe_softc *sc)
1287 {
1288     uint32_t val;
1289 
1290     val = REG_RD(sc, MCP_REG_MCPR_NVM_ACCESS_ENABLE);
1291 
1292     /* enable both bits, even on read */
1293     REG_WR(sc, MCP_REG_MCPR_NVM_ACCESS_ENABLE,
1294            (val | MCPR_NVM_ACCESS_ENABLE_EN | MCPR_NVM_ACCESS_ENABLE_WR_EN));
1295 }
1296 
1297 static void
1298 bxe_disable_nvram_access(struct bxe_softc *sc)
1299 {
1300     uint32_t val;
1301 
1302     val = REG_RD(sc, MCP_REG_MCPR_NVM_ACCESS_ENABLE);
1303 
1304     /* disable both bits, even after read */
1305     REG_WR(sc, MCP_REG_MCPR_NVM_ACCESS_ENABLE,
1306            (val & ~(MCPR_NVM_ACCESS_ENABLE_EN |
1307                     MCPR_NVM_ACCESS_ENABLE_WR_EN)));
1308 }
1309 
1310 static int
1311 bxe_nvram_read_dword(struct bxe_softc *sc,
1312                      uint32_t         offset,
1313                      uint32_t         *ret_val,
1314                      uint32_t         cmd_flags)
1315 {
1316     int count, i, rc;
1317     uint32_t val;
1318 
1319     /* build the command word */
1320     cmd_flags |= MCPR_NVM_COMMAND_DOIT;
1321 
1322     /* need to clear DONE bit separately */
1323     REG_WR(sc, MCP_REG_MCPR_NVM_COMMAND, MCPR_NVM_COMMAND_DONE);
1324 
1325     /* address of the NVRAM to read from */
1326     REG_WR(sc, MCP_REG_MCPR_NVM_ADDR,
1327            (offset & MCPR_NVM_ADDR_NVM_ADDR_VALUE));
1328 
1329     /* issue a read command */
1330     REG_WR(sc, MCP_REG_MCPR_NVM_COMMAND, cmd_flags);
1331 
1332     /* adjust timeout for emulation/FPGA */
1333     count = NVRAM_TIMEOUT_COUNT;
1334     if (CHIP_REV_IS_SLOW(sc)) {
1335         count *= 100;
1336     }
1337 
1338     /* wait for completion */
1339     *ret_val = 0;
1340     rc = -1;
1341     for (i = 0; i < count; i++) {
1342         DELAY(5);
1343         val = REG_RD(sc, MCP_REG_MCPR_NVM_COMMAND);
1344 
1345         if (val & MCPR_NVM_COMMAND_DONE) {
1346             val = REG_RD(sc, MCP_REG_MCPR_NVM_READ);
1347             /* we read nvram data in cpu order
1348              * but ethtool sees it as an array of bytes
1349              * converting to big-endian will do the work
1350              */
1351             *ret_val = htobe32(val);
1352             rc = 0;
1353             break;
1354         }
1355     }
1356 
1357     if (rc == -1) {
1358         BLOGE(sc, "nvram read timeout expired\n");
1359     }
1360 
1361     return (rc);
1362 }
1363 
1364 static int
1365 bxe_nvram_read(struct bxe_softc *sc,
1366                uint32_t         offset,
1367                uint8_t          *ret_buf,
1368                int              buf_size)
1369 {
1370     uint32_t cmd_flags;
1371     uint32_t val;
1372     int rc;
1373 
1374     if ((offset & 0x03) || (buf_size & 0x03) || (buf_size == 0)) {
1375         BLOGE(sc, "Invalid parameter, offset 0x%x buf_size 0x%x\n",
1376               offset, buf_size);
1377         return (-1);
1378     }
1379 
1380     if ((offset + buf_size) > sc->devinfo.flash_size) {
1381         BLOGE(sc, "Invalid parameter, "
1382                   "offset 0x%x + buf_size 0x%x > flash_size 0x%x\n",
1383               offset, buf_size, sc->devinfo.flash_size);
1384         return (-1);
1385     }
1386 
1387     /* request access to nvram interface */
1388     rc = bxe_acquire_nvram_lock(sc);
1389     if (rc) {
1390         return (rc);
1391     }
1392 
1393     /* enable access to nvram interface */
1394     bxe_enable_nvram_access(sc);
1395 
1396     /* read the first word(s) */
1397     cmd_flags = MCPR_NVM_COMMAND_FIRST;
1398     while ((buf_size > sizeof(uint32_t)) && (rc == 0)) {
1399         rc = bxe_nvram_read_dword(sc, offset, &val, cmd_flags);
1400         memcpy(ret_buf, &val, 4);
1401 
1402         /* advance to the next dword */
1403         offset += sizeof(uint32_t);
1404         ret_buf += sizeof(uint32_t);
1405         buf_size -= sizeof(uint32_t);
1406         cmd_flags = 0;
1407     }
1408 
1409     if (rc == 0) {
1410         cmd_flags |= MCPR_NVM_COMMAND_LAST;
1411         rc = bxe_nvram_read_dword(sc, offset, &val, cmd_flags);
1412         memcpy(ret_buf, &val, 4);
1413     }
1414 
1415     /* disable access to nvram interface */
1416     bxe_disable_nvram_access(sc);
1417     bxe_release_nvram_lock(sc);
1418 
1419     return (rc);
1420 }
1421 
1422 static int
1423 bxe_nvram_write_dword(struct bxe_softc *sc,
1424                       uint32_t         offset,
1425                       uint32_t         val,
1426                       uint32_t         cmd_flags)
1427 {
1428     int count, i, rc;
1429 
1430     /* build the command word */
1431     cmd_flags |= (MCPR_NVM_COMMAND_DOIT | MCPR_NVM_COMMAND_WR);
1432 
1433     /* need to clear DONE bit separately */
1434     REG_WR(sc, MCP_REG_MCPR_NVM_COMMAND, MCPR_NVM_COMMAND_DONE);
1435 
1436     /* write the data */
1437     REG_WR(sc, MCP_REG_MCPR_NVM_WRITE, val);
1438 
1439     /* address of the NVRAM to write to */
1440     REG_WR(sc, MCP_REG_MCPR_NVM_ADDR,
1441            (offset & MCPR_NVM_ADDR_NVM_ADDR_VALUE));
1442 
1443     /* issue the write command */
1444     REG_WR(sc, MCP_REG_MCPR_NVM_COMMAND, cmd_flags);
1445 
1446     /* adjust timeout for emulation/FPGA */
1447     count = NVRAM_TIMEOUT_COUNT;
1448     if (CHIP_REV_IS_SLOW(sc)) {
1449         count *= 100;
1450     }
1451 
1452     /* wait for completion */
1453     rc = -1;
1454     for (i = 0; i < count; i++) {
1455         DELAY(5);
1456         val = REG_RD(sc, MCP_REG_MCPR_NVM_COMMAND);
1457         if (val & MCPR_NVM_COMMAND_DONE) {
1458             rc = 0;
1459             break;
1460         }
1461     }
1462 
1463     if (rc == -1) {
1464         BLOGE(sc, "nvram write timeout expired\n");
1465     }
1466 
1467     return (rc);
1468 }
1469 
1470 #define BYTE_OFFSET(offset) (8 * (offset & 0x03))
1471 
1472 static int
1473 bxe_nvram_write1(struct bxe_softc *sc,
1474                  uint32_t         offset,
1475                  uint8_t          *data_buf,
1476                  int              buf_size)
1477 {
1478     uint32_t cmd_flags;
1479     uint32_t align_offset;
1480     uint32_t val;
1481     int rc;
1482 
1483     if ((offset + buf_size) > sc->devinfo.flash_size) {
1484         BLOGE(sc, "Invalid parameter, "
1485                   "offset 0x%x + buf_size 0x%x > flash_size 0x%x\n",
1486               offset, buf_size, sc->devinfo.flash_size);
1487         return (-1);
1488     }
1489 
1490     /* request access to nvram interface */
1491     rc = bxe_acquire_nvram_lock(sc);
1492     if (rc) {
1493         return (rc);
1494     }
1495 
1496     /* enable access to nvram interface */
1497     bxe_enable_nvram_access(sc);
1498 
1499     cmd_flags = (MCPR_NVM_COMMAND_FIRST | MCPR_NVM_COMMAND_LAST);
1500     align_offset = (offset & ~0x03);
1501     rc = bxe_nvram_read_dword(sc, align_offset, &val, cmd_flags);
1502 
1503     if (rc == 0) {
1504         val &= ~(0xff << BYTE_OFFSET(offset));
1505         val |= (*data_buf << BYTE_OFFSET(offset));
1506 
1507         /* nvram data is returned as an array of bytes
1508          * convert it back to cpu order
1509          */
1510         val = be32toh(val);
1511 
1512         rc = bxe_nvram_write_dword(sc, align_offset, val, cmd_flags);
1513     }
1514 
1515     /* disable access to nvram interface */
1516     bxe_disable_nvram_access(sc);
1517     bxe_release_nvram_lock(sc);
1518 
1519     return (rc);
1520 }
1521 
1522 static int
1523 bxe_nvram_write(struct bxe_softc *sc,
1524                 uint32_t         offset,
1525                 uint8_t          *data_buf,
1526                 int              buf_size)
1527 {
1528     uint32_t cmd_flags;
1529     uint32_t val;
1530     uint32_t written_so_far;
1531     int rc;
1532 
1533     if (buf_size == 1) {
1534         return (bxe_nvram_write1(sc, offset, data_buf, buf_size));
1535     }
1536 
1537     if ((offset & 0x03) || (buf_size & 0x03) /* || (buf_size == 0) */) {
1538         BLOGE(sc, "Invalid parameter, offset 0x%x buf_size 0x%x\n",
1539               offset, buf_size);
1540         return (-1);
1541     }
1542 
1543     if (buf_size == 0) {
1544         return (0); /* nothing to do */
1545     }
1546 
1547     if ((offset + buf_size) > sc->devinfo.flash_size) {
1548         BLOGE(sc, "Invalid parameter, "
1549                   "offset 0x%x + buf_size 0x%x > flash_size 0x%x\n",
1550               offset, buf_size, sc->devinfo.flash_size);
1551         return (-1);
1552     }
1553 
1554     /* request access to nvram interface */
1555     rc = bxe_acquire_nvram_lock(sc);
1556     if (rc) {
1557         return (rc);
1558     }
1559 
1560     /* enable access to nvram interface */
1561     bxe_enable_nvram_access(sc);
1562 
1563     written_so_far = 0;
1564     cmd_flags = MCPR_NVM_COMMAND_FIRST;
1565     while ((written_so_far < buf_size) && (rc == 0)) {
1566         if (written_so_far == (buf_size - sizeof(uint32_t))) {
1567             cmd_flags |= MCPR_NVM_COMMAND_LAST;
1568         } else if (((offset + 4) % NVRAM_PAGE_SIZE) == 0) {
1569             cmd_flags |= MCPR_NVM_COMMAND_LAST;
1570         } else if ((offset % NVRAM_PAGE_SIZE) == 0) {
1571             cmd_flags |= MCPR_NVM_COMMAND_FIRST;
1572         }
1573 
1574         memcpy(&val, data_buf, 4);
1575 
1576         rc = bxe_nvram_write_dword(sc, offset, val, cmd_flags);
1577 
1578         /* advance to the next dword */
1579         offset += sizeof(uint32_t);
1580         data_buf += sizeof(uint32_t);
1581         written_so_far += sizeof(uint32_t);
1582         cmd_flags = 0;
1583     }
1584 
1585     /* disable access to nvram interface */
1586     bxe_disable_nvram_access(sc);
1587     bxe_release_nvram_lock(sc);
1588 
1589     return (rc);
1590 }
1591 
1592 /* copy command into DMAE command memory and set DMAE command Go */
1593 void
1594 bxe_post_dmae(struct bxe_softc    *sc,
1595               struct dmae_command *dmae,
1596               int                 idx)
1597 {
1598     uint32_t cmd_offset;
1599     int i;
1600 
1601     cmd_offset = (DMAE_REG_CMD_MEM + (sizeof(struct dmae_command) * idx));
1602     for (i = 0; i < ((sizeof(struct dmae_command) / 4)); i++) {
1603         REG_WR(sc, (cmd_offset + (i * 4)), *(((uint32_t *)dmae) + i));
1604     }
1605 
1606     REG_WR(sc, dmae_reg_go_c[idx], 1);
1607 }
1608 
1609 uint32_t
1610 bxe_dmae_opcode_add_comp(uint32_t opcode,
1611                          uint8_t  comp_type)
1612 {
1613     return (opcode | ((comp_type << DMAE_COMMAND_C_DST_SHIFT) |
1614                       DMAE_COMMAND_C_TYPE_ENABLE));
1615 }
1616 
1617 uint32_t
1618 bxe_dmae_opcode_clr_src_reset(uint32_t opcode)
1619 {
1620     return (opcode & ~DMAE_COMMAND_SRC_RESET);
1621 }
1622 
1623 uint32_t
1624 bxe_dmae_opcode(struct bxe_softc *sc,
1625                 uint8_t          src_type,
1626                 uint8_t          dst_type,
1627                 uint8_t          with_comp,
1628                 uint8_t          comp_type)
1629 {
1630     uint32_t opcode = 0;
1631 
1632     opcode |= ((src_type << DMAE_COMMAND_SRC_SHIFT) |
1633                (dst_type << DMAE_COMMAND_DST_SHIFT));
1634 
1635     opcode |= (DMAE_COMMAND_SRC_RESET | DMAE_COMMAND_DST_RESET);
1636 
1637     opcode |= (SC_PORT(sc) ? DMAE_CMD_PORT_1 : DMAE_CMD_PORT_0);
1638 
1639     opcode |= ((SC_VN(sc) << DMAE_COMMAND_E1HVN_SHIFT) |
1640                (SC_VN(sc) << DMAE_COMMAND_DST_VN_SHIFT));
1641 
1642     opcode |= (DMAE_COM_SET_ERR << DMAE_COMMAND_ERR_POLICY_SHIFT);
1643 
1644 #ifdef __BIG_ENDIAN
1645     opcode |= DMAE_CMD_ENDIANITY_B_DW_SWAP;
1646 #else
1647     opcode |= DMAE_CMD_ENDIANITY_DW_SWAP;
1648 #endif
1649 
1650     if (with_comp) {
1651         opcode = bxe_dmae_opcode_add_comp(opcode, comp_type);
1652     }
1653 
1654     return (opcode);
1655 }
1656 
1657 static void
1658 bxe_prep_dmae_with_comp(struct bxe_softc    *sc,
1659                         struct dmae_command *dmae,
1660                         uint8_t             src_type,
1661                         uint8_t             dst_type)
1662 {
1663     memset(dmae, 0, sizeof(struct dmae_command));
1664 
1665     /* set the opcode */
1666     dmae->opcode = bxe_dmae_opcode(sc, src_type, dst_type,
1667                                    TRUE, DMAE_COMP_PCI);
1668 
1669     /* fill in the completion parameters */
1670     dmae->comp_addr_lo = U64_LO(BXE_SP_MAPPING(sc, wb_comp));
1671     dmae->comp_addr_hi = U64_HI(BXE_SP_MAPPING(sc, wb_comp));
1672     dmae->comp_val     = DMAE_COMP_VAL;
1673 }
1674 
1675 /* issue a DMAE command over the init channel and wait for completion */
1676 static int
1677 bxe_issue_dmae_with_comp(struct bxe_softc    *sc,
1678                          struct dmae_command *dmae)
1679 {
1680     uint32_t *wb_comp = BXE_SP(sc, wb_comp);
1681     int timeout = CHIP_REV_IS_SLOW(sc) ? 400000 : 4000;
1682 
1683     BXE_DMAE_LOCK(sc);
1684 
1685     /* reset completion */
1686     *wb_comp = 0;
1687 
1688     /* post the command on the channel used for initializations */
1689     bxe_post_dmae(sc, dmae, INIT_DMAE_C(sc));
1690 
1691     /* wait for completion */
1692     DELAY(5);
1693 
1694     while ((*wb_comp & ~DMAE_PCI_ERR_FLAG) != DMAE_COMP_VAL) {
1695         if (!timeout ||
1696             (sc->recovery_state != BXE_RECOVERY_DONE &&
1697              sc->recovery_state != BXE_RECOVERY_NIC_LOADING)) {
1698             BLOGE(sc, "DMAE timeout!\n");
1699             BXE_DMAE_UNLOCK(sc);
1700             return (DMAE_TIMEOUT);
1701         }
1702 
1703         timeout--;
1704         DELAY(50);
1705     }
1706 
1707     if (*wb_comp & DMAE_PCI_ERR_FLAG) {
1708         BLOGE(sc, "DMAE PCI error!\n");
1709         BXE_DMAE_UNLOCK(sc);
1710         return (DMAE_PCI_ERROR);
1711     }
1712 
1713     BXE_DMAE_UNLOCK(sc);
1714     return (0);
1715 }
1716 
1717 void
1718 bxe_read_dmae(struct bxe_softc *sc,
1719               uint32_t         src_addr,
1720               uint32_t         len32)
1721 {
1722     struct dmae_command dmae;
1723     uint32_t *data;
1724     int i, rc;
1725 
1726     DBASSERT(sc, (len32 <= 4), ("DMAE read length is %d", len32));
1727 
1728     if (!sc->dmae_ready) {
1729         data = BXE_SP(sc, wb_data[0]);
1730 
1731         for (i = 0; i < len32; i++) {
1732             data[i] = (CHIP_IS_E1(sc)) ?
1733                           bxe_reg_rd_ind(sc, (src_addr + (i * 4))) :
1734                           REG_RD(sc, (src_addr + (i * 4)));
1735         }
1736 
1737         return;
1738     }
1739 
1740     /* set opcode and fixed command fields */
1741     bxe_prep_dmae_with_comp(sc, &dmae, DMAE_SRC_GRC, DMAE_DST_PCI);
1742 
1743     /* fill in addresses and len */
1744     dmae.src_addr_lo = (src_addr >> 2); /* GRC addr has dword resolution */
1745     dmae.src_addr_hi = 0;
1746     dmae.dst_addr_lo = U64_LO(BXE_SP_MAPPING(sc, wb_data));
1747     dmae.dst_addr_hi = U64_HI(BXE_SP_MAPPING(sc, wb_data));
1748     dmae.len         = len32;
1749 
1750     /* issue the command and wait for completion */
1751     if ((rc = bxe_issue_dmae_with_comp(sc, &dmae)) != 0) {
1752         bxe_panic(sc, ("DMAE failed (%d)\n", rc));
1753     };
1754 }
1755 
1756 void
1757 bxe_write_dmae(struct bxe_softc *sc,
1758                bus_addr_t       dma_addr,
1759                uint32_t         dst_addr,
1760                uint32_t         len32)
1761 {
1762     struct dmae_command dmae;
1763     int rc;
1764 
1765     if (!sc->dmae_ready) {
1766         DBASSERT(sc, (len32 <= 4), ("DMAE not ready and length is %d", len32));
1767 
1768         if (CHIP_IS_E1(sc)) {
1769             ecore_init_ind_wr(sc, dst_addr, BXE_SP(sc, wb_data[0]), len32);
1770         } else {
1771             ecore_init_str_wr(sc, dst_addr, BXE_SP(sc, wb_data[0]), len32);
1772         }
1773 
1774         return;
1775     }
1776 
1777     /* set opcode and fixed command fields */
1778     bxe_prep_dmae_with_comp(sc, &dmae, DMAE_SRC_PCI, DMAE_DST_GRC);
1779 
1780     /* fill in addresses and len */
1781     dmae.src_addr_lo = U64_LO(dma_addr);
1782     dmae.src_addr_hi = U64_HI(dma_addr);
1783     dmae.dst_addr_lo = (dst_addr >> 2); /* GRC addr has dword resolution */
1784     dmae.dst_addr_hi = 0;
1785     dmae.len         = len32;
1786 
1787     /* issue the command and wait for completion */
1788     if ((rc = bxe_issue_dmae_with_comp(sc, &dmae)) != 0) {
1789         bxe_panic(sc, ("DMAE failed (%d)\n", rc));
1790     }
1791 }
1792 
1793 void
1794 bxe_write_dmae_phys_len(struct bxe_softc *sc,
1795                         bus_addr_t       phys_addr,
1796                         uint32_t         addr,
1797                         uint32_t         len)
1798 {
1799     int dmae_wr_max = DMAE_LEN32_WR_MAX(sc);
1800     int offset = 0;
1801 
1802     while (len > dmae_wr_max) {
1803         bxe_write_dmae(sc,
1804                        (phys_addr + offset), /* src DMA address */
1805                        (addr + offset),      /* dst GRC address */
1806                        dmae_wr_max);
1807         offset += (dmae_wr_max * 4);
1808         len -= dmae_wr_max;
1809     }
1810 
1811     bxe_write_dmae(sc,
1812                    (phys_addr + offset), /* src DMA address */
1813                    (addr + offset),      /* dst GRC address */
1814                    len);
1815 }
1816 
1817 void
1818 bxe_set_ctx_validation(struct bxe_softc   *sc,
1819                        struct eth_context *cxt,
1820                        uint32_t           cid)
1821 {
1822     /* ustorm cxt validation */
1823     cxt->ustorm_ag_context.cdu_usage =
1824         CDU_RSRVD_VALUE_TYPE_A(HW_CID(sc, cid),
1825             CDU_REGION_NUMBER_UCM_AG, ETH_CONNECTION_TYPE);
1826     /* xcontext validation */
1827     cxt->xstorm_ag_context.cdu_reserved =
1828         CDU_RSRVD_VALUE_TYPE_A(HW_CID(sc, cid),
1829             CDU_REGION_NUMBER_XCM_AG, ETH_CONNECTION_TYPE);
1830 }
1831 
1832 static void
1833 bxe_storm_memset_hc_timeout(struct bxe_softc *sc,
1834                             uint8_t          port,
1835                             uint8_t          fw_sb_id,
1836                             uint8_t          sb_index,
1837                             uint8_t          ticks)
1838 {
1839     uint32_t addr =
1840         (BAR_CSTRORM_INTMEM +
1841          CSTORM_STATUS_BLOCK_DATA_TIMEOUT_OFFSET(fw_sb_id, sb_index));
1842 
1843     REG_WR8(sc, addr, ticks);
1844 
1845     BLOGD(sc, DBG_LOAD,
1846           "port %d fw_sb_id %d sb_index %d ticks %d\n",
1847           port, fw_sb_id, sb_index, ticks);
1848 }
1849 
1850 static void
1851 bxe_storm_memset_hc_disable(struct bxe_softc *sc,
1852                             uint8_t          port,
1853                             uint16_t         fw_sb_id,
1854                             uint8_t          sb_index,
1855                             uint8_t          disable)
1856 {
1857     uint32_t enable_flag =
1858         (disable) ? 0 : (1 << HC_INDEX_DATA_HC_ENABLED_SHIFT);
1859     uint32_t addr =
1860         (BAR_CSTRORM_INTMEM +
1861          CSTORM_STATUS_BLOCK_DATA_FLAGS_OFFSET(fw_sb_id, sb_index));
1862     uint8_t flags;
1863 
1864     /* clear and set */
1865     flags = REG_RD8(sc, addr);
1866     flags &= ~HC_INDEX_DATA_HC_ENABLED;
1867     flags |= enable_flag;
1868     REG_WR8(sc, addr, flags);
1869 
1870     BLOGD(sc, DBG_LOAD,
1871           "port %d fw_sb_id %d sb_index %d disable %d\n",
1872           port, fw_sb_id, sb_index, disable);
1873 }
1874 
1875 void
1876 bxe_update_coalesce_sb_index(struct bxe_softc *sc,
1877                              uint8_t          fw_sb_id,
1878                              uint8_t          sb_index,
1879                              uint8_t          disable,
1880                              uint16_t         usec)
1881 {
1882     int port = SC_PORT(sc);
1883     uint8_t ticks = (usec / 4); /* XXX ??? */
1884 
1885     bxe_storm_memset_hc_timeout(sc, port, fw_sb_id, sb_index, ticks);
1886 
1887     disable = (disable) ? 1 : ((usec) ? 0 : 1);
1888     bxe_storm_memset_hc_disable(sc, port, fw_sb_id, sb_index, disable);
1889 }
1890 
1891 void
1892 elink_cb_udelay(struct bxe_softc *sc,
1893                 uint32_t         usecs)
1894 {
1895     DELAY(usecs);
1896 }
1897 
1898 uint32_t
1899 elink_cb_reg_read(struct bxe_softc *sc,
1900                   uint32_t         reg_addr)
1901 {
1902     return (REG_RD(sc, reg_addr));
1903 }
1904 
1905 void
1906 elink_cb_reg_write(struct bxe_softc *sc,
1907                    uint32_t         reg_addr,
1908                    uint32_t         val)
1909 {
1910     REG_WR(sc, reg_addr, val);
1911 }
1912 
1913 void
1914 elink_cb_reg_wb_write(struct bxe_softc *sc,
1915                       uint32_t         offset,
1916                       uint32_t         *wb_write,
1917                       uint16_t         len)
1918 {
1919     REG_WR_DMAE(sc, offset, wb_write, len);
1920 }
1921 
1922 void
1923 elink_cb_reg_wb_read(struct bxe_softc *sc,
1924                      uint32_t         offset,
1925                      uint32_t         *wb_write,
1926                      uint16_t         len)
1927 {
1928     REG_RD_DMAE(sc, offset, wb_write, len);
1929 }
1930 
1931 uint8_t
1932 elink_cb_path_id(struct bxe_softc *sc)
1933 {
1934     return (SC_PATH(sc));
1935 }
1936 
1937 void
1938 elink_cb_event_log(struct bxe_softc     *sc,
1939                    const elink_log_id_t elink_log_id,
1940                    ...)
1941 {
1942     /* XXX */
1943 #if 0
1944     //va_list ap;
1945     va_start(ap, elink_log_id);
1946     _XXX_(sc, lm_log_id, ap);
1947     va_end(ap);
1948 #endif
1949     BLOGI(sc, "ELINK EVENT LOG (%d)\n", elink_log_id);
1950 }
1951 
1952 static int
1953 bxe_set_spio(struct bxe_softc *sc,
1954              int              spio,
1955              uint32_t         mode)
1956 {
1957     uint32_t spio_reg;
1958 
1959     /* Only 2 SPIOs are configurable */
1960     if ((spio != MISC_SPIO_SPIO4) && (spio != MISC_SPIO_SPIO5)) {
1961         BLOGE(sc, "Invalid SPIO 0x%x\n", spio);
1962         return (-1);
1963     }
1964 
1965     bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_SPIO);
1966 
1967     /* read SPIO and mask except the float bits */
1968     spio_reg = (REG_RD(sc, MISC_REG_SPIO) & MISC_SPIO_FLOAT);
1969 
1970     switch (mode) {
1971     case MISC_SPIO_OUTPUT_LOW:
1972         BLOGD(sc, DBG_LOAD, "Set SPIO 0x%x -> output low\n", spio);
1973         /* clear FLOAT and set CLR */
1974         spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS);
1975         spio_reg |=  (spio << MISC_SPIO_CLR_POS);
1976         break;
1977 
1978     case MISC_SPIO_OUTPUT_HIGH:
1979         BLOGD(sc, DBG_LOAD, "Set SPIO 0x%x -> output high\n", spio);
1980         /* clear FLOAT and set SET */
1981         spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS);
1982         spio_reg |=  (spio << MISC_SPIO_SET_POS);
1983         break;
1984 
1985     case MISC_SPIO_INPUT_HI_Z:
1986         BLOGD(sc, DBG_LOAD, "Set SPIO 0x%x -> input\n", spio);
1987         /* set FLOAT */
1988         spio_reg |= (spio << MISC_SPIO_FLOAT_POS);
1989         break;
1990 
1991     default:
1992         break;
1993     }
1994 
1995     REG_WR(sc, MISC_REG_SPIO, spio_reg);
1996     bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_SPIO);
1997 
1998     return (0);
1999 }
2000 
2001 static int
2002 bxe_gpio_read(struct bxe_softc *sc,
2003               int              gpio_num,
2004               uint8_t          port)
2005 {
2006     /* The GPIO should be swapped if swap register is set and active */
2007     int gpio_port = ((REG_RD(sc, NIG_REG_PORT_SWAP) &&
2008                       REG_RD(sc, NIG_REG_STRAP_OVERRIDE)) ^ port);
2009     int gpio_shift = (gpio_num +
2010                       (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0));
2011     uint32_t gpio_mask = (1 << gpio_shift);
2012     uint32_t gpio_reg;
2013 
2014     if (gpio_num > MISC_REGISTERS_GPIO_3) {
2015         BLOGE(sc, "Invalid GPIO %d\n", gpio_num);
2016         return (-1);
2017     }
2018 
2019     /* read GPIO value */
2020     gpio_reg = REG_RD(sc, MISC_REG_GPIO);
2021 
2022     /* get the requested pin value */
2023     return ((gpio_reg & gpio_mask) == gpio_mask) ? 1 : 0;
2024 }
2025 
2026 static int
2027 bxe_gpio_write(struct bxe_softc *sc,
2028                int              gpio_num,
2029                uint32_t         mode,
2030                uint8_t          port)
2031 {
2032     /* The GPIO should be swapped if swap register is set and active */
2033     int gpio_port = ((REG_RD(sc, NIG_REG_PORT_SWAP) &&
2034                       REG_RD(sc, NIG_REG_STRAP_OVERRIDE)) ^ port);
2035     int gpio_shift = (gpio_num +
2036                       (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0));
2037     uint32_t gpio_mask = (1 << gpio_shift);
2038     uint32_t gpio_reg;
2039 
2040     if (gpio_num > MISC_REGISTERS_GPIO_3) {
2041         BLOGE(sc, "Invalid GPIO %d\n", gpio_num);
2042         return (-1);
2043     }
2044 
2045     bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
2046 
2047     /* read GPIO and mask except the float bits */
2048     gpio_reg = (REG_RD(sc, MISC_REG_GPIO) & MISC_REGISTERS_GPIO_FLOAT);
2049 
2050     switch (mode) {
2051     case MISC_REGISTERS_GPIO_OUTPUT_LOW:
2052         BLOGD(sc, DBG_PHY,
2053               "Set GPIO %d (shift %d) -> output low\n",
2054               gpio_num, gpio_shift);
2055         /* clear FLOAT and set CLR */
2056         gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
2057         gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_CLR_POS);
2058         break;
2059 
2060     case MISC_REGISTERS_GPIO_OUTPUT_HIGH:
2061         BLOGD(sc, DBG_PHY,
2062               "Set GPIO %d (shift %d) -> output high\n",
2063               gpio_num, gpio_shift);
2064         /* clear FLOAT and set SET */
2065         gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
2066         gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_SET_POS);
2067         break;
2068 
2069     case MISC_REGISTERS_GPIO_INPUT_HI_Z:
2070         BLOGD(sc, DBG_PHY,
2071               "Set GPIO %d (shift %d) -> input\n",
2072               gpio_num, gpio_shift);
2073         /* set FLOAT */
2074         gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
2075         break;
2076 
2077     default:
2078         break;
2079     }
2080 
2081     REG_WR(sc, MISC_REG_GPIO, gpio_reg);
2082     bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
2083 
2084     return (0);
2085 }
2086 
2087 static int
2088 bxe_gpio_mult_write(struct bxe_softc *sc,
2089                     uint8_t          pins,
2090                     uint32_t         mode)
2091 {
2092     uint32_t gpio_reg;
2093 
2094     /* any port swapping should be handled by caller */
2095 
2096     bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
2097 
2098     /* read GPIO and mask except the float bits */
2099     gpio_reg = REG_RD(sc, MISC_REG_GPIO);
2100     gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_FLOAT_POS);
2101     gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_CLR_POS);
2102     gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_SET_POS);
2103 
2104     switch (mode) {
2105     case MISC_REGISTERS_GPIO_OUTPUT_LOW:
2106         BLOGD(sc, DBG_PHY, "Set GPIO 0x%x -> output low\n", pins);
2107         /* set CLR */
2108         gpio_reg |= (pins << MISC_REGISTERS_GPIO_CLR_POS);
2109         break;
2110 
2111     case MISC_REGISTERS_GPIO_OUTPUT_HIGH:
2112         BLOGD(sc, DBG_PHY, "Set GPIO 0x%x -> output high\n", pins);
2113         /* set SET */
2114         gpio_reg |= (pins << MISC_REGISTERS_GPIO_SET_POS);
2115         break;
2116 
2117     case MISC_REGISTERS_GPIO_INPUT_HI_Z:
2118         BLOGD(sc, DBG_PHY, "Set GPIO 0x%x -> input\n", pins);
2119         /* set FLOAT */
2120         gpio_reg |= (pins << MISC_REGISTERS_GPIO_FLOAT_POS);
2121         break;
2122 
2123     default:
2124         BLOGE(sc, "Invalid GPIO mode assignment %d\n", mode);
2125         bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
2126         return (-1);
2127     }
2128 
2129     REG_WR(sc, MISC_REG_GPIO, gpio_reg);
2130     bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
2131 
2132     return (0);
2133 }
2134 
2135 static int
2136 bxe_gpio_int_write(struct bxe_softc *sc,
2137                    int              gpio_num,
2138                    uint32_t         mode,
2139                    uint8_t          port)
2140 {
2141     /* The GPIO should be swapped if swap register is set and active */
2142     int gpio_port = ((REG_RD(sc, NIG_REG_PORT_SWAP) &&
2143                       REG_RD(sc, NIG_REG_STRAP_OVERRIDE)) ^ port);
2144     int gpio_shift = (gpio_num +
2145                       (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0));
2146     uint32_t gpio_mask = (1 << gpio_shift);
2147     uint32_t gpio_reg;
2148 
2149     if (gpio_num > MISC_REGISTERS_GPIO_3) {
2150         BLOGE(sc, "Invalid GPIO %d\n", gpio_num);
2151         return (-1);
2152     }
2153 
2154     bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
2155 
2156     /* read GPIO int */
2157     gpio_reg = REG_RD(sc, MISC_REG_GPIO_INT);
2158 
2159     switch (mode) {
2160     case MISC_REGISTERS_GPIO_INT_OUTPUT_CLR:
2161         BLOGD(sc, DBG_PHY,
2162               "Clear GPIO INT %d (shift %d) -> output low\n",
2163               gpio_num, gpio_shift);
2164         /* clear SET and set CLR */
2165         gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS);
2166         gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS);
2167         break;
2168 
2169     case MISC_REGISTERS_GPIO_INT_OUTPUT_SET:
2170         BLOGD(sc, DBG_PHY,
2171               "Set GPIO INT %d (shift %d) -> output high\n",
2172               gpio_num, gpio_shift);
2173         /* clear CLR and set SET */
2174         gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS);
2175         gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS);
2176         break;
2177 
2178     default:
2179         break;
2180     }
2181 
2182     REG_WR(sc, MISC_REG_GPIO_INT, gpio_reg);
2183     bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
2184 
2185     return (0);
2186 }
2187 
2188 uint32_t
2189 elink_cb_gpio_read(struct bxe_softc *sc,
2190                    uint16_t         gpio_num,
2191                    uint8_t          port)
2192 {
2193     return (bxe_gpio_read(sc, gpio_num, port));
2194 }
2195 
2196 uint8_t
2197 elink_cb_gpio_write(struct bxe_softc *sc,
2198                     uint16_t         gpio_num,
2199                     uint8_t          mode, /* 0=low 1=high */
2200                     uint8_t          port)
2201 {
2202     return (bxe_gpio_write(sc, gpio_num, mode, port));
2203 }
2204 
2205 uint8_t
2206 elink_cb_gpio_mult_write(struct bxe_softc *sc,
2207                          uint8_t          pins,
2208                          uint8_t          mode) /* 0=low 1=high */
2209 {
2210     return (bxe_gpio_mult_write(sc, pins, mode));
2211 }
2212 
2213 uint8_t
2214 elink_cb_gpio_int_write(struct bxe_softc *sc,
2215                         uint16_t         gpio_num,
2216                         uint8_t          mode, /* 0=low 1=high */
2217                         uint8_t          port)
2218 {
2219     return (bxe_gpio_int_write(sc, gpio_num, mode, port));
2220 }
2221 
2222 void
2223 elink_cb_notify_link_changed(struct bxe_softc *sc)
2224 {
2225     REG_WR(sc, (MISC_REG_AEU_GENERAL_ATTN_12 +
2226                 (SC_FUNC(sc) * sizeof(uint32_t))), 1);
2227 }
2228 
2229 /* send the MCP a request, block until there is a reply */
2230 uint32_t
2231 elink_cb_fw_command(struct bxe_softc *sc,
2232                     uint32_t         command,
2233                     uint32_t         param)
2234 {
2235     int mb_idx = SC_FW_MB_IDX(sc);
2236     uint32_t seq;
2237     uint32_t rc = 0;
2238     uint32_t cnt = 1;
2239     uint8_t delay = CHIP_REV_IS_SLOW(sc) ? 100 : 10;
2240 
2241     BXE_FWMB_LOCK(sc);
2242 
2243     seq = ++sc->fw_seq;
2244     SHMEM_WR(sc, func_mb[mb_idx].drv_mb_param, param);
2245     SHMEM_WR(sc, func_mb[mb_idx].drv_mb_header, (command | seq));
2246 
2247     BLOGD(sc, DBG_PHY,
2248           "wrote command 0x%08x to FW MB param 0x%08x\n",
2249           (command | seq), param);
2250 
2251     /* Let the FW do it's magic. GIve it up to 5 seconds... */
2252     do {
2253         DELAY(delay * 1000);
2254         rc = SHMEM_RD(sc, func_mb[mb_idx].fw_mb_header);
2255     } while ((seq != (rc & FW_MSG_SEQ_NUMBER_MASK)) && (cnt++ < 500));
2256 
2257     BLOGD(sc, DBG_PHY,
2258           "[after %d ms] read 0x%x seq 0x%x from FW MB\n",
2259           cnt*delay, rc, seq);
2260 
2261     /* is this a reply to our command? */
2262     if (seq == (rc & FW_MSG_SEQ_NUMBER_MASK)) {
2263         rc &= FW_MSG_CODE_MASK;
2264     } else {
2265         /* Ruh-roh! */
2266         BLOGE(sc, "FW failed to respond!\n");
2267         // XXX bxe_fw_dump(sc);
2268         rc = 0;
2269     }
2270 
2271     BXE_FWMB_UNLOCK(sc);
2272     return (rc);
2273 }
2274 
2275 static uint32_t
2276 bxe_fw_command(struct bxe_softc *sc,
2277                uint32_t         command,
2278                uint32_t         param)
2279 {
2280     return (elink_cb_fw_command(sc, command, param));
2281 }
2282 
2283 static void
2284 __storm_memset_dma_mapping(struct bxe_softc *sc,
2285                            uint32_t         addr,
2286                            bus_addr_t       mapping)
2287 {
2288     REG_WR(sc, addr, U64_LO(mapping));
2289     REG_WR(sc, (addr + 4), U64_HI(mapping));
2290 }
2291 
2292 static void
2293 storm_memset_spq_addr(struct bxe_softc *sc,
2294                       bus_addr_t       mapping,
2295                       uint16_t         abs_fid)
2296 {
2297     uint32_t addr = (XSEM_REG_FAST_MEMORY +
2298                      XSTORM_SPQ_PAGE_BASE_OFFSET(abs_fid));
2299     __storm_memset_dma_mapping(sc, addr, mapping);
2300 }
2301 
2302 static void
2303 storm_memset_vf_to_pf(struct bxe_softc *sc,
2304                       uint16_t         abs_fid,
2305                       uint16_t         pf_id)
2306 {
2307     REG_WR8(sc, (BAR_XSTRORM_INTMEM + XSTORM_VF_TO_PF_OFFSET(abs_fid)), pf_id);
2308     REG_WR8(sc, (BAR_CSTRORM_INTMEM + CSTORM_VF_TO_PF_OFFSET(abs_fid)), pf_id);
2309     REG_WR8(sc, (BAR_TSTRORM_INTMEM + TSTORM_VF_TO_PF_OFFSET(abs_fid)), pf_id);
2310     REG_WR8(sc, (BAR_USTRORM_INTMEM + USTORM_VF_TO_PF_OFFSET(abs_fid)), pf_id);
2311 }
2312 
2313 static void
2314 storm_memset_func_en(struct bxe_softc *sc,
2315                      uint16_t         abs_fid,
2316                      uint8_t          enable)
2317 {
2318     REG_WR8(sc, (BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(abs_fid)), enable);
2319     REG_WR8(sc, (BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(abs_fid)), enable);
2320     REG_WR8(sc, (BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(abs_fid)), enable);
2321     REG_WR8(sc, (BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(abs_fid)), enable);
2322 }
2323 
2324 static void
2325 storm_memset_eq_data(struct bxe_softc       *sc,
2326                      struct event_ring_data *eq_data,
2327                      uint16_t               pfid)
2328 {
2329     uint32_t addr;
2330     size_t size;
2331 
2332     addr = (BAR_CSTRORM_INTMEM + CSTORM_EVENT_RING_DATA_OFFSET(pfid));
2333     size = sizeof(struct event_ring_data);
2334     ecore_storm_memset_struct(sc, addr, size, (uint32_t *)eq_data);
2335 }
2336 
2337 static void
2338 storm_memset_eq_prod(struct bxe_softc *sc,
2339                      uint16_t         eq_prod,
2340                      uint16_t         pfid)
2341 {
2342     uint32_t addr = (BAR_CSTRORM_INTMEM +
2343                      CSTORM_EVENT_RING_PROD_OFFSET(pfid));
2344     REG_WR16(sc, addr, eq_prod);
2345 }
2346 
2347 /*
2348  * Post a slowpath command.
2349  *
2350  * A slowpath command is used to propogate a configuration change through
2351  * the controller in a controlled manner, allowing each STORM processor and
2352  * other H/W blocks to phase in the change.  The commands sent on the
2353  * slowpath are referred to as ramrods.  Depending on the ramrod used the
2354  * completion of the ramrod will occur in different ways.  Here's a
2355  * breakdown of ramrods and how they complete:
2356  *
2357  * RAMROD_CMD_ID_ETH_PORT_SETUP
2358  *   Used to setup the leading connection on a port.  Completes on the
2359  *   Receive Completion Queue (RCQ) of that port (typically fp[0]).
2360  *
2361  * RAMROD_CMD_ID_ETH_CLIENT_SETUP
2362  *   Used to setup an additional connection on a port.  Completes on the
2363  *   RCQ of the multi-queue/RSS connection being initialized.
2364  *
2365  * RAMROD_CMD_ID_ETH_STAT_QUERY
2366  *   Used to force the storm processors to update the statistics database
2367  *   in host memory.  This ramrod is send on the leading connection CID and
2368  *   completes as an index increment of the CSTORM on the default status
2369  *   block.
2370  *
2371  * RAMROD_CMD_ID_ETH_UPDATE
2372  *   Used to update the state of the leading connection, usually to udpate
2373  *   the RSS indirection table.  Completes on the RCQ of the leading
2374  *   connection. (Not currently used under FreeBSD until OS support becomes
2375  *   available.)
2376  *
2377  * RAMROD_CMD_ID_ETH_HALT
2378  *   Used when tearing down a connection prior to driver unload.  Completes
2379  *   on the RCQ of the multi-queue/RSS connection being torn down.  Don't
2380  *   use this on the leading connection.
2381  *
2382  * RAMROD_CMD_ID_ETH_SET_MAC
2383  *   Sets the Unicast/Broadcast/Multicast used by the port.  Completes on
2384  *   the RCQ of the leading connection.
2385  *
2386  * RAMROD_CMD_ID_ETH_CFC_DEL
2387  *   Used when tearing down a conneciton prior to driver unload.  Completes
2388  *   on the RCQ of the leading connection (since the current connection
2389  *   has been completely removed from controller memory).
2390  *
2391  * RAMROD_CMD_ID_ETH_PORT_DEL
2392  *   Used to tear down the leading connection prior to driver unload,
2393  *   typically fp[0].  Completes as an index increment of the CSTORM on the
2394  *   default status block.
2395  *
2396  * RAMROD_CMD_ID_ETH_FORWARD_SETUP
2397  *   Used for connection offload.  Completes on the RCQ of the multi-queue
2398  *   RSS connection that is being offloaded.  (Not currently used under
2399  *   FreeBSD.)
2400  *
2401  * There can only be one command pending per function.
2402  *
2403  * Returns:
2404  *   0 = Success, !0 = Failure.
2405  */
2406 
2407 /* must be called under the spq lock */
2408 static inline
2409 struct eth_spe *bxe_sp_get_next(struct bxe_softc *sc)
2410 {
2411     struct eth_spe *next_spe = sc->spq_prod_bd;
2412 
2413     if (sc->spq_prod_bd == sc->spq_last_bd) {
2414         /* wrap back to the first eth_spq */
2415         sc->spq_prod_bd = sc->spq;
2416         sc->spq_prod_idx = 0;
2417     } else {
2418         sc->spq_prod_bd++;
2419         sc->spq_prod_idx++;
2420     }
2421 
2422     return (next_spe);
2423 }
2424 
2425 /* must be called under the spq lock */
2426 static inline
2427 void bxe_sp_prod_update(struct bxe_softc *sc)
2428 {
2429     int func = SC_FUNC(sc);
2430 
2431     /*
2432      * Make sure that BD data is updated before writing the producer.
2433      * BD data is written to the memory, the producer is read from the
2434      * memory, thus we need a full memory barrier to ensure the ordering.
2435      */
2436     mb();
2437 
2438     REG_WR16(sc, (BAR_XSTRORM_INTMEM + XSTORM_SPQ_PROD_OFFSET(func)),
2439              sc->spq_prod_idx);
2440 
2441     bus_space_barrier(sc->bar[BAR0].tag, sc->bar[BAR0].handle, 0, 0,
2442                       BUS_SPACE_BARRIER_WRITE);
2443 }
2444 
2445 /**
2446  * bxe_is_contextless_ramrod - check if the current command ends on EQ
2447  *
2448  * @cmd:      command to check
2449  * @cmd_type: command type
2450  */
2451 static inline
2452 int bxe_is_contextless_ramrod(int cmd,
2453                               int cmd_type)
2454 {
2455     if ((cmd_type == NONE_CONNECTION_TYPE) ||
2456         (cmd == RAMROD_CMD_ID_ETH_FORWARD_SETUP) ||
2457         (cmd == RAMROD_CMD_ID_ETH_CLASSIFICATION_RULES) ||
2458         (cmd == RAMROD_CMD_ID_ETH_FILTER_RULES) ||
2459         (cmd == RAMROD_CMD_ID_ETH_MULTICAST_RULES) ||
2460         (cmd == RAMROD_CMD_ID_ETH_SET_MAC) ||
2461         (cmd == RAMROD_CMD_ID_ETH_RSS_UPDATE)) {
2462         return (TRUE);
2463     } else {
2464         return (FALSE);
2465     }
2466 }
2467 
2468 /**
2469  * bxe_sp_post - place a single command on an SP ring
2470  *
2471  * @sc:         driver handle
2472  * @command:    command to place (e.g. SETUP, FILTER_RULES, etc.)
2473  * @cid:        SW CID the command is related to
2474  * @data_hi:    command private data address (high 32 bits)
2475  * @data_lo:    command private data address (low 32 bits)
2476  * @cmd_type:   command type (e.g. NONE, ETH)
2477  *
2478  * SP data is handled as if it's always an address pair, thus data fields are
2479  * not swapped to little endian in upper functions. Instead this function swaps
2480  * data as if it's two uint32 fields.
2481  */
2482 int
2483 bxe_sp_post(struct bxe_softc *sc,
2484             int              command,
2485             int              cid,
2486             uint32_t         data_hi,
2487             uint32_t         data_lo,
2488             int              cmd_type)
2489 {
2490     struct eth_spe *spe;
2491     uint16_t type;
2492     int common;
2493 
2494     common = bxe_is_contextless_ramrod(command, cmd_type);
2495 
2496     BXE_SP_LOCK(sc);
2497 
2498     if (common) {
2499         if (!atomic_load_acq_long(&sc->eq_spq_left)) {
2500             BLOGE(sc, "EQ ring is full!\n");
2501             BXE_SP_UNLOCK(sc);
2502             return (-1);
2503         }
2504     } else {
2505         if (!atomic_load_acq_long(&sc->cq_spq_left)) {
2506             BLOGE(sc, "SPQ ring is full!\n");
2507             BXE_SP_UNLOCK(sc);
2508             return (-1);
2509         }
2510     }
2511 
2512     spe = bxe_sp_get_next(sc);
2513 
2514     /* CID needs port number to be encoded int it */
2515     spe->hdr.conn_and_cmd_data =
2516         htole32((command << SPE_HDR_CMD_ID_SHIFT) | HW_CID(sc, cid));
2517 
2518     type = (cmd_type << SPE_HDR_CONN_TYPE_SHIFT) & SPE_HDR_CONN_TYPE;
2519 
2520     /* TBD: Check if it works for VFs */
2521     type |= ((SC_FUNC(sc) << SPE_HDR_FUNCTION_ID_SHIFT) &
2522              SPE_HDR_FUNCTION_ID);
2523 
2524     spe->hdr.type = htole16(type);
2525 
2526     spe->data.update_data_addr.hi = htole32(data_hi);
2527     spe->data.update_data_addr.lo = htole32(data_lo);
2528 
2529     /*
2530      * It's ok if the actual decrement is issued towards the memory
2531      * somewhere between the lock and unlock. Thus no more explict
2532      * memory barrier is needed.
2533      */
2534     if (common) {
2535         atomic_subtract_acq_long(&sc->eq_spq_left, 1);
2536     } else {
2537         atomic_subtract_acq_long(&sc->cq_spq_left, 1);
2538     }
2539 
2540     BLOGD(sc, DBG_SP, "SPQE -> %#jx\n", (uintmax_t)sc->spq_dma.paddr);
2541     BLOGD(sc, DBG_SP, "FUNC_RDATA -> %p / %#jx\n",
2542           BXE_SP(sc, func_rdata), (uintmax_t)BXE_SP_MAPPING(sc, func_rdata));
2543     BLOGD(sc, DBG_SP,
2544           "SPQE[%x] (%x:%x) (cmd, common?) (%d,%d) hw_cid %x data (%x:%x) type(0x%x) left (CQ, EQ) (%lx,%lx)\n",
2545           sc->spq_prod_idx,
2546           (uint32_t)U64_HI(sc->spq_dma.paddr),
2547           (uint32_t)(U64_LO(sc->spq_dma.paddr) + (uint8_t *)sc->spq_prod_bd - (uint8_t *)sc->spq),
2548           command,
2549           common,
2550           HW_CID(sc, cid),
2551           data_hi,
2552           data_lo,
2553           type,
2554           atomic_load_acq_long(&sc->cq_spq_left),
2555           atomic_load_acq_long(&sc->eq_spq_left));
2556 
2557     bxe_sp_prod_update(sc);
2558 
2559     BXE_SP_UNLOCK(sc);
2560     return (0);
2561 }
2562 
2563 /**
2564  * bxe_debug_print_ind_table - prints the indirection table configuration.
2565  *
2566  * @sc: driver hanlde
2567  * @p:  pointer to rss configuration
2568  */
2569 #if 0
2570 static void
2571 bxe_debug_print_ind_table(struct bxe_softc               *sc,
2572                           struct ecore_config_rss_params *p)
2573 {
2574     int i;
2575 
2576     BLOGD(sc, DBG_LOAD, "Setting indirection table to:\n");
2577     BLOGD(sc, DBG_LOAD, "    0x0000: ");
2578     for (i = 0; i < T_ETH_INDIRECTION_TABLE_SIZE; i++) {
2579         BLOGD(sc, DBG_LOAD, "0x%02x ", p->ind_table[i]);
2580 
2581         /* Print 4 bytes in a line */
2582         if ((i + 1 < T_ETH_INDIRECTION_TABLE_SIZE) &&
2583             (((i + 1) & 0x3) == 0)) {
2584             BLOGD(sc, DBG_LOAD, "\n");
2585             BLOGD(sc, DBG_LOAD, "0x%04x: ", i + 1);
2586         }
2587     }
2588 
2589     BLOGD(sc, DBG_LOAD, "\n");
2590 }
2591 #endif
2592 
2593 /*
2594  * FreeBSD Device probe function.
2595  *
2596  * Compares the device found to the driver's list of supported devices and
2597  * reports back to the bsd loader whether this is the right driver for the device.
2598  * This is the driver entry function called from the "kldload" command.
2599  *
2600  * Returns:
2601  *   BUS_PROBE_DEFAULT on success, positive value on failure.
2602  */
2603 static int
2604 bxe_probe(device_t dev)
2605 {
2606     struct bxe_softc *sc;
2607     struct bxe_device_type *t;
2608     char *descbuf;
2609     uint16_t did, sdid, svid, vid;
2610 
2611     /* Find our device structure */
2612     sc = device_get_softc(dev);
2613     sc->dev = dev;
2614     t = bxe_devs;
2615 
2616     /* Get the data for the device to be probed. */
2617     vid  = pci_get_vendor(dev);
2618     did  = pci_get_device(dev);
2619     svid = pci_get_subvendor(dev);
2620     sdid = pci_get_subdevice(dev);
2621 
2622     BLOGD(sc, DBG_LOAD,
2623           "%s(); VID = 0x%04X, DID = 0x%04X, SVID = 0x%04X, "
2624           "SDID = 0x%04X\n", __FUNCTION__, vid, did, svid, sdid);
2625 
2626     /* Look through the list of known devices for a match. */
2627     while (t->bxe_name != NULL) {
2628         if ((vid == t->bxe_vid) && (did == t->bxe_did) &&
2629             ((svid == t->bxe_svid) || (t->bxe_svid == PCI_ANY_ID)) &&
2630             ((sdid == t->bxe_sdid) || (t->bxe_sdid == PCI_ANY_ID))) {
2631             descbuf = malloc(BXE_DEVDESC_MAX, M_TEMP, M_NOWAIT);
2632             if (descbuf == NULL)
2633                 return (ENOMEM);
2634 
2635             /* Print out the device identity. */
2636             snprintf(descbuf, BXE_DEVDESC_MAX,
2637                      "%s (%c%d) BXE v:%s\n", t->bxe_name,
2638                      (((pci_read_config(dev, PCIR_REVID, 4) &
2639                         0xf0) >> 4) + 'A'),
2640                      (pci_read_config(dev, PCIR_REVID, 4) & 0xf),
2641                      BXE_DRIVER_VERSION);
2642 
2643             device_set_desc_copy(dev, descbuf);
2644             free(descbuf, M_TEMP);
2645             return (BUS_PROBE_DEFAULT);
2646         }
2647         t++;
2648     }
2649 
2650     return (ENXIO);
2651 }
2652 
2653 static void
2654 bxe_init_mutexes(struct bxe_softc *sc)
2655 {
2656 #ifdef BXE_CORE_LOCK_SX
2657     snprintf(sc->core_sx_name, sizeof(sc->core_sx_name),
2658              "bxe%d_core_lock", sc->unit);
2659     sx_init(&sc->core_sx, sc->core_sx_name);
2660 #else
2661     snprintf(sc->core_mtx_name, sizeof(sc->core_mtx_name),
2662              "bxe%d_core_lock", sc->unit);
2663     mtx_init(&sc->core_mtx, sc->core_mtx_name, NULL, MTX_DEF);
2664 #endif
2665 
2666     snprintf(sc->sp_mtx_name, sizeof(sc->sp_mtx_name),
2667              "bxe%d_sp_lock", sc->unit);
2668     mtx_init(&sc->sp_mtx, sc->sp_mtx_name, NULL, MTX_DEF);
2669 
2670     snprintf(sc->dmae_mtx_name, sizeof(sc->dmae_mtx_name),
2671              "bxe%d_dmae_lock", sc->unit);
2672     mtx_init(&sc->dmae_mtx, sc->dmae_mtx_name, NULL, MTX_DEF);
2673 
2674     snprintf(sc->port.phy_mtx_name, sizeof(sc->port.phy_mtx_name),
2675              "bxe%d_phy_lock", sc->unit);
2676     mtx_init(&sc->port.phy_mtx, sc->port.phy_mtx_name, NULL, MTX_DEF);
2677 
2678     snprintf(sc->fwmb_mtx_name, sizeof(sc->fwmb_mtx_name),
2679              "bxe%d_fwmb_lock", sc->unit);
2680     mtx_init(&sc->fwmb_mtx, sc->fwmb_mtx_name, NULL, MTX_DEF);
2681 
2682     snprintf(sc->print_mtx_name, sizeof(sc->print_mtx_name),
2683              "bxe%d_print_lock", sc->unit);
2684     mtx_init(&(sc->print_mtx), sc->print_mtx_name, NULL, MTX_DEF);
2685 
2686     snprintf(sc->stats_mtx_name, sizeof(sc->stats_mtx_name),
2687              "bxe%d_stats_lock", sc->unit);
2688     mtx_init(&(sc->stats_mtx), sc->stats_mtx_name, NULL, MTX_DEF);
2689 
2690     snprintf(sc->mcast_mtx_name, sizeof(sc->mcast_mtx_name),
2691              "bxe%d_mcast_lock", sc->unit);
2692     mtx_init(&(sc->mcast_mtx), sc->mcast_mtx_name, NULL, MTX_DEF);
2693 }
2694 
2695 static void
2696 bxe_release_mutexes(struct bxe_softc *sc)
2697 {
2698 #ifdef BXE_CORE_LOCK_SX
2699     sx_destroy(&sc->core_sx);
2700 #else
2701     if (mtx_initialized(&sc->core_mtx)) {
2702         mtx_destroy(&sc->core_mtx);
2703     }
2704 #endif
2705 
2706     if (mtx_initialized(&sc->sp_mtx)) {
2707         mtx_destroy(&sc->sp_mtx);
2708     }
2709 
2710     if (mtx_initialized(&sc->dmae_mtx)) {
2711         mtx_destroy(&sc->dmae_mtx);
2712     }
2713 
2714     if (mtx_initialized(&sc->port.phy_mtx)) {
2715         mtx_destroy(&sc->port.phy_mtx);
2716     }
2717 
2718     if (mtx_initialized(&sc->fwmb_mtx)) {
2719         mtx_destroy(&sc->fwmb_mtx);
2720     }
2721 
2722     if (mtx_initialized(&sc->print_mtx)) {
2723         mtx_destroy(&sc->print_mtx);
2724     }
2725 
2726     if (mtx_initialized(&sc->stats_mtx)) {
2727         mtx_destroy(&sc->stats_mtx);
2728     }
2729 
2730     if (mtx_initialized(&sc->mcast_mtx)) {
2731         mtx_destroy(&sc->mcast_mtx);
2732     }
2733 }
2734 
2735 static void
2736 bxe_tx_disable(struct bxe_softc* sc)
2737 {
2738     if_t ifp = sc->ifp;
2739 
2740     /* tell the stack the driver is stopped and TX queue is full */
2741     if (ifp !=  NULL) {
2742         if_setdrvflags(ifp, 0);
2743     }
2744 }
2745 
2746 static void
2747 bxe_drv_pulse(struct bxe_softc *sc)
2748 {
2749     SHMEM_WR(sc, func_mb[SC_FW_MB_IDX(sc)].drv_pulse_mb,
2750              sc->fw_drv_pulse_wr_seq);
2751 }
2752 
2753 static inline uint16_t
2754 bxe_tx_avail(struct bxe_softc *sc,
2755              struct bxe_fastpath *fp)
2756 {
2757     int16_t  used;
2758     uint16_t prod;
2759     uint16_t cons;
2760 
2761     prod = fp->tx_bd_prod;
2762     cons = fp->tx_bd_cons;
2763 
2764     used = SUB_S16(prod, cons);
2765 
2766 #if 0
2767     KASSERT((used < 0), ("used tx bds < 0"));
2768     KASSERT((used > sc->tx_ring_size), ("used tx bds > tx_ring_size"));
2769     KASSERT(((sc->tx_ring_size - used) > MAX_TX_AVAIL),
2770             ("invalid number of tx bds used"));
2771 #endif
2772 
2773     return (int16_t)(sc->tx_ring_size) - used;
2774 }
2775 
2776 static inline int
2777 bxe_tx_queue_has_work(struct bxe_fastpath *fp)
2778 {
2779     uint16_t hw_cons;
2780 
2781     mb(); /* status block fields can change */
2782     hw_cons = le16toh(*fp->tx_cons_sb);
2783     return (hw_cons != fp->tx_pkt_cons);
2784 }
2785 
2786 static inline uint8_t
2787 bxe_has_tx_work(struct bxe_fastpath *fp)
2788 {
2789     /* expand this for multi-cos if ever supported */
2790     return (bxe_tx_queue_has_work(fp)) ? TRUE : FALSE;
2791 }
2792 
2793 static inline int
2794 bxe_has_rx_work(struct bxe_fastpath *fp)
2795 {
2796     uint16_t rx_cq_cons_sb;
2797 
2798     mb(); /* status block fields can change */
2799     rx_cq_cons_sb = le16toh(*fp->rx_cq_cons_sb);
2800     if ((rx_cq_cons_sb & RCQ_MAX) == RCQ_MAX)
2801         rx_cq_cons_sb++;
2802     return (fp->rx_cq_cons != rx_cq_cons_sb);
2803 }
2804 
2805 static void
2806 bxe_sp_event(struct bxe_softc    *sc,
2807              struct bxe_fastpath *fp,
2808              union eth_rx_cqe    *rr_cqe)
2809 {
2810     int cid = SW_CID(rr_cqe->ramrod_cqe.conn_and_cmd_data);
2811     int command = CQE_CMD(rr_cqe->ramrod_cqe.conn_and_cmd_data);
2812     enum ecore_queue_cmd drv_cmd = ECORE_Q_CMD_MAX;
2813     struct ecore_queue_sp_obj *q_obj = &BXE_SP_OBJ(sc, fp).q_obj;
2814 
2815     BLOGD(sc, DBG_SP, "fp=%d cid=%d got ramrod #%d state is %x type is %d\n",
2816           fp->index, cid, command, sc->state, rr_cqe->ramrod_cqe.ramrod_type);
2817 
2818 #if 0
2819     /*
2820      * If cid is within VF range, replace the slowpath object with the
2821      * one corresponding to this VF
2822      */
2823     if ((cid >= BXE_FIRST_VF_CID) && (cid < BXE_FIRST_VF_CID + BXE_VF_CIDS)) {
2824         bxe_iov_set_queue_sp_obj(sc, cid, &q_obj);
2825     }
2826 #endif
2827 
2828     switch (command) {
2829     case (RAMROD_CMD_ID_ETH_CLIENT_UPDATE):
2830         BLOGD(sc, DBG_SP, "got UPDATE ramrod. CID %d\n", cid);
2831         drv_cmd = ECORE_Q_CMD_UPDATE;
2832         break;
2833 
2834     case (RAMROD_CMD_ID_ETH_CLIENT_SETUP):
2835         BLOGD(sc, DBG_SP, "got MULTI[%d] setup ramrod\n", cid);
2836         drv_cmd = ECORE_Q_CMD_SETUP;
2837         break;
2838 
2839     case (RAMROD_CMD_ID_ETH_TX_QUEUE_SETUP):
2840         BLOGD(sc, DBG_SP, "got MULTI[%d] tx-only setup ramrod\n", cid);
2841         drv_cmd = ECORE_Q_CMD_SETUP_TX_ONLY;
2842         break;
2843 
2844     case (RAMROD_CMD_ID_ETH_HALT):
2845         BLOGD(sc, DBG_SP, "got MULTI[%d] halt ramrod\n", cid);
2846         drv_cmd = ECORE_Q_CMD_HALT;
2847         break;
2848 
2849     case (RAMROD_CMD_ID_ETH_TERMINATE):
2850         BLOGD(sc, DBG_SP, "got MULTI[%d] teminate ramrod\n", cid);
2851         drv_cmd = ECORE_Q_CMD_TERMINATE;
2852         break;
2853 
2854     case (RAMROD_CMD_ID_ETH_EMPTY):
2855         BLOGD(sc, DBG_SP, "got MULTI[%d] empty ramrod\n", cid);
2856         drv_cmd = ECORE_Q_CMD_EMPTY;
2857         break;
2858 
2859     default:
2860         BLOGD(sc, DBG_SP, "ERROR: unexpected MC reply (%d) on fp[%d]\n",
2861               command, fp->index);
2862         return;
2863     }
2864 
2865     if ((drv_cmd != ECORE_Q_CMD_MAX) &&
2866         q_obj->complete_cmd(sc, q_obj, drv_cmd)) {
2867         /*
2868          * q_obj->complete_cmd() failure means that this was
2869          * an unexpected completion.
2870          *
2871          * In this case we don't want to increase the sc->spq_left
2872          * because apparently we haven't sent this command the first
2873          * place.
2874          */
2875         // bxe_panic(sc, ("Unexpected SP completion\n"));
2876         return;
2877     }
2878 
2879 #if 0
2880     /* SRIOV: reschedule any 'in_progress' operations */
2881     bxe_iov_sp_event(sc, cid, TRUE);
2882 #endif
2883 
2884     atomic_add_acq_long(&sc->cq_spq_left, 1);
2885 
2886     BLOGD(sc, DBG_SP, "sc->cq_spq_left 0x%lx\n",
2887           atomic_load_acq_long(&sc->cq_spq_left));
2888 
2889 #if 0
2890     if ((drv_cmd == ECORE_Q_CMD_UPDATE) && (IS_FCOE_FP(fp)) &&
2891         (!!bxe_test_bit(ECORE_AFEX_FCOE_Q_UPDATE_PENDING, &sc->sp_state))) {
2892         /*
2893          * If Queue update ramrod is completed for last Queue in AFEX VIF set
2894          * flow, then ACK MCP at the end. Mark pending ACK to MCP bit to
2895          * prevent case that both bits are cleared. At the end of load/unload
2896          * driver checks that sp_state is cleared and this order prevents
2897          * races.
2898          */
2899         bxe_set_bit(ECORE_AFEX_PENDING_VIFSET_MCP_ACK, &sc->sp_state);
2900         wmb();
2901         bxe_clear_bit(ECORE_AFEX_FCOE_Q_UPDATE_PENDING, &sc->sp_state);
2902 
2903         /* schedule the sp task as MCP ack is required */
2904         bxe_schedule_sp_task(sc);
2905     }
2906 #endif
2907 }
2908 
2909 /*
2910  * The current mbuf is part of an aggregation. Move the mbuf into the TPA
2911  * aggregation queue, put an empty mbuf back onto the receive chain, and mark
2912  * the current aggregation queue as in-progress.
2913  */
2914 static void
2915 bxe_tpa_start(struct bxe_softc            *sc,
2916               struct bxe_fastpath         *fp,
2917               uint16_t                    queue,
2918               uint16_t                    cons,
2919               uint16_t                    prod,
2920               struct eth_fast_path_rx_cqe *cqe)
2921 {
2922     struct bxe_sw_rx_bd tmp_bd;
2923     struct bxe_sw_rx_bd *rx_buf;
2924     struct eth_rx_bd *rx_bd;
2925     int max_agg_queues;
2926     struct bxe_sw_tpa_info *tpa_info = &fp->rx_tpa_info[queue];
2927     uint16_t index;
2928 
2929     BLOGD(sc, DBG_LRO, "fp[%02d].tpa[%02d] TPA START "
2930                        "cons=%d prod=%d\n",
2931           fp->index, queue, cons, prod);
2932 
2933     max_agg_queues = MAX_AGG_QS(sc);
2934 
2935     KASSERT((queue < max_agg_queues),
2936             ("fp[%02d] invalid aggr queue (%d >= %d)!",
2937              fp->index, queue, max_agg_queues));
2938 
2939     KASSERT((tpa_info->state == BXE_TPA_STATE_STOP),
2940             ("fp[%02d].tpa[%02d] starting aggr on queue not stopped!",
2941              fp->index, queue));
2942 
2943     /* copy the existing mbuf and mapping from the TPA pool */
2944     tmp_bd = tpa_info->bd;
2945 
2946     if (tmp_bd.m == NULL) {
2947         BLOGE(sc, "fp[%02d].tpa[%02d] mbuf not allocated!\n",
2948               fp->index, queue);
2949         /* XXX Error handling? */
2950         return;
2951     }
2952 
2953     /* change the TPA queue to the start state */
2954     tpa_info->state            = BXE_TPA_STATE_START;
2955     tpa_info->placement_offset = cqe->placement_offset;
2956     tpa_info->parsing_flags    = le16toh(cqe->pars_flags.flags);
2957     tpa_info->vlan_tag         = le16toh(cqe->vlan_tag);
2958     tpa_info->len_on_bd        = le16toh(cqe->len_on_bd);
2959 
2960     fp->rx_tpa_queue_used |= (1 << queue);
2961 
2962     /*
2963      * If all the buffer descriptors are filled with mbufs then fill in
2964      * the current consumer index with a new BD. Else if a maximum Rx
2965      * buffer limit is imposed then fill in the next producer index.
2966      */
2967     index = (sc->max_rx_bufs != RX_BD_USABLE) ?
2968                 prod : cons;
2969 
2970     /* move the received mbuf and mapping to TPA pool */
2971     tpa_info->bd = fp->rx_mbuf_chain[cons];
2972 
2973     /* release any existing RX BD mbuf mappings */
2974     if (cons != index) {
2975         rx_buf = &fp->rx_mbuf_chain[cons];
2976 
2977         if (rx_buf->m_map != NULL) {
2978             bus_dmamap_sync(fp->rx_mbuf_tag, rx_buf->m_map,
2979                             BUS_DMASYNC_POSTREAD);
2980             bus_dmamap_unload(fp->rx_mbuf_tag, rx_buf->m_map);
2981         }
2982 
2983         /*
2984          * We get here when the maximum number of rx buffers is less than
2985          * RX_BD_USABLE. The mbuf is already saved above so it's OK to NULL
2986          * it out here without concern of a memory leak.
2987          */
2988         fp->rx_mbuf_chain[cons].m = NULL;
2989     }
2990 
2991     /* update the Rx SW BD with the mbuf info from the TPA pool */
2992     fp->rx_mbuf_chain[index] = tmp_bd;
2993 
2994     /* update the Rx BD with the empty mbuf phys address from the TPA pool */
2995     rx_bd = &fp->rx_chain[index];
2996     rx_bd->addr_hi = htole32(U64_HI(tpa_info->seg.ds_addr));
2997     rx_bd->addr_lo = htole32(U64_LO(tpa_info->seg.ds_addr));
2998 }
2999 
3000 /*
3001  * When a TPA aggregation is completed, loop through the individual mbufs
3002  * of the aggregation, combining them into a single mbuf which will be sent
3003  * up the stack. Refill all freed SGEs with mbufs as we go along.
3004  */
3005 static int
3006 bxe_fill_frag_mbuf(struct bxe_softc          *sc,
3007                    struct bxe_fastpath       *fp,
3008                    struct bxe_sw_tpa_info    *tpa_info,
3009                    uint16_t                  queue,
3010                    uint16_t                  pages,
3011                    struct mbuf               *m,
3012 			       struct eth_end_agg_rx_cqe *cqe,
3013                    uint16_t                  cqe_idx)
3014 {
3015     struct mbuf *m_frag;
3016     uint32_t frag_len, frag_size, i;
3017     uint16_t sge_idx;
3018     int rc = 0;
3019     int j;
3020 
3021     frag_size = le16toh(cqe->pkt_len) - tpa_info->len_on_bd;
3022 
3023     BLOGD(sc, DBG_LRO,
3024           "fp[%02d].tpa[%02d] TPA fill len_on_bd=%d frag_size=%d pages=%d\n",
3025           fp->index, queue, tpa_info->len_on_bd, frag_size, pages);
3026 
3027     /* make sure the aggregated frame is not too big to handle */
3028     if (pages > 8 * PAGES_PER_SGE) {
3029         BLOGE(sc, "fp[%02d].sge[0x%04x] has too many pages (%d)! "
3030                   "pkt_len=%d len_on_bd=%d frag_size=%d\n",
3031               fp->index, cqe_idx, pages, le16toh(cqe->pkt_len),
3032               tpa_info->len_on_bd, frag_size);
3033         bxe_panic(sc, ("sge page count error\n"));
3034         return (EINVAL);
3035     }
3036 
3037     /*
3038      * Scan through the scatter gather list pulling individual mbufs into a
3039      * single mbuf for the host stack.
3040      */
3041     for (i = 0, j = 0; i < pages; i += PAGES_PER_SGE, j++) {
3042         sge_idx = RX_SGE(le16toh(cqe->sgl_or_raw_data.sgl[j]));
3043 
3044         /*
3045          * Firmware gives the indices of the SGE as if the ring is an array
3046          * (meaning that the "next" element will consume 2 indices).
3047          */
3048         frag_len = min(frag_size, (uint32_t)(SGE_PAGES));
3049 
3050         BLOGD(sc, DBG_LRO, "fp[%02d].tpa[%02d] TPA fill i=%d j=%d "
3051                            "sge_idx=%d frag_size=%d frag_len=%d\n",
3052               fp->index, queue, i, j, sge_idx, frag_size, frag_len);
3053 
3054         m_frag = fp->rx_sge_mbuf_chain[sge_idx].m;
3055 
3056         /* allocate a new mbuf for the SGE */
3057         rc = bxe_alloc_rx_sge_mbuf(fp, sge_idx);
3058         if (rc) {
3059             /* Leave all remaining SGEs in the ring! */
3060             return (rc);
3061         }
3062 
3063         /* update the fragment length */
3064         m_frag->m_len = frag_len;
3065 
3066         /* concatenate the fragment to the head mbuf */
3067         m_cat(m, m_frag);
3068         fp->eth_q_stats.mbuf_alloc_sge--;
3069 
3070         /* update the TPA mbuf size and remaining fragment size */
3071         m->m_pkthdr.len += frag_len;
3072         frag_size -= frag_len;
3073     }
3074 
3075     BLOGD(sc, DBG_LRO,
3076           "fp[%02d].tpa[%02d] TPA fill done frag_size=%d\n",
3077           fp->index, queue, frag_size);
3078 
3079     return (rc);
3080 }
3081 
3082 static inline void
3083 bxe_clear_sge_mask_next_elems(struct bxe_fastpath *fp)
3084 {
3085     int i, j;
3086 
3087     for (i = 1; i <= RX_SGE_NUM_PAGES; i++) {
3088         int idx = RX_SGE_TOTAL_PER_PAGE * i - 1;
3089 
3090         for (j = 0; j < 2; j++) {
3091             BIT_VEC64_CLEAR_BIT(fp->sge_mask, idx);
3092             idx--;
3093         }
3094     }
3095 }
3096 
3097 static inline void
3098 bxe_init_sge_ring_bit_mask(struct bxe_fastpath *fp)
3099 {
3100     /* set the mask to all 1's, it's faster to compare to 0 than to 0xf's */
3101     memset(fp->sge_mask, 0xff, sizeof(fp->sge_mask));
3102 
3103     /*
3104      * Clear the two last indices in the page to 1. These are the indices that
3105      * correspond to the "next" element, hence will never be indicated and
3106      * should be removed from the calculations.
3107      */
3108     bxe_clear_sge_mask_next_elems(fp);
3109 }
3110 
3111 static inline void
3112 bxe_update_last_max_sge(struct bxe_fastpath *fp,
3113                         uint16_t            idx)
3114 {
3115     uint16_t last_max = fp->last_max_sge;
3116 
3117     if (SUB_S16(idx, last_max) > 0) {
3118         fp->last_max_sge = idx;
3119     }
3120 }
3121 
3122 static inline void
3123 bxe_update_sge_prod(struct bxe_softc          *sc,
3124                     struct bxe_fastpath       *fp,
3125                     uint16_t                  sge_len,
3126                     union eth_sgl_or_raw_data *cqe)
3127 {
3128     uint16_t last_max, last_elem, first_elem;
3129     uint16_t delta = 0;
3130     uint16_t i;
3131 
3132     if (!sge_len) {
3133         return;
3134     }
3135 
3136     /* first mark all used pages */
3137     for (i = 0; i < sge_len; i++) {
3138         BIT_VEC64_CLEAR_BIT(fp->sge_mask,
3139                             RX_SGE(le16toh(cqe->sgl[i])));
3140     }
3141 
3142     BLOGD(sc, DBG_LRO,
3143           "fp[%02d] fp_cqe->sgl[%d] = %d\n",
3144           fp->index, sge_len - 1,
3145           le16toh(cqe->sgl[sge_len - 1]));
3146 
3147     /* assume that the last SGE index is the biggest */
3148     bxe_update_last_max_sge(fp,
3149                             le16toh(cqe->sgl[sge_len - 1]));
3150 
3151     last_max = RX_SGE(fp->last_max_sge);
3152     last_elem = last_max >> BIT_VEC64_ELEM_SHIFT;
3153     first_elem = RX_SGE(fp->rx_sge_prod) >> BIT_VEC64_ELEM_SHIFT;
3154 
3155     /* if ring is not full */
3156     if (last_elem + 1 != first_elem) {
3157         last_elem++;
3158     }
3159 
3160     /* now update the prod */
3161     for (i = first_elem; i != last_elem; i = RX_SGE_NEXT_MASK_ELEM(i)) {
3162         if (__predict_true(fp->sge_mask[i])) {
3163             break;
3164         }
3165 
3166         fp->sge_mask[i] = BIT_VEC64_ELEM_ONE_MASK;
3167         delta += BIT_VEC64_ELEM_SZ;
3168     }
3169 
3170     if (delta > 0) {
3171         fp->rx_sge_prod += delta;
3172         /* clear page-end entries */
3173         bxe_clear_sge_mask_next_elems(fp);
3174     }
3175 
3176     BLOGD(sc, DBG_LRO,
3177           "fp[%02d] fp->last_max_sge=%d fp->rx_sge_prod=%d\n",
3178           fp->index, fp->last_max_sge, fp->rx_sge_prod);
3179 }
3180 
3181 /*
3182  * The aggregation on the current TPA queue has completed. Pull the individual
3183  * mbuf fragments together into a single mbuf, perform all necessary checksum
3184  * calculations, and send the resuting mbuf to the stack.
3185  */
3186 static void
3187 bxe_tpa_stop(struct bxe_softc          *sc,
3188              struct bxe_fastpath       *fp,
3189              struct bxe_sw_tpa_info    *tpa_info,
3190              uint16_t                  queue,
3191              uint16_t                  pages,
3192 			 struct eth_end_agg_rx_cqe *cqe,
3193              uint16_t                  cqe_idx)
3194 {
3195     if_t ifp = sc->ifp;
3196     struct mbuf *m;
3197     int rc = 0;
3198 
3199     BLOGD(sc, DBG_LRO,
3200           "fp[%02d].tpa[%02d] pad=%d pkt_len=%d pages=%d vlan=%d\n",
3201           fp->index, queue, tpa_info->placement_offset,
3202           le16toh(cqe->pkt_len), pages, tpa_info->vlan_tag);
3203 
3204     m = tpa_info->bd.m;
3205 
3206     /* allocate a replacement before modifying existing mbuf */
3207     rc = bxe_alloc_rx_tpa_mbuf(fp, queue);
3208     if (rc) {
3209         /* drop the frame and log an error */
3210         fp->eth_q_stats.rx_soft_errors++;
3211         goto bxe_tpa_stop_exit;
3212     }
3213 
3214     /* we have a replacement, fixup the current mbuf */
3215     m_adj(m, tpa_info->placement_offset);
3216     m->m_pkthdr.len = m->m_len = tpa_info->len_on_bd;
3217 
3218     /* mark the checksums valid (taken care of by the firmware) */
3219     fp->eth_q_stats.rx_ofld_frames_csum_ip++;
3220     fp->eth_q_stats.rx_ofld_frames_csum_tcp_udp++;
3221     m->m_pkthdr.csum_data = 0xffff;
3222     m->m_pkthdr.csum_flags |= (CSUM_IP_CHECKED |
3223                                CSUM_IP_VALID   |
3224                                CSUM_DATA_VALID |
3225                                CSUM_PSEUDO_HDR);
3226 
3227     /* aggregate all of the SGEs into a single mbuf */
3228     rc = bxe_fill_frag_mbuf(sc, fp, tpa_info, queue, pages, m, cqe, cqe_idx);
3229     if (rc) {
3230         /* drop the packet and log an error */
3231         fp->eth_q_stats.rx_soft_errors++;
3232         m_freem(m);
3233     } else {
3234         if (tpa_info->parsing_flags & PARSING_FLAGS_VLAN) {
3235             m->m_pkthdr.ether_vtag = tpa_info->vlan_tag;
3236             m->m_flags |= M_VLANTAG;
3237         }
3238 
3239         /* assign packet to this interface interface */
3240         if_setrcvif(m, ifp);
3241 
3242 #if __FreeBSD_version >= 800000
3243         /* specify what RSS queue was used for this flow */
3244         m->m_pkthdr.flowid = fp->index;
3245         M_HASHTYPE_SET(m, M_HASHTYPE_OPAQUE);
3246 #endif
3247 
3248         if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1);
3249         fp->eth_q_stats.rx_tpa_pkts++;
3250 
3251         /* pass the frame to the stack */
3252         if_input(ifp, m);
3253     }
3254 
3255     /* we passed an mbuf up the stack or dropped the frame */
3256     fp->eth_q_stats.mbuf_alloc_tpa--;
3257 
3258 bxe_tpa_stop_exit:
3259 
3260     fp->rx_tpa_info[queue].state = BXE_TPA_STATE_STOP;
3261     fp->rx_tpa_queue_used &= ~(1 << queue);
3262 }
3263 
3264 static uint8_t
3265 bxe_service_rxsgl(
3266                  struct bxe_fastpath *fp,
3267                  uint16_t len,
3268                  uint16_t lenonbd,
3269                  struct mbuf *m,
3270                  struct eth_fast_path_rx_cqe *cqe_fp)
3271 {
3272     struct mbuf *m_frag;
3273     uint16_t frags, frag_len;
3274     uint16_t sge_idx = 0;
3275     uint16_t j;
3276     uint8_t i, rc = 0;
3277     uint32_t frag_size;
3278 
3279     /* adjust the mbuf */
3280     m->m_len = lenonbd;
3281 
3282     frag_size =  len - lenonbd;
3283     frags = SGE_PAGE_ALIGN(frag_size) >> SGE_PAGE_SHIFT;
3284 
3285     for (i = 0, j = 0; i < frags; i += PAGES_PER_SGE, j++) {
3286         sge_idx = RX_SGE(le16toh(cqe_fp->sgl_or_raw_data.sgl[j]));
3287 
3288         m_frag = fp->rx_sge_mbuf_chain[sge_idx].m;
3289         frag_len = min(frag_size, (uint32_t)(SGE_PAGE_SIZE));
3290         m_frag->m_len = frag_len;
3291 
3292        /* allocate a new mbuf for the SGE */
3293         rc = bxe_alloc_rx_sge_mbuf(fp, sge_idx);
3294         if (rc) {
3295             /* Leave all remaining SGEs in the ring! */
3296             return (rc);
3297         }
3298         fp->eth_q_stats.mbuf_alloc_sge--;
3299 
3300         /* concatenate the fragment to the head mbuf */
3301         m_cat(m, m_frag);
3302 
3303         frag_size -= frag_len;
3304     }
3305 
3306     bxe_update_sge_prod(fp->sc, fp, frags, &cqe_fp->sgl_or_raw_data);
3307 
3308     return rc;
3309 }
3310 
3311 static uint8_t
3312 bxe_rxeof(struct bxe_softc    *sc,
3313           struct bxe_fastpath *fp)
3314 {
3315     if_t ifp = sc->ifp;
3316     uint16_t bd_cons, bd_prod, bd_prod_fw, comp_ring_cons;
3317     uint16_t hw_cq_cons, sw_cq_cons, sw_cq_prod;
3318     int rx_pkts = 0;
3319     int rc = 0;
3320 
3321     BXE_FP_RX_LOCK(fp);
3322 
3323     /* CQ "next element" is of the size of the regular element */
3324     hw_cq_cons = le16toh(*fp->rx_cq_cons_sb);
3325     if ((hw_cq_cons & RCQ_USABLE_PER_PAGE) == RCQ_USABLE_PER_PAGE) {
3326         hw_cq_cons++;
3327     }
3328 
3329     bd_cons = fp->rx_bd_cons;
3330     bd_prod = fp->rx_bd_prod;
3331     bd_prod_fw = bd_prod;
3332     sw_cq_cons = fp->rx_cq_cons;
3333     sw_cq_prod = fp->rx_cq_prod;
3334 
3335     /*
3336      * Memory barrier necessary as speculative reads of the rx
3337      * buffer can be ahead of the index in the status block
3338      */
3339     rmb();
3340 
3341     BLOGD(sc, DBG_RX,
3342           "fp[%02d] Rx START hw_cq_cons=%u sw_cq_cons=%u\n",
3343           fp->index, hw_cq_cons, sw_cq_cons);
3344 
3345     while (sw_cq_cons != hw_cq_cons) {
3346         struct bxe_sw_rx_bd *rx_buf = NULL;
3347         union eth_rx_cqe *cqe;
3348         struct eth_fast_path_rx_cqe *cqe_fp;
3349         uint8_t cqe_fp_flags;
3350         enum eth_rx_cqe_type cqe_fp_type;
3351         uint16_t len, lenonbd,  pad;
3352         struct mbuf *m = NULL;
3353 
3354         comp_ring_cons = RCQ(sw_cq_cons);
3355         bd_prod = RX_BD(bd_prod);
3356         bd_cons = RX_BD(bd_cons);
3357 
3358         cqe          = &fp->rcq_chain[comp_ring_cons];
3359         cqe_fp       = &cqe->fast_path_cqe;
3360         cqe_fp_flags = cqe_fp->type_error_flags;
3361         cqe_fp_type  = cqe_fp_flags & ETH_FAST_PATH_RX_CQE_TYPE;
3362 
3363         BLOGD(sc, DBG_RX,
3364               "fp[%02d] Rx hw_cq_cons=%d hw_sw_cons=%d "
3365               "BD prod=%d cons=%d CQE type=0x%x err=0x%x "
3366               "status=0x%x rss_hash=0x%x vlan=0x%x len=%u lenonbd=%u\n",
3367               fp->index,
3368               hw_cq_cons,
3369               sw_cq_cons,
3370               bd_prod,
3371               bd_cons,
3372               CQE_TYPE(cqe_fp_flags),
3373               cqe_fp_flags,
3374               cqe_fp->status_flags,
3375               le32toh(cqe_fp->rss_hash_result),
3376               le16toh(cqe_fp->vlan_tag),
3377               le16toh(cqe_fp->pkt_len_or_gro_seg_len),
3378               le16toh(cqe_fp->len_on_bd));
3379 
3380         /* is this a slowpath msg? */
3381         if (__predict_false(CQE_TYPE_SLOW(cqe_fp_type))) {
3382             bxe_sp_event(sc, fp, cqe);
3383             goto next_cqe;
3384         }
3385 
3386         rx_buf = &fp->rx_mbuf_chain[bd_cons];
3387 
3388         if (!CQE_TYPE_FAST(cqe_fp_type)) {
3389             struct bxe_sw_tpa_info *tpa_info;
3390             uint16_t frag_size, pages;
3391             uint8_t queue;
3392 
3393 #if 0
3394             /* sanity check */
3395             if (!fp->tpa_enable &&
3396                 (CQE_TYPE_START(cqe_fp_type) || CQE_TYPE_STOP(cqe_fp_type))) {
3397                 BLOGE(sc, "START/STOP packet while !tpa_enable type (0x%x)\n",
3398                       CQE_TYPE(cqe_fp_type));
3399             }
3400 #endif
3401 
3402             if (CQE_TYPE_START(cqe_fp_type)) {
3403                 bxe_tpa_start(sc, fp, cqe_fp->queue_index,
3404                               bd_cons, bd_prod, cqe_fp);
3405                 m = NULL; /* packet not ready yet */
3406                 goto next_rx;
3407             }
3408 
3409             KASSERT(CQE_TYPE_STOP(cqe_fp_type),
3410                     ("CQE type is not STOP! (0x%x)\n", cqe_fp_type));
3411 
3412             queue = cqe->end_agg_cqe.queue_index;
3413             tpa_info = &fp->rx_tpa_info[queue];
3414 
3415             BLOGD(sc, DBG_LRO, "fp[%02d].tpa[%02d] TPA STOP\n",
3416                   fp->index, queue);
3417 
3418             frag_size = (le16toh(cqe->end_agg_cqe.pkt_len) -
3419                          tpa_info->len_on_bd);
3420             pages = SGE_PAGE_ALIGN(frag_size) >> SGE_PAGE_SHIFT;
3421 
3422             bxe_tpa_stop(sc, fp, tpa_info, queue, pages,
3423                          &cqe->end_agg_cqe, comp_ring_cons);
3424 
3425             bxe_update_sge_prod(sc, fp, pages, &cqe->end_agg_cqe.sgl_or_raw_data);
3426 
3427             goto next_cqe;
3428         }
3429 
3430         /* non TPA */
3431 
3432         /* is this an error packet? */
3433         if (__predict_false(cqe_fp_flags &
3434                             ETH_FAST_PATH_RX_CQE_PHY_DECODE_ERR_FLG)) {
3435             BLOGE(sc, "flags 0x%x rx packet %u\n", cqe_fp_flags, sw_cq_cons);
3436             fp->eth_q_stats.rx_soft_errors++;
3437             goto next_rx;
3438         }
3439 
3440         len = le16toh(cqe_fp->pkt_len_or_gro_seg_len);
3441         lenonbd = le16toh(cqe_fp->len_on_bd);
3442         pad = cqe_fp->placement_offset;
3443 
3444         m = rx_buf->m;
3445 
3446         if (__predict_false(m == NULL)) {
3447             BLOGE(sc, "No mbuf in rx chain descriptor %d for fp[%02d]\n",
3448                   bd_cons, fp->index);
3449             goto next_rx;
3450         }
3451 
3452         /* XXX double copy if packet length under a threshold */
3453 
3454         /*
3455          * If all the buffer descriptors are filled with mbufs then fill in
3456          * the current consumer index with a new BD. Else if a maximum Rx
3457          * buffer limit is imposed then fill in the next producer index.
3458          */
3459         rc = bxe_alloc_rx_bd_mbuf(fp, bd_cons,
3460                                   (sc->max_rx_bufs != RX_BD_USABLE) ?
3461                                       bd_prod : bd_cons);
3462         if (rc != 0) {
3463 
3464             /* we simply reuse the received mbuf and don't post it to the stack */
3465             m = NULL;
3466 
3467             BLOGE(sc, "mbuf alloc fail for fp[%02d] rx chain (%d)\n",
3468                   fp->index, rc);
3469             fp->eth_q_stats.rx_soft_errors++;
3470 
3471             if (sc->max_rx_bufs != RX_BD_USABLE) {
3472                 /* copy this consumer index to the producer index */
3473                 memcpy(&fp->rx_mbuf_chain[bd_prod], rx_buf,
3474                        sizeof(struct bxe_sw_rx_bd));
3475                 memset(rx_buf, 0, sizeof(struct bxe_sw_rx_bd));
3476             }
3477 
3478             goto next_rx;
3479         }
3480 
3481         /* current mbuf was detached from the bd */
3482         fp->eth_q_stats.mbuf_alloc_rx--;
3483 
3484         /* we allocated a replacement mbuf, fixup the current one */
3485         m_adj(m, pad);
3486         m->m_pkthdr.len = m->m_len = len;
3487 
3488         if ((len > 60) && (len > lenonbd)) {
3489             fp->eth_q_stats.rx_bxe_service_rxsgl++;
3490             rc = bxe_service_rxsgl(fp, len, lenonbd, m, cqe_fp);
3491             if (rc)
3492                 break;
3493             fp->eth_q_stats.rx_jumbo_sge_pkts++;
3494         } else if (lenonbd < len) {
3495             fp->eth_q_stats.rx_erroneous_jumbo_sge_pkts++;
3496         }
3497 
3498         /* assign packet to this interface interface */
3499 	if_setrcvif(m, ifp);
3500 
3501         /* assume no hardware checksum has complated */
3502         m->m_pkthdr.csum_flags = 0;
3503 
3504         /* validate checksum if offload enabled */
3505         if (if_getcapenable(ifp) & IFCAP_RXCSUM) {
3506             /* check for a valid IP frame */
3507             if (!(cqe->fast_path_cqe.status_flags &
3508                   ETH_FAST_PATH_RX_CQE_IP_XSUM_NO_VALIDATION_FLG)) {
3509                 m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
3510                 if (__predict_false(cqe_fp_flags &
3511                                     ETH_FAST_PATH_RX_CQE_IP_BAD_XSUM_FLG)) {
3512                     fp->eth_q_stats.rx_hw_csum_errors++;
3513                 } else {
3514                     fp->eth_q_stats.rx_ofld_frames_csum_ip++;
3515                     m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
3516                 }
3517             }
3518 
3519             /* check for a valid TCP/UDP frame */
3520             if (!(cqe->fast_path_cqe.status_flags &
3521                   ETH_FAST_PATH_RX_CQE_L4_XSUM_NO_VALIDATION_FLG)) {
3522                 if (__predict_false(cqe_fp_flags &
3523                                     ETH_FAST_PATH_RX_CQE_L4_BAD_XSUM_FLG)) {
3524                     fp->eth_q_stats.rx_hw_csum_errors++;
3525                 } else {
3526                     fp->eth_q_stats.rx_ofld_frames_csum_tcp_udp++;
3527                     m->m_pkthdr.csum_data = 0xFFFF;
3528                     m->m_pkthdr.csum_flags |= (CSUM_DATA_VALID |
3529                                                CSUM_PSEUDO_HDR);
3530                 }
3531             }
3532         }
3533 
3534         /* if there is a VLAN tag then flag that info */
3535         if (cqe->fast_path_cqe.pars_flags.flags & PARSING_FLAGS_VLAN) {
3536             m->m_pkthdr.ether_vtag = cqe->fast_path_cqe.vlan_tag;
3537             m->m_flags |= M_VLANTAG;
3538         }
3539 
3540 #if __FreeBSD_version >= 800000
3541         /* specify what RSS queue was used for this flow */
3542         m->m_pkthdr.flowid = fp->index;
3543         M_HASHTYPE_SET(m, M_HASHTYPE_OPAQUE);
3544 #endif
3545 
3546 next_rx:
3547 
3548         bd_cons    = RX_BD_NEXT(bd_cons);
3549         bd_prod    = RX_BD_NEXT(bd_prod);
3550         bd_prod_fw = RX_BD_NEXT(bd_prod_fw);
3551 
3552         /* pass the frame to the stack */
3553         if (__predict_true(m != NULL)) {
3554             if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1);
3555             rx_pkts++;
3556             if_input(ifp, m);
3557         }
3558 
3559 next_cqe:
3560 
3561         sw_cq_prod = RCQ_NEXT(sw_cq_prod);
3562         sw_cq_cons = RCQ_NEXT(sw_cq_cons);
3563 
3564         /* limit spinning on the queue */
3565         if (rc != 0)
3566             break;
3567 
3568         if (rx_pkts == sc->rx_budget) {
3569             fp->eth_q_stats.rx_budget_reached++;
3570             break;
3571         }
3572     } /* while work to do */
3573 
3574     fp->rx_bd_cons = bd_cons;
3575     fp->rx_bd_prod = bd_prod_fw;
3576     fp->rx_cq_cons = sw_cq_cons;
3577     fp->rx_cq_prod = sw_cq_prod;
3578 
3579     /* Update producers */
3580     bxe_update_rx_prod(sc, fp, bd_prod_fw, sw_cq_prod, fp->rx_sge_prod);
3581 
3582     fp->eth_q_stats.rx_pkts += rx_pkts;
3583     fp->eth_q_stats.rx_calls++;
3584 
3585     BXE_FP_RX_UNLOCK(fp);
3586 
3587     return (sw_cq_cons != hw_cq_cons);
3588 }
3589 
3590 static uint16_t
3591 bxe_free_tx_pkt(struct bxe_softc    *sc,
3592                 struct bxe_fastpath *fp,
3593                 uint16_t            idx)
3594 {
3595     struct bxe_sw_tx_bd *tx_buf = &fp->tx_mbuf_chain[idx];
3596     struct eth_tx_start_bd *tx_start_bd;
3597     uint16_t bd_idx = TX_BD(tx_buf->first_bd);
3598     uint16_t new_cons;
3599     int nbd;
3600 
3601     /* unmap the mbuf from non-paged memory */
3602     bus_dmamap_unload(fp->tx_mbuf_tag, tx_buf->m_map);
3603 
3604     tx_start_bd = &fp->tx_chain[bd_idx].start_bd;
3605     nbd = le16toh(tx_start_bd->nbd) - 1;
3606 
3607 #if 0
3608     if ((nbd - 1) > (MAX_MBUF_FRAGS + 2)) {
3609         bxe_panic(sc, ("BAD nbd!\n"));
3610     }
3611 #endif
3612 
3613     new_cons = (tx_buf->first_bd + nbd);
3614 
3615 #if 0
3616     struct eth_tx_bd *tx_data_bd;
3617 
3618     /*
3619      * The following code doesn't do anything but is left here
3620      * for clarity on what the new value of new_cons skipped.
