xref: /freebsd/sys/dev/bxe/bxe.c (revision c6a33c8e88c5684876e670c8189d03ad25108d8a)
1 /*-
2  * Copyright (c) 2007-2014 QLogic Corporation. All rights reserved.
3  *
4  * Redistribution and use in source and binary forms, with or without
5  * modification, are permitted provided that the following conditions
6  * are met:
7  *
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS'
15  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS
18  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
19  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
20  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
21  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
22  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
23  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
24  * THE POSSIBILITY OF SUCH DAMAGE.
25  */
26 
27 #include <sys/cdefs.h>
28 __FBSDID("$FreeBSD$");
29 
30 #define BXE_DRIVER_VERSION "1.78.79"
31 
32 #include "bxe.h"
33 #include "ecore_sp.h"
34 #include "ecore_init.h"
35 #include "ecore_init_ops.h"
36 
37 #include "57710_int_offsets.h"
38 #include "57711_int_offsets.h"
39 #include "57712_int_offsets.h"
40 
41 /*
42  * CTLTYPE_U64 and sysctl_handle_64 were added in r217616. Define these
43  * explicitly here for older kernels that don't include this changeset.
44  */
45 #ifndef CTLTYPE_U64
46 #define CTLTYPE_U64      CTLTYPE_QUAD
47 #define sysctl_handle_64 sysctl_handle_quad
48 #endif
49 
50 /*
51  * CSUM_TCP_IPV6 and CSUM_UDP_IPV6 were added in r236170. Define these
52  * here as zero(0) for older kernels that don't include this changeset
53  * thereby masking the functionality.
54  */
55 #ifndef CSUM_TCP_IPV6
56 #define CSUM_TCP_IPV6 0
57 #define CSUM_UDP_IPV6 0
58 #endif
59 
60 /*
61  * pci_find_cap was added in r219865. Re-define this at pci_find_extcap
62  * for older kernels that don't include this changeset.
63  */
64 #if __FreeBSD_version < 900035
65 #define pci_find_cap pci_find_extcap
66 #endif
67 
68 #define BXE_DEF_SB_ATT_IDX 0x0001
69 #define BXE_DEF_SB_IDX     0x0002
70 
71 /*
72  * FLR Support - bxe_pf_flr_clnup() is called during nic_load in the per
73  * function HW initialization.
74  */
75 #define FLR_WAIT_USEC     10000 /* 10 msecs */
76 #define FLR_WAIT_INTERVAL 50    /* usecs */
77 #define FLR_POLL_CNT      (FLR_WAIT_USEC / FLR_WAIT_INTERVAL) /* 200 */
78 
79 struct pbf_pN_buf_regs {
80     int pN;
81     uint32_t init_crd;
82     uint32_t crd;
83     uint32_t crd_freed;
84 };
85 
86 struct pbf_pN_cmd_regs {
87     int pN;
88     uint32_t lines_occup;
89     uint32_t lines_freed;
90 };
91 
92 /*
93  * PCI Device ID Table used by bxe_probe().
94  */
95 #define BXE_DEVDESC_MAX 64
96 static struct bxe_device_type bxe_devs[] = {
97     {
98         BRCM_VENDORID,
99         CHIP_NUM_57710,
100         PCI_ANY_ID, PCI_ANY_ID,
101         "QLogic NetXtreme II BCM57710 10GbE"
102     },
103     {
104         BRCM_VENDORID,
105         CHIP_NUM_57711,
106         PCI_ANY_ID, PCI_ANY_ID,
107         "QLogic NetXtreme II BCM57711 10GbE"
108     },
109     {
110         BRCM_VENDORID,
111         CHIP_NUM_57711E,
112         PCI_ANY_ID, PCI_ANY_ID,
113         "QLogic NetXtreme II BCM57711E 10GbE"
114     },
115     {
116         BRCM_VENDORID,
117         CHIP_NUM_57712,
118         PCI_ANY_ID, PCI_ANY_ID,
119         "QLogic NetXtreme II BCM57712 10GbE"
120     },
121     {
122         BRCM_VENDORID,
123         CHIP_NUM_57712_MF,
124         PCI_ANY_ID, PCI_ANY_ID,
125         "QLogic NetXtreme II BCM57712 MF 10GbE"
126     },
127 #if 0
128     {
129         BRCM_VENDORID,
130         CHIP_NUM_57712_VF,
131         PCI_ANY_ID, PCI_ANY_ID,
132         "QLogic NetXtreme II BCM57712 VF 10GbE"
133     },
134 #endif
135     {
136         BRCM_VENDORID,
137         CHIP_NUM_57800,
138         PCI_ANY_ID, PCI_ANY_ID,
139         "QLogic NetXtreme II BCM57800 10GbE"
140     },
141     {
142         BRCM_VENDORID,
143         CHIP_NUM_57800_MF,
144         PCI_ANY_ID, PCI_ANY_ID,
145         "QLogic NetXtreme II BCM57800 MF 10GbE"
146     },
147 #if 0
148     {
149         BRCM_VENDORID,
150         CHIP_NUM_57800_VF,
151         PCI_ANY_ID, PCI_ANY_ID,
152         "QLogic NetXtreme II BCM57800 VF 10GbE"
153     },
154 #endif
155     {
156         BRCM_VENDORID,
157         CHIP_NUM_57810,
158         PCI_ANY_ID, PCI_ANY_ID,
159         "QLogic NetXtreme II BCM57810 10GbE"
160     },
161     {
162         BRCM_VENDORID,
163         CHIP_NUM_57810_MF,
164         PCI_ANY_ID, PCI_ANY_ID,
165         "QLogic NetXtreme II BCM57810 MF 10GbE"
166     },
167 #if 0
168     {
169         BRCM_VENDORID,
170         CHIP_NUM_57810_VF,
171         PCI_ANY_ID, PCI_ANY_ID,
172         "QLogic NetXtreme II BCM57810 VF 10GbE"
173     },
174 #endif
175     {
176         BRCM_VENDORID,
177         CHIP_NUM_57811,
178         PCI_ANY_ID, PCI_ANY_ID,
179         "QLogic NetXtreme II BCM57811 10GbE"
180     },
181     {
182         BRCM_VENDORID,
183         CHIP_NUM_57811_MF,
184         PCI_ANY_ID, PCI_ANY_ID,
185         "QLogic NetXtreme II BCM57811 MF 10GbE"
186     },
187 #if 0
188     {
189         BRCM_VENDORID,
190         CHIP_NUM_57811_VF,
191         PCI_ANY_ID, PCI_ANY_ID,
192         "QLogic NetXtreme II BCM57811 VF 10GbE"
193     },
194 #endif
195     {
196         BRCM_VENDORID,
197         CHIP_NUM_57840_4_10,
198         PCI_ANY_ID, PCI_ANY_ID,
199         "QLogic NetXtreme II BCM57840 4x10GbE"
200     },
201 #if 0
202     {
203         BRCM_VENDORID,
204         CHIP_NUM_57840_2_20,
205         PCI_ANY_ID, PCI_ANY_ID,
206         "QLogic NetXtreme II BCM57840 2x20GbE"
207     },
208 #endif
209     {
210         BRCM_VENDORID,
211         CHIP_NUM_57840_MF,
212         PCI_ANY_ID, PCI_ANY_ID,
213         "QLogic NetXtreme II BCM57840 MF 10GbE"
214     },
215 #if 0
216     {
217         BRCM_VENDORID,
218         CHIP_NUM_57840_VF,
219         PCI_ANY_ID, PCI_ANY_ID,
220         "QLogic NetXtreme II BCM57840 VF 10GbE"
221     },
222 #endif
223     {
224         0, 0, 0, 0, NULL
225     }
226 };
227 
228 MALLOC_DECLARE(M_BXE_ILT);
229 MALLOC_DEFINE(M_BXE_ILT, "bxe_ilt", "bxe ILT pointer");
230 
231 /*
232  * FreeBSD device entry points.
233  */
234 static int bxe_probe(device_t);
235 static int bxe_attach(device_t);
236 static int bxe_detach(device_t);
237 static int bxe_shutdown(device_t);
238 
239 /*
240  * FreeBSD KLD module/device interface event handler method.
241  */
242 static device_method_t bxe_methods[] = {
243     /* Device interface (device_if.h) */
244     DEVMETHOD(device_probe,     bxe_probe),
245     DEVMETHOD(device_attach,    bxe_attach),
246     DEVMETHOD(device_detach,    bxe_detach),
247     DEVMETHOD(device_shutdown,  bxe_shutdown),
248 #if 0
249     DEVMETHOD(device_suspend,   bxe_suspend),
250     DEVMETHOD(device_resume,    bxe_resume),
251 #endif
252     /* Bus interface (bus_if.h) */
253     DEVMETHOD(bus_print_child,  bus_generic_print_child),
254     DEVMETHOD(bus_driver_added, bus_generic_driver_added),
255     KOBJMETHOD_END
256 };
257 
258 /*
259  * FreeBSD KLD Module data declaration
260  */
261 static driver_t bxe_driver = {
262     "bxe",                   /* module name */
263     bxe_methods,             /* event handler */
264     sizeof(struct bxe_softc) /* extra data */
265 };
266 
267 /*
268  * FreeBSD dev class is needed to manage dev instances and
269  * to associate with a bus type
270  */
271 static devclass_t bxe_devclass;
272 
273 MODULE_DEPEND(bxe, pci, 1, 1, 1);
274 MODULE_DEPEND(bxe, ether, 1, 1, 1);
275 DRIVER_MODULE(bxe, pci, bxe_driver, bxe_devclass, 0, 0);
276 
277 /* resources needed for unloading a previously loaded device */
278 
279 #define BXE_PREV_WAIT_NEEDED 1
280 struct mtx bxe_prev_mtx;
281 MTX_SYSINIT(bxe_prev_mtx, &bxe_prev_mtx, "bxe_prev_lock", MTX_DEF);
282 struct bxe_prev_list_node {
283     LIST_ENTRY(bxe_prev_list_node) node;
284     uint8_t bus;
285     uint8_t slot;
286     uint8_t path;
287     uint8_t aer; /* XXX automatic error recovery */
288     uint8_t undi;
289 };
290 static LIST_HEAD(, bxe_prev_list_node) bxe_prev_list = LIST_HEAD_INITIALIZER(bxe_prev_list);
291 
292 static int load_count[2][3] = { {0} }; /* per-path: 0-common, 1-port0, 2-port1 */
293 
294 /* Tunable device values... */
295 
296 SYSCTL_NODE(_hw, OID_AUTO, bxe, CTLFLAG_RD, 0, "bxe driver parameters");
297 
298 /* Debug */
299 unsigned long bxe_debug = 0;
300 SYSCTL_ULONG(_hw_bxe, OID_AUTO, debug, CTLFLAG_RDTUN,
301              &bxe_debug, 0, "Debug logging mode");
302 
303 /* Interrupt Mode: 0 (IRQ), 1 (MSI/IRQ), and 2 (MSI-X/MSI/IRQ) */
304 static int bxe_interrupt_mode = INTR_MODE_MSIX;
305 SYSCTL_INT(_hw_bxe, OID_AUTO, interrupt_mode, CTLFLAG_RDTUN,
306            &bxe_interrupt_mode, 0, "Interrupt (MSI-X/MSI/INTx) mode");
307 
308 /* Number of Queues: 0 (Auto) or 1 to 16 (fixed queue number) */
309 static int bxe_queue_count = 4;
310 SYSCTL_INT(_hw_bxe, OID_AUTO, queue_count, CTLFLAG_RDTUN,
311            &bxe_queue_count, 0, "Multi-Queue queue count");
312 
313 /* max number of buffers per queue (default RX_BD_USABLE) */
314 static int bxe_max_rx_bufs = 0;
315 SYSCTL_INT(_hw_bxe, OID_AUTO, max_rx_bufs, CTLFLAG_RDTUN,
316            &bxe_max_rx_bufs, 0, "Maximum Number of Rx Buffers Per Queue");
317 
318 /* Host interrupt coalescing RX tick timer (usecs) */
319 static int bxe_hc_rx_ticks = 25;
320 SYSCTL_INT(_hw_bxe, OID_AUTO, hc_rx_ticks, CTLFLAG_RDTUN,
321            &bxe_hc_rx_ticks, 0, "Host Coalescing Rx ticks");
322 
323 /* Host interrupt coalescing TX tick timer (usecs) */
324 static int bxe_hc_tx_ticks = 50;
325 SYSCTL_INT(_hw_bxe, OID_AUTO, hc_tx_ticks, CTLFLAG_RDTUN,
326            &bxe_hc_tx_ticks, 0, "Host Coalescing Tx ticks");
327 
328 /* Maximum number of Rx packets to process at a time */
329 static int bxe_rx_budget = 0xffffffff;
330 SYSCTL_INT(_hw_bxe, OID_AUTO, rx_budget, CTLFLAG_TUN,
331            &bxe_rx_budget, 0, "Rx processing budget");
332 
333 /* Maximum LRO aggregation size */
334 static int bxe_max_aggregation_size = 0;
335 SYSCTL_INT(_hw_bxe, OID_AUTO, max_aggregation_size, CTLFLAG_TUN,
336            &bxe_max_aggregation_size, 0, "max aggregation size");
337 
338 /* PCI MRRS: -1 (Auto), 0 (128B), 1 (256B), 2 (512B), 3 (1KB) */
339 static int bxe_mrrs = -1;
340 SYSCTL_INT(_hw_bxe, OID_AUTO, mrrs, CTLFLAG_RDTUN,
341            &bxe_mrrs, 0, "PCIe maximum read request size");
342 
343 /* AutoGrEEEn: 0 (hardware default), 1 (force on), 2 (force off) */
344 static int bxe_autogreeen = 0;
345 SYSCTL_INT(_hw_bxe, OID_AUTO, autogreeen, CTLFLAG_RDTUN,
346            &bxe_autogreeen, 0, "AutoGrEEEn support");
347 
348 /* 4-tuple RSS support for UDP: 0 (disabled), 1 (enabled) */
349 static int bxe_udp_rss = 0;
350 SYSCTL_INT(_hw_bxe, OID_AUTO, udp_rss, CTLFLAG_RDTUN,
351            &bxe_udp_rss, 0, "UDP RSS support");
352 
353 
354 #define STAT_NAME_LEN 32 /* no stat names below can be longer than this */
355 
356 #define STATS_OFFSET32(stat_name)                   \
357     (offsetof(struct bxe_eth_stats, stat_name) / 4)
358 
359 #define Q_STATS_OFFSET32(stat_name)                   \
360     (offsetof(struct bxe_eth_q_stats, stat_name) / 4)
361 
362 static const struct {
363     uint32_t offset;
364     uint32_t size;
365     uint32_t flags;
366 #define STATS_FLAGS_PORT  1
367 #define STATS_FLAGS_FUNC  2 /* MF only cares about function stats */
368 #define STATS_FLAGS_BOTH  (STATS_FLAGS_FUNC | STATS_FLAGS_PORT)
369     char string[STAT_NAME_LEN];
370 } bxe_eth_stats_arr[] = {
371     { STATS_OFFSET32(total_bytes_received_hi),
372                 8, STATS_FLAGS_BOTH, "rx_bytes" },
373     { STATS_OFFSET32(error_bytes_received_hi),
374                 8, STATS_FLAGS_BOTH, "rx_error_bytes" },
375     { STATS_OFFSET32(total_unicast_packets_received_hi),
376                 8, STATS_FLAGS_BOTH, "rx_ucast_packets" },
377     { STATS_OFFSET32(total_multicast_packets_received_hi),
378                 8, STATS_FLAGS_BOTH, "rx_mcast_packets" },
379     { STATS_OFFSET32(total_broadcast_packets_received_hi),
380                 8, STATS_FLAGS_BOTH, "rx_bcast_packets" },
381     { STATS_OFFSET32(rx_stat_dot3statsfcserrors_hi),
382                 8, STATS_FLAGS_PORT, "rx_crc_errors" },
383     { STATS_OFFSET32(rx_stat_dot3statsalignmenterrors_hi),
384                 8, STATS_FLAGS_PORT, "rx_align_errors" },
385     { STATS_OFFSET32(rx_stat_etherstatsundersizepkts_hi),
386                 8, STATS_FLAGS_PORT, "rx_undersize_packets" },
387     { STATS_OFFSET32(etherstatsoverrsizepkts_hi),
388                 8, STATS_FLAGS_PORT, "rx_oversize_packets" },
389     { STATS_OFFSET32(rx_stat_etherstatsfragments_hi),
390                 8, STATS_FLAGS_PORT, "rx_fragments" },
391     { STATS_OFFSET32(rx_stat_etherstatsjabbers_hi),
392                 8, STATS_FLAGS_PORT, "rx_jabbers" },
393     { STATS_OFFSET32(no_buff_discard_hi),
394                 8, STATS_FLAGS_BOTH, "rx_discards" },
395     { STATS_OFFSET32(mac_filter_discard),
396                 4, STATS_FLAGS_PORT, "rx_filtered_packets" },
397     { STATS_OFFSET32(mf_tag_discard),
398                 4, STATS_FLAGS_PORT, "rx_mf_tag_discard" },
399     { STATS_OFFSET32(pfc_frames_received_hi),
400                 8, STATS_FLAGS_PORT, "pfc_frames_received" },
401     { STATS_OFFSET32(pfc_frames_sent_hi),
402                 8, STATS_FLAGS_PORT, "pfc_frames_sent" },
403     { STATS_OFFSET32(brb_drop_hi),
404                 8, STATS_FLAGS_PORT, "rx_brb_discard" },
405     { STATS_OFFSET32(brb_truncate_hi),
406                 8, STATS_FLAGS_PORT, "rx_brb_truncate" },
407     { STATS_OFFSET32(pause_frames_received_hi),
408                 8, STATS_FLAGS_PORT, "rx_pause_frames" },
409     { STATS_OFFSET32(rx_stat_maccontrolframesreceived_hi),
410                 8, STATS_FLAGS_PORT, "rx_mac_ctrl_frames" },
411     { STATS_OFFSET32(nig_timer_max),
412                 4, STATS_FLAGS_PORT, "rx_constant_pause_events" },
413     { STATS_OFFSET32(total_bytes_transmitted_hi),
414                 8, STATS_FLAGS_BOTH, "tx_bytes" },
415     { STATS_OFFSET32(tx_stat_ifhcoutbadoctets_hi),
416                 8, STATS_FLAGS_PORT, "tx_error_bytes" },
417     { STATS_OFFSET32(total_unicast_packets_transmitted_hi),
418                 8, STATS_FLAGS_BOTH, "tx_ucast_packets" },
419     { STATS_OFFSET32(total_multicast_packets_transmitted_hi),
420                 8, STATS_FLAGS_BOTH, "tx_mcast_packets" },
421     { STATS_OFFSET32(total_broadcast_packets_transmitted_hi),
422                 8, STATS_FLAGS_BOTH, "tx_bcast_packets" },
423     { STATS_OFFSET32(tx_stat_dot3statsinternalmactransmiterrors_hi),
424                 8, STATS_FLAGS_PORT, "tx_mac_errors" },
425     { STATS_OFFSET32(rx_stat_dot3statscarriersenseerrors_hi),
426                 8, STATS_FLAGS_PORT, "tx_carrier_errors" },
427     { STATS_OFFSET32(tx_stat_dot3statssinglecollisionframes_hi),
428                 8, STATS_FLAGS_PORT, "tx_single_collisions" },
429     { STATS_OFFSET32(tx_stat_dot3statsmultiplecollisionframes_hi),
430                 8, STATS_FLAGS_PORT, "tx_multi_collisions" },
431     { STATS_OFFSET32(tx_stat_dot3statsdeferredtransmissions_hi),
432                 8, STATS_FLAGS_PORT, "tx_deferred" },
433     { STATS_OFFSET32(tx_stat_dot3statsexcessivecollisions_hi),
434                 8, STATS_FLAGS_PORT, "tx_excess_collisions" },
435     { STATS_OFFSET32(tx_stat_dot3statslatecollisions_hi),
436                 8, STATS_FLAGS_PORT, "tx_late_collisions" },
437     { STATS_OFFSET32(tx_stat_etherstatscollisions_hi),
438                 8, STATS_FLAGS_PORT, "tx_total_collisions" },
439     { STATS_OFFSET32(tx_stat_etherstatspkts64octets_hi),
440                 8, STATS_FLAGS_PORT, "tx_64_byte_packets" },
441     { STATS_OFFSET32(tx_stat_etherstatspkts65octetsto127octets_hi),
442                 8, STATS_FLAGS_PORT, "tx_65_to_127_byte_packets" },
443     { STATS_OFFSET32(tx_stat_etherstatspkts128octetsto255octets_hi),
444                 8, STATS_FLAGS_PORT, "tx_128_to_255_byte_packets" },
445     { STATS_OFFSET32(tx_stat_etherstatspkts256octetsto511octets_hi),
446                 8, STATS_FLAGS_PORT, "tx_256_to_511_byte_packets" },
447     { STATS_OFFSET32(tx_stat_etherstatspkts512octetsto1023octets_hi),
448                 8, STATS_FLAGS_PORT, "tx_512_to_1023_byte_packets" },
449     { STATS_OFFSET32(etherstatspkts1024octetsto1522octets_hi),
450                 8, STATS_FLAGS_PORT, "tx_1024_to_1522_byte_packets" },
451     { STATS_OFFSET32(etherstatspktsover1522octets_hi),
452                 8, STATS_FLAGS_PORT, "tx_1523_to_9022_byte_packets" },
453     { STATS_OFFSET32(pause_frames_sent_hi),
454                 8, STATS_FLAGS_PORT, "tx_pause_frames" },
455     { STATS_OFFSET32(total_tpa_aggregations_hi),
456                 8, STATS_FLAGS_FUNC, "tpa_aggregations" },
457     { STATS_OFFSET32(total_tpa_aggregated_frames_hi),
458                 8, STATS_FLAGS_FUNC, "tpa_aggregated_frames"},
459     { STATS_OFFSET32(total_tpa_bytes_hi),
460                 8, STATS_FLAGS_FUNC, "tpa_bytes"},
461 #if 0
462     { STATS_OFFSET32(recoverable_error),
463                 4, STATS_FLAGS_FUNC, "recoverable_errors" },
464     { STATS_OFFSET32(unrecoverable_error),
465                 4, STATS_FLAGS_FUNC, "unrecoverable_errors" },
466 #endif
467     { STATS_OFFSET32(eee_tx_lpi),
468                 4, STATS_FLAGS_PORT, "eee_tx_lpi"},
469     { STATS_OFFSET32(rx_calls),
470                 4, STATS_FLAGS_FUNC, "rx_calls"},
471     { STATS_OFFSET32(rx_pkts),
472                 4, STATS_FLAGS_FUNC, "rx_pkts"},
473     { STATS_OFFSET32(rx_tpa_pkts),
474                 4, STATS_FLAGS_FUNC, "rx_tpa_pkts"},
475     { STATS_OFFSET32(rx_jumbo_sge_pkts),
476                 4, STATS_FLAGS_FUNC, "rx_jumbo_sge_pkts"},
477     { STATS_OFFSET32(rx_soft_errors),
478                 4, STATS_FLAGS_FUNC, "rx_soft_errors"},
479     { STATS_OFFSET32(rx_hw_csum_errors),
480                 4, STATS_FLAGS_FUNC, "rx_hw_csum_errors"},
481     { STATS_OFFSET32(rx_ofld_frames_csum_ip),
482                 4, STATS_FLAGS_FUNC, "rx_ofld_frames_csum_ip"},
483     { STATS_OFFSET32(rx_ofld_frames_csum_tcp_udp),
484                 4, STATS_FLAGS_FUNC, "rx_ofld_frames_csum_tcp_udp"},
485     { STATS_OFFSET32(rx_budget_reached),
486                 4, STATS_FLAGS_FUNC, "rx_budget_reached"},
487     { STATS_OFFSET32(tx_pkts),
488                 4, STATS_FLAGS_FUNC, "tx_pkts"},
489     { STATS_OFFSET32(tx_soft_errors),
490                 4, STATS_FLAGS_FUNC, "tx_soft_errors"},
491     { STATS_OFFSET32(tx_ofld_frames_csum_ip),
492                 4, STATS_FLAGS_FUNC, "tx_ofld_frames_csum_ip"},
493     { STATS_OFFSET32(tx_ofld_frames_csum_tcp),
494                 4, STATS_FLAGS_FUNC, "tx_ofld_frames_csum_tcp"},
495     { STATS_OFFSET32(tx_ofld_frames_csum_udp),
496                 4, STATS_FLAGS_FUNC, "tx_ofld_frames_csum_udp"},
497     { STATS_OFFSET32(tx_ofld_frames_lso),
498                 4, STATS_FLAGS_FUNC, "tx_ofld_frames_lso"},
499     { STATS_OFFSET32(tx_ofld_frames_lso_hdr_splits),
500                 4, STATS_FLAGS_FUNC, "tx_ofld_frames_lso_hdr_splits"},
501     { STATS_OFFSET32(tx_encap_failures),
502                 4, STATS_FLAGS_FUNC, "tx_encap_failures"},
503     { STATS_OFFSET32(tx_hw_queue_full),
504                 4, STATS_FLAGS_FUNC, "tx_hw_queue_full"},
505     { STATS_OFFSET32(tx_hw_max_queue_depth),
506                 4, STATS_FLAGS_FUNC, "tx_hw_max_queue_depth"},
507     { STATS_OFFSET32(tx_dma_mapping_failure),
508                 4, STATS_FLAGS_FUNC, "tx_dma_mapping_failure"},
509     { STATS_OFFSET32(tx_max_drbr_queue_depth),
510                 4, STATS_FLAGS_FUNC, "tx_max_drbr_queue_depth"},
511     { STATS_OFFSET32(tx_window_violation_std),
512                 4, STATS_FLAGS_FUNC, "tx_window_violation_std"},
513     { STATS_OFFSET32(tx_window_violation_tso),
514                 4, STATS_FLAGS_FUNC, "tx_window_violation_tso"},
515 #if 0
516     { STATS_OFFSET32(tx_unsupported_tso_request_ipv6),
517                 4, STATS_FLAGS_FUNC, "tx_unsupported_tso_request_ipv6"},
518     { STATS_OFFSET32(tx_unsupported_tso_request_not_tcp),
519                 4, STATS_FLAGS_FUNC, "tx_unsupported_tso_request_not_tcp"},
520 #endif
521     { STATS_OFFSET32(tx_chain_lost_mbuf),
522                 4, STATS_FLAGS_FUNC, "tx_chain_lost_mbuf"},
523     { STATS_OFFSET32(tx_frames_deferred),
524                 4, STATS_FLAGS_FUNC, "tx_frames_deferred"},
525     { STATS_OFFSET32(tx_queue_xoff),
526                 4, STATS_FLAGS_FUNC, "tx_queue_xoff"},
527     { STATS_OFFSET32(mbuf_defrag_attempts),
528                 4, STATS_FLAGS_FUNC, "mbuf_defrag_attempts"},
529     { STATS_OFFSET32(mbuf_defrag_failures),
530                 4, STATS_FLAGS_FUNC, "mbuf_defrag_failures"},
531     { STATS_OFFSET32(mbuf_rx_bd_alloc_failed),
532                 4, STATS_FLAGS_FUNC, "mbuf_rx_bd_alloc_failed"},
533     { STATS_OFFSET32(mbuf_rx_bd_mapping_failed),
534                 4, STATS_FLAGS_FUNC, "mbuf_rx_bd_mapping_failed"},
535     { STATS_OFFSET32(mbuf_rx_tpa_alloc_failed),
536                 4, STATS_FLAGS_FUNC, "mbuf_rx_tpa_alloc_failed"},
537     { STATS_OFFSET32(mbuf_rx_tpa_mapping_failed),
538                 4, STATS_FLAGS_FUNC, "mbuf_rx_tpa_mapping_failed"},
539     { STATS_OFFSET32(mbuf_rx_sge_alloc_failed),
540                 4, STATS_FLAGS_FUNC, "mbuf_rx_sge_alloc_failed"},
541     { STATS_OFFSET32(mbuf_rx_sge_mapping_failed),
542                 4, STATS_FLAGS_FUNC, "mbuf_rx_sge_mapping_failed"},
543     { STATS_OFFSET32(mbuf_alloc_tx),
544                 4, STATS_FLAGS_FUNC, "mbuf_alloc_tx"},
545     { STATS_OFFSET32(mbuf_alloc_rx),
546                 4, STATS_FLAGS_FUNC, "mbuf_alloc_rx"},
547     { STATS_OFFSET32(mbuf_alloc_sge),
548                 4, STATS_FLAGS_FUNC, "mbuf_alloc_sge"},
549     { STATS_OFFSET32(mbuf_alloc_tpa),
550                 4, STATS_FLAGS_FUNC, "mbuf_alloc_tpa"}
551 };
552 
553 static const struct {
554     uint32_t offset;
555     uint32_t size;
556     char string[STAT_NAME_LEN];
557 } bxe_eth_q_stats_arr[] = {
558     { Q_STATS_OFFSET32(total_bytes_received_hi),
559                 8, "rx_bytes" },
560     { Q_STATS_OFFSET32(total_unicast_packets_received_hi),
561                 8, "rx_ucast_packets" },
562     { Q_STATS_OFFSET32(total_multicast_packets_received_hi),
563                 8, "rx_mcast_packets" },
564     { Q_STATS_OFFSET32(total_broadcast_packets_received_hi),
565                 8, "rx_bcast_packets" },
566     { Q_STATS_OFFSET32(no_buff_discard_hi),
567                 8, "rx_discards" },
568     { Q_STATS_OFFSET32(total_bytes_transmitted_hi),
569                 8, "tx_bytes" },
570     { Q_STATS_OFFSET32(total_unicast_packets_transmitted_hi),
571                 8, "tx_ucast_packets" },
572     { Q_STATS_OFFSET32(total_multicast_packets_transmitted_hi),
573                 8, "tx_mcast_packets" },
574     { Q_STATS_OFFSET32(total_broadcast_packets_transmitted_hi),
575                 8, "tx_bcast_packets" },
576     { Q_STATS_OFFSET32(total_tpa_aggregations_hi),
577                 8, "tpa_aggregations" },
578     { Q_STATS_OFFSET32(total_tpa_aggregated_frames_hi),
579                 8, "tpa_aggregated_frames"},
580     { Q_STATS_OFFSET32(total_tpa_bytes_hi),
581                 8, "tpa_bytes"},
582     { Q_STATS_OFFSET32(rx_calls),
583                 4, "rx_calls"},
584     { Q_STATS_OFFSET32(rx_pkts),
585                 4, "rx_pkts"},
586     { Q_STATS_OFFSET32(rx_tpa_pkts),
587                 4, "rx_tpa_pkts"},
588     { Q_STATS_OFFSET32(rx_jumbo_sge_pkts),
589                 4, "rx_jumbo_sge_pkts"},
590     { Q_STATS_OFFSET32(rx_soft_errors),
591                 4, "rx_soft_errors"},
592     { Q_STATS_OFFSET32(rx_hw_csum_errors),
593                 4, "rx_hw_csum_errors"},
594     { Q_STATS_OFFSET32(rx_ofld_frames_csum_ip),
595                 4, "rx_ofld_frames_csum_ip"},
596     { Q_STATS_OFFSET32(rx_ofld_frames_csum_tcp_udp),
597                 4, "rx_ofld_frames_csum_tcp_udp"},
598     { Q_STATS_OFFSET32(rx_budget_reached),
599                 4, "rx_budget_reached"},
600     { Q_STATS_OFFSET32(tx_pkts),
601                 4, "tx_pkts"},
602     { Q_STATS_OFFSET32(tx_soft_errors),
603                 4, "tx_soft_errors"},
604     { Q_STATS_OFFSET32(tx_ofld_frames_csum_ip),
605                 4, "tx_ofld_frames_csum_ip"},
606     { Q_STATS_OFFSET32(tx_ofld_frames_csum_tcp),
607                 4, "tx_ofld_frames_csum_tcp"},
608     { Q_STATS_OFFSET32(tx_ofld_frames_csum_udp),
609                 4, "tx_ofld_frames_csum_udp"},
610     { Q_STATS_OFFSET32(tx_ofld_frames_lso),
611                 4, "tx_ofld_frames_lso"},
612     { Q_STATS_OFFSET32(tx_ofld_frames_lso_hdr_splits),
613                 4, "tx_ofld_frames_lso_hdr_splits"},
614     { Q_STATS_OFFSET32(tx_encap_failures),
615                 4, "tx_encap_failures"},
616     { Q_STATS_OFFSET32(tx_hw_queue_full),
617                 4, "tx_hw_queue_full"},
618     { Q_STATS_OFFSET32(tx_hw_max_queue_depth),
619                 4, "tx_hw_max_queue_depth"},
620     { Q_STATS_OFFSET32(tx_dma_mapping_failure),
621                 4, "tx_dma_mapping_failure"},
622     { Q_STATS_OFFSET32(tx_max_drbr_queue_depth),
623                 4, "tx_max_drbr_queue_depth"},
624     { Q_STATS_OFFSET32(tx_window_violation_std),
625                 4, "tx_window_violation_std"},
626     { Q_STATS_OFFSET32(tx_window_violation_tso),
627                 4, "tx_window_violation_tso"},
628 #if 0
629     { Q_STATS_OFFSET32(tx_unsupported_tso_request_ipv6),
630                 4, "tx_unsupported_tso_request_ipv6"},
631     { Q_STATS_OFFSET32(tx_unsupported_tso_request_not_tcp),
632                 4, "tx_unsupported_tso_request_not_tcp"},
633 #endif
634     { Q_STATS_OFFSET32(tx_chain_lost_mbuf),
635                 4, "tx_chain_lost_mbuf"},
636     { Q_STATS_OFFSET32(tx_frames_deferred),
637                 4, "tx_frames_deferred"},
638     { Q_STATS_OFFSET32(tx_queue_xoff),
639                 4, "tx_queue_xoff"},
640     { Q_STATS_OFFSET32(mbuf_defrag_attempts),
641                 4, "mbuf_defrag_attempts"},
642     { Q_STATS_OFFSET32(mbuf_defrag_failures),
643                 4, "mbuf_defrag_failures"},
644     { Q_STATS_OFFSET32(mbuf_rx_bd_alloc_failed),
645                 4, "mbuf_rx_bd_alloc_failed"},
646     { Q_STATS_OFFSET32(mbuf_rx_bd_mapping_failed),
647                 4, "mbuf_rx_bd_mapping_failed"},
648     { Q_STATS_OFFSET32(mbuf_rx_tpa_alloc_failed),
649                 4, "mbuf_rx_tpa_alloc_failed"},
650     { Q_STATS_OFFSET32(mbuf_rx_tpa_mapping_failed),
651                 4, "mbuf_rx_tpa_mapping_failed"},
652     { Q_STATS_OFFSET32(mbuf_rx_sge_alloc_failed),
653                 4, "mbuf_rx_sge_alloc_failed"},
654     { Q_STATS_OFFSET32(mbuf_rx_sge_mapping_failed),
655                 4, "mbuf_rx_sge_mapping_failed"},
656     { Q_STATS_OFFSET32(mbuf_alloc_tx),
657                 4, "mbuf_alloc_tx"},
658     { Q_STATS_OFFSET32(mbuf_alloc_rx),
659                 4, "mbuf_alloc_rx"},
660     { Q_STATS_OFFSET32(mbuf_alloc_sge),
661                 4, "mbuf_alloc_sge"},
662     { Q_STATS_OFFSET32(mbuf_alloc_tpa),
663                 4, "mbuf_alloc_tpa"}
664 };
665 
666 #define BXE_NUM_ETH_STATS   ARRAY_SIZE(bxe_eth_stats_arr)
667 #define BXE_NUM_ETH_Q_STATS ARRAY_SIZE(bxe_eth_q_stats_arr)
668 
669 
670 static void    bxe_cmng_fns_init(struct bxe_softc *sc,
671                                  uint8_t          read_cfg,
672                                  uint8_t          cmng_type);
673 static int     bxe_get_cmng_fns_mode(struct bxe_softc *sc);
674 static void    storm_memset_cmng(struct bxe_softc *sc,
675                                  struct cmng_init *cmng,
676                                  uint8_t          port);
677 static void    bxe_set_reset_global(struct bxe_softc *sc);
678 static void    bxe_set_reset_in_progress(struct bxe_softc *sc);
679 static uint8_t bxe_reset_is_done(struct bxe_softc *sc,
680                                  int              engine);
681 static uint8_t bxe_clear_pf_load(struct bxe_softc *sc);
682 static uint8_t bxe_chk_parity_attn(struct bxe_softc *sc,
683                                    uint8_t          *global,
684                                    uint8_t          print);
685 static void    bxe_int_disable(struct bxe_softc *sc);
686 static int     bxe_release_leader_lock(struct bxe_softc *sc);
687 static void    bxe_pf_disable(struct bxe_softc *sc);
688 static void    bxe_free_fp_buffers(struct bxe_softc *sc);
689 static inline void bxe_update_rx_prod(struct bxe_softc    *sc,
690                                       struct bxe_fastpath *fp,
691                                       uint16_t            rx_bd_prod,
692                                       uint16_t            rx_cq_prod,
693                                       uint16_t            rx_sge_prod);
694 static void    bxe_link_report_locked(struct bxe_softc *sc);
695 static void    bxe_link_report(struct bxe_softc *sc);
696 static void    bxe_link_status_update(struct bxe_softc *sc);
697 static void    bxe_periodic_callout_func(void *xsc);
698 static void    bxe_periodic_start(struct bxe_softc *sc);
699 static void    bxe_periodic_stop(struct bxe_softc *sc);
700 static int     bxe_alloc_rx_bd_mbuf(struct bxe_fastpath *fp,
701                                     uint16_t prev_index,
702                                     uint16_t index);
703 static int     bxe_alloc_rx_tpa_mbuf(struct bxe_fastpath *fp,
704                                      int                 queue);
705 static int     bxe_alloc_rx_sge_mbuf(struct bxe_fastpath *fp,
706                                      uint16_t            index);
707 static uint8_t bxe_txeof(struct bxe_softc *sc,
708                          struct bxe_fastpath *fp);
709 static void    bxe_task_fp(struct bxe_fastpath *fp);
710 static __noinline void bxe_dump_mbuf(struct bxe_softc *sc,
711                                      struct mbuf      *m,
712                                      uint8_t          contents);
713 static int     bxe_alloc_mem(struct bxe_softc *sc);
714 static void    bxe_free_mem(struct bxe_softc *sc);
715 static int     bxe_alloc_fw_stats_mem(struct bxe_softc *sc);
716 static void    bxe_free_fw_stats_mem(struct bxe_softc *sc);
717 static int     bxe_interrupt_attach(struct bxe_softc *sc);
718 static void    bxe_interrupt_detach(struct bxe_softc *sc);
719 static void    bxe_set_rx_mode(struct bxe_softc *sc);
720 static int     bxe_init_locked(struct bxe_softc *sc);
721 static int     bxe_stop_locked(struct bxe_softc *sc);
722 static __noinline int bxe_nic_load(struct bxe_softc *sc,
723                                    int              load_mode);
724 static __noinline int bxe_nic_unload(struct bxe_softc *sc,
725                                      uint32_t         unload_mode,
726                                      uint8_t          keep_link);
727 
728 static void bxe_handle_sp_tq(void *context, int pending);
729 static void bxe_handle_fp_tq(void *context, int pending);
730 
731 
732 /* calculate crc32 on a buffer (NOTE: crc32_length MUST be aligned to 8) */
733 uint32_t
734 calc_crc32(uint8_t  *crc32_packet,
735            uint32_t crc32_length,
736            uint32_t crc32_seed,
737            uint8_t  complement)
738 {
739    uint32_t byte         = 0;
740    uint32_t bit          = 0;
741    uint8_t  msb          = 0;
742    uint32_t temp         = 0;
743    uint32_t shft         = 0;
744    uint8_t  current_byte = 0;
745    uint32_t crc32_result = crc32_seed;
746    const uint32_t CRC32_POLY = 0x1edc6f41;
747 
748    if ((crc32_packet == NULL) ||
749        (crc32_length == 0) ||
750        ((crc32_length % 8) != 0))
751     {
752         return (crc32_result);
753     }
754 
755     for (byte = 0; byte < crc32_length; byte = byte + 1)
756     {
757         current_byte = crc32_packet[byte];
758         for (bit = 0; bit < 8; bit = bit + 1)
759         {
760             /* msb = crc32_result[31]; */
761             msb = (uint8_t)(crc32_result >> 31);
762 
763             crc32_result = crc32_result << 1;
764 
765             /* it (msb != current_byte[bit]) */
766             if (msb != (0x1 & (current_byte >> bit)))
767             {
768                 crc32_result = crc32_result ^ CRC32_POLY;
769                 /* crc32_result[0] = 1 */
770                 crc32_result |= 1;
771             }
772         }
773     }
774 
775     /* Last step is to:
776      * 1. "mirror" every bit
777      * 2. swap the 4 bytes
778      * 3. complement each bit
779      */
780 
781     /* Mirror */
782     temp = crc32_result;
783     shft = sizeof(crc32_result) * 8 - 1;
784 
785     for (crc32_result >>= 1; crc32_result; crc32_result >>= 1)
786     {
787         temp <<= 1;
788         temp |= crc32_result & 1;
789         shft-- ;
790     }
791 
792     /* temp[31-bit] = crc32_result[bit] */
793     temp <<= shft;
794 
795     /* Swap */
796     /* crc32_result = {temp[7:0], temp[15:8], temp[23:16], temp[31:24]} */
797     {
798         uint32_t t0, t1, t2, t3;
799         t0 = (0x000000ff & (temp >> 24));
800         t1 = (0x0000ff00 & (temp >> 8));
801         t2 = (0x00ff0000 & (temp << 8));
802         t3 = (0xff000000 & (temp << 24));
803         crc32_result = t0 | t1 | t2 | t3;
804     }
805 
806     /* Complement */
807     if (complement)
808     {
809         crc32_result = ~crc32_result;
810     }
811 
812     return (crc32_result);
813 }
814 
815 int
816 bxe_test_bit(int                    nr,
817              volatile unsigned long *addr)
818 {
819     return ((atomic_load_acq_long(addr) & (1 << nr)) != 0);
820 }
821 
822 void
823 bxe_set_bit(unsigned int           nr,
824             volatile unsigned long *addr)
825 {
826     atomic_set_acq_long(addr, (1 << nr));
827 }
828 
829 void
830 bxe_clear_bit(int                    nr,
831               volatile unsigned long *addr)
832 {
833     atomic_clear_acq_long(addr, (1 << nr));
834 }
835 
836 int
837 bxe_test_and_set_bit(int                    nr,
838                        volatile unsigned long *addr)
839 {
840     unsigned long x;
841     nr = (1 << nr);
842     do {
843         x = *addr;
844     } while (atomic_cmpset_acq_long(addr, x, x | nr) == 0);
845     // if (x & nr) bit_was_set; else bit_was_not_set;
846     return (x & nr);
847 }
848 
849 int
850 bxe_test_and_clear_bit(int                    nr,
851                        volatile unsigned long *addr)
852 {
853     unsigned long x;
854     nr = (1 << nr);
855     do {
856         x = *addr;
857     } while (atomic_cmpset_acq_long(addr, x, x & ~nr) == 0);
858     // if (x & nr) bit_was_set; else bit_was_not_set;
859     return (x & nr);
860 }
861 
862 int
863 bxe_cmpxchg(volatile int *addr,
864             int          old,
865             int          new)
866 {
867     int x;
868     do {
869         x = *addr;
870     } while (atomic_cmpset_acq_int(addr, old, new) == 0);
871     return (x);
872 }
873 
874 /*
875  * Get DMA memory from the OS.
876  *
877  * Validates that the OS has provided DMA buffers in response to a
878  * bus_dmamap_load call and saves the physical address of those buffers.
879  * When the callback is used the OS will return 0 for the mapping function
880  * (bus_dmamap_load) so we use the value of map_arg->maxsegs to pass any
881  * failures back to the caller.
882  *
883  * Returns:
884  *   Nothing.
885  */
886 static void
887 bxe_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
888 {
889     struct bxe_dma *dma = arg;
890 
891     if (error) {
892         dma->paddr = 0;
893         dma->nseg  = 0;
894         BLOGE(dma->sc, "Failed DMA alloc '%s' (%d)!\n", dma->msg, error);
895     } else {
896         dma->paddr = segs->ds_addr;
897         dma->nseg  = nseg;
898 #if 0
899         BLOGD(dma->sc, DBG_LOAD,
900               "DMA alloc '%s': vaddr=%p paddr=%p nseg=%d size=%lu\n",
901               dma->msg, dma->vaddr, (void *)dma->paddr,
902               dma->nseg, dma->size);
903 #endif
904     }
905 }
906 
907 /*
908  * Allocate a block of memory and map it for DMA. No partial completions
909  * allowed and release any resources acquired if we can't acquire all
910  * resources.
911  *
912  * Returns:
913  *   0 = Success, !0 = Failure
914  */
915 int
916 bxe_dma_alloc(struct bxe_softc *sc,
917               bus_size_t       size,
918               struct bxe_dma   *dma,
919               const char       *msg)
920 {
921     int rc;
922 
923     if (dma->size > 0) {
924         BLOGE(sc, "dma block '%s' already has size %lu\n", msg,
925               (unsigned long)dma->size);
926         return (1);
927     }
928 
929     memset(dma, 0, sizeof(*dma)); /* sanity */
930     dma->sc   = sc;
931     dma->size = size;
932     snprintf(dma->msg, sizeof(dma->msg), "%s", msg);
933 
934     rc = bus_dma_tag_create(sc->parent_dma_tag, /* parent tag */
935                             BCM_PAGE_SIZE,      /* alignment */
936                             0,                  /* boundary limit */
937                             BUS_SPACE_MAXADDR,  /* restricted low */
938                             BUS_SPACE_MAXADDR,  /* restricted hi */
939                             NULL,               /* addr filter() */
940                             NULL,               /* addr filter() arg */
941                             size,               /* max map size */
942                             1,                  /* num discontinuous */
943                             size,               /* max seg size */
944                             BUS_DMA_ALLOCNOW,   /* flags */
945                             NULL,               /* lock() */
946                             NULL,               /* lock() arg */
947                             &dma->tag);         /* returned dma tag */
948     if (rc != 0) {
949         BLOGE(sc, "Failed to create dma tag for '%s' (%d)\n", msg, rc);
950         memset(dma, 0, sizeof(*dma));
951         return (1);
952     }
953 
954     rc = bus_dmamem_alloc(dma->tag,
955                           (void **)&dma->vaddr,
956                           (BUS_DMA_NOWAIT | BUS_DMA_ZERO),
957                           &dma->map);
958     if (rc != 0) {
959         BLOGE(sc, "Failed to alloc dma mem for '%s' (%d)\n", msg, rc);
960         bus_dma_tag_destroy(dma->tag);
961         memset(dma, 0, sizeof(*dma));
962         return (1);
963     }
964 
965     rc = bus_dmamap_load(dma->tag,
966                          dma->map,
967                          dma->vaddr,
968                          size,
969                          bxe_dma_map_addr, /* BLOGD in here */
970                          dma,
971                          BUS_DMA_NOWAIT);
972     if (rc != 0) {
973         BLOGE(sc, "Failed to load dma map for '%s' (%d)\n", msg, rc);
974         bus_dmamem_free(dma->tag, dma->vaddr, dma->map);
975         bus_dma_tag_destroy(dma->tag);
976         memset(dma, 0, sizeof(*dma));
977         return (1);
978     }
979 
980     return (0);
981 }
982 
983 void
984 bxe_dma_free(struct bxe_softc *sc,
985              struct bxe_dma   *dma)
986 {
987     if (dma->size > 0) {
988 #if 0
989         BLOGD(sc, DBG_LOAD,
990               "DMA free '%s': vaddr=%p paddr=%p nseg=%d size=%lu\n",
991               dma->msg, dma->vaddr, (void *)dma->paddr,
992               dma->nseg, dma->size);
993 #endif
994 
995         DBASSERT(sc, (dma->tag != NULL), ("dma tag is NULL"));
996 
997         bus_dmamap_sync(dma->tag, dma->map,
998                         (BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE));
999         bus_dmamap_unload(dma->tag, dma->map);
1000         bus_dmamem_free(dma->tag, dma->vaddr, dma->map);
1001         bus_dma_tag_destroy(dma->tag);
1002     }
1003 
1004     memset(dma, 0, sizeof(*dma));
1005 }
1006 
1007 /*
1008  * These indirect read and write routines are only during init.
1009  * The locking is handled by the MCP.
1010  */
1011 
1012 void
1013 bxe_reg_wr_ind(struct bxe_softc *sc,
1014                uint32_t         addr,
1015                uint32_t         val)
1016 {
1017     pci_write_config(sc->dev, PCICFG_GRC_ADDRESS, addr, 4);
1018     pci_write_config(sc->dev, PCICFG_GRC_DATA, val, 4);
1019     pci_write_config(sc->dev, PCICFG_GRC_ADDRESS, 0, 4);
1020 }
1021 
1022 uint32_t
1023 bxe_reg_rd_ind(struct bxe_softc *sc,
1024                uint32_t         addr)
1025 {
1026     uint32_t val;
1027 
1028     pci_write_config(sc->dev, PCICFG_GRC_ADDRESS, addr, 4);
1029     val = pci_read_config(sc->dev, PCICFG_GRC_DATA, 4);
1030     pci_write_config(sc->dev, PCICFG_GRC_ADDRESS, 0, 4);
1031 
1032     return (val);
1033 }
1034 
1035 #if 0
1036 void bxe_dp_dmae(struct bxe_softc *sc, struct dmae_command *dmae, int msglvl)
1037 {
1038     uint32_t src_type = dmae->opcode & DMAE_COMMAND_SRC;
1039 
1040     switch (dmae->opcode & DMAE_COMMAND_DST) {
1041     case DMAE_CMD_DST_PCI:
1042         if (src_type == DMAE_CMD_SRC_PCI)
1043             DP(msglvl, "DMAE: opcode 0x%08x\n"
1044                "src [%x:%08x], len [%d*4], dst [%x:%08x]\n"
1045                "comp_addr [%x:%08x], comp_val 0x%08x\n",
1046                dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
1047                dmae->len, dmae->dst_addr_hi, dmae->dst_addr_lo,
1048                dmae->comp_addr_hi, dmae->comp_addr_lo,
1049                dmae->comp_val);
1050         else
1051             DP(msglvl, "DMAE: opcode 0x%08x\n"
1052                "src [%08x], len [%d*4], dst [%x:%08x]\n"
1053                "comp_addr [%x:%08x], comp_val 0x%08x\n",
1054                dmae->opcode, dmae->src_addr_lo >> 2,
1055                dmae->len, dmae->dst_addr_hi, dmae->dst_addr_lo,
1056                dmae->comp_addr_hi, dmae->comp_addr_lo,
1057                dmae->comp_val);
1058         break;
1059     case DMAE_CMD_DST_GRC:
1060         if (src_type == DMAE_CMD_SRC_PCI)
1061             DP(msglvl, "DMAE: opcode 0x%08x\n"
1062                "src [%x:%08x], len [%d*4], dst_addr [%08x]\n"
1063                "comp_addr [%x:%08x], comp_val 0x%08x\n",
1064                dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
1065                dmae->len, dmae->dst_addr_lo >> 2,
1066                dmae->comp_addr_hi, dmae->comp_addr_lo,
1067                dmae->comp_val);
1068         else
1069             DP(msglvl, "DMAE: opcode 0x%08x\n"
1070                "src [%08x], len [%d*4], dst [%08x]\n"
1071                "comp_addr [%x:%08x], comp_val 0x%08x\n",
1072                dmae->opcode, dmae->src_addr_lo >> 2,
1073                dmae->len, dmae->dst_addr_lo >> 2,
1074                dmae->comp_addr_hi, dmae->comp_addr_lo,
1075                dmae->comp_val);
1076         break;
1077     default:
1078         if (src_type == DMAE_CMD_SRC_PCI)
1079             DP(msglvl, "DMAE: opcode 0x%08x\n"
1080                "src_addr [%x:%08x]  len [%d * 4]  dst_addr [none]\n"
1081                "comp_addr [%x:%08x]  comp_val 0x%08x\n",
1082                dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
1083                dmae->len, dmae->comp_addr_hi, dmae->comp_addr_lo,
1084                dmae->comp_val);
1085         else
1086             DP(msglvl, "DMAE: opcode 0x%08x\n"
1087                "src_addr [%08x]  len [%d * 4]  dst_addr [none]\n"
1088                "comp_addr [%x:%08x]  comp_val 0x%08x\n",
1089                dmae->opcode, dmae->src_addr_lo >> 2,
1090                dmae->len, dmae->comp_addr_hi, dmae->comp_addr_lo,
1091                dmae->comp_val);
1092         break;
1093     }
1094 
1095 }
1096 #endif
1097 
1098 static int
1099 bxe_acquire_hw_lock(struct bxe_softc *sc,
1100                     uint32_t         resource)
1101 {
1102     uint32_t lock_status;
1103     uint32_t resource_bit = (1 << resource);
1104     int func = SC_FUNC(sc);
1105     uint32_t hw_lock_control_reg;
1106     int cnt;
1107 
1108     /* validate the resource is within range */
1109     if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
1110         BLOGE(sc, "resource 0x%x > HW_LOCK_MAX_RESOURCE_VALUE\n", resource);
1111         return (-1);
1112     }
1113 
1114     if (func <= 5) {
1115         hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + (func * 8));
1116     } else {
1117         hw_lock_control_reg =
1118                 (MISC_REG_DRIVER_CONTROL_7 + ((func - 6) * 8));
1119     }
1120 
1121     /* validate the resource is not already taken */
1122     lock_status = REG_RD(sc, hw_lock_control_reg);
1123     if (lock_status & resource_bit) {
1124         BLOGE(sc, "resource in use (status 0x%x bit 0x%x)\n",
1125               lock_status, resource_bit);
1126         return (-1);
1127     }
1128 
1129     /* try every 5ms for 5 seconds */
1130     for (cnt = 0; cnt < 1000; cnt++) {
1131         REG_WR(sc, (hw_lock_control_reg + 4), resource_bit);
1132         lock_status = REG_RD(sc, hw_lock_control_reg);
1133         if (lock_status & resource_bit) {
1134             return (0);
1135         }
1136         DELAY(5000);
1137     }
1138 
1139     BLOGE(sc, "Resource lock timeout!\n");
1140     return (-1);
1141 }
1142 
1143 static int
1144 bxe_release_hw_lock(struct bxe_softc *sc,
1145                     uint32_t         resource)
1146 {
1147     uint32_t lock_status;
1148     uint32_t resource_bit = (1 << resource);
1149     int func = SC_FUNC(sc);
1150     uint32_t hw_lock_control_reg;
1151 
1152     /* validate the resource is within range */
1153     if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
1154         BLOGE(sc, "resource 0x%x > HW_LOCK_MAX_RESOURCE_VALUE\n", resource);
1155         return (-1);
1156     }
1157 
1158     if (func <= 5) {
1159         hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + (func * 8));
1160     } else {
1161         hw_lock_control_reg =
1162                 (MISC_REG_DRIVER_CONTROL_7 + ((func - 6) * 8));
1163     }
1164 
1165     /* validate the resource is currently taken */
1166     lock_status = REG_RD(sc, hw_lock_control_reg);
1167     if (!(lock_status & resource_bit)) {
1168         BLOGE(sc, "resource not in use (status 0x%x bit 0x%x)\n",
1169               lock_status, resource_bit);
1170         return (-1);
1171     }
1172 
1173     REG_WR(sc, hw_lock_control_reg, resource_bit);
1174     return (0);
1175 }
1176 static void bxe_acquire_phy_lock(struct bxe_softc *sc)
1177 {
1178 	BXE_PHY_LOCK(sc);
1179 	bxe_acquire_hw_lock(sc,HW_LOCK_RESOURCE_MDIO);
1180 }
1181 
1182 static void bxe_release_phy_lock(struct bxe_softc *sc)
1183 {
1184 	bxe_release_hw_lock(sc,HW_LOCK_RESOURCE_MDIO);
1185 	BXE_PHY_UNLOCK(sc);
1186 }
1187 /*
1188  * Per pf misc lock must be acquired before the per port mcp lock. Otherwise,
1189  * had we done things the other way around, if two pfs from the same port
1190  * would attempt to access nvram at the same time, we could run into a
1191  * scenario such as:
1192  * pf A takes the port lock.
1193  * pf B succeeds in taking the same lock since they are from the same port.
1194  * pf A takes the per pf misc lock. Performs eeprom access.
1195  * pf A finishes. Unlocks the per pf misc lock.
1196  * Pf B takes the lock and proceeds to perform it's own access.
1197  * pf A unlocks the per port lock, while pf B is still working (!).
1198  * mcp takes the per port lock and corrupts pf B's access (and/or has it's own
1199  * access corrupted by pf B).*
1200  */
1201 static int
1202 bxe_acquire_nvram_lock(struct bxe_softc *sc)
1203 {
1204     int port = SC_PORT(sc);
1205     int count, i;
1206     uint32_t val = 0;
1207 
1208     /* acquire HW lock: protect against other PFs in PF Direct Assignment */
1209     bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_NVRAM);
1210 
1211     /* adjust timeout for emulation/FPGA */
1212     count = NVRAM_TIMEOUT_COUNT;
1213     if (CHIP_REV_IS_SLOW(sc)) {
1214         count *= 100;
1215     }
1216 
1217     /* request access to nvram interface */
1218     REG_WR(sc, MCP_REG_MCPR_NVM_SW_ARB,
1219            (MCPR_NVM_SW_ARB_ARB_REQ_SET1 << port));
1220 
1221     for (i = 0; i < count*10; i++) {
1222         val = REG_RD(sc, MCP_REG_MCPR_NVM_SW_ARB);
1223         if (val & (MCPR_NVM_SW_ARB_ARB_ARB1 << port)) {
1224             break;
1225         }
1226 
1227         DELAY(5);
1228     }
1229 
1230     if (!(val & (MCPR_NVM_SW_ARB_ARB_ARB1 << port))) {
1231         BLOGE(sc, "Cannot get access to nvram interface\n");
1232         return (-1);
1233     }
1234 
1235     return (0);
1236 }
1237 
1238 static int
1239 bxe_release_nvram_lock(struct bxe_softc *sc)
1240 {
1241     int port = SC_PORT(sc);
1242     int count, i;
1243     uint32_t val = 0;
1244 
1245     /* adjust timeout for emulation/FPGA */
1246     count = NVRAM_TIMEOUT_COUNT;
1247     if (CHIP_REV_IS_SLOW(sc)) {
1248         count *= 100;
1249     }
1250 
1251     /* relinquish nvram interface */
1252     REG_WR(sc, MCP_REG_MCPR_NVM_SW_ARB,
1253            (MCPR_NVM_SW_ARB_ARB_REQ_CLR1 << port));
1254 
1255     for (i = 0; i < count*10; i++) {
1256         val = REG_RD(sc, MCP_REG_MCPR_NVM_SW_ARB);
1257         if (!(val & (MCPR_NVM_SW_ARB_ARB_ARB1 << port))) {
1258             break;
1259         }
1260 
1261         DELAY(5);
1262     }
1263 
1264     if (val & (MCPR_NVM_SW_ARB_ARB_ARB1 << port)) {
1265         BLOGE(sc, "Cannot free access to nvram interface\n");
1266         return (-1);
1267     }
1268 
1269     /* release HW lock: protect against other PFs in PF Direct Assignment */
1270     bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_NVRAM);
1271 
1272     return (0);
1273 }
1274 
1275 static void
1276 bxe_enable_nvram_access(struct bxe_softc *sc)
1277 {
1278     uint32_t val;
1279 
1280     val = REG_RD(sc, MCP_REG_MCPR_NVM_ACCESS_ENABLE);
1281 
1282     /* enable both bits, even on read */
1283     REG_WR(sc, MCP_REG_MCPR_NVM_ACCESS_ENABLE,
1284            (val | MCPR_NVM_ACCESS_ENABLE_EN | MCPR_NVM_ACCESS_ENABLE_WR_EN));
1285 }
1286 
1287 static void
1288 bxe_disable_nvram_access(struct bxe_softc *sc)
1289 {
1290     uint32_t val;
1291 
1292     val = REG_RD(sc, MCP_REG_MCPR_NVM_ACCESS_ENABLE);
1293 
1294     /* disable both bits, even after read */
1295     REG_WR(sc, MCP_REG_MCPR_NVM_ACCESS_ENABLE,
1296            (val & ~(MCPR_NVM_ACCESS_ENABLE_EN |
1297                     MCPR_NVM_ACCESS_ENABLE_WR_EN)));
1298 }
1299 
1300 static int
1301 bxe_nvram_read_dword(struct bxe_softc *sc,
1302                      uint32_t         offset,
1303                      uint32_t         *ret_val,
1304                      uint32_t         cmd_flags)
1305 {
1306     int count, i, rc;
1307     uint32_t val;
1308 
1309     /* build the command word */
1310     cmd_flags |= MCPR_NVM_COMMAND_DOIT;
1311 
1312     /* need to clear DONE bit separately */
1313     REG_WR(sc, MCP_REG_MCPR_NVM_COMMAND, MCPR_NVM_COMMAND_DONE);
1314 
1315     /* address of the NVRAM to read from */
1316     REG_WR(sc, MCP_REG_MCPR_NVM_ADDR,
1317            (offset & MCPR_NVM_ADDR_NVM_ADDR_VALUE));
1318 
1319     /* issue a read command */
1320     REG_WR(sc, MCP_REG_MCPR_NVM_COMMAND, cmd_flags);
1321 
1322     /* adjust timeout for emulation/FPGA */
1323     count = NVRAM_TIMEOUT_COUNT;
1324     if (CHIP_REV_IS_SLOW(sc)) {
1325         count *= 100;
1326     }
1327 
1328     /* wait for completion */
1329     *ret_val = 0;
1330     rc = -1;
1331     for (i = 0; i < count; i++) {
1332         DELAY(5);
1333         val = REG_RD(sc, MCP_REG_MCPR_NVM_COMMAND);
1334 
1335         if (val & MCPR_NVM_COMMAND_DONE) {
1336             val = REG_RD(sc, MCP_REG_MCPR_NVM_READ);
1337             /* we read nvram data in cpu order
1338              * but ethtool sees it as an array of bytes
1339              * converting to big-endian will do the work
1340              */
1341             *ret_val = htobe32(val);
1342             rc = 0;
1343             break;
1344         }
1345     }
1346 
1347     if (rc == -1) {
1348         BLOGE(sc, "nvram read timeout expired\n");
1349     }
1350 
1351     return (rc);
1352 }
1353 
1354 static int
1355 bxe_nvram_read(struct bxe_softc *sc,
1356                uint32_t         offset,
1357                uint8_t          *ret_buf,
1358                int              buf_size)
1359 {
1360     uint32_t cmd_flags;
1361     uint32_t val;
1362     int rc;
1363 
1364     if ((offset & 0x03) || (buf_size & 0x03) || (buf_size == 0)) {
1365         BLOGE(sc, "Invalid parameter, offset 0x%x buf_size 0x%x\n",
1366               offset, buf_size);
1367         return (-1);
1368     }
1369 
1370     if ((offset + buf_size) > sc->devinfo.flash_size) {
1371         BLOGE(sc, "Invalid parameter, "
1372                   "offset 0x%x + buf_size 0x%x > flash_size 0x%x\n",
1373               offset, buf_size, sc->devinfo.flash_size);
1374         return (-1);
1375     }
1376 
1377     /* request access to nvram interface */
1378     rc = bxe_acquire_nvram_lock(sc);
1379     if (rc) {
1380         return (rc);
1381     }
1382 
1383     /* enable access to nvram interface */
1384     bxe_enable_nvram_access(sc);
1385 
1386     /* read the first word(s) */
1387     cmd_flags = MCPR_NVM_COMMAND_FIRST;
1388     while ((buf_size > sizeof(uint32_t)) && (rc == 0)) {
1389         rc = bxe_nvram_read_dword(sc, offset, &val, cmd_flags);
1390         memcpy(ret_buf, &val, 4);
1391 
1392         /* advance to the next dword */
1393         offset += sizeof(uint32_t);
1394         ret_buf += sizeof(uint32_t);
1395         buf_size -= sizeof(uint32_t);
1396         cmd_flags = 0;
1397     }
1398 
1399     if (rc == 0) {
1400         cmd_flags |= MCPR_NVM_COMMAND_LAST;
1401         rc = bxe_nvram_read_dword(sc, offset, &val, cmd_flags);
1402         memcpy(ret_buf, &val, 4);
1403     }
1404 
1405     /* disable access to nvram interface */
1406     bxe_disable_nvram_access(sc);
1407     bxe_release_nvram_lock(sc);
1408 
1409     return (rc);
1410 }
1411 
1412 static int
1413 bxe_nvram_write_dword(struct bxe_softc *sc,
1414                       uint32_t         offset,
1415                       uint32_t         val,
1416                       uint32_t         cmd_flags)
1417 {
1418     int count, i, rc;
1419 
1420     /* build the command word */
1421     cmd_flags |= (MCPR_NVM_COMMAND_DOIT | MCPR_NVM_COMMAND_WR);
1422 
1423     /* need to clear DONE bit separately */
1424     REG_WR(sc, MCP_REG_MCPR_NVM_COMMAND, MCPR_NVM_COMMAND_DONE);
1425 
1426     /* write the data */
1427     REG_WR(sc, MCP_REG_MCPR_NVM_WRITE, val);
1428 
1429     /* address of the NVRAM to write to */
1430     REG_WR(sc, MCP_REG_MCPR_NVM_ADDR,
1431            (offset & MCPR_NVM_ADDR_NVM_ADDR_VALUE));
1432 
1433     /* issue the write command */
1434     REG_WR(sc, MCP_REG_MCPR_NVM_COMMAND, cmd_flags);
1435 
1436     /* adjust timeout for emulation/FPGA */
1437     count = NVRAM_TIMEOUT_COUNT;
1438     if (CHIP_REV_IS_SLOW(sc)) {
1439         count *= 100;
1440     }
1441 
1442     /* wait for completion */
1443     rc = -1;
1444     for (i = 0; i < count; i++) {
1445         DELAY(5);
1446         val = REG_RD(sc, MCP_REG_MCPR_NVM_COMMAND);
1447         if (val & MCPR_NVM_COMMAND_DONE) {
1448             rc = 0;
1449             break;
1450         }
1451     }
1452 
1453     if (rc == -1) {
1454         BLOGE(sc, "nvram write timeout expired\n");
1455     }
1456 
1457     return (rc);
1458 }
1459 
1460 #define BYTE_OFFSET(offset) (8 * (offset & 0x03))
1461 
1462 static int
1463 bxe_nvram_write1(struct bxe_softc *sc,
1464                  uint32_t         offset,
1465                  uint8_t          *data_buf,
1466                  int              buf_size)
1467 {
1468     uint32_t cmd_flags;
1469     uint32_t align_offset;
1470     uint32_t val;
1471     int rc;
1472 
1473     if ((offset + buf_size) > sc->devinfo.flash_size) {
1474         BLOGE(sc, "Invalid parameter, "
1475                   "offset 0x%x + buf_size 0x%x > flash_size 0x%x\n",
1476               offset, buf_size, sc->devinfo.flash_size);
1477         return (-1);
1478     }
1479 
1480     /* request access to nvram interface */
1481     rc = bxe_acquire_nvram_lock(sc);
1482     if (rc) {
1483         return (rc);
1484     }
1485 
1486     /* enable access to nvram interface */
1487     bxe_enable_nvram_access(sc);
1488 
1489     cmd_flags = (MCPR_NVM_COMMAND_FIRST | MCPR_NVM_COMMAND_LAST);
1490     align_offset = (offset & ~0x03);
1491     rc = bxe_nvram_read_dword(sc, align_offset, &val, cmd_flags);
1492 
1493     if (rc == 0) {
1494         val &= ~(0xff << BYTE_OFFSET(offset));
1495         val |= (*data_buf << BYTE_OFFSET(offset));
1496 
1497         /* nvram data is returned as an array of bytes
1498          * convert it back to cpu order
1499          */
1500         val = be32toh(val);
1501 
1502         rc = bxe_nvram_write_dword(sc, align_offset, val, cmd_flags);
1503     }
1504 
1505     /* disable access to nvram interface */
1506     bxe_disable_nvram_access(sc);
1507     bxe_release_nvram_lock(sc);
1508 
1509     return (rc);
1510 }
1511 
1512 static int
1513 bxe_nvram_write(struct bxe_softc *sc,
1514                 uint32_t         offset,
1515                 uint8_t          *data_buf,
1516                 int              buf_size)
1517 {
1518     uint32_t cmd_flags;
1519     uint32_t val;
1520     uint32_t written_so_far;
1521     int rc;
1522 
1523     if (buf_size == 1) {
1524         return (bxe_nvram_write1(sc, offset, data_buf, buf_size));
1525     }
1526 
1527     if ((offset & 0x03) || (buf_size & 0x03) /* || (buf_size == 0) */) {
1528         BLOGE(sc, "Invalid parameter, offset 0x%x buf_size 0x%x\n",
1529               offset, buf_size);
1530         return (-1);
1531     }
1532 
1533     if (buf_size == 0) {
1534         return (0); /* nothing to do */
1535     }
1536 
1537     if ((offset + buf_size) > sc->devinfo.flash_size) {
1538         BLOGE(sc, "Invalid parameter, "
1539                   "offset 0x%x + buf_size 0x%x > flash_size 0x%x\n",
1540               offset, buf_size, sc->devinfo.flash_size);
1541         return (-1);
1542     }
1543 
1544     /* request access to nvram interface */
1545     rc = bxe_acquire_nvram_lock(sc);
1546     if (rc) {
1547         return (rc);
1548     }
1549 
1550     /* enable access to nvram interface */
1551     bxe_enable_nvram_access(sc);
1552 
1553     written_so_far = 0;
1554     cmd_flags = MCPR_NVM_COMMAND_FIRST;
1555     while ((written_so_far < buf_size) && (rc == 0)) {
1556         if (written_so_far == (buf_size - sizeof(uint32_t))) {
1557             cmd_flags |= MCPR_NVM_COMMAND_LAST;
1558         } else if (((offset + 4) % NVRAM_PAGE_SIZE) == 0) {
1559             cmd_flags |= MCPR_NVM_COMMAND_LAST;
1560         } else if ((offset % NVRAM_PAGE_SIZE) == 0) {
1561             cmd_flags |= MCPR_NVM_COMMAND_FIRST;
1562         }
1563 
1564         memcpy(&val, data_buf, 4);
1565 
1566         rc = bxe_nvram_write_dword(sc, offset, val, cmd_flags);
1567 
1568         /* advance to the next dword */
1569         offset += sizeof(uint32_t);
1570         data_buf += sizeof(uint32_t);
1571         written_so_far += sizeof(uint32_t);
1572         cmd_flags = 0;
1573     }
1574 
1575     /* disable access to nvram interface */
1576     bxe_disable_nvram_access(sc);
1577     bxe_release_nvram_lock(sc);
1578 
1579     return (rc);
1580 }
1581 
1582 /* copy command into DMAE command memory and set DMAE command Go */
1583 void
1584 bxe_post_dmae(struct bxe_softc    *sc,
1585               struct dmae_command *dmae,
1586               int                 idx)
1587 {
1588     uint32_t cmd_offset;
1589     int i;
1590 
1591     cmd_offset = (DMAE_REG_CMD_MEM + (sizeof(struct dmae_command) * idx));
1592     for (i = 0; i < ((sizeof(struct dmae_command) / 4)); i++) {
1593         REG_WR(sc, (cmd_offset + (i * 4)), *(((uint32_t *)dmae) + i));
1594     }
1595 
1596     REG_WR(sc, dmae_reg_go_c[idx], 1);
1597 }
1598 
1599 uint32_t
1600 bxe_dmae_opcode_add_comp(uint32_t opcode,
1601                          uint8_t  comp_type)
1602 {
1603     return (opcode | ((comp_type << DMAE_COMMAND_C_DST_SHIFT) |
1604                       DMAE_COMMAND_C_TYPE_ENABLE));
1605 }
1606 
1607 uint32_t
1608 bxe_dmae_opcode_clr_src_reset(uint32_t opcode)
1609 {
1610     return (opcode & ~DMAE_COMMAND_SRC_RESET);
1611 }
1612 
1613 uint32_t
1614 bxe_dmae_opcode(struct bxe_softc *sc,
1615                 uint8_t          src_type,
1616                 uint8_t          dst_type,
1617                 uint8_t          with_comp,
1618                 uint8_t          comp_type)
1619 {
1620     uint32_t opcode = 0;
1621 
1622     opcode |= ((src_type << DMAE_COMMAND_SRC_SHIFT) |
1623                (dst_type << DMAE_COMMAND_DST_SHIFT));
1624 
1625     opcode |= (DMAE_COMMAND_SRC_RESET | DMAE_COMMAND_DST_RESET);
1626 
1627     opcode |= (SC_PORT(sc) ? DMAE_CMD_PORT_1 : DMAE_CMD_PORT_0);
1628 
1629     opcode |= ((SC_VN(sc) << DMAE_COMMAND_E1HVN_SHIFT) |
1630                (SC_VN(sc) << DMAE_COMMAND_DST_VN_SHIFT));
1631 
1632     opcode |= (DMAE_COM_SET_ERR << DMAE_COMMAND_ERR_POLICY_SHIFT);
1633 
1634 #ifdef __BIG_ENDIAN
1635     opcode |= DMAE_CMD_ENDIANITY_B_DW_SWAP;
1636 #else
1637     opcode |= DMAE_CMD_ENDIANITY_DW_SWAP;
1638 #endif
1639 
1640     if (with_comp) {
1641         opcode = bxe_dmae_opcode_add_comp(opcode, comp_type);
1642     }
1643 
1644     return (opcode);
1645 }
1646 
1647 static void
1648 bxe_prep_dmae_with_comp(struct bxe_softc    *sc,
1649                         struct dmae_command *dmae,
1650                         uint8_t             src_type,
1651                         uint8_t             dst_type)
1652 {
1653     memset(dmae, 0, sizeof(struct dmae_command));
1654 
1655     /* set the opcode */
1656     dmae->opcode = bxe_dmae_opcode(sc, src_type, dst_type,
1657                                    TRUE, DMAE_COMP_PCI);
1658 
1659     /* fill in the completion parameters */
1660     dmae->comp_addr_lo = U64_LO(BXE_SP_MAPPING(sc, wb_comp));
1661     dmae->comp_addr_hi = U64_HI(BXE_SP_MAPPING(sc, wb_comp));
1662     dmae->comp_val     = DMAE_COMP_VAL;
1663 }
1664 
1665 /* issue a DMAE command over the init channel and wait for completion */
1666 static int
1667 bxe_issue_dmae_with_comp(struct bxe_softc    *sc,
1668                          struct dmae_command *dmae)
1669 {
1670     uint32_t *wb_comp = BXE_SP(sc, wb_comp);
1671     int timeout = CHIP_REV_IS_SLOW(sc) ? 400000 : 4000;
1672 
1673     BXE_DMAE_LOCK(sc);
1674 
1675     /* reset completion */
1676     *wb_comp = 0;
1677 
1678     /* post the command on the channel used for initializations */
1679     bxe_post_dmae(sc, dmae, INIT_DMAE_C(sc));
1680 
1681     /* wait for completion */
1682     DELAY(5);
1683 
1684     while ((*wb_comp & ~DMAE_PCI_ERR_FLAG) != DMAE_COMP_VAL) {
1685         if (!timeout ||
1686             (sc->recovery_state != BXE_RECOVERY_DONE &&
1687              sc->recovery_state != BXE_RECOVERY_NIC_LOADING)) {
1688             BLOGE(sc, "DMAE timeout!\n");
1689             BXE_DMAE_UNLOCK(sc);
1690             return (DMAE_TIMEOUT);
1691         }
1692 
1693         timeout--;
1694         DELAY(50);
1695     }
1696 
1697     if (*wb_comp & DMAE_PCI_ERR_FLAG) {
1698         BLOGE(sc, "DMAE PCI error!\n");
1699         BXE_DMAE_UNLOCK(sc);
1700         return (DMAE_PCI_ERROR);
1701     }
1702 
1703     BXE_DMAE_UNLOCK(sc);
1704     return (0);
1705 }
1706 
1707 void
1708 bxe_read_dmae(struct bxe_softc *sc,
1709               uint32_t         src_addr,
1710               uint32_t         len32)
1711 {
1712     struct dmae_command dmae;
1713     uint32_t *data;
1714     int i, rc;
1715 
1716     DBASSERT(sc, (len32 <= 4), ("DMAE read length is %d", len32));
1717 
1718     if (!sc->dmae_ready) {
1719         data = BXE_SP(sc, wb_data[0]);
1720 
1721         for (i = 0; i < len32; i++) {
1722             data[i] = (CHIP_IS_E1(sc)) ?
1723                           bxe_reg_rd_ind(sc, (src_addr + (i * 4))) :
1724                           REG_RD(sc, (src_addr + (i * 4)));
1725         }
1726 
1727         return;
1728     }
1729 
1730     /* set opcode and fixed command fields */
1731     bxe_prep_dmae_with_comp(sc, &dmae, DMAE_SRC_GRC, DMAE_DST_PCI);
1732 
1733     /* fill in addresses and len */
1734     dmae.src_addr_lo = (src_addr >> 2); /* GRC addr has dword resolution */
1735     dmae.src_addr_hi = 0;
1736     dmae.dst_addr_lo = U64_LO(BXE_SP_MAPPING(sc, wb_data));
1737     dmae.dst_addr_hi = U64_HI(BXE_SP_MAPPING(sc, wb_data));
1738     dmae.len         = len32;
1739 
1740     /* issue the command and wait for completion */
1741     if ((rc = bxe_issue_dmae_with_comp(sc, &dmae)) != 0) {
1742         bxe_panic(sc, ("DMAE failed (%d)\n", rc));
1743     };
1744 }
1745 
1746 void
1747 bxe_write_dmae(struct bxe_softc *sc,
1748                bus_addr_t       dma_addr,
1749                uint32_t         dst_addr,
1750                uint32_t         len32)
1751 {
1752     struct dmae_command dmae;
1753     int rc;
1754 
1755     if (!sc->dmae_ready) {
1756         DBASSERT(sc, (len32 <= 4), ("DMAE not ready and length is %d", len32));
1757 
1758         if (CHIP_IS_E1(sc)) {
1759             ecore_init_ind_wr(sc, dst_addr, BXE_SP(sc, wb_data[0]), len32);
1760         } else {
1761             ecore_init_str_wr(sc, dst_addr, BXE_SP(sc, wb_data[0]), len32);
1762         }
1763 
1764         return;
1765     }
1766 
1767     /* set opcode and fixed command fields */
1768     bxe_prep_dmae_with_comp(sc, &dmae, DMAE_SRC_PCI, DMAE_DST_GRC);
1769 
1770     /* fill in addresses and len */
1771     dmae.src_addr_lo = U64_LO(dma_addr);
1772     dmae.src_addr_hi = U64_HI(dma_addr);
1773     dmae.dst_addr_lo = (dst_addr >> 2); /* GRC addr has dword resolution */
1774     dmae.dst_addr_hi = 0;
1775     dmae.len         = len32;
1776 
1777     /* issue the command and wait for completion */
1778     if ((rc = bxe_issue_dmae_with_comp(sc, &dmae)) != 0) {
1779         bxe_panic(sc, ("DMAE failed (%d)\n", rc));
1780     }
1781 }
1782 
1783 void
1784 bxe_write_dmae_phys_len(struct bxe_softc *sc,
1785                         bus_addr_t       phys_addr,
1786                         uint32_t         addr,
1787                         uint32_t         len)
1788 {
1789     int dmae_wr_max = DMAE_LEN32_WR_MAX(sc);
1790     int offset = 0;
1791 
1792     while (len > dmae_wr_max) {
1793         bxe_write_dmae(sc,
1794                        (phys_addr + offset), /* src DMA address */
1795                        (addr + offset),      /* dst GRC address */
1796                        dmae_wr_max);
1797         offset += (dmae_wr_max * 4);
1798         len -= dmae_wr_max;
1799     }
1800 
1801     bxe_write_dmae(sc,
1802                    (phys_addr + offset), /* src DMA address */
1803                    (addr + offset),      /* dst GRC address */
1804                    len);
1805 }
1806 
1807 void
1808 bxe_set_ctx_validation(struct bxe_softc   *sc,
1809                        struct eth_context *cxt,
1810                        uint32_t           cid)
1811 {
1812     /* ustorm cxt validation */
1813     cxt->ustorm_ag_context.cdu_usage =
1814         CDU_RSRVD_VALUE_TYPE_A(HW_CID(sc, cid),
1815             CDU_REGION_NUMBER_UCM_AG, ETH_CONNECTION_TYPE);
1816     /* xcontext validation */
1817     cxt->xstorm_ag_context.cdu_reserved =
1818         CDU_RSRVD_VALUE_TYPE_A(HW_CID(sc, cid),
1819             CDU_REGION_NUMBER_XCM_AG, ETH_CONNECTION_TYPE);
1820 }
1821 
1822 static void
1823 bxe_storm_memset_hc_timeout(struct bxe_softc *sc,
1824                             uint8_t          port,
1825                             uint8_t          fw_sb_id,
1826                             uint8_t          sb_index,
1827                             uint8_t          ticks)
1828 {
1829     uint32_t addr =
1830         (BAR_CSTRORM_INTMEM +
1831          CSTORM_STATUS_BLOCK_DATA_TIMEOUT_OFFSET(fw_sb_id, sb_index));
1832 
1833     REG_WR8(sc, addr, ticks);
1834 
1835     BLOGD(sc, DBG_LOAD,
1836           "port %d fw_sb_id %d sb_index %d ticks %d\n",
1837           port, fw_sb_id, sb_index, ticks);
1838 }
1839 
1840 static void
1841 bxe_storm_memset_hc_disable(struct bxe_softc *sc,
1842                             uint8_t          port,
1843                             uint16_t         fw_sb_id,
1844                             uint8_t          sb_index,
1845                             uint8_t          disable)
1846 {
1847     uint32_t enable_flag =
1848         (disable) ? 0 : (1 << HC_INDEX_DATA_HC_ENABLED_SHIFT);
1849     uint32_t addr =
1850         (BAR_CSTRORM_INTMEM +
1851          CSTORM_STATUS_BLOCK_DATA_FLAGS_OFFSET(fw_sb_id, sb_index));
1852     uint8_t flags;
1853 
1854     /* clear and set */
1855     flags = REG_RD8(sc, addr);
1856     flags &= ~HC_INDEX_DATA_HC_ENABLED;
1857     flags |= enable_flag;
1858     REG_WR8(sc, addr, flags);
1859 
1860     BLOGD(sc, DBG_LOAD,
1861           "port %d fw_sb_id %d sb_index %d disable %d\n",
1862           port, fw_sb_id, sb_index, disable);
1863 }
1864 
1865 void
1866 bxe_update_coalesce_sb_index(struct bxe_softc *sc,
1867                              uint8_t          fw_sb_id,
1868                              uint8_t          sb_index,
1869                              uint8_t          disable,
1870                              uint16_t         usec)
1871 {
1872     int port = SC_PORT(sc);
1873     uint8_t ticks = (usec / 4); /* XXX ??? */
1874 
1875     bxe_storm_memset_hc_timeout(sc, port, fw_sb_id, sb_index, ticks);
1876 
1877     disable = (disable) ? 1 : ((usec) ? 0 : 1);
1878     bxe_storm_memset_hc_disable(sc, port, fw_sb_id, sb_index, disable);
1879 }
1880 
1881 void
1882 elink_cb_udelay(struct bxe_softc *sc,
1883                 uint32_t         usecs)
1884 {
1885     DELAY(usecs);
1886 }
1887 
1888 uint32_t
1889 elink_cb_reg_read(struct bxe_softc *sc,
1890                   uint32_t         reg_addr)
1891 {
1892     return (REG_RD(sc, reg_addr));
1893 }
1894 
1895 void
1896 elink_cb_reg_write(struct bxe_softc *sc,
1897                    uint32_t         reg_addr,
1898                    uint32_t         val)
1899 {
1900     REG_WR(sc, reg_addr, val);
1901 }
1902 
1903 void
1904 elink_cb_reg_wb_write(struct bxe_softc *sc,
1905                       uint32_t         offset,
1906                       uint32_t         *wb_write,
1907                       uint16_t         len)
1908 {
1909     REG_WR_DMAE(sc, offset, wb_write, len);
1910 }
1911 
1912 void
1913 elink_cb_reg_wb_read(struct bxe_softc *sc,
1914                      uint32_t         offset,
1915                      uint32_t         *wb_write,
1916                      uint16_t         len)
1917 {
1918     REG_RD_DMAE(sc, offset, wb_write, len);
1919 }
1920 
1921 uint8_t
1922 elink_cb_path_id(struct bxe_softc *sc)
1923 {
1924     return (SC_PATH(sc));
1925 }
1926 
1927 void
1928 elink_cb_event_log(struct bxe_softc     *sc,
1929                    const elink_log_id_t elink_log_id,
1930                    ...)
1931 {
1932     /* XXX */
1933 #if 0
1934     //va_list ap;
1935     va_start(ap, elink_log_id);
1936     _XXX_(sc, lm_log_id, ap);
1937     va_end(ap);
1938 #endif
1939     BLOGI(sc, "ELINK EVENT LOG (%d)\n", elink_log_id);
1940 }
1941 
1942 static int
1943 bxe_set_spio(struct bxe_softc *sc,
1944              int              spio,
1945              uint32_t         mode)
1946 {
1947     uint32_t spio_reg;
1948 
1949     /* Only 2 SPIOs are configurable */
1950     if ((spio != MISC_SPIO_SPIO4) && (spio != MISC_SPIO_SPIO5)) {
1951         BLOGE(sc, "Invalid SPIO 0x%x\n", spio);
1952         return (-1);
1953     }
1954 
1955     bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_SPIO);
1956 
1957     /* read SPIO and mask except the float bits */
1958     spio_reg = (REG_RD(sc, MISC_REG_SPIO) & MISC_SPIO_FLOAT);
1959 
1960     switch (mode) {
1961     case MISC_SPIO_OUTPUT_LOW:
1962         BLOGD(sc, DBG_LOAD, "Set SPIO 0x%x -> output low\n", spio);
1963         /* clear FLOAT and set CLR */
1964         spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS);
1965         spio_reg |=  (spio << MISC_SPIO_CLR_POS);
1966         break;
1967 
1968     case MISC_SPIO_OUTPUT_HIGH:
1969         BLOGD(sc, DBG_LOAD, "Set SPIO 0x%x -> output high\n", spio);
1970         /* clear FLOAT and set SET */
1971         spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS);
1972         spio_reg |=  (spio << MISC_SPIO_SET_POS);
1973         break;
1974 
1975     case MISC_SPIO_INPUT_HI_Z:
1976         BLOGD(sc, DBG_LOAD, "Set SPIO 0x%x -> input\n", spio);
1977         /* set FLOAT */
1978         spio_reg |= (spio << MISC_SPIO_FLOAT_POS);
1979         break;
1980 
1981     default:
1982         break;
1983     }
1984 
1985     REG_WR(sc, MISC_REG_SPIO, spio_reg);
1986     bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_SPIO);
1987 
1988     return (0);
1989 }
1990 
1991 static int
1992 bxe_gpio_read(struct bxe_softc *sc,
1993               int              gpio_num,
1994               uint8_t          port)
1995 {
1996     /* The GPIO should be swapped if swap register is set and active */
1997     int gpio_port = ((REG_RD(sc, NIG_REG_PORT_SWAP) &&
1998                       REG_RD(sc, NIG_REG_STRAP_OVERRIDE)) ^ port);
1999     int gpio_shift = (gpio_num +
2000                       (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0));
2001     uint32_t gpio_mask = (1 << gpio_shift);
2002     uint32_t gpio_reg;
2003 
2004     if (gpio_num > MISC_REGISTERS_GPIO_3) {
2005         BLOGE(sc, "Invalid GPIO %d\n", gpio_num);
2006         return (-1);
2007     }
2008 
2009     /* read GPIO value */
2010     gpio_reg = REG_RD(sc, MISC_REG_GPIO);
2011 
2012     /* get the requested pin value */
2013     return ((gpio_reg & gpio_mask) == gpio_mask) ? 1 : 0;
2014 }
2015 
2016 static int
2017 bxe_gpio_write(struct bxe_softc *sc,
2018                int              gpio_num,
2019                uint32_t         mode,
2020                uint8_t          port)
2021 {
2022     /* The GPIO should be swapped if swap register is set and active */
2023     int gpio_port = ((REG_RD(sc, NIG_REG_PORT_SWAP) &&
2024                       REG_RD(sc, NIG_REG_STRAP_OVERRIDE)) ^ port);
2025     int gpio_shift = (gpio_num +
2026                       (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0));
2027     uint32_t gpio_mask = (1 << gpio_shift);
2028     uint32_t gpio_reg;
2029 
2030     if (gpio_num > MISC_REGISTERS_GPIO_3) {
2031         BLOGE(sc, "Invalid GPIO %d\n", gpio_num);
2032         return (-1);
2033     }
2034 
2035     bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
2036 
2037     /* read GPIO and mask except the float bits */
2038     gpio_reg = (REG_RD(sc, MISC_REG_GPIO) & MISC_REGISTERS_GPIO_FLOAT);
2039 
2040     switch (mode) {
2041     case MISC_REGISTERS_GPIO_OUTPUT_LOW:
2042         BLOGD(sc, DBG_PHY,
2043               "Set GPIO %d (shift %d) -> output low\n",
2044               gpio_num, gpio_shift);
2045         /* clear FLOAT and set CLR */
2046         gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
2047         gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_CLR_POS);
2048         break;
2049 
2050     case MISC_REGISTERS_GPIO_OUTPUT_HIGH:
2051         BLOGD(sc, DBG_PHY,
2052               "Set GPIO %d (shift %d) -> output high\n",
2053               gpio_num, gpio_shift);
2054         /* clear FLOAT and set SET */
2055         gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
2056         gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_SET_POS);
2057         break;
2058 
2059     case MISC_REGISTERS_GPIO_INPUT_HI_Z:
2060         BLOGD(sc, DBG_PHY,
2061               "Set GPIO %d (shift %d) -> input\n",
2062               gpio_num, gpio_shift);
2063         /* set FLOAT */
2064         gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
2065         break;
2066 
2067     default:
2068         break;
2069     }
2070 
2071     REG_WR(sc, MISC_REG_GPIO, gpio_reg);
2072     bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
2073 
2074     return (0);
2075 }
2076 
2077 static int
2078 bxe_gpio_mult_write(struct bxe_softc *sc,
2079                     uint8_t          pins,
2080                     uint32_t         mode)
2081 {
2082     uint32_t gpio_reg;
2083 
2084     /* any port swapping should be handled by caller */
2085 
2086     bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
2087 
2088     /* read GPIO and mask except the float bits */
2089     gpio_reg = REG_RD(sc, MISC_REG_GPIO);
2090     gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_FLOAT_POS);
2091     gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_CLR_POS);
2092     gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_SET_POS);
2093 
2094     switch (mode) {
2095     case MISC_REGISTERS_GPIO_OUTPUT_LOW:
2096         BLOGD(sc, DBG_PHY, "Set GPIO 0x%x -> output low\n", pins);
2097         /* set CLR */
2098         gpio_reg |= (pins << MISC_REGISTERS_GPIO_CLR_POS);
2099         break;
2100 
2101     case MISC_REGISTERS_GPIO_OUTPUT_HIGH:
2102         BLOGD(sc, DBG_PHY, "Set GPIO 0x%x -> output high\n", pins);
2103         /* set SET */
2104         gpio_reg |= (pins << MISC_REGISTERS_GPIO_SET_POS);
2105         break;
2106 
2107     case MISC_REGISTERS_GPIO_INPUT_HI_Z:
2108         BLOGD(sc, DBG_PHY, "Set GPIO 0x%x -> input\n", pins);
2109         /* set FLOAT */
2110         gpio_reg |= (pins << MISC_REGISTERS_GPIO_FLOAT_POS);
2111         break;
2112 
2113     default:
2114         BLOGE(sc, "Invalid GPIO mode assignment %d\n", mode);
2115         bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
2116         return (-1);
2117     }
2118 
2119     REG_WR(sc, MISC_REG_GPIO, gpio_reg);
2120     bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
2121 
2122     return (0);
2123 }
2124 
2125 static int
2126 bxe_gpio_int_write(struct bxe_softc *sc,
2127                    int              gpio_num,
2128                    uint32_t         mode,
2129                    uint8_t          port)
2130 {
2131     /* The GPIO should be swapped if swap register is set and active */
2132     int gpio_port = ((REG_RD(sc, NIG_REG_PORT_SWAP) &&
2133                       REG_RD(sc, NIG_REG_STRAP_OVERRIDE)) ^ port);
2134     int gpio_shift = (gpio_num +
2135                       (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0));
2136     uint32_t gpio_mask = (1 << gpio_shift);
2137     uint32_t gpio_reg;
2138 
2139     if (gpio_num > MISC_REGISTERS_GPIO_3) {
2140         BLOGE(sc, "Invalid GPIO %d\n", gpio_num);
2141         return (-1);
2142     }
2143 
2144     bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
2145 
2146     /* read GPIO int */
2147     gpio_reg = REG_RD(sc, MISC_REG_GPIO_INT);
2148 
2149     switch (mode) {
2150     case MISC_REGISTERS_GPIO_INT_OUTPUT_CLR:
2151         BLOGD(sc, DBG_PHY,
2152               "Clear GPIO INT %d (shift %d) -> output low\n",
2153               gpio_num, gpio_shift);
2154         /* clear SET and set CLR */
2155         gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS);
2156         gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS);
2157         break;
2158 
2159     case MISC_REGISTERS_GPIO_INT_OUTPUT_SET:
2160         BLOGD(sc, DBG_PHY,
2161               "Set GPIO INT %d (shift %d) -> output high\n",
2162               gpio_num, gpio_shift);
2163         /* clear CLR and set SET */
2164         gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS);
2165         gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS);
2166         break;
2167 
2168     default:
2169         break;
2170     }
2171 
2172     REG_WR(sc, MISC_REG_GPIO_INT, gpio_reg);
2173     bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
2174 
2175     return (0);
2176 }
2177 
2178 uint32_t
2179 elink_cb_gpio_read(struct bxe_softc *sc,
2180                    uint16_t         gpio_num,
2181                    uint8_t          port)
2182 {
2183     return (bxe_gpio_read(sc, gpio_num, port));
2184 }
2185 
2186 uint8_t
2187 elink_cb_gpio_write(struct bxe_softc *sc,
2188                     uint16_t         gpio_num,
2189                     uint8_t          mode, /* 0=low 1=high */
2190                     uint8_t          port)
2191 {
2192     return (bxe_gpio_write(sc, gpio_num, mode, port));
2193 }
2194 
2195 uint8_t
2196 elink_cb_gpio_mult_write(struct bxe_softc *sc,
2197                          uint8_t          pins,
2198                          uint8_t          mode) /* 0=low 1=high */
2199 {
2200     return (bxe_gpio_mult_write(sc, pins, mode));
2201 }
2202 
2203 uint8_t
2204 elink_cb_gpio_int_write(struct bxe_softc *sc,
2205                         uint16_t         gpio_num,
2206                         uint8_t          mode, /* 0=low 1=high */
2207                         uint8_t          port)
2208 {
2209     return (bxe_gpio_int_write(sc, gpio_num, mode, port));
2210 }
2211 
2212 void
2213 elink_cb_notify_link_changed(struct bxe_softc *sc)
2214 {
2215     REG_WR(sc, (MISC_REG_AEU_GENERAL_ATTN_12 +
2216                 (SC_FUNC(sc) * sizeof(uint32_t))), 1);
2217 }
2218 
2219 /* send the MCP a request, block until there is a reply */
2220 uint32_t
2221 elink_cb_fw_command(struct bxe_softc *sc,
2222                     uint32_t         command,
2223                     uint32_t         param)
2224 {
2225     int mb_idx = SC_FW_MB_IDX(sc);
2226     uint32_t seq;
2227     uint32_t rc = 0;
2228     uint32_t cnt = 1;
2229     uint8_t delay = CHIP_REV_IS_SLOW(sc) ? 100 : 10;
2230 
2231     BXE_FWMB_LOCK(sc);
2232 
2233     seq = ++sc->fw_seq;
2234     SHMEM_WR(sc, func_mb[mb_idx].drv_mb_param, param);
2235     SHMEM_WR(sc, func_mb[mb_idx].drv_mb_header, (command | seq));
2236 
2237     BLOGD(sc, DBG_PHY,
2238           "wrote command 0x%08x to FW MB param 0x%08x\n",
2239           (command | seq), param);
2240 
2241     /* Let the FW do it's magic. GIve it up to 5 seconds... */
2242     do {
2243         DELAY(delay * 1000);
2244         rc = SHMEM_RD(sc, func_mb[mb_idx].fw_mb_header);
2245     } while ((seq != (rc & FW_MSG_SEQ_NUMBER_MASK)) && (cnt++ < 500));
2246 
2247     BLOGD(sc, DBG_PHY,
2248           "[after %d ms] read 0x%x seq 0x%x from FW MB\n",
2249           cnt*delay, rc, seq);
2250 
2251     /* is this a reply to our command? */
2252     if (seq == (rc & FW_MSG_SEQ_NUMBER_MASK)) {
2253         rc &= FW_MSG_CODE_MASK;
2254     } else {
2255         /* Ruh-roh! */
2256         BLOGE(sc, "FW failed to respond!\n");
2257         // XXX bxe_fw_dump(sc);
2258         rc = 0;
2259     }
2260 
2261     BXE_FWMB_UNLOCK(sc);
2262     return (rc);
2263 }
2264 
2265 static uint32_t
2266 bxe_fw_command(struct bxe_softc *sc,
2267                uint32_t         command,
2268                uint32_t         param)
2269 {
2270     return (elink_cb_fw_command(sc, command, param));
2271 }
2272 
2273 static void
2274 __storm_memset_dma_mapping(struct bxe_softc *sc,
2275                            uint32_t         addr,
2276                            bus_addr_t       mapping)
2277 {
2278     REG_WR(sc, addr, U64_LO(mapping));
2279     REG_WR(sc, (addr + 4), U64_HI(mapping));
2280 }
2281 
2282 static void
2283 storm_memset_spq_addr(struct bxe_softc *sc,
2284                       bus_addr_t       mapping,
2285                       uint16_t         abs_fid)
2286 {
2287     uint32_t addr = (XSEM_REG_FAST_MEMORY +
2288                      XSTORM_SPQ_PAGE_BASE_OFFSET(abs_fid));
2289     __storm_memset_dma_mapping(sc, addr, mapping);
2290 }
2291 
2292 static void
2293 storm_memset_vf_to_pf(struct bxe_softc *sc,
2294                       uint16_t         abs_fid,
2295                       uint16_t         pf_id)
2296 {
2297     REG_WR8(sc, (BAR_XSTRORM_INTMEM + XSTORM_VF_TO_PF_OFFSET(abs_fid)), pf_id);
2298     REG_WR8(sc, (BAR_CSTRORM_INTMEM + CSTORM_VF_TO_PF_OFFSET(abs_fid)), pf_id);
2299     REG_WR8(sc, (BAR_TSTRORM_INTMEM + TSTORM_VF_TO_PF_OFFSET(abs_fid)), pf_id);
2300     REG_WR8(sc, (BAR_USTRORM_INTMEM + USTORM_VF_TO_PF_OFFSET(abs_fid)), pf_id);
2301 }
2302 
2303 static void
2304 storm_memset_func_en(struct bxe_softc *sc,
2305                      uint16_t         abs_fid,
2306                      uint8_t          enable)
2307 {
2308     REG_WR8(sc, (BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(abs_fid)), enable);
2309     REG_WR8(sc, (BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(abs_fid)), enable);
2310     REG_WR8(sc, (BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(abs_fid)), enable);
2311     REG_WR8(sc, (BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(abs_fid)), enable);
2312 }
2313 
2314 static void
2315 storm_memset_eq_data(struct bxe_softc       *sc,
2316                      struct event_ring_data *eq_data,
2317                      uint16_t               pfid)
2318 {
2319     uint32_t addr;
2320     size_t size;
2321 
2322     addr = (BAR_CSTRORM_INTMEM + CSTORM_EVENT_RING_DATA_OFFSET(pfid));
2323     size = sizeof(struct event_ring_data);
2324     ecore_storm_memset_struct(sc, addr, size, (uint32_t *)eq_data);
2325 }
2326 
2327 static void
2328 storm_memset_eq_prod(struct bxe_softc *sc,
2329                      uint16_t         eq_prod,
2330                      uint16_t         pfid)
2331 {
2332     uint32_t addr = (BAR_CSTRORM_INTMEM +
2333                      CSTORM_EVENT_RING_PROD_OFFSET(pfid));
2334     REG_WR16(sc, addr, eq_prod);
2335 }
2336 
2337 /*
2338  * Post a slowpath command.
