xref: /freebsd/sys/dev/bxe/bxe.c (revision b78ee15e9f04ae15c3e1200df974473167524d17)
1 /*-
2  * Copyright (c) 2007-2014 QLogic Corporation. All rights reserved.
3  *
4  * Redistribution and use in source and binary forms, with or without
5  * modification, are permitted provided that the following conditions
6  * are met:
7  *
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS'
15  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS
18  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
19  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
20  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
21  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
22  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
23  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
24  * THE POSSIBILITY OF SUCH DAMAGE.
25  */
26 
27 #include <sys/cdefs.h>
28 __FBSDID("$FreeBSD$");
29 
30 #define BXE_DRIVER_VERSION "1.78.79"
31 
32 #include "bxe.h"
33 #include "ecore_sp.h"
34 #include "ecore_init.h"
35 #include "ecore_init_ops.h"
36 
37 #include "57710_int_offsets.h"
38 #include "57711_int_offsets.h"
39 #include "57712_int_offsets.h"
40 
41 /*
42  * CTLTYPE_U64 and sysctl_handle_64 were added in r217616. Define these
43  * explicitly here for older kernels that don't include this changeset.
44  */
45 #ifndef CTLTYPE_U64
46 #define CTLTYPE_U64      CTLTYPE_QUAD
47 #define sysctl_handle_64 sysctl_handle_quad
48 #endif
49 
50 /*
51  * CSUM_TCP_IPV6 and CSUM_UDP_IPV6 were added in r236170. Define these
52  * here as zero(0) for older kernels that don't include this changeset
53  * thereby masking the functionality.
54  */
55 #ifndef CSUM_TCP_IPV6
56 #define CSUM_TCP_IPV6 0
57 #define CSUM_UDP_IPV6 0
58 #endif
59 
60 /*
61  * pci_find_cap was added in r219865. Re-define this at pci_find_extcap
62  * for older kernels that don't include this changeset.
63  */
64 #if __FreeBSD_version < 900035
65 #define pci_find_cap pci_find_extcap
66 #endif
67 
68 #define BXE_DEF_SB_ATT_IDX 0x0001
69 #define BXE_DEF_SB_IDX     0x0002
70 
71 /*
72  * FLR Support - bxe_pf_flr_clnup() is called during nic_load in the per
73  * function HW initialization.
74  */
75 #define FLR_WAIT_USEC     10000 /* 10 msecs */
76 #define FLR_WAIT_INTERVAL 50    /* usecs */
77 #define FLR_POLL_CNT      (FLR_WAIT_USEC / FLR_WAIT_INTERVAL) /* 200 */
78 
79 struct pbf_pN_buf_regs {
80     int pN;
81     uint32_t init_crd;
82     uint32_t crd;
83     uint32_t crd_freed;
84 };
85 
86 struct pbf_pN_cmd_regs {
87     int pN;
88     uint32_t lines_occup;
89     uint32_t lines_freed;
90 };
91 
92 /*
93  * PCI Device ID Table used by bxe_probe().
94  */
95 #define BXE_DEVDESC_MAX 64
96 static struct bxe_device_type bxe_devs[] = {
97     {
98         BRCM_VENDORID,
99         CHIP_NUM_57710,
100         PCI_ANY_ID, PCI_ANY_ID,
101         "QLogic NetXtreme II BCM57710 10GbE"
102     },
103     {
104         BRCM_VENDORID,
105         CHIP_NUM_57711,
106         PCI_ANY_ID, PCI_ANY_ID,
107         "QLogic NetXtreme II BCM57711 10GbE"
108     },
109     {
110         BRCM_VENDORID,
111         CHIP_NUM_57711E,
112         PCI_ANY_ID, PCI_ANY_ID,
113         "QLogic NetXtreme II BCM57711E 10GbE"
114     },
115     {
116         BRCM_VENDORID,
117         CHIP_NUM_57712,
118         PCI_ANY_ID, PCI_ANY_ID,
119         "QLogic NetXtreme II BCM57712 10GbE"
120     },
121     {
122         BRCM_VENDORID,
123         CHIP_NUM_57712_MF,
124         PCI_ANY_ID, PCI_ANY_ID,
125         "QLogic NetXtreme II BCM57712 MF 10GbE"
126     },
127 #if 0
128     {
129         BRCM_VENDORID,
130         CHIP_NUM_57712_VF,
131         PCI_ANY_ID, PCI_ANY_ID,
132         "QLogic NetXtreme II BCM57712 VF 10GbE"
133     },
134 #endif
135     {
136         BRCM_VENDORID,
137         CHIP_NUM_57800,
138         PCI_ANY_ID, PCI_ANY_ID,
139         "QLogic NetXtreme II BCM57800 10GbE"
140     },
141     {
142         BRCM_VENDORID,
143         CHIP_NUM_57800_MF,
144         PCI_ANY_ID, PCI_ANY_ID,
145         "QLogic NetXtreme II BCM57800 MF 10GbE"
146     },
147 #if 0
148     {
149         BRCM_VENDORID,
150         CHIP_NUM_57800_VF,
151         PCI_ANY_ID, PCI_ANY_ID,
152         "QLogic NetXtreme II BCM57800 VF 10GbE"
153     },
154 #endif
155     {
156         BRCM_VENDORID,
157         CHIP_NUM_57810,
158         PCI_ANY_ID, PCI_ANY_ID,
159         "QLogic NetXtreme II BCM57810 10GbE"
160     },
161     {
162         BRCM_VENDORID,
163         CHIP_NUM_57810_MF,
164         PCI_ANY_ID, PCI_ANY_ID,
165         "QLogic NetXtreme II BCM57810 MF 10GbE"
166     },
167 #if 0
168     {
169         BRCM_VENDORID,
170         CHIP_NUM_57810_VF,
171         PCI_ANY_ID, PCI_ANY_ID,
172         "QLogic NetXtreme II BCM57810 VF 10GbE"
173     },
174 #endif
175     {
176         BRCM_VENDORID,
177         CHIP_NUM_57811,
178         PCI_ANY_ID, PCI_ANY_ID,
179         "QLogic NetXtreme II BCM57811 10GbE"
180     },
181     {
182         BRCM_VENDORID,
183         CHIP_NUM_57811_MF,
184         PCI_ANY_ID, PCI_ANY_ID,
185         "QLogic NetXtreme II BCM57811 MF 10GbE"
186     },
187 #if 0
188     {
189         BRCM_VENDORID,
190         CHIP_NUM_57811_VF,
191         PCI_ANY_ID, PCI_ANY_ID,
192         "QLogic NetXtreme II BCM57811 VF 10GbE"
193     },
194 #endif
195     {
196         BRCM_VENDORID,
197         CHIP_NUM_57840_4_10,
198         PCI_ANY_ID, PCI_ANY_ID,
199         "QLogic NetXtreme II BCM57840 4x10GbE"
200     },
201 #if 0
202     {
203         BRCM_VENDORID,
204         CHIP_NUM_57840_2_20,
205         PCI_ANY_ID, PCI_ANY_ID,
206         "QLogic NetXtreme II BCM57840 2x20GbE"
207     },
208 #endif
209     {
210         BRCM_VENDORID,
211         CHIP_NUM_57840_MF,
212         PCI_ANY_ID, PCI_ANY_ID,
213         "QLogic NetXtreme II BCM57840 MF 10GbE"
214     },
215 #if 0
216     {
217         BRCM_VENDORID,
218         CHIP_NUM_57840_VF,
219         PCI_ANY_ID, PCI_ANY_ID,
220         "QLogic NetXtreme II BCM57840 VF 10GbE"
221     },
222 #endif
223     {
224         0, 0, 0, 0, NULL
225     }
226 };
227 
228 MALLOC_DECLARE(M_BXE_ILT);
229 MALLOC_DEFINE(M_BXE_ILT, "bxe_ilt", "bxe ILT pointer");
230 
231 /*
232  * FreeBSD device entry points.
233  */
234 static int bxe_probe(device_t);
235 static int bxe_attach(device_t);
236 static int bxe_detach(device_t);
237 static int bxe_shutdown(device_t);
238 
239 /*
240  * FreeBSD KLD module/device interface event handler method.
241  */
242 static device_method_t bxe_methods[] = {
243     /* Device interface (device_if.h) */
244     DEVMETHOD(device_probe,     bxe_probe),
245     DEVMETHOD(device_attach,    bxe_attach),
246     DEVMETHOD(device_detach,    bxe_detach),
247     DEVMETHOD(device_shutdown,  bxe_shutdown),
248 #if 0
249     DEVMETHOD(device_suspend,   bxe_suspend),
250     DEVMETHOD(device_resume,    bxe_resume),
251 #endif
252     /* Bus interface (bus_if.h) */
253     DEVMETHOD(bus_print_child,  bus_generic_print_child),
254     DEVMETHOD(bus_driver_added, bus_generic_driver_added),
255     KOBJMETHOD_END
256 };
257 
258 /*
259  * FreeBSD KLD Module data declaration
260  */
261 static driver_t bxe_driver = {
262     "bxe",                   /* module name */
263     bxe_methods,             /* event handler */
264     sizeof(struct bxe_softc) /* extra data */
265 };
266 
267 /*
268  * FreeBSD dev class is needed to manage dev instances and
269  * to associate with a bus type
270  */
271 static devclass_t bxe_devclass;
272 
273 MODULE_DEPEND(bxe, pci, 1, 1, 1);
274 MODULE_DEPEND(bxe, ether, 1, 1, 1);
275 DRIVER_MODULE(bxe, pci, bxe_driver, bxe_devclass, 0, 0);
276 
277 /* resources needed for unloading a previously loaded device */
278 
279 #define BXE_PREV_WAIT_NEEDED 1
280 struct mtx bxe_prev_mtx;
281 MTX_SYSINIT(bxe_prev_mtx, &bxe_prev_mtx, "bxe_prev_lock", MTX_DEF);
282 struct bxe_prev_list_node {
283     LIST_ENTRY(bxe_prev_list_node) node;
284     uint8_t bus;
285     uint8_t slot;
286     uint8_t path;
287     uint8_t aer; /* XXX automatic error recovery */
288     uint8_t undi;
289 };
290 static LIST_HEAD(, bxe_prev_list_node) bxe_prev_list = LIST_HEAD_INITIALIZER(bxe_prev_list);
291 
292 static int load_count[2][3] = { {0} }; /* per-path: 0-common, 1-port0, 2-port1 */
293 
294 /* Tunable device values... */
295 
296 SYSCTL_NODE(_hw, OID_AUTO, bxe, CTLFLAG_RD, 0, "bxe driver parameters");
297 
298 /* Debug */
299 unsigned long bxe_debug = 0;
300 SYSCTL_ULONG(_hw_bxe, OID_AUTO, debug, CTLFLAG_RDTUN,
301              &bxe_debug, 0, "Debug logging mode");
302 
303 /* Interrupt Mode: 0 (IRQ), 1 (MSI/IRQ), and 2 (MSI-X/MSI/IRQ) */
304 static int bxe_interrupt_mode = INTR_MODE_MSIX;
305 SYSCTL_INT(_hw_bxe, OID_AUTO, interrupt_mode, CTLFLAG_RDTUN,
306            &bxe_interrupt_mode, 0, "Interrupt (MSI-X/MSI/INTx) mode");
307 
308 /* Number of Queues: 0 (Auto) or 1 to 16 (fixed queue number) */
309 static int bxe_queue_count = 4;
310 SYSCTL_INT(_hw_bxe, OID_AUTO, queue_count, CTLFLAG_RDTUN,
311            &bxe_queue_count, 0, "Multi-Queue queue count");
312 
313 /* max number of buffers per queue (default RX_BD_USABLE) */
314 static int bxe_max_rx_bufs = 0;
315 SYSCTL_INT(_hw_bxe, OID_AUTO, max_rx_bufs, CTLFLAG_RDTUN,
316            &bxe_max_rx_bufs, 0, "Maximum Number of Rx Buffers Per Queue");
317 
318 /* Host interrupt coalescing RX tick timer (usecs) */
319 static int bxe_hc_rx_ticks = 25;
320 SYSCTL_INT(_hw_bxe, OID_AUTO, hc_rx_ticks, CTLFLAG_RDTUN,
321            &bxe_hc_rx_ticks, 0, "Host Coalescing Rx ticks");
322 
323 /* Host interrupt coalescing TX tick timer (usecs) */
324 static int bxe_hc_tx_ticks = 50;
325 SYSCTL_INT(_hw_bxe, OID_AUTO, hc_tx_ticks, CTLFLAG_RDTUN,
326            &bxe_hc_tx_ticks, 0, "Host Coalescing Tx ticks");
327 
328 /* Maximum number of Rx packets to process at a time */
329 static int bxe_rx_budget = 0xffffffff;
330 SYSCTL_INT(_hw_bxe, OID_AUTO, rx_budget, CTLFLAG_TUN,
331            &bxe_rx_budget, 0, "Rx processing budget");
332 
333 /* Maximum LRO aggregation size */
334 static int bxe_max_aggregation_size = 0;
335 SYSCTL_INT(_hw_bxe, OID_AUTO, max_aggregation_size, CTLFLAG_TUN,
336            &bxe_max_aggregation_size, 0, "max aggregation size");
337 
338 /* PCI MRRS: -1 (Auto), 0 (128B), 1 (256B), 2 (512B), 3 (1KB) */
339 static int bxe_mrrs = -1;
340 SYSCTL_INT(_hw_bxe, OID_AUTO, mrrs, CTLFLAG_RDTUN,
341            &bxe_mrrs, 0, "PCIe maximum read request size");
342 
343 /* AutoGrEEEn: 0 (hardware default), 1 (force on), 2 (force off) */
344 static int bxe_autogreeen = 0;
345 SYSCTL_INT(_hw_bxe, OID_AUTO, autogreeen, CTLFLAG_RDTUN,
346            &bxe_autogreeen, 0, "AutoGrEEEn support");
347 
348 /* 4-tuple RSS support for UDP: 0 (disabled), 1 (enabled) */
349 static int bxe_udp_rss = 0;
350 SYSCTL_INT(_hw_bxe, OID_AUTO, udp_rss, CTLFLAG_RDTUN,
351            &bxe_udp_rss, 0, "UDP RSS support");
352 
353 
354 #define STAT_NAME_LEN 32 /* no stat names below can be longer than this */
355 
356 #define STATS_OFFSET32(stat_name)                   \
357     (offsetof(struct bxe_eth_stats, stat_name) / 4)
358 
359 #define Q_STATS_OFFSET32(stat_name)                   \
360     (offsetof(struct bxe_eth_q_stats, stat_name) / 4)
361 
362 static const struct {
363     uint32_t offset;
364     uint32_t size;
365     uint32_t flags;
366 #define STATS_FLAGS_PORT  1
367 #define STATS_FLAGS_FUNC  2 /* MF only cares about function stats */
368 #define STATS_FLAGS_BOTH  (STATS_FLAGS_FUNC | STATS_FLAGS_PORT)
369     char string[STAT_NAME_LEN];
370 } bxe_eth_stats_arr[] = {
371     { STATS_OFFSET32(total_bytes_received_hi),
372                 8, STATS_FLAGS_BOTH, "rx_bytes" },
373     { STATS_OFFSET32(error_bytes_received_hi),
374                 8, STATS_FLAGS_BOTH, "rx_error_bytes" },
375     { STATS_OFFSET32(total_unicast_packets_received_hi),
376                 8, STATS_FLAGS_BOTH, "rx_ucast_packets" },
377     { STATS_OFFSET32(total_multicast_packets_received_hi),
378                 8, STATS_FLAGS_BOTH, "rx_mcast_packets" },
379     { STATS_OFFSET32(total_broadcast_packets_received_hi),
380                 8, STATS_FLAGS_BOTH, "rx_bcast_packets" },
381     { STATS_OFFSET32(rx_stat_dot3statsfcserrors_hi),
382                 8, STATS_FLAGS_PORT, "rx_crc_errors" },
383     { STATS_OFFSET32(rx_stat_dot3statsalignmenterrors_hi),
384                 8, STATS_FLAGS_PORT, "rx_align_errors" },
385     { STATS_OFFSET32(rx_stat_etherstatsundersizepkts_hi),
386                 8, STATS_FLAGS_PORT, "rx_undersize_packets" },
387     { STATS_OFFSET32(etherstatsoverrsizepkts_hi),
388                 8, STATS_FLAGS_PORT, "rx_oversize_packets" },
389     { STATS_OFFSET32(rx_stat_etherstatsfragments_hi),
390                 8, STATS_FLAGS_PORT, "rx_fragments" },
391     { STATS_OFFSET32(rx_stat_etherstatsjabbers_hi),
392                 8, STATS_FLAGS_PORT, "rx_jabbers" },
393     { STATS_OFFSET32(no_buff_discard_hi),
394                 8, STATS_FLAGS_BOTH, "rx_discards" },
395     { STATS_OFFSET32(mac_filter_discard),
396                 4, STATS_FLAGS_PORT, "rx_filtered_packets" },
397     { STATS_OFFSET32(mf_tag_discard),
398                 4, STATS_FLAGS_PORT, "rx_mf_tag_discard" },
399     { STATS_OFFSET32(pfc_frames_received_hi),
400                 8, STATS_FLAGS_PORT, "pfc_frames_received" },
401     { STATS_OFFSET32(pfc_frames_sent_hi),
402                 8, STATS_FLAGS_PORT, "pfc_frames_sent" },
403     { STATS_OFFSET32(brb_drop_hi),
404                 8, STATS_FLAGS_PORT, "rx_brb_discard" },
405     { STATS_OFFSET32(brb_truncate_hi),
406                 8, STATS_FLAGS_PORT, "rx_brb_truncate" },
407     { STATS_OFFSET32(pause_frames_received_hi),
408                 8, STATS_FLAGS_PORT, "rx_pause_frames" },
409     { STATS_OFFSET32(rx_stat_maccontrolframesreceived_hi),
410                 8, STATS_FLAGS_PORT, "rx_mac_ctrl_frames" },
411     { STATS_OFFSET32(nig_timer_max),
412                 4, STATS_FLAGS_PORT, "rx_constant_pause_events" },
413     { STATS_OFFSET32(total_bytes_transmitted_hi),
414                 8, STATS_FLAGS_BOTH, "tx_bytes" },
415     { STATS_OFFSET32(tx_stat_ifhcoutbadoctets_hi),
416                 8, STATS_FLAGS_PORT, "tx_error_bytes" },
417     { STATS_OFFSET32(total_unicast_packets_transmitted_hi),
418                 8, STATS_FLAGS_BOTH, "tx_ucast_packets" },
419     { STATS_OFFSET32(total_multicast_packets_transmitted_hi),
420                 8, STATS_FLAGS_BOTH, "tx_mcast_packets" },
421     { STATS_OFFSET32(total_broadcast_packets_transmitted_hi),
422                 8, STATS_FLAGS_BOTH, "tx_bcast_packets" },
423     { STATS_OFFSET32(tx_stat_dot3statsinternalmactransmiterrors_hi),
424                 8, STATS_FLAGS_PORT, "tx_mac_errors" },
425     { STATS_OFFSET32(rx_stat_dot3statscarriersenseerrors_hi),
426                 8, STATS_FLAGS_PORT, "tx_carrier_errors" },
427     { STATS_OFFSET32(tx_stat_dot3statssinglecollisionframes_hi),
428                 8, STATS_FLAGS_PORT, "tx_single_collisions" },
429     { STATS_OFFSET32(tx_stat_dot3statsmultiplecollisionframes_hi),
430                 8, STATS_FLAGS_PORT, "tx_multi_collisions" },
431     { STATS_OFFSET32(tx_stat_dot3statsdeferredtransmissions_hi),
432                 8, STATS_FLAGS_PORT, "tx_deferred" },
433     { STATS_OFFSET32(tx_stat_dot3statsexcessivecollisions_hi),
434                 8, STATS_FLAGS_PORT, "tx_excess_collisions" },
435     { STATS_OFFSET32(tx_stat_dot3statslatecollisions_hi),
436                 8, STATS_FLAGS_PORT, "tx_late_collisions" },
437     { STATS_OFFSET32(tx_stat_etherstatscollisions_hi),
438                 8, STATS_FLAGS_PORT, "tx_total_collisions" },
439     { STATS_OFFSET32(tx_stat_etherstatspkts64octets_hi),
440                 8, STATS_FLAGS_PORT, "tx_64_byte_packets" },
441     { STATS_OFFSET32(tx_stat_etherstatspkts65octetsto127octets_hi),
442                 8, STATS_FLAGS_PORT, "tx_65_to_127_byte_packets" },
443     { STATS_OFFSET32(tx_stat_etherstatspkts128octetsto255octets_hi),
444                 8, STATS_FLAGS_PORT, "tx_128_to_255_byte_packets" },
445     { STATS_OFFSET32(tx_stat_etherstatspkts256octetsto511octets_hi),
446                 8, STATS_FLAGS_PORT, "tx_256_to_511_byte_packets" },
447     { STATS_OFFSET32(tx_stat_etherstatspkts512octetsto1023octets_hi),
448                 8, STATS_FLAGS_PORT, "tx_512_to_1023_byte_packets" },
449     { STATS_OFFSET32(etherstatspkts1024octetsto1522octets_hi),
450                 8, STATS_FLAGS_PORT, "tx_1024_to_1522_byte_packets" },
451     { STATS_OFFSET32(etherstatspktsover1522octets_hi),
452                 8, STATS_FLAGS_PORT, "tx_1523_to_9022_byte_packets" },
453     { STATS_OFFSET32(pause_frames_sent_hi),
454                 8, STATS_FLAGS_PORT, "tx_pause_frames" },
455     { STATS_OFFSET32(total_tpa_aggregations_hi),
456                 8, STATS_FLAGS_FUNC, "tpa_aggregations" },
457     { STATS_OFFSET32(total_tpa_aggregated_frames_hi),
458                 8, STATS_FLAGS_FUNC, "tpa_aggregated_frames"},
459     { STATS_OFFSET32(total_tpa_bytes_hi),
460                 8, STATS_FLAGS_FUNC, "tpa_bytes"},
461 #if 0
462     { STATS_OFFSET32(recoverable_error),
463                 4, STATS_FLAGS_FUNC, "recoverable_errors" },
464     { STATS_OFFSET32(unrecoverable_error),
465                 4, STATS_FLAGS_FUNC, "unrecoverable_errors" },
466 #endif
467     { STATS_OFFSET32(eee_tx_lpi),
468                 4, STATS_FLAGS_PORT, "eee_tx_lpi"},
469     { STATS_OFFSET32(rx_calls),
470                 4, STATS_FLAGS_FUNC, "rx_calls"},
471     { STATS_OFFSET32(rx_pkts),
472                 4, STATS_FLAGS_FUNC, "rx_pkts"},
473     { STATS_OFFSET32(rx_tpa_pkts),
474                 4, STATS_FLAGS_FUNC, "rx_tpa_pkts"},
475     { STATS_OFFSET32(rx_jumbo_sge_pkts),
476                 4, STATS_FLAGS_FUNC, "rx_jumbo_sge_pkts"},
477     { STATS_OFFSET32(rx_soft_errors),
478                 4, STATS_FLAGS_FUNC, "rx_soft_errors"},
479     { STATS_OFFSET32(rx_hw_csum_errors),
480                 4, STATS_FLAGS_FUNC, "rx_hw_csum_errors"},
481     { STATS_OFFSET32(rx_ofld_frames_csum_ip),
482                 4, STATS_FLAGS_FUNC, "rx_ofld_frames_csum_ip"},
483     { STATS_OFFSET32(rx_ofld_frames_csum_tcp_udp),
484                 4, STATS_FLAGS_FUNC, "rx_ofld_frames_csum_tcp_udp"},
485     { STATS_OFFSET32(rx_budget_reached),
486                 4, STATS_FLAGS_FUNC, "rx_budget_reached"},
487     { STATS_OFFSET32(tx_pkts),
488                 4, STATS_FLAGS_FUNC, "tx_pkts"},
489     { STATS_OFFSET32(tx_soft_errors),
490                 4, STATS_FLAGS_FUNC, "tx_soft_errors"},
491     { STATS_OFFSET32(tx_ofld_frames_csum_ip),
492                 4, STATS_FLAGS_FUNC, "tx_ofld_frames_csum_ip"},
493     { STATS_OFFSET32(tx_ofld_frames_csum_tcp),
494                 4, STATS_FLAGS_FUNC, "tx_ofld_frames_csum_tcp"},
495     { STATS_OFFSET32(tx_ofld_frames_csum_udp),
496                 4, STATS_FLAGS_FUNC, "tx_ofld_frames_csum_udp"},
497     { STATS_OFFSET32(tx_ofld_frames_lso),
498                 4, STATS_FLAGS_FUNC, "tx_ofld_frames_lso"},
499     { STATS_OFFSET32(tx_ofld_frames_lso_hdr_splits),
500                 4, STATS_FLAGS_FUNC, "tx_ofld_frames_lso_hdr_splits"},
501     { STATS_OFFSET32(tx_encap_failures),
502                 4, STATS_FLAGS_FUNC, "tx_encap_failures"},
503     { STATS_OFFSET32(tx_hw_queue_full),
504                 4, STATS_FLAGS_FUNC, "tx_hw_queue_full"},
505     { STATS_OFFSET32(tx_hw_max_queue_depth),
506                 4, STATS_FLAGS_FUNC, "tx_hw_max_queue_depth"},
507     { STATS_OFFSET32(tx_dma_mapping_failure),
508                 4, STATS_FLAGS_FUNC, "tx_dma_mapping_failure"},
509     { STATS_OFFSET32(tx_max_drbr_queue_depth),
510                 4, STATS_FLAGS_FUNC, "tx_max_drbr_queue_depth"},
511     { STATS_OFFSET32(tx_window_violation_std),
512                 4, STATS_FLAGS_FUNC, "tx_window_violation_std"},
513     { STATS_OFFSET32(tx_window_violation_tso),
514                 4, STATS_FLAGS_FUNC, "tx_window_violation_tso"},
515 #if 0
516     { STATS_OFFSET32(tx_unsupported_tso_request_ipv6),
517                 4, STATS_FLAGS_FUNC, "tx_unsupported_tso_request_ipv6"},
518     { STATS_OFFSET32(tx_unsupported_tso_request_not_tcp),
519                 4, STATS_FLAGS_FUNC, "tx_unsupported_tso_request_not_tcp"},
520 #endif
521     { STATS_OFFSET32(tx_chain_lost_mbuf),
522                 4, STATS_FLAGS_FUNC, "tx_chain_lost_mbuf"},
523     { STATS_OFFSET32(tx_frames_deferred),
524                 4, STATS_FLAGS_FUNC, "tx_frames_deferred"},
525     { STATS_OFFSET32(tx_queue_xoff),
526                 4, STATS_FLAGS_FUNC, "tx_queue_xoff"},
527     { STATS_OFFSET32(mbuf_defrag_attempts),
528                 4, STATS_FLAGS_FUNC, "mbuf_defrag_attempts"},
529     { STATS_OFFSET32(mbuf_defrag_failures),
530                 4, STATS_FLAGS_FUNC, "mbuf_defrag_failures"},
531     { STATS_OFFSET32(mbuf_rx_bd_alloc_failed),
532                 4, STATS_FLAGS_FUNC, "mbuf_rx_bd_alloc_failed"},
533     { STATS_OFFSET32(mbuf_rx_bd_mapping_failed),
534                 4, STATS_FLAGS_FUNC, "mbuf_rx_bd_mapping_failed"},
535     { STATS_OFFSET32(mbuf_rx_tpa_alloc_failed),
536                 4, STATS_FLAGS_FUNC, "mbuf_rx_tpa_alloc_failed"},
537     { STATS_OFFSET32(mbuf_rx_tpa_mapping_failed),
538                 4, STATS_FLAGS_FUNC, "mbuf_rx_tpa_mapping_failed"},
539     { STATS_OFFSET32(mbuf_rx_sge_alloc_failed),
540                 4, STATS_FLAGS_FUNC, "mbuf_rx_sge_alloc_failed"},
541     { STATS_OFFSET32(mbuf_rx_sge_mapping_failed),
542                 4, STATS_FLAGS_FUNC, "mbuf_rx_sge_mapping_failed"},
543     { STATS_OFFSET32(mbuf_alloc_tx),
544                 4, STATS_FLAGS_FUNC, "mbuf_alloc_tx"},
545     { STATS_OFFSET32(mbuf_alloc_rx),
546                 4, STATS_FLAGS_FUNC, "mbuf_alloc_rx"},
547     { STATS_OFFSET32(mbuf_alloc_sge),
548                 4, STATS_FLAGS_FUNC, "mbuf_alloc_sge"},
549     { STATS_OFFSET32(mbuf_alloc_tpa),
550                 4, STATS_FLAGS_FUNC, "mbuf_alloc_tpa"}
551 };
552 
553 static const struct {
554     uint32_t offset;
555     uint32_t size;
556     char string[STAT_NAME_LEN];
557 } bxe_eth_q_stats_arr[] = {
558     { Q_STATS_OFFSET32(total_bytes_received_hi),
559                 8, "rx_bytes" },
560     { Q_STATS_OFFSET32(total_unicast_packets_received_hi),
561                 8, "rx_ucast_packets" },
562     { Q_STATS_OFFSET32(total_multicast_packets_received_hi),
563                 8, "rx_mcast_packets" },
564     { Q_STATS_OFFSET32(total_broadcast_packets_received_hi),
565                 8, "rx_bcast_packets" },
566     { Q_STATS_OFFSET32(no_buff_discard_hi),
567                 8, "rx_discards" },
568     { Q_STATS_OFFSET32(total_bytes_transmitted_hi),
569                 8, "tx_bytes" },
570     { Q_STATS_OFFSET32(total_unicast_packets_transmitted_hi),
571                 8, "tx_ucast_packets" },
572     { Q_STATS_OFFSET32(total_multicast_packets_transmitted_hi),
573                 8, "tx_mcast_packets" },
574     { Q_STATS_OFFSET32(total_broadcast_packets_transmitted_hi),
575                 8, "tx_bcast_packets" },
576     { Q_STATS_OFFSET32(total_tpa_aggregations_hi),
577                 8, "tpa_aggregations" },
578     { Q_STATS_OFFSET32(total_tpa_aggregated_frames_hi),
579                 8, "tpa_aggregated_frames"},
580     { Q_STATS_OFFSET32(total_tpa_bytes_hi),
581                 8, "tpa_bytes"},
582     { Q_STATS_OFFSET32(rx_calls),
583                 4, "rx_calls"},
584     { Q_STATS_OFFSET32(rx_pkts),
585                 4, "rx_pkts"},
586     { Q_STATS_OFFSET32(rx_tpa_pkts),
587                 4, "rx_tpa_pkts"},
588     { Q_STATS_OFFSET32(rx_jumbo_sge_pkts),
589                 4, "rx_jumbo_sge_pkts"},
590     { Q_STATS_OFFSET32(rx_soft_errors),
591                 4, "rx_soft_errors"},
592     { Q_STATS_OFFSET32(rx_hw_csum_errors),
593                 4, "rx_hw_csum_errors"},
594     { Q_STATS_OFFSET32(rx_ofld_frames_csum_ip),
595                 4, "rx_ofld_frames_csum_ip"},
596     { Q_STATS_OFFSET32(rx_ofld_frames_csum_tcp_udp),
597                 4, "rx_ofld_frames_csum_tcp_udp"},
598     { Q_STATS_OFFSET32(rx_budget_reached),
599                 4, "rx_budget_reached"},
600     { Q_STATS_OFFSET32(tx_pkts),
601                 4, "tx_pkts"},
602     { Q_STATS_OFFSET32(tx_soft_errors),
603                 4, "tx_soft_errors"},
604     { Q_STATS_OFFSET32(tx_ofld_frames_csum_ip),
605                 4, "tx_ofld_frames_csum_ip"},
606     { Q_STATS_OFFSET32(tx_ofld_frames_csum_tcp),
607                 4, "tx_ofld_frames_csum_tcp"},
608     { Q_STATS_OFFSET32(tx_ofld_frames_csum_udp),
609                 4, "tx_ofld_frames_csum_udp"},
610     { Q_STATS_OFFSET32(tx_ofld_frames_lso),
611                 4, "tx_ofld_frames_lso"},
612     { Q_STATS_OFFSET32(tx_ofld_frames_lso_hdr_splits),
613                 4, "tx_ofld_frames_lso_hdr_splits"},
614     { Q_STATS_OFFSET32(tx_encap_failures),
615                 4, "tx_encap_failures"},
616     { Q_STATS_OFFSET32(tx_hw_queue_full),
617                 4, "tx_hw_queue_full"},
618     { Q_STATS_OFFSET32(tx_hw_max_queue_depth),
619                 4, "tx_hw_max_queue_depth"},
620     { Q_STATS_OFFSET32(tx_dma_mapping_failure),
621                 4, "tx_dma_mapping_failure"},
622     { Q_STATS_OFFSET32(tx_max_drbr_queue_depth),
623                 4, "tx_max_drbr_queue_depth"},
624     { Q_STATS_OFFSET32(tx_window_violation_std),
625                 4, "tx_window_violation_std"},
626     { Q_STATS_OFFSET32(tx_window_violation_tso),
627                 4, "tx_window_violation_tso"},
628 #if 0
629     { Q_STATS_OFFSET32(tx_unsupported_tso_request_ipv6),
630                 4, "tx_unsupported_tso_request_ipv6"},
631     { Q_STATS_OFFSET32(tx_unsupported_tso_request_not_tcp),
632                 4, "tx_unsupported_tso_request_not_tcp"},
633 #endif
634     { Q_STATS_OFFSET32(tx_chain_lost_mbuf),
635                 4, "tx_chain_lost_mbuf"},
636     { Q_STATS_OFFSET32(tx_frames_deferred),
637                 4, "tx_frames_deferred"},
638     { Q_STATS_OFFSET32(tx_queue_xoff),
639                 4, "tx_queue_xoff"},
640     { Q_STATS_OFFSET32(mbuf_defrag_attempts),
641                 4, "mbuf_defrag_attempts"},
642     { Q_STATS_OFFSET32(mbuf_defrag_failures),
643                 4, "mbuf_defrag_failures"},
644     { Q_STATS_OFFSET32(mbuf_rx_bd_alloc_failed),
645                 4, "mbuf_rx_bd_alloc_failed"},
646     { Q_STATS_OFFSET32(mbuf_rx_bd_mapping_failed),
647                 4, "mbuf_rx_bd_mapping_failed"},
648     { Q_STATS_OFFSET32(mbuf_rx_tpa_alloc_failed),
649                 4, "mbuf_rx_tpa_alloc_failed"},
650     { Q_STATS_OFFSET32(mbuf_rx_tpa_mapping_failed),
651                 4, "mbuf_rx_tpa_mapping_failed"},
652     { Q_STATS_OFFSET32(mbuf_rx_sge_alloc_failed),
653                 4, "mbuf_rx_sge_alloc_failed"},
654     { Q_STATS_OFFSET32(mbuf_rx_sge_mapping_failed),
655                 4, "mbuf_rx_sge_mapping_failed"},
656     { Q_STATS_OFFSET32(mbuf_alloc_tx),
657                 4, "mbuf_alloc_tx"},
658     { Q_STATS_OFFSET32(mbuf_alloc_rx),
659                 4, "mbuf_alloc_rx"},
660     { Q_STATS_OFFSET32(mbuf_alloc_sge),
661                 4, "mbuf_alloc_sge"},
662     { Q_STATS_OFFSET32(mbuf_alloc_tpa),
663                 4, "mbuf_alloc_tpa"}
664 };
665 
666 #define BXE_NUM_ETH_STATS   ARRAY_SIZE(bxe_eth_stats_arr)
667 #define BXE_NUM_ETH_Q_STATS ARRAY_SIZE(bxe_eth_q_stats_arr)
668 
669 
670 static void    bxe_cmng_fns_init(struct bxe_softc *sc,
671                                  uint8_t          read_cfg,
672                                  uint8_t          cmng_type);
673 static int     bxe_get_cmng_fns_mode(struct bxe_softc *sc);
674 static void    storm_memset_cmng(struct bxe_softc *sc,
675                                  struct cmng_init *cmng,
676                                  uint8_t          port);
677 static void    bxe_set_reset_global(struct bxe_softc *sc);
678 static void    bxe_set_reset_in_progress(struct bxe_softc *sc);
679 static uint8_t bxe_reset_is_done(struct bxe_softc *sc,
680                                  int              engine);
681 static uint8_t bxe_clear_pf_load(struct bxe_softc *sc);
682 static uint8_t bxe_chk_parity_attn(struct bxe_softc *sc,
683                                    uint8_t          *global,
684                                    uint8_t          print);
685 static void    bxe_int_disable(struct bxe_softc *sc);
686 static int     bxe_release_leader_lock(struct bxe_softc *sc);
687 static void    bxe_pf_disable(struct bxe_softc *sc);
688 static void    bxe_free_fp_buffers(struct bxe_softc *sc);
689 static inline void bxe_update_rx_prod(struct bxe_softc    *sc,
690                                       struct bxe_fastpath *fp,
691                                       uint16_t            rx_bd_prod,
692                                       uint16_t            rx_cq_prod,
693                                       uint16_t            rx_sge_prod);
694 static void    bxe_link_report_locked(struct bxe_softc *sc);
695 static void    bxe_link_report(struct bxe_softc *sc);
696 static void    bxe_link_status_update(struct bxe_softc *sc);
697 static void    bxe_periodic_callout_func(void *xsc);
698 static void    bxe_periodic_start(struct bxe_softc *sc);
699 static void    bxe_periodic_stop(struct bxe_softc *sc);
700 static int     bxe_alloc_rx_bd_mbuf(struct bxe_fastpath *fp,
701                                     uint16_t prev_index,
702                                     uint16_t index);
703 static int     bxe_alloc_rx_tpa_mbuf(struct bxe_fastpath *fp,
704                                      int                 queue);
705 static int     bxe_alloc_rx_sge_mbuf(struct bxe_fastpath *fp,
706                                      uint16_t            index);
707 static uint8_t bxe_txeof(struct bxe_softc *sc,
708                          struct bxe_fastpath *fp);
709 static void    bxe_task_fp(struct bxe_fastpath *fp);
710 static __noinline void bxe_dump_mbuf(struct bxe_softc *sc,
711                                      struct mbuf      *m,
712                                      uint8_t          contents);
713 static int     bxe_alloc_mem(struct bxe_softc *sc);
714 static void    bxe_free_mem(struct bxe_softc *sc);
715 static int     bxe_alloc_fw_stats_mem(struct bxe_softc *sc);
716 static void    bxe_free_fw_stats_mem(struct bxe_softc *sc);
717 static int     bxe_interrupt_attach(struct bxe_softc *sc);
718 static void    bxe_interrupt_detach(struct bxe_softc *sc);
719 static void    bxe_set_rx_mode(struct bxe_softc *sc);
720 static int     bxe_init_locked(struct bxe_softc *sc);
721 static int     bxe_stop_locked(struct bxe_softc *sc);
722 static __noinline int bxe_nic_load(struct bxe_softc *sc,
723                                    int              load_mode);
724 static __noinline int bxe_nic_unload(struct bxe_softc *sc,
725                                      uint32_t         unload_mode,
726                                      uint8_t          keep_link);
727 
728 static void bxe_handle_sp_tq(void *context, int pending);
729 static void bxe_handle_fp_tq(void *context, int pending);
730 
731 
732 /* calculate crc32 on a buffer (NOTE: crc32_length MUST be aligned to 8) */
733 uint32_t
734 calc_crc32(uint8_t  *crc32_packet,
735            uint32_t crc32_length,
736            uint32_t crc32_seed,
737            uint8_t  complement)
738 {
739    uint32_t byte         = 0;
740    uint32_t bit          = 0;
741    uint8_t  msb          = 0;
742    uint32_t temp         = 0;
743    uint32_t shft         = 0;
744    uint8_t  current_byte = 0;
745    uint32_t crc32_result = crc32_seed;
746    const uint32_t CRC32_POLY = 0x1edc6f41;
747 
748    if ((crc32_packet == NULL) ||
749        (crc32_length == 0) ||
750        ((crc32_length % 8) != 0))
751     {
752         return (crc32_result);
753     }
754 
755     for (byte = 0; byte < crc32_length; byte = byte + 1)
756     {
757         current_byte = crc32_packet[byte];
758         for (bit = 0; bit < 8; bit = bit + 1)
759         {
760             /* msb = crc32_result[31]; */
761             msb = (uint8_t)(crc32_result >> 31);
762 
763             crc32_result = crc32_result << 1;
764 
765             /* it (msb != current_byte[bit]) */
766             if (msb != (0x1 & (current_byte >> bit)))
767             {
768                 crc32_result = crc32_result ^ CRC32_POLY;
769                 /* crc32_result[0] = 1 */
770                 crc32_result |= 1;
771             }
772         }
773     }
774 
775     /* Last step is to:
776      * 1. "mirror" every bit
777      * 2. swap the 4 bytes
778      * 3. complement each bit
779      */
780 
781     /* Mirror */
782     temp = crc32_result;
783     shft = sizeof(crc32_result) * 8 - 1;
784 
785     for (crc32_result >>= 1; crc32_result; crc32_result >>= 1)
786     {
787         temp <<= 1;
788         temp |= crc32_result & 1;
789         shft-- ;
790     }
791 
792     /* temp[31-bit] = crc32_result[bit] */
793     temp <<= shft;
794 
795     /* Swap */
796     /* crc32_result = {temp[7:0], temp[15:8], temp[23:16], temp[31:24]} */
797     {
798         uint32_t t0, t1, t2, t3;
799         t0 = (0x000000ff & (temp >> 24));
800         t1 = (0x0000ff00 & (temp >> 8));
801         t2 = (0x00ff0000 & (temp << 8));
802         t3 = (0xff000000 & (temp << 24));
803         crc32_result = t0 | t1 | t2 | t3;
804     }
805 
806     /* Complement */
807     if (complement)
808     {
809         crc32_result = ~crc32_result;
810     }
811 
812     return (crc32_result);
813 }
814 
815 int
816 bxe_test_bit(int                    nr,
817              volatile unsigned long *addr)
818 {
819     return ((atomic_load_acq_long(addr) & (1 << nr)) != 0);
820 }
821 
822 void
823 bxe_set_bit(unsigned int           nr,
824             volatile unsigned long *addr)
825 {
826     atomic_set_acq_long(addr, (1 << nr));
827 }
828 
829 void
830 bxe_clear_bit(int                    nr,
831               volatile unsigned long *addr)
832 {
833     atomic_clear_acq_long(addr, (1 << nr));
834 }
835 
836 int
837 bxe_test_and_set_bit(int                    nr,
838                        volatile unsigned long *addr)
839 {
840     unsigned long x;
841     nr = (1 << nr);
842     do {
843         x = *addr;
844     } while (atomic_cmpset_acq_long(addr, x, x | nr) == 0);
845     // if (x & nr) bit_was_set; else bit_was_not_set;
846     return (x & nr);
847 }
848 
849 int
850 bxe_test_and_clear_bit(int                    nr,
851                        volatile unsigned long *addr)
852 {
853     unsigned long x;
854     nr = (1 << nr);
855     do {
856         x = *addr;
857     } while (atomic_cmpset_acq_long(addr, x, x & ~nr) == 0);
858     // if (x & nr) bit_was_set; else bit_was_not_set;
859     return (x & nr);
860 }
861 
862 int
863 bxe_cmpxchg(volatile int *addr,
864             int          old,
865             int          new)
866 {
867     int x;
868     do {
869         x = *addr;
870     } while (atomic_cmpset_acq_int(addr, old, new) == 0);
871     return (x);
872 }
873 
874 /*
875  * Get DMA memory from the OS.
876  *
877  * Validates that the OS has provided DMA buffers in response to a
878  * bus_dmamap_load call and saves the physical address of those buffers.
879  * When the callback is used the OS will return 0 for the mapping function
880  * (bus_dmamap_load) so we use the value of map_arg->maxsegs to pass any
881  * failures back to the caller.
882  *
883  * Returns:
884  *   Nothing.
885  */
886 static void
887 bxe_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
888 {
889     struct bxe_dma *dma = arg;
890 
891     if (error) {
892         dma->paddr = 0;
893         dma->nseg  = 0;
894         BLOGE(dma->sc, "Failed DMA alloc '%s' (%d)!\n", dma->msg, error);
895     } else {
896         dma->paddr = segs->ds_addr;
897         dma->nseg  = nseg;
898 #if 0
899         BLOGD(dma->sc, DBG_LOAD,
900               "DMA alloc '%s': vaddr=%p paddr=%p nseg=%d size=%lu\n",
901               dma->msg, dma->vaddr, (void *)dma->paddr,
902               dma->nseg, dma->size);
903 #endif
904     }
905 }
906 
907 /*
908  * Allocate a block of memory and map it for DMA. No partial completions
909  * allowed and release any resources acquired if we can't acquire all
910  * resources.
911  *
912  * Returns:
913  *   0 = Success, !0 = Failure
914  */
915 int
916 bxe_dma_alloc(struct bxe_softc *sc,
917               bus_size_t       size,
918               struct bxe_dma   *dma,
919               const char       *msg)
920 {
921     int rc;
922 
923     if (dma->size > 0) {
924         BLOGE(sc, "dma block '%s' already has size %lu\n", msg,
925               (unsigned long)dma->size);
926         return (1);
927     }
928 
929     memset(dma, 0, sizeof(*dma)); /* sanity */
930     dma->sc   = sc;
931     dma->size = size;
932     snprintf(dma->msg, sizeof(dma->msg), "%s", msg);
933 
934     rc = bus_dma_tag_create(sc->parent_dma_tag, /* parent tag */
935                             BCM_PAGE_SIZE,      /* alignment */
936                             0,                  /* boundary limit */
937                             BUS_SPACE_MAXADDR,  /* restricted low */
938                             BUS_SPACE_MAXADDR,  /* restricted hi */
939                             NULL,               /* addr filter() */
940                             NULL,               /* addr filter() arg */
941                             size,               /* max map size */
942                             1,                  /* num discontinuous */
943                             size,               /* max seg size */
944                             BUS_DMA_ALLOCNOW,   /* flags */
945                             NULL,               /* lock() */
946                             NULL,               /* lock() arg */
947                             &dma->tag);         /* returned dma tag */
948     if (rc != 0) {
949         BLOGE(sc, "Failed to create dma tag for '%s' (%d)\n", msg, rc);
950         memset(dma, 0, sizeof(*dma));
951         return (1);
952     }
953 
954     rc = bus_dmamem_alloc(dma->tag,
955                           (void **)&dma->vaddr,
956                           (BUS_DMA_NOWAIT | BUS_DMA_ZERO),
957                           &dma->map);
958     if (rc != 0) {
959         BLOGE(sc, "Failed to alloc dma mem for '%s' (%d)\n", msg, rc);
960         bus_dma_tag_destroy(dma->tag);
961         memset(dma, 0, sizeof(*dma));
962         return (1);
963     }
964 
965     rc = bus_dmamap_load(dma->tag,
966                          dma->map,
967                          dma->vaddr,
968                          size,
969                          bxe_dma_map_addr, /* BLOGD in here */
970                          dma,
971                          BUS_DMA_NOWAIT);
972     if (rc != 0) {
973         BLOGE(sc, "Failed to load dma map for '%s' (%d)\n", msg, rc);
974         bus_dmamem_free(dma->tag, dma->vaddr, dma->map);
975         bus_dma_tag_destroy(dma->tag);
976         memset(dma, 0, sizeof(*dma));
977         return (1);
978     }
979 
980     return (0);
981 }
982 
983 void
984 bxe_dma_free(struct bxe_softc *sc,
985              struct bxe_dma   *dma)
986 {
987     if (dma->size > 0) {
988 #if 0
989         BLOGD(sc, DBG_LOAD,
990               "DMA free '%s': vaddr=%p paddr=%p nseg=%d size=%lu\n",
991               dma->msg, dma->vaddr, (void *)dma->paddr,
992               dma->nseg, dma->size);
993 #endif
994 
995         DBASSERT(sc, (dma->tag != NULL), ("dma tag is NULL"));
996 
997         bus_dmamap_sync(dma->tag, dma->map,
998                         (BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE));
999         bus_dmamap_unload(dma->tag, dma->map);
1000         bus_dmamem_free(dma->tag, dma->vaddr, dma->map);
1001         bus_dma_tag_destroy(dma->tag);
1002     }
1003 
1004     memset(dma, 0, sizeof(*dma));
1005 }
1006 
1007 /*
1008  * These indirect read and write routines are only during init.
1009  * The locking is handled by the MCP.
1010  */
1011 
1012 void
1013 bxe_reg_wr_ind(struct bxe_softc *sc,
1014                uint32_t         addr,
1015                uint32_t         val)
1016 {
1017     pci_write_config(sc->dev, PCICFG_GRC_ADDRESS, addr, 4);
1018     pci_write_config(sc->dev, PCICFG_GRC_DATA, val, 4);
1019     pci_write_config(sc->dev, PCICFG_GRC_ADDRESS, 0, 4);
1020 }
1021 
1022 uint32_t
1023 bxe_reg_rd_ind(struct bxe_softc *sc,
1024                uint32_t         addr)
1025 {
1026     uint32_t val;
1027 
1028     pci_write_config(sc->dev, PCICFG_GRC_ADDRESS, addr, 4);
1029     val = pci_read_config(sc->dev, PCICFG_GRC_DATA, 4);
1030     pci_write_config(sc->dev, PCICFG_GRC_ADDRESS, 0, 4);
1031 
1032     return (val);
1033 }
1034 
1035 #if 0
1036 void bxe_dp_dmae(struct bxe_softc *sc, struct dmae_command *dmae, int msglvl)
1037 {
1038     uint32_t src_type = dmae->opcode & DMAE_COMMAND_SRC;
1039 
1040     switch (dmae->opcode & DMAE_COMMAND_DST) {
1041     case DMAE_CMD_DST_PCI:
1042         if (src_type == DMAE_CMD_SRC_PCI)
1043             DP(msglvl, "DMAE: opcode 0x%08x\n"
1044                "src [%x:%08x], len [%d*4], dst [%x:%08x]\n"
1045                "comp_addr [%x:%08x], comp_val 0x%08x\n",
1046                dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
1047                dmae->len, dmae->dst_addr_hi, dmae->dst_addr_lo,
1048                dmae->comp_addr_hi, dmae->comp_addr_lo,
1049                dmae->comp_val);
1050         else
1051             DP(msglvl, "DMAE: opcode 0x%08x\n"
1052                "src [%08x], len [%d*4], dst [%x:%08x]\n"
1053                "comp_addr [%x:%08x], comp_val 0x%08x\n",
1054                dmae->opcode, dmae->src_addr_lo >> 2,
1055                dmae->len, dmae->dst_addr_hi, dmae->dst_addr_lo,
1056                dmae->comp_addr_hi, dmae->comp_addr_lo,
1057                dmae->comp_val);
1058         break;
1059     case DMAE_CMD_DST_GRC:
1060         if (src_type == DMAE_CMD_SRC_PCI)
1061             DP(msglvl, "DMAE: opcode 0x%08x\n"
1062                "src [%x:%08x], len [%d*4], dst_addr [%08x]\n"
1063                "comp_addr [%x:%08x], comp_val 0x%08x\n",
1064                dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
1065                dmae->len, dmae->dst_addr_lo >> 2,
1066                dmae->comp_addr_hi, dmae->comp_addr_lo,
1067                dmae->comp_val);
1068         else
1069             DP(msglvl, "DMAE: opcode 0x%08x\n"
1070                "src [%08x], len [%d*4], dst [%08x]\n"
1071                "comp_addr [%x:%08x], comp_val 0x%08x\n",
1072                dmae->opcode, dmae->src_addr_lo >> 2,
1073                dmae->len, dmae->dst_addr_lo >> 2,
1074                dmae->comp_addr_hi, dmae->comp_addr_lo,
1075                dmae->comp_val);
1076         break;
1077     default:
1078         if (src_type == DMAE_CMD_SRC_PCI)
1079             DP(msglvl, "DMAE: opcode 0x%08x\n"
1080                "src_addr [%x:%08x]  len [%d * 4]  dst_addr [none]\n"
1081                "comp_addr [%x:%08x]  comp_val 0x%08x\n",
1082                dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
1083                dmae->len, dmae->comp_addr_hi, dmae->comp_addr_lo,
1084                dmae->comp_val);
1085         else
1086             DP(msglvl, "DMAE: opcode 0x%08x\n"
1087                "src_addr [%08x]  len [%d * 4]  dst_addr [none]\n"
1088                "comp_addr [%x:%08x]  comp_val 0x%08x\n",
1089                dmae->opcode, dmae->src_addr_lo >> 2,
1090                dmae->len, dmae->comp_addr_hi, dmae->comp_addr_lo,
1091                dmae->comp_val);
1092         break;
1093     }
1094 
1095 }
1096 #endif
1097 
1098 static int
1099 bxe_acquire_hw_lock(struct bxe_softc *sc,
1100                     uint32_t         resource)
1101 {
1102     uint32_t lock_status;
1103     uint32_t resource_bit = (1 << resource);
1104     int func = SC_FUNC(sc);
1105     uint32_t hw_lock_control_reg;
1106     int cnt;
1107 
1108     /* validate the resource is within range */
1109     if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
1110         BLOGE(sc, "resource 0x%x > HW_LOCK_MAX_RESOURCE_VALUE\n", resource);
1111         return (-1);
1112     }
1113 
1114     if (func <= 5) {
1115         hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + (func * 8));
1116     } else {
1117         hw_lock_control_reg =
1118                 (MISC_REG_DRIVER_CONTROL_7 + ((func - 6) * 8));
1119     }
1120 
1121     /* validate the resource is not already taken */
1122     lock_status = REG_RD(sc, hw_lock_control_reg);
1123     if (lock_status & resource_bit) {
1124         BLOGE(sc, "resource in use (status 0x%x bit 0x%x)\n",
1125               lock_status, resource_bit);
1126         return (-1);
1127     }
1128 
1129     /* try every 5ms for 5 seconds */
1130     for (cnt = 0; cnt < 1000; cnt++) {
1131         REG_WR(sc, (hw_lock_control_reg + 4), resource_bit);
1132         lock_status = REG_RD(sc, hw_lock_control_reg);
1133         if (lock_status & resource_bit) {
1134             return (0);
1135         }
1136         DELAY(5000);
1137     }
1138 
1139     BLOGE(sc, "Resource lock timeout!\n");
1140     return (-1);
1141 }
1142 
1143 static int
1144 bxe_release_hw_lock(struct bxe_softc *sc,
1145                     uint32_t         resource)
1146 {
1147     uint32_t lock_status;
1148     uint32_t resource_bit = (1 << resource);
1149     int func = SC_FUNC(sc);
1150     uint32_t hw_lock_control_reg;
1151 
1152     /* validate the resource is within range */
1153     if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
1154         BLOGE(sc, "resource 0x%x > HW_LOCK_MAX_RESOURCE_VALUE\n", resource);
1155         return (-1);
1156     }
1157 
1158     if (func <= 5) {
1159         hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + (func * 8));
1160     } else {
1161         hw_lock_control_reg =
1162                 (MISC_REG_DRIVER_CONTROL_7 + ((func - 6) * 8));
1163     }
1164 
1165     /* validate the resource is currently taken */
1166     lock_status = REG_RD(sc, hw_lock_control_reg);
1167     if (!(lock_status & resource_bit)) {
1168         BLOGE(sc, "resource not in use (status 0x%x bit 0x%x)\n",
1169               lock_status, resource_bit);
1170         return (-1);
1171     }
1172 
1173     REG_WR(sc, hw_lock_control_reg, resource_bit);
1174     return (0);
1175 }
1176 static void bxe_acquire_phy_lock(struct bxe_softc *sc)
1177 {
1178 	BXE_PHY_LOCK(sc);
1179 	bxe_acquire_hw_lock(sc,HW_LOCK_RESOURCE_MDIO);
1180 }
1181 
1182 static void bxe_release_phy_lock(struct bxe_softc *sc)
1183 {
1184 	bxe_release_hw_lock(sc,HW_LOCK_RESOURCE_MDIO);
1185 	BXE_PHY_UNLOCK(sc);
1186 }
1187 /*
1188  * Per pf misc lock must be acquired before the per port mcp lock. Otherwise,
1189  * had we done things the other way around, if two pfs from the same port
1190  * would attempt to access nvram at the same time, we could run into a
1191  * scenario such as:
1192  * pf A takes the port lock.
1193  * pf B succeeds in taking the same lock since they are from the same port.
1194  * pf A takes the per pf misc lock. Performs eeprom access.
1195  * pf A finishes. Unlocks the per pf misc lock.
1196  * Pf B takes the lock and proceeds to perform it's own access.
1197  * pf A unlocks the per port lock, while pf B is still working (!).
1198  * mcp takes the per port lock and corrupts pf B's access (and/or has it's own
1199  * access corrupted by pf B).*
1200  */
1201 static int
1202 bxe_acquire_nvram_lock(struct bxe_softc *sc)
1203 {
1204     int port = SC_PORT(sc);
1205     int count, i;
1206     uint32_t val = 0;
1207 
1208     /* acquire HW lock: protect against other PFs in PF Direct Assignment */
1209     bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_NVRAM);
1210 
1211     /* adjust timeout for emulation/FPGA */
1212     count = NVRAM_TIMEOUT_COUNT;
1213     if (CHIP_REV_IS_SLOW(sc)) {
1214         count *= 100;
1215     }
1216 
1217     /* request access to nvram interface */
1218     REG_WR(sc, MCP_REG_MCPR_NVM_SW_ARB,
1219            (MCPR_NVM_SW_ARB_ARB_REQ_SET1 << port));
1220 
1221     for (i = 0; i < count*10; i++) {
1222         val = REG_RD(sc, MCP_REG_MCPR_NVM_SW_ARB);
1223         if (val & (MCPR_NVM_SW_ARB_ARB_ARB1 << port)) {
1224             break;
1225         }
1226 
1227         DELAY(5);
1228     }
1229 
1230     if (!(val & (MCPR_NVM_SW_ARB_ARB_ARB1 << port))) {
1231         BLOGE(sc, "Cannot get access to nvram interface\n");
1232         return (-1);
1233     }
1234 
1235     return (0);
1236 }
1237 
1238 static int
1239 bxe_release_nvram_lock(struct bxe_softc *sc)
1240 {
1241     int port = SC_PORT(sc);
1242     int count, i;
1243     uint32_t val = 0;
1244 
1245     /* adjust timeout for emulation/FPGA */
1246     count = NVRAM_TIMEOUT_COUNT;
1247     if (CHIP_REV_IS_SLOW(sc)) {
1248         count *= 100;
1249     }
1250 
1251     /* relinquish nvram interface */
1252     REG_WR(sc, MCP_REG_MCPR_NVM_SW_ARB,
1253            (MCPR_NVM_SW_ARB_ARB_REQ_CLR1 << port));
1254 
1255     for (i = 0; i < count*10; i++) {
1256         val = REG_RD(sc, MCP_REG_MCPR_NVM_SW_ARB);
1257         if (!(val & (MCPR_NVM_SW_ARB_ARB_ARB1 << port))) {
1258             break;
1259         }
1260 
1261         DELAY(5);
1262     }
1263 
1264     if (val & (MCPR_NVM_SW_ARB_ARB_ARB1 << port)) {
1265         BLOGE(sc, "Cannot free access to nvram interface\n");
1266         return (-1);
1267     }
1268 
1269     /* release HW lock: protect against other PFs in PF Direct Assignment */
1270     bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_NVRAM);
1271 
1272     return (0);
1273 }
1274 
1275 static void
1276 bxe_enable_nvram_access(struct bxe_softc *sc)
1277 {
1278     uint32_t val;
1279 
1280     val = REG_RD(sc, MCP_REG_MCPR_NVM_ACCESS_ENABLE);
1281 
1282     /* enable both bits, even on read */
1283     REG_WR(sc, MCP_REG_MCPR_NVM_ACCESS_ENABLE,
1284            (val | MCPR_NVM_ACCESS_ENABLE_EN | MCPR_NVM_ACCESS_ENABLE_WR_EN));
1285 }
1286 
1287 static void
1288 bxe_disable_nvram_access(struct bxe_softc *sc)
1289 {
1290     uint32_t val;
1291 
1292     val = REG_RD(sc, MCP_REG_MCPR_NVM_ACCESS_ENABLE);
1293 
1294     /* disable both bits, even after read */
1295     REG_WR(sc, MCP_REG_MCPR_NVM_ACCESS_ENABLE,
1296            (val & ~(MCPR_NVM_ACCESS_ENABLE_EN |
1297                     MCPR_NVM_ACCESS_ENABLE_WR_EN)));
1298 }
1299 
1300 static int
1301 bxe_nvram_read_dword(struct bxe_softc *sc,
1302                      uint32_t         offset,
1303                      uint32_t         *ret_val,
1304                      uint32_t         cmd_flags)
1305 {
1306     int count, i, rc;
1307     uint32_t val;
1308 
1309     /* build the command word */
1310     cmd_flags |= MCPR_NVM_COMMAND_DOIT;
1311 
1312     /* need to clear DONE bit separately */
1313     REG_WR(sc, MCP_REG_MCPR_NVM_COMMAND, MCPR_NVM_COMMAND_DONE);
1314 
1315     /* address of the NVRAM to read from */
1316     REG_WR(sc, MCP_REG_MCPR_NVM_ADDR,
1317            (offset & MCPR_NVM_ADDR_NVM_ADDR_VALUE));
1318 
1319     /* issue a read command */
1320     REG_WR(sc, MCP_REG_MCPR_NVM_COMMAND, cmd_flags);
1321 
1322     /* adjust timeout for emulation/FPGA */
1323     count = NVRAM_TIMEOUT_COUNT;
1324     if (CHIP_REV_IS_SLOW(sc)) {
1325         count *= 100;
1326     }
1327 
1328     /* wait for completion */
1329     *ret_val = 0;
1330     rc = -1;
1331     for (i = 0; i < count; i++) {
1332         DELAY(5);
1333         val = REG_RD(sc, MCP_REG_MCPR_NVM_COMMAND);
1334 
1335         if (val & MCPR_NVM_COMMAND_DONE) {
1336             val = REG_RD(sc, MCP_REG_MCPR_NVM_READ);
1337             /* we read nvram data in cpu order
1338              * but ethtool sees it as an array of bytes
1339              * converting to big-endian will do the work
1340              */
1341             *ret_val = htobe32(val);
1342             rc = 0;
1343             break;
1344         }
1345     }
1346 
1347     if (rc == -1) {
1348         BLOGE(sc, "nvram read timeout expired\n");
1349     }
1350 
1351     return (rc);
1352 }
1353 
1354 static int
1355 bxe_nvram_read(struct bxe_softc *sc,
1356                uint32_t         offset,
1357                uint8_t          *ret_buf,
1358                int              buf_size)
1359 {
1360     uint32_t cmd_flags;
1361     uint32_t val;
1362     int rc;
1363 
1364     if ((offset & 0x03) || (buf_size & 0x03) || (buf_size == 0)) {
1365         BLOGE(sc, "Invalid parameter, offset 0x%x buf_size 0x%x\n",
1366               offset, buf_size);
1367         return (-1);
1368     }
1369 
1370     if ((offset + buf_size) > sc->devinfo.flash_size) {
1371         BLOGE(sc, "Invalid parameter, "
1372                   "offset 0x%x + buf_size 0x%x > flash_size 0x%x\n",
1373               offset, buf_size, sc->devinfo.flash_size);
1374         return (-1);
1375     }
1376 
1377     /* request access to nvram interface */
1378     rc = bxe_acquire_nvram_lock(sc);
1379     if (rc) {
1380         return (rc);
1381     }
1382 
1383     /* enable access to nvram interface */
1384     bxe_enable_nvram_access(sc);
1385 
1386     /* read the first word(s) */
1387     cmd_flags = MCPR_NVM_COMMAND_FIRST;
1388     while ((buf_size > sizeof(uint32_t)) && (rc == 0)) {
1389         rc = bxe_nvram_read_dword(sc, offset, &val, cmd_flags);
1390         memcpy(ret_buf, &val, 4);
1391 
1392         /* advance to the next dword */
1393         offset += sizeof(uint32_t);
1394         ret_buf += sizeof(uint32_t);
1395         buf_size -= sizeof(uint32_t);
1396         cmd_flags = 0;
1397     }
1398 
1399     if (rc == 0) {
1400         cmd_flags |= MCPR_NVM_COMMAND_LAST;
1401         rc = bxe_nvram_read_dword(sc, offset, &val, cmd_flags);
1402         memcpy(ret_buf, &val, 4);
1403     }
1404 
1405     /* disable access to nvram interface */
1406     bxe_disable_nvram_access(sc);
1407     bxe_release_nvram_lock(sc);
1408 
1409     return (rc);
1410 }
1411 
1412 static int
1413 bxe_nvram_write_dword(struct bxe_softc *sc,
1414                       uint32_t         offset,
1415                       uint32_t         val,
1416                       uint32_t         cmd_flags)
1417 {
1418     int count, i, rc;
1419 
1420     /* build the command word */
1421     cmd_flags |= (MCPR_NVM_COMMAND_DOIT | MCPR_NVM_COMMAND_WR);
1422 
1423     /* need to clear DONE bit separately */
1424     REG_WR(sc, MCP_REG_MCPR_NVM_COMMAND, MCPR_NVM_COMMAND_DONE);
1425 
1426     /* write the data */
1427     REG_WR(sc, MCP_REG_MCPR_NVM_WRITE, val);
1428 
1429     /* address of the NVRAM to write to */
1430     REG_WR(sc, MCP_REG_MCPR_NVM_ADDR,
1431            (offset & MCPR_NVM_ADDR_NVM_ADDR_VALUE));
1432 
1433     /* issue the write command */
1434     REG_WR(sc, MCP_REG_MCPR_NVM_COMMAND, cmd_flags);
1435 
1436     /* adjust timeout for emulation/FPGA */
1437     count = NVRAM_TIMEOUT_COUNT;
1438     if (CHIP_REV_IS_SLOW(sc)) {
1439         count *= 100;
1440     }
1441 
1442     /* wait for completion */
1443     rc = -1;
1444     for (i = 0; i < count; i++) {
1445         DELAY(5);
1446         val = REG_RD(sc, MCP_REG_MCPR_NVM_COMMAND);
1447         if (val & MCPR_NVM_COMMAND_DONE) {
1448             rc = 0;
1449             break;
1450         }
1451     }
1452 
1453     if (rc == -1) {
1454         BLOGE(sc, "nvram write timeout expired\n");
1455     }
1456 
1457     return (rc);
1458 }
1459 
1460 #define BYTE_OFFSET(offset) (8 * (offset & 0x03))
1461 
1462 static int
1463 bxe_nvram_write1(struct bxe_softc *sc,
1464                  uint32_t         offset,
1465                  uint8_t          *data_buf,
1466                  int              buf_size)
1467 {
1468     uint32_t cmd_flags;
1469     uint32_t align_offset;
1470     uint32_t val;
1471     int rc;
1472 
1473     if ((offset + buf_size) > sc->devinfo.flash_size) {
1474         BLOGE(sc, "Invalid parameter, "
1475                   "offset 0x%x + buf_size 0x%x > flash_size 0x%x\n",
1476               offset, buf_size, sc->devinfo.flash_size);
1477         return (-1);
1478     }
1479 
1480     /* request access to nvram interface */
1481     rc = bxe_acquire_nvram_lock(sc);
1482     if (rc) {
1483         return (rc);
1484     }
1485 
1486     /* enable access to nvram interface */
1487     bxe_enable_nvram_access(sc);
1488 
1489     cmd_flags = (MCPR_NVM_COMMAND_FIRST | MCPR_NVM_COMMAND_LAST);
1490     align_offset = (offset & ~0x03);
1491     rc = bxe_nvram_read_dword(sc, align_offset, &val, cmd_flags);
1492 
1493     if (rc == 0) {
1494         val &= ~(0xff << BYTE_OFFSET(offset));
1495         val |= (*data_buf << BYTE_OFFSET(offset));
1496 
1497         /* nvram data is returned as an array of bytes
1498          * convert it back to cpu order
1499          */
1500         val = be32toh(val);
1501 
1502         rc = bxe_nvram_write_dword(sc, align_offset, val, cmd_flags);
1503     }
1504 
1505     /* disable access to nvram interface */
1506     bxe_disable_nvram_access(sc);
1507     bxe_release_nvram_lock(sc);
1508 
1509     return (rc);
1510 }
1511 
1512 static int
1513 bxe_nvram_write(struct bxe_softc *sc,
1514                 uint32_t         offset,
1515                 uint8_t          *data_buf,
1516                 int              buf_size)
1517 {
1518     uint32_t cmd_flags;
1519     uint32_t val;
1520     uint32_t written_so_far;
1521     int rc;
1522 
1523     if (buf_size == 1) {
1524         return (bxe_nvram_write1(sc, offset, data_buf, buf_size));
1525     }
1526 
1527     if ((offset & 0x03) || (buf_size & 0x03) /* || (buf_size == 0) */) {
1528         BLOGE(sc, "Invalid parameter, offset 0x%x buf_size 0x%x\n",
1529               offset, buf_size);
1530         return (-1);
1531     }
1532 
1533     if (buf_size == 0) {
1534         return (0); /* nothing to do */
1535     }
1536 
1537     if ((offset + buf_size) > sc->devinfo.flash_size) {
1538         BLOGE(sc, "Invalid parameter, "
1539                   "offset 0x%x + buf_size 0x%x > flash_size 0x%x\n",
1540               offset, buf_size, sc->devinfo.flash_size);
1541         return (-1);
1542     }
1543 
1544     /* request access to nvram interface */
1545     rc = bxe_acquire_nvram_lock(sc);
1546     if (rc) {
1547         return (rc);
1548     }
1549 
1550     /* enable access to nvram interface */
1551     bxe_enable_nvram_access(sc);
1552 
1553     written_so_far = 0;
1554     cmd_flags = MCPR_NVM_COMMAND_FIRST;
1555     while ((written_so_far < buf_size) && (rc == 0)) {
1556         if (written_so_far == (buf_size - sizeof(uint32_t))) {
1557             cmd_flags |= MCPR_NVM_COMMAND_LAST;
1558         } else if (((offset + 4) % NVRAM_PAGE_SIZE) == 0) {
1559             cmd_flags |= MCPR_NVM_COMMAND_LAST;
1560         } else if ((offset % NVRAM_PAGE_SIZE) == 0) {
1561             cmd_flags |= MCPR_NVM_COMMAND_FIRST;
1562         }
1563 
1564         memcpy(&val, data_buf, 4);
1565 
1566         rc = bxe_nvram_write_dword(sc, offset, val, cmd_flags);
1567 
1568         /* advance to the next dword */
1569         offset += sizeof(uint32_t);
1570         data_buf += sizeof(uint32_t);
1571         written_so_far += sizeof(uint32_t);
1572         cmd_flags = 0;
1573     }
1574 
1575     /* disable access to nvram interface */
1576     bxe_disable_nvram_access(sc);
1577     bxe_release_nvram_lock(sc);
1578 
1579     return (rc);
1580 }
1581 
1582 /* copy command into DMAE command memory and set DMAE command Go */
1583 void
1584 bxe_post_dmae(struct bxe_softc    *sc,
1585               struct dmae_command *dmae,
1586               int                 idx)
1587 {
1588     uint32_t cmd_offset;
1589     int i;
1590 
1591     cmd_offset = (DMAE_REG_CMD_MEM + (sizeof(struct dmae_command) * idx));
1592     for (i = 0; i < ((sizeof(struct dmae_command) / 4)); i++) {
1593         REG_WR(sc, (cmd_offset + (i * 4)), *(((uint32_t *)dmae) + i));
1594     }
1595 
1596     REG_WR(sc, dmae_reg_go_c[idx], 1);
1597 }
1598 
1599 uint32_t
1600 bxe_dmae_opcode_add_comp(uint32_t opcode,
1601                          uint8_t  comp_type)
1602 {
1603     return (opcode | ((comp_type << DMAE_COMMAND_C_DST_SHIFT) |
1604                       DMAE_COMMAND_C_TYPE_ENABLE));
1605 }
1606 
1607 uint32_t
1608 bxe_dmae_opcode_clr_src_reset(uint32_t opcode)
1609 {
1610     return (opcode & ~DMAE_COMMAND_SRC_RESET);
1611 }
1612 
1613 uint32_t
1614 bxe_dmae_opcode(struct bxe_softc *sc,
1615                 uint8_t          src_type,
1616                 uint8_t          dst_type,
1617                 uint8_t          with_comp,
1618                 uint8_t          comp_type)
1619 {
1620     uint32_t opcode = 0;
1621 
1622     opcode |= ((src_type << DMAE_COMMAND_SRC_SHIFT) |
1623                (dst_type << DMAE_COMMAND_DST_SHIFT));
1624 
1625     opcode |= (DMAE_COMMAND_SRC_RESET | DMAE_COMMAND_DST_RESET);
1626 
1627     opcode |= (SC_PORT(sc) ? DMAE_CMD_PORT_1 : DMAE_CMD_PORT_0);
1628 
1629     opcode |= ((SC_VN(sc) << DMAE_COMMAND_E1HVN_SHIFT) |
1630                (SC_VN(sc) << DMAE_COMMAND_DST_VN_SHIFT));
1631 
1632     opcode |= (DMAE_COM_SET_ERR << DMAE_COMMAND_ERR_POLICY_SHIFT);
1633 
1634 #ifdef __BIG_ENDIAN
1635     opcode |= DMAE_CMD_ENDIANITY_B_DW_SWAP;
1636 #else
1637     opcode |= DMAE_CMD_ENDIANITY_DW_SWAP;
1638 #endif
1639 
1640     if (with_comp) {
1641         opcode = bxe_dmae_opcode_add_comp(opcode, comp_type);
1642     }
1643 
1644     return (opcode);
1645 }
1646 
1647 static void
1648 bxe_prep_dmae_with_comp(struct bxe_softc    *sc,
1649                         struct dmae_command *dmae,
1650                         uint8_t             src_type,
1651                         uint8_t             dst_type)
1652 {
1653     memset(dmae, 0, sizeof(struct dmae_command));
1654 
1655     /* set the opcode */
1656     dmae->opcode = bxe_dmae_opcode(sc, src_type, dst_type,
1657                                    TRUE, DMAE_COMP_PCI);
1658 
1659     /* fill in the completion parameters */
1660     dmae->comp_addr_lo = U64_LO(BXE_SP_MAPPING(sc, wb_comp));
1661     dmae->comp_addr_hi = U64_HI(BXE_SP_MAPPING(sc, wb_comp));
1662     dmae->comp_val     = DMAE_COMP_VAL;
1663 }
1664 
1665 /* issue a DMAE command over the init channel and wait for completion */
1666 static int
1667 bxe_issue_dmae_with_comp(struct bxe_softc    *sc,
1668                          struct dmae_command *dmae)
1669 {
1670     uint32_t *wb_comp = BXE_SP(sc, wb_comp);
1671     int timeout = CHIP_REV_IS_SLOW(sc) ? 400000 : 4000;
1672 
1673     BXE_DMAE_LOCK(sc);
1674 
1675     /* reset completion */
1676     *wb_comp = 0;
1677 
1678     /* post the command on the channel used for initializations */
1679     bxe_post_dmae(sc, dmae, INIT_DMAE_C(sc));
1680 
1681     /* wait for completion */
1682     DELAY(5);
1683 
1684     while ((*wb_comp & ~DMAE_PCI_ERR_FLAG) != DMAE_COMP_VAL) {
1685         if (!timeout ||
1686             (sc->recovery_state != BXE_RECOVERY_DONE &&
1687              sc->recovery_state != BXE_RECOVERY_NIC_LOADING)) {
1688             BLOGE(sc, "DMAE timeout!\n");
1689             BXE_DMAE_UNLOCK(sc);
1690             return (DMAE_TIMEOUT);
1691         }
1692 
1693         timeout--;
1694         DELAY(50);
1695     }
1696 
1697     if (*wb_comp & DMAE_PCI_ERR_FLAG) {
1698         BLOGE(sc, "DMAE PCI error!\n");
1699         BXE_DMAE_UNLOCK(sc);
1700         return (DMAE_PCI_ERROR);
1701     }
1702 
1703     BXE_DMAE_UNLOCK(sc);
1704     return (0);
1705 }
1706 
1707 void
1708 bxe_read_dmae(struct bxe_softc *sc,
1709               uint32_t         src_addr,
1710               uint32_t         len32)
1711 {
1712     struct dmae_command dmae;
1713     uint32_t *data;
1714     int i, rc;
1715 
1716     DBASSERT(sc, (len32 <= 4), ("DMAE read length is %d", len32));
1717 
1718     if (!sc->dmae_ready) {
1719         data = BXE_SP(sc, wb_data[0]);
1720 
1721         for (i = 0; i < len32; i++) {
1722             data[i] = (CHIP_IS_E1(sc)) ?
1723                           bxe_reg_rd_ind(sc, (src_addr + (i * 4))) :
1724                           REG_RD(sc, (src_addr + (i * 4)));
1725         }
1726 
1727         return;
1728     }
1729 
1730     /* set opcode and fixed command fields */
1731     bxe_prep_dmae_with_comp(sc, &dmae, DMAE_SRC_GRC, DMAE_DST_PCI);
1732 
1733     /* fill in addresses and len */
1734     dmae.src_addr_lo = (src_addr >> 2); /* GRC addr has dword resolution */
1735     dmae.src_addr_hi = 0;
1736     dmae.dst_addr_lo = U64_LO(BXE_SP_MAPPING(sc, wb_data));
1737     dmae.dst_addr_hi = U64_HI(BXE_SP_MAPPING(sc, wb_data));
1738     dmae.len         = len32;
1739 
1740     /* issue the command and wait for completion */
1741     if ((rc = bxe_issue_dmae_with_comp(sc, &dmae)) != 0) {
1742         bxe_panic(sc, ("DMAE failed (%d)\n", rc));
1743     };
1744 }
1745 
1746 void
1747 bxe_write_dmae(struct bxe_softc *sc,
1748                bus_addr_t       dma_addr,
1749                uint32_t         dst_addr,
1750                uint32_t         len32)
1751 {
1752     struct dmae_command dmae;
1753     int rc;
1754 
1755     if (!sc->dmae_ready) {
1756         DBASSERT(sc, (len32 <= 4), ("DMAE not ready and length is %d", len32));
1757 
1758         if (CHIP_IS_E1(sc)) {
1759             ecore_init_ind_wr(sc, dst_addr, BXE_SP(sc, wb_data[0]), len32);
1760         } else {
1761             ecore_init_str_wr(sc, dst_addr, BXE_SP(sc, wb_data[0]), len32);
1762         }
1763 
1764         return;
1765     }
1766 
1767     /* set opcode and fixed command fields */
1768     bxe_prep_dmae_with_comp(sc, &dmae, DMAE_SRC_PCI, DMAE_DST_GRC);
1769 
1770     /* fill in addresses and len */
1771     dmae.src_addr_lo = U64_LO(dma_addr);
1772     dmae.src_addr_hi = U64_HI(dma_addr);
1773     dmae.dst_addr_lo = (dst_addr >> 2); /* GRC addr has dword resolution */
1774     dmae.dst_addr_hi = 0;
1775     dmae.len         = len32;
1776 
1777     /* issue the command and wait for completion */
1778     if ((rc = bxe_issue_dmae_with_comp(sc, &dmae)) != 0) {
1779         bxe_panic(sc, ("DMAE failed (%d)\n", rc));
1780     }
1781 }
1782 
1783 void
1784 bxe_write_dmae_phys_len(struct bxe_softc *sc,
1785                         bus_addr_t       phys_addr,
1786                         uint32_t         addr,
1787                         uint32_t         len)
1788 {
1789     int dmae_wr_max = DMAE_LEN32_WR_MAX(sc);
1790     int offset = 0;
1791 
1792     while (len > dmae_wr_max) {
1793         bxe_write_dmae(sc,
1794                        (phys_addr + offset), /* src DMA address */
1795                        (addr + offset),      /* dst GRC address */
1796                        dmae_wr_max);
1797         offset += (dmae_wr_max * 4);
1798         len -= dmae_wr_max;
1799     }
1800 
1801     bxe_write_dmae(sc,
1802                    (phys_addr + offset), /* src DMA address */
1803                    (addr + offset),      /* dst GRC address */
1804                    len);
1805 }
1806 
1807 void
1808 bxe_set_ctx_validation(struct bxe_softc   *sc,
1809                        struct eth_context *cxt,
1810                        uint32_t           cid)
1811 {
1812     /* ustorm cxt validation */
1813     cxt->ustorm_ag_context.cdu_usage =
1814         CDU_RSRVD_VALUE_TYPE_A(HW_CID(sc, cid),
1815             CDU_REGION_NUMBER_UCM_AG, ETH_CONNECTION_TYPE);
1816     /* xcontext validation */
1817     cxt->xstorm_ag_context.cdu_reserved =
1818         CDU_RSRVD_VALUE_TYPE_A(HW_CID(sc, cid),
1819             CDU_REGION_NUMBER_XCM_AG, ETH_CONNECTION_TYPE);
1820 }
1821 
1822 static void
1823 bxe_storm_memset_hc_timeout(struct bxe_softc *sc,
1824                             uint8_t          port,
1825                             uint8_t          fw_sb_id,
1826                             uint8_t          sb_index,
1827                             uint8_t          ticks)
1828 {
1829     uint32_t addr =
1830         (BAR_CSTRORM_INTMEM +
1831          CSTORM_STATUS_BLOCK_DATA_TIMEOUT_OFFSET(fw_sb_id, sb_index));
1832 
1833     REG_WR8(sc, addr, ticks);
1834 
1835     BLOGD(sc, DBG_LOAD,
1836           "port %d fw_sb_id %d sb_index %d ticks %d\n",
1837           port, fw_sb_id, sb_index, ticks);
1838 }
1839 
1840 static void
1841 bxe_storm_memset_hc_disable(struct bxe_softc *sc,
1842                             uint8_t          port,
1843                             uint16_t         fw_sb_id,
1844                             uint8_t          sb_index,
1845                             uint8_t          disable)
1846 {
1847     uint32_t enable_flag =
1848         (disable) ? 0 : (1 << HC_INDEX_DATA_HC_ENABLED_SHIFT);
1849     uint32_t addr =
1850         (BAR_CSTRORM_INTMEM +
1851          CSTORM_STATUS_BLOCK_DATA_FLAGS_OFFSET(fw_sb_id, sb_index));
1852     uint8_t flags;
1853 
1854     /* clear and set */
1855     flags = REG_RD8(sc, addr);
1856     flags &= ~HC_INDEX_DATA_HC_ENABLED;
1857     flags |= enable_flag;
1858     REG_WR8(sc, addr, flags);
1859 
1860     BLOGD(sc, DBG_LOAD,
1861           "port %d fw_sb_id %d sb_index %d disable %d\n",
1862           port, fw_sb_id, sb_index, disable);
1863 }
1864 
1865 void
1866 bxe_update_coalesce_sb_index(struct bxe_softc *sc,
1867                              uint8_t          fw_sb_id,
1868                              uint8_t          sb_index,
1869                              uint8_t          disable,
1870                              uint16_t         usec)
1871 {
1872     int port = SC_PORT(sc);
1873     uint8_t ticks = (usec / 4); /* XXX ??? */
1874 
1875     bxe_storm_memset_hc_timeout(sc, port, fw_sb_id, sb_index, ticks);
1876 
1877     disable = (disable) ? 1 : ((usec) ? 0 : 1);
1878     bxe_storm_memset_hc_disable(sc, port, fw_sb_id, sb_index, disable);
1879 }
1880 
1881 void
1882 elink_cb_udelay(struct bxe_softc *sc,
1883                 uint32_t         usecs)
1884 {
1885     DELAY(usecs);
1886 }
1887 
1888 uint32_t
1889 elink_cb_reg_read(struct bxe_softc *sc,
1890                   uint32_t         reg_addr)
1891 {
1892     return (REG_RD(sc, reg_addr));
1893 }
1894 
1895 void
1896 elink_cb_reg_write(struct bxe_softc *sc,
1897                    uint32_t         reg_addr,
1898                    uint32_t         val)
1899 {
1900     REG_WR(sc, reg_addr, val);
1901 }
1902 
1903 void
1904 elink_cb_reg_wb_write(struct bxe_softc *sc,
1905                       uint32_t         offset,
1906                       uint32_t         *wb_write,
1907                       uint16_t         len)
1908 {
1909     REG_WR_DMAE(sc, offset, wb_write, len);
1910 }
1911 
1912 void
1913 elink_cb_reg_wb_read(struct bxe_softc *sc,
1914                      uint32_t         offset,
1915                      uint32_t         *wb_write,
1916                      uint16_t         len)
1917 {
1918     REG_RD_DMAE(sc, offset, wb_write, len);
1919 }
1920 
1921 uint8_t
1922 elink_cb_path_id(struct bxe_softc *sc)
1923 {
1924     return (SC_PATH(sc));
1925 }
1926 
1927 void
1928 elink_cb_event_log(struct bxe_softc     *sc,
1929                    const elink_log_id_t elink_log_id,
1930                    ...)
1931 {
1932     /* XXX */
1933 #if 0
1934     //va_list ap;
1935     va_start(ap, elink_log_id);
1936     _XXX_(sc, lm_log_id, ap);
1937     va_end(ap);
1938 #endif
1939     BLOGI(sc, "ELINK EVENT LOG (%d)\n", elink_log_id);
1940 }
1941 
1942 static int
1943 bxe_set_spio(struct bxe_softc *sc,
1944              int              spio,
1945              uint32_t         mode)
1946 {
1947     uint32_t spio_reg;
1948 
1949     /* Only 2 SPIOs are configurable */
1950     if ((spio != MISC_SPIO_SPIO4) && (spio != MISC_SPIO_SPIO5)) {
1951         BLOGE(sc, "Invalid SPIO 0x%x\n", spio);
1952         return (-1);
1953     }
1954 
1955     bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_SPIO);
1956 
1957     /* read SPIO and mask except the float bits */
1958     spio_reg = (REG_RD(sc, MISC_REG_SPIO) & MISC_SPIO_FLOAT);
1959 
1960     switch (mode) {
1961     case MISC_SPIO_OUTPUT_LOW:
1962         BLOGD(sc, DBG_LOAD, "Set SPIO 0x%x -> output low\n", spio);
1963         /* clear FLOAT and set CLR */
1964         spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS);
1965         spio_reg |=  (spio << MISC_SPIO_CLR_POS);
1966         break;
1967 
1968     case MISC_SPIO_OUTPUT_HIGH:
1969         BLOGD(sc, DBG_LOAD, "Set SPIO 0x%x -> output high\n", spio);
1970         /* clear FLOAT and set SET */
1971         spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS);
1972         spio_reg |=  (spio << MISC_SPIO_SET_POS);
1973         break;
1974 
1975     case MISC_SPIO_INPUT_HI_Z:
1976         BLOGD(sc, DBG_LOAD, "Set SPIO 0x%x -> input\n", spio);
1977         /* set FLOAT */
1978         spio_reg |= (spio << MISC_SPIO_FLOAT_POS);
1979         break;
1980 
1981     default:
1982         break;
1983     }
1984 
1985     REG_WR(sc, MISC_REG_SPIO, spio_reg);
1986     bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_SPIO);
1987 
1988     return (0);
1989 }
1990 
1991 static int
1992 bxe_gpio_read(struct bxe_softc *sc,
1993               int              gpio_num,
1994               uint8_t          port)
1995 {
1996     /* The GPIO should be swapped if swap register is set and active */
1997     int gpio_port = ((REG_RD(sc, NIG_REG_PORT_SWAP) &&
1998                       REG_RD(sc, NIG_REG_STRAP_OVERRIDE)) ^ port);
1999     int gpio_shift = (gpio_num +
2000                       (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0));
2001     uint32_t gpio_mask = (1 << gpio_shift);
2002     uint32_t gpio_reg;
2003 
2004     if (gpio_num > MISC_REGISTERS_GPIO_3) {
2005         BLOGE(sc, "Invalid GPIO %d\n", gpio_num);
2006         return (-1);
2007     }
2008 
2009     /* read GPIO value */
2010     gpio_reg = REG_RD(sc, MISC_REG_GPIO);
2011 
2012     /* get the requested pin value */
2013     return ((gpio_reg & gpio_mask) == gpio_mask) ? 1 : 0;
2014 }
2015 
2016 static int
2017 bxe_gpio_write(struct bxe_softc *sc,
2018                int              gpio_num,
2019                uint32_t         mode,
2020                uint8_t          port)
2021 {
2022     /* The GPIO should be swapped if swap register is set and active */
2023     int gpio_port = ((REG_RD(sc, NIG_REG_PORT_SWAP) &&
2024                       REG_RD(sc, NIG_REG_STRAP_OVERRIDE)) ^ port);
2025     int gpio_shift = (gpio_num +
2026                       (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0));
2027     uint32_t gpio_mask = (1 << gpio_shift);
2028     uint32_t gpio_reg;
2029 
2030     if (gpio_num > MISC_REGISTERS_GPIO_3) {
2031         BLOGE(sc, "Invalid GPIO %d\n", gpio_num);
2032         return (-1);
2033     }
2034 
2035     bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
2036 
2037     /* read GPIO and mask except the float bits */
2038     gpio_reg = (REG_RD(sc, MISC_REG_GPIO) & MISC_REGISTERS_GPIO_FLOAT);
2039 
2040     switch (mode) {
2041     case MISC_REGISTERS_GPIO_OUTPUT_LOW:
2042         BLOGD(sc, DBG_PHY,
2043               "Set GPIO %d (shift %d) -> output low\n",
2044               gpio_num, gpio_shift);
2045         /* clear FLOAT and set CLR */
2046         gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
2047         gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_CLR_POS);
2048         break;
2049 
2050     case MISC_REGISTERS_GPIO_OUTPUT_HIGH:
2051         BLOGD(sc, DBG_PHY,
2052               "Set GPIO %d (shift %d) -> output high\n",
2053               gpio_num, gpio_shift);
2054         /* clear FLOAT and set SET */
2055         gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
2056         gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_SET_POS);
2057         break;
2058 
2059     case MISC_REGISTERS_GPIO_INPUT_HI_Z:
2060         BLOGD(sc, DBG_PHY,
2061               "Set GPIO %d (shift %d) -> input\n",
2062               gpio_num, gpio_shift);
2063         /* set FLOAT */
2064         gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
2065         break;
2066 
2067     default:
2068         break;
2069     }
2070 
2071     REG_WR(sc, MISC_REG_GPIO, gpio_reg);
2072     bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
2073 
2074     return (0);
2075 }
2076 
2077 static int
2078 bxe_gpio_mult_write(struct bxe_softc *sc,
2079                     uint8_t          pins,
2080                     uint32_t         mode)
2081 {
2082     uint32_t gpio_reg;
2083 
2084     /* any port swapping should be handled by caller */
2085 
2086     bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
2087 
2088     /* read GPIO and mask except the float bits */
2089     gpio_reg = REG_RD(sc, MISC_REG_GPIO);
2090     gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_FLOAT_POS);
2091     gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_CLR_POS);
2092     gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_SET_POS);
2093 
2094     switch (mode) {
2095     case MISC_REGISTERS_GPIO_OUTPUT_LOW:
2096         BLOGD(sc, DBG_PHY, "Set GPIO 0x%x -> output low\n", pins);
2097         /* set CLR */
2098         gpio_reg |= (pins << MISC_REGISTERS_GPIO_CLR_POS);
2099         break;
2100 
2101     case MISC_REGISTERS_GPIO_OUTPUT_HIGH:
2102         BLOGD(sc, DBG_PHY, "Set GPIO 0x%x -> output high\n", pins);
2103         /* set SET */
2104         gpio_reg |= (pins << MISC_REGISTERS_GPIO_SET_POS);
2105         break;
2106 
2107     case MISC_REGISTERS_GPIO_INPUT_HI_Z:
2108         BLOGD(sc, DBG_PHY, "Set GPIO 0x%x -> input\n", pins);
2109         /* set FLOAT */
2110         gpio_reg |= (pins << MISC_REGISTERS_GPIO_FLOAT_POS);
2111         break;
2112 
2113     default:
2114         BLOGE(sc, "Invalid GPIO mode assignment %d\n", mode);
2115         bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
2116         return (-1);
2117     }
2118 
2119     REG_WR(sc, MISC_REG_GPIO, gpio_reg);
2120     bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
2121 
2122     return (0);
2123 }
2124 
2125 static int
2126 bxe_gpio_int_write(struct bxe_softc *sc,
2127                    int              gpio_num,
2128                    uint32_t         mode,
2129                    uint8_t          port)
2130 {
2131     /* The GPIO should be swapped if swap register is set and active */
2132     int gpio_port = ((REG_RD(sc, NIG_REG_PORT_SWAP) &&
2133                       REG_RD(sc, NIG_REG_STRAP_OVERRIDE)) ^ port);
2134     int gpio_shift = (gpio_num +
2135                       (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0));
2136     uint32_t gpio_mask = (1 << gpio_shift);
2137     uint32_t gpio_reg;
2138 
2139     if (gpio_num > MISC_REGISTERS_GPIO_3) {
2140         BLOGE(sc, "Invalid GPIO %d\n", gpio_num);
2141         return (-1);
2142     }
2143 
2144     bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
2145 
2146     /* read GPIO int */
2147     gpio_reg = REG_RD(sc, MISC_REG_GPIO_INT);
2148 
2149     switch (mode) {
2150     case MISC_REGISTERS_GPIO_INT_OUTPUT_CLR:
2151         BLOGD(sc, DBG_PHY,
2152               "Clear GPIO INT %d (shift %d) -> output low\n",
2153               gpio_num, gpio_shift);
2154         /* clear SET and set CLR */
2155         gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS);
2156         gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS);
2157         break;
2158 
2159     case MISC_REGISTERS_GPIO_INT_OUTPUT_SET:
2160         BLOGD(sc, DBG_PHY,
2161               "Set GPIO INT %d (shift %d) -> output high\n",
2162               gpio_num, gpio_shift);
2163         /* clear CLR and set SET */
2164         gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS);
2165         gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS);
2166         break;
2167 
2168     default:
2169         break;
2170     }
2171 
2172     REG_WR(sc, MISC_REG_GPIO_INT, gpio_reg);
2173     bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
2174 
2175     return (0);
2176 }
2177 
2178 uint32_t
2179 elink_cb_gpio_read(struct bxe_softc *sc,
2180                    uint16_t         gpio_num,
2181                    uint8_t          port)
2182 {
2183     return (bxe_gpio_read(sc, gpio_num, port));
2184 }
2185 
2186 uint8_t
2187 elink_cb_gpio_write(struct bxe_softc *sc,
2188                     uint16_t         gpio_num,
2189                     uint8_t          mode, /* 0=low 1=high */
2190                     uint8_t          port)
2191 {
2192     return (bxe_gpio_write(sc, gpio_num, mode, port));
2193 }
2194 
2195 uint8_t
2196 elink_cb_gpio_mult_write(struct bxe_softc *sc,
2197                          uint8_t          pins,
2198                          uint8_t          mode) /* 0=low 1=high */
2199 {
2200     return (bxe_gpio_mult_write(sc, pins, mode));
2201 }
2202 
2203 uint8_t
2204 elink_cb_gpio_int_write(struct bxe_softc *sc,
2205                         uint16_t         gpio_num,
2206                         uint8_t          mode, /* 0=low 1=high */
2207                         uint8_t          port)
2208 {
2209     return (bxe_gpio_int_write(sc, gpio_num, mode, port));
2210 }
2211 
2212 void
2213 elink_cb_notify_link_changed(struct bxe_softc *sc)
2214 {
2215     REG_WR(sc, (MISC_REG_AEU_GENERAL_ATTN_12 +
2216                 (SC_FUNC(sc) * sizeof(uint32_t))), 1);
2217 }
2218 
2219 /* send the MCP a request, block until there is a reply */
2220 uint32_t
2221 elink_cb_fw_command(struct bxe_softc *sc,
2222                     uint32_t         command,
2223                     uint32_t         param)
2224 {
2225     int mb_idx = SC_FW_MB_IDX(sc);
2226     uint32_t seq;
2227     uint32_t rc = 0;
2228     uint32_t cnt = 1;
2229     uint8_t delay = CHIP_REV_IS_SLOW(sc) ? 100 : 10;
2230 
2231     BXE_FWMB_LOCK(sc);
2232 
2233     seq = ++sc->fw_seq;
2234     SHMEM_WR(sc, func_mb[mb_idx].drv_mb_param, param);
2235     SHMEM_WR(sc, func_mb[mb_idx].drv_mb_header, (command | seq));
2236 
2237     BLOGD(sc, DBG_PHY,
2238           "wrote command 0x%08x to FW MB param 0x%08x\n",
2239           (command | seq), param);
2240 
2241     /* Let the FW do it's magic. GIve it up to 5 seconds... */
2242     do {
2243         DELAY(delay * 1000);
2244         rc = SHMEM_RD(sc, func_mb[mb_idx].fw_mb_header);
2245     } while ((seq != (rc & FW_MSG_SEQ_NUMBER_MASK)) && (cnt++ < 500));
2246 
2247     BLOGD(sc, DBG_PHY,
2248           "[after %d ms] read 0x%x seq 0x%x from FW MB\n",
2249           cnt*delay, rc, seq);
2250 
2251     /* is this a reply to our command? */
2252     if (seq == (rc & FW_MSG_SEQ_NUMBER_MASK)) {
2253         rc &= FW_MSG_CODE_MASK;
2254     } else {
2255         /* Ruh-roh! */
2256         BLOGE(sc, "FW failed to respond!\n");
2257         // XXX bxe_fw_dump(sc);
2258         rc = 0;
2259     }
2260 
2261     BXE_FWMB_UNLOCK(sc);
2262     return (rc);
2263 }
2264 
2265 static uint32_t
2266 bxe_fw_command(struct bxe_softc *sc,
2267                uint32_t         command,
2268                uint32_t         param)
2269 {
2270     return (elink_cb_fw_command(sc, command, param));
2271 }
2272 
2273 static void
2274 __storm_memset_dma_mapping(struct bxe_softc *sc,
2275                            uint32_t         addr,
2276                            bus_addr_t       mapping)
2277 {
2278     REG_WR(sc, addr, U64_LO(mapping));
2279     REG_WR(sc, (addr + 4), U64_HI(mapping));
2280 }
2281 
2282 static void
2283 storm_memset_spq_addr(struct bxe_softc *sc,
2284                       bus_addr_t       mapping,
2285                       uint16_t         abs_fid)
2286 {
2287     uint32_t addr = (XSEM_REG_FAST_MEMORY +
2288                      XSTORM_SPQ_PAGE_BASE_OFFSET(abs_fid));
2289     __storm_memset_dma_mapping(sc, addr, mapping);
2290 }
2291 
2292 static void
2293 storm_memset_vf_to_pf(struct bxe_softc *sc,
2294                       uint16_t         abs_fid,
2295                       uint16_t         pf_id)
2296 {
2297     REG_WR8(sc, (BAR_XSTRORM_INTMEM + XSTORM_VF_TO_PF_OFFSET(abs_fid)), pf_id);
2298     REG_WR8(sc, (BAR_CSTRORM_INTMEM + CSTORM_VF_TO_PF_OFFSET(abs_fid)), pf_id);
2299     REG_WR8(sc, (BAR_TSTRORM_INTMEM + TSTORM_VF_TO_PF_OFFSET(abs_fid)), pf_id);
2300     REG_WR8(sc, (BAR_USTRORM_INTMEM + USTORM_VF_TO_PF_OFFSET(abs_fid)), pf_id);
2301 }
2302 
2303 static void
2304 storm_memset_func_en(struct bxe_softc *sc,
2305                      uint16_t         abs_fid,
2306                      uint8_t          enable)
2307 {
2308     REG_WR8(sc, (BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(abs_fid)), enable);
2309     REG_WR8(sc, (BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(abs_fid)), enable);
2310     REG_WR8(sc, (BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(abs_fid)), enable);
2311     REG_WR8(sc, (BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(abs_fid)), enable);
2312 }
2313 
2314 static void
2315 storm_memset_eq_data(struct bxe_softc       *sc,
2316                      struct event_ring_data *eq_data,
2317                      uint16_t               pfid)
2318 {
2319     uint32_t addr;
2320     size_t size;
2321 
2322     addr = (BAR_CSTRORM_INTMEM + CSTORM_EVENT_RING_DATA_OFFSET(pfid));
2323     size = sizeof(struct event_ring_data);
2324     ecore_storm_memset_struct(sc, addr, size, (uint32_t *)eq_data);
2325 }
2326 
2327 static void
2328 storm_memset_eq_prod(struct bxe_softc *sc,
2329                      uint16_t         eq_prod,
2330                      uint16_t         pfid)
2331 {
2332     uint32_t addr = (BAR_CSTRORM_INTMEM +
2333                      CSTORM_EVENT_RING_PROD_OFFSET(pfid));
2334     REG_WR16(sc, addr, eq_prod);
2335 }
2336 
2337 /*
2338  * Post a slowpath command.