3621      */
3622 
3623     /* get the next bd */
3624     bd_idx = TX_BD(TX_BD_NEXT(bd_idx));
3625 
3626     /* skip the parse bd */
3627     --nbd;
3628     bd_idx = TX_BD(TX_BD_NEXT(bd_idx));
3629 
3630     /* skip the TSO split header bd since they have no mapping */
3631     if (tx_buf->flags & BXE_TSO_SPLIT_BD) {
3632         --nbd;
3633         bd_idx = TX_BD(TX_BD_NEXT(bd_idx));
3634     }
3635 
3636     /* now free frags */
3637     while (nbd > 0) {
3638         tx_data_bd = &fp->tx_chain[bd_idx].reg_bd;
3639         if (--nbd) {
3640             bd_idx = TX_BD(TX_BD_NEXT(bd_idx));
3641         }
3642     }
3643 #endif
3644 
3645     /* free the mbuf */
3646     if (__predict_true(tx_buf->m != NULL)) {
3647         m_freem(tx_buf->m);
3648         fp->eth_q_stats.mbuf_alloc_tx--;
3649     } else {
3650         fp->eth_q_stats.tx_chain_lost_mbuf++;
3651     }
3652 
3653     tx_buf->m = NULL;
3654     tx_buf->first_bd = 0;
3655 
3656     return (new_cons);
3657 }
3658 
3659 /* transmit timeout watchdog */
3660 static int
3661 bxe_watchdog(struct bxe_softc    *sc,
3662              struct bxe_fastpath *fp)
3663 {
3664     BXE_FP_TX_LOCK(fp);
3665 
3666     if ((fp->watchdog_timer == 0) || (--fp->watchdog_timer)) {
3667         BXE_FP_TX_UNLOCK(fp);
3668         return (0);
3669     }
3670 
3671     BLOGE(sc, "TX watchdog timeout on fp[%02d], resetting!\n", fp->index);
3672 
3673     BXE_FP_TX_UNLOCK(fp);
3674 
3675     atomic_store_rel_long(&sc->chip_tq_flags, CHIP_TQ_REINIT);
3676     taskqueue_enqueue(sc->chip_tq, &sc->chip_tq_task);
3677 
3678     return (-1);
3679 }
3680 
3681 /* processes transmit completions */
3682 static uint8_t
3683 bxe_txeof(struct bxe_softc    *sc,
3684           struct bxe_fastpath *fp)
3685 {
3686     if_t ifp = sc->ifp;
3687     uint16_t bd_cons, hw_cons, sw_cons, pkt_cons;
3688     uint16_t tx_bd_avail;
3689 
3690     BXE_FP_TX_LOCK_ASSERT(fp);
3691 
3692     bd_cons = fp->tx_bd_cons;
3693     hw_cons = le16toh(*fp->tx_cons_sb);
3694     sw_cons = fp->tx_pkt_cons;
3695 
3696     while (sw_cons != hw_cons) {
3697         pkt_cons = TX_BD(sw_cons);
3698 
3699         BLOGD(sc, DBG_TX,
3700               "TX: fp[%d]: hw_cons=%u sw_cons=%u pkt_cons=%u\n",
3701               fp->index, hw_cons, sw_cons, pkt_cons);
3702 
3703         bd_cons = bxe_free_tx_pkt(sc, fp, pkt_cons);
3704 
3705         sw_cons++;
3706     }
3707 
3708     fp->tx_pkt_cons = sw_cons;
3709     fp->tx_bd_cons  = bd_cons;
3710 
3711     BLOGD(sc, DBG_TX,
3712           "TX done: fp[%d]: hw_cons=%u sw_cons=%u sw_prod=%u\n",
3713           fp->index, hw_cons, fp->tx_pkt_cons, fp->tx_pkt_prod);
3714 
3715     mb();
3716 
3717     tx_bd_avail = bxe_tx_avail(sc, fp);
3718 
3719     if (tx_bd_avail < BXE_TX_CLEANUP_THRESHOLD) {
3720         if_setdrvflagbits(ifp, IFF_DRV_OACTIVE, 0);
3721     } else {
3722         if_setdrvflagbits(ifp, 0, IFF_DRV_OACTIVE);
3723     }
3724 
3725     if (fp->tx_pkt_prod != fp->tx_pkt_cons) {
3726         /* reset the watchdog timer if there are pending transmits */
3727         fp->watchdog_timer = BXE_TX_TIMEOUT;
3728         return (TRUE);
3729     } else {
3730         /* clear watchdog when there are no pending transmits */
3731         fp->watchdog_timer = 0;
3732         return (FALSE);
3733     }
3734 }
3735 
3736 static void
3737 bxe_drain_tx_queues(struct bxe_softc *sc)
3738 {
3739     struct bxe_fastpath *fp;
3740     int i, count;
3741 
3742     /* wait until all TX fastpath tasks have completed */
3743     for (i = 0; i < sc->num_queues; i++) {
3744         fp = &sc->fp[i];
3745 
3746         count = 1000;
3747 
3748         while (bxe_has_tx_work(fp)) {
3749 
3750             BXE_FP_TX_LOCK(fp);
3751             bxe_txeof(sc, fp);
3752             BXE_FP_TX_UNLOCK(fp);
3753 
3754             if (count == 0) {
3755                 BLOGE(sc, "Timeout waiting for fp[%d] "
3756                           "transmits to complete!\n", i);
3757                 bxe_panic(sc, ("tx drain failure\n"));
3758                 return;
3759             }
3760 
3761             count--;
3762             DELAY(1000);
3763             rmb();
3764         }
3765     }
3766 
3767     return;
3768 }
3769 
3770 static int
3771 bxe_del_all_macs(struct bxe_softc          *sc,
3772                  struct ecore_vlan_mac_obj *mac_obj,
3773                  int                       mac_type,
3774                  uint8_t                   wait_for_comp)
3775 {
3776     unsigned long ramrod_flags = 0, vlan_mac_flags = 0;
3777     int rc;
3778 
3779     /* wait for completion of requested */
3780     if (wait_for_comp) {
3781         bxe_set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
3782     }
3783 
3784     /* Set the mac type of addresses we want to clear */
3785     bxe_set_bit(mac_type, &vlan_mac_flags);
3786 
3787     rc = mac_obj->delete_all(sc, mac_obj, &vlan_mac_flags, &ramrod_flags);
3788     if (rc < 0) {
3789         BLOGE(sc, "Failed to delete MACs (%d)\n", rc);
3790     }
3791 
3792     return (rc);
3793 }
3794 
3795 static int
3796 bxe_fill_accept_flags(struct bxe_softc *sc,
3797                       uint32_t         rx_mode,
3798                       unsigned long    *rx_accept_flags,
3799                       unsigned long    *tx_accept_flags)
3800 {
3801     /* Clear the flags first */
3802     *rx_accept_flags = 0;
3803     *tx_accept_flags = 0;
3804 
3805     switch (rx_mode) {
3806     case BXE_RX_MODE_NONE:
3807         /*
3808          * 'drop all' supersedes any accept flags that may have been
3809          * passed to the function.
3810          */
3811         break;
3812 
3813     case BXE_RX_MODE_NORMAL:
3814         bxe_set_bit(ECORE_ACCEPT_UNICAST, rx_accept_flags);
3815         bxe_set_bit(ECORE_ACCEPT_MULTICAST, rx_accept_flags);
3816         bxe_set_bit(ECORE_ACCEPT_BROADCAST, rx_accept_flags);
3817 
3818         /* internal switching mode */
3819         bxe_set_bit(ECORE_ACCEPT_UNICAST, tx_accept_flags);
3820         bxe_set_bit(ECORE_ACCEPT_MULTICAST, tx_accept_flags);
3821         bxe_set_bit(ECORE_ACCEPT_BROADCAST, tx_accept_flags);
3822 
3823         break;
3824 
3825     case BXE_RX_MODE_ALLMULTI:
3826         bxe_set_bit(ECORE_ACCEPT_UNICAST, rx_accept_flags);
3827         bxe_set_bit(ECORE_ACCEPT_ALL_MULTICAST, rx_accept_flags);
3828         bxe_set_bit(ECORE_ACCEPT_BROADCAST, rx_accept_flags);
3829 
3830         /* internal switching mode */
3831         bxe_set_bit(ECORE_ACCEPT_UNICAST, tx_accept_flags);
3832         bxe_set_bit(ECORE_ACCEPT_ALL_MULTICAST, tx_accept_flags);
3833         bxe_set_bit(ECORE_ACCEPT_BROADCAST, tx_accept_flags);
3834 
3835         break;
3836 
3837     case BXE_RX_MODE_PROMISC:
3838         /*
3839          * According to deffinition of SI mode, iface in promisc mode
3840          * should receive matched and unmatched (in resolution of port)
3841          * unicast packets.
3842          */
3843         bxe_set_bit(ECORE_ACCEPT_UNMATCHED, rx_accept_flags);
3844         bxe_set_bit(ECORE_ACCEPT_UNICAST, rx_accept_flags);
3845         bxe_set_bit(ECORE_ACCEPT_ALL_MULTICAST, rx_accept_flags);
3846         bxe_set_bit(ECORE_ACCEPT_BROADCAST, rx_accept_flags);
3847 
3848         /* internal switching mode */
3849         bxe_set_bit(ECORE_ACCEPT_ALL_MULTICAST, tx_accept_flags);
3850         bxe_set_bit(ECORE_ACCEPT_BROADCAST, tx_accept_flags);
3851 
3852         if (IS_MF_SI(sc)) {
3853             bxe_set_bit(ECORE_ACCEPT_ALL_UNICAST, tx_accept_flags);
3854         } else {
3855             bxe_set_bit(ECORE_ACCEPT_UNICAST, tx_accept_flags);
3856         }
3857 
3858         break;
3859 
3860     default:
3861         BLOGE(sc, "Unknown rx_mode (%d)\n", rx_mode);
3862         return (-1);
3863     }
3864 
3865     /* Set ACCEPT_ANY_VLAN as we do not enable filtering by VLAN */
3866     if (rx_mode != BXE_RX_MODE_NONE) {
3867         bxe_set_bit(ECORE_ACCEPT_ANY_VLAN, rx_accept_flags);
3868         bxe_set_bit(ECORE_ACCEPT_ANY_VLAN, tx_accept_flags);
3869     }
3870 
3871     return (0);
3872 }
3873 
3874 static int
3875 bxe_set_q_rx_mode(struct bxe_softc *sc,
3876                   uint8_t          cl_id,
3877                   unsigned long    rx_mode_flags,
3878                   unsigned long    rx_accept_flags,
3879                   unsigned long    tx_accept_flags,
3880                   unsigned long    ramrod_flags)
3881 {
3882     struct ecore_rx_mode_ramrod_params ramrod_param;
3883     int rc;
3884 
3885     memset(&ramrod_param, 0, sizeof(ramrod_param));
3886 
3887     /* Prepare ramrod parameters */
3888     ramrod_param.cid = 0;
3889     ramrod_param.cl_id = cl_id;
3890     ramrod_param.rx_mode_obj = &sc->rx_mode_obj;
3891     ramrod_param.func_id = SC_FUNC(sc);
3892 
3893     ramrod_param.pstate = &sc->sp_state;
3894     ramrod_param.state = ECORE_FILTER_RX_MODE_PENDING;
3895 
3896     ramrod_param.rdata = BXE_SP(sc, rx_mode_rdata);
3897     ramrod_param.rdata_mapping = BXE_SP_MAPPING(sc, rx_mode_rdata);
3898 
3899     bxe_set_bit(ECORE_FILTER_RX_MODE_PENDING, &sc->sp_state);
3900 
3901     ramrod_param.ramrod_flags = ramrod_flags;
3902     ramrod_param.rx_mode_flags = rx_mode_flags;
3903 
3904     ramrod_param.rx_accept_flags = rx_accept_flags;
3905     ramrod_param.tx_accept_flags = tx_accept_flags;
3906 
3907     rc = ecore_config_rx_mode(sc, &ramrod_param);
3908     if (rc < 0) {
3909         BLOGE(sc, "Set rx_mode %d failed\n", sc->rx_mode);
3910         return (rc);
3911     }
3912 
3913     return (0);
3914 }
3915 
3916 static int
3917 bxe_set_storm_rx_mode(struct bxe_softc *sc)
3918 {
3919     unsigned long rx_mode_flags = 0, ramrod_flags = 0;
3920     unsigned long rx_accept_flags = 0, tx_accept_flags = 0;
3921     int rc;
3922 
3923     rc = bxe_fill_accept_flags(sc, sc->rx_mode, &rx_accept_flags,
3924                                &tx_accept_flags);
3925     if (rc) {
3926         return (rc);
3927     }
3928 
3929     bxe_set_bit(RAMROD_RX, &ramrod_flags);
3930     bxe_set_bit(RAMROD_TX, &ramrod_flags);
3931 
3932     /* XXX ensure all fastpath have same cl_id and/or move it to bxe_softc */
3933     return (bxe_set_q_rx_mode(sc, sc->fp[0].cl_id, rx_mode_flags,
3934                               rx_accept_flags, tx_accept_flags,
3935                               ramrod_flags));
3936 }
3937 
3938 /* returns the "mcp load_code" according to global load_count array */
3939 static int
3940 bxe_nic_load_no_mcp(struct bxe_softc *sc)
3941 {
3942     int path = SC_PATH(sc);
3943     int port = SC_PORT(sc);
3944 
3945     BLOGI(sc, "NO MCP - load counts[%d]      %d, %d, %d\n",
3946           path, load_count[path][0], load_count[path][1],
3947           load_count[path][2]);
3948     load_count[path][0]++;
3949     load_count[path][1 + port]++;
3950     BLOGI(sc, "NO MCP - new load counts[%d]  %d, %d, %d\n",
3951           path, load_count[path][0], load_count[path][1],
3952           load_count[path][2]);
3953     if (load_count[path][0] == 1) {
3954         return (FW_MSG_CODE_DRV_LOAD_COMMON);
3955     } else if (load_count[path][1 + port] == 1) {
3956         return (FW_MSG_CODE_DRV_LOAD_PORT);
3957     } else {
3958         return (FW_MSG_CODE_DRV_LOAD_FUNCTION);
3959     }
3960 }
3961 
3962 /* returns the "mcp load_code" according to global load_count array */
3963 static int
3964 bxe_nic_unload_no_mcp(struct bxe_softc *sc)
3965 {
3966     int port = SC_PORT(sc);
3967     int path = SC_PATH(sc);
3968 
3969     BLOGI(sc, "NO MCP - load counts[%d]      %d, %d, %d\n",
3970           path, load_count[path][0], load_count[path][1],
3971           load_count[path][2]);
3972     load_count[path][0]--;
3973     load_count[path][1 + port]--;
3974     BLOGI(sc, "NO MCP - new load counts[%d]  %d, %d, %d\n",
3975           path, load_count[path][0], load_count[path][1],
3976           load_count[path][2]);
3977     if (load_count[path][0] == 0) {
3978         return (FW_MSG_CODE_DRV_UNLOAD_COMMON);
3979     } else if (load_count[path][1 + port] == 0) {
3980         return (FW_MSG_CODE_DRV_UNLOAD_PORT);
3981     } else {
3982         return (FW_MSG_CODE_DRV_UNLOAD_FUNCTION);
3983     }
3984 }
3985 
3986 /* request unload mode from the MCP: COMMON, PORT or FUNCTION */
3987 static uint32_t
3988 bxe_send_unload_req(struct bxe_softc *sc,
3989                     int              unload_mode)
3990 {
3991     uint32_t reset_code = 0;
3992 #if 0
3993     int port = SC_PORT(sc);
3994     int path = SC_PATH(sc);
3995 #endif
3996 
3997     /* Select the UNLOAD request mode */
3998     if (unload_mode == UNLOAD_NORMAL) {
3999         reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
4000     }
4001 #if 0
4002     else if (sc->flags & BXE_NO_WOL_FLAG) {
4003         reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP;
4004     } else if (sc->wol) {
4005         uint32_t emac_base = port ? GRCBASE_EMAC1 : GRCBASE_EMAC0;
4006         uint8_t *mac_addr = sc->dev->dev_addr;
4007         uint32_t val;
4008         uint16_t pmc;
4009 
4010         /*
4011          * The mac address is written to entries 1-4 to
4012          * preserve entry 0 which is used by the PMF
4013          */
4014         uint8_t entry = (SC_VN(sc) + 1)*8;
4015 
4016         val = (mac_addr[0] << 8) | mac_addr[1];
4017         EMAC_WR(sc, EMAC_REG_EMAC_MAC_MATCH + entry, val);
4018 
4019         val = (mac_addr[2] << 24) | (mac_addr[3] << 16) |
4020               (mac_addr[4] << 8) | mac_addr[5];
4021         EMAC_WR(sc, EMAC_REG_EMAC_MAC_MATCH + entry + 4, val);
4022 
4023         /* Enable the PME and clear the status */
4024         pmc = pci_read_config(sc->dev,
4025                               (sc->devinfo.pcie_pm_cap_reg +
4026                                PCIR_POWER_STATUS),
4027                               2);
4028         pmc |= PCIM_PSTAT_PMEENABLE | PCIM_PSTAT_PME;
4029         pci_write_config(sc->dev,
4030                          (sc->devinfo.pcie_pm_cap_reg +
4031                           PCIR_POWER_STATUS),
4032                          pmc, 4);
4033 
4034         reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_EN;
4035     }
4036 #endif
4037     else {
4038         reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
4039     }
4040 
4041     /* Send the request to the MCP */
4042     if (!BXE_NOMCP(sc)) {
4043         reset_code = bxe_fw_command(sc, reset_code, 0);
4044     } else {
4045         reset_code = bxe_nic_unload_no_mcp(sc);
4046     }
4047 
4048     return (reset_code);
4049 }
4050 
4051 /* send UNLOAD_DONE command to the MCP */
4052 static void
4053 bxe_send_unload_done(struct bxe_softc *sc,
4054                      uint8_t          keep_link)
4055 {
4056     uint32_t reset_param =
4057         keep_link ? DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET : 0;
4058 
4059     /* Report UNLOAD_DONE to MCP */
4060     if (!BXE_NOMCP(sc)) {
4061         bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_DONE, reset_param);
4062     }
4063 }
4064 
4065 static int
4066 bxe_func_wait_started(struct bxe_softc *sc)
4067 {
4068     int tout = 50;
4069 
4070     if (!sc->port.pmf) {
4071         return (0);
4072     }
4073 
4074     /*
4075      * (assumption: No Attention from MCP at this stage)
4076      * PMF probably in the middle of TX disable/enable transaction
4077      * 1. Sync IRS for default SB
4078      * 2. Sync SP queue - this guarantees us that attention handling started
4079      * 3. Wait, that TX disable/enable transaction completes
4080      *
4081      * 1+2 guarantee that if DCBX attention was scheduled it already changed
4082      * pending bit of transaction from STARTED-->TX_STOPPED, if we already
4083      * received completion for the transaction the state is TX_STOPPED.
4084      * State will return to STARTED after completion of TX_STOPPED-->STARTED
4085      * transaction.
4086      */
4087 
4088     /* XXX make sure default SB ISR is done */
4089     /* need a way to synchronize an irq (intr_mtx?) */
4090 
4091     /* XXX flush any work queues */
4092 
4093     while (ecore_func_get_state(sc, &sc->func_obj) !=
4094            ECORE_F_STATE_STARTED && tout--) {
4095         DELAY(20000);
4096     }
4097 
4098     if (ecore_func_get_state(sc, &sc->func_obj) != ECORE_F_STATE_STARTED) {
4099         /*
4100          * Failed to complete the transaction in a "good way"
4101          * Force both transactions with CLR bit.
4102          */
4103         struct ecore_func_state_params func_params = { NULL };
4104 
4105         BLOGE(sc, "Unexpected function state! "
4106                   "Forcing STARTED-->TX_STOPPED-->STARTED\n");
4107 
4108         func_params.f_obj = &sc->func_obj;
4109         bxe_set_bit(RAMROD_DRV_CLR_ONLY, &func_params.ramrod_flags);
4110 
4111         /* STARTED-->TX_STOPPED */
4112         func_params.cmd = ECORE_F_CMD_TX_STOP;
4113         ecore_func_state_change(sc, &func_params);
4114 
4115         /* TX_STOPPED-->STARTED */
4116         func_params.cmd = ECORE_F_CMD_TX_START;
4117         return (ecore_func_state_change(sc, &func_params));
4118     }
4119 
4120     return (0);
4121 }
4122 
4123 static int
4124 bxe_stop_queue(struct bxe_softc *sc,
4125                int              index)
4126 {
4127     struct bxe_fastpath *fp = &sc->fp[index];
4128     struct ecore_queue_state_params q_params = { NULL };
4129     int rc;
4130 
4131     BLOGD(sc, DBG_LOAD, "stopping queue %d cid %d\n", index, fp->index);
4132 
4133     q_params.q_obj = &sc->sp_objs[fp->index].q_obj;
4134     /* We want to wait for completion in this context */
4135     bxe_set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
4136 
4137     /* Stop the primary connection: */
4138 
4139     /* ...halt the connection */
4140     q_params.cmd = ECORE_Q_CMD_HALT;
4141     rc = ecore_queue_state_change(sc, &q_params);
4142     if (rc) {
4143         return (rc);
4144     }
4145 
4146     /* ...terminate the connection */
4147     q_params.cmd = ECORE_Q_CMD_TERMINATE;
4148     memset(&q_params.params.terminate, 0, sizeof(q_params.params.terminate));
4149     q_params.params.terminate.cid_index = FIRST_TX_COS_INDEX;
4150     rc = ecore_queue_state_change(sc, &q_params);
4151     if (rc) {
4152         return (rc);
4153     }
4154 
4155     /* ...delete cfc entry */
4156     q_params.cmd = ECORE_Q_CMD_CFC_DEL;
4157     memset(&q_params.params.cfc_del, 0, sizeof(q_params.params.cfc_del));
4158     q_params.params.cfc_del.cid_index = FIRST_TX_COS_INDEX;
4159     return (ecore_queue_state_change(sc, &q_params));
4160 }
4161 
4162 /* wait for the outstanding SP commands */
4163 static inline uint8_t
4164 bxe_wait_sp_comp(struct bxe_softc *sc,
4165                  unsigned long    mask)
4166 {
4167     unsigned long tmp;
4168     int tout = 5000; /* wait for 5 secs tops */
4169 
4170     while (tout--) {
4171         mb();
4172         if (!(atomic_load_acq_long(&sc->sp_state) & mask)) {
4173             return (TRUE);
4174         }
4175 
4176         DELAY(1000);
4177     }
4178 
4179     mb();
4180 
4181     tmp = atomic_load_acq_long(&sc->sp_state);
4182     if (tmp & mask) {
4183         BLOGE(sc, "Filtering completion timed out: "
4184                   "sp_state 0x%lx, mask 0x%lx\n",
4185               tmp, mask);
4186         return (FALSE);
4187     }
4188 
4189     return (FALSE);
4190 }
4191 
4192 static int
4193 bxe_func_stop(struct bxe_softc *sc)
4194 {
4195     struct ecore_func_state_params func_params = { NULL };
4196     int rc;
4197 
4198     /* prepare parameters for function state transitions */
4199     bxe_set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
4200     func_params.f_obj = &sc->func_obj;
4201     func_params.cmd = ECORE_F_CMD_STOP;
4202 
4203     /*
4204      * Try to stop the function the 'good way'. If it fails (in case
4205      * of a parity error during bxe_chip_cleanup()) and we are
4206      * not in a debug mode, perform a state transaction in order to
4207      * enable further HW_RESET transaction.
4208      */
4209     rc = ecore_func_state_change(sc, &func_params);
4210     if (rc) {
4211         BLOGE(sc, "FUNC_STOP ramrod failed. "
4212                   "Running a dry transaction\n");
4213         bxe_set_bit(RAMROD_DRV_CLR_ONLY, &func_params.ramrod_flags);
4214         return (ecore_func_state_change(sc, &func_params));
4215     }
4216 
4217     return (0);
4218 }
4219 
4220 static int
4221 bxe_reset_hw(struct bxe_softc *sc,
4222              uint32_t         load_code)
4223 {
4224     struct ecore_func_state_params func_params = { NULL };
4225 
4226     /* Prepare parameters for function state transitions */
4227     bxe_set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
4228 
4229     func_params.f_obj = &sc->func_obj;
4230     func_params.cmd = ECORE_F_CMD_HW_RESET;
4231 
4232     func_params.params.hw_init.load_phase = load_code;
4233 
4234     return (ecore_func_state_change(sc, &func_params));
4235 }
4236 
4237 static void
4238 bxe_int_disable_sync(struct bxe_softc *sc,
4239                      int              disable_hw)
4240 {
4241     if (disable_hw) {
4242         /* prevent the HW from sending interrupts */
4243         bxe_int_disable(sc);
4244     }
4245 
4246     /* XXX need a way to synchronize ALL irqs (intr_mtx?) */
4247     /* make sure all ISRs are done */
4248 
4249     /* XXX make sure sp_task is not running */
4250     /* cancel and flush work queues */
4251 }
4252 
4253 static void
4254 bxe_chip_cleanup(struct bxe_softc *sc,
4255                  uint32_t         unload_mode,
4256                  uint8_t          keep_link)
4257 {
4258     int port = SC_PORT(sc);
4259     struct ecore_mcast_ramrod_params rparam = { NULL };
4260     uint32_t reset_code;
4261     int i, rc = 0;
4262 
4263     bxe_drain_tx_queues(sc);
4264 
4265     /* give HW time to discard old tx messages */
4266     DELAY(1000);
4267 
4268     /* Clean all ETH MACs */
4269     rc = bxe_del_all_macs(sc, &sc->sp_objs[0].mac_obj, ECORE_ETH_MAC, FALSE);
4270     if (rc < 0) {
4271         BLOGE(sc, "Failed to delete all ETH MACs (%d)\n", rc);
4272     }
4273 
4274     /* Clean up UC list  */
4275     rc = bxe_del_all_macs(sc, &sc->sp_objs[0].mac_obj, ECORE_UC_LIST_MAC, TRUE);
4276     if (rc < 0) {
4277         BLOGE(sc, "Failed to delete UC MACs list (%d)\n", rc);
4278     }
4279 
4280     /* Disable LLH */
4281     if (!CHIP_IS_E1(sc)) {
4282         REG_WR(sc, NIG_REG_LLH0_FUNC_EN + port*8, 0);
4283     }
4284 
4285     /* Set "drop all" to stop Rx */
4286 
4287     /*
4288      * We need to take the BXE_MCAST_LOCK() here in order to prevent
4289      * a race between the completion code and this code.
4290      */
4291     BXE_MCAST_LOCK(sc);
4292 
4293     if (bxe_test_bit(ECORE_FILTER_RX_MODE_PENDING, &sc->sp_state)) {
4294         bxe_set_bit(ECORE_FILTER_RX_MODE_SCHED, &sc->sp_state);
4295     } else {
4296         bxe_set_storm_rx_mode(sc);
4297     }
4298 
4299     /* Clean up multicast configuration */
4300     rparam.mcast_obj = &sc->mcast_obj;
4301     rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_DEL);
4302     if (rc < 0) {
4303         BLOGE(sc, "Failed to send DEL MCAST command (%d)\n", rc);
4304     }
4305 
4306     BXE_MCAST_UNLOCK(sc);
4307 
4308     // XXX bxe_iov_chip_cleanup(sc);
4309 
4310     /*
4311      * Send the UNLOAD_REQUEST to the MCP. This will return if
4312      * this function should perform FUNCTION, PORT, or COMMON HW
4313      * reset.
4314      */
4315     reset_code = bxe_send_unload_req(sc, unload_mode);
4316 
4317     /*
4318      * (assumption: No Attention from MCP at this stage)
4319      * PMF probably in the middle of TX disable/enable transaction
4320      */
4321     rc = bxe_func_wait_started(sc);
4322     if (rc) {
4323         BLOGE(sc, "bxe_func_wait_started failed\n");
4324     }
4325 
4326     /*
4327      * Close multi and leading connections
4328      * Completions for ramrods are collected in a synchronous way
4329      */
4330     for (i = 0; i < sc->num_queues; i++) {
4331         if (bxe_stop_queue(sc, i)) {
4332             goto unload_error;
4333         }
4334     }
4335 
4336     /*
4337      * If SP settings didn't get completed so far - something
4338      * very wrong has happen.
4339      */
4340     if (!bxe_wait_sp_comp(sc, ~0x0UL)) {
4341         BLOGE(sc, "Common slow path ramrods got stuck!\n");
4342     }
4343 
4344 unload_error:
4345 
4346     rc = bxe_func_stop(sc);
4347     if (rc) {
4348         BLOGE(sc, "Function stop failed!\n");
4349     }
4350 
4351     /* disable HW interrupts */
4352     bxe_int_disable_sync(sc, TRUE);
4353 
4354     /* detach interrupts */
4355     bxe_interrupt_detach(sc);
4356 
4357     /* Reset the chip */
4358     rc = bxe_reset_hw(sc, reset_code);
4359     if (rc) {
4360         BLOGE(sc, "Hardware reset failed\n");
4361     }
4362 
4363     /* Report UNLOAD_DONE to MCP */
4364     bxe_send_unload_done(sc, keep_link);
4365 }
4366 
4367 static void
4368 bxe_disable_close_the_gate(struct bxe_softc *sc)
4369 {
4370     uint32_t val;
4371     int port = SC_PORT(sc);
4372 
4373     BLOGD(sc, DBG_LOAD,
4374           "Disabling 'close the gates'\n");
4375 
4376     if (CHIP_IS_E1(sc)) {
4377         uint32_t addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
4378                                MISC_REG_AEU_MASK_ATTN_FUNC_0;
4379         val = REG_RD(sc, addr);
4380         val &= ~(0x300);
4381         REG_WR(sc, addr, val);
4382     } else {
4383         val = REG_RD(sc, MISC_REG_AEU_GENERAL_MASK);
4384         val &= ~(MISC_AEU_GENERAL_MASK_REG_AEU_PXP_CLOSE_MASK |
4385                  MISC_AEU_GENERAL_MASK_REG_AEU_NIG_CLOSE_MASK);
4386         REG_WR(sc, MISC_REG_AEU_GENERAL_MASK, val);
4387     }
4388 }
4389 
4390 /*
4391  * Cleans the object that have internal lists without sending
4392  * ramrods. Should be run when interrutps are disabled.
4393  */
4394 static void
4395 bxe_squeeze_objects(struct bxe_softc *sc)
4396 {
4397     unsigned long ramrod_flags = 0, vlan_mac_flags = 0;
4398     struct ecore_mcast_ramrod_params rparam = { NULL };
4399     struct ecore_vlan_mac_obj *mac_obj = &sc->sp_objs->mac_obj;
4400     int rc;
4401 
4402     /* Cleanup MACs' object first... */
4403 
4404     /* Wait for completion of requested */
4405     bxe_set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
4406     /* Perform a dry cleanup */
4407     bxe_set_bit(RAMROD_DRV_CLR_ONLY, &ramrod_flags);
4408 
4409     /* Clean ETH primary MAC */
4410     bxe_set_bit(ECORE_ETH_MAC, &vlan_mac_flags);
4411     rc = mac_obj->delete_all(sc, &sc->sp_objs->mac_obj, &vlan_mac_flags,
4412                              &ramrod_flags);
4413     if (rc != 0) {
4414         BLOGE(sc, "Failed to clean ETH MACs (%d)\n", rc);
4415     }
4416 
4417     /* Cleanup UC list */
4418     vlan_mac_flags = 0;
4419     bxe_set_bit(ECORE_UC_LIST_MAC, &vlan_mac_flags);
4420     rc = mac_obj->delete_all(sc, mac_obj, &vlan_mac_flags,
4421                              &ramrod_flags);
4422     if (rc != 0) {
4423         BLOGE(sc, "Failed to clean UC list MACs (%d)\n", rc);
4424     }
4425 
4426     /* Now clean mcast object... */
4427 
4428     rparam.mcast_obj = &sc->mcast_obj;
4429     bxe_set_bit(RAMROD_DRV_CLR_ONLY, &rparam.ramrod_flags);
4430 
4431     /* Add a DEL command... */
4432     rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_DEL);
4433     if (rc < 0) {
4434         BLOGE(sc, "Failed to send DEL MCAST command (%d)\n", rc);
4435     }
4436 
4437     /* now wait until all pending commands are cleared */
4438 
4439     rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_CONT);
4440     while (rc != 0) {
4441         if (rc < 0) {
4442             BLOGE(sc, "Failed to clean MCAST object (%d)\n", rc);
4443             return;
4444         }
4445 
4446         rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_CONT);
4447     }
4448 }
4449 
4450 /* stop the controller */
4451 static __noinline int
4452 bxe_nic_unload(struct bxe_softc *sc,
4453                uint32_t         unload_mode,
4454                uint8_t          keep_link)
4455 {
4456     uint8_t global = FALSE;
4457     uint32_t val;
4458 
4459     BXE_CORE_LOCK_ASSERT(sc);
4460 
4461     BLOGD(sc, DBG_LOAD, "Starting NIC unload...\n");
4462 
4463     /* mark driver as unloaded in shmem2 */
4464     if (IS_PF(sc) && SHMEM2_HAS(sc, drv_capabilities_flag)) {
4465         val = SHMEM2_RD(sc, drv_capabilities_flag[SC_FW_MB_IDX(sc)]);
4466         SHMEM2_WR(sc, drv_capabilities_flag[SC_FW_MB_IDX(sc)],
4467                   val & ~DRV_FLAGS_CAPABILITIES_LOADED_L2);
4468     }
4469 
4470     if (IS_PF(sc) && sc->recovery_state != BXE_RECOVERY_DONE &&
4471         (sc->state == BXE_STATE_CLOSED || sc->state == BXE_STATE_ERROR)) {
4472         /*
4473          * We can get here if the driver has been unloaded
4474          * during parity error recovery and is either waiting for a
4475          * leader to complete or for other functions to unload and
4476          * then ifconfig down has been issued. In this case we want to
4477          * unload and let other functions to complete a recovery
4478          * process.
4479          */
4480         sc->recovery_state = BXE_RECOVERY_DONE;
4481         sc->is_leader = 0;
4482         bxe_release_leader_lock(sc);
4483         mb();
4484 
4485         BLOGD(sc, DBG_LOAD, "Releasing a leadership...\n");
4486         BLOGE(sc, "Can't unload in closed or error state\n");
4487         return (-1);
4488     }
4489 
4490     /*
4491      * Nothing to do during unload if previous bxe_nic_load()
4492      * did not completed succesfully - all resourses are released.
4493      */
4494     if ((sc->state == BXE_STATE_CLOSED) ||
4495         (sc->state == BXE_STATE_ERROR)) {
4496         return (0);
4497     }
4498 
4499     sc->state = BXE_STATE_CLOSING_WAITING_HALT;
4500     mb();
4501 
4502     /* stop tx */
4503     bxe_tx_disable(sc);
4504 
4505     sc->rx_mode = BXE_RX_MODE_NONE;
4506     /* XXX set rx mode ??? */
4507 
4508     if (IS_PF(sc) && !sc->grcdump_done) {
4509         /* set ALWAYS_ALIVE bit in shmem */
4510         sc->fw_drv_pulse_wr_seq |= DRV_PULSE_ALWAYS_ALIVE;
4511 
4512         bxe_drv_pulse(sc);
4513 
4514         bxe_stats_handle(sc, STATS_EVENT_STOP);
4515         bxe_save_statistics(sc);
4516     }
4517 
4518     /* wait till consumers catch up with producers in all queues */
4519     bxe_drain_tx_queues(sc);
4520 
4521     /* if VF indicate to PF this function is going down (PF will delete sp
4522      * elements and clear initializations
4523      */
4524     if (IS_VF(sc)) {
4525         ; /* bxe_vfpf_close_vf(sc); */
4526     } else if (unload_mode != UNLOAD_RECOVERY) {
4527         /* if this is a normal/close unload need to clean up chip */
4528         if (!sc->grcdump_done)
4529             bxe_chip_cleanup(sc, unload_mode, keep_link);
4530     } else {
4531         /* Send the UNLOAD_REQUEST to the MCP */
4532         bxe_send_unload_req(sc, unload_mode);
4533 
4534         /*
4535          * Prevent transactions to host from the functions on the
4536          * engine that doesn't reset global blocks in case of global
4537          * attention once gloabl blocks are reset and gates are opened
4538          * (the engine which leader will perform the recovery
4539          * last).
4540          */
4541         if (!CHIP_IS_E1x(sc)) {
4542             bxe_pf_disable(sc);
4543         }
4544 
4545         /* disable HW interrupts */
4546         bxe_int_disable_sync(sc, TRUE);
4547 
4548         /* detach interrupts */
4549         bxe_interrupt_detach(sc);
4550 
4551         /* Report UNLOAD_DONE to MCP */
4552         bxe_send_unload_done(sc, FALSE);
4553     }
4554 
4555     /*
4556      * At this stage no more interrupts will arrive so we may safely clean
4557      * the queue'able objects here in case they failed to get cleaned so far.
4558      */
4559     if (IS_PF(sc)) {
4560         bxe_squeeze_objects(sc);
4561     }
4562 
4563     /* There should be no more pending SP commands at this stage */
4564     sc->sp_state = 0;
4565 
4566     sc->port.pmf = 0;
4567 
4568     bxe_free_fp_buffers(sc);
4569 
4570     if (IS_PF(sc)) {
4571         bxe_free_mem(sc);
4572     }
4573 
4574     bxe_free_fw_stats_mem(sc);
4575 
4576     sc->state = BXE_STATE_CLOSED;
4577 
4578     /*
4579      * Check if there are pending parity attentions. If there are - set
4580      * RECOVERY_IN_PROGRESS.
4581      */
4582     if (IS_PF(sc) && bxe_chk_parity_attn(sc, &global, FALSE)) {
4583         bxe_set_reset_in_progress(sc);
4584 
4585         /* Set RESET_IS_GLOBAL if needed */
4586         if (global) {
4587             bxe_set_reset_global(sc);
4588         }
4589     }
4590 
4591     /*
4592      * The last driver must disable a "close the gate" if there is no
4593      * parity attention or "process kill" pending.
4594      */
4595     if (IS_PF(sc) && !bxe_clear_pf_load(sc) &&
4596         bxe_reset_is_done(sc, SC_PATH(sc))) {
4597         bxe_disable_close_the_gate(sc);
4598     }
4599 
4600     BLOGD(sc, DBG_LOAD, "Ended NIC unload\n");
4601 
4602     return (0);
4603 }
4604 
4605 /*
4606  * Called by the OS to set various media options (i.e. link, speed, etc.) when
4607  * the user runs "ifconfig bxe media ..." or "ifconfig bxe mediaopt ...".
4608  */
4609 static int
4610 bxe_ifmedia_update(struct ifnet  *ifp)
4611 {
4612     struct bxe_softc *sc = (struct bxe_softc *)if_getsoftc(ifp);
4613     struct ifmedia *ifm;
4614 
4615     ifm = &sc->ifmedia;
4616 
4617     /* We only support Ethernet media type. */
4618     if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER) {
4619         return (EINVAL);
4620     }
4621 
4622     switch (IFM_SUBTYPE(ifm->ifm_media)) {
4623     case IFM_AUTO:
4624          break;
4625     case IFM_10G_CX4:
4626     case IFM_10G_SR:
4627     case IFM_10G_T:
4628     case IFM_10G_TWINAX:
4629     default:
4630         /* We don't support changing the media type. */
4631         BLOGD(sc, DBG_LOAD, "Invalid media type (%d)\n",
4632               IFM_SUBTYPE(ifm->ifm_media));
4633         return (EINVAL);
4634     }
4635 
4636     return (0);
4637 }
4638 
4639 /*
4640  * Called by the OS to get the current media status (i.e. link, speed, etc.).
4641  */
4642 static void
4643 bxe_ifmedia_status(struct ifnet *ifp, struct ifmediareq *ifmr)
4644 {
4645     struct bxe_softc *sc = if_getsoftc(ifp);
4646 
4647     /* Report link down if the driver isn't running. */
4648     if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) == 0) {
4649         ifmr->ifm_active |= IFM_NONE;
4650         return;
4651     }
4652 
4653     /* Setup the default interface info. */
4654     ifmr->ifm_status = IFM_AVALID;
4655     ifmr->ifm_active = IFM_ETHER;
4656 
4657     if (sc->link_vars.link_up) {
4658         ifmr->ifm_status |= IFM_ACTIVE;
4659     } else {
4660         ifmr->ifm_active |= IFM_NONE;
4661         return;
4662     }
4663 
4664     ifmr->ifm_active |= sc->media;
4665 
4666     if (sc->link_vars.duplex == DUPLEX_FULL) {
4667         ifmr->ifm_active |= IFM_FDX;
4668     } else {
4669         ifmr->ifm_active |= IFM_HDX;
4670     }
4671 }
4672 
4673 static int
4674 bxe_ioctl_nvram(struct bxe_softc *sc,
4675                 uint32_t         priv_op,
4676                 struct ifreq     *ifr)
4677 {
4678     struct bxe_nvram_data nvdata_base;
4679     struct bxe_nvram_data *nvdata;
4680     int len;
4681     int error = 0;
4682 
4683     copyin(ifr->ifr_data, &nvdata_base, sizeof(nvdata_base));
4684 
4685     len = (sizeof(struct bxe_nvram_data) +
4686            nvdata_base.len -
4687            sizeof(uint32_t));
4688 
4689     if (len > sizeof(struct bxe_nvram_data)) {
4690         if ((nvdata = (struct bxe_nvram_data *)
4691                  malloc(len, M_DEVBUF,
4692                         (M_NOWAIT | M_ZERO))) == NULL) {
4693             BLOGE(sc, "BXE_IOC_RD_NVRAM malloc failed\n");
4694             return (1);
4695         }
4696         memcpy(nvdata, &nvdata_base, sizeof(struct bxe_nvram_data));
4697     } else {
4698         nvdata = &nvdata_base;
4699     }
4700 
4701     if (priv_op == BXE_IOC_RD_NVRAM) {
4702         BLOGD(sc, DBG_IOCTL, "IOC_RD_NVRAM 0x%x %d\n",
4703               nvdata->offset, nvdata->len);
4704         error = bxe_nvram_read(sc,
4705                                nvdata->offset,
4706                                (uint8_t *)nvdata->value,
4707                                nvdata->len);
4708         copyout(nvdata, ifr->ifr_data, len);
4709     } else { /* BXE_IOC_WR_NVRAM */
4710         BLOGD(sc, DBG_IOCTL, "IOC_WR_NVRAM 0x%x %d\n",
4711               nvdata->offset, nvdata->len);
4712         copyin(ifr->ifr_data, nvdata, len);
4713         error = bxe_nvram_write(sc,
4714                                 nvdata->offset,
4715                                 (uint8_t *)nvdata->value,
4716                                 nvdata->len);
4717     }
4718 
4719     if (len > sizeof(struct bxe_nvram_data)) {
4720         free(nvdata, M_DEVBUF);
4721     }
4722 
4723     return (error);
4724 }
4725 
4726 static int
4727 bxe_ioctl_stats_show(struct bxe_softc *sc,
4728                      uint32_t         priv_op,
4729                      struct ifreq     *ifr)
4730 {
4731     const size_t str_size   = (BXE_NUM_ETH_STATS * STAT_NAME_LEN);
4732     const size_t stats_size = (BXE_NUM_ETH_STATS * sizeof(uint64_t));
4733     caddr_t p_tmp;
4734     uint32_t *offset;
4735     int i;
4736 
4737     switch (priv_op)
4738     {
4739     case BXE_IOC_STATS_SHOW_NUM:
4740         memset(ifr->ifr_data, 0, sizeof(union bxe_stats_show_data));
4741         ((union bxe_stats_show_data *)ifr->ifr_data)->desc.num =
4742             BXE_NUM_ETH_STATS;
4743         ((union bxe_stats_show_data *)ifr->ifr_data)->desc.len =
4744             STAT_NAME_LEN;
4745         return (0);
4746 
4747     case BXE_IOC_STATS_SHOW_STR:
4748         memset(ifr->ifr_data, 0, str_size);
4749         p_tmp = ifr->ifr_data;
4750         for (i = 0; i < BXE_NUM_ETH_STATS; i++) {
4751             strcpy(p_tmp, bxe_eth_stats_arr[i].string);
4752             p_tmp += STAT_NAME_LEN;
4753         }
4754         return (0);
4755 
4756     case BXE_IOC_STATS_SHOW_CNT:
4757         memset(ifr->ifr_data, 0, stats_size);
4758         p_tmp = ifr->ifr_data;
4759         for (i = 0; i < BXE_NUM_ETH_STATS; i++) {
4760             offset = ((uint32_t *)&sc->eth_stats +
4761                       bxe_eth_stats_arr[i].offset);
4762             switch (bxe_eth_stats_arr[i].size) {
4763             case 4:
4764                 *((uint64_t *)p_tmp) = (uint64_t)*offset;
4765                 break;
4766             case 8:
4767                 *((uint64_t *)p_tmp) = HILO_U64(*offset, *(offset + 1));
4768                 break;
4769             default:
4770                 *((uint64_t *)p_tmp) = 0;
4771             }
4772             p_tmp += sizeof(uint64_t);
4773         }
4774         return (0);
4775 
4776     default:
4777         return (-1);
4778     }
4779 }
4780 
4781 static void
4782 bxe_handle_chip_tq(void *context,
4783                    int  pending)
4784 {
4785     struct bxe_softc *sc = (struct bxe_softc *)context;
4786     long work = atomic_load_acq_long(&sc->chip_tq_flags);
4787 
4788     switch (work)
4789     {
4790 
4791     case CHIP_TQ_REINIT:
4792         if (if_getdrvflags(sc->ifp) & IFF_DRV_RUNNING) {
4793             /* restart the interface */
4794             BLOGD(sc, DBG_LOAD, "Restarting the interface...\n");
4795             bxe_periodic_stop(sc);
4796             BXE_CORE_LOCK(sc);
4797             bxe_stop_locked(sc);
4798             bxe_init_locked(sc);
4799             BXE_CORE_UNLOCK(sc);
4800         }
4801         break;
4802 
4803     default:
4804         break;
4805     }
4806 }
4807 
4808 /*
4809  * Handles any IOCTL calls from the operating system.
4810  *
4811  * Returns:
4812  *   0 = Success, >0 Failure
4813  */
4814 static int
4815 bxe_ioctl(if_t ifp,
4816           u_long       command,
4817           caddr_t      data)
4818 {
4819     struct bxe_softc *sc = if_getsoftc(ifp);
4820     struct ifreq *ifr = (struct ifreq *)data;
4821     struct bxe_nvram_data *nvdata;
4822     uint32_t priv_op;
4823     int mask = 0;
4824     int reinit = 0;
4825     int error = 0;
4826 
4827     int mtu_min = (ETH_MIN_PACKET_SIZE - ETH_HLEN);
4828     int mtu_max = (MJUM9BYTES - ETH_OVERHEAD - IP_HEADER_ALIGNMENT_PADDING);
4829 
4830     switch (command)
4831     {
4832     case SIOCSIFMTU:
4833         BLOGD(sc, DBG_IOCTL, "Received SIOCSIFMTU ioctl (mtu=%d)\n",
4834               ifr->ifr_mtu);
4835 
4836         if (sc->mtu == ifr->ifr_mtu) {
4837             /* nothing to change */
4838             break;
4839         }
4840 
4841         if ((ifr->ifr_mtu < mtu_min) || (ifr->ifr_mtu > mtu_max)) {
4842             BLOGE(sc, "Unsupported MTU size %d (range is %d-%d)\n",
4843                   ifr->ifr_mtu, mtu_min, mtu_max);
4844             error = EINVAL;
4845             break;
4846         }
4847 
4848         atomic_store_rel_int((volatile unsigned int *)&sc->mtu,
4849                              (unsigned long)ifr->ifr_mtu);
4850 	/*
4851         atomic_store_rel_long((volatile unsigned long *)&if_getmtu(ifp),
4852                               (unsigned long)ifr->ifr_mtu);
4853 	XXX - Not sure why it needs to be atomic
4854 	*/
4855 	if_setmtu(ifp, ifr->ifr_mtu);
4856         reinit = 1;
4857         break;
4858 
4859     case SIOCSIFFLAGS:
4860         /* toggle the interface state up or down */
4861         BLOGD(sc, DBG_IOCTL, "Received SIOCSIFFLAGS ioctl\n");
4862 
4863 	BXE_CORE_LOCK(sc);
4864         /* check if the interface is up */
4865         if (if_getflags(ifp) & IFF_UP) {
4866             if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
4867                 /* set the receive mode flags */
4868                 bxe_set_rx_mode(sc);
4869             } else {
4870 		bxe_init_locked(sc);
4871             }
4872         } else {
4873             if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
4874 		bxe_periodic_stop(sc);
4875 		bxe_stop_locked(sc);
4876             }
4877         }
4878 	BXE_CORE_UNLOCK(sc);
4879 
4880         break;
4881 
4882     case SIOCADDMULTI:
4883     case SIOCDELMULTI:
4884         /* add/delete multicast addresses */
4885         BLOGD(sc, DBG_IOCTL, "Received SIOCADDMULTI/SIOCDELMULTI ioctl\n");
4886 
4887         /* check if the interface is up */
4888         if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
4889             /* set the receive mode flags */
4890 	    BXE_CORE_LOCK(sc);
4891             bxe_set_rx_mode(sc);
4892 	    BXE_CORE_UNLOCK(sc);
4893         }
4894 
4895         break;
4896 
4897     case SIOCSIFCAP:
4898         /* find out which capabilities have changed */
4899         mask = (ifr->ifr_reqcap ^ if_getcapenable(ifp));
4900 
4901         BLOGD(sc, DBG_IOCTL, "Received SIOCSIFCAP ioctl (mask=0x%08x)\n",
4902               mask);
4903 
4904         /* toggle the LRO capabilites enable flag */
4905         if (mask & IFCAP_LRO) {
4906 	    if_togglecapenable(ifp, IFCAP_LRO);
4907             BLOGD(sc, DBG_IOCTL, "Turning LRO %s\n",
4908                   (if_getcapenable(ifp) & IFCAP_LRO) ? "ON" : "OFF");
4909             reinit = 1;
4910         }
4911 
4912         /* toggle the TXCSUM checksum capabilites enable flag */
4913         if (mask & IFCAP_TXCSUM) {
4914 	    if_togglecapenable(ifp, IFCAP_TXCSUM);
4915             BLOGD(sc, DBG_IOCTL, "Turning TXCSUM %s\n",
4916                   (if_getcapenable(ifp) & IFCAP_TXCSUM) ? "ON" : "OFF");
4917             if (if_getcapenable(ifp) & IFCAP_TXCSUM) {
4918                 if_sethwassistbits(ifp, (CSUM_IP      |
4919                                     CSUM_TCP      |
4920                                     CSUM_UDP      |
4921                                     CSUM_TSO      |
4922                                     CSUM_TCP_IPV6 |
4923                                     CSUM_UDP_IPV6), 0);
4924             } else {
4925 		if_clearhwassist(ifp); /* XXX */
4926             }
4927         }
4928 
4929         /* toggle the RXCSUM checksum capabilities enable flag */
4930         if (mask & IFCAP_RXCSUM) {
4931 	    if_togglecapenable(ifp, IFCAP_RXCSUM);
4932             BLOGD(sc, DBG_IOCTL, "Turning RXCSUM %s\n",
4933                   (if_getcapenable(ifp) & IFCAP_RXCSUM) ? "ON" : "OFF");
4934             if (if_getcapenable(ifp) & IFCAP_RXCSUM) {
4935                 if_sethwassistbits(ifp, (CSUM_IP      |
4936                                     CSUM_TCP      |
4937                                     CSUM_UDP      |
4938                                     CSUM_TSO      |
4939                                     CSUM_TCP_IPV6 |
4940                                     CSUM_UDP_IPV6), 0);
4941             } else {
4942 		if_clearhwassist(ifp); /* XXX */
4943             }
4944         }
4945 
4946         /* toggle TSO4 capabilities enabled flag */
4947         if (mask & IFCAP_TSO4) {
4948             if_togglecapenable(ifp, IFCAP_TSO4);
4949             BLOGD(sc, DBG_IOCTL, "Turning TSO4 %s\n",
4950                   (if_getcapenable(ifp) & IFCAP_TSO4) ? "ON" : "OFF");
4951         }
4952 
4953         /* toggle TSO6 capabilities enabled flag */
4954         if (mask & IFCAP_TSO6) {
4955 	    if_togglecapenable(ifp, IFCAP_TSO6);
4956             BLOGD(sc, DBG_IOCTL, "Turning TSO6 %s\n",
4957                   (if_getcapenable(ifp) & IFCAP_TSO6) ? "ON" : "OFF");
4958         }
4959 
4960         /* toggle VLAN_HWTSO capabilities enabled flag */
4961         if (mask & IFCAP_VLAN_HWTSO) {
4962 
4963 	    if_togglecapenable(ifp, IFCAP_VLAN_HWTSO);
4964             BLOGD(sc, DBG_IOCTL, "Turning VLAN_HWTSO %s\n",
4965                   (if_getcapenable(ifp) & IFCAP_VLAN_HWTSO) ? "ON" : "OFF");
4966         }
4967 
4968         /* toggle VLAN_HWCSUM capabilities enabled flag */
4969         if (mask & IFCAP_VLAN_HWCSUM) {
4970             /* XXX investigate this... */
4971             BLOGE(sc, "Changing VLAN_HWCSUM is not supported!\n");
4972             error = EINVAL;
4973         }
4974 
4975         /* toggle VLAN_MTU capabilities enable flag */
4976         if (mask & IFCAP_VLAN_MTU) {
4977             /* XXX investigate this... */
4978             BLOGE(sc, "Changing VLAN_MTU is not supported!\n");
4979             error = EINVAL;
4980         }
4981 
4982         /* toggle VLAN_HWTAGGING capabilities enabled flag */
4983         if (mask & IFCAP_VLAN_HWTAGGING) {
4984             /* XXX investigate this... */
4985             BLOGE(sc, "Changing VLAN_HWTAGGING is not supported!\n");
4986             error = EINVAL;
4987         }
4988 
4989         /* toggle VLAN_HWFILTER capabilities enabled flag */
4990         if (mask & IFCAP_VLAN_HWFILTER) {
4991             /* XXX investigate this... */
4992             BLOGE(sc, "Changing VLAN_HWFILTER is not supported!\n");
4993             error = EINVAL;
4994         }
4995 
4996         /* XXX not yet...
4997          * IFCAP_WOL_MAGIC
4998          */
4999 
5000         break;
5001 
5002     case SIOCSIFMEDIA:
5003     case SIOCGIFMEDIA:
5004         /* set/get interface media */
5005         BLOGD(sc, DBG_IOCTL,
5006               "Received SIOCSIFMEDIA/SIOCGIFMEDIA ioctl (cmd=%lu)\n",
5007               (command & 0xff));
5008         error = ifmedia_ioctl(ifp, ifr, &sc->ifmedia, command);
5009         break;
5010 
5011     case SIOCGPRIVATE_0:
5012         copyin(ifr->ifr_data, &priv_op, sizeof(priv_op));
5013 
5014         switch (priv_op)
5015         {
5016         case BXE_IOC_RD_NVRAM:
5017         case BXE_IOC_WR_NVRAM:
5018             nvdata = (struct bxe_nvram_data *)ifr->ifr_data;
5019             BLOGD(sc, DBG_IOCTL,
5020                   "Received Private NVRAM ioctl addr=0x%x size=%u\n",
5021                   nvdata->offset, nvdata->len);
5022             error = bxe_ioctl_nvram(sc, priv_op, ifr);
5023             break;
5024 
5025         case BXE_IOC_STATS_SHOW_NUM:
5026         case BXE_IOC_STATS_SHOW_STR:
5027         case BXE_IOC_STATS_SHOW_CNT:
5028             BLOGD(sc, DBG_IOCTL, "Received Private Stats ioctl (%d)\n",
5029                   priv_op);
5030             error = bxe_ioctl_stats_show(sc, priv_op, ifr);
5031             break;
5032 
5033         default:
5034             BLOGW(sc, "Received Private Unknown ioctl (%d)\n", priv_op);
5035             error = EINVAL;
5036             break;
5037         }
5038 
5039         break;
5040 
5041     default:
5042         BLOGD(sc, DBG_IOCTL, "Received Unknown Ioctl (cmd=%lu)\n",
5043               (command & 0xff));
5044         error = ether_ioctl(ifp, command, data);
5045         break;
5046     }
5047 
5048     if (reinit && (if_getdrvflags(sc->ifp) & IFF_DRV_RUNNING)) {
5049         BLOGD(sc, DBG_LOAD | DBG_IOCTL,
5050               "Re-initializing hardware from IOCTL change\n");
5051 	bxe_periodic_stop(sc);
5052 	BXE_CORE_LOCK(sc);
5053 	bxe_stop_locked(sc);
5054 	bxe_init_locked(sc);
5055 	BXE_CORE_UNLOCK(sc);
5056     }
5057 
5058     return (error);
5059 }
5060 
5061 static __noinline void
5062 bxe_dump_mbuf(struct bxe_softc *sc,
5063               struct mbuf      *m,
5064               uint8_t          contents)
5065 {
5066     char * type;
5067     int i = 0;
5068 
5069     if (!(sc->debug & DBG_MBUF)) {
5070         return;
5071     }
5072 
5073     if (m == NULL) {
5074         BLOGD(sc, DBG_MBUF, "mbuf: null pointer\n");
5075         return;
5076     }
5077 
5078     while (m) {
5079         BLOGD(sc, DBG_MBUF,
5080               "%02d: mbuf=%p m_len=%d m_flags=0x%b m_data=%p\n",
5081               i, m, m->m_len, m->m_flags, M_FLAG_BITS, m->m_data);
5082 
5083         if (m->m_flags & M_PKTHDR) {
5084              BLOGD(sc, DBG_MBUF,
5085                    "%02d: - m_pkthdr: tot_len=%d flags=0x%b csum_flags=%b\n",
5086                    i, m->m_pkthdr.len, m->m_flags, M_FLAG_BITS,
5087                    (int)m->m_pkthdr.csum_flags, CSUM_BITS);
5088         }
5089 
5090         if (m->m_flags & M_EXT) {
5091             switch (m->m_ext.ext_type) {
5092             case EXT_CLUSTER:    type = "EXT_CLUSTER";    break;
5093             case EXT_SFBUF:      type = "EXT_SFBUF";      break;
5094             case EXT_JUMBOP:     type = "EXT_JUMBOP";     break;
5095             case EXT_JUMBO9:     type = "EXT_JUMBO9";     break;
5096             case EXT_JUMBO16:    type = "EXT_JUMBO16";    break;
5097             case EXT_PACKET:     type = "EXT_PACKET";     break;
5098             case EXT_MBUF:       type = "EXT_MBUF";       break;
5099             case EXT_NET_DRV:    type = "EXT_NET_DRV";    break;
5100             case EXT_MOD_TYPE:   type = "EXT_MOD_TYPE";   break;
5101             case EXT_DISPOSABLE: type = "EXT_DISPOSABLE"; break;
5102             case EXT_EXTREF:     type = "EXT_EXTREF";     break;
5103             default:             type = "UNKNOWN";        break;
5104             }
5105 
5106             BLOGD(sc, DBG_MBUF,
5107                   "%02d: - m_ext: %p ext_size=%d type=%s\n",
5108                   i, m->m_ext.ext_buf, m->m_ext.ext_size, type);
5109         }
5110 
5111         if (contents) {
5112             bxe_dump_mbuf_data(sc, "mbuf data", m, TRUE);
5113         }
5114 
5115         m = m->m_next;
5116         i++;
5117     }
5118 }
5119 
5120 /*
5121  * Checks to ensure the 13 bd sliding window is >= MSS for TSO.
5122  * Check that (13 total bds - 3 bds) = 10 bd window >= MSS.
5123  * The window: 3 bds are = 1 for headers BD + 2 for parse BD and last BD
5124  * The headers comes in a seperate bd in FreeBSD so 13-3=10.
5125  * Returns: 0 if OK to send, 1 if packet needs further defragmentation
5126  */
5127 static int
5128 bxe_chktso_window(struct bxe_softc  *sc,
5129                   int               nsegs,
5130                   bus_dma_segment_t *segs,
5131                   struct mbuf       *m)
5132 {
5133     uint32_t num_wnds, wnd_size, wnd_sum;
5134     int32_t frag_idx, wnd_idx;
5135     unsigned short lso_mss;
5136     int defrag;
5137 
5138     defrag = 0;
5139     wnd_sum = 0;
5140     wnd_size = 10;
5141     num_wnds = nsegs - wnd_size;
5142     lso_mss = htole16(m->m_pkthdr.tso_segsz);
5143 
5144     /*
5145      * Total header lengths Eth+IP+TCP in first FreeBSD mbuf so calculate the
5146      * first window sum of data while skipping the first assuming it is the
5147      * header in FreeBSD.
5148      */
5149     for (frag_idx = 1; (frag_idx <= wnd_size); frag_idx++) {
5150         wnd_sum += htole16(segs[frag_idx].ds_len);
5151     }
5152 
5153     /* check the first 10 bd window size */
5154     if (wnd_sum < lso_mss) {
5155         return (1);
5156     }
5157 
5158     /* run through the windows */
5159     for (wnd_idx = 0; wnd_idx < num_wnds; wnd_idx++, frag_idx++) {
5160         /* subtract the first mbuf->m_len of the last wndw(-header) */
5161         wnd_sum -= htole16(segs[wnd_idx+1].ds_len);
5162         /* add the next mbuf len to the len of our new window */
5163         wnd_sum += htole16(segs[frag_idx].ds_len);
5164         if (wnd_sum < lso_mss) {
5165             return (1);
5166         }
5167     }
5168 
5169     return (0);
5170 }
5171 
5172 static uint8_t
5173 bxe_set_pbd_csum_e2(struct bxe_fastpath *fp,
5174                     struct mbuf         *m,
5175                     uint32_t            *parsing_data)
5176 {
5177     struct ether_vlan_header *eh = NULL;
5178     struct ip *ip4 = NULL;
5179     struct ip6_hdr *ip6 = NULL;
5180     caddr_t ip = NULL;
5181     struct tcphdr *th = NULL;
5182     int e_hlen, ip_hlen, l4_off;
5183     uint16_t proto;
5184 
5185     if (m->m_pkthdr.csum_flags == CSUM_IP) {
5186         /* no L4 checksum offload needed */
5187         return (0);
5188     }
5189 
5190     /* get the Ethernet header */
5191     eh = mtod(m, struct ether_vlan_header *);
5192 
5193     /* handle VLAN encapsulation if present */
5194     if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) {
5195         e_hlen = (ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN);
5196         proto  = ntohs(eh->evl_proto);
5197     } else {
5198         e_hlen = ETHER_HDR_LEN;
5199         proto  = ntohs(eh->evl_encap_proto);
5200     }
5201 
5202     switch (proto) {
5203     case ETHERTYPE_IP:
5204         /* get the IP header, if mbuf len < 20 then header in next mbuf */
5205         ip4 = (m->m_len < sizeof(struct ip)) ?
5206                   (struct ip *)m->m_next->m_data :
5207                   (struct ip *)(m->m_data + e_hlen);
5208         /* ip_hl is number of 32-bit words */
5209         ip_hlen = (ip4->ip_hl << 2);
5210         ip = (caddr_t)ip4;
5211         break;
5212     case ETHERTYPE_IPV6:
5213         /* get the IPv6 header, if mbuf len < 40 then header in next mbuf */
5214         ip6 = (m->m_len < sizeof(struct ip6_hdr)) ?
5215                   (struct ip6_hdr *)m->m_next->m_data :
5216                   (struct ip6_hdr *)(m->m_data + e_hlen);
5217         /* XXX cannot support offload with IPv6 extensions */
5218         ip_hlen = sizeof(struct ip6_hdr);
5219         ip = (caddr_t)ip6;
5220         break;
5221     default:
5222         /* We can't offload in this case... */
5223         /* XXX error stat ??? */
5224         return (0);
5225     }
5226 
5227     /* XXX assuming L4 header is contiguous to IPv4/IPv6 in the same mbuf */
5228     l4_off = (e_hlen + ip_hlen);
5229 
5230     *parsing_data |=
5231         (((l4_off >> 1) << ETH_TX_PARSE_BD_E2_L4_HDR_START_OFFSET_W_SHIFT) &
5232          ETH_TX_PARSE_BD_E2_L4_HDR_START_OFFSET_W);
5233 
5234     if (m->m_pkthdr.csum_flags & (CSUM_TCP |
5235                                   CSUM_TSO |
5236                                   CSUM_TCP_IPV6)) {
5237         fp->eth_q_stats.tx_ofld_frames_csum_tcp++;
5238         th = (struct tcphdr *)(ip + ip_hlen);
5239         /* th_off is number of 32-bit words */
5240         *parsing_data |= ((th->th_off <<
5241                            ETH_TX_PARSE_BD_E2_TCP_HDR_LENGTH_DW_SHIFT) &
5242                           ETH_TX_PARSE_BD_E2_TCP_HDR_LENGTH_DW);
5243         return (l4_off + (th->th_off << 2)); /* entire header length */
5244     } else if (m->m_pkthdr.csum_flags & (CSUM_UDP |
5245                                          CSUM_UDP_IPV6)) {
5246         fp->eth_q_stats.tx_ofld_frames_csum_udp++;
5247         return (l4_off + sizeof(struct udphdr)); /* entire header length */
5248     } else {
5249         /* XXX error stat ??? */
5250         return (0);
5251     }
5252 }
5253 
5254 static uint8_t
5255 bxe_set_pbd_csum(struct bxe_fastpath        *fp,
5256                  struct mbuf                *m,
5257                  struct eth_tx_parse_bd_e1x *pbd)
5258 {
5259     struct ether_vlan_header *eh = NULL;
5260     struct ip *ip4 = NULL;
5261     struct ip6_hdr *ip6 = NULL;
5262     caddr_t ip = NULL;
5263     struct tcphdr *th = NULL;
5264     struct udphdr *uh = NULL;
5265     int e_hlen, ip_hlen;
5266     uint16_t proto;
5267     uint8_t hlen;
5268     uint16_t tmp_csum;
5269     uint32_t *tmp_uh;
5270 
5271     /* get the Ethernet header */
5272     eh = mtod(m, struct ether_vlan_header *);
5273 
5274     /* handle VLAN encapsulation if present */
5275     if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) {
5276         e_hlen = (ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN);
5277         proto  = ntohs(eh->evl_proto);
5278     } else {
5279         e_hlen = ETHER_HDR_LEN;
5280         proto  = ntohs(eh->evl_encap_proto);
5281     }
5282 
5283     switch (proto) {
5284     case ETHERTYPE_IP:
5285         /* get the IP header, if mbuf len < 20 then header in next mbuf */
5286         ip4 = (m->m_len < sizeof(struct ip)) ?
5287                   (struct ip *)m->m_next->m_data :
5288                   (struct ip *)(m->m_data + e_hlen);
5289         /* ip_hl is number of 32-bit words */
5290         ip_hlen = (ip4->ip_hl << 1);
5291         ip = (caddr_t)ip4;
5292         break;
5293     case ETHERTYPE_IPV6:
5294         /* get the IPv6 header, if mbuf len < 40 then header in next mbuf */
5295         ip6 = (m->m_len < sizeof(struct ip6_hdr)) ?
5296                   (struct ip6_hdr *)m->m_next->m_data :
5297                   (struct ip6_hdr *)(m->m_data + e_hlen);
5298         /* XXX cannot support offload with IPv6 extensions */
5299         ip_hlen = (sizeof(struct ip6_hdr) >> 1);
5300         ip = (caddr_t)ip6;
5301         break;
5302     default:
5303         /* We can't offload in this case... */
5304         /* XXX error stat ??? */
5305         return (0);
5306     }
5307 
5308     hlen = (e_hlen >> 1);
5309 
5310     /* note that rest of global_data is indirectly zeroed here */
5311     if (m->m_flags & M_VLANTAG) {
5312         pbd->global_data =
5313             htole16(hlen | (1 << ETH_TX_PARSE_BD_E1X_LLC_SNAP_EN_SHIFT));
5314     } else {
5315         pbd->global_data = htole16(hlen);
5316     }
5317 
5318     pbd->ip_hlen_w = ip_hlen;
5319 
5320     hlen += pbd->ip_hlen_w;
5321 
5322     /* XXX assuming L4 header is contiguous to IPv4/IPv6 in the same mbuf */
5323 
5324     if (m->m_pkthdr.csum_flags & (CSUM_TCP |
5325                                   CSUM_TSO |
5326                                   CSUM_TCP_IPV6)) {
5327         th = (struct tcphdr *)(ip + (ip_hlen << 1));
5328         /* th_off is number of 32-bit words */
5329         hlen += (uint16_t)(th->th_off << 1);
5330     } else if (m->m_pkthdr.csum_flags & (CSUM_UDP |
5331                                          CSUM_UDP_IPV6)) {
5332         uh = (struct udphdr *)(ip + (ip_hlen << 1));
5333         hlen += (sizeof(struct udphdr) / 2);
5334     } else {
5335         /* valid case as only CSUM_IP was set */
5336         return (0);
5337     }
5338 
5339     pbd->total_hlen_w = htole16(hlen);
5340 
5341     if (m->m_pkthdr.csum_flags & (CSUM_TCP |
5342                                   CSUM_TSO |
5343                                   CSUM_TCP_IPV6)) {
5344         fp->eth_q_stats.tx_ofld_frames_csum_tcp++;
5345         pbd->tcp_pseudo_csum = ntohs(th->th_sum);
5346     } else if (m->m_pkthdr.csum_flags & (CSUM_UDP |
5347                                          CSUM_UDP_IPV6)) {
5348         fp->eth_q_stats.tx_ofld_frames_csum_udp++;
5349 
5350         /*
5351          * Everest1 (i.e. 57710, 57711, 57711E) does not natively support UDP
5352          * checksums and does not know anything about the UDP header and where
5353          * the checksum field is located. It only knows about TCP. Therefore
5354          * we "lie" to the hardware for outgoing UDP packets w/ checksum
5355          * offload. Since the checksum field offset for TCP is 16 bytes and
5356          * for UDP it is 6 bytes we pass a pointer to the hardware that is 10
5357          * bytes less than the start of the UDP header. This allows the
5358          * hardware to write the checksum in the correct spot. But the
5359          * hardware will compute a checksum which includes the last 10 bytes
5360          * of the IP header. To correct this we tweak the stack computed
5361          * pseudo checksum by folding in the calculation of the inverse
5362          * checksum for those final 10 bytes of the IP header. This allows
5363          * the correct checksum to be computed by the hardware.
5364          */
5365 
5366         /* set pointer 10 bytes before UDP header */
5367         tmp_uh = (uint32_t *)((uint8_t *)uh - 10);
5368 
5369         /* calculate a pseudo header checksum over the first 10 bytes */
5370         tmp_csum = in_pseudo(*tmp_uh,
5371                              *(tmp_uh + 1),
5372                              *(uint16_t *)(tmp_uh + 2));
5373 
5374         pbd->tcp_pseudo_csum = ntohs(in_addword(uh->uh_sum, ~tmp_csum));
5375     }
5376 
5377     return (hlen * 2); /* entire header length, number of bytes */
5378 }
5379 
5380 static void
5381 bxe_set_pbd_lso_e2(struct mbuf *m,
5382                    uint32_t    *parsing_data)
5383 {
5384     *parsing_data |= ((m->m_pkthdr.tso_segsz <<
5385                        ETH_TX_PARSE_BD_E2_LSO_MSS_SHIFT) &
5386                       ETH_TX_PARSE_BD_E2_LSO_MSS);
5387 
5388     /* XXX test for IPv6 with extension header... */
5389 #if 0
5390     struct ip6_hdr *ip6;
5391     if (ip6 && ip6->ip6_nxt == 'some ipv6 extension header')
5392         *parsing_data |= ETH_TX_PARSE_BD_E2_IPV6_WITH_EXT_HDR;
5393 #endif
5394 }
5395 
5396 static void
5397 bxe_set_pbd_lso(struct mbuf                *m,
5398                 struct eth_tx_parse_bd_e1x *pbd)
5399 {
5400     struct ether_vlan_header *eh = NULL;
5401     struct ip *ip = NULL;
5402     struct tcphdr *th = NULL;
5403     int e_hlen;
5404 
5405     /* get the Ethernet header */
5406     eh = mtod(m, struct ether_vlan_header *);
5407 
5408     /* handle VLAN encapsulation if present */
5409     e_hlen = (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) ?
5410                  (ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN) : ETHER_HDR_LEN;
5411 
5412     /* get the IP and TCP header, with LSO entire header in first mbuf */
5413     /* XXX assuming IPv4 */
5414     ip = (struct ip *)(m->m_data + e_hlen);
5415     th = (struct tcphdr *)((caddr_t)ip + (ip->ip_hl << 2));
5416 
5417     pbd->lso_mss = htole16(m->m_pkthdr.tso_segsz);
5418     pbd->tcp_send_seq = ntohl(th->th_seq);
5419     pbd->tcp_flags = ((ntohl(((uint32_t *)th)[3]) >> 16) & 0xff);
5420 
5421 #if 1
5422         /* XXX IPv4 */
5423         pbd->ip_id = ntohs(ip->ip_id);
5424         pbd->tcp_pseudo_csum =
5425             ntohs(in_pseudo(ip->ip_src.s_addr,
5426                             ip->ip_dst.s_addr,
5427                             htons(IPPROTO_TCP)));
5428 #else
5429         /* XXX IPv6 */
5430         pbd->tcp_pseudo_csum =
5431             ntohs(in_pseudo(&ip6->ip6_src,
5432                             &ip6->ip6_dst,
5433                             htons(IPPROTO_TCP)));
5434 #endif
5435 
5436     pbd->global_data |=
5437         htole16(ETH_TX_PARSE_BD_E1X_PSEUDO_CS_WITHOUT_LEN);
5438 }
5439 
5440 /*
5441  * Encapsulte an mbuf cluster into the tx bd chain and makes the memory
5442  * visible to the controller.
5443  *
5444  * If an mbuf is submitted to this routine and cannot be given to the
5445  * controller (e.g. it has too many fragments) then the function may free
5446  * the mbuf and return to the caller.
5447  *
5448  * Returns:
5449  *   0 = Success, !0 = Failure
5450  *   Note the side effect that an mbuf may be freed if it causes a problem.
5451  */
5452 static int
5453 bxe_tx_encap(struct bxe_fastpath *fp, struct mbuf **m_head)
5454 {
5455     bus_dma_segment_t segs[32];
5456     struct mbuf *m0;
5457     struct bxe_sw_tx_bd *tx_buf;
5458     struct eth_tx_parse_bd_e1x *pbd_e1x = NULL;
5459     struct eth_tx_parse_bd_e2 *pbd_e2 = NULL;
5460     /* struct eth_tx_parse_2nd_bd *pbd2 = NULL; */
5461     struct eth_tx_bd *tx_data_bd;
5462     struct eth_tx_bd *tx_total_pkt_size_bd;
5463     struct eth_tx_start_bd *tx_start_bd;
5464     uint16_t bd_prod, pkt_prod, total_pkt_size;
5465     uint8_t mac_type;
5466     int defragged, error, nsegs, rc, nbds, vlan_off, ovlan;
5467     struct bxe_softc *sc;
5468     uint16_t tx_bd_avail;
5469     struct ether_vlan_header *eh;
5470     uint32_t pbd_e2_parsing_data = 0;
5471     uint8_t hlen = 0;
5472     int tmp_bd;
5473     int i;
5474 
5475     sc = fp->sc;
5476 
5477     M_ASSERTPKTHDR(*m_head);
5478 
5479     m0 = *m_head;
5480     rc = defragged = nbds = ovlan = vlan_off = total_pkt_size = 0;
5481     tx_start_bd = NULL;
5482     tx_data_bd = NULL;
5483     tx_total_pkt_size_bd = NULL;
5484 
5485     /* get the H/W pointer for packets and BDs */
5486     pkt_prod = fp->tx_pkt_prod;
5487     bd_prod = fp->tx_bd_prod;
5488 
5489     mac_type = UNICAST_ADDRESS;
5490 
5491     /* map the mbuf into the next open DMAable memory */
5492     tx_buf = &fp->tx_mbuf_chain[TX_BD(pkt_prod)];
5493     error = bus_dmamap_load_mbuf_sg(fp->tx_mbuf_tag,
5494                                     tx_buf->m_map, m0,
5495                                     segs, &nsegs, BUS_DMA_NOWAIT);
5496 
5497     /* mapping errors */
5498     if(__predict_false(error != 0)) {
5499         fp->eth_q_stats.tx_dma_mapping_failure++;
5500         if (error == ENOMEM) {
5501             /* resource issue, try again later */
5502             rc = ENOMEM;
5503         } else if (error == EFBIG) {
5504             /* possibly recoverable with defragmentation */
5505             fp->eth_q_stats.mbuf_defrag_attempts++;
5506             m0 = m_defrag(*m_head, M_NOWAIT);
5507             if (m0 == NULL) {
5508                 fp->eth_q_stats.mbuf_defrag_failures++;
5509                 rc = ENOBUFS;
5510             } else {
5511                 /* defrag successful, try mapping again */
5512                 *m_head = m0;
5513                 error = bus_dmamap_load_mbuf_sg(fp->tx_mbuf_tag,
5514                                                 tx_buf->m_map, m0,
5515                                                 segs, &nsegs, BUS_DMA_NOWAIT);
5516                 if (error) {
5517                     fp->eth_q_stats.tx_dma_mapping_failure++;
5518                     rc = error;
5519                 }
5520             }
5521         } else {
5522             /* unknown, unrecoverable mapping error */
5523             BLOGE(sc, "Unknown TX mapping error rc=%d\n", error);
5524             bxe_dump_mbuf(sc, m0, FALSE);
5525             rc = error;
5526         }
5527 
5528         goto bxe_tx_encap_continue;
5529     }
5530 
5531     tx_bd_avail = bxe_tx_avail(sc, fp);
5532 
5533     /* make sure there is enough room in the send queue */
5534     if (__predict_false(tx_bd_avail < (nsegs + 2))) {
5535         /* Recoverable, try again later. */
5536         fp->eth_q_stats.tx_hw_queue_full++;
5537         bus_dmamap_unload(fp->tx_mbuf_tag, tx_buf->m_map);
5538         rc = ENOMEM;
5539         goto bxe_tx_encap_continue;
5540     }
5541 
5542     /* capture the current H/W TX chain high watermark */
5543     if (__predict_false(fp->eth_q_stats.tx_hw_max_queue_depth <
5544                         (TX_BD_USABLE - tx_bd_avail))) {
5545         fp->eth_q_stats.tx_hw_max_queue_depth = (TX_BD_USABLE - tx_bd_avail);
5546     }
5547 
5548     /* make sure it fits in the packet window */
5549     if (__predict_false(nsegs > BXE_MAX_SEGMENTS)) {
5550         /*
5551          * The mbuf may be to big for the controller to handle. If the frame
5552          * is a TSO frame we'll need to do an additional check.
5553          */
5554         if (m0->m_pkthdr.csum_flags & CSUM_TSO) {
5555             if (bxe_chktso_window(sc, nsegs, segs, m0) == 0) {
5556                 goto bxe_tx_encap_continue; /* OK to send */
5557             } else {
5558                 fp->eth_q_stats.tx_window_violation_tso++;
5559             }
5560         } else {
5561             fp->eth_q_stats.tx_window_violation_std++;
5562         }
5563 
5564         /* lets try to defragment this mbuf and remap it */
5565         fp->eth_q_stats.mbuf_defrag_attempts++;
5566         bus_dmamap_unload(fp->tx_mbuf_tag, tx_buf->m_map);
5567 
5568         m0 = m_defrag(*m_head, M_NOWAIT);
5569         if (m0 == NULL) {
5570             fp->eth_q_stats.mbuf_defrag_failures++;
5571             /* Ugh, just drop the frame... :( */
5572             rc = ENOBUFS;
5573         } else {
5574             /* defrag successful, try mapping again */
5575             *m_head = m0;
5576             error = bus_dmamap_load_mbuf_sg(fp->tx_mbuf_tag,
5577                                             tx_buf->m_map, m0,
5578                                             segs, &nsegs, BUS_DMA_NOWAIT);
5579             if (error) {
5580                 fp->eth_q_stats.tx_dma_mapping_failure++;
5581                 /* No sense in trying to defrag/copy chain, drop it. :( */
5582                 rc = error;
5583             }
5584             else {
5585                 /* if the chain is still too long then drop it */
5586                 if (__predict_false(nsegs > BXE_MAX_SEGMENTS)) {
5587                     bus_dmamap_unload(fp->tx_mbuf_tag, tx_buf->m_map);
5588                     rc = ENODEV;
5589                 }
5590             }
5591         }
5592     }
5593 
5594 bxe_tx_encap_continue:
5595 
5596     /* Check for errors */
5597     if (rc) {
5598         if (rc == ENOMEM) {
5599             /* recoverable try again later  */
5600         } else {
5601             fp->eth_q_stats.tx_soft_errors++;
5602             fp->eth_q_stats.mbuf_alloc_tx--;
5603             m_freem(*m_head);
5604             *m_head = NULL;
5605         }
5606 
5607         return (rc);
5608     }
5609 
5610     /* set flag according to packet type (UNICAST_ADDRESS is default) */
5611     if (m0->m_flags & M_BCAST) {
5612         mac_type = BROADCAST_ADDRESS;
5613     } else if (m0->m_flags & M_MCAST) {
5614         mac_type = MULTICAST_ADDRESS;
5615     }
5616 
5617     /* store the mbuf into the mbuf ring */
5618     tx_buf->m        = m0;
5619     tx_buf->first_bd = fp->tx_bd_prod;
5620     tx_buf->flags    = 0;
5621 
5622     /* prepare the first transmit (start) BD for the mbuf */
5623     tx_start_bd = &fp->tx_chain[TX_BD(bd_prod)].start_bd;
5624 
5625     BLOGD(sc, DBG_TX,
5626           "sending pkt_prod=%u tx_buf=%p next_idx=%u bd=%u tx_start_bd=%p\n",
5627           pkt_prod, tx_buf, fp->tx_pkt_prod, bd_prod, tx_start_bd);
5628 
5629     tx_start_bd->addr_lo = htole32(U64_LO(segs[0].ds_addr));
5630     tx_start_bd->addr_hi = htole32(U64_HI(segs[0].ds_addr));
5631     tx_start_bd->nbytes  = htole16(segs[0].ds_len);
5632     total_pkt_size += tx_start_bd->nbytes;
5633     tx_start_bd->bd_flags.as_bitfield = ETH_TX_BD_FLAGS_START_BD;
5634 
5635     tx_start_bd->general_data = (1 << ETH_TX_START_BD_HDR_NBDS_SHIFT);
5636 
5637     /* all frames have at least Start BD + Parsing BD */
5638     nbds = nsegs + 1;
5639     tx_start_bd->nbd = htole16(nbds);
5640 
5641     if (m0->m_flags & M_VLANTAG) {
5642         tx_start_bd->vlan_or_ethertype = htole16(m0->m_pkthdr.ether_vtag);
5643         tx_start_bd->bd_flags.as_bitfield |=
5644             (X_ETH_OUTBAND_VLAN << ETH_TX_BD_FLAGS_VLAN_MODE_SHIFT);
5645     } else {
5646         /* vf tx, start bd must hold the ethertype for fw to enforce it */
5647         if (IS_VF(sc)) {
5648             /* map ethernet header to find type and header length */
5649             eh = mtod(m0, struct ether_vlan_header *);
5650             tx_start_bd->vlan_or_ethertype = eh->evl_encap_proto;
5651         } else {
5652             /* used by FW for packet accounting */
5653             tx_start_bd->vlan_or_ethertype = htole16(fp->tx_pkt_prod);
5654 #if 0
5655             /*
5656              * If NPAR-SD is active then FW should do the tagging regardless
5657              * of value of priority. Otherwise, if priority indicates this is
5658              * a control packet we need to indicate to FW to avoid tagging.
5659              */
5660             if (!IS_MF_AFEX(sc) && (mbuf priority == PRIO_CONTROL)) {
5661                 SET_FLAG(tx_start_bd->general_data,
5662                          ETH_TX_START_BD_FORCE_VLAN_MODE, 1);
5663             }
5664 #endif
5665         }
5666     }
5667 
5668     /*
5669      * add a parsing BD from the chain. The parsing BD is always added
5670      * though it is only used for TSO and chksum
5671      */
5672     bd_prod = TX_BD_NEXT(bd_prod);
5673 
5674     if (m0->m_pkthdr.csum_flags) {
5675         if (m0->m_pkthdr.csum_flags & CSUM_IP) {
5676             fp->eth_q_stats.tx_ofld_frames_csum_ip++;
5677             tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_IP_CSUM;
5678         }
5679 
5680         if (m0->m_pkthdr.csum_flags & CSUM_TCP_IPV6) {
5681             tx_start_bd->bd_flags.as_bitfield |= (ETH_TX_BD_FLAGS_IPV6 |
5682                                                   ETH_TX_BD_FLAGS_L4_CSUM);
5683         } else if (m0->m_pkthdr.csum_flags & CSUM_UDP_IPV6) {
5684             tx_start_bd->bd_flags.as_bitfield |= (ETH_TX_BD_FLAGS_IPV6   |
5685                                                   ETH_TX_BD_FLAGS_IS_UDP |
5686                                                   ETH_TX_BD_FLAGS_L4_CSUM);
5687         } else if ((m0->m_pkthdr.csum_flags & CSUM_TCP) ||
5688                    (m0->m_pkthdr.csum_flags & CSUM_TSO)) {
5689             tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_L4_CSUM;
5690         } else if (m0->m_pkthdr.csum_flags & CSUM_UDP) {
5691             tx_start_bd->bd_flags.as_bitfield |= (ETH_TX_BD_FLAGS_L4_CSUM |
5692                                                   ETH_TX_BD_FLAGS_IS_UDP);
5693         }
5694     }
5695 
5696     if (!CHIP_IS_E1x(sc)) {
5697         pbd_e2 = &fp->tx_chain[TX_BD(bd_prod)].parse_bd_e2;
5698         memset(pbd_e2, 0, sizeof(struct eth_tx_parse_bd_e2));
5699 
5700         if (m0->m_pkthdr.csum_flags) {
5701             hlen = bxe_set_pbd_csum_e2(fp, m0, &pbd_e2_parsing_data);
5702         }
5703 
5704 #if 0
5705         /*
5706          * Add the MACs to the parsing BD if the module param was
5707          * explicitly set, if this is a vf, or in switch independent
5708          * mode.
5709          */
5710         if (sc->flags & BXE_TX_SWITCHING || IS_VF(sc) || IS_MF_SI(sc)) {
5711             eh = mtod(m0, struct ether_vlan_header *);
5712             bxe_set_fw_mac_addr(&pbd_e2->data.mac_addr.src_hi,
5713                                 &pbd_e2->data.mac_addr.src_mid,
5714                                 &pbd_e2->data.mac_addr.src_lo,
5715                                 eh->evl_shost);
5716             bxe_set_fw_mac_addr(&pbd_e2->data.mac_addr.dst_hi,
5717                                 &pbd_e2->data.mac_addr.dst_mid,
5718                                 &pbd_e2->data.mac_addr.dst_lo,
5719                                 eh->evl_dhost);
5720         }
5721 #endif
5722 
5723         SET_FLAG(pbd_e2_parsing_data, ETH_TX_PARSE_BD_E2_ETH_ADDR_TYPE,
5724                  mac_type);
5725     } else {
5726         uint16_t global_data = 0;
5727 
5728         pbd_e1x = &fp->tx_chain[TX_BD(bd_prod)].parse_bd_e1x;
5729         memset(pbd_e1x, 0, sizeof(struct eth_tx_parse_bd_e1x));
5730 
5731         if (m0->m_pkthdr.csum_flags) {
5732             hlen = bxe_set_pbd_csum(fp, m0, pbd_e1x);
5733         }
5734 
5735         SET_FLAG(global_data,
5736                  ETH_TX_PARSE_BD_E1X_ETH_ADDR_TYPE, mac_type);
5737         pbd_e1x->global_data |= htole16(global_data);
5738     }
5739 
5740     /* setup the parsing BD with TSO specific info */
5741     if (m0->m_pkthdr.csum_flags & CSUM_TSO) {
5742         fp->eth_q_stats.tx_ofld_frames_lso++;
5743         tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_SW_LSO;
5744 
5745         if (__predict_false(tx_start_bd->nbytes > hlen)) {
5746             fp->eth_q_stats.tx_ofld_frames_lso_hdr_splits++;
5747 
5748             /* split the first BD into header/data making the fw job easy */
5749             nbds++;
5750             tx_start_bd->nbd = htole16(nbds);
5751             tx_start_bd->nbytes = htole16(hlen);
5752 
5753             bd_prod = TX_BD_NEXT(bd_prod);
5754 
5755             /* new transmit BD after the tx_parse_bd */
5756             tx_data_bd = &fp->tx_chain[TX_BD(bd_prod)].reg_bd;
5757             tx_data_bd->addr_hi = htole32(U64_HI(segs[0].ds_addr + hlen));
5758             tx_data_bd->addr_lo = htole32(U64_LO(segs[0].ds_addr + hlen));
5759             tx_data_bd->nbytes  = htole16(segs[0].ds_len - hlen);
5760             if (tx_total_pkt_size_bd == NULL) {
5761                 tx_total_pkt_size_bd = tx_data_bd;
5762             }
5763 
5764             BLOGD(sc, DBG_TX,
5765                   "TSO split header size is %d (%x:%x) nbds %d\n",
5766                   le16toh(tx_start_bd->nbytes),
5767                   le32toh(tx_start_bd->addr_hi),
5768                   le32toh(tx_start_bd->addr_lo),
5769                   nbds);
5770         }
5771 
5772         if (!CHIP_IS_E1x(sc)) {
5773             bxe_set_pbd_lso_e2(m0, &pbd_e2_parsing_data);
5774         } else {
5775             bxe_set_pbd_lso(m0, pbd_e1x);
5776         }
5777     }
5778 
5779     if (pbd_e2_parsing_data) {
5780         pbd_e2->parsing_data = htole32(pbd_e2_parsing_data);
5781     }
5782 
5783     /* prepare remaining BDs, start tx bd contains first seg/frag */
5784     for (i = 1; i < nsegs ; i++) {
5785         bd_prod = TX_BD_NEXT(bd_prod);
5786         tx_data_bd = &fp->tx_chain[TX_BD(bd_prod)].reg_bd;
5787         tx_data_bd->addr_lo = htole32(U64_LO(segs[i].ds_addr));
5788         tx_data_bd->addr_hi = htole32(U64_HI(segs[i].ds_addr));
5789         tx_data_bd->nbytes  = htole16(segs[i].ds_len);
5790         if (tx_total_pkt_size_bd == NULL) {
5791             tx_total_pkt_size_bd = tx_data_bd;
5792         }
5793         total_pkt_size += tx_data_bd->nbytes;
5794     }
5795 
5796     BLOGD(sc, DBG_TX, "last bd %p\n", tx_data_bd);
5797 
5798     if (tx_total_pkt_size_bd != NULL) {
5799         tx_total_pkt_size_bd->total_pkt_bytes = total_pkt_size;
5800     }
5801 
5802     if (__predict_false(sc->debug & DBG_TX)) {
5803         tmp_bd = tx_buf->first_bd;
5804         for (i = 0; i < nbds; i++)
5805         {
5806             if (i == 0) {
5807                 BLOGD(sc, DBG_TX,
5808                       "TX Strt: %p bd=%d nbd=%d vlan=0x%x "
5809                       "bd_flags=0x%x hdr_nbds=%d\n",
5810                       tx_start_bd,
5811                       tmp_bd,
5812                       le16toh(tx_start_bd->nbd),
5813                       le16toh(tx_start_bd->vlan_or_ethertype),
5814                       tx_start_bd->bd_flags.as_bitfield,
5815                       (tx_start_bd->general_data & ETH_TX_START_BD_HDR_NBDS));
5816             } else if (i == 1) {
5817                 if (pbd_e1x) {
5818                     BLOGD(sc, DBG_TX,
5819                           "-> Prse: %p bd=%d global=0x%x ip_hlen_w=%u "
5820                           "ip_id=%u lso_mss=%u tcp_flags=0x%x csum=0x%x "
5821                           "tcp_seq=%u total_hlen_w=%u\n",
5822                           pbd_e1x,
5823                           tmp_bd,
5824                           pbd_e1x->global_data,
5825                           pbd_e1x->ip_hlen_w,
5826                           pbd_e1x->ip_id,
5827                           pbd_e1x->lso_mss,
5828                           pbd_e1x->tcp_flags,
5829                           pbd_e1x->tcp_pseudo_csum,
5830                           pbd_e1x->tcp_send_seq,
5831                           le16toh(pbd_e1x->total_hlen_w));
5832                 } else { /* if (pbd_e2) */
5833                     BLOGD(sc, DBG_TX,
5834                           "-> Parse: %p bd=%d dst=%02x:%02x:%02x "
5835                           "src=%02x:%02x:%02x parsing_data=0x%x\n",
5836                           pbd_e2,
5837                           tmp_bd,
5838                           pbd_e2->data.mac_addr.dst_hi,
5839                           pbd_e2->data.mac_addr.dst_mid,
5840                           pbd_e2->data.mac_addr.dst_lo,
5841                           pbd_e2->data.mac_addr.src_hi,
5842                           pbd_e2->data.mac_addr.src_mid,
5843                           pbd_e2->data.mac_addr.src_lo,
5844                           pbd_e2->parsing_data);
5845                 }
5846             }
5847 
5848             if (i != 1) { /* skip parse db as it doesn't hold data */
5849                 tx_data_bd = &fp->tx_chain[TX_BD(tmp_bd)].reg_bd;
5850                 BLOGD(sc, DBG_TX,
5851                       "-> Frag: %p bd=%d nbytes=%d hi=0x%x lo: 0x%x\n",
5852                       tx_data_bd,
5853                       tmp_bd,
5854                       le16toh(tx_data_bd->nbytes),
5855                       le32toh(tx_data_bd->addr_hi),
5856                       le32toh(tx_data_bd->addr_lo));
5857             }
5858 
5859             tmp_bd = TX_BD_NEXT(tmp_bd);
5860         }
5861     }
5862 
5863     BLOGD(sc, DBG_TX, "doorbell: nbds=%d bd=%u\n", nbds, bd_prod);
5864 
5865     /* update TX BD producer index value for next TX */
5866     bd_prod = TX_BD_NEXT(bd_prod);
5867 
5868     /*
5869      * If the chain of tx_bd's describing this frame is adjacent to or spans
5870      * an eth_tx_next_bd element then we need to increment the nbds value.