2339  *
2340  * A slowpath command is used to propogate a configuration change through
2341  * the controller in a controlled manner, allowing each STORM processor and
2342  * other H/W blocks to phase in the change.  The commands sent on the
2343  * slowpath are referred to as ramrods.  Depending on the ramrod used the
2344  * completion of the ramrod will occur in different ways.  Here's a
2345  * breakdown of ramrods and how they complete:
2346  *
2347  * RAMROD_CMD_ID_ETH_PORT_SETUP
2348  *   Used to setup the leading connection on a port.  Completes on the
2349  *   Receive Completion Queue (RCQ) of that port (typically fp[0]).
2350  *
2351  * RAMROD_CMD_ID_ETH_CLIENT_SETUP
2352  *   Used to setup an additional connection on a port.  Completes on the
2353  *   RCQ of the multi-queue/RSS connection being initialized.
2354  *
2355  * RAMROD_CMD_ID_ETH_STAT_QUERY
2356  *   Used to force the storm processors to update the statistics database
2357  *   in host memory.  This ramrod is send on the leading connection CID and
2358  *   completes as an index increment of the CSTORM on the default status
2359  *   block.
2360  *
2361  * RAMROD_CMD_ID_ETH_UPDATE
2362  *   Used to update the state of the leading connection, usually to udpate
2363  *   the RSS indirection table.  Completes on the RCQ of the leading
2364  *   connection. (Not currently used under FreeBSD until OS support becomes
2365  *   available.)
2366  *
2367  * RAMROD_CMD_ID_ETH_HALT
2368  *   Used when tearing down a connection prior to driver unload.  Completes
2369  *   on the RCQ of the multi-queue/RSS connection being torn down.  Don't
2370  *   use this on the leading connection.
2371  *
2372  * RAMROD_CMD_ID_ETH_SET_MAC
2373  *   Sets the Unicast/Broadcast/Multicast used by the port.  Completes on
2374  *   the RCQ of the leading connection.
2375  *
2376  * RAMROD_CMD_ID_ETH_CFC_DEL
2377  *   Used when tearing down a conneciton prior to driver unload.  Completes
2378  *   on the RCQ of the leading connection (since the current connection
2379  *   has been completely removed from controller memory).
2380  *
2381  * RAMROD_CMD_ID_ETH_PORT_DEL
2382  *   Used to tear down the leading connection prior to driver unload,
2383  *   typically fp[0].  Completes as an index increment of the CSTORM on the
2384  *   default status block.
2385  *
2386  * RAMROD_CMD_ID_ETH_FORWARD_SETUP
2387  *   Used for connection offload.  Completes on the RCQ of the multi-queue
2388  *   RSS connection that is being offloaded.  (Not currently used under
2389  *   FreeBSD.)
2390  *
2391  * There can only be one command pending per function.
2392  *
2393  * Returns:
2394  *   0 = Success, !0 = Failure.
2395  */
2396 
2397 /* must be called under the spq lock */
2398 static inline
2399 struct eth_spe *bxe_sp_get_next(struct bxe_softc *sc)
2400 {
2401     struct eth_spe *next_spe = sc->spq_prod_bd;
2402 
2403     if (sc->spq_prod_bd == sc->spq_last_bd) {
2404         /* wrap back to the first eth_spq */
2405         sc->spq_prod_bd = sc->spq;
2406         sc->spq_prod_idx = 0;
2407     } else {
2408         sc->spq_prod_bd++;
2409         sc->spq_prod_idx++;
2410     }
2411 
2412     return (next_spe);
2413 }
2414 
2415 /* must be called under the spq lock */
2416 static inline
2417 void bxe_sp_prod_update(struct bxe_softc *sc)
2418 {
2419     int func = SC_FUNC(sc);
2420 
2421     /*
2422      * Make sure that BD data is updated before writing the producer.
2423      * BD data is written to the memory, the producer is read from the
2424      * memory, thus we need a full memory barrier to ensure the ordering.
2425      */
2426     mb();
2427 
2428     REG_WR16(sc, (BAR_XSTRORM_INTMEM + XSTORM_SPQ_PROD_OFFSET(func)),
2429              sc->spq_prod_idx);
2430 
2431     bus_space_barrier(sc->bar[BAR0].tag, sc->bar[BAR0].handle, 0, 0,
2432                       BUS_SPACE_BARRIER_WRITE);
2433 }
2434 
2435 /**
2436  * bxe_is_contextless_ramrod - check if the current command ends on EQ
2437  *
2438  * @cmd:      command to check
2439  * @cmd_type: command type
2440  */
2441 static inline
2442 int bxe_is_contextless_ramrod(int cmd,
2443                               int cmd_type)
2444 {
2445     if ((cmd_type == NONE_CONNECTION_TYPE) ||
2446         (cmd == RAMROD_CMD_ID_ETH_FORWARD_SETUP) ||
2447         (cmd == RAMROD_CMD_ID_ETH_CLASSIFICATION_RULES) ||
2448         (cmd == RAMROD_CMD_ID_ETH_FILTER_RULES) ||
2449         (cmd == RAMROD_CMD_ID_ETH_MULTICAST_RULES) ||
2450         (cmd == RAMROD_CMD_ID_ETH_SET_MAC) ||
2451         (cmd == RAMROD_CMD_ID_ETH_RSS_UPDATE)) {
2452         return (TRUE);
2453     } else {
2454         return (FALSE);
2455     }
2456 }
2457 
2458 /**
2459  * bxe_sp_post - place a single command on an SP ring
2460  *
2461  * @sc:         driver handle
2462  * @command:    command to place (e.g. SETUP, FILTER_RULES, etc.)
2463  * @cid:        SW CID the command is related to
2464  * @data_hi:    command private data address (high 32 bits)
2465  * @data_lo:    command private data address (low 32 bits)
2466  * @cmd_type:   command type (e.g. NONE, ETH)
2467  *
2468  * SP data is handled as if it's always an address pair, thus data fields are
2469  * not swapped to little endian in upper functions. Instead this function swaps
2470  * data as if it's two uint32 fields.
2471  */
2472 int
2473 bxe_sp_post(struct bxe_softc *sc,
2474             int              command,
2475             int              cid,
2476             uint32_t         data_hi,
2477             uint32_t         data_lo,
2478             int              cmd_type)
2479 {
2480     struct eth_spe *spe;
2481     uint16_t type;
2482     int common;
2483 
2484     common = bxe_is_contextless_ramrod(command, cmd_type);
2485 
2486     BXE_SP_LOCK(sc);
2487 
2488     if (common) {
2489         if (!atomic_load_acq_long(&sc->eq_spq_left)) {
2490             BLOGE(sc, "EQ ring is full!\n");
2491             BXE_SP_UNLOCK(sc);
2492             return (-1);
2493         }
2494     } else {
2495         if (!atomic_load_acq_long(&sc->cq_spq_left)) {
2496             BLOGE(sc, "SPQ ring is full!\n");
2497             BXE_SP_UNLOCK(sc);
2498             return (-1);
2499         }
2500     }
2501 
2502     spe = bxe_sp_get_next(sc);
2503 
2504     /* CID needs port number to be encoded int it */
2505     spe->hdr.conn_and_cmd_data =
2506         htole32((command << SPE_HDR_CMD_ID_SHIFT) | HW_CID(sc, cid));
2507 
2508     type = (cmd_type << SPE_HDR_CONN_TYPE_SHIFT) & SPE_HDR_CONN_TYPE;
2509 
2510     /* TBD: Check if it works for VFs */
2511     type |= ((SC_FUNC(sc) << SPE_HDR_FUNCTION_ID_SHIFT) &
2512              SPE_HDR_FUNCTION_ID);
2513 
2514     spe->hdr.type = htole16(type);
2515 
2516     spe->data.update_data_addr.hi = htole32(data_hi);
2517     spe->data.update_data_addr.lo = htole32(data_lo);
2518 
2519     /*
2520      * It's ok if the actual decrement is issued towards the memory
2521      * somewhere between the lock and unlock. Thus no more explict
2522      * memory barrier is needed.
2523      */
2524     if (common) {
2525         atomic_subtract_acq_long(&sc->eq_spq_left, 1);
2526     } else {
2527         atomic_subtract_acq_long(&sc->cq_spq_left, 1);
2528     }
2529 
2530     BLOGD(sc, DBG_SP, "SPQE -> %#jx\n", (uintmax_t)sc->spq_dma.paddr);
2531     BLOGD(sc, DBG_SP, "FUNC_RDATA -> %p / %#jx\n",
2532           BXE_SP(sc, func_rdata), (uintmax_t)BXE_SP_MAPPING(sc, func_rdata));
2533     BLOGD(sc, DBG_SP,
2534           "SPQE[%x] (%x:%x) (cmd, common?) (%d,%d) hw_cid %x data (%x:%x) type(0x%x) left (CQ, EQ) (%lx,%lx)\n",
2535           sc->spq_prod_idx,
2536           (uint32_t)U64_HI(sc->spq_dma.paddr),
2537           (uint32_t)(U64_LO(sc->spq_dma.paddr) + (uint8_t *)sc->spq_prod_bd - (uint8_t *)sc->spq),
2538           command,
2539           common,
2540           HW_CID(sc, cid),
2541           data_hi,
2542           data_lo,
2543           type,
2544           atomic_load_acq_long(&sc->cq_spq_left),
2545           atomic_load_acq_long(&sc->eq_spq_left));
2546 
2547     bxe_sp_prod_update(sc);
2548 
2549     BXE_SP_UNLOCK(sc);
2550     return (0);
2551 }
2552 
2553 /**
2554  * bxe_debug_print_ind_table - prints the indirection table configuration.
2555  *
2556  * @sc: driver hanlde
2557  * @p:  pointer to rss configuration
2558  */
2559 #if 0
2560 static void
2561 bxe_debug_print_ind_table(struct bxe_softc               *sc,
2562                           struct ecore_config_rss_params *p)
2563 {
2564     int i;
2565 
2566     BLOGD(sc, DBG_LOAD, "Setting indirection table to:\n");
2567     BLOGD(sc, DBG_LOAD, "    0x0000: ");
2568     for (i = 0; i < T_ETH_INDIRECTION_TABLE_SIZE; i++) {
2569         BLOGD(sc, DBG_LOAD, "0x%02x ", p->ind_table[i]);
2570 
2571         /* Print 4 bytes in a line */
2572         if ((i + 1 < T_ETH_INDIRECTION_TABLE_SIZE) &&
2573             (((i + 1) & 0x3) == 0)) {
2574             BLOGD(sc, DBG_LOAD, "\n");
2575             BLOGD(sc, DBG_LOAD, "0x%04x: ", i + 1);
2576         }
2577     }
2578 
2579     BLOGD(sc, DBG_LOAD, "\n");
2580 }
2581 #endif
2582 
2583 /*
2584  * FreeBSD Device probe function.
2585  *
2586  * Compares the device found to the driver's list of supported devices and
2587  * reports back to the bsd loader whether this is the right driver for the device.
2588  * This is the driver entry function called from the "kldload" command.
2589  *
2590  * Returns:
2591  *   BUS_PROBE_DEFAULT on success, positive value on failure.
2592  */
2593 static int
2594 bxe_probe(device_t dev)
2595 {
2596     struct bxe_softc *sc;
2597     struct bxe_device_type *t;
2598     char *descbuf;
2599     uint16_t did, sdid, svid, vid;
2600 
2601     /* Find our device structure */
2602     sc = device_get_softc(dev);
2603     sc->dev = dev;
2604     t = bxe_devs;
2605 
2606     /* Get the data for the device to be probed. */
2607     vid  = pci_get_vendor(dev);
2608     did  = pci_get_device(dev);
2609     svid = pci_get_subvendor(dev);
2610     sdid = pci_get_subdevice(dev);
2611 
2612     BLOGD(sc, DBG_LOAD,
2613           "%s(); VID = 0x%04X, DID = 0x%04X, SVID = 0x%04X, "
2614           "SDID = 0x%04X\n", __FUNCTION__, vid, did, svid, sdid);
2615 
2616     /* Look through the list of known devices for a match. */
2617     while (t->bxe_name != NULL) {
2618         if ((vid == t->bxe_vid) && (did == t->bxe_did) &&
2619             ((svid == t->bxe_svid) || (t->bxe_svid == PCI_ANY_ID)) &&
2620             ((sdid == t->bxe_sdid) || (t->bxe_sdid == PCI_ANY_ID))) {
2621             descbuf = malloc(BXE_DEVDESC_MAX, M_TEMP, M_NOWAIT);
2622             if (descbuf == NULL)
2623                 return (ENOMEM);
2624 
2625             /* Print out the device identity. */
2626             snprintf(descbuf, BXE_DEVDESC_MAX,
2627                      "%s (%c%d) BXE v:%s\n", t->bxe_name,
2628                      (((pci_read_config(dev, PCIR_REVID, 4) &
2629                         0xf0) >> 4) + 'A'),
2630                      (pci_read_config(dev, PCIR_REVID, 4) & 0xf),
2631                      BXE_DRIVER_VERSION);
2632 
2633             device_set_desc_copy(dev, descbuf);
2634             free(descbuf, M_TEMP);
2635             return (BUS_PROBE_DEFAULT);
2636         }
2637         t++;
2638     }
2639 
2640     return (ENXIO);
2641 }
2642 
2643 static void
2644 bxe_init_mutexes(struct bxe_softc *sc)
2645 {
2646 #ifdef BXE_CORE_LOCK_SX
2647     snprintf(sc->core_sx_name, sizeof(sc->core_sx_name),
2648              "bxe%d_core_lock", sc->unit);
2649     sx_init(&sc->core_sx, sc->core_sx_name);
2650 #else
2651     snprintf(sc->core_mtx_name, sizeof(sc->core_mtx_name),
2652              "bxe%d_core_lock", sc->unit);
2653     mtx_init(&sc->core_mtx, sc->core_mtx_name, NULL, MTX_DEF);
2654 #endif
2655 
2656     snprintf(sc->sp_mtx_name, sizeof(sc->sp_mtx_name),
2657              "bxe%d_sp_lock", sc->unit);
2658     mtx_init(&sc->sp_mtx, sc->sp_mtx_name, NULL, MTX_DEF);
2659 
2660     snprintf(sc->dmae_mtx_name, sizeof(sc->dmae_mtx_name),
2661              "bxe%d_dmae_lock", sc->unit);
2662     mtx_init(&sc->dmae_mtx, sc->dmae_mtx_name, NULL, MTX_DEF);
2663 
2664     snprintf(sc->port.phy_mtx_name, sizeof(sc->port.phy_mtx_name),
2665              "bxe%d_phy_lock", sc->unit);
2666     mtx_init(&sc->port.phy_mtx, sc->port.phy_mtx_name, NULL, MTX_DEF);
2667 
2668     snprintf(sc->fwmb_mtx_name, sizeof(sc->fwmb_mtx_name),
2669              "bxe%d_fwmb_lock", sc->unit);
2670     mtx_init(&sc->fwmb_mtx, sc->fwmb_mtx_name, NULL, MTX_DEF);
2671 
2672     snprintf(sc->print_mtx_name, sizeof(sc->print_mtx_name),
2673              "bxe%d_print_lock", sc->unit);
2674     mtx_init(&(sc->print_mtx), sc->print_mtx_name, NULL, MTX_DEF);
2675 
2676     snprintf(sc->stats_mtx_name, sizeof(sc->stats_mtx_name),
2677              "bxe%d_stats_lock", sc->unit);
2678     mtx_init(&(sc->stats_mtx), sc->stats_mtx_name, NULL, MTX_DEF);
2679 
2680     snprintf(sc->mcast_mtx_name, sizeof(sc->mcast_mtx_name),
2681              "bxe%d_mcast_lock", sc->unit);
2682     mtx_init(&(sc->mcast_mtx), sc->mcast_mtx_name, NULL, MTX_DEF);
2683 }
2684 
2685 static void
2686 bxe_release_mutexes(struct bxe_softc *sc)
2687 {
2688 #ifdef BXE_CORE_LOCK_SX
2689     sx_destroy(&sc->core_sx);
2690 #else
2691     if (mtx_initialized(&sc->core_mtx)) {
2692         mtx_destroy(&sc->core_mtx);
2693     }
2694 #endif
2695 
2696     if (mtx_initialized(&sc->sp_mtx)) {
2697         mtx_destroy(&sc->sp_mtx);
2698     }
2699 
2700     if (mtx_initialized(&sc->dmae_mtx)) {
2701         mtx_destroy(&sc->dmae_mtx);
2702     }
2703 
2704     if (mtx_initialized(&sc->port.phy_mtx)) {
2705         mtx_destroy(&sc->port.phy_mtx);
2706     }
2707 
2708     if (mtx_initialized(&sc->fwmb_mtx)) {
2709         mtx_destroy(&sc->fwmb_mtx);
2710     }
2711 
2712     if (mtx_initialized(&sc->print_mtx)) {
2713         mtx_destroy(&sc->print_mtx);
2714     }
2715 
2716     if (mtx_initialized(&sc->stats_mtx)) {
2717         mtx_destroy(&sc->stats_mtx);
2718     }
2719 
2720     if (mtx_initialized(&sc->mcast_mtx)) {
2721         mtx_destroy(&sc->mcast_mtx);
2722     }
2723 }
2724 
2725 static void
2726 bxe_tx_disable(struct bxe_softc* sc)
2727 {
2728     if_t ifp = sc->ifp;
2729 
2730     /* tell the stack the driver is stopped and TX queue is full */
2731     if (ifp !=  NULL) {
2732         if_setdrvflags(ifp, 0);
2733     }
2734 }
2735 
2736 static void
2737 bxe_drv_pulse(struct bxe_softc *sc)
2738 {
2739     SHMEM_WR(sc, func_mb[SC_FW_MB_IDX(sc)].drv_pulse_mb,
2740              sc->fw_drv_pulse_wr_seq);
2741 }
2742 
2743 static inline uint16_t
2744 bxe_tx_avail(struct bxe_softc *sc,
2745              struct bxe_fastpath *fp)
2746 {
2747     int16_t  used;
2748     uint16_t prod;
2749     uint16_t cons;
2750 
2751     prod = fp->tx_bd_prod;
2752     cons = fp->tx_bd_cons;
2753 
2754     used = SUB_S16(prod, cons);
2755 
2756 #if 0
2757     KASSERT((used < 0), ("used tx bds < 0"));
2758     KASSERT((used > sc->tx_ring_size), ("used tx bds > tx_ring_size"));
2759     KASSERT(((sc->tx_ring_size - used) > MAX_TX_AVAIL),
2760             ("invalid number of tx bds used"));
2761 #endif
2762 
2763     return (int16_t)(sc->tx_ring_size) - used;
2764 }
2765 
2766 static inline int
2767 bxe_tx_queue_has_work(struct bxe_fastpath *fp)
2768 {
2769     uint16_t hw_cons;
2770 
2771     mb(); /* status block fields can change */
2772     hw_cons = le16toh(*fp->tx_cons_sb);
2773     return (hw_cons != fp->tx_pkt_cons);
2774 }
2775 
2776 static inline uint8_t
2777 bxe_has_tx_work(struct bxe_fastpath *fp)
2778 {
2779     /* expand this for multi-cos if ever supported */
2780     return (bxe_tx_queue_has_work(fp)) ? TRUE : FALSE;
2781 }
2782 
2783 static inline int
2784 bxe_has_rx_work(struct bxe_fastpath *fp)
2785 {
2786     uint16_t rx_cq_cons_sb;
2787 
2788     mb(); /* status block fields can change */
2789     rx_cq_cons_sb = le16toh(*fp->rx_cq_cons_sb);
2790     if ((rx_cq_cons_sb & RCQ_MAX) == RCQ_MAX)
2791         rx_cq_cons_sb++;
2792     return (fp->rx_cq_cons != rx_cq_cons_sb);
2793 }
2794 
2795 static void
2796 bxe_sp_event(struct bxe_softc    *sc,
2797              struct bxe_fastpath *fp,
2798              union eth_rx_cqe    *rr_cqe)
2799 {
2800     int cid = SW_CID(rr_cqe->ramrod_cqe.conn_and_cmd_data);
2801     int command = CQE_CMD(rr_cqe->ramrod_cqe.conn_and_cmd_data);
2802     enum ecore_queue_cmd drv_cmd = ECORE_Q_CMD_MAX;
2803     struct ecore_queue_sp_obj *q_obj = &BXE_SP_OBJ(sc, fp).q_obj;
2804 
2805     BLOGD(sc, DBG_SP, "fp=%d cid=%d got ramrod #%d state is %x type is %d\n",
2806           fp->index, cid, command, sc->state, rr_cqe->ramrod_cqe.ramrod_type);
2807 
2808 #if 0
2809     /*
2810      * If cid is within VF range, replace the slowpath object with the
2811      * one corresponding to this VF
2812      */
2813     if ((cid >= BXE_FIRST_VF_CID) && (cid < BXE_FIRST_VF_CID + BXE_VF_CIDS)) {
2814         bxe_iov_set_queue_sp_obj(sc, cid, &q_obj);
2815     }
2816 #endif
2817 
2818     switch (command) {
2819     case (RAMROD_CMD_ID_ETH_CLIENT_UPDATE):
2820         BLOGD(sc, DBG_SP, "got UPDATE ramrod. CID %d\n", cid);
2821         drv_cmd = ECORE_Q_CMD_UPDATE;
2822         break;
2823 
2824     case (RAMROD_CMD_ID_ETH_CLIENT_SETUP):
2825         BLOGD(sc, DBG_SP, "got MULTI[%d] setup ramrod\n", cid);
2826         drv_cmd = ECORE_Q_CMD_SETUP;
2827         break;
2828 
2829     case (RAMROD_CMD_ID_ETH_TX_QUEUE_SETUP):
2830         BLOGD(sc, DBG_SP, "got MULTI[%d] tx-only setup ramrod\n", cid);
2831         drv_cmd = ECORE_Q_CMD_SETUP_TX_ONLY;
2832         break;
2833 
2834     case (RAMROD_CMD_ID_ETH_HALT):
2835         BLOGD(sc, DBG_SP, "got MULTI[%d] halt ramrod\n", cid);
2836         drv_cmd = ECORE_Q_CMD_HALT;
2837         break;
2838 
2839     case (RAMROD_CMD_ID_ETH_TERMINATE):
2840         BLOGD(sc, DBG_SP, "got MULTI[%d] teminate ramrod\n", cid);
2841         drv_cmd = ECORE_Q_CMD_TERMINATE;
2842         break;
2843 
2844     case (RAMROD_CMD_ID_ETH_EMPTY):
2845         BLOGD(sc, DBG_SP, "got MULTI[%d] empty ramrod\n", cid);
2846         drv_cmd = ECORE_Q_CMD_EMPTY;
2847         break;
2848 
2849     default:
2850         BLOGD(sc, DBG_SP, "ERROR: unexpected MC reply (%d) on fp[%d]\n",
2851               command, fp->index);
2852         return;
2853     }
2854 
2855     if ((drv_cmd != ECORE_Q_CMD_MAX) &&
2856         q_obj->complete_cmd(sc, q_obj, drv_cmd)) {
2857         /*
2858          * q_obj->complete_cmd() failure means that this was
2859          * an unexpected completion.
2860          *
2861          * In this case we don't want to increase the sc->spq_left
2862          * because apparently we haven't sent this command the first
2863          * place.
2864          */
2865         // bxe_panic(sc, ("Unexpected SP completion\n"));
2866         return;
2867     }
2868 
2869 #if 0
2870     /* SRIOV: reschedule any 'in_progress' operations */
2871     bxe_iov_sp_event(sc, cid, TRUE);
2872 #endif
2873 
2874     atomic_add_acq_long(&sc->cq_spq_left, 1);
2875 
2876     BLOGD(sc, DBG_SP, "sc->cq_spq_left 0x%lx\n",
2877           atomic_load_acq_long(&sc->cq_spq_left));
2878 
2879 #if 0
2880     if ((drv_cmd == ECORE_Q_CMD_UPDATE) && (IS_FCOE_FP(fp)) &&
2881         (!!bxe_test_bit(ECORE_AFEX_FCOE_Q_UPDATE_PENDING, &sc->sp_state))) {
2882         /*
2883          * If Queue update ramrod is completed for last Queue in AFEX VIF set
2884          * flow, then ACK MCP at the end. Mark pending ACK to MCP bit to
2885          * prevent case that both bits are cleared. At the end of load/unload
2886          * driver checks that sp_state is cleared and this order prevents
2887          * races.
2888          */
2889         bxe_set_bit(ECORE_AFEX_PENDING_VIFSET_MCP_ACK, &sc->sp_state);
2890         wmb();
2891         bxe_clear_bit(ECORE_AFEX_FCOE_Q_UPDATE_PENDING, &sc->sp_state);
2892 
2893         /* schedule the sp task as MCP ack is required */
2894         bxe_schedule_sp_task(sc);
2895     }
2896 #endif
2897 }
2898 
2899 /*
2900  * The current mbuf is part of an aggregation. Move the mbuf into the TPA
2901  * aggregation queue, put an empty mbuf back onto the receive chain, and mark
2902  * the current aggregation queue as in-progress.
2903  */
2904 static void
2905 bxe_tpa_start(struct bxe_softc            *sc,
2906               struct bxe_fastpath         *fp,
2907               uint16_t                    queue,
2908               uint16_t                    cons,
2909               uint16_t                    prod,
2910               struct eth_fast_path_rx_cqe *cqe)
2911 {
2912     struct bxe_sw_rx_bd tmp_bd;
2913     struct bxe_sw_rx_bd *rx_buf;
2914     struct eth_rx_bd *rx_bd;
2915     int max_agg_queues;
2916     struct bxe_sw_tpa_info *tpa_info = &fp->rx_tpa_info[queue];
2917     uint16_t index;
2918 
2919     BLOGD(sc, DBG_LRO, "fp[%02d].tpa[%02d] TPA START "
2920                        "cons=%d prod=%d\n",
2921           fp->index, queue, cons, prod);
2922 
2923     max_agg_queues = MAX_AGG_QS(sc);
2924 
2925     KASSERT((queue < max_agg_queues),
2926             ("fp[%02d] invalid aggr queue (%d >= %d)!",
2927              fp->index, queue, max_agg_queues));
2928 
2929     KASSERT((tpa_info->state == BXE_TPA_STATE_STOP),
2930             ("fp[%02d].tpa[%02d] starting aggr on queue not stopped!",
2931              fp->index, queue));
2932 
2933     /* copy the existing mbuf and mapping from the TPA pool */
2934     tmp_bd = tpa_info->bd;
2935 
2936     if (tmp_bd.m == NULL) {
2937         BLOGE(sc, "fp[%02d].tpa[%02d] mbuf not allocated!\n",
2938               fp->index, queue);
2939         /* XXX Error handling? */
2940         return;
2941     }
2942 
2943     /* change the TPA queue to the start state */
2944     tpa_info->state            = BXE_TPA_STATE_START;
2945     tpa_info->placement_offset = cqe->placement_offset;
2946     tpa_info->parsing_flags    = le16toh(cqe->pars_flags.flags);
2947     tpa_info->vlan_tag         = le16toh(cqe->vlan_tag);
2948     tpa_info->len_on_bd        = le16toh(cqe->len_on_bd);
2949 
2950     fp->rx_tpa_queue_used |= (1 << queue);
2951 
2952     /*
2953      * If all the buffer descriptors are filled with mbufs then fill in
2954      * the current consumer index with a new BD. Else if a maximum Rx
2955      * buffer limit is imposed then fill in the next producer index.
2956      */
2957     index = (sc->max_rx_bufs != RX_BD_USABLE) ?
2958                 prod : cons;
2959 
2960     /* move the received mbuf and mapping to TPA pool */
2961     tpa_info->bd = fp->rx_mbuf_chain[cons];
2962 
2963     /* release any existing RX BD mbuf mappings */
2964     if (cons != index) {
2965         rx_buf = &fp->rx_mbuf_chain[cons];
2966 
2967         if (rx_buf->m_map != NULL) {
2968             bus_dmamap_sync(fp->rx_mbuf_tag, rx_buf->m_map,
2969                             BUS_DMASYNC_POSTREAD);
2970             bus_dmamap_unload(fp->rx_mbuf_tag, rx_buf->m_map);
2971         }
2972 
2973         /*
2974          * We get here when the maximum number of rx buffers is less than
2975          * RX_BD_USABLE. The mbuf is already saved above so it's OK to NULL
2976          * it out here without concern of a memory leak.
2977          */
2978         fp->rx_mbuf_chain[cons].m = NULL;
2979     }
2980 
2981     /* update the Rx SW BD with the mbuf info from the TPA pool */
2982     fp->rx_mbuf_chain[index] = tmp_bd;
2983 
2984     /* update the Rx BD with the empty mbuf phys address from the TPA pool */
2985     rx_bd = &fp->rx_chain[index];
2986     rx_bd->addr_hi = htole32(U64_HI(tpa_info->seg.ds_addr));
2987     rx_bd->addr_lo = htole32(U64_LO(tpa_info->seg.ds_addr));
2988 }
2989 
2990 /*
2991  * When a TPA aggregation is completed, loop through the individual mbufs
2992  * of the aggregation, combining them into a single mbuf which will be sent
2993  * up the stack. Refill all freed SGEs with mbufs as we go along.
2994  */
2995 static int
2996 bxe_fill_frag_mbuf(struct bxe_softc          *sc,
2997                    struct bxe_fastpath       *fp,
2998                    struct bxe_sw_tpa_info    *tpa_info,
2999                    uint16_t                  queue,
3000                    uint16_t                  pages,
3001                    struct mbuf               *m,
3002 			       struct eth_end_agg_rx_cqe *cqe,
3003                    uint16_t                  cqe_idx)
3004 {
3005     struct mbuf *m_frag;
3006     uint32_t frag_len, frag_size, i;
3007     uint16_t sge_idx;
3008     int rc = 0;
3009     int j;
3010 
3011     frag_size = le16toh(cqe->pkt_len) - tpa_info->len_on_bd;
3012 
3013     BLOGD(sc, DBG_LRO,
3014           "fp[%02d].tpa[%02d] TPA fill len_on_bd=%d frag_size=%d pages=%d\n",
3015           fp->index, queue, tpa_info->len_on_bd, frag_size, pages);
3016 
3017     /* make sure the aggregated frame is not too big to handle */
3018     if (pages > 8 * PAGES_PER_SGE) {
3019         BLOGE(sc, "fp[%02d].sge[0x%04x] has too many pages (%d)! "
3020                   "pkt_len=%d len_on_bd=%d frag_size=%d\n",
3021               fp->index, cqe_idx, pages, le16toh(cqe->pkt_len),
3022               tpa_info->len_on_bd, frag_size);
3023         bxe_panic(sc, ("sge page count error\n"));
3024         return (EINVAL);
3025     }
3026 
3027     /*
3028      * Scan through the scatter gather list pulling individual mbufs into a
3029      * single mbuf for the host stack.
3030      */
3031     for (i = 0, j = 0; i < pages; i += PAGES_PER_SGE, j++) {
3032         sge_idx = RX_SGE(le16toh(cqe->sgl_or_raw_data.sgl[j]));
3033 
3034         /*
3035          * Firmware gives the indices of the SGE as if the ring is an array
3036          * (meaning that the "next" element will consume 2 indices).
3037          */
3038         frag_len = min(frag_size, (uint32_t)(SGE_PAGES));
3039 
3040         BLOGD(sc, DBG_LRO, "fp[%02d].tpa[%02d] TPA fill i=%d j=%d "
3041                            "sge_idx=%d frag_size=%d frag_len=%d\n",
3042               fp->index, queue, i, j, sge_idx, frag_size, frag_len);
3043 
3044         m_frag = fp->rx_sge_mbuf_chain[sge_idx].m;
3045 
3046         /* allocate a new mbuf for the SGE */
3047         rc = bxe_alloc_rx_sge_mbuf(fp, sge_idx);
3048         if (rc) {
3049             /* Leave all remaining SGEs in the ring! */
3050             return (rc);
3051         }
3052 
3053         /* update the fragment length */
3054         m_frag->m_len = frag_len;
3055 
3056         /* concatenate the fragment to the head mbuf */
3057         m_cat(m, m_frag);
3058         fp->eth_q_stats.mbuf_alloc_sge--;
3059 
3060         /* update the TPA mbuf size and remaining fragment size */
3061         m->m_pkthdr.len += frag_len;
3062         frag_size -= frag_len;
3063     }
3064 
3065     BLOGD(sc, DBG_LRO,
3066           "fp[%02d].tpa[%02d] TPA fill done frag_size=%d\n",
3067           fp->index, queue, frag_size);
3068 
3069     return (rc);
3070 }
3071 
3072 static inline void
3073 bxe_clear_sge_mask_next_elems(struct bxe_fastpath *fp)
3074 {
3075     int i, j;
3076 
3077     for (i = 1; i <= RX_SGE_NUM_PAGES; i++) {
3078         int idx = RX_SGE_TOTAL_PER_PAGE * i - 1;
3079 
3080         for (j = 0; j < 2; j++) {
3081             BIT_VEC64_CLEAR_BIT(fp->sge_mask, idx);
3082             idx--;
3083         }
3084     }
3085 }
3086 
3087 static inline void
3088 bxe_init_sge_ring_bit_mask(struct bxe_fastpath *fp)
3089 {
3090     /* set the mask to all 1's, it's faster to compare to 0 than to 0xf's */
3091     memset(fp->sge_mask, 0xff, sizeof(fp->sge_mask));
3092 
3093     /*
3094      * Clear the two last indices in the page to 1. These are the indices that
3095      * correspond to the "next" element, hence will never be indicated and
3096      * should be removed from the calculations.
3097      */
3098     bxe_clear_sge_mask_next_elems(fp);
3099 }
3100 
3101 static inline void
3102 bxe_update_last_max_sge(struct bxe_fastpath *fp,
3103                         uint16_t            idx)
3104 {
3105     uint16_t last_max = fp->last_max_sge;
3106 
3107     if (SUB_S16(idx, last_max) > 0) {
3108         fp->last_max_sge = idx;
3109     }
3110 }
3111 
3112 static inline void
3113 bxe_update_sge_prod(struct bxe_softc          *sc,
3114                     struct bxe_fastpath       *fp,
3115                     uint16_t                  sge_len,
3116                     union eth_sgl_or_raw_data *cqe)
3117 {
3118     uint16_t last_max, last_elem, first_elem;
3119     uint16_t delta = 0;
3120     uint16_t i;
3121 
3122     if (!sge_len) {
3123         return;
3124     }
3125 
3126     /* first mark all used pages */
3127     for (i = 0; i < sge_len; i++) {
3128         BIT_VEC64_CLEAR_BIT(fp->sge_mask,
3129                             RX_SGE(le16toh(cqe->sgl[i])));
3130     }
3131 
3132     BLOGD(sc, DBG_LRO,
3133           "fp[%02d] fp_cqe->sgl[%d] = %d\n",
3134           fp->index, sge_len - 1,
3135           le16toh(cqe->sgl[sge_len - 1]));
3136 
3137     /* assume that the last SGE index is the biggest */
3138     bxe_update_last_max_sge(fp,
3139                             le16toh(cqe->sgl[sge_len - 1]));
3140 
3141     last_max = RX_SGE(fp->last_max_sge);
3142     last_elem = last_max >> BIT_VEC64_ELEM_SHIFT;
3143     first_elem = RX_SGE(fp->rx_sge_prod) >> BIT_VEC64_ELEM_SHIFT;
3144 
3145     /* if ring is not full */
3146     if (last_elem + 1 != first_elem) {
3147         last_elem++;
3148     }
3149 
3150     /* now update the prod */
3151     for (i = first_elem; i != last_elem; i = RX_SGE_NEXT_MASK_ELEM(i)) {
3152         if (__predict_true(fp->sge_mask[i])) {
3153             break;
3154         }
3155 
3156         fp->sge_mask[i] = BIT_VEC64_ELEM_ONE_MASK;
3157         delta += BIT_VEC64_ELEM_SZ;
3158     }
3159 
3160     if (delta > 0) {
3161         fp->rx_sge_prod += delta;
3162         /* clear page-end entries */
3163         bxe_clear_sge_mask_next_elems(fp);
3164     }
3165 
3166     BLOGD(sc, DBG_LRO,
3167           "fp[%02d] fp->last_max_sge=%d fp->rx_sge_prod=%d\n",
3168           fp->index, fp->last_max_sge, fp->rx_sge_prod);
3169 }
3170 
3171 /*
3172  * The aggregation on the current TPA queue has completed. Pull the individual
3173  * mbuf fragments together into a single mbuf, perform all necessary checksum
3174  * calculations, and send the resuting mbuf to the stack.
3175  */
3176 static void
3177 bxe_tpa_stop(struct bxe_softc          *sc,
3178              struct bxe_fastpath       *fp,
3179              struct bxe_sw_tpa_info    *tpa_info,
3180              uint16_t                  queue,
3181              uint16_t                  pages,
3182 			 struct eth_end_agg_rx_cqe *cqe,
3183              uint16_t                  cqe_idx)
3184 {
3185     if_t ifp = sc->ifp;
3186     struct mbuf *m;
3187     int rc = 0;
3188 
3189     BLOGD(sc, DBG_LRO,
3190           "fp[%02d].tpa[%02d] pad=%d pkt_len=%d pages=%d vlan=%d\n",
3191           fp->index, queue, tpa_info->placement_offset,
3192           le16toh(cqe->pkt_len), pages, tpa_info->vlan_tag);
3193 
3194     m = tpa_info->bd.m;
3195 
3196     /* allocate a replacement before modifying existing mbuf */
3197     rc = bxe_alloc_rx_tpa_mbuf(fp, queue);
3198     if (rc) {
3199         /* drop the frame and log an error */
3200         fp->eth_q_stats.rx_soft_errors++;
3201         goto bxe_tpa_stop_exit;
3202     }
3203 
3204     /* we have a replacement, fixup the current mbuf */
3205     m_adj(m, tpa_info->placement_offset);
3206     m->m_pkthdr.len = m->m_len = tpa_info->len_on_bd;
3207 
3208     /* mark the checksums valid (taken care of by the firmware) */
3209     fp->eth_q_stats.rx_ofld_frames_csum_ip++;
3210     fp->eth_q_stats.rx_ofld_frames_csum_tcp_udp++;
3211     m->m_pkthdr.csum_data = 0xffff;
3212     m->m_pkthdr.csum_flags |= (CSUM_IP_CHECKED |
3213                                CSUM_IP_VALID   |
3214                                CSUM_DATA_VALID |
3215                                CSUM_PSEUDO_HDR);
3216 
3217     /* aggregate all of the SGEs into a single mbuf */
3218     rc = bxe_fill_frag_mbuf(sc, fp, tpa_info, queue, pages, m, cqe, cqe_idx);
3219     if (rc) {
3220         /* drop the packet and log an error */
3221         fp->eth_q_stats.rx_soft_errors++;
3222         m_freem(m);
3223     } else {
3224         if (tpa_info->parsing_flags & PARSING_FLAGS_VLAN) {
3225             m->m_pkthdr.ether_vtag = tpa_info->vlan_tag;
3226             m->m_flags |= M_VLANTAG;
3227         }
3228 
3229         /* assign packet to this interface interface */
3230         if_setrcvif(m, ifp);
3231 
3232 #if __FreeBSD_version >= 800000
3233         /* specify what RSS queue was used for this flow */
3234         m->m_pkthdr.flowid = fp->index;
3235         M_HASHTYPE_SET(m, M_HASHTYPE_OPAQUE);
3236 #endif
3237 
3238         if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1);
3239         fp->eth_q_stats.rx_tpa_pkts++;
3240 
3241         /* pass the frame to the stack */
3242         if_input(ifp, m);
3243     }
3244 
3245     /* we passed an mbuf up the stack or dropped the frame */
3246     fp->eth_q_stats.mbuf_alloc_tpa--;
3247 
3248 bxe_tpa_stop_exit:
3249 
3250     fp->rx_tpa_info[queue].state = BXE_TPA_STATE_STOP;
3251     fp->rx_tpa_queue_used &= ~(1 << queue);
3252 }
3253 
3254 static uint8_t
3255 bxe_service_rxsgl(
3256                  struct bxe_fastpath *fp,
3257                  uint16_t len,
3258                  uint16_t lenonbd,
3259                  struct mbuf *m,
3260                  struct eth_fast_path_rx_cqe *cqe_fp)
3261 {
3262     struct mbuf *m_frag;
3263     uint16_t frags, frag_len;
3264     uint16_t sge_idx = 0;
3265     uint16_t j;
3266     uint8_t i, rc = 0;
3267     uint32_t frag_size;
3268 
3269     /* adjust the mbuf */
3270     m->m_len = lenonbd;
3271 
3272     frag_size =  len - lenonbd;
3273     frags = SGE_PAGE_ALIGN(frag_size) >> SGE_PAGE_SHIFT;
3274 
3275     for (i = 0, j = 0; i < frags; i += PAGES_PER_SGE, j++) {
3276         sge_idx = RX_SGE(le16toh(cqe_fp->sgl_or_raw_data.sgl[j]));
3277 
3278         m_frag = fp->rx_sge_mbuf_chain[sge_idx].m;
3279         frag_len = min(frag_size, (uint32_t)(SGE_PAGE_SIZE));
3280         m_frag->m_len = frag_len;
3281 
3282        /* allocate a new mbuf for the SGE */
3283         rc = bxe_alloc_rx_sge_mbuf(fp, sge_idx);
3284         if (rc) {
3285             /* Leave all remaining SGEs in the ring! */
3286             return (rc);
3287         }
3288         fp->eth_q_stats.mbuf_alloc_sge--;
3289 
3290         /* concatenate the fragment to the head mbuf */
3291         m_cat(m, m_frag);
3292 
3293         frag_size -= frag_len;
3294     }
3295 
3296     bxe_update_sge_prod(fp->sc, fp, frags, &cqe_fp->sgl_or_raw_data);
3297 
3298     return rc;
3299 }
3300 
3301 static uint8_t
3302 bxe_rxeof(struct bxe_softc    *sc,
3303           struct bxe_fastpath *fp)
3304 {
3305     if_t ifp = sc->ifp;
3306     uint16_t bd_cons, bd_prod, bd_prod_fw, comp_ring_cons;
3307     uint16_t hw_cq_cons, sw_cq_cons, sw_cq_prod;
3308     int rx_pkts = 0;
3309     int rc = 0;
3310 
3311     BXE_FP_RX_LOCK(fp);
3312 
3313     /* CQ "next element" is of the size of the regular element */
3314     hw_cq_cons = le16toh(*fp->rx_cq_cons_sb);
3315     if ((hw_cq_cons & RCQ_USABLE_PER_PAGE) == RCQ_USABLE_PER_PAGE) {
3316         hw_cq_cons++;
3317     }
3318 
3319     bd_cons = fp->rx_bd_cons;
3320     bd_prod = fp->rx_bd_prod;
3321     bd_prod_fw = bd_prod;
3322     sw_cq_cons = fp->rx_cq_cons;
3323     sw_cq_prod = fp->rx_cq_prod;
3324 
3325     /*
3326      * Memory barrier necessary as speculative reads of the rx
3327      * buffer can be ahead of the index in the status block
3328      */
3329     rmb();
3330 
3331     BLOGD(sc, DBG_RX,
3332           "fp[%02d] Rx START hw_cq_cons=%u sw_cq_cons=%u\n",
3333           fp->index, hw_cq_cons, sw_cq_cons);
3334 
3335     while (sw_cq_cons != hw_cq_cons) {
3336         struct bxe_sw_rx_bd *rx_buf = NULL;
3337         union eth_rx_cqe *cqe;
3338         struct eth_fast_path_rx_cqe *cqe_fp;
3339         uint8_t cqe_fp_flags;
3340         enum eth_rx_cqe_type cqe_fp_type;
3341         uint16_t len, lenonbd,  pad;
3342         struct mbuf *m = NULL;
3343 
3344         comp_ring_cons = RCQ(sw_cq_cons);
3345         bd_prod = RX_BD(bd_prod);
3346         bd_cons = RX_BD(bd_cons);
3347 
3348         cqe          = &fp->rcq_chain[comp_ring_cons];
3349         cqe_fp       = &cqe->fast_path_cqe;
3350         cqe_fp_flags = cqe_fp->type_error_flags;
3351         cqe_fp_type  = cqe_fp_flags & ETH_FAST_PATH_RX_CQE_TYPE;
3352 
3353         BLOGD(sc, DBG_RX,
3354               "fp[%02d] Rx hw_cq_cons=%d hw_sw_cons=%d "
3355               "BD prod=%d cons=%d CQE type=0x%x err=0x%x "
3356               "status=0x%x rss_hash=0x%x vlan=0x%x len=%u lenonbd=%u\n",
3357               fp->index,
3358               hw_cq_cons,
3359               sw_cq_cons,
3360               bd_prod,
3361               bd_cons,
3362               CQE_TYPE(cqe_fp_flags),
3363               cqe_fp_flags,
3364               cqe_fp->status_flags,
3365               le32toh(cqe_fp->rss_hash_result),
3366               le16toh(cqe_fp->vlan_tag),
3367               le16toh(cqe_fp->pkt_len_or_gro_seg_len),
3368               le16toh(cqe_fp->len_on_bd));
3369 
3370         /* is this a slowpath msg? */
3371         if (__predict_false(CQE_TYPE_SLOW(cqe_fp_type))) {
3372             bxe_sp_event(sc, fp, cqe);
3373             goto next_cqe;
3374         }
3375 
3376         rx_buf = &fp->rx_mbuf_chain[bd_cons];
3377 
3378         if (!CQE_TYPE_FAST(cqe_fp_type)) {
3379             struct bxe_sw_tpa_info *tpa_info;
3380             uint16_t frag_size, pages;
3381             uint8_t queue;
3382 
3383 #if 0
3384             /* sanity check */
3385             if (!fp->tpa_enable &&
3386                 (CQE_TYPE_START(cqe_fp_type) || CQE_TYPE_STOP(cqe_fp_type))) {
3387                 BLOGE(sc, "START/STOP packet while !tpa_enable type (0x%x)\n",
3388                       CQE_TYPE(cqe_fp_type));
3389             }
3390 #endif
3391 
3392             if (CQE_TYPE_START(cqe_fp_type)) {
3393                 bxe_tpa_start(sc, fp, cqe_fp->queue_index,
3394                               bd_cons, bd_prod, cqe_fp);
3395                 m = NULL; /* packet not ready yet */
3396                 goto next_rx;
3397             }
3398 
3399             KASSERT(CQE_TYPE_STOP(cqe_fp_type),
3400                     ("CQE type is not STOP! (0x%x)\n", cqe_fp_type));
3401 
3402             queue = cqe->end_agg_cqe.queue_index;
3403             tpa_info = &fp->rx_tpa_info[queue];
3404 
3405             BLOGD(sc, DBG_LRO, "fp[%02d].tpa[%02d] TPA STOP\n",
3406                   fp->index, queue);
3407 
3408             frag_size = (le16toh(cqe->end_agg_cqe.pkt_len) -
3409                          tpa_info->len_on_bd);
3410             pages = SGE_PAGE_ALIGN(frag_size) >> SGE_PAGE_SHIFT;
3411 
3412             bxe_tpa_stop(sc, fp, tpa_info, queue, pages,
3413                          &cqe->end_agg_cqe, comp_ring_cons);
3414 
3415             bxe_update_sge_prod(sc, fp, pages, &cqe->end_agg_cqe.sgl_or_raw_data);
3416 
3417             goto next_cqe;
3418         }
3419 
3420         /* non TPA */
3421 
3422         /* is this an error packet? */
3423         if (__predict_false(cqe_fp_flags &
3424                             ETH_FAST_PATH_RX_CQE_PHY_DECODE_ERR_FLG)) {
3425             BLOGE(sc, "flags 0x%x rx packet %u\n", cqe_fp_flags, sw_cq_cons);
3426             fp->eth_q_stats.rx_soft_errors++;
3427             goto next_rx;
3428         }
3429 
3430         len = le16toh(cqe_fp->pkt_len_or_gro_seg_len);
3431         lenonbd = le16toh(cqe_fp->len_on_bd);
3432         pad = cqe_fp->placement_offset;
3433 
3434         m = rx_buf->m;
3435 
3436         if (__predict_false(m == NULL)) {
3437             BLOGE(sc, "No mbuf in rx chain descriptor %d for fp[%02d]\n",
3438                   bd_cons, fp->index);
3439             goto next_rx;
3440         }
3441 
3442         /* XXX double copy if packet length under a threshold */
3443 
3444         /*
3445          * If all the buffer descriptors are filled with mbufs then fill in
3446          * the current consumer index with a new BD. Else if a maximum Rx
3447          * buffer limit is imposed then fill in the next producer index.
3448          */
3449         rc = bxe_alloc_rx_bd_mbuf(fp, bd_cons,
3450                                   (sc->max_rx_bufs != RX_BD_USABLE) ?
3451                                       bd_prod : bd_cons);
3452         if (rc != 0) {
3453 
3454             /* we simply reuse the received mbuf and don't post it to the stack */
3455             m = NULL;
3456 
3457             BLOGE(sc, "mbuf alloc fail for fp[%02d] rx chain (%d)\n",
3458                   fp->index, rc);
3459             fp->eth_q_stats.rx_soft_errors++;
3460 
3461             if (sc->max_rx_bufs != RX_BD_USABLE) {
3462                 /* copy this consumer index to the producer index */
3463                 memcpy(&fp->rx_mbuf_chain[bd_prod], rx_buf,
3464                        sizeof(struct bxe_sw_rx_bd));
3465                 memset(rx_buf, 0, sizeof(struct bxe_sw_rx_bd));
3466             }
3467 
3468             goto next_rx;
3469         }
3470 
3471         /* current mbuf was detached from the bd */
3472         fp->eth_q_stats.mbuf_alloc_rx--;
3473 
3474         /* we allocated a replacement mbuf, fixup the current one */
3475         m_adj(m, pad);
3476         m->m_pkthdr.len = m->m_len = len;
3477 
3478         if (len != lenonbd){
3479             rc = bxe_service_rxsgl(fp, len, lenonbd, m, cqe_fp);
3480             if (rc)
3481                 break;
3482             fp->eth_q_stats.rx_jumbo_sge_pkts++;
3483         }
3484 
3485         /* assign packet to this interface interface */
3486 	if_setrcvif(m, ifp);
3487 
3488         /* assume no hardware checksum has complated */
3489         m->m_pkthdr.csum_flags = 0;
3490 
3491         /* validate checksum if offload enabled */
3492         if (if_getcapenable(ifp) & IFCAP_RXCSUM) {
3493             /* check for a valid IP frame */
3494             if (!(cqe->fast_path_cqe.status_flags &
3495                   ETH_FAST_PATH_RX_CQE_IP_XSUM_NO_VALIDATION_FLG)) {
3496                 m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
3497                 if (__predict_false(cqe_fp_flags &
3498                                     ETH_FAST_PATH_RX_CQE_IP_BAD_XSUM_FLG)) {
3499                     fp->eth_q_stats.rx_hw_csum_errors++;
3500                 } else {
3501                     fp->eth_q_stats.rx_ofld_frames_csum_ip++;
3502                     m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
3503                 }
3504             }
3505 
3506             /* check for a valid TCP/UDP frame */
3507             if (!(cqe->fast_path_cqe.status_flags &
3508                   ETH_FAST_PATH_RX_CQE_L4_XSUM_NO_VALIDATION_FLG)) {
3509                 if (__predict_false(cqe_fp_flags &
3510                                     ETH_FAST_PATH_RX_CQE_L4_BAD_XSUM_FLG)) {
3511                     fp->eth_q_stats.rx_hw_csum_errors++;
3512                 } else {
3513                     fp->eth_q_stats.rx_ofld_frames_csum_tcp_udp++;
3514                     m->m_pkthdr.csum_data = 0xFFFF;
3515                     m->m_pkthdr.csum_flags |= (CSUM_DATA_VALID |
3516                                                CSUM_PSEUDO_HDR);
3517                 }
3518             }
3519         }
3520 
3521         /* if there is a VLAN tag then flag that info */
3522         if (cqe->fast_path_cqe.pars_flags.flags & PARSING_FLAGS_VLAN) {
3523             m->m_pkthdr.ether_vtag = cqe->fast_path_cqe.vlan_tag;
3524             m->m_flags |= M_VLANTAG;
3525         }
3526 
3527 #if __FreeBSD_version >= 800000
3528         /* specify what RSS queue was used for this flow */
3529         m->m_pkthdr.flowid = fp->index;
3530         M_HASHTYPE_SET(m, M_HASHTYPE_OPAQUE);
3531 #endif
3532 
3533 next_rx:
3534 
3535         bd_cons    = RX_BD_NEXT(bd_cons);
3536         bd_prod    = RX_BD_NEXT(bd_prod);
3537         bd_prod_fw = RX_BD_NEXT(bd_prod_fw);
3538 
3539         /* pass the frame to the stack */
3540         if (__predict_true(m != NULL)) {
3541             if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1);
3542             rx_pkts++;
3543             if_input(ifp, m);
3544         }
3545 
3546 next_cqe:
3547 
3548         sw_cq_prod = RCQ_NEXT(sw_cq_prod);
3549         sw_cq_cons = RCQ_NEXT(sw_cq_cons);
3550 
3551         /* limit spinning on the queue */
3552         if (rc != 0)
3553             break;
3554 
3555         if (rx_pkts == sc->rx_budget) {
3556             fp->eth_q_stats.rx_budget_reached++;
3557             break;
3558         }
3559     } /* while work to do */
3560 
3561     fp->rx_bd_cons = bd_cons;
3562     fp->rx_bd_prod = bd_prod_fw;
3563     fp->rx_cq_cons = sw_cq_cons;
3564     fp->rx_cq_prod = sw_cq_prod;
3565 
3566     /* Update producers */
3567     bxe_update_rx_prod(sc, fp, bd_prod_fw, sw_cq_prod, fp->rx_sge_prod);
3568 
3569     fp->eth_q_stats.rx_pkts += rx_pkts;
3570     fp->eth_q_stats.rx_calls++;
3571 
3572     BXE_FP_RX_UNLOCK(fp);
3573 
3574     return (sw_cq_cons != hw_cq_cons);
3575 }
3576 
3577 static uint16_t
3578 bxe_free_tx_pkt(struct bxe_softc    *sc,
3579                 struct bxe_fastpath *fp,
3580                 uint16_t            idx)
3581 {
3582     struct bxe_sw_tx_bd *tx_buf = &fp->tx_mbuf_chain[idx];
3583     struct eth_tx_start_bd *tx_start_bd;
3584     uint16_t bd_idx = TX_BD(tx_buf->first_bd);
3585     uint16_t new_cons;
3586     int nbd;
3587 
3588     /* unmap the mbuf from non-paged memory */
3589     bus_dmamap_unload(fp->tx_mbuf_tag, tx_buf->m_map);
3590 
3591     tx_start_bd = &fp->tx_chain[bd_idx].start_bd;
3592     nbd = le16toh(tx_start_bd->nbd) - 1;
3593 
3594 #if 0
3595     if ((nbd - 1) > (MAX_MBUF_FRAGS + 2)) {
3596         bxe_panic(sc, ("BAD nbd!\n"));
3597     }
3598 #endif
3599 
3600     new_cons = (tx_buf->first_bd + nbd);
3601 
3602 #if 0
3603     struct eth_tx_bd *tx_data_bd;
3604 
3605     /*
3606      * The following code doesn't do anything but is left here
3607      * for clarity on what the new value of new_cons skipped.
3608      */
3609 
3610     /* get the next bd */
3611     bd_idx = TX_BD(TX_BD_NEXT(bd_idx));
3612 
3613     /* skip the parse bd */
3614     --nbd;
3615     bd_idx = TX_BD(TX_BD_NEXT(bd_idx));
3616 
3617     /* skip the TSO split header bd since they have no mapping */
3618     if (tx_buf->flags & BXE_TSO_SPLIT_BD) {
3619         --nbd;
3620         bd_idx = TX_BD(TX_BD_NEXT(bd_idx));
3621     }
3622 
3623     /* now free frags */
3624     while (nbd > 0) {
3625         tx_data_bd = &fp->tx_chain[bd_idx].reg_bd;
3626         if (--nbd) {
3627             bd_idx = TX_BD(TX_BD_NEXT(bd_idx));
3628         }
3629     }
3630 #endif
3631 
3632     /* free the mbuf */
3633     if (__predict_true(tx_buf->m != NULL)) {
3634         m_freem(tx_buf->m);
3635         fp->eth_q_stats.mbuf_alloc_tx--;
3636     } else {
3637         fp->eth_q_stats.tx_chain_lost_mbuf++;
3638     }
3639 
3640     tx_buf->m = NULL;
3641     tx_buf->first_bd = 0;
3642 
3643     return (new_cons);
3644 }
3645 
3646 /* transmit timeout watchdog */
3647 static int
3648 bxe_watchdog(struct bxe_softc    *sc,
3649              struct bxe_fastpath *fp)
3650 {
3651     BXE_FP_TX_LOCK(fp);
3652 
3653     if ((fp->watchdog_timer == 0) || (--fp->watchdog_timer)) {
3654         BXE_FP_TX_UNLOCK(fp);
3655         return (0);
3656     }
3657 
3658     BLOGE(sc, "TX watchdog timeout on fp[%02d], resetting!\n", fp->index);
3659 
3660     BXE_FP_TX_UNLOCK(fp);
3661 
3662     atomic_store_rel_long(&sc->chip_tq_flags, CHIP_TQ_REINIT);
3663     taskqueue_enqueue(sc->chip_tq, &sc->chip_tq_task);
3664 
3665     return (-1);
3666 }
3667 
3668 /* processes transmit completions */
3669 static uint8_t
3670 bxe_txeof(struct bxe_softc    *sc,
3671           struct bxe_fastpath *fp)
3672 {
3673     if_t ifp = sc->ifp;
3674     uint16_t bd_cons, hw_cons, sw_cons, pkt_cons;
3675     uint16_t tx_bd_avail;
3676 
3677     BXE_FP_TX_LOCK_ASSERT(fp);
3678 
3679     bd_cons = fp->tx_bd_cons;
3680     hw_cons = le16toh(*fp->tx_cons_sb);
3681     sw_cons = fp->tx_pkt_cons;
3682 
3683     while (sw_cons != hw_cons) {
3684         pkt_cons = TX_BD(sw_cons);
3685 
3686         BLOGD(sc, DBG_TX,
3687               "TX: fp[%d]: hw_cons=%u sw_cons=%u pkt_cons=%u\n",
3688               fp->index, hw_cons, sw_cons, pkt_cons);
3689 
3690         bd_cons = bxe_free_tx_pkt(sc, fp, pkt_cons);
3691 
3692         sw_cons++;
3693     }
3694 
3695     fp->tx_pkt_cons = sw_cons;
3696     fp->tx_bd_cons  = bd_cons;
3697 
3698     BLOGD(sc, DBG_TX,
3699           "TX done: fp[%d]: hw_cons=%u sw_cons=%u sw_prod=%u\n",
3700           fp->index, hw_cons, fp->tx_pkt_cons, fp->tx_pkt_prod);
3701 
3702     mb();
3703 
3704     tx_bd_avail = bxe_tx_avail(sc, fp);
3705 
3706     if (tx_bd_avail < BXE_TX_CLEANUP_THRESHOLD) {
3707         if_setdrvflagbits(ifp, IFF_DRV_OACTIVE, 0);
3708     } else {
3709         if_setdrvflagbits(ifp, 0, IFF_DRV_OACTIVE);
3710     }
3711 
3712     if (fp->tx_pkt_prod != fp->tx_pkt_cons) {
3713         /* reset the watchdog timer if there are pending transmits */
3714         fp->watchdog_timer = BXE_TX_TIMEOUT;
3715         return (TRUE);
3716     } else {
3717         /* clear watchdog when there are no pending transmits */
3718         fp->watchdog_timer = 0;
3719         return (FALSE);
3720     }
3721 }
3722 
3723 static void
3724 bxe_drain_tx_queues(struct bxe_softc *sc)
3725 {
3726     struct bxe_fastpath *fp;
3727     int i, count;
3728 
3729     /* wait until all TX fastpath tasks have completed */
3730     for (i = 0; i < sc->num_queues; i++) {
3731         fp = &sc->fp[i];
3732 
3733         count = 1000;
3734 
3735         while (bxe_has_tx_work(fp)) {
3736 
3737             BXE_FP_TX_LOCK(fp);
3738             bxe_txeof(sc, fp);
3739             BXE_FP_TX_UNLOCK(fp);
3740 
3741             if (count == 0) {
3742                 BLOGE(sc, "Timeout waiting for fp[%d] "
3743                           "transmits to complete!\n", i);
3744                 bxe_panic(sc, ("tx drain failure\n"));
3745                 return;
3746             }
3747 
3748             count--;
3749             DELAY(1000);
3750             rmb();
3751         }
3752     }
3753 
3754     return;
3755 }
3756 
3757 static int
3758 bxe_del_all_macs(struct bxe_softc          *sc,
3759                  struct ecore_vlan_mac_obj *mac_obj,
3760                  int                       mac_type,
3761                  uint8_t                   wait_for_comp)
3762 {
3763     unsigned long ramrod_flags = 0, vlan_mac_flags = 0;
3764     int rc;
3765 
3766     /* wait for completion of requested */
3767     if (wait_for_comp) {
3768         bxe_set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
3769     }
3770 
3771     /* Set the mac type of addresses we want to clear */
3772     bxe_set_bit(mac_type, &vlan_mac_flags);
3773 
3774     rc = mac_obj->delete_all(sc, mac_obj, &vlan_mac_flags, &ramrod_flags);
3775     if (rc < 0) {
3776         BLOGE(sc, "Failed to delete MACs (%d)\n", rc);
3777     }
3778 
3779     return (rc);
3780 }
3781 
3782 static int
3783 bxe_fill_accept_flags(struct bxe_softc *sc,
3784                       uint32_t         rx_mode,
3785                       unsigned long    *rx_accept_flags,
3786                       unsigned long    *tx_accept_flags)
3787 {
3788     /* Clear the flags first */
3789     *rx_accept_flags = 0;
3790     *tx_accept_flags = 0;
3791 
3792     switch (rx_mode) {
3793     case BXE_RX_MODE_NONE:
3794         /*
3795          * 'drop all' supersedes any accept flags that may have been
3796          * passed to the function.
3797          */
3798         break;
3799 
3800     case BXE_RX_MODE_NORMAL:
3801         bxe_set_bit(ECORE_ACCEPT_UNICAST, rx_accept_flags);
3802         bxe_set_bit(ECORE_ACCEPT_MULTICAST, rx_accept_flags);
3803         bxe_set_bit(ECORE_ACCEPT_BROADCAST, rx_accept_flags);
3804 
3805         /* internal switching mode */
3806         bxe_set_bit(ECORE_ACCEPT_UNICAST, tx_accept_flags);
3807         bxe_set_bit(ECORE_ACCEPT_MULTICAST, tx_accept_flags);
3808         bxe_set_bit(ECORE_ACCEPT_BROADCAST, tx_accept_flags);
3809 
3810         break;
3811 
3812     case BXE_RX_MODE_ALLMULTI:
3813         bxe_set_bit(ECORE_ACCEPT_UNICAST, rx_accept_flags);
3814         bxe_set_bit(ECORE_ACCEPT_ALL_MULTICAST, rx_accept_flags);
3815         bxe_set_bit(ECORE_ACCEPT_BROADCAST, rx_accept_flags);
3816 
3817         /* internal switching mode */
3818         bxe_set_bit(ECORE_ACCEPT_UNICAST, tx_accept_flags);
3819         bxe_set_bit(ECORE_ACCEPT_ALL_MULTICAST, tx_accept_flags);
3820         bxe_set_bit(ECORE_ACCEPT_BROADCAST, tx_accept_flags);
3821 
3822         break;
3823 
3824     case BXE_RX_MODE_PROMISC:
3825         /*
3826          * According to deffinition of SI mode, iface in promisc mode
3827          * should receive matched and unmatched (in resolution of port)
3828          * unicast packets.
3829          */
3830         bxe_set_bit(ECORE_ACCEPT_UNMATCHED, rx_accept_flags);
3831         bxe_set_bit(ECORE_ACCEPT_UNICAST, rx_accept_flags);
3832         bxe_set_bit(ECORE_ACCEPT_ALL_MULTICAST, rx_accept_flags);
3833         bxe_set_bit(ECORE_ACCEPT_BROADCAST, rx_accept_flags);
3834 
3835         /* internal switching mode */
3836         bxe_set_bit(ECORE_ACCEPT_ALL_MULTICAST, tx_accept_flags);
3837         bxe_set_bit(ECORE_ACCEPT_BROADCAST, tx_accept_flags);
3838 
3839         if (IS_MF_SI(sc)) {
3840             bxe_set_bit(ECORE_ACCEPT_ALL_UNICAST, tx_accept_flags);
3841         } else {
3842             bxe_set_bit(ECORE_ACCEPT_UNICAST, tx_accept_flags);
3843         }
3844 
3845         break;
3846 
3847     default:
3848         BLOGE(sc, "Unknown rx_mode (%d)\n", rx_mode);
3849         return (-1);
3850     }
3851 
3852     /* Set ACCEPT_ANY_VLAN as we do not enable filtering by VLAN */
3853     if (rx_mode != BXE_RX_MODE_NONE) {
3854         bxe_set_bit(ECORE_ACCEPT_ANY_VLAN, rx_accept_flags);
3855         bxe_set_bit(ECORE_ACCEPT_ANY_VLAN, tx_accept_flags);
3856     }
3857 
3858     return (0);
3859 }
3860 
3861 static int
3862 bxe_set_q_rx_mode(struct bxe_softc *sc,
3863                   uint8_t          cl_id,
3864                   unsigned long    rx_mode_flags,
3865                   unsigned long    rx_accept_flags,
3866                   unsigned long    tx_accept_flags,
3867                   unsigned long    ramrod_flags)
3868 {
3869     struct ecore_rx_mode_ramrod_params ramrod_param;
3870     int rc;
3871 
3872     memset(&ramrod_param, 0, sizeof(ramrod_param));
3873 
3874     /* Prepare ramrod parameters */
3875     ramrod_param.cid = 0;
3876     ramrod_param.cl_id = cl_id;
3877     ramrod_param.rx_mode_obj = &sc->rx_mode_obj;
3878     ramrod_param.func_id = SC_FUNC(sc);
3879 
3880     ramrod_param.pstate = &sc->sp_state;
3881     ramrod_param.state = ECORE_FILTER_RX_MODE_PENDING;
3882 
3883     ramrod_param.rdata = BXE_SP(sc, rx_mode_rdata);
3884     ramrod_param.rdata_mapping = BXE_SP_MAPPING(sc, rx_mode_rdata);
3885 
3886     bxe_set_bit(ECORE_FILTER_RX_MODE_PENDING, &sc->sp_state);
3887 
3888     ramrod_param.ramrod_flags = ramrod_flags;
3889     ramrod_param.rx_mode_flags = rx_mode_flags;
3890 
3891     ramrod_param.rx_accept_flags = rx_accept_flags;
3892     ramrod_param.tx_accept_flags = tx_accept_flags;
3893 
3894     rc = ecore_config_rx_mode(sc, &ramrod_param);
3895     if (rc < 0) {
3896         BLOGE(sc, "Set rx_mode %d failed\n", sc->rx_mode);
3897         return (rc);
3898     }
3899 
3900     return (0);
3901 }
3902 
3903 static int
3904 bxe_set_storm_rx_mode(struct bxe_softc *sc)
3905 {
3906     unsigned long rx_mode_flags = 0, ramrod_flags = 0;
3907     unsigned long rx_accept_flags = 0, tx_accept_flags = 0;
3908     int rc;
3909 
3910     rc = bxe_fill_accept_flags(sc, sc->rx_mode, &rx_accept_flags,
3911                                &tx_accept_flags);
3912     if (rc) {
3913         return (rc);
3914     }
3915 
3916     bxe_set_bit(RAMROD_RX, &ramrod_flags);
3917     bxe_set_bit(RAMROD_TX, &ramrod_flags);
3918 
3919     /* XXX ensure all fastpath have same cl_id and/or move it to bxe_softc */
3920     return (bxe_set_q_rx_mode(sc, sc->fp[0].cl_id, rx_mode_flags,
3921                               rx_accept_flags, tx_accept_flags,
3922                               ramrod_flags));
3923 }
3924 
3925 /* returns the "mcp load_code" according to global load_count array */
3926 static int
3927 bxe_nic_load_no_mcp(struct bxe_softc *sc)
3928 {
3929     int path = SC_PATH(sc);
3930     int port = SC_PORT(sc);
3931 
3932     BLOGI(sc, "NO MCP - load counts[%d]      %d, %d, %d\n",
3933           path, load_count[path][0], load_count[path][1],
3934           load_count[path][2]);
3935     load_count[path][0]++;
3936     load_count[path][1 + port]++;
3937     BLOGI(sc, "NO MCP - new load counts[%d]  %d, %d, %d\n",
3938           path, load_count[path][0], load_count[path][1],
3939           load_count[path][2]);
3940     if (load_count[path][0] == 1) {
3941         return (FW_MSG_CODE_DRV_LOAD_COMMON);
3942     } else if (load_count[path][1 + port] == 1) {
3943         return (FW_MSG_CODE_DRV_LOAD_PORT);
3944     } else {
3945         return (FW_MSG_CODE_DRV_LOAD_FUNCTION);
3946     }
3947 }
3948 
3949 /* returns the "mcp load_code" according to global load_count array */
3950 static int
3951 bxe_nic_unload_no_mcp(struct bxe_softc *sc)
3952 {
3953     int port = SC_PORT(sc);
3954     int path = SC_PATH(sc);
3955 
3956     BLOGI(sc, "NO MCP - load counts[%d]      %d, %d, %d\n",
3957           path, load_count[path][0], load_count[path][1],
3958           load_count[path][2]);
3959     load_count[path][0]--;
3960     load_count[path][1 + port]--;
3961     BLOGI(sc, "NO MCP - new load counts[%d]  %d, %d, %d\n",
3962           path, load_count[path][0], load_count[path][1],
3963           load_count[path][2]);
3964     if (load_count[path][0] == 0) {
3965         return (FW_MSG_CODE_DRV_UNLOAD_COMMON);
3966     } else if (load_count[path][1 + port] == 0) {
3967         return (FW_MSG_CODE_DRV_UNLOAD_PORT);
3968     } else {
3969         return (FW_MSG_CODE_DRV_UNLOAD_FUNCTION);
3970     }
3971 }
3972 
3973 /* request unload mode from the MCP: COMMON, PORT or FUNCTION */
3974 static uint32_t
3975 bxe_send_unload_req(struct bxe_softc *sc,
3976                     int              unload_mode)
3977 {
3978     uint32_t reset_code = 0;
3979 #if 0
3980     int port = SC_PORT(sc);
3981     int path = SC_PATH(sc);
3982 #endif
3983 
3984     /* Select the UNLOAD request mode */
3985     if (unload_mode == UNLOAD_NORMAL) {
3986         reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
3987     }
3988 #if 0
3989     else if (sc->flags & BXE_NO_WOL_FLAG) {
3990         reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP;
3991     } else if (sc->wol) {
3992         uint32_t emac_base = port ? GRCBASE_EMAC1 : GRCBASE_EMAC0;
3993         uint8_t *mac_addr = sc->dev->dev_addr;
3994         uint32_t val;
3995         uint16_t pmc;
3996 
3997         /*
3998          * The mac address is written to entries 1-4 to
3999          * preserve entry 0 which is used by the PMF
4000          */
4001         uint8_t entry = (SC_VN(sc) + 1)*8;
4002 
4003         val = (mac_addr[0] << 8) | mac_addr[1];
4004         EMAC_WR(sc, EMAC_REG_EMAC_MAC_MATCH + entry, val);
4005 
4006         val = (mac_addr[2] << 24) | (mac_addr[3] << 16) |
4007               (mac_addr[4] << 8) | mac_addr[5];
4008         EMAC_WR(sc, EMAC_REG_EMAC_MAC_MATCH + entry + 4, val);
4009 
4010         /* Enable the PME and clear the status */
4011         pmc = pci_read_config(sc->dev,
4012                               (sc->devinfo.pcie_pm_cap_reg +
4013                                PCIR_POWER_STATUS),
4014                               2);
4015         pmc |= PCIM_PSTAT_PMEENABLE | PCIM_PSTAT_PME;
4016         pci_write_config(sc->dev,
4017                          (sc->devinfo.pcie_pm_cap_reg +
4018                           PCIR_POWER_STATUS),
4019                          pmc, 4);
4020 
4021         reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_EN;
4022     }
4023 #endif
4024     else {
4025         reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
4026     }
4027 
4028     /* Send the request to the MCP */
4029     if (!BXE_NOMCP(sc)) {
4030         reset_code = bxe_fw_command(sc, reset_code, 0);
4031     } else {
4032         reset_code = bxe_nic_unload_no_mcp(sc);
4033     }
4034 
4035     return (reset_code);
4036 }
4037 
4038 /* send UNLOAD_DONE command to the MCP */
4039 static void
4040 bxe_send_unload_done(struct bxe_softc *sc,
4041                      uint8_t          keep_link)
4042 {
4043     uint32_t reset_param =
4044         keep_link ? DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET : 0;
4045 
4046     /* Report UNLOAD_DONE to MCP */
4047     if (!BXE_NOMCP(sc)) {
4048         bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_DONE, reset_param);
4049     }
4050 }
4051 
4052 static int
4053 bxe_func_wait_started(struct bxe_softc *sc)
4054 {
4055     int tout = 50;
4056 
4057     if (!sc->port.pmf) {
4058         return (0);
4059     }
4060 
4061     /*
4062      * (assumption: No Attention from MCP at this stage)
4063      * PMF probably in the middle of TX disable/enable transaction
4064      * 1. Sync IRS for default SB
4065      * 2. Sync SP queue - this guarantees us that attention handling started
4066      * 3. Wait, that TX disable/enable transaction completes
4067      *
4068      * 1+2 guarantee that if DCBX attention was scheduled it already changed
4069      * pending bit of transaction from STARTED-->TX_STOPPED, if we already
4070      * received completion for the transaction the state is TX_STOPPED.
4071      * State will return to STARTED after completion of TX_STOPPED-->STARTED
4072      * transaction.
4073      */
4074 
4075     /* XXX make sure default SB ISR is done */
4076     /* need a way to synchronize an irq (intr_mtx?) */
4077 
4078     /* XXX flush any work queues */
4079 
4080     while (ecore_func_get_state(sc, &sc->func_obj) !=
4081            ECORE_F_STATE_STARTED && tout--) {
4082         DELAY(20000);
4083     }
4084 
4085     if (ecore_func_get_state(sc, &sc->func_obj) != ECORE_F_STATE_STARTED) {
4086         /*
4087          * Failed to complete the transaction in a "good way"
4088          * Force both transactions with CLR bit.
4089          */
4090         struct ecore_func_state_params func_params = { NULL };
4091 
4092         BLOGE(sc, "Unexpected function state! "
4093                   "Forcing STARTED-->TX_STOPPED-->STARTED\n");
4094 
4095         func_params.f_obj = &sc->func_obj;
4096         bxe_set_bit(RAMROD_DRV_CLR_ONLY, &func_params.ramrod_flags);
4097 
4098         /* STARTED-->TX_STOPPED */
4099         func_params.cmd = ECORE_F_CMD_TX_STOP;
4100         ecore_func_state_change(sc, &func_params);
4101 
4102         /* TX_STOPPED-->STARTED */
4103         func_params.cmd = ECORE_F_CMD_TX_START;
4104         return (ecore_func_state_change(sc, &func_params));
4105     }
4106 
4107     return (0);
4108 }
4109 
4110 static int
4111 bxe_stop_queue(struct bxe_softc *sc,
4112                int              index)
4113 {
4114     struct bxe_fastpath *fp = &sc->fp[index];
4115     struct ecore_queue_state_params q_params = { NULL };
4116     int rc;
4117 
4118     BLOGD(sc, DBG_LOAD, "stopping queue %d cid %d\n", index, fp->index);
4119 
4120     q_params.q_obj = &sc->sp_objs[fp->index].q_obj;
4121     /* We want to wait for completion in this context */
4122     bxe_set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
4123 
4124     /* Stop the primary connection: */
4125 
4126     /* ...halt the connection */
4127     q_params.cmd = ECORE_Q_CMD_HALT;
4128     rc = ecore_queue_state_change(sc, &q_params);
4129     if (rc) {
4130         return (rc);
4131     }
4132 
4133     /* ...terminate the connection */
4134     q_params.cmd = ECORE_Q_CMD_TERMINATE;
4135     memset(&q_params.params.terminate, 0, sizeof(q_params.params.terminate));
4136     q_params.params.terminate.cid_index = FIRST_TX_COS_INDEX;
4137     rc = ecore_queue_state_change(sc, &q_params);
4138     if (rc) {
4139         return (rc);
4140     }
4141 
4142     /* ...delete cfc entry */
4143     q_params.cmd = ECORE_Q_CMD_CFC_DEL;
4144     memset(&q_params.params.cfc_del, 0, sizeof(q_params.params.cfc_del));
4145     q_params.params.cfc_del.cid_index = FIRST_TX_COS_INDEX;
4146     return (ecore_queue_state_change(sc, &q_params));
4147 }
4148 
4149 /* wait for the outstanding SP commands */
4150 static inline uint8_t
4151 bxe_wait_sp_comp(struct bxe_softc *sc,
4152                  unsigned long    mask)
4153 {
4154     unsigned long tmp;
4155     int tout = 5000; /* wait for 5 secs tops */
4156 
4157     while (tout--) {
4158         mb();
4159         if (!(atomic_load_acq_long(&sc->sp_state) & mask)) {
4160             return (TRUE);
4161         }
4162 
4163         DELAY(1000);
4164     }
4165 
4166     mb();
4167 
4168     tmp = atomic_load_acq_long(&sc->sp_state);
4169     if (tmp & mask) {
4170         BLOGE(sc, "Filtering completion timed out: "
4171                   "sp_state 0x%lx, mask 0x%lx\n",
4172               tmp, mask);
4173         return (FALSE);
4174     }
4175 
4176     return (FALSE);
4177 }
4178 
4179 static int
4180 bxe_func_stop(struct bxe_softc *sc)
4181 {
4182     struct ecore_func_state_params func_params = { NULL };
4183     int rc;
4184 
4185     /* prepare parameters for function state transitions */
4186     bxe_set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
4187     func_params.f_obj = &sc->func_obj;
4188     func_params.cmd = ECORE_F_CMD_STOP;
4189 
4190     /*
4191      * Try to stop the function the 'good way'. If it fails (in case
4192      * of a parity error during bxe_chip_cleanup()) and we are
4193      * not in a debug mode, perform a state transaction in order to
4194      * enable further HW_RESET transaction.
4195      */
4196     rc = ecore_func_state_change(sc, &func_params);
4197     if (rc) {
4198         BLOGE(sc, "FUNC_STOP ramrod failed. "
4199                   "Running a dry transaction\n");
4200         bxe_set_bit(RAMROD_DRV_CLR_ONLY, &func_params.ramrod_flags);
4201         return (ecore_func_state_change(sc, &func_params));
4202     }
4203 
4204     return (0);
4205 }
4206 
4207 static int
4208 bxe_reset_hw(struct bxe_softc *sc,
4209              uint32_t         load_code)
4210 {
4211     struct ecore_func_state_params func_params = { NULL };
4212 
4213     /* Prepare parameters for function state transitions */
4214     bxe_set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
4215 
4216     func_params.f_obj = &sc->func_obj;
4217     func_params.cmd = ECORE_F_CMD_HW_RESET;
4218 
4219     func_params.params.hw_init.load_phase = load_code;
4220 
4221     return (ecore_func_state_change(sc, &func_params));
4222 }
4223 
4224 static void
4225 bxe_int_disable_sync(struct bxe_softc *sc,
4226                      int              disable_hw)
4227 {
4228     if (disable_hw) {
4229         /* prevent the HW from sending interrupts */
4230         bxe_int_disable(sc);
4231     }
4232 
4233     /* XXX need a way to synchronize ALL irqs (intr_mtx?) */
4234     /* make sure all ISRs are done */
4235 
4236     /* XXX make sure sp_task is not running */
4237     /* cancel and flush work queues */
4238 }
4239 
4240 static void
4241 bxe_chip_cleanup(struct bxe_softc *sc,
4242                  uint32_t         unload_mode,
4243                  uint8_t          keep_link)
4244 {
4245     int port = SC_PORT(sc);
4246     struct ecore_mcast_ramrod_params rparam = { NULL };
4247     uint32_t reset_code;
4248     int i, rc = 0;
4249 
4250     bxe_drain_tx_queues(sc);
4251 
4252     /* give HW time to discard old tx messages */
4253     DELAY(1000);
4254 
4255     /* Clean all ETH MACs */
4256     rc = bxe_del_all_macs(sc, &sc->sp_objs[0].mac_obj, ECORE_ETH_MAC, FALSE);
4257     if (rc < 0) {
4258         BLOGE(sc, "Failed to delete all ETH MACs (%d)\n", rc);
4259     }
4260 
4261     /* Clean up UC list  */
4262     rc = bxe_del_all_macs(sc, &sc->sp_objs[0].mac_obj, ECORE_UC_LIST_MAC, TRUE);
4263     if (rc < 0) {
4264         BLOGE(sc, "Failed to delete UC MACs list (%d)\n", rc);
4265     }
4266 
4267     /* Disable LLH */
4268     if (!CHIP_IS_E1(sc)) {
4269         REG_WR(sc, NIG_REG_LLH0_FUNC_EN + port*8, 0);
4270     }
4271 
4272     /* Set "drop all" to stop Rx */
4273 
4274     /*
4275      * We need to take the BXE_MCAST_LOCK() here in order to prevent
4276      * a race between the completion code and this code.
4277      */
4278     BXE_MCAST_LOCK(sc);
4279 
4280     if (bxe_test_bit(ECORE_FILTER_RX_MODE_PENDING, &sc->sp_state)) {
4281         bxe_set_bit(ECORE_FILTER_RX_MODE_SCHED, &sc->sp_state);
4282     } else {
4283         bxe_set_storm_rx_mode(sc);
4284     }
4285 
4286     /* Clean up multicast configuration */
4287     rparam.mcast_obj = &sc->mcast_obj;
4288     rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_DEL);
4289     if (rc < 0) {
4290         BLOGE(sc, "Failed to send DEL MCAST command (%d)\n", rc);
4291     }
4292 
4293     BXE_MCAST_UNLOCK(sc);
4294 
4295     // XXX bxe_iov_chip_cleanup(sc);
4296 
4297     /*
4298      * Send the UNLOAD_REQUEST to the MCP. This will return if
4299      * this function should perform FUNCTION, PORT, or COMMON HW
4300      * reset.
4301      */
4302     reset_code = bxe_send_unload_req(sc, unload_mode);
4303 
4304     /*
4305      * (assumption: No Attention from MCP at this stage)
4306      * PMF probably in the middle of TX disable/enable transaction
4307      */
4308     rc = bxe_func_wait_started(sc);
4309     if (rc) {
4310         BLOGE(sc, "bxe_func_wait_started failed\n");
4311     }
4312 
4313     /*
4314      * Close multi and leading connections
4315      * Completions for ramrods are collected in a synchronous way
4316      */
4317     for (i = 0; i < sc->num_queues; i++) {
4318         if (bxe_stop_queue(sc, i)) {
4319             goto unload_error;
4320         }
4321     }
4322 
4323     /*
4324      * If SP settings didn't get completed so far - something
4325      * very wrong has happen.
4326      */
4327     if (!bxe_wait_sp_comp(sc, ~0x0UL)) {
4328         BLOGE(sc, "Common slow path ramrods got stuck!\n");
4329     }
4330 
4331 unload_error:
4332 
4333     rc = bxe_func_stop(sc);
4334     if (rc) {
4335         BLOGE(sc, "Function stop failed!\n");
4336     }
4337 
4338     /* disable HW interrupts */
4339     bxe_int_disable_sync(sc, TRUE);
4340 
4341     /* detach interrupts */
4342     bxe_interrupt_detach(sc);
4343 
4344     /* Reset the chip */
4345     rc = bxe_reset_hw(sc, reset_code);
4346     if (rc) {
4347         BLOGE(sc, "Hardware reset failed\n");
4348     }
4349 
4350     /* Report UNLOAD_DONE to MCP */
4351     bxe_send_unload_done(sc, keep_link);
4352 }
4353 
4354 static void
4355 bxe_disable_close_the_gate(struct bxe_softc *sc)
4356 {
4357     uint32_t val;
4358     int port = SC_PORT(sc);
4359 
4360     BLOGD(sc, DBG_LOAD,
4361           "Disabling 'close the gates'\n");
4362 
4363     if (CHIP_IS_E1(sc)) {
4364         uint32_t addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
4365                                MISC_REG_AEU_MASK_ATTN_FUNC_0;
4366         val = REG_RD(sc, addr);
4367         val &= ~(0x300);
4368         REG_WR(sc, addr, val);
4369     } else {
4370         val = REG_RD(sc, MISC_REG_AEU_GENERAL_MASK);
4371         val &= ~(MISC_AEU_GENERAL_MASK_REG_AEU_PXP_CLOSE_MASK |
4372                  MISC_AEU_GENERAL_MASK_REG_AEU_NIG_CLOSE_MASK);
4373         REG_WR(sc, MISC_REG_AEU_GENERAL_MASK, val);
4374     }
4375 }
4376 
4377 /*
4378  * Cleans the object that have internal lists without sending
4379  * ramrods. Should be run when interrutps are disabled.
4380  */
4381 static void
4382 bxe_squeeze_objects(struct bxe_softc *sc)
4383 {
4384     unsigned long ramrod_flags = 0, vlan_mac_flags = 0;
4385     struct ecore_mcast_ramrod_params rparam = { NULL };
4386     struct ecore_vlan_mac_obj *mac_obj = &sc->sp_objs->mac_obj;
4387     int rc;
4388 
4389     /* Cleanup MACs' object first... */
4390 
4391     /* Wait for completion of requested */
4392     bxe_set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
4393     /* Perform a dry cleanup */
4394     bxe_set_bit(RAMROD_DRV_CLR_ONLY, &ramrod_flags);
4395 
4396     /* Clean ETH primary MAC */
4397     bxe_set_bit(ECORE_ETH_MAC, &vlan_mac_flags);
4398     rc = mac_obj->delete_all(sc, &sc->sp_objs->mac_obj, &vlan_mac_flags,
4399                              &ramrod_flags);
4400     if (rc != 0) {
4401         BLOGE(sc, "Failed to clean ETH MACs (%d)\n", rc);
4402     }
4403 
4404     /* Cleanup UC list */
4405     vlan_mac_flags = 0;
4406     bxe_set_bit(ECORE_UC_LIST_MAC, &vlan_mac_flags);
4407     rc = mac_obj->delete_all(sc, mac_obj, &vlan_mac_flags,
4408                              &ramrod_flags);
4409     if (rc != 0) {
4410         BLOGE(sc, "Failed to clean UC list MACs (%d)\n", rc);
4411     }
4412 
4413     /* Now clean mcast object... */
4414 
4415     rparam.mcast_obj = &sc->mcast_obj;
4416     bxe_set_bit(RAMROD_DRV_CLR_ONLY, &rparam.ramrod_flags);
4417 
4418     /* Add a DEL command... */
4419     rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_DEL);
4420     if (rc < 0) {
4421         BLOGE(sc, "Failed to send DEL MCAST command (%d)\n", rc);
4422     }
4423 
4424     /* now wait until all pending commands are cleared */
4425 
4426     rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_CONT);
4427     while (rc != 0) {
4428         if (rc < 0) {
4429             BLOGE(sc, "Failed to clean MCAST object (%d)\n", rc);
4430             return;
4431         }
4432 
4433         rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_CONT);
4434     }
4435 }
4436 
4437 /* stop the controller */
4438 static __noinline int
4439 bxe_nic_unload(struct bxe_softc *sc,
4440                uint32_t         unload_mode,
4441                uint8_t          keep_link)
4442 {
4443     uint8_t global = FALSE;
4444     uint32_t val;
4445 
4446     BXE_CORE_LOCK_ASSERT(sc);
4447 
4448     BLOGD(sc, DBG_LOAD, "Starting NIC unload...\n");
4449 
4450     /* mark driver as unloaded in shmem2 */
4451     if (IS_PF(sc) && SHMEM2_HAS(sc, drv_capabilities_flag)) {
4452         val = SHMEM2_RD(sc, drv_capabilities_flag[SC_FW_MB_IDX(sc)]);
4453         SHMEM2_WR(sc, drv_capabilities_flag[SC_FW_MB_IDX(sc)],
4454                   val & ~DRV_FLAGS_CAPABILITIES_LOADED_L2);
4455     }
4456 
4457     if (IS_PF(sc) && sc->recovery_state != BXE_RECOVERY_DONE &&
4458         (sc->state == BXE_STATE_CLOSED || sc->state == BXE_STATE_ERROR)) {
4459         /*
4460          * We can get here if the driver has been unloaded
4461          * during parity error recovery and is either waiting for a
4462          * leader to complete or for other functions to unload and
4463          * then ifconfig down has been issued. In this case we want to
4464          * unload and let other functions to complete a recovery
4465          * process.
4466          */
4467         sc->recovery_state = BXE_RECOVERY_DONE;
4468         sc->is_leader = 0;
4469         bxe_release_leader_lock(sc);
4470         mb();
4471 
4472         BLOGD(sc, DBG_LOAD, "Releasing a leadership...\n");
4473         BLOGE(sc, "Can't unload in closed or error state\n");
4474         return (-1);
4475     }
4476 
4477     /*
4478      * Nothing to do during unload if previous bxe_nic_load()
4479      * did not completed succesfully - all resourses are released.
4480      */
4481     if ((sc->state == BXE_STATE_CLOSED) ||
4482         (sc->state == BXE_STATE_ERROR)) {
4483         return (0);
4484     }
4485 
4486     sc->state = BXE_STATE_CLOSING_WAITING_HALT;
4487     mb();
4488 
4489     /* stop tx */
4490     bxe_tx_disable(sc);
4491 
4492     sc->rx_mode = BXE_RX_MODE_NONE;
4493     /* XXX set rx mode ??? */
4494 
4495     if (IS_PF(sc)) {
4496         /* set ALWAYS_ALIVE bit in shmem */
4497         sc->fw_drv_pulse_wr_seq |= DRV_PULSE_ALWAYS_ALIVE;
4498 
4499         bxe_drv_pulse(sc);
4500 
4501         bxe_stats_handle(sc, STATS_EVENT_STOP);
4502         bxe_save_statistics(sc);
4503     }
4504 
4505     /* wait till consumers catch up with producers in all queues */
4506     bxe_drain_tx_queues(sc);
4507 
4508     /* if VF indicate to PF this function is going down (PF will delete sp
4509      * elements and clear initializations
4510      */
4511     if (IS_VF(sc)) {
4512         ; /* bxe_vfpf_close_vf(sc); */
4513     } else if (unload_mode != UNLOAD_RECOVERY) {
4514         /* if this is a normal/close unload need to clean up chip */
4515         bxe_chip_cleanup(sc, unload_mode, keep_link);
4516     } else {
4517         /* Send the UNLOAD_REQUEST to the MCP */
4518         bxe_send_unload_req(sc, unload_mode);
4519 
4520         /*
4521          * Prevent transactions to host from the functions on the
4522          * engine that doesn't reset global blocks in case of global
4523          * attention once gloabl blocks are reset and gates are opened
4524          * (the engine which leader will perform the recovery
4525          * last).
4526          */
4527         if (!CHIP_IS_E1x(sc)) {
4528             bxe_pf_disable(sc);
4529         }
4530 
4531         /* disable HW interrupts */
4532         bxe_int_disable_sync(sc, TRUE);
4533 
4534         /* detach interrupts */
4535         bxe_interrupt_detach(sc);
4536 
4537         /* Report UNLOAD_DONE to MCP */
4538         bxe_send_unload_done(sc, FALSE);
4539     }
4540 
4541     /*
4542      * At this stage no more interrupts will arrive so we may safely clean
4543      * the queue'able objects here in case they failed to get cleaned so far.
4544      */
4545     if (IS_PF(sc)) {
4546         bxe_squeeze_objects(sc);
4547     }
4548 
4549     /* There should be no more pending SP commands at this stage */
4550     sc->sp_state = 0;
4551 
4552     sc->port.pmf = 0;
4553 
4554     bxe_free_fp_buffers(sc);
4555 
4556     if (IS_PF(sc)) {
4557         bxe_free_mem(sc);
4558     }
4559 
4560     bxe_free_fw_stats_mem(sc);
4561 
4562     sc->state = BXE_STATE_CLOSED;
4563 
4564     /*
4565      * Check if there are pending parity attentions. If there are - set
4566      * RECOVERY_IN_PROGRESS.
4567      */
4568     if (IS_PF(sc) && bxe_chk_parity_attn(sc, &global, FALSE)) {
4569         bxe_set_reset_in_progress(sc);
4570 
4571         /* Set RESET_IS_GLOBAL if needed */
4572         if (global) {
4573             bxe_set_reset_global(sc);
4574         }
4575     }
4576 
4577     /*
4578      * The last driver must disable a "close the gate" if there is no
4579      * parity attention or "process kill" pending.
4580      */
4581     if (IS_PF(sc) && !bxe_clear_pf_load(sc) &&
4582         bxe_reset_is_done(sc, SC_PATH(sc))) {
4583         bxe_disable_close_the_gate(sc);
4584     }
4585 
4586     BLOGD(sc, DBG_LOAD, "Ended NIC unload\n");
4587 
4588     return (0);
4589 }
4590 
4591 /*
4592  * Called by the OS to set various media options (i.e. link, speed, etc.) when
4593  * the user runs "ifconfig bxe media ..." or "ifconfig bxe mediaopt ...".
4594  */
4595 static int
4596 bxe_ifmedia_update(struct ifnet  *ifp)
4597 {
4598     struct bxe_softc *sc = (struct bxe_softc *)if_getsoftc(ifp);
4599     struct ifmedia *ifm;
4600 
4601     ifm = &sc->ifmedia;
4602 
4603     /* We only support Ethernet media type. */
4604     if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER) {
4605         return (EINVAL);
4606     }
4607 
4608     switch (IFM_SUBTYPE(ifm->ifm_media)) {
4609     case IFM_AUTO:
4610          break;
4611     case IFM_10G_CX4:
4612     case IFM_10G_SR:
4613     case IFM_10G_T:
4614     case IFM_10G_TWINAX:
4615     default:
4616         /* We don't support changing the media type. */
4617         BLOGD(sc, DBG_LOAD, "Invalid media type (%d)\n",
4618               IFM_SUBTYPE(ifm->ifm_media));
4619         return (EINVAL);
4620     }
4621 
4622     return (0);
4623 }
4624 
4625 /*
4626  * Called by the OS to get the current media status (i.e. link, speed, etc.).
4627  */
4628 static void
4629 bxe_ifmedia_status(struct ifnet *ifp, struct ifmediareq *ifmr)
4630 {
4631     struct bxe_softc *sc = if_getsoftc(ifp);
4632 
4633     /* Report link down if the driver isn't running. */
4634     if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) == 0) {
4635         ifmr->ifm_active |= IFM_NONE;
4636         return;
4637     }
4638 
4639     /* Setup the default interface info. */
4640     ifmr->ifm_status = IFM_AVALID;
4641     ifmr->ifm_active = IFM_ETHER;
4642 
4643     if (sc->link_vars.link_up) {
4644         ifmr->ifm_status |= IFM_ACTIVE;
4645     } else {
4646         ifmr->ifm_active |= IFM_NONE;
4647         return;
4648     }
4649 
4650     ifmr->ifm_active |= sc->media;
4651 
4652     if (sc->link_vars.duplex == DUPLEX_FULL) {
4653         ifmr->ifm_active |= IFM_FDX;
4654     } else {
4655         ifmr->ifm_active |= IFM_HDX;
4656     }
4657 }
4658 
4659 static int
4660 bxe_ioctl_nvram(struct bxe_softc *sc,
4661                 uint32_t         priv_op,
4662                 struct ifreq     *ifr)
4663 {
4664     struct bxe_nvram_data nvdata_base;
4665     struct bxe_nvram_data *nvdata;
4666     int len;
4667     int error = 0;
4668 
4669     copyin(ifr->ifr_data, &nvdata_base, sizeof(nvdata_base));
4670 
4671     len = (sizeof(struct bxe_nvram_data) +
4672            nvdata_base.len -
4673            sizeof(uint32_t));
4674 
4675     if (len > sizeof(struct bxe_nvram_data)) {
4676         if ((nvdata = (struct bxe_nvram_data *)
4677                  malloc(len, M_DEVBUF,
4678                         (M_NOWAIT | M_ZERO))) == NULL) {
4679             BLOGE(sc, "BXE_IOC_RD_NVRAM malloc failed\n");
4680             return (1);
4681         }
4682         memcpy(nvdata, &nvdata_base, sizeof(struct bxe_nvram_data));
4683     } else {
4684         nvdata = &nvdata_base;
4685     }
4686 
4687     if (priv_op == BXE_IOC_RD_NVRAM) {
4688         BLOGD(sc, DBG_IOCTL, "IOC_RD_NVRAM 0x%x %d\n",
4689               nvdata->offset, nvdata->len);
4690         error = bxe_nvram_read(sc,
4691                                nvdata->offset,
4692                                (uint8_t *)nvdata->value,
4693                                nvdata->len);
4694         copyout(nvdata, ifr->ifr_data, len);
4695     } else { /* BXE_IOC_WR_NVRAM */
4696         BLOGD(sc, DBG_IOCTL, "IOC_WR_NVRAM 0x%x %d\n",
4697               nvdata->offset, nvdata->len);
4698         copyin(ifr->ifr_data, nvdata, len);
4699         error = bxe_nvram_write(sc,
4700                                 nvdata->offset,
4701                                 (uint8_t *)nvdata->value,
4702                                 nvdata->len);
4703     }
4704 
4705     if (len > sizeof(struct bxe_nvram_data)) {
4706         free(nvdata, M_DEVBUF);
4707     }
4708 
4709     return (error);
4710 }
4711 
4712 static int
4713 bxe_ioctl_stats_show(struct bxe_softc *sc,
4714                      uint32_t         priv_op,
4715                      struct ifreq     *ifr)
4716 {
4717     const size_t str_size   = (BXE_NUM_ETH_STATS * STAT_NAME_LEN);
4718     const size_t stats_size = (BXE_NUM_ETH_STATS * sizeof(uint64_t));
4719     caddr_t p_tmp;
4720     uint32_t *offset;
4721     int i;
4722 
4723     switch (priv_op)
4724     {
4725     case BXE_IOC_STATS_SHOW_NUM:
4726         memset(ifr->ifr_data, 0, sizeof(union bxe_stats_show_data));
4727         ((union bxe_stats_show_data *)ifr->ifr_data)->desc.num =
4728             BXE_NUM_ETH_STATS;
4729         ((union bxe_stats_show_data *)ifr->ifr_data)->desc.len =
4730             STAT_NAME_LEN;
4731         return (0);
4732 
4733     case BXE_IOC_STATS_SHOW_STR:
4734         memset(ifr->ifr_data, 0, str_size);
4735         p_tmp = ifr->ifr_data;
4736         for (i = 0; i < BXE_NUM_ETH_STATS; i++) {
4737             strcpy(p_tmp, bxe_eth_stats_arr[i].string);
4738             p_tmp += STAT_NAME_LEN;
4739         }
4740         return (0);
4741 
4742     case BXE_IOC_STATS_SHOW_CNT:
4743         memset(ifr->ifr_data, 0, stats_size);
4744         p_tmp = ifr->ifr_data;
4745         for (i = 0; i < BXE_NUM_ETH_STATS; i++) {
4746             offset = ((uint32_t *)&sc->eth_stats +
4747                       bxe_eth_stats_arr[i].offset);
4748             switch (bxe_eth_stats_arr[i].size) {
4749             case 4:
4750                 *((uint64_t *)p_tmp) = (uint64_t)*offset;
4751                 break;
4752             case 8:
4753                 *((uint64_t *)p_tmp) = HILO_U64(*offset, *(offset + 1));
4754                 break;
4755             default:
4756                 *((uint64_t *)p_tmp) = 0;
4757             }
4758             p_tmp += sizeof(uint64_t);
4759         }
4760         return (0);
4761 
4762     default:
4763         return (-1);
4764     }
4765 }
4766 
4767 static void
4768 bxe_handle_chip_tq(void *context,
4769                    int  pending)
4770 {
4771     struct bxe_softc *sc = (struct bxe_softc *)context;
4772     long work = atomic_load_acq_long(&sc->chip_tq_flags);
4773 
4774     switch (work)
4775     {
4776 
4777     case CHIP_TQ_REINIT:
4778         if (if_getdrvflags(sc->ifp) & IFF_DRV_RUNNING) {
4779             /* restart the interface */
4780             BLOGD(sc, DBG_LOAD, "Restarting the interface...\n");
4781             bxe_periodic_stop(sc);
4782             BXE_CORE_LOCK(sc);
4783             bxe_stop_locked(sc);
4784             bxe_init_locked(sc);
4785             BXE_CORE_UNLOCK(sc);
4786         }
4787         break;
4788 
4789     default:
4790         break;
4791     }
4792 }
4793 
4794 /*
4795  * Handles any IOCTL calls from the operating system.