2339  *
2340  * A slowpath command is used to propogate a configuration change through
2341  * the controller in a controlled manner, allowing each STORM processor and
2342  * other H/W blocks to phase in the change.  The commands sent on the
2343  * slowpath are referred to as ramrods.  Depending on the ramrod used the
2344  * completion of the ramrod will occur in different ways.  Here's a
2345  * breakdown of ramrods and how they complete:
2346  *
2347  * RAMROD_CMD_ID_ETH_PORT_SETUP
2348  *   Used to setup the leading connection on a port.  Completes on the
2349  *   Receive Completion Queue (RCQ) of that port (typically fp[0]).
2350  *
2351  * RAMROD_CMD_ID_ETH_CLIENT_SETUP
2352  *   Used to setup an additional connection on a port.  Completes on the
2353  *   RCQ of the multi-queue/RSS connection being initialized.
2354  *
2355  * RAMROD_CMD_ID_ETH_STAT_QUERY
2356  *   Used to force the storm processors to update the statistics database
2357  *   in host memory.  This ramrod is send on the leading connection CID and
2358  *   completes as an index increment of the CSTORM on the default status
2359  *   block.
2360  *
2361  * RAMROD_CMD_ID_ETH_UPDATE
2362  *   Used to update the state of the leading connection, usually to udpate
2363  *   the RSS indirection table.  Completes on the RCQ of the leading
2364  *   connection. (Not currently used under FreeBSD until OS support becomes
2365  *   available.)
2366  *
2367  * RAMROD_CMD_ID_ETH_HALT
2368  *   Used when tearing down a connection prior to driver unload.  Completes
2369  *   on the RCQ of the multi-queue/RSS connection being torn down.  Don't
2370  *   use this on the leading connection.
2371  *
2372  * RAMROD_CMD_ID_ETH_SET_MAC
2373  *   Sets the Unicast/Broadcast/Multicast used by the port.  Completes on
2374  *   the RCQ of the leading connection.
2375  *
2376  * RAMROD_CMD_ID_ETH_CFC_DEL
2377  *   Used when tearing down a conneciton prior to driver unload.  Completes
2378  *   on the RCQ of the leading connection (since the current connection
2379  *   has been completely removed from controller memory).
2380  *
2381  * RAMROD_CMD_ID_ETH_PORT_DEL
2382  *   Used to tear down the leading connection prior to driver unload,
2383  *   typically fp[0].  Completes as an index increment of the CSTORM on the
2384  *   default status block.
2385  *
2386  * RAMROD_CMD_ID_ETH_FORWARD_SETUP
2387  *   Used for connection offload.  Completes on the RCQ of the multi-queue
2388  *   RSS connection that is being offloaded.  (Not currently used under
2389  *   FreeBSD.)
2390  *
2391  * There can only be one command pending per function.
2392  *
2393  * Returns:
2394  *   0 = Success, !0 = Failure.
2395  */
2396 
2397 /* must be called under the spq lock */
2398 static inline
2399 struct eth_spe *bxe_sp_get_next(struct bxe_softc *sc)
2400 {
2401     struct eth_spe *next_spe = sc->spq_prod_bd;
2402 
2403     if (sc->spq_prod_bd == sc->spq_last_bd) {
2404         /* wrap back to the first eth_spq */
2405         sc->spq_prod_bd = sc->spq;
2406         sc->spq_prod_idx = 0;
2407     } else {
2408         sc->spq_prod_bd++;
2409         sc->spq_prod_idx++;
2410     }
2411 
2412     return (next_spe);
2413 }
2414 
2415 /* must be called under the spq lock */
2416 static inline
2417 void bxe_sp_prod_update(struct bxe_softc *sc)
2418 {
2419     int func = SC_FUNC(sc);
2420 
2421     /*
2422      * Make sure that BD data is updated before writing the producer.
2423      * BD data is written to the memory, the producer is read from the
2424      * memory, thus we need a full memory barrier to ensure the ordering.
2425      */
2426     mb();
2427 
2428     REG_WR16(sc, (BAR_XSTRORM_INTMEM + XSTORM_SPQ_PROD_OFFSET(func)),
2429              sc->spq_prod_idx);
2430 
2431     bus_space_barrier(sc->bar[BAR0].tag, sc->bar[BAR0].handle, 0, 0,
2432                       BUS_SPACE_BARRIER_WRITE);
2433 }
2434 
2435 /**
2436  * bxe_is_contextless_ramrod - check if the current command ends on EQ
2437  *
2438  * @cmd:      command to check
2439  * @cmd_type: command type
2440  */
2441 static inline
2442 int bxe_is_contextless_ramrod(int cmd,
2443                               int cmd_type)
2444 {
2445     if ((cmd_type == NONE_CONNECTION_TYPE) ||
2446         (cmd == RAMROD_CMD_ID_ETH_FORWARD_SETUP) ||
2447         (cmd == RAMROD_CMD_ID_ETH_CLASSIFICATION_RULES) ||
2448         (cmd == RAMROD_CMD_ID_ETH_FILTER_RULES) ||
2449         (cmd == RAMROD_CMD_ID_ETH_MULTICAST_RULES) ||
2450         (cmd == RAMROD_CMD_ID_ETH_SET_MAC) ||
2451         (cmd == RAMROD_CMD_ID_ETH_RSS_UPDATE)) {
2452         return (TRUE);
2453     } else {
2454         return (FALSE);
2455     }
2456 }
2457 
2458 /**
2459  * bxe_sp_post - place a single command on an SP ring
2460  *
2461  * @sc:         driver handle
2462  * @command:    command to place (e.g. SETUP, FILTER_RULES, etc.)
2463  * @cid:        SW CID the command is related to
2464  * @data_hi:    command private data address (high 32 bits)
2465  * @data_lo:    command private data address (low 32 bits)
2466  * @cmd_type:   command type (e.g. NONE, ETH)
2467  *
2468  * SP data is handled as if it's always an address pair, thus data fields are
2469  * not swapped to little endian in upper functions. Instead this function swaps
2470  * data as if it's two uint32 fields.
2471  */
2472 int
2473 bxe_sp_post(struct bxe_softc *sc,
2474             int              command,
2475             int              cid,
2476             uint32_t         data_hi,
2477             uint32_t         data_lo,
2478             int              cmd_type)
2479 {
2480     struct eth_spe *spe;
2481     uint16_t type;
2482     int common;
2483 
2484     common = bxe_is_contextless_ramrod(command, cmd_type);
2485 
2486     BXE_SP_LOCK(sc);
2487 
2488     if (common) {
2489         if (!atomic_load_acq_long(&sc->eq_spq_left)) {
2490             BLOGE(sc, "EQ ring is full!\n");
2491             BXE_SP_UNLOCK(sc);
2492             return (-1);
2493         }
2494     } else {
2495         if (!atomic_load_acq_long(&sc->cq_spq_left)) {
2496             BLOGE(sc, "SPQ ring is full!\n");
2497             BXE_SP_UNLOCK(sc);
2498             return (-1);
2499         }
2500     }
2501 
2502     spe = bxe_sp_get_next(sc);
2503 
2504     /* CID needs port number to be encoded int it */
2505     spe->hdr.conn_and_cmd_data =
2506         htole32((command << SPE_HDR_CMD_ID_SHIFT) | HW_CID(sc, cid));
2507 
2508     type = (cmd_type << SPE_HDR_CONN_TYPE_SHIFT) & SPE_HDR_CONN_TYPE;
2509 
2510     /* TBD: Check if it works for VFs */
2511     type |= ((SC_FUNC(sc) << SPE_HDR_FUNCTION_ID_SHIFT) &
2512              SPE_HDR_FUNCTION_ID);
2513 
2514     spe->hdr.type = htole16(type);
2515 
2516     spe->data.update_data_addr.hi = htole32(data_hi);
2517     spe->data.update_data_addr.lo = htole32(data_lo);
2518 
2519     /*
2520      * It's ok if the actual decrement is issued towards the memory
2521      * somewhere between the lock and unlock. Thus no more explict
2522      * memory barrier is needed.
2523      */
2524     if (common) {
2525         atomic_subtract_acq_long(&sc->eq_spq_left, 1);
2526     } else {
2527         atomic_subtract_acq_long(&sc->cq_spq_left, 1);
2528     }
2529 
2530     BLOGD(sc, DBG_SP, "SPQE -> %#jx\n", (uintmax_t)sc->spq_dma.paddr);
2531     BLOGD(sc, DBG_SP, "FUNC_RDATA -> %p / %#jx\n",
2532           BXE_SP(sc, func_rdata), (uintmax_t)BXE_SP_MAPPING(sc, func_rdata));
2533     BLOGD(sc, DBG_SP,
2534           "SPQE[%x] (%x:%x) (cmd, common?) (%d,%d) hw_cid %x data (%x:%x) type(0x%x) left (CQ, EQ) (%lx,%lx)\n",
2535           sc->spq_prod_idx,
2536           (uint32_t)U64_HI(sc->spq_dma.paddr),
2537           (uint32_t)(U64_LO(sc->spq_dma.paddr) + (uint8_t *)sc->spq_prod_bd - (uint8_t *)sc->spq),
2538           command,
2539           common,
2540           HW_CID(sc, cid),
2541           data_hi,
2542           data_lo,
2543           type,
2544           atomic_load_acq_long(&sc->cq_spq_left),
2545           atomic_load_acq_long(&sc->eq_spq_left));
2546 
2547     bxe_sp_prod_update(sc);
2548 
2549     BXE_SP_UNLOCK(sc);
2550     return (0);
2551 }
2552 
2553 /**
2554  * bxe_debug_print_ind_table - prints the indirection table configuration.
2555  *
2556  * @sc: driver hanlde
2557  * @p:  pointer to rss configuration
2558  */
2559 #if 0
2560 static void
2561 bxe_debug_print_ind_table(struct bxe_softc               *sc,
2562                           struct ecore_config_rss_params *p)
2563 {
2564     int i;
2565 
2566     BLOGD(sc, DBG_LOAD, "Setting indirection table to:\n");
2567     BLOGD(sc, DBG_LOAD, "    0x0000: ");
2568     for (i = 0; i < T_ETH_INDIRECTION_TABLE_SIZE; i++) {
2569         BLOGD(sc, DBG_LOAD, "0x%02x ", p->ind_table[i]);
2570 
2571         /* Print 4 bytes in a line */
2572         if ((i + 1 < T_ETH_INDIRECTION_TABLE_SIZE) &&
2573             (((i + 1) & 0x3) == 0)) {
2574             BLOGD(sc, DBG_LOAD, "\n");
2575             BLOGD(sc, DBG_LOAD, "0x%04x: ", i + 1);
2576         }
2577     }
2578 
2579     BLOGD(sc, DBG_LOAD, "\n");
2580 }
2581 #endif
2582 
2583 /*
2584  * FreeBSD Device probe function.
2585  *
2586  * Compares the device found to the driver's list of supported devices and
2587  * reports back to the bsd loader whether this is the right driver for the device.
2588  * This is the driver entry function called from the "kldload" command.
2589  *
2590  * Returns:
2591  *   BUS_PROBE_DEFAULT on success, positive value on failure.
2592  */
2593 static int
2594 bxe_probe(device_t dev)
2595 {
2596     struct bxe_softc *sc;
2597     struct bxe_device_type *t;
2598     char *descbuf;
2599     uint16_t did, sdid, svid, vid;
2600 
2601     /* Find our device structure */
2602     sc = device_get_softc(dev);
2603     sc->dev = dev;
2604     t = bxe_devs;
2605 
2606     /* Get the data for the device to be probed. */
2607     vid  = pci_get_vendor(dev);
2608     did  = pci_get_device(dev);
2609     svid = pci_get_subvendor(dev);
2610     sdid = pci_get_subdevice(dev);
2611 
2612     BLOGD(sc, DBG_LOAD,
2613           "%s(); VID = 0x%04X, DID = 0x%04X, SVID = 0x%04X, "
2614           "SDID = 0x%04X\n", __FUNCTION__, vid, did, svid, sdid);
2615 
2616     /* Look through the list of known devices for a match. */
2617     while (t->bxe_name != NULL) {
2618         if ((vid == t->bxe_vid) && (did == t->bxe_did) &&
2619             ((svid == t->bxe_svid) || (t->bxe_svid == PCI_ANY_ID)) &&
2620             ((sdid == t->bxe_sdid) || (t->bxe_sdid == PCI_ANY_ID))) {
2621             descbuf = malloc(BXE_DEVDESC_MAX, M_TEMP, M_NOWAIT);
2622             if (descbuf == NULL)
2623                 return (ENOMEM);
2624 
2625             /* Print out the device identity. */
2626             snprintf(descbuf, BXE_DEVDESC_MAX,
2627                      "%s (%c%d) BXE v:%s\n", t->bxe_name,
2628                      (((pci_read_config(dev, PCIR_REVID, 4) &
2629                         0xf0) >> 4) + 'A'),
2630                      (pci_read_config(dev, PCIR_REVID, 4) & 0xf),
2631                      BXE_DRIVER_VERSION);
2632 
2633             device_set_desc_copy(dev, descbuf);
2634             free(descbuf, M_TEMP);
2635             return (BUS_PROBE_DEFAULT);
2636         }
2637         t++;
2638     }
2639 
2640     return (ENXIO);
2641 }
2642 
2643 static void
2644 bxe_init_mutexes(struct bxe_softc *sc)
2645 {
2646 #ifdef BXE_CORE_LOCK_SX
2647     snprintf(sc->core_sx_name, sizeof(sc->core_sx_name),
2648              "bxe%d_core_lock", sc->unit);
2649     sx_init(&sc->core_sx, sc->core_sx_name);
2650 #else
2651     snprintf(sc->core_mtx_name, sizeof(sc->core_mtx_name),
2652              "bxe%d_core_lock", sc->unit);
2653     mtx_init(&sc->core_mtx, sc->core_mtx_name, NULL, MTX_DEF);
2654 #endif
2655 
2656     snprintf(sc->sp_mtx_name, sizeof(sc->sp_mtx_name),
2657              "bxe%d_sp_lock", sc->unit);
2658     mtx_init(&sc->sp_mtx, sc->sp_mtx_name, NULL, MTX_DEF);
2659 
2660     snprintf(sc->dmae_mtx_name, sizeof(sc->dmae_mtx_name),
2661              "bxe%d_dmae_lock", sc->unit);
2662     mtx_init(&sc->dmae_mtx, sc->dmae_mtx_name, NULL, MTX_DEF);
2663 
2664     snprintf(sc->port.phy_mtx_name, sizeof(sc->port.phy_mtx_name),
2665              "bxe%d_phy_lock", sc->unit);
2666     mtx_init(&sc->port.phy_mtx, sc->port.phy_mtx_name, NULL, MTX_DEF);
2667 
2668     snprintf(sc->fwmb_mtx_name, sizeof(sc->fwmb_mtx_name),
2669              "bxe%d_fwmb_lock", sc->unit);
2670     mtx_init(&sc->fwmb_mtx, sc->fwmb_mtx_name, NULL, MTX_DEF);
2671 
2672     snprintf(sc->print_mtx_name, sizeof(sc->print_mtx_name),
2673              "bxe%d_print_lock", sc->unit);
2674     mtx_init(&(sc->print_mtx), sc->print_mtx_name, NULL, MTX_DEF);
2675 
2676     snprintf(sc->stats_mtx_name, sizeof(sc->stats_mtx_name),
2677              "bxe%d_stats_lock", sc->unit);
2678     mtx_init(&(sc->stats_mtx), sc->stats_mtx_name, NULL, MTX_DEF);
2679 
2680     snprintf(sc->mcast_mtx_name, sizeof(sc->mcast_mtx_name),
2681              "bxe%d_mcast_lock", sc->unit);
2682     mtx_init(&(sc->mcast_mtx), sc->mcast_mtx_name, NULL, MTX_DEF);
2683 }
2684 
2685 static void
2686 bxe_release_mutexes(struct bxe_softc *sc)
2687 {
2688 #ifdef BXE_CORE_LOCK_SX
2689     sx_destroy(&sc->core_sx);
2690 #else
2691     if (mtx_initialized(&sc->core_mtx)) {
2692         mtx_destroy(&sc->core_mtx);
2693     }
2694 #endif
2695 
2696     if (mtx_initialized(&sc->sp_mtx)) {
2697         mtx_destroy(&sc->sp_mtx);
2698     }
2699 
2700     if (mtx_initialized(&sc->dmae_mtx)) {
2701         mtx_destroy(&sc->dmae_mtx);
2702     }
2703 
2704     if (mtx_initialized(&sc->port.phy_mtx)) {
2705         mtx_destroy(&sc->port.phy_mtx);
2706     }
2707 
2708     if (mtx_initialized(&sc->fwmb_mtx)) {
2709         mtx_destroy(&sc->fwmb_mtx);
2710     }
2711 
2712     if (mtx_initialized(&sc->print_mtx)) {
2713         mtx_destroy(&sc->print_mtx);
2714     }
2715 
2716     if (mtx_initialized(&sc->stats_mtx)) {
2717         mtx_destroy(&sc->stats_mtx);
2718     }
2719 
2720     if (mtx_initialized(&sc->mcast_mtx)) {
2721         mtx_destroy(&sc->mcast_mtx);
2722     }
2723 }
2724 
2725 static void
2726 bxe_tx_disable(struct bxe_softc* sc)
2727 {
2728     if_t ifp = sc->ifp;
2729 
2730     /* tell the stack the driver is stopped and TX queue is full */
2731     if (ifp !=  NULL) {
2732         if_setdrvflags(ifp, 0);
2733     }
2734 }
2735 
2736 static void
2737 bxe_drv_pulse(struct bxe_softc *sc)
2738 {
2739     SHMEM_WR(sc, func_mb[SC_FW_MB_IDX(sc)].drv_pulse_mb,
2740              sc->fw_drv_pulse_wr_seq);
2741 }
2742 
2743 static inline uint16_t
2744 bxe_tx_avail(struct bxe_softc *sc,
2745              struct bxe_fastpath *fp)
2746 {
2747     int16_t  used;
2748     uint16_t prod;
2749     uint16_t cons;
2750 
2751     prod = fp->tx_bd_prod;
2752     cons = fp->tx_bd_cons;
2753 
2754     used = SUB_S16(prod, cons);
2755 
2756 #if 0
2757     KASSERT((used < 0), ("used tx bds < 0"));
2758     KASSERT((used > sc->tx_ring_size), ("used tx bds > tx_ring_size"));
2759     KASSERT(((sc->tx_ring_size - used) > MAX_TX_AVAIL),
2760             ("invalid number of tx bds used"));
2761 #endif
2762 
2763     return (int16_t)(sc->tx_ring_size) - used;
2764 }
2765 
2766 static inline int
2767 bxe_tx_queue_has_work(struct bxe_fastpath *fp)
2768 {
2769     uint16_t hw_cons;
2770 
2771     mb(); /* status block fields can change */
2772     hw_cons = le16toh(*fp->tx_cons_sb);
2773     return (hw_cons != fp->tx_pkt_cons);
2774 }
2775 
2776 static inline uint8_t
2777 bxe_has_tx_work(struct bxe_fastpath *fp)
2778 {
2779     /* expand this for multi-cos if ever supported */
2780     return (bxe_tx_queue_has_work(fp)) ? TRUE : FALSE;
2781 }
2782 
2783 static inline int
2784 bxe_has_rx_work(struct bxe_fastpath *fp)
2785 {
2786     uint16_t rx_cq_cons_sb;
2787 
2788     mb(); /* status block fields can change */
2789     rx_cq_cons_sb = le16toh(*fp->rx_cq_cons_sb);
2790     if ((rx_cq_cons_sb & RCQ_MAX) == RCQ_MAX)
2791         rx_cq_cons_sb++;
2792     return (fp->rx_cq_cons != rx_cq_cons_sb);
2793 }
2794 
2795 static void
2796 bxe_sp_event(struct bxe_softc    *sc,
2797              struct bxe_fastpath *fp,
2798              union eth_rx_cqe    *rr_cqe)
2799 {
2800     int cid = SW_CID(rr_cqe->ramrod_cqe.conn_and_cmd_data);
2801     int command = CQE_CMD(rr_cqe->ramrod_cqe.conn_and_cmd_data);
2802     enum ecore_queue_cmd drv_cmd = ECORE_Q_CMD_MAX;
2803     struct ecore_queue_sp_obj *q_obj = &BXE_SP_OBJ(sc, fp).q_obj;
2804 
2805     BLOGD(sc, DBG_SP, "fp=%d cid=%d got ramrod #%d state is %x type is %d\n",
2806           fp->index, cid, command, sc->state, rr_cqe->ramrod_cqe.ramrod_type);
2807 
2808 #if 0
2809     /*
2810      * If cid is within VF range, replace the slowpath object with the
2811      * one corresponding to this VF
2812      */
2813     if ((cid >= BXE_FIRST_VF_CID) && (cid < BXE_FIRST_VF_CID + BXE_VF_CIDS)) {
2814         bxe_iov_set_queue_sp_obj(sc, cid, &q_obj);
2815     }
2816 #endif
2817 
2818     switch (command) {
2819     case (RAMROD_CMD_ID_ETH_CLIENT_UPDATE):
2820         BLOGD(sc, DBG_SP, "got UPDATE ramrod. CID %d\n", cid);
2821         drv_cmd = ECORE_Q_CMD_UPDATE;
2822         break;
2823 
2824     case (RAMROD_CMD_ID_ETH_CLIENT_SETUP):
2825         BLOGD(sc, DBG_SP, "got MULTI[%d] setup ramrod\n", cid);
2826         drv_cmd = ECORE_Q_CMD_SETUP;
2827         break;
2828 
2829     case (RAMROD_CMD_ID_ETH_TX_QUEUE_SETUP):
2830         BLOGD(sc, DBG_SP, "got MULTI[%d] tx-only setup ramrod\n", cid);
2831         drv_cmd = ECORE_Q_CMD_SETUP_TX_ONLY;
2832         break;
2833 
2834     case (RAMROD_CMD_ID_ETH_HALT):
2835         BLOGD(sc, DBG_SP, "got MULTI[%d] halt ramrod\n", cid);
2836         drv_cmd = ECORE_Q_CMD_HALT;
2837         break;
2838 
2839     case (RAMROD_CMD_ID_ETH_TERMINATE):
2840         BLOGD(sc, DBG_SP, "got MULTI[%d] teminate ramrod\n", cid);
2841         drv_cmd = ECORE_Q_CMD_TERMINATE;
2842         break;
2843 
2844     case (RAMROD_CMD_ID_ETH_EMPTY):
2845         BLOGD(sc, DBG_SP, "got MULTI[%d] empty ramrod\n", cid);
2846         drv_cmd = ECORE_Q_CMD_EMPTY;
2847         break;
2848 
2849     default:
2850         BLOGD(sc, DBG_SP, "ERROR: unexpected MC reply (%d) on fp[%d]\n",
2851               command, fp->index);
2852         return;
2853     }
2854 
2855     if ((drv_cmd != ECORE_Q_CMD_MAX) &&
2856         q_obj->complete_cmd(sc, q_obj, drv_cmd)) {
2857         /*
2858          * q_obj->complete_cmd() failure means that this was
2859          * an unexpected completion.
2860          *
2861          * In this case we don't want to increase the sc->spq_left
2862          * because apparently we haven't sent this command the first
2863          * place.
2864          */
2865         // bxe_panic(sc, ("Unexpected SP completion\n"));
2866         return;
2867     }
2868 
2869 #if 0
2870     /* SRIOV: reschedule any 'in_progress' operations */
2871     bxe_iov_sp_event(sc, cid, TRUE);
2872 #endif
2873 
2874     atomic_add_acq_long(&sc->cq_spq_left, 1);
2875 
2876     BLOGD(sc, DBG_SP, "sc->cq_spq_left 0x%lx\n",
2877           atomic_load_acq_long(&sc->cq_spq_left));
2878 
2879 #if 0
2880     if ((drv_cmd == ECORE_Q_CMD_UPDATE) && (IS_FCOE_FP(fp)) &&
2881         (!!bxe_test_bit(ECORE_AFEX_FCOE_Q_UPDATE_PENDING, &sc->sp_state))) {
2882         /*
2883          * If Queue update ramrod is completed for last Queue in AFEX VIF set
2884          * flow, then ACK MCP at the end. Mark pending ACK to MCP bit to
2885          * prevent case that both bits are cleared. At the end of load/unload
2886          * driver checks that sp_state is cleared and this order prevents
2887          * races.
2888          */
2889         bxe_set_bit(ECORE_AFEX_PENDING_VIFSET_MCP_ACK, &sc->sp_state);
2890         wmb();
2891         bxe_clear_bit(ECORE_AFEX_FCOE_Q_UPDATE_PENDING, &sc->sp_state);
2892 
2893         /* schedule the sp task as MCP ack is required */
2894         bxe_schedule_sp_task(sc);
2895     }
2896 #endif
2897 }
2898 
2899 /*
2900  * The current mbuf is part of an aggregation. Move the mbuf into the TPA
2901  * aggregation queue, put an empty mbuf back onto the receive chain, and mark
2902  * the current aggregation queue as in-progress.
2903  */
2904 static void
2905 bxe_tpa_start(struct bxe_softc            *sc,
2906               struct bxe_fastpath         *fp,
2907               uint16_t                    queue,
2908               uint16_t                    cons,
2909               uint16_t                    prod,
2910               struct eth_fast_path_rx_cqe *cqe)
2911 {
2912     struct bxe_sw_rx_bd tmp_bd;
2913     struct bxe_sw_rx_bd *rx_buf;
2914     struct eth_rx_bd *rx_bd;
2915     int max_agg_queues;
2916     struct bxe_sw_tpa_info *tpa_info = &fp->rx_tpa_info[queue];
2917     uint16_t index;
2918 
2919     BLOGD(sc, DBG_LRO, "fp[%02d].tpa[%02d] TPA START "
2920                        "cons=%d prod=%d\n",
2921           fp->index, queue, cons, prod);
2922 
2923     max_agg_queues = MAX_AGG_QS(sc);
2924 
2925     KASSERT((queue < max_agg_queues),
2926             ("fp[%02d] invalid aggr queue (%d >= %d)!",
2927              fp->index, queue, max_agg_queues));
2928 
2929     KASSERT((tpa_info->state == BXE_TPA_STATE_STOP),
2930             ("fp[%02d].tpa[%02d] starting aggr on queue not stopped!",
2931              fp->index, queue));
2932 
2933     /* copy the existing mbuf and mapping from the TPA pool */
2934     tmp_bd = tpa_info->bd;
2935 
2936     if (tmp_bd.m == NULL) {
2937         BLOGE(sc, "fp[%02d].tpa[%02d] mbuf not allocated!\n",
2938               fp->index, queue);
2939         /* XXX Error handling? */
2940         return;
2941     }
2942 
2943     /* change the TPA queue to the start state */
2944     tpa_info->state            = BXE_TPA_STATE_START;
2945     tpa_info->placement_offset = cqe->placement_offset;
2946     tpa_info->parsing_flags    = le16toh(cqe->pars_flags.flags);
2947     tpa_info->vlan_tag         = le16toh(cqe->vlan_tag);
2948     tpa_info->len_on_bd        = le16toh(cqe->len_on_bd);
2949 
2950     fp->rx_tpa_queue_used |= (1 << queue);
2951 
2952     /*
2953      * If all the buffer descriptors are filled with mbufs then fill in
2954      * the current consumer index with a new BD. Else if a maximum Rx
2955      * buffer limit is imposed then fill in the next producer index.
2956      */
2957     index = (sc->max_rx_bufs != RX_BD_USABLE) ?
2958                 prod : cons;
2959 
2960     /* move the received mbuf and mapping to TPA pool */
2961     tpa_info->bd = fp->rx_mbuf_chain[cons];
2962 
2963     /* release any existing RX BD mbuf mappings */
2964     if (cons != index) {
2965         rx_buf = &fp->rx_mbuf_chain[cons];
2966 
2967         if (rx_buf->m_map != NULL) {
2968             bus_dmamap_sync(fp->rx_mbuf_tag, rx_buf->m_map,
2969                             BUS_DMASYNC_POSTREAD);
2970             bus_dmamap_unload(fp->rx_mbuf_tag, rx_buf->m_map);
2971         }
2972 
2973         /*
2974          * We get here when the maximum number of rx buffers is less than
2975          * RX_BD_USABLE. The mbuf is already saved above so it's OK to NULL
2976          * it out here without concern of a memory leak.
2977          */
2978         fp->rx_mbuf_chain[cons].m = NULL;
2979     }
2980 
2981     /* update the Rx SW BD with the mbuf info from the TPA pool */
2982     fp->rx_mbuf_chain[index] = tmp_bd;
2983 
2984     /* update the Rx BD with the empty mbuf phys address from the TPA pool */
2985     rx_bd = &fp->rx_chain[index];
2986     rx_bd->addr_hi = htole32(U64_HI(tpa_info->seg.ds_addr));
2987     rx_bd->addr_lo = htole32(U64_LO(tpa_info->seg.ds_addr));
2988 }
2989 
2990 /*
2991  * When a TPA aggregation is completed, loop through the individual mbufs
2992  * of the aggregation, combining them into a single mbuf which will be sent
2993  * up the stack. Refill all freed SGEs with mbufs as we go along.
2994  */
2995 static int
2996 bxe_fill_frag_mbuf(struct bxe_softc          *sc,
2997                    struct bxe_fastpath       *fp,
2998                    struct bxe_sw_tpa_info    *tpa_info,
2999                    uint16_t                  queue,
3000                    uint16_t                  pages,
3001                    struct mbuf               *m,
3002 			       struct eth_end_agg_rx_cqe *cqe,
3003                    uint16_t                  cqe_idx)
3004 {
3005     struct mbuf *m_frag;
3006     uint32_t frag_len, frag_size, i;
3007     uint16_t sge_idx;
3008     int rc = 0;
3009     int j;
3010 
3011     frag_size = le16toh(cqe->pkt_len) - tpa_info->len_on_bd;
3012 
3013     BLOGD(sc, DBG_LRO,
3014           "fp[%02d].tpa[%02d] TPA fill len_on_bd=%d frag_size=%d pages=%d\n",
3015           fp->index, queue, tpa_info->len_on_bd, frag_size, pages);
3016 
3017     /* make sure the aggregated frame is not too big to handle */
3018     if (pages > 8 * PAGES_PER_SGE) {
3019         BLOGE(sc, "fp[%02d].sge[0x%04x] has too many pages (%d)! "
3020                   "pkt_len=%d len_on_bd=%d frag_size=%d\n",
3021               fp->index, cqe_idx, pages, le16toh(cqe->pkt_len),
3022               tpa_info->len_on_bd, frag_size);
3023         bxe_panic(sc, ("sge page count error\n"));
3024         return (EINVAL);
3025     }
3026 
3027     /*
3028      * Scan through the scatter gather list pulling individual mbufs into a
3029      * single mbuf for the host stack.
3030      */
3031     for (i = 0, j = 0; i < pages; i += PAGES_PER_SGE, j++) {
3032         sge_idx = RX_SGE(le16toh(cqe->sgl_or_raw_data.sgl[j]));
3033 
3034         /*
3035          * Firmware gives the indices of the SGE as if the ring is an array
3036          * (meaning that the "next" element will consume 2 indices).
3037          */
3038         frag_len = min(frag_size, (uint32_t)(SGE_PAGES));
3039 
3040         BLOGD(sc, DBG_LRO, "fp[%02d].tpa[%02d] TPA fill i=%d j=%d "
3041                            "sge_idx=%d frag_size=%d frag_len=%d\n",
3042               fp->index, queue, i, j, sge_idx, frag_size, frag_len);
3043 
3044         m_frag = fp->rx_sge_mbuf_chain[sge_idx].m;
3045 
3046         /* allocate a new mbuf for the SGE */
3047         rc = bxe_alloc_rx_sge_mbuf(fp, sge_idx);
3048         if (rc) {
3049             /* Leave all remaining SGEs in the ring! */
3050             return (rc);
3051         }
3052 
3053         /* update the fragment length */
3054         m_frag->m_len = frag_len;
3055 
3056         /* concatenate the fragment to the head mbuf */
3057         m_cat(m, m_frag);
3058         fp->eth_q_stats.mbuf_alloc_sge--;
3059 
3060         /* update the TPA mbuf size and remaining fragment size */
3061         m->m_pkthdr.len += frag_len;
3062         frag_size -= frag_len;
3063     }
3064 
3065     BLOGD(sc, DBG_LRO,
3066           "fp[%02d].tpa[%02d] TPA fill done frag_size=%d\n",
3067           fp->index, queue, frag_size);
3068 
3069     return (rc);
3070 }
3071 
3072 static inline void
3073 bxe_clear_sge_mask_next_elems(struct bxe_fastpath *fp)
3074 {
3075     int i, j;
3076 
3077     for (i = 1; i <= RX_SGE_NUM_PAGES; i++) {
3078         int idx = RX_SGE_TOTAL_PER_PAGE * i - 1;
3079 
3080         for (j = 0; j < 2; j++) {
3081             BIT_VEC64_CLEAR_BIT(fp->sge_mask, idx);
3082             idx--;
3083         }
3084     }
3085 }
3086 
3087 static inline void
3088 bxe_init_sge_ring_bit_mask(struct bxe_fastpath *fp)
3089 {
3090     /* set the mask to all 1's, it's faster to compare to 0 than to 0xf's */
3091     memset(fp->sge_mask, 0xff, sizeof(fp->sge_mask));
3092 
3093     /*
3094      * Clear the two last indices in the page to 1. These are the indices that
3095      * correspond to the "next" element, hence will never be indicated and
3096      * should be removed from the calculations.
3097      */
3098     bxe_clear_sge_mask_next_elems(fp);
3099 }
3100 
3101 static inline void
3102 bxe_update_last_max_sge(struct bxe_fastpath *fp,
3103                         uint16_t            idx)
3104 {
3105     uint16_t last_max = fp->last_max_sge;
3106 
3107     if (SUB_S16(idx, last_max) > 0) {
3108         fp->last_max_sge = idx;
3109     }
3110 }
3111 
3112 static inline void
3113 bxe_update_sge_prod(struct bxe_softc          *sc,
3114                     struct bxe_fastpath       *fp,
3115                     uint16_t                  sge_len,
3116                     union eth_sgl_or_raw_data *cqe)
3117 {
3118     uint16_t last_max, last_elem, first_elem;
3119     uint16_t delta = 0;
3120     uint16_t i;
3121 
3122     if (!sge_len) {
3123         return;
3124     }
3125 
3126     /* first mark all used pages */
3127     for (i = 0; i < sge_len; i++) {
3128         BIT_VEC64_CLEAR_BIT(fp->sge_mask,
3129                             RX_SGE(le16toh(cqe->sgl[i])));
3130     }
3131 
3132     BLOGD(sc, DBG_LRO,
3133           "fp[%02d] fp_cqe->sgl[%d] = %d\n",
3134           fp->index, sge_len - 1,
3135           le16toh(cqe->sgl[sge_len - 1]));
3136 
3137     /* assume that the last SGE index is the biggest */
3138     bxe_update_last_max_sge(fp,
3139                             le16toh(cqe->sgl[sge_len - 1]));
3140 
3141     last_max = RX_SGE(fp->last_max_sge);
3142     last_elem = last_max >> BIT_VEC64_ELEM_SHIFT;
3143     first_elem = RX_SGE(fp->rx_sge_prod) >> BIT_VEC64_ELEM_SHIFT;
3144 
3145     /* if ring is not full */
3146     if (last_elem + 1 != first_elem) {
3147         last_elem++;
3148     }
3149 
3150     /* now update the prod */
3151     for (i = first_elem; i != last_elem; i = RX_SGE_NEXT_MASK_ELEM(i)) {
3152         if (__predict_true(fp->sge_mask[i])) {
3153             break;
3154         }
3155 
3156         fp->sge_mask[i] = BIT_VEC64_ELEM_ONE_MASK;
3157         delta += BIT_VEC64_ELEM_SZ;
3158     }
3159 
3160     if (delta > 0) {
3161         fp->rx_sge_prod += delta;
3162         /* clear page-end entries */
3163         bxe_clear_sge_mask_next_elems(fp);
3164     }
3165 
3166     BLOGD(sc, DBG_LRO,
3167           "fp[%02d] fp->last_max_sge=%d fp->rx_sge_prod=%d\n",
3168           fp->index, fp->last_max_sge, fp->rx_sge_prod);
3169 }
3170 
3171 /*
3172  * The aggregation on the current TPA queue has completed. Pull the individual
3173  * mbuf fragments together into a single mbuf, perform all necessary checksum
3174  * calculations, and send the resuting mbuf to the stack.
3175  */
3176 static void
3177 bxe_tpa_stop(struct bxe_softc          *sc,
3178              struct bxe_fastpath       *fp,
3179              struct bxe_sw_tpa_info    *tpa_info,
3180              uint16_t                  queue,
3181              uint16_t                  pages,
3182 			 struct eth_end_agg_rx_cqe *cqe,
3183              uint16_t                  cqe_idx)
3184 {
3185     if_t ifp = sc->ifp;
3186     struct mbuf *m;
3187     int rc = 0;
3188 
3189     BLOGD(sc, DBG_LRO,
3190           "fp[%02d].tpa[%02d] pad=%d pkt_len=%d pages=%d vlan=%d\n",
3191           fp->index, queue, tpa_info->placement_offset,
3192           le16toh(cqe->pkt_len), pages, tpa_info->vlan_tag);
3193 
3194     m = tpa_info->bd.m;
3195 
3196     /* allocate a replacement before modifying existing mbuf */
3197     rc = bxe_alloc_rx_tpa_mbuf(fp, queue);
3198     if (rc) {
3199         /* drop the frame and log an error */
3200         fp->eth_q_stats.rx_soft_errors++;
3201         goto bxe_tpa_stop_exit;
3202     }
3203 
3204     /* we have a replacement, fixup the current mbuf */
3205     m_adj(m, tpa_info->placement_offset);
3206     m->m_pkthdr.len = m->m_len = tpa_info->len_on_bd;
3207 
3208     /* mark the checksums valid (taken care of by the firmware) */
3209     fp->eth_q_stats.rx_ofld_frames_csum_ip++;
3210     fp->eth_q_stats.rx_ofld_frames_csum_tcp_udp++;
3211     m->m_pkthdr.csum_data = 0xffff;
3212     m->m_pkthdr.csum_flags |= (CSUM_IP_CHECKED |
3213                                CSUM_IP_VALID   |
3214                                CSUM_DATA_VALID |
3215                                CSUM_PSEUDO_HDR);
3216 
3217     /* aggregate all of the SGEs into a single mbuf */
3218     rc = bxe_fill_frag_mbuf(sc, fp, tpa_info, queue, pages, m, cqe, cqe_idx);
3219     if (rc) {
3220         /* drop the packet and log an error */
3221         fp->eth_q_stats.rx_soft_errors++;
3222         m_freem(m);
3223     } else {
3224         if (tpa_info->parsing_flags & PARSING_FLAGS_VLAN) {
3225             m->m_pkthdr.ether_vtag = tpa_info->vlan_tag;
3226             m->m_flags |= M_VLANTAG;
3227         }
3228 
3229         /* assign packet to this interface interface */
3230         if_setrcvif(m, ifp);
3231 
3232 #if __FreeBSD_version >= 800000
3233         /* specify what RSS queue was used for this flow */
3234         m->m_pkthdr.flowid = fp->index;
3235         M_HASHTYPE_SET(m, M_HASHTYPE_OPAQUE);
3236 #endif
3237 
3238         if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1);
3239         fp->eth_q_stats.rx_tpa_pkts++;
3240 
3241         /* pass the frame to the stack */
3242         if_input(ifp, m);
3243     }
3244 
3245     /* we passed an mbuf up the stack or dropped the frame */
3246     fp->eth_q_stats.mbuf_alloc_tpa--;
3247 
3248 bxe_tpa_stop_exit:
3249 
3250     fp->rx_tpa_info[queue].state = BXE_TPA_STATE_STOP;
3251     fp->rx_tpa_queue_used &= ~(1 << queue);
3252 }
3253 
3254 static uint8_t
3255 bxe_service_rxsgl(
3256                  struct bxe_fastpath *fp,
3257                  uint16_t len,
3258                  uint16_t lenonbd,
3259                  struct mbuf *m,
3260                  struct eth_fast_path_rx_cqe *cqe_fp)
3261 {
3262     struct mbuf *m_frag;
3263     uint16_t frags, frag_len;
3264     uint16_t sge_idx = 0;
3265     uint16_t j;
3266     uint8_t i, rc = 0;
3267     uint32_t frag_size;
3268 
3269     /* adjust the mbuf */
3270     m->m_len = lenonbd;
3271 
3272     frag_size =  len - lenonbd;
3273     frags = SGE_PAGE_ALIGN(frag_size) >> SGE_PAGE_SHIFT;
3274 
3275     for (i = 0, j = 0; i < frags; i += PAGES_PER_SGE, j++) {
3276         sge_idx = RX_SGE(le16toh(cqe_fp->sgl_or_raw_data.sgl[j]));
3277 
3278         m_frag = fp->rx_sge_mbuf_chain[sge_idx].m;
3279         frag_len = min(frag_size, (uint32_t)(SGE_PAGE_SIZE));
3280         m_frag->m_len = frag_len;
3281 
3282        /* allocate a new mbuf for the SGE */
3283         rc = bxe_alloc_rx_sge_mbuf(fp, sge_idx);
3284         if (rc) {
3285             /* Leave all remaining SGEs in the ring! */
3286             return (rc);
3287         }
3288         fp->eth_q_stats.mbuf_alloc_sge--;
3289 
3290         /* concatenate the fragment to the head mbuf */
3291         m_cat(m, m_frag);
3292 
3293         frag_size -= frag_len;
3294     }
3295 
3296     bxe_update_sge_prod(fp->sc, fp, frags, &cqe_fp->sgl_or_raw_data);
3297 
3298     return rc;
3299 }
3300 
3301 static uint8_t
3302 bxe_rxeof(struct bxe_softc    *sc,
3303           struct bxe_fastpath *fp)
3304 {
3305     if_t ifp = sc->ifp;
3306     uint16_t bd_cons, bd_prod, bd_prod_fw, comp_ring_cons;
3307     uint16_t hw_cq_cons, sw_cq_cons, sw_cq_prod;
3308     int rx_pkts = 0;
3309     int rc = 0;
3310 
3311     BXE_FP_RX_LOCK(fp);
3312 
3313     /* CQ "next element" is of the size of the regular element */
3314     hw_cq_cons = le16toh(*fp->rx_cq_cons_sb);
3315     if ((hw_cq_cons & RCQ_USABLE_PER_PAGE) == RCQ_USABLE_PER_PAGE) {
3316         hw_cq_cons++;
3317     }
3318 
3319     bd_cons = fp->rx_bd_cons;
3320     bd_prod = fp->rx_bd_prod;
3321     bd_prod_fw = bd_prod;
3322     sw_cq_cons = fp->rx_cq_cons;
3323     sw_cq_prod = fp->rx_cq_prod;
3324 
3325     /*
3326      * Memory barrier necessary as speculative reads of the rx
3327      * buffer can be ahead of the index in the status block
3328      */
3329     rmb();
3330 
3331     BLOGD(sc, DBG_RX,
3332           "fp[%02d] Rx START hw_cq_cons=%u sw_cq_cons=%u\n",
3333           fp->index, hw_cq_cons, sw_cq_cons);
3334 
3335     while (sw_cq_cons != hw_cq_cons) {
3336         struct bxe_sw_rx_bd *rx_buf = NULL;
3337         union eth_rx_cqe *cqe;
3338         struct eth_fast_path_rx_cqe *cqe_fp;
3339         uint8_t cqe_fp_flags;
3340         enum eth_rx_cqe_type cqe_fp_type;
3341         uint16_t len, lenonbd,  pad;
3342         struct mbuf *m = NULL;
3343 
3344         comp_ring_cons = RCQ(sw_cq_cons);
3345         bd_prod = RX_BD(bd_prod);
3346         bd_cons = RX_BD(bd_cons);
3347 
3348         cqe          = &fp->rcq_chain[comp_ring_cons];
3349         cqe_fp       = &cqe->fast_path_cqe;
3350         cqe_fp_flags = cqe_fp->type_error_flags;
3351         cqe_fp_type  = cqe_fp_flags & ETH_FAST_PATH_RX_CQE_TYPE;
3352 
3353         BLOGD(sc, DBG_RX,
3354               "fp[%02d] Rx hw_cq_cons=%d hw_sw_cons=%d "
3355               "BD prod=%d cons=%d CQE type=0x%x err=0x%x "
3356               "status=0x%x rss_hash=0x%x vlan=0x%x len=%u lenonbd=%u\n",
3357               fp->index,
3358               hw_cq_cons,
3359               sw_cq_cons,
3360               bd_prod,
3361               bd_cons,
3362               CQE_TYPE(cqe_fp_flags),
3363               cqe_fp_flags,
3364               cqe_fp->status_flags,
3365               le32toh(cqe_fp->rss_hash_result),
3366               le16toh(cqe_fp->vlan_tag),
3367               le16toh(cqe_fp->pkt_len_or_gro_seg_len),
3368               le16toh(cqe_fp->len_on_bd));
3369 
3370         /* is this a slowpath msg? */
3371         if (__predict_false(CQE_TYPE_SLOW(cqe_fp_type))) {
3372             bxe_sp_event(sc, fp, cqe);
3373             goto next_cqe;
3374         }
3375 
3376         rx_buf = &fp->rx_mbuf_chain[bd_cons];
3377 
3378         if (!CQE_TYPE_FAST(cqe_fp_type)) {
3379             struct bxe_sw_tpa_info *tpa_info;
3380             uint16_t frag_size, pages;
3381             uint8_t queue;
3382 
3383 #if 0
3384             /* sanity check */
3385             if (!fp->tpa_enable &&
3386                 (CQE_TYPE_START(cqe_fp_type) || CQE_TYPE_STOP(cqe_fp_type))) {
3387                 BLOGE(sc, "START/STOP packet while !tpa_enable type (0x%x)\n",
3388                       CQE_TYPE(cqe_fp_type));
3389             }
3390 #endif
3391 
3392             if (CQE_TYPE_START(cqe_fp_type)) {
3393                 bxe_tpa_start(sc, fp, cqe_fp->queue_index,
3394                               bd_cons, bd_prod, cqe_fp);
3395                 m = NULL; /* packet not ready yet */
3396                 goto next_rx;
3397             }
3398 
3399             KASSERT(CQE_TYPE_STOP(cqe_fp_type),
3400                     ("CQE type is not STOP! (0x%x)\n", cqe_fp_type));
3401 
3402             queue = cqe->end_agg_cqe.queue_index;
3403             tpa_info = &fp->rx_tpa_info[queue];
3404 
3405             BLOGD(sc, DBG_LRO, "fp[%02d].tpa[%02d] TPA STOP\n",
3406                   fp->index, queue);
3407 
3408             frag_size = (le16toh(cqe->end_agg_cqe.pkt_len) -
3409                          tpa_info->len_on_bd);
3410             pages = SGE_PAGE_ALIGN(frag_size) >> SGE_PAGE_SHIFT;
3411 
3412             bxe_tpa_stop(sc, fp, tpa_info, queue, pages,
3413                          &cqe->end_agg_cqe, comp_ring_cons);
3414 
3415             bxe_update_sge_prod(sc, fp, pages, &cqe->end_agg_cqe.sgl_or_raw_data);
3416 
3417             goto next_cqe;
3418         }
3419 
3420         /* non TPA */
3421 
3422         /* is this an error packet? */
3423         if (__predict_false(cqe_fp_flags &
3424                             ETH_FAST_PATH_RX_CQE_PHY_DECODE_ERR_FLG)) {
3425             BLOGE(sc, "flags 0x%x rx packet %u\n", cqe_fp_flags, sw_cq_cons);
3426             fp->eth_q_stats.rx_soft_errors++;
3427             goto next_rx;
3428         }
3429 
3430         len = le16toh(cqe_fp->pkt_len_or_gro_seg_len);
3431         lenonbd = le16toh(cqe_fp->len_on_bd);
3432         pad = cqe_fp->placement_offset;
3433 
3434         m = rx_buf->m;
3435 
3436         if (__predict_false(m == NULL)) {
3437             BLOGE(sc, "No mbuf in rx chain descriptor %d for fp[%02d]\n",
3438                   bd_cons, fp->index);
3439             goto next_rx;
3440         }
3441 
3442         /* XXX double copy if packet length under a threshold */
3443 
3444         /*
3445          * If all the buffer descriptors are filled with mbufs then fill in
3446          * the current consumer index with a new BD. Else if a maximum Rx
3447          * buffer limit is imposed then fill in the next producer index.
3448          */
3449         rc = bxe_alloc_rx_bd_mbuf(fp, bd_cons,
3450                                   (sc->max_rx_bufs != RX_BD_USABLE) ?
3451                                       bd_prod : bd_cons);
3452         if (rc != 0) {
3453 
3454             /* we simply reuse the received mbuf and don't post it to the stack */
3455             m = NULL;
3456 
3457             BLOGE(sc, "mbuf alloc fail for fp[%02d] rx chain (%d)\n",
3458                   fp->index, rc);
3459             fp->eth_q_stats.rx_soft_errors++;
3460 
3461             if (sc->max_rx_bufs != RX_BD_USABLE) {
3462                 /* copy this consumer index to the producer index */
3463                 memcpy(&fp->rx_mbuf_chain[bd_prod], rx_buf,
3464                        sizeof(struct bxe_sw_rx_bd));
3465                 memset(rx_buf, 0, sizeof(struct bxe_sw_rx_bd));
3466             }
3467 
3468             goto next_rx;
3469         }
3470 
3471         /* current mbuf was detached from the bd */
3472         fp->eth_q_stats.mbuf_alloc_rx--;
3473 
3474         /* we allocated a replacement mbuf, fixup the current one */
3475         m_adj(m, pad);
3476         m->m_pkthdr.len = m->m_len = len;
3477 
3478         if (len != lenonbd){
3479             rc = bxe_service_rxsgl(fp, len, lenonbd, m, cqe_fp);
3480             if (rc)
3481                 break;
3482             fp->eth_q_stats.rx_jumbo_sge_pkts++;
3483         }
3484 
3485         /* assign packet to this interface interface */
3486 	if_setrcvif(m, ifp);
3487 
3488         /* assume no hardware checksum has complated */
3489         m->m_pkthdr.csum_flags = 0;
3490 
3491         /* validate checksum if offload enabled */
3492         if (if_getcapenable(ifp) & IFCAP_RXCSUM) {
3493             /* check for a valid IP frame */
3494             if (!(cqe->fast_path_cqe.status_flags &
3495                   ETH_FAST_PATH_RX_CQE_IP_XSUM_NO_VALIDATION_FLG)) {
3496                 m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
3497                 if (__predict_false(cqe_fp_flags &
3498                                     ETH_FAST_PATH_RX_CQE_IP_BAD_XSUM_FLG)) {
3499                     fp->eth_q_stats.rx_hw_csum_errors++;
3500                 } else {
3501                     fp->eth_q_stats.rx_ofld_frames_csum_ip++;
3502                     m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
3503                 }
3504             }
3505 
3506             /* check for a valid TCP/UDP frame */
3507             if (!(cqe->fast_path_cqe.status_flags &
3508                   ETH_FAST_PATH_RX_CQE_L4_XSUM_NO_VALIDATION_FLG)) {
3509                 if (__predict_false(cqe_fp_flags &
3510                                     ETH_FAST_PATH_RX_CQE_L4_BAD_XSUM_FLG)) {
3511                     fp->eth_q_stats.rx_hw_csum_errors++;
3512                 } else {
3513                     fp->eth_q_stats.rx_ofld_frames_csum_tcp_udp++;
3514                     m->m_pkthdr.csum_data = 0xFFFF;
3515                     m->m_pkthdr.csum_flags |= (CSUM_DATA_VALID |
3516                                                CSUM_PSEUDO_HDR);
3517                 }
3518             }
3519         }
3520 
3521         /* if there is a VLAN tag then flag that info */
3522         if (cqe->fast_path_cqe.pars_flags.flags & PARSING_FLAGS_VLAN) {
3523             m->m_pkthdr.ether_vtag = cqe->fast_path_cqe.vlan_tag;
3524             m->m_flags |= M_VLANTAG;
3525         }
3526 
3527 #if __FreeBSD_version >= 800000
3528         /* specify what RSS queue was used for this flow */
3529         m->m_pkthdr.flowid = fp->index;
3530         M_HASHTYPE_SET(m, M_HASHTYPE_OPAQUE);
3531 #endif
3532 
3533 next_rx:
3534 
3535         bd_cons    = RX_BD_NEXT(bd_cons);
3536         bd_prod    = RX_BD_NEXT(bd_prod);
3537         bd_prod_fw = RX_BD_NEXT(bd_prod_fw);
3538 
3539         /* pass the frame to the stack */
3540         if (__predict_true(m != NULL)) {
3541             if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1);
3542             rx_pkts++;
3543             if_input(ifp, m);
3544         }
3545 
3546 next_cqe:
3547 
3548         sw_cq_prod = RCQ_NEXT(sw_cq_prod);
3549         sw_cq_cons = RCQ_NEXT(sw_cq_cons);
3550 
3551         /* limit spinning on the queue */
3552         if (rc != 0)
3553             break;
3554 
3555         if (rx_pkts == sc->rx_budget) {
3556             fp->eth_q_stats.rx_budget_reached++;
3557             break;
3558         }
3559     } /* while work to do */
3560 
3561     fp->rx_bd_cons = bd_cons;
3562     fp->rx_bd_prod = bd_prod_fw;
3563     fp->rx_cq_cons = sw_cq_cons;
3564     fp->rx_cq_prod = sw_cq_prod;
3565 
3566     /* Update producers */
3567     bxe_update_rx_prod(sc, fp, bd_prod_fw, sw_cq_prod, fp->rx_sge_prod);
3568 
3569     fp->eth_q_stats.rx_pkts += rx_pkts;
3570     fp->eth_q_stats.rx_calls++;
3571 
3572     BXE_FP_RX_UNLOCK(fp);
3573 
3574     return (sw_cq_cons != hw_cq_cons);
3575 }
3576 
3577 static uint16_t
3578 bxe_free_tx_pkt(struct bxe_softc    *sc,
3579                 struct bxe_fastpath *fp,
3580                 uint16_t            idx)
3581 {
3582     struct bxe_sw_tx_bd *tx_buf = &fp->tx_mbuf_chain[idx];
3583     struct eth_tx_start_bd *tx_start_bd;
3584     uint16_t bd_idx = TX_BD(tx_buf->first_bd);
3585     uint16_t new_cons;
3586     int nbd;
3587 
3588     /* unmap the mbuf from non-paged memory */
3589     bus_dmamap_unload(fp->tx_mbuf_tag, tx_buf->m_map);
3590 
3591     tx_start_bd = &fp->tx_chain[bd_idx].start_bd;
3592     nbd = le16toh(tx_start_bd->nbd) - 1;
3593 
3594 #if 0
3595     if ((nbd - 1) > (MAX_MBUF_FRAGS + 2)) {
3596         bxe_panic(sc, ("BAD nbd!\n"));
3597     }
3598 #endif
3599 
3600     new_cons = (tx_buf->first_bd + nbd);
3601 
3602 #if 0
3603     struct eth_tx_bd *tx_data_bd;
3604 
3605     /*
3606      * The following code doesn't do anything but is left here
3607      * for clarity on what the new value of new_cons skipped.
3608      */
3609 
3610     /* get the next bd */
3611     bd_idx = TX_BD(TX_BD_NEXT(bd_idx));
3612 
3613     /* skip the parse bd */
3614     --nbd;
3615     bd_idx = TX_BD(TX_BD_NEXT(bd_idx));
3616 
3617     /* skip the TSO split header bd since they have no mapping */
3618     if (tx_buf->flags & BXE_TSO_SPLIT_BD) {
3619         --nbd;
3620         bd_idx = TX_BD(TX_BD_NEXT(bd_idx));
3621     }
3622 
3623     /* now free frags */
3624     while (nbd > 0) {
3625         tx_data_bd = &fp->tx_chain[bd_idx].reg_bd;
3626         if (--nbd) {
3627             bd_idx = TX_BD(TX_BD_NEXT(bd_idx));
3628         }
3629     }
3630 #endif
3631 
3632     /* free the mbuf */
3633     if (__predict_true(tx_buf->m != NULL)) {
3634         m_freem(tx_buf->m);
3635         fp->eth_q_stats.mbuf_alloc_tx--;
3636     } else {
3637         fp->eth_q_stats.tx_chain_lost_mbuf++;
3638     }
3639 
3640     tx_buf->m = NULL;
3641     tx_buf->first_bd = 0;
3642 
3643     return (new_cons);
3644 }
3645 
3646 /* transmit timeout watchdog */
3647 static int
3648 bxe_watchdog(struct bxe_softc    *sc,
3649              struct bxe_fastpath *fp)
3650 {
3651     BXE_FP_TX_LOCK(fp);
3652 
3653     if ((fp->watchdog_timer == 0) || (--fp->watchdog_timer)) {
3654         BXE_FP_TX_UNLOCK(fp);
3655         return (0);
3656     }
3657 
3658     BLOGE(sc, "TX watchdog timeout on fp[%02d], resetting!\n", fp->index);
3659 
3660     BXE_FP_TX_UNLOCK(fp);
3661 
3662     atomic_store_rel_long(&sc->chip_tq_flags, CHIP_TQ_REINIT);
3663     taskqueue_enqueue(sc->chip_tq, &sc->chip_tq_task);
3664 
3665     return (-1);
3666 }
3667 
3668 /* processes transmit completions */
3669 static uint8_t
3670 bxe_txeof(struct bxe_softc    *sc,
3671           struct bxe_fastpath *fp)
3672 {
3673     if_t ifp = sc->ifp;
3674     uint16_t bd_cons, hw_cons, sw_cons, pkt_cons;
3675     uint16_t tx_bd_avail;
3676 
3677     BXE_FP_TX_LOCK_ASSERT(fp);
3678 
3679     bd_cons = fp->tx_bd_cons;
3680     hw_cons = le16toh(*fp->tx_cons_sb);
3681     sw_cons = fp->tx_pkt_cons;
3682 
3683     while (sw_cons != hw_cons) {
3684         pkt_cons = TX_BD(sw_cons);
3685 
3686         BLOGD(sc, DBG_TX,
3687               "TX: fp[%d]: hw_cons=%u sw_cons=%u pkt_cons=%u\n",
3688               fp->index, hw_cons, sw_cons, pkt_cons);
3689 
3690         bd_cons = bxe_free_tx_pkt(sc, fp, pkt_cons);
3691 
3692         sw_cons++;
3693     }
3694 
3695     fp->tx_pkt_cons = sw_cons;
3696     fp->tx_bd_cons  = bd_cons;
3697 
3698     BLOGD(sc, DBG_TX,
3699           "TX done: fp[%d]: hw_cons=%u sw_cons=%u sw_prod=%u\n",
3700           fp->index, hw_cons, fp->tx_pkt_cons, fp->tx_pkt_prod);
3701 
3702     mb();
3703 
3704     tx_bd_avail = bxe_tx_avail(sc, fp);
3705 
3706     if (tx_bd_avail < BXE_TX_CLEANUP_THRESHOLD) {
3707         if_setdrvflagbits(ifp, IFF_DRV_OACTIVE, 0);
3708     } else {
3709         if_setdrvflagbits(ifp, 0, IFF_DRV_OACTIVE);
3710     }
3711 
3712     if (fp->tx_pkt_prod != fp->tx_pkt_cons) {
3713         /* reset the watchdog timer if there are pending transmits */
3714         fp->watchdog_timer = BXE_TX_TIMEOUT;
3715         return (TRUE);
3716     } else {
3717         /* clear watchdog when there are no pending transmits */
3718         fp->watchdog_timer = 0;
3719         return (FALSE);
3720     }
3721 }
3722 
3723 static void
3724 bxe_drain_tx_queues(struct bxe_softc *sc)
3725 {
3726     struct bxe_fastpath *fp;
3727     int i, count;
3728 
3729     /* wait until all TX fastpath tasks have completed */
3730     for (i = 0; i < sc->num_queues; i++) {
3731         fp = &sc->fp[i];
3732 
3733         count = 1000;
3734 
3735         while (bxe_has_tx_work(fp)) {
3736 
3737             BXE_FP_TX_LOCK(fp);
3738             bxe_txeof(sc, fp);
3739             BXE_FP_TX_UNLOCK(fp);
3740 
3741             if (count == 0) {
3742                 BLOGE(sc, "Timeout waiting for fp[%d] "
3743                           "transmits to complete!\n", i);
3744                 bxe_panic(sc, ("tx drain failure\n"));
3745                 return;
3746             }
3747 
3748             count--;
3749             DELAY(1000);
3750             rmb();
3751         }
3752     }
3753 
3754     return;
3755 }
3756 
3757 static int
3758 bxe_del_all_macs(struct bxe_softc          *sc,
3759                  struct ecore_vlan_mac_obj *mac_obj,
3760                  int                       mac_type,
3761                  uint8_t                   wait_for_comp)
3762 {
3763     unsigned long ramrod_flags = 0, vlan_mac_flags = 0;
3764     int rc;
3765 
3766     /* wait for completion of requested */
3767     if (wait_for_comp) {
3768         bxe_set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
3769     }
3770 
3771     /* Set the mac type of addresses we want to clear */
3772     bxe_set_bit(mac_type, &vlan_mac_flags);
3773 
3774     rc = mac_obj->delete_all(sc, mac_obj, &vlan_mac_flags, &ramrod_flags);
3775     if (rc < 0) {
3776         BLOGE(sc, "Failed to delete MACs (%d)\n", rc);
3777     }
3778 
3779     return (rc);
3780 }
3781 
3782 static int
3783 bxe_fill_accept_flags(struct bxe_softc *sc,
3784                       uint32_t         rx_mode,
3785                       unsigned long    *rx_accept_flags,
3786                       unsigned long    *tx_accept_flags)
3787 {
3788     /* Clear the flags first */
3789     *rx_accept_flags = 0;
3790     *tx_accept_flags = 0;
3791 
3792     switch (rx_mode) {
3793     case BXE_RX_MODE_NONE:
3794         /*
3795          * 'drop all' supersedes any accept flags that may have been
3796          * passed to the function.
3797          */
3798         break;
3799 
3800     case BXE_RX_MODE_NORMAL:
3801         bxe_set_bit(ECORE_ACCEPT_UNICAST, rx_accept_flags);
3802         bxe_set_bit(ECORE_ACCEPT_MULTICAST, rx_accept_flags);
3803         bxe_set_bit(ECORE_ACCEPT_BROADCAST, rx_accept_flags);
3804 
3805         /* internal switching mode */
3806         bxe_set_bit(ECORE_ACCEPT_UNICAST, tx_accept_flags);
3807         bxe_set_bit(ECORE_ACCEPT_MULTICAST, tx_accept_flags);
3808         bxe_set_bit(ECORE_ACCEPT_BROADCAST, tx_accept_flags);
3809 
3810         break;
3811 
3812     case BXE_RX_MODE_ALLMULTI:
3813         bxe_set_bit(ECORE_ACCEPT_UNICAST, rx_accept_flags);
3814         bxe_set_bit(ECORE_ACCEPT_ALL_MULTICAST, rx_accept_flags);
3815         bxe_set_bit(ECORE_ACCEPT_BROADCAST, rx_accept_flags);
3816 
3817         /* internal switching mode */
3818         bxe_set_bit(ECORE_ACCEPT_UNICAST, tx_accept_flags);
3819         bxe_set_bit(ECORE_ACCEPT_ALL_MULTICAST, tx_accept_flags);
3820         bxe_set_bit(ECORE_ACCEPT_BROADCAST, tx_accept_flags);
3821 
3822         break;
3823 
3824     case BXE_RX_MODE_PROMISC:
3825         /*
3826          * According to deffinition of SI mode, iface in promisc mode
3827          * should receive matched and unmatched (in resolution of port)
3828          * unicast packets.
3829          */
3830         bxe_set_bit(ECORE_ACCEPT_UNMATCHED, rx_accept_flags);
3831         bxe_set_bit(ECORE_ACCEPT_UNICAST, rx_accept_flags);
3832         bxe_set_bit(ECORE_ACCEPT_ALL_MULTICAST, rx_accept_flags);
3833         bxe_set_bit(ECORE_ACCEPT_BROADCAST, rx_accept_flags);
3834 
3835         /* internal switching mode */
3836         bxe_set_bit(ECORE_ACCEPT_ALL_MULTICAST, tx_accept_flags);
3837         bxe_set_bit(ECORE_ACCEPT_BROADCAST, tx_accept_flags);
3838 
3839         if (IS_MF_SI(sc)) {
3840             bxe_set_bit(ECORE_ACCEPT_ALL_UNICAST, tx_accept_flags);
3841         } else {
3842             bxe_set_bit(ECORE_ACCEPT_UNICAST, tx_accept_flags);
3843         }
3844 
3845         break;
3846 
3847     default:
3848         BLOGE(sc, "Unknown rx_mode (%d)\n", rx_mode);
3849         return (-1);
3850     }
3851 
3852     /* Set ACCEPT_ANY_VLAN as we do not enable filtering by VLAN */
3853     if (rx_mode != BXE_RX_MODE_NONE) {
3854         bxe_set_bit(ECORE_ACCEPT_ANY_VLAN, rx_accept_flags);
3855         bxe_set_bit(ECORE_ACCEPT_ANY_VLAN, tx_accept_flags);
3856     }
3857 
3858     return (0);
3859 }
3860 
3861 static int
3862 bxe_set_q_rx_mode(struct bxe_softc *sc,
3863                   uint8_t          cl_id,
3864                   unsigned long    rx_mode_flags,
3865                   unsigned long    rx_accept_flags,
3866                   unsigned long    tx_accept_flags,
3867                   unsigned long    ramrod_flags)
3868 {
3869     struct ecore_rx_mode_ramrod_params ramrod_param;
3870     int rc;
3871 
3872     memset(&ramrod_param, 0, sizeof(ramrod_param));
3873 
3874     /* Prepare ramrod parameters */
3875     ramrod_param.cid = 0;
3876     ramrod_param.cl_id = cl_id;
3877     ramrod_param.rx_mode_obj = &sc->rx_mode_obj;
3878     ramrod_param.func_id = SC_FUNC(sc);
3879 
3880     ramrod_param.pstate = &sc->sp_state;
3881     ramrod_param.state = ECORE_FILTER_RX_MODE_PENDING;
3882 
3883     ramrod_param.rdata = BXE_SP(sc, rx_mode_rdata);
3884     ramrod_param.rdata_mapping = BXE_SP_MAPPING(sc, rx_mode_rdata);
3885 
3886     bxe_set_bit(ECORE_FILTER_RX_MODE_PENDING, &sc->sp_state);
3887 
3888     ramrod_param.ramrod_flags = ramrod_flags;
3889     ramrod_param.rx_mode_flags = rx_mode_flags;
3890 
3891     ramrod_param.rx_accept_flags = rx_accept_flags;
3892     ramrod_param.tx_accept_flags = tx_accept_flags;
3893 
3894     rc = ecore_config_rx_mode(sc, &ramrod_param);
3895     if (rc < 0) {
3896         BLOGE(sc, "Set rx_mode %d failed\n", sc->rx_mode);
3897         return (rc);
3898     }
3899 
3900     return (0);
3901 }
3902 
3903 static int
3904 bxe_set_storm_rx_mode(struct bxe_softc *sc)
3905 {
3906     unsigned long rx_mode_flags = 0, ramrod_flags = 0;
3907     unsigned long rx_accept_flags = 0, tx_accept_flags = 0;
3908     int rc;
3909 
3910     rc = bxe_fill_accept_flags(sc, sc->rx_mode, &rx_accept_flags,
3911                                &tx_accept_flags);
3912     if (rc) {
3913         return (rc);
3914     }
3915 
3916     bxe_set_bit(RAMROD_RX, &ramrod_flags);
3917     bxe_set_bit(RAMROD_TX, &ramrod_flags);
3918 
3919     /* XXX ensure all fastpath have same cl_id and/or move it to bxe_softc */
3920     return (bxe_set_q_rx_mode(sc, sc->fp[0].cl_id, rx_mode_flags,
3921                               rx_accept_flags, tx_accept_flags,
3922                               ramrod_flags));
3923 }
3924 
3925 /* returns the "mcp load_code" according to global load_count array */
3926 static int
3927 bxe_nic_load_no_mcp(struct bxe_softc *sc)
3928 {
3929     int path = SC_PATH(sc);
3930     int port = SC_PORT(sc);
3931 
3932     BLOGI(sc, "NO MCP - load counts[%d]      %d, %d, %d\n",
3933           path, load_count[path][0], load_count[path][1],
3934           load_count[path][2]);
3935     load_count[path][0]++;
3936     load_count[path][1 + port]++;
3937     BLOGI(sc, "NO MCP - new load counts[%d]  %d, %d, %d\n",
3938           path, load_count[path][0], load_count[path][1],
3939           load_count[path][2]);
3940     if (load_count[path][0] == 1) {
3941         return (FW_MSG_CODE_DRV_LOAD_COMMON);
3942     } else if (load_count[path][1 + port] == 1) {
3943         return (FW_MSG_CODE_DRV_LOAD_PORT);
3944     } else {
3945         return (FW_MSG_CODE_DRV_LOAD_FUNCTION);
3946     }
3947 }
3948 
3949 /* returns the "mcp load_code" according to global load_count array */
3950 static int
3951 bxe_nic_unload_no_mcp(struct bxe_softc *sc)
3952 {
3953     int port = SC_PORT(sc);
3954     int path = SC_PATH(sc);
3955 
3956     BLOGI(sc, "NO MCP - load counts[%d]      %d, %d, %d\n",
3957           path, load_count[path][0], load_count[path][1],
3958           load_count[path][2]);
3959     load_count[path][0]--;
3960     load_count[path][1 + port]--;
3961     BLOGI(sc, "NO MCP - new load counts[%d]  %d, %d, %d\n",
3962           path, load_count[path][0], load_count[path][1],
3963           load_count[path][2]);
3964     if (load_count[path][0] == 0) {
3965         return (FW_MSG_CODE_DRV_UNLOAD_COMMON);
3966     } else if (load_count[path][1 + port] == 0) {
3967         return (FW_MSG_CODE_DRV_UNLOAD_PORT);
3968     } else {
3969         return (FW_MSG_CODE_DRV_UNLOAD_FUNCTION);
3970     }
3971 }
3972 
3973 /* request unload mode from the MCP: COMMON, PORT or FUNCTION */
3974 static uint32_t
3975 bxe_send_unload_req(struct bxe_softc *sc,
3976                     int              unload_mode)
3977 {
3978     uint32_t reset_code = 0;
3979 #if 0
3980     int port = SC_PORT(sc);
3981     int path = SC_PATH(sc);
3982 #endif
3983 
3984     /* Select the UNLOAD request mode */
3985     if (unload_mode == UNLOAD_NORMAL) {
3986         reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
3987     }
3988 #if 0
3989     else if (sc->flags & BXE_NO_WOL_FLAG) {
3990         reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP;
3991     } else if (sc->wol) {
3992         uint32_t emac_base = port ? GRCBASE_EMAC1 : GRCBASE_EMAC0;
3993         uint8_t *mac_addr = sc->dev->dev_addr;
3994         uint32_t val;
3995         uint16_t pmc;
3996 
3997         /*
3998          * The mac address is written to entries 1-4 to
3999          * preserve entry 0 which is used by the PMF
4000          */
4001         uint8_t entry = (SC_VN(sc) + 1)*8;
4002 
4003         val = (mac_addr[0] << 8) | mac_addr[1];
4004         EMAC_WR(sc, EMAC_REG_EMAC_MAC_MATCH + entry, val);
4005 
4006         val = (mac_addr[2] << 24) | (mac_addr[3] << 16) |
4007               (mac_addr[4] << 8) | mac_addr[5];
4008         EMAC_WR(sc, EMAC_REG_EMAC_MAC_MATCH + entry + 4, val);
4009 
4010         /* Enable the PME and clear the status */
4011         pmc = pci_read_config(sc->dev,
4012                               (sc->devinfo.pcie_pm_cap_reg +
4013                                PCIR_POWER_STATUS),
4014                               2);
4015         pmc |= PCIM_PSTAT_PMEENABLE | PCIM_PSTAT_PME;
4016         pci_write_config(sc->dev,
4017                          (sc->devinfo.pcie_pm_cap_reg +
4018                           PCIR_POWER_STATUS),
4019                          pmc, 4);
4020 
4021         reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_EN;
4022     }
4023 #endif
4024     else {
4025         reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
4026     }
4027 
4028     /* Send the request to the MCP */
4029     if (!BXE_NOMCP(sc)) {
4030         reset_code = bxe_fw_command(sc, reset_code, 0);
4031     } else {
4032         reset_code = bxe_nic_unload_no_mcp(sc);
4033     }
4034 
4035     return (reset_code);
4036 }
4037 
4038 /* send UNLOAD_DONE command to the MCP */
4039 static void
4040 bxe_send_unload_done(struct bxe_softc *sc,
4041                      uint8_t          keep_link)
4042 {
4043     uint32_t reset_param =
4044         keep_link ? DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET : 0;
4045 
4046     /* Report UNLOAD_DONE to MCP */
4047     if (!BXE_NOMCP(sc)) {
4048         bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_DONE, reset_param);
4049     }
4050 }
4051 
4052 static int
4053 bxe_func_wait_started(struct bxe_softc *sc)
4054 {
4055     int tout = 50;
4056 
4057     if (!sc->port.pmf) {
4058         return (0);
4059     }
4060 
4061     /*
4062      * (assumption: No Attention from MCP at this stage)
4063      * PMF probably in the middle of TX disable/enable transaction
4064      * 1. Sync IRS for default SB
4065      * 2. Sync SP queue - this guarantees us that attention handling started
4066      * 3. Wait, that TX disable/enable transaction completes
4067      *
4068      * 1+2 guarantee that if DCBX attention was scheduled it already changed
4069      * pending bit of transaction from STARTED-->TX_STOPPED, if we already
4070      * received completion for the transaction the state is TX_STOPPED.
4071      * State will return to STARTED after completion of TX_STOPPED-->STARTED
4072      * transaction.
4073      */
4074 
4075     /* XXX make sure default SB ISR is done */
4076     /* need a way to synchronize an irq (intr_mtx?) */
4077 
4078     /* XXX flush any work queues */
4079 
4080     while (ecore_func_get_state(sc, &sc->func_obj) !=
4081            ECORE_F_STATE_STARTED && tout--) {
4082         DELAY(20000);
4083     }
4084 
4085     if (ecore_func_get_state(sc, &sc->func_obj) != ECORE_F_STATE_STARTED) {
4086         /*
4087          * Failed to complete the transaction in a "good way"
4088          * Force both transactions with CLR bit.
4089          */
4090         struct ecore_func_state_params func_params = { NULL };
4091 
4092         BLOGE(sc, "Unexpected function state! "
4093                   "Forcing STARTED-->TX_STOPPED-->STARTED\n");
4094 
4095         func_params.f_obj = &sc->func_obj;
4096         bxe_set_bit(RAMROD_DRV_CLR_ONLY, &func_params.ramrod_flags);
4097 
4098         /* STARTED-->TX_STOPPED */
4099         func_params.cmd = ECORE_F_CMD_TX_STOP;
4100         ecore_func_state_change(sc, &func_params);
4101 
4102         /* TX_STOPPED-->STARTED */
4103         func_params.cmd = ECORE_F_CMD_TX_START;
4104         return (ecore_func_state_change(sc, &func_params));
4105     }
4106 
4107     return (0);
4108 }
4109 
4110 static int
4111 bxe_stop_queue(struct bxe_softc *sc,
4112                int              index)
4113 {
4114     struct bxe_fastpath *fp = &sc->fp[index];
4115     struct ecore_queue_state_params q_params = { NULL };
4116     int rc;
4117 
4118     BLOGD(sc, DBG_LOAD, "stopping queue %d cid %d\n", index, fp->index);
4119 
4120     q_params.q_obj = &sc->sp_objs[fp->index].q_obj;
4121     /* We want to wait for completion in this context */
4122     bxe_set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
4123 
4124     /* Stop the primary connection: */
4125 
4126     /* ...halt the connection */
4127     q_params.cmd = ECORE_Q_CMD_HALT;
4128     rc = ecore_queue_state_change(sc, &q_params);
4129     if (rc) {
4130         return (rc);
4131     }
4132 
4133     /* ...terminate the connection */
4134     q_params.cmd = ECORE_Q_CMD_TERMINATE;
4135     memset(&q_params.params.terminate, 0, sizeof(q_params.params.terminate));
4136     q_params.params.terminate.cid_index = FIRST_TX_COS_INDEX;
4137     rc = ecore_queue_state_change(sc, &q_params);
4138     if (rc) {
4139         return (rc);
4140     }
4141 
4142     /* ...delete cfc entry */
4143     q_params.cmd = ECORE_Q_CMD_CFC_DEL;
4144     memset(&q_params.params.cfc_del, 0, sizeof(q_params.params.cfc_del));
4145     q_params.params.cfc_del.cid_index = FIRST_TX_COS_INDEX;
4146     return (ecore_queue_state_change(sc, &q_params));
4147 }
4148 
4149 /* wait for the outstanding SP commands */
4150 static inline uint8_t
4151 bxe_wait_sp_comp(struct bxe_softc *sc,
4152                  unsigned long    mask)
4153 {
4154     unsigned long tmp;
4155     int tout = 5000; /* wait for 5 secs tops */
4156 
4157     while (tout--) {
4158         mb();
4159         if (!(atomic_load_acq_long(&sc->sp_state) & mask)) {
4160             return (TRUE);
4161         }
4162 
4163         DELAY(1000);
4164     }
4165 
4166     mb();
4167 
4168     tmp = atomic_load_acq_long(&sc->sp_state);
4169     if (tmp & mask) {
4170         BLOGE(sc, "Filtering completion timed out: "
4171                   "sp_state 0x%lx, mask 0x%lx\n",
4172               tmp, mask);
4173         return (FALSE);
4174     }
4175 
4176     return (FALSE);
4177 }
4178 
4179 static int
4180 bxe_func_stop(struct bxe_softc *sc)
4181 {
4182     struct ecore_func_state_params func_params = { NULL };
4183     int rc;
4184 
4185     /* prepare parameters for function state transitions */
4186     bxe_set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
4187     func_params.f_obj = &sc->func_obj;
4188     func_params.cmd = ECORE_F_CMD_STOP;
4189 
4190     /*
4191      * Try to stop the function the 'good way'. If it fails (in case
4192      * of a parity error during bxe_chip_cleanup()) and we are
4193      * not in a debug mode, perform a state transaction in order to
4194      * enable further HW_RESET transaction.
4195      */
4196     rc = ecore_func_state_change(sc, &func_params);
4197     if (rc) {
4198         BLOGE(sc, "FUNC_STOP ramrod failed. "
4199                   "Running a dry transaction\n");
4200         bxe_set_bit(RAMROD_DRV_CLR_ONLY, &func_params.ramrod_flags);
4201         return (ecore_func_state_change(sc, &func_params));
4202     }
4203 
4204     return (0);
4205 }
4206 
4207 static int
4208 bxe_reset_hw(struct bxe_softc *sc,
4209              uint32_t         load_code)
4210 {
4211     struct ecore_func_state_params func_params = { NULL };
4212 
4213     /* Prepare parameters for function state transitions */
4214     bxe_set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
4215 
4216     func_params.f_obj = &sc->func_obj;
4217     func_params.cmd = ECORE_F_CMD_HW_RESET;
4218 
4219     func_params.params.hw_init.load_phase = load_code;
4220 
4221     return (ecore_func_state_change(sc, &func_params));
4222 }
4223 
4224 static void
4225 bxe_int_disable_sync(struct bxe_softc *sc,
4226                      int              disable_hw)
4227 {
4228     if (disable_hw) {
4229         /* prevent the HW from sending interrupts */
4230         bxe_int_disable(sc);
4231     }
4232 
4233     /* XXX need a way to synchronize ALL irqs (intr_mtx?) */
4234     /* make sure all ISRs are done */
4235 
4236     /* XXX make sure sp_task is not running */
4237     /* cancel and flush work queues */
4238 }
4239 
4240 static void
4241 bxe_chip_cleanup(struct bxe_softc *sc,
4242                  uint32_t         unload_mode,
4243                  uint8_t          keep_link)
4244 {
4245     int port = SC_PORT(sc);
4246     struct ecore_mcast_ramrod_params rparam = { NULL };
4247     uint32_t reset_code;
4248     int i, rc = 0;
4249 
4250     bxe_drain_tx_queues(sc);
4251 
4252     /* give HW time to discard old tx messages */
4253     DELAY(1000);
4254 
4255     /* Clean all ETH MACs */
4256     rc = bxe_del_all_macs(sc, &sc->sp_objs[0].mac_obj, ECORE_ETH_MAC, FALSE);
4257     if (rc < 0) {
4258         BLOGE(sc, "Failed to delete all ETH MACs (%d)\n", rc);
4259     }
4260 
4261     /* Clean up UC list  */
4262     rc = bxe_del_all_macs(sc, &sc->sp_objs[0].mac_obj, ECORE_UC_LIST_MAC, TRUE);
4263     if (rc < 0) {
4264         BLOGE(sc, "Failed to delete UC MACs list (%d)\n", rc);
4265     }
4266 
4267     /* Disable LLH */
4268     if (!CHIP_IS_E1(sc)) {
4269         REG_WR(sc, NIG_REG_LLH0_FUNC_EN + port*8, 0);
4270     }
4271 
4272     /* Set "drop all" to stop Rx */
4273 
4274     /*
4275      * We need to take the BXE_MCAST_LOCK() here in order to prevent
4276      * a race between the completion code and this code.
4277      */
4278     BXE_MCAST_LOCK(sc);
4279 
4280     if (bxe_test_bit(ECORE_FILTER_RX_MODE_PENDING, &sc->sp_state)) {
4281         bxe_set_bit(ECORE_FILTER_RX_MODE_SCHED, &sc->sp_state);
4282     } else {
4283         bxe_set_storm_rx_mode(sc);
4284     }
4285 
4286     /* Clean up multicast configuration */
4287     rparam.mcast_obj = &sc->mcast_obj;
4288     rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_DEL);
4289     if (rc < 0) {
4290         BLOGE(sc, "Failed to send DEL MCAST command (%d)\n", rc);
4291     }
4292 
4293     BXE_MCAST_UNLOCK(sc);
4294 
4295     // XXX bxe_iov_chip_cleanup(sc);
4296 
4297     /*
4298      * Send the UNLOAD_REQUEST to the MCP. This will return if
4299      * this function should perform FUNCTION, PORT, or COMMON HW
4300      * reset.
4301      */
4302     reset_code = bxe_send_unload_req(sc, unload_mode);
4303 
4304     /*
4305      * (assumption: No Attention from MCP at this stage)
4306      * PMF probably in the middle of TX disable/enable transaction
4307      */
4308     rc = bxe_func_wait_started(sc);
4309     if (rc) {
4310         BLOGE(sc, "bxe_func_wait_started failed\n");
4311     }
4312 
4313     /*
4314      * Close multi and leading connections
4315      * Completions for ramrods are collected in a synchronous way
4316      */
4317     for (i = 0; i < sc->num_queues; i++) {
4318         if (bxe_stop_queue(sc, i)) {
4319             goto unload_error;
4320         }
4321     }
4322 
4323     /*
4324      * If SP settings didn't get completed so far - something
4325      * very wrong has happen.
4326      */
4327     if (!bxe_wait_sp_comp(sc, ~0x0UL)) {
4328         BLOGE(sc, "Common slow path ramrods got stuck!\n");
4329     }
4330 
4331 unload_error:
4332 
4333     rc = bxe_func_stop(sc);
4334     if (rc) {
4335         BLOGE(sc, "Function stop failed!\n");
4336     }
4337 
4338     /* disable HW interrupts */
4339     bxe_int_disable_sync(sc, TRUE);
4340 
4341     /* detach interrupts */
4342     bxe_interrupt_detach(sc);
4343 
4344     /* Reset the chip */
4345     rc = bxe_reset_hw(sc, reset_code);
4346     if (rc) {
4347         BLOGE(sc, "Hardware reset failed\n");
4348     }
4349 
4350     /* Report UNLOAD_DONE to MCP */
4351     bxe_send_unload_done(sc, keep_link);
4352 }
4353 
4354 static void
4355 bxe_disable_close_the_gate(struct bxe_softc *sc)
4356 {
4357     uint32_t val;
4358     int port = SC_PORT(sc);
4359 
4360     BLOGD(sc, DBG_LOAD,
4361           "Disabling 'close the gates'\n");
4362 
4363     if (CHIP_IS_E1(sc)) {
4364         uint32_t addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
4365                                MISC_REG_AEU_MASK_ATTN_FUNC_0;
4366         val = REG_RD(sc, addr);
4367         val &= ~(0x300);
4368         REG_WR(sc, addr, val);
4369     } else {
4370         val = REG_RD(sc, MISC_REG_AEU_GENERAL_MASK);
4371         val &= ~(MISC_AEU_GENERAL_MASK_REG_AEU_PXP_CLOSE_MASK |
4372                  MISC_AEU_GENERAL_MASK_REG_AEU_NIG_CLOSE_MASK);
4373         REG_WR(sc, MISC_REG_AEU_GENERAL_MASK, val);
4374     }
4375 }
4376 
4377 /*
4378  * Cleans the object that have internal lists without sending
4379  * ramrods. Should be run when interrutps are disabled.
4380  */
4381 static void
4382 bxe_squeeze_objects(struct bxe_softc *sc)
4383 {
4384     unsigned long ramrod_flags = 0, vlan_mac_flags = 0;
4385     struct ecore_mcast_ramrod_params rparam = { NULL };
4386     struct ecore_vlan_mac_obj *mac_obj = &sc->sp_objs->mac_obj;
4387     int rc;
4388 
4389     /* Cleanup MACs' object first... */
4390 
4391     /* Wait for completion of requested */
4392     bxe_set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
4393     /* Perform a dry cleanup */
4394     bxe_set_bit(RAMROD_DRV_CLR_ONLY, &ramrod_flags);
4395 
4396     /* Clean ETH primary MAC */
4397     bxe_set_bit(ECORE_ETH_MAC, &vlan_mac_flags);
4398     rc = mac_obj->delete_all(sc, &sc->sp_objs->mac_obj, &vlan_mac_flags,
4399                              &ramrod_flags);
4400     if (rc != 0) {
4401         BLOGE(sc, "Failed to clean ETH MACs (%d)\n", rc);
4402     }
4403 
4404     /* Cleanup UC list */
4405     vlan_mac_flags = 0;
4406     bxe_set_bit(ECORE_UC_LIST_MAC, &vlan_mac_flags);
4407     rc = mac_obj->delete_all(sc, mac_obj, &vlan_mac_flags,
4408                              &ramrod_flags);
4409     if (rc != 0) {
4410         BLOGE(sc, "Failed to clean UC list MACs (%d)\n", rc);
4411     }
4412 
4413     /* Now clean mcast object... */
4414 
4415     rparam.mcast_obj = &sc->mcast_obj;
4416     bxe_set_bit(RAMROD_DRV_CLR_ONLY, &rparam.ramrod_flags);
4417 
4418     /* Add a DEL command... */
4419     rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_DEL);
4420     if (rc < 0) {
4421         BLOGE(sc, "Failed to send DEL MCAST command (%d)\n", rc);
4422     }
4423 
4424     /* now wait until all pending commands are cleared */
4425 
4426     rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_CONT);
4427     while (rc != 0) {
4428         if (rc < 0) {
4429             BLOGE(sc, "Failed to clean MCAST object (%d)\n", rc);
4430             return;
4431         }
4432 
4433         rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_CONT);
4434     }
4435 }
4436 
4437 /* stop the controller */
4438 static __noinline int
4439 bxe_nic_unload(struct bxe_softc *sc,
4440                uint32_t         unload_mode,
4441                uint8_t          keep_link)
4442 {
4443     uint8_t global = FALSE;
4444     uint32_t val;
4445 
4446     BXE_CORE_LOCK_ASSERT(sc);
4447 
4448     BLOGD(sc, DBG_LOAD, "Starting NIC unload...\n");
4449 
4450     /* mark driver as unloaded in shmem2 */
4451     if (IS_PF(sc) && SHMEM2_HAS(sc, drv_capabilities_flag)) {
4452         val = SHMEM2_RD(sc, drv_capabilities_flag[SC_FW_MB_IDX(sc)]);
4453         SHMEM2_WR(sc, drv_capabilities_flag[SC_FW_MB_IDX(sc)],
4454                   val & ~DRV_FLAGS_CAPABILITIES_LOADED_L2);
4455     }
4456 
4457     if (IS_PF(sc) && sc->recovery_state != BXE_RECOVERY_DONE &&
4458         (sc->state == BXE_STATE_CLOSED || sc->state == BXE_STATE_ERROR)) {
4459         /*
4460          * We can get here if the driver has been unloaded
4461          * during parity error recovery and is either waiting for a
4462          * leader to complete or for other functions to unload and
4463          * then ifconfig down has been issued. In this case we want to
4464          * unload and let other functions to complete a recovery
4465          * process.
4466          */
4467         sc->recovery_state = BXE_RECOVERY_DONE;
4468         sc->is_leader = 0;
4469         bxe_release_leader_lock(sc);
4470         mb();
4471 
4472         BLOGD(sc, DBG_LOAD, "Releasing a leadership...\n");
4473         BLOGE(sc, "Can't unload in closed or error state\n");
4474         return (-1);
4475     }
4476 
4477     /*
4478      * Nothing to do during unload if previous bxe_nic_load()
4479      * did not completed succesfully - all resourses are released.
4480      */
4481     if ((sc->state == BXE_STATE_CLOSED) ||
4482         (sc->state == BXE_STATE_ERROR)) {
4483         return (0);
4484     }
4485 
4486     sc->state = BXE_STATE_CLOSING_WAITING_HALT;
4487     mb();
4488 
4489     /* stop tx */
4490     bxe_tx_disable(sc);
4491 
4492     sc->rx_mode = BXE_RX_MODE_NONE;
4493     /* XXX set rx mode ??? */
4494 
4495     if (IS_PF(sc)) {
4496         /* set ALWAYS_ALIVE bit in shmem */
4497         sc->fw_drv_pulse_wr_seq |= DRV_PULSE_ALWAYS_ALIVE;
4498 
4499         bxe_drv_pulse(sc);
4500 
4501         bxe_stats_handle(sc, STATS_EVENT_STOP);
4502         bxe_save_statistics(sc);
4503     }
4504 
4505     /* wait till consumers catch up with producers in all queues */
4506     bxe_drain_tx_queues(sc);
4507 
4508     /* if VF indicate to PF this function is going down (PF will delete sp
4509      * elements and clear initializations
4510      */
4511     if (IS_VF(sc)) {
4512         ; /* bxe_vfpf_close_vf(sc); */
4513     } else if (unload_mode != UNLOAD_RECOVERY) {
4514         /* if this is a normal/close unload need to clean up chip */
4515         bxe_chip_cleanup(sc, unload_mode, keep_link);
4516     } else {
4517         /* Send the UNLOAD_REQUEST to the MCP */
4518         bxe_send_unload_req(sc, unload_mode);
4519 
4520         /*
4521          * Prevent transactions to host from the functions on the
4522          * engine that doesn't reset global blocks in case of global
4523          * attention once gloabl blocks are reset and gates are opened
4524          * (the engine which leader will perform the recovery
4525          * last).
4526          */
4527         if (!CHIP_IS_E1x(sc)) {
4528             bxe_pf_disable(sc);
4529         }
4530 
4531         /* disable HW interrupts */
4532         bxe_int_disable_sync(sc, TRUE);
4533 
4534         /* detach interrupts */
4535         bxe_interrupt_detach(sc);
4536 
4537         /* Report UNLOAD_DONE to MCP */
4538         bxe_send_unload_done(sc, FALSE);
4539     }
4540 
4541     /*
4542      * At this stage no more interrupts will arrive so we may safely clean
4543      * the queue'able objects here in case they failed to get cleaned so far.
4544      */
4545     if (IS_PF(sc)) {
4546         bxe_squeeze_objects(sc);
4547     }
4548 
4549     /* There should be no more pending SP commands at this stage */
4550     sc->sp_state = 0;
4551 
4552     sc->port.pmf = 0;
4553 
4554     bxe_free_fp_buffers(sc);
4555 
4556     if (IS_PF(sc)) {
4557         bxe_free_mem(sc);
4558     }
4559 
4560     bxe_free_fw_stats_mem(sc);
4561 
4562     sc->state = BXE_STATE_CLOSED;
4563 
4564     /*
4565      * Check if there are pending parity attentions. If there are - set
4566      * RECOVERY_IN_PROGRESS.
4567      */
4568     if (IS_PF(sc) && bxe_chk_parity_attn(sc, &global, FALSE)) {
4569         bxe_set_reset_in_progress(sc);
4570 
4571         /* Set RESET_IS_GLOBAL if needed */
4572         if (global) {
4573             bxe_set_reset_global(sc);
4574         }
4575     }
4576 
4577     /*
4578      * The last driver must disable a "close the gate" if there is no
4579      * parity attention or "process kill" pending.
4580      */
4581     if (IS_PF(sc) && !bxe_clear_pf_load(sc) &&
4582         bxe_reset_is_done(sc, SC_PATH(sc))) {
4583         bxe_disable_close_the_gate(sc);
4584     }
4585 
4586     BLOGD(sc, DBG_LOAD, "Ended NIC unload\n");
4587 
4588     return (0);
4589 }
4590 
4591 /*
4592  * Called by the OS to set various media options (i.e. link, speed, etc.) when
4593  * the user runs "ifconfig bxe media ..." or "ifconfig bxe mediaopt ...".
4594  */
4595 static int
4596 bxe_ifmedia_update(struct ifnet  *ifp)
4597 {
4598     struct bxe_softc *sc = (struct bxe_softc *)if_getsoftc(ifp);
4599     struct ifmedia *ifm;
4600 
4601     ifm = &sc->ifmedia;
4602 
4603     /* We only support Ethernet media type. */
4604     if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER) {
4605         return (EINVAL);
4606     }
4607 
4608     switch (IFM_SUBTYPE(ifm->ifm_media)) {
4609     case IFM_AUTO:
4610          break;
4611     case IFM_10G_CX4:
4612     case IFM_10G_SR:
4613     case IFM_10G_T:
4614     case IFM_10G_TWINAX:
4615     default:
4616         /* We don't support changing the media type. */
4617         BLOGD(sc, DBG_LOAD, "Invalid media type (%d)\n",
4618               IFM_SUBTYPE(ifm->ifm_media));
4619         return (EINVAL);
4620     }
4621 
4622     return (0);
4623 }
4624 
4625 /*
4626  * Called by the OS to get the current media status (i.e. link, speed, etc.).
4627  */
4628 static void
4629 bxe_ifmedia_status(struct ifnet *ifp, struct ifmediareq *ifmr)
4630 {
4631     struct bxe_softc *sc = if_getsoftc(ifp);
4632 
4633     /* Report link down if the driver isn't running. */
4634     if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) == 0) {
4635         ifmr->ifm_active |= IFM_NONE;
4636         return;
4637     }
4638 
4639     /* Setup the default interface info. */
4640     ifmr->ifm_status = IFM_AVALID;
4641     ifmr->ifm_active = IFM_ETHER;
4642 
4643     if (sc->link_vars.link_up) {
4644         ifmr->ifm_status |= IFM_ACTIVE;
4645     } else {
4646         ifmr->ifm_active |= IFM_NONE;
4647         return;
4648     }
4649 
4650     ifmr->ifm_active |= sc->media;
4651 
4652     if (sc->link_vars.duplex == DUPLEX_FULL) {
4653         ifmr->ifm_active |= IFM_FDX;
4654     } else {
4655         ifmr->ifm_active |= IFM_HDX;
4656     }
4657 }
4658 
4659 static int
4660 bxe_ioctl_nvram(struct bxe_softc *sc,
4661                 uint32_t         priv_op,
4662                 struct ifreq     *ifr)
4663 {
4664     struct bxe_nvram_data nvdata_base;
4665     struct bxe_nvram_data *nvdata;
4666     int len;
4667     int error = 0;
4668 
4669     copyin(ifr->ifr_data, &nvdata_base, sizeof(nvdata_base));
4670 
4671     len = (sizeof(struct bxe_nvram_data) +
4672            nvdata_base.len -
4673            sizeof(uint32_t));
4674 
4675     if (len > sizeof(struct bxe_nvram_data)) {
4676         if ((nvdata = (struct bxe_nvram_data *)
4677                  malloc(len, M_DEVBUF,
4678                         (M_NOWAIT | M_ZERO))) == NULL) {
4679             BLOGE(sc, "BXE_IOC_RD_NVRAM malloc failed\n");
4680             return (1);
4681         }
4682         memcpy(nvdata, &nvdata_base, sizeof(struct bxe_nvram_data));
4683     } else {
4684         nvdata = &nvdata_base;
4685     }
4686 
4687     if (priv_op == BXE_IOC_RD_NVRAM) {
4688         BLOGD(sc, DBG_IOCTL, "IOC_RD_NVRAM 0x%x %d\n",
4689               nvdata->offset, nvdata->len);
4690         error = bxe_nvram_read(sc,
4691                                nvdata->offset,
4692                                (uint8_t *)nvdata->value,
4693                                nvdata->len);
4694         copyout(nvdata, ifr->ifr_data, len);
4695     } else { /* BXE_IOC_WR_NVRAM */
4696         BLOGD(sc, DBG_IOCTL, "IOC_WR_NVRAM 0x%x %d\n",
4697               nvdata->offset, nvdata->len);
4698         copyin(ifr->ifr_data, nvdata, len);
4699         error = bxe_nvram_write(sc,
4700                                 nvdata->offset,
4701                                 (uint8_t *)nvdata->value,
4702                                 nvdata->len);
4703     }
4704 
4705     if (len > sizeof(struct bxe_nvram_data)) {
4706         free(nvdata, M_DEVBUF);
4707     }
4708 
4709     return (error);
4710 }
4711 
4712 static int
4713 bxe_ioctl_stats_show(struct bxe_softc *sc,
4714                      uint32_t         priv_op,
4715                      struct ifreq     *ifr)
4716 {
4717     const size_t str_size   = (BXE_NUM_ETH_STATS * STAT_NAME_LEN);
4718     const size_t stats_size = (BXE_NUM_ETH_STATS * sizeof(uint64_t));
4719     caddr_t p_tmp;
4720     uint32_t *offset;
4721     int i;
4722 
4723     switch (priv_op)
4724     {
4725     case BXE_IOC_STATS_SHOW_NUM:
4726         memset(ifr->ifr_data, 0, sizeof(union bxe_stats_show_data));
4727         ((union bxe_stats_show_data *)ifr->ifr_data)->desc.num =
4728             BXE_NUM_ETH_STATS;
4729         ((union bxe_stats_show_data *)ifr->ifr_data)->desc.len =
4730             STAT_NAME_LEN;
4731         return (0);
4732 
4733     case BXE_IOC_STATS_SHOW_STR:
4734         memset(ifr->ifr_data, 0, str_size);
4735         p_tmp = ifr->ifr_data;
4736         for (i = 0; i < BXE_NUM_ETH_STATS; i++) {
4737             strcpy(p_tmp, bxe_eth_stats_arr[i].string);
4738             p_tmp += STAT_NAME_LEN;
4739         }
4740         return (0);
4741 
4742     case BXE_IOC_STATS_SHOW_CNT:
4743         memset(ifr->ifr_data, 0, stats_size);
4744         p_tmp = ifr->ifr_data;
4745         for (i = 0; i < BXE_NUM_ETH_STATS; i++) {
4746             offset = ((uint32_t *)&sc->eth_stats +
4747                       bxe_eth_stats_arr[i].offset);
4748             switch (bxe_eth_stats_arr[i].size) {
4749             case 4:
4750                 *((uint64_t *)p_tmp) = (uint64_t)*offset;
4751                 break;
4752             case 8:
4753                 *((uint64_t *)p_tmp) = HILO_U64(*offset, *(offset + 1));
4754                 break;
4755             default:
4756                 *((uint64_t *)p_tmp) = 0;
4757             }
4758             p_tmp += sizeof(uint64_t);
4759         }
4760         return (0);
4761 
4762     default:
4763         return (-1);
4764     }
4765 }
4766 
4767 static void
4768 bxe_handle_chip_tq(void *context,
4769                    int  pending)
4770 {
4771     struct bxe_softc *sc = (struct bxe_softc *)context;
4772     long work = atomic_load_acq_long(&sc->chip_tq_flags);
4773 
4774     switch (work)
4775     {
4776 
4777     case CHIP_TQ_REINIT:
4778         if (if_getdrvflags(sc->ifp) & IFF_DRV_RUNNING) {
4779             /* restart the interface */
4780             BLOGD(sc, DBG_LOAD, "Restarting the interface...\n");
4781             bxe_periodic_stop(sc);
4782             BXE_CORE_LOCK(sc);
4783             bxe_stop_locked(sc);
4784             bxe_init_locked(sc);
4785             BXE_CORE_UNLOCK(sc);
4786         }
4787         break;
4788 
4789     default:
4790         break;
4791     }
4792 }
4793 
4794 /*
4795  * Handles any IOCTL calls from the operating system.
