xref: /freebsd/sys/dev/bxe/bxe.c (revision b64c5a0ace59af62eff52bfe110a521dc73c937b)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (c) 2007-2014 QLogic Corporation. All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  *
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS'
17  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS
20  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
21  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
22  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
23  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
24  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
25  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
26  * THE POSSIBILITY OF SUCH DAMAGE.
27  */
28 
29 #include <sys/cdefs.h>
30 #define BXE_DRIVER_VERSION "1.78.91"
31 
32 #include "bxe.h"
33 #include "ecore_sp.h"
34 #include "ecore_init.h"
35 #include "ecore_init_ops.h"
36 
37 #include "57710_int_offsets.h"
38 #include "57711_int_offsets.h"
39 #include "57712_int_offsets.h"
40 
41 /*
42  * CTLTYPE_U64 and sysctl_handle_64 were added in r217616. Define these
43  * explicitly here for older kernels that don't include this changeset.
44  */
45 #ifndef CTLTYPE_U64
46 #define CTLTYPE_U64      CTLTYPE_QUAD
47 #define sysctl_handle_64 sysctl_handle_quad
48 #endif
49 
50 /*
51  * CSUM_TCP_IPV6 and CSUM_UDP_IPV6 were added in r236170. Define these
52  * here as zero(0) for older kernels that don't include this changeset
53  * thereby masking the functionality.
54  */
55 #ifndef CSUM_TCP_IPV6
56 #define CSUM_TCP_IPV6 0
57 #define CSUM_UDP_IPV6 0
58 #endif
59 
60 #define BXE_DEF_SB_ATT_IDX 0x0001
61 #define BXE_DEF_SB_IDX     0x0002
62 
63 /*
64  * FLR Support - bxe_pf_flr_clnup() is called during nic_load in the per
65  * function HW initialization.
66  */
67 #define FLR_WAIT_USEC     10000 /* 10 msecs */
68 #define FLR_WAIT_INTERVAL 50    /* usecs */
69 #define FLR_POLL_CNT      (FLR_WAIT_USEC / FLR_WAIT_INTERVAL) /* 200 */
70 
71 struct pbf_pN_buf_regs {
72     int pN;
73     uint32_t init_crd;
74     uint32_t crd;
75     uint32_t crd_freed;
76 };
77 
78 struct pbf_pN_cmd_regs {
79     int pN;
80     uint32_t lines_occup;
81     uint32_t lines_freed;
82 };
83 
84 /*
85  * PCI Device ID Table used by bxe_probe().
86  */
87 #define BXE_DEVDESC_MAX 64
88 static struct bxe_device_type bxe_devs[] = {
89     {
90         BRCM_VENDORID,
91         CHIP_NUM_57710,
92         PCI_ANY_ID, PCI_ANY_ID,
93         "QLogic NetXtreme II BCM57710 10GbE"
94     },
95     {
96         BRCM_VENDORID,
97         CHIP_NUM_57711,
98         PCI_ANY_ID, PCI_ANY_ID,
99         "QLogic NetXtreme II BCM57711 10GbE"
100     },
101     {
102         BRCM_VENDORID,
103         CHIP_NUM_57711E,
104         PCI_ANY_ID, PCI_ANY_ID,
105         "QLogic NetXtreme II BCM57711E 10GbE"
106     },
107     {
108         BRCM_VENDORID,
109         CHIP_NUM_57712,
110         PCI_ANY_ID, PCI_ANY_ID,
111         "QLogic NetXtreme II BCM57712 10GbE"
112     },
113     {
114         BRCM_VENDORID,
115         CHIP_NUM_57712_MF,
116         PCI_ANY_ID, PCI_ANY_ID,
117         "QLogic NetXtreme II BCM57712 MF 10GbE"
118     },
119     {
120         BRCM_VENDORID,
121         CHIP_NUM_57800,
122         PCI_ANY_ID, PCI_ANY_ID,
123         "QLogic NetXtreme II BCM57800 10GbE"
124     },
125     {
126         BRCM_VENDORID,
127         CHIP_NUM_57800_MF,
128         PCI_ANY_ID, PCI_ANY_ID,
129         "QLogic NetXtreme II BCM57800 MF 10GbE"
130     },
131     {
132         BRCM_VENDORID,
133         CHIP_NUM_57810,
134         PCI_ANY_ID, PCI_ANY_ID,
135         "QLogic NetXtreme II BCM57810 10GbE"
136     },
137     {
138         BRCM_VENDORID,
139         CHIP_NUM_57810_MF,
140         PCI_ANY_ID, PCI_ANY_ID,
141         "QLogic NetXtreme II BCM57810 MF 10GbE"
142     },
143     {
144         BRCM_VENDORID,
145         CHIP_NUM_57811,
146         PCI_ANY_ID, PCI_ANY_ID,
147         "QLogic NetXtreme II BCM57811 10GbE"
148     },
149     {
150         BRCM_VENDORID,
151         CHIP_NUM_57811_MF,
152         PCI_ANY_ID, PCI_ANY_ID,
153         "QLogic NetXtreme II BCM57811 MF 10GbE"
154     },
155     {
156         BRCM_VENDORID,
157         CHIP_NUM_57840_4_10,
158         PCI_ANY_ID, PCI_ANY_ID,
159         "QLogic NetXtreme II BCM57840 4x10GbE"
160     },
161     {
162         QLOGIC_VENDORID,
163         CHIP_NUM_57840_4_10,
164         PCI_ANY_ID, PCI_ANY_ID,
165         "QLogic NetXtreme II BCM57840 4x10GbE"
166     },
167     {
168         BRCM_VENDORID,
169         CHIP_NUM_57840_2_20,
170         PCI_ANY_ID, PCI_ANY_ID,
171         "QLogic NetXtreme II BCM57840 2x20GbE"
172     },
173     {
174         BRCM_VENDORID,
175         CHIP_NUM_57840_MF,
176         PCI_ANY_ID, PCI_ANY_ID,
177         "QLogic NetXtreme II BCM57840 MF 10GbE"
178     },
179     {
180         0, 0, 0, 0, NULL
181     }
182 };
183 
184 MALLOC_DECLARE(M_BXE_ILT);
185 MALLOC_DEFINE(M_BXE_ILT, "bxe_ilt", "bxe ILT pointer");
186 
187 /*
188  * FreeBSD device entry points.
189  */
190 static int bxe_probe(device_t);
191 static int bxe_attach(device_t);
192 static int bxe_detach(device_t);
193 static int bxe_shutdown(device_t);
194 
195 
196 /*
197  * FreeBSD KLD module/device interface event handler method.
198  */
199 static device_method_t bxe_methods[] = {
200     /* Device interface (device_if.h) */
201     DEVMETHOD(device_probe,     bxe_probe),
202     DEVMETHOD(device_attach,    bxe_attach),
203     DEVMETHOD(device_detach,    bxe_detach),
204     DEVMETHOD(device_shutdown,  bxe_shutdown),
205     /* Bus interface (bus_if.h) */
206     DEVMETHOD(bus_print_child,  bus_generic_print_child),
207     DEVMETHOD(bus_driver_added, bus_generic_driver_added),
208     KOBJMETHOD_END
209 };
210 
211 /*
212  * FreeBSD KLD Module data declaration
213  */
214 static driver_t bxe_driver = {
215     "bxe",                   /* module name */
216     bxe_methods,             /* event handler */
217     sizeof(struct bxe_softc) /* extra data */
218 };
219 
220 MODULE_DEPEND(bxe, pci, 1, 1, 1);
221 MODULE_DEPEND(bxe, ether, 1, 1, 1);
222 DRIVER_MODULE(bxe, pci, bxe_driver, 0, 0);
223 
224 DEBUGNET_DEFINE(bxe);
225 
226 /* resources needed for unloading a previously loaded device */
227 
228 #define BXE_PREV_WAIT_NEEDED 1
229 struct mtx bxe_prev_mtx;
230 MTX_SYSINIT(bxe_prev_mtx, &bxe_prev_mtx, "bxe_prev_lock", MTX_DEF);
231 struct bxe_prev_list_node {
232     LIST_ENTRY(bxe_prev_list_node) node;
233     uint8_t bus;
234     uint8_t slot;
235     uint8_t path;
236     uint8_t aer; /* XXX automatic error recovery */
237     uint8_t undi;
238 };
239 static LIST_HEAD(, bxe_prev_list_node) bxe_prev_list = LIST_HEAD_INITIALIZER(bxe_prev_list);
240 
241 static int load_count[2][3] = { {0} }; /* per-path: 0-common, 1-port0, 2-port1 */
242 
243 /* Tunable device values... */
244 
245 SYSCTL_NODE(_hw, OID_AUTO, bxe, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
246     "bxe driver parameters");
247 
248 /* Debug */
249 unsigned long bxe_debug = 0;
250 SYSCTL_ULONG(_hw_bxe, OID_AUTO, debug, CTLFLAG_RDTUN,
251              &bxe_debug, 0, "Debug logging mode");
252 
253 /* Interrupt Mode: 0 (IRQ), 1 (MSI/IRQ), and 2 (MSI-X/MSI/IRQ) */
254 static int bxe_interrupt_mode = INTR_MODE_MSIX;
255 SYSCTL_INT(_hw_bxe, OID_AUTO, interrupt_mode, CTLFLAG_RDTUN,
256            &bxe_interrupt_mode, 0, "Interrupt (MSI-X/MSI/INTx) mode");
257 
258 /* Number of Queues: 0 (Auto) or 1 to 16 (fixed queue number) */
259 static int bxe_queue_count = 4;
260 SYSCTL_INT(_hw_bxe, OID_AUTO, queue_count, CTLFLAG_RDTUN,
261            &bxe_queue_count, 0, "Multi-Queue queue count");
262 
263 /* max number of buffers per queue (default RX_BD_USABLE) */
264 static int bxe_max_rx_bufs = 0;
265 SYSCTL_INT(_hw_bxe, OID_AUTO, max_rx_bufs, CTLFLAG_RDTUN,
266            &bxe_max_rx_bufs, 0, "Maximum Number of Rx Buffers Per Queue");
267 
268 /* Host interrupt coalescing RX tick timer (usecs) */
269 static int bxe_hc_rx_ticks = 25;
270 SYSCTL_INT(_hw_bxe, OID_AUTO, hc_rx_ticks, CTLFLAG_RDTUN,
271            &bxe_hc_rx_ticks, 0, "Host Coalescing Rx ticks");
272 
273 /* Host interrupt coalescing TX tick timer (usecs) */
274 static int bxe_hc_tx_ticks = 50;
275 SYSCTL_INT(_hw_bxe, OID_AUTO, hc_tx_ticks, CTLFLAG_RDTUN,
276            &bxe_hc_tx_ticks, 0, "Host Coalescing Tx ticks");
277 
278 /* Maximum number of Rx packets to process at a time */
279 static int bxe_rx_budget = 0xffffffff;
280 SYSCTL_INT(_hw_bxe, OID_AUTO, rx_budget, CTLFLAG_RDTUN,
281            &bxe_rx_budget, 0, "Rx processing budget");
282 
283 /* Maximum LRO aggregation size */
284 static int bxe_max_aggregation_size = 0;
285 SYSCTL_INT(_hw_bxe, OID_AUTO, max_aggregation_size, CTLFLAG_RDTUN,
286            &bxe_max_aggregation_size, 0, "max aggregation size");
287 
288 /* PCI MRRS: -1 (Auto), 0 (128B), 1 (256B), 2 (512B), 3 (1KB) */
289 static int bxe_mrrs = -1;
290 SYSCTL_INT(_hw_bxe, OID_AUTO, mrrs, CTLFLAG_RDTUN,
291            &bxe_mrrs, 0, "PCIe maximum read request size");
292 
293 /* AutoGrEEEn: 0 (hardware default), 1 (force on), 2 (force off) */
294 static int bxe_autogreeen = 0;
295 SYSCTL_INT(_hw_bxe, OID_AUTO, autogreeen, CTLFLAG_RDTUN,
296            &bxe_autogreeen, 0, "AutoGrEEEn support");
297 
298 /* 4-tuple RSS support for UDP: 0 (disabled), 1 (enabled) */
299 static int bxe_udp_rss = 0;
300 SYSCTL_INT(_hw_bxe, OID_AUTO, udp_rss, CTLFLAG_RDTUN,
301            &bxe_udp_rss, 0, "UDP RSS support");
302 
303 
304 #define STAT_NAME_LEN 32 /* no stat names below can be longer than this */
305 
306 #define STATS_OFFSET32(stat_name)                   \
307     (offsetof(struct bxe_eth_stats, stat_name) / 4)
308 
309 #define Q_STATS_OFFSET32(stat_name)                   \
310     (offsetof(struct bxe_eth_q_stats, stat_name) / 4)
311 
312 static const struct {
313     uint32_t offset;
314     uint32_t size;
315     uint32_t flags;
316 #define STATS_FLAGS_PORT  1
317 #define STATS_FLAGS_FUNC  2 /* MF only cares about function stats */
318 #define STATS_FLAGS_BOTH  (STATS_FLAGS_FUNC | STATS_FLAGS_PORT)
319     char string[STAT_NAME_LEN];
320 } bxe_eth_stats_arr[] = {
321     { STATS_OFFSET32(total_bytes_received_hi),
322                 8, STATS_FLAGS_BOTH, "rx_bytes" },
323     { STATS_OFFSET32(error_bytes_received_hi),
324                 8, STATS_FLAGS_BOTH, "rx_error_bytes" },
325     { STATS_OFFSET32(total_unicast_packets_received_hi),
326                 8, STATS_FLAGS_BOTH, "rx_ucast_packets" },
327     { STATS_OFFSET32(total_multicast_packets_received_hi),
328                 8, STATS_FLAGS_BOTH, "rx_mcast_packets" },
329     { STATS_OFFSET32(total_broadcast_packets_received_hi),
330                 8, STATS_FLAGS_BOTH, "rx_bcast_packets" },
331     { STATS_OFFSET32(rx_stat_dot3statsfcserrors_hi),
332                 8, STATS_FLAGS_PORT, "rx_crc_errors" },
333     { STATS_OFFSET32(rx_stat_dot3statsalignmenterrors_hi),
334                 8, STATS_FLAGS_PORT, "rx_align_errors" },
335     { STATS_OFFSET32(rx_stat_etherstatsundersizepkts_hi),
336                 8, STATS_FLAGS_PORT, "rx_undersize_packets" },
337     { STATS_OFFSET32(etherstatsoverrsizepkts_hi),
338                 8, STATS_FLAGS_PORT, "rx_oversize_packets" },
339     { STATS_OFFSET32(rx_stat_etherstatsfragments_hi),
340                 8, STATS_FLAGS_PORT, "rx_fragments" },
341     { STATS_OFFSET32(rx_stat_etherstatsjabbers_hi),
342                 8, STATS_FLAGS_PORT, "rx_jabbers" },
343     { STATS_OFFSET32(no_buff_discard_hi),
344                 8, STATS_FLAGS_BOTH, "rx_discards" },
345     { STATS_OFFSET32(mac_filter_discard),
346                 4, STATS_FLAGS_PORT, "rx_filtered_packets" },
347     { STATS_OFFSET32(mf_tag_discard),
348                 4, STATS_FLAGS_PORT, "rx_mf_tag_discard" },
349     { STATS_OFFSET32(pfc_frames_received_hi),
350                 8, STATS_FLAGS_PORT, "pfc_frames_received" },
351     { STATS_OFFSET32(pfc_frames_sent_hi),
352                 8, STATS_FLAGS_PORT, "pfc_frames_sent" },
353     { STATS_OFFSET32(brb_drop_hi),
354                 8, STATS_FLAGS_PORT, "rx_brb_discard" },
355     { STATS_OFFSET32(brb_truncate_hi),
356                 8, STATS_FLAGS_PORT, "rx_brb_truncate" },
357     { STATS_OFFSET32(pause_frames_received_hi),
358                 8, STATS_FLAGS_PORT, "rx_pause_frames" },
359     { STATS_OFFSET32(rx_stat_maccontrolframesreceived_hi),
360                 8, STATS_FLAGS_PORT, "rx_mac_ctrl_frames" },
361     { STATS_OFFSET32(nig_timer_max),
362                 4, STATS_FLAGS_PORT, "rx_constant_pause_events" },
363     { STATS_OFFSET32(total_bytes_transmitted_hi),
364                 8, STATS_FLAGS_BOTH, "tx_bytes" },
365     { STATS_OFFSET32(tx_stat_ifhcoutbadoctets_hi),
366                 8, STATS_FLAGS_PORT, "tx_error_bytes" },
367     { STATS_OFFSET32(total_unicast_packets_transmitted_hi),
368                 8, STATS_FLAGS_BOTH, "tx_ucast_packets" },
369     { STATS_OFFSET32(total_multicast_packets_transmitted_hi),
370                 8, STATS_FLAGS_BOTH, "tx_mcast_packets" },
371     { STATS_OFFSET32(total_broadcast_packets_transmitted_hi),
372                 8, STATS_FLAGS_BOTH, "tx_bcast_packets" },
373     { STATS_OFFSET32(tx_stat_dot3statsinternalmactransmiterrors_hi),
374                 8, STATS_FLAGS_PORT, "tx_mac_errors" },
375     { STATS_OFFSET32(rx_stat_dot3statscarriersenseerrors_hi),
376                 8, STATS_FLAGS_PORT, "tx_carrier_errors" },
377     { STATS_OFFSET32(tx_stat_dot3statssinglecollisionframes_hi),
378                 8, STATS_FLAGS_PORT, "tx_single_collisions" },
379     { STATS_OFFSET32(tx_stat_dot3statsmultiplecollisionframes_hi),
380                 8, STATS_FLAGS_PORT, "tx_multi_collisions" },
381     { STATS_OFFSET32(tx_stat_dot3statsdeferredtransmissions_hi),
382                 8, STATS_FLAGS_PORT, "tx_deferred" },
383     { STATS_OFFSET32(tx_stat_dot3statsexcessivecollisions_hi),
384                 8, STATS_FLAGS_PORT, "tx_excess_collisions" },
385     { STATS_OFFSET32(tx_stat_dot3statslatecollisions_hi),
386                 8, STATS_FLAGS_PORT, "tx_late_collisions" },
387     { STATS_OFFSET32(tx_stat_etherstatscollisions_hi),
388                 8, STATS_FLAGS_PORT, "tx_total_collisions" },
389     { STATS_OFFSET32(tx_stat_etherstatspkts64octets_hi),
390                 8, STATS_FLAGS_PORT, "tx_64_byte_packets" },
391     { STATS_OFFSET32(tx_stat_etherstatspkts65octetsto127octets_hi),
392                 8, STATS_FLAGS_PORT, "tx_65_to_127_byte_packets" },
393     { STATS_OFFSET32(tx_stat_etherstatspkts128octetsto255octets_hi),
394                 8, STATS_FLAGS_PORT, "tx_128_to_255_byte_packets" },
395     { STATS_OFFSET32(tx_stat_etherstatspkts256octetsto511octets_hi),
396                 8, STATS_FLAGS_PORT, "tx_256_to_511_byte_packets" },
397     { STATS_OFFSET32(tx_stat_etherstatspkts512octetsto1023octets_hi),
398                 8, STATS_FLAGS_PORT, "tx_512_to_1023_byte_packets" },
399     { STATS_OFFSET32(etherstatspkts1024octetsto1522octets_hi),
400                 8, STATS_FLAGS_PORT, "tx_1024_to_1522_byte_packets" },
401     { STATS_OFFSET32(etherstatspktsover1522octets_hi),
402                 8, STATS_FLAGS_PORT, "tx_1523_to_9022_byte_packets" },
403     { STATS_OFFSET32(pause_frames_sent_hi),
404                 8, STATS_FLAGS_PORT, "tx_pause_frames" },
405     { STATS_OFFSET32(total_tpa_aggregations_hi),
406                 8, STATS_FLAGS_FUNC, "tpa_aggregations" },
407     { STATS_OFFSET32(total_tpa_aggregated_frames_hi),
408                 8, STATS_FLAGS_FUNC, "tpa_aggregated_frames"},
409     { STATS_OFFSET32(total_tpa_bytes_hi),
410                 8, STATS_FLAGS_FUNC, "tpa_bytes"},
411     { STATS_OFFSET32(eee_tx_lpi),
412                 4, STATS_FLAGS_PORT, "eee_tx_lpi"},
413     { STATS_OFFSET32(rx_calls),
414                 4, STATS_FLAGS_FUNC, "rx_calls"},
415     { STATS_OFFSET32(rx_pkts),
416                 4, STATS_FLAGS_FUNC, "rx_pkts"},
417     { STATS_OFFSET32(rx_tpa_pkts),
418                 4, STATS_FLAGS_FUNC, "rx_tpa_pkts"},
419     { STATS_OFFSET32(rx_erroneous_jumbo_sge_pkts),
420                 4, STATS_FLAGS_FUNC, "rx_erroneous_jumbo_sge_pkts"},
421     { STATS_OFFSET32(rx_bxe_service_rxsgl),
422                 4, STATS_FLAGS_FUNC, "rx_bxe_service_rxsgl"},
423     { STATS_OFFSET32(rx_jumbo_sge_pkts),
424                 4, STATS_FLAGS_FUNC, "rx_jumbo_sge_pkts"},
425     { STATS_OFFSET32(rx_soft_errors),
426                 4, STATS_FLAGS_FUNC, "rx_soft_errors"},
427     { STATS_OFFSET32(rx_hw_csum_errors),
428                 4, STATS_FLAGS_FUNC, "rx_hw_csum_errors"},
429     { STATS_OFFSET32(rx_ofld_frames_csum_ip),
430                 4, STATS_FLAGS_FUNC, "rx_ofld_frames_csum_ip"},
431     { STATS_OFFSET32(rx_ofld_frames_csum_tcp_udp),
432                 4, STATS_FLAGS_FUNC, "rx_ofld_frames_csum_tcp_udp"},
433     { STATS_OFFSET32(rx_budget_reached),
434                 4, STATS_FLAGS_FUNC, "rx_budget_reached"},
435     { STATS_OFFSET32(tx_pkts),
436                 4, STATS_FLAGS_FUNC, "tx_pkts"},
437     { STATS_OFFSET32(tx_soft_errors),
438                 4, STATS_FLAGS_FUNC, "tx_soft_errors"},
439     { STATS_OFFSET32(tx_ofld_frames_csum_ip),
440                 4, STATS_FLAGS_FUNC, "tx_ofld_frames_csum_ip"},
441     { STATS_OFFSET32(tx_ofld_frames_csum_tcp),
442                 4, STATS_FLAGS_FUNC, "tx_ofld_frames_csum_tcp"},
443     { STATS_OFFSET32(tx_ofld_frames_csum_udp),
444                 4, STATS_FLAGS_FUNC, "tx_ofld_frames_csum_udp"},
445     { STATS_OFFSET32(tx_ofld_frames_lso),
446                 4, STATS_FLAGS_FUNC, "tx_ofld_frames_lso"},
447     { STATS_OFFSET32(tx_ofld_frames_lso_hdr_splits),