4796  *
4797  * Returns:
4798  *   0 = Success, >0 Failure
4799  */
4800 static int
4801 bxe_ioctl(if_t ifp,
4802           u_long       command,
4803           caddr_t      data)
4804 {
4805     struct bxe_softc *sc = if_getsoftc(ifp);
4806     struct ifreq *ifr = (struct ifreq *)data;
4807     struct bxe_nvram_data *nvdata;
4808     uint32_t priv_op;
4809     int mask = 0;
4810     int reinit = 0;
4811     int error = 0;
4812 
4813     int mtu_min = (ETH_MIN_PACKET_SIZE - ETH_HLEN);
4814     int mtu_max = (MJUM9BYTES - ETH_OVERHEAD - IP_HEADER_ALIGNMENT_PADDING);
4815 
4816     switch (command)
4817     {
4818     case SIOCSIFMTU:
4819         BLOGD(sc, DBG_IOCTL, "Received SIOCSIFMTU ioctl (mtu=%d)\n",
4820               ifr->ifr_mtu);
4821 
4822         if (sc->mtu == ifr->ifr_mtu) {
4823             /* nothing to change */
4824             break;
4825         }
4826 
4827         if ((ifr->ifr_mtu < mtu_min) || (ifr->ifr_mtu > mtu_max)) {
4828             BLOGE(sc, "Unsupported MTU size %d (range is %d-%d)\n",
4829                   ifr->ifr_mtu, mtu_min, mtu_max);
4830             error = EINVAL;
4831             break;
4832         }
4833 
4834         atomic_store_rel_int((volatile unsigned int *)&sc->mtu,
4835                              (unsigned long)ifr->ifr_mtu);
4836 	/*
4837         atomic_store_rel_long((volatile unsigned long *)&if_getmtu(ifp),
4838                               (unsigned long)ifr->ifr_mtu);
4839 	XXX - Not sure why it needs to be atomic
4840 	*/
4841 	if_setmtu(ifp, ifr->ifr_mtu);
4842         reinit = 1;
4843         break;
4844 
4845     case SIOCSIFFLAGS:
4846         /* toggle the interface state up or down */
4847         BLOGD(sc, DBG_IOCTL, "Received SIOCSIFFLAGS ioctl\n");
4848 
4849 	BXE_CORE_LOCK(sc);
4850         /* check if the interface is up */
4851         if (if_getflags(ifp) & IFF_UP) {
4852             if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
4853                 /* set the receive mode flags */
4854                 bxe_set_rx_mode(sc);
4855             } else {
4856 		bxe_init_locked(sc);
4857             }
4858         } else {
4859             if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
4860 		bxe_periodic_stop(sc);
4861 		bxe_stop_locked(sc);
4862             }
4863         }
4864 	BXE_CORE_UNLOCK(sc);
4865 
4866         break;
4867 
4868     case SIOCADDMULTI:
4869     case SIOCDELMULTI:
4870         /* add/delete multicast addresses */
4871         BLOGD(sc, DBG_IOCTL, "Received SIOCADDMULTI/SIOCDELMULTI ioctl\n");
4872 
4873         /* check if the interface is up */
4874         if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
4875             /* set the receive mode flags */
4876 	    BXE_CORE_LOCK(sc);
4877             bxe_set_rx_mode(sc);
4878 	    BXE_CORE_UNLOCK(sc);
4879         }
4880 
4881         break;
4882 
4883     case SIOCSIFCAP:
4884         /* find out which capabilities have changed */
4885         mask = (ifr->ifr_reqcap ^ if_getcapenable(ifp));
4886 
4887         BLOGD(sc, DBG_IOCTL, "Received SIOCSIFCAP ioctl (mask=0x%08x)\n",
4888               mask);
4889 
4890         /* toggle the LRO capabilites enable flag */
4891         if (mask & IFCAP_LRO) {
4892 	    if_togglecapenable(ifp, IFCAP_LRO);
4893             BLOGD(sc, DBG_IOCTL, "Turning LRO %s\n",
4894                   (if_getcapenable(ifp) & IFCAP_LRO) ? "ON" : "OFF");
4895             reinit = 1;
4896         }
4897 
4898         /* toggle the TXCSUM checksum capabilites enable flag */
4899         if (mask & IFCAP_TXCSUM) {
4900 	    if_togglecapenable(ifp, IFCAP_TXCSUM);
4901             BLOGD(sc, DBG_IOCTL, "Turning TXCSUM %s\n",
4902                   (if_getcapenable(ifp) & IFCAP_TXCSUM) ? "ON" : "OFF");
4903             if (if_getcapenable(ifp) & IFCAP_TXCSUM) {
4904                 if_sethwassistbits(ifp, (CSUM_IP      |
4905                                     CSUM_TCP      |
4906                                     CSUM_UDP      |
4907                                     CSUM_TSO      |
4908                                     CSUM_TCP_IPV6 |
4909                                     CSUM_UDP_IPV6), 0);
4910             } else {
4911 		if_clearhwassist(ifp); /* XXX */
4912             }
4913         }
4914 
4915         /* toggle the RXCSUM checksum capabilities enable flag */
4916         if (mask & IFCAP_RXCSUM) {
4917 	    if_togglecapenable(ifp, IFCAP_RXCSUM);
4918             BLOGD(sc, DBG_IOCTL, "Turning RXCSUM %s\n",
4919                   (if_getcapenable(ifp) & IFCAP_RXCSUM) ? "ON" : "OFF");
4920             if (if_getcapenable(ifp) & IFCAP_RXCSUM) {
4921                 if_sethwassistbits(ifp, (CSUM_IP      |
4922                                     CSUM_TCP      |
4923                                     CSUM_UDP      |
4924                                     CSUM_TSO      |
4925                                     CSUM_TCP_IPV6 |
4926                                     CSUM_UDP_IPV6), 0);
4927             } else {
4928 		if_clearhwassist(ifp); /* XXX */
4929             }
4930         }
4931 
4932         /* toggle TSO4 capabilities enabled flag */
4933         if (mask & IFCAP_TSO4) {
4934             if_togglecapenable(ifp, IFCAP_TSO4);
4935             BLOGD(sc, DBG_IOCTL, "Turning TSO4 %s\n",
4936                   (if_getcapenable(ifp) & IFCAP_TSO4) ? "ON" : "OFF");
4937         }
4938 
4939         /* toggle TSO6 capabilities enabled flag */
4940         if (mask & IFCAP_TSO6) {
4941 	    if_togglecapenable(ifp, IFCAP_TSO6);
4942             BLOGD(sc, DBG_IOCTL, "Turning TSO6 %s\n",
4943                   (if_getcapenable(ifp) & IFCAP_TSO6) ? "ON" : "OFF");
4944         }
4945 
4946         /* toggle VLAN_HWTSO capabilities enabled flag */
4947         if (mask & IFCAP_VLAN_HWTSO) {
4948 
4949 	    if_togglecapenable(ifp, IFCAP_VLAN_HWTSO);
4950             BLOGD(sc, DBG_IOCTL, "Turning VLAN_HWTSO %s\n",
4951                   (if_getcapenable(ifp) & IFCAP_VLAN_HWTSO) ? "ON" : "OFF");
4952         }
4953 
4954         /* toggle VLAN_HWCSUM capabilities enabled flag */
4955         if (mask & IFCAP_VLAN_HWCSUM) {
4956             /* XXX investigate this... */
4957             BLOGE(sc, "Changing VLAN_HWCSUM is not supported!\n");
4958             error = EINVAL;
4959         }
4960 
4961         /* toggle VLAN_MTU capabilities enable flag */
4962         if (mask & IFCAP_VLAN_MTU) {
4963             /* XXX investigate this... */
4964             BLOGE(sc, "Changing VLAN_MTU is not supported!\n");
4965             error = EINVAL;
4966         }
4967 
4968         /* toggle VLAN_HWTAGGING capabilities enabled flag */
4969         if (mask & IFCAP_VLAN_HWTAGGING) {
4970             /* XXX investigate this... */
4971             BLOGE(sc, "Changing VLAN_HWTAGGING is not supported!\n");
4972             error = EINVAL;
4973         }
4974 
4975         /* toggle VLAN_HWFILTER capabilities enabled flag */
4976         if (mask & IFCAP_VLAN_HWFILTER) {
4977             /* XXX investigate this... */
4978             BLOGE(sc, "Changing VLAN_HWFILTER is not supported!\n");
4979             error = EINVAL;
4980         }
4981 
4982         /* XXX not yet...
4983          * IFCAP_WOL_MAGIC
4984          */
4985 
4986         break;
4987 
4988     case SIOCSIFMEDIA:
4989     case SIOCGIFMEDIA:
4990         /* set/get interface media */
4991         BLOGD(sc, DBG_IOCTL,
4992               "Received SIOCSIFMEDIA/SIOCGIFMEDIA ioctl (cmd=%lu)\n",
4993               (command & 0xff));
4994         error = ifmedia_ioctl(ifp, ifr, &sc->ifmedia, command);
4995         break;
4996 
4997     case SIOCGPRIVATE_0:
4998         copyin(ifr->ifr_data, &priv_op, sizeof(priv_op));
4999 
5000         switch (priv_op)
5001         {
5002         case BXE_IOC_RD_NVRAM:
5003         case BXE_IOC_WR_NVRAM:
5004             nvdata = (struct bxe_nvram_data *)ifr->ifr_data;
5005             BLOGD(sc, DBG_IOCTL,
5006                   "Received Private NVRAM ioctl addr=0x%x size=%u\n",
5007                   nvdata->offset, nvdata->len);
5008             error = bxe_ioctl_nvram(sc, priv_op, ifr);
5009             break;
5010 
5011         case BXE_IOC_STATS_SHOW_NUM:
5012         case BXE_IOC_STATS_SHOW_STR:
5013         case BXE_IOC_STATS_SHOW_CNT:
5014             BLOGD(sc, DBG_IOCTL, "Received Private Stats ioctl (%d)\n",
5015                   priv_op);
5016             error = bxe_ioctl_stats_show(sc, priv_op, ifr);
5017             break;
5018 
5019         default:
5020             BLOGW(sc, "Received Private Unknown ioctl (%d)\n", priv_op);
5021             error = EINVAL;
5022             break;
5023         }
5024 
5025         break;
5026 
5027     default:
5028         BLOGD(sc, DBG_IOCTL, "Received Unknown Ioctl (cmd=%lu)\n",
5029               (command & 0xff));
5030         error = ether_ioctl(ifp, command, data);
5031         break;
5032     }
5033 
5034     if (reinit && (if_getdrvflags(sc->ifp) & IFF_DRV_RUNNING)) {
5035         BLOGD(sc, DBG_LOAD | DBG_IOCTL,
5036               "Re-initializing hardware from IOCTL change\n");
5037 	bxe_periodic_stop(sc);
5038 	BXE_CORE_LOCK(sc);
5039 	bxe_stop_locked(sc);
5040 	bxe_init_locked(sc);
5041 	BXE_CORE_UNLOCK(sc);
5042     }
5043 
5044     return (error);
5045 }
5046 
5047 static __noinline void
5048 bxe_dump_mbuf(struct bxe_softc *sc,
5049               struct mbuf      *m,
5050               uint8_t          contents)
5051 {
5052     char * type;
5053     int i = 0;
5054 
5055     if (!(sc->debug & DBG_MBUF)) {
5056         return;
5057     }
5058 
5059     if (m == NULL) {
5060         BLOGD(sc, DBG_MBUF, "mbuf: null pointer\n");
5061         return;
5062     }
5063 
5064     while (m) {
5065         BLOGD(sc, DBG_MBUF,
5066               "%02d: mbuf=%p m_len=%d m_flags=0x%b m_data=%p\n",
5067               i, m, m->m_len, m->m_flags, M_FLAG_BITS, m->m_data);
5068 
5069         if (m->m_flags & M_PKTHDR) {
5070              BLOGD(sc, DBG_MBUF,
5071                    "%02d: - m_pkthdr: tot_len=%d flags=0x%b csum_flags=%b\n",
5072                    i, m->m_pkthdr.len, m->m_flags, M_FLAG_BITS,
5073                    (int)m->m_pkthdr.csum_flags, CSUM_BITS);
5074         }
5075 
5076         if (m->m_flags & M_EXT) {
5077             switch (m->m_ext.ext_type) {
5078             case EXT_CLUSTER:    type = "EXT_CLUSTER";    break;
5079             case EXT_SFBUF:      type = "EXT_SFBUF";      break;
5080             case EXT_JUMBOP:     type = "EXT_JUMBOP";     break;
5081             case EXT_JUMBO9:     type = "EXT_JUMBO9";     break;
5082             case EXT_JUMBO16:    type = "EXT_JUMBO16";    break;
5083             case EXT_PACKET:     type = "EXT_PACKET";     break;
5084             case EXT_MBUF:       type = "EXT_MBUF";       break;
5085             case EXT_NET_DRV:    type = "EXT_NET_DRV";    break;
5086             case EXT_MOD_TYPE:   type = "EXT_MOD_TYPE";   break;
5087             case EXT_DISPOSABLE: type = "EXT_DISPOSABLE"; break;
5088             case EXT_EXTREF:     type = "EXT_EXTREF";     break;
5089             default:             type = "UNKNOWN";        break;
5090             }
5091 
5092             BLOGD(sc, DBG_MBUF,
5093                   "%02d: - m_ext: %p ext_size=%d type=%s\n",
5094                   i, m->m_ext.ext_buf, m->m_ext.ext_size, type);
5095         }
5096 
5097         if (contents) {
5098             bxe_dump_mbuf_data(sc, "mbuf data", m, TRUE);
5099         }
5100 
5101         m = m->m_next;
5102         i++;
5103     }
5104 }
5105 
5106 /*
5107  * Checks to ensure the 13 bd sliding window is >= MSS for TSO.
5108  * Check that (13 total bds - 3 bds) = 10 bd window >= MSS.
5109  * The window: 3 bds are = 1 for headers BD + 2 for parse BD and last BD
5110  * The headers comes in a seperate bd in FreeBSD so 13-3=10.
5111  * Returns: 0 if OK to send, 1 if packet needs further defragmentation
5112  */
5113 static int
5114 bxe_chktso_window(struct bxe_softc  *sc,
5115                   int               nsegs,
5116                   bus_dma_segment_t *segs,
5117                   struct mbuf       *m)
5118 {
5119     uint32_t num_wnds, wnd_size, wnd_sum;
5120     int32_t frag_idx, wnd_idx;
5121     unsigned short lso_mss;
5122     int defrag;
5123 
5124     defrag = 0;
5125     wnd_sum = 0;
5126     wnd_size = 10;
5127     num_wnds = nsegs - wnd_size;
5128     lso_mss = htole16(m->m_pkthdr.tso_segsz);
5129 
5130     /*
5131      * Total header lengths Eth+IP+TCP in first FreeBSD mbuf so calculate the
5132      * first window sum of data while skipping the first assuming it is the
5133      * header in FreeBSD.
5134      */
5135     for (frag_idx = 1; (frag_idx <= wnd_size); frag_idx++) {
5136         wnd_sum += htole16(segs[frag_idx].ds_len);
5137     }
5138 
5139     /* check the first 10 bd window size */
5140     if (wnd_sum < lso_mss) {
5141         return (1);
5142     }
5143 
5144     /* run through the windows */
5145     for (wnd_idx = 0; wnd_idx < num_wnds; wnd_idx++, frag_idx++) {
5146         /* subtract the first mbuf->m_len of the last wndw(-header) */
5147         wnd_sum -= htole16(segs[wnd_idx+1].ds_len);
5148         /* add the next mbuf len to the len of our new window */
5149         wnd_sum += htole16(segs[frag_idx].ds_len);
5150         if (wnd_sum < lso_mss) {
5151             return (1);
5152         }
5153     }
5154 
5155     return (0);
5156 }
5157 
5158 static uint8_t
5159 bxe_set_pbd_csum_e2(struct bxe_fastpath *fp,
5160                     struct mbuf         *m,
5161                     uint32_t            *parsing_data)
5162 {
5163     struct ether_vlan_header *eh = NULL;
5164     struct ip *ip4 = NULL;
5165     struct ip6_hdr *ip6 = NULL;
5166     caddr_t ip = NULL;
5167     struct tcphdr *th = NULL;
5168     int e_hlen, ip_hlen, l4_off;
5169     uint16_t proto;
5170 
5171     if (m->m_pkthdr.csum_flags == CSUM_IP) {
5172         /* no L4 checksum offload needed */
5173         return (0);
5174     }
5175 
5176     /* get the Ethernet header */
5177     eh = mtod(m, struct ether_vlan_header *);
5178 
5179     /* handle VLAN encapsulation if present */
5180     if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) {
5181         e_hlen = (ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN);
5182         proto  = ntohs(eh->evl_proto);
5183     } else {
5184         e_hlen = ETHER_HDR_LEN;
5185         proto  = ntohs(eh->evl_encap_proto);
5186     }
5187 
5188     switch (proto) {
5189     case ETHERTYPE_IP:
5190         /* get the IP header, if mbuf len < 20 then header in next mbuf */
5191         ip4 = (m->m_len < sizeof(struct ip)) ?
5192                   (struct ip *)m->m_next->m_data :
5193                   (struct ip *)(m->m_data + e_hlen);
5194         /* ip_hl is number of 32-bit words */
5195         ip_hlen = (ip4->ip_hl << 2);
5196         ip = (caddr_t)ip4;
5197         break;
5198     case ETHERTYPE_IPV6:
5199         /* get the IPv6 header, if mbuf len < 40 then header in next mbuf */
5200         ip6 = (m->m_len < sizeof(struct ip6_hdr)) ?
5201                   (struct ip6_hdr *)m->m_next->m_data :
5202                   (struct ip6_hdr *)(m->m_data + e_hlen);
5203         /* XXX cannot support offload with IPv6 extensions */
5204         ip_hlen = sizeof(struct ip6_hdr);
5205         ip = (caddr_t)ip6;
5206         break;
5207     default:
5208         /* We can't offload in this case... */
5209         /* XXX error stat ??? */
5210         return (0);
5211     }
5212 
5213     /* XXX assuming L4 header is contiguous to IPv4/IPv6 in the same mbuf */
5214     l4_off = (e_hlen + ip_hlen);
5215 
5216     *parsing_data |=
5217         (((l4_off >> 1) << ETH_TX_PARSE_BD_E2_L4_HDR_START_OFFSET_W_SHIFT) &
5218          ETH_TX_PARSE_BD_E2_L4_HDR_START_OFFSET_W);
5219 
5220     if (m->m_pkthdr.csum_flags & (CSUM_TCP |
5221                                   CSUM_TSO |
5222                                   CSUM_TCP_IPV6)) {
5223         fp->eth_q_stats.tx_ofld_frames_csum_tcp++;
5224         th = (struct tcphdr *)(ip + ip_hlen);
5225         /* th_off is number of 32-bit words */
5226         *parsing_data |= ((th->th_off <<
5227                            ETH_TX_PARSE_BD_E2_TCP_HDR_LENGTH_DW_SHIFT) &
5228                           ETH_TX_PARSE_BD_E2_TCP_HDR_LENGTH_DW);
5229         return (l4_off + (th->th_off << 2)); /* entire header length */
5230     } else if (m->m_pkthdr.csum_flags & (CSUM_UDP |
5231                                          CSUM_UDP_IPV6)) {
5232         fp->eth_q_stats.tx_ofld_frames_csum_udp++;
5233         return (l4_off + sizeof(struct udphdr)); /* entire header length */
5234     } else {
5235         /* XXX error stat ??? */
5236         return (0);
5237     }
5238 }
5239 
5240 static uint8_t
5241 bxe_set_pbd_csum(struct bxe_fastpath        *fp,
5242                  struct mbuf                *m,
5243                  struct eth_tx_parse_bd_e1x *pbd)
5244 {
5245     struct ether_vlan_header *eh = NULL;
5246     struct ip *ip4 = NULL;
5247     struct ip6_hdr *ip6 = NULL;
5248     caddr_t ip = NULL;
5249     struct tcphdr *th = NULL;
5250     struct udphdr *uh = NULL;
5251     int e_hlen, ip_hlen;
5252     uint16_t proto;
5253     uint8_t hlen;
5254     uint16_t tmp_csum;
5255     uint32_t *tmp_uh;
5256 
5257     /* get the Ethernet header */
5258     eh = mtod(m, struct ether_vlan_header *);
5259 
5260     /* handle VLAN encapsulation if present */
5261     if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) {
5262         e_hlen = (ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN);
5263         proto  = ntohs(eh->evl_proto);
5264     } else {
5265         e_hlen = ETHER_HDR_LEN;
5266         proto  = ntohs(eh->evl_encap_proto);
5267     }
5268 
5269     switch (proto) {
5270     case ETHERTYPE_IP:
5271         /* get the IP header, if mbuf len < 20 then header in next mbuf */
5272         ip4 = (m->m_len < sizeof(struct ip)) ?
5273                   (struct ip *)m->m_next->m_data :
5274                   (struct ip *)(m->m_data + e_hlen);
5275         /* ip_hl is number of 32-bit words */
5276         ip_hlen = (ip4->ip_hl << 1);
5277         ip = (caddr_t)ip4;
5278         break;
5279     case ETHERTYPE_IPV6:
5280         /* get the IPv6 header, if mbuf len < 40 then header in next mbuf */
5281         ip6 = (m->m_len < sizeof(struct ip6_hdr)) ?
5282                   (struct ip6_hdr *)m->m_next->m_data :
5283                   (struct ip6_hdr *)(m->m_data + e_hlen);
5284         /* XXX cannot support offload with IPv6 extensions */
5285         ip_hlen = (sizeof(struct ip6_hdr) >> 1);
5286         ip = (caddr_t)ip6;
5287         break;
5288     default:
5289         /* We can't offload in this case... */
5290         /* XXX error stat ??? */
5291         return (0);
5292     }
5293 
5294     hlen = (e_hlen >> 1);
5295 
5296     /* note that rest of global_data is indirectly zeroed here */
5297     if (m->m_flags & M_VLANTAG) {
5298         pbd->global_data =
5299             htole16(hlen | (1 << ETH_TX_PARSE_BD_E1X_LLC_SNAP_EN_SHIFT));
5300     } else {
5301         pbd->global_data = htole16(hlen);
5302     }
5303 
5304     pbd->ip_hlen_w = ip_hlen;
5305 
5306     hlen += pbd->ip_hlen_w;
5307 
5308     /* XXX assuming L4 header is contiguous to IPv4/IPv6 in the same mbuf */
5309 
5310     if (m->m_pkthdr.csum_flags & (CSUM_TCP |
5311                                   CSUM_TSO |
5312                                   CSUM_TCP_IPV6)) {
5313         th = (struct tcphdr *)(ip + (ip_hlen << 1));
5314         /* th_off is number of 32-bit words */
5315         hlen += (uint16_t)(th->th_off << 1);
5316     } else if (m->m_pkthdr.csum_flags & (CSUM_UDP |
5317                                          CSUM_UDP_IPV6)) {
5318         uh = (struct udphdr *)(ip + (ip_hlen << 1));
5319         hlen += (sizeof(struct udphdr) / 2);
5320     } else {
5321         /* valid case as only CSUM_IP was set */
5322         return (0);
5323     }
5324 
5325     pbd->total_hlen_w = htole16(hlen);
5326 
5327     if (m->m_pkthdr.csum_flags & (CSUM_TCP |
5328                                   CSUM_TSO |
5329                                   CSUM_TCP_IPV6)) {
5330         fp->eth_q_stats.tx_ofld_frames_csum_tcp++;
5331         pbd->tcp_pseudo_csum = ntohs(th->th_sum);
5332     } else if (m->m_pkthdr.csum_flags & (CSUM_UDP |
5333                                          CSUM_UDP_IPV6)) {
5334         fp->eth_q_stats.tx_ofld_frames_csum_udp++;
5335 
5336         /*
5337          * Everest1 (i.e. 57710, 57711, 57711E) does not natively support UDP
5338          * checksums and does not know anything about the UDP header and where
5339          * the checksum field is located. It only knows about TCP. Therefore
5340          * we "lie" to the hardware for outgoing UDP packets w/ checksum
5341          * offload. Since the checksum field offset for TCP is 16 bytes and
5342          * for UDP it is 6 bytes we pass a pointer to the hardware that is 10
5343          * bytes less than the start of the UDP header. This allows the
5344          * hardware to write the checksum in the correct spot. But the
5345          * hardware will compute a checksum which includes the last 10 bytes
5346          * of the IP header. To correct this we tweak the stack computed
5347          * pseudo checksum by folding in the calculation of the inverse
5348          * checksum for those final 10 bytes of the IP header. This allows
5349          * the correct checksum to be computed by the hardware.
5350          */
5351 
5352         /* set pointer 10 bytes before UDP header */
5353         tmp_uh = (uint32_t *)((uint8_t *)uh - 10);
5354 
5355         /* calculate a pseudo header checksum over the first 10 bytes */
5356         tmp_csum = in_pseudo(*tmp_uh,
5357                              *(tmp_uh + 1),
5358                              *(uint16_t *)(tmp_uh + 2));
5359 
5360         pbd->tcp_pseudo_csum = ntohs(in_addword(uh->uh_sum, ~tmp_csum));
5361     }
5362 
5363     return (hlen * 2); /* entire header length, number of bytes */
5364 }
5365 
5366 static void
5367 bxe_set_pbd_lso_e2(struct mbuf *m,
5368                    uint32_t    *parsing_data)
5369 {
5370     *parsing_data |= ((m->m_pkthdr.tso_segsz <<
5371                        ETH_TX_PARSE_BD_E2_LSO_MSS_SHIFT) &
5372                       ETH_TX_PARSE_BD_E2_LSO_MSS);
5373 
5374     /* XXX test for IPv6 with extension header... */
5375 #if 0
5376     struct ip6_hdr *ip6;
5377     if (ip6 && ip6->ip6_nxt == 'some ipv6 extension header')
5378         *parsing_data |= ETH_TX_PARSE_BD_E2_IPV6_WITH_EXT_HDR;
5379 #endif
5380 }
5381 
5382 static void
5383 bxe_set_pbd_lso(struct mbuf                *m,
5384                 struct eth_tx_parse_bd_e1x *pbd)
5385 {
5386     struct ether_vlan_header *eh = NULL;
5387     struct ip *ip = NULL;
5388     struct tcphdr *th = NULL;
5389     int e_hlen;
5390 
5391     /* get the Ethernet header */
5392     eh = mtod(m, struct ether_vlan_header *);
5393 
5394     /* handle VLAN encapsulation if present */
5395     e_hlen = (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) ?
5396                  (ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN) : ETHER_HDR_LEN;
5397 
5398     /* get the IP and TCP header, with LSO entire header in first mbuf */
5399     /* XXX assuming IPv4 */
5400     ip = (struct ip *)(m->m_data + e_hlen);
5401     th = (struct tcphdr *)((caddr_t)ip + (ip->ip_hl << 2));
5402 
5403     pbd->lso_mss = htole16(m->m_pkthdr.tso_segsz);
5404     pbd->tcp_send_seq = ntohl(th->th_seq);
5405     pbd->tcp_flags = ((ntohl(((uint32_t *)th)[3]) >> 16) & 0xff);
5406 
5407 #if 1
5408         /* XXX IPv4 */
5409         pbd->ip_id = ntohs(ip->ip_id);
5410         pbd->tcp_pseudo_csum =
5411             ntohs(in_pseudo(ip->ip_src.s_addr,
5412                             ip->ip_dst.s_addr,
5413                             htons(IPPROTO_TCP)));
5414 #else
5415         /* XXX IPv6 */
5416         pbd->tcp_pseudo_csum =
5417             ntohs(in_pseudo(&ip6->ip6_src,
5418                             &ip6->ip6_dst,
5419                             htons(IPPROTO_TCP)));
5420 #endif
5421 
5422     pbd->global_data |=
5423         htole16(ETH_TX_PARSE_BD_E1X_PSEUDO_CS_WITHOUT_LEN);
5424 }
5425 
5426 /*
5427  * Encapsulte an mbuf cluster into the tx bd chain and makes the memory
5428  * visible to the controller.
5429  *
5430  * If an mbuf is submitted to this routine and cannot be given to the
5431  * controller (e.g. it has too many fragments) then the function may free
5432  * the mbuf and return to the caller.
5433  *
5434  * Returns:
5435  *   0 = Success, !0 = Failure
5436  *   Note the side effect that an mbuf may be freed if it causes a problem.
5437  */
5438 static int
5439 bxe_tx_encap(struct bxe_fastpath *fp, struct mbuf **m_head)
5440 {
5441     bus_dma_segment_t segs[32];
5442     struct mbuf *m0;
5443     struct bxe_sw_tx_bd *tx_buf;
5444     struct eth_tx_parse_bd_e1x *pbd_e1x = NULL;
5445     struct eth_tx_parse_bd_e2 *pbd_e2 = NULL;
5446     /* struct eth_tx_parse_2nd_bd *pbd2 = NULL; */
5447     struct eth_tx_bd *tx_data_bd;
5448     struct eth_tx_bd *tx_total_pkt_size_bd;
5449     struct eth_tx_start_bd *tx_start_bd;
5450     uint16_t bd_prod, pkt_prod, total_pkt_size;
5451     uint8_t mac_type;
5452     int defragged, error, nsegs, rc, nbds, vlan_off, ovlan;
5453     struct bxe_softc *sc;
5454     uint16_t tx_bd_avail;
5455     struct ether_vlan_header *eh;
5456     uint32_t pbd_e2_parsing_data = 0;
5457     uint8_t hlen = 0;
5458     int tmp_bd;
5459     int i;
5460 
5461     sc = fp->sc;
5462 
5463     M_ASSERTPKTHDR(*m_head);
5464 
5465     m0 = *m_head;
5466     rc = defragged = nbds = ovlan = vlan_off = total_pkt_size = 0;
5467     tx_start_bd = NULL;
5468     tx_data_bd = NULL;
5469     tx_total_pkt_size_bd = NULL;
5470 
5471     /* get the H/W pointer for packets and BDs */
5472     pkt_prod = fp->tx_pkt_prod;
5473     bd_prod = fp->tx_bd_prod;
5474 
5475     mac_type = UNICAST_ADDRESS;
5476 
5477     /* map the mbuf into the next open DMAable memory */
5478     tx_buf = &fp->tx_mbuf_chain[TX_BD(pkt_prod)];
5479     error = bus_dmamap_load_mbuf_sg(fp->tx_mbuf_tag,
5480                                     tx_buf->m_map, m0,
5481                                     segs, &nsegs, BUS_DMA_NOWAIT);
5482 
5483     /* mapping errors */
5484     if(__predict_false(error != 0)) {
5485         fp->eth_q_stats.tx_dma_mapping_failure++;
5486         if (error == ENOMEM) {
5487             /* resource issue, try again later */
5488             rc = ENOMEM;
5489         } else if (error == EFBIG) {
5490             /* possibly recoverable with defragmentation */
5491             fp->eth_q_stats.mbuf_defrag_attempts++;
5492             m0 = m_defrag(*m_head, M_NOWAIT);
5493             if (m0 == NULL) {
5494                 fp->eth_q_stats.mbuf_defrag_failures++;
5495                 rc = ENOBUFS;
5496             } else {
5497                 /* defrag successful, try mapping again */
5498                 *m_head = m0;
5499                 error = bus_dmamap_load_mbuf_sg(fp->tx_mbuf_tag,
5500                                                 tx_buf->m_map, m0,
5501                                                 segs, &nsegs, BUS_DMA_NOWAIT);
5502                 if (error) {
5503                     fp->eth_q_stats.tx_dma_mapping_failure++;
5504                     rc = error;
5505                 }
5506             }
5507         } else {
5508             /* unknown, unrecoverable mapping error */
5509             BLOGE(sc, "Unknown TX mapping error rc=%d\n", error);
5510             bxe_dump_mbuf(sc, m0, FALSE);
5511             rc = error;
5512         }
5513 
5514         goto bxe_tx_encap_continue;
5515     }
5516 
5517     tx_bd_avail = bxe_tx_avail(sc, fp);
5518 
5519     /* make sure there is enough room in the send queue */
5520     if (__predict_false(tx_bd_avail < (nsegs + 2))) {
5521         /* Recoverable, try again later. */
5522         fp->eth_q_stats.tx_hw_queue_full++;
5523         bus_dmamap_unload(fp->tx_mbuf_tag, tx_buf->m_map);
5524         rc = ENOMEM;
5525         goto bxe_tx_encap_continue;
5526     }
5527 
5528     /* capture the current H/W TX chain high watermark */
5529     if (__predict_false(fp->eth_q_stats.tx_hw_max_queue_depth <
5530                         (TX_BD_USABLE - tx_bd_avail))) {
5531         fp->eth_q_stats.tx_hw_max_queue_depth = (TX_BD_USABLE - tx_bd_avail);
5532     }
5533 
5534     /* make sure it fits in the packet window */
5535     if (__predict_false(nsegs > BXE_MAX_SEGMENTS)) {
5536         /*
5537          * The mbuf may be to big for the controller to handle. If the frame
5538          * is a TSO frame we'll need to do an additional check.
5539          */
5540         if (m0->m_pkthdr.csum_flags & CSUM_TSO) {
5541             if (bxe_chktso_window(sc, nsegs, segs, m0) == 0) {
5542                 goto bxe_tx_encap_continue; /* OK to send */
5543             } else {
5544                 fp->eth_q_stats.tx_window_violation_tso++;
5545             }
5546         } else {
5547             fp->eth_q_stats.tx_window_violation_std++;
5548         }
5549 
5550         /* lets try to defragment this mbuf and remap it */
5551         fp->eth_q_stats.mbuf_defrag_attempts++;
5552         bus_dmamap_unload(fp->tx_mbuf_tag, tx_buf->m_map);
5553 
5554         m0 = m_defrag(*m_head, M_NOWAIT);
5555         if (m0 == NULL) {
5556             fp->eth_q_stats.mbuf_defrag_failures++;
5557             /* Ugh, just drop the frame... :( */
5558             rc = ENOBUFS;
5559         } else {
5560             /* defrag successful, try mapping again */
5561             *m_head = m0;
5562             error = bus_dmamap_load_mbuf_sg(fp->tx_mbuf_tag,
5563                                             tx_buf->m_map, m0,
5564                                             segs, &nsegs, BUS_DMA_NOWAIT);
5565             if (error) {
5566                 fp->eth_q_stats.tx_dma_mapping_failure++;
5567                 /* No sense in trying to defrag/copy chain, drop it. :( */
5568                 rc = error;
5569             }
5570             else {
5571                 /* if the chain is still too long then drop it */
5572                 if (__predict_false(nsegs > BXE_MAX_SEGMENTS)) {
5573                     bus_dmamap_unload(fp->tx_mbuf_tag, tx_buf->m_map);
5574                     rc = ENODEV;
5575                 }
5576             }
5577         }
5578     }
5579 
5580 bxe_tx_encap_continue:
5581 
5582     /* Check for errors */
5583     if (rc) {
5584         if (rc == ENOMEM) {
5585             /* recoverable try again later  */
5586         } else {
5587             fp->eth_q_stats.tx_soft_errors++;
5588             fp->eth_q_stats.mbuf_alloc_tx--;
5589             m_freem(*m_head);
5590             *m_head = NULL;
5591         }
5592 
5593         return (rc);
5594     }
5595 
5596     /* set flag according to packet type (UNICAST_ADDRESS is default) */
5597     if (m0->m_flags & M_BCAST) {
5598         mac_type = BROADCAST_ADDRESS;
5599     } else if (m0->m_flags & M_MCAST) {
5600         mac_type = MULTICAST_ADDRESS;
5601     }
5602 
5603     /* store the mbuf into the mbuf ring */
5604     tx_buf->m        = m0;
5605     tx_buf->first_bd = fp->tx_bd_prod;
5606     tx_buf->flags    = 0;
5607 
5608     /* prepare the first transmit (start) BD for the mbuf */
5609     tx_start_bd = &fp->tx_chain[TX_BD(bd_prod)].start_bd;
5610 
5611     BLOGD(sc, DBG_TX,
5612           "sending pkt_prod=%u tx_buf=%p next_idx=%u bd=%u tx_start_bd=%p\n",
5613           pkt_prod, tx_buf, fp->tx_pkt_prod, bd_prod, tx_start_bd);
5614 
5615     tx_start_bd->addr_lo = htole32(U64_LO(segs[0].ds_addr));
5616     tx_start_bd->addr_hi = htole32(U64_HI(segs[0].ds_addr));
5617     tx_start_bd->nbytes  = htole16(segs[0].ds_len);
5618     total_pkt_size += tx_start_bd->nbytes;
5619     tx_start_bd->bd_flags.as_bitfield = ETH_TX_BD_FLAGS_START_BD;
5620 
5621     tx_start_bd->general_data = (1 << ETH_TX_START_BD_HDR_NBDS_SHIFT);
5622 
5623     /* all frames have at least Start BD + Parsing BD */
5624     nbds = nsegs + 1;
5625     tx_start_bd->nbd = htole16(nbds);
5626 
5627     if (m0->m_flags & M_VLANTAG) {
5628         tx_start_bd->vlan_or_ethertype = htole16(m0->m_pkthdr.ether_vtag);
5629         tx_start_bd->bd_flags.as_bitfield |=
5630             (X_ETH_OUTBAND_VLAN << ETH_TX_BD_FLAGS_VLAN_MODE_SHIFT);
5631     } else {
5632         /* vf tx, start bd must hold the ethertype for fw to enforce it */
5633         if (IS_VF(sc)) {
5634             /* map ethernet header to find type and header length */
5635             eh = mtod(m0, struct ether_vlan_header *);
5636             tx_start_bd->vlan_or_ethertype = eh->evl_encap_proto;
5637         } else {
5638             /* used by FW for packet accounting */
5639             tx_start_bd->vlan_or_ethertype = htole16(fp->tx_pkt_prod);
5640 #if 0
5641             /*
5642              * If NPAR-SD is active then FW should do the tagging regardless
5643              * of value of priority. Otherwise, if priority indicates this is
5644              * a control packet we need to indicate to FW to avoid tagging.
5645              */
5646             if (!IS_MF_AFEX(sc) && (mbuf priority == PRIO_CONTROL)) {
5647                 SET_FLAG(tx_start_bd->general_data,
5648                          ETH_TX_START_BD_FORCE_VLAN_MODE, 1);
5649             }
5650 #endif
5651         }
5652     }
5653 
5654     /*
5655      * add a parsing BD from the chain. The parsing BD is always added
5656      * though it is only used for TSO and chksum
5657      */
5658     bd_prod = TX_BD_NEXT(bd_prod);
5659 
5660     if (m0->m_pkthdr.csum_flags) {
5661         if (m0->m_pkthdr.csum_flags & CSUM_IP) {
5662             fp->eth_q_stats.tx_ofld_frames_csum_ip++;
5663             tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_IP_CSUM;
5664         }
5665 
5666         if (m0->m_pkthdr.csum_flags & CSUM_TCP_IPV6) {
5667             tx_start_bd->bd_flags.as_bitfield |= (ETH_TX_BD_FLAGS_IPV6 |
5668                                                   ETH_TX_BD_FLAGS_L4_CSUM);
5669         } else if (m0->m_pkthdr.csum_flags & CSUM_UDP_IPV6) {
5670             tx_start_bd->bd_flags.as_bitfield |= (ETH_TX_BD_FLAGS_IPV6   |
5671                                                   ETH_TX_BD_FLAGS_IS_UDP |
5672                                                   ETH_TX_BD_FLAGS_L4_CSUM);
5673         } else if ((m0->m_pkthdr.csum_flags & CSUM_TCP) ||
5674                    (m0->m_pkthdr.csum_flags & CSUM_TSO)) {
5675             tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_L4_CSUM;
5676         } else if (m0->m_pkthdr.csum_flags & CSUM_UDP) {
5677             tx_start_bd->bd_flags.as_bitfield |= (ETH_TX_BD_FLAGS_L4_CSUM |
5678                                                   ETH_TX_BD_FLAGS_IS_UDP);
5679         }
5680     }
5681 
5682     if (!CHIP_IS_E1x(sc)) {
5683         pbd_e2 = &fp->tx_chain[TX_BD(bd_prod)].parse_bd_e2;
5684         memset(pbd_e2, 0, sizeof(struct eth_tx_parse_bd_e2));
5685 
5686         if (m0->m_pkthdr.csum_flags) {
5687             hlen = bxe_set_pbd_csum_e2(fp, m0, &pbd_e2_parsing_data);
5688         }
5689 
5690 #if 0
5691         /*
5692          * Add the MACs to the parsing BD if the module param was
5693          * explicitly set, if this is a vf, or in switch independent
5694          * mode.
5695          */
5696         if (sc->flags & BXE_TX_SWITCHING || IS_VF(sc) || IS_MF_SI(sc)) {
5697             eh = mtod(m0, struct ether_vlan_header *);
5698             bxe_set_fw_mac_addr(&pbd_e2->data.mac_addr.src_hi,
5699                                 &pbd_e2->data.mac_addr.src_mid,
5700                                 &pbd_e2->data.mac_addr.src_lo,
5701                                 eh->evl_shost);
5702             bxe_set_fw_mac_addr(&pbd_e2->data.mac_addr.dst_hi,
5703                                 &pbd_e2->data.mac_addr.dst_mid,
5704                                 &pbd_e2->data.mac_addr.dst_lo,
5705                                 eh->evl_dhost);
5706         }
5707 #endif
5708 
5709         SET_FLAG(pbd_e2_parsing_data, ETH_TX_PARSE_BD_E2_ETH_ADDR_TYPE,
5710                  mac_type);
5711     } else {
5712         uint16_t global_data = 0;
5713 
5714         pbd_e1x = &fp->tx_chain[TX_BD(bd_prod)].parse_bd_e1x;
5715         memset(pbd_e1x, 0, sizeof(struct eth_tx_parse_bd_e1x));
5716 
5717         if (m0->m_pkthdr.csum_flags) {
5718             hlen = bxe_set_pbd_csum(fp, m0, pbd_e1x);
5719         }
5720 
5721         SET_FLAG(global_data,
5722                  ETH_TX_PARSE_BD_E1X_ETH_ADDR_TYPE, mac_type);
5723         pbd_e1x->global_data |= htole16(global_data);
5724     }
5725 
5726     /* setup the parsing BD with TSO specific info */
5727     if (m0->m_pkthdr.csum_flags & CSUM_TSO) {
5728         fp->eth_q_stats.tx_ofld_frames_lso++;
5729         tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_SW_LSO;
5730 
5731         if (__predict_false(tx_start_bd->nbytes > hlen)) {
5732             fp->eth_q_stats.tx_ofld_frames_lso_hdr_splits++;
5733 
5734             /* split the first BD into header/data making the fw job easy */
5735             nbds++;
5736             tx_start_bd->nbd = htole16(nbds);
5737             tx_start_bd->nbytes = htole16(hlen);
5738 
5739             bd_prod = TX_BD_NEXT(bd_prod);
5740 
5741             /* new transmit BD after the tx_parse_bd */
5742             tx_data_bd = &fp->tx_chain[TX_BD(bd_prod)].reg_bd;
5743             tx_data_bd->addr_hi = htole32(U64_HI(segs[0].ds_addr + hlen));
5744             tx_data_bd->addr_lo = htole32(U64_LO(segs[0].ds_addr + hlen));
5745             tx_data_bd->nbytes  = htole16(segs[0].ds_len - hlen);
5746             if (tx_total_pkt_size_bd == NULL) {
5747                 tx_total_pkt_size_bd = tx_data_bd;
5748             }
5749 
5750             BLOGD(sc, DBG_TX,
5751                   "TSO split header size is %d (%x:%x) nbds %d\n",
5752                   le16toh(tx_start_bd->nbytes),
5753                   le32toh(tx_start_bd->addr_hi),
5754                   le32toh(tx_start_bd->addr_lo),
5755                   nbds);
5756         }
5757 
5758         if (!CHIP_IS_E1x(sc)) {
5759             bxe_set_pbd_lso_e2(m0, &pbd_e2_parsing_data);
5760         } else {
5761             bxe_set_pbd_lso(m0, pbd_e1x);
5762         }
5763     }
5764 
5765     if (pbd_e2_parsing_data) {
5766         pbd_e2->parsing_data = htole32(pbd_e2_parsing_data);
5767     }
5768 
5769     /* prepare remaining BDs, start tx bd contains first seg/frag */
5770     for (i = 1; i < nsegs ; i++) {
5771         bd_prod = TX_BD_NEXT(bd_prod);
5772         tx_data_bd = &fp->tx_chain[TX_BD(bd_prod)].reg_bd;
5773         tx_data_bd->addr_lo = htole32(U64_LO(segs[i].ds_addr));
5774         tx_data_bd->addr_hi = htole32(U64_HI(segs[i].ds_addr));
5775         tx_data_bd->nbytes  = htole16(segs[i].ds_len);
5776         if (tx_total_pkt_size_bd == NULL) {
5777             tx_total_pkt_size_bd = tx_data_bd;
5778         }
5779         total_pkt_size += tx_data_bd->nbytes;
5780     }
5781 
5782     BLOGD(sc, DBG_TX, "last bd %p\n", tx_data_bd);
5783 
5784     if (tx_total_pkt_size_bd != NULL) {
5785         tx_total_pkt_size_bd->total_pkt_bytes = total_pkt_size;
5786     }
5787 
5788     if (__predict_false(sc->debug & DBG_TX)) {
5789         tmp_bd = tx_buf->first_bd;
5790         for (i = 0; i < nbds; i++)
5791         {
5792             if (i == 0) {
5793                 BLOGD(sc, DBG_TX,
5794                       "TX Strt: %p bd=%d nbd=%d vlan=0x%x "
5795                       "bd_flags=0x%x hdr_nbds=%d\n",
5796                       tx_start_bd,
5797                       tmp_bd,
5798                       le16toh(tx_start_bd->nbd),
5799                       le16toh(tx_start_bd->vlan_or_ethertype),
5800                       tx_start_bd->bd_flags.as_bitfield,
5801                       (tx_start_bd->general_data & ETH_TX_START_BD_HDR_NBDS));
5802             } else if (i == 1) {
5803                 if (pbd_e1x) {
5804                     BLOGD(sc, DBG_TX,
5805                           "-> Prse: %p bd=%d global=0x%x ip_hlen_w=%u "
5806                           "ip_id=%u lso_mss=%u tcp_flags=0x%x csum=0x%x "
5807                           "tcp_seq=%u total_hlen_w=%u\n",
5808                           pbd_e1x,
5809                           tmp_bd,
5810                           pbd_e1x->global_data,
5811                           pbd_e1x->ip_hlen_w,
5812                           pbd_e1x->ip_id,
5813                           pbd_e1x->lso_mss,
5814                           pbd_e1x->tcp_flags,
5815                           pbd_e1x->tcp_pseudo_csum,
5816                           pbd_e1x->tcp_send_seq,
5817                           le16toh(pbd_e1x->total_hlen_w));
5818                 } else { /* if (pbd_e2) */
5819                     BLOGD(sc, DBG_TX,
5820                           "-> Parse: %p bd=%d dst=%02x:%02x:%02x "
5821                           "src=%02x:%02x:%02x parsing_data=0x%x\n",
5822                           pbd_e2,
5823                           tmp_bd,
5824                           pbd_e2->data.mac_addr.dst_hi,
5825                           pbd_e2->data.mac_addr.dst_mid,
5826                           pbd_e2->data.mac_addr.dst_lo,
5827                           pbd_e2->data.mac_addr.src_hi,
5828                           pbd_e2->data.mac_addr.src_mid,
5829                           pbd_e2->data.mac_addr.src_lo,
5830                           pbd_e2->parsing_data);
5831                 }
5832             }
5833 
5834             if (i != 1) { /* skip parse db as it doesn't hold data */
5835                 tx_data_bd = &fp->tx_chain[TX_BD(tmp_bd)].reg_bd;
5836                 BLOGD(sc, DBG_TX,
5837                       "-> Frag: %p bd=%d nbytes=%d hi=0x%x lo: 0x%x\n",
5838                       tx_data_bd,
5839                       tmp_bd,
5840                       le16toh(tx_data_bd->nbytes),
5841                       le32toh(tx_data_bd->addr_hi),
5842                       le32toh(tx_data_bd->addr_lo));
5843             }
5844 
5845             tmp_bd = TX_BD_NEXT(tmp_bd);
5846         }
5847     }
5848 
5849     BLOGD(sc, DBG_TX, "doorbell: nbds=%d bd=%u\n", nbds, bd_prod);
5850 
5851     /* update TX BD producer index value for next TX */
5852     bd_prod = TX_BD_NEXT(bd_prod);
5853 
5854     /*
5855      * If the chain of tx_bd's describing this frame is adjacent to or spans
5856      * an eth_tx_next_bd element then we need to increment the nbds value.
5857      */
5858     if (TX_BD_IDX(bd_prod) < nbds) {
5859         nbds++;
5860     }
5861 
5862     /* don't allow reordering of writes for nbd and packets */
5863     mb();
5864 
5865     fp->tx_db.data.prod += nbds;
5866 
5867     /* producer points to the next free tx_bd at this point */
5868     fp->tx_pkt_prod++;
5869     fp->tx_bd_prod = bd_prod;
5870 
5871     DOORBELL(sc, fp->index, fp->tx_db.raw);
5872 
5873     fp->eth_q_stats.tx_pkts++;
5874 
5875     /* Prevent speculative reads from getting ahead of the status block. */
5876     bus_space_barrier(sc->bar[BAR0].tag, sc->bar[BAR0].handle,
5877                       0, 0, BUS_SPACE_BARRIER_READ);
5878 
5879     /* Prevent speculative reads from getting ahead of the doorbell. */
5880     bus_space_barrier(sc->bar[BAR2].tag, sc->bar[BAR2].handle,
5881                       0, 0, BUS_SPACE_BARRIER_READ);
5882 
5883     return (0);
5884 }
5885 
5886 static void
5887 bxe_tx_start_locked(struct bxe_softc *sc,
5888                     if_t ifp,
5889                     struct bxe_fastpath *fp)
5890 {
5891     struct mbuf *m = NULL;
5892     int tx_count = 0;
5893     uint16_t tx_bd_avail;
5894 
5895     BXE_FP_TX_LOCK_ASSERT(fp);
5896 
5897     /* keep adding entries while there are frames to send */
5898     while (!if_sendq_empty(ifp)) {
5899 
5900         /*
5901          * check for any frames to send
5902          * dequeue can still be NULL even if queue is not empty
5903          */
5904         m = if_dequeue(ifp);
5905         if (__predict_false(m == NULL)) {
5906             break;
5907         }
5908 
5909         /* the mbuf now belongs to us */
5910         fp->eth_q_stats.mbuf_alloc_tx++;
5911 
5912         /*
5913          * Put the frame into the transmit ring. If we don't have room,
5914          * place the mbuf back at the head of the TX queue, set the
5915          * OACTIVE flag, and wait for the NIC to drain the chain.
5916          */
5917         if (__predict_false(bxe_tx_encap(fp, &m))) {
5918             fp->eth_q_stats.tx_encap_failures++;
5919             if (m != NULL) {
5920                 /* mark the TX queue as full and return the frame */
5921                 if_setdrvflagbits(ifp, IFF_DRV_OACTIVE, 0);
5922 		if_sendq_prepend(ifp, m);
5923                 fp->eth_q_stats.mbuf_alloc_tx--;
5924                 fp->eth_q_stats.tx_queue_xoff++;
5925             }
5926 
5927             /* stop looking for more work */
5928             break;
5929         }
5930 
5931         /* the frame was enqueued successfully */
5932         tx_count++;
5933 
5934         /* send a copy of the frame to any BPF listeners. */
5935         if_etherbpfmtap(ifp, m);
5936 
5937         tx_bd_avail = bxe_tx_avail(sc, fp);
5938 
5939         /* handle any completions if we're running low */
5940         if (tx_bd_avail < BXE_TX_CLEANUP_THRESHOLD) {
5941             /* bxe_txeof will set IFF_DRV_OACTIVE appropriately */
5942             bxe_txeof(sc, fp);
5943             if (if_getdrvflags(ifp) & IFF_DRV_OACTIVE) {
5944                 break;
5945             }
5946         }
5947     }
5948 
5949     /* all TX packets were dequeued and/or the tx ring is full */
5950     if (tx_count > 0) {
5951         /* reset the TX watchdog timeout timer */
5952         fp->watchdog_timer = BXE_TX_TIMEOUT;
5953     }
5954 }
5955 
5956 /* Legacy (non-RSS) dispatch routine */
5957 static void
5958 bxe_tx_start(if_t ifp)
5959 {
5960     struct bxe_softc *sc;
5961     struct bxe_fastpath *fp;
5962 
5963     sc = if_getsoftc(ifp);
5964 
5965     if (!(if_getdrvflags(ifp) & IFF_DRV_RUNNING)) {
5966         BLOGW(sc, "Interface not running, ignoring transmit request\n");
5967         return;
5968     }
5969 
5970     if (if_getdrvflags(ifp) & IFF_DRV_OACTIVE) {
5971         BLOGW(sc, "Interface TX queue is full, ignoring transmit request\n");
5972         return;
5973     }
5974 
5975     if (!sc->link_vars.link_up) {
5976         BLOGW(sc, "Interface link is down, ignoring transmit request\n");
5977         return;
5978     }
5979 
5980     fp = &sc->fp[0];
5981 
5982     BXE_FP_TX_LOCK(fp);
5983     bxe_tx_start_locked(sc, ifp, fp);
5984     BXE_FP_TX_UNLOCK(fp);
5985 }
5986 
5987 #if __FreeBSD_version >= 800000
5988 
5989 static int
5990 bxe_tx_mq_start_locked(struct bxe_softc    *sc,
5991                        if_t                ifp,
5992                        struct bxe_fastpath *fp,
5993                        struct mbuf         *m)
5994 {
5995     struct buf_ring *tx_br = fp->tx_br;
5996     struct mbuf *next;
5997     int depth, rc, tx_count;
5998     uint16_t tx_bd_avail;
5999 
6000     rc = tx_count = 0;
6001 
6002     BXE_FP_TX_LOCK_ASSERT(fp);
6003 
6004     if (!tx_br) {
6005         BLOGE(sc, "Multiqueue TX and no buf_ring!\n");
6006         return (EINVAL);
6007     }
6008 
6009     if (!sc->link_vars.link_up ||
6010         (ifp->if_drv_flags &
6011         (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) != IFF_DRV_RUNNING) {
6012         rc = drbr_enqueue_drv(ifp, tx_br, m);
6013         goto bxe_tx_mq_start_locked_exit;
6014     }
6015 
6016     /* fetch the depth of the driver queue */
6017     depth = drbr_inuse_drv(ifp, tx_br);
6018     if (depth > fp->eth_q_stats.tx_max_drbr_queue_depth) {
6019         fp->eth_q_stats.tx_max_drbr_queue_depth = depth;
6020     }
6021 
6022     if (m == NULL) {
6023         /* no new work, check for pending frames */
6024         next = drbr_dequeue_drv(ifp, tx_br);
6025     } else if (drbr_needs_enqueue_drv(ifp, tx_br)) {
6026         /* have both new and pending work, maintain packet order */
6027         rc = drbr_enqueue_drv(ifp, tx_br, m);
6028         if (rc != 0) {
6029             fp->eth_q_stats.tx_soft_errors++;
6030             goto bxe_tx_mq_start_locked_exit;
6031         }
6032         next = drbr_dequeue_drv(ifp, tx_br);
6033     } else {
6034         /* new work only and nothing pending */
6035         next = m;
6036     }
6037 
6038     /* keep adding entries while there are frames to send */
6039     while (next != NULL) {
6040 
6041         /* the mbuf now belongs to us */
6042         fp->eth_q_stats.mbuf_alloc_tx++;
6043 
6044         /*
6045          * Put the frame into the transmit ring. If we don't have room,
6046          * place the mbuf back at the head of the TX queue, set the
6047          * OACTIVE flag, and wait for the NIC to drain the chain.
6048          */
6049         rc = bxe_tx_encap(fp, &next);
6050         if (__predict_false(rc != 0)) {
6051             fp->eth_q_stats.tx_encap_failures++;
6052             if (next != NULL) {
6053                 /* mark the TX queue as full and save the frame */
6054                 if_setdrvflagbits(ifp, IFF_DRV_OACTIVE, 0);
6055                 /* XXX this may reorder the frame */
6056                 rc = drbr_enqueue_drv(ifp, tx_br, next);
6057                 fp->eth_q_stats.mbuf_alloc_tx--;
6058                 fp->eth_q_stats.tx_frames_deferred++;
6059             }
6060 
6061             /* stop looking for more work */
6062             break;
6063         }
6064 
6065         /* the transmit frame was enqueued successfully */
6066         tx_count++;
6067 
6068         /* send a copy of the frame to any BPF listeners */
6069 	if_etherbpfmtap(ifp, next);
6070 
6071         tx_bd_avail = bxe_tx_avail(sc, fp);
6072 
6073         /* handle any completions if we're running low */
6074         if (tx_bd_avail < BXE_TX_CLEANUP_THRESHOLD) {
6075             /* bxe_txeof will set IFF_DRV_OACTIVE appropriately */
6076             bxe_txeof(sc, fp);
6077             if (if_getdrvflags(ifp) & IFF_DRV_OACTIVE) {
6078                 break;
6079             }
6080         }
6081 
6082         next = drbr_dequeue_drv(ifp, tx_br);
6083     }
6084 
6085     /* all TX packets were dequeued and/or the tx ring is full */
6086     if (tx_count > 0) {
6087         /* reset the TX watchdog timeout timer */
6088         fp->watchdog_timer = BXE_TX_TIMEOUT;
6089     }
6090 
6091 bxe_tx_mq_start_locked_exit:
6092 
6093     return (rc);
6094 }
6095 
6096 /* Multiqueue (TSS) dispatch routine. */
6097 static int
6098 bxe_tx_mq_start(struct ifnet *ifp,
6099                 struct mbuf  *m)
6100 {
6101     struct bxe_softc *sc = if_getsoftc(ifp);
6102     struct bxe_fastpath *fp;
6103     int fp_index, rc;
6104 
6105     fp_index = 0; /* default is the first queue */
6106 
6107     /* check if flowid is set */
6108     if (M_HASHTYPE_GET(m) != M_HASHTYPE_NONE)
6109         fp_index = (m->m_pkthdr.flowid % sc->num_queues);
6110 
6111     fp = &sc->fp[fp_index];
6112 
6113     if (BXE_FP_TX_TRYLOCK(fp)) {
6114         rc = bxe_tx_mq_start_locked(sc, ifp, fp, m);
6115         BXE_FP_TX_UNLOCK(fp);
6116     } else
6117         rc = drbr_enqueue_drv(ifp, fp->tx_br, m);
6118 
6119     return (rc);
6120 }
6121 
6122 static void
6123 bxe_mq_flush(struct ifnet *ifp)
6124 {
6125     struct bxe_softc *sc = if_getsoftc(ifp);
6126     struct bxe_fastpath *fp;
6127     struct mbuf *m;
6128     int i;
6129 
6130     for (i = 0; i < sc->num_queues; i++) {
6131         fp = &sc->fp[i];
6132 
6133         if (fp->state != BXE_FP_STATE_OPEN) {
6134             BLOGD(sc, DBG_LOAD, "Not clearing fp[%02d] buf_ring (state=%d)\n",
6135                   fp->index, fp->state);
6136             continue;
6137         }
6138 
6139         if (fp->tx_br != NULL) {
6140             BLOGD(sc, DBG_LOAD, "Clearing fp[%02d] buf_ring\n", fp->index);
6141             BXE_FP_TX_LOCK(fp);
6142             while ((m = buf_ring_dequeue_sc(fp->tx_br)) != NULL) {
6143                 m_freem(m);
6144             }
6145             BXE_FP_TX_UNLOCK(fp);
6146         }
6147     }
6148 
6149     if_qflush(ifp);
6150 }
6151 
6152 #endif /* FreeBSD_version >= 800000 */
6153 
6154 static uint16_t
6155 bxe_cid_ilt_lines(struct bxe_softc *sc)
6156 {
6157     if (IS_SRIOV(sc)) {
6158         return ((BXE_FIRST_VF_CID + BXE_VF_CIDS) / ILT_PAGE_CIDS);
6159     }
6160     return (L2_ILT_LINES(sc));
6161 }
6162 
6163 static void
6164 bxe_ilt_set_info(struct bxe_softc *sc)
6165 {
6166     struct ilt_client_info *ilt_client;
6167     struct ecore_ilt *ilt = sc->ilt;
6168     uint16_t line = 0;
6169 
6170     ilt->start_line = FUNC_ILT_BASE(SC_FUNC(sc));
6171     BLOGD(sc, DBG_LOAD, "ilt starts at line %d\n", ilt->start_line);
6172 
6173     /* CDU */
6174     ilt_client = &ilt->clients[ILT_CLIENT_CDU];
6175     ilt_client->client_num = ILT_CLIENT_CDU;
6176     ilt_client->page_size = CDU_ILT_PAGE_SZ;
6177     ilt_client->flags = ILT_CLIENT_SKIP_MEM;
6178     ilt_client->start = line;
6179     line += bxe_cid_ilt_lines(sc);
6180 
6181     if (CNIC_SUPPORT(sc)) {
6182         line += CNIC_ILT_LINES;
6183     }
6184 
6185     ilt_client->end = (line - 1);
6186 
6187     BLOGD(sc, DBG_LOAD,
6188           "ilt client[CDU]: start %d, end %d, "
6189           "psz 0x%x, flags 0x%x, hw psz %d\n",
6190           ilt_client->start, ilt_client->end,
6191           ilt_client->page_size,
6192           ilt_client->flags,
6193           ilog2(ilt_client->page_size >> 12));
6194 
6195     /* QM */
6196     if (QM_INIT(sc->qm_cid_count)) {
6197         ilt_client = &ilt->clients[ILT_CLIENT_QM];
6198         ilt_client->client_num = ILT_CLIENT_QM;
6199         ilt_client->page_size = QM_ILT_PAGE_SZ;
6200         ilt_client->flags = 0;
6201         ilt_client->start = line;
6202 
6203         /* 4 bytes for each cid */
6204         line += DIV_ROUND_UP(sc->qm_cid_count * QM_QUEUES_PER_FUNC * 4,
6205                              QM_ILT_PAGE_SZ);
6206 
6207         ilt_client->end = (line - 1);
6208 
6209         BLOGD(sc, DBG_LOAD,
6210               "ilt client[QM]: start %d, end %d, "
6211               "psz 0x%x, flags 0x%x, hw psz %d\n",
6212               ilt_client->start, ilt_client->end,
6213               ilt_client->page_size, ilt_client->flags,
6214               ilog2(ilt_client->page_size >> 12));
6215     }
6216 
6217     if (CNIC_SUPPORT(sc)) {
6218         /* SRC */
6219         ilt_client = &ilt->clients[ILT_CLIENT_SRC];
6220         ilt_client->client_num = ILT_CLIENT_SRC;
6221         ilt_client->page_size = SRC_ILT_PAGE_SZ;
6222         ilt_client->flags = 0;
6223         ilt_client->start = line;
6224         line += SRC_ILT_LINES;
6225         ilt_client->end = (line - 1);
6226 
6227         BLOGD(sc, DBG_LOAD,
6228               "ilt client[SRC]: start %d, end %d, "
6229               "psz 0x%x, flags 0x%x, hw psz %d\n",
6230               ilt_client->start, ilt_client->end,
6231               ilt_client->page_size, ilt_client->flags,
6232               ilog2(ilt_client->page_size >> 12));
6233 
6234         /* TM */
6235         ilt_client = &ilt->clients[ILT_CLIENT_TM];
6236         ilt_client->client_num = ILT_CLIENT_TM;
6237         ilt_client->page_size = TM_ILT_PAGE_SZ;
6238         ilt_client->flags = 0;
6239         ilt_client->start = line;
6240         line += TM_ILT_LINES;
6241         ilt_client->end = (line - 1);
6242 
6243         BLOGD(sc, DBG_LOAD,
6244               "ilt client[TM]: start %d, end %d, "
6245               "psz 0x%x, flags 0x%x, hw psz %d\n",
6246               ilt_client->start, ilt_client->end,
6247               ilt_client->page_size, ilt_client->flags,
6248               ilog2(ilt_client->page_size >> 12));
6249     }
6250 
6251     KASSERT((line <= ILT_MAX_LINES), ("Invalid number of ILT lines!"));
6252 }
6253 
6254 static void
6255 bxe_set_fp_rx_buf_size(struct bxe_softc *sc)
6256 {
6257     int i;
6258     uint32_t rx_buf_size;
6259 
6260     rx_buf_size = (IP_HEADER_ALIGNMENT_PADDING + ETH_OVERHEAD + sc->mtu);
6261 
6262     for (i = 0; i < sc->num_queues; i++) {
6263         if(rx_buf_size <= MCLBYTES){
6264             sc->fp[i].rx_buf_size = rx_buf_size;
6265             sc->fp[i].mbuf_alloc_size = MCLBYTES;
6266         }else if (rx_buf_size <= MJUMPAGESIZE){
6267             sc->fp[i].rx_buf_size = rx_buf_size;
6268             sc->fp[i].mbuf_alloc_size = MJUMPAGESIZE;
6269         }else if (rx_buf_size <= (MJUMPAGESIZE + MCLBYTES)){
6270             sc->fp[i].rx_buf_size = MCLBYTES;
6271             sc->fp[i].mbuf_alloc_size = MCLBYTES;
6272         }else if (rx_buf_size <= (2 * MJUMPAGESIZE)){
6273             sc->fp[i].rx_buf_size = MJUMPAGESIZE;
6274             sc->fp[i].mbuf_alloc_size = MJUMPAGESIZE;
6275         }else {
6276             sc->fp[i].rx_buf_size = MCLBYTES;
6277             sc->fp[i].mbuf_alloc_size = MCLBYTES;
6278         }
6279     }
6280 }
6281 
6282 static int
6283 bxe_alloc_ilt_mem(struct bxe_softc *sc)
6284 {
6285     int rc = 0;
6286 
6287     if ((sc->ilt =
6288          (struct ecore_ilt *)malloc(sizeof(struct ecore_ilt),
6289                                     M_BXE_ILT,
6290                                     (M_NOWAIT | M_ZERO))) == NULL) {
6291         rc = 1;
6292     }
6293 
6294     return (rc);
6295 }
6296 
6297 static int
6298 bxe_alloc_ilt_lines_mem(struct bxe_softc *sc)
6299 {
6300     int rc = 0;
6301 
6302     if ((sc->ilt->lines =
6303          (struct ilt_line *)malloc((sizeof(struct ilt_line) * ILT_MAX_LINES),
6304                                     M_BXE_ILT,
6305                                     (M_NOWAIT | M_ZERO))) == NULL) {
6306         rc = 1;
6307     }
6308 
6309     return (rc);
6310 }
6311 
6312 static void
6313 bxe_free_ilt_mem(struct bxe_softc *sc)
6314 {
6315     if (sc->ilt != NULL) {
6316         free(sc->ilt, M_BXE_ILT);
6317         sc->ilt = NULL;
6318     }
6319 }
6320 
6321 static void
6322 bxe_free_ilt_lines_mem(struct bxe_softc *sc)
6323 {
6324     if (sc->ilt->lines != NULL) {
6325         free(sc->ilt->lines, M_BXE_ILT);
6326         sc->ilt->lines = NULL;
6327     }
6328 }
6329 
6330 static void
6331 bxe_free_mem(struct bxe_softc *sc)
6332 {
6333     int i;
6334 
6335 #if 0
6336     if (!CONFIGURE_NIC_MODE(sc)) {
6337         /* free searcher T2 table */
6338         bxe_dma_free(sc, &sc->t2);
6339     }
6340 #endif
6341 
6342     for (i = 0; i < L2_ILT_LINES(sc); i++) {
6343         bxe_dma_free(sc, &sc->context[i].vcxt_dma);
6344         sc->context[i].vcxt = NULL;
6345         sc->context[i].size = 0;
6346     }
6347 
6348     ecore_ilt_mem_op(sc, ILT_MEMOP_FREE);
6349 
6350     bxe_free_ilt_lines_mem(sc);
6351 
6352 #if 0
6353     bxe_iov_free_mem(sc);
6354 #endif
6355 }
6356 
6357 static int
6358 bxe_alloc_mem(struct bxe_softc *sc)
6359 {
6360     int context_size;
6361     int allocated;
6362     int i;
6363 
6364 #if 0
6365     if (!CONFIGURE_NIC_MODE(sc)) {
6366         /* allocate searcher T2 table */
6367         if (bxe_dma_alloc(sc, SRC_T2_SZ,
6368                           &sc->t2, "searcher t2 table") != 0) {
6369             return (-1);
6370         }
6371     }
6372 #endif
6373 
6374     /*
6375      * Allocate memory for CDU context:
6376      * This memory is allocated separately and not in the generic ILT
6377      * functions because CDU differs in few aspects:
6378      * 1. There can be multiple entities allocating memory for context -
6379      * regular L2, CNIC, and SRIOV drivers. Each separately controls
6380      * its own ILT lines.
6381      * 2. Since CDU page-size is not a single 4KB page (which is the case
6382      * for the other ILT clients), to be efficient we want to support
6383      * allocation of sub-page-size in the last entry.
6384      * 3. Context pointers are used by the driver to pass to FW / update
6385      * the context (for the other ILT clients the pointers are used just to
6386      * free the memory during unload).
6387      */
6388     context_size = (sizeof(union cdu_context) * BXE_L2_CID_COUNT(sc));
6389     for (i = 0, allocated = 0; allocated < context_size; i++) {
6390         sc->context[i].size = min(CDU_ILT_PAGE_SZ,
6391                                   (context_size - allocated));
6392 
6393         if (bxe_dma_alloc(sc, sc->context[i].size,
6394                           &sc->context[i].vcxt_dma,
6395                           "cdu context") != 0) {
6396             bxe_free_mem(sc);
6397             return (-1);
6398         }
6399 
6400         sc->context[i].vcxt =
6401             (union cdu_context *)sc->context[i].vcxt_dma.vaddr;
6402 
6403         allocated += sc->context[i].size;
6404     }
6405 
6406     bxe_alloc_ilt_lines_mem(sc);
6407 
6408     BLOGD(sc, DBG_LOAD, "ilt=%p start_line=%u lines=%p\n",
6409           sc->ilt, sc->ilt->start_line, sc->ilt->lines);
6410     {
6411         for (i = 0; i < 4; i++) {
6412             BLOGD(sc, DBG_LOAD,
6413                   "c%d page_size=%u start=%u end=%u num=%u flags=0x%x\n",
6414                   i,
6415                   sc->ilt->clients[i].page_size,
6416                   sc->ilt->clients[i].start,
6417                   sc->ilt->clients[i].end,
6418                   sc->ilt->clients[i].client_num,
6419                   sc->ilt->clients[i].flags);
6420         }
6421     }
6422     if (ecore_ilt_mem_op(sc, ILT_MEMOP_ALLOC)) {
6423         BLOGE(sc, "ecore_ilt_mem_op ILT_MEMOP_ALLOC failed\n");
6424         bxe_free_mem(sc);
6425         return (-1);
6426     }
6427 
6428 #if 0
6429     if (bxe_iov_alloc_mem(sc)) {
6430         BLOGE(sc, "Failed to allocate memory for SRIOV\n");
6431         bxe_free_mem(sc);
6432         return (-1);
6433     }
6434 #endif
6435 
6436     return (0);
6437 }
6438 
6439 static void
6440 bxe_free_rx_bd_chain(struct bxe_fastpath *fp)
6441 {
6442     struct bxe_softc *sc;
6443     int i;
6444 
6445     sc = fp->sc;
6446 
6447     if (fp->rx_mbuf_tag == NULL) {
6448         return;
6449     }
6450 
6451     /* free all mbufs and unload all maps */
6452     for (i = 0; i < RX_BD_TOTAL; i++) {
6453         if (fp->rx_mbuf_chain[i].m_map != NULL) {
6454             bus_dmamap_sync(fp->rx_mbuf_tag,
6455                             fp->rx_mbuf_chain[i].m_map,
6456                             BUS_DMASYNC_POSTREAD);
6457             bus_dmamap_unload(fp->rx_mbuf_tag,
6458                               fp->rx_mbuf_chain[i].m_map);
6459         }
6460 
6461         if (fp->rx_mbuf_chain[i].m != NULL) {
6462             m_freem(fp->rx_mbuf_chain[i].m);
6463             fp->rx_mbuf_chain[i].m = NULL;
6464             fp->eth_q_stats.mbuf_alloc_rx--;
6465         }
6466     }
6467 }
6468 
6469 static void
6470 bxe_free_tpa_pool(struct bxe_fastpath *fp)
6471 {
6472     struct bxe_softc *sc;
6473     int i, max_agg_queues;
6474 
6475     sc = fp->sc;
6476 
6477     if (fp->rx_mbuf_tag == NULL) {
6478         return;
6479     }
6480 
6481     max_agg_queues = MAX_AGG_QS(sc);
6482 
6483     /* release all mbufs and unload all DMA maps in the TPA pool */
6484     for (i = 0; i < max_agg_queues; i++) {
6485         if (fp->rx_tpa_info[i].bd.m_map != NULL) {
6486             bus_dmamap_sync(fp->rx_mbuf_tag,
6487                             fp->rx_tpa_info[i].bd.m_map,
6488                             BUS_DMASYNC_POSTREAD);
6489             bus_dmamap_unload(fp->rx_mbuf_tag,
6490                               fp->rx_tpa_info[i].bd.m_map);
6491         }
6492 
6493         if (fp->rx_tpa_info[i].bd.m != NULL) {
6494             m_freem(fp->rx_tpa_info[i].bd.m);
6495             fp->rx_tpa_info[i].bd.m = NULL;
6496             fp->eth_q_stats.mbuf_alloc_tpa--;
6497         }
6498     }
6499 }
6500 
6501 static void
6502 bxe_free_sge_chain(struct bxe_fastpath *fp)
6503 {
6504     struct bxe_softc *sc;
6505     int i;
6506 
6507     sc = fp->sc;
6508 
6509     if (fp->rx_sge_mbuf_tag == NULL) {
6510         return;
6511     }
6512 
6513     /* rree all mbufs and unload all maps */
6514     for (i = 0; i < RX_SGE_TOTAL; i++) {
6515         if (fp->rx_sge_mbuf_chain[i].m_map != NULL) {
6516             bus_dmamap_sync(fp->rx_sge_mbuf_tag,
6517                             fp->rx_sge_mbuf_chain[i].m_map,
6518                             BUS_DMASYNC_POSTREAD);
6519             bus_dmamap_unload(fp->rx_sge_mbuf_tag,
6520                               fp->rx_sge_mbuf_chain[i].m_map);
6521         }
6522 
6523         if (fp->rx_sge_mbuf_chain[i].m != NULL) {
6524             m_freem(fp->rx_sge_mbuf_chain[i].m);
6525             fp->rx_sge_mbuf_chain[i].m = NULL;
6526             fp->eth_q_stats.mbuf_alloc_sge--;
6527         }
6528     }
6529 }
6530 
6531 static void
6532 bxe_free_fp_buffers(struct bxe_softc *sc)
6533 {
6534     struct bxe_fastpath *fp;
6535     int i;
6536 
6537     for (i = 0; i < sc->num_queues; i++) {
6538         fp = &sc->fp[i];
6539 
6540 #if __FreeBSD_version >= 800000
6541         if (fp->tx_br != NULL) {
6542             /* just in case bxe_mq_flush() wasn't called */
6543             if (mtx_initialized(&fp->tx_mtx)) {
6544                 struct mbuf *m;
6545 
6546                 BXE_FP_TX_LOCK(fp);
6547                 while ((m = buf_ring_dequeue_sc(fp->tx_br)) != NULL)
6548                     m_freem(m);
6549                 BXE_FP_TX_UNLOCK(fp);
6550             }
6551             buf_ring_free(fp->tx_br, M_DEVBUF);
6552             fp->tx_br = NULL;
6553         }
6554 #endif
6555 
6556         /* free all RX buffers */
6557         bxe_free_rx_bd_chain(fp);
6558         bxe_free_tpa_pool(fp);
6559         bxe_free_sge_chain(fp);
6560 
6561         if (fp->eth_q_stats.mbuf_alloc_rx != 0) {
6562             BLOGE(sc, "failed to claim all rx mbufs (%d left)\n",
6563                   fp->eth_q_stats.mbuf_alloc_rx);
6564         }
6565 
6566         if (fp->eth_q_stats.mbuf_alloc_sge != 0) {
6567             BLOGE(sc, "failed to claim all sge mbufs (%d left)\n",
6568                   fp->eth_q_stats.mbuf_alloc_sge);
6569         }
6570 
6571         if (fp->eth_q_stats.mbuf_alloc_tpa != 0) {
6572             BLOGE(sc, "failed to claim all sge mbufs (%d left)\n",
6573                   fp->eth_q_stats.mbuf_alloc_tpa);
6574         }
6575 
6576         if (fp->eth_q_stats.mbuf_alloc_tx != 0) {
6577             BLOGE(sc, "failed to release tx mbufs (%d left)\n",
6578                   fp->eth_q_stats.mbuf_alloc_tx);
6579         }
6580 
6581         /* XXX verify all mbufs were reclaimed */
6582 
6583         if (mtx_initialized(&fp->tx_mtx)) {
6584             mtx_destroy(&fp->tx_mtx);
6585         }
6586 
6587         if (mtx_initialized(&fp->rx_mtx)) {
6588             mtx_destroy(&fp->rx_mtx);
6589         }
6590     }
6591 }
6592 
6593 static int
6594 bxe_alloc_rx_bd_mbuf(struct bxe_fastpath *fp,
6595                      uint16_t            prev_index,
6596                      uint16_t            index)
6597 {
6598     struct bxe_sw_rx_bd *rx_buf;
6599     struct eth_rx_bd *rx_bd;
6600     bus_dma_segment_t segs[1];
6601     bus_dmamap_t map;
6602     struct mbuf *m;
6603     int nsegs, rc;
6604 
6605     rc = 0;
6606 
6607     /* allocate the new RX BD mbuf */
6608     m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, fp->mbuf_alloc_size);
6609     if (__predict_false(m == NULL)) {
6610         fp->eth_q_stats.mbuf_rx_bd_alloc_failed++;
6611         return (ENOBUFS);
6612     }
6613 
6614     fp->eth_q_stats.mbuf_alloc_rx++;
6615 
6616     /* initialize the mbuf buffer length */
6617     m->m_pkthdr.len = m->m_len = fp->rx_buf_size;
6618 
6619     /* map the mbuf into non-paged pool */
6620     rc = bus_dmamap_load_mbuf_sg(fp->rx_mbuf_tag,
6621                                  fp->rx_mbuf_spare_map,
6622                                  m, segs, &nsegs, BUS_DMA_NOWAIT);
6623     if (__predict_false(rc != 0)) {
6624         fp->eth_q_stats.mbuf_rx_bd_mapping_failed++;
6625         m_freem(m);
6626         fp->eth_q_stats.mbuf_alloc_rx--;
6627         return (rc);
6628     }
6629 
6630     /* all mbufs must map to a single segment */
6631     KASSERT((nsegs == 1), ("Too many segments, %d returned!", nsegs));
6632 
6633     /* release any existing RX BD mbuf mappings */
6634 
6635     if (prev_index != index) {
6636         rx_buf = &fp->rx_mbuf_chain[prev_index];
6637 
6638         if (rx_buf->m_map != NULL) {
6639             bus_dmamap_sync(fp->rx_mbuf_tag, rx_buf->m_map,
6640                             BUS_DMASYNC_POSTREAD);
6641             bus_dmamap_unload(fp->rx_mbuf_tag, rx_buf->m_map);
6642         }
6643 
6644         /*
6645          * We only get here from bxe_rxeof() when the maximum number
6646          * of rx buffers is less than RX_BD_USABLE. bxe_rxeof() already
6647          * holds the mbuf in the prev_index so it's OK to NULL it out
6648          * here without concern of a memory leak.
6649          */
6650         fp->rx_mbuf_chain[prev_index].m = NULL;
6651     }
6652 
6653     rx_buf = &fp->rx_mbuf_chain[index];
6654 
6655     if (rx_buf->m_map != NULL) {
6656         bus_dmamap_sync(fp->rx_mbuf_tag, rx_buf->m_map,
6657                         BUS_DMASYNC_POSTREAD);
6658         bus_dmamap_unload(fp->rx_mbuf_tag, rx_buf->m_map);
6659     }
6660 
6661     /* save the mbuf and mapping info for a future packet */
6662     map = (prev_index != index) ?
6663               fp->rx_mbuf_chain[prev_index].m_map : rx_buf->m_map;
6664     rx_buf->m_map = fp->rx_mbuf_spare_map;
6665     fp->rx_mbuf_spare_map = map;
6666     bus_dmamap_sync(fp->rx_mbuf_tag, rx_buf->m_map,
6667                     BUS_DMASYNC_PREREAD);
6668     rx_buf->m = m;
6669 
6670     rx_bd = &fp->rx_chain[index];
6671     rx_bd->addr_hi = htole32(U64_HI(segs[0].ds_addr));
6672     rx_bd->addr_lo = htole32(U64_LO(segs[0].ds_addr));
6673 
6674     return (rc);
6675 }
6676 
6677 static int
6678 bxe_alloc_rx_tpa_mbuf(struct bxe_fastpath *fp,
6679                       int                 queue)
6680 {
6681     struct bxe_sw_tpa_info *tpa_info = &fp->rx_tpa_info[queue];
6682     bus_dma_segment_t segs[1];
6683     bus_dmamap_t map;
6684     struct mbuf *m;
6685     int nsegs;
6686     int rc = 0;
6687 
6688     /* allocate the new TPA mbuf */
6689     m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, fp->mbuf_alloc_size);
6690     if (__predict_false(m == NULL)) {
6691         fp->eth_q_stats.mbuf_rx_tpa_alloc_failed++;
6692         return (ENOBUFS);
6693     }
6694 
6695     fp->eth_q_stats.mbuf_alloc_tpa++;
6696 
6697     /* initialize the mbuf buffer length */
6698     m->m_pkthdr.len = m->m_len = fp->rx_buf_size;
6699 
6700     /* map the mbuf into non-paged pool */
6701     rc = bus_dmamap_load_mbuf_sg(fp->rx_mbuf_tag,
6702                                  fp->rx_tpa_info_mbuf_spare_map,
6703                                  m, segs, &nsegs, BUS_DMA_NOWAIT);
6704     if (__predict_false(rc != 0)) {
6705         fp->eth_q_stats.mbuf_rx_tpa_mapping_failed++;
6706         m_free(m);
6707         fp->eth_q_stats.mbuf_alloc_tpa--;
6708         return (rc);
6709     }
6710 
6711     /* all mbufs must map to a single segment */
6712     KASSERT((nsegs == 1), ("Too many segments, %d returned!", nsegs));
6713 
6714     /* release any existing TPA mbuf mapping */
6715     if (tpa_info->bd.m_map != NULL) {
6716         bus_dmamap_sync(fp->rx_mbuf_tag, tpa_info->bd.m_map,
6717                         BUS_DMASYNC_POSTREAD);
6718         bus_dmamap_unload(fp->rx_mbuf_tag, tpa_info->bd.m_map);
6719     }
6720 
6721     /* save the mbuf and mapping info for the TPA mbuf */
6722     map = tpa_info->bd.m_map;
6723     tpa_info->bd.m_map = fp->rx_tpa_info_mbuf_spare_map;
6724     fp->rx_tpa_info_mbuf_spare_map = map;
6725     bus_dmamap_sync(fp->rx_mbuf_tag, tpa_info->bd.m_map,
6726                     BUS_DMASYNC_PREREAD);
6727     tpa_info->bd.m = m;
6728     tpa_info->seg = segs[0];
6729 
6730     return (rc);
6731 }
6732 
6733 /*
6734  * Allocate an mbuf and assign it to the receive scatter gather chain. The
6735  * caller must take care to save a copy of the existing mbuf in the SG mbuf
6736  * chain.
6737  */
6738 static int
6739 bxe_alloc_rx_sge_mbuf(struct bxe_fastpath *fp,
6740                       uint16_t            index)
6741 {
6742     struct bxe_sw_rx_bd *sge_buf;
6743     struct eth_rx_sge *sge;
6744     bus_dma_segment_t segs[1];
6745     bus_dmamap_t map;
6746     struct mbuf *m;
6747     int nsegs;
6748     int rc = 0;
6749 
6750     /* allocate a new SGE mbuf */
6751     m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, SGE_PAGE_SIZE);
6752     if (__predict_false(m == NULL)) {
6753         fp->eth_q_stats.mbuf_rx_sge_alloc_failed++;
6754         return (ENOMEM);
6755     }
6756 
6757     fp->eth_q_stats.mbuf_alloc_sge++;
6758 
6759     /* initialize the mbuf buffer length */
6760     m->m_pkthdr.len = m->m_len = SGE_PAGE_SIZE;
6761 
6762     /* map the SGE mbuf into non-paged pool */
6763     rc = bus_dmamap_load_mbuf_sg(fp->rx_sge_mbuf_tag,
6764                                  fp->rx_sge_mbuf_spare_map,
6765                                  m, segs, &nsegs, BUS_DMA_NOWAIT);
6766     if (__predict_false(rc != 0)) {
6767         fp->eth_q_stats.mbuf_rx_sge_mapping_failed++;
6768         m_freem(m);
6769         fp->eth_q_stats.mbuf_alloc_sge--;
6770         return (rc);
6771     }
6772 
6773     /* all mbufs must map to a single segment */
6774     KASSERT((nsegs == 1), ("Too many segments, %d returned!", nsegs));
6775 
6776     sge_buf = &fp->rx_sge_mbuf_chain[index];
6777 
6778     /* release any existing SGE mbuf mapping */
6779     if (sge_buf->m_map != NULL) {
6780         bus_dmamap_sync(fp->rx_sge_mbuf_tag, sge_buf->m_map,
6781                         BUS_DMASYNC_POSTREAD);
6782         bus_dmamap_unload(fp->rx_sge_mbuf_tag, sge_buf->m_map);
6783     }
6784 
6785     /* save the mbuf and mapping info for a future packet */
6786     map = sge_buf->m_map;
6787     sge_buf->m_map = fp->rx_sge_mbuf_spare_map;
6788     fp->rx_sge_mbuf_spare_map = map;
6789     bus_dmamap_sync(fp->rx_sge_mbuf_tag, sge_buf->m_map,
6790                     BUS_DMASYNC_PREREAD);
6791     sge_buf->m = m;
6792 
6793     sge = &fp->rx_sge_chain[index];
6794     sge->addr_hi = htole32(U64_HI(segs[0].ds_addr));
6795     sge->addr_lo = htole32(U64_LO(segs[0].ds_addr));
6796 
6797     return (rc);
6798 }
6799 
6800 static __noinline int
6801 bxe_alloc_fp_buffers(struct bxe_softc *sc)
6802 {
6803     struct bxe_fastpath *fp;
6804     int i, j, rc = 0;
6805     int ring_prod, cqe_ring_prod;
6806     int max_agg_queues;
6807 
6808     for (i = 0; i < sc->num_queues; i++) {
6809         fp = &sc->fp[i];
6810 
6811 #if __FreeBSD_version >= 800000
6812         fp->tx_br = buf_ring_alloc(BXE_BR_SIZE, M_DEVBUF,
6813                                    M_NOWAIT, &fp->tx_mtx);
6814         if (fp->tx_br == NULL) {
6815             BLOGE(sc, "buf_ring alloc fail for fp[%02d]\n", i);
6816             goto bxe_alloc_fp_buffers_error;
6817         }
6818 #endif
6819 
6820         ring_prod = cqe_ring_prod = 0;
6821         fp->rx_bd_cons = 0;
6822         fp->rx_cq_cons = 0;
6823 
6824         /* allocate buffers for the RX BDs in RX BD chain */
6825         for (j = 0; j < sc->max_rx_bufs; j++) {
6826             rc = bxe_alloc_rx_bd_mbuf(fp, ring_prod, ring_prod);
6827             if (rc != 0) {
6828                 BLOGE(sc, "mbuf alloc fail for fp[%02d] rx chain (%d)\n",
6829                       i, rc);
6830                 goto bxe_alloc_fp_buffers_error;
6831             }
6832 
6833             ring_prod     = RX_BD_NEXT(ring_prod);
6834             cqe_ring_prod = RCQ_NEXT(cqe_ring_prod);
6835         }
6836 
6837         fp->rx_bd_prod = ring_prod;
6838         fp->rx_cq_prod = cqe_ring_prod;
6839         fp->eth_q_stats.rx_calls = fp->eth_q_stats.rx_pkts = 0;
6840 
6841         max_agg_queues = MAX_AGG_QS(sc);
6842 
6843         fp->tpa_enable = TRUE;
6844 
6845         /* fill the TPA pool */
6846         for (j = 0; j < max_agg_queues; j++) {
6847             rc = bxe_alloc_rx_tpa_mbuf(fp, j);
6848             if (rc != 0) {
6849                 BLOGE(sc, "mbuf alloc fail for fp[%02d] TPA queue %d\n",
6850                           i, j);
6851                 fp->tpa_enable = FALSE;
6852                 goto bxe_alloc_fp_buffers_error;
6853             }
6854 
6855             fp->rx_tpa_info[j].state = BXE_TPA_STATE_STOP;
6856         }
6857 
6858         if (fp->tpa_enable) {
6859             /* fill the RX SGE chain */
6860             ring_prod = 0;
6861             for (j = 0; j < RX_SGE_USABLE; j++) {
6862                 rc = bxe_alloc_rx_sge_mbuf(fp, ring_prod);
6863                 if (rc != 0) {
6864                     BLOGE(sc, "mbuf alloc fail for fp[%02d] SGE %d\n",
6865                               i, ring_prod);
6866                     fp->tpa_enable = FALSE;
6867                     ring_prod = 0;
6868                     goto bxe_alloc_fp_buffers_error;
6869                 }
6870 
6871                 ring_prod = RX_SGE_NEXT(ring_prod);
6872             }
6873 
6874             fp->rx_sge_prod = ring_prod;
6875         }
6876     }
6877 
6878     return (0);
6879 
6880 bxe_alloc_fp_buffers_error:
6881 
6882     /* unwind what was already allocated */
6883     bxe_free_rx_bd_chain(fp);
6884     bxe_free_tpa_pool(fp);
6885     bxe_free_sge_chain(fp);
6886 
6887     return (ENOBUFS);
6888 }
6889 
6890 static void
6891 bxe_free_fw_stats_mem(struct bxe_softc *sc)
6892 {
6893     bxe_dma_free(sc, &sc->fw_stats_dma);
6894 
6895     sc->fw_stats_num = 0;
6896 
6897     sc->fw_stats_req_size = 0;
6898     sc->fw_stats_req = NULL;
6899     sc->fw_stats_req_mapping = 0;
6900 
6901     sc->fw_stats_data_size = 0;
6902     sc->fw_stats_data = NULL;
6903     sc->fw_stats_data_mapping = 0;
6904 }
6905 
6906 static int
6907 bxe_alloc_fw_stats_mem(struct bxe_softc *sc)
6908 {
6909     uint8_t num_queue_stats;
6910     int num_groups;
6911 
6912     /* number of queues for statistics is number of eth queues */
6913     num_queue_stats = BXE_NUM_ETH_QUEUES(sc);
6914 
6915     /*
6916      * Total number of FW statistics requests =
6917      *   1 for port stats + 1 for PF stats + num of queues
6918      */
6919     sc->fw_stats_num = (2 + num_queue_stats);
6920 
6921     /*
6922      * Request is built from stats_query_header and an array of
6923      * stats_query_cmd_group each of which contains STATS_QUERY_CMD_COUNT
6924      * rules. The real number or requests is configured in the
6925      * stats_query_header.
6926      */
6927     num_groups =
6928         ((sc->fw_stats_num / STATS_QUERY_CMD_COUNT) +
6929          ((sc->fw_stats_num % STATS_QUERY_CMD_COUNT) ? 1 : 0));
6930 
6931     BLOGD(sc, DBG_LOAD, "stats fw_stats_num %d num_groups %d\n",
6932           sc->fw_stats_num, num_groups);
6933 
6934     sc->fw_stats_req_size =
6935         (sizeof(struct stats_query_header) +
6936          (num_groups * sizeof(struct stats_query_cmd_group)));
6937 
6938     /*
6939      * Data for statistics requests + stats_counter.
6940      * stats_counter holds per-STORM counters that are incremented when
6941      * STORM has finished with the current request. Memory for FCoE
6942      * offloaded statistics are counted anyway, even if they will not be sent.
6943      * VF stats are not accounted for here as the data of VF stats is stored
6944      * in memory allocated by the VF, not here.
6945      */
6946     sc->fw_stats_data_size =
6947         (sizeof(struct stats_counter) +
6948          sizeof(struct per_port_stats) +
6949          sizeof(struct per_pf_stats) +
6950          /* sizeof(struct fcoe_statistics_params) + */
6951          (sizeof(struct per_queue_stats) * num_queue_stats));
6952 
6953     if (bxe_dma_alloc(sc, (sc->fw_stats_req_size + sc->fw_stats_data_size),
6954                       &sc->fw_stats_dma, "fw stats") != 0) {
6955         bxe_free_fw_stats_mem(sc);
6956         return (-1);
6957     }
6958 
6959     /* set up the shortcuts */
6960 
6961     sc->fw_stats_req =
6962         (struct bxe_fw_stats_req *)sc->fw_stats_dma.vaddr;
6963     sc->fw_stats_req_mapping = sc->fw_stats_dma.paddr;
6964 
6965     sc->fw_stats_data =
6966         (struct bxe_fw_stats_data *)((uint8_t *)sc->fw_stats_dma.vaddr +
6967                                      sc->fw_stats_req_size);
6968     sc->fw_stats_data_mapping = (sc->fw_stats_dma.paddr +
6969                                  sc->fw_stats_req_size);
6970 
6971     BLOGD(sc, DBG_LOAD, "statistics request base address set to %#jx\n",
6972           (uintmax_t)sc->fw_stats_req_mapping);
6973 
6974     BLOGD(sc, DBG_LOAD, "statistics data base address set to %#jx\n",
6975           (uintmax_t)sc->fw_stats_data_mapping);
6976 
6977     return (0);
6978 }
6979 
6980 /*
6981  * Bits map:
6982  * 0-7  - Engine0 load counter.
6983  * 8-15 - Engine1 load counter.
6984  * 16   - Engine0 RESET_IN_PROGRESS bit.
6985  * 17   - Engine1 RESET_IN_PROGRESS bit.
6986  * 18   - Engine0 ONE_IS_LOADED. Set when there is at least one active
6987  *        function on the engine
6988  * 19   - Engine1 ONE_IS_LOADED.
6989  * 20   - Chip reset flow bit. When set none-leader must wait for both engines
6990  *        leader to complete (check for both RESET_IN_PROGRESS bits and not
6991  *        for just the one belonging to its engine).