4796  *
4797  * Returns:
4798  *   0 = Success, >0 Failure
4799  */
4800 static int
4801 bxe_ioctl(if_t ifp,
4802           u_long       command,
4803           caddr_t      data)
4804 {
4805     struct bxe_softc *sc = if_getsoftc(ifp);
4806     struct ifreq *ifr = (struct ifreq *)data;
4807     struct bxe_nvram_data *nvdata;
4808     uint32_t priv_op;
4809     int mask = 0;
4810     int reinit = 0;
4811     int error = 0;
4812 
4813     int mtu_min = (ETH_MIN_PACKET_SIZE - ETH_HLEN);
4814     int mtu_max = (MJUM9BYTES - ETH_OVERHEAD - IP_HEADER_ALIGNMENT_PADDING);
4815 
4816     switch (command)
4817     {
4818     case SIOCSIFMTU:
4819         BLOGD(sc, DBG_IOCTL, "Received SIOCSIFMTU ioctl (mtu=%d)\n",
4820               ifr->ifr_mtu);
4821 
4822         if (sc->mtu == ifr->ifr_mtu) {
4823             /* nothing to change */
4824             break;
4825         }
4826 
4827         if ((ifr->ifr_mtu < mtu_min) || (ifr->ifr_mtu > mtu_max)) {
4828             BLOGE(sc, "Unsupported MTU size %d (range is %d-%d)\n",
4829                   ifr->ifr_mtu, mtu_min, mtu_max);
4830             error = EINVAL;
4831             break;
4832         }
4833 
4834         atomic_store_rel_int((volatile unsigned int *)&sc->mtu,
4835                              (unsigned long)ifr->ifr_mtu);
4836 	/*
4837         atomic_store_rel_long((volatile unsigned long *)&if_getmtu(ifp),
4838                               (unsigned long)ifr->ifr_mtu);
4839 	XXX - Not sure why it needs to be atomic
4840 	*/
4841 	if_setmtu(ifp, ifr->ifr_mtu);
4842         reinit = 1;
4843         break;
4844 
4845     case SIOCSIFFLAGS:
4846         /* toggle the interface state up or down */
4847         BLOGD(sc, DBG_IOCTL, "Received SIOCSIFFLAGS ioctl\n");
4848 
4849 	BXE_CORE_LOCK(sc);
4850         /* check if the interface is up */
4851         if (if_getflags(ifp) & IFF_UP) {
4852             if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
4853                 /* set the receive mode flags */
4854                 bxe_set_rx_mode(sc);
4855             } else {
4856 		bxe_init_locked(sc);
4857             }
4858         } else {
4859             if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
4860 		bxe_periodic_stop(sc);
4861 		bxe_stop_locked(sc);
4862             }
4863         }
4864 	BXE_CORE_UNLOCK(sc);
4865 
4866         break;
4867 
4868     case SIOCADDMULTI:
4869     case SIOCDELMULTI:
4870         /* add/delete multicast addresses */
4871         BLOGD(sc, DBG_IOCTL, "Received SIOCADDMULTI/SIOCDELMULTI ioctl\n");
4872 
4873         /* check if the interface is up */
4874         if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
4875             /* set the receive mode flags */
4876 	    BXE_CORE_LOCK(sc);
4877             bxe_set_rx_mode(sc);
4878 	    BXE_CORE_UNLOCK(sc);
4879         }
4880 
4881         break;
4882 
4883     case SIOCSIFCAP:
4884         /* find out which capabilities have changed */
4885         mask = (ifr->ifr_reqcap ^ if_getcapenable(ifp));
4886 
4887         BLOGD(sc, DBG_IOCTL, "Received SIOCSIFCAP ioctl (mask=0x%08x)\n",
4888               mask);
4889 
4890         /* toggle the LRO capabilites enable flag */
4891         if (mask & IFCAP_LRO) {
4892 	    if_togglecapenable(ifp, IFCAP_LRO);
4893             BLOGD(sc, DBG_IOCTL, "Turning LRO %s\n",
4894                   (if_getcapenable(ifp) & IFCAP_LRO) ? "ON" : "OFF");
4895             reinit = 1;
4896         }
4897 
4898         /* toggle the TXCSUM checksum capabilites enable flag */
4899         if (mask & IFCAP_TXCSUM) {
4900 	    if_togglecapenable(ifp, IFCAP_TXCSUM);
4901             BLOGD(sc, DBG_IOCTL, "Turning TXCSUM %s\n",
4902                   (if_getcapenable(ifp) & IFCAP_TXCSUM) ? "ON" : "OFF");
4903             if (if_getcapenable(ifp) & IFCAP_TXCSUM) {
4904                 if_sethwassistbits(ifp, (CSUM_IP      |
4905                                     CSUM_TCP      |
4906                                     CSUM_UDP      |
4907                                     CSUM_TSO      |
4908                                     CSUM_TCP_IPV6 |
4909                                     CSUM_UDP_IPV6), 0);
4910             } else {
4911 		if_clearhwassist(ifp); /* XXX */
4912             }
4913         }
4914 
4915         /* toggle the RXCSUM checksum capabilities enable flag */
4916         if (mask & IFCAP_RXCSUM) {
4917 	    if_togglecapenable(ifp, IFCAP_RXCSUM);
4918             BLOGD(sc, DBG_IOCTL, "Turning RXCSUM %s\n",
4919                   (if_getcapenable(ifp) & IFCAP_RXCSUM) ? "ON" : "OFF");
4920             if (if_getcapenable(ifp) & IFCAP_RXCSUM) {
4921                 if_sethwassistbits(ifp, (CSUM_IP      |
4922                                     CSUM_TCP      |
4923                                     CSUM_UDP      |
4924                                     CSUM_TSO      |
4925                                     CSUM_TCP_IPV6 |
4926                                     CSUM_UDP_IPV6), 0);
4927             } else {
4928 		if_clearhwassist(ifp); /* XXX */
4929             }
4930         }
4931 
4932         /* toggle TSO4 capabilities enabled flag */
4933         if (mask & IFCAP_TSO4) {
4934             if_togglecapenable(ifp, IFCAP_TSO4);
4935             BLOGD(sc, DBG_IOCTL, "Turning TSO4 %s\n",
4936                   (if_getcapenable(ifp) & IFCAP_TSO4) ? "ON" : "OFF");
4937         }
4938 
4939         /* toggle TSO6 capabilities enabled flag */
4940         if (mask & IFCAP_TSO6) {
4941 	    if_togglecapenable(ifp, IFCAP_TSO6);
4942             BLOGD(sc, DBG_IOCTL, "Turning TSO6 %s\n",
4943                   (if_getcapenable(ifp) & IFCAP_TSO6) ? "ON" : "OFF");
4944         }
4945 
4946         /* toggle VLAN_HWTSO capabilities enabled flag */
4947         if (mask & IFCAP_VLAN_HWTSO) {
4948 
4949 	    if_togglecapenable(ifp, IFCAP_VLAN_HWTSO);
4950             BLOGD(sc, DBG_IOCTL, "Turning VLAN_HWTSO %s\n",
4951                   (if_getcapenable(ifp) & IFCAP_VLAN_HWTSO) ? "ON" : "OFF");
4952         }
4953 
4954         /* toggle VLAN_HWCSUM capabilities enabled flag */
4955         if (mask & IFCAP_VLAN_HWCSUM) {
4956             /* XXX investigate this... */
4957             BLOGE(sc, "Changing VLAN_HWCSUM is not supported!\n");
4958             error = EINVAL;
4959         }
4960 
4961         /* toggle VLAN_MTU capabilities enable flag */
4962         if (mask & IFCAP_VLAN_MTU) {
4963             /* XXX investigate this... */
4964             BLOGE(sc, "Changing VLAN_MTU is not supported!\n");
4965             error = EINVAL;
4966         }
4967 
4968         /* toggle VLAN_HWTAGGING capabilities enabled flag */
4969         if (mask & IFCAP_VLAN_HWTAGGING) {
4970             /* XXX investigate this... */
4971             BLOGE(sc, "Changing VLAN_HWTAGGING is not supported!\n");
4972             error = EINVAL;
4973         }
4974 
4975         /* toggle VLAN_HWFILTER capabilities enabled flag */
4976         if (mask & IFCAP_VLAN_HWFILTER) {
4977             /* XXX investigate this... */
4978             BLOGE(sc, "Changing VLAN_HWFILTER is not supported!\n");
4979             error = EINVAL;
4980         }
4981 
4982         /* XXX not yet...
4983          * IFCAP_WOL_MAGIC
4984          */
4985 
4986         break;
4987 
4988     case SIOCSIFMEDIA:
4989     case SIOCGIFMEDIA:
4990         /* set/get interface media */
4991         BLOGD(sc, DBG_IOCTL,
4992               "Received SIOCSIFMEDIA/SIOCGIFMEDIA ioctl (cmd=%lu)\n",
4993               (command & 0xff));
4994         error = ifmedia_ioctl(ifp, ifr, &sc->ifmedia, command);
4995         break;
4996 
4997     case SIOCGPRIVATE_0:
4998         copyin(ifr->ifr_data, &priv_op, sizeof(priv_op));
4999 
5000         switch (priv_op)
5001         {
5002         case BXE_IOC_RD_NVRAM:
5003         case BXE_IOC_WR_NVRAM:
5004             nvdata = (struct bxe_nvram_data *)ifr->ifr_data;
5005             BLOGD(sc, DBG_IOCTL,
5006                   "Received Private NVRAM ioctl addr=0x%x size=%u\n",
5007                   nvdata->offset, nvdata->len);
5008             error = bxe_ioctl_nvram(sc, priv_op, ifr);
5009             break;
5010 
5011         case BXE_IOC_STATS_SHOW_NUM:
5012         case BXE_IOC_STATS_SHOW_STR:
5013         case BXE_IOC_STATS_SHOW_CNT:
5014             BLOGD(sc, DBG_IOCTL, "Received Private Stats ioctl (%d)\n",
5015                   priv_op);
5016             error = bxe_ioctl_stats_show(sc, priv_op, ifr);
5017             break;
5018 
5019         default:
5020             BLOGW(sc, "Received Private Unknown ioctl (%d)\n", priv_op);
5021             error = EINVAL;
5022             break;
5023         }
5024 
5025         break;
5026 
5027     default:
5028         BLOGD(sc, DBG_IOCTL, "Received Unknown Ioctl (cmd=%lu)\n",
5029               (command & 0xff));
5030         error = ether_ioctl(ifp, command, data);
5031         break;
5032     }
5033 
5034     if (reinit && (if_getdrvflags(sc->ifp) & IFF_DRV_RUNNING)) {
5035         BLOGD(sc, DBG_LOAD | DBG_IOCTL,
5036               "Re-initializing hardware from IOCTL change\n");
5037 	bxe_periodic_stop(sc);
5038 	BXE_CORE_LOCK(sc);
5039 	bxe_stop_locked(sc);
5040 	bxe_init_locked(sc);
5041 	BXE_CORE_UNLOCK(sc);
5042     }
5043 
5044     return (error);
5045 }
5046 
5047 static __noinline void
5048 bxe_dump_mbuf(struct bxe_softc *sc,
5049               struct mbuf      *m,
5050               uint8_t          contents)
5051 {
5052     char * type;
5053     int i = 0;
5054 
5055     if (!(sc->debug & DBG_MBUF)) {
5056         return;
5057     }
5058 
5059     if (m == NULL) {
5060         BLOGD(sc, DBG_MBUF, "mbuf: null pointer\n");
5061         return;
5062     }
5063 
5064     while (m) {
5065         BLOGD(sc, DBG_MBUF,
5066               "%02d: mbuf=%p m_len=%d m_flags=0x%b m_data=%p\n",
5067               i, m, m->m_len, m->m_flags, M_FLAG_BITS, m->m_data);
5068 
5069         if (m->m_flags & M_PKTHDR) {
5070              BLOGD(sc, DBG_MBUF,
5071                    "%02d: - m_pkthdr: tot_len=%d flags=0x%b csum_flags=%b\n",
5072                    i, m->m_pkthdr.len, m->m_flags, M_FLAG_BITS,
5073                    (int)m->m_pkthdr.csum_flags, CSUM_BITS);
5074         }
5075 
5076         if (m->m_flags & M_EXT) {
5077             switch (m->m_ext.ext_type) {
5078             case EXT_CLUSTER:    type = "EXT_CLUSTER";    break;
5079             case EXT_SFBUF:      type = "EXT_SFBUF";      break;
5080             case EXT_JUMBOP:     type = "EXT_JUMBOP";     break;
5081             case EXT_JUMBO9:     type = "EXT_JUMBO9";     break;
5082             case EXT_JUMBO16:    type = "EXT_JUMBO16";    break;
5083             case EXT_PACKET:     type = "EXT_PACKET";     break;
5084             case EXT_MBUF:       type = "EXT_MBUF";       break;
5085             case EXT_NET_DRV:    type = "EXT_NET_DRV";    break;
5086             case EXT_MOD_TYPE:   type = "EXT_MOD_TYPE";   break;
5087             case EXT_DISPOSABLE: type = "EXT_DISPOSABLE"; break;
5088             case EXT_EXTREF:     type = "EXT_EXTREF";     break;
5089             default:             type = "UNKNOWN";        break;
5090             }
5091 
5092             BLOGD(sc, DBG_MBUF,
5093                   "%02d: - m_ext: %p ext_size=%d type=%s\n",
5094                   i, m->m_ext.ext_buf, m->m_ext.ext_size, type);
5095         }
5096 
5097         if (contents) {
5098             bxe_dump_mbuf_data(sc, "mbuf data", m, TRUE);
5099         }
5100 
5101         m = m->m_next;
5102         i++;
5103     }
5104 }
5105 
5106 /*
5107  * Checks to ensure the 13 bd sliding window is >= MSS for TSO.
5108  * Check that (13 total bds - 3 bds) = 10 bd window >= MSS.
5109  * The window: 3 bds are = 1 for headers BD + 2 for parse BD and last BD
5110  * The headers comes in a seperate bd in FreeBSD so 13-3=10.
5111  * Returns: 0 if OK to send, 1 if packet needs further defragmentation
5112  */
5113 static int
5114 bxe_chktso_window(struct bxe_softc  *sc,
5115                   int               nsegs,
5116                   bus_dma_segment_t *segs,
5117                   struct mbuf       *m)
5118 {
5119     uint32_t num_wnds, wnd_size, wnd_sum;
5120     int32_t frag_idx, wnd_idx;
5121     unsigned short lso_mss;
5122     int defrag;
5123 
5124     defrag = 0;
5125     wnd_sum = 0;
5126     wnd_size = 10;
5127     num_wnds = nsegs - wnd_size;
5128     lso_mss = htole16(m->m_pkthdr.tso_segsz);
5129 
5130     /*
5131      * Total header lengths Eth+IP+TCP in first FreeBSD mbuf so calculate the
5132      * first window sum of data while skipping the first assuming it is the
5133      * header in FreeBSD.
5134      */
5135     for (frag_idx = 1; (frag_idx <= wnd_size); frag_idx++) {
5136         wnd_sum += htole16(segs[frag_idx].ds_len);
5137     }
5138 
5139     /* check the first 10 bd window size */
5140     if (wnd_sum < lso_mss) {
5141         return (1);
5142     }
5143 
5144     /* run through the windows */
5145     for (wnd_idx = 0; wnd_idx < num_wnds; wnd_idx++, frag_idx++) {
5146         /* subtract the first mbuf->m_len of the last wndw(-header) */
5147         wnd_sum -= htole16(segs[wnd_idx+1].ds_len);
5148         /* add the next mbuf len to the len of our new window */
5149         wnd_sum += htole16(segs[frag_idx].ds_len);
5150         if (wnd_sum < lso_mss) {
5151             return (1);
5152         }
5153     }
5154 
5155     return (0);
5156 }
5157 
5158 static uint8_t
5159 bxe_set_pbd_csum_e2(struct bxe_fastpath *fp,
5160                     struct mbuf         *m,
5161                     uint32_t            *parsing_data)
5162 {
5163     struct ether_vlan_header *eh = NULL;
5164     struct ip *ip4 = NULL;
5165     struct ip6_hdr *ip6 = NULL;
5166     caddr_t ip = NULL;
5167     struct tcphdr *th = NULL;
5168     int e_hlen, ip_hlen, l4_off;
5169     uint16_t proto;
5170 
5171     if (m->m_pkthdr.csum_flags == CSUM_IP) {
5172         /* no L4 checksum offload needed */
5173         return (0);
5174     }
5175 
5176     /* get the Ethernet header */
5177     eh = mtod(m, struct ether_vlan_header *);
5178 
5179     /* handle VLAN encapsulation if present */
5180     if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) {
5181         e_hlen = (ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN);
5182         proto  = ntohs(eh->evl_proto);
5183     } else {
5184         e_hlen = ETHER_HDR_LEN;
5185         proto  = ntohs(eh->evl_encap_proto);
5186     }
5187 
5188     switch (proto) {
5189     case ETHERTYPE_IP:
5190         /* get the IP header, if mbuf len < 20 then header in next mbuf */
5191         ip4 = (m->m_len < sizeof(struct ip)) ?
5192                   (struct ip *)m->m_next->m_data :
5193                   (struct ip *)(m->m_data + e_hlen);
5194         /* ip_hl is number of 32-bit words */
5195         ip_hlen = (ip4->ip_hl << 2);
5196         ip = (caddr_t)ip4;
5197         break;
5198     case ETHERTYPE_IPV6:
5199         /* get the IPv6 header, if mbuf len < 40 then header in next mbuf */
5200         ip6 = (m->m_len < sizeof(struct ip6_hdr)) ?
5201                   (struct ip6_hdr *)m->m_next->m_data :
5202                   (struct ip6_hdr *)(m->m_data + e_hlen);
5203         /* XXX cannot support offload with IPv6 extensions */
5204         ip_hlen = sizeof(struct ip6_hdr);
5205         ip = (caddr_t)ip6;
5206         break;
5207     default:
5208         /* We can't offload in this case... */
5209         /* XXX error stat ??? */
5210         return (0);
5211     }
5212 
5213     /* XXX assuming L4 header is contiguous to IPv4/IPv6 in the same mbuf */
5214     l4_off = (e_hlen + ip_hlen);
5215 
5216     *parsing_data |=
5217         (((l4_off >> 1) << ETH_TX_PARSE_BD_E2_L4_HDR_START_OFFSET_W_SHIFT) &
5218          ETH_TX_PARSE_BD_E2_L4_HDR_START_OFFSET_W);
5219 
5220     if (m->m_pkthdr.csum_flags & (CSUM_TCP |
5221                                   CSUM_TSO |
5222                                   CSUM_TCP_IPV6)) {
5223         fp->eth_q_stats.tx_ofld_frames_csum_tcp++;
5224         th = (struct tcphdr *)(ip + ip_hlen);
5225         /* th_off is number of 32-bit words */
5226         *parsing_data |= ((th->th_off <<
5227                            ETH_TX_PARSE_BD_E2_TCP_HDR_LENGTH_DW_SHIFT) &
5228                           ETH_TX_PARSE_BD_E2_TCP_HDR_LENGTH_DW);
5229         return (l4_off + (th->th_off << 2)); /* entire header length */
5230     } else if (m->m_pkthdr.csum_flags & (CSUM_UDP |
5231                                          CSUM_UDP_IPV6)) {
5232         fp->eth_q_stats.tx_ofld_frames_csum_udp++;
5233         return (l4_off + sizeof(struct udphdr)); /* entire header length */
5234     } else {
5235         /* XXX error stat ??? */
5236         return (0);
5237     }
5238 }
5239 
5240 static uint8_t
5241 bxe_set_pbd_csum(struct bxe_fastpath        *fp,
5242                  struct mbuf                *m,
5243                  struct eth_tx_parse_bd_e1x *pbd)
5244 {
5245     struct ether_vlan_header *eh = NULL;
5246     struct ip *ip4 = NULL;
5247     struct ip6_hdr *ip6 = NULL;
5248     caddr_t ip = NULL;
5249     struct tcphdr *th = NULL;
5250     struct udphdr *uh = NULL;
5251     int e_hlen, ip_hlen;
5252     uint16_t proto;
5253     uint8_t hlen;
5254     uint16_t tmp_csum;
5255     uint32_t *tmp_uh;
5256 
5257     /* get the Ethernet header */
5258     eh = mtod(m, struct ether_vlan_header *);
5259 
5260     /* handle VLAN encapsulation if present */
5261     if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) {
5262         e_hlen = (ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN);
5263         proto  = ntohs(eh->evl_proto);
5264     } else {
5265         e_hlen = ETHER_HDR_LEN;
5266         proto  = ntohs(eh->evl_encap_proto);
5267     }
5268 
5269     switch (proto) {
5270     case ETHERTYPE_IP:
5271         /* get the IP header, if mbuf len < 20 then header in next mbuf */
5272         ip4 = (m->m_len < sizeof(struct ip)) ?
5273                   (struct ip *)m->m_next->m_data :
5274                   (struct ip *)(m->m_data + e_hlen);
5275         /* ip_hl is number of 32-bit words */
5276         ip_hlen = (ip4->ip_hl << 1);
5277         ip = (caddr_t)ip4;
5278         break;
5279     case ETHERTYPE_IPV6:
5280         /* get the IPv6 header, if mbuf len < 40 then header in next mbuf */
5281         ip6 = (m->m_len < sizeof(struct ip6_hdr)) ?
5282                   (struct ip6_hdr *)m->m_next->m_data :
5283                   (struct ip6_hdr *)(m->m_data + e_hlen);
5284         /* XXX cannot support offload with IPv6 extensions */
5285         ip_hlen = (sizeof(struct ip6_hdr) >> 1);
5286         ip = (caddr_t)ip6;
5287         break;
5288     default:
5289         /* We can't offload in this case... */
5290         /* XXX error stat ??? */
5291         return (0);
5292     }
5293 
5294     hlen = (e_hlen >> 1);
5295 
5296     /* note that rest of global_data is indirectly zeroed here */
5297     if (m->m_flags & M_VLANTAG) {
5298         pbd->global_data =
5299             htole16(hlen | (1 << ETH_TX_PARSE_BD_E1X_LLC_SNAP_EN_SHIFT));
5300     } else {
5301         pbd->global_data = htole16(hlen);
5302     }
5303 
5304     pbd->ip_hlen_w = ip_hlen;
5305 
5306     hlen += pbd->ip_hlen_w;
5307 
5308     /* XXX assuming L4 header is contiguous to IPv4/IPv6 in the same mbuf */
5309 
5310     if (m->m_pkthdr.csum_flags & (CSUM_TCP |
5311                                   CSUM_TSO |
5312                                   CSUM_TCP_IPV6)) {
5313         th = (struct tcphdr *)(ip + (ip_hlen << 1));
5314         /* th_off is number of 32-bit words */
5315         hlen += (uint16_t)(th->th_off << 1);
5316     } else if (m->m_pkthdr.csum_flags & (CSUM_UDP |
5317                                          CSUM_UDP_IPV6)) {
5318         uh = (struct udphdr *)(ip + (ip_hlen << 1));
5319         hlen += (sizeof(struct udphdr) / 2);
5320     } else {
5321         /* valid case as only CSUM_IP was set */
5322         return (0);
5323     }
5324 
5325     pbd->total_hlen_w = htole16(hlen);
5326 
5327     if (m->m_pkthdr.csum_flags & (CSUM_TCP |
5328                                   CSUM_TSO |
5329                                   CSUM_TCP_IPV6)) {
5330         fp->eth_q_stats.tx_ofld_frames_csum_tcp++;
5331         pbd->tcp_pseudo_csum = ntohs(th->th_sum);
5332     } else if (m->m_pkthdr.csum_flags & (CSUM_UDP |
5333                                          CSUM_UDP_IPV6)) {
5334         fp->eth_q_stats.tx_ofld_frames_csum_udp++;
5335 
5336         /*
5337          * Everest1 (i.e. 57710, 57711, 57711E) does not natively support UDP
5338          * checksums and does not know anything about the UDP header and where
5339          * the checksum field is located. It only knows about TCP. Therefore
5340          * we "lie" to the hardware for outgoing UDP packets w/ checksum
5341          * offload. Since the checksum field offset for TCP is 16 bytes and
5342          * for UDP it is 6 bytes we pass a pointer to the hardware that is 10
5343          * bytes less than the start of the UDP header. This allows the
5344          * hardware to write the checksum in the correct spot. But the
5345          * hardware will compute a checksum which includes the last 10 bytes
5346          * of the IP header. To correct this we tweak the stack computed
5347          * pseudo checksum by folding in the calculation of the inverse
5348          * checksum for those final 10 bytes of the IP header. This allows
5349          * the correct checksum to be computed by the hardware.
5350          */
5351 
5352         /* set pointer 10 bytes before UDP header */
5353         tmp_uh = (uint32_t *)((uint8_t *)uh - 10);
5354 
5355         /* calculate a pseudo header checksum over the first 10 bytes */
5356         tmp_csum = in_pseudo(*tmp_uh,
5357                              *(tmp_uh + 1),
5358                              *(uint16_t *)(tmp_uh + 2));
5359 
5360         pbd->tcp_pseudo_csum = ntohs(in_addword(uh->uh_sum, ~tmp_csum));
5361     }
5362 
5363     return (hlen * 2); /* entire header length, number of bytes */
5364 }
5365 
5366 static void
5367 bxe_set_pbd_lso_e2(struct mbuf *m,
5368                    uint32_t    *parsing_data)
5369 {
5370     *parsing_data |= ((m->m_pkthdr.tso_segsz <<
5371                        ETH_TX_PARSE_BD_E2_LSO_MSS_SHIFT) &
5372                       ETH_TX_PARSE_BD_E2_LSO_MSS);
5373 
5374     /* XXX test for IPv6 with extension header... */
5375 #if 0
5376     struct ip6_hdr *ip6;
5377     if (ip6 && ip6->ip6_nxt == 'some ipv6 extension header')
5378         *parsing_data |= ETH_TX_PARSE_BD_E2_IPV6_WITH_EXT_HDR;
5379 #endif
5380 }
5381 
5382 static void
5383 bxe_set_pbd_lso(struct mbuf                *m,
5384                 struct eth_tx_parse_bd_e1x *pbd)
5385 {
5386     struct ether_vlan_header *eh = NULL;
5387     struct ip *ip = NULL;
5388     struct tcphdr *th = NULL;
5389     int e_hlen;
5390 
5391     /* get the Ethernet header */
5392     eh = mtod(m, struct ether_vlan_header *);
5393 
5394     /* handle VLAN encapsulation if present */
5395     e_hlen = (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) ?
5396                  (ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN) : ETHER_HDR_LEN;
5397 
5398     /* get the IP and TCP header, with LSO entire header in first mbuf */
5399     /* XXX assuming IPv4 */
5400     ip = (struct ip *)(m->m_data + e_hlen);
5401     th = (struct tcphdr *)((caddr_t)ip + (ip->ip_hl << 2));
5402 
5403     pbd->lso_mss = htole16(m->m_pkthdr.tso_segsz);
5404     pbd->tcp_send_seq = ntohl(th->th_seq);
5405     pbd->tcp_flags = ((ntohl(((uint32_t *)th)[3]) >> 16) & 0xff);
5406 
5407 #if 1
5408         /* XXX IPv4 */
5409         pbd->ip_id = ntohs(ip->ip_id);
5410         pbd->tcp_pseudo_csum =
5411             ntohs(in_pseudo(ip->ip_src.s_addr,
5412                             ip->ip_dst.s_addr,
5413                             htons(IPPROTO_TCP)));
5414 #else
5415         /* XXX IPv6 */
5416         pbd->tcp_pseudo_csum =
5417             ntohs(in_pseudo(&ip6->ip6_src,
5418                             &ip6->ip6_dst,
5419                             htons(IPPROTO_TCP)));
5420 #endif
5421 
5422     pbd->global_data |=
5423         htole16(ETH_TX_PARSE_BD_E1X_PSEUDO_CS_WITHOUT_LEN);
5424 }
5425 
5426 /*
5427  * Encapsulte an mbuf cluster into the tx bd chain and makes the memory
5428  * visible to the controller.
5429  *
5430  * If an mbuf is submitted to this routine and cannot be given to the
5431  * controller (e.g. it has too many fragments) then the function may free
5432  * the mbuf and return to the caller.
5433  *
5434  * Returns:
5435  *   0 = Success, !0 = Failure
5436  *   Note the side effect that an mbuf may be freed if it causes a problem.
5437  */
5438 static int
5439 bxe_tx_encap(struct bxe_fastpath *fp, struct mbuf **m_head)
5440 {
5441     bus_dma_segment_t segs[32];
5442     struct mbuf *m0;
5443     struct bxe_sw_tx_bd *tx_buf;
5444     struct eth_tx_parse_bd_e1x *pbd_e1x = NULL;
5445     struct eth_tx_parse_bd_e2 *pbd_e2 = NULL;
5446     /* struct eth_tx_parse_2nd_bd *pbd2 = NULL; */
5447     struct eth_tx_bd *tx_data_bd;
5448     struct eth_tx_bd *tx_total_pkt_size_bd;
5449     struct eth_tx_start_bd *tx_start_bd;
5450     uint16_t bd_prod, pkt_prod, total_pkt_size;
5451     uint8_t mac_type;
5452     int defragged, error, nsegs, rc, nbds, vlan_off, ovlan;
5453     struct bxe_softc *sc;
5454     uint16_t tx_bd_avail;
5455     struct ether_vlan_header *eh;
5456     uint32_t pbd_e2_parsing_data = 0;
5457     uint8_t hlen = 0;
5458     int tmp_bd;
5459     int i;
5460 
5461     sc = fp->sc;
5462 
5463     M_ASSERTPKTHDR(*m_head);
5464 
5465     m0 = *m_head;
5466     rc = defragged = nbds = ovlan = vlan_off = total_pkt_size = 0;
5467     tx_start_bd = NULL;
5468     tx_data_bd = NULL;
5469     tx_total_pkt_size_bd = NULL;
5470 
5471     /* get the H/W pointer for packets and BDs */
5472     pkt_prod = fp->tx_pkt_prod;
5473     bd_prod = fp->tx_bd_prod;
5474 
5475     mac_type = UNICAST_ADDRESS;
5476 
5477     /* map the mbuf into the next open DMAable memory */
5478     tx_buf = &fp->tx_mbuf_chain[TX_BD(pkt_prod)];
5479     error = bus_dmamap_load_mbuf_sg(fp->tx_mbuf_tag,
5480                                     tx_buf->m_map, m0,
5481                                     segs, &nsegs, BUS_DMA_NOWAIT);
5482 
5483     /* mapping errors */
5484     if(__predict_false(error != 0)) {
5485         fp->eth_q_stats.tx_dma_mapping_failure++;
5486         if (error == ENOMEM) {
5487             /* resource issue, try again later */
5488             rc = ENOMEM;
5489         } else if (error == EFBIG) {
5490             /* possibly recoverable with defragmentation */
5491             fp->eth_q_stats.mbuf_defrag_attempts++;
5492             m0 = m_defrag(*m_head, M_NOWAIT);
5493             if (m0 == NULL) {
5494                 fp->eth_q_stats.mbuf_defrag_failures++;
5495                 rc = ENOBUFS;
5496             } else {
5497                 /* defrag successful, try mapping again */
5498                 *m_head = m0;
5499                 error = bus_dmamap_load_mbuf_sg(fp->tx_mbuf_tag,
5500                                                 tx_buf->m_map, m0,
5501                                                 segs, &nsegs, BUS_DMA_NOWAIT);
5502                 if (error) {
5503                     fp->eth_q_stats.tx_dma_mapping_failure++;
5504                     rc = error;
5505                 }
5506             }
5507         } else {
5508             /* unknown, unrecoverable mapping error */
5509             BLOGE(sc, "Unknown TX mapping error rc=%d\n", error);
5510             bxe_dump_mbuf(sc, m0, FALSE);
5511             rc = error;
5512         }
5513 
5514         goto bxe_tx_encap_continue;
5515     }
5516 
5517     tx_bd_avail = bxe_tx_avail(sc, fp);
5518 
5519     /* make sure there is enough room in the send queue */
5520     if (__predict_false(tx_bd_avail < (nsegs + 2))) {
5521         /* Recoverable, try again later. */
5522         fp->eth_q_stats.tx_hw_queue_full++;
5523         bus_dmamap_unload(fp->tx_mbuf_tag, tx_buf->m_map);
5524         rc = ENOMEM;
5525         goto bxe_tx_encap_continue;
5526     }
5527 
5528     /* capture the current H/W TX chain high watermark */
5529     if (__predict_false(fp->eth_q_stats.tx_hw_max_queue_depth <
5530                         (TX_BD_USABLE - tx_bd_avail))) {
5531         fp->eth_q_stats.tx_hw_max_queue_depth = (TX_BD_USABLE - tx_bd_avail);
5532     }
5533 
5534     /* make sure it fits in the packet window */
5535     if (__predict_false(nsegs > BXE_MAX_SEGMENTS)) {
5536         /*
5537          * The mbuf may be to big for the controller to handle. If the frame
5538          * is a TSO frame we'll need to do an additional check.
5539          */
5540         if (m0->m_pkthdr.csum_flags & CSUM_TSO) {
5541             if (bxe_chktso_window(sc, nsegs, segs, m0) == 0) {
5542                 goto bxe_tx_encap_continue; /* OK to send */
5543             } else {
5544                 fp->eth_q_stats.tx_window_violation_tso++;
5545             }
5546         } else {
5547             fp->eth_q_stats.tx_window_violation_std++;
5548         }
5549 
5550         /* lets try to defragment this mbuf and remap it */
5551         fp->eth_q_stats.mbuf_defrag_attempts++;
5552         bus_dmamap_unload(fp->tx_mbuf_tag, tx_buf->m_map);
5553 
5554         m0 = m_defrag(*m_head, M_NOWAIT);
5555         if (m0 == NULL) {
5556             fp->eth_q_stats.mbuf_defrag_failures++;
5557             /* Ugh, just drop the frame... :( */
5558             rc = ENOBUFS;
5559         } else {
5560             /* defrag successful, try mapping again */
5561             *m_head = m0;
5562             error = bus_dmamap_load_mbuf_sg(fp->tx_mbuf_tag,
5563                                             tx_buf->m_map, m0,
5564                                             segs, &nsegs, BUS_DMA_NOWAIT);
5565             if (error) {
5566                 fp->eth_q_stats.tx_dma_mapping_failure++;
5567                 /* No sense in trying to defrag/copy chain, drop it. :( */
5568                 rc = error;
5569             }
5570             else {
5571                 /* if the chain is still too long then drop it */
5572                 if (__predict_false(nsegs > BXE_MAX_SEGMENTS)) {
5573                     bus_dmamap_unload(fp->tx_mbuf_tag, tx_buf->m_map);
5574                     rc = ENODEV;
5575                 }
5576             }
5577         }
5578     }
5579 
5580 bxe_tx_encap_continue:
5581 
5582     /* Check for errors */
5583     if (rc) {
5584         if (rc == ENOMEM) {
5585             /* recoverable try again later  */
5586         } else {
5587             fp->eth_q_stats.tx_soft_errors++;
5588             fp->eth_q_stats.mbuf_alloc_tx--;
5589             m_freem(*m_head);
5590             *m_head = NULL;
5591         }
5592 
5593         return (rc);
5594     }
5595 
5596     /* set flag according to packet type (UNICAST_ADDRESS is default) */
5597     if (m0->m_flags & M_BCAST) {
5598         mac_type = BROADCAST_ADDRESS;
5599     } else if (m0->m_flags & M_MCAST) {
5600         mac_type = MULTICAST_ADDRESS;
5601     }
5602 
5603     /* store the mbuf into the mbuf ring */
5604     tx_buf->m        = m0;
5605     tx_buf->first_bd = fp->tx_bd_prod;
5606     tx_buf->flags    = 0;
5607 
5608     /* prepare the first transmit (start) BD for the mbuf */
5609     tx_start_bd = &fp->tx_chain[TX_BD(bd_prod)].start_bd;
5610 
5611     BLOGD(sc, DBG_TX,
5612           "sending pkt_prod=%u tx_buf=%p next_idx=%u bd=%u tx_start_bd=%p\n",
5613           pkt_prod, tx_buf, fp->tx_pkt_prod, bd_prod, tx_start_bd);
5614 
5615     tx_start_bd->addr_lo = htole32(U64_LO(segs[0].ds_addr));
5616     tx_start_bd->addr_hi = htole32(U64_HI(segs[0].ds_addr));
5617     tx_start_bd->nbytes  = htole16(segs[0].ds_len);
5618     total_pkt_size += tx_start_bd->nbytes;
5619     tx_start_bd->bd_flags.as_bitfield = ETH_TX_BD_FLAGS_START_BD;
5620 
5621     tx_start_bd->general_data = (1 << ETH_TX_START_BD_HDR_NBDS_SHIFT);
5622 
5623     /* all frames have at least Start BD + Parsing BD */
5624     nbds = nsegs + 1;
5625     tx_start_bd->nbd = htole16(nbds);
5626 
5627     if (m0->m_flags & M_VLANTAG) {
5628         tx_start_bd->vlan_or_ethertype = htole16(m0->m_pkthdr.ether_vtag);
5629         tx_start_bd->bd_flags.as_bitfield |=
5630             (X_ETH_OUTBAND_VLAN << ETH_TX_BD_FLAGS_VLAN_MODE_SHIFT);
5631     } else {
5632         /* vf tx, start bd must hold the ethertype for fw to enforce it */
5633         if (IS_VF(sc)) {
5634             /* map ethernet header to find type and header length */
5635             eh = mtod(m0, struct ether_vlan_header *);
5636             tx_start_bd->vlan_or_ethertype = eh->evl_encap_proto;
5637         } else {
5638             /* used by FW for packet accounting */
5639             tx_start_bd->vlan_or_ethertype = htole16(fp->tx_pkt_prod);
5640 #if 0
5641             /*
5642              * If NPAR-SD is active then FW should do the tagging regardless
5643              * of value of priority. Otherwise, if priority indicates this is
5644              * a control packet we need to indicate to FW to avoid tagging.
5645              */
5646             if (!IS_MF_AFEX(sc) && (mbuf priority == PRIO_CONTROL)) {
5647                 SET_FLAG(tx_start_bd->general_data,
5648                          ETH_TX_START_BD_FORCE_VLAN_MODE, 1);
5649             }
5650 #endif
5651         }
5652     }
5653 
5654     /*
5655      * add a parsing BD from the chain. The parsing BD is always added
5656      * though it is only used for TSO and chksum
5657      */
5658     bd_prod = TX_BD_NEXT(bd_prod);
5659 
5660     if (m0->m_pkthdr.csum_flags) {
5661         if (m0->m_pkthdr.csum_flags & CSUM_IP) {
5662             fp->eth_q_stats.tx_ofld_frames_csum_ip++;
5663             tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_IP_CSUM;
5664         }
5665 
5666         if (m0->m_pkthdr.csum_flags & CSUM_TCP_IPV6) {
5667             tx_start_bd->bd_flags.as_bitfield |= (ETH_TX_BD_FLAGS_IPV6 |
5668                                                   ETH_TX_BD_FLAGS_L4_CSUM);
5669         } else if (m0->m_pkthdr.csum_flags & CSUM_UDP_IPV6) {
5670             tx_start_bd->bd_flags.as_bitfield |= (ETH_TX_BD_FLAGS_IPV6   |
5671                                                   ETH_TX_BD_FLAGS_IS_UDP |
5672                                                   ETH_TX_BD_FLAGS_L4_CSUM);
5673         } else if ((m0->m_pkthdr.csum_flags & CSUM_TCP) ||
5674                    (m0->m_pkthdr.csum_flags & CSUM_TSO)) {
5675             tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_L4_CSUM;
5676         } else if (m0->m_pkthdr.csum_flags & CSUM_UDP) {
5677             tx_start_bd->bd_flags.as_bitfield |= (ETH_TX_BD_FLAGS_L4_CSUM |
5678                                                   ETH_TX_BD_FLAGS_IS_UDP);
5679         }
5680     }
5681 
5682     if (!CHIP_IS_E1x(sc)) {
5683         pbd_e2 = &fp->tx_chain[TX_BD(bd_prod)].parse_bd_e2;
5684         memset(pbd_e2, 0, sizeof(struct eth_tx_parse_bd_e2));
5685 
5686         if (m0->m_pkthdr.csum_flags) {
5687             hlen = bxe_set_pbd_csum_e2(fp, m0, &pbd_e2_parsing_data);
5688         }
5689 
5690 #if 0
5691         /*
5692          * Add the MACs to the parsing BD if the module param was
5693          * explicitly set, if this is a vf, or in switch independent
5694          * mode.
5695          */
5696         if (sc->flags & BXE_TX_SWITCHING || IS_VF(sc) || IS_MF_SI(sc)) {
5697             eh = mtod(m0, struct ether_vlan_header *);
5698             bxe_set_fw_mac_addr(&pbd_e2->data.mac_addr.src_hi,
5699                                 &pbd_e2->data.mac_addr.src_mid,
5700                                 &pbd_e2->data.mac_addr.src_lo,
5701                                 eh->evl_shost);
5702             bxe_set_fw_mac_addr(&pbd_e2->data.mac_addr.dst_hi,
5703                                 &pbd_e2->data.mac_addr.dst_mid,
5704                                 &pbd_e2->data.mac_addr.dst_lo,
5705                                 eh->evl_dhost);
5706         }
5707 #endif
5708 
5709         SET_FLAG(pbd_e2_parsing_data, ETH_TX_PARSE_BD_E2_ETH_ADDR_TYPE,
5710                  mac_type);
5711     } else {
5712         uint16_t global_data = 0;
5713 
5714         pbd_e1x = &fp->tx_chain[TX_BD(bd_prod)].parse_bd_e1x;
5715         memset(pbd_e1x, 0, sizeof(struct eth_tx_parse_bd_e1x));
5716 
5717         if (m0->m_pkthdr.csum_flags) {
5718             hlen = bxe_set_pbd_csum(fp, m0, pbd_e1x);
5719         }
5720 
5721         SET_FLAG(global_data,
5722                  ETH_TX_PARSE_BD_E1X_ETH_ADDR_TYPE, mac_type);
5723         pbd_e1x->global_data |= htole16(global_data);
5724     }
5725 
5726     /* setup the parsing BD with TSO specific info */
5727     if (m0->m_pkthdr.csum_flags & CSUM_TSO) {
5728         fp->eth_q_stats.tx_ofld_frames_lso++;
5729         tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_SW_LSO;
5730 
5731         if (__predict_false(tx_start_bd->nbytes > hlen)) {
5732             fp->eth_q_stats.tx_ofld_frames_lso_hdr_splits++;
5733 
5734             /* split the first BD into header/data making the fw job easy */
5735             nbds++;
5736             tx_start_bd->nbd = htole16(nbds);
5737             tx_start_bd->nbytes = htole16(hlen);
5738 
5739             bd_prod = TX_BD_NEXT(bd_prod);
5740 
5741             /* new transmit BD after the tx_parse_bd */
5742             tx_data_bd = &fp->tx_chain[TX_BD(bd_prod)].reg_bd;
5743             tx_data_bd->addr_hi = htole32(U64_HI(segs[0].ds_addr + hlen));
5744             tx_data_bd->addr_lo = htole32(U64_LO(segs[0].ds_addr + hlen));
5745             tx_data_bd->nbytes  = htole16(segs[0].ds_len - hlen);
5746             if (tx_total_pkt_size_bd == NULL) {
5747                 tx_total_pkt_size_bd = tx_data_bd;
5748             }
5749 
5750             BLOGD(sc, DBG_TX,
5751                   "TSO split header size is %d (%x:%x) nbds %d\n",
5752                   le16toh(tx_start_bd->nbytes),
5753                   le32toh(tx_start_bd->addr_hi),
5754                   le32toh(tx_start_bd->addr_lo),
5755                   nbds);
5756         }
5757 
5758         if (!CHIP_IS_E1x(sc)) {
5759             bxe_set_pbd_lso_e2(m0, &pbd_e2_parsing_data);
5760         } else {
5761             bxe_set_pbd_lso(m0, pbd_e1x);
5762         }
5763     }
5764 
5765     if (pbd_e2_parsing_data) {
5766         pbd_e2->parsing_data = htole32(pbd_e2_parsing_data);
5767     }
5768 
5769     /* prepare remaining BDs, start tx bd contains first seg/frag */
5770     for (i = 1; i < nsegs ; i++) {
5771         bd_prod = TX_BD_NEXT(bd_prod);
5772         tx_data_bd = &fp->tx_chain[TX_BD(bd_prod)].reg_bd;
5773         tx_data_bd->addr_lo = htole32(U64_LO(segs[i].ds_addr));
5774         tx_data_bd->addr_hi = htole32(U64_HI(segs[i].ds_addr));
5775         tx_data_bd->nbytes  = htole16(segs[i].ds_len);
5776         if (tx_total_pkt_size_bd == NULL) {
5777             tx_total_pkt_size_bd = tx_data_bd;
5778         }
5779         total_pkt_size += tx_data_bd->nbytes;
5780     }
5781 
5782     BLOGD(sc, DBG_TX, "last bd %p\n", tx_data_bd);
5783 
5784     if (tx_total_pkt_size_bd != NULL) {
5785         tx_total_pkt_size_bd->total_pkt_bytes = total_pkt_size;
5786     }
5787 
5788     if (__predict_false(sc->debug & DBG_TX)) {
5789         tmp_bd = tx_buf->first_bd;
5790         for (i = 0; i < nbds; i++)
5791         {
5792             if (i == 0) {
5793                 BLOGD(sc, DBG_TX,
5794                       "TX Strt: %p bd=%d nbd=%d vlan=0x%x "
5795                       "bd_flags=0x%x hdr_nbds=%d\n",
5796                       tx_start_bd,
5797                       tmp_bd,
5798                       le16toh(tx_start_bd->nbd),
5799                       le16toh(tx_start_bd->vlan_or_ethertype),
5800                       tx_start_bd->bd_flags.as_bitfield,
5801                       (tx_start_bd->general_data & ETH_TX_START_BD_HDR_NBDS));
5802             } else if (i == 1) {
5803                 if (pbd_e1x) {
5804                     BLOGD(sc, DBG_TX,
5805                           "-> Prse: %p bd=%d global=0x%x ip_hlen_w=%u "
5806                           "ip_id=%u lso_mss=%u tcp_flags=0x%x csum=0x%x "
5807                           "tcp_seq=%u total_hlen_w=%u\n",
5808                           pbd_e1x,
5809                           tmp_bd,
5810                           pbd_e1x->global_data,
5811                           pbd_e1x->ip_hlen_w,
5812                           pbd_e1x->ip_id,
5813                           pbd_e1x->lso_mss,
5814                           pbd_e1x->tcp_flags,
5815                           pbd_e1x->tcp_pseudo_csum,
5816                           pbd_e1x->tcp_send_seq,
5817                           le16toh(pbd_e1x->total_hlen_w));
5818                 } else { /* if (pbd_e2) */
5819                     BLOGD(sc, DBG_TX,
5820                           "-> Parse: %p bd=%d dst=%02x:%02x:%02x "
5821                           "src=%02x:%02x:%02x parsing_data=0x%x\n",
5822                           pbd_e2,
5823                           tmp_bd,
5824                           pbd_e2->data.mac_addr.dst_hi,
5825                           pbd_e2->data.mac_addr.dst_mid,
5826                           pbd_e2->data.mac_addr.dst_lo,
5827                           pbd_e2->data.mac_addr.src_hi,
5828                           pbd_e2->data.mac_addr.src_mid,
5829                           pbd_e2->data.mac_addr.src_lo,
5830                           pbd_e2->parsing_data);
5831                 }
5832             }
5833 
5834             if (i != 1) { /* skip parse db as it doesn't hold data */
5835                 tx_data_bd = &fp->tx_chain[TX_BD(tmp_bd)].reg_bd;
5836                 BLOGD(sc, DBG_TX,
5837                       "-> Frag: %p bd=%d nbytes=%d hi=0x%x lo: 0x%x\n",
5838                       tx_data_bd,
5839                       tmp_bd,
5840                       le16toh(tx_data_bd->nbytes),
5841                       le32toh(tx_data_bd->addr_hi),
5842                       le32toh(tx_data_bd->addr_lo));
5843             }
5844 
5845             tmp_bd = TX_BD_NEXT(tmp_bd);
5846         }
5847     }
5848 
5849     BLOGD(sc, DBG_TX, "doorbell: nbds=%d bd=%u\n", nbds, bd_prod);
5850 
5851     /* update TX BD producer index value for next TX */
5852     bd_prod = TX_BD_NEXT(bd_prod);
5853 
5854     /*
5855      * If the chain of tx_bd's describing this frame is adjacent to or spans
5856      * an eth_tx_next_bd element then we need to increment the nbds value.
5857      */
5858     if (TX_BD_IDX(bd_prod) < nbds) {
5859         nbds++;
5860     }
5861 
5862     /* don't allow reordering of writes for nbd and packets */
5863     mb();
5864 
5865     fp->tx_db.data.prod += nbds;
5866 
5867     /* producer points to the next free tx_bd at this point */
5868     fp->tx_pkt_prod++;
5869     fp->tx_bd_prod = bd_prod;
5870 
5871     DOORBELL(sc, fp->index, fp->tx_db.raw);
5872 
5873     fp->eth_q_stats.tx_pkts++;
5874 
5875     /* Prevent speculative reads from getting ahead of the status block. */
5876     bus_space_barrier(sc->bar[BAR0].tag, sc->bar[BAR0].handle,
5877                       0, 0, BUS_SPACE_BARRIER_READ);
5878 
5879     /* Prevent speculative reads from getting ahead of the doorbell. */
5880     bus_space_barrier(sc->bar[BAR2].tag, sc->bar[BAR2].handle,
5881                       0, 0, BUS_SPACE_BARRIER_READ);
5882 
5883     return (0);
5884 }
5885 
5886 static void
5887 bxe_tx_start_locked(struct bxe_softc *sc,
5888                     if_t ifp,
5889                     struct bxe_fastpath *fp)
5890 {
5891     struct mbuf *m = NULL;
5892     int tx_count = 0;
5893     uint16_t tx_bd_avail;
5894 
5895     BXE_FP_TX_LOCK_ASSERT(fp);
5896 
5897     /* keep adding entries while there are frames to send */
5898     while (!if_sendq_empty(ifp)) {
5899 
5900         /*
5901          * check for any frames to send
5902          * dequeue can still be NULL even if queue is not empty
5903          */
5904         m = if_dequeue(ifp);
5905         if (__predict_false(m == NULL)) {
5906             break;
5907         }
5908 
5909         /* the mbuf now belongs to us */
5910         fp->eth_q_stats.mbuf_alloc_tx++;
5911 
5912         /*
5913          * Put the frame into the transmit ring. If we don't have room,
5914          * place the mbuf back at the head of the TX queue, set the
5915          * OACTIVE flag, and wait for the NIC to drain the chain.
5916          */
5917         if (__predict_false(bxe_tx_encap(fp, &m))) {
5918             fp->eth_q_stats.tx_encap_failures++;
5919             if (m != NULL) {
5920                 /* mark the TX queue as full and return the frame */
5921                 if_setdrvflagbits(ifp, IFF_DRV_OACTIVE, 0);
5922 		if_sendq_prepend(ifp, m);
5923                 fp->eth_q_stats.mbuf_alloc_tx--;
5924                 fp->eth_q_stats.tx_queue_xoff++;
5925             }
5926 
5927             /* stop looking for more work */
5928             break;
5929         }
5930 
5931         /* the frame was enqueued successfully */
5932         tx_count++;
5933 
5934         /* send a copy of the frame to any BPF listeners. */
5935         if_etherbpfmtap(ifp, m);
5936 
5937         tx_bd_avail = bxe_tx_avail(sc, fp);
5938 
5939         /* handle any completions if we're running low */
5940         if (tx_bd_avail < BXE_TX_CLEANUP_THRESHOLD) {
5941             /* bxe_txeof will set IFF_DRV_OACTIVE appropriately */
5942             bxe_txeof(sc, fp);
5943             if (if_getdrvflags(ifp) & IFF_DRV_OACTIVE) {
5944                 break;
5945             }
5946         }
5947     }
5948 
5949     /* all TX packets were dequeued and/or the tx ring is full */
5950     if (tx_count > 0) {
5951         /* reset the TX watchdog timeout timer */
5952         fp->watchdog_timer = BXE_TX_TIMEOUT;
5953     }
5954 }
5955 
5956 /* Legacy (non-RSS) dispatch routine */
5957 static void
5958 bxe_tx_start(if_t ifp)
5959 {
5960     struct bxe_softc *sc;
5961     struct bxe_fastpath *fp;
5962 
5963     sc = if_getsoftc(ifp);
5964 
5965     if (!(if_getdrvflags(ifp) & IFF_DRV_RUNNING)) {
5966         BLOGW(sc, "Interface not running, ignoring transmit request\n");
5967         return;
5968     }
5969 
5970     if (if_getdrvflags(ifp) & IFF_DRV_OACTIVE) {
5971         BLOGW(sc, "Interface TX queue is full, ignoring transmit request\n");
5972         return;
5973     }
5974 
5975     if (!sc->link_vars.link_up) {
5976         BLOGW(sc, "Interface link is down, ignoring transmit request\n");
5977         return;
5978     }
5979 
5980     fp = &sc->fp[0];
5981 
5982     BXE_FP_TX_LOCK(fp);
5983     bxe_tx_start_locked(sc, ifp, fp);
5984     BXE_FP_TX_UNLOCK(fp);
5985 }
5986 
5987 #if __FreeBSD_version >= 800000
5988 
5989 static int
5990 bxe_tx_mq_start_locked(struct bxe_softc    *sc,
5991                        if_t                ifp,
5992                        struct bxe_fastpath *fp,
5993                        struct mbuf         *m)
5994 {
5995     struct buf_ring *tx_br = fp->tx_br;
5996     struct mbuf *next;
5997     int depth, rc, tx_count;
5998     uint16_t tx_bd_avail;
5999 
6000     rc = tx_count = 0;
6001 
6002     if (!tx_br) {
6003         BLOGE(sc, "Multiqueue TX and no buf_ring!\n");
6004         return (EINVAL);
6005     }
6006 
6007     /* fetch the depth of the driver queue */
6008     depth = drbr_inuse_drv(ifp, tx_br);
6009     if (depth > fp->eth_q_stats.tx_max_drbr_queue_depth) {
6010         fp->eth_q_stats.tx_max_drbr_queue_depth = depth;
6011     }
6012 
6013     BXE_FP_TX_LOCK_ASSERT(fp);
6014 
6015     if (m == NULL) {
6016         /* no new work, check for pending frames */
6017         next = drbr_dequeue_drv(ifp, tx_br);
6018     } else if (drbr_needs_enqueue_drv(ifp, tx_br)) {
6019         /* have both new and pending work, maintain packet order */
6020         rc = drbr_enqueue_drv(ifp, tx_br, m);
6021         if (rc != 0) {
6022             fp->eth_q_stats.tx_soft_errors++;
6023             goto bxe_tx_mq_start_locked_exit;
6024         }
6025         next = drbr_dequeue_drv(ifp, tx_br);
6026     } else {
6027         /* new work only and nothing pending */
6028         next = m;
6029     }
6030 
6031     /* keep adding entries while there are frames to send */
6032     while (next != NULL) {
6033 
6034         /* the mbuf now belongs to us */
6035         fp->eth_q_stats.mbuf_alloc_tx++;
6036 
6037         /*
6038          * Put the frame into the transmit ring. If we don't have room,
6039          * place the mbuf back at the head of the TX queue, set the
6040          * OACTIVE flag, and wait for the NIC to drain the chain.
6041          */
6042         rc = bxe_tx_encap(fp, &next);
6043         if (__predict_false(rc != 0)) {
6044             fp->eth_q_stats.tx_encap_failures++;
6045             if (next != NULL) {
6046                 /* mark the TX queue as full and save the frame */
6047                 if_setdrvflagbits(ifp, IFF_DRV_OACTIVE, 0);
6048                 /* XXX this may reorder the frame */
6049                 rc = drbr_enqueue_drv(ifp, tx_br, next);
6050                 fp->eth_q_stats.mbuf_alloc_tx--;
6051                 fp->eth_q_stats.tx_frames_deferred++;
6052             }
6053 
6054             /* stop looking for more work */
6055             break;
6056         }
6057 
6058         /* the transmit frame was enqueued successfully */
6059         tx_count++;
6060 
6061         /* send a copy of the frame to any BPF listeners */
6062 	if_etherbpfmtap(ifp, next);
6063 
6064         tx_bd_avail = bxe_tx_avail(sc, fp);
6065 
6066         /* handle any completions if we're running low */
6067         if (tx_bd_avail < BXE_TX_CLEANUP_THRESHOLD) {
6068             /* bxe_txeof will set IFF_DRV_OACTIVE appropriately */
6069             bxe_txeof(sc, fp);
6070             if (if_getdrvflags(ifp) & IFF_DRV_OACTIVE) {
6071                 break;
6072             }
6073         }
6074 
6075         next = drbr_dequeue_drv(ifp, tx_br);
6076     }
6077 
6078     /* all TX packets were dequeued and/or the tx ring is full */
6079     if (tx_count > 0) {
6080         /* reset the TX watchdog timeout timer */
6081         fp->watchdog_timer = BXE_TX_TIMEOUT;
6082     }
6083 
6084 bxe_tx_mq_start_locked_exit:
6085 
6086     return (rc);
6087 }
6088 
6089 /* Multiqueue (TSS) dispatch routine. */
6090 static int
6091 bxe_tx_mq_start(struct ifnet *ifp,
6092                 struct mbuf  *m)
6093 {
6094     struct bxe_softc *sc = if_getsoftc(ifp);
6095     struct bxe_fastpath *fp;
6096     int fp_index, rc;
6097 
6098     fp_index = 0; /* default is the first queue */
6099 
6100     /* check if flowid is set */
6101     if (M_HASHTYPE_GET(m) != M_HASHTYPE_NONE)
6102         fp_index = (m->m_pkthdr.flowid % sc->num_queues);
6103 
6104     fp = &sc->fp[fp_index];
6105 
6106     if (!(if_getdrvflags(ifp) & IFF_DRV_RUNNING)) {
6107         BLOGW(sc, "Interface not running, ignoring transmit request\n");
6108         return (ENETDOWN);
6109     }
6110 
6111     if (if_getdrvflags(ifp) & IFF_DRV_OACTIVE) {
6112         BLOGW(sc, "Interface TX queue is full, ignoring transmit request\n");
6113         return (EBUSY);
6114     }
6115 
6116     if (!sc->link_vars.link_up) {
6117         BLOGW(sc, "Interface link is down, ignoring transmit request\n");
6118         return (ENETDOWN);
6119     }
6120 
6121     /* XXX change to TRYLOCK here and if failed then schedule taskqueue */
6122 
6123     BXE_FP_TX_LOCK(fp);
6124     rc = bxe_tx_mq_start_locked(sc, ifp, fp, m);
6125     BXE_FP_TX_UNLOCK(fp);
6126 
6127     return (rc);
6128 }
6129 
6130 static void
6131 bxe_mq_flush(struct ifnet *ifp)
6132 {
6133     struct bxe_softc *sc = if_getsoftc(ifp);
6134     struct bxe_fastpath *fp;
6135     struct mbuf *m;
6136     int i;
6137 
6138     for (i = 0; i < sc->num_queues; i++) {
6139         fp = &sc->fp[i];
6140 
6141         if (fp->state != BXE_FP_STATE_OPEN) {
6142             BLOGD(sc, DBG_LOAD, "Not clearing fp[%02d] buf_ring (state=%d)\n",
6143                   fp->index, fp->state);
6144             continue;
6145         }
6146 
6147         if (fp->tx_br != NULL) {
6148             BLOGD(sc, DBG_LOAD, "Clearing fp[%02d] buf_ring\n", fp->index);
6149             BXE_FP_TX_LOCK(fp);
6150             while ((m = buf_ring_dequeue_sc(fp->tx_br)) != NULL) {
6151                 m_freem(m);
6152             }
6153             BXE_FP_TX_UNLOCK(fp);
6154         }
6155     }
6156 
6157     if_qflush(ifp);
6158 }
6159 
6160 #endif /* FreeBSD_version >= 800000 */
6161 
6162 static uint16_t
6163 bxe_cid_ilt_lines(struct bxe_softc *sc)
6164 {
6165     if (IS_SRIOV(sc)) {
6166         return ((BXE_FIRST_VF_CID + BXE_VF_CIDS) / ILT_PAGE_CIDS);
6167     }
6168     return (L2_ILT_LINES(sc));
6169 }
6170 
6171 static void
6172 bxe_ilt_set_info(struct bxe_softc *sc)
6173 {
6174     struct ilt_client_info *ilt_client;
6175     struct ecore_ilt *ilt = sc->ilt;
6176     uint16_t line = 0;
6177 
6178     ilt->start_line = FUNC_ILT_BASE(SC_FUNC(sc));
6179     BLOGD(sc, DBG_LOAD, "ilt starts at line %d\n", ilt->start_line);
6180 
6181     /* CDU */
6182     ilt_client = &ilt->clients[ILT_CLIENT_CDU];
6183     ilt_client->client_num = ILT_CLIENT_CDU;
6184     ilt_client->page_size = CDU_ILT_PAGE_SZ;
6185     ilt_client->flags = ILT_CLIENT_SKIP_MEM;
6186     ilt_client->start = line;
6187     line += bxe_cid_ilt_lines(sc);
6188 
6189     if (CNIC_SUPPORT(sc)) {
6190         line += CNIC_ILT_LINES;
6191     }
6192 
6193     ilt_client->end = (line - 1);
6194 
6195     BLOGD(sc, DBG_LOAD,
6196           "ilt client[CDU]: start %d, end %d, "
6197           "psz 0x%x, flags 0x%x, hw psz %d\n",
6198           ilt_client->start, ilt_client->end,
6199           ilt_client->page_size,
6200           ilt_client->flags,
6201           ilog2(ilt_client->page_size >> 12));
6202 
6203     /* QM */
6204     if (QM_INIT(sc->qm_cid_count)) {
6205         ilt_client = &ilt->clients[ILT_CLIENT_QM];
6206         ilt_client->client_num = ILT_CLIENT_QM;
6207         ilt_client->page_size = QM_ILT_PAGE_SZ;
6208         ilt_client->flags = 0;
6209         ilt_client->start = line;
6210 
6211         /* 4 bytes for each cid */
6212         line += DIV_ROUND_UP(sc->qm_cid_count * QM_QUEUES_PER_FUNC * 4,
6213                              QM_ILT_PAGE_SZ);
6214 
6215         ilt_client->end = (line - 1);
6216 
6217         BLOGD(sc, DBG_LOAD,
6218               "ilt client[QM]: start %d, end %d, "
6219               "psz 0x%x, flags 0x%x, hw psz %d\n",
6220               ilt_client->start, ilt_client->end,
6221               ilt_client->page_size, ilt_client->flags,
6222               ilog2(ilt_client->page_size >> 12));
6223     }
6224 
6225     if (CNIC_SUPPORT(sc)) {
6226         /* SRC */
6227         ilt_client = &ilt->clients[ILT_CLIENT_SRC];
6228         ilt_client->client_num = ILT_CLIENT_SRC;
6229         ilt_client->page_size = SRC_ILT_PAGE_SZ;
6230         ilt_client->flags = 0;
6231         ilt_client->start = line;
6232         line += SRC_ILT_LINES;
6233         ilt_client->end = (line - 1);
6234 
6235         BLOGD(sc, DBG_LOAD,
6236               "ilt client[SRC]: start %d, end %d, "
6237               "psz 0x%x, flags 0x%x, hw psz %d\n",
6238               ilt_client->start, ilt_client->end,
6239               ilt_client->page_size, ilt_client->flags,
6240               ilog2(ilt_client->page_size >> 12));
6241 
6242         /* TM */
6243         ilt_client = &ilt->clients[ILT_CLIENT_TM];
6244         ilt_client->client_num = ILT_CLIENT_TM;
6245         ilt_client->page_size = TM_ILT_PAGE_SZ;
6246         ilt_client->flags = 0;
6247         ilt_client->start = line;
6248         line += TM_ILT_LINES;
6249         ilt_client->end = (line - 1);
6250 
6251         BLOGD(sc, DBG_LOAD,
6252               "ilt client[TM]: start %d, end %d, "
6253               "psz 0x%x, flags 0x%x, hw psz %d\n",
6254               ilt_client->start, ilt_client->end,
6255               ilt_client->page_size, ilt_client->flags,
6256               ilog2(ilt_client->page_size >> 12));
6257     }
6258 
6259     KASSERT((line <= ILT_MAX_LINES), ("Invalid number of ILT lines!"));
6260 }
6261 
6262 static void
6263 bxe_set_fp_rx_buf_size(struct bxe_softc *sc)
6264 {
6265     int i;
6266     uint32_t rx_buf_size;
6267 
6268     rx_buf_size = (IP_HEADER_ALIGNMENT_PADDING + ETH_OVERHEAD + sc->mtu);
6269 
6270     for (i = 0; i < sc->num_queues; i++) {
6271         if(rx_buf_size <= MCLBYTES){
6272             sc->fp[i].rx_buf_size = rx_buf_size;
6273             sc->fp[i].mbuf_alloc_size = MCLBYTES;
6274         }else if (rx_buf_size <= MJUMPAGESIZE){
6275             sc->fp[i].rx_buf_size = rx_buf_size;
6276             sc->fp[i].mbuf_alloc_size = MJUMPAGESIZE;
6277         }else if (rx_buf_size <= (MJUMPAGESIZE + MCLBYTES)){
6278             sc->fp[i].rx_buf_size = MCLBYTES;
6279             sc->fp[i].mbuf_alloc_size = MCLBYTES;
6280         }else if (rx_buf_size <= (2 * MJUMPAGESIZE)){
6281             sc->fp[i].rx_buf_size = MJUMPAGESIZE;
6282             sc->fp[i].mbuf_alloc_size = MJUMPAGESIZE;
6283         }else {
6284             sc->fp[i].rx_buf_size = MCLBYTES;
6285             sc->fp[i].mbuf_alloc_size = MCLBYTES;
6286         }
6287     }
6288 }
6289 
6290 static int
6291 bxe_alloc_ilt_mem(struct bxe_softc *sc)
6292 {
6293     int rc = 0;
6294 
6295     if ((sc->ilt =
6296          (struct ecore_ilt *)malloc(sizeof(struct ecore_ilt),
6297                                     M_BXE_ILT,
6298                                     (M_NOWAIT | M_ZERO))) == NULL) {
6299         rc = 1;
6300     }
6301 
6302     return (rc);
6303 }
6304 
6305 static int
6306 bxe_alloc_ilt_lines_mem(struct bxe_softc *sc)
6307 {
6308     int rc = 0;
6309 
6310     if ((sc->ilt->lines =
6311          (struct ilt_line *)malloc((sizeof(struct ilt_line) * ILT_MAX_LINES),
6312                                     M_BXE_ILT,
6313                                     (M_NOWAIT | M_ZERO))) == NULL) {
6314         rc = 1;
6315     }
6316 
6317     return (rc);
6318 }
6319 
6320 static void
6321 bxe_free_ilt_mem(struct bxe_softc *sc)
6322 {
6323     if (sc->ilt != NULL) {
6324         free(sc->ilt, M_BXE_ILT);
6325         sc->ilt = NULL;
6326     }
6327 }
6328 
6329 static void
6330 bxe_free_ilt_lines_mem(struct bxe_softc *sc)
6331 {
6332     if (sc->ilt->lines != NULL) {
6333         free(sc->ilt->lines, M_BXE_ILT);
6334         sc->ilt->lines = NULL;
6335     }
6336 }
6337 
6338 static void
6339 bxe_free_mem(struct bxe_softc *sc)
6340 {
6341     int i;
6342 
6343 #if 0
6344     if (!CONFIGURE_NIC_MODE(sc)) {
6345         /* free searcher T2 table */
6346         bxe_dma_free(sc, &sc->t2);
6347     }
6348 #endif
6349 
6350     for (i = 0; i < L2_ILT_LINES(sc); i++) {
6351         bxe_dma_free(sc, &sc->context[i].vcxt_dma);
6352         sc->context[i].vcxt = NULL;
6353         sc->context[i].size = 0;
6354     }
6355 
6356     ecore_ilt_mem_op(sc, ILT_MEMOP_FREE);
6357 
6358     bxe_free_ilt_lines_mem(sc);
6359 
6360 #if 0
6361     bxe_iov_free_mem(sc);
6362 #endif
6363 }
6364 
6365 static int
6366 bxe_alloc_mem(struct bxe_softc *sc)
6367 {
6368     int context_size;
6369     int allocated;
6370     int i;
6371 
6372 #if 0
6373     if (!CONFIGURE_NIC_MODE(sc)) {
6374         /* allocate searcher T2 table */
6375         if (bxe_dma_alloc(sc, SRC_T2_SZ,
6376                           &sc->t2, "searcher t2 table") != 0) {
6377             return (-1);
6378         }
6379     }
6380 #endif
6381 
6382     /*
6383      * Allocate memory for CDU context:
6384      * This memory is allocated separately and not in the generic ILT
6385      * functions because CDU differs in few aspects:
6386      * 1. There can be multiple entities allocating memory for context -
6387      * regular L2, CNIC, and SRIOV drivers. Each separately controls
6388      * its own ILT lines.
6389      * 2. Since CDU page-size is not a single 4KB page (which is the case
6390      * for the other ILT clients), to be efficient we want to support
6391      * allocation of sub-page-size in the last entry.
6392      * 3. Context pointers are used by the driver to pass to FW / update
6393      * the context (for the other ILT clients the pointers are used just to
6394      * free the memory during unload).
6395      */
6396     context_size = (sizeof(union cdu_context) * BXE_L2_CID_COUNT(sc));
6397     for (i = 0, allocated = 0; allocated < context_size; i++) {
6398         sc->context[i].size = min(CDU_ILT_PAGE_SZ,
6399                                   (context_size - allocated));
6400 
6401         if (bxe_dma_alloc(sc, sc->context[i].size,
6402                           &sc->context[i].vcxt_dma,
6403                           "cdu context") != 0) {
6404             bxe_free_mem(sc);
6405             return (-1);
6406         }
6407 
6408         sc->context[i].vcxt =
6409             (union cdu_context *)sc->context[i].vcxt_dma.vaddr;
6410 
6411         allocated += sc->context[i].size;
6412     }
6413 
6414     bxe_alloc_ilt_lines_mem(sc);
6415 
6416     BLOGD(sc, DBG_LOAD, "ilt=%p start_line=%u lines=%p\n",
6417           sc->ilt, sc->ilt->start_line, sc->ilt->lines);
6418     {
6419         for (i = 0; i < 4; i++) {
6420             BLOGD(sc, DBG_LOAD,
6421                   "c%d page_size=%u start=%u end=%u num=%u flags=0x%x\n",
6422                   i,
6423                   sc->ilt->clients[i].page_size,
6424                   sc->ilt->clients[i].start,
6425                   sc->ilt->clients[i].end,
6426                   sc->ilt->clients[i].client_num,
6427                   sc->ilt->clients[i].flags);
6428         }
6429     }
6430     if (ecore_ilt_mem_op(sc, ILT_MEMOP_ALLOC)) {
6431         BLOGE(sc, "ecore_ilt_mem_op ILT_MEMOP_ALLOC failed\n");
6432         bxe_free_mem(sc);
6433         return (-1);
6434     }
6435 
6436 #if 0
6437     if (bxe_iov_alloc_mem(sc)) {
6438         BLOGE(sc, "Failed to allocate memory for SRIOV\n");
6439         bxe_free_mem(sc);
6440         return (-1);
6441     }
6442 #endif
6443 
6444     return (0);
6445 }
6446 
6447 static void
6448 bxe_free_rx_bd_chain(struct bxe_fastpath *fp)
6449 {
6450     struct bxe_softc *sc;
6451     int i;
6452 
6453     sc = fp->sc;
6454 
6455     if (fp->rx_mbuf_tag == NULL) {
6456         return;
6457     }
6458 
6459     /* free all mbufs and unload all maps */
6460     for (i = 0; i < RX_BD_TOTAL; i++) {
6461         if (fp->rx_mbuf_chain[i].m_map != NULL) {
6462             bus_dmamap_sync(fp->rx_mbuf_tag,
6463                             fp->rx_mbuf_chain[i].m_map,
6464                             BUS_DMASYNC_POSTREAD);
6465             bus_dmamap_unload(fp->rx_mbuf_tag,
6466                               fp->rx_mbuf_chain[i].m_map);
6467         }
6468 
6469         if (fp->rx_mbuf_chain[i].m != NULL) {
6470             m_freem(fp->rx_mbuf_chain[i].m);
6471             fp->rx_mbuf_chain[i].m = NULL;
6472             fp->eth_q_stats.mbuf_alloc_rx--;
6473         }
6474     }
6475 }
6476 
6477 static void
6478 bxe_free_tpa_pool(struct bxe_fastpath *fp)
6479 {
6480     struct bxe_softc *sc;
6481     int i, max_agg_queues;
6482 
6483     sc = fp->sc;
6484 
6485     if (fp->rx_mbuf_tag == NULL) {
6486         return;
6487     }
6488 
6489     max_agg_queues = MAX_AGG_QS(sc);
6490 
6491     /* release all mbufs and unload all DMA maps in the TPA pool */
6492     for (i = 0; i < max_agg_queues; i++) {
6493         if (fp->rx_tpa_info[i].bd.m_map != NULL) {
6494             bus_dmamap_sync(fp->rx_mbuf_tag,
6495                             fp->rx_tpa_info[i].bd.m_map,
6496                             BUS_DMASYNC_POSTREAD);
6497             bus_dmamap_unload(fp->rx_mbuf_tag,
6498                               fp->rx_tpa_info[i].bd.m_map);
6499         }
6500 
6501         if (fp->rx_tpa_info[i].bd.m != NULL) {
6502             m_freem(fp->rx_tpa_info[i].bd.m);
6503             fp->rx_tpa_info[i].bd.m = NULL;
6504             fp->eth_q_stats.mbuf_alloc_tpa--;
6505         }
6506     }
6507 }
6508 
6509 static void
6510 bxe_free_sge_chain(struct bxe_fastpath *fp)
6511 {
6512     struct bxe_softc *sc;
6513     int i;
6514 
6515     sc = fp->sc;
6516 
6517     if (fp->rx_sge_mbuf_tag == NULL) {
6518         return;
6519     }
6520 
6521     /* rree all mbufs and unload all maps */
6522     for (i = 0; i < RX_SGE_TOTAL; i++) {
6523         if (fp->rx_sge_mbuf_chain[i].m_map != NULL) {
6524             bus_dmamap_sync(fp->rx_sge_mbuf_tag,
6525                             fp->rx_sge_mbuf_chain[i].m_map,
6526                             BUS_DMASYNC_POSTREAD);
6527             bus_dmamap_unload(fp->rx_sge_mbuf_tag,
6528                               fp->rx_sge_mbuf_chain[i].m_map);
6529         }
6530 
6531         if (fp->rx_sge_mbuf_chain[i].m != NULL) {
6532             m_freem(fp->rx_sge_mbuf_chain[i].m);
6533             fp->rx_sge_mbuf_chain[i].m = NULL;
6534             fp->eth_q_stats.mbuf_alloc_sge--;
6535         }
6536     }
6537 }
6538 
6539 static void
6540 bxe_free_fp_buffers(struct bxe_softc *sc)
6541 {
6542     struct bxe_fastpath *fp;
6543     int i;
6544 
6545     for (i = 0; i < sc->num_queues; i++) {
6546         fp = &sc->fp[i];
6547 
6548 #if __FreeBSD_version >= 800000
6549         if (fp->tx_br != NULL) {
6550             /* just in case bxe_mq_flush() wasn't called */
6551             if (mtx_initialized(&fp->tx_mtx)) {
6552                 struct mbuf *m;
6553 
6554                 BXE_FP_TX_LOCK(fp);
6555                 while ((m = buf_ring_dequeue_sc(fp->tx_br)) != NULL)
6556                     m_freem(m);
6557                 BXE_FP_TX_UNLOCK(fp);
6558             }
6559             buf_ring_free(fp->tx_br, M_DEVBUF);
6560             fp->tx_br = NULL;
6561         }
6562 #endif
6563 
6564         /* free all RX buffers */
6565         bxe_free_rx_bd_chain(fp);
6566         bxe_free_tpa_pool(fp);
6567         bxe_free_sge_chain(fp);
6568 
6569         if (fp->eth_q_stats.mbuf_alloc_rx != 0) {
6570             BLOGE(sc, "failed to claim all rx mbufs (%d left)\n",
6571                   fp->eth_q_stats.mbuf_alloc_rx);
6572         }
6573 
6574         if (fp->eth_q_stats.mbuf_alloc_sge != 0) {
6575             BLOGE(sc, "failed to claim all sge mbufs (%d left)\n",
6576                   fp->eth_q_stats.mbuf_alloc_sge);
6577         }
6578 
6579         if (fp->eth_q_stats.mbuf_alloc_tpa != 0) {
6580             BLOGE(sc, "failed to claim all sge mbufs (%d left)\n",
6581                   fp->eth_q_stats.mbuf_alloc_tpa);
6582         }
6583 
6584         if (fp->eth_q_stats.mbuf_alloc_tx != 0) {
6585             BLOGE(sc, "failed to release tx mbufs (%d left)\n",
6586                   fp->eth_q_stats.mbuf_alloc_tx);
6587         }
6588 
6589         /* XXX verify all mbufs were reclaimed */
6590 
6591         if (mtx_initialized(&fp->tx_mtx)) {
6592             mtx_destroy(&fp->tx_mtx);
6593         }
6594 
6595         if (mtx_initialized(&fp->rx_mtx)) {
6596             mtx_destroy(&fp->rx_mtx);
6597         }
6598     }
6599 }
6600 
6601 static int
6602 bxe_alloc_rx_bd_mbuf(struct bxe_fastpath *fp,
6603                      uint16_t            prev_index,
6604                      uint16_t            index)
6605 {
6606     struct bxe_sw_rx_bd *rx_buf;
6607     struct eth_rx_bd *rx_bd;
6608     bus_dma_segment_t segs[1];
6609     bus_dmamap_t map;
6610     struct mbuf *m;
6611     int nsegs, rc;
6612 
6613     rc = 0;
6614 
6615     /* allocate the new RX BD mbuf */
6616     m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, fp->mbuf_alloc_size);
6617     if (__predict_false(m == NULL)) {
6618         fp->eth_q_stats.mbuf_rx_bd_alloc_failed++;
6619         return (ENOBUFS);
6620     }
6621 
6622     fp->eth_q_stats.mbuf_alloc_rx++;
6623 
6624     /* initialize the mbuf buffer length */
6625     m->m_pkthdr.len = m->m_len = fp->rx_buf_size;
6626 
6627     /* map the mbuf into non-paged pool */
6628     rc = bus_dmamap_load_mbuf_sg(fp->rx_mbuf_tag,
6629                                  fp->rx_mbuf_spare_map,
6630                                  m, segs, &nsegs, BUS_DMA_NOWAIT);
6631     if (__predict_false(rc != 0)) {
6632         fp->eth_q_stats.mbuf_rx_bd_mapping_failed++;
6633         m_freem(m);
6634         fp->eth_q_stats.mbuf_alloc_rx--;
6635         return (rc);
6636     }
6637 
6638     /* all mbufs must map to a single segment */
6639     KASSERT((nsegs == 1), ("Too many segments, %d returned!", nsegs));
6640 
6641     /* release any existing RX BD mbuf mappings */
6642 
6643     if (prev_index != index) {
6644         rx_buf = &fp->rx_mbuf_chain[prev_index];
6645 
6646         if (rx_buf->m_map != NULL) {
6647             bus_dmamap_sync(fp->rx_mbuf_tag, rx_buf->m_map,
6648                             BUS_DMASYNC_POSTREAD);
6649             bus_dmamap_unload(fp->rx_mbuf_tag, rx_buf->m_map);
6650         }
6651 
6652         /*
6653          * We only get here from bxe_rxeof() when the maximum number
6654          * of rx buffers is less than RX_BD_USABLE. bxe_rxeof() already
6655          * holds the mbuf in the prev_index so it's OK to NULL it out
6656          * here without concern of a memory leak.
6657          */
6658         fp->rx_mbuf_chain[prev_index].m = NULL;
6659     }
6660 
6661     rx_buf = &fp->rx_mbuf_chain[index];
6662 
6663     if (rx_buf->m_map != NULL) {
6664         bus_dmamap_sync(fp->rx_mbuf_tag, rx_buf->m_map,
6665                         BUS_DMASYNC_POSTREAD);
6666         bus_dmamap_unload(fp->rx_mbuf_tag, rx_buf->m_map);
6667     }
6668 
6669     /* save the mbuf and mapping info for a future packet */
6670     map = (prev_index != index) ?
6671               fp->rx_mbuf_chain[prev_index].m_map : rx_buf->m_map;
6672     rx_buf->m_map = fp->rx_mbuf_spare_map;
6673     fp->rx_mbuf_spare_map = map;
6674     bus_dmamap_sync(fp->rx_mbuf_tag, rx_buf->m_map,
6675                     BUS_DMASYNC_PREREAD);
6676     rx_buf->m = m;
6677 
6678     rx_bd = &fp->rx_chain[index];
6679     rx_bd->addr_hi = htole32(U64_HI(segs[0].ds_addr));
6680     rx_bd->addr_lo = htole32(U64_LO(segs[0].ds_addr));
6681 
6682     return (rc);
6683 }
6684 
6685 static int
6686 bxe_alloc_rx_tpa_mbuf(struct bxe_fastpath *fp,
6687                       int                 queue)
6688 {
6689     struct bxe_sw_tpa_info *tpa_info = &fp->rx_tpa_info[queue];
6690     bus_dma_segment_t segs[1];
6691     bus_dmamap_t map;
6692     struct mbuf *m;
6693     int nsegs;
6694     int rc = 0;
6695 
6696     /* allocate the new TPA mbuf */
6697     m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, fp->mbuf_alloc_size);
6698     if (__predict_false(m == NULL)) {
6699         fp->eth_q_stats.mbuf_rx_tpa_alloc_failed++;
6700         return (ENOBUFS);
6701     }
6702 
6703     fp->eth_q_stats.mbuf_alloc_tpa++;
6704 
6705     /* initialize the mbuf buffer length */
6706     m->m_pkthdr.len = m->m_len = fp->rx_buf_size;
6707 
6708     /* map the mbuf into non-paged pool */
6709     rc = bus_dmamap_load_mbuf_sg(fp->rx_mbuf_tag,
6710                                  fp->rx_tpa_info_mbuf_spare_map,
6711                                  m, segs, &nsegs, BUS_DMA_NOWAIT);
6712     if (__predict_false(rc != 0)) {
6713         fp->eth_q_stats.mbuf_rx_tpa_mapping_failed++;
6714         m_free(m);
6715         fp->eth_q_stats.mbuf_alloc_tpa--;
6716         return (rc);
6717     }
6718 
6719     /* all mbufs must map to a single segment */
6720     KASSERT((nsegs == 1), ("Too many segments, %d returned!", nsegs));
6721 
6722     /* release any existing TPA mbuf mapping */
6723     if (tpa_info->bd.m_map != NULL) {
6724         bus_dmamap_sync(fp->rx_mbuf_tag, tpa_info->bd.m_map,
6725                         BUS_DMASYNC_POSTREAD);
6726         bus_dmamap_unload(fp->rx_mbuf_tag, tpa_info->bd.m_map);
6727     }
6728 
6729     /* save the mbuf and mapping info for the TPA mbuf */
6730     map = tpa_info->bd.m_map;
6731     tpa_info->bd.m_map = fp->rx_tpa_info_mbuf_spare_map;
6732     fp->rx_tpa_info_mbuf_spare_map = map;
6733     bus_dmamap_sync(fp->rx_mbuf_tag, tpa_info->bd.m_map,
6734                     BUS_DMASYNC_PREREAD);
6735     tpa_info->bd.m = m;
6736     tpa_info->seg = segs[0];
6737 
6738     return (rc);
6739 }
6740 
6741 /*
6742  * Allocate an mbuf and assign it to the receive scatter gather chain. The
6743  * caller must take care to save a copy of the existing mbuf in the SG mbuf
6744  * chain.
6745  */
6746 static int
6747 bxe_alloc_rx_sge_mbuf(struct bxe_fastpath *fp,
6748                       uint16_t            index)
6749 {
6750     struct bxe_sw_rx_bd *sge_buf;
6751     struct eth_rx_sge *sge;
6752     bus_dma_segment_t segs[1];
6753     bus_dmamap_t map;
6754     struct mbuf *m;
6755     int nsegs;
6756     int rc = 0;
6757 
6758     /* allocate a new SGE mbuf */
6759     m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, SGE_PAGE_SIZE);
6760     if (__predict_false(m == NULL)) {
6761         fp->eth_q_stats.mbuf_rx_sge_alloc_failed++;
6762         return (ENOMEM);
6763     }
6764 
6765     fp->eth_q_stats.mbuf_alloc_sge++;
6766 
6767     /* initialize the mbuf buffer length */
6768     m->m_pkthdr.len = m->m_len = SGE_PAGE_SIZE;
6769 
6770     /* map the SGE mbuf into non-paged pool */
6771     rc = bus_dmamap_load_mbuf_sg(fp->rx_sge_mbuf_tag,
6772                                  fp->rx_sge_mbuf_spare_map,
6773                                  m, segs, &nsegs, BUS_DMA_NOWAIT);
6774     if (__predict_false(rc != 0)) {
6775         fp->eth_q_stats.mbuf_rx_sge_mapping_failed++;
6776         m_freem(m);
6777         fp->eth_q_stats.mbuf_alloc_sge--;
6778         return (rc);
6779     }
6780 
6781     /* all mbufs must map to a single segment */
6782     KASSERT((nsegs == 1), ("Too many segments, %d returned!", nsegs));
6783 
6784     sge_buf = &fp->rx_sge_mbuf_chain[index];
6785 
6786     /* release any existing SGE mbuf mapping */
6787     if (sge_buf->m_map != NULL) {
6788         bus_dmamap_sync(fp->rx_sge_mbuf_tag, sge_buf->m_map,
6789                         BUS_DMASYNC_POSTREAD);
6790         bus_dmamap_unload(fp->rx_sge_mbuf_tag, sge_buf->m_map);
6791     }
6792 
6793     /* save the mbuf and mapping info for a future packet */
6794     map = sge_buf->m_map;
6795     sge_buf->m_map = fp->rx_sge_mbuf_spare_map;
6796     fp->rx_sge_mbuf_spare_map = map;
6797     bus_dmamap_sync(fp->rx_sge_mbuf_tag, sge_buf->m_map,
6798                     BUS_DMASYNC_PREREAD);
6799     sge_buf->m = m;
6800 
6801     sge = &fp->rx_sge_chain[index];
6802     sge->addr_hi = htole32(U64_HI(segs[0].ds_addr));
6803     sge->addr_lo = htole32(U64_LO(segs[0].ds_addr));
6804 
6805     return (rc);
6806 }
6807 
6808 static __noinline int
6809 bxe_alloc_fp_buffers(struct bxe_softc *sc)
6810 {
6811     struct bxe_fastpath *fp;
6812     int i, j, rc = 0;
6813     int ring_prod, cqe_ring_prod;
6814     int max_agg_queues;
6815 
6816     for (i = 0; i < sc->num_queues; i++) {
6817         fp = &sc->fp[i];
6818 
6819 #if __FreeBSD_version >= 800000
6820         fp->tx_br = buf_ring_alloc(BXE_BR_SIZE, M_DEVBUF,
6821                                    M_NOWAIT, &fp->tx_mtx);
6822         if (fp->tx_br == NULL) {
6823             BLOGE(sc, "buf_ring alloc fail for fp[%02d]\n", i);
6824             goto bxe_alloc_fp_buffers_error;
6825         }
6826 #endif
6827 
6828         ring_prod = cqe_ring_prod = 0;
6829         fp->rx_bd_cons = 0;
6830         fp->rx_cq_cons = 0;
6831 
6832         /* allocate buffers for the RX BDs in RX BD chain */
6833         for (j = 0; j < sc->max_rx_bufs; j++) {
6834             rc = bxe_alloc_rx_bd_mbuf(fp, ring_prod, ring_prod);
6835             if (rc != 0) {
6836                 BLOGE(sc, "mbuf alloc fail for fp[%02d] rx chain (%d)\n",
6837                       i, rc);
6838                 goto bxe_alloc_fp_buffers_error;
6839             }
6840 
6841             ring_prod     = RX_BD_NEXT(ring_prod);
6842             cqe_ring_prod = RCQ_NEXT(cqe_ring_prod);
6843         }
6844 
6845         fp->rx_bd_prod = ring_prod;
6846         fp->rx_cq_prod = cqe_ring_prod;
6847         fp->eth_q_stats.rx_calls = fp->eth_q_stats.rx_pkts = 0;
6848 
6849         max_agg_queues = MAX_AGG_QS(sc);
6850 
6851         fp->tpa_enable = TRUE;
6852 
6853         /* fill the TPA pool */
6854         for (j = 0; j < max_agg_queues; j++) {
6855             rc = bxe_alloc_rx_tpa_mbuf(fp, j);
6856             if (rc != 0) {
6857                 BLOGE(sc, "mbuf alloc fail for fp[%02d] TPA queue %d\n",
6858                           i, j);
6859                 fp->tpa_enable = FALSE;
6860                 goto bxe_alloc_fp_buffers_error;
6861             }
6862 
6863             fp->rx_tpa_info[j].state = BXE_TPA_STATE_STOP;
6864         }
6865 
6866         if (fp->tpa_enable) {
6867             /* fill the RX SGE chain */
6868             ring_prod = 0;
6869             for (j = 0; j < RX_SGE_USABLE; j++) {
6870                 rc = bxe_alloc_rx_sge_mbuf(fp, ring_prod);
6871                 if (rc != 0) {
6872                     BLOGE(sc, "mbuf alloc fail for fp[%02d] SGE %d\n",
6873                               i, ring_prod);
6874                     fp->tpa_enable = FALSE;
6875                     ring_prod = 0;
6876                     goto bxe_alloc_fp_buffers_error;
6877                 }
6878 
6879                 ring_prod = RX_SGE_NEXT(ring_prod);
6880             }
6881 
6882             fp->rx_sge_prod = ring_prod;
6883         }
6884     }
6885 
6886     return (0);
6887 
6888 bxe_alloc_fp_buffers_error:
6889 
6890     /* unwind what was already allocated */
6891     bxe_free_rx_bd_chain(fp);
6892     bxe_free_tpa_pool(fp);
6893     bxe_free_sge_chain(fp);
6894 
6895     return (ENOBUFS);
6896 }
6897 
6898 static void
6899 bxe_free_fw_stats_mem(struct bxe_softc *sc)
6900 {
6901     bxe_dma_free(sc, &sc->fw_stats_dma);
6902 
6903     sc->fw_stats_num = 0;
6904 
6905     sc->fw_stats_req_size = 0;
6906     sc->fw_stats_req = NULL;
6907     sc->fw_stats_req_mapping = 0;
6908 
6909     sc->fw_stats_data_size = 0;
6910     sc->fw_stats_data = NULL;
6911     sc->fw_stats_data_mapping = 0;
6912 }
6913 
6914 static int
6915 bxe_alloc_fw_stats_mem(struct bxe_softc *sc)
6916 {
6917     uint8_t num_queue_stats;
6918     int num_groups;
6919 
6920     /* number of queues for statistics is number of eth queues */
6921     num_queue_stats = BXE_NUM_ETH_QUEUES(sc);
6922 
6923     /*
6924      * Total number of FW statistics requests =
6925      *   1 for port stats + 1 for PF stats + num of queues
6926      */
6927     sc->fw_stats_num = (2 + num_queue_stats);
6928 
6929     /*
6930      * Request is built from stats_query_header and an array of
6931      * stats_query_cmd_group each of which contains STATS_QUERY_CMD_COUNT
6932      * rules. The real number or requests is configured in the
6933      * stats_query_header.
6934      */
6935     num_groups =
6936         ((sc->fw_stats_num / STATS_QUERY_CMD_COUNT) +
6937          ((sc->fw_stats_num % STATS_QUERY_CMD_COUNT) ? 1 : 0));
6938 
6939     BLOGD(sc, DBG_LOAD, "stats fw_stats_num %d num_groups %d\n",
6940           sc->fw_stats_num, num_groups);
6941 
6942     sc->fw_stats_req_size =
6943         (sizeof(struct stats_query_header) +
6944          (num_groups * sizeof(struct stats_query_cmd_group)));
6945 
6946     /*
6947      * Data for statistics requests + stats_counter.
6948      * stats_counter holds per-STORM counters that are incremented when
6949      * STORM has finished with the current request. Memory for FCoE
6950      * offloaded statistics are counted anyway, even if they will not be sent.
6951      * VF stats are not accounted for here as the data of VF stats is stored
6952      * in memory allocated by the VF, not here.
6953      */
6954     sc->fw_stats_data_size =
6955         (sizeof(struct stats_counter) +
6956          sizeof(struct per_port_stats) +
6957          sizeof(struct per_pf_stats) +
6958          /* sizeof(struct fcoe_statistics_params) + */
6959          (sizeof(struct per_queue_stats) * num_queue_stats));
6960 
6961     if (bxe_dma_alloc(sc, (sc->fw_stats_req_size + sc->fw_stats_data_size),
6962                       &sc->fw_stats_dma, "fw stats") != 0) {
6963         bxe_free_fw_stats_mem(sc);
6964         return (-1);
6965     }
6966 
6967     /* set up the shortcuts */
6968 
6969     sc->fw_stats_req =
6970         (struct bxe_fw_stats_req *)sc->fw_stats_dma.vaddr;
6971     sc->fw_stats_req_mapping = sc->fw_stats_dma.paddr;
6972 
6973     sc->fw_stats_data =
6974         (struct bxe_fw_stats_data *)((uint8_t *)sc->fw_stats_dma.vaddr +
6975                                      sc->fw_stats_req_size);
6976     sc->fw_stats_data_mapping = (sc->fw_stats_dma.paddr +
6977                                  sc->fw_stats_req_size);
6978 
6979     BLOGD(sc, DBG_LOAD, "statistics request base address set to %#jx\n",
6980           (uintmax_t)sc->fw_stats_req_mapping);
6981 
6982     BLOGD(sc, DBG_LOAD, "statistics data base address set to %#jx\n",
6983           (uintmax_t)sc->fw_stats_data_mapping);
6984 
6985     return (0);
6986 }
6987 
6988 /*
6989  * Bits map:
6990  * 0-7  - Engine0 load counter.
6991  * 8-15 - Engine1 load counter.
6992  * 16   - Engine0 RESET_IN_PROGRESS bit.
6993  * 17   - Engine1 RESET_IN_PROGRESS bit.
6994  * 18   - Engine0 ONE_IS_LOADED. Set when there is at least one active
6995  *        function on the engine
6996  * 19   - Engine1 ONE_IS_LOADED.
6997  * 20   - Chip reset flow bit. When set none-leader must wait for both engines
6998  *        leader to complete (check for both RESET_IN_PROGRESS bits and not
6999  *        for just the one belonging to its engine).