5871      */
5872     if (TX_BD_IDX(bd_prod) < nbds) {
5873         nbds++;
5874     }
5875 
5876     /* don't allow reordering of writes for nbd and packets */
5877     mb();
5878 
5879     fp->tx_db.data.prod += nbds;
5880 
5881     /* producer points to the next free tx_bd at this point */
5882     fp->tx_pkt_prod++;
5883     fp->tx_bd_prod = bd_prod;
5884 
5885     DOORBELL(sc, fp->index, fp->tx_db.raw);
5886 
5887     fp->eth_q_stats.tx_pkts++;
5888 
5889     /* Prevent speculative reads from getting ahead of the status block. */
5890     bus_space_barrier(sc->bar[BAR0].tag, sc->bar[BAR0].handle,
5891                       0, 0, BUS_SPACE_BARRIER_READ);
5892 
5893     /* Prevent speculative reads from getting ahead of the doorbell. */
5894     bus_space_barrier(sc->bar[BAR2].tag, sc->bar[BAR2].handle,
5895                       0, 0, BUS_SPACE_BARRIER_READ);
5896 
5897     return (0);
5898 }
5899 
5900 static void
5901 bxe_tx_start_locked(struct bxe_softc *sc,
5902                     if_t ifp,
5903                     struct bxe_fastpath *fp)
5904 {
5905     struct mbuf *m = NULL;
5906     int tx_count = 0;
5907     uint16_t tx_bd_avail;
5908 
5909     BXE_FP_TX_LOCK_ASSERT(fp);
5910 
5911     /* keep adding entries while there are frames to send */
5912     while (!if_sendq_empty(ifp)) {
5913 
5914         /*
5915          * check for any frames to send
5916          * dequeue can still be NULL even if queue is not empty
5917          */
5918         m = if_dequeue(ifp);
5919         if (__predict_false(m == NULL)) {
5920             break;
5921         }
5922 
5923         /* the mbuf now belongs to us */
5924         fp->eth_q_stats.mbuf_alloc_tx++;
5925 
5926         /*
5927          * Put the frame into the transmit ring. If we don't have room,
5928          * place the mbuf back at the head of the TX queue, set the
5929          * OACTIVE flag, and wait for the NIC to drain the chain.
5930          */
5931         if (__predict_false(bxe_tx_encap(fp, &m))) {
5932             fp->eth_q_stats.tx_encap_failures++;
5933             if (m != NULL) {
5934                 /* mark the TX queue as full and return the frame */
5935                 if_setdrvflagbits(ifp, IFF_DRV_OACTIVE, 0);
5936 		if_sendq_prepend(ifp, m);
5937                 fp->eth_q_stats.mbuf_alloc_tx--;
5938                 fp->eth_q_stats.tx_queue_xoff++;
5939             }
5940 
5941             /* stop looking for more work */
5942             break;
5943         }
5944 
5945         /* the frame was enqueued successfully */
5946         tx_count++;
5947 
5948         /* send a copy of the frame to any BPF listeners. */
5949         if_etherbpfmtap(ifp, m);
5950 
5951         tx_bd_avail = bxe_tx_avail(sc, fp);
5952 
5953         /* handle any completions if we're running low */
5954         if (tx_bd_avail < BXE_TX_CLEANUP_THRESHOLD) {
5955             /* bxe_txeof will set IFF_DRV_OACTIVE appropriately */
5956             bxe_txeof(sc, fp);
5957             if (if_getdrvflags(ifp) & IFF_DRV_OACTIVE) {
5958                 break;
5959             }
5960         }
5961     }
5962 
5963     /* all TX packets were dequeued and/or the tx ring is full */
5964     if (tx_count > 0) {
5965         /* reset the TX watchdog timeout timer */
5966         fp->watchdog_timer = BXE_TX_TIMEOUT;
5967     }
5968 }
5969 
5970 /* Legacy (non-RSS) dispatch routine */
5971 static void
5972 bxe_tx_start(if_t ifp)
5973 {
5974     struct bxe_softc *sc;
5975     struct bxe_fastpath *fp;
5976 
5977     sc = if_getsoftc(ifp);
5978 
5979     if (!(if_getdrvflags(ifp) & IFF_DRV_RUNNING)) {
5980         BLOGW(sc, "Interface not running, ignoring transmit request\n");
5981         return;
5982     }
5983 
5984     if (if_getdrvflags(ifp) & IFF_DRV_OACTIVE) {
5985         BLOGW(sc, "Interface TX queue is full, ignoring transmit request\n");
5986         return;
5987     }
5988 
5989     if (!sc->link_vars.link_up) {
5990         BLOGW(sc, "Interface link is down, ignoring transmit request\n");
5991         return;
5992     }
5993 
5994     fp = &sc->fp[0];
5995 
5996     BXE_FP_TX_LOCK(fp);
5997     bxe_tx_start_locked(sc, ifp, fp);
5998     BXE_FP_TX_UNLOCK(fp);
5999 }
6000 
6001 #if __FreeBSD_version >= 800000
6002 
6003 static int
6004 bxe_tx_mq_start_locked(struct bxe_softc    *sc,
6005                        if_t                ifp,
6006                        struct bxe_fastpath *fp,
6007                        struct mbuf         *m)
6008 {
6009     struct buf_ring *tx_br = fp->tx_br;
6010     struct mbuf *next;
6011     int depth, rc, tx_count;
6012     uint16_t tx_bd_avail;
6013 
6014     rc = tx_count = 0;
6015 
6016     BXE_FP_TX_LOCK_ASSERT(fp);
6017 
6018     if (!tx_br) {
6019         BLOGE(sc, "Multiqueue TX and no buf_ring!\n");
6020         return (EINVAL);
6021     }
6022 
6023     if (!sc->link_vars.link_up ||
6024         (ifp->if_drv_flags &
6025         (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) != IFF_DRV_RUNNING) {
6026         rc = drbr_enqueue_drv(ifp, tx_br, m);
6027         goto bxe_tx_mq_start_locked_exit;
6028     }
6029 
6030     /* fetch the depth of the driver queue */
6031     depth = drbr_inuse_drv(ifp, tx_br);
6032     if (depth > fp->eth_q_stats.tx_max_drbr_queue_depth) {
6033         fp->eth_q_stats.tx_max_drbr_queue_depth = depth;
6034     }
6035 
6036     if (m == NULL) {
6037         /* no new work, check for pending frames */
6038         next = drbr_dequeue_drv(ifp, tx_br);
6039     } else if (drbr_needs_enqueue_drv(ifp, tx_br)) {
6040         /* have both new and pending work, maintain packet order */
6041         rc = drbr_enqueue_drv(ifp, tx_br, m);
6042         if (rc != 0) {
6043             fp->eth_q_stats.tx_soft_errors++;
6044             goto bxe_tx_mq_start_locked_exit;
6045         }
6046         next = drbr_dequeue_drv(ifp, tx_br);
6047     } else {
6048         /* new work only and nothing pending */
6049         next = m;
6050     }
6051 
6052     /* keep adding entries while there are frames to send */
6053     while (next != NULL) {
6054 
6055         /* the mbuf now belongs to us */
6056         fp->eth_q_stats.mbuf_alloc_tx++;
6057 
6058         /*
6059          * Put the frame into the transmit ring. If we don't have room,
6060          * place the mbuf back at the head of the TX queue, set the
6061          * OACTIVE flag, and wait for the NIC to drain the chain.
6062          */
6063         rc = bxe_tx_encap(fp, &next);
6064         if (__predict_false(rc != 0)) {
6065             fp->eth_q_stats.tx_encap_failures++;
6066             if (next != NULL) {
6067                 /* mark the TX queue as full and save the frame */
6068                 if_setdrvflagbits(ifp, IFF_DRV_OACTIVE, 0);
6069                 /* XXX this may reorder the frame */
6070                 rc = drbr_enqueue_drv(ifp, tx_br, next);
6071                 fp->eth_q_stats.mbuf_alloc_tx--;
6072                 fp->eth_q_stats.tx_frames_deferred++;
6073             }
6074 
6075             /* stop looking for more work */
6076             break;
6077         }
6078 
6079         /* the transmit frame was enqueued successfully */
6080         tx_count++;
6081 
6082         /* send a copy of the frame to any BPF listeners */
6083 	if_etherbpfmtap(ifp, next);
6084 
6085         tx_bd_avail = bxe_tx_avail(sc, fp);
6086 
6087         /* handle any completions if we're running low */
6088         if (tx_bd_avail < BXE_TX_CLEANUP_THRESHOLD) {
6089             /* bxe_txeof will set IFF_DRV_OACTIVE appropriately */
6090             bxe_txeof(sc, fp);
6091             if (if_getdrvflags(ifp) & IFF_DRV_OACTIVE) {
6092                 break;
6093             }
6094         }
6095 
6096         next = drbr_dequeue_drv(ifp, tx_br);
6097     }
6098 
6099     /* all TX packets were dequeued and/or the tx ring is full */
6100     if (tx_count > 0) {
6101         /* reset the TX watchdog timeout timer */
6102         fp->watchdog_timer = BXE_TX_TIMEOUT;
6103     }
6104 
6105 bxe_tx_mq_start_locked_exit:
6106 
6107     return (rc);
6108 }
6109 
6110 /* Multiqueue (TSS) dispatch routine. */
6111 static int
6112 bxe_tx_mq_start(struct ifnet *ifp,
6113                 struct mbuf  *m)
6114 {
6115     struct bxe_softc *sc = if_getsoftc(ifp);
6116     struct bxe_fastpath *fp;
6117     int fp_index, rc;
6118 
6119     fp_index = 0; /* default is the first queue */
6120 
6121     /* check if flowid is set */
6122     if (M_HASHTYPE_GET(m) != M_HASHTYPE_NONE)
6123         fp_index = (m->m_pkthdr.flowid % sc->num_queues);
6124 
6125     fp = &sc->fp[fp_index];
6126 
6127     if (BXE_FP_TX_TRYLOCK(fp)) {
6128         rc = bxe_tx_mq_start_locked(sc, ifp, fp, m);
6129         BXE_FP_TX_UNLOCK(fp);
6130     } else
6131         rc = drbr_enqueue_drv(ifp, fp->tx_br, m);
6132 
6133     return (rc);
6134 }
6135 
6136 static void
6137 bxe_mq_flush(struct ifnet *ifp)
6138 {
6139     struct bxe_softc *sc = if_getsoftc(ifp);
6140     struct bxe_fastpath *fp;
6141     struct mbuf *m;
6142     int i;
6143 
6144     for (i = 0; i < sc->num_queues; i++) {
6145         fp = &sc->fp[i];
6146 
6147         if (fp->state != BXE_FP_STATE_OPEN) {
6148             BLOGD(sc, DBG_LOAD, "Not clearing fp[%02d] buf_ring (state=%d)\n",
6149                   fp->index, fp->state);
6150             continue;
6151         }
6152 
6153         if (fp->tx_br != NULL) {
6154             BLOGD(sc, DBG_LOAD, "Clearing fp[%02d] buf_ring\n", fp->index);
6155             BXE_FP_TX_LOCK(fp);
6156             while ((m = buf_ring_dequeue_sc(fp->tx_br)) != NULL) {
6157                 m_freem(m);
6158             }
6159             BXE_FP_TX_UNLOCK(fp);
6160         }
6161     }
6162 
6163     if_qflush(ifp);
6164 }
6165 
6166 #endif /* FreeBSD_version >= 800000 */
6167 
6168 static uint16_t
6169 bxe_cid_ilt_lines(struct bxe_softc *sc)
6170 {
6171     if (IS_SRIOV(sc)) {
6172         return ((BXE_FIRST_VF_CID + BXE_VF_CIDS) / ILT_PAGE_CIDS);
6173     }
6174     return (L2_ILT_LINES(sc));
6175 }
6176 
6177 static void
6178 bxe_ilt_set_info(struct bxe_softc *sc)
6179 {
6180     struct ilt_client_info *ilt_client;
6181     struct ecore_ilt *ilt = sc->ilt;
6182     uint16_t line = 0;
6183 
6184     ilt->start_line = FUNC_ILT_BASE(SC_FUNC(sc));
6185     BLOGD(sc, DBG_LOAD, "ilt starts at line %d\n", ilt->start_line);
6186 
6187     /* CDU */
6188     ilt_client = &ilt->clients[ILT_CLIENT_CDU];
6189     ilt_client->client_num = ILT_CLIENT_CDU;
6190     ilt_client->page_size = CDU_ILT_PAGE_SZ;
6191     ilt_client->flags = ILT_CLIENT_SKIP_MEM;
6192     ilt_client->start = line;
6193     line += bxe_cid_ilt_lines(sc);
6194 
6195     if (CNIC_SUPPORT(sc)) {
6196         line += CNIC_ILT_LINES;
6197     }
6198 
6199     ilt_client->end = (line - 1);
6200 
6201     BLOGD(sc, DBG_LOAD,
6202           "ilt client[CDU]: start %d, end %d, "
6203           "psz 0x%x, flags 0x%x, hw psz %d\n",
6204           ilt_client->start, ilt_client->end,
6205           ilt_client->page_size,
6206           ilt_client->flags,
6207           ilog2(ilt_client->page_size >> 12));
6208 
6209     /* QM */
6210     if (QM_INIT(sc->qm_cid_count)) {
6211         ilt_client = &ilt->clients[ILT_CLIENT_QM];
6212         ilt_client->client_num = ILT_CLIENT_QM;
6213         ilt_client->page_size = QM_ILT_PAGE_SZ;
6214         ilt_client->flags = 0;
6215         ilt_client->start = line;
6216 
6217         /* 4 bytes for each cid */
6218         line += DIV_ROUND_UP(sc->qm_cid_count * QM_QUEUES_PER_FUNC * 4,
6219                              QM_ILT_PAGE_SZ);
6220 
6221         ilt_client->end = (line - 1);
6222 
6223         BLOGD(sc, DBG_LOAD,
6224               "ilt client[QM]: start %d, end %d, "
6225               "psz 0x%x, flags 0x%x, hw psz %d\n",
6226               ilt_client->start, ilt_client->end,
6227               ilt_client->page_size, ilt_client->flags,
6228               ilog2(ilt_client->page_size >> 12));
6229     }
6230 
6231     if (CNIC_SUPPORT(sc)) {
6232         /* SRC */
6233         ilt_client = &ilt->clients[ILT_CLIENT_SRC];
6234         ilt_client->client_num = ILT_CLIENT_SRC;
6235         ilt_client->page_size = SRC_ILT_PAGE_SZ;
6236         ilt_client->flags = 0;
6237         ilt_client->start = line;
6238         line += SRC_ILT_LINES;
6239         ilt_client->end = (line - 1);
6240 
6241         BLOGD(sc, DBG_LOAD,
6242               "ilt client[SRC]: start %d, end %d, "
6243               "psz 0x%x, flags 0x%x, hw psz %d\n",
6244               ilt_client->start, ilt_client->end,
6245               ilt_client->page_size, ilt_client->flags,
6246               ilog2(ilt_client->page_size >> 12));
6247 
6248         /* TM */
6249         ilt_client = &ilt->clients[ILT_CLIENT_TM];
6250         ilt_client->client_num = ILT_CLIENT_TM;
6251         ilt_client->page_size = TM_ILT_PAGE_SZ;
6252         ilt_client->flags = 0;
6253         ilt_client->start = line;
6254         line += TM_ILT_LINES;
6255         ilt_client->end = (line - 1);
6256 
6257         BLOGD(sc, DBG_LOAD,
6258               "ilt client[TM]: start %d, end %d, "
6259               "psz 0x%x, flags 0x%x, hw psz %d\n",
6260               ilt_client->start, ilt_client->end,
6261               ilt_client->page_size, ilt_client->flags,
6262               ilog2(ilt_client->page_size >> 12));
6263     }
6264 
6265     KASSERT((line <= ILT_MAX_LINES), ("Invalid number of ILT lines!"));
6266 }
6267 
6268 static void
6269 bxe_set_fp_rx_buf_size(struct bxe_softc *sc)
6270 {
6271     int i;
6272     uint32_t rx_buf_size;
6273 
6274     rx_buf_size = (IP_HEADER_ALIGNMENT_PADDING + ETH_OVERHEAD + sc->mtu);
6275 
6276     for (i = 0; i < sc->num_queues; i++) {
6277         if(rx_buf_size <= MCLBYTES){
6278             sc->fp[i].rx_buf_size = rx_buf_size;
6279             sc->fp[i].mbuf_alloc_size = MCLBYTES;
6280         }else if (rx_buf_size <= MJUMPAGESIZE){
6281             sc->fp[i].rx_buf_size = rx_buf_size;
6282             sc->fp[i].mbuf_alloc_size = MJUMPAGESIZE;
6283         }else if (rx_buf_size <= (MJUMPAGESIZE + MCLBYTES)){
6284             sc->fp[i].rx_buf_size = MCLBYTES;
6285             sc->fp[i].mbuf_alloc_size = MCLBYTES;
6286         }else if (rx_buf_size <= (2 * MJUMPAGESIZE)){
6287             sc->fp[i].rx_buf_size = MJUMPAGESIZE;
6288             sc->fp[i].mbuf_alloc_size = MJUMPAGESIZE;
6289         }else {
6290             sc->fp[i].rx_buf_size = MCLBYTES;
6291             sc->fp[i].mbuf_alloc_size = MCLBYTES;
6292         }
6293     }
6294 }
6295 
6296 static int
6297 bxe_alloc_ilt_mem(struct bxe_softc *sc)
6298 {
6299     int rc = 0;
6300 
6301     if ((sc->ilt =
6302          (struct ecore_ilt *)malloc(sizeof(struct ecore_ilt),
6303                                     M_BXE_ILT,
6304                                     (M_NOWAIT | M_ZERO))) == NULL) {
6305         rc = 1;
6306     }
6307 
6308     return (rc);
6309 }
6310 
6311 static int
6312 bxe_alloc_ilt_lines_mem(struct bxe_softc *sc)
6313 {
6314     int rc = 0;
6315 
6316     if ((sc->ilt->lines =
6317          (struct ilt_line *)malloc((sizeof(struct ilt_line) * ILT_MAX_LINES),
6318                                     M_BXE_ILT,
6319                                     (M_NOWAIT | M_ZERO))) == NULL) {
6320         rc = 1;
6321     }
6322 
6323     return (rc);
6324 }
6325 
6326 static void
6327 bxe_free_ilt_mem(struct bxe_softc *sc)
6328 {
6329     if (sc->ilt != NULL) {
6330         free(sc->ilt, M_BXE_ILT);
6331         sc->ilt = NULL;
6332     }
6333 }
6334 
6335 static void
6336 bxe_free_ilt_lines_mem(struct bxe_softc *sc)
6337 {
6338     if (sc->ilt->lines != NULL) {
6339         free(sc->ilt->lines, M_BXE_ILT);
6340         sc->ilt->lines = NULL;
6341     }
6342 }
6343 
6344 static void
6345 bxe_free_mem(struct bxe_softc *sc)
6346 {
6347     int i;
6348 
6349 #if 0
6350     if (!CONFIGURE_NIC_MODE(sc)) {
6351         /* free searcher T2 table */
6352         bxe_dma_free(sc, &sc->t2);
6353     }
6354 #endif
6355 
6356     for (i = 0; i < L2_ILT_LINES(sc); i++) {
6357         bxe_dma_free(sc, &sc->context[i].vcxt_dma);
6358         sc->context[i].vcxt = NULL;
6359         sc->context[i].size = 0;
6360     }
6361 
6362     ecore_ilt_mem_op(sc, ILT_MEMOP_FREE);
6363 
6364     bxe_free_ilt_lines_mem(sc);
6365 
6366 #if 0
6367     bxe_iov_free_mem(sc);
6368 #endif
6369 }
6370 
6371 static int
6372 bxe_alloc_mem(struct bxe_softc *sc)
6373 {
6374     int context_size;
6375     int allocated;
6376     int i;
6377 
6378 #if 0
6379     if (!CONFIGURE_NIC_MODE(sc)) {
6380         /* allocate searcher T2 table */
6381         if (bxe_dma_alloc(sc, SRC_T2_SZ,
6382                           &sc->t2, "searcher t2 table") != 0) {
6383             return (-1);
6384         }
6385     }
6386 #endif
6387 
6388     /*
6389      * Allocate memory for CDU context:
6390      * This memory is allocated separately and not in the generic ILT
6391      * functions because CDU differs in few aspects:
6392      * 1. There can be multiple entities allocating memory for context -
6393      * regular L2, CNIC, and SRIOV drivers. Each separately controls
6394      * its own ILT lines.
6395      * 2. Since CDU page-size is not a single 4KB page (which is the case
6396      * for the other ILT clients), to be efficient we want to support
6397      * allocation of sub-page-size in the last entry.
6398      * 3. Context pointers are used by the driver to pass to FW / update
6399      * the context (for the other ILT clients the pointers are used just to
6400      * free the memory during unload).
6401      */
6402     context_size = (sizeof(union cdu_context) * BXE_L2_CID_COUNT(sc));
6403     for (i = 0, allocated = 0; allocated < context_size; i++) {
6404         sc->context[i].size = min(CDU_ILT_PAGE_SZ,
6405                                   (context_size - allocated));
6406 
6407         if (bxe_dma_alloc(sc, sc->context[i].size,
6408                           &sc->context[i].vcxt_dma,
6409                           "cdu context") != 0) {
6410             bxe_free_mem(sc);
6411             return (-1);
6412         }
6413 
6414         sc->context[i].vcxt =
6415             (union cdu_context *)sc->context[i].vcxt_dma.vaddr;
6416 
6417         allocated += sc->context[i].size;
6418     }
6419 
6420     bxe_alloc_ilt_lines_mem(sc);
6421 
6422     BLOGD(sc, DBG_LOAD, "ilt=%p start_line=%u lines=%p\n",
6423           sc->ilt, sc->ilt->start_line, sc->ilt->lines);
6424     {
6425         for (i = 0; i < 4; i++) {
6426             BLOGD(sc, DBG_LOAD,
6427                   "c%d page_size=%u start=%u end=%u num=%u flags=0x%x\n",
6428                   i,
6429                   sc->ilt->clients[i].page_size,
6430                   sc->ilt->clients[i].start,
6431                   sc->ilt->clients[i].end,
6432                   sc->ilt->clients[i].client_num,
6433                   sc->ilt->clients[i].flags);
6434         }
6435     }
6436     if (ecore_ilt_mem_op(sc, ILT_MEMOP_ALLOC)) {
6437         BLOGE(sc, "ecore_ilt_mem_op ILT_MEMOP_ALLOC failed\n");
6438         bxe_free_mem(sc);
6439         return (-1);
6440     }
6441 
6442 #if 0
6443     if (bxe_iov_alloc_mem(sc)) {
6444         BLOGE(sc, "Failed to allocate memory for SRIOV\n");
6445         bxe_free_mem(sc);
6446         return (-1);
6447     }
6448 #endif
6449 
6450     return (0);
6451 }
6452 
6453 static void
6454 bxe_free_rx_bd_chain(struct bxe_fastpath *fp)
6455 {
6456     struct bxe_softc *sc;
6457     int i;
6458 
6459     sc = fp->sc;
6460 
6461     if (fp->rx_mbuf_tag == NULL) {
6462         return;
6463     }
6464 
6465     /* free all mbufs and unload all maps */
6466     for (i = 0; i < RX_BD_TOTAL; i++) {
6467         if (fp->rx_mbuf_chain[i].m_map != NULL) {
6468             bus_dmamap_sync(fp->rx_mbuf_tag,
6469                             fp->rx_mbuf_chain[i].m_map,
6470                             BUS_DMASYNC_POSTREAD);
6471             bus_dmamap_unload(fp->rx_mbuf_tag,
6472                               fp->rx_mbuf_chain[i].m_map);
6473         }
6474 
6475         if (fp->rx_mbuf_chain[i].m != NULL) {
6476             m_freem(fp->rx_mbuf_chain[i].m);
6477             fp->rx_mbuf_chain[i].m = NULL;
6478             fp->eth_q_stats.mbuf_alloc_rx--;
6479         }
6480     }
6481 }
6482 
6483 static void
6484 bxe_free_tpa_pool(struct bxe_fastpath *fp)
6485 {
6486     struct bxe_softc *sc;
6487     int i, max_agg_queues;
6488 
6489     sc = fp->sc;
6490 
6491     if (fp->rx_mbuf_tag == NULL) {
6492         return;
6493     }
6494 
6495     max_agg_queues = MAX_AGG_QS(sc);
6496 
6497     /* release all mbufs and unload all DMA maps in the TPA pool */
6498     for (i = 0; i < max_agg_queues; i++) {
6499         if (fp->rx_tpa_info[i].bd.m_map != NULL) {
6500             bus_dmamap_sync(fp->rx_mbuf_tag,
6501                             fp->rx_tpa_info[i].bd.m_map,
6502                             BUS_DMASYNC_POSTREAD);
6503             bus_dmamap_unload(fp->rx_mbuf_tag,
6504                               fp->rx_tpa_info[i].bd.m_map);
6505         }
6506 
6507         if (fp->rx_tpa_info[i].bd.m != NULL) {
6508             m_freem(fp->rx_tpa_info[i].bd.m);
6509             fp->rx_tpa_info[i].bd.m = NULL;
6510             fp->eth_q_stats.mbuf_alloc_tpa--;
6511         }
6512     }
6513 }
6514 
6515 static void
6516 bxe_free_sge_chain(struct bxe_fastpath *fp)
6517 {
6518     struct bxe_softc *sc;
6519     int i;
6520 
6521     sc = fp->sc;
6522 
6523     if (fp->rx_sge_mbuf_tag == NULL) {
6524         return;
6525     }
6526 
6527     /* rree all mbufs and unload all maps */
6528     for (i = 0; i < RX_SGE_TOTAL; i++) {
6529         if (fp->rx_sge_mbuf_chain[i].m_map != NULL) {
6530             bus_dmamap_sync(fp->rx_sge_mbuf_tag,
6531                             fp->rx_sge_mbuf_chain[i].m_map,
6532                             BUS_DMASYNC_POSTREAD);
6533             bus_dmamap_unload(fp->rx_sge_mbuf_tag,
6534                               fp->rx_sge_mbuf_chain[i].m_map);
6535         }
6536 
6537         if (fp->rx_sge_mbuf_chain[i].m != NULL) {
6538             m_freem(fp->rx_sge_mbuf_chain[i].m);
6539             fp->rx_sge_mbuf_chain[i].m = NULL;
6540             fp->eth_q_stats.mbuf_alloc_sge--;
6541         }
6542     }
6543 }
6544 
6545 static void
6546 bxe_free_fp_buffers(struct bxe_softc *sc)
6547 {
6548     struct bxe_fastpath *fp;
6549     int i;
6550 
6551     for (i = 0; i < sc->num_queues; i++) {
6552         fp = &sc->fp[i];
6553 
6554 #if __FreeBSD_version >= 800000
6555         if (fp->tx_br != NULL) {
6556             /* just in case bxe_mq_flush() wasn't called */
6557             if (mtx_initialized(&fp->tx_mtx)) {
6558                 struct mbuf *m;
6559 
6560                 BXE_FP_TX_LOCK(fp);
6561                 while ((m = buf_ring_dequeue_sc(fp->tx_br)) != NULL)
6562                     m_freem(m);
6563                 BXE_FP_TX_UNLOCK(fp);
6564             }
6565             buf_ring_free(fp->tx_br, M_DEVBUF);
6566             fp->tx_br = NULL;
6567         }
6568 #endif
6569 
6570         /* free all RX buffers */
6571         bxe_free_rx_bd_chain(fp);
6572         bxe_free_tpa_pool(fp);
6573         bxe_free_sge_chain(fp);
6574 
6575         if (fp->eth_q_stats.mbuf_alloc_rx != 0) {
6576             BLOGE(sc, "failed to claim all rx mbufs (%d left)\n",
6577                   fp->eth_q_stats.mbuf_alloc_rx);
6578         }
6579 
6580         if (fp->eth_q_stats.mbuf_alloc_sge != 0) {
6581             BLOGE(sc, "failed to claim all sge mbufs (%d left)\n",
6582                   fp->eth_q_stats.mbuf_alloc_sge);
6583         }
6584 
6585         if (fp->eth_q_stats.mbuf_alloc_tpa != 0) {
6586             BLOGE(sc, "failed to claim all sge mbufs (%d left)\n",
6587                   fp->eth_q_stats.mbuf_alloc_tpa);
6588         }
6589 
6590         if (fp->eth_q_stats.mbuf_alloc_tx != 0) {
6591             BLOGE(sc, "failed to release tx mbufs (%d left)\n",
6592                   fp->eth_q_stats.mbuf_alloc_tx);
6593         }
6594 
6595         /* XXX verify all mbufs were reclaimed */
6596 
6597         if (mtx_initialized(&fp->tx_mtx)) {
6598             mtx_destroy(&fp->tx_mtx);
6599         }
6600 
6601         if (mtx_initialized(&fp->rx_mtx)) {
6602             mtx_destroy(&fp->rx_mtx);
6603         }
6604     }
6605 }
6606 
6607 static int
6608 bxe_alloc_rx_bd_mbuf(struct bxe_fastpath *fp,
6609                      uint16_t            prev_index,
6610                      uint16_t            index)
6611 {
6612     struct bxe_sw_rx_bd *rx_buf;
6613     struct eth_rx_bd *rx_bd;
6614     bus_dma_segment_t segs[1];
6615     bus_dmamap_t map;
6616     struct mbuf *m;
6617     int nsegs, rc;
6618 
6619     rc = 0;
6620 
6621     /* allocate the new RX BD mbuf */
6622     m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, fp->mbuf_alloc_size);
6623     if (__predict_false(m == NULL)) {
6624         fp->eth_q_stats.mbuf_rx_bd_alloc_failed++;
6625         return (ENOBUFS);
6626     }
6627 
6628     fp->eth_q_stats.mbuf_alloc_rx++;
6629 
6630     /* initialize the mbuf buffer length */
6631     m->m_pkthdr.len = m->m_len = fp->rx_buf_size;
6632 
6633     /* map the mbuf into non-paged pool */
6634     rc = bus_dmamap_load_mbuf_sg(fp->rx_mbuf_tag,
6635                                  fp->rx_mbuf_spare_map,
6636                                  m, segs, &nsegs, BUS_DMA_NOWAIT);
6637     if (__predict_false(rc != 0)) {
6638         fp->eth_q_stats.mbuf_rx_bd_mapping_failed++;
6639         m_freem(m);
6640         fp->eth_q_stats.mbuf_alloc_rx--;
6641         return (rc);
6642     }
6643 
6644     /* all mbufs must map to a single segment */
6645     KASSERT((nsegs == 1), ("Too many segments, %d returned!", nsegs));
6646 
6647     /* release any existing RX BD mbuf mappings */
6648 
6649     if (prev_index != index) {
6650         rx_buf = &fp->rx_mbuf_chain[prev_index];
6651 
6652         if (rx_buf->m_map != NULL) {
6653             bus_dmamap_sync(fp->rx_mbuf_tag, rx_buf->m_map,
6654                             BUS_DMASYNC_POSTREAD);
6655             bus_dmamap_unload(fp->rx_mbuf_tag, rx_buf->m_map);
6656         }
6657 
6658         /*
6659          * We only get here from bxe_rxeof() when the maximum number
6660          * of rx buffers is less than RX_BD_USABLE. bxe_rxeof() already
6661          * holds the mbuf in the prev_index so it's OK to NULL it out
6662          * here without concern of a memory leak.
6663          */
6664         fp->rx_mbuf_chain[prev_index].m = NULL;
6665     }
6666 
6667     rx_buf = &fp->rx_mbuf_chain[index];
6668 
6669     if (rx_buf->m_map != NULL) {
6670         bus_dmamap_sync(fp->rx_mbuf_tag, rx_buf->m_map,
6671                         BUS_DMASYNC_POSTREAD);
6672         bus_dmamap_unload(fp->rx_mbuf_tag, rx_buf->m_map);
6673     }
6674 
6675     /* save the mbuf and mapping info for a future packet */
6676     map = (prev_index != index) ?
6677               fp->rx_mbuf_chain[prev_index].m_map : rx_buf->m_map;
6678     rx_buf->m_map = fp->rx_mbuf_spare_map;
6679     fp->rx_mbuf_spare_map = map;
6680     bus_dmamap_sync(fp->rx_mbuf_tag, rx_buf->m_map,
6681                     BUS_DMASYNC_PREREAD);
6682     rx_buf->m = m;
6683 
6684     rx_bd = &fp->rx_chain[index];
6685     rx_bd->addr_hi = htole32(U64_HI(segs[0].ds_addr));
6686     rx_bd->addr_lo = htole32(U64_LO(segs[0].ds_addr));
6687 
6688     return (rc);
6689 }
6690 
6691 static int
6692 bxe_alloc_rx_tpa_mbuf(struct bxe_fastpath *fp,
6693                       int                 queue)
6694 {
6695     struct bxe_sw_tpa_info *tpa_info = &fp->rx_tpa_info[queue];
6696     bus_dma_segment_t segs[1];
6697     bus_dmamap_t map;
6698     struct mbuf *m;
6699     int nsegs;
6700     int rc = 0;
6701 
6702     /* allocate the new TPA mbuf */
6703     m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, fp->mbuf_alloc_size);
6704     if (__predict_false(m == NULL)) {
6705         fp->eth_q_stats.mbuf_rx_tpa_alloc_failed++;
6706         return (ENOBUFS);
6707     }
6708 
6709     fp->eth_q_stats.mbuf_alloc_tpa++;
6710 
6711     /* initialize the mbuf buffer length */
6712     m->m_pkthdr.len = m->m_len = fp->rx_buf_size;
6713 
6714     /* map the mbuf into non-paged pool */
6715     rc = bus_dmamap_load_mbuf_sg(fp->rx_mbuf_tag,
6716                                  fp->rx_tpa_info_mbuf_spare_map,
6717                                  m, segs, &nsegs, BUS_DMA_NOWAIT);
6718     if (__predict_false(rc != 0)) {
6719         fp->eth_q_stats.mbuf_rx_tpa_mapping_failed++;
6720         m_free(m);
6721         fp->eth_q_stats.mbuf_alloc_tpa--;
6722         return (rc);
6723     }
6724 
6725     /* all mbufs must map to a single segment */
6726     KASSERT((nsegs == 1), ("Too many segments, %d returned!", nsegs));
6727 
6728     /* release any existing TPA mbuf mapping */
6729     if (tpa_info->bd.m_map != NULL) {
6730         bus_dmamap_sync(fp->rx_mbuf_tag, tpa_info->bd.m_map,
6731                         BUS_DMASYNC_POSTREAD);
6732         bus_dmamap_unload(fp->rx_mbuf_tag, tpa_info->bd.m_map);
6733     }
6734 
6735     /* save the mbuf and mapping info for the TPA mbuf */
6736     map = tpa_info->bd.m_map;
6737     tpa_info->bd.m_map = fp->rx_tpa_info_mbuf_spare_map;
6738     fp->rx_tpa_info_mbuf_spare_map = map;
6739     bus_dmamap_sync(fp->rx_mbuf_tag, tpa_info->bd.m_map,
6740                     BUS_DMASYNC_PREREAD);
6741     tpa_info->bd.m = m;
6742     tpa_info->seg = segs[0];
6743 
6744     return (rc);
6745 }
6746 
6747 /*
6748  * Allocate an mbuf and assign it to the receive scatter gather chain. The
6749  * caller must take care to save a copy of the existing mbuf in the SG mbuf
6750  * chain.
6751  */
6752 static int
6753 bxe_alloc_rx_sge_mbuf(struct bxe_fastpath *fp,
6754                       uint16_t            index)
6755 {
6756     struct bxe_sw_rx_bd *sge_buf;
6757     struct eth_rx_sge *sge;
6758     bus_dma_segment_t segs[1];
6759     bus_dmamap_t map;
6760     struct mbuf *m;
6761     int nsegs;
6762     int rc = 0;
6763 
6764     /* allocate a new SGE mbuf */
6765     m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, SGE_PAGE_SIZE);
6766     if (__predict_false(m == NULL)) {
6767         fp->eth_q_stats.mbuf_rx_sge_alloc_failed++;
6768         return (ENOMEM);
6769     }
6770 
6771     fp->eth_q_stats.mbuf_alloc_sge++;
6772 
6773     /* initialize the mbuf buffer length */
6774     m->m_pkthdr.len = m->m_len = SGE_PAGE_SIZE;
6775 
6776     /* map the SGE mbuf into non-paged pool */
6777     rc = bus_dmamap_load_mbuf_sg(fp->rx_sge_mbuf_tag,
6778                                  fp->rx_sge_mbuf_spare_map,
6779                                  m, segs, &nsegs, BUS_DMA_NOWAIT);
6780     if (__predict_false(rc != 0)) {
6781         fp->eth_q_stats.mbuf_rx_sge_mapping_failed++;
6782         m_freem(m);
6783         fp->eth_q_stats.mbuf_alloc_sge--;
6784         return (rc);
6785     }
6786 
6787     /* all mbufs must map to a single segment */
6788     KASSERT((nsegs == 1), ("Too many segments, %d returned!", nsegs));
6789 
6790     sge_buf = &fp->rx_sge_mbuf_chain[index];
6791 
6792     /* release any existing SGE mbuf mapping */
6793     if (sge_buf->m_map != NULL) {
6794         bus_dmamap_sync(fp->rx_sge_mbuf_tag, sge_buf->m_map,
6795                         BUS_DMASYNC_POSTREAD);
6796         bus_dmamap_unload(fp->rx_sge_mbuf_tag, sge_buf->m_map);
6797     }
6798 
6799     /* save the mbuf and mapping info for a future packet */
6800     map = sge_buf->m_map;
6801     sge_buf->m_map = fp->rx_sge_mbuf_spare_map;
6802     fp->rx_sge_mbuf_spare_map = map;
6803     bus_dmamap_sync(fp->rx_sge_mbuf_tag, sge_buf->m_map,
6804                     BUS_DMASYNC_PREREAD);
6805     sge_buf->m = m;
6806 
6807     sge = &fp->rx_sge_chain[index];
6808     sge->addr_hi = htole32(U64_HI(segs[0].ds_addr));
6809     sge->addr_lo = htole32(U64_LO(segs[0].ds_addr));
6810 
6811     return (rc);
6812 }
6813 
6814 static __noinline int
6815 bxe_alloc_fp_buffers(struct bxe_softc *sc)
6816 {
6817     struct bxe_fastpath *fp;
6818     int i, j, rc = 0;
6819     int ring_prod, cqe_ring_prod;
6820     int max_agg_queues;
6821 
6822     for (i = 0; i < sc->num_queues; i++) {
6823         fp = &sc->fp[i];
6824 
6825 #if __FreeBSD_version >= 800000
6826         fp->tx_br = buf_ring_alloc(BXE_BR_SIZE, M_DEVBUF,
6827                                    M_NOWAIT, &fp->tx_mtx);
6828         if (fp->tx_br == NULL) {
6829             BLOGE(sc, "buf_ring alloc fail for fp[%02d]\n", i);
6830             goto bxe_alloc_fp_buffers_error;
6831         }
6832 #endif
6833 
6834         ring_prod = cqe_ring_prod = 0;
6835         fp->rx_bd_cons = 0;
6836         fp->rx_cq_cons = 0;
6837 
6838         /* allocate buffers for the RX BDs in RX BD chain */
6839         for (j = 0; j < sc->max_rx_bufs; j++) {
6840             rc = bxe_alloc_rx_bd_mbuf(fp, ring_prod, ring_prod);
6841             if (rc != 0) {
6842                 BLOGE(sc, "mbuf alloc fail for fp[%02d] rx chain (%d)\n",
6843                       i, rc);
6844                 goto bxe_alloc_fp_buffers_error;
6845             }
6846 
6847             ring_prod     = RX_BD_NEXT(ring_prod);
6848             cqe_ring_prod = RCQ_NEXT(cqe_ring_prod);
6849         }
6850 
6851         fp->rx_bd_prod = ring_prod;
6852         fp->rx_cq_prod = cqe_ring_prod;
6853         fp->eth_q_stats.rx_calls = fp->eth_q_stats.rx_pkts = 0;
6854 
6855         max_agg_queues = MAX_AGG_QS(sc);
6856 
6857         fp->tpa_enable = TRUE;
6858 
6859         /* fill the TPA pool */
6860         for (j = 0; j < max_agg_queues; j++) {
6861             rc = bxe_alloc_rx_tpa_mbuf(fp, j);
6862             if (rc != 0) {
6863                 BLOGE(sc, "mbuf alloc fail for fp[%02d] TPA queue %d\n",
6864                           i, j);
6865                 fp->tpa_enable = FALSE;
6866                 goto bxe_alloc_fp_buffers_error;
6867             }
6868 
6869             fp->rx_tpa_info[j].state = BXE_TPA_STATE_STOP;
6870         }
6871 
6872         if (fp->tpa_enable) {
6873             /* fill the RX SGE chain */
6874             ring_prod = 0;
6875             for (j = 0; j < RX_SGE_USABLE; j++) {
6876                 rc = bxe_alloc_rx_sge_mbuf(fp, ring_prod);
6877                 if (rc != 0) {
6878                     BLOGE(sc, "mbuf alloc fail for fp[%02d] SGE %d\n",
6879                               i, ring_prod);
6880                     fp->tpa_enable = FALSE;
6881                     ring_prod = 0;
6882                     goto bxe_alloc_fp_buffers_error;
6883                 }
6884 
6885                 ring_prod = RX_SGE_NEXT(ring_prod);
6886             }
6887 
6888             fp->rx_sge_prod = ring_prod;
6889         }
6890     }
6891 
6892     return (0);
6893 
6894 bxe_alloc_fp_buffers_error:
6895 
6896     /* unwind what was already allocated */
6897     bxe_free_rx_bd_chain(fp);
6898     bxe_free_tpa_pool(fp);
6899     bxe_free_sge_chain(fp);
6900 
6901     return (ENOBUFS);
6902 }
6903 
6904 static void
6905 bxe_free_fw_stats_mem(struct bxe_softc *sc)
6906 {
6907     bxe_dma_free(sc, &sc->fw_stats_dma);
6908 
6909     sc->fw_stats_num = 0;
6910 
6911     sc->fw_stats_req_size = 0;
6912     sc->fw_stats_req = NULL;
6913     sc->fw_stats_req_mapping = 0;
6914 
6915     sc->fw_stats_data_size = 0;
6916     sc->fw_stats_data = NULL;
6917     sc->fw_stats_data_mapping = 0;
6918 }
6919 
6920 static int
6921 bxe_alloc_fw_stats_mem(struct bxe_softc *sc)
6922 {
6923     uint8_t num_queue_stats;
6924     int num_groups;
6925 
6926     /* number of queues for statistics is number of eth queues */
6927     num_queue_stats = BXE_NUM_ETH_QUEUES(sc);
6928 
6929     /*
6930      * Total number of FW statistics requests =
6931      *   1 for port stats + 1 for PF stats + num of queues
6932      */
6933     sc->fw_stats_num = (2 + num_queue_stats);
6934 
6935     /*
6936      * Request is built from stats_query_header and an array of
6937      * stats_query_cmd_group each of which contains STATS_QUERY_CMD_COUNT
6938      * rules. The real number or requests is configured in the
6939      * stats_query_header.
6940      */
6941     num_groups =
6942         ((sc->fw_stats_num / STATS_QUERY_CMD_COUNT) +
6943          ((sc->fw_stats_num % STATS_QUERY_CMD_COUNT) ? 1 : 0));
6944 
6945     BLOGD(sc, DBG_LOAD, "stats fw_stats_num %d num_groups %d\n",
6946           sc->fw_stats_num, num_groups);
6947 
6948     sc->fw_stats_req_size =
6949         (sizeof(struct stats_query_header) +
6950          (num_groups * sizeof(struct stats_query_cmd_group)));
6951 
6952     /*
6953      * Data for statistics requests + stats_counter.
6954      * stats_counter holds per-STORM counters that are incremented when
6955      * STORM has finished with the current request. Memory for FCoE
6956      * offloaded statistics are counted anyway, even if they will not be sent.
6957      * VF stats are not accounted for here as the data of VF stats is stored
6958      * in memory allocated by the VF, not here.
6959      */
6960     sc->fw_stats_data_size =
6961         (sizeof(struct stats_counter) +
6962          sizeof(struct per_port_stats) +
6963          sizeof(struct per_pf_stats) +
6964          /* sizeof(struct fcoe_statistics_params) + */
6965          (sizeof(struct per_queue_stats) * num_queue_stats));
6966 
6967     if (bxe_dma_alloc(sc, (sc->fw_stats_req_size + sc->fw_stats_data_size),
6968                       &sc->fw_stats_dma, "fw stats") != 0) {
6969         bxe_free_fw_stats_mem(sc);
6970         return (-1);
6971     }
6972 
6973     /* set up the shortcuts */
6974 
6975     sc->fw_stats_req =
6976         (struct bxe_fw_stats_req *)sc->fw_stats_dma.vaddr;
6977     sc->fw_stats_req_mapping = sc->fw_stats_dma.paddr;
6978 
6979     sc->fw_stats_data =
6980         (struct bxe_fw_stats_data *)((uint8_t *)sc->fw_stats_dma.vaddr +
6981                                      sc->fw_stats_req_size);
6982     sc->fw_stats_data_mapping = (sc->fw_stats_dma.paddr +
6983                                  sc->fw_stats_req_size);
6984 
6985     BLOGD(sc, DBG_LOAD, "statistics request base address set to %#jx\n",
6986           (uintmax_t)sc->fw_stats_req_mapping);
6987 
6988     BLOGD(sc, DBG_LOAD, "statistics data base address set to %#jx\n",
6989           (uintmax_t)sc->fw_stats_data_mapping);
6990 
6991     return (0);
6992 }
6993 
6994 /*
6995  * Bits map:
6996  * 0-7  - Engine0 load counter.
6997  * 8-15 - Engine1 load counter.
6998  * 16   - Engine0 RESET_IN_PROGRESS bit.
6999  * 17   - Engine1 RESET_IN_PROGRESS bit.
7000  * 18   - Engine0 ONE_IS_LOADED. Set when there is at least one active
7001  *        function on the engine
7002  * 19   - Engine1 ONE_IS_LOADED.
7003  * 20   - Chip reset flow bit. When set none-leader must wait for both engines
7004  *        leader to complete (check for both RESET_IN_PROGRESS bits and not
7005  *        for just the one belonging to its engine).
7006  */
7007 #define BXE_RECOVERY_GLOB_REG     MISC_REG_GENERIC_POR_1
7008 #define BXE_PATH0_LOAD_CNT_MASK   0x000000ff
7009 #define BXE_PATH0_LOAD_CNT_SHIFT  0
7010 #define BXE_PATH1_LOAD_CNT_MASK   0x0000ff00
7011 #define BXE_PATH1_LOAD_CNT_SHIFT  8
7012 #define BXE_PATH0_RST_IN_PROG_BIT 0x00010000
7013 #define BXE_PATH1_RST_IN_PROG_BIT 0x00020000
7014 #define BXE_GLOBAL_RESET_BIT      0x00040000
7015 
7016 /* set the GLOBAL_RESET bit, should be run under rtnl lock */
7017 static void
7018 bxe_set_reset_global(struct bxe_softc *sc)
7019 {
7020     uint32_t val;
7021     bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
7022     val = REG_RD(sc, BXE_RECOVERY_GLOB_REG);
7023     REG_WR(sc, BXE_RECOVERY_GLOB_REG, val | BXE_GLOBAL_RESET_BIT);
7024     bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
7025 }
7026 
7027 /* clear the GLOBAL_RESET bit, should be run under rtnl lock */
7028 static void
7029 bxe_clear_reset_global(struct bxe_softc *sc)
7030 {
7031     uint32_t val;
7032     bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
7033     val = REG_RD(sc, BXE_RECOVERY_GLOB_REG);
7034     REG_WR(sc, BXE_RECOVERY_GLOB_REG, val & (~BXE_GLOBAL_RESET_BIT));
7035     bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
7036 }
7037 
7038 /* checks the GLOBAL_RESET bit, should be run under rtnl lock */
7039 static uint8_t
7040 bxe_reset_is_global(struct bxe_softc *sc)
7041 {
7042     uint32_t val = REG_RD(sc, BXE_RECOVERY_GLOB_REG);
7043     BLOGD(sc, DBG_LOAD, "GLOB_REG=0x%08x\n", val);
7044     return (val & BXE_GLOBAL_RESET_BIT) ? TRUE : FALSE;
7045 }
7046 
7047 /* clear RESET_IN_PROGRESS bit for the engine, should be run under rtnl lock */
7048 static void
7049 bxe_set_reset_done(struct bxe_softc *sc)
7050 {
7051     uint32_t val;
7052     uint32_t bit = SC_PATH(sc) ? BXE_PATH1_RST_IN_PROG_BIT :
7053                                  BXE_PATH0_RST_IN_PROG_BIT;
7054 
7055     bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
7056 
7057     val = REG_RD(sc, BXE_RECOVERY_GLOB_REG);
7058     /* Clear the bit */
7059     val &= ~bit;
7060     REG_WR(sc, BXE_RECOVERY_GLOB_REG, val);
7061 
7062     bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
7063 }
7064 
7065 /* set RESET_IN_PROGRESS for the engine, should be run under rtnl lock */
7066 static void
7067 bxe_set_reset_in_progress(struct bxe_softc *sc)
7068 {
7069     uint32_t val;
7070     uint32_t bit = SC_PATH(sc) ? BXE_PATH1_RST_IN_PROG_BIT :
7071                                  BXE_PATH0_RST_IN_PROG_BIT;
7072 
7073     bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
7074 
7075     val = REG_RD(sc, BXE_RECOVERY_GLOB_REG);
7076     /* Set the bit */
7077     val |= bit;
7078     REG_WR(sc, BXE_RECOVERY_GLOB_REG, val);
7079 
7080     bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
7081 }
7082 
7083 /* check RESET_IN_PROGRESS bit for an engine, should be run under rtnl lock */
7084 static uint8_t
7085 bxe_reset_is_done(struct bxe_softc *sc,
7086                   int              engine)
7087 {
7088     uint32_t val = REG_RD(sc, BXE_RECOVERY_GLOB_REG);
7089     uint32_t bit = engine ? BXE_PATH1_RST_IN_PROG_BIT :
7090                             BXE_PATH0_RST_IN_PROG_BIT;
7091 
7092     /* return false if bit is set */
7093     return (val & bit) ? FALSE : TRUE;
7094 }
7095 
7096 /* get the load status for an engine, should be run under rtnl lock */
7097 static uint8_t
7098 bxe_get_load_status(struct bxe_softc *sc,
7099                     int              engine)
7100 {
7101     uint32_t mask = engine ? BXE_PATH1_LOAD_CNT_MASK :
7102                              BXE_PATH0_LOAD_CNT_MASK;
7103     uint32_t shift = engine ? BXE_PATH1_LOAD_CNT_SHIFT :
7104                               BXE_PATH0_LOAD_CNT_SHIFT;
7105     uint32_t val = REG_RD(sc, BXE_RECOVERY_GLOB_REG);
7106 
7107     BLOGD(sc, DBG_LOAD, "Old value for GLOB_REG=0x%08x\n", val);
7108 
7109     val = ((val & mask) >> shift);
7110 
7111     BLOGD(sc, DBG_LOAD, "Load mask engine %d = 0x%08x\n", engine, val);
7112 
7113     return (val != 0);
7114 }
7115 
7116 /* set pf load mark */
7117 /* XXX needs to be under rtnl lock */
7118 static void
7119 bxe_set_pf_load(struct bxe_softc *sc)
7120 {
7121     uint32_t val;
7122     uint32_t val1;
7123     uint32_t mask = SC_PATH(sc) ? BXE_PATH1_LOAD_CNT_MASK :
7124                                   BXE_PATH0_LOAD_CNT_MASK;
7125     uint32_t shift = SC_PATH(sc) ? BXE_PATH1_LOAD_CNT_SHIFT :
7126                                    BXE_PATH0_LOAD_CNT_SHIFT;
7127 
7128     bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
7129 
7130     val = REG_RD(sc, BXE_RECOVERY_GLOB_REG);
7131     BLOGD(sc, DBG_LOAD, "Old value for GLOB_REG=0x%08x\n", val);
7132 
7133     /* get the current counter value */
7134     val1 = ((val & mask) >> shift);
7135 
7136     /* set bit of this PF */
7137     val1 |= (1 << SC_ABS_FUNC(sc));
7138 
7139     /* clear the old value */
7140     val &= ~mask;
7141 
7142     /* set the new one */
7143     val |= ((val1 << shift) & mask);
7144 
7145     REG_WR(sc, BXE_RECOVERY_GLOB_REG, val);
7146 
7147     bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
7148 }
7149 
7150 /* clear pf load mark */
7151 /* XXX needs to be under rtnl lock */
7152 static uint8_t
7153 bxe_clear_pf_load(struct bxe_softc *sc)
7154 {
7155     uint32_t val1, val;
7156     uint32_t mask = SC_PATH(sc) ? BXE_PATH1_LOAD_CNT_MASK :
7157                                   BXE_PATH0_LOAD_CNT_MASK;
7158     uint32_t shift = SC_PATH(sc) ? BXE_PATH1_LOAD_CNT_SHIFT :
7159                                    BXE_PATH0_LOAD_CNT_SHIFT;
7160 
7161     bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
7162     val = REG_RD(sc, BXE_RECOVERY_GLOB_REG);
7163     BLOGD(sc, DBG_LOAD, "Old GEN_REG_VAL=0x%08x\n", val);
7164 
7165     /* get the current counter value */
7166     val1 = (val & mask) >> shift;
7167 
7168     /* clear bit of that PF */
7169     val1 &= ~(1 << SC_ABS_FUNC(sc));
7170 
7171     /* clear the old value */
7172     val &= ~mask;
7173 
7174     /* set the new one */
7175     val |= ((val1 << shift) & mask);
7176 
7177     REG_WR(sc, BXE_RECOVERY_GLOB_REG, val);
7178     bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
7179     return (val1 != 0);
7180 }
7181 
7182 /* send load requrest to mcp and analyze response */
7183 static int
7184 bxe_nic_load_request(struct bxe_softc *sc,
7185                      uint32_t         *load_code)
7186 {
7187     /* init fw_seq */
7188     sc->fw_seq =
7189         (SHMEM_RD(sc, func_mb[SC_FW_MB_IDX(sc)].drv_mb_header) &
7190          DRV_MSG_SEQ_NUMBER_MASK);
7191 
7192     BLOGD(sc, DBG_LOAD, "initial fw_seq 0x%04x\n", sc->fw_seq);
7193 
7194     /* get the current FW pulse sequence */
7195     sc->fw_drv_pulse_wr_seq =
7196         (SHMEM_RD(sc, func_mb[SC_FW_MB_IDX(sc)].drv_pulse_mb) &
7197          DRV_PULSE_SEQ_MASK);
7198 
7199     BLOGD(sc, DBG_LOAD, "initial drv_pulse 0x%04x\n",
7200           sc->fw_drv_pulse_wr_seq);
7201 
7202     /* load request */
7203     (*load_code) = bxe_fw_command(sc, DRV_MSG_CODE_LOAD_REQ,
7204                                   DRV_MSG_CODE_LOAD_REQ_WITH_LFA);
7205 
7206     /* if the MCP fails to respond we must abort */
7207     if (!(*load_code)) {
7208         BLOGE(sc, "MCP response failure!\n");
7209         return (-1);
7210     }
7211 
7212     /* if MCP refused then must abort */
7213     if ((*load_code) == FW_MSG_CODE_DRV_LOAD_REFUSED) {
7214         BLOGE(sc, "MCP refused load request\n");
7215         return (-1);
7216     }
7217 
7218     return (0);
7219 }
7220 
7221 /*
7222  * Check whether another PF has already loaded FW to chip. In virtualized
7223  * environments a pf from anoth VM may have already initialized the device
7224  * including loading FW.
7225  */
7226 static int
7227 bxe_nic_load_analyze_req(struct bxe_softc *sc,
7228                          uint32_t         load_code)
7229 {
7230     uint32_t my_fw, loaded_fw;
7231 
7232     /* is another pf loaded on this engine? */
7233     if ((load_code != FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) &&
7234         (load_code != FW_MSG_CODE_DRV_LOAD_COMMON)) {
7235         /* build my FW version dword */
7236         my_fw = (BCM_5710_FW_MAJOR_VERSION +
7237                  (BCM_5710_FW_MINOR_VERSION << 8 ) +
7238                  (BCM_5710_FW_REVISION_VERSION << 16) +
7239                  (BCM_5710_FW_ENGINEERING_VERSION << 24));
7240 
7241         /* read loaded FW from chip */
7242         loaded_fw = REG_RD(sc, XSEM_REG_PRAM);
7243         BLOGD(sc, DBG_LOAD, "loaded FW 0x%08x / my FW 0x%08x\n",
7244               loaded_fw, my_fw);
7245 
7246         /* abort nic load if version mismatch */
7247         if (my_fw != loaded_fw) {
7248             BLOGE(sc, "FW 0x%08x already loaded (mine is 0x%08x)",
7249                   loaded_fw, my_fw);
7250             return (-1);
7251         }
7252     }
7253 
7254     return (0);
7255 }
7256 
7257 /* mark PMF if applicable */
7258 static void
7259 bxe_nic_load_pmf(struct bxe_softc *sc,
7260                  uint32_t         load_code)
7261 {
7262     uint32_t ncsi_oem_data_addr;
7263 
7264     if ((load_code == FW_MSG_CODE_DRV_LOAD_COMMON) ||
7265         (load_code == FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) ||
7266         (load_code == FW_MSG_CODE_DRV_LOAD_PORT)) {
7267         /*
7268          * Barrier here for ordering between the writing to sc->port.pmf here
7269          * and reading it from the periodic task.
7270          */
7271         sc->port.pmf = 1;
7272         mb();
7273     } else {
7274         sc->port.pmf = 0;
7275     }
7276 
7277     BLOGD(sc, DBG_LOAD, "pmf %d\n", sc->port.pmf);
7278 
7279     /* XXX needed? */
7280     if (load_code == FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) {
7281         if (SHMEM2_HAS(sc, ncsi_oem_data_addr)) {
7282             ncsi_oem_data_addr = SHMEM2_RD(sc, ncsi_oem_data_addr);
7283             if (ncsi_oem_data_addr) {
7284                 REG_WR(sc,
7285                        (ncsi_oem_data_addr +
7286                         offsetof(struct glob_ncsi_oem_data, driver_version)),
7287                        0);
7288             }
7289         }
7290     }
7291 }
7292 
7293 static void
7294 bxe_read_mf_cfg(struct bxe_softc *sc)
7295 {
7296     int n = (CHIP_IS_MODE_4_PORT(sc) ? 2 : 1);
7297     int abs_func;
7298     int vn;
7299 
7300     if (BXE_NOMCP(sc)) {
7301         return; /* what should be the default bvalue in this case */
7302     }
7303 
7304     /*
7305      * The formula for computing the absolute function number is...
7306      * For 2 port configuration (4 functions per port):
7307      *   abs_func = 2 * vn + SC_PORT + SC_PATH
7308      * For 4 port configuration (2 functions per port):
7309      *   abs_func = 4 * vn + 2 * SC_PORT + SC_PATH
7310      */
7311     for (vn = VN_0; vn < SC_MAX_VN_NUM(sc); vn++) {
7312         abs_func = (n * (2 * vn + SC_PORT(sc)) + SC_PATH(sc));
7313         if (abs_func >= E1H_FUNC_MAX) {
7314             break;
7315         }
7316         sc->devinfo.mf_info.mf_config[vn] =
7317             MFCFG_RD(sc, func_mf_config[abs_func].config);
7318     }
7319 
7320     if (sc->devinfo.mf_info.mf_config[SC_VN(sc)] &
7321         FUNC_MF_CFG_FUNC_DISABLED) {
7322         BLOGD(sc, DBG_LOAD, "mf_cfg function disabled\n");
7323         sc->flags |= BXE_MF_FUNC_DIS;
7324     } else {
7325         BLOGD(sc, DBG_LOAD, "mf_cfg function enabled\n");
7326         sc->flags &= ~BXE_MF_FUNC_DIS;
7327     }
7328 }
7329 
7330 /* acquire split MCP access lock register */
7331 static int bxe_acquire_alr(struct bxe_softc *sc)
7332 {
7333     uint32_t j, val;
7334 
7335     for (j = 0; j < 1000; j++) {
7336         val = (1UL << 31);
7337         REG_WR(sc, GRCBASE_MCP + 0x9c, val);
7338         val = REG_RD(sc, GRCBASE_MCP + 0x9c);
7339         if (val & (1L << 31))
7340             break;
7341 
7342         DELAY(5000);
7343     }
7344 
7345     if (!(val & (1L << 31))) {
7346         BLOGE(sc, "Cannot acquire MCP access lock register\n");
7347         return (-1);
7348     }
7349 
7350     return (0);
7351 }
7352 
7353 /* release split MCP access lock register */
7354 static void bxe_release_alr(struct bxe_softc *sc)
7355 {
7356     REG_WR(sc, GRCBASE_MCP + 0x9c, 0);
7357 }
7358 
7359 static void
7360 bxe_fan_failure(struct bxe_softc *sc)
7361 {
7362     int port = SC_PORT(sc);
7363     uint32_t ext_phy_config;
7364 
7365     /* mark the failure */
7366     ext_phy_config =
7367         SHMEM_RD(sc, dev_info.port_hw_config[port].external_phy_config);
7368 
7369     ext_phy_config &= ~PORT_HW_CFG_XGXS_EXT_PHY_TYPE_MASK;
7370     ext_phy_config |= PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE;
7371     SHMEM_WR(sc, dev_info.port_hw_config[port].external_phy_config,
7372              ext_phy_config);
7373 
7374     /* log the failure */
7375     BLOGW(sc, "Fan Failure has caused the driver to shutdown "
7376               "the card to prevent permanent damage. "
7377               "Please contact OEM Support for assistance\n");
7378 
7379     /* XXX */
7380 #if 1
7381     bxe_panic(sc, ("Schedule task to handle fan failure\n"));
7382 #else
7383     /*
7384      * Schedule device reset (unload)
7385      * This is due to some boards consuming sufficient power when driver is
7386      * up to overheat if fan fails.
7387      */
7388     bxe_set_bit(BXE_SP_RTNL_FAN_FAILURE, &sc->sp_rtnl_state);
7389     schedule_delayed_work(&sc->sp_rtnl_task, 0);
7390 #endif
7391 }
7392 
7393 /* this function is called upon a link interrupt */
7394 static void
7395 bxe_link_attn(struct bxe_softc *sc)
7396 {
7397     uint32_t pause_enabled = 0;
7398     struct host_port_stats *pstats;
7399     int cmng_fns;
7400 
7401     /* Make sure that we are synced with the current statistics */
7402     bxe_stats_handle(sc, STATS_EVENT_STOP);
7403 
7404     elink_link_update(&sc->link_params, &sc->link_vars);
7405 
7406     if (sc->link_vars.link_up) {
7407 
7408         /* dropless flow control */
7409         if (!CHIP_IS_E1(sc) && sc->dropless_fc) {
7410             pause_enabled = 0;
7411 
7412             if (sc->link_vars.flow_ctrl & ELINK_FLOW_CTRL_TX) {
7413                 pause_enabled = 1;
7414             }
7415 
7416             REG_WR(sc,
7417                    (BAR_USTRORM_INTMEM +
7418                     USTORM_ETH_PAUSE_ENABLED_OFFSET(SC_PORT(sc))),
7419                    pause_enabled);
7420         }
7421 
7422         if (sc->link_vars.mac_type != ELINK_MAC_TYPE_EMAC) {
7423             pstats = BXE_SP(sc, port_stats);
7424             /* reset old mac stats */
7425             memset(&(pstats->mac_stx[0]), 0, sizeof(struct mac_stx));
7426         }
7427 
7428         if (sc->state == BXE_STATE_OPEN) {
7429             bxe_stats_handle(sc, STATS_EVENT_LINK_UP);
7430         }
7431     }
7432 
7433     if (sc->link_vars.link_up && sc->link_vars.line_speed) {
7434         cmng_fns = bxe_get_cmng_fns_mode(sc);
7435 
7436         if (cmng_fns != CMNG_FNS_NONE) {
7437             bxe_cmng_fns_init(sc, FALSE, cmng_fns);
7438             storm_memset_cmng(sc, &sc->cmng, SC_PORT(sc));
7439         } else {
7440             /* rate shaping and fairness are disabled */
7441             BLOGD(sc, DBG_LOAD, "single function mode without fairness\n");
7442         }
7443     }
7444 
7445     bxe_link_report_locked(sc);
7446 
7447     if (IS_MF(sc)) {
7448         ; // XXX bxe_link_sync_notify(sc);
7449     }
7450 }
7451 
7452 static void
7453 bxe_attn_int_asserted(struct bxe_softc *sc,
7454                       uint32_t         asserted)
7455 {
7456     int port = SC_PORT(sc);
7457     uint32_t aeu_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
7458                                MISC_REG_AEU_MASK_ATTN_FUNC_0;
7459     uint32_t nig_int_mask_addr = port ? NIG_REG_MASK_INTERRUPT_PORT1 :
7460                                         NIG_REG_MASK_INTERRUPT_PORT0;
7461     uint32_t aeu_mask;
7462     uint32_t nig_mask = 0;
7463     uint32_t reg_addr;
7464     uint32_t igu_acked;
7465     uint32_t cnt;
7466 
7467     if (sc->attn_state & asserted) {
7468         BLOGE(sc, "IGU ERROR attn=0x%08x\n", asserted);
7469     }
7470 
7471     bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
7472 
7473     aeu_mask = REG_RD(sc, aeu_addr);
7474 
7475     BLOGD(sc, DBG_INTR, "aeu_mask 0x%08x newly asserted 0x%08x\n",
7476           aeu_mask, asserted);
7477 
7478     aeu_mask &= ~(asserted & 0x3ff);
7479 
7480     BLOGD(sc, DBG_INTR, "new mask 0x%08x\n", aeu_mask);
7481 
7482     REG_WR(sc, aeu_addr, aeu_mask);
7483 
7484     bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
7485 
7486     BLOGD(sc, DBG_INTR, "attn_state 0x%08x\n", sc->attn_state);
7487     sc->attn_state |= asserted;
7488     BLOGD(sc, DBG_INTR, "new state 0x%08x\n", sc->attn_state);
7489 
7490     if (asserted & ATTN_HARD_WIRED_MASK) {
7491         if (asserted & ATTN_NIG_FOR_FUNC) {
7492 
7493 	    bxe_acquire_phy_lock(sc);
7494             /* save nig interrupt mask */
7495             nig_mask = REG_RD(sc, nig_int_mask_addr);
7496 
7497             /* If nig_mask is not set, no need to call the update function */
7498             if (nig_mask) {
7499                 REG_WR(sc, nig_int_mask_addr, 0);
7500 
7501                 bxe_link_attn(sc);
7502             }
7503 
7504             /* handle unicore attn? */
7505         }
7506 
7507         if (asserted & ATTN_SW_TIMER_4_FUNC) {
7508             BLOGD(sc, DBG_INTR, "ATTN_SW_TIMER_4_FUNC!\n");
7509         }
7510 
7511         if (asserted & GPIO_2_FUNC) {
7512             BLOGD(sc, DBG_INTR, "GPIO_2_FUNC!\n");
7513         }
7514 
7515         if (asserted & GPIO_3_FUNC) {
7516             BLOGD(sc, DBG_INTR, "GPIO_3_FUNC!\n");
7517         }
7518 
7519         if (asserted & GPIO_4_FUNC) {
7520             BLOGD(sc, DBG_INTR, "GPIO_4_FUNC!\n");
7521         }
7522 
7523         if (port == 0) {
7524             if (asserted & ATTN_GENERAL_ATTN_1) {
7525                 BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_1!\n");
7526                 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_1, 0x0);
7527             }
7528             if (asserted & ATTN_GENERAL_ATTN_2) {
7529                 BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_2!\n");
7530                 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_2, 0x0);
7531             }
7532             if (asserted & ATTN_GENERAL_ATTN_3) {
7533                 BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_3!\n");
7534                 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_3, 0x0);
7535             }
7536         } else {
7537             if (asserted & ATTN_GENERAL_ATTN_4) {
7538                 BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_4!\n");
7539                 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_4, 0x0);
7540             }
7541             if (asserted & ATTN_GENERAL_ATTN_5) {
7542                 BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_5!\n");
7543                 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_5, 0x0);
7544             }
7545             if (asserted & ATTN_GENERAL_ATTN_6) {
7546                 BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_6!\n");
7547                 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_6, 0x0);
7548             }
7549         }
7550     } /* hardwired */
7551 
7552     if (sc->devinfo.int_block == INT_BLOCK_HC) {
7553         reg_addr = (HC_REG_COMMAND_REG + port*32 + COMMAND_REG_ATTN_BITS_SET);
7554     } else {
7555         reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_SET_UPPER*8);
7556     }
7557 
7558     BLOGD(sc, DBG_INTR, "about to mask 0x%08x at %s addr 0x%08x\n",
7559           asserted,
7560           (sc->devinfo.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr);
7561     REG_WR(sc, reg_addr, asserted);
7562 
7563     /* now set back the mask */
7564     if (asserted & ATTN_NIG_FOR_FUNC) {
7565         /*
7566          * Verify that IGU ack through BAR was written before restoring
7567          * NIG mask. This loop should exit after 2-3 iterations max.
7568          */
7569         if (sc->devinfo.int_block != INT_BLOCK_HC) {
7570             cnt = 0;
7571 
7572             do {
7573                 igu_acked = REG_RD(sc, IGU_REG_ATTENTION_ACK_BITS);
7574             } while (((igu_acked & ATTN_NIG_FOR_FUNC) == 0) &&
7575                      (++cnt < MAX_IGU_ATTN_ACK_TO));
7576 
7577             if (!igu_acked) {
7578                 BLOGE(sc, "Failed to verify IGU ack on time\n");
7579             }
7580 
7581             mb();
7582         }
7583 
7584         REG_WR(sc, nig_int_mask_addr, nig_mask);
7585 
7586 	bxe_release_phy_lock(sc);
7587     }
7588 }
7589 
7590 static void
7591 bxe_print_next_block(struct bxe_softc *sc,
7592                      int              idx,
7593                      const char       *blk)
7594 {
7595     BLOGI(sc, "%s%s", idx ? ", " : "", blk);
7596 }
7597 
7598 static int
7599 bxe_check_blocks_with_parity0(struct bxe_softc *sc,
7600                               uint32_t         sig,
7601                               int              par_num,
7602                               uint8_t          print)
7603 {
7604     uint32_t cur_bit = 0;
7605     int i = 0;
7606 
7607     for (i = 0; sig; i++) {
7608         cur_bit = ((uint32_t)0x1 << i);
7609         if (sig & cur_bit) {
7610             switch (cur_bit) {
7611             case AEU_INPUTS_ATTN_BITS_BRB_PARITY_ERROR:
7612                 if (print)
7613                     bxe_print_next_block(sc, par_num++, "BRB");
7614                 break;
7615             case AEU_INPUTS_ATTN_BITS_PARSER_PARITY_ERROR:
7616                 if (print)
7617                     bxe_print_next_block(sc, par_num++, "PARSER");
7618                 break;
7619             case AEU_INPUTS_ATTN_BITS_TSDM_PARITY_ERROR:
7620                 if (print)
7621                     bxe_print_next_block(sc, par_num++, "TSDM");
7622                 break;
7623             case AEU_INPUTS_ATTN_BITS_SEARCHER_PARITY_ERROR:
7624                 if (print)
7625                     bxe_print_next_block(sc, par_num++, "SEARCHER");
7626                 break;
7627             case AEU_INPUTS_ATTN_BITS_TCM_PARITY_ERROR:
7628                 if (print)
7629                     bxe_print_next_block(sc, par_num++, "TCM");
7630                 break;
7631             case AEU_INPUTS_ATTN_BITS_TSEMI_PARITY_ERROR:
7632                 if (print)
7633                     bxe_print_next_block(sc, par_num++, "TSEMI");
7634                 break;
7635             case AEU_INPUTS_ATTN_BITS_PBCLIENT_PARITY_ERROR:
7636                 if (print)
7637                     bxe_print_next_block(sc, par_num++, "XPB");
7638                 break;
7639             }
7640 
7641             /* Clear the bit */
7642             sig &= ~cur_bit;
7643         }
7644     }
7645 
7646     return (par_num);
7647 }
7648 
7649 static int
7650 bxe_check_blocks_with_parity1(struct bxe_softc *sc,
7651                               uint32_t         sig,
7652                               int              par_num,
7653                               uint8_t          *global,
7654                               uint8_t          print)
7655 {
7656     int i = 0;
7657     uint32_t cur_bit = 0;
7658     for (i = 0; sig; i++) {
7659         cur_bit = ((uint32_t)0x1 << i);
7660         if (sig & cur_bit) {
7661             switch (cur_bit) {
7662             case AEU_INPUTS_ATTN_BITS_PBF_PARITY_ERROR:
7663                 if (print)
7664                     bxe_print_next_block(sc, par_num++, "PBF");
7665                 break;
7666             case AEU_INPUTS_ATTN_BITS_QM_PARITY_ERROR:
7667                 if (print)
7668                     bxe_print_next_block(sc, par_num++, "QM");
7669                 break;
7670             case AEU_INPUTS_ATTN_BITS_TIMERS_PARITY_ERROR:
7671                 if (print)
7672                     bxe_print_next_block(sc, par_num++, "TM");
7673                 break;
7674             case AEU_INPUTS_ATTN_BITS_XSDM_PARITY_ERROR:
7675                 if (print)
7676                     bxe_print_next_block(sc, par_num++, "XSDM");
7677                 break;
7678             case AEU_INPUTS_ATTN_BITS_XCM_PARITY_ERROR:
7679                 if (print)
7680                     bxe_print_next_block(sc, par_num++, "XCM");
7681                 break;
7682             case AEU_INPUTS_ATTN_BITS_XSEMI_PARITY_ERROR:
7683                 if (print)
7684                     bxe_print_next_block(sc, par_num++, "XSEMI");
7685                 break;
7686             case AEU_INPUTS_ATTN_BITS_DOORBELLQ_PARITY_ERROR:
7687                 if (print)
7688                     bxe_print_next_block(sc, par_num++, "DOORBELLQ");
7689                 break;
7690             case AEU_INPUTS_ATTN_BITS_NIG_PARITY_ERROR:
7691                 if (print)
7692                     bxe_print_next_block(sc, par_num++, "NIG");
7693                 break;
7694             case AEU_INPUTS_ATTN_BITS_VAUX_PCI_CORE_PARITY_ERROR:
7695                 if (print)
7696                     bxe_print_next_block(sc, par_num++, "VAUX PCI CORE");
7697                 *global = TRUE;
7698                 break;
7699             case AEU_INPUTS_ATTN_BITS_DEBUG_PARITY_ERROR:
7700                 if (print)
7701                     bxe_print_next_block(sc, par_num++, "DEBUG");
7702                 break;
7703             case AEU_INPUTS_ATTN_BITS_USDM_PARITY_ERROR:
7704                 if (print)
7705                     bxe_print_next_block(sc, par_num++, "USDM");
7706                 break;
7707             case AEU_INPUTS_ATTN_BITS_UCM_PARITY_ERROR:
7708                 if (print)
7709                     bxe_print_next_block(sc, par_num++, "UCM");
7710                 break;
7711             case AEU_INPUTS_ATTN_BITS_USEMI_PARITY_ERROR:
7712                 if (print)
7713                     bxe_print_next_block(sc, par_num++, "USEMI");
7714                 break;
7715             case AEU_INPUTS_ATTN_BITS_UPB_PARITY_ERROR:
7716                 if (print)
7717                     bxe_print_next_block(sc, par_num++, "UPB");
7718                 break;
7719             case AEU_INPUTS_ATTN_BITS_CSDM_PARITY_ERROR:
7720                 if (print)
7721                     bxe_print_next_block(sc, par_num++, "CSDM");
7722                 break;
7723             case AEU_INPUTS_ATTN_BITS_CCM_PARITY_ERROR:
7724                 if (print)
7725                     bxe_print_next_block(sc, par_num++, "CCM");
7726                 break;
7727             }
7728 
7729             /* Clear the bit */
7730             sig &= ~cur_bit;
7731         }
7732     }
7733 
7734     return (par_num);
7735 }
7736 
7737 static int
7738 bxe_check_blocks_with_parity2(struct bxe_softc *sc,
7739                               uint32_t         sig,
7740                               int              par_num,
7741                               uint8_t          print)
7742 {
7743     uint32_t cur_bit = 0;
7744     int i = 0;
7745 
7746     for (i = 0; sig; i++) {
7747         cur_bit = ((uint32_t)0x1 << i);
7748         if (sig & cur_bit) {
7749             switch (cur_bit) {
7750             case AEU_INPUTS_ATTN_BITS_CSEMI_PARITY_ERROR:
7751                 if (print)
7752                     bxe_print_next_block(sc, par_num++, "CSEMI");
7753                 break;
7754             case AEU_INPUTS_ATTN_BITS_PXP_PARITY_ERROR:
7755                 if (print)
7756                     bxe_print_next_block(sc, par_num++, "PXP");
7757                 break;
7758             case AEU_IN_ATTN_BITS_PXPPCICLOCKCLIENT_PARITY_ERROR:
7759                 if (print)
7760                     bxe_print_next_block(sc, par_num++, "PXPPCICLOCKCLIENT");
7761                 break;
7762             case AEU_INPUTS_ATTN_BITS_CFC_PARITY_ERROR:
7763                 if (print)
7764                     bxe_print_next_block(sc, par_num++, "CFC");
7765                 break;
7766             case AEU_INPUTS_ATTN_BITS_CDU_PARITY_ERROR:
7767                 if (print)
7768                     bxe_print_next_block(sc, par_num++, "CDU");
7769                 break;
7770             case AEU_INPUTS_ATTN_BITS_DMAE_PARITY_ERROR:
7771                 if (print)
7772                     bxe_print_next_block(sc, par_num++, "DMAE");
7773                 break;
7774             case AEU_INPUTS_ATTN_BITS_IGU_PARITY_ERROR:
7775                 if (print)
7776                     bxe_print_next_block(sc, par_num++, "IGU");
7777                 break;
7778             case AEU_INPUTS_ATTN_BITS_MISC_PARITY_ERROR:
7779                 if (print)
7780                     bxe_print_next_block(sc, par_num++, "MISC");
7781                 break;
7782             }
7783 
7784             /* Clear the bit */
7785             sig &= ~cur_bit;
7786         }
7787     }
7788 
7789     return (par_num);
7790 }
7791 
7792 static int
7793 bxe_check_blocks_with_parity3(struct bxe_softc *sc,
7794                               uint32_t         sig,
7795                               int              par_num,
7796                               uint8_t          *global,
7797                               uint8_t          print)
7798 {
7799     uint32_t cur_bit = 0;
7800     int i = 0;
7801 
7802     for (i = 0; sig; i++) {
7803         cur_bit = ((uint32_t)0x1 << i);
7804         if (sig & cur_bit) {
7805             switch (cur_bit) {
7806             case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_ROM_PARITY:
7807                 if (print)
7808                     bxe_print_next_block(sc, par_num++, "MCP ROM");
7809                 *global = TRUE;
7810                 break;
7811             case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_RX_PARITY:
7812                 if (print)
7813                     bxe_print_next_block(sc, par_num++,
7814                               "MCP UMP RX");
7815                 *global = TRUE;
7816                 break;
7817             case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_TX_PARITY:
7818                 if (print)
7819                     bxe_print_next_block(sc, par_num++,
7820                               "MCP UMP TX");
7821                 *global = TRUE;
7822                 break;
7823             case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY:
7824                 if (print)
7825                     bxe_print_next_block(sc, par_num++,
7826                               "MCP SCPAD");
7827                 *global = TRUE;
7828                 break;
7829             }
7830 
7831             /* Clear the bit */
7832             sig &= ~cur_bit;
7833         }
7834     }
7835 
7836     return (par_num);
7837 }
7838 
7839 static int
7840 bxe_check_blocks_with_parity4(struct bxe_softc *sc,
7841                               uint32_t         sig,
7842                               int              par_num,
7843                               uint8_t          print)
7844 {
7845     uint32_t cur_bit = 0;
7846     int i = 0;
7847 
7848     for (i = 0; sig; i++) {
7849         cur_bit = ((uint32_t)0x1 << i);
7850         if (sig & cur_bit) {
7851             switch (cur_bit) {
7852             case AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR:
7853                 if (print)
7854                     bxe_print_next_block(sc, par_num++, "PGLUE_B");
7855                 break;
7856             case AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR:
7857                 if (print)
7858                     bxe_print_next_block(sc, par_num++, "ATC");
7859                 break;
7860             }
7861 
7862             /* Clear the bit */
7863             sig &= ~cur_bit;
7864         }
7865     }
7866 
7867     return (par_num);
7868 }
7869 
7870 static uint8_t
7871 bxe_parity_attn(struct bxe_softc *sc,
7872                 uint8_t          *global,
7873                 uint8_t          print,
7874                 uint32_t         *sig)
7875 {
7876     int par_num = 0;
7877 
7878     if ((sig[0] & HW_PRTY_ASSERT_SET_0) ||
7879         (sig[1] & HW_PRTY_ASSERT_SET_1) ||
7880         (sig[2] & HW_PRTY_ASSERT_SET_2) ||
7881         (sig[3] & HW_PRTY_ASSERT_SET_3) ||
7882         (sig[4] & HW_PRTY_ASSERT_SET_4)) {
7883         BLOGE(sc, "Parity error: HW block parity attention:\n"
7884                   "[0]:0x%08x [1]:0x%08x [2]:0x%08x [3]:0x%08x [4]:0x%08x\n",
7885               (uint32_t)(sig[0] & HW_PRTY_ASSERT_SET_0),
7886               (uint32_t)(sig[1] & HW_PRTY_ASSERT_SET_1),
7887               (uint32_t)(sig[2] & HW_PRTY_ASSERT_SET_2),
7888               (uint32_t)(sig[3] & HW_PRTY_ASSERT_SET_3),
7889               (uint32_t)(sig[4] & HW_PRTY_ASSERT_SET_4));
7890 
7891         if (print)
7892             BLOGI(sc, "Parity errors detected in blocks: ");
7893 
7894         par_num =
7895             bxe_check_blocks_with_parity0(sc, sig[0] &
7896                                           HW_PRTY_ASSERT_SET_0,
7897                                           par_num, print);
7898         par_num =
7899             bxe_check_blocks_with_parity1(sc, sig[1] &
7900                                           HW_PRTY_ASSERT_SET_1,
7901                                           par_num, global, print);
7902         par_num =
7903             bxe_check_blocks_with_parity2(sc, sig[2] &
7904                                           HW_PRTY_ASSERT_SET_2,
7905                                           par_num, print);
7906         par_num =
7907             bxe_check_blocks_with_parity3(sc, sig[3] &
7908                                           HW_PRTY_ASSERT_SET_3,
7909                                           par_num, global, print);
7910         par_num =
7911             bxe_check_blocks_with_parity4(sc, sig[4] &
7912                                           HW_PRTY_ASSERT_SET_4,
7913                                           par_num, print);
7914 
7915         if (print)
7916             BLOGI(sc, "\n");
7917 
7918         return (TRUE);
7919     }
7920 
7921     return (FALSE);
7922 }
7923 
7924 static uint8_t
7925 bxe_chk_parity_attn(struct bxe_softc *sc,
7926                     uint8_t          *global,
7927                     uint8_t          print)
7928 {
7929     struct attn_route attn = { {0} };
7930     int port = SC_PORT(sc);
7931 
7932     attn.sig[0] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + port*4);
7933     attn.sig[1] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 + port*4);
7934     attn.sig[2] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 + port*4);
7935     attn.sig[3] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 + port*4);
7936 
7937     if (!CHIP_IS_E1x(sc))
7938         attn.sig[4] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 + port*4);
7939 
7940     return (bxe_parity_attn(sc, global, print, attn.sig));
7941 }
7942 
7943 static void
7944 bxe_attn_int_deasserted4(struct bxe_softc *sc,
7945                          uint32_t         attn)
7946 {
7947     uint32_t val;
7948 
7949     if (attn & AEU_INPUTS_ATTN_BITS_PGLUE_HW_INTERRUPT) {
7950         val = REG_RD(sc, PGLUE_B_REG_PGLUE_B_INT_STS_CLR);
7951         BLOGE(sc, "PGLUE hw attention 0x%08x\n", val);
7952         if (val & PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR)
7953             BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR\n");
7954         if (val & PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR)
7955             BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR\n");
7956         if (val & PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN)
7957             BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN\n");
7958         if (val & PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN)
7959             BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN\n");
7960         if (val & PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN)
7961             BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN\n");
7962         if (val & PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN)
7963             BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN\n");
7964         if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN)
7965             BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN\n");
7966         if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN)
7967             BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN\n");
7968         if (val & PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW)
7969             BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW\n");
7970     }
7971 
7972     if (attn & AEU_INPUTS_ATTN_BITS_ATC_HW_INTERRUPT) {
7973         val = REG_RD(sc, ATC_REG_ATC_INT_STS_CLR);
7974         BLOGE(sc, "ATC hw attention 0x%08x\n", val);
7975         if (val & ATC_ATC_INT_STS_REG_ADDRESS_ERROR)
7976             BLOGE(sc, "ATC_ATC_INT_STS_REG_ADDRESS_ERROR\n");
7977         if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND)
7978             BLOGE(sc, "ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND\n");
7979         if (val & ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS)
7980             BLOGE(sc, "ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS\n");
7981         if (val & ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT)
7982             BLOGE(sc, "ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT\n");
7983         if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR)
7984             BLOGE(sc, "ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR\n");
7985         if (val & ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU)
7986             BLOGE(sc, "ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU\n");
7987     }
7988 
7989     if (attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR |
7990                 AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)) {
7991         BLOGE(sc, "FATAL parity attention set4 0x%08x\n",
7992               (uint32_t)(attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR |
7993                                  AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)));
7994     }
7995 }
7996 
7997 static void
7998 bxe_e1h_disable(struct bxe_softc *sc)
7999 {
8000     int port = SC_PORT(sc);
8001 
8002     bxe_tx_disable(sc);
8003 
8004     REG_WR(sc, NIG_REG_LLH0_FUNC_EN + port*8, 0);
8005 }
8006 
8007 static void
8008 bxe_e1h_enable(struct bxe_softc *sc)
8009 {
8010     int port = SC_PORT(sc);
8011 
8012     REG_WR(sc, NIG_REG_LLH0_FUNC_EN + port*8, 1);
8013 
8014     // XXX bxe_tx_enable(sc);
8015 }
8016 
8017 /*
8018  * called due to MCP event (on pmf):
8019  *   reread new bandwidth configuration
8020  *   configure FW
8021  *   notify others function about the change
8022  */
8023 static void
8024 bxe_config_mf_bw(struct bxe_softc *sc)
8025 {
8026     if (sc->link_vars.link_up) {
8027         bxe_cmng_fns_init(sc, TRUE, CMNG_FNS_MINMAX);
8028         // XXX bxe_link_sync_notify(sc);
8029     }
8030 
8031     storm_memset_cmng(sc, &sc->cmng, SC_PORT(sc));
8032 }
8033 
8034 static void
8035 bxe_set_mf_bw(struct bxe_softc *sc)
8036 {
8037     bxe_config_mf_bw(sc);
8038     bxe_fw_command(sc, DRV_MSG_CODE_SET_MF_BW_ACK, 0);
8039 }
8040 
8041 static void
8042 bxe_handle_eee_event(struct bxe_softc *sc)
8043 {
8044     BLOGD(sc, DBG_INTR, "EEE - LLDP event\n");
8045     bxe_fw_command(sc, DRV_MSG_CODE_EEE_RESULTS_ACK, 0);
8046 }
8047 
8048 #define DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED 3
8049 
8050 static void
8051 bxe_drv_info_ether_stat(struct bxe_softc *sc)
8052 {
8053     struct eth_stats_info *ether_stat =
8054         &sc->sp->drv_info_to_mcp.ether_stat;
8055 
8056     strlcpy(ether_stat->version, BXE_DRIVER_VERSION,
8057             ETH_STAT_INFO_VERSION_LEN);
8058 
8059     /* XXX (+ MAC_PAD) taken from other driver... verify this is right */
8060     sc->sp_objs[0].mac_obj.get_n_elements(sc, &sc->sp_objs[0].mac_obj,
8061                                           DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED,
8062                                           ether_stat->mac_local + MAC_PAD,
8063                                           MAC_PAD, ETH_ALEN);
8064 
8065     ether_stat->mtu_size = sc->mtu;
8066 
8067     ether_stat->feature_flags |= FEATURE_ETH_CHKSUM_OFFLOAD_MASK;
8068     if (if_getcapenable(sc->ifp) & (IFCAP_TSO4 | IFCAP_TSO6)) {
8069         ether_stat->feature_flags |= FEATURE_ETH_LSO_MASK;
8070     }
8071 
8072     // XXX ether_stat->feature_flags |= ???;
8073 
8074     ether_stat->promiscuous_mode = 0; // (flags & PROMISC) ? 1 : 0;
8075 
8076     ether_stat->txq_size = sc->tx_ring_size;
8077     ether_stat->rxq_size = sc->rx_ring_size;
8078 }
8079 
8080 static void
8081 bxe_handle_drv_info_req(struct bxe_softc *sc)
8082 {
8083     enum drv_info_opcode op_code;
8084     uint32_t drv_info_ctl = SHMEM2_RD(sc, drv_info_control);
8085 
8086     /* if drv_info version supported by MFW doesn't match - send NACK */
8087     if ((drv_info_ctl & DRV_INFO_CONTROL_VER_MASK) != DRV_INFO_CUR_VER) {
8088         bxe_fw_command(sc, DRV_MSG_CODE_DRV_INFO_NACK, 0);
8089         return;
8090     }
8091 
8092     op_code = ((drv_info_ctl & DRV_INFO_CONTROL_OP_CODE_MASK) >>
8093                DRV_INFO_CONTROL_OP_CODE_SHIFT);
8094 
8095     memset(&sc->sp->drv_info_to_mcp, 0, sizeof(union drv_info_to_mcp));
8096 
8097     switch (op_code) {
8098     case ETH_STATS_OPCODE:
8099         bxe_drv_info_ether_stat(sc);
8100         break;
8101     case FCOE_STATS_OPCODE:
8102     case ISCSI_STATS_OPCODE:
8103     default:
8104         /* if op code isn't supported - send NACK */
8105         bxe_fw_command(sc, DRV_MSG_CODE_DRV_INFO_NACK, 0);
8106         return;
8107     }
8108 
8109     /*
8110      * If we got drv_info attn from MFW then these fields are defined in
8111      * shmem2 for sure
8112      */
8113     SHMEM2_WR(sc, drv_info_host_addr_lo,
8114               U64_LO(BXE_SP_MAPPING(sc, drv_info_to_mcp)));
8115     SHMEM2_WR(sc, drv_info_host_addr_hi,
8116               U64_HI(BXE_SP_MAPPING(sc, drv_info_to_mcp)));
8117 
8118     bxe_fw_command(sc, DRV_MSG_CODE_DRV_INFO_ACK, 0);
8119 }
8120 
8121 static void
8122 bxe_dcc_event(struct bxe_softc *sc,
8123               uint32_t         dcc_event)
8124 {
8125     BLOGD(sc, DBG_INTR, "dcc_event 0x%08x\n", dcc_event);
8126 
8127     if (dcc_event & DRV_STATUS_DCC_DISABLE_ENABLE_PF) {
8128         /*
8129          * This is the only place besides the function initialization
8130          * where the sc->flags can change so it is done without any
8131          * locks
8132          */
8133         if (sc->devinfo.mf_info.mf_config[SC_VN(sc)] & FUNC_MF_CFG_FUNC_DISABLED) {
8134             BLOGD(sc, DBG_INTR, "mf_cfg function disabled\n");
8135             sc->flags |= BXE_MF_FUNC_DIS;
8136             bxe_e1h_disable(sc);
8137         } else {
8138             BLOGD(sc, DBG_INTR, "mf_cfg function enabled\n");
8139             sc->flags &= ~BXE_MF_FUNC_DIS;
8140             bxe_e1h_enable(sc);
8141         }
8142         dcc_event &= ~DRV_STATUS_DCC_DISABLE_ENABLE_PF;
8143     }
8144 
8145     if (dcc_event & DRV_STATUS_DCC_BANDWIDTH_ALLOCATION) {
8146         bxe_config_mf_bw(sc);
8147         dcc_event &= ~DRV_STATUS_DCC_BANDWIDTH_ALLOCATION;
8148     }
8149 
8150     /* Report results to MCP */
8151     if (dcc_event)
8152         bxe_fw_command(sc, DRV_MSG_CODE_DCC_FAILURE, 0);
8153     else
8154         bxe_fw_command(sc, DRV_MSG_CODE_DCC_OK, 0);
8155 }
8156 
8157 static void
8158 bxe_pmf_update(struct bxe_softc *sc)
8159 {
8160     int port = SC_PORT(sc);
8161     uint32_t val;
8162 
8163     sc->port.pmf = 1;
8164     BLOGD(sc, DBG_INTR, "pmf %d\n", sc->port.pmf);
8165 
8166     /*
8167      * We need the mb() to ensure the ordering between the writing to
8168      * sc->port.pmf here and reading it from the bxe_periodic_task().
8169      */
8170     mb();
8171 
8172     /* queue a periodic task */
8173     // XXX schedule task...