448                 4, STATS_FLAGS_FUNC, "tx_ofld_frames_lso_hdr_splits"},
449     { STATS_OFFSET32(tx_encap_failures),
450                 4, STATS_FLAGS_FUNC, "tx_encap_failures"},
451     { STATS_OFFSET32(tx_hw_queue_full),
452                 4, STATS_FLAGS_FUNC, "tx_hw_queue_full"},
453     { STATS_OFFSET32(tx_hw_max_queue_depth),
454                 4, STATS_FLAGS_FUNC, "tx_hw_max_queue_depth"},
455     { STATS_OFFSET32(tx_dma_mapping_failure),
456                 4, STATS_FLAGS_FUNC, "tx_dma_mapping_failure"},
457     { STATS_OFFSET32(tx_max_drbr_queue_depth),
458                 4, STATS_FLAGS_FUNC, "tx_max_drbr_queue_depth"},
459     { STATS_OFFSET32(tx_window_violation_std),
460                 4, STATS_FLAGS_FUNC, "tx_window_violation_std"},
461     { STATS_OFFSET32(tx_window_violation_tso),
462                 4, STATS_FLAGS_FUNC, "tx_window_violation_tso"},
463     { STATS_OFFSET32(tx_chain_lost_mbuf),
464                 4, STATS_FLAGS_FUNC, "tx_chain_lost_mbuf"},
465     { STATS_OFFSET32(tx_frames_deferred),
466                 4, STATS_FLAGS_FUNC, "tx_frames_deferred"},
467     { STATS_OFFSET32(tx_queue_xoff),
468                 4, STATS_FLAGS_FUNC, "tx_queue_xoff"},
469     { STATS_OFFSET32(mbuf_defrag_attempts),
470                 4, STATS_FLAGS_FUNC, "mbuf_defrag_attempts"},
471     { STATS_OFFSET32(mbuf_defrag_failures),
472                 4, STATS_FLAGS_FUNC, "mbuf_defrag_failures"},
473     { STATS_OFFSET32(mbuf_rx_bd_alloc_failed),
474                 4, STATS_FLAGS_FUNC, "mbuf_rx_bd_alloc_failed"},
475     { STATS_OFFSET32(mbuf_rx_bd_mapping_failed),
476                 4, STATS_FLAGS_FUNC, "mbuf_rx_bd_mapping_failed"},
477     { STATS_OFFSET32(mbuf_rx_tpa_alloc_failed),
478                 4, STATS_FLAGS_FUNC, "mbuf_rx_tpa_alloc_failed"},
479     { STATS_OFFSET32(mbuf_rx_tpa_mapping_failed),
480                 4, STATS_FLAGS_FUNC, "mbuf_rx_tpa_mapping_failed"},
481     { STATS_OFFSET32(mbuf_rx_sge_alloc_failed),
482                 4, STATS_FLAGS_FUNC, "mbuf_rx_sge_alloc_failed"},
483     { STATS_OFFSET32(mbuf_rx_sge_mapping_failed),
484                 4, STATS_FLAGS_FUNC, "mbuf_rx_sge_mapping_failed"},
485     { STATS_OFFSET32(mbuf_alloc_tx),
486                 4, STATS_FLAGS_FUNC, "mbuf_alloc_tx"},
487     { STATS_OFFSET32(mbuf_alloc_rx),
488                 4, STATS_FLAGS_FUNC, "mbuf_alloc_rx"},
489     { STATS_OFFSET32(mbuf_alloc_sge),
490                 4, STATS_FLAGS_FUNC, "mbuf_alloc_sge"},
491     { STATS_OFFSET32(mbuf_alloc_tpa),
492                 4, STATS_FLAGS_FUNC, "mbuf_alloc_tpa"},
493     { STATS_OFFSET32(tx_queue_full_return),
494                 4, STATS_FLAGS_FUNC, "tx_queue_full_return"},
495     { STATS_OFFSET32(bxe_tx_mq_sc_state_failures),
496                 4, STATS_FLAGS_FUNC, "bxe_tx_mq_sc_state_failures"},
497     { STATS_OFFSET32(tx_request_link_down_failures),
498                 4, STATS_FLAGS_FUNC, "tx_request_link_down_failures"},
499     { STATS_OFFSET32(bd_avail_too_less_failures),
500                 4, STATS_FLAGS_FUNC, "bd_avail_too_less_failures"},
501     { STATS_OFFSET32(tx_mq_not_empty),
502                 4, STATS_FLAGS_FUNC, "tx_mq_not_empty"},
503     { STATS_OFFSET32(nsegs_path1_errors),
504                 4, STATS_FLAGS_FUNC, "nsegs_path1_errors"},
505     { STATS_OFFSET32(nsegs_path2_errors),
506                 4, STATS_FLAGS_FUNC, "nsegs_path2_errors"}
507 
508 
509 };
510 
511 static const struct {
512     uint32_t offset;
513     uint32_t size;
514     char string[STAT_NAME_LEN];
515 } bxe_eth_q_stats_arr[] = {
516     { Q_STATS_OFFSET32(total_bytes_received_hi),
517                 8, "rx_bytes" },
518     { Q_STATS_OFFSET32(total_unicast_packets_received_hi),
519                 8, "rx_ucast_packets" },
520     { Q_STATS_OFFSET32(total_multicast_packets_received_hi),
521                 8, "rx_mcast_packets" },
522     { Q_STATS_OFFSET32(total_broadcast_packets_received_hi),
523                 8, "rx_bcast_packets" },
524     { Q_STATS_OFFSET32(no_buff_discard_hi),
525                 8, "rx_discards" },
526     { Q_STATS_OFFSET32(total_bytes_transmitted_hi),
527                 8, "tx_bytes" },
528     { Q_STATS_OFFSET32(total_unicast_packets_transmitted_hi),
529                 8, "tx_ucast_packets" },
530     { Q_STATS_OFFSET32(total_multicast_packets_transmitted_hi),
531                 8, "tx_mcast_packets" },
532     { Q_STATS_OFFSET32(total_broadcast_packets_transmitted_hi),
533                 8, "tx_bcast_packets" },
534     { Q_STATS_OFFSET32(total_tpa_aggregations_hi),
535                 8, "tpa_aggregations" },
536     { Q_STATS_OFFSET32(total_tpa_aggregated_frames_hi),
537                 8, "tpa_aggregated_frames"},
538     { Q_STATS_OFFSET32(total_tpa_bytes_hi),
539                 8, "tpa_bytes"},
540     { Q_STATS_OFFSET32(rx_calls),
541                 4, "rx_calls"},
542     { Q_STATS_OFFSET32(rx_pkts),
543                 4, "rx_pkts"},
544     { Q_STATS_OFFSET32(rx_tpa_pkts),
545                 4, "rx_tpa_pkts"},
546     { Q_STATS_OFFSET32(rx_erroneous_jumbo_sge_pkts),
547                 4, "rx_erroneous_jumbo_sge_pkts"},
548     { Q_STATS_OFFSET32(rx_bxe_service_rxsgl),
549                 4, "rx_bxe_service_rxsgl"},
550     { Q_STATS_OFFSET32(rx_jumbo_sge_pkts),
551                 4, "rx_jumbo_sge_pkts"},
552     { Q_STATS_OFFSET32(rx_soft_errors),
553                 4, "rx_soft_errors"},
554     { Q_STATS_OFFSET32(rx_hw_csum_errors),
555                 4, "rx_hw_csum_errors"},
556     { Q_STATS_OFFSET32(rx_ofld_frames_csum_ip),
557                 4, "rx_ofld_frames_csum_ip"},
558     { Q_STATS_OFFSET32(rx_ofld_frames_csum_tcp_udp),
559                 4, "rx_ofld_frames_csum_tcp_udp"},
560     { Q_STATS_OFFSET32(rx_budget_reached),
561                 4, "rx_budget_reached"},
562     { Q_STATS_OFFSET32(tx_pkts),
563                 4, "tx_pkts"},
564     { Q_STATS_OFFSET32(tx_soft_errors),
565                 4, "tx_soft_errors"},
566     { Q_STATS_OFFSET32(tx_ofld_frames_csum_ip),
567                 4, "tx_ofld_frames_csum_ip"},
568     { Q_STATS_OFFSET32(tx_ofld_frames_csum_tcp),
569                 4, "tx_ofld_frames_csum_tcp"},
570     { Q_STATS_OFFSET32(tx_ofld_frames_csum_udp),
571                 4, "tx_ofld_frames_csum_udp"},
572     { Q_STATS_OFFSET32(tx_ofld_frames_lso),
573                 4, "tx_ofld_frames_lso"},
574     { Q_STATS_OFFSET32(tx_ofld_frames_lso_hdr_splits),
575                 4, "tx_ofld_frames_lso_hdr_splits"},
576     { Q_STATS_OFFSET32(tx_encap_failures),
577                 4, "tx_encap_failures"},
578     { Q_STATS_OFFSET32(tx_hw_queue_full),
579                 4, "tx_hw_queue_full"},
580     { Q_STATS_OFFSET32(tx_hw_max_queue_depth),
581                 4, "tx_hw_max_queue_depth"},
582     { Q_STATS_OFFSET32(tx_dma_mapping_failure),
583                 4, "tx_dma_mapping_failure"},
584     { Q_STATS_OFFSET32(tx_max_drbr_queue_depth),
585                 4, "tx_max_drbr_queue_depth"},
586     { Q_STATS_OFFSET32(tx_window_violation_std),
587                 4, "tx_window_violation_std"},
588     { Q_STATS_OFFSET32(tx_window_violation_tso),
589                 4, "tx_window_violation_tso"},
590     { Q_STATS_OFFSET32(tx_chain_lost_mbuf),
591                 4, "tx_chain_lost_mbuf"},
592     { Q_STATS_OFFSET32(tx_frames_deferred),
593                 4, "tx_frames_deferred"},
594     { Q_STATS_OFFSET32(tx_queue_xoff),
595                 4, "tx_queue_xoff"},
596     { Q_STATS_OFFSET32(mbuf_defrag_attempts),
597                 4, "mbuf_defrag_attempts"},
598     { Q_STATS_OFFSET32(mbuf_defrag_failures),
599                 4, "mbuf_defrag_failures"},
600     { Q_STATS_OFFSET32(mbuf_rx_bd_alloc_failed),
601                 4, "mbuf_rx_bd_alloc_failed"},
602     { Q_STATS_OFFSET32(mbuf_rx_bd_mapping_failed),
603                 4, "mbuf_rx_bd_mapping_failed"},
604     { Q_STATS_OFFSET32(mbuf_rx_tpa_alloc_failed),
605                 4, "mbuf_rx_tpa_alloc_failed"},
606     { Q_STATS_OFFSET32(mbuf_rx_tpa_mapping_failed),
607                 4, "mbuf_rx_tpa_mapping_failed"},
608     { Q_STATS_OFFSET32(mbuf_rx_sge_alloc_failed),
609                 4, "mbuf_rx_sge_alloc_failed"},
610     { Q_STATS_OFFSET32(mbuf_rx_sge_mapping_failed),
611                 4, "mbuf_rx_sge_mapping_failed"},
612     { Q_STATS_OFFSET32(mbuf_alloc_tx),
613                 4, "mbuf_alloc_tx"},
614     { Q_STATS_OFFSET32(mbuf_alloc_rx),
615                 4, "mbuf_alloc_rx"},
616     { Q_STATS_OFFSET32(mbuf_alloc_sge),
617                 4, "mbuf_alloc_sge"},
618     { Q_STATS_OFFSET32(mbuf_alloc_tpa),
619                 4, "mbuf_alloc_tpa"},
620     { Q_STATS_OFFSET32(tx_queue_full_return),
621                 4, "tx_queue_full_return"},
622     { Q_STATS_OFFSET32(bxe_tx_mq_sc_state_failures),
623                 4, "bxe_tx_mq_sc_state_failures"},
624     { Q_STATS_OFFSET32(tx_request_link_down_failures),
625                 4, "tx_request_link_down_failures"},
626     { Q_STATS_OFFSET32(bd_avail_too_less_failures),
627                 4, "bd_avail_too_less_failures"},
628     { Q_STATS_OFFSET32(tx_mq_not_empty),
629                 4, "tx_mq_not_empty"},
630     { Q_STATS_OFFSET32(nsegs_path1_errors),
631                 4, "nsegs_path1_errors"},
632     { Q_STATS_OFFSET32(nsegs_path2_errors),
633                 4, "nsegs_path2_errors"}
634 
635 
636 };
637 
638 #define BXE_NUM_ETH_STATS   ARRAY_SIZE(bxe_eth_stats_arr)
639 #define BXE_NUM_ETH_Q_STATS ARRAY_SIZE(bxe_eth_q_stats_arr)
640 
641 
642 static void    bxe_cmng_fns_init(struct bxe_softc *sc,
643                                  uint8_t          read_cfg,
644                                  uint8_t          cmng_type);
645 static int     bxe_get_cmng_fns_mode(struct bxe_softc *sc);
646 static void    storm_memset_cmng(struct bxe_softc *sc,
647                                  struct cmng_init *cmng,
648                                  uint8_t          port);
649 static void    bxe_set_reset_global(struct bxe_softc *sc);
650 static void    bxe_set_reset_in_progress(struct bxe_softc *sc);
651 static uint8_t bxe_reset_is_done(struct bxe_softc *sc,
652                                  int              engine);
653 static uint8_t bxe_clear_pf_load(struct bxe_softc *sc);
654 static uint8_t bxe_chk_parity_attn(struct bxe_softc *sc,
655                                    uint8_t          *global,
656                                    uint8_t          print);
657 static void    bxe_int_disable(struct bxe_softc *sc);
658 static int     bxe_release_leader_lock(struct bxe_softc *sc);
659 static void    bxe_pf_disable(struct bxe_softc *sc);
660 static void    bxe_free_fp_buffers(struct bxe_softc *sc);
661 static inline void bxe_update_rx_prod(struct bxe_softc    *sc,
662                                       struct bxe_fastpath *fp,
663                                       uint16_t            rx_bd_prod,
664                                       uint16_t            rx_cq_prod,
665                                       uint16_t            rx_sge_prod);
666 static void    bxe_link_report_locked(struct bxe_softc *sc);
667 static void    bxe_link_report(struct bxe_softc *sc);
668 static void    bxe_link_status_update(struct bxe_softc *sc);
669 static void    bxe_periodic_callout_func(void *xsc);
670 static void    bxe_periodic_start(struct bxe_softc *sc);
671 static void    bxe_periodic_stop(struct bxe_softc *sc);
672 static int     bxe_alloc_rx_bd_mbuf(struct bxe_fastpath *fp,
673                                     uint16_t prev_index,
674                                     uint16_t index);
675 static int     bxe_alloc_rx_tpa_mbuf(struct bxe_fastpath *fp,
676                                      int                 queue);
677 static int     bxe_alloc_rx_sge_mbuf(struct bxe_fastpath *fp,
678                                      uint16_t            index);
679 static uint8_t bxe_txeof(struct bxe_softc *sc,
680                          struct bxe_fastpath *fp);
681 static void    bxe_task_fp(struct bxe_fastpath *fp);
682 static __noinline void bxe_dump_mbuf(struct bxe_softc *sc,
683                                      struct mbuf      *m,
684                                      uint8_t          contents);
685 static int     bxe_alloc_mem(struct bxe_softc *sc);
686 static void    bxe_free_mem(struct bxe_softc *sc);
687 static int     bxe_alloc_fw_stats_mem(struct bxe_softc *sc);
688 static void    bxe_free_fw_stats_mem(struct bxe_softc *sc);
689 static int     bxe_interrupt_attach(struct bxe_softc *sc);
690 static void    bxe_interrupt_detach(struct bxe_softc *sc);
691 static void    bxe_set_rx_mode(struct bxe_softc *sc);
692 static int     bxe_init_locked(struct bxe_softc *sc);
693 static int     bxe_stop_locked(struct bxe_softc *sc);
694 static void    bxe_sp_err_timeout_task(void *arg, int pending);
695 void           bxe_parity_recover(struct bxe_softc *sc);
696 void           bxe_handle_error(struct bxe_softc *sc);
697 static __noinline int bxe_nic_load(struct bxe_softc *sc,
698                                    int              load_mode);
699 static __noinline int bxe_nic_unload(struct bxe_softc *sc,
700                                      uint32_t         unload_mode,
701                                      uint8_t          keep_link);
702 
703 static void bxe_handle_sp_tq(void *context, int pending);
704 static void bxe_handle_fp_tq(void *context, int pending);
705 
706 static int bxe_add_cdev(struct bxe_softc *sc);
707 static void bxe_del_cdev(struct bxe_softc *sc);
708 int bxe_grc_dump(struct bxe_softc *sc);
709 static int bxe_alloc_buf_rings(struct bxe_softc *sc);
710 static void bxe_free_buf_rings(struct bxe_softc *sc);
711 
712 /* calculate crc32 on a buffer (NOTE: crc32_length MUST be aligned to 8) */
713 uint32_t
714 calc_crc32(uint8_t  *crc32_packet,
715            uint32_t crc32_length,
716            uint32_t crc32_seed,
717            uint8_t  complement)
718 {
719    uint32_t byte         = 0;
720    uint32_t bit          = 0;
721    uint8_t  msb          = 0;
722    uint32_t temp         = 0;
723    uint32_t shft         = 0;
724    uint8_t  current_byte = 0;
725    uint32_t crc32_result = crc32_seed;
726    const uint32_t CRC32_POLY = 0x1edc6f41;
727 
728    if ((crc32_packet == NULL) ||
729        (crc32_length == 0) ||
730        ((crc32_length % 8) != 0))
731     {
732         return (crc32_result);
733     }
734 
735     for (byte = 0; byte < crc32_length; byte = byte + 1)
736     {
737         current_byte = crc32_packet[byte];
738         for (bit = 0; bit < 8; bit = bit + 1)
739         {
740             /* msb = crc32_result[31]; */
741             msb = (uint8_t)(crc32_result >> 31);
742 
743             crc32_result = crc32_result << 1;
744 
745             /* it (msb != current_byte[bit]) */
746             if (msb != (0x1 & (current_byte >> bit)))
747             {
748                 crc32_result = crc32_result ^ CRC32_POLY;
749                 /* crc32_result[0] = 1 */
750                 crc32_result |= 1;
751             }
752         }
753     }
754 
755     /* Last step is to:
756      * 1. "mirror" every bit
757      * 2. swap the 4 bytes
758      * 3. complement each bit
759      */
760 
761     /* Mirror */
762     temp = crc32_result;
763     shft = sizeof(crc32_result) * 8 - 1;
764 
765     for (crc32_result >>= 1; crc32_result; crc32_result >>= 1)
766     {
767         temp <<= 1;
768         temp |= crc32_result & 1;
769         shft-- ;
770     }
771 
772     /* temp[31-bit] = crc32_result[bit] */
773     temp <<= shft;
774 
775     /* Swap */
776     /* crc32_result = {temp[7:0], temp[15:8], temp[23:16], temp[31:24]} */
777     {
778         uint32_t t0, t1, t2, t3;
779         t0 = (0x000000ff & (temp >> 24));
780         t1 = (0x0000ff00 & (temp >> 8));
781         t2 = (0x00ff0000 & (temp << 8));
782         t3 = (0xff000000 & (temp << 24));
783         crc32_result = t0 | t1 | t2 | t3;
784     }
785 
786     /* Complement */
787     if (complement)
788     {
789         crc32_result = ~crc32_result;
790     }
791 
792     return (crc32_result);
793 }
794 
795 int
796 bxe_test_bit(int                    nr,
797              volatile unsigned long *addr)
798 {
799     return ((atomic_load_acq_long(addr) & (1 << nr)) != 0);
800 }
801 
802 void
803 bxe_set_bit(unsigned int           nr,
804             volatile unsigned long *addr)
805 {
806     atomic_set_acq_long(addr, (1 << nr));
807 }
808 
809 void
810 bxe_clear_bit(int                    nr,
811               volatile unsigned long *addr)
812 {
813     atomic_clear_acq_long(addr, (1 << nr));
814 }
815 
816 int
817 bxe_test_and_set_bit(int                    nr,
818                        volatile unsigned long *addr)
819 {
820     unsigned long x;
821     nr = (1 << nr);
822     do {
823         x = *addr;
824     } while (atomic_cmpset_acq_long(addr, x, x | nr) == 0);
825     // if (x & nr) bit_was_set; else bit_was_not_set;
826     return (x & nr);
827 }
828 
829 int
830 bxe_test_and_clear_bit(int                    nr,
831                        volatile unsigned long *addr)
832 {
833     unsigned long x;
834     nr = (1 << nr);
835     do {
836         x = *addr;
837     } while (atomic_cmpset_acq_long(addr, x, x & ~nr) == 0);
838     // if (x & nr) bit_was_set; else bit_was_not_set;
839     return (x & nr);
840 }
841 
842 int
843 bxe_cmpxchg(volatile int *addr,
844             int          old,
845             int          new)
846 {
847     int x;
848     do {
849         x = *addr;
850     } while (atomic_cmpset_acq_int(addr, old, new) == 0);
851     return (x);
852 }
853 
854 /*
855  * Get DMA memory from the OS.