7000  */
7001 #define BXE_RECOVERY_GLOB_REG     MISC_REG_GENERIC_POR_1
7002 #define BXE_PATH0_LOAD_CNT_MASK   0x000000ff
7003 #define BXE_PATH0_LOAD_CNT_SHIFT  0
7004 #define BXE_PATH1_LOAD_CNT_MASK   0x0000ff00
7005 #define BXE_PATH1_LOAD_CNT_SHIFT  8
7006 #define BXE_PATH0_RST_IN_PROG_BIT 0x00010000
7007 #define BXE_PATH1_RST_IN_PROG_BIT 0x00020000
7008 #define BXE_GLOBAL_RESET_BIT      0x00040000
7009 
7010 /* set the GLOBAL_RESET bit, should be run under rtnl lock */
7011 static void
7012 bxe_set_reset_global(struct bxe_softc *sc)
7013 {
7014     uint32_t val;
7015     bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
7016     val = REG_RD(sc, BXE_RECOVERY_GLOB_REG);
7017     REG_WR(sc, BXE_RECOVERY_GLOB_REG, val | BXE_GLOBAL_RESET_BIT);
7018     bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
7019 }
7020 
7021 /* clear the GLOBAL_RESET bit, should be run under rtnl lock */
7022 static void
7023 bxe_clear_reset_global(struct bxe_softc *sc)
7024 {
7025     uint32_t val;
7026     bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
7027     val = REG_RD(sc, BXE_RECOVERY_GLOB_REG);
7028     REG_WR(sc, BXE_RECOVERY_GLOB_REG, val & (~BXE_GLOBAL_RESET_BIT));
7029     bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
7030 }
7031 
7032 /* checks the GLOBAL_RESET bit, should be run under rtnl lock */
7033 static uint8_t
7034 bxe_reset_is_global(struct bxe_softc *sc)
7035 {
7036     uint32_t val = REG_RD(sc, BXE_RECOVERY_GLOB_REG);
7037     BLOGD(sc, DBG_LOAD, "GLOB_REG=0x%08x\n", val);
7038     return (val & BXE_GLOBAL_RESET_BIT) ? TRUE : FALSE;
7039 }
7040 
7041 /* clear RESET_IN_PROGRESS bit for the engine, should be run under rtnl lock */
7042 static void
7043 bxe_set_reset_done(struct bxe_softc *sc)
7044 {
7045     uint32_t val;
7046     uint32_t bit = SC_PATH(sc) ? BXE_PATH1_RST_IN_PROG_BIT :
7047                                  BXE_PATH0_RST_IN_PROG_BIT;
7048 
7049     bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
7050 
7051     val = REG_RD(sc, BXE_RECOVERY_GLOB_REG);
7052     /* Clear the bit */
7053     val &= ~bit;
7054     REG_WR(sc, BXE_RECOVERY_GLOB_REG, val);
7055 
7056     bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
7057 }
7058 
7059 /* set RESET_IN_PROGRESS for the engine, should be run under rtnl lock */
7060 static void
7061 bxe_set_reset_in_progress(struct bxe_softc *sc)
7062 {
7063     uint32_t val;
7064     uint32_t bit = SC_PATH(sc) ? BXE_PATH1_RST_IN_PROG_BIT :
7065                                  BXE_PATH0_RST_IN_PROG_BIT;
7066 
7067     bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
7068 
7069     val = REG_RD(sc, BXE_RECOVERY_GLOB_REG);
7070     /* Set the bit */
7071     val |= bit;
7072     REG_WR(sc, BXE_RECOVERY_GLOB_REG, val);
7073 
7074     bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
7075 }
7076 
7077 /* check RESET_IN_PROGRESS bit for an engine, should be run under rtnl lock */
7078 static uint8_t
7079 bxe_reset_is_done(struct bxe_softc *sc,
7080                   int              engine)
7081 {
7082     uint32_t val = REG_RD(sc, BXE_RECOVERY_GLOB_REG);
7083     uint32_t bit = engine ? BXE_PATH1_RST_IN_PROG_BIT :
7084                             BXE_PATH0_RST_IN_PROG_BIT;
7085 
7086     /* return false if bit is set */
7087     return (val & bit) ? FALSE : TRUE;
7088 }
7089 
7090 /* get the load status for an engine, should be run under rtnl lock */
7091 static uint8_t
7092 bxe_get_load_status(struct bxe_softc *sc,
7093                     int              engine)
7094 {
7095     uint32_t mask = engine ? BXE_PATH1_LOAD_CNT_MASK :
7096                              BXE_PATH0_LOAD_CNT_MASK;
7097     uint32_t shift = engine ? BXE_PATH1_LOAD_CNT_SHIFT :
7098                               BXE_PATH0_LOAD_CNT_SHIFT;
7099     uint32_t val = REG_RD(sc, BXE_RECOVERY_GLOB_REG);
7100 
7101     BLOGD(sc, DBG_LOAD, "Old value for GLOB_REG=0x%08x\n", val);
7102 
7103     val = ((val & mask) >> shift);
7104 
7105     BLOGD(sc, DBG_LOAD, "Load mask engine %d = 0x%08x\n", engine, val);
7106 
7107     return (val != 0);
7108 }
7109 
7110 /* set pf load mark */
7111 /* XXX needs to be under rtnl lock */
7112 static void
7113 bxe_set_pf_load(struct bxe_softc *sc)
7114 {
7115     uint32_t val;
7116     uint32_t val1;
7117     uint32_t mask = SC_PATH(sc) ? BXE_PATH1_LOAD_CNT_MASK :
7118                                   BXE_PATH0_LOAD_CNT_MASK;
7119     uint32_t shift = SC_PATH(sc) ? BXE_PATH1_LOAD_CNT_SHIFT :
7120                                    BXE_PATH0_LOAD_CNT_SHIFT;
7121 
7122     bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
7123 
7124     val = REG_RD(sc, BXE_RECOVERY_GLOB_REG);
7125     BLOGD(sc, DBG_LOAD, "Old value for GLOB_REG=0x%08x\n", val);
7126 
7127     /* get the current counter value */
7128     val1 = ((val & mask) >> shift);
7129 
7130     /* set bit of this PF */
7131     val1 |= (1 << SC_ABS_FUNC(sc));
7132 
7133     /* clear the old value */
7134     val &= ~mask;
7135 
7136     /* set the new one */
7137     val |= ((val1 << shift) & mask);
7138 
7139     REG_WR(sc, BXE_RECOVERY_GLOB_REG, val);
7140 
7141     bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
7142 }
7143 
7144 /* clear pf load mark */
7145 /* XXX needs to be under rtnl lock */
7146 static uint8_t
7147 bxe_clear_pf_load(struct bxe_softc *sc)
7148 {
7149     uint32_t val1, val;
7150     uint32_t mask = SC_PATH(sc) ? BXE_PATH1_LOAD_CNT_MASK :
7151                                   BXE_PATH0_LOAD_CNT_MASK;
7152     uint32_t shift = SC_PATH(sc) ? BXE_PATH1_LOAD_CNT_SHIFT :
7153                                    BXE_PATH0_LOAD_CNT_SHIFT;
7154 
7155     bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
7156     val = REG_RD(sc, BXE_RECOVERY_GLOB_REG);
7157     BLOGD(sc, DBG_LOAD, "Old GEN_REG_VAL=0x%08x\n", val);
7158 
7159     /* get the current counter value */
7160     val1 = (val & mask) >> shift;
7161 
7162     /* clear bit of that PF */
7163     val1 &= ~(1 << SC_ABS_FUNC(sc));
7164 
7165     /* clear the old value */
7166     val &= ~mask;
7167 
7168     /* set the new one */
7169     val |= ((val1 << shift) & mask);
7170 
7171     REG_WR(sc, BXE_RECOVERY_GLOB_REG, val);
7172     bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
7173     return (val1 != 0);
7174 }
7175 
7176 /* send load requrest to mcp and analyze response */
7177 static int
7178 bxe_nic_load_request(struct bxe_softc *sc,
7179                      uint32_t         *load_code)
7180 {
7181     /* init fw_seq */
7182     sc->fw_seq =
7183         (SHMEM_RD(sc, func_mb[SC_FW_MB_IDX(sc)].drv_mb_header) &
7184          DRV_MSG_SEQ_NUMBER_MASK);
7185 
7186     BLOGD(sc, DBG_LOAD, "initial fw_seq 0x%04x\n", sc->fw_seq);
7187 
7188     /* get the current FW pulse sequence */
7189     sc->fw_drv_pulse_wr_seq =
7190         (SHMEM_RD(sc, func_mb[SC_FW_MB_IDX(sc)].drv_pulse_mb) &
7191          DRV_PULSE_SEQ_MASK);
7192 
7193     BLOGD(sc, DBG_LOAD, "initial drv_pulse 0x%04x\n",
7194           sc->fw_drv_pulse_wr_seq);
7195 
7196     /* load request */
7197     (*load_code) = bxe_fw_command(sc, DRV_MSG_CODE_LOAD_REQ,
7198                                   DRV_MSG_CODE_LOAD_REQ_WITH_LFA);
7199 
7200     /* if the MCP fails to respond we must abort */
7201     if (!(*load_code)) {
7202         BLOGE(sc, "MCP response failure!\n");
7203         return (-1);
7204     }
7205 
7206     /* if MCP refused then must abort */
7207     if ((*load_code) == FW_MSG_CODE_DRV_LOAD_REFUSED) {
7208         BLOGE(sc, "MCP refused load request\n");
7209         return (-1);
7210     }
7211 
7212     return (0);
7213 }
7214 
7215 /*
7216  * Check whether another PF has already loaded FW to chip. In virtualized
7217  * environments a pf from anoth VM may have already initialized the device
7218  * including loading FW.
7219  */
7220 static int
7221 bxe_nic_load_analyze_req(struct bxe_softc *sc,
7222                          uint32_t         load_code)
7223 {
7224     uint32_t my_fw, loaded_fw;
7225 
7226     /* is another pf loaded on this engine? */
7227     if ((load_code != FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) &&
7228         (load_code != FW_MSG_CODE_DRV_LOAD_COMMON)) {
7229         /* build my FW version dword */
7230         my_fw = (BCM_5710_FW_MAJOR_VERSION +
7231                  (BCM_5710_FW_MINOR_VERSION << 8 ) +
7232                  (BCM_5710_FW_REVISION_VERSION << 16) +
7233                  (BCM_5710_FW_ENGINEERING_VERSION << 24));
7234 
7235         /* read loaded FW from chip */
7236         loaded_fw = REG_RD(sc, XSEM_REG_PRAM);
7237         BLOGD(sc, DBG_LOAD, "loaded FW 0x%08x / my FW 0x%08x\n",
7238               loaded_fw, my_fw);
7239 
7240         /* abort nic load if version mismatch */
7241         if (my_fw != loaded_fw) {
7242             BLOGE(sc, "FW 0x%08x already loaded (mine is 0x%08x)",
7243                   loaded_fw, my_fw);
7244             return (-1);
7245         }
7246     }
7247 
7248     return (0);
7249 }
7250 
7251 /* mark PMF if applicable */
7252 static void
7253 bxe_nic_load_pmf(struct bxe_softc *sc,
7254                  uint32_t         load_code)
7255 {
7256     uint32_t ncsi_oem_data_addr;
7257 
7258     if ((load_code == FW_MSG_CODE_DRV_LOAD_COMMON) ||
7259         (load_code == FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) ||
7260         (load_code == FW_MSG_CODE_DRV_LOAD_PORT)) {
7261         /*
7262          * Barrier here for ordering between the writing to sc->port.pmf here
7263          * and reading it from the periodic task.
7264          */
7265         sc->port.pmf = 1;
7266         mb();
7267     } else {
7268         sc->port.pmf = 0;
7269     }
7270 
7271     BLOGD(sc, DBG_LOAD, "pmf %d\n", sc->port.pmf);
7272 
7273     /* XXX needed? */
7274     if (load_code == FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) {
7275         if (SHMEM2_HAS(sc, ncsi_oem_data_addr)) {
7276             ncsi_oem_data_addr = SHMEM2_RD(sc, ncsi_oem_data_addr);
7277             if (ncsi_oem_data_addr) {
7278                 REG_WR(sc,
7279                        (ncsi_oem_data_addr +
7280                         offsetof(struct glob_ncsi_oem_data, driver_version)),
7281                        0);
7282             }
7283         }
7284     }
7285 }
7286 
7287 static void
7288 bxe_read_mf_cfg(struct bxe_softc *sc)
7289 {
7290     int n = (CHIP_IS_MODE_4_PORT(sc) ? 2 : 1);
7291     int abs_func;
7292     int vn;
7293 
7294     if (BXE_NOMCP(sc)) {
7295         return; /* what should be the default bvalue in this case */
7296     }
7297 
7298     /*
7299      * The formula for computing the absolute function number is...
7300      * For 2 port configuration (4 functions per port):
7301      *   abs_func = 2 * vn + SC_PORT + SC_PATH
7302      * For 4 port configuration (2 functions per port):
7303      *   abs_func = 4 * vn + 2 * SC_PORT + SC_PATH
7304      */
7305     for (vn = VN_0; vn < SC_MAX_VN_NUM(sc); vn++) {
7306         abs_func = (n * (2 * vn + SC_PORT(sc)) + SC_PATH(sc));
7307         if (abs_func >= E1H_FUNC_MAX) {
7308             break;
7309         }
7310         sc->devinfo.mf_info.mf_config[vn] =
7311             MFCFG_RD(sc, func_mf_config[abs_func].config);
7312     }
7313 
7314     if (sc->devinfo.mf_info.mf_config[SC_VN(sc)] &
7315         FUNC_MF_CFG_FUNC_DISABLED) {
7316         BLOGD(sc, DBG_LOAD, "mf_cfg function disabled\n");
7317         sc->flags |= BXE_MF_FUNC_DIS;
7318     } else {
7319         BLOGD(sc, DBG_LOAD, "mf_cfg function enabled\n");
7320         sc->flags &= ~BXE_MF_FUNC_DIS;
7321     }
7322 }
7323 
7324 /* acquire split MCP access lock register */
7325 static int bxe_acquire_alr(struct bxe_softc *sc)
7326 {
7327     uint32_t j, val;
7328 
7329     for (j = 0; j < 1000; j++) {
7330         val = (1UL << 31);
7331         REG_WR(sc, GRCBASE_MCP + 0x9c, val);
7332         val = REG_RD(sc, GRCBASE_MCP + 0x9c);
7333         if (val & (1L << 31))
7334             break;
7335 
7336         DELAY(5000);
7337     }
7338 
7339     if (!(val & (1L << 31))) {
7340         BLOGE(sc, "Cannot acquire MCP access lock register\n");
7341         return (-1);
7342     }
7343 
7344     return (0);
7345 }
7346 
7347 /* release split MCP access lock register */
7348 static void bxe_release_alr(struct bxe_softc *sc)
7349 {
7350     REG_WR(sc, GRCBASE_MCP + 0x9c, 0);
7351 }
7352 
7353 static void
7354 bxe_fan_failure(struct bxe_softc *sc)
7355 {
7356     int port = SC_PORT(sc);
7357     uint32_t ext_phy_config;
7358 
7359     /* mark the failure */
7360     ext_phy_config =
7361         SHMEM_RD(sc, dev_info.port_hw_config[port].external_phy_config);
7362 
7363     ext_phy_config &= ~PORT_HW_CFG_XGXS_EXT_PHY_TYPE_MASK;
7364     ext_phy_config |= PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE;
7365     SHMEM_WR(sc, dev_info.port_hw_config[port].external_phy_config,
7366              ext_phy_config);
7367 
7368     /* log the failure */
7369     BLOGW(sc, "Fan Failure has caused the driver to shutdown "
7370               "the card to prevent permanent damage. "
7371               "Please contact OEM Support for assistance\n");
7372 
7373     /* XXX */
7374 #if 1
7375     bxe_panic(sc, ("Schedule task to handle fan failure\n"));
7376 #else
7377     /*
7378      * Schedule device reset (unload)
7379      * This is due to some boards consuming sufficient power when driver is
7380      * up to overheat if fan fails.
7381      */
7382     bxe_set_bit(BXE_SP_RTNL_FAN_FAILURE, &sc->sp_rtnl_state);
7383     schedule_delayed_work(&sc->sp_rtnl_task, 0);
7384 #endif
7385 }
7386 
7387 /* this function is called upon a link interrupt */
7388 static void
7389 bxe_link_attn(struct bxe_softc *sc)
7390 {
7391     uint32_t pause_enabled = 0;
7392     struct host_port_stats *pstats;
7393     int cmng_fns;
7394 
7395     /* Make sure that we are synced with the current statistics */
7396     bxe_stats_handle(sc, STATS_EVENT_STOP);
7397 
7398     elink_link_update(&sc->link_params, &sc->link_vars);
7399 
7400     if (sc->link_vars.link_up) {
7401 
7402         /* dropless flow control */
7403         if (!CHIP_IS_E1(sc) && sc->dropless_fc) {
7404             pause_enabled = 0;
7405 
7406             if (sc->link_vars.flow_ctrl & ELINK_FLOW_CTRL_TX) {
7407                 pause_enabled = 1;
7408             }
7409 
7410             REG_WR(sc,
7411                    (BAR_USTRORM_INTMEM +
7412                     USTORM_ETH_PAUSE_ENABLED_OFFSET(SC_PORT(sc))),
7413                    pause_enabled);
7414         }
7415 
7416         if (sc->link_vars.mac_type != ELINK_MAC_TYPE_EMAC) {
7417             pstats = BXE_SP(sc, port_stats);
7418             /* reset old mac stats */
7419             memset(&(pstats->mac_stx[0]), 0, sizeof(struct mac_stx));
7420         }
7421 
7422         if (sc->state == BXE_STATE_OPEN) {
7423             bxe_stats_handle(sc, STATS_EVENT_LINK_UP);
7424         }
7425     }
7426 
7427     if (sc->link_vars.link_up && sc->link_vars.line_speed) {
7428         cmng_fns = bxe_get_cmng_fns_mode(sc);
7429 
7430         if (cmng_fns != CMNG_FNS_NONE) {
7431             bxe_cmng_fns_init(sc, FALSE, cmng_fns);
7432             storm_memset_cmng(sc, &sc->cmng, SC_PORT(sc));
7433         } else {
7434             /* rate shaping and fairness are disabled */
7435             BLOGD(sc, DBG_LOAD, "single function mode without fairness\n");
7436         }
7437     }
7438 
7439     bxe_link_report_locked(sc);
7440 
7441     if (IS_MF(sc)) {
7442         ; // XXX bxe_link_sync_notify(sc);
7443     }
7444 }
7445 
7446 static void
7447 bxe_attn_int_asserted(struct bxe_softc *sc,
7448                       uint32_t         asserted)
7449 {
7450     int port = SC_PORT(sc);
7451     uint32_t aeu_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
7452                                MISC_REG_AEU_MASK_ATTN_FUNC_0;
7453     uint32_t nig_int_mask_addr = port ? NIG_REG_MASK_INTERRUPT_PORT1 :
7454                                         NIG_REG_MASK_INTERRUPT_PORT0;
7455     uint32_t aeu_mask;
7456     uint32_t nig_mask = 0;
7457     uint32_t reg_addr;
7458     uint32_t igu_acked;
7459     uint32_t cnt;
7460 
7461     if (sc->attn_state & asserted) {
7462         BLOGE(sc, "IGU ERROR attn=0x%08x\n", asserted);
7463     }
7464 
7465     bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
7466 
7467     aeu_mask = REG_RD(sc, aeu_addr);
7468 
7469     BLOGD(sc, DBG_INTR, "aeu_mask 0x%08x newly asserted 0x%08x\n",
7470           aeu_mask, asserted);
7471 
7472     aeu_mask &= ~(asserted & 0x3ff);
7473 
7474     BLOGD(sc, DBG_INTR, "new mask 0x%08x\n", aeu_mask);
7475 
7476     REG_WR(sc, aeu_addr, aeu_mask);
7477 
7478     bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
7479 
7480     BLOGD(sc, DBG_INTR, "attn_state 0x%08x\n", sc->attn_state);
7481     sc->attn_state |= asserted;
7482     BLOGD(sc, DBG_INTR, "new state 0x%08x\n", sc->attn_state);
7483 
7484     if (asserted & ATTN_HARD_WIRED_MASK) {
7485         if (asserted & ATTN_NIG_FOR_FUNC) {
7486 
7487 	    bxe_acquire_phy_lock(sc);
7488             /* save nig interrupt mask */
7489             nig_mask = REG_RD(sc, nig_int_mask_addr);
7490 
7491             /* If nig_mask is not set, no need to call the update function */
7492             if (nig_mask) {
7493                 REG_WR(sc, nig_int_mask_addr, 0);
7494 
7495                 bxe_link_attn(sc);
7496             }
7497 
7498             /* handle unicore attn? */
7499         }
7500 
7501         if (asserted & ATTN_SW_TIMER_4_FUNC) {
7502             BLOGD(sc, DBG_INTR, "ATTN_SW_TIMER_4_FUNC!\n");
7503         }
7504 
7505         if (asserted & GPIO_2_FUNC) {
7506             BLOGD(sc, DBG_INTR, "GPIO_2_FUNC!\n");
7507         }
7508 
7509         if (asserted & GPIO_3_FUNC) {
7510             BLOGD(sc, DBG_INTR, "GPIO_3_FUNC!\n");
7511         }
7512 
7513         if (asserted & GPIO_4_FUNC) {
7514             BLOGD(sc, DBG_INTR, "GPIO_4_FUNC!\n");
7515         }
7516 
7517         if (port == 0) {
7518             if (asserted & ATTN_GENERAL_ATTN_1) {
7519                 BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_1!\n");
7520                 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_1, 0x0);
7521             }
7522             if (asserted & ATTN_GENERAL_ATTN_2) {
7523                 BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_2!\n");
7524                 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_2, 0x0);
7525             }
7526             if (asserted & ATTN_GENERAL_ATTN_3) {
7527                 BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_3!\n");
7528                 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_3, 0x0);
7529             }
7530         } else {
7531             if (asserted & ATTN_GENERAL_ATTN_4) {
7532                 BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_4!\n");
7533                 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_4, 0x0);
7534             }
7535             if (asserted & ATTN_GENERAL_ATTN_5) {
7536                 BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_5!\n");
7537                 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_5, 0x0);
7538             }
7539             if (asserted & ATTN_GENERAL_ATTN_6) {
7540                 BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_6!\n");
7541                 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_6, 0x0);
7542             }
7543         }
7544     } /* hardwired */
7545 
7546     if (sc->devinfo.int_block == INT_BLOCK_HC) {
7547         reg_addr = (HC_REG_COMMAND_REG + port*32 + COMMAND_REG_ATTN_BITS_SET);
7548     } else {
7549         reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_SET_UPPER*8);
7550     }
7551 
7552     BLOGD(sc, DBG_INTR, "about to mask 0x%08x at %s addr 0x%08x\n",
7553           asserted,
7554           (sc->devinfo.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr);
7555     REG_WR(sc, reg_addr, asserted);
7556 
7557     /* now set back the mask */
7558     if (asserted & ATTN_NIG_FOR_FUNC) {
7559         /*
7560          * Verify that IGU ack through BAR was written before restoring
7561          * NIG mask. This loop should exit after 2-3 iterations max.
7562          */
7563         if (sc->devinfo.int_block != INT_BLOCK_HC) {
7564             cnt = 0;
7565 
7566             do {
7567                 igu_acked = REG_RD(sc, IGU_REG_ATTENTION_ACK_BITS);
7568             } while (((igu_acked & ATTN_NIG_FOR_FUNC) == 0) &&
7569                      (++cnt < MAX_IGU_ATTN_ACK_TO));
7570 
7571             if (!igu_acked) {
7572                 BLOGE(sc, "Failed to verify IGU ack on time\n");
7573             }
7574 
7575             mb();
7576         }
7577 
7578         REG_WR(sc, nig_int_mask_addr, nig_mask);
7579 
7580 	bxe_release_phy_lock(sc);
7581     }
7582 }
7583 
7584 static void
7585 bxe_print_next_block(struct bxe_softc *sc,
7586                      int              idx,
7587                      const char       *blk)
7588 {
7589     BLOGI(sc, "%s%s", idx ? ", " : "", blk);
7590 }
7591 
7592 static int
7593 bxe_check_blocks_with_parity0(struct bxe_softc *sc,
7594                               uint32_t         sig,
7595                               int              par_num,
7596                               uint8_t          print)
7597 {
7598     uint32_t cur_bit = 0;
7599     int i = 0;
7600 
7601     for (i = 0; sig; i++) {
7602         cur_bit = ((uint32_t)0x1 << i);
7603         if (sig & cur_bit) {
7604             switch (cur_bit) {
7605             case AEU_INPUTS_ATTN_BITS_BRB_PARITY_ERROR:
7606                 if (print)
7607                     bxe_print_next_block(sc, par_num++, "BRB");
7608                 break;
7609             case AEU_INPUTS_ATTN_BITS_PARSER_PARITY_ERROR:
7610                 if (print)
7611                     bxe_print_next_block(sc, par_num++, "PARSER");
7612                 break;
7613             case AEU_INPUTS_ATTN_BITS_TSDM_PARITY_ERROR:
7614                 if (print)
7615                     bxe_print_next_block(sc, par_num++, "TSDM");
7616                 break;
7617             case AEU_INPUTS_ATTN_BITS_SEARCHER_PARITY_ERROR:
7618                 if (print)
7619                     bxe_print_next_block(sc, par_num++, "SEARCHER");
7620                 break;
7621             case AEU_INPUTS_ATTN_BITS_TCM_PARITY_ERROR:
7622                 if (print)
7623                     bxe_print_next_block(sc, par_num++, "TCM");
7624                 break;
7625             case AEU_INPUTS_ATTN_BITS_TSEMI_PARITY_ERROR:
7626                 if (print)
7627                     bxe_print_next_block(sc, par_num++, "TSEMI");
7628                 break;
7629             case AEU_INPUTS_ATTN_BITS_PBCLIENT_PARITY_ERROR:
7630                 if (print)
7631                     bxe_print_next_block(sc, par_num++, "XPB");
7632                 break;
7633             }
7634 
7635             /* Clear the bit */
7636             sig &= ~cur_bit;
7637         }
7638     }
7639 
7640     return (par_num);
7641 }
7642 
7643 static int
7644 bxe_check_blocks_with_parity1(struct bxe_softc *sc,
7645                               uint32_t         sig,
7646                               int              par_num,
7647                               uint8_t          *global,
7648                               uint8_t          print)
7649 {
7650     int i = 0;
7651     uint32_t cur_bit = 0;
7652     for (i = 0; sig; i++) {
7653         cur_bit = ((uint32_t)0x1 << i);
7654         if (sig & cur_bit) {
7655             switch (cur_bit) {
7656             case AEU_INPUTS_ATTN_BITS_PBF_PARITY_ERROR:
7657                 if (print)
7658                     bxe_print_next_block(sc, par_num++, "PBF");
7659                 break;
7660             case AEU_INPUTS_ATTN_BITS_QM_PARITY_ERROR:
7661                 if (print)
7662                     bxe_print_next_block(sc, par_num++, "QM");
7663                 break;
7664             case AEU_INPUTS_ATTN_BITS_TIMERS_PARITY_ERROR:
7665                 if (print)
7666                     bxe_print_next_block(sc, par_num++, "TM");
7667                 break;
7668             case AEU_INPUTS_ATTN_BITS_XSDM_PARITY_ERROR:
7669                 if (print)
7670                     bxe_print_next_block(sc, par_num++, "XSDM");
7671                 break;
7672             case AEU_INPUTS_ATTN_BITS_XCM_PARITY_ERROR:
7673                 if (print)
7674                     bxe_print_next_block(sc, par_num++, "XCM");
7675                 break;
7676             case AEU_INPUTS_ATTN_BITS_XSEMI_PARITY_ERROR:
7677                 if (print)
7678                     bxe_print_next_block(sc, par_num++, "XSEMI");
7679                 break;
7680             case AEU_INPUTS_ATTN_BITS_DOORBELLQ_PARITY_ERROR:
7681                 if (print)
7682                     bxe_print_next_block(sc, par_num++, "DOORBELLQ");
7683                 break;
7684             case AEU_INPUTS_ATTN_BITS_NIG_PARITY_ERROR:
7685                 if (print)
7686                     bxe_print_next_block(sc, par_num++, "NIG");
7687                 break;
7688             case AEU_INPUTS_ATTN_BITS_VAUX_PCI_CORE_PARITY_ERROR:
7689                 if (print)
7690                     bxe_print_next_block(sc, par_num++, "VAUX PCI CORE");
7691                 *global = TRUE;
7692                 break;
7693             case AEU_INPUTS_ATTN_BITS_DEBUG_PARITY_ERROR:
7694                 if (print)
7695                     bxe_print_next_block(sc, par_num++, "DEBUG");
7696                 break;
7697             case AEU_INPUTS_ATTN_BITS_USDM_PARITY_ERROR:
7698                 if (print)
7699                     bxe_print_next_block(sc, par_num++, "USDM");
7700                 break;
7701             case AEU_INPUTS_ATTN_BITS_UCM_PARITY_ERROR:
7702                 if (print)
7703                     bxe_print_next_block(sc, par_num++, "UCM");
7704                 break;
7705             case AEU_INPUTS_ATTN_BITS_USEMI_PARITY_ERROR:
7706                 if (print)
7707                     bxe_print_next_block(sc, par_num++, "USEMI");
7708                 break;
7709             case AEU_INPUTS_ATTN_BITS_UPB_PARITY_ERROR:
7710                 if (print)
7711                     bxe_print_next_block(sc, par_num++, "UPB");
7712                 break;
7713             case AEU_INPUTS_ATTN_BITS_CSDM_PARITY_ERROR:
7714                 if (print)
7715                     bxe_print_next_block(sc, par_num++, "CSDM");
7716                 break;
7717             case AEU_INPUTS_ATTN_BITS_CCM_PARITY_ERROR:
7718                 if (print)
7719                     bxe_print_next_block(sc, par_num++, "CCM");
7720                 break;
7721             }
7722 
7723             /* Clear the bit */
7724             sig &= ~cur_bit;
7725         }
7726     }
7727 
7728     return (par_num);
7729 }
7730 
7731 static int
7732 bxe_check_blocks_with_parity2(struct bxe_softc *sc,
7733                               uint32_t         sig,
7734                               int              par_num,
7735                               uint8_t          print)
7736 {
7737     uint32_t cur_bit = 0;
7738     int i = 0;
7739 
7740     for (i = 0; sig; i++) {
7741         cur_bit = ((uint32_t)0x1 << i);
7742         if (sig & cur_bit) {
7743             switch (cur_bit) {
7744             case AEU_INPUTS_ATTN_BITS_CSEMI_PARITY_ERROR:
7745                 if (print)
7746                     bxe_print_next_block(sc, par_num++, "CSEMI");
7747                 break;
7748             case AEU_INPUTS_ATTN_BITS_PXP_PARITY_ERROR:
7749                 if (print)
7750                     bxe_print_next_block(sc, par_num++, "PXP");
7751                 break;
7752             case AEU_IN_ATTN_BITS_PXPPCICLOCKCLIENT_PARITY_ERROR:
7753                 if (print)
7754                     bxe_print_next_block(sc, par_num++, "PXPPCICLOCKCLIENT");
7755                 break;
7756             case AEU_INPUTS_ATTN_BITS_CFC_PARITY_ERROR:
7757                 if (print)
7758                     bxe_print_next_block(sc, par_num++, "CFC");
7759                 break;
7760             case AEU_INPUTS_ATTN_BITS_CDU_PARITY_ERROR:
7761                 if (print)
7762                     bxe_print_next_block(sc, par_num++, "CDU");
7763                 break;
7764             case AEU_INPUTS_ATTN_BITS_DMAE_PARITY_ERROR:
7765                 if (print)
7766                     bxe_print_next_block(sc, par_num++, "DMAE");
7767                 break;
7768             case AEU_INPUTS_ATTN_BITS_IGU_PARITY_ERROR:
7769                 if (print)
7770                     bxe_print_next_block(sc, par_num++, "IGU");
7771                 break;
7772             case AEU_INPUTS_ATTN_BITS_MISC_PARITY_ERROR:
7773                 if (print)
7774                     bxe_print_next_block(sc, par_num++, "MISC");
7775                 break;
7776             }
7777 
7778             /* Clear the bit */
7779             sig &= ~cur_bit;
7780         }
7781     }
7782 
7783     return (par_num);
7784 }
7785 
7786 static int
7787 bxe_check_blocks_with_parity3(struct bxe_softc *sc,
7788                               uint32_t         sig,
7789                               int              par_num,
7790                               uint8_t          *global,
7791                               uint8_t          print)
7792 {
7793     uint32_t cur_bit = 0;
7794     int i = 0;
7795 
7796     for (i = 0; sig; i++) {
7797         cur_bit = ((uint32_t)0x1 << i);
7798         if (sig & cur_bit) {
7799             switch (cur_bit) {
7800             case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_ROM_PARITY:
7801                 if (print)
7802                     bxe_print_next_block(sc, par_num++, "MCP ROM");
7803                 *global = TRUE;
7804                 break;
7805             case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_RX_PARITY:
7806                 if (print)
7807                     bxe_print_next_block(sc, par_num++,
7808                               "MCP UMP RX");
7809                 *global = TRUE;
7810                 break;
7811             case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_TX_PARITY:
7812                 if (print)
7813                     bxe_print_next_block(sc, par_num++,
7814                               "MCP UMP TX");
7815                 *global = TRUE;
7816                 break;
7817             case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY:
7818                 if (print)
7819                     bxe_print_next_block(sc, par_num++,
7820                               "MCP SCPAD");
7821                 *global = TRUE;
7822                 break;
7823             }
7824 
7825             /* Clear the bit */
7826             sig &= ~cur_bit;
7827         }
7828     }
7829 
7830     return (par_num);
7831 }
7832 
7833 static int
7834 bxe_check_blocks_with_parity4(struct bxe_softc *sc,
7835                               uint32_t         sig,
7836                               int              par_num,
7837                               uint8_t          print)
7838 {
7839     uint32_t cur_bit = 0;
7840     int i = 0;
7841 
7842     for (i = 0; sig; i++) {
7843         cur_bit = ((uint32_t)0x1 << i);
7844         if (sig & cur_bit) {
7845             switch (cur_bit) {
7846             case AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR:
7847                 if (print)
7848                     bxe_print_next_block(sc, par_num++, "PGLUE_B");
7849                 break;
7850             case AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR:
7851                 if (print)
7852                     bxe_print_next_block(sc, par_num++, "ATC");
7853                 break;
7854             }
7855 
7856             /* Clear the bit */
7857             sig &= ~cur_bit;
7858         }
7859     }
7860 
7861     return (par_num);
7862 }
7863 
7864 static uint8_t
7865 bxe_parity_attn(struct bxe_softc *sc,
7866                 uint8_t          *global,
7867                 uint8_t          print,
7868                 uint32_t         *sig)
7869 {
7870     int par_num = 0;
7871 
7872     if ((sig[0] & HW_PRTY_ASSERT_SET_0) ||
7873         (sig[1] & HW_PRTY_ASSERT_SET_1) ||
7874         (sig[2] & HW_PRTY_ASSERT_SET_2) ||
7875         (sig[3] & HW_PRTY_ASSERT_SET_3) ||
7876         (sig[4] & HW_PRTY_ASSERT_SET_4)) {
7877         BLOGE(sc, "Parity error: HW block parity attention:\n"
7878                   "[0]:0x%08x [1]:0x%08x [2]:0x%08x [3]:0x%08x [4]:0x%08x\n",
7879               (uint32_t)(sig[0] & HW_PRTY_ASSERT_SET_0),
7880               (uint32_t)(sig[1] & HW_PRTY_ASSERT_SET_1),
7881               (uint32_t)(sig[2] & HW_PRTY_ASSERT_SET_2),
7882               (uint32_t)(sig[3] & HW_PRTY_ASSERT_SET_3),
7883               (uint32_t)(sig[4] & HW_PRTY_ASSERT_SET_4));
7884 
7885         if (print)
7886             BLOGI(sc, "Parity errors detected in blocks: ");
7887 
7888         par_num =
7889             bxe_check_blocks_with_parity0(sc, sig[0] &
7890                                           HW_PRTY_ASSERT_SET_0,
7891                                           par_num, print);
7892         par_num =
7893             bxe_check_blocks_with_parity1(sc, sig[1] &
7894                                           HW_PRTY_ASSERT_SET_1,
7895                                           par_num, global, print);
7896         par_num =
7897             bxe_check_blocks_with_parity2(sc, sig[2] &
7898                                           HW_PRTY_ASSERT_SET_2,
7899                                           par_num, print);
7900         par_num =
7901             bxe_check_blocks_with_parity3(sc, sig[3] &
7902                                           HW_PRTY_ASSERT_SET_3,
7903                                           par_num, global, print);
7904         par_num =
7905             bxe_check_blocks_with_parity4(sc, sig[4] &
7906                                           HW_PRTY_ASSERT_SET_4,
7907                                           par_num, print);
7908 
7909         if (print)
7910             BLOGI(sc, "\n");
7911 
7912         return (TRUE);
7913     }
7914 
7915     return (FALSE);
7916 }
7917 
7918 static uint8_t
7919 bxe_chk_parity_attn(struct bxe_softc *sc,
7920                     uint8_t          *global,
7921                     uint8_t          print)
7922 {
7923     struct attn_route attn = { {0} };
7924     int port = SC_PORT(sc);
7925 
7926     attn.sig[0] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + port*4);
7927     attn.sig[1] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 + port*4);
7928     attn.sig[2] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 + port*4);
7929     attn.sig[3] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 + port*4);
7930 
7931     if (!CHIP_IS_E1x(sc))
7932         attn.sig[4] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 + port*4);
7933 
7934     return (bxe_parity_attn(sc, global, print, attn.sig));
7935 }
7936 
7937 static void
7938 bxe_attn_int_deasserted4(struct bxe_softc *sc,
7939                          uint32_t         attn)
7940 {
7941     uint32_t val;
7942 
7943     if (attn & AEU_INPUTS_ATTN_BITS_PGLUE_HW_INTERRUPT) {
7944         val = REG_RD(sc, PGLUE_B_REG_PGLUE_B_INT_STS_CLR);
7945         BLOGE(sc, "PGLUE hw attention 0x%08x\n", val);
7946         if (val & PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR)
7947             BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR\n");
7948         if (val & PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR)
7949             BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR\n");
7950         if (val & PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN)
7951             BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN\n");
7952         if (val & PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN)
7953             BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN\n");
7954         if (val & PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN)
7955             BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN\n");
7956         if (val & PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN)
7957             BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN\n");
7958         if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN)
7959             BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN\n");
7960         if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN)
7961             BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN\n");
7962         if (val & PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW)
7963             BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW\n");
7964     }
7965 
7966     if (attn & AEU_INPUTS_ATTN_BITS_ATC_HW_INTERRUPT) {
7967         val = REG_RD(sc, ATC_REG_ATC_INT_STS_CLR);
7968         BLOGE(sc, "ATC hw attention 0x%08x\n", val);
7969         if (val & ATC_ATC_INT_STS_REG_ADDRESS_ERROR)
7970             BLOGE(sc, "ATC_ATC_INT_STS_REG_ADDRESS_ERROR\n");
7971         if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND)
7972             BLOGE(sc, "ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND\n");
7973         if (val & ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS)
7974             BLOGE(sc, "ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS\n");
7975         if (val & ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT)
7976             BLOGE(sc, "ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT\n");
7977         if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR)
7978             BLOGE(sc, "ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR\n");
7979         if (val & ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU)
7980             BLOGE(sc, "ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU\n");
7981     }
7982 
7983     if (attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR |
7984                 AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)) {
7985         BLOGE(sc, "FATAL parity attention set4 0x%08x\n",
7986               (uint32_t)(attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR |
7987                                  AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)));
7988     }
7989 }
7990 
7991 static void
7992 bxe_e1h_disable(struct bxe_softc *sc)
7993 {
7994     int port = SC_PORT(sc);
7995 
7996     bxe_tx_disable(sc);
7997 
7998     REG_WR(sc, NIG_REG_LLH0_FUNC_EN + port*8, 0);
7999 }
8000 
8001 static void
8002 bxe_e1h_enable(struct bxe_softc *sc)
8003 {
8004     int port = SC_PORT(sc);
8005 
8006     REG_WR(sc, NIG_REG_LLH0_FUNC_EN + port*8, 1);
8007 
8008     // XXX bxe_tx_enable(sc);
8009 }
8010 
8011 /*
8012  * called due to MCP event (on pmf):
8013  *   reread new bandwidth configuration
8014  *   configure FW
8015  *   notify others function about the change
8016  */
8017 static void
8018 bxe_config_mf_bw(struct bxe_softc *sc)
8019 {
8020     if (sc->link_vars.link_up) {
8021         bxe_cmng_fns_init(sc, TRUE, CMNG_FNS_MINMAX);
8022         // XXX bxe_link_sync_notify(sc);
8023     }
8024 
8025     storm_memset_cmng(sc, &sc->cmng, SC_PORT(sc));
8026 }
8027 
8028 static void
8029 bxe_set_mf_bw(struct bxe_softc *sc)
8030 {
8031     bxe_config_mf_bw(sc);
8032     bxe_fw_command(sc, DRV_MSG_CODE_SET_MF_BW_ACK, 0);
8033 }
8034 
8035 static void
8036 bxe_handle_eee_event(struct bxe_softc *sc)
8037 {
8038     BLOGD(sc, DBG_INTR, "EEE - LLDP event\n");
8039     bxe_fw_command(sc, DRV_MSG_CODE_EEE_RESULTS_ACK, 0);
8040 }
8041 
8042 #define DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED 3
8043 
8044 static void
8045 bxe_drv_info_ether_stat(struct bxe_softc *sc)
8046 {
8047     struct eth_stats_info *ether_stat =
8048         &sc->sp->drv_info_to_mcp.ether_stat;
8049 
8050     strlcpy(ether_stat->version, BXE_DRIVER_VERSION,
8051             ETH_STAT_INFO_VERSION_LEN);
8052 
8053     /* XXX (+ MAC_PAD) taken from other driver... verify this is right */
8054     sc->sp_objs[0].mac_obj.get_n_elements(sc, &sc->sp_objs[0].mac_obj,
8055                                           DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED,
8056                                           ether_stat->mac_local + MAC_PAD,
8057                                           MAC_PAD, ETH_ALEN);
8058 
8059     ether_stat->mtu_size = sc->mtu;
8060 
8061     ether_stat->feature_flags |= FEATURE_ETH_CHKSUM_OFFLOAD_MASK;
8062     if (if_getcapenable(sc->ifp) & (IFCAP_TSO4 | IFCAP_TSO6)) {
8063         ether_stat->feature_flags |= FEATURE_ETH_LSO_MASK;
8064     }
8065 
8066     // XXX ether_stat->feature_flags |= ???;
8067 
8068     ether_stat->promiscuous_mode = 0; // (flags & PROMISC) ? 1 : 0;
8069 
8070     ether_stat->txq_size = sc->tx_ring_size;
8071     ether_stat->rxq_size = sc->rx_ring_size;
8072 }
8073 
8074 static void
8075 bxe_handle_drv_info_req(struct bxe_softc *sc)
8076 {
8077     enum drv_info_opcode op_code;
8078     uint32_t drv_info_ctl = SHMEM2_RD(sc, drv_info_control);
8079 
8080     /* if drv_info version supported by MFW doesn't match - send NACK */
8081     if ((drv_info_ctl & DRV_INFO_CONTROL_VER_MASK) != DRV_INFO_CUR_VER) {
8082         bxe_fw_command(sc, DRV_MSG_CODE_DRV_INFO_NACK, 0);
8083         return;
8084     }
8085 
8086     op_code = ((drv_info_ctl & DRV_INFO_CONTROL_OP_CODE_MASK) >>
8087                DRV_INFO_CONTROL_OP_CODE_SHIFT);
8088 
8089     memset(&sc->sp->drv_info_to_mcp, 0, sizeof(union drv_info_to_mcp));
8090 
8091     switch (op_code) {
8092     case ETH_STATS_OPCODE:
8093         bxe_drv_info_ether_stat(sc);
8094         break;
8095     case FCOE_STATS_OPCODE:
8096     case ISCSI_STATS_OPCODE:
8097     default:
8098         /* if op code isn't supported - send NACK */
8099         bxe_fw_command(sc, DRV_MSG_CODE_DRV_INFO_NACK, 0);
8100         return;
8101     }
8102 
8103     /*
8104      * If we got drv_info attn from MFW then these fields are defined in
8105      * shmem2 for sure
8106      */
8107     SHMEM2_WR(sc, drv_info_host_addr_lo,
8108               U64_LO(BXE_SP_MAPPING(sc, drv_info_to_mcp)));
8109     SHMEM2_WR(sc, drv_info_host_addr_hi,
8110               U64_HI(BXE_SP_MAPPING(sc, drv_info_to_mcp)));
8111 
8112     bxe_fw_command(sc, DRV_MSG_CODE_DRV_INFO_ACK, 0);
8113 }
8114 
8115 static void
8116 bxe_dcc_event(struct bxe_softc *sc,
8117               uint32_t         dcc_event)
8118 {
8119     BLOGD(sc, DBG_INTR, "dcc_event 0x%08x\n", dcc_event);
8120 
8121     if (dcc_event & DRV_STATUS_DCC_DISABLE_ENABLE_PF) {
8122         /*
8123          * This is the only place besides the function initialization
8124          * where the sc->flags can change so it is done without any
8125          * locks
8126          */
8127         if (sc->devinfo.mf_info.mf_config[SC_VN(sc)] & FUNC_MF_CFG_FUNC_DISABLED) {
8128             BLOGD(sc, DBG_INTR, "mf_cfg function disabled\n");
8129             sc->flags |= BXE_MF_FUNC_DIS;
8130             bxe_e1h_disable(sc);
8131         } else {
8132             BLOGD(sc, DBG_INTR, "mf_cfg function enabled\n");
8133             sc->flags &= ~BXE_MF_FUNC_DIS;
8134             bxe_e1h_enable(sc);
8135         }
8136         dcc_event &= ~DRV_STATUS_DCC_DISABLE_ENABLE_PF;
8137     }
8138 
8139     if (dcc_event & DRV_STATUS_DCC_BANDWIDTH_ALLOCATION) {
8140         bxe_config_mf_bw(sc);
8141         dcc_event &= ~DRV_STATUS_DCC_BANDWIDTH_ALLOCATION;
8142     }
8143 
8144     /* Report results to MCP */
8145     if (dcc_event)
8146         bxe_fw_command(sc, DRV_MSG_CODE_DCC_FAILURE, 0);
8147     else
8148         bxe_fw_command(sc, DRV_MSG_CODE_DCC_OK, 0);
8149 }
8150 
8151 static void
8152 bxe_pmf_update(struct bxe_softc *sc)
8153 {
8154     int port = SC_PORT(sc);
8155     uint32_t val;
8156 
8157     sc->port.pmf = 1;
8158     BLOGD(sc, DBG_INTR, "pmf %d\n", sc->port.pmf);
8159 
8160     /*
8161      * We need the mb() to ensure the ordering between the writing to
8162      * sc->port.pmf here and reading it from the bxe_periodic_task().
8163      */
8164     mb();
8165 
8166     /* queue a periodic task */
8167     // XXX schedule task...
8168 
8169     // XXX bxe_dcbx_pmf_update(sc);
8170 
8171     /* enable nig attention */
8172     val = (0xff0f | (1 << (SC_VN(sc) + 4)));
8173     if (sc->devinfo.int_block == INT_BLOCK_HC) {
8174         REG_WR(sc, HC_REG_TRAILING_EDGE_0 + port*8, val);
8175         REG_WR(sc, HC_REG_LEADING_EDGE_0 + port*8, val);
8176     } else if (!CHIP_IS_E1x(sc)) {
8177         REG_WR(sc, IGU_REG_TRAILING_EDGE_LATCH, val);
8178         REG_WR(sc, IGU_REG_LEADING_EDGE_LATCH, val);
8179     }
8180 
8181     bxe_stats_handle(sc, STATS_EVENT_PMF);
8182 }
8183 
8184 static int
8185 bxe_mc_assert(struct bxe_softc *sc)
8186 {
8187     char last_idx;
8188     int i, rc = 0;
8189     uint32_t row0, row1, row2, row3;
8190 
8191     /* XSTORM */
8192     last_idx = REG_RD8(sc, BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_INDEX_OFFSET);
8193     if (last_idx)
8194         BLOGE(sc, "XSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
8195 
8196     /* print the asserts */
8197     for (i = 0; i < STORM_ASSERT_ARRAY_SIZE; i++) {
8198 
8199         row0 = REG_RD(sc, BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_OFFSET(i));
8200         row1 = REG_RD(sc, BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_OFFSET(i) + 4);
8201         row2 = REG_RD(sc, BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_OFFSET(i) + 8);
8202         row3 = REG_RD(sc, BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_OFFSET(i) + 12);
8203 
8204         if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
8205             BLOGE(sc, "XSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
8206                   i, row3, row2, row1, row0);
8207             rc++;
8208         } else {
8209             break;
8210         }
8211     }
8212 
8213     /* TSTORM */
8214     last_idx = REG_RD8(sc, BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_INDEX_OFFSET);
8215     if (last_idx) {
8216         BLOGE(sc, "TSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
8217     }
8218 
8219     /* print the asserts */
8220     for (i = 0; i < STORM_ASSERT_ARRAY_SIZE; i++) {
8221 
8222         row0 = REG_RD(sc, BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_OFFSET(i));
8223         row1 = REG_RD(sc, BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_OFFSET(i) + 4);
8224         row2 = REG_RD(sc, BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_OFFSET(i) + 8);
8225         row3 = REG_RD(sc, BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_OFFSET(i) + 12);
8226 
8227         if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
8228             BLOGE(sc, "TSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
8229                   i, row3, row2, row1, row0);
8230             rc++;
8231         } else {
8232             break;
8233         }
8234     }
8235 
8236     /* CSTORM */
8237     last_idx = REG_RD8(sc, BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_INDEX_OFFSET);
8238     if (last_idx) {
8239         BLOGE(sc, "CSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
8240     }
8241 
8242     /* print the asserts */
8243     for (i = 0; i < STORM_ASSERT_ARRAY_SIZE; i++) {
8244 
8245         row0 = REG_RD(sc, BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_OFFSET(i));
8246         row1 = REG_RD(sc, BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_OFFSET(i) + 4);
8247         row2 = REG_RD(sc, BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_OFFSET(i) + 8);
8248         row3 = REG_RD(sc, BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_OFFSET(i) + 12);
8249 
8250         if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
8251             BLOGE(sc, "CSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
8252                   i, row3, row2, row1, row0);
8253             rc++;
8254         } else {
8255             break;
8256         }
8257     }
8258 
8259     /* USTORM */
8260     last_idx = REG_RD8(sc, BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_INDEX_OFFSET);
8261     if (last_idx) {
8262         BLOGE(sc, "USTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
8263     }
8264 
8265     /* print the asserts */
8266     for (i = 0; i < STORM_ASSERT_ARRAY_SIZE; i++) {
8267 
8268         row0 = REG_RD(sc, BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_OFFSET(i));
8269         row1 = REG_RD(sc, BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_OFFSET(i) + 4);
8270         row2 = REG_RD(sc, BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_OFFSET(i) + 8);
8271         row3 = REG_RD(sc, BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_OFFSET(i) + 12);
8272 
8273         if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
8274             BLOGE(sc, "USTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
8275                   i, row3, row2, row1, row0);
8276             rc++;
8277         } else {
8278             break;
8279         }
8280     }
8281 
8282     return (rc);
8283 }
8284 
8285 static void
8286 bxe_attn_int_deasserted3(struct bxe_softc *sc,
8287                          uint32_t         attn)
8288 {
8289     int func = SC_FUNC(sc);
8290     uint32_t val;
8291 
8292     if (attn & EVEREST_GEN_ATTN_IN_USE_MASK) {
8293 
8294         if (attn & BXE_PMF_LINK_ASSERT(sc)) {
8295 
8296             REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
8297             bxe_read_mf_cfg(sc);
8298             sc->devinfo.mf_info.mf_config[SC_VN(sc)] =
8299                 MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].config);
8300             val = SHMEM_RD(sc, func_mb[SC_FW_MB_IDX(sc)].drv_status);
8301 
8302             if (val & DRV_STATUS_DCC_EVENT_MASK)
8303                 bxe_dcc_event(sc, (val & DRV_STATUS_DCC_EVENT_MASK));
8304 
8305             if (val & DRV_STATUS_SET_MF_BW)
8306                 bxe_set_mf_bw(sc);
8307 
8308             if (val & DRV_STATUS_DRV_INFO_REQ)
8309                 bxe_handle_drv_info_req(sc);
8310 
8311 #if 0
8312             if (val & DRV_STATUS_VF_DISABLED)
8313                 bxe_vf_handle_flr_event(sc);
8314 #endif
8315 
8316             if ((sc->port.pmf == 0) && (val & DRV_STATUS_PMF))
8317                 bxe_pmf_update(sc);
8318 
8319 #if 0
8320             if (sc->port.pmf &&
8321                 (val & DRV_STATUS_DCBX_NEGOTIATION_RESULTS) &&
8322                 (sc->dcbx_enabled > 0))
8323                 /* start dcbx state machine */
8324                 bxe_dcbx_set_params(sc, BXE_DCBX_STATE_NEG_RECEIVED);
8325 #endif
8326 
8327 #if 0
8328             if (val & DRV_STATUS_AFEX_EVENT_MASK)
8329                 bxe_handle_afex_cmd(sc, val & DRV_STATUS_AFEX_EVENT_MASK);
8330 #endif
8331 
8332             if (val & DRV_STATUS_EEE_NEGOTIATION_RESULTS)
8333                 bxe_handle_eee_event(sc);
8334 
8335             if (sc->link_vars.periodic_flags &
8336                 ELINK_PERIODIC_FLAGS_LINK_EVENT) {
8337                 /* sync with link */
8338 		bxe_acquire_phy_lock(sc);
8339                 sc->link_vars.periodic_flags &=
8340                     ~ELINK_PERIODIC_FLAGS_LINK_EVENT;
8341 		bxe_release_phy_lock(sc);
8342                 if (IS_MF(sc))
8343                     ; // XXX bxe_link_sync_notify(sc);
8344                 bxe_link_report(sc);
8345             }
8346 
8347             /*
8348              * Always call it here: bxe_link_report() will
8349              * prevent the link indication duplication.
8350              */
8351             bxe_link_status_update(sc);
8352 
8353         } else if (attn & BXE_MC_ASSERT_BITS) {
8354 
8355             BLOGE(sc, "MC assert!\n");
8356             bxe_mc_assert(sc);
8357             REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_10, 0);
8358             REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_9, 0);
8359             REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_8, 0);
8360             REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_7, 0);
8361             bxe_panic(sc, ("MC assert!\n"));
8362 
8363         } else if (attn & BXE_MCP_ASSERT) {
8364 
8365             BLOGE(sc, "MCP assert!\n");
8366             REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_11, 0);
8367             // XXX bxe_fw_dump(sc);
8368 
8369         } else {
8370             BLOGE(sc, "Unknown HW assert! (attn 0x%08x)\n", attn);
8371         }
8372     }
8373 
8374     if (attn & EVEREST_LATCHED_ATTN_IN_USE_MASK) {
8375         BLOGE(sc, "LATCHED attention 0x%08x (masked)\n", attn);
8376         if (attn & BXE_GRC_TIMEOUT) {
8377             val = CHIP_IS_E1(sc) ? 0 : REG_RD(sc, MISC_REG_GRC_TIMEOUT_ATTN);
8378             BLOGE(sc, "GRC time-out 0x%08x\n", val);
8379         }
8380         if (attn & BXE_GRC_RSV) {
8381             val = CHIP_IS_E1(sc) ? 0 : REG_RD(sc, MISC_REG_GRC_RSV_ATTN);
8382             BLOGE(sc, "GRC reserved 0x%08x\n", val);
8383         }
8384         REG_WR(sc, MISC_REG_AEU_CLR_LATCH_SIGNAL, 0x7ff);
8385     }
8386 }
8387 
8388 static void
8389 bxe_attn_int_deasserted2(struct bxe_softc *sc,
8390                          uint32_t         attn)
8391 {
8392     int port = SC_PORT(sc);
8393     int reg_offset;
8394     uint32_t val0, mask0, val1, mask1;
8395     uint32_t val;
8396 
8397     if (attn & AEU_INPUTS_ATTN_BITS_CFC_HW_INTERRUPT) {
8398         val = REG_RD(sc, CFC_REG_CFC_INT_STS_CLR);
8399         BLOGE(sc, "CFC hw attention 0x%08x\n", val);
8400         /* CFC error attention */
8401         if (val & 0x2) {
8402             BLOGE(sc, "FATAL error from CFC\n");
8403         }
8404     }
8405 
8406     if (attn & AEU_INPUTS_ATTN_BITS_PXP_HW_INTERRUPT) {
8407         val = REG_RD(sc, PXP_REG_PXP_INT_STS_CLR_0);
8408         BLOGE(sc, "PXP hw attention-0 0x%08x\n", val);
8409         /* RQ_USDMDP_FIFO_OVERFLOW */
8410         if (val & 0x18000) {
8411             BLOGE(sc, "FATAL error from PXP\n");
8412         }
8413 
8414         if (!CHIP_IS_E1x(sc)) {
8415             val = REG_RD(sc, PXP_REG_PXP_INT_STS_CLR_1);
8416             BLOGE(sc, "PXP hw attention-1 0x%08x\n", val);
8417         }
8418     }
8419 
8420 #define PXP2_EOP_ERROR_BIT  PXP2_PXP2_INT_STS_CLR_0_REG_WR_PGLUE_EOP_ERROR
8421 #define AEU_PXP2_HW_INT_BIT AEU_INPUTS_ATTN_BITS_PXPPCICLOCKCLIENT_HW_INTERRUPT
8422 
8423     if (attn & AEU_PXP2_HW_INT_BIT) {
8424         /*  CQ47854 workaround do not panic on
8425          *  PXP2_PXP2_INT_STS_0_REG_WR_PGLUE_EOP_ERROR
8426          */
8427         if (!CHIP_IS_E1x(sc)) {
8428             mask0 = REG_RD(sc, PXP2_REG_PXP2_INT_MASK_0);
8429             val1 = REG_RD(sc, PXP2_REG_PXP2_INT_STS_1);
8430             mask1 = REG_RD(sc, PXP2_REG_PXP2_INT_MASK_1);
8431             val0 = REG_RD(sc, PXP2_REG_PXP2_INT_STS_0);
8432             /*
8433              * If the olny PXP2_EOP_ERROR_BIT is set in
8434              * STS0 and STS1 - clear it
8435              *
8436              * probably we lose additional attentions between
8437              * STS0 and STS_CLR0, in this case user will not
8438              * be notified about them
8439              */
8440             if (val0 & mask0 & PXP2_EOP_ERROR_BIT &&
8441                 !(val1 & mask1))
8442                 val0 = REG_RD(sc, PXP2_REG_PXP2_INT_STS_CLR_0);
8443 
8444             /* print the register, since no one can restore it */
8445             BLOGE(sc, "PXP2_REG_PXP2_INT_STS_CLR_0 0x%08x\n", val0);
8446 
8447             /*
8448              * if PXP2_PXP2_INT_STS_0_REG_WR_PGLUE_EOP_ERROR
8449              * then notify
8450              */
8451             if (val0 & PXP2_EOP_ERROR_BIT) {
8452                 BLOGE(sc, "PXP2_WR_PGLUE_EOP_ERROR\n");
8453 
8454                 /*
8455                  * if only PXP2_PXP2_INT_STS_0_REG_WR_PGLUE_EOP_ERROR is
8456                  * set then clear attention from PXP2 block without panic
8457                  */
8458                 if (((val0 & mask0) == PXP2_EOP_ERROR_BIT) &&
8459                     ((val1 & mask1) == 0))
8460                     attn &= ~AEU_PXP2_HW_INT_BIT;
8461             }
8462         }
8463     }
8464 
8465     if (attn & HW_INTERRUT_ASSERT_SET_2) {
8466         reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_2 :
8467                              MISC_REG_AEU_ENABLE1_FUNC_0_OUT_2);
8468 
8469         val = REG_RD(sc, reg_offset);
8470         val &= ~(attn & HW_INTERRUT_ASSERT_SET_2);
8471         REG_WR(sc, reg_offset, val);
8472 
8473         BLOGE(sc, "FATAL HW block attention set2 0x%x\n",
8474               (uint32_t)(attn & HW_INTERRUT_ASSERT_SET_2));
8475         bxe_panic(sc, ("HW block attention set2\n"));
8476     }
8477 }
8478 
8479 static void
8480 bxe_attn_int_deasserted1(struct bxe_softc *sc,
8481                          uint32_t         attn)
8482 {
8483     int port = SC_PORT(sc);
8484     int reg_offset;
8485     uint32_t val;
8486 
8487     if (attn & AEU_INPUTS_ATTN_BITS_DOORBELLQ_HW_INTERRUPT) {
8488         val = REG_RD(sc, DORQ_REG_DORQ_INT_STS_CLR);
8489         BLOGE(sc, "DB hw attention 0x%08x\n", val);
8490         /* DORQ discard attention */
8491         if (val & 0x2) {
8492             BLOGE(sc, "FATAL error from DORQ\n");
8493         }
8494     }
8495 
8496     if (attn & HW_INTERRUT_ASSERT_SET_1) {
8497         reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_1 :
8498                              MISC_REG_AEU_ENABLE1_FUNC_0_OUT_1);
8499 
8500         val = REG_RD(sc, reg_offset);
8501         val &= ~(attn & HW_INTERRUT_ASSERT_SET_1);
8502         REG_WR(sc, reg_offset, val);
8503 
8504         BLOGE(sc, "FATAL HW block attention set1 0x%08x\n",
8505               (uint32_t)(attn & HW_INTERRUT_ASSERT_SET_1));
8506         bxe_panic(sc, ("HW block attention set1\n"));
8507     }
8508 }
8509 
8510 static void
8511 bxe_attn_int_deasserted0(struct bxe_softc *sc,
8512                          uint32_t         attn)
8513 {
8514     int port = SC_PORT(sc);
8515     int reg_offset;
8516     uint32_t val;
8517 
8518     reg_offset = (port) ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
8519                           MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0;
8520 
8521     if (attn & AEU_INPUTS_ATTN_BITS_SPIO5) {
8522         val = REG_RD(sc, reg_offset);
8523         val &= ~AEU_INPUTS_ATTN_BITS_SPIO5;
8524         REG_WR(sc, reg_offset, val);
8525 
8526         BLOGW(sc, "SPIO5 hw attention\n");
8527 
8528         /* Fan failure attention */
8529         elink_hw_reset_phy(&sc->link_params);
8530         bxe_fan_failure(sc);
8531     }
8532 
8533     if ((attn & sc->link_vars.aeu_int_mask) && sc->port.pmf) {
8534 	bxe_acquire_phy_lock(sc);
8535         elink_handle_module_detect_int(&sc->link_params);
8536 	bxe_release_phy_lock(sc);
8537     }
8538 
8539     if (attn & HW_INTERRUT_ASSERT_SET_0) {
8540         val = REG_RD(sc, reg_offset);
8541         val &= ~(attn & HW_INTERRUT_ASSERT_SET_0);
8542         REG_WR(sc, reg_offset, val);
8543 
8544         bxe_panic(sc, ("FATAL HW block attention set0 0x%lx\n",
8545                        (attn & HW_INTERRUT_ASSERT_SET_0)));
8546     }
8547 }
8548 
8549 static void
8550 bxe_attn_int_deasserted(struct bxe_softc *sc,
8551                         uint32_t         deasserted)
8552 {
8553     struct attn_route attn;
8554     struct attn_route *group_mask;
8555     int port = SC_PORT(sc);
8556     int index;
8557     uint32_t reg_addr;
8558     uint32_t val;
8559     uint32_t aeu_mask;
8560     uint8_t global = FALSE;
8561 
8562     /*
8563      * Need to take HW lock because MCP or other port might also
8564      * try to handle this event.
8565      */
8566     bxe_acquire_alr(sc);
8567 
8568     if (bxe_chk_parity_attn(sc, &global, TRUE)) {
8569         /* XXX
8570          * In case of parity errors don't handle attentions so that
8571          * other function would "see" parity errors.
8572          */
8573         sc->recovery_state = BXE_RECOVERY_INIT;
8574         // XXX schedule a recovery task...
8575         /* disable HW interrupts */
8576         bxe_int_disable(sc);
8577         bxe_release_alr(sc);
8578         return;
8579     }
8580 
8581     attn.sig[0] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + port*4);
8582     attn.sig[1] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 + port*4);
8583     attn.sig[2] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 + port*4);
8584     attn.sig[3] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 + port*4);
8585     if (!CHIP_IS_E1x(sc)) {
8586         attn.sig[4] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 + port*4);
8587     } else {
8588         attn.sig[4] = 0;
8589     }
8590 
8591     BLOGD(sc, DBG_INTR, "attn: 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x\n",
8592           attn.sig[0], attn.sig[1], attn.sig[2], attn.sig[3], attn.sig[4]);
8593 
8594     for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) {
8595         if (deasserted & (1 << index)) {
8596             group_mask = &sc->attn_group[index];
8597 
8598             BLOGD(sc, DBG_INTR,
8599                   "group[%d]: 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x\n", index,
8600                   group_mask->sig[0], group_mask->sig[1],
8601                   group_mask->sig[2], group_mask->sig[3],
8602                   group_mask->sig[4]);
8603 
8604             bxe_attn_int_deasserted4(sc, attn.sig[4] & group_mask->sig[4]);
8605             bxe_attn_int_deasserted3(sc, attn.sig[3] & group_mask->sig[3]);
8606             bxe_attn_int_deasserted1(sc, attn.sig[1] & group_mask->sig[1]);
8607             bxe_attn_int_deasserted2(sc, attn.sig[2] & group_mask->sig[2]);
8608             bxe_attn_int_deasserted0(sc, attn.sig[0] & group_mask->sig[0]);
8609         }
8610     }
8611 
8612     bxe_release_alr(sc);
8613 
8614     if (sc->devinfo.int_block == INT_BLOCK_HC) {
8615         reg_addr = (HC_REG_COMMAND_REG + port*32 +
8616                     COMMAND_REG_ATTN_BITS_CLR);
8617     } else {
8618         reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_CLR_UPPER*8);
8619     }
8620 
8621     val = ~deasserted;
8622     BLOGD(sc, DBG_INTR,
8623           "about to mask 0x%08x at %s addr 0x%08x\n", val,
8624           (sc->devinfo.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr);
8625     REG_WR(sc, reg_addr, val);
8626 
8627     if (~sc->attn_state & deasserted) {
8628         BLOGE(sc, "IGU error\n");
8629     }
8630 
8631     reg_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
8632                       MISC_REG_AEU_MASK_ATTN_FUNC_0;
8633 
8634     bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
8635 
8636     aeu_mask = REG_RD(sc, reg_addr);
8637 
8638     BLOGD(sc, DBG_INTR, "aeu_mask 0x%08x newly deasserted 0x%08x\n",
8639           aeu_mask, deasserted);
8640     aeu_mask |= (deasserted & 0x3ff);
8641     BLOGD(sc, DBG_INTR, "new mask 0x%08x\n", aeu_mask);
8642 
8643     REG_WR(sc, reg_addr, aeu_mask);
8644     bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
8645 
8646     BLOGD(sc, DBG_INTR, "attn_state 0x%08x\n", sc->attn_state);
8647     sc->attn_state &= ~deasserted;
8648     BLOGD(sc, DBG_INTR, "new state 0x%08x\n", sc->attn_state);
8649 }
8650 
8651 static void
8652 bxe_attn_int(struct bxe_softc *sc)
8653 {
8654     /* read local copy of bits */
8655     uint32_t attn_bits = le32toh(sc->def_sb->atten_status_block.attn_bits);
8656     uint32_t attn_ack = le32toh(sc->def_sb->atten_status_block.attn_bits_ack);
8657     uint32_t attn_state = sc->attn_state;
8658 
8659     /* look for changed bits */
8660     uint32_t asserted   =  attn_bits & ~attn_ack & ~attn_state;
8661     uint32_t deasserted = ~attn_bits &  attn_ack &  attn_state;
8662 
8663     BLOGD(sc, DBG_INTR,
8664           "attn_bits 0x%08x attn_ack 0x%08x asserted 0x%08x deasserted 0x%08x\n",
8665           attn_bits, attn_ack, asserted, deasserted);
8666 
8667     if (~(attn_bits ^ attn_ack) & (attn_bits ^ attn_state)) {
8668         BLOGE(sc, "BAD attention state\n");
8669     }
8670 
8671     /* handle bits that were raised */
8672     if (asserted) {
8673         bxe_attn_int_asserted(sc, asserted);
8674     }
8675 
8676     if (deasserted) {
8677         bxe_attn_int_deasserted(sc, deasserted);
8678     }
8679 }
8680 
8681 static uint16_t
8682 bxe_update_dsb_idx(struct bxe_softc *sc)
8683 {
8684     struct host_sp_status_block *def_sb = sc->def_sb;
8685     uint16_t rc = 0;
8686 
8687     mb(); /* status block is written to by the chip */
8688 
8689     if (sc->def_att_idx != def_sb->atten_status_block.attn_bits_index) {
8690         sc->def_att_idx = def_sb->atten_status_block.attn_bits_index;
8691         rc |= BXE_DEF_SB_ATT_IDX;
8692     }
8693 
8694     if (sc->def_idx != def_sb->sp_sb.running_index) {
8695         sc->def_idx = def_sb->sp_sb.running_index;
8696         rc |= BXE_DEF_SB_IDX;
8697     }
8698 
8699     mb();
8700 
8701     return (rc);
8702 }
8703 
8704 static inline struct ecore_queue_sp_obj *
8705 bxe_cid_to_q_obj(struct bxe_softc *sc,
8706                  uint32_t         cid)
8707 {
8708     BLOGD(sc, DBG_SP, "retrieving fp from cid %d\n", cid);
8709     return (&sc->sp_objs[CID_TO_FP(cid, sc)].q_obj);
8710 }
8711 
8712 static void
8713 bxe_handle_mcast_eqe(struct bxe_softc *sc)
8714 {
8715     struct ecore_mcast_ramrod_params rparam;
8716     int rc;
8717 
8718     memset(&rparam, 0, sizeof(rparam));
8719 
8720     rparam.mcast_obj = &sc->mcast_obj;
8721 
8722     BXE_MCAST_LOCK(sc);
8723 
8724     /* clear pending state for the last command */
8725     sc->mcast_obj.raw.clear_pending(&sc->mcast_obj.raw);
8726 
8727     /* if there are pending mcast commands - send them */
8728     if (sc->mcast_obj.check_pending(&sc->mcast_obj)) {
8729         rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_CONT);
8730         if (rc < 0) {
8731             BLOGD(sc, DBG_SP,
8732                   "ERROR: Failed to send pending mcast commands (%d)\n",
8733                   rc);
8734         }
8735     }
8736 
8737     BXE_MCAST_UNLOCK(sc);
8738 }
8739 
8740 static void
8741 bxe_handle_classification_eqe(struct bxe_softc      *sc,
8742                               union event_ring_elem *elem)
8743 {
8744     unsigned long ramrod_flags = 0;
8745     int rc = 0;
8746     uint32_t cid = elem->message.data.eth_event.echo & BXE_SWCID_MASK;
8747     struct ecore_vlan_mac_obj *vlan_mac_obj;
8748 
8749     /* always push next commands out, don't wait here */
8750     bit_set(&ramrod_flags, RAMROD_CONT);
8751 
8752     switch (le32toh(elem->message.data.eth_event.echo) >> BXE_SWCID_SHIFT) {
8753     case ECORE_FILTER_MAC_PENDING:
8754         BLOGD(sc, DBG_SP, "Got SETUP_MAC completions\n");
8755         vlan_mac_obj = &sc->sp_objs[cid].mac_obj;
8756         break;
8757 
8758     case ECORE_FILTER_MCAST_PENDING:
8759         BLOGD(sc, DBG_SP, "Got SETUP_MCAST completions\n");
8760         /*
8761          * This is only relevant for 57710 where multicast MACs are
8762          * configured as unicast MACs using the same ramrod.
8763          */
8764         bxe_handle_mcast_eqe(sc);
8765         return;
8766 
8767     default:
8768         BLOGE(sc, "Unsupported classification command: %d\n",
8769               elem->message.data.eth_event.echo);
8770         return;
8771     }
8772 
8773     rc = vlan_mac_obj->complete(sc, vlan_mac_obj, elem, &ramrod_flags);
8774 
8775     if (rc < 0) {
8776         BLOGE(sc, "Failed to schedule new commands (%d)\n", rc);
8777     } else if (rc > 0) {
8778         BLOGD(sc, DBG_SP, "Scheduled next pending commands...\n");
8779     }
8780 }
8781 
8782 static void
8783 bxe_handle_rx_mode_eqe(struct bxe_softc      *sc,
8784                        union event_ring_elem *elem)
8785 {
8786     bxe_clear_bit(ECORE_FILTER_RX_MODE_PENDING, &sc->sp_state);
8787 
8788     /* send rx_mode command again if was requested */
8789     if (bxe_test_and_clear_bit(ECORE_FILTER_RX_MODE_SCHED,
8790                                &sc->sp_state)) {
8791         bxe_set_storm_rx_mode(sc);
8792     }
8793 #if 0
8794     else if (bxe_test_and_clear_bit(ECORE_FILTER_ISCSI_ETH_START_SCHED,
8795                                     &sc->sp_state)) {
8796         bxe_set_iscsi_eth_rx_mode(sc, TRUE);
8797     }
8798     else if (bxe_test_and_clear_bit(ECORE_FILTER_ISCSI_ETH_STOP_SCHED,
8799                                     &sc->sp_state)) {
8800         bxe_set_iscsi_eth_rx_mode(sc, FALSE);
8801     }
8802 #endif
8803 }
8804 
8805 static void
8806 bxe_update_eq_prod(struct bxe_softc *sc,
8807                    uint16_t         prod)
8808 {
8809     storm_memset_eq_prod(sc, prod, SC_FUNC(sc));
8810     wmb(); /* keep prod updates ordered */
8811 }
8812 
8813 static void
8814 bxe_eq_int(struct bxe_softc *sc)
8815 {
8816     uint16_t hw_cons, sw_cons, sw_prod;
8817     union event_ring_elem *elem;
8818     uint8_t echo;
8819     uint32_t cid;
8820     uint8_t opcode;
8821     int spqe_cnt = 0;
8822     struct ecore_queue_sp_obj *q_obj;
8823     struct ecore_func_sp_obj *f_obj = &sc->func_obj;
8824     struct ecore_raw_obj *rss_raw = &sc->rss_conf_obj.raw;
8825 
8826     hw_cons = le16toh(*sc->eq_cons_sb);
8827 
8828     /*
8829      * The hw_cons range is 1-255, 257 - the sw_cons range is 0-254, 256.
8830      * when we get to the next-page we need to adjust so the loop
8831      * condition below will be met. The next element is the size of a
8832      * regular element and hence incrementing by 1
8833      */
8834     if ((hw_cons & EQ_DESC_MAX_PAGE) == EQ_DESC_MAX_PAGE) {
8835         hw_cons++;
8836     }
8837 
8838     /*
8839      * This function may never run in parallel with itself for a
8840      * specific sc and no need for a read memory barrier here.
8841      */
8842     sw_cons = sc->eq_cons;
8843     sw_prod = sc->eq_prod;
8844 
8845     BLOGD(sc, DBG_SP,"EQ: hw_cons=%u sw_cons=%u eq_spq_left=0x%lx\n",
8846           hw_cons, sw_cons, atomic_load_acq_long(&sc->eq_spq_left));
8847 
8848     for (;
8849          sw_cons != hw_cons;
8850          sw_prod = NEXT_EQ_IDX(sw_prod), sw_cons = NEXT_EQ_IDX(sw_cons)) {
8851 
8852         elem = &sc->eq[EQ_DESC(sw_cons)];
8853 
8854 #if 0
8855         int rc;
8856         rc = bxe_iov_eq_sp_event(sc, elem);
8857         if (!rc) {
8858             BLOGE(sc, "bxe_iov_eq_sp_event returned %d\n", rc);
8859             goto next_spqe;
8860         }
8861 #endif
8862 
8863         /* elem CID originates from FW, actually LE */
8864         cid = SW_CID(elem->message.data.cfc_del_event.cid);
8865         opcode = elem->message.opcode;
8866 
8867         /* handle eq element */
8868         switch (opcode) {
8869 #if 0
8870         case EVENT_RING_OPCODE_VF_PF_CHANNEL:
8871             BLOGD(sc, DBG_SP, "vf/pf channel element on eq\n");
8872             bxe_vf_mbx(sc, &elem->message.data.vf_pf_event);
8873             continue;
8874 #endif
8875 
8876         case EVENT_RING_OPCODE_STAT_QUERY:
8877             BLOGD(sc, DBG_SP, "got statistics completion event %d\n",
8878                   sc->stats_comp++);
8879             /* nothing to do with stats comp */
8880             goto next_spqe;
8881 
8882         case EVENT_RING_OPCODE_CFC_DEL:
8883             /* handle according to cid range */
8884             /* we may want to verify here that the sc state is HALTING */
8885             BLOGD(sc, DBG_SP, "got delete ramrod for MULTI[%d]\n", cid);
8886             q_obj = bxe_cid_to_q_obj(sc, cid);
8887             if (q_obj->complete_cmd(sc, q_obj, ECORE_Q_CMD_CFC_DEL)) {
8888                 break;
8889             }
8890             goto next_spqe;
8891 
8892         case EVENT_RING_OPCODE_STOP_TRAFFIC:
8893             BLOGD(sc, DBG_SP, "got STOP TRAFFIC\n");
8894             if (f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_TX_STOP)) {
8895                 break;
8896             }
8897             // XXX bxe_dcbx_set_params(sc, BXE_DCBX_STATE_TX_PAUSED);
8898             goto next_spqe;
8899 
8900         case EVENT_RING_OPCODE_START_TRAFFIC:
8901             BLOGD(sc, DBG_SP, "got START TRAFFIC\n");
8902             if (f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_TX_START)) {
8903                 break;
8904             }
8905             // XXX bxe_dcbx_set_params(sc, BXE_DCBX_STATE_TX_RELEASED);
8906             goto next_spqe;
8907 
8908         case EVENT_RING_OPCODE_FUNCTION_UPDATE:
8909             echo = elem->message.data.function_update_event.echo;
8910             if (echo == SWITCH_UPDATE) {
8911                 BLOGD(sc, DBG_SP, "got FUNC_SWITCH_UPDATE ramrod\n");
8912                 if (f_obj->complete_cmd(sc, f_obj,
8913                                         ECORE_F_CMD_SWITCH_UPDATE)) {
8914                     break;
8915                 }
8916             }
8917             else {
8918                 BLOGD(sc, DBG_SP,
8919                       "AFEX: ramrod completed FUNCTION_UPDATE\n");
8920 #if 0
8921                 f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_AFEX_UPDATE);
8922                 /*
8923                  * We will perform the queues update from the sp_core_task as
8924                  * all queue SP operations should run with CORE_LOCK.
8925                  */
8926                 bxe_set_bit(BXE_SP_CORE_AFEX_F_UPDATE, &sc->sp_core_state);
8927                 taskqueue_enqueue(sc->sp_tq, &sc->sp_tq_task);
8928 #endif
8929             }
8930             goto next_spqe;
8931 
8932 #if 0
8933         case EVENT_RING_OPCODE_AFEX_VIF_LISTS:
8934             f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_AFEX_VIFLISTS);
8935             bxe_after_afex_vif_lists(sc, elem);
8936             goto next_spqe;
8937 #endif
8938 
8939         case EVENT_RING_OPCODE_FORWARD_SETUP:
8940             q_obj = &bxe_fwd_sp_obj(sc, q_obj);
8941             if (q_obj->complete_cmd(sc, q_obj,
8942                                     ECORE_Q_CMD_SETUP_TX_ONLY)) {
8943                 break;
8944             }
8945             goto next_spqe;
8946 
8947         case EVENT_RING_OPCODE_FUNCTION_START:
8948             BLOGD(sc, DBG_SP, "got FUNC_START ramrod\n");
8949             if (f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_START)) {
8950                 break;
8951             }
8952             goto next_spqe;
8953 
8954         case EVENT_RING_OPCODE_FUNCTION_STOP:
8955             BLOGD(sc, DBG_SP, "got FUNC_STOP ramrod\n");
8956             if (f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_STOP)) {
8957                 break;
8958             }
8959             goto next_spqe;
8960         }
8961 
8962         switch (opcode | sc->state) {
8963         case (EVENT_RING_OPCODE_RSS_UPDATE_RULES | BXE_STATE_OPEN):
8964         case (EVENT_RING_OPCODE_RSS_UPDATE_RULES | BXE_STATE_OPENING_WAITING_PORT):
8965             cid = elem->message.data.eth_event.echo & BXE_SWCID_MASK;
8966             BLOGD(sc, DBG_SP, "got RSS_UPDATE ramrod. CID %d\n", cid);
8967             rss_raw->clear_pending(rss_raw);
8968             break;
8969 
8970         case (EVENT_RING_OPCODE_SET_MAC | BXE_STATE_OPEN):
8971         case (EVENT_RING_OPCODE_SET_MAC | BXE_STATE_DIAG):
8972         case (EVENT_RING_OPCODE_SET_MAC | BXE_STATE_CLOSING_WAITING_HALT):
8973         case (EVENT_RING_OPCODE_CLASSIFICATION_RULES | BXE_STATE_OPEN):
8974         case (EVENT_RING_OPCODE_CLASSIFICATION_RULES | BXE_STATE_DIAG):
8975         case (EVENT_RING_OPCODE_CLASSIFICATION_RULES | BXE_STATE_CLOSING_WAITING_HALT):
8976             BLOGD(sc, DBG_SP, "got (un)set mac ramrod\n");
8977             bxe_handle_classification_eqe(sc, elem);
8978             break;
8979 
8980         case (EVENT_RING_OPCODE_MULTICAST_RULES | BXE_STATE_OPEN):
8981         case (EVENT_RING_OPCODE_MULTICAST_RULES | BXE_STATE_DIAG):
8982         case (EVENT_RING_OPCODE_MULTICAST_RULES | BXE_STATE_CLOSING_WAITING_HALT):
8983             BLOGD(sc, DBG_SP, "got mcast ramrod\n");
8984             bxe_handle_mcast_eqe(sc);
8985             break;
8986 
8987         case (EVENT_RING_OPCODE_FILTERS_RULES | BXE_STATE_OPEN):
8988         case (EVENT_RING_OPCODE_FILTERS_RULES | BXE_STATE_DIAG):
8989         case (EVENT_RING_OPCODE_FILTERS_RULES | BXE_STATE_CLOSING_WAITING_HALT):
8990             BLOGD(sc, DBG_SP, "got rx_mode ramrod\n");
8991             bxe_handle_rx_mode_eqe(sc, elem);
8992             break;
8993 
8994         default:
8995             /* unknown event log error and continue */
8996             BLOGE(sc, "Unknown EQ event %d, sc->state 0x%x\n",
8997                   elem->message.opcode, sc->state);
8998         }
8999 
9000 next_spqe:
9001         spqe_cnt++;
9002     } /* for */
9003 
9004     mb();
9005     atomic_add_acq_long(&sc->eq_spq_left, spqe_cnt);
9006 
9007     sc->eq_cons = sw_cons;
9008     sc->eq_prod = sw_prod;
9009 
9010     /* make sure that above mem writes were issued towards the memory */
9011     wmb();
9012 
9013     /* update producer */
9014     bxe_update_eq_prod(sc, sc->eq_prod);
9015 }
9016 
9017 static void
9018 bxe_handle_sp_tq(void *context,
9019                  int  pending)
9020 {
9021     struct bxe_softc *sc = (struct bxe_softc *)context;
9022     uint16_t status;
9023 
9024     BLOGD(sc, DBG_SP, "---> SP TASK <---\n");
9025 
9026     /* what work needs to be performed? */
9027     status = bxe_update_dsb_idx(sc);
9028 
9029     BLOGD(sc, DBG_SP, "dsb status 0x%04x\n", status);
9030 
9031     /* HW attentions */
9032     if (status & BXE_DEF_SB_ATT_IDX) {
9033         BLOGD(sc, DBG_SP, "---> ATTN INTR <---\n");
9034         bxe_attn_int(sc);
9035         status &= ~BXE_DEF_SB_ATT_IDX;
9036     }
9037 
9038     /* SP events: STAT_QUERY and others */
9039     if (status & BXE_DEF_SB_IDX) {
9040         /* handle EQ completions */
9041         BLOGD(sc, DBG_SP, "---> EQ INTR <---\n");
9042         bxe_eq_int(sc);
9043         bxe_ack_sb(sc, sc->igu_dsb_id, USTORM_ID,
9044                    le16toh(sc->def_idx), IGU_INT_NOP, 1);
9045         status &= ~BXE_DEF_SB_IDX;
9046     }
9047 
9048     /* if status is non zero then something went wrong */
9049     if (__predict_false(status)) {
9050         BLOGE(sc, "Got an unknown SP interrupt! (0x%04x)\n", status);
9051     }
9052 
9053     /* ack status block only if something was actually handled */
9054     bxe_ack_sb(sc, sc->igu_dsb_id, ATTENTION_ID,
9055                le16toh(sc->def_att_idx), IGU_INT_ENABLE, 1);
9056 
9057     /*
9058      * Must be called after the EQ processing (since eq leads to sriov
9059      * ramrod completion flows).
9060      * This flow may have been scheduled by the arrival of a ramrod
9061      * completion, or by the sriov code rescheduling itself.
9062      */
9063     // XXX bxe_iov_sp_task(sc);
9064 
9065 #if 0
9066     /* AFEX - poll to check if VIFSET_ACK should be sent to MFW */
9067     if (bxe_test_and_clear_bit(ECORE_AFEX_PENDING_VIFSET_MCP_ACK,
9068                                &sc->sp_state)) {
9069         bxe_link_report(sc);
9070         bxe_fw_command(sc, DRV_MSG_CODE_AFEX_VIFSET_ACK, 0);
9071     }
9072 #endif
9073 }
9074 
9075 static void
9076 bxe_handle_fp_tq(void *context,
9077                  int  pending)
9078 {
9079     struct bxe_fastpath *fp = (struct bxe_fastpath *)context;
9080     struct bxe_softc *sc = fp->sc;
9081     uint8_t more_tx = FALSE;
9082     uint8_t more_rx = FALSE;
9083 
9084     BLOGD(sc, DBG_INTR, "---> FP TASK QUEUE (%d) <---\n", fp->index);
9085 
9086     /* XXX
9087      * IFF_DRV_RUNNING state can't be checked here since we process
9088      * slowpath events on a client queue during setup. Instead
9089      * we need to add a "process/continue" flag here that the driver
9090      * can use to tell the task here not to do anything.
9091      */
9092 #if 0
9093     if (!(if_getdrvflags(sc->ifp) & IFF_DRV_RUNNING)) {
9094         return;
9095     }
9096 #endif
9097 
9098     /* update the fastpath index */
9099     bxe_update_fp_sb_idx(fp);
9100 
9101     /* XXX add loop here if ever support multiple tx CoS */
9102     /* fp->txdata[cos] */
9103     if (bxe_has_tx_work(fp)) {
9104         BXE_FP_TX_LOCK(fp);
9105         more_tx = bxe_txeof(sc, fp);
9106         BXE_FP_TX_UNLOCK(fp);
9107     }
9108 
9109     if (bxe_has_rx_work(fp)) {
9110         more_rx = bxe_rxeof(sc, fp);
9111     }
9112 
9113     if (more_rx /*|| more_tx*/) {
9114         /* still more work to do */
9115         taskqueue_enqueue_fast(fp->tq, &fp->tq_task);
9116         return;
9117     }
9118 
9119     bxe_ack_sb(sc, fp->igu_sb_id, USTORM_ID,
9120                le16toh(fp->fp_hc_idx), IGU_INT_ENABLE, 1);
9121 }
9122 
9123 static void
9124 bxe_task_fp(struct bxe_fastpath *fp)
9125 {
9126     struct bxe_softc *sc = fp->sc;
9127     uint8_t more_tx = FALSE;
9128     uint8_t more_rx = FALSE;
9129 
9130     BLOGD(sc, DBG_INTR, "---> FP TASK ISR (%d) <---\n", fp->index);
9131 
9132     /* update the fastpath index */
9133     bxe_update_fp_sb_idx(fp);
9134 
9135     /* XXX add loop here if ever support multiple tx CoS */
9136     /* fp->txdata[cos] */
9137     if (bxe_has_tx_work(fp)) {
9138         BXE_FP_TX_LOCK(fp);
9139         more_tx = bxe_txeof(sc, fp);
9140         BXE_FP_TX_UNLOCK(fp);
9141     }
9142 
9143     if (bxe_has_rx_work(fp)) {
9144         more_rx = bxe_rxeof(sc, fp);
9145     }
9146 
9147     if (more_rx /*|| more_tx*/) {
9148         /* still more work to do, bail out if this ISR and process later */
9149         taskqueue_enqueue_fast(fp->tq, &fp->tq_task);
9150         return;
9151     }
9152 
9153     /*
9154      * Here we write the fastpath index taken before doing any tx or rx work.
9155      * It is very well possible other hw events occurred up to this point and
9156      * they were actually processed accordingly above. Since we're going to
9157      * write an older fastpath index, an interrupt is coming which we might
9158      * not do any work in.
9159      */
9160     bxe_ack_sb(sc, fp->igu_sb_id, USTORM_ID,
9161                le16toh(fp->fp_hc_idx), IGU_INT_ENABLE, 1);
9162 }
9163 
9164 /*
9165  * Legacy interrupt entry point.
9166  *
9167  * Verifies that the controller generated the interrupt and
9168  * then calls a separate routine to handle the various
9169  * interrupt causes: link, RX, and TX.
9170  */
9171 static void
9172 bxe_intr_legacy(void *xsc)
9173 {
9174     struct bxe_softc *sc = (struct bxe_softc *)xsc;
9175     struct bxe_fastpath *fp;
9176     uint16_t status, mask;
9177     int i;
9178 
9179     BLOGD(sc, DBG_INTR, "---> BXE INTx <---\n");
9180 
9181 #if 0
9182     /* Don't handle any interrupts if we're not ready. */
9183     if (__predict_false(sc->intr_sem != 0)) {
9184         return;
9185     }
9186 #endif
9187 
9188     /*
9189      * 0 for ustorm, 1 for cstorm
9190      * the bits returned from ack_int() are 0-15
9191      * bit 0 = attention status block
9192      * bit 1 = fast path status block
9193      * a mask of 0x2 or more = tx/rx event
9194      * a mask of 1 = slow path event
9195      */
9196 
9197     status = bxe_ack_int(sc);
9198 
9199     /* the interrupt is not for us */
9200     if (__predict_false(status == 0)) {
9201         BLOGD(sc, DBG_INTR, "Not our interrupt!\n");
9202         return;
9203     }
9204 
9205     BLOGD(sc, DBG_INTR, "Interrupt status 0x%04x\n", status);
9206 
9207     FOR_EACH_ETH_QUEUE(sc, i) {
9208         fp = &sc->fp[i];
9209         mask = (0x2 << (fp->index + CNIC_SUPPORT(sc)));
9210         if (status & mask) {
9211             /* acknowledge and disable further fastpath interrupts */
9212             bxe_ack_sb(sc, fp->igu_sb_id, USTORM_ID, 0, IGU_INT_DISABLE, 0);
9213             bxe_task_fp(fp);
9214             status &= ~mask;
9215         }
9216     }
9217 
9218 #if 0
9219     if (CNIC_SUPPORT(sc)) {
9220         mask = 0x2;
9221         if (status & (mask | 0x1)) {
9222             ...
9223             status &= ~mask;
9224         }
9225     }
9226 #endif
9227 
9228     if (__predict_false(status & 0x1)) {
9229         /* acknowledge and disable further slowpath interrupts */
9230         bxe_ack_sb(sc, sc->igu_dsb_id, USTORM_ID, 0, IGU_INT_DISABLE, 0);
9231 
9232         /* schedule slowpath handler */
9233         taskqueue_enqueue_fast(sc->sp_tq, &sc->sp_tq_task);
9234 
9235         status &= ~0x1;
9236     }
9237 
9238     if (__predict_false(status)) {
9239         BLOGW(sc, "Unexpected fastpath status (0x%08x)!\n", status);
9240     }
9241 }
9242 
9243 /* slowpath interrupt entry point */
9244 static void
9245 bxe_intr_sp(void *xsc)
9246 {
9247     struct bxe_softc *sc = (struct bxe_softc *)xsc;
9248 
9249     BLOGD(sc, (DBG_INTR | DBG_SP), "---> SP INTR <---\n");
9250 
9251     /* acknowledge and disable further slowpath interrupts */
9252     bxe_ack_sb(sc, sc->igu_dsb_id, USTORM_ID, 0, IGU_INT_DISABLE, 0);
9253 
9254     /* schedule slowpath handler */
9255     taskqueue_enqueue_fast(sc->sp_tq, &sc->sp_tq_task);
9256 }
9257 
9258 /* fastpath interrupt entry point */
9259 static void
9260 bxe_intr_fp(void *xfp)
9261 {
9262     struct bxe_fastpath *fp = (struct bxe_fastpath *)xfp;
9263     struct bxe_softc *sc = fp->sc;
9264 
9265     BLOGD(sc, DBG_INTR, "---> FP INTR %d <---\n", fp->index);
9266 
9267     BLOGD(sc, DBG_INTR,
9268           "(cpu=%d) MSI-X fp=%d fw_sb=%d igu_sb=%d\n",
9269           curcpu, fp->index, fp->fw_sb_id, fp->igu_sb_id);
9270 
9271 #if 0
9272     /* Don't handle any interrupts if we're not ready. */
9273     if (__predict_false(sc->intr_sem != 0)) {
9274         return;
9275     }
9276 #endif
9277 
9278     /* acknowledge and disable further fastpath interrupts */
9279     bxe_ack_sb(sc, fp->igu_sb_id, USTORM_ID, 0, IGU_INT_DISABLE, 0);
9280 
9281     bxe_task_fp(fp);
9282 }
9283 
9284 /* Release all interrupts allocated by the driver. */
9285 static void
9286 bxe_interrupt_free(struct bxe_softc *sc)
9287 {
9288     int i;
9289 
9290     switch (sc->interrupt_mode) {
9291     case INTR_MODE_INTX:
9292         BLOGD(sc, DBG_LOAD, "Releasing legacy INTx vector\n");
9293         if (sc->intr[0].resource != NULL) {
9294             bus_release_resource(sc->dev,
9295                                  SYS_RES_IRQ,
9296                                  sc->intr[0].rid,
9297                                  sc->intr[0].resource);
9298         }
9299         break;
9300     case INTR_MODE_MSI:
9301         for (i = 0; i < sc->intr_count; i++) {
9302             BLOGD(sc, DBG_LOAD, "Releasing MSI vector %d\n", i);
9303             if (sc->intr[i].resource && sc->intr[i].rid) {
9304                 bus_release_resource(sc->dev,
9305                                      SYS_RES_IRQ,
9306                                      sc->intr[i].rid,
9307                                      sc->intr[i].resource);
9308             }
9309         }
9310         pci_release_msi(sc->dev);
9311         break;
9312     case INTR_MODE_MSIX:
9313         for (i = 0; i < sc->intr_count; i++) {
9314             BLOGD(sc, DBG_LOAD, "Releasing MSI-X vector %d\n", i);
9315             if (sc->intr[i].resource && sc->intr[i].rid) {
9316                 bus_release_resource(sc->dev,
9317                                      SYS_RES_IRQ,
9318                                      sc->intr[i].rid,
9319                                      sc->intr[i].resource);
9320             }
9321         }
9322         pci_release_msi(sc->dev);
9323         break;
9324     default:
9325         /* nothing to do as initial allocation failed */
9326         break;
9327     }
9328 }
9329 
9330 /*
9331  * This function determines and allocates the appropriate
9332  * interrupt based on system capabilites and user request.
9333  *
9334  * The user may force a particular interrupt mode, specify
9335  * the number of receive queues, specify the method for
9336  * distribuitng received frames to receive queues, or use
9337  * the default settings which will automatically select the
9338  * best supported combination.  In addition, the OS may or
9339  * may not support certain combinations of these settings.
9340  * This routine attempts to reconcile the settings requested
9341  * by the user with the capabilites available from the system
9342  * to select the optimal combination of features.
9343  *
9344  * Returns:
9345  *   0 = Success, !0 = Failure.
9346  */
9347 static int
9348 bxe_interrupt_alloc(struct bxe_softc *sc)
9349 {
9350     int msix_count = 0;
9351     int msi_count = 0;
9352     int num_requested = 0;
9353     int num_allocated = 0;
9354     int rid, i, j;
9355     int rc;
9356 
9357     /* get the number of available MSI/MSI-X interrupts from the OS */
9358     if (sc->interrupt_mode > 0) {
9359         if (sc->devinfo.pcie_cap_flags & BXE_MSIX_CAPABLE_FLAG) {
9360             msix_count = pci_msix_count(sc->dev);
9361         }
9362 
9363         if (sc->devinfo.pcie_cap_flags & BXE_MSI_CAPABLE_FLAG) {
9364             msi_count = pci_msi_count(sc->dev);
9365         }
9366 
9367         BLOGD(sc, DBG_LOAD, "%d MSI and %d MSI-X vectors available\n",
9368               msi_count, msix_count);
9369     }
9370 
9371     do { /* try allocating MSI-X interrupt resources (at least 2) */
9372         if (sc->interrupt_mode != INTR_MODE_MSIX) {
9373             break;
9374         }
9375 
9376         if (((sc->devinfo.pcie_cap_flags & BXE_MSIX_CAPABLE_FLAG) == 0) ||
9377             (msix_count < 2)) {
9378             sc->interrupt_mode = INTR_MODE_MSI; /* try MSI next */
9379             break;
9380         }
9381 
9382         /* ask for the necessary number of MSI-X vectors */
9383         num_requested = min((sc->num_queues + 1), msix_count);
9384 
9385         BLOGD(sc, DBG_LOAD, "Requesting %d MSI-X vectors\n", num_requested);
9386 
9387         num_allocated = num_requested;
9388         if ((rc = pci_alloc_msix(sc->dev, &num_allocated)) != 0) {
9389             BLOGE(sc, "MSI-X alloc failed! (%d)\n", rc);
9390             sc->interrupt_mode = INTR_MODE_MSI; /* try MSI next */
9391             break;
9392         }
9393 
9394         if (num_allocated < 2) { /* possible? */
9395             BLOGE(sc, "MSI-X allocation less than 2!\n");
9396             sc->interrupt_mode = INTR_MODE_MSI; /* try MSI next */
9397             pci_release_msi(sc->dev);
9398             break;
9399         }
9400 
9401         BLOGI(sc, "MSI-X vectors Requested %d and Allocated %d\n",
9402               num_requested, num_allocated);
9403 
9404         /* best effort so use the number of vectors allocated to us */
9405         sc->intr_count = num_allocated;
9406         sc->num_queues = num_allocated - 1;
9407 
9408         rid = 1; /* initial resource identifier */
9409 
9410         /* allocate the MSI-X vectors */
9411         for (i = 0; i < num_allocated; i++) {
9412             sc->intr[i].rid = (rid + i);
9413 
9414             if ((sc->intr[i].resource =
9415                  bus_alloc_resource_any(sc->dev,
9416                                         SYS_RES_IRQ,
9417                                         &sc->intr[i].rid,
9418                                         RF_ACTIVE)) == NULL) {
9419                 BLOGE(sc, "Failed to map MSI-X[%d] (rid=%d)!\n",
9420                       i, (rid + i));
9421 
9422                 for (j = (i - 1); j >= 0; j--) {
9423                     bus_release_resource(sc->dev,
9424                                          SYS_RES_IRQ,
9425                                          sc->intr[j].rid,
9426                                          sc->intr[j].resource);
9427                 }
9428 
9429                 sc->intr_count = 0;
9430                 sc->num_queues = 0;
9431                 sc->interrupt_mode = INTR_MODE_MSI; /* try MSI next */
9432                 pci_release_msi(sc->dev);
9433                 break;
9434             }
9435 
9436             BLOGD(sc, DBG_LOAD, "Mapped MSI-X[%d] (rid=%d)\n", i, (rid + i));
9437         }
9438     } while (0);
9439 
9440     do { /* try allocating MSI vector resources (at least 2) */
9441         if (sc->interrupt_mode != INTR_MODE_MSI) {
9442             break;
9443         }
9444 
9445         if (((sc->devinfo.pcie_cap_flags & BXE_MSI_CAPABLE_FLAG) == 0) ||
9446             (msi_count < 1)) {
9447             sc->interrupt_mode = INTR_MODE_INTX; /* try INTx next */
9448             break;
9449         }
9450 
9451         /* ask for a single MSI vector */
9452         num_requested = 1;
9453 
9454         BLOGD(sc, DBG_LOAD, "Requesting %d MSI vectors\n", num_requested);
9455 
9456         num_allocated = num_requested;
9457         if ((rc = pci_alloc_msi(sc->dev, &num_allocated)) != 0) {
9458             BLOGE(sc, "MSI alloc failed (%d)!\n", rc);
9459             sc->interrupt_mode = INTR_MODE_INTX; /* try INTx next */
9460             break;
9461         }
9462 
9463         if (num_allocated != 1) { /* possible? */
9464             BLOGE(sc, "MSI allocation is not 1!\n");
9465             sc->interrupt_mode = INTR_MODE_INTX; /* try INTx next */
9466             pci_release_msi(sc->dev);
9467             break;
9468         }
9469 
9470         BLOGI(sc, "MSI vectors Requested %d and Allocated %d\n",
9471               num_requested, num_allocated);
9472 
9473         /* best effort so use the number of vectors allocated to us */
9474         sc->intr_count = num_allocated;
9475         sc->num_queues = num_allocated;
9476 
9477         rid = 1; /* initial resource identifier */
9478 
9479         sc->intr[0].rid = rid;
9480 
9481         if ((sc->intr[0].resource =
9482              bus_alloc_resource_any(sc->dev,
9483                                     SYS_RES_IRQ,
9484                                     &sc->intr[0].rid,
9485                                     RF_ACTIVE)) == NULL) {
9486             BLOGE(sc, "Failed to map MSI[0] (rid=%d)!\n", rid);
9487             sc->intr_count = 0;
9488             sc->num_queues = 0;
9489             sc->interrupt_mode = INTR_MODE_INTX; /* try INTx next */
9490             pci_release_msi(sc->dev);
9491             break;
9492         }
9493 
9494         BLOGD(sc, DBG_LOAD, "Mapped MSI[0] (rid=%d)\n", rid);
9495     } while (0);
9496 
9497     do { /* try allocating INTx vector resources */
9498         if (sc->interrupt_mode != INTR_MODE_INTX) {
9499             break;
9500         }
9501 
9502         BLOGD(sc, DBG_LOAD, "Requesting legacy INTx interrupt\n");
9503 
9504         /* only one vector for INTx */
9505         sc->intr_count = 1;
9506         sc->num_queues = 1;
9507 
9508         rid = 0; /* initial resource identifier */
9509 
9510         sc->intr[0].rid = rid;
9511 
9512         if ((sc->intr[0].resource =
9513              bus_alloc_resource_any(sc->dev,
9514                                     SYS_RES_IRQ,
9515                                     &sc->intr[0].rid,
9516                                     (RF_ACTIVE | RF_SHAREABLE))) == NULL) {
9517             BLOGE(sc, "Failed to map INTx (rid=%d)!\n", rid);
9518             sc->intr_count = 0;
9519             sc->num_queues = 0;
9520             sc->interrupt_mode = -1; /* Failed! */
9521             break;
9522         }
9523 
9524         BLOGD(sc, DBG_LOAD, "Mapped INTx (rid=%d)\n", rid);
9525     } while (0);
9526 
9527     if (sc->interrupt_mode == -1) {
9528         BLOGE(sc, "Interrupt Allocation: FAILED!!!\n");
9529         rc = 1;
9530     } else {
9531         BLOGD(sc, DBG_LOAD,
9532               "Interrupt Allocation: interrupt_mode=%d, num_queues=%d\n",
9533               sc->interrupt_mode, sc->num_queues);
9534         rc = 0;
9535     }
9536 
9537     return (rc);
9538 }
9539 
9540 static void
9541 bxe_interrupt_detach(struct bxe_softc *sc)
9542 {
9543     struct bxe_fastpath *fp;
9544     int i;
9545 
9546     /* release interrupt resources */
9547     for (i = 0; i < sc->intr_count; i++) {
9548         if (sc->intr[i].resource && sc->intr[i].tag) {
9549             BLOGD(sc, DBG_LOAD, "Disabling interrupt vector %d\n", i);
9550             bus_teardown_intr(sc->dev, sc->intr[i].resource, sc->intr[i].tag);
9551         }
9552     }
9553 
9554     for (i = 0; i < sc->num_queues; i++) {
9555         fp = &sc->fp[i];
9556         if (fp->tq) {
9557             taskqueue_drain(fp->tq, &fp->tq_task);
9558             taskqueue_free(fp->tq);
9559             fp->tq = NULL;
9560         }
9561     }
9562 
9563 
9564     if (sc->sp_tq) {
9565         taskqueue_drain(sc->sp_tq, &sc->sp_tq_task);
9566         taskqueue_free(sc->sp_tq);
9567         sc->sp_tq = NULL;
9568     }
9569 }
9570 
9571 /*
9572  * Enables interrupts and attach to the ISR.