8174 
8175     // XXX bxe_dcbx_pmf_update(sc);
8176 
8177     /* enable nig attention */
8178     val = (0xff0f | (1 << (SC_VN(sc) + 4)));
8179     if (sc->devinfo.int_block == INT_BLOCK_HC) {
8180         REG_WR(sc, HC_REG_TRAILING_EDGE_0 + port*8, val);
8181         REG_WR(sc, HC_REG_LEADING_EDGE_0 + port*8, val);
8182     } else if (!CHIP_IS_E1x(sc)) {
8183         REG_WR(sc, IGU_REG_TRAILING_EDGE_LATCH, val);
8184         REG_WR(sc, IGU_REG_LEADING_EDGE_LATCH, val);
8185     }
8186 
8187     bxe_stats_handle(sc, STATS_EVENT_PMF);
8188 }
8189 
8190 static int
8191 bxe_mc_assert(struct bxe_softc *sc)
8192 {
8193     char last_idx;
8194     int i, rc = 0;
8195     uint32_t row0, row1, row2, row3;
8196 
8197     /* XSTORM */
8198     last_idx = REG_RD8(sc, BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_INDEX_OFFSET);
8199     if (last_idx)
8200         BLOGE(sc, "XSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
8201 
8202     /* print the asserts */
8203     for (i = 0; i < STORM_ASSERT_ARRAY_SIZE; i++) {
8204 
8205         row0 = REG_RD(sc, BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_OFFSET(i));
8206         row1 = REG_RD(sc, BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_OFFSET(i) + 4);
8207         row2 = REG_RD(sc, BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_OFFSET(i) + 8);
8208         row3 = REG_RD(sc, BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_OFFSET(i) + 12);
8209 
8210         if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
8211             BLOGE(sc, "XSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
8212                   i, row3, row2, row1, row0);
8213             rc++;
8214         } else {
8215             break;
8216         }
8217     }
8218 
8219     /* TSTORM */
8220     last_idx = REG_RD8(sc, BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_INDEX_OFFSET);
8221     if (last_idx) {
8222         BLOGE(sc, "TSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
8223     }
8224 
8225     /* print the asserts */
8226     for (i = 0; i < STORM_ASSERT_ARRAY_SIZE; i++) {
8227 
8228         row0 = REG_RD(sc, BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_OFFSET(i));
8229         row1 = REG_RD(sc, BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_OFFSET(i) + 4);
8230         row2 = REG_RD(sc, BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_OFFSET(i) + 8);
8231         row3 = REG_RD(sc, BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_OFFSET(i) + 12);
8232 
8233         if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
8234             BLOGE(sc, "TSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
8235                   i, row3, row2, row1, row0);
8236             rc++;
8237         } else {
8238             break;
8239         }
8240     }
8241 
8242     /* CSTORM */
8243     last_idx = REG_RD8(sc, BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_INDEX_OFFSET);
8244     if (last_idx) {
8245         BLOGE(sc, "CSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
8246     }
8247 
8248     /* print the asserts */
8249     for (i = 0; i < STORM_ASSERT_ARRAY_SIZE; i++) {
8250 
8251         row0 = REG_RD(sc, BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_OFFSET(i));
8252         row1 = REG_RD(sc, BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_OFFSET(i) + 4);
8253         row2 = REG_RD(sc, BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_OFFSET(i) + 8);
8254         row3 = REG_RD(sc, BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_OFFSET(i) + 12);
8255 
8256         if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
8257             BLOGE(sc, "CSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
8258                   i, row3, row2, row1, row0);
8259             rc++;
8260         } else {
8261             break;
8262         }
8263     }
8264 
8265     /* USTORM */
8266     last_idx = REG_RD8(sc, BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_INDEX_OFFSET);
8267     if (last_idx) {
8268         BLOGE(sc, "USTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
8269     }
8270 
8271     /* print the asserts */
8272     for (i = 0; i < STORM_ASSERT_ARRAY_SIZE; i++) {
8273 
8274         row0 = REG_RD(sc, BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_OFFSET(i));
8275         row1 = REG_RD(sc, BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_OFFSET(i) + 4);
8276         row2 = REG_RD(sc, BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_OFFSET(i) + 8);
8277         row3 = REG_RD(sc, BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_OFFSET(i) + 12);
8278 
8279         if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
8280             BLOGE(sc, "USTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
8281                   i, row3, row2, row1, row0);
8282             rc++;
8283         } else {
8284             break;
8285         }
8286     }
8287 
8288     return (rc);
8289 }
8290 
8291 static void
8292 bxe_attn_int_deasserted3(struct bxe_softc *sc,
8293                          uint32_t         attn)
8294 {
8295     int func = SC_FUNC(sc);
8296     uint32_t val;
8297 
8298     if (attn & EVEREST_GEN_ATTN_IN_USE_MASK) {
8299 
8300         if (attn & BXE_PMF_LINK_ASSERT(sc)) {
8301 
8302             REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
8303             bxe_read_mf_cfg(sc);
8304             sc->devinfo.mf_info.mf_config[SC_VN(sc)] =
8305                 MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].config);
8306             val = SHMEM_RD(sc, func_mb[SC_FW_MB_IDX(sc)].drv_status);
8307 
8308             if (val & DRV_STATUS_DCC_EVENT_MASK)
8309                 bxe_dcc_event(sc, (val & DRV_STATUS_DCC_EVENT_MASK));
8310 
8311             if (val & DRV_STATUS_SET_MF_BW)
8312                 bxe_set_mf_bw(sc);
8313 
8314             if (val & DRV_STATUS_DRV_INFO_REQ)
8315                 bxe_handle_drv_info_req(sc);
8316 
8317 #if 0
8318             if (val & DRV_STATUS_VF_DISABLED)
8319                 bxe_vf_handle_flr_event(sc);
8320 #endif
8321 
8322             if ((sc->port.pmf == 0) && (val & DRV_STATUS_PMF))
8323                 bxe_pmf_update(sc);
8324 
8325 #if 0
8326             if (sc->port.pmf &&
8327                 (val & DRV_STATUS_DCBX_NEGOTIATION_RESULTS) &&
8328                 (sc->dcbx_enabled > 0))
8329                 /* start dcbx state machine */
8330                 bxe_dcbx_set_params(sc, BXE_DCBX_STATE_NEG_RECEIVED);
8331 #endif
8332 
8333 #if 0
8334             if (val & DRV_STATUS_AFEX_EVENT_MASK)
8335                 bxe_handle_afex_cmd(sc, val & DRV_STATUS_AFEX_EVENT_MASK);
8336 #endif
8337 
8338             if (val & DRV_STATUS_EEE_NEGOTIATION_RESULTS)
8339                 bxe_handle_eee_event(sc);
8340 
8341             if (sc->link_vars.periodic_flags &
8342                 ELINK_PERIODIC_FLAGS_LINK_EVENT) {
8343                 /* sync with link */
8344 		bxe_acquire_phy_lock(sc);
8345                 sc->link_vars.periodic_flags &=
8346                     ~ELINK_PERIODIC_FLAGS_LINK_EVENT;
8347 		bxe_release_phy_lock(sc);
8348                 if (IS_MF(sc))
8349                     ; // XXX bxe_link_sync_notify(sc);
8350                 bxe_link_report(sc);
8351             }
8352 
8353             /*
8354              * Always call it here: bxe_link_report() will
8355              * prevent the link indication duplication.
8356              */
8357             bxe_link_status_update(sc);
8358 
8359         } else if (attn & BXE_MC_ASSERT_BITS) {
8360 
8361             BLOGE(sc, "MC assert!\n");
8362             bxe_mc_assert(sc);
8363             REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_10, 0);
8364             REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_9, 0);
8365             REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_8, 0);
8366             REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_7, 0);
8367             bxe_panic(sc, ("MC assert!\n"));
8368 
8369         } else if (attn & BXE_MCP_ASSERT) {
8370 
8371             BLOGE(sc, "MCP assert!\n");
8372             REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_11, 0);
8373             // XXX bxe_fw_dump(sc);
8374 
8375         } else {
8376             BLOGE(sc, "Unknown HW assert! (attn 0x%08x)\n", attn);
8377         }
8378     }
8379 
8380     if (attn & EVEREST_LATCHED_ATTN_IN_USE_MASK) {
8381         BLOGE(sc, "LATCHED attention 0x%08x (masked)\n", attn);
8382         if (attn & BXE_GRC_TIMEOUT) {
8383             val = CHIP_IS_E1(sc) ? 0 : REG_RD(sc, MISC_REG_GRC_TIMEOUT_ATTN);
8384             BLOGE(sc, "GRC time-out 0x%08x\n", val);
8385         }
8386         if (attn & BXE_GRC_RSV) {
8387             val = CHIP_IS_E1(sc) ? 0 : REG_RD(sc, MISC_REG_GRC_RSV_ATTN);
8388             BLOGE(sc, "GRC reserved 0x%08x\n", val);
8389         }
8390         REG_WR(sc, MISC_REG_AEU_CLR_LATCH_SIGNAL, 0x7ff);
8391     }
8392 }
8393 
8394 static void
8395 bxe_attn_int_deasserted2(struct bxe_softc *sc,
8396                          uint32_t         attn)
8397 {
8398     int port = SC_PORT(sc);
8399     int reg_offset;
8400     uint32_t val0, mask0, val1, mask1;
8401     uint32_t val;
8402 
8403     if (attn & AEU_INPUTS_ATTN_BITS_CFC_HW_INTERRUPT) {
8404         val = REG_RD(sc, CFC_REG_CFC_INT_STS_CLR);
8405         BLOGE(sc, "CFC hw attention 0x%08x\n", val);
8406         /* CFC error attention */
8407         if (val & 0x2) {
8408             BLOGE(sc, "FATAL error from CFC\n");
8409         }
8410     }
8411 
8412     if (attn & AEU_INPUTS_ATTN_BITS_PXP_HW_INTERRUPT) {
8413         val = REG_RD(sc, PXP_REG_PXP_INT_STS_CLR_0);
8414         BLOGE(sc, "PXP hw attention-0 0x%08x\n", val);
8415         /* RQ_USDMDP_FIFO_OVERFLOW */
8416         if (val & 0x18000) {
8417             BLOGE(sc, "FATAL error from PXP\n");
8418         }
8419 
8420         if (!CHIP_IS_E1x(sc)) {
8421             val = REG_RD(sc, PXP_REG_PXP_INT_STS_CLR_1);
8422             BLOGE(sc, "PXP hw attention-1 0x%08x\n", val);
8423         }
8424     }
8425 
8426 #define PXP2_EOP_ERROR_BIT  PXP2_PXP2_INT_STS_CLR_0_REG_WR_PGLUE_EOP_ERROR
8427 #define AEU_PXP2_HW_INT_BIT AEU_INPUTS_ATTN_BITS_PXPPCICLOCKCLIENT_HW_INTERRUPT
8428 
8429     if (attn & AEU_PXP2_HW_INT_BIT) {
8430         /*  CQ47854 workaround do not panic on
8431          *  PXP2_PXP2_INT_STS_0_REG_WR_PGLUE_EOP_ERROR
8432          */
8433         if (!CHIP_IS_E1x(sc)) {
8434             mask0 = REG_RD(sc, PXP2_REG_PXP2_INT_MASK_0);
8435             val1 = REG_RD(sc, PXP2_REG_PXP2_INT_STS_1);
8436             mask1 = REG_RD(sc, PXP2_REG_PXP2_INT_MASK_1);
8437             val0 = REG_RD(sc, PXP2_REG_PXP2_INT_STS_0);
8438             /*
8439              * If the olny PXP2_EOP_ERROR_BIT is set in
8440              * STS0 and STS1 - clear it
8441              *
8442              * probably we lose additional attentions between
8443              * STS0 and STS_CLR0, in this case user will not
8444              * be notified about them
8445              */
8446             if (val0 & mask0 & PXP2_EOP_ERROR_BIT &&
8447                 !(val1 & mask1))
8448                 val0 = REG_RD(sc, PXP2_REG_PXP2_INT_STS_CLR_0);
8449 
8450             /* print the register, since no one can restore it */
8451             BLOGE(sc, "PXP2_REG_PXP2_INT_STS_CLR_0 0x%08x\n", val0);
8452 
8453             /*
8454              * if PXP2_PXP2_INT_STS_0_REG_WR_PGLUE_EOP_ERROR
8455              * then notify
8456              */
8457             if (val0 & PXP2_EOP_ERROR_BIT) {
8458                 BLOGE(sc, "PXP2_WR_PGLUE_EOP_ERROR\n");
8459 
8460                 /*
8461                  * if only PXP2_PXP2_INT_STS_0_REG_WR_PGLUE_EOP_ERROR is
8462                  * set then clear attention from PXP2 block without panic
8463                  */
8464                 if (((val0 & mask0) == PXP2_EOP_ERROR_BIT) &&
8465                     ((val1 & mask1) == 0))
8466                     attn &= ~AEU_PXP2_HW_INT_BIT;
8467             }
8468         }
8469     }
8470 
8471     if (attn & HW_INTERRUT_ASSERT_SET_2) {
8472         reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_2 :
8473                              MISC_REG_AEU_ENABLE1_FUNC_0_OUT_2);
8474 
8475         val = REG_RD(sc, reg_offset);
8476         val &= ~(attn & HW_INTERRUT_ASSERT_SET_2);
8477         REG_WR(sc, reg_offset, val);
8478 
8479         BLOGE(sc, "FATAL HW block attention set2 0x%x\n",
8480               (uint32_t)(attn & HW_INTERRUT_ASSERT_SET_2));
8481         bxe_panic(sc, ("HW block attention set2\n"));
8482     }
8483 }
8484 
8485 static void
8486 bxe_attn_int_deasserted1(struct bxe_softc *sc,
8487                          uint32_t         attn)
8488 {
8489     int port = SC_PORT(sc);
8490     int reg_offset;
8491     uint32_t val;
8492 
8493     if (attn & AEU_INPUTS_ATTN_BITS_DOORBELLQ_HW_INTERRUPT) {
8494         val = REG_RD(sc, DORQ_REG_DORQ_INT_STS_CLR);
8495         BLOGE(sc, "DB hw attention 0x%08x\n", val);
8496         /* DORQ discard attention */
8497         if (val & 0x2) {
8498             BLOGE(sc, "FATAL error from DORQ\n");
8499         }
8500     }
8501 
8502     if (attn & HW_INTERRUT_ASSERT_SET_1) {
8503         reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_1 :
8504                              MISC_REG_AEU_ENABLE1_FUNC_0_OUT_1);
8505 
8506         val = REG_RD(sc, reg_offset);
8507         val &= ~(attn & HW_INTERRUT_ASSERT_SET_1);
8508         REG_WR(sc, reg_offset, val);
8509 
8510         BLOGE(sc, "FATAL HW block attention set1 0x%08x\n",
8511               (uint32_t)(attn & HW_INTERRUT_ASSERT_SET_1));
8512         bxe_panic(sc, ("HW block attention set1\n"));
8513     }
8514 }
8515 
8516 static void
8517 bxe_attn_int_deasserted0(struct bxe_softc *sc,
8518                          uint32_t         attn)
8519 {
8520     int port = SC_PORT(sc);
8521     int reg_offset;
8522     uint32_t val;
8523 
8524     reg_offset = (port) ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
8525                           MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0;
8526 
8527     if (attn & AEU_INPUTS_ATTN_BITS_SPIO5) {
8528         val = REG_RD(sc, reg_offset);
8529         val &= ~AEU_INPUTS_ATTN_BITS_SPIO5;
8530         REG_WR(sc, reg_offset, val);
8531 
8532         BLOGW(sc, "SPIO5 hw attention\n");
8533 
8534         /* Fan failure attention */
8535         elink_hw_reset_phy(&sc->link_params);
8536         bxe_fan_failure(sc);
8537     }
8538 
8539     if ((attn & sc->link_vars.aeu_int_mask) && sc->port.pmf) {
8540 	bxe_acquire_phy_lock(sc);
8541         elink_handle_module_detect_int(&sc->link_params);
8542 	bxe_release_phy_lock(sc);
8543     }
8544 
8545     if (attn & HW_INTERRUT_ASSERT_SET_0) {
8546         val = REG_RD(sc, reg_offset);
8547         val &= ~(attn & HW_INTERRUT_ASSERT_SET_0);
8548         REG_WR(sc, reg_offset, val);
8549 
8550         bxe_panic(sc, ("FATAL HW block attention set0 0x%lx\n",
8551                        (attn & HW_INTERRUT_ASSERT_SET_0)));
8552     }
8553 }
8554 
8555 static void
8556 bxe_attn_int_deasserted(struct bxe_softc *sc,
8557                         uint32_t         deasserted)
8558 {
8559     struct attn_route attn;
8560     struct attn_route *group_mask;
8561     int port = SC_PORT(sc);
8562     int index;
8563     uint32_t reg_addr;
8564     uint32_t val;
8565     uint32_t aeu_mask;
8566     uint8_t global = FALSE;
8567 
8568     /*
8569      * Need to take HW lock because MCP or other port might also
8570      * try to handle this event.
8571      */
8572     bxe_acquire_alr(sc);
8573 
8574     if (bxe_chk_parity_attn(sc, &global, TRUE)) {
8575         /* XXX
8576          * In case of parity errors don't handle attentions so that
8577          * other function would "see" parity errors.
8578          */
8579         sc->recovery_state = BXE_RECOVERY_INIT;
8580         // XXX schedule a recovery task...
8581         /* disable HW interrupts */
8582         bxe_int_disable(sc);
8583         bxe_release_alr(sc);
8584         return;
8585     }
8586 
8587     attn.sig[0] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + port*4);
8588     attn.sig[1] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 + port*4);
8589     attn.sig[2] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 + port*4);
8590     attn.sig[3] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 + port*4);
8591     if (!CHIP_IS_E1x(sc)) {
8592         attn.sig[4] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 + port*4);
8593     } else {
8594         attn.sig[4] = 0;
8595     }
8596 
8597     BLOGD(sc, DBG_INTR, "attn: 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x\n",
8598           attn.sig[0], attn.sig[1], attn.sig[2], attn.sig[3], attn.sig[4]);
8599 
8600     for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) {
8601         if (deasserted & (1 << index)) {
8602             group_mask = &sc->attn_group[index];
8603 
8604             BLOGD(sc, DBG_INTR,
8605                   "group[%d]: 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x\n", index,
8606                   group_mask->sig[0], group_mask->sig[1],
8607                   group_mask->sig[2], group_mask->sig[3],
8608                   group_mask->sig[4]);
8609 
8610             bxe_attn_int_deasserted4(sc, attn.sig[4] & group_mask->sig[4]);
8611             bxe_attn_int_deasserted3(sc, attn.sig[3] & group_mask->sig[3]);
8612             bxe_attn_int_deasserted1(sc, attn.sig[1] & group_mask->sig[1]);
8613             bxe_attn_int_deasserted2(sc, attn.sig[2] & group_mask->sig[2]);
8614             bxe_attn_int_deasserted0(sc, attn.sig[0] & group_mask->sig[0]);
8615         }
8616     }
8617 
8618     bxe_release_alr(sc);
8619 
8620     if (sc->devinfo.int_block == INT_BLOCK_HC) {
8621         reg_addr = (HC_REG_COMMAND_REG + port*32 +
8622                     COMMAND_REG_ATTN_BITS_CLR);
8623     } else {
8624         reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_CLR_UPPER*8);
8625     }
8626 
8627     val = ~deasserted;
8628     BLOGD(sc, DBG_INTR,
8629           "about to mask 0x%08x at %s addr 0x%08x\n", val,
8630           (sc->devinfo.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr);
8631     REG_WR(sc, reg_addr, val);
8632 
8633     if (~sc->attn_state & deasserted) {
8634         BLOGE(sc, "IGU error\n");
8635     }
8636 
8637     reg_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
8638                       MISC_REG_AEU_MASK_ATTN_FUNC_0;
8639 
8640     bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
8641 
8642     aeu_mask = REG_RD(sc, reg_addr);
8643 
8644     BLOGD(sc, DBG_INTR, "aeu_mask 0x%08x newly deasserted 0x%08x\n",
8645           aeu_mask, deasserted);
8646     aeu_mask |= (deasserted & 0x3ff);
8647     BLOGD(sc, DBG_INTR, "new mask 0x%08x\n", aeu_mask);
8648 
8649     REG_WR(sc, reg_addr, aeu_mask);
8650     bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
8651 
8652     BLOGD(sc, DBG_INTR, "attn_state 0x%08x\n", sc->attn_state);
8653     sc->attn_state &= ~deasserted;
8654     BLOGD(sc, DBG_INTR, "new state 0x%08x\n", sc->attn_state);
8655 }
8656 
8657 static void
8658 bxe_attn_int(struct bxe_softc *sc)
8659 {
8660     /* read local copy of bits */
8661     uint32_t attn_bits = le32toh(sc->def_sb->atten_status_block.attn_bits);
8662     uint32_t attn_ack = le32toh(sc->def_sb->atten_status_block.attn_bits_ack);
8663     uint32_t attn_state = sc->attn_state;
8664 
8665     /* look for changed bits */
8666     uint32_t asserted   =  attn_bits & ~attn_ack & ~attn_state;
8667     uint32_t deasserted = ~attn_bits &  attn_ack &  attn_state;
8668 
8669     BLOGD(sc, DBG_INTR,
8670           "attn_bits 0x%08x attn_ack 0x%08x asserted 0x%08x deasserted 0x%08x\n",
8671           attn_bits, attn_ack, asserted, deasserted);
8672 
8673     if (~(attn_bits ^ attn_ack) & (attn_bits ^ attn_state)) {
8674         BLOGE(sc, "BAD attention state\n");
8675     }
8676 
8677     /* handle bits that were raised */
8678     if (asserted) {
8679         bxe_attn_int_asserted(sc, asserted);
8680     }
8681 
8682     if (deasserted) {
8683         bxe_attn_int_deasserted(sc, deasserted);
8684     }
8685 }
8686 
8687 static uint16_t
8688 bxe_update_dsb_idx(struct bxe_softc *sc)
8689 {
8690     struct host_sp_status_block *def_sb = sc->def_sb;
8691     uint16_t rc = 0;
8692 
8693     mb(); /* status block is written to by the chip */
8694 
8695     if (sc->def_att_idx != def_sb->atten_status_block.attn_bits_index) {
8696         sc->def_att_idx = def_sb->atten_status_block.attn_bits_index;
8697         rc |= BXE_DEF_SB_ATT_IDX;
8698     }
8699 
8700     if (sc->def_idx != def_sb->sp_sb.running_index) {
8701         sc->def_idx = def_sb->sp_sb.running_index;
8702         rc |= BXE_DEF_SB_IDX;
8703     }
8704 
8705     mb();
8706 
8707     return (rc);
8708 }
8709 
8710 static inline struct ecore_queue_sp_obj *
8711 bxe_cid_to_q_obj(struct bxe_softc *sc,
8712                  uint32_t         cid)
8713 {
8714     BLOGD(sc, DBG_SP, "retrieving fp from cid %d\n", cid);
8715     return (&sc->sp_objs[CID_TO_FP(cid, sc)].q_obj);
8716 }
8717 
8718 static void
8719 bxe_handle_mcast_eqe(struct bxe_softc *sc)
8720 {
8721     struct ecore_mcast_ramrod_params rparam;
8722     int rc;
8723 
8724     memset(&rparam, 0, sizeof(rparam));
8725 
8726     rparam.mcast_obj = &sc->mcast_obj;
8727 
8728     BXE_MCAST_LOCK(sc);
8729 
8730     /* clear pending state for the last command */
8731     sc->mcast_obj.raw.clear_pending(&sc->mcast_obj.raw);
8732 
8733     /* if there are pending mcast commands - send them */
8734     if (sc->mcast_obj.check_pending(&sc->mcast_obj)) {
8735         rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_CONT);
8736         if (rc < 0) {
8737             BLOGD(sc, DBG_SP,
8738                   "ERROR: Failed to send pending mcast commands (%d)\n",
8739                   rc);
8740         }
8741     }
8742 
8743     BXE_MCAST_UNLOCK(sc);
8744 }
8745 
8746 static void
8747 bxe_handle_classification_eqe(struct bxe_softc      *sc,
8748                               union event_ring_elem *elem)
8749 {
8750     unsigned long ramrod_flags = 0;
8751     int rc = 0;
8752     uint32_t cid = elem->message.data.eth_event.echo & BXE_SWCID_MASK;
8753     struct ecore_vlan_mac_obj *vlan_mac_obj;
8754 
8755     /* always push next commands out, don't wait here */
8756     bit_set(&ramrod_flags, RAMROD_CONT);
8757 
8758     switch (le32toh(elem->message.data.eth_event.echo) >> BXE_SWCID_SHIFT) {
8759     case ECORE_FILTER_MAC_PENDING:
8760         BLOGD(sc, DBG_SP, "Got SETUP_MAC completions\n");
8761         vlan_mac_obj = &sc->sp_objs[cid].mac_obj;
8762         break;
8763 
8764     case ECORE_FILTER_MCAST_PENDING:
8765         BLOGD(sc, DBG_SP, "Got SETUP_MCAST completions\n");
8766         /*
8767          * This is only relevant for 57710 where multicast MACs are
8768          * configured as unicast MACs using the same ramrod.
8769          */
8770         bxe_handle_mcast_eqe(sc);
8771         return;
8772 
8773     default:
8774         BLOGE(sc, "Unsupported classification command: %d\n",
8775               elem->message.data.eth_event.echo);
8776         return;
8777     }
8778 
8779     rc = vlan_mac_obj->complete(sc, vlan_mac_obj, elem, &ramrod_flags);
8780 
8781     if (rc < 0) {
8782         BLOGE(sc, "Failed to schedule new commands (%d)\n", rc);
8783     } else if (rc > 0) {
8784         BLOGD(sc, DBG_SP, "Scheduled next pending commands...\n");
8785     }
8786 }
8787 
8788 static void
8789 bxe_handle_rx_mode_eqe(struct bxe_softc      *sc,
8790                        union event_ring_elem *elem)
8791 {
8792     bxe_clear_bit(ECORE_FILTER_RX_MODE_PENDING, &sc->sp_state);
8793 
8794     /* send rx_mode command again if was requested */
8795     if (bxe_test_and_clear_bit(ECORE_FILTER_RX_MODE_SCHED,
8796                                &sc->sp_state)) {
8797         bxe_set_storm_rx_mode(sc);
8798     }
8799 #if 0
8800     else if (bxe_test_and_clear_bit(ECORE_FILTER_ISCSI_ETH_START_SCHED,
8801                                     &sc->sp_state)) {
8802         bxe_set_iscsi_eth_rx_mode(sc, TRUE);
8803     }
8804     else if (bxe_test_and_clear_bit(ECORE_FILTER_ISCSI_ETH_STOP_SCHED,
8805                                     &sc->sp_state)) {
8806         bxe_set_iscsi_eth_rx_mode(sc, FALSE);
8807     }
8808 #endif
8809 }
8810 
8811 static void
8812 bxe_update_eq_prod(struct bxe_softc *sc,
8813                    uint16_t         prod)
8814 {
8815     storm_memset_eq_prod(sc, prod, SC_FUNC(sc));
8816     wmb(); /* keep prod updates ordered */
8817 }
8818 
8819 static void
8820 bxe_eq_int(struct bxe_softc *sc)
8821 {
8822     uint16_t hw_cons, sw_cons, sw_prod;
8823     union event_ring_elem *elem;
8824     uint8_t echo;
8825     uint32_t cid;
8826     uint8_t opcode;
8827     int spqe_cnt = 0;
8828     struct ecore_queue_sp_obj *q_obj;
8829     struct ecore_func_sp_obj *f_obj = &sc->func_obj;
8830     struct ecore_raw_obj *rss_raw = &sc->rss_conf_obj.raw;
8831 
8832     hw_cons = le16toh(*sc->eq_cons_sb);
8833 
8834     /*
8835      * The hw_cons range is 1-255, 257 - the sw_cons range is 0-254, 256.
8836      * when we get to the next-page we need to adjust so the loop
8837      * condition below will be met. The next element is the size of a
8838      * regular element and hence incrementing by 1
8839      */
8840     if ((hw_cons & EQ_DESC_MAX_PAGE) == EQ_DESC_MAX_PAGE) {
8841         hw_cons++;
8842     }
8843 
8844     /*
8845      * This function may never run in parallel with itself for a
8846      * specific sc and no need for a read memory barrier here.
8847      */
8848     sw_cons = sc->eq_cons;
8849     sw_prod = sc->eq_prod;
8850 
8851     BLOGD(sc, DBG_SP,"EQ: hw_cons=%u sw_cons=%u eq_spq_left=0x%lx\n",
8852           hw_cons, sw_cons, atomic_load_acq_long(&sc->eq_spq_left));
8853 
8854     for (;
8855          sw_cons != hw_cons;
8856          sw_prod = NEXT_EQ_IDX(sw_prod), sw_cons = NEXT_EQ_IDX(sw_cons)) {
8857 
8858         elem = &sc->eq[EQ_DESC(sw_cons)];
8859 
8860 #if 0
8861         int rc;
8862         rc = bxe_iov_eq_sp_event(sc, elem);
8863         if (!rc) {
8864             BLOGE(sc, "bxe_iov_eq_sp_event returned %d\n", rc);
8865             goto next_spqe;
8866         }
8867 #endif
8868 
8869         /* elem CID originates from FW, actually LE */
8870         cid = SW_CID(elem->message.data.cfc_del_event.cid);
8871         opcode = elem->message.opcode;
8872 
8873         /* handle eq element */
8874         switch (opcode) {
8875 #if 0
8876         case EVENT_RING_OPCODE_VF_PF_CHANNEL:
8877             BLOGD(sc, DBG_SP, "vf/pf channel element on eq\n");
8878             bxe_vf_mbx(sc, &elem->message.data.vf_pf_event);
8879             continue;
8880 #endif
8881 
8882         case EVENT_RING_OPCODE_STAT_QUERY:
8883             BLOGD(sc, DBG_SP, "got statistics completion event %d\n",
8884                   sc->stats_comp++);
8885             /* nothing to do with stats comp */
8886             goto next_spqe;
8887 
8888         case EVENT_RING_OPCODE_CFC_DEL:
8889             /* handle according to cid range */
8890             /* we may want to verify here that the sc state is HALTING */
8891             BLOGD(sc, DBG_SP, "got delete ramrod for MULTI[%d]\n", cid);
8892             q_obj = bxe_cid_to_q_obj(sc, cid);
8893             if (q_obj->complete_cmd(sc, q_obj, ECORE_Q_CMD_CFC_DEL)) {
8894                 break;
8895             }
8896             goto next_spqe;
8897 
8898         case EVENT_RING_OPCODE_STOP_TRAFFIC:
8899             BLOGD(sc, DBG_SP, "got STOP TRAFFIC\n");
8900             if (f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_TX_STOP)) {
8901                 break;
8902             }
8903             // XXX bxe_dcbx_set_params(sc, BXE_DCBX_STATE_TX_PAUSED);
8904             goto next_spqe;
8905 
8906         case EVENT_RING_OPCODE_START_TRAFFIC:
8907             BLOGD(sc, DBG_SP, "got START TRAFFIC\n");
8908             if (f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_TX_START)) {
8909                 break;
8910             }
8911             // XXX bxe_dcbx_set_params(sc, BXE_DCBX_STATE_TX_RELEASED);
8912             goto next_spqe;
8913 
8914         case EVENT_RING_OPCODE_FUNCTION_UPDATE:
8915             echo = elem->message.data.function_update_event.echo;
8916             if (echo == SWITCH_UPDATE) {
8917                 BLOGD(sc, DBG_SP, "got FUNC_SWITCH_UPDATE ramrod\n");
8918                 if (f_obj->complete_cmd(sc, f_obj,
8919                                         ECORE_F_CMD_SWITCH_UPDATE)) {
8920                     break;
8921                 }
8922             }
8923             else {
8924                 BLOGD(sc, DBG_SP,
8925                       "AFEX: ramrod completed FUNCTION_UPDATE\n");
8926 #if 0
8927                 f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_AFEX_UPDATE);
8928                 /*
8929                  * We will perform the queues update from the sp_core_task as
8930                  * all queue SP operations should run with CORE_LOCK.
8931                  */
8932                 bxe_set_bit(BXE_SP_CORE_AFEX_F_UPDATE, &sc->sp_core_state);
8933                 taskqueue_enqueue(sc->sp_tq, &sc->sp_tq_task);
8934 #endif
8935             }
8936             goto next_spqe;
8937 
8938 #if 0
8939         case EVENT_RING_OPCODE_AFEX_VIF_LISTS:
8940             f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_AFEX_VIFLISTS);
8941             bxe_after_afex_vif_lists(sc, elem);
8942             goto next_spqe;
8943 #endif
8944 
8945         case EVENT_RING_OPCODE_FORWARD_SETUP:
8946             q_obj = &bxe_fwd_sp_obj(sc, q_obj);
8947             if (q_obj->complete_cmd(sc, q_obj,
8948                                     ECORE_Q_CMD_SETUP_TX_ONLY)) {
8949                 break;
8950             }
8951             goto next_spqe;
8952 
8953         case EVENT_RING_OPCODE_FUNCTION_START:
8954             BLOGD(sc, DBG_SP, "got FUNC_START ramrod\n");
8955             if (f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_START)) {
8956                 break;
8957             }
8958             goto next_spqe;
8959 
8960         case EVENT_RING_OPCODE_FUNCTION_STOP:
8961             BLOGD(sc, DBG_SP, "got FUNC_STOP ramrod\n");
8962             if (f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_STOP)) {
8963                 break;
8964             }
8965             goto next_spqe;
8966         }
8967 
8968         switch (opcode | sc->state) {
8969         case (EVENT_RING_OPCODE_RSS_UPDATE_RULES | BXE_STATE_OPEN):
8970         case (EVENT_RING_OPCODE_RSS_UPDATE_RULES | BXE_STATE_OPENING_WAITING_PORT):
8971             cid = elem->message.data.eth_event.echo & BXE_SWCID_MASK;
8972             BLOGD(sc, DBG_SP, "got RSS_UPDATE ramrod. CID %d\n", cid);
8973             rss_raw->clear_pending(rss_raw);
8974             break;
8975 
8976         case (EVENT_RING_OPCODE_SET_MAC | BXE_STATE_OPEN):
8977         case (EVENT_RING_OPCODE_SET_MAC | BXE_STATE_DIAG):
8978         case (EVENT_RING_OPCODE_SET_MAC | BXE_STATE_CLOSING_WAITING_HALT):
8979         case (EVENT_RING_OPCODE_CLASSIFICATION_RULES | BXE_STATE_OPEN):
8980         case (EVENT_RING_OPCODE_CLASSIFICATION_RULES | BXE_STATE_DIAG):
8981         case (EVENT_RING_OPCODE_CLASSIFICATION_RULES | BXE_STATE_CLOSING_WAITING_HALT):
8982             BLOGD(sc, DBG_SP, "got (un)set mac ramrod\n");
8983             bxe_handle_classification_eqe(sc, elem);
8984             break;
8985 
8986         case (EVENT_RING_OPCODE_MULTICAST_RULES | BXE_STATE_OPEN):
8987         case (EVENT_RING_OPCODE_MULTICAST_RULES | BXE_STATE_DIAG):
8988         case (EVENT_RING_OPCODE_MULTICAST_RULES | BXE_STATE_CLOSING_WAITING_HALT):
8989             BLOGD(sc, DBG_SP, "got mcast ramrod\n");
8990             bxe_handle_mcast_eqe(sc);
8991             break;
8992 
8993         case (EVENT_RING_OPCODE_FILTERS_RULES | BXE_STATE_OPEN):
8994         case (EVENT_RING_OPCODE_FILTERS_RULES | BXE_STATE_DIAG):
8995         case (EVENT_RING_OPCODE_FILTERS_RULES | BXE_STATE_CLOSING_WAITING_HALT):
8996             BLOGD(sc, DBG_SP, "got rx_mode ramrod\n");
8997             bxe_handle_rx_mode_eqe(sc, elem);
8998             break;
8999 
9000         default:
9001             /* unknown event log error and continue */
9002             BLOGE(sc, "Unknown EQ event %d, sc->state 0x%x\n",
9003                   elem->message.opcode, sc->state);
9004         }
9005 
9006 next_spqe:
9007         spqe_cnt++;
9008     } /* for */
9009 
9010     mb();
9011     atomic_add_acq_long(&sc->eq_spq_left, spqe_cnt);
9012 
9013     sc->eq_cons = sw_cons;
9014     sc->eq_prod = sw_prod;
9015 
9016     /* make sure that above mem writes were issued towards the memory */
9017     wmb();
9018 
9019     /* update producer */
9020     bxe_update_eq_prod(sc, sc->eq_prod);
9021 }
9022 
9023 static void
9024 bxe_handle_sp_tq(void *context,
9025                  int  pending)
9026 {
9027     struct bxe_softc *sc = (struct bxe_softc *)context;
9028     uint16_t status;
9029 
9030     BLOGD(sc, DBG_SP, "---> SP TASK <---\n");
9031 
9032     /* what work needs to be performed? */
9033     status = bxe_update_dsb_idx(sc);
9034 
9035     BLOGD(sc, DBG_SP, "dsb status 0x%04x\n", status);
9036 
9037     /* HW attentions */
9038     if (status & BXE_DEF_SB_ATT_IDX) {
9039         BLOGD(sc, DBG_SP, "---> ATTN INTR <---\n");
9040         bxe_attn_int(sc);
9041         status &= ~BXE_DEF_SB_ATT_IDX;
9042     }
9043 
9044     /* SP events: STAT_QUERY and others */
9045     if (status & BXE_DEF_SB_IDX) {
9046         /* handle EQ completions */
9047         BLOGD(sc, DBG_SP, "---> EQ INTR <---\n");
9048         bxe_eq_int(sc);
9049         bxe_ack_sb(sc, sc->igu_dsb_id, USTORM_ID,
9050                    le16toh(sc->def_idx), IGU_INT_NOP, 1);
9051         status &= ~BXE_DEF_SB_IDX;
9052     }
9053 
9054     /* if status is non zero then something went wrong */
9055     if (__predict_false(status)) {
9056         BLOGE(sc, "Got an unknown SP interrupt! (0x%04x)\n", status);
9057     }
9058 
9059     /* ack status block only if something was actually handled */
9060     bxe_ack_sb(sc, sc->igu_dsb_id, ATTENTION_ID,
9061                le16toh(sc->def_att_idx), IGU_INT_ENABLE, 1);
9062 
9063     /*
9064      * Must be called after the EQ processing (since eq leads to sriov
9065      * ramrod completion flows).
9066      * This flow may have been scheduled by the arrival of a ramrod
9067      * completion, or by the sriov code rescheduling itself.
9068      */
9069     // XXX bxe_iov_sp_task(sc);
9070 
9071 #if 0
9072     /* AFEX - poll to check if VIFSET_ACK should be sent to MFW */
9073     if (bxe_test_and_clear_bit(ECORE_AFEX_PENDING_VIFSET_MCP_ACK,
9074                                &sc->sp_state)) {
9075         bxe_link_report(sc);
9076         bxe_fw_command(sc, DRV_MSG_CODE_AFEX_VIFSET_ACK, 0);
9077     }
9078 #endif
9079 }
9080 
9081 static void
9082 bxe_handle_fp_tq(void *context,
9083                  int  pending)
9084 {
9085     struct bxe_fastpath *fp = (struct bxe_fastpath *)context;
9086     struct bxe_softc *sc = fp->sc;
9087     uint8_t more_tx = FALSE;
9088     uint8_t more_rx = FALSE;
9089 
9090     BLOGD(sc, DBG_INTR, "---> FP TASK QUEUE (%d) <---\n", fp->index);
9091 
9092     /* XXX
9093      * IFF_DRV_RUNNING state can't be checked here since we process
9094      * slowpath events on a client queue during setup. Instead
9095      * we need to add a "process/continue" flag here that the driver
9096      * can use to tell the task here not to do anything.
9097      */
9098 #if 0
9099     if (!(if_getdrvflags(sc->ifp) & IFF_DRV_RUNNING)) {
9100         return;
9101     }
9102 #endif
9103 
9104     /* update the fastpath index */
9105     bxe_update_fp_sb_idx(fp);
9106 
9107     /* XXX add loop here if ever support multiple tx CoS */
9108     /* fp->txdata[cos] */
9109     if (bxe_has_tx_work(fp)) {
9110         BXE_FP_TX_LOCK(fp);
9111         more_tx = bxe_txeof(sc, fp);
9112         BXE_FP_TX_UNLOCK(fp);
9113     }
9114 
9115     if (bxe_has_rx_work(fp)) {
9116         more_rx = bxe_rxeof(sc, fp);
9117     }
9118 
9119     if (more_rx /*|| more_tx*/) {
9120         /* still more work to do */
9121         taskqueue_enqueue_fast(fp->tq, &fp->tq_task);
9122         return;
9123     }
9124 
9125     bxe_ack_sb(sc, fp->igu_sb_id, USTORM_ID,
9126                le16toh(fp->fp_hc_idx), IGU_INT_ENABLE, 1);
9127 }
9128 
9129 static void
9130 bxe_task_fp(struct bxe_fastpath *fp)
9131 {
9132     struct bxe_softc *sc = fp->sc;
9133     uint8_t more_tx = FALSE;
9134     uint8_t more_rx = FALSE;
9135 
9136     BLOGD(sc, DBG_INTR, "---> FP TASK ISR (%d) <---\n", fp->index);
9137 
9138     /* update the fastpath index */
9139     bxe_update_fp_sb_idx(fp);
9140 
9141     /* XXX add loop here if ever support multiple tx CoS */
9142     /* fp->txdata[cos] */
9143     if (bxe_has_tx_work(fp)) {
9144         BXE_FP_TX_LOCK(fp);
9145         more_tx = bxe_txeof(sc, fp);
9146         BXE_FP_TX_UNLOCK(fp);
9147     }
9148 
9149     if (bxe_has_rx_work(fp)) {
9150         more_rx = bxe_rxeof(sc, fp);
9151     }
9152 
9153     if (more_rx /*|| more_tx*/) {
9154         /* still more work to do, bail out if this ISR and process later */
9155         taskqueue_enqueue_fast(fp->tq, &fp->tq_task);
9156         return;
9157     }
9158 
9159     /*
9160      * Here we write the fastpath index taken before doing any tx or rx work.
9161      * It is very well possible other hw events occurred up to this point and
9162      * they were actually processed accordingly above. Since we're going to
9163      * write an older fastpath index, an interrupt is coming which we might
9164      * not do any work in.
9165      */
9166     bxe_ack_sb(sc, fp->igu_sb_id, USTORM_ID,
9167                le16toh(fp->fp_hc_idx), IGU_INT_ENABLE, 1);
9168 }
9169 
9170 /*
9171  * Legacy interrupt entry point.
9172  *
9173  * Verifies that the controller generated the interrupt and
9174  * then calls a separate routine to handle the various
9175  * interrupt causes: link, RX, and TX.
9176  */
9177 static void
9178 bxe_intr_legacy(void *xsc)
9179 {
9180     struct bxe_softc *sc = (struct bxe_softc *)xsc;
9181     struct bxe_fastpath *fp;
9182     uint16_t status, mask;
9183     int i;
9184 
9185     BLOGD(sc, DBG_INTR, "---> BXE INTx <---\n");
9186 
9187 #if 0
9188     /* Don't handle any interrupts if we're not ready. */
9189     if (__predict_false(sc->intr_sem != 0)) {
9190         return;
9191     }
9192 #endif
9193 
9194     /*
9195      * 0 for ustorm, 1 for cstorm
9196      * the bits returned from ack_int() are 0-15
9197      * bit 0 = attention status block
9198      * bit 1 = fast path status block
9199      * a mask of 0x2 or more = tx/rx event
9200      * a mask of 1 = slow path event
9201      */
9202 
9203     status = bxe_ack_int(sc);
9204 
9205     /* the interrupt is not for us */
9206     if (__predict_false(status == 0)) {
9207         BLOGD(sc, DBG_INTR, "Not our interrupt!\n");
9208         return;
9209     }
9210 
9211     BLOGD(sc, DBG_INTR, "Interrupt status 0x%04x\n", status);
9212 
9213     FOR_EACH_ETH_QUEUE(sc, i) {
9214         fp = &sc->fp[i];
9215         mask = (0x2 << (fp->index + CNIC_SUPPORT(sc)));
9216         if (status & mask) {
9217             /* acknowledge and disable further fastpath interrupts */
9218             bxe_ack_sb(sc, fp->igu_sb_id, USTORM_ID, 0, IGU_INT_DISABLE, 0);
9219             bxe_task_fp(fp);
9220             status &= ~mask;
9221         }
9222     }
9223 
9224 #if 0
9225     if (CNIC_SUPPORT(sc)) {
9226         mask = 0x2;
9227         if (status & (mask | 0x1)) {
9228             ...
9229             status &= ~mask;
9230         }
9231     }
9232 #endif
9233 
9234     if (__predict_false(status & 0x1)) {
9235         /* acknowledge and disable further slowpath interrupts */
9236         bxe_ack_sb(sc, sc->igu_dsb_id, USTORM_ID, 0, IGU_INT_DISABLE, 0);
9237 
9238         /* schedule slowpath handler */
9239         taskqueue_enqueue_fast(sc->sp_tq, &sc->sp_tq_task);
9240 
9241         status &= ~0x1;
9242     }
9243 
9244     if (__predict_false(status)) {
9245         BLOGW(sc, "Unexpected fastpath status (0x%08x)!\n", status);
9246     }
9247 }
9248 
9249 /* slowpath interrupt entry point */
9250 static void
9251 bxe_intr_sp(void *xsc)
9252 {
9253     struct bxe_softc *sc = (struct bxe_softc *)xsc;
9254 
9255     BLOGD(sc, (DBG_INTR | DBG_SP), "---> SP INTR <---\n");
9256 
9257     /* acknowledge and disable further slowpath interrupts */
9258     bxe_ack_sb(sc, sc->igu_dsb_id, USTORM_ID, 0, IGU_INT_DISABLE, 0);
9259 
9260     /* schedule slowpath handler */
9261     taskqueue_enqueue_fast(sc->sp_tq, &sc->sp_tq_task);
9262 }
9263 
9264 /* fastpath interrupt entry point */
9265 static void
9266 bxe_intr_fp(void *xfp)
9267 {
9268     struct bxe_fastpath *fp = (struct bxe_fastpath *)xfp;
9269     struct bxe_softc *sc = fp->sc;
9270 
9271     BLOGD(sc, DBG_INTR, "---> FP INTR %d <---\n", fp->index);
9272 
9273     BLOGD(sc, DBG_INTR,
9274           "(cpu=%d) MSI-X fp=%d fw_sb=%d igu_sb=%d\n",
9275           curcpu, fp->index, fp->fw_sb_id, fp->igu_sb_id);
9276 
9277 #if 0
9278     /* Don't handle any interrupts if we're not ready. */
9279     if (__predict_false(sc->intr_sem != 0)) {
9280         return;
9281     }
9282 #endif
9283 
9284     /* acknowledge and disable further fastpath interrupts */
9285     bxe_ack_sb(sc, fp->igu_sb_id, USTORM_ID, 0, IGU_INT_DISABLE, 0);
9286 
9287     bxe_task_fp(fp);
9288 }
9289 
9290 /* Release all interrupts allocated by the driver. */
9291 static void
9292 bxe_interrupt_free(struct bxe_softc *sc)
9293 {
9294     int i;
9295 
9296     switch (sc->interrupt_mode) {
9297     case INTR_MODE_INTX:
9298         BLOGD(sc, DBG_LOAD, "Releasing legacy INTx vector\n");
9299         if (sc->intr[0].resource != NULL) {
9300             bus_release_resource(sc->dev,
9301                                  SYS_RES_IRQ,
9302                                  sc->intr[0].rid,
9303                                  sc->intr[0].resource);
9304         }
9305         break;
9306     case INTR_MODE_MSI:
9307         for (i = 0; i < sc->intr_count; i++) {
9308             BLOGD(sc, DBG_LOAD, "Releasing MSI vector %d\n", i);
9309             if (sc->intr[i].resource && sc->intr[i].rid) {
9310                 bus_release_resource(sc->dev,
9311                                      SYS_RES_IRQ,
9312                                      sc->intr[i].rid,
9313                                      sc->intr[i].resource);
9314             }
9315         }
9316         pci_release_msi(sc->dev);
9317         break;
9318     case INTR_MODE_MSIX:
9319         for (i = 0; i < sc->intr_count; i++) {
9320             BLOGD(sc, DBG_LOAD, "Releasing MSI-X vector %d\n", i);
9321             if (sc->intr[i].resource && sc->intr[i].rid) {
9322                 bus_release_resource(sc->dev,
9323                                      SYS_RES_IRQ,
9324                                      sc->intr[i].rid,
9325                                      sc->intr[i].resource);
9326             }
9327         }
9328         pci_release_msi(sc->dev);
9329         break;
9330     default:
9331         /* nothing to do as initial allocation failed */
9332         break;
9333     }
9334 }
9335 
9336 /*
9337  * This function determines and allocates the appropriate
9338  * interrupt based on system capabilites and user request.
9339  *
9340  * The user may force a particular interrupt mode, specify
9341  * the number of receive queues, specify the method for
9342  * distribuitng received frames to receive queues, or use
9343  * the default settings which will automatically select the
9344  * best supported combination.  In addition, the OS may or
9345  * may not support certain combinations of these settings.
9346  * This routine attempts to reconcile the settings requested
9347  * by the user with the capabilites available from the system
9348  * to select the optimal combination of features.
9349  *
9350  * Returns:
9351  *   0 = Success, !0 = Failure.
9352  */
9353 static int
9354 bxe_interrupt_alloc(struct bxe_softc *sc)
9355 {
9356     int msix_count = 0;
9357     int msi_count = 0;
9358     int num_requested = 0;
9359     int num_allocated = 0;
9360     int rid, i, j;
9361     int rc;
9362 
9363     /* get the number of available MSI/MSI-X interrupts from the OS */
9364     if (sc->interrupt_mode > 0) {
9365         if (sc->devinfo.pcie_cap_flags & BXE_MSIX_CAPABLE_FLAG) {
9366             msix_count = pci_msix_count(sc->dev);
9367         }
9368 
9369         if (sc->devinfo.pcie_cap_flags & BXE_MSI_CAPABLE_FLAG) {
9370             msi_count = pci_msi_count(sc->dev);
9371         }
9372 
9373         BLOGD(sc, DBG_LOAD, "%d MSI and %d MSI-X vectors available\n",
9374               msi_count, msix_count);
9375     }
9376 
9377     do { /* try allocating MSI-X interrupt resources (at least 2) */
9378         if (sc->interrupt_mode != INTR_MODE_MSIX) {
9379             break;
9380         }
9381 
9382         if (((sc->devinfo.pcie_cap_flags & BXE_MSIX_CAPABLE_FLAG) == 0) ||
9383             (msix_count < 2)) {
9384             sc->interrupt_mode = INTR_MODE_MSI; /* try MSI next */
9385             break;
9386         }
9387 
9388         /* ask for the necessary number of MSI-X vectors */
9389         num_requested = min((sc->num_queues + 1), msix_count);
9390 
9391         BLOGD(sc, DBG_LOAD, "Requesting %d MSI-X vectors\n", num_requested);
9392 
9393         num_allocated = num_requested;
9394         if ((rc = pci_alloc_msix(sc->dev, &num_allocated)) != 0) {
9395             BLOGE(sc, "MSI-X alloc failed! (%d)\n", rc);
9396             sc->interrupt_mode = INTR_MODE_MSI; /* try MSI next */
9397             break;
9398         }
9399 
9400         if (num_allocated < 2) { /* possible? */
9401             BLOGE(sc, "MSI-X allocation less than 2!\n");
9402             sc->interrupt_mode = INTR_MODE_MSI; /* try MSI next */
9403             pci_release_msi(sc->dev);
9404             break;
9405         }
9406 
9407         BLOGI(sc, "MSI-X vectors Requested %d and Allocated %d\n",
9408               num_requested, num_allocated);
9409 
9410         /* best effort so use the number of vectors allocated to us */
9411         sc->intr_count = num_allocated;
9412         sc->num_queues = num_allocated - 1;
9413 
9414         rid = 1; /* initial resource identifier */
9415 
9416         /* allocate the MSI-X vectors */
9417         for (i = 0; i < num_allocated; i++) {
9418             sc->intr[i].rid = (rid + i);
9419 
9420             if ((sc->intr[i].resource =
9421                  bus_alloc_resource_any(sc->dev,
9422                                         SYS_RES_IRQ,
9423                                         &sc->intr[i].rid,
9424                                         RF_ACTIVE)) == NULL) {
9425                 BLOGE(sc, "Failed to map MSI-X[%d] (rid=%d)!\n",
9426                       i, (rid + i));
9427 
9428                 for (j = (i - 1); j >= 0; j--) {
9429                     bus_release_resource(sc->dev,
9430                                          SYS_RES_IRQ,
9431                                          sc->intr[j].rid,
9432                                          sc->intr[j].resource);
9433                 }
9434 
9435                 sc->intr_count = 0;
9436                 sc->num_queues = 0;
9437                 sc->interrupt_mode = INTR_MODE_MSI; /* try MSI next */
9438                 pci_release_msi(sc->dev);
9439                 break;
9440             }
9441 
9442             BLOGD(sc, DBG_LOAD, "Mapped MSI-X[%d] (rid=%d)\n", i, (rid + i));
9443         }
9444     } while (0);
9445 
9446     do { /* try allocating MSI vector resources (at least 2) */
9447         if (sc->interrupt_mode != INTR_MODE_MSI) {
9448             break;
9449         }
9450 
9451         if (((sc->devinfo.pcie_cap_flags & BXE_MSI_CAPABLE_FLAG) == 0) ||
9452             (msi_count < 1)) {
9453             sc->interrupt_mode = INTR_MODE_INTX; /* try INTx next */
9454             break;
9455         }
9456 
9457         /* ask for a single MSI vector */
9458         num_requested = 1;
9459 
9460         BLOGD(sc, DBG_LOAD, "Requesting %d MSI vectors\n", num_requested);
9461 
9462         num_allocated = num_requested;
9463         if ((rc = pci_alloc_msi(sc->dev, &num_allocated)) != 0) {
9464             BLOGE(sc, "MSI alloc failed (%d)!\n", rc);
9465             sc->interrupt_mode = INTR_MODE_INTX; /* try INTx next */
9466             break;
9467         }
9468 
9469         if (num_allocated != 1) { /* possible? */
9470             BLOGE(sc, "MSI allocation is not 1!\n");
9471             sc->interrupt_mode = INTR_MODE_INTX; /* try INTx next */
9472             pci_release_msi(sc->dev);
9473             break;
9474         }
9475 
9476         BLOGI(sc, "MSI vectors Requested %d and Allocated %d\n",
9477               num_requested, num_allocated);
9478 
9479         /* best effort so use the number of vectors allocated to us */
9480         sc->intr_count = num_allocated;
9481         sc->num_queues = num_allocated;
9482 
9483         rid = 1; /* initial resource identifier */
9484 
9485         sc->intr[0].rid = rid;
9486 
9487         if ((sc->intr[0].resource =
9488              bus_alloc_resource_any(sc->dev,
9489                                     SYS_RES_IRQ,
9490                                     &sc->intr[0].rid,
9491                                     RF_ACTIVE)) == NULL) {
9492             BLOGE(sc, "Failed to map MSI[0] (rid=%d)!\n", rid);
9493             sc->intr_count = 0;
9494             sc->num_queues = 0;
9495             sc->interrupt_mode = INTR_MODE_INTX; /* try INTx next */
9496             pci_release_msi(sc->dev);
9497             break;
9498         }
9499 
9500         BLOGD(sc, DBG_LOAD, "Mapped MSI[0] (rid=%d)\n", rid);
9501     } while (0);
9502 
9503     do { /* try allocating INTx vector resources */
9504         if (sc->interrupt_mode != INTR_MODE_INTX) {
9505             break;
9506         }
9507 
9508         BLOGD(sc, DBG_LOAD, "Requesting legacy INTx interrupt\n");
9509 
9510         /* only one vector for INTx */
9511         sc->intr_count = 1;
9512         sc->num_queues = 1;
9513 
9514         rid = 0; /* initial resource identifier */
9515 
9516         sc->intr[0].rid = rid;
9517 
9518         if ((sc->intr[0].resource =
9519              bus_alloc_resource_any(sc->dev,
9520                                     SYS_RES_IRQ,
9521                                     &sc->intr[0].rid,
9522                                     (RF_ACTIVE | RF_SHAREABLE))) == NULL) {
9523             BLOGE(sc, "Failed to map INTx (rid=%d)!\n", rid);
9524             sc->intr_count = 0;
9525             sc->num_queues = 0;
9526             sc->interrupt_mode = -1; /* Failed! */
9527             break;
9528         }
9529 
9530         BLOGD(sc, DBG_LOAD, "Mapped INTx (rid=%d)\n", rid);
9531     } while (0);
9532 
9533     if (sc->interrupt_mode == -1) {
9534         BLOGE(sc, "Interrupt Allocation: FAILED!!!\n");
9535         rc = 1;
9536     } else {
9537         BLOGD(sc, DBG_LOAD,
9538               "Interrupt Allocation: interrupt_mode=%d, num_queues=%d\n",
9539               sc->interrupt_mode, sc->num_queues);
9540         rc = 0;
9541     }
9542 
9543     return (rc);
9544 }
9545 
9546 static void
9547 bxe_interrupt_detach(struct bxe_softc *sc)
9548 {
9549     struct bxe_fastpath *fp;
9550     int i;
9551 
9552     /* release interrupt resources */
9553     for (i = 0; i < sc->intr_count; i++) {
9554         if (sc->intr[i].resource && sc->intr[i].tag) {
9555             BLOGD(sc, DBG_LOAD, "Disabling interrupt vector %d\n", i);
9556             bus_teardown_intr(sc->dev, sc->intr[i].resource, sc->intr[i].tag);
9557         }
9558     }
9559 
9560     for (i = 0; i < sc->num_queues; i++) {
9561         fp = &sc->fp[i];
9562         if (fp->tq) {
9563             taskqueue_drain(fp->tq, &fp->tq_task);
9564             taskqueue_free(fp->tq);
9565             fp->tq = NULL;
9566         }
9567     }
9568 
9569 
9570     if (sc->sp_tq) {
9571         taskqueue_drain(sc->sp_tq, &sc->sp_tq_task);
9572         taskqueue_free(sc->sp_tq);
9573         sc->sp_tq = NULL;
9574     }
9575 }
9576 
9577 /*
9578  * Enables interrupts and attach to the ISR.
9579  *
9580  * When using multiple MSI/MSI-X vectors the first vector
9581  * is used for slowpath operations while all remaining
9582  * vectors are used for fastpath operations.  If only a
9583  * single MSI/MSI-X vector is used (SINGLE_ISR) then the
9584  * ISR must look for both slowpath and fastpath completions.
9585  */
9586 static int
9587 bxe_interrupt_attach(struct bxe_softc *sc)
9588 {
9589     struct bxe_fastpath *fp;
9590     int rc = 0;
9591     int i;
9592 
9593     snprintf(sc->sp_tq_name, sizeof(sc->sp_tq_name),
9594              "bxe%d_sp_tq", sc->unit);
9595     TASK_INIT(&sc->sp_tq_task, 0, bxe_handle_sp_tq, sc);
9596     sc->sp_tq = taskqueue_create_fast(sc->sp_tq_name, M_NOWAIT,
9597                                       taskqueue_thread_enqueue,
9598                                       &sc->sp_tq);
9599     taskqueue_start_threads(&sc->sp_tq, 1, PWAIT, /* lower priority */
9600                             "%s", sc->sp_tq_name);
9601 
9602 
9603     for (i = 0; i < sc->num_queues; i++) {
9604         fp = &sc->fp[i];
9605         snprintf(fp->tq_name, sizeof(fp->tq_name),
9606                  "bxe%d_fp%d_tq", sc->unit, i);
9607         TASK_INIT(&fp->tq_task, 0, bxe_handle_fp_tq, fp);
9608         fp->tq = taskqueue_create_fast(fp->tq_name, M_NOWAIT,
9609                                        taskqueue_thread_enqueue,
9610                                        &fp->tq);
9611         taskqueue_start_threads(&fp->tq, 1, PI_NET, /* higher priority */
9612                                 "%s", fp->tq_name);
9613     }
9614 
9615     /* setup interrupt handlers */
9616     if (sc->interrupt_mode == INTR_MODE_MSIX) {
9617         BLOGD(sc, DBG_LOAD, "Enabling slowpath MSI-X[0] vector\n");
9618 
9619         /*
9620          * Setup the interrupt handler. Note that we pass the driver instance
9621          * to the interrupt handler for the slowpath.
9622          */
9623         if ((rc = bus_setup_intr(sc->dev, sc->intr[0].resource,
9624                                  (INTR_TYPE_NET | INTR_MPSAFE),
9625                                  NULL, bxe_intr_sp, sc,
9626                                  &sc->intr[0].tag)) != 0) {
9627             BLOGE(sc, "Failed to allocate MSI-X[0] vector (%d)\n", rc);
9628             goto bxe_interrupt_attach_exit;
9629         }
9630 
9631         bus_describe_intr(sc->dev, sc->intr[0].resource,
9632                           sc->intr[0].tag, "sp");
9633 
9634         /* bus_bind_intr(sc->dev, sc->intr[0].resource, 0); */
9635 
9636         /* initialize the fastpath vectors (note the first was used for sp) */
9637         for (i = 0; i < sc->num_queues; i++) {
9638             fp = &sc->fp[i];
9639             BLOGD(sc, DBG_LOAD, "Enabling MSI-X[%d] vector\n", (i + 1));
9640 
9641             /*
9642              * Setup the interrupt handler. Note that we pass the
9643              * fastpath context to the interrupt handler in this
9644              * case.
9645              */
9646             if ((rc = bus_setup_intr(sc->dev, sc->intr[i + 1].resource,
9647                                      (INTR_TYPE_NET | INTR_MPSAFE),
9648                                      NULL, bxe_intr_fp, fp,
9649                                      &sc->intr[i + 1].tag)) != 0) {
9650                 BLOGE(sc, "Failed to allocate MSI-X[%d] vector (%d)\n",
9651                       (i + 1), rc);
9652                 goto bxe_interrupt_attach_exit;
9653             }
9654 
9655             bus_describe_intr(sc->dev, sc->intr[i + 1].resource,
9656                               sc->intr[i + 1].tag, "fp%02d", i);
9657 
9658             /* bind the fastpath instance to a cpu */
9659             if (sc->num_queues > 1) {
9660                 bus_bind_intr(sc->dev, sc->intr[i + 1].resource, i);
9661             }
9662 
9663             fp->state = BXE_FP_STATE_IRQ;
9664         }
9665     } else if (sc->interrupt_mode == INTR_MODE_MSI) {
9666         BLOGD(sc, DBG_LOAD, "Enabling MSI[0] vector\n");
9667 
9668         /*
9669          * Setup the interrupt handler. Note that we pass the
9670          * driver instance to the interrupt handler which
9671          * will handle both the slowpath and fastpath.
9672          */
9673         if ((rc = bus_setup_intr(sc->dev, sc->intr[0].resource,
9674                                  (INTR_TYPE_NET | INTR_MPSAFE),
9675                                  NULL, bxe_intr_legacy, sc,
9676                                  &sc->intr[0].tag)) != 0) {
9677             BLOGE(sc, "Failed to allocate MSI[0] vector (%d)\n", rc);
9678             goto bxe_interrupt_attach_exit;
9679         }
9680 
9681     } else { /* (sc->interrupt_mode == INTR_MODE_INTX) */
9682         BLOGD(sc, DBG_LOAD, "Enabling INTx interrupts\n");
9683 
9684         /*
9685          * Setup the interrupt handler. Note that we pass the
9686          * driver instance to the interrupt handler which
9687          * will handle both the slowpath and fastpath.
9688          */
9689         if ((rc = bus_setup_intr(sc->dev, sc->intr[0].resource,
9690                                  (INTR_TYPE_NET | INTR_MPSAFE),
9691                                  NULL, bxe_intr_legacy, sc,
9692                                  &sc->intr[0].tag)) != 0) {
9693             BLOGE(sc, "Failed to allocate INTx interrupt (%d)\n", rc);
9694             goto bxe_interrupt_attach_exit;
9695         }
9696     }
9697 
9698 bxe_interrupt_attach_exit:
9699 
9700     return (rc);
9701 }
9702 
9703 static int  bxe_init_hw_common_chip(struct bxe_softc *sc);
9704 static int  bxe_init_hw_common(struct bxe_softc *sc);
9705 static int  bxe_init_hw_port(struct bxe_softc *sc);
9706 static int  bxe_init_hw_func(struct bxe_softc *sc);
9707 static void bxe_reset_common(struct bxe_softc *sc);
9708 static void bxe_reset_port(struct bxe_softc *sc);
9709 static void bxe_reset_func(struct bxe_softc *sc);
9710 static int  bxe_gunzip_init(struct bxe_softc *sc);
9711 static void bxe_gunzip_end(struct bxe_softc *sc);
9712 static int  bxe_init_firmware(struct bxe_softc *sc);
9713 static void bxe_release_firmware(struct bxe_softc *sc);
9714 
9715 static struct
9716 ecore_func_sp_drv_ops bxe_func_sp_drv = {
9717     .init_hw_cmn_chip = bxe_init_hw_common_chip,
9718     .init_hw_cmn      = bxe_init_hw_common,
9719     .init_hw_port     = bxe_init_hw_port,
9720     .init_hw_func     = bxe_init_hw_func,
9721 
9722     .reset_hw_cmn     = bxe_reset_common,
9723     .reset_hw_port    = bxe_reset_port,
9724     .reset_hw_func    = bxe_reset_func,
9725 
9726     .gunzip_init      = bxe_gunzip_init,
9727     .gunzip_end       = bxe_gunzip_end,
9728 
9729     .init_fw          = bxe_init_firmware,
9730     .release_fw       = bxe_release_firmware,
9731 };
9732 
9733 static void
9734 bxe_init_func_obj(struct bxe_softc *sc)
9735 {
9736     sc->dmae_ready = 0;
9737 
9738     ecore_init_func_obj(sc,
9739                         &sc->func_obj,
9740                         BXE_SP(sc, func_rdata),
9741                         BXE_SP_MAPPING(sc, func_rdata),
9742                         BXE_SP(sc, func_afex_rdata),
9743                         BXE_SP_MAPPING(sc, func_afex_rdata),
9744                         &bxe_func_sp_drv);
9745 }
9746 
9747 static int
9748 bxe_init_hw(struct bxe_softc *sc,
9749             uint32_t         load_code)
9750 {
9751     struct ecore_func_state_params func_params = { NULL };
9752     int rc;
9753 
9754     /* prepare the parameters for function state transitions */
9755     bit_set(&func_params.ramrod_flags, RAMROD_COMP_WAIT);
9756 
9757     func_params.f_obj = &sc->func_obj;
9758     func_params.cmd = ECORE_F_CMD_HW_INIT;
9759 
9760     func_params.params.hw_init.load_phase = load_code;
9761 
9762     /*
9763      * Via a plethora of function pointers, we will eventually reach
9764      * bxe_init_hw_common(), bxe_init_hw_port(), or bxe_init_hw_func().
9765      */
9766     rc = ecore_func_state_change(sc, &func_params);
9767 
9768     return (rc);
9769 }
9770 
9771 static void
9772 bxe_fill(struct bxe_softc *sc,
9773          uint32_t         addr,
9774          int              fill,
9775          uint32_t         len)
9776 {
9777     uint32_t i;
9778 
9779     if (!(len % 4) && !(addr % 4)) {
9780         for (i = 0; i < len; i += 4) {
9781             REG_WR(sc, (addr + i), fill);
9782         }
9783     } else {
9784         for (i = 0; i < len; i++) {
9785             REG_WR8(sc, (addr + i), fill);
9786         }
9787     }
9788 }
9789 
9790 /* writes FP SP data to FW - data_size in dwords */
9791 static void
9792 bxe_wr_fp_sb_data(struct bxe_softc *sc,
9793                   int              fw_sb_id,
9794                   uint32_t         *sb_data_p,
9795                   uint32_t         data_size)
9796 {
9797     int index;
9798 
9799     for (index = 0; index < data_size; index++) {
9800         REG_WR(sc,
9801                (BAR_CSTRORM_INTMEM +
9802                 CSTORM_STATUS_BLOCK_DATA_OFFSET(fw_sb_id) +
9803                 (sizeof(uint32_t) * index)),
9804                *(sb_data_p + index));
9805     }
9806 }
9807 
9808 static void
9809 bxe_zero_fp_sb(struct bxe_softc *sc,
9810                int              fw_sb_id)
9811 {
9812     struct hc_status_block_data_e2 sb_data_e2;
9813     struct hc_status_block_data_e1x sb_data_e1x;
9814     uint32_t *sb_data_p;
9815     uint32_t data_size = 0;
9816 
9817     if (!CHIP_IS_E1x(sc)) {
9818         memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2));
9819         sb_data_e2.common.state = SB_DISABLED;
9820         sb_data_e2.common.p_func.vf_valid = FALSE;
9821         sb_data_p = (uint32_t *)&sb_data_e2;
9822         data_size = (sizeof(struct hc_status_block_data_e2) /
9823                      sizeof(uint32_t));
9824     } else {
9825         memset(&sb_data_e1x, 0, sizeof(struct hc_status_block_data_e1x));
9826         sb_data_e1x.common.state = SB_DISABLED;
9827         sb_data_e1x.common.p_func.vf_valid = FALSE;
9828         sb_data_p = (uint32_t *)&sb_data_e1x;
9829         data_size = (sizeof(struct hc_status_block_data_e1x) /
9830                      sizeof(uint32_t));
9831     }
9832 
9833     bxe_wr_fp_sb_data(sc, fw_sb_id, sb_data_p, data_size);
9834 
9835     bxe_fill(sc, (BAR_CSTRORM_INTMEM + CSTORM_STATUS_BLOCK_OFFSET(fw_sb_id)),
9836              0, CSTORM_STATUS_BLOCK_SIZE);
9837     bxe_fill(sc, (BAR_CSTRORM_INTMEM + CSTORM_SYNC_BLOCK_OFFSET(fw_sb_id)),
9838              0, CSTORM_SYNC_BLOCK_SIZE);
9839 }
9840 
9841 static void
9842 bxe_wr_sp_sb_data(struct bxe_softc               *sc,
9843                   struct hc_sp_status_block_data *sp_sb_data)
9844 {
9845     int i;
9846 
9847     for (i = 0;
9848          i < (sizeof(struct hc_sp_status_block_data) / sizeof(uint32_t));
9849          i++) {
9850         REG_WR(sc,
9851                (BAR_CSTRORM_INTMEM +
9852                 CSTORM_SP_STATUS_BLOCK_DATA_OFFSET(SC_FUNC(sc)) +
9853                 (i * sizeof(uint32_t))),
9854                *((uint32_t *)sp_sb_data + i));
9855     }
9856 }
9857 
9858 static void
9859 bxe_zero_sp_sb(struct bxe_softc *sc)
9860 {
9861     struct hc_sp_status_block_data sp_sb_data;
9862 
9863     memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data));
9864 
9865     sp_sb_data.state           = SB_DISABLED;
9866     sp_sb_data.p_func.vf_valid = FALSE;
9867 
9868     bxe_wr_sp_sb_data(sc, &sp_sb_data);
9869 
9870     bxe_fill(sc,
9871              (BAR_CSTRORM_INTMEM +
9872               CSTORM_SP_STATUS_BLOCK_OFFSET(SC_FUNC(sc))),
9873               0, CSTORM_SP_STATUS_BLOCK_SIZE);
9874     bxe_fill(sc,
9875              (BAR_CSTRORM_INTMEM +
9876               CSTORM_SP_SYNC_BLOCK_OFFSET(SC_FUNC(sc))),
9877               0, CSTORM_SP_SYNC_BLOCK_SIZE);
9878 }
9879 
9880 static void
9881 bxe_setup_ndsb_state_machine(struct hc_status_block_sm *hc_sm,
9882                              int                       igu_sb_id,
9883                              int                       igu_seg_id)
9884 {
9885     hc_sm->igu_sb_id      = igu_sb_id;
9886     hc_sm->igu_seg_id     = igu_seg_id;
9887     hc_sm->timer_value    = 0xFF;
9888     hc_sm->time_to_expire = 0xFFFFFFFF;
9889 }
9890 
9891 static void
9892 bxe_map_sb_state_machines(struct hc_index_data *index_data)
9893 {
9894     /* zero out state machine indices */
9895 
9896     /* rx indices */
9897     index_data[HC_INDEX_ETH_RX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID;
9898 
9899     /* tx indices */
9900     index_data[HC_INDEX_OOO_TX_CQ_CONS].flags      &= ~HC_INDEX_DATA_SM_ID;
9901     index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags &= ~HC_INDEX_DATA_SM_ID;
9902     index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags &= ~HC_INDEX_DATA_SM_ID;
9903     index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags &= ~HC_INDEX_DATA_SM_ID;
9904 
9905     /* map indices */
9906 
9907     /* rx indices */
9908     index_data[HC_INDEX_ETH_RX_CQ_CONS].flags |=
9909         (SM_RX_ID << HC_INDEX_DATA_SM_ID_SHIFT);
9910 
9911     /* tx indices */
9912     index_data[HC_INDEX_OOO_TX_CQ_CONS].flags |=
9913         (SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT);
9914     index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags |=
9915         (SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT);
9916     index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags |=
9917         (SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT);
9918     index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags |=
9919         (SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT);
9920 }
9921 
9922 static void
9923 bxe_init_sb(struct bxe_softc *sc,
9924             bus_addr_t       busaddr,
9925             int              vfid,
9926             uint8_t          vf_valid,
9927             int              fw_sb_id,
9928             int              igu_sb_id)
9929 {
9930     struct hc_status_block_data_e2  sb_data_e2;
9931     struct hc_status_block_data_e1x sb_data_e1x;
9932     struct hc_status_block_sm       *hc_sm_p;
9933     uint32_t *sb_data_p;
9934     int igu_seg_id;
9935     int data_size;
9936 
9937     if (CHIP_INT_MODE_IS_BC(sc)) {
9938         igu_seg_id = HC_SEG_ACCESS_NORM;
9939     } else {
9940         igu_seg_id = IGU_SEG_ACCESS_NORM;
9941     }
9942 
9943     bxe_zero_fp_sb(sc, fw_sb_id);
9944 
9945     if (!CHIP_IS_E1x(sc)) {
9946         memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2));
9947         sb_data_e2.common.state = SB_ENABLED;
9948         sb_data_e2.common.p_func.pf_id = SC_FUNC(sc);
9949         sb_data_e2.common.p_func.vf_id = vfid;
9950         sb_data_e2.common.p_func.vf_valid = vf_valid;
9951         sb_data_e2.common.p_func.vnic_id = SC_VN(sc);
9952         sb_data_e2.common.same_igu_sb_1b = TRUE;
9953         sb_data_e2.common.host_sb_addr.hi = U64_HI(busaddr);
9954         sb_data_e2.common.host_sb_addr.lo = U64_LO(busaddr);
9955         hc_sm_p = sb_data_e2.common.state_machine;
9956         sb_data_p = (uint32_t *)&sb_data_e2;
9957         data_size = (sizeof(struct hc_status_block_data_e2) /
9958                      sizeof(uint32_t));
9959         bxe_map_sb_state_machines(sb_data_e2.index_data);
9960     } else {
9961         memset(&sb_data_e1x, 0, sizeof(struct hc_status_block_data_e1x));
9962         sb_data_e1x.common.state = SB_ENABLED;
9963         sb_data_e1x.common.p_func.pf_id = SC_FUNC(sc);
9964         sb_data_e1x.common.p_func.vf_id = 0xff;
9965         sb_data_e1x.common.p_func.vf_valid = FALSE;
9966         sb_data_e1x.common.p_func.vnic_id = SC_VN(sc);
9967         sb_data_e1x.common.same_igu_sb_1b = TRUE;
9968         sb_data_e1x.common.host_sb_addr.hi = U64_HI(busaddr);
9969         sb_data_e1x.common.host_sb_addr.lo = U64_LO(busaddr);
9970         hc_sm_p = sb_data_e1x.common.state_machine;
9971         sb_data_p = (uint32_t *)&sb_data_e1x;
9972         data_size = (sizeof(struct hc_status_block_data_e1x) /
9973                      sizeof(uint32_t));
9974         bxe_map_sb_state_machines(sb_data_e1x.index_data);
9975     }
9976 
9977     bxe_setup_ndsb_state_machine(&hc_sm_p[SM_RX_ID], igu_sb_id, igu_seg_id);
9978     bxe_setup_ndsb_state_machine(&hc_sm_p[SM_TX_ID], igu_sb_id, igu_seg_id);
9979 
9980     BLOGD(sc, DBG_LOAD, "Init FW SB %d\n", fw_sb_id);
9981 
9982     /* write indices to HW - PCI guarantees endianity of regpairs */
9983     bxe_wr_fp_sb_data(sc, fw_sb_id, sb_data_p, data_size);
9984 }
9985 
9986 static inline uint8_t
9987 bxe_fp_qzone_id(struct bxe_fastpath *fp)
9988 {
9989     if (CHIP_IS_E1x(fp->sc)) {
9990         return (fp->cl_id + SC_PORT(fp->sc) * ETH_MAX_RX_CLIENTS_E1H);
9991     } else {
9992         return (fp->cl_id);
9993     }
9994 }
9995 
9996 static inline uint32_t
9997 bxe_rx_ustorm_prods_offset(struct bxe_softc    *sc,
9998                            struct bxe_fastpath *fp)
9999 {
10000     uint32_t offset = BAR_USTRORM_INTMEM;
10001 
10002 #if 0
10003     if (IS_VF(sc)) {
10004         return (PXP_VF_ADDR_USDM_QUEUES_START +
10005                 (sc->acquire_resp.resc.hw_qid[fp->index] *
10006                  sizeof(struct ustorm_queue_zone_data)));
10007     } else
10008 #endif
10009     if (!CHIP_IS_E1x(sc)) {
10010         offset += USTORM_RX_PRODS_E2_OFFSET(fp->cl_qzone_id);
10011     } else {
10012         offset += USTORM_RX_PRODS_E1X_OFFSET(SC_PORT(sc), fp->cl_id);
10013     }
10014 
10015     return (offset);
10016 }
10017 
10018 static void
10019 bxe_init_eth_fp(struct bxe_softc *sc,
10020                 int              idx)
10021 {
10022     struct bxe_fastpath *fp = &sc->fp[idx];
10023     uint32_t cids[ECORE_MULTI_TX_COS] = { 0 };
10024     unsigned long q_type = 0;
10025     int cos;
10026 
10027     fp->sc    = sc;
10028     fp->index = idx;
10029 
10030     snprintf(fp->tx_mtx_name, sizeof(fp->tx_mtx_name),
10031              "bxe%d_fp%d_tx_lock", sc->unit, idx);
10032     mtx_init(&fp->tx_mtx, fp->tx_mtx_name, NULL, MTX_DEF);
10033 
10034     snprintf(fp->rx_mtx_name, sizeof(fp->rx_mtx_name),
10035              "bxe%d_fp%d_rx_lock", sc->unit, idx);
10036     mtx_init(&fp->rx_mtx, fp->rx_mtx_name, NULL, MTX_DEF);
10037 
10038     fp->igu_sb_id = (sc->igu_base_sb + idx + CNIC_SUPPORT(sc));
10039     fp->fw_sb_id = (sc->base_fw_ndsb + idx + CNIC_SUPPORT(sc));
10040 
10041     fp->cl_id = (CHIP_IS_E1x(sc)) ?
10042                     (SC_L_ID(sc) + idx) :
10043                     /* want client ID same as IGU SB ID for non-E1 */
10044                     fp->igu_sb_id;
10045     fp->cl_qzone_id = bxe_fp_qzone_id(fp);
10046 
10047     /* setup sb indices */
10048     if (!CHIP_IS_E1x(sc)) {
10049         fp->sb_index_values  = fp->status_block.e2_sb->sb.index_values;
10050         fp->sb_running_index = fp->status_block.e2_sb->sb.running_index;
10051     } else {
10052         fp->sb_index_values  = fp->status_block.e1x_sb->sb.index_values;
10053         fp->sb_running_index = fp->status_block.e1x_sb->sb.running_index;
10054     }
10055 
10056     /* init shortcut */
10057     fp->ustorm_rx_prods_offset = bxe_rx_ustorm_prods_offset(sc, fp);
10058 
10059     fp->rx_cq_cons_sb = &fp->sb_index_values[HC_INDEX_ETH_RX_CQ_CONS];
10060 
10061     /*
10062      * XXX If multiple CoS is ever supported then each fastpath structure
10063      * will need to maintain tx producer/consumer/dma/etc values *per* CoS.
10064      */
10065     for (cos = 0; cos < sc->max_cos; cos++) {
10066         cids[cos] = idx;
10067     }
10068     fp->tx_cons_sb = &fp->sb_index_values[HC_INDEX_ETH_TX_CQ_CONS_COS0];
10069 
10070     /* nothing more for a VF to do */
10071     if (IS_VF(sc)) {
10072         return;
10073     }
10074 
10075     bxe_init_sb(sc, fp->sb_dma.paddr, BXE_VF_ID_INVALID, FALSE,
10076                 fp->fw_sb_id, fp->igu_sb_id);
10077 
10078     bxe_update_fp_sb_idx(fp);
10079 
10080     /* Configure Queue State object */
10081     bit_set(&q_type, ECORE_Q_TYPE_HAS_RX);
10082     bit_set(&q_type, ECORE_Q_TYPE_HAS_TX);
10083 
10084     ecore_init_queue_obj(sc,
10085                          &sc->sp_objs[idx].q_obj,
10086                          fp->cl_id,
10087                          cids,
10088                          sc->max_cos,
10089                          SC_FUNC(sc),
10090                          BXE_SP(sc, q_rdata),
10091                          BXE_SP_MAPPING(sc, q_rdata),
10092                          q_type);
10093 
10094     /* configure classification DBs */
10095     ecore_init_mac_obj(sc,
10096                        &sc->sp_objs[idx].mac_obj,
10097                        fp->cl_id,
10098                        idx,
10099                        SC_FUNC(sc),
10100                        BXE_SP(sc, mac_rdata),
10101                        BXE_SP_MAPPING(sc, mac_rdata),
10102                        ECORE_FILTER_MAC_PENDING,
10103                        &sc->sp_state,
10104                        ECORE_OBJ_TYPE_RX_TX,
10105                        &sc->macs_pool);
10106 
10107     BLOGD(sc, DBG_LOAD, "fp[%d]: sb=%p cl_id=%d fw_sb=%d igu_sb=%d\n",
10108           idx, fp->status_block.e2_sb, fp->cl_id, fp->fw_sb_id, fp->igu_sb_id);
10109 }
10110 
10111 static inline void
10112 bxe_update_rx_prod(struct bxe_softc    *sc,
10113                    struct bxe_fastpath *fp,
10114                    uint16_t            rx_bd_prod,
10115                    uint16_t            rx_cq_prod,
10116                    uint16_t            rx_sge_prod)
10117 {
10118     struct ustorm_eth_rx_producers rx_prods = { 0 };
10119     uint32_t i;
10120 
10121     /* update producers */
10122     rx_prods.bd_prod  = rx_bd_prod;
10123     rx_prods.cqe_prod = rx_cq_prod;
10124     rx_prods.sge_prod = rx_sge_prod;
10125 
10126     /*
10127      * Make sure that the BD and SGE data is updated before updating the
10128      * producers since FW might read the BD/SGE right after the producer
10129      * is updated.
10130      * This is only applicable for weak-ordered memory model archs such
10131      * as IA-64. The following barrier is also mandatory since FW will
10132      * assumes BDs must have buffers.
10133      */
10134     wmb();
10135 
10136     for (i = 0; i < (sizeof(rx_prods) / 4); i++) {
10137         REG_WR(sc,
10138                (fp->ustorm_rx_prods_offset + (i * 4)),
10139                ((uint32_t *)&rx_prods)[i]);
10140     }
10141 
10142     wmb(); /* keep prod updates ordered */
10143 
10144     BLOGD(sc, DBG_RX,
10145           "RX fp[%d]: wrote prods bd_prod=%u cqe_prod=%u sge_prod=%u\n",
10146           fp->index, rx_bd_prod, rx_cq_prod, rx_sge_prod);
10147 }
10148 
10149 static void
10150 bxe_init_rx_rings(struct bxe_softc *sc)
10151 {
10152     struct bxe_fastpath *fp;
10153     int i;
10154 
10155     for (i = 0; i < sc->num_queues; i++) {
10156         fp = &sc->fp[i];
10157 
10158         fp->rx_bd_cons = 0;
10159 
10160         /*
10161          * Activate the BD ring...
10162          * Warning, this will generate an interrupt (to the TSTORM)
10163          * so this can only be done after the chip is initialized
10164          */
10165         bxe_update_rx_prod(sc, fp,
10166                            fp->rx_bd_prod,
10167                            fp->rx_cq_prod,
10168                            fp->rx_sge_prod);
10169 
10170         if (i != 0) {
10171             continue;
10172         }
10173 
10174         if (CHIP_IS_E1(sc)) {
10175             REG_WR(sc,
10176                    (BAR_USTRORM_INTMEM +
10177                     USTORM_MEM_WORKAROUND_ADDRESS_OFFSET(SC_FUNC(sc))),
10178                    U64_LO(fp->rcq_dma.paddr));
10179             REG_WR(sc,
10180                    (BAR_USTRORM_INTMEM +
10181                     USTORM_MEM_WORKAROUND_ADDRESS_OFFSET(SC_FUNC(sc)) + 4),
10182                    U64_HI(fp->rcq_dma.paddr));
10183         }
10184     }
10185 }
10186 
10187 static void
10188 bxe_init_tx_ring_one(struct bxe_fastpath *fp)
10189 {
10190     SET_FLAG(fp->tx_db.data.header.header, DOORBELL_HDR_DB_TYPE, 1);
10191     fp->tx_db.data.zero_fill1 = 0;
10192     fp->tx_db.data.prod = 0;
10193 
10194     fp->tx_pkt_prod = 0;
10195     fp->tx_pkt_cons = 0;
10196     fp->tx_bd_prod = 0;
10197     fp->tx_bd_cons = 0;
10198     fp->eth_q_stats.tx_pkts = 0;
10199 }
10200 
10201 static inline void
10202 bxe_init_tx_rings(struct bxe_softc *sc)
10203 {
10204     int i;
10205 
10206     for (i = 0; i < sc->num_queues; i++) {
10207 #if 0
10208         uint8_t cos;
10209         for (cos = 0; cos < sc->max_cos; cos++) {
10210             bxe_init_tx_ring_one(&sc->fp[i].txdata[cos]);
10211         }
10212 #else
10213         bxe_init_tx_ring_one(&sc->fp[i]);
10214 #endif
10215     }
10216 }
10217 
10218 static void
10219 bxe_init_def_sb(struct bxe_softc *sc)
10220 {
10221     struct host_sp_status_block *def_sb = sc->def_sb;
10222     bus_addr_t mapping = sc->def_sb_dma.paddr;
10223     int igu_sp_sb_index;
10224     int igu_seg_id;
10225     int port = SC_PORT(sc);
10226     int func = SC_FUNC(sc);
10227     int reg_offset, reg_offset_en5;
10228     uint64_t section;
10229     int index, sindex;
10230     struct hc_sp_status_block_data sp_sb_data;
10231 
10232     memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data));
10233 
10234     if (CHIP_INT_MODE_IS_BC(sc)) {
10235         igu_sp_sb_index = DEF_SB_IGU_ID;
10236         igu_seg_id = HC_SEG_ACCESS_DEF;
10237     } else {
10238         igu_sp_sb_index = sc->igu_dsb_id;
10239         igu_seg_id = IGU_SEG_ACCESS_DEF;
10240     }
10241 
10242     /* attentions */
10243     section = ((uint64_t)mapping +
10244                offsetof(struct host_sp_status_block, atten_status_block));
10245     def_sb->atten_status_block.status_block_id = igu_sp_sb_index;
10246     sc->attn_state = 0;
10247 
10248     reg_offset = (port) ?
10249                      MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
10250                      MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0;
10251     reg_offset_en5 = (port) ?
10252                          MISC_REG_AEU_ENABLE5_FUNC_1_OUT_0 :
10253                          MISC_REG_AEU_ENABLE5_FUNC_0_OUT_0;
10254 
10255     for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) {
10256         /* take care of sig[0]..sig[4] */
10257         for (sindex = 0; sindex < 4; sindex++) {
10258             sc->attn_group[index].sig[sindex] =
10259                 REG_RD(sc, (reg_offset + (sindex * 0x4) + (0x10 * index)));
10260         }
10261 
10262         if (!CHIP_IS_E1x(sc)) {
10263             /*
10264              * enable5 is separate from the rest of the registers,
10265              * and the address skip is 4 and not 16 between the
10266              * different groups
10267              */
10268             sc->attn_group[index].sig[4] =
10269                 REG_RD(sc, (reg_offset_en5 + (0x4 * index)));
10270         } else {
10271             sc->attn_group[index].sig[4] = 0;
10272         }
10273     }
10274 
10275     if (sc->devinfo.int_block == INT_BLOCK_HC) {
10276         reg_offset = (port) ?
10277                          HC_REG_ATTN_MSG1_ADDR_L :
10278                          HC_REG_ATTN_MSG0_ADDR_L;
10279         REG_WR(sc, reg_offset, U64_LO(section));
10280         REG_WR(sc, (reg_offset + 4), U64_HI(section));
10281     } else if (!CHIP_IS_E1x(sc)) {
10282         REG_WR(sc, IGU_REG_ATTN_MSG_ADDR_L, U64_LO(section));
10283         REG_WR(sc, IGU_REG_ATTN_MSG_ADDR_H, U64_HI(section));
10284     }
10285 
10286     section = ((uint64_t)mapping +
10287                offsetof(struct host_sp_status_block, sp_sb));
10288 
10289     bxe_zero_sp_sb(sc);
10290 
10291     /* PCI guarantees endianity of regpair */
10292     sp_sb_data.state           = SB_ENABLED;
10293     sp_sb_data.host_sb_addr.lo = U64_LO(section);
10294     sp_sb_data.host_sb_addr.hi = U64_HI(section);
10295     sp_sb_data.igu_sb_id       = igu_sp_sb_index;
10296     sp_sb_data.igu_seg_id      = igu_seg_id;
10297     sp_sb_data.p_func.pf_id    = func;
10298     sp_sb_data.p_func.vnic_id  = SC_VN(sc);
10299     sp_sb_data.p_func.vf_id    = 0xff;
10300 
10301     bxe_wr_sp_sb_data(sc, &sp_sb_data);
10302 
10303     bxe_ack_sb(sc, sc->igu_dsb_id, USTORM_ID, 0, IGU_INT_ENABLE, 0);
10304 }
10305 
10306 static void
10307 bxe_init_sp_ring(struct bxe_softc *sc)
10308 {
10309     atomic_store_rel_long(&sc->cq_spq_left, MAX_SPQ_PENDING);
10310     sc->spq_prod_idx = 0;
10311     sc->dsb_sp_prod = &sc->def_sb->sp_sb.index_values[HC_SP_INDEX_ETH_DEF_CONS];
10312     sc->spq_prod_bd = sc->spq;
10313     sc->spq_last_bd = (sc->spq_prod_bd + MAX_SP_DESC_CNT);
10314 }
10315 
10316 static void
10317 bxe_init_eq_ring(struct bxe_softc *sc)
10318 {
10319     union event_ring_elem *elem;
10320     int i;
10321 
10322     for (i = 1; i <= NUM_EQ_PAGES; i++) {
10323         elem = &sc->eq[EQ_DESC_CNT_PAGE * i - 1];
10324 
10325         elem->next_page.addr.hi = htole32(U64_HI(sc->eq_dma.paddr +
10326                                                  BCM_PAGE_SIZE *
10327                                                  (i % NUM_EQ_PAGES)));
10328         elem->next_page.addr.lo = htole32(U64_LO(sc->eq_dma.paddr +
10329                                                  BCM_PAGE_SIZE *
10330                                                  (i % NUM_EQ_PAGES)));
10331     }
10332 
10333     sc->eq_cons    = 0;
10334     sc->eq_prod    = NUM_EQ_DESC;
10335     sc->eq_cons_sb = &sc->def_sb->sp_sb.index_values[HC_SP_INDEX_EQ_CONS];
10336 
10337     atomic_store_rel_long(&sc->eq_spq_left,
10338                           (min((MAX_SP_DESC_CNT - MAX_SPQ_PENDING),
10339                                NUM_EQ_DESC) - 1));
10340 }
10341 
10342 static void
10343 bxe_init_internal_common(struct bxe_softc *sc)
10344 {
10345     int i;
10346 
10347     if (IS_MF_SI(sc)) {
10348         /*
10349          * In switch independent mode, the TSTORM needs to accept
10350          * packets that failed classification, since approximate match
10351          * mac addresses aren't written to NIG LLH.
10352          */
10353         REG_WR8(sc,
10354                 (BAR_TSTRORM_INTMEM + TSTORM_ACCEPT_CLASSIFY_FAILED_OFFSET),
10355                 2);
10356     } else if (!CHIP_IS_E1(sc)) { /* 57710 doesn't support MF */
10357         REG_WR8(sc,
10358                 (BAR_TSTRORM_INTMEM + TSTORM_ACCEPT_CLASSIFY_FAILED_OFFSET),
10359                 0);
10360     }
10361 
10362     /*
10363      * Zero this manually as its initialization is currently missing
10364      * in the initTool.
10365      */
10366     for (i = 0; i < (USTORM_AGG_DATA_SIZE >> 2); i++) {
10367         REG_WR(sc,
10368                (BAR_USTRORM_INTMEM + USTORM_AGG_DATA_OFFSET + (i * 4)),
10369                0);
10370     }
10371 
10372     if (!CHIP_IS_E1x(sc)) {
10373         REG_WR8(sc, (BAR_CSTRORM_INTMEM + CSTORM_IGU_MODE_OFFSET),
10374                 CHIP_INT_MODE_IS_BC(sc) ? HC_IGU_BC_MODE : HC_IGU_NBC_MODE);
10375     }
10376 }
10377 
10378 static void
10379 bxe_init_internal(struct bxe_softc *sc,
10380                   uint32_t         load_code)
10381 {
10382     switch (load_code) {
10383     case FW_MSG_CODE_DRV_LOAD_COMMON:
10384     case FW_MSG_CODE_DRV_LOAD_COMMON_CHIP:
10385         bxe_init_internal_common(sc);
10386         /* no break */
10387 
10388     case FW_MSG_CODE_DRV_LOAD_PORT:
10389         /* nothing to do */
10390         /* no break */
10391 
10392     case FW_MSG_CODE_DRV_LOAD_FUNCTION:
10393         /* internal memory per function is initialized inside bxe_pf_init */
10394         break;
10395 
10396     default:
10397         BLOGE(sc, "Unknown load_code (0x%x) from MCP\n", load_code);
10398         break;
10399     }
10400 }
10401 
10402 static void
10403 storm_memset_func_cfg(struct bxe_softc                         *sc,
10404                       struct tstorm_eth_function_common_config *tcfg,
10405                       uint16_t                                  abs_fid)
10406 {
10407     uint32_t addr;
10408     size_t size;
10409 
10410     addr = (BAR_TSTRORM_INTMEM +
10411             TSTORM_FUNCTION_COMMON_CONFIG_OFFSET(abs_fid));
10412     size = sizeof(struct tstorm_eth_function_common_config);
10413     ecore_storm_memset_struct(sc, addr, size, (uint32_t *)tcfg);
10414 }
10415 
10416 static void
10417 bxe_func_init(struct bxe_softc            *sc,
10418               struct bxe_func_init_params *p)
10419 {
10420     struct tstorm_eth_function_common_config tcfg = { 0 };
10421 
10422     if (CHIP_IS_E1x(sc)) {
10423         storm_memset_func_cfg(sc, &tcfg, p->func_id);
10424     }
10425 
10426     /* Enable the function in the FW */
10427     storm_memset_vf_to_pf(sc, p->func_id, p->pf_id);
10428     storm_memset_func_en(sc, p->func_id, 1);
10429 
10430     /* spq */
10431     if (p->func_flgs & FUNC_FLG_SPQ) {
10432         storm_memset_spq_addr(sc, p->spq_map, p->func_id);
10433         REG_WR(sc,
10434                (XSEM_REG_FAST_MEMORY + XSTORM_SPQ_PROD_OFFSET(p->func_id)),
10435                p->spq_prod);
10436     }
10437 }
10438 
10439 /*
10440  * Calculates the sum of vn_min_rates.