6992  */
6993 #define BXE_RECOVERY_GLOB_REG     MISC_REG_GENERIC_POR_1
6994 #define BXE_PATH0_LOAD_CNT_MASK   0x000000ff
6995 #define BXE_PATH0_LOAD_CNT_SHIFT  0
6996 #define BXE_PATH1_LOAD_CNT_MASK   0x0000ff00
6997 #define BXE_PATH1_LOAD_CNT_SHIFT  8
6998 #define BXE_PATH0_RST_IN_PROG_BIT 0x00010000
6999 #define BXE_PATH1_RST_IN_PROG_BIT 0x00020000
7000 #define BXE_GLOBAL_RESET_BIT      0x00040000
7001 
7002 /* set the GLOBAL_RESET bit, should be run under rtnl lock */
7003 static void
7004 bxe_set_reset_global(struct bxe_softc *sc)
7005 {
7006     uint32_t val;
7007     bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
7008     val = REG_RD(sc, BXE_RECOVERY_GLOB_REG);
7009     REG_WR(sc, BXE_RECOVERY_GLOB_REG, val | BXE_GLOBAL_RESET_BIT);
7010     bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
7011 }
7012 
7013 /* clear the GLOBAL_RESET bit, should be run under rtnl lock */
7014 static void
7015 bxe_clear_reset_global(struct bxe_softc *sc)
7016 {
7017     uint32_t val;
7018     bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
7019     val = REG_RD(sc, BXE_RECOVERY_GLOB_REG);
7020     REG_WR(sc, BXE_RECOVERY_GLOB_REG, val & (~BXE_GLOBAL_RESET_BIT));
7021     bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
7022 }
7023 
7024 /* checks the GLOBAL_RESET bit, should be run under rtnl lock */
7025 static uint8_t
7026 bxe_reset_is_global(struct bxe_softc *sc)
7027 {
7028     uint32_t val = REG_RD(sc, BXE_RECOVERY_GLOB_REG);
7029     BLOGD(sc, DBG_LOAD, "GLOB_REG=0x%08x\n", val);
7030     return (val & BXE_GLOBAL_RESET_BIT) ? TRUE : FALSE;
7031 }
7032 
7033 /* clear RESET_IN_PROGRESS bit for the engine, should be run under rtnl lock */
7034 static void
7035 bxe_set_reset_done(struct bxe_softc *sc)
7036 {
7037     uint32_t val;
7038     uint32_t bit = SC_PATH(sc) ? BXE_PATH1_RST_IN_PROG_BIT :
7039                                  BXE_PATH0_RST_IN_PROG_BIT;
7040 
7041     bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
7042 
7043     val = REG_RD(sc, BXE_RECOVERY_GLOB_REG);
7044     /* Clear the bit */
7045     val &= ~bit;
7046     REG_WR(sc, BXE_RECOVERY_GLOB_REG, val);
7047 
7048     bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
7049 }
7050 
7051 /* set RESET_IN_PROGRESS for the engine, should be run under rtnl lock */
7052 static void
7053 bxe_set_reset_in_progress(struct bxe_softc *sc)
7054 {
7055     uint32_t val;
7056     uint32_t bit = SC_PATH(sc) ? BXE_PATH1_RST_IN_PROG_BIT :
7057                                  BXE_PATH0_RST_IN_PROG_BIT;
7058 
7059     bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
7060 
7061     val = REG_RD(sc, BXE_RECOVERY_GLOB_REG);
7062     /* Set the bit */
7063     val |= bit;
7064     REG_WR(sc, BXE_RECOVERY_GLOB_REG, val);
7065 
7066     bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
7067 }
7068 
7069 /* check RESET_IN_PROGRESS bit for an engine, should be run under rtnl lock */
7070 static uint8_t
7071 bxe_reset_is_done(struct bxe_softc *sc,
7072                   int              engine)
7073 {
7074     uint32_t val = REG_RD(sc, BXE_RECOVERY_GLOB_REG);
7075     uint32_t bit = engine ? BXE_PATH1_RST_IN_PROG_BIT :
7076                             BXE_PATH0_RST_IN_PROG_BIT;
7077 
7078     /* return false if bit is set */
7079     return (val & bit) ? FALSE : TRUE;
7080 }
7081 
7082 /* get the load status for an engine, should be run under rtnl lock */
7083 static uint8_t
7084 bxe_get_load_status(struct bxe_softc *sc,
7085                     int              engine)
7086 {
7087     uint32_t mask = engine ? BXE_PATH1_LOAD_CNT_MASK :
7088                              BXE_PATH0_LOAD_CNT_MASK;
7089     uint32_t shift = engine ? BXE_PATH1_LOAD_CNT_SHIFT :
7090                               BXE_PATH0_LOAD_CNT_SHIFT;
7091     uint32_t val = REG_RD(sc, BXE_RECOVERY_GLOB_REG);
7092 
7093     BLOGD(sc, DBG_LOAD, "Old value for GLOB_REG=0x%08x\n", val);
7094 
7095     val = ((val & mask) >> shift);
7096 
7097     BLOGD(sc, DBG_LOAD, "Load mask engine %d = 0x%08x\n", engine, val);
7098 
7099     return (val != 0);
7100 }
7101 
7102 /* set pf load mark */
7103 /* XXX needs to be under rtnl lock */
7104 static void
7105 bxe_set_pf_load(struct bxe_softc *sc)
7106 {
7107     uint32_t val;
7108     uint32_t val1;
7109     uint32_t mask = SC_PATH(sc) ? BXE_PATH1_LOAD_CNT_MASK :
7110                                   BXE_PATH0_LOAD_CNT_MASK;
7111     uint32_t shift = SC_PATH(sc) ? BXE_PATH1_LOAD_CNT_SHIFT :
7112                                    BXE_PATH0_LOAD_CNT_SHIFT;
7113 
7114     bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
7115 
7116     val = REG_RD(sc, BXE_RECOVERY_GLOB_REG);
7117     BLOGD(sc, DBG_LOAD, "Old value for GLOB_REG=0x%08x\n", val);
7118 
7119     /* get the current counter value */
7120     val1 = ((val & mask) >> shift);
7121 
7122     /* set bit of this PF */
7123     val1 |= (1 << SC_ABS_FUNC(sc));
7124 
7125     /* clear the old value */
7126     val &= ~mask;
7127 
7128     /* set the new one */
7129     val |= ((val1 << shift) & mask);
7130 
7131     REG_WR(sc, BXE_RECOVERY_GLOB_REG, val);
7132 
7133     bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
7134 }
7135 
7136 /* clear pf load mark */
7137 /* XXX needs to be under rtnl lock */
7138 static uint8_t
7139 bxe_clear_pf_load(struct bxe_softc *sc)
7140 {
7141     uint32_t val1, val;
7142     uint32_t mask = SC_PATH(sc) ? BXE_PATH1_LOAD_CNT_MASK :
7143                                   BXE_PATH0_LOAD_CNT_MASK;
7144     uint32_t shift = SC_PATH(sc) ? BXE_PATH1_LOAD_CNT_SHIFT :
7145                                    BXE_PATH0_LOAD_CNT_SHIFT;
7146 
7147     bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
7148     val = REG_RD(sc, BXE_RECOVERY_GLOB_REG);
7149     BLOGD(sc, DBG_LOAD, "Old GEN_REG_VAL=0x%08x\n", val);
7150 
7151     /* get the current counter value */
7152     val1 = (val & mask) >> shift;
7153 
7154     /* clear bit of that PF */
7155     val1 &= ~(1 << SC_ABS_FUNC(sc));
7156 
7157     /* clear the old value */
7158     val &= ~mask;
7159 
7160     /* set the new one */
7161     val |= ((val1 << shift) & mask);
7162 
7163     REG_WR(sc, BXE_RECOVERY_GLOB_REG, val);
7164     bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
7165     return (val1 != 0);
7166 }
7167 
7168 /* send load requrest to mcp and analyze response */
7169 static int
7170 bxe_nic_load_request(struct bxe_softc *sc,
7171                      uint32_t         *load_code)
7172 {
7173     /* init fw_seq */
7174     sc->fw_seq =
7175         (SHMEM_RD(sc, func_mb[SC_FW_MB_IDX(sc)].drv_mb_header) &
7176          DRV_MSG_SEQ_NUMBER_MASK);
7177 
7178     BLOGD(sc, DBG_LOAD, "initial fw_seq 0x%04x\n", sc->fw_seq);
7179 
7180     /* get the current FW pulse sequence */
7181     sc->fw_drv_pulse_wr_seq =
7182         (SHMEM_RD(sc, func_mb[SC_FW_MB_IDX(sc)].drv_pulse_mb) &
7183          DRV_PULSE_SEQ_MASK);
7184 
7185     BLOGD(sc, DBG_LOAD, "initial drv_pulse 0x%04x\n",
7186           sc->fw_drv_pulse_wr_seq);
7187 
7188     /* load request */
7189     (*load_code) = bxe_fw_command(sc, DRV_MSG_CODE_LOAD_REQ,
7190                                   DRV_MSG_CODE_LOAD_REQ_WITH_LFA);
7191 
7192     /* if the MCP fails to respond we must abort */
7193     if (!(*load_code)) {
7194         BLOGE(sc, "MCP response failure!\n");
7195         return (-1);
7196     }
7197 
7198     /* if MCP refused then must abort */
7199     if ((*load_code) == FW_MSG_CODE_DRV_LOAD_REFUSED) {
7200         BLOGE(sc, "MCP refused load request\n");
7201         return (-1);
7202     }
7203 
7204     return (0);
7205 }
7206 
7207 /*
7208  * Check whether another PF has already loaded FW to chip. In virtualized
7209  * environments a pf from anoth VM may have already initialized the device
7210  * including loading FW.
7211  */
7212 static int
7213 bxe_nic_load_analyze_req(struct bxe_softc *sc,
7214                          uint32_t         load_code)
7215 {
7216     uint32_t my_fw, loaded_fw;
7217 
7218     /* is another pf loaded on this engine? */
7219     if ((load_code != FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) &&
7220         (load_code != FW_MSG_CODE_DRV_LOAD_COMMON)) {
7221         /* build my FW version dword */
7222         my_fw = (BCM_5710_FW_MAJOR_VERSION +
7223                  (BCM_5710_FW_MINOR_VERSION << 8 ) +
7224                  (BCM_5710_FW_REVISION_VERSION << 16) +
7225                  (BCM_5710_FW_ENGINEERING_VERSION << 24));
7226 
7227         /* read loaded FW from chip */
7228         loaded_fw = REG_RD(sc, XSEM_REG_PRAM);
7229         BLOGD(sc, DBG_LOAD, "loaded FW 0x%08x / my FW 0x%08x\n",
7230               loaded_fw, my_fw);
7231 
7232         /* abort nic load if version mismatch */
7233         if (my_fw != loaded_fw) {
7234             BLOGE(sc, "FW 0x%08x already loaded (mine is 0x%08x)",
7235                   loaded_fw, my_fw);
7236             return (-1);
7237         }
7238     }
7239 
7240     return (0);
7241 }
7242 
7243 /* mark PMF if applicable */
7244 static void
7245 bxe_nic_load_pmf(struct bxe_softc *sc,
7246                  uint32_t         load_code)
7247 {
7248     uint32_t ncsi_oem_data_addr;
7249 
7250     if ((load_code == FW_MSG_CODE_DRV_LOAD_COMMON) ||
7251         (load_code == FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) ||
7252         (load_code == FW_MSG_CODE_DRV_LOAD_PORT)) {
7253         /*
7254          * Barrier here for ordering between the writing to sc->port.pmf here
7255          * and reading it from the periodic task.
7256          */
7257         sc->port.pmf = 1;
7258         mb();
7259     } else {
7260         sc->port.pmf = 0;
7261     }
7262 
7263     BLOGD(sc, DBG_LOAD, "pmf %d\n", sc->port.pmf);
7264 
7265     /* XXX needed? */
7266     if (load_code == FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) {
7267         if (SHMEM2_HAS(sc, ncsi_oem_data_addr)) {
7268             ncsi_oem_data_addr = SHMEM2_RD(sc, ncsi_oem_data_addr);
7269             if (ncsi_oem_data_addr) {
7270                 REG_WR(sc,
7271                        (ncsi_oem_data_addr +
7272                         offsetof(struct glob_ncsi_oem_data, driver_version)),
7273                        0);
7274             }
7275         }
7276     }
7277 }
7278 
7279 static void
7280 bxe_read_mf_cfg(struct bxe_softc *sc)
7281 {
7282     int n = (CHIP_IS_MODE_4_PORT(sc) ? 2 : 1);
7283     int abs_func;
7284     int vn;
7285 
7286     if (BXE_NOMCP(sc)) {
7287         return; /* what should be the default bvalue in this case */
7288     }
7289 
7290     /*
7291      * The formula for computing the absolute function number is...
7292      * For 2 port configuration (4 functions per port):
7293      *   abs_func = 2 * vn + SC_PORT + SC_PATH
7294      * For 4 port configuration (2 functions per port):
7295      *   abs_func = 4 * vn + 2 * SC_PORT + SC_PATH
7296      */
7297     for (vn = VN_0; vn < SC_MAX_VN_NUM(sc); vn++) {
7298         abs_func = (n * (2 * vn + SC_PORT(sc)) + SC_PATH(sc));
7299         if (abs_func >= E1H_FUNC_MAX) {
7300             break;
7301         }
7302         sc->devinfo.mf_info.mf_config[vn] =
7303             MFCFG_RD(sc, func_mf_config[abs_func].config);
7304     }
7305 
7306     if (sc->devinfo.mf_info.mf_config[SC_VN(sc)] &
7307         FUNC_MF_CFG_FUNC_DISABLED) {
7308         BLOGD(sc, DBG_LOAD, "mf_cfg function disabled\n");
7309         sc->flags |= BXE_MF_FUNC_DIS;
7310     } else {
7311         BLOGD(sc, DBG_LOAD, "mf_cfg function enabled\n");
7312         sc->flags &= ~BXE_MF_FUNC_DIS;
7313     }
7314 }
7315 
7316 /* acquire split MCP access lock register */
7317 static int bxe_acquire_alr(struct bxe_softc *sc)
7318 {
7319     uint32_t j, val;
7320 
7321     for (j = 0; j < 1000; j++) {
7322         val = (1UL << 31);
7323         REG_WR(sc, GRCBASE_MCP + 0x9c, val);
7324         val = REG_RD(sc, GRCBASE_MCP + 0x9c);
7325         if (val & (1L << 31))
7326             break;
7327 
7328         DELAY(5000);
7329     }
7330 
7331     if (!(val & (1L << 31))) {
7332         BLOGE(sc, "Cannot acquire MCP access lock register\n");
7333         return (-1);
7334     }
7335 
7336     return (0);
7337 }
7338 
7339 /* release split MCP access lock register */
7340 static void bxe_release_alr(struct bxe_softc *sc)
7341 {
7342     REG_WR(sc, GRCBASE_MCP + 0x9c, 0);
7343 }
7344 
7345 static void
7346 bxe_fan_failure(struct bxe_softc *sc)
7347 {
7348     int port = SC_PORT(sc);
7349     uint32_t ext_phy_config;
7350 
7351     /* mark the failure */
7352     ext_phy_config =
7353         SHMEM_RD(sc, dev_info.port_hw_config[port].external_phy_config);
7354 
7355     ext_phy_config &= ~PORT_HW_CFG_XGXS_EXT_PHY_TYPE_MASK;
7356     ext_phy_config |= PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE;
7357     SHMEM_WR(sc, dev_info.port_hw_config[port].external_phy_config,
7358              ext_phy_config);
7359 
7360     /* log the failure */
7361     BLOGW(sc, "Fan Failure has caused the driver to shutdown "
7362               "the card to prevent permanent damage. "
7363               "Please contact OEM Support for assistance\n");
7364 
7365     /* XXX */
7366 #if 1
7367     bxe_panic(sc, ("Schedule task to handle fan failure\n"));
7368 #else
7369     /*
7370      * Schedule device reset (unload)
7371      * This is due to some boards consuming sufficient power when driver is
7372      * up to overheat if fan fails.
7373      */
7374     bxe_set_bit(BXE_SP_RTNL_FAN_FAILURE, &sc->sp_rtnl_state);
7375     schedule_delayed_work(&sc->sp_rtnl_task, 0);
7376 #endif
7377 }
7378 
7379 /* this function is called upon a link interrupt */
7380 static void
7381 bxe_link_attn(struct bxe_softc *sc)
7382 {
7383     uint32_t pause_enabled = 0;
7384     struct host_port_stats *pstats;
7385     int cmng_fns;
7386 
7387     /* Make sure that we are synced with the current statistics */
7388     bxe_stats_handle(sc, STATS_EVENT_STOP);
7389 
7390     elink_link_update(&sc->link_params, &sc->link_vars);
7391 
7392     if (sc->link_vars.link_up) {
7393 
7394         /* dropless flow control */
7395         if (!CHIP_IS_E1(sc) && sc->dropless_fc) {
7396             pause_enabled = 0;
7397 
7398             if (sc->link_vars.flow_ctrl & ELINK_FLOW_CTRL_TX) {
7399                 pause_enabled = 1;
7400             }
7401 
7402             REG_WR(sc,
7403                    (BAR_USTRORM_INTMEM +
7404                     USTORM_ETH_PAUSE_ENABLED_OFFSET(SC_PORT(sc))),
7405                    pause_enabled);
7406         }
7407 
7408         if (sc->link_vars.mac_type != ELINK_MAC_TYPE_EMAC) {
7409             pstats = BXE_SP(sc, port_stats);
7410             /* reset old mac stats */
7411             memset(&(pstats->mac_stx[0]), 0, sizeof(struct mac_stx));
7412         }
7413 
7414         if (sc->state == BXE_STATE_OPEN) {
7415             bxe_stats_handle(sc, STATS_EVENT_LINK_UP);
7416         }
7417     }
7418 
7419     if (sc->link_vars.link_up && sc->link_vars.line_speed) {
7420         cmng_fns = bxe_get_cmng_fns_mode(sc);
7421 
7422         if (cmng_fns != CMNG_FNS_NONE) {
7423             bxe_cmng_fns_init(sc, FALSE, cmng_fns);
7424             storm_memset_cmng(sc, &sc->cmng, SC_PORT(sc));
7425         } else {
7426             /* rate shaping and fairness are disabled */
7427             BLOGD(sc, DBG_LOAD, "single function mode without fairness\n");
7428         }
7429     }
7430 
7431     bxe_link_report_locked(sc);
7432 
7433     if (IS_MF(sc)) {
7434         ; // XXX bxe_link_sync_notify(sc);
7435     }
7436 }
7437 
7438 static void
7439 bxe_attn_int_asserted(struct bxe_softc *sc,
7440                       uint32_t         asserted)
7441 {
7442     int port = SC_PORT(sc);
7443     uint32_t aeu_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
7444                                MISC_REG_AEU_MASK_ATTN_FUNC_0;
7445     uint32_t nig_int_mask_addr = port ? NIG_REG_MASK_INTERRUPT_PORT1 :
7446                                         NIG_REG_MASK_INTERRUPT_PORT0;
7447     uint32_t aeu_mask;
7448     uint32_t nig_mask = 0;
7449     uint32_t reg_addr;
7450     uint32_t igu_acked;
7451     uint32_t cnt;
7452 
7453     if (sc->attn_state & asserted) {
7454         BLOGE(sc, "IGU ERROR attn=0x%08x\n", asserted);
7455     }
7456 
7457     bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
7458 
7459     aeu_mask = REG_RD(sc, aeu_addr);
7460 
7461     BLOGD(sc, DBG_INTR, "aeu_mask 0x%08x newly asserted 0x%08x\n",
7462           aeu_mask, asserted);
7463 
7464     aeu_mask &= ~(asserted & 0x3ff);
7465 
7466     BLOGD(sc, DBG_INTR, "new mask 0x%08x\n", aeu_mask);
7467 
7468     REG_WR(sc, aeu_addr, aeu_mask);
7469 
7470     bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
7471 
7472     BLOGD(sc, DBG_INTR, "attn_state 0x%08x\n", sc->attn_state);
7473     sc->attn_state |= asserted;
7474     BLOGD(sc, DBG_INTR, "new state 0x%08x\n", sc->attn_state);
7475 
7476     if (asserted & ATTN_HARD_WIRED_MASK) {
7477         if (asserted & ATTN_NIG_FOR_FUNC) {
7478 
7479 	    bxe_acquire_phy_lock(sc);
7480             /* save nig interrupt mask */
7481             nig_mask = REG_RD(sc, nig_int_mask_addr);
7482 
7483             /* If nig_mask is not set, no need to call the update function */
7484             if (nig_mask) {
7485                 REG_WR(sc, nig_int_mask_addr, 0);
7486 
7487                 bxe_link_attn(sc);
7488             }
7489 
7490             /* handle unicore attn? */
7491         }
7492 
7493         if (asserted & ATTN_SW_TIMER_4_FUNC) {
7494             BLOGD(sc, DBG_INTR, "ATTN_SW_TIMER_4_FUNC!\n");
7495         }
7496 
7497         if (asserted & GPIO_2_FUNC) {
7498             BLOGD(sc, DBG_INTR, "GPIO_2_FUNC!\n");
7499         }
7500 
7501         if (asserted & GPIO_3_FUNC) {
7502             BLOGD(sc, DBG_INTR, "GPIO_3_FUNC!\n");
7503         }
7504 
7505         if (asserted & GPIO_4_FUNC) {
7506             BLOGD(sc, DBG_INTR, "GPIO_4_FUNC!\n");
7507         }
7508 
7509         if (port == 0) {
7510             if (asserted & ATTN_GENERAL_ATTN_1) {
7511                 BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_1!\n");
7512                 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_1, 0x0);
7513             }
7514             if (asserted & ATTN_GENERAL_ATTN_2) {
7515                 BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_2!\n");
7516                 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_2, 0x0);
7517             }
7518             if (asserted & ATTN_GENERAL_ATTN_3) {
7519                 BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_3!\n");
7520                 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_3, 0x0);
7521             }
7522         } else {
7523             if (asserted & ATTN_GENERAL_ATTN_4) {
7524                 BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_4!\n");
7525                 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_4, 0x0);
7526             }
7527             if (asserted & ATTN_GENERAL_ATTN_5) {
7528                 BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_5!\n");
7529                 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_5, 0x0);
7530             }
7531             if (asserted & ATTN_GENERAL_ATTN_6) {
7532                 BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_6!\n");
7533                 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_6, 0x0);
7534             }
7535         }
7536     } /* hardwired */
7537 
7538     if (sc->devinfo.int_block == INT_BLOCK_HC) {
7539         reg_addr = (HC_REG_COMMAND_REG + port*32 + COMMAND_REG_ATTN_BITS_SET);
7540     } else {
7541         reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_SET_UPPER*8);
7542     }
7543 
7544     BLOGD(sc, DBG_INTR, "about to mask 0x%08x at %s addr 0x%08x\n",
7545           asserted,
7546           (sc->devinfo.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr);
7547     REG_WR(sc, reg_addr, asserted);
7548 
7549     /* now set back the mask */
7550     if (asserted & ATTN_NIG_FOR_FUNC) {
7551         /*
7552          * Verify that IGU ack through BAR was written before restoring
7553          * NIG mask. This loop should exit after 2-3 iterations max.
7554          */
7555         if (sc->devinfo.int_block != INT_BLOCK_HC) {
7556             cnt = 0;
7557 
7558             do {
7559                 igu_acked = REG_RD(sc, IGU_REG_ATTENTION_ACK_BITS);
7560             } while (((igu_acked & ATTN_NIG_FOR_FUNC) == 0) &&
7561                      (++cnt < MAX_IGU_ATTN_ACK_TO));
7562 
7563             if (!igu_acked) {
7564                 BLOGE(sc, "Failed to verify IGU ack on time\n");
7565             }
7566 
7567             mb();
7568         }
7569 
7570         REG_WR(sc, nig_int_mask_addr, nig_mask);
7571 
7572 	bxe_release_phy_lock(sc);
7573     }
7574 }
7575 
7576 static void
7577 bxe_print_next_block(struct bxe_softc *sc,
7578                      int              idx,
7579                      const char       *blk)
7580 {
7581     BLOGI(sc, "%s%s", idx ? ", " : "", blk);
7582 }
7583 
7584 static int
7585 bxe_check_blocks_with_parity0(struct bxe_softc *sc,
7586                               uint32_t         sig,
7587                               int              par_num,
7588                               uint8_t          print)
7589 {
7590     uint32_t cur_bit = 0;
7591     int i = 0;
7592 
7593     for (i = 0; sig; i++) {
7594         cur_bit = ((uint32_t)0x1 << i);
7595         if (sig & cur_bit) {
7596             switch (cur_bit) {
7597             case AEU_INPUTS_ATTN_BITS_BRB_PARITY_ERROR:
7598                 if (print)
7599                     bxe_print_next_block(sc, par_num++, "BRB");
7600                 break;
7601             case AEU_INPUTS_ATTN_BITS_PARSER_PARITY_ERROR:
7602                 if (print)
7603                     bxe_print_next_block(sc, par_num++, "PARSER");
7604                 break;
7605             case AEU_INPUTS_ATTN_BITS_TSDM_PARITY_ERROR:
7606                 if (print)
7607                     bxe_print_next_block(sc, par_num++, "TSDM");
7608                 break;
7609             case AEU_INPUTS_ATTN_BITS_SEARCHER_PARITY_ERROR:
7610                 if (print)
7611                     bxe_print_next_block(sc, par_num++, "SEARCHER");
7612                 break;
7613             case AEU_INPUTS_ATTN_BITS_TCM_PARITY_ERROR:
7614                 if (print)
7615                     bxe_print_next_block(sc, par_num++, "TCM");
7616                 break;
7617             case AEU_INPUTS_ATTN_BITS_TSEMI_PARITY_ERROR:
7618                 if (print)
7619                     bxe_print_next_block(sc, par_num++, "TSEMI");
7620                 break;
7621             case AEU_INPUTS_ATTN_BITS_PBCLIENT_PARITY_ERROR:
7622                 if (print)
7623                     bxe_print_next_block(sc, par_num++, "XPB");
7624                 break;
7625             }
7626 
7627             /* Clear the bit */
7628             sig &= ~cur_bit;
7629         }
7630     }
7631 
7632     return (par_num);
7633 }
7634 
7635 static int
7636 bxe_check_blocks_with_parity1(struct bxe_softc *sc,
7637                               uint32_t         sig,
7638                               int              par_num,
7639                               uint8_t          *global,
7640                               uint8_t          print)
7641 {
7642     int i = 0;
7643     uint32_t cur_bit = 0;
7644     for (i = 0; sig; i++) {
7645         cur_bit = ((uint32_t)0x1 << i);
7646         if (sig & cur_bit) {
7647             switch (cur_bit) {
7648             case AEU_INPUTS_ATTN_BITS_PBF_PARITY_ERROR:
7649                 if (print)
7650                     bxe_print_next_block(sc, par_num++, "PBF");
7651                 break;
7652             case AEU_INPUTS_ATTN_BITS_QM_PARITY_ERROR:
7653                 if (print)
7654                     bxe_print_next_block(sc, par_num++, "QM");
7655                 break;
7656             case AEU_INPUTS_ATTN_BITS_TIMERS_PARITY_ERROR:
7657                 if (print)
7658                     bxe_print_next_block(sc, par_num++, "TM");
7659                 break;
7660             case AEU_INPUTS_ATTN_BITS_XSDM_PARITY_ERROR:
7661                 if (print)
7662                     bxe_print_next_block(sc, par_num++, "XSDM");
7663                 break;
7664             case AEU_INPUTS_ATTN_BITS_XCM_PARITY_ERROR:
7665                 if (print)
7666                     bxe_print_next_block(sc, par_num++, "XCM");
7667                 break;
7668             case AEU_INPUTS_ATTN_BITS_XSEMI_PARITY_ERROR:
7669                 if (print)
7670                     bxe_print_next_block(sc, par_num++, "XSEMI");
7671                 break;
7672             case AEU_INPUTS_ATTN_BITS_DOORBELLQ_PARITY_ERROR:
7673                 if (print)
7674                     bxe_print_next_block(sc, par_num++, "DOORBELLQ");
7675                 break;
7676             case AEU_INPUTS_ATTN_BITS_NIG_PARITY_ERROR:
7677                 if (print)
7678                     bxe_print_next_block(sc, par_num++, "NIG");
7679                 break;
7680             case AEU_INPUTS_ATTN_BITS_VAUX_PCI_CORE_PARITY_ERROR:
7681                 if (print)
7682                     bxe_print_next_block(sc, par_num++, "VAUX PCI CORE");
7683                 *global = TRUE;
7684                 break;
7685             case AEU_INPUTS_ATTN_BITS_DEBUG_PARITY_ERROR:
7686                 if (print)
7687                     bxe_print_next_block(sc, par_num++, "DEBUG");
7688                 break;
7689             case AEU_INPUTS_ATTN_BITS_USDM_PARITY_ERROR:
7690                 if (print)
7691                     bxe_print_next_block(sc, par_num++, "USDM");
7692                 break;
7693             case AEU_INPUTS_ATTN_BITS_UCM_PARITY_ERROR:
7694                 if (print)
7695                     bxe_print_next_block(sc, par_num++, "UCM");
7696                 break;
7697             case AEU_INPUTS_ATTN_BITS_USEMI_PARITY_ERROR:
7698                 if (print)
7699                     bxe_print_next_block(sc, par_num++, "USEMI");
7700                 break;
7701             case AEU_INPUTS_ATTN_BITS_UPB_PARITY_ERROR:
7702                 if (print)
7703                     bxe_print_next_block(sc, par_num++, "UPB");
7704                 break;
7705             case AEU_INPUTS_ATTN_BITS_CSDM_PARITY_ERROR:
7706                 if (print)
7707                     bxe_print_next_block(sc, par_num++, "CSDM");
7708                 break;
7709             case AEU_INPUTS_ATTN_BITS_CCM_PARITY_ERROR:
7710                 if (print)
7711                     bxe_print_next_block(sc, par_num++, "CCM");
7712                 break;
7713             }
7714 
7715             /* Clear the bit */
7716             sig &= ~cur_bit;
7717         }
7718     }
7719 
7720     return (par_num);
7721 }
7722 
7723 static int
7724 bxe_check_blocks_with_parity2(struct bxe_softc *sc,
7725                               uint32_t         sig,
7726                               int              par_num,
7727                               uint8_t          print)
7728 {
7729     uint32_t cur_bit = 0;
7730     int i = 0;
7731 
7732     for (i = 0; sig; i++) {
7733         cur_bit = ((uint32_t)0x1 << i);
7734         if (sig & cur_bit) {
7735             switch (cur_bit) {
7736             case AEU_INPUTS_ATTN_BITS_CSEMI_PARITY_ERROR:
7737                 if (print)
7738                     bxe_print_next_block(sc, par_num++, "CSEMI");
7739                 break;
7740             case AEU_INPUTS_ATTN_BITS_PXP_PARITY_ERROR:
7741                 if (print)
7742                     bxe_print_next_block(sc, par_num++, "PXP");
7743                 break;
7744             case AEU_IN_ATTN_BITS_PXPPCICLOCKCLIENT_PARITY_ERROR:
7745                 if (print)
7746                     bxe_print_next_block(sc, par_num++, "PXPPCICLOCKCLIENT");
7747                 break;
7748             case AEU_INPUTS_ATTN_BITS_CFC_PARITY_ERROR:
7749                 if (print)
7750                     bxe_print_next_block(sc, par_num++, "CFC");
7751                 break;
7752             case AEU_INPUTS_ATTN_BITS_CDU_PARITY_ERROR:
7753                 if (print)
7754                     bxe_print_next_block(sc, par_num++, "CDU");
7755                 break;
7756             case AEU_INPUTS_ATTN_BITS_DMAE_PARITY_ERROR:
7757                 if (print)
7758                     bxe_print_next_block(sc, par_num++, "DMAE");
7759                 break;
7760             case AEU_INPUTS_ATTN_BITS_IGU_PARITY_ERROR:
7761                 if (print)
7762                     bxe_print_next_block(sc, par_num++, "IGU");
7763                 break;
7764             case AEU_INPUTS_ATTN_BITS_MISC_PARITY_ERROR:
7765                 if (print)
7766                     bxe_print_next_block(sc, par_num++, "MISC");
7767                 break;
7768             }
7769 
7770             /* Clear the bit */
7771             sig &= ~cur_bit;
7772         }
7773     }
7774 
7775     return (par_num);
7776 }
7777 
7778 static int
7779 bxe_check_blocks_with_parity3(struct bxe_softc *sc,
7780                               uint32_t         sig,
7781                               int              par_num,
7782                               uint8_t          *global,
7783                               uint8_t          print)
7784 {
7785     uint32_t cur_bit = 0;
7786     int i = 0;
7787 
7788     for (i = 0; sig; i++) {
7789         cur_bit = ((uint32_t)0x1 << i);
7790         if (sig & cur_bit) {
7791             switch (cur_bit) {
7792             case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_ROM_PARITY:
7793                 if (print)
7794                     bxe_print_next_block(sc, par_num++, "MCP ROM");
7795                 *global = TRUE;
7796                 break;
7797             case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_RX_PARITY:
7798                 if (print)
7799                     bxe_print_next_block(sc, par_num++,
7800                               "MCP UMP RX");
7801                 *global = TRUE;
7802                 break;
7803             case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_TX_PARITY:
7804                 if (print)
7805                     bxe_print_next_block(sc, par_num++,
7806                               "MCP UMP TX");
7807                 *global = TRUE;
7808                 break;
7809             case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY:
7810                 if (print)
7811                     bxe_print_next_block(sc, par_num++,
7812                               "MCP SCPAD");
7813                 *global = TRUE;
7814                 break;
7815             }
7816 
7817             /* Clear the bit */
7818             sig &= ~cur_bit;
7819         }
7820     }
7821 
7822     return (par_num);
7823 }
7824 
7825 static int
7826 bxe_check_blocks_with_parity4(struct bxe_softc *sc,
7827                               uint32_t         sig,
7828                               int              par_num,
7829                               uint8_t          print)
7830 {
7831     uint32_t cur_bit = 0;
7832     int i = 0;
7833 
7834     for (i = 0; sig; i++) {
7835         cur_bit = ((uint32_t)0x1 << i);
7836         if (sig & cur_bit) {
7837             switch (cur_bit) {
7838             case AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR:
7839                 if (print)
7840                     bxe_print_next_block(sc, par_num++, "PGLUE_B");
7841                 break;
7842             case AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR:
7843                 if (print)
7844                     bxe_print_next_block(sc, par_num++, "ATC");
7845                 break;
7846             }
7847 
7848             /* Clear the bit */
7849             sig &= ~cur_bit;
7850         }
7851     }
7852 
7853     return (par_num);
7854 }
7855 
7856 static uint8_t
7857 bxe_parity_attn(struct bxe_softc *sc,
7858                 uint8_t          *global,
7859                 uint8_t          print,
7860                 uint32_t         *sig)
7861 {
7862     int par_num = 0;
7863 
7864     if ((sig[0] & HW_PRTY_ASSERT_SET_0) ||
7865         (sig[1] & HW_PRTY_ASSERT_SET_1) ||
7866         (sig[2] & HW_PRTY_ASSERT_SET_2) ||
7867         (sig[3] & HW_PRTY_ASSERT_SET_3) ||
7868         (sig[4] & HW_PRTY_ASSERT_SET_4)) {
7869         BLOGE(sc, "Parity error: HW block parity attention:\n"
7870                   "[0]:0x%08x [1]:0x%08x [2]:0x%08x [3]:0x%08x [4]:0x%08x\n",
7871               (uint32_t)(sig[0] & HW_PRTY_ASSERT_SET_0),
7872               (uint32_t)(sig[1] & HW_PRTY_ASSERT_SET_1),
7873               (uint32_t)(sig[2] & HW_PRTY_ASSERT_SET_2),
7874               (uint32_t)(sig[3] & HW_PRTY_ASSERT_SET_3),
7875               (uint32_t)(sig[4] & HW_PRTY_ASSERT_SET_4));
7876 
7877         if (print)
7878             BLOGI(sc, "Parity errors detected in blocks: ");
7879 
7880         par_num =
7881             bxe_check_blocks_with_parity0(sc, sig[0] &
7882                                           HW_PRTY_ASSERT_SET_0,
7883                                           par_num, print);
7884         par_num =
7885             bxe_check_blocks_with_parity1(sc, sig[1] &
7886                                           HW_PRTY_ASSERT_SET_1,
7887                                           par_num, global, print);
7888         par_num =
7889             bxe_check_blocks_with_parity2(sc, sig[2] &
7890                                           HW_PRTY_ASSERT_SET_2,
7891                                           par_num, print);
7892         par_num =
7893             bxe_check_blocks_with_parity3(sc, sig[3] &
7894                                           HW_PRTY_ASSERT_SET_3,
7895                                           par_num, global, print);
7896         par_num =
7897             bxe_check_blocks_with_parity4(sc, sig[4] &
7898                                           HW_PRTY_ASSERT_SET_4,
7899                                           par_num, print);
7900 
7901         if (print)
7902             BLOGI(sc, "\n");
7903 
7904         return (TRUE);
7905     }
7906 
7907     return (FALSE);
7908 }
7909 
7910 static uint8_t
7911 bxe_chk_parity_attn(struct bxe_softc *sc,
7912                     uint8_t          *global,
7913                     uint8_t          print)
7914 {
7915     struct attn_route attn = { {0} };
7916     int port = SC_PORT(sc);
7917 
7918     attn.sig[0] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + port*4);
7919     attn.sig[1] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 + port*4);
7920     attn.sig[2] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 + port*4);
7921     attn.sig[3] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 + port*4);
7922 
7923     if (!CHIP_IS_E1x(sc))
7924         attn.sig[4] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 + port*4);
7925 
7926     return (bxe_parity_attn(sc, global, print, attn.sig));
7927 }
7928 
7929 static void
7930 bxe_attn_int_deasserted4(struct bxe_softc *sc,
7931                          uint32_t         attn)
7932 {
7933     uint32_t val;
7934 
7935     if (attn & AEU_INPUTS_ATTN_BITS_PGLUE_HW_INTERRUPT) {
7936         val = REG_RD(sc, PGLUE_B_REG_PGLUE_B_INT_STS_CLR);
7937         BLOGE(sc, "PGLUE hw attention 0x%08x\n", val);
7938         if (val & PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR)
7939             BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR\n");
7940         if (val & PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR)
7941             BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR\n");
7942         if (val & PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN)
7943             BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN\n");
7944         if (val & PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN)
7945             BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN\n");
7946         if (val & PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN)
7947             BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN\n");
7948         if (val & PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN)
7949             BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN\n");
7950         if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN)
7951             BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN\n");
7952         if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN)
7953             BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN\n");
7954         if (val & PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW)
7955             BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW\n");
7956     }
7957 
7958     if (attn & AEU_INPUTS_ATTN_BITS_ATC_HW_INTERRUPT) {
7959         val = REG_RD(sc, ATC_REG_ATC_INT_STS_CLR);
7960         BLOGE(sc, "ATC hw attention 0x%08x\n", val);
7961         if (val & ATC_ATC_INT_STS_REG_ADDRESS_ERROR)
7962             BLOGE(sc, "ATC_ATC_INT_STS_REG_ADDRESS_ERROR\n");
7963         if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND)
7964             BLOGE(sc, "ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND\n");
7965         if (val & ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS)
7966             BLOGE(sc, "ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS\n");
7967         if (val & ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT)
7968             BLOGE(sc, "ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT\n");
7969         if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR)
7970             BLOGE(sc, "ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR\n");
7971         if (val & ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU)
7972             BLOGE(sc, "ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU\n");
7973     }
7974 
7975     if (attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR |
7976                 AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)) {
7977         BLOGE(sc, "FATAL parity attention set4 0x%08x\n",
7978               (uint32_t)(attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR |
7979                                  AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)));
7980     }
7981 }
7982 
7983 static void
7984 bxe_e1h_disable(struct bxe_softc *sc)
7985 {
7986     int port = SC_PORT(sc);
7987 
7988     bxe_tx_disable(sc);
7989 
7990     REG_WR(sc, NIG_REG_LLH0_FUNC_EN + port*8, 0);
7991 }
7992 
7993 static void
7994 bxe_e1h_enable(struct bxe_softc *sc)
7995 {
7996     int port = SC_PORT(sc);
7997 
7998     REG_WR(sc, NIG_REG_LLH0_FUNC_EN + port*8, 1);
7999 
8000     // XXX bxe_tx_enable(sc);
8001 }
8002 
8003 /*
8004  * called due to MCP event (on pmf):
8005  *   reread new bandwidth configuration
8006  *   configure FW
8007  *   notify others function about the change
8008  */
8009 static void
8010 bxe_config_mf_bw(struct bxe_softc *sc)
8011 {
8012     if (sc->link_vars.link_up) {
8013         bxe_cmng_fns_init(sc, TRUE, CMNG_FNS_MINMAX);
8014         // XXX bxe_link_sync_notify(sc);
8015     }
8016 
8017     storm_memset_cmng(sc, &sc->cmng, SC_PORT(sc));
8018 }
8019 
8020 static void
8021 bxe_set_mf_bw(struct bxe_softc *sc)
8022 {
8023     bxe_config_mf_bw(sc);
8024     bxe_fw_command(sc, DRV_MSG_CODE_SET_MF_BW_ACK, 0);
8025 }
8026 
8027 static void
8028 bxe_handle_eee_event(struct bxe_softc *sc)
8029 {
8030     BLOGD(sc, DBG_INTR, "EEE - LLDP event\n");
8031     bxe_fw_command(sc, DRV_MSG_CODE_EEE_RESULTS_ACK, 0);
8032 }
8033 
8034 #define DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED 3
8035 
8036 static void
8037 bxe_drv_info_ether_stat(struct bxe_softc *sc)
8038 {
8039     struct eth_stats_info *ether_stat =
8040         &sc->sp->drv_info_to_mcp.ether_stat;
8041 
8042     strlcpy(ether_stat->version, BXE_DRIVER_VERSION,
8043             ETH_STAT_INFO_VERSION_LEN);
8044 
8045     /* XXX (+ MAC_PAD) taken from other driver... verify this is right */
8046     sc->sp_objs[0].mac_obj.get_n_elements(sc, &sc->sp_objs[0].mac_obj,
8047                                           DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED,
8048                                           ether_stat->mac_local + MAC_PAD,
8049                                           MAC_PAD, ETH_ALEN);
8050 
8051     ether_stat->mtu_size = sc->mtu;
8052 
8053     ether_stat->feature_flags |= FEATURE_ETH_CHKSUM_OFFLOAD_MASK;
8054     if (if_getcapenable(sc->ifp) & (IFCAP_TSO4 | IFCAP_TSO6)) {
8055         ether_stat->feature_flags |= FEATURE_ETH_LSO_MASK;
8056     }
8057 
8058     // XXX ether_stat->feature_flags |= ???;
8059 
8060     ether_stat->promiscuous_mode = 0; // (flags & PROMISC) ? 1 : 0;
8061 
8062     ether_stat->txq_size = sc->tx_ring_size;
8063     ether_stat->rxq_size = sc->rx_ring_size;
8064 }
8065 
8066 static void
8067 bxe_handle_drv_info_req(struct bxe_softc *sc)
8068 {
8069     enum drv_info_opcode op_code;
8070     uint32_t drv_info_ctl = SHMEM2_RD(sc, drv_info_control);
8071 
8072     /* if drv_info version supported by MFW doesn't match - send NACK */
8073     if ((drv_info_ctl & DRV_INFO_CONTROL_VER_MASK) != DRV_INFO_CUR_VER) {
8074         bxe_fw_command(sc, DRV_MSG_CODE_DRV_INFO_NACK, 0);
8075         return;
8076     }
8077 
8078     op_code = ((drv_info_ctl & DRV_INFO_CONTROL_OP_CODE_MASK) >>
8079                DRV_INFO_CONTROL_OP_CODE_SHIFT);
8080 
8081     memset(&sc->sp->drv_info_to_mcp, 0, sizeof(union drv_info_to_mcp));
8082 
8083     switch (op_code) {
8084     case ETH_STATS_OPCODE:
8085         bxe_drv_info_ether_stat(sc);
8086         break;
8087     case FCOE_STATS_OPCODE:
8088     case ISCSI_STATS_OPCODE:
8089     default:
8090         /* if op code isn't supported - send NACK */
8091         bxe_fw_command(sc, DRV_MSG_CODE_DRV_INFO_NACK, 0);
8092         return;
8093     }
8094 
8095     /*
8096      * If we got drv_info attn from MFW then these fields are defined in
8097      * shmem2 for sure
8098      */
8099     SHMEM2_WR(sc, drv_info_host_addr_lo,
8100               U64_LO(BXE_SP_MAPPING(sc, drv_info_to_mcp)));
8101     SHMEM2_WR(sc, drv_info_host_addr_hi,
8102               U64_HI(BXE_SP_MAPPING(sc, drv_info_to_mcp)));
8103 
8104     bxe_fw_command(sc, DRV_MSG_CODE_DRV_INFO_ACK, 0);
8105 }
8106 
8107 static void
8108 bxe_dcc_event(struct bxe_softc *sc,
8109               uint32_t         dcc_event)
8110 {
8111     BLOGD(sc, DBG_INTR, "dcc_event 0x%08x\n", dcc_event);
8112 
8113     if (dcc_event & DRV_STATUS_DCC_DISABLE_ENABLE_PF) {
8114         /*
8115          * This is the only place besides the function initialization
8116          * where the sc->flags can change so it is done without any
8117          * locks
8118          */
8119         if (sc->devinfo.mf_info.mf_config[SC_VN(sc)] & FUNC_MF_CFG_FUNC_DISABLED) {
8120             BLOGD(sc, DBG_INTR, "mf_cfg function disabled\n");
8121             sc->flags |= BXE_MF_FUNC_DIS;
8122             bxe_e1h_disable(sc);
8123         } else {
8124             BLOGD(sc, DBG_INTR, "mf_cfg function enabled\n");
8125             sc->flags &= ~BXE_MF_FUNC_DIS;
8126             bxe_e1h_enable(sc);
8127         }
8128         dcc_event &= ~DRV_STATUS_DCC_DISABLE_ENABLE_PF;
8129     }
8130 
8131     if (dcc_event & DRV_STATUS_DCC_BANDWIDTH_ALLOCATION) {
8132         bxe_config_mf_bw(sc);
8133         dcc_event &= ~DRV_STATUS_DCC_BANDWIDTH_ALLOCATION;
8134     }
8135 
8136     /* Report results to MCP */
8137     if (dcc_event)
8138         bxe_fw_command(sc, DRV_MSG_CODE_DCC_FAILURE, 0);
8139     else
8140         bxe_fw_command(sc, DRV_MSG_CODE_DCC_OK, 0);
8141 }
8142 
8143 static void
8144 bxe_pmf_update(struct bxe_softc *sc)
8145 {
8146     int port = SC_PORT(sc);
8147     uint32_t val;
8148 
8149     sc->port.pmf = 1;
8150     BLOGD(sc, DBG_INTR, "pmf %d\n", sc->port.pmf);
8151 
8152     /*
8153      * We need the mb() to ensure the ordering between the writing to
8154      * sc->port.pmf here and reading it from the bxe_periodic_task().
8155      */
8156     mb();
8157 
8158     /* queue a periodic task */
8159     // XXX schedule task...
8160 
8161     // XXX bxe_dcbx_pmf_update(sc);
8162 
8163     /* enable nig attention */
8164     val = (0xff0f | (1 << (SC_VN(sc) + 4)));
8165     if (sc->devinfo.int_block == INT_BLOCK_HC) {
8166         REG_WR(sc, HC_REG_TRAILING_EDGE_0 + port*8, val);
8167         REG_WR(sc, HC_REG_LEADING_EDGE_0 + port*8, val);
8168     } else if (!CHIP_IS_E1x(sc)) {
8169         REG_WR(sc, IGU_REG_TRAILING_EDGE_LATCH, val);
8170         REG_WR(sc, IGU_REG_LEADING_EDGE_LATCH, val);
8171     }
8172 
8173     bxe_stats_handle(sc, STATS_EVENT_PMF);
8174 }
8175 
8176 static int
8177 bxe_mc_assert(struct bxe_softc *sc)
8178 {
8179     char last_idx;
8180     int i, rc = 0;
8181     uint32_t row0, row1, row2, row3;
8182 
8183     /* XSTORM */
8184     last_idx = REG_RD8(sc, BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_INDEX_OFFSET);
8185     if (last_idx)
8186         BLOGE(sc, "XSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
8187 
8188     /* print the asserts */
8189     for (i = 0; i < STORM_ASSERT_ARRAY_SIZE; i++) {
8190 
8191         row0 = REG_RD(sc, BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_OFFSET(i));
8192         row1 = REG_RD(sc, BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_OFFSET(i) + 4);
8193         row2 = REG_RD(sc, BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_OFFSET(i) + 8);
8194         row3 = REG_RD(sc, BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_OFFSET(i) + 12);
8195 
8196         if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
8197             BLOGE(sc, "XSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
8198                   i, row3, row2, row1, row0);
8199             rc++;
8200         } else {
8201             break;
8202         }
8203     }
8204 
8205     /* TSTORM */
8206     last_idx = REG_RD8(sc, BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_INDEX_OFFSET);
8207     if (last_idx) {
8208         BLOGE(sc, "TSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
8209     }
8210 
8211     /* print the asserts */
8212     for (i = 0; i < STORM_ASSERT_ARRAY_SIZE; i++) {
8213 
8214         row0 = REG_RD(sc, BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_OFFSET(i));
8215         row1 = REG_RD(sc, BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_OFFSET(i) + 4);
8216         row2 = REG_RD(sc, BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_OFFSET(i) + 8);
8217         row3 = REG_RD(sc, BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_OFFSET(i) + 12);
8218 
8219         if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
8220             BLOGE(sc, "TSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
8221                   i, row3, row2, row1, row0);
8222             rc++;
8223         } else {
8224             break;
8225         }
8226     }
8227 
8228     /* CSTORM */
8229     last_idx = REG_RD8(sc, BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_INDEX_OFFSET);
8230     if (last_idx) {
8231         BLOGE(sc, "CSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
8232     }
8233 
8234     /* print the asserts */
8235     for (i = 0; i < STORM_ASSERT_ARRAY_SIZE; i++) {
8236 
8237         row0 = REG_RD(sc, BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_OFFSET(i));
8238         row1 = REG_RD(sc, BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_OFFSET(i) + 4);
8239         row2 = REG_RD(sc, BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_OFFSET(i) + 8);
8240         row3 = REG_RD(sc, BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_OFFSET(i) + 12);
8241 
8242         if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
8243             BLOGE(sc, "CSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
8244                   i, row3, row2, row1, row0);
8245             rc++;
8246         } else {
8247             break;
8248         }
8249     }
8250 
8251     /* USTORM */
8252     last_idx = REG_RD8(sc, BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_INDEX_OFFSET);
8253     if (last_idx) {
8254         BLOGE(sc, "USTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
8255     }
8256 
8257     /* print the asserts */
8258     for (i = 0; i < STORM_ASSERT_ARRAY_SIZE; i++) {
8259 
8260         row0 = REG_RD(sc, BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_OFFSET(i));
8261         row1 = REG_RD(sc, BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_OFFSET(i) + 4);
8262         row2 = REG_RD(sc, BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_OFFSET(i) + 8);
8263         row3 = REG_RD(sc, BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_OFFSET(i) + 12);
8264 
8265         if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
8266             BLOGE(sc, "USTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
8267                   i, row3, row2, row1, row0);
8268             rc++;
8269         } else {
8270             break;
8271         }
8272     }
8273 
8274     return (rc);
8275 }
8276 
8277 static void
8278 bxe_attn_int_deasserted3(struct bxe_softc *sc,
8279                          uint32_t         attn)
8280 {
8281     int func = SC_FUNC(sc);
8282     uint32_t val;
8283 
8284     if (attn & EVEREST_GEN_ATTN_IN_USE_MASK) {
8285 
8286         if (attn & BXE_PMF_LINK_ASSERT(sc)) {
8287 
8288             REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
8289             bxe_read_mf_cfg(sc);
8290             sc->devinfo.mf_info.mf_config[SC_VN(sc)] =
8291                 MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].config);
8292             val = SHMEM_RD(sc, func_mb[SC_FW_MB_IDX(sc)].drv_status);
8293 
8294             if (val & DRV_STATUS_DCC_EVENT_MASK)
8295                 bxe_dcc_event(sc, (val & DRV_STATUS_DCC_EVENT_MASK));
8296 
8297             if (val & DRV_STATUS_SET_MF_BW)
8298                 bxe_set_mf_bw(sc);
8299 
8300             if (val & DRV_STATUS_DRV_INFO_REQ)
8301                 bxe_handle_drv_info_req(sc);
8302 
8303 #if 0
8304             if (val & DRV_STATUS_VF_DISABLED)
8305                 bxe_vf_handle_flr_event(sc);
8306 #endif
8307 
8308             if ((sc->port.pmf == 0) && (val & DRV_STATUS_PMF))
8309                 bxe_pmf_update(sc);
8310 
8311 #if 0
8312             if (sc->port.pmf &&
8313                 (val & DRV_STATUS_DCBX_NEGOTIATION_RESULTS) &&
8314                 (sc->dcbx_enabled > 0))
8315                 /* start dcbx state machine */
8316                 bxe_dcbx_set_params(sc, BXE_DCBX_STATE_NEG_RECEIVED);
8317 #endif
8318 
8319 #if 0
8320             if (val & DRV_STATUS_AFEX_EVENT_MASK)
8321                 bxe_handle_afex_cmd(sc, val & DRV_STATUS_AFEX_EVENT_MASK);
8322 #endif
8323 
8324             if (val & DRV_STATUS_EEE_NEGOTIATION_RESULTS)
8325                 bxe_handle_eee_event(sc);
8326 
8327             if (sc->link_vars.periodic_flags &
8328                 ELINK_PERIODIC_FLAGS_LINK_EVENT) {
8329                 /* sync with link */
8330 		bxe_acquire_phy_lock(sc);
8331                 sc->link_vars.periodic_flags &=
8332                     ~ELINK_PERIODIC_FLAGS_LINK_EVENT;
8333 		bxe_release_phy_lock(sc);
8334                 if (IS_MF(sc))
8335                     ; // XXX bxe_link_sync_notify(sc);
8336                 bxe_link_report(sc);
8337             }
8338 
8339             /*
8340              * Always call it here: bxe_link_report() will
8341              * prevent the link indication duplication.
8342              */
8343             bxe_link_status_update(sc);
8344 
8345         } else if (attn & BXE_MC_ASSERT_BITS) {
8346 
8347             BLOGE(sc, "MC assert!\n");
8348             bxe_mc_assert(sc);
8349             REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_10, 0);
8350             REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_9, 0);
8351             REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_8, 0);
8352             REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_7, 0);
8353             bxe_panic(sc, ("MC assert!\n"));
8354 
8355         } else if (attn & BXE_MCP_ASSERT) {
8356 
8357             BLOGE(sc, "MCP assert!\n");
8358             REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_11, 0);
8359             // XXX bxe_fw_dump(sc);
8360 
8361         } else {
8362             BLOGE(sc, "Unknown HW assert! (attn 0x%08x)\n", attn);
8363         }
8364     }
8365 
8366     if (attn & EVEREST_LATCHED_ATTN_IN_USE_MASK) {
8367         BLOGE(sc, "LATCHED attention 0x%08x (masked)\n", attn);
8368         if (attn & BXE_GRC_TIMEOUT) {
8369             val = CHIP_IS_E1(sc) ? 0 : REG_RD(sc, MISC_REG_GRC_TIMEOUT_ATTN);
8370             BLOGE(sc, "GRC time-out 0x%08x\n", val);
8371         }
8372         if (attn & BXE_GRC_RSV) {
8373             val = CHIP_IS_E1(sc) ? 0 : REG_RD(sc, MISC_REG_GRC_RSV_ATTN);
8374             BLOGE(sc, "GRC reserved 0x%08x\n", val);
8375         }
8376         REG_WR(sc, MISC_REG_AEU_CLR_LATCH_SIGNAL, 0x7ff);
8377     }
8378 }
8379 
8380 static void
8381 bxe_attn_int_deasserted2(struct bxe_softc *sc,
8382                          uint32_t         attn)
8383 {
8384     int port = SC_PORT(sc);
8385     int reg_offset;
8386     uint32_t val0, mask0, val1, mask1;
8387     uint32_t val;
8388 
8389     if (attn & AEU_INPUTS_ATTN_BITS_CFC_HW_INTERRUPT) {
8390         val = REG_RD(sc, CFC_REG_CFC_INT_STS_CLR);
8391         BLOGE(sc, "CFC hw attention 0x%08x\n", val);
8392         /* CFC error attention */
8393         if (val & 0x2) {
8394             BLOGE(sc, "FATAL error from CFC\n");
8395         }
8396     }
8397 
8398     if (attn & AEU_INPUTS_ATTN_BITS_PXP_HW_INTERRUPT) {
8399         val = REG_RD(sc, PXP_REG_PXP_INT_STS_CLR_0);
8400         BLOGE(sc, "PXP hw attention-0 0x%08x\n", val);
8401         /* RQ_USDMDP_FIFO_OVERFLOW */
8402         if (val & 0x18000) {
8403             BLOGE(sc, "FATAL error from PXP\n");
8404         }
8405 
8406         if (!CHIP_IS_E1x(sc)) {
8407             val = REG_RD(sc, PXP_REG_PXP_INT_STS_CLR_1);
8408             BLOGE(sc, "PXP hw attention-1 0x%08x\n", val);
8409         }
8410     }
8411 
8412 #define PXP2_EOP_ERROR_BIT  PXP2_PXP2_INT_STS_CLR_0_REG_WR_PGLUE_EOP_ERROR
8413 #define AEU_PXP2_HW_INT_BIT AEU_INPUTS_ATTN_BITS_PXPPCICLOCKCLIENT_HW_INTERRUPT
8414 
8415     if (attn & AEU_PXP2_HW_INT_BIT) {
8416         /*  CQ47854 workaround do not panic on
8417          *  PXP2_PXP2_INT_STS_0_REG_WR_PGLUE_EOP_ERROR
8418          */
8419         if (!CHIP_IS_E1x(sc)) {
8420             mask0 = REG_RD(sc, PXP2_REG_PXP2_INT_MASK_0);
8421             val1 = REG_RD(sc, PXP2_REG_PXP2_INT_STS_1);
8422             mask1 = REG_RD(sc, PXP2_REG_PXP2_INT_MASK_1);
8423             val0 = REG_RD(sc, PXP2_REG_PXP2_INT_STS_0);
8424             /*
8425              * If the olny PXP2_EOP_ERROR_BIT is set in
8426              * STS0 and STS1 - clear it
8427              *
8428              * probably we lose additional attentions between
8429              * STS0 and STS_CLR0, in this case user will not
8430              * be notified about them
8431              */
8432             if (val0 & mask0 & PXP2_EOP_ERROR_BIT &&
8433                 !(val1 & mask1))
8434                 val0 = REG_RD(sc, PXP2_REG_PXP2_INT_STS_CLR_0);
8435 
8436             /* print the register, since no one can restore it */
8437             BLOGE(sc, "PXP2_REG_PXP2_INT_STS_CLR_0 0x%08x\n", val0);
8438 
8439             /*
8440              * if PXP2_PXP2_INT_STS_0_REG_WR_PGLUE_EOP_ERROR
8441              * then notify
8442              */
8443             if (val0 & PXP2_EOP_ERROR_BIT) {
8444                 BLOGE(sc, "PXP2_WR_PGLUE_EOP_ERROR\n");
8445 
8446                 /*
8447                  * if only PXP2_PXP2_INT_STS_0_REG_WR_PGLUE_EOP_ERROR is
8448                  * set then clear attention from PXP2 block without panic
8449                  */
8450                 if (((val0 & mask0) == PXP2_EOP_ERROR_BIT) &&
8451                     ((val1 & mask1) == 0))
8452                     attn &= ~AEU_PXP2_HW_INT_BIT;
8453             }
8454         }
8455     }
8456 
8457     if (attn & HW_INTERRUT_ASSERT_SET_2) {
8458         reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_2 :
8459                              MISC_REG_AEU_ENABLE1_FUNC_0_OUT_2);
8460 
8461         val = REG_RD(sc, reg_offset);
8462         val &= ~(attn & HW_INTERRUT_ASSERT_SET_2);
8463         REG_WR(sc, reg_offset, val);
8464 
8465         BLOGE(sc, "FATAL HW block attention set2 0x%x\n",
8466               (uint32_t)(attn & HW_INTERRUT_ASSERT_SET_2));
8467         bxe_panic(sc, ("HW block attention set2\n"));
8468     }
8469 }
8470 
8471 static void
8472 bxe_attn_int_deasserted1(struct bxe_softc *sc,
8473                          uint32_t         attn)
8474 {
8475     int port = SC_PORT(sc);
8476     int reg_offset;
8477     uint32_t val;
8478 
8479     if (attn & AEU_INPUTS_ATTN_BITS_DOORBELLQ_HW_INTERRUPT) {
8480         val = REG_RD(sc, DORQ_REG_DORQ_INT_STS_CLR);
8481         BLOGE(sc, "DB hw attention 0x%08x\n", val);
8482         /* DORQ discard attention */
8483         if (val & 0x2) {
8484             BLOGE(sc, "FATAL error from DORQ\n");
8485         }
8486     }
8487 
8488     if (attn & HW_INTERRUT_ASSERT_SET_1) {
8489         reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_1 :
8490                              MISC_REG_AEU_ENABLE1_FUNC_0_OUT_1);
8491 
8492         val = REG_RD(sc, reg_offset);
8493         val &= ~(attn & HW_INTERRUT_ASSERT_SET_1);
8494         REG_WR(sc, reg_offset, val);
8495 
8496         BLOGE(sc, "FATAL HW block attention set1 0x%08x\n",
8497               (uint32_t)(attn & HW_INTERRUT_ASSERT_SET_1));
8498         bxe_panic(sc, ("HW block attention set1\n"));
8499     }
8500 }
8501 
8502 static void
8503 bxe_attn_int_deasserted0(struct bxe_softc *sc,
8504                          uint32_t         attn)
8505 {
8506     int port = SC_PORT(sc);
8507     int reg_offset;
8508     uint32_t val;
8509 
8510     reg_offset = (port) ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
8511                           MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0;
8512 
8513     if (attn & AEU_INPUTS_ATTN_BITS_SPIO5) {
8514         val = REG_RD(sc, reg_offset);
8515         val &= ~AEU_INPUTS_ATTN_BITS_SPIO5;
8516         REG_WR(sc, reg_offset, val);
8517 
8518         BLOGW(sc, "SPIO5 hw attention\n");
8519 
8520         /* Fan failure attention */
8521         elink_hw_reset_phy(&sc->link_params);
8522         bxe_fan_failure(sc);
8523     }
8524 
8525     if ((attn & sc->link_vars.aeu_int_mask) && sc->port.pmf) {
8526 	bxe_acquire_phy_lock(sc);
8527         elink_handle_module_detect_int(&sc->link_params);
8528 	bxe_release_phy_lock(sc);
8529     }
8530 
8531     if (attn & HW_INTERRUT_ASSERT_SET_0) {
8532         val = REG_RD(sc, reg_offset);
8533         val &= ~(attn & HW_INTERRUT_ASSERT_SET_0);
8534         REG_WR(sc, reg_offset, val);
8535 
8536         bxe_panic(sc, ("FATAL HW block attention set0 0x%lx\n",
8537                        (attn & HW_INTERRUT_ASSERT_SET_0)));
8538     }
8539 }
8540 
8541 static void
8542 bxe_attn_int_deasserted(struct bxe_softc *sc,
8543                         uint32_t         deasserted)
8544 {
8545     struct attn_route attn;
8546     struct attn_route *group_mask;
8547     int port = SC_PORT(sc);
8548     int index;
8549     uint32_t reg_addr;
8550     uint32_t val;
8551     uint32_t aeu_mask;
8552     uint8_t global = FALSE;
8553 
8554     /*
8555      * Need to take HW lock because MCP or other port might also
8556      * try to handle this event.
8557      */
8558     bxe_acquire_alr(sc);
8559 
8560     if (bxe_chk_parity_attn(sc, &global, TRUE)) {
8561         /* XXX
8562          * In case of parity errors don't handle attentions so that
8563          * other function would "see" parity errors.
8564          */
8565         sc->recovery_state = BXE_RECOVERY_INIT;
8566         // XXX schedule a recovery task...
8567         /* disable HW interrupts */
8568         bxe_int_disable(sc);
8569         bxe_release_alr(sc);
8570         return;
8571     }
8572 
8573     attn.sig[0] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + port*4);
8574     attn.sig[1] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 + port*4);
8575     attn.sig[2] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 + port*4);
8576     attn.sig[3] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 + port*4);
8577     if (!CHIP_IS_E1x(sc)) {
8578         attn.sig[4] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 + port*4);
8579     } else {
8580         attn.sig[4] = 0;
8581     }
8582 
8583     BLOGD(sc, DBG_INTR, "attn: 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x\n",
8584           attn.sig[0], attn.sig[1], attn.sig[2], attn.sig[3], attn.sig[4]);
8585 
8586     for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) {
8587         if (deasserted & (1 << index)) {
8588             group_mask = &sc->attn_group[index];
8589 
8590             BLOGD(sc, DBG_INTR,
8591                   "group[%d]: 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x\n", index,
8592                   group_mask->sig[0], group_mask->sig[1],
8593                   group_mask->sig[2], group_mask->sig[3],
8594                   group_mask->sig[4]);
8595 
8596             bxe_attn_int_deasserted4(sc, attn.sig[4] & group_mask->sig[4]);
8597             bxe_attn_int_deasserted3(sc, attn.sig[3] & group_mask->sig[3]);
8598             bxe_attn_int_deasserted1(sc, attn.sig[1] & group_mask->sig[1]);
8599             bxe_attn_int_deasserted2(sc, attn.sig[2] & group_mask->sig[2]);
8600             bxe_attn_int_deasserted0(sc, attn.sig[0] & group_mask->sig[0]);
8601         }
8602     }
8603 
8604     bxe_release_alr(sc);
8605 
8606     if (sc->devinfo.int_block == INT_BLOCK_HC) {
8607         reg_addr = (HC_REG_COMMAND_REG + port*32 +
8608                     COMMAND_REG_ATTN_BITS_CLR);
8609     } else {
8610         reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_CLR_UPPER*8);
8611     }
8612 
8613     val = ~deasserted;
8614     BLOGD(sc, DBG_INTR,
8615           "about to mask 0x%08x at %s addr 0x%08x\n", val,
8616           (sc->devinfo.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr);
8617     REG_WR(sc, reg_addr, val);
8618 
8619     if (~sc->attn_state & deasserted) {
8620         BLOGE(sc, "IGU error\n");
8621     }
8622 
8623     reg_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
8624                       MISC_REG_AEU_MASK_ATTN_FUNC_0;
8625 
8626     bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
8627 
8628     aeu_mask = REG_RD(sc, reg_addr);
8629 
8630     BLOGD(sc, DBG_INTR, "aeu_mask 0x%08x newly deasserted 0x%08x\n",
8631           aeu_mask, deasserted);
8632     aeu_mask |= (deasserted & 0x3ff);
8633     BLOGD(sc, DBG_INTR, "new mask 0x%08x\n", aeu_mask);
8634 
8635     REG_WR(sc, reg_addr, aeu_mask);
8636     bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
8637 
8638     BLOGD(sc, DBG_INTR, "attn_state 0x%08x\n", sc->attn_state);
8639     sc->attn_state &= ~deasserted;
8640     BLOGD(sc, DBG_INTR, "new state 0x%08x\n", sc->attn_state);
8641 }
8642 
8643 static void
8644 bxe_attn_int(struct bxe_softc *sc)
8645 {
8646     /* read local copy of bits */
8647     uint32_t attn_bits = le32toh(sc->def_sb->atten_status_block.attn_bits);
8648     uint32_t attn_ack = le32toh(sc->def_sb->atten_status_block.attn_bits_ack);
8649     uint32_t attn_state = sc->attn_state;
8650 
8651     /* look for changed bits */
8652     uint32_t asserted   =  attn_bits & ~attn_ack & ~attn_state;
8653     uint32_t deasserted = ~attn_bits &  attn_ack &  attn_state;
8654 
8655     BLOGD(sc, DBG_INTR,
8656           "attn_bits 0x%08x attn_ack 0x%08x asserted 0x%08x deasserted 0x%08x\n",
8657           attn_bits, attn_ack, asserted, deasserted);
8658 
8659     if (~(attn_bits ^ attn_ack) & (attn_bits ^ attn_state)) {
8660         BLOGE(sc, "BAD attention state\n");
8661     }
8662 
8663     /* handle bits that were raised */
8664     if (asserted) {
8665         bxe_attn_int_asserted(sc, asserted);
8666     }
8667 
8668     if (deasserted) {
8669         bxe_attn_int_deasserted(sc, deasserted);
8670     }
8671 }
8672 
8673 static uint16_t
8674 bxe_update_dsb_idx(struct bxe_softc *sc)
8675 {
8676     struct host_sp_status_block *def_sb = sc->def_sb;
8677     uint16_t rc = 0;
8678 
8679     mb(); /* status block is written to by the chip */
8680 
8681     if (sc->def_att_idx != def_sb->atten_status_block.attn_bits_index) {
8682         sc->def_att_idx = def_sb->atten_status_block.attn_bits_index;
8683         rc |= BXE_DEF_SB_ATT_IDX;
8684     }
8685 
8686     if (sc->def_idx != def_sb->sp_sb.running_index) {
8687         sc->def_idx = def_sb->sp_sb.running_index;
8688         rc |= BXE_DEF_SB_IDX;
8689     }
8690 
8691     mb();
8692 
8693     return (rc);
8694 }
8695 
8696 static inline struct ecore_queue_sp_obj *
8697 bxe_cid_to_q_obj(struct bxe_softc *sc,
8698                  uint32_t         cid)
8699 {
8700     BLOGD(sc, DBG_SP, "retrieving fp from cid %d\n", cid);
8701     return (&sc->sp_objs[CID_TO_FP(cid, sc)].q_obj);
8702 }
8703 
8704 static void
8705 bxe_handle_mcast_eqe(struct bxe_softc *sc)
8706 {
8707     struct ecore_mcast_ramrod_params rparam;
8708     int rc;
8709 
8710     memset(&rparam, 0, sizeof(rparam));
8711 
8712     rparam.mcast_obj = &sc->mcast_obj;
8713 
8714     BXE_MCAST_LOCK(sc);
8715 
8716     /* clear pending state for the last command */
8717     sc->mcast_obj.raw.clear_pending(&sc->mcast_obj.raw);
8718 
8719     /* if there are pending mcast commands - send them */
8720     if (sc->mcast_obj.check_pending(&sc->mcast_obj)) {
8721         rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_CONT);
8722         if (rc < 0) {
8723             BLOGD(sc, DBG_SP,
8724                   "ERROR: Failed to send pending mcast commands (%d)\n",
8725                   rc);
8726         }
8727     }
8728 
8729     BXE_MCAST_UNLOCK(sc);
8730 }
8731 
8732 static void
8733 bxe_handle_classification_eqe(struct bxe_softc      *sc,
8734                               union event_ring_elem *elem)
8735 {
8736     unsigned long ramrod_flags = 0;
8737     int rc = 0;
8738     uint32_t cid = elem->message.data.eth_event.echo & BXE_SWCID_MASK;
8739     struct ecore_vlan_mac_obj *vlan_mac_obj;
8740 
8741     /* always push next commands out, don't wait here */
8742     bit_set(&ramrod_flags, RAMROD_CONT);
8743 
8744     switch (le32toh(elem->message.data.eth_event.echo) >> BXE_SWCID_SHIFT) {
8745     case ECORE_FILTER_MAC_PENDING:
8746         BLOGD(sc, DBG_SP, "Got SETUP_MAC completions\n");
8747         vlan_mac_obj = &sc->sp_objs[cid].mac_obj;
8748         break;
8749 
8750     case ECORE_FILTER_MCAST_PENDING:
8751         BLOGD(sc, DBG_SP, "Got SETUP_MCAST completions\n");
8752         /*
8753          * This is only relevant for 57710 where multicast MACs are
8754          * configured as unicast MACs using the same ramrod.
8755          */
8756         bxe_handle_mcast_eqe(sc);
8757         return;
8758 
8759     default:
8760         BLOGE(sc, "Unsupported classification command: %d\n",
8761               elem->message.data.eth_event.echo);
8762         return;
8763     }
8764 
8765     rc = vlan_mac_obj->complete(sc, vlan_mac_obj, elem, &ramrod_flags);
8766 
8767     if (rc < 0) {
8768         BLOGE(sc, "Failed to schedule new commands (%d)\n", rc);
8769     } else if (rc > 0) {
8770         BLOGD(sc, DBG_SP, "Scheduled next pending commands...\n");
8771     }
8772 }
8773 
8774 static void
8775 bxe_handle_rx_mode_eqe(struct bxe_softc      *sc,
8776                        union event_ring_elem *elem)
8777 {
8778     bxe_clear_bit(ECORE_FILTER_RX_MODE_PENDING, &sc->sp_state);
8779 
8780     /* send rx_mode command again if was requested */
8781     if (bxe_test_and_clear_bit(ECORE_FILTER_RX_MODE_SCHED,
8782                                &sc->sp_state)) {
8783         bxe_set_storm_rx_mode(sc);
8784     }
8785 #if 0
8786     else if (bxe_test_and_clear_bit(ECORE_FILTER_ISCSI_ETH_START_SCHED,
8787                                     &sc->sp_state)) {
8788         bxe_set_iscsi_eth_rx_mode(sc, TRUE);
8789     }
8790     else if (bxe_test_and_clear_bit(ECORE_FILTER_ISCSI_ETH_STOP_SCHED,
8791                                     &sc->sp_state)) {
8792         bxe_set_iscsi_eth_rx_mode(sc, FALSE);
8793     }
8794 #endif
8795 }
8796 
8797 static void
8798 bxe_update_eq_prod(struct bxe_softc *sc,
8799                    uint16_t         prod)
8800 {
8801     storm_memset_eq_prod(sc, prod, SC_FUNC(sc));
8802     wmb(); /* keep prod updates ordered */
8803 }
8804 
8805 static void
8806 bxe_eq_int(struct bxe_softc *sc)
8807 {
8808     uint16_t hw_cons, sw_cons, sw_prod;
8809     union event_ring_elem *elem;
8810     uint8_t echo;
8811     uint32_t cid;
8812     uint8_t opcode;
8813     int spqe_cnt = 0;
8814     struct ecore_queue_sp_obj *q_obj;
8815     struct ecore_func_sp_obj *f_obj = &sc->func_obj;
8816     struct ecore_raw_obj *rss_raw = &sc->rss_conf_obj.raw;
8817 
8818     hw_cons = le16toh(*sc->eq_cons_sb);
8819 
8820     /*
8821      * The hw_cons range is 1-255, 257 - the sw_cons range is 0-254, 256.
8822      * when we get to the next-page we need to adjust so the loop
8823      * condition below will be met. The next element is the size of a
8824      * regular element and hence incrementing by 1
8825      */
8826     if ((hw_cons & EQ_DESC_MAX_PAGE) == EQ_DESC_MAX_PAGE) {
8827         hw_cons++;
8828     }
8829 
8830     /*
8831      * This function may never run in parallel with itself for a
8832      * specific sc and no need for a read memory barrier here.
8833      */
8834     sw_cons = sc->eq_cons;
8835     sw_prod = sc->eq_prod;
8836 
8837     BLOGD(sc, DBG_SP,"EQ: hw_cons=%u sw_cons=%u eq_spq_left=0x%lx\n",
8838           hw_cons, sw_cons, atomic_load_acq_long(&sc->eq_spq_left));
8839 
8840     for (;
8841          sw_cons != hw_cons;
8842          sw_prod = NEXT_EQ_IDX(sw_prod), sw_cons = NEXT_EQ_IDX(sw_cons)) {
8843 
8844         elem = &sc->eq[EQ_DESC(sw_cons)];
8845 
8846 #if 0
8847         int rc;
8848         rc = bxe_iov_eq_sp_event(sc, elem);
8849         if (!rc) {
8850             BLOGE(sc, "bxe_iov_eq_sp_event returned %d\n", rc);
8851             goto next_spqe;
8852         }
8853 #endif
8854 
8855         /* elem CID originates from FW, actually LE */
8856         cid = SW_CID(elem->message.data.cfc_del_event.cid);
8857         opcode = elem->message.opcode;
8858 
8859         /* handle eq element */
8860         switch (opcode) {
8861 #if 0
8862         case EVENT_RING_OPCODE_VF_PF_CHANNEL:
8863             BLOGD(sc, DBG_SP, "vf/pf channel element on eq\n");
8864             bxe_vf_mbx(sc, &elem->message.data.vf_pf_event);
8865             continue;
8866 #endif
8867 
8868         case EVENT_RING_OPCODE_STAT_QUERY:
8869             BLOGD(sc, DBG_SP, "got statistics completion event %d\n",
8870                   sc->stats_comp++);
8871             /* nothing to do with stats comp */
8872             goto next_spqe;
8873 
8874         case EVENT_RING_OPCODE_CFC_DEL:
8875             /* handle according to cid range */
8876             /* we may want to verify here that the sc state is HALTING */
8877             BLOGD(sc, DBG_SP, "got delete ramrod for MULTI[%d]\n", cid);
8878             q_obj = bxe_cid_to_q_obj(sc, cid);
8879             if (q_obj->complete_cmd(sc, q_obj, ECORE_Q_CMD_CFC_DEL)) {
8880                 break;
8881             }
8882             goto next_spqe;
8883 
8884         case EVENT_RING_OPCODE_STOP_TRAFFIC:
8885             BLOGD(sc, DBG_SP, "got STOP TRAFFIC\n");
8886             if (f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_TX_STOP)) {
8887                 break;
8888             }
8889             // XXX bxe_dcbx_set_params(sc, BXE_DCBX_STATE_TX_PAUSED);
8890             goto next_spqe;
8891 
8892         case EVENT_RING_OPCODE_START_TRAFFIC:
8893             BLOGD(sc, DBG_SP, "got START TRAFFIC\n");
8894             if (f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_TX_START)) {
8895                 break;
8896             }
8897             // XXX bxe_dcbx_set_params(sc, BXE_DCBX_STATE_TX_RELEASED);
8898             goto next_spqe;
8899 
8900         case EVENT_RING_OPCODE_FUNCTION_UPDATE:
8901             echo = elem->message.data.function_update_event.echo;
8902             if (echo == SWITCH_UPDATE) {
8903                 BLOGD(sc, DBG_SP, "got FUNC_SWITCH_UPDATE ramrod\n");
8904                 if (f_obj->complete_cmd(sc, f_obj,
8905                                         ECORE_F_CMD_SWITCH_UPDATE)) {
8906                     break;
8907                 }
8908             }
8909             else {
8910                 BLOGD(sc, DBG_SP,
8911                       "AFEX: ramrod completed FUNCTION_UPDATE\n");
8912 #if 0
8913                 f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_AFEX_UPDATE);
8914                 /*
8915                  * We will perform the queues update from the sp_core_task as
8916                  * all queue SP operations should run with CORE_LOCK.
8917                  */
8918                 bxe_set_bit(BXE_SP_CORE_AFEX_F_UPDATE, &sc->sp_core_state);
8919                 taskqueue_enqueue(sc->sp_tq, &sc->sp_tq_task);
8920 #endif
8921             }
8922             goto next_spqe;
8923 
8924 #if 0
8925         case EVENT_RING_OPCODE_AFEX_VIF_LISTS:
8926             f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_AFEX_VIFLISTS);
8927             bxe_after_afex_vif_lists(sc, elem);
8928             goto next_spqe;
8929 #endif
8930 
8931         case EVENT_RING_OPCODE_FORWARD_SETUP:
8932             q_obj = &bxe_fwd_sp_obj(sc, q_obj);
8933             if (q_obj->complete_cmd(sc, q_obj,
8934                                     ECORE_Q_CMD_SETUP_TX_ONLY)) {
8935                 break;
8936             }
8937             goto next_spqe;
8938 
8939         case EVENT_RING_OPCODE_FUNCTION_START:
8940             BLOGD(sc, DBG_SP, "got FUNC_START ramrod\n");
8941             if (f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_START)) {
8942                 break;
8943             }
8944             goto next_spqe;
8945 
8946         case EVENT_RING_OPCODE_FUNCTION_STOP:
8947             BLOGD(sc, DBG_SP, "got FUNC_STOP ramrod\n");
8948             if (f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_STOP)) {
8949                 break;
8950             }
8951             goto next_spqe;
8952         }
8953 
8954         switch (opcode | sc->state) {
8955         case (EVENT_RING_OPCODE_RSS_UPDATE_RULES | BXE_STATE_OPEN):
8956         case (EVENT_RING_OPCODE_RSS_UPDATE_RULES | BXE_STATE_OPENING_WAITING_PORT):
8957             cid = elem->message.data.eth_event.echo & BXE_SWCID_MASK;
8958             BLOGD(sc, DBG_SP, "got RSS_UPDATE ramrod. CID %d\n", cid);
8959             rss_raw->clear_pending(rss_raw);
8960             break;
8961 
8962         case (EVENT_RING_OPCODE_SET_MAC | BXE_STATE_OPEN):
8963         case (EVENT_RING_OPCODE_SET_MAC | BXE_STATE_DIAG):
8964         case (EVENT_RING_OPCODE_SET_MAC | BXE_STATE_CLOSING_WAITING_HALT):
8965         case (EVENT_RING_OPCODE_CLASSIFICATION_RULES | BXE_STATE_OPEN):
8966         case (EVENT_RING_OPCODE_CLASSIFICATION_RULES | BXE_STATE_DIAG):
8967         case (EVENT_RING_OPCODE_CLASSIFICATION_RULES | BXE_STATE_CLOSING_WAITING_HALT):
8968             BLOGD(sc, DBG_SP, "got (un)set mac ramrod\n");
8969             bxe_handle_classification_eqe(sc, elem);
8970             break;
8971 
8972         case (EVENT_RING_OPCODE_MULTICAST_RULES | BXE_STATE_OPEN):
8973         case (EVENT_RING_OPCODE_MULTICAST_RULES | BXE_STATE_DIAG):
8974         case (EVENT_RING_OPCODE_MULTICAST_RULES | BXE_STATE_CLOSING_WAITING_HALT):
8975             BLOGD(sc, DBG_SP, "got mcast ramrod\n");
8976             bxe_handle_mcast_eqe(sc);
8977             break;
8978 
8979         case (EVENT_RING_OPCODE_FILTERS_RULES | BXE_STATE_OPEN):
8980         case (EVENT_RING_OPCODE_FILTERS_RULES | BXE_STATE_DIAG):
8981         case (EVENT_RING_OPCODE_FILTERS_RULES | BXE_STATE_CLOSING_WAITING_HALT):
8982             BLOGD(sc, DBG_SP, "got rx_mode ramrod\n");
8983             bxe_handle_rx_mode_eqe(sc, elem);
8984             break;
8985 
8986         default:
8987             /* unknown event log error and continue */
8988             BLOGE(sc, "Unknown EQ event %d, sc->state 0x%x\n",
8989                   elem->message.opcode, sc->state);
8990         }
8991 
8992 next_spqe:
8993         spqe_cnt++;
8994     } /* for */
8995 
8996     mb();
8997     atomic_add_acq_long(&sc->eq_spq_left, spqe_cnt);
8998 
8999     sc->eq_cons = sw_cons;
9000     sc->eq_prod = sw_prod;
9001 
9002     /* make sure that above mem writes were issued towards the memory */
9003     wmb();
9004 
9005     /* update producer */
9006     bxe_update_eq_prod(sc, sc->eq_prod);
9007 }
9008 
9009 static void
9010 bxe_handle_sp_tq(void *context,
9011                  int  pending)
9012 {
9013     struct bxe_softc *sc = (struct bxe_softc *)context;
9014     uint16_t status;
9015 
9016     BLOGD(sc, DBG_SP, "---> SP TASK <---\n");
9017 
9018     /* what work needs to be performed? */
9019     status = bxe_update_dsb_idx(sc);
9020 
9021     BLOGD(sc, DBG_SP, "dsb status 0x%04x\n", status);
9022 
9023     /* HW attentions */
9024     if (status & BXE_DEF_SB_ATT_IDX) {
9025         BLOGD(sc, DBG_SP, "---> ATTN INTR <---\n");
9026         bxe_attn_int(sc);
9027         status &= ~BXE_DEF_SB_ATT_IDX;
9028     }
9029 
9030     /* SP events: STAT_QUERY and others */
9031     if (status & BXE_DEF_SB_IDX) {
9032         /* handle EQ completions */
9033         BLOGD(sc, DBG_SP, "---> EQ INTR <---\n");
9034         bxe_eq_int(sc);
9035         bxe_ack_sb(sc, sc->igu_dsb_id, USTORM_ID,
9036                    le16toh(sc->def_idx), IGU_INT_NOP, 1);
9037         status &= ~BXE_DEF_SB_IDX;
9038     }
9039 
9040     /* if status is non zero then something went wrong */
9041     if (__predict_false(status)) {
9042         BLOGE(sc, "Got an unknown SP interrupt! (0x%04x)\n", status);
9043     }
9044 
9045     /* ack status block only if something was actually handled */
9046     bxe_ack_sb(sc, sc->igu_dsb_id, ATTENTION_ID,
9047                le16toh(sc->def_att_idx), IGU_INT_ENABLE, 1);
9048 
9049     /*
9050      * Must be called after the EQ processing (since eq leads to sriov
9051      * ramrod completion flows).
9052      * This flow may have been scheduled by the arrival of a ramrod
9053      * completion, or by the sriov code rescheduling itself.
9054      */
9055     // XXX bxe_iov_sp_task(sc);
9056 
9057 #if 0
9058     /* AFEX - poll to check if VIFSET_ACK should be sent to MFW */
9059     if (bxe_test_and_clear_bit(ECORE_AFEX_PENDING_VIFSET_MCP_ACK,
9060                                &sc->sp_state)) {
9061         bxe_link_report(sc);
9062         bxe_fw_command(sc, DRV_MSG_CODE_AFEX_VIFSET_ACK, 0);
9063     }
9064 #endif
9065 }
9066 
9067 static void
9068 bxe_handle_fp_tq(void *context,
9069                  int  pending)
9070 {
9071     struct bxe_fastpath *fp = (struct bxe_fastpath *)context;
9072     struct bxe_softc *sc = fp->sc;
9073     uint8_t more_tx = FALSE;
9074     uint8_t more_rx = FALSE;
9075 
9076     BLOGD(sc, DBG_INTR, "---> FP TASK QUEUE (%d) <---\n", fp->index);
9077 
9078     /* XXX
9079      * IFF_DRV_RUNNING state can't be checked here since we process
9080      * slowpath events on a client queue during setup. Instead
9081      * we need to add a "process/continue" flag here that the driver
9082      * can use to tell the task here not to do anything.
9083      */
9084 #if 0
9085     if (!(if_getdrvflags(sc->ifp) & IFF_DRV_RUNNING)) {
9086         return;
9087     }
9088 #endif
9089 
9090     /* update the fastpath index */
9091     bxe_update_fp_sb_idx(fp);
9092 
9093     /* XXX add loop here if ever support multiple tx CoS */
9094     /* fp->txdata[cos] */
9095     if (bxe_has_tx_work(fp)) {
9096         BXE_FP_TX_LOCK(fp);
9097         more_tx = bxe_txeof(sc, fp);
9098         BXE_FP_TX_UNLOCK(fp);
9099     }
9100 
9101     if (bxe_has_rx_work(fp)) {
9102         more_rx = bxe_rxeof(sc, fp);
9103     }
9104 
9105     if (more_rx /*|| more_tx*/) {
9106         /* still more work to do */
9107         taskqueue_enqueue_fast(fp->tq, &fp->tq_task);
9108         return;
9109     }
9110 
9111     bxe_ack_sb(sc, fp->igu_sb_id, USTORM_ID,
9112                le16toh(fp->fp_hc_idx), IGU_INT_ENABLE, 1);
9113 }
9114 
9115 static void
9116 bxe_task_fp(struct bxe_fastpath *fp)
9117 {
9118     struct bxe_softc *sc = fp->sc;
9119     uint8_t more_tx = FALSE;
9120     uint8_t more_rx = FALSE;
9121 
9122     BLOGD(sc, DBG_INTR, "---> FP TASK ISR (%d) <---\n", fp->index);
9123 
9124     /* update the fastpath index */
9125     bxe_update_fp_sb_idx(fp);
9126 
9127     /* XXX add loop here if ever support multiple tx CoS */
9128     /* fp->txdata[cos] */
9129     if (bxe_has_tx_work(fp)) {
9130         BXE_FP_TX_LOCK(fp);
9131         more_tx = bxe_txeof(sc, fp);
9132         BXE_FP_TX_UNLOCK(fp);
9133     }
9134 
9135     if (bxe_has_rx_work(fp)) {
9136         more_rx = bxe_rxeof(sc, fp);
9137     }
9138 
9139     if (more_rx /*|| more_tx*/) {
9140         /* still more work to do, bail out if this ISR and process later */
9141         taskqueue_enqueue_fast(fp->tq, &fp->tq_task);
9142         return;
9143     }
9144 
9145     /*
9146      * Here we write the fastpath index taken before doing any tx or rx work.
9147      * It is very well possible other hw events occurred up to this point and
9148      * they were actually processed accordingly above. Since we're going to
9149      * write an older fastpath index, an interrupt is coming which we might
9150      * not do any work in.
9151      */
9152     bxe_ack_sb(sc, fp->igu_sb_id, USTORM_ID,
9153                le16toh(fp->fp_hc_idx), IGU_INT_ENABLE, 1);
9154 }
9155 
9156 /*
9157  * Legacy interrupt entry point.
9158  *
9159  * Verifies that the controller generated the interrupt and
9160  * then calls a separate routine to handle the various
9161  * interrupt causes: link, RX, and TX.
9162  */
9163 static void
9164 bxe_intr_legacy(void *xsc)
9165 {
9166     struct bxe_softc *sc = (struct bxe_softc *)xsc;
9167     struct bxe_fastpath *fp;
9168     uint16_t status, mask;
9169     int i;
9170 
9171     BLOGD(sc, DBG_INTR, "---> BXE INTx <---\n");
9172 
9173 #if 0
9174     /* Don't handle any interrupts if we're not ready. */
9175     if (__predict_false(sc->intr_sem != 0)) {
9176         return;
9177     }
9178 #endif
9179 
9180     /*
9181      * 0 for ustorm, 1 for cstorm
9182      * the bits returned from ack_int() are 0-15
9183      * bit 0 = attention status block
9184      * bit 1 = fast path status block
9185      * a mask of 0x2 or more = tx/rx event
9186      * a mask of 1 = slow path event
9187      */
9188 
9189     status = bxe_ack_int(sc);
9190 
9191     /* the interrupt is not for us */
9192     if (__predict_false(status == 0)) {
9193         BLOGD(sc, DBG_INTR, "Not our interrupt!\n");
9194         return;
9195     }
9196 
9197     BLOGD(sc, DBG_INTR, "Interrupt status 0x%04x\n", status);
9198 
9199     FOR_EACH_ETH_QUEUE(sc, i) {
9200         fp = &sc->fp[i];
9201         mask = (0x2 << (fp->index + CNIC_SUPPORT(sc)));
9202         if (status & mask) {
9203             /* acknowledge and disable further fastpath interrupts */
9204             bxe_ack_sb(sc, fp->igu_sb_id, USTORM_ID, 0, IGU_INT_DISABLE, 0);
9205             bxe_task_fp(fp);
9206             status &= ~mask;
9207         }
9208     }
9209 
9210 #if 0
9211     if (CNIC_SUPPORT(sc)) {
9212         mask = 0x2;
9213         if (status & (mask | 0x1)) {
9214             ...
9215             status &= ~mask;
9216         }
9217     }
9218 #endif
9219 
9220     if (__predict_false(status & 0x1)) {
9221         /* acknowledge and disable further slowpath interrupts */
9222         bxe_ack_sb(sc, sc->igu_dsb_id, USTORM_ID, 0, IGU_INT_DISABLE, 0);
9223 
9224         /* schedule slowpath handler */
9225         taskqueue_enqueue_fast(sc->sp_tq, &sc->sp_tq_task);
9226 
9227         status &= ~0x1;
9228     }
9229 
9230     if (__predict_false(status)) {
9231         BLOGW(sc, "Unexpected fastpath status (0x%08x)!\n", status);
9232     }
9233 }
9234 
9235 /* slowpath interrupt entry point */
9236 static void
9237 bxe_intr_sp(void *xsc)
9238 {
9239     struct bxe_softc *sc = (struct bxe_softc *)xsc;
9240 
9241     BLOGD(sc, (DBG_INTR | DBG_SP), "---> SP INTR <---\n");
9242 
9243     /* acknowledge and disable further slowpath interrupts */
9244     bxe_ack_sb(sc, sc->igu_dsb_id, USTORM_ID, 0, IGU_INT_DISABLE, 0);
9245 
9246     /* schedule slowpath handler */
9247     taskqueue_enqueue_fast(sc->sp_tq, &sc->sp_tq_task);
9248 }
9249 
9250 /* fastpath interrupt entry point */
9251 static void
9252 bxe_intr_fp(void *xfp)
9253 {
9254     struct bxe_fastpath *fp = (struct bxe_fastpath *)xfp;
9255     struct bxe_softc *sc = fp->sc;
9256 
9257     BLOGD(sc, DBG_INTR, "---> FP INTR %d <---\n", fp->index);
9258 
9259     BLOGD(sc, DBG_INTR,
9260           "(cpu=%d) MSI-X fp=%d fw_sb=%d igu_sb=%d\n",
9261           curcpu, fp->index, fp->fw_sb_id, fp->igu_sb_id);
9262 
9263 #if 0
9264     /* Don't handle any interrupts if we're not ready. */
9265     if (__predict_false(sc->intr_sem != 0)) {
9266         return;
9267     }
9268 #endif
9269 
9270     /* acknowledge and disable further fastpath interrupts */
9271     bxe_ack_sb(sc, fp->igu_sb_id, USTORM_ID, 0, IGU_INT_DISABLE, 0);
9272 
9273     bxe_task_fp(fp);
9274 }
9275 
9276 /* Release all interrupts allocated by the driver. */
9277 static void
9278 bxe_interrupt_free(struct bxe_softc *sc)
9279 {
9280     int i;
9281 
9282     switch (sc->interrupt_mode) {
9283     case INTR_MODE_INTX:
9284         BLOGD(sc, DBG_LOAD, "Releasing legacy INTx vector\n");
9285         if (sc->intr[0].resource != NULL) {
9286             bus_release_resource(sc->dev,
9287                                  SYS_RES_IRQ,
9288                                  sc->intr[0].rid,
9289                                  sc->intr[0].resource);
9290         }
9291         break;
9292     case INTR_MODE_MSI:
9293         for (i = 0; i < sc->intr_count; i++) {
9294             BLOGD(sc, DBG_LOAD, "Releasing MSI vector %d\n", i);
9295             if (sc->intr[i].resource && sc->intr[i].rid) {
9296                 bus_release_resource(sc->dev,
9297                                      SYS_RES_IRQ,
9298                                      sc->intr[i].rid,
9299                                      sc->intr[i].resource);
9300             }
9301         }
9302         pci_release_msi(sc->dev);
9303         break;
9304     case INTR_MODE_MSIX:
9305         for (i = 0; i < sc->intr_count; i++) {
9306             BLOGD(sc, DBG_LOAD, "Releasing MSI-X vector %d\n", i);
9307             if (sc->intr[i].resource && sc->intr[i].rid) {
9308                 bus_release_resource(sc->dev,
9309                                      SYS_RES_IRQ,
9310                                      sc->intr[i].rid,
9311                                      sc->intr[i].resource);
9312             }
9313         }
9314         pci_release_msi(sc->dev);
9315         break;
9316     default:
9317         /* nothing to do as initial allocation failed */
9318         break;
9319     }
9320 }
9321 
9322 /*
9323  * This function determines and allocates the appropriate
9324  * interrupt based on system capabilites and user request.
9325  *
9326  * The user may force a particular interrupt mode, specify
9327  * the number of receive queues, specify the method for
9328  * distribuitng received frames to receive queues, or use
9329  * the default settings which will automatically select the
9330  * best supported combination.  In addition, the OS may or
9331  * may not support certain combinations of these settings.
9332  * This routine attempts to reconcile the settings requested
9333  * by the user with the capabilites available from the system
9334  * to select the optimal combination of features.
9335  *
9336  * Returns:
9337  *   0 = Success, !0 = Failure.
9338  */
9339 static int
9340 bxe_interrupt_alloc(struct bxe_softc *sc)
9341 {
9342     int msix_count = 0;
9343     int msi_count = 0;
9344     int num_requested = 0;
9345     int num_allocated = 0;
9346     int rid, i, j;
9347     int rc;
9348 
9349     /* get the number of available MSI/MSI-X interrupts from the OS */
9350     if (sc->interrupt_mode > 0) {
9351         if (sc->devinfo.pcie_cap_flags & BXE_MSIX_CAPABLE_FLAG) {
9352             msix_count = pci_msix_count(sc->dev);
9353         }
9354 
9355         if (sc->devinfo.pcie_cap_flags & BXE_MSI_CAPABLE_FLAG) {
9356             msi_count = pci_msi_count(sc->dev);
9357         }
9358 
9359         BLOGD(sc, DBG_LOAD, "%d MSI and %d MSI-X vectors available\n",
9360               msi_count, msix_count);
9361     }
9362 
9363     do { /* try allocating MSI-X interrupt resources (at least 2) */
9364         if (sc->interrupt_mode != INTR_MODE_MSIX) {
9365             break;
9366         }
9367 
9368         if (((sc->devinfo.pcie_cap_flags & BXE_MSIX_CAPABLE_FLAG) == 0) ||
9369             (msix_count < 2)) {
9370             sc->interrupt_mode = INTR_MODE_MSI; /* try MSI next */
9371             break;
9372         }
9373 
9374         /* ask for the necessary number of MSI-X vectors */
9375         num_requested = min((sc->num_queues + 1), msix_count);
9376 
9377         BLOGD(sc, DBG_LOAD, "Requesting %d MSI-X vectors\n", num_requested);
9378 
9379         num_allocated = num_requested;
9380         if ((rc = pci_alloc_msix(sc->dev, &num_allocated)) != 0) {
9381             BLOGE(sc, "MSI-X alloc failed! (%d)\n", rc);
9382             sc->interrupt_mode = INTR_MODE_MSI; /* try MSI next */
9383             break;
9384         }
9385 
9386         if (num_allocated < 2) { /* possible? */
9387             BLOGE(sc, "MSI-X allocation less than 2!\n");
9388             sc->interrupt_mode = INTR_MODE_MSI; /* try MSI next */
9389             pci_release_msi(sc->dev);
9390             break;
9391         }
9392 
9393         BLOGI(sc, "MSI-X vectors Requested %d and Allocated %d\n",
9394               num_requested, num_allocated);
9395 
9396         /* best effort so use the number of vectors allocated to us */
9397         sc->intr_count = num_allocated;
9398         sc->num_queues = num_allocated - 1;
9399 
9400         rid = 1; /* initial resource identifier */
9401 
9402         /* allocate the MSI-X vectors */
9403         for (i = 0; i < num_allocated; i++) {
9404             sc->intr[i].rid = (rid + i);
9405 
9406             if ((sc->intr[i].resource =
9407                  bus_alloc_resource_any(sc->dev,
9408                                         SYS_RES_IRQ,
9409                                         &sc->intr[i].rid,
9410                                         RF_ACTIVE)) == NULL) {
9411                 BLOGE(sc, "Failed to map MSI-X[%d] (rid=%d)!\n",
9412                       i, (rid + i));
9413 
9414                 for (j = (i - 1); j >= 0; j--) {
9415                     bus_release_resource(sc->dev,
9416                                          SYS_RES_IRQ,
9417                                          sc->intr[j].rid,
9418                                          sc->intr[j].resource);
9419                 }
9420 
9421                 sc->intr_count = 0;
9422                 sc->num_queues = 0;
9423                 sc->interrupt_mode = INTR_MODE_MSI; /* try MSI next */
9424                 pci_release_msi(sc->dev);
9425                 break;
9426             }
9427 
9428             BLOGD(sc, DBG_LOAD, "Mapped MSI-X[%d] (rid=%d)\n", i, (rid + i));
9429         }
9430     } while (0);
9431 
9432     do { /* try allocating MSI vector resources (at least 2) */
9433         if (sc->interrupt_mode != INTR_MODE_MSI) {
9434             break;
9435         }
9436 
9437         if (((sc->devinfo.pcie_cap_flags & BXE_MSI_CAPABLE_FLAG) == 0) ||
9438             (msi_count < 1)) {
9439             sc->interrupt_mode = INTR_MODE_INTX; /* try INTx next */
9440             break;
9441         }
9442 
9443         /* ask for a single MSI vector */
9444         num_requested = 1;
9445 
9446         BLOGD(sc, DBG_LOAD, "Requesting %d MSI vectors\n", num_requested);
9447 
9448         num_allocated = num_requested;
9449         if ((rc = pci_alloc_msi(sc->dev, &num_allocated)) != 0) {
9450             BLOGE(sc, "MSI alloc failed (%d)!\n", rc);
9451             sc->interrupt_mode = INTR_MODE_INTX; /* try INTx next */
9452             break;
9453         }
9454 
9455         if (num_allocated != 1) { /* possible? */
9456             BLOGE(sc, "MSI allocation is not 1!\n");
9457             sc->interrupt_mode = INTR_MODE_INTX; /* try INTx next */
9458             pci_release_msi(sc->dev);
9459             break;
9460         }
9461 
9462         BLOGI(sc, "MSI vectors Requested %d and Allocated %d\n",
9463               num_requested, num_allocated);
9464 
9465         /* best effort so use the number of vectors allocated to us */
9466         sc->intr_count = num_allocated;
9467         sc->num_queues = num_allocated;
9468 
9469         rid = 1; /* initial resource identifier */
9470 
9471         sc->intr[0].rid = rid;
9472 
9473         if ((sc->intr[0].resource =
9474              bus_alloc_resource_any(sc->dev,
9475                                     SYS_RES_IRQ,
9476                                     &sc->intr[0].rid,
9477                                     RF_ACTIVE)) == NULL) {
9478             BLOGE(sc, "Failed to map MSI[0] (rid=%d)!\n", rid);
9479             sc->intr_count = 0;
9480             sc->num_queues = 0;
9481             sc->interrupt_mode = INTR_MODE_INTX; /* try INTx next */
9482             pci_release_msi(sc->dev);
9483             break;
9484         }
9485 
9486         BLOGD(sc, DBG_LOAD, "Mapped MSI[0] (rid=%d)\n", rid);
9487     } while (0);
9488 
9489     do { /* try allocating INTx vector resources */
9490         if (sc->interrupt_mode != INTR_MODE_INTX) {
9491             break;
9492         }
9493 
9494         BLOGD(sc, DBG_LOAD, "Requesting legacy INTx interrupt\n");
9495 
9496         /* only one vector for INTx */
9497         sc->intr_count = 1;
9498         sc->num_queues = 1;
9499 
9500         rid = 0; /* initial resource identifier */
9501 
9502         sc->intr[0].rid = rid;
9503 
9504         if ((sc->intr[0].resource =
9505              bus_alloc_resource_any(sc->dev,
9506                                     SYS_RES_IRQ,
9507                                     &sc->intr[0].rid,
9508                                     (RF_ACTIVE | RF_SHAREABLE))) == NULL) {
9509             BLOGE(sc, "Failed to map INTx (rid=%d)!\n", rid);
9510             sc->intr_count = 0;
9511             sc->num_queues = 0;
9512             sc->interrupt_mode = -1; /* Failed! */
9513             break;
9514         }
9515 
9516         BLOGD(sc, DBG_LOAD, "Mapped INTx (rid=%d)\n", rid);
9517     } while (0);
9518 
9519     if (sc->interrupt_mode == -1) {
9520         BLOGE(sc, "Interrupt Allocation: FAILED!!!\n");
9521         rc = 1;
9522     } else {
9523         BLOGD(sc, DBG_LOAD,
9524               "Interrupt Allocation: interrupt_mode=%d, num_queues=%d\n",
9525               sc->interrupt_mode, sc->num_queues);
9526         rc = 0;
9527     }
9528 
9529     return (rc);
9530 }
9531 
9532 static void
9533 bxe_interrupt_detach(struct bxe_softc *sc)
9534 {
9535     struct bxe_fastpath *fp;
9536     int i;
9537 
9538     /* release interrupt resources */
9539     for (i = 0; i < sc->intr_count; i++) {
9540         if (sc->intr[i].resource && sc->intr[i].tag) {
9541             BLOGD(sc, DBG_LOAD, "Disabling interrupt vector %d\n", i);
9542             bus_teardown_intr(sc->dev, sc->intr[i].resource, sc->intr[i].tag);
9543         }
9544     }
9545 
9546     for (i = 0; i < sc->num_queues; i++) {
9547         fp = &sc->fp[i];
9548         if (fp->tq) {
9549             taskqueue_drain(fp->tq, &fp->tq_task);
9550             taskqueue_free(fp->tq);
9551             fp->tq = NULL;
9552         }
9553     }
9554 
9555 
9556     if (sc->sp_tq) {
9557         taskqueue_drain(sc->sp_tq, &sc->sp_tq_task);
9558         taskqueue_free(sc->sp_tq);
9559         sc->sp_tq = NULL;
9560     }
9561 }
9562 
9563 /*
9564  * Enables interrupts and attach to the ISR.