9573  *
9574  * When using multiple MSI/MSI-X vectors the first vector
9575  * is used for slowpath operations while all remaining
9576  * vectors are used for fastpath operations.  If only a
9577  * single MSI/MSI-X vector is used (SINGLE_ISR) then the
9578  * ISR must look for both slowpath and fastpath completions.
9579  */
9580 static int
9581 bxe_interrupt_attach(struct bxe_softc *sc)
9582 {
9583     struct bxe_fastpath *fp;
9584     int rc = 0;
9585     int i;
9586 
9587     snprintf(sc->sp_tq_name, sizeof(sc->sp_tq_name),
9588              "bxe%d_sp_tq", sc->unit);
9589     TASK_INIT(&sc->sp_tq_task, 0, bxe_handle_sp_tq, sc);
9590     sc->sp_tq = taskqueue_create_fast(sc->sp_tq_name, M_NOWAIT,
9591                                       taskqueue_thread_enqueue,
9592                                       &sc->sp_tq);
9593     taskqueue_start_threads(&sc->sp_tq, 1, PWAIT, /* lower priority */
9594                             "%s", sc->sp_tq_name);
9595 
9596 
9597     for (i = 0; i < sc->num_queues; i++) {
9598         fp = &sc->fp[i];
9599         snprintf(fp->tq_name, sizeof(fp->tq_name),
9600                  "bxe%d_fp%d_tq", sc->unit, i);
9601         TASK_INIT(&fp->tq_task, 0, bxe_handle_fp_tq, fp);
9602         fp->tq = taskqueue_create_fast(fp->tq_name, M_NOWAIT,
9603                                        taskqueue_thread_enqueue,
9604                                        &fp->tq);
9605         taskqueue_start_threads(&fp->tq, 1, PI_NET, /* higher priority */
9606                                 "%s", fp->tq_name);
9607     }
9608 
9609     /* setup interrupt handlers */
9610     if (sc->interrupt_mode == INTR_MODE_MSIX) {
9611         BLOGD(sc, DBG_LOAD, "Enabling slowpath MSI-X[0] vector\n");
9612 
9613         /*
9614          * Setup the interrupt handler. Note that we pass the driver instance
9615          * to the interrupt handler for the slowpath.
9616          */
9617         if ((rc = bus_setup_intr(sc->dev, sc->intr[0].resource,
9618                                  (INTR_TYPE_NET | INTR_MPSAFE),
9619                                  NULL, bxe_intr_sp, sc,
9620                                  &sc->intr[0].tag)) != 0) {
9621             BLOGE(sc, "Failed to allocate MSI-X[0] vector (%d)\n", rc);
9622             goto bxe_interrupt_attach_exit;
9623         }
9624 
9625         bus_describe_intr(sc->dev, sc->intr[0].resource,
9626                           sc->intr[0].tag, "sp");
9627 
9628         /* bus_bind_intr(sc->dev, sc->intr[0].resource, 0); */
9629 
9630         /* initialize the fastpath vectors (note the first was used for sp) */
9631         for (i = 0; i < sc->num_queues; i++) {
9632             fp = &sc->fp[i];
9633             BLOGD(sc, DBG_LOAD, "Enabling MSI-X[%d] vector\n", (i + 1));
9634 
9635             /*
9636              * Setup the interrupt handler. Note that we pass the
9637              * fastpath context to the interrupt handler in this
9638              * case.
9639              */
9640             if ((rc = bus_setup_intr(sc->dev, sc->intr[i + 1].resource,
9641                                      (INTR_TYPE_NET | INTR_MPSAFE),
9642                                      NULL, bxe_intr_fp, fp,
9643                                      &sc->intr[i + 1].tag)) != 0) {
9644                 BLOGE(sc, "Failed to allocate MSI-X[%d] vector (%d)\n",
9645                       (i + 1), rc);
9646                 goto bxe_interrupt_attach_exit;
9647             }
9648 
9649             bus_describe_intr(sc->dev, sc->intr[i + 1].resource,
9650                               sc->intr[i + 1].tag, "fp%02d", i);
9651 
9652             /* bind the fastpath instance to a cpu */
9653             if (sc->num_queues > 1) {
9654                 bus_bind_intr(sc->dev, sc->intr[i + 1].resource, i);
9655             }
9656 
9657             fp->state = BXE_FP_STATE_IRQ;
9658         }
9659     } else if (sc->interrupt_mode == INTR_MODE_MSI) {
9660         BLOGD(sc, DBG_LOAD, "Enabling MSI[0] vector\n");
9661 
9662         /*
9663          * Setup the interrupt handler. Note that we pass the
9664          * driver instance to the interrupt handler which
9665          * will handle both the slowpath and fastpath.
9666          */
9667         if ((rc = bus_setup_intr(sc->dev, sc->intr[0].resource,
9668                                  (INTR_TYPE_NET | INTR_MPSAFE),
9669                                  NULL, bxe_intr_legacy, sc,
9670                                  &sc->intr[0].tag)) != 0) {
9671             BLOGE(sc, "Failed to allocate MSI[0] vector (%d)\n", rc);
9672             goto bxe_interrupt_attach_exit;
9673         }
9674 
9675     } else { /* (sc->interrupt_mode == INTR_MODE_INTX) */
9676         BLOGD(sc, DBG_LOAD, "Enabling INTx interrupts\n");
9677 
9678         /*
9679          * Setup the interrupt handler. Note that we pass the
9680          * driver instance to the interrupt handler which
9681          * will handle both the slowpath and fastpath.
9682          */
9683         if ((rc = bus_setup_intr(sc->dev, sc->intr[0].resource,
9684                                  (INTR_TYPE_NET | INTR_MPSAFE),
9685                                  NULL, bxe_intr_legacy, sc,
9686                                  &sc->intr[0].tag)) != 0) {
9687             BLOGE(sc, "Failed to allocate INTx interrupt (%d)\n", rc);
9688             goto bxe_interrupt_attach_exit;
9689         }
9690     }
9691 
9692 bxe_interrupt_attach_exit:
9693 
9694     return (rc);
9695 }
9696 
9697 static int  bxe_init_hw_common_chip(struct bxe_softc *sc);
9698 static int  bxe_init_hw_common(struct bxe_softc *sc);
9699 static int  bxe_init_hw_port(struct bxe_softc *sc);
9700 static int  bxe_init_hw_func(struct bxe_softc *sc);
9701 static void bxe_reset_common(struct bxe_softc *sc);
9702 static void bxe_reset_port(struct bxe_softc *sc);
9703 static void bxe_reset_func(struct bxe_softc *sc);
9704 static int  bxe_gunzip_init(struct bxe_softc *sc);
9705 static void bxe_gunzip_end(struct bxe_softc *sc);
9706 static int  bxe_init_firmware(struct bxe_softc *sc);
9707 static void bxe_release_firmware(struct bxe_softc *sc);
9708 
9709 static struct
9710 ecore_func_sp_drv_ops bxe_func_sp_drv = {
9711     .init_hw_cmn_chip = bxe_init_hw_common_chip,
9712     .init_hw_cmn      = bxe_init_hw_common,
9713     .init_hw_port     = bxe_init_hw_port,
9714     .init_hw_func     = bxe_init_hw_func,
9715 
9716     .reset_hw_cmn     = bxe_reset_common,
9717     .reset_hw_port    = bxe_reset_port,
9718     .reset_hw_func    = bxe_reset_func,
9719 
9720     .gunzip_init      = bxe_gunzip_init,
9721     .gunzip_end       = bxe_gunzip_end,
9722 
9723     .init_fw          = bxe_init_firmware,
9724     .release_fw       = bxe_release_firmware,
9725 };
9726 
9727 static void
9728 bxe_init_func_obj(struct bxe_softc *sc)
9729 {
9730     sc->dmae_ready = 0;
9731 
9732     ecore_init_func_obj(sc,
9733                         &sc->func_obj,
9734                         BXE_SP(sc, func_rdata),
9735                         BXE_SP_MAPPING(sc, func_rdata),
9736                         BXE_SP(sc, func_afex_rdata),
9737                         BXE_SP_MAPPING(sc, func_afex_rdata),
9738                         &bxe_func_sp_drv);
9739 }
9740 
9741 static int
9742 bxe_init_hw(struct bxe_softc *sc,
9743             uint32_t         load_code)
9744 {
9745     struct ecore_func_state_params func_params = { NULL };
9746     int rc;
9747 
9748     /* prepare the parameters for function state transitions */
9749     bit_set(&func_params.ramrod_flags, RAMROD_COMP_WAIT);
9750 
9751     func_params.f_obj = &sc->func_obj;
9752     func_params.cmd = ECORE_F_CMD_HW_INIT;
9753 
9754     func_params.params.hw_init.load_phase = load_code;
9755 
9756     /*
9757      * Via a plethora of function pointers, we will eventually reach
9758      * bxe_init_hw_common(), bxe_init_hw_port(), or bxe_init_hw_func().
9759      */
9760     rc = ecore_func_state_change(sc, &func_params);
9761 
9762     return (rc);
9763 }
9764 
9765 static void
9766 bxe_fill(struct bxe_softc *sc,
9767          uint32_t         addr,
9768          int              fill,
9769          uint32_t         len)
9770 {
9771     uint32_t i;
9772 
9773     if (!(len % 4) && !(addr % 4)) {
9774         for (i = 0; i < len; i += 4) {
9775             REG_WR(sc, (addr + i), fill);
9776         }
9777     } else {
9778         for (i = 0; i < len; i++) {
9779             REG_WR8(sc, (addr + i), fill);
9780         }
9781     }
9782 }
9783 
9784 /* writes FP SP data to FW - data_size in dwords */
9785 static void
9786 bxe_wr_fp_sb_data(struct bxe_softc *sc,
9787                   int              fw_sb_id,
9788                   uint32_t         *sb_data_p,
9789                   uint32_t         data_size)
9790 {
9791     int index;
9792 
9793     for (index = 0; index < data_size; index++) {
9794         REG_WR(sc,
9795                (BAR_CSTRORM_INTMEM +
9796                 CSTORM_STATUS_BLOCK_DATA_OFFSET(fw_sb_id) +
9797                 (sizeof(uint32_t) * index)),
9798                *(sb_data_p + index));
9799     }
9800 }
9801 
9802 static void
9803 bxe_zero_fp_sb(struct bxe_softc *sc,
9804                int              fw_sb_id)
9805 {
9806     struct hc_status_block_data_e2 sb_data_e2;
9807     struct hc_status_block_data_e1x sb_data_e1x;
9808     uint32_t *sb_data_p;
9809     uint32_t data_size = 0;
9810 
9811     if (!CHIP_IS_E1x(sc)) {
9812         memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2));
9813         sb_data_e2.common.state = SB_DISABLED;
9814         sb_data_e2.common.p_func.vf_valid = FALSE;
9815         sb_data_p = (uint32_t *)&sb_data_e2;
9816         data_size = (sizeof(struct hc_status_block_data_e2) /
9817                      sizeof(uint32_t));
9818     } else {
9819         memset(&sb_data_e1x, 0, sizeof(struct hc_status_block_data_e1x));
9820         sb_data_e1x.common.state = SB_DISABLED;
9821         sb_data_e1x.common.p_func.vf_valid = FALSE;
9822         sb_data_p = (uint32_t *)&sb_data_e1x;
9823         data_size = (sizeof(struct hc_status_block_data_e1x) /
9824                      sizeof(uint32_t));
9825     }
9826 
9827     bxe_wr_fp_sb_data(sc, fw_sb_id, sb_data_p, data_size);
9828 
9829     bxe_fill(sc, (BAR_CSTRORM_INTMEM + CSTORM_STATUS_BLOCK_OFFSET(fw_sb_id)),
9830              0, CSTORM_STATUS_BLOCK_SIZE);
9831     bxe_fill(sc, (BAR_CSTRORM_INTMEM + CSTORM_SYNC_BLOCK_OFFSET(fw_sb_id)),
9832              0, CSTORM_SYNC_BLOCK_SIZE);
9833 }
9834 
9835 static void
9836 bxe_wr_sp_sb_data(struct bxe_softc               *sc,
9837                   struct hc_sp_status_block_data *sp_sb_data)
9838 {
9839     int i;
9840 
9841     for (i = 0;
9842          i < (sizeof(struct hc_sp_status_block_data) / sizeof(uint32_t));
9843          i++) {
9844         REG_WR(sc,
9845                (BAR_CSTRORM_INTMEM +
9846                 CSTORM_SP_STATUS_BLOCK_DATA_OFFSET(SC_FUNC(sc)) +
9847                 (i * sizeof(uint32_t))),
9848                *((uint32_t *)sp_sb_data + i));
9849     }
9850 }
9851 
9852 static void
9853 bxe_zero_sp_sb(struct bxe_softc *sc)
9854 {
9855     struct hc_sp_status_block_data sp_sb_data;
9856 
9857     memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data));
9858 
9859     sp_sb_data.state           = SB_DISABLED;
9860     sp_sb_data.p_func.vf_valid = FALSE;
9861 
9862     bxe_wr_sp_sb_data(sc, &sp_sb_data);
9863 
9864     bxe_fill(sc,
9865              (BAR_CSTRORM_INTMEM +
9866               CSTORM_SP_STATUS_BLOCK_OFFSET(SC_FUNC(sc))),
9867               0, CSTORM_SP_STATUS_BLOCK_SIZE);
9868     bxe_fill(sc,
9869              (BAR_CSTRORM_INTMEM +
9870               CSTORM_SP_SYNC_BLOCK_OFFSET(SC_FUNC(sc))),
9871               0, CSTORM_SP_SYNC_BLOCK_SIZE);
9872 }
9873 
9874 static void
9875 bxe_setup_ndsb_state_machine(struct hc_status_block_sm *hc_sm,
9876                              int                       igu_sb_id,
9877                              int                       igu_seg_id)
9878 {
9879     hc_sm->igu_sb_id      = igu_sb_id;
9880     hc_sm->igu_seg_id     = igu_seg_id;
9881     hc_sm->timer_value    = 0xFF;
9882     hc_sm->time_to_expire = 0xFFFFFFFF;
9883 }
9884 
9885 static void
9886 bxe_map_sb_state_machines(struct hc_index_data *index_data)
9887 {
9888     /* zero out state machine indices */
9889 
9890     /* rx indices */
9891     index_data[HC_INDEX_ETH_RX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID;
9892 
9893     /* tx indices */
9894     index_data[HC_INDEX_OOO_TX_CQ_CONS].flags      &= ~HC_INDEX_DATA_SM_ID;
9895     index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags &= ~HC_INDEX_DATA_SM_ID;
9896     index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags &= ~HC_INDEX_DATA_SM_ID;
9897     index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags &= ~HC_INDEX_DATA_SM_ID;
9898 
9899     /* map indices */
9900 
9901     /* rx indices */
9902     index_data[HC_INDEX_ETH_RX_CQ_CONS].flags |=
9903         (SM_RX_ID << HC_INDEX_DATA_SM_ID_SHIFT);
9904 
9905     /* tx indices */
9906     index_data[HC_INDEX_OOO_TX_CQ_CONS].flags |=
9907         (SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT);
9908     index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags |=
9909         (SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT);
9910     index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags |=
9911         (SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT);
9912     index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags |=
9913         (SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT);
9914 }
9915 
9916 static void
9917 bxe_init_sb(struct bxe_softc *sc,
9918             bus_addr_t       busaddr,
9919             int              vfid,
9920             uint8_t          vf_valid,
9921             int              fw_sb_id,
9922             int              igu_sb_id)
9923 {
9924     struct hc_status_block_data_e2  sb_data_e2;
9925     struct hc_status_block_data_e1x sb_data_e1x;
9926     struct hc_status_block_sm       *hc_sm_p;
9927     uint32_t *sb_data_p;
9928     int igu_seg_id;
9929     int data_size;
9930 
9931     if (CHIP_INT_MODE_IS_BC(sc)) {
9932         igu_seg_id = HC_SEG_ACCESS_NORM;
9933     } else {
9934         igu_seg_id = IGU_SEG_ACCESS_NORM;
9935     }
9936 
9937     bxe_zero_fp_sb(sc, fw_sb_id);
9938 
9939     if (!CHIP_IS_E1x(sc)) {
9940         memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2));
9941         sb_data_e2.common.state = SB_ENABLED;
9942         sb_data_e2.common.p_func.pf_id = SC_FUNC(sc);
9943         sb_data_e2.common.p_func.vf_id = vfid;
9944         sb_data_e2.common.p_func.vf_valid = vf_valid;
9945         sb_data_e2.common.p_func.vnic_id = SC_VN(sc);
9946         sb_data_e2.common.same_igu_sb_1b = TRUE;
9947         sb_data_e2.common.host_sb_addr.hi = U64_HI(busaddr);
9948         sb_data_e2.common.host_sb_addr.lo = U64_LO(busaddr);
9949         hc_sm_p = sb_data_e2.common.state_machine;
9950         sb_data_p = (uint32_t *)&sb_data_e2;
9951         data_size = (sizeof(struct hc_status_block_data_e2) /
9952                      sizeof(uint32_t));
9953         bxe_map_sb_state_machines(sb_data_e2.index_data);
9954     } else {
9955         memset(&sb_data_e1x, 0, sizeof(struct hc_status_block_data_e1x));
9956         sb_data_e1x.common.state = SB_ENABLED;
9957         sb_data_e1x.common.p_func.pf_id = SC_FUNC(sc);
9958         sb_data_e1x.common.p_func.vf_id = 0xff;
9959         sb_data_e1x.common.p_func.vf_valid = FALSE;
9960         sb_data_e1x.common.p_func.vnic_id = SC_VN(sc);
9961         sb_data_e1x.common.same_igu_sb_1b = TRUE;
9962         sb_data_e1x.common.host_sb_addr.hi = U64_HI(busaddr);
9963         sb_data_e1x.common.host_sb_addr.lo = U64_LO(busaddr);
9964         hc_sm_p = sb_data_e1x.common.state_machine;
9965         sb_data_p = (uint32_t *)&sb_data_e1x;
9966         data_size = (sizeof(struct hc_status_block_data_e1x) /
9967                      sizeof(uint32_t));
9968         bxe_map_sb_state_machines(sb_data_e1x.index_data);
9969     }
9970 
9971     bxe_setup_ndsb_state_machine(&hc_sm_p[SM_RX_ID], igu_sb_id, igu_seg_id);
9972     bxe_setup_ndsb_state_machine(&hc_sm_p[SM_TX_ID], igu_sb_id, igu_seg_id);
9973 
9974     BLOGD(sc, DBG_LOAD, "Init FW SB %d\n", fw_sb_id);
9975 
9976     /* write indices to HW - PCI guarantees endianity of regpairs */
9977     bxe_wr_fp_sb_data(sc, fw_sb_id, sb_data_p, data_size);
9978 }
9979 
9980 static inline uint8_t
9981 bxe_fp_qzone_id(struct bxe_fastpath *fp)
9982 {
9983     if (CHIP_IS_E1x(fp->sc)) {
9984         return (fp->cl_id + SC_PORT(fp->sc) * ETH_MAX_RX_CLIENTS_E1H);
9985     } else {
9986         return (fp->cl_id);
9987     }
9988 }
9989 
9990 static inline uint32_t
9991 bxe_rx_ustorm_prods_offset(struct bxe_softc    *sc,
9992                            struct bxe_fastpath *fp)
9993 {
9994     uint32_t offset = BAR_USTRORM_INTMEM;
9995 
9996 #if 0
9997     if (IS_VF(sc)) {
9998         return (PXP_VF_ADDR_USDM_QUEUES_START +
9999                 (sc->acquire_resp.resc.hw_qid[fp->index] *
10000                  sizeof(struct ustorm_queue_zone_data)));
10001     } else
10002 #endif
10003     if (!CHIP_IS_E1x(sc)) {
10004         offset += USTORM_RX_PRODS_E2_OFFSET(fp->cl_qzone_id);
10005     } else {
10006         offset += USTORM_RX_PRODS_E1X_OFFSET(SC_PORT(sc), fp->cl_id);
10007     }
10008 
10009     return (offset);
10010 }
10011 
10012 static void
10013 bxe_init_eth_fp(struct bxe_softc *sc,
10014                 int              idx)
10015 {
10016     struct bxe_fastpath *fp = &sc->fp[idx];
10017     uint32_t cids[ECORE_MULTI_TX_COS] = { 0 };
10018     unsigned long q_type = 0;
10019     int cos;
10020 
10021     fp->sc    = sc;
10022     fp->index = idx;
10023 
10024     snprintf(fp->tx_mtx_name, sizeof(fp->tx_mtx_name),
10025              "bxe%d_fp%d_tx_lock", sc->unit, idx);
10026     mtx_init(&fp->tx_mtx, fp->tx_mtx_name, NULL, MTX_DEF);
10027 
10028     snprintf(fp->rx_mtx_name, sizeof(fp->rx_mtx_name),
10029              "bxe%d_fp%d_rx_lock", sc->unit, idx);
10030     mtx_init(&fp->rx_mtx, fp->rx_mtx_name, NULL, MTX_DEF);
10031 
10032     fp->igu_sb_id = (sc->igu_base_sb + idx + CNIC_SUPPORT(sc));
10033     fp->fw_sb_id = (sc->base_fw_ndsb + idx + CNIC_SUPPORT(sc));
10034 
10035     fp->cl_id = (CHIP_IS_E1x(sc)) ?
10036                     (SC_L_ID(sc) + idx) :
10037                     /* want client ID same as IGU SB ID for non-E1 */
10038                     fp->igu_sb_id;
10039     fp->cl_qzone_id = bxe_fp_qzone_id(fp);
10040 
10041     /* setup sb indices */
10042     if (!CHIP_IS_E1x(sc)) {
10043         fp->sb_index_values  = fp->status_block.e2_sb->sb.index_values;
10044         fp->sb_running_index = fp->status_block.e2_sb->sb.running_index;
10045     } else {
10046         fp->sb_index_values  = fp->status_block.e1x_sb->sb.index_values;
10047         fp->sb_running_index = fp->status_block.e1x_sb->sb.running_index;
10048     }
10049 
10050     /* init shortcut */
10051     fp->ustorm_rx_prods_offset = bxe_rx_ustorm_prods_offset(sc, fp);
10052 
10053     fp->rx_cq_cons_sb = &fp->sb_index_values[HC_INDEX_ETH_RX_CQ_CONS];
10054 
10055     /*
10056      * XXX If multiple CoS is ever supported then each fastpath structure
10057      * will need to maintain tx producer/consumer/dma/etc values *per* CoS.
10058      */
10059     for (cos = 0; cos < sc->max_cos; cos++) {
10060         cids[cos] = idx;
10061     }
10062     fp->tx_cons_sb = &fp->sb_index_values[HC_INDEX_ETH_TX_CQ_CONS_COS0];
10063 
10064     /* nothing more for a VF to do */
10065     if (IS_VF(sc)) {
10066         return;
10067     }
10068 
10069     bxe_init_sb(sc, fp->sb_dma.paddr, BXE_VF_ID_INVALID, FALSE,
10070                 fp->fw_sb_id, fp->igu_sb_id);
10071 
10072     bxe_update_fp_sb_idx(fp);
10073 
10074     /* Configure Queue State object */
10075     bit_set(&q_type, ECORE_Q_TYPE_HAS_RX);
10076     bit_set(&q_type, ECORE_Q_TYPE_HAS_TX);
10077 
10078     ecore_init_queue_obj(sc,
10079                          &sc->sp_objs[idx].q_obj,
10080                          fp->cl_id,
10081                          cids,
10082                          sc->max_cos,
10083                          SC_FUNC(sc),
10084                          BXE_SP(sc, q_rdata),
10085                          BXE_SP_MAPPING(sc, q_rdata),
10086                          q_type);
10087 
10088     /* configure classification DBs */
10089     ecore_init_mac_obj(sc,
10090                        &sc->sp_objs[idx].mac_obj,
10091                        fp->cl_id,
10092                        idx,
10093                        SC_FUNC(sc),
10094                        BXE_SP(sc, mac_rdata),
10095                        BXE_SP_MAPPING(sc, mac_rdata),
10096                        ECORE_FILTER_MAC_PENDING,
10097                        &sc->sp_state,
10098                        ECORE_OBJ_TYPE_RX_TX,
10099                        &sc->macs_pool);
10100 
10101     BLOGD(sc, DBG_LOAD, "fp[%d]: sb=%p cl_id=%d fw_sb=%d igu_sb=%d\n",
10102           idx, fp->status_block.e2_sb, fp->cl_id, fp->fw_sb_id, fp->igu_sb_id);
10103 }
10104 
10105 static inline void
10106 bxe_update_rx_prod(struct bxe_softc    *sc,
10107                    struct bxe_fastpath *fp,
10108                    uint16_t            rx_bd_prod,
10109                    uint16_t            rx_cq_prod,
10110                    uint16_t            rx_sge_prod)
10111 {
10112     struct ustorm_eth_rx_producers rx_prods = { 0 };
10113     uint32_t i;
10114 
10115     /* update producers */
10116     rx_prods.bd_prod  = rx_bd_prod;
10117     rx_prods.cqe_prod = rx_cq_prod;
10118     rx_prods.sge_prod = rx_sge_prod;
10119 
10120     /*
10121      * Make sure that the BD and SGE data is updated before updating the
10122      * producers since FW might read the BD/SGE right after the producer
10123      * is updated.
10124      * This is only applicable for weak-ordered memory model archs such
10125      * as IA-64. The following barrier is also mandatory since FW will
10126      * assumes BDs must have buffers.
10127      */
10128     wmb();
10129 
10130     for (i = 0; i < (sizeof(rx_prods) / 4); i++) {
10131         REG_WR(sc,
10132                (fp->ustorm_rx_prods_offset + (i * 4)),
10133                ((uint32_t *)&rx_prods)[i]);
10134     }
10135 
10136     wmb(); /* keep prod updates ordered */
10137 
10138     BLOGD(sc, DBG_RX,
10139           "RX fp[%d]: wrote prods bd_prod=%u cqe_prod=%u sge_prod=%u\n",
10140           fp->index, rx_bd_prod, rx_cq_prod, rx_sge_prod);
10141 }
10142 
10143 static void
10144 bxe_init_rx_rings(struct bxe_softc *sc)
10145 {
10146     struct bxe_fastpath *fp;
10147     int i;
10148 
10149     for (i = 0; i < sc->num_queues; i++) {
10150         fp = &sc->fp[i];
10151 
10152         fp->rx_bd_cons = 0;
10153 
10154         /*
10155          * Activate the BD ring...
10156          * Warning, this will generate an interrupt (to the TSTORM)
10157          * so this can only be done after the chip is initialized
10158          */
10159         bxe_update_rx_prod(sc, fp,
10160                            fp->rx_bd_prod,
10161                            fp->rx_cq_prod,
10162                            fp->rx_sge_prod);
10163 
10164         if (i != 0) {
10165             continue;
10166         }
10167 
10168         if (CHIP_IS_E1(sc)) {
10169             REG_WR(sc,
10170                    (BAR_USTRORM_INTMEM +
10171                     USTORM_MEM_WORKAROUND_ADDRESS_OFFSET(SC_FUNC(sc))),
10172                    U64_LO(fp->rcq_dma.paddr));
10173             REG_WR(sc,
10174                    (BAR_USTRORM_INTMEM +
10175                     USTORM_MEM_WORKAROUND_ADDRESS_OFFSET(SC_FUNC(sc)) + 4),
10176                    U64_HI(fp->rcq_dma.paddr));
10177         }
10178     }
10179 }
10180 
10181 static void
10182 bxe_init_tx_ring_one(struct bxe_fastpath *fp)
10183 {
10184     SET_FLAG(fp->tx_db.data.header.header, DOORBELL_HDR_DB_TYPE, 1);
10185     fp->tx_db.data.zero_fill1 = 0;
10186     fp->tx_db.data.prod = 0;
10187 
10188     fp->tx_pkt_prod = 0;
10189     fp->tx_pkt_cons = 0;
10190     fp->tx_bd_prod = 0;
10191     fp->tx_bd_cons = 0;
10192     fp->eth_q_stats.tx_pkts = 0;
10193 }
10194 
10195 static inline void
10196 bxe_init_tx_rings(struct bxe_softc *sc)
10197 {
10198     int i;
10199 
10200     for (i = 0; i < sc->num_queues; i++) {
10201 #if 0
10202         uint8_t cos;
10203         for (cos = 0; cos < sc->max_cos; cos++) {
10204             bxe_init_tx_ring_one(&sc->fp[i].txdata[cos]);
10205         }
10206 #else
10207         bxe_init_tx_ring_one(&sc->fp[i]);
10208 #endif
10209     }
10210 }
10211 
10212 static void
10213 bxe_init_def_sb(struct bxe_softc *sc)
10214 {
10215     struct host_sp_status_block *def_sb = sc->def_sb;
10216     bus_addr_t mapping = sc->def_sb_dma.paddr;
10217     int igu_sp_sb_index;
10218     int igu_seg_id;
10219     int port = SC_PORT(sc);
10220     int func = SC_FUNC(sc);
10221     int reg_offset, reg_offset_en5;
10222     uint64_t section;
10223     int index, sindex;
10224     struct hc_sp_status_block_data sp_sb_data;
10225 
10226     memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data));
10227 
10228     if (CHIP_INT_MODE_IS_BC(sc)) {
10229         igu_sp_sb_index = DEF_SB_IGU_ID;
10230         igu_seg_id = HC_SEG_ACCESS_DEF;
10231     } else {
10232         igu_sp_sb_index = sc->igu_dsb_id;
10233         igu_seg_id = IGU_SEG_ACCESS_DEF;
10234     }
10235 
10236     /* attentions */
10237     section = ((uint64_t)mapping +
10238                offsetof(struct host_sp_status_block, atten_status_block));
10239     def_sb->atten_status_block.status_block_id = igu_sp_sb_index;
10240     sc->attn_state = 0;
10241 
10242     reg_offset = (port) ?
10243                      MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
10244                      MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0;
10245     reg_offset_en5 = (port) ?
10246                          MISC_REG_AEU_ENABLE5_FUNC_1_OUT_0 :
10247                          MISC_REG_AEU_ENABLE5_FUNC_0_OUT_0;
10248 
10249     for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) {
10250         /* take care of sig[0]..sig[4] */
10251         for (sindex = 0; sindex < 4; sindex++) {
10252             sc->attn_group[index].sig[sindex] =
10253                 REG_RD(sc, (reg_offset + (sindex * 0x4) + (0x10 * index)));
10254         }
10255 
10256         if (!CHIP_IS_E1x(sc)) {
10257             /*
10258              * enable5 is separate from the rest of the registers,
10259              * and the address skip is 4 and not 16 between the
10260              * different groups
10261              */
10262             sc->attn_group[index].sig[4] =
10263                 REG_RD(sc, (reg_offset_en5 + (0x4 * index)));
10264         } else {
10265             sc->attn_group[index].sig[4] = 0;
10266         }
10267     }
10268 
10269     if (sc->devinfo.int_block == INT_BLOCK_HC) {
10270         reg_offset = (port) ?
10271                          HC_REG_ATTN_MSG1_ADDR_L :
10272                          HC_REG_ATTN_MSG0_ADDR_L;
10273         REG_WR(sc, reg_offset, U64_LO(section));
10274         REG_WR(sc, (reg_offset + 4), U64_HI(section));
10275     } else if (!CHIP_IS_E1x(sc)) {
10276         REG_WR(sc, IGU_REG_ATTN_MSG_ADDR_L, U64_LO(section));
10277         REG_WR(sc, IGU_REG_ATTN_MSG_ADDR_H, U64_HI(section));
10278     }
10279 
10280     section = ((uint64_t)mapping +
10281                offsetof(struct host_sp_status_block, sp_sb));
10282 
10283     bxe_zero_sp_sb(sc);
10284 
10285     /* PCI guarantees endianity of regpair */
10286     sp_sb_data.state           = SB_ENABLED;
10287     sp_sb_data.host_sb_addr.lo = U64_LO(section);
10288     sp_sb_data.host_sb_addr.hi = U64_HI(section);
10289     sp_sb_data.igu_sb_id       = igu_sp_sb_index;
10290     sp_sb_data.igu_seg_id      = igu_seg_id;
10291     sp_sb_data.p_func.pf_id    = func;
10292     sp_sb_data.p_func.vnic_id  = SC_VN(sc);
10293     sp_sb_data.p_func.vf_id    = 0xff;
10294 
10295     bxe_wr_sp_sb_data(sc, &sp_sb_data);
10296 
10297     bxe_ack_sb(sc, sc->igu_dsb_id, USTORM_ID, 0, IGU_INT_ENABLE, 0);
10298 }
10299 
10300 static void
10301 bxe_init_sp_ring(struct bxe_softc *sc)
10302 {
10303     atomic_store_rel_long(&sc->cq_spq_left, MAX_SPQ_PENDING);
10304     sc->spq_prod_idx = 0;
10305     sc->dsb_sp_prod = &sc->def_sb->sp_sb.index_values[HC_SP_INDEX_ETH_DEF_CONS];
10306     sc->spq_prod_bd = sc->spq;
10307     sc->spq_last_bd = (sc->spq_prod_bd + MAX_SP_DESC_CNT);
10308 }
10309 
10310 static void
10311 bxe_init_eq_ring(struct bxe_softc *sc)
10312 {
10313     union event_ring_elem *elem;
10314     int i;
10315 
10316     for (i = 1; i <= NUM_EQ_PAGES; i++) {
10317         elem = &sc->eq[EQ_DESC_CNT_PAGE * i - 1];
10318 
10319         elem->next_page.addr.hi = htole32(U64_HI(sc->eq_dma.paddr +
10320                                                  BCM_PAGE_SIZE *
10321                                                  (i % NUM_EQ_PAGES)));
10322         elem->next_page.addr.lo = htole32(U64_LO(sc->eq_dma.paddr +
10323                                                  BCM_PAGE_SIZE *
10324                                                  (i % NUM_EQ_PAGES)));
10325     }
10326 
10327     sc->eq_cons    = 0;
10328     sc->eq_prod    = NUM_EQ_DESC;
10329     sc->eq_cons_sb = &sc->def_sb->sp_sb.index_values[HC_SP_INDEX_EQ_CONS];
10330 
10331     atomic_store_rel_long(&sc->eq_spq_left,
10332                           (min((MAX_SP_DESC_CNT - MAX_SPQ_PENDING),
10333                                NUM_EQ_DESC) - 1));
10334 }
10335 
10336 static void
10337 bxe_init_internal_common(struct bxe_softc *sc)
10338 {
10339     int i;
10340 
10341     if (IS_MF_SI(sc)) {
10342         /*
10343          * In switch independent mode, the TSTORM needs to accept
10344          * packets that failed classification, since approximate match
10345          * mac addresses aren't written to NIG LLH.
10346          */
10347         REG_WR8(sc,
10348                 (BAR_TSTRORM_INTMEM + TSTORM_ACCEPT_CLASSIFY_FAILED_OFFSET),
10349                 2);
10350     } else if (!CHIP_IS_E1(sc)) { /* 57710 doesn't support MF */
10351         REG_WR8(sc,
10352                 (BAR_TSTRORM_INTMEM + TSTORM_ACCEPT_CLASSIFY_FAILED_OFFSET),
10353                 0);
10354     }
10355 
10356     /*
10357      * Zero this manually as its initialization is currently missing
10358      * in the initTool.
10359      */
10360     for (i = 0; i < (USTORM_AGG_DATA_SIZE >> 2); i++) {
10361         REG_WR(sc,
10362                (BAR_USTRORM_INTMEM + USTORM_AGG_DATA_OFFSET + (i * 4)),
10363                0);
10364     }
10365 
10366     if (!CHIP_IS_E1x(sc)) {
10367         REG_WR8(sc, (BAR_CSTRORM_INTMEM + CSTORM_IGU_MODE_OFFSET),
10368                 CHIP_INT_MODE_IS_BC(sc) ? HC_IGU_BC_MODE : HC_IGU_NBC_MODE);
10369     }
10370 }
10371 
10372 static void
10373 bxe_init_internal(struct bxe_softc *sc,
10374                   uint32_t         load_code)
10375 {
10376     switch (load_code) {
10377     case FW_MSG_CODE_DRV_LOAD_COMMON:
10378     case FW_MSG_CODE_DRV_LOAD_COMMON_CHIP:
10379         bxe_init_internal_common(sc);
10380         /* no break */
10381 
10382     case FW_MSG_CODE_DRV_LOAD_PORT:
10383         /* nothing to do */
10384         /* no break */
10385 
10386     case FW_MSG_CODE_DRV_LOAD_FUNCTION:
10387         /* internal memory per function is initialized inside bxe_pf_init */
10388         break;
10389 
10390     default:
10391         BLOGE(sc, "Unknown load_code (0x%x) from MCP\n", load_code);
10392         break;
10393     }
10394 }
10395 
10396 static void
10397 storm_memset_func_cfg(struct bxe_softc                         *sc,
10398                       struct tstorm_eth_function_common_config *tcfg,
10399                       uint16_t                                  abs_fid)
10400 {
10401     uint32_t addr;
10402     size_t size;
10403 
10404     addr = (BAR_TSTRORM_INTMEM +
10405             TSTORM_FUNCTION_COMMON_CONFIG_OFFSET(abs_fid));
10406     size = sizeof(struct tstorm_eth_function_common_config);
10407     ecore_storm_memset_struct(sc, addr, size, (uint32_t *)tcfg);
10408 }
10409 
10410 static void
10411 bxe_func_init(struct bxe_softc            *sc,
10412               struct bxe_func_init_params *p)
10413 {
10414     struct tstorm_eth_function_common_config tcfg = { 0 };
10415 
10416     if (CHIP_IS_E1x(sc)) {
10417         storm_memset_func_cfg(sc, &tcfg, p->func_id);
10418     }
10419 
10420     /* Enable the function in the FW */
10421     storm_memset_vf_to_pf(sc, p->func_id, p->pf_id);
10422     storm_memset_func_en(sc, p->func_id, 1);
10423 
10424     /* spq */
10425     if (p->func_flgs & FUNC_FLG_SPQ) {
10426         storm_memset_spq_addr(sc, p->spq_map, p->func_id);
10427         REG_WR(sc,
10428                (XSEM_REG_FAST_MEMORY + XSTORM_SPQ_PROD_OFFSET(p->func_id)),
10429                p->spq_prod);
10430     }
10431 }
10432 
10433 /*
10434  * Calculates the sum of vn_min_rates.
10435  * It's needed for further normalizing of the min_rates.
10436  * Returns:
10437  *   sum of vn_min_rates.
10438  *     or
10439  *   0 - if all the min_rates are 0.
10440  * In the later case fainess algorithm should be deactivated.
10441  * If all min rates are not zero then those that are zeroes will be set to 1.
10442  */
10443 static void
10444 bxe_calc_vn_min(struct bxe_softc       *sc,
10445                 struct cmng_init_input *input)
10446 {
10447     uint32_t vn_cfg;
10448     uint32_t vn_min_rate;
10449     int all_zero = 1;
10450     int vn;
10451 
10452     for (vn = VN_0; vn < SC_MAX_VN_NUM(sc); vn++) {
10453         vn_cfg = sc->devinfo.mf_info.mf_config[vn];
10454         vn_min_rate = (((vn_cfg & FUNC_MF_CFG_MIN_BW_MASK) >>
10455                         FUNC_MF_CFG_MIN_BW_SHIFT) * 100);
10456 
10457         if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE) {
10458             /* skip hidden VNs */
10459             vn_min_rate = 0;
10460         } else if (!vn_min_rate) {
10461             /* If min rate is zero - set it to 100 */
10462             vn_min_rate = DEF_MIN_RATE;
10463         } else {
10464             all_zero = 0;
10465         }
10466 
10467         input->vnic_min_rate[vn] = vn_min_rate;
10468     }
10469 
10470     /* if ETS or all min rates are zeros - disable fairness */
10471     if (BXE_IS_ETS_ENABLED(sc)) {
10472         input->flags.cmng_enables &= ~CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
10473         BLOGD(sc, DBG_LOAD, "Fairness disabled (ETS)\n");
10474     } else if (all_zero) {
10475         input->flags.cmng_enables &= ~CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
10476         BLOGD(sc, DBG_LOAD,
10477               "Fariness disabled (all MIN values are zeroes)\n");
10478     } else {
10479         input->flags.cmng_enables |= CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
10480     }
10481 }
10482 
10483 static inline uint16_t
10484 bxe_extract_max_cfg(struct bxe_softc *sc,
10485                     uint32_t         mf_cfg)
10486 {
10487     uint16_t max_cfg = ((mf_cfg & FUNC_MF_CFG_MAX_BW_MASK) >>
10488                         FUNC_MF_CFG_MAX_BW_SHIFT);
10489 
10490     if (!max_cfg) {
10491         BLOGD(sc, DBG_LOAD, "Max BW configured to 0 - using 100 instead\n");
10492         max_cfg = 100;
10493     }
10494 
10495     return (max_cfg);
10496 }
10497 
10498 static void
10499 bxe_calc_vn_max(struct bxe_softc       *sc,
10500                 int                    vn,
10501                 struct cmng_init_input *input)
10502 {
10503     uint16_t vn_max_rate;
10504     uint32_t vn_cfg = sc->devinfo.mf_info.mf_config[vn];
10505     uint32_t max_cfg;
10506 
10507     if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE) {
10508         vn_max_rate = 0;
10509     } else {
10510         max_cfg = bxe_extract_max_cfg(sc, vn_cfg);
10511 
10512         if (IS_MF_SI(sc)) {
10513             /* max_cfg in percents of linkspeed */
10514             vn_max_rate = ((sc->link_vars.line_speed * max_cfg) / 100);
10515         } else { /* SD modes */
10516             /* max_cfg is absolute in 100Mb units */
10517             vn_max_rate = (max_cfg * 100);
10518         }
10519     }
10520 
10521     BLOGD(sc, DBG_LOAD, "vn %d: vn_max_rate %d\n", vn, vn_max_rate);
10522 
10523     input->vnic_max_rate[vn] = vn_max_rate;
10524 }
10525 
10526 static void
10527 bxe_cmng_fns_init(struct bxe_softc *sc,
10528                   uint8_t          read_cfg,
10529                   uint8_t          cmng_type)
10530 {
10531     struct cmng_init_input input;
10532     int vn;
10533 
10534     memset(&input, 0, sizeof(struct cmng_init_input));
10535 
10536     input.port_rate = sc->link_vars.line_speed;
10537 
10538     if (cmng_type == CMNG_FNS_MINMAX) {
10539         /* read mf conf from shmem */
10540         if (read_cfg) {
10541             bxe_read_mf_cfg(sc);
10542         }
10543 
10544         /* get VN min rate and enable fairness if not 0 */
10545         bxe_calc_vn_min(sc, &input);
10546 
10547         /* get VN max rate */
10548         if (sc->port.pmf) {
10549             for (vn = VN_0; vn < SC_MAX_VN_NUM(sc); vn++) {
10550                 bxe_calc_vn_max(sc, vn, &input);
10551             }
10552         }
10553 
10554         /* always enable rate shaping and fairness */
10555         input.flags.cmng_enables |= CMNG_FLAGS_PER_PORT_RATE_SHAPING_VN;
10556 
10557         ecore_init_cmng(&input, &sc->cmng);
10558         return;
10559     }
10560 
10561     /* rate shaping and fairness are disabled */
10562     BLOGD(sc, DBG_LOAD, "rate shaping and fairness have been disabled\n");
10563 }
10564 
10565 static int
10566 bxe_get_cmng_fns_mode(struct bxe_softc *sc)
10567 {
10568     if (CHIP_REV_IS_SLOW(sc)) {
10569         return (CMNG_FNS_NONE);
10570     }
10571 
10572     if (IS_MF(sc)) {
10573         return (CMNG_FNS_MINMAX);
10574     }
10575 
10576     return (CMNG_FNS_NONE);
10577 }
10578 
10579 static void
10580 storm_memset_cmng(struct bxe_softc *sc,
10581                   struct cmng_init *cmng,
10582                   uint8_t          port)
10583 {
10584     int vn;
10585     int func;
10586     uint32_t addr;
10587     size_t size;
10588 
10589     addr = (BAR_XSTRORM_INTMEM +
10590             XSTORM_CMNG_PER_PORT_VARS_OFFSET(port));
10591     size = sizeof(struct cmng_struct_per_port);
10592     ecore_storm_memset_struct(sc, addr, size, (uint32_t *)&cmng->port);
10593 
10594     for (vn = VN_0; vn < SC_MAX_VN_NUM(sc); vn++) {
10595         func = func_by_vn(sc, vn);
10596 
10597         addr = (BAR_XSTRORM_INTMEM +
10598                 XSTORM_RATE_SHAPING_PER_VN_VARS_OFFSET(func));
10599         size = sizeof(struct rate_shaping_vars_per_vn);
10600         ecore_storm_memset_struct(sc, addr, size,
10601                                   (uint32_t *)&cmng->vnic.vnic_max_rate[vn]);
10602 
10603         addr = (BAR_XSTRORM_INTMEM +
10604                 XSTORM_FAIRNESS_PER_VN_VARS_OFFSET(func));
10605         size = sizeof(struct fairness_vars_per_vn);
10606         ecore_storm_memset_struct(sc, addr, size,
10607                                   (uint32_t *)&cmng->vnic.vnic_min_rate[vn]);
10608     }
10609 }
10610 
10611 static void
10612 bxe_pf_init(struct bxe_softc *sc)
10613 {
10614     struct bxe_func_init_params func_init = { 0 };
10615     struct event_ring_data eq_data = { { 0 } };
10616     uint16_t flags;
10617 
10618     if (!CHIP_IS_E1x(sc)) {
10619         /* reset IGU PF statistics: MSIX + ATTN */
10620         /* PF */
10621         REG_WR(sc,
10622                (IGU_REG_STATISTIC_NUM_MESSAGE_SENT +
10623                 (BXE_IGU_STAS_MSG_VF_CNT * 4) +
10624                 ((CHIP_IS_MODE_4_PORT(sc) ? SC_FUNC(sc) : SC_VN(sc)) * 4)),
10625                0);
10626         /* ATTN */
10627         REG_WR(sc,
10628                (IGU_REG_STATISTIC_NUM_MESSAGE_SENT +
10629                 (BXE_IGU_STAS_MSG_VF_CNT * 4) +
10630                 (BXE_IGU_STAS_MSG_PF_CNT * 4) +
10631                 ((CHIP_IS_MODE_4_PORT(sc) ? SC_FUNC(sc) : SC_VN(sc)) * 4)),
10632                0);
10633     }
10634 
10635     /* function setup flags */
10636     flags = (FUNC_FLG_STATS | FUNC_FLG_LEADING | FUNC_FLG_SPQ);
10637 
10638     /*
10639      * This flag is relevant for E1x only.
10640      * E2 doesn't have a TPA configuration in a function level.
10641      */
10642     flags |= (if_getcapenable(sc->ifp) & IFCAP_LRO) ? FUNC_FLG_TPA : 0;
10643 
10644     func_init.func_flgs = flags;
10645     func_init.pf_id     = SC_FUNC(sc);
10646     func_init.func_id   = SC_FUNC(sc);
10647     func_init.spq_map   = sc->spq_dma.paddr;
10648     func_init.spq_prod  = sc->spq_prod_idx;
10649 
10650     bxe_func_init(sc, &func_init);
10651 
10652     memset(&sc->cmng, 0, sizeof(struct cmng_struct_per_port));
10653 
10654     /*
10655      * Congestion management values depend on the link rate.
10656      * There is no active link so initial link rate is set to 10Gbps.
10657      * When the link comes up the congestion management values are
10658      * re-calculated according to the actual link rate.
10659      */
10660     sc->link_vars.line_speed = SPEED_10000;
10661     bxe_cmng_fns_init(sc, TRUE, bxe_get_cmng_fns_mode(sc));
10662 
10663     /* Only the PMF sets the HW */
10664     if (sc->port.pmf) {
10665         storm_memset_cmng(sc, &sc->cmng, SC_PORT(sc));
10666     }
10667 
10668     /* init Event Queue - PCI bus guarantees correct endainity */
10669     eq_data.base_addr.hi = U64_HI(sc->eq_dma.paddr);
10670     eq_data.base_addr.lo = U64_LO(sc->eq_dma.paddr);
10671     eq_data.producer     = sc->eq_prod;
10672     eq_data.index_id     = HC_SP_INDEX_EQ_CONS;
10673     eq_data.sb_id        = DEF_SB_ID;
10674     storm_memset_eq_data(sc, &eq_data, SC_FUNC(sc));
10675 }
10676 
10677 static void
10678 bxe_hc_int_enable(struct bxe_softc *sc)
10679 {
10680     int port = SC_PORT(sc);
10681     uint32_t addr = (port) ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0;
10682     uint32_t val = REG_RD(sc, addr);
10683     uint8_t msix = (sc->interrupt_mode == INTR_MODE_MSIX) ? TRUE : FALSE;
10684     uint8_t single_msix = ((sc->interrupt_mode == INTR_MODE_MSIX) &&
10685                            (sc->intr_count == 1)) ? TRUE : FALSE;
10686     uint8_t msi = (sc->interrupt_mode == INTR_MODE_MSI) ? TRUE : FALSE;
10687 
10688     if (msix) {
10689         val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
10690                  HC_CONFIG_0_REG_INT_LINE_EN_0);
10691         val |= (HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
10692                 HC_CONFIG_0_REG_ATTN_BIT_EN_0);
10693         if (single_msix) {
10694             val |= HC_CONFIG_0_REG_SINGLE_ISR_EN_0;
10695         }
10696     } else if (msi) {
10697         val &= ~HC_CONFIG_0_REG_INT_LINE_EN_0;
10698         val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
10699                 HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
10700                 HC_CONFIG_0_REG_ATTN_BIT_EN_0);
10701     } else {
10702         val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
10703                 HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
10704                 HC_CONFIG_0_REG_INT_LINE_EN_0 |
10705                 HC_CONFIG_0_REG_ATTN_BIT_EN_0);
10706 
10707         if (!CHIP_IS_E1(sc)) {
10708             BLOGD(sc, DBG_INTR, "write %x to HC %d (addr 0x%x)\n",
10709                   val, port, addr);
10710 
10711             REG_WR(sc, addr, val);
10712 
10713             val &= ~HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0;
10714         }
10715     }
10716 
10717     if (CHIP_IS_E1(sc)) {
10718         REG_WR(sc, (HC_REG_INT_MASK + port*4), 0x1FFFF);
10719     }
10720 
10721     BLOGD(sc, DBG_INTR, "write %x to HC %d (addr 0x%x) mode %s\n",
10722           val, port, addr, ((msix) ? "MSI-X" : ((msi) ? "MSI" : "INTx")));
10723 
10724     REG_WR(sc, addr, val);
10725 
10726     /* ensure that HC_CONFIG is written before leading/trailing edge config */
10727     mb();
10728 
10729     if (!CHIP_IS_E1(sc)) {
10730         /* init leading/trailing edge */
10731         if (IS_MF(sc)) {
10732             val = (0xee0f | (1 << (SC_VN(sc) + 4)));
10733             if (sc->port.pmf) {
10734                 /* enable nig and gpio3 attention */
10735                 val |= 0x1100;
10736             }
10737         } else {
10738             val = 0xffff;
10739         }
10740 
10741         REG_WR(sc, (HC_REG_TRAILING_EDGE_0 + port*8), val);
10742         REG_WR(sc, (HC_REG_LEADING_EDGE_0 + port*8), val);
10743     }
10744 
10745     /* make sure that interrupts are indeed enabled from here on */
10746     mb();
10747 }
10748 
10749 static void
10750 bxe_igu_int_enable(struct bxe_softc *sc)
10751 {
10752     uint32_t val;
10753     uint8_t msix = (sc->interrupt_mode == INTR_MODE_MSIX) ? TRUE : FALSE;
10754     uint8_t single_msix = ((sc->interrupt_mode == INTR_MODE_MSIX) &&
10755                            (sc->intr_count == 1)) ? TRUE : FALSE;
10756     uint8_t msi = (sc->interrupt_mode == INTR_MODE_MSI) ? TRUE : FALSE;
10757 
10758     val = REG_RD(sc, IGU_REG_PF_CONFIGURATION);
10759 
10760     if (msix) {
10761         val &= ~(IGU_PF_CONF_INT_LINE_EN |
10762                  IGU_PF_CONF_SINGLE_ISR_EN);
10763         val |= (IGU_PF_CONF_MSI_MSIX_EN |
10764                 IGU_PF_CONF_ATTN_BIT_EN);
10765         if (single_msix) {
10766             val |= IGU_PF_CONF_SINGLE_ISR_EN;
10767         }
10768     } else if (msi) {
10769         val &= ~IGU_PF_CONF_INT_LINE_EN;
10770         val |= (IGU_PF_CONF_MSI_MSIX_EN |
10771                 IGU_PF_CONF_ATTN_BIT_EN |
10772                 IGU_PF_CONF_SINGLE_ISR_EN);
10773     } else {
10774         val &= ~IGU_PF_CONF_MSI_MSIX_EN;
10775         val |= (IGU_PF_CONF_INT_LINE_EN |
10776                 IGU_PF_CONF_ATTN_BIT_EN |
10777                 IGU_PF_CONF_SINGLE_ISR_EN);
10778     }
10779 
10780     /* clean previous status - need to configure igu prior to ack*/
10781     if ((!msix) || single_msix) {
10782         REG_WR(sc, IGU_REG_PF_CONFIGURATION, val);
10783         bxe_ack_int(sc);
10784     }
10785 
10786     val |= IGU_PF_CONF_FUNC_EN;
10787 
10788     BLOGD(sc, DBG_INTR, "write 0x%x to IGU mode %s\n",
10789           val, ((msix) ? "MSI-X" : ((msi) ? "MSI" : "INTx")));
10790 
10791     REG_WR(sc, IGU_REG_PF_CONFIGURATION, val);
10792 
10793     mb();
10794 
10795     /* init leading/trailing edge */
10796     if (IS_MF(sc)) {
10797         val = (0xee0f | (1 << (SC_VN(sc) + 4)));
10798         if (sc->port.pmf) {
10799             /* enable nig and gpio3 attention */
10800             val |= 0x1100;
10801         }
10802     } else {
10803         val = 0xffff;
10804     }
10805 
10806     REG_WR(sc, IGU_REG_TRAILING_EDGE_LATCH, val);
10807     REG_WR(sc, IGU_REG_LEADING_EDGE_LATCH, val);
10808 
10809     /* make sure that interrupts are indeed enabled from here on */
10810     mb();
10811 }
10812 
10813 static void
10814 bxe_int_enable(struct bxe_softc *sc)
10815 {
10816     if (sc->devinfo.int_block == INT_BLOCK_HC) {
10817         bxe_hc_int_enable(sc);
10818     } else {
10819         bxe_igu_int_enable(sc);
10820     }
10821 }
10822 
10823 static void
10824 bxe_hc_int_disable(struct bxe_softc *sc)
10825 {
10826     int port = SC_PORT(sc);
10827     uint32_t addr = (port) ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0;
10828     uint32_t val = REG_RD(sc, addr);
10829 
10830     /*
10831      * In E1 we must use only PCI configuration space to disable MSI/MSIX
10832      * capablility. It's forbidden to disable IGU_PF_CONF_MSI_MSIX_EN in HC
10833      * block
10834      */
10835     if (CHIP_IS_E1(sc)) {
10836         /*
10837          * Since IGU_PF_CONF_MSI_MSIX_EN still always on use mask register
10838          * to prevent from HC sending interrupts after we exit the function
10839          */
10840         REG_WR(sc, (HC_REG_INT_MASK + port*4), 0);
10841 
10842         val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
10843                  HC_CONFIG_0_REG_INT_LINE_EN_0 |
10844                  HC_CONFIG_0_REG_ATTN_BIT_EN_0);
10845     } else {
10846         val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
10847                  HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
10848                  HC_CONFIG_0_REG_INT_LINE_EN_0 |
10849                  HC_CONFIG_0_REG_ATTN_BIT_EN_0);
10850     }
10851 
10852     BLOGD(sc, DBG_INTR, "write %x to HC %d (addr 0x%x)\n", val, port, addr);
10853 
10854     /* flush all outstanding writes */
10855     mb();
10856 
10857     REG_WR(sc, addr, val);
10858     if (REG_RD(sc, addr) != val) {
10859         BLOGE(sc, "proper val not read from HC IGU!\n");
10860     }
10861 }
10862 
10863 static void
10864 bxe_igu_int_disable(struct bxe_softc *sc)
10865 {
10866     uint32_t val = REG_RD(sc, IGU_REG_PF_CONFIGURATION);
10867 
10868     val &= ~(IGU_PF_CONF_MSI_MSIX_EN |
10869              IGU_PF_CONF_INT_LINE_EN |
10870              IGU_PF_CONF_ATTN_BIT_EN);
10871 
10872     BLOGD(sc, DBG_INTR, "write %x to IGU\n", val);
10873 
10874     /* flush all outstanding writes */
10875     mb();
10876 
10877     REG_WR(sc, IGU_REG_PF_CONFIGURATION, val);
10878     if (REG_RD(sc, IGU_REG_PF_CONFIGURATION) != val) {
10879         BLOGE(sc, "proper val not read from IGU!\n");
10880     }
10881 }
10882 
10883 static void
10884 bxe_int_disable(struct bxe_softc *sc)
10885 {
10886     if (sc->devinfo.int_block == INT_BLOCK_HC) {
10887         bxe_hc_int_disable(sc);
10888     } else {
10889         bxe_igu_int_disable(sc);
10890     }
10891 }
10892 
10893 static void
10894 bxe_nic_init(struct bxe_softc *sc,
10895              int              load_code)
10896 {
10897     int i;
10898 
10899     for (i = 0; i < sc->num_queues; i++) {
10900         bxe_init_eth_fp(sc, i);
10901     }
10902 
10903     rmb(); /* ensure status block indices were read */
10904 
10905     bxe_init_rx_rings(sc);
10906     bxe_init_tx_rings(sc);
10907 
10908     if (IS_VF(sc)) {
10909         return;
10910     }
10911 
10912     /* initialize MOD_ABS interrupts */
10913     elink_init_mod_abs_int(sc, &sc->link_vars,
10914                            sc->devinfo.chip_id,
10915                            sc->devinfo.shmem_base,
10916                            sc->devinfo.shmem2_base,
10917                            SC_PORT(sc));
10918 
10919     bxe_init_def_sb(sc);
10920     bxe_update_dsb_idx(sc);
10921     bxe_init_sp_ring(sc);
10922     bxe_init_eq_ring(sc);
10923     bxe_init_internal(sc, load_code);
10924     bxe_pf_init(sc);
10925     bxe_stats_init(sc);
10926 
10927     /* flush all before enabling interrupts */
10928     mb();
10929 
10930     bxe_int_enable(sc);
10931 
10932     /* check for SPIO5 */
10933     bxe_attn_int_deasserted0(sc,
10934                              REG_RD(sc,
10935                                     (MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 +
10936                                      SC_PORT(sc)*4)) &
10937                              AEU_INPUTS_ATTN_BITS_SPIO5);
10938 }
10939 
10940 static inline void
10941 bxe_init_objs(struct bxe_softc *sc)
10942 {
10943     /* mcast rules must be added to tx if tx switching is enabled */
10944     ecore_obj_type o_type =
10945         (sc->flags & BXE_TX_SWITCHING) ? ECORE_OBJ_TYPE_RX_TX :
10946                                          ECORE_OBJ_TYPE_RX;
10947 
10948     /* RX_MODE controlling object */
10949     ecore_init_rx_mode_obj(sc, &sc->rx_mode_obj);
10950 
10951     /* multicast configuration controlling object */
10952     ecore_init_mcast_obj(sc,
10953                          &sc->mcast_obj,
10954                          sc->fp[0].cl_id,
10955                          sc->fp[0].index,
10956                          SC_FUNC(sc),
10957                          SC_FUNC(sc),
10958                          BXE_SP(sc, mcast_rdata),
10959                          BXE_SP_MAPPING(sc, mcast_rdata),
10960                          ECORE_FILTER_MCAST_PENDING,
10961                          &sc->sp_state,
10962                          o_type);
10963 
10964     /* Setup CAM credit pools */
10965     ecore_init_mac_credit_pool(sc,
10966                                &sc->macs_pool,
10967                                SC_FUNC(sc),
10968                                CHIP_IS_E1x(sc) ? VNICS_PER_PORT(sc) :
10969                                                  VNICS_PER_PATH(sc));
10970 
10971     ecore_init_vlan_credit_pool(sc,
10972                                 &sc->vlans_pool,
10973                                 SC_ABS_FUNC(sc) >> 1,
10974                                 CHIP_IS_E1x(sc) ? VNICS_PER_PORT(sc) :
10975                                                   VNICS_PER_PATH(sc));
10976 
10977     /* RSS configuration object */
10978     ecore_init_rss_config_obj(sc,
10979                               &sc->rss_conf_obj,
10980                               sc->fp[0].cl_id,
10981                               sc->fp[0].index,
10982                               SC_FUNC(sc),
10983                               SC_FUNC(sc),
10984                               BXE_SP(sc, rss_rdata),
10985                               BXE_SP_MAPPING(sc, rss_rdata),
10986                               ECORE_FILTER_RSS_CONF_PENDING,
10987                               &sc->sp_state, ECORE_OBJ_TYPE_RX);
10988 }
10989 
10990 /*
10991  * Initialize the function. This must be called before sending CLIENT_SETUP
10992  * for the first client.
10993  */
10994 static inline int
10995 bxe_func_start(struct bxe_softc *sc)
10996 {
10997     struct ecore_func_state_params func_params = { NULL };
10998     struct ecore_func_start_params *start_params = &func_params.params.start;
10999 
11000     /* Prepare parameters for function state transitions */
11001     bit_set(&func_params.ramrod_flags, RAMROD_COMP_WAIT);
11002 
11003     func_params.f_obj = &sc->func_obj;
11004     func_params.cmd = ECORE_F_CMD_START;
11005 
11006     /* Function parameters */
11007     start_params->mf_mode     = sc->devinfo.mf_info.mf_mode;
11008     start_params->sd_vlan_tag = OVLAN(sc);
11009 
11010     if (CHIP_IS_E2(sc) || CHIP_IS_E3(sc)) {
11011         start_params->network_cos_mode = STATIC_COS;
11012     } else { /* CHIP_IS_E1X */
11013         start_params->network_cos_mode = FW_WRR;
11014     }
11015 
11016     start_params->gre_tunnel_mode = 0;
11017     start_params->gre_tunnel_rss  = 0;
11018 
11019     return (ecore_func_state_change(sc, &func_params));
11020 }
11021 
11022 static int
11023 bxe_set_power_state(struct bxe_softc *sc,
11024                     uint8_t          state)
11025 {
11026     uint16_t pmcsr;
11027 
11028     /* If there is no power capability, silently succeed */
11029     if (!(sc->devinfo.pcie_cap_flags & BXE_PM_CAPABLE_FLAG)) {
11030         BLOGW(sc, "No power capability\n");
11031         return (0);
11032     }
11033 
11034     pmcsr = pci_read_config(sc->dev,
11035                             (sc->devinfo.pcie_pm_cap_reg + PCIR_POWER_STATUS),
11036                             2);
11037 
11038     switch (state) {
11039     case PCI_PM_D0:
11040         pci_write_config(sc->dev,
11041                          (sc->devinfo.pcie_pm_cap_reg + PCIR_POWER_STATUS),
11042                          ((pmcsr & ~PCIM_PSTAT_DMASK) | PCIM_PSTAT_PME), 2);
11043 
11044         if (pmcsr & PCIM_PSTAT_DMASK) {
11045             /* delay required during transition out of D3hot */
11046             DELAY(20000);
11047         }
11048 
11049         break;
11050 
11051     case PCI_PM_D3hot:
11052         /* XXX if there are other clients above don't shut down the power */
11053 
11054         /* don't shut down the power for emulation and FPGA */
11055         if (CHIP_REV_IS_SLOW(sc)) {
11056             return (0);
11057         }
11058 
11059         pmcsr &= ~PCIM_PSTAT_DMASK;
11060         pmcsr |= PCIM_PSTAT_D3;
11061 
11062         if (sc->wol) {
11063             pmcsr |= PCIM_PSTAT_PMEENABLE;
11064         }
11065 
11066         pci_write_config(sc->dev,
11067                          (sc->devinfo.pcie_pm_cap_reg + PCIR_POWER_STATUS),
11068                          pmcsr, 4);
11069 
11070         /*
11071          * No more memory access after this point until device is brought back
11072          * to D0 state.
11073          */
11074         break;
11075 
11076     default:
11077         BLOGE(sc, "Can't support PCI power state = %d\n", state);
11078         return (-1);
11079     }
11080 
11081     return (0);
11082 }
11083 
11084 
11085 /* return true if succeeded to acquire the lock */
11086 static uint8_t
11087 bxe_trylock_hw_lock(struct bxe_softc *sc,
11088                     uint32_t         resource)
11089 {
11090     uint32_t lock_status;
11091     uint32_t resource_bit = (1 << resource);
11092     int func = SC_FUNC(sc);
11093     uint32_t hw_lock_control_reg;
11094 
11095     BLOGD(sc, DBG_LOAD, "Trying to take a resource lock 0x%x\n", resource);
11096 
11097     /* Validating that the resource is within range */
11098     if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
11099         BLOGD(sc, DBG_LOAD,
11100               "resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
11101               resource, HW_LOCK_MAX_RESOURCE_VALUE);
11102         return (FALSE);
11103     }
11104 
11105     if (func <= 5) {
11106         hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
11107     } else {
11108         hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
11109     }
11110 
11111     /* try to acquire the lock */
11112     REG_WR(sc, hw_lock_control_reg + 4, resource_bit);
11113     lock_status = REG_RD(sc, hw_lock_control_reg);
11114     if (lock_status & resource_bit) {
11115         return (TRUE);
11116     }
11117 
11118     BLOGE(sc, "Failed to get a resource lock 0x%x\n", resource);
11119 
11120     return (FALSE);
11121 }
11122 
11123 /*
11124  * Get the recovery leader resource id according to the engine this function
11125  * belongs to. Currently only only 2 engines is supported.
11126  */
11127 static int
11128 bxe_get_leader_lock_resource(struct bxe_softc *sc)
11129 {
11130     if (SC_PATH(sc)) {
11131         return (HW_LOCK_RESOURCE_RECOVERY_LEADER_1);
11132     } else {
11133         return (HW_LOCK_RESOURCE_RECOVERY_LEADER_0);
11134     }
11135 }
11136 
11137 /* try to acquire a leader lock for current engine */
11138 static uint8_t
11139 bxe_trylock_leader_lock(struct bxe_softc *sc)
11140 {
11141     return (bxe_trylock_hw_lock(sc, bxe_get_leader_lock_resource(sc)));
11142 }
11143 
11144 static int
11145 bxe_release_leader_lock(struct bxe_softc *sc)
11146 {
11147     return (bxe_release_hw_lock(sc, bxe_get_leader_lock_resource(sc)));
11148 }
11149 
11150 /* close gates #2, #3 and #4 */
11151 static void
11152 bxe_set_234_gates(struct bxe_softc *sc,
11153                   uint8_t          close)
11154 {
11155     uint32_t val;
11156 
11157     /* gates #2 and #4a are closed/opened for "not E1" only */
11158     if (!CHIP_IS_E1(sc)) {
11159         /* #4 */
11160         REG_WR(sc, PXP_REG_HST_DISCARD_DOORBELLS, !!close);
11161         /* #2 */
11162         REG_WR(sc, PXP_REG_HST_DISCARD_INTERNAL_WRITES, !!close);
11163     }
11164 
11165     /* #3 */
11166     if (CHIP_IS_E1x(sc)) {
11167         /* prevent interrupts from HC on both ports */
11168         val = REG_RD(sc, HC_REG_CONFIG_1);
11169         REG_WR(sc, HC_REG_CONFIG_1,
11170                (!close) ? (val | HC_CONFIG_1_REG_BLOCK_DISABLE_1) :
11171                (val & ~(uint32_t)HC_CONFIG_1_REG_BLOCK_DISABLE_1));
11172 
11173         val = REG_RD(sc, HC_REG_CONFIG_0);
11174         REG_WR(sc, HC_REG_CONFIG_0,
11175                (!close) ? (val | HC_CONFIG_0_REG_BLOCK_DISABLE_0) :
11176                (val & ~(uint32_t)HC_CONFIG_0_REG_BLOCK_DISABLE_0));
11177     } else {
11178         /* Prevent incomming interrupts in IGU */
11179         val = REG_RD(sc, IGU_REG_BLOCK_CONFIGURATION);
11180 
11181         REG_WR(sc, IGU_REG_BLOCK_CONFIGURATION,
11182                (!close) ?
11183                (val | IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE) :
11184                (val & ~(uint32_t)IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE));
11185     }
11186 
11187     BLOGD(sc, DBG_LOAD, "%s gates #2, #3 and #4\n",
11188           close ? "closing" : "opening");
11189 
11190     wmb();
11191 }
11192 
11193 /* poll for pending writes bit, it should get cleared in no more than 1s */
11194 static int
11195 bxe_er_poll_igu_vq(struct bxe_softc *sc)
11196 {
11197     uint32_t cnt = 1000;
11198     uint32_t pend_bits = 0;
11199 
11200     do {
11201         pend_bits = REG_RD(sc, IGU_REG_PENDING_BITS_STATUS);
11202 
11203         if (pend_bits == 0) {
11204             break;
11205         }
11206 
11207         DELAY(1000);
11208     } while (--cnt > 0);
11209 
11210     if (cnt == 0) {
11211         BLOGE(sc, "Still pending IGU requests bits=0x%08x!\n", pend_bits);
11212         return (-1);
11213     }
11214 
11215     return (0);
11216 }
11217 
11218 #define SHARED_MF_CLP_MAGIC  0x80000000 /* 'magic' bit */
11219 
11220 static void
11221 bxe_clp_reset_prep(struct bxe_softc *sc,
11222                    uint32_t         *magic_val)
11223 {
11224     /* Do some magic... */
11225     uint32_t val = MFCFG_RD(sc, shared_mf_config.clp_mb);
11226     *magic_val = val & SHARED_MF_CLP_MAGIC;
11227     MFCFG_WR(sc, shared_mf_config.clp_mb, val | SHARED_MF_CLP_MAGIC);
11228 }
11229 
11230 /* restore the value of the 'magic' bit */
11231 static void
11232 bxe_clp_reset_done(struct bxe_softc *sc,
11233                    uint32_t         magic_val)
11234 {
11235     /* Restore the 'magic' bit value... */
11236     uint32_t val = MFCFG_RD(sc, shared_mf_config.clp_mb);
11237     MFCFG_WR(sc, shared_mf_config.clp_mb,
11238               (val & (~SHARED_MF_CLP_MAGIC)) | magic_val);
11239 }
11240 
11241 /* prepare for MCP reset, takes care of CLP configurations */
11242 static void
11243 bxe_reset_mcp_prep(struct bxe_softc *sc,
11244                    uint32_t         *magic_val)
11245 {
11246     uint32_t shmem;
11247     uint32_t validity_offset;
11248 
11249     /* set `magic' bit in order to save MF config */
11250     if (!CHIP_IS_E1(sc)) {
11251         bxe_clp_reset_prep(sc, magic_val);
11252     }
11253 
11254     /* get shmem offset */
11255     shmem = REG_RD(sc, MISC_REG_SHARED_MEM_ADDR);
11256     validity_offset =
11257         offsetof(struct shmem_region, validity_map[SC_PORT(sc)]);
11258 
11259     /* Clear validity map flags */
11260     if (shmem > 0) {
11261         REG_WR(sc, shmem + validity_offset, 0);
11262     }
11263 }
11264 
11265 #define MCP_TIMEOUT      5000   /* 5 seconds (in ms) */
11266 #define MCP_ONE_TIMEOUT  100    /* 100 ms */
11267 
11268 static void
11269 bxe_mcp_wait_one(struct bxe_softc *sc)
11270 {
11271     /* special handling for emulation and FPGA (10 times longer) */
11272     if (CHIP_REV_IS_SLOW(sc)) {
11273         DELAY((MCP_ONE_TIMEOUT*10) * 1000);
11274     } else {
11275         DELAY((MCP_ONE_TIMEOUT) * 1000);
11276     }
11277 }
11278 
11279 /* initialize shmem_base and waits for validity signature to appear */
11280 static int
11281 bxe_init_shmem(struct bxe_softc *sc)
11282 {
11283     int cnt = 0;
11284     uint32_t val = 0;
11285 
11286     do {
11287         sc->devinfo.shmem_base     =
11288         sc->link_params.shmem_base =
11289             REG_RD(sc, MISC_REG_SHARED_MEM_ADDR);
11290 
11291         if (sc->devinfo.shmem_base) {
11292             val = SHMEM_RD(sc, validity_map[SC_PORT(sc)]);
11293             if (val & SHR_MEM_VALIDITY_MB)
11294                 return (0);
11295         }
11296 
11297         bxe_mcp_wait_one(sc);
11298 
11299     } while (cnt++ < (MCP_TIMEOUT / MCP_ONE_TIMEOUT));
11300 
11301     BLOGE(sc, "BAD MCP validity signature\n");
11302 
11303     return (-1);
11304 }
11305 
11306 static int
11307 bxe_reset_mcp_comp(struct bxe_softc *sc,
11308                    uint32_t         magic_val)
11309 {
11310     int rc = bxe_init_shmem(sc);
11311 
11312     /* Restore the `magic' bit value */
11313     if (!CHIP_IS_E1(sc)) {
11314         bxe_clp_reset_done(sc, magic_val);
11315     }
11316 
11317     return (rc);
11318 }
11319 
11320 static void
11321 bxe_pxp_prep(struct bxe_softc *sc)
11322 {
11323     if (!CHIP_IS_E1(sc)) {
11324         REG_WR(sc, PXP2_REG_RD_START_INIT, 0);
11325         REG_WR(sc, PXP2_REG_RQ_RBC_DONE, 0);
11326         wmb();
11327     }
11328 }
11329 
11330 /*
11331  * Reset the whole chip except for:
11332  *      - PCIE core
11333  *      - PCI Glue, PSWHST, PXP/PXP2 RF (all controlled by one reset bit)
11334  *      - IGU
11335  *      - MISC (including AEU)
11336  *      - GRC
11337  *      - RBCN, RBCP
11338  */
11339 static void
11340 bxe_process_kill_chip_reset(struct bxe_softc *sc,
11341                             uint8_t          global)
11342 {
11343     uint32_t not_reset_mask1, reset_mask1, not_reset_mask2, reset_mask2;
11344     uint32_t global_bits2, stay_reset2;
11345 
11346     /*
11347      * Bits that have to be set in reset_mask2 if we want to reset 'global'
11348      * (per chip) blocks.
11349      */
11350     global_bits2 =
11351         MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CPU |
11352         MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CORE;
11353 
11354     /*
11355      * Don't reset the following blocks.
11356      * Important: per port blocks (such as EMAC, BMAC, UMAC) can't be
11357      *            reset, as in 4 port device they might still be owned
11358      *            by the MCP (there is only one leader per path).
11359      */
11360     not_reset_mask1 =
11361         MISC_REGISTERS_RESET_REG_1_RST_HC |
11362         MISC_REGISTERS_RESET_REG_1_RST_PXPV |
11363         MISC_REGISTERS_RESET_REG_1_RST_PXP;
11364 
11365     not_reset_mask2 =
11366         MISC_REGISTERS_RESET_REG_2_RST_PCI_MDIO |
11367         MISC_REGISTERS_RESET_REG_2_RST_EMAC0_HARD_CORE |
11368         MISC_REGISTERS_RESET_REG_2_RST_EMAC1_HARD_CORE |
11369         MISC_REGISTERS_RESET_REG_2_RST_MISC_CORE |
11370         MISC_REGISTERS_RESET_REG_2_RST_RBCN |
11371         MISC_REGISTERS_RESET_REG_2_RST_GRC  |
11372         MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_REG_HARD_CORE |
11373         MISC_REGISTERS_RESET_REG_2_RST_MCP_N_HARD_CORE_RST_B |
11374         MISC_REGISTERS_RESET_REG_2_RST_ATC |
11375         MISC_REGISTERS_RESET_REG_2_PGLC |
11376         MISC_REGISTERS_RESET_REG_2_RST_BMAC0 |
11377         MISC_REGISTERS_RESET_REG_2_RST_BMAC1 |
11378         MISC_REGISTERS_RESET_REG_2_RST_EMAC0 |
11379         MISC_REGISTERS_RESET_REG_2_RST_EMAC1 |
11380         MISC_REGISTERS_RESET_REG_2_UMAC0 |
11381         MISC_REGISTERS_RESET_REG_2_UMAC1;
11382 
11383     /*
11384      * Keep the following blocks in reset:
11385      *  - all xxMACs are handled by the elink code.
11386      */
11387     stay_reset2 =
11388         MISC_REGISTERS_RESET_REG_2_XMAC |
11389         MISC_REGISTERS_RESET_REG_2_XMAC_SOFT;
11390 
11391     /* Full reset masks according to the chip */
11392     reset_mask1 = 0xffffffff;
11393 
11394     if (CHIP_IS_E1(sc))
11395         reset_mask2 = 0xffff;
11396     else if (CHIP_IS_E1H(sc))
11397         reset_mask2 = 0x1ffff;
11398     else if (CHIP_IS_E2(sc))
11399         reset_mask2 = 0xfffff;
11400     else /* CHIP_IS_E3 */
11401         reset_mask2 = 0x3ffffff;
11402 
11403     /* Don't reset global blocks unless we need to */
11404     if (!global)
11405         reset_mask2 &= ~global_bits2;
11406 
11407     /*
11408      * In case of attention in the QM, we need to reset PXP
11409      * (MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR) before QM
11410      * because otherwise QM reset would release 'close the gates' shortly
11411      * before resetting the PXP, then the PSWRQ would send a write
11412      * request to PGLUE. Then when PXP is reset, PGLUE would try to
11413      * read the payload data from PSWWR, but PSWWR would not
11414      * respond. The write queue in PGLUE would stuck, dmae commands
11415      * would not return. Therefore it's important to reset the second
11416      * reset register (containing the
11417      * MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR bit) before the
11418      * first one (containing the MISC_REGISTERS_RESET_REG_1_RST_QM
11419      * bit).
11420      */
11421     REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR,
11422            reset_mask2 & (~not_reset_mask2));
11423 
11424     REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
11425            reset_mask1 & (~not_reset_mask1));
11426 
11427     mb();
11428     wmb();
11429 
11430     REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET,
11431            reset_mask2 & (~stay_reset2));
11432 
11433     mb();
11434     wmb();
11435 
11436     REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, reset_mask1);
11437     wmb();
11438 }
11439 
11440 static int
11441 bxe_process_kill(struct bxe_softc *sc,
11442                  uint8_t          global)
11443 {
11444     int cnt = 1000;
11445     uint32_t val = 0;
11446     uint32_t sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1, pgl_exp_rom2;
11447     uint32_t tags_63_32 = 0;
11448 
11449     /* Empty the Tetris buffer, wait for 1s */
11450     do {
11451         sr_cnt  = REG_RD(sc, PXP2_REG_RD_SR_CNT);
11452         blk_cnt = REG_RD(sc, PXP2_REG_RD_BLK_CNT);
11453         port_is_idle_0 = REG_RD(sc, PXP2_REG_RD_PORT_IS_IDLE_0);
11454         port_is_idle_1 = REG_RD(sc, PXP2_REG_RD_PORT_IS_IDLE_1);
11455         pgl_exp_rom2 = REG_RD(sc, PXP2_REG_PGL_EXP_ROM2);
11456         if (CHIP_IS_E3(sc)) {
11457             tags_63_32 = REG_RD(sc, PGLUE_B_REG_TAGS_63_32);
11458         }
11459 
11460         if ((sr_cnt == 0x7e) && (blk_cnt == 0xa0) &&
11461             ((port_is_idle_0 & 0x1) == 0x1) &&
11462             ((port_is_idle_1 & 0x1) == 0x1) &&
11463             (pgl_exp_rom2 == 0xffffffff) &&
11464             (!CHIP_IS_E3(sc) || (tags_63_32 == 0xffffffff)))
11465             break;
11466         DELAY(1000);
11467     } while (cnt-- > 0);
11468 
11469     if (cnt <= 0) {
11470         BLOGE(sc, "ERROR: Tetris buffer didn't get empty or there "
11471                   "are still outstanding read requests after 1s! "
11472                   "sr_cnt=0x%08x, blk_cnt=0x%08x, port_is_idle_0=0x%08x, "
11473                   "port_is_idle_1=0x%08x, pgl_exp_rom2=0x%08x\n",
11474               sr_cnt, blk_cnt, port_is_idle_0,
11475               port_is_idle_1, pgl_exp_rom2);
11476         return (-1);
11477     }
11478 
11479     mb();
11480 
11481     /* Close gates #2, #3 and #4 */
11482     bxe_set_234_gates(sc, TRUE);
11483 
11484     /* Poll for IGU VQs for 57712 and newer chips */
11485     if (!CHIP_IS_E1x(sc) && bxe_er_poll_igu_vq(sc)) {
11486         return (-1);
11487     }
11488 
11489     /* XXX indicate that "process kill" is in progress to MCP */
11490 
11491     /* clear "unprepared" bit */
11492     REG_WR(sc, MISC_REG_UNPREPARED, 0);
11493     mb();
11494 
11495     /* Make sure all is written to the chip before the reset */
11496     wmb();
11497 
11498     /*
11499      * Wait for 1ms to empty GLUE and PCI-E core queues,
11500      * PSWHST, GRC and PSWRD Tetris buffer.
11501      */
11502     DELAY(1000);
11503 
11504     /* Prepare to chip reset: */
11505     /* MCP */
11506     if (global) {
11507         bxe_reset_mcp_prep(sc, &val);
11508     }
11509 
11510     /* PXP */
11511     bxe_pxp_prep(sc);
11512     mb();
11513 
11514     /* reset the chip */
11515     bxe_process_kill_chip_reset(sc, global);
11516     mb();
11517 
11518     /* clear errors in PGB */
11519     if (!CHIP_IS_E1(sc))
11520         REG_WR(sc, PGLUE_B_REG_LATCHED_ERRORS_CLR, 0x7f);
11521 
11522     /* Recover after reset: */
11523     /* MCP */
11524     if (global && bxe_reset_mcp_comp(sc, val)) {
11525         return (-1);
11526     }
11527 
11528     /* XXX add resetting the NO_MCP mode DB here */
11529 
11530     /* Open the gates #2, #3 and #4 */
11531     bxe_set_234_gates(sc, FALSE);
11532 
11533     /* XXX
11534      * IGU/AEU preparation bring back the AEU/IGU to a reset state
11535      * re-enable attentions
11536      */
11537 
11538     return (0);
11539 }
11540 
11541 static int
11542 bxe_leader_reset(struct bxe_softc *sc)
11543 {
11544     int rc = 0;
11545     uint8_t global = bxe_reset_is_global(sc);
11546     uint32_t load_code;
11547 
11548     /*
11549      * If not going to reset MCP, load "fake" driver to reset HW while
11550      * driver is owner of the HW.
11551      */
11552     if (!global && !BXE_NOMCP(sc)) {
11553         load_code = bxe_fw_command(sc, DRV_MSG_CODE_LOAD_REQ,
11554                                    DRV_MSG_CODE_LOAD_REQ_WITH_LFA);
11555         if (!load_code) {
11556             BLOGE(sc, "MCP response failure, aborting\n");
11557             rc = -1;
11558             goto exit_leader_reset;
11559         }
11560 
11561         if ((load_code != FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) &&
11562             (load_code != FW_MSG_CODE_DRV_LOAD_COMMON)) {
11563             BLOGE(sc, "MCP unexpected response, aborting\n");
11564             rc = -1;
11565             goto exit_leader_reset2;
11566         }
11567 
11568         load_code = bxe_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0);
11569         if (!load_code) {
11570             BLOGE(sc, "MCP response failure, aborting\n");
11571             rc = -1;
11572             goto exit_leader_reset2;
11573         }
11574     }
11575 
11576     /* try to recover after the failure */
11577     if (bxe_process_kill(sc, global)) {
11578         BLOGE(sc, "Something bad occurred on engine %d!\n", SC_PATH(sc));
11579         rc = -1;
11580         goto exit_leader_reset2;
11581     }
11582 
11583     /*
11584      * Clear the RESET_IN_PROGRESS and RESET_GLOBAL bits and update the driver
11585      * state.
11586      */
11587     bxe_set_reset_done(sc);
11588     if (global) {
11589         bxe_clear_reset_global(sc);
11590     }
11591 
11592 exit_leader_reset2:
11593 
11594     /* unload "fake driver" if it was loaded */
11595     if (!global && !BXE_NOMCP(sc)) {
11596         bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP, 0);
11597         bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_DONE, 0);
11598     }
11599 
11600 exit_leader_reset:
11601 
11602     sc->is_leader = 0;
11603     bxe_release_leader_lock(sc);
11604 
11605     mb();
11606     return (rc);
11607 }
11608 
11609 /*
11610  * prepare INIT transition, parameters configured:
11611  *   - HC configuration
11612  *   - Queue's CDU context
11613  */
11614 static void
11615 bxe_pf_q_prep_init(struct bxe_softc               *sc,
11616                    struct bxe_fastpath            *fp,
11617                    struct ecore_queue_init_params *init_params)
11618 {
11619     uint8_t cos;
11620     int cxt_index, cxt_offset;
11621 
11622     bxe_set_bit(ECORE_Q_FLG_HC, &init_params->rx.flags);
11623     bxe_set_bit(ECORE_Q_FLG_HC, &init_params->tx.flags);
11624 
11625     bxe_set_bit(ECORE_Q_FLG_HC_EN, &init_params->rx.flags);
11626     bxe_set_bit(ECORE_Q_FLG_HC_EN, &init_params->tx.flags);
11627 
11628     /* HC rate */
11629     init_params->rx.hc_rate =
11630         sc->hc_rx_ticks ? (1000000 / sc->hc_rx_ticks) : 0;
11631     init_params->tx.hc_rate =
11632         sc->hc_tx_ticks ? (1000000 / sc->hc_tx_ticks) : 0;
11633 
11634     /* FW SB ID */
11635     init_params->rx.fw_sb_id = init_params->tx.fw_sb_id = fp->fw_sb_id;
11636 
11637     /* CQ index among the SB indices */
11638     init_params->rx.sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS;
11639     init_params->tx.sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS;
11640 
11641     /* set maximum number of COSs supported by this queue */
11642     init_params->max_cos = sc->max_cos;
11643 
11644     BLOGD(sc, DBG_LOAD, "fp %d setting queue params max cos to %d\n",
11645           fp->index, init_params->max_cos);
11646 
11647     /* set the context pointers queue object */
11648     for (cos = FIRST_TX_COS_INDEX; cos < init_params->max_cos; cos++) {
11649         /* XXX change index/cid here if ever support multiple tx CoS */
11650         /* fp->txdata[cos]->cid */
11651         cxt_index = fp->index / ILT_PAGE_CIDS;
11652         cxt_offset = fp->index - (cxt_index * ILT_PAGE_CIDS);
11653         init_params->cxts[cos] = &sc->context[cxt_index].vcxt[cxt_offset].eth;
11654     }
11655 }
11656 
11657 /* set flags that are common for the Tx-only and not normal connections */
11658 static unsigned long
11659 bxe_get_common_flags(struct bxe_softc    *sc,
11660                      struct bxe_fastpath *fp,
11661                      uint8_t             zero_stats)
11662 {
11663     unsigned long flags = 0;
11664 
11665     /* PF driver will always initialize the Queue to an ACTIVE state */
11666     bxe_set_bit(ECORE_Q_FLG_ACTIVE, &flags);
11667 
11668     /*
11669      * tx only connections collect statistics (on the same index as the
11670      * parent connection). The statistics are zeroed when the parent
11671      * connection is initialized.
11672      */
11673 
11674     bxe_set_bit(ECORE_Q_FLG_STATS, &flags);
11675     if (zero_stats) {
11676         bxe_set_bit(ECORE_Q_FLG_ZERO_STATS, &flags);
11677     }
11678 
11679     /*
11680      * tx only connections can support tx-switching, though their
11681      * CoS-ness doesn't survive the loopback
11682      */
11683     if (sc->flags & BXE_TX_SWITCHING) {
11684         bxe_set_bit(ECORE_Q_FLG_TX_SWITCH, &flags);
11685     }
11686 
11687     bxe_set_bit(ECORE_Q_FLG_PCSUM_ON_PKT, &flags);
11688 
11689     return (flags);
11690 }
11691 
11692 static unsigned long
11693 bxe_get_q_flags(struct bxe_softc    *sc,
11694                 struct bxe_fastpath *fp,
11695                 uint8_t             leading)
11696 {
11697     unsigned long flags = 0;
11698 
11699     if (IS_MF_SD(sc)) {
11700         bxe_set_bit(ECORE_Q_FLG_OV, &flags);
11701     }
11702 
11703     if (if_getcapenable(sc->ifp) & IFCAP_LRO) {
11704         bxe_set_bit(ECORE_Q_FLG_TPA, &flags);
11705         bxe_set_bit(ECORE_Q_FLG_TPA_IPV6, &flags);
11706 #if 0
11707         if (fp->mode == TPA_MODE_GRO)
11708             __set_bit(ECORE_Q_FLG_TPA_GRO, &flags);
11709 #endif
11710     }
11711 
11712     if (leading) {
11713         bxe_set_bit(ECORE_Q_FLG_LEADING_RSS, &flags);
11714         bxe_set_bit(ECORE_Q_FLG_MCAST, &flags);
11715     }
11716 
11717     bxe_set_bit(ECORE_Q_FLG_VLAN, &flags);
11718 
11719 #if 0
11720     /* configure silent vlan removal */
11721     if (IS_MF_AFEX(sc)) {
11722         bxe_set_bit(ECORE_Q_FLG_SILENT_VLAN_REM, &flags);
11723     }
11724 #endif
11725 
11726     /* merge with common flags */
11727     return (flags | bxe_get_common_flags(sc, fp, TRUE));
11728 }
11729 
11730 static void
11731 bxe_pf_q_prep_general(struct bxe_softc                  *sc,
11732                       struct bxe_fastpath               *fp,
11733                       struct ecore_general_setup_params *gen_init,
11734                       uint8_t                           cos)
11735 {
11736     gen_init->stat_id = bxe_stats_id(fp);
11737     gen_init->spcl_id = fp->cl_id;
11738     gen_init->mtu = sc->mtu;
11739     gen_init->cos = cos;
11740 }
11741 
11742 static void
11743 bxe_pf_rx_q_prep(struct bxe_softc              *sc,
11744                  struct bxe_fastpath           *fp,
11745                  struct rxq_pause_params       *pause,
11746                  struct ecore_rxq_setup_params *rxq_init)
11747 {
11748     uint8_t max_sge = 0;
11749     uint16_t sge_sz = 0;
11750     uint16_t tpa_agg_size = 0;
11751 
11752     pause->sge_th_lo = SGE_TH_LO(sc);
11753     pause->sge_th_hi = SGE_TH_HI(sc);
11754 
11755     /* validate SGE ring has enough to cross high threshold */
11756     if (sc->dropless_fc &&
11757             (pause->sge_th_hi + FW_PREFETCH_CNT) >
11758             (RX_SGE_USABLE_PER_PAGE * RX_SGE_NUM_PAGES)) {
11759         BLOGW(sc, "sge ring threshold limit\n");
11760     }
11761 
11762     /* minimum max_aggregation_size is 2*MTU (two full buffers) */
11763     tpa_agg_size = (2 * sc->mtu);
11764     if (tpa_agg_size < sc->max_aggregation_size) {
11765         tpa_agg_size = sc->max_aggregation_size;
11766     }
11767 
11768     max_sge = SGE_PAGE_ALIGN(sc->mtu) >> SGE_PAGE_SHIFT;
11769     max_sge = ((max_sge + PAGES_PER_SGE - 1) &
11770                    (~(PAGES_PER_SGE - 1))) >> PAGES_PER_SGE_SHIFT;
11771     sge_sz = (uint16_t)min(SGE_PAGES, 0xffff);
11772 
11773     /* pause - not for e1 */
11774     if (!CHIP_IS_E1(sc)) {
11775         pause->bd_th_lo = BD_TH_LO(sc);
11776         pause->bd_th_hi = BD_TH_HI(sc);
11777 
11778         pause->rcq_th_lo = RCQ_TH_LO(sc);
11779         pause->rcq_th_hi = RCQ_TH_HI(sc);
11780 
11781         /* validate rings have enough entries to cross high thresholds */
11782         if (sc->dropless_fc &&
11783             pause->bd_th_hi + FW_PREFETCH_CNT >
11784             sc->rx_ring_size) {
11785             BLOGW(sc, "rx bd ring threshold limit\n");
11786         }
11787 
11788         if (sc->dropless_fc &&
11789             pause->rcq_th_hi + FW_PREFETCH_CNT >
11790             RCQ_NUM_PAGES * RCQ_USABLE_PER_PAGE) {
11791             BLOGW(sc, "rcq ring threshold limit\n");
11792         }
11793 
11794         pause->pri_map = 1;
11795     }
11796 
11797     /* rxq setup */
11798     rxq_init->dscr_map   = fp->rx_dma.paddr;
11799     rxq_init->sge_map    = fp->rx_sge_dma.paddr;
11800     rxq_init->rcq_map    = fp->rcq_dma.paddr;
11801     rxq_init->rcq_np_map = (fp->rcq_dma.paddr + BCM_PAGE_SIZE);
11802 
11803     /*
11804      * This should be a maximum number of data bytes that may be
11805      * placed on the BD (not including paddings).
11806      */
11807     rxq_init->buf_sz = (fp->rx_buf_size -
11808                         IP_HEADER_ALIGNMENT_PADDING);
11809 
11810     rxq_init->cl_qzone_id     = fp->cl_qzone_id;
11811     rxq_init->tpa_agg_sz      = tpa_agg_size;
11812     rxq_init->sge_buf_sz      = sge_sz;
11813     rxq_init->max_sges_pkt    = max_sge;
11814     rxq_init->rss_engine_id   = SC_FUNC(sc);
11815     rxq_init->mcast_engine_id = SC_FUNC(sc);
11816 
11817     /*
11818      * Maximum number or simultaneous TPA aggregation for this Queue.
11819      * For PF Clients it should be the maximum available number.
11820      * VF driver(s) may want to define it to a smaller value.
11821      */
11822     rxq_init->max_tpa_queues = MAX_AGG_QS(sc);
11823 
11824     rxq_init->cache_line_log = BXE_RX_ALIGN_SHIFT;
11825     rxq_init->fw_sb_id = fp->fw_sb_id;
11826 
11827     rxq_init->sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS;
11828 
11829     /*
11830      * configure silent vlan removal
11831      * if multi function mode is afex, then mask default vlan
11832      */
11833     if (IS_MF_AFEX(sc)) {
11834         rxq_init->silent_removal_value =
11835             sc->devinfo.mf_info.afex_def_vlan_tag;
11836         rxq_init->silent_removal_mask = EVL_VLID_MASK;
11837     }
11838 }
11839 
11840 static void
11841 bxe_pf_tx_q_prep(struct bxe_softc              *sc,
11842                  struct bxe_fastpath           *fp,
11843                  struct ecore_txq_setup_params *txq_init,
11844                  uint8_t                       cos)
11845 {
11846     /*
11847      * XXX If multiple CoS is ever supported then each fastpath structure
11848      * will need to maintain tx producer/consumer/dma/etc values *per* CoS.
11849      * fp->txdata[cos]->tx_dma.paddr;
11850      */
11851     txq_init->dscr_map     = fp->tx_dma.paddr;
11852     txq_init->sb_cq_index  = HC_INDEX_ETH_FIRST_TX_CQ_CONS + cos;
11853     txq_init->traffic_type = LLFC_TRAFFIC_TYPE_NW;
11854     txq_init->fw_sb_id     = fp->fw_sb_id;
11855 
11856     /*
11857      * set the TSS leading client id for TX classfication to the
11858      * leading RSS client id
11859      */
11860     txq_init->tss_leading_cl_id = BXE_FP(sc, 0, cl_id);
11861 }
11862 
11863 /*
11864  * This function performs 2 steps in a queue state machine:
11865  *   1) RESET->INIT
11866  *   2) INIT->SETUP
11867  */
11868 static int
11869 bxe_setup_queue(struct bxe_softc    *sc,
11870                 struct bxe_fastpath *fp,
11871                 uint8_t             leading)
11872 {
11873     struct ecore_queue_state_params q_params = { NULL };
11874     struct ecore_queue_setup_params *setup_params =
11875                         &q_params.params.setup;
11876 #if 0
11877     struct ecore_queue_setup_tx_only_params *tx_only_params =
11878                         &q_params.params.tx_only;
11879     uint8_t tx_index;
11880 #endif
11881     int rc;
11882 
11883     BLOGD(sc, DBG_LOAD, "setting up queue %d\n", fp->index);
11884 
11885     bxe_ack_sb(sc, fp->igu_sb_id, USTORM_ID, 0, IGU_INT_ENABLE, 0);
11886 
11887     q_params.q_obj = &BXE_SP_OBJ(sc, fp).q_obj;
11888 
11889     /* we want to wait for completion in this context */
11890     bxe_set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
11891 
11892     /* prepare the INIT parameters */
11893     bxe_pf_q_prep_init(sc, fp, &q_params.params.init);
11894 
11895     /* Set the command */
11896     q_params.cmd = ECORE_Q_CMD_INIT;
11897 
11898     /* Change the state to INIT */
11899     rc = ecore_queue_state_change(sc, &q_params);
11900     if (rc) {
11901         BLOGE(sc, "Queue(%d) INIT failed\n", fp->index);
11902         return (rc);
11903     }
11904 
11905     BLOGD(sc, DBG_LOAD, "init complete\n");
11906 
11907     /* now move the Queue to the SETUP state */
11908     memset(setup_params, 0, sizeof(*setup_params));
11909 
11910     /* set Queue flags */
11911     setup_params->flags = bxe_get_q_flags(sc, fp, leading);
11912 
11913     /* set general SETUP parameters */
11914     bxe_pf_q_prep_general(sc, fp, &setup_params->gen_params,
11915                           FIRST_TX_COS_INDEX);
11916 
11917     bxe_pf_rx_q_prep(sc, fp,
11918                      &setup_params->pause_params,
11919                      &setup_params->rxq_params);
11920 
11921     bxe_pf_tx_q_prep(sc, fp,
11922                      &setup_params->txq_params,
11923                      FIRST_TX_COS_INDEX);
11924 
11925     /* Set the command */
11926     q_params.cmd = ECORE_Q_CMD_SETUP;
11927 
11928     /* change the state to SETUP */
11929     rc = ecore_queue_state_change(sc, &q_params);
11930     if (rc) {
11931         BLOGE(sc, "Queue(%d) SETUP failed\n", fp->index);
11932         return (rc);
11933     }
11934 
11935 #if 0
11936     /* loop through the relevant tx-only indices */
11937     for (tx_index = FIRST_TX_ONLY_COS_INDEX;
11938          tx_index < sc->max_cos;
11939          tx_index++) {
11940         /* prepare and send tx-only ramrod*/
11941         rc = bxe_setup_tx_only(sc, fp, &q_params,
11942                                tx_only_params, tx_index, leading);
11943         if (rc) {
11944             BLOGE(sc, "Queue(%d.%d) TX_ONLY_SETUP failed\n",
11945                   fp->index, tx_index);
11946             return (rc);
11947         }
11948     }
11949 #endif
11950 
11951     return (rc);
11952 }
11953 
11954 static int
11955 bxe_setup_leading(struct bxe_softc *sc)
11956 {
11957     return (bxe_setup_queue(sc, &sc->fp[0], TRUE));
11958 }
11959 
11960 static int
11961 bxe_config_rss_pf(struct bxe_softc            *sc,
11962                   struct ecore_rss_config_obj *rss_obj,
11963                   uint8_t                     config_hash)
11964 {
11965     struct ecore_config_rss_params params = { NULL };
11966     int i;
11967 
11968     /*
11969      * Although RSS is meaningless when there is a single HW queue we
11970      * still need it enabled in order to have HW Rx hash generated.