10441  * It's needed for further normalizing of the min_rates.
10442  * Returns:
10443  *   sum of vn_min_rates.
10444  *     or
10445  *   0 - if all the min_rates are 0.
10446  * In the later case fainess algorithm should be deactivated.
10447  * If all min rates are not zero then those that are zeroes will be set to 1.
10448  */
10449 static void
10450 bxe_calc_vn_min(struct bxe_softc       *sc,
10451                 struct cmng_init_input *input)
10452 {
10453     uint32_t vn_cfg;
10454     uint32_t vn_min_rate;
10455     int all_zero = 1;
10456     int vn;
10457 
10458     for (vn = VN_0; vn < SC_MAX_VN_NUM(sc); vn++) {
10459         vn_cfg = sc->devinfo.mf_info.mf_config[vn];
10460         vn_min_rate = (((vn_cfg & FUNC_MF_CFG_MIN_BW_MASK) >>
10461                         FUNC_MF_CFG_MIN_BW_SHIFT) * 100);
10462 
10463         if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE) {
10464             /* skip hidden VNs */
10465             vn_min_rate = 0;
10466         } else if (!vn_min_rate) {
10467             /* If min rate is zero - set it to 100 */
10468             vn_min_rate = DEF_MIN_RATE;
10469         } else {
10470             all_zero = 0;
10471         }
10472 
10473         input->vnic_min_rate[vn] = vn_min_rate;
10474     }
10475 
10476     /* if ETS or all min rates are zeros - disable fairness */
10477     if (BXE_IS_ETS_ENABLED(sc)) {
10478         input->flags.cmng_enables &= ~CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
10479         BLOGD(sc, DBG_LOAD, "Fairness disabled (ETS)\n");
10480     } else if (all_zero) {
10481         input->flags.cmng_enables &= ~CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
10482         BLOGD(sc, DBG_LOAD,
10483               "Fariness disabled (all MIN values are zeroes)\n");
10484     } else {
10485         input->flags.cmng_enables |= CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
10486     }
10487 }
10488 
10489 static inline uint16_t
10490 bxe_extract_max_cfg(struct bxe_softc *sc,
10491                     uint32_t         mf_cfg)
10492 {
10493     uint16_t max_cfg = ((mf_cfg & FUNC_MF_CFG_MAX_BW_MASK) >>
10494                         FUNC_MF_CFG_MAX_BW_SHIFT);
10495 
10496     if (!max_cfg) {
10497         BLOGD(sc, DBG_LOAD, "Max BW configured to 0 - using 100 instead\n");
10498         max_cfg = 100;
10499     }
10500 
10501     return (max_cfg);
10502 }
10503 
10504 static void
10505 bxe_calc_vn_max(struct bxe_softc       *sc,
10506                 int                    vn,
10507                 struct cmng_init_input *input)
10508 {
10509     uint16_t vn_max_rate;
10510     uint32_t vn_cfg = sc->devinfo.mf_info.mf_config[vn];
10511     uint32_t max_cfg;
10512 
10513     if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE) {
10514         vn_max_rate = 0;
10515     } else {
10516         max_cfg = bxe_extract_max_cfg(sc, vn_cfg);
10517 
10518         if (IS_MF_SI(sc)) {
10519             /* max_cfg in percents of linkspeed */
10520             vn_max_rate = ((sc->link_vars.line_speed * max_cfg) / 100);
10521         } else { /* SD modes */
10522             /* max_cfg is absolute in 100Mb units */
10523             vn_max_rate = (max_cfg * 100);
10524         }
10525     }
10526 
10527     BLOGD(sc, DBG_LOAD, "vn %d: vn_max_rate %d\n", vn, vn_max_rate);
10528 
10529     input->vnic_max_rate[vn] = vn_max_rate;
10530 }
10531 
10532 static void
10533 bxe_cmng_fns_init(struct bxe_softc *sc,
10534                   uint8_t          read_cfg,
10535                   uint8_t          cmng_type)
10536 {
10537     struct cmng_init_input input;
10538     int vn;
10539 
10540     memset(&input, 0, sizeof(struct cmng_init_input));
10541 
10542     input.port_rate = sc->link_vars.line_speed;
10543 
10544     if (cmng_type == CMNG_FNS_MINMAX) {
10545         /* read mf conf from shmem */
10546         if (read_cfg) {
10547             bxe_read_mf_cfg(sc);
10548         }
10549 
10550         /* get VN min rate and enable fairness if not 0 */
10551         bxe_calc_vn_min(sc, &input);
10552 
10553         /* get VN max rate */
10554         if (sc->port.pmf) {
10555             for (vn = VN_0; vn < SC_MAX_VN_NUM(sc); vn++) {
10556                 bxe_calc_vn_max(sc, vn, &input);
10557             }
10558         }
10559 
10560         /* always enable rate shaping and fairness */
10561         input.flags.cmng_enables |= CMNG_FLAGS_PER_PORT_RATE_SHAPING_VN;
10562 
10563         ecore_init_cmng(&input, &sc->cmng);
10564         return;
10565     }
10566 
10567     /* rate shaping and fairness are disabled */
10568     BLOGD(sc, DBG_LOAD, "rate shaping and fairness have been disabled\n");
10569 }
10570 
10571 static int
10572 bxe_get_cmng_fns_mode(struct bxe_softc *sc)
10573 {
10574     if (CHIP_REV_IS_SLOW(sc)) {
10575         return (CMNG_FNS_NONE);
10576     }
10577 
10578     if (IS_MF(sc)) {
10579         return (CMNG_FNS_MINMAX);
10580     }
10581 
10582     return (CMNG_FNS_NONE);
10583 }
10584 
10585 static void
10586 storm_memset_cmng(struct bxe_softc *sc,
10587                   struct cmng_init *cmng,
10588                   uint8_t          port)
10589 {
10590     int vn;
10591     int func;
10592     uint32_t addr;
10593     size_t size;
10594 
10595     addr = (BAR_XSTRORM_INTMEM +
10596             XSTORM_CMNG_PER_PORT_VARS_OFFSET(port));
10597     size = sizeof(struct cmng_struct_per_port);
10598     ecore_storm_memset_struct(sc, addr, size, (uint32_t *)&cmng->port);
10599 
10600     for (vn = VN_0; vn < SC_MAX_VN_NUM(sc); vn++) {
10601         func = func_by_vn(sc, vn);
10602 
10603         addr = (BAR_XSTRORM_INTMEM +
10604                 XSTORM_RATE_SHAPING_PER_VN_VARS_OFFSET(func));
10605         size = sizeof(struct rate_shaping_vars_per_vn);
10606         ecore_storm_memset_struct(sc, addr, size,
10607                                   (uint32_t *)&cmng->vnic.vnic_max_rate[vn]);
10608 
10609         addr = (BAR_XSTRORM_INTMEM +
10610                 XSTORM_FAIRNESS_PER_VN_VARS_OFFSET(func));
10611         size = sizeof(struct fairness_vars_per_vn);
10612         ecore_storm_memset_struct(sc, addr, size,
10613                                   (uint32_t *)&cmng->vnic.vnic_min_rate[vn]);
10614     }
10615 }
10616 
10617 static void
10618 bxe_pf_init(struct bxe_softc *sc)
10619 {
10620     struct bxe_func_init_params func_init = { 0 };
10621     struct event_ring_data eq_data = { { 0 } };
10622     uint16_t flags;
10623 
10624     if (!CHIP_IS_E1x(sc)) {
10625         /* reset IGU PF statistics: MSIX + ATTN */
10626         /* PF */
10627         REG_WR(sc,
10628                (IGU_REG_STATISTIC_NUM_MESSAGE_SENT +
10629                 (BXE_IGU_STAS_MSG_VF_CNT * 4) +
10630                 ((CHIP_IS_MODE_4_PORT(sc) ? SC_FUNC(sc) : SC_VN(sc)) * 4)),
10631                0);
10632         /* ATTN */
10633         REG_WR(sc,
10634                (IGU_REG_STATISTIC_NUM_MESSAGE_SENT +
10635                 (BXE_IGU_STAS_MSG_VF_CNT * 4) +
10636                 (BXE_IGU_STAS_MSG_PF_CNT * 4) +
10637                 ((CHIP_IS_MODE_4_PORT(sc) ? SC_FUNC(sc) : SC_VN(sc)) * 4)),
10638                0);
10639     }
10640 
10641     /* function setup flags */
10642     flags = (FUNC_FLG_STATS | FUNC_FLG_LEADING | FUNC_FLG_SPQ);
10643 
10644     /*
10645      * This flag is relevant for E1x only.
10646      * E2 doesn't have a TPA configuration in a function level.
10647      */
10648     flags |= (if_getcapenable(sc->ifp) & IFCAP_LRO) ? FUNC_FLG_TPA : 0;
10649 
10650     func_init.func_flgs = flags;
10651     func_init.pf_id     = SC_FUNC(sc);
10652     func_init.func_id   = SC_FUNC(sc);
10653     func_init.spq_map   = sc->spq_dma.paddr;
10654     func_init.spq_prod  = sc->spq_prod_idx;
10655 
10656     bxe_func_init(sc, &func_init);
10657 
10658     memset(&sc->cmng, 0, sizeof(struct cmng_struct_per_port));
10659 
10660     /*
10661      * Congestion management values depend on the link rate.
10662      * There is no active link so initial link rate is set to 10Gbps.
10663      * When the link comes up the congestion management values are
10664      * re-calculated according to the actual link rate.
10665      */
10666     sc->link_vars.line_speed = SPEED_10000;
10667     bxe_cmng_fns_init(sc, TRUE, bxe_get_cmng_fns_mode(sc));
10668 
10669     /* Only the PMF sets the HW */
10670     if (sc->port.pmf) {
10671         storm_memset_cmng(sc, &sc->cmng, SC_PORT(sc));
10672     }
10673 
10674     /* init Event Queue - PCI bus guarantees correct endainity */
10675     eq_data.base_addr.hi = U64_HI(sc->eq_dma.paddr);
10676     eq_data.base_addr.lo = U64_LO(sc->eq_dma.paddr);
10677     eq_data.producer     = sc->eq_prod;
10678     eq_data.index_id     = HC_SP_INDEX_EQ_CONS;
10679     eq_data.sb_id        = DEF_SB_ID;
10680     storm_memset_eq_data(sc, &eq_data, SC_FUNC(sc));
10681 }
10682 
10683 static void
10684 bxe_hc_int_enable(struct bxe_softc *sc)
10685 {
10686     int port = SC_PORT(sc);
10687     uint32_t addr = (port) ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0;
10688     uint32_t val = REG_RD(sc, addr);
10689     uint8_t msix = (sc->interrupt_mode == INTR_MODE_MSIX) ? TRUE : FALSE;
10690     uint8_t single_msix = ((sc->interrupt_mode == INTR_MODE_MSIX) &&
10691                            (sc->intr_count == 1)) ? TRUE : FALSE;
10692     uint8_t msi = (sc->interrupt_mode == INTR_MODE_MSI) ? TRUE : FALSE;
10693 
10694     if (msix) {
10695         val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
10696                  HC_CONFIG_0_REG_INT_LINE_EN_0);
10697         val |= (HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
10698                 HC_CONFIG_0_REG_ATTN_BIT_EN_0);
10699         if (single_msix) {
10700             val |= HC_CONFIG_0_REG_SINGLE_ISR_EN_0;
10701         }
10702     } else if (msi) {
10703         val &= ~HC_CONFIG_0_REG_INT_LINE_EN_0;
10704         val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
10705                 HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
10706                 HC_CONFIG_0_REG_ATTN_BIT_EN_0);
10707     } else {
10708         val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
10709                 HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
10710                 HC_CONFIG_0_REG_INT_LINE_EN_0 |
10711                 HC_CONFIG_0_REG_ATTN_BIT_EN_0);
10712 
10713         if (!CHIP_IS_E1(sc)) {
10714             BLOGD(sc, DBG_INTR, "write %x to HC %d (addr 0x%x)\n",
10715                   val, port, addr);
10716 
10717             REG_WR(sc, addr, val);
10718 
10719             val &= ~HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0;
10720         }
10721     }
10722 
10723     if (CHIP_IS_E1(sc)) {
10724         REG_WR(sc, (HC_REG_INT_MASK + port*4), 0x1FFFF);
10725     }
10726 
10727     BLOGD(sc, DBG_INTR, "write %x to HC %d (addr 0x%x) mode %s\n",
10728           val, port, addr, ((msix) ? "MSI-X" : ((msi) ? "MSI" : "INTx")));
10729 
10730     REG_WR(sc, addr, val);
10731 
10732     /* ensure that HC_CONFIG is written before leading/trailing edge config */
10733     mb();
10734 
10735     if (!CHIP_IS_E1(sc)) {
10736         /* init leading/trailing edge */
10737         if (IS_MF(sc)) {
10738             val = (0xee0f | (1 << (SC_VN(sc) + 4)));
10739             if (sc->port.pmf) {
10740                 /* enable nig and gpio3 attention */
10741                 val |= 0x1100;
10742             }
10743         } else {
10744             val = 0xffff;
10745         }
10746 
10747         REG_WR(sc, (HC_REG_TRAILING_EDGE_0 + port*8), val);
10748         REG_WR(sc, (HC_REG_LEADING_EDGE_0 + port*8), val);
10749     }
10750 
10751     /* make sure that interrupts are indeed enabled from here on */
10752     mb();
10753 }
10754 
10755 static void
10756 bxe_igu_int_enable(struct bxe_softc *sc)
10757 {
10758     uint32_t val;
10759     uint8_t msix = (sc->interrupt_mode == INTR_MODE_MSIX) ? TRUE : FALSE;
10760     uint8_t single_msix = ((sc->interrupt_mode == INTR_MODE_MSIX) &&
10761                            (sc->intr_count == 1)) ? TRUE : FALSE;
10762     uint8_t msi = (sc->interrupt_mode == INTR_MODE_MSI) ? TRUE : FALSE;
10763 
10764     val = REG_RD(sc, IGU_REG_PF_CONFIGURATION);
10765 
10766     if (msix) {
10767         val &= ~(IGU_PF_CONF_INT_LINE_EN |
10768                  IGU_PF_CONF_SINGLE_ISR_EN);
10769         val |= (IGU_PF_CONF_MSI_MSIX_EN |
10770                 IGU_PF_CONF_ATTN_BIT_EN);
10771         if (single_msix) {
10772             val |= IGU_PF_CONF_SINGLE_ISR_EN;
10773         }
10774     } else if (msi) {
10775         val &= ~IGU_PF_CONF_INT_LINE_EN;
10776         val |= (IGU_PF_CONF_MSI_MSIX_EN |
10777                 IGU_PF_CONF_ATTN_BIT_EN |
10778                 IGU_PF_CONF_SINGLE_ISR_EN);
10779     } else {
10780         val &= ~IGU_PF_CONF_MSI_MSIX_EN;
10781         val |= (IGU_PF_CONF_INT_LINE_EN |
10782                 IGU_PF_CONF_ATTN_BIT_EN |
10783                 IGU_PF_CONF_SINGLE_ISR_EN);
10784     }
10785 
10786     /* clean previous status - need to configure igu prior to ack*/
10787     if ((!msix) || single_msix) {
10788         REG_WR(sc, IGU_REG_PF_CONFIGURATION, val);
10789         bxe_ack_int(sc);
10790     }
10791 
10792     val |= IGU_PF_CONF_FUNC_EN;
10793 
10794     BLOGD(sc, DBG_INTR, "write 0x%x to IGU mode %s\n",
10795           val, ((msix) ? "MSI-X" : ((msi) ? "MSI" : "INTx")));
10796 
10797     REG_WR(sc, IGU_REG_PF_CONFIGURATION, val);
10798 
10799     mb();
10800 
10801     /* init leading/trailing edge */
10802     if (IS_MF(sc)) {
10803         val = (0xee0f | (1 << (SC_VN(sc) + 4)));
10804         if (sc->port.pmf) {
10805             /* enable nig and gpio3 attention */
10806             val |= 0x1100;
10807         }
10808     } else {
10809         val = 0xffff;
10810     }
10811 
10812     REG_WR(sc, IGU_REG_TRAILING_EDGE_LATCH, val);
10813     REG_WR(sc, IGU_REG_LEADING_EDGE_LATCH, val);
10814 
10815     /* make sure that interrupts are indeed enabled from here on */
10816     mb();
10817 }
10818 
10819 static void
10820 bxe_int_enable(struct bxe_softc *sc)
10821 {
10822     if (sc->devinfo.int_block == INT_BLOCK_HC) {
10823         bxe_hc_int_enable(sc);
10824     } else {
10825         bxe_igu_int_enable(sc);
10826     }
10827 }
10828 
10829 static void
10830 bxe_hc_int_disable(struct bxe_softc *sc)
10831 {
10832     int port = SC_PORT(sc);
10833     uint32_t addr = (port) ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0;
10834     uint32_t val = REG_RD(sc, addr);
10835 
10836     /*
10837      * In E1 we must use only PCI configuration space to disable MSI/MSIX
10838      * capablility. It's forbidden to disable IGU_PF_CONF_MSI_MSIX_EN in HC
10839      * block
10840      */
10841     if (CHIP_IS_E1(sc)) {
10842         /*
10843          * Since IGU_PF_CONF_MSI_MSIX_EN still always on use mask register
10844          * to prevent from HC sending interrupts after we exit the function
10845          */
10846         REG_WR(sc, (HC_REG_INT_MASK + port*4), 0);
10847 
10848         val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
10849                  HC_CONFIG_0_REG_INT_LINE_EN_0 |
10850                  HC_CONFIG_0_REG_ATTN_BIT_EN_0);
10851     } else {
10852         val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
10853                  HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
10854                  HC_CONFIG_0_REG_INT_LINE_EN_0 |
10855                  HC_CONFIG_0_REG_ATTN_BIT_EN_0);
10856     }
10857 
10858     BLOGD(sc, DBG_INTR, "write %x to HC %d (addr 0x%x)\n", val, port, addr);
10859 
10860     /* flush all outstanding writes */
10861     mb();
10862 
10863     REG_WR(sc, addr, val);
10864     if (REG_RD(sc, addr) != val) {
10865         BLOGE(sc, "proper val not read from HC IGU!\n");
10866     }
10867 }
10868 
10869 static void
10870 bxe_igu_int_disable(struct bxe_softc *sc)
10871 {
10872     uint32_t val = REG_RD(sc, IGU_REG_PF_CONFIGURATION);
10873 
10874     val &= ~(IGU_PF_CONF_MSI_MSIX_EN |
10875              IGU_PF_CONF_INT_LINE_EN |
10876              IGU_PF_CONF_ATTN_BIT_EN);
10877 
10878     BLOGD(sc, DBG_INTR, "write %x to IGU\n", val);
10879 
10880     /* flush all outstanding writes */
10881     mb();
10882 
10883     REG_WR(sc, IGU_REG_PF_CONFIGURATION, val);
10884     if (REG_RD(sc, IGU_REG_PF_CONFIGURATION) != val) {
10885         BLOGE(sc, "proper val not read from IGU!\n");
10886     }
10887 }
10888 
10889 static void
10890 bxe_int_disable(struct bxe_softc *sc)
10891 {
10892     if (sc->devinfo.int_block == INT_BLOCK_HC) {
10893         bxe_hc_int_disable(sc);
10894     } else {
10895         bxe_igu_int_disable(sc);
10896     }
10897 }
10898 
10899 static void
10900 bxe_nic_init(struct bxe_softc *sc,
10901              int              load_code)
10902 {
10903     int i;
10904 
10905     for (i = 0; i < sc->num_queues; i++) {
10906         bxe_init_eth_fp(sc, i);
10907     }
10908 
10909     rmb(); /* ensure status block indices were read */
10910 
10911     bxe_init_rx_rings(sc);
10912     bxe_init_tx_rings(sc);
10913 
10914     if (IS_VF(sc)) {
10915         return;
10916     }
10917 
10918     /* initialize MOD_ABS interrupts */
10919     elink_init_mod_abs_int(sc, &sc->link_vars,
10920                            sc->devinfo.chip_id,
10921                            sc->devinfo.shmem_base,
10922                            sc->devinfo.shmem2_base,
10923                            SC_PORT(sc));
10924 
10925     bxe_init_def_sb(sc);
10926     bxe_update_dsb_idx(sc);
10927     bxe_init_sp_ring(sc);
10928     bxe_init_eq_ring(sc);
10929     bxe_init_internal(sc, load_code);
10930     bxe_pf_init(sc);
10931     bxe_stats_init(sc);
10932 
10933     /* flush all before enabling interrupts */
10934     mb();
10935 
10936     bxe_int_enable(sc);
10937 
10938     /* check for SPIO5 */
10939     bxe_attn_int_deasserted0(sc,
10940                              REG_RD(sc,
10941                                     (MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 +
10942                                      SC_PORT(sc)*4)) &
10943                              AEU_INPUTS_ATTN_BITS_SPIO5);
10944 }
10945 
10946 static inline void
10947 bxe_init_objs(struct bxe_softc *sc)
10948 {
10949     /* mcast rules must be added to tx if tx switching is enabled */
10950     ecore_obj_type o_type =
10951         (sc->flags & BXE_TX_SWITCHING) ? ECORE_OBJ_TYPE_RX_TX :
10952                                          ECORE_OBJ_TYPE_RX;
10953 
10954     /* RX_MODE controlling object */
10955     ecore_init_rx_mode_obj(sc, &sc->rx_mode_obj);
10956 
10957     /* multicast configuration controlling object */
10958     ecore_init_mcast_obj(sc,
10959                          &sc->mcast_obj,
10960                          sc->fp[0].cl_id,
10961                          sc->fp[0].index,
10962                          SC_FUNC(sc),
10963                          SC_FUNC(sc),
10964                          BXE_SP(sc, mcast_rdata),
10965                          BXE_SP_MAPPING(sc, mcast_rdata),
10966                          ECORE_FILTER_MCAST_PENDING,
10967                          &sc->sp_state,
10968                          o_type);
10969 
10970     /* Setup CAM credit pools */
10971     ecore_init_mac_credit_pool(sc,
10972                                &sc->macs_pool,
10973                                SC_FUNC(sc),
10974                                CHIP_IS_E1x(sc) ? VNICS_PER_PORT(sc) :
10975                                                  VNICS_PER_PATH(sc));
10976 
10977     ecore_init_vlan_credit_pool(sc,
10978                                 &sc->vlans_pool,
10979                                 SC_ABS_FUNC(sc) >> 1,
10980                                 CHIP_IS_E1x(sc) ? VNICS_PER_PORT(sc) :
10981                                                   VNICS_PER_PATH(sc));
10982 
10983     /* RSS configuration object */
10984     ecore_init_rss_config_obj(sc,
10985                               &sc->rss_conf_obj,
10986                               sc->fp[0].cl_id,
10987                               sc->fp[0].index,
10988                               SC_FUNC(sc),
10989                               SC_FUNC(sc),
10990                               BXE_SP(sc, rss_rdata),
10991                               BXE_SP_MAPPING(sc, rss_rdata),
10992                               ECORE_FILTER_RSS_CONF_PENDING,
10993                               &sc->sp_state, ECORE_OBJ_TYPE_RX);
10994 }
10995 
10996 /*
10997  * Initialize the function. This must be called before sending CLIENT_SETUP
10998  * for the first client.
10999  */
11000 static inline int
11001 bxe_func_start(struct bxe_softc *sc)
11002 {
11003     struct ecore_func_state_params func_params = { NULL };
11004     struct ecore_func_start_params *start_params = &func_params.params.start;
11005 
11006     /* Prepare parameters for function state transitions */
11007     bit_set(&func_params.ramrod_flags, RAMROD_COMP_WAIT);
11008 
11009     func_params.f_obj = &sc->func_obj;
11010     func_params.cmd = ECORE_F_CMD_START;
11011 
11012     /* Function parameters */
11013     start_params->mf_mode     = sc->devinfo.mf_info.mf_mode;
11014     start_params->sd_vlan_tag = OVLAN(sc);
11015 
11016     if (CHIP_IS_E2(sc) || CHIP_IS_E3(sc)) {
11017         start_params->network_cos_mode = STATIC_COS;
11018     } else { /* CHIP_IS_E1X */
11019         start_params->network_cos_mode = FW_WRR;
11020     }
11021 
11022     start_params->gre_tunnel_mode = 0;
11023     start_params->gre_tunnel_rss  = 0;
11024 
11025     return (ecore_func_state_change(sc, &func_params));
11026 }
11027 
11028 static int
11029 bxe_set_power_state(struct bxe_softc *sc,
11030                     uint8_t          state)
11031 {
11032     uint16_t pmcsr;
11033 
11034     /* If there is no power capability, silently succeed */
11035     if (!(sc->devinfo.pcie_cap_flags & BXE_PM_CAPABLE_FLAG)) {
11036         BLOGW(sc, "No power capability\n");
11037         return (0);
11038     }
11039 
11040     pmcsr = pci_read_config(sc->dev,
11041                             (sc->devinfo.pcie_pm_cap_reg + PCIR_POWER_STATUS),
11042                             2);
11043 
11044     switch (state) {
11045     case PCI_PM_D0:
11046         pci_write_config(sc->dev,
11047                          (sc->devinfo.pcie_pm_cap_reg + PCIR_POWER_STATUS),
11048                          ((pmcsr & ~PCIM_PSTAT_DMASK) | PCIM_PSTAT_PME), 2);
11049 
11050         if (pmcsr & PCIM_PSTAT_DMASK) {
11051             /* delay required during transition out of D3hot */
11052             DELAY(20000);
11053         }
11054 
11055         break;
11056 
11057     case PCI_PM_D3hot:
11058         /* XXX if there are other clients above don't shut down the power */
11059 
11060         /* don't shut down the power for emulation and FPGA */
11061         if (CHIP_REV_IS_SLOW(sc)) {
11062             return (0);
11063         }
11064 
11065         pmcsr &= ~PCIM_PSTAT_DMASK;
11066         pmcsr |= PCIM_PSTAT_D3;
11067 
11068         if (sc->wol) {
11069             pmcsr |= PCIM_PSTAT_PMEENABLE;
11070         }
11071 
11072         pci_write_config(sc->dev,
11073                          (sc->devinfo.pcie_pm_cap_reg + PCIR_POWER_STATUS),
11074                          pmcsr, 4);
11075 
11076         /*
11077          * No more memory access after this point until device is brought back
11078          * to D0 state.
11079          */
11080         break;
11081 
11082     default:
11083         BLOGE(sc, "Can't support PCI power state = %d\n", state);
11084         return (-1);
11085     }
11086 
11087     return (0);
11088 }
11089 
11090 
11091 /* return true if succeeded to acquire the lock */
11092 static uint8_t
11093 bxe_trylock_hw_lock(struct bxe_softc *sc,
11094                     uint32_t         resource)
11095 {
11096     uint32_t lock_status;
11097     uint32_t resource_bit = (1 << resource);
11098     int func = SC_FUNC(sc);
11099     uint32_t hw_lock_control_reg;
11100 
11101     BLOGD(sc, DBG_LOAD, "Trying to take a resource lock 0x%x\n", resource);
11102 
11103     /* Validating that the resource is within range */
11104     if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
11105         BLOGD(sc, DBG_LOAD,
11106               "resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
11107               resource, HW_LOCK_MAX_RESOURCE_VALUE);
11108         return (FALSE);
11109     }
11110 
11111     if (func <= 5) {
11112         hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
11113     } else {
11114         hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
11115     }
11116 
11117     /* try to acquire the lock */
11118     REG_WR(sc, hw_lock_control_reg + 4, resource_bit);
11119     lock_status = REG_RD(sc, hw_lock_control_reg);
11120     if (lock_status & resource_bit) {
11121         return (TRUE);
11122     }
11123 
11124     BLOGE(sc, "Failed to get a resource lock 0x%x\n", resource);
11125 
11126     return (FALSE);
11127 }
11128 
11129 /*
11130  * Get the recovery leader resource id according to the engine this function
11131  * belongs to. Currently only only 2 engines is supported.
11132  */
11133 static int
11134 bxe_get_leader_lock_resource(struct bxe_softc *sc)
11135 {
11136     if (SC_PATH(sc)) {
11137         return (HW_LOCK_RESOURCE_RECOVERY_LEADER_1);
11138     } else {
11139         return (HW_LOCK_RESOURCE_RECOVERY_LEADER_0);
11140     }
11141 }
11142 
11143 /* try to acquire a leader lock for current engine */
11144 static uint8_t
11145 bxe_trylock_leader_lock(struct bxe_softc *sc)
11146 {
11147     return (bxe_trylock_hw_lock(sc, bxe_get_leader_lock_resource(sc)));
11148 }
11149 
11150 static int
11151 bxe_release_leader_lock(struct bxe_softc *sc)
11152 {
11153     return (bxe_release_hw_lock(sc, bxe_get_leader_lock_resource(sc)));
11154 }
11155 
11156 /* close gates #2, #3 and #4 */
11157 static void
11158 bxe_set_234_gates(struct bxe_softc *sc,
11159                   uint8_t          close)
11160 {
11161     uint32_t val;
11162 
11163     /* gates #2 and #4a are closed/opened for "not E1" only */
11164     if (!CHIP_IS_E1(sc)) {
11165         /* #4 */
11166         REG_WR(sc, PXP_REG_HST_DISCARD_DOORBELLS, !!close);
11167         /* #2 */
11168         REG_WR(sc, PXP_REG_HST_DISCARD_INTERNAL_WRITES, !!close);
11169     }
11170 
11171     /* #3 */
11172     if (CHIP_IS_E1x(sc)) {
11173         /* prevent interrupts from HC on both ports */
11174         val = REG_RD(sc, HC_REG_CONFIG_1);
11175         REG_WR(sc, HC_REG_CONFIG_1,
11176                (!close) ? (val | HC_CONFIG_1_REG_BLOCK_DISABLE_1) :
11177                (val & ~(uint32_t)HC_CONFIG_1_REG_BLOCK_DISABLE_1));
11178 
11179         val = REG_RD(sc, HC_REG_CONFIG_0);
11180         REG_WR(sc, HC_REG_CONFIG_0,
11181                (!close) ? (val | HC_CONFIG_0_REG_BLOCK_DISABLE_0) :
11182                (val & ~(uint32_t)HC_CONFIG_0_REG_BLOCK_DISABLE_0));
11183     } else {
11184         /* Prevent incomming interrupts in IGU */
11185         val = REG_RD(sc, IGU_REG_BLOCK_CONFIGURATION);
11186 
11187         REG_WR(sc, IGU_REG_BLOCK_CONFIGURATION,
11188                (!close) ?
11189                (val | IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE) :
11190                (val & ~(uint32_t)IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE));
11191     }
11192 
11193     BLOGD(sc, DBG_LOAD, "%s gates #2, #3 and #4\n",
11194           close ? "closing" : "opening");
11195 
11196     wmb();
11197 }
11198 
11199 /* poll for pending writes bit, it should get cleared in no more than 1s */
11200 static int
11201 bxe_er_poll_igu_vq(struct bxe_softc *sc)
11202 {
11203     uint32_t cnt = 1000;
11204     uint32_t pend_bits = 0;
11205 
11206     do {
11207         pend_bits = REG_RD(sc, IGU_REG_PENDING_BITS_STATUS);
11208 
11209         if (pend_bits == 0) {
11210             break;
11211         }
11212 
11213         DELAY(1000);
11214     } while (--cnt > 0);
11215 
11216     if (cnt == 0) {
11217         BLOGE(sc, "Still pending IGU requests bits=0x%08x!\n", pend_bits);
11218         return (-1);
11219     }
11220 
11221     return (0);
11222 }
11223 
11224 #define SHARED_MF_CLP_MAGIC  0x80000000 /* 'magic' bit */
11225 
11226 static void
11227 bxe_clp_reset_prep(struct bxe_softc *sc,
11228                    uint32_t         *magic_val)
11229 {
11230     /* Do some magic... */
11231     uint32_t val = MFCFG_RD(sc, shared_mf_config.clp_mb);
11232     *magic_val = val & SHARED_MF_CLP_MAGIC;
11233     MFCFG_WR(sc, shared_mf_config.clp_mb, val | SHARED_MF_CLP_MAGIC);
11234 }
11235 
11236 /* restore the value of the 'magic' bit */
11237 static void
11238 bxe_clp_reset_done(struct bxe_softc *sc,
11239                    uint32_t         magic_val)
11240 {
11241     /* Restore the 'magic' bit value... */
11242     uint32_t val = MFCFG_RD(sc, shared_mf_config.clp_mb);
11243     MFCFG_WR(sc, shared_mf_config.clp_mb,
11244               (val & (~SHARED_MF_CLP_MAGIC)) | magic_val);
11245 }
11246 
11247 /* prepare for MCP reset, takes care of CLP configurations */
11248 static void
11249 bxe_reset_mcp_prep(struct bxe_softc *sc,
11250                    uint32_t         *magic_val)
11251 {
11252     uint32_t shmem;
11253     uint32_t validity_offset;
11254 
11255     /* set `magic' bit in order to save MF config */
11256     if (!CHIP_IS_E1(sc)) {
11257         bxe_clp_reset_prep(sc, magic_val);
11258     }
11259 
11260     /* get shmem offset */
11261     shmem = REG_RD(sc, MISC_REG_SHARED_MEM_ADDR);
11262     validity_offset =
11263         offsetof(struct shmem_region, validity_map[SC_PORT(sc)]);
11264 
11265     /* Clear validity map flags */
11266     if (shmem > 0) {
11267         REG_WR(sc, shmem + validity_offset, 0);
11268     }
11269 }
11270 
11271 #define MCP_TIMEOUT      5000   /* 5 seconds (in ms) */
11272 #define MCP_ONE_TIMEOUT  100    /* 100 ms */
11273 
11274 static void
11275 bxe_mcp_wait_one(struct bxe_softc *sc)
11276 {
11277     /* special handling for emulation and FPGA (10 times longer) */
11278     if (CHIP_REV_IS_SLOW(sc)) {
11279         DELAY((MCP_ONE_TIMEOUT*10) * 1000);
11280     } else {
11281         DELAY((MCP_ONE_TIMEOUT) * 1000);
11282     }
11283 }
11284 
11285 /* initialize shmem_base and waits for validity signature to appear */
11286 static int
11287 bxe_init_shmem(struct bxe_softc *sc)
11288 {
11289     int cnt = 0;
11290     uint32_t val = 0;
11291 
11292     do {
11293         sc->devinfo.shmem_base     =
11294         sc->link_params.shmem_base =
11295             REG_RD(sc, MISC_REG_SHARED_MEM_ADDR);
11296 
11297         if (sc->devinfo.shmem_base) {
11298             val = SHMEM_RD(sc, validity_map[SC_PORT(sc)]);
11299             if (val & SHR_MEM_VALIDITY_MB)
11300                 return (0);
11301         }
11302 
11303         bxe_mcp_wait_one(sc);
11304 
11305     } while (cnt++ < (MCP_TIMEOUT / MCP_ONE_TIMEOUT));
11306 
11307     BLOGE(sc, "BAD MCP validity signature\n");
11308 
11309     return (-1);
11310 }
11311 
11312 static int
11313 bxe_reset_mcp_comp(struct bxe_softc *sc,
11314                    uint32_t         magic_val)
11315 {
11316     int rc = bxe_init_shmem(sc);
11317 
11318     /* Restore the `magic' bit value */
11319     if (!CHIP_IS_E1(sc)) {
11320         bxe_clp_reset_done(sc, magic_val);
11321     }
11322 
11323     return (rc);
11324 }
11325 
11326 static void
11327 bxe_pxp_prep(struct bxe_softc *sc)
11328 {
11329     if (!CHIP_IS_E1(sc)) {
11330         REG_WR(sc, PXP2_REG_RD_START_INIT, 0);
11331         REG_WR(sc, PXP2_REG_RQ_RBC_DONE, 0);
11332         wmb();
11333     }
11334 }
11335 
11336 /*
11337  * Reset the whole chip except for:
11338  *      - PCIE core
11339  *      - PCI Glue, PSWHST, PXP/PXP2 RF (all controlled by one reset bit)
11340  *      - IGU
11341  *      - MISC (including AEU)
11342  *      - GRC
11343  *      - RBCN, RBCP
11344  */
11345 static void
11346 bxe_process_kill_chip_reset(struct bxe_softc *sc,
11347                             uint8_t          global)
11348 {
11349     uint32_t not_reset_mask1, reset_mask1, not_reset_mask2, reset_mask2;
11350     uint32_t global_bits2, stay_reset2;
11351 
11352     /*
11353      * Bits that have to be set in reset_mask2 if we want to reset 'global'
11354      * (per chip) blocks.
11355      */
11356     global_bits2 =
11357         MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CPU |
11358         MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CORE;
11359 
11360     /*
11361      * Don't reset the following blocks.
11362      * Important: per port blocks (such as EMAC, BMAC, UMAC) can't be
11363      *            reset, as in 4 port device they might still be owned
11364      *            by the MCP (there is only one leader per path).
11365      */
11366     not_reset_mask1 =
11367         MISC_REGISTERS_RESET_REG_1_RST_HC |
11368         MISC_REGISTERS_RESET_REG_1_RST_PXPV |
11369         MISC_REGISTERS_RESET_REG_1_RST_PXP;
11370 
11371     not_reset_mask2 =
11372         MISC_REGISTERS_RESET_REG_2_RST_PCI_MDIO |
11373         MISC_REGISTERS_RESET_REG_2_RST_EMAC0_HARD_CORE |
11374         MISC_REGISTERS_RESET_REG_2_RST_EMAC1_HARD_CORE |
11375         MISC_REGISTERS_RESET_REG_2_RST_MISC_CORE |
11376         MISC_REGISTERS_RESET_REG_2_RST_RBCN |
11377         MISC_REGISTERS_RESET_REG_2_RST_GRC  |
11378         MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_REG_HARD_CORE |
11379         MISC_REGISTERS_RESET_REG_2_RST_MCP_N_HARD_CORE_RST_B |
11380         MISC_REGISTERS_RESET_REG_2_RST_ATC |
11381         MISC_REGISTERS_RESET_REG_2_PGLC |
11382         MISC_REGISTERS_RESET_REG_2_RST_BMAC0 |
11383         MISC_REGISTERS_RESET_REG_2_RST_BMAC1 |
11384         MISC_REGISTERS_RESET_REG_2_RST_EMAC0 |
11385         MISC_REGISTERS_RESET_REG_2_RST_EMAC1 |
11386         MISC_REGISTERS_RESET_REG_2_UMAC0 |
11387         MISC_REGISTERS_RESET_REG_2_UMAC1;
11388 
11389     /*
11390      * Keep the following blocks in reset:
11391      *  - all xxMACs are handled by the elink code.
11392      */
11393     stay_reset2 =
11394         MISC_REGISTERS_RESET_REG_2_XMAC |
11395         MISC_REGISTERS_RESET_REG_2_XMAC_SOFT;
11396 
11397     /* Full reset masks according to the chip */
11398     reset_mask1 = 0xffffffff;
11399 
11400     if (CHIP_IS_E1(sc))
11401         reset_mask2 = 0xffff;
11402     else if (CHIP_IS_E1H(sc))
11403         reset_mask2 = 0x1ffff;
11404     else if (CHIP_IS_E2(sc))
11405         reset_mask2 = 0xfffff;
11406     else /* CHIP_IS_E3 */
11407         reset_mask2 = 0x3ffffff;
11408 
11409     /* Don't reset global blocks unless we need to */
11410     if (!global)
11411         reset_mask2 &= ~global_bits2;
11412 
11413     /*
11414      * In case of attention in the QM, we need to reset PXP
11415      * (MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR) before QM
11416      * because otherwise QM reset would release 'close the gates' shortly
11417      * before resetting the PXP, then the PSWRQ would send a write
11418      * request to PGLUE. Then when PXP is reset, PGLUE would try to
11419      * read the payload data from PSWWR, but PSWWR would not
11420      * respond. The write queue in PGLUE would stuck, dmae commands
11421      * would not return. Therefore it's important to reset the second
11422      * reset register (containing the
11423      * MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR bit) before the
11424      * first one (containing the MISC_REGISTERS_RESET_REG_1_RST_QM
11425      * bit).
11426      */
11427     REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR,
11428            reset_mask2 & (~not_reset_mask2));
11429 
11430     REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
11431            reset_mask1 & (~not_reset_mask1));
11432 
11433     mb();
11434     wmb();
11435 
11436     REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET,
11437            reset_mask2 & (~stay_reset2));
11438 
11439     mb();
11440     wmb();
11441 
11442     REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, reset_mask1);
11443     wmb();
11444 }
11445 
11446 static int
11447 bxe_process_kill(struct bxe_softc *sc,
11448                  uint8_t          global)
11449 {
11450     int cnt = 1000;
11451     uint32_t val = 0;
11452     uint32_t sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1, pgl_exp_rom2;
11453     uint32_t tags_63_32 = 0;
11454 
11455     /* Empty the Tetris buffer, wait for 1s */
11456     do {
11457         sr_cnt  = REG_RD(sc, PXP2_REG_RD_SR_CNT);
11458         blk_cnt = REG_RD(sc, PXP2_REG_RD_BLK_CNT);
11459         port_is_idle_0 = REG_RD(sc, PXP2_REG_RD_PORT_IS_IDLE_0);
11460         port_is_idle_1 = REG_RD(sc, PXP2_REG_RD_PORT_IS_IDLE_1);
11461         pgl_exp_rom2 = REG_RD(sc, PXP2_REG_PGL_EXP_ROM2);
11462         if (CHIP_IS_E3(sc)) {
11463             tags_63_32 = REG_RD(sc, PGLUE_B_REG_TAGS_63_32);
11464         }
11465 
11466         if ((sr_cnt == 0x7e) && (blk_cnt == 0xa0) &&
11467             ((port_is_idle_0 & 0x1) == 0x1) &&
11468             ((port_is_idle_1 & 0x1) == 0x1) &&
11469             (pgl_exp_rom2 == 0xffffffff) &&
11470             (!CHIP_IS_E3(sc) || (tags_63_32 == 0xffffffff)))
11471             break;
11472         DELAY(1000);
11473     } while (cnt-- > 0);
11474 
11475     if (cnt <= 0) {
11476         BLOGE(sc, "ERROR: Tetris buffer didn't get empty or there "
11477                   "are still outstanding read requests after 1s! "
11478                   "sr_cnt=0x%08x, blk_cnt=0x%08x, port_is_idle_0=0x%08x, "
11479                   "port_is_idle_1=0x%08x, pgl_exp_rom2=0x%08x\n",
11480               sr_cnt, blk_cnt, port_is_idle_0,
11481               port_is_idle_1, pgl_exp_rom2);
11482         return (-1);
11483     }
11484 
11485     mb();
11486 
11487     /* Close gates #2, #3 and #4 */
11488     bxe_set_234_gates(sc, TRUE);
11489 
11490     /* Poll for IGU VQs for 57712 and newer chips */
11491     if (!CHIP_IS_E1x(sc) && bxe_er_poll_igu_vq(sc)) {
11492         return (-1);
11493     }
11494 
11495     /* XXX indicate that "process kill" is in progress to MCP */
11496 
11497     /* clear "unprepared" bit */
11498     REG_WR(sc, MISC_REG_UNPREPARED, 0);
11499     mb();
11500 
11501     /* Make sure all is written to the chip before the reset */
11502     wmb();
11503 
11504     /*
11505      * Wait for 1ms to empty GLUE and PCI-E core queues,
11506      * PSWHST, GRC and PSWRD Tetris buffer.
11507      */
11508     DELAY(1000);
11509 
11510     /* Prepare to chip reset: */
11511     /* MCP */
11512     if (global) {
11513         bxe_reset_mcp_prep(sc, &val);
11514     }
11515 
11516     /* PXP */
11517     bxe_pxp_prep(sc);
11518     mb();
11519 
11520     /* reset the chip */
11521     bxe_process_kill_chip_reset(sc, global);
11522     mb();
11523 
11524     /* clear errors in PGB */
11525     if (!CHIP_IS_E1(sc))
11526         REG_WR(sc, PGLUE_B_REG_LATCHED_ERRORS_CLR, 0x7f);
11527 
11528     /* Recover after reset: */
11529     /* MCP */
11530     if (global && bxe_reset_mcp_comp(sc, val)) {
11531         return (-1);
11532     }
11533 
11534     /* XXX add resetting the NO_MCP mode DB here */
11535 
11536     /* Open the gates #2, #3 and #4 */
11537     bxe_set_234_gates(sc, FALSE);
11538 
11539     /* XXX
11540      * IGU/AEU preparation bring back the AEU/IGU to a reset state
11541      * re-enable attentions
11542      */
11543 
11544     return (0);
11545 }
11546 
11547 static int
11548 bxe_leader_reset(struct bxe_softc *sc)
11549 {
11550     int rc = 0;
11551     uint8_t global = bxe_reset_is_global(sc);
11552     uint32_t load_code;
11553 
11554     /*
11555      * If not going to reset MCP, load "fake" driver to reset HW while
11556      * driver is owner of the HW.
11557      */
11558     if (!global && !BXE_NOMCP(sc)) {
11559         load_code = bxe_fw_command(sc, DRV_MSG_CODE_LOAD_REQ,
11560                                    DRV_MSG_CODE_LOAD_REQ_WITH_LFA);
11561         if (!load_code) {
11562             BLOGE(sc, "MCP response failure, aborting\n");
11563             rc = -1;
11564             goto exit_leader_reset;
11565         }
11566 
11567         if ((load_code != FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) &&
11568             (load_code != FW_MSG_CODE_DRV_LOAD_COMMON)) {
11569             BLOGE(sc, "MCP unexpected response, aborting\n");
11570             rc = -1;
11571             goto exit_leader_reset2;
11572         }
11573 
11574         load_code = bxe_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0);
11575         if (!load_code) {
11576             BLOGE(sc, "MCP response failure, aborting\n");
11577             rc = -1;
11578             goto exit_leader_reset2;
11579         }
11580     }
11581 
11582     /* try to recover after the failure */
11583     if (bxe_process_kill(sc, global)) {
11584         BLOGE(sc, "Something bad occurred on engine %d!\n", SC_PATH(sc));
11585         rc = -1;
11586         goto exit_leader_reset2;
11587     }
11588 
11589     /*
11590      * Clear the RESET_IN_PROGRESS and RESET_GLOBAL bits and update the driver
11591      * state.
11592      */
11593     bxe_set_reset_done(sc);
11594     if (global) {
11595         bxe_clear_reset_global(sc);
11596     }
11597 
11598 exit_leader_reset2:
11599 
11600     /* unload "fake driver" if it was loaded */
11601     if (!global && !BXE_NOMCP(sc)) {
11602         bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP, 0);
11603         bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_DONE, 0);
11604     }
11605 
11606 exit_leader_reset:
11607 
11608     sc->is_leader = 0;
11609     bxe_release_leader_lock(sc);
11610 
11611     mb();
11612     return (rc);
11613 }
11614 
11615 /*
11616  * prepare INIT transition, parameters configured:
11617  *   - HC configuration
11618  *   - Queue's CDU context
11619  */
11620 static void
11621 bxe_pf_q_prep_init(struct bxe_softc               *sc,
11622                    struct bxe_fastpath            *fp,
11623                    struct ecore_queue_init_params *init_params)
11624 {
11625     uint8_t cos;
11626     int cxt_index, cxt_offset;
11627 
11628     bxe_set_bit(ECORE_Q_FLG_HC, &init_params->rx.flags);
11629     bxe_set_bit(ECORE_Q_FLG_HC, &init_params->tx.flags);
11630 
11631     bxe_set_bit(ECORE_Q_FLG_HC_EN, &init_params->rx.flags);
11632     bxe_set_bit(ECORE_Q_FLG_HC_EN, &init_params->tx.flags);
11633 
11634     /* HC rate */
11635     init_params->rx.hc_rate =
11636         sc->hc_rx_ticks ? (1000000 / sc->hc_rx_ticks) : 0;
11637     init_params->tx.hc_rate =
11638         sc->hc_tx_ticks ? (1000000 / sc->hc_tx_ticks) : 0;
11639 
11640     /* FW SB ID */
11641     init_params->rx.fw_sb_id = init_params->tx.fw_sb_id = fp->fw_sb_id;
11642 
11643     /* CQ index among the SB indices */
11644     init_params->rx.sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS;
11645     init_params->tx.sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS;
11646 
11647     /* set maximum number of COSs supported by this queue */
11648     init_params->max_cos = sc->max_cos;
11649 
11650     BLOGD(sc, DBG_LOAD, "fp %d setting queue params max cos to %d\n",
11651           fp->index, init_params->max_cos);
11652 
11653     /* set the context pointers queue object */
11654     for (cos = FIRST_TX_COS_INDEX; cos < init_params->max_cos; cos++) {
11655         /* XXX change index/cid here if ever support multiple tx CoS */
11656         /* fp->txdata[cos]->cid */
11657         cxt_index = fp->index / ILT_PAGE_CIDS;
11658         cxt_offset = fp->index - (cxt_index * ILT_PAGE_CIDS);
11659         init_params->cxts[cos] = &sc->context[cxt_index].vcxt[cxt_offset].eth;
11660     }
11661 }
11662 
11663 /* set flags that are common for the Tx-only and not normal connections */
11664 static unsigned long
11665 bxe_get_common_flags(struct bxe_softc    *sc,
11666                      struct bxe_fastpath *fp,
11667                      uint8_t             zero_stats)
11668 {
11669     unsigned long flags = 0;
11670 
11671     /* PF driver will always initialize the Queue to an ACTIVE state */
11672     bxe_set_bit(ECORE_Q_FLG_ACTIVE, &flags);
11673 
11674     /*
11675      * tx only connections collect statistics (on the same index as the
11676      * parent connection). The statistics are zeroed when the parent
11677      * connection is initialized.
11678      */
11679 
11680     bxe_set_bit(ECORE_Q_FLG_STATS, &flags);
11681     if (zero_stats) {
11682         bxe_set_bit(ECORE_Q_FLG_ZERO_STATS, &flags);
11683     }
11684 
11685     /*
11686      * tx only connections can support tx-switching, though their
11687      * CoS-ness doesn't survive the loopback
11688      */
11689     if (sc->flags & BXE_TX_SWITCHING) {
11690         bxe_set_bit(ECORE_Q_FLG_TX_SWITCH, &flags);
11691     }
11692 
11693     bxe_set_bit(ECORE_Q_FLG_PCSUM_ON_PKT, &flags);
11694 
11695     return (flags);
11696 }
11697 
11698 static unsigned long
11699 bxe_get_q_flags(struct bxe_softc    *sc,
11700                 struct bxe_fastpath *fp,
11701                 uint8_t             leading)
11702 {
11703     unsigned long flags = 0;
11704 
11705     if (IS_MF_SD(sc)) {
11706         bxe_set_bit(ECORE_Q_FLG_OV, &flags);
11707     }
11708 
11709     if (if_getcapenable(sc->ifp) & IFCAP_LRO) {
11710         bxe_set_bit(ECORE_Q_FLG_TPA, &flags);
11711         bxe_set_bit(ECORE_Q_FLG_TPA_IPV6, &flags);
11712 #if 0
11713         if (fp->mode == TPA_MODE_GRO)
11714             __set_bit(ECORE_Q_FLG_TPA_GRO, &flags);
11715 #endif
11716     }
11717 
11718     if (leading) {
11719         bxe_set_bit(ECORE_Q_FLG_LEADING_RSS, &flags);
11720         bxe_set_bit(ECORE_Q_FLG_MCAST, &flags);
11721     }
11722 
11723     bxe_set_bit(ECORE_Q_FLG_VLAN, &flags);
11724 
11725 #if 0
11726     /* configure silent vlan removal */
11727     if (IS_MF_AFEX(sc)) {
11728         bxe_set_bit(ECORE_Q_FLG_SILENT_VLAN_REM, &flags);
11729     }
11730 #endif
11731 
11732     /* merge with common flags */
11733     return (flags | bxe_get_common_flags(sc, fp, TRUE));
11734 }
11735 
11736 static void
11737 bxe_pf_q_prep_general(struct bxe_softc                  *sc,
11738                       struct bxe_fastpath               *fp,
11739                       struct ecore_general_setup_params *gen_init,
11740                       uint8_t                           cos)
11741 {
11742     gen_init->stat_id = bxe_stats_id(fp);
11743     gen_init->spcl_id = fp->cl_id;
11744     gen_init->mtu = sc->mtu;
11745     gen_init->cos = cos;
11746 }
11747 
11748 static void
11749 bxe_pf_rx_q_prep(struct bxe_softc              *sc,
11750                  struct bxe_fastpath           *fp,
11751                  struct rxq_pause_params       *pause,
11752                  struct ecore_rxq_setup_params *rxq_init)
11753 {
11754     uint8_t max_sge = 0;
11755     uint16_t sge_sz = 0;
11756     uint16_t tpa_agg_size = 0;
11757 
11758     pause->sge_th_lo = SGE_TH_LO(sc);
11759     pause->sge_th_hi = SGE_TH_HI(sc);
11760 
11761     /* validate SGE ring has enough to cross high threshold */
11762     if (sc->dropless_fc &&
11763             (pause->sge_th_hi + FW_PREFETCH_CNT) >
11764             (RX_SGE_USABLE_PER_PAGE * RX_SGE_NUM_PAGES)) {
11765         BLOGW(sc, "sge ring threshold limit\n");
11766     }
11767 
11768     /* minimum max_aggregation_size is 2*MTU (two full buffers) */
11769     tpa_agg_size = (2 * sc->mtu);
11770     if (tpa_agg_size < sc->max_aggregation_size) {
11771         tpa_agg_size = sc->max_aggregation_size;
11772     }
11773 
11774     max_sge = SGE_PAGE_ALIGN(sc->mtu) >> SGE_PAGE_SHIFT;
11775     max_sge = ((max_sge + PAGES_PER_SGE - 1) &
11776                    (~(PAGES_PER_SGE - 1))) >> PAGES_PER_SGE_SHIFT;
11777     sge_sz = (uint16_t)min(SGE_PAGES, 0xffff);
11778 
11779     /* pause - not for e1 */
11780     if (!CHIP_IS_E1(sc)) {
11781         pause->bd_th_lo = BD_TH_LO(sc);
11782         pause->bd_th_hi = BD_TH_HI(sc);
11783 
11784         pause->rcq_th_lo = RCQ_TH_LO(sc);
11785         pause->rcq_th_hi = RCQ_TH_HI(sc);
11786 
11787         /* validate rings have enough entries to cross high thresholds */
11788         if (sc->dropless_fc &&
11789             pause->bd_th_hi + FW_PREFETCH_CNT >
11790             sc->rx_ring_size) {
11791             BLOGW(sc, "rx bd ring threshold limit\n");
11792         }
11793 
11794         if (sc->dropless_fc &&
11795             pause->rcq_th_hi + FW_PREFETCH_CNT >
11796             RCQ_NUM_PAGES * RCQ_USABLE_PER_PAGE) {
11797             BLOGW(sc, "rcq ring threshold limit\n");
11798         }
11799 
11800         pause->pri_map = 1;
11801     }
11802 
11803     /* rxq setup */
11804     rxq_init->dscr_map   = fp->rx_dma.paddr;
11805     rxq_init->sge_map    = fp->rx_sge_dma.paddr;
11806     rxq_init->rcq_map    = fp->rcq_dma.paddr;
11807     rxq_init->rcq_np_map = (fp->rcq_dma.paddr + BCM_PAGE_SIZE);
11808 
11809     /*
11810      * This should be a maximum number of data bytes that may be
11811      * placed on the BD (not including paddings).
11812      */
11813     rxq_init->buf_sz = (fp->rx_buf_size -
11814                         IP_HEADER_ALIGNMENT_PADDING);
11815 
11816     rxq_init->cl_qzone_id     = fp->cl_qzone_id;
11817     rxq_init->tpa_agg_sz      = tpa_agg_size;
11818     rxq_init->sge_buf_sz      = sge_sz;
11819     rxq_init->max_sges_pkt    = max_sge;
11820     rxq_init->rss_engine_id   = SC_FUNC(sc);
11821     rxq_init->mcast_engine_id = SC_FUNC(sc);
11822 
11823     /*
11824      * Maximum number or simultaneous TPA aggregation for this Queue.
11825      * For PF Clients it should be the maximum available number.
11826      * VF driver(s) may want to define it to a smaller value.
11827      */
11828     rxq_init->max_tpa_queues = MAX_AGG_QS(sc);
11829 
11830     rxq_init->cache_line_log = BXE_RX_ALIGN_SHIFT;
11831     rxq_init->fw_sb_id = fp->fw_sb_id;
11832 
11833     rxq_init->sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS;
11834 
11835     /*
11836      * configure silent vlan removal
11837      * if multi function mode is afex, then mask default vlan
11838      */
11839     if (IS_MF_AFEX(sc)) {
11840         rxq_init->silent_removal_value =
11841             sc->devinfo.mf_info.afex_def_vlan_tag;
11842         rxq_init->silent_removal_mask = EVL_VLID_MASK;
11843     }
11844 }
11845 
11846 static void
11847 bxe_pf_tx_q_prep(struct bxe_softc              *sc,
11848                  struct bxe_fastpath           *fp,
11849                  struct ecore_txq_setup_params *txq_init,
11850                  uint8_t                       cos)
11851 {
11852     /*
11853      * XXX If multiple CoS is ever supported then each fastpath structure
11854      * will need to maintain tx producer/consumer/dma/etc values *per* CoS.
11855      * fp->txdata[cos]->tx_dma.paddr;
11856      */
11857     txq_init->dscr_map     = fp->tx_dma.paddr;
11858     txq_init->sb_cq_index  = HC_INDEX_ETH_FIRST_TX_CQ_CONS + cos;
11859     txq_init->traffic_type = LLFC_TRAFFIC_TYPE_NW;
11860     txq_init->fw_sb_id     = fp->fw_sb_id;
11861 
11862     /*
11863      * set the TSS leading client id for TX classfication to the
11864      * leading RSS client id
11865      */
11866     txq_init->tss_leading_cl_id = BXE_FP(sc, 0, cl_id);
11867 }
11868 
11869 /*
11870  * This function performs 2 steps in a queue state machine:
11871  *   1) RESET->INIT
11872  *   2) INIT->SETUP
11873  */
11874 static int
11875 bxe_setup_queue(struct bxe_softc    *sc,
11876                 struct bxe_fastpath *fp,
11877                 uint8_t             leading)
11878 {
11879     struct ecore_queue_state_params q_params = { NULL };
11880     struct ecore_queue_setup_params *setup_params =
11881                         &q_params.params.setup;
11882 #if 0
11883     struct ecore_queue_setup_tx_only_params *tx_only_params =
11884                         &q_params.params.tx_only;
11885     uint8_t tx_index;
11886 #endif
11887     int rc;
11888 
11889     BLOGD(sc, DBG_LOAD, "setting up queue %d\n", fp->index);
11890 
11891     bxe_ack_sb(sc, fp->igu_sb_id, USTORM_ID, 0, IGU_INT_ENABLE, 0);
11892 
11893     q_params.q_obj = &BXE_SP_OBJ(sc, fp).q_obj;
11894 
11895     /* we want to wait for completion in this context */
11896     bxe_set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
11897 
11898     /* prepare the INIT parameters */
11899     bxe_pf_q_prep_init(sc, fp, &q_params.params.init);
11900 
11901     /* Set the command */
11902     q_params.cmd = ECORE_Q_CMD_INIT;
11903 
11904     /* Change the state to INIT */
11905     rc = ecore_queue_state_change(sc, &q_params);
11906     if (rc) {
11907         BLOGE(sc, "Queue(%d) INIT failed\n", fp->index);
11908         return (rc);
11909     }
11910 
11911     BLOGD(sc, DBG_LOAD, "init complete\n");
11912 
11913     /* now move the Queue to the SETUP state */
11914     memset(setup_params, 0, sizeof(*setup_params));
11915 
11916     /* set Queue flags */
11917     setup_params->flags = bxe_get_q_flags(sc, fp, leading);
11918 
11919     /* set general SETUP parameters */
11920     bxe_pf_q_prep_general(sc, fp, &setup_params->gen_params,
11921                           FIRST_TX_COS_INDEX);
11922 
11923     bxe_pf_rx_q_prep(sc, fp,
11924                      &setup_params->pause_params,
11925                      &setup_params->rxq_params);
11926 
11927     bxe_pf_tx_q_prep(sc, fp,
11928                      &setup_params->txq_params,
11929                      FIRST_TX_COS_INDEX);
11930 
11931     /* Set the command */
11932     q_params.cmd = ECORE_Q_CMD_SETUP;
11933 
11934     /* change the state to SETUP */
11935     rc = ecore_queue_state_change(sc, &q_params);
11936     if (rc) {
11937         BLOGE(sc, "Queue(%d) SETUP failed\n", fp->index);
11938         return (rc);
11939     }
11940 
11941 #if 0
11942     /* loop through the relevant tx-only indices */
11943     for (tx_index = FIRST_TX_ONLY_COS_INDEX;
11944          tx_index < sc->max_cos;
11945          tx_index++) {
11946         /* prepare and send tx-only ramrod*/
11947         rc = bxe_setup_tx_only(sc, fp, &q_params,
11948                                tx_only_params, tx_index, leading);
11949         if (rc) {
11950             BLOGE(sc, "Queue(%d.%d) TX_ONLY_SETUP failed\n",
11951                   fp->index, tx_index);
11952             return (rc);
11953         }
11954     }
11955 #endif
11956 
11957     return (rc);
11958 }
11959 
11960 static int
11961 bxe_setup_leading(struct bxe_softc *sc)
11962 {
11963     return (bxe_setup_queue(sc, &sc->fp[0], TRUE));
11964 }
11965 
11966 static int
11967 bxe_config_rss_pf(struct bxe_softc            *sc,
11968                   struct ecore_rss_config_obj *rss_obj,
11969                   uint8_t                     config_hash)
11970 {
11971     struct ecore_config_rss_params params = { NULL };
11972     int i;
11973 
11974     /*
11975      * Although RSS is meaningless when there is a single HW queue we
11976      * still need it enabled in order to have HW Rx hash generated.
11977      */
11978 
11979     params.rss_obj = rss_obj;
11980 
11981     bxe_set_bit(RAMROD_COMP_WAIT, &params.ramrod_flags);
11982 
11983     bxe_set_bit(ECORE_RSS_MODE_REGULAR, &params.rss_flags);
11984 
11985     /* RSS configuration */
11986     bxe_set_bit(ECORE_RSS_IPV4, &params.rss_flags);
11987     bxe_set_bit(ECORE_RSS_IPV4_TCP, &params.rss_flags);
11988     bxe_set_bit(ECORE_RSS_IPV6, &params.rss_flags);
11989     bxe_set_bit(ECORE_RSS_IPV6_TCP, &params.rss_flags);
11990     if (rss_obj->udp_rss_v4) {
11991         bxe_set_bit(ECORE_RSS_IPV4_UDP, &params.rss_flags);
11992     }
11993     if (rss_obj->udp_rss_v6) {
11994         bxe_set_bit(ECORE_RSS_IPV6_UDP, &params.rss_flags);
11995     }
11996 
11997     /* Hash bits */
11998     params.rss_result_mask = MULTI_MASK;
11999 
12000     memcpy(params.ind_table, rss_obj->ind_table, sizeof(params.ind_table));
12001 
12002     if (config_hash) {
12003         /* RSS keys */
12004         for (i = 0; i < sizeof(params.rss_key) / 4; i++) {
12005             params.rss_key[i] = arc4random();
12006         }
12007 
12008         bxe_set_bit(ECORE_RSS_SET_SRCH, &params.rss_flags);
12009     }
12010 
12011     return (ecore_config_rss(sc, &params));
12012 }
12013 
12014 static int
12015 bxe_config_rss_eth(struct bxe_softc *sc,
12016                    uint8_t          config_hash)
12017 {
12018     return (bxe_config_rss_pf(sc, &sc->rss_conf_obj, config_hash));
12019 }
12020 
12021 static int
12022 bxe_init_rss_pf(struct bxe_softc *sc)
12023 {
12024     uint8_t num_eth_queues = BXE_NUM_ETH_QUEUES(sc);
12025     int i;
12026 
12027     /*
12028      * Prepare the initial contents of the indirection table if
12029      * RSS is enabled
12030      */
12031     for (i = 0; i < sizeof(sc->rss_conf_obj.ind_table); i++) {
12032         sc->rss_conf_obj.ind_table[i] =
12033             (sc->fp->cl_id + (i % num_eth_queues));
12034     }
12035 
12036     if (sc->udp_rss) {
12037         sc->rss_conf_obj.udp_rss_v4 = sc->rss_conf_obj.udp_rss_v6 = 1;
12038     }
12039 
12040     /*
12041      * For 57710 and 57711 SEARCHER configuration (rss_keys) is
12042      * per-port, so if explicit configuration is needed, do it only
12043      * for a PMF.
12044      *
12045      * For 57712 and newer it's a per-function configuration.
12046      */
12047     return (bxe_config_rss_eth(sc, sc->port.pmf || !CHIP_IS_E1x(sc)));
12048 }
12049 
12050 static int
12051 bxe_set_mac_one(struct bxe_softc          *sc,
12052                 uint8_t                   *mac,
12053                 struct ecore_vlan_mac_obj *obj,
12054                 uint8_t                   set,
12055                 int                       mac_type,
12056                 unsigned long             *ramrod_flags)
12057 {
12058     struct ecore_vlan_mac_ramrod_params ramrod_param;
12059     int rc;
12060 
12061     memset(&ramrod_param, 0, sizeof(ramrod_param));
12062 
12063     /* fill in general parameters */
12064     ramrod_param.vlan_mac_obj = obj;
12065     ramrod_param.ramrod_flags = *ramrod_flags;
12066 
12067     /* fill a user request section if needed */
12068     if (!bxe_test_bit(RAMROD_CONT, ramrod_flags)) {
12069         memcpy(ramrod_param.user_req.u.mac.mac, mac, ETH_ALEN);
12070 
12071         bxe_set_bit(mac_type, &ramrod_param.user_req.vlan_mac_flags);
12072 
12073         /* Set the command: ADD or DEL */
12074         ramrod_param.user_req.cmd = (set) ? ECORE_VLAN_MAC_ADD :
12075                                             ECORE_VLAN_MAC_DEL;
12076     }
12077 
12078     rc = ecore_config_vlan_mac(sc, &ramrod_param);
12079 
12080     if (rc == ECORE_EXISTS) {
12081         BLOGD(sc, DBG_SP, "Failed to schedule ADD operations (EEXIST)\n");
12082         /* do not treat adding same MAC as error */
12083         rc = 0;
12084     } else if (rc < 0) {
12085         BLOGE(sc, "%s MAC failed (%d)\n", (set ? "Set" : "Delete"), rc);
12086     }
12087 
12088     return (rc);
12089 }
12090 
12091 static int
12092 bxe_set_eth_mac(struct bxe_softc *sc,
12093                 uint8_t          set)
12094 {
12095     unsigned long ramrod_flags = 0;
12096 
12097     BLOGD(sc, DBG_LOAD, "Adding Ethernet MAC\n");
12098 
12099     bxe_set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
12100 
12101     /* Eth MAC is set on RSS leading client (fp[0]) */
12102     return (bxe_set_mac_one(sc, sc->link_params.mac_addr,
12103                             &sc->sp_objs->mac_obj,
12104                             set, ECORE_ETH_MAC, &ramrod_flags));
12105 }
12106 
12107 #if 0
12108 static void
12109 bxe_update_max_mf_config(struct bxe_softc *sc,
12110                          uint32_t         value)
12111 {
12112     /* load old values */
12113     uint32_t mf_cfg = sc->devinfo.mf_info.mf_config[SC_VN(sc)];
12114 
12115     if (value != bxe_extract_max_cfg(sc, mf_cfg)) {
12116         /* leave all but MAX value */
12117         mf_cfg &= ~FUNC_MF_CFG_MAX_BW_MASK;
12118 
12119         /* set new MAX value */
12120         mf_cfg |= ((value << FUNC_MF_CFG_MAX_BW_SHIFT) &
12121                    FUNC_MF_CFG_MAX_BW_MASK);
12122 
12123         bxe_fw_command(sc, DRV_MSG_CODE_SET_MF_BW, mf_cfg);
12124     }
12125 }
12126 #endif
12127 
12128 static int
12129 bxe_get_cur_phy_idx(struct bxe_softc *sc)
12130 {
12131     uint32_t sel_phy_idx = 0;
12132 
12133     if (sc->link_params.num_phys <= 1) {
12134         return (ELINK_INT_PHY);
12135     }
12136 
12137     if (sc->link_vars.link_up) {
12138         sel_phy_idx = ELINK_EXT_PHY1;
12139         /* In case link is SERDES, check if the ELINK_EXT_PHY2 is the one */
12140         if ((sc->link_vars.link_status & LINK_STATUS_SERDES_LINK) &&
12141             (sc->link_params.phy[ELINK_EXT_PHY2].supported &
12142              ELINK_SUPPORTED_FIBRE))
12143             sel_phy_idx = ELINK_EXT_PHY2;
12144     } else {
12145         switch (elink_phy_selection(&sc->link_params)) {
12146         case PORT_HW_CFG_PHY_SELECTION_HARDWARE_DEFAULT:
12147         case PORT_HW_CFG_PHY_SELECTION_FIRST_PHY:
12148         case PORT_HW_CFG_PHY_SELECTION_FIRST_PHY_PRIORITY:
12149                sel_phy_idx = ELINK_EXT_PHY1;
12150                break;
12151         case PORT_HW_CFG_PHY_SELECTION_SECOND_PHY:
12152         case PORT_HW_CFG_PHY_SELECTION_SECOND_PHY_PRIORITY:
12153                sel_phy_idx = ELINK_EXT_PHY2;
12154                break;
12155         }
12156     }
12157 
12158     return (sel_phy_idx);
12159 }
12160 
12161 static int
12162 bxe_get_link_cfg_idx(struct bxe_softc *sc)
12163 {
12164     uint32_t sel_phy_idx = bxe_get_cur_phy_idx(sc);
12165 
12166     /*
12167      * The selected activated PHY is always after swapping (in case PHY
12168      * swapping is enabled). So when swapping is enabled, we need to reverse
12169      * the configuration
12170      */
12171 
12172     if (sc->link_params.multi_phy_config & PORT_HW_CFG_PHY_SWAPPED_ENABLED) {
12173         if (sel_phy_idx == ELINK_EXT_PHY1)
12174             sel_phy_idx = ELINK_EXT_PHY2;
12175         else if (sel_phy_idx == ELINK_EXT_PHY2)
12176             sel_phy_idx = ELINK_EXT_PHY1;
12177     }
12178 
12179     return (ELINK_LINK_CONFIG_IDX(sel_phy_idx));
12180 }
12181 
12182 static void
12183 bxe_set_requested_fc(struct bxe_softc *sc)
12184 {
12185     /*
12186      * Initialize link parameters structure variables
12187      * It is recommended to turn off RX FC for jumbo frames
12188      * for better performance
12189      */
12190     if (CHIP_IS_E1x(sc) && (sc->mtu > 5000)) {
12191         sc->link_params.req_fc_auto_adv = ELINK_FLOW_CTRL_TX;
12192     } else {
12193         sc->link_params.req_fc_auto_adv = ELINK_FLOW_CTRL_BOTH;
12194     }
12195 }
12196 
12197 static void
12198 bxe_calc_fc_adv(struct bxe_softc *sc)
12199 {
12200     uint8_t cfg_idx = bxe_get_link_cfg_idx(sc);
12201     switch (sc->link_vars.ieee_fc &
12202             MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_MASK) {
12203     case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_NONE:
12204     default:
12205         sc->port.advertising[cfg_idx] &= ~(ADVERTISED_Asym_Pause |
12206                                            ADVERTISED_Pause);
12207         break;
12208 
12209     case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_BOTH:
12210         sc->port.advertising[cfg_idx] |= (ADVERTISED_Asym_Pause |
12211                                           ADVERTISED_Pause);
12212         break;
12213 
12214     case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_ASYMMETRIC:
12215         sc->port.advertising[cfg_idx] |= ADVERTISED_Asym_Pause;
12216         break;
12217     }
12218 }
12219 
12220 static uint16_t
12221 bxe_get_mf_speed(struct bxe_softc *sc)
12222 {
12223     uint16_t line_speed = sc->link_vars.line_speed;
12224     if (IS_MF(sc)) {
12225         uint16_t maxCfg =
12226             bxe_extract_max_cfg(sc, sc->devinfo.mf_info.mf_config[SC_VN(sc)]);
12227 
12228         /* calculate the current MAX line speed limit for the MF devices */
12229         if (IS_MF_SI(sc)) {
12230             line_speed = (line_speed * maxCfg) / 100;
12231         } else { /* SD mode */
12232             uint16_t vn_max_rate = maxCfg * 100;
12233 
12234             if (vn_max_rate < line_speed) {
12235                 line_speed = vn_max_rate;
12236             }
12237         }
12238     }
12239 
12240     return (line_speed);
12241 }
12242 
12243 static void
12244 bxe_fill_report_data(struct bxe_softc            *sc,
12245                      struct bxe_link_report_data *data)
12246 {
12247     uint16_t line_speed = bxe_get_mf_speed(sc);
12248 
12249     memset(data, 0, sizeof(*data));
12250 
12251     /* fill the report data with the effective line speed */
12252     data->line_speed = line_speed;
12253 
12254     /* Link is down */
12255     if (!sc->link_vars.link_up || (sc->flags & BXE_MF_FUNC_DIS)) {
12256         bxe_set_bit(BXE_LINK_REPORT_LINK_DOWN, &data->link_report_flags);
12257     }
12258 
12259     /* Full DUPLEX */
12260     if (sc->link_vars.duplex == DUPLEX_FULL) {
12261         bxe_set_bit(BXE_LINK_REPORT_FULL_DUPLEX, &data->link_report_flags);
12262     }
12263 
12264     /* Rx Flow Control is ON */
12265     if (sc->link_vars.flow_ctrl & ELINK_FLOW_CTRL_RX) {
12266         bxe_set_bit(BXE_LINK_REPORT_RX_FC_ON, &data->link_report_flags);
12267     }
12268 
12269     /* Tx Flow Control is ON */
12270     if (sc->link_vars.flow_ctrl & ELINK_FLOW_CTRL_TX) {
12271         bxe_set_bit(BXE_LINK_REPORT_TX_FC_ON, &data->link_report_flags);
12272     }
12273 }
12274 
12275 /* report link status to OS, should be called under phy_lock */
12276 static void
12277 bxe_link_report_locked(struct bxe_softc *sc)
12278 {
12279     struct bxe_link_report_data cur_data;
12280 
12281     /* reread mf_cfg */
12282     if (IS_PF(sc) && !CHIP_IS_E1(sc)) {
12283         bxe_read_mf_cfg(sc);
12284     }
12285 
12286     /* Read the current link report info */
12287     bxe_fill_report_data(sc, &cur_data);
12288 
12289     /* Don't report link down or exactly the same link status twice */
12290     if (!memcmp(&cur_data, &sc->last_reported_link, sizeof(cur_data)) ||
12291         (bxe_test_bit(BXE_LINK_REPORT_LINK_DOWN,
12292                       &sc->last_reported_link.link_report_flags) &&
12293          bxe_test_bit(BXE_LINK_REPORT_LINK_DOWN,
12294                       &cur_data.link_report_flags))) {
12295         return;
12296     }
12297 
12298     sc->link_cnt++;
12299 
12300     /* report new link params and remember the state for the next time */
12301     memcpy(&sc->last_reported_link, &cur_data, sizeof(cur_data));
12302 
12303     if (bxe_test_bit(BXE_LINK_REPORT_LINK_DOWN,
12304                      &cur_data.link_report_flags)) {
12305         if_link_state_change(sc->ifp, LINK_STATE_DOWN);
12306         BLOGI(sc, "NIC Link is Down\n");
12307     } else {
12308         const char *duplex;
12309         const char *flow;
12310 
12311         if (bxe_test_and_clear_bit(BXE_LINK_REPORT_FULL_DUPLEX,
12312                                    &cur_data.link_report_flags)) {
12313             duplex = "full";
12314         } else {
12315             duplex = "half";
12316         }
12317 
12318         /*
12319          * Handle the FC at the end so that only these flags would be
12320          * possibly set. This way we may easily check if there is no FC
12321          * enabled.
12322          */
12323         if (cur_data.link_report_flags) {
12324             if (bxe_test_bit(BXE_LINK_REPORT_RX_FC_ON,
12325                              &cur_data.link_report_flags) &&
12326                 bxe_test_bit(BXE_LINK_REPORT_TX_FC_ON,
12327                              &cur_data.link_report_flags)) {
12328                 flow = "ON - receive & transmit";
12329             } else if (bxe_test_bit(BXE_LINK_REPORT_RX_FC_ON,
12330                                     &cur_data.link_report_flags) &&
12331                        !bxe_test_bit(BXE_LINK_REPORT_TX_FC_ON,
12332                                      &cur_data.link_report_flags)) {
12333                 flow = "ON - receive";
12334             } else if (!bxe_test_bit(BXE_LINK_REPORT_RX_FC_ON,
12335                                      &cur_data.link_report_flags) &&
12336                        bxe_test_bit(BXE_LINK_REPORT_TX_FC_ON,
12337                                     &cur_data.link_report_flags)) {
12338                 flow = "ON - transmit";
12339             } else {
12340                 flow = "none"; /* possible? */
12341             }
12342         } else {
12343             flow = "none";
12344         }
12345 
12346         if_link_state_change(sc->ifp, LINK_STATE_UP);
12347         BLOGI(sc, "NIC Link is Up, %d Mbps %s duplex, Flow control: %s\n",
12348               cur_data.line_speed, duplex, flow);
12349     }
12350 }
12351 
12352 static void
12353 bxe_link_report(struct bxe_softc *sc)
12354 {
12355     bxe_acquire_phy_lock(sc);
12356     bxe_link_report_locked(sc);
12357     bxe_release_phy_lock(sc);
12358 }
12359 
12360 static void
12361 bxe_link_status_update(struct bxe_softc *sc)
12362 {
12363     if (sc->state != BXE_STATE_OPEN) {
12364         return;
12365     }
12366 
12367 #if 0
12368     /* read updated dcb configuration */
12369     if (IS_PF(sc))
12370         bxe_dcbx_pmf_update(sc);
12371 #endif
12372 
12373     if (IS_PF(sc) && !CHIP_REV_IS_SLOW(sc)) {
12374         elink_link_status_update(&sc->link_params, &sc->link_vars);
12375     } else {
12376         sc->port.supported[0] |= (ELINK_SUPPORTED_10baseT_Half |
12377                                   ELINK_SUPPORTED_10baseT_Full |
12378                                   ELINK_SUPPORTED_100baseT_Half |
12379                                   ELINK_SUPPORTED_100baseT_Full |
12380                                   ELINK_SUPPORTED_1000baseT_Full |
12381                                   ELINK_SUPPORTED_2500baseX_Full |
12382                                   ELINK_SUPPORTED_10000baseT_Full |
12383                                   ELINK_SUPPORTED_TP |
12384                                   ELINK_SUPPORTED_FIBRE |
12385                                   ELINK_SUPPORTED_Autoneg |
12386                                   ELINK_SUPPORTED_Pause |
12387                                   ELINK_SUPPORTED_Asym_Pause);
12388         sc->port.advertising[0] = sc->port.supported[0];
12389 
12390         sc->link_params.sc                = sc;
12391         sc->link_params.port              = SC_PORT(sc);
12392         sc->link_params.req_duplex[0]     = DUPLEX_FULL;
12393         sc->link_params.req_flow_ctrl[0]  = ELINK_FLOW_CTRL_NONE;
12394         sc->link_params.req_line_speed[0] = SPEED_10000;
12395         sc->link_params.speed_cap_mask[0] = 0x7f0000;
12396         sc->link_params.switch_cfg        = ELINK_SWITCH_CFG_10G;
12397 
12398         if (CHIP_REV_IS_FPGA(sc)) {
12399             sc->link_vars.mac_type    = ELINK_MAC_TYPE_EMAC;
12400             sc->link_vars.line_speed  = ELINK_SPEED_1000;
12401             sc->link_vars.link_status = (LINK_STATUS_LINK_UP |
12402                                          LINK_STATUS_SPEED_AND_DUPLEX_1000TFD);
12403         } else {
12404             sc->link_vars.mac_type    = ELINK_MAC_TYPE_BMAC;
12405             sc->link_vars.line_speed  = ELINK_SPEED_10000;
12406             sc->link_vars.link_status = (LINK_STATUS_LINK_UP |
12407                                          LINK_STATUS_SPEED_AND_DUPLEX_10GTFD);
12408         }
12409 
12410         sc->link_vars.link_up = 1;
12411 
12412         sc->link_vars.duplex    = DUPLEX_FULL;
12413         sc->link_vars.flow_ctrl = ELINK_FLOW_CTRL_NONE;
12414 
12415         if (IS_PF(sc)) {
12416             REG_WR(sc, NIG_REG_EGRESS_DRAIN0_MODE + sc->link_params.port*4, 0);
12417             bxe_stats_handle(sc, STATS_EVENT_LINK_UP);
12418             bxe_link_report(sc);
12419         }
12420     }
12421 
12422     if (IS_PF(sc)) {
12423         if (sc->link_vars.link_up) {
12424             bxe_stats_handle(sc, STATS_EVENT_LINK_UP);
12425         } else {
12426             bxe_stats_handle(sc, STATS_EVENT_STOP);
12427         }
12428         bxe_link_report(sc);
12429     } else {
12430         bxe_link_report(sc);
12431         bxe_stats_handle(sc, STATS_EVENT_LINK_UP);
12432     }
12433 }
12434 
12435 static int
12436 bxe_initial_phy_init(struct bxe_softc *sc,
12437                      int              load_mode)
12438 {
12439     int rc, cfg_idx = bxe_get_link_cfg_idx(sc);
12440     uint16_t req_line_speed = sc->link_params.req_line_speed[cfg_idx];
12441     struct elink_params *lp = &sc->link_params;
12442 
12443     bxe_set_requested_fc(sc);
12444 
12445     if (CHIP_REV_IS_SLOW(sc)) {
12446         uint32_t bond = CHIP_BOND_ID(sc);
12447         uint32_t feat = 0;
12448 
12449         if (CHIP_IS_E2(sc) && CHIP_IS_MODE_4_PORT(sc)) {
12450             feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_BMAC;
12451         } else if (bond & 0x4) {
12452             if (CHIP_IS_E3(sc)) {
12453                 feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_XMAC;
12454             } else {
12455                 feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_BMAC;
12456             }
12457         } else if (bond & 0x8) {
12458             if (CHIP_IS_E3(sc)) {
12459                 feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_UMAC;
12460             } else {
12461                 feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_EMAC;
12462             }
12463         }
12464 
12465         /* disable EMAC for E3 and above */
12466         if (bond & 0x2) {
12467             feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_EMAC;
12468         }
12469 
12470         sc->link_params.feature_config_flags |= feat;
12471     }
12472 
12473     bxe_acquire_phy_lock(sc);
12474 
12475     if (load_mode == LOAD_DIAG) {
12476         lp->loopback_mode = ELINK_LOOPBACK_XGXS;
12477         /* Prefer doing PHY loopback at 10G speed, if possible */
12478         if (lp->req_line_speed[cfg_idx] < ELINK_SPEED_10000) {
12479             if (lp->speed_cap_mask[cfg_idx] &
12480                 PORT_HW_CFG_SPEED_CAPABILITY_D0_10G) {
12481                 lp->req_line_speed[cfg_idx] = ELINK_SPEED_10000;
12482             } else {
12483                 lp->req_line_speed[cfg_idx] = ELINK_SPEED_1000;
12484             }
12485         }
12486     }
12487 
12488     if (load_mode == LOAD_LOOPBACK_EXT) {
12489         lp->loopback_mode = ELINK_LOOPBACK_EXT;
12490     }
12491 
12492     rc = elink_phy_init(&sc->link_params, &sc->link_vars);
12493 
12494     bxe_release_phy_lock(sc);
12495 
12496     bxe_calc_fc_adv(sc);
12497 
12498     if (sc->link_vars.link_up) {
12499         bxe_stats_handle(sc, STATS_EVENT_LINK_UP);
12500         bxe_link_report(sc);
12501     }
12502 
12503     if (!CHIP_REV_IS_SLOW(sc)) {
12504         bxe_periodic_start(sc);
12505     }
12506 
12507     sc->link_params.req_line_speed[cfg_idx] = req_line_speed;
12508     return (rc);
12509 }
12510 
12511 /* must be called under IF_ADDR_LOCK */
12512 
12513 static int
12514 bxe_set_mc_list(struct bxe_softc *sc)
12515 {
12516     struct ecore_mcast_ramrod_params rparam = { NULL };
12517     int rc = 0;
12518     int mc_count = 0;
12519     int mcnt, i;
12520     struct ecore_mcast_list_elem *mc_mac, *mc_mac_start;
12521     unsigned char *mta;
12522     if_t ifp = sc->ifp;
12523 
12524     mc_count = if_multiaddr_count(ifp, -1);/* XXX they don't have a limit */
12525     if (!mc_count)
12526         return (0);
12527 
12528     mta = malloc(sizeof(unsigned char) * ETHER_ADDR_LEN *
12529             mc_count, M_DEVBUF, M_NOWAIT);
12530 
12531     if(mta == NULL) {
12532         BLOGE(sc, "Failed to allocate temp mcast list\n");
12533         return (-1);
12534     }
12535     bzero(mta, (sizeof(unsigned char) * ETHER_ADDR_LEN * mc_count));
12536 
12537     mc_mac = malloc(sizeof(*mc_mac) * mc_count, M_DEVBUF, (M_NOWAIT | M_ZERO));
12538     mc_mac_start = mc_mac;
12539 
12540     if (!mc_mac) {
12541         free(mta, M_DEVBUF);
12542         BLOGE(sc, "Failed to allocate temp mcast list\n");
12543         return (-1);
12544     }
12545     bzero(mc_mac, (sizeof(*mc_mac) * mc_count));
12546 
12547     /* mta and mcnt not expected to be  different */
12548     if_multiaddr_array(ifp, mta, &mcnt, mc_count);
12549 
12550 
12551     rparam.mcast_obj = &sc->mcast_obj;
12552     ECORE_LIST_INIT(&rparam.mcast_list);
12553 
12554     for(i=0; i< mcnt; i++) {
12555 
12556         mc_mac->mac = (uint8_t *)(mta + (i * ETHER_ADDR_LEN));
12557         ECORE_LIST_PUSH_TAIL(&mc_mac->link, &rparam.mcast_list);
12558 
12559         BLOGD(sc, DBG_LOAD,
12560               "Setting MCAST %02X:%02X:%02X:%02X:%02X:%02X\n",
12561               mc_mac->mac[0], mc_mac->mac[1], mc_mac->mac[2],
12562               mc_mac->mac[3], mc_mac->mac[4], mc_mac->mac[5]);
12563 
12564         mc_mac++;
12565     }
12566     rparam.mcast_list_len = mc_count;
12567 
12568     BXE_MCAST_LOCK(sc);
12569 
12570     /* first, clear all configured multicast MACs */
12571     rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_DEL);
12572     if (rc < 0) {
12573         BLOGE(sc, "Failed to clear multicast configuration: %d\n", rc);
12574         BXE_MCAST_UNLOCK(sc);
12575     	free(mc_mac_start, M_DEVBUF);
12576         free(mta, M_DEVBUF);
12577         return (rc);
12578     }
12579 
12580     /* Now add the new MACs */
12581     rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_ADD);
12582     if (rc < 0) {
12583         BLOGE(sc, "Failed to set new mcast config (%d)\n", rc);
12584     }
12585 
12586     BXE_MCAST_UNLOCK(sc);
12587 
12588     free(mc_mac_start, M_DEVBUF);
12589     free(mta, M_DEVBUF);
12590 
12591     return (rc);
12592 }
12593 
12594 static int
12595 bxe_set_uc_list(struct bxe_softc *sc)
12596 {
12597     if_t ifp = sc->ifp;
12598     struct ecore_vlan_mac_obj *mac_obj = &sc->sp_objs->mac_obj;
12599     struct ifaddr *ifa;
12600     unsigned long ramrod_flags = 0;
12601     int rc;
12602 
12603 #if __FreeBSD_version < 800000
12604     IF_ADDR_LOCK(ifp);
12605 #else
12606     if_addr_rlock(ifp);
12607 #endif
12608 
12609     /* first schedule a cleanup up of old configuration */
12610     rc = bxe_del_all_macs(sc, mac_obj, ECORE_UC_LIST_MAC, FALSE);
12611     if (rc < 0) {
12612         BLOGE(sc, "Failed to schedule delete of all ETH MACs (%d)\n", rc);
12613 #if __FreeBSD_version < 800000
12614         IF_ADDR_UNLOCK(ifp);
12615 #else
12616         if_addr_runlock(ifp);
12617 #endif
12618         return (rc);
12619     }
12620 
12621     ifa = if_getifaddr(ifp); /* XXX Is this structure */
12622     while (ifa) {
12623         if (ifa->ifa_addr->sa_family != AF_LINK) {
12624             ifa = TAILQ_NEXT(ifa, ifa_link);
12625             continue;
12626         }
12627 
12628         rc = bxe_set_mac_one(sc, (uint8_t *)LLADDR((struct sockaddr_dl *)ifa->ifa_addr),
12629                              mac_obj, TRUE, ECORE_UC_LIST_MAC, &ramrod_flags);
12630         if (rc == -EEXIST) {
12631             BLOGD(sc, DBG_SP, "Failed to schedule ADD operations (EEXIST)\n");
12632             /* do not treat adding same MAC as an error */
12633             rc = 0;
12634         } else if (rc < 0) {
12635             BLOGE(sc, "Failed to schedule ADD operations (%d)\n", rc);
12636 #if __FreeBSD_version < 800000
12637             IF_ADDR_UNLOCK(ifp);
12638 #else
12639             if_addr_runlock(ifp);
12640 #endif
12641             return (rc);
12642         }
12643 
12644         ifa = TAILQ_NEXT(ifa, ifa_link);
12645     }
12646 
12647 #if __FreeBSD_version < 800000
12648     IF_ADDR_UNLOCK(ifp);
12649 #else
12650     if_addr_runlock(ifp);
12651 #endif
12652 
12653     /* Execute the pending commands */
12654     bit_set(&ramrod_flags, RAMROD_CONT);
12655     return (bxe_set_mac_one(sc, NULL, mac_obj, FALSE /* don't care */,
12656                             ECORE_UC_LIST_MAC, &ramrod_flags));
12657 }
12658 
12659 static void
12660 bxe_set_rx_mode(struct bxe_softc *sc)
12661 {
12662     if_t ifp = sc->ifp;
12663     uint32_t rx_mode = BXE_RX_MODE_NORMAL;
12664 
12665     if (sc->state != BXE_STATE_OPEN) {
12666         BLOGD(sc, DBG_SP, "state is %x, returning\n", sc->state);
12667         return;
12668     }
12669 
12670     BLOGD(sc, DBG_SP, "if_flags(ifp)=0x%x\n", if_getflags(sc->ifp));
12671 
12672     if (if_getflags(ifp) & IFF_PROMISC) {
12673         rx_mode = BXE_RX_MODE_PROMISC;
12674     } else if ((if_getflags(ifp) & IFF_ALLMULTI) ||
12675                ((if_getamcount(ifp) > BXE_MAX_MULTICAST) &&
12676                 CHIP_IS_E1(sc))) {
12677         rx_mode = BXE_RX_MODE_ALLMULTI;
12678     } else {
12679         if (IS_PF(sc)) {
12680             /* some multicasts */
12681             if (bxe_set_mc_list(sc) < 0) {
12682                 rx_mode = BXE_RX_MODE_ALLMULTI;
12683             }
12684             if (bxe_set_uc_list(sc) < 0) {
12685                 rx_mode = BXE_RX_MODE_PROMISC;
12686             }
12687         }
12688 #if 0
12689         else {
12690             /*
12691              * Configuring mcast to a VF involves sleeping (when we
12692              * wait for the PF's response). Since this function is
12693              * called from a non sleepable context we must schedule
12694              * a work item for this purpose
12695              */
12696             bxe_set_bit(BXE_SP_RTNL_VFPF_MCAST, &sc->sp_rtnl_state);
12697             schedule_delayed_work(&sc->sp_rtnl_task, 0);
12698         }
12699 #endif
12700     }
12701 
12702     sc->rx_mode = rx_mode;
12703 
12704     /* schedule the rx_mode command */
12705     if (bxe_test_bit(ECORE_FILTER_RX_MODE_PENDING, &sc->sp_state)) {
12706         BLOGD(sc, DBG_LOAD, "Scheduled setting rx_mode with ECORE...\n");
12707         bxe_set_bit(ECORE_FILTER_RX_MODE_SCHED, &sc->sp_state);
12708         return;
12709     }
12710 
12711     if (IS_PF(sc)) {
12712         bxe_set_storm_rx_mode(sc);
12713     }
12714 #if 0
12715     else {
12716         /*
12717          * Configuring mcast to a VF involves sleeping (when we
12718          * wait for the PF's response). Since this function is
12719          * called from a non sleepable context we must schedule
12720          * a work item for this purpose
12721          */
12722         bxe_set_bit(BXE_SP_RTNL_VFPF_STORM_RX_MODE, &sc->sp_rtnl_state);
12723         schedule_delayed_work(&sc->sp_rtnl_task, 0);
12724     }
12725 #endif
12726 
12727 }
12728 
12729 
12730 /* update flags in shmem */
12731 static void
12732 bxe_update_drv_flags(struct bxe_softc *sc,
12733                      uint32_t         flags,
12734                      uint32_t         set)
12735 {
12736     uint32_t drv_flags;
12737 
12738     if (SHMEM2_HAS(sc, drv_flags)) {
12739         bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_DRV_FLAGS);
12740         drv_flags = SHMEM2_RD(sc, drv_flags);
12741 
12742         if (set) {
12743             SET_FLAGS(drv_flags, flags);
12744         } else {
12745             RESET_FLAGS(drv_flags, flags);
12746         }
12747 
12748         SHMEM2_WR(sc, drv_flags, drv_flags);
12749         BLOGD(sc, DBG_LOAD, "drv_flags 0x%08x\n", drv_flags);
12750 
12751         bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_DRV_FLAGS);
12752     }
12753 }
12754 
12755 /* periodic timer callout routine, only runs when the interface is up */
12756 
12757 static void
12758 bxe_periodic_callout_func(void *xsc)
12759 {
12760     struct bxe_softc *sc = (struct bxe_softc *)xsc;
12761     int i;
12762 
12763     if (!BXE_CORE_TRYLOCK(sc)) {
12764         /* just bail and try again next time */
12765 
12766         if ((sc->state == BXE_STATE_OPEN) &&
12767             (atomic_load_acq_long(&sc->periodic_flags) == PERIODIC_GO)) {
12768             /* schedule the next periodic callout */
12769             callout_reset(&sc->periodic_callout, hz,
12770                           bxe_periodic_callout_func, sc);
12771         }
12772 
12773         return;
12774     }
12775 
12776     if ((sc->state != BXE_STATE_OPEN) ||
12777         (atomic_load_acq_long(&sc->periodic_flags) == PERIODIC_STOP)) {
12778         BLOGW(sc, "periodic callout exit (state=0x%x)\n", sc->state);
12779         BXE_CORE_UNLOCK(sc);
12780         return;
12781     }
12782 
12783     /* Check for TX timeouts on any fastpath. */
12784     FOR_EACH_QUEUE(sc, i) {
12785         if (bxe_watchdog(sc, &sc->fp[i]) != 0) {
12786             /* Ruh-Roh, chip was reset! */
12787             break;
12788         }
12789     }
12790 
12791     if (!CHIP_REV_IS_SLOW(sc)) {
12792         /*
12793          * This barrier is needed to ensure the ordering between the writing
12794          * to the sc->port.pmf in the bxe_nic_load() or bxe_pmf_update() and
12795          * the reading here.