9565  *
9566  * When using multiple MSI/MSI-X vectors the first vector
9567  * is used for slowpath operations while all remaining
9568  * vectors are used for fastpath operations.  If only a
9569  * single MSI/MSI-X vector is used (SINGLE_ISR) then the
9570  * ISR must look for both slowpath and fastpath completions.
9571  */
9572 static int
9573 bxe_interrupt_attach(struct bxe_softc *sc)
9574 {
9575     struct bxe_fastpath *fp;
9576     int rc = 0;
9577     int i;
9578 
9579     snprintf(sc->sp_tq_name, sizeof(sc->sp_tq_name),
9580              "bxe%d_sp_tq", sc->unit);
9581     TASK_INIT(&sc->sp_tq_task, 0, bxe_handle_sp_tq, sc);
9582     sc->sp_tq = taskqueue_create_fast(sc->sp_tq_name, M_NOWAIT,
9583                                       taskqueue_thread_enqueue,
9584                                       &sc->sp_tq);
9585     taskqueue_start_threads(&sc->sp_tq, 1, PWAIT, /* lower priority */
9586                             "%s", sc->sp_tq_name);
9587 
9588 
9589     for (i = 0; i < sc->num_queues; i++) {
9590         fp = &sc->fp[i];
9591         snprintf(fp->tq_name, sizeof(fp->tq_name),
9592                  "bxe%d_fp%d_tq", sc->unit, i);
9593         TASK_INIT(&fp->tq_task, 0, bxe_handle_fp_tq, fp);
9594         fp->tq = taskqueue_create_fast(fp->tq_name, M_NOWAIT,
9595                                        taskqueue_thread_enqueue,
9596                                        &fp->tq);
9597         taskqueue_start_threads(&fp->tq, 1, PI_NET, /* higher priority */
9598                                 "%s", fp->tq_name);
9599     }
9600 
9601     /* setup interrupt handlers */
9602     if (sc->interrupt_mode == INTR_MODE_MSIX) {
9603         BLOGD(sc, DBG_LOAD, "Enabling slowpath MSI-X[0] vector\n");
9604 
9605         /*
9606          * Setup the interrupt handler. Note that we pass the driver instance
9607          * to the interrupt handler for the slowpath.
9608          */
9609         if ((rc = bus_setup_intr(sc->dev, sc->intr[0].resource,
9610                                  (INTR_TYPE_NET | INTR_MPSAFE),
9611                                  NULL, bxe_intr_sp, sc,
9612                                  &sc->intr[0].tag)) != 0) {
9613             BLOGE(sc, "Failed to allocate MSI-X[0] vector (%d)\n", rc);
9614             goto bxe_interrupt_attach_exit;
9615         }
9616 
9617         bus_describe_intr(sc->dev, sc->intr[0].resource,
9618                           sc->intr[0].tag, "sp");
9619 
9620         /* bus_bind_intr(sc->dev, sc->intr[0].resource, 0); */
9621 
9622         /* initialize the fastpath vectors (note the first was used for sp) */
9623         for (i = 0; i < sc->num_queues; i++) {
9624             fp = &sc->fp[i];
9625             BLOGD(sc, DBG_LOAD, "Enabling MSI-X[%d] vector\n", (i + 1));
9626 
9627             /*
9628              * Setup the interrupt handler. Note that we pass the
9629              * fastpath context to the interrupt handler in this
9630              * case.
9631              */
9632             if ((rc = bus_setup_intr(sc->dev, sc->intr[i + 1].resource,
9633                                      (INTR_TYPE_NET | INTR_MPSAFE),
9634                                      NULL, bxe_intr_fp, fp,
9635                                      &sc->intr[i + 1].tag)) != 0) {
9636                 BLOGE(sc, "Failed to allocate MSI-X[%d] vector (%d)\n",
9637                       (i + 1), rc);
9638                 goto bxe_interrupt_attach_exit;
9639             }
9640 
9641             bus_describe_intr(sc->dev, sc->intr[i + 1].resource,
9642                               sc->intr[i + 1].tag, "fp%02d", i);
9643 
9644             /* bind the fastpath instance to a cpu */
9645             if (sc->num_queues > 1) {
9646                 bus_bind_intr(sc->dev, sc->intr[i + 1].resource, i);
9647             }
9648 
9649             fp->state = BXE_FP_STATE_IRQ;
9650         }
9651     } else if (sc->interrupt_mode == INTR_MODE_MSI) {
9652         BLOGD(sc, DBG_LOAD, "Enabling MSI[0] vector\n");
9653 
9654         /*
9655          * Setup the interrupt handler. Note that we pass the
9656          * driver instance to the interrupt handler which
9657          * will handle both the slowpath and fastpath.
9658          */
9659         if ((rc = bus_setup_intr(sc->dev, sc->intr[0].resource,
9660                                  (INTR_TYPE_NET | INTR_MPSAFE),
9661                                  NULL, bxe_intr_legacy, sc,
9662                                  &sc->intr[0].tag)) != 0) {
9663             BLOGE(sc, "Failed to allocate MSI[0] vector (%d)\n", rc);
9664             goto bxe_interrupt_attach_exit;
9665         }
9666 
9667     } else { /* (sc->interrupt_mode == INTR_MODE_INTX) */
9668         BLOGD(sc, DBG_LOAD, "Enabling INTx interrupts\n");
9669 
9670         /*
9671          * Setup the interrupt handler. Note that we pass the
9672          * driver instance to the interrupt handler which
9673          * will handle both the slowpath and fastpath.
9674          */
9675         if ((rc = bus_setup_intr(sc->dev, sc->intr[0].resource,
9676                                  (INTR_TYPE_NET | INTR_MPSAFE),
9677                                  NULL, bxe_intr_legacy, sc,
9678                                  &sc->intr[0].tag)) != 0) {
9679             BLOGE(sc, "Failed to allocate INTx interrupt (%d)\n", rc);
9680             goto bxe_interrupt_attach_exit;
9681         }
9682     }
9683 
9684 bxe_interrupt_attach_exit:
9685 
9686     return (rc);
9687 }
9688 
9689 static int  bxe_init_hw_common_chip(struct bxe_softc *sc);
9690 static int  bxe_init_hw_common(struct bxe_softc *sc);
9691 static int  bxe_init_hw_port(struct bxe_softc *sc);
9692 static int  bxe_init_hw_func(struct bxe_softc *sc);
9693 static void bxe_reset_common(struct bxe_softc *sc);
9694 static void bxe_reset_port(struct bxe_softc *sc);
9695 static void bxe_reset_func(struct bxe_softc *sc);
9696 static int  bxe_gunzip_init(struct bxe_softc *sc);
9697 static void bxe_gunzip_end(struct bxe_softc *sc);
9698 static int  bxe_init_firmware(struct bxe_softc *sc);
9699 static void bxe_release_firmware(struct bxe_softc *sc);
9700 
9701 static struct
9702 ecore_func_sp_drv_ops bxe_func_sp_drv = {
9703     .init_hw_cmn_chip = bxe_init_hw_common_chip,
9704     .init_hw_cmn      = bxe_init_hw_common,
9705     .init_hw_port     = bxe_init_hw_port,
9706     .init_hw_func     = bxe_init_hw_func,
9707 
9708     .reset_hw_cmn     = bxe_reset_common,
9709     .reset_hw_port    = bxe_reset_port,
9710     .reset_hw_func    = bxe_reset_func,
9711 
9712     .gunzip_init      = bxe_gunzip_init,
9713     .gunzip_end       = bxe_gunzip_end,
9714 
9715     .init_fw          = bxe_init_firmware,
9716     .release_fw       = bxe_release_firmware,
9717 };
9718 
9719 static void
9720 bxe_init_func_obj(struct bxe_softc *sc)
9721 {
9722     sc->dmae_ready = 0;
9723 
9724     ecore_init_func_obj(sc,
9725                         &sc->func_obj,
9726                         BXE_SP(sc, func_rdata),
9727                         BXE_SP_MAPPING(sc, func_rdata),
9728                         BXE_SP(sc, func_afex_rdata),
9729                         BXE_SP_MAPPING(sc, func_afex_rdata),
9730                         &bxe_func_sp_drv);
9731 }
9732 
9733 static int
9734 bxe_init_hw(struct bxe_softc *sc,
9735             uint32_t         load_code)
9736 {
9737     struct ecore_func_state_params func_params = { NULL };
9738     int rc;
9739 
9740     /* prepare the parameters for function state transitions */
9741     bit_set(&func_params.ramrod_flags, RAMROD_COMP_WAIT);
9742 
9743     func_params.f_obj = &sc->func_obj;
9744     func_params.cmd = ECORE_F_CMD_HW_INIT;
9745 
9746     func_params.params.hw_init.load_phase = load_code;
9747 
9748     /*
9749      * Via a plethora of function pointers, we will eventually reach
9750      * bxe_init_hw_common(), bxe_init_hw_port(), or bxe_init_hw_func().
9751      */
9752     rc = ecore_func_state_change(sc, &func_params);
9753 
9754     return (rc);
9755 }
9756 
9757 static void
9758 bxe_fill(struct bxe_softc *sc,
9759          uint32_t         addr,
9760          int              fill,
9761          uint32_t         len)
9762 {
9763     uint32_t i;
9764 
9765     if (!(len % 4) && !(addr % 4)) {
9766         for (i = 0; i < len; i += 4) {
9767             REG_WR(sc, (addr + i), fill);
9768         }
9769     } else {
9770         for (i = 0; i < len; i++) {
9771             REG_WR8(sc, (addr + i), fill);
9772         }
9773     }
9774 }
9775 
9776 /* writes FP SP data to FW - data_size in dwords */
9777 static void
9778 bxe_wr_fp_sb_data(struct bxe_softc *sc,
9779                   int              fw_sb_id,
9780                   uint32_t         *sb_data_p,
9781                   uint32_t         data_size)
9782 {
9783     int index;
9784 
9785     for (index = 0; index < data_size; index++) {
9786         REG_WR(sc,
9787                (BAR_CSTRORM_INTMEM +
9788                 CSTORM_STATUS_BLOCK_DATA_OFFSET(fw_sb_id) +
9789                 (sizeof(uint32_t) * index)),
9790                *(sb_data_p + index));
9791     }
9792 }
9793 
9794 static void
9795 bxe_zero_fp_sb(struct bxe_softc *sc,
9796                int              fw_sb_id)
9797 {
9798     struct hc_status_block_data_e2 sb_data_e2;
9799     struct hc_status_block_data_e1x sb_data_e1x;
9800     uint32_t *sb_data_p;
9801     uint32_t data_size = 0;
9802 
9803     if (!CHIP_IS_E1x(sc)) {
9804         memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2));
9805         sb_data_e2.common.state = SB_DISABLED;
9806         sb_data_e2.common.p_func.vf_valid = FALSE;
9807         sb_data_p = (uint32_t *)&sb_data_e2;
9808         data_size = (sizeof(struct hc_status_block_data_e2) /
9809                      sizeof(uint32_t));
9810     } else {
9811         memset(&sb_data_e1x, 0, sizeof(struct hc_status_block_data_e1x));
9812         sb_data_e1x.common.state = SB_DISABLED;
9813         sb_data_e1x.common.p_func.vf_valid = FALSE;
9814         sb_data_p = (uint32_t *)&sb_data_e1x;
9815         data_size = (sizeof(struct hc_status_block_data_e1x) /
9816                      sizeof(uint32_t));
9817     }
9818 
9819     bxe_wr_fp_sb_data(sc, fw_sb_id, sb_data_p, data_size);
9820 
9821     bxe_fill(sc, (BAR_CSTRORM_INTMEM + CSTORM_STATUS_BLOCK_OFFSET(fw_sb_id)),
9822              0, CSTORM_STATUS_BLOCK_SIZE);
9823     bxe_fill(sc, (BAR_CSTRORM_INTMEM + CSTORM_SYNC_BLOCK_OFFSET(fw_sb_id)),
9824              0, CSTORM_SYNC_BLOCK_SIZE);
9825 }
9826 
9827 static void
9828 bxe_wr_sp_sb_data(struct bxe_softc               *sc,
9829                   struct hc_sp_status_block_data *sp_sb_data)
9830 {
9831     int i;
9832 
9833     for (i = 0;
9834          i < (sizeof(struct hc_sp_status_block_data) / sizeof(uint32_t));
9835          i++) {
9836         REG_WR(sc,
9837                (BAR_CSTRORM_INTMEM +
9838                 CSTORM_SP_STATUS_BLOCK_DATA_OFFSET(SC_FUNC(sc)) +
9839                 (i * sizeof(uint32_t))),
9840                *((uint32_t *)sp_sb_data + i));
9841     }
9842 }
9843 
9844 static void
9845 bxe_zero_sp_sb(struct bxe_softc *sc)
9846 {
9847     struct hc_sp_status_block_data sp_sb_data;
9848 
9849     memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data));
9850 
9851     sp_sb_data.state           = SB_DISABLED;
9852     sp_sb_data.p_func.vf_valid = FALSE;
9853 
9854     bxe_wr_sp_sb_data(sc, &sp_sb_data);
9855 
9856     bxe_fill(sc,
9857              (BAR_CSTRORM_INTMEM +
9858               CSTORM_SP_STATUS_BLOCK_OFFSET(SC_FUNC(sc))),
9859               0, CSTORM_SP_STATUS_BLOCK_SIZE);
9860     bxe_fill(sc,
9861              (BAR_CSTRORM_INTMEM +
9862               CSTORM_SP_SYNC_BLOCK_OFFSET(SC_FUNC(sc))),
9863               0, CSTORM_SP_SYNC_BLOCK_SIZE);
9864 }
9865 
9866 static void
9867 bxe_setup_ndsb_state_machine(struct hc_status_block_sm *hc_sm,
9868                              int                       igu_sb_id,
9869                              int                       igu_seg_id)
9870 {
9871     hc_sm->igu_sb_id      = igu_sb_id;
9872     hc_sm->igu_seg_id     = igu_seg_id;
9873     hc_sm->timer_value    = 0xFF;
9874     hc_sm->time_to_expire = 0xFFFFFFFF;
9875 }
9876 
9877 static void
9878 bxe_map_sb_state_machines(struct hc_index_data *index_data)
9879 {
9880     /* zero out state machine indices */
9881 
9882     /* rx indices */
9883     index_data[HC_INDEX_ETH_RX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID;
9884 
9885     /* tx indices */
9886     index_data[HC_INDEX_OOO_TX_CQ_CONS].flags      &= ~HC_INDEX_DATA_SM_ID;
9887     index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags &= ~HC_INDEX_DATA_SM_ID;
9888     index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags &= ~HC_INDEX_DATA_SM_ID;
9889     index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags &= ~HC_INDEX_DATA_SM_ID;
9890 
9891     /* map indices */
9892 
9893     /* rx indices */
9894     index_data[HC_INDEX_ETH_RX_CQ_CONS].flags |=
9895         (SM_RX_ID << HC_INDEX_DATA_SM_ID_SHIFT);
9896 
9897     /* tx indices */
9898     index_data[HC_INDEX_OOO_TX_CQ_CONS].flags |=
9899         (SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT);
9900     index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags |=
9901         (SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT);
9902     index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags |=
9903         (SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT);
9904     index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags |=
9905         (SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT);
9906 }
9907 
9908 static void
9909 bxe_init_sb(struct bxe_softc *sc,
9910             bus_addr_t       busaddr,
9911             int              vfid,
9912             uint8_t          vf_valid,
9913             int              fw_sb_id,
9914             int              igu_sb_id)
9915 {
9916     struct hc_status_block_data_e2  sb_data_e2;
9917     struct hc_status_block_data_e1x sb_data_e1x;
9918     struct hc_status_block_sm       *hc_sm_p;
9919     uint32_t *sb_data_p;
9920     int igu_seg_id;
9921     int data_size;
9922 
9923     if (CHIP_INT_MODE_IS_BC(sc)) {
9924         igu_seg_id = HC_SEG_ACCESS_NORM;
9925     } else {
9926         igu_seg_id = IGU_SEG_ACCESS_NORM;
9927     }
9928 
9929     bxe_zero_fp_sb(sc, fw_sb_id);
9930 
9931     if (!CHIP_IS_E1x(sc)) {
9932         memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2));
9933         sb_data_e2.common.state = SB_ENABLED;
9934         sb_data_e2.common.p_func.pf_id = SC_FUNC(sc);
9935         sb_data_e2.common.p_func.vf_id = vfid;
9936         sb_data_e2.common.p_func.vf_valid = vf_valid;
9937         sb_data_e2.common.p_func.vnic_id = SC_VN(sc);
9938         sb_data_e2.common.same_igu_sb_1b = TRUE;
9939         sb_data_e2.common.host_sb_addr.hi = U64_HI(busaddr);
9940         sb_data_e2.common.host_sb_addr.lo = U64_LO(busaddr);
9941         hc_sm_p = sb_data_e2.common.state_machine;
9942         sb_data_p = (uint32_t *)&sb_data_e2;
9943         data_size = (sizeof(struct hc_status_block_data_e2) /
9944                      sizeof(uint32_t));
9945         bxe_map_sb_state_machines(sb_data_e2.index_data);
9946     } else {
9947         memset(&sb_data_e1x, 0, sizeof(struct hc_status_block_data_e1x));
9948         sb_data_e1x.common.state = SB_ENABLED;
9949         sb_data_e1x.common.p_func.pf_id = SC_FUNC(sc);
9950         sb_data_e1x.common.p_func.vf_id = 0xff;
9951         sb_data_e1x.common.p_func.vf_valid = FALSE;
9952         sb_data_e1x.common.p_func.vnic_id = SC_VN(sc);
9953         sb_data_e1x.common.same_igu_sb_1b = TRUE;
9954         sb_data_e1x.common.host_sb_addr.hi = U64_HI(busaddr);
9955         sb_data_e1x.common.host_sb_addr.lo = U64_LO(busaddr);
9956         hc_sm_p = sb_data_e1x.common.state_machine;
9957         sb_data_p = (uint32_t *)&sb_data_e1x;
9958         data_size = (sizeof(struct hc_status_block_data_e1x) /
9959                      sizeof(uint32_t));
9960         bxe_map_sb_state_machines(sb_data_e1x.index_data);
9961     }
9962 
9963     bxe_setup_ndsb_state_machine(&hc_sm_p[SM_RX_ID], igu_sb_id, igu_seg_id);
9964     bxe_setup_ndsb_state_machine(&hc_sm_p[SM_TX_ID], igu_sb_id, igu_seg_id);
9965 
9966     BLOGD(sc, DBG_LOAD, "Init FW SB %d\n", fw_sb_id);
9967 
9968     /* write indices to HW - PCI guarantees endianity of regpairs */
9969     bxe_wr_fp_sb_data(sc, fw_sb_id, sb_data_p, data_size);
9970 }
9971 
9972 static inline uint8_t
9973 bxe_fp_qzone_id(struct bxe_fastpath *fp)
9974 {
9975     if (CHIP_IS_E1x(fp->sc)) {
9976         return (fp->cl_id + SC_PORT(fp->sc) * ETH_MAX_RX_CLIENTS_E1H);
9977     } else {
9978         return (fp->cl_id);
9979     }
9980 }
9981 
9982 static inline uint32_t
9983 bxe_rx_ustorm_prods_offset(struct bxe_softc    *sc,
9984                            struct bxe_fastpath *fp)
9985 {
9986     uint32_t offset = BAR_USTRORM_INTMEM;
9987 
9988 #if 0
9989     if (IS_VF(sc)) {
9990         return (PXP_VF_ADDR_USDM_QUEUES_START +
9991                 (sc->acquire_resp.resc.hw_qid[fp->index] *
9992                  sizeof(struct ustorm_queue_zone_data)));
9993     } else
9994 #endif
9995     if (!CHIP_IS_E1x(sc)) {
9996         offset += USTORM_RX_PRODS_E2_OFFSET(fp->cl_qzone_id);
9997     } else {
9998         offset += USTORM_RX_PRODS_E1X_OFFSET(SC_PORT(sc), fp->cl_id);
9999     }
10000 
10001     return (offset);
10002 }
10003 
10004 static void
10005 bxe_init_eth_fp(struct bxe_softc *sc,
10006                 int              idx)
10007 {
10008     struct bxe_fastpath *fp = &sc->fp[idx];
10009     uint32_t cids[ECORE_MULTI_TX_COS] = { 0 };
10010     unsigned long q_type = 0;
10011     int cos;
10012 
10013     fp->sc    = sc;
10014     fp->index = idx;
10015 
10016     snprintf(fp->tx_mtx_name, sizeof(fp->tx_mtx_name),
10017              "bxe%d_fp%d_tx_lock", sc->unit, idx);
10018     mtx_init(&fp->tx_mtx, fp->tx_mtx_name, NULL, MTX_DEF);
10019 
10020     snprintf(fp->rx_mtx_name, sizeof(fp->rx_mtx_name),
10021              "bxe%d_fp%d_rx_lock", sc->unit, idx);
10022     mtx_init(&fp->rx_mtx, fp->rx_mtx_name, NULL, MTX_DEF);
10023 
10024     fp->igu_sb_id = (sc->igu_base_sb + idx + CNIC_SUPPORT(sc));
10025     fp->fw_sb_id = (sc->base_fw_ndsb + idx + CNIC_SUPPORT(sc));
10026 
10027     fp->cl_id = (CHIP_IS_E1x(sc)) ?
10028                     (SC_L_ID(sc) + idx) :
10029                     /* want client ID same as IGU SB ID for non-E1 */
10030                     fp->igu_sb_id;
10031     fp->cl_qzone_id = bxe_fp_qzone_id(fp);
10032 
10033     /* setup sb indices */
10034     if (!CHIP_IS_E1x(sc)) {
10035         fp->sb_index_values  = fp->status_block.e2_sb->sb.index_values;
10036         fp->sb_running_index = fp->status_block.e2_sb->sb.running_index;
10037     } else {
10038         fp->sb_index_values  = fp->status_block.e1x_sb->sb.index_values;
10039         fp->sb_running_index = fp->status_block.e1x_sb->sb.running_index;
10040     }
10041 
10042     /* init shortcut */
10043     fp->ustorm_rx_prods_offset = bxe_rx_ustorm_prods_offset(sc, fp);
10044 
10045     fp->rx_cq_cons_sb = &fp->sb_index_values[HC_INDEX_ETH_RX_CQ_CONS];
10046 
10047     /*
10048      * XXX If multiple CoS is ever supported then each fastpath structure
10049      * will need to maintain tx producer/consumer/dma/etc values *per* CoS.
10050      */
10051     for (cos = 0; cos < sc->max_cos; cos++) {
10052         cids[cos] = idx;
10053     }
10054     fp->tx_cons_sb = &fp->sb_index_values[HC_INDEX_ETH_TX_CQ_CONS_COS0];
10055 
10056     /* nothing more for a VF to do */
10057     if (IS_VF(sc)) {
10058         return;
10059     }
10060 
10061     bxe_init_sb(sc, fp->sb_dma.paddr, BXE_VF_ID_INVALID, FALSE,
10062                 fp->fw_sb_id, fp->igu_sb_id);
10063 
10064     bxe_update_fp_sb_idx(fp);
10065 
10066     /* Configure Queue State object */
10067     bit_set(&q_type, ECORE_Q_TYPE_HAS_RX);
10068     bit_set(&q_type, ECORE_Q_TYPE_HAS_TX);
10069 
10070     ecore_init_queue_obj(sc,
10071                          &sc->sp_objs[idx].q_obj,
10072                          fp->cl_id,
10073                          cids,
10074                          sc->max_cos,
10075                          SC_FUNC(sc),
10076                          BXE_SP(sc, q_rdata),
10077                          BXE_SP_MAPPING(sc, q_rdata),
10078                          q_type);
10079 
10080     /* configure classification DBs */
10081     ecore_init_mac_obj(sc,
10082                        &sc->sp_objs[idx].mac_obj,
10083                        fp->cl_id,
10084                        idx,
10085                        SC_FUNC(sc),
10086                        BXE_SP(sc, mac_rdata),
10087                        BXE_SP_MAPPING(sc, mac_rdata),
10088                        ECORE_FILTER_MAC_PENDING,
10089                        &sc->sp_state,
10090                        ECORE_OBJ_TYPE_RX_TX,
10091                        &sc->macs_pool);
10092 
10093     BLOGD(sc, DBG_LOAD, "fp[%d]: sb=%p cl_id=%d fw_sb=%d igu_sb=%d\n",
10094           idx, fp->status_block.e2_sb, fp->cl_id, fp->fw_sb_id, fp->igu_sb_id);
10095 }
10096 
10097 static inline void
10098 bxe_update_rx_prod(struct bxe_softc    *sc,
10099                    struct bxe_fastpath *fp,
10100                    uint16_t            rx_bd_prod,
10101                    uint16_t            rx_cq_prod,
10102                    uint16_t            rx_sge_prod)
10103 {
10104     struct ustorm_eth_rx_producers rx_prods = { 0 };
10105     uint32_t i;
10106 
10107     /* update producers */
10108     rx_prods.bd_prod  = rx_bd_prod;
10109     rx_prods.cqe_prod = rx_cq_prod;
10110     rx_prods.sge_prod = rx_sge_prod;
10111 
10112     /*
10113      * Make sure that the BD and SGE data is updated before updating the
10114      * producers since FW might read the BD/SGE right after the producer
10115      * is updated.
10116      * This is only applicable for weak-ordered memory model archs such
10117      * as IA-64. The following barrier is also mandatory since FW will
10118      * assumes BDs must have buffers.
10119      */
10120     wmb();
10121 
10122     for (i = 0; i < (sizeof(rx_prods) / 4); i++) {
10123         REG_WR(sc,
10124                (fp->ustorm_rx_prods_offset + (i * 4)),
10125                ((uint32_t *)&rx_prods)[i]);
10126     }
10127 
10128     wmb(); /* keep prod updates ordered */
10129 
10130     BLOGD(sc, DBG_RX,
10131           "RX fp[%d]: wrote prods bd_prod=%u cqe_prod=%u sge_prod=%u\n",
10132           fp->index, rx_bd_prod, rx_cq_prod, rx_sge_prod);
10133 }
10134 
10135 static void
10136 bxe_init_rx_rings(struct bxe_softc *sc)
10137 {
10138     struct bxe_fastpath *fp;
10139     int i;
10140 
10141     for (i = 0; i < sc->num_queues; i++) {
10142         fp = &sc->fp[i];
10143 
10144         fp->rx_bd_cons = 0;
10145 
10146         /*
10147          * Activate the BD ring...
10148          * Warning, this will generate an interrupt (to the TSTORM)
10149          * so this can only be done after the chip is initialized
10150          */
10151         bxe_update_rx_prod(sc, fp,
10152                            fp->rx_bd_prod,
10153                            fp->rx_cq_prod,
10154                            fp->rx_sge_prod);
10155 
10156         if (i != 0) {
10157             continue;
10158         }
10159 
10160         if (CHIP_IS_E1(sc)) {
10161             REG_WR(sc,
10162                    (BAR_USTRORM_INTMEM +
10163                     USTORM_MEM_WORKAROUND_ADDRESS_OFFSET(SC_FUNC(sc))),
10164                    U64_LO(fp->rcq_dma.paddr));
10165             REG_WR(sc,
10166                    (BAR_USTRORM_INTMEM +
10167                     USTORM_MEM_WORKAROUND_ADDRESS_OFFSET(SC_FUNC(sc)) + 4),
10168                    U64_HI(fp->rcq_dma.paddr));
10169         }
10170     }
10171 }
10172 
10173 static void
10174 bxe_init_tx_ring_one(struct bxe_fastpath *fp)
10175 {
10176     SET_FLAG(fp->tx_db.data.header.header, DOORBELL_HDR_DB_TYPE, 1);
10177     fp->tx_db.data.zero_fill1 = 0;
10178     fp->tx_db.data.prod = 0;
10179 
10180     fp->tx_pkt_prod = 0;
10181     fp->tx_pkt_cons = 0;
10182     fp->tx_bd_prod = 0;
10183     fp->tx_bd_cons = 0;
10184     fp->eth_q_stats.tx_pkts = 0;
10185 }
10186 
10187 static inline void
10188 bxe_init_tx_rings(struct bxe_softc *sc)
10189 {
10190     int i;
10191 
10192     for (i = 0; i < sc->num_queues; i++) {
10193 #if 0
10194         uint8_t cos;
10195         for (cos = 0; cos < sc->max_cos; cos++) {
10196             bxe_init_tx_ring_one(&sc->fp[i].txdata[cos]);
10197         }
10198 #else
10199         bxe_init_tx_ring_one(&sc->fp[i]);
10200 #endif
10201     }
10202 }
10203 
10204 static void
10205 bxe_init_def_sb(struct bxe_softc *sc)
10206 {
10207     struct host_sp_status_block *def_sb = sc->def_sb;
10208     bus_addr_t mapping = sc->def_sb_dma.paddr;
10209     int igu_sp_sb_index;
10210     int igu_seg_id;
10211     int port = SC_PORT(sc);
10212     int func = SC_FUNC(sc);
10213     int reg_offset, reg_offset_en5;
10214     uint64_t section;
10215     int index, sindex;
10216     struct hc_sp_status_block_data sp_sb_data;
10217 
10218     memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data));
10219 
10220     if (CHIP_INT_MODE_IS_BC(sc)) {
10221         igu_sp_sb_index = DEF_SB_IGU_ID;
10222         igu_seg_id = HC_SEG_ACCESS_DEF;
10223     } else {
10224         igu_sp_sb_index = sc->igu_dsb_id;
10225         igu_seg_id = IGU_SEG_ACCESS_DEF;
10226     }
10227 
10228     /* attentions */
10229     section = ((uint64_t)mapping +
10230                offsetof(struct host_sp_status_block, atten_status_block));
10231     def_sb->atten_status_block.status_block_id = igu_sp_sb_index;
10232     sc->attn_state = 0;
10233 
10234     reg_offset = (port) ?
10235                      MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
10236                      MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0;
10237     reg_offset_en5 = (port) ?
10238                          MISC_REG_AEU_ENABLE5_FUNC_1_OUT_0 :
10239                          MISC_REG_AEU_ENABLE5_FUNC_0_OUT_0;
10240 
10241     for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) {
10242         /* take care of sig[0]..sig[4] */
10243         for (sindex = 0; sindex < 4; sindex++) {
10244             sc->attn_group[index].sig[sindex] =
10245                 REG_RD(sc, (reg_offset + (sindex * 0x4) + (0x10 * index)));
10246         }
10247 
10248         if (!CHIP_IS_E1x(sc)) {
10249             /*
10250              * enable5 is separate from the rest of the registers,
10251              * and the address skip is 4 and not 16 between the
10252              * different groups
10253              */
10254             sc->attn_group[index].sig[4] =
10255                 REG_RD(sc, (reg_offset_en5 + (0x4 * index)));
10256         } else {
10257             sc->attn_group[index].sig[4] = 0;
10258         }
10259     }
10260 
10261     if (sc->devinfo.int_block == INT_BLOCK_HC) {
10262         reg_offset = (port) ?
10263                          HC_REG_ATTN_MSG1_ADDR_L :
10264                          HC_REG_ATTN_MSG0_ADDR_L;
10265         REG_WR(sc, reg_offset, U64_LO(section));
10266         REG_WR(sc, (reg_offset + 4), U64_HI(section));
10267     } else if (!CHIP_IS_E1x(sc)) {
10268         REG_WR(sc, IGU_REG_ATTN_MSG_ADDR_L, U64_LO(section));
10269         REG_WR(sc, IGU_REG_ATTN_MSG_ADDR_H, U64_HI(section));
10270     }
10271 
10272     section = ((uint64_t)mapping +
10273                offsetof(struct host_sp_status_block, sp_sb));
10274 
10275     bxe_zero_sp_sb(sc);
10276 
10277     /* PCI guarantees endianity of regpair */
10278     sp_sb_data.state           = SB_ENABLED;
10279     sp_sb_data.host_sb_addr.lo = U64_LO(section);
10280     sp_sb_data.host_sb_addr.hi = U64_HI(section);
10281     sp_sb_data.igu_sb_id       = igu_sp_sb_index;
10282     sp_sb_data.igu_seg_id      = igu_seg_id;
10283     sp_sb_data.p_func.pf_id    = func;
10284     sp_sb_data.p_func.vnic_id  = SC_VN(sc);
10285     sp_sb_data.p_func.vf_id    = 0xff;
10286 
10287     bxe_wr_sp_sb_data(sc, &sp_sb_data);
10288 
10289     bxe_ack_sb(sc, sc->igu_dsb_id, USTORM_ID, 0, IGU_INT_ENABLE, 0);
10290 }
10291 
10292 static void
10293 bxe_init_sp_ring(struct bxe_softc *sc)
10294 {
10295     atomic_store_rel_long(&sc->cq_spq_left, MAX_SPQ_PENDING);
10296     sc->spq_prod_idx = 0;
10297     sc->dsb_sp_prod = &sc->def_sb->sp_sb.index_values[HC_SP_INDEX_ETH_DEF_CONS];
10298     sc->spq_prod_bd = sc->spq;
10299     sc->spq_last_bd = (sc->spq_prod_bd + MAX_SP_DESC_CNT);
10300 }
10301 
10302 static void
10303 bxe_init_eq_ring(struct bxe_softc *sc)
10304 {
10305     union event_ring_elem *elem;
10306     int i;
10307 
10308     for (i = 1; i <= NUM_EQ_PAGES; i++) {
10309         elem = &sc->eq[EQ_DESC_CNT_PAGE * i - 1];
10310 
10311         elem->next_page.addr.hi = htole32(U64_HI(sc->eq_dma.paddr +
10312                                                  BCM_PAGE_SIZE *
10313                                                  (i % NUM_EQ_PAGES)));
10314         elem->next_page.addr.lo = htole32(U64_LO(sc->eq_dma.paddr +
10315                                                  BCM_PAGE_SIZE *
10316                                                  (i % NUM_EQ_PAGES)));
10317     }
10318 
10319     sc->eq_cons    = 0;
10320     sc->eq_prod    = NUM_EQ_DESC;
10321     sc->eq_cons_sb = &sc->def_sb->sp_sb.index_values[HC_SP_INDEX_EQ_CONS];
10322 
10323     atomic_store_rel_long(&sc->eq_spq_left,
10324                           (min((MAX_SP_DESC_CNT - MAX_SPQ_PENDING),
10325                                NUM_EQ_DESC) - 1));
10326 }
10327 
10328 static void
10329 bxe_init_internal_common(struct bxe_softc *sc)
10330 {
10331     int i;
10332 
10333     if (IS_MF_SI(sc)) {
10334         /*
10335          * In switch independent mode, the TSTORM needs to accept
10336          * packets that failed classification, since approximate match
10337          * mac addresses aren't written to NIG LLH.
10338          */
10339         REG_WR8(sc,
10340                 (BAR_TSTRORM_INTMEM + TSTORM_ACCEPT_CLASSIFY_FAILED_OFFSET),
10341                 2);
10342     } else if (!CHIP_IS_E1(sc)) { /* 57710 doesn't support MF */
10343         REG_WR8(sc,
10344                 (BAR_TSTRORM_INTMEM + TSTORM_ACCEPT_CLASSIFY_FAILED_OFFSET),
10345                 0);
10346     }
10347 
10348     /*
10349      * Zero this manually as its initialization is currently missing
10350      * in the initTool.
10351      */
10352     for (i = 0; i < (USTORM_AGG_DATA_SIZE >> 2); i++) {
10353         REG_WR(sc,
10354                (BAR_USTRORM_INTMEM + USTORM_AGG_DATA_OFFSET + (i * 4)),
10355                0);
10356     }
10357 
10358     if (!CHIP_IS_E1x(sc)) {
10359         REG_WR8(sc, (BAR_CSTRORM_INTMEM + CSTORM_IGU_MODE_OFFSET),
10360                 CHIP_INT_MODE_IS_BC(sc) ? HC_IGU_BC_MODE : HC_IGU_NBC_MODE);
10361     }
10362 }
10363 
10364 static void
10365 bxe_init_internal(struct bxe_softc *sc,
10366                   uint32_t         load_code)
10367 {
10368     switch (load_code) {
10369     case FW_MSG_CODE_DRV_LOAD_COMMON:
10370     case FW_MSG_CODE_DRV_LOAD_COMMON_CHIP:
10371         bxe_init_internal_common(sc);
10372         /* no break */
10373 
10374     case FW_MSG_CODE_DRV_LOAD_PORT:
10375         /* nothing to do */
10376         /* no break */
10377 
10378     case FW_MSG_CODE_DRV_LOAD_FUNCTION:
10379         /* internal memory per function is initialized inside bxe_pf_init */
10380         break;
10381 
10382     default:
10383         BLOGE(sc, "Unknown load_code (0x%x) from MCP\n", load_code);
10384         break;
10385     }
10386 }
10387 
10388 static void
10389 storm_memset_func_cfg(struct bxe_softc                         *sc,
10390                       struct tstorm_eth_function_common_config *tcfg,
10391                       uint16_t                                  abs_fid)
10392 {
10393     uint32_t addr;
10394     size_t size;
10395 
10396     addr = (BAR_TSTRORM_INTMEM +
10397             TSTORM_FUNCTION_COMMON_CONFIG_OFFSET(abs_fid));
10398     size = sizeof(struct tstorm_eth_function_common_config);
10399     ecore_storm_memset_struct(sc, addr, size, (uint32_t *)tcfg);
10400 }
10401 
10402 static void
10403 bxe_func_init(struct bxe_softc            *sc,
10404               struct bxe_func_init_params *p)
10405 {
10406     struct tstorm_eth_function_common_config tcfg = { 0 };
10407 
10408     if (CHIP_IS_E1x(sc)) {
10409         storm_memset_func_cfg(sc, &tcfg, p->func_id);
10410     }
10411 
10412     /* Enable the function in the FW */
10413     storm_memset_vf_to_pf(sc, p->func_id, p->pf_id);
10414     storm_memset_func_en(sc, p->func_id, 1);
10415 
10416     /* spq */
10417     if (p->func_flgs & FUNC_FLG_SPQ) {
10418         storm_memset_spq_addr(sc, p->spq_map, p->func_id);
10419         REG_WR(sc,
10420                (XSEM_REG_FAST_MEMORY + XSTORM_SPQ_PROD_OFFSET(p->func_id)),
10421                p->spq_prod);
10422     }
10423 }
10424 
10425 /*
10426  * Calculates the sum of vn_min_rates.
10427  * It's needed for further normalizing of the min_rates.
10428  * Returns:
10429  *   sum of vn_min_rates.
10430  *     or
10431  *   0 - if all the min_rates are 0.
10432  * In the later case fainess algorithm should be deactivated.
10433  * If all min rates are not zero then those that are zeroes will be set to 1.
10434  */
10435 static void
10436 bxe_calc_vn_min(struct bxe_softc       *sc,
10437                 struct cmng_init_input *input)
10438 {
10439     uint32_t vn_cfg;
10440     uint32_t vn_min_rate;
10441     int all_zero = 1;
10442     int vn;
10443 
10444     for (vn = VN_0; vn < SC_MAX_VN_NUM(sc); vn++) {
10445         vn_cfg = sc->devinfo.mf_info.mf_config[vn];
10446         vn_min_rate = (((vn_cfg & FUNC_MF_CFG_MIN_BW_MASK) >>
10447                         FUNC_MF_CFG_MIN_BW_SHIFT) * 100);
10448 
10449         if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE) {
10450             /* skip hidden VNs */
10451             vn_min_rate = 0;
10452         } else if (!vn_min_rate) {
10453             /* If min rate is zero - set it to 100 */
10454             vn_min_rate = DEF_MIN_RATE;
10455         } else {
10456             all_zero = 0;
10457         }
10458 
10459         input->vnic_min_rate[vn] = vn_min_rate;
10460     }
10461 
10462     /* if ETS or all min rates are zeros - disable fairness */
10463     if (BXE_IS_ETS_ENABLED(sc)) {
10464         input->flags.cmng_enables &= ~CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
10465         BLOGD(sc, DBG_LOAD, "Fairness disabled (ETS)\n");
10466     } else if (all_zero) {
10467         input->flags.cmng_enables &= ~CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
10468         BLOGD(sc, DBG_LOAD,
10469               "Fariness disabled (all MIN values are zeroes)\n");
10470     } else {
10471         input->flags.cmng_enables |= CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
10472     }
10473 }
10474 
10475 static inline uint16_t
10476 bxe_extract_max_cfg(struct bxe_softc *sc,
10477                     uint32_t         mf_cfg)
10478 {
10479     uint16_t max_cfg = ((mf_cfg & FUNC_MF_CFG_MAX_BW_MASK) >>
10480                         FUNC_MF_CFG_MAX_BW_SHIFT);
10481 
10482     if (!max_cfg) {
10483         BLOGD(sc, DBG_LOAD, "Max BW configured to 0 - using 100 instead\n");
10484         max_cfg = 100;
10485     }
10486 
10487     return (max_cfg);
10488 }
10489 
10490 static void
10491 bxe_calc_vn_max(struct bxe_softc       *sc,
10492                 int                    vn,
10493                 struct cmng_init_input *input)
10494 {
10495     uint16_t vn_max_rate;
10496     uint32_t vn_cfg = sc->devinfo.mf_info.mf_config[vn];
10497     uint32_t max_cfg;
10498 
10499     if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE) {
10500         vn_max_rate = 0;
10501     } else {
10502         max_cfg = bxe_extract_max_cfg(sc, vn_cfg);
10503 
10504         if (IS_MF_SI(sc)) {
10505             /* max_cfg in percents of linkspeed */
10506             vn_max_rate = ((sc->link_vars.line_speed * max_cfg) / 100);
10507         } else { /* SD modes */
10508             /* max_cfg is absolute in 100Mb units */
10509             vn_max_rate = (max_cfg * 100);
10510         }
10511     }
10512 
10513     BLOGD(sc, DBG_LOAD, "vn %d: vn_max_rate %d\n", vn, vn_max_rate);
10514 
10515     input->vnic_max_rate[vn] = vn_max_rate;
10516 }
10517 
10518 static void
10519 bxe_cmng_fns_init(struct bxe_softc *sc,
10520                   uint8_t          read_cfg,
10521                   uint8_t          cmng_type)
10522 {
10523     struct cmng_init_input input;
10524     int vn;
10525 
10526     memset(&input, 0, sizeof(struct cmng_init_input));
10527 
10528     input.port_rate = sc->link_vars.line_speed;
10529 
10530     if (cmng_type == CMNG_FNS_MINMAX) {
10531         /* read mf conf from shmem */
10532         if (read_cfg) {
10533             bxe_read_mf_cfg(sc);
10534         }
10535 
10536         /* get VN min rate and enable fairness if not 0 */
10537         bxe_calc_vn_min(sc, &input);
10538 
10539         /* get VN max rate */
10540         if (sc->port.pmf) {
10541             for (vn = VN_0; vn < SC_MAX_VN_NUM(sc); vn++) {
10542                 bxe_calc_vn_max(sc, vn, &input);
10543             }
10544         }
10545 
10546         /* always enable rate shaping and fairness */
10547         input.flags.cmng_enables |= CMNG_FLAGS_PER_PORT_RATE_SHAPING_VN;
10548 
10549         ecore_init_cmng(&input, &sc->cmng);
10550         return;
10551     }
10552 
10553     /* rate shaping and fairness are disabled */
10554     BLOGD(sc, DBG_LOAD, "rate shaping and fairness have been disabled\n");
10555 }
10556 
10557 static int
10558 bxe_get_cmng_fns_mode(struct bxe_softc *sc)
10559 {
10560     if (CHIP_REV_IS_SLOW(sc)) {
10561         return (CMNG_FNS_NONE);
10562     }
10563 
10564     if (IS_MF(sc)) {
10565         return (CMNG_FNS_MINMAX);
10566     }
10567 
10568     return (CMNG_FNS_NONE);
10569 }
10570 
10571 static void
10572 storm_memset_cmng(struct bxe_softc *sc,
10573                   struct cmng_init *cmng,
10574                   uint8_t          port)
10575 {
10576     int vn;
10577     int func;
10578     uint32_t addr;
10579     size_t size;
10580 
10581     addr = (BAR_XSTRORM_INTMEM +
10582             XSTORM_CMNG_PER_PORT_VARS_OFFSET(port));
10583     size = sizeof(struct cmng_struct_per_port);
10584     ecore_storm_memset_struct(sc, addr, size, (uint32_t *)&cmng->port);
10585 
10586     for (vn = VN_0; vn < SC_MAX_VN_NUM(sc); vn++) {
10587         func = func_by_vn(sc, vn);
10588 
10589         addr = (BAR_XSTRORM_INTMEM +
10590                 XSTORM_RATE_SHAPING_PER_VN_VARS_OFFSET(func));
10591         size = sizeof(struct rate_shaping_vars_per_vn);
10592         ecore_storm_memset_struct(sc, addr, size,
10593                                   (uint32_t *)&cmng->vnic.vnic_max_rate[vn]);
10594 
10595         addr = (BAR_XSTRORM_INTMEM +
10596                 XSTORM_FAIRNESS_PER_VN_VARS_OFFSET(func));
10597         size = sizeof(struct fairness_vars_per_vn);
10598         ecore_storm_memset_struct(sc, addr, size,
10599                                   (uint32_t *)&cmng->vnic.vnic_min_rate[vn]);
10600     }
10601 }
10602 
10603 static void
10604 bxe_pf_init(struct bxe_softc *sc)
10605 {
10606     struct bxe_func_init_params func_init = { 0 };
10607     struct event_ring_data eq_data = { { 0 } };
10608     uint16_t flags;
10609 
10610     if (!CHIP_IS_E1x(sc)) {
10611         /* reset IGU PF statistics: MSIX + ATTN */
10612         /* PF */
10613         REG_WR(sc,
10614                (IGU_REG_STATISTIC_NUM_MESSAGE_SENT +
10615                 (BXE_IGU_STAS_MSG_VF_CNT * 4) +
10616                 ((CHIP_IS_MODE_4_PORT(sc) ? SC_FUNC(sc) : SC_VN(sc)) * 4)),
10617                0);
10618         /* ATTN */
10619         REG_WR(sc,
10620                (IGU_REG_STATISTIC_NUM_MESSAGE_SENT +
10621                 (BXE_IGU_STAS_MSG_VF_CNT * 4) +
10622                 (BXE_IGU_STAS_MSG_PF_CNT * 4) +
10623                 ((CHIP_IS_MODE_4_PORT(sc) ? SC_FUNC(sc) : SC_VN(sc)) * 4)),
10624                0);
10625     }
10626 
10627     /* function setup flags */
10628     flags = (FUNC_FLG_STATS | FUNC_FLG_LEADING | FUNC_FLG_SPQ);
10629 
10630     /*
10631      * This flag is relevant for E1x only.
10632      * E2 doesn't have a TPA configuration in a function level.
10633      */
10634     flags |= (if_getcapenable(sc->ifp) & IFCAP_LRO) ? FUNC_FLG_TPA : 0;
10635 
10636     func_init.func_flgs = flags;
10637     func_init.pf_id     = SC_FUNC(sc);
10638     func_init.func_id   = SC_FUNC(sc);
10639     func_init.spq_map   = sc->spq_dma.paddr;
10640     func_init.spq_prod  = sc->spq_prod_idx;
10641 
10642     bxe_func_init(sc, &func_init);
10643 
10644     memset(&sc->cmng, 0, sizeof(struct cmng_struct_per_port));
10645 
10646     /*
10647      * Congestion management values depend on the link rate.
10648      * There is no active link so initial link rate is set to 10Gbps.
10649      * When the link comes up the congestion management values are
10650      * re-calculated according to the actual link rate.
10651      */
10652     sc->link_vars.line_speed = SPEED_10000;
10653     bxe_cmng_fns_init(sc, TRUE, bxe_get_cmng_fns_mode(sc));
10654 
10655     /* Only the PMF sets the HW */
10656     if (sc->port.pmf) {
10657         storm_memset_cmng(sc, &sc->cmng, SC_PORT(sc));
10658     }
10659 
10660     /* init Event Queue - PCI bus guarantees correct endainity */
10661     eq_data.base_addr.hi = U64_HI(sc->eq_dma.paddr);
10662     eq_data.base_addr.lo = U64_LO(sc->eq_dma.paddr);
10663     eq_data.producer     = sc->eq_prod;
10664     eq_data.index_id     = HC_SP_INDEX_EQ_CONS;
10665     eq_data.sb_id        = DEF_SB_ID;
10666     storm_memset_eq_data(sc, &eq_data, SC_FUNC(sc));
10667 }
10668 
10669 static void
10670 bxe_hc_int_enable(struct bxe_softc *sc)
10671 {
10672     int port = SC_PORT(sc);
10673     uint32_t addr = (port) ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0;
10674     uint32_t val = REG_RD(sc, addr);
10675     uint8_t msix = (sc->interrupt_mode == INTR_MODE_MSIX) ? TRUE : FALSE;
10676     uint8_t single_msix = ((sc->interrupt_mode == INTR_MODE_MSIX) &&
10677                            (sc->intr_count == 1)) ? TRUE : FALSE;
10678     uint8_t msi = (sc->interrupt_mode == INTR_MODE_MSI) ? TRUE : FALSE;
10679 
10680     if (msix) {
10681         val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
10682                  HC_CONFIG_0_REG_INT_LINE_EN_0);
10683         val |= (HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
10684                 HC_CONFIG_0_REG_ATTN_BIT_EN_0);
10685         if (single_msix) {
10686             val |= HC_CONFIG_0_REG_SINGLE_ISR_EN_0;
10687         }
10688     } else if (msi) {
10689         val &= ~HC_CONFIG_0_REG_INT_LINE_EN_0;
10690         val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
10691                 HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
10692                 HC_CONFIG_0_REG_ATTN_BIT_EN_0);
10693     } else {
10694         val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
10695                 HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
10696                 HC_CONFIG_0_REG_INT_LINE_EN_0 |
10697                 HC_CONFIG_0_REG_ATTN_BIT_EN_0);
10698 
10699         if (!CHIP_IS_E1(sc)) {
10700             BLOGD(sc, DBG_INTR, "write %x to HC %d (addr 0x%x)\n",
10701                   val, port, addr);
10702 
10703             REG_WR(sc, addr, val);
10704 
10705             val &= ~HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0;
10706         }
10707     }
10708 
10709     if (CHIP_IS_E1(sc)) {
10710         REG_WR(sc, (HC_REG_INT_MASK + port*4), 0x1FFFF);
10711     }
10712 
10713     BLOGD(sc, DBG_INTR, "write %x to HC %d (addr 0x%x) mode %s\n",
10714           val, port, addr, ((msix) ? "MSI-X" : ((msi) ? "MSI" : "INTx")));
10715 
10716     REG_WR(sc, addr, val);
10717 
10718     /* ensure that HC_CONFIG is written before leading/trailing edge config */
10719     mb();
10720 
10721     if (!CHIP_IS_E1(sc)) {
10722         /* init leading/trailing edge */
10723         if (IS_MF(sc)) {
10724             val = (0xee0f | (1 << (SC_VN(sc) + 4)));
10725             if (sc->port.pmf) {
10726                 /* enable nig and gpio3 attention */
10727                 val |= 0x1100;
10728             }
10729         } else {
10730             val = 0xffff;
10731         }
10732 
10733         REG_WR(sc, (HC_REG_TRAILING_EDGE_0 + port*8), val);
10734         REG_WR(sc, (HC_REG_LEADING_EDGE_0 + port*8), val);
10735     }
10736 
10737     /* make sure that interrupts are indeed enabled from here on */
10738     mb();
10739 }
10740 
10741 static void
10742 bxe_igu_int_enable(struct bxe_softc *sc)
10743 {
10744     uint32_t val;
10745     uint8_t msix = (sc->interrupt_mode == INTR_MODE_MSIX) ? TRUE : FALSE;
10746     uint8_t single_msix = ((sc->interrupt_mode == INTR_MODE_MSIX) &&
10747                            (sc->intr_count == 1)) ? TRUE : FALSE;
10748     uint8_t msi = (sc->interrupt_mode == INTR_MODE_MSI) ? TRUE : FALSE;
10749 
10750     val = REG_RD(sc, IGU_REG_PF_CONFIGURATION);
10751 
10752     if (msix) {
10753         val &= ~(IGU_PF_CONF_INT_LINE_EN |
10754                  IGU_PF_CONF_SINGLE_ISR_EN);
10755         val |= (IGU_PF_CONF_MSI_MSIX_EN |
10756                 IGU_PF_CONF_ATTN_BIT_EN);
10757         if (single_msix) {
10758             val |= IGU_PF_CONF_SINGLE_ISR_EN;
10759         }
10760     } else if (msi) {
10761         val &= ~IGU_PF_CONF_INT_LINE_EN;
10762         val |= (IGU_PF_CONF_MSI_MSIX_EN |
10763                 IGU_PF_CONF_ATTN_BIT_EN |
10764                 IGU_PF_CONF_SINGLE_ISR_EN);
10765     } else {
10766         val &= ~IGU_PF_CONF_MSI_MSIX_EN;
10767         val |= (IGU_PF_CONF_INT_LINE_EN |
10768                 IGU_PF_CONF_ATTN_BIT_EN |
10769                 IGU_PF_CONF_SINGLE_ISR_EN);
10770     }
10771 
10772     /* clean previous status - need to configure igu prior to ack*/
10773     if ((!msix) || single_msix) {
10774         REG_WR(sc, IGU_REG_PF_CONFIGURATION, val);
10775         bxe_ack_int(sc);
10776     }
10777 
10778     val |= IGU_PF_CONF_FUNC_EN;
10779 
10780     BLOGD(sc, DBG_INTR, "write 0x%x to IGU mode %s\n",
10781           val, ((msix) ? "MSI-X" : ((msi) ? "MSI" : "INTx")));
10782 
10783     REG_WR(sc, IGU_REG_PF_CONFIGURATION, val);
10784 
10785     mb();
10786 
10787     /* init leading/trailing edge */
10788     if (IS_MF(sc)) {
10789         val = (0xee0f | (1 << (SC_VN(sc) + 4)));
10790         if (sc->port.pmf) {
10791             /* enable nig and gpio3 attention */
10792             val |= 0x1100;
10793         }
10794     } else {
10795         val = 0xffff;
10796     }
10797 
10798     REG_WR(sc, IGU_REG_TRAILING_EDGE_LATCH, val);
10799     REG_WR(sc, IGU_REG_LEADING_EDGE_LATCH, val);
10800 
10801     /* make sure that interrupts are indeed enabled from here on */
10802     mb();
10803 }
10804 
10805 static void
10806 bxe_int_enable(struct bxe_softc *sc)
10807 {
10808     if (sc->devinfo.int_block == INT_BLOCK_HC) {
10809         bxe_hc_int_enable(sc);
10810     } else {
10811         bxe_igu_int_enable(sc);
10812     }
10813 }
10814 
10815 static void
10816 bxe_hc_int_disable(struct bxe_softc *sc)
10817 {
10818     int port = SC_PORT(sc);
10819     uint32_t addr = (port) ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0;
10820     uint32_t val = REG_RD(sc, addr);
10821 
10822     /*
10823      * In E1 we must use only PCI configuration space to disable MSI/MSIX
10824      * capablility. It's forbidden to disable IGU_PF_CONF_MSI_MSIX_EN in HC
10825      * block
10826      */
10827     if (CHIP_IS_E1(sc)) {
10828         /*
10829          * Since IGU_PF_CONF_MSI_MSIX_EN still always on use mask register
10830          * to prevent from HC sending interrupts after we exit the function
10831          */
10832         REG_WR(sc, (HC_REG_INT_MASK + port*4), 0);
10833 
10834         val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
10835                  HC_CONFIG_0_REG_INT_LINE_EN_0 |
10836                  HC_CONFIG_0_REG_ATTN_BIT_EN_0);
10837     } else {
10838         val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
10839                  HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
10840                  HC_CONFIG_0_REG_INT_LINE_EN_0 |
10841                  HC_CONFIG_0_REG_ATTN_BIT_EN_0);
10842     }
10843 
10844     BLOGD(sc, DBG_INTR, "write %x to HC %d (addr 0x%x)\n", val, port, addr);
10845 
10846     /* flush all outstanding writes */
10847     mb();
10848 
10849     REG_WR(sc, addr, val);
10850     if (REG_RD(sc, addr) != val) {
10851         BLOGE(sc, "proper val not read from HC IGU!\n");
10852     }
10853 }
10854 
10855 static void
10856 bxe_igu_int_disable(struct bxe_softc *sc)
10857 {
10858     uint32_t val = REG_RD(sc, IGU_REG_PF_CONFIGURATION);
10859 
10860     val &= ~(IGU_PF_CONF_MSI_MSIX_EN |
10861              IGU_PF_CONF_INT_LINE_EN |
10862              IGU_PF_CONF_ATTN_BIT_EN);
10863 
10864     BLOGD(sc, DBG_INTR, "write %x to IGU\n", val);
10865 
10866     /* flush all outstanding writes */
10867     mb();
10868 
10869     REG_WR(sc, IGU_REG_PF_CONFIGURATION, val);
10870     if (REG_RD(sc, IGU_REG_PF_CONFIGURATION) != val) {
10871         BLOGE(sc, "proper val not read from IGU!\n");
10872     }
10873 }
10874 
10875 static void
10876 bxe_int_disable(struct bxe_softc *sc)
10877 {
10878     if (sc->devinfo.int_block == INT_BLOCK_HC) {
10879         bxe_hc_int_disable(sc);
10880     } else {
10881         bxe_igu_int_disable(sc);
10882     }
10883 }
10884 
10885 static void
10886 bxe_nic_init(struct bxe_softc *sc,
10887              int              load_code)
10888 {
10889     int i;
10890 
10891     for (i = 0; i < sc->num_queues; i++) {
10892         bxe_init_eth_fp(sc, i);
10893     }
10894 
10895     rmb(); /* ensure status block indices were read */
10896 
10897     bxe_init_rx_rings(sc);
10898     bxe_init_tx_rings(sc);
10899 
10900     if (IS_VF(sc)) {
10901         return;
10902     }
10903 
10904     /* initialize MOD_ABS interrupts */
10905     elink_init_mod_abs_int(sc, &sc->link_vars,
10906                            sc->devinfo.chip_id,
10907                            sc->devinfo.shmem_base,
10908                            sc->devinfo.shmem2_base,
10909                            SC_PORT(sc));
10910 
10911     bxe_init_def_sb(sc);
10912     bxe_update_dsb_idx(sc);
10913     bxe_init_sp_ring(sc);
10914     bxe_init_eq_ring(sc);
10915     bxe_init_internal(sc, load_code);
10916     bxe_pf_init(sc);
10917     bxe_stats_init(sc);
10918 
10919     /* flush all before enabling interrupts */
10920     mb();
10921 
10922     bxe_int_enable(sc);
10923 
10924     /* check for SPIO5 */
10925     bxe_attn_int_deasserted0(sc,
10926                              REG_RD(sc,
10927                                     (MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 +
10928                                      SC_PORT(sc)*4)) &
10929                              AEU_INPUTS_ATTN_BITS_SPIO5);
10930 }
10931 
10932 static inline void
10933 bxe_init_objs(struct bxe_softc *sc)
10934 {
10935     /* mcast rules must be added to tx if tx switching is enabled */
10936     ecore_obj_type o_type =
10937         (sc->flags & BXE_TX_SWITCHING) ? ECORE_OBJ_TYPE_RX_TX :
10938                                          ECORE_OBJ_TYPE_RX;
10939 
10940     /* RX_MODE controlling object */
10941     ecore_init_rx_mode_obj(sc, &sc->rx_mode_obj);
10942 
10943     /* multicast configuration controlling object */
10944     ecore_init_mcast_obj(sc,
10945                          &sc->mcast_obj,
10946                          sc->fp[0].cl_id,
10947                          sc->fp[0].index,
10948                          SC_FUNC(sc),
10949                          SC_FUNC(sc),
10950                          BXE_SP(sc, mcast_rdata),
10951                          BXE_SP_MAPPING(sc, mcast_rdata),
10952                          ECORE_FILTER_MCAST_PENDING,
10953                          &sc->sp_state,
10954                          o_type);
10955 
10956     /* Setup CAM credit pools */
10957     ecore_init_mac_credit_pool(sc,
10958                                &sc->macs_pool,
10959                                SC_FUNC(sc),
10960                                CHIP_IS_E1x(sc) ? VNICS_PER_PORT(sc) :
10961                                                  VNICS_PER_PATH(sc));
10962 
10963     ecore_init_vlan_credit_pool(sc,
10964                                 &sc->vlans_pool,
10965                                 SC_ABS_FUNC(sc) >> 1,
10966                                 CHIP_IS_E1x(sc) ? VNICS_PER_PORT(sc) :
10967                                                   VNICS_PER_PATH(sc));
10968 
10969     /* RSS configuration object */
10970     ecore_init_rss_config_obj(sc,
10971                               &sc->rss_conf_obj,
10972                               sc->fp[0].cl_id,
10973                               sc->fp[0].index,
10974                               SC_FUNC(sc),
10975                               SC_FUNC(sc),
10976                               BXE_SP(sc, rss_rdata),
10977                               BXE_SP_MAPPING(sc, rss_rdata),
10978                               ECORE_FILTER_RSS_CONF_PENDING,
10979                               &sc->sp_state, ECORE_OBJ_TYPE_RX);
10980 }
10981 
10982 /*
10983  * Initialize the function. This must be called before sending CLIENT_SETUP
10984  * for the first client.
10985  */
10986 static inline int
10987 bxe_func_start(struct bxe_softc *sc)
10988 {
10989     struct ecore_func_state_params func_params = { NULL };
10990     struct ecore_func_start_params *start_params = &func_params.params.start;
10991 
10992     /* Prepare parameters for function state transitions */
10993     bit_set(&func_params.ramrod_flags, RAMROD_COMP_WAIT);
10994 
10995     func_params.f_obj = &sc->func_obj;
10996     func_params.cmd = ECORE_F_CMD_START;
10997 
10998     /* Function parameters */
10999     start_params->mf_mode     = sc->devinfo.mf_info.mf_mode;
11000     start_params->sd_vlan_tag = OVLAN(sc);
11001 
11002     if (CHIP_IS_E2(sc) || CHIP_IS_E3(sc)) {
11003         start_params->network_cos_mode = STATIC_COS;
11004     } else { /* CHIP_IS_E1X */
11005         start_params->network_cos_mode = FW_WRR;
11006     }
11007 
11008     start_params->gre_tunnel_mode = 0;
11009     start_params->gre_tunnel_rss  = 0;
11010 
11011     return (ecore_func_state_change(sc, &func_params));
11012 }
11013 
11014 static int
11015 bxe_set_power_state(struct bxe_softc *sc,
11016                     uint8_t          state)
11017 {
11018     uint16_t pmcsr;
11019 
11020     /* If there is no power capability, silently succeed */
11021     if (!(sc->devinfo.pcie_cap_flags & BXE_PM_CAPABLE_FLAG)) {
11022         BLOGW(sc, "No power capability\n");
11023         return (0);
11024     }
11025 
11026     pmcsr = pci_read_config(sc->dev,
11027                             (sc->devinfo.pcie_pm_cap_reg + PCIR_POWER_STATUS),
11028                             2);
11029 
11030     switch (state) {
11031     case PCI_PM_D0:
11032         pci_write_config(sc->dev,
11033                          (sc->devinfo.pcie_pm_cap_reg + PCIR_POWER_STATUS),
11034                          ((pmcsr & ~PCIM_PSTAT_DMASK) | PCIM_PSTAT_PME), 2);
11035 
11036         if (pmcsr & PCIM_PSTAT_DMASK) {
11037             /* delay required during transition out of D3hot */
11038             DELAY(20000);
11039         }
11040 
11041         break;
11042 
11043     case PCI_PM_D3hot:
11044         /* XXX if there are other clients above don't shut down the power */
11045 
11046         /* don't shut down the power for emulation and FPGA */
11047         if (CHIP_REV_IS_SLOW(sc)) {
11048             return (0);
11049         }
11050 
11051         pmcsr &= ~PCIM_PSTAT_DMASK;
11052         pmcsr |= PCIM_PSTAT_D3;
11053 
11054         if (sc->wol) {
11055             pmcsr |= PCIM_PSTAT_PMEENABLE;
11056         }
11057 
11058         pci_write_config(sc->dev,
11059                          (sc->devinfo.pcie_pm_cap_reg + PCIR_POWER_STATUS),
11060                          pmcsr, 4);
11061 
11062         /*
11063          * No more memory access after this point until device is brought back
11064          * to D0 state.
11065          */
11066         break;
11067 
11068     default:
11069         BLOGE(sc, "Can't support PCI power state = %d\n", state);
11070         return (-1);
11071     }
11072 
11073     return (0);
11074 }
11075 
11076 
11077 /* return true if succeeded to acquire the lock */
11078 static uint8_t
11079 bxe_trylock_hw_lock(struct bxe_softc *sc,
11080                     uint32_t         resource)
11081 {
11082     uint32_t lock_status;
11083     uint32_t resource_bit = (1 << resource);
11084     int func = SC_FUNC(sc);
11085     uint32_t hw_lock_control_reg;
11086 
11087     BLOGD(sc, DBG_LOAD, "Trying to take a resource lock 0x%x\n", resource);
11088 
11089     /* Validating that the resource is within range */
11090     if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
11091         BLOGD(sc, DBG_LOAD,
11092               "resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
11093               resource, HW_LOCK_MAX_RESOURCE_VALUE);
11094         return (FALSE);
11095     }
11096 
11097     if (func <= 5) {
11098         hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
11099     } else {
11100         hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
11101     }
11102 
11103     /* try to acquire the lock */
11104     REG_WR(sc, hw_lock_control_reg + 4, resource_bit);
11105     lock_status = REG_RD(sc, hw_lock_control_reg);
11106     if (lock_status & resource_bit) {
11107         return (TRUE);
11108     }
11109 
11110     BLOGE(sc, "Failed to get a resource lock 0x%x\n", resource);
11111 
11112     return (FALSE);
11113 }
11114 
11115 /*
11116  * Get the recovery leader resource id according to the engine this function
11117  * belongs to. Currently only only 2 engines is supported.
11118  */
11119 static int
11120 bxe_get_leader_lock_resource(struct bxe_softc *sc)
11121 {
11122     if (SC_PATH(sc)) {
11123         return (HW_LOCK_RESOURCE_RECOVERY_LEADER_1);
11124     } else {
11125         return (HW_LOCK_RESOURCE_RECOVERY_LEADER_0);
11126     }
11127 }
11128 
11129 /* try to acquire a leader lock for current engine */
11130 static uint8_t
11131 bxe_trylock_leader_lock(struct bxe_softc *sc)
11132 {
11133     return (bxe_trylock_hw_lock(sc, bxe_get_leader_lock_resource(sc)));
11134 }
11135 
11136 static int
11137 bxe_release_leader_lock(struct bxe_softc *sc)
11138 {
11139     return (bxe_release_hw_lock(sc, bxe_get_leader_lock_resource(sc)));
11140 }
11141 
11142 /* close gates #2, #3 and #4 */
11143 static void
11144 bxe_set_234_gates(struct bxe_softc *sc,
11145                   uint8_t          close)
11146 {
11147     uint32_t val;
11148 
11149     /* gates #2 and #4a are closed/opened for "not E1" only */
11150     if (!CHIP_IS_E1(sc)) {
11151         /* #4 */
11152         REG_WR(sc, PXP_REG_HST_DISCARD_DOORBELLS, !!close);
11153         /* #2 */
11154         REG_WR(sc, PXP_REG_HST_DISCARD_INTERNAL_WRITES, !!close);
11155     }
11156 
11157     /* #3 */
11158     if (CHIP_IS_E1x(sc)) {
11159         /* prevent interrupts from HC on both ports */
11160         val = REG_RD(sc, HC_REG_CONFIG_1);
11161         REG_WR(sc, HC_REG_CONFIG_1,
11162                (!close) ? (val | HC_CONFIG_1_REG_BLOCK_DISABLE_1) :
11163                (val & ~(uint32_t)HC_CONFIG_1_REG_BLOCK_DISABLE_1));
11164 
11165         val = REG_RD(sc, HC_REG_CONFIG_0);
11166         REG_WR(sc, HC_REG_CONFIG_0,
11167                (!close) ? (val | HC_CONFIG_0_REG_BLOCK_DISABLE_0) :
11168                (val & ~(uint32_t)HC_CONFIG_0_REG_BLOCK_DISABLE_0));
11169     } else {
11170         /* Prevent incomming interrupts in IGU */
11171         val = REG_RD(sc, IGU_REG_BLOCK_CONFIGURATION);
11172 
11173         REG_WR(sc, IGU_REG_BLOCK_CONFIGURATION,
11174                (!close) ?
11175                (val | IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE) :
11176                (val & ~(uint32_t)IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE));
11177     }
11178 
11179     BLOGD(sc, DBG_LOAD, "%s gates #2, #3 and #4\n",
11180           close ? "closing" : "opening");
11181 
11182     wmb();
11183 }
11184 
11185 /* poll for pending writes bit, it should get cleared in no more than 1s */
11186 static int
11187 bxe_er_poll_igu_vq(struct bxe_softc *sc)
11188 {
11189     uint32_t cnt = 1000;
11190     uint32_t pend_bits = 0;
11191 
11192     do {
11193         pend_bits = REG_RD(sc, IGU_REG_PENDING_BITS_STATUS);
11194 
11195         if (pend_bits == 0) {
11196             break;
11197         }
11198 
11199         DELAY(1000);
11200     } while (--cnt > 0);
11201 
11202     if (cnt == 0) {
11203         BLOGE(sc, "Still pending IGU requests bits=0x%08x!\n", pend_bits);
11204         return (-1);
11205     }
11206 
11207     return (0);
11208 }
11209 
11210 #define SHARED_MF_CLP_MAGIC  0x80000000 /* 'magic' bit */
11211 
11212 static void
11213 bxe_clp_reset_prep(struct bxe_softc *sc,
11214                    uint32_t         *magic_val)
11215 {
11216     /* Do some magic... */
11217     uint32_t val = MFCFG_RD(sc, shared_mf_config.clp_mb);
11218     *magic_val = val & SHARED_MF_CLP_MAGIC;
11219     MFCFG_WR(sc, shared_mf_config.clp_mb, val | SHARED_MF_CLP_MAGIC);
11220 }
11221 
11222 /* restore the value of the 'magic' bit */
11223 static void
11224 bxe_clp_reset_done(struct bxe_softc *sc,
11225                    uint32_t         magic_val)
11226 {
11227     /* Restore the 'magic' bit value... */
11228     uint32_t val = MFCFG_RD(sc, shared_mf_config.clp_mb);
11229     MFCFG_WR(sc, shared_mf_config.clp_mb,
11230               (val & (~SHARED_MF_CLP_MAGIC)) | magic_val);
11231 }
11232 
11233 /* prepare for MCP reset, takes care of CLP configurations */
11234 static void
11235 bxe_reset_mcp_prep(struct bxe_softc *sc,
11236                    uint32_t         *magic_val)
11237 {
11238     uint32_t shmem;
11239     uint32_t validity_offset;
11240 
11241     /* set `magic' bit in order to save MF config */
11242     if (!CHIP_IS_E1(sc)) {
11243         bxe_clp_reset_prep(sc, magic_val);
11244     }
11245 
11246     /* get shmem offset */
11247     shmem = REG_RD(sc, MISC_REG_SHARED_MEM_ADDR);
11248     validity_offset =
11249         offsetof(struct shmem_region, validity_map[SC_PORT(sc)]);
11250 
11251     /* Clear validity map flags */
11252     if (shmem > 0) {
11253         REG_WR(sc, shmem + validity_offset, 0);
11254     }
11255 }
11256 
11257 #define MCP_TIMEOUT      5000   /* 5 seconds (in ms) */
11258 #define MCP_ONE_TIMEOUT  100    /* 100 ms */
11259 
11260 static void
11261 bxe_mcp_wait_one(struct bxe_softc *sc)
11262 {
11263     /* special handling for emulation and FPGA (10 times longer) */
11264     if (CHIP_REV_IS_SLOW(sc)) {
11265         DELAY((MCP_ONE_TIMEOUT*10) * 1000);
11266     } else {
11267         DELAY((MCP_ONE_TIMEOUT) * 1000);
11268     }
11269 }
11270 
11271 /* initialize shmem_base and waits for validity signature to appear */
11272 static int
11273 bxe_init_shmem(struct bxe_softc *sc)
11274 {
11275     int cnt = 0;
11276     uint32_t val = 0;
11277 
11278     do {
11279         sc->devinfo.shmem_base     =
11280         sc->link_params.shmem_base =
11281             REG_RD(sc, MISC_REG_SHARED_MEM_ADDR);
11282 
11283         if (sc->devinfo.shmem_base) {
11284             val = SHMEM_RD(sc, validity_map[SC_PORT(sc)]);
11285             if (val & SHR_MEM_VALIDITY_MB)
11286                 return (0);
11287         }
11288 
11289         bxe_mcp_wait_one(sc);
11290 
11291     } while (cnt++ < (MCP_TIMEOUT / MCP_ONE_TIMEOUT));
11292 
11293     BLOGE(sc, "BAD MCP validity signature\n");
11294 
11295     return (-1);
11296 }
11297 
11298 static int
11299 bxe_reset_mcp_comp(struct bxe_softc *sc,
11300                    uint32_t         magic_val)
11301 {
11302     int rc = bxe_init_shmem(sc);
11303 
11304     /* Restore the `magic' bit value */
11305     if (!CHIP_IS_E1(sc)) {
11306         bxe_clp_reset_done(sc, magic_val);
11307     }
11308 
11309     return (rc);
11310 }
11311 
11312 static void
11313 bxe_pxp_prep(struct bxe_softc *sc)
11314 {
11315     if (!CHIP_IS_E1(sc)) {
11316         REG_WR(sc, PXP2_REG_RD_START_INIT, 0);
11317         REG_WR(sc, PXP2_REG_RQ_RBC_DONE, 0);
11318         wmb();
11319     }
11320 }
11321 
11322 /*
11323  * Reset the whole chip except for:
11324  *      - PCIE core
11325  *      - PCI Glue, PSWHST, PXP/PXP2 RF (all controlled by one reset bit)
11326  *      - IGU
11327  *      - MISC (including AEU)
11328  *      - GRC
11329  *      - RBCN, RBCP
11330  */
11331 static void
11332 bxe_process_kill_chip_reset(struct bxe_softc *sc,
11333                             uint8_t          global)
11334 {
11335     uint32_t not_reset_mask1, reset_mask1, not_reset_mask2, reset_mask2;
11336     uint32_t global_bits2, stay_reset2;
11337 
11338     /*
11339      * Bits that have to be set in reset_mask2 if we want to reset 'global'
11340      * (per chip) blocks.
11341      */
11342     global_bits2 =
11343         MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CPU |
11344         MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CORE;
11345 
11346     /*
11347      * Don't reset the following blocks.
11348      * Important: per port blocks (such as EMAC, BMAC, UMAC) can't be
11349      *            reset, as in 4 port device they might still be owned
11350      *            by the MCP (there is only one leader per path).
11351      */
11352     not_reset_mask1 =
11353         MISC_REGISTERS_RESET_REG_1_RST_HC |
11354         MISC_REGISTERS_RESET_REG_1_RST_PXPV |
11355         MISC_REGISTERS_RESET_REG_1_RST_PXP;
11356 
11357     not_reset_mask2 =
11358         MISC_REGISTERS_RESET_REG_2_RST_PCI_MDIO |
11359         MISC_REGISTERS_RESET_REG_2_RST_EMAC0_HARD_CORE |
11360         MISC_REGISTERS_RESET_REG_2_RST_EMAC1_HARD_CORE |
11361         MISC_REGISTERS_RESET_REG_2_RST_MISC_CORE |
11362         MISC_REGISTERS_RESET_REG_2_RST_RBCN |
11363         MISC_REGISTERS_RESET_REG_2_RST_GRC  |
11364         MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_REG_HARD_CORE |
11365         MISC_REGISTERS_RESET_REG_2_RST_MCP_N_HARD_CORE_RST_B |
11366         MISC_REGISTERS_RESET_REG_2_RST_ATC |
11367         MISC_REGISTERS_RESET_REG_2_PGLC |
11368         MISC_REGISTERS_RESET_REG_2_RST_BMAC0 |
11369         MISC_REGISTERS_RESET_REG_2_RST_BMAC1 |
11370         MISC_REGISTERS_RESET_REG_2_RST_EMAC0 |
11371         MISC_REGISTERS_RESET_REG_2_RST_EMAC1 |
11372         MISC_REGISTERS_RESET_REG_2_UMAC0 |
11373         MISC_REGISTERS_RESET_REG_2_UMAC1;
11374 
11375     /*
11376      * Keep the following blocks in reset:
11377      *  - all xxMACs are handled by the elink code.
11378      */
11379     stay_reset2 =
11380         MISC_REGISTERS_RESET_REG_2_XMAC |
11381         MISC_REGISTERS_RESET_REG_2_XMAC_SOFT;
11382 
11383     /* Full reset masks according to the chip */
11384     reset_mask1 = 0xffffffff;
11385 
11386     if (CHIP_IS_E1(sc))
11387         reset_mask2 = 0xffff;
11388     else if (CHIP_IS_E1H(sc))
11389         reset_mask2 = 0x1ffff;
11390     else if (CHIP_IS_E2(sc))
11391         reset_mask2 = 0xfffff;
11392     else /* CHIP_IS_E3 */
11393         reset_mask2 = 0x3ffffff;
11394 
11395     /* Don't reset global blocks unless we need to */
11396     if (!global)
11397         reset_mask2 &= ~global_bits2;
11398 
11399     /*
11400      * In case of attention in the QM, we need to reset PXP
11401      * (MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR) before QM
11402      * because otherwise QM reset would release 'close the gates' shortly
11403      * before resetting the PXP, then the PSWRQ would send a write
11404      * request to PGLUE. Then when PXP is reset, PGLUE would try to
11405      * read the payload data from PSWWR, but PSWWR would not
11406      * respond. The write queue in PGLUE would stuck, dmae commands
11407      * would not return. Therefore it's important to reset the second
11408      * reset register (containing the
11409      * MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR bit) before the
11410      * first one (containing the MISC_REGISTERS_RESET_REG_1_RST_QM
11411      * bit).
11412      */
11413     REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR,
11414            reset_mask2 & (~not_reset_mask2));
11415 
11416     REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
11417            reset_mask1 & (~not_reset_mask1));
11418 
11419     mb();
11420     wmb();
11421 
11422     REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET,
11423            reset_mask2 & (~stay_reset2));
11424 
11425     mb();
11426     wmb();
11427 
11428     REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, reset_mask1);
11429     wmb();
11430 }
11431 
11432 static int
11433 bxe_process_kill(struct bxe_softc *sc,
11434                  uint8_t          global)
11435 {
11436     int cnt = 1000;
11437     uint32_t val = 0;
11438     uint32_t sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1, pgl_exp_rom2;
11439     uint32_t tags_63_32 = 0;
11440 
11441     /* Empty the Tetris buffer, wait for 1s */
11442     do {
11443         sr_cnt  = REG_RD(sc, PXP2_REG_RD_SR_CNT);
11444         blk_cnt = REG_RD(sc, PXP2_REG_RD_BLK_CNT);
11445         port_is_idle_0 = REG_RD(sc, PXP2_REG_RD_PORT_IS_IDLE_0);
11446         port_is_idle_1 = REG_RD(sc, PXP2_REG_RD_PORT_IS_IDLE_1);
11447         pgl_exp_rom2 = REG_RD(sc, PXP2_REG_PGL_EXP_ROM2);
11448         if (CHIP_IS_E3(sc)) {
11449             tags_63_32 = REG_RD(sc, PGLUE_B_REG_TAGS_63_32);
11450         }
11451 
11452         if ((sr_cnt == 0x7e) && (blk_cnt == 0xa0) &&
11453             ((port_is_idle_0 & 0x1) == 0x1) &&
11454             ((port_is_idle_1 & 0x1) == 0x1) &&
11455             (pgl_exp_rom2 == 0xffffffff) &&
11456             (!CHIP_IS_E3(sc) || (tags_63_32 == 0xffffffff)))
11457             break;
11458         DELAY(1000);
11459     } while (cnt-- > 0);
11460 
11461     if (cnt <= 0) {
11462         BLOGE(sc, "ERROR: Tetris buffer didn't get empty or there "
11463                   "are still outstanding read requests after 1s! "
11464                   "sr_cnt=0x%08x, blk_cnt=0x%08x, port_is_idle_0=0x%08x, "
11465                   "port_is_idle_1=0x%08x, pgl_exp_rom2=0x%08x\n",
11466               sr_cnt, blk_cnt, port_is_idle_0,
11467               port_is_idle_1, pgl_exp_rom2);
11468         return (-1);
11469     }
11470 
11471     mb();
11472 
11473     /* Close gates #2, #3 and #4 */
11474     bxe_set_234_gates(sc, TRUE);
11475 
11476     /* Poll for IGU VQs for 57712 and newer chips */
11477     if (!CHIP_IS_E1x(sc) && bxe_er_poll_igu_vq(sc)) {
11478         return (-1);
11479     }
11480 
11481     /* XXX indicate that "process kill" is in progress to MCP */
11482 
11483     /* clear "unprepared" bit */
11484     REG_WR(sc, MISC_REG_UNPREPARED, 0);
11485     mb();
11486 
11487     /* Make sure all is written to the chip before the reset */
11488     wmb();
11489 
11490     /*
11491      * Wait for 1ms to empty GLUE and PCI-E core queues,
11492      * PSWHST, GRC and PSWRD Tetris buffer.
11493      */
11494     DELAY(1000);
11495 
11496     /* Prepare to chip reset: */
11497     /* MCP */
11498     if (global) {
11499         bxe_reset_mcp_prep(sc, &val);
11500     }
11501 
11502     /* PXP */
11503     bxe_pxp_prep(sc);
11504     mb();
11505 
11506     /* reset the chip */
11507     bxe_process_kill_chip_reset(sc, global);
11508     mb();
11509 
11510     /* clear errors in PGB */
11511     if (!CHIP_IS_E1(sc))
11512         REG_WR(sc, PGLUE_B_REG_LATCHED_ERRORS_CLR, 0x7f);
11513 
11514     /* Recover after reset: */
11515     /* MCP */
11516     if (global && bxe_reset_mcp_comp(sc, val)) {
11517         return (-1);
11518     }
11519 
11520     /* XXX add resetting the NO_MCP mode DB here */
11521 
11522     /* Open the gates #2, #3 and #4 */
11523     bxe_set_234_gates(sc, FALSE);
11524 
11525     /* XXX
11526      * IGU/AEU preparation bring back the AEU/IGU to a reset state
11527      * re-enable attentions
11528      */
11529 
11530     return (0);
11531 }
11532 
11533 static int
11534 bxe_leader_reset(struct bxe_softc *sc)
11535 {
11536     int rc = 0;
11537     uint8_t global = bxe_reset_is_global(sc);
11538     uint32_t load_code;
11539 
11540     /*
11541      * If not going to reset MCP, load "fake" driver to reset HW while
11542      * driver is owner of the HW.
11543      */
11544     if (!global && !BXE_NOMCP(sc)) {
11545         load_code = bxe_fw_command(sc, DRV_MSG_CODE_LOAD_REQ,
11546                                    DRV_MSG_CODE_LOAD_REQ_WITH_LFA);
11547         if (!load_code) {
11548             BLOGE(sc, "MCP response failure, aborting\n");
11549             rc = -1;
11550             goto exit_leader_reset;
11551         }
11552 
11553         if ((load_code != FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) &&
11554             (load_code != FW_MSG_CODE_DRV_LOAD_COMMON)) {
11555             BLOGE(sc, "MCP unexpected response, aborting\n");
11556             rc = -1;
11557             goto exit_leader_reset2;
11558         }
11559 
11560         load_code = bxe_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0);
11561         if (!load_code) {
11562             BLOGE(sc, "MCP response failure, aborting\n");
11563             rc = -1;
11564             goto exit_leader_reset2;
11565         }
11566     }
11567 
11568     /* try to recover after the failure */
11569     if (bxe_process_kill(sc, global)) {
11570         BLOGE(sc, "Something bad occurred on engine %d!\n", SC_PATH(sc));
11571         rc = -1;
11572         goto exit_leader_reset2;
11573     }
11574 
11575     /*
11576      * Clear the RESET_IN_PROGRESS and RESET_GLOBAL bits and update the driver
11577      * state.
11578      */
11579     bxe_set_reset_done(sc);
11580     if (global) {
11581         bxe_clear_reset_global(sc);
11582     }
11583 
11584 exit_leader_reset2:
11585 
11586     /* unload "fake driver" if it was loaded */
11587     if (!global && !BXE_NOMCP(sc)) {
11588         bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP, 0);
11589         bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_DONE, 0);
11590     }
11591 
11592 exit_leader_reset:
11593 
11594     sc->is_leader = 0;
11595     bxe_release_leader_lock(sc);
11596 
11597     mb();
11598     return (rc);
11599 }
11600 
11601 /*
11602  * prepare INIT transition, parameters configured:
11603  *   - HC configuration
11604  *   - Queue's CDU context
11605  */
11606 static void
11607 bxe_pf_q_prep_init(struct bxe_softc               *sc,
11608                    struct bxe_fastpath            *fp,
11609                    struct ecore_queue_init_params *init_params)
11610 {
11611     uint8_t cos;
11612     int cxt_index, cxt_offset;
11613 
11614     bxe_set_bit(ECORE_Q_FLG_HC, &init_params->rx.flags);
11615     bxe_set_bit(ECORE_Q_FLG_HC, &init_params->tx.flags);
11616 
11617     bxe_set_bit(ECORE_Q_FLG_HC_EN, &init_params->rx.flags);
11618     bxe_set_bit(ECORE_Q_FLG_HC_EN, &init_params->tx.flags);
11619 
11620     /* HC rate */
11621     init_params->rx.hc_rate =
11622         sc->hc_rx_ticks ? (1000000 / sc->hc_rx_ticks) : 0;
11623     init_params->tx.hc_rate =
11624         sc->hc_tx_ticks ? (1000000 / sc->hc_tx_ticks) : 0;
11625 
11626     /* FW SB ID */
11627     init_params->rx.fw_sb_id = init_params->tx.fw_sb_id = fp->fw_sb_id;
11628 
11629     /* CQ index among the SB indices */
11630     init_params->rx.sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS;
11631     init_params->tx.sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS;
11632 
11633     /* set maximum number of COSs supported by this queue */
11634     init_params->max_cos = sc->max_cos;
11635 
11636     BLOGD(sc, DBG_LOAD, "fp %d setting queue params max cos to %d\n",
11637           fp->index, init_params->max_cos);
11638 
11639     /* set the context pointers queue object */
11640     for (cos = FIRST_TX_COS_INDEX; cos < init_params->max_cos; cos++) {
11641         /* XXX change index/cid here if ever support multiple tx CoS */
11642         /* fp->txdata[cos]->cid */
11643         cxt_index = fp->index / ILT_PAGE_CIDS;
11644         cxt_offset = fp->index - (cxt_index * ILT_PAGE_CIDS);
11645         init_params->cxts[cos] = &sc->context[cxt_index].vcxt[cxt_offset].eth;
11646     }
11647 }
11648 
11649 /* set flags that are common for the Tx-only and not normal connections */
11650 static unsigned long
11651 bxe_get_common_flags(struct bxe_softc    *sc,
11652                      struct bxe_fastpath *fp,
11653                      uint8_t             zero_stats)
11654 {
11655     unsigned long flags = 0;
11656 
11657     /* PF driver will always initialize the Queue to an ACTIVE state */
11658     bxe_set_bit(ECORE_Q_FLG_ACTIVE, &flags);
11659 
11660     /*
11661      * tx only connections collect statistics (on the same index as the
11662      * parent connection). The statistics are zeroed when the parent
11663      * connection is initialized.
11664      */
11665 
11666     bxe_set_bit(ECORE_Q_FLG_STATS, &flags);
11667     if (zero_stats) {
11668         bxe_set_bit(ECORE_Q_FLG_ZERO_STATS, &flags);
11669     }
11670 
11671     /*
11672      * tx only connections can support tx-switching, though their
11673      * CoS-ness doesn't survive the loopback
11674      */
11675     if (sc->flags & BXE_TX_SWITCHING) {
11676         bxe_set_bit(ECORE_Q_FLG_TX_SWITCH, &flags);
11677     }
11678 
11679     bxe_set_bit(ECORE_Q_FLG_PCSUM_ON_PKT, &flags);
11680 
11681     return (flags);
11682 }
11683 
11684 static unsigned long
11685 bxe_get_q_flags(struct bxe_softc    *sc,
11686                 struct bxe_fastpath *fp,
11687                 uint8_t             leading)
11688 {
11689     unsigned long flags = 0;
11690 
11691     if (IS_MF_SD(sc)) {
11692         bxe_set_bit(ECORE_Q_FLG_OV, &flags);
11693     }
11694 
11695     if (if_getcapenable(sc->ifp) & IFCAP_LRO) {
11696         bxe_set_bit(ECORE_Q_FLG_TPA, &flags);
11697         bxe_set_bit(ECORE_Q_FLG_TPA_IPV6, &flags);
11698 #if 0
11699         if (fp->mode == TPA_MODE_GRO)
11700             __set_bit(ECORE_Q_FLG_TPA_GRO, &flags);
11701 #endif
11702     }
11703 
11704     if (leading) {
11705         bxe_set_bit(ECORE_Q_FLG_LEADING_RSS, &flags);
11706         bxe_set_bit(ECORE_Q_FLG_MCAST, &flags);
11707     }
11708 
11709     bxe_set_bit(ECORE_Q_FLG_VLAN, &flags);
11710 
11711 #if 0
11712     /* configure silent vlan removal */
11713     if (IS_MF_AFEX(sc)) {
11714         bxe_set_bit(ECORE_Q_FLG_SILENT_VLAN_REM, &flags);
11715     }
11716 #endif
11717 
11718     /* merge with common flags */
11719     return (flags | bxe_get_common_flags(sc, fp, TRUE));
11720 }
11721 
11722 static void
11723 bxe_pf_q_prep_general(struct bxe_softc                  *sc,
11724                       struct bxe_fastpath               *fp,
11725                       struct ecore_general_setup_params *gen_init,
11726                       uint8_t                           cos)
11727 {
11728     gen_init->stat_id = bxe_stats_id(fp);
11729     gen_init->spcl_id = fp->cl_id;
11730     gen_init->mtu = sc->mtu;
11731     gen_init->cos = cos;
11732 }
11733 
11734 static void
11735 bxe_pf_rx_q_prep(struct bxe_softc              *sc,
11736                  struct bxe_fastpath           *fp,
11737                  struct rxq_pause_params       *pause,
11738                  struct ecore_rxq_setup_params *rxq_init)
11739 {
11740     uint8_t max_sge = 0;
11741     uint16_t sge_sz = 0;
11742     uint16_t tpa_agg_size = 0;
11743 
11744     pause->sge_th_lo = SGE_TH_LO(sc);
11745     pause->sge_th_hi = SGE_TH_HI(sc);
11746 
11747     /* validate SGE ring has enough to cross high threshold */
11748     if (sc->dropless_fc &&
11749             (pause->sge_th_hi + FW_PREFETCH_CNT) >
11750             (RX_SGE_USABLE_PER_PAGE * RX_SGE_NUM_PAGES)) {
11751         BLOGW(sc, "sge ring threshold limit\n");
11752     }
11753 
11754     /* minimum max_aggregation_size is 2*MTU (two full buffers) */
11755     tpa_agg_size = (2 * sc->mtu);
11756     if (tpa_agg_size < sc->max_aggregation_size) {
11757         tpa_agg_size = sc->max_aggregation_size;
11758     }
11759 
11760     max_sge = SGE_PAGE_ALIGN(sc->mtu) >> SGE_PAGE_SHIFT;
11761     max_sge = ((max_sge + PAGES_PER_SGE - 1) &
11762                    (~(PAGES_PER_SGE - 1))) >> PAGES_PER_SGE_SHIFT;
11763     sge_sz = (uint16_t)min(SGE_PAGES, 0xffff);
11764 
11765     /* pause - not for e1 */
11766     if (!CHIP_IS_E1(sc)) {
11767         pause->bd_th_lo = BD_TH_LO(sc);
11768         pause->bd_th_hi = BD_TH_HI(sc);
11769 
11770         pause->rcq_th_lo = RCQ_TH_LO(sc);
11771         pause->rcq_th_hi = RCQ_TH_HI(sc);
11772 
11773         /* validate rings have enough entries to cross high thresholds */
11774         if (sc->dropless_fc &&
11775             pause->bd_th_hi + FW_PREFETCH_CNT >
11776             sc->rx_ring_size) {
11777             BLOGW(sc, "rx bd ring threshold limit\n");
11778         }
11779 
11780         if (sc->dropless_fc &&
11781             pause->rcq_th_hi + FW_PREFETCH_CNT >
11782             RCQ_NUM_PAGES * RCQ_USABLE_PER_PAGE) {
11783             BLOGW(sc, "rcq ring threshold limit\n");
11784         }
11785 
11786         pause->pri_map = 1;
11787     }
11788 
11789     /* rxq setup */
11790     rxq_init->dscr_map   = fp->rx_dma.paddr;
11791     rxq_init->sge_map    = fp->rx_sge_dma.paddr;
11792     rxq_init->rcq_map    = fp->rcq_dma.paddr;
11793     rxq_init->rcq_np_map = (fp->rcq_dma.paddr + BCM_PAGE_SIZE);
11794 
11795     /*
11796      * This should be a maximum number of data bytes that may be
11797      * placed on the BD (not including paddings).
11798      */
11799     rxq_init->buf_sz = (fp->rx_buf_size -
11800                         IP_HEADER_ALIGNMENT_PADDING);
11801 
11802     rxq_init->cl_qzone_id     = fp->cl_qzone_id;
11803     rxq_init->tpa_agg_sz      = tpa_agg_size;
11804     rxq_init->sge_buf_sz      = sge_sz;
11805     rxq_init->max_sges_pkt    = max_sge;
11806     rxq_init->rss_engine_id   = SC_FUNC(sc);
11807     rxq_init->mcast_engine_id = SC_FUNC(sc);
11808 
11809     /*
11810      * Maximum number or simultaneous TPA aggregation for this Queue.
11811      * For PF Clients it should be the maximum available number.
11812      * VF driver(s) may want to define it to a smaller value.
11813      */
11814     rxq_init->max_tpa_queues = MAX_AGG_QS(sc);
11815 
11816     rxq_init->cache_line_log = BXE_RX_ALIGN_SHIFT;
11817     rxq_init->fw_sb_id = fp->fw_sb_id;
11818 
11819     rxq_init->sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS;
11820 
11821     /*
11822      * configure silent vlan removal
11823      * if multi function mode is afex, then mask default vlan
11824      */
11825     if (IS_MF_AFEX(sc)) {
11826         rxq_init->silent_removal_value =
11827             sc->devinfo.mf_info.afex_def_vlan_tag;
11828         rxq_init->silent_removal_mask = EVL_VLID_MASK;
11829     }
11830 }
11831 
11832 static void
11833 bxe_pf_tx_q_prep(struct bxe_softc              *sc,
11834                  struct bxe_fastpath           *fp,
11835                  struct ecore_txq_setup_params *txq_init,
11836                  uint8_t                       cos)
11837 {
11838     /*
11839      * XXX If multiple CoS is ever supported then each fastpath structure
11840      * will need to maintain tx producer/consumer/dma/etc values *per* CoS.
11841      * fp->txdata[cos]->tx_dma.paddr;
11842      */
11843     txq_init->dscr_map     = fp->tx_dma.paddr;
11844     txq_init->sb_cq_index  = HC_INDEX_ETH_FIRST_TX_CQ_CONS + cos;
11845     txq_init->traffic_type = LLFC_TRAFFIC_TYPE_NW;
11846     txq_init->fw_sb_id     = fp->fw_sb_id;
11847 
11848     /*
11849      * set the TSS leading client id for TX classfication to the
11850      * leading RSS client id
11851      */
11852     txq_init->tss_leading_cl_id = BXE_FP(sc, 0, cl_id);
11853 }
11854 
11855 /*
11856  * This function performs 2 steps in a queue state machine:
11857  *   1) RESET->INIT
11858  *   2) INIT->SETUP
11859  */
11860 static int
11861 bxe_setup_queue(struct bxe_softc    *sc,
11862                 struct bxe_fastpath *fp,
11863                 uint8_t             leading)
11864 {
11865     struct ecore_queue_state_params q_params = { NULL };
11866     struct ecore_queue_setup_params *setup_params =
11867                         &q_params.params.setup;
11868 #if 0
11869     struct ecore_queue_setup_tx_only_params *tx_only_params =
11870                         &q_params.params.tx_only;
11871     uint8_t tx_index;
11872 #endif
11873     int rc;
11874 
11875     BLOGD(sc, DBG_LOAD, "setting up queue %d\n", fp->index);
11876 
11877     bxe_ack_sb(sc, fp->igu_sb_id, USTORM_ID, 0, IGU_INT_ENABLE, 0);
11878 
11879     q_params.q_obj = &BXE_SP_OBJ(sc, fp).q_obj;
11880 
11881     /* we want to wait for completion in this context */
11882     bxe_set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
11883 
11884     /* prepare the INIT parameters */
11885     bxe_pf_q_prep_init(sc, fp, &q_params.params.init);
11886 
11887     /* Set the command */
11888     q_params.cmd = ECORE_Q_CMD_INIT;
11889 
11890     /* Change the state to INIT */
11891     rc = ecore_queue_state_change(sc, &q_params);
11892     if (rc) {
11893         BLOGE(sc, "Queue(%d) INIT failed\n", fp->index);
11894         return (rc);
11895     }
11896 
11897     BLOGD(sc, DBG_LOAD, "init complete\n");
11898 
11899     /* now move the Queue to the SETUP state */
11900     memset(setup_params, 0, sizeof(*setup_params));
11901 
11902     /* set Queue flags */
11903     setup_params->flags = bxe_get_q_flags(sc, fp, leading);
11904 
11905     /* set general SETUP parameters */
11906     bxe_pf_q_prep_general(sc, fp, &setup_params->gen_params,
11907                           FIRST_TX_COS_INDEX);
11908 
11909     bxe_pf_rx_q_prep(sc, fp,
11910                      &setup_params->pause_params,
11911                      &setup_params->rxq_params);
11912 
11913     bxe_pf_tx_q_prep(sc, fp,
11914                      &setup_params->txq_params,
11915                      FIRST_TX_COS_INDEX);
11916 
11917     /* Set the command */
11918     q_params.cmd = ECORE_Q_CMD_SETUP;
11919 
11920     /* change the state to SETUP */
11921     rc = ecore_queue_state_change(sc, &q_params);
11922     if (rc) {
11923         BLOGE(sc, "Queue(%d) SETUP failed\n", fp->index);
11924         return (rc);
11925     }
11926 
11927 #if 0
11928     /* loop through the relevant tx-only indices */
11929     for (tx_index = FIRST_TX_ONLY_COS_INDEX;
11930          tx_index < sc->max_cos;
11931          tx_index++) {
11932         /* prepare and send tx-only ramrod*/
11933         rc = bxe_setup_tx_only(sc, fp, &q_params,
11934                                tx_only_params, tx_index, leading);
11935         if (rc) {
11936             BLOGE(sc, "Queue(%d.%d) TX_ONLY_SETUP failed\n",
11937                   fp->index, tx_index);
11938             return (rc);
11939         }
11940     }
11941 #endif
11942 
11943     return (rc);
11944 }
11945 
11946 static int
11947 bxe_setup_leading(struct bxe_softc *sc)
11948 {
11949     return (bxe_setup_queue(sc, &sc->fp[0], TRUE));
11950 }
11951 
11952 static int
11953 bxe_config_rss_pf(struct bxe_softc            *sc,
11954                   struct ecore_rss_config_obj *rss_obj,
11955                   uint8_t                     config_hash)
11956 {
11957     struct ecore_config_rss_params params = { NULL };
11958     int i;
11959 
11960     /*
11961      * Although RSS is meaningless when there is a single HW queue we
11962      * still need it enabled in order to have HW Rx hash generated.