856  *
857  * Validates that the OS has provided DMA buffers in response to a
858  * bus_dmamap_load call and saves the physical address of those buffers.
859  * When the callback is used the OS will return 0 for the mapping function
860  * (bus_dmamap_load) so we use the value of map_arg->maxsegs to pass any
861  * failures back to the caller.
862  *
863  * Returns:
864  *   Nothing.
865  */
866 static void
867 bxe_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
868 {
869     struct bxe_dma *dma = arg;
870 
871     if (error) {
872         dma->paddr = 0;
873         dma->nseg  = 0;
874         BLOGE(dma->sc, "Failed DMA alloc '%s' (%d)!\n", dma->msg, error);
875     } else {
876         dma->paddr = segs->ds_addr;
877         dma->nseg  = nseg;
878     }
879 }
880 
881 /*
882  * Allocate a block of memory and map it for DMA. No partial completions
883  * allowed and release any resources acquired if we can't acquire all
884  * resources.
885  *
886  * Returns:
887  *   0 = Success, !0 = Failure
888  */
889 int
890 bxe_dma_alloc(struct bxe_softc *sc,
891               bus_size_t       size,
892               struct bxe_dma   *dma,
893               const char       *msg)
894 {
895     int rc;
896 
897     if (dma->size > 0) {
898         BLOGE(sc, "dma block '%s' already has size %lu\n", msg,
899               (unsigned long)dma->size);
900         return (1);
901     }
902 
903     memset(dma, 0, sizeof(*dma)); /* sanity */
904     dma->sc   = sc;
905     dma->size = size;
906     snprintf(dma->msg, sizeof(dma->msg), "%s", msg);
907 
908     rc = bus_dma_tag_create(sc->parent_dma_tag, /* parent tag */
909                             BCM_PAGE_SIZE,      /* alignment */
910                             0,                  /* boundary limit */
911                             BUS_SPACE_MAXADDR,  /* restricted low */
912                             BUS_SPACE_MAXADDR,  /* restricted hi */
913                             NULL,               /* addr filter() */
914                             NULL,               /* addr filter() arg */
915                             size,               /* max map size */
916                             1,                  /* num discontinuous */
917                             size,               /* max seg size */
918                             BUS_DMA_ALLOCNOW,   /* flags */
919                             NULL,               /* lock() */
920                             NULL,               /* lock() arg */
921                             &dma->tag);         /* returned dma tag */
922     if (rc != 0) {
923         BLOGE(sc, "Failed to create dma tag for '%s' (%d)\n", msg, rc);
924         memset(dma, 0, sizeof(*dma));
925         return (1);
926     }
927 
928     rc = bus_dmamem_alloc(dma->tag,
929                           (void **)&dma->vaddr,
930                           (BUS_DMA_NOWAIT | BUS_DMA_ZERO),
931                           &dma->map);
932     if (rc != 0) {
933         BLOGE(sc, "Failed to alloc dma mem for '%s' (%d)\n", msg, rc);
934         bus_dma_tag_destroy(dma->tag);
935         memset(dma, 0, sizeof(*dma));
936         return (1);
937     }
938 
939     rc = bus_dmamap_load(dma->tag,
940                          dma->map,
941                          dma->vaddr,
942                          size,
943                          bxe_dma_map_addr, /* BLOGD in here */
944                          dma,
945                          BUS_DMA_NOWAIT);
946     if (rc != 0) {
947         BLOGE(sc, "Failed to load dma map for '%s' (%d)\n", msg, rc);
948         bus_dmamem_free(dma->tag, dma->vaddr, dma->map);
949         bus_dma_tag_destroy(dma->tag);
950         memset(dma, 0, sizeof(*dma));
951         return (1);
952     }
953 
954     return (0);
955 }
956 
957 void
958 bxe_dma_free(struct bxe_softc *sc,
959              struct bxe_dma   *dma)
960 {
961     if (dma->size > 0) {
962         DBASSERT(sc, (dma->tag != NULL), ("dma tag is NULL"));
963 
964         bus_dmamap_sync(dma->tag, dma->map,
965                         (BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE));
966         bus_dmamap_unload(dma->tag, dma->map);
967         bus_dmamem_free(dma->tag, dma->vaddr, dma->map);
968         bus_dma_tag_destroy(dma->tag);
969     }
970 
971     memset(dma, 0, sizeof(*dma));
972 }
973 
974 /*
975  * These indirect read and write routines are only during init.
976  * The locking is handled by the MCP.
977  */
978 
979 void
980 bxe_reg_wr_ind(struct bxe_softc *sc,
981                uint32_t         addr,
982                uint32_t         val)
983 {
984     pci_write_config(sc->dev, PCICFG_GRC_ADDRESS, addr, 4);
985     pci_write_config(sc->dev, PCICFG_GRC_DATA, val, 4);
986     pci_write_config(sc->dev, PCICFG_GRC_ADDRESS, 0, 4);
987 }
988 
989 uint32_t
990 bxe_reg_rd_ind(struct bxe_softc *sc,
991                uint32_t         addr)
992 {
993     uint32_t val;
994 
995     pci_write_config(sc->dev, PCICFG_GRC_ADDRESS, addr, 4);
996     val = pci_read_config(sc->dev, PCICFG_GRC_DATA, 4);
997     pci_write_config(sc->dev, PCICFG_GRC_ADDRESS, 0, 4);
998 
999     return (val);
1000 }
1001 
1002 static int
1003 bxe_acquire_hw_lock(struct bxe_softc *sc,
1004                     uint32_t         resource)
1005 {
1006     uint32_t lock_status;
1007     uint32_t resource_bit = (1 << resource);
1008     int func = SC_FUNC(sc);
1009     uint32_t hw_lock_control_reg;
1010     int cnt;
1011 
1012     /* validate the resource is within range */
1013     if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
1014         BLOGE(sc, "(resource 0x%x > HW_LOCK_MAX_RESOURCE_VALUE)"
1015             " resource_bit 0x%x\n", resource, resource_bit);
1016         return (-1);
1017     }
1018 
1019     if (func <= 5) {
1020         hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + (func * 8));
1021     } else {
1022         hw_lock_control_reg =
1023                 (MISC_REG_DRIVER_CONTROL_7 + ((func - 6) * 8));
1024     }
1025 
1026     /* validate the resource is not already taken */
1027     lock_status = REG_RD(sc, hw_lock_control_reg);
1028     if (lock_status & resource_bit) {
1029         BLOGE(sc, "resource (0x%x) in use (status 0x%x bit 0x%x)\n",
1030               resource, lock_status, resource_bit);
1031         return (-1);
1032     }
1033 
1034     /* try every 5ms for 5 seconds */
1035     for (cnt = 0; cnt < 1000; cnt++) {
1036         REG_WR(sc, (hw_lock_control_reg + 4), resource_bit);
1037         lock_status = REG_RD(sc, hw_lock_control_reg);
1038         if (lock_status & resource_bit) {
1039             return (0);
1040         }
1041         DELAY(5000);
1042     }
1043 
1044     BLOGE(sc, "Resource 0x%x resource_bit 0x%x lock timeout!\n",
1045         resource, resource_bit);
1046     return (-1);
1047 }
1048 
1049 static int
1050 bxe_release_hw_lock(struct bxe_softc *sc,
1051                     uint32_t         resource)
1052 {
1053     uint32_t lock_status;
1054     uint32_t resource_bit = (1 << resource);
1055     int func = SC_FUNC(sc);
1056     uint32_t hw_lock_control_reg;
1057 
1058     /* validate the resource is within range */
1059     if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
1060         BLOGE(sc, "(resource 0x%x > HW_LOCK_MAX_RESOURCE_VALUE)"
1061             " resource_bit 0x%x\n", resource, resource_bit);
1062         return (-1);
1063     }
1064 
1065     if (func <= 5) {
1066         hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + (func * 8));
1067     } else {
1068         hw_lock_control_reg =
1069                 (MISC_REG_DRIVER_CONTROL_7 + ((func - 6) * 8));
1070     }
1071 
1072     /* validate the resource is currently taken */
1073     lock_status = REG_RD(sc, hw_lock_control_reg);
1074     if (!(lock_status & resource_bit)) {
1075         BLOGE(sc, "resource (0x%x) not in use (status 0x%x bit 0x%x)\n",
1076               resource, lock_status, resource_bit);
1077         return (-1);
1078     }
1079 
1080     REG_WR(sc, hw_lock_control_reg, resource_bit);
1081     return (0);
1082 }
1083 static void bxe_acquire_phy_lock(struct bxe_softc *sc)
1084 {
1085 	BXE_PHY_LOCK(sc);
1086 	bxe_acquire_hw_lock(sc,HW_LOCK_RESOURCE_MDIO);
1087 }
1088 
1089 static void bxe_release_phy_lock(struct bxe_softc *sc)
1090 {
1091 	bxe_release_hw_lock(sc,HW_LOCK_RESOURCE_MDIO);
1092 	BXE_PHY_UNLOCK(sc);
1093 }
1094 /*
1095  * Per pf misc lock must be acquired before the per port mcp lock. Otherwise,
1096  * had we done things the other way around, if two pfs from the same port
1097  * would attempt to access nvram at the same time, we could run into a
1098  * scenario such as:
1099  * pf A takes the port lock.
1100  * pf B succeeds in taking the same lock since they are from the same port.
1101  * pf A takes the per pf misc lock. Performs eeprom access.
1102  * pf A finishes. Unlocks the per pf misc lock.
1103  * Pf B takes the lock and proceeds to perform it's own access.
1104  * pf A unlocks the per port lock, while pf B is still working (!).
1105  * mcp takes the per port lock and corrupts pf B's access (and/or has it's own
1106  * access corrupted by pf B).*
1107  */
1108 static int
1109 bxe_acquire_nvram_lock(struct bxe_softc *sc)
1110 {
1111     int port = SC_PORT(sc);
1112     int count, i;
1113     uint32_t val = 0;
1114 
1115     /* acquire HW lock: protect against other PFs in PF Direct Assignment */
1116     bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_NVRAM);
1117 
1118     /* adjust timeout for emulation/FPGA */
1119     count = NVRAM_TIMEOUT_COUNT;
1120     if (CHIP_REV_IS_SLOW(sc)) {
1121         count *= 100;
1122     }
1123 
1124     /* request access to nvram interface */
1125     REG_WR(sc, MCP_REG_MCPR_NVM_SW_ARB,
1126            (MCPR_NVM_SW_ARB_ARB_REQ_SET1 << port));
1127 
1128     for (i = 0; i < count*10; i++) {
1129         val = REG_RD(sc, MCP_REG_MCPR_NVM_SW_ARB);
1130         if (val & (MCPR_NVM_SW_ARB_ARB_ARB1 << port)) {
1131             break;
1132         }
1133 
1134         DELAY(5);
1135     }
1136 
1137     if (!(val & (MCPR_NVM_SW_ARB_ARB_ARB1 << port))) {
1138         BLOGE(sc, "Cannot get access to nvram interface "
1139             "port %d val 0x%x (MCPR_NVM_SW_ARB_ARB_ARB1 << port)\n",
1140             port, val);
1141         return (-1);
1142     }
1143 
1144     return (0);
1145 }
1146 
1147 static int
1148 bxe_release_nvram_lock(struct bxe_softc *sc)
1149 {
1150     int port = SC_PORT(sc);
1151     int count, i;
1152     uint32_t val = 0;
1153 
1154     /* adjust timeout for emulation/FPGA */
1155     count = NVRAM_TIMEOUT_COUNT;
1156     if (CHIP_REV_IS_SLOW(sc)) {
1157         count *= 100;
1158     }
1159 
1160     /* relinquish nvram interface */
1161     REG_WR(sc, MCP_REG_MCPR_NVM_SW_ARB,
1162            (MCPR_NVM_SW_ARB_ARB_REQ_CLR1 << port));
1163 
1164     for (i = 0; i < count*10; i++) {
1165         val = REG_RD(sc, MCP_REG_MCPR_NVM_SW_ARB);
1166         if (!(val & (MCPR_NVM_SW_ARB_ARB_ARB1 << port))) {
1167             break;
1168         }
1169 
1170         DELAY(5);
1171     }
1172 
1173     if (val & (MCPR_NVM_SW_ARB_ARB_ARB1 << port)) {
1174         BLOGE(sc, "Cannot free access to nvram interface "
1175             "port %d val 0x%x (MCPR_NVM_SW_ARB_ARB_ARB1 << port)\n",
1176             port, val);
1177         return (-1);
1178     }
1179 
1180     /* release HW lock: protect against other PFs in PF Direct Assignment */
1181     bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_NVRAM);
1182 
1183     return (0);
1184 }
1185 
1186 static void
1187 bxe_enable_nvram_access(struct bxe_softc *sc)
1188 {
1189     uint32_t val;
1190 
1191     val = REG_RD(sc, MCP_REG_MCPR_NVM_ACCESS_ENABLE);
1192 
1193     /* enable both bits, even on read */
1194     REG_WR(sc, MCP_REG_MCPR_NVM_ACCESS_ENABLE,
1195            (val | MCPR_NVM_ACCESS_ENABLE_EN | MCPR_NVM_ACCESS_ENABLE_WR_EN));
1196 }
1197 
1198 static void
1199 bxe_disable_nvram_access(struct bxe_softc *sc)
1200 {
1201     uint32_t val;
1202 
1203     val = REG_RD(sc, MCP_REG_MCPR_NVM_ACCESS_ENABLE);
1204 
1205     /* disable both bits, even after read */
1206     REG_WR(sc, MCP_REG_MCPR_NVM_ACCESS_ENABLE,
1207            (val & ~(MCPR_NVM_ACCESS_ENABLE_EN |
1208                     MCPR_NVM_ACCESS_ENABLE_WR_EN)));
1209 }
1210 
1211 static int
1212 bxe_nvram_read_dword(struct bxe_softc *sc,
1213                      uint32_t         offset,
1214                      uint32_t         *ret_val,
1215                      uint32_t         cmd_flags)
1216 {
1217     int count, i, rc;
1218     uint32_t val;
1219 
1220     /* build the command word */
1221     cmd_flags |= MCPR_NVM_COMMAND_DOIT;
1222 
1223     /* need to clear DONE bit separately */
1224     REG_WR(sc, MCP_REG_MCPR_NVM_COMMAND, MCPR_NVM_COMMAND_DONE);
1225 
1226     /* address of the NVRAM to read from */
1227     REG_WR(sc, MCP_REG_MCPR_NVM_ADDR,
1228            (offset & MCPR_NVM_ADDR_NVM_ADDR_VALUE));
1229 
1230     /* issue a read command */
1231     REG_WR(sc, MCP_REG_MCPR_NVM_COMMAND, cmd_flags);
1232 
1233     /* adjust timeout for emulation/FPGA */
1234     count = NVRAM_TIMEOUT_COUNT;
1235     if (CHIP_REV_IS_SLOW(sc)) {
1236         count *= 100;
1237     }
1238 
1239     /* wait for completion */
1240     *ret_val = 0;
1241     rc = -1;
1242     for (i = 0; i < count; i++) {
1243         DELAY(5);
1244         val = REG_RD(sc, MCP_REG_MCPR_NVM_COMMAND);
1245 
1246         if (val & MCPR_NVM_COMMAND_DONE) {
1247             val = REG_RD(sc, MCP_REG_MCPR_NVM_READ);
1248             /* we read nvram data in cpu order
1249              * but ethtool sees it as an array of bytes
1250              * converting to big-endian will do the work
1251              */
1252             *ret_val = htobe32(val);
1253             rc = 0;
1254             break;
1255         }
1256     }
1257 
1258     if (rc == -1) {
1259         BLOGE(sc, "nvram read timeout expired "
1260             "(offset 0x%x cmd_flags 0x%x val 0x%x)\n",
1261             offset, cmd_flags, val);
1262     }
1263 
1264     return (rc);
1265 }
1266 
1267 static int
1268 bxe_nvram_read(struct bxe_softc *sc,
1269                uint32_t         offset,
1270                uint8_t          *ret_buf,
1271                int              buf_size)
1272 {
1273     uint32_t cmd_flags;
1274     uint32_t val;
1275     int rc;
1276 
1277     if ((offset & 0x03) || (buf_size & 0x03) || (buf_size == 0)) {
1278         BLOGE(sc, "Invalid parameter, offset 0x%x buf_size 0x%x\n",
1279               offset, buf_size);
1280         return (-1);
1281     }
1282 
1283     if ((offset + buf_size) > sc->devinfo.flash_size) {
1284         BLOGE(sc, "Invalid parameter, "
1285                   "offset 0x%x + buf_size 0x%x > flash_size 0x%x\n",
1286               offset, buf_size, sc->devinfo.flash_size);
1287         return (-1);
1288     }
1289 
1290     /* request access to nvram interface */
1291     rc = bxe_acquire_nvram_lock(sc);
1292     if (rc) {
1293         return (rc);
1294     }
1295 
1296     /* enable access to nvram interface */
1297     bxe_enable_nvram_access(sc);
1298 
1299     /* read the first word(s) */
1300     cmd_flags = MCPR_NVM_COMMAND_FIRST;
1301     while ((buf_size > sizeof(uint32_t)) && (rc == 0)) {
1302         rc = bxe_nvram_read_dword(sc, offset, &val, cmd_flags);
1303         memcpy(ret_buf, &val, 4);
1304 
1305         /* advance to the next dword */
1306         offset += sizeof(uint32_t);
1307         ret_buf += sizeof(uint32_t);
1308         buf_size -= sizeof(uint32_t);
1309         cmd_flags = 0;
1310     }
1311 
1312     if (rc == 0) {
1313         cmd_flags |= MCPR_NVM_COMMAND_LAST;
1314         rc = bxe_nvram_read_dword(sc, offset, &val, cmd_flags);
1315         memcpy(ret_buf, &val, 4);
1316     }
1317 
1318     /* disable access to nvram interface */
1319     bxe_disable_nvram_access(sc);
1320     bxe_release_nvram_lock(sc);
1321 
1322     return (rc);
1323 }
1324 
1325 static int
1326 bxe_nvram_write_dword(struct bxe_softc *sc,
1327                       uint32_t         offset,
1328                       uint32_t         val,
1329                       uint32_t         cmd_flags)
1330 {
1331     int count, i, rc;
1332 
1333     /* build the command word */
1334     cmd_flags |= (MCPR_NVM_COMMAND_DOIT | MCPR_NVM_COMMAND_WR);
1335 
1336     /* need to clear DONE bit separately */
1337     REG_WR(sc, MCP_REG_MCPR_NVM_COMMAND, MCPR_NVM_COMMAND_DONE);
1338 
1339     /* write the data */
1340     REG_WR(sc, MCP_REG_MCPR_NVM_WRITE, val);
1341 
1342     /* address of the NVRAM to write to */
1343     REG_WR(sc, MCP_REG_MCPR_NVM_ADDR,