12796          */
12797         mb();
12798         if (sc->port.pmf) {
12799 	    bxe_acquire_phy_lock(sc);
12800             elink_period_func(&sc->link_params, &sc->link_vars);
12801 	    bxe_release_phy_lock(sc);
12802         }
12803     }
12804 
12805     if (IS_PF(sc) && !(sc->flags & BXE_NO_PULSE)) {
12806         int mb_idx = SC_FW_MB_IDX(sc);
12807         uint32_t drv_pulse;
12808         uint32_t mcp_pulse;
12809 
12810         ++sc->fw_drv_pulse_wr_seq;
12811         sc->fw_drv_pulse_wr_seq &= DRV_PULSE_SEQ_MASK;
12812 
12813         drv_pulse = sc->fw_drv_pulse_wr_seq;
12814         bxe_drv_pulse(sc);
12815 
12816         mcp_pulse = (SHMEM_RD(sc, func_mb[mb_idx].mcp_pulse_mb) &
12817                      MCP_PULSE_SEQ_MASK);
12818 
12819         /*
12820          * The delta between driver pulse and mcp response should
12821          * be 1 (before mcp response) or 0 (after mcp response).
12822          */
12823         if ((drv_pulse != mcp_pulse) &&
12824             (drv_pulse != ((mcp_pulse + 1) & MCP_PULSE_SEQ_MASK))) {
12825             /* someone lost a heartbeat... */
12826             BLOGE(sc, "drv_pulse (0x%x) != mcp_pulse (0x%x)\n",
12827                   drv_pulse, mcp_pulse);
12828         }
12829     }
12830 
12831     /* state is BXE_STATE_OPEN */
12832     bxe_stats_handle(sc, STATS_EVENT_UPDATE);
12833 
12834 #if 0
12835     /* sample VF bulletin board for new posts from PF */
12836     if (IS_VF(sc)) {
12837         bxe_sample_bulletin(sc);
12838     }
12839 #endif
12840 
12841     BXE_CORE_UNLOCK(sc);
12842 
12843     if ((sc->state == BXE_STATE_OPEN) &&
12844         (atomic_load_acq_long(&sc->periodic_flags) == PERIODIC_GO)) {
12845         /* schedule the next periodic callout */
12846         callout_reset(&sc->periodic_callout, hz,
12847                       bxe_periodic_callout_func, sc);
12848     }
12849 }
12850 
12851 static void
12852 bxe_periodic_start(struct bxe_softc *sc)
12853 {
12854     atomic_store_rel_long(&sc->periodic_flags, PERIODIC_GO);
12855     callout_reset(&sc->periodic_callout, hz, bxe_periodic_callout_func, sc);
12856 }
12857 
12858 static void
12859 bxe_periodic_stop(struct bxe_softc *sc)
12860 {
12861     atomic_store_rel_long(&sc->periodic_flags, PERIODIC_STOP);
12862     callout_drain(&sc->periodic_callout);
12863 }
12864 
12865 /* start the controller */
12866 static __noinline int
12867 bxe_nic_load(struct bxe_softc *sc,
12868              int              load_mode)
12869 {
12870     uint32_t val;
12871     int load_code = 0;
12872     int i, rc = 0;
12873 
12874     BXE_CORE_LOCK_ASSERT(sc);
12875 
12876     BLOGD(sc, DBG_LOAD, "Starting NIC load...\n");
12877 
12878     sc->state = BXE_STATE_OPENING_WAITING_LOAD;
12879 
12880     if (IS_PF(sc)) {
12881         /* must be called before memory allocation and HW init */
12882         bxe_ilt_set_info(sc);
12883     }
12884 
12885     sc->last_reported_link_state = LINK_STATE_UNKNOWN;
12886 
12887     bxe_set_fp_rx_buf_size(sc);
12888 
12889     if (bxe_alloc_fp_buffers(sc) != 0) {
12890         BLOGE(sc, "Failed to allocate fastpath memory\n");
12891         sc->state = BXE_STATE_CLOSED;
12892         rc = ENOMEM;
12893         goto bxe_nic_load_error0;
12894     }
12895 
12896     if (bxe_alloc_mem(sc) != 0) {
12897         sc->state = BXE_STATE_CLOSED;
12898         rc = ENOMEM;
12899         goto bxe_nic_load_error0;
12900     }
12901 
12902     if (bxe_alloc_fw_stats_mem(sc) != 0) {
12903         sc->state = BXE_STATE_CLOSED;
12904         rc = ENOMEM;
12905         goto bxe_nic_load_error0;
12906     }
12907 
12908     if (IS_PF(sc)) {
12909         /* set pf load just before approaching the MCP */
12910         bxe_set_pf_load(sc);
12911 
12912         /* if MCP exists send load request and analyze response */
12913         if (!BXE_NOMCP(sc)) {
12914             /* attempt to load pf */
12915             if (bxe_nic_load_request(sc, &load_code) != 0) {
12916                 sc->state = BXE_STATE_CLOSED;
12917                 rc = ENXIO;
12918                 goto bxe_nic_load_error1;
12919             }
12920 
12921             /* what did the MCP say? */
12922             if (bxe_nic_load_analyze_req(sc, load_code) != 0) {
12923                 bxe_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0);
12924                 sc->state = BXE_STATE_CLOSED;
12925                 rc = ENXIO;
12926                 goto bxe_nic_load_error2;
12927             }
12928         } else {
12929             BLOGI(sc, "Device has no MCP!\n");
12930             load_code = bxe_nic_load_no_mcp(sc);
12931         }
12932 
12933         /* mark PMF if applicable */
12934         bxe_nic_load_pmf(sc, load_code);
12935 
12936         /* Init Function state controlling object */
12937         bxe_init_func_obj(sc);
12938 
12939         /* Initialize HW */
12940         if (bxe_init_hw(sc, load_code) != 0) {
12941             BLOGE(sc, "HW init failed\n");
12942             bxe_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0);
12943             sc->state = BXE_STATE_CLOSED;
12944             rc = ENXIO;
12945             goto bxe_nic_load_error2;
12946         }
12947     }
12948 
12949     /* set ALWAYS_ALIVE bit in shmem */
12950     sc->fw_drv_pulse_wr_seq |= DRV_PULSE_ALWAYS_ALIVE;
12951     bxe_drv_pulse(sc);
12952     sc->flags |= BXE_NO_PULSE;
12953 
12954     /* attach interrupts */
12955     if (bxe_interrupt_attach(sc) != 0) {
12956         sc->state = BXE_STATE_CLOSED;
12957         rc = ENXIO;
12958         goto bxe_nic_load_error2;
12959     }
12960 
12961     bxe_nic_init(sc, load_code);
12962 
12963     /* Init per-function objects */
12964     if (IS_PF(sc)) {
12965         bxe_init_objs(sc);
12966         // XXX bxe_iov_nic_init(sc);
12967 
12968         /* set AFEX default VLAN tag to an invalid value */
12969         sc->devinfo.mf_info.afex_def_vlan_tag = -1;
12970         // XXX bxe_nic_load_afex_dcc(sc, load_code);
12971 
12972         sc->state = BXE_STATE_OPENING_WAITING_PORT;
12973         rc = bxe_func_start(sc);
12974         if (rc) {
12975             BLOGE(sc, "Function start failed!\n");
12976             bxe_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0);
12977             sc->state = BXE_STATE_ERROR;
12978             goto bxe_nic_load_error3;
12979         }
12980 
12981         /* send LOAD_DONE command to MCP */
12982         if (!BXE_NOMCP(sc)) {
12983             load_code = bxe_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0);
12984             if (!load_code) {
12985                 BLOGE(sc, "MCP response failure, aborting\n");
12986                 sc->state = BXE_STATE_ERROR;
12987                 rc = ENXIO;
12988                 goto bxe_nic_load_error3;
12989             }
12990         }
12991 
12992         rc = bxe_setup_leading(sc);
12993         if (rc) {
12994             BLOGE(sc, "Setup leading failed!\n");
12995             sc->state = BXE_STATE_ERROR;
12996             goto bxe_nic_load_error3;
12997         }
12998 
12999         FOR_EACH_NONDEFAULT_ETH_QUEUE(sc, i) {
13000             rc = bxe_setup_queue(sc, &sc->fp[i], FALSE);
13001             if (rc) {
13002                 BLOGE(sc, "Queue(%d) setup failed\n", i);
13003                 sc->state = BXE_STATE_ERROR;
13004                 goto bxe_nic_load_error3;
13005             }
13006         }
13007 
13008         rc = bxe_init_rss_pf(sc);
13009         if (rc) {
13010             BLOGE(sc, "PF RSS init failed\n");
13011             sc->state = BXE_STATE_ERROR;
13012             goto bxe_nic_load_error3;
13013         }
13014     }
13015     /* XXX VF */
13016 #if 0
13017     else { /* VF */
13018         FOR_EACH_ETH_QUEUE(sc, i) {
13019             rc = bxe_vfpf_setup_q(sc, i);
13020             if (rc) {
13021                 BLOGE(sc, "Queue(%d) setup failed\n", i);
13022                 sc->state = BXE_STATE_ERROR;
13023                 goto bxe_nic_load_error3;
13024             }
13025         }
13026     }
13027 #endif
13028 
13029     /* now when Clients are configured we are ready to work */
13030     sc->state = BXE_STATE_OPEN;
13031 
13032     /* Configure a ucast MAC */
13033     if (IS_PF(sc)) {
13034         rc = bxe_set_eth_mac(sc, TRUE);
13035     }
13036 #if 0
13037     else { /* IS_VF(sc) */
13038         rc = bxe_vfpf_set_mac(sc);
13039     }
13040 #endif
13041     if (rc) {
13042         BLOGE(sc, "Setting Ethernet MAC failed\n");
13043         sc->state = BXE_STATE_ERROR;
13044         goto bxe_nic_load_error3;
13045     }
13046 
13047 #if 0
13048     if (IS_PF(sc) && sc->pending_max) {
13049         /* for AFEX */
13050         bxe_update_max_mf_config(sc, sc->pending_max);
13051         sc->pending_max = 0;
13052     }
13053 #endif
13054 
13055     if (sc->port.pmf) {
13056         rc = bxe_initial_phy_init(sc, /* XXX load_mode */LOAD_OPEN);
13057         if (rc) {
13058             sc->state = BXE_STATE_ERROR;
13059             goto bxe_nic_load_error3;
13060         }
13061     }
13062 
13063     sc->link_params.feature_config_flags &=
13064         ~ELINK_FEATURE_CONFIG_BOOT_FROM_SAN;
13065 
13066     /* start fast path */
13067 
13068     /* Initialize Rx filter */
13069     bxe_set_rx_mode(sc);
13070 
13071     /* start the Tx */
13072     switch (/* XXX load_mode */LOAD_OPEN) {
13073     case LOAD_NORMAL:
13074     case LOAD_OPEN:
13075         break;
13076 
13077     case LOAD_DIAG:
13078     case LOAD_LOOPBACK_EXT:
13079         sc->state = BXE_STATE_DIAG;
13080         break;
13081 
13082     default:
13083         break;
13084     }
13085 
13086     if (sc->port.pmf) {
13087         bxe_update_drv_flags(sc, 1 << DRV_FLAGS_PORT_MASK, 0);
13088     } else {
13089         bxe_link_status_update(sc);
13090     }
13091 
13092     /* start the periodic timer callout */
13093     bxe_periodic_start(sc);
13094 
13095     if (IS_PF(sc) && SHMEM2_HAS(sc, drv_capabilities_flag)) {
13096         /* mark driver is loaded in shmem2 */
13097         val = SHMEM2_RD(sc, drv_capabilities_flag[SC_FW_MB_IDX(sc)]);
13098         SHMEM2_WR(sc, drv_capabilities_flag[SC_FW_MB_IDX(sc)],
13099                   (val |
13100                    DRV_FLAGS_CAPABILITIES_LOADED_SUPPORTED |
13101                    DRV_FLAGS_CAPABILITIES_LOADED_L2));
13102     }
13103 
13104     /* wait for all pending SP commands to complete */
13105     if (IS_PF(sc) && !bxe_wait_sp_comp(sc, ~0x0UL)) {
13106         BLOGE(sc, "Timeout waiting for all SPs to complete!\n");
13107         bxe_periodic_stop(sc);
13108         bxe_nic_unload(sc, UNLOAD_CLOSE, FALSE);
13109         return (ENXIO);
13110     }
13111 
13112 #if 0
13113     /* If PMF - send ADMIN DCBX msg to MFW to initiate DCBX FSM */
13114     if (sc->port.pmf && (sc->state != BXE_STATE_DIAG)) {
13115         bxe_dcbx_init(sc, FALSE);
13116     }
13117 #endif
13118 
13119     /* Tell the stack the driver is running! */
13120     if_setdrvflags(sc->ifp, IFF_DRV_RUNNING);
13121 
13122     BLOGD(sc, DBG_LOAD, "NIC successfully loaded\n");
13123 
13124     return (0);
13125 
13126 bxe_nic_load_error3:
13127 
13128     if (IS_PF(sc)) {
13129         bxe_int_disable_sync(sc, 1);
13130 
13131         /* clean out queued objects */
13132         bxe_squeeze_objects(sc);
13133     }
13134 
13135     bxe_interrupt_detach(sc);
13136 
13137 bxe_nic_load_error2:
13138 
13139     if (IS_PF(sc) && !BXE_NOMCP(sc)) {
13140         bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP, 0);
13141         bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_DONE, 0);
13142     }
13143 
13144     sc->port.pmf = 0;
13145 
13146 bxe_nic_load_error1:
13147 
13148     /* clear pf_load status, as it was already set */
13149     if (IS_PF(sc)) {
13150         bxe_clear_pf_load(sc);
13151     }
13152 
13153 bxe_nic_load_error0:
13154 
13155     bxe_free_fw_stats_mem(sc);
13156     bxe_free_fp_buffers(sc);
13157     bxe_free_mem(sc);
13158 
13159     return (rc);
13160 }
13161 
13162 static int
13163 bxe_init_locked(struct bxe_softc *sc)
13164 {
13165     int other_engine = SC_PATH(sc) ? 0 : 1;
13166     uint8_t other_load_status, load_status;
13167     uint8_t global = FALSE;
13168     int rc;
13169 
13170     BXE_CORE_LOCK_ASSERT(sc);
13171 
13172     /* check if the driver is already running */
13173     if (if_getdrvflags(sc->ifp) & IFF_DRV_RUNNING) {
13174         BLOGD(sc, DBG_LOAD, "Init called while driver is running!\n");
13175         return (0);
13176     }
13177 
13178     bxe_set_power_state(sc, PCI_PM_D0);
13179 
13180     /*
13181      * If parity occurred during the unload, then attentions and/or
13182      * RECOVERY_IN_PROGRES may still be set. If so we want the first function
13183      * loaded on the current engine to complete the recovery. Parity recovery
13184      * is only relevant for PF driver.
13185      */
13186     if (IS_PF(sc)) {
13187         other_load_status = bxe_get_load_status(sc, other_engine);
13188         load_status = bxe_get_load_status(sc, SC_PATH(sc));
13189 
13190         if (!bxe_reset_is_done(sc, SC_PATH(sc)) ||
13191             bxe_chk_parity_attn(sc, &global, TRUE)) {
13192             do {
13193                 /*
13194                  * If there are attentions and they are in global blocks, set
13195                  * the GLOBAL_RESET bit regardless whether it will be this
13196                  * function that will complete the recovery or not.
13197                  */
13198                 if (global) {
13199                     bxe_set_reset_global(sc);
13200                 }
13201 
13202                 /*
13203                  * Only the first function on the current engine should try
13204                  * to recover in open. In case of attentions in global blocks
13205                  * only the first in the chip should try to recover.
13206                  */
13207                 if ((!load_status && (!global || !other_load_status)) &&
13208                     bxe_trylock_leader_lock(sc) && !bxe_leader_reset(sc)) {
13209                     BLOGI(sc, "Recovered during init\n");
13210                     break;
13211                 }
13212 
13213                 /* recovery has failed... */
13214                 bxe_set_power_state(sc, PCI_PM_D3hot);
13215                 sc->recovery_state = BXE_RECOVERY_FAILED;
13216 
13217                 BLOGE(sc, "Recovery flow hasn't properly "
13218                           "completed yet, try again later. "
13219                           "If you still see this message after a "
13220                           "few retries then power cycle is required.\n");
13221 
13222                 rc = ENXIO;
13223                 goto bxe_init_locked_done;
13224             } while (0);
13225         }
13226     }
13227 
13228     sc->recovery_state = BXE_RECOVERY_DONE;
13229 
13230     rc = bxe_nic_load(sc, LOAD_OPEN);
13231 
13232 bxe_init_locked_done:
13233 
13234     if (rc) {
13235         /* Tell the stack the driver is NOT running! */
13236         BLOGE(sc, "Initialization failed, "
13237                   "stack notified driver is NOT running!\n");
13238 	if_setdrvflagbits(sc->ifp, 0, IFF_DRV_RUNNING);
13239     }
13240 
13241     return (rc);
13242 }
13243 
13244 static int
13245 bxe_stop_locked(struct bxe_softc *sc)
13246 {
13247     BXE_CORE_LOCK_ASSERT(sc);
13248     return (bxe_nic_unload(sc, UNLOAD_NORMAL, TRUE));
13249 }
13250 
13251 /*
13252  * Handles controller initialization when called from an unlocked routine.
13253  * ifconfig calls this function.
13254  *
13255  * Returns:
13256  *   void
13257  */
13258 static void
13259 bxe_init(void *xsc)
13260 {
13261     struct bxe_softc *sc = (struct bxe_softc *)xsc;
13262 
13263     BXE_CORE_LOCK(sc);
13264     bxe_init_locked(sc);
13265     BXE_CORE_UNLOCK(sc);
13266 }
13267 
13268 static int
13269 bxe_init_ifnet(struct bxe_softc *sc)
13270 {
13271     if_t ifp;
13272     int capabilities;
13273 
13274     /* ifconfig entrypoint for media type/status reporting */
13275     ifmedia_init(&sc->ifmedia, IFM_IMASK,
13276                  bxe_ifmedia_update,
13277                  bxe_ifmedia_status);
13278 
13279     /* set the default interface values */
13280     ifmedia_add(&sc->ifmedia, (IFM_ETHER | IFM_FDX | sc->media), 0, NULL);
13281     ifmedia_add(&sc->ifmedia, (IFM_ETHER | IFM_AUTO), 0, NULL);
13282     ifmedia_set(&sc->ifmedia, (IFM_ETHER | IFM_AUTO));
13283 
13284     sc->ifmedia.ifm_media = sc->ifmedia.ifm_cur->ifm_media; /* XXX ? */
13285 
13286     /* allocate the ifnet structure */
13287     if ((ifp = if_gethandle(IFT_ETHER)) == NULL) {
13288         BLOGE(sc, "Interface allocation failed!\n");
13289         return (ENXIO);
13290     }
13291 
13292     if_setsoftc(ifp, sc);
13293     if_initname(ifp, device_get_name(sc->dev), device_get_unit(sc->dev));
13294     if_setflags(ifp, (IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST));
13295     if_setioctlfn(ifp, bxe_ioctl);
13296     if_setstartfn(ifp, bxe_tx_start);
13297     if_setgetcounterfn(ifp, bxe_get_counter);
13298 #if __FreeBSD_version >= 800000
13299     if_settransmitfn(ifp, bxe_tx_mq_start);
13300     if_setqflushfn(ifp, bxe_mq_flush);
13301 #endif
13302 #ifdef FreeBSD8_0
13303     if_settimer(ifp, 0);
13304 #endif
13305     if_setinitfn(ifp, bxe_init);
13306     if_setmtu(ifp, sc->mtu);
13307     if_sethwassist(ifp, (CSUM_IP      |
13308                         CSUM_TCP      |
13309                         CSUM_UDP      |
13310                         CSUM_TSO      |
13311                         CSUM_TCP_IPV6 |
13312                         CSUM_UDP_IPV6));
13313 
13314     capabilities =
13315 #if __FreeBSD_version < 700000
13316         (IFCAP_VLAN_MTU       |
13317          IFCAP_VLAN_HWTAGGING |
13318          IFCAP_HWCSUM         |
13319          IFCAP_JUMBO_MTU      |
13320          IFCAP_LRO);
13321 #else
13322         (IFCAP_VLAN_MTU       |
13323          IFCAP_VLAN_HWTAGGING |
13324          IFCAP_VLAN_HWTSO     |
13325          IFCAP_VLAN_HWFILTER  |
13326          IFCAP_VLAN_HWCSUM    |
13327          IFCAP_HWCSUM         |
13328          IFCAP_JUMBO_MTU      |
13329          IFCAP_LRO            |
13330          IFCAP_TSO4           |
13331          IFCAP_TSO6           |
13332          IFCAP_WOL_MAGIC);
13333 #endif
13334     if_setcapabilitiesbit(ifp, capabilities, 0); /* XXX */
13335     if_setbaudrate(ifp, IF_Gbps(10));
13336 /* XXX */
13337     if_setsendqlen(ifp, sc->tx_ring_size);
13338     if_setsendqready(ifp);
13339 /* XXX */
13340 
13341     sc->ifp = ifp;
13342 
13343     /* attach to the Ethernet interface list */
13344     ether_ifattach(ifp, sc->link_params.mac_addr);
13345 
13346     return (0);
13347 }
13348 
13349 static void
13350 bxe_deallocate_bars(struct bxe_softc *sc)
13351 {
13352     int i;
13353 
13354     for (i = 0; i < MAX_BARS; i++) {
13355         if (sc->bar[i].resource != NULL) {
13356             bus_release_resource(sc->dev,
13357                                  SYS_RES_MEMORY,
13358                                  sc->bar[i].rid,
13359                                  sc->bar[i].resource);
13360             BLOGD(sc, DBG_LOAD, "Released PCI BAR%d [%02x] memory\n",
13361                   i, PCIR_BAR(i));
13362         }
13363     }
13364 }
13365 
13366 static int
13367 bxe_allocate_bars(struct bxe_softc *sc)
13368 {
13369     u_int flags;
13370     int i;
13371 
13372     memset(sc->bar, 0, sizeof(sc->bar));
13373 
13374     for (i = 0; i < MAX_BARS; i++) {
13375 
13376         /* memory resources reside at BARs 0, 2, 4 */
13377         /* Run `pciconf -lb` to see mappings */
13378         if ((i != 0) && (i != 2) && (i != 4)) {
13379             continue;
13380         }
13381 
13382         sc->bar[i].rid = PCIR_BAR(i);
13383 
13384         flags = RF_ACTIVE;
13385         if (i == 0) {
13386             flags |= RF_SHAREABLE;
13387         }
13388 
13389         if ((sc->bar[i].resource =
13390              bus_alloc_resource_any(sc->dev,
13391                                     SYS_RES_MEMORY,
13392                                     &sc->bar[i].rid,
13393                                     flags)) == NULL) {
13394 #if 0
13395             /* BAR4 doesn't exist for E1 */
13396             BLOGE(sc, "PCI BAR%d [%02x] memory allocation failed\n",
13397                   i, PCIR_BAR(i));
13398 #endif
13399             return (0);
13400         }
13401 
13402         sc->bar[i].tag    = rman_get_bustag(sc->bar[i].resource);
13403         sc->bar[i].handle = rman_get_bushandle(sc->bar[i].resource);
13404         sc->bar[i].kva    = (vm_offset_t)rman_get_virtual(sc->bar[i].resource);
13405 
13406         BLOGI(sc, "PCI BAR%d [%02x] memory allocated: %p-%p (%ld) -> %p\n",
13407               i, PCIR_BAR(i),
13408               (void *)rman_get_start(sc->bar[i].resource),
13409               (void *)rman_get_end(sc->bar[i].resource),
13410               rman_get_size(sc->bar[i].resource),
13411               (void *)sc->bar[i].kva);
13412     }
13413 
13414     return (0);
13415 }
13416 
13417 static void
13418 bxe_get_function_num(struct bxe_softc *sc)
13419 {
13420     uint32_t val = 0;
13421 
13422     /*
13423      * Read the ME register to get the function number. The ME register
13424      * holds the relative-function number and absolute-function number. The
13425      * absolute-function number appears only in E2 and above. Before that
13426      * these bits always contained zero, therefore we cannot blindly use them.
13427      */
13428 
13429     val = REG_RD(sc, BAR_ME_REGISTER);
13430 
13431     sc->pfunc_rel =
13432         (uint8_t)((val & ME_REG_PF_NUM) >> ME_REG_PF_NUM_SHIFT);
13433     sc->path_id =
13434         (uint8_t)((val & ME_REG_ABS_PF_NUM) >> ME_REG_ABS_PF_NUM_SHIFT) & 1;
13435 
13436     if (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) {
13437         sc->pfunc_abs = ((sc->pfunc_rel << 1) | sc->path_id);
13438     } else {
13439         sc->pfunc_abs = (sc->pfunc_rel | sc->path_id);
13440     }
13441 
13442     BLOGD(sc, DBG_LOAD,
13443           "Relative function %d, Absolute function %d, Path %d\n",
13444           sc->pfunc_rel, sc->pfunc_abs, sc->path_id);
13445 }
13446 
13447 static uint32_t
13448 bxe_get_shmem_mf_cfg_base(struct bxe_softc *sc)
13449 {
13450     uint32_t shmem2_size;
13451     uint32_t offset;
13452     uint32_t mf_cfg_offset_value;
13453 
13454     /* Non 57712 */
13455     offset = (SHMEM_RD(sc, func_mb) +
13456               (MAX_FUNC_NUM * sizeof(struct drv_func_mb)));
13457 
13458     /* 57712 plus */
13459     if (sc->devinfo.shmem2_base != 0) {
13460         shmem2_size = SHMEM2_RD(sc, size);
13461         if (shmem2_size > offsetof(struct shmem2_region, mf_cfg_addr)) {
13462             mf_cfg_offset_value = SHMEM2_RD(sc, mf_cfg_addr);
13463             if (SHMEM_MF_CFG_ADDR_NONE != mf_cfg_offset_value) {
13464                 offset = mf_cfg_offset_value;
13465             }
13466         }
13467     }
13468 
13469     return (offset);
13470 }
13471 
13472 static uint32_t
13473 bxe_pcie_capability_read(struct bxe_softc *sc,
13474                          int    reg,
13475                          int    width)
13476 {
13477     int pcie_reg;
13478 
13479     /* ensure PCIe capability is enabled */
13480     if (pci_find_cap(sc->dev, PCIY_EXPRESS, &pcie_reg) == 0) {
13481         if (pcie_reg != 0) {
13482             BLOGD(sc, DBG_LOAD, "PCIe capability at 0x%04x\n", pcie_reg);
13483             return (pci_read_config(sc->dev, (pcie_reg + reg), width));
13484         }
13485     }
13486 
13487     BLOGE(sc, "PCIe capability NOT FOUND!!!\n");
13488 
13489     return (0);
13490 }
13491 
13492 static uint8_t
13493 bxe_is_pcie_pending(struct bxe_softc *sc)
13494 {
13495     return (bxe_pcie_capability_read(sc, PCIR_EXPRESS_DEVICE_STA, 2) &
13496             PCIM_EXP_STA_TRANSACTION_PND);
13497 }
13498 
13499 /*
13500  * Walk the PCI capabiites list for the device to find what features are
13501  * supported. These capabilites may be enabled/disabled by firmware so it's
13502  * best to walk the list rather than make assumptions.
13503  */
13504 static void
13505 bxe_probe_pci_caps(struct bxe_softc *sc)
13506 {
13507     uint16_t link_status;
13508     int reg;
13509 
13510     /* check if PCI Power Management is enabled */
13511     if (pci_find_cap(sc->dev, PCIY_PMG, &reg) == 0) {
13512         if (reg != 0) {
13513             BLOGD(sc, DBG_LOAD, "Found PM capability at 0x%04x\n", reg);
13514 
13515             sc->devinfo.pcie_cap_flags |= BXE_PM_CAPABLE_FLAG;
13516             sc->devinfo.pcie_pm_cap_reg = (uint16_t)reg;
13517         }
13518     }
13519 
13520     link_status = bxe_pcie_capability_read(sc, PCIR_EXPRESS_LINK_STA, 2);
13521 
13522     /* handle PCIe 2.0 workarounds for 57710 */
13523     if (CHIP_IS_E1(sc)) {
13524         /* workaround for 57710 errata E4_57710_27462 */
13525         sc->devinfo.pcie_link_speed =
13526             (REG_RD(sc, 0x3d04) & (1 << 24)) ? 2 : 1;
13527 
13528         /* workaround for 57710 errata E4_57710_27488 */
13529         sc->devinfo.pcie_link_width =
13530             ((link_status & PCIM_LINK_STA_WIDTH) >> 4);
13531         if (sc->devinfo.pcie_link_speed > 1) {
13532             sc->devinfo.pcie_link_width =
13533                 ((link_status & PCIM_LINK_STA_WIDTH) >> 4) >> 1;
13534         }
13535     } else {
13536         sc->devinfo.pcie_link_speed =
13537             (link_status & PCIM_LINK_STA_SPEED);
13538         sc->devinfo.pcie_link_width =
13539             ((link_status & PCIM_LINK_STA_WIDTH) >> 4);
13540     }
13541 
13542     BLOGD(sc, DBG_LOAD, "PCIe link speed=%d width=%d\n",
13543           sc->devinfo.pcie_link_speed, sc->devinfo.pcie_link_width);
13544 
13545     sc->devinfo.pcie_cap_flags |= BXE_PCIE_CAPABLE_FLAG;
13546     sc->devinfo.pcie_pcie_cap_reg = (uint16_t)reg;
13547 
13548     /* check if MSI capability is enabled */
13549     if (pci_find_cap(sc->dev, PCIY_MSI, &reg) == 0) {
13550         if (reg != 0) {
13551             BLOGD(sc, DBG_LOAD, "Found MSI capability at 0x%04x\n", reg);
13552 
13553             sc->devinfo.pcie_cap_flags |= BXE_MSI_CAPABLE_FLAG;
13554             sc->devinfo.pcie_msi_cap_reg = (uint16_t)reg;
13555         }
13556     }
13557 
13558     /* check if MSI-X capability is enabled */
13559     if (pci_find_cap(sc->dev, PCIY_MSIX, &reg) == 0) {
13560         if (reg != 0) {
13561             BLOGD(sc, DBG_LOAD, "Found MSI-X capability at 0x%04x\n", reg);
13562 
13563             sc->devinfo.pcie_cap_flags |= BXE_MSIX_CAPABLE_FLAG;
13564             sc->devinfo.pcie_msix_cap_reg = (uint16_t)reg;
13565         }
13566     }
13567 }
13568 
13569 static int
13570 bxe_get_shmem_mf_cfg_info_sd(struct bxe_softc *sc)
13571 {
13572     struct bxe_mf_info *mf_info = &sc->devinfo.mf_info;
13573     uint32_t val;
13574 
13575     /* get the outer vlan if we're in switch-dependent mode */
13576 
13577     val = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].e1hov_tag);
13578     mf_info->ext_id = (uint16_t)val;
13579 
13580     mf_info->multi_vnics_mode = 1;
13581 
13582     if (!VALID_OVLAN(mf_info->ext_id)) {
13583         BLOGE(sc, "Invalid VLAN (%d)\n", mf_info->ext_id);
13584         return (1);
13585     }
13586 
13587     /* get the capabilities */
13588     if ((mf_info->mf_config[SC_VN(sc)] & FUNC_MF_CFG_PROTOCOL_MASK) ==
13589         FUNC_MF_CFG_PROTOCOL_ISCSI) {
13590         mf_info->mf_protos_supported |= MF_PROTO_SUPPORT_ISCSI;
13591     } else if ((mf_info->mf_config[SC_VN(sc)] & FUNC_MF_CFG_PROTOCOL_MASK) ==
13592                FUNC_MF_CFG_PROTOCOL_FCOE) {
13593         mf_info->mf_protos_supported |= MF_PROTO_SUPPORT_FCOE;
13594     } else {
13595         mf_info->mf_protos_supported |= MF_PROTO_SUPPORT_ETHERNET;
13596     }
13597 
13598     mf_info->vnics_per_port =
13599         (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) ? 2 : 4;
13600 
13601     return (0);
13602 }
13603 
13604 static uint32_t
13605 bxe_get_shmem_ext_proto_support_flags(struct bxe_softc *sc)
13606 {
13607     uint32_t retval = 0;
13608     uint32_t val;
13609 
13610     val = MFCFG_RD(sc, func_ext_config[SC_ABS_FUNC(sc)].func_cfg);
13611 
13612     if (val & MACP_FUNC_CFG_FLAGS_ENABLED) {
13613         if (val & MACP_FUNC_CFG_FLAGS_ETHERNET) {
13614             retval |= MF_PROTO_SUPPORT_ETHERNET;
13615         }
13616         if (val & MACP_FUNC_CFG_FLAGS_ISCSI_OFFLOAD) {
13617             retval |= MF_PROTO_SUPPORT_ISCSI;
13618         }
13619         if (val & MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD) {
13620             retval |= MF_PROTO_SUPPORT_FCOE;
13621         }
13622     }
13623 
13624     return (retval);
13625 }
13626 
13627 static int
13628 bxe_get_shmem_mf_cfg_info_si(struct bxe_softc *sc)
13629 {
13630     struct bxe_mf_info *mf_info = &sc->devinfo.mf_info;
13631     uint32_t val;
13632 
13633     /*
13634      * There is no outer vlan if we're in switch-independent mode.
13635      * If the mac is valid then assume multi-function.
13636      */
13637 
13638     val = MFCFG_RD(sc, func_ext_config[SC_ABS_FUNC(sc)].func_cfg);
13639 
13640     mf_info->multi_vnics_mode = ((val & MACP_FUNC_CFG_FLAGS_MASK) != 0);
13641 
13642     mf_info->mf_protos_supported = bxe_get_shmem_ext_proto_support_flags(sc);
13643 
13644     mf_info->vnics_per_port =
13645         (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) ? 2 : 4;
13646 
13647     return (0);
13648 }
13649 
13650 static int
13651 bxe_get_shmem_mf_cfg_info_niv(struct bxe_softc *sc)
13652 {
13653     struct bxe_mf_info *mf_info = &sc->devinfo.mf_info;
13654     uint32_t e1hov_tag;
13655     uint32_t func_config;
13656     uint32_t niv_config;
13657 
13658     mf_info->multi_vnics_mode = 1;
13659 
13660     e1hov_tag   = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].e1hov_tag);
13661     func_config = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].config);
13662     niv_config  = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].afex_config);
13663 
13664     mf_info->ext_id =
13665         (uint16_t)((e1hov_tag & FUNC_MF_CFG_E1HOV_TAG_MASK) >>
13666                    FUNC_MF_CFG_E1HOV_TAG_SHIFT);
13667 
13668     mf_info->default_vlan =
13669         (uint16_t)((e1hov_tag & FUNC_MF_CFG_AFEX_VLAN_MASK) >>
13670                    FUNC_MF_CFG_AFEX_VLAN_SHIFT);
13671 
13672     mf_info->niv_allowed_priorities =
13673         (uint8_t)((niv_config & FUNC_MF_CFG_AFEX_COS_FILTER_MASK) >>
13674                   FUNC_MF_CFG_AFEX_COS_FILTER_SHIFT);
13675 
13676     mf_info->niv_default_cos =
13677         (uint8_t)((func_config & FUNC_MF_CFG_TRANSMIT_PRIORITY_MASK) >>
13678                   FUNC_MF_CFG_TRANSMIT_PRIORITY_SHIFT);
13679 
13680     mf_info->afex_vlan_mode =
13681         ((niv_config & FUNC_MF_CFG_AFEX_VLAN_MODE_MASK) >>
13682          FUNC_MF_CFG_AFEX_VLAN_MODE_SHIFT);
13683 
13684     mf_info->niv_mba_enabled =
13685         ((niv_config & FUNC_MF_CFG_AFEX_MBA_ENABLED_MASK) >>
13686          FUNC_MF_CFG_AFEX_MBA_ENABLED_SHIFT);
13687 
13688     mf_info->mf_protos_supported = bxe_get_shmem_ext_proto_support_flags(sc);
13689 
13690     mf_info->vnics_per_port =
13691         (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) ? 2 : 4;
13692 
13693     return (0);
13694 }
13695 
13696 static int
13697 bxe_check_valid_mf_cfg(struct bxe_softc *sc)
13698 {
13699     struct bxe_mf_info *mf_info = &sc->devinfo.mf_info;
13700     uint32_t mf_cfg1;
13701     uint32_t mf_cfg2;
13702     uint32_t ovlan1;
13703     uint32_t ovlan2;
13704     uint8_t i, j;
13705 
13706     BLOGD(sc, DBG_LOAD, "MF config parameters for function %d\n",
13707           SC_PORT(sc));
13708     BLOGD(sc, DBG_LOAD, "\tmf_config=0x%x\n",
13709           mf_info->mf_config[SC_VN(sc)]);
13710     BLOGD(sc, DBG_LOAD, "\tmulti_vnics_mode=%d\n",
13711           mf_info->multi_vnics_mode);
13712     BLOGD(sc, DBG_LOAD, "\tvnics_per_port=%d\n",
13713           mf_info->vnics_per_port);
13714     BLOGD(sc, DBG_LOAD, "\tovlan/vifid=%d\n",
13715           mf_info->ext_id);
13716     BLOGD(sc, DBG_LOAD, "\tmin_bw=%d/%d/%d/%d\n",
13717           mf_info->min_bw[0], mf_info->min_bw[1],
13718           mf_info->min_bw[2], mf_info->min_bw[3]);
13719     BLOGD(sc, DBG_LOAD, "\tmax_bw=%d/%d/%d/%d\n",
13720           mf_info->max_bw[0], mf_info->max_bw[1],
13721           mf_info->max_bw[2], mf_info->max_bw[3]);
13722     BLOGD(sc, DBG_LOAD, "\tmac_addr: %s\n",
13723           sc->mac_addr_str);
13724 
13725     /* various MF mode sanity checks... */
13726 
13727     if (mf_info->mf_config[SC_VN(sc)] & FUNC_MF_CFG_FUNC_HIDE) {
13728         BLOGE(sc, "Enumerated function %d is marked as hidden\n",
13729               SC_PORT(sc));
13730         return (1);
13731     }
13732 
13733     if ((mf_info->vnics_per_port > 1) && !mf_info->multi_vnics_mode) {
13734         BLOGE(sc, "vnics_per_port=%d multi_vnics_mode=%d\n",
13735               mf_info->vnics_per_port, mf_info->multi_vnics_mode);
13736         return (1);
13737     }
13738 
13739     if (mf_info->mf_mode == MULTI_FUNCTION_SD) {
13740         /* vnic id > 0 must have valid ovlan in switch-dependent mode */
13741         if ((SC_VN(sc) > 0) && !VALID_OVLAN(OVLAN(sc))) {
13742             BLOGE(sc, "mf_mode=SD vnic_id=%d ovlan=%d\n",
13743                   SC_VN(sc), OVLAN(sc));
13744             return (1);
13745         }
13746 
13747         if (!VALID_OVLAN(OVLAN(sc)) && mf_info->multi_vnics_mode) {
13748             BLOGE(sc, "mf_mode=SD multi_vnics_mode=%d ovlan=%d\n",
13749                   mf_info->multi_vnics_mode, OVLAN(sc));
13750             return (1);
13751         }
13752 
13753         /*
13754          * Verify all functions are either MF or SF mode. If MF, make sure
13755          * sure that all non-hidden functions have a valid ovlan. If SF,
13756          * make sure that all non-hidden functions have an invalid ovlan.
13757          */
13758         FOREACH_ABS_FUNC_IN_PORT(sc, i) {
13759             mf_cfg1 = MFCFG_RD(sc, func_mf_config[i].config);
13760             ovlan1  = MFCFG_RD(sc, func_mf_config[i].e1hov_tag);
13761             if (!(mf_cfg1 & FUNC_MF_CFG_FUNC_HIDE) &&
13762                 (((mf_info->multi_vnics_mode) && !VALID_OVLAN(ovlan1)) ||
13763                  ((!mf_info->multi_vnics_mode) && VALID_OVLAN(ovlan1)))) {
13764                 BLOGE(sc, "mf_mode=SD function %d MF config "
13765                           "mismatch, multi_vnics_mode=%d ovlan=%d\n",
13766                       i, mf_info->multi_vnics_mode, ovlan1);
13767                 return (1);
13768             }
13769         }
13770 
13771         /* Verify all funcs on the same port each have a different ovlan. */
13772         FOREACH_ABS_FUNC_IN_PORT(sc, i) {
13773             mf_cfg1 = MFCFG_RD(sc, func_mf_config[i].config);
13774             ovlan1  = MFCFG_RD(sc, func_mf_config[i].e1hov_tag);
13775             /* iterate from the next function on the port to the max func */
13776             for (j = i + 2; j < MAX_FUNC_NUM; j += 2) {
13777                 mf_cfg2 = MFCFG_RD(sc, func_mf_config[j].config);
13778                 ovlan2  = MFCFG_RD(sc, func_mf_config[j].e1hov_tag);
13779                 if (!(mf_cfg1 & FUNC_MF_CFG_FUNC_HIDE) &&
13780                     VALID_OVLAN(ovlan1) &&
13781                     !(mf_cfg2 & FUNC_MF_CFG_FUNC_HIDE) &&
13782                     VALID_OVLAN(ovlan2) &&
13783                     (ovlan1 == ovlan2)) {
13784                     BLOGE(sc, "mf_mode=SD functions %d and %d "
13785                               "have the same ovlan (%d)\n",
13786                           i, j, ovlan1);
13787                     return (1);
13788                 }
13789             }
13790         }
13791     } /* MULTI_FUNCTION_SD */
13792 
13793     return (0);
13794 }
13795 
13796 static int
13797 bxe_get_mf_cfg_info(struct bxe_softc *sc)
13798 {
13799     struct bxe_mf_info *mf_info = &sc->devinfo.mf_info;
13800     uint32_t val, mac_upper;
13801     uint8_t i, vnic;
13802 
13803     /* initialize mf_info defaults */
13804     mf_info->vnics_per_port   = 1;
13805     mf_info->multi_vnics_mode = FALSE;
13806     mf_info->path_has_ovlan   = FALSE;
13807     mf_info->mf_mode          = SINGLE_FUNCTION;
13808 
13809     if (!CHIP_IS_MF_CAP(sc)) {
13810         return (0);
13811     }
13812 
13813     if (sc->devinfo.mf_cfg_base == SHMEM_MF_CFG_ADDR_NONE) {
13814         BLOGE(sc, "Invalid mf_cfg_base!\n");
13815         return (1);
13816     }
13817 
13818     /* get the MF mode (switch dependent / independent / single-function) */
13819 
13820     val = SHMEM_RD(sc, dev_info.shared_feature_config.config);
13821 
13822     switch (val & SHARED_FEAT_CFG_FORCE_SF_MODE_MASK)
13823     {
13824     case SHARED_FEAT_CFG_FORCE_SF_MODE_SWITCH_INDEPT:
13825 
13826         mac_upper = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].mac_upper);
13827 
13828         /* check for legal upper mac bytes */
13829         if (mac_upper != FUNC_MF_CFG_UPPERMAC_DEFAULT) {
13830             mf_info->mf_mode = MULTI_FUNCTION_SI;
13831         } else {
13832             BLOGE(sc, "Invalid config for Switch Independent mode\n");
13833         }
13834 
13835         break;
13836 
13837     case SHARED_FEAT_CFG_FORCE_SF_MODE_MF_ALLOWED:
13838     case SHARED_FEAT_CFG_FORCE_SF_MODE_SPIO4:
13839 
13840         /* get outer vlan configuration */
13841         val = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].e1hov_tag);
13842 
13843         if ((val & FUNC_MF_CFG_E1HOV_TAG_MASK) !=
13844             FUNC_MF_CFG_E1HOV_TAG_DEFAULT) {
13845             mf_info->mf_mode = MULTI_FUNCTION_SD;
13846         } else {
13847             BLOGE(sc, "Invalid config for Switch Dependent mode\n");
13848         }
13849 
13850         break;
13851 
13852     case SHARED_FEAT_CFG_FORCE_SF_MODE_FORCED_SF:
13853 
13854         /* not in MF mode, vnics_per_port=1 and multi_vnics_mode=FALSE */
13855         return (0);
13856 
13857     case SHARED_FEAT_CFG_FORCE_SF_MODE_AFEX_MODE:
13858 
13859         /*
13860          * Mark MF mode as NIV if MCP version includes NPAR-SD support
13861          * and the MAC address is valid.
13862          */
13863         mac_upper = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].mac_upper);
13864 
13865         if ((SHMEM2_HAS(sc, afex_driver_support)) &&
13866             (mac_upper != FUNC_MF_CFG_UPPERMAC_DEFAULT)) {
13867             mf_info->mf_mode = MULTI_FUNCTION_AFEX;
13868         } else {
13869             BLOGE(sc, "Invalid config for AFEX mode\n");
13870         }
13871 
13872         break;
13873 
13874     default:
13875 
13876         BLOGE(sc, "Unknown MF mode (0x%08x)\n",
13877               (val & SHARED_FEAT_CFG_FORCE_SF_MODE_MASK));
13878 
13879         return (1);
13880     }
13881 
13882     /* set path mf_mode (which could be different than function mf_mode) */
13883     if (mf_info->mf_mode == MULTI_FUNCTION_SD) {
13884         mf_info->path_has_ovlan = TRUE;
13885     } else if (mf_info->mf_mode == SINGLE_FUNCTION) {
13886         /*
13887          * Decide on path multi vnics mode. If we're not in MF mode and in
13888          * 4-port mode, this is good enough to check vnic-0 of the other port
13889          * on the same path
13890          */
13891         if (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) {
13892             uint8_t other_port = !(PORT_ID(sc) & 1);
13893             uint8_t abs_func_other_port = (SC_PATH(sc) + (2 * other_port));
13894 
13895             val = MFCFG_RD(sc, func_mf_config[abs_func_other_port].e1hov_tag);
13896 
13897             mf_info->path_has_ovlan = VALID_OVLAN((uint16_t)val) ? 1 : 0;
13898         }
13899     }
13900 
13901     if (mf_info->mf_mode == SINGLE_FUNCTION) {
13902         /* invalid MF config */
13903         if (SC_VN(sc) >= 1) {
13904             BLOGE(sc, "VNIC ID >= 1 in SF mode\n");
13905             return (1);
13906         }
13907 
13908         return (0);
13909     }
13910 
13911     /* get the MF configuration */
13912     mf_info->mf_config[SC_VN(sc)] =
13913         MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].config);
13914 
13915     switch(mf_info->mf_mode)
13916     {
13917     case MULTI_FUNCTION_SD:
13918 
13919         bxe_get_shmem_mf_cfg_info_sd(sc);
13920         break;
13921 
13922     case MULTI_FUNCTION_SI:
13923 
13924         bxe_get_shmem_mf_cfg_info_si(sc);
13925         break;
13926 
13927     case MULTI_FUNCTION_AFEX:
13928 
13929         bxe_get_shmem_mf_cfg_info_niv(sc);
13930         break;
13931 
13932     default:
13933 
13934         BLOGE(sc, "Get MF config failed (mf_mode=0x%08x)\n",
13935               mf_info->mf_mode);
13936         return (1);
13937     }
13938 
13939     /* get the congestion management parameters */
13940 
13941     vnic = 0;
13942     FOREACH_ABS_FUNC_IN_PORT(sc, i) {
13943         /* get min/max bw */
13944         val = MFCFG_RD(sc, func_mf_config[i].config);
13945         mf_info->min_bw[vnic] =
13946             ((val & FUNC_MF_CFG_MIN_BW_MASK) >> FUNC_MF_CFG_MIN_BW_SHIFT);
13947         mf_info->max_bw[vnic] =
13948             ((val & FUNC_MF_CFG_MAX_BW_MASK) >> FUNC_MF_CFG_MAX_BW_SHIFT);
13949         vnic++;
13950     }
13951 
13952     return (bxe_check_valid_mf_cfg(sc));
13953 }
13954 
13955 static int
13956 bxe_get_shmem_info(struct bxe_softc *sc)
13957 {
13958     int port;
13959     uint32_t mac_hi, mac_lo, val;
13960 
13961     port = SC_PORT(sc);
13962     mac_hi = mac_lo = 0;
13963 
13964     sc->link_params.sc   = sc;
13965     sc->link_params.port = port;
13966 
13967     /* get the hardware config info */
13968     sc->devinfo.hw_config =
13969         SHMEM_RD(sc, dev_info.shared_hw_config.config);
13970     sc->devinfo.hw_config2 =
13971         SHMEM_RD(sc, dev_info.shared_hw_config.config2);
13972 
13973     sc->link_params.hw_led_mode =
13974         ((sc->devinfo.hw_config & SHARED_HW_CFG_LED_MODE_MASK) >>
13975          SHARED_HW_CFG_LED_MODE_SHIFT);
13976 
13977     /* get the port feature config */
13978     sc->port.config =
13979         SHMEM_RD(sc, dev_info.port_feature_config[port].config),
13980 
13981     /* get the link params */
13982     sc->link_params.speed_cap_mask[0] =
13983         SHMEM_RD(sc, dev_info.port_hw_config[port].speed_capability_mask);
13984     sc->link_params.speed_cap_mask[1] =
13985         SHMEM_RD(sc, dev_info.port_hw_config[port].speed_capability_mask2);
13986 
13987     /* get the lane config */
13988     sc->link_params.lane_config =
13989         SHMEM_RD(sc, dev_info.port_hw_config[port].lane_config);
13990 
13991     /* get the link config */
13992     val = SHMEM_RD(sc, dev_info.port_feature_config[port].link_config);
13993     sc->port.link_config[ELINK_INT_PHY] = val;
13994     sc->link_params.switch_cfg = (val & PORT_FEATURE_CONNECTED_SWITCH_MASK);
13995     sc->port.link_config[ELINK_EXT_PHY1] =
13996         SHMEM_RD(sc, dev_info.port_feature_config[port].link_config2);
13997 
13998     /* get the override preemphasis flag and enable it or turn it off */
13999     val = SHMEM_RD(sc, dev_info.shared_feature_config.config);
14000     if (val & SHARED_FEAT_CFG_OVERRIDE_PREEMPHASIS_CFG_ENABLED) {
14001         sc->link_params.feature_config_flags |=
14002             ELINK_FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED;
14003     } else {
14004         sc->link_params.feature_config_flags &=
14005             ~ELINK_FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED;
14006     }
14007 
14008     /* get the initial value of the link params */
14009     sc->link_params.multi_phy_config =
14010         SHMEM_RD(sc, dev_info.port_hw_config[port].multi_phy_config);
14011 
14012     /* get external phy info */
14013     sc->port.ext_phy_config =
14014         SHMEM_RD(sc, dev_info.port_hw_config[port].external_phy_config);
14015 
14016     /* get the multifunction configuration */
14017     bxe_get_mf_cfg_info(sc);
14018 
14019     /* get the mac address */
14020     if (IS_MF(sc)) {
14021         mac_hi = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].mac_upper);
14022         mac_lo = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].mac_lower);
14023     } else {
14024         mac_hi = SHMEM_RD(sc, dev_info.port_hw_config[port].mac_upper);
14025         mac_lo = SHMEM_RD(sc, dev_info.port_hw_config[port].mac_lower);
14026     }
14027 
14028     if ((mac_lo == 0) && (mac_hi == 0)) {
14029         *sc->mac_addr_str = 0;
14030         BLOGE(sc, "No Ethernet address programmed!\n");
14031     } else {
14032         sc->link_params.mac_addr[0] = (uint8_t)(mac_hi >> 8);
14033         sc->link_params.mac_addr[1] = (uint8_t)(mac_hi);
14034         sc->link_params.mac_addr[2] = (uint8_t)(mac_lo >> 24);
14035         sc->link_params.mac_addr[3] = (uint8_t)(mac_lo >> 16);
14036         sc->link_params.mac_addr[4] = (uint8_t)(mac_lo >> 8);
14037         sc->link_params.mac_addr[5] = (uint8_t)(mac_lo);
14038         snprintf(sc->mac_addr_str, sizeof(sc->mac_addr_str),
14039                  "%02x:%02x:%02x:%02x:%02x:%02x",
14040                  sc->link_params.mac_addr[0], sc->link_params.mac_addr[1],
14041                  sc->link_params.mac_addr[2], sc->link_params.mac_addr[3],
14042                  sc->link_params.mac_addr[4], sc->link_params.mac_addr[5]);
14043         BLOGD(sc, DBG_LOAD, "Ethernet address: %s\n", sc->mac_addr_str);
14044     }
14045 
14046 #if 0
14047     if (!IS_MF(sc) &&
14048         ((sc->port.config & PORT_FEAT_CFG_STORAGE_PERSONALITY_MASK) ==
14049          PORT_FEAT_CFG_STORAGE_PERSONALITY_FCOE)) {
14050         sc->flags |= BXE_NO_ISCSI;
14051     }
14052     if (!IS_MF(sc) &&
14053         ((sc->port.config & PORT_FEAT_CFG_STORAGE_PERSONALITY_MASK) ==
14054          PORT_FEAT_CFG_STORAGE_PERSONALITY_ISCSI)) {
14055         sc->flags |= BXE_NO_FCOE_FLAG;
14056     }
14057 #endif
14058 
14059     return (0);
14060 }
14061 
14062 static void
14063 bxe_get_tunable_params(struct bxe_softc *sc)
14064 {
14065     /* sanity checks */
14066 
14067     if ((bxe_interrupt_mode != INTR_MODE_INTX) &&
14068         (bxe_interrupt_mode != INTR_MODE_MSI)  &&
14069         (bxe_interrupt_mode != INTR_MODE_MSIX)) {
14070         BLOGW(sc, "invalid interrupt_mode value (%d)\n", bxe_interrupt_mode);
14071         bxe_interrupt_mode = INTR_MODE_MSIX;
14072     }
14073 
14074     if ((bxe_queue_count < 0) || (bxe_queue_count > MAX_RSS_CHAINS)) {
14075         BLOGW(sc, "invalid queue_count value (%d)\n", bxe_queue_count);
14076         bxe_queue_count = 0;
14077     }
14078 
14079     if ((bxe_max_rx_bufs < 1) || (bxe_max_rx_bufs > RX_BD_USABLE)) {
14080         if (bxe_max_rx_bufs == 0) {
14081             bxe_max_rx_bufs = RX_BD_USABLE;
14082         } else {
14083             BLOGW(sc, "invalid max_rx_bufs (%d)\n", bxe_max_rx_bufs);
14084             bxe_max_rx_bufs = 2048;
14085         }
14086     }
14087 
14088     if ((bxe_hc_rx_ticks < 1) || (bxe_hc_rx_ticks > 100)) {
14089         BLOGW(sc, "invalid hc_rx_ticks (%d)\n", bxe_hc_rx_ticks);
14090         bxe_hc_rx_ticks = 25;
14091     }
14092 
14093     if ((bxe_hc_tx_ticks < 1) || (bxe_hc_tx_ticks > 100)) {
14094         BLOGW(sc, "invalid hc_tx_ticks (%d)\n", bxe_hc_tx_ticks);
14095         bxe_hc_tx_ticks = 50;
14096     }
14097 
14098     if (bxe_max_aggregation_size == 0) {
14099         bxe_max_aggregation_size = TPA_AGG_SIZE;
14100     }
14101 
14102     if (bxe_max_aggregation_size > 0xffff) {
14103         BLOGW(sc, "invalid max_aggregation_size (%d)\n",
14104               bxe_max_aggregation_size);
14105         bxe_max_aggregation_size = TPA_AGG_SIZE;
14106     }
14107 
14108     if ((bxe_mrrs < -1) || (bxe_mrrs > 3)) {
14109         BLOGW(sc, "invalid mrrs (%d)\n", bxe_mrrs);
14110         bxe_mrrs = -1;
14111     }
14112 
14113     if ((bxe_autogreeen < 0) || (bxe_autogreeen > 2)) {
14114         BLOGW(sc, "invalid autogreeen (%d)\n", bxe_autogreeen);
14115         bxe_autogreeen = 0;
14116     }
14117 
14118     if ((bxe_udp_rss < 0) || (bxe_udp_rss > 1)) {
14119         BLOGW(sc, "invalid udp_rss (%d)\n", bxe_udp_rss);
14120         bxe_udp_rss = 0;
14121     }
14122 
14123     /* pull in user settings */
14124 
14125     sc->interrupt_mode       = bxe_interrupt_mode;
14126     sc->max_rx_bufs          = bxe_max_rx_bufs;
14127     sc->hc_rx_ticks          = bxe_hc_rx_ticks;
14128     sc->hc_tx_ticks          = bxe_hc_tx_ticks;
14129     sc->max_aggregation_size = bxe_max_aggregation_size;
14130     sc->mrrs                 = bxe_mrrs;
14131     sc->autogreeen           = bxe_autogreeen;
14132     sc->udp_rss              = bxe_udp_rss;
14133 
14134     if (bxe_interrupt_mode == INTR_MODE_INTX) {
14135         sc->num_queues = 1;
14136     } else { /* INTR_MODE_MSI or INTR_MODE_MSIX */
14137         sc->num_queues =
14138             min((bxe_queue_count ? bxe_queue_count : mp_ncpus),
14139                 MAX_RSS_CHAINS);
14140         if (sc->num_queues > mp_ncpus) {
14141             sc->num_queues = mp_ncpus;
14142         }
14143     }
14144 
14145     BLOGD(sc, DBG_LOAD,
14146           "User Config: "
14147           "debug=0x%lx "
14148           "interrupt_mode=%d "
14149           "queue_count=%d "
14150           "hc_rx_ticks=%d "
14151           "hc_tx_ticks=%d "
14152           "rx_budget=%d "
14153           "max_aggregation_size=%d "
14154           "mrrs=%d "
14155           "autogreeen=%d "
14156           "udp_rss=%d\n",
14157           bxe_debug,
14158           sc->interrupt_mode,
14159           sc->num_queues,
14160           sc->hc_rx_ticks,
14161           sc->hc_tx_ticks,
14162           bxe_rx_budget,
14163           sc->max_aggregation_size,
14164           sc->mrrs,
14165           sc->autogreeen,
14166           sc->udp_rss);
14167 }
14168 
14169 static void
14170 bxe_media_detect(struct bxe_softc *sc)
14171 {
14172     uint32_t phy_idx = bxe_get_cur_phy_idx(sc);
14173     switch (sc->link_params.phy[phy_idx].media_type) {
14174     case ELINK_ETH_PHY_SFPP_10G_FIBER:
14175     case ELINK_ETH_PHY_XFP_FIBER:
14176         BLOGI(sc, "Found 10Gb Fiber media.\n");
14177         sc->media = IFM_10G_SR;
14178         break;
14179     case ELINK_ETH_PHY_SFP_1G_FIBER:
14180         BLOGI(sc, "Found 1Gb Fiber media.\n");
14181         sc->media = IFM_1000_SX;
14182         break;
14183     case ELINK_ETH_PHY_KR:
14184     case ELINK_ETH_PHY_CX4:
14185         BLOGI(sc, "Found 10GBase-CX4 media.\n");
14186         sc->media = IFM_10G_CX4;
14187         break;
14188     case ELINK_ETH_PHY_DA_TWINAX:
14189         BLOGI(sc, "Found 10Gb Twinax media.\n");
14190         sc->media = IFM_10G_TWINAX;
14191         break;
14192     case ELINK_ETH_PHY_BASE_T:
14193         if (sc->link_params.speed_cap_mask[0] &
14194             PORT_HW_CFG_SPEED_CAPABILITY_D0_10G) {
14195             BLOGI(sc, "Found 10GBase-T media.\n");
14196             sc->media = IFM_10G_T;
14197         } else {
14198             BLOGI(sc, "Found 1000Base-T media.\n");
14199             sc->media = IFM_1000_T;
14200         }
14201         break;
14202     case ELINK_ETH_PHY_NOT_PRESENT:
14203         BLOGI(sc, "Media not present.\n");
14204         sc->media = 0;
14205         break;
14206     case ELINK_ETH_PHY_UNSPECIFIED:
14207     default:
14208         BLOGI(sc, "Unknown media!\n");
14209         sc->media = 0;
14210         break;
14211     }
14212 }
14213 
14214 #define GET_FIELD(value, fname)                     \
14215     (((value) & (fname##_MASK)) >> (fname##_SHIFT))
14216 #define IGU_FID(val) GET_FIELD((val), IGU_REG_MAPPING_MEMORY_FID)
14217 #define IGU_VEC(val) GET_FIELD((val), IGU_REG_MAPPING_MEMORY_VECTOR)
14218 
14219 static int
14220 bxe_get_igu_cam_info(struct bxe_softc *sc)
14221 {
14222     int pfid = SC_FUNC(sc);
14223     int igu_sb_id;
14224     uint32_t val;
14225     uint8_t fid, igu_sb_cnt = 0;
14226 
14227     sc->igu_base_sb = 0xff;
14228 
14229     if (CHIP_INT_MODE_IS_BC(sc)) {
14230         int vn = SC_VN(sc);
14231         igu_sb_cnt = sc->igu_sb_cnt;
14232         sc->igu_base_sb = ((CHIP_IS_MODE_4_PORT(sc) ? pfid : vn) *
14233                            FP_SB_MAX_E1x);
14234         sc->igu_dsb_id = (E1HVN_MAX * FP_SB_MAX_E1x +
14235                           (CHIP_IS_MODE_4_PORT(sc) ? pfid : vn));
14236         return (0);
14237     }
14238 
14239     /* IGU in normal mode - read CAM */
14240     for (igu_sb_id = 0;
14241          igu_sb_id < IGU_REG_MAPPING_MEMORY_SIZE;
14242          igu_sb_id++) {
14243         val = REG_RD(sc, IGU_REG_MAPPING_MEMORY + igu_sb_id * 4);
14244         if (!(val & IGU_REG_MAPPING_MEMORY_VALID)) {
14245             continue;
14246         }
14247         fid = IGU_FID(val);
14248         if ((fid & IGU_FID_ENCODE_IS_PF)) {
14249             if ((fid & IGU_FID_PF_NUM_MASK) != pfid) {
14250                 continue;
14251             }
14252             if (IGU_VEC(val) == 0) {
14253                 /* default status block */
14254                 sc->igu_dsb_id = igu_sb_id;
14255             } else {
14256                 if (sc->igu_base_sb == 0xff) {
14257                     sc->igu_base_sb = igu_sb_id;
14258                 }
14259                 igu_sb_cnt++;
14260             }
14261         }
14262     }
14263 
14264     /*
14265      * Due to new PF resource allocation by MFW T7.4 and above, it's optional
14266      * that number of CAM entries will not be equal to the value advertised in
14267      * PCI. Driver should use the minimal value of both as the actual status
14268      * block count
14269      */
14270     sc->igu_sb_cnt = min(sc->igu_sb_cnt, igu_sb_cnt);
14271 
14272     if (igu_sb_cnt == 0) {
14273         BLOGE(sc, "CAM configuration error\n");
14274         return (-1);
14275     }
14276 
14277     return (0);
14278 }
14279 
14280 /*
14281  * Gather various information from the device config space, the device itself,
14282  * shmem, and the user input.
14283  */
14284 static int
14285 bxe_get_device_info(struct bxe_softc *sc)
14286 {
14287     uint32_t val;
14288     int rc;
14289 
14290     /* Get the data for the device */
14291     sc->devinfo.vendor_id    = pci_get_vendor(sc->dev);
14292     sc->devinfo.device_id    = pci_get_device(sc->dev);
14293     sc->devinfo.subvendor_id = pci_get_subvendor(sc->dev);
14294     sc->devinfo.subdevice_id = pci_get_subdevice(sc->dev);
14295 
14296     /* get the chip revision (chip metal comes from pci config space) */
14297     sc->devinfo.chip_id     =
14298     sc->link_params.chip_id =
14299         (((REG_RD(sc, MISC_REG_CHIP_NUM)                   & 0xffff) << 16) |
14300          ((REG_RD(sc, MISC_REG_CHIP_REV)                   & 0xf)    << 12) |
14301          (((REG_RD(sc, PCICFG_OFFSET + PCI_ID_VAL3) >> 24) & 0xf)    << 4)  |
14302          ((REG_RD(sc, MISC_REG_BOND_ID)                    & 0xf)    << 0));
14303 
14304     /* force 57811 according to MISC register */
14305     if (REG_RD(sc, MISC_REG_CHIP_TYPE) & MISC_REG_CHIP_TYPE_57811_MASK) {
14306         if (CHIP_IS_57810(sc)) {
14307             sc->devinfo.chip_id = ((CHIP_NUM_57811 << 16) |
14308                                    (sc->devinfo.chip_id & 0x0000ffff));
14309         } else if (CHIP_IS_57810_MF(sc)) {
14310             sc->devinfo.chip_id = ((CHIP_NUM_57811_MF << 16) |
14311                                    (sc->devinfo.chip_id & 0x0000ffff));
14312         }
14313         sc->devinfo.chip_id |= 0x1;
14314     }
14315 
14316     BLOGD(sc, DBG_LOAD,
14317           "chip_id=0x%08x (num=0x%04x rev=0x%01x metal=0x%02x bond=0x%01x)\n",
14318           sc->devinfo.chip_id,
14319           ((sc->devinfo.chip_id >> 16) & 0xffff),
14320           ((sc->devinfo.chip_id >> 12) & 0xf),
14321           ((sc->devinfo.chip_id >>  4) & 0xff),
14322           ((sc->devinfo.chip_id >>  0) & 0xf));
14323 
14324     val = (REG_RD(sc, 0x2874) & 0x55);
14325     if ((sc->devinfo.chip_id & 0x1) ||
14326         (CHIP_IS_E1(sc) && val) ||
14327         (CHIP_IS_E1H(sc) && (val == 0x55))) {
14328         sc->flags |= BXE_ONE_PORT_FLAG;
14329         BLOGD(sc, DBG_LOAD, "single port device\n");
14330     }
14331 
14332     /* set the doorbell size */
14333     sc->doorbell_size = (1 << BXE_DB_SHIFT);
14334 
14335     /* determine whether the device is in 2 port or 4 port mode */
14336     sc->devinfo.chip_port_mode = CHIP_PORT_MODE_NONE; /* E1 & E1h*/
14337     if (CHIP_IS_E2E3(sc)) {
14338         /*
14339          * Read port4mode_en_ovwr[0]:
14340          *   If 1, four port mode is in port4mode_en_ovwr[1].
14341          *   If 0, four port mode is in port4mode_en[0].
14342          */
14343         val = REG_RD(sc, MISC_REG_PORT4MODE_EN_OVWR);
14344         if (val & 1) {
14345             val = ((val >> 1) & 1);
14346         } else {
14347             val = REG_RD(sc, MISC_REG_PORT4MODE_EN);
14348         }
14349 
14350         sc->devinfo.chip_port_mode =
14351             (val) ? CHIP_4_PORT_MODE : CHIP_2_PORT_MODE;
14352 
14353         BLOGD(sc, DBG_LOAD, "Port mode = %s\n", (val) ? "4" : "2");
14354     }
14355 
14356     /* get the function and path info for the device */
14357     bxe_get_function_num(sc);
14358 
14359     /* get the shared memory base address */
14360     sc->devinfo.shmem_base     =
14361     sc->link_params.shmem_base =
14362         REG_RD(sc, MISC_REG_SHARED_MEM_ADDR);
14363     sc->devinfo.shmem2_base =
14364         REG_RD(sc, (SC_PATH(sc) ? MISC_REG_GENERIC_CR_1 :
14365                                   MISC_REG_GENERIC_CR_0));
14366 
14367     BLOGD(sc, DBG_LOAD, "shmem_base=0x%08x, shmem2_base=0x%08x\n",
14368           sc->devinfo.shmem_base, sc->devinfo.shmem2_base);
14369 
14370     if (!sc->devinfo.shmem_base) {
14371         /* this should ONLY prevent upcoming shmem reads */
14372         BLOGI(sc, "MCP not active\n");
14373         sc->flags |= BXE_NO_MCP_FLAG;
14374         return (0);
14375     }
14376 
14377     /* make sure the shared memory contents are valid */
14378     val = SHMEM_RD(sc, validity_map[SC_PORT(sc)]);
14379     if ((val & (SHR_MEM_VALIDITY_DEV_INFO | SHR_MEM_VALIDITY_MB)) !=
14380         (SHR_MEM_VALIDITY_DEV_INFO | SHR_MEM_VALIDITY_MB)) {
14381         BLOGE(sc, "Invalid SHMEM validity signature: 0x%08x\n", val);
14382         return (0);
14383     }
14384     BLOGD(sc, DBG_LOAD, "Valid SHMEM validity signature: 0x%08x\n", val);
14385 
14386     /* get the bootcode version */
14387     sc->devinfo.bc_ver = SHMEM_RD(sc, dev_info.bc_rev);
14388     snprintf(sc->devinfo.bc_ver_str,
14389              sizeof(sc->devinfo.bc_ver_str),
14390              "%d.%d.%d",
14391              ((sc->devinfo.bc_ver >> 24) & 0xff),
14392              ((sc->devinfo.bc_ver >> 16) & 0xff),
14393              ((sc->devinfo.bc_ver >>  8) & 0xff));
14394     BLOGD(sc, DBG_LOAD, "Bootcode version: %s\n", sc->devinfo.bc_ver_str);
14395 
14396     /* get the bootcode shmem address */
14397     sc->devinfo.mf_cfg_base = bxe_get_shmem_mf_cfg_base(sc);
14398     BLOGD(sc, DBG_LOAD, "mf_cfg_base=0x08%x \n", sc->devinfo.mf_cfg_base);
14399 
14400     /* clean indirect addresses as they're not used */
14401     pci_write_config(sc->dev, PCICFG_GRC_ADDRESS, 0, 4);
14402     if (IS_PF(sc)) {
14403         REG_WR(sc, PXP2_REG_PGL_ADDR_88_F0, 0);
14404         REG_WR(sc, PXP2_REG_PGL_ADDR_8C_F0, 0);
14405         REG_WR(sc, PXP2_REG_PGL_ADDR_90_F0, 0);
14406         REG_WR(sc, PXP2_REG_PGL_ADDR_94_F0, 0);
14407         if (CHIP_IS_E1x(sc)) {
14408             REG_WR(sc, PXP2_REG_PGL_ADDR_88_F1, 0);
14409             REG_WR(sc, PXP2_REG_PGL_ADDR_8C_F1, 0);
14410             REG_WR(sc, PXP2_REG_PGL_ADDR_90_F1, 0);
14411             REG_WR(sc, PXP2_REG_PGL_ADDR_94_F1, 0);
14412         }
14413 
14414         /*
14415          * Enable internal target-read (in case we are probed after PF
14416          * FLR). Must be done prior to any BAR read access. Only for
14417          * 57712 and up
14418          */
14419         if (!CHIP_IS_E1x(sc)) {
14420             REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
14421         }
14422     }
14423 
14424     /* get the nvram size */
14425     val = REG_RD(sc, MCP_REG_MCPR_NVM_CFG4);
14426     sc->devinfo.flash_size =
14427         (NVRAM_1MB_SIZE << (val & MCPR_NVM_CFG4_FLASH_SIZE));
14428     BLOGD(sc, DBG_LOAD, "nvram flash size: %d\n", sc->devinfo.flash_size);
14429 
14430     /* get PCI capabilites */
14431     bxe_probe_pci_caps(sc);
14432 
14433     bxe_set_power_state(sc, PCI_PM_D0);
14434 
14435     /* get various configuration parameters from shmem */
14436     bxe_get_shmem_info(sc);
14437 
14438     if (sc->devinfo.pcie_msix_cap_reg != 0) {
14439         val = pci_read_config(sc->dev,
14440                               (sc->devinfo.pcie_msix_cap_reg +
14441                                PCIR_MSIX_CTRL),
14442                               2);
14443         sc->igu_sb_cnt = (val & PCIM_MSIXCTRL_TABLE_SIZE);
14444     } else {
14445         sc->igu_sb_cnt = 1;
14446     }
14447 
14448     sc->igu_base_addr = BAR_IGU_INTMEM;
14449 
14450     /* initialize IGU parameters */
14451     if (CHIP_IS_E1x(sc)) {
14452         sc->devinfo.int_block = INT_BLOCK_HC;
14453         sc->igu_dsb_id = DEF_SB_IGU_ID;
14454         sc->igu_base_sb = 0;
14455     } else {
14456         sc->devinfo.int_block = INT_BLOCK_IGU;
14457 
14458         /* do not allow device reset during IGU info preocessing */
14459         bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RESET);
14460 
14461         val = REG_RD(sc, IGU_REG_BLOCK_CONFIGURATION);
14462 
14463         if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) {
14464             int tout = 5000;
14465 
14466             BLOGD(sc, DBG_LOAD, "FORCING IGU Normal Mode\n");
14467 
14468             val &= ~(IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN);
14469             REG_WR(sc, IGU_REG_BLOCK_CONFIGURATION, val);
14470             REG_WR(sc, IGU_REG_RESET_MEMORIES, 0x7f);
14471 
14472             while (tout && REG_RD(sc, IGU_REG_RESET_MEMORIES)) {
14473                 tout--;
14474                 DELAY(1000);
14475             }
14476 
14477             if (REG_RD(sc, IGU_REG_RESET_MEMORIES)) {
14478                 BLOGD(sc, DBG_LOAD, "FORCING IGU Normal Mode failed!!!\n");
14479                 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RESET);
14480                 return (-1);
14481             }
14482         }
14483 
14484         if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) {
14485             BLOGD(sc, DBG_LOAD, "IGU Backward Compatible Mode\n");
14486             sc->devinfo.int_block |= INT_BLOCK_MODE_BW_COMP;
14487         } else {
14488             BLOGD(sc, DBG_LOAD, "IGU Normal Mode\n");
14489         }
14490 
14491         rc = bxe_get_igu_cam_info(sc);
14492 
14493         bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RESET);
14494 
14495         if (rc) {
14496             return (rc);
14497         }
14498     }
14499 
14500     /*
14501      * Get base FW non-default (fast path) status block ID. This value is
14502      * used to initialize the fw_sb_id saved on the fp/queue structure to
14503      * determine the id used by the FW.
14504      */
14505     if (CHIP_IS_E1x(sc)) {
14506         sc->base_fw_ndsb = ((SC_PORT(sc) * FP_SB_MAX_E1x) + SC_L_ID(sc));
14507     } else {
14508         /*
14509          * 57712+ - We currently use one FW SB per IGU SB (Rx and Tx of
14510          * the same queue are indicated on the same IGU SB). So we prefer
14511          * FW and IGU SBs to be the same value.