11963      */
11964 
11965     params.rss_obj = rss_obj;
11966 
11967     bxe_set_bit(RAMROD_COMP_WAIT, &params.ramrod_flags);
11968 
11969     bxe_set_bit(ECORE_RSS_MODE_REGULAR, &params.rss_flags);
11970 
11971     /* RSS configuration */
11972     bxe_set_bit(ECORE_RSS_IPV4, &params.rss_flags);
11973     bxe_set_bit(ECORE_RSS_IPV4_TCP, &params.rss_flags);
11974     bxe_set_bit(ECORE_RSS_IPV6, &params.rss_flags);
11975     bxe_set_bit(ECORE_RSS_IPV6_TCP, &params.rss_flags);
11976     if (rss_obj->udp_rss_v4) {
11977         bxe_set_bit(ECORE_RSS_IPV4_UDP, &params.rss_flags);
11978     }
11979     if (rss_obj->udp_rss_v6) {
11980         bxe_set_bit(ECORE_RSS_IPV6_UDP, &params.rss_flags);
11981     }
11982 
11983     /* Hash bits */
11984     params.rss_result_mask = MULTI_MASK;
11985 
11986     memcpy(params.ind_table, rss_obj->ind_table, sizeof(params.ind_table));
11987 
11988     if (config_hash) {
11989         /* RSS keys */
11990         for (i = 0; i < sizeof(params.rss_key) / 4; i++) {
11991             params.rss_key[i] = arc4random();
11992         }
11993 
11994         bxe_set_bit(ECORE_RSS_SET_SRCH, &params.rss_flags);
11995     }
11996 
11997     return (ecore_config_rss(sc, &params));
11998 }
11999 
12000 static int
12001 bxe_config_rss_eth(struct bxe_softc *sc,
12002                    uint8_t          config_hash)
12003 {
12004     return (bxe_config_rss_pf(sc, &sc->rss_conf_obj, config_hash));
12005 }
12006 
12007 static int
12008 bxe_init_rss_pf(struct bxe_softc *sc)
12009 {
12010     uint8_t num_eth_queues = BXE_NUM_ETH_QUEUES(sc);
12011     int i;
12012 
12013     /*
12014      * Prepare the initial contents of the indirection table if
12015      * RSS is enabled
12016      */
12017     for (i = 0; i < sizeof(sc->rss_conf_obj.ind_table); i++) {
12018         sc->rss_conf_obj.ind_table[i] =
12019             (sc->fp->cl_id + (i % num_eth_queues));
12020     }
12021 
12022     if (sc->udp_rss) {
12023         sc->rss_conf_obj.udp_rss_v4 = sc->rss_conf_obj.udp_rss_v6 = 1;
12024     }
12025 
12026     /*
12027      * For 57710 and 57711 SEARCHER configuration (rss_keys) is
12028      * per-port, so if explicit configuration is needed, do it only
12029      * for a PMF.
12030      *
12031      * For 57712 and newer it's a per-function configuration.
12032      */
12033     return (bxe_config_rss_eth(sc, sc->port.pmf || !CHIP_IS_E1x(sc)));
12034 }
12035 
12036 static int
12037 bxe_set_mac_one(struct bxe_softc          *sc,
12038                 uint8_t                   *mac,
12039                 struct ecore_vlan_mac_obj *obj,
12040                 uint8_t                   set,
12041                 int                       mac_type,
12042                 unsigned long             *ramrod_flags)
12043 {
12044     struct ecore_vlan_mac_ramrod_params ramrod_param;
12045     int rc;
12046 
12047     memset(&ramrod_param, 0, sizeof(ramrod_param));
12048 
12049     /* fill in general parameters */
12050     ramrod_param.vlan_mac_obj = obj;
12051     ramrod_param.ramrod_flags = *ramrod_flags;
12052 
12053     /* fill a user request section if needed */
12054     if (!bxe_test_bit(RAMROD_CONT, ramrod_flags)) {
12055         memcpy(ramrod_param.user_req.u.mac.mac, mac, ETH_ALEN);
12056 
12057         bxe_set_bit(mac_type, &ramrod_param.user_req.vlan_mac_flags);
12058 
12059         /* Set the command: ADD or DEL */
12060         ramrod_param.user_req.cmd = (set) ? ECORE_VLAN_MAC_ADD :
12061                                             ECORE_VLAN_MAC_DEL;
12062     }
12063 
12064     rc = ecore_config_vlan_mac(sc, &ramrod_param);
12065 
12066     if (rc == ECORE_EXISTS) {
12067         BLOGD(sc, DBG_SP, "Failed to schedule ADD operations (EEXIST)\n");
12068         /* do not treat adding same MAC as error */
12069         rc = 0;
12070     } else if (rc < 0) {
12071         BLOGE(sc, "%s MAC failed (%d)\n", (set ? "Set" : "Delete"), rc);
12072     }
12073 
12074     return (rc);
12075 }
12076 
12077 static int
12078 bxe_set_eth_mac(struct bxe_softc *sc,
12079                 uint8_t          set)
12080 {
12081     unsigned long ramrod_flags = 0;
12082 
12083     BLOGD(sc, DBG_LOAD, "Adding Ethernet MAC\n");
12084 
12085     bxe_set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
12086 
12087     /* Eth MAC is set on RSS leading client (fp[0]) */
12088     return (bxe_set_mac_one(sc, sc->link_params.mac_addr,
12089                             &sc->sp_objs->mac_obj,
12090                             set, ECORE_ETH_MAC, &ramrod_flags));
12091 }
12092 
12093 #if 0
12094 static void
12095 bxe_update_max_mf_config(struct bxe_softc *sc,
12096                          uint32_t         value)
12097 {
12098     /* load old values */
12099     uint32_t mf_cfg = sc->devinfo.mf_info.mf_config[SC_VN(sc)];
12100 
12101     if (value != bxe_extract_max_cfg(sc, mf_cfg)) {
12102         /* leave all but MAX value */
12103         mf_cfg &= ~FUNC_MF_CFG_MAX_BW_MASK;
12104 
12105         /* set new MAX value */
12106         mf_cfg |= ((value << FUNC_MF_CFG_MAX_BW_SHIFT) &
12107                    FUNC_MF_CFG_MAX_BW_MASK);
12108 
12109         bxe_fw_command(sc, DRV_MSG_CODE_SET_MF_BW, mf_cfg);
12110     }
12111 }
12112 #endif
12113 
12114 static int
12115 bxe_get_cur_phy_idx(struct bxe_softc *sc)
12116 {
12117     uint32_t sel_phy_idx = 0;
12118 
12119     if (sc->link_params.num_phys <= 1) {
12120         return (ELINK_INT_PHY);
12121     }
12122 
12123     if (sc->link_vars.link_up) {
12124         sel_phy_idx = ELINK_EXT_PHY1;
12125         /* In case link is SERDES, check if the ELINK_EXT_PHY2 is the one */
12126         if ((sc->link_vars.link_status & LINK_STATUS_SERDES_LINK) &&
12127             (sc->link_params.phy[ELINK_EXT_PHY2].supported &
12128              ELINK_SUPPORTED_FIBRE))
12129             sel_phy_idx = ELINK_EXT_PHY2;
12130     } else {
12131         switch (elink_phy_selection(&sc->link_params)) {
12132         case PORT_HW_CFG_PHY_SELECTION_HARDWARE_DEFAULT:
12133         case PORT_HW_CFG_PHY_SELECTION_FIRST_PHY:
12134         case PORT_HW_CFG_PHY_SELECTION_FIRST_PHY_PRIORITY:
12135                sel_phy_idx = ELINK_EXT_PHY1;
12136                break;
12137         case PORT_HW_CFG_PHY_SELECTION_SECOND_PHY:
12138         case PORT_HW_CFG_PHY_SELECTION_SECOND_PHY_PRIORITY:
12139                sel_phy_idx = ELINK_EXT_PHY2;
12140                break;
12141         }
12142     }
12143 
12144     return (sel_phy_idx);
12145 }
12146 
12147 static int
12148 bxe_get_link_cfg_idx(struct bxe_softc *sc)
12149 {
12150     uint32_t sel_phy_idx = bxe_get_cur_phy_idx(sc);
12151 
12152     /*
12153      * The selected activated PHY is always after swapping (in case PHY
12154      * swapping is enabled). So when swapping is enabled, we need to reverse
12155      * the configuration
12156      */
12157 
12158     if (sc->link_params.multi_phy_config & PORT_HW_CFG_PHY_SWAPPED_ENABLED) {
12159         if (sel_phy_idx == ELINK_EXT_PHY1)
12160             sel_phy_idx = ELINK_EXT_PHY2;
12161         else if (sel_phy_idx == ELINK_EXT_PHY2)
12162             sel_phy_idx = ELINK_EXT_PHY1;
12163     }
12164 
12165     return (ELINK_LINK_CONFIG_IDX(sel_phy_idx));
12166 }
12167 
12168 static void
12169 bxe_set_requested_fc(struct bxe_softc *sc)
12170 {
12171     /*
12172      * Initialize link parameters structure variables
12173      * It is recommended to turn off RX FC for jumbo frames
12174      * for better performance
12175      */
12176     if (CHIP_IS_E1x(sc) && (sc->mtu > 5000)) {
12177         sc->link_params.req_fc_auto_adv = ELINK_FLOW_CTRL_TX;
12178     } else {
12179         sc->link_params.req_fc_auto_adv = ELINK_FLOW_CTRL_BOTH;
12180     }
12181 }
12182 
12183 static void
12184 bxe_calc_fc_adv(struct bxe_softc *sc)
12185 {
12186     uint8_t cfg_idx = bxe_get_link_cfg_idx(sc);
12187     switch (sc->link_vars.ieee_fc &
12188             MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_MASK) {
12189     case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_NONE:
12190     default:
12191         sc->port.advertising[cfg_idx] &= ~(ADVERTISED_Asym_Pause |
12192                                            ADVERTISED_Pause);
12193         break;
12194 
12195     case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_BOTH:
12196         sc->port.advertising[cfg_idx] |= (ADVERTISED_Asym_Pause |
12197                                           ADVERTISED_Pause);
12198         break;
12199 
12200     case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_ASYMMETRIC:
12201         sc->port.advertising[cfg_idx] |= ADVERTISED_Asym_Pause;
12202         break;
12203     }
12204 }
12205 
12206 static uint16_t
12207 bxe_get_mf_speed(struct bxe_softc *sc)
12208 {
12209     uint16_t line_speed = sc->link_vars.line_speed;
12210     if (IS_MF(sc)) {
12211         uint16_t maxCfg =
12212             bxe_extract_max_cfg(sc, sc->devinfo.mf_info.mf_config[SC_VN(sc)]);
12213 
12214         /* calculate the current MAX line speed limit for the MF devices */
12215         if (IS_MF_SI(sc)) {
12216             line_speed = (line_speed * maxCfg) / 100;
12217         } else { /* SD mode */
12218             uint16_t vn_max_rate = maxCfg * 100;
12219 
12220             if (vn_max_rate < line_speed) {
12221                 line_speed = vn_max_rate;
12222             }
12223         }
12224     }
12225 
12226     return (line_speed);
12227 }
12228 
12229 static void
12230 bxe_fill_report_data(struct bxe_softc            *sc,
12231                      struct bxe_link_report_data *data)
12232 {
12233     uint16_t line_speed = bxe_get_mf_speed(sc);
12234 
12235     memset(data, 0, sizeof(*data));
12236 
12237     /* fill the report data with the effective line speed */
12238     data->line_speed = line_speed;
12239 
12240     /* Link is down */
12241     if (!sc->link_vars.link_up || (sc->flags & BXE_MF_FUNC_DIS)) {
12242         bxe_set_bit(BXE_LINK_REPORT_LINK_DOWN, &data->link_report_flags);
12243     }
12244 
12245     /* Full DUPLEX */
12246     if (sc->link_vars.duplex == DUPLEX_FULL) {
12247         bxe_set_bit(BXE_LINK_REPORT_FULL_DUPLEX, &data->link_report_flags);
12248     }
12249 
12250     /* Rx Flow Control is ON */
12251     if (sc->link_vars.flow_ctrl & ELINK_FLOW_CTRL_RX) {
12252         bxe_set_bit(BXE_LINK_REPORT_RX_FC_ON, &data->link_report_flags);
12253     }
12254 
12255     /* Tx Flow Control is ON */
12256     if (sc->link_vars.flow_ctrl & ELINK_FLOW_CTRL_TX) {
12257         bxe_set_bit(BXE_LINK_REPORT_TX_FC_ON, &data->link_report_flags);
12258     }
12259 }
12260 
12261 /* report link status to OS, should be called under phy_lock */
12262 static void
12263 bxe_link_report_locked(struct bxe_softc *sc)
12264 {
12265     struct bxe_link_report_data cur_data;
12266 
12267     /* reread mf_cfg */
12268     if (IS_PF(sc) && !CHIP_IS_E1(sc)) {
12269         bxe_read_mf_cfg(sc);
12270     }
12271 
12272     /* Read the current link report info */
12273     bxe_fill_report_data(sc, &cur_data);
12274 
12275     /* Don't report link down or exactly the same link status twice */
12276     if (!memcmp(&cur_data, &sc->last_reported_link, sizeof(cur_data)) ||
12277         (bxe_test_bit(BXE_LINK_REPORT_LINK_DOWN,
12278                       &sc->last_reported_link.link_report_flags) &&
12279          bxe_test_bit(BXE_LINK_REPORT_LINK_DOWN,
12280                       &cur_data.link_report_flags))) {
12281         return;
12282     }
12283 
12284     sc->link_cnt++;
12285 
12286     /* report new link params and remember the state for the next time */
12287     memcpy(&sc->last_reported_link, &cur_data, sizeof(cur_data));
12288 
12289     if (bxe_test_bit(BXE_LINK_REPORT_LINK_DOWN,
12290                      &cur_data.link_report_flags)) {
12291         if_link_state_change(sc->ifp, LINK_STATE_DOWN);
12292         BLOGI(sc, "NIC Link is Down\n");
12293     } else {
12294         const char *duplex;
12295         const char *flow;
12296 
12297         if (bxe_test_and_clear_bit(BXE_LINK_REPORT_FULL_DUPLEX,
12298                                    &cur_data.link_report_flags)) {
12299             duplex = "full";
12300         } else {
12301             duplex = "half";
12302         }
12303 
12304         /*
12305          * Handle the FC at the end so that only these flags would be
12306          * possibly set. This way we may easily check if there is no FC
12307          * enabled.
12308          */
12309         if (cur_data.link_report_flags) {
12310             if (bxe_test_bit(BXE_LINK_REPORT_RX_FC_ON,
12311                              &cur_data.link_report_flags) &&
12312                 bxe_test_bit(BXE_LINK_REPORT_TX_FC_ON,
12313                              &cur_data.link_report_flags)) {
12314                 flow = "ON - receive & transmit";
12315             } else if (bxe_test_bit(BXE_LINK_REPORT_RX_FC_ON,
12316                                     &cur_data.link_report_flags) &&
12317                        !bxe_test_bit(BXE_LINK_REPORT_TX_FC_ON,
12318                                      &cur_data.link_report_flags)) {
12319                 flow = "ON - receive";
12320             } else if (!bxe_test_bit(BXE_LINK_REPORT_RX_FC_ON,
12321                                      &cur_data.link_report_flags) &&
12322                        bxe_test_bit(BXE_LINK_REPORT_TX_FC_ON,
12323                                     &cur_data.link_report_flags)) {
12324                 flow = "ON - transmit";
12325             } else {
12326                 flow = "none"; /* possible? */
12327             }
12328         } else {
12329             flow = "none";
12330         }
12331 
12332         if_link_state_change(sc->ifp, LINK_STATE_UP);
12333         BLOGI(sc, "NIC Link is Up, %d Mbps %s duplex, Flow control: %s\n",
12334               cur_data.line_speed, duplex, flow);
12335     }
12336 }
12337 
12338 static void
12339 bxe_link_report(struct bxe_softc *sc)
12340 {
12341     bxe_acquire_phy_lock(sc);
12342     bxe_link_report_locked(sc);
12343     bxe_release_phy_lock(sc);
12344 }
12345 
12346 static void
12347 bxe_link_status_update(struct bxe_softc *sc)
12348 {
12349     if (sc->state != BXE_STATE_OPEN) {
12350         return;
12351     }
12352 
12353 #if 0
12354     /* read updated dcb configuration */
12355     if (IS_PF(sc))
12356         bxe_dcbx_pmf_update(sc);
12357 #endif
12358 
12359     if (IS_PF(sc) && !CHIP_REV_IS_SLOW(sc)) {
12360         elink_link_status_update(&sc->link_params, &sc->link_vars);
12361     } else {
12362         sc->port.supported[0] |= (ELINK_SUPPORTED_10baseT_Half |
12363                                   ELINK_SUPPORTED_10baseT_Full |
12364                                   ELINK_SUPPORTED_100baseT_Half |
12365                                   ELINK_SUPPORTED_100baseT_Full |
12366                                   ELINK_SUPPORTED_1000baseT_Full |
12367                                   ELINK_SUPPORTED_2500baseX_Full |
12368                                   ELINK_SUPPORTED_10000baseT_Full |
12369                                   ELINK_SUPPORTED_TP |
12370                                   ELINK_SUPPORTED_FIBRE |
12371                                   ELINK_SUPPORTED_Autoneg |
12372                                   ELINK_SUPPORTED_Pause |
12373                                   ELINK_SUPPORTED_Asym_Pause);
12374         sc->port.advertising[0] = sc->port.supported[0];
12375 
12376         sc->link_params.sc                = sc;
12377         sc->link_params.port              = SC_PORT(sc);
12378         sc->link_params.req_duplex[0]     = DUPLEX_FULL;
12379         sc->link_params.req_flow_ctrl[0]  = ELINK_FLOW_CTRL_NONE;
12380         sc->link_params.req_line_speed[0] = SPEED_10000;
12381         sc->link_params.speed_cap_mask[0] = 0x7f0000;
12382         sc->link_params.switch_cfg        = ELINK_SWITCH_CFG_10G;
12383 
12384         if (CHIP_REV_IS_FPGA(sc)) {
12385             sc->link_vars.mac_type    = ELINK_MAC_TYPE_EMAC;
12386             sc->link_vars.line_speed  = ELINK_SPEED_1000;
12387             sc->link_vars.link_status = (LINK_STATUS_LINK_UP |
12388                                          LINK_STATUS_SPEED_AND_DUPLEX_1000TFD);
12389         } else {
12390             sc->link_vars.mac_type    = ELINK_MAC_TYPE_BMAC;
12391             sc->link_vars.line_speed  = ELINK_SPEED_10000;
12392             sc->link_vars.link_status = (LINK_STATUS_LINK_UP |
12393                                          LINK_STATUS_SPEED_AND_DUPLEX_10GTFD);
12394         }
12395 
12396         sc->link_vars.link_up = 1;
12397 
12398         sc->link_vars.duplex    = DUPLEX_FULL;
12399         sc->link_vars.flow_ctrl = ELINK_FLOW_CTRL_NONE;
12400 
12401         if (IS_PF(sc)) {
12402             REG_WR(sc, NIG_REG_EGRESS_DRAIN0_MODE + sc->link_params.port*4, 0);
12403             bxe_stats_handle(sc, STATS_EVENT_LINK_UP);
12404             bxe_link_report(sc);
12405         }
12406     }
12407 
12408     if (IS_PF(sc)) {
12409         if (sc->link_vars.link_up) {
12410             bxe_stats_handle(sc, STATS_EVENT_LINK_UP);
12411         } else {
12412             bxe_stats_handle(sc, STATS_EVENT_STOP);
12413         }
12414         bxe_link_report(sc);
12415     } else {
12416         bxe_link_report(sc);
12417         bxe_stats_handle(sc, STATS_EVENT_LINK_UP);
12418     }
12419 }
12420 
12421 static int
12422 bxe_initial_phy_init(struct bxe_softc *sc,
12423                      int              load_mode)
12424 {
12425     int rc, cfg_idx = bxe_get_link_cfg_idx(sc);
12426     uint16_t req_line_speed = sc->link_params.req_line_speed[cfg_idx];
12427     struct elink_params *lp = &sc->link_params;
12428 
12429     bxe_set_requested_fc(sc);
12430 
12431     if (CHIP_REV_IS_SLOW(sc)) {
12432         uint32_t bond = CHIP_BOND_ID(sc);
12433         uint32_t feat = 0;
12434 
12435         if (CHIP_IS_E2(sc) && CHIP_IS_MODE_4_PORT(sc)) {
12436             feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_BMAC;
12437         } else if (bond & 0x4) {
12438             if (CHIP_IS_E3(sc)) {
12439                 feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_XMAC;
12440             } else {
12441                 feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_BMAC;
12442             }
12443         } else if (bond & 0x8) {
12444             if (CHIP_IS_E3(sc)) {
12445                 feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_UMAC;
12446             } else {
12447                 feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_EMAC;
12448             }
12449         }
12450 
12451         /* disable EMAC for E3 and above */
12452         if (bond & 0x2) {
12453             feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_EMAC;
12454         }
12455 
12456         sc->link_params.feature_config_flags |= feat;
12457     }
12458 
12459     bxe_acquire_phy_lock(sc);
12460 
12461     if (load_mode == LOAD_DIAG) {
12462         lp->loopback_mode = ELINK_LOOPBACK_XGXS;
12463         /* Prefer doing PHY loopback at 10G speed, if possible */
12464         if (lp->req_line_speed[cfg_idx] < ELINK_SPEED_10000) {
12465             if (lp->speed_cap_mask[cfg_idx] &
12466                 PORT_HW_CFG_SPEED_CAPABILITY_D0_10G) {
12467                 lp->req_line_speed[cfg_idx] = ELINK_SPEED_10000;
12468             } else {
12469                 lp->req_line_speed[cfg_idx] = ELINK_SPEED_1000;
12470             }
12471         }
12472     }
12473 
12474     if (load_mode == LOAD_LOOPBACK_EXT) {
12475         lp->loopback_mode = ELINK_LOOPBACK_EXT;
12476     }
12477 
12478     rc = elink_phy_init(&sc->link_params, &sc->link_vars);
12479 
12480     bxe_release_phy_lock(sc);
12481 
12482     bxe_calc_fc_adv(sc);
12483 
12484     if (sc->link_vars.link_up) {
12485         bxe_stats_handle(sc, STATS_EVENT_LINK_UP);
12486         bxe_link_report(sc);
12487     }
12488 
12489     if (!CHIP_REV_IS_SLOW(sc)) {
12490         bxe_periodic_start(sc);
12491     }
12492 
12493     sc->link_params.req_line_speed[cfg_idx] = req_line_speed;
12494     return (rc);
12495 }
12496 
12497 /* must be called under IF_ADDR_LOCK */
12498 
12499 static int
12500 bxe_set_mc_list(struct bxe_softc *sc)
12501 {
12502     struct ecore_mcast_ramrod_params rparam = { NULL };
12503     int rc = 0;
12504     int mc_count = 0;
12505     int mcnt, i;
12506     struct ecore_mcast_list_elem *mc_mac, *mc_mac_start;
12507     unsigned char *mta;
12508     if_t ifp = sc->ifp;
12509 
12510     mc_count = if_multiaddr_count(ifp, -1);/* XXX they don't have a limit */
12511     if (!mc_count)
12512         return (0);
12513 
12514     mta = malloc(sizeof(unsigned char) * ETHER_ADDR_LEN *
12515             mc_count, M_DEVBUF, M_NOWAIT);
12516 
12517     if(mta == NULL) {
12518         BLOGE(sc, "Failed to allocate temp mcast list\n");
12519         return (-1);
12520     }
12521     bzero(mta, (sizeof(unsigned char) * ETHER_ADDR_LEN * mc_count));
12522 
12523     mc_mac = malloc(sizeof(*mc_mac) * mc_count, M_DEVBUF, (M_NOWAIT | M_ZERO));
12524     mc_mac_start = mc_mac;
12525 
12526     if (!mc_mac) {
12527         free(mta, M_DEVBUF);
12528         BLOGE(sc, "Failed to allocate temp mcast list\n");
12529         return (-1);
12530     }
12531     bzero(mc_mac, (sizeof(*mc_mac) * mc_count));
12532 
12533     /* mta and mcnt not expected to be  different */
12534     if_multiaddr_array(ifp, mta, &mcnt, mc_count);
12535 
12536 
12537     rparam.mcast_obj = &sc->mcast_obj;
12538     ECORE_LIST_INIT(&rparam.mcast_list);
12539 
12540     for(i=0; i< mcnt; i++) {
12541 
12542         mc_mac->mac = (uint8_t *)(mta + (i * ETHER_ADDR_LEN));
12543         ECORE_LIST_PUSH_TAIL(&mc_mac->link, &rparam.mcast_list);
12544 
12545         BLOGD(sc, DBG_LOAD,
12546               "Setting MCAST %02X:%02X:%02X:%02X:%02X:%02X\n",
12547               mc_mac->mac[0], mc_mac->mac[1], mc_mac->mac[2],
12548               mc_mac->mac[3], mc_mac->mac[4], mc_mac->mac[5]);
12549 
12550         mc_mac++;
12551     }
12552     rparam.mcast_list_len = mc_count;
12553 
12554     BXE_MCAST_LOCK(sc);
12555 
12556     /* first, clear all configured multicast MACs */
12557     rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_DEL);
12558     if (rc < 0) {
12559         BLOGE(sc, "Failed to clear multicast configuration: %d\n", rc);
12560         BXE_MCAST_UNLOCK(sc);
12561     	free(mc_mac_start, M_DEVBUF);
12562         free(mta, M_DEVBUF);
12563         return (rc);
12564     }
12565 
12566     /* Now add the new MACs */
12567     rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_ADD);
12568     if (rc < 0) {
12569         BLOGE(sc, "Failed to set new mcast config (%d)\n", rc);
12570     }
12571 
12572     BXE_MCAST_UNLOCK(sc);
12573 
12574     free(mc_mac_start, M_DEVBUF);
12575     free(mta, M_DEVBUF);
12576 
12577     return (rc);
12578 }
12579 
12580 static int
12581 bxe_set_uc_list(struct bxe_softc *sc)
12582 {
12583     if_t ifp = sc->ifp;
12584     struct ecore_vlan_mac_obj *mac_obj = &sc->sp_objs->mac_obj;
12585     struct ifaddr *ifa;
12586     unsigned long ramrod_flags = 0;
12587     int rc;
12588 
12589 #if __FreeBSD_version < 800000
12590     IF_ADDR_LOCK(ifp);
12591 #else
12592     if_addr_rlock(ifp);
12593 #endif
12594 
12595     /* first schedule a cleanup up of old configuration */
12596     rc = bxe_del_all_macs(sc, mac_obj, ECORE_UC_LIST_MAC, FALSE);
12597     if (rc < 0) {
12598         BLOGE(sc, "Failed to schedule delete of all ETH MACs (%d)\n", rc);
12599 #if __FreeBSD_version < 800000
12600         IF_ADDR_UNLOCK(ifp);
12601 #else
12602         if_addr_runlock(ifp);
12603 #endif
12604         return (rc);
12605     }
12606 
12607     ifa = if_getifaddr(ifp); /* XXX Is this structure */
12608     while (ifa) {
12609         if (ifa->ifa_addr->sa_family != AF_LINK) {
12610             ifa = TAILQ_NEXT(ifa, ifa_link);
12611             continue;
12612         }
12613 
12614         rc = bxe_set_mac_one(sc, (uint8_t *)LLADDR((struct sockaddr_dl *)ifa->ifa_addr),
12615                              mac_obj, TRUE, ECORE_UC_LIST_MAC, &ramrod_flags);
12616         if (rc == -EEXIST) {
12617             BLOGD(sc, DBG_SP, "Failed to schedule ADD operations (EEXIST)\n");
12618             /* do not treat adding same MAC as an error */
12619             rc = 0;
12620         } else if (rc < 0) {
12621             BLOGE(sc, "Failed to schedule ADD operations (%d)\n", rc);
12622 #if __FreeBSD_version < 800000
12623             IF_ADDR_UNLOCK(ifp);
12624 #else
12625             if_addr_runlock(ifp);
12626 #endif
12627             return (rc);
12628         }
12629 
12630         ifa = TAILQ_NEXT(ifa, ifa_link);
12631     }
12632 
12633 #if __FreeBSD_version < 800000
12634     IF_ADDR_UNLOCK(ifp);
12635 #else
12636     if_addr_runlock(ifp);
12637 #endif
12638 
12639     /* Execute the pending commands */
12640     bit_set(&ramrod_flags, RAMROD_CONT);
12641     return (bxe_set_mac_one(sc, NULL, mac_obj, FALSE /* don't care */,
12642                             ECORE_UC_LIST_MAC, &ramrod_flags));
12643 }
12644 
12645 static void
12646 bxe_set_rx_mode(struct bxe_softc *sc)
12647 {
12648     if_t ifp = sc->ifp;
12649     uint32_t rx_mode = BXE_RX_MODE_NORMAL;
12650 
12651     if (sc->state != BXE_STATE_OPEN) {
12652         BLOGD(sc, DBG_SP, "state is %x, returning\n", sc->state);
12653         return;
12654     }
12655 
12656     BLOGD(sc, DBG_SP, "if_flags(ifp)=0x%x\n", if_getflags(sc->ifp));
12657 
12658     if (if_getflags(ifp) & IFF_PROMISC) {
12659         rx_mode = BXE_RX_MODE_PROMISC;
12660     } else if ((if_getflags(ifp) & IFF_ALLMULTI) ||
12661                ((if_getamcount(ifp) > BXE_MAX_MULTICAST) &&
12662                 CHIP_IS_E1(sc))) {
12663         rx_mode = BXE_RX_MODE_ALLMULTI;
12664     } else {
12665         if (IS_PF(sc)) {
12666             /* some multicasts */
12667             if (bxe_set_mc_list(sc) < 0) {
12668                 rx_mode = BXE_RX_MODE_ALLMULTI;
12669             }
12670             if (bxe_set_uc_list(sc) < 0) {
12671                 rx_mode = BXE_RX_MODE_PROMISC;
12672             }
12673         }
12674 #if 0
12675         else {
12676             /*
12677              * Configuring mcast to a VF involves sleeping (when we
12678              * wait for the PF's response). Since this function is
12679              * called from a non sleepable context we must schedule
12680              * a work item for this purpose
12681              */
12682             bxe_set_bit(BXE_SP_RTNL_VFPF_MCAST, &sc->sp_rtnl_state);
12683             schedule_delayed_work(&sc->sp_rtnl_task, 0);
12684         }
12685 #endif
12686     }
12687 
12688     sc->rx_mode = rx_mode;
12689 
12690     /* schedule the rx_mode command */
12691     if (bxe_test_bit(ECORE_FILTER_RX_MODE_PENDING, &sc->sp_state)) {
12692         BLOGD(sc, DBG_LOAD, "Scheduled setting rx_mode with ECORE...\n");
12693         bxe_set_bit(ECORE_FILTER_RX_MODE_SCHED, &sc->sp_state);
12694         return;
12695     }
12696 
12697     if (IS_PF(sc)) {
12698         bxe_set_storm_rx_mode(sc);
12699     }
12700 #if 0
12701     else {
12702         /*
12703          * Configuring mcast to a VF involves sleeping (when we
12704          * wait for the PF's response). Since this function is
12705          * called from a non sleepable context we must schedule
12706          * a work item for this purpose
12707          */
12708         bxe_set_bit(BXE_SP_RTNL_VFPF_STORM_RX_MODE, &sc->sp_rtnl_state);
12709         schedule_delayed_work(&sc->sp_rtnl_task, 0);
12710     }
12711 #endif
12712 
12713 }
12714 
12715 
12716 /* update flags in shmem */
12717 static void
12718 bxe_update_drv_flags(struct bxe_softc *sc,
12719                      uint32_t         flags,
12720                      uint32_t         set)
12721 {
12722     uint32_t drv_flags;
12723 
12724     if (SHMEM2_HAS(sc, drv_flags)) {
12725         bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_DRV_FLAGS);
12726         drv_flags = SHMEM2_RD(sc, drv_flags);
12727 
12728         if (set) {
12729             SET_FLAGS(drv_flags, flags);
12730         } else {
12731             RESET_FLAGS(drv_flags, flags);
12732         }
12733 
12734         SHMEM2_WR(sc, drv_flags, drv_flags);
12735         BLOGD(sc, DBG_LOAD, "drv_flags 0x%08x\n", drv_flags);
12736 
12737         bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_DRV_FLAGS);
12738     }
12739 }
12740 
12741 /* periodic timer callout routine, only runs when the interface is up */
12742 
12743 static void
12744 bxe_periodic_callout_func(void *xsc)
12745 {
12746     struct bxe_softc *sc = (struct bxe_softc *)xsc;
12747     int i;
12748 
12749     if (!BXE_CORE_TRYLOCK(sc)) {
12750         /* just bail and try again next time */
12751 
12752         if ((sc->state == BXE_STATE_OPEN) &&
12753             (atomic_load_acq_long(&sc->periodic_flags) == PERIODIC_GO)) {
12754             /* schedule the next periodic callout */
12755             callout_reset(&sc->periodic_callout, hz,
12756                           bxe_periodic_callout_func, sc);
12757         }
12758 
12759         return;
12760     }
12761 
12762     if ((sc->state != BXE_STATE_OPEN) ||
12763         (atomic_load_acq_long(&sc->periodic_flags) == PERIODIC_STOP)) {
12764         BLOGW(sc, "periodic callout exit (state=0x%x)\n", sc->state);
12765         BXE_CORE_UNLOCK(sc);
12766         return;
12767     }
12768 
12769     /* Check for TX timeouts on any fastpath. */
12770     FOR_EACH_QUEUE(sc, i) {
12771         if (bxe_watchdog(sc, &sc->fp[i]) != 0) {
12772             /* Ruh-Roh, chip was reset! */
12773             break;
12774         }
12775     }
12776 
12777     if (!CHIP_REV_IS_SLOW(sc)) {
12778         /*
12779          * This barrier is needed to ensure the ordering between the writing
12780          * to the sc->port.pmf in the bxe_nic_load() or bxe_pmf_update() and
12781          * the reading here.
12782          */
12783         mb();
12784         if (sc->port.pmf) {
12785 	    bxe_acquire_phy_lock(sc);
12786             elink_period_func(&sc->link_params, &sc->link_vars);
12787 	    bxe_release_phy_lock(sc);
12788         }
12789     }
12790 
12791     if (IS_PF(sc) && !(sc->flags & BXE_NO_PULSE)) {
12792         int mb_idx = SC_FW_MB_IDX(sc);
12793         uint32_t drv_pulse;
12794         uint32_t mcp_pulse;
12795 
12796         ++sc->fw_drv_pulse_wr_seq;
12797         sc->fw_drv_pulse_wr_seq &= DRV_PULSE_SEQ_MASK;
12798 
12799         drv_pulse = sc->fw_drv_pulse_wr_seq;
12800         bxe_drv_pulse(sc);
12801 
12802         mcp_pulse = (SHMEM_RD(sc, func_mb[mb_idx].mcp_pulse_mb) &
12803                      MCP_PULSE_SEQ_MASK);
12804 
12805         /*
12806          * The delta between driver pulse and mcp response should
12807          * be 1 (before mcp response) or 0 (after mcp response).
12808          */
12809         if ((drv_pulse != mcp_pulse) &&
12810             (drv_pulse != ((mcp_pulse + 1) & MCP_PULSE_SEQ_MASK))) {
12811             /* someone lost a heartbeat... */
12812             BLOGE(sc, "drv_pulse (0x%x) != mcp_pulse (0x%x)\n",
12813                   drv_pulse, mcp_pulse);
12814         }
12815     }
12816 
12817     /* state is BXE_STATE_OPEN */
12818     bxe_stats_handle(sc, STATS_EVENT_UPDATE);
12819 
12820 #if 0
12821     /* sample VF bulletin board for new posts from PF */
12822     if (IS_VF(sc)) {
12823         bxe_sample_bulletin(sc);
12824     }
12825 #endif
12826 
12827     BXE_CORE_UNLOCK(sc);
12828 
12829     if ((sc->state == BXE_STATE_OPEN) &&
12830         (atomic_load_acq_long(&sc->periodic_flags) == PERIODIC_GO)) {
12831         /* schedule the next periodic callout */
12832         callout_reset(&sc->periodic_callout, hz,
12833                       bxe_periodic_callout_func, sc);
12834     }
12835 }
12836 
12837 static void
12838 bxe_periodic_start(struct bxe_softc *sc)
12839 {
12840     atomic_store_rel_long(&sc->periodic_flags, PERIODIC_GO);
12841     callout_reset(&sc->periodic_callout, hz, bxe_periodic_callout_func, sc);
12842 }
12843 
12844 static void
12845 bxe_periodic_stop(struct bxe_softc *sc)
12846 {
12847     atomic_store_rel_long(&sc->periodic_flags, PERIODIC_STOP);
12848     callout_drain(&sc->periodic_callout);
12849 }
12850 
12851 /* start the controller */
12852 static __noinline int
12853 bxe_nic_load(struct bxe_softc *sc,
12854              int              load_mode)
12855 {
12856     uint32_t val;
12857     int load_code = 0;
12858     int i, rc = 0;
12859 
12860     BXE_CORE_LOCK_ASSERT(sc);
12861 
12862     BLOGD(sc, DBG_LOAD, "Starting NIC load...\n");
12863 
12864     sc->state = BXE_STATE_OPENING_WAITING_LOAD;
12865 
12866     if (IS_PF(sc)) {
12867         /* must be called before memory allocation and HW init */
12868         bxe_ilt_set_info(sc);
12869     }
12870 
12871     sc->last_reported_link_state = LINK_STATE_UNKNOWN;
12872 
12873     bxe_set_fp_rx_buf_size(sc);
12874 
12875     if (bxe_alloc_fp_buffers(sc) != 0) {
12876         BLOGE(sc, "Failed to allocate fastpath memory\n");
12877         sc->state = BXE_STATE_CLOSED;
12878         rc = ENOMEM;
12879         goto bxe_nic_load_error0;
12880     }
12881 
12882     if (bxe_alloc_mem(sc) != 0) {
12883         sc->state = BXE_STATE_CLOSED;
12884         rc = ENOMEM;
12885         goto bxe_nic_load_error0;
12886     }
12887 
12888     if (bxe_alloc_fw_stats_mem(sc) != 0) {
12889         sc->state = BXE_STATE_CLOSED;
12890         rc = ENOMEM;
12891         goto bxe_nic_load_error0;
12892     }
12893 
12894     if (IS_PF(sc)) {
12895         /* set pf load just before approaching the MCP */
12896         bxe_set_pf_load(sc);
12897 
12898         /* if MCP exists send load request and analyze response */
12899         if (!BXE_NOMCP(sc)) {
12900             /* attempt to load pf */
12901             if (bxe_nic_load_request(sc, &load_code) != 0) {
12902                 sc->state = BXE_STATE_CLOSED;
12903                 rc = ENXIO;
12904                 goto bxe_nic_load_error1;
12905             }
12906 
12907             /* what did the MCP say? */
12908             if (bxe_nic_load_analyze_req(sc, load_code) != 0) {
12909                 bxe_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0);
12910                 sc->state = BXE_STATE_CLOSED;
12911                 rc = ENXIO;
12912                 goto bxe_nic_load_error2;
12913             }
12914         } else {
12915             BLOGI(sc, "Device has no MCP!\n");
12916             load_code = bxe_nic_load_no_mcp(sc);
12917         }
12918 
12919         /* mark PMF if applicable */
12920         bxe_nic_load_pmf(sc, load_code);
12921 
12922         /* Init Function state controlling object */
12923         bxe_init_func_obj(sc);
12924 
12925         /* Initialize HW */
12926         if (bxe_init_hw(sc, load_code) != 0) {
12927             BLOGE(sc, "HW init failed\n");
12928             bxe_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0);
12929             sc->state = BXE_STATE_CLOSED;
12930             rc = ENXIO;
12931             goto bxe_nic_load_error2;
12932         }
12933     }
12934 
12935     /* set ALWAYS_ALIVE bit in shmem */
12936     sc->fw_drv_pulse_wr_seq |= DRV_PULSE_ALWAYS_ALIVE;
12937     bxe_drv_pulse(sc);
12938     sc->flags |= BXE_NO_PULSE;
12939 
12940     /* attach interrupts */
12941     if (bxe_interrupt_attach(sc) != 0) {
12942         sc->state = BXE_STATE_CLOSED;
12943         rc = ENXIO;
12944         goto bxe_nic_load_error2;
12945     }
12946 
12947     bxe_nic_init(sc, load_code);
12948 
12949     /* Init per-function objects */
12950     if (IS_PF(sc)) {
12951         bxe_init_objs(sc);
12952         // XXX bxe_iov_nic_init(sc);
12953 
12954         /* set AFEX default VLAN tag to an invalid value */
12955         sc->devinfo.mf_info.afex_def_vlan_tag = -1;
12956         // XXX bxe_nic_load_afex_dcc(sc, load_code);
12957 
12958         sc->state = BXE_STATE_OPENING_WAITING_PORT;
12959         rc = bxe_func_start(sc);
12960         if (rc) {
12961             BLOGE(sc, "Function start failed!\n");
12962             bxe_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0);
12963             sc->state = BXE_STATE_ERROR;
12964             goto bxe_nic_load_error3;
12965         }
12966 
12967         /* send LOAD_DONE command to MCP */
12968         if (!BXE_NOMCP(sc)) {
12969             load_code = bxe_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0);
12970             if (!load_code) {
12971                 BLOGE(sc, "MCP response failure, aborting\n");
12972                 sc->state = BXE_STATE_ERROR;
12973                 rc = ENXIO;
12974                 goto bxe_nic_load_error3;
12975             }
12976         }
12977 
12978         rc = bxe_setup_leading(sc);
12979         if (rc) {
12980             BLOGE(sc, "Setup leading failed!\n");
12981             sc->state = BXE_STATE_ERROR;
12982             goto bxe_nic_load_error3;
12983         }
12984 
12985         FOR_EACH_NONDEFAULT_ETH_QUEUE(sc, i) {
12986             rc = bxe_setup_queue(sc, &sc->fp[i], FALSE);
12987             if (rc) {
12988                 BLOGE(sc, "Queue(%d) setup failed\n", i);
12989                 sc->state = BXE_STATE_ERROR;
12990                 goto bxe_nic_load_error3;
12991             }
12992         }
12993 
12994         rc = bxe_init_rss_pf(sc);
12995         if (rc) {
12996             BLOGE(sc, "PF RSS init failed\n");
12997             sc->state = BXE_STATE_ERROR;
12998             goto bxe_nic_load_error3;
12999         }
13000     }
13001     /* XXX VF */
13002 #if 0
13003     else { /* VF */
13004         FOR_EACH_ETH_QUEUE(sc, i) {
13005             rc = bxe_vfpf_setup_q(sc, i);
13006             if (rc) {
13007                 BLOGE(sc, "Queue(%d) setup failed\n", i);
13008                 sc->state = BXE_STATE_ERROR;
13009                 goto bxe_nic_load_error3;
13010             }
13011         }
13012     }
13013 #endif
13014 
13015     /* now when Clients are configured we are ready to work */
13016     sc->state = BXE_STATE_OPEN;
13017 
13018     /* Configure a ucast MAC */
13019     if (IS_PF(sc)) {
13020         rc = bxe_set_eth_mac(sc, TRUE);
13021     }
13022 #if 0
13023     else { /* IS_VF(sc) */
13024         rc = bxe_vfpf_set_mac(sc);
13025     }
13026 #endif
13027     if (rc) {
13028         BLOGE(sc, "Setting Ethernet MAC failed\n");
13029         sc->state = BXE_STATE_ERROR;
13030         goto bxe_nic_load_error3;
13031     }
13032 
13033 #if 0
13034     if (IS_PF(sc) && sc->pending_max) {
13035         /* for AFEX */
13036         bxe_update_max_mf_config(sc, sc->pending_max);
13037         sc->pending_max = 0;
13038     }
13039 #endif
13040 
13041     if (sc->port.pmf) {
13042         rc = bxe_initial_phy_init(sc, /* XXX load_mode */LOAD_OPEN);
13043         if (rc) {
13044             sc->state = BXE_STATE_ERROR;
13045             goto bxe_nic_load_error3;
13046         }
13047     }
13048 
13049     sc->link_params.feature_config_flags &=
13050         ~ELINK_FEATURE_CONFIG_BOOT_FROM_SAN;
13051 
13052     /* start fast path */
13053 
13054     /* Initialize Rx filter */
13055     bxe_set_rx_mode(sc);
13056 
13057     /* start the Tx */
13058     switch (/* XXX load_mode */LOAD_OPEN) {
13059     case LOAD_NORMAL:
13060     case LOAD_OPEN:
13061         break;
13062 
13063     case LOAD_DIAG:
13064     case LOAD_LOOPBACK_EXT:
13065         sc->state = BXE_STATE_DIAG;
13066         break;
13067 
13068     default:
13069         break;
13070     }
13071 
13072     if (sc->port.pmf) {
13073         bxe_update_drv_flags(sc, 1 << DRV_FLAGS_PORT_MASK, 0);
13074     } else {
13075         bxe_link_status_update(sc);
13076     }
13077 
13078     /* start the periodic timer callout */
13079     bxe_periodic_start(sc);
13080 
13081     if (IS_PF(sc) && SHMEM2_HAS(sc, drv_capabilities_flag)) {
13082         /* mark driver is loaded in shmem2 */
13083         val = SHMEM2_RD(sc, drv_capabilities_flag[SC_FW_MB_IDX(sc)]);
13084         SHMEM2_WR(sc, drv_capabilities_flag[SC_FW_MB_IDX(sc)],
13085                   (val |
13086                    DRV_FLAGS_CAPABILITIES_LOADED_SUPPORTED |
13087                    DRV_FLAGS_CAPABILITIES_LOADED_L2));
13088     }
13089 
13090     /* wait for all pending SP commands to complete */
13091     if (IS_PF(sc) && !bxe_wait_sp_comp(sc, ~0x0UL)) {
13092         BLOGE(sc, "Timeout waiting for all SPs to complete!\n");
13093         bxe_periodic_stop(sc);
13094         bxe_nic_unload(sc, UNLOAD_CLOSE, FALSE);
13095         return (ENXIO);
13096     }
13097 
13098 #if 0
13099     /* If PMF - send ADMIN DCBX msg to MFW to initiate DCBX FSM */
13100     if (sc->port.pmf && (sc->state != BXE_STATE_DIAG)) {
13101         bxe_dcbx_init(sc, FALSE);
13102     }
13103 #endif
13104 
13105     /* Tell the stack the driver is running! */
13106     if_setdrvflags(sc->ifp, IFF_DRV_RUNNING);
13107 
13108     BLOGD(sc, DBG_LOAD, "NIC successfully loaded\n");
13109 
13110     return (0);
13111 
13112 bxe_nic_load_error3:
13113 
13114     if (IS_PF(sc)) {
13115         bxe_int_disable_sync(sc, 1);
13116 
13117         /* clean out queued objects */
13118         bxe_squeeze_objects(sc);
13119     }
13120 
13121     bxe_interrupt_detach(sc);
13122 
13123 bxe_nic_load_error2:
13124 
13125     if (IS_PF(sc) && !BXE_NOMCP(sc)) {
13126         bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP, 0);
13127         bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_DONE, 0);
13128     }
13129 
13130     sc->port.pmf = 0;
13131 
13132 bxe_nic_load_error1:
13133 
13134     /* clear pf_load status, as it was already set */
13135     if (IS_PF(sc)) {
13136         bxe_clear_pf_load(sc);
13137     }
13138 
13139 bxe_nic_load_error0:
13140 
13141     bxe_free_fw_stats_mem(sc);
13142     bxe_free_fp_buffers(sc);
13143     bxe_free_mem(sc);
13144 
13145     return (rc);
13146 }
13147 
13148 static int
13149 bxe_init_locked(struct bxe_softc *sc)
13150 {
13151     int other_engine = SC_PATH(sc) ? 0 : 1;
13152     uint8_t other_load_status, load_status;
13153     uint8_t global = FALSE;
13154     int rc;
13155 
13156     BXE_CORE_LOCK_ASSERT(sc);
13157 
13158     /* check if the driver is already running */
13159     if (if_getdrvflags(sc->ifp) & IFF_DRV_RUNNING) {
13160         BLOGD(sc, DBG_LOAD, "Init called while driver is running!\n");
13161         return (0);
13162     }
13163 
13164     bxe_set_power_state(sc, PCI_PM_D0);
13165 
13166     /*
13167      * If parity occurred during the unload, then attentions and/or
13168      * RECOVERY_IN_PROGRES may still be set. If so we want the first function
13169      * loaded on the current engine to complete the recovery. Parity recovery
13170      * is only relevant for PF driver.
13171      */
13172     if (IS_PF(sc)) {
13173         other_load_status = bxe_get_load_status(sc, other_engine);
13174         load_status = bxe_get_load_status(sc, SC_PATH(sc));
13175 
13176         if (!bxe_reset_is_done(sc, SC_PATH(sc)) ||
13177             bxe_chk_parity_attn(sc, &global, TRUE)) {
13178             do {
13179                 /*
13180                  * If there are attentions and they are in global blocks, set
13181                  * the GLOBAL_RESET bit regardless whether it will be this
13182                  * function that will complete the recovery or not.
13183                  */
13184                 if (global) {
13185                     bxe_set_reset_global(sc);
13186                 }
13187 
13188                 /*
13189                  * Only the first function on the current engine should try
13190                  * to recover in open. In case of attentions in global blocks
13191                  * only the first in the chip should try to recover.
13192                  */
13193                 if ((!load_status && (!global || !other_load_status)) &&
13194                     bxe_trylock_leader_lock(sc) && !bxe_leader_reset(sc)) {
13195                     BLOGI(sc, "Recovered during init\n");
13196                     break;
13197                 }
13198 
13199                 /* recovery has failed... */
13200                 bxe_set_power_state(sc, PCI_PM_D3hot);
13201                 sc->recovery_state = BXE_RECOVERY_FAILED;
13202 
13203                 BLOGE(sc, "Recovery flow hasn't properly "
13204                           "completed yet, try again later. "
13205                           "If you still see this message after a "
13206                           "few retries then power cycle is required.\n");
13207 
13208                 rc = ENXIO;
13209                 goto bxe_init_locked_done;
13210             } while (0);
13211         }
13212     }
13213 
13214     sc->recovery_state = BXE_RECOVERY_DONE;
13215 
13216     rc = bxe_nic_load(sc, LOAD_OPEN);
13217 
13218 bxe_init_locked_done:
13219 
13220     if (rc) {
13221         /* Tell the stack the driver is NOT running! */
13222         BLOGE(sc, "Initialization failed, "
13223                   "stack notified driver is NOT running!\n");
13224 	if_setdrvflagbits(sc->ifp, 0, IFF_DRV_RUNNING);
13225     }
13226 
13227     return (rc);
13228 }
13229 
13230 static int
13231 bxe_stop_locked(struct bxe_softc *sc)
13232 {
13233     BXE_CORE_LOCK_ASSERT(sc);
13234     return (bxe_nic_unload(sc, UNLOAD_NORMAL, TRUE));
13235 }
13236 
13237 /*
13238  * Handles controller initialization when called from an unlocked routine.
13239  * ifconfig calls this function.
13240  *
13241  * Returns:
13242  *   void
13243  */
13244 static void
13245 bxe_init(void *xsc)
13246 {
13247     struct bxe_softc *sc = (struct bxe_softc *)xsc;
13248 
13249     BXE_CORE_LOCK(sc);
13250     bxe_init_locked(sc);
13251     BXE_CORE_UNLOCK(sc);
13252 }
13253 
13254 static int
13255 bxe_init_ifnet(struct bxe_softc *sc)
13256 {
13257     if_t ifp;
13258     int capabilities;
13259 
13260     /* ifconfig entrypoint for media type/status reporting */
13261     ifmedia_init(&sc->ifmedia, IFM_IMASK,
13262                  bxe_ifmedia_update,
13263                  bxe_ifmedia_status);
13264 
13265     /* set the default interface values */
13266     ifmedia_add(&sc->ifmedia, (IFM_ETHER | IFM_FDX | sc->media), 0, NULL);
13267     ifmedia_add(&sc->ifmedia, (IFM_ETHER | IFM_AUTO), 0, NULL);
13268     ifmedia_set(&sc->ifmedia, (IFM_ETHER | IFM_AUTO));
13269 
13270     sc->ifmedia.ifm_media = sc->ifmedia.ifm_cur->ifm_media; /* XXX ? */
13271 
13272     /* allocate the ifnet structure */
13273     if ((ifp = if_gethandle(IFT_ETHER)) == NULL) {
13274         BLOGE(sc, "Interface allocation failed!\n");
13275         return (ENXIO);
13276     }
13277 
13278     if_setsoftc(ifp, sc);
13279     if_initname(ifp, device_get_name(sc->dev), device_get_unit(sc->dev));
13280     if_setflags(ifp, (IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST));
13281     if_setioctlfn(ifp, bxe_ioctl);
13282     if_setstartfn(ifp, bxe_tx_start);
13283     if_setgetcounterfn(ifp, bxe_get_counter);
13284 #if __FreeBSD_version >= 800000
13285     if_settransmitfn(ifp, bxe_tx_mq_start);
13286     if_setqflushfn(ifp, bxe_mq_flush);
13287 #endif
13288 #ifdef FreeBSD8_0
13289     if_settimer(ifp, 0);
13290 #endif
13291     if_setinitfn(ifp, bxe_init);
13292     if_setmtu(ifp, sc->mtu);
13293     if_sethwassist(ifp, (CSUM_IP      |
13294                         CSUM_TCP      |
13295                         CSUM_UDP      |
13296                         CSUM_TSO      |
13297                         CSUM_TCP_IPV6 |
13298                         CSUM_UDP_IPV6));
13299 
13300     capabilities =
13301 #if __FreeBSD_version < 700000
13302         (IFCAP_VLAN_MTU       |
13303          IFCAP_VLAN_HWTAGGING |
13304          IFCAP_HWCSUM         |
13305          IFCAP_JUMBO_MTU      |
13306          IFCAP_LRO);
13307 #else
13308         (IFCAP_VLAN_MTU       |
13309          IFCAP_VLAN_HWTAGGING |
13310          IFCAP_VLAN_HWTSO     |
13311          IFCAP_VLAN_HWFILTER  |
13312          IFCAP_VLAN_HWCSUM    |
13313          IFCAP_HWCSUM         |
13314          IFCAP_JUMBO_MTU      |
13315          IFCAP_LRO            |
13316          IFCAP_TSO4           |
13317          IFCAP_TSO6           |
13318          IFCAP_WOL_MAGIC);
13319 #endif
13320     if_setcapabilitiesbit(ifp, capabilities, 0); /* XXX */
13321     if_setbaudrate(ifp, IF_Gbps(10));
13322 /* XXX */
13323     if_setsendqlen(ifp, sc->tx_ring_size);
13324     if_setsendqready(ifp);
13325 /* XXX */
13326 
13327     sc->ifp = ifp;
13328 
13329     /* attach to the Ethernet interface list */
13330     ether_ifattach(ifp, sc->link_params.mac_addr);
13331 
13332     return (0);
13333 }
13334 
13335 static void
13336 bxe_deallocate_bars(struct bxe_softc *sc)
13337 {
13338     int i;
13339 
13340     for (i = 0; i < MAX_BARS; i++) {
13341         if (sc->bar[i].resource != NULL) {
13342             bus_release_resource(sc->dev,
13343                                  SYS_RES_MEMORY,
13344                                  sc->bar[i].rid,
13345                                  sc->bar[i].resource);
13346             BLOGD(sc, DBG_LOAD, "Released PCI BAR%d [%02x] memory\n",
13347                   i, PCIR_BAR(i));
13348         }
13349     }
13350 }
13351 
13352 static int
13353 bxe_allocate_bars(struct bxe_softc *sc)
13354 {
13355     u_int flags;
13356     int i;
13357 
13358     memset(sc->bar, 0, sizeof(sc->bar));
13359 
13360     for (i = 0; i < MAX_BARS; i++) {
13361 
13362         /* memory resources reside at BARs 0, 2, 4 */
13363         /* Run `pciconf -lb` to see mappings */
13364         if ((i != 0) && (i != 2) && (i != 4)) {
13365             continue;
13366         }
13367 
13368         sc->bar[i].rid = PCIR_BAR(i);
13369 
13370         flags = RF_ACTIVE;
13371         if (i == 0) {
13372             flags |= RF_SHAREABLE;
13373         }
13374 
13375         if ((sc->bar[i].resource =
13376              bus_alloc_resource_any(sc->dev,
13377                                     SYS_RES_MEMORY,
13378                                     &sc->bar[i].rid,
13379                                     flags)) == NULL) {
13380 #if 0
13381             /* BAR4 doesn't exist for E1 */
13382             BLOGE(sc, "PCI BAR%d [%02x] memory allocation failed\n",
13383                   i, PCIR_BAR(i));
13384 #endif
13385             return (0);
13386         }
13387 
13388         sc->bar[i].tag    = rman_get_bustag(sc->bar[i].resource);
13389         sc->bar[i].handle = rman_get_bushandle(sc->bar[i].resource);
13390         sc->bar[i].kva    = (vm_offset_t)rman_get_virtual(sc->bar[i].resource);
13391 
13392         BLOGI(sc, "PCI BAR%d [%02x] memory allocated: %p-%p (%ld) -> %p\n",
13393               i, PCIR_BAR(i),
13394               (void *)rman_get_start(sc->bar[i].resource),
13395               (void *)rman_get_end(sc->bar[i].resource),
13396               rman_get_size(sc->bar[i].resource),
13397               (void *)sc->bar[i].kva);
13398     }
13399 
13400     return (0);
13401 }
13402 
13403 static void
13404 bxe_get_function_num(struct bxe_softc *sc)
13405 {
13406     uint32_t val = 0;
13407 
13408     /*
13409      * Read the ME register to get the function number. The ME register
13410      * holds the relative-function number and absolute-function number. The
13411      * absolute-function number appears only in E2 and above. Before that
13412      * these bits always contained zero, therefore we cannot blindly use them.
13413      */
13414 
13415     val = REG_RD(sc, BAR_ME_REGISTER);
13416 
13417     sc->pfunc_rel =
13418         (uint8_t)((val & ME_REG_PF_NUM) >> ME_REG_PF_NUM_SHIFT);
13419     sc->path_id =
13420         (uint8_t)((val & ME_REG_ABS_PF_NUM) >> ME_REG_ABS_PF_NUM_SHIFT) & 1;
13421 
13422     if (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) {
13423         sc->pfunc_abs = ((sc->pfunc_rel << 1) | sc->path_id);
13424     } else {
13425         sc->pfunc_abs = (sc->pfunc_rel | sc->path_id);
13426     }
13427 
13428     BLOGD(sc, DBG_LOAD,
13429           "Relative function %d, Absolute function %d, Path %d\n",
13430           sc->pfunc_rel, sc->pfunc_abs, sc->path_id);
13431 }
13432 
13433 static uint32_t
13434 bxe_get_shmem_mf_cfg_base(struct bxe_softc *sc)
13435 {
13436     uint32_t shmem2_size;
13437     uint32_t offset;
13438     uint32_t mf_cfg_offset_value;
13439 
13440     /* Non 57712 */
13441     offset = (SHMEM_RD(sc, func_mb) +
13442               (MAX_FUNC_NUM * sizeof(struct drv_func_mb)));
13443 
13444     /* 57712 plus */
13445     if (sc->devinfo.shmem2_base != 0) {
13446         shmem2_size = SHMEM2_RD(sc, size);
13447         if (shmem2_size > offsetof(struct shmem2_region, mf_cfg_addr)) {
13448             mf_cfg_offset_value = SHMEM2_RD(sc, mf_cfg_addr);
13449             if (SHMEM_MF_CFG_ADDR_NONE != mf_cfg_offset_value) {
13450                 offset = mf_cfg_offset_value;
13451             }
13452         }
13453     }
13454 
13455     return (offset);
13456 }
13457 
13458 static uint32_t
13459 bxe_pcie_capability_read(struct bxe_softc *sc,
13460                          int    reg,
13461                          int    width)
13462 {
13463     int pcie_reg;
13464 
13465     /* ensure PCIe capability is enabled */
13466     if (pci_find_cap(sc->dev, PCIY_EXPRESS, &pcie_reg) == 0) {
13467         if (pcie_reg != 0) {
13468             BLOGD(sc, DBG_LOAD, "PCIe capability at 0x%04x\n", pcie_reg);
13469             return (pci_read_config(sc->dev, (pcie_reg + reg), width));
13470         }
13471     }
13472 
13473     BLOGE(sc, "PCIe capability NOT FOUND!!!\n");
13474 
13475     return (0);
13476 }
13477 
13478 static uint8_t
13479 bxe_is_pcie_pending(struct bxe_softc *sc)
13480 {
13481     return (bxe_pcie_capability_read(sc, PCIR_EXPRESS_DEVICE_STA, 2) &
13482             PCIM_EXP_STA_TRANSACTION_PND);
13483 }
13484 
13485 /*
13486  * Walk the PCI capabiites list for the device to find what features are
13487  * supported. These capabilites may be enabled/disabled by firmware so it's
13488  * best to walk the list rather than make assumptions.
13489  */
13490 static void
13491 bxe_probe_pci_caps(struct bxe_softc *sc)
13492 {
13493     uint16_t link_status;
13494     int reg;
13495 
13496     /* check if PCI Power Management is enabled */
13497     if (pci_find_cap(sc->dev, PCIY_PMG, &reg) == 0) {
13498         if (reg != 0) {
13499             BLOGD(sc, DBG_LOAD, "Found PM capability at 0x%04x\n", reg);
13500 
13501             sc->devinfo.pcie_cap_flags |= BXE_PM_CAPABLE_FLAG;
13502             sc->devinfo.pcie_pm_cap_reg = (uint16_t)reg;
13503         }
13504     }
13505 
13506     link_status = bxe_pcie_capability_read(sc, PCIR_EXPRESS_LINK_STA, 2);
13507 
13508     /* handle PCIe 2.0 workarounds for 57710 */
13509     if (CHIP_IS_E1(sc)) {
13510         /* workaround for 57710 errata E4_57710_27462 */
13511         sc->devinfo.pcie_link_speed =
13512             (REG_RD(sc, 0x3d04) & (1 << 24)) ? 2 : 1;
13513 
13514         /* workaround for 57710 errata E4_57710_27488 */
13515         sc->devinfo.pcie_link_width =
13516             ((link_status & PCIM_LINK_STA_WIDTH) >> 4);
13517         if (sc->devinfo.pcie_link_speed > 1) {
13518             sc->devinfo.pcie_link_width =
13519                 ((link_status & PCIM_LINK_STA_WIDTH) >> 4) >> 1;
13520         }
13521     } else {
13522         sc->devinfo.pcie_link_speed =
13523             (link_status & PCIM_LINK_STA_SPEED);
13524         sc->devinfo.pcie_link_width =
13525             ((link_status & PCIM_LINK_STA_WIDTH) >> 4);
13526     }
13527 
13528     BLOGD(sc, DBG_LOAD, "PCIe link speed=%d width=%d\n",
13529           sc->devinfo.pcie_link_speed, sc->devinfo.pcie_link_width);
13530 
13531     sc->devinfo.pcie_cap_flags |= BXE_PCIE_CAPABLE_FLAG;
13532     sc->devinfo.pcie_pcie_cap_reg = (uint16_t)reg;
13533 
13534     /* check if MSI capability is enabled */
13535     if (pci_find_cap(sc->dev, PCIY_MSI, &reg) == 0) {
13536         if (reg != 0) {
13537             BLOGD(sc, DBG_LOAD, "Found MSI capability at 0x%04x\n", reg);
13538 
13539             sc->devinfo.pcie_cap_flags |= BXE_MSI_CAPABLE_FLAG;
13540             sc->devinfo.pcie_msi_cap_reg = (uint16_t)reg;
13541         }
13542     }
13543 
13544     /* check if MSI-X capability is enabled */
13545     if (pci_find_cap(sc->dev, PCIY_MSIX, &reg) == 0) {
13546         if (reg != 0) {
13547             BLOGD(sc, DBG_LOAD, "Found MSI-X capability at 0x%04x\n", reg);
13548 
13549             sc->devinfo.pcie_cap_flags |= BXE_MSIX_CAPABLE_FLAG;
13550             sc->devinfo.pcie_msix_cap_reg = (uint16_t)reg;
13551         }
13552     }
13553 }
13554 
13555 static int
13556 bxe_get_shmem_mf_cfg_info_sd(struct bxe_softc *sc)
13557 {
13558     struct bxe_mf_info *mf_info = &sc->devinfo.mf_info;
13559     uint32_t val;
13560 
13561     /* get the outer vlan if we're in switch-dependent mode */
13562 
13563     val = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].e1hov_tag);
13564     mf_info->ext_id = (uint16_t)val;
13565 
13566     mf_info->multi_vnics_mode = 1;
13567 
13568     if (!VALID_OVLAN(mf_info->ext_id)) {
13569         BLOGE(sc, "Invalid VLAN (%d)\n", mf_info->ext_id);
13570         return (1);
13571     }
13572 
13573     /* get the capabilities */
13574     if ((mf_info->mf_config[SC_VN(sc)] & FUNC_MF_CFG_PROTOCOL_MASK) ==
13575         FUNC_MF_CFG_PROTOCOL_ISCSI) {
13576         mf_info->mf_protos_supported |= MF_PROTO_SUPPORT_ISCSI;
13577     } else if ((mf_info->mf_config[SC_VN(sc)] & FUNC_MF_CFG_PROTOCOL_MASK) ==
13578                FUNC_MF_CFG_PROTOCOL_FCOE) {
13579         mf_info->mf_protos_supported |= MF_PROTO_SUPPORT_FCOE;
13580     } else {
13581         mf_info->mf_protos_supported |= MF_PROTO_SUPPORT_ETHERNET;
13582     }
13583 
13584     mf_info->vnics_per_port =
13585         (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) ? 2 : 4;
13586 
13587     return (0);
13588 }
13589 
13590 static uint32_t
13591 bxe_get_shmem_ext_proto_support_flags(struct bxe_softc *sc)
13592 {
13593     uint32_t retval = 0;
13594     uint32_t val;
13595 
13596     val = MFCFG_RD(sc, func_ext_config[SC_ABS_FUNC(sc)].func_cfg);
13597 
13598     if (val & MACP_FUNC_CFG_FLAGS_ENABLED) {
13599         if (val & MACP_FUNC_CFG_FLAGS_ETHERNET) {
13600             retval |= MF_PROTO_SUPPORT_ETHERNET;
13601         }
13602         if (val & MACP_FUNC_CFG_FLAGS_ISCSI_OFFLOAD) {
13603             retval |= MF_PROTO_SUPPORT_ISCSI;
13604         }
13605         if (val & MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD) {
13606             retval |= MF_PROTO_SUPPORT_FCOE;
13607         }
13608     }
13609 
13610     return (retval);
13611 }
13612 
13613 static int
13614 bxe_get_shmem_mf_cfg_info_si(struct bxe_softc *sc)
13615 {
13616     struct bxe_mf_info *mf_info = &sc->devinfo.mf_info;
13617     uint32_t val;
13618 
13619     /*
13620      * There is no outer vlan if we're in switch-independent mode.
13621      * If the mac is valid then assume multi-function.
13622      */
13623 
13624     val = MFCFG_RD(sc, func_ext_config[SC_ABS_FUNC(sc)].func_cfg);
13625 
13626     mf_info->multi_vnics_mode = ((val & MACP_FUNC_CFG_FLAGS_MASK) != 0);
13627 
13628     mf_info->mf_protos_supported = bxe_get_shmem_ext_proto_support_flags(sc);
13629 
13630     mf_info->vnics_per_port =
13631         (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) ? 2 : 4;
13632 
13633     return (0);
13634 }
13635 
13636 static int
13637 bxe_get_shmem_mf_cfg_info_niv(struct bxe_softc *sc)
13638 {
13639     struct bxe_mf_info *mf_info = &sc->devinfo.mf_info;
13640     uint32_t e1hov_tag;
13641     uint32_t func_config;
13642     uint32_t niv_config;
13643 
13644     mf_info->multi_vnics_mode = 1;
13645 
13646     e1hov_tag   = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].e1hov_tag);
13647     func_config = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].config);
13648     niv_config  = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].afex_config);
13649 
13650     mf_info->ext_id =
13651         (uint16_t)((e1hov_tag & FUNC_MF_CFG_E1HOV_TAG_MASK) >>
13652                    FUNC_MF_CFG_E1HOV_TAG_SHIFT);
13653 
13654     mf_info->default_vlan =
13655         (uint16_t)((e1hov_tag & FUNC_MF_CFG_AFEX_VLAN_MASK) >>
13656                    FUNC_MF_CFG_AFEX_VLAN_SHIFT);
13657 
13658     mf_info->niv_allowed_priorities =
13659         (uint8_t)((niv_config & FUNC_MF_CFG_AFEX_COS_FILTER_MASK) >>
13660                   FUNC_MF_CFG_AFEX_COS_FILTER_SHIFT);
13661 
13662     mf_info->niv_default_cos =
13663         (uint8_t)((func_config & FUNC_MF_CFG_TRANSMIT_PRIORITY_MASK) >>
13664                   FUNC_MF_CFG_TRANSMIT_PRIORITY_SHIFT);
13665 
13666     mf_info->afex_vlan_mode =
13667         ((niv_config & FUNC_MF_CFG_AFEX_VLAN_MODE_MASK) >>
13668          FUNC_MF_CFG_AFEX_VLAN_MODE_SHIFT);
13669 
13670     mf_info->niv_mba_enabled =
13671         ((niv_config & FUNC_MF_CFG_AFEX_MBA_ENABLED_MASK) >>
13672          FUNC_MF_CFG_AFEX_MBA_ENABLED_SHIFT);
13673 
13674     mf_info->mf_protos_supported = bxe_get_shmem_ext_proto_support_flags(sc);
13675 
13676     mf_info->vnics_per_port =
13677         (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) ? 2 : 4;
13678 
13679     return (0);
13680 }
13681 
13682 static int
13683 bxe_check_valid_mf_cfg(struct bxe_softc *sc)
13684 {
13685     struct bxe_mf_info *mf_info = &sc->devinfo.mf_info;
13686     uint32_t mf_cfg1;
13687     uint32_t mf_cfg2;
13688     uint32_t ovlan1;
13689     uint32_t ovlan2;
13690     uint8_t i, j;
13691 
13692     BLOGD(sc, DBG_LOAD, "MF config parameters for function %d\n",
13693           SC_PORT(sc));
13694     BLOGD(sc, DBG_LOAD, "\tmf_config=0x%x\n",
13695           mf_info->mf_config[SC_VN(sc)]);
13696     BLOGD(sc, DBG_LOAD, "\tmulti_vnics_mode=%d\n",
13697           mf_info->multi_vnics_mode);
13698     BLOGD(sc, DBG_LOAD, "\tvnics_per_port=%d\n",
13699           mf_info->vnics_per_port);
13700     BLOGD(sc, DBG_LOAD, "\tovlan/vifid=%d\n",
13701           mf_info->ext_id);
13702     BLOGD(sc, DBG_LOAD, "\tmin_bw=%d/%d/%d/%d\n",
13703           mf_info->min_bw[0], mf_info->min_bw[1],
13704           mf_info->min_bw[2], mf_info->min_bw[3]);
13705     BLOGD(sc, DBG_LOAD, "\tmax_bw=%d/%d/%d/%d\n",
13706           mf_info->max_bw[0], mf_info->max_bw[1],
13707           mf_info->max_bw[2], mf_info->max_bw[3]);
13708     BLOGD(sc, DBG_LOAD, "\tmac_addr: %s\n",
13709           sc->mac_addr_str);
13710 
13711     /* various MF mode sanity checks... */
13712 
13713     if (mf_info->mf_config[SC_VN(sc)] & FUNC_MF_CFG_FUNC_HIDE) {
13714         BLOGE(sc, "Enumerated function %d is marked as hidden\n",
13715               SC_PORT(sc));
13716         return (1);
13717     }
13718 
13719     if ((mf_info->vnics_per_port > 1) && !mf_info->multi_vnics_mode) {
13720         BLOGE(sc, "vnics_per_port=%d multi_vnics_mode=%d\n",
13721               mf_info->vnics_per_port, mf_info->multi_vnics_mode);
13722         return (1);
13723     }
13724 
13725     if (mf_info->mf_mode == MULTI_FUNCTION_SD) {
13726         /* vnic id > 0 must have valid ovlan in switch-dependent mode */
13727         if ((SC_VN(sc) > 0) && !VALID_OVLAN(OVLAN(sc))) {
13728             BLOGE(sc, "mf_mode=SD vnic_id=%d ovlan=%d\n",
13729                   SC_VN(sc), OVLAN(sc));
13730             return (1);
13731         }
13732 
13733         if (!VALID_OVLAN(OVLAN(sc)) && mf_info->multi_vnics_mode) {
13734             BLOGE(sc, "mf_mode=SD multi_vnics_mode=%d ovlan=%d\n",
13735                   mf_info->multi_vnics_mode, OVLAN(sc));
13736             return (1);
13737         }
13738 
13739         /*
13740          * Verify all functions are either MF or SF mode. If MF, make sure
13741          * sure that all non-hidden functions have a valid ovlan. If SF,
13742          * make sure that all non-hidden functions have an invalid ovlan.
13743          */
13744         FOREACH_ABS_FUNC_IN_PORT(sc, i) {
13745             mf_cfg1 = MFCFG_RD(sc, func_mf_config[i].config);
13746             ovlan1  = MFCFG_RD(sc, func_mf_config[i].e1hov_tag);
13747             if (!(mf_cfg1 & FUNC_MF_CFG_FUNC_HIDE) &&
13748                 (((mf_info->multi_vnics_mode) && !VALID_OVLAN(ovlan1)) ||
13749                  ((!mf_info->multi_vnics_mode) && VALID_OVLAN(ovlan1)))) {
13750                 BLOGE(sc, "mf_mode=SD function %d MF config "
13751                           "mismatch, multi_vnics_mode=%d ovlan=%d\n",
13752                       i, mf_info->multi_vnics_mode, ovlan1);
13753                 return (1);
13754             }
13755         }
13756 
13757         /* Verify all funcs on the same port each have a different ovlan. */
13758         FOREACH_ABS_FUNC_IN_PORT(sc, i) {
13759             mf_cfg1 = MFCFG_RD(sc, func_mf_config[i].config);
13760             ovlan1  = MFCFG_RD(sc, func_mf_config[i].e1hov_tag);
13761             /* iterate from the next function on the port to the max func */
13762             for (j = i + 2; j < MAX_FUNC_NUM; j += 2) {
13763                 mf_cfg2 = MFCFG_RD(sc, func_mf_config[j].config);
13764                 ovlan2  = MFCFG_RD(sc, func_mf_config[j].e1hov_tag);
13765                 if (!(mf_cfg1 & FUNC_MF_CFG_FUNC_HIDE) &&
13766                     VALID_OVLAN(ovlan1) &&
13767                     !(mf_cfg2 & FUNC_MF_CFG_FUNC_HIDE) &&
13768                     VALID_OVLAN(ovlan2) &&
13769                     (ovlan1 == ovlan2)) {
13770                     BLOGE(sc, "mf_mode=SD functions %d and %d "
13771                               "have the same ovlan (%d)\n",
13772                           i, j, ovlan1);
13773                     return (1);
13774                 }
13775             }
13776         }
13777     } /* MULTI_FUNCTION_SD */
13778 
13779     return (0);
13780 }
13781 
13782 static int
13783 bxe_get_mf_cfg_info(struct bxe_softc *sc)
13784 {
13785     struct bxe_mf_info *mf_info = &sc->devinfo.mf_info;
13786     uint32_t val, mac_upper;
13787     uint8_t i, vnic;
13788 
13789     /* initialize mf_info defaults */
13790     mf_info->vnics_per_port   = 1;
13791     mf_info->multi_vnics_mode = FALSE;
13792     mf_info->path_has_ovlan   = FALSE;
13793     mf_info->mf_mode          = SINGLE_FUNCTION;
13794 
13795     if (!CHIP_IS_MF_CAP(sc)) {
13796         return (0);
13797     }
13798 
13799     if (sc->devinfo.mf_cfg_base == SHMEM_MF_CFG_ADDR_NONE) {
13800         BLOGE(sc, "Invalid mf_cfg_base!\n");
13801         return (1);
13802     }
13803 
13804     /* get the MF mode (switch dependent / independent / single-function) */
13805 
13806     val = SHMEM_RD(sc, dev_info.shared_feature_config.config);
13807 
13808     switch (val & SHARED_FEAT_CFG_FORCE_SF_MODE_MASK)
13809     {
13810     case SHARED_FEAT_CFG_FORCE_SF_MODE_SWITCH_INDEPT:
13811 
13812         mac_upper = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].mac_upper);
13813 
13814         /* check for legal upper mac bytes */
13815         if (mac_upper != FUNC_MF_CFG_UPPERMAC_DEFAULT) {
13816             mf_info->mf_mode = MULTI_FUNCTION_SI;
13817         } else {
13818             BLOGE(sc, "Invalid config for Switch Independent mode\n");
13819         }
13820 
13821         break;
13822 
13823     case SHARED_FEAT_CFG_FORCE_SF_MODE_MF_ALLOWED:
13824     case SHARED_FEAT_CFG_FORCE_SF_MODE_SPIO4:
13825 
13826         /* get outer vlan configuration */
13827         val = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].e1hov_tag);
13828 
13829         if ((val & FUNC_MF_CFG_E1HOV_TAG_MASK) !=
13830             FUNC_MF_CFG_E1HOV_TAG_DEFAULT) {
13831             mf_info->mf_mode = MULTI_FUNCTION_SD;
13832         } else {
13833             BLOGE(sc, "Invalid config for Switch Dependent mode\n");
13834         }
13835 
13836         break;
13837 
13838     case SHARED_FEAT_CFG_FORCE_SF_MODE_FORCED_SF:
13839 
13840         /* not in MF mode, vnics_per_port=1 and multi_vnics_mode=FALSE */
13841         return (0);
13842 
13843     case SHARED_FEAT_CFG_FORCE_SF_MODE_AFEX_MODE:
13844 
13845         /*
13846          * Mark MF mode as NIV if MCP version includes NPAR-SD support
13847          * and the MAC address is valid.
13848          */
13849         mac_upper = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].mac_upper);
13850 
13851         if ((SHMEM2_HAS(sc, afex_driver_support)) &&
13852             (mac_upper != FUNC_MF_CFG_UPPERMAC_DEFAULT)) {
13853             mf_info->mf_mode = MULTI_FUNCTION_AFEX;
13854         } else {
13855             BLOGE(sc, "Invalid config for AFEX mode\n");
13856         }
13857 
13858         break;
13859 
13860     default:
13861 
13862         BLOGE(sc, "Unknown MF mode (0x%08x)\n",
13863               (val & SHARED_FEAT_CFG_FORCE_SF_MODE_MASK));
13864 
13865         return (1);
13866     }
13867 
13868     /* set path mf_mode (which could be different than function mf_mode) */
13869     if (mf_info->mf_mode == MULTI_FUNCTION_SD) {
13870         mf_info->path_has_ovlan = TRUE;
13871     } else if (mf_info->mf_mode == SINGLE_FUNCTION) {
13872         /*
13873          * Decide on path multi vnics mode. If we're not in MF mode and in
13874          * 4-port mode, this is good enough to check vnic-0 of the other port
13875          * on the same path
13876          */
13877         if (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) {
13878             uint8_t other_port = !(PORT_ID(sc) & 1);
13879             uint8_t abs_func_other_port = (SC_PATH(sc) + (2 * other_port));
13880 
13881             val = MFCFG_RD(sc, func_mf_config[abs_func_other_port].e1hov_tag);
13882 
13883             mf_info->path_has_ovlan = VALID_OVLAN((uint16_t)val) ? 1 : 0;
13884         }
13885     }
13886 
13887     if (mf_info->mf_mode == SINGLE_FUNCTION) {
13888         /* invalid MF config */
13889         if (SC_VN(sc) >= 1) {
13890             BLOGE(sc, "VNIC ID >= 1 in SF mode\n");
13891             return (1);
13892         }
13893 
13894         return (0);
13895     }
13896 
13897     /* get the MF configuration */
13898     mf_info->mf_config[SC_VN(sc)] =
13899         MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].config);
13900 
13901     switch(mf_info->mf_mode)
13902     {
13903     case MULTI_FUNCTION_SD:
13904 
13905         bxe_get_shmem_mf_cfg_info_sd(sc);
13906         break;
13907 
13908     case MULTI_FUNCTION_SI:
13909 
13910         bxe_get_shmem_mf_cfg_info_si(sc);
13911         break;
13912 
13913     case MULTI_FUNCTION_AFEX:
13914 
13915         bxe_get_shmem_mf_cfg_info_niv(sc);
13916         break;
13917 
13918     default:
13919 
13920         BLOGE(sc, "Get MF config failed (mf_mode=0x%08x)\n",
13921               mf_info->mf_mode);
13922         return (1);
13923     }
13924 
13925     /* get the congestion management parameters */
13926 
13927     vnic = 0;
13928     FOREACH_ABS_FUNC_IN_PORT(sc, i) {
13929         /* get min/max bw */
13930         val = MFCFG_RD(sc, func_mf_config[i].config);
13931         mf_info->min_bw[vnic] =
13932             ((val & FUNC_MF_CFG_MIN_BW_MASK) >> FUNC_MF_CFG_MIN_BW_SHIFT);
13933         mf_info->max_bw[vnic] =
13934             ((val & FUNC_MF_CFG_MAX_BW_MASK) >> FUNC_MF_CFG_MAX_BW_SHIFT);
13935         vnic++;
13936     }
13937 
13938     return (bxe_check_valid_mf_cfg(sc));
13939 }
13940 
13941 static int
13942 bxe_get_shmem_info(struct bxe_softc *sc)
13943 {
13944     int port;
13945     uint32_t mac_hi, mac_lo, val;
13946 
13947     port = SC_PORT(sc);
13948     mac_hi = mac_lo = 0;
13949 
13950     sc->link_params.sc   = sc;
13951     sc->link_params.port = port;
13952 
13953     /* get the hardware config info */
13954     sc->devinfo.hw_config =
13955         SHMEM_RD(sc, dev_info.shared_hw_config.config);
13956     sc->devinfo.hw_config2 =
13957         SHMEM_RD(sc, dev_info.shared_hw_config.config2);
13958 
13959     sc->link_params.hw_led_mode =
13960         ((sc->devinfo.hw_config & SHARED_HW_CFG_LED_MODE_MASK) >>
13961          SHARED_HW_CFG_LED_MODE_SHIFT);
13962 
13963     /* get the port feature config */
13964     sc->port.config =
13965         SHMEM_RD(sc, dev_info.port_feature_config[port].config),
13966 
13967     /* get the link params */
13968     sc->link_params.speed_cap_mask[0] =
13969         SHMEM_RD(sc, dev_info.port_hw_config[port].speed_capability_mask);
13970     sc->link_params.speed_cap_mask[1] =
13971         SHMEM_RD(sc, dev_info.port_hw_config[port].speed_capability_mask2);
13972 
13973     /* get the lane config */
13974     sc->link_params.lane_config =
13975         SHMEM_RD(sc, dev_info.port_hw_config[port].lane_config);
13976 
13977     /* get the link config */
13978     val = SHMEM_RD(sc, dev_info.port_feature_config[port].link_config);
13979     sc->port.link_config[ELINK_INT_PHY] = val;
13980     sc->link_params.switch_cfg = (val & PORT_FEATURE_CONNECTED_SWITCH_MASK);
13981     sc->port.link_config[ELINK_EXT_PHY1] =
13982         SHMEM_RD(sc, dev_info.port_feature_config[port].link_config2);
13983 
13984     /* get the override preemphasis flag and enable it or turn it off */
13985     val = SHMEM_RD(sc, dev_info.shared_feature_config.config);
13986     if (val & SHARED_FEAT_CFG_OVERRIDE_PREEMPHASIS_CFG_ENABLED) {
13987         sc->link_params.feature_config_flags |=
13988             ELINK_FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED;
13989     } else {
13990         sc->link_params.feature_config_flags &=
13991             ~ELINK_FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED;
13992     }
13993 
13994     /* get the initial value of the link params */
13995     sc->link_params.multi_phy_config =
13996         SHMEM_RD(sc, dev_info.port_hw_config[port].multi_phy_config);
13997 
13998     /* get external phy info */
13999     sc->port.ext_phy_config =
14000         SHMEM_RD(sc, dev_info.port_hw_config[port].external_phy_config);
14001 
14002     /* get the multifunction configuration */
14003     bxe_get_mf_cfg_info(sc);
14004 
14005     /* get the mac address */
14006     if (IS_MF(sc)) {
14007         mac_hi = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].mac_upper);
14008         mac_lo = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].mac_lower);
14009     } else {
14010         mac_hi = SHMEM_RD(sc, dev_info.port_hw_config[port].mac_upper);
14011         mac_lo = SHMEM_RD(sc, dev_info.port_hw_config[port].mac_lower);
14012     }
14013 
14014     if ((mac_lo == 0) && (mac_hi == 0)) {
14015         *sc->mac_addr_str = 0;
14016         BLOGE(sc, "No Ethernet address programmed!\n");
14017     } else {
14018         sc->link_params.mac_addr[0] = (uint8_t)(mac_hi >> 8);
14019         sc->link_params.mac_addr[1] = (uint8_t)(mac_hi);
14020         sc->link_params.mac_addr[2] = (uint8_t)(mac_lo >> 24);
14021         sc->link_params.mac_addr[3] = (uint8_t)(mac_lo >> 16);
14022         sc->link_params.mac_addr[4] = (uint8_t)(mac_lo >> 8);
14023         sc->link_params.mac_addr[5] = (uint8_t)(mac_lo);
14024         snprintf(sc->mac_addr_str, sizeof(sc->mac_addr_str),
14025                  "%02x:%02x:%02x:%02x:%02x:%02x",
14026                  sc->link_params.mac_addr[0], sc->link_params.mac_addr[1],
14027                  sc->link_params.mac_addr[2], sc->link_params.mac_addr[3],
14028                  sc->link_params.mac_addr[4], sc->link_params.mac_addr[5]);
14029         BLOGD(sc, DBG_LOAD, "Ethernet address: %s\n", sc->mac_addr_str);
14030     }
14031 
14032 #if 0
14033     if (!IS_MF(sc) &&
14034         ((sc->port.config & PORT_FEAT_CFG_STORAGE_PERSONALITY_MASK) ==
14035          PORT_FEAT_CFG_STORAGE_PERSONALITY_FCOE)) {
14036         sc->flags |= BXE_NO_ISCSI;
14037     }
14038     if (!IS_MF(sc) &&
14039         ((sc->port.config & PORT_FEAT_CFG_STORAGE_PERSONALITY_MASK) ==
14040          PORT_FEAT_CFG_STORAGE_PERSONALITY_ISCSI)) {
14041         sc->flags |= BXE_NO_FCOE_FLAG;
14042     }
14043 #endif
14044 
14045     return (0);
14046 }
14047 
14048 static void
14049 bxe_get_tunable_params(struct bxe_softc *sc)
14050 {
14051     /* sanity checks */
14052 
14053     if ((bxe_interrupt_mode != INTR_MODE_INTX) &&
14054         (bxe_interrupt_mode != INTR_MODE_MSI)  &&
14055         (bxe_interrupt_mode != INTR_MODE_MSIX)) {
14056         BLOGW(sc, "invalid interrupt_mode value (%d)\n", bxe_interrupt_mode);
14057         bxe_interrupt_mode = INTR_MODE_MSIX;
14058     }
14059 
14060     if ((bxe_queue_count < 0) || (bxe_queue_count > MAX_RSS_CHAINS)) {
14061         BLOGW(sc, "invalid queue_count value (%d)\n", bxe_queue_count);
14062         bxe_queue_count = 0;
14063     }
14064 
14065     if ((bxe_max_rx_bufs < 1) || (bxe_max_rx_bufs > RX_BD_USABLE)) {
14066         if (bxe_max_rx_bufs == 0) {
14067             bxe_max_rx_bufs = RX_BD_USABLE;
14068         } else {
14069             BLOGW(sc, "invalid max_rx_bufs (%d)\n", bxe_max_rx_bufs);
14070             bxe_max_rx_bufs = 2048;
14071         }
14072     }
14073 
14074     if ((bxe_hc_rx_ticks < 1) || (bxe_hc_rx_ticks > 100)) {
14075         BLOGW(sc, "invalid hc_rx_ticks (%d)\n", bxe_hc_rx_ticks);
14076         bxe_hc_rx_ticks = 25;
14077     }
14078 
14079     if ((bxe_hc_tx_ticks < 1) || (bxe_hc_tx_ticks > 100)) {
14080         BLOGW(sc, "invalid hc_tx_ticks (%d)\n", bxe_hc_tx_ticks);
14081         bxe_hc_tx_ticks = 50;
14082     }
14083 
14084     if (bxe_max_aggregation_size == 0) {
14085         bxe_max_aggregation_size = TPA_AGG_SIZE;
14086     }
14087 
14088     if (bxe_max_aggregation_size > 0xffff) {
14089         BLOGW(sc, "invalid max_aggregation_size (%d)\n",
14090               bxe_max_aggregation_size);
14091         bxe_max_aggregation_size = TPA_AGG_SIZE;
14092     }
14093 
14094     if ((bxe_mrrs < -1) || (bxe_mrrs > 3)) {
14095         BLOGW(sc, "invalid mrrs (%d)\n", bxe_mrrs);
14096         bxe_mrrs = -1;
14097     }
14098 
14099     if ((bxe_autogreeen < 0) || (bxe_autogreeen > 2)) {
14100         BLOGW(sc, "invalid autogreeen (%d)\n", bxe_autogreeen);
14101         bxe_autogreeen = 0;
14102     }
14103 
14104     if ((bxe_udp_rss < 0) || (bxe_udp_rss > 1)) {
14105         BLOGW(sc, "invalid udp_rss (%d)\n", bxe_udp_rss);
14106         bxe_udp_rss = 0;
14107     }
14108 
14109     /* pull in user settings */
14110 
14111     sc->interrupt_mode       = bxe_interrupt_mode;
14112     sc->max_rx_bufs          = bxe_max_rx_bufs;
14113     sc->hc_rx_ticks          = bxe_hc_rx_ticks;
14114     sc->hc_tx_ticks          = bxe_hc_tx_ticks;
14115     sc->max_aggregation_size = bxe_max_aggregation_size;
14116     sc->mrrs                 = bxe_mrrs;
14117     sc->autogreeen           = bxe_autogreeen;
14118     sc->udp_rss              = bxe_udp_rss;
14119 
14120     if (bxe_interrupt_mode == INTR_MODE_INTX) {
14121         sc->num_queues = 1;
14122     } else { /* INTR_MODE_MSI or INTR_MODE_MSIX */
14123         sc->num_queues =
14124             min((bxe_queue_count ? bxe_queue_count : mp_ncpus),
14125                 MAX_RSS_CHAINS);
14126         if (sc->num_queues > mp_ncpus) {
14127             sc->num_queues = mp_ncpus;
14128         }
14129     }
14130 
14131     BLOGD(sc, DBG_LOAD,
14132           "User Config: "
14133           "debug=0x%lx "
14134           "interrupt_mode=%d "
14135           "queue_count=%d "
14136           "hc_rx_ticks=%d "
14137           "hc_tx_ticks=%d "
14138           "rx_budget=%d "
14139           "max_aggregation_size=%d "
14140           "mrrs=%d "
14141           "autogreeen=%d "
14142           "udp_rss=%d\n",
14143           bxe_debug,
14144           sc->interrupt_mode,
14145           sc->num_queues,
14146           sc->hc_rx_ticks,
14147           sc->hc_tx_ticks,
14148           bxe_rx_budget,
14149           sc->max_aggregation_size,
14150           sc->mrrs,
14151           sc->autogreeen,
14152           sc->udp_rss);
14153 }
14154 
14155 static void
14156 bxe_media_detect(struct bxe_softc *sc)
14157 {
14158     uint32_t phy_idx = bxe_get_cur_phy_idx(sc);
14159     switch (sc->link_params.phy[phy_idx].media_type) {
14160     case ELINK_ETH_PHY_SFPP_10G_FIBER:
14161     case ELINK_ETH_PHY_XFP_FIBER:
14162         BLOGI(sc, "Found 10Gb Fiber media.\n");
14163         sc->media = IFM_10G_SR;
14164         break;
14165     case ELINK_ETH_PHY_SFP_1G_FIBER:
14166         BLOGI(sc, "Found 1Gb Fiber media.\n");
14167         sc->media = IFM_1000_SX;
14168         break;
14169     case ELINK_ETH_PHY_KR:
14170     case ELINK_ETH_PHY_CX4:
14171         BLOGI(sc, "Found 10GBase-CX4 media.\n");
14172         sc->media = IFM_10G_CX4;
14173         break;
14174     case ELINK_ETH_PHY_DA_TWINAX:
14175         BLOGI(sc, "Found 10Gb Twinax media.\n");
14176         sc->media = IFM_10G_TWINAX;
14177         break;
14178     case ELINK_ETH_PHY_BASE_T:
14179         if (sc->link_params.speed_cap_mask[0] &
14180             PORT_HW_CFG_SPEED_CAPABILITY_D0_10G) {
14181             BLOGI(sc, "Found 10GBase-T media.\n");
14182             sc->media = IFM_10G_T;
14183         } else {
14184             BLOGI(sc, "Found 1000Base-T media.\n");
14185             sc->media = IFM_1000_T;
14186         }
14187         break;
14188     case ELINK_ETH_PHY_NOT_PRESENT:
14189         BLOGI(sc, "Media not present.\n");
14190         sc->media = 0;
14191         break;
14192     case ELINK_ETH_PHY_UNSPECIFIED:
14193     default:
14194         BLOGI(sc, "Unknown media!\n");
14195         sc->media = 0;
14196         break;
14197     }
14198 }
14199 
14200 #define GET_FIELD(value, fname)                     \
14201     (((value) & (fname##_MASK)) >> (fname##_SHIFT))
14202 #define IGU_FID(val) GET_FIELD((val), IGU_REG_MAPPING_MEMORY_FID)
14203 #define IGU_VEC(val) GET_FIELD((val), IGU_REG_MAPPING_MEMORY_VECTOR)
14204 
14205 static int
14206 bxe_get_igu_cam_info(struct bxe_softc *sc)
14207 {
14208     int pfid = SC_FUNC(sc);
14209     int igu_sb_id;
14210     uint32_t val;
14211     uint8_t fid, igu_sb_cnt = 0;
14212 
14213     sc->igu_base_sb = 0xff;
14214 
14215     if (CHIP_INT_MODE_IS_BC(sc)) {
14216         int vn = SC_VN(sc);
14217         igu_sb_cnt = sc->igu_sb_cnt;
14218         sc->igu_base_sb = ((CHIP_IS_MODE_4_PORT(sc) ? pfid : vn) *
14219                            FP_SB_MAX_E1x);
14220         sc->igu_dsb_id = (E1HVN_MAX * FP_SB_MAX_E1x +
14221                           (CHIP_IS_MODE_4_PORT(sc) ? pfid : vn));
14222         return (0);
14223     }
14224 
14225     /* IGU in normal mode - read CAM */
14226     for (igu_sb_id = 0;
14227          igu_sb_id < IGU_REG_MAPPING_MEMORY_SIZE;
14228          igu_sb_id++) {
14229         val = REG_RD(sc, IGU_REG_MAPPING_MEMORY + igu_sb_id * 4);
14230         if (!(val & IGU_REG_MAPPING_MEMORY_VALID)) {
14231             continue;
14232         }
14233         fid = IGU_FID(val);
14234         if ((fid & IGU_FID_ENCODE_IS_PF)) {
14235             if ((fid & IGU_FID_PF_NUM_MASK) != pfid) {
14236                 continue;
14237             }
14238             if (IGU_VEC(val) == 0) {
14239                 /* default status block */
14240                 sc->igu_dsb_id = igu_sb_id;
14241             } else {
14242                 if (sc->igu_base_sb == 0xff) {
14243                     sc->igu_base_sb = igu_sb_id;
14244                 }
14245                 igu_sb_cnt++;
14246             }
14247         }
14248     }
14249 
14250     /*
14251      * Due to new PF resource allocation by MFW T7.4 and above, it's optional
14252      * that number of CAM entries will not be equal to the value advertised in
14253      * PCI. Driver should use the minimal value of both as the actual status
14254      * block count
14255      */
14256     sc->igu_sb_cnt = min(sc->igu_sb_cnt, igu_sb_cnt);
14257 
14258     if (igu_sb_cnt == 0) {
14259         BLOGE(sc, "CAM configuration error\n");
14260         return (-1);
14261     }
14262 
14263     return (0);
14264 }
14265 
14266 /*
14267  * Gather various information from the device config space, the device itself,
14268  * shmem, and the user input.
14269  */
14270 static int
14271 bxe_get_device_info(struct bxe_softc *sc)
14272 {
14273     uint32_t val;
14274     int rc;
14275 
14276     /* Get the data for the device */
14277     sc->devinfo.vendor_id    = pci_get_vendor(sc->dev);
14278     sc->devinfo.device_id    = pci_get_device(sc->dev);
14279     sc->devinfo.subvendor_id = pci_get_subvendor(sc->dev);
14280     sc->devinfo.subdevice_id = pci_get_subdevice(sc->dev);
14281 
14282     /* get the chip revision (chip metal comes from pci config space) */
14283     sc->devinfo.chip_id     =
14284     sc->link_params.chip_id =
14285         (((REG_RD(sc, MISC_REG_CHIP_NUM)                   & 0xffff) << 16) |
14286          ((REG_RD(sc, MISC_REG_CHIP_REV)                   & 0xf)    << 12) |
14287          (((REG_RD(sc, PCICFG_OFFSET + PCI_ID_VAL3) >> 24) & 0xf)    << 4)  |
14288          ((REG_RD(sc, MISC_REG_BOND_ID)                    & 0xf)    << 0));
14289 
14290     /* force 57811 according to MISC register */
14291     if (REG_RD(sc, MISC_REG_CHIP_TYPE) & MISC_REG_CHIP_TYPE_57811_MASK) {
14292         if (CHIP_IS_57810(sc)) {
14293             sc->devinfo.chip_id = ((CHIP_NUM_57811 << 16) |
14294                                    (sc->devinfo.chip_id & 0x0000ffff));
14295         } else if (CHIP_IS_57810_MF(sc)) {
14296             sc->devinfo.chip_id = ((CHIP_NUM_57811_MF << 16) |
14297                                    (sc->devinfo.chip_id & 0x0000ffff));
14298         }
14299         sc->devinfo.chip_id |= 0x1;
14300     }
14301 
14302     BLOGD(sc, DBG_LOAD,
14303           "chip_id=0x%08x (num=0x%04x rev=0x%01x metal=0x%02x bond=0x%01x)\n",
14304           sc->devinfo.chip_id,
14305           ((sc->devinfo.chip_id >> 16) & 0xffff),
14306           ((sc->devinfo.chip_id >> 12) & 0xf),
14307           ((sc->devinfo.chip_id >>  4) & 0xff),
14308           ((sc->devinfo.chip_id >>  0) & 0xf));
14309 
14310     val = (REG_RD(sc, 0x2874) & 0x55);
14311     if ((sc->devinfo.chip_id & 0x1) ||
14312         (CHIP_IS_E1(sc) && val) ||
14313         (CHIP_IS_E1H(sc) && (val == 0x55))) {
14314         sc->flags |= BXE_ONE_PORT_FLAG;
14315         BLOGD(sc, DBG_LOAD, "single port device\n");
14316     }
14317 
14318     /* set the doorbell size */
14319     sc->doorbell_size = (1 << BXE_DB_SHIFT);
14320 
14321     /* determine whether the device is in 2 port or 4 port mode */
14322     sc->devinfo.chip_port_mode = CHIP_PORT_MODE_NONE; /* E1 & E1h*/
14323     if (CHIP_IS_E2E3(sc)) {
14324         /*
14325          * Read port4mode_en_ovwr[0]:
14326          *   If 1, four port mode is in port4mode_en_ovwr[1].