11971      */
11972 
11973     params.rss_obj = rss_obj;
11974 
11975     bxe_set_bit(RAMROD_COMP_WAIT, &params.ramrod_flags);
11976 
11977     bxe_set_bit(ECORE_RSS_MODE_REGULAR, &params.rss_flags);
11978 
11979     /* RSS configuration */
11980     bxe_set_bit(ECORE_RSS_IPV4, &params.rss_flags);
11981     bxe_set_bit(ECORE_RSS_IPV4_TCP, &params.rss_flags);
11982     bxe_set_bit(ECORE_RSS_IPV6, &params.rss_flags);
11983     bxe_set_bit(ECORE_RSS_IPV6_TCP, &params.rss_flags);
11984     if (rss_obj->udp_rss_v4) {
11985         bxe_set_bit(ECORE_RSS_IPV4_UDP, &params.rss_flags);
11986     }
11987     if (rss_obj->udp_rss_v6) {
11988         bxe_set_bit(ECORE_RSS_IPV6_UDP, &params.rss_flags);
11989     }
11990 
11991     /* Hash bits */
11992     params.rss_result_mask = MULTI_MASK;
11993 
11994     memcpy(params.ind_table, rss_obj->ind_table, sizeof(params.ind_table));
11995 
11996     if (config_hash) {
11997         /* RSS keys */
11998         for (i = 0; i < sizeof(params.rss_key) / 4; i++) {
11999             params.rss_key[i] = arc4random();
12000         }
12001 
12002         bxe_set_bit(ECORE_RSS_SET_SRCH, &params.rss_flags);
12003     }
12004 
12005     return (ecore_config_rss(sc, &params));
12006 }
12007 
12008 static int
12009 bxe_config_rss_eth(struct bxe_softc *sc,
12010                    uint8_t          config_hash)
12011 {
12012     return (bxe_config_rss_pf(sc, &sc->rss_conf_obj, config_hash));
12013 }
12014 
12015 static int
12016 bxe_init_rss_pf(struct bxe_softc *sc)
12017 {
12018     uint8_t num_eth_queues = BXE_NUM_ETH_QUEUES(sc);
12019     int i;
12020 
12021     /*
12022      * Prepare the initial contents of the indirection table if
12023      * RSS is enabled
12024      */
12025     for (i = 0; i < sizeof(sc->rss_conf_obj.ind_table); i++) {
12026         sc->rss_conf_obj.ind_table[i] =
12027             (sc->fp->cl_id + (i % num_eth_queues));
12028     }
12029 
12030     if (sc->udp_rss) {
12031         sc->rss_conf_obj.udp_rss_v4 = sc->rss_conf_obj.udp_rss_v6 = 1;
12032     }
12033 
12034     /*
12035      * For 57710 and 57711 SEARCHER configuration (rss_keys) is
12036      * per-port, so if explicit configuration is needed, do it only
12037      * for a PMF.
12038      *
12039      * For 57712 and newer it's a per-function configuration.
12040      */
12041     return (bxe_config_rss_eth(sc, sc->port.pmf || !CHIP_IS_E1x(sc)));
12042 }
12043 
12044 static int
12045 bxe_set_mac_one(struct bxe_softc          *sc,
12046                 uint8_t                   *mac,
12047                 struct ecore_vlan_mac_obj *obj,
12048                 uint8_t                   set,
12049                 int                       mac_type,
12050                 unsigned long             *ramrod_flags)
12051 {
12052     struct ecore_vlan_mac_ramrod_params ramrod_param;
12053     int rc;
12054 
12055     memset(&ramrod_param, 0, sizeof(ramrod_param));
12056 
12057     /* fill in general parameters */
12058     ramrod_param.vlan_mac_obj = obj;
12059     ramrod_param.ramrod_flags = *ramrod_flags;
12060 
12061     /* fill a user request section if needed */
12062     if (!bxe_test_bit(RAMROD_CONT, ramrod_flags)) {
12063         memcpy(ramrod_param.user_req.u.mac.mac, mac, ETH_ALEN);
12064 
12065         bxe_set_bit(mac_type, &ramrod_param.user_req.vlan_mac_flags);
12066 
12067         /* Set the command: ADD or DEL */
12068         ramrod_param.user_req.cmd = (set) ? ECORE_VLAN_MAC_ADD :
12069                                             ECORE_VLAN_MAC_DEL;
12070     }
12071 
12072     rc = ecore_config_vlan_mac(sc, &ramrod_param);
12073 
12074     if (rc == ECORE_EXISTS) {
12075         BLOGD(sc, DBG_SP, "Failed to schedule ADD operations (EEXIST)\n");
12076         /* do not treat adding same MAC as error */
12077         rc = 0;
12078     } else if (rc < 0) {
12079         BLOGE(sc, "%s MAC failed (%d)\n", (set ? "Set" : "Delete"), rc);
12080     }
12081 
12082     return (rc);
12083 }
12084 
12085 static int
12086 bxe_set_eth_mac(struct bxe_softc *sc,
12087                 uint8_t          set)
12088 {
12089     unsigned long ramrod_flags = 0;
12090 
12091     BLOGD(sc, DBG_LOAD, "Adding Ethernet MAC\n");
12092 
12093     bxe_set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
12094 
12095     /* Eth MAC is set on RSS leading client (fp[0]) */
12096     return (bxe_set_mac_one(sc, sc->link_params.mac_addr,
12097                             &sc->sp_objs->mac_obj,
12098                             set, ECORE_ETH_MAC, &ramrod_flags));
12099 }
12100 
12101 #if 0
12102 static void
12103 bxe_update_max_mf_config(struct bxe_softc *sc,
12104                          uint32_t         value)
12105 {
12106     /* load old values */
12107     uint32_t mf_cfg = sc->devinfo.mf_info.mf_config[SC_VN(sc)];
12108 
12109     if (value != bxe_extract_max_cfg(sc, mf_cfg)) {
12110         /* leave all but MAX value */
12111         mf_cfg &= ~FUNC_MF_CFG_MAX_BW_MASK;
12112 
12113         /* set new MAX value */
12114         mf_cfg |= ((value << FUNC_MF_CFG_MAX_BW_SHIFT) &
12115                    FUNC_MF_CFG_MAX_BW_MASK);
12116 
12117         bxe_fw_command(sc, DRV_MSG_CODE_SET_MF_BW, mf_cfg);
12118     }
12119 }
12120 #endif
12121 
12122 static int
12123 bxe_get_cur_phy_idx(struct bxe_softc *sc)
12124 {
12125     uint32_t sel_phy_idx = 0;
12126 
12127     if (sc->link_params.num_phys <= 1) {
12128         return (ELINK_INT_PHY);
12129     }
12130 
12131     if (sc->link_vars.link_up) {
12132         sel_phy_idx = ELINK_EXT_PHY1;
12133         /* In case link is SERDES, check if the ELINK_EXT_PHY2 is the one */
12134         if ((sc->link_vars.link_status & LINK_STATUS_SERDES_LINK) &&
12135             (sc->link_params.phy[ELINK_EXT_PHY2].supported &
12136              ELINK_SUPPORTED_FIBRE))
12137             sel_phy_idx = ELINK_EXT_PHY2;
12138     } else {
12139         switch (elink_phy_selection(&sc->link_params)) {
12140         case PORT_HW_CFG_PHY_SELECTION_HARDWARE_DEFAULT:
12141         case PORT_HW_CFG_PHY_SELECTION_FIRST_PHY:
12142         case PORT_HW_CFG_PHY_SELECTION_FIRST_PHY_PRIORITY:
12143                sel_phy_idx = ELINK_EXT_PHY1;
12144                break;
12145         case PORT_HW_CFG_PHY_SELECTION_SECOND_PHY:
12146         case PORT_HW_CFG_PHY_SELECTION_SECOND_PHY_PRIORITY:
12147                sel_phy_idx = ELINK_EXT_PHY2;
12148                break;
12149         }
12150     }
12151 
12152     return (sel_phy_idx);
12153 }
12154 
12155 static int
12156 bxe_get_link_cfg_idx(struct bxe_softc *sc)
12157 {
12158     uint32_t sel_phy_idx = bxe_get_cur_phy_idx(sc);
12159 
12160     /*
12161      * The selected activated PHY is always after swapping (in case PHY
12162      * swapping is enabled). So when swapping is enabled, we need to reverse
12163      * the configuration
12164      */
12165 
12166     if (sc->link_params.multi_phy_config & PORT_HW_CFG_PHY_SWAPPED_ENABLED) {
12167         if (sel_phy_idx == ELINK_EXT_PHY1)
12168             sel_phy_idx = ELINK_EXT_PHY2;
12169         else if (sel_phy_idx == ELINK_EXT_PHY2)
12170             sel_phy_idx = ELINK_EXT_PHY1;
12171     }
12172 
12173     return (ELINK_LINK_CONFIG_IDX(sel_phy_idx));
12174 }
12175 
12176 static void
12177 bxe_set_requested_fc(struct bxe_softc *sc)
12178 {
12179     /*
12180      * Initialize link parameters structure variables
12181      * It is recommended to turn off RX FC for jumbo frames
12182      * for better performance
12183      */
12184     if (CHIP_IS_E1x(sc) && (sc->mtu > 5000)) {
12185         sc->link_params.req_fc_auto_adv = ELINK_FLOW_CTRL_TX;
12186     } else {
12187         sc->link_params.req_fc_auto_adv = ELINK_FLOW_CTRL_BOTH;
12188     }
12189 }
12190 
12191 static void
12192 bxe_calc_fc_adv(struct bxe_softc *sc)
12193 {
12194     uint8_t cfg_idx = bxe_get_link_cfg_idx(sc);
12195     switch (sc->link_vars.ieee_fc &
12196             MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_MASK) {
12197     case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_NONE:
12198     default:
12199         sc->port.advertising[cfg_idx] &= ~(ADVERTISED_Asym_Pause |
12200                                            ADVERTISED_Pause);
12201         break;
12202 
12203     case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_BOTH:
12204         sc->port.advertising[cfg_idx] |= (ADVERTISED_Asym_Pause |
12205                                           ADVERTISED_Pause);
12206         break;
12207 
12208     case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_ASYMMETRIC:
12209         sc->port.advertising[cfg_idx] |= ADVERTISED_Asym_Pause;
12210         break;
12211     }
12212 }
12213 
12214 static uint16_t
12215 bxe_get_mf_speed(struct bxe_softc *sc)
12216 {
12217     uint16_t line_speed = sc->link_vars.line_speed;
12218     if (IS_MF(sc)) {
12219         uint16_t maxCfg =
12220             bxe_extract_max_cfg(sc, sc->devinfo.mf_info.mf_config[SC_VN(sc)]);
12221 
12222         /* calculate the current MAX line speed limit for the MF devices */
12223         if (IS_MF_SI(sc)) {
12224             line_speed = (line_speed * maxCfg) / 100;
12225         } else { /* SD mode */
12226             uint16_t vn_max_rate = maxCfg * 100;
12227 
12228             if (vn_max_rate < line_speed) {
12229                 line_speed = vn_max_rate;
12230             }
12231         }
12232     }
12233 
12234     return (line_speed);
12235 }
12236 
12237 static void
12238 bxe_fill_report_data(struct bxe_softc            *sc,
12239                      struct bxe_link_report_data *data)
12240 {
12241     uint16_t line_speed = bxe_get_mf_speed(sc);
12242 
12243     memset(data, 0, sizeof(*data));
12244 
12245     /* fill the report data with the effective line speed */
12246     data->line_speed = line_speed;
12247 
12248     /* Link is down */
12249     if (!sc->link_vars.link_up || (sc->flags & BXE_MF_FUNC_DIS)) {
12250         bxe_set_bit(BXE_LINK_REPORT_LINK_DOWN, &data->link_report_flags);
12251     }
12252 
12253     /* Full DUPLEX */
12254     if (sc->link_vars.duplex == DUPLEX_FULL) {
12255         bxe_set_bit(BXE_LINK_REPORT_FULL_DUPLEX, &data->link_report_flags);
12256     }
12257 
12258     /* Rx Flow Control is ON */
12259     if (sc->link_vars.flow_ctrl & ELINK_FLOW_CTRL_RX) {
12260         bxe_set_bit(BXE_LINK_REPORT_RX_FC_ON, &data->link_report_flags);
12261     }
12262 
12263     /* Tx Flow Control is ON */
12264     if (sc->link_vars.flow_ctrl & ELINK_FLOW_CTRL_TX) {
12265         bxe_set_bit(BXE_LINK_REPORT_TX_FC_ON, &data->link_report_flags);
12266     }
12267 }
12268 
12269 /* report link status to OS, should be called under phy_lock */
12270 static void
12271 bxe_link_report_locked(struct bxe_softc *sc)
12272 {
12273     struct bxe_link_report_data cur_data;
12274 
12275     /* reread mf_cfg */
12276     if (IS_PF(sc) && !CHIP_IS_E1(sc)) {
12277         bxe_read_mf_cfg(sc);
12278     }
12279 
12280     /* Read the current link report info */
12281     bxe_fill_report_data(sc, &cur_data);
12282 
12283     /* Don't report link down or exactly the same link status twice */
12284     if (!memcmp(&cur_data, &sc->last_reported_link, sizeof(cur_data)) ||
12285         (bxe_test_bit(BXE_LINK_REPORT_LINK_DOWN,
12286                       &sc->last_reported_link.link_report_flags) &&
12287          bxe_test_bit(BXE_LINK_REPORT_LINK_DOWN,
12288                       &cur_data.link_report_flags))) {
12289         return;
12290     }
12291 
12292     sc->link_cnt++;
12293 
12294     /* report new link params and remember the state for the next time */
12295     memcpy(&sc->last_reported_link, &cur_data, sizeof(cur_data));
12296 
12297     if (bxe_test_bit(BXE_LINK_REPORT_LINK_DOWN,
12298                      &cur_data.link_report_flags)) {
12299         if_link_state_change(sc->ifp, LINK_STATE_DOWN);
12300         BLOGI(sc, "NIC Link is Down\n");
12301     } else {
12302         const char *duplex;
12303         const char *flow;
12304 
12305         if (bxe_test_and_clear_bit(BXE_LINK_REPORT_FULL_DUPLEX,
12306                                    &cur_data.link_report_flags)) {
12307             duplex = "full";
12308         } else {
12309             duplex = "half";
12310         }
12311 
12312         /*
12313          * Handle the FC at the end so that only these flags would be
12314          * possibly set. This way we may easily check if there is no FC
12315          * enabled.
12316          */
12317         if (cur_data.link_report_flags) {
12318             if (bxe_test_bit(BXE_LINK_REPORT_RX_FC_ON,
12319                              &cur_data.link_report_flags) &&
12320                 bxe_test_bit(BXE_LINK_REPORT_TX_FC_ON,
12321                              &cur_data.link_report_flags)) {
12322                 flow = "ON - receive & transmit";
12323             } else if (bxe_test_bit(BXE_LINK_REPORT_RX_FC_ON,
12324                                     &cur_data.link_report_flags) &&
12325                        !bxe_test_bit(BXE_LINK_REPORT_TX_FC_ON,
12326                                      &cur_data.link_report_flags)) {
12327                 flow = "ON - receive";
12328             } else if (!bxe_test_bit(BXE_LINK_REPORT_RX_FC_ON,
12329                                      &cur_data.link_report_flags) &&
12330                        bxe_test_bit(BXE_LINK_REPORT_TX_FC_ON,
12331                                     &cur_data.link_report_flags)) {
12332                 flow = "ON - transmit";
12333             } else {
12334                 flow = "none"; /* possible? */
12335             }
12336         } else {
12337             flow = "none";
12338         }
12339 
12340         if_link_state_change(sc->ifp, LINK_STATE_UP);
12341         BLOGI(sc, "NIC Link is Up, %d Mbps %s duplex, Flow control: %s\n",
12342               cur_data.line_speed, duplex, flow);
12343     }
12344 }
12345 
12346 static void
12347 bxe_link_report(struct bxe_softc *sc)
12348 {
12349     bxe_acquire_phy_lock(sc);
12350     bxe_link_report_locked(sc);
12351     bxe_release_phy_lock(sc);
12352 }
12353 
12354 static void
12355 bxe_link_status_update(struct bxe_softc *sc)
12356 {
12357     if (sc->state != BXE_STATE_OPEN) {
12358         return;
12359     }
12360 
12361 #if 0
12362     /* read updated dcb configuration */
12363     if (IS_PF(sc))
12364         bxe_dcbx_pmf_update(sc);
12365 #endif
12366 
12367     if (IS_PF(sc) && !CHIP_REV_IS_SLOW(sc)) {
12368         elink_link_status_update(&sc->link_params, &sc->link_vars);
12369     } else {
12370         sc->port.supported[0] |= (ELINK_SUPPORTED_10baseT_Half |
12371                                   ELINK_SUPPORTED_10baseT_Full |
12372                                   ELINK_SUPPORTED_100baseT_Half |
12373                                   ELINK_SUPPORTED_100baseT_Full |
12374                                   ELINK_SUPPORTED_1000baseT_Full |
12375                                   ELINK_SUPPORTED_2500baseX_Full |
12376                                   ELINK_SUPPORTED_10000baseT_Full |
12377                                   ELINK_SUPPORTED_TP |
12378                                   ELINK_SUPPORTED_FIBRE |
12379                                   ELINK_SUPPORTED_Autoneg |
12380                                   ELINK_SUPPORTED_Pause |
12381                                   ELINK_SUPPORTED_Asym_Pause);
12382         sc->port.advertising[0] = sc->port.supported[0];
12383 
12384         sc->link_params.sc                = sc;
12385         sc->link_params.port              = SC_PORT(sc);
12386         sc->link_params.req_duplex[0]     = DUPLEX_FULL;
12387         sc->link_params.req_flow_ctrl[0]  = ELINK_FLOW_CTRL_NONE;
12388         sc->link_params.req_line_speed[0] = SPEED_10000;
12389         sc->link_params.speed_cap_mask[0] = 0x7f0000;
12390         sc->link_params.switch_cfg        = ELINK_SWITCH_CFG_10G;
12391 
12392         if (CHIP_REV_IS_FPGA(sc)) {
12393             sc->link_vars.mac_type    = ELINK_MAC_TYPE_EMAC;
12394             sc->link_vars.line_speed  = ELINK_SPEED_1000;
12395             sc->link_vars.link_status = (LINK_STATUS_LINK_UP |
12396                                          LINK_STATUS_SPEED_AND_DUPLEX_1000TFD);
12397         } else {
12398             sc->link_vars.mac_type    = ELINK_MAC_TYPE_BMAC;
12399             sc->link_vars.line_speed  = ELINK_SPEED_10000;
12400             sc->link_vars.link_status = (LINK_STATUS_LINK_UP |
12401                                          LINK_STATUS_SPEED_AND_DUPLEX_10GTFD);
12402         }
12403 
12404         sc->link_vars.link_up = 1;
12405 
12406         sc->link_vars.duplex    = DUPLEX_FULL;
12407         sc->link_vars.flow_ctrl = ELINK_FLOW_CTRL_NONE;
12408 
12409         if (IS_PF(sc)) {
12410             REG_WR(sc, NIG_REG_EGRESS_DRAIN0_MODE + sc->link_params.port*4, 0);
12411             bxe_stats_handle(sc, STATS_EVENT_LINK_UP);
12412             bxe_link_report(sc);
12413         }
12414     }
12415 
12416     if (IS_PF(sc)) {
12417         if (sc->link_vars.link_up) {
12418             bxe_stats_handle(sc, STATS_EVENT_LINK_UP);
12419         } else {
12420             bxe_stats_handle(sc, STATS_EVENT_STOP);
12421         }
12422         bxe_link_report(sc);
12423     } else {
12424         bxe_link_report(sc);
12425         bxe_stats_handle(sc, STATS_EVENT_LINK_UP);
12426     }
12427 }
12428 
12429 static int
12430 bxe_initial_phy_init(struct bxe_softc *sc,
12431                      int              load_mode)
12432 {
12433     int rc, cfg_idx = bxe_get_link_cfg_idx(sc);
12434     uint16_t req_line_speed = sc->link_params.req_line_speed[cfg_idx];
12435     struct elink_params *lp = &sc->link_params;
12436 
12437     bxe_set_requested_fc(sc);
12438 
12439     if (CHIP_REV_IS_SLOW(sc)) {
12440         uint32_t bond = CHIP_BOND_ID(sc);
12441         uint32_t feat = 0;
12442 
12443         if (CHIP_IS_E2(sc) && CHIP_IS_MODE_4_PORT(sc)) {
12444             feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_BMAC;
12445         } else if (bond & 0x4) {
12446             if (CHIP_IS_E3(sc)) {
12447                 feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_XMAC;
12448             } else {
12449                 feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_BMAC;
12450             }
12451         } else if (bond & 0x8) {
12452             if (CHIP_IS_E3(sc)) {
12453                 feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_UMAC;
12454             } else {
12455                 feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_EMAC;
12456             }
12457         }
12458 
12459         /* disable EMAC for E3 and above */
12460         if (bond & 0x2) {
12461             feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_EMAC;
12462         }
12463 
12464         sc->link_params.feature_config_flags |= feat;
12465     }
12466 
12467     bxe_acquire_phy_lock(sc);
12468 
12469     if (load_mode == LOAD_DIAG) {
12470         lp->loopback_mode = ELINK_LOOPBACK_XGXS;
12471         /* Prefer doing PHY loopback at 10G speed, if possible */
12472         if (lp->req_line_speed[cfg_idx] < ELINK_SPEED_10000) {
12473             if (lp->speed_cap_mask[cfg_idx] &
12474                 PORT_HW_CFG_SPEED_CAPABILITY_D0_10G) {
12475                 lp->req_line_speed[cfg_idx] = ELINK_SPEED_10000;
12476             } else {
12477                 lp->req_line_speed[cfg_idx] = ELINK_SPEED_1000;
12478             }
12479         }
12480     }
12481 
12482     if (load_mode == LOAD_LOOPBACK_EXT) {
12483         lp->loopback_mode = ELINK_LOOPBACK_EXT;
12484     }
12485 
12486     rc = elink_phy_init(&sc->link_params, &sc->link_vars);
12487 
12488     bxe_release_phy_lock(sc);
12489 
12490     bxe_calc_fc_adv(sc);
12491 
12492     if (sc->link_vars.link_up) {
12493         bxe_stats_handle(sc, STATS_EVENT_LINK_UP);
12494         bxe_link_report(sc);
12495     }
12496 
12497     if (!CHIP_REV_IS_SLOW(sc)) {
12498         bxe_periodic_start(sc);
12499     }
12500 
12501     sc->link_params.req_line_speed[cfg_idx] = req_line_speed;
12502     return (rc);
12503 }
12504 
12505 /* must be called under IF_ADDR_LOCK */
12506 
12507 static int
12508 bxe_set_mc_list(struct bxe_softc *sc)
12509 {
12510     struct ecore_mcast_ramrod_params rparam = { NULL };
12511     int rc = 0;
12512     int mc_count = 0;
12513     int mcnt, i;
12514     struct ecore_mcast_list_elem *mc_mac, *mc_mac_start;
12515     unsigned char *mta;
12516     if_t ifp = sc->ifp;
12517 
12518     mc_count = if_multiaddr_count(ifp, -1);/* XXX they don't have a limit */
12519     if (!mc_count)
12520         return (0);
12521 
12522     mta = malloc(sizeof(unsigned char) * ETHER_ADDR_LEN *
12523             mc_count, M_DEVBUF, M_NOWAIT);
12524 
12525     if(mta == NULL) {
12526         BLOGE(sc, "Failed to allocate temp mcast list\n");
12527         return (-1);
12528     }
12529     bzero(mta, (sizeof(unsigned char) * ETHER_ADDR_LEN * mc_count));
12530 
12531     mc_mac = malloc(sizeof(*mc_mac) * mc_count, M_DEVBUF, (M_NOWAIT | M_ZERO));
12532     mc_mac_start = mc_mac;
12533 
12534     if (!mc_mac) {
12535         free(mta, M_DEVBUF);
12536         BLOGE(sc, "Failed to allocate temp mcast list\n");
12537         return (-1);
12538     }
12539     bzero(mc_mac, (sizeof(*mc_mac) * mc_count));
12540 
12541     /* mta and mcnt not expected to be  different */
12542     if_multiaddr_array(ifp, mta, &mcnt, mc_count);
12543 
12544 
12545     rparam.mcast_obj = &sc->mcast_obj;
12546     ECORE_LIST_INIT(&rparam.mcast_list);
12547 
12548     for(i=0; i< mcnt; i++) {
12549 
12550         mc_mac->mac = (uint8_t *)(mta + (i * ETHER_ADDR_LEN));
12551         ECORE_LIST_PUSH_TAIL(&mc_mac->link, &rparam.mcast_list);
12552 
12553         BLOGD(sc, DBG_LOAD,
12554               "Setting MCAST %02X:%02X:%02X:%02X:%02X:%02X\n",
12555               mc_mac->mac[0], mc_mac->mac[1], mc_mac->mac[2],
12556               mc_mac->mac[3], mc_mac->mac[4], mc_mac->mac[5]);
12557 
12558         mc_mac++;
12559     }
12560     rparam.mcast_list_len = mc_count;
12561 
12562     BXE_MCAST_LOCK(sc);
12563 
12564     /* first, clear all configured multicast MACs */
12565     rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_DEL);
12566     if (rc < 0) {
12567         BLOGE(sc, "Failed to clear multicast configuration: %d\n", rc);
12568         BXE_MCAST_UNLOCK(sc);
12569     	free(mc_mac_start, M_DEVBUF);
12570         free(mta, M_DEVBUF);
12571         return (rc);
12572     }
12573 
12574     /* Now add the new MACs */
12575     rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_ADD);
12576     if (rc < 0) {
12577         BLOGE(sc, "Failed to set new mcast config (%d)\n", rc);
12578     }
12579 
12580     BXE_MCAST_UNLOCK(sc);
12581 
12582     free(mc_mac_start, M_DEVBUF);
12583     free(mta, M_DEVBUF);
12584 
12585     return (rc);
12586 }
12587 
12588 static int
12589 bxe_set_uc_list(struct bxe_softc *sc)
12590 {
12591     if_t ifp = sc->ifp;
12592     struct ecore_vlan_mac_obj *mac_obj = &sc->sp_objs->mac_obj;
12593     struct ifaddr *ifa;
12594     unsigned long ramrod_flags = 0;
12595     int rc;
12596 
12597 #if __FreeBSD_version < 800000
12598     IF_ADDR_LOCK(ifp);
12599 #else
12600     if_addr_rlock(ifp);
12601 #endif
12602 
12603     /* first schedule a cleanup up of old configuration */
12604     rc = bxe_del_all_macs(sc, mac_obj, ECORE_UC_LIST_MAC, FALSE);
12605     if (rc < 0) {
12606         BLOGE(sc, "Failed to schedule delete of all ETH MACs (%d)\n", rc);
12607 #if __FreeBSD_version < 800000
12608         IF_ADDR_UNLOCK(ifp);
12609 #else
12610         if_addr_runlock(ifp);
12611 #endif
12612         return (rc);
12613     }
12614 
12615     ifa = if_getifaddr(ifp); /* XXX Is this structure */
12616     while (ifa) {
12617         if (ifa->ifa_addr->sa_family != AF_LINK) {
12618             ifa = TAILQ_NEXT(ifa, ifa_link);
12619             continue;
12620         }
12621 
12622         rc = bxe_set_mac_one(sc, (uint8_t *)LLADDR((struct sockaddr_dl *)ifa->ifa_addr),
12623                              mac_obj, TRUE, ECORE_UC_LIST_MAC, &ramrod_flags);
12624         if (rc == -EEXIST) {
12625             BLOGD(sc, DBG_SP, "Failed to schedule ADD operations (EEXIST)\n");
12626             /* do not treat adding same MAC as an error */
12627             rc = 0;
12628         } else if (rc < 0) {
12629             BLOGE(sc, "Failed to schedule ADD operations (%d)\n", rc);
12630 #if __FreeBSD_version < 800000
12631             IF_ADDR_UNLOCK(ifp);
12632 #else
12633             if_addr_runlock(ifp);
12634 #endif
12635             return (rc);
12636         }
12637 
12638         ifa = TAILQ_NEXT(ifa, ifa_link);
12639     }
12640 
12641 #if __FreeBSD_version < 800000
12642     IF_ADDR_UNLOCK(ifp);
12643 #else
12644     if_addr_runlock(ifp);
12645 #endif
12646 
12647     /* Execute the pending commands */
12648     bit_set(&ramrod_flags, RAMROD_CONT);
12649     return (bxe_set_mac_one(sc, NULL, mac_obj, FALSE /* don't care */,
12650                             ECORE_UC_LIST_MAC, &ramrod_flags));
12651 }
12652 
12653 static void
12654 bxe_set_rx_mode(struct bxe_softc *sc)
12655 {
12656     if_t ifp = sc->ifp;
12657     uint32_t rx_mode = BXE_RX_MODE_NORMAL;
12658 
12659     if (sc->state != BXE_STATE_OPEN) {
12660         BLOGD(sc, DBG_SP, "state is %x, returning\n", sc->state);
12661         return;
12662     }
12663 
12664     BLOGD(sc, DBG_SP, "if_flags(ifp)=0x%x\n", if_getflags(sc->ifp));
12665 
12666     if (if_getflags(ifp) & IFF_PROMISC) {
12667         rx_mode = BXE_RX_MODE_PROMISC;
12668     } else if ((if_getflags(ifp) & IFF_ALLMULTI) ||
12669                ((if_getamcount(ifp) > BXE_MAX_MULTICAST) &&
12670                 CHIP_IS_E1(sc))) {
12671         rx_mode = BXE_RX_MODE_ALLMULTI;
12672     } else {
12673         if (IS_PF(sc)) {
12674             /* some multicasts */
12675             if (bxe_set_mc_list(sc) < 0) {
12676                 rx_mode = BXE_RX_MODE_ALLMULTI;
12677             }
12678             if (bxe_set_uc_list(sc) < 0) {
12679                 rx_mode = BXE_RX_MODE_PROMISC;
12680             }
12681         }
12682 #if 0
12683         else {
12684             /*
12685              * Configuring mcast to a VF involves sleeping (when we
12686              * wait for the PF's response). Since this function is
12687              * called from a non sleepable context we must schedule
12688              * a work item for this purpose
12689              */
12690             bxe_set_bit(BXE_SP_RTNL_VFPF_MCAST, &sc->sp_rtnl_state);
12691             schedule_delayed_work(&sc->sp_rtnl_task, 0);
12692         }
12693 #endif
12694     }
12695 
12696     sc->rx_mode = rx_mode;
12697 
12698     /* schedule the rx_mode command */
12699     if (bxe_test_bit(ECORE_FILTER_RX_MODE_PENDING, &sc->sp_state)) {
12700         BLOGD(sc, DBG_LOAD, "Scheduled setting rx_mode with ECORE...\n");
12701         bxe_set_bit(ECORE_FILTER_RX_MODE_SCHED, &sc->sp_state);
12702         return;
12703     }
12704 
12705     if (IS_PF(sc)) {
12706         bxe_set_storm_rx_mode(sc);
12707     }
12708 #if 0
12709     else {
12710         /*
12711          * Configuring mcast to a VF involves sleeping (when we
12712          * wait for the PF's response). Since this function is
12713          * called from a non sleepable context we must schedule
12714          * a work item for this purpose
12715          */
12716         bxe_set_bit(BXE_SP_RTNL_VFPF_STORM_RX_MODE, &sc->sp_rtnl_state);
12717         schedule_delayed_work(&sc->sp_rtnl_task, 0);
12718     }
12719 #endif
12720 
12721 }
12722 
12723 
12724 /* update flags in shmem */
12725 static void
12726 bxe_update_drv_flags(struct bxe_softc *sc,
12727                      uint32_t         flags,
12728                      uint32_t         set)
12729 {
12730     uint32_t drv_flags;
12731 
12732     if (SHMEM2_HAS(sc, drv_flags)) {
12733         bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_DRV_FLAGS);
12734         drv_flags = SHMEM2_RD(sc, drv_flags);
12735 
12736         if (set) {
12737             SET_FLAGS(drv_flags, flags);
12738         } else {
12739             RESET_FLAGS(drv_flags, flags);
12740         }
12741 
12742         SHMEM2_WR(sc, drv_flags, drv_flags);
12743         BLOGD(sc, DBG_LOAD, "drv_flags 0x%08x\n", drv_flags);
12744 
12745         bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_DRV_FLAGS);
12746     }
12747 }
12748 
12749 /* periodic timer callout routine, only runs when the interface is up */
12750 
12751 static void
12752 bxe_periodic_callout_func(void *xsc)
12753 {
12754     struct bxe_softc *sc = (struct bxe_softc *)xsc;
12755     int i;
12756 
12757     if (!BXE_CORE_TRYLOCK(sc)) {
12758         /* just bail and try again next time */
12759 
12760         if ((sc->state == BXE_STATE_OPEN) &&
12761             (atomic_load_acq_long(&sc->periodic_flags) == PERIODIC_GO)) {
12762             /* schedule the next periodic callout */
12763             callout_reset(&sc->periodic_callout, hz,
12764                           bxe_periodic_callout_func, sc);
12765         }
12766 
12767         return;
12768     }
12769 
12770     if ((sc->state != BXE_STATE_OPEN) ||
12771         (atomic_load_acq_long(&sc->periodic_flags) == PERIODIC_STOP)) {
12772         BLOGW(sc, "periodic callout exit (state=0x%x)\n", sc->state);
12773         BXE_CORE_UNLOCK(sc);
12774         return;
12775     }
12776 
12777     /* Check for TX timeouts on any fastpath. */
12778     FOR_EACH_QUEUE(sc, i) {
12779         if (bxe_watchdog(sc, &sc->fp[i]) != 0) {
12780             /* Ruh-Roh, chip was reset! */
12781             break;
12782         }
12783     }
12784 
12785     if (!CHIP_REV_IS_SLOW(sc)) {
12786         /*
12787          * This barrier is needed to ensure the ordering between the writing
12788          * to the sc->port.pmf in the bxe_nic_load() or bxe_pmf_update() and
12789          * the reading here.
12790          */
12791         mb();
12792         if (sc->port.pmf) {
12793 	    bxe_acquire_phy_lock(sc);
12794             elink_period_func(&sc->link_params, &sc->link_vars);
12795 	    bxe_release_phy_lock(sc);
12796         }
12797     }
12798 
12799     if (IS_PF(sc) && !(sc->flags & BXE_NO_PULSE)) {
12800         int mb_idx = SC_FW_MB_IDX(sc);
12801         uint32_t drv_pulse;
12802         uint32_t mcp_pulse;
12803 
12804         ++sc->fw_drv_pulse_wr_seq;
12805         sc->fw_drv_pulse_wr_seq &= DRV_PULSE_SEQ_MASK;
12806 
12807         drv_pulse = sc->fw_drv_pulse_wr_seq;
12808         bxe_drv_pulse(sc);
12809 
12810         mcp_pulse = (SHMEM_RD(sc, func_mb[mb_idx].mcp_pulse_mb) &
12811                      MCP_PULSE_SEQ_MASK);
12812 
12813         /*
12814          * The delta between driver pulse and mcp response should
12815          * be 1 (before mcp response) or 0 (after mcp response).
12816          */
12817         if ((drv_pulse != mcp_pulse) &&
12818             (drv_pulse != ((mcp_pulse + 1) & MCP_PULSE_SEQ_MASK))) {
12819             /* someone lost a heartbeat... */
12820             BLOGE(sc, "drv_pulse (0x%x) != mcp_pulse (0x%x)\n",
12821                   drv_pulse, mcp_pulse);
12822         }
12823     }
12824 
12825     /* state is BXE_STATE_OPEN */
12826     bxe_stats_handle(sc, STATS_EVENT_UPDATE);
12827 
12828 #if 0
12829     /* sample VF bulletin board for new posts from PF */
12830     if (IS_VF(sc)) {
12831         bxe_sample_bulletin(sc);
12832     }
12833 #endif
12834 
12835     BXE_CORE_UNLOCK(sc);
12836 
12837     if ((sc->state == BXE_STATE_OPEN) &&
12838         (atomic_load_acq_long(&sc->periodic_flags) == PERIODIC_GO)) {
12839         /* schedule the next periodic callout */
12840         callout_reset(&sc->periodic_callout, hz,
12841                       bxe_periodic_callout_func, sc);
12842     }
12843 }
12844 
12845 static void
12846 bxe_periodic_start(struct bxe_softc *sc)
12847 {
12848     atomic_store_rel_long(&sc->periodic_flags, PERIODIC_GO);
12849     callout_reset(&sc->periodic_callout, hz, bxe_periodic_callout_func, sc);
12850 }
12851 
12852 static void
12853 bxe_periodic_stop(struct bxe_softc *sc)
12854 {
12855     atomic_store_rel_long(&sc->periodic_flags, PERIODIC_STOP);
12856     callout_drain(&sc->periodic_callout);
12857 }
12858 
12859 /* start the controller */
12860 static __noinline int
12861 bxe_nic_load(struct bxe_softc *sc,
12862              int              load_mode)
12863 {
12864     uint32_t val;
12865     int load_code = 0;
12866     int i, rc = 0;
12867 
12868     BXE_CORE_LOCK_ASSERT(sc);
12869 
12870     BLOGD(sc, DBG_LOAD, "Starting NIC load...\n");
12871 
12872     sc->state = BXE_STATE_OPENING_WAITING_LOAD;
12873 
12874     if (IS_PF(sc)) {
12875         /* must be called before memory allocation and HW init */
12876         bxe_ilt_set_info(sc);
12877     }
12878 
12879     sc->last_reported_link_state = LINK_STATE_UNKNOWN;
12880 
12881     bxe_set_fp_rx_buf_size(sc);
12882 
12883     if (bxe_alloc_fp_buffers(sc) != 0) {
12884         BLOGE(sc, "Failed to allocate fastpath memory\n");
12885         sc->state = BXE_STATE_CLOSED;
12886         rc = ENOMEM;
12887         goto bxe_nic_load_error0;
12888     }
12889 
12890     if (bxe_alloc_mem(sc) != 0) {
12891         sc->state = BXE_STATE_CLOSED;
12892         rc = ENOMEM;
12893         goto bxe_nic_load_error0;
12894     }
12895 
12896     if (bxe_alloc_fw_stats_mem(sc) != 0) {
12897         sc->state = BXE_STATE_CLOSED;
12898         rc = ENOMEM;
12899         goto bxe_nic_load_error0;
12900     }
12901 
12902     if (IS_PF(sc)) {
12903         /* set pf load just before approaching the MCP */
12904         bxe_set_pf_load(sc);
12905 
12906         /* if MCP exists send load request and analyze response */
12907         if (!BXE_NOMCP(sc)) {
12908             /* attempt to load pf */
12909             if (bxe_nic_load_request(sc, &load_code) != 0) {
12910                 sc->state = BXE_STATE_CLOSED;
12911                 rc = ENXIO;
12912                 goto bxe_nic_load_error1;
12913             }
12914 
12915             /* what did the MCP say? */
12916             if (bxe_nic_load_analyze_req(sc, load_code) != 0) {
12917                 bxe_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0);
12918                 sc->state = BXE_STATE_CLOSED;
12919                 rc = ENXIO;
12920                 goto bxe_nic_load_error2;
12921             }
12922         } else {
12923             BLOGI(sc, "Device has no MCP!\n");
12924             load_code = bxe_nic_load_no_mcp(sc);
12925         }
12926 
12927         /* mark PMF if applicable */
12928         bxe_nic_load_pmf(sc, load_code);
12929 
12930         /* Init Function state controlling object */
12931         bxe_init_func_obj(sc);
12932 
12933         /* Initialize HW */
12934         if (bxe_init_hw(sc, load_code) != 0) {
12935             BLOGE(sc, "HW init failed\n");
12936             bxe_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0);
12937             sc->state = BXE_STATE_CLOSED;
12938             rc = ENXIO;
12939             goto bxe_nic_load_error2;
12940         }
12941     }
12942 
12943     /* set ALWAYS_ALIVE bit in shmem */
12944     sc->fw_drv_pulse_wr_seq |= DRV_PULSE_ALWAYS_ALIVE;
12945     bxe_drv_pulse(sc);
12946     sc->flags |= BXE_NO_PULSE;
12947 
12948     /* attach interrupts */
12949     if (bxe_interrupt_attach(sc) != 0) {
12950         sc->state = BXE_STATE_CLOSED;
12951         rc = ENXIO;
12952         goto bxe_nic_load_error2;
12953     }
12954 
12955     bxe_nic_init(sc, load_code);
12956 
12957     /* Init per-function objects */
12958     if (IS_PF(sc)) {
12959         bxe_init_objs(sc);
12960         // XXX bxe_iov_nic_init(sc);
12961 
12962         /* set AFEX default VLAN tag to an invalid value */
12963         sc->devinfo.mf_info.afex_def_vlan_tag = -1;
12964         // XXX bxe_nic_load_afex_dcc(sc, load_code);
12965 
12966         sc->state = BXE_STATE_OPENING_WAITING_PORT;
12967         rc = bxe_func_start(sc);
12968         if (rc) {
12969             BLOGE(sc, "Function start failed!\n");
12970             bxe_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0);
12971             sc->state = BXE_STATE_ERROR;
12972             goto bxe_nic_load_error3;
12973         }
12974 
12975         /* send LOAD_DONE command to MCP */
12976         if (!BXE_NOMCP(sc)) {
12977             load_code = bxe_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0);
12978             if (!load_code) {
12979                 BLOGE(sc, "MCP response failure, aborting\n");
12980                 sc->state = BXE_STATE_ERROR;
12981                 rc = ENXIO;
12982                 goto bxe_nic_load_error3;
12983             }
12984         }
12985 
12986         rc = bxe_setup_leading(sc);
12987         if (rc) {
12988             BLOGE(sc, "Setup leading failed!\n");
12989             sc->state = BXE_STATE_ERROR;
12990             goto bxe_nic_load_error3;
12991         }
12992 
12993         FOR_EACH_NONDEFAULT_ETH_QUEUE(sc, i) {
12994             rc = bxe_setup_queue(sc, &sc->fp[i], FALSE);
12995             if (rc) {
12996                 BLOGE(sc, "Queue(%d) setup failed\n", i);
12997                 sc->state = BXE_STATE_ERROR;
12998                 goto bxe_nic_load_error3;
12999             }
13000         }
13001 
13002         rc = bxe_init_rss_pf(sc);
13003         if (rc) {
13004             BLOGE(sc, "PF RSS init failed\n");
13005             sc->state = BXE_STATE_ERROR;
13006             goto bxe_nic_load_error3;
13007         }
13008     }
13009     /* XXX VF */
13010 #if 0
13011     else { /* VF */
13012         FOR_EACH_ETH_QUEUE(sc, i) {
13013             rc = bxe_vfpf_setup_q(sc, i);
13014             if (rc) {
13015                 BLOGE(sc, "Queue(%d) setup failed\n", i);
13016                 sc->state = BXE_STATE_ERROR;
13017                 goto bxe_nic_load_error3;
13018             }
13019         }
13020     }
13021 #endif
13022 
13023     /* now when Clients are configured we are ready to work */
13024     sc->state = BXE_STATE_OPEN;
13025 
13026     /* Configure a ucast MAC */
13027     if (IS_PF(sc)) {
13028         rc = bxe_set_eth_mac(sc, TRUE);
13029     }
13030 #if 0
13031     else { /* IS_VF(sc) */
13032         rc = bxe_vfpf_set_mac(sc);
13033     }
13034 #endif
13035     if (rc) {
13036         BLOGE(sc, "Setting Ethernet MAC failed\n");
13037         sc->state = BXE_STATE_ERROR;
13038         goto bxe_nic_load_error3;
13039     }
13040 
13041 #if 0
13042     if (IS_PF(sc) && sc->pending_max) {
13043         /* for AFEX */
13044         bxe_update_max_mf_config(sc, sc->pending_max);
13045         sc->pending_max = 0;
13046     }
13047 #endif
13048 
13049     if (sc->port.pmf) {
13050         rc = bxe_initial_phy_init(sc, /* XXX load_mode */LOAD_OPEN);
13051         if (rc) {
13052             sc->state = BXE_STATE_ERROR;
13053             goto bxe_nic_load_error3;
13054         }
13055     }
13056 
13057     sc->link_params.feature_config_flags &=
13058         ~ELINK_FEATURE_CONFIG_BOOT_FROM_SAN;
13059 
13060     /* start fast path */
13061 
13062     /* Initialize Rx filter */
13063     bxe_set_rx_mode(sc);
13064 
13065     /* start the Tx */
13066     switch (/* XXX load_mode */LOAD_OPEN) {
13067     case LOAD_NORMAL:
13068     case LOAD_OPEN:
13069         break;
13070 
13071     case LOAD_DIAG:
13072     case LOAD_LOOPBACK_EXT:
13073         sc->state = BXE_STATE_DIAG;
13074         break;
13075 
13076     default:
13077         break;
13078     }
13079 
13080     if (sc->port.pmf) {
13081         bxe_update_drv_flags(sc, 1 << DRV_FLAGS_PORT_MASK, 0);
13082     } else {
13083         bxe_link_status_update(sc);
13084     }
13085 
13086     /* start the periodic timer callout */
13087     bxe_periodic_start(sc);
13088 
13089     if (IS_PF(sc) && SHMEM2_HAS(sc, drv_capabilities_flag)) {
13090         /* mark driver is loaded in shmem2 */
13091         val = SHMEM2_RD(sc, drv_capabilities_flag[SC_FW_MB_IDX(sc)]);
13092         SHMEM2_WR(sc, drv_capabilities_flag[SC_FW_MB_IDX(sc)],
13093                   (val |
13094                    DRV_FLAGS_CAPABILITIES_LOADED_SUPPORTED |
13095                    DRV_FLAGS_CAPABILITIES_LOADED_L2));
13096     }
13097 
13098     /* wait for all pending SP commands to complete */
13099     if (IS_PF(sc) && !bxe_wait_sp_comp(sc, ~0x0UL)) {
13100         BLOGE(sc, "Timeout waiting for all SPs to complete!\n");
13101         bxe_periodic_stop(sc);
13102         bxe_nic_unload(sc, UNLOAD_CLOSE, FALSE);
13103         return (ENXIO);
13104     }
13105 
13106 #if 0
13107     /* If PMF - send ADMIN DCBX msg to MFW to initiate DCBX FSM */
13108     if (sc->port.pmf && (sc->state != BXE_STATE_DIAG)) {
13109         bxe_dcbx_init(sc, FALSE);
13110     }
13111 #endif
13112 
13113     /* Tell the stack the driver is running! */
13114     if_setdrvflags(sc->ifp, IFF_DRV_RUNNING);
13115 
13116     BLOGD(sc, DBG_LOAD, "NIC successfully loaded\n");
13117 
13118     return (0);
13119 
13120 bxe_nic_load_error3:
13121 
13122     if (IS_PF(sc)) {
13123         bxe_int_disable_sync(sc, 1);
13124 
13125         /* clean out queued objects */
13126         bxe_squeeze_objects(sc);
13127     }
13128 
13129     bxe_interrupt_detach(sc);
13130 
13131 bxe_nic_load_error2:
13132 
13133     if (IS_PF(sc) && !BXE_NOMCP(sc)) {
13134         bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP, 0);
13135         bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_DONE, 0);
13136     }
13137 
13138     sc->port.pmf = 0;
13139 
13140 bxe_nic_load_error1:
13141 
13142     /* clear pf_load status, as it was already set */
13143     if (IS_PF(sc)) {
13144         bxe_clear_pf_load(sc);
13145     }
13146 
13147 bxe_nic_load_error0:
13148 
13149     bxe_free_fw_stats_mem(sc);
13150     bxe_free_fp_buffers(sc);
13151     bxe_free_mem(sc);
13152 
13153     return (rc);
13154 }
13155 
13156 static int
13157 bxe_init_locked(struct bxe_softc *sc)
13158 {
13159     int other_engine = SC_PATH(sc) ? 0 : 1;
13160     uint8_t other_load_status, load_status;
13161     uint8_t global = FALSE;
13162     int rc;
13163 
13164     BXE_CORE_LOCK_ASSERT(sc);
13165 
13166     /* check if the driver is already running */
13167     if (if_getdrvflags(sc->ifp) & IFF_DRV_RUNNING) {
13168         BLOGD(sc, DBG_LOAD, "Init called while driver is running!\n");
13169         return (0);
13170     }
13171 
13172     bxe_set_power_state(sc, PCI_PM_D0);
13173 
13174     /*
13175      * If parity occurred during the unload, then attentions and/or
13176      * RECOVERY_IN_PROGRES may still be set. If so we want the first function
13177      * loaded on the current engine to complete the recovery. Parity recovery
13178      * is only relevant for PF driver.
13179      */
13180     if (IS_PF(sc)) {
13181         other_load_status = bxe_get_load_status(sc, other_engine);
13182         load_status = bxe_get_load_status(sc, SC_PATH(sc));
13183 
13184         if (!bxe_reset_is_done(sc, SC_PATH(sc)) ||
13185             bxe_chk_parity_attn(sc, &global, TRUE)) {
13186             do {
13187                 /*
13188                  * If there are attentions and they are in global blocks, set
13189                  * the GLOBAL_RESET bit regardless whether it will be this
13190                  * function that will complete the recovery or not.
13191                  */
13192                 if (global) {
13193                     bxe_set_reset_global(sc);
13194                 }
13195 
13196                 /*
13197                  * Only the first function on the current engine should try
13198                  * to recover in open. In case of attentions in global blocks
13199                  * only the first in the chip should try to recover.
13200                  */
13201                 if ((!load_status && (!global || !other_load_status)) &&
13202                     bxe_trylock_leader_lock(sc) && !bxe_leader_reset(sc)) {
13203                     BLOGI(sc, "Recovered during init\n");
13204                     break;
13205                 }
13206 
13207                 /* recovery has failed... */
13208                 bxe_set_power_state(sc, PCI_PM_D3hot);
13209                 sc->recovery_state = BXE_RECOVERY_FAILED;
13210 
13211                 BLOGE(sc, "Recovery flow hasn't properly "
13212                           "completed yet, try again later. "
13213                           "If you still see this message after a "
13214                           "few retries then power cycle is required.\n");
13215 
13216                 rc = ENXIO;
13217                 goto bxe_init_locked_done;
13218             } while (0);
13219         }
13220     }
13221 
13222     sc->recovery_state = BXE_RECOVERY_DONE;
13223 
13224     rc = bxe_nic_load(sc, LOAD_OPEN);
13225 
13226 bxe_init_locked_done:
13227 
13228     if (rc) {
13229         /* Tell the stack the driver is NOT running! */
13230         BLOGE(sc, "Initialization failed, "
13231                   "stack notified driver is NOT running!\n");
13232 	if_setdrvflagbits(sc->ifp, 0, IFF_DRV_RUNNING);
13233     }
13234 
13235     return (rc);
13236 }
13237 
13238 static int
13239 bxe_stop_locked(struct bxe_softc *sc)
13240 {
13241     BXE_CORE_LOCK_ASSERT(sc);
13242     return (bxe_nic_unload(sc, UNLOAD_NORMAL, TRUE));
13243 }
13244 
13245 /*
13246  * Handles controller initialization when called from an unlocked routine.
13247  * ifconfig calls this function.
13248  *
13249  * Returns:
13250  *   void
13251  */
13252 static void
13253 bxe_init(void *xsc)
13254 {
13255     struct bxe_softc *sc = (struct bxe_softc *)xsc;
13256 
13257     BXE_CORE_LOCK(sc);
13258     bxe_init_locked(sc);
13259     BXE_CORE_UNLOCK(sc);
13260 }
13261 
13262 static int
13263 bxe_init_ifnet(struct bxe_softc *sc)
13264 {
13265     if_t ifp;
13266     int capabilities;
13267 
13268     /* ifconfig entrypoint for media type/status reporting */
13269     ifmedia_init(&sc->ifmedia, IFM_IMASK,
13270                  bxe_ifmedia_update,
13271                  bxe_ifmedia_status);
13272 
13273     /* set the default interface values */
13274     ifmedia_add(&sc->ifmedia, (IFM_ETHER | IFM_FDX | sc->media), 0, NULL);
13275     ifmedia_add(&sc->ifmedia, (IFM_ETHER | IFM_AUTO), 0, NULL);
13276     ifmedia_set(&sc->ifmedia, (IFM_ETHER | IFM_AUTO));
13277 
13278     sc->ifmedia.ifm_media = sc->ifmedia.ifm_cur->ifm_media; /* XXX ? */
13279 
13280     /* allocate the ifnet structure */
13281     if ((ifp = if_gethandle(IFT_ETHER)) == NULL) {
13282         BLOGE(sc, "Interface allocation failed!\n");
13283         return (ENXIO);
13284     }
13285 
13286     if_setsoftc(ifp, sc);
13287     if_initname(ifp, device_get_name(sc->dev), device_get_unit(sc->dev));
13288     if_setflags(ifp, (IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST));
13289     if_setioctlfn(ifp, bxe_ioctl);
13290     if_setstartfn(ifp, bxe_tx_start);
13291     if_setgetcounterfn(ifp, bxe_get_counter);
13292 #if __FreeBSD_version >= 800000
13293     if_settransmitfn(ifp, bxe_tx_mq_start);
13294     if_setqflushfn(ifp, bxe_mq_flush);
13295 #endif
13296 #ifdef FreeBSD8_0
13297     if_settimer(ifp, 0);
13298 #endif
13299     if_setinitfn(ifp, bxe_init);
13300     if_setmtu(ifp, sc->mtu);
13301     if_sethwassist(ifp, (CSUM_IP      |
13302                         CSUM_TCP      |
13303                         CSUM_UDP      |
13304                         CSUM_TSO      |
13305                         CSUM_TCP_IPV6 |
13306                         CSUM_UDP_IPV6));
13307 
13308     capabilities =
13309 #if __FreeBSD_version < 700000
13310         (IFCAP_VLAN_MTU       |
13311          IFCAP_VLAN_HWTAGGING |
13312          IFCAP_HWCSUM         |
13313          IFCAP_JUMBO_MTU      |
13314          IFCAP_LRO);
13315 #else
13316         (IFCAP_VLAN_MTU       |
13317          IFCAP_VLAN_HWTAGGING |
13318          IFCAP_VLAN_HWTSO     |
13319          IFCAP_VLAN_HWFILTER  |
13320          IFCAP_VLAN_HWCSUM    |
13321          IFCAP_HWCSUM         |
13322          IFCAP_JUMBO_MTU      |
13323          IFCAP_LRO            |
13324          IFCAP_TSO4           |
13325          IFCAP_TSO6           |
13326          IFCAP_WOL_MAGIC);
13327 #endif
13328     if_setcapabilitiesbit(ifp, capabilities, 0); /* XXX */
13329     if_setbaudrate(ifp, IF_Gbps(10));
13330 /* XXX */
13331     if_setsendqlen(ifp, sc->tx_ring_size);
13332     if_setsendqready(ifp);
13333 /* XXX */
13334 
13335     sc->ifp = ifp;
13336 
13337     /* attach to the Ethernet interface list */
13338     ether_ifattach(ifp, sc->link_params.mac_addr);
13339 
13340     return (0);
13341 }
13342 
13343 static void
13344 bxe_deallocate_bars(struct bxe_softc *sc)
13345 {
13346     int i;
13347 
13348     for (i = 0; i < MAX_BARS; i++) {
13349         if (sc->bar[i].resource != NULL) {
13350             bus_release_resource(sc->dev,
13351                                  SYS_RES_MEMORY,
13352                                  sc->bar[i].rid,
13353                                  sc->bar[i].resource);
13354             BLOGD(sc, DBG_LOAD, "Released PCI BAR%d [%02x] memory\n",
13355                   i, PCIR_BAR(i));
13356         }
13357     }
13358 }
13359 
13360 static int
13361 bxe_allocate_bars(struct bxe_softc *sc)
13362 {
13363     u_int flags;
13364     int i;
13365 
13366     memset(sc->bar, 0, sizeof(sc->bar));
13367 
13368     for (i = 0; i < MAX_BARS; i++) {
13369 
13370         /* memory resources reside at BARs 0, 2, 4 */
13371         /* Run `pciconf -lb` to see mappings */
13372         if ((i != 0) && (i != 2) && (i != 4)) {
13373             continue;
13374         }
13375 
13376         sc->bar[i].rid = PCIR_BAR(i);
13377 
13378         flags = RF_ACTIVE;
13379         if (i == 0) {
13380             flags |= RF_SHAREABLE;
13381         }
13382 
13383         if ((sc->bar[i].resource =
13384              bus_alloc_resource_any(sc->dev,
13385                                     SYS_RES_MEMORY,
13386                                     &sc->bar[i].rid,
13387                                     flags)) == NULL) {
13388 #if 0
13389             /* BAR4 doesn't exist for E1 */
13390             BLOGE(sc, "PCI BAR%d [%02x] memory allocation failed\n",
13391                   i, PCIR_BAR(i));
13392 #endif
13393             return (0);
13394         }
13395 
13396         sc->bar[i].tag    = rman_get_bustag(sc->bar[i].resource);
13397         sc->bar[i].handle = rman_get_bushandle(sc->bar[i].resource);
13398         sc->bar[i].kva    = (vm_offset_t)rman_get_virtual(sc->bar[i].resource);
13399 
13400         BLOGI(sc, "PCI BAR%d [%02x] memory allocated: %p-%p (%ld) -> %p\n",
13401               i, PCIR_BAR(i),
13402               (void *)rman_get_start(sc->bar[i].resource),
13403               (void *)rman_get_end(sc->bar[i].resource),
13404               rman_get_size(sc->bar[i].resource),
13405               (void *)sc->bar[i].kva);
13406     }
13407 
13408     return (0);
13409 }
13410 
13411 static void
13412 bxe_get_function_num(struct bxe_softc *sc)
13413 {
13414     uint32_t val = 0;
13415 
13416     /*
13417      * Read the ME register to get the function number. The ME register
13418      * holds the relative-function number and absolute-function number. The
13419      * absolute-function number appears only in E2 and above. Before that
13420      * these bits always contained zero, therefore we cannot blindly use them.
13421      */
13422 
13423     val = REG_RD(sc, BAR_ME_REGISTER);
13424 
13425     sc->pfunc_rel =
13426         (uint8_t)((val & ME_REG_PF_NUM) >> ME_REG_PF_NUM_SHIFT);
13427     sc->path_id =
13428         (uint8_t)((val & ME_REG_ABS_PF_NUM) >> ME_REG_ABS_PF_NUM_SHIFT) & 1;
13429 
13430     if (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) {
13431         sc->pfunc_abs = ((sc->pfunc_rel << 1) | sc->path_id);
13432     } else {
13433         sc->pfunc_abs = (sc->pfunc_rel | sc->path_id);
13434     }
13435 
13436     BLOGD(sc, DBG_LOAD,
13437           "Relative function %d, Absolute function %d, Path %d\n",
13438           sc->pfunc_rel, sc->pfunc_abs, sc->path_id);
13439 }
13440 
13441 static uint32_t
13442 bxe_get_shmem_mf_cfg_base(struct bxe_softc *sc)
13443 {
13444     uint32_t shmem2_size;
13445     uint32_t offset;
13446     uint32_t mf_cfg_offset_value;
13447 
13448     /* Non 57712 */
13449     offset = (SHMEM_RD(sc, func_mb) +
13450               (MAX_FUNC_NUM * sizeof(struct drv_func_mb)));
13451 
13452     /* 57712 plus */
13453     if (sc->devinfo.shmem2_base != 0) {
13454         shmem2_size = SHMEM2_RD(sc, size);
13455         if (shmem2_size > offsetof(struct shmem2_region, mf_cfg_addr)) {
13456             mf_cfg_offset_value = SHMEM2_RD(sc, mf_cfg_addr);
13457             if (SHMEM_MF_CFG_ADDR_NONE != mf_cfg_offset_value) {
13458                 offset = mf_cfg_offset_value;
13459             }
13460         }
13461     }
13462 
13463     return (offset);
13464 }
13465 
13466 static uint32_t
13467 bxe_pcie_capability_read(struct bxe_softc *sc,
13468                          int    reg,
13469                          int    width)
13470 {
13471     int pcie_reg;
13472 
13473     /* ensure PCIe capability is enabled */
13474     if (pci_find_cap(sc->dev, PCIY_EXPRESS, &pcie_reg) == 0) {
13475         if (pcie_reg != 0) {
13476             BLOGD(sc, DBG_LOAD, "PCIe capability at 0x%04x\n", pcie_reg);
13477             return (pci_read_config(sc->dev, (pcie_reg + reg), width));
13478         }
13479     }
13480 
13481     BLOGE(sc, "PCIe capability NOT FOUND!!!\n");
13482 
13483     return (0);
13484 }
13485 
13486 static uint8_t
13487 bxe_is_pcie_pending(struct bxe_softc *sc)
13488 {
13489     return (bxe_pcie_capability_read(sc, PCIR_EXPRESS_DEVICE_STA, 2) &
13490             PCIM_EXP_STA_TRANSACTION_PND);
13491 }
13492 
13493 /*
13494  * Walk the PCI capabiites list for the device to find what features are
13495  * supported. These capabilites may be enabled/disabled by firmware so it's
13496  * best to walk the list rather than make assumptions.
13497  */
13498 static void
13499 bxe_probe_pci_caps(struct bxe_softc *sc)
13500 {
13501     uint16_t link_status;
13502     int reg;
13503 
13504     /* check if PCI Power Management is enabled */
13505     if (pci_find_cap(sc->dev, PCIY_PMG, &reg) == 0) {
13506         if (reg != 0) {
13507             BLOGD(sc, DBG_LOAD, "Found PM capability at 0x%04x\n", reg);
13508 
13509             sc->devinfo.pcie_cap_flags |= BXE_PM_CAPABLE_FLAG;
13510             sc->devinfo.pcie_pm_cap_reg = (uint16_t)reg;
13511         }
13512     }
13513 
13514     link_status = bxe_pcie_capability_read(sc, PCIR_EXPRESS_LINK_STA, 2);
13515 
13516     /* handle PCIe 2.0 workarounds for 57710 */
13517     if (CHIP_IS_E1(sc)) {
13518         /* workaround for 57710 errata E4_57710_27462 */
13519         sc->devinfo.pcie_link_speed =
13520             (REG_RD(sc, 0x3d04) & (1 << 24)) ? 2 : 1;
13521 
13522         /* workaround for 57710 errata E4_57710_27488 */
13523         sc->devinfo.pcie_link_width =
13524             ((link_status & PCIM_LINK_STA_WIDTH) >> 4);
13525         if (sc->devinfo.pcie_link_speed > 1) {
13526             sc->devinfo.pcie_link_width =
13527                 ((link_status & PCIM_LINK_STA_WIDTH) >> 4) >> 1;
13528         }
13529     } else {
13530         sc->devinfo.pcie_link_speed =
13531             (link_status & PCIM_LINK_STA_SPEED);
13532         sc->devinfo.pcie_link_width =
13533             ((link_status & PCIM_LINK_STA_WIDTH) >> 4);
13534     }
13535 
13536     BLOGD(sc, DBG_LOAD, "PCIe link speed=%d width=%d\n",
13537           sc->devinfo.pcie_link_speed, sc->devinfo.pcie_link_width);
13538 
13539     sc->devinfo.pcie_cap_flags |= BXE_PCIE_CAPABLE_FLAG;
13540     sc->devinfo.pcie_pcie_cap_reg = (uint16_t)reg;
13541 
13542     /* check if MSI capability is enabled */
13543     if (pci_find_cap(sc->dev, PCIY_MSI, &reg) == 0) {
13544         if (reg != 0) {
13545             BLOGD(sc, DBG_LOAD, "Found MSI capability at 0x%04x\n", reg);
13546 
13547             sc->devinfo.pcie_cap_flags |= BXE_MSI_CAPABLE_FLAG;
13548             sc->devinfo.pcie_msi_cap_reg = (uint16_t)reg;
13549         }
13550     }
13551 
13552     /* check if MSI-X capability is enabled */
13553     if (pci_find_cap(sc->dev, PCIY_MSIX, &reg) == 0) {
13554         if (reg != 0) {
13555             BLOGD(sc, DBG_LOAD, "Found MSI-X capability at 0x%04x\n", reg);
13556 
13557             sc->devinfo.pcie_cap_flags |= BXE_MSIX_CAPABLE_FLAG;
13558             sc->devinfo.pcie_msix_cap_reg = (uint16_t)reg;
13559         }
13560     }
13561 }
13562 
13563 static int
13564 bxe_get_shmem_mf_cfg_info_sd(struct bxe_softc *sc)
13565 {
13566     struct bxe_mf_info *mf_info = &sc->devinfo.mf_info;
13567     uint32_t val;
13568 
13569     /* get the outer vlan if we're in switch-dependent mode */
13570 
13571     val = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].e1hov_tag);
13572     mf_info->ext_id = (uint16_t)val;
13573 
13574     mf_info->multi_vnics_mode = 1;
13575 
13576     if (!VALID_OVLAN(mf_info->ext_id)) {
13577         BLOGE(sc, "Invalid VLAN (%d)\n", mf_info->ext_id);
13578         return (1);
13579     }
13580 
13581     /* get the capabilities */
13582     if ((mf_info->mf_config[SC_VN(sc)] & FUNC_MF_CFG_PROTOCOL_MASK) ==
13583         FUNC_MF_CFG_PROTOCOL_ISCSI) {
13584         mf_info->mf_protos_supported |= MF_PROTO_SUPPORT_ISCSI;
13585     } else if ((mf_info->mf_config[SC_VN(sc)] & FUNC_MF_CFG_PROTOCOL_MASK) ==
13586                FUNC_MF_CFG_PROTOCOL_FCOE) {
13587         mf_info->mf_protos_supported |= MF_PROTO_SUPPORT_FCOE;
13588     } else {
13589         mf_info->mf_protos_supported |= MF_PROTO_SUPPORT_ETHERNET;
13590     }
13591 
13592     mf_info->vnics_per_port =
13593         (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) ? 2 : 4;
13594 
13595     return (0);
13596 }
13597 
13598 static uint32_t
13599 bxe_get_shmem_ext_proto_support_flags(struct bxe_softc *sc)
13600 {
13601     uint32_t retval = 0;
13602     uint32_t val;
13603 
13604     val = MFCFG_RD(sc, func_ext_config[SC_ABS_FUNC(sc)].func_cfg);
13605 
13606     if (val & MACP_FUNC_CFG_FLAGS_ENABLED) {
13607         if (val & MACP_FUNC_CFG_FLAGS_ETHERNET) {
13608             retval |= MF_PROTO_SUPPORT_ETHERNET;
13609         }
13610         if (val & MACP_FUNC_CFG_FLAGS_ISCSI_OFFLOAD) {
13611             retval |= MF_PROTO_SUPPORT_ISCSI;
13612         }
13613         if (val & MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD) {
13614             retval |= MF_PROTO_SUPPORT_FCOE;
13615         }
13616     }
13617 
13618     return (retval);
13619 }
13620 
13621 static int
13622 bxe_get_shmem_mf_cfg_info_si(struct bxe_softc *sc)
13623 {
13624     struct bxe_mf_info *mf_info = &sc->devinfo.mf_info;
13625     uint32_t val;
13626 
13627     /*
13628      * There is no outer vlan if we're in switch-independent mode.
13629      * If the mac is valid then assume multi-function.
13630      */
13631 
13632     val = MFCFG_RD(sc, func_ext_config[SC_ABS_FUNC(sc)].func_cfg);
13633 
13634     mf_info->multi_vnics_mode = ((val & MACP_FUNC_CFG_FLAGS_MASK) != 0);
13635 
13636     mf_info->mf_protos_supported = bxe_get_shmem_ext_proto_support_flags(sc);
13637 
13638     mf_info->vnics_per_port =
13639         (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) ? 2 : 4;
13640 
13641     return (0);
13642 }
13643 
13644 static int
13645 bxe_get_shmem_mf_cfg_info_niv(struct bxe_softc *sc)
13646 {
13647     struct bxe_mf_info *mf_info = &sc->devinfo.mf_info;
13648     uint32_t e1hov_tag;
13649     uint32_t func_config;
13650     uint32_t niv_config;
13651 
13652     mf_info->multi_vnics_mode = 1;
13653 
13654     e1hov_tag   = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].e1hov_tag);
13655     func_config = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].config);
13656     niv_config  = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].afex_config);
13657 
13658     mf_info->ext_id =
13659         (uint16_t)((e1hov_tag & FUNC_MF_CFG_E1HOV_TAG_MASK) >>
13660                    FUNC_MF_CFG_E1HOV_TAG_SHIFT);
13661 
13662     mf_info->default_vlan =
13663         (uint16_t)((e1hov_tag & FUNC_MF_CFG_AFEX_VLAN_MASK) >>
13664                    FUNC_MF_CFG_AFEX_VLAN_SHIFT);
13665 
13666     mf_info->niv_allowed_priorities =
13667         (uint8_t)((niv_config & FUNC_MF_CFG_AFEX_COS_FILTER_MASK) >>
13668                   FUNC_MF_CFG_AFEX_COS_FILTER_SHIFT);
13669 
13670     mf_info->niv_default_cos =
13671         (uint8_t)((func_config & FUNC_MF_CFG_TRANSMIT_PRIORITY_MASK) >>
13672                   FUNC_MF_CFG_TRANSMIT_PRIORITY_SHIFT);
13673 
13674     mf_info->afex_vlan_mode =
13675         ((niv_config & FUNC_MF_CFG_AFEX_VLAN_MODE_MASK) >>
13676          FUNC_MF_CFG_AFEX_VLAN_MODE_SHIFT);
13677 
13678     mf_info->niv_mba_enabled =
13679         ((niv_config & FUNC_MF_CFG_AFEX_MBA_ENABLED_MASK) >>
13680          FUNC_MF_CFG_AFEX_MBA_ENABLED_SHIFT);
13681 
13682     mf_info->mf_protos_supported = bxe_get_shmem_ext_proto_support_flags(sc);
13683 
13684     mf_info->vnics_per_port =
13685         (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) ? 2 : 4;
13686 
13687     return (0);
13688 }
13689 
13690 static int
13691 bxe_check_valid_mf_cfg(struct bxe_softc *sc)
13692 {
13693     struct bxe_mf_info *mf_info = &sc->devinfo.mf_info;
13694     uint32_t mf_cfg1;
13695     uint32_t mf_cfg2;
13696     uint32_t ovlan1;
13697     uint32_t ovlan2;
13698     uint8_t i, j;
13699 
13700     BLOGD(sc, DBG_LOAD, "MF config parameters for function %d\n",
13701           SC_PORT(sc));
13702     BLOGD(sc, DBG_LOAD, "\tmf_config=0x%x\n",
13703           mf_info->mf_config[SC_VN(sc)]);
13704     BLOGD(sc, DBG_LOAD, "\tmulti_vnics_mode=%d\n",
13705           mf_info->multi_vnics_mode);
13706     BLOGD(sc, DBG_LOAD, "\tvnics_per_port=%d\n",
13707           mf_info->vnics_per_port);
13708     BLOGD(sc, DBG_LOAD, "\tovlan/vifid=%d\n",
13709           mf_info->ext_id);
13710     BLOGD(sc, DBG_LOAD, "\tmin_bw=%d/%d/%d/%d\n",
13711           mf_info->min_bw[0], mf_info->min_bw[1],
13712           mf_info->min_bw[2], mf_info->min_bw[3]);
13713     BLOGD(sc, DBG_LOAD, "\tmax_bw=%d/%d/%d/%d\n",
13714           mf_info->max_bw[0], mf_info->max_bw[1],
13715           mf_info->max_bw[2], mf_info->max_bw[3]);
13716     BLOGD(sc, DBG_LOAD, "\tmac_addr: %s\n",
13717           sc->mac_addr_str);
13718 
13719     /* various MF mode sanity checks... */
13720 
13721     if (mf_info->mf_config[SC_VN(sc)] & FUNC_MF_CFG_FUNC_HIDE) {
13722         BLOGE(sc, "Enumerated function %d is marked as hidden\n",
13723               SC_PORT(sc));
13724         return (1);
13725     }
13726 
13727     if ((mf_info->vnics_per_port > 1) && !mf_info->multi_vnics_mode) {
13728         BLOGE(sc, "vnics_per_port=%d multi_vnics_mode=%d\n",
13729               mf_info->vnics_per_port, mf_info->multi_vnics_mode);
13730         return (1);
13731     }
13732 
13733     if (mf_info->mf_mode == MULTI_FUNCTION_SD) {
13734         /* vnic id > 0 must have valid ovlan in switch-dependent mode */
13735         if ((SC_VN(sc) > 0) && !VALID_OVLAN(OVLAN(sc))) {
13736             BLOGE(sc, "mf_mode=SD vnic_id=%d ovlan=%d\n",
13737                   SC_VN(sc), OVLAN(sc));
13738             return (1);
13739         }
13740 
13741         if (!VALID_OVLAN(OVLAN(sc)) && mf_info->multi_vnics_mode) {
13742             BLOGE(sc, "mf_mode=SD multi_vnics_mode=%d ovlan=%d\n",
13743                   mf_info->multi_vnics_mode, OVLAN(sc));
13744             return (1);
13745         }
13746 
13747         /*
13748          * Verify all functions are either MF or SF mode. If MF, make sure
13749          * sure that all non-hidden functions have a valid ovlan. If SF,
13750          * make sure that all non-hidden functions have an invalid ovlan.
13751          */
13752         FOREACH_ABS_FUNC_IN_PORT(sc, i) {
13753             mf_cfg1 = MFCFG_RD(sc, func_mf_config[i].config);
13754             ovlan1  = MFCFG_RD(sc, func_mf_config[i].e1hov_tag);
13755             if (!(mf_cfg1 & FUNC_MF_CFG_FUNC_HIDE) &&
13756                 (((mf_info->multi_vnics_mode) && !VALID_OVLAN(ovlan1)) ||
13757                  ((!mf_info->multi_vnics_mode) && VALID_OVLAN(ovlan1)))) {
13758                 BLOGE(sc, "mf_mode=SD function %d MF config "
13759                           "mismatch, multi_vnics_mode=%d ovlan=%d\n",
13760                       i, mf_info->multi_vnics_mode, ovlan1);
13761                 return (1);
13762             }
13763         }
13764 
13765         /* Verify all funcs on the same port each have a different ovlan. */
13766         FOREACH_ABS_FUNC_IN_PORT(sc, i) {
13767             mf_cfg1 = MFCFG_RD(sc, func_mf_config[i].config);
13768             ovlan1  = MFCFG_RD(sc, func_mf_config[i].e1hov_tag);
13769             /* iterate from the next function on the port to the max func */
13770             for (j = i + 2; j < MAX_FUNC_NUM; j += 2) {
13771                 mf_cfg2 = MFCFG_RD(sc, func_mf_config[j].config);
13772                 ovlan2  = MFCFG_RD(sc, func_mf_config[j].e1hov_tag);
13773                 if (!(mf_cfg1 & FUNC_MF_CFG_FUNC_HIDE) &&
13774                     VALID_OVLAN(ovlan1) &&
13775                     !(mf_cfg2 & FUNC_MF_CFG_FUNC_HIDE) &&
13776                     VALID_OVLAN(ovlan2) &&
13777                     (ovlan1 == ovlan2)) {
13778                     BLOGE(sc, "mf_mode=SD functions %d and %d "
13779                               "have the same ovlan (%d)\n",
13780                           i, j, ovlan1);
13781                     return (1);
13782                 }
13783             }
13784         }
13785     } /* MULTI_FUNCTION_SD */
13786 
13787     return (0);
13788 }
13789 
13790 static int
13791 bxe_get_mf_cfg_info(struct bxe_softc *sc)
13792 {
13793     struct bxe_mf_info *mf_info = &sc->devinfo.mf_info;
13794     uint32_t val, mac_upper;
13795     uint8_t i, vnic;
13796 
13797     /* initialize mf_info defaults */
13798     mf_info->vnics_per_port   = 1;
13799     mf_info->multi_vnics_mode = FALSE;
13800     mf_info->path_has_ovlan   = FALSE;
13801     mf_info->mf_mode          = SINGLE_FUNCTION;
13802 
13803     if (!CHIP_IS_MF_CAP(sc)) {
13804         return (0);
13805     }
13806 
13807     if (sc->devinfo.mf_cfg_base == SHMEM_MF_CFG_ADDR_NONE) {
13808         BLOGE(sc, "Invalid mf_cfg_base!\n");
13809         return (1);
13810     }
13811 
13812     /* get the MF mode (switch dependent / independent / single-function) */
13813 
13814     val = SHMEM_RD(sc, dev_info.shared_feature_config.config);
13815 
13816     switch (val & SHARED_FEAT_CFG_FORCE_SF_MODE_MASK)
13817     {
13818     case SHARED_FEAT_CFG_FORCE_SF_MODE_SWITCH_INDEPT:
13819 
13820         mac_upper = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].mac_upper);
13821 
13822         /* check for legal upper mac bytes */
13823         if (mac_upper != FUNC_MF_CFG_UPPERMAC_DEFAULT) {
13824             mf_info->mf_mode = MULTI_FUNCTION_SI;
13825         } else {
13826             BLOGE(sc, "Invalid config for Switch Independent mode\n");
13827         }
13828 
13829         break;
13830 
13831     case SHARED_FEAT_CFG_FORCE_SF_MODE_MF_ALLOWED:
13832     case SHARED_FEAT_CFG_FORCE_SF_MODE_SPIO4:
13833 
13834         /* get outer vlan configuration */
13835         val = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].e1hov_tag);
13836 
13837         if ((val & FUNC_MF_CFG_E1HOV_TAG_MASK) !=
13838             FUNC_MF_CFG_E1HOV_TAG_DEFAULT) {
13839             mf_info->mf_mode = MULTI_FUNCTION_SD;
13840         } else {
13841             BLOGE(sc, "Invalid config for Switch Dependent mode\n");
13842         }
13843 
13844         break;
13845 
13846     case SHARED_FEAT_CFG_FORCE_SF_MODE_FORCED_SF:
13847 
13848         /* not in MF mode, vnics_per_port=1 and multi_vnics_mode=FALSE */
13849         return (0);
13850 
13851     case SHARED_FEAT_CFG_FORCE_SF_MODE_AFEX_MODE:
13852 
13853         /*
13854          * Mark MF mode as NIV if MCP version includes NPAR-SD support
13855          * and the MAC address is valid.
13856          */
13857         mac_upper = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].mac_upper);
13858 
13859         if ((SHMEM2_HAS(sc, afex_driver_support)) &&
13860             (mac_upper != FUNC_MF_CFG_UPPERMAC_DEFAULT)) {
13861             mf_info->mf_mode = MULTI_FUNCTION_AFEX;
13862         } else {
13863             BLOGE(sc, "Invalid config for AFEX mode\n");
13864         }
13865 
13866         break;
13867 
13868     default:
13869 
13870         BLOGE(sc, "Unknown MF mode (0x%08x)\n",
13871               (val & SHARED_FEAT_CFG_FORCE_SF_MODE_MASK));
13872 
13873         return (1);
13874     }
13875 
13876     /* set path mf_mode (which could be different than function mf_mode) */
13877     if (mf_info->mf_mode == MULTI_FUNCTION_SD) {
13878         mf_info->path_has_ovlan = TRUE;
13879     } else if (mf_info->mf_mode == SINGLE_FUNCTION) {
13880         /*
13881          * Decide on path multi vnics mode. If we're not in MF mode and in
13882          * 4-port mode, this is good enough to check vnic-0 of the other port
13883          * on the same path
13884          */
13885         if (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) {
13886             uint8_t other_port = !(PORT_ID(sc) & 1);
13887             uint8_t abs_func_other_port = (SC_PATH(sc) + (2 * other_port));
13888 
13889             val = MFCFG_RD(sc, func_mf_config[abs_func_other_port].e1hov_tag);
13890 
13891             mf_info->path_has_ovlan = VALID_OVLAN((uint16_t)val) ? 1 : 0;
13892         }
13893     }
13894 
13895     if (mf_info->mf_mode == SINGLE_FUNCTION) {
13896         /* invalid MF config */
13897         if (SC_VN(sc) >= 1) {
13898             BLOGE(sc, "VNIC ID >= 1 in SF mode\n");
13899             return (1);
13900         }
13901 
13902         return (0);
13903     }
13904 
13905     /* get the MF configuration */
13906     mf_info->mf_config[SC_VN(sc)] =
13907         MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].config);
13908 
13909     switch(mf_info->mf_mode)
13910     {
13911     case MULTI_FUNCTION_SD:
13912 
13913         bxe_get_shmem_mf_cfg_info_sd(sc);
13914         break;
13915 
13916     case MULTI_FUNCTION_SI:
13917 
13918         bxe_get_shmem_mf_cfg_info_si(sc);
13919         break;
13920 
13921     case MULTI_FUNCTION_AFEX:
13922 
13923         bxe_get_shmem_mf_cfg_info_niv(sc);
13924         break;
13925 
13926     default:
13927 
13928         BLOGE(sc, "Get MF config failed (mf_mode=0x%08x)\n",
13929               mf_info->mf_mode);
13930         return (1);
13931     }
13932 
13933     /* get the congestion management parameters */
13934 
13935     vnic = 0;
13936     FOREACH_ABS_FUNC_IN_PORT(sc, i) {
13937         /* get min/max bw */
13938         val = MFCFG_RD(sc, func_mf_config[i].config);
13939         mf_info->min_bw[vnic] =
13940             ((val & FUNC_MF_CFG_MIN_BW_MASK) >> FUNC_MF_CFG_MIN_BW_SHIFT);
13941         mf_info->max_bw[vnic] =
13942             ((val & FUNC_MF_CFG_MAX_BW_MASK) >> FUNC_MF_CFG_MAX_BW_SHIFT);
13943         vnic++;
13944     }
13945 
13946     return (bxe_check_valid_mf_cfg(sc));
13947 }
13948 
13949 static int
13950 bxe_get_shmem_info(struct bxe_softc *sc)
13951 {
13952     int port;
13953     uint32_t mac_hi, mac_lo, val;
13954 
13955     port = SC_PORT(sc);
13956     mac_hi = mac_lo = 0;
13957 
13958     sc->link_params.sc   = sc;
13959     sc->link_params.port = port;
13960 
13961     /* get the hardware config info */
13962     sc->devinfo.hw_config =
13963         SHMEM_RD(sc, dev_info.shared_hw_config.config);
13964     sc->devinfo.hw_config2 =
13965         SHMEM_RD(sc, dev_info.shared_hw_config.config2);
13966 
13967     sc->link_params.hw_led_mode =
13968         ((sc->devinfo.hw_config & SHARED_HW_CFG_LED_MODE_MASK) >>
13969          SHARED_HW_CFG_LED_MODE_SHIFT);
13970 
13971     /* get the port feature config */
13972     sc->port.config =
13973         SHMEM_RD(sc, dev_info.port_feature_config[port].config),
13974 
13975     /* get the link params */
13976     sc->link_params.speed_cap_mask[0] =
13977         SHMEM_RD(sc, dev_info.port_hw_config[port].speed_capability_mask);
13978     sc->link_params.speed_cap_mask[1] =
13979         SHMEM_RD(sc, dev_info.port_hw_config[port].speed_capability_mask2);
13980 
13981     /* get the lane config */
13982     sc->link_params.lane_config =
13983         SHMEM_RD(sc, dev_info.port_hw_config[port].lane_config);
13984 
13985     /* get the link config */
13986     val = SHMEM_RD(sc, dev_info.port_feature_config[port].link_config);
13987     sc->port.link_config[ELINK_INT_PHY] = val;
13988     sc->link_params.switch_cfg = (val & PORT_FEATURE_CONNECTED_SWITCH_MASK);
13989     sc->port.link_config[ELINK_EXT_PHY1] =
13990         SHMEM_RD(sc, dev_info.port_feature_config[port].link_config2);
13991 
13992     /* get the override preemphasis flag and enable it or turn it off */
13993     val = SHMEM_RD(sc, dev_info.shared_feature_config.config);
13994     if (val & SHARED_FEAT_CFG_OVERRIDE_PREEMPHASIS_CFG_ENABLED) {
13995         sc->link_params.feature_config_flags |=
13996             ELINK_FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED;
13997     } else {
13998         sc->link_params.feature_config_flags &=
13999             ~ELINK_FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED;
14000     }
14001 
14002     /* get the initial value of the link params */
14003     sc->link_params.multi_phy_config =
14004         SHMEM_RD(sc, dev_info.port_hw_config[port].multi_phy_config);
14005 
14006     /* get external phy info */
14007     sc->port.ext_phy_config =
14008         SHMEM_RD(sc, dev_info.port_hw_config[port].external_phy_config);
14009 
14010     /* get the multifunction configuration */
14011     bxe_get_mf_cfg_info(sc);
14012 
14013     /* get the mac address */
14014     if (IS_MF(sc)) {
14015         mac_hi = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].mac_upper);
14016         mac_lo = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].mac_lower);
14017     } else {
14018         mac_hi = SHMEM_RD(sc, dev_info.port_hw_config[port].mac_upper);
14019         mac_lo = SHMEM_RD(sc, dev_info.port_hw_config[port].mac_lower);
14020     }
14021 
14022     if ((mac_lo == 0) && (mac_hi == 0)) {
14023         *sc->mac_addr_str = 0;
14024         BLOGE(sc, "No Ethernet address programmed!\n");
14025     } else {
14026         sc->link_params.mac_addr[0] = (uint8_t)(mac_hi >> 8);
14027         sc->link_params.mac_addr[1] = (uint8_t)(mac_hi);
14028         sc->link_params.mac_addr[2] = (uint8_t)(mac_lo >> 24);
14029         sc->link_params.mac_addr[3] = (uint8_t)(mac_lo >> 16);
14030         sc->link_params.mac_addr[4] = (uint8_t)(mac_lo >> 8);
14031         sc->link_params.mac_addr[5] = (uint8_t)(mac_lo);
14032         snprintf(sc->mac_addr_str, sizeof(sc->mac_addr_str),
14033                  "%02x:%02x:%02x:%02x:%02x:%02x",
14034                  sc->link_params.mac_addr[0], sc->link_params.mac_addr[1],
14035                  sc->link_params.mac_addr[2], sc->link_params.mac_addr[3],
14036                  sc->link_params.mac_addr[4], sc->link_params.mac_addr[5]);
14037         BLOGD(sc, DBG_LOAD, "Ethernet address: %s\n", sc->mac_addr_str);
14038     }
14039 
14040 #if 0
14041     if (!IS_MF(sc) &&
14042         ((sc->port.config & PORT_FEAT_CFG_STORAGE_PERSONALITY_MASK) ==
14043          PORT_FEAT_CFG_STORAGE_PERSONALITY_FCOE)) {
14044         sc->flags |= BXE_NO_ISCSI;
14045     }
14046     if (!IS_MF(sc) &&
14047         ((sc->port.config & PORT_FEAT_CFG_STORAGE_PERSONALITY_MASK) ==
14048          PORT_FEAT_CFG_STORAGE_PERSONALITY_ISCSI)) {
14049         sc->flags |= BXE_NO_FCOE_FLAG;
14050     }
14051 #endif
14052 
14053     return (0);
14054 }
14055 
14056 static void
14057 bxe_get_tunable_params(struct bxe_softc *sc)
14058 {
14059     /* sanity checks */
14060 
14061     if ((bxe_interrupt_mode != INTR_MODE_INTX) &&
14062         (bxe_interrupt_mode != INTR_MODE_MSI)  &&
14063         (bxe_interrupt_mode != INTR_MODE_MSIX)) {
14064         BLOGW(sc, "invalid interrupt_mode value (%d)\n", bxe_interrupt_mode);
14065         bxe_interrupt_mode = INTR_MODE_MSIX;
14066     }
14067 
14068     if ((bxe_queue_count < 0) || (bxe_queue_count > MAX_RSS_CHAINS)) {
14069         BLOGW(sc, "invalid queue_count value (%d)\n", bxe_queue_count);
14070         bxe_queue_count = 0;
14071     }
14072 
14073     if ((bxe_max_rx_bufs < 1) || (bxe_max_rx_bufs > RX_BD_USABLE)) {
14074         if (bxe_max_rx_bufs == 0) {
14075             bxe_max_rx_bufs = RX_BD_USABLE;
14076         } else {
14077             BLOGW(sc, "invalid max_rx_bufs (%d)\n", bxe_max_rx_bufs);
14078             bxe_max_rx_bufs = 2048;
14079         }
14080     }
14081 
14082     if ((bxe_hc_rx_ticks < 1) || (bxe_hc_rx_ticks > 100)) {
14083         BLOGW(sc, "invalid hc_rx_ticks (%d)\n", bxe_hc_rx_ticks);
14084         bxe_hc_rx_ticks = 25;
14085     }
14086 
14087     if ((bxe_hc_tx_ticks < 1) || (bxe_hc_tx_ticks > 100)) {
14088         BLOGW(sc, "invalid hc_tx_ticks (%d)\n", bxe_hc_tx_ticks);
14089         bxe_hc_tx_ticks = 50;
14090     }
14091 
14092     if (bxe_max_aggregation_size == 0) {
14093         bxe_max_aggregation_size = TPA_AGG_SIZE;
14094     }
14095 
14096     if (bxe_max_aggregation_size > 0xffff) {
14097         BLOGW(sc, "invalid max_aggregation_size (%d)\n",
14098               bxe_max_aggregation_size);
14099         bxe_max_aggregation_size = TPA_AGG_SIZE;
14100     }
14101 
14102     if ((bxe_mrrs < -1) || (bxe_mrrs > 3)) {
14103         BLOGW(sc, "invalid mrrs (%d)\n", bxe_mrrs);
14104         bxe_mrrs = -1;
14105     }
14106 
14107     if ((bxe_autogreeen < 0) || (bxe_autogreeen > 2)) {
14108         BLOGW(sc, "invalid autogreeen (%d)\n", bxe_autogreeen);
14109         bxe_autogreeen = 0;
14110     }
14111 
14112     if ((bxe_udp_rss < 0) || (bxe_udp_rss > 1)) {
14113         BLOGW(sc, "invalid udp_rss (%d)\n", bxe_udp_rss);
14114         bxe_udp_rss = 0;
14115     }
14116 
14117     /* pull in user settings */
14118 
14119     sc->interrupt_mode       = bxe_interrupt_mode;
14120     sc->max_rx_bufs          = bxe_max_rx_bufs;
14121     sc->hc_rx_ticks          = bxe_hc_rx_ticks;
14122     sc->hc_tx_ticks          = bxe_hc_tx_ticks;
14123     sc->max_aggregation_size = bxe_max_aggregation_size;
14124     sc->mrrs                 = bxe_mrrs;
14125     sc->autogreeen           = bxe_autogreeen;
14126     sc->udp_rss              = bxe_udp_rss;
14127 
14128     if (bxe_interrupt_mode == INTR_MODE_INTX) {
14129         sc->num_queues = 1;
14130     } else { /* INTR_MODE_MSI or INTR_MODE_MSIX */
14131         sc->num_queues =
14132             min((bxe_queue_count ? bxe_queue_count : mp_ncpus),
14133                 MAX_RSS_CHAINS);
14134         if (sc->num_queues > mp_ncpus) {
14135             sc->num_queues = mp_ncpus;
14136         }
14137     }
14138 
14139     BLOGD(sc, DBG_LOAD,
14140           "User Config: "
14141           "debug=0x%lx "
14142           "interrupt_mode=%d "
14143           "queue_count=%d "
14144           "hc_rx_ticks=%d "
14145           "hc_tx_ticks=%d "
14146           "rx_budget=%d "
14147           "max_aggregation_size=%d "
14148           "mrrs=%d "
14149           "autogreeen=%d "
14150           "udp_rss=%d\n",
14151           bxe_debug,
14152           sc->interrupt_mode,
14153           sc->num_queues,
14154           sc->hc_rx_ticks,
14155           sc->hc_tx_ticks,
14156           bxe_rx_budget,
14157           sc->max_aggregation_size,
14158           sc->mrrs,
14159           sc->autogreeen,
14160           sc->udp_rss);
14161 }
14162 
14163 static void
14164 bxe_media_detect(struct bxe_softc *sc)
14165 {
14166     uint32_t phy_idx = bxe_get_cur_phy_idx(sc);
14167     switch (sc->link_params.phy[phy_idx].media_type) {
14168     case ELINK_ETH_PHY_SFPP_10G_FIBER:
14169     case ELINK_ETH_PHY_XFP_FIBER:
14170         BLOGI(sc, "Found 10Gb Fiber media.\n");
14171         sc->media = IFM_10G_SR;
14172         break;
14173     case ELINK_ETH_PHY_SFP_1G_FIBER:
14174         BLOGI(sc, "Found 1Gb Fiber media.\n");
14175         sc->media = IFM_1000_SX;
14176         break;
14177     case ELINK_ETH_PHY_KR:
14178     case ELINK_ETH_PHY_CX4:
14179         BLOGI(sc, "Found 10GBase-CX4 media.\n");
14180         sc->media = IFM_10G_CX4;
14181         break;
14182     case ELINK_ETH_PHY_DA_TWINAX:
14183         BLOGI(sc, "Found 10Gb Twinax media.\n");
14184         sc->media = IFM_10G_TWINAX;
14185         break;
14186     case ELINK_ETH_PHY_BASE_T:
14187         if (sc->link_params.speed_cap_mask[0] &
14188             PORT_HW_CFG_SPEED_CAPABILITY_D0_10G) {
14189             BLOGI(sc, "Found 10GBase-T media.\n");
14190             sc->media = IFM_10G_T;
14191         } else {
14192             BLOGI(sc, "Found 1000Base-T media.\n");
14193             sc->media = IFM_1000_T;
14194         }
14195         break;
14196     case ELINK_ETH_PHY_NOT_PRESENT:
14197         BLOGI(sc, "Media not present.\n");
14198         sc->media = 0;
14199         break;
14200     case ELINK_ETH_PHY_UNSPECIFIED:
14201     default:
14202         BLOGI(sc, "Unknown media!\n");
14203         sc->media = 0;
14204         break;
14205     }
14206 }
14207 
14208 #define GET_FIELD(value, fname)                     \
14209     (((value) & (fname##_MASK)) >> (fname##_SHIFT))
14210 #define IGU_FID(val) GET_FIELD((val), IGU_REG_MAPPING_MEMORY_FID)
14211 #define IGU_VEC(val) GET_FIELD((val), IGU_REG_MAPPING_MEMORY_VECTOR)
14212 
14213 static int
14214 bxe_get_igu_cam_info(struct bxe_softc *sc)
14215 {
14216     int pfid = SC_FUNC(sc);
14217     int igu_sb_id;
14218     uint32_t val;
14219     uint8_t fid, igu_sb_cnt = 0;
14220 
14221     sc->igu_base_sb = 0xff;
14222 
14223     if (CHIP_INT_MODE_IS_BC(sc)) {
14224         int vn = SC_VN(sc);
14225         igu_sb_cnt = sc->igu_sb_cnt;
14226         sc->igu_base_sb = ((CHIP_IS_MODE_4_PORT(sc) ? pfid : vn) *
14227                            FP_SB_MAX_E1x);
14228         sc->igu_dsb_id = (E1HVN_MAX * FP_SB_MAX_E1x +
14229                           (CHIP_IS_MODE_4_PORT(sc) ? pfid : vn));
14230         return (0);
14231     }
14232 
14233     /* IGU in normal mode - read CAM */
14234     for (igu_sb_id = 0;
14235          igu_sb_id < IGU_REG_MAPPING_MEMORY_SIZE;
14236          igu_sb_id++) {
14237         val = REG_RD(sc, IGU_REG_MAPPING_MEMORY + igu_sb_id * 4);
14238         if (!(val & IGU_REG_MAPPING_MEMORY_VALID)) {
14239             continue;
14240         }
14241         fid = IGU_FID(val);
14242         if ((fid & IGU_FID_ENCODE_IS_PF)) {
14243             if ((fid & IGU_FID_PF_NUM_MASK) != pfid) {
14244                 continue;
14245             }
14246             if (IGU_VEC(val) == 0) {
14247                 /* default status block */
14248                 sc->igu_dsb_id = igu_sb_id;
14249             } else {
14250                 if (sc->igu_base_sb == 0xff) {
14251                     sc->igu_base_sb = igu_sb_id;
14252                 }
14253                 igu_sb_cnt++;
14254             }
14255         }
14256     }
14257 
14258     /*
14259      * Due to new PF resource allocation by MFW T7.4 and above, it's optional
14260      * that number of CAM entries will not be equal to the value advertised in
14261      * PCI. Driver should use the minimal value of both as the actual status
14262      * block count
14263      */
14264     sc->igu_sb_cnt = min(sc->igu_sb_cnt, igu_sb_cnt);
14265 
14266     if (igu_sb_cnt == 0) {
14267         BLOGE(sc, "CAM configuration error\n");
14268         return (-1);
14269     }
14270 
14271     return (0);
14272 }
14273 
14274 /*
14275  * Gather various information from the device config space, the device itself,
14276  * shmem, and the user input.
14277  */
14278 static int
14279 bxe_get_device_info(struct bxe_softc *sc)
14280 {
14281     uint32_t val;
14282     int rc;
14283 
14284     /* Get the data for the device */
14285     sc->devinfo.vendor_id    = pci_get_vendor(sc->dev);
14286     sc->devinfo.device_id    = pci_get_device(sc->dev);
14287     sc->devinfo.subvendor_id = pci_get_subvendor(sc->dev);
14288     sc->devinfo.subdevice_id = pci_get_subdevice(sc->dev);
14289 
14290     /* get the chip revision (chip metal comes from pci config space) */
14291     sc->devinfo.chip_id     =
14292     sc->link_params.chip_id =
14293         (((REG_RD(sc, MISC_REG_CHIP_NUM)                   & 0xffff) << 16) |
14294          ((REG_RD(sc, MISC_REG_CHIP_REV)                   & 0xf)    << 12) |
14295          (((REG_RD(sc, PCICFG_OFFSET + PCI_ID_VAL3) >> 24) & 0xf)    << 4)  |
14296          ((REG_RD(sc, MISC_REG_BOND_ID)                    & 0xf)    << 0));
14297 
14298     /* force 57811 according to MISC register */
14299     if (REG_RD(sc, MISC_REG_CHIP_TYPE) & MISC_REG_CHIP_TYPE_57811_MASK) {
14300         if (CHIP_IS_57810(sc)) {
14301             sc->devinfo.chip_id = ((CHIP_NUM_57811 << 16) |
14302                                    (sc->devinfo.chip_id & 0x0000ffff));
14303         } else if (CHIP_IS_57810_MF(sc)) {
14304             sc->devinfo.chip_id = ((CHIP_NUM_57811_MF << 16) |
14305                                    (sc->devinfo.chip_id & 0x0000ffff));
14306         }
14307         sc->devinfo.chip_id |= 0x1;
14308     }
14309 
14310     BLOGD(sc, DBG_LOAD,
14311           "chip_id=0x%08x (num=0x%04x rev=0x%01x metal=0x%02x bond=0x%01x)\n",
14312           sc->devinfo.chip_id,
14313           ((sc->devinfo.chip_id >> 16) & 0xffff),
14314           ((sc->devinfo.chip_id >> 12) & 0xf),
14315           ((sc->devinfo.chip_id >>  4) & 0xff),
14316           ((sc->devinfo.chip_id >>  0) & 0xf));
14317 
14318     val = (REG_RD(sc, 0x2874) & 0x55);
14319     if ((sc->devinfo.chip_id & 0x1) ||
14320         (CHIP_IS_E1(sc) && val) ||
14321         (CHIP_IS_E1H(sc) && (val == 0x55))) {
14322         sc->flags |= BXE_ONE_PORT_FLAG;
14323         BLOGD(sc, DBG_LOAD, "single port device\n");
14324     }
14325 
14326     /* set the doorbell size */
14327     sc->doorbell_size = (1 << BXE_DB_SHIFT);
14328 
14329     /* determine whether the device is in 2 port or 4 port mode */
14330     sc->devinfo.chip_port_mode = CHIP_PORT_MODE_NONE; /* E1 & E1h*/
14331     if (CHIP_IS_E2E3(sc)) {
14332         /*
14333          * Read port4mode_en_ovwr[0]:
14334          *   If 1, four port mode is in port4mode_en_ovwr[1].