14512          */
14513         sc->base_fw_ndsb = sc->igu_base_sb;
14514     }
14515 
14516     BLOGD(sc, DBG_LOAD,
14517           "igu_dsb_id=%d igu_base_sb=%d igu_sb_cnt=%d base_fw_ndsb=%d\n",
14518           sc->igu_dsb_id, sc->igu_base_sb,
14519           sc->igu_sb_cnt, sc->base_fw_ndsb);
14520 
14521     elink_phy_probe(&sc->link_params);
14522 
14523     return (0);
14524 }
14525 
14526 static void
14527 bxe_link_settings_supported(struct bxe_softc *sc,
14528                             uint32_t         switch_cfg)
14529 {
14530     uint32_t cfg_size = 0;
14531     uint32_t idx;
14532     uint8_t port = SC_PORT(sc);
14533 
14534     /* aggregation of supported attributes of all external phys */
14535     sc->port.supported[0] = 0;
14536     sc->port.supported[1] = 0;
14537 
14538     switch (sc->link_params.num_phys) {
14539     case 1:
14540         sc->port.supported[0] = sc->link_params.phy[ELINK_INT_PHY].supported;
14541         cfg_size = 1;
14542         break;
14543     case 2:
14544         sc->port.supported[0] = sc->link_params.phy[ELINK_EXT_PHY1].supported;
14545         cfg_size = 1;
14546         break;
14547     case 3:
14548         if (sc->link_params.multi_phy_config &
14549             PORT_HW_CFG_PHY_SWAPPED_ENABLED) {
14550             sc->port.supported[1] =
14551                 sc->link_params.phy[ELINK_EXT_PHY1].supported;
14552             sc->port.supported[0] =
14553                 sc->link_params.phy[ELINK_EXT_PHY2].supported;
14554         } else {
14555             sc->port.supported[0] =
14556                 sc->link_params.phy[ELINK_EXT_PHY1].supported;
14557             sc->port.supported[1] =
14558                 sc->link_params.phy[ELINK_EXT_PHY2].supported;
14559         }
14560         cfg_size = 2;
14561         break;
14562     }
14563 
14564     if (!(sc->port.supported[0] || sc->port.supported[1])) {
14565         BLOGE(sc, "Invalid phy config in NVRAM (PHY1=0x%08x PHY2=0x%08x)\n",
14566               SHMEM_RD(sc,
14567                        dev_info.port_hw_config[port].external_phy_config),
14568               SHMEM_RD(sc,
14569                        dev_info.port_hw_config[port].external_phy_config2));
14570         return;
14571     }
14572 
14573     if (CHIP_IS_E3(sc))
14574         sc->port.phy_addr = REG_RD(sc, MISC_REG_WC0_CTRL_PHY_ADDR);
14575     else {
14576         switch (switch_cfg) {
14577         case ELINK_SWITCH_CFG_1G:
14578             sc->port.phy_addr =
14579                 REG_RD(sc, NIG_REG_SERDES0_CTRL_PHY_ADDR + port*0x10);
14580             break;
14581         case ELINK_SWITCH_CFG_10G:
14582             sc->port.phy_addr =
14583                 REG_RD(sc, NIG_REG_XGXS0_CTRL_PHY_ADDR + port*0x18);
14584             break;
14585         default:
14586             BLOGE(sc, "Invalid switch config in link_config=0x%08x\n",
14587                   sc->port.link_config[0]);
14588             return;
14589         }
14590     }
14591 
14592     BLOGD(sc, DBG_LOAD, "PHY addr 0x%08x\n", sc->port.phy_addr);
14593 
14594     /* mask what we support according to speed_cap_mask per configuration */
14595     for (idx = 0; idx < cfg_size; idx++) {
14596         if (!(sc->link_params.speed_cap_mask[idx] &
14597               PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_HALF)) {
14598             sc->port.supported[idx] &= ~ELINK_SUPPORTED_10baseT_Half;
14599         }
14600 
14601         if (!(sc->link_params.speed_cap_mask[idx] &
14602               PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_FULL)) {
14603             sc->port.supported[idx] &= ~ELINK_SUPPORTED_10baseT_Full;
14604         }
14605 
14606         if (!(sc->link_params.speed_cap_mask[idx] &
14607               PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_HALF)) {
14608             sc->port.supported[idx] &= ~ELINK_SUPPORTED_100baseT_Half;
14609         }
14610 
14611         if (!(sc->link_params.speed_cap_mask[idx] &
14612               PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_FULL)) {
14613             sc->port.supported[idx] &= ~ELINK_SUPPORTED_100baseT_Full;
14614         }
14615 
14616         if (!(sc->link_params.speed_cap_mask[idx] &
14617               PORT_HW_CFG_SPEED_CAPABILITY_D0_1G)) {
14618             sc->port.supported[idx] &= ~ELINK_SUPPORTED_1000baseT_Full;
14619         }
14620 
14621         if (!(sc->link_params.speed_cap_mask[idx] &
14622               PORT_HW_CFG_SPEED_CAPABILITY_D0_2_5G)) {
14623             sc->port.supported[idx] &= ~ELINK_SUPPORTED_2500baseX_Full;
14624         }
14625 
14626         if (!(sc->link_params.speed_cap_mask[idx] &
14627               PORT_HW_CFG_SPEED_CAPABILITY_D0_10G)) {
14628             sc->port.supported[idx] &= ~ELINK_SUPPORTED_10000baseT_Full;
14629         }
14630 
14631         if (!(sc->link_params.speed_cap_mask[idx] &
14632               PORT_HW_CFG_SPEED_CAPABILITY_D0_20G)) {
14633             sc->port.supported[idx] &= ~ELINK_SUPPORTED_20000baseKR2_Full;
14634         }
14635     }
14636 
14637     BLOGD(sc, DBG_LOAD, "PHY supported 0=0x%08x 1=0x%08x\n",
14638           sc->port.supported[0], sc->port.supported[1]);
14639 }
14640 
14641 static void
14642 bxe_link_settings_requested(struct bxe_softc *sc)
14643 {
14644     uint32_t link_config;
14645     uint32_t idx;
14646     uint32_t cfg_size = 0;
14647 
14648     sc->port.advertising[0] = 0;
14649     sc->port.advertising[1] = 0;
14650 
14651     switch (sc->link_params.num_phys) {
14652     case 1:
14653     case 2:
14654         cfg_size = 1;
14655         break;
14656     case 3:
14657         cfg_size = 2;
14658         break;
14659     }
14660 
14661     for (idx = 0; idx < cfg_size; idx++) {
14662         sc->link_params.req_duplex[idx] = DUPLEX_FULL;
14663         link_config = sc->port.link_config[idx];
14664 
14665         switch (link_config & PORT_FEATURE_LINK_SPEED_MASK) {
14666         case PORT_FEATURE_LINK_SPEED_AUTO:
14667             if (sc->port.supported[idx] & ELINK_SUPPORTED_Autoneg) {
14668                 sc->link_params.req_line_speed[idx] = ELINK_SPEED_AUTO_NEG;
14669                 sc->port.advertising[idx] |= sc->port.supported[idx];
14670                 if (sc->link_params.phy[ELINK_EXT_PHY1].type ==
14671                     PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM84833)
14672                     sc->port.advertising[idx] |=
14673                         (ELINK_SUPPORTED_100baseT_Half |
14674                          ELINK_SUPPORTED_100baseT_Full);
14675             } else {
14676                 /* force 10G, no AN */
14677                 sc->link_params.req_line_speed[idx] = ELINK_SPEED_10000;
14678                 sc->port.advertising[idx] |=
14679                     (ADVERTISED_10000baseT_Full | ADVERTISED_FIBRE);
14680                 continue;
14681             }
14682             break;
14683 
14684         case PORT_FEATURE_LINK_SPEED_10M_FULL:
14685             if (sc->port.supported[idx] & ELINK_SUPPORTED_10baseT_Full) {
14686                 sc->link_params.req_line_speed[idx] = ELINK_SPEED_10;
14687                 sc->port.advertising[idx] |= (ADVERTISED_10baseT_Full |
14688                                               ADVERTISED_TP);
14689             } else {
14690                 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x "
14691                           "speed_cap_mask=0x%08x\n",
14692                       link_config, sc->link_params.speed_cap_mask[idx]);
14693                 return;
14694             }
14695             break;
14696 
14697         case PORT_FEATURE_LINK_SPEED_10M_HALF:
14698             if (sc->port.supported[idx] & ELINK_SUPPORTED_10baseT_Half) {
14699                 sc->link_params.req_line_speed[idx] = ELINK_SPEED_10;
14700                 sc->link_params.req_duplex[idx] = DUPLEX_HALF;
14701                 sc->port.advertising[idx] |= (ADVERTISED_10baseT_Half |
14702                                               ADVERTISED_TP);
14703             } else {
14704                 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x "
14705                           "speed_cap_mask=0x%08x\n",
14706                       link_config, sc->link_params.speed_cap_mask[idx]);
14707                 return;
14708             }
14709             break;
14710 
14711         case PORT_FEATURE_LINK_SPEED_100M_FULL:
14712             if (sc->port.supported[idx] & ELINK_SUPPORTED_100baseT_Full) {
14713                 sc->link_params.req_line_speed[idx] = ELINK_SPEED_100;
14714                 sc->port.advertising[idx] |= (ADVERTISED_100baseT_Full |
14715                                               ADVERTISED_TP);
14716             } else {
14717                 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x "
14718                           "speed_cap_mask=0x%08x\n",
14719                       link_config, sc->link_params.speed_cap_mask[idx]);
14720                 return;
14721             }
14722             break;
14723 
14724         case PORT_FEATURE_LINK_SPEED_100M_HALF:
14725             if (sc->port.supported[idx] & ELINK_SUPPORTED_100baseT_Half) {
14726                 sc->link_params.req_line_speed[idx] = ELINK_SPEED_100;
14727                 sc->link_params.req_duplex[idx] = DUPLEX_HALF;
14728                 sc->port.advertising[idx] |= (ADVERTISED_100baseT_Half |
14729                                               ADVERTISED_TP);
14730             } else {
14731                 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x "
14732                           "speed_cap_mask=0x%08x\n",
14733                       link_config, sc->link_params.speed_cap_mask[idx]);
14734                 return;
14735             }
14736             break;
14737 
14738         case PORT_FEATURE_LINK_SPEED_1G:
14739             if (sc->port.supported[idx] & ELINK_SUPPORTED_1000baseT_Full) {
14740                 sc->link_params.req_line_speed[idx] = ELINK_SPEED_1000;
14741                 sc->port.advertising[idx] |= (ADVERTISED_1000baseT_Full |
14742                                               ADVERTISED_TP);
14743             } else {
14744                 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x "
14745                           "speed_cap_mask=0x%08x\n",
14746                       link_config, sc->link_params.speed_cap_mask[idx]);
14747                 return;
14748             }
14749             break;
14750 
14751         case PORT_FEATURE_LINK_SPEED_2_5G:
14752             if (sc->port.supported[idx] & ELINK_SUPPORTED_2500baseX_Full) {
14753                 sc->link_params.req_line_speed[idx] = ELINK_SPEED_2500;
14754                 sc->port.advertising[idx] |= (ADVERTISED_2500baseX_Full |
14755                                               ADVERTISED_TP);
14756             } else {
14757                 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x "
14758                           "speed_cap_mask=0x%08x\n",
14759                       link_config, sc->link_params.speed_cap_mask[idx]);
14760                 return;
14761             }
14762             break;
14763 
14764         case PORT_FEATURE_LINK_SPEED_10G_CX4:
14765             if (sc->port.supported[idx] & ELINK_SUPPORTED_10000baseT_Full) {
14766                 sc->link_params.req_line_speed[idx] = ELINK_SPEED_10000;
14767                 sc->port.advertising[idx] |= (ADVERTISED_10000baseT_Full |
14768                                               ADVERTISED_FIBRE);
14769             } else {
14770                 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x "
14771                           "speed_cap_mask=0x%08x\n",
14772                       link_config, sc->link_params.speed_cap_mask[idx]);
14773                 return;
14774             }
14775             break;
14776 
14777         case PORT_FEATURE_LINK_SPEED_20G:
14778             sc->link_params.req_line_speed[idx] = ELINK_SPEED_20000;
14779             break;
14780 
14781         default:
14782             BLOGE(sc, "Invalid NVRAM config link_config=0x%08x "
14783                       "speed_cap_mask=0x%08x\n",
14784                   link_config, sc->link_params.speed_cap_mask[idx]);
14785             sc->link_params.req_line_speed[idx] = ELINK_SPEED_AUTO_NEG;
14786             sc->port.advertising[idx] = sc->port.supported[idx];
14787             break;
14788         }
14789 
14790         sc->link_params.req_flow_ctrl[idx] =
14791             (link_config & PORT_FEATURE_FLOW_CONTROL_MASK);
14792 
14793         if (sc->link_params.req_flow_ctrl[idx] == ELINK_FLOW_CTRL_AUTO) {
14794             if (!(sc->port.supported[idx] & ELINK_SUPPORTED_Autoneg)) {
14795                 sc->link_params.req_flow_ctrl[idx] = ELINK_FLOW_CTRL_NONE;
14796             } else {
14797                 bxe_set_requested_fc(sc);
14798             }
14799         }
14800 
14801         BLOGD(sc, DBG_LOAD, "req_line_speed=%d req_duplex=%d "
14802                             "req_flow_ctrl=0x%x advertising=0x%x\n",
14803               sc->link_params.req_line_speed[idx],
14804               sc->link_params.req_duplex[idx],
14805               sc->link_params.req_flow_ctrl[idx],
14806               sc->port.advertising[idx]);
14807     }
14808 }
14809 
14810 static void
14811 bxe_get_phy_info(struct bxe_softc *sc)
14812 {
14813     uint8_t port = SC_PORT(sc);
14814     uint32_t config = sc->port.config;
14815     uint32_t eee_mode;
14816 
14817     /* shmem data already read in bxe_get_shmem_info() */
14818 
14819     BLOGD(sc, DBG_LOAD, "lane_config=0x%08x speed_cap_mask0=0x%08x "
14820                         "link_config0=0x%08x\n",
14821                sc->link_params.lane_config,
14822                sc->link_params.speed_cap_mask[0],
14823                sc->port.link_config[0]);
14824 
14825     bxe_link_settings_supported(sc, sc->link_params.switch_cfg);
14826     bxe_link_settings_requested(sc);
14827 
14828     if (sc->autogreeen == AUTO_GREEN_FORCE_ON) {
14829         sc->link_params.feature_config_flags |=
14830             ELINK_FEATURE_CONFIG_AUTOGREEEN_ENABLED;
14831     } else if (sc->autogreeen == AUTO_GREEN_FORCE_OFF) {
14832         sc->link_params.feature_config_flags &=
14833             ~ELINK_FEATURE_CONFIG_AUTOGREEEN_ENABLED;
14834     } else if (config & PORT_FEAT_CFG_AUTOGREEEN_ENABLED) {
14835         sc->link_params.feature_config_flags |=
14836             ELINK_FEATURE_CONFIG_AUTOGREEEN_ENABLED;
14837     }
14838 
14839     /* configure link feature according to nvram value */
14840     eee_mode =
14841         (((SHMEM_RD(sc, dev_info.port_feature_config[port].eee_power_mode)) &
14842           PORT_FEAT_CFG_EEE_POWER_MODE_MASK) >>
14843          PORT_FEAT_CFG_EEE_POWER_MODE_SHIFT);
14844     if (eee_mode != PORT_FEAT_CFG_EEE_POWER_MODE_DISABLED) {
14845         sc->link_params.eee_mode = (ELINK_EEE_MODE_ADV_LPI |
14846                                     ELINK_EEE_MODE_ENABLE_LPI |
14847                                     ELINK_EEE_MODE_OUTPUT_TIME);
14848     } else {
14849         sc->link_params.eee_mode = 0;
14850     }
14851 
14852     /* get the media type */
14853     bxe_media_detect(sc);
14854 }
14855 
14856 static void
14857 bxe_get_params(struct bxe_softc *sc)
14858 {
14859     /* get user tunable params */
14860     bxe_get_tunable_params(sc);
14861 
14862     /* select the RX and TX ring sizes */
14863     sc->tx_ring_size = TX_BD_USABLE;
14864     sc->rx_ring_size = RX_BD_USABLE;
14865 
14866     /* XXX disable WoL */
14867     sc->wol = 0;
14868 }
14869 
14870 static void
14871 bxe_set_modes_bitmap(struct bxe_softc *sc)
14872 {
14873     uint32_t flags = 0;
14874 
14875     if (CHIP_REV_IS_FPGA(sc)) {
14876         SET_FLAGS(flags, MODE_FPGA);
14877     } else if (CHIP_REV_IS_EMUL(sc)) {
14878         SET_FLAGS(flags, MODE_EMUL);
14879     } else {
14880         SET_FLAGS(flags, MODE_ASIC);
14881     }
14882 
14883     if (CHIP_IS_MODE_4_PORT(sc)) {
14884         SET_FLAGS(flags, MODE_PORT4);
14885     } else {
14886         SET_FLAGS(flags, MODE_PORT2);
14887     }
14888 
14889     if (CHIP_IS_E2(sc)) {
14890         SET_FLAGS(flags, MODE_E2);
14891     } else if (CHIP_IS_E3(sc)) {
14892         SET_FLAGS(flags, MODE_E3);
14893         if (CHIP_REV(sc) == CHIP_REV_Ax) {
14894             SET_FLAGS(flags, MODE_E3_A0);
14895         } else /*if (CHIP_REV(sc) == CHIP_REV_Bx)*/ {
14896             SET_FLAGS(flags, MODE_E3_B0 | MODE_COS3);
14897         }
14898     }
14899 
14900     if (IS_MF(sc)) {
14901         SET_FLAGS(flags, MODE_MF);
14902         switch (sc->devinfo.mf_info.mf_mode) {
14903         case MULTI_FUNCTION_SD:
14904             SET_FLAGS(flags, MODE_MF_SD);
14905             break;
14906         case MULTI_FUNCTION_SI:
14907             SET_FLAGS(flags, MODE_MF_SI);
14908             break;
14909         case MULTI_FUNCTION_AFEX:
14910             SET_FLAGS(flags, MODE_MF_AFEX);
14911             break;
14912         }
14913     } else {
14914         SET_FLAGS(flags, MODE_SF);
14915     }
14916 
14917 #if defined(__LITTLE_ENDIAN)
14918     SET_FLAGS(flags, MODE_LITTLE_ENDIAN);
14919 #else /* __BIG_ENDIAN */
14920     SET_FLAGS(flags, MODE_BIG_ENDIAN);
14921 #endif
14922 
14923     INIT_MODE_FLAGS(sc) = flags;
14924 }
14925 
14926 static int
14927 bxe_alloc_hsi_mem(struct bxe_softc *sc)
14928 {
14929     struct bxe_fastpath *fp;
14930     bus_addr_t busaddr;
14931     int max_agg_queues;
14932     int max_segments;
14933     bus_size_t max_size;
14934     bus_size_t max_seg_size;
14935     char buf[32];
14936     int rc;
14937     int i, j;
14938 
14939     /* XXX zero out all vars here and call bxe_alloc_hsi_mem on error */
14940 
14941     /* allocate the parent bus DMA tag */
14942     rc = bus_dma_tag_create(bus_get_dma_tag(sc->dev), /* parent tag */
14943                             1,                        /* alignment */
14944                             0,                        /* boundary limit */
14945                             BUS_SPACE_MAXADDR,        /* restricted low */
14946                             BUS_SPACE_MAXADDR,        /* restricted hi */
14947                             NULL,                     /* addr filter() */
14948                             NULL,                     /* addr filter() arg */
14949                             BUS_SPACE_MAXSIZE_32BIT,  /* max map size */
14950                             BUS_SPACE_UNRESTRICTED,   /* num discontinuous */
14951                             BUS_SPACE_MAXSIZE_32BIT,  /* max seg size */
14952                             0,                        /* flags */
14953                             NULL,                     /* lock() */
14954                             NULL,                     /* lock() arg */
14955                             &sc->parent_dma_tag);     /* returned dma tag */
14956     if (rc != 0) {
14957         BLOGE(sc, "Failed to alloc parent DMA tag (%d)!\n", rc);
14958         return (1);
14959     }
14960 
14961     /************************/
14962     /* DEFAULT STATUS BLOCK */
14963     /************************/
14964 
14965     if (bxe_dma_alloc(sc, sizeof(struct host_sp_status_block),
14966                       &sc->def_sb_dma, "default status block") != 0) {
14967         /* XXX */
14968         bus_dma_tag_destroy(sc->parent_dma_tag);
14969         return (1);
14970     }
14971 
14972     sc->def_sb = (struct host_sp_status_block *)sc->def_sb_dma.vaddr;
14973 
14974     /***************/
14975     /* EVENT QUEUE */
14976     /***************/
14977 
14978     if (bxe_dma_alloc(sc, BCM_PAGE_SIZE,
14979                       &sc->eq_dma, "event queue") != 0) {
14980         /* XXX */
14981         bxe_dma_free(sc, &sc->def_sb_dma);
14982         sc->def_sb = NULL;
14983         bus_dma_tag_destroy(sc->parent_dma_tag);
14984         return (1);
14985     }
14986 
14987     sc->eq = (union event_ring_elem * )sc->eq_dma.vaddr;
14988 
14989     /*************/
14990     /* SLOW PATH */
14991     /*************/
14992 
14993     if (bxe_dma_alloc(sc, sizeof(struct bxe_slowpath),
14994                       &sc->sp_dma, "slow path") != 0) {
14995         /* XXX */
14996         bxe_dma_free(sc, &sc->eq_dma);
14997         sc->eq = NULL;
14998         bxe_dma_free(sc, &sc->def_sb_dma);
14999         sc->def_sb = NULL;
15000         bus_dma_tag_destroy(sc->parent_dma_tag);
15001         return (1);
15002     }
15003 
15004     sc->sp = (struct bxe_slowpath *)sc->sp_dma.vaddr;
15005 
15006     /*******************/
15007     /* SLOW PATH QUEUE */
15008     /*******************/
15009 
15010     if (bxe_dma_alloc(sc, BCM_PAGE_SIZE,
15011                       &sc->spq_dma, "slow path queue") != 0) {
15012         /* XXX */
15013         bxe_dma_free(sc, &sc->sp_dma);
15014         sc->sp = NULL;
15015         bxe_dma_free(sc, &sc->eq_dma);
15016         sc->eq = NULL;
15017         bxe_dma_free(sc, &sc->def_sb_dma);
15018         sc->def_sb = NULL;
15019         bus_dma_tag_destroy(sc->parent_dma_tag);
15020         return (1);
15021     }
15022 
15023     sc->spq = (struct eth_spe *)sc->spq_dma.vaddr;
15024 
15025     /***************************/
15026     /* FW DECOMPRESSION BUFFER */
15027     /***************************/
15028 
15029     if (bxe_dma_alloc(sc, FW_BUF_SIZE, &sc->gz_buf_dma,
15030                       "fw decompression buffer") != 0) {
15031         /* XXX */
15032         bxe_dma_free(sc, &sc->spq_dma);
15033         sc->spq = NULL;
15034         bxe_dma_free(sc, &sc->sp_dma);
15035         sc->sp = NULL;
15036         bxe_dma_free(sc, &sc->eq_dma);
15037         sc->eq = NULL;
15038         bxe_dma_free(sc, &sc->def_sb_dma);
15039         sc->def_sb = NULL;
15040         bus_dma_tag_destroy(sc->parent_dma_tag);
15041         return (1);
15042     }
15043 
15044     sc->gz_buf = (void *)sc->gz_buf_dma.vaddr;
15045 
15046     if ((sc->gz_strm =
15047          malloc(sizeof(*sc->gz_strm), M_DEVBUF, M_NOWAIT)) == NULL) {
15048         /* XXX */
15049         bxe_dma_free(sc, &sc->gz_buf_dma);
15050         sc->gz_buf = NULL;
15051         bxe_dma_free(sc, &sc->spq_dma);
15052         sc->spq = NULL;
15053         bxe_dma_free(sc, &sc->sp_dma);
15054         sc->sp = NULL;
15055         bxe_dma_free(sc, &sc->eq_dma);
15056         sc->eq = NULL;
15057         bxe_dma_free(sc, &sc->def_sb_dma);
15058         sc->def_sb = NULL;
15059         bus_dma_tag_destroy(sc->parent_dma_tag);
15060         return (1);
15061     }
15062 
15063     /*************/
15064     /* FASTPATHS */
15065     /*************/
15066 
15067     /* allocate DMA memory for each fastpath structure */
15068     for (i = 0; i < sc->num_queues; i++) {
15069         fp = &sc->fp[i];
15070         fp->sc    = sc;
15071         fp->index = i;
15072 
15073         /*******************/
15074         /* FP STATUS BLOCK */
15075         /*******************/
15076 
15077         snprintf(buf, sizeof(buf), "fp %d status block", i);
15078         if (bxe_dma_alloc(sc, sizeof(union bxe_host_hc_status_block),
15079                           &fp->sb_dma, buf) != 0) {
15080             /* XXX unwind and free previous fastpath allocations */
15081             BLOGE(sc, "Failed to alloc %s\n", buf);
15082             return (1);
15083         } else {
15084             if (CHIP_IS_E2E3(sc)) {
15085                 fp->status_block.e2_sb =
15086                     (struct host_hc_status_block_e2 *)fp->sb_dma.vaddr;
15087             } else {
15088                 fp->status_block.e1x_sb =
15089                     (struct host_hc_status_block_e1x *)fp->sb_dma.vaddr;
15090             }
15091         }
15092 
15093         /******************/
15094         /* FP TX BD CHAIN */
15095         /******************/
15096 
15097         snprintf(buf, sizeof(buf), "fp %d tx bd chain", i);
15098         if (bxe_dma_alloc(sc, (BCM_PAGE_SIZE * TX_BD_NUM_PAGES),
15099                           &fp->tx_dma, buf) != 0) {
15100             /* XXX unwind and free previous fastpath allocations */
15101             BLOGE(sc, "Failed to alloc %s\n", buf);
15102             return (1);
15103         } else {
15104             fp->tx_chain = (union eth_tx_bd_types *)fp->tx_dma.vaddr;
15105         }
15106 
15107         /* link together the tx bd chain pages */
15108         for (j = 1; j <= TX_BD_NUM_PAGES; j++) {
15109             /* index into the tx bd chain array to last entry per page */
15110             struct eth_tx_next_bd *tx_next_bd =
15111                 &fp->tx_chain[TX_BD_TOTAL_PER_PAGE * j - 1].next_bd;
15112             /* point to the next page and wrap from last page */
15113             busaddr = (fp->tx_dma.paddr +
15114                        (BCM_PAGE_SIZE * (j % TX_BD_NUM_PAGES)));
15115             tx_next_bd->addr_hi = htole32(U64_HI(busaddr));
15116             tx_next_bd->addr_lo = htole32(U64_LO(busaddr));
15117         }
15118 
15119         /******************/
15120         /* FP RX BD CHAIN */
15121         /******************/
15122 
15123         snprintf(buf, sizeof(buf), "fp %d rx bd chain", i);
15124         if (bxe_dma_alloc(sc, (BCM_PAGE_SIZE * RX_BD_NUM_PAGES),
15125                           &fp->rx_dma, buf) != 0) {
15126             /* XXX unwind and free previous fastpath allocations */
15127             BLOGE(sc, "Failed to alloc %s\n", buf);
15128             return (1);
15129         } else {
15130             fp->rx_chain = (struct eth_rx_bd *)fp->rx_dma.vaddr;
15131         }
15132 
15133         /* link together the rx bd chain pages */
15134         for (j = 1; j <= RX_BD_NUM_PAGES; j++) {
15135             /* index into the rx bd chain array to last entry per page */
15136             struct eth_rx_bd *rx_bd =
15137                 &fp->rx_chain[RX_BD_TOTAL_PER_PAGE * j - 2];
15138             /* point to the next page and wrap from last page */
15139             busaddr = (fp->rx_dma.paddr +
15140                        (BCM_PAGE_SIZE * (j % RX_BD_NUM_PAGES)));
15141             rx_bd->addr_hi = htole32(U64_HI(busaddr));
15142             rx_bd->addr_lo = htole32(U64_LO(busaddr));
15143         }
15144 
15145         /*******************/
15146         /* FP RX RCQ CHAIN */
15147         /*******************/
15148 
15149         snprintf(buf, sizeof(buf), "fp %d rcq chain", i);
15150         if (bxe_dma_alloc(sc, (BCM_PAGE_SIZE * RCQ_NUM_PAGES),
15151                           &fp->rcq_dma, buf) != 0) {
15152             /* XXX unwind and free previous fastpath allocations */
15153             BLOGE(sc, "Failed to alloc %s\n", buf);
15154             return (1);
15155         } else {
15156             fp->rcq_chain = (union eth_rx_cqe *)fp->rcq_dma.vaddr;
15157         }
15158 
15159         /* link together the rcq chain pages */
15160         for (j = 1; j <= RCQ_NUM_PAGES; j++) {
15161             /* index into the rcq chain array to last entry per page */
15162             struct eth_rx_cqe_next_page *rx_cqe_next =
15163                 (struct eth_rx_cqe_next_page *)
15164                 &fp->rcq_chain[RCQ_TOTAL_PER_PAGE * j - 1];
15165             /* point to the next page and wrap from last page */
15166             busaddr = (fp->rcq_dma.paddr +
15167                        (BCM_PAGE_SIZE * (j % RCQ_NUM_PAGES)));
15168             rx_cqe_next->addr_hi = htole32(U64_HI(busaddr));
15169             rx_cqe_next->addr_lo = htole32(U64_LO(busaddr));
15170         }
15171 
15172         /*******************/
15173         /* FP RX SGE CHAIN */
15174         /*******************/
15175 
15176         snprintf(buf, sizeof(buf), "fp %d sge chain", i);
15177         if (bxe_dma_alloc(sc, (BCM_PAGE_SIZE * RX_SGE_NUM_PAGES),
15178                           &fp->rx_sge_dma, buf) != 0) {
15179             /* XXX unwind and free previous fastpath allocations */
15180             BLOGE(sc, "Failed to alloc %s\n", buf);
15181             return (1);
15182         } else {
15183             fp->rx_sge_chain = (struct eth_rx_sge *)fp->rx_sge_dma.vaddr;
15184         }
15185 
15186         /* link together the sge chain pages */
15187         for (j = 1; j <= RX_SGE_NUM_PAGES; j++) {
15188             /* index into the rcq chain array to last entry per page */
15189             struct eth_rx_sge *rx_sge =
15190                 &fp->rx_sge_chain[RX_SGE_TOTAL_PER_PAGE * j - 2];
15191             /* point to the next page and wrap from last page */
15192             busaddr = (fp->rx_sge_dma.paddr +
15193                        (BCM_PAGE_SIZE * (j % RX_SGE_NUM_PAGES)));
15194             rx_sge->addr_hi = htole32(U64_HI(busaddr));
15195             rx_sge->addr_lo = htole32(U64_LO(busaddr));
15196         }
15197 
15198         /***********************/
15199         /* FP TX MBUF DMA MAPS */
15200         /***********************/
15201 
15202         /* set required sizes before mapping to conserve resources */
15203         if (if_getcapenable(sc->ifp) & (IFCAP_TSO4 | IFCAP_TSO6)) {
15204             max_size     = BXE_TSO_MAX_SIZE;
15205             max_segments = BXE_TSO_MAX_SEGMENTS;
15206             max_seg_size = BXE_TSO_MAX_SEG_SIZE;
15207         } else {
15208             max_size     = (MCLBYTES * BXE_MAX_SEGMENTS);
15209             max_segments = BXE_MAX_SEGMENTS;
15210             max_seg_size = MCLBYTES;
15211         }
15212 
15213         /* create a dma tag for the tx mbufs */
15214         rc = bus_dma_tag_create(sc->parent_dma_tag, /* parent tag */
15215                                 1,                  /* alignment */
15216                                 0,                  /* boundary limit */
15217                                 BUS_SPACE_MAXADDR,  /* restricted low */
15218                                 BUS_SPACE_MAXADDR,  /* restricted hi */
15219                                 NULL,               /* addr filter() */
15220                                 NULL,               /* addr filter() arg */
15221                                 max_size,           /* max map size */
15222                                 max_segments,       /* num discontinuous */
15223                                 max_seg_size,       /* max seg size */
15224                                 0,                  /* flags */
15225                                 NULL,               /* lock() */
15226                                 NULL,               /* lock() arg */
15227                                 &fp->tx_mbuf_tag);  /* returned dma tag */
15228         if (rc != 0) {
15229             /* XXX unwind and free previous fastpath allocations */
15230             BLOGE(sc, "Failed to create dma tag for "
15231                       "'fp %d tx mbufs' (%d)\n",
15232                   i, rc);
15233             return (1);
15234         }
15235 
15236         /* create dma maps for each of the tx mbuf clusters */
15237         for (j = 0; j < TX_BD_TOTAL; j++) {
15238             if (bus_dmamap_create(fp->tx_mbuf_tag,
15239                                   BUS_DMA_NOWAIT,
15240                                   &fp->tx_mbuf_chain[j].m_map)) {
15241                 /* XXX unwind and free previous fastpath allocations */
15242                 BLOGE(sc, "Failed to create dma map for "
15243                           "'fp %d tx mbuf %d' (%d)\n",
15244                       i, j, rc);
15245                 return (1);
15246             }
15247         }
15248 
15249         /***********************/
15250         /* FP RX MBUF DMA MAPS */
15251         /***********************/
15252 
15253         /* create a dma tag for the rx mbufs */
15254         rc = bus_dma_tag_create(sc->parent_dma_tag, /* parent tag */
15255                                 1,                  /* alignment */
15256                                 0,                  /* boundary limit */
15257                                 BUS_SPACE_MAXADDR,  /* restricted low */
15258                                 BUS_SPACE_MAXADDR,  /* restricted hi */
15259                                 NULL,               /* addr filter() */
15260                                 NULL,               /* addr filter() arg */
15261                                 MJUM9BYTES,         /* max map size */
15262                                 1,                  /* num discontinuous */
15263                                 MJUM9BYTES,         /* max seg size */
15264                                 0,                  /* flags */
15265                                 NULL,               /* lock() */
15266                                 NULL,               /* lock() arg */
15267                                 &fp->rx_mbuf_tag);  /* returned dma tag */
15268         if (rc != 0) {
15269             /* XXX unwind and free previous fastpath allocations */
15270             BLOGE(sc, "Failed to create dma tag for "
15271                       "'fp %d rx mbufs' (%d)\n",
15272                   i, rc);
15273             return (1);
15274         }
15275 
15276         /* create dma maps for each of the rx mbuf clusters */
15277         for (j = 0; j < RX_BD_TOTAL; j++) {
15278             if (bus_dmamap_create(fp->rx_mbuf_tag,
15279                                   BUS_DMA_NOWAIT,
15280                                   &fp->rx_mbuf_chain[j].m_map)) {
15281                 /* XXX unwind and free previous fastpath allocations */
15282                 BLOGE(sc, "Failed to create dma map for "
15283                           "'fp %d rx mbuf %d' (%d)\n",
15284                       i, j, rc);
15285                 return (1);
15286             }
15287         }
15288 
15289         /* create dma map for the spare rx mbuf cluster */
15290         if (bus_dmamap_create(fp->rx_mbuf_tag,
15291                               BUS_DMA_NOWAIT,
15292                               &fp->rx_mbuf_spare_map)) {
15293             /* XXX unwind and free previous fastpath allocations */
15294             BLOGE(sc, "Failed to create dma map for "
15295                       "'fp %d spare rx mbuf' (%d)\n",
15296                   i, rc);
15297             return (1);
15298         }
15299 
15300         /***************************/
15301         /* FP RX SGE MBUF DMA MAPS */
15302         /***************************/
15303 
15304         /* create a dma tag for the rx sge mbufs */
15305         rc = bus_dma_tag_create(sc->parent_dma_tag, /* parent tag */
15306                                 1,                  /* alignment */
15307                                 0,                  /* boundary limit */
15308                                 BUS_SPACE_MAXADDR,  /* restricted low */
15309                                 BUS_SPACE_MAXADDR,  /* restricted hi */
15310                                 NULL,               /* addr filter() */
15311                                 NULL,               /* addr filter() arg */
15312                                 BCM_PAGE_SIZE,      /* max map size */
15313                                 1,                  /* num discontinuous */
15314                                 BCM_PAGE_SIZE,      /* max seg size */
15315                                 0,                  /* flags */
15316                                 NULL,               /* lock() */
15317                                 NULL,               /* lock() arg */
15318                                 &fp->rx_sge_mbuf_tag); /* returned dma tag */
15319         if (rc != 0) {
15320             /* XXX unwind and free previous fastpath allocations */
15321             BLOGE(sc, "Failed to create dma tag for "
15322                       "'fp %d rx sge mbufs' (%d)\n",
15323                   i, rc);
15324             return (1);
15325         }
15326 
15327         /* create dma maps for the rx sge mbuf clusters */
15328         for (j = 0; j < RX_SGE_TOTAL; j++) {
15329             if (bus_dmamap_create(fp->rx_sge_mbuf_tag,
15330                                   BUS_DMA_NOWAIT,
15331                                   &fp->rx_sge_mbuf_chain[j].m_map)) {
15332                 /* XXX unwind and free previous fastpath allocations */
15333                 BLOGE(sc, "Failed to create dma map for "
15334                           "'fp %d rx sge mbuf %d' (%d)\n",
15335                       i, j, rc);
15336                 return (1);
15337             }
15338         }
15339 
15340         /* create dma map for the spare rx sge mbuf cluster */
15341         if (bus_dmamap_create(fp->rx_sge_mbuf_tag,
15342                               BUS_DMA_NOWAIT,
15343                               &fp->rx_sge_mbuf_spare_map)) {
15344             /* XXX unwind and free previous fastpath allocations */
15345             BLOGE(sc, "Failed to create dma map for "
15346                       "'fp %d spare rx sge mbuf' (%d)\n",
15347                   i, rc);
15348             return (1);
15349         }
15350 
15351         /***************************/
15352         /* FP RX TPA MBUF DMA MAPS */
15353         /***************************/
15354 
15355         /* create dma maps for the rx tpa mbuf clusters */
15356         max_agg_queues = MAX_AGG_QS(sc);
15357 
15358         for (j = 0; j < max_agg_queues; j++) {
15359             if (bus_dmamap_create(fp->rx_mbuf_tag,
15360                                   BUS_DMA_NOWAIT,
15361                                   &fp->rx_tpa_info[j].bd.m_map)) {
15362                 /* XXX unwind and free previous fastpath allocations */
15363                 BLOGE(sc, "Failed to create dma map for "
15364                           "'fp %d rx tpa mbuf %d' (%d)\n",
15365                       i, j, rc);
15366                 return (1);
15367             }
15368         }
15369 
15370         /* create dma map for the spare rx tpa mbuf cluster */
15371         if (bus_dmamap_create(fp->rx_mbuf_tag,
15372                               BUS_DMA_NOWAIT,
15373                               &fp->rx_tpa_info_mbuf_spare_map)) {
15374             /* XXX unwind and free previous fastpath allocations */
15375             BLOGE(sc, "Failed to create dma map for "
15376                       "'fp %d spare rx tpa mbuf' (%d)\n",
15377                   i, rc);
15378             return (1);
15379         }
15380 
15381         bxe_init_sge_ring_bit_mask(fp);
15382     }
15383 
15384     return (0);
15385 }
15386 
15387 static void
15388 bxe_free_hsi_mem(struct bxe_softc *sc)
15389 {
15390     struct bxe_fastpath *fp;
15391     int max_agg_queues;
15392     int i, j;
15393 
15394     if (sc->parent_dma_tag == NULL) {
15395         return; /* assume nothing was allocated */
15396     }
15397 
15398     for (i = 0; i < sc->num_queues; i++) {
15399         fp = &sc->fp[i];
15400 
15401         /*******************/
15402         /* FP STATUS BLOCK */
15403         /*******************/
15404 
15405         bxe_dma_free(sc, &fp->sb_dma);
15406         memset(&fp->status_block, 0, sizeof(fp->status_block));
15407 
15408         /******************/
15409         /* FP TX BD CHAIN */
15410         /******************/
15411 
15412         bxe_dma_free(sc, &fp->tx_dma);
15413         fp->tx_chain = NULL;
15414 
15415         /******************/
15416         /* FP RX BD CHAIN */
15417         /******************/
15418 
15419         bxe_dma_free(sc, &fp->rx_dma);
15420         fp->rx_chain = NULL;
15421 
15422         /*******************/
15423         /* FP RX RCQ CHAIN */
15424         /*******************/
15425 
15426         bxe_dma_free(sc, &fp->rcq_dma);
15427         fp->rcq_chain = NULL;
15428 
15429         /*******************/
15430         /* FP RX SGE CHAIN */
15431         /*******************/
15432 
15433         bxe_dma_free(sc, &fp->rx_sge_dma);
15434         fp->rx_sge_chain = NULL;
15435 
15436         /***********************/
15437         /* FP TX MBUF DMA MAPS */
15438         /***********************/
15439 
15440         if (fp->tx_mbuf_tag != NULL) {
15441             for (j = 0; j < TX_BD_TOTAL; j++) {
15442                 if (fp->tx_mbuf_chain[j].m_map != NULL) {
15443                     bus_dmamap_unload(fp->tx_mbuf_tag,
15444                                       fp->tx_mbuf_chain[j].m_map);
15445                     bus_dmamap_destroy(fp->tx_mbuf_tag,
15446                                        fp->tx_mbuf_chain[j].m_map);
15447                 }
15448             }
15449 
15450             bus_dma_tag_destroy(fp->tx_mbuf_tag);
15451             fp->tx_mbuf_tag = NULL;
15452         }
15453 
15454         /***********************/
15455         /* FP RX MBUF DMA MAPS */
15456         /***********************/
15457 
15458         if (fp->rx_mbuf_tag != NULL) {
15459             for (j = 0; j < RX_BD_TOTAL; j++) {
15460                 if (fp->rx_mbuf_chain[j].m_map != NULL) {
15461                     bus_dmamap_unload(fp->rx_mbuf_tag,
15462                                       fp->rx_mbuf_chain[j].m_map);
15463                     bus_dmamap_destroy(fp->rx_mbuf_tag,
15464                                        fp->rx_mbuf_chain[j].m_map);
15465                 }
15466             }
15467 
15468             if (fp->rx_mbuf_spare_map != NULL) {
15469                 bus_dmamap_unload(fp->rx_mbuf_tag, fp->rx_mbuf_spare_map);
15470                 bus_dmamap_destroy(fp->rx_mbuf_tag, fp->rx_mbuf_spare_map);
15471             }
15472 
15473             /***************************/
15474             /* FP RX TPA MBUF DMA MAPS */
15475             /***************************/
15476 
15477             max_agg_queues = MAX_AGG_QS(sc);
15478 
15479             for (j = 0; j < max_agg_queues; j++) {
15480                 if (fp->rx_tpa_info[j].bd.m_map != NULL) {
15481                     bus_dmamap_unload(fp->rx_mbuf_tag,
15482                                       fp->rx_tpa_info[j].bd.m_map);
15483                     bus_dmamap_destroy(fp->rx_mbuf_tag,
15484                                        fp->rx_tpa_info[j].bd.m_map);
15485                 }
15486             }
15487 
15488             if (fp->rx_tpa_info_mbuf_spare_map != NULL) {
15489                 bus_dmamap_unload(fp->rx_mbuf_tag,
15490                                   fp->rx_tpa_info_mbuf_spare_map);
15491                 bus_dmamap_destroy(fp->rx_mbuf_tag,
15492                                    fp->rx_tpa_info_mbuf_spare_map);
15493             }
15494 
15495             bus_dma_tag_destroy(fp->rx_mbuf_tag);
15496             fp->rx_mbuf_tag = NULL;
15497         }
15498 
15499         /***************************/
15500         /* FP RX SGE MBUF DMA MAPS */
15501         /***************************/
15502 
15503         if (fp->rx_sge_mbuf_tag != NULL) {
15504             for (j = 0; j < RX_SGE_TOTAL; j++) {
15505                 if (fp->rx_sge_mbuf_chain[j].m_map != NULL) {
15506                     bus_dmamap_unload(fp->rx_sge_mbuf_tag,
15507                                       fp->rx_sge_mbuf_chain[j].m_map);
15508                     bus_dmamap_destroy(fp->rx_sge_mbuf_tag,
15509                                        fp->rx_sge_mbuf_chain[j].m_map);
15510                 }
15511             }
15512 
15513             if (fp->rx_sge_mbuf_spare_map != NULL) {
15514                 bus_dmamap_unload(fp->rx_sge_mbuf_tag,
15515                                   fp->rx_sge_mbuf_spare_map);
15516                 bus_dmamap_destroy(fp->rx_sge_mbuf_tag,
15517                                    fp->rx_sge_mbuf_spare_map);
15518             }
15519 
15520             bus_dma_tag_destroy(fp->rx_sge_mbuf_tag);
15521             fp->rx_sge_mbuf_tag = NULL;
15522         }
15523     }
15524 
15525     /***************************/
15526     /* FW DECOMPRESSION BUFFER */
15527     /***************************/
15528 
15529     bxe_dma_free(sc, &sc->gz_buf_dma);
15530     sc->gz_buf = NULL;
15531     free(sc->gz_strm, M_DEVBUF);
15532     sc->gz_strm = NULL;
15533 
15534     /*******************/
15535     /* SLOW PATH QUEUE */
15536     /*******************/
15537 
15538     bxe_dma_free(sc, &sc->spq_dma);
15539     sc->spq = NULL;
15540 
15541     /*************/
15542     /* SLOW PATH */
15543     /*************/
15544 
15545     bxe_dma_free(sc, &sc->sp_dma);
15546     sc->sp = NULL;
15547 
15548     /***************/
15549     /* EVENT QUEUE */
15550     /***************/
15551 
15552     bxe_dma_free(sc, &sc->eq_dma);
15553     sc->eq = NULL;
15554 
15555     /************************/
15556     /* DEFAULT STATUS BLOCK */
15557     /************************/
15558 
15559     bxe_dma_free(sc, &sc->def_sb_dma);
15560     sc->def_sb = NULL;
15561 
15562     bus_dma_tag_destroy(sc->parent_dma_tag);
15563     sc->parent_dma_tag = NULL;
15564 }
15565 
15566 /*
15567  * Previous driver DMAE transaction may have occurred when pre-boot stage
15568  * ended and boot began. This would invalidate the addresses of the
15569  * transaction, resulting in was-error bit set in the PCI causing all
15570  * hw-to-host PCIe transactions to timeout. If this happened we want to clear
15571  * the interrupt which detected this from the pglueb and the was-done bit
15572  */
15573 static void
15574 bxe_prev_interrupted_dmae(struct bxe_softc *sc)
15575 {
15576     uint32_t val;
15577 
15578     if (!CHIP_IS_E1x(sc)) {
15579         val = REG_RD(sc, PGLUE_B_REG_PGLUE_B_INT_STS);
15580         if (val & PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN) {
15581             BLOGD(sc, DBG_LOAD,
15582                   "Clearing 'was-error' bit that was set in pglueb");
15583             REG_WR(sc, PGLUE_B_REG_WAS_ERROR_PF_7_0_CLR, 1 << SC_FUNC(sc));
15584         }
15585     }
15586 }
15587 
15588 static int
15589 bxe_prev_mcp_done(struct bxe_softc *sc)
15590 {
15591     uint32_t rc = bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_DONE,
15592                                  DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET);
15593     if (!rc) {
15594         BLOGE(sc, "MCP response failure, aborting\n");
15595         return (-1);
15596     }
15597 
15598     return (0);
15599 }
15600 
15601 static struct bxe_prev_list_node *
15602 bxe_prev_path_get_entry(struct bxe_softc *sc)
15603 {
15604     struct bxe_prev_list_node *tmp;
15605 
15606     LIST_FOREACH(tmp, &bxe_prev_list, node) {
15607         if ((sc->pcie_bus == tmp->bus) &&
15608             (sc->pcie_device == tmp->slot) &&
15609             (SC_PATH(sc) == tmp->path)) {
15610             return (tmp);
15611         }
15612     }
15613 
15614     return (NULL);
15615 }
15616 
15617 static uint8_t
15618 bxe_prev_is_path_marked(struct bxe_softc *sc)
15619 {
15620     struct bxe_prev_list_node *tmp;
15621     int rc = FALSE;
15622 
15623     mtx_lock(&bxe_prev_mtx);
15624 
15625     tmp = bxe_prev_path_get_entry(sc);
15626     if (tmp) {
15627         if (tmp->aer) {
15628             BLOGD(sc, DBG_LOAD,
15629                   "Path %d/%d/%d was marked by AER\n",
15630                   sc->pcie_bus, sc->pcie_device, SC_PATH(sc));
15631         } else {
15632             rc = TRUE;
15633             BLOGD(sc, DBG_LOAD,
15634                   "Path %d/%d/%d was already cleaned from previous drivers\n",
15635                   sc->pcie_bus, sc->pcie_device, SC_PATH(sc));
15636         }
15637     }
15638 
15639     mtx_unlock(&bxe_prev_mtx);
15640 
15641     return (rc);
15642 }
15643 
15644 static int
15645 bxe_prev_mark_path(struct bxe_softc *sc,
15646                    uint8_t          after_undi)
15647 {
15648     struct bxe_prev_list_node *tmp;
15649 
15650     mtx_lock(&bxe_prev_mtx);
15651 
15652     /* Check whether the entry for this path already exists */
15653     tmp = bxe_prev_path_get_entry(sc);
15654     if (tmp) {
15655         if (!tmp->aer) {
15656             BLOGD(sc, DBG_LOAD,
15657                   "Re-marking AER in path %d/%d/%d\n",
15658                   sc->pcie_bus, sc->pcie_device, SC_PATH(sc));
15659         } else {
15660             BLOGD(sc, DBG_LOAD,
15661                   "Removing AER indication from path %d/%d/%d\n",
15662                   sc->pcie_bus, sc->pcie_device, SC_PATH(sc));
15663             tmp->aer = 0;
15664         }
15665 
15666         mtx_unlock(&bxe_prev_mtx);
15667         return (0);
15668     }
15669 
15670     mtx_unlock(&bxe_prev_mtx);
15671 
15672     /* Create an entry for this path and add it */
15673     tmp = malloc(sizeof(struct bxe_prev_list_node), M_DEVBUF,
15674                  (M_NOWAIT | M_ZERO));
15675     if (!tmp) {
15676         BLOGE(sc, "Failed to allocate 'bxe_prev_list_node'\n");
15677         return (-1);
15678     }
15679 
15680     tmp->bus  = sc->pcie_bus;
15681     tmp->slot = sc->pcie_device;
15682     tmp->path = SC_PATH(sc);
15683     tmp->aer  = 0;
15684     tmp->undi = after_undi ? (1 << SC_PORT(sc)) : 0;
15685 
15686     mtx_lock(&bxe_prev_mtx);
15687 
15688     BLOGD(sc, DBG_LOAD,
15689           "Marked path %d/%d/%d - finished previous unload\n",
15690           sc->pcie_bus, sc->pcie_device, SC_PATH(sc));
15691     LIST_INSERT_HEAD(&bxe_prev_list, tmp, node);
15692 
15693     mtx_unlock(&bxe_prev_mtx);
15694 
15695     return (0);
15696 }
15697 
15698 static int
15699 bxe_do_flr(struct bxe_softc *sc)
15700 {
15701     int i;
15702 
15703     /* only E2 and onwards support FLR */
15704     if (CHIP_IS_E1x(sc)) {
15705         BLOGD(sc, DBG_LOAD, "FLR not supported in E1/E1H\n");
15706         return (-1);
15707     }
15708 
15709     /* only bootcode REQ_BC_VER_4_INITIATE_FLR and onwards support flr */
15710     if (sc->devinfo.bc_ver < REQ_BC_VER_4_INITIATE_FLR) {
15711         BLOGD(sc, DBG_LOAD, "FLR not supported by BC_VER: 0x%08x\n",
15712               sc->devinfo.bc_ver);
15713         return (-1);
15714     }
15715 
15716     /* Wait for Transaction Pending bit clean */
15717     for (i = 0; i < 4; i++) {
15718         if (i) {
15719             DELAY(((1 << (i - 1)) * 100) * 1000);
15720         }
15721 
15722         if (!bxe_is_pcie_pending(sc)) {
15723             goto clear;
15724         }
15725     }
15726 
15727     BLOGE(sc, "PCIE transaction is not cleared, "
15728               "proceeding with reset anyway\n");
15729 
15730 clear:
15731 
15732     BLOGD(sc, DBG_LOAD, "Initiating FLR\n");
15733     bxe_fw_command(sc, DRV_MSG_CODE_INITIATE_FLR, 0);
15734 
15735     return (0);
15736 }
15737 
15738 struct bxe_mac_vals {
15739     uint32_t xmac_addr;
15740     uint32_t xmac_val;
15741     uint32_t emac_addr;
15742     uint32_t emac_val;
15743     uint32_t umac_addr;
15744     uint32_t umac_val;
15745     uint32_t bmac_addr;
15746     uint32_t bmac_val[2];
15747 };
15748 
15749 static void
15750 bxe_prev_unload_close_mac(struct bxe_softc *sc,
15751                           struct bxe_mac_vals *vals)
15752 {
15753     uint32_t val, base_addr, offset, mask, reset_reg;
15754     uint8_t mac_stopped = FALSE;
15755     uint8_t port = SC_PORT(sc);
15756     uint32_t wb_data[2];
15757 
15758     /* reset addresses as they also mark which values were changed */
15759     vals->bmac_addr = 0;
15760     vals->umac_addr = 0;
15761     vals->xmac_addr = 0;
15762     vals->emac_addr = 0;
15763 
15764     reset_reg = REG_RD(sc, MISC_REG_RESET_REG_2);
15765 
15766     if (!CHIP_IS_E3(sc)) {
15767         val = REG_RD(sc, NIG_REG_BMAC0_REGS_OUT_EN + port * 4);
15768         mask = MISC_REGISTERS_RESET_REG_2_RST_BMAC0 << port;
15769         if ((mask & reset_reg) && val) {
15770             BLOGD(sc, DBG_LOAD, "Disable BMAC Rx\n");
15771             base_addr = SC_PORT(sc) ? NIG_REG_INGRESS_BMAC1_MEM
15772                                     : NIG_REG_INGRESS_BMAC0_MEM;
15773             offset = CHIP_IS_E2(sc) ? BIGMAC2_REGISTER_BMAC_CONTROL
15774                                     : BIGMAC_REGISTER_BMAC_CONTROL;
15775 
15776             /*
15777              * use rd/wr since we cannot use dmae. This is safe
15778              * since MCP won't access the bus due to the request
15779              * to unload, and no function on the path can be
15780              * loaded at this time.
15781              */
15782             wb_data[0] = REG_RD(sc, base_addr + offset);
15783             wb_data[1] = REG_RD(sc, base_addr + offset + 0x4);
15784             vals->bmac_addr = base_addr + offset;
15785             vals->bmac_val[0] = wb_data[0];
15786             vals->bmac_val[1] = wb_data[1];
15787             wb_data[0] &= ~ELINK_BMAC_CONTROL_RX_ENABLE;
15788             REG_WR(sc, vals->bmac_addr, wb_data[0]);
15789             REG_WR(sc, vals->bmac_addr + 0x4, wb_data[1]);
15790         }
15791 
15792         BLOGD(sc, DBG_LOAD, "Disable EMAC Rx\n");
15793         vals->emac_addr = NIG_REG_NIG_EMAC0_EN + SC_PORT(sc)*4;
15794         vals->emac_val = REG_RD(sc, vals->emac_addr);
15795         REG_WR(sc, vals->emac_addr, 0);
15796         mac_stopped = TRUE;
15797     } else {
15798         if (reset_reg & MISC_REGISTERS_RESET_REG_2_XMAC) {
15799             BLOGD(sc, DBG_LOAD, "Disable XMAC Rx\n");
15800             base_addr = SC_PORT(sc) ? GRCBASE_XMAC1 : GRCBASE_XMAC0;
15801             val = REG_RD(sc, base_addr + XMAC_REG_PFC_CTRL_HI);
15802             REG_WR(sc, base_addr + XMAC_REG_PFC_CTRL_HI, val & ~(1 << 1));
15803             REG_WR(sc, base_addr + XMAC_REG_PFC_CTRL_HI, val | (1 << 1));
15804             vals->xmac_addr = base_addr + XMAC_REG_CTRL;
15805             vals->xmac_val = REG_RD(sc, vals->xmac_addr);
15806             REG_WR(sc, vals->xmac_addr, 0);
15807             mac_stopped = TRUE;
15808         }
15809 
15810         mask = MISC_REGISTERS_RESET_REG_2_UMAC0 << port;
15811         if (mask & reset_reg) {
15812             BLOGD(sc, DBG_LOAD, "Disable UMAC Rx\n");
15813             base_addr = SC_PORT(sc) ? GRCBASE_UMAC1 : GRCBASE_UMAC0;
15814             vals->umac_addr = base_addr + UMAC_REG_COMMAND_CONFIG;
15815             vals->umac_val = REG_RD(sc, vals->umac_addr);
15816             REG_WR(sc, vals->umac_addr, 0);
15817             mac_stopped = TRUE;
15818         }
15819     }
15820 
15821     if (mac_stopped) {
15822         DELAY(20000);
15823     }
15824 }
15825 
15826 #define BXE_PREV_UNDI_PROD_ADDR(p)  (BAR_TSTRORM_INTMEM + 0x1508 + ((p) << 4))
15827 #define BXE_PREV_UNDI_RCQ(val)      ((val) & 0xffff)
15828 #define BXE_PREV_UNDI_BD(val)       ((val) >> 16 & 0xffff)
15829 #define BXE_PREV_UNDI_PROD(rcq, bd) ((bd) << 16 | (rcq))
15830 
15831 static void
15832 bxe_prev_unload_undi_inc(struct bxe_softc *sc,
15833                          uint8_t          port,
15834                          uint8_t          inc)
15835 {
15836     uint16_t rcq, bd;
15837     uint32_t tmp_reg = REG_RD(sc, BXE_PREV_UNDI_PROD_ADDR(port));
15838 
15839     rcq = BXE_PREV_UNDI_RCQ(tmp_reg) + inc;
15840     bd = BXE_PREV_UNDI_BD(tmp_reg) + inc;
15841 
15842     tmp_reg = BXE_PREV_UNDI_PROD(rcq, bd);
15843     REG_WR(sc, BXE_PREV_UNDI_PROD_ADDR(port), tmp_reg);
15844 
15845     BLOGD(sc, DBG_LOAD,
15846           "UNDI producer [%d] rings bd -> 0x%04x, rcq -> 0x%04x\n",
15847           port, bd, rcq);
15848 }
15849 
15850 static int
15851 bxe_prev_unload_common(struct bxe_softc *sc)
15852 {
15853     uint32_t reset_reg, tmp_reg = 0, rc;
15854     uint8_t prev_undi = FALSE;
15855     struct bxe_mac_vals mac_vals;
15856     uint32_t timer_count = 1000;
15857     uint32_t prev_brb;
15858 
15859     /*
15860      * It is possible a previous function received 'common' answer,
15861      * but hasn't loaded yet, therefore creating a scenario of
15862      * multiple functions receiving 'common' on the same path.
15863      */
15864     BLOGD(sc, DBG_LOAD, "Common unload Flow\n");
15865 
15866     memset(&mac_vals, 0, sizeof(mac_vals));
15867 
15868     if (bxe_prev_is_path_marked(sc)) {
15869         return (bxe_prev_mcp_done(sc));
15870     }
15871 
15872     reset_reg = REG_RD(sc, MISC_REG_RESET_REG_1);
15873 
15874     /* Reset should be performed after BRB is emptied */
15875     if (reset_reg & MISC_REGISTERS_RESET_REG_1_RST_BRB1) {
15876         /* Close the MAC Rx to prevent BRB from filling up */
15877         bxe_prev_unload_close_mac(sc, &mac_vals);
15878 
15879         /* close LLH filters towards the BRB */
15880         elink_set_rx_filter(&sc->link_params, 0);
15881 
15882         /*
15883          * Check if the UNDI driver was previously loaded.
15884          * UNDI driver initializes CID offset for normal bell to 0x7
15885          */
15886         if (reset_reg & MISC_REGISTERS_RESET_REG_1_RST_DORQ) {
15887             tmp_reg = REG_RD(sc, DORQ_REG_NORM_CID_OFST);
15888             if (tmp_reg == 0x7) {
15889                 BLOGD(sc, DBG_LOAD, "UNDI previously loaded\n");
15890                 prev_undi = TRUE;
15891                 /* clear the UNDI indication */
15892                 REG_WR(sc, DORQ_REG_NORM_CID_OFST, 0);
15893                 /* clear possible idle check errors */
15894                 REG_RD(sc, NIG_REG_NIG_INT_STS_CLR_0);
15895             }
15896         }
15897 
15898         /* wait until BRB is empty */
15899         tmp_reg = REG_RD(sc, BRB1_REG_NUM_OF_FULL_BLOCKS);
15900         while (timer_count) {
15901             prev_brb = tmp_reg;
15902 
15903             tmp_reg = REG_RD(sc, BRB1_REG_NUM_OF_FULL_BLOCKS);
15904             if (!tmp_reg) {
15905                 break;
15906             }
15907 
15908             BLOGD(sc, DBG_LOAD, "BRB still has 0x%08x\n", tmp_reg);
15909 
15910             /* reset timer as long as BRB actually gets emptied */
15911             if (prev_brb > tmp_reg) {
15912                 timer_count = 1000;
15913             } else {
15914                 timer_count--;
15915             }
15916 
15917             /* If UNDI resides in memory, manually increment it */
15918             if (prev_undi) {
15919                 bxe_prev_unload_undi_inc(sc, SC_PORT(sc), 1);
15920             }
15921 
15922             DELAY(10);
15923         }
15924 
15925         if (!timer_count) {
15926             BLOGE(sc, "Failed to empty BRB\n");
15927         }
15928     }
15929 
15930     /* No packets are in the pipeline, path is ready for reset */
15931     bxe_reset_common(sc);
15932 
15933     if (mac_vals.xmac_addr) {
15934         REG_WR(sc, mac_vals.xmac_addr, mac_vals.xmac_val);
15935     }
15936     if (mac_vals.umac_addr) {
15937         REG_WR(sc, mac_vals.umac_addr, mac_vals.umac_val);
15938     }
15939     if (mac_vals.emac_addr) {
15940         REG_WR(sc, mac_vals.emac_addr, mac_vals.emac_val);
15941     }
15942     if (mac_vals.bmac_addr) {
15943         REG_WR(sc, mac_vals.bmac_addr, mac_vals.bmac_val[0]);
15944         REG_WR(sc, mac_vals.bmac_addr + 4, mac_vals.bmac_val[1]);
15945     }
15946 
15947     rc = bxe_prev_mark_path(sc, prev_undi);
15948     if (rc) {
15949         bxe_prev_mcp_done(sc);
15950         return (rc);
15951     }
15952 
15953     return (bxe_prev_mcp_done(sc));
15954 }
15955 
15956 static int
15957 bxe_prev_unload_uncommon(struct bxe_softc *sc)
15958 {
15959     int rc;
15960 
15961     BLOGD(sc, DBG_LOAD, "Uncommon unload Flow\n");
15962 
15963     /* Test if previous unload process was already finished for this path */
15964     if (bxe_prev_is_path_marked(sc)) {
15965         return (bxe_prev_mcp_done(sc));
15966     }
15967 
15968     BLOGD(sc, DBG_LOAD, "Path is unmarked\n");
15969 
15970     /*
15971      * If function has FLR capabilities, and existing FW version matches
15972      * the one required, then FLR will be sufficient to clean any residue
15973      * left by previous driver
15974      */
15975     rc = bxe_nic_load_analyze_req(sc, FW_MSG_CODE_DRV_LOAD_FUNCTION);
15976     if (!rc) {
15977         /* fw version is good */
15978         BLOGD(sc, DBG_LOAD, "FW version matches our own, attempting FLR\n");
15979         rc = bxe_do_flr(sc);
15980     }
15981 
15982     if (!rc) {
15983         /* FLR was performed */
15984         BLOGD(sc, DBG_LOAD, "FLR successful\n");
15985         return (0);
15986     }
15987 
15988     BLOGD(sc, DBG_LOAD, "Could not FLR\n");
15989 
15990     /* Close the MCP request, return failure*/
15991     rc = bxe_prev_mcp_done(sc);
15992     if (!rc) {
15993         rc = BXE_PREV_WAIT_NEEDED;
15994     }
15995 
15996     return (rc);
15997 }
15998 
15999 static int
16000 bxe_prev_unload(struct bxe_softc *sc)
16001 {
16002     int time_counter = 10;
16003     uint32_t fw, hw_lock_reg, hw_lock_val;
16004     uint32_t rc = 0;
16005 
16006     /*
16007      * Clear HW from errors which may have resulted from an interrupted
16008      * DMAE transaction.
16009      */
16010     bxe_prev_interrupted_dmae(sc);
16011 
16012     /* Release previously held locks */
16013     hw_lock_reg =
16014         (SC_FUNC(sc) <= 5) ?
16015             (MISC_REG_DRIVER_CONTROL_1 + SC_FUNC(sc) * 8) :
16016             (MISC_REG_DRIVER_CONTROL_7 + (SC_FUNC(sc) - 6) * 8);
16017 
16018     hw_lock_val = (REG_RD(sc, hw_lock_reg));
16019     if (hw_lock_val) {
16020         if (hw_lock_val & HW_LOCK_RESOURCE_NVRAM) {
16021             BLOGD(sc, DBG_LOAD, "Releasing previously held NVRAM lock\n");
16022             REG_WR(sc, MCP_REG_MCPR_NVM_SW_ARB,
16023                    (MCPR_NVM_SW_ARB_ARB_REQ_CLR1 << SC_PORT(sc)));
16024         }
16025         BLOGD(sc, DBG_LOAD, "Releasing previously held HW lock\n");
16026         REG_WR(sc, hw_lock_reg, 0xffffffff);
16027     } else {
16028         BLOGD(sc, DBG_LOAD, "No need to release HW/NVRAM locks\n");
16029     }
16030 
16031     if (MCPR_ACCESS_LOCK_LOCK & REG_RD(sc, MCP_REG_MCPR_ACCESS_LOCK)) {
16032         BLOGD(sc, DBG_LOAD, "Releasing previously held ALR\n");
16033         REG_WR(sc, MCP_REG_MCPR_ACCESS_LOCK, 0);
16034     }
16035 
16036     do {
16037         /* Lock MCP using an unload request */
16038         fw = bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS, 0);
16039         if (!fw) {
16040             BLOGE(sc, "MCP response failure, aborting\n");
16041             rc = -1;
16042             break;
16043         }
16044 
16045         if (fw == FW_MSG_CODE_DRV_UNLOAD_COMMON) {
16046             rc = bxe_prev_unload_common(sc);
16047             break;
16048         }
16049 
16050         /* non-common reply from MCP night require looping */
16051         rc = bxe_prev_unload_uncommon(sc);
16052         if (rc != BXE_PREV_WAIT_NEEDED) {
16053             break;
16054         }
16055 
16056         DELAY(20000);
16057     } while (--time_counter);
16058 
16059     if (!time_counter || rc) {
16060         BLOGE(sc, "Failed to unload previous driver!\n");
16061         rc = -1;
16062     }
16063 
16064     return (rc);
16065 }
16066 
16067 void
16068 bxe_dcbx_set_state(struct bxe_softc *sc,
16069                    uint8_t          dcb_on,
16070                    uint32_t         dcbx_enabled)
16071 {
16072     if (!CHIP_IS_E1x(sc)) {
16073         sc->dcb_state = dcb_on;
16074         sc->dcbx_enabled = dcbx_enabled;
16075     } else {
16076         sc->dcb_state = FALSE;
16077         sc->dcbx_enabled = BXE_DCBX_ENABLED_INVALID;
16078     }
16079     BLOGD(sc, DBG_LOAD,
16080           "DCB state [%s:%s]\n",
16081           dcb_on ? "ON" : "OFF",
16082           (dcbx_enabled == BXE_DCBX_ENABLED_OFF) ? "user-mode" :
16083           (dcbx_enabled == BXE_DCBX_ENABLED_ON_NEG_OFF) ? "on-chip static" :
16084           (dcbx_enabled == BXE_DCBX_ENABLED_ON_NEG_ON) ?
16085           "on-chip with negotiation" : "invalid");
16086 }
16087 
16088 /* must be called after sriov-enable */
16089 static int
16090 bxe_set_qm_cid_count(struct bxe_softc *sc)
16091 {
16092     int cid_count = BXE_L2_MAX_CID(sc);
16093 
16094     if (IS_SRIOV(sc)) {
16095         cid_count += BXE_VF_CIDS;
16096     }
16097 
16098     if (CNIC_SUPPORT(sc)) {
16099         cid_count += CNIC_CID_MAX;
16100     }
16101 
16102     return (roundup(cid_count, QM_CID_ROUND));
16103 }
16104 
16105 static void
16106 bxe_init_multi_cos(struct bxe_softc *sc)
16107 {
16108     int pri, cos;
16109 
16110     uint32_t pri_map = 0; /* XXX change to user config */
16111 
16112     for (pri = 0; pri < BXE_MAX_PRIORITY; pri++) {
16113         cos = ((pri_map & (0xf << (pri * 4))) >> (pri * 4));
16114         if (cos < sc->max_cos) {
16115             sc->prio_to_cos[pri] = cos;
16116         } else {
16117             BLOGW(sc, "Invalid COS %d for priority %d "
16118                       "(max COS is %d), setting to 0\n",
16119                   cos, pri, (sc->max_cos - 1));
16120             sc->prio_to_cos[pri] = 0;
16121         }
16122     }
16123 }
16124 
16125 static int
16126 bxe_sysctl_state(SYSCTL_HANDLER_ARGS)
16127 {
16128     struct bxe_softc *sc;
16129     int error, result;
16130 
16131     result = 0;
16132     error = sysctl_handle_int(oidp, &result, 0, req);
16133 
16134     if (error || !req->newptr) {
16135         return (error);
16136     }
16137 
16138     if (result == 1) {
16139         uint32_t  temp;
16140         sc = (struct bxe_softc *)arg1;
16141 
16142         BLOGI(sc, "... dumping driver state ...\n");
16143         temp = SHMEM2_RD(sc, temperature_in_half_celsius);
16144         BLOGI(sc, "\t Device Temperature = %d Celsius\n", (temp/2));
16145     }
16146 
16147     return (error);
16148 }
16149 
16150 static int
16151 bxe_sysctl_eth_stat(SYSCTL_HANDLER_ARGS)
16152 {
16153     struct bxe_softc *sc = (struct bxe_softc *)arg1;
16154     uint32_t *eth_stats = (uint32_t *)&sc->eth_stats;
16155     uint32_t *offset;
16156     uint64_t value = 0;
16157     int index = (int)arg2;
16158 
16159     if (index >= BXE_NUM_ETH_STATS) {
16160         BLOGE(sc, "bxe_eth_stats index out of range (%d)\n", index);
16161         return (-1);
16162     }
16163 
16164     offset = (eth_stats + bxe_eth_stats_arr[index].offset);
16165 
16166     switch (bxe_eth_stats_arr[index].size) {
16167     case 4:
16168         value = (uint64_t)*offset;
16169         break;
16170     case 8:
16171         value = HILO_U64(*offset, *(offset + 1));
16172         break;
16173     default:
16174         BLOGE(sc, "Invalid bxe_eth_stats size (index=%d size=%d)\n",
16175               index, bxe_eth_stats_arr[index].size);
16176         return (-1);
16177     }
16178 
16179     return (sysctl_handle_64(oidp, &value, 0, req));
16180 }
16181 
16182 static int
16183 bxe_sysctl_eth_q_stat(SYSCTL_HANDLER_ARGS)
16184 {
16185     struct bxe_softc *sc = (struct bxe_softc *)arg1;
16186     uint32_t *eth_stats;
16187     uint32_t *offset;
16188     uint64_t value = 0;
16189     uint32_t q_stat = (uint32_t)arg2;
16190     uint32_t fp_index = ((q_stat >> 16) & 0xffff);
16191     uint32_t index = (q_stat & 0xffff);
16192 
16193     eth_stats = (uint32_t *)&sc->fp[fp_index].eth_q_stats;
16194 
16195     if (index >= BXE_NUM_ETH_Q_STATS) {
16196         BLOGE(sc, "bxe_eth_q_stats index out of range (%d)\n", index);
16197         return (-1);
16198     }
16199 
16200     offset = (eth_stats + bxe_eth_q_stats_arr[index].offset);
16201 
16202     switch (bxe_eth_q_stats_arr[index].size) {
16203     case 4:
16204         value = (uint64_t)*offset;
16205         break;
16206     case 8:
16207         value = HILO_U64(*offset, *(offset + 1));
16208         break;
16209     default:
16210         BLOGE(sc, "Invalid bxe_eth_q_stats size (index=%d size=%d)\n",
16211               index, bxe_eth_q_stats_arr[index].size);
16212         return (-1);
16213     }
16214 
16215     return (sysctl_handle_64(oidp, &value, 0, req));
16216 }
16217 
16218 static void
16219 bxe_add_sysctls(struct bxe_softc *sc)
16220 {
16221     struct sysctl_ctx_list *ctx;
16222     struct sysctl_oid_list *children;
16223     struct sysctl_oid *queue_top, *queue;
16224     struct sysctl_oid_list *queue_top_children, *queue_children;
16225     char queue_num_buf[32];
16226     uint32_t q_stat;
16227     int i, j;
16228 
16229     ctx = device_get_sysctl_ctx(sc->dev);
16230     children = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev));
16231 
16232     SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "version",
16233                       CTLFLAG_RD, BXE_DRIVER_VERSION, 0,
16234                       "version");
16235 
16236     SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "bc_version",
16237                       CTLFLAG_RD, sc->devinfo.bc_ver_str, 0,
16238                       "bootcode version");
16239 
16240     snprintf(sc->fw_ver_str, sizeof(sc->fw_ver_str), "%d.%d.%d.%d",
16241              BCM_5710_FW_MAJOR_VERSION,
16242              BCM_5710_FW_MINOR_VERSION,
16243              BCM_5710_FW_REVISION_VERSION,
16244              BCM_5710_FW_ENGINEERING_VERSION);
16245     SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "fw_version",
16246                       CTLFLAG_RD, sc->fw_ver_str, 0,
16247                       "firmware version");
16248 
16249     snprintf(sc->mf_mode_str, sizeof(sc->mf_mode_str), "%s",
16250         ((sc->devinfo.mf_info.mf_mode == SINGLE_FUNCTION)     ? "Single"  :
16251          (sc->devinfo.mf_info.mf_mode == MULTI_FUNCTION_SD)   ? "MF-SD"   :
16252          (sc->devinfo.mf_info.mf_mode == MULTI_FUNCTION_SI)   ? "MF-SI"   :
16253          (sc->devinfo.mf_info.mf_mode == MULTI_FUNCTION_AFEX) ? "MF-AFEX" :
16254                                                                 "Unknown"));
16255     SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "mf_mode",
16256                       CTLFLAG_RD, sc->mf_mode_str, 0,
16257                       "multifunction mode");
16258 
16259     SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "mf_vnics",
16260                     CTLFLAG_RD, &sc->devinfo.mf_info.vnics_per_port, 0,
16261                     "multifunction vnics per port");
16262 
16263     SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "mac_addr",
16264                       CTLFLAG_RD, sc->mac_addr_str, 0,
16265                       "mac address");
16266 
16267     snprintf(sc->pci_link_str, sizeof(sc->pci_link_str), "%s x%d",
16268         ((sc->devinfo.pcie_link_speed == 1) ? "2.5GT/s" :
16269          (sc->devinfo.pcie_link_speed == 2) ? "5.0GT/s" :
16270          (sc->devinfo.pcie_link_speed == 4) ? "8.0GT/s" :
16271                                               "???GT/s"),
16272         sc->devinfo.pcie_link_width);
16273     SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "pci_link",
16274                       CTLFLAG_RD, sc->pci_link_str, 0,
16275                       "pci link status");
16276 
16277     sc->debug = bxe_debug;
16278     SYSCTL_ADD_ULONG(ctx, children, OID_AUTO, "debug",
16279                     CTLFLAG_RW, &sc->debug,
16280                     "debug logging mode");
16281 
16282     sc->trigger_grcdump = 0;
16283     SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "trigger_grcdump",
16284                     CTLFLAG_RW, &sc->trigger_grcdump, 0,
16285                     "set by driver when a grcdump is needed");
16286 
16287 
16288     sc->rx_budget = bxe_rx_budget;
16289     SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "rx_budget",
16290                     CTLFLAG_RW, &sc->rx_budget, 0,
16291                     "rx processing budget");
16292 
16293     SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "state",
16294                     CTLTYPE_UINT | CTLFLAG_RW, sc, 0,
16295                     bxe_sysctl_state, "IU", "dump driver state");
16296 
16297     for (i = 0; i < BXE_NUM_ETH_STATS; i++) {
16298         SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
16299                         bxe_eth_stats_arr[i].string,
16300                         CTLTYPE_U64 | CTLFLAG_RD, sc, i,
16301                         bxe_sysctl_eth_stat, "LU",
16302                         bxe_eth_stats_arr[i].string);
16303     }
16304 
16305     /* add a new parent node for all queues "dev.bxe.#.queue" */
16306     queue_top = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "queue",
16307                                 CTLFLAG_RD, NULL, "queue");
16308     queue_top_children = SYSCTL_CHILDREN(queue_top);
16309 
16310     for (i = 0; i < sc->num_queues; i++) {
16311         /* add a new parent node for a single queue "dev.bxe.#.queue.#" */
16312         snprintf(queue_num_buf, sizeof(queue_num_buf), "%d", i);
16313         queue = SYSCTL_ADD_NODE(ctx, queue_top_children, OID_AUTO,
16314                                 queue_num_buf, CTLFLAG_RD, NULL,
16315                                 "single queue");
16316         queue_children = SYSCTL_CHILDREN(queue);
16317 
16318         for (j = 0; j < BXE_NUM_ETH_Q_STATS; j++) {
16319             q_stat = ((i << 16) | j);
16320             SYSCTL_ADD_PROC(ctx, queue_children, OID_AUTO,
16321                             bxe_eth_q_stats_arr[j].string,
16322                             CTLTYPE_U64 | CTLFLAG_RD, sc, q_stat,
16323                             bxe_sysctl_eth_q_stat, "LU",
16324                             bxe_eth_q_stats_arr[j].string);
16325         }
16326     }
16327 }
16328 
16329 /*
16330  * Device attach function.
16331  *
16332  * Allocates device resources, performs secondary chip identification, and
16333  * initializes driver instance variables. This function is called from driver
16334  * load after a successful probe.
16335  *
16336  * Returns:
16337  *   0 = Success, >0 = Failure
16338  */
16339 static int
16340 bxe_attach(device_t dev)
16341 {
16342     struct bxe_softc *sc;
16343 
16344     sc = device_get_softc(dev);
16345 
16346     BLOGD(sc, DBG_LOAD, "Starting attach...\n");
16347 
16348     sc->state = BXE_STATE_CLOSED;
16349 
16350     sc->dev  = dev;
16351     sc->unit = device_get_unit(dev);
16352 
16353     BLOGD(sc, DBG_LOAD, "softc = %p\n", sc);
16354 
16355     sc->pcie_bus    = pci_get_bus(dev);
16356     sc->pcie_device = pci_get_slot(dev);
16357     sc->pcie_func   = pci_get_function(dev);
16358 
16359     /* enable bus master capability */
16360     pci_enable_busmaster(dev);
16361 
16362     /* get the BARs */
16363     if (bxe_allocate_bars(sc) != 0) {
16364         return (ENXIO);
16365     }
16366 
16367     /* initialize the mutexes */
16368     bxe_init_mutexes(sc);
16369 
16370     /* prepare the periodic callout */
16371     callout_init(&sc->periodic_callout, 0);
16372 
16373     /* prepare the chip taskqueue */
16374     sc->chip_tq_flags = CHIP_TQ_NONE;
16375     snprintf(sc->chip_tq_name, sizeof(sc->chip_tq_name),
16376              "bxe%d_chip_tq", sc->unit);
16377     TASK_INIT(&sc->chip_tq_task, 0, bxe_handle_chip_tq, sc);
16378     sc->chip_tq = taskqueue_create(sc->chip_tq_name, M_NOWAIT,
16379                                    taskqueue_thread_enqueue,
16380                                    &sc->chip_tq);
16381     taskqueue_start_threads(&sc->chip_tq, 1, PWAIT, /* lower priority */
16382                             "%s", sc->chip_tq_name);
16383 
16384     /* get device info and set params */
16385     if (bxe_get_device_info(sc) != 0) {
16386         BLOGE(sc, "getting device info\n");
16387         bxe_deallocate_bars(sc);
16388         pci_disable_busmaster(dev);
16389         return (ENXIO);
16390     }
16391 
16392     /* get final misc params */
16393     bxe_get_params(sc);
16394 
16395     /* set the default MTU (changed via ifconfig) */
16396     sc->mtu = ETHERMTU;
16397 
16398     bxe_set_modes_bitmap(sc);
16399 
16400     /* XXX
16401      * If in AFEX mode and the function is configured for FCoE
16402      * then bail... no L2 allowed.
16403      */
16404 
16405     /* get phy settings from shmem and 'and' against admin settings */
16406     bxe_get_phy_info(sc);
16407 
16408     /* initialize the FreeBSD ifnet interface */
16409     if (bxe_init_ifnet(sc) != 0) {
16410         bxe_release_mutexes(sc);
16411         bxe_deallocate_bars(sc);
16412         pci_disable_busmaster(dev);
16413         return (ENXIO);
16414     }
16415 
16416     if (bxe_add_cdev(sc) != 0) {
16417         if (sc->ifp != NULL) {
16418             ether_ifdetach(sc->ifp);
16419         }
16420         ifmedia_removeall(&sc->ifmedia);
16421         bxe_release_mutexes(sc);
16422         bxe_deallocate_bars(sc);
16423         pci_disable_busmaster(dev);
16424         return (ENXIO);
16425     }
16426 
16427     /* allocate device interrupts */
16428     if (bxe_interrupt_alloc(sc) != 0) {
16429         bxe_del_cdev(sc);
16430         if (sc->ifp != NULL) {
16431             ether_ifdetach(sc->ifp);
16432         }
16433         ifmedia_removeall(&sc->ifmedia);
16434         bxe_release_mutexes(sc);
16435         bxe_deallocate_bars(sc);
16436         pci_disable_busmaster(dev);
16437         return (ENXIO);
16438     }
16439 
16440     /* allocate ilt */
16441     if (bxe_alloc_ilt_mem(sc) != 0) {
16442         bxe_interrupt_free(sc);
16443         bxe_del_cdev(sc);
16444         if (sc->ifp != NULL) {
16445             ether_ifdetach(sc->ifp);
16446         }
16447         ifmedia_removeall(&sc->ifmedia);
16448         bxe_release_mutexes(sc);
16449         bxe_deallocate_bars(sc);
16450         pci_disable_busmaster(dev);
16451         return (ENXIO);
16452     }
16453 
16454     /* allocate the host hardware/software hsi structures */
16455     if (bxe_alloc_hsi_mem(sc) != 0) {
16456         bxe_free_ilt_mem(sc);
16457         bxe_interrupt_free(sc);
16458         bxe_del_cdev(sc);
16459         if (sc->ifp != NULL) {
16460             ether_ifdetach(sc->ifp);
16461         }
16462         ifmedia_removeall(&sc->ifmedia);
16463         bxe_release_mutexes(sc);
16464         bxe_deallocate_bars(sc);
16465         pci_disable_busmaster(dev);
16466         return (ENXIO);
16467     }
16468 
16469     /* need to reset chip if UNDI was active */
16470     if (IS_PF(sc) && !BXE_NOMCP(sc)) {
16471         /* init fw_seq */
16472         sc->fw_seq =
16473             (SHMEM_RD(sc, func_mb[SC_FW_MB_IDX(sc)].drv_mb_header) &
16474              DRV_MSG_SEQ_NUMBER_MASK);
16475         BLOGD(sc, DBG_LOAD, "prev unload fw_seq 0x%04x\n", sc->fw_seq);
16476         bxe_prev_unload(sc);
16477     }
16478 
16479 #if 1
16480     /* XXX */
16481     bxe_dcbx_set_state(sc, FALSE, BXE_DCBX_ENABLED_OFF);
16482 #else
16483     if (SHMEM2_HAS(sc, dcbx_lldp_params_offset) &&
16484         SHMEM2_HAS(sc, dcbx_lldp_dcbx_stat_offset) &&
16485         SHMEM2_RD(sc, dcbx_lldp_params_offset) &&
16486         SHMEM2_RD(sc, dcbx_lldp_dcbx_stat_offset)) {
16487         bxe_dcbx_set_state(sc, TRUE, BXE_DCBX_ENABLED_ON_NEG_ON);
16488         bxe_dcbx_init_params(sc);
16489     } else {
16490         bxe_dcbx_set_state(sc, FALSE, BXE_DCBX_ENABLED_OFF);
16491     }
16492 #endif
16493 
16494     /* calculate qm_cid_count */
16495     sc->qm_cid_count = bxe_set_qm_cid_count(sc);
16496     BLOGD(sc, DBG_LOAD, "qm_cid_count=%d\n", sc->qm_cid_count);
16497 
16498     sc->max_cos = 1;
16499     bxe_init_multi_cos(sc);
16500 
16501     bxe_add_sysctls(sc);
16502 
16503     return (0);
16504 }
16505 
16506 /*
16507  * Device detach function.
16508  *
16509  * Stops the controller, resets the controller, and releases resources.
16510  *
16511  * Returns:
16512  *   0 = Success, >0 = Failure
16513  */
16514 static int
16515 bxe_detach(device_t dev)
16516 {
16517     struct bxe_softc *sc;
16518     if_t ifp;
16519 
16520     sc = device_get_softc(dev);
16521 
16522     BLOGD(sc, DBG_LOAD, "Starting detach...\n");
16523 
16524     ifp = sc->ifp;
16525     if (ifp != NULL && if_vlantrunkinuse(ifp)) {
16526         BLOGE(sc, "Cannot detach while VLANs are in use.\n");
16527         return(EBUSY);
16528     }
16529 
16530     bxe_del_cdev(sc);
16531 
16532     /* stop the periodic callout */
16533     bxe_periodic_stop(sc);
16534 
16535     /* stop the chip taskqueue */
16536     atomic_store_rel_long(&sc->chip_tq_flags, CHIP_TQ_NONE);
16537     if (sc->chip_tq) {
16538         taskqueue_drain(sc->chip_tq, &sc->chip_tq_task);
16539         taskqueue_free(sc->chip_tq);
16540         sc->chip_tq = NULL;
16541     }
16542 
16543     /* stop and reset the controller if it was open */
16544     if (sc->state != BXE_STATE_CLOSED) {
16545         BXE_CORE_LOCK(sc);
16546         bxe_nic_unload(sc, UNLOAD_CLOSE, TRUE);
16547         BXE_CORE_UNLOCK(sc);
16548     }
16549 
16550     /* release the network interface */
16551     if (ifp != NULL) {
16552         ether_ifdetach(ifp);
16553     }
16554     ifmedia_removeall(&sc->ifmedia);
16555 
16556     /* XXX do the following based on driver state... */
16557 
16558     /* free the host hardware/software hsi structures */
16559     bxe_free_hsi_mem(sc);
16560 
16561     /* free ilt */
16562     bxe_free_ilt_mem(sc);
16563 
16564     /* release the interrupts */
16565     bxe_interrupt_free(sc);
16566 
16567     /* Release the mutexes*/
16568     bxe_release_mutexes(sc);
16569 
16570     /* Release the PCIe BAR mapped memory */
16571     bxe_deallocate_bars(sc);
16572 
16573     /* Release the FreeBSD interface. */
16574     if (sc->ifp != NULL) {
16575         if_free(sc->ifp);
16576     }
16577 
16578     pci_disable_busmaster(dev);
16579 
16580     return (0);
16581 }
16582 
16583 /*
16584  * Device shutdown function.
16585  *
16586  * Stops and resets the controller.
16587  *
16588  * Returns:
16589  *   Nothing
16590  */
16591 static int
16592 bxe_shutdown(device_t dev)
16593 {
16594     struct bxe_softc *sc;
16595 
16596     sc = device_get_softc(dev);
16597 
16598     BLOGD(sc, DBG_LOAD, "Starting shutdown...\n");
16599 
16600     /* stop the periodic callout */
16601     bxe_periodic_stop(sc);
16602 
16603     BXE_CORE_LOCK(sc);
16604     bxe_nic_unload(sc, UNLOAD_NORMAL, FALSE);
16605     BXE_CORE_UNLOCK(sc);
16606 
16607     return (0);
16608 }
16609 
16610 void
16611 bxe_igu_ack_sb(struct bxe_softc *sc,
16612                uint8_t          igu_sb_id,
16613                uint8_t          segment,
16614                uint16_t         index,
16615                uint8_t          op,
16616                uint8_t          update)
16617 {
16618     uint32_t igu_addr = sc->igu_base_addr;
16619     igu_addr += (IGU_CMD_INT_ACK_BASE + igu_sb_id)*8;
16620     bxe_igu_ack_sb_gen(sc, igu_sb_id, segment, index, op, update, igu_addr);
16621 }
16622 
16623 static void
16624 bxe_igu_clear_sb_gen(struct bxe_softc *sc,
16625                      uint8_t          func,
16626                      uint8_t          idu_sb_id,
16627                      uint8_t          is_pf)
16628 {
16629     uint32_t data, ctl, cnt = 100;
16630     uint32_t igu_addr_data = IGU_REG_COMMAND_REG_32LSB_DATA;
16631     uint32_t igu_addr_ctl = IGU_REG_COMMAND_REG_CTRL;
16632     uint32_t igu_addr_ack = IGU_REG_CSTORM_TYPE_0_SB_CLEANUP + (idu_sb_id/32)*4;
16633     uint32_t sb_bit =  1 << (idu_sb_id%32);
16634     uint32_t func_encode = func | (is_pf ? 1 : 0) << IGU_FID_ENCODE_IS_PF_SHIFT;
16635     uint32_t addr_encode = IGU_CMD_E2_PROD_UPD_BASE + idu_sb_id;
16636 
16637     /* Not supported in BC mode */
16638     if (CHIP_INT_MODE_IS_BC(sc)) {
16639         return;
16640     }
16641 
16642     data = ((IGU_USE_REGISTER_cstorm_type_0_sb_cleanup <<
16643              IGU_REGULAR_CLEANUP_TYPE_SHIFT) |
16644             IGU_REGULAR_CLEANUP_SET |
16645             IGU_REGULAR_BCLEANUP);
16646 
16647     ctl = ((addr_encode << IGU_CTRL_REG_ADDRESS_SHIFT) |
16648            (func_encode << IGU_CTRL_REG_FID_SHIFT) |
16649            (IGU_CTRL_CMD_TYPE_WR << IGU_CTRL_REG_TYPE_SHIFT));
16650 
16651     BLOGD(sc, DBG_LOAD, "write 0x%08x to IGU(via GRC) addr 0x%x\n",
16652             data, igu_addr_data);
16653     REG_WR(sc, igu_addr_data, data);
16654 
16655     bus_space_barrier(sc->bar[BAR0].tag, sc->bar[BAR0].handle, 0, 0,
16656                       BUS_SPACE_BARRIER_WRITE);
16657     mb();
16658 
16659     BLOGD(sc, DBG_LOAD, "write 0x%08x to IGU(via GRC) addr 0x%x\n",
16660             ctl, igu_addr_ctl);
16661     REG_WR(sc, igu_addr_ctl, ctl);
16662 
16663     bus_space_barrier(sc->bar[BAR0].tag, sc->bar[BAR0].handle, 0, 0,
16664                       BUS_SPACE_BARRIER_WRITE);
16665     mb();
16666 
16667     /* wait for clean up to finish */
16668     while (!(REG_RD(sc, igu_addr_ack) & sb_bit) && --cnt) {
16669         DELAY(20000);
16670     }
16671 
16672     if (!(REG_RD(sc, igu_addr_ack) & sb_bit)) {
16673         BLOGD(sc, DBG_LOAD,
16674               "Unable to finish IGU cleanup: "
16675               "idu_sb_id %d offset %d bit %d (cnt %d)\n",
16676               idu_sb_id, idu_sb_id/32, idu_sb_id%32, cnt);
16677     }
16678 }
16679 
16680 static void
16681 bxe_igu_clear_sb(struct bxe_softc *sc,
16682                  uint8_t          idu_sb_id)
16683 {
16684     bxe_igu_clear_sb_gen(sc, SC_FUNC(sc), idu_sb_id, TRUE /*PF*/);
16685 }
16686 
16687 
16688 
16689 
16690 
16691 
16692 
16693 /*******************/
16694 /* ECORE CALLBACKS */
16695 /*******************/
16696 
16697 static void
16698 bxe_reset_common(struct bxe_softc *sc)
16699 {
16700     uint32_t val = 0x1400;
16701 
16702     /* reset_common */
16703     REG_WR(sc, (GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR), 0xd3ffff7f);
16704 
16705     if (CHIP_IS_E3(sc)) {
16706         val |= MISC_REGISTERS_RESET_REG_2_MSTAT0;
16707         val |= MISC_REGISTERS_RESET_REG_2_MSTAT1;
16708     }
16709 
16710     REG_WR(sc, (GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR), val);
16711 }
16712 
16713 static void
16714 bxe_common_init_phy(struct bxe_softc *sc)
16715 {
16716     uint32_t shmem_base[2];
16717     uint32_t shmem2_base[2];
16718 
16719     /* Avoid common init in case MFW supports LFA */
16720     if (SHMEM2_RD(sc, size) >
16721         (uint32_t)offsetof(struct shmem2_region,
16722                            lfa_host_addr[SC_PORT(sc)])) {
16723         return;
16724     }
16725 
16726     shmem_base[0]  = sc->devinfo.shmem_base;
16727     shmem2_base[0] = sc->devinfo.shmem2_base;
16728 
16729     if (!CHIP_IS_E1x(sc)) {
16730         shmem_base[1]  = SHMEM2_RD(sc, other_shmem_base_addr);
16731         shmem2_base[1] = SHMEM2_RD(sc, other_shmem2_base_addr);
16732     }
16733 
16734     bxe_acquire_phy_lock(sc);
16735     elink_common_init_phy(sc, shmem_base, shmem2_base,
16736                           sc->devinfo.chip_id, 0);
16737     bxe_release_phy_lock(sc);
16738 }
16739 
16740 static void
16741 bxe_pf_disable(struct bxe_softc *sc)
16742 {
16743     uint32_t val = REG_RD(sc, IGU_REG_PF_CONFIGURATION);
16744 
16745     val &= ~IGU_PF_CONF_FUNC_EN;
16746 
16747     REG_WR(sc, IGU_REG_PF_CONFIGURATION, val);
16748     REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
16749     REG_WR(sc, CFC_REG_WEAK_ENABLE_PF, 0);
16750 }
16751 
16752 static void
16753 bxe_init_pxp(struct bxe_softc *sc)
16754 {
16755     uint16_t devctl;
16756     int r_order, w_order;
16757 
16758     devctl = bxe_pcie_capability_read(sc, PCIR_EXPRESS_DEVICE_CTL, 2);
16759 
16760     BLOGD(sc, DBG_LOAD, "read 0x%08x from devctl\n", devctl);
16761 
16762     w_order = ((devctl & PCIM_EXP_CTL_MAX_PAYLOAD) >> 5);
16763 
16764     if (sc->mrrs == -1) {
16765         r_order = ((devctl & PCIM_EXP_CTL_MAX_READ_REQUEST) >> 12);
16766     } else {
16767         BLOGD(sc, DBG_LOAD, "forcing read order to %d\n", sc->mrrs);
16768         r_order = sc->mrrs;
16769     }
16770 
16771     ecore_init_pxp_arb(sc, r_order, w_order);
16772 }
16773 
16774 static uint32_t
16775 bxe_get_pretend_reg(struct bxe_softc *sc)
16776 {
16777     uint32_t base = PXP2_REG_PGL_PRETEND_FUNC_F0;
16778     uint32_t stride = (PXP2_REG_PGL_PRETEND_FUNC_F1 - base);
16779     return (base + (SC_ABS_FUNC(sc)) * stride);
16780 }
16781 
16782 /*
16783  * Called only on E1H or E2.
16784  * When pretending to be PF, the pretend value is the function number 0..7.
16785  * When pretending to be VF, the pretend val is the PF-num:VF-valid:ABS-VFID
16786  * combination.
16787  */
16788 static int
16789 bxe_pretend_func(struct bxe_softc *sc,
16790                  uint16_t         pretend_func_val)
16791 {
16792     uint32_t pretend_reg;
16793 
16794     if (CHIP_IS_E1H(sc) && (pretend_func_val > E1H_FUNC_MAX)) {
16795         return (-1);
16796     }
16797 
16798     /* get my own pretend register */
16799     pretend_reg = bxe_get_pretend_reg(sc);
16800     REG_WR(sc, pretend_reg, pretend_func_val);
16801     REG_RD(sc, pretend_reg);
16802     return (0);
16803 }
16804 
16805 static void
16806 bxe_iov_init_dmae(struct bxe_softc *sc)
16807 {
16808     return;
16809 #if 0
16810     BLOGD(sc, DBG_LOAD, "SRIOV is %s\n", IS_SRIOV(sc) ? "ON" : "OFF");
16811 
16812     if (!IS_SRIOV(sc)) {
16813         return;
16814     }
16815 
16816     REG_WR(sc, DMAE_REG_BACKWARD_COMP_EN, 0);
16817 #endif
16818 }
16819 
16820 #if 0
16821 static int
16822 bxe_iov_init_ilt(struct bxe_softc *sc,
16823                  uint16_t         line)
16824 {
16825     return (line);
16826 #if 0
16827     int i;
16828     struct ecore_ilt* ilt = sc->ilt;
16829 
16830     if (!IS_SRIOV(sc)) {
16831         return (line);
16832     }
16833 
16834     /* set vfs ilt lines */
16835     for (i = 0; i < BXE_VF_CIDS/ILT_PAGE_CIDS ; i++) {
16836         struct hw_dma *hw_cxt = SC_VF_CXT_PAGE(sc,i);
16837         ilt->lines[line+i].page = hw_cxt->addr;
16838         ilt->lines[line+i].page_mapping = hw_cxt->mapping;
16839         ilt->lines[line+i].size = hw_cxt->size; /* doesn't matter */
16840     }
16841     return (line+i);
16842 #endif
16843 }
16844 #endif
16845 
16846 static void
16847 bxe_iov_init_dq(struct bxe_softc *sc)
16848 {
16849     return;
16850 #if 0
16851     if (!IS_SRIOV(sc)) {
16852         return;
16853     }
16854 
16855     /* Set the DQ such that the CID reflect the abs_vfid */
16856     REG_WR(sc, DORQ_REG_VF_NORM_VF_BASE, 0);
16857     REG_WR(sc, DORQ_REG_MAX_RVFID_SIZE, ilog2(BNX2X_MAX_NUM_OF_VFS));
16858 
16859     /*
16860      * Set VFs starting CID. If its > 0 the preceding CIDs are belong to
16861      * the PF L2 queues
16862      */
16863     REG_WR(sc, DORQ_REG_VF_NORM_CID_BASE, BNX2X_FIRST_VF_CID);
16864 
16865     /* The VF window size is the log2 of the max number of CIDs per VF */
16866     REG_WR(sc, DORQ_REG_VF_NORM_CID_WND_SIZE, BNX2X_VF_CID_WND);
16867 
16868     /*
16869      * The VF doorbell size  0 - *B, 4 - 128B. We set it here to match
16870      * the Pf doorbell size although the 2 are independent.
16871      */
16872     REG_WR(sc, DORQ_REG_VF_NORM_CID_OFST,
16873            BNX2X_DB_SHIFT - BNX2X_DB_MIN_SHIFT);
16874 
16875     /*
16876      * No security checks for now -
16877      * configure single rule (out of 16) mask = 0x1, value = 0x0,
16878      * CID range 0 - 0x1ffff
16879      */
16880     REG_WR(sc, DORQ_REG_VF_TYPE_MASK_0, 1);
16881     REG_WR(sc, DORQ_REG_VF_TYPE_VALUE_0, 0);
16882     REG_WR(sc, DORQ_REG_VF_TYPE_MIN_MCID_0, 0);
16883     REG_WR(sc, DORQ_REG_VF_TYPE_MAX_MCID_0, 0x1ffff);
16884 
16885     /* set the number of VF alllowed doorbells to the full DQ range */
16886     REG_WR(sc, DORQ_REG_VF_NORM_MAX_CID_COUNT, 0x20000);
16887 
16888     /* set the VF doorbell threshold */
16889     REG_WR(sc, DORQ_REG_VF_USAGE_CT_LIMIT, 4);
16890 #endif
16891 }
16892 
16893 /* send a NIG loopback debug packet */
16894 static void
16895 bxe_lb_pckt(struct bxe_softc *sc)
16896 {
16897     uint32_t wb_write[3];
16898 
16899     /* Ethernet source and destination addresses */
16900     wb_write[0] = 0x55555555;
16901     wb_write[1] = 0x55555555;
16902     wb_write[2] = 0x20;     /* SOP */
16903     REG_WR_DMAE(sc, NIG_REG_DEBUG_PACKET_LB, wb_write, 3);
16904 
16905     /* NON-IP protocol */
16906     wb_write[0] = 0x09000000;
16907     wb_write[1] = 0x55555555;
16908     wb_write[2] = 0x10;     /* EOP, eop_bvalid = 0 */
16909     REG_WR_DMAE(sc, NIG_REG_DEBUG_PACKET_LB, wb_write, 3);
16910 }
16911 
16912 /*
16913  * Some of the internal memories are not directly readable from the driver.
16914  * To test them we send debug packets.
16915  */
16916 static int
16917 bxe_int_mem_test(struct bxe_softc *sc)
16918 {
16919     int factor;
16920     int count, i;
16921     uint32_t val = 0;
16922 
16923     if (CHIP_REV_IS_FPGA(sc)) {
16924         factor = 120;
16925     } else if (CHIP_REV_IS_EMUL(sc)) {
16926         factor = 200;
16927     } else {
16928         factor = 1;
16929     }
16930 
16931     /* disable inputs of parser neighbor blocks */
16932     REG_WR(sc, TSDM_REG_ENABLE_IN1, 0x0);
16933     REG_WR(sc, TCM_REG_PRS_IFEN, 0x0);
16934     REG_WR(sc, CFC_REG_DEBUG0, 0x1);
16935     REG_WR(sc, NIG_REG_PRS_REQ_IN_EN, 0x0);
16936 
16937     /*  write 0 to parser credits for CFC search request */
16938     REG_WR(sc, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0);
16939 
16940     /* send Ethernet packet */
16941     bxe_lb_pckt(sc);
16942 
16943     /* TODO do i reset NIG statistic? */
16944     /* Wait until NIG register shows 1 packet of size 0x10 */
16945     count = 1000 * factor;
16946     while (count) {
16947         bxe_read_dmae(sc, NIG_REG_STAT2_BRB_OCTET, 2);
16948         val = *BXE_SP(sc, wb_data[0]);
16949         if (val == 0x10) {
16950             break;
16951         }
16952 
16953         DELAY(10000);
16954         count--;
16955     }
16956 
16957     if (val != 0x10) {
16958         BLOGE(sc, "NIG timeout val=0x%x\n", val);
16959         return (-1);
16960     }
16961 
16962     /* wait until PRS register shows 1 packet */
16963     count = (1000 * factor);
16964     while (count) {
16965         val = REG_RD(sc, PRS_REG_NUM_OF_PACKETS);
16966         if (val == 1) {
16967             break;
16968         }
16969 
16970         DELAY(10000);
16971         count--;
16972     }
16973 
16974     if (val != 0x1) {
16975         BLOGE(sc, "PRS timeout val=0x%x\n", val);
16976         return (-2);
16977     }
16978 
16979     /* Reset and init BRB, PRS */
16980     REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03);
16981     DELAY(50000);
16982     REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03);
16983     DELAY(50000);
16984     ecore_init_block(sc, BLOCK_BRB1, PHASE_COMMON);
16985     ecore_init_block(sc, BLOCK_PRS, PHASE_COMMON);
16986 
16987     /* Disable inputs of parser neighbor blocks */
16988     REG_WR(sc, TSDM_REG_ENABLE_IN1, 0x0);
16989     REG_WR(sc, TCM_REG_PRS_IFEN, 0x0);
16990     REG_WR(sc, CFC_REG_DEBUG0, 0x1);
16991     REG_WR(sc, NIG_REG_PRS_REQ_IN_EN, 0x0);
16992 
16993     /* Write 0 to parser credits for CFC search request */
16994     REG_WR(sc, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0);
16995 
16996     /* send 10 Ethernet packets */
16997     for (i = 0; i < 10; i++) {
16998         bxe_lb_pckt(sc);
16999     }
17000 
17001     /* Wait until NIG register shows 10+1 packets of size 11*0x10 = 0xb0 */
17002     count = (1000 * factor);
17003     while (count) {
17004         bxe_read_dmae(sc, NIG_REG_STAT2_BRB_OCTET, 2);
17005         val = *BXE_SP(sc, wb_data[0]);
17006         if (val == 0xb0) {
17007             break;
17008         }
17009 
17010         DELAY(10000);
17011         count--;
17012     }
17013 
17014     if (val != 0xb0) {
17015         BLOGE(sc, "NIG timeout val=0x%x\n", val);
17016         return (-3);
17017     }
17018 
17019     /* Wait until PRS register shows 2 packets */
17020     val = REG_RD(sc, PRS_REG_NUM_OF_PACKETS);
17021     if (val != 2) {
17022         BLOGE(sc, "PRS timeout val=0x%x\n", val);
17023     }
17024 
17025     /* Write 1 to parser credits for CFC search request */
17026     REG_WR(sc, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x1);
17027 
17028     /* Wait until PRS register shows 3 packets */
17029     DELAY(10000 * factor);
17030 
17031     /* Wait until NIG register shows 1 packet of size 0x10 */
17032     val = REG_RD(sc, PRS_REG_NUM_OF_PACKETS);
17033     if (val != 3) {
17034         BLOGE(sc, "PRS timeout val=0x%x\n", val);
17035     }
17036 
17037     /* clear NIG EOP FIFO */
17038     for (i = 0; i < 11; i++) {
17039         REG_RD(sc, NIG_REG_INGRESS_EOP_LB_FIFO);
17040     }
17041 
17042     val = REG_RD(sc, NIG_REG_INGRESS_EOP_LB_EMPTY);
17043     if (val != 1) {
17044         BLOGE(sc, "clear of NIG failed\n");
17045         return (-4);
17046     }
17047 
17048     /* Reset and init BRB, PRS, NIG */
17049     REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03);
17050     DELAY(50000);
17051     REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03);
17052     DELAY(50000);
17053     ecore_init_block(sc, BLOCK_BRB1, PHASE_COMMON);
17054     ecore_init_block(sc, BLOCK_PRS, PHASE_COMMON);
17055     if (!CNIC_SUPPORT(sc)) {
17056         /* set NIC mode */
17057         REG_WR(sc, PRS_REG_NIC_MODE, 1);
17058     }
17059 
17060     /* Enable inputs of parser neighbor blocks */
17061     REG_WR(sc, TSDM_REG_ENABLE_IN1, 0x7fffffff);
17062     REG_WR(sc, TCM_REG_PRS_IFEN, 0x1);
17063     REG_WR(sc, CFC_REG_DEBUG0, 0x0);
17064     REG_WR(sc, NIG_REG_PRS_REQ_IN_EN, 0x1);
17065 
17066     return (0);
17067 }
17068 
17069 static void
17070 bxe_setup_fan_failure_detection(struct bxe_softc *sc)
17071 {
17072     int is_required;
17073     uint32_t val;
17074     int port;
17075 
17076     is_required = 0;
17077     val = (SHMEM_RD(sc, dev_info.shared_hw_config.config2) &
17078            SHARED_HW_CFG_FAN_FAILURE_MASK);
17079 
17080     if (val == SHARED_HW_CFG_FAN_FAILURE_ENABLED) {
17081         is_required = 1;
17082     }
17083     /*
17084      * The fan failure mechanism is usually related to the PHY type since
17085      * the power consumption of the board is affected by the PHY. Currently,
17086      * fan is required for most designs with SFX7101, BCM8727 and BCM8481.
17087      */
17088     else if (val == SHARED_HW_CFG_FAN_FAILURE_PHY_TYPE) {
17089         for (port = PORT_0; port < PORT_MAX; port++) {
17090             is_required |= elink_fan_failure_det_req(sc,
17091                                                      sc->devinfo.shmem_base,
17092                                                      sc->devinfo.shmem2_base,
17093                                                      port);
17094         }
17095     }
17096 
17097     BLOGD(sc, DBG_LOAD, "fan detection setting: %d\n", is_required);
17098 
17099     if (is_required == 0) {
17100         return;
17101     }
17102 
17103     /* Fan failure is indicated by SPIO 5 */
17104     bxe_set_spio(sc, MISC_SPIO_SPIO5, MISC_SPIO_INPUT_HI_Z);
17105 
17106     /* set to active low mode */
17107     val = REG_RD(sc, MISC_REG_SPIO_INT);
17108     val |= (MISC_SPIO_SPIO5 << MISC_SPIO_INT_OLD_SET_POS);
17109     REG_WR(sc, MISC_REG_SPIO_INT, val);
17110 
17111     /* enable interrupt to signal the IGU */
17112     val = REG_RD(sc, MISC_REG_SPIO_EVENT_EN);
17113     val |= MISC_SPIO_SPIO5;
17114     REG_WR(sc, MISC_REG_SPIO_EVENT_EN, val);
17115 }
17116 
17117 static void
17118 bxe_enable_blocks_attention(struct bxe_softc *sc)
17119 {
17120     uint32_t val;
17121 
17122     REG_WR(sc, PXP_REG_PXP_INT_MASK_0, 0);
17123     if (!CHIP_IS_E1x(sc)) {
17124         REG_WR(sc, PXP_REG_PXP_INT_MASK_1, 0x40);
17125     } else {
17126         REG_WR(sc, PXP_REG_PXP_INT_MASK_1, 0);
17127     }
17128     REG_WR(sc, DORQ_REG_DORQ_INT_MASK, 0);
17129     REG_WR(sc, CFC_REG_CFC_INT_MASK, 0);
17130     /*
17131      * mask read length error interrupts in brb for parser
17132      * (parsing unit and 'checksum and crc' unit)
17133      * these errors are legal (PU reads fixed length and CAC can cause
17134      * read length error on truncated packets)
17135      */
17136     REG_WR(sc, BRB1_REG_BRB1_INT_MASK, 0xFC00);
17137     REG_WR(sc, QM_REG_QM_INT_MASK, 0);
17138     REG_WR(sc, TM_REG_TM_INT_MASK, 0);
17139     REG_WR(sc, XSDM_REG_XSDM_INT_MASK_0, 0);
17140     REG_WR(sc, XSDM_REG_XSDM_INT_MASK_1, 0);
17141     REG_WR(sc, XCM_REG_XCM_INT_MASK, 0);
17142 /*      REG_WR(sc, XSEM_REG_XSEM_INT_MASK_0, 0); */
17143 /*      REG_WR(sc, XSEM_REG_XSEM_INT_MASK_1, 0); */
17144     REG_WR(sc, USDM_REG_USDM_INT_MASK_0, 0);
17145     REG_WR(sc, USDM_REG_USDM_INT_MASK_1, 0);
17146     REG_WR(sc, UCM_REG_UCM_INT_MASK, 0);
17147 /*      REG_WR(sc, USEM_REG_USEM_INT_MASK_0, 0); */
17148 /*      REG_WR(sc, USEM_REG_USEM_INT_MASK_1, 0); */
17149     REG_WR(sc, GRCBASE_UPB + PB_REG_PB_INT_MASK, 0);
17150     REG_WR(sc, CSDM_REG_CSDM_INT_MASK_0, 0);
17151     REG_WR(sc, CSDM_REG_CSDM_INT_MASK_1, 0);
17152     REG_WR(sc, CCM_REG_CCM_INT_MASK, 0);
17153 /*      REG_WR(sc, CSEM_REG_CSEM_INT_MASK_0, 0); */
17154 /*      REG_WR(sc, CSEM_REG_CSEM_INT_MASK_1, 0); */
17155 
17156     val = (PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_AFT |
17157            PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_OF |
17158            PXP2_PXP2_INT_MASK_0_REG_PGL_PCIE_ATTN);
17159     if (!CHIP_IS_E1x(sc)) {
17160         val |= (PXP2_PXP2_INT_MASK_0_REG_PGL_READ_BLOCKED |
17161                 PXP2_PXP2_INT_MASK_0_REG_PGL_WRITE_BLOCKED);
17162     }
17163     REG_WR(sc, PXP2_REG_PXP2_INT_MASK_0, val);
17164 
17165     REG_WR(sc, TSDM_REG_TSDM_INT_MASK_0, 0);
17166     REG_WR(sc, TSDM_REG_TSDM_INT_MASK_1, 0);
17167     REG_WR(sc, TCM_REG_TCM_INT_MASK, 0);
17168 /*      REG_WR(sc, TSEM_REG_TSEM_INT_MASK_0, 0); */
17169 
17170     if (!CHIP_IS_E1x(sc)) {
17171         /* enable VFC attentions: bits 11 and 12, bits 31:13 reserved */
17172         REG_WR(sc, TSEM_REG_TSEM_INT_MASK_1, 0x07ff);
17173     }
17174 
17175     REG_WR(sc, CDU_REG_CDU_INT_MASK, 0);
17176     REG_WR(sc, DMAE_REG_DMAE_INT_MASK, 0);
17177 /*      REG_WR(sc, MISC_REG_MISC_INT_MASK, 0); */
17178     REG_WR(sc, PBF_REG_PBF_INT_MASK, 0x18);     /* bit 3,4 masked */
17179 }
17180 
17181 /**
17182  * bxe_init_hw_common - initialize the HW at the COMMON phase.