14327          *   If 0, four port mode is in port4mode_en[0].
14328          */
14329         val = REG_RD(sc, MISC_REG_PORT4MODE_EN_OVWR);
14330         if (val & 1) {
14331             val = ((val >> 1) & 1);
14332         } else {
14333             val = REG_RD(sc, MISC_REG_PORT4MODE_EN);
14334         }
14335 
14336         sc->devinfo.chip_port_mode =
14337             (val) ? CHIP_4_PORT_MODE : CHIP_2_PORT_MODE;
14338 
14339         BLOGD(sc, DBG_LOAD, "Port mode = %s\n", (val) ? "4" : "2");
14340     }
14341 
14342     /* get the function and path info for the device */
14343     bxe_get_function_num(sc);
14344 
14345     /* get the shared memory base address */
14346     sc->devinfo.shmem_base     =
14347     sc->link_params.shmem_base =
14348         REG_RD(sc, MISC_REG_SHARED_MEM_ADDR);
14349     sc->devinfo.shmem2_base =
14350         REG_RD(sc, (SC_PATH(sc) ? MISC_REG_GENERIC_CR_1 :
14351                                   MISC_REG_GENERIC_CR_0));
14352 
14353     BLOGD(sc, DBG_LOAD, "shmem_base=0x%08x, shmem2_base=0x%08x\n",
14354           sc->devinfo.shmem_base, sc->devinfo.shmem2_base);
14355 
14356     if (!sc->devinfo.shmem_base) {
14357         /* this should ONLY prevent upcoming shmem reads */
14358         BLOGI(sc, "MCP not active\n");
14359         sc->flags |= BXE_NO_MCP_FLAG;
14360         return (0);
14361     }
14362 
14363     /* make sure the shared memory contents are valid */
14364     val = SHMEM_RD(sc, validity_map[SC_PORT(sc)]);
14365     if ((val & (SHR_MEM_VALIDITY_DEV_INFO | SHR_MEM_VALIDITY_MB)) !=
14366         (SHR_MEM_VALIDITY_DEV_INFO | SHR_MEM_VALIDITY_MB)) {
14367         BLOGE(sc, "Invalid SHMEM validity signature: 0x%08x\n", val);
14368         return (0);
14369     }
14370     BLOGD(sc, DBG_LOAD, "Valid SHMEM validity signature: 0x%08x\n", val);
14371 
14372     /* get the bootcode version */
14373     sc->devinfo.bc_ver = SHMEM_RD(sc, dev_info.bc_rev);
14374     snprintf(sc->devinfo.bc_ver_str,
14375              sizeof(sc->devinfo.bc_ver_str),
14376              "%d.%d.%d",
14377              ((sc->devinfo.bc_ver >> 24) & 0xff),
14378              ((sc->devinfo.bc_ver >> 16) & 0xff),
14379              ((sc->devinfo.bc_ver >>  8) & 0xff));
14380     BLOGD(sc, DBG_LOAD, "Bootcode version: %s\n", sc->devinfo.bc_ver_str);
14381 
14382     /* get the bootcode shmem address */
14383     sc->devinfo.mf_cfg_base = bxe_get_shmem_mf_cfg_base(sc);
14384     BLOGD(sc, DBG_LOAD, "mf_cfg_base=0x08%x \n", sc->devinfo.mf_cfg_base);
14385 
14386     /* clean indirect addresses as they're not used */
14387     pci_write_config(sc->dev, PCICFG_GRC_ADDRESS, 0, 4);
14388     if (IS_PF(sc)) {
14389         REG_WR(sc, PXP2_REG_PGL_ADDR_88_F0, 0);
14390         REG_WR(sc, PXP2_REG_PGL_ADDR_8C_F0, 0);
14391         REG_WR(sc, PXP2_REG_PGL_ADDR_90_F0, 0);
14392         REG_WR(sc, PXP2_REG_PGL_ADDR_94_F0, 0);
14393         if (CHIP_IS_E1x(sc)) {
14394             REG_WR(sc, PXP2_REG_PGL_ADDR_88_F1, 0);
14395             REG_WR(sc, PXP2_REG_PGL_ADDR_8C_F1, 0);
14396             REG_WR(sc, PXP2_REG_PGL_ADDR_90_F1, 0);
14397             REG_WR(sc, PXP2_REG_PGL_ADDR_94_F1, 0);
14398         }
14399 
14400         /*
14401          * Enable internal target-read (in case we are probed after PF
14402          * FLR). Must be done prior to any BAR read access. Only for
14403          * 57712 and up
14404          */
14405         if (!CHIP_IS_E1x(sc)) {
14406             REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
14407         }
14408     }
14409 
14410     /* get the nvram size */
14411     val = REG_RD(sc, MCP_REG_MCPR_NVM_CFG4);
14412     sc->devinfo.flash_size =
14413         (NVRAM_1MB_SIZE << (val & MCPR_NVM_CFG4_FLASH_SIZE));
14414     BLOGD(sc, DBG_LOAD, "nvram flash size: %d\n", sc->devinfo.flash_size);
14415 
14416     /* get PCI capabilites */
14417     bxe_probe_pci_caps(sc);
14418 
14419     bxe_set_power_state(sc, PCI_PM_D0);
14420 
14421     /* get various configuration parameters from shmem */
14422     bxe_get_shmem_info(sc);
14423 
14424     if (sc->devinfo.pcie_msix_cap_reg != 0) {
14425         val = pci_read_config(sc->dev,
14426                               (sc->devinfo.pcie_msix_cap_reg +
14427                                PCIR_MSIX_CTRL),
14428                               2);
14429         sc->igu_sb_cnt = (val & PCIM_MSIXCTRL_TABLE_SIZE);
14430     } else {
14431         sc->igu_sb_cnt = 1;
14432     }
14433 
14434     sc->igu_base_addr = BAR_IGU_INTMEM;
14435 
14436     /* initialize IGU parameters */
14437     if (CHIP_IS_E1x(sc)) {
14438         sc->devinfo.int_block = INT_BLOCK_HC;
14439         sc->igu_dsb_id = DEF_SB_IGU_ID;
14440         sc->igu_base_sb = 0;
14441     } else {
14442         sc->devinfo.int_block = INT_BLOCK_IGU;
14443 
14444         /* do not allow device reset during IGU info preocessing */
14445         bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RESET);
14446 
14447         val = REG_RD(sc, IGU_REG_BLOCK_CONFIGURATION);
14448 
14449         if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) {
14450             int tout = 5000;
14451 
14452             BLOGD(sc, DBG_LOAD, "FORCING IGU Normal Mode\n");
14453 
14454             val &= ~(IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN);
14455             REG_WR(sc, IGU_REG_BLOCK_CONFIGURATION, val);
14456             REG_WR(sc, IGU_REG_RESET_MEMORIES, 0x7f);
14457 
14458             while (tout && REG_RD(sc, IGU_REG_RESET_MEMORIES)) {
14459                 tout--;
14460                 DELAY(1000);
14461             }
14462 
14463             if (REG_RD(sc, IGU_REG_RESET_MEMORIES)) {
14464                 BLOGD(sc, DBG_LOAD, "FORCING IGU Normal Mode failed!!!\n");
14465                 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RESET);
14466                 return (-1);
14467             }
14468         }
14469 
14470         if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) {
14471             BLOGD(sc, DBG_LOAD, "IGU Backward Compatible Mode\n");
14472             sc->devinfo.int_block |= INT_BLOCK_MODE_BW_COMP;
14473         } else {
14474             BLOGD(sc, DBG_LOAD, "IGU Normal Mode\n");
14475         }
14476 
14477         rc = bxe_get_igu_cam_info(sc);
14478 
14479         bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RESET);
14480 
14481         if (rc) {
14482             return (rc);
14483         }
14484     }
14485 
14486     /*
14487      * Get base FW non-default (fast path) status block ID. This value is
14488      * used to initialize the fw_sb_id saved on the fp/queue structure to
14489      * determine the id used by the FW.
14490      */
14491     if (CHIP_IS_E1x(sc)) {
14492         sc->base_fw_ndsb = ((SC_PORT(sc) * FP_SB_MAX_E1x) + SC_L_ID(sc));
14493     } else {
14494         /*
14495          * 57712+ - We currently use one FW SB per IGU SB (Rx and Tx of
14496          * the same queue are indicated on the same IGU SB). So we prefer
14497          * FW and IGU SBs to be the same value.
14498          */
14499         sc->base_fw_ndsb = sc->igu_base_sb;
14500     }
14501 
14502     BLOGD(sc, DBG_LOAD,
14503           "igu_dsb_id=%d igu_base_sb=%d igu_sb_cnt=%d base_fw_ndsb=%d\n",
14504           sc->igu_dsb_id, sc->igu_base_sb,
14505           sc->igu_sb_cnt, sc->base_fw_ndsb);
14506 
14507     elink_phy_probe(&sc->link_params);
14508 
14509     return (0);
14510 }
14511 
14512 static void
14513 bxe_link_settings_supported(struct bxe_softc *sc,
14514                             uint32_t         switch_cfg)
14515 {
14516     uint32_t cfg_size = 0;
14517     uint32_t idx;
14518     uint8_t port = SC_PORT(sc);
14519 
14520     /* aggregation of supported attributes of all external phys */
14521     sc->port.supported[0] = 0;
14522     sc->port.supported[1] = 0;
14523 
14524     switch (sc->link_params.num_phys) {
14525     case 1:
14526         sc->port.supported[0] = sc->link_params.phy[ELINK_INT_PHY].supported;
14527         cfg_size = 1;
14528         break;
14529     case 2:
14530         sc->port.supported[0] = sc->link_params.phy[ELINK_EXT_PHY1].supported;
14531         cfg_size = 1;
14532         break;
14533     case 3:
14534         if (sc->link_params.multi_phy_config &
14535             PORT_HW_CFG_PHY_SWAPPED_ENABLED) {
14536             sc->port.supported[1] =
14537                 sc->link_params.phy[ELINK_EXT_PHY1].supported;
14538             sc->port.supported[0] =
14539                 sc->link_params.phy[ELINK_EXT_PHY2].supported;
14540         } else {
14541             sc->port.supported[0] =
14542                 sc->link_params.phy[ELINK_EXT_PHY1].supported;
14543             sc->port.supported[1] =
14544                 sc->link_params.phy[ELINK_EXT_PHY2].supported;
14545         }
14546         cfg_size = 2;
14547         break;
14548     }
14549 
14550     if (!(sc->port.supported[0] || sc->port.supported[1])) {
14551         BLOGE(sc, "Invalid phy config in NVRAM (PHY1=0x%08x PHY2=0x%08x)\n",
14552               SHMEM_RD(sc,
14553                        dev_info.port_hw_config[port].external_phy_config),
14554               SHMEM_RD(sc,
14555                        dev_info.port_hw_config[port].external_phy_config2));
14556         return;
14557     }
14558 
14559     if (CHIP_IS_E3(sc))
14560         sc->port.phy_addr = REG_RD(sc, MISC_REG_WC0_CTRL_PHY_ADDR);
14561     else {
14562         switch (switch_cfg) {
14563         case ELINK_SWITCH_CFG_1G:
14564             sc->port.phy_addr =
14565                 REG_RD(sc, NIG_REG_SERDES0_CTRL_PHY_ADDR + port*0x10);
14566             break;
14567         case ELINK_SWITCH_CFG_10G:
14568             sc->port.phy_addr =
14569                 REG_RD(sc, NIG_REG_XGXS0_CTRL_PHY_ADDR + port*0x18);
14570             break;
14571         default:
14572             BLOGE(sc, "Invalid switch config in link_config=0x%08x\n",
14573                   sc->port.link_config[0]);
14574             return;
14575         }
14576     }
14577 
14578     BLOGD(sc, DBG_LOAD, "PHY addr 0x%08x\n", sc->port.phy_addr);
14579 
14580     /* mask what we support according to speed_cap_mask per configuration */
14581     for (idx = 0; idx < cfg_size; idx++) {
14582         if (!(sc->link_params.speed_cap_mask[idx] &
14583               PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_HALF)) {
14584             sc->port.supported[idx] &= ~ELINK_SUPPORTED_10baseT_Half;
14585         }
14586 
14587         if (!(sc->link_params.speed_cap_mask[idx] &
14588               PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_FULL)) {
14589             sc->port.supported[idx] &= ~ELINK_SUPPORTED_10baseT_Full;
14590         }
14591 
14592         if (!(sc->link_params.speed_cap_mask[idx] &
14593               PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_HALF)) {
14594             sc->port.supported[idx] &= ~ELINK_SUPPORTED_100baseT_Half;
14595         }
14596 
14597         if (!(sc->link_params.speed_cap_mask[idx] &
14598               PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_FULL)) {
14599             sc->port.supported[idx] &= ~ELINK_SUPPORTED_100baseT_Full;
14600         }
14601 
14602         if (!(sc->link_params.speed_cap_mask[idx] &
14603               PORT_HW_CFG_SPEED_CAPABILITY_D0_1G)) {
14604             sc->port.supported[idx] &= ~ELINK_SUPPORTED_1000baseT_Full;
14605         }
14606 
14607         if (!(sc->link_params.speed_cap_mask[idx] &
14608               PORT_HW_CFG_SPEED_CAPABILITY_D0_2_5G)) {
14609             sc->port.supported[idx] &= ~ELINK_SUPPORTED_2500baseX_Full;
14610         }
14611 
14612         if (!(sc->link_params.speed_cap_mask[idx] &
14613               PORT_HW_CFG_SPEED_CAPABILITY_D0_10G)) {
14614             sc->port.supported[idx] &= ~ELINK_SUPPORTED_10000baseT_Full;
14615         }
14616 
14617         if (!(sc->link_params.speed_cap_mask[idx] &
14618               PORT_HW_CFG_SPEED_CAPABILITY_D0_20G)) {
14619             sc->port.supported[idx] &= ~ELINK_SUPPORTED_20000baseKR2_Full;
14620         }
14621     }
14622 
14623     BLOGD(sc, DBG_LOAD, "PHY supported 0=0x%08x 1=0x%08x\n",
14624           sc->port.supported[0], sc->port.supported[1]);
14625 }
14626 
14627 static void
14628 bxe_link_settings_requested(struct bxe_softc *sc)
14629 {
14630     uint32_t link_config;
14631     uint32_t idx;
14632     uint32_t cfg_size = 0;
14633 
14634     sc->port.advertising[0] = 0;
14635     sc->port.advertising[1] = 0;
14636 
14637     switch (sc->link_params.num_phys) {
14638     case 1:
14639     case 2:
14640         cfg_size = 1;
14641         break;
14642     case 3:
14643         cfg_size = 2;
14644         break;
14645     }
14646 
14647     for (idx = 0; idx < cfg_size; idx++) {
14648         sc->link_params.req_duplex[idx] = DUPLEX_FULL;
14649         link_config = sc->port.link_config[idx];
14650 
14651         switch (link_config & PORT_FEATURE_LINK_SPEED_MASK) {
14652         case PORT_FEATURE_LINK_SPEED_AUTO:
14653             if (sc->port.supported[idx] & ELINK_SUPPORTED_Autoneg) {
14654                 sc->link_params.req_line_speed[idx] = ELINK_SPEED_AUTO_NEG;
14655                 sc->port.advertising[idx] |= sc->port.supported[idx];
14656                 if (sc->link_params.phy[ELINK_EXT_PHY1].type ==
14657                     PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM84833)
14658                     sc->port.advertising[idx] |=
14659                         (ELINK_SUPPORTED_100baseT_Half |
14660                          ELINK_SUPPORTED_100baseT_Full);
14661             } else {
14662                 /* force 10G, no AN */
14663                 sc->link_params.req_line_speed[idx] = ELINK_SPEED_10000;
14664                 sc->port.advertising[idx] |=
14665                     (ADVERTISED_10000baseT_Full | ADVERTISED_FIBRE);
14666                 continue;
14667             }
14668             break;
14669 
14670         case PORT_FEATURE_LINK_SPEED_10M_FULL:
14671             if (sc->port.supported[idx] & ELINK_SUPPORTED_10baseT_Full) {
14672                 sc->link_params.req_line_speed[idx] = ELINK_SPEED_10;
14673                 sc->port.advertising[idx] |= (ADVERTISED_10baseT_Full |
14674                                               ADVERTISED_TP);
14675             } else {
14676                 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x "
14677                           "speed_cap_mask=0x%08x\n",
14678                       link_config, sc->link_params.speed_cap_mask[idx]);
14679                 return;
14680             }
14681             break;
14682 
14683         case PORT_FEATURE_LINK_SPEED_10M_HALF:
14684             if (sc->port.supported[idx] & ELINK_SUPPORTED_10baseT_Half) {
14685                 sc->link_params.req_line_speed[idx] = ELINK_SPEED_10;
14686                 sc->link_params.req_duplex[idx] = DUPLEX_HALF;
14687                 sc->port.advertising[idx] |= (ADVERTISED_10baseT_Half |
14688                                               ADVERTISED_TP);
14689             } else {
14690                 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x "
14691                           "speed_cap_mask=0x%08x\n",
14692                       link_config, sc->link_params.speed_cap_mask[idx]);
14693                 return;
14694             }
14695             break;
14696 
14697         case PORT_FEATURE_LINK_SPEED_100M_FULL:
14698             if (sc->port.supported[idx] & ELINK_SUPPORTED_100baseT_Full) {
14699                 sc->link_params.req_line_speed[idx] = ELINK_SPEED_100;
14700                 sc->port.advertising[idx] |= (ADVERTISED_100baseT_Full |
14701                                               ADVERTISED_TP);
14702             } else {
14703                 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x "
14704                           "speed_cap_mask=0x%08x\n",
14705                       link_config, sc->link_params.speed_cap_mask[idx]);
14706                 return;
14707             }
14708             break;
14709 
14710         case PORT_FEATURE_LINK_SPEED_100M_HALF:
14711             if (sc->port.supported[idx] & ELINK_SUPPORTED_100baseT_Half) {
14712                 sc->link_params.req_line_speed[idx] = ELINK_SPEED_100;
14713                 sc->link_params.req_duplex[idx] = DUPLEX_HALF;
14714                 sc->port.advertising[idx] |= (ADVERTISED_100baseT_Half |
14715                                               ADVERTISED_TP);
14716             } else {
14717                 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x "
14718                           "speed_cap_mask=0x%08x\n",
14719                       link_config, sc->link_params.speed_cap_mask[idx]);
14720                 return;
14721             }
14722             break;
14723 
14724         case PORT_FEATURE_LINK_SPEED_1G:
14725             if (sc->port.supported[idx] & ELINK_SUPPORTED_1000baseT_Full) {
14726                 sc->link_params.req_line_speed[idx] = ELINK_SPEED_1000;
14727                 sc->port.advertising[idx] |= (ADVERTISED_1000baseT_Full |
14728                                               ADVERTISED_TP);
14729             } else {
14730                 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x "
14731                           "speed_cap_mask=0x%08x\n",
14732                       link_config, sc->link_params.speed_cap_mask[idx]);
14733                 return;
14734             }
14735             break;
14736 
14737         case PORT_FEATURE_LINK_SPEED_2_5G:
14738             if (sc->port.supported[idx] & ELINK_SUPPORTED_2500baseX_Full) {
14739                 sc->link_params.req_line_speed[idx] = ELINK_SPEED_2500;
14740                 sc->port.advertising[idx] |= (ADVERTISED_2500baseX_Full |
14741                                               ADVERTISED_TP);
14742             } else {
14743                 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x "
14744                           "speed_cap_mask=0x%08x\n",
14745                       link_config, sc->link_params.speed_cap_mask[idx]);
14746                 return;
14747             }
14748             break;
14749 
14750         case PORT_FEATURE_LINK_SPEED_10G_CX4:
14751             if (sc->port.supported[idx] & ELINK_SUPPORTED_10000baseT_Full) {
14752                 sc->link_params.req_line_speed[idx] = ELINK_SPEED_10000;
14753                 sc->port.advertising[idx] |= (ADVERTISED_10000baseT_Full |
14754                                               ADVERTISED_FIBRE);
14755             } else {
14756                 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x "
14757                           "speed_cap_mask=0x%08x\n",
14758                       link_config, sc->link_params.speed_cap_mask[idx]);
14759                 return;
14760             }
14761             break;
14762 
14763         case PORT_FEATURE_LINK_SPEED_20G:
14764             sc->link_params.req_line_speed[idx] = ELINK_SPEED_20000;
14765             break;
14766 
14767         default:
14768             BLOGE(sc, "Invalid NVRAM config link_config=0x%08x "
14769                       "speed_cap_mask=0x%08x\n",
14770                   link_config, sc->link_params.speed_cap_mask[idx]);
14771             sc->link_params.req_line_speed[idx] = ELINK_SPEED_AUTO_NEG;
14772             sc->port.advertising[idx] = sc->port.supported[idx];
14773             break;
14774         }
14775 
14776         sc->link_params.req_flow_ctrl[idx] =
14777             (link_config & PORT_FEATURE_FLOW_CONTROL_MASK);
14778 
14779         if (sc->link_params.req_flow_ctrl[idx] == ELINK_FLOW_CTRL_AUTO) {
14780             if (!(sc->port.supported[idx] & ELINK_SUPPORTED_Autoneg)) {
14781                 sc->link_params.req_flow_ctrl[idx] = ELINK_FLOW_CTRL_NONE;
14782             } else {
14783                 bxe_set_requested_fc(sc);
14784             }
14785         }
14786 
14787         BLOGD(sc, DBG_LOAD, "req_line_speed=%d req_duplex=%d "
14788                             "req_flow_ctrl=0x%x advertising=0x%x\n",
14789               sc->link_params.req_line_speed[idx],
14790               sc->link_params.req_duplex[idx],
14791               sc->link_params.req_flow_ctrl[idx],
14792               sc->port.advertising[idx]);
14793     }
14794 }
14795 
14796 static void
14797 bxe_get_phy_info(struct bxe_softc *sc)
14798 {
14799     uint8_t port = SC_PORT(sc);
14800     uint32_t config = sc->port.config;
14801     uint32_t eee_mode;
14802 
14803     /* shmem data already read in bxe_get_shmem_info() */
14804 
14805     BLOGD(sc, DBG_LOAD, "lane_config=0x%08x speed_cap_mask0=0x%08x "
14806                         "link_config0=0x%08x\n",
14807                sc->link_params.lane_config,
14808                sc->link_params.speed_cap_mask[0],
14809                sc->port.link_config[0]);
14810 
14811     bxe_link_settings_supported(sc, sc->link_params.switch_cfg);
14812     bxe_link_settings_requested(sc);
14813 
14814     if (sc->autogreeen == AUTO_GREEN_FORCE_ON) {
14815         sc->link_params.feature_config_flags |=
14816             ELINK_FEATURE_CONFIG_AUTOGREEEN_ENABLED;
14817     } else if (sc->autogreeen == AUTO_GREEN_FORCE_OFF) {
14818         sc->link_params.feature_config_flags &=
14819             ~ELINK_FEATURE_CONFIG_AUTOGREEEN_ENABLED;
14820     } else if (config & PORT_FEAT_CFG_AUTOGREEEN_ENABLED) {
14821         sc->link_params.feature_config_flags |=
14822             ELINK_FEATURE_CONFIG_AUTOGREEEN_ENABLED;
14823     }
14824 
14825     /* configure link feature according to nvram value */
14826     eee_mode =
14827         (((SHMEM_RD(sc, dev_info.port_feature_config[port].eee_power_mode)) &
14828           PORT_FEAT_CFG_EEE_POWER_MODE_MASK) >>
14829          PORT_FEAT_CFG_EEE_POWER_MODE_SHIFT);
14830     if (eee_mode != PORT_FEAT_CFG_EEE_POWER_MODE_DISABLED) {
14831         sc->link_params.eee_mode = (ELINK_EEE_MODE_ADV_LPI |
14832                                     ELINK_EEE_MODE_ENABLE_LPI |
14833                                     ELINK_EEE_MODE_OUTPUT_TIME);
14834     } else {
14835         sc->link_params.eee_mode = 0;
14836     }
14837 
14838     /* get the media type */
14839     bxe_media_detect(sc);
14840 }
14841 
14842 static void
14843 bxe_get_params(struct bxe_softc *sc)
14844 {
14845     /* get user tunable params */
14846     bxe_get_tunable_params(sc);
14847 
14848     /* select the RX and TX ring sizes */
14849     sc->tx_ring_size = TX_BD_USABLE;
14850     sc->rx_ring_size = RX_BD_USABLE;
14851 
14852     /* XXX disable WoL */
14853     sc->wol = 0;
14854 }
14855 
14856 static void
14857 bxe_set_modes_bitmap(struct bxe_softc *sc)
14858 {
14859     uint32_t flags = 0;
14860 
14861     if (CHIP_REV_IS_FPGA(sc)) {
14862         SET_FLAGS(flags, MODE_FPGA);
14863     } else if (CHIP_REV_IS_EMUL(sc)) {
14864         SET_FLAGS(flags, MODE_EMUL);
14865     } else {
14866         SET_FLAGS(flags, MODE_ASIC);
14867     }
14868 
14869     if (CHIP_IS_MODE_4_PORT(sc)) {
14870         SET_FLAGS(flags, MODE_PORT4);
14871     } else {
14872         SET_FLAGS(flags, MODE_PORT2);
14873     }
14874 
14875     if (CHIP_IS_E2(sc)) {
14876         SET_FLAGS(flags, MODE_E2);
14877     } else if (CHIP_IS_E3(sc)) {
14878         SET_FLAGS(flags, MODE_E3);
14879         if (CHIP_REV(sc) == CHIP_REV_Ax) {
14880             SET_FLAGS(flags, MODE_E3_A0);
14881         } else /*if (CHIP_REV(sc) == CHIP_REV_Bx)*/ {
14882             SET_FLAGS(flags, MODE_E3_B0 | MODE_COS3);
14883         }
14884     }
14885 
14886     if (IS_MF(sc)) {
14887         SET_FLAGS(flags, MODE_MF);
14888         switch (sc->devinfo.mf_info.mf_mode) {
14889         case MULTI_FUNCTION_SD:
14890             SET_FLAGS(flags, MODE_MF_SD);
14891             break;
14892         case MULTI_FUNCTION_SI:
14893             SET_FLAGS(flags, MODE_MF_SI);
14894             break;
14895         case MULTI_FUNCTION_AFEX:
14896             SET_FLAGS(flags, MODE_MF_AFEX);
14897             break;
14898         }
14899     } else {
14900         SET_FLAGS(flags, MODE_SF);
14901     }
14902 
14903 #if defined(__LITTLE_ENDIAN)
14904     SET_FLAGS(flags, MODE_LITTLE_ENDIAN);
14905 #else /* __BIG_ENDIAN */
14906     SET_FLAGS(flags, MODE_BIG_ENDIAN);
14907 #endif
14908 
14909     INIT_MODE_FLAGS(sc) = flags;
14910 }
14911 
14912 static int
14913 bxe_alloc_hsi_mem(struct bxe_softc *sc)
14914 {
14915     struct bxe_fastpath *fp;
14916     bus_addr_t busaddr;
14917     int max_agg_queues;
14918     int max_segments;
14919     bus_size_t max_size;
14920     bus_size_t max_seg_size;
14921     char buf[32];
14922     int rc;
14923     int i, j;
14924 
14925     /* XXX zero out all vars here and call bxe_alloc_hsi_mem on error */
14926 
14927     /* allocate the parent bus DMA tag */
14928     rc = bus_dma_tag_create(bus_get_dma_tag(sc->dev), /* parent tag */
14929                             1,                        /* alignment */
14930                             0,                        /* boundary limit */
14931                             BUS_SPACE_MAXADDR,        /* restricted low */
14932                             BUS_SPACE_MAXADDR,        /* restricted hi */
14933                             NULL,                     /* addr filter() */
14934                             NULL,                     /* addr filter() arg */
14935                             BUS_SPACE_MAXSIZE_32BIT,  /* max map size */
14936                             BUS_SPACE_UNRESTRICTED,   /* num discontinuous */
14937                             BUS_SPACE_MAXSIZE_32BIT,  /* max seg size */
14938                             0,                        /* flags */
14939                             NULL,                     /* lock() */
14940                             NULL,                     /* lock() arg */
14941                             &sc->parent_dma_tag);     /* returned dma tag */
14942     if (rc != 0) {
14943         BLOGE(sc, "Failed to alloc parent DMA tag (%d)!\n", rc);
14944         return (1);
14945     }
14946 
14947     /************************/
14948     /* DEFAULT STATUS BLOCK */
14949     /************************/
14950 
14951     if (bxe_dma_alloc(sc, sizeof(struct host_sp_status_block),
14952                       &sc->def_sb_dma, "default status block") != 0) {
14953         /* XXX */
14954         bus_dma_tag_destroy(sc->parent_dma_tag);
14955         return (1);
14956     }
14957 
14958     sc->def_sb = (struct host_sp_status_block *)sc->def_sb_dma.vaddr;
14959 
14960     /***************/
14961     /* EVENT QUEUE */
14962     /***************/
14963 
14964     if (bxe_dma_alloc(sc, BCM_PAGE_SIZE,
14965                       &sc->eq_dma, "event queue") != 0) {
14966         /* XXX */
14967         bxe_dma_free(sc, &sc->def_sb_dma);
14968         sc->def_sb = NULL;
14969         bus_dma_tag_destroy(sc->parent_dma_tag);
14970         return (1);
14971     }
14972 
14973     sc->eq = (union event_ring_elem * )sc->eq_dma.vaddr;
14974 
14975     /*************/
14976     /* SLOW PATH */
14977     /*************/
14978 
14979     if (bxe_dma_alloc(sc, sizeof(struct bxe_slowpath),
14980                       &sc->sp_dma, "slow path") != 0) {
14981         /* XXX */
14982         bxe_dma_free(sc, &sc->eq_dma);
14983         sc->eq = NULL;
14984         bxe_dma_free(sc, &sc->def_sb_dma);
14985         sc->def_sb = NULL;
14986         bus_dma_tag_destroy(sc->parent_dma_tag);
14987         return (1);
14988     }
14989 
14990     sc->sp = (struct bxe_slowpath *)sc->sp_dma.vaddr;
14991 
14992     /*******************/
14993     /* SLOW PATH QUEUE */
14994     /*******************/
14995 
14996     if (bxe_dma_alloc(sc, BCM_PAGE_SIZE,
14997                       &sc->spq_dma, "slow path queue") != 0) {
14998         /* XXX */
14999         bxe_dma_free(sc, &sc->sp_dma);
15000         sc->sp = NULL;
15001         bxe_dma_free(sc, &sc->eq_dma);
15002         sc->eq = NULL;
15003         bxe_dma_free(sc, &sc->def_sb_dma);
15004         sc->def_sb = NULL;
15005         bus_dma_tag_destroy(sc->parent_dma_tag);
15006         return (1);
15007     }
15008 
15009     sc->spq = (struct eth_spe *)sc->spq_dma.vaddr;
15010 
15011     /***************************/
15012     /* FW DECOMPRESSION BUFFER */
15013     /***************************/
15014 
15015     if (bxe_dma_alloc(sc, FW_BUF_SIZE, &sc->gz_buf_dma,
15016                       "fw decompression buffer") != 0) {
15017         /* XXX */
15018         bxe_dma_free(sc, &sc->spq_dma);
15019         sc->spq = NULL;
15020         bxe_dma_free(sc, &sc->sp_dma);
15021         sc->sp = NULL;
15022         bxe_dma_free(sc, &sc->eq_dma);
15023         sc->eq = NULL;
15024         bxe_dma_free(sc, &sc->def_sb_dma);
15025         sc->def_sb = NULL;
15026         bus_dma_tag_destroy(sc->parent_dma_tag);
15027         return (1);
15028     }
15029 
15030     sc->gz_buf = (void *)sc->gz_buf_dma.vaddr;
15031 
15032     if ((sc->gz_strm =
15033          malloc(sizeof(*sc->gz_strm), M_DEVBUF, M_NOWAIT)) == NULL) {
15034         /* XXX */
15035         bxe_dma_free(sc, &sc->gz_buf_dma);
15036         sc->gz_buf = NULL;
15037         bxe_dma_free(sc, &sc->spq_dma);
15038         sc->spq = NULL;
15039         bxe_dma_free(sc, &sc->sp_dma);
15040         sc->sp = NULL;
15041         bxe_dma_free(sc, &sc->eq_dma);
15042         sc->eq = NULL;
15043         bxe_dma_free(sc, &sc->def_sb_dma);
15044         sc->def_sb = NULL;
15045         bus_dma_tag_destroy(sc->parent_dma_tag);
15046         return (1);
15047     }
15048 
15049     /*************/
15050     /* FASTPATHS */
15051     /*************/
15052 
15053     /* allocate DMA memory for each fastpath structure */
15054     for (i = 0; i < sc->num_queues; i++) {
15055         fp = &sc->fp[i];
15056         fp->sc    = sc;
15057         fp->index = i;
15058 
15059         /*******************/
15060         /* FP STATUS BLOCK */
15061         /*******************/
15062 
15063         snprintf(buf, sizeof(buf), "fp %d status block", i);
15064         if (bxe_dma_alloc(sc, sizeof(union bxe_host_hc_status_block),
15065                           &fp->sb_dma, buf) != 0) {
15066             /* XXX unwind and free previous fastpath allocations */
15067             BLOGE(sc, "Failed to alloc %s\n", buf);
15068             return (1);
15069         } else {
15070             if (CHIP_IS_E2E3(sc)) {
15071                 fp->status_block.e2_sb =
15072                     (struct host_hc_status_block_e2 *)fp->sb_dma.vaddr;
15073             } else {
15074                 fp->status_block.e1x_sb =
15075                     (struct host_hc_status_block_e1x *)fp->sb_dma.vaddr;
15076             }
15077         }
15078 
15079         /******************/
15080         /* FP TX BD CHAIN */
15081         /******************/
15082 
15083         snprintf(buf, sizeof(buf), "fp %d tx bd chain", i);
15084         if (bxe_dma_alloc(sc, (BCM_PAGE_SIZE * TX_BD_NUM_PAGES),
15085                           &fp->tx_dma, buf) != 0) {
15086             /* XXX unwind and free previous fastpath allocations */
15087             BLOGE(sc, "Failed to alloc %s\n", buf);
15088             return (1);
15089         } else {
15090             fp->tx_chain = (union eth_tx_bd_types *)fp->tx_dma.vaddr;
15091         }
15092 
15093         /* link together the tx bd chain pages */
15094         for (j = 1; j <= TX_BD_NUM_PAGES; j++) {
15095             /* index into the tx bd chain array to last entry per page */
15096             struct eth_tx_next_bd *tx_next_bd =
15097                 &fp->tx_chain[TX_BD_TOTAL_PER_PAGE * j - 1].next_bd;
15098             /* point to the next page and wrap from last page */
15099             busaddr = (fp->tx_dma.paddr +
15100                        (BCM_PAGE_SIZE * (j % TX_BD_NUM_PAGES)));
15101             tx_next_bd->addr_hi = htole32(U64_HI(busaddr));
15102             tx_next_bd->addr_lo = htole32(U64_LO(busaddr));
15103         }
15104 
15105         /******************/
15106         /* FP RX BD CHAIN */
15107         /******************/
15108 
15109         snprintf(buf, sizeof(buf), "fp %d rx bd chain", i);
15110         if (bxe_dma_alloc(sc, (BCM_PAGE_SIZE * RX_BD_NUM_PAGES),
15111                           &fp->rx_dma, buf) != 0) {
15112             /* XXX unwind and free previous fastpath allocations */
15113             BLOGE(sc, "Failed to alloc %s\n", buf);
15114             return (1);
15115         } else {
15116             fp->rx_chain = (struct eth_rx_bd *)fp->rx_dma.vaddr;
15117         }
15118 
15119         /* link together the rx bd chain pages */
15120         for (j = 1; j <= RX_BD_NUM_PAGES; j++) {
15121             /* index into the rx bd chain array to last entry per page */
15122             struct eth_rx_bd *rx_bd =
15123                 &fp->rx_chain[RX_BD_TOTAL_PER_PAGE * j - 2];
15124             /* point to the next page and wrap from last page */
15125             busaddr = (fp->rx_dma.paddr +
15126                        (BCM_PAGE_SIZE * (j % RX_BD_NUM_PAGES)));
15127             rx_bd->addr_hi = htole32(U64_HI(busaddr));
15128             rx_bd->addr_lo = htole32(U64_LO(busaddr));
15129         }
15130 
15131         /*******************/
15132         /* FP RX RCQ CHAIN */
15133         /*******************/
15134 
15135         snprintf(buf, sizeof(buf), "fp %d rcq chain", i);
15136         if (bxe_dma_alloc(sc, (BCM_PAGE_SIZE * RCQ_NUM_PAGES),
15137                           &fp->rcq_dma, buf) != 0) {
15138             /* XXX unwind and free previous fastpath allocations */
15139             BLOGE(sc, "Failed to alloc %s\n", buf);
15140             return (1);
15141         } else {
15142             fp->rcq_chain = (union eth_rx_cqe *)fp->rcq_dma.vaddr;
15143         }
15144 
15145         /* link together the rcq chain pages */
15146         for (j = 1; j <= RCQ_NUM_PAGES; j++) {
15147             /* index into the rcq chain array to last entry per page */
15148             struct eth_rx_cqe_next_page *rx_cqe_next =
15149                 (struct eth_rx_cqe_next_page *)
15150                 &fp->rcq_chain[RCQ_TOTAL_PER_PAGE * j - 1];
15151             /* point to the next page and wrap from last page */
15152             busaddr = (fp->rcq_dma.paddr +
15153                        (BCM_PAGE_SIZE * (j % RCQ_NUM_PAGES)));
15154             rx_cqe_next->addr_hi = htole32(U64_HI(busaddr));
15155             rx_cqe_next->addr_lo = htole32(U64_LO(busaddr));
15156         }
15157 
15158         /*******************/
15159         /* FP RX SGE CHAIN */
15160         /*******************/
15161 
15162         snprintf(buf, sizeof(buf), "fp %d sge chain", i);
15163         if (bxe_dma_alloc(sc, (BCM_PAGE_SIZE * RX_SGE_NUM_PAGES),
15164                           &fp->rx_sge_dma, buf) != 0) {
15165             /* XXX unwind and free previous fastpath allocations */
15166             BLOGE(sc, "Failed to alloc %s\n", buf);
15167             return (1);
15168         } else {
15169             fp->rx_sge_chain = (struct eth_rx_sge *)fp->rx_sge_dma.vaddr;
15170         }
15171 
15172         /* link together the sge chain pages */
15173         for (j = 1; j <= RX_SGE_NUM_PAGES; j++) {
15174             /* index into the rcq chain array to last entry per page */
15175             struct eth_rx_sge *rx_sge =
15176                 &fp->rx_sge_chain[RX_SGE_TOTAL_PER_PAGE * j - 2];
15177             /* point to the next page and wrap from last page */
15178             busaddr = (fp->rx_sge_dma.paddr +
15179                        (BCM_PAGE_SIZE * (j % RX_SGE_NUM_PAGES)));
15180             rx_sge->addr_hi = htole32(U64_HI(busaddr));
15181             rx_sge->addr_lo = htole32(U64_LO(busaddr));
15182         }
15183 
15184         /***********************/
15185         /* FP TX MBUF DMA MAPS */
15186         /***********************/
15187 
15188         /* set required sizes before mapping to conserve resources */
15189         if (if_getcapenable(sc->ifp) & (IFCAP_TSO4 | IFCAP_TSO6)) {
15190             max_size     = BXE_TSO_MAX_SIZE;
15191             max_segments = BXE_TSO_MAX_SEGMENTS;
15192             max_seg_size = BXE_TSO_MAX_SEG_SIZE;
15193         } else {
15194             max_size     = (MCLBYTES * BXE_MAX_SEGMENTS);
15195             max_segments = BXE_MAX_SEGMENTS;
15196             max_seg_size = MCLBYTES;
15197         }
15198 
15199         /* create a dma tag for the tx mbufs */
15200         rc = bus_dma_tag_create(sc->parent_dma_tag, /* parent tag */
15201                                 1,                  /* alignment */
15202                                 0,                  /* boundary limit */
15203                                 BUS_SPACE_MAXADDR,  /* restricted low */
15204                                 BUS_SPACE_MAXADDR,  /* restricted hi */
15205                                 NULL,               /* addr filter() */
15206                                 NULL,               /* addr filter() arg */
15207                                 max_size,           /* max map size */
15208                                 max_segments,       /* num discontinuous */
15209                                 max_seg_size,       /* max seg size */
15210                                 0,                  /* flags */
15211                                 NULL,               /* lock() */
15212                                 NULL,               /* lock() arg */
15213                                 &fp->tx_mbuf_tag);  /* returned dma tag */
15214         if (rc != 0) {
15215             /* XXX unwind and free previous fastpath allocations */
15216             BLOGE(sc, "Failed to create dma tag for "
15217                       "'fp %d tx mbufs' (%d)\n",
15218                   i, rc);
15219             return (1);
15220         }
15221 
15222         /* create dma maps for each of the tx mbuf clusters */
15223         for (j = 0; j < TX_BD_TOTAL; j++) {
15224             if (bus_dmamap_create(fp->tx_mbuf_tag,
15225                                   BUS_DMA_NOWAIT,
15226                                   &fp->tx_mbuf_chain[j].m_map)) {
15227                 /* XXX unwind and free previous fastpath allocations */
15228                 BLOGE(sc, "Failed to create dma map for "
15229                           "'fp %d tx mbuf %d' (%d)\n",
15230                       i, j, rc);
15231                 return (1);
15232             }
15233         }
15234 
15235         /***********************/
15236         /* FP RX MBUF DMA MAPS */
15237         /***********************/
15238 
15239         /* create a dma tag for the rx mbufs */
15240         rc = bus_dma_tag_create(sc->parent_dma_tag, /* parent tag */
15241                                 1,                  /* alignment */
15242                                 0,                  /* boundary limit */
15243                                 BUS_SPACE_MAXADDR,  /* restricted low */
15244                                 BUS_SPACE_MAXADDR,  /* restricted hi */
15245                                 NULL,               /* addr filter() */
15246                                 NULL,               /* addr filter() arg */
15247                                 MJUM9BYTES,         /* max map size */
15248                                 1,                  /* num discontinuous */
15249                                 MJUM9BYTES,         /* max seg size */
15250                                 0,                  /* flags */
15251                                 NULL,               /* lock() */
15252                                 NULL,               /* lock() arg */
15253                                 &fp->rx_mbuf_tag);  /* returned dma tag */
15254         if (rc != 0) {
15255             /* XXX unwind and free previous fastpath allocations */
15256             BLOGE(sc, "Failed to create dma tag for "
15257                       "'fp %d rx mbufs' (%d)\n",
15258                   i, rc);
15259             return (1);
15260         }
15261 
15262         /* create dma maps for each of the rx mbuf clusters */
15263         for (j = 0; j < RX_BD_TOTAL; j++) {
15264             if (bus_dmamap_create(fp->rx_mbuf_tag,
15265                                   BUS_DMA_NOWAIT,
15266                                   &fp->rx_mbuf_chain[j].m_map)) {
15267                 /* XXX unwind and free previous fastpath allocations */
15268                 BLOGE(sc, "Failed to create dma map for "
15269                           "'fp %d rx mbuf %d' (%d)\n",
15270                       i, j, rc);
15271                 return (1);
15272             }
15273         }
15274 
15275         /* create dma map for the spare rx mbuf cluster */
15276         if (bus_dmamap_create(fp->rx_mbuf_tag,
15277                               BUS_DMA_NOWAIT,
15278                               &fp->rx_mbuf_spare_map)) {
15279             /* XXX unwind and free previous fastpath allocations */
15280             BLOGE(sc, "Failed to create dma map for "
15281                       "'fp %d spare rx mbuf' (%d)\n",
15282                   i, rc);
15283             return (1);
15284         }
15285 
15286         /***************************/
15287         /* FP RX SGE MBUF DMA MAPS */
15288         /***************************/
15289 
15290         /* create a dma tag for the rx sge mbufs */
15291         rc = bus_dma_tag_create(sc->parent_dma_tag, /* parent tag */
15292                                 1,                  /* alignment */
15293                                 0,                  /* boundary limit */
15294                                 BUS_SPACE_MAXADDR,  /* restricted low */
15295                                 BUS_SPACE_MAXADDR,  /* restricted hi */
15296                                 NULL,               /* addr filter() */
15297                                 NULL,               /* addr filter() arg */
15298                                 BCM_PAGE_SIZE,      /* max map size */
15299                                 1,                  /* num discontinuous */
15300                                 BCM_PAGE_SIZE,      /* max seg size */
15301                                 0,                  /* flags */
15302                                 NULL,               /* lock() */
15303                                 NULL,               /* lock() arg */
15304                                 &fp->rx_sge_mbuf_tag); /* returned dma tag */
15305         if (rc != 0) {
15306             /* XXX unwind and free previous fastpath allocations */
15307             BLOGE(sc, "Failed to create dma tag for "
15308                       "'fp %d rx sge mbufs' (%d)\n",
15309                   i, rc);
15310             return (1);
15311         }
15312 
15313         /* create dma maps for the rx sge mbuf clusters */
15314         for (j = 0; j < RX_SGE_TOTAL; j++) {
15315             if (bus_dmamap_create(fp->rx_sge_mbuf_tag,
15316                                   BUS_DMA_NOWAIT,
15317                                   &fp->rx_sge_mbuf_chain[j].m_map)) {
15318                 /* XXX unwind and free previous fastpath allocations */
15319                 BLOGE(sc, "Failed to create dma map for "
15320                           "'fp %d rx sge mbuf %d' (%d)\n",
15321                       i, j, rc);
15322                 return (1);
15323             }
15324         }
15325 
15326         /* create dma map for the spare rx sge mbuf cluster */
15327         if (bus_dmamap_create(fp->rx_sge_mbuf_tag,
15328                               BUS_DMA_NOWAIT,
15329                               &fp->rx_sge_mbuf_spare_map)) {
15330             /* XXX unwind and free previous fastpath allocations */
15331             BLOGE(sc, "Failed to create dma map for "
15332                       "'fp %d spare rx sge mbuf' (%d)\n",
15333                   i, rc);
15334             return (1);
15335         }
15336 
15337         /***************************/
15338         /* FP RX TPA MBUF DMA MAPS */
15339         /***************************/
15340 
15341         /* create dma maps for the rx tpa mbuf clusters */
15342         max_agg_queues = MAX_AGG_QS(sc);
15343 
15344         for (j = 0; j < max_agg_queues; j++) {
15345             if (bus_dmamap_create(fp->rx_mbuf_tag,
15346                                   BUS_DMA_NOWAIT,
15347                                   &fp->rx_tpa_info[j].bd.m_map)) {
15348                 /* XXX unwind and free previous fastpath allocations */
15349                 BLOGE(sc, "Failed to create dma map for "
15350                           "'fp %d rx tpa mbuf %d' (%d)\n",
15351                       i, j, rc);
15352                 return (1);
15353             }
15354         }
15355 
15356         /* create dma map for the spare rx tpa mbuf cluster */
15357         if (bus_dmamap_create(fp->rx_mbuf_tag,
15358                               BUS_DMA_NOWAIT,
15359                               &fp->rx_tpa_info_mbuf_spare_map)) {
15360             /* XXX unwind and free previous fastpath allocations */
15361             BLOGE(sc, "Failed to create dma map for "
15362                       "'fp %d spare rx tpa mbuf' (%d)\n",
15363                   i, rc);
15364             return (1);
15365         }
15366 
15367         bxe_init_sge_ring_bit_mask(fp);
15368     }
15369 
15370     return (0);
15371 }
15372 
15373 static void
15374 bxe_free_hsi_mem(struct bxe_softc *sc)
15375 {
15376     struct bxe_fastpath *fp;
15377     int max_agg_queues;
15378     int i, j;
15379 
15380     if (sc->parent_dma_tag == NULL) {
15381         return; /* assume nothing was allocated */
15382     }
15383 
15384     for (i = 0; i < sc->num_queues; i++) {
15385         fp = &sc->fp[i];
15386 
15387         /*******************/
15388         /* FP STATUS BLOCK */
15389         /*******************/
15390 
15391         bxe_dma_free(sc, &fp->sb_dma);
15392         memset(&fp->status_block, 0, sizeof(fp->status_block));
15393 
15394         /******************/
15395         /* FP TX BD CHAIN */
15396         /******************/
15397 
15398         bxe_dma_free(sc, &fp->tx_dma);
15399         fp->tx_chain = NULL;
15400 
15401         /******************/
15402         /* FP RX BD CHAIN */
15403         /******************/
15404 
15405         bxe_dma_free(sc, &fp->rx_dma);
15406         fp->rx_chain = NULL;
15407 
15408         /*******************/
15409         /* FP RX RCQ CHAIN */
15410         /*******************/
15411 
15412         bxe_dma_free(sc, &fp->rcq_dma);
15413         fp->rcq_chain = NULL;
15414 
15415         /*******************/
15416         /* FP RX SGE CHAIN */
15417         /*******************/
15418 
15419         bxe_dma_free(sc, &fp->rx_sge_dma);
15420         fp->rx_sge_chain = NULL;
15421 
15422         /***********************/
15423         /* FP TX MBUF DMA MAPS */
15424         /***********************/
15425 
15426         if (fp->tx_mbuf_tag != NULL) {
15427             for (j = 0; j < TX_BD_TOTAL; j++) {
15428                 if (fp->tx_mbuf_chain[j].m_map != NULL) {
15429                     bus_dmamap_unload(fp->tx_mbuf_tag,
15430                                       fp->tx_mbuf_chain[j].m_map);
15431                     bus_dmamap_destroy(fp->tx_mbuf_tag,
15432                                        fp->tx_mbuf_chain[j].m_map);
15433                 }
15434             }
15435 
15436             bus_dma_tag_destroy(fp->tx_mbuf_tag);
15437             fp->tx_mbuf_tag = NULL;
15438         }
15439 
15440         /***********************/
15441         /* FP RX MBUF DMA MAPS */
15442         /***********************/
15443 
15444         if (fp->rx_mbuf_tag != NULL) {
15445             for (j = 0; j < RX_BD_TOTAL; j++) {
15446                 if (fp->rx_mbuf_chain[j].m_map != NULL) {
15447                     bus_dmamap_unload(fp->rx_mbuf_tag,
15448                                       fp->rx_mbuf_chain[j].m_map);
15449                     bus_dmamap_destroy(fp->rx_mbuf_tag,
15450                                        fp->rx_mbuf_chain[j].m_map);
15451                 }
15452             }
15453 
15454             if (fp->rx_mbuf_spare_map != NULL) {
15455                 bus_dmamap_unload(fp->rx_mbuf_tag, fp->rx_mbuf_spare_map);
15456                 bus_dmamap_destroy(fp->rx_mbuf_tag, fp->rx_mbuf_spare_map);
15457             }
15458 
15459             /***************************/
15460             /* FP RX TPA MBUF DMA MAPS */
15461             /***************************/
15462 
15463             max_agg_queues = MAX_AGG_QS(sc);
15464 
15465             for (j = 0; j < max_agg_queues; j++) {
15466                 if (fp->rx_tpa_info[j].bd.m_map != NULL) {
15467                     bus_dmamap_unload(fp->rx_mbuf_tag,
15468                                       fp->rx_tpa_info[j].bd.m_map);
15469                     bus_dmamap_destroy(fp->rx_mbuf_tag,
15470                                        fp->rx_tpa_info[j].bd.m_map);
15471                 }
15472             }
15473 
15474             if (fp->rx_tpa_info_mbuf_spare_map != NULL) {
15475                 bus_dmamap_unload(fp->rx_mbuf_tag,
15476                                   fp->rx_tpa_info_mbuf_spare_map);
15477                 bus_dmamap_destroy(fp->rx_mbuf_tag,
15478                                    fp->rx_tpa_info_mbuf_spare_map);
15479             }
15480 
15481             bus_dma_tag_destroy(fp->rx_mbuf_tag);
15482             fp->rx_mbuf_tag = NULL;
15483         }
15484 
15485         /***************************/
15486         /* FP RX SGE MBUF DMA MAPS */
15487         /***************************/
15488 
15489         if (fp->rx_sge_mbuf_tag != NULL) {
15490             for (j = 0; j < RX_SGE_TOTAL; j++) {
15491                 if (fp->rx_sge_mbuf_chain[j].m_map != NULL) {
15492                     bus_dmamap_unload(fp->rx_sge_mbuf_tag,
15493                                       fp->rx_sge_mbuf_chain[j].m_map);
15494                     bus_dmamap_destroy(fp->rx_sge_mbuf_tag,
15495                                        fp->rx_sge_mbuf_chain[j].m_map);
15496                 }
15497             }
15498 
15499             if (fp->rx_sge_mbuf_spare_map != NULL) {
15500                 bus_dmamap_unload(fp->rx_sge_mbuf_tag,
15501                                   fp->rx_sge_mbuf_spare_map);
15502                 bus_dmamap_destroy(fp->rx_sge_mbuf_tag,
15503                                    fp->rx_sge_mbuf_spare_map);
15504             }
15505 
15506             bus_dma_tag_destroy(fp->rx_sge_mbuf_tag);
15507             fp->rx_sge_mbuf_tag = NULL;
15508         }
15509     }
15510 
15511     /***************************/
15512     /* FW DECOMPRESSION BUFFER */
15513     /***************************/
15514 
15515     bxe_dma_free(sc, &sc->gz_buf_dma);
15516     sc->gz_buf = NULL;
15517     free(sc->gz_strm, M_DEVBUF);
15518     sc->gz_strm = NULL;
15519 
15520     /*******************/
15521     /* SLOW PATH QUEUE */
15522     /*******************/
15523 
15524     bxe_dma_free(sc, &sc->spq_dma);
15525     sc->spq = NULL;
15526 
15527     /*************/
15528     /* SLOW PATH */
15529     /*************/
15530 
15531     bxe_dma_free(sc, &sc->sp_dma);
15532     sc->sp = NULL;
15533 
15534     /***************/
15535     /* EVENT QUEUE */
15536     /***************/
15537 
15538     bxe_dma_free(sc, &sc->eq_dma);
15539     sc->eq = NULL;
15540 
15541     /************************/
15542     /* DEFAULT STATUS BLOCK */
15543     /************************/
15544 
15545     bxe_dma_free(sc, &sc->def_sb_dma);
15546     sc->def_sb = NULL;
15547 
15548     bus_dma_tag_destroy(sc->parent_dma_tag);
15549     sc->parent_dma_tag = NULL;
15550 }
15551 
15552 /*
15553  * Previous driver DMAE transaction may have occurred when pre-boot stage
15554  * ended and boot began. This would invalidate the addresses of the
15555  * transaction, resulting in was-error bit set in the PCI causing all
15556  * hw-to-host PCIe transactions to timeout. If this happened we want to clear
15557  * the interrupt which detected this from the pglueb and the was-done bit
15558  */
15559 static void
15560 bxe_prev_interrupted_dmae(struct bxe_softc *sc)
15561 {
15562     uint32_t val;
15563 
15564     if (!CHIP_IS_E1x(sc)) {
15565         val = REG_RD(sc, PGLUE_B_REG_PGLUE_B_INT_STS);
15566         if (val & PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN) {
15567             BLOGD(sc, DBG_LOAD,
15568                   "Clearing 'was-error' bit that was set in pglueb");
15569             REG_WR(sc, PGLUE_B_REG_WAS_ERROR_PF_7_0_CLR, 1 << SC_FUNC(sc));
15570         }
15571     }
15572 }
15573 
15574 static int
15575 bxe_prev_mcp_done(struct bxe_softc *sc)
15576 {
15577     uint32_t rc = bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_DONE,
15578                                  DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET);
15579     if (!rc) {
15580         BLOGE(sc, "MCP response failure, aborting\n");
15581         return (-1);
15582     }
15583 
15584     return (0);
15585 }
15586 
15587 static struct bxe_prev_list_node *
15588 bxe_prev_path_get_entry(struct bxe_softc *sc)
15589 {
15590     struct bxe_prev_list_node *tmp;
15591 
15592     LIST_FOREACH(tmp, &bxe_prev_list, node) {
15593         if ((sc->pcie_bus == tmp->bus) &&
15594             (sc->pcie_device == tmp->slot) &&
15595             (SC_PATH(sc) == tmp->path)) {
15596             return (tmp);
15597         }
15598     }
15599 
15600     return (NULL);
15601 }
15602 
15603 static uint8_t
15604 bxe_prev_is_path_marked(struct bxe_softc *sc)
15605 {
15606     struct bxe_prev_list_node *tmp;
15607     int rc = FALSE;
15608 
15609     mtx_lock(&bxe_prev_mtx);
15610 
15611     tmp = bxe_prev_path_get_entry(sc);
15612     if (tmp) {
15613         if (tmp->aer) {
15614             BLOGD(sc, DBG_LOAD,
15615                   "Path %d/%d/%d was marked by AER\n",
15616                   sc->pcie_bus, sc->pcie_device, SC_PATH(sc));
15617         } else {
15618             rc = TRUE;
15619             BLOGD(sc, DBG_LOAD,
15620                   "Path %d/%d/%d was already cleaned from previous drivers\n",
15621                   sc->pcie_bus, sc->pcie_device, SC_PATH(sc));
15622         }
15623     }
15624 
15625     mtx_unlock(&bxe_prev_mtx);
15626 
15627     return (rc);
15628 }
15629 
15630 static int
15631 bxe_prev_mark_path(struct bxe_softc *sc,
15632                    uint8_t          after_undi)
15633 {
15634     struct bxe_prev_list_node *tmp;
15635 
15636     mtx_lock(&bxe_prev_mtx);
15637 
15638     /* Check whether the entry for this path already exists */
15639     tmp = bxe_prev_path_get_entry(sc);
15640     if (tmp) {
15641         if (!tmp->aer) {
15642             BLOGD(sc, DBG_LOAD,
15643                   "Re-marking AER in path %d/%d/%d\n",
15644                   sc->pcie_bus, sc->pcie_device, SC_PATH(sc));
15645         } else {
15646             BLOGD(sc, DBG_LOAD,
15647                   "Removing AER indication from path %d/%d/%d\n",
15648                   sc->pcie_bus, sc->pcie_device, SC_PATH(sc));
15649             tmp->aer = 0;
15650         }
15651 
15652         mtx_unlock(&bxe_prev_mtx);
15653         return (0);
15654     }
15655 
15656     mtx_unlock(&bxe_prev_mtx);
15657 
15658     /* Create an entry for this path and add it */
15659     tmp = malloc(sizeof(struct bxe_prev_list_node), M_DEVBUF,
15660                  (M_NOWAIT | M_ZERO));
15661     if (!tmp) {
15662         BLOGE(sc, "Failed to allocate 'bxe_prev_list_node'\n");
15663         return (-1);
15664     }
15665 
15666     tmp->bus  = sc->pcie_bus;
15667     tmp->slot = sc->pcie_device;
15668     tmp->path = SC_PATH(sc);
15669     tmp->aer  = 0;
15670     tmp->undi = after_undi ? (1 << SC_PORT(sc)) : 0;
15671 
15672     mtx_lock(&bxe_prev_mtx);
15673 
15674     BLOGD(sc, DBG_LOAD,
15675           "Marked path %d/%d/%d - finished previous unload\n",
15676           sc->pcie_bus, sc->pcie_device, SC_PATH(sc));
15677     LIST_INSERT_HEAD(&bxe_prev_list, tmp, node);
15678 
15679     mtx_unlock(&bxe_prev_mtx);
15680 
15681     return (0);
15682 }
15683 
15684 static int
15685 bxe_do_flr(struct bxe_softc *sc)
15686 {
15687     int i;
15688 
15689     /* only E2 and onwards support FLR */
15690     if (CHIP_IS_E1x(sc)) {
15691         BLOGD(sc, DBG_LOAD, "FLR not supported in E1/E1H\n");
15692         return (-1);
15693     }
15694 
15695     /* only bootcode REQ_BC_VER_4_INITIATE_FLR and onwards support flr */
15696     if (sc->devinfo.bc_ver < REQ_BC_VER_4_INITIATE_FLR) {
15697         BLOGD(sc, DBG_LOAD, "FLR not supported by BC_VER: 0x%08x\n",
15698               sc->devinfo.bc_ver);
15699         return (-1);
15700     }
15701 
15702     /* Wait for Transaction Pending bit clean */
15703     for (i = 0; i < 4; i++) {
15704         if (i) {
15705             DELAY(((1 << (i - 1)) * 100) * 1000);
15706         }
15707 
15708         if (!bxe_is_pcie_pending(sc)) {
15709             goto clear;
15710         }
15711     }
15712 
15713     BLOGE(sc, "PCIE transaction is not cleared, "
15714               "proceeding with reset anyway\n");
15715 
15716 clear:
15717 
15718     BLOGD(sc, DBG_LOAD, "Initiating FLR\n");
15719     bxe_fw_command(sc, DRV_MSG_CODE_INITIATE_FLR, 0);
15720 
15721     return (0);
15722 }
15723 
15724 struct bxe_mac_vals {
15725     uint32_t xmac_addr;
15726     uint32_t xmac_val;
15727     uint32_t emac_addr;
15728     uint32_t emac_val;
15729     uint32_t umac_addr;
15730     uint32_t umac_val;
15731     uint32_t bmac_addr;
15732     uint32_t bmac_val[2];
15733 };
15734 
15735 static void
15736 bxe_prev_unload_close_mac(struct bxe_softc *sc,
15737                           struct bxe_mac_vals *vals)
15738 {
15739     uint32_t val, base_addr, offset, mask, reset_reg;
15740     uint8_t mac_stopped = FALSE;
15741     uint8_t port = SC_PORT(sc);
15742     uint32_t wb_data[2];
15743 
15744     /* reset addresses as they also mark which values were changed */
15745     vals->bmac_addr = 0;
15746     vals->umac_addr = 0;
15747     vals->xmac_addr = 0;
15748     vals->emac_addr = 0;
15749 
15750     reset_reg = REG_RD(sc, MISC_REG_RESET_REG_2);
15751 
15752     if (!CHIP_IS_E3(sc)) {
15753         val = REG_RD(sc, NIG_REG_BMAC0_REGS_OUT_EN + port * 4);
15754         mask = MISC_REGISTERS_RESET_REG_2_RST_BMAC0 << port;
15755         if ((mask & reset_reg) && val) {
15756             BLOGD(sc, DBG_LOAD, "Disable BMAC Rx\n");
15757             base_addr = SC_PORT(sc) ? NIG_REG_INGRESS_BMAC1_MEM
15758                                     : NIG_REG_INGRESS_BMAC0_MEM;
15759             offset = CHIP_IS_E2(sc) ? BIGMAC2_REGISTER_BMAC_CONTROL
15760                                     : BIGMAC_REGISTER_BMAC_CONTROL;
15761 
15762             /*
15763              * use rd/wr since we cannot use dmae. This is safe
15764              * since MCP won't access the bus due to the request
15765              * to unload, and no function on the path can be
15766              * loaded at this time.
15767              */
15768             wb_data[0] = REG_RD(sc, base_addr + offset);
15769             wb_data[1] = REG_RD(sc, base_addr + offset + 0x4);
15770             vals->bmac_addr = base_addr + offset;
15771             vals->bmac_val[0] = wb_data[0];
15772             vals->bmac_val[1] = wb_data[1];
15773             wb_data[0] &= ~ELINK_BMAC_CONTROL_RX_ENABLE;
15774             REG_WR(sc, vals->bmac_addr, wb_data[0]);
15775             REG_WR(sc, vals->bmac_addr + 0x4, wb_data[1]);
15776         }
15777 
15778         BLOGD(sc, DBG_LOAD, "Disable EMAC Rx\n");
15779         vals->emac_addr = NIG_REG_NIG_EMAC0_EN + SC_PORT(sc)*4;
15780         vals->emac_val = REG_RD(sc, vals->emac_addr);
15781         REG_WR(sc, vals->emac_addr, 0);
15782         mac_stopped = TRUE;
15783     } else {
15784         if (reset_reg & MISC_REGISTERS_RESET_REG_2_XMAC) {
15785             BLOGD(sc, DBG_LOAD, "Disable XMAC Rx\n");
15786             base_addr = SC_PORT(sc) ? GRCBASE_XMAC1 : GRCBASE_XMAC0;
15787             val = REG_RD(sc, base_addr + XMAC_REG_PFC_CTRL_HI);
15788             REG_WR(sc, base_addr + XMAC_REG_PFC_CTRL_HI, val & ~(1 << 1));
15789             REG_WR(sc, base_addr + XMAC_REG_PFC_CTRL_HI, val | (1 << 1));
15790             vals->xmac_addr = base_addr + XMAC_REG_CTRL;
15791             vals->xmac_val = REG_RD(sc, vals->xmac_addr);
15792             REG_WR(sc, vals->xmac_addr, 0);
15793             mac_stopped = TRUE;
15794         }
15795 
15796         mask = MISC_REGISTERS_RESET_REG_2_UMAC0 << port;
15797         if (mask & reset_reg) {
15798             BLOGD(sc, DBG_LOAD, "Disable UMAC Rx\n");
15799             base_addr = SC_PORT(sc) ? GRCBASE_UMAC1 : GRCBASE_UMAC0;
15800             vals->umac_addr = base_addr + UMAC_REG_COMMAND_CONFIG;
15801             vals->umac_val = REG_RD(sc, vals->umac_addr);
15802             REG_WR(sc, vals->umac_addr, 0);
15803             mac_stopped = TRUE;
15804         }
15805     }
15806 
15807     if (mac_stopped) {
15808         DELAY(20000);
15809     }
15810 }
15811 
15812 #define BXE_PREV_UNDI_PROD_ADDR(p)  (BAR_TSTRORM_INTMEM + 0x1508 + ((p) << 4))
15813 #define BXE_PREV_UNDI_RCQ(val)      ((val) & 0xffff)
15814 #define BXE_PREV_UNDI_BD(val)       ((val) >> 16 & 0xffff)
15815 #define BXE_PREV_UNDI_PROD(rcq, bd) ((bd) << 16 | (rcq))
15816 
15817 static void
15818 bxe_prev_unload_undi_inc(struct bxe_softc *sc,
15819                          uint8_t          port,
15820                          uint8_t          inc)
15821 {
15822     uint16_t rcq, bd;
15823     uint32_t tmp_reg = REG_RD(sc, BXE_PREV_UNDI_PROD_ADDR(port));
15824 
15825     rcq = BXE_PREV_UNDI_RCQ(tmp_reg) + inc;
15826     bd = BXE_PREV_UNDI_BD(tmp_reg) + inc;
15827 
15828     tmp_reg = BXE_PREV_UNDI_PROD(rcq, bd);
15829     REG_WR(sc, BXE_PREV_UNDI_PROD_ADDR(port), tmp_reg);
15830 
15831     BLOGD(sc, DBG_LOAD,
15832           "UNDI producer [%d] rings bd -> 0x%04x, rcq -> 0x%04x\n",
15833           port, bd, rcq);
15834 }
15835 
15836 static int
15837 bxe_prev_unload_common(struct bxe_softc *sc)
15838 {
15839     uint32_t reset_reg, tmp_reg = 0, rc;
15840     uint8_t prev_undi = FALSE;
15841     struct bxe_mac_vals mac_vals;
15842     uint32_t timer_count = 1000;
15843     uint32_t prev_brb;
15844 
15845     /*
15846      * It is possible a previous function received 'common' answer,
15847      * but hasn't loaded yet, therefore creating a scenario of
15848      * multiple functions receiving 'common' on the same path.
15849      */
15850     BLOGD(sc, DBG_LOAD, "Common unload Flow\n");
15851 
15852     memset(&mac_vals, 0, sizeof(mac_vals));
15853 
15854     if (bxe_prev_is_path_marked(sc)) {
15855         return (bxe_prev_mcp_done(sc));
15856     }
15857 
15858     reset_reg = REG_RD(sc, MISC_REG_RESET_REG_1);
15859 
15860     /* Reset should be performed after BRB is emptied */
15861     if (reset_reg & MISC_REGISTERS_RESET_REG_1_RST_BRB1) {
15862         /* Close the MAC Rx to prevent BRB from filling up */
15863         bxe_prev_unload_close_mac(sc, &mac_vals);
15864 
15865         /* close LLH filters towards the BRB */
15866         elink_set_rx_filter(&sc->link_params, 0);
15867 
15868         /*
15869          * Check if the UNDI driver was previously loaded.
15870          * UNDI driver initializes CID offset for normal bell to 0x7
15871          */
15872         if (reset_reg & MISC_REGISTERS_RESET_REG_1_RST_DORQ) {
15873             tmp_reg = REG_RD(sc, DORQ_REG_NORM_CID_OFST);
15874             if (tmp_reg == 0x7) {
15875                 BLOGD(sc, DBG_LOAD, "UNDI previously loaded\n");
15876                 prev_undi = TRUE;
15877                 /* clear the UNDI indication */
15878                 REG_WR(sc, DORQ_REG_NORM_CID_OFST, 0);
15879                 /* clear possible idle check errors */
15880                 REG_RD(sc, NIG_REG_NIG_INT_STS_CLR_0);
15881             }
15882         }
15883 
15884         /* wait until BRB is empty */
15885         tmp_reg = REG_RD(sc, BRB1_REG_NUM_OF_FULL_BLOCKS);
15886         while (timer_count) {
15887             prev_brb = tmp_reg;
15888 
15889             tmp_reg = REG_RD(sc, BRB1_REG_NUM_OF_FULL_BLOCKS);
15890             if (!tmp_reg) {
15891                 break;
15892             }
15893 
15894             BLOGD(sc, DBG_LOAD, "BRB still has 0x%08x\n", tmp_reg);
15895 
15896             /* reset timer as long as BRB actually gets emptied */
15897             if (prev_brb > tmp_reg) {
15898                 timer_count = 1000;
15899             } else {
15900                 timer_count--;
15901             }
15902 
15903             /* If UNDI resides in memory, manually increment it */
15904             if (prev_undi) {
15905                 bxe_prev_unload_undi_inc(sc, SC_PORT(sc), 1);
15906             }
15907 
15908             DELAY(10);
15909         }
15910 
15911         if (!timer_count) {
15912             BLOGE(sc, "Failed to empty BRB\n");
15913         }
15914     }
15915 
15916     /* No packets are in the pipeline, path is ready for reset */
15917     bxe_reset_common(sc);
15918 
15919     if (mac_vals.xmac_addr) {
15920         REG_WR(sc, mac_vals.xmac_addr, mac_vals.xmac_val);
15921     }
15922     if (mac_vals.umac_addr) {
15923         REG_WR(sc, mac_vals.umac_addr, mac_vals.umac_val);
15924     }
15925     if (mac_vals.emac_addr) {
15926         REG_WR(sc, mac_vals.emac_addr, mac_vals.emac_val);
15927     }
15928     if (mac_vals.bmac_addr) {
15929         REG_WR(sc, mac_vals.bmac_addr, mac_vals.bmac_val[0]);
15930         REG_WR(sc, mac_vals.bmac_addr + 4, mac_vals.bmac_val[1]);
15931     }
15932 
15933     rc = bxe_prev_mark_path(sc, prev_undi);
15934     if (rc) {
15935         bxe_prev_mcp_done(sc);
15936         return (rc);
15937     }
15938 
15939     return (bxe_prev_mcp_done(sc));
15940 }
15941 
15942 static int
15943 bxe_prev_unload_uncommon(struct bxe_softc *sc)
15944 {
15945     int rc;
15946 
15947     BLOGD(sc, DBG_LOAD, "Uncommon unload Flow\n");
15948 
15949     /* Test if previous unload process was already finished for this path */
15950     if (bxe_prev_is_path_marked(sc)) {
15951         return (bxe_prev_mcp_done(sc));
15952     }
15953 
15954     BLOGD(sc, DBG_LOAD, "Path is unmarked\n");
15955 
15956     /*
15957      * If function has FLR capabilities, and existing FW version matches
15958      * the one required, then FLR will be sufficient to clean any residue
15959      * left by previous driver
15960      */
15961     rc = bxe_nic_load_analyze_req(sc, FW_MSG_CODE_DRV_LOAD_FUNCTION);
15962     if (!rc) {
15963         /* fw version is good */
15964         BLOGD(sc, DBG_LOAD, "FW version matches our own, attempting FLR\n");
15965         rc = bxe_do_flr(sc);
15966     }
15967 
15968     if (!rc) {
15969         /* FLR was performed */
15970         BLOGD(sc, DBG_LOAD, "FLR successful\n");
15971         return (0);
15972     }
15973 
15974     BLOGD(sc, DBG_LOAD, "Could not FLR\n");
15975 
15976     /* Close the MCP request, return failure*/
15977     rc = bxe_prev_mcp_done(sc);
15978     if (!rc) {
15979         rc = BXE_PREV_WAIT_NEEDED;
15980     }
15981 
15982     return (rc);
15983 }
15984 
15985 static int
15986 bxe_prev_unload(struct bxe_softc *sc)
15987 {
15988     int time_counter = 10;
15989     uint32_t fw, hw_lock_reg, hw_lock_val;
15990     uint32_t rc = 0;
15991 
15992     /*
15993      * Clear HW from errors which may have resulted from an interrupted
15994      * DMAE transaction.
15995      */
15996     bxe_prev_interrupted_dmae(sc);
15997 
15998     /* Release previously held locks */
15999     hw_lock_reg =
16000         (SC_FUNC(sc) <= 5) ?
16001             (MISC_REG_DRIVER_CONTROL_1 + SC_FUNC(sc) * 8) :
16002             (MISC_REG_DRIVER_CONTROL_7 + (SC_FUNC(sc) - 6) * 8);
16003 
16004     hw_lock_val = (REG_RD(sc, hw_lock_reg));
16005     if (hw_lock_val) {
16006         if (hw_lock_val & HW_LOCK_RESOURCE_NVRAM) {
16007             BLOGD(sc, DBG_LOAD, "Releasing previously held NVRAM lock\n");
16008             REG_WR(sc, MCP_REG_MCPR_NVM_SW_ARB,
16009                    (MCPR_NVM_SW_ARB_ARB_REQ_CLR1 << SC_PORT(sc)));
16010         }
16011         BLOGD(sc, DBG_LOAD, "Releasing previously held HW lock\n");
16012         REG_WR(sc, hw_lock_reg, 0xffffffff);
16013     } else {
16014         BLOGD(sc, DBG_LOAD, "No need to release HW/NVRAM locks\n");
16015     }
16016 
16017     if (MCPR_ACCESS_LOCK_LOCK & REG_RD(sc, MCP_REG_MCPR_ACCESS_LOCK)) {
16018         BLOGD(sc, DBG_LOAD, "Releasing previously held ALR\n");
16019         REG_WR(sc, MCP_REG_MCPR_ACCESS_LOCK, 0);
16020     }
16021 
16022     do {
16023         /* Lock MCP using an unload request */
16024         fw = bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS, 0);
16025         if (!fw) {
16026             BLOGE(sc, "MCP response failure, aborting\n");
16027             rc = -1;
16028             break;
16029         }
16030 
16031         if (fw == FW_MSG_CODE_DRV_UNLOAD_COMMON) {
16032             rc = bxe_prev_unload_common(sc);
16033             break;
16034         }
16035 
16036         /* non-common reply from MCP night require looping */
16037         rc = bxe_prev_unload_uncommon(sc);
16038         if (rc != BXE_PREV_WAIT_NEEDED) {
16039             break;
16040         }
16041 
16042         DELAY(20000);
16043     } while (--time_counter);
16044 
16045     if (!time_counter || rc) {
16046         BLOGE(sc, "Failed to unload previous driver!\n");
16047         rc = -1;
16048     }
16049 
16050     return (rc);
16051 }
16052 
16053 void
16054 bxe_dcbx_set_state(struct bxe_softc *sc,
16055                    uint8_t          dcb_on,
16056                    uint32_t         dcbx_enabled)
16057 {
16058     if (!CHIP_IS_E1x(sc)) {
16059         sc->dcb_state = dcb_on;
16060         sc->dcbx_enabled = dcbx_enabled;
16061     } else {
16062         sc->dcb_state = FALSE;
16063         sc->dcbx_enabled = BXE_DCBX_ENABLED_INVALID;
16064     }
16065     BLOGD(sc, DBG_LOAD,
16066           "DCB state [%s:%s]\n",
16067           dcb_on ? "ON" : "OFF",
16068           (dcbx_enabled == BXE_DCBX_ENABLED_OFF) ? "user-mode" :
16069           (dcbx_enabled == BXE_DCBX_ENABLED_ON_NEG_OFF) ? "on-chip static" :
16070           (dcbx_enabled == BXE_DCBX_ENABLED_ON_NEG_ON) ?
16071           "on-chip with negotiation" : "invalid");
16072 }
16073 
16074 /* must be called after sriov-enable */
16075 static int
16076 bxe_set_qm_cid_count(struct bxe_softc *sc)
16077 {
16078     int cid_count = BXE_L2_MAX_CID(sc);
16079 
16080     if (IS_SRIOV(sc)) {
16081         cid_count += BXE_VF_CIDS;
16082     }
16083 
16084     if (CNIC_SUPPORT(sc)) {
16085         cid_count += CNIC_CID_MAX;
16086     }
16087 
16088     return (roundup(cid_count, QM_CID_ROUND));
16089 }
16090 
16091 static void
16092 bxe_init_multi_cos(struct bxe_softc *sc)
16093 {
16094     int pri, cos;
16095 
16096     uint32_t pri_map = 0; /* XXX change to user config */
16097 
16098     for (pri = 0; pri < BXE_MAX_PRIORITY; pri++) {
16099         cos = ((pri_map & (0xf << (pri * 4))) >> (pri * 4));
16100         if (cos < sc->max_cos) {
16101             sc->prio_to_cos[pri] = cos;
16102         } else {
16103             BLOGW(sc, "Invalid COS %d for priority %d "
16104                       "(max COS is %d), setting to 0\n",
16105                   cos, pri, (sc->max_cos - 1));
16106             sc->prio_to_cos[pri] = 0;
16107         }
16108     }
16109 }
16110 
16111 static int
16112 bxe_sysctl_state(SYSCTL_HANDLER_ARGS)
16113 {
16114     struct bxe_softc *sc;
16115     int error, result;
16116 
16117     result = 0;
16118     error = sysctl_handle_int(oidp, &result, 0, req);
16119 
16120     if (error || !req->newptr) {
16121         return (error);
16122     }
16123 
16124     if (result == 1) {
16125 	uint32_t  temp;
16126         sc = (struct bxe_softc *)arg1;
16127 
16128         BLOGI(sc, "... dumping driver state ...\n");
16129 	temp = SHMEM2_RD(sc, temperature_in_half_celsius);
16130 	BLOGI(sc, "\t Device Temperature = %d Celsius\n", (temp/2));
16131     }
16132 
16133     return (error);
16134 }
16135 
16136 static int
16137 bxe_sysctl_eth_stat(SYSCTL_HANDLER_ARGS)
16138 {
16139     struct bxe_softc *sc = (struct bxe_softc *)arg1;
16140     uint32_t *eth_stats = (uint32_t *)&sc->eth_stats;
16141     uint32_t *offset;
16142     uint64_t value = 0;
16143     int index = (int)arg2;
16144 
16145     if (index >= BXE_NUM_ETH_STATS) {
16146         BLOGE(sc, "bxe_eth_stats index out of range (%d)\n", index);
16147         return (-1);
16148     }
16149 
16150     offset = (eth_stats + bxe_eth_stats_arr[index].offset);
16151 
16152     switch (bxe_eth_stats_arr[index].size) {
16153     case 4:
16154         value = (uint64_t)*offset;
16155         break;
16156     case 8:
16157         value = HILO_U64(*offset, *(offset + 1));
16158         break;
16159     default:
16160         BLOGE(sc, "Invalid bxe_eth_stats size (index=%d size=%d)\n",
16161               index, bxe_eth_stats_arr[index].size);
16162         return (-1);
16163     }
16164 
16165     return (sysctl_handle_64(oidp, &value, 0, req));
16166 }
16167 
16168 static int
16169 bxe_sysctl_eth_q_stat(SYSCTL_HANDLER_ARGS)
16170 {
16171     struct bxe_softc *sc = (struct bxe_softc *)arg1;
16172     uint32_t *eth_stats;
16173     uint32_t *offset;
16174     uint64_t value = 0;
16175     uint32_t q_stat = (uint32_t)arg2;
16176     uint32_t fp_index = ((q_stat >> 16) & 0xffff);
16177     uint32_t index = (q_stat & 0xffff);
16178 
16179     eth_stats = (uint32_t *)&sc->fp[fp_index].eth_q_stats;
16180 
16181     if (index >= BXE_NUM_ETH_Q_STATS) {
16182         BLOGE(sc, "bxe_eth_q_stats index out of range (%d)\n", index);
16183         return (-1);
16184     }
16185 
16186     offset = (eth_stats + bxe_eth_q_stats_arr[index].offset);
16187 
16188     switch (bxe_eth_q_stats_arr[index].size) {
16189     case 4:
16190         value = (uint64_t)*offset;
16191         break;
16192     case 8:
16193         value = HILO_U64(*offset, *(offset + 1));
16194         break;
16195     default:
16196         BLOGE(sc, "Invalid bxe_eth_q_stats size (index=%d size=%d)\n",
16197               index, bxe_eth_q_stats_arr[index].size);
16198         return (-1);
16199     }
16200 
16201     return (sysctl_handle_64(oidp, &value, 0, req));
16202 }
16203 
16204 static void
16205 bxe_add_sysctls(struct bxe_softc *sc)
16206 {
16207     struct sysctl_ctx_list *ctx;
16208     struct sysctl_oid_list *children;
16209     struct sysctl_oid *queue_top, *queue;
16210     struct sysctl_oid_list *queue_top_children, *queue_children;
16211     char queue_num_buf[32];
16212     uint32_t q_stat;
16213     int i, j;
16214 
16215     ctx = device_get_sysctl_ctx(sc->dev);
16216     children = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev));
16217 
16218     SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "version",
16219                       CTLFLAG_RD, BXE_DRIVER_VERSION, 0,
16220                       "version");
16221 
16222     SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "bc_version",
16223                       CTLFLAG_RD, sc->devinfo.bc_ver_str, 0,
16224                       "bootcode version");
16225 
16226     snprintf(sc->fw_ver_str, sizeof(sc->fw_ver_str), "%d.%d.%d.%d",
16227              BCM_5710_FW_MAJOR_VERSION,
16228              BCM_5710_FW_MINOR_VERSION,
16229              BCM_5710_FW_REVISION_VERSION,
16230              BCM_5710_FW_ENGINEERING_VERSION);
16231     SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "fw_version",
16232                       CTLFLAG_RD, sc->fw_ver_str, 0,
16233                       "firmware version");
16234 
16235     snprintf(sc->mf_mode_str, sizeof(sc->mf_mode_str), "%s",
16236         ((sc->devinfo.mf_info.mf_mode == SINGLE_FUNCTION)     ? "Single"  :
16237          (sc->devinfo.mf_info.mf_mode == MULTI_FUNCTION_SD)   ? "MF-SD"   :
16238          (sc->devinfo.mf_info.mf_mode == MULTI_FUNCTION_SI)   ? "MF-SI"   :
16239          (sc->devinfo.mf_info.mf_mode == MULTI_FUNCTION_AFEX) ? "MF-AFEX" :
16240                                                                 "Unknown"));
16241     SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "mf_mode",
16242                       CTLFLAG_RD, sc->mf_mode_str, 0,
16243                       "multifunction mode");
16244 
16245     SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "mf_vnics",
16246                     CTLFLAG_RD, &sc->devinfo.mf_info.vnics_per_port, 0,
16247                     "multifunction vnics per port");
16248 
16249     SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "mac_addr",
16250                       CTLFLAG_RD, sc->mac_addr_str, 0,
16251                       "mac address");
16252 
16253     snprintf(sc->pci_link_str, sizeof(sc->pci_link_str), "%s x%d",
16254         ((sc->devinfo.pcie_link_speed == 1) ? "2.5GT/s" :
16255          (sc->devinfo.pcie_link_speed == 2) ? "5.0GT/s" :
16256          (sc->devinfo.pcie_link_speed == 4) ? "8.0GT/s" :
16257                                               "???GT/s"),
16258         sc->devinfo.pcie_link_width);
16259     SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "pci_link",
16260                       CTLFLAG_RD, sc->pci_link_str, 0,
16261                       "pci link status");
16262 
16263     sc->debug = bxe_debug;
16264     SYSCTL_ADD_ULONG(ctx, children, OID_AUTO, "debug",
16265                     CTLFLAG_RW, &sc->debug,
16266                     "debug logging mode");
16267 
16268     sc->rx_budget = bxe_rx_budget;
16269     SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "rx_budget",
16270                     CTLFLAG_RW, &sc->rx_budget, 0,
16271                     "rx processing budget");
16272 
16273     SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "state",
16274                     CTLTYPE_UINT | CTLFLAG_RW, sc, 0,
16275                     bxe_sysctl_state, "IU", "dump driver state");
16276 
16277     for (i = 0; i < BXE_NUM_ETH_STATS; i++) {
16278         SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
16279                         bxe_eth_stats_arr[i].string,
16280                         CTLTYPE_U64 | CTLFLAG_RD, sc, i,
16281                         bxe_sysctl_eth_stat, "LU",
16282                         bxe_eth_stats_arr[i].string);
16283     }
16284 
16285     /* add a new parent node for all queues "dev.bxe.#.queue" */
16286     queue_top = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "queue",
16287                                 CTLFLAG_RD, NULL, "queue");
16288     queue_top_children = SYSCTL_CHILDREN(queue_top);
16289 
16290     for (i = 0; i < sc->num_queues; i++) {
16291         /* add a new parent node for a single queue "dev.bxe.#.queue.#" */
16292         snprintf(queue_num_buf, sizeof(queue_num_buf), "%d", i);
16293         queue = SYSCTL_ADD_NODE(ctx, queue_top_children, OID_AUTO,
16294                                 queue_num_buf, CTLFLAG_RD, NULL,
16295                                 "single queue");
16296         queue_children = SYSCTL_CHILDREN(queue);
16297 
16298         for (j = 0; j < BXE_NUM_ETH_Q_STATS; j++) {
16299             q_stat = ((i << 16) | j);
16300             SYSCTL_ADD_PROC(ctx, queue_children, OID_AUTO,
16301                             bxe_eth_q_stats_arr[j].string,
16302                             CTLTYPE_U64 | CTLFLAG_RD, sc, q_stat,
16303                             bxe_sysctl_eth_q_stat, "LU",
16304                             bxe_eth_q_stats_arr[j].string);
16305         }
16306     }
16307 }
16308 
16309 /*
16310  * Device attach function.
16311  *
16312  * Allocates device resources, performs secondary chip identification, and
16313  * initializes driver instance variables. This function is called from driver
16314  * load after a successful probe.
16315  *
16316  * Returns:
16317  *   0 = Success, >0 = Failure
16318  */
16319 static int
16320 bxe_attach(device_t dev)
16321 {
16322     struct bxe_softc *sc;
16323 
16324     sc = device_get_softc(dev);
16325 
16326     BLOGD(sc, DBG_LOAD, "Starting attach...\n");
16327 
16328     sc->state = BXE_STATE_CLOSED;
16329 
16330     sc->dev  = dev;
16331     sc->unit = device_get_unit(dev);
16332 
16333     BLOGD(sc, DBG_LOAD, "softc = %p\n", sc);
16334 
16335     sc->pcie_bus    = pci_get_bus(dev);
16336     sc->pcie_device = pci_get_slot(dev);
16337     sc->pcie_func   = pci_get_function(dev);
16338 
16339     /* enable bus master capability */
16340     pci_enable_busmaster(dev);
16341 
16342     /* get the BARs */
16343     if (bxe_allocate_bars(sc) != 0) {
16344         return (ENXIO);
16345     }
16346 
16347     /* initialize the mutexes */
16348     bxe_init_mutexes(sc);
16349 
16350     /* prepare the periodic callout */
16351     callout_init(&sc->periodic_callout, 0);
16352 
16353     /* prepare the chip taskqueue */
16354     sc->chip_tq_flags = CHIP_TQ_NONE;
16355     snprintf(sc->chip_tq_name, sizeof(sc->chip_tq_name),
16356              "bxe%d_chip_tq", sc->unit);
16357     TASK_INIT(&sc->chip_tq_task, 0, bxe_handle_chip_tq, sc);
16358     sc->chip_tq = taskqueue_create(sc->chip_tq_name, M_NOWAIT,
16359                                    taskqueue_thread_enqueue,
16360                                    &sc->chip_tq);
16361     taskqueue_start_threads(&sc->chip_tq, 1, PWAIT, /* lower priority */
16362                             "%s", sc->chip_tq_name);
16363 
16364     /* get device info and set params */
16365     if (bxe_get_device_info(sc) != 0) {
16366         BLOGE(sc, "getting device info\n");
16367         bxe_deallocate_bars(sc);
16368         pci_disable_busmaster(dev);
16369         return (ENXIO);
16370     }
16371 
16372     /* get final misc params */
16373     bxe_get_params(sc);
16374 
16375     /* set the default MTU (changed via ifconfig) */
16376     sc->mtu = ETHERMTU;
16377 
16378     bxe_set_modes_bitmap(sc);
16379 
16380     /* XXX
16381      * If in AFEX mode and the function is configured for FCoE
16382      * then bail... no L2 allowed.
16383      */
16384 
16385     /* get phy settings from shmem and 'and' against admin settings */
16386     bxe_get_phy_info(sc);
16387 
16388     /* initialize the FreeBSD ifnet interface */
16389     if (bxe_init_ifnet(sc) != 0) {
16390         bxe_release_mutexes(sc);
16391         bxe_deallocate_bars(sc);
16392         pci_disable_busmaster(dev);
16393         return (ENXIO);
16394     }
16395 
16396     /* allocate device interrupts */
16397     if (bxe_interrupt_alloc(sc) != 0) {
16398         if (sc->ifp != NULL) {
16399             ether_ifdetach(sc->ifp);
16400         }
16401         ifmedia_removeall(&sc->ifmedia);
16402         bxe_release_mutexes(sc);
16403         bxe_deallocate_bars(sc);
16404         pci_disable_busmaster(dev);
16405         return (ENXIO);
16406     }
16407 
16408     /* allocate ilt */
16409     if (bxe_alloc_ilt_mem(sc) != 0) {
16410         bxe_interrupt_free(sc);
16411         if (sc->ifp != NULL) {
16412             ether_ifdetach(sc->ifp);
16413         }
16414         ifmedia_removeall(&sc->ifmedia);
16415         bxe_release_mutexes(sc);
16416         bxe_deallocate_bars(sc);
16417         pci_disable_busmaster(dev);
16418         return (ENXIO);
16419     }
16420 
16421     /* allocate the host hardware/software hsi structures */
16422     if (bxe_alloc_hsi_mem(sc) != 0) {
16423         bxe_free_ilt_mem(sc);
16424         bxe_interrupt_free(sc);
16425         if (sc->ifp != NULL) {
16426             ether_ifdetach(sc->ifp);
16427         }
16428         ifmedia_removeall(&sc->ifmedia);
16429         bxe_release_mutexes(sc);
16430         bxe_deallocate_bars(sc);
16431         pci_disable_busmaster(dev);
16432         return (ENXIO);
16433     }
16434 
16435     /* need to reset chip if UNDI was active */
16436     if (IS_PF(sc) && !BXE_NOMCP(sc)) {
16437         /* init fw_seq */
16438         sc->fw_seq =
16439             (SHMEM_RD(sc, func_mb[SC_FW_MB_IDX(sc)].drv_mb_header) &
16440              DRV_MSG_SEQ_NUMBER_MASK);
16441         BLOGD(sc, DBG_LOAD, "prev unload fw_seq 0x%04x\n", sc->fw_seq);
16442         bxe_prev_unload(sc);
16443     }
16444 
16445 #if 1
16446     /* XXX */
16447     bxe_dcbx_set_state(sc, FALSE, BXE_DCBX_ENABLED_OFF);
16448 #else
16449     if (SHMEM2_HAS(sc, dcbx_lldp_params_offset) &&
16450         SHMEM2_HAS(sc, dcbx_lldp_dcbx_stat_offset) &&
16451         SHMEM2_RD(sc, dcbx_lldp_params_offset) &&
16452         SHMEM2_RD(sc, dcbx_lldp_dcbx_stat_offset)) {
16453         bxe_dcbx_set_state(sc, TRUE, BXE_DCBX_ENABLED_ON_NEG_ON);
16454         bxe_dcbx_init_params(sc);
16455     } else {
16456         bxe_dcbx_set_state(sc, FALSE, BXE_DCBX_ENABLED_OFF);
16457     }
16458 #endif
16459 
16460     /* calculate qm_cid_count */
16461     sc->qm_cid_count = bxe_set_qm_cid_count(sc);
16462     BLOGD(sc, DBG_LOAD, "qm_cid_count=%d\n", sc->qm_cid_count);
16463 
16464     sc->max_cos = 1;
16465     bxe_init_multi_cos(sc);
16466 
16467     bxe_add_sysctls(sc);
16468 
16469     return (0);
16470 }
16471 
16472 /*
16473  * Device detach function.
16474  *
16475  * Stops the controller, resets the controller, and releases resources.
16476  *
16477  * Returns:
16478  *   0 = Success, >0 = Failure
16479  */
16480 static int
16481 bxe_detach(device_t dev)
16482 {
16483     struct bxe_softc *sc;
16484     if_t ifp;
16485 
16486     sc = device_get_softc(dev);
16487 
16488     BLOGD(sc, DBG_LOAD, "Starting detach...\n");
16489 
16490     ifp = sc->ifp;
16491     if (ifp != NULL && if_vlantrunkinuse(ifp)) {
16492         BLOGE(sc, "Cannot detach while VLANs are in use.\n");
16493         return(EBUSY);
16494     }
16495 
16496     /* stop the periodic callout */
16497     bxe_periodic_stop(sc);
16498 
16499     /* stop the chip taskqueue */
16500     atomic_store_rel_long(&sc->chip_tq_flags, CHIP_TQ_NONE);
16501     if (sc->chip_tq) {
16502         taskqueue_drain(sc->chip_tq, &sc->chip_tq_task);
16503         taskqueue_free(sc->chip_tq);
16504         sc->chip_tq = NULL;
16505     }
16506 
16507     /* stop and reset the controller if it was open */
16508     if (sc->state != BXE_STATE_CLOSED) {
16509         BXE_CORE_LOCK(sc);
16510         bxe_nic_unload(sc, UNLOAD_CLOSE, TRUE);
16511         BXE_CORE_UNLOCK(sc);
16512     }
16513 
16514     /* release the network interface */
16515     if (ifp != NULL) {
16516         ether_ifdetach(ifp);
16517     }
16518     ifmedia_removeall(&sc->ifmedia);
16519 
16520     /* XXX do the following based on driver state... */
16521 
16522     /* free the host hardware/software hsi structures */
16523     bxe_free_hsi_mem(sc);
16524 
16525     /* free ilt */
16526     bxe_free_ilt_mem(sc);
16527 
16528     /* release the interrupts */
16529     bxe_interrupt_free(sc);
16530 
16531     /* Release the mutexes*/
16532     bxe_release_mutexes(sc);
16533 
16534     /* Release the PCIe BAR mapped memory */
16535     bxe_deallocate_bars(sc);
16536 
16537     /* Release the FreeBSD interface. */
16538     if (sc->ifp != NULL) {
16539         if_free(sc->ifp);
16540     }
16541 
16542     pci_disable_busmaster(dev);
16543 
16544     return (0);
16545 }
16546 
16547 /*
16548  * Device shutdown function.
16549  *
16550  * Stops and resets the controller.