14335          *   If 0, four port mode is in port4mode_en[0].
14336          */
14337         val = REG_RD(sc, MISC_REG_PORT4MODE_EN_OVWR);
14338         if (val & 1) {
14339             val = ((val >> 1) & 1);
14340         } else {
14341             val = REG_RD(sc, MISC_REG_PORT4MODE_EN);
14342         }
14343 
14344         sc->devinfo.chip_port_mode =
14345             (val) ? CHIP_4_PORT_MODE : CHIP_2_PORT_MODE;
14346 
14347         BLOGD(sc, DBG_LOAD, "Port mode = %s\n", (val) ? "4" : "2");
14348     }
14349 
14350     /* get the function and path info for the device */
14351     bxe_get_function_num(sc);
14352 
14353     /* get the shared memory base address */
14354     sc->devinfo.shmem_base     =
14355     sc->link_params.shmem_base =
14356         REG_RD(sc, MISC_REG_SHARED_MEM_ADDR);
14357     sc->devinfo.shmem2_base =
14358         REG_RD(sc, (SC_PATH(sc) ? MISC_REG_GENERIC_CR_1 :
14359                                   MISC_REG_GENERIC_CR_0));
14360 
14361     BLOGD(sc, DBG_LOAD, "shmem_base=0x%08x, shmem2_base=0x%08x\n",
14362           sc->devinfo.shmem_base, sc->devinfo.shmem2_base);
14363 
14364     if (!sc->devinfo.shmem_base) {
14365         /* this should ONLY prevent upcoming shmem reads */
14366         BLOGI(sc, "MCP not active\n");
14367         sc->flags |= BXE_NO_MCP_FLAG;
14368         return (0);
14369     }
14370 
14371     /* make sure the shared memory contents are valid */
14372     val = SHMEM_RD(sc, validity_map[SC_PORT(sc)]);
14373     if ((val & (SHR_MEM_VALIDITY_DEV_INFO | SHR_MEM_VALIDITY_MB)) !=
14374         (SHR_MEM_VALIDITY_DEV_INFO | SHR_MEM_VALIDITY_MB)) {
14375         BLOGE(sc, "Invalid SHMEM validity signature: 0x%08x\n", val);
14376         return (0);
14377     }
14378     BLOGD(sc, DBG_LOAD, "Valid SHMEM validity signature: 0x%08x\n", val);
14379 
14380     /* get the bootcode version */
14381     sc->devinfo.bc_ver = SHMEM_RD(sc, dev_info.bc_rev);
14382     snprintf(sc->devinfo.bc_ver_str,
14383              sizeof(sc->devinfo.bc_ver_str),
14384              "%d.%d.%d",
14385              ((sc->devinfo.bc_ver >> 24) & 0xff),
14386              ((sc->devinfo.bc_ver >> 16) & 0xff),
14387              ((sc->devinfo.bc_ver >>  8) & 0xff));
14388     BLOGD(sc, DBG_LOAD, "Bootcode version: %s\n", sc->devinfo.bc_ver_str);
14389 
14390     /* get the bootcode shmem address */
14391     sc->devinfo.mf_cfg_base = bxe_get_shmem_mf_cfg_base(sc);
14392     BLOGD(sc, DBG_LOAD, "mf_cfg_base=0x08%x \n", sc->devinfo.mf_cfg_base);
14393 
14394     /* clean indirect addresses as they're not used */
14395     pci_write_config(sc->dev, PCICFG_GRC_ADDRESS, 0, 4);
14396     if (IS_PF(sc)) {
14397         REG_WR(sc, PXP2_REG_PGL_ADDR_88_F0, 0);
14398         REG_WR(sc, PXP2_REG_PGL_ADDR_8C_F0, 0);
14399         REG_WR(sc, PXP2_REG_PGL_ADDR_90_F0, 0);
14400         REG_WR(sc, PXP2_REG_PGL_ADDR_94_F0, 0);
14401         if (CHIP_IS_E1x(sc)) {
14402             REG_WR(sc, PXP2_REG_PGL_ADDR_88_F1, 0);
14403             REG_WR(sc, PXP2_REG_PGL_ADDR_8C_F1, 0);
14404             REG_WR(sc, PXP2_REG_PGL_ADDR_90_F1, 0);
14405             REG_WR(sc, PXP2_REG_PGL_ADDR_94_F1, 0);
14406         }
14407 
14408         /*
14409          * Enable internal target-read (in case we are probed after PF
14410          * FLR). Must be done prior to any BAR read access. Only for
14411          * 57712 and up
14412          */
14413         if (!CHIP_IS_E1x(sc)) {
14414             REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
14415         }
14416     }
14417 
14418     /* get the nvram size */
14419     val = REG_RD(sc, MCP_REG_MCPR_NVM_CFG4);
14420     sc->devinfo.flash_size =
14421         (NVRAM_1MB_SIZE << (val & MCPR_NVM_CFG4_FLASH_SIZE));
14422     BLOGD(sc, DBG_LOAD, "nvram flash size: %d\n", sc->devinfo.flash_size);
14423 
14424     /* get PCI capabilites */
14425     bxe_probe_pci_caps(sc);
14426 
14427     bxe_set_power_state(sc, PCI_PM_D0);
14428 
14429     /* get various configuration parameters from shmem */
14430     bxe_get_shmem_info(sc);
14431 
14432     if (sc->devinfo.pcie_msix_cap_reg != 0) {
14433         val = pci_read_config(sc->dev,
14434                               (sc->devinfo.pcie_msix_cap_reg +
14435                                PCIR_MSIX_CTRL),
14436                               2);
14437         sc->igu_sb_cnt = (val & PCIM_MSIXCTRL_TABLE_SIZE);
14438     } else {
14439         sc->igu_sb_cnt = 1;
14440     }
14441 
14442     sc->igu_base_addr = BAR_IGU_INTMEM;
14443 
14444     /* initialize IGU parameters */
14445     if (CHIP_IS_E1x(sc)) {
14446         sc->devinfo.int_block = INT_BLOCK_HC;
14447         sc->igu_dsb_id = DEF_SB_IGU_ID;
14448         sc->igu_base_sb = 0;
14449     } else {
14450         sc->devinfo.int_block = INT_BLOCK_IGU;
14451 
14452         /* do not allow device reset during IGU info preocessing */
14453         bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RESET);
14454 
14455         val = REG_RD(sc, IGU_REG_BLOCK_CONFIGURATION);
14456 
14457         if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) {
14458             int tout = 5000;
14459 
14460             BLOGD(sc, DBG_LOAD, "FORCING IGU Normal Mode\n");
14461 
14462             val &= ~(IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN);
14463             REG_WR(sc, IGU_REG_BLOCK_CONFIGURATION, val);
14464             REG_WR(sc, IGU_REG_RESET_MEMORIES, 0x7f);
14465 
14466             while (tout && REG_RD(sc, IGU_REG_RESET_MEMORIES)) {
14467                 tout--;
14468                 DELAY(1000);
14469             }
14470 
14471             if (REG_RD(sc, IGU_REG_RESET_MEMORIES)) {
14472                 BLOGD(sc, DBG_LOAD, "FORCING IGU Normal Mode failed!!!\n");
14473                 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RESET);
14474                 return (-1);
14475             }
14476         }
14477 
14478         if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) {
14479             BLOGD(sc, DBG_LOAD, "IGU Backward Compatible Mode\n");
14480             sc->devinfo.int_block |= INT_BLOCK_MODE_BW_COMP;
14481         } else {
14482             BLOGD(sc, DBG_LOAD, "IGU Normal Mode\n");
14483         }
14484 
14485         rc = bxe_get_igu_cam_info(sc);
14486 
14487         bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RESET);
14488 
14489         if (rc) {
14490             return (rc);
14491         }
14492     }
14493 
14494     /*
14495      * Get base FW non-default (fast path) status block ID. This value is
14496      * used to initialize the fw_sb_id saved on the fp/queue structure to
14497      * determine the id used by the FW.
14498      */
14499     if (CHIP_IS_E1x(sc)) {
14500         sc->base_fw_ndsb = ((SC_PORT(sc) * FP_SB_MAX_E1x) + SC_L_ID(sc));
14501     } else {
14502         /*
14503          * 57712+ - We currently use one FW SB per IGU SB (Rx and Tx of
14504          * the same queue are indicated on the same IGU SB). So we prefer
14505          * FW and IGU SBs to be the same value.
14506          */
14507         sc->base_fw_ndsb = sc->igu_base_sb;
14508     }
14509 
14510     BLOGD(sc, DBG_LOAD,
14511           "igu_dsb_id=%d igu_base_sb=%d igu_sb_cnt=%d base_fw_ndsb=%d\n",
14512           sc->igu_dsb_id, sc->igu_base_sb,
14513           sc->igu_sb_cnt, sc->base_fw_ndsb);
14514 
14515     elink_phy_probe(&sc->link_params);
14516 
14517     return (0);
14518 }
14519 
14520 static void
14521 bxe_link_settings_supported(struct bxe_softc *sc,
14522                             uint32_t         switch_cfg)
14523 {
14524     uint32_t cfg_size = 0;
14525     uint32_t idx;
14526     uint8_t port = SC_PORT(sc);
14527 
14528     /* aggregation of supported attributes of all external phys */
14529     sc->port.supported[0] = 0;
14530     sc->port.supported[1] = 0;
14531 
14532     switch (sc->link_params.num_phys) {
14533     case 1:
14534         sc->port.supported[0] = sc->link_params.phy[ELINK_INT_PHY].supported;
14535         cfg_size = 1;
14536         break;
14537     case 2:
14538         sc->port.supported[0] = sc->link_params.phy[ELINK_EXT_PHY1].supported;
14539         cfg_size = 1;
14540         break;
14541     case 3:
14542         if (sc->link_params.multi_phy_config &
14543             PORT_HW_CFG_PHY_SWAPPED_ENABLED) {
14544             sc->port.supported[1] =
14545                 sc->link_params.phy[ELINK_EXT_PHY1].supported;
14546             sc->port.supported[0] =
14547                 sc->link_params.phy[ELINK_EXT_PHY2].supported;
14548         } else {
14549             sc->port.supported[0] =
14550                 sc->link_params.phy[ELINK_EXT_PHY1].supported;
14551             sc->port.supported[1] =
14552                 sc->link_params.phy[ELINK_EXT_PHY2].supported;
14553         }
14554         cfg_size = 2;
14555         break;
14556     }
14557 
14558     if (!(sc->port.supported[0] || sc->port.supported[1])) {
14559         BLOGE(sc, "Invalid phy config in NVRAM (PHY1=0x%08x PHY2=0x%08x)\n",
14560               SHMEM_RD(sc,
14561                        dev_info.port_hw_config[port].external_phy_config),
14562               SHMEM_RD(sc,
14563                        dev_info.port_hw_config[port].external_phy_config2));
14564         return;
14565     }
14566 
14567     if (CHIP_IS_E3(sc))
14568         sc->port.phy_addr = REG_RD(sc, MISC_REG_WC0_CTRL_PHY_ADDR);
14569     else {
14570         switch (switch_cfg) {
14571         case ELINK_SWITCH_CFG_1G:
14572             sc->port.phy_addr =
14573                 REG_RD(sc, NIG_REG_SERDES0_CTRL_PHY_ADDR + port*0x10);
14574             break;
14575         case ELINK_SWITCH_CFG_10G:
14576             sc->port.phy_addr =
14577                 REG_RD(sc, NIG_REG_XGXS0_CTRL_PHY_ADDR + port*0x18);
14578             break;
14579         default:
14580             BLOGE(sc, "Invalid switch config in link_config=0x%08x\n",
14581                   sc->port.link_config[0]);
14582             return;
14583         }
14584     }
14585 
14586     BLOGD(sc, DBG_LOAD, "PHY addr 0x%08x\n", sc->port.phy_addr);
14587 
14588     /* mask what we support according to speed_cap_mask per configuration */
14589     for (idx = 0; idx < cfg_size; idx++) {
14590         if (!(sc->link_params.speed_cap_mask[idx] &
14591               PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_HALF)) {
14592             sc->port.supported[idx] &= ~ELINK_SUPPORTED_10baseT_Half;
14593         }
14594 
14595         if (!(sc->link_params.speed_cap_mask[idx] &
14596               PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_FULL)) {
14597             sc->port.supported[idx] &= ~ELINK_SUPPORTED_10baseT_Full;
14598         }
14599 
14600         if (!(sc->link_params.speed_cap_mask[idx] &
14601               PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_HALF)) {
14602             sc->port.supported[idx] &= ~ELINK_SUPPORTED_100baseT_Half;
14603         }
14604 
14605         if (!(sc->link_params.speed_cap_mask[idx] &
14606               PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_FULL)) {
14607             sc->port.supported[idx] &= ~ELINK_SUPPORTED_100baseT_Full;
14608         }
14609 
14610         if (!(sc->link_params.speed_cap_mask[idx] &
14611               PORT_HW_CFG_SPEED_CAPABILITY_D0_1G)) {
14612             sc->port.supported[idx] &= ~ELINK_SUPPORTED_1000baseT_Full;
14613         }
14614 
14615         if (!(sc->link_params.speed_cap_mask[idx] &
14616               PORT_HW_CFG_SPEED_CAPABILITY_D0_2_5G)) {
14617             sc->port.supported[idx] &= ~ELINK_SUPPORTED_2500baseX_Full;
14618         }
14619 
14620         if (!(sc->link_params.speed_cap_mask[idx] &
14621               PORT_HW_CFG_SPEED_CAPABILITY_D0_10G)) {
14622             sc->port.supported[idx] &= ~ELINK_SUPPORTED_10000baseT_Full;
14623         }
14624 
14625         if (!(sc->link_params.speed_cap_mask[idx] &
14626               PORT_HW_CFG_SPEED_CAPABILITY_D0_20G)) {
14627             sc->port.supported[idx] &= ~ELINK_SUPPORTED_20000baseKR2_Full;
14628         }
14629     }
14630 
14631     BLOGD(sc, DBG_LOAD, "PHY supported 0=0x%08x 1=0x%08x\n",
14632           sc->port.supported[0], sc->port.supported[1]);
14633 }
14634 
14635 static void
14636 bxe_link_settings_requested(struct bxe_softc *sc)
14637 {
14638     uint32_t link_config;
14639     uint32_t idx;
14640     uint32_t cfg_size = 0;
14641 
14642     sc->port.advertising[0] = 0;
14643     sc->port.advertising[1] = 0;
14644 
14645     switch (sc->link_params.num_phys) {
14646     case 1:
14647     case 2:
14648         cfg_size = 1;
14649         break;
14650     case 3:
14651         cfg_size = 2;
14652         break;
14653     }
14654 
14655     for (idx = 0; idx < cfg_size; idx++) {
14656         sc->link_params.req_duplex[idx] = DUPLEX_FULL;
14657         link_config = sc->port.link_config[idx];
14658 
14659         switch (link_config & PORT_FEATURE_LINK_SPEED_MASK) {
14660         case PORT_FEATURE_LINK_SPEED_AUTO:
14661             if (sc->port.supported[idx] & ELINK_SUPPORTED_Autoneg) {
14662                 sc->link_params.req_line_speed[idx] = ELINK_SPEED_AUTO_NEG;
14663                 sc->port.advertising[idx] |= sc->port.supported[idx];
14664                 if (sc->link_params.phy[ELINK_EXT_PHY1].type ==
14665                     PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM84833)
14666                     sc->port.advertising[idx] |=
14667                         (ELINK_SUPPORTED_100baseT_Half |
14668                          ELINK_SUPPORTED_100baseT_Full);
14669             } else {
14670                 /* force 10G, no AN */
14671                 sc->link_params.req_line_speed[idx] = ELINK_SPEED_10000;
14672                 sc->port.advertising[idx] |=
14673                     (ADVERTISED_10000baseT_Full | ADVERTISED_FIBRE);
14674                 continue;
14675             }
14676             break;
14677 
14678         case PORT_FEATURE_LINK_SPEED_10M_FULL:
14679             if (sc->port.supported[idx] & ELINK_SUPPORTED_10baseT_Full) {
14680                 sc->link_params.req_line_speed[idx] = ELINK_SPEED_10;
14681                 sc->port.advertising[idx] |= (ADVERTISED_10baseT_Full |
14682                                               ADVERTISED_TP);
14683             } else {
14684                 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x "
14685                           "speed_cap_mask=0x%08x\n",
14686                       link_config, sc->link_params.speed_cap_mask[idx]);
14687                 return;
14688             }
14689             break;
14690 
14691         case PORT_FEATURE_LINK_SPEED_10M_HALF:
14692             if (sc->port.supported[idx] & ELINK_SUPPORTED_10baseT_Half) {
14693                 sc->link_params.req_line_speed[idx] = ELINK_SPEED_10;
14694                 sc->link_params.req_duplex[idx] = DUPLEX_HALF;
14695                 sc->port.advertising[idx] |= (ADVERTISED_10baseT_Half |
14696                                               ADVERTISED_TP);
14697             } else {
14698                 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x "
14699                           "speed_cap_mask=0x%08x\n",
14700                       link_config, sc->link_params.speed_cap_mask[idx]);
14701                 return;
14702             }
14703             break;
14704 
14705         case PORT_FEATURE_LINK_SPEED_100M_FULL:
14706             if (sc->port.supported[idx] & ELINK_SUPPORTED_100baseT_Full) {
14707                 sc->link_params.req_line_speed[idx] = ELINK_SPEED_100;
14708                 sc->port.advertising[idx] |= (ADVERTISED_100baseT_Full |
14709                                               ADVERTISED_TP);
14710             } else {
14711                 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x "
14712                           "speed_cap_mask=0x%08x\n",
14713                       link_config, sc->link_params.speed_cap_mask[idx]);
14714                 return;
14715             }
14716             break;
14717 
14718         case PORT_FEATURE_LINK_SPEED_100M_HALF:
14719             if (sc->port.supported[idx] & ELINK_SUPPORTED_100baseT_Half) {
14720                 sc->link_params.req_line_speed[idx] = ELINK_SPEED_100;
14721                 sc->link_params.req_duplex[idx] = DUPLEX_HALF;
14722                 sc->port.advertising[idx] |= (ADVERTISED_100baseT_Half |
14723                                               ADVERTISED_TP);
14724             } else {
14725                 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x "
14726                           "speed_cap_mask=0x%08x\n",
14727                       link_config, sc->link_params.speed_cap_mask[idx]);
14728                 return;
14729             }
14730             break;
14731 
14732         case PORT_FEATURE_LINK_SPEED_1G:
14733             if (sc->port.supported[idx] & ELINK_SUPPORTED_1000baseT_Full) {
14734                 sc->link_params.req_line_speed[idx] = ELINK_SPEED_1000;
14735                 sc->port.advertising[idx] |= (ADVERTISED_1000baseT_Full |
14736                                               ADVERTISED_TP);
14737             } else {
14738                 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x "
14739                           "speed_cap_mask=0x%08x\n",
14740                       link_config, sc->link_params.speed_cap_mask[idx]);
14741                 return;
14742             }
14743             break;
14744 
14745         case PORT_FEATURE_LINK_SPEED_2_5G:
14746             if (sc->port.supported[idx] & ELINK_SUPPORTED_2500baseX_Full) {
14747                 sc->link_params.req_line_speed[idx] = ELINK_SPEED_2500;
14748                 sc->port.advertising[idx] |= (ADVERTISED_2500baseX_Full |
14749                                               ADVERTISED_TP);
14750             } else {
14751                 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x "
14752                           "speed_cap_mask=0x%08x\n",
14753                       link_config, sc->link_params.speed_cap_mask[idx]);
14754                 return;
14755             }
14756             break;
14757 
14758         case PORT_FEATURE_LINK_SPEED_10G_CX4:
14759             if (sc->port.supported[idx] & ELINK_SUPPORTED_10000baseT_Full) {
14760                 sc->link_params.req_line_speed[idx] = ELINK_SPEED_10000;
14761                 sc->port.advertising[idx] |= (ADVERTISED_10000baseT_Full |
14762                                               ADVERTISED_FIBRE);
14763             } else {
14764                 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x "
14765                           "speed_cap_mask=0x%08x\n",
14766                       link_config, sc->link_params.speed_cap_mask[idx]);
14767                 return;
14768             }
14769             break;
14770 
14771         case PORT_FEATURE_LINK_SPEED_20G:
14772             sc->link_params.req_line_speed[idx] = ELINK_SPEED_20000;
14773             break;
14774 
14775         default:
14776             BLOGE(sc, "Invalid NVRAM config link_config=0x%08x "
14777                       "speed_cap_mask=0x%08x\n",
14778                   link_config, sc->link_params.speed_cap_mask[idx]);
14779             sc->link_params.req_line_speed[idx] = ELINK_SPEED_AUTO_NEG;
14780             sc->port.advertising[idx] = sc->port.supported[idx];
14781             break;
14782         }
14783 
14784         sc->link_params.req_flow_ctrl[idx] =
14785             (link_config & PORT_FEATURE_FLOW_CONTROL_MASK);
14786 
14787         if (sc->link_params.req_flow_ctrl[idx] == ELINK_FLOW_CTRL_AUTO) {
14788             if (!(sc->port.supported[idx] & ELINK_SUPPORTED_Autoneg)) {
14789                 sc->link_params.req_flow_ctrl[idx] = ELINK_FLOW_CTRL_NONE;
14790             } else {
14791                 bxe_set_requested_fc(sc);
14792             }
14793         }
14794 
14795         BLOGD(sc, DBG_LOAD, "req_line_speed=%d req_duplex=%d "
14796                             "req_flow_ctrl=0x%x advertising=0x%x\n",
14797               sc->link_params.req_line_speed[idx],
14798               sc->link_params.req_duplex[idx],
14799               sc->link_params.req_flow_ctrl[idx],
14800               sc->port.advertising[idx]);
14801     }
14802 }
14803 
14804 static void
14805 bxe_get_phy_info(struct bxe_softc *sc)
14806 {
14807     uint8_t port = SC_PORT(sc);
14808     uint32_t config = sc->port.config;
14809     uint32_t eee_mode;
14810 
14811     /* shmem data already read in bxe_get_shmem_info() */
14812 
14813     BLOGD(sc, DBG_LOAD, "lane_config=0x%08x speed_cap_mask0=0x%08x "
14814                         "link_config0=0x%08x\n",
14815                sc->link_params.lane_config,
14816                sc->link_params.speed_cap_mask[0],
14817                sc->port.link_config[0]);
14818 
14819     bxe_link_settings_supported(sc, sc->link_params.switch_cfg);
14820     bxe_link_settings_requested(sc);
14821 
14822     if (sc->autogreeen == AUTO_GREEN_FORCE_ON) {
14823         sc->link_params.feature_config_flags |=
14824             ELINK_FEATURE_CONFIG_AUTOGREEEN_ENABLED;
14825     } else if (sc->autogreeen == AUTO_GREEN_FORCE_OFF) {
14826         sc->link_params.feature_config_flags &=
14827             ~ELINK_FEATURE_CONFIG_AUTOGREEEN_ENABLED;
14828     } else if (config & PORT_FEAT_CFG_AUTOGREEEN_ENABLED) {
14829         sc->link_params.feature_config_flags |=
14830             ELINK_FEATURE_CONFIG_AUTOGREEEN_ENABLED;
14831     }
14832 
14833     /* configure link feature according to nvram value */
14834     eee_mode =
14835         (((SHMEM_RD(sc, dev_info.port_feature_config[port].eee_power_mode)) &
14836           PORT_FEAT_CFG_EEE_POWER_MODE_MASK) >>
14837          PORT_FEAT_CFG_EEE_POWER_MODE_SHIFT);
14838     if (eee_mode != PORT_FEAT_CFG_EEE_POWER_MODE_DISABLED) {
14839         sc->link_params.eee_mode = (ELINK_EEE_MODE_ADV_LPI |
14840                                     ELINK_EEE_MODE_ENABLE_LPI |
14841                                     ELINK_EEE_MODE_OUTPUT_TIME);
14842     } else {
14843         sc->link_params.eee_mode = 0;
14844     }
14845 
14846     /* get the media type */
14847     bxe_media_detect(sc);
14848 }
14849 
14850 static void
14851 bxe_get_params(struct bxe_softc *sc)
14852 {
14853     /* get user tunable params */
14854     bxe_get_tunable_params(sc);
14855 
14856     /* select the RX and TX ring sizes */
14857     sc->tx_ring_size = TX_BD_USABLE;
14858     sc->rx_ring_size = RX_BD_USABLE;
14859 
14860     /* XXX disable WoL */
14861     sc->wol = 0;
14862 }
14863 
14864 static void
14865 bxe_set_modes_bitmap(struct bxe_softc *sc)
14866 {
14867     uint32_t flags = 0;
14868 
14869     if (CHIP_REV_IS_FPGA(sc)) {
14870         SET_FLAGS(flags, MODE_FPGA);
14871     } else if (CHIP_REV_IS_EMUL(sc)) {
14872         SET_FLAGS(flags, MODE_EMUL);
14873     } else {
14874         SET_FLAGS(flags, MODE_ASIC);
14875     }
14876 
14877     if (CHIP_IS_MODE_4_PORT(sc)) {
14878         SET_FLAGS(flags, MODE_PORT4);
14879     } else {
14880         SET_FLAGS(flags, MODE_PORT2);
14881     }
14882 
14883     if (CHIP_IS_E2(sc)) {
14884         SET_FLAGS(flags, MODE_E2);
14885     } else if (CHIP_IS_E3(sc)) {
14886         SET_FLAGS(flags, MODE_E3);
14887         if (CHIP_REV(sc) == CHIP_REV_Ax) {
14888             SET_FLAGS(flags, MODE_E3_A0);
14889         } else /*if (CHIP_REV(sc) == CHIP_REV_Bx)*/ {
14890             SET_FLAGS(flags, MODE_E3_B0 | MODE_COS3);
14891         }
14892     }
14893 
14894     if (IS_MF(sc)) {
14895         SET_FLAGS(flags, MODE_MF);
14896         switch (sc->devinfo.mf_info.mf_mode) {
14897         case MULTI_FUNCTION_SD:
14898             SET_FLAGS(flags, MODE_MF_SD);
14899             break;
14900         case MULTI_FUNCTION_SI:
14901             SET_FLAGS(flags, MODE_MF_SI);
14902             break;
14903         case MULTI_FUNCTION_AFEX:
14904             SET_FLAGS(flags, MODE_MF_AFEX);
14905             break;
14906         }
14907     } else {
14908         SET_FLAGS(flags, MODE_SF);
14909     }
14910 
14911 #if defined(__LITTLE_ENDIAN)
14912     SET_FLAGS(flags, MODE_LITTLE_ENDIAN);
14913 #else /* __BIG_ENDIAN */
14914     SET_FLAGS(flags, MODE_BIG_ENDIAN);
14915 #endif
14916 
14917     INIT_MODE_FLAGS(sc) = flags;
14918 }
14919 
14920 static int
14921 bxe_alloc_hsi_mem(struct bxe_softc *sc)
14922 {
14923     struct bxe_fastpath *fp;
14924     bus_addr_t busaddr;
14925     int max_agg_queues;
14926     int max_segments;
14927     bus_size_t max_size;
14928     bus_size_t max_seg_size;
14929     char buf[32];
14930     int rc;
14931     int i, j;
14932 
14933     /* XXX zero out all vars here and call bxe_alloc_hsi_mem on error */
14934 
14935     /* allocate the parent bus DMA tag */
14936     rc = bus_dma_tag_create(bus_get_dma_tag(sc->dev), /* parent tag */
14937                             1,                        /* alignment */
14938                             0,                        /* boundary limit */
14939                             BUS_SPACE_MAXADDR,        /* restricted low */
14940                             BUS_SPACE_MAXADDR,        /* restricted hi */
14941                             NULL,                     /* addr filter() */
14942                             NULL,                     /* addr filter() arg */
14943                             BUS_SPACE_MAXSIZE_32BIT,  /* max map size */
14944                             BUS_SPACE_UNRESTRICTED,   /* num discontinuous */
14945                             BUS_SPACE_MAXSIZE_32BIT,  /* max seg size */
14946                             0,                        /* flags */
14947                             NULL,                     /* lock() */
14948                             NULL,                     /* lock() arg */
14949                             &sc->parent_dma_tag);     /* returned dma tag */
14950     if (rc != 0) {
14951         BLOGE(sc, "Failed to alloc parent DMA tag (%d)!\n", rc);
14952         return (1);
14953     }
14954 
14955     /************************/
14956     /* DEFAULT STATUS BLOCK */
14957     /************************/
14958 
14959     if (bxe_dma_alloc(sc, sizeof(struct host_sp_status_block),
14960                       &sc->def_sb_dma, "default status block") != 0) {
14961         /* XXX */
14962         bus_dma_tag_destroy(sc->parent_dma_tag);
14963         return (1);
14964     }
14965 
14966     sc->def_sb = (struct host_sp_status_block *)sc->def_sb_dma.vaddr;
14967 
14968     /***************/
14969     /* EVENT QUEUE */
14970     /***************/
14971 
14972     if (bxe_dma_alloc(sc, BCM_PAGE_SIZE,
14973                       &sc->eq_dma, "event queue") != 0) {
14974         /* XXX */
14975         bxe_dma_free(sc, &sc->def_sb_dma);
14976         sc->def_sb = NULL;
14977         bus_dma_tag_destroy(sc->parent_dma_tag);
14978         return (1);
14979     }
14980 
14981     sc->eq = (union event_ring_elem * )sc->eq_dma.vaddr;
14982 
14983     /*************/
14984     /* SLOW PATH */
14985     /*************/
14986 
14987     if (bxe_dma_alloc(sc, sizeof(struct bxe_slowpath),
14988                       &sc->sp_dma, "slow path") != 0) {
14989         /* XXX */
14990         bxe_dma_free(sc, &sc->eq_dma);
14991         sc->eq = NULL;
14992         bxe_dma_free(sc, &sc->def_sb_dma);
14993         sc->def_sb = NULL;
14994         bus_dma_tag_destroy(sc->parent_dma_tag);
14995         return (1);
14996     }
14997 
14998     sc->sp = (struct bxe_slowpath *)sc->sp_dma.vaddr;
14999 
15000     /*******************/
15001     /* SLOW PATH QUEUE */
15002     /*******************/
15003 
15004     if (bxe_dma_alloc(sc, BCM_PAGE_SIZE,
15005                       &sc->spq_dma, "slow path queue") != 0) {
15006         /* XXX */
15007         bxe_dma_free(sc, &sc->sp_dma);
15008         sc->sp = NULL;
15009         bxe_dma_free(sc, &sc->eq_dma);
15010         sc->eq = NULL;
15011         bxe_dma_free(sc, &sc->def_sb_dma);
15012         sc->def_sb = NULL;
15013         bus_dma_tag_destroy(sc->parent_dma_tag);
15014         return (1);
15015     }
15016 
15017     sc->spq = (struct eth_spe *)sc->spq_dma.vaddr;
15018 
15019     /***************************/
15020     /* FW DECOMPRESSION BUFFER */
15021     /***************************/
15022 
15023     if (bxe_dma_alloc(sc, FW_BUF_SIZE, &sc->gz_buf_dma,
15024                       "fw decompression buffer") != 0) {
15025         /* XXX */
15026         bxe_dma_free(sc, &sc->spq_dma);
15027         sc->spq = NULL;
15028         bxe_dma_free(sc, &sc->sp_dma);
15029         sc->sp = NULL;
15030         bxe_dma_free(sc, &sc->eq_dma);
15031         sc->eq = NULL;
15032         bxe_dma_free(sc, &sc->def_sb_dma);
15033         sc->def_sb = NULL;
15034         bus_dma_tag_destroy(sc->parent_dma_tag);
15035         return (1);
15036     }
15037 
15038     sc->gz_buf = (void *)sc->gz_buf_dma.vaddr;
15039 
15040     if ((sc->gz_strm =
15041          malloc(sizeof(*sc->gz_strm), M_DEVBUF, M_NOWAIT)) == NULL) {
15042         /* XXX */
15043         bxe_dma_free(sc, &sc->gz_buf_dma);
15044         sc->gz_buf = NULL;
15045         bxe_dma_free(sc, &sc->spq_dma);
15046         sc->spq = NULL;
15047         bxe_dma_free(sc, &sc->sp_dma);
15048         sc->sp = NULL;
15049         bxe_dma_free(sc, &sc->eq_dma);
15050         sc->eq = NULL;
15051         bxe_dma_free(sc, &sc->def_sb_dma);
15052         sc->def_sb = NULL;
15053         bus_dma_tag_destroy(sc->parent_dma_tag);
15054         return (1);
15055     }
15056 
15057     /*************/
15058     /* FASTPATHS */
15059     /*************/
15060 
15061     /* allocate DMA memory for each fastpath structure */
15062     for (i = 0; i < sc->num_queues; i++) {
15063         fp = &sc->fp[i];
15064         fp->sc    = sc;
15065         fp->index = i;
15066 
15067         /*******************/
15068         /* FP STATUS BLOCK */
15069         /*******************/
15070 
15071         snprintf(buf, sizeof(buf), "fp %d status block", i);
15072         if (bxe_dma_alloc(sc, sizeof(union bxe_host_hc_status_block),
15073                           &fp->sb_dma, buf) != 0) {
15074             /* XXX unwind and free previous fastpath allocations */
15075             BLOGE(sc, "Failed to alloc %s\n", buf);
15076             return (1);
15077         } else {
15078             if (CHIP_IS_E2E3(sc)) {
15079                 fp->status_block.e2_sb =
15080                     (struct host_hc_status_block_e2 *)fp->sb_dma.vaddr;
15081             } else {
15082                 fp->status_block.e1x_sb =
15083                     (struct host_hc_status_block_e1x *)fp->sb_dma.vaddr;
15084             }
15085         }
15086 
15087         /******************/
15088         /* FP TX BD CHAIN */
15089         /******************/
15090 
15091         snprintf(buf, sizeof(buf), "fp %d tx bd chain", i);
15092         if (bxe_dma_alloc(sc, (BCM_PAGE_SIZE * TX_BD_NUM_PAGES),
15093                           &fp->tx_dma, buf) != 0) {
15094             /* XXX unwind and free previous fastpath allocations */
15095             BLOGE(sc, "Failed to alloc %s\n", buf);
15096             return (1);
15097         } else {
15098             fp->tx_chain = (union eth_tx_bd_types *)fp->tx_dma.vaddr;
15099         }
15100 
15101         /* link together the tx bd chain pages */
15102         for (j = 1; j <= TX_BD_NUM_PAGES; j++) {
15103             /* index into the tx bd chain array to last entry per page */
15104             struct eth_tx_next_bd *tx_next_bd =
15105                 &fp->tx_chain[TX_BD_TOTAL_PER_PAGE * j - 1].next_bd;
15106             /* point to the next page and wrap from last page */
15107             busaddr = (fp->tx_dma.paddr +
15108                        (BCM_PAGE_SIZE * (j % TX_BD_NUM_PAGES)));
15109             tx_next_bd->addr_hi = htole32(U64_HI(busaddr));
15110             tx_next_bd->addr_lo = htole32(U64_LO(busaddr));
15111         }
15112 
15113         /******************/
15114         /* FP RX BD CHAIN */
15115         /******************/
15116 
15117         snprintf(buf, sizeof(buf), "fp %d rx bd chain", i);
15118         if (bxe_dma_alloc(sc, (BCM_PAGE_SIZE * RX_BD_NUM_PAGES),
15119                           &fp->rx_dma, buf) != 0) {
15120             /* XXX unwind and free previous fastpath allocations */
15121             BLOGE(sc, "Failed to alloc %s\n", buf);
15122             return (1);
15123         } else {
15124             fp->rx_chain = (struct eth_rx_bd *)fp->rx_dma.vaddr;
15125         }
15126 
15127         /* link together the rx bd chain pages */
15128         for (j = 1; j <= RX_BD_NUM_PAGES; j++) {
15129             /* index into the rx bd chain array to last entry per page */
15130             struct eth_rx_bd *rx_bd =
15131                 &fp->rx_chain[RX_BD_TOTAL_PER_PAGE * j - 2];
15132             /* point to the next page and wrap from last page */
15133             busaddr = (fp->rx_dma.paddr +
15134                        (BCM_PAGE_SIZE * (j % RX_BD_NUM_PAGES)));
15135             rx_bd->addr_hi = htole32(U64_HI(busaddr));
15136             rx_bd->addr_lo = htole32(U64_LO(busaddr));
15137         }
15138 
15139         /*******************/
15140         /* FP RX RCQ CHAIN */
15141         /*******************/
15142 
15143         snprintf(buf, sizeof(buf), "fp %d rcq chain", i);
15144         if (bxe_dma_alloc(sc, (BCM_PAGE_SIZE * RCQ_NUM_PAGES),
15145                           &fp->rcq_dma, buf) != 0) {
15146             /* XXX unwind and free previous fastpath allocations */
15147             BLOGE(sc, "Failed to alloc %s\n", buf);
15148             return (1);
15149         } else {
15150             fp->rcq_chain = (union eth_rx_cqe *)fp->rcq_dma.vaddr;
15151         }
15152 
15153         /* link together the rcq chain pages */
15154         for (j = 1; j <= RCQ_NUM_PAGES; j++) {
15155             /* index into the rcq chain array to last entry per page */
15156             struct eth_rx_cqe_next_page *rx_cqe_next =
15157                 (struct eth_rx_cqe_next_page *)
15158                 &fp->rcq_chain[RCQ_TOTAL_PER_PAGE * j - 1];
15159             /* point to the next page and wrap from last page */
15160             busaddr = (fp->rcq_dma.paddr +
15161                        (BCM_PAGE_SIZE * (j % RCQ_NUM_PAGES)));
15162             rx_cqe_next->addr_hi = htole32(U64_HI(busaddr));
15163             rx_cqe_next->addr_lo = htole32(U64_LO(busaddr));
15164         }
15165 
15166         /*******************/
15167         /* FP RX SGE CHAIN */
15168         /*******************/
15169 
15170         snprintf(buf, sizeof(buf), "fp %d sge chain", i);
15171         if (bxe_dma_alloc(sc, (BCM_PAGE_SIZE * RX_SGE_NUM_PAGES),
15172                           &fp->rx_sge_dma, buf) != 0) {
15173             /* XXX unwind and free previous fastpath allocations */
15174             BLOGE(sc, "Failed to alloc %s\n", buf);
15175             return (1);
15176         } else {
15177             fp->rx_sge_chain = (struct eth_rx_sge *)fp->rx_sge_dma.vaddr;
15178         }
15179 
15180         /* link together the sge chain pages */
15181         for (j = 1; j <= RX_SGE_NUM_PAGES; j++) {
15182             /* index into the rcq chain array to last entry per page */
15183             struct eth_rx_sge *rx_sge =
15184                 &fp->rx_sge_chain[RX_SGE_TOTAL_PER_PAGE * j - 2];
15185             /* point to the next page and wrap from last page */
15186             busaddr = (fp->rx_sge_dma.paddr +
15187                        (BCM_PAGE_SIZE * (j % RX_SGE_NUM_PAGES)));
15188             rx_sge->addr_hi = htole32(U64_HI(busaddr));
15189             rx_sge->addr_lo = htole32(U64_LO(busaddr));
15190         }
15191 
15192         /***********************/
15193         /* FP TX MBUF DMA MAPS */
15194         /***********************/
15195 
15196         /* set required sizes before mapping to conserve resources */
15197         if (if_getcapenable(sc->ifp) & (IFCAP_TSO4 | IFCAP_TSO6)) {
15198             max_size     = BXE_TSO_MAX_SIZE;
15199             max_segments = BXE_TSO_MAX_SEGMENTS;
15200             max_seg_size = BXE_TSO_MAX_SEG_SIZE;
15201         } else {
15202             max_size     = (MCLBYTES * BXE_MAX_SEGMENTS);
15203             max_segments = BXE_MAX_SEGMENTS;
15204             max_seg_size = MCLBYTES;
15205         }
15206 
15207         /* create a dma tag for the tx mbufs */
15208         rc = bus_dma_tag_create(sc->parent_dma_tag, /* parent tag */
15209                                 1,                  /* alignment */
15210                                 0,                  /* boundary limit */
15211                                 BUS_SPACE_MAXADDR,  /* restricted low */
15212                                 BUS_SPACE_MAXADDR,  /* restricted hi */
15213                                 NULL,               /* addr filter() */
15214                                 NULL,               /* addr filter() arg */
15215                                 max_size,           /* max map size */
15216                                 max_segments,       /* num discontinuous */
15217                                 max_seg_size,       /* max seg size */
15218                                 0,                  /* flags */
15219                                 NULL,               /* lock() */
15220                                 NULL,               /* lock() arg */
15221                                 &fp->tx_mbuf_tag);  /* returned dma tag */
15222         if (rc != 0) {
15223             /* XXX unwind and free previous fastpath allocations */
15224             BLOGE(sc, "Failed to create dma tag for "
15225                       "'fp %d tx mbufs' (%d)\n",
15226                   i, rc);
15227             return (1);
15228         }
15229 
15230         /* create dma maps for each of the tx mbuf clusters */
15231         for (j = 0; j < TX_BD_TOTAL; j++) {
15232             if (bus_dmamap_create(fp->tx_mbuf_tag,
15233                                   BUS_DMA_NOWAIT,
15234                                   &fp->tx_mbuf_chain[j].m_map)) {
15235                 /* XXX unwind and free previous fastpath allocations */
15236                 BLOGE(sc, "Failed to create dma map for "
15237                           "'fp %d tx mbuf %d' (%d)\n",
15238                       i, j, rc);
15239                 return (1);
15240             }
15241         }
15242 
15243         /***********************/
15244         /* FP RX MBUF DMA MAPS */
15245         /***********************/
15246 
15247         /* create a dma tag for the rx mbufs */
15248         rc = bus_dma_tag_create(sc->parent_dma_tag, /* parent tag */
15249                                 1,                  /* alignment */
15250                                 0,                  /* boundary limit */
15251                                 BUS_SPACE_MAXADDR,  /* restricted low */
15252                                 BUS_SPACE_MAXADDR,  /* restricted hi */
15253                                 NULL,               /* addr filter() */
15254                                 NULL,               /* addr filter() arg */
15255                                 MJUM9BYTES,         /* max map size */
15256                                 1,                  /* num discontinuous */
15257                                 MJUM9BYTES,         /* max seg size */
15258                                 0,                  /* flags */
15259                                 NULL,               /* lock() */
15260                                 NULL,               /* lock() arg */
15261                                 &fp->rx_mbuf_tag);  /* returned dma tag */
15262         if (rc != 0) {
15263             /* XXX unwind and free previous fastpath allocations */
15264             BLOGE(sc, "Failed to create dma tag for "
15265                       "'fp %d rx mbufs' (%d)\n",
15266                   i, rc);
15267             return (1);
15268         }
15269 
15270         /* create dma maps for each of the rx mbuf clusters */
15271         for (j = 0; j < RX_BD_TOTAL; j++) {
15272             if (bus_dmamap_create(fp->rx_mbuf_tag,
15273                                   BUS_DMA_NOWAIT,
15274                                   &fp->rx_mbuf_chain[j].m_map)) {
15275                 /* XXX unwind and free previous fastpath allocations */
15276                 BLOGE(sc, "Failed to create dma map for "
15277                           "'fp %d rx mbuf %d' (%d)\n",
15278                       i, j, rc);
15279                 return (1);
15280             }
15281         }
15282 
15283         /* create dma map for the spare rx mbuf cluster */
15284         if (bus_dmamap_create(fp->rx_mbuf_tag,
15285                               BUS_DMA_NOWAIT,
15286                               &fp->rx_mbuf_spare_map)) {
15287             /* XXX unwind and free previous fastpath allocations */
15288             BLOGE(sc, "Failed to create dma map for "
15289                       "'fp %d spare rx mbuf' (%d)\n",
15290                   i, rc);
15291             return (1);
15292         }
15293 
15294         /***************************/
15295         /* FP RX SGE MBUF DMA MAPS */
15296         /***************************/
15297 
15298         /* create a dma tag for the rx sge mbufs */
15299         rc = bus_dma_tag_create(sc->parent_dma_tag, /* parent tag */
15300                                 1,                  /* alignment */
15301                                 0,                  /* boundary limit */
15302                                 BUS_SPACE_MAXADDR,  /* restricted low */
15303                                 BUS_SPACE_MAXADDR,  /* restricted hi */
15304                                 NULL,               /* addr filter() */
15305                                 NULL,               /* addr filter() arg */
15306                                 BCM_PAGE_SIZE,      /* max map size */
15307                                 1,                  /* num discontinuous */
15308                                 BCM_PAGE_SIZE,      /* max seg size */
15309                                 0,                  /* flags */
15310                                 NULL,               /* lock() */
15311                                 NULL,               /* lock() arg */
15312                                 &fp->rx_sge_mbuf_tag); /* returned dma tag */
15313         if (rc != 0) {
15314             /* XXX unwind and free previous fastpath allocations */
15315             BLOGE(sc, "Failed to create dma tag for "
15316                       "'fp %d rx sge mbufs' (%d)\n",
15317                   i, rc);
15318             return (1);
15319         }
15320 
15321         /* create dma maps for the rx sge mbuf clusters */
15322         for (j = 0; j < RX_SGE_TOTAL; j++) {
15323             if (bus_dmamap_create(fp->rx_sge_mbuf_tag,
15324                                   BUS_DMA_NOWAIT,
15325                                   &fp->rx_sge_mbuf_chain[j].m_map)) {
15326                 /* XXX unwind and free previous fastpath allocations */
15327                 BLOGE(sc, "Failed to create dma map for "
15328                           "'fp %d rx sge mbuf %d' (%d)\n",
15329                       i, j, rc);
15330                 return (1);
15331             }
15332         }
15333 
15334         /* create dma map for the spare rx sge mbuf cluster */
15335         if (bus_dmamap_create(fp->rx_sge_mbuf_tag,
15336                               BUS_DMA_NOWAIT,
15337                               &fp->rx_sge_mbuf_spare_map)) {
15338             /* XXX unwind and free previous fastpath allocations */
15339             BLOGE(sc, "Failed to create dma map for "
15340                       "'fp %d spare rx sge mbuf' (%d)\n",
15341                   i, rc);
15342             return (1);
15343         }
15344 
15345         /***************************/
15346         /* FP RX TPA MBUF DMA MAPS */
15347         /***************************/
15348 
15349         /* create dma maps for the rx tpa mbuf clusters */
15350         max_agg_queues = MAX_AGG_QS(sc);
15351 
15352         for (j = 0; j < max_agg_queues; j++) {
15353             if (bus_dmamap_create(fp->rx_mbuf_tag,
15354                                   BUS_DMA_NOWAIT,
15355                                   &fp->rx_tpa_info[j].bd.m_map)) {
15356                 /* XXX unwind and free previous fastpath allocations */
15357                 BLOGE(sc, "Failed to create dma map for "
15358                           "'fp %d rx tpa mbuf %d' (%d)\n",
15359                       i, j, rc);
15360                 return (1);
15361             }
15362         }
15363 
15364         /* create dma map for the spare rx tpa mbuf cluster */
15365         if (bus_dmamap_create(fp->rx_mbuf_tag,
15366                               BUS_DMA_NOWAIT,
15367                               &fp->rx_tpa_info_mbuf_spare_map)) {
15368             /* XXX unwind and free previous fastpath allocations */
15369             BLOGE(sc, "Failed to create dma map for "
15370                       "'fp %d spare rx tpa mbuf' (%d)\n",
15371                   i, rc);
15372             return (1);
15373         }
15374 
15375         bxe_init_sge_ring_bit_mask(fp);
15376     }
15377 
15378     return (0);
15379 }
15380 
15381 static void
15382 bxe_free_hsi_mem(struct bxe_softc *sc)
15383 {
15384     struct bxe_fastpath *fp;
15385     int max_agg_queues;
15386     int i, j;
15387 
15388     if (sc->parent_dma_tag == NULL) {
15389         return; /* assume nothing was allocated */
15390     }
15391 
15392     for (i = 0; i < sc->num_queues; i++) {
15393         fp = &sc->fp[i];
15394 
15395         /*******************/
15396         /* FP STATUS BLOCK */
15397         /*******************/
15398 
15399         bxe_dma_free(sc, &fp->sb_dma);
15400         memset(&fp->status_block, 0, sizeof(fp->status_block));
15401 
15402         /******************/
15403         /* FP TX BD CHAIN */
15404         /******************/
15405 
15406         bxe_dma_free(sc, &fp->tx_dma);
15407         fp->tx_chain = NULL;
15408 
15409         /******************/
15410         /* FP RX BD CHAIN */
15411         /******************/
15412 
15413         bxe_dma_free(sc, &fp->rx_dma);
15414         fp->rx_chain = NULL;
15415 
15416         /*******************/
15417         /* FP RX RCQ CHAIN */
15418         /*******************/
15419 
15420         bxe_dma_free(sc, &fp->rcq_dma);
15421         fp->rcq_chain = NULL;
15422 
15423         /*******************/
15424         /* FP RX SGE CHAIN */
15425         /*******************/
15426 
15427         bxe_dma_free(sc, &fp->rx_sge_dma);
15428         fp->rx_sge_chain = NULL;
15429 
15430         /***********************/
15431         /* FP TX MBUF DMA MAPS */
15432         /***********************/
15433 
15434         if (fp->tx_mbuf_tag != NULL) {
15435             for (j = 0; j < TX_BD_TOTAL; j++) {
15436                 if (fp->tx_mbuf_chain[j].m_map != NULL) {
15437                     bus_dmamap_unload(fp->tx_mbuf_tag,
15438                                       fp->tx_mbuf_chain[j].m_map);
15439                     bus_dmamap_destroy(fp->tx_mbuf_tag,
15440                                        fp->tx_mbuf_chain[j].m_map);
15441                 }
15442             }
15443 
15444             bus_dma_tag_destroy(fp->tx_mbuf_tag);
15445             fp->tx_mbuf_tag = NULL;
15446         }
15447 
15448         /***********************/
15449         /* FP RX MBUF DMA MAPS */
15450         /***********************/
15451 
15452         if (fp->rx_mbuf_tag != NULL) {
15453             for (j = 0; j < RX_BD_TOTAL; j++) {
15454                 if (fp->rx_mbuf_chain[j].m_map != NULL) {
15455                     bus_dmamap_unload(fp->rx_mbuf_tag,
15456                                       fp->rx_mbuf_chain[j].m_map);
15457                     bus_dmamap_destroy(fp->rx_mbuf_tag,
15458                                        fp->rx_mbuf_chain[j].m_map);
15459                 }
15460             }
15461 
15462             if (fp->rx_mbuf_spare_map != NULL) {
15463                 bus_dmamap_unload(fp->rx_mbuf_tag, fp->rx_mbuf_spare_map);
15464                 bus_dmamap_destroy(fp->rx_mbuf_tag, fp->rx_mbuf_spare_map);
15465             }
15466 
15467             /***************************/
15468             /* FP RX TPA MBUF DMA MAPS */
15469             /***************************/
15470 
15471             max_agg_queues = MAX_AGG_QS(sc);
15472 
15473             for (j = 0; j < max_agg_queues; j++) {
15474                 if (fp->rx_tpa_info[j].bd.m_map != NULL) {
15475                     bus_dmamap_unload(fp->rx_mbuf_tag,
15476                                       fp->rx_tpa_info[j].bd.m_map);
15477                     bus_dmamap_destroy(fp->rx_mbuf_tag,
15478                                        fp->rx_tpa_info[j].bd.m_map);
15479                 }
15480             }
15481 
15482             if (fp->rx_tpa_info_mbuf_spare_map != NULL) {
15483                 bus_dmamap_unload(fp->rx_mbuf_tag,
15484                                   fp->rx_tpa_info_mbuf_spare_map);
15485                 bus_dmamap_destroy(fp->rx_mbuf_tag,
15486                                    fp->rx_tpa_info_mbuf_spare_map);
15487             }
15488 
15489             bus_dma_tag_destroy(fp->rx_mbuf_tag);
15490             fp->rx_mbuf_tag = NULL;
15491         }
15492 
15493         /***************************/
15494         /* FP RX SGE MBUF DMA MAPS */
15495         /***************************/
15496 
15497         if (fp->rx_sge_mbuf_tag != NULL) {
15498             for (j = 0; j < RX_SGE_TOTAL; j++) {
15499                 if (fp->rx_sge_mbuf_chain[j].m_map != NULL) {
15500                     bus_dmamap_unload(fp->rx_sge_mbuf_tag,
15501                                       fp->rx_sge_mbuf_chain[j].m_map);
15502                     bus_dmamap_destroy(fp->rx_sge_mbuf_tag,
15503                                        fp->rx_sge_mbuf_chain[j].m_map);
15504                 }
15505             }
15506 
15507             if (fp->rx_sge_mbuf_spare_map != NULL) {
15508                 bus_dmamap_unload(fp->rx_sge_mbuf_tag,
15509                                   fp->rx_sge_mbuf_spare_map);
15510                 bus_dmamap_destroy(fp->rx_sge_mbuf_tag,
15511                                    fp->rx_sge_mbuf_spare_map);
15512             }
15513 
15514             bus_dma_tag_destroy(fp->rx_sge_mbuf_tag);
15515             fp->rx_sge_mbuf_tag = NULL;
15516         }
15517     }
15518 
15519     /***************************/
15520     /* FW DECOMPRESSION BUFFER */
15521     /***************************/
15522 
15523     bxe_dma_free(sc, &sc->gz_buf_dma);
15524     sc->gz_buf = NULL;
15525     free(sc->gz_strm, M_DEVBUF);
15526     sc->gz_strm = NULL;
15527 
15528     /*******************/
15529     /* SLOW PATH QUEUE */
15530     /*******************/
15531 
15532     bxe_dma_free(sc, &sc->spq_dma);
15533     sc->spq = NULL;
15534 
15535     /*************/
15536     /* SLOW PATH */
15537     /*************/
15538 
15539     bxe_dma_free(sc, &sc->sp_dma);
15540     sc->sp = NULL;
15541 
15542     /***************/
15543     /* EVENT QUEUE */
15544     /***************/
15545 
15546     bxe_dma_free(sc, &sc->eq_dma);
15547     sc->eq = NULL;
15548 
15549     /************************/
15550     /* DEFAULT STATUS BLOCK */
15551     /************************/
15552 
15553     bxe_dma_free(sc, &sc->def_sb_dma);
15554     sc->def_sb = NULL;
15555 
15556     bus_dma_tag_destroy(sc->parent_dma_tag);
15557     sc->parent_dma_tag = NULL;
15558 }
15559 
15560 /*
15561  * Previous driver DMAE transaction may have occurred when pre-boot stage
15562  * ended and boot began. This would invalidate the addresses of the
15563  * transaction, resulting in was-error bit set in the PCI causing all
15564  * hw-to-host PCIe transactions to timeout. If this happened we want to clear
15565  * the interrupt which detected this from the pglueb and the was-done bit
15566  */
15567 static void
15568 bxe_prev_interrupted_dmae(struct bxe_softc *sc)
15569 {
15570     uint32_t val;
15571 
15572     if (!CHIP_IS_E1x(sc)) {
15573         val = REG_RD(sc, PGLUE_B_REG_PGLUE_B_INT_STS);
15574         if (val & PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN) {
15575             BLOGD(sc, DBG_LOAD,
15576                   "Clearing 'was-error' bit that was set in pglueb");
15577             REG_WR(sc, PGLUE_B_REG_WAS_ERROR_PF_7_0_CLR, 1 << SC_FUNC(sc));
15578         }
15579     }
15580 }
15581 
15582 static int
15583 bxe_prev_mcp_done(struct bxe_softc *sc)
15584 {
15585     uint32_t rc = bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_DONE,
15586                                  DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET);
15587     if (!rc) {
15588         BLOGE(sc, "MCP response failure, aborting\n");
15589         return (-1);
15590     }
15591 
15592     return (0);
15593 }
15594 
15595 static struct bxe_prev_list_node *
15596 bxe_prev_path_get_entry(struct bxe_softc *sc)
15597 {
15598     struct bxe_prev_list_node *tmp;
15599 
15600     LIST_FOREACH(tmp, &bxe_prev_list, node) {
15601         if ((sc->pcie_bus == tmp->bus) &&
15602             (sc->pcie_device == tmp->slot) &&
15603             (SC_PATH(sc) == tmp->path)) {
15604             return (tmp);
15605         }
15606     }
15607 
15608     return (NULL);
15609 }
15610 
15611 static uint8_t
15612 bxe_prev_is_path_marked(struct bxe_softc *sc)
15613 {
15614     struct bxe_prev_list_node *tmp;
15615     int rc = FALSE;
15616 
15617     mtx_lock(&bxe_prev_mtx);
15618 
15619     tmp = bxe_prev_path_get_entry(sc);
15620     if (tmp) {
15621         if (tmp->aer) {
15622             BLOGD(sc, DBG_LOAD,
15623                   "Path %d/%d/%d was marked by AER\n",
15624                   sc->pcie_bus, sc->pcie_device, SC_PATH(sc));
15625         } else {
15626             rc = TRUE;
15627             BLOGD(sc, DBG_LOAD,
15628                   "Path %d/%d/%d was already cleaned from previous drivers\n",
15629                   sc->pcie_bus, sc->pcie_device, SC_PATH(sc));
15630         }
15631     }
15632 
15633     mtx_unlock(&bxe_prev_mtx);
15634 
15635     return (rc);
15636 }
15637 
15638 static int
15639 bxe_prev_mark_path(struct bxe_softc *sc,
15640                    uint8_t          after_undi)
15641 {
15642     struct bxe_prev_list_node *tmp;
15643 
15644     mtx_lock(&bxe_prev_mtx);
15645 
15646     /* Check whether the entry for this path already exists */
15647     tmp = bxe_prev_path_get_entry(sc);
15648     if (tmp) {
15649         if (!tmp->aer) {
15650             BLOGD(sc, DBG_LOAD,
15651                   "Re-marking AER in path %d/%d/%d\n",
15652                   sc->pcie_bus, sc->pcie_device, SC_PATH(sc));
15653         } else {
15654             BLOGD(sc, DBG_LOAD,
15655                   "Removing AER indication from path %d/%d/%d\n",
15656                   sc->pcie_bus, sc->pcie_device, SC_PATH(sc));
15657             tmp->aer = 0;
15658         }
15659 
15660         mtx_unlock(&bxe_prev_mtx);
15661         return (0);
15662     }
15663 
15664     mtx_unlock(&bxe_prev_mtx);
15665 
15666     /* Create an entry for this path and add it */
15667     tmp = malloc(sizeof(struct bxe_prev_list_node), M_DEVBUF,
15668                  (M_NOWAIT | M_ZERO));
15669     if (!tmp) {
15670         BLOGE(sc, "Failed to allocate 'bxe_prev_list_node'\n");
15671         return (-1);
15672     }
15673 
15674     tmp->bus  = sc->pcie_bus;
15675     tmp->slot = sc->pcie_device;
15676     tmp->path = SC_PATH(sc);
15677     tmp->aer  = 0;
15678     tmp->undi = after_undi ? (1 << SC_PORT(sc)) : 0;
15679 
15680     mtx_lock(&bxe_prev_mtx);
15681 
15682     BLOGD(sc, DBG_LOAD,
15683           "Marked path %d/%d/%d - finished previous unload\n",
15684           sc->pcie_bus, sc->pcie_device, SC_PATH(sc));
15685     LIST_INSERT_HEAD(&bxe_prev_list, tmp, node);
15686 
15687     mtx_unlock(&bxe_prev_mtx);
15688 
15689     return (0);
15690 }
15691 
15692 static int
15693 bxe_do_flr(struct bxe_softc *sc)
15694 {
15695     int i;
15696 
15697     /* only E2 and onwards support FLR */
15698     if (CHIP_IS_E1x(sc)) {
15699         BLOGD(sc, DBG_LOAD, "FLR not supported in E1/E1H\n");
15700         return (-1);
15701     }
15702 
15703     /* only bootcode REQ_BC_VER_4_INITIATE_FLR and onwards support flr */
15704     if (sc->devinfo.bc_ver < REQ_BC_VER_4_INITIATE_FLR) {
15705         BLOGD(sc, DBG_LOAD, "FLR not supported by BC_VER: 0x%08x\n",
15706               sc->devinfo.bc_ver);
15707         return (-1);
15708     }
15709 
15710     /* Wait for Transaction Pending bit clean */
15711     for (i = 0; i < 4; i++) {
15712         if (i) {
15713             DELAY(((1 << (i - 1)) * 100) * 1000);
15714         }
15715 
15716         if (!bxe_is_pcie_pending(sc)) {
15717             goto clear;
15718         }
15719     }
15720 
15721     BLOGE(sc, "PCIE transaction is not cleared, "
15722               "proceeding with reset anyway\n");
15723 
15724 clear:
15725 
15726     BLOGD(sc, DBG_LOAD, "Initiating FLR\n");
15727     bxe_fw_command(sc, DRV_MSG_CODE_INITIATE_FLR, 0);
15728 
15729     return (0);
15730 }
15731 
15732 struct bxe_mac_vals {
15733     uint32_t xmac_addr;
15734     uint32_t xmac_val;
15735     uint32_t emac_addr;
15736     uint32_t emac_val;
15737     uint32_t umac_addr;
15738     uint32_t umac_val;
15739     uint32_t bmac_addr;
15740     uint32_t bmac_val[2];
15741 };
15742 
15743 static void
15744 bxe_prev_unload_close_mac(struct bxe_softc *sc,
15745                           struct bxe_mac_vals *vals)
15746 {
15747     uint32_t val, base_addr, offset, mask, reset_reg;
15748     uint8_t mac_stopped = FALSE;
15749     uint8_t port = SC_PORT(sc);
15750     uint32_t wb_data[2];
15751 
15752     /* reset addresses as they also mark which values were changed */
15753     vals->bmac_addr = 0;
15754     vals->umac_addr = 0;
15755     vals->xmac_addr = 0;
15756     vals->emac_addr = 0;
15757 
15758     reset_reg = REG_RD(sc, MISC_REG_RESET_REG_2);
15759 
15760     if (!CHIP_IS_E3(sc)) {
15761         val = REG_RD(sc, NIG_REG_BMAC0_REGS_OUT_EN + port * 4);
15762         mask = MISC_REGISTERS_RESET_REG_2_RST_BMAC0 << port;
15763         if ((mask & reset_reg) && val) {
15764             BLOGD(sc, DBG_LOAD, "Disable BMAC Rx\n");
15765             base_addr = SC_PORT(sc) ? NIG_REG_INGRESS_BMAC1_MEM
15766                                     : NIG_REG_INGRESS_BMAC0_MEM;
15767             offset = CHIP_IS_E2(sc) ? BIGMAC2_REGISTER_BMAC_CONTROL
15768                                     : BIGMAC_REGISTER_BMAC_CONTROL;
15769 
15770             /*
15771              * use rd/wr since we cannot use dmae. This is safe
15772              * since MCP won't access the bus due to the request
15773              * to unload, and no function on the path can be
15774              * loaded at this time.
15775              */
15776             wb_data[0] = REG_RD(sc, base_addr + offset);
15777             wb_data[1] = REG_RD(sc, base_addr + offset + 0x4);
15778             vals->bmac_addr = base_addr + offset;
15779             vals->bmac_val[0] = wb_data[0];
15780             vals->bmac_val[1] = wb_data[1];
15781             wb_data[0] &= ~ELINK_BMAC_CONTROL_RX_ENABLE;
15782             REG_WR(sc, vals->bmac_addr, wb_data[0]);
15783             REG_WR(sc, vals->bmac_addr + 0x4, wb_data[1]);
15784         }
15785 
15786         BLOGD(sc, DBG_LOAD, "Disable EMAC Rx\n");
15787         vals->emac_addr = NIG_REG_NIG_EMAC0_EN + SC_PORT(sc)*4;
15788         vals->emac_val = REG_RD(sc, vals->emac_addr);
15789         REG_WR(sc, vals->emac_addr, 0);
15790         mac_stopped = TRUE;
15791     } else {
15792         if (reset_reg & MISC_REGISTERS_RESET_REG_2_XMAC) {
15793             BLOGD(sc, DBG_LOAD, "Disable XMAC Rx\n");
15794             base_addr = SC_PORT(sc) ? GRCBASE_XMAC1 : GRCBASE_XMAC0;
15795             val = REG_RD(sc, base_addr + XMAC_REG_PFC_CTRL_HI);
15796             REG_WR(sc, base_addr + XMAC_REG_PFC_CTRL_HI, val & ~(1 << 1));
15797             REG_WR(sc, base_addr + XMAC_REG_PFC_CTRL_HI, val | (1 << 1));
15798             vals->xmac_addr = base_addr + XMAC_REG_CTRL;
15799             vals->xmac_val = REG_RD(sc, vals->xmac_addr);
15800             REG_WR(sc, vals->xmac_addr, 0);
15801             mac_stopped = TRUE;
15802         }
15803 
15804         mask = MISC_REGISTERS_RESET_REG_2_UMAC0 << port;
15805         if (mask & reset_reg) {
15806             BLOGD(sc, DBG_LOAD, "Disable UMAC Rx\n");
15807             base_addr = SC_PORT(sc) ? GRCBASE_UMAC1 : GRCBASE_UMAC0;
15808             vals->umac_addr = base_addr + UMAC_REG_COMMAND_CONFIG;
15809             vals->umac_val = REG_RD(sc, vals->umac_addr);
15810             REG_WR(sc, vals->umac_addr, 0);
15811             mac_stopped = TRUE;
15812         }
15813     }
15814 
15815     if (mac_stopped) {
15816         DELAY(20000);
15817     }
15818 }
15819 
15820 #define BXE_PREV_UNDI_PROD_ADDR(p)  (BAR_TSTRORM_INTMEM + 0x1508 + ((p) << 4))
15821 #define BXE_PREV_UNDI_RCQ(val)      ((val) & 0xffff)
15822 #define BXE_PREV_UNDI_BD(val)       ((val) >> 16 & 0xffff)
15823 #define BXE_PREV_UNDI_PROD(rcq, bd) ((bd) << 16 | (rcq))
15824 
15825 static void
15826 bxe_prev_unload_undi_inc(struct bxe_softc *sc,
15827                          uint8_t          port,
15828                          uint8_t          inc)
15829 {
15830     uint16_t rcq, bd;
15831     uint32_t tmp_reg = REG_RD(sc, BXE_PREV_UNDI_PROD_ADDR(port));
15832 
15833     rcq = BXE_PREV_UNDI_RCQ(tmp_reg) + inc;
15834     bd = BXE_PREV_UNDI_BD(tmp_reg) + inc;
15835 
15836     tmp_reg = BXE_PREV_UNDI_PROD(rcq, bd);
15837     REG_WR(sc, BXE_PREV_UNDI_PROD_ADDR(port), tmp_reg);
15838 
15839     BLOGD(sc, DBG_LOAD,
15840           "UNDI producer [%d] rings bd -> 0x%04x, rcq -> 0x%04x\n",
15841           port, bd, rcq);
15842 }
15843 
15844 static int
15845 bxe_prev_unload_common(struct bxe_softc *sc)
15846 {
15847     uint32_t reset_reg, tmp_reg = 0, rc;
15848     uint8_t prev_undi = FALSE;
15849     struct bxe_mac_vals mac_vals;
15850     uint32_t timer_count = 1000;
15851     uint32_t prev_brb;
15852 
15853     /*
15854      * It is possible a previous function received 'common' answer,
15855      * but hasn't loaded yet, therefore creating a scenario of
15856      * multiple functions receiving 'common' on the same path.
15857      */
15858     BLOGD(sc, DBG_LOAD, "Common unload Flow\n");
15859 
15860     memset(&mac_vals, 0, sizeof(mac_vals));
15861 
15862     if (bxe_prev_is_path_marked(sc)) {
15863         return (bxe_prev_mcp_done(sc));
15864     }
15865 
15866     reset_reg = REG_RD(sc, MISC_REG_RESET_REG_1);
15867 
15868     /* Reset should be performed after BRB is emptied */
15869     if (reset_reg & MISC_REGISTERS_RESET_REG_1_RST_BRB1) {
15870         /* Close the MAC Rx to prevent BRB from filling up */
15871         bxe_prev_unload_close_mac(sc, &mac_vals);
15872 
15873         /* close LLH filters towards the BRB */
15874         elink_set_rx_filter(&sc->link_params, 0);
15875 
15876         /*
15877          * Check if the UNDI driver was previously loaded.
15878          * UNDI driver initializes CID offset for normal bell to 0x7
15879          */
15880         if (reset_reg & MISC_REGISTERS_RESET_REG_1_RST_DORQ) {
15881             tmp_reg = REG_RD(sc, DORQ_REG_NORM_CID_OFST);
15882             if (tmp_reg == 0x7) {
15883                 BLOGD(sc, DBG_LOAD, "UNDI previously loaded\n");
15884                 prev_undi = TRUE;
15885                 /* clear the UNDI indication */
15886                 REG_WR(sc, DORQ_REG_NORM_CID_OFST, 0);
15887                 /* clear possible idle check errors */
15888                 REG_RD(sc, NIG_REG_NIG_INT_STS_CLR_0);
15889             }
15890         }
15891 
15892         /* wait until BRB is empty */
15893         tmp_reg = REG_RD(sc, BRB1_REG_NUM_OF_FULL_BLOCKS);
15894         while (timer_count) {
15895             prev_brb = tmp_reg;
15896 
15897             tmp_reg = REG_RD(sc, BRB1_REG_NUM_OF_FULL_BLOCKS);
15898             if (!tmp_reg) {
15899                 break;
15900             }
15901 
15902             BLOGD(sc, DBG_LOAD, "BRB still has 0x%08x\n", tmp_reg);
15903 
15904             /* reset timer as long as BRB actually gets emptied */
15905             if (prev_brb > tmp_reg) {
15906                 timer_count = 1000;
15907             } else {
15908                 timer_count--;
15909             }
15910 
15911             /* If UNDI resides in memory, manually increment it */
15912             if (prev_undi) {
15913                 bxe_prev_unload_undi_inc(sc, SC_PORT(sc), 1);
15914             }
15915 
15916             DELAY(10);
15917         }
15918 
15919         if (!timer_count) {
15920             BLOGE(sc, "Failed to empty BRB\n");
15921         }
15922     }
15923 
15924     /* No packets are in the pipeline, path is ready for reset */
15925     bxe_reset_common(sc);
15926 
15927     if (mac_vals.xmac_addr) {
15928         REG_WR(sc, mac_vals.xmac_addr, mac_vals.xmac_val);
15929     }
15930     if (mac_vals.umac_addr) {
15931         REG_WR(sc, mac_vals.umac_addr, mac_vals.umac_val);
15932     }
15933     if (mac_vals.emac_addr) {
15934         REG_WR(sc, mac_vals.emac_addr, mac_vals.emac_val);
15935     }
15936     if (mac_vals.bmac_addr) {
15937         REG_WR(sc, mac_vals.bmac_addr, mac_vals.bmac_val[0]);
15938         REG_WR(sc, mac_vals.bmac_addr + 4, mac_vals.bmac_val[1]);
15939     }
15940 
15941     rc = bxe_prev_mark_path(sc, prev_undi);
15942     if (rc) {
15943         bxe_prev_mcp_done(sc);
15944         return (rc);
15945     }
15946 
15947     return (bxe_prev_mcp_done(sc));
15948 }
15949 
15950 static int
15951 bxe_prev_unload_uncommon(struct bxe_softc *sc)
15952 {
15953     int rc;
15954 
15955     BLOGD(sc, DBG_LOAD, "Uncommon unload Flow\n");
15956 
15957     /* Test if previous unload process was already finished for this path */
15958     if (bxe_prev_is_path_marked(sc)) {
15959         return (bxe_prev_mcp_done(sc));
15960     }
15961 
15962     BLOGD(sc, DBG_LOAD, "Path is unmarked\n");
15963 
15964     /*
15965      * If function has FLR capabilities, and existing FW version matches
15966      * the one required, then FLR will be sufficient to clean any residue
15967      * left by previous driver
15968      */
15969     rc = bxe_nic_load_analyze_req(sc, FW_MSG_CODE_DRV_LOAD_FUNCTION);
15970     if (!rc) {
15971         /* fw version is good */
15972         BLOGD(sc, DBG_LOAD, "FW version matches our own, attempting FLR\n");
15973         rc = bxe_do_flr(sc);
15974     }
15975 
15976     if (!rc) {
15977         /* FLR was performed */
15978         BLOGD(sc, DBG_LOAD, "FLR successful\n");
15979         return (0);
15980     }
15981 
15982     BLOGD(sc, DBG_LOAD, "Could not FLR\n");
15983 
15984     /* Close the MCP request, return failure*/
15985     rc = bxe_prev_mcp_done(sc);
15986     if (!rc) {
15987         rc = BXE_PREV_WAIT_NEEDED;
15988     }
15989 
15990     return (rc);
15991 }
15992 
15993 static int
15994 bxe_prev_unload(struct bxe_softc *sc)
15995 {
15996     int time_counter = 10;
15997     uint32_t fw, hw_lock_reg, hw_lock_val;
15998     uint32_t rc = 0;
15999 
16000     /*
16001      * Clear HW from errors which may have resulted from an interrupted
16002      * DMAE transaction.
16003      */
16004     bxe_prev_interrupted_dmae(sc);
16005 
16006     /* Release previously held locks */
16007     hw_lock_reg =
16008         (SC_FUNC(sc) <= 5) ?
16009             (MISC_REG_DRIVER_CONTROL_1 + SC_FUNC(sc) * 8) :
16010             (MISC_REG_DRIVER_CONTROL_7 + (SC_FUNC(sc) - 6) * 8);
16011 
16012     hw_lock_val = (REG_RD(sc, hw_lock_reg));
16013     if (hw_lock_val) {
16014         if (hw_lock_val & HW_LOCK_RESOURCE_NVRAM) {
16015             BLOGD(sc, DBG_LOAD, "Releasing previously held NVRAM lock\n");
16016             REG_WR(sc, MCP_REG_MCPR_NVM_SW_ARB,
16017                    (MCPR_NVM_SW_ARB_ARB_REQ_CLR1 << SC_PORT(sc)));
16018         }
16019         BLOGD(sc, DBG_LOAD, "Releasing previously held HW lock\n");
16020         REG_WR(sc, hw_lock_reg, 0xffffffff);
16021     } else {
16022         BLOGD(sc, DBG_LOAD, "No need to release HW/NVRAM locks\n");
16023     }
16024 
16025     if (MCPR_ACCESS_LOCK_LOCK & REG_RD(sc, MCP_REG_MCPR_ACCESS_LOCK)) {
16026         BLOGD(sc, DBG_LOAD, "Releasing previously held ALR\n");
16027         REG_WR(sc, MCP_REG_MCPR_ACCESS_LOCK, 0);
16028     }
16029 
16030     do {
16031         /* Lock MCP using an unload request */
16032         fw = bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS, 0);
16033         if (!fw) {
16034             BLOGE(sc, "MCP response failure, aborting\n");
16035             rc = -1;
16036             break;
16037         }
16038 
16039         if (fw == FW_MSG_CODE_DRV_UNLOAD_COMMON) {
16040             rc = bxe_prev_unload_common(sc);
16041             break;
16042         }
16043 
16044         /* non-common reply from MCP night require looping */
16045         rc = bxe_prev_unload_uncommon(sc);
16046         if (rc != BXE_PREV_WAIT_NEEDED) {
16047             break;
16048         }
16049 
16050         DELAY(20000);
16051     } while (--time_counter);
16052 
16053     if (!time_counter || rc) {
16054         BLOGE(sc, "Failed to unload previous driver!\n");
16055         rc = -1;
16056     }
16057 
16058     return (rc);
16059 }
16060 
16061 void
16062 bxe_dcbx_set_state(struct bxe_softc *sc,
16063                    uint8_t          dcb_on,
16064                    uint32_t         dcbx_enabled)
16065 {
16066     if (!CHIP_IS_E1x(sc)) {
16067         sc->dcb_state = dcb_on;
16068         sc->dcbx_enabled = dcbx_enabled;
16069     } else {
16070         sc->dcb_state = FALSE;
16071         sc->dcbx_enabled = BXE_DCBX_ENABLED_INVALID;
16072     }
16073     BLOGD(sc, DBG_LOAD,
16074           "DCB state [%s:%s]\n",
16075           dcb_on ? "ON" : "OFF",
16076           (dcbx_enabled == BXE_DCBX_ENABLED_OFF) ? "user-mode" :
16077           (dcbx_enabled == BXE_DCBX_ENABLED_ON_NEG_OFF) ? "on-chip static" :
16078           (dcbx_enabled == BXE_DCBX_ENABLED_ON_NEG_ON) ?
16079           "on-chip with negotiation" : "invalid");
16080 }
16081 
16082 /* must be called after sriov-enable */
16083 static int
16084 bxe_set_qm_cid_count(struct bxe_softc *sc)
16085 {
16086     int cid_count = BXE_L2_MAX_CID(sc);
16087 
16088     if (IS_SRIOV(sc)) {
16089         cid_count += BXE_VF_CIDS;
16090     }
16091 
16092     if (CNIC_SUPPORT(sc)) {
16093         cid_count += CNIC_CID_MAX;
16094     }
16095 
16096     return (roundup(cid_count, QM_CID_ROUND));
16097 }
16098 
16099 static void
16100 bxe_init_multi_cos(struct bxe_softc *sc)
16101 {
16102     int pri, cos;
16103 
16104     uint32_t pri_map = 0; /* XXX change to user config */
16105 
16106     for (pri = 0; pri < BXE_MAX_PRIORITY; pri++) {
16107         cos = ((pri_map & (0xf << (pri * 4))) >> (pri * 4));
16108         if (cos < sc->max_cos) {
16109             sc->prio_to_cos[pri] = cos;
16110         } else {
16111             BLOGW(sc, "Invalid COS %d for priority %d "
16112                       "(max COS is %d), setting to 0\n",
16113                   cos, pri, (sc->max_cos - 1));
16114             sc->prio_to_cos[pri] = 0;
16115         }
16116     }
16117 }
16118 
16119 static int
16120 bxe_sysctl_state(SYSCTL_HANDLER_ARGS)
16121 {
16122     struct bxe_softc *sc;
16123     int error, result;
16124 
16125     result = 0;
16126     error = sysctl_handle_int(oidp, &result, 0, req);
16127 
16128     if (error || !req->newptr) {
16129         return (error);
16130     }
16131 
16132     if (result == 1) {
16133         sc = (struct bxe_softc *)arg1;
16134         BLOGI(sc, "... dumping driver state ...\n");
16135         /* XXX */
16136     }
16137 
16138     return (error);
16139 }
16140 
16141 static int
16142 bxe_sysctl_eth_stat(SYSCTL_HANDLER_ARGS)
16143 {
16144     struct bxe_softc *sc = (struct bxe_softc *)arg1;
16145     uint32_t *eth_stats = (uint32_t *)&sc->eth_stats;
16146     uint32_t *offset;
16147     uint64_t value = 0;
16148     int index = (int)arg2;
16149 
16150     if (index >= BXE_NUM_ETH_STATS) {
16151         BLOGE(sc, "bxe_eth_stats index out of range (%d)\n", index);
16152         return (-1);
16153     }
16154 
16155     offset = (eth_stats + bxe_eth_stats_arr[index].offset);
16156 
16157     switch (bxe_eth_stats_arr[index].size) {
16158     case 4:
16159         value = (uint64_t)*offset;
16160         break;
16161     case 8:
16162         value = HILO_U64(*offset, *(offset + 1));
16163         break;
16164     default:
16165         BLOGE(sc, "Invalid bxe_eth_stats size (index=%d size=%d)\n",
16166               index, bxe_eth_stats_arr[index].size);
16167         return (-1);
16168     }
16169 
16170     return (sysctl_handle_64(oidp, &value, 0, req));
16171 }
16172 
16173 static int
16174 bxe_sysctl_eth_q_stat(SYSCTL_HANDLER_ARGS)
16175 {
16176     struct bxe_softc *sc = (struct bxe_softc *)arg1;
16177     uint32_t *eth_stats;
16178     uint32_t *offset;
16179     uint64_t value = 0;
16180     uint32_t q_stat = (uint32_t)arg2;
16181     uint32_t fp_index = ((q_stat >> 16) & 0xffff);
16182     uint32_t index = (q_stat & 0xffff);
16183 
16184     eth_stats = (uint32_t *)&sc->fp[fp_index].eth_q_stats;
16185 
16186     if (index >= BXE_NUM_ETH_Q_STATS) {
16187         BLOGE(sc, "bxe_eth_q_stats index out of range (%d)\n", index);
16188         return (-1);
16189     }
16190 
16191     offset = (eth_stats + bxe_eth_q_stats_arr[index].offset);
16192 
16193     switch (bxe_eth_q_stats_arr[index].size) {
16194     case 4:
16195         value = (uint64_t)*offset;
16196         break;
16197     case 8:
16198         value = HILO_U64(*offset, *(offset + 1));
16199         break;
16200     default:
16201         BLOGE(sc, "Invalid bxe_eth_q_stats size (index=%d size=%d)\n",
16202               index, bxe_eth_q_stats_arr[index].size);
16203         return (-1);
16204     }
16205 
16206     return (sysctl_handle_64(oidp, &value, 0, req));
16207 }
16208 
16209 static void
16210 bxe_add_sysctls(struct bxe_softc *sc)
16211 {
16212     struct sysctl_ctx_list *ctx;
16213     struct sysctl_oid_list *children;
16214     struct sysctl_oid *queue_top, *queue;
16215     struct sysctl_oid_list *queue_top_children, *queue_children;
16216     char queue_num_buf[32];
16217     uint32_t q_stat;
16218     int i, j;
16219 
16220     ctx = device_get_sysctl_ctx(sc->dev);
16221     children = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev));
16222 
16223     SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "version",
16224                       CTLFLAG_RD, BXE_DRIVER_VERSION, 0,
16225                       "version");
16226 
16227     SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "bc_version",
16228                       CTLFLAG_RD, sc->devinfo.bc_ver_str, 0,
16229                       "bootcode version");
16230 
16231     snprintf(sc->fw_ver_str, sizeof(sc->fw_ver_str), "%d.%d.%d.%d",
16232              BCM_5710_FW_MAJOR_VERSION,
16233              BCM_5710_FW_MINOR_VERSION,
16234              BCM_5710_FW_REVISION_VERSION,
16235              BCM_5710_FW_ENGINEERING_VERSION);
16236     SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "fw_version",
16237                       CTLFLAG_RD, sc->fw_ver_str, 0,
16238                       "firmware version");
16239 
16240     snprintf(sc->mf_mode_str, sizeof(sc->mf_mode_str), "%s",
16241         ((sc->devinfo.mf_info.mf_mode == SINGLE_FUNCTION)     ? "Single"  :
16242          (sc->devinfo.mf_info.mf_mode == MULTI_FUNCTION_SD)   ? "MF-SD"   :
16243          (sc->devinfo.mf_info.mf_mode == MULTI_FUNCTION_SI)   ? "MF-SI"   :
16244          (sc->devinfo.mf_info.mf_mode == MULTI_FUNCTION_AFEX) ? "MF-AFEX" :
16245                                                                 "Unknown"));
16246     SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "mf_mode",
16247                       CTLFLAG_RD, sc->mf_mode_str, 0,
16248                       "multifunction mode");
16249 
16250     SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "mf_vnics",
16251                     CTLFLAG_RD, &sc->devinfo.mf_info.vnics_per_port, 0,
16252                     "multifunction vnics per port");
16253 
16254     SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "mac_addr",
16255                       CTLFLAG_RD, sc->mac_addr_str, 0,
16256                       "mac address");
16257 
16258     snprintf(sc->pci_link_str, sizeof(sc->pci_link_str), "%s x%d",
16259         ((sc->devinfo.pcie_link_speed == 1) ? "2.5GT/s" :
16260          (sc->devinfo.pcie_link_speed == 2) ? "5.0GT/s" :
16261          (sc->devinfo.pcie_link_speed == 4) ? "8.0GT/s" :
16262                                               "???GT/s"),
16263         sc->devinfo.pcie_link_width);
16264     SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "pci_link",
16265                       CTLFLAG_RD, sc->pci_link_str, 0,
16266                       "pci link status");
16267 
16268     sc->debug = bxe_debug;
16269     SYSCTL_ADD_ULONG(ctx, children, OID_AUTO, "debug",
16270                     CTLFLAG_RW, &sc->debug,
16271                     "debug logging mode");
16272 
16273     sc->rx_budget = bxe_rx_budget;
16274     SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "rx_budget",
16275                     CTLFLAG_RW, &sc->rx_budget, 0,
16276                     "rx processing budget");
16277 
16278     SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "state",
16279                     CTLTYPE_UINT | CTLFLAG_RW, sc, 0,
16280                     bxe_sysctl_state, "IU", "dump driver state");
16281 
16282     for (i = 0; i < BXE_NUM_ETH_STATS; i++) {
16283         SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
16284                         bxe_eth_stats_arr[i].string,
16285                         CTLTYPE_U64 | CTLFLAG_RD, sc, i,
16286                         bxe_sysctl_eth_stat, "LU",
16287                         bxe_eth_stats_arr[i].string);
16288     }
16289 
16290     /* add a new parent node for all queues "dev.bxe.#.queue" */
16291     queue_top = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "queue",
16292                                 CTLFLAG_RD, NULL, "queue");
16293     queue_top_children = SYSCTL_CHILDREN(queue_top);
16294 
16295     for (i = 0; i < sc->num_queues; i++) {
16296         /* add a new parent node for a single queue "dev.bxe.#.queue.#" */
16297         snprintf(queue_num_buf, sizeof(queue_num_buf), "%d", i);
16298         queue = SYSCTL_ADD_NODE(ctx, queue_top_children, OID_AUTO,
16299                                 queue_num_buf, CTLFLAG_RD, NULL,
16300                                 "single queue");
16301         queue_children = SYSCTL_CHILDREN(queue);
16302 
16303         for (j = 0; j < BXE_NUM_ETH_Q_STATS; j++) {
16304             q_stat = ((i << 16) | j);
16305             SYSCTL_ADD_PROC(ctx, queue_children, OID_AUTO,
16306                             bxe_eth_q_stats_arr[j].string,
16307                             CTLTYPE_U64 | CTLFLAG_RD, sc, q_stat,
16308                             bxe_sysctl_eth_q_stat, "LU",
16309                             bxe_eth_q_stats_arr[j].string);
16310         }
16311     }
16312 }
16313 
16314 /*
16315  * Device attach function.
16316  *
16317  * Allocates device resources, performs secondary chip identification, and
16318  * initializes driver instance variables. This function is called from driver
16319  * load after a successful probe.
16320  *
16321  * Returns:
16322  *   0 = Success, >0 = Failure
16323  */
16324 static int
16325 bxe_attach(device_t dev)
16326 {
16327     struct bxe_softc *sc;
16328 
16329     sc = device_get_softc(dev);
16330 
16331     BLOGD(sc, DBG_LOAD, "Starting attach...\n");
16332 
16333     sc->state = BXE_STATE_CLOSED;
16334 
16335     sc->dev  = dev;
16336     sc->unit = device_get_unit(dev);
16337 
16338     BLOGD(sc, DBG_LOAD, "softc = %p\n", sc);
16339 
16340     sc->pcie_bus    = pci_get_bus(dev);
16341     sc->pcie_device = pci_get_slot(dev);
16342     sc->pcie_func   = pci_get_function(dev);
16343 
16344     /* enable bus master capability */
16345     pci_enable_busmaster(dev);
16346 
16347     /* get the BARs */
16348     if (bxe_allocate_bars(sc) != 0) {
16349         return (ENXIO);
16350     }
16351 
16352     /* initialize the mutexes */
16353     bxe_init_mutexes(sc);
16354 
16355     /* prepare the periodic callout */
16356     callout_init(&sc->periodic_callout, 0);
16357 
16358     /* prepare the chip taskqueue */
16359     sc->chip_tq_flags = CHIP_TQ_NONE;
16360     snprintf(sc->chip_tq_name, sizeof(sc->chip_tq_name),
16361              "bxe%d_chip_tq", sc->unit);
16362     TASK_INIT(&sc->chip_tq_task, 0, bxe_handle_chip_tq, sc);
16363     sc->chip_tq = taskqueue_create(sc->chip_tq_name, M_NOWAIT,
16364                                    taskqueue_thread_enqueue,
16365                                    &sc->chip_tq);
16366     taskqueue_start_threads(&sc->chip_tq, 1, PWAIT, /* lower priority */
16367                             "%s", sc->chip_tq_name);
16368 
16369     /* get device info and set params */
16370     if (bxe_get_device_info(sc) != 0) {
16371         BLOGE(sc, "getting device info\n");
16372         bxe_deallocate_bars(sc);
16373         pci_disable_busmaster(dev);
16374         return (ENXIO);
16375     }
16376 
16377     /* get final misc params */
16378     bxe_get_params(sc);
16379 
16380     /* set the default MTU (changed via ifconfig) */
16381     sc->mtu = ETHERMTU;
16382 
16383     bxe_set_modes_bitmap(sc);
16384 
16385     /* XXX
16386      * If in AFEX mode and the function is configured for FCoE
16387      * then bail... no L2 allowed.
16388      */
16389 
16390     /* get phy settings from shmem and 'and' against admin settings */
16391     bxe_get_phy_info(sc);
16392 
16393     /* initialize the FreeBSD ifnet interface */
16394     if (bxe_init_ifnet(sc) != 0) {
16395         bxe_release_mutexes(sc);
16396         bxe_deallocate_bars(sc);
16397         pci_disable_busmaster(dev);
16398         return (ENXIO);
16399     }
16400 
16401     /* allocate device interrupts */
16402     if (bxe_interrupt_alloc(sc) != 0) {
16403         if (sc->ifp != NULL) {
16404             ether_ifdetach(sc->ifp);
16405         }
16406         ifmedia_removeall(&sc->ifmedia);
16407         bxe_release_mutexes(sc);
16408         bxe_deallocate_bars(sc);
16409         pci_disable_busmaster(dev);
16410         return (ENXIO);
16411     }
16412 
16413     /* allocate ilt */
16414     if (bxe_alloc_ilt_mem(sc) != 0) {
16415         bxe_interrupt_free(sc);
16416         if (sc->ifp != NULL) {
16417             ether_ifdetach(sc->ifp);
16418         }
16419         ifmedia_removeall(&sc->ifmedia);
16420         bxe_release_mutexes(sc);
16421         bxe_deallocate_bars(sc);
16422         pci_disable_busmaster(dev);
16423         return (ENXIO);
16424     }
16425 
16426     /* allocate the host hardware/software hsi structures */
16427     if (bxe_alloc_hsi_mem(sc) != 0) {
16428         bxe_free_ilt_mem(sc);
16429         bxe_interrupt_free(sc);
16430         if (sc->ifp != NULL) {
16431             ether_ifdetach(sc->ifp);
16432         }
16433         ifmedia_removeall(&sc->ifmedia);
16434         bxe_release_mutexes(sc);
16435         bxe_deallocate_bars(sc);
16436         pci_disable_busmaster(dev);
16437         return (ENXIO);
16438     }
16439 
16440     /* need to reset chip if UNDI was active */
16441     if (IS_PF(sc) && !BXE_NOMCP(sc)) {
16442         /* init fw_seq */
16443         sc->fw_seq =
16444             (SHMEM_RD(sc, func_mb[SC_FW_MB_IDX(sc)].drv_mb_header) &
16445              DRV_MSG_SEQ_NUMBER_MASK);
16446         BLOGD(sc, DBG_LOAD, "prev unload fw_seq 0x%04x\n", sc->fw_seq);
16447         bxe_prev_unload(sc);
16448     }
16449 
16450 #if 1
16451     /* XXX */
16452     bxe_dcbx_set_state(sc, FALSE, BXE_DCBX_ENABLED_OFF);
16453 #else
16454     if (SHMEM2_HAS(sc, dcbx_lldp_params_offset) &&
16455         SHMEM2_HAS(sc, dcbx_lldp_dcbx_stat_offset) &&
16456         SHMEM2_RD(sc, dcbx_lldp_params_offset) &&
16457         SHMEM2_RD(sc, dcbx_lldp_dcbx_stat_offset)) {
16458         bxe_dcbx_set_state(sc, TRUE, BXE_DCBX_ENABLED_ON_NEG_ON);
16459         bxe_dcbx_init_params(sc);
16460     } else {
16461         bxe_dcbx_set_state(sc, FALSE, BXE_DCBX_ENABLED_OFF);
16462     }
16463 #endif
16464 
16465     /* calculate qm_cid_count */
16466     sc->qm_cid_count = bxe_set_qm_cid_count(sc);
16467     BLOGD(sc, DBG_LOAD, "qm_cid_count=%d\n", sc->qm_cid_count);
16468 
16469     sc->max_cos = 1;
16470     bxe_init_multi_cos(sc);
16471 
16472     bxe_add_sysctls(sc);
16473 
16474     return (0);
16475 }
16476 
16477 /*
16478  * Device detach function.
16479  *
16480  * Stops the controller, resets the controller, and releases resources.
16481  *
16482  * Returns:
16483  *   0 = Success, >0 = Failure
16484  */
16485 static int
16486 bxe_detach(device_t dev)
16487 {
16488     struct bxe_softc *sc;
16489     if_t ifp;
16490 
16491     sc = device_get_softc(dev);
16492 
16493     BLOGD(sc, DBG_LOAD, "Starting detach...\n");
16494 
16495     ifp = sc->ifp;
16496     if (ifp != NULL && if_vlantrunkinuse(ifp)) {
16497         BLOGE(sc, "Cannot detach while VLANs are in use.\n");
16498         return(EBUSY);
16499     }
16500 
16501     /* stop the periodic callout */
16502     bxe_periodic_stop(sc);
16503 
16504     /* stop the chip taskqueue */
16505     atomic_store_rel_long(&sc->chip_tq_flags, CHIP_TQ_NONE);
16506     if (sc->chip_tq) {
16507         taskqueue_drain(sc->chip_tq, &sc->chip_tq_task);
16508         taskqueue_free(sc->chip_tq);
16509         sc->chip_tq = NULL;
16510     }
16511 
16512     /* stop and reset the controller if it was open */
16513     if (sc->state != BXE_STATE_CLOSED) {
16514         BXE_CORE_LOCK(sc);
16515         bxe_nic_unload(sc, UNLOAD_CLOSE, TRUE);
16516         BXE_CORE_UNLOCK(sc);
16517     }
16518 
16519     /* release the network interface */
16520     if (ifp != NULL) {
16521         ether_ifdetach(ifp);
16522     }
16523     ifmedia_removeall(&sc->ifmedia);
16524 
16525     /* XXX do the following based on driver state... */
16526 
16527     /* free the host hardware/software hsi structures */
16528     bxe_free_hsi_mem(sc);
16529 
16530     /* free ilt */
16531     bxe_free_ilt_mem(sc);
16532 
16533     /* release the interrupts */
16534     bxe_interrupt_free(sc);
16535 
16536     /* Release the mutexes*/
16537     bxe_release_mutexes(sc);
16538 
16539     /* Release the PCIe BAR mapped memory */
16540     bxe_deallocate_bars(sc);
16541 
16542     /* Release the FreeBSD interface. */
16543     if (sc->ifp != NULL) {
16544         if_free(sc->ifp);
16545     }
16546 
16547     pci_disable_busmaster(dev);
16548 
16549     return (0);
16550 }
16551 
16552 /*
16553  * Device shutdown function.
16554  *
16555  * Stops and resets the controller.