1344            (offset & MCPR_NVM_ADDR_NVM_ADDR_VALUE));
1345 
1346     /* issue the write command */
1347     REG_WR(sc, MCP_REG_MCPR_NVM_COMMAND, cmd_flags);
1348 
1349     /* adjust timeout for emulation/FPGA */
1350     count = NVRAM_TIMEOUT_COUNT;
1351     if (CHIP_REV_IS_SLOW(sc)) {
1352         count *= 100;
1353     }
1354 
1355     /* wait for completion */
1356     rc = -1;
1357     for (i = 0; i < count; i++) {
1358         DELAY(5);
1359         val = REG_RD(sc, MCP_REG_MCPR_NVM_COMMAND);
1360         if (val & MCPR_NVM_COMMAND_DONE) {
1361             rc = 0;
1362             break;
1363         }
1364     }
1365 
1366     if (rc == -1) {
1367         BLOGE(sc, "nvram write timeout expired "
1368             "(offset 0x%x cmd_flags 0x%x val 0x%x)\n",
1369             offset, cmd_flags, val);
1370     }
1371 
1372     return (rc);
1373 }
1374 
1375 #define BYTE_OFFSET(offset) (8 * (offset & 0x03))
1376 
1377 static int
1378 bxe_nvram_write1(struct bxe_softc *sc,
1379                  uint32_t         offset,
1380                  uint8_t          *data_buf,
1381                  int              buf_size)
1382 {
1383     uint32_t cmd_flags;
1384     uint32_t align_offset;
1385     uint32_t val;
1386     int rc;
1387 
1388     if ((offset + buf_size) > sc->devinfo.flash_size) {
1389         BLOGE(sc, "Invalid parameter, "
1390                   "offset 0x%x + buf_size 0x%x > flash_size 0x%x\n",
1391               offset, buf_size, sc->devinfo.flash_size);
1392         return (-1);
1393     }
1394 
1395     /* request access to nvram interface */
1396     rc = bxe_acquire_nvram_lock(sc);
1397     if (rc) {
1398         return (rc);
1399     }
1400 
1401     /* enable access to nvram interface */
1402     bxe_enable_nvram_access(sc);
1403 
1404     cmd_flags = (MCPR_NVM_COMMAND_FIRST | MCPR_NVM_COMMAND_LAST);
1405     align_offset = (offset & ~0x03);
1406     rc = bxe_nvram_read_dword(sc, align_offset, &val, cmd_flags);
1407 
1408     if (rc == 0) {
1409         val &= ~(0xff << BYTE_OFFSET(offset));
1410         val |= (*data_buf << BYTE_OFFSET(offset));
1411 
1412         /* nvram data is returned as an array of bytes
1413          * convert it back to cpu order
1414          */
1415         val = be32toh(val);
1416 
1417         rc = bxe_nvram_write_dword(sc, align_offset, val, cmd_flags);
1418     }
1419 
1420     /* disable access to nvram interface */
1421     bxe_disable_nvram_access(sc);
1422     bxe_release_nvram_lock(sc);
1423 
1424     return (rc);
1425 }
1426 
1427 static int
1428 bxe_nvram_write(struct bxe_softc *sc,
1429                 uint32_t         offset,
1430                 uint8_t          *data_buf,
1431                 int              buf_size)
1432 {
1433     uint32_t cmd_flags;
1434     uint32_t val;
1435     uint32_t written_so_far;
1436     int rc;
1437 
1438     if (buf_size == 1) {
1439         return (bxe_nvram_write1(sc, offset, data_buf, buf_size));
1440     }
1441 
1442     if ((offset & 0x03) || (buf_size & 0x03) /* || (buf_size == 0) */) {
1443         BLOGE(sc, "Invalid parameter, offset 0x%x buf_size 0x%x\n",
1444               offset, buf_size);
1445         return (-1);
1446     }
1447 
1448     if (buf_size == 0) {
1449         return (0); /* nothing to do */
1450     }
1451 
1452     if ((offset + buf_size) > sc->devinfo.flash_size) {
1453         BLOGE(sc, "Invalid parameter, "
1454                   "offset 0x%x + buf_size 0x%x > flash_size 0x%x\n",
1455               offset, buf_size, sc->devinfo.flash_size);
1456         return (-1);
1457     }
1458 
1459     /* request access to nvram interface */
1460     rc = bxe_acquire_nvram_lock(sc);
1461     if (rc) {
1462         return (rc);
1463     }
1464 
1465     /* enable access to nvram interface */
1466     bxe_enable_nvram_access(sc);
1467 
1468     written_so_far = 0;
1469     cmd_flags = MCPR_NVM_COMMAND_FIRST;
1470     while ((written_so_far < buf_size) && (rc == 0)) {
1471         if (written_so_far == (buf_size - sizeof(uint32_t))) {
1472             cmd_flags |= MCPR_NVM_COMMAND_LAST;
1473         } else if (((offset + 4) % NVRAM_PAGE_SIZE) == 0) {
1474             cmd_flags |= MCPR_NVM_COMMAND_LAST;
1475         } else if ((offset % NVRAM_PAGE_SIZE) == 0) {
1476             cmd_flags |= MCPR_NVM_COMMAND_FIRST;
1477         }
1478 
1479         memcpy(&val, data_buf, 4);
1480 
1481         rc = bxe_nvram_write_dword(sc, offset, val, cmd_flags);
1482 
1483         /* advance to the next dword */
1484         offset += sizeof(uint32_t);
1485         data_buf += sizeof(uint32_t);
1486         written_so_far += sizeof(uint32_t);
1487         cmd_flags = 0;
1488     }
1489 
1490     /* disable access to nvram interface */
1491     bxe_disable_nvram_access(sc);
1492     bxe_release_nvram_lock(sc);
1493 
1494     return (rc);
1495 }
1496 
1497 /* copy command into DMAE command memory and set DMAE command Go */
1498 void
1499 bxe_post_dmae(struct bxe_softc    *sc,
1500               struct dmae_cmd *dmae,
1501               int                 idx)
1502 {
1503     uint32_t cmd_offset;
1504     int i;
1505 
1506     cmd_offset = (DMAE_REG_CMD_MEM + (sizeof(struct dmae_cmd) * idx));
1507     for (i = 0; i < ((sizeof(struct dmae_cmd) / 4)); i++) {
1508         REG_WR(sc, (cmd_offset + (i * 4)), *(((uint32_t *)dmae) + i));
1509     }
1510 
1511     REG_WR(sc, dmae_reg_go_c[idx], 1);
1512 }
1513 
1514 uint32_t
1515 bxe_dmae_opcode_add_comp(uint32_t opcode,
1516                          uint8_t  comp_type)
1517 {
1518     return (opcode | ((comp_type << DMAE_CMD_C_DST_SHIFT) |
1519                       DMAE_CMD_C_TYPE_ENABLE));
1520 }
1521 
1522 uint32_t
1523 bxe_dmae_opcode_clr_src_reset(uint32_t opcode)
1524 {
1525     return (opcode & ~DMAE_CMD_SRC_RESET);
1526 }
1527 
1528 uint32_t
1529 bxe_dmae_opcode(struct bxe_softc *sc,
1530                 uint8_t          src_type,
1531                 uint8_t          dst_type,
1532                 uint8_t          with_comp,
1533                 uint8_t          comp_type)
1534 {
1535     uint32_t opcode = 0;
1536 
1537     opcode |= ((src_type << DMAE_CMD_SRC_SHIFT) |
1538                (dst_type << DMAE_CMD_DST_SHIFT));
1539 
1540     opcode |= (DMAE_CMD_SRC_RESET | DMAE_CMD_DST_RESET);
1541 
1542     opcode |= (SC_PORT(sc) ? DMAE_CMD_PORT_1 : DMAE_CMD_PORT_0);
1543 
1544     opcode |= ((SC_VN(sc) << DMAE_CMD_E1HVN_SHIFT) |
1545                (SC_VN(sc) << DMAE_CMD_DST_VN_SHIFT));
1546 
1547     opcode |= (DMAE_COM_SET_ERR << DMAE_CMD_ERR_POLICY_SHIFT);
1548 
1549 #ifdef __BIG_ENDIAN
1550     opcode |= DMAE_CMD_ENDIANITY_B_DW_SWAP;
1551 #else
1552     opcode |= DMAE_CMD_ENDIANITY_DW_SWAP;
1553 #endif
1554 
1555     if (with_comp) {
1556         opcode = bxe_dmae_opcode_add_comp(opcode, comp_type);
1557     }
1558 
1559     return (opcode);
1560 }
1561 
1562 static void
1563 bxe_prep_dmae_with_comp(struct bxe_softc    *sc,
1564                         struct dmae_cmd *dmae,
1565                         uint8_t             src_type,
1566                         uint8_t             dst_type)
1567 {
1568     memset(dmae, 0, sizeof(struct dmae_cmd));
1569 
1570     /* set the opcode */
1571     dmae->opcode = bxe_dmae_opcode(sc, src_type, dst_type,
1572                                    TRUE, DMAE_COMP_PCI);
1573 
1574     /* fill in the completion parameters */
1575     dmae->comp_addr_lo = U64_LO(BXE_SP_MAPPING(sc, wb_comp));
1576     dmae->comp_addr_hi = U64_HI(BXE_SP_MAPPING(sc, wb_comp));
1577     dmae->comp_val     = DMAE_COMP_VAL;
1578 }
1579 
1580 /* issue a DMAE command over the init channel and wait for completion */
1581 static int
1582 bxe_issue_dmae_with_comp(struct bxe_softc    *sc,
1583                          struct dmae_cmd *dmae)
1584 {
1585     uint32_t *wb_comp = BXE_SP(sc, wb_comp);
1586     int timeout = CHIP_REV_IS_SLOW(sc) ? 400000 : 4000;
1587 
1588     BXE_DMAE_LOCK(sc);
1589 
1590     /* reset completion */
1591     *wb_comp = 0;
1592 
1593     /* post the command on the channel used for initializations */
1594     bxe_post_dmae(sc, dmae, INIT_DMAE_C(sc));
1595 
1596     /* wait for completion */
1597     DELAY(5);
1598 
1599     while ((*wb_comp & ~DMAE_PCI_ERR_FLAG) != DMAE_COMP_VAL) {
1600         if (!timeout ||
1601             (sc->recovery_state != BXE_RECOVERY_DONE &&
1602              sc->recovery_state != BXE_RECOVERY_NIC_LOADING)) {
1603             BLOGE(sc, "DMAE timeout! *wb_comp 0x%x recovery_state 0x%x\n",
1604                 *wb_comp, sc->recovery_state);
1605             BXE_DMAE_UNLOCK(sc);
1606             return (DMAE_TIMEOUT);
1607         }
1608 
1609         timeout--;
1610         DELAY(50);
1611     }
1612 
1613     if (*wb_comp & DMAE_PCI_ERR_FLAG) {
1614         BLOGE(sc, "DMAE PCI error! *wb_comp 0x%x recovery_state 0x%x\n",
1615                 *wb_comp, sc->recovery_state);
1616         BXE_DMAE_UNLOCK(sc);
1617         return (DMAE_PCI_ERROR);
1618     }
1619 
1620     BXE_DMAE_UNLOCK(sc);
1621     return (0);
1622 }
1623 
1624 void
1625 bxe_read_dmae(struct bxe_softc *sc,
1626               uint32_t         src_addr,
1627               uint32_t         len32)
1628 {
1629     struct dmae_cmd dmae;
1630     uint32_t *data;
1631     int i, rc;
1632 
1633     DBASSERT(sc, (len32 <= 4), ("DMAE read length is %d", len32));
1634 
1635     if (!sc->dmae_ready) {
1636         data = BXE_SP(sc, wb_data[0]);
1637 
1638         for (i = 0; i < len32; i++) {
1639             data[i] = (CHIP_IS_E1(sc)) ?
1640                           bxe_reg_rd_ind(sc, (src_addr + (i * 4))) :
1641                           REG_RD(sc, (src_addr + (i * 4)));
1642         }
1643 
1644         return;
1645     }
1646 
1647     /* set opcode and fixed command fields */
1648     bxe_prep_dmae_with_comp(sc, &dmae, DMAE_SRC_GRC, DMAE_DST_PCI);
1649 
1650     /* fill in addresses and len */
1651     dmae.src_addr_lo = (src_addr >> 2); /* GRC addr has dword resolution */
1652     dmae.src_addr_hi = 0;
1653     dmae.dst_addr_lo = U64_LO(BXE_SP_MAPPING(sc, wb_data));
1654     dmae.dst_addr_hi = U64_HI(BXE_SP_MAPPING(sc, wb_data));
1655     dmae.len         = len32;
1656 
1657     /* issue the command and wait for completion */
1658     if ((rc = bxe_issue_dmae_with_comp(sc, &dmae)) != 0) {
1659         bxe_panic(sc, ("DMAE failed (%d)\n", rc));
1660     }
1661 }
1662 
1663 void
1664 bxe_write_dmae(struct bxe_softc *sc,
1665                bus_addr_t       dma_addr,
1666                uint32_t         dst_addr,
1667                uint32_t         len32)
1668 {
1669     struct dmae_cmd dmae;
1670     int rc;
1671 
1672     if (!sc->dmae_ready) {
1673         DBASSERT(sc, (len32 <= 4), ("DMAE not ready and length is %d", len32));
1674 
1675         if (CHIP_IS_E1(sc)) {
1676             ecore_init_ind_wr(sc, dst_addr, BXE_SP(sc, wb_data[0]), len32);
1677         } else {
1678             ecore_init_str_wr(sc, dst_addr, BXE_SP(sc, wb_data[0]), len32);
1679         }
1680 
1681         return;
1682     }
1683 
1684     /* set opcode and fixed command fields */
1685     bxe_prep_dmae_with_comp(sc, &dmae, DMAE_SRC_PCI, DMAE_DST_GRC);
1686 
1687     /* fill in addresses and len */
1688     dmae.src_addr_lo = U64_LO(dma_addr);
1689     dmae.src_addr_hi = U64_HI(dma_addr);
1690     dmae.dst_addr_lo = (dst_addr >> 2); /* GRC addr has dword resolution */
1691     dmae.dst_addr_hi = 0;
1692     dmae.len         = len32;
1693 
1694     /* issue the command and wait for completion */
1695     if ((rc = bxe_issue_dmae_with_comp(sc, &dmae)) != 0) {
1696         bxe_panic(sc, ("DMAE failed (%d)\n", rc));
1697     }
1698 }
1699 
1700 void
1701 bxe_write_dmae_phys_len(struct bxe_softc *sc,
1702                         bus_addr_t       phys_addr,
1703                         uint32_t         addr,
1704                         uint32_t         len)
1705 {
1706     int dmae_wr_max = DMAE_LEN32_WR_MAX(sc);
1707     int offset = 0;
1708 
1709     while (len > dmae_wr_max) {
1710         bxe_write_dmae(sc,
1711                        (phys_addr + offset), /* src DMA address */
1712                        (addr + offset),      /* dst GRC address */
1713                        dmae_wr_max);
1714         offset += (dmae_wr_max * 4);
1715         len -= dmae_wr_max;
1716     }
1717 
1718     bxe_write_dmae(sc,
1719                    (phys_addr + offset), /* src DMA address */
1720                    (addr + offset),      /* dst GRC address */
1721                    len);
1722 }
1723 
1724 void
1725 bxe_set_ctx_validation(struct bxe_softc   *sc,
1726                        struct eth_context *cxt,
1727                        uint32_t           cid)
1728 {
1729     /* ustorm cxt validation */
1730     cxt->ustorm_ag_context.cdu_usage =
1731         CDU_RSRVD_VALUE_TYPE_A(HW_CID(sc, cid),
1732             CDU_REGION_NUMBER_UCM_AG, ETH_CONNECTION_TYPE);
1733     /* xcontext validation */
1734     cxt->xstorm_ag_context.cdu_reserved =
1735         CDU_RSRVD_VALUE_TYPE_A(HW_CID(sc, cid),
1736             CDU_REGION_NUMBER_XCM_AG, ETH_CONNECTION_TYPE);
1737 }
1738 
1739 static void
1740 bxe_storm_memset_hc_timeout(struct bxe_softc *sc,
1741                             uint8_t          port,
1742                             uint8_t          fw_sb_id,
1743                             uint8_t          sb_index,
1744                             uint8_t          ticks)
1745 {
1746     uint32_t addr =
1747         (BAR_CSTRORM_INTMEM +
1748          CSTORM_STATUS_BLOCK_DATA_TIMEOUT_OFFSET(fw_sb_id, sb_index));
1749 
1750     REG_WR8(sc, addr, ticks);
1751 
1752     BLOGD(sc, DBG_LOAD,
1753           "port %d fw_sb_id %d sb_index %d ticks %d\n",
1754           port, fw_sb_id, sb_index, ticks);
1755 }
1756 
1757 static void
1758 bxe_storm_memset_hc_disable(struct bxe_softc *sc,
1759                             uint8_t          port,
1760                             uint16_t         fw_sb_id,
1761                             uint8_t          sb_index,
1762                             uint8_t          disable)
1763 {
1764     uint32_t enable_flag =
1765         (disable) ? 0 : (1 << HC_INDEX_DATA_HC_ENABLED_SHIFT);
1766     uint32_t addr =
1767         (BAR_CSTRORM_INTMEM +
1768          CSTORM_STATUS_BLOCK_DATA_FLAGS_OFFSET(fw_sb_id, sb_index));
1769     uint8_t flags;
1770 
1771     /* clear and set */
1772     flags = REG_RD8(sc, addr);
1773     flags &= ~HC_INDEX_DATA_HC_ENABLED;
1774     flags |= enable_flag;
1775     REG_WR8(sc, addr, flags);
1776 
1777     BLOGD(sc, DBG_LOAD,
1778           "port %d fw_sb_id %d sb_index %d disable %d\n",
1779           port, fw_sb_id, sb_index, disable);
1780 }
1781 
1782 void
1783 bxe_update_coalesce_sb_index(struct bxe_softc *sc,
1784                              uint8_t          fw_sb_id,
1785                              uint8_t          sb_index,
1786                              uint8_t          disable,
1787                              uint16_t         usec)
1788 {
1789     int port = SC_PORT(sc);
1790     uint8_t ticks = (usec / 4); /* XXX ??? */
1791 
1792     bxe_storm_memset_hc_timeout(sc, port, fw_sb_id, sb_index, ticks);
1793 
1794     disable = (disable) ? 1 : ((usec) ? 0 : 1);
1795     bxe_storm_memset_hc_disable(sc, port, fw_sb_id, sb_index, disable);
1796 }
1797 
1798 void
1799 elink_cb_udelay(struct bxe_softc *sc,
1800                 uint32_t         usecs)
1801 {
1802     DELAY(usecs);
1803 }
1804 
1805 uint32_t
1806 elink_cb_reg_read(struct bxe_softc *sc,
1807                   uint32_t         reg_addr)
1808 {
1809     return (REG_RD(sc, reg_addr));
1810 }
1811 
1812 void
1813 elink_cb_reg_write(struct bxe_softc *sc,
1814                    uint32_t         reg_addr,
1815                    uint32_t         val)
1816 {
1817     REG_WR(sc, reg_addr, val);
1818 }
1819 
1820 void
1821 elink_cb_reg_wb_write(struct bxe_softc *sc,
1822                       uint32_t         offset,
1823                       uint32_t         *wb_write,
1824                       uint16_t         len)
1825 {
1826     REG_WR_DMAE(sc, offset, wb_write, len);
1827 }
1828 
1829 void
1830 elink_cb_reg_wb_read(struct bxe_softc *sc,
1831                      uint32_t         offset,
1832                      uint32_t         *wb_write,
1833                      uint16_t         len)
1834 {
1835     REG_RD_DMAE(sc, offset, wb_write, len);
1836 }
1837 
1838 uint8_t
1839 elink_cb_path_id(struct bxe_softc *sc)
1840 {
1841     return (SC_PATH(sc));
1842 }
1843 
1844 void
1845 elink_cb_event_log(struct bxe_softc     *sc,
1846                    const elink_log_id_t elink_log_id,
1847                    ...)