17183  *
17184  * @sc:     driver handle
17185  */
17186 static int
17187 bxe_init_hw_common(struct bxe_softc *sc)
17188 {
17189     uint8_t abs_func_id;
17190     uint32_t val;
17191 
17192     BLOGD(sc, DBG_LOAD, "starting common init for func %d\n",
17193           SC_ABS_FUNC(sc));
17194 
17195     /*
17196      * take the RESET lock to protect undi_unload flow from accessing
17197      * registers while we are resetting the chip
17198      */
17199     bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RESET);
17200 
17201     bxe_reset_common(sc);
17202 
17203     REG_WR(sc, (GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET), 0xffffffff);
17204 
17205     val = 0xfffc;
17206     if (CHIP_IS_E3(sc)) {
17207         val |= MISC_REGISTERS_RESET_REG_2_MSTAT0;
17208         val |= MISC_REGISTERS_RESET_REG_2_MSTAT1;
17209     }
17210 
17211     REG_WR(sc, (GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET), val);
17212 
17213     bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RESET);
17214 
17215     ecore_init_block(sc, BLOCK_MISC, PHASE_COMMON);
17216     BLOGD(sc, DBG_LOAD, "after misc block init\n");
17217 
17218     if (!CHIP_IS_E1x(sc)) {
17219         /*
17220          * 4-port mode or 2-port mode we need to turn off master-enable for
17221          * everyone. After that we turn it back on for self. So, we disregard
17222          * multi-function, and always disable all functions on the given path,
17223          * this means 0,2,4,6 for path 0 and 1,3,5,7 for path 1
17224          */
17225         for (abs_func_id = SC_PATH(sc);
17226              abs_func_id < (E2_FUNC_MAX * 2);
17227              abs_func_id += 2) {
17228             if (abs_func_id == SC_ABS_FUNC(sc)) {
17229                 REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
17230                 continue;
17231             }
17232 
17233             bxe_pretend_func(sc, abs_func_id);
17234 
17235             /* clear pf enable */
17236             bxe_pf_disable(sc);
17237 
17238             bxe_pretend_func(sc, SC_ABS_FUNC(sc));
17239         }
17240     }
17241 
17242     BLOGD(sc, DBG_LOAD, "after pf disable\n");
17243 
17244     ecore_init_block(sc, BLOCK_PXP, PHASE_COMMON);
17245 
17246     if (CHIP_IS_E1(sc)) {
17247         /*
17248          * enable HW interrupt from PXP on USDM overflow
17249          * bit 16 on INT_MASK_0
17250          */
17251         REG_WR(sc, PXP_REG_PXP_INT_MASK_0, 0);
17252     }
17253 
17254     ecore_init_block(sc, BLOCK_PXP2, PHASE_COMMON);
17255     bxe_init_pxp(sc);
17256 
17257 #ifdef __BIG_ENDIAN
17258     REG_WR(sc, PXP2_REG_RQ_QM_ENDIAN_M, 1);
17259     REG_WR(sc, PXP2_REG_RQ_TM_ENDIAN_M, 1);
17260     REG_WR(sc, PXP2_REG_RQ_SRC_ENDIAN_M, 1);
17261     REG_WR(sc, PXP2_REG_RQ_CDU_ENDIAN_M, 1);
17262     REG_WR(sc, PXP2_REG_RQ_DBG_ENDIAN_M, 1);
17263     /* make sure this value is 0 */
17264     REG_WR(sc, PXP2_REG_RQ_HC_ENDIAN_M, 0);
17265 
17266     //REG_WR(sc, PXP2_REG_RD_PBF_SWAP_MODE, 1);
17267     REG_WR(sc, PXP2_REG_RD_QM_SWAP_MODE, 1);
17268     REG_WR(sc, PXP2_REG_RD_TM_SWAP_MODE, 1);
17269     REG_WR(sc, PXP2_REG_RD_SRC_SWAP_MODE, 1);
17270     REG_WR(sc, PXP2_REG_RD_CDURD_SWAP_MODE, 1);
17271 #endif
17272 
17273     ecore_ilt_init_page_size(sc, INITOP_SET);
17274 
17275     if (CHIP_REV_IS_FPGA(sc) && CHIP_IS_E1H(sc)) {
17276         REG_WR(sc, PXP2_REG_PGL_TAGS_LIMIT, 0x1);
17277     }
17278 
17279     /* let the HW do it's magic... */
17280     DELAY(100000);
17281 
17282     /* finish PXP init */
17283     val = REG_RD(sc, PXP2_REG_RQ_CFG_DONE);
17284     if (val != 1) {
17285         BLOGE(sc, "PXP2 CFG failed\n");
17286         return (-1);
17287     }
17288     val = REG_RD(sc, PXP2_REG_RD_INIT_DONE);
17289     if (val != 1) {
17290         BLOGE(sc, "PXP2 RD_INIT failed\n");
17291         return (-1);
17292     }
17293 
17294     BLOGD(sc, DBG_LOAD, "after pxp init\n");
17295 
17296     /*
17297      * Timer bug workaround for E2 only. We need to set the entire ILT to have
17298      * entries with value "0" and valid bit on. This needs to be done by the
17299      * first PF that is loaded in a path (i.e. common phase)
17300      */
17301     if (!CHIP_IS_E1x(sc)) {
17302 /*
17303  * In E2 there is a bug in the timers block that can cause function 6 / 7
17304  * (i.e. vnic3) to start even if it is marked as "scan-off".
17305  * This occurs when a different function (func2,3) is being marked
17306  * as "scan-off". Real-life scenario for example: if a driver is being
17307  * load-unloaded while func6,7 are down. This will cause the timer to access
17308  * the ilt, translate to a logical address and send a request to read/write.
17309  * Since the ilt for the function that is down is not valid, this will cause
17310  * a translation error which is unrecoverable.
17311  * The Workaround is intended to make sure that when this happens nothing
17312  * fatal will occur. The workaround:
17313  *  1.  First PF driver which loads on a path will:
17314  *      a.  After taking the chip out of reset, by using pretend,
17315  *          it will write "0" to the following registers of
17316  *          the other vnics.
17317  *          REG_WR(pdev, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
17318  *          REG_WR(pdev, CFC_REG_WEAK_ENABLE_PF,0);
17319  *          REG_WR(pdev, CFC_REG_STRONG_ENABLE_PF,0);
17320  *          And for itself it will write '1' to
17321  *          PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER to enable
17322  *          dmae-operations (writing to pram for example.)
17323  *          note: can be done for only function 6,7 but cleaner this
17324  *            way.
17325  *      b.  Write zero+valid to the entire ILT.
17326  *      c.  Init the first_timers_ilt_entry, last_timers_ilt_entry of
17327  *          VNIC3 (of that port). The range allocated will be the
17328  *          entire ILT. This is needed to prevent  ILT range error.
17329  *  2.  Any PF driver load flow:
17330  *      a.  ILT update with the physical addresses of the allocated
17331  *          logical pages.
17332  *      b.  Wait 20msec. - note that this timeout is needed to make
17333  *          sure there are no requests in one of the PXP internal
17334  *          queues with "old" ILT addresses.
17335  *      c.  PF enable in the PGLC.
17336  *      d.  Clear the was_error of the PF in the PGLC. (could have
17337  *          occurred while driver was down)
17338  *      e.  PF enable in the CFC (WEAK + STRONG)
17339  *      f.  Timers scan enable
17340  *  3.  PF driver unload flow:
17341  *      a.  Clear the Timers scan_en.
17342  *      b.  Polling for scan_on=0 for that PF.
17343  *      c.  Clear the PF enable bit in the PXP.
17344  *      d.  Clear the PF enable in the CFC (WEAK + STRONG)
17345  *      e.  Write zero+valid to all ILT entries (The valid bit must
17346  *          stay set)
17347  *      f.  If this is VNIC 3 of a port then also init
17348  *          first_timers_ilt_entry to zero and last_timers_ilt_entry
17349  *          to the last enrty in the ILT.
17350  *
17351  *      Notes:
17352  *      Currently the PF error in the PGLC is non recoverable.
17353  *      In the future the there will be a recovery routine for this error.
17354  *      Currently attention is masked.
17355  *      Having an MCP lock on the load/unload process does not guarantee that
17356  *      there is no Timer disable during Func6/7 enable. This is because the
17357  *      Timers scan is currently being cleared by the MCP on FLR.
17358  *      Step 2.d can be done only for PF6/7 and the driver can also check if
17359  *      there is error before clearing it. But the flow above is simpler and
17360  *      more general.
17361  *      All ILT entries are written by zero+valid and not just PF6/7
17362  *      ILT entries since in the future the ILT entries allocation for
17363  *      PF-s might be dynamic.
17364  */
17365         struct ilt_client_info ilt_cli;
17366         struct ecore_ilt ilt;
17367 
17368         memset(&ilt_cli, 0, sizeof(struct ilt_client_info));
17369         memset(&ilt, 0, sizeof(struct ecore_ilt));
17370 
17371         /* initialize dummy TM client */
17372         ilt_cli.start      = 0;
17373         ilt_cli.end        = ILT_NUM_PAGE_ENTRIES - 1;
17374         ilt_cli.client_num = ILT_CLIENT_TM;
17375 
17376         /*
17377          * Step 1: set zeroes to all ilt page entries with valid bit on
17378          * Step 2: set the timers first/last ilt entry to point
17379          * to the entire range to prevent ILT range error for 3rd/4th
17380          * vnic (this code assumes existence of the vnic)
17381          *
17382          * both steps performed by call to ecore_ilt_client_init_op()
17383          * with dummy TM client
17384          *
17385          * we must use pretend since PXP2_REG_RQ_##blk##_FIRST_ILT
17386          * and his brother are split registers
17387          */
17388 
17389         bxe_pretend_func(sc, (SC_PATH(sc) + 6));
17390         ecore_ilt_client_init_op_ilt(sc, &ilt, &ilt_cli, INITOP_CLEAR);
17391         bxe_pretend_func(sc, SC_ABS_FUNC(sc));
17392 
17393         REG_WR(sc, PXP2_REG_RQ_DRAM_ALIGN, BXE_PXP_DRAM_ALIGN);
17394         REG_WR(sc, PXP2_REG_RQ_DRAM_ALIGN_RD, BXE_PXP_DRAM_ALIGN);
17395         REG_WR(sc, PXP2_REG_RQ_DRAM_ALIGN_SEL, 1);
17396     }
17397 
17398     REG_WR(sc, PXP2_REG_RQ_DISABLE_INPUTS, 0);
17399     REG_WR(sc, PXP2_REG_RD_DISABLE_INPUTS, 0);
17400 
17401     if (!CHIP_IS_E1x(sc)) {
17402         int factor = CHIP_REV_IS_EMUL(sc) ? 1000 :
17403                      (CHIP_REV_IS_FPGA(sc) ? 400 : 0);
17404 
17405         ecore_init_block(sc, BLOCK_PGLUE_B, PHASE_COMMON);
17406         ecore_init_block(sc, BLOCK_ATC, PHASE_COMMON);
17407 
17408         /* let the HW do it's magic... */
17409         do {
17410             DELAY(200000);
17411             val = REG_RD(sc, ATC_REG_ATC_INIT_DONE);
17412         } while (factor-- && (val != 1));
17413 
17414         if (val != 1) {
17415             BLOGE(sc, "ATC_INIT failed\n");
17416             return (-1);
17417         }
17418     }
17419 
17420     BLOGD(sc, DBG_LOAD, "after pglue and atc init\n");
17421 
17422     ecore_init_block(sc, BLOCK_DMAE, PHASE_COMMON);
17423 
17424     bxe_iov_init_dmae(sc);
17425 
17426     /* clean the DMAE memory */
17427     sc->dmae_ready = 1;
17428     ecore_init_fill(sc, TSEM_REG_PRAM, 0, 8, 1);
17429 
17430     ecore_init_block(sc, BLOCK_TCM, PHASE_COMMON);
17431 
17432     ecore_init_block(sc, BLOCK_UCM, PHASE_COMMON);
17433 
17434     ecore_init_block(sc, BLOCK_CCM, PHASE_COMMON);
17435 
17436     ecore_init_block(sc, BLOCK_XCM, PHASE_COMMON);
17437 
17438     bxe_read_dmae(sc, XSEM_REG_PASSIVE_BUFFER, 3);
17439     bxe_read_dmae(sc, CSEM_REG_PASSIVE_BUFFER, 3);
17440     bxe_read_dmae(sc, TSEM_REG_PASSIVE_BUFFER, 3);
17441     bxe_read_dmae(sc, USEM_REG_PASSIVE_BUFFER, 3);
17442 
17443     ecore_init_block(sc, BLOCK_QM, PHASE_COMMON);
17444 
17445     /* QM queues pointers table */
17446     ecore_qm_init_ptr_table(sc, sc->qm_cid_count, INITOP_SET);
17447 
17448     /* soft reset pulse */
17449     REG_WR(sc, QM_REG_SOFT_RESET, 1);
17450     REG_WR(sc, QM_REG_SOFT_RESET, 0);
17451 
17452     if (CNIC_SUPPORT(sc))
17453         ecore_init_block(sc, BLOCK_TM, PHASE_COMMON);
17454 
17455     ecore_init_block(sc, BLOCK_DORQ, PHASE_COMMON);
17456     REG_WR(sc, DORQ_REG_DPM_CID_OFST, BXE_DB_SHIFT);
17457     if (!CHIP_REV_IS_SLOW(sc)) {
17458         /* enable hw interrupt from doorbell Q */
17459         REG_WR(sc, DORQ_REG_DORQ_INT_MASK, 0);
17460     }
17461 
17462     ecore_init_block(sc, BLOCK_BRB1, PHASE_COMMON);
17463 
17464     ecore_init_block(sc, BLOCK_PRS, PHASE_COMMON);
17465     REG_WR(sc, PRS_REG_A_PRSU_20, 0xf);
17466 
17467     if (!CHIP_IS_E1(sc)) {
17468         REG_WR(sc, PRS_REG_E1HOV_MODE, sc->devinfo.mf_info.path_has_ovlan);
17469     }
17470 
17471     if (!CHIP_IS_E1x(sc) && !CHIP_IS_E3B0(sc)) {
17472         if (IS_MF_AFEX(sc)) {
17473             /*
17474              * configure that AFEX and VLAN headers must be
17475              * received in AFEX mode
17476              */
17477             REG_WR(sc, PRS_REG_HDRS_AFTER_BASIC, 0xE);
17478             REG_WR(sc, PRS_REG_MUST_HAVE_HDRS, 0xA);
17479             REG_WR(sc, PRS_REG_HDRS_AFTER_TAG_0, 0x6);
17480             REG_WR(sc, PRS_REG_TAG_ETHERTYPE_0, 0x8926);
17481             REG_WR(sc, PRS_REG_TAG_LEN_0, 0x4);
17482         } else {
17483             /*
17484              * Bit-map indicating which L2 hdrs may appear
17485              * after the basic Ethernet header
17486              */
17487             REG_WR(sc, PRS_REG_HDRS_AFTER_BASIC,
17488                    sc->devinfo.mf_info.path_has_ovlan ? 7 : 6);
17489         }
17490     }
17491 
17492     ecore_init_block(sc, BLOCK_TSDM, PHASE_COMMON);
17493     ecore_init_block(sc, BLOCK_CSDM, PHASE_COMMON);
17494     ecore_init_block(sc, BLOCK_USDM, PHASE_COMMON);
17495     ecore_init_block(sc, BLOCK_XSDM, PHASE_COMMON);
17496 
17497     if (!CHIP_IS_E1x(sc)) {
17498         /* reset VFC memories */
17499         REG_WR(sc, TSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST,
17500                VFC_MEMORIES_RST_REG_CAM_RST |
17501                VFC_MEMORIES_RST_REG_RAM_RST);
17502         REG_WR(sc, XSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST,
17503                VFC_MEMORIES_RST_REG_CAM_RST |
17504                VFC_MEMORIES_RST_REG_RAM_RST);
17505 
17506         DELAY(20000);
17507     }
17508 
17509     ecore_init_block(sc, BLOCK_TSEM, PHASE_COMMON);
17510     ecore_init_block(sc, BLOCK_USEM, PHASE_COMMON);
17511     ecore_init_block(sc, BLOCK_CSEM, PHASE_COMMON);
17512     ecore_init_block(sc, BLOCK_XSEM, PHASE_COMMON);
17513 
17514     /* sync semi rtc */
17515     REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
17516            0x80000000);
17517     REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET,
17518            0x80000000);
17519 
17520     ecore_init_block(sc, BLOCK_UPB, PHASE_COMMON);
17521     ecore_init_block(sc, BLOCK_XPB, PHASE_COMMON);
17522     ecore_init_block(sc, BLOCK_PBF, PHASE_COMMON);
17523 
17524     if (!CHIP_IS_E1x(sc)) {
17525         if (IS_MF_AFEX(sc)) {
17526             /*
17527              * configure that AFEX and VLAN headers must be
17528              * sent in AFEX mode
17529              */
17530             REG_WR(sc, PBF_REG_HDRS_AFTER_BASIC, 0xE);
17531             REG_WR(sc, PBF_REG_MUST_HAVE_HDRS, 0xA);
17532             REG_WR(sc, PBF_REG_HDRS_AFTER_TAG_0, 0x6);
17533             REG_WR(sc, PBF_REG_TAG_ETHERTYPE_0, 0x8926);
17534             REG_WR(sc, PBF_REG_TAG_LEN_0, 0x4);
17535         } else {
17536             REG_WR(sc, PBF_REG_HDRS_AFTER_BASIC,
17537                    sc->devinfo.mf_info.path_has_ovlan ? 7 : 6);
17538         }
17539     }
17540 
17541     REG_WR(sc, SRC_REG_SOFT_RST, 1);
17542 
17543     ecore_init_block(sc, BLOCK_SRC, PHASE_COMMON);
17544 
17545     if (CNIC_SUPPORT(sc)) {
17546         REG_WR(sc, SRC_REG_KEYSEARCH_0, 0x63285672);
17547         REG_WR(sc, SRC_REG_KEYSEARCH_1, 0x24b8f2cc);
17548         REG_WR(sc, SRC_REG_KEYSEARCH_2, 0x223aef9b);
17549         REG_WR(sc, SRC_REG_KEYSEARCH_3, 0x26001e3a);
17550         REG_WR(sc, SRC_REG_KEYSEARCH_4, 0x7ae91116);
17551         REG_WR(sc, SRC_REG_KEYSEARCH_5, 0x5ce5230b);
17552         REG_WR(sc, SRC_REG_KEYSEARCH_6, 0x298d8adf);
17553         REG_WR(sc, SRC_REG_KEYSEARCH_7, 0x6eb0ff09);
17554         REG_WR(sc, SRC_REG_KEYSEARCH_8, 0x1830f82f);
17555         REG_WR(sc, SRC_REG_KEYSEARCH_9, 0x01e46be7);
17556     }
17557     REG_WR(sc, SRC_REG_SOFT_RST, 0);
17558 
17559     if (sizeof(union cdu_context) != 1024) {
17560         /* we currently assume that a context is 1024 bytes */
17561         BLOGE(sc, "please adjust the size of cdu_context(%ld)\n",
17562               (long)sizeof(union cdu_context));
17563     }
17564 
17565     ecore_init_block(sc, BLOCK_CDU, PHASE_COMMON);
17566     val = (4 << 24) + (0 << 12) + 1024;
17567     REG_WR(sc, CDU_REG_CDU_GLOBAL_PARAMS, val);
17568 
17569     ecore_init_block(sc, BLOCK_CFC, PHASE_COMMON);
17570 
17571     REG_WR(sc, CFC_REG_INIT_REG, 0x7FF);
17572     /* enable context validation interrupt from CFC */
17573     REG_WR(sc, CFC_REG_CFC_INT_MASK, 0);
17574 
17575     /* set the thresholds to prevent CFC/CDU race */
17576     REG_WR(sc, CFC_REG_DEBUG0, 0x20020000);
17577     ecore_init_block(sc, BLOCK_HC, PHASE_COMMON);
17578 
17579     if (!CHIP_IS_E1x(sc) && BXE_NOMCP(sc)) {
17580         REG_WR(sc, IGU_REG_RESET_MEMORIES, 0x36);
17581     }
17582 
17583     ecore_init_block(sc, BLOCK_IGU, PHASE_COMMON);
17584     ecore_init_block(sc, BLOCK_MISC_AEU, PHASE_COMMON);
17585 
17586     /* Reset PCIE errors for debug */
17587     REG_WR(sc, 0x2814, 0xffffffff);
17588     REG_WR(sc, 0x3820, 0xffffffff);
17589 
17590     if (!CHIP_IS_E1x(sc)) {
17591         REG_WR(sc, PCICFG_OFFSET + PXPCS_TL_CONTROL_5,
17592                (PXPCS_TL_CONTROL_5_ERR_UNSPPORT1 |
17593                 PXPCS_TL_CONTROL_5_ERR_UNSPPORT));
17594         REG_WR(sc, PCICFG_OFFSET + PXPCS_TL_FUNC345_STAT,
17595                (PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT4 |
17596                 PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT3 |
17597                 PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT2));
17598         REG_WR(sc, PCICFG_OFFSET + PXPCS_TL_FUNC678_STAT,
17599                (PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT7 |
17600                 PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT6 |
17601                 PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT5));
17602     }
17603 
17604     ecore_init_block(sc, BLOCK_NIG, PHASE_COMMON);
17605 
17606     if (!CHIP_IS_E1(sc)) {
17607         /* in E3 this done in per-port section */
17608         if (!CHIP_IS_E3(sc))
17609             REG_WR(sc, NIG_REG_LLH_MF_MODE, IS_MF(sc));
17610     }
17611 
17612     if (CHIP_IS_E1H(sc)) {
17613         /* not applicable for E2 (and above ...) */
17614         REG_WR(sc, NIG_REG_LLH_E1HOV_MODE, IS_MF_SD(sc));
17615     }
17616 
17617     if (CHIP_REV_IS_SLOW(sc)) {
17618         DELAY(200000);
17619     }
17620 
17621     /* finish CFC init */
17622     val = reg_poll(sc, CFC_REG_LL_INIT_DONE, 1, 100, 10);
17623     if (val != 1) {
17624         BLOGE(sc, "CFC LL_INIT failed\n");
17625         return (-1);
17626     }
17627     val = reg_poll(sc, CFC_REG_AC_INIT_DONE, 1, 100, 10);
17628     if (val != 1) {
17629         BLOGE(sc, "CFC AC_INIT failed\n");
17630         return (-1);
17631     }
17632     val = reg_poll(sc, CFC_REG_CAM_INIT_DONE, 1, 100, 10);
17633     if (val != 1) {
17634         BLOGE(sc, "CFC CAM_INIT failed\n");
17635         return (-1);
17636     }
17637     REG_WR(sc, CFC_REG_DEBUG0, 0);
17638 
17639     if (CHIP_IS_E1(sc)) {
17640         /* read NIG statistic to see if this is our first up since powerup */
17641         bxe_read_dmae(sc, NIG_REG_STAT2_BRB_OCTET, 2);
17642         val = *BXE_SP(sc, wb_data[0]);
17643 
17644         /* do internal memory self test */
17645         if ((val == 0) && bxe_int_mem_test(sc)) {
17646             BLOGE(sc, "internal mem self test failed\n");
17647             return (-1);
17648         }
17649     }
17650 
17651     bxe_setup_fan_failure_detection(sc);
17652 
17653     /* clear PXP2 attentions */
17654     REG_RD(sc, PXP2_REG_PXP2_INT_STS_CLR_0);
17655 
17656     bxe_enable_blocks_attention(sc);
17657 
17658     if (!CHIP_REV_IS_SLOW(sc)) {
17659         ecore_enable_blocks_parity(sc);
17660     }
17661 
17662     if (!BXE_NOMCP(sc)) {
17663         if (CHIP_IS_E1x(sc)) {
17664             bxe_common_init_phy(sc);
17665         }
17666     }
17667 
17668     return (0);
17669 }
17670 
17671 /**
17672  * bxe_init_hw_common_chip - init HW at the COMMON_CHIP phase.
17673  *
17674  * @sc:     driver handle
17675  */
17676 static int
17677 bxe_init_hw_common_chip(struct bxe_softc *sc)
17678 {
17679     int rc = bxe_init_hw_common(sc);
17680 
17681     if (rc) {
17682         return (rc);
17683     }
17684 
17685     /* In E2 2-PORT mode, same ext phy is used for the two paths */
17686     if (!BXE_NOMCP(sc)) {
17687         bxe_common_init_phy(sc);
17688     }
17689 
17690     return (0);
17691 }
17692 
17693 static int
17694 bxe_init_hw_port(struct bxe_softc *sc)
17695 {
17696     int port = SC_PORT(sc);
17697     int init_phase = port ? PHASE_PORT1 : PHASE_PORT0;
17698     uint32_t low, high;
17699     uint32_t val;
17700 
17701     BLOGD(sc, DBG_LOAD, "starting port init for port %d\n", port);
17702 
17703     REG_WR(sc, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0);
17704 
17705     ecore_init_block(sc, BLOCK_MISC, init_phase);
17706     ecore_init_block(sc, BLOCK_PXP, init_phase);
17707     ecore_init_block(sc, BLOCK_PXP2, init_phase);
17708 
17709     /*
17710      * Timers bug workaround: disables the pf_master bit in pglue at
17711      * common phase, we need to enable it here before any dmae access are
17712      * attempted. Therefore we manually added the enable-master to the
17713      * port phase (it also happens in the function phase)
17714      */
17715     if (!CHIP_IS_E1x(sc)) {
17716         REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
17717     }
17718 
17719     ecore_init_block(sc, BLOCK_ATC, init_phase);
17720     ecore_init_block(sc, BLOCK_DMAE, init_phase);
17721     ecore_init_block(sc, BLOCK_PGLUE_B, init_phase);
17722     ecore_init_block(sc, BLOCK_QM, init_phase);
17723 
17724     ecore_init_block(sc, BLOCK_TCM, init_phase);
17725     ecore_init_block(sc, BLOCK_UCM, init_phase);
17726     ecore_init_block(sc, BLOCK_CCM, init_phase);
17727     ecore_init_block(sc, BLOCK_XCM, init_phase);
17728 
17729     /* QM cid (connection) count */
17730     ecore_qm_init_cid_count(sc, sc->qm_cid_count, INITOP_SET);
17731 
17732     if (CNIC_SUPPORT(sc)) {
17733         ecore_init_block(sc, BLOCK_TM, init_phase);
17734         REG_WR(sc, TM_REG_LIN0_SCAN_TIME + port*4, 20);
17735         REG_WR(sc, TM_REG_LIN0_MAX_ACTIVE_CID + port*4, 31);
17736     }
17737 
17738     ecore_init_block(sc, BLOCK_DORQ, init_phase);
17739 
17740     ecore_init_block(sc, BLOCK_BRB1, init_phase);
17741 
17742     if (CHIP_IS_E1(sc) || CHIP_IS_E1H(sc)) {
17743         if (IS_MF(sc)) {
17744             low = (BXE_ONE_PORT(sc) ? 160 : 246);
17745         } else if (sc->mtu > 4096) {
17746             if (BXE_ONE_PORT(sc)) {
17747                 low = 160;
17748             } else {
17749                 val = sc->mtu;
17750                 /* (24*1024 + val*4)/256 */
17751                 low = (96 + (val / 64) + ((val % 64) ? 1 : 0));
17752             }
17753         } else {
17754             low = (BXE_ONE_PORT(sc) ? 80 : 160);
17755         }
17756         high = (low + 56); /* 14*1024/256 */
17757         REG_WR(sc, BRB1_REG_PAUSE_LOW_THRESHOLD_0 + port*4, low);
17758         REG_WR(sc, BRB1_REG_PAUSE_HIGH_THRESHOLD_0 + port*4, high);
17759     }
17760 
17761     if (CHIP_IS_MODE_4_PORT(sc)) {
17762         REG_WR(sc, SC_PORT(sc) ?
17763                BRB1_REG_MAC_GUARANTIED_1 :
17764                BRB1_REG_MAC_GUARANTIED_0, 40);
17765     }
17766 
17767     ecore_init_block(sc, BLOCK_PRS, init_phase);
17768     if (CHIP_IS_E3B0(sc)) {
17769         if (IS_MF_AFEX(sc)) {
17770             /* configure headers for AFEX mode */
17771             REG_WR(sc, SC_PORT(sc) ?
17772                    PRS_REG_HDRS_AFTER_BASIC_PORT_1 :
17773                    PRS_REG_HDRS_AFTER_BASIC_PORT_0, 0xE);
17774             REG_WR(sc, SC_PORT(sc) ?
17775                    PRS_REG_HDRS_AFTER_TAG_0_PORT_1 :
17776                    PRS_REG_HDRS_AFTER_TAG_0_PORT_0, 0x6);
17777             REG_WR(sc, SC_PORT(sc) ?
17778                    PRS_REG_MUST_HAVE_HDRS_PORT_1 :
17779                    PRS_REG_MUST_HAVE_HDRS_PORT_0, 0xA);
17780         } else {
17781             /* Ovlan exists only if we are in multi-function +
17782              * switch-dependent mode, in switch-independent there
17783              * is no ovlan headers
17784              */
17785             REG_WR(sc, SC_PORT(sc) ?
17786                    PRS_REG_HDRS_AFTER_BASIC_PORT_1 :
17787                    PRS_REG_HDRS_AFTER_BASIC_PORT_0,
17788                    (sc->devinfo.mf_info.path_has_ovlan ? 7 : 6));
17789         }
17790     }
17791 
17792     ecore_init_block(sc, BLOCK_TSDM, init_phase);
17793     ecore_init_block(sc, BLOCK_CSDM, init_phase);
17794     ecore_init_block(sc, BLOCK_USDM, init_phase);
17795     ecore_init_block(sc, BLOCK_XSDM, init_phase);
17796 
17797     ecore_init_block(sc, BLOCK_TSEM, init_phase);
17798     ecore_init_block(sc, BLOCK_USEM, init_phase);
17799     ecore_init_block(sc, BLOCK_CSEM, init_phase);
17800     ecore_init_block(sc, BLOCK_XSEM, init_phase);
17801 
17802     ecore_init_block(sc, BLOCK_UPB, init_phase);
17803     ecore_init_block(sc, BLOCK_XPB, init_phase);
17804 
17805     ecore_init_block(sc, BLOCK_PBF, init_phase);
17806 
17807     if (CHIP_IS_E1x(sc)) {
17808         /* configure PBF to work without PAUSE mtu 9000 */
17809         REG_WR(sc, PBF_REG_P0_PAUSE_ENABLE + port*4, 0);
17810 
17811         /* update threshold */
17812         REG_WR(sc, PBF_REG_P0_ARB_THRSH + port*4, (9040/16));
17813         /* update init credit */
17814         REG_WR(sc, PBF_REG_P0_INIT_CRD + port*4, (9040/16) + 553 - 22);
17815 
17816         /* probe changes */
17817         REG_WR(sc, PBF_REG_INIT_P0 + port*4, 1);
17818         DELAY(50);
17819         REG_WR(sc, PBF_REG_INIT_P0 + port*4, 0);
17820     }
17821 
17822     if (CNIC_SUPPORT(sc)) {
17823         ecore_init_block(sc, BLOCK_SRC, init_phase);
17824     }
17825 
17826     ecore_init_block(sc, BLOCK_CDU, init_phase);
17827     ecore_init_block(sc, BLOCK_CFC, init_phase);
17828 
17829     if (CHIP_IS_E1(sc)) {
17830         REG_WR(sc, HC_REG_LEADING_EDGE_0 + port*8, 0);
17831         REG_WR(sc, HC_REG_TRAILING_EDGE_0 + port*8, 0);
17832     }
17833     ecore_init_block(sc, BLOCK_HC, init_phase);
17834 
17835     ecore_init_block(sc, BLOCK_IGU, init_phase);
17836 
17837     ecore_init_block(sc, BLOCK_MISC_AEU, init_phase);
17838     /* init aeu_mask_attn_func_0/1:
17839      *  - SF mode: bits 3-7 are masked. only bits 0-2 are in use
17840      *  - MF mode: bit 3 is masked. bits 0-2 are in use as in SF
17841      *             bits 4-7 are used for "per vn group attention" */
17842     val = IS_MF(sc) ? 0xF7 : 0x7;
17843     /* Enable DCBX attention for all but E1 */
17844     val |= CHIP_IS_E1(sc) ? 0 : 0x10;
17845     REG_WR(sc, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, val);
17846 
17847     ecore_init_block(sc, BLOCK_NIG, init_phase);
17848 
17849     if (!CHIP_IS_E1x(sc)) {
17850         /* Bit-map indicating which L2 hdrs may appear after the
17851          * basic Ethernet header
17852          */
17853         if (IS_MF_AFEX(sc)) {
17854             REG_WR(sc, SC_PORT(sc) ?
17855                    NIG_REG_P1_HDRS_AFTER_BASIC :
17856                    NIG_REG_P0_HDRS_AFTER_BASIC, 0xE);
17857         } else {
17858             REG_WR(sc, SC_PORT(sc) ?
17859                    NIG_REG_P1_HDRS_AFTER_BASIC :
17860                    NIG_REG_P0_HDRS_AFTER_BASIC,
17861                    IS_MF_SD(sc) ? 7 : 6);
17862         }
17863 
17864         if (CHIP_IS_E3(sc)) {
17865             REG_WR(sc, SC_PORT(sc) ?
17866                    NIG_REG_LLH1_MF_MODE :
17867                    NIG_REG_LLH_MF_MODE, IS_MF(sc));
17868         }
17869     }
17870     if (!CHIP_IS_E3(sc)) {
17871         REG_WR(sc, NIG_REG_XGXS_SERDES0_MODE_SEL + port*4, 1);
17872     }
17873 
17874     if (!CHIP_IS_E1(sc)) {
17875         /* 0x2 disable mf_ov, 0x1 enable */
17876         REG_WR(sc, NIG_REG_LLH0_BRB1_DRV_MASK_MF + port*4,
17877                (IS_MF_SD(sc) ? 0x1 : 0x2));
17878 
17879         if (!CHIP_IS_E1x(sc)) {
17880             val = 0;
17881             switch (sc->devinfo.mf_info.mf_mode) {
17882             case MULTI_FUNCTION_SD:
17883                 val = 1;
17884                 break;
17885             case MULTI_FUNCTION_SI:
17886             case MULTI_FUNCTION_AFEX:
17887                 val = 2;
17888                 break;
17889             }
17890 
17891             REG_WR(sc, (SC_PORT(sc) ? NIG_REG_LLH1_CLS_TYPE :
17892                         NIG_REG_LLH0_CLS_TYPE), val);
17893         }
17894         REG_WR(sc, NIG_REG_LLFC_ENABLE_0 + port*4, 0);
17895         REG_WR(sc, NIG_REG_LLFC_OUT_EN_0 + port*4, 0);
17896         REG_WR(sc, NIG_REG_PAUSE_ENABLE_0 + port*4, 1);
17897     }
17898 
17899     /* If SPIO5 is set to generate interrupts, enable it for this port */
17900     val = REG_RD(sc, MISC_REG_SPIO_EVENT_EN);
17901     if (val & MISC_SPIO_SPIO5) {
17902         uint32_t reg_addr = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
17903                                     MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
17904         val = REG_RD(sc, reg_addr);
17905         val |= AEU_INPUTS_ATTN_BITS_SPIO5;
17906         REG_WR(sc, reg_addr, val);
17907     }
17908 
17909     return (0);
17910 }
17911 
17912 static uint32_t
17913 bxe_flr_clnup_reg_poll(struct bxe_softc *sc,
17914                        uint32_t         reg,
17915                        uint32_t         expected,
17916                        uint32_t         poll_count)
17917 {
17918     uint32_t cur_cnt = poll_count;
17919     uint32_t val;
17920 
17921     while ((val = REG_RD(sc, reg)) != expected && cur_cnt--) {
17922         DELAY(FLR_WAIT_INTERVAL);
17923     }
17924 
17925     return (val);
17926 }
17927 
17928 static int
17929 bxe_flr_clnup_poll_hw_counter(struct bxe_softc *sc,
17930                               uint32_t         reg,
17931                               char             *msg,
17932                               uint32_t         poll_cnt)
17933 {
17934     uint32_t val = bxe_flr_clnup_reg_poll(sc, reg, 0, poll_cnt);
17935 
17936     if (val != 0) {
17937         BLOGE(sc, "%s usage count=%d\n", msg, val);
17938         return (1);
17939     }
17940 
17941     return (0);
17942 }
17943 
17944 /* Common routines with VF FLR cleanup */
17945 static uint32_t
17946 bxe_flr_clnup_poll_count(struct bxe_softc *sc)
17947 {
17948     /* adjust polling timeout */
17949     if (CHIP_REV_IS_EMUL(sc)) {
17950         return (FLR_POLL_CNT * 2000);
17951     }
17952 
17953     if (CHIP_REV_IS_FPGA(sc)) {
17954         return (FLR_POLL_CNT * 120);
17955     }
17956 
17957     return (FLR_POLL_CNT);
17958 }
17959 
17960 static int
17961 bxe_poll_hw_usage_counters(struct bxe_softc *sc,
17962                            uint32_t         poll_cnt)
17963 {
17964     /* wait for CFC PF usage-counter to zero (includes all the VFs) */
17965     if (bxe_flr_clnup_poll_hw_counter(sc,
17966                                       CFC_REG_NUM_LCIDS_INSIDE_PF,
17967                                       "CFC PF usage counter timed out",
17968                                       poll_cnt)) {
17969         return (1);
17970     }
17971 
17972     /* Wait for DQ PF usage-counter to zero (until DQ cleanup) */
17973     if (bxe_flr_clnup_poll_hw_counter(sc,
17974                                       DORQ_REG_PF_USAGE_CNT,
17975                                       "DQ PF usage counter timed out",
17976                                       poll_cnt)) {
17977         return (1);
17978     }
17979 
17980     /* Wait for QM PF usage-counter to zero (until DQ cleanup) */
17981     if (bxe_flr_clnup_poll_hw_counter(sc,
17982                                       QM_REG_PF_USG_CNT_0 + 4*SC_FUNC(sc),
17983                                       "QM PF usage counter timed out",
17984                                       poll_cnt)) {
17985         return (1);
17986     }
17987 
17988     /* Wait for Timer PF usage-counters to zero (until DQ cleanup) */
17989     if (bxe_flr_clnup_poll_hw_counter(sc,
17990                                       TM_REG_LIN0_VNIC_UC + 4*SC_PORT(sc),
17991                                       "Timers VNIC usage counter timed out",
17992                                       poll_cnt)) {
17993         return (1);
17994     }
17995 
17996     if (bxe_flr_clnup_poll_hw_counter(sc,
17997                                       TM_REG_LIN0_NUM_SCANS + 4*SC_PORT(sc),
17998                                       "Timers NUM_SCANS usage counter timed out",
17999                                       poll_cnt)) {
18000         return (1);
18001     }
18002 
18003     /* Wait DMAE PF usage counter to zero */
18004     if (bxe_flr_clnup_poll_hw_counter(sc,
18005                                       dmae_reg_go_c[INIT_DMAE_C(sc)],
18006                                       "DMAE dommand register timed out",
18007                                       poll_cnt)) {
18008         return (1);
18009     }
18010 
18011     return (0);
18012 }
18013 
18014 #define OP_GEN_PARAM(param)                                            \
18015     (((param) << SDM_OP_GEN_COMP_PARAM_SHIFT) & SDM_OP_GEN_COMP_PARAM)
18016 #define OP_GEN_TYPE(type)                                           \
18017     (((type) << SDM_OP_GEN_COMP_TYPE_SHIFT) & SDM_OP_GEN_COMP_TYPE)
18018 #define OP_GEN_AGG_VECT(index)                                             \
18019     (((index) << SDM_OP_GEN_AGG_VECT_IDX_SHIFT) & SDM_OP_GEN_AGG_VECT_IDX)
18020 
18021 static int
18022 bxe_send_final_clnup(struct bxe_softc *sc,
18023                      uint8_t          clnup_func,
18024                      uint32_t         poll_cnt)
18025 {
18026     uint32_t op_gen_command = 0;
18027     uint32_t comp_addr = (BAR_CSTRORM_INTMEM +
18028                           CSTORM_FINAL_CLEANUP_COMPLETE_OFFSET(clnup_func));
18029     int ret = 0;
18030 
18031     if (REG_RD(sc, comp_addr)) {
18032         BLOGE(sc, "Cleanup complete was not 0 before sending\n");
18033         return (1);
18034     }
18035 
18036     op_gen_command |= OP_GEN_PARAM(XSTORM_AGG_INT_FINAL_CLEANUP_INDEX);
18037     op_gen_command |= OP_GEN_TYPE(XSTORM_AGG_INT_FINAL_CLEANUP_COMP_TYPE);
18038     op_gen_command |= OP_GEN_AGG_VECT(clnup_func);
18039     op_gen_command |= 1 << SDM_OP_GEN_AGG_VECT_IDX_VALID_SHIFT;
18040 
18041     BLOGD(sc, DBG_LOAD, "sending FW Final cleanup\n");
18042     REG_WR(sc, XSDM_REG_OPERATION_GEN, op_gen_command);
18043 
18044     if (bxe_flr_clnup_reg_poll(sc, comp_addr, 1, poll_cnt) != 1) {
18045         BLOGE(sc, "FW final cleanup did not succeed\n");
18046         BLOGD(sc, DBG_LOAD, "At timeout completion address contained %x\n",
18047               (REG_RD(sc, comp_addr)));
18048         bxe_panic(sc, ("FLR cleanup failed\n"));
18049         return (1);
18050     }
18051 
18052     /* Zero completion for nxt FLR */
18053     REG_WR(sc, comp_addr, 0);
18054 
18055     return (ret);
18056 }
18057 
18058 static void
18059 bxe_pbf_pN_buf_flushed(struct bxe_softc       *sc,
18060                        struct pbf_pN_buf_regs *regs,
18061                        uint32_t               poll_count)
18062 {
18063     uint32_t init_crd, crd, crd_start, crd_freed, crd_freed_start;
18064     uint32_t cur_cnt = poll_count;
18065 
18066     crd_freed = crd_freed_start = REG_RD(sc, regs->crd_freed);
18067     crd = crd_start = REG_RD(sc, regs->crd);
18068     init_crd = REG_RD(sc, regs->init_crd);
18069 
18070     BLOGD(sc, DBG_LOAD, "INIT CREDIT[%d] : %x\n", regs->pN, init_crd);
18071     BLOGD(sc, DBG_LOAD, "CREDIT[%d]      : s:%x\n", regs->pN, crd);
18072     BLOGD(sc, DBG_LOAD, "CREDIT_FREED[%d]: s:%x\n", regs->pN, crd_freed);
18073 
18074     while ((crd != init_crd) &&
18075            ((uint32_t)((int32_t)crd_freed - (int32_t)crd_freed_start) <
18076             (init_crd - crd_start))) {
18077         if (cur_cnt--) {
18078             DELAY(FLR_WAIT_INTERVAL);
18079             crd = REG_RD(sc, regs->crd);
18080             crd_freed = REG_RD(sc, regs->crd_freed);
18081         } else {
18082             BLOGD(sc, DBG_LOAD, "PBF tx buffer[%d] timed out\n", regs->pN);
18083             BLOGD(sc, DBG_LOAD, "CREDIT[%d]      : c:%x\n", regs->pN, crd);
18084             BLOGD(sc, DBG_LOAD, "CREDIT_FREED[%d]: c:%x\n", regs->pN, crd_freed);
18085             break;
18086         }
18087     }
18088 
18089     BLOGD(sc, DBG_LOAD, "Waited %d*%d usec for PBF tx buffer[%d]\n",
18090           poll_count-cur_cnt, FLR_WAIT_INTERVAL, regs->pN);
18091 }
18092 
18093 static void
18094 bxe_pbf_pN_cmd_flushed(struct bxe_softc       *sc,
18095                        struct pbf_pN_cmd_regs *regs,
18096                        uint32_t               poll_count)
18097 {
18098     uint32_t occup, to_free, freed, freed_start;
18099     uint32_t cur_cnt = poll_count;
18100 
18101     occup = to_free = REG_RD(sc, regs->lines_occup);
18102     freed = freed_start = REG_RD(sc, regs->lines_freed);
18103 
18104     BLOGD(sc, DBG_LOAD, "OCCUPANCY[%d]   : s:%x\n", regs->pN, occup);
18105     BLOGD(sc, DBG_LOAD, "LINES_FREED[%d] : s:%x\n", regs->pN, freed);
18106 
18107     while (occup &&
18108            ((uint32_t)((int32_t)freed - (int32_t)freed_start) < to_free)) {
18109         if (cur_cnt--) {
18110             DELAY(FLR_WAIT_INTERVAL);
18111             occup = REG_RD(sc, regs->lines_occup);
18112             freed = REG_RD(sc, regs->lines_freed);
18113         } else {
18114             BLOGD(sc, DBG_LOAD, "PBF cmd queue[%d] timed out\n", regs->pN);
18115             BLOGD(sc, DBG_LOAD, "OCCUPANCY[%d]   : s:%x\n", regs->pN, occup);
18116             BLOGD(sc, DBG_LOAD, "LINES_FREED[%d] : s:%x\n", regs->pN, freed);
18117             break;
18118         }
18119     }
18120 
18121     BLOGD(sc, DBG_LOAD, "Waited %d*%d usec for PBF cmd queue[%d]\n",
18122           poll_count - cur_cnt, FLR_WAIT_INTERVAL, regs->pN);
18123 }
18124 
18125 static void
18126 bxe_tx_hw_flushed(struct bxe_softc *sc, uint32_t poll_count)
18127 {
18128     struct pbf_pN_cmd_regs cmd_regs[] = {
18129         {0, (CHIP_IS_E3B0(sc)) ?
18130             PBF_REG_TQ_OCCUPANCY_Q0 :
18131             PBF_REG_P0_TQ_OCCUPANCY,
18132             (CHIP_IS_E3B0(sc)) ?
18133             PBF_REG_TQ_LINES_FREED_CNT_Q0 :
18134             PBF_REG_P0_TQ_LINES_FREED_CNT},
18135         {1, (CHIP_IS_E3B0(sc)) ?
18136             PBF_REG_TQ_OCCUPANCY_Q1 :
18137             PBF_REG_P1_TQ_OCCUPANCY,
18138             (CHIP_IS_E3B0(sc)) ?
18139             PBF_REG_TQ_LINES_FREED_CNT_Q1 :
18140             PBF_REG_P1_TQ_LINES_FREED_CNT},
18141         {4, (CHIP_IS_E3B0(sc)) ?
18142             PBF_REG_TQ_OCCUPANCY_LB_Q :
18143             PBF_REG_P4_TQ_OCCUPANCY,
18144             (CHIP_IS_E3B0(sc)) ?
18145             PBF_REG_TQ_LINES_FREED_CNT_LB_Q :
18146             PBF_REG_P4_TQ_LINES_FREED_CNT}
18147     };
18148 
18149     struct pbf_pN_buf_regs buf_regs[] = {
18150         {0, (CHIP_IS_E3B0(sc)) ?
18151             PBF_REG_INIT_CRD_Q0 :
18152             PBF_REG_P0_INIT_CRD ,
18153             (CHIP_IS_E3B0(sc)) ?
18154             PBF_REG_CREDIT_Q0 :
18155             PBF_REG_P0_CREDIT,
18156             (CHIP_IS_E3B0(sc)) ?
18157             PBF_REG_INTERNAL_CRD_FREED_CNT_Q0 :
18158             PBF_REG_P0_INTERNAL_CRD_FREED_CNT},
18159         {1, (CHIP_IS_E3B0(sc)) ?
18160             PBF_REG_INIT_CRD_Q1 :
18161             PBF_REG_P1_INIT_CRD,
18162             (CHIP_IS_E3B0(sc)) ?
18163             PBF_REG_CREDIT_Q1 :
18164             PBF_REG_P1_CREDIT,
18165             (CHIP_IS_E3B0(sc)) ?
18166             PBF_REG_INTERNAL_CRD_FREED_CNT_Q1 :
18167             PBF_REG_P1_INTERNAL_CRD_FREED_CNT},
18168         {4, (CHIP_IS_E3B0(sc)) ?
18169             PBF_REG_INIT_CRD_LB_Q :
18170             PBF_REG_P4_INIT_CRD,
18171             (CHIP_IS_E3B0(sc)) ?
18172             PBF_REG_CREDIT_LB_Q :
18173             PBF_REG_P4_CREDIT,
18174             (CHIP_IS_E3B0(sc)) ?
18175             PBF_REG_INTERNAL_CRD_FREED_CNT_LB_Q :
18176             PBF_REG_P4_INTERNAL_CRD_FREED_CNT},
18177     };
18178 
18179     int i;
18180 
18181     /* Verify the command queues are flushed P0, P1, P4 */
18182     for (i = 0; i < ARRAY_SIZE(cmd_regs); i++) {
18183         bxe_pbf_pN_cmd_flushed(sc, &cmd_regs[i], poll_count);
18184     }
18185 
18186     /* Verify the transmission buffers are flushed P0, P1, P4 */
18187     for (i = 0; i < ARRAY_SIZE(buf_regs); i++) {
18188         bxe_pbf_pN_buf_flushed(sc, &buf_regs[i], poll_count);
18189     }
18190 }
18191 
18192 static void
18193 bxe_hw_enable_status(struct bxe_softc *sc)
18194 {
18195     uint32_t val;
18196 
18197     val = REG_RD(sc, CFC_REG_WEAK_ENABLE_PF);
18198     BLOGD(sc, DBG_LOAD, "CFC_REG_WEAK_ENABLE_PF is 0x%x\n", val);
18199 
18200     val = REG_RD(sc, PBF_REG_DISABLE_PF);
18201     BLOGD(sc, DBG_LOAD, "PBF_REG_DISABLE_PF is 0x%x\n", val);
18202 
18203     val = REG_RD(sc, IGU_REG_PCI_PF_MSI_EN);
18204     BLOGD(sc, DBG_LOAD, "IGU_REG_PCI_PF_MSI_EN is 0x%x\n", val);
18205 
18206     val = REG_RD(sc, IGU_REG_PCI_PF_MSIX_EN);
18207     BLOGD(sc, DBG_LOAD, "IGU_REG_PCI_PF_MSIX_EN is 0x%x\n", val);
18208 
18209     val = REG_RD(sc, IGU_REG_PCI_PF_MSIX_FUNC_MASK);
18210     BLOGD(sc, DBG_LOAD, "IGU_REG_PCI_PF_MSIX_FUNC_MASK is 0x%x\n", val);
18211 
18212     val = REG_RD(sc, PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR);
18213     BLOGD(sc, DBG_LOAD, "PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR is 0x%x\n", val);
18214 
18215     val = REG_RD(sc, PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR);
18216     BLOGD(sc, DBG_LOAD, "PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR is 0x%x\n", val);
18217 
18218     val = REG_RD(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER);
18219     BLOGD(sc, DBG_LOAD, "PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER is 0x%x\n", val);
18220 }
18221 
18222 static int
18223 bxe_pf_flr_clnup(struct bxe_softc *sc)
18224 {
18225     uint32_t poll_cnt = bxe_flr_clnup_poll_count(sc);
18226 
18227     BLOGD(sc, DBG_LOAD, "Cleanup after FLR PF[%d]\n", SC_ABS_FUNC(sc));
18228 
18229     /* Re-enable PF target read access */
18230     REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
18231 
18232     /* Poll HW usage counters */
18233     BLOGD(sc, DBG_LOAD, "Polling usage counters\n");
18234     if (bxe_poll_hw_usage_counters(sc, poll_cnt)) {
18235         return (-1);
18236     }
18237 
18238     /* Zero the igu 'trailing edge' and 'leading edge' */
18239 
18240     /* Send the FW cleanup command */
18241     if (bxe_send_final_clnup(sc, (uint8_t)SC_FUNC(sc), poll_cnt)) {
18242         return (-1);
18243     }
18244 
18245     /* ATC cleanup */
18246 
18247     /* Verify TX hw is flushed */
18248     bxe_tx_hw_flushed(sc, poll_cnt);
18249 
18250     /* Wait 100ms (not adjusted according to platform) */
18251     DELAY(100000);
18252 
18253     /* Verify no pending pci transactions */
18254     if (bxe_is_pcie_pending(sc)) {
18255         BLOGE(sc, "PCIE Transactions still pending\n");
18256     }
18257 
18258     /* Debug */
18259     bxe_hw_enable_status(sc);
18260 
18261     /*
18262      * Master enable - Due to WB DMAE writes performed before this
18263      * register is re-initialized as part of the regular function init
18264      */
18265     REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
18266 
18267     return (0);
18268 }
18269 
18270 #if 0
18271 static void
18272 bxe_init_searcher(struct bxe_softc *sc)
18273 {
18274     int port = SC_PORT(sc);
18275     ecore_src_init_t2(sc, sc->t2, sc->t2_mapping, SRC_CONN_NUM);
18276     /* T1 hash bits value determines the T1 number of entries */
18277     REG_WR(sc, SRC_REG_NUMBER_HASH_BITS0 + port*4, SRC_HASH_BITS);
18278 }
18279 #endif
18280 
18281 static int
18282 bxe_init_hw_func(struct bxe_softc *sc)
18283 {
18284     int port = SC_PORT(sc);
18285     int func = SC_FUNC(sc);
18286     int init_phase = PHASE_PF0 + func;
18287     struct ecore_ilt *ilt = sc->ilt;
18288     uint16_t cdu_ilt_start;
18289     uint32_t addr, val;
18290     uint32_t main_mem_base, main_mem_size, main_mem_prty_clr;
18291     int i, main_mem_width, rc;
18292 
18293     BLOGD(sc, DBG_LOAD, "starting func init for func %d\n", func);
18294 
18295     /* FLR cleanup */
18296     if (!CHIP_IS_E1x(sc)) {
18297         rc = bxe_pf_flr_clnup(sc);
18298         if (rc) {
18299             BLOGE(sc, "FLR cleanup failed!\n");
18300             // XXX bxe_fw_dump(sc);
18301             // XXX bxe_idle_chk(sc);
18302             return (rc);
18303         }
18304     }
18305 
18306     /* set MSI reconfigure capability */
18307     if (sc->devinfo.int_block == INT_BLOCK_HC) {
18308         addr = (port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0);
18309         val = REG_RD(sc, addr);
18310         val |= HC_CONFIG_0_REG_MSI_ATTN_EN_0;
18311         REG_WR(sc, addr, val);
18312     }
18313 
18314     ecore_init_block(sc, BLOCK_PXP, init_phase);
18315     ecore_init_block(sc, BLOCK_PXP2, init_phase);
18316 
18317     ilt = sc->ilt;
18318     cdu_ilt_start = ilt->clients[ILT_CLIENT_CDU].start;
18319 
18320 #if 0
18321     if (IS_SRIOV(sc)) {
18322         cdu_ilt_start += BXE_FIRST_VF_CID/ILT_PAGE_CIDS;
18323     }
18324     cdu_ilt_start = bxe_iov_init_ilt(sc, cdu_ilt_start);
18325 
18326 #if (BXE_FIRST_VF_CID > 0)
18327     /*
18328      * If BXE_FIRST_VF_CID > 0 then the PF L2 cids precedes
18329      * those of the VFs, so start line should be reset
18330      */
18331     cdu_ilt_start = ilt->clients[ILT_CLIENT_CDU].start;
18332 #endif
18333 #endif
18334 
18335     for (i = 0; i < L2_ILT_LINES(sc); i++) {
18336         ilt->lines[cdu_ilt_start + i].page = sc->context[i].vcxt;
18337         ilt->lines[cdu_ilt_start + i].page_mapping =
18338             sc->context[i].vcxt_dma.paddr;
18339         ilt->lines[cdu_ilt_start + i].size = sc->context[i].size;
18340     }
18341     ecore_ilt_init_op(sc, INITOP_SET);
18342 
18343 #if 0
18344     if (!CONFIGURE_NIC_MODE(sc)) {
18345         bxe_init_searcher(sc);
18346         REG_WR(sc, PRS_REG_NIC_MODE, 0);
18347         BLOGD(sc, DBG_LOAD, "NIC MODE disabled\n");
18348     } else
18349 #endif
18350     {
18351         /* Set NIC mode */
18352         REG_WR(sc, PRS_REG_NIC_MODE, 1);
18353         BLOGD(sc, DBG_LOAD, "NIC MODE configured\n");
18354     }
18355 
18356     if (!CHIP_IS_E1x(sc)) {
18357         uint32_t pf_conf = IGU_PF_CONF_FUNC_EN;
18358 
18359         /* Turn on a single ISR mode in IGU if driver is going to use
18360          * INT#x or MSI
18361          */
18362         if (sc->interrupt_mode != INTR_MODE_MSIX) {
18363             pf_conf |= IGU_PF_CONF_SINGLE_ISR_EN;
18364         }
18365 
18366         /*
18367          * Timers workaround bug: function init part.
18368          * Need to wait 20msec after initializing ILT,
18369          * needed to make sure there are no requests in
18370          * one of the PXP internal queues with "old" ILT addresses
18371          */
18372         DELAY(20000);
18373 
18374         /*
18375          * Master enable - Due to WB DMAE writes performed before this
18376          * register is re-initialized as part of the regular function
18377          * init
18378          */
18379         REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
18380         /* Enable the function in IGU */
18381         REG_WR(sc, IGU_REG_PF_CONFIGURATION, pf_conf);
18382     }
18383 
18384     sc->dmae_ready = 1;
18385 
18386     ecore_init_block(sc, BLOCK_PGLUE_B, init_phase);
18387 
18388     if (!CHIP_IS_E1x(sc))
18389         REG_WR(sc, PGLUE_B_REG_WAS_ERROR_PF_7_0_CLR, func);
18390 
18391     ecore_init_block(sc, BLOCK_ATC, init_phase);
18392     ecore_init_block(sc, BLOCK_DMAE, init_phase);
18393     ecore_init_block(sc, BLOCK_NIG, init_phase);
18394     ecore_init_block(sc, BLOCK_SRC, init_phase);
18395     ecore_init_block(sc, BLOCK_MISC, init_phase);
18396     ecore_init_block(sc, BLOCK_TCM, init_phase);
18397     ecore_init_block(sc, BLOCK_UCM, init_phase);
18398     ecore_init_block(sc, BLOCK_CCM, init_phase);
18399     ecore_init_block(sc, BLOCK_XCM, init_phase);
18400     ecore_init_block(sc, BLOCK_TSEM, init_phase);
18401     ecore_init_block(sc, BLOCK_USEM, init_phase);
18402     ecore_init_block(sc, BLOCK_CSEM, init_phase);
18403     ecore_init_block(sc, BLOCK_XSEM, init_phase);
18404 
18405     if (!CHIP_IS_E1x(sc))
18406         REG_WR(sc, QM_REG_PF_EN, 1);
18407 
18408     if (!CHIP_IS_E1x(sc)) {
18409         REG_WR(sc, TSEM_REG_VFPF_ERR_NUM, BXE_MAX_NUM_OF_VFS + func);
18410         REG_WR(sc, USEM_REG_VFPF_ERR_NUM, BXE_MAX_NUM_OF_VFS + func);
18411         REG_WR(sc, CSEM_REG_VFPF_ERR_NUM, BXE_MAX_NUM_OF_VFS + func);
18412         REG_WR(sc, XSEM_REG_VFPF_ERR_NUM, BXE_MAX_NUM_OF_VFS + func);
18413     }
18414     ecore_init_block(sc, BLOCK_QM, init_phase);
18415 
18416     ecore_init_block(sc, BLOCK_TM, init_phase);
18417     ecore_init_block(sc, BLOCK_DORQ, init_phase);
18418 
18419     bxe_iov_init_dq(sc);
18420 
18421     ecore_init_block(sc, BLOCK_BRB1, init_phase);
18422     ecore_init_block(sc, BLOCK_PRS, init_phase);
18423     ecore_init_block(sc, BLOCK_TSDM, init_phase);
18424     ecore_init_block(sc, BLOCK_CSDM, init_phase);
18425     ecore_init_block(sc, BLOCK_USDM, init_phase);
18426     ecore_init_block(sc, BLOCK_XSDM, init_phase);
18427     ecore_init_block(sc, BLOCK_UPB, init_phase);
18428     ecore_init_block(sc, BLOCK_XPB, init_phase);
18429     ecore_init_block(sc, BLOCK_PBF, init_phase);
18430     if (!CHIP_IS_E1x(sc))
18431         REG_WR(sc, PBF_REG_DISABLE_PF, 0);
18432 
18433     ecore_init_block(sc, BLOCK_CDU, init_phase);
18434 
18435     ecore_init_block(sc, BLOCK_CFC, init_phase);
18436 
18437     if (!CHIP_IS_E1x(sc))
18438         REG_WR(sc, CFC_REG_WEAK_ENABLE_PF, 1);
18439 
18440     if (IS_MF(sc)) {
18441         REG_WR(sc, NIG_REG_LLH0_FUNC_EN + port*8, 1);
18442         REG_WR(sc, NIG_REG_LLH0_FUNC_VLAN_ID + port*8, OVLAN(sc));
18443     }
18444 
18445     ecore_init_block(sc, BLOCK_MISC_AEU, init_phase);
18446 
18447     /* HC init per function */
18448     if (sc->devinfo.int_block == INT_BLOCK_HC) {
18449         if (CHIP_IS_E1H(sc)) {
18450             REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
18451 
18452             REG_WR(sc, HC_REG_LEADING_EDGE_0 + port*8, 0);
18453             REG_WR(sc, HC_REG_TRAILING_EDGE_0 + port*8, 0);
18454         }
18455         ecore_init_block(sc, BLOCK_HC, init_phase);
18456 
18457     } else {
18458         int num_segs, sb_idx, prod_offset;
18459 
18460         REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
18461 
18462         if (!CHIP_IS_E1x(sc)) {
18463             REG_WR(sc, IGU_REG_LEADING_EDGE_LATCH, 0);
18464             REG_WR(sc, IGU_REG_TRAILING_EDGE_LATCH, 0);
18465         }
18466 
18467         ecore_init_block(sc, BLOCK_IGU, init_phase);
18468 
18469         if (!CHIP_IS_E1x(sc)) {
18470             int dsb_idx = 0;
18471             /**
18472              * Producer memory:
18473              * E2 mode: address 0-135 match to the mapping memory;
18474              * 136 - PF0 default prod; 137 - PF1 default prod;
18475              * 138 - PF2 default prod; 139 - PF3 default prod;
18476              * 140 - PF0 attn prod;    141 - PF1 attn prod;
18477              * 142 - PF2 attn prod;    143 - PF3 attn prod;
18478              * 144-147 reserved.
18479              *
18480              * E1.5 mode - In backward compatible mode;
18481              * for non default SB; each even line in the memory
18482              * holds the U producer and each odd line hold
18483              * the C producer. The first 128 producers are for
18484              * NDSB (PF0 - 0-31; PF1 - 32-63 and so on). The last 20
18485              * producers are for the DSB for each PF.
18486              * Each PF has five segments: (the order inside each
18487              * segment is PF0; PF1; PF2; PF3) - 128-131 U prods;
18488              * 132-135 C prods; 136-139 X prods; 140-143 T prods;
18489              * 144-147 attn prods;
18490              */
18491             /* non-default-status-blocks */
18492             num_segs = CHIP_INT_MODE_IS_BC(sc) ?
18493                 IGU_BC_NDSB_NUM_SEGS : IGU_NORM_NDSB_NUM_SEGS;
18494             for (sb_idx = 0; sb_idx < sc->igu_sb_cnt; sb_idx++) {
18495                 prod_offset = (sc->igu_base_sb + sb_idx) *
18496                     num_segs;
18497 
18498                 for (i = 0; i < num_segs; i++) {
18499                     addr = IGU_REG_PROD_CONS_MEMORY +
18500                             (prod_offset + i) * 4;
18501                     REG_WR(sc, addr, 0);
18502                 }
18503                 /* send consumer update with value 0 */
18504                 bxe_ack_sb(sc, sc->igu_base_sb + sb_idx,
18505                            USTORM_ID, 0, IGU_INT_NOP, 1);
18506                 bxe_igu_clear_sb(sc, sc->igu_base_sb + sb_idx);
18507             }
18508 
18509             /* default-status-blocks */
18510             num_segs = CHIP_INT_MODE_IS_BC(sc) ?
18511                 IGU_BC_DSB_NUM_SEGS : IGU_NORM_DSB_NUM_SEGS;
18512 
18513             if (CHIP_IS_MODE_4_PORT(sc))
18514                 dsb_idx = SC_FUNC(sc);
18515             else
18516                 dsb_idx = SC_VN(sc);
18517 
18518             prod_offset = (CHIP_INT_MODE_IS_BC(sc) ?
18519                        IGU_BC_BASE_DSB_PROD + dsb_idx :
18520                        IGU_NORM_BASE_DSB_PROD + dsb_idx);
18521 
18522             /*
18523              * igu prods come in chunks of E1HVN_MAX (4) -
18524              * does not matters what is the current chip mode
18525              */
18526             for (i = 0; i < (num_segs * E1HVN_MAX);
18527                  i += E1HVN_MAX) {
18528                 addr = IGU_REG_PROD_CONS_MEMORY +
18529                             (prod_offset + i)*4;
18530                 REG_WR(sc, addr, 0);
18531             }
18532             /* send consumer update with 0 */
18533             if (CHIP_INT_MODE_IS_BC(sc)) {
18534                 bxe_ack_sb(sc, sc->igu_dsb_id,
18535                            USTORM_ID, 0, IGU_INT_NOP, 1);
18536                 bxe_ack_sb(sc, sc->igu_dsb_id,
18537                            CSTORM_ID, 0, IGU_INT_NOP, 1);
18538                 bxe_ack_sb(sc, sc->igu_dsb_id,
18539                            XSTORM_ID, 0, IGU_INT_NOP, 1);
18540                 bxe_ack_sb(sc, sc->igu_dsb_id,
18541                            TSTORM_ID, 0, IGU_INT_NOP, 1);
18542                 bxe_ack_sb(sc, sc->igu_dsb_id,
18543                            ATTENTION_ID, 0, IGU_INT_NOP, 1);
18544             } else {
18545                 bxe_ack_sb(sc, sc->igu_dsb_id,
18546                            USTORM_ID, 0, IGU_INT_NOP, 1);
18547                 bxe_ack_sb(sc, sc->igu_dsb_id,
18548                            ATTENTION_ID, 0, IGU_INT_NOP, 1);
18549             }
18550             bxe_igu_clear_sb(sc, sc->igu_dsb_id);
18551 
18552             /* !!! these should become driver const once
18553                rf-tool supports split-68 const */
18554             REG_WR(sc, IGU_REG_SB_INT_BEFORE_MASK_LSB, 0);
18555             REG_WR(sc, IGU_REG_SB_INT_BEFORE_MASK_MSB, 0);
18556             REG_WR(sc, IGU_REG_SB_MASK_LSB, 0);
18557             REG_WR(sc, IGU_REG_SB_MASK_MSB, 0);
18558             REG_WR(sc, IGU_REG_PBA_STATUS_LSB, 0);
18559             REG_WR(sc, IGU_REG_PBA_STATUS_MSB, 0);
18560         }
18561     }
18562 
18563     /* Reset PCIE errors for debug */
18564     REG_WR(sc, 0x2114, 0xffffffff);
18565     REG_WR(sc, 0x2120, 0xffffffff);
18566 
18567     if (CHIP_IS_E1x(sc)) {
18568         main_mem_size = HC_REG_MAIN_MEMORY_SIZE / 2; /*dwords*/
18569         main_mem_base = HC_REG_MAIN_MEMORY +
18570                 SC_PORT(sc) * (main_mem_size * 4);
18571         main_mem_prty_clr = HC_REG_HC_PRTY_STS_CLR;
18572         main_mem_width = 8;
18573 
18574         val = REG_RD(sc, main_mem_prty_clr);
18575         if (val) {
18576             BLOGD(sc, DBG_LOAD,
18577                   "Parity errors in HC block during function init (0x%x)!\n",
18578                   val);
18579         }
18580 
18581         /* Clear "false" parity errors in MSI-X table */
18582         for (i = main_mem_base;
18583              i < main_mem_base + main_mem_size * 4;
18584              i += main_mem_width) {
18585             bxe_read_dmae(sc, i, main_mem_width / 4);
18586             bxe_write_dmae(sc, BXE_SP_MAPPING(sc, wb_data),
18587                            i, main_mem_width / 4);
18588         }
18589         /* Clear HC parity attention */
18590         REG_RD(sc, main_mem_prty_clr);
18591     }
18592 
18593 #if 1
18594     /* Enable STORMs SP logging */
18595     REG_WR8(sc, BAR_USTRORM_INTMEM +
18596            USTORM_RECORD_SLOW_PATH_OFFSET(SC_FUNC(sc)), 1);
18597     REG_WR8(sc, BAR_TSTRORM_INTMEM +
18598            TSTORM_RECORD_SLOW_PATH_OFFSET(SC_FUNC(sc)), 1);
18599     REG_WR8(sc, BAR_CSTRORM_INTMEM +
18600            CSTORM_RECORD_SLOW_PATH_OFFSET(SC_FUNC(sc)), 1);
18601     REG_WR8(sc, BAR_XSTRORM_INTMEM +
18602            XSTORM_RECORD_SLOW_PATH_OFFSET(SC_FUNC(sc)), 1);
18603 #endif
18604 
18605     elink_phy_probe(&sc->link_params);
18606 
18607     return (0);
18608 }
18609 
18610 static void
18611 bxe_link_reset(struct bxe_softc *sc)
18612 {
18613     if (!BXE_NOMCP(sc)) {
18614 	bxe_acquire_phy_lock(sc);
18615         elink_lfa_reset(&sc->link_params, &sc->link_vars);
18616 	bxe_release_phy_lock(sc);
18617     } else {
18618         if (!CHIP_REV_IS_SLOW(sc)) {
18619             BLOGW(sc, "Bootcode is missing - cannot reset link\n");
18620         }
18621     }
18622 }
18623 
18624 static void
18625 bxe_reset_port(struct bxe_softc *sc)
18626 {
18627     int port = SC_PORT(sc);
18628     uint32_t val;
18629 
18630     /* reset physical Link */
18631     bxe_link_reset(sc);
18632 
18633     REG_WR(sc, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0);
18634 
18635     /* Do not rcv packets to BRB */
18636     REG_WR(sc, NIG_REG_LLH0_BRB1_DRV_MASK + port*4, 0x0);
18637     /* Do not direct rcv packets that are not for MCP to the BRB */
18638     REG_WR(sc, (port ? NIG_REG_LLH1_BRB1_NOT_MCP :
18639                NIG_REG_LLH0_BRB1_NOT_MCP), 0x0);
18640 
18641     /* Configure AEU */
18642     REG_WR(sc, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, 0);
18643 
18644     DELAY(100000);
18645 
18646     /* Check for BRB port occupancy */
18647     val = REG_RD(sc, BRB1_REG_PORT_NUM_OCC_BLOCKS_0 + port*4);
18648     if (val) {
18649         BLOGD(sc, DBG_LOAD,
18650               "BRB1 is not empty, %d blocks are occupied\n", val);
18651     }
18652 
18653     /* TODO: Close Doorbell port? */
18654 }
18655 
18656 static void
18657 bxe_ilt_wr(struct bxe_softc *sc,
18658            uint32_t         index,
18659            bus_addr_t       addr)
18660 {
18661     int reg;
18662     uint32_t wb_write[2];
18663 
18664     if (CHIP_IS_E1(sc)) {
18665         reg = PXP2_REG_RQ_ONCHIP_AT + index*8;
18666     } else {
18667         reg = PXP2_REG_RQ_ONCHIP_AT_B0 + index*8;
18668     }
18669 
18670     wb_write[0] = ONCHIP_ADDR1(addr);
18671     wb_write[1] = ONCHIP_ADDR2(addr);
18672     REG_WR_DMAE(sc, reg, wb_write, 2);
18673 }
18674 
18675 static void
18676 bxe_clear_func_ilt(struct bxe_softc *sc,
18677                    uint32_t         func)
18678 {
18679     uint32_t i, base = FUNC_ILT_BASE(func);
18680     for (i = base; i < base + ILT_PER_FUNC; i++) {
18681         bxe_ilt_wr(sc, i, 0);
18682     }
18683 }
18684 
18685 static void
18686 bxe_reset_func(struct bxe_softc *sc)
18687 {
18688     struct bxe_fastpath *fp;
18689     int port = SC_PORT(sc);
18690     int func = SC_FUNC(sc);
18691     int i;
18692 
18693     /* Disable the function in the FW */
18694     REG_WR8(sc, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(func), 0);
18695     REG_WR8(sc, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(func), 0);
18696     REG_WR8(sc, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(func), 0);
18697     REG_WR8(sc, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(func), 0);
18698 
18699     /* FP SBs */
18700     FOR_EACH_ETH_QUEUE(sc, i) {
18701         fp = &sc->fp[i];
18702         REG_WR8(sc, BAR_CSTRORM_INTMEM +
18703                 CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET(fp->fw_sb_id),
18704                 SB_DISABLED);
18705     }
18706 
18707 #if 0
18708     if (CNIC_LOADED(sc)) {
18709         /* CNIC SB */
18710         REG_WR8(sc, BAR_CSTRORM_INTMEM +
18711                 CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET
18712                 (bxe_cnic_fw_sb_id(sc)), SB_DISABLED);
18713     }
18714 #endif
18715 
18716     /* SP SB */
18717     REG_WR8(sc, BAR_CSTRORM_INTMEM +
18718             CSTORM_SP_STATUS_BLOCK_DATA_STATE_OFFSET(func),
18719             SB_DISABLED);
18720 
18721     for (i = 0; i < XSTORM_SPQ_DATA_SIZE / 4; i++) {
18722         REG_WR(sc, BAR_XSTRORM_INTMEM + XSTORM_SPQ_DATA_OFFSET(func), 0);
18723     }
18724 
18725     /* Configure IGU */
18726     if (sc->devinfo.int_block == INT_BLOCK_HC) {
18727         REG_WR(sc, HC_REG_LEADING_EDGE_0 + port*8, 0);
18728         REG_WR(sc, HC_REG_TRAILING_EDGE_0 + port*8, 0);
18729     } else {
18730         REG_WR(sc, IGU_REG_LEADING_EDGE_LATCH, 0);
18731         REG_WR(sc, IGU_REG_TRAILING_EDGE_LATCH, 0);
18732     }
18733 
18734     if (CNIC_LOADED(sc)) {
18735         /* Disable Timer scan */
18736         REG_WR(sc, TM_REG_EN_LINEAR0_TIMER + port*4, 0);
18737         /*
18738          * Wait for at least 10ms and up to 2 second for the timers
18739          * scan to complete
18740          */
18741         for (i = 0; i < 200; i++) {
18742             DELAY(10000);
18743             if (!REG_RD(sc, TM_REG_LIN0_SCAN_ON + port*4))
18744                 break;
18745         }
18746     }
18747 
18748     /* Clear ILT */
18749     bxe_clear_func_ilt(sc, func);
18750 
18751     /*
18752      * Timers workaround bug for E2: if this is vnic-3,
18753      * we need to set the entire ilt range for this timers.
18754      */
18755     if (!CHIP_IS_E1x(sc) && SC_VN(sc) == 3) {
18756         struct ilt_client_info ilt_cli;
18757         /* use dummy TM client */
18758         memset(&ilt_cli, 0, sizeof(struct ilt_client_info));
18759         ilt_cli.start = 0;
18760         ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1;
18761         ilt_cli.client_num = ILT_CLIENT_TM;
18762 
18763         ecore_ilt_boundry_init_op(sc, &ilt_cli, 0, INITOP_CLEAR);
18764     }
18765 
18766     /* this assumes that reset_port() called before reset_func()*/
18767     if (!CHIP_IS_E1x(sc)) {
18768         bxe_pf_disable(sc);
18769     }
18770 
18771     sc->dmae_ready = 0;
18772 }
18773 
18774 static int
18775 bxe_gunzip_init(struct bxe_softc *sc)
18776 {
18777     return (0);
18778 }
18779 
18780 static void
18781 bxe_gunzip_end(struct bxe_softc *sc)
18782 {
18783     return;
18784 }
18785 
18786 static int
18787 bxe_init_firmware(struct bxe_softc *sc)
18788 {
18789     if (CHIP_IS_E1(sc)) {
18790         ecore_init_e1_firmware(sc);
18791         sc->iro_array = e1_iro_arr;
18792     } else if (CHIP_IS_E1H(sc)) {
18793         ecore_init_e1h_firmware(sc);
18794         sc->iro_array = e1h_iro_arr;
18795     } else if (!CHIP_IS_E1x(sc)) {
18796         ecore_init_e2_firmware(sc);
18797         sc->iro_array = e2_iro_arr;
18798     } else {
18799         BLOGE(sc, "Unsupported chip revision\n");
18800         return (-1);
18801     }
18802 
18803     return (0);
18804 }
18805 
18806 static void
18807 bxe_release_firmware(struct bxe_softc *sc)
18808 {
18809     /* Do nothing */
18810     return;
18811 }
18812 
18813 static int
18814 ecore_gunzip(struct bxe_softc *sc,
18815              const uint8_t    *zbuf,
18816              int              len)
18817 {
18818     /* XXX : Implement... */
18819     BLOGD(sc, DBG_LOAD, "ECORE_GUNZIP NOT IMPLEMENTED\n");
18820     return (FALSE);
18821 }
18822 
18823 static void
18824 ecore_reg_wr_ind(struct bxe_softc *sc,
18825                  uint32_t         addr,
18826                  uint32_t         val)
18827 {
18828     bxe_reg_wr_ind(sc, addr, val);
18829 }
18830 
18831 static void
18832 ecore_write_dmae_phys_len(struct bxe_softc *sc,
18833                           bus_addr_t       phys_addr,
18834                           uint32_t         addr,
18835                           uint32_t         len)
18836 {
18837     bxe_write_dmae_phys_len(sc, phys_addr, addr, len);
18838 }
18839 
18840 void
18841 ecore_storm_memset_struct(struct bxe_softc *sc,
18842                           uint32_t         addr,
18843                           size_t           size,
18844                           uint32_t         *data)
18845 {
18846     uint8_t i;
18847     for (i = 0; i < size/4; i++) {
18848         REG_WR(sc, addr + (i * 4), data[i]);
18849     }
18850 }
18851 
18852 
18853 /*
18854  * character device - ioctl interface definitions
18855  */
18856 
18857 
18858 #include "bxe_dump.h"
18859 #include "bxe_ioctl.h"
18860 #include <sys/conf.h>
18861 
18862 static int bxe_eioctl(struct cdev *dev, u_long cmd, caddr_t data, int fflag,
18863                 struct thread *td);
18864 
18865 static struct cdevsw bxe_cdevsw = {
18866     .d_version = D_VERSION,
18867     .d_ioctl = bxe_eioctl,
18868     .d_name = "bxecnic",
18869 };
18870 
18871 #define BXE_PATH(sc)    (CHIP_IS_E1x(sc) ? 0 : (sc->pcie_func & 1))
18872 
18873 
18874 #define DUMP_ALL_PRESETS        0x1FFF
18875 #define DUMP_MAX_PRESETS        13
18876 #define IS_E1_REG(chips)        ((chips & DUMP_CHIP_E1) == DUMP_CHIP_E1)
18877 #define IS_E1H_REG(chips)       ((chips & DUMP_CHIP_E1H) == DUMP_CHIP_E1H)
18878 #define IS_E2_REG(chips)        ((chips & DUMP_CHIP_E2) == DUMP_CHIP_E2)
18879 #define IS_E3A0_REG(chips)      ((chips & DUMP_CHIP_E3A0) == DUMP_CHIP_E3A0)
18880 #define IS_E3B0_REG(chips)      ((chips & DUMP_CHIP_E3B0) == DUMP_CHIP_E3B0)
18881 
18882 #define IS_REG_IN_PRESET(presets, idx)  \
18883                 ((presets & (1 << (idx-1))) == (1 << (idx-1)))
18884 
18885 
18886 static int
18887 bxe_get_preset_regs_len(struct bxe_softc *sc, uint32_t preset)
18888 {
18889     if (CHIP_IS_E1(sc))
18890         return dump_num_registers[0][preset-1];
18891     else if (CHIP_IS_E1H(sc))
18892         return dump_num_registers[1][preset-1];
18893     else if (CHIP_IS_E2(sc))
18894         return dump_num_registers[2][preset-1];
18895     else if (CHIP_IS_E3A0(sc))
18896         return dump_num_registers[3][preset-1];
18897     else if (CHIP_IS_E3B0(sc))
18898         return dump_num_registers[4][preset-1];
18899     else
18900         return 0;
18901 }
18902 
18903 static int
18904 bxe_get_max_regs_len(struct bxe_softc *sc)
18905 {
18906     uint32_t preset_idx;
18907     int regdump_len32, len32;
18908 
18909     regdump_len32 = bxe_get_preset_regs_len(sc, 1);
18910 
18911     /* Calculate the total preset regs length */
18912     for (preset_idx = 2; preset_idx <= DUMP_MAX_PRESETS; preset_idx++) {
18913 
18914         len32 = bxe_get_preset_regs_len(sc, preset_idx);
18915 
18916         if (regdump_len32 < len32)
18917             regdump_len32 = len32;
18918     }
18919 
18920     return regdump_len32;
18921 }
18922 
18923 static int
18924 bxe_get_total_regs_len32(struct bxe_softc *sc)
18925 {
18926     uint32_t preset_idx;
18927     int regdump_len32 = 0;
18928 
18929 
18930     /* Calculate the total preset regs length */
18931     for (preset_idx = 1; preset_idx <= DUMP_MAX_PRESETS; preset_idx++) {
18932         regdump_len32 += bxe_get_preset_regs_len(sc, preset_idx);
18933     }
18934 
18935     return regdump_len32;
18936 }
18937 
18938 static const uint32_t *
18939 __bxe_get_page_addr_ar(struct bxe_softc *sc)
18940 {
18941     if (CHIP_IS_E2(sc))
18942         return page_vals_e2;
18943     else if (CHIP_IS_E3(sc))
18944         return page_vals_e3;
18945     else
18946         return NULL;
18947 }
18948 
18949 static uint32_t
18950 __bxe_get_page_reg_num(struct bxe_softc *sc)
18951 {
18952     if (CHIP_IS_E2(sc))
18953         return PAGE_MODE_VALUES_E2;
18954     else if (CHIP_IS_E3(sc))
18955         return PAGE_MODE_VALUES_E3;
18956     else
18957         return 0;
18958 }
18959 
18960 static const uint32_t *
18961 __bxe_get_page_write_ar(struct bxe_softc *sc)
18962 {
18963     if (CHIP_IS_E2(sc))
18964         return page_write_regs_e2;
18965     else if (CHIP_IS_E3(sc))
18966         return page_write_regs_e3;
18967     else
18968         return NULL;
18969 }
18970 
18971 static uint32_t
18972 __bxe_get_page_write_num(struct bxe_softc *sc)
18973 {
18974     if (CHIP_IS_E2(sc))
18975         return PAGE_WRITE_REGS_E2;
18976     else if (CHIP_IS_E3(sc))
18977         return PAGE_WRITE_REGS_E3;
18978     else
18979         return 0;
18980 }
18981 
18982 static const struct reg_addr *
18983 __bxe_get_page_read_ar(struct bxe_softc *sc)
18984 {
18985     if (CHIP_IS_E2(sc))
18986         return page_read_regs_e2;
18987     else if (CHIP_IS_E3(sc))
18988         return page_read_regs_e3;
18989     else
18990         return NULL;
18991 }
18992 
18993 static uint32_t
18994 __bxe_get_page_read_num(struct bxe_softc *sc)
18995 {
18996     if (CHIP_IS_E2(sc))
18997         return PAGE_READ_REGS_E2;
18998     else if (CHIP_IS_E3(sc))
18999         return PAGE_READ_REGS_E3;
19000     else
19001         return 0;
19002 }
19003 
19004 static bool
19005 bxe_is_reg_in_chip(struct bxe_softc *sc, const struct reg_addr *reg_info)
19006 {
19007     if (CHIP_IS_E1(sc))
19008         return IS_E1_REG(reg_info->chips);
19009     else if (CHIP_IS_E1H(sc))
19010         return IS_E1H_REG(reg_info->chips);
19011     else if (CHIP_IS_E2(sc))
19012         return IS_E2_REG(reg_info->chips);
19013     else if (CHIP_IS_E3A0(sc))
19014         return IS_E3A0_REG(reg_info->chips);
19015     else if (CHIP_IS_E3B0(sc))
19016         return IS_E3B0_REG(reg_info->chips);
19017     else
19018         return 0;
19019 }
19020 
19021 static bool
19022 bxe_is_wreg_in_chip(struct bxe_softc *sc, const struct wreg_addr *wreg_info)
19023 {
19024     if (CHIP_IS_E1(sc))
19025         return IS_E1_REG(wreg_info->chips);
19026     else if (CHIP_IS_E1H(sc))
19027         return IS_E1H_REG(wreg_info->chips);
19028     else if (CHIP_IS_E2(sc))
19029         return IS_E2_REG(wreg_info->chips);
19030     else if (CHIP_IS_E3A0(sc))
19031         return IS_E3A0_REG(wreg_info->chips);
19032     else if (CHIP_IS_E3B0(sc))
19033         return IS_E3B0_REG(wreg_info->chips);
19034     else
19035         return 0;
19036 }
19037 
19038 /**
19039  * bxe_read_pages_regs - read "paged" registers
19040  *
19041  * @bp          device handle
19042  * @p           output buffer
19043  *
19044  * Reads "paged" memories: memories that may only be read by first writing to a
19045  * specific address ("write address") and then reading from a specific address
19046  * ("read address"). There may be more than one write address per "page" and
19047  * more than one read address per write address.
19048  */
19049 static void
19050 bxe_read_pages_regs(struct bxe_softc *sc, uint32_t *p, uint32_t preset)
19051 {
19052     uint32_t i, j, k, n;
19053 
19054     /* addresses of the paged registers */
19055     const uint32_t *page_addr = __bxe_get_page_addr_ar(sc);
19056     /* number of paged registers */
19057     int num_pages = __bxe_get_page_reg_num(sc);
19058     /* write addresses */
19059     const uint32_t *write_addr = __bxe_get_page_write_ar(sc);
19060     /* number of write addresses */
19061     int write_num = __bxe_get_page_write_num(sc);
19062     /* read addresses info */
19063     const struct reg_addr *read_addr = __bxe_get_page_read_ar(sc);
19064     /* number of read addresses */
19065     int read_num = __bxe_get_page_read_num(sc);
19066     uint32_t addr, size;
19067 
19068     for (i = 0; i < num_pages; i++) {
19069         for (j = 0; j < write_num; j++) {
19070             REG_WR(sc, write_addr[j], page_addr[i]);
19071 
19072             for (k = 0; k < read_num; k++) {
19073                 if (IS_REG_IN_PRESET(read_addr[k].presets, preset)) {
19074                     size = read_addr[k].size;
19075                     for (n = 0; n < size; n++) {
19076                         addr = read_addr[k].addr + n*4;
19077                         *p++ = REG_RD(sc, addr);
19078                     }
19079                 }
19080             }
19081         }
19082     }
19083     return;
19084 }
19085 
19086 
19087 static int
19088 bxe_get_preset_regs(struct bxe_softc *sc, uint32_t *p, uint32_t preset)
19089 {
19090     uint32_t i, j, addr;
19091     const struct wreg_addr *wreg_addr_p = NULL;
19092 
19093     if (CHIP_IS_E1(sc))
19094         wreg_addr_p = &wreg_addr_e1;
19095     else if (CHIP_IS_E1H(sc))
19096         wreg_addr_p = &wreg_addr_e1h;
19097     else if (CHIP_IS_E2(sc))
19098         wreg_addr_p = &wreg_addr_e2;
19099     else if (CHIP_IS_E3A0(sc))
19100         wreg_addr_p = &wreg_addr_e3;
19101     else if (CHIP_IS_E3B0(sc))
19102         wreg_addr_p = &wreg_addr_e3b0;
19103     else
19104         return (-1);
19105 
19106     /* Read the idle_chk registers */
19107     for (i = 0; i < IDLE_REGS_COUNT; i++) {
19108         if (bxe_is_reg_in_chip(sc, &idle_reg_addrs[i]) &&
19109             IS_REG_IN_PRESET(idle_reg_addrs[i].presets, preset)) {
19110             for (j = 0; j < idle_reg_addrs[i].size; j++)
19111                 *p++ = REG_RD(sc, idle_reg_addrs[i].addr + j*4);
19112         }
19113     }
19114 
19115     /* Read the regular registers */
19116     for (i = 0; i < REGS_COUNT; i++) {
19117         if (bxe_is_reg_in_chip(sc, &reg_addrs[i]) &&
19118             IS_REG_IN_PRESET(reg_addrs[i].presets, preset)) {
19119             for (j = 0; j < reg_addrs[i].size; j++)
19120                 *p++ = REG_RD(sc, reg_addrs[i].addr + j*4);
19121         }
19122     }
19123 
19124     /* Read the CAM registers */
19125     if (bxe_is_wreg_in_chip(sc, wreg_addr_p) &&
19126         IS_REG_IN_PRESET(wreg_addr_p->presets, preset)) {
19127         for (i = 0; i < wreg_addr_p->size; i++) {
19128             *p++ = REG_RD(sc, wreg_addr_p->addr + i*4);
19129 
19130             /* In case of wreg_addr register, read additional
19131                registers from read_regs array
19132              */
19133             for (j = 0; j < wreg_addr_p->read_regs_count; j++) {
19134                 addr = *(wreg_addr_p->read_regs);
19135                 *p++ = REG_RD(sc, addr + j*4);
19136             }
19137         }
19138     }
19139 
19140     /* Paged registers are supported in E2 & E3 only */
19141     if (CHIP_IS_E2(sc) || CHIP_IS_E3(sc)) {
19142         /* Read "paged" registers */
19143         bxe_read_pages_regs(sc, p, preset);
19144     }
19145 
19146     return 0;
19147 }
19148 
19149 static int
19150 bxe_grc_dump(struct bxe_softc *sc, bxe_grcdump_t *dump)
19151 {
19152     int rval = 0;
19153     uint32_t preset_idx;
19154     uint8_t *buf;
19155     uint32_t size;
19156     struct  dump_header *d_hdr;
19157 
19158     ecore_disable_blocks_parity(sc);
19159 
19160     buf = dump->grcdump;
19161     d_hdr = dump->grcdump;
19162 
19163     d_hdr->header_size = (sizeof(struct  dump_header) >> 2) - 1;
19164     d_hdr->version = BNX2X_DUMP_VERSION;
19165     d_hdr->preset = DUMP_ALL_PRESETS;
19166 
19167     if (CHIP_IS_E1(sc)) {
19168         d_hdr->dump_meta_data = DUMP_CHIP_E1;
19169     } else if (CHIP_IS_E1H(sc)) {
19170         d_hdr->dump_meta_data = DUMP_CHIP_E1H;
19171     } else if (CHIP_IS_E2(sc)) {
19172         d_hdr->dump_meta_data = DUMP_CHIP_E2 |
19173                 (BXE_PATH(sc) ? DUMP_PATH_1 : DUMP_PATH_0);
19174     } else if (CHIP_IS_E3A0(sc)) {
19175         d_hdr->dump_meta_data = DUMP_CHIP_E3A0 |
19176                 (BXE_PATH(sc) ? DUMP_PATH_1 : DUMP_PATH_0);
19177     } else if (CHIP_IS_E3B0(sc)) {
19178         d_hdr->dump_meta_data = DUMP_CHIP_E3B0 |
19179                 (BXE_PATH(sc) ? DUMP_PATH_1 : DUMP_PATH_0);
19180     }
19181 
19182     dump->grcdump_dwords = sizeof(struct  dump_header) >> 2;
19183     buf += sizeof(struct  dump_header);
19184 
19185     for (preset_idx = 1; preset_idx <= DUMP_MAX_PRESETS; preset_idx++) {
19186 
19187         /* Skip presets with IOR */
19188         if ((preset_idx == 2) || (preset_idx == 5) || (preset_idx == 8) ||
19189             (preset_idx == 11))
19190             continue;
19191 
19192         rval = bxe_get_preset_regs(sc, sc->grc_dump, preset_idx);
19193 
19194 	if (rval)
19195             break;
19196 
19197         size = bxe_get_preset_regs_len(sc, preset_idx) * (sizeof (uint32_t));
19198 
19199         rval = copyout(sc->grc_dump, buf, size);
19200 
19201         if (rval)
19202 	    break;
19203 
19204 	dump->grcdump_dwords += (size / (sizeof (uint32_t)));
19205 
19206         buf += size;
19207     }
19208 
19209     ecore_clear_blocks_parity(sc);
19210     ecore_enable_blocks_parity(sc);
19211 
19212     sc->grcdump_done = 1;
19213     return(rval);
19214 }
19215 
19216 static int
19217 bxe_add_cdev(struct bxe_softc *sc)
19218 {
19219     int max_preset_size;
19220 
19221     max_preset_size = bxe_get_max_regs_len(sc) * (sizeof (uint32_t));
19222 
19223     sc->grc_dump = malloc(max_preset_size, M_DEVBUF, M_NOWAIT);
19224 
19225     if (sc->grc_dump == NULL)
19226         return (-1);
19227 
19228     sc->ioctl_dev = make_dev(&bxe_cdevsw,
19229                             sc->ifp->if_dunit,
19230                             UID_ROOT,
19231                             GID_WHEEL,
19232                             0600,
19233                             "%s",
19234                             if_name(sc->ifp));
19235 
19236     if (sc->ioctl_dev == NULL) {
19237 
19238         free(sc->grc_dump, M_DEVBUF);
19239 
19240         return (-1);
19241     }
19242 
19243     sc->ioctl_dev->si_drv1 = sc;
19244 
19245     return (0);
19246 }
19247 
19248 static void
19249 bxe_del_cdev(struct bxe_softc *sc)
19250 {
19251     if (sc->ioctl_dev != NULL)
19252         destroy_dev(sc->ioctl_dev);
19253 
19254     if (sc->grc_dump == NULL)
19255         free(sc->grc_dump, M_DEVBUF);
19256 
19257     return;
19258 }
19259 
19260 static int
19261 bxe_eioctl(struct cdev *dev, u_long cmd, caddr_t data, int fflag,
19262         struct thread *td)
19263 {
19264     struct bxe_softc    *sc;
19265     int                 rval = 0;
19266     device_t            pci_dev;
19267     bxe_grcdump_t       *dump = NULL;
19268     int grc_dump_size;
19269 
19270     if ((sc = (struct bxe_softc *)dev->si_drv1) == NULL)
19271         return ENXIO;
19272 
19273     pci_dev= sc->dev;
19274 
19275     dump = (bxe_grcdump_t *)data;
19276 
19277     switch(cmd) {
19278 
19279         case BXE_GRC_DUMP_SIZE:
19280             dump->pci_func = sc->pcie_func;
19281             dump->grcdump_size = (bxe_get_total_regs_len32(sc) * sizeof(uint32_t)) +
19282 					sizeof(struct  dump_header);
19283             break;
19284 
19285         case BXE_GRC_DUMP:
19286 
19287             grc_dump_size = (bxe_get_total_regs_len32(sc) * sizeof(uint32_t)) +
19288 				sizeof(struct  dump_header);
19289 
19290             if ((sc->grc_dump == NULL) || (dump->grcdump == NULL) ||
19291                 (dump->grcdump_size < grc_dump_size)) {
19292                 rval = EINVAL;
19293                 break;
19294             }
19295 
19296             rval = bxe_grc_dump(sc, dump);
19297 
19298             break;
19299 
19300         default:
19301             break;
19302     }
19303 
19304     return (rval);
19305 }
19306