16556  *
16557  * Returns:
16558  *   Nothing
16559  */
16560 static int
16561 bxe_shutdown(device_t dev)
16562 {
16563     struct bxe_softc *sc;
16564 
16565     sc = device_get_softc(dev);
16566 
16567     BLOGD(sc, DBG_LOAD, "Starting shutdown...\n");
16568 
16569     /* stop the periodic callout */
16570     bxe_periodic_stop(sc);
16571 
16572     BXE_CORE_LOCK(sc);
16573     bxe_nic_unload(sc, UNLOAD_NORMAL, FALSE);
16574     BXE_CORE_UNLOCK(sc);
16575 
16576     return (0);
16577 }
16578 
16579 void
16580 bxe_igu_ack_sb(struct bxe_softc *sc,
16581                uint8_t          igu_sb_id,
16582                uint8_t          segment,
16583                uint16_t         index,
16584                uint8_t          op,
16585                uint8_t          update)
16586 {
16587     uint32_t igu_addr = sc->igu_base_addr;
16588     igu_addr += (IGU_CMD_INT_ACK_BASE + igu_sb_id)*8;
16589     bxe_igu_ack_sb_gen(sc, igu_sb_id, segment, index, op, update, igu_addr);
16590 }
16591 
16592 static void
16593 bxe_igu_clear_sb_gen(struct bxe_softc *sc,
16594                      uint8_t          func,
16595                      uint8_t          idu_sb_id,
16596                      uint8_t          is_pf)
16597 {
16598     uint32_t data, ctl, cnt = 100;
16599     uint32_t igu_addr_data = IGU_REG_COMMAND_REG_32LSB_DATA;
16600     uint32_t igu_addr_ctl = IGU_REG_COMMAND_REG_CTRL;
16601     uint32_t igu_addr_ack = IGU_REG_CSTORM_TYPE_0_SB_CLEANUP + (idu_sb_id/32)*4;
16602     uint32_t sb_bit =  1 << (idu_sb_id%32);
16603     uint32_t func_encode = func | (is_pf ? 1 : 0) << IGU_FID_ENCODE_IS_PF_SHIFT;
16604     uint32_t addr_encode = IGU_CMD_E2_PROD_UPD_BASE + idu_sb_id;
16605 
16606     /* Not supported in BC mode */
16607     if (CHIP_INT_MODE_IS_BC(sc)) {
16608         return;
16609     }
16610 
16611     data = ((IGU_USE_REGISTER_cstorm_type_0_sb_cleanup <<
16612              IGU_REGULAR_CLEANUP_TYPE_SHIFT) |
16613             IGU_REGULAR_CLEANUP_SET |
16614             IGU_REGULAR_BCLEANUP);
16615 
16616     ctl = ((addr_encode << IGU_CTRL_REG_ADDRESS_SHIFT) |
16617            (func_encode << IGU_CTRL_REG_FID_SHIFT) |
16618            (IGU_CTRL_CMD_TYPE_WR << IGU_CTRL_REG_TYPE_SHIFT));
16619 
16620     BLOGD(sc, DBG_LOAD, "write 0x%08x to IGU(via GRC) addr 0x%x\n",
16621             data, igu_addr_data);
16622     REG_WR(sc, igu_addr_data, data);
16623 
16624     bus_space_barrier(sc->bar[BAR0].tag, sc->bar[BAR0].handle, 0, 0,
16625                       BUS_SPACE_BARRIER_WRITE);
16626     mb();
16627 
16628     BLOGD(sc, DBG_LOAD, "write 0x%08x to IGU(via GRC) addr 0x%x\n",
16629             ctl, igu_addr_ctl);
16630     REG_WR(sc, igu_addr_ctl, ctl);
16631 
16632     bus_space_barrier(sc->bar[BAR0].tag, sc->bar[BAR0].handle, 0, 0,
16633                       BUS_SPACE_BARRIER_WRITE);
16634     mb();
16635 
16636     /* wait for clean up to finish */
16637     while (!(REG_RD(sc, igu_addr_ack) & sb_bit) && --cnt) {
16638         DELAY(20000);
16639     }
16640 
16641     if (!(REG_RD(sc, igu_addr_ack) & sb_bit)) {
16642         BLOGD(sc, DBG_LOAD,
16643               "Unable to finish IGU cleanup: "
16644               "idu_sb_id %d offset %d bit %d (cnt %d)\n",
16645               idu_sb_id, idu_sb_id/32, idu_sb_id%32, cnt);
16646     }
16647 }
16648 
16649 static void
16650 bxe_igu_clear_sb(struct bxe_softc *sc,
16651                  uint8_t          idu_sb_id)
16652 {
16653     bxe_igu_clear_sb_gen(sc, SC_FUNC(sc), idu_sb_id, TRUE /*PF*/);
16654 }
16655 
16656 
16657 
16658 
16659 
16660 
16661 
16662 /*******************/
16663 /* ECORE CALLBACKS */
16664 /*******************/
16665 
16666 static void
16667 bxe_reset_common(struct bxe_softc *sc)
16668 {
16669     uint32_t val = 0x1400;
16670 
16671     /* reset_common */
16672     REG_WR(sc, (GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR), 0xd3ffff7f);
16673 
16674     if (CHIP_IS_E3(sc)) {
16675         val |= MISC_REGISTERS_RESET_REG_2_MSTAT0;
16676         val |= MISC_REGISTERS_RESET_REG_2_MSTAT1;
16677     }
16678 
16679     REG_WR(sc, (GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR), val);
16680 }
16681 
16682 static void
16683 bxe_common_init_phy(struct bxe_softc *sc)
16684 {
16685     uint32_t shmem_base[2];
16686     uint32_t shmem2_base[2];
16687 
16688     /* Avoid common init in case MFW supports LFA */
16689     if (SHMEM2_RD(sc, size) >
16690         (uint32_t)offsetof(struct shmem2_region,
16691                            lfa_host_addr[SC_PORT(sc)])) {
16692         return;
16693     }
16694 
16695     shmem_base[0]  = sc->devinfo.shmem_base;
16696     shmem2_base[0] = sc->devinfo.shmem2_base;
16697 
16698     if (!CHIP_IS_E1x(sc)) {
16699         shmem_base[1]  = SHMEM2_RD(sc, other_shmem_base_addr);
16700         shmem2_base[1] = SHMEM2_RD(sc, other_shmem2_base_addr);
16701     }
16702 
16703     bxe_acquire_phy_lock(sc);
16704     elink_common_init_phy(sc, shmem_base, shmem2_base,
16705                           sc->devinfo.chip_id, 0);
16706     bxe_release_phy_lock(sc);
16707 }
16708 
16709 static void
16710 bxe_pf_disable(struct bxe_softc *sc)
16711 {
16712     uint32_t val = REG_RD(sc, IGU_REG_PF_CONFIGURATION);
16713 
16714     val &= ~IGU_PF_CONF_FUNC_EN;
16715 
16716     REG_WR(sc, IGU_REG_PF_CONFIGURATION, val);
16717     REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
16718     REG_WR(sc, CFC_REG_WEAK_ENABLE_PF, 0);
16719 }
16720 
16721 static void
16722 bxe_init_pxp(struct bxe_softc *sc)
16723 {
16724     uint16_t devctl;
16725     int r_order, w_order;
16726 
16727     devctl = bxe_pcie_capability_read(sc, PCIR_EXPRESS_DEVICE_CTL, 2);
16728 
16729     BLOGD(sc, DBG_LOAD, "read 0x%08x from devctl\n", devctl);
16730 
16731     w_order = ((devctl & PCIM_EXP_CTL_MAX_PAYLOAD) >> 5);
16732 
16733     if (sc->mrrs == -1) {
16734         r_order = ((devctl & PCIM_EXP_CTL_MAX_READ_REQUEST) >> 12);
16735     } else {
16736         BLOGD(sc, DBG_LOAD, "forcing read order to %d\n", sc->mrrs);
16737         r_order = sc->mrrs;
16738     }
16739 
16740     ecore_init_pxp_arb(sc, r_order, w_order);
16741 }
16742 
16743 static uint32_t
16744 bxe_get_pretend_reg(struct bxe_softc *sc)
16745 {
16746     uint32_t base = PXP2_REG_PGL_PRETEND_FUNC_F0;
16747     uint32_t stride = (PXP2_REG_PGL_PRETEND_FUNC_F1 - base);
16748     return (base + (SC_ABS_FUNC(sc)) * stride);
16749 }
16750 
16751 /*
16752  * Called only on E1H or E2.
16753  * When pretending to be PF, the pretend value is the function number 0..7.
16754  * When pretending to be VF, the pretend val is the PF-num:VF-valid:ABS-VFID
16755  * combination.
16756  */
16757 static int
16758 bxe_pretend_func(struct bxe_softc *sc,
16759                  uint16_t         pretend_func_val)
16760 {
16761     uint32_t pretend_reg;
16762 
16763     if (CHIP_IS_E1H(sc) && (pretend_func_val > E1H_FUNC_MAX)) {
16764         return (-1);
16765     }
16766 
16767     /* get my own pretend register */
16768     pretend_reg = bxe_get_pretend_reg(sc);
16769     REG_WR(sc, pretend_reg, pretend_func_val);
16770     REG_RD(sc, pretend_reg);
16771     return (0);
16772 }
16773 
16774 static void
16775 bxe_iov_init_dmae(struct bxe_softc *sc)
16776 {
16777     return;
16778 #if 0
16779     BLOGD(sc, DBG_LOAD, "SRIOV is %s\n", IS_SRIOV(sc) ? "ON" : "OFF");
16780 
16781     if (!IS_SRIOV(sc)) {
16782         return;
16783     }
16784 
16785     REG_WR(sc, DMAE_REG_BACKWARD_COMP_EN, 0);
16786 #endif
16787 }
16788 
16789 #if 0
16790 static int
16791 bxe_iov_init_ilt(struct bxe_softc *sc,
16792                  uint16_t         line)
16793 {
16794     return (line);
16795 #if 0
16796     int i;
16797     struct ecore_ilt* ilt = sc->ilt;
16798 
16799     if (!IS_SRIOV(sc)) {
16800         return (line);
16801     }
16802 
16803     /* set vfs ilt lines */
16804     for (i = 0; i < BXE_VF_CIDS/ILT_PAGE_CIDS ; i++) {
16805         struct hw_dma *hw_cxt = SC_VF_CXT_PAGE(sc,i);
16806         ilt->lines[line+i].page = hw_cxt->addr;
16807         ilt->lines[line+i].page_mapping = hw_cxt->mapping;
16808         ilt->lines[line+i].size = hw_cxt->size; /* doesn't matter */
16809     }
16810     return (line+i);
16811 #endif
16812 }
16813 #endif
16814 
16815 static void
16816 bxe_iov_init_dq(struct bxe_softc *sc)
16817 {
16818     return;
16819 #if 0
16820     if (!IS_SRIOV(sc)) {
16821         return;
16822     }
16823 
16824     /* Set the DQ such that the CID reflect the abs_vfid */
16825     REG_WR(sc, DORQ_REG_VF_NORM_VF_BASE, 0);
16826     REG_WR(sc, DORQ_REG_MAX_RVFID_SIZE, ilog2(BNX2X_MAX_NUM_OF_VFS));
16827 
16828     /*
16829      * Set VFs starting CID. If its > 0 the preceding CIDs are belong to
16830      * the PF L2 queues
16831      */
16832     REG_WR(sc, DORQ_REG_VF_NORM_CID_BASE, BNX2X_FIRST_VF_CID);
16833 
16834     /* The VF window size is the log2 of the max number of CIDs per VF */
16835     REG_WR(sc, DORQ_REG_VF_NORM_CID_WND_SIZE, BNX2X_VF_CID_WND);
16836 
16837     /*
16838      * The VF doorbell size  0 - *B, 4 - 128B. We set it here to match
16839      * the Pf doorbell size although the 2 are independent.
16840      */
16841     REG_WR(sc, DORQ_REG_VF_NORM_CID_OFST,
16842            BNX2X_DB_SHIFT - BNX2X_DB_MIN_SHIFT);
16843 
16844     /*
16845      * No security checks for now -
16846      * configure single rule (out of 16) mask = 0x1, value = 0x0,
16847      * CID range 0 - 0x1ffff
16848      */
16849     REG_WR(sc, DORQ_REG_VF_TYPE_MASK_0, 1);
16850     REG_WR(sc, DORQ_REG_VF_TYPE_VALUE_0, 0);
16851     REG_WR(sc, DORQ_REG_VF_TYPE_MIN_MCID_0, 0);
16852     REG_WR(sc, DORQ_REG_VF_TYPE_MAX_MCID_0, 0x1ffff);
16853 
16854     /* set the number of VF alllowed doorbells to the full DQ range */
16855     REG_WR(sc, DORQ_REG_VF_NORM_MAX_CID_COUNT, 0x20000);
16856 
16857     /* set the VF doorbell threshold */
16858     REG_WR(sc, DORQ_REG_VF_USAGE_CT_LIMIT, 4);
16859 #endif
16860 }
16861 
16862 /* send a NIG loopback debug packet */
16863 static void
16864 bxe_lb_pckt(struct bxe_softc *sc)
16865 {
16866     uint32_t wb_write[3];
16867 
16868     /* Ethernet source and destination addresses */
16869     wb_write[0] = 0x55555555;
16870     wb_write[1] = 0x55555555;
16871     wb_write[2] = 0x20;     /* SOP */
16872     REG_WR_DMAE(sc, NIG_REG_DEBUG_PACKET_LB, wb_write, 3);
16873 
16874     /* NON-IP protocol */
16875     wb_write[0] = 0x09000000;
16876     wb_write[1] = 0x55555555;
16877     wb_write[2] = 0x10;     /* EOP, eop_bvalid = 0 */
16878     REG_WR_DMAE(sc, NIG_REG_DEBUG_PACKET_LB, wb_write, 3);
16879 }
16880 
16881 /*
16882  * Some of the internal memories are not directly readable from the driver.
16883  * To test them we send debug packets.
16884  */
16885 static int
16886 bxe_int_mem_test(struct bxe_softc *sc)
16887 {
16888     int factor;
16889     int count, i;
16890     uint32_t val = 0;
16891 
16892     if (CHIP_REV_IS_FPGA(sc)) {
16893         factor = 120;
16894     } else if (CHIP_REV_IS_EMUL(sc)) {
16895         factor = 200;
16896     } else {
16897         factor = 1;
16898     }
16899 
16900     /* disable inputs of parser neighbor blocks */
16901     REG_WR(sc, TSDM_REG_ENABLE_IN1, 0x0);
16902     REG_WR(sc, TCM_REG_PRS_IFEN, 0x0);
16903     REG_WR(sc, CFC_REG_DEBUG0, 0x1);
16904     REG_WR(sc, NIG_REG_PRS_REQ_IN_EN, 0x0);
16905 
16906     /*  write 0 to parser credits for CFC search request */
16907     REG_WR(sc, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0);
16908 
16909     /* send Ethernet packet */
16910     bxe_lb_pckt(sc);
16911 
16912     /* TODO do i reset NIG statistic? */
16913     /* Wait until NIG register shows 1 packet of size 0x10 */
16914     count = 1000 * factor;
16915     while (count) {
16916         bxe_read_dmae(sc, NIG_REG_STAT2_BRB_OCTET, 2);
16917         val = *BXE_SP(sc, wb_data[0]);
16918         if (val == 0x10) {
16919             break;
16920         }
16921 
16922         DELAY(10000);
16923         count--;
16924     }
16925 
16926     if (val != 0x10) {
16927         BLOGE(sc, "NIG timeout val=0x%x\n", val);
16928         return (-1);
16929     }
16930 
16931     /* wait until PRS register shows 1 packet */
16932     count = (1000 * factor);
16933     while (count) {
16934         val = REG_RD(sc, PRS_REG_NUM_OF_PACKETS);
16935         if (val == 1) {
16936             break;
16937         }
16938 
16939         DELAY(10000);
16940         count--;
16941     }
16942 
16943     if (val != 0x1) {
16944         BLOGE(sc, "PRS timeout val=0x%x\n", val);
16945         return (-2);
16946     }
16947 
16948     /* Reset and init BRB, PRS */
16949     REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03);
16950     DELAY(50000);
16951     REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03);
16952     DELAY(50000);
16953     ecore_init_block(sc, BLOCK_BRB1, PHASE_COMMON);
16954     ecore_init_block(sc, BLOCK_PRS, PHASE_COMMON);
16955 
16956     /* Disable inputs of parser neighbor blocks */
16957     REG_WR(sc, TSDM_REG_ENABLE_IN1, 0x0);
16958     REG_WR(sc, TCM_REG_PRS_IFEN, 0x0);
16959     REG_WR(sc, CFC_REG_DEBUG0, 0x1);
16960     REG_WR(sc, NIG_REG_PRS_REQ_IN_EN, 0x0);
16961 
16962     /* Write 0 to parser credits for CFC search request */
16963     REG_WR(sc, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0);
16964 
16965     /* send 10 Ethernet packets */
16966     for (i = 0; i < 10; i++) {
16967         bxe_lb_pckt(sc);
16968     }
16969 
16970     /* Wait until NIG register shows 10+1 packets of size 11*0x10 = 0xb0 */
16971     count = (1000 * factor);
16972     while (count) {
16973         bxe_read_dmae(sc, NIG_REG_STAT2_BRB_OCTET, 2);
16974         val = *BXE_SP(sc, wb_data[0]);
16975         if (val == 0xb0) {
16976             break;
16977         }
16978 
16979         DELAY(10000);
16980         count--;
16981     }
16982 
16983     if (val != 0xb0) {
16984         BLOGE(sc, "NIG timeout val=0x%x\n", val);
16985         return (-3);
16986     }
16987 
16988     /* Wait until PRS register shows 2 packets */
16989     val = REG_RD(sc, PRS_REG_NUM_OF_PACKETS);
16990     if (val != 2) {
16991         BLOGE(sc, "PRS timeout val=0x%x\n", val);
16992     }
16993 
16994     /* Write 1 to parser credits for CFC search request */
16995     REG_WR(sc, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x1);
16996 
16997     /* Wait until PRS register shows 3 packets */
16998     DELAY(10000 * factor);
16999 
17000     /* Wait until NIG register shows 1 packet of size 0x10 */
17001     val = REG_RD(sc, PRS_REG_NUM_OF_PACKETS);
17002     if (val != 3) {
17003         BLOGE(sc, "PRS timeout val=0x%x\n", val);
17004     }
17005 
17006     /* clear NIG EOP FIFO */
17007     for (i = 0; i < 11; i++) {
17008         REG_RD(sc, NIG_REG_INGRESS_EOP_LB_FIFO);
17009     }
17010 
17011     val = REG_RD(sc, NIG_REG_INGRESS_EOP_LB_EMPTY);
17012     if (val != 1) {
17013         BLOGE(sc, "clear of NIG failed\n");
17014         return (-4);
17015     }
17016 
17017     /* Reset and init BRB, PRS, NIG */
17018     REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03);
17019     DELAY(50000);
17020     REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03);
17021     DELAY(50000);
17022     ecore_init_block(sc, BLOCK_BRB1, PHASE_COMMON);
17023     ecore_init_block(sc, BLOCK_PRS, PHASE_COMMON);
17024     if (!CNIC_SUPPORT(sc)) {
17025         /* set NIC mode */
17026         REG_WR(sc, PRS_REG_NIC_MODE, 1);
17027     }
17028 
17029     /* Enable inputs of parser neighbor blocks */
17030     REG_WR(sc, TSDM_REG_ENABLE_IN1, 0x7fffffff);
17031     REG_WR(sc, TCM_REG_PRS_IFEN, 0x1);
17032     REG_WR(sc, CFC_REG_DEBUG0, 0x0);
17033     REG_WR(sc, NIG_REG_PRS_REQ_IN_EN, 0x1);
17034 
17035     return (0);
17036 }
17037 
17038 static void
17039 bxe_setup_fan_failure_detection(struct bxe_softc *sc)
17040 {
17041     int is_required;
17042     uint32_t val;
17043     int port;
17044 
17045     is_required = 0;
17046     val = (SHMEM_RD(sc, dev_info.shared_hw_config.config2) &
17047            SHARED_HW_CFG_FAN_FAILURE_MASK);
17048 
17049     if (val == SHARED_HW_CFG_FAN_FAILURE_ENABLED) {
17050         is_required = 1;
17051     }
17052     /*
17053      * The fan failure mechanism is usually related to the PHY type since
17054      * the power consumption of the board is affected by the PHY. Currently,
17055      * fan is required for most designs with SFX7101, BCM8727 and BCM8481.
17056      */
17057     else if (val == SHARED_HW_CFG_FAN_FAILURE_PHY_TYPE) {
17058         for (port = PORT_0; port < PORT_MAX; port++) {
17059             is_required |= elink_fan_failure_det_req(sc,
17060                                                      sc->devinfo.shmem_base,
17061                                                      sc->devinfo.shmem2_base,
17062                                                      port);
17063         }
17064     }
17065 
17066     BLOGD(sc, DBG_LOAD, "fan detection setting: %d\n", is_required);
17067 
17068     if (is_required == 0) {
17069         return;
17070     }
17071 
17072     /* Fan failure is indicated by SPIO 5 */
17073     bxe_set_spio(sc, MISC_SPIO_SPIO5, MISC_SPIO_INPUT_HI_Z);
17074 
17075     /* set to active low mode */
17076     val = REG_RD(sc, MISC_REG_SPIO_INT);
17077     val |= (MISC_SPIO_SPIO5 << MISC_SPIO_INT_OLD_SET_POS);
17078     REG_WR(sc, MISC_REG_SPIO_INT, val);
17079 
17080     /* enable interrupt to signal the IGU */
17081     val = REG_RD(sc, MISC_REG_SPIO_EVENT_EN);
17082     val |= MISC_SPIO_SPIO5;
17083     REG_WR(sc, MISC_REG_SPIO_EVENT_EN, val);
17084 }
17085 
17086 static void
17087 bxe_enable_blocks_attention(struct bxe_softc *sc)
17088 {
17089     uint32_t val;
17090 
17091     REG_WR(sc, PXP_REG_PXP_INT_MASK_0, 0);
17092     if (!CHIP_IS_E1x(sc)) {
17093         REG_WR(sc, PXP_REG_PXP_INT_MASK_1, 0x40);
17094     } else {
17095         REG_WR(sc, PXP_REG_PXP_INT_MASK_1, 0);
17096     }
17097     REG_WR(sc, DORQ_REG_DORQ_INT_MASK, 0);
17098     REG_WR(sc, CFC_REG_CFC_INT_MASK, 0);
17099     /*
17100      * mask read length error interrupts in brb for parser
17101      * (parsing unit and 'checksum and crc' unit)
17102      * these errors are legal (PU reads fixed length and CAC can cause
17103      * read length error on truncated packets)
17104      */
17105     REG_WR(sc, BRB1_REG_BRB1_INT_MASK, 0xFC00);
17106     REG_WR(sc, QM_REG_QM_INT_MASK, 0);
17107     REG_WR(sc, TM_REG_TM_INT_MASK, 0);
17108     REG_WR(sc, XSDM_REG_XSDM_INT_MASK_0, 0);
17109     REG_WR(sc, XSDM_REG_XSDM_INT_MASK_1, 0);
17110     REG_WR(sc, XCM_REG_XCM_INT_MASK, 0);
17111 /*      REG_WR(sc, XSEM_REG_XSEM_INT_MASK_0, 0); */
17112 /*      REG_WR(sc, XSEM_REG_XSEM_INT_MASK_1, 0); */
17113     REG_WR(sc, USDM_REG_USDM_INT_MASK_0, 0);
17114     REG_WR(sc, USDM_REG_USDM_INT_MASK_1, 0);
17115     REG_WR(sc, UCM_REG_UCM_INT_MASK, 0);
17116 /*      REG_WR(sc, USEM_REG_USEM_INT_MASK_0, 0); */
17117 /*      REG_WR(sc, USEM_REG_USEM_INT_MASK_1, 0); */
17118     REG_WR(sc, GRCBASE_UPB + PB_REG_PB_INT_MASK, 0);
17119     REG_WR(sc, CSDM_REG_CSDM_INT_MASK_0, 0);
17120     REG_WR(sc, CSDM_REG_CSDM_INT_MASK_1, 0);
17121     REG_WR(sc, CCM_REG_CCM_INT_MASK, 0);
17122 /*      REG_WR(sc, CSEM_REG_CSEM_INT_MASK_0, 0); */
17123 /*      REG_WR(sc, CSEM_REG_CSEM_INT_MASK_1, 0); */
17124 
17125     val = (PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_AFT |
17126            PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_OF |
17127            PXP2_PXP2_INT_MASK_0_REG_PGL_PCIE_ATTN);
17128     if (!CHIP_IS_E1x(sc)) {
17129         val |= (PXP2_PXP2_INT_MASK_0_REG_PGL_READ_BLOCKED |
17130                 PXP2_PXP2_INT_MASK_0_REG_PGL_WRITE_BLOCKED);
17131     }
17132     REG_WR(sc, PXP2_REG_PXP2_INT_MASK_0, val);
17133 
17134     REG_WR(sc, TSDM_REG_TSDM_INT_MASK_0, 0);
17135     REG_WR(sc, TSDM_REG_TSDM_INT_MASK_1, 0);
17136     REG_WR(sc, TCM_REG_TCM_INT_MASK, 0);
17137 /*      REG_WR(sc, TSEM_REG_TSEM_INT_MASK_0, 0); */
17138 
17139     if (!CHIP_IS_E1x(sc)) {
17140         /* enable VFC attentions: bits 11 and 12, bits 31:13 reserved */
17141         REG_WR(sc, TSEM_REG_TSEM_INT_MASK_1, 0x07ff);
17142     }
17143 
17144     REG_WR(sc, CDU_REG_CDU_INT_MASK, 0);
17145     REG_WR(sc, DMAE_REG_DMAE_INT_MASK, 0);
17146 /*      REG_WR(sc, MISC_REG_MISC_INT_MASK, 0); */
17147     REG_WR(sc, PBF_REG_PBF_INT_MASK, 0x18);     /* bit 3,4 masked */
17148 }
17149 
17150 /**
17151  * bxe_init_hw_common - initialize the HW at the COMMON phase.
17152  *
17153  * @sc:     driver handle
17154  */
17155 static int
17156 bxe_init_hw_common(struct bxe_softc *sc)
17157 {
17158     uint8_t abs_func_id;
17159     uint32_t val;
17160 
17161     BLOGD(sc, DBG_LOAD, "starting common init for func %d\n",
17162           SC_ABS_FUNC(sc));
17163 
17164     /*
17165      * take the RESET lock to protect undi_unload flow from accessing
17166      * registers while we are resetting the chip
17167      */
17168     bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RESET);
17169 
17170     bxe_reset_common(sc);
17171 
17172     REG_WR(sc, (GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET), 0xffffffff);
17173 
17174     val = 0xfffc;
17175     if (CHIP_IS_E3(sc)) {
17176         val |= MISC_REGISTERS_RESET_REG_2_MSTAT0;
17177         val |= MISC_REGISTERS_RESET_REG_2_MSTAT1;
17178     }
17179 
17180     REG_WR(sc, (GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET), val);
17181 
17182     bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RESET);
17183 
17184     ecore_init_block(sc, BLOCK_MISC, PHASE_COMMON);
17185     BLOGD(sc, DBG_LOAD, "after misc block init\n");
17186 
17187     if (!CHIP_IS_E1x(sc)) {
17188         /*
17189          * 4-port mode or 2-port mode we need to turn off master-enable for
17190          * everyone. After that we turn it back on for self. So, we disregard
17191          * multi-function, and always disable all functions on the given path,
17192          * this means 0,2,4,6 for path 0 and 1,3,5,7 for path 1
17193          */
17194         for (abs_func_id = SC_PATH(sc);
17195              abs_func_id < (E2_FUNC_MAX * 2);
17196              abs_func_id += 2) {
17197             if (abs_func_id == SC_ABS_FUNC(sc)) {
17198                 REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
17199                 continue;
17200             }
17201 
17202             bxe_pretend_func(sc, abs_func_id);
17203 
17204             /* clear pf enable */
17205             bxe_pf_disable(sc);
17206 
17207             bxe_pretend_func(sc, SC_ABS_FUNC(sc));
17208         }
17209     }
17210 
17211     BLOGD(sc, DBG_LOAD, "after pf disable\n");
17212 
17213     ecore_init_block(sc, BLOCK_PXP, PHASE_COMMON);
17214 
17215     if (CHIP_IS_E1(sc)) {
17216         /*
17217          * enable HW interrupt from PXP on USDM overflow
17218          * bit 16 on INT_MASK_0
17219          */
17220         REG_WR(sc, PXP_REG_PXP_INT_MASK_0, 0);
17221     }
17222 
17223     ecore_init_block(sc, BLOCK_PXP2, PHASE_COMMON);
17224     bxe_init_pxp(sc);
17225 
17226 #ifdef __BIG_ENDIAN
17227     REG_WR(sc, PXP2_REG_RQ_QM_ENDIAN_M, 1);
17228     REG_WR(sc, PXP2_REG_RQ_TM_ENDIAN_M, 1);
17229     REG_WR(sc, PXP2_REG_RQ_SRC_ENDIAN_M, 1);
17230     REG_WR(sc, PXP2_REG_RQ_CDU_ENDIAN_M, 1);
17231     REG_WR(sc, PXP2_REG_RQ_DBG_ENDIAN_M, 1);
17232     /* make sure this value is 0 */
17233     REG_WR(sc, PXP2_REG_RQ_HC_ENDIAN_M, 0);
17234 
17235     //REG_WR(sc, PXP2_REG_RD_PBF_SWAP_MODE, 1);
17236     REG_WR(sc, PXP2_REG_RD_QM_SWAP_MODE, 1);
17237     REG_WR(sc, PXP2_REG_RD_TM_SWAP_MODE, 1);
17238     REG_WR(sc, PXP2_REG_RD_SRC_SWAP_MODE, 1);
17239     REG_WR(sc, PXP2_REG_RD_CDURD_SWAP_MODE, 1);
17240 #endif
17241 
17242     ecore_ilt_init_page_size(sc, INITOP_SET);
17243 
17244     if (CHIP_REV_IS_FPGA(sc) && CHIP_IS_E1H(sc)) {
17245         REG_WR(sc, PXP2_REG_PGL_TAGS_LIMIT, 0x1);
17246     }
17247 
17248     /* let the HW do it's magic... */
17249     DELAY(100000);
17250 
17251     /* finish PXP init */
17252     val = REG_RD(sc, PXP2_REG_RQ_CFG_DONE);
17253     if (val != 1) {
17254         BLOGE(sc, "PXP2 CFG failed\n");
17255         return (-1);
17256     }
17257     val = REG_RD(sc, PXP2_REG_RD_INIT_DONE);
17258     if (val != 1) {
17259         BLOGE(sc, "PXP2 RD_INIT failed\n");
17260         return (-1);
17261     }
17262 
17263     BLOGD(sc, DBG_LOAD, "after pxp init\n");
17264 
17265     /*
17266      * Timer bug workaround for E2 only. We need to set the entire ILT to have
17267      * entries with value "0" and valid bit on. This needs to be done by the
17268      * first PF that is loaded in a path (i.e. common phase)
17269      */
17270     if (!CHIP_IS_E1x(sc)) {
17271 /*
17272  * In E2 there is a bug in the timers block that can cause function 6 / 7
17273  * (i.e. vnic3) to start even if it is marked as "scan-off".
17274  * This occurs when a different function (func2,3) is being marked
17275  * as "scan-off". Real-life scenario for example: if a driver is being
17276  * load-unloaded while func6,7 are down. This will cause the timer to access
17277  * the ilt, translate to a logical address and send a request to read/write.
17278  * Since the ilt for the function that is down is not valid, this will cause
17279  * a translation error which is unrecoverable.
17280  * The Workaround is intended to make sure that when this happens nothing
17281  * fatal will occur. The workaround:
17282  *  1.  First PF driver which loads on a path will:
17283  *      a.  After taking the chip out of reset, by using pretend,
17284  *          it will write "0" to the following registers of
17285  *          the other vnics.
17286  *          REG_WR(pdev, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
17287  *          REG_WR(pdev, CFC_REG_WEAK_ENABLE_PF,0);
17288  *          REG_WR(pdev, CFC_REG_STRONG_ENABLE_PF,0);
17289  *          And for itself it will write '1' to
17290  *          PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER to enable
17291  *          dmae-operations (writing to pram for example.)
17292  *          note: can be done for only function 6,7 but cleaner this
17293  *            way.
17294  *      b.  Write zero+valid to the entire ILT.
17295  *      c.  Init the first_timers_ilt_entry, last_timers_ilt_entry of
17296  *          VNIC3 (of that port). The range allocated will be the
17297  *          entire ILT. This is needed to prevent  ILT range error.
17298  *  2.  Any PF driver load flow:
17299  *      a.  ILT update with the physical addresses of the allocated
17300  *          logical pages.
17301  *      b.  Wait 20msec. - note that this timeout is needed to make
17302  *          sure there are no requests in one of the PXP internal
17303  *          queues with "old" ILT addresses.
17304  *      c.  PF enable in the PGLC.
17305  *      d.  Clear the was_error of the PF in the PGLC. (could have
17306  *          occurred while driver was down)
17307  *      e.  PF enable in the CFC (WEAK + STRONG)
17308  *      f.  Timers scan enable
17309  *  3.  PF driver unload flow:
17310  *      a.  Clear the Timers scan_en.
17311  *      b.  Polling for scan_on=0 for that PF.
17312  *      c.  Clear the PF enable bit in the PXP.
17313  *      d.  Clear the PF enable in the CFC (WEAK + STRONG)
17314  *      e.  Write zero+valid to all ILT entries (The valid bit must
17315  *          stay set)
17316  *      f.  If this is VNIC 3 of a port then also init
17317  *          first_timers_ilt_entry to zero and last_timers_ilt_entry
17318  *          to the last enrty in the ILT.
17319  *
17320  *      Notes:
17321  *      Currently the PF error in the PGLC is non recoverable.
17322  *      In the future the there will be a recovery routine for this error.
17323  *      Currently attention is masked.
17324  *      Having an MCP lock on the load/unload process does not guarantee that
17325  *      there is no Timer disable during Func6/7 enable. This is because the
17326  *      Timers scan is currently being cleared by the MCP on FLR.
17327  *      Step 2.d can be done only for PF6/7 and the driver can also check if
17328  *      there is error before clearing it. But the flow above is simpler and
17329  *      more general.
17330  *      All ILT entries are written by zero+valid and not just PF6/7
17331  *      ILT entries since in the future the ILT entries allocation for
17332  *      PF-s might be dynamic.
17333  */
17334         struct ilt_client_info ilt_cli;
17335         struct ecore_ilt ilt;
17336 
17337         memset(&ilt_cli, 0, sizeof(struct ilt_client_info));
17338         memset(&ilt, 0, sizeof(struct ecore_ilt));
17339 
17340         /* initialize dummy TM client */
17341         ilt_cli.start      = 0;
17342         ilt_cli.end        = ILT_NUM_PAGE_ENTRIES - 1;
17343         ilt_cli.client_num = ILT_CLIENT_TM;
17344 
17345         /*
17346          * Step 1: set zeroes to all ilt page entries with valid bit on
17347          * Step 2: set the timers first/last ilt entry to point
17348          * to the entire range to prevent ILT range error for 3rd/4th
17349          * vnic (this code assumes existence of the vnic)
17350          *
17351          * both steps performed by call to ecore_ilt_client_init_op()
17352          * with dummy TM client
17353          *
17354          * we must use pretend since PXP2_REG_RQ_##blk##_FIRST_ILT
17355          * and his brother are split registers
17356          */
17357 
17358         bxe_pretend_func(sc, (SC_PATH(sc) + 6));
17359         ecore_ilt_client_init_op_ilt(sc, &ilt, &ilt_cli, INITOP_CLEAR);
17360         bxe_pretend_func(sc, SC_ABS_FUNC(sc));
17361 
17362         REG_WR(sc, PXP2_REG_RQ_DRAM_ALIGN, BXE_PXP_DRAM_ALIGN);
17363         REG_WR(sc, PXP2_REG_RQ_DRAM_ALIGN_RD, BXE_PXP_DRAM_ALIGN);
17364         REG_WR(sc, PXP2_REG_RQ_DRAM_ALIGN_SEL, 1);
17365     }
17366 
17367     REG_WR(sc, PXP2_REG_RQ_DISABLE_INPUTS, 0);
17368     REG_WR(sc, PXP2_REG_RD_DISABLE_INPUTS, 0);
17369 
17370     if (!CHIP_IS_E1x(sc)) {
17371         int factor = CHIP_REV_IS_EMUL(sc) ? 1000 :
17372                      (CHIP_REV_IS_FPGA(sc) ? 400 : 0);
17373 
17374         ecore_init_block(sc, BLOCK_PGLUE_B, PHASE_COMMON);
17375         ecore_init_block(sc, BLOCK_ATC, PHASE_COMMON);
17376 
17377         /* let the HW do it's magic... */
17378         do {
17379             DELAY(200000);
17380             val = REG_RD(sc, ATC_REG_ATC_INIT_DONE);
17381         } while (factor-- && (val != 1));
17382 
17383         if (val != 1) {
17384             BLOGE(sc, "ATC_INIT failed\n");
17385             return (-1);
17386         }
17387     }
17388 
17389     BLOGD(sc, DBG_LOAD, "after pglue and atc init\n");
17390 
17391     ecore_init_block(sc, BLOCK_DMAE, PHASE_COMMON);
17392 
17393     bxe_iov_init_dmae(sc);
17394 
17395     /* clean the DMAE memory */
17396     sc->dmae_ready = 1;
17397     ecore_init_fill(sc, TSEM_REG_PRAM, 0, 8, 1);
17398 
17399     ecore_init_block(sc, BLOCK_TCM, PHASE_COMMON);
17400 
17401     ecore_init_block(sc, BLOCK_UCM, PHASE_COMMON);
17402 
17403     ecore_init_block(sc, BLOCK_CCM, PHASE_COMMON);
17404 
17405     ecore_init_block(sc, BLOCK_XCM, PHASE_COMMON);
17406 
17407     bxe_read_dmae(sc, XSEM_REG_PASSIVE_BUFFER, 3);
17408     bxe_read_dmae(sc, CSEM_REG_PASSIVE_BUFFER, 3);
17409     bxe_read_dmae(sc, TSEM_REG_PASSIVE_BUFFER, 3);
17410     bxe_read_dmae(sc, USEM_REG_PASSIVE_BUFFER, 3);
17411 
17412     ecore_init_block(sc, BLOCK_QM, PHASE_COMMON);
17413 
17414     /* QM queues pointers table */
17415     ecore_qm_init_ptr_table(sc, sc->qm_cid_count, INITOP_SET);
17416 
17417     /* soft reset pulse */
17418     REG_WR(sc, QM_REG_SOFT_RESET, 1);
17419     REG_WR(sc, QM_REG_SOFT_RESET, 0);
17420 
17421     if (CNIC_SUPPORT(sc))
17422         ecore_init_block(sc, BLOCK_TM, PHASE_COMMON);
17423 
17424     ecore_init_block(sc, BLOCK_DORQ, PHASE_COMMON);
17425     REG_WR(sc, DORQ_REG_DPM_CID_OFST, BXE_DB_SHIFT);
17426     if (!CHIP_REV_IS_SLOW(sc)) {
17427         /* enable hw interrupt from doorbell Q */
17428         REG_WR(sc, DORQ_REG_DORQ_INT_MASK, 0);
17429     }
17430 
17431     ecore_init_block(sc, BLOCK_BRB1, PHASE_COMMON);
17432 
17433     ecore_init_block(sc, BLOCK_PRS, PHASE_COMMON);
17434     REG_WR(sc, PRS_REG_A_PRSU_20, 0xf);
17435 
17436     if (!CHIP_IS_E1(sc)) {
17437         REG_WR(sc, PRS_REG_E1HOV_MODE, sc->devinfo.mf_info.path_has_ovlan);
17438     }
17439 
17440     if (!CHIP_IS_E1x(sc) && !CHIP_IS_E3B0(sc)) {
17441         if (IS_MF_AFEX(sc)) {
17442             /*
17443              * configure that AFEX and VLAN headers must be
17444              * received in AFEX mode
17445              */
17446             REG_WR(sc, PRS_REG_HDRS_AFTER_BASIC, 0xE);
17447             REG_WR(sc, PRS_REG_MUST_HAVE_HDRS, 0xA);
17448             REG_WR(sc, PRS_REG_HDRS_AFTER_TAG_0, 0x6);
17449             REG_WR(sc, PRS_REG_TAG_ETHERTYPE_0, 0x8926);
17450             REG_WR(sc, PRS_REG_TAG_LEN_0, 0x4);
17451         } else {
17452             /*
17453              * Bit-map indicating which L2 hdrs may appear
17454              * after the basic Ethernet header
17455              */
17456             REG_WR(sc, PRS_REG_HDRS_AFTER_BASIC,
17457                    sc->devinfo.mf_info.path_has_ovlan ? 7 : 6);
17458         }
17459     }
17460 
17461     ecore_init_block(sc, BLOCK_TSDM, PHASE_COMMON);
17462     ecore_init_block(sc, BLOCK_CSDM, PHASE_COMMON);
17463     ecore_init_block(sc, BLOCK_USDM, PHASE_COMMON);
17464     ecore_init_block(sc, BLOCK_XSDM, PHASE_COMMON);
17465 
17466     if (!CHIP_IS_E1x(sc)) {
17467         /* reset VFC memories */
17468         REG_WR(sc, TSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST,
17469                VFC_MEMORIES_RST_REG_CAM_RST |
17470                VFC_MEMORIES_RST_REG_RAM_RST);
17471         REG_WR(sc, XSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST,
17472                VFC_MEMORIES_RST_REG_CAM_RST |
17473                VFC_MEMORIES_RST_REG_RAM_RST);
17474 
17475         DELAY(20000);
17476     }
17477 
17478     ecore_init_block(sc, BLOCK_TSEM, PHASE_COMMON);
17479     ecore_init_block(sc, BLOCK_USEM, PHASE_COMMON);
17480     ecore_init_block(sc, BLOCK_CSEM, PHASE_COMMON);
17481     ecore_init_block(sc, BLOCK_XSEM, PHASE_COMMON);
17482 
17483     /* sync semi rtc */
17484     REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
17485            0x80000000);
17486     REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET,
17487            0x80000000);
17488 
17489     ecore_init_block(sc, BLOCK_UPB, PHASE_COMMON);
17490     ecore_init_block(sc, BLOCK_XPB, PHASE_COMMON);
17491     ecore_init_block(sc, BLOCK_PBF, PHASE_COMMON);
17492 
17493     if (!CHIP_IS_E1x(sc)) {
17494         if (IS_MF_AFEX(sc)) {
17495             /*
17496              * configure that AFEX and VLAN headers must be
17497              * sent in AFEX mode
17498              */
17499             REG_WR(sc, PBF_REG_HDRS_AFTER_BASIC, 0xE);
17500             REG_WR(sc, PBF_REG_MUST_HAVE_HDRS, 0xA);
17501             REG_WR(sc, PBF_REG_HDRS_AFTER_TAG_0, 0x6);
17502             REG_WR(sc, PBF_REG_TAG_ETHERTYPE_0, 0x8926);
17503             REG_WR(sc, PBF_REG_TAG_LEN_0, 0x4);
17504         } else {
17505             REG_WR(sc, PBF_REG_HDRS_AFTER_BASIC,
17506                    sc->devinfo.mf_info.path_has_ovlan ? 7 : 6);
17507         }
17508     }
17509 
17510     REG_WR(sc, SRC_REG_SOFT_RST, 1);
17511 
17512     ecore_init_block(sc, BLOCK_SRC, PHASE_COMMON);
17513 
17514     if (CNIC_SUPPORT(sc)) {
17515         REG_WR(sc, SRC_REG_KEYSEARCH_0, 0x63285672);
17516         REG_WR(sc, SRC_REG_KEYSEARCH_1, 0x24b8f2cc);
17517         REG_WR(sc, SRC_REG_KEYSEARCH_2, 0x223aef9b);
17518         REG_WR(sc, SRC_REG_KEYSEARCH_3, 0x26001e3a);
17519         REG_WR(sc, SRC_REG_KEYSEARCH_4, 0x7ae91116);
17520         REG_WR(sc, SRC_REG_KEYSEARCH_5, 0x5ce5230b);
17521         REG_WR(sc, SRC_REG_KEYSEARCH_6, 0x298d8adf);
17522         REG_WR(sc, SRC_REG_KEYSEARCH_7, 0x6eb0ff09);
17523         REG_WR(sc, SRC_REG_KEYSEARCH_8, 0x1830f82f);
17524         REG_WR(sc, SRC_REG_KEYSEARCH_9, 0x01e46be7);
17525     }
17526     REG_WR(sc, SRC_REG_SOFT_RST, 0);
17527 
17528     if (sizeof(union cdu_context) != 1024) {
17529         /* we currently assume that a context is 1024 bytes */
17530         BLOGE(sc, "please adjust the size of cdu_context(%ld)\n",
17531               (long)sizeof(union cdu_context));
17532     }
17533 
17534     ecore_init_block(sc, BLOCK_CDU, PHASE_COMMON);
17535     val = (4 << 24) + (0 << 12) + 1024;
17536     REG_WR(sc, CDU_REG_CDU_GLOBAL_PARAMS, val);
17537 
17538     ecore_init_block(sc, BLOCK_CFC, PHASE_COMMON);
17539 
17540     REG_WR(sc, CFC_REG_INIT_REG, 0x7FF);
17541     /* enable context validation interrupt from CFC */
17542     REG_WR(sc, CFC_REG_CFC_INT_MASK, 0);
17543 
17544     /* set the thresholds to prevent CFC/CDU race */
17545     REG_WR(sc, CFC_REG_DEBUG0, 0x20020000);
17546     ecore_init_block(sc, BLOCK_HC, PHASE_COMMON);
17547 
17548     if (!CHIP_IS_E1x(sc) && BXE_NOMCP(sc)) {
17549         REG_WR(sc, IGU_REG_RESET_MEMORIES, 0x36);
17550     }
17551 
17552     ecore_init_block(sc, BLOCK_IGU, PHASE_COMMON);
17553     ecore_init_block(sc, BLOCK_MISC_AEU, PHASE_COMMON);
17554 
17555     /* Reset PCIE errors for debug */
17556     REG_WR(sc, 0x2814, 0xffffffff);
17557     REG_WR(sc, 0x3820, 0xffffffff);
17558 
17559     if (!CHIP_IS_E1x(sc)) {
17560         REG_WR(sc, PCICFG_OFFSET + PXPCS_TL_CONTROL_5,
17561                (PXPCS_TL_CONTROL_5_ERR_UNSPPORT1 |
17562                 PXPCS_TL_CONTROL_5_ERR_UNSPPORT));
17563         REG_WR(sc, PCICFG_OFFSET + PXPCS_TL_FUNC345_STAT,
17564                (PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT4 |
17565                 PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT3 |
17566                 PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT2));
17567         REG_WR(sc, PCICFG_OFFSET + PXPCS_TL_FUNC678_STAT,
17568                (PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT7 |
17569                 PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT6 |
17570                 PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT5));
17571     }
17572 
17573     ecore_init_block(sc, BLOCK_NIG, PHASE_COMMON);
17574 
17575     if (!CHIP_IS_E1(sc)) {
17576         /* in E3 this done in per-port section */
17577         if (!CHIP_IS_E3(sc))
17578             REG_WR(sc, NIG_REG_LLH_MF_MODE, IS_MF(sc));
17579     }
17580 
17581     if (CHIP_IS_E1H(sc)) {
17582         /* not applicable for E2 (and above ...) */
17583         REG_WR(sc, NIG_REG_LLH_E1HOV_MODE, IS_MF_SD(sc));
17584     }
17585 
17586     if (CHIP_REV_IS_SLOW(sc)) {
17587         DELAY(200000);
17588     }
17589 
17590     /* finish CFC init */
17591     val = reg_poll(sc, CFC_REG_LL_INIT_DONE, 1, 100, 10);
17592     if (val != 1) {
17593         BLOGE(sc, "CFC LL_INIT failed\n");
17594         return (-1);
17595     }
17596     val = reg_poll(sc, CFC_REG_AC_INIT_DONE, 1, 100, 10);
17597     if (val != 1) {
17598         BLOGE(sc, "CFC AC_INIT failed\n");
17599         return (-1);
17600     }
17601     val = reg_poll(sc, CFC_REG_CAM_INIT_DONE, 1, 100, 10);
17602     if (val != 1) {
17603         BLOGE(sc, "CFC CAM_INIT failed\n");
17604         return (-1);
17605     }
17606     REG_WR(sc, CFC_REG_DEBUG0, 0);
17607 
17608     if (CHIP_IS_E1(sc)) {
17609         /* read NIG statistic to see if this is our first up since powerup */
17610         bxe_read_dmae(sc, NIG_REG_STAT2_BRB_OCTET, 2);
17611         val = *BXE_SP(sc, wb_data[0]);
17612 
17613         /* do internal memory self test */
17614         if ((val == 0) && bxe_int_mem_test(sc)) {
17615             BLOGE(sc, "internal mem self test failed\n");
17616             return (-1);
17617         }
17618     }
17619 
17620     bxe_setup_fan_failure_detection(sc);
17621 
17622     /* clear PXP2 attentions */
17623     REG_RD(sc, PXP2_REG_PXP2_INT_STS_CLR_0);
17624 
17625     bxe_enable_blocks_attention(sc);
17626 
17627     if (!CHIP_REV_IS_SLOW(sc)) {
17628         ecore_enable_blocks_parity(sc);
17629     }
17630 
17631     if (!BXE_NOMCP(sc)) {
17632         if (CHIP_IS_E1x(sc)) {
17633             bxe_common_init_phy(sc);
17634         }
17635     }
17636 
17637     return (0);
17638 }
17639 
17640 /**
17641  * bxe_init_hw_common_chip - init HW at the COMMON_CHIP phase.
17642  *
17643  * @sc:     driver handle
17644  */
17645 static int
17646 bxe_init_hw_common_chip(struct bxe_softc *sc)
17647 {
17648     int rc = bxe_init_hw_common(sc);
17649 
17650     if (rc) {
17651         return (rc);
17652     }
17653 
17654     /* In E2 2-PORT mode, same ext phy is used for the two paths */
17655     if (!BXE_NOMCP(sc)) {
17656         bxe_common_init_phy(sc);
17657     }
17658 
17659     return (0);
17660 }
17661 
17662 static int
17663 bxe_init_hw_port(struct bxe_softc *sc)
17664 {
17665     int port = SC_PORT(sc);
17666     int init_phase = port ? PHASE_PORT1 : PHASE_PORT0;
17667     uint32_t low, high;
17668     uint32_t val;
17669 
17670     BLOGD(sc, DBG_LOAD, "starting port init for port %d\n", port);
17671 
17672     REG_WR(sc, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0);
17673 
17674     ecore_init_block(sc, BLOCK_MISC, init_phase);
17675     ecore_init_block(sc, BLOCK_PXP, init_phase);
17676     ecore_init_block(sc, BLOCK_PXP2, init_phase);
17677 
17678     /*
17679      * Timers bug workaround: disables the pf_master bit in pglue at
17680      * common phase, we need to enable it here before any dmae access are
17681      * attempted. Therefore we manually added the enable-master to the
17682      * port phase (it also happens in the function phase)
17683      */
17684     if (!CHIP_IS_E1x(sc)) {
17685         REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
17686     }
17687 
17688     ecore_init_block(sc, BLOCK_ATC, init_phase);
17689     ecore_init_block(sc, BLOCK_DMAE, init_phase);
17690     ecore_init_block(sc, BLOCK_PGLUE_B, init_phase);
17691     ecore_init_block(sc, BLOCK_QM, init_phase);
17692 
17693     ecore_init_block(sc, BLOCK_TCM, init_phase);
17694     ecore_init_block(sc, BLOCK_UCM, init_phase);
17695     ecore_init_block(sc, BLOCK_CCM, init_phase);
17696     ecore_init_block(sc, BLOCK_XCM, init_phase);
17697 
17698     /* QM cid (connection) count */
17699     ecore_qm_init_cid_count(sc, sc->qm_cid_count, INITOP_SET);
17700 
17701     if (CNIC_SUPPORT(sc)) {
17702         ecore_init_block(sc, BLOCK_TM, init_phase);
17703         REG_WR(sc, TM_REG_LIN0_SCAN_TIME + port*4, 20);
17704         REG_WR(sc, TM_REG_LIN0_MAX_ACTIVE_CID + port*4, 31);
17705     }
17706 
17707     ecore_init_block(sc, BLOCK_DORQ, init_phase);
17708 
17709     ecore_init_block(sc, BLOCK_BRB1, init_phase);
17710 
17711     if (CHIP_IS_E1(sc) || CHIP_IS_E1H(sc)) {
17712         if (IS_MF(sc)) {
17713             low = (BXE_ONE_PORT(sc) ? 160 : 246);
17714         } else if (sc->mtu > 4096) {
17715             if (BXE_ONE_PORT(sc)) {
17716                 low = 160;
17717             } else {
17718                 val = sc->mtu;
17719                 /* (24*1024 + val*4)/256 */
17720                 low = (96 + (val / 64) + ((val % 64) ? 1 : 0));
17721             }
17722         } else {
17723             low = (BXE_ONE_PORT(sc) ? 80 : 160);
17724         }
17725         high = (low + 56); /* 14*1024/256 */
17726         REG_WR(sc, BRB1_REG_PAUSE_LOW_THRESHOLD_0 + port*4, low);
17727         REG_WR(sc, BRB1_REG_PAUSE_HIGH_THRESHOLD_0 + port*4, high);
17728     }
17729 
17730     if (CHIP_IS_MODE_4_PORT(sc)) {
17731         REG_WR(sc, SC_PORT(sc) ?
17732                BRB1_REG_MAC_GUARANTIED_1 :
17733                BRB1_REG_MAC_GUARANTIED_0, 40);
17734     }
17735 
17736     ecore_init_block(sc, BLOCK_PRS, init_phase);
17737     if (CHIP_IS_E3B0(sc)) {
17738         if (IS_MF_AFEX(sc)) {
17739             /* configure headers for AFEX mode */
17740             REG_WR(sc, SC_PORT(sc) ?
17741                    PRS_REG_HDRS_AFTER_BASIC_PORT_1 :
17742                    PRS_REG_HDRS_AFTER_BASIC_PORT_0, 0xE);
17743             REG_WR(sc, SC_PORT(sc) ?
17744                    PRS_REG_HDRS_AFTER_TAG_0_PORT_1 :
17745                    PRS_REG_HDRS_AFTER_TAG_0_PORT_0, 0x6);
17746             REG_WR(sc, SC_PORT(sc) ?
17747                    PRS_REG_MUST_HAVE_HDRS_PORT_1 :
17748                    PRS_REG_MUST_HAVE_HDRS_PORT_0, 0xA);
17749         } else {
17750             /* Ovlan exists only if we are in multi-function +
17751              * switch-dependent mode, in switch-independent there
17752              * is no ovlan headers
17753              */
17754             REG_WR(sc, SC_PORT(sc) ?
17755                    PRS_REG_HDRS_AFTER_BASIC_PORT_1 :
17756                    PRS_REG_HDRS_AFTER_BASIC_PORT_0,
17757                    (sc->devinfo.mf_info.path_has_ovlan ? 7 : 6));
17758         }
17759     }
17760 
17761     ecore_init_block(sc, BLOCK_TSDM, init_phase);
17762     ecore_init_block(sc, BLOCK_CSDM, init_phase);
17763     ecore_init_block(sc, BLOCK_USDM, init_phase);
17764     ecore_init_block(sc, BLOCK_XSDM, init_phase);
17765 
17766     ecore_init_block(sc, BLOCK_TSEM, init_phase);
17767     ecore_init_block(sc, BLOCK_USEM, init_phase);
17768     ecore_init_block(sc, BLOCK_CSEM, init_phase);
17769     ecore_init_block(sc, BLOCK_XSEM, init_phase);
17770 
17771     ecore_init_block(sc, BLOCK_UPB, init_phase);
17772     ecore_init_block(sc, BLOCK_XPB, init_phase);
17773 
17774     ecore_init_block(sc, BLOCK_PBF, init_phase);
17775 
17776     if (CHIP_IS_E1x(sc)) {
17777         /* configure PBF to work without PAUSE mtu 9000 */
17778         REG_WR(sc, PBF_REG_P0_PAUSE_ENABLE + port*4, 0);
17779 
17780         /* update threshold */
17781         REG_WR(sc, PBF_REG_P0_ARB_THRSH + port*4, (9040/16));
17782         /* update init credit */
17783         REG_WR(sc, PBF_REG_P0_INIT_CRD + port*4, (9040/16) + 553 - 22);
17784 
17785         /* probe changes */
17786         REG_WR(sc, PBF_REG_INIT_P0 + port*4, 1);
17787         DELAY(50);
17788         REG_WR(sc, PBF_REG_INIT_P0 + port*4, 0);
17789     }
17790 
17791     if (CNIC_SUPPORT(sc)) {
17792         ecore_init_block(sc, BLOCK_SRC, init_phase);
17793     }
17794 
17795     ecore_init_block(sc, BLOCK_CDU, init_phase);
17796     ecore_init_block(sc, BLOCK_CFC, init_phase);
17797 
17798     if (CHIP_IS_E1(sc)) {
17799         REG_WR(sc, HC_REG_LEADING_EDGE_0 + port*8, 0);
17800         REG_WR(sc, HC_REG_TRAILING_EDGE_0 + port*8, 0);
17801     }
17802     ecore_init_block(sc, BLOCK_HC, init_phase);
17803 
17804     ecore_init_block(sc, BLOCK_IGU, init_phase);
17805 
17806     ecore_init_block(sc, BLOCK_MISC_AEU, init_phase);
17807     /* init aeu_mask_attn_func_0/1:
17808      *  - SF mode: bits 3-7 are masked. only bits 0-2 are in use
17809      *  - MF mode: bit 3 is masked. bits 0-2 are in use as in SF
17810      *             bits 4-7 are used for "per vn group attention" */
17811     val = IS_MF(sc) ? 0xF7 : 0x7;
17812     /* Enable DCBX attention for all but E1 */
17813     val |= CHIP_IS_E1(sc) ? 0 : 0x10;
17814     REG_WR(sc, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, val);
17815 
17816     ecore_init_block(sc, BLOCK_NIG, init_phase);
17817 
17818     if (!CHIP_IS_E1x(sc)) {
17819         /* Bit-map indicating which L2 hdrs may appear after the
17820          * basic Ethernet header
17821          */
17822         if (IS_MF_AFEX(sc)) {
17823             REG_WR(sc, SC_PORT(sc) ?
17824                    NIG_REG_P1_HDRS_AFTER_BASIC :
17825                    NIG_REG_P0_HDRS_AFTER_BASIC, 0xE);
17826         } else {
17827             REG_WR(sc, SC_PORT(sc) ?
17828                    NIG_REG_P1_HDRS_AFTER_BASIC :
17829                    NIG_REG_P0_HDRS_AFTER_BASIC,
17830                    IS_MF_SD(sc) ? 7 : 6);
17831         }
17832 
17833         if (CHIP_IS_E3(sc)) {
17834             REG_WR(sc, SC_PORT(sc) ?
17835                    NIG_REG_LLH1_MF_MODE :
17836                    NIG_REG_LLH_MF_MODE, IS_MF(sc));
17837         }
17838     }
17839     if (!CHIP_IS_E3(sc)) {
17840         REG_WR(sc, NIG_REG_XGXS_SERDES0_MODE_SEL + port*4, 1);
17841     }
17842 
17843     if (!CHIP_IS_E1(sc)) {
17844         /* 0x2 disable mf_ov, 0x1 enable */
17845         REG_WR(sc, NIG_REG_LLH0_BRB1_DRV_MASK_MF + port*4,
17846                (IS_MF_SD(sc) ? 0x1 : 0x2));
17847 
17848         if (!CHIP_IS_E1x(sc)) {
17849             val = 0;
17850             switch (sc->devinfo.mf_info.mf_mode) {
17851             case MULTI_FUNCTION_SD:
17852                 val = 1;
17853                 break;
17854             case MULTI_FUNCTION_SI:
17855             case MULTI_FUNCTION_AFEX:
17856                 val = 2;
17857                 break;
17858             }
17859 
17860             REG_WR(sc, (SC_PORT(sc) ? NIG_REG_LLH1_CLS_TYPE :
17861                         NIG_REG_LLH0_CLS_TYPE), val);
17862         }
17863         REG_WR(sc, NIG_REG_LLFC_ENABLE_0 + port*4, 0);
17864         REG_WR(sc, NIG_REG_LLFC_OUT_EN_0 + port*4, 0);
17865         REG_WR(sc, NIG_REG_PAUSE_ENABLE_0 + port*4, 1);
17866     }
17867 
17868     /* If SPIO5 is set to generate interrupts, enable it for this port */
17869     val = REG_RD(sc, MISC_REG_SPIO_EVENT_EN);
17870     if (val & MISC_SPIO_SPIO5) {
17871         uint32_t reg_addr = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
17872                                     MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
17873         val = REG_RD(sc, reg_addr);
17874         val |= AEU_INPUTS_ATTN_BITS_SPIO5;
17875         REG_WR(sc, reg_addr, val);
17876     }
17877 
17878     return (0);
17879 }
17880 
17881 static uint32_t
17882 bxe_flr_clnup_reg_poll(struct bxe_softc *sc,
17883                        uint32_t         reg,
17884                        uint32_t         expected,
17885                        uint32_t         poll_count)
17886 {
17887     uint32_t cur_cnt = poll_count;
17888     uint32_t val;
17889 
17890     while ((val = REG_RD(sc, reg)) != expected && cur_cnt--) {
17891         DELAY(FLR_WAIT_INTERVAL);
17892     }
17893 
17894     return (val);
17895 }
17896 
17897 static int
17898 bxe_flr_clnup_poll_hw_counter(struct bxe_softc *sc,
17899                               uint32_t         reg,
17900                               char             *msg,
17901                               uint32_t         poll_cnt)
17902 {
17903     uint32_t val = bxe_flr_clnup_reg_poll(sc, reg, 0, poll_cnt);
17904 
17905     if (val != 0) {
17906         BLOGE(sc, "%s usage count=%d\n", msg, val);
17907         return (1);
17908     }
17909 
17910     return (0);
17911 }
17912 
17913 /* Common routines with VF FLR cleanup */
17914 static uint32_t
17915 bxe_flr_clnup_poll_count(struct bxe_softc *sc)
17916 {
17917     /* adjust polling timeout */
17918     if (CHIP_REV_IS_EMUL(sc)) {
17919         return (FLR_POLL_CNT * 2000);
17920     }
17921 
17922     if (CHIP_REV_IS_FPGA(sc)) {
17923         return (FLR_POLL_CNT * 120);
17924     }
17925 
17926     return (FLR_POLL_CNT);
17927 }
17928 
17929 static int
17930 bxe_poll_hw_usage_counters(struct bxe_softc *sc,
17931                            uint32_t         poll_cnt)
17932 {
17933     /* wait for CFC PF usage-counter to zero (includes all the VFs) */
17934     if (bxe_flr_clnup_poll_hw_counter(sc,
17935                                       CFC_REG_NUM_LCIDS_INSIDE_PF,
17936                                       "CFC PF usage counter timed out",
17937                                       poll_cnt)) {
17938         return (1);
17939     }
17940 
17941     /* Wait for DQ PF usage-counter to zero (until DQ cleanup) */
17942     if (bxe_flr_clnup_poll_hw_counter(sc,
17943                                       DORQ_REG_PF_USAGE_CNT,
17944                                       "DQ PF usage counter timed out",
17945                                       poll_cnt)) {
17946         return (1);
17947     }
17948 
17949     /* Wait for QM PF usage-counter to zero (until DQ cleanup) */
17950     if (bxe_flr_clnup_poll_hw_counter(sc,
17951                                       QM_REG_PF_USG_CNT_0 + 4*SC_FUNC(sc),
17952                                       "QM PF usage counter timed out",
17953                                       poll_cnt)) {
17954         return (1);
17955     }
17956 
17957     /* Wait for Timer PF usage-counters to zero (until DQ cleanup) */
17958     if (bxe_flr_clnup_poll_hw_counter(sc,
17959                                       TM_REG_LIN0_VNIC_UC + 4*SC_PORT(sc),
17960                                       "Timers VNIC usage counter timed out",
17961                                       poll_cnt)) {
17962         return (1);
17963     }
17964 
17965     if (bxe_flr_clnup_poll_hw_counter(sc,
17966                                       TM_REG_LIN0_NUM_SCANS + 4*SC_PORT(sc),
17967                                       "Timers NUM_SCANS usage counter timed out",
17968                                       poll_cnt)) {
17969         return (1);
17970     }
17971 
17972     /* Wait DMAE PF usage counter to zero */
17973     if (bxe_flr_clnup_poll_hw_counter(sc,
17974                                       dmae_reg_go_c[INIT_DMAE_C(sc)],
17975                                       "DMAE dommand register timed out",
17976                                       poll_cnt)) {
17977         return (1);
17978     }
17979 
17980     return (0);
17981 }
17982 
17983 #define OP_GEN_PARAM(param)                                            \
17984     (((param) << SDM_OP_GEN_COMP_PARAM_SHIFT) & SDM_OP_GEN_COMP_PARAM)
17985 #define OP_GEN_TYPE(type)                                           \
17986     (((type) << SDM_OP_GEN_COMP_TYPE_SHIFT) & SDM_OP_GEN_COMP_TYPE)
17987 #define OP_GEN_AGG_VECT(index)                                             \
17988     (((index) << SDM_OP_GEN_AGG_VECT_IDX_SHIFT) & SDM_OP_GEN_AGG_VECT_IDX)
17989 
17990 static int
17991 bxe_send_final_clnup(struct bxe_softc *sc,
17992                      uint8_t          clnup_func,
17993                      uint32_t         poll_cnt)
17994 {
17995     uint32_t op_gen_command = 0;
17996     uint32_t comp_addr = (BAR_CSTRORM_INTMEM +
17997                           CSTORM_FINAL_CLEANUP_COMPLETE_OFFSET(clnup_func));
17998     int ret = 0;
17999 
18000     if (REG_RD(sc, comp_addr)) {
18001         BLOGE(sc, "Cleanup complete was not 0 before sending\n");
18002         return (1);
18003     }
18004 
18005     op_gen_command |= OP_GEN_PARAM(XSTORM_AGG_INT_FINAL_CLEANUP_INDEX);
18006     op_gen_command |= OP_GEN_TYPE(XSTORM_AGG_INT_FINAL_CLEANUP_COMP_TYPE);
18007     op_gen_command |= OP_GEN_AGG_VECT(clnup_func);
18008     op_gen_command |= 1 << SDM_OP_GEN_AGG_VECT_IDX_VALID_SHIFT;
18009 
18010     BLOGD(sc, DBG_LOAD, "sending FW Final cleanup\n");
18011     REG_WR(sc, XSDM_REG_OPERATION_GEN, op_gen_command);
18012 
18013     if (bxe_flr_clnup_reg_poll(sc, comp_addr, 1, poll_cnt) != 1) {
18014         BLOGE(sc, "FW final cleanup did not succeed\n");
18015         BLOGD(sc, DBG_LOAD, "At timeout completion address contained %x\n",
18016               (REG_RD(sc, comp_addr)));
18017         bxe_panic(sc, ("FLR cleanup failed\n"));
18018         return (1);
18019     }
18020 
18021     /* Zero completion for nxt FLR */
18022     REG_WR(sc, comp_addr, 0);
18023 
18024     return (ret);
18025 }
18026 
18027 static void
18028 bxe_pbf_pN_buf_flushed(struct bxe_softc       *sc,
18029                        struct pbf_pN_buf_regs *regs,
18030                        uint32_t               poll_count)
18031 {
18032     uint32_t init_crd, crd, crd_start, crd_freed, crd_freed_start;
18033     uint32_t cur_cnt = poll_count;
18034 
18035     crd_freed = crd_freed_start = REG_RD(sc, regs->crd_freed);
18036     crd = crd_start = REG_RD(sc, regs->crd);
18037     init_crd = REG_RD(sc, regs->init_crd);
18038 
18039     BLOGD(sc, DBG_LOAD, "INIT CREDIT[%d] : %x\n", regs->pN, init_crd);
18040     BLOGD(sc, DBG_LOAD, "CREDIT[%d]      : s:%x\n", regs->pN, crd);
18041     BLOGD(sc, DBG_LOAD, "CREDIT_FREED[%d]: s:%x\n", regs->pN, crd_freed);
18042 
18043     while ((crd != init_crd) &&
18044            ((uint32_t)((int32_t)crd_freed - (int32_t)crd_freed_start) <
18045             (init_crd - crd_start))) {
18046         if (cur_cnt--) {
18047             DELAY(FLR_WAIT_INTERVAL);
18048             crd = REG_RD(sc, regs->crd);
18049             crd_freed = REG_RD(sc, regs->crd_freed);
18050         } else {
18051             BLOGD(sc, DBG_LOAD, "PBF tx buffer[%d] timed out\n", regs->pN);
18052             BLOGD(sc, DBG_LOAD, "CREDIT[%d]      : c:%x\n", regs->pN, crd);
18053             BLOGD(sc, DBG_LOAD, "CREDIT_FREED[%d]: c:%x\n", regs->pN, crd_freed);
18054             break;
18055         }
18056     }
18057 
18058     BLOGD(sc, DBG_LOAD, "Waited %d*%d usec for PBF tx buffer[%d]\n",
18059           poll_count-cur_cnt, FLR_WAIT_INTERVAL, regs->pN);
18060 }
18061 
18062 static void
18063 bxe_pbf_pN_cmd_flushed(struct bxe_softc       *sc,
18064                        struct pbf_pN_cmd_regs *regs,
18065                        uint32_t               poll_count)
18066 {
18067     uint32_t occup, to_free, freed, freed_start;
18068     uint32_t cur_cnt = poll_count;
18069 
18070     occup = to_free = REG_RD(sc, regs->lines_occup);
18071     freed = freed_start = REG_RD(sc, regs->lines_freed);
18072 
18073     BLOGD(sc, DBG_LOAD, "OCCUPANCY[%d]   : s:%x\n", regs->pN, occup);
18074     BLOGD(sc, DBG_LOAD, "LINES_FREED[%d] : s:%x\n", regs->pN, freed);
18075 
18076     while (occup &&
18077            ((uint32_t)((int32_t)freed - (int32_t)freed_start) < to_free)) {
18078         if (cur_cnt--) {
18079             DELAY(FLR_WAIT_INTERVAL);
18080             occup = REG_RD(sc, regs->lines_occup);
18081             freed = REG_RD(sc, regs->lines_freed);
18082         } else {
18083             BLOGD(sc, DBG_LOAD, "PBF cmd queue[%d] timed out\n", regs->pN);
18084             BLOGD(sc, DBG_LOAD, "OCCUPANCY[%d]   : s:%x\n", regs->pN, occup);
18085             BLOGD(sc, DBG_LOAD, "LINES_FREED[%d] : s:%x\n", regs->pN, freed);
18086             break;
18087         }
18088     }
18089 
18090     BLOGD(sc, DBG_LOAD, "Waited %d*%d usec for PBF cmd queue[%d]\n",
18091           poll_count - cur_cnt, FLR_WAIT_INTERVAL, regs->pN);
18092 }
18093 
18094 static void
18095 bxe_tx_hw_flushed(struct bxe_softc *sc, uint32_t poll_count)
18096 {
18097     struct pbf_pN_cmd_regs cmd_regs[] = {
18098         {0, (CHIP_IS_E3B0(sc)) ?
18099             PBF_REG_TQ_OCCUPANCY_Q0 :
18100             PBF_REG_P0_TQ_OCCUPANCY,
18101             (CHIP_IS_E3B0(sc)) ?
18102             PBF_REG_TQ_LINES_FREED_CNT_Q0 :
18103             PBF_REG_P0_TQ_LINES_FREED_CNT},
18104         {1, (CHIP_IS_E3B0(sc)) ?
18105             PBF_REG_TQ_OCCUPANCY_Q1 :
18106             PBF_REG_P1_TQ_OCCUPANCY,
18107             (CHIP_IS_E3B0(sc)) ?
18108             PBF_REG_TQ_LINES_FREED_CNT_Q1 :
18109             PBF_REG_P1_TQ_LINES_FREED_CNT},
18110         {4, (CHIP_IS_E3B0(sc)) ?
18111             PBF_REG_TQ_OCCUPANCY_LB_Q :
18112             PBF_REG_P4_TQ_OCCUPANCY,
18113             (CHIP_IS_E3B0(sc)) ?
18114             PBF_REG_TQ_LINES_FREED_CNT_LB_Q :
18115             PBF_REG_P4_TQ_LINES_FREED_CNT}
18116     };
18117 
18118     struct pbf_pN_buf_regs buf_regs[] = {
18119         {0, (CHIP_IS_E3B0(sc)) ?
18120             PBF_REG_INIT_CRD_Q0 :
18121             PBF_REG_P0_INIT_CRD ,
18122             (CHIP_IS_E3B0(sc)) ?
18123             PBF_REG_CREDIT_Q0 :
18124             PBF_REG_P0_CREDIT,
18125             (CHIP_IS_E3B0(sc)) ?
18126             PBF_REG_INTERNAL_CRD_FREED_CNT_Q0 :
18127             PBF_REG_P0_INTERNAL_CRD_FREED_CNT},
18128         {1, (CHIP_IS_E3B0(sc)) ?
18129             PBF_REG_INIT_CRD_Q1 :
18130             PBF_REG_P1_INIT_CRD,
18131             (CHIP_IS_E3B0(sc)) ?
18132             PBF_REG_CREDIT_Q1 :
18133             PBF_REG_P1_CREDIT,
18134             (CHIP_IS_E3B0(sc)) ?
18135             PBF_REG_INTERNAL_CRD_FREED_CNT_Q1 :
18136             PBF_REG_P1_INTERNAL_CRD_FREED_CNT},
18137         {4, (CHIP_IS_E3B0(sc)) ?
18138             PBF_REG_INIT_CRD_LB_Q :
18139             PBF_REG_P4_INIT_CRD,
18140             (CHIP_IS_E3B0(sc)) ?
18141             PBF_REG_CREDIT_LB_Q :
18142             PBF_REG_P4_CREDIT,
18143             (CHIP_IS_E3B0(sc)) ?
18144             PBF_REG_INTERNAL_CRD_FREED_CNT_LB_Q :
18145             PBF_REG_P4_INTERNAL_CRD_FREED_CNT},
18146     };
18147 
18148     int i;
18149 
18150     /* Verify the command queues are flushed P0, P1, P4 */
18151     for (i = 0; i < ARRAY_SIZE(cmd_regs); i++) {
18152         bxe_pbf_pN_cmd_flushed(sc, &cmd_regs[i], poll_count);
18153     }
18154 
18155     /* Verify the transmission buffers are flushed P0, P1, P4 */
18156     for (i = 0; i < ARRAY_SIZE(buf_regs); i++) {
18157         bxe_pbf_pN_buf_flushed(sc, &buf_regs[i], poll_count);
18158     }
18159 }
18160 
18161 static void
18162 bxe_hw_enable_status(struct bxe_softc *sc)
18163 {
18164     uint32_t val;
18165 
18166     val = REG_RD(sc, CFC_REG_WEAK_ENABLE_PF);
18167     BLOGD(sc, DBG_LOAD, "CFC_REG_WEAK_ENABLE_PF is 0x%x\n", val);
18168 
18169     val = REG_RD(sc, PBF_REG_DISABLE_PF);
18170     BLOGD(sc, DBG_LOAD, "PBF_REG_DISABLE_PF is 0x%x\n", val);
18171 
18172     val = REG_RD(sc, IGU_REG_PCI_PF_MSI_EN);
18173     BLOGD(sc, DBG_LOAD, "IGU_REG_PCI_PF_MSI_EN is 0x%x\n", val);
18174 
18175     val = REG_RD(sc, IGU_REG_PCI_PF_MSIX_EN);
18176     BLOGD(sc, DBG_LOAD, "IGU_REG_PCI_PF_MSIX_EN is 0x%x\n", val);
18177 
18178     val = REG_RD(sc, IGU_REG_PCI_PF_MSIX_FUNC_MASK);
18179     BLOGD(sc, DBG_LOAD, "IGU_REG_PCI_PF_MSIX_FUNC_MASK is 0x%x\n", val);
18180 
18181     val = REG_RD(sc, PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR);
18182     BLOGD(sc, DBG_LOAD, "PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR is 0x%x\n", val);
18183 
18184     val = REG_RD(sc, PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR);
18185     BLOGD(sc, DBG_LOAD, "PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR is 0x%x\n", val);
18186 
18187     val = REG_RD(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER);
18188     BLOGD(sc, DBG_LOAD, "PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER is 0x%x\n", val);
18189 }
18190 
18191 static int
18192 bxe_pf_flr_clnup(struct bxe_softc *sc)
18193 {
18194     uint32_t poll_cnt = bxe_flr_clnup_poll_count(sc);
18195 
18196     BLOGD(sc, DBG_LOAD, "Cleanup after FLR PF[%d]\n", SC_ABS_FUNC(sc));
18197 
18198     /* Re-enable PF target read access */
18199     REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
18200 
18201     /* Poll HW usage counters */
18202     BLOGD(sc, DBG_LOAD, "Polling usage counters\n");
18203     if (bxe_poll_hw_usage_counters(sc, poll_cnt)) {
18204         return (-1);
18205     }
18206 
18207     /* Zero the igu 'trailing edge' and 'leading edge' */
18208 
18209     /* Send the FW cleanup command */
18210     if (bxe_send_final_clnup(sc, (uint8_t)SC_FUNC(sc), poll_cnt)) {
18211         return (-1);
18212     }
18213 
18214     /* ATC cleanup */
18215 
18216     /* Verify TX hw is flushed */
18217     bxe_tx_hw_flushed(sc, poll_cnt);
18218 
18219     /* Wait 100ms (not adjusted according to platform) */
18220     DELAY(100000);
18221 
18222     /* Verify no pending pci transactions */
18223     if (bxe_is_pcie_pending(sc)) {
18224         BLOGE(sc, "PCIE Transactions still pending\n");
18225     }
18226 
18227     /* Debug */
18228     bxe_hw_enable_status(sc);
18229 
18230     /*
18231      * Master enable - Due to WB DMAE writes performed before this
18232      * register is re-initialized as part of the regular function init
18233      */
18234     REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
18235 
18236     return (0);
18237 }
18238 
18239 #if 0
18240 static void
18241 bxe_init_searcher(struct bxe_softc *sc)
18242 {
18243     int port = SC_PORT(sc);
18244     ecore_src_init_t2(sc, sc->t2, sc->t2_mapping, SRC_CONN_NUM);
18245     /* T1 hash bits value determines the T1 number of entries */
18246     REG_WR(sc, SRC_REG_NUMBER_HASH_BITS0 + port*4, SRC_HASH_BITS);
18247 }
18248 #endif
18249 
18250 static int
18251 bxe_init_hw_func(struct bxe_softc *sc)
18252 {
18253     int port = SC_PORT(sc);
18254     int func = SC_FUNC(sc);
18255     int init_phase = PHASE_PF0 + func;
18256     struct ecore_ilt *ilt = sc->ilt;
18257     uint16_t cdu_ilt_start;
18258     uint32_t addr, val;
18259     uint32_t main_mem_base, main_mem_size, main_mem_prty_clr;
18260     int i, main_mem_width, rc;
18261 
18262     BLOGD(sc, DBG_LOAD, "starting func init for func %d\n", func);
18263 
18264     /* FLR cleanup */
18265     if (!CHIP_IS_E1x(sc)) {
18266         rc = bxe_pf_flr_clnup(sc);
18267         if (rc) {
18268             BLOGE(sc, "FLR cleanup failed!\n");
18269             // XXX bxe_fw_dump(sc);
18270             // XXX bxe_idle_chk(sc);
18271             return (rc);
18272         }
18273     }
18274 
18275     /* set MSI reconfigure capability */
18276     if (sc->devinfo.int_block == INT_BLOCK_HC) {
18277         addr = (port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0);
18278         val = REG_RD(sc, addr);
18279         val |= HC_CONFIG_0_REG_MSI_ATTN_EN_0;
18280         REG_WR(sc, addr, val);
18281     }
18282 
18283     ecore_init_block(sc, BLOCK_PXP, init_phase);
18284     ecore_init_block(sc, BLOCK_PXP2, init_phase);
18285 
18286     ilt = sc->ilt;
18287     cdu_ilt_start = ilt->clients[ILT_CLIENT_CDU].start;
18288 
18289 #if 0
18290     if (IS_SRIOV(sc)) {
18291         cdu_ilt_start += BXE_FIRST_VF_CID/ILT_PAGE_CIDS;
18292     }
18293     cdu_ilt_start = bxe_iov_init_ilt(sc, cdu_ilt_start);
18294 
18295 #if (BXE_FIRST_VF_CID > 0)
18296     /*
18297      * If BXE_FIRST_VF_CID > 0 then the PF L2 cids precedes
18298      * those of the VFs, so start line should be reset
18299      */
18300     cdu_ilt_start = ilt->clients[ILT_CLIENT_CDU].start;
18301 #endif
18302 #endif
18303 
18304     for (i = 0; i < L2_ILT_LINES(sc); i++) {
18305         ilt->lines[cdu_ilt_start + i].page = sc->context[i].vcxt;
18306         ilt->lines[cdu_ilt_start + i].page_mapping =
18307             sc->context[i].vcxt_dma.paddr;
18308         ilt->lines[cdu_ilt_start + i].size = sc->context[i].size;
18309     }
18310     ecore_ilt_init_op(sc, INITOP_SET);
18311 
18312 #if 0
18313     if (!CONFIGURE_NIC_MODE(sc)) {
18314         bxe_init_searcher(sc);
18315         REG_WR(sc, PRS_REG_NIC_MODE, 0);
18316         BLOGD(sc, DBG_LOAD, "NIC MODE disabled\n");
18317     } else
18318 #endif
18319     {
18320         /* Set NIC mode */
18321         REG_WR(sc, PRS_REG_NIC_MODE, 1);
18322         BLOGD(sc, DBG_LOAD, "NIC MODE configured\n");
18323     }
18324 
18325     if (!CHIP_IS_E1x(sc)) {
18326         uint32_t pf_conf = IGU_PF_CONF_FUNC_EN;
18327 
18328         /* Turn on a single ISR mode in IGU if driver is going to use
18329          * INT#x or MSI
18330          */
18331         if (sc->interrupt_mode != INTR_MODE_MSIX) {
18332             pf_conf |= IGU_PF_CONF_SINGLE_ISR_EN;
18333         }
18334 
18335         /*
18336          * Timers workaround bug: function init part.
18337          * Need to wait 20msec after initializing ILT,
18338          * needed to make sure there are no requests in
18339          * one of the PXP internal queues with "old" ILT addresses
18340          */
18341         DELAY(20000);
18342 
18343         /*
18344          * Master enable - Due to WB DMAE writes performed before this
18345          * register is re-initialized as part of the regular function
18346          * init
18347          */
18348         REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
18349         /* Enable the function in IGU */
18350         REG_WR(sc, IGU_REG_PF_CONFIGURATION, pf_conf);
18351     }
18352 
18353     sc->dmae_ready = 1;
18354 
18355     ecore_init_block(sc, BLOCK_PGLUE_B, init_phase);
18356 
18357     if (!CHIP_IS_E1x(sc))
18358         REG_WR(sc, PGLUE_B_REG_WAS_ERROR_PF_7_0_CLR, func);
18359 
18360     ecore_init_block(sc, BLOCK_ATC, init_phase);
18361     ecore_init_block(sc, BLOCK_DMAE, init_phase);
18362     ecore_init_block(sc, BLOCK_NIG, init_phase);
18363     ecore_init_block(sc, BLOCK_SRC, init_phase);
18364     ecore_init_block(sc, BLOCK_MISC, init_phase);
18365     ecore_init_block(sc, BLOCK_TCM, init_phase);
18366     ecore_init_block(sc, BLOCK_UCM, init_phase);
18367     ecore_init_block(sc, BLOCK_CCM, init_phase);
18368     ecore_init_block(sc, BLOCK_XCM, init_phase);
18369     ecore_init_block(sc, BLOCK_TSEM, init_phase);
18370     ecore_init_block(sc, BLOCK_USEM, init_phase);
18371     ecore_init_block(sc, BLOCK_CSEM, init_phase);
18372     ecore_init_block(sc, BLOCK_XSEM, init_phase);
18373 
18374     if (!CHIP_IS_E1x(sc))
18375         REG_WR(sc, QM_REG_PF_EN, 1);
18376 
18377     if (!CHIP_IS_E1x(sc)) {
18378         REG_WR(sc, TSEM_REG_VFPF_ERR_NUM, BXE_MAX_NUM_OF_VFS + func);
18379         REG_WR(sc, USEM_REG_VFPF_ERR_NUM, BXE_MAX_NUM_OF_VFS + func);
18380         REG_WR(sc, CSEM_REG_VFPF_ERR_NUM, BXE_MAX_NUM_OF_VFS + func);
18381         REG_WR(sc, XSEM_REG_VFPF_ERR_NUM, BXE_MAX_NUM_OF_VFS + func);
18382     }
18383     ecore_init_block(sc, BLOCK_QM, init_phase);
18384 
18385     ecore_init_block(sc, BLOCK_TM, init_phase);
18386     ecore_init_block(sc, BLOCK_DORQ, init_phase);
18387 
18388     bxe_iov_init_dq(sc);
18389 
18390     ecore_init_block(sc, BLOCK_BRB1, init_phase);
18391     ecore_init_block(sc, BLOCK_PRS, init_phase);
18392     ecore_init_block(sc, BLOCK_TSDM, init_phase);
18393     ecore_init_block(sc, BLOCK_CSDM, init_phase);
18394     ecore_init_block(sc, BLOCK_USDM, init_phase);
18395     ecore_init_block(sc, BLOCK_XSDM, init_phase);
18396     ecore_init_block(sc, BLOCK_UPB, init_phase);
18397     ecore_init_block(sc, BLOCK_XPB, init_phase);
18398     ecore_init_block(sc, BLOCK_PBF, init_phase);
18399     if (!CHIP_IS_E1x(sc))
18400         REG_WR(sc, PBF_REG_DISABLE_PF, 0);
18401 
18402     ecore_init_block(sc, BLOCK_CDU, init_phase);
18403 
18404     ecore_init_block(sc, BLOCK_CFC, init_phase);
18405 
18406     if (!CHIP_IS_E1x(sc))
18407         REG_WR(sc, CFC_REG_WEAK_ENABLE_PF, 1);
18408 
18409     if (IS_MF(sc)) {
18410         REG_WR(sc, NIG_REG_LLH0_FUNC_EN + port*8, 1);
18411         REG_WR(sc, NIG_REG_LLH0_FUNC_VLAN_ID + port*8, OVLAN(sc));
18412     }
18413 
18414     ecore_init_block(sc, BLOCK_MISC_AEU, init_phase);
18415 
18416     /* HC init per function */
18417     if (sc->devinfo.int_block == INT_BLOCK_HC) {
18418         if (CHIP_IS_E1H(sc)) {
18419             REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
18420 
18421             REG_WR(sc, HC_REG_LEADING_EDGE_0 + port*8, 0);
18422             REG_WR(sc, HC_REG_TRAILING_EDGE_0 + port*8, 0);
18423         }
18424         ecore_init_block(sc, BLOCK_HC, init_phase);
18425 
18426     } else {
18427         int num_segs, sb_idx, prod_offset;
18428 
18429         REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
18430 
18431         if (!CHIP_IS_E1x(sc)) {
18432             REG_WR(sc, IGU_REG_LEADING_EDGE_LATCH, 0);
18433             REG_WR(sc, IGU_REG_TRAILING_EDGE_LATCH, 0);
18434         }
18435 
18436         ecore_init_block(sc, BLOCK_IGU, init_phase);
18437 
18438         if (!CHIP_IS_E1x(sc)) {
18439             int dsb_idx = 0;
18440             /**
18441              * Producer memory:
18442              * E2 mode: address 0-135 match to the mapping memory;
18443              * 136 - PF0 default prod; 137 - PF1 default prod;
18444              * 138 - PF2 default prod; 139 - PF3 default prod;
18445              * 140 - PF0 attn prod;    141 - PF1 attn prod;
18446              * 142 - PF2 attn prod;    143 - PF3 attn prod;
18447              * 144-147 reserved.
18448              *
18449              * E1.5 mode - In backward compatible mode;
18450              * for non default SB; each even line in the memory
18451              * holds the U producer and each odd line hold
18452              * the C producer. The first 128 producers are for
18453              * NDSB (PF0 - 0-31; PF1 - 32-63 and so on). The last 20
18454              * producers are for the DSB for each PF.
18455              * Each PF has five segments: (the order inside each
18456              * segment is PF0; PF1; PF2; PF3) - 128-131 U prods;
18457              * 132-135 C prods; 136-139 X prods; 140-143 T prods;
18458              * 144-147 attn prods;
18459              */
18460             /* non-default-status-blocks */
18461             num_segs = CHIP_INT_MODE_IS_BC(sc) ?
18462                 IGU_BC_NDSB_NUM_SEGS : IGU_NORM_NDSB_NUM_SEGS;
18463             for (sb_idx = 0; sb_idx < sc->igu_sb_cnt; sb_idx++) {
18464                 prod_offset = (sc->igu_base_sb + sb_idx) *
18465                     num_segs;
18466 
18467                 for (i = 0; i < num_segs; i++) {
18468                     addr = IGU_REG_PROD_CONS_MEMORY +
18469                             (prod_offset + i) * 4;
18470                     REG_WR(sc, addr, 0);
18471                 }
18472                 /* send consumer update with value 0 */
18473                 bxe_ack_sb(sc, sc->igu_base_sb + sb_idx,
18474                            USTORM_ID, 0, IGU_INT_NOP, 1);
18475                 bxe_igu_clear_sb(sc, sc->igu_base_sb + sb_idx);
18476             }
18477 
18478             /* default-status-blocks */
18479             num_segs = CHIP_INT_MODE_IS_BC(sc) ?
18480                 IGU_BC_DSB_NUM_SEGS : IGU_NORM_DSB_NUM_SEGS;
18481 
18482             if (CHIP_IS_MODE_4_PORT(sc))
18483                 dsb_idx = SC_FUNC(sc);
18484             else
18485                 dsb_idx = SC_VN(sc);
18486 
18487             prod_offset = (CHIP_INT_MODE_IS_BC(sc) ?
18488                        IGU_BC_BASE_DSB_PROD + dsb_idx :
18489                        IGU_NORM_BASE_DSB_PROD + dsb_idx);
18490 
18491             /*
18492              * igu prods come in chunks of E1HVN_MAX (4) -
18493              * does not matters what is the current chip mode
18494              */
18495             for (i = 0; i < (num_segs * E1HVN_MAX);
18496                  i += E1HVN_MAX) {
18497                 addr = IGU_REG_PROD_CONS_MEMORY +
18498                             (prod_offset + i)*4;
18499                 REG_WR(sc, addr, 0);
18500             }
18501             /* send consumer update with 0 */
18502             if (CHIP_INT_MODE_IS_BC(sc)) {
18503                 bxe_ack_sb(sc, sc->igu_dsb_id,
18504                            USTORM_ID, 0, IGU_INT_NOP, 1);
18505                 bxe_ack_sb(sc, sc->igu_dsb_id,
18506                            CSTORM_ID, 0, IGU_INT_NOP, 1);
18507                 bxe_ack_sb(sc, sc->igu_dsb_id,
18508                            XSTORM_ID, 0, IGU_INT_NOP, 1);
18509                 bxe_ack_sb(sc, sc->igu_dsb_id,
18510                            TSTORM_ID, 0, IGU_INT_NOP, 1);
18511                 bxe_ack_sb(sc, sc->igu_dsb_id,
18512                            ATTENTION_ID, 0, IGU_INT_NOP, 1);
18513             } else {
18514                 bxe_ack_sb(sc, sc->igu_dsb_id,
18515                            USTORM_ID, 0, IGU_INT_NOP, 1);
18516                 bxe_ack_sb(sc, sc->igu_dsb_id,
18517                            ATTENTION_ID, 0, IGU_INT_NOP, 1);
18518             }
18519             bxe_igu_clear_sb(sc, sc->igu_dsb_id);
18520 
18521             /* !!! these should become driver const once
18522                rf-tool supports split-68 const */
18523             REG_WR(sc, IGU_REG_SB_INT_BEFORE_MASK_LSB, 0);
18524             REG_WR(sc, IGU_REG_SB_INT_BEFORE_MASK_MSB, 0);
18525             REG_WR(sc, IGU_REG_SB_MASK_LSB, 0);
18526             REG_WR(sc, IGU_REG_SB_MASK_MSB, 0);
18527             REG_WR(sc, IGU_REG_PBA_STATUS_LSB, 0);
18528             REG_WR(sc, IGU_REG_PBA_STATUS_MSB, 0);
18529         }
18530     }
18531 
18532     /* Reset PCIE errors for debug */
18533     REG_WR(sc, 0x2114, 0xffffffff);
18534     REG_WR(sc, 0x2120, 0xffffffff);
18535 
18536     if (CHIP_IS_E1x(sc)) {
18537         main_mem_size = HC_REG_MAIN_MEMORY_SIZE / 2; /*dwords*/
18538         main_mem_base = HC_REG_MAIN_MEMORY +
18539                 SC_PORT(sc) * (main_mem_size * 4);
18540         main_mem_prty_clr = HC_REG_HC_PRTY_STS_CLR;
18541         main_mem_width = 8;
18542 
18543         val = REG_RD(sc, main_mem_prty_clr);
18544         if (val) {
18545             BLOGD(sc, DBG_LOAD,
18546                   "Parity errors in HC block during function init (0x%x)!\n",
18547                   val);
18548         }
18549 
18550         /* Clear "false" parity errors in MSI-X table */
18551         for (i = main_mem_base;
18552              i < main_mem_base + main_mem_size * 4;
18553              i += main_mem_width) {
18554             bxe_read_dmae(sc, i, main_mem_width / 4);
18555             bxe_write_dmae(sc, BXE_SP_MAPPING(sc, wb_data),
18556                            i, main_mem_width / 4);
18557         }
18558         /* Clear HC parity attention */
18559         REG_RD(sc, main_mem_prty_clr);
18560     }
18561 
18562 #if 1
18563     /* Enable STORMs SP logging */
18564     REG_WR8(sc, BAR_USTRORM_INTMEM +
18565            USTORM_RECORD_SLOW_PATH_OFFSET(SC_FUNC(sc)), 1);
18566     REG_WR8(sc, BAR_TSTRORM_INTMEM +
18567            TSTORM_RECORD_SLOW_PATH_OFFSET(SC_FUNC(sc)), 1);
18568     REG_WR8(sc, BAR_CSTRORM_INTMEM +
18569            CSTORM_RECORD_SLOW_PATH_OFFSET(SC_FUNC(sc)), 1);
18570     REG_WR8(sc, BAR_XSTRORM_INTMEM +
18571            XSTORM_RECORD_SLOW_PATH_OFFSET(SC_FUNC(sc)), 1);
18572 #endif
18573 
18574     elink_phy_probe(&sc->link_params);
18575 
18576     return (0);
18577 }
18578 
18579 static void
18580 bxe_link_reset(struct bxe_softc *sc)
18581 {
18582     if (!BXE_NOMCP(sc)) {
18583 	bxe_acquire_phy_lock(sc);
18584         elink_lfa_reset(&sc->link_params, &sc->link_vars);
18585 	bxe_release_phy_lock(sc);
18586     } else {
18587         if (!CHIP_REV_IS_SLOW(sc)) {
18588             BLOGW(sc, "Bootcode is missing - cannot reset link\n");
18589         }
18590     }
18591 }
18592 
18593 static void
18594 bxe_reset_port(struct bxe_softc *sc)
18595 {
18596     int port = SC_PORT(sc);
18597     uint32_t val;
18598 
18599     /* reset physical Link */
18600     bxe_link_reset(sc);
18601 
18602     REG_WR(sc, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0);
18603 
18604     /* Do not rcv packets to BRB */
18605     REG_WR(sc, NIG_REG_LLH0_BRB1_DRV_MASK + port*4, 0x0);
18606     /* Do not direct rcv packets that are not for MCP to the BRB */
18607     REG_WR(sc, (port ? NIG_REG_LLH1_BRB1_NOT_MCP :
18608                NIG_REG_LLH0_BRB1_NOT_MCP), 0x0);
18609 
18610     /* Configure AEU */
18611     REG_WR(sc, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, 0);
18612 
18613     DELAY(100000);
18614 
18615     /* Check for BRB port occupancy */
18616     val = REG_RD(sc, BRB1_REG_PORT_NUM_OCC_BLOCKS_0 + port*4);
18617     if (val) {
18618         BLOGD(sc, DBG_LOAD,
18619               "BRB1 is not empty, %d blocks are occupied\n", val);
18620     }
18621 
18622     /* TODO: Close Doorbell port? */
18623 }
18624 
18625 static void
18626 bxe_ilt_wr(struct bxe_softc *sc,
18627            uint32_t         index,
18628            bus_addr_t       addr)
18629 {
18630     int reg;
18631     uint32_t wb_write[2];
18632 
18633     if (CHIP_IS_E1(sc)) {
18634         reg = PXP2_REG_RQ_ONCHIP_AT + index*8;
18635     } else {
18636         reg = PXP2_REG_RQ_ONCHIP_AT_B0 + index*8;
18637     }
18638 
18639     wb_write[0] = ONCHIP_ADDR1(addr);
18640     wb_write[1] = ONCHIP_ADDR2(addr);
18641     REG_WR_DMAE(sc, reg, wb_write, 2);
18642 }
18643 
18644 static void
18645 bxe_clear_func_ilt(struct bxe_softc *sc,
18646                    uint32_t         func)
18647 {
18648     uint32_t i, base = FUNC_ILT_BASE(func);
18649     for (i = base; i < base + ILT_PER_FUNC; i++) {
18650         bxe_ilt_wr(sc, i, 0);
18651     }
18652 }
18653 
18654 static void
18655 bxe_reset_func(struct bxe_softc *sc)
18656 {
18657     struct bxe_fastpath *fp;
18658     int port = SC_PORT(sc);
18659     int func = SC_FUNC(sc);
18660     int i;
18661 
18662     /* Disable the function in the FW */
18663     REG_WR8(sc, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(func), 0);
18664     REG_WR8(sc, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(func), 0);
18665     REG_WR8(sc, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(func), 0);
18666     REG_WR8(sc, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(func), 0);
18667 
18668     /* FP SBs */
18669     FOR_EACH_ETH_QUEUE(sc, i) {
18670         fp = &sc->fp[i];
18671         REG_WR8(sc, BAR_CSTRORM_INTMEM +
18672                 CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET(fp->fw_sb_id),
18673                 SB_DISABLED);
18674     }
18675 
18676 #if 0
18677     if (CNIC_LOADED(sc)) {
18678         /* CNIC SB */
18679         REG_WR8(sc, BAR_CSTRORM_INTMEM +
18680                 CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET
18681                 (bxe_cnic_fw_sb_id(sc)), SB_DISABLED);
18682     }
18683 #endif
18684 
18685     /* SP SB */
18686     REG_WR8(sc, BAR_CSTRORM_INTMEM +
18687             CSTORM_SP_STATUS_BLOCK_DATA_STATE_OFFSET(func),
18688             SB_DISABLED);
18689 
18690     for (i = 0; i < XSTORM_SPQ_DATA_SIZE / 4; i++) {
18691         REG_WR(sc, BAR_XSTRORM_INTMEM + XSTORM_SPQ_DATA_OFFSET(func), 0);
18692     }
18693 
18694     /* Configure IGU */
18695     if (sc->devinfo.int_block == INT_BLOCK_HC) {
18696         REG_WR(sc, HC_REG_LEADING_EDGE_0 + port*8, 0);
18697         REG_WR(sc, HC_REG_TRAILING_EDGE_0 + port*8, 0);
18698     } else {
18699         REG_WR(sc, IGU_REG_LEADING_EDGE_LATCH, 0);
18700         REG_WR(sc, IGU_REG_TRAILING_EDGE_LATCH, 0);
18701     }
18702 
18703     if (CNIC_LOADED(sc)) {
18704         /* Disable Timer scan */
18705         REG_WR(sc, TM_REG_EN_LINEAR0_TIMER + port*4, 0);
18706         /*
18707          * Wait for at least 10ms and up to 2 second for the timers
18708          * scan to complete
18709          */
18710         for (i = 0; i < 200; i++) {
18711             DELAY(10000);
18712             if (!REG_RD(sc, TM_REG_LIN0_SCAN_ON + port*4))
18713                 break;
18714         }
18715     }
18716 
18717     /* Clear ILT */
18718     bxe_clear_func_ilt(sc, func);
18719 
18720     /*
18721      * Timers workaround bug for E2: if this is vnic-3,
18722      * we need to set the entire ilt range for this timers.
18723      */
18724     if (!CHIP_IS_E1x(sc) && SC_VN(sc) == 3) {
18725         struct ilt_client_info ilt_cli;
18726         /* use dummy TM client */
18727         memset(&ilt_cli, 0, sizeof(struct ilt_client_info));
18728         ilt_cli.start = 0;
18729         ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1;
18730         ilt_cli.client_num = ILT_CLIENT_TM;
18731 
18732         ecore_ilt_boundry_init_op(sc, &ilt_cli, 0, INITOP_CLEAR);
18733     }
18734 
18735     /* this assumes that reset_port() called before reset_func()*/
18736     if (!CHIP_IS_E1x(sc)) {
18737         bxe_pf_disable(sc);
18738     }
18739 
18740     sc->dmae_ready = 0;
18741 }
18742 
18743 static int
18744 bxe_gunzip_init(struct bxe_softc *sc)
18745 {
18746     return (0);
18747 }
18748 
18749 static void
18750 bxe_gunzip_end(struct bxe_softc *sc)
18751 {
18752     return;
18753 }
18754 
18755 static int
18756 bxe_init_firmware(struct bxe_softc *sc)
18757 {
18758     if (CHIP_IS_E1(sc)) {
18759         ecore_init_e1_firmware(sc);
18760         sc->iro_array = e1_iro_arr;
18761     } else if (CHIP_IS_E1H(sc)) {
18762         ecore_init_e1h_firmware(sc);
18763         sc->iro_array = e1h_iro_arr;
18764     } else if (!CHIP_IS_E1x(sc)) {
18765         ecore_init_e2_firmware(sc);
18766         sc->iro_array = e2_iro_arr;
18767     } else {
18768         BLOGE(sc, "Unsupported chip revision\n");
18769         return (-1);
18770     }
18771 
18772     return (0);
18773 }
18774 
18775 static void
18776 bxe_release_firmware(struct bxe_softc *sc)
18777 {
18778     /* Do nothing */
18779     return;
18780 }
18781 
18782 static int
18783 ecore_gunzip(struct bxe_softc *sc,
18784              const uint8_t    *zbuf,
18785              int              len)
18786 {
18787     /* XXX : Implement... */
18788     BLOGD(sc, DBG_LOAD, "ECORE_GUNZIP NOT IMPLEMENTED\n");
18789     return (FALSE);
18790 }
18791 
18792 static void
18793 ecore_reg_wr_ind(struct bxe_softc *sc,
18794                  uint32_t         addr,
18795                  uint32_t         val)
18796 {
18797     bxe_reg_wr_ind(sc, addr, val);
18798 }
18799 
18800 static void
18801 ecore_write_dmae_phys_len(struct bxe_softc *sc,
18802                           bus_addr_t       phys_addr,
18803                           uint32_t         addr,
18804                           uint32_t         len)
18805 {
18806     bxe_write_dmae_phys_len(sc, phys_addr, addr, len);
18807 }
18808 
18809 void
18810 ecore_storm_memset_struct(struct bxe_softc *sc,
18811                           uint32_t         addr,
18812                           size_t           size,
18813                           uint32_t         *data)
18814 {
18815     uint8_t i;
18816     for (i = 0; i < size/4; i++) {
18817         REG_WR(sc, addr + (i * 4), data[i]);
18818     }
18819 }
18820 
18821