1848 {
1849     /* XXX */
1850     BLOGI(sc, "ELINK EVENT LOG (%d)\n", elink_log_id);
1851 }
1852 
1853 static int
1854 bxe_set_spio(struct bxe_softc *sc,
1855              int              spio,
1856              uint32_t         mode)
1857 {
1858     uint32_t spio_reg;
1859 
1860     /* Only 2 SPIOs are configurable */
1861     if ((spio != MISC_SPIO_SPIO4) && (spio != MISC_SPIO_SPIO5)) {
1862         BLOGE(sc, "Invalid SPIO 0x%x mode 0x%x\n", spio, mode);
1863         return (-1);
1864     }
1865 
1866     bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_SPIO);
1867 
1868     /* read SPIO and mask except the float bits */
1869     spio_reg = (REG_RD(sc, MISC_REG_SPIO) & MISC_SPIO_FLOAT);
1870 
1871     switch (mode) {
1872     case MISC_SPIO_OUTPUT_LOW:
1873         BLOGD(sc, DBG_LOAD, "Set SPIO 0x%x -> output low\n", spio);
1874         /* clear FLOAT and set CLR */
1875         spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS);
1876         spio_reg |=  (spio << MISC_SPIO_CLR_POS);
1877         break;
1878 
1879     case MISC_SPIO_OUTPUT_HIGH:
1880         BLOGD(sc, DBG_LOAD, "Set SPIO 0x%x -> output high\n", spio);
1881         /* clear FLOAT and set SET */
1882         spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS);
1883         spio_reg |=  (spio << MISC_SPIO_SET_POS);
1884         break;
1885 
1886     case MISC_SPIO_INPUT_HI_Z:
1887         BLOGD(sc, DBG_LOAD, "Set SPIO 0x%x -> input\n", spio);
1888         /* set FLOAT */
1889         spio_reg |= (spio << MISC_SPIO_FLOAT_POS);
1890         break;
1891 
1892     default:
1893         break;
1894     }
1895 
1896     REG_WR(sc, MISC_REG_SPIO, spio_reg);
1897     bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_SPIO);
1898 
1899     return (0);
1900 }
1901 
1902 static int
1903 bxe_gpio_read(struct bxe_softc *sc,
1904               int              gpio_num,
1905               uint8_t          port)
1906 {
1907     /* The GPIO should be swapped if swap register is set and active */
1908     int gpio_port = ((REG_RD(sc, NIG_REG_PORT_SWAP) &&
1909                       REG_RD(sc, NIG_REG_STRAP_OVERRIDE)) ^ port);
1910     int gpio_shift = (gpio_num +
1911                       (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0));
1912     uint32_t gpio_mask = (1 << gpio_shift);
1913     uint32_t gpio_reg;
1914 
1915     if (gpio_num > MISC_REGISTERS_GPIO_3) {
1916         BLOGE(sc, "Invalid GPIO %d port 0x%x gpio_port %d gpio_shift %d"
1917             " gpio_mask 0x%x\n", gpio_num, port, gpio_port, gpio_shift,
1918             gpio_mask);
1919         return (-1);
1920     }
1921 
1922     /* read GPIO value */
1923     gpio_reg = REG_RD(sc, MISC_REG_GPIO);
1924 
1925     /* get the requested pin value */
1926     return ((gpio_reg & gpio_mask) == gpio_mask) ? 1 : 0;
1927 }
1928 
1929 static int
1930 bxe_gpio_write(struct bxe_softc *sc,
1931                int              gpio_num,
1932                uint32_t         mode,
1933                uint8_t          port)
1934 {
1935     /* The GPIO should be swapped if swap register is set and active */
1936     int gpio_port = ((REG_RD(sc, NIG_REG_PORT_SWAP) &&
1937                       REG_RD(sc, NIG_REG_STRAP_OVERRIDE)) ^ port);
1938     int gpio_shift = (gpio_num +
1939                       (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0));
1940     uint32_t gpio_mask = (1 << gpio_shift);
1941     uint32_t gpio_reg;
1942 
1943     if (gpio_num > MISC_REGISTERS_GPIO_3) {
1944         BLOGE(sc, "Invalid GPIO %d mode 0x%x port 0x%x gpio_port %d"
1945             " gpio_shift %d gpio_mask 0x%x\n",
1946             gpio_num, mode, port, gpio_port, gpio_shift, gpio_mask);
1947         return (-1);
1948     }
1949 
1950     bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
1951 
1952     /* read GPIO and mask except the float bits */
1953     gpio_reg = (REG_RD(sc, MISC_REG_GPIO) & MISC_REGISTERS_GPIO_FLOAT);
1954 
1955     switch (mode) {
1956     case MISC_REGISTERS_GPIO_OUTPUT_LOW:
1957         BLOGD(sc, DBG_PHY,
1958               "Set GPIO %d (shift %d) -> output low\n",
1959               gpio_num, gpio_shift);
1960         /* clear FLOAT and set CLR */
1961         gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
1962         gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_CLR_POS);
1963         break;
1964 
1965     case MISC_REGISTERS_GPIO_OUTPUT_HIGH:
1966         BLOGD(sc, DBG_PHY,
1967               "Set GPIO %d (shift %d) -> output high\n",
1968               gpio_num, gpio_shift);
1969         /* clear FLOAT and set SET */
1970         gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
1971         gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_SET_POS);
1972         break;
1973 
1974     case MISC_REGISTERS_GPIO_INPUT_HI_Z:
1975         BLOGD(sc, DBG_PHY,
1976               "Set GPIO %d (shift %d) -> input\n",
1977               gpio_num, gpio_shift);
1978         /* set FLOAT */
1979         gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
1980         break;
1981 
1982     default:
1983         break;
1984     }
1985 
1986     REG_WR(sc, MISC_REG_GPIO, gpio_reg);
1987     bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
1988 
1989     return (0);
1990 }
1991 
1992 static int
1993 bxe_gpio_mult_write(struct bxe_softc *sc,
1994                     uint8_t          pins,
1995                     uint32_t         mode)
1996 {
1997     uint32_t gpio_reg;
1998 
1999     /* any port swapping should be handled by caller */
2000 
2001     bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
2002 
2003     /* read GPIO and mask except the float bits */
2004     gpio_reg = REG_RD(sc, MISC_REG_GPIO);
2005     gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_FLOAT_POS);
2006     gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_CLR_POS);
2007     gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_SET_POS);
2008 
2009     switch (mode) {
2010     case MISC_REGISTERS_GPIO_OUTPUT_LOW:
2011         BLOGD(sc, DBG_PHY, "Set GPIO 0x%x -> output low\n", pins);
2012         /* set CLR */
2013         gpio_reg |= (pins << MISC_REGISTERS_GPIO_CLR_POS);
2014         break;
2015 
2016     case MISC_REGISTERS_GPIO_OUTPUT_HIGH:
2017         BLOGD(sc, DBG_PHY, "Set GPIO 0x%x -> output high\n", pins);
2018         /* set SET */
2019         gpio_reg |= (pins << MISC_REGISTERS_GPIO_SET_POS);
2020         break;
2021 
2022     case MISC_REGISTERS_GPIO_INPUT_HI_Z:
2023         BLOGD(sc, DBG_PHY, "Set GPIO 0x%x -> input\n", pins);
2024         /* set FLOAT */
2025         gpio_reg |= (pins << MISC_REGISTERS_GPIO_FLOAT_POS);
2026         break;
2027 
2028     default:
2029         BLOGE(sc, "Invalid GPIO mode assignment pins 0x%x mode 0x%x"
2030             " gpio_reg 0x%x\n", pins, mode, gpio_reg);
2031         bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
2032         return (-1);
2033     }
2034 
2035     REG_WR(sc, MISC_REG_GPIO, gpio_reg);
2036     bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
2037 
2038     return (0);
2039 }
2040 
2041 static int
2042 bxe_gpio_int_write(struct bxe_softc *sc,
2043                    int              gpio_num,
2044                    uint32_t         mode,
2045                    uint8_t          port)
2046 {
2047     /* The GPIO should be swapped if swap register is set and active */
2048     int gpio_port = ((REG_RD(sc, NIG_REG_PORT_SWAP) &&
2049                       REG_RD(sc, NIG_REG_STRAP_OVERRIDE)) ^ port);
2050     int gpio_shift = (gpio_num +
2051                       (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0));
2052     uint32_t gpio_mask = (1 << gpio_shift);
2053     uint32_t gpio_reg;
2054 
2055     if (gpio_num > MISC_REGISTERS_GPIO_3) {
2056         BLOGE(sc, "Invalid GPIO %d mode 0x%x port 0x%x gpio_port %d"
2057             " gpio_shift %d gpio_mask 0x%x\n",
2058             gpio_num, mode, port, gpio_port, gpio_shift, gpio_mask);
2059         return (-1);
2060     }
2061 
2062     bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
2063 
2064     /* read GPIO int */
2065     gpio_reg = REG_RD(sc, MISC_REG_GPIO_INT);
2066 
2067     switch (mode) {
2068     case MISC_REGISTERS_GPIO_INT_OUTPUT_CLR:
2069         BLOGD(sc, DBG_PHY,
2070               "Clear GPIO INT %d (shift %d) -> output low\n",
2071               gpio_num, gpio_shift);
2072         /* clear SET and set CLR */
2073         gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS);
2074         gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS);
2075         break;
2076 
2077     case MISC_REGISTERS_GPIO_INT_OUTPUT_SET:
2078         BLOGD(sc, DBG_PHY,
2079               "Set GPIO INT %d (shift %d) -> output high\n",
2080               gpio_num, gpio_shift);
2081         /* clear CLR and set SET */
2082         gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS);
2083         gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS);
2084         break;
2085 
2086     default:
2087         break;
2088     }
2089 
2090     REG_WR(sc, MISC_REG_GPIO_INT, gpio_reg);
2091     bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
2092 
2093     return (0);
2094 }
2095 
2096 uint32_t
2097 elink_cb_gpio_read(struct bxe_softc *sc,
2098                    uint16_t         gpio_num,
2099                    uint8_t          port)
2100 {
2101     return (bxe_gpio_read(sc, gpio_num, port));
2102 }
2103 
2104 uint8_t
2105 elink_cb_gpio_write(struct bxe_softc *sc,
2106                     uint16_t         gpio_num,
2107                     uint8_t          mode, /* 0=low 1=high */
2108                     uint8_t          port)
2109 {
2110     return (bxe_gpio_write(sc, gpio_num, mode, port));
2111 }
2112 
2113 uint8_t
2114 elink_cb_gpio_mult_write(struct bxe_softc *sc,
2115                          uint8_t          pins,
2116                          uint8_t          mode) /* 0=low 1=high */
2117 {
2118     return (bxe_gpio_mult_write(sc, pins, mode));
2119 }
2120 
2121 uint8_t
2122 elink_cb_gpio_int_write(struct bxe_softc *sc,
2123                         uint16_t         gpio_num,
2124                         uint8_t          mode, /* 0=low 1=high */
2125                         uint8_t          port)
2126 {
2127     return (bxe_gpio_int_write(sc, gpio_num, mode, port));
2128 }
2129 
2130 void
2131 elink_cb_notify_link_changed(struct bxe_softc *sc)
2132 {
2133     REG_WR(sc, (MISC_REG_AEU_GENERAL_ATTN_12 +
2134                 (SC_FUNC(sc) * sizeof(uint32_t))), 1);
2135 }
2136 
2137 /* send the MCP a request, block until there is a reply */
2138 uint32_t
2139 elink_cb_fw_command(struct bxe_softc *sc,
2140                     uint32_t         command,
2141                     uint32_t         param)
2142 {
2143     int mb_idx = SC_FW_MB_IDX(sc);
2144     uint32_t seq;
2145     uint32_t rc = 0;
2146     uint32_t cnt = 1;
2147     uint8_t delay = CHIP_REV_IS_SLOW(sc) ? 100 : 10;
2148 
2149     BXE_FWMB_LOCK(sc);
2150 
2151     seq = ++sc->fw_seq;
2152     SHMEM_WR(sc, func_mb[mb_idx].drv_mb_param, param);
2153     SHMEM_WR(sc, func_mb[mb_idx].drv_mb_header, (command | seq));
2154 
2155     BLOGD(sc, DBG_PHY,
2156           "wrote command 0x%08x to FW MB param 0x%08x\n",
2157           (command | seq), param);
2158 
2159     /* Let the FW do it's magic. GIve it up to 5 seconds... */
2160     do {
2161         DELAY(delay * 1000);
2162         rc = SHMEM_RD(sc, func_mb[mb_idx].fw_mb_header);
2163     } while ((seq != (rc & FW_MSG_SEQ_NUMBER_MASK)) && (cnt++ < 500));
2164 
2165     BLOGD(sc, DBG_PHY,
2166           "[after %d ms] read 0x%x seq 0x%x from FW MB\n",
2167           cnt*delay, rc, seq);
2168 
2169     /* is this a reply to our command? */
2170     if (seq == (rc & FW_MSG_SEQ_NUMBER_MASK)) {
2171         rc &= FW_MSG_CODE_MASK;
2172     } else {
2173         /* Ruh-roh! */
2174         BLOGE(sc, "FW failed to respond!\n");
2175         // XXX bxe_fw_dump(sc);
2176         rc = 0;
2177     }
2178 
2179     BXE_FWMB_UNLOCK(sc);
2180     return (rc);
2181 }
2182 
2183 static uint32_t
2184 bxe_fw_command(struct bxe_softc *sc,
2185                uint32_t         command,
2186                uint32_t         param)
2187 {
2188     return (elink_cb_fw_command(sc, command, param));
2189 }
2190 
2191 static void
2192 __storm_memset_dma_mapping(struct bxe_softc *sc,
2193                            uint32_t         addr,
2194                            bus_addr_t       mapping)
2195 {
2196     REG_WR(sc, addr, U64_LO(mapping));
2197     REG_WR(sc, (addr + 4), U64_HI(mapping));
2198 }
2199 
2200 static void
2201 storm_memset_spq_addr(struct bxe_softc *sc,
2202                       bus_addr_t       mapping,
2203                       uint16_t         abs_fid)
2204 {
2205     uint32_t addr = (XSEM_REG_FAST_MEMORY +
2206                      XSTORM_SPQ_PAGE_BASE_OFFSET(abs_fid));
2207     __storm_memset_dma_mapping(sc, addr, mapping);
2208 }
2209 
2210 static void
2211 storm_memset_vf_to_pf(struct bxe_softc *sc,
2212                       uint16_t         abs_fid,
2213                       uint16_t         pf_id)
2214 {
2215     REG_WR8(sc, (BAR_XSTRORM_INTMEM + XSTORM_VF_TO_PF_OFFSET(abs_fid)), pf_id);
2216     REG_WR8(sc, (BAR_CSTRORM_INTMEM + CSTORM_VF_TO_PF_OFFSET(abs_fid)), pf_id);
2217     REG_WR8(sc, (BAR_TSTRORM_INTMEM + TSTORM_VF_TO_PF_OFFSET(abs_fid)), pf_id);
2218     REG_WR8(sc, (BAR_USTRORM_INTMEM + USTORM_VF_TO_PF_OFFSET(abs_fid)), pf_id);
2219 }
2220 
2221 static void
2222 storm_memset_func_en(struct bxe_softc *sc,
2223                      uint16_t         abs_fid,
2224                      uint8_t          enable)
2225 {
2226     REG_WR8(sc, (BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(abs_fid)), enable);
2227     REG_WR8(sc, (BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(abs_fid)), enable);
2228     REG_WR8(sc, (BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(abs_fid)), enable);
2229     REG_WR8(sc, (BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(abs_fid)), enable);
2230 }
2231 
2232 static void
2233 storm_memset_eq_data(struct bxe_softc       *sc,
2234                      struct event_ring_data *eq_data,
2235                      uint16_t               pfid)
2236 {
2237     uint32_t addr;
2238     size_t size;
2239 
2240     addr = (BAR_CSTRORM_INTMEM + CSTORM_EVENT_RING_DATA_OFFSET(pfid));
2241     size = sizeof(struct event_ring_data);
2242     ecore_storm_memset_struct(sc, addr, size, (uint32_t *)eq_data);
2243 }
2244 
2245 static void
2246 storm_memset_eq_prod(struct bxe_softc *sc,
2247                      uint16_t         eq_prod,
2248                      uint16_t         pfid)
2249 {
2250     uint32_t addr = (BAR_CSTRORM_INTMEM +
2251                      CSTORM_EVENT_RING_PROD_OFFSET(pfid));
2252     REG_WR16(sc, addr, eq_prod);
2253 }
2254 
2255 /*
2256  * Post a slowpath command.
2257  *
2258  * A slowpath command is used to propagate a configuration change through
2259  * the controller in a controlled manner, allowing each STORM processor and
2260  * other H/W blocks to phase in the change.  The commands sent on the
2261  * slowpath are referred to as ramrods.  Depending on the ramrod used the
2262  * completion of the ramrod will occur in different ways.  Here's a
2263  * breakdown of ramrods and how they complete:
2264  *
2265  * RAMROD_CMD_ID_ETH_PORT_SETUP
2266  *   Used to setup the leading connection on a port.  Completes on the
2267  *   Receive Completion Queue (RCQ) of that port (typically fp[0]).
2268  *
2269  * RAMROD_CMD_ID_ETH_CLIENT_SETUP
2270  *   Used to setup an additional connection on a port.  Completes on the
2271  *   RCQ of the multi-queue/RSS connection being initialized.
2272  *
2273  * RAMROD_CMD_ID_ETH_STAT_QUERY
2274  *   Used to force the storm processors to update the statistics database
2275  *   in host memory.  This ramrod is send on the leading connection CID and
2276  *   completes as an index increment of the CSTORM on the default status
2277  *   block.
2278  *
2279  * RAMROD_CMD_ID_ETH_UPDATE
2280  *   Used to update the state of the leading connection, usually to udpate
2281  *   the RSS indirection table.  Completes on the RCQ of the leading
2282  *   connection. (Not currently used under FreeBSD until OS support becomes
2283  *   available.)
2284  *
2285  * RAMROD_CMD_ID_ETH_HALT
2286  *   Used when tearing down a connection prior to driver unload.  Completes
2287  *   on the RCQ of the multi-queue/RSS connection being torn down.  Don't
2288  *   use this on the leading connection.
2289  *
2290  * RAMROD_CMD_ID_ETH_SET_MAC
2291  *   Sets the Unicast/Broadcast/Multicast used by the port.  Completes on
2292  *   the RCQ of the leading connection.
2293  *
2294  * RAMROD_CMD_ID_ETH_CFC_DEL
2295  *   Used when tearing down a conneciton prior to driver unload.  Completes
2296  *   on the RCQ of the leading connection (since the current connection
2297  *   has been completely removed from controller memory).
2298  *
2299  * RAMROD_CMD_ID_ETH_PORT_DEL
2300  *   Used to tear down the leading connection prior to driver unload,
2301  *   typically fp[0].  Completes as an index increment of the CSTORM on the
2302  *   default status block.
2303  *
2304  * RAMROD_CMD_ID_ETH_FORWARD_SETUP
2305  *   Used for connection offload.  Completes on the RCQ of the multi-queue
2306  *   RSS connection that is being offloaded.  (Not currently used under
2307  *   FreeBSD.)
2308  *
2309  * There can only be one command pending per function.
2310  *
2311  * Returns:
2312  *   0 = Success, !0 = Failure.
2313  */
2314 
2315 /* must be called under the spq lock */
2316 static inline
2317 struct eth_spe *bxe_sp_get_next(struct bxe_softc *sc)
2318 {
2319     struct eth_spe *next_spe = sc->spq_prod_bd;
2320 
2321     if (sc->spq_prod_bd == sc->spq_last_bd) {
2322         /* wrap back to the first eth_spq */
2323         sc->spq_prod_bd = sc->spq;
2324         sc->spq_prod_idx = 0;
2325     } else {
2326         sc->spq_prod_bd++;
2327         sc->spq_prod_idx++;
2328     }
2329 
2330     return (next_spe);
2331 }
2332 
2333 /* must be called under the spq lock */
2334 static inline
2335 void bxe_sp_prod_update(struct bxe_softc *sc)
2336 {
2337     int func = SC_FUNC(sc);
2338 
2339     /*
2340      * Make sure that BD data is updated before writing the producer.
2341      * BD data is written to the memory, the producer is read from the
2342      * memory, thus we need a full memory barrier to ensure the ordering.
2343      */
2344     mb();
2345 
2346     REG_WR16(sc, (BAR_XSTRORM_INTMEM + XSTORM_SPQ_PROD_OFFSET(func)),
2347              sc->spq_prod_idx);
2348 
2349     bus_space_barrier(sc->bar[BAR0].tag, sc->bar[BAR0].handle, 0, 0,
2350                       BUS_SPACE_BARRIER_WRITE);
2351 }
2352 
2353 /**
2354  * bxe_is_contextless_ramrod - check if the current command ends on EQ
2355  *
2356  * @cmd:      command to check
2357  * @cmd_type: command type
2358  */
2359 static inline
2360 int bxe_is_contextless_ramrod(int cmd,
2361                               int cmd_type)
2362 {
2363     if ((cmd_type == NONE_CONNECTION_TYPE) ||
2364         (cmd == RAMROD_CMD_ID_ETH_FORWARD_SETUP) ||
2365         (cmd == RAMROD_CMD_ID_ETH_CLASSIFICATION_RULES) ||
2366         (cmd == RAMROD_CMD_ID_ETH_FILTER_RULES) ||
2367         (cmd == RAMROD_CMD_ID_ETH_MULTICAST_RULES) ||
2368         (cmd == RAMROD_CMD_ID_ETH_SET_MAC) ||
2369         (cmd == RAMROD_CMD_ID_ETH_RSS_UPDATE)) {
2370         return (TRUE);
2371     } else {
2372         return (FALSE);
2373     }
2374 }
2375 
2376 /**
2377  * bxe_sp_post - place a single command on an SP ring
2378  *
2379  * @sc:         driver handle
2380  * @command:    command to place (e.g. SETUP, FILTER_RULES, etc.)
2381  * @cid:        SW CID the command is related to
2382  * @data_hi:    command private data address (high 32 bits)
2383  * @data_lo:    command private data address (low 32 bits)
2384  * @cmd_type:   command type (e.g. NONE, ETH)
2385  *
2386  * SP data is handled as if it's always an address pair, thus data fields are
2387  * not swapped to little endian in upper functions. Instead this function swaps
2388  * data as if it's two uint32 fields.
2389  */
2390 int
2391 bxe_sp_post(struct bxe_softc *sc,
2392             int              command,
2393             int              cid,
2394             uint32_t         data_hi,
2395             uint32_t         data_lo,
2396             int              cmd_type)
2397 {
2398     struct eth_spe *spe;
2399     uint16_t type;
2400     int common;
2401 
2402     common = bxe_is_contextless_ramrod(command, cmd_type);
2403 
2404     BXE_SP_LOCK(sc);
2405 
2406     if (common) {
2407         if (!atomic_load_acq_long(&sc->eq_spq_left)) {
2408             BLOGE(sc, "EQ ring is full!\n");
2409             BXE_SP_UNLOCK(sc);
2410             return (-1);
2411         }
2412     } else {
2413         if (!atomic_load_acq_long(&sc->cq_spq_left)) {
2414             BLOGE(sc, "SPQ ring is full!\n");
2415             BXE_SP_UNLOCK(sc);
2416             return (-1);
2417         }
2418     }
2419 
2420     spe = bxe_sp_get_next(sc);
2421 
2422     /* CID needs port number to be encoded int it */
2423     spe->hdr.conn_and_cmd_data =
2424         htole32((command << SPE_HDR_T_CMD_ID_SHIFT) | HW_CID(sc, cid));
2425 
2426     type = (cmd_type << SPE_HDR_T_CONN_TYPE_SHIFT) & SPE_HDR_T_CONN_TYPE;
2427 
2428     /* TBD: Check if it works for VFs */
2429     type |= ((SC_FUNC(sc) << SPE_HDR_T_FUNCTION_ID_SHIFT) &
2430              SPE_HDR_T_FUNCTION_ID);
2431 
2432     spe->hdr.type = htole16(type);
2433 
2434     spe->data.update_data_addr.hi = htole32(data_hi);
2435     spe->data.update_data_addr.lo = htole32(data_lo);
2436 
2437     /*
2438      * It's ok if the actual decrement is issued towards the memory
2439      * somewhere between the lock and unlock. Thus no more explict
2440      * memory barrier is needed.
2441      */
2442     if (common) {
2443         atomic_subtract_acq_long(&sc->eq_spq_left, 1);
2444     } else {
2445         atomic_subtract_acq_long(&sc->cq_spq_left, 1);
2446     }
2447 
2448     BLOGD(sc, DBG_SP, "SPQE -> %#jx\n", (uintmax_t)sc->spq_dma.paddr);
2449     BLOGD(sc, DBG_SP, "FUNC_RDATA -> %p / %#jx\n",
2450           BXE_SP(sc, func_rdata), (uintmax_t)BXE_SP_MAPPING(sc, func_rdata));
2451     BLOGD(sc, DBG_SP,
2452           "SPQE[%x] (%x:%x) (cmd, common?) (%d,%d) hw_cid %x data (%x:%x) type(0x%x) left (CQ, EQ) (%lx,%lx)\n",
2453           sc->spq_prod_idx,
2454           (uint32_t)U64_HI(sc->spq_dma.paddr),
2455           (uint32_t)(U64_LO(sc->spq_dma.paddr) + (uint8_t *)sc->spq_prod_bd - (uint8_t *)sc->spq),
2456           command,
2457           common,
2458           HW_CID(sc, cid),
2459           data_hi,
2460           data_lo,
2461           type,
2462           atomic_load_acq_long(&sc->cq_spq_left),
2463           atomic_load_acq_long(&sc->eq_spq_left));
2464 
2465     bxe_sp_prod_update(sc);
2466 
2467     BXE_SP_UNLOCK(sc);
2468     return (0);
2469 }
2470 
2471 /**
2472  * bxe_debug_print_ind_table - prints the indirection table configuration.
2473  *
2474  * @sc: driver hanlde
2475  * @p:  pointer to rss configuration
2476  */
2477 
2478 /*
2479  * FreeBSD Device probe function.
2480  *
2481  * Compares the device found to the driver's list of supported devices and
2482  * reports back to the bsd loader whether this is the right driver for the device.
2483  * This is the driver entry function called from the "kldload" command.
2484  *
2485  * Returns:
2486  *   BUS_PROBE_DEFAULT on success, positive value on failure.
2487  */
2488 static int
2489 bxe_probe(device_t dev)
2490 {
2491     struct bxe_device_type *t;
2492     uint16_t did, sdid, svid, vid;
2493 
2494     /* Find our device structure */
2495     t = bxe_devs;
2496 
2497     /* Get the data for the device to be probed. */
2498     vid  = pci_get_vendor(dev);
2499     did  = pci_get_device(dev);
2500     svid = pci_get_subvendor(dev);
2501     sdid = pci_get_subdevice(dev);
2502 
2503     /* Look through the list of known devices for a match. */
2504     while (t->bxe_name != NULL) {
2505         if ((vid == t->bxe_vid) && (did == t->bxe_did) &&
2506             ((svid == t->bxe_svid) || (t->bxe_svid == PCI_ANY_ID)) &&
2507             ((sdid == t->bxe_sdid) || (t->bxe_sdid == PCI_ANY_ID))) {
2508             device_set_descf(dev,
2509                      "%s (%c%d) BXE v:%s", t->bxe_name,
2510                      (((pci_read_config(dev, PCIR_REVID, 4) &
2511                         0xf0) >> 4) + 'A'),
2512                      (pci_read_config(dev, PCIR_REVID, 4) & 0xf),
2513                      BXE_DRIVER_VERSION);
2514             return (BUS_PROBE_DEFAULT);
2515         }
2516         t++;
2517     }
2518 
2519     return (ENXIO);
2520 }
2521 
2522 static void
2523 bxe_init_mutexes(struct bxe_softc *sc)
2524 {
2525 #ifdef BXE_CORE_LOCK_SX
2526     snprintf(sc->core_sx_name, sizeof(sc->core_sx_name),
2527              "bxe%d_core_lock", sc->unit);
2528     sx_init(&sc->core_sx, sc->core_sx_name);
2529 #else
2530     snprintf(sc->core_mtx_name, sizeof(sc->core_mtx_name),
2531              "bxe%d_core_lock", sc->unit);
2532     mtx_init(&sc->core_mtx, sc->core_mtx_name, NULL, MTX_DEF);
2533 #endif
2534 
2535     snprintf(sc->sp_mtx_name, sizeof(sc->sp_mtx_name),
2536              "bxe%d_sp_lock", sc->unit);
2537     mtx_init(&sc->sp_mtx, sc->sp_mtx_name, NULL, MTX_DEF);
2538 
2539     snprintf(sc->dmae_mtx_name, sizeof(sc->dmae_mtx_name),
2540              "bxe%d_dmae_lock", sc->unit);
2541     mtx_init(&sc->dmae_mtx, sc->dmae_mtx_name, NULL, MTX_DEF);
2542 
2543     snprintf(sc->port.phy_mtx_name, sizeof(sc->port.phy_mtx_name),
2544              "bxe%d_phy_lock", sc->unit);
2545     mtx_init(&sc->port.phy_mtx, sc->port.phy_mtx_name, NULL, MTX_DEF);
2546 
2547     snprintf(sc->fwmb_mtx_name, sizeof(sc->fwmb_mtx_name),
2548              "bxe%d_fwmb_lock", sc->unit);
2549     mtx_init(&sc->fwmb_mtx, sc->fwmb_mtx_name, NULL, MTX_DEF);
2550 
2551     snprintf(sc->print_mtx_name, sizeof(sc->print_mtx_name),
2552              "bxe%d_print_lock", sc->unit);
2553     mtx_init(&(sc->print_mtx), sc->print_mtx_name, NULL, MTX_DEF);
2554 
2555     snprintf(sc->stats_mtx_name, sizeof(sc->stats_mtx_name),
2556              "bxe%d_stats_lock", sc->unit);
2557     mtx_init(&(sc->stats_mtx), sc->stats_mtx_name, NULL, MTX_DEF);
2558 
2559     snprintf(sc->mcast_mtx_name, sizeof(sc->mcast_mtx_name),
2560              "bxe%d_mcast_lock", sc->unit);
2561     mtx_init(&(sc->mcast_mtx), sc->mcast_mtx_name, NULL, MTX_DEF);
2562 }
2563 
2564 static void
2565 bxe_release_mutexes(struct bxe_softc *sc)
2566 {
2567 #ifdef BXE_CORE_LOCK_SX
2568     sx_destroy(&sc->core_sx);
2569 #else
2570     if (mtx_initialized(&sc->core_mtx)) {
2571         mtx_destroy(&sc->core_mtx);
2572     }
2573 #endif
2574 
2575     if (mtx_initialized(&sc->sp_mtx)) {
2576         mtx_destroy(&sc->sp_mtx);
2577     }
2578 
2579     if (mtx_initialized(&sc->dmae_mtx)) {
2580         mtx_destroy(&sc->dmae_mtx);
2581     }
2582 
2583     if (mtx_initialized(&sc->port.phy_mtx)) {
2584         mtx_destroy(&sc->port.phy_mtx);
2585     }
2586 
2587     if (mtx_initialized(&sc->fwmb_mtx)) {
2588         mtx_destroy(&sc->fwmb_mtx);
2589     }
2590 
2591     if (mtx_initialized(&sc->print_mtx)) {
2592         mtx_destroy(&sc->print_mtx);
2593     }
2594 
2595     if (mtx_initialized(&sc->stats_mtx)) {
2596         mtx_destroy(&sc->stats_mtx);
2597     }
2598 
2599     if (mtx_initialized(&sc->mcast_mtx)) {
2600         mtx_destroy(&sc->mcast_mtx);
2601     }
2602 }
2603 
2604 static void
2605 bxe_tx_disable(struct bxe_softc* sc)
2606 {
2607     if_t ifp = sc->ifp;
2608 
2609     /* tell the stack the driver is stopped and TX queue is full */
2610     if (ifp !=  NULL) {
2611         if_setdrvflags(ifp, 0);
2612     }
2613 }
2614 
2615 static void
2616 bxe_drv_pulse(struct bxe_softc *sc)
2617 {
2618     SHMEM_WR(sc, func_mb[SC_FW_MB_IDX(sc)].drv_pulse_mb,
2619              sc->fw_drv_pulse_wr_seq);
2620 }
2621 
2622 static inline uint16_t
2623 bxe_tx_avail(struct bxe_softc *sc,
2624              struct bxe_fastpath *fp)
2625 {
2626     int16_t  used;
2627     uint16_t prod;
2628     uint16_t cons;
2629 
2630     prod = fp->tx_bd_prod;
2631     cons = fp->tx_bd_cons;
2632 
2633     used = SUB_S16(prod, cons);
2634 
2635     return (int16_t)(sc->tx_ring_size) - used;
2636 }
2637 
2638 static inline int
2639 bxe_tx_queue_has_work(struct bxe_fastpath *fp)
2640 {
2641     uint16_t hw_cons;
2642 
2643     mb(); /* status block fields can change */
2644     hw_cons = le16toh(*fp->tx_cons_sb);
2645     return (hw_cons != fp->tx_pkt_cons);
2646 }
2647 
2648 static inline uint8_t
2649 bxe_has_tx_work(struct bxe_fastpath *fp)
2650 {
2651     /* expand this for multi-cos if ever supported */
2652     return (bxe_tx_queue_has_work(fp)) ? TRUE : FALSE;
2653 }
2654 
2655 static inline int
2656 bxe_has_rx_work(struct bxe_fastpath *fp)
2657 {
2658     uint16_t rx_cq_cons_sb;
2659 
2660     mb(); /* status block fields can change */
2661     rx_cq_cons_sb = le16toh(*fp->rx_cq_cons_sb);
2662     if ((rx_cq_cons_sb & RCQ_MAX) == RCQ_MAX)
2663         rx_cq_cons_sb++;
2664     return (fp->rx_cq_cons != rx_cq_cons_sb);
2665 }
2666 
2667 static void
2668 bxe_sp_event(struct bxe_softc    *sc,
2669              struct bxe_fastpath *fp,
2670              union eth_rx_cqe    *rr_cqe)
2671 {
2672     int cid = SW_CID(rr_cqe->ramrod_cqe.conn_and_cmd_data);
2673     int command = CQE_CMD(rr_cqe->ramrod_cqe.conn_and_cmd_data);
2674     enum ecore_queue_cmd drv_cmd = ECORE_Q_CMD_MAX;
2675     struct ecore_queue_sp_obj *q_obj = &BXE_SP_OBJ(sc, fp).q_obj;
2676 
2677     BLOGD(sc, DBG_SP, "fp=%d cid=%d got ramrod #%d state is %x type is %d\n",
2678           fp->index, cid, command, sc->state, rr_cqe->ramrod_cqe.ramrod_type);
2679 
2680     switch (command) {
2681     case (RAMROD_CMD_ID_ETH_CLIENT_UPDATE):
2682         BLOGD(sc, DBG_SP, "got UPDATE ramrod. CID %d\n", cid);
2683         drv_cmd = ECORE_Q_CMD_UPDATE;
2684         break;
2685 
2686     case (RAMROD_CMD_ID_ETH_CLIENT_SETUP):
2687         BLOGD(sc, DBG_SP, "got MULTI[%d] setup ramrod\n", cid);
2688         drv_cmd = ECORE_Q_CMD_SETUP;
2689         break;
2690 
2691     case (RAMROD_CMD_ID_ETH_TX_QUEUE_SETUP):
2692         BLOGD(sc, DBG_SP, "got MULTI[%d] tx-only setup ramrod\n", cid);
2693         drv_cmd = ECORE_Q_CMD_SETUP_TX_ONLY;
2694         break;
2695 
2696     case (RAMROD_CMD_ID_ETH_HALT):
2697         BLOGD(sc, DBG_SP, "got MULTI[%d] halt ramrod\n", cid);
2698         drv_cmd = ECORE_Q_CMD_HALT;
2699         break;
2700 
2701     case (RAMROD_CMD_ID_ETH_TERMINATE):
2702         BLOGD(sc, DBG_SP, "got MULTI[%d] teminate ramrod\n", cid);
2703         drv_cmd = ECORE_Q_CMD_TERMINATE;
2704         break;
2705 
2706     case (RAMROD_CMD_ID_ETH_EMPTY):
2707         BLOGD(sc, DBG_SP, "got MULTI[%d] empty ramrod\n", cid);
2708         drv_cmd = ECORE_Q_CMD_EMPTY;
2709         break;
2710 
2711     default:
2712         BLOGD(sc, DBG_SP, "ERROR: unexpected MC reply (%d) on fp[%d]\n",
2713               command, fp->index);
2714         return;
2715     }
2716 
2717     if ((drv_cmd != ECORE_Q_CMD_MAX) &&
2718         q_obj->complete_cmd(sc, q_obj, drv_cmd)) {
2719         /*
2720          * q_obj->complete_cmd() failure means that this was
2721          * an unexpected completion.
2722          *
2723          * In this case we don't want to increase the sc->spq_left
2724          * because apparently we haven't sent this command the first
2725          * place.
2726          */
2727         // bxe_panic(sc, ("Unexpected SP completion\n"));
2728         return;
2729     }
2730 
2731     atomic_add_acq_long(&sc->cq_spq_left, 1);
2732 
2733     BLOGD(sc, DBG_SP, "sc->cq_spq_left 0x%lx\n",
2734           atomic_load_acq_long(&sc->cq_spq_left));
2735 }
2736 
2737 /*
2738  * The current mbuf is part of an aggregation. Move the mbuf into the TPA
2739  * aggregation queue, put an empty mbuf back onto the receive chain, and mark
2740  * the current aggregation queue as in-progress.
2741  */
2742 static void
2743 bxe_tpa_start(struct bxe_softc            *sc,
2744               struct bxe_fastpath         *fp,
2745               uint16_t                    queue,
2746               uint16_t                    cons,
2747               uint16_t                    prod,
2748               struct eth_fast_path_rx_cqe *cqe)
2749 {
2750     struct bxe_sw_rx_bd tmp_bd;
2751     struct bxe_sw_rx_bd *rx_buf;
2752     struct eth_rx_bd *rx_bd;
2753     int max_agg_queues __diagused;
2754     struct bxe_sw_tpa_info *tpa_info = &fp->rx_tpa_info[queue];
2755     uint16_t index;
2756 
2757     BLOGD(sc, DBG_LRO, "fp[%02d].tpa[%02d] TPA START "
2758                        "cons=%d prod=%d\n",
2759           fp->index, queue, cons, prod);
2760 
2761     max_agg_queues = MAX_AGG_QS(sc);
2762 
2763     KASSERT((queue < max_agg_queues),
2764             ("fp[%02d] invalid aggr queue (%d >= %d)!",
2765              fp->index, queue, max_agg_queues));
2766 
2767     KASSERT((tpa_info->state == BXE_TPA_STATE_STOP),
2768             ("fp[%02d].tpa[%02d] starting aggr on queue not stopped!",
2769              fp->index, queue));
2770 
2771     /* copy the existing mbuf and mapping from the TPA pool */
2772     tmp_bd = tpa_info->bd;
2773 
2774     if (tmp_bd.m == NULL) {
2775         uint32_t *tmp;
2776 
2777         tmp = (uint32_t *)cqe;
2778 
2779         BLOGE(sc, "fp[%02d].tpa[%02d] cons[%d] prod[%d]mbuf not allocated!\n",
2780               fp->index, queue, cons, prod);
2781         BLOGE(sc, "cqe [0x%08x 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x]\n",
2782             *tmp, *(tmp+1), *(tmp+2), *(tmp+3), *(tmp+4), *(tmp+5), *(tmp+6), *(tmp+7));
2783 
2784         /* XXX Error handling? */
2785         return;
2786     }
2787 
2788     /* change the TPA queue to the start state */
2789     tpa_info->state            = BXE_TPA_STATE_START;
2790     tpa_info->placement_offset = cqe->placement_offset;
2791     tpa_info->parsing_flags    = le16toh(cqe->pars_flags.flags);
2792     tpa_info->vlan_tag         = le16toh(cqe->vlan_tag);
2793     tpa_info->len_on_bd        = le16toh(cqe->len_on_bd);
2794 
2795     fp->rx_tpa_queue_used |= (1 << queue);
2796 
2797     /*
2798      * If all the buffer descriptors are filled with mbufs then fill in
2799      * the current consumer index with a new BD. Else if a maximum Rx
2800      * buffer limit is imposed then fill in the next producer index.
2801      */
2802     index = (sc->max_rx_bufs != RX_BD_USABLE) ?
2803                 prod : cons;
2804 
2805     /* move the received mbuf and mapping to TPA pool */
2806     tpa_info->bd = fp->rx_mbuf_chain[cons];
2807 
2808     /* release any existing RX BD mbuf mappings */
2809     if (cons != index) {
2810         rx_buf = &fp->rx_mbuf_chain[cons];
2811 
2812         if (rx_buf->m_map != NULL) {
2813             bus_dmamap_sync(fp->rx_mbuf_tag, rx_buf->m_map,
2814                             BUS_DMASYNC_POSTREAD);
2815             bus_dmamap_unload(fp->rx_mbuf_tag, rx_buf->m_map);
2816         }
2817 
2818         /*
2819          * We get here when the maximum number of rx buffers is less than
2820          * RX_BD_USABLE. The mbuf is already saved above so it's OK to NULL
2821          * it out here without concern of a memory leak.
2822          */
2823         fp->rx_mbuf_chain[cons].m = NULL;
2824     }
2825 
2826     /* update the Rx SW BD with the mbuf info from the TPA pool */
2827     fp->rx_mbuf_chain[index] = tmp_bd;
2828 
2829     /* update the Rx BD with the empty mbuf phys address from the TPA pool */
2830     rx_bd = &fp->rx_chain[index];
2831     rx_bd->addr_hi = htole32(U64_HI(tpa_info->seg.ds_addr));
2832     rx_bd->addr_lo = htole32(U64_LO(tpa_info->seg.ds_addr));
2833 }
2834 
2835 /*
2836  * When a TPA aggregation is completed, loop through the individual mbufs
2837  * of the aggregation, combining them into a single mbuf which will be sent
2838  * up the stack. Refill all freed SGEs with mbufs as we go along.
2839  */
2840 static int
2841 bxe_fill_frag_mbuf(struct bxe_softc          *sc,
2842                    struct bxe_fastpath       *fp,
2843                    struct bxe_sw_tpa_info    *tpa_info,
2844                    uint16_t                  queue,
2845                    uint16_t                  pages,
2846                    struct mbuf               *m,
2847 			       struct eth_end_agg_rx_cqe *cqe,
2848                    uint16_t                  cqe_idx)
2849 {
2850     struct mbuf *m_frag;
2851     uint32_t frag_len, frag_size, i;
2852     uint16_t sge_idx;
2853     int rc = 0;
2854     int j;
2855 
2856     frag_size = le16toh(cqe->pkt_len) - tpa_info->len_on_bd;
2857 
2858     BLOGD(sc, DBG_LRO,
2859           "fp[%02d].tpa[%02d] TPA fill len_on_bd=%d frag_size=%d pages=%d\n",
2860           fp->index, queue, tpa_info->len_on_bd, frag_size, pages);
2861 
2862     /* make sure the aggregated frame is not too big to handle */
2863     if (pages > 8 * PAGES_PER_SGE) {
2864 
2865         uint32_t *tmp = (uint32_t *)cqe;
2866 
2867         BLOGE(sc, "fp[%02d].sge[0x%04x] has too many pages (%d)! "
2868                   "pkt_len=%d len_on_bd=%d frag_size=%d\n",
2869               fp->index, cqe_idx, pages, le16toh(cqe->pkt_len),
2870               tpa_info->len_on_bd, frag_size);
2871 
2872         BLOGE(sc, "cqe [0x%08x 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x]\n",
2873             *tmp, *(tmp+1), *(tmp+2), *(tmp+3), *(tmp+4), *(tmp+5), *(tmp+6), *(tmp+7));
2874 
2875         bxe_panic(sc, ("sge page count error\n"));
2876         return (EINVAL);
2877     }
2878 
2879     /*
2880      * Scan through the scatter gather list pulling individual mbufs into a
2881      * single mbuf for the host stack.
2882      */
2883     for (i = 0, j = 0; i < pages; i += PAGES_PER_SGE, j++) {
2884         sge_idx = RX_SGE(le16toh(cqe->sgl_or_raw_data.sgl[j]));
2885 
2886         /*
2887          * Firmware gives the indices of the SGE as if the ring is an array
2888          * (meaning that the "next" element will consume 2 indices).
2889          */
2890         frag_len = min(frag_size, (uint32_t)(SGE_PAGES));
2891 
2892         BLOGD(sc, DBG_LRO, "fp[%02d].tpa[%02d] TPA fill i=%d j=%d "
2893                            "sge_idx=%d frag_size=%d frag_len=%d\n",
2894               fp->index, queue, i, j, sge_idx, frag_size, frag_len);
2895 
2896         m_frag = fp->rx_sge_mbuf_chain[sge_idx].m;
2897 
2898         /* allocate a new mbuf for the SGE */
2899         rc = bxe_alloc_rx_sge_mbuf(fp, sge_idx);
2900         if (rc) {
2901             /* Leave all remaining SGEs in the ring! */
2902             return (rc);
2903         }
2904 
2905         /* update the fragment length */
2906         m_frag->m_len = frag_len;
2907 
2908         /* concatenate the fragment to the head mbuf */
2909         m_cat(m, m_frag);
2910         fp->eth_q_stats.mbuf_alloc_sge--;
2911 
2912         /* update the TPA mbuf size and remaining fragment size */
2913         m->m_pkthdr.len += frag_len;
2914         frag_size -= frag_len;
2915     }
2916 
2917     BLOGD(sc, DBG_LRO,
2918           "fp[%02d].tpa[%02d] TPA fill done frag_size=%d\n",
2919           fp->index, queue, frag_size);
2920 
2921     return (rc);
2922 }
2923 
2924 static inline void
2925 bxe_clear_sge_mask_next_elems(struct bxe_fastpath *fp)
2926 {
2927     int i, j;
2928 
2929     for (i = 1; i <= RX_SGE_NUM_PAGES; i++) {
2930         int idx = RX_SGE_TOTAL_PER_PAGE * i - 1;
2931 
2932         for (j = 0; j < 2; j++) {
2933             BIT_VEC64_CLEAR_BIT(fp->sge_mask, idx);
2934             idx--;
2935         }
2936     }
2937 }
2938 
2939 static inline void
2940 bxe_init_sge_ring_bit_mask(struct bxe_fastpath *fp)
2941 {
2942     /* set the mask to all 1's, it's faster to compare to 0 than to 0xf's */
2943     memset(fp->sge_mask, 0xff, sizeof(fp->sge_mask));
2944 
2945     /*
2946      * Clear the two last indices in the page to 1. These are the indices that
2947      * correspond to the "next" element, hence will never be indicated and
2948      * should be removed from the calculations.
2949      */
2950     bxe_clear_sge_mask_next_elems(fp);
2951 }
2952 
2953 static inline void
2954 bxe_update_last_max_sge(struct bxe_fastpath *fp,
2955                         uint16_t            idx)
2956 {
2957     uint16_t last_max = fp->last_max_sge;
2958 
2959     if (SUB_S16(idx, last_max) > 0) {
2960         fp->last_max_sge = idx;
2961     }
2962 }
2963 
2964 static inline void
2965 bxe_update_sge_prod(struct bxe_softc          *sc,
2966                     struct bxe_fastpath       *fp,
2967                     uint16_t                  sge_len,
2968                     union eth_sgl_or_raw_data *cqe)
2969 {
2970     uint16_t last_max, last_elem, first_elem;
2971     uint16_t delta = 0;
2972     uint16_t i;
2973 
2974     if (!sge_len) {
2975         return;
2976     }
2977 
2978     /* first mark all used pages */
2979     for (i = 0; i < sge_len; i++) {
2980         BIT_VEC64_CLEAR_BIT(fp->sge_mask,
2981                             RX_SGE(le16toh(cqe->sgl[i])));
2982     }
2983 
2984     BLOGD(sc, DBG_LRO,
2985           "fp[%02d] fp_cqe->sgl[%d] = %d\n",
2986           fp->index, sge_len - 1,
2987           le16toh(cqe->sgl[sge_len - 1]));
2988 
2989     /* assume that the last SGE index is the biggest */
2990     bxe_update_last_max_sge(fp,
2991                             le16toh(cqe->sgl[sge_len - 1]));
2992 
2993     last_max = RX_SGE(fp->last_max_sge);
2994     last_elem = last_max >> BIT_VEC64_ELEM_SHIFT;
2995     first_elem = RX_SGE(fp->rx_sge_prod) >> BIT_VEC64_ELEM_SHIFT;
2996 
2997     /* if ring is not full */
2998     if (last_elem + 1 != first_elem) {
2999         last_elem++;
3000     }
3001 
3002     /* now update the prod */
3003     for (i = first_elem; i != last_elem; i = RX_SGE_NEXT_MASK_ELEM(i)) {
3004         if (__predict_true(fp->sge_mask[i])) {
3005             break;
3006         }
3007 
3008         fp->sge_mask[i] = BIT_VEC64_ELEM_ONE_MASK;
3009         delta += BIT_VEC64_ELEM_SZ;
3010     }
3011 
3012     if (delta > 0) {
3013         fp->rx_sge_prod += delta;
3014         /* clear page-end entries */
3015         bxe_clear_sge_mask_next_elems(fp);
3016     }
3017 
3018     BLOGD(sc, DBG_LRO,
3019           "fp[%02d] fp->last_max_sge=%d fp->rx_sge_prod=%d\n",
3020           fp->index, fp->last_max_sge, fp->rx_sge_prod);
3021 }
3022 
3023 /*
3024  * The aggregation on the current TPA queue has completed. Pull the individual
3025  * mbuf fragments together into a single mbuf, perform all necessary checksum
3026  * calculations, and send the resuting mbuf to the stack.
3027  */
3028 static void
3029 bxe_tpa_stop(struct bxe_softc          *sc,
3030              struct bxe_fastpath       *fp,
3031              struct bxe_sw_tpa_info    *tpa_info,
3032              uint16_t                  queue,
3033              uint16_t                  pages,
3034 			 struct eth_end_agg_rx_cqe *cqe,
3035              uint16_t                  cqe_idx)
3036 {
3037     if_t ifp = sc->ifp;
3038     struct mbuf *m;
3039     int rc = 0;
3040 
3041     BLOGD(sc, DBG_LRO,
3042           "fp[%02d].tpa[%02d] pad=%d pkt_len=%d pages=%d vlan=%d\n",
3043           fp->index, queue, tpa_info->placement_offset,
3044           le16toh(cqe->pkt_len), pages, tpa_info->vlan_tag);
3045 
3046     m = tpa_info->bd.m;
3047 
3048     /* allocate a replacement before modifying existing mbuf */
3049     rc = bxe_alloc_rx_tpa_mbuf(fp, queue);
3050     if (rc) {
3051         /* drop the frame and log an error */
3052         fp->eth_q_stats.rx_soft_errors++;
3053         goto bxe_tpa_stop_exit;
3054     }
3055 
3056     /* we have a replacement, fixup the current mbuf */
3057     m_adj(m, tpa_info->placement_offset);
3058     m->m_pkthdr.len = m->m_len = tpa_info->len_on_bd;
3059 
3060     /* mark the checksums valid (taken care of by the firmware) */
3061     fp->eth_q_stats.rx_ofld_frames_csum_ip++;
3062     fp->eth_q_stats.rx_ofld_frames_csum_tcp_udp++;
3063     m->m_pkthdr.csum_data = 0xffff;
3064     m->m_pkthdr.csum_flags |= (CSUM_IP_CHECKED |
3065                                CSUM_IP_VALID   |
3066                                CSUM_DATA_VALID |
3067                                CSUM_PSEUDO_HDR);
3068 
3069     /* aggregate all of the SGEs into a single mbuf */
3070     rc = bxe_fill_frag_mbuf(sc, fp, tpa_info, queue, pages, m, cqe, cqe_idx);
3071     if (rc) {
3072         /* drop the packet and log an error */
3073         fp->eth_q_stats.rx_soft_errors++;
3074         m_freem(m);
3075     } else {
3076         if (tpa_info->parsing_flags & PARSING_FLAGS_INNER_VLAN_EXIST) {
3077             m->m_pkthdr.ether_vtag = tpa_info->vlan_tag;
3078             m->m_flags |= M_VLANTAG;
3079         }
3080 
3081         /* assign packet to this interface interface */
3082         if_setrcvif(m, ifp);
3083 
3084         /* specify what RSS queue was used for this flow */
3085         m->m_pkthdr.flowid = fp->index;
3086         BXE_SET_FLOWID(m);
3087 
3088         if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1);
3089         fp->eth_q_stats.rx_tpa_pkts++;
3090 
3091         /* pass the frame to the stack */
3092         if_input(ifp, m);
3093     }
3094 
3095     /* we passed an mbuf up the stack or dropped the frame */
3096     fp->eth_q_stats.mbuf_alloc_tpa--;
3097 
3098 bxe_tpa_stop_exit:
3099 
3100     fp->rx_tpa_info[queue].state = BXE_TPA_STATE_STOP;
3101     fp->rx_tpa_queue_used &= ~(1 << queue);
3102 }
3103 
3104 static uint8_t
3105 bxe_service_rxsgl(
3106                  struct bxe_fastpath *fp,
3107                  uint16_t len,
3108                  uint16_t lenonbd,
3109                  struct mbuf *m,
3110                  struct eth_fast_path_rx_cqe *cqe_fp)
3111 {
3112     struct mbuf *m_frag;
3113     uint16_t frags, frag_len;
3114     uint16_t sge_idx = 0;
3115     uint16_t j;
3116     uint8_t i, rc = 0;
3117     uint32_t frag_size;
3118 
3119     /* adjust the mbuf */
3120     m->m_len = lenonbd;
3121 
3122     frag_size =  len - lenonbd;
3123     frags = SGE_PAGE_ALIGN(frag_size) >> SGE_PAGE_SHIFT;
3124 
3125     for (i = 0, j = 0; i < frags; i += PAGES_PER_SGE, j++) {
3126         sge_idx = RX_SGE(le16toh(cqe_fp->sgl_or_raw_data.sgl[j]));
3127 
3128         m_frag = fp->rx_sge_mbuf_chain[sge_idx].m;
3129         frag_len = min(frag_size, (uint32_t)(SGE_PAGE_SIZE));
3130         m_frag->m_len = frag_len;
3131 
3132        /* allocate a new mbuf for the SGE */
3133         rc = bxe_alloc_rx_sge_mbuf(fp, sge_idx);
3134         if (rc) {
3135             /* Leave all remaining SGEs in the ring! */
3136             return (rc);
3137         }
3138         fp->eth_q_stats.mbuf_alloc_sge--;
3139 
3140         /* concatenate the fragment to the head mbuf */
3141         m_cat(m, m_frag);
3142 
3143         frag_size -= frag_len;
3144     }
3145 
3146     bxe_update_sge_prod(fp->sc, fp, frags, &cqe_fp->sgl_or_raw_data);
3147 
3148     return rc;
3149 }
3150 
3151 static uint8_t
3152 bxe_rxeof(struct bxe_softc    *sc,
3153           struct bxe_fastpath *fp)
3154 {
3155     if_t ifp = sc->ifp;
3156     uint16_t bd_cons, bd_prod, bd_prod_fw, comp_ring_cons;
3157     uint16_t hw_cq_cons, sw_cq_cons, sw_cq_prod;
3158     int rx_pkts = 0;
3159     int rc = 0;
3160 
3161     BXE_FP_RX_LOCK(fp);
3162 
3163     /* CQ "next element" is of the size of the regular element */
3164     hw_cq_cons = le16toh(*fp->rx_cq_cons_sb);
3165     if ((hw_cq_cons & RCQ_USABLE_PER_PAGE) == RCQ_USABLE_PER_PAGE) {
3166         hw_cq_cons++;
3167     }
3168 
3169     bd_cons = fp->rx_bd_cons;
3170     bd_prod = fp->rx_bd_prod;
3171     bd_prod_fw = bd_prod;
3172     sw_cq_cons = fp->rx_cq_cons;
3173     sw_cq_prod = fp->rx_cq_prod;
3174 
3175     /*
3176      * Memory barrier necessary as speculative reads of the rx
3177      * buffer can be ahead of the index in the status block
3178      */
3179     rmb();
3180 
3181     BLOGD(sc, DBG_RX,
3182           "fp[%02d] Rx START hw_cq_cons=%u sw_cq_cons=%u\n",
3183           fp->index, hw_cq_cons, sw_cq_cons);
3184 
3185     while (sw_cq_cons != hw_cq_cons) {
3186         struct bxe_sw_rx_bd *rx_buf = NULL;
3187         union eth_rx_cqe *cqe;
3188         struct eth_fast_path_rx_cqe *cqe_fp;
3189         uint8_t cqe_fp_flags;
3190         enum eth_rx_cqe_type cqe_fp_type;
3191         uint16_t len, lenonbd,  pad;
3192         struct mbuf *m = NULL;
3193 
3194         comp_ring_cons = RCQ(sw_cq_cons);
3195         bd_prod = RX_BD(bd_prod);
3196         bd_cons = RX_BD(bd_cons);
3197 
3198         cqe          = &fp->rcq_chain[comp_ring_cons];
3199         cqe_fp       = &cqe->fast_path_cqe;
3200         cqe_fp_flags = cqe_fp->type_error_flags;
3201         cqe_fp_type  = cqe_fp_flags & ETH_FAST_PATH_RX_CQE_TYPE;
3202 
3203         BLOGD(sc, DBG_RX,
3204               "fp[%02d] Rx hw_cq_cons=%d hw_sw_cons=%d "
3205               "BD prod=%d cons=%d CQE type=0x%x err=0x%x "
3206               "status=0x%x rss_hash=0x%x vlan=0x%x len=%u lenonbd=%u\n",
3207               fp->index,
3208               hw_cq_cons,
3209               sw_cq_cons,
3210               bd_prod,
3211               bd_cons,
3212               CQE_TYPE(cqe_fp_flags),
3213               cqe_fp_flags,
3214               cqe_fp->status_flags,
3215               le32toh(cqe_fp->rss_hash_result),
3216               le16toh(cqe_fp->vlan_tag),
3217               le16toh(cqe_fp->pkt_len_or_gro_seg_len),
3218               le16toh(cqe_fp->len_on_bd));
3219 
3220         /* is this a slowpath msg? */
3221         if (__predict_false(CQE_TYPE_SLOW(cqe_fp_type))) {
3222             bxe_sp_event(sc, fp, cqe);
3223             goto next_cqe;
3224         }
3225 
3226         rx_buf = &fp->rx_mbuf_chain[bd_cons];
3227 
3228         if (!CQE_TYPE_FAST(cqe_fp_type)) {
3229             struct bxe_sw_tpa_info *tpa_info;
3230             uint16_t frag_size, pages;
3231             uint8_t queue;
3232 
3233             if (CQE_TYPE_START(cqe_fp_type)) {
3234                 bxe_tpa_start(sc, fp, cqe_fp->queue_index,
3235                               bd_cons, bd_prod, cqe_fp);
3236                 m = NULL; /* packet not ready yet */
3237                 goto next_rx;
3238             }
3239 
3240             KASSERT(CQE_TYPE_STOP(cqe_fp_type),
3241                     ("CQE type is not STOP! (0x%x)\n", cqe_fp_type));
3242 
3243             queue = cqe->end_agg_cqe.queue_index;
3244             tpa_info = &fp->rx_tpa_info[queue];
3245 
3246             BLOGD(sc, DBG_LRO, "fp[%02d].tpa[%02d] TPA STOP\n",
3247                   fp->index, queue);
3248 
3249             frag_size = (le16toh(cqe->end_agg_cqe.pkt_len) -
3250                          tpa_info->len_on_bd);
3251             pages = SGE_PAGE_ALIGN(frag_size) >> SGE_PAGE_SHIFT;
3252 
3253             bxe_tpa_stop(sc, fp, tpa_info, queue, pages,
3254                          &cqe->end_agg_cqe, comp_ring_cons);
3255 
3256             bxe_update_sge_prod(sc, fp, pages, &cqe->end_agg_cqe.sgl_or_raw_data);
3257 
3258             goto next_cqe;
3259         }
3260 
3261         /* non TPA */
3262 
3263         /* is this an error packet? */
3264         if (__predict_false(cqe_fp_flags &
3265                             ETH_FAST_PATH_RX_CQE_PHY_DECODE_ERR_FLG)) {
3266             BLOGE(sc, "flags 0x%x rx packet %u\n", cqe_fp_flags, sw_cq_cons);
3267             fp->eth_q_stats.rx_soft_errors++;
3268             goto next_rx;
3269         }
3270 
3271         len = le16toh(cqe_fp->pkt_len_or_gro_seg_len);
3272         lenonbd = le16toh(cqe_fp->len_on_bd);
3273         pad = cqe_fp->placement_offset;
3274 
3275         m = rx_buf->m;
3276 
3277         if (__predict_false(m == NULL)) {
3278             BLOGE(sc, "No mbuf in rx chain descriptor %d for fp[%02d]\n",
3279                   bd_cons, fp->index);
3280             goto next_rx;
3281         }
3282 
3283         /* XXX double copy if packet length under a threshold */
3284 
3285         /*
3286          * If all the buffer descriptors are filled with mbufs then fill in
3287          * the current consumer index with a new BD. Else if a maximum Rx
3288          * buffer limit is imposed then fill in the next producer index.
3289          */
3290         rc = bxe_alloc_rx_bd_mbuf(fp, bd_cons,
3291                                   (sc->max_rx_bufs != RX_BD_USABLE) ?
3292                                       bd_prod : bd_cons);
3293         if (rc != 0) {
3294 
3295             /* we simply reuse the received mbuf and don't post it to the stack */
3296             m = NULL;
3297 
3298             BLOGE(sc, "mbuf alloc fail for fp[%02d] rx chain (%d)\n",
3299                   fp->index, rc);
3300             fp->eth_q_stats.rx_soft_errors++;
3301 
3302             if (sc->max_rx_bufs != RX_BD_USABLE) {
3303                 /* copy this consumer index to the producer index */
3304                 memcpy(&fp->rx_mbuf_chain[bd_prod], rx_buf,
3305                        sizeof(struct bxe_sw_rx_bd));
3306                 memset(rx_buf, 0, sizeof(struct bxe_sw_rx_bd));
3307             }
3308 
3309             goto next_rx;
3310         }
3311 
3312         /* current mbuf was detached from the bd */
3313         fp->eth_q_stats.mbuf_alloc_rx--;
3314 
3315         /* we allocated a replacement mbuf, fixup the current one */
3316         m_adj(m, pad);
3317         m->m_pkthdr.len = m->m_len = len;
3318 
3319         if ((len > 60) && (len > lenonbd)) {
3320             fp->eth_q_stats.rx_bxe_service_rxsgl++;
3321             rc = bxe_service_rxsgl(fp, len, lenonbd, m, cqe_fp);
3322             if (rc)
3323                 break;
3324             fp->eth_q_stats.rx_jumbo_sge_pkts++;
3325         } else if (lenonbd < len) {
3326             fp->eth_q_stats.rx_erroneous_jumbo_sge_pkts++;
3327         }
3328 
3329         /* assign packet to this interface interface */
3330 	if_setrcvif(m, ifp);
3331 
3332         /* assume no hardware checksum has complated */
3333         m->m_pkthdr.csum_flags = 0;
3334 
3335         /* validate checksum if offload enabled */
3336         if (if_getcapenable(ifp) & IFCAP_RXCSUM) {
3337             /* check for a valid IP frame */
3338             if (!(cqe->fast_path_cqe.status_flags &
3339                   ETH_FAST_PATH_RX_CQE_IP_XSUM_NO_VALIDATION_FLG)) {
3340                 m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
3341                 if (__predict_false(cqe_fp_flags &
3342                                     ETH_FAST_PATH_RX_CQE_IP_BAD_XSUM_FLG)) {
3343                     fp->eth_q_stats.rx_hw_csum_errors++;
3344                 } else {
3345                     fp->eth_q_stats.rx_ofld_frames_csum_ip++;
3346                     m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
3347                 }
3348             }
3349 
3350             /* check for a valid TCP/UDP frame */
3351             if (!(cqe->fast_path_cqe.status_flags &
3352                   ETH_FAST_PATH_RX_CQE_L4_XSUM_NO_VALIDATION_FLG)) {
3353                 if (__predict_false(cqe_fp_flags &
3354                                     ETH_FAST_PATH_RX_CQE_L4_BAD_XSUM_FLG)) {
3355                     fp->eth_q_stats.rx_hw_csum_errors++;
3356                 } else {
3357                     fp->eth_q_stats.rx_ofld_frames_csum_tcp_udp++;
3358                     m->m_pkthdr.csum_data = 0xFFFF;
3359                     m->m_pkthdr.csum_flags |= (CSUM_DATA_VALID |
3360                                                CSUM_PSEUDO_HDR);
3361                 }
3362             }
3363         }
3364 
3365         /* if there is a VLAN tag then flag that info */
3366         if (cqe->fast_path_cqe.pars_flags.flags & PARSING_FLAGS_INNER_VLAN_EXIST) {
3367             m->m_pkthdr.ether_vtag = cqe->fast_path_cqe.vlan_tag;
3368             m->m_flags |= M_VLANTAG;
3369         }
3370 
3371         /* specify what RSS queue was used for this flow */
3372         m->m_pkthdr.flowid = fp->index;
3373         BXE_SET_FLOWID(m);
3374 
3375 next_rx:
3376 
3377         bd_cons    = RX_BD_NEXT(bd_cons);
3378         bd_prod    = RX_BD_NEXT(bd_prod);
3379         bd_prod_fw = RX_BD_NEXT(bd_prod_fw);
3380 
3381         /* pass the frame to the stack */
3382         if (__predict_true(m != NULL)) {
3383             if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1);
3384             rx_pkts++;
3385             if_input(ifp, m);
3386         }
3387 
3388 next_cqe:
3389 
3390         sw_cq_prod = RCQ_NEXT(sw_cq_prod);
3391         sw_cq_cons = RCQ_NEXT(sw_cq_cons);
3392 
3393         /* limit spinning on the queue */
3394         if (rc != 0)
3395             break;
3396 
3397         if (rx_pkts == sc->rx_budget) {
3398             fp->eth_q_stats.rx_budget_reached++;
3399             break;
3400         }
3401     } /* while work to do */
3402 
3403     fp->rx_bd_cons = bd_cons;
3404     fp->rx_bd_prod = bd_prod_fw;
3405     fp->rx_cq_cons = sw_cq_cons;
3406     fp->rx_cq_prod = sw_cq_prod;
3407 
3408     /* Update producers */
3409     bxe_update_rx_prod(sc, fp, bd_prod_fw, sw_cq_prod, fp->rx_sge_prod);
3410 
3411     fp->eth_q_stats.rx_pkts += rx_pkts;
3412     fp->eth_q_stats.rx_calls++;
3413 
3414     BXE_FP_RX_UNLOCK(fp);
3415 
3416     return (sw_cq_cons != hw_cq_cons);
3417 }
3418 
3419 static uint16_t
3420 bxe_free_tx_pkt(struct bxe_softc    *sc,
3421                 struct bxe_fastpath *fp,
3422                 uint16_t            idx)
3423 {
3424     struct bxe_sw_tx_bd *tx_buf = &fp->tx_mbuf_chain[idx];
3425     struct eth_tx_start_bd *tx_start_bd;
3426     uint16_t bd_idx = TX_BD(tx_buf->first_bd);
3427     uint16_t new_cons;
3428     int nbd;
3429 
3430     /* unmap the mbuf from non-paged memory */
3431     bus_dmamap_unload(fp->tx_mbuf_tag, tx_buf->m_map);
3432 
3433     tx_start_bd = &fp->tx_chain[bd_idx].start_bd;
3434     nbd = le16toh(tx_start_bd->nbd) - 1;
3435 
3436     new_cons = (tx_buf->first_bd + nbd);
3437 
3438     /* free the mbuf */
3439     if (__predict_true(tx_buf->m != NULL)) {
3440         m_freem(tx_buf->m);
3441         fp->eth_q_stats.mbuf_alloc_tx--;
3442     } else {
3443         fp->eth_q_stats.tx_chain_lost_mbuf++;
3444     }
3445 
3446     tx_buf->m = NULL;
3447     tx_buf->first_bd = 0;
3448 
3449     return (new_cons);
3450 }
3451 
3452 /* transmit timeout watchdog */
3453 static int
3454 bxe_watchdog(struct bxe_softc    *sc,
3455              struct bxe_fastpath *fp)
3456 {
3457     BXE_FP_TX_LOCK(fp);
3458 
3459     if ((fp->watchdog_timer == 0) || (--fp->watchdog_timer)) {
3460         BXE_FP_TX_UNLOCK(fp);
3461         return (0);
3462     }
3463 
3464     BLOGE(sc, "TX watchdog timeout on fp[%02d], resetting!\n", fp->index);
3465 
3466     BXE_FP_TX_UNLOCK(fp);
3467     BXE_SET_ERROR_BIT(sc, BXE_ERR_TXQ_STUCK);
3468     taskqueue_enqueue_timeout(taskqueue_thread,
3469         &sc->sp_err_timeout_task, hz/10);
3470 
3471     return (-1);
3472 }
3473 
3474 /* processes transmit completions */
3475 static uint8_t
3476 bxe_txeof(struct bxe_softc    *sc,
3477           struct bxe_fastpath *fp)
3478 {
3479     if_t ifp = sc->ifp;
3480     uint16_t bd_cons, hw_cons, sw_cons, pkt_cons;
3481     uint16_t tx_bd_avail;
3482 
3483     BXE_FP_TX_LOCK_ASSERT(fp);
3484 
3485     bd_cons = fp->tx_bd_cons;
3486     hw_cons = le16toh(*fp->tx_cons_sb);
3487     sw_cons = fp->tx_pkt_cons;
3488 
3489     while (sw_cons != hw_cons) {
3490         pkt_cons = TX_BD(sw_cons);
3491 
3492         BLOGD(sc, DBG_TX,
3493               "TX: fp[%d]: hw_cons=%u sw_cons=%u pkt_cons=%u\n",
3494               fp->index, hw_cons, sw_cons, pkt_cons);
3495 
3496         bd_cons = bxe_free_tx_pkt(sc, fp, pkt_cons);
3497 
3498         sw_cons++;
3499     }
3500 
3501     fp->tx_pkt_cons = sw_cons;
3502     fp->tx_bd_cons  = bd_cons;
3503 
3504     BLOGD(sc, DBG_TX,
3505           "TX done: fp[%d]: hw_cons=%u sw_cons=%u sw_prod=%u\n",
3506           fp->index, hw_cons, fp->tx_pkt_cons, fp->tx_pkt_prod);
3507 
3508     mb();
3509 
3510     tx_bd_avail = bxe_tx_avail(sc, fp);
3511 
3512     if (tx_bd_avail < BXE_TX_CLEANUP_THRESHOLD) {
3513         if_setdrvflagbits(ifp, IFF_DRV_OACTIVE, 0);
3514     } else {
3515         if_setdrvflagbits(ifp, 0, IFF_DRV_OACTIVE);
3516     }
3517 
3518     if (fp->tx_pkt_prod != fp->tx_pkt_cons) {
3519         /* reset the watchdog timer if there are pending transmits */
3520         fp->watchdog_timer = BXE_TX_TIMEOUT;
3521         return (TRUE);
3522     } else {
3523         /* clear watchdog when there are no pending transmits */
3524         fp->watchdog_timer = 0;
3525         return (FALSE);
3526     }
3527 }
3528 
3529 static void
3530 bxe_drain_tx_queues(struct bxe_softc *sc)
3531 {
3532     struct bxe_fastpath *fp;
3533     int i, count;
3534 
3535     /* wait until all TX fastpath tasks have completed */
3536     for (i = 0; i < sc->num_queues; i++) {
3537         fp = &sc->fp[i];
3538 
3539         count = 1000;
3540 
3541         while (bxe_has_tx_work(fp)) {
3542 
3543             BXE_FP_TX_LOCK(fp);
3544             bxe_txeof(sc, fp);
3545             BXE_FP_TX_UNLOCK(fp);
3546 
3547             if (count == 0) {
3548                 BLOGE(sc, "Timeout waiting for fp[%d] "
3549                           "transmits to complete!\n", i);
3550                 bxe_panic(sc, ("tx drain failure\n"));
3551                 return;
3552             }
3553 
3554             count--;
3555             DELAY(1000);
3556             rmb();
3557         }
3558     }
3559 
3560     return;
3561 }
3562 
3563 static int
3564 bxe_del_all_macs(struct bxe_softc          *sc,
3565                  struct ecore_vlan_mac_obj *mac_obj,
3566                  int                       mac_type,
3567                  uint8_t                   wait_for_comp)
3568 {
3569     unsigned long ramrod_flags = 0, vlan_mac_flags = 0;
3570     int rc;
3571 
3572     /* wait for completion of requested */
3573     if (wait_for_comp) {
3574         bxe_set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
3575     }
3576 
3577     /* Set the mac type of addresses we want to clear */
3578     bxe_set_bit(mac_type, &vlan_mac_flags);
3579 
3580     rc = mac_obj->delete_all(sc, mac_obj, &vlan_mac_flags, &ramrod_flags);
3581     if (rc < 0) {
3582         BLOGE(sc, "Failed to delete MACs (%d) mac_type %d wait_for_comp 0x%x\n",
3583             rc, mac_type, wait_for_comp);
3584     }
3585 
3586     return (rc);
3587 }
3588 
3589 static int
3590 bxe_fill_accept_flags(struct bxe_softc *sc,
3591                       uint32_t         rx_mode,
3592                       unsigned long    *rx_accept_flags,
3593                       unsigned long    *tx_accept_flags)
3594 {
3595     /* Clear the flags first */
3596     *rx_accept_flags = 0;
3597     *tx_accept_flags = 0;
3598 
3599     switch (rx_mode) {
3600     case BXE_RX_MODE_NONE:
3601         /*
3602          * 'drop all' supersedes any accept flags that may have been
3603          * passed to the function.
3604          */
3605         break;
3606 
3607     case BXE_RX_MODE_NORMAL:
3608         bxe_set_bit(ECORE_ACCEPT_UNICAST, rx_accept_flags);
3609         bxe_set_bit(ECORE_ACCEPT_MULTICAST, rx_accept_flags);
3610         bxe_set_bit(ECORE_ACCEPT_BROADCAST, rx_accept_flags);
3611 
3612         /* internal switching mode */
3613         bxe_set_bit(ECORE_ACCEPT_UNICAST, tx_accept_flags);
3614         bxe_set_bit(ECORE_ACCEPT_MULTICAST, tx_accept_flags);
3615         bxe_set_bit(ECORE_ACCEPT_BROADCAST, tx_accept_flags);
3616 
3617         break;
3618 
3619     case BXE_RX_MODE_ALLMULTI:
3620         bxe_set_bit(ECORE_ACCEPT_UNICAST, rx_accept_flags);
3621         bxe_set_bit(ECORE_ACCEPT_ALL_MULTICAST, rx_accept_flags);
3622         bxe_set_bit(ECORE_ACCEPT_BROADCAST, rx_accept_flags);
3623 
3624         /* internal switching mode */
3625         bxe_set_bit(ECORE_ACCEPT_UNICAST, tx_accept_flags);
3626         bxe_set_bit(ECORE_ACCEPT_ALL_MULTICAST, tx_accept_flags);
3627         bxe_set_bit(ECORE_ACCEPT_BROADCAST, tx_accept_flags);
3628 
3629         break;
3630 
3631     case BXE_RX_MODE_PROMISC:
3632         /*
3633          * According to deffinition of SI mode, iface in promisc mode
3634          * should receive matched and unmatched (in resolution of port)
3635          * unicast packets.
3636          */
3637         bxe_set_bit(ECORE_ACCEPT_UNMATCHED, rx_accept_flags);
3638         bxe_set_bit(ECORE_ACCEPT_UNICAST, rx_accept_flags);
3639         bxe_set_bit(ECORE_ACCEPT_ALL_MULTICAST, rx_accept_flags);
3640         bxe_set_bit(ECORE_ACCEPT_BROADCAST, rx_accept_flags);
3641 
3642         /* internal switching mode */
3643         bxe_set_bit(ECORE_ACCEPT_ALL_MULTICAST, tx_accept_flags);
3644         bxe_set_bit(ECORE_ACCEPT_BROADCAST, tx_accept_flags);
3645 
3646         if (IS_MF_SI(sc)) {
3647             bxe_set_bit(ECORE_ACCEPT_ALL_UNICAST, tx_accept_flags);
3648         } else {
3649             bxe_set_bit(ECORE_ACCEPT_UNICAST, tx_accept_flags);
3650         }
3651 
3652         break;
3653 
3654     default:
3655         BLOGE(sc, "Unknown rx_mode (0x%x)\n", rx_mode);
3656         return (-1);
3657     }
3658 
3659     /* Set ACCEPT_ANY_VLAN as we do not enable filtering by VLAN */
3660     if (rx_mode != BXE_RX_MODE_NONE) {
3661         bxe_set_bit(ECORE