16551  *
16552  * Returns:
16553  *   Nothing
16554  */
16555 static int
16556 bxe_shutdown(device_t dev)
16557 {
16558     struct bxe_softc *sc;
16559 
16560     sc = device_get_softc(dev);
16561 
16562     BLOGD(sc, DBG_LOAD, "Starting shutdown...\n");
16563 
16564     /* stop the periodic callout */
16565     bxe_periodic_stop(sc);
16566 
16567     BXE_CORE_LOCK(sc);
16568     bxe_nic_unload(sc, UNLOAD_NORMAL, FALSE);
16569     BXE_CORE_UNLOCK(sc);
16570 
16571     return (0);
16572 }
16573 
16574 void
16575 bxe_igu_ack_sb(struct bxe_softc *sc,
16576                uint8_t          igu_sb_id,
16577                uint8_t          segment,
16578                uint16_t         index,
16579                uint8_t          op,
16580                uint8_t          update)
16581 {
16582     uint32_t igu_addr = sc->igu_base_addr;
16583     igu_addr += (IGU_CMD_INT_ACK_BASE + igu_sb_id)*8;
16584     bxe_igu_ack_sb_gen(sc, igu_sb_id, segment, index, op, update, igu_addr);
16585 }
16586 
16587 static void
16588 bxe_igu_clear_sb_gen(struct bxe_softc *sc,
16589                      uint8_t          func,
16590                      uint8_t          idu_sb_id,
16591                      uint8_t          is_pf)
16592 {
16593     uint32_t data, ctl, cnt = 100;
16594     uint32_t igu_addr_data = IGU_REG_COMMAND_REG_32LSB_DATA;
16595     uint32_t igu_addr_ctl = IGU_REG_COMMAND_REG_CTRL;
16596     uint32_t igu_addr_ack = IGU_REG_CSTORM_TYPE_0_SB_CLEANUP + (idu_sb_id/32)*4;
16597     uint32_t sb_bit =  1 << (idu_sb_id%32);
16598     uint32_t func_encode = func | (is_pf ? 1 : 0) << IGU_FID_ENCODE_IS_PF_SHIFT;
16599     uint32_t addr_encode = IGU_CMD_E2_PROD_UPD_BASE + idu_sb_id;
16600 
16601     /* Not supported in BC mode */
16602     if (CHIP_INT_MODE_IS_BC(sc)) {
16603         return;
16604     }
16605 
16606     data = ((IGU_USE_REGISTER_cstorm_type_0_sb_cleanup <<
16607              IGU_REGULAR_CLEANUP_TYPE_SHIFT) |
16608             IGU_REGULAR_CLEANUP_SET |
16609             IGU_REGULAR_BCLEANUP);
16610 
16611     ctl = ((addr_encode << IGU_CTRL_REG_ADDRESS_SHIFT) |
16612            (func_encode << IGU_CTRL_REG_FID_SHIFT) |
16613            (IGU_CTRL_CMD_TYPE_WR << IGU_CTRL_REG_TYPE_SHIFT));
16614 
16615     BLOGD(sc, DBG_LOAD, "write 0x%08x to IGU(via GRC) addr 0x%x\n",
16616             data, igu_addr_data);
16617     REG_WR(sc, igu_addr_data, data);
16618 
16619     bus_space_barrier(sc->bar[BAR0].tag, sc->bar[BAR0].handle, 0, 0,
16620                       BUS_SPACE_BARRIER_WRITE);
16621     mb();
16622 
16623     BLOGD(sc, DBG_LOAD, "write 0x%08x to IGU(via GRC) addr 0x%x\n",
16624             ctl, igu_addr_ctl);
16625     REG_WR(sc, igu_addr_ctl, ctl);
16626 
16627     bus_space_barrier(sc->bar[BAR0].tag, sc->bar[BAR0].handle, 0, 0,
16628                       BUS_SPACE_BARRIER_WRITE);
16629     mb();
16630 
16631     /* wait for clean up to finish */
16632     while (!(REG_RD(sc, igu_addr_ack) & sb_bit) && --cnt) {
16633         DELAY(20000);
16634     }
16635 
16636     if (!(REG_RD(sc, igu_addr_ack) & sb_bit)) {
16637         BLOGD(sc, DBG_LOAD,
16638               "Unable to finish IGU cleanup: "
16639               "idu_sb_id %d offset %d bit %d (cnt %d)\n",
16640               idu_sb_id, idu_sb_id/32, idu_sb_id%32, cnt);
16641     }
16642 }
16643 
16644 static void
16645 bxe_igu_clear_sb(struct bxe_softc *sc,
16646                  uint8_t          idu_sb_id)
16647 {
16648     bxe_igu_clear_sb_gen(sc, SC_FUNC(sc), idu_sb_id, TRUE /*PF*/);
16649 }
16650 
16651 
16652 
16653 
16654 
16655 
16656 
16657 /*******************/
16658 /* ECORE CALLBACKS */
16659 /*******************/
16660 
16661 static void
16662 bxe_reset_common(struct bxe_softc *sc)
16663 {
16664     uint32_t val = 0x1400;
16665 
16666     /* reset_common */
16667     REG_WR(sc, (GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR), 0xd3ffff7f);
16668 
16669     if (CHIP_IS_E3(sc)) {
16670         val |= MISC_REGISTERS_RESET_REG_2_MSTAT0;
16671         val |= MISC_REGISTERS_RESET_REG_2_MSTAT1;
16672     }
16673 
16674     REG_WR(sc, (GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR), val);
16675 }
16676 
16677 static void
16678 bxe_common_init_phy(struct bxe_softc *sc)
16679 {
16680     uint32_t shmem_base[2];
16681     uint32_t shmem2_base[2];
16682 
16683     /* Avoid common init in case MFW supports LFA */
16684     if (SHMEM2_RD(sc, size) >
16685         (uint32_t)offsetof(struct shmem2_region,
16686                            lfa_host_addr[SC_PORT(sc)])) {
16687         return;
16688     }
16689 
16690     shmem_base[0]  = sc->devinfo.shmem_base;
16691     shmem2_base[0] = sc->devinfo.shmem2_base;
16692 
16693     if (!CHIP_IS_E1x(sc)) {
16694         shmem_base[1]  = SHMEM2_RD(sc, other_shmem_base_addr);
16695         shmem2_base[1] = SHMEM2_RD(sc, other_shmem2_base_addr);
16696     }
16697 
16698     bxe_acquire_phy_lock(sc);
16699     elink_common_init_phy(sc, shmem_base, shmem2_base,
16700                           sc->devinfo.chip_id, 0);
16701     bxe_release_phy_lock(sc);
16702 }
16703 
16704 static void
16705 bxe_pf_disable(struct bxe_softc *sc)
16706 {
16707     uint32_t val = REG_RD(sc, IGU_REG_PF_CONFIGURATION);
16708 
16709     val &= ~IGU_PF_CONF_FUNC_EN;
16710 
16711     REG_WR(sc, IGU_REG_PF_CONFIGURATION, val);
16712     REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
16713     REG_WR(sc, CFC_REG_WEAK_ENABLE_PF, 0);
16714 }
16715 
16716 static void
16717 bxe_init_pxp(struct bxe_softc *sc)
16718 {
16719     uint16_t devctl;
16720     int r_order, w_order;
16721 
16722     devctl = bxe_pcie_capability_read(sc, PCIR_EXPRESS_DEVICE_CTL, 2);
16723 
16724     BLOGD(sc, DBG_LOAD, "read 0x%08x from devctl\n", devctl);
16725 
16726     w_order = ((devctl & PCIM_EXP_CTL_MAX_PAYLOAD) >> 5);
16727 
16728     if (sc->mrrs == -1) {
16729         r_order = ((devctl & PCIM_EXP_CTL_MAX_READ_REQUEST) >> 12);
16730     } else {
16731         BLOGD(sc, DBG_LOAD, "forcing read order to %d\n", sc->mrrs);
16732         r_order = sc->mrrs;
16733     }
16734 
16735     ecore_init_pxp_arb(sc, r_order, w_order);
16736 }
16737 
16738 static uint32_t
16739 bxe_get_pretend_reg(struct bxe_softc *sc)
16740 {
16741     uint32_t base = PXP2_REG_PGL_PRETEND_FUNC_F0;
16742     uint32_t stride = (PXP2_REG_PGL_PRETEND_FUNC_F1 - base);
16743     return (base + (SC_ABS_FUNC(sc)) * stride);
16744 }
16745 
16746 /*
16747  * Called only on E1H or E2.
16748  * When pretending to be PF, the pretend value is the function number 0..7.
16749  * When pretending to be VF, the pretend val is the PF-num:VF-valid:ABS-VFID
16750  * combination.
16751  */
16752 static int
16753 bxe_pretend_func(struct bxe_softc *sc,
16754                  uint16_t         pretend_func_val)
16755 {
16756     uint32_t pretend_reg;
16757 
16758     if (CHIP_IS_E1H(sc) && (pretend_func_val > E1H_FUNC_MAX)) {
16759         return (-1);
16760     }
16761 
16762     /* get my own pretend register */
16763     pretend_reg = bxe_get_pretend_reg(sc);
16764     REG_WR(sc, pretend_reg, pretend_func_val);
16765     REG_RD(sc, pretend_reg);
16766     return (0);
16767 }
16768 
16769 static void
16770 bxe_iov_init_dmae(struct bxe_softc *sc)
16771 {
16772     return;
16773 #if 0
16774     BLOGD(sc, DBG_LOAD, "SRIOV is %s\n", IS_SRIOV(sc) ? "ON" : "OFF");
16775 
16776     if (!IS_SRIOV(sc)) {
16777         return;
16778     }
16779 
16780     REG_WR(sc, DMAE_REG_BACKWARD_COMP_EN, 0);
16781 #endif
16782 }
16783 
16784 #if 0
16785 static int
16786 bxe_iov_init_ilt(struct bxe_softc *sc,
16787                  uint16_t         line)
16788 {
16789     return (line);
16790 #if 0
16791     int i;
16792     struct ecore_ilt* ilt = sc->ilt;
16793 
16794     if (!IS_SRIOV(sc)) {
16795         return (line);
16796     }
16797 
16798     /* set vfs ilt lines */
16799     for (i = 0; i < BXE_VF_CIDS/ILT_PAGE_CIDS ; i++) {
16800         struct hw_dma *hw_cxt = SC_VF_CXT_PAGE(sc,i);
16801         ilt->lines[line+i].page = hw_cxt->addr;
16802         ilt->lines[line+i].page_mapping = hw_cxt->mapping;
16803         ilt->lines[line+i].size = hw_cxt->size; /* doesn't matter */
16804     }
16805     return (line+i);
16806 #endif
16807 }
16808 #endif
16809 
16810 static void
16811 bxe_iov_init_dq(struct bxe_softc *sc)
16812 {
16813     return;
16814 #if 0
16815     if (!IS_SRIOV(sc)) {
16816         return;
16817     }
16818 
16819     /* Set the DQ such that the CID reflect the abs_vfid */
16820     REG_WR(sc, DORQ_REG_VF_NORM_VF_BASE, 0);
16821     REG_WR(sc, DORQ_REG_MAX_RVFID_SIZE, ilog2(BNX2X_MAX_NUM_OF_VFS));
16822 
16823     /*
16824      * Set VFs starting CID. If its > 0 the preceding CIDs are belong to
16825      * the PF L2 queues
16826      */
16827     REG_WR(sc, DORQ_REG_VF_NORM_CID_BASE, BNX2X_FIRST_VF_CID);
16828 
16829     /* The VF window size is the log2 of the max number of CIDs per VF */
16830     REG_WR(sc, DORQ_REG_VF_NORM_CID_WND_SIZE, BNX2X_VF_CID_WND);
16831 
16832     /*
16833      * The VF doorbell size  0 - *B, 4 - 128B. We set it here to match
16834      * the Pf doorbell size although the 2 are independent.
16835      */
16836     REG_WR(sc, DORQ_REG_VF_NORM_CID_OFST,
16837            BNX2X_DB_SHIFT - BNX2X_DB_MIN_SHIFT);
16838 
16839     /*
16840      * No security checks for now -
16841      * configure single rule (out of 16) mask = 0x1, value = 0x0,
16842      * CID range 0 - 0x1ffff
16843      */
16844     REG_WR(sc, DORQ_REG_VF_TYPE_MASK_0, 1);
16845     REG_WR(sc, DORQ_REG_VF_TYPE_VALUE_0, 0);
16846     REG_WR(sc, DORQ_REG_VF_TYPE_MIN_MCID_0, 0);
16847     REG_WR(sc, DORQ_REG_VF_TYPE_MAX_MCID_0, 0x1ffff);
16848 
16849     /* set the number of VF alllowed doorbells to the full DQ range */
16850     REG_WR(sc, DORQ_REG_VF_NORM_MAX_CID_COUNT, 0x20000);
16851 
16852     /* set the VF doorbell threshold */
16853     REG_WR(sc, DORQ_REG_VF_USAGE_CT_LIMIT, 4);
16854 #endif
16855 }
16856 
16857 /* send a NIG loopback debug packet */
16858 static void
16859 bxe_lb_pckt(struct bxe_softc *sc)
16860 {
16861     uint32_t wb_write[3];
16862 
16863     /* Ethernet source and destination addresses */
16864     wb_write[0] = 0x55555555;
16865     wb_write[1] = 0x55555555;
16866     wb_write[2] = 0x20;     /* SOP */
16867     REG_WR_DMAE(sc, NIG_REG_DEBUG_PACKET_LB, wb_write, 3);
16868 
16869     /* NON-IP protocol */
16870     wb_write[0] = 0x09000000;
16871     wb_write[1] = 0x55555555;
16872     wb_write[2] = 0x10;     /* EOP, eop_bvalid = 0 */
16873     REG_WR_DMAE(sc, NIG_REG_DEBUG_PACKET_LB, wb_write, 3);
16874 }
16875 
16876 /*
16877  * Some of the internal memories are not directly readable from the driver.
16878  * To test them we send debug packets.
16879  */
16880 static int
16881 bxe_int_mem_test(struct bxe_softc *sc)
16882 {
16883     int factor;
16884     int count, i;
16885     uint32_t val = 0;
16886 
16887     if (CHIP_REV_IS_FPGA(sc)) {
16888         factor = 120;
16889     } else if (CHIP_REV_IS_EMUL(sc)) {
16890         factor = 200;
16891     } else {
16892         factor = 1;
16893     }
16894 
16895     /* disable inputs of parser neighbor blocks */
16896     REG_WR(sc, TSDM_REG_ENABLE_IN1, 0x0);
16897     REG_WR(sc, TCM_REG_PRS_IFEN, 0x0);
16898     REG_WR(sc, CFC_REG_DEBUG0, 0x1);
16899     REG_WR(sc, NIG_REG_PRS_REQ_IN_EN, 0x0);
16900 
16901     /*  write 0 to parser credits for CFC search request */
16902     REG_WR(sc, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0);
16903 
16904     /* send Ethernet packet */
16905     bxe_lb_pckt(sc);
16906 
16907     /* TODO do i reset NIG statistic? */
16908     /* Wait until NIG register shows 1 packet of size 0x10 */
16909     count = 1000 * factor;
16910     while (count) {
16911         bxe_read_dmae(sc, NIG_REG_STAT2_BRB_OCTET, 2);
16912         val = *BXE_SP(sc, wb_data[0]);
16913         if (val == 0x10) {
16914             break;
16915         }
16916 
16917         DELAY(10000);
16918         count--;
16919     }
16920 
16921     if (val != 0x10) {
16922         BLOGE(sc, "NIG timeout val=0x%x\n", val);
16923         return (-1);
16924     }
16925 
16926     /* wait until PRS register shows 1 packet */
16927     count = (1000 * factor);
16928     while (count) {
16929         val = REG_RD(sc, PRS_REG_NUM_OF_PACKETS);
16930         if (val == 1) {
16931             break;
16932         }
16933 
16934         DELAY(10000);
16935         count--;
16936     }
16937 
16938     if (val != 0x1) {
16939         BLOGE(sc, "PRS timeout val=0x%x\n", val);
16940         return (-2);
16941     }
16942 
16943     /* Reset and init BRB, PRS */
16944     REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03);
16945     DELAY(50000);
16946     REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03);
16947     DELAY(50000);
16948     ecore_init_block(sc, BLOCK_BRB1, PHASE_COMMON);
16949     ecore_init_block(sc, BLOCK_PRS, PHASE_COMMON);
16950 
16951     /* Disable inputs of parser neighbor blocks */
16952     REG_WR(sc, TSDM_REG_ENABLE_IN1, 0x0);
16953     REG_WR(sc, TCM_REG_PRS_IFEN, 0x0);
16954     REG_WR(sc, CFC_REG_DEBUG0, 0x1);
16955     REG_WR(sc, NIG_REG_PRS_REQ_IN_EN, 0x0);
16956 
16957     /* Write 0 to parser credits for CFC search request */
16958     REG_WR(sc, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0);
16959 
16960     /* send 10 Ethernet packets */
16961     for (i = 0; i < 10; i++) {
16962         bxe_lb_pckt(sc);
16963     }
16964 
16965     /* Wait until NIG register shows 10+1 packets of size 11*0x10 = 0xb0 */
16966     count = (1000 * factor);
16967     while (count) {
16968         bxe_read_dmae(sc, NIG_REG_STAT2_BRB_OCTET, 2);
16969         val = *BXE_SP(sc, wb_data[0]);
16970         if (val == 0xb0) {
16971             break;
16972         }
16973 
16974         DELAY(10000);
16975         count--;
16976     }
16977 
16978     if (val != 0xb0) {
16979         BLOGE(sc, "NIG timeout val=0x%x\n", val);
16980         return (-3);
16981     }
16982 
16983     /* Wait until PRS register shows 2 packets */
16984     val = REG_RD(sc, PRS_REG_NUM_OF_PACKETS);
16985     if (val != 2) {
16986         BLOGE(sc, "PRS timeout val=0x%x\n", val);
16987     }
16988 
16989     /* Write 1 to parser credits for CFC search request */
16990     REG_WR(sc, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x1);
16991 
16992     /* Wait until PRS register shows 3 packets */
16993     DELAY(10000 * factor);
16994 
16995     /* Wait until NIG register shows 1 packet of size 0x10 */
16996     val = REG_RD(sc, PRS_REG_NUM_OF_PACKETS);
16997     if (val != 3) {
16998         BLOGE(sc, "PRS timeout val=0x%x\n", val);
16999     }
17000 
17001     /* clear NIG EOP FIFO */
17002     for (i = 0; i < 11; i++) {
17003         REG_RD(sc, NIG_REG_INGRESS_EOP_LB_FIFO);
17004     }
17005 
17006     val = REG_RD(sc, NIG_REG_INGRESS_EOP_LB_EMPTY);
17007     if (val != 1) {
17008         BLOGE(sc, "clear of NIG failed\n");
17009         return (-4);
17010     }
17011 
17012     /* Reset and init BRB, PRS, NIG */
17013     REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03);
17014     DELAY(50000);
17015     REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03);
17016     DELAY(50000);
17017     ecore_init_block(sc, BLOCK_BRB1, PHASE_COMMON);
17018     ecore_init_block(sc, BLOCK_PRS, PHASE_COMMON);
17019     if (!CNIC_SUPPORT(sc)) {
17020         /* set NIC mode */
17021         REG_WR(sc, PRS_REG_NIC_MODE, 1);
17022     }
17023 
17024     /* Enable inputs of parser neighbor blocks */
17025     REG_WR(sc, TSDM_REG_ENABLE_IN1, 0x7fffffff);
17026     REG_WR(sc, TCM_REG_PRS_IFEN, 0x1);
17027     REG_WR(sc, CFC_REG_DEBUG0, 0x0);
17028     REG_WR(sc, NIG_REG_PRS_REQ_IN_EN, 0x1);
17029 
17030     return (0);
17031 }
17032 
17033 static void
17034 bxe_setup_fan_failure_detection(struct bxe_softc *sc)
17035 {
17036     int is_required;
17037     uint32_t val;
17038     int port;
17039 
17040     is_required = 0;
17041     val = (SHMEM_RD(sc, dev_info.shared_hw_config.config2) &
17042            SHARED_HW_CFG_FAN_FAILURE_MASK);
17043 
17044     if (val == SHARED_HW_CFG_FAN_FAILURE_ENABLED) {
17045         is_required = 1;
17046     }
17047     /*
17048      * The fan failure mechanism is usually related to the PHY type since
17049      * the power consumption of the board is affected by the PHY. Currently,
17050      * fan is required for most designs with SFX7101, BCM8727 and BCM8481.
17051      */
17052     else if (val == SHARED_HW_CFG_FAN_FAILURE_PHY_TYPE) {
17053         for (port = PORT_0; port < PORT_MAX; port++) {
17054             is_required |= elink_fan_failure_det_req(sc,
17055                                                      sc->devinfo.shmem_base,
17056                                                      sc->devinfo.shmem2_base,
17057                                                      port);
17058         }
17059     }
17060 
17061     BLOGD(sc, DBG_LOAD, "fan detection setting: %d\n", is_required);
17062 
17063     if (is_required == 0) {
17064         return;
17065     }
17066 
17067     /* Fan failure is indicated by SPIO 5 */
17068     bxe_set_spio(sc, MISC_SPIO_SPIO5, MISC_SPIO_INPUT_HI_Z);
17069 
17070     /* set to active low mode */
17071     val = REG_RD(sc, MISC_REG_SPIO_INT);
17072     val |= (MISC_SPIO_SPIO5 << MISC_SPIO_INT_OLD_SET_POS);
17073     REG_WR(sc, MISC_REG_SPIO_INT, val);
17074 
17075     /* enable interrupt to signal the IGU */
17076     val = REG_RD(sc, MISC_REG_SPIO_EVENT_EN);
17077     val |= MISC_SPIO_SPIO5;
17078     REG_WR(sc, MISC_REG_SPIO_EVENT_EN, val);
17079 }
17080 
17081 static void
17082 bxe_enable_blocks_attention(struct bxe_softc *sc)
17083 {
17084     uint32_t val;
17085 
17086     REG_WR(sc, PXP_REG_PXP_INT_MASK_0, 0);
17087     if (!CHIP_IS_E1x(sc)) {
17088         REG_WR(sc, PXP_REG_PXP_INT_MASK_1, 0x40);
17089     } else {
17090         REG_WR(sc, PXP_REG_PXP_INT_MASK_1, 0);
17091     }
17092     REG_WR(sc, DORQ_REG_DORQ_INT_MASK, 0);
17093     REG_WR(sc, CFC_REG_CFC_INT_MASK, 0);
17094     /*
17095      * mask read length error interrupts in brb for parser
17096      * (parsing unit and 'checksum and crc' unit)
17097      * these errors are legal (PU reads fixed length and CAC can cause
17098      * read length error on truncated packets)
17099      */
17100     REG_WR(sc, BRB1_REG_BRB1_INT_MASK, 0xFC00);
17101     REG_WR(sc, QM_REG_QM_INT_MASK, 0);
17102     REG_WR(sc, TM_REG_TM_INT_MASK, 0);
17103     REG_WR(sc, XSDM_REG_XSDM_INT_MASK_0, 0);
17104     REG_WR(sc, XSDM_REG_XSDM_INT_MASK_1, 0);
17105     REG_WR(sc, XCM_REG_XCM_INT_MASK, 0);
17106 /*      REG_WR(sc, XSEM_REG_XSEM_INT_MASK_0, 0); */
17107 /*      REG_WR(sc, XSEM_REG_XSEM_INT_MASK_1, 0); */
17108     REG_WR(sc, USDM_REG_USDM_INT_MASK_0, 0);
17109     REG_WR(sc, USDM_REG_USDM_INT_MASK_1, 0);
17110     REG_WR(sc, UCM_REG_UCM_INT_MASK, 0);
17111 /*      REG_WR(sc, USEM_REG_USEM_INT_MASK_0, 0); */
17112 /*      REG_WR(sc, USEM_REG_USEM_INT_MASK_1, 0); */
17113     REG_WR(sc, GRCBASE_UPB + PB_REG_PB_INT_MASK, 0);
17114     REG_WR(sc, CSDM_REG_CSDM_INT_MASK_0, 0);
17115     REG_WR(sc, CSDM_REG_CSDM_INT_MASK_1, 0);
17116     REG_WR(sc, CCM_REG_CCM_INT_MASK, 0);
17117 /*      REG_WR(sc, CSEM_REG_CSEM_INT_MASK_0, 0); */
17118 /*      REG_WR(sc, CSEM_REG_CSEM_INT_MASK_1, 0); */
17119 
17120     val = (PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_AFT |
17121            PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_OF |
17122            PXP2_PXP2_INT_MASK_0_REG_PGL_PCIE_ATTN);
17123     if (!CHIP_IS_E1x(sc)) {
17124         val |= (PXP2_PXP2_INT_MASK_0_REG_PGL_READ_BLOCKED |
17125                 PXP2_PXP2_INT_MASK_0_REG_PGL_WRITE_BLOCKED);
17126     }
17127     REG_WR(sc, PXP2_REG_PXP2_INT_MASK_0, val);
17128 
17129     REG_WR(sc, TSDM_REG_TSDM_INT_MASK_0, 0);
17130     REG_WR(sc, TSDM_REG_TSDM_INT_MASK_1, 0);
17131     REG_WR(sc, TCM_REG_TCM_INT_MASK, 0);
17132 /*      REG_WR(sc, TSEM_REG_TSEM_INT_MASK_0, 0); */
17133 
17134     if (!CHIP_IS_E1x(sc)) {
17135         /* enable VFC attentions: bits 11 and 12, bits 31:13 reserved */
17136         REG_WR(sc, TSEM_REG_TSEM_INT_MASK_1, 0x07ff);
17137     }
17138 
17139     REG_WR(sc, CDU_REG_CDU_INT_MASK, 0);
17140     REG_WR(sc, DMAE_REG_DMAE_INT_MASK, 0);
17141 /*      REG_WR(sc, MISC_REG_MISC_INT_MASK, 0); */
17142     REG_WR(sc, PBF_REG_PBF_INT_MASK, 0x18);     /* bit 3,4 masked */
17143 }
17144 
17145 /**
17146  * bxe_init_hw_common - initialize the HW at the COMMON phase.
17147  *
17148  * @sc:     driver handle
17149  */
17150 static int
17151 bxe_init_hw_common(struct bxe_softc *sc)
17152 {
17153     uint8_t abs_func_id;
17154     uint32_t val;
17155 
17156     BLOGD(sc, DBG_LOAD, "starting common init for func %d\n",
17157           SC_ABS_FUNC(sc));
17158 
17159     /*
17160      * take the RESET lock to protect undi_unload flow from accessing
17161      * registers while we are resetting the chip
17162      */
17163     bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RESET);
17164 
17165     bxe_reset_common(sc);
17166 
17167     REG_WR(sc, (GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET), 0xffffffff);
17168 
17169     val = 0xfffc;
17170     if (CHIP_IS_E3(sc)) {
17171         val |= MISC_REGISTERS_RESET_REG_2_MSTAT0;
17172         val |= MISC_REGISTERS_RESET_REG_2_MSTAT1;
17173     }
17174 
17175     REG_WR(sc, (GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET), val);
17176 
17177     bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RESET);
17178 
17179     ecore_init_block(sc, BLOCK_MISC, PHASE_COMMON);
17180     BLOGD(sc, DBG_LOAD, "after misc block init\n");
17181 
17182     if (!CHIP_IS_E1x(sc)) {
17183         /*
17184          * 4-port mode or 2-port mode we need to turn off master-enable for
17185          * everyone. After that we turn it back on for self. So, we disregard
17186          * multi-function, and always disable all functions on the given path,
17187          * this means 0,2,4,6 for path 0 and 1,3,5,7 for path 1
17188          */
17189         for (abs_func_id = SC_PATH(sc);
17190              abs_func_id < (E2_FUNC_MAX * 2);
17191              abs_func_id += 2) {
17192             if (abs_func_id == SC_ABS_FUNC(sc)) {
17193                 REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
17194                 continue;
17195             }
17196 
17197             bxe_pretend_func(sc, abs_func_id);
17198 
17199             /* clear pf enable */
17200             bxe_pf_disable(sc);
17201 
17202             bxe_pretend_func(sc, SC_ABS_FUNC(sc));
17203         }
17204     }
17205 
17206     BLOGD(sc, DBG_LOAD, "after pf disable\n");
17207 
17208     ecore_init_block(sc, BLOCK_PXP, PHASE_COMMON);
17209 
17210     if (CHIP_IS_E1(sc)) {
17211         /*
17212          * enable HW interrupt from PXP on USDM overflow
17213          * bit 16 on INT_MASK_0
17214          */
17215         REG_WR(sc, PXP_REG_PXP_INT_MASK_0, 0);
17216     }
17217 
17218     ecore_init_block(sc, BLOCK_PXP2, PHASE_COMMON);
17219     bxe_init_pxp(sc);
17220 
17221 #ifdef __BIG_ENDIAN
17222     REG_WR(sc, PXP2_REG_RQ_QM_ENDIAN_M, 1);
17223     REG_WR(sc, PXP2_REG_RQ_TM_ENDIAN_M, 1);
17224     REG_WR(sc, PXP2_REG_RQ_SRC_ENDIAN_M, 1);
17225     REG_WR(sc, PXP2_REG_RQ_CDU_ENDIAN_M, 1);
17226     REG_WR(sc, PXP2_REG_RQ_DBG_ENDIAN_M, 1);
17227     /* make sure this value is 0 */
17228     REG_WR(sc, PXP2_REG_RQ_HC_ENDIAN_M, 0);
17229 
17230     //REG_WR(sc, PXP2_REG_RD_PBF_SWAP_MODE, 1);
17231     REG_WR(sc, PXP2_REG_RD_QM_SWAP_MODE, 1);
17232     REG_WR(sc, PXP2_REG_RD_TM_SWAP_MODE, 1);
17233     REG_WR(sc, PXP2_REG_RD_SRC_SWAP_MODE, 1);
17234     REG_WR(sc, PXP2_REG_RD_CDURD_SWAP_MODE, 1);
17235 #endif
17236 
17237     ecore_ilt_init_page_size(sc, INITOP_SET);
17238 
17239     if (CHIP_REV_IS_FPGA(sc) && CHIP_IS_E1H(sc)) {
17240         REG_WR(sc, PXP2_REG_PGL_TAGS_LIMIT, 0x1);
17241     }
17242 
17243     /* let the HW do it's magic... */
17244     DELAY(100000);
17245 
17246     /* finish PXP init */
17247     val = REG_RD(sc, PXP2_REG_RQ_CFG_DONE);
17248     if (val != 1) {
17249         BLOGE(sc, "PXP2 CFG failed\n");
17250         return (-1);
17251     }
17252     val = REG_RD(sc, PXP2_REG_RD_INIT_DONE);
17253     if (val != 1) {
17254         BLOGE(sc, "PXP2 RD_INIT failed\n");
17255         return (-1);
17256     }
17257 
17258     BLOGD(sc, DBG_LOAD, "after pxp init\n");
17259 
17260     /*
17261      * Timer bug workaround for E2 only. We need to set the entire ILT to have
17262      * entries with value "0" and valid bit on. This needs to be done by the
17263      * first PF that is loaded in a path (i.e. common phase)
17264      */
17265     if (!CHIP_IS_E1x(sc)) {
17266 /*
17267  * In E2 there is a bug in the timers block that can cause function 6 / 7
17268  * (i.e. vnic3) to start even if it is marked as "scan-off".
17269  * This occurs when a different function (func2,3) is being marked
17270  * as "scan-off". Real-life scenario for example: if a driver is being
17271  * load-unloaded while func6,7 are down. This will cause the timer to access
17272  * the ilt, translate to a logical address and send a request to read/write.
17273  * Since the ilt for the function that is down is not valid, this will cause
17274  * a translation error which is unrecoverable.
17275  * The Workaround is intended to make sure that when this happens nothing
17276  * fatal will occur. The workaround:
17277  *  1.  First PF driver which loads on a path will:
17278  *      a.  After taking the chip out of reset, by using pretend,
17279  *          it will write "0" to the following registers of
17280  *          the other vnics.
17281  *          REG_WR(pdev, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
17282  *          REG_WR(pdev, CFC_REG_WEAK_ENABLE_PF,0);
17283  *          REG_WR(pdev, CFC_REG_STRONG_ENABLE_PF,0);
17284  *          And for itself it will write '1' to
17285  *          PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER to enable
17286  *          dmae-operations (writing to pram for example.)
17287  *          note: can be done for only function 6,7 but cleaner this
17288  *            way.
17289  *      b.  Write zero+valid to the entire ILT.
17290  *      c.  Init the first_timers_ilt_entry, last_timers_ilt_entry of
17291  *          VNIC3 (of that port). The range allocated will be the
17292  *          entire ILT. This is needed to prevent  ILT range error.
17293  *  2.  Any PF driver load flow:
17294  *      a.  ILT update with the physical addresses of the allocated
17295  *          logical pages.
17296  *      b.  Wait 20msec. - note that this timeout is needed to make
17297  *          sure there are no requests in one of the PXP internal
17298  *          queues with "old" ILT addresses.
17299  *      c.  PF enable in the PGLC.
17300  *      d.  Clear the was_error of the PF in the PGLC. (could have
17301  *          occurred while driver was down)
17302  *      e.  PF enable in the CFC (WEAK + STRONG)
17303  *      f.  Timers scan enable
17304  *  3.  PF driver unload flow:
17305  *      a.  Clear the Timers scan_en.
17306  *      b.  Polling for scan_on=0 for that PF.
17307  *      c.  Clear the PF enable bit in the PXP.
17308  *      d.  Clear the PF enable in the CFC (WEAK + STRONG)
17309  *      e.  Write zero+valid to all ILT entries (The valid bit must
17310  *          stay set)
17311  *      f.  If this is VNIC 3 of a port then also init
17312  *          first_timers_ilt_entry to zero and last_timers_ilt_entry
17313  *          to the last enrty in the ILT.
17314  *
17315  *      Notes:
17316  *      Currently the PF error in the PGLC is non recoverable.
17317  *      In the future the there will be a recovery routine for this error.
17318  *      Currently attention is masked.
17319  *      Having an MCP lock on the load/unload process does not guarantee that
17320  *      there is no Timer disable during Func6/7 enable. This is because the
17321  *      Timers scan is currently being cleared by the MCP on FLR.
17322  *      Step 2.d can be done only for PF6/7 and the driver can also check if
17323  *      there is error before clearing it. But the flow above is simpler and
17324  *      more general.
17325  *      All ILT entries are written by zero+valid and not just PF6/7
17326  *      ILT entries since in the future the ILT entries allocation for
17327  *      PF-s might be dynamic.
17328  */
17329         struct ilt_client_info ilt_cli;
17330         struct ecore_ilt ilt;
17331 
17332         memset(&ilt_cli, 0, sizeof(struct ilt_client_info));
17333         memset(&ilt, 0, sizeof(struct ecore_ilt));
17334 
17335         /* initialize dummy TM client */
17336         ilt_cli.start      = 0;
17337         ilt_cli.end        = ILT_NUM_PAGE_ENTRIES - 1;
17338         ilt_cli.client_num = ILT_CLIENT_TM;
17339 
17340         /*
17341          * Step 1: set zeroes to all ilt page entries with valid bit on
17342          * Step 2: set the timers first/last ilt entry to point
17343          * to the entire range to prevent ILT range error for 3rd/4th
17344          * vnic (this code assumes existence of the vnic)
17345          *
17346          * both steps performed by call to ecore_ilt_client_init_op()
17347          * with dummy TM client
17348          *
17349          * we must use pretend since PXP2_REG_RQ_##blk##_FIRST_ILT
17350          * and his brother are split registers
17351          */
17352 
17353         bxe_pretend_func(sc, (SC_PATH(sc) + 6));
17354         ecore_ilt_client_init_op_ilt(sc, &ilt, &ilt_cli, INITOP_CLEAR);
17355         bxe_pretend_func(sc, SC_ABS_FUNC(sc));
17356 
17357         REG_WR(sc, PXP2_REG_RQ_DRAM_ALIGN, BXE_PXP_DRAM_ALIGN);
17358         REG_WR(sc, PXP2_REG_RQ_DRAM_ALIGN_RD, BXE_PXP_DRAM_ALIGN);
17359         REG_WR(sc, PXP2_REG_RQ_DRAM_ALIGN_SEL, 1);
17360     }
17361 
17362     REG_WR(sc, PXP2_REG_RQ_DISABLE_INPUTS, 0);
17363     REG_WR(sc, PXP2_REG_RD_DISABLE_INPUTS, 0);
17364 
17365     if (!CHIP_IS_E1x(sc)) {
17366         int factor = CHIP_REV_IS_EMUL(sc) ? 1000 :
17367                      (CHIP_REV_IS_FPGA(sc) ? 400 : 0);
17368 
17369         ecore_init_block(sc, BLOCK_PGLUE_B, PHASE_COMMON);
17370         ecore_init_block(sc, BLOCK_ATC, PHASE_COMMON);
17371 
17372         /* let the HW do it's magic... */
17373         do {
17374             DELAY(200000);
17375             val = REG_RD(sc, ATC_REG_ATC_INIT_DONE);
17376         } while (factor-- && (val != 1));
17377 
17378         if (val != 1) {
17379             BLOGE(sc, "ATC_INIT failed\n");
17380             return (-1);
17381         }
17382     }
17383 
17384     BLOGD(sc, DBG_LOAD, "after pglue and atc init\n");
17385 
17386     ecore_init_block(sc, BLOCK_DMAE, PHASE_COMMON);
17387 
17388     bxe_iov_init_dmae(sc);
17389 
17390     /* clean the DMAE memory */
17391     sc->dmae_ready = 1;
17392     ecore_init_fill(sc, TSEM_REG_PRAM, 0, 8, 1);
17393 
17394     ecore_init_block(sc, BLOCK_TCM, PHASE_COMMON);
17395 
17396     ecore_init_block(sc, BLOCK_UCM, PHASE_COMMON);
17397 
17398     ecore_init_block(sc, BLOCK_CCM, PHASE_COMMON);
17399 
17400     ecore_init_block(sc, BLOCK_XCM, PHASE_COMMON);
17401 
17402     bxe_read_dmae(sc, XSEM_REG_PASSIVE_BUFFER, 3);
17403     bxe_read_dmae(sc, CSEM_REG_PASSIVE_BUFFER, 3);
17404     bxe_read_dmae(sc, TSEM_REG_PASSIVE_BUFFER, 3);
17405     bxe_read_dmae(sc, USEM_REG_PASSIVE_BUFFER, 3);
17406 
17407     ecore_init_block(sc, BLOCK_QM, PHASE_COMMON);
17408 
17409     /* QM queues pointers table */
17410     ecore_qm_init_ptr_table(sc, sc->qm_cid_count, INITOP_SET);
17411 
17412     /* soft reset pulse */
17413     REG_WR(sc, QM_REG_SOFT_RESET, 1);
17414     REG_WR(sc, QM_REG_SOFT_RESET, 0);
17415 
17416     if (CNIC_SUPPORT(sc))
17417         ecore_init_block(sc, BLOCK_TM, PHASE_COMMON);
17418 
17419     ecore_init_block(sc, BLOCK_DORQ, PHASE_COMMON);
17420     REG_WR(sc, DORQ_REG_DPM_CID_OFST, BXE_DB_SHIFT);
17421     if (!CHIP_REV_IS_SLOW(sc)) {
17422         /* enable hw interrupt from doorbell Q */
17423         REG_WR(sc, DORQ_REG_DORQ_INT_MASK, 0);
17424     }
17425 
17426     ecore_init_block(sc, BLOCK_BRB1, PHASE_COMMON);
17427 
17428     ecore_init_block(sc, BLOCK_PRS, PHASE_COMMON);
17429     REG_WR(sc, PRS_REG_A_PRSU_20, 0xf);
17430 
17431     if (!CHIP_IS_E1(sc)) {
17432         REG_WR(sc, PRS_REG_E1HOV_MODE, sc->devinfo.mf_info.path_has_ovlan);
17433     }
17434 
17435     if (!CHIP_IS_E1x(sc) && !CHIP_IS_E3B0(sc)) {
17436         if (IS_MF_AFEX(sc)) {
17437             /*
17438              * configure that AFEX and VLAN headers must be
17439              * received in AFEX mode
17440              */
17441             REG_WR(sc, PRS_REG_HDRS_AFTER_BASIC, 0xE);
17442             REG_WR(sc, PRS_REG_MUST_HAVE_HDRS, 0xA);
17443             REG_WR(sc, PRS_REG_HDRS_AFTER_TAG_0, 0x6);
17444             REG_WR(sc, PRS_REG_TAG_ETHERTYPE_0, 0x8926);
17445             REG_WR(sc, PRS_REG_TAG_LEN_0, 0x4);
17446         } else {
17447             /*
17448              * Bit-map indicating which L2 hdrs may appear
17449              * after the basic Ethernet header
17450              */
17451             REG_WR(sc, PRS_REG_HDRS_AFTER_BASIC,
17452                    sc->devinfo.mf_info.path_has_ovlan ? 7 : 6);
17453         }
17454     }
17455 
17456     ecore_init_block(sc, BLOCK_TSDM, PHASE_COMMON);
17457     ecore_init_block(sc, BLOCK_CSDM, PHASE_COMMON);
17458     ecore_init_block(sc, BLOCK_USDM, PHASE_COMMON);
17459     ecore_init_block(sc, BLOCK_XSDM, PHASE_COMMON);
17460 
17461     if (!CHIP_IS_E1x(sc)) {
17462         /* reset VFC memories */
17463         REG_WR(sc, TSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST,
17464                VFC_MEMORIES_RST_REG_CAM_RST |
17465                VFC_MEMORIES_RST_REG_RAM_RST);
17466         REG_WR(sc, XSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST,
17467                VFC_MEMORIES_RST_REG_CAM_RST |
17468                VFC_MEMORIES_RST_REG_RAM_RST);
17469 
17470         DELAY(20000);
17471     }
17472 
17473     ecore_init_block(sc, BLOCK_TSEM, PHASE_COMMON);
17474     ecore_init_block(sc, BLOCK_USEM, PHASE_COMMON);
17475     ecore_init_block(sc, BLOCK_CSEM, PHASE_COMMON);
17476     ecore_init_block(sc, BLOCK_XSEM, PHASE_COMMON);
17477 
17478     /* sync semi rtc */
17479     REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
17480            0x80000000);
17481     REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET,
17482            0x80000000);
17483 
17484     ecore_init_block(sc, BLOCK_UPB, PHASE_COMMON);
17485     ecore_init_block(sc, BLOCK_XPB, PHASE_COMMON);
17486     ecore_init_block(sc, BLOCK_PBF, PHASE_COMMON);
17487 
17488     if (!CHIP_IS_E1x(sc)) {
17489         if (IS_MF_AFEX(sc)) {
17490             /*
17491              * configure that AFEX and VLAN headers must be
17492              * sent in AFEX mode
17493              */
17494             REG_WR(sc, PBF_REG_HDRS_AFTER_BASIC, 0xE);
17495             REG_WR(sc, PBF_REG_MUST_HAVE_HDRS, 0xA);
17496             REG_WR(sc, PBF_REG_HDRS_AFTER_TAG_0, 0x6);
17497             REG_WR(sc, PBF_REG_TAG_ETHERTYPE_0, 0x8926);
17498             REG_WR(sc, PBF_REG_TAG_LEN_0, 0x4);
17499         } else {
17500             REG_WR(sc, PBF_REG_HDRS_AFTER_BASIC,
17501                    sc->devinfo.mf_info.path_has_ovlan ? 7 : 6);
17502         }
17503     }
17504 
17505     REG_WR(sc, SRC_REG_SOFT_RST, 1);
17506 
17507     ecore_init_block(sc, BLOCK_SRC, PHASE_COMMON);
17508 
17509     if (CNIC_SUPPORT(sc)) {
17510         REG_WR(sc, SRC_REG_KEYSEARCH_0, 0x63285672);
17511         REG_WR(sc, SRC_REG_KEYSEARCH_1, 0x24b8f2cc);
17512         REG_WR(sc, SRC_REG_KEYSEARCH_2, 0x223aef9b);
17513         REG_WR(sc, SRC_REG_KEYSEARCH_3, 0x26001e3a);
17514         REG_WR(sc, SRC_REG_KEYSEARCH_4, 0x7ae91116);
17515         REG_WR(sc, SRC_REG_KEYSEARCH_5, 0x5ce5230b);
17516         REG_WR(sc, SRC_REG_KEYSEARCH_6, 0x298d8adf);
17517         REG_WR(sc, SRC_REG_KEYSEARCH_7, 0x6eb0ff09);
17518         REG_WR(sc, SRC_REG_KEYSEARCH_8, 0x1830f82f);
17519         REG_WR(sc, SRC_REG_KEYSEARCH_9, 0x01e46be7);
17520     }
17521     REG_WR(sc, SRC_REG_SOFT_RST, 0);
17522 
17523     if (sizeof(union cdu_context) != 1024) {
17524         /* we currently assume that a context is 1024 bytes */
17525         BLOGE(sc, "please adjust the size of cdu_context(%ld)\n",
17526               (long)sizeof(union cdu_context));
17527     }
17528 
17529     ecore_init_block(sc, BLOCK_CDU, PHASE_COMMON);
17530     val = (4 << 24) + (0 << 12) + 1024;
17531     REG_WR(sc, CDU_REG_CDU_GLOBAL_PARAMS, val);
17532 
17533     ecore_init_block(sc, BLOCK_CFC, PHASE_COMMON);
17534 
17535     REG_WR(sc, CFC_REG_INIT_REG, 0x7FF);
17536     /* enable context validation interrupt from CFC */
17537     REG_WR(sc, CFC_REG_CFC_INT_MASK, 0);
17538 
17539     /* set the thresholds to prevent CFC/CDU race */
17540     REG_WR(sc, CFC_REG_DEBUG0, 0x20020000);
17541     ecore_init_block(sc, BLOCK_HC, PHASE_COMMON);
17542 
17543     if (!CHIP_IS_E1x(sc) && BXE_NOMCP(sc)) {
17544         REG_WR(sc, IGU_REG_RESET_MEMORIES, 0x36);
17545     }
17546 
17547     ecore_init_block(sc, BLOCK_IGU, PHASE_COMMON);
17548     ecore_init_block(sc, BLOCK_MISC_AEU, PHASE_COMMON);
17549 
17550     /* Reset PCIE errors for debug */
17551     REG_WR(sc, 0x2814, 0xffffffff);
17552     REG_WR(sc, 0x3820, 0xffffffff);
17553 
17554     if (!CHIP_IS_E1x(sc)) {
17555         REG_WR(sc, PCICFG_OFFSET + PXPCS_TL_CONTROL_5,
17556                (PXPCS_TL_CONTROL_5_ERR_UNSPPORT1 |
17557                 PXPCS_TL_CONTROL_5_ERR_UNSPPORT));
17558         REG_WR(sc, PCICFG_OFFSET + PXPCS_TL_FUNC345_STAT,
17559                (PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT4 |
17560                 PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT3 |
17561                 PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT2));
17562         REG_WR(sc, PCICFG_OFFSET + PXPCS_TL_FUNC678_STAT,
17563                (PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT7 |
17564                 PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT6 |
17565                 PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT5));
17566     }
17567 
17568     ecore_init_block(sc, BLOCK_NIG, PHASE_COMMON);
17569 
17570     if (!CHIP_IS_E1(sc)) {
17571         /* in E3 this done in per-port section */
17572         if (!CHIP_IS_E3(sc))
17573             REG_WR(sc, NIG_REG_LLH_MF_MODE, IS_MF(sc));
17574     }
17575 
17576     if (CHIP_IS_E1H(sc)) {
17577         /* not applicable for E2 (and above ...) */
17578         REG_WR(sc, NIG_REG_LLH_E1HOV_MODE, IS_MF_SD(sc));
17579     }
17580 
17581     if (CHIP_REV_IS_SLOW(sc)) {
17582         DELAY(200000);
17583     }
17584 
17585     /* finish CFC init */
17586     val = reg_poll(sc, CFC_REG_LL_INIT_DONE, 1, 100, 10);
17587     if (val != 1) {
17588         BLOGE(sc, "CFC LL_INIT failed\n");
17589         return (-1);
17590     }
17591     val = reg_poll(sc, CFC_REG_AC_INIT_DONE, 1, 100, 10);
17592     if (val != 1) {
17593         BLOGE(sc, "CFC AC_INIT failed\n");
17594         return (-1);
17595     }
17596     val = reg_poll(sc, CFC_REG_CAM_INIT_DONE, 1, 100, 10);
17597     if (val != 1) {
17598         BLOGE(sc, "CFC CAM_INIT failed\n");
17599         return (-1);
17600     }
17601     REG_WR(sc, CFC_REG_DEBUG0, 0);
17602 
17603     if (CHIP_IS_E1(sc)) {
17604         /* read NIG statistic to see if this is our first up since powerup */
17605         bxe_read_dmae(sc, NIG_REG_STAT2_BRB_OCTET, 2);
17606         val = *BXE_SP(sc, wb_data[0]);
17607 
17608         /* do internal memory self test */
17609         if ((val == 0) && bxe_int_mem_test(sc)) {
17610             BLOGE(sc, "internal mem self test failed\n");
17611             return (-1);
17612         }
17613     }
17614 
17615     bxe_setup_fan_failure_detection(sc);
17616 
17617     /* clear PXP2 attentions */
17618     REG_RD(sc, PXP2_REG_PXP2_INT_STS_CLR_0);
17619 
17620     bxe_enable_blocks_attention(sc);
17621 
17622     if (!CHIP_REV_IS_SLOW(sc)) {
17623         ecore_enable_blocks_parity(sc);
17624     }
17625 
17626     if (!BXE_NOMCP(sc)) {
17627         if (CHIP_IS_E1x(sc)) {
17628             bxe_common_init_phy(sc);
17629         }
17630     }
17631 
17632     return (0);
17633 }
17634 
17635 /**
17636  * bxe_init_hw_common_chip - init HW at the COMMON_CHIP phase.
17637  *
17638  * @sc:     driver handle
17639  */
17640 static int
17641 bxe_init_hw_common_chip(struct bxe_softc *sc)
17642 {
17643     int rc = bxe_init_hw_common(sc);
17644 
17645     if (rc) {
17646         return (rc);
17647     }
17648 
17649     /* In E2 2-PORT mode, same ext phy is used for the two paths */
17650     if (!BXE_NOMCP(sc)) {
17651         bxe_common_init_phy(sc);
17652     }
17653 
17654     return (0);
17655 }
17656 
17657 static int
17658 bxe_init_hw_port(struct bxe_softc *sc)
17659 {
17660     int port = SC_PORT(sc);
17661     int init_phase = port ? PHASE_PORT1 : PHASE_PORT0;
17662     uint32_t low, high;
17663     uint32_t val;
17664 
17665     BLOGD(sc, DBG_LOAD, "starting port init for port %d\n", port);
17666 
17667     REG_WR(sc, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0);
17668 
17669     ecore_init_block(sc, BLOCK_MISC, init_phase);
17670     ecore_init_block(sc, BLOCK_PXP, init_phase);
17671     ecore_init_block(sc, BLOCK_PXP2, init_phase);
17672 
17673     /*
17674      * Timers bug workaround: disables the pf_master bit in pglue at
17675      * common phase, we need to enable it here before any dmae access are
17676      * attempted. Therefore we manually added the enable-master to the
17677      * port phase (it also happens in the function phase)
17678      */
17679     if (!CHIP_IS_E1x(sc)) {
17680         REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
17681     }
17682 
17683     ecore_init_block(sc, BLOCK_ATC, init_phase);
17684     ecore_init_block(sc, BLOCK_DMAE, init_phase);
17685     ecore_init_block(sc, BLOCK_PGLUE_B, init_phase);
17686     ecore_init_block(sc, BLOCK_QM, init_phase);
17687 
17688     ecore_init_block(sc, BLOCK_TCM, init_phase);
17689     ecore_init_block(sc, BLOCK_UCM, init_phase);
17690     ecore_init_block(sc, BLOCK_CCM, init_phase);
17691     ecore_init_block(sc, BLOCK_XCM, init_phase);
17692 
17693     /* QM cid (connection) count */
17694     ecore_qm_init_cid_count(sc, sc->qm_cid_count, INITOP_SET);
17695 
17696     if (CNIC_SUPPORT(sc)) {
17697         ecore_init_block(sc, BLOCK_TM, init_phase);
17698         REG_WR(sc, TM_REG_LIN0_SCAN_TIME + port*4, 20);
17699         REG_WR(sc, TM_REG_LIN0_MAX_ACTIVE_CID + port*4, 31);
17700     }
17701 
17702     ecore_init_block(sc, BLOCK_DORQ, init_phase);
17703 
17704     ecore_init_block(sc, BLOCK_BRB1, init_phase);
17705 
17706     if (CHIP_IS_E1(sc) || CHIP_IS_E1H(sc)) {
17707         if (IS_MF(sc)) {
17708             low = (BXE_ONE_PORT(sc) ? 160 : 246);
17709         } else if (sc->mtu > 4096) {
17710             if (BXE_ONE_PORT(sc)) {
17711                 low = 160;
17712             } else {
17713                 val = sc->mtu;
17714                 /* (24*1024 + val*4)/256 */
17715                 low = (96 + (val / 64) + ((val % 64) ? 1 : 0));
17716             }
17717         } else {
17718             low = (BXE_ONE_PORT(sc) ? 80 : 160);
17719         }
17720         high = (low + 56); /* 14*1024/256 */
17721         REG_WR(sc, BRB1_REG_PAUSE_LOW_THRESHOLD_0 + port*4, low);
17722         REG_WR(sc, BRB1_REG_PAUSE_HIGH_THRESHOLD_0 + port*4, high);
17723     }
17724 
17725     if (CHIP_IS_MODE_4_PORT(sc)) {
17726         REG_WR(sc, SC_PORT(sc) ?
17727                BRB1_REG_MAC_GUARANTIED_1 :
17728                BRB1_REG_MAC_GUARANTIED_0, 40);
17729     }
17730 
17731     ecore_init_block(sc, BLOCK_PRS, init_phase);
17732     if (CHIP_IS_E3B0(sc)) {
17733         if (IS_MF_AFEX(sc)) {
17734             /* configure headers for AFEX mode */
17735             REG_WR(sc, SC_PORT(sc) ?
17736                    PRS_REG_HDRS_AFTER_BASIC_PORT_1 :
17737                    PRS_REG_HDRS_AFTER_BASIC_PORT_0, 0xE);
17738             REG_WR(sc, SC_PORT(sc) ?
17739                    PRS_REG_HDRS_AFTER_TAG_0_PORT_1 :
17740                    PRS_REG_HDRS_AFTER_TAG_0_PORT_0, 0x6);
17741             REG_WR(sc, SC_PORT(sc) ?
17742                    PRS_REG_MUST_HAVE_HDRS_PORT_1 :
17743                    PRS_REG_MUST_HAVE_HDRS_PORT_0, 0xA);
17744         } else {
17745             /* Ovlan exists only if we are in multi-function +
17746              * switch-dependent mode, in switch-independent there
17747              * is no ovlan headers
17748              */
17749             REG_WR(sc, SC_PORT(sc) ?
17750                    PRS_REG_HDRS_AFTER_BASIC_PORT_1 :
17751                    PRS_REG_HDRS_AFTER_BASIC_PORT_0,
17752                    (sc->devinfo.mf_info.path_has_ovlan ? 7 : 6));
17753         }
17754     }
17755 
17756     ecore_init_block(sc, BLOCK_TSDM, init_phase);
17757     ecore_init_block(sc, BLOCK_CSDM, init_phase);
17758     ecore_init_block(sc, BLOCK_USDM, init_phase);
17759     ecore_init_block(sc, BLOCK_XSDM, init_phase);
17760 
17761     ecore_init_block(sc, BLOCK_TSEM, init_phase);
17762     ecore_init_block(sc, BLOCK_USEM, init_phase);
17763     ecore_init_block(sc, BLOCK_CSEM, init_phase);
17764     ecore_init_block(sc, BLOCK_XSEM, init_phase);
17765 
17766     ecore_init_block(sc, BLOCK_UPB, init_phase);
17767     ecore_init_block(sc, BLOCK_XPB, init_phase);
17768 
17769     ecore_init_block(sc, BLOCK_PBF, init_phase);
17770 
17771     if (CHIP_IS_E1x(sc)) {
17772         /* configure PBF to work without PAUSE mtu 9000 */
17773         REG_WR(sc, PBF_REG_P0_PAUSE_ENABLE + port*4, 0);
17774 
17775         /* update threshold */
17776         REG_WR(sc, PBF_REG_P0_ARB_THRSH + port*4, (9040/16));
17777         /* update init credit */
17778         REG_WR(sc, PBF_REG_P0_INIT_CRD + port*4, (9040/16) + 553 - 22);
17779 
17780         /* probe changes */
17781         REG_WR(sc, PBF_REG_INIT_P0 + port*4, 1);
17782         DELAY(50);
17783         REG_WR(sc, PBF_REG_INIT_P0 + port*4, 0);
17784     }
17785 
17786     if (CNIC_SUPPORT(sc)) {
17787         ecore_init_block(sc, BLOCK_SRC, init_phase);
17788     }
17789 
17790     ecore_init_block(sc, BLOCK_CDU, init_phase);
17791     ecore_init_block(sc, BLOCK_CFC, init_phase);
17792 
17793     if (CHIP_IS_E1(sc)) {
17794         REG_WR(sc, HC_REG_LEADING_EDGE_0 + port*8, 0);
17795         REG_WR(sc, HC_REG_TRAILING_EDGE_0 + port*8, 0);
17796     }
17797     ecore_init_block(sc, BLOCK_HC, init_phase);
17798 
17799     ecore_init_block(sc, BLOCK_IGU, init_phase);
17800 
17801     ecore_init_block(sc, BLOCK_MISC_AEU, init_phase);
17802     /* init aeu_mask_attn_func_0/1:
17803      *  - SF mode: bits 3-7 are masked. only bits 0-2 are in use
17804      *  - MF mode: bit 3 is masked. bits 0-2 are in use as in SF
17805      *             bits 4-7 are used for "per vn group attention" */
17806     val = IS_MF(sc) ? 0xF7 : 0x7;
17807     /* Enable DCBX attention for all but E1 */
17808     val |= CHIP_IS_E1(sc) ? 0 : 0x10;
17809     REG_WR(sc, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, val);
17810 
17811     ecore_init_block(sc, BLOCK_NIG, init_phase);
17812 
17813     if (!CHIP_IS_E1x(sc)) {
17814         /* Bit-map indicating which L2 hdrs may appear after the
17815          * basic Ethernet header
17816          */
17817         if (IS_MF_AFEX(sc)) {
17818             REG_WR(sc, SC_PORT(sc) ?
17819                    NIG_REG_P1_HDRS_AFTER_BASIC :
17820                    NIG_REG_P0_HDRS_AFTER_BASIC, 0xE);
17821         } else {
17822             REG_WR(sc, SC_PORT(sc) ?
17823                    NIG_REG_P1_HDRS_AFTER_BASIC :
17824                    NIG_REG_P0_HDRS_AFTER_BASIC,
17825                    IS_MF_SD(sc) ? 7 : 6);
17826         }
17827 
17828         if (CHIP_IS_E3(sc)) {
17829             REG_WR(sc, SC_PORT(sc) ?
17830                    NIG_REG_LLH1_MF_MODE :
17831                    NIG_REG_LLH_MF_MODE, IS_MF(sc));
17832         }
17833     }
17834     if (!CHIP_IS_E3(sc)) {
17835         REG_WR(sc, NIG_REG_XGXS_SERDES0_MODE_SEL + port*4, 1);
17836     }
17837 
17838     if (!CHIP_IS_E1(sc)) {
17839         /* 0x2 disable mf_ov, 0x1 enable */
17840         REG_WR(sc, NIG_REG_LLH0_BRB1_DRV_MASK_MF + port*4,
17841                (IS_MF_SD(sc) ? 0x1 : 0x2));
17842 
17843         if (!CHIP_IS_E1x(sc)) {
17844             val = 0;
17845             switch (sc->devinfo.mf_info.mf_mode) {
17846             case MULTI_FUNCTION_SD:
17847                 val = 1;
17848                 break;
17849             case MULTI_FUNCTION_SI:
17850             case MULTI_FUNCTION_AFEX:
17851                 val = 2;
17852                 break;
17853             }
17854 
17855             REG_WR(sc, (SC_PORT(sc) ? NIG_REG_LLH1_CLS_TYPE :
17856                         NIG_REG_LLH0_CLS_TYPE), val);
17857         }
17858         REG_WR(sc, NIG_REG_LLFC_ENABLE_0 + port*4, 0);
17859         REG_WR(sc, NIG_REG_LLFC_OUT_EN_0 + port*4, 0);
17860         REG_WR(sc, NIG_REG_PAUSE_ENABLE_0 + port*4, 1);
17861     }
17862 
17863     /* If SPIO5 is set to generate interrupts, enable it for this port */
17864     val = REG_RD(sc, MISC_REG_SPIO_EVENT_EN);
17865     if (val & MISC_SPIO_SPIO5) {
17866         uint32_t reg_addr = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
17867                                     MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
17868         val = REG_RD(sc, reg_addr);
17869         val |= AEU_INPUTS_ATTN_BITS_SPIO5;
17870         REG_WR(sc, reg_addr, val);
17871     }
17872 
17873     return (0);
17874 }
17875 
17876 static uint32_t
17877 bxe_flr_clnup_reg_poll(struct bxe_softc *sc,
17878                        uint32_t         reg,
17879                        uint32_t         expected,
17880                        uint32_t         poll_count)
17881 {
17882     uint32_t cur_cnt = poll_count;
17883     uint32_t val;
17884 
17885     while ((val = REG_RD(sc, reg)) != expected && cur_cnt--) {
17886         DELAY(FLR_WAIT_INTERVAL);
17887     }
17888 
17889     return (val);
17890 }
17891 
17892 static int
17893 bxe_flr_clnup_poll_hw_counter(struct bxe_softc *sc,
17894                               uint32_t         reg,
17895                               char             *msg,
17896                               uint32_t         poll_cnt)
17897 {
17898     uint32_t val = bxe_flr_clnup_reg_poll(sc, reg, 0, poll_cnt);
17899 
17900     if (val != 0) {
17901         BLOGE(sc, "%s usage count=%d\n", msg, val);
17902         return (1);
17903     }
17904 
17905     return (0);
17906 }
17907 
17908 /* Common routines with VF FLR cleanup */
17909 static uint32_t
17910 bxe_flr_clnup_poll_count(struct bxe_softc *sc)
17911 {
17912     /* adjust polling timeout */
17913     if (CHIP_REV_IS_EMUL(sc)) {
17914         return (FLR_POLL_CNT * 2000);
17915     }
17916 
17917     if (CHIP_REV_IS_FPGA(sc)) {
17918         return (FLR_POLL_CNT * 120);
17919     }
17920 
17921     return (FLR_POLL_CNT);
17922 }
17923 
17924 static int
17925 bxe_poll_hw_usage_counters(struct bxe_softc *sc,
17926                            uint32_t         poll_cnt)
17927 {
17928     /* wait for CFC PF usage-counter to zero (includes all the VFs) */
17929     if (bxe_flr_clnup_poll_hw_counter(sc,
17930                                       CFC_REG_NUM_LCIDS_INSIDE_PF,
17931                                       "CFC PF usage counter timed out",
17932                                       poll_cnt)) {
17933         return (1);
17934     }
17935 
17936     /* Wait for DQ PF usage-counter to zero (until DQ cleanup) */
17937     if (bxe_flr_clnup_poll_hw_counter(sc,
17938                                       DORQ_REG_PF_USAGE_CNT,
17939                                       "DQ PF usage counter timed out",
17940                                       poll_cnt)) {
17941         return (1);
17942     }
17943 
17944     /* Wait for QM PF usage-counter to zero (until DQ cleanup) */
17945     if (bxe_flr_clnup_poll_hw_counter(sc,
17946                                       QM_REG_PF_USG_CNT_0 + 4*SC_FUNC(sc),
17947                                       "QM PF usage counter timed out",
17948                                       poll_cnt)) {
17949         return (1);
17950     }
17951 
17952     /* Wait for Timer PF usage-counters to zero (until DQ cleanup) */
17953     if (bxe_flr_clnup_poll_hw_counter(sc,
17954                                       TM_REG_LIN0_VNIC_UC + 4*SC_PORT(sc),
17955                                       "Timers VNIC usage counter timed out",
17956                                       poll_cnt)) {
17957         return (1);
17958     }
17959 
17960     if (bxe_flr_clnup_poll_hw_counter(sc,
17961                                       TM_REG_LIN0_NUM_SCANS + 4*SC_PORT(sc),
17962                                       "Timers NUM_SCANS usage counter timed out",
17963                                       poll_cnt)) {
17964         return (1);
17965     }
17966 
17967     /* Wait DMAE PF usage counter to zero */
17968     if (bxe_flr_clnup_poll_hw_counter(sc,
17969                                       dmae_reg_go_c[INIT_DMAE_C(sc)],
17970                                       "DMAE dommand register timed out",
17971                                       poll_cnt)) {
17972         return (1);
17973     }
17974 
17975     return (0);
17976 }
17977 
17978 #define OP_GEN_PARAM(param)                                            \
17979     (((param) << SDM_OP_GEN_COMP_PARAM_SHIFT) & SDM_OP_GEN_COMP_PARAM)
17980 #define OP_GEN_TYPE(type)                                           \
17981     (((type) << SDM_OP_GEN_COMP_TYPE_SHIFT) & SDM_OP_GEN_COMP_TYPE)
17982 #define OP_GEN_AGG_VECT(index)                                             \
17983     (((index) << SDM_OP_GEN_AGG_VECT_IDX_SHIFT) & SDM_OP_GEN_AGG_VECT_IDX)
17984 
17985 static int
17986 bxe_send_final_clnup(struct bxe_softc *sc,
17987                      uint8_t          clnup_func,
17988                      uint32_t         poll_cnt)
17989 {
17990     uint32_t op_gen_command = 0;
17991     uint32_t comp_addr = (BAR_CSTRORM_INTMEM +
17992                           CSTORM_FINAL_CLEANUP_COMPLETE_OFFSET(clnup_func));
17993     int ret = 0;
17994 
17995     if (REG_RD(sc, comp_addr)) {
17996         BLOGE(sc, "Cleanup complete was not 0 before sending\n");
17997         return (1);
17998     }
17999 
18000     op_gen_command |= OP_GEN_PARAM(XSTORM_AGG_INT_FINAL_CLEANUP_INDEX);
18001     op_gen_command |= OP_GEN_TYPE(XSTORM_AGG_INT_FINAL_CLEANUP_COMP_TYPE);
18002     op_gen_command |= OP_GEN_AGG_VECT(clnup_func);
18003     op_gen_command |= 1 << SDM_OP_GEN_AGG_VECT_IDX_VALID_SHIFT;
18004 
18005     BLOGD(sc, DBG_LOAD, "sending FW Final cleanup\n");
18006     REG_WR(sc, XSDM_REG_OPERATION_GEN, op_gen_command);
18007 
18008     if (bxe_flr_clnup_reg_poll(sc, comp_addr, 1, poll_cnt) != 1) {
18009         BLOGE(sc, "FW final cleanup did not succeed\n");
18010         BLOGD(sc, DBG_LOAD, "At timeout completion address contained %x\n",
18011               (REG_RD(sc, comp_addr)));
18012         bxe_panic(sc, ("FLR cleanup failed\n"));
18013         return (1);
18014     }
18015 
18016     /* Zero completion for nxt FLR */
18017     REG_WR(sc, comp_addr, 0);
18018 
18019     return (ret);
18020 }
18021 
18022 static void
18023 bxe_pbf_pN_buf_flushed(struct bxe_softc       *sc,
18024                        struct pbf_pN_buf_regs *regs,
18025                        uint32_t               poll_count)
18026 {
18027     uint32_t init_crd, crd, crd_start, crd_freed, crd_freed_start;
18028     uint32_t cur_cnt = poll_count;
18029 
18030     crd_freed = crd_freed_start = REG_RD(sc, regs->crd_freed);
18031     crd = crd_start = REG_RD(sc, regs->crd);
18032     init_crd = REG_RD(sc, regs->init_crd);
18033 
18034     BLOGD(sc, DBG_LOAD, "INIT CREDIT[%d] : %x\n", regs->pN, init_crd);
18035     BLOGD(sc, DBG_LOAD, "CREDIT[%d]      : s:%x\n", regs->pN, crd);
18036     BLOGD(sc, DBG_LOAD, "CREDIT_FREED[%d]: s:%x\n", regs->pN, crd_freed);
18037 
18038     while ((crd != init_crd) &&
18039            ((uint32_t)((int32_t)crd_freed - (int32_t)crd_freed_start) <
18040             (init_crd - crd_start))) {
18041         if (cur_cnt--) {
18042             DELAY(FLR_WAIT_INTERVAL);
18043             crd = REG_RD(sc, regs->crd);
18044             crd_freed = REG_RD(sc, regs->crd_freed);
18045         } else {
18046             BLOGD(sc, DBG_LOAD, "PBF tx buffer[%d] timed out\n", regs->pN);
18047             BLOGD(sc, DBG_LOAD, "CREDIT[%d]      : c:%x\n", regs->pN, crd);
18048             BLOGD(sc, DBG_LOAD, "CREDIT_FREED[%d]: c:%x\n", regs->pN, crd_freed);
18049             break;
18050         }
18051     }
18052 
18053     BLOGD(sc, DBG_LOAD, "Waited %d*%d usec for PBF tx buffer[%d]\n",
18054           poll_count-cur_cnt, FLR_WAIT_INTERVAL, regs->pN);
18055 }
18056 
18057 static void
18058 bxe_pbf_pN_cmd_flushed(struct bxe_softc       *sc,
18059                        struct pbf_pN_cmd_regs *regs,
18060                        uint32_t               poll_count)
18061 {
18062     uint32_t occup, to_free, freed, freed_start;
18063     uint32_t cur_cnt = poll_count;
18064 
18065     occup = to_free = REG_RD(sc, regs->lines_occup);
18066     freed = freed_start = REG_RD(sc, regs->lines_freed);
18067 
18068     BLOGD(sc, DBG_LOAD, "OCCUPANCY[%d]   : s:%x\n", regs->pN, occup);
18069     BLOGD(sc, DBG_LOAD, "LINES_FREED[%d] : s:%x\n", regs->pN, freed);
18070 
18071     while (occup &&
18072            ((uint32_t)((int32_t)freed - (int32_t)freed_start) < to_free)) {
18073         if (cur_cnt--) {
18074             DELAY(FLR_WAIT_INTERVAL);
18075             occup = REG_RD(sc, regs->lines_occup);
18076             freed = REG_RD(sc, regs->lines_freed);
18077         } else {
18078             BLOGD(sc, DBG_LOAD, "PBF cmd queue[%d] timed out\n", regs->pN);
18079             BLOGD(sc, DBG_LOAD, "OCCUPANCY[%d]   : s:%x\n", regs->pN, occup);
18080             BLOGD(sc, DBG_LOAD, "LINES_FREED[%d] : s:%x\n", regs->pN, freed);
18081             break;
18082         }
18083     }
18084 
18085     BLOGD(sc, DBG_LOAD, "Waited %d*%d usec for PBF cmd queue[%d]\n",
18086           poll_count - cur_cnt, FLR_WAIT_INTERVAL, regs->pN);
18087 }
18088 
18089 static void
18090 bxe_tx_hw_flushed(struct bxe_softc *sc, uint32_t poll_count)
18091 {
18092     struct pbf_pN_cmd_regs cmd_regs[] = {
18093         {0, (CHIP_IS_E3B0(sc)) ?
18094             PBF_REG_TQ_OCCUPANCY_Q0 :
18095             PBF_REG_P0_TQ_OCCUPANCY,
18096             (CHIP_IS_E3B0(sc)) ?
18097             PBF_REG_TQ_LINES_FREED_CNT_Q0 :
18098             PBF_REG_P0_TQ_LINES_FREED_CNT},
18099         {1, (CHIP_IS_E3B0(sc)) ?
18100             PBF_REG_TQ_OCCUPANCY_Q1 :
18101             PBF_REG_P1_TQ_OCCUPANCY,
18102             (CHIP_IS_E3B0(sc)) ?
18103             PBF_REG_TQ_LINES_FREED_CNT_Q1 :
18104             PBF_REG_P1_TQ_LINES_FREED_CNT},
18105         {4, (CHIP_IS_E3B0(sc)) ?
18106             PBF_REG_TQ_OCCUPANCY_LB_Q :
18107             PBF_REG_P4_TQ_OCCUPANCY,
18108             (CHIP_IS_E3B0(sc)) ?
18109             PBF_REG_TQ_LINES_FREED_CNT_LB_Q :
18110             PBF_REG_P4_TQ_LINES_FREED_CNT}
18111     };
18112 
18113     struct pbf_pN_buf_regs buf_regs[] = {
18114         {0, (CHIP_IS_E3B0(sc)) ?
18115             PBF_REG_INIT_CRD_Q0 :
18116             PBF_REG_P0_INIT_CRD ,
18117             (CHIP_IS_E3B0(sc)) ?
18118             PBF_REG_CREDIT_Q0 :
18119             PBF_REG_P0_CREDIT,
18120             (CHIP_IS_E3B0(sc)) ?
18121             PBF_REG_INTERNAL_CRD_FREED_CNT_Q0 :
18122             PBF_REG_P0_INTERNAL_CRD_FREED_CNT},
18123         {1, (CHIP_IS_E3B0(sc)) ?
18124             PBF_REG_INIT_CRD_Q1 :
18125             PBF_REG_P1_INIT_CRD,
18126             (CHIP_IS_E3B0(sc)) ?
18127             PBF_REG_CREDIT_Q1 :
18128             PBF_REG_P1_CREDIT,
18129             (CHIP_IS_E3B0(sc)) ?
18130             PBF_REG_INTERNAL_CRD_FREED_CNT_Q1 :
18131             PBF_REG_P1_INTERNAL_CRD_FREED_CNT},
18132         {4, (CHIP_IS_E3B0(sc)) ?
18133             PBF_REG_INIT_CRD_LB_Q :
18134             PBF_REG_P4_INIT_CRD,
18135             (CHIP_IS_E3B0(sc)) ?
18136             PBF_REG_CREDIT_LB_Q :
18137             PBF_REG_P4_CREDIT,
18138             (CHIP_IS_E3B0(sc)) ?
18139             PBF_REG_INTERNAL_CRD_FREED_CNT_LB_Q :
18140             PBF_REG_P4_INTERNAL_CRD_FREED_CNT},
18141     };
18142 
18143     int i;
18144 
18145     /* Verify the command queues are flushed P0, P1, P4 */
18146     for (i = 0; i < ARRAY_SIZE(cmd_regs); i++) {
18147         bxe_pbf_pN_cmd_flushed(sc, &cmd_regs[i], poll_count);
18148     }
18149 
18150     /* Verify the transmission buffers are flushed P0, P1, P4 */
18151     for (i = 0; i < ARRAY_SIZE(buf_regs); i++) {
18152         bxe_pbf_pN_buf_flushed(sc, &buf_regs[i], poll_count);
18153     }
18154 }
18155 
18156 static void
18157 bxe_hw_enable_status(struct bxe_softc *sc)
18158 {
18159     uint32_t val;
18160 
18161     val = REG_RD(sc, CFC_REG_WEAK_ENABLE_PF);
18162     BLOGD(sc, DBG_LOAD, "CFC_REG_WEAK_ENABLE_PF is 0x%x\n", val);
18163 
18164     val = REG_RD(sc, PBF_REG_DISABLE_PF);
18165     BLOGD(sc, DBG_LOAD, "PBF_REG_DISABLE_PF is 0x%x\n", val);
18166 
18167     val = REG_RD(sc, IGU_REG_PCI_PF_MSI_EN);
18168     BLOGD(sc, DBG_LOAD, "IGU_REG_PCI_PF_MSI_EN is 0x%x\n", val);
18169 
18170     val = REG_RD(sc, IGU_REG_PCI_PF_MSIX_EN);
18171     BLOGD(sc, DBG_LOAD, "IGU_REG_PCI_PF_MSIX_EN is 0x%x\n", val);
18172 
18173     val = REG_RD(sc, IGU_REG_PCI_PF_MSIX_FUNC_MASK);
18174     BLOGD(sc, DBG_LOAD, "IGU_REG_PCI_PF_MSIX_FUNC_MASK is 0x%x\n", val);
18175 
18176     val = REG_RD(sc, PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR);
18177     BLOGD(sc, DBG_LOAD, "PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR is 0x%x\n", val);
18178 
18179     val = REG_RD(sc, PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR);
18180     BLOGD(sc, DBG_LOAD, "PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR is 0x%x\n", val);
18181 
18182     val = REG_RD(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER);
18183     BLOGD(sc, DBG_LOAD, "PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER is 0x%x\n", val);
18184 }
18185 
18186 static int
18187 bxe_pf_flr_clnup(struct bxe_softc *sc)
18188 {
18189     uint32_t poll_cnt = bxe_flr_clnup_poll_count(sc);
18190 
18191     BLOGD(sc, DBG_LOAD, "Cleanup after FLR PF[%d]\n", SC_ABS_FUNC(sc));
18192 
18193     /* Re-enable PF target read access */
18194     REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
18195 
18196     /* Poll HW usage counters */
18197     BLOGD(sc, DBG_LOAD, "Polling usage counters\n");
18198     if (bxe_poll_hw_usage_counters(sc, poll_cnt)) {
18199         return (-1);
18200     }
18201 
18202     /* Zero the igu 'trailing edge' and 'leading edge' */
18203 
18204     /* Send the FW cleanup command */
18205     if (bxe_send_final_clnup(sc, (uint8_t)SC_FUNC(sc), poll_cnt)) {
18206         return (-1);
18207     }
18208 
18209     /* ATC cleanup */
18210 
18211     /* Verify TX hw is flushed */
18212     bxe_tx_hw_flushed(sc, poll_cnt);
18213 
18214     /* Wait 100ms (not adjusted according to platform) */
18215     DELAY(100000);
18216 
18217     /* Verify no pending pci transactions */
18218     if (bxe_is_pcie_pending(sc)) {
18219         BLOGE(sc, "PCIE Transactions still pending\n");
18220     }
18221 
18222     /* Debug */
18223     bxe_hw_enable_status(sc);
18224 
18225     /*
18226      * Master enable - Due to WB DMAE writes performed before this
18227      * register is re-initialized as part of the regular function init
18228      */
18229     REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
18230 
18231     return (0);
18232 }
18233 
18234 #if 0
18235 static void
18236 bxe_init_searcher(struct bxe_softc *sc)
18237 {
18238     int port = SC_PORT(sc);
18239     ecore_src_init_t2(sc, sc->t2, sc->t2_mapping, SRC_CONN_NUM);
18240     /* T1 hash bits value determines the T1 number of entries */
18241     REG_WR(sc, SRC_REG_NUMBER_HASH_BITS0 + port*4, SRC_HASH_BITS);
18242 }
18243 #endif
18244 
18245 static int
18246 bxe_init_hw_func(struct bxe_softc *sc)
18247 {
18248     int port = SC_PORT(sc);
18249     int func = SC_FUNC(sc);
18250     int init_phase = PHASE_PF0 + func;
18251     struct ecore_ilt *ilt = sc->ilt;
18252     uint16_t cdu_ilt_start;
18253     uint32_t addr, val;
18254     uint32_t main_mem_base, main_mem_size, main_mem_prty_clr;
18255     int i, main_mem_width, rc;
18256 
18257     BLOGD(sc, DBG_LOAD, "starting func init for func %d\n", func);
18258 
18259     /* FLR cleanup */
18260     if (!CHIP_IS_E1x(sc)) {
18261         rc = bxe_pf_flr_clnup(sc);
18262         if (rc) {
18263             BLOGE(sc, "FLR cleanup failed!\n");
18264             // XXX bxe_fw_dump(sc);
18265             // XXX bxe_idle_chk(sc);
18266             return (rc);
18267         }
18268     }
18269 
18270     /* set MSI reconfigure capability */
18271     if (sc->devinfo.int_block == INT_BLOCK_HC) {
18272         addr = (port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0);
18273         val = REG_RD(sc, addr);
18274         val |= HC_CONFIG_0_REG_MSI_ATTN_EN_0;
18275         REG_WR(sc, addr, val);
18276     }
18277 
18278     ecore_init_block(sc, BLOCK_PXP, init_phase);
18279     ecore_init_block(sc, BLOCK_PXP2, init_phase);
18280 
18281     ilt = sc->ilt;
18282     cdu_ilt_start = ilt->clients[ILT_CLIENT_CDU].start;
18283 
18284 #if 0
18285     if (IS_SRIOV(sc)) {
18286         cdu_ilt_start += BXE_FIRST_VF_CID/ILT_PAGE_CIDS;
18287     }
18288     cdu_ilt_start = bxe_iov_init_ilt(sc, cdu_ilt_start);
18289 
18290 #if (BXE_FIRST_VF_CID > 0)
18291     /*
18292      * If BXE_FIRST_VF_CID > 0 then the PF L2 cids precedes
18293      * those of the VFs, so start line should be reset
18294      */
18295     cdu_ilt_start = ilt->clients[ILT_CLIENT_CDU].start;
18296 #endif
18297 #endif
18298 
18299     for (i = 0; i < L2_ILT_LINES(sc); i++) {
18300         ilt->lines[cdu_ilt_start + i].page = sc->context[i].vcxt;
18301         ilt->lines[cdu_ilt_start + i].page_mapping =
18302             sc->context[i].vcxt_dma.paddr;
18303         ilt->lines[cdu_ilt_start + i].size = sc->context[i].size;
18304     }
18305     ecore_ilt_init_op(sc, INITOP_SET);
18306 
18307 #if 0
18308     if (!CONFIGURE_NIC_MODE(sc)) {
18309         bxe_init_searcher(sc);
18310         REG_WR(sc, PRS_REG_NIC_MODE, 0);
18311         BLOGD(sc, DBG_LOAD, "NIC MODE disabled\n");
18312     } else
18313 #endif
18314     {
18315         /* Set NIC mode */
18316         REG_WR(sc, PRS_REG_NIC_MODE, 1);
18317         BLOGD(sc, DBG_LOAD, "NIC MODE configured\n");
18318     }
18319 
18320     if (!CHIP_IS_E1x(sc)) {
18321         uint32_t pf_conf = IGU_PF_CONF_FUNC_EN;
18322 
18323         /* Turn on a single ISR mode in IGU if driver is going to use
18324          * INT#x or MSI
18325          */
18326         if (sc->interrupt_mode != INTR_MODE_MSIX) {
18327             pf_conf |= IGU_PF_CONF_SINGLE_ISR_EN;
18328         }
18329 
18330         /*
18331          * Timers workaround bug: function init part.
18332          * Need to wait 20msec after initializing ILT,
18333          * needed to make sure there are no requests in
18334          * one of the PXP internal queues with "old" ILT addresses
18335          */
18336         DELAY(20000);
18337 
18338         /*
18339          * Master enable - Due to WB DMAE writes performed before this
18340          * register is re-initialized as part of the regular function
18341          * init
18342          */
18343         REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
18344         /* Enable the function in IGU */
18345         REG_WR(sc, IGU_REG_PF_CONFIGURATION, pf_conf);
18346     }
18347 
18348     sc->dmae_ready = 1;
18349 
18350     ecore_init_block(sc, BLOCK_PGLUE_B, init_phase);
18351 
18352     if (!CHIP_IS_E1x(sc))
18353         REG_WR(sc, PGLUE_B_REG_WAS_ERROR_PF_7_0_CLR, func);
18354 
18355     ecore_init_block(sc, BLOCK_ATC, init_phase);
18356     ecore_init_block(sc, BLOCK_DMAE, init_phase);
18357     ecore_init_block(sc, BLOCK_NIG, init_phase);
18358     ecore_init_block(sc, BLOCK_SRC, init_phase);
18359     ecore_init_block(sc, BLOCK_MISC, init_phase);
18360     ecore_init_block(sc, BLOCK_TCM, init_phase);
18361     ecore_init_block(sc, BLOCK_UCM, init_phase);
18362     ecore_init_block(sc, BLOCK_CCM, init_phase);
18363     ecore_init_block(sc, BLOCK_XCM, init_phase);
18364     ecore_init_block(sc, BLOCK_TSEM, init_phase);
18365     ecore_init_block(sc, BLOCK_USEM, init_phase);
18366     ecore_init_block(sc, BLOCK_CSEM, init_phase);
18367     ecore_init_block(sc, BLOCK_XSEM, init_phase);
18368 
18369     if (!CHIP_IS_E1x(sc))
18370         REG_WR(sc, QM_REG_PF_EN, 1);
18371 
18372     if (!CHIP_IS_E1x(sc)) {
18373         REG_WR(sc, TSEM_REG_VFPF_ERR_NUM, BXE_MAX_NUM_OF_VFS + func);
18374         REG_WR(sc, USEM_REG_VFPF_ERR_NUM, BXE_MAX_NUM_OF_VFS + func);
18375         REG_WR(sc, CSEM_REG_VFPF_ERR_NUM, BXE_MAX_NUM_OF_VFS + func);
18376         REG_WR(sc, XSEM_REG_VFPF_ERR_NUM, BXE_MAX_NUM_OF_VFS + func);
18377     }
18378     ecore_init_block(sc, BLOCK_QM, init_phase);
18379 
18380     ecore_init_block(sc, BLOCK_TM, init_phase);
18381     ecore_init_block(sc, BLOCK_DORQ, init_phase);
18382 
18383     bxe_iov_init_dq(sc);
18384 
18385     ecore_init_block(sc, BLOCK_BRB1, init_phase);
18386     ecore_init_block(sc, BLOCK_PRS, init_phase);
18387     ecore_init_block(sc, BLOCK_TSDM, init_phase);
18388     ecore_init_block(sc, BLOCK_CSDM, init_phase);
18389     ecore_init_block(sc, BLOCK_USDM, init_phase);
18390     ecore_init_block(sc, BLOCK_XSDM, init_phase);
18391     ecore_init_block(sc, BLOCK_UPB, init_phase);
18392     ecore_init_block(sc, BLOCK_XPB, init_phase);
18393     ecore_init_block(sc, BLOCK_PBF, init_phase);
18394     if (!CHIP_IS_E1x(sc))
18395         REG_WR(sc, PBF_REG_DISABLE_PF, 0);
18396 
18397     ecore_init_block(sc, BLOCK_CDU, init_phase);
18398 
18399     ecore_init_block(sc, BLOCK_CFC, init_phase);
18400 
18401     if (!CHIP_IS_E1x(sc))
18402         REG_WR(sc, CFC_REG_WEAK_ENABLE_PF, 1);
18403 
18404     if (IS_MF(sc)) {
18405         REG_WR(sc, NIG_REG_LLH0_FUNC_EN + port*8, 1);
18406         REG_WR(sc, NIG_REG_LLH0_FUNC_VLAN_ID + port*8, OVLAN(sc));
18407     }
18408 
18409     ecore_init_block(sc, BLOCK_MISC_AEU, init_phase);
18410 
18411     /* HC init per function */
18412     if (sc->devinfo.int_block == INT_BLOCK_HC) {
18413         if (CHIP_IS_E1H(sc)) {
18414             REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
18415 
18416             REG_WR(sc, HC_REG_LEADING_EDGE_0 + port*8, 0);
18417             REG_WR(sc, HC_REG_TRAILING_EDGE_0 + port*8, 0);
18418         }
18419         ecore_init_block(sc, BLOCK_HC, init_phase);
18420 
18421     } else {
18422         int num_segs, sb_idx, prod_offset;
18423 
18424         REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
18425 
18426         if (!CHIP_IS_E1x(sc)) {
18427             REG_WR(sc, IGU_REG_LEADING_EDGE_LATCH, 0);
18428             REG_WR(sc, IGU_REG_TRAILING_EDGE_LATCH, 0);
18429         }
18430 
18431         ecore_init_block(sc, BLOCK_IGU, init_phase);
18432 
18433         if (!CHIP_IS_E1x(sc)) {
18434             int dsb_idx = 0;
18435             /**
18436              * Producer memory:
18437              * E2 mode: address 0-135 match to the mapping memory;
18438              * 136 - PF0 default prod; 137 - PF1 default prod;
18439              * 138 - PF2 default prod; 139 - PF3 default prod;
18440              * 140 - PF0 attn prod;    141 - PF1 attn prod;
18441              * 142 - PF2 attn prod;    143 - PF3 attn prod;
18442              * 144-147 reserved.
18443              *
18444              * E1.5 mode - In backward compatible mode;
18445              * for non default SB; each even line in the memory
18446              * holds the U producer and each odd line hold
18447              * the C producer. The first 128 producers are for
18448              * NDSB (PF0 - 0-31; PF1 - 32-63 and so on). The last 20
18449              * producers are for the DSB for each PF.
18450              * Each PF has five segments: (the order inside each
18451              * segment is PF0; PF1; PF2; PF3) - 128-131 U prods;
18452              * 132-135 C prods; 136-139 X prods; 140-143 T prods;
18453              * 144-147 attn prods;
18454              */
18455             /* non-default-status-blocks */
18456             num_segs = CHIP_INT_MODE_IS_BC(sc) ?
18457                 IGU_BC_NDSB_NUM_SEGS : IGU_NORM_NDSB_NUM_SEGS;
18458             for (sb_idx = 0; sb_idx < sc->igu_sb_cnt; sb_idx++) {
18459                 prod_offset = (sc->igu_base_sb + sb_idx) *
18460                     num_segs;
18461 
18462                 for (i = 0; i < num_segs; i++) {
18463                     addr = IGU_REG_PROD_CONS_MEMORY +
18464                             (prod_offset + i) * 4;
18465                     REG_WR(sc, addr, 0);
18466                 }
18467                 /* send consumer update with value 0 */
18468                 bxe_ack_sb(sc, sc->igu_base_sb + sb_idx,
18469                            USTORM_ID, 0, IGU_INT_NOP, 1);
18470                 bxe_igu_clear_sb(sc, sc->igu_base_sb + sb_idx);
18471             }
18472 
18473             /* default-status-blocks */
18474             num_segs = CHIP_INT_MODE_IS_BC(sc) ?
18475                 IGU_BC_DSB_NUM_SEGS : IGU_NORM_DSB_NUM_SEGS;
18476 
18477             if (CHIP_IS_MODE_4_PORT(sc))
18478                 dsb_idx = SC_FUNC(sc);
18479             else
18480                 dsb_idx = SC_VN(sc);
18481 
18482             prod_offset = (CHIP_INT_MODE_IS_BC(sc) ?
18483                        IGU_BC_BASE_DSB_PROD + dsb_idx :
18484                        IGU_NORM_BASE_DSB_PROD + dsb_idx);
18485 
18486             /*
18487              * igu prods come in chunks of E1HVN_MAX (4) -
18488              * does not matters what is the current chip mode
18489              */
18490             for (i = 0; i < (num_segs * E1HVN_MAX);
18491                  i += E1HVN_MAX) {
18492                 addr = IGU_REG_PROD_CONS_MEMORY +
18493                             (prod_offset + i)*4;
18494                 REG_WR(sc, addr, 0);
18495             }
18496             /* send consumer update with 0 */
18497             if (CHIP_INT_MODE_IS_BC(sc)) {
18498                 bxe_ack_sb(sc, sc->igu_dsb_id,
18499                            USTORM_ID, 0, IGU_INT_NOP, 1);
18500                 bxe_ack_sb(sc, sc->igu_dsb_id,
18501                            CSTORM_ID, 0, IGU_INT_NOP, 1);
18502                 bxe_ack_sb(sc, sc->igu_dsb_id,
18503                            XSTORM_ID, 0, IGU_INT_NOP, 1);
18504                 bxe_ack_sb(sc, sc->igu_dsb_id,
18505                            TSTORM_ID, 0, IGU_INT_NOP, 1);
18506                 bxe_ack_sb(sc, sc->igu_dsb_id,
18507                            ATTENTION_ID, 0, IGU_INT_NOP, 1);
18508             } else {
18509                 bxe_ack_sb(sc, sc->igu_dsb_id,
18510                            USTORM_ID, 0, IGU_INT_NOP, 1);
18511                 bxe_ack_sb(sc, sc->igu_dsb_id,
18512                            ATTENTION_ID, 0, IGU_INT_NOP, 1);
18513             }
18514             bxe_igu_clear_sb(sc, sc->igu_dsb_id);
18515 
18516             /* !!! these should become driver const once
18517                rf-tool supports split-68 const */
18518             REG_WR(sc, IGU_REG_SB_INT_BEFORE_MASK_LSB, 0);
18519             REG_WR(sc, IGU_REG_SB_INT_BEFORE_MASK_MSB, 0);
18520             REG_WR(sc, IGU_REG_SB_MASK_LSB, 0);
18521             REG_WR(sc, IGU_REG_SB_MASK_MSB, 0);
18522             REG_WR(sc, IGU_REG_PBA_STATUS_LSB, 0);
18523             REG_WR(sc, IGU_REG_PBA_STATUS_MSB, 0);
18524         }
18525     }
18526 
18527     /* Reset PCIE errors for debug */
18528     REG_WR(sc, 0x2114, 0xffffffff);
18529     REG_WR(sc, 0x2120, 0xffffffff);
18530 
18531     if (CHIP_IS_E1x(sc)) {
18532         main_mem_size = HC_REG_MAIN_MEMORY_SIZE / 2; /*dwords*/
18533         main_mem_base = HC_REG_MAIN_MEMORY +
18534                 SC_PORT(sc) * (main_mem_size * 4);
18535         main_mem_prty_clr = HC_REG_HC_PRTY_STS_CLR;
18536         main_mem_width = 8;
18537 
18538         val = REG_RD(sc, main_mem_prty_clr);
18539         if (val) {
18540             BLOGD(sc, DBG_LOAD,
18541                   "Parity errors in HC block during function init (0x%x)!\n",
18542                   val);
18543         }
18544 
18545         /* Clear "false" parity errors in MSI-X table */
18546         for (i = main_mem_base;
18547              i < main_mem_base + main_mem_size * 4;
18548              i += main_mem_width) {
18549             bxe_read_dmae(sc, i, main_mem_width / 4);
18550             bxe_write_dmae(sc, BXE_SP_MAPPING(sc, wb_data),
18551                            i, main_mem_width / 4);
18552         }
18553         /* Clear HC parity attention */
18554         REG_RD(sc, main_mem_prty_clr);
18555     }
18556 
18557 #if 1
18558     /* Enable STORMs SP logging */
18559     REG_WR8(sc, BAR_USTRORM_INTMEM +
18560            USTORM_RECORD_SLOW_PATH_OFFSET(SC_FUNC(sc)), 1);
18561     REG_WR8(sc, BAR_TSTRORM_INTMEM +
18562            TSTORM_RECORD_SLOW_PATH_OFFSET(SC_FUNC(sc)), 1);
18563     REG_WR8(sc, BAR_CSTRORM_INTMEM +
18564            CSTORM_RECORD_SLOW_PATH_OFFSET(SC_FUNC(sc)), 1);
18565     REG_WR8(sc, BAR_XSTRORM_INTMEM +
18566            XSTORM_RECORD_SLOW_PATH_OFFSET(SC_FUNC(sc)), 1);
18567 #endif
18568 
18569     elink_phy_probe(&sc->link_params);
18570 
18571     return (0);
18572 }
18573 
18574 static void
18575 bxe_link_reset(struct bxe_softc *sc)
18576 {
18577     if (!BXE_NOMCP(sc)) {
18578 	bxe_acquire_phy_lock(sc);
18579         elink_lfa_reset(&sc->link_params, &sc->link_vars);
18580 	bxe_release_phy_lock(sc);
18581     } else {
18582         if (!CHIP_REV_IS_SLOW(sc)) {
18583             BLOGW(sc, "Bootcode is missing - cannot reset link\n");
18584         }
18585     }
18586 }
18587 
18588 static void
18589 bxe_reset_port(struct bxe_softc *sc)
18590 {
18591     int port = SC_PORT(sc);
18592     uint32_t val;
18593 
18594     /* reset physical Link */
18595     bxe_link_reset(sc);
18596 
18597     REG_WR(sc, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0);
18598 
18599     /* Do not rcv packets to BRB */
18600     REG_WR(sc, NIG_REG_LLH0_BRB1_DRV_MASK + port*4, 0x0);
18601     /* Do not direct rcv packets that are not for MCP to the BRB */
18602     REG_WR(sc, (port ? NIG_REG_LLH1_BRB1_NOT_MCP :
18603                NIG_REG_LLH0_BRB1_NOT_MCP), 0x0);
18604 
18605     /* Configure AEU */
18606     REG_WR(sc, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, 0);
18607 
18608     DELAY(100000);
18609 
18610     /* Check for BRB port occupancy */
18611     val = REG_RD(sc, BRB1_REG_PORT_NUM_OCC_BLOCKS_0 + port*4);
18612     if (val) {
18613         BLOGD(sc, DBG_LOAD,
18614               "BRB1 is not empty, %d blocks are occupied\n", val);
18615     }
18616 
18617     /* TODO: Close Doorbell port? */
18618 }
18619 
18620 static void
18621 bxe_ilt_wr(struct bxe_softc *sc,
18622            uint32_t         index,
18623            bus_addr_t       addr)
18624 {
18625     int reg;
18626     uint32_t wb_write[2];
18627 
18628     if (CHIP_IS_E1(sc)) {
18629         reg = PXP2_REG_RQ_ONCHIP_AT + index*8;
18630     } else {
18631         reg = PXP2_REG_RQ_ONCHIP_AT_B0 + index*8;
18632     }
18633 
18634     wb_write[0] = ONCHIP_ADDR1(addr);
18635     wb_write[1] = ONCHIP_ADDR2(addr);
18636     REG_WR_DMAE(sc, reg, wb_write, 2);
18637 }
18638 
18639 static void
18640 bxe_clear_func_ilt(struct bxe_softc *sc,
18641                    uint32_t         func)
18642 {
18643     uint32_t i, base = FUNC_ILT_BASE(func);
18644     for (i = base; i < base + ILT_PER_FUNC; i++) {
18645         bxe_ilt_wr(sc, i, 0);
18646     }
18647 }
18648 
18649 static void
18650 bxe_reset_func(struct bxe_softc *sc)
18651 {
18652     struct bxe_fastpath *fp;
18653     int port = SC_PORT(sc);
18654     int func = SC_FUNC(sc);
18655     int i;
18656 
18657     /* Disable the function in the FW */
18658     REG_WR8(sc, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(func), 0);
18659     REG_WR8(sc, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(func), 0);
18660     REG_WR8(sc, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(func), 0);
18661     REG_WR8(sc, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(func), 0);
18662 
18663     /* FP SBs */
18664     FOR_EACH_ETH_QUEUE(sc, i) {
18665         fp = &sc->fp[i];
18666         REG_WR8(sc, BAR_CSTRORM_INTMEM +
18667                 CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET(fp->fw_sb_id),
18668                 SB_DISABLED);
18669     }
18670 
18671 #if 0
18672     if (CNIC_LOADED(sc)) {
18673         /* CNIC SB */
18674         REG_WR8(sc, BAR_CSTRORM_INTMEM +
18675                 CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET
18676                 (bxe_cnic_fw_sb_id(sc)), SB_DISABLED);
18677     }
18678 #endif
18679 
18680     /* SP SB */
18681     REG_WR8(sc, BAR_CSTRORM_INTMEM +
18682             CSTORM_SP_STATUS_BLOCK_DATA_STATE_OFFSET(func),
18683             SB_DISABLED);
18684 
18685     for (i = 0; i < XSTORM_SPQ_DATA_SIZE / 4; i++) {
18686         REG_WR(sc, BAR_XSTRORM_INTMEM + XSTORM_SPQ_DATA_OFFSET(func), 0);
18687     }
18688 
18689     /* Configure IGU */
18690     if (sc->devinfo.int_block == INT_BLOCK_HC) {
18691         REG_WR(sc, HC_REG_LEADING_EDGE_0 + port*8, 0);
18692         REG_WR(sc, HC_REG_TRAILING_EDGE_0 + port*8, 0);
18693     } else {
18694         REG_WR(sc, IGU_REG_LEADING_EDGE_LATCH, 0);
18695         REG_WR(sc, IGU_REG_TRAILING_EDGE_LATCH, 0);
18696     }
18697 
18698     if (CNIC_LOADED(sc)) {
18699         /* Disable Timer scan */
18700         REG_WR(sc, TM_REG_EN_LINEAR0_TIMER + port*4, 0);
18701         /*
18702          * Wait for at least 10ms and up to 2 second for the timers
18703          * scan to complete
18704          */
18705         for (i = 0; i < 200; i++) {
18706             DELAY(10000);
18707             if (!REG_RD(sc, TM_REG_LIN0_SCAN_ON + port*4))
18708                 break;
18709         }
18710     }
18711 
18712     /* Clear ILT */
18713     bxe_clear_func_ilt(sc, func);
18714 
18715     /*
18716      * Timers workaround bug for E2: if this is vnic-3,
18717      * we need to set the entire ilt range for this timers.
18718      */
18719     if (!CHIP_IS_E1x(sc) && SC_VN(sc) == 3) {
18720         struct ilt_client_info ilt_cli;
18721         /* use dummy TM client */
18722         memset(&ilt_cli, 0, sizeof(struct ilt_client_info));
18723         ilt_cli.start = 0;
18724         ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1;
18725         ilt_cli.client_num = ILT_CLIENT_TM;
18726 
18727         ecore_ilt_boundry_init_op(sc, &ilt_cli, 0, INITOP_CLEAR);
18728     }
18729 
18730     /* this assumes that reset_port() called before reset_func()*/
18731     if (!CHIP_IS_E1x(sc)) {
18732         bxe_pf_disable(sc);
18733     }
18734 
18735     sc->dmae_ready = 0;
18736 }
18737 
18738 static int
18739 bxe_gunzip_init(struct bxe_softc *sc)
18740 {
18741     return (0);
18742 }
18743 
18744 static void
18745 bxe_gunzip_end(struct bxe_softc *sc)
18746 {
18747     return;
18748 }
18749 
18750 static int
18751 bxe_init_firmware(struct bxe_softc *sc)
18752 {
18753     if (CHIP_IS_E1(sc)) {
18754         ecore_init_e1_firmware(sc);
18755         sc->iro_array = e1_iro_arr;
18756     } else if (CHIP_IS_E1H(sc)) {
18757         ecore_init_e1h_firmware(sc);
18758         sc->iro_array = e1h_iro_arr;
18759     } else if (!CHIP_IS_E1x(sc)) {
18760         ecore_init_e2_firmware(sc);
18761         sc->iro_array = e2_iro_arr;
18762     } else {
18763         BLOGE(sc, "Unsupported chip revision\n");
18764         return (-1);
18765     }
18766 
18767     return (0);
18768 }
18769 
18770 static void
18771 bxe_release_firmware(struct bxe_softc *sc)
18772 {
18773     /* Do nothing */
18774     return;
18775 }
18776 
18777 static int
18778 ecore_gunzip(struct bxe_softc *sc,
18779              const uint8_t    *zbuf,
18780              int              len)
18781 {
18782     /* XXX : Implement... */
18783     BLOGD(sc, DBG_LOAD, "ECORE_GUNZIP NOT IMPLEMENTED\n");
18784     return (FALSE);
18785 }
18786 
18787 static void
18788 ecore_reg_wr_ind(struct bxe_softc *sc,
18789                  uint32_t         addr,
18790                  uint32_t         val)
18791 {
18792     bxe_reg_wr_ind(sc, addr, val);
18793 }
18794 
18795 static void
18796 ecore_write_dmae_phys_len(struct bxe_softc *sc,
18797                           bus_addr_t       phys_addr,
18798                           uint32_t         addr,
18799                           uint32_t         len)
18800 {
18801     bxe_write_dmae_phys_len(sc, phys_addr, addr, len);
18802 }
18803 
18804 void
18805 ecore_storm_memset_struct(struct bxe_softc *sc,
18806                           uint32_t         addr,
18807                           size_t           size,
18808                           uint32_t         *data)
18809 {
18810     uint8_t i;
18811     for (i = 0; i < size/4; i++) {
18812         REG_WR(sc, addr + (i * 4), data[i]);
18813     }
18814 }
18815 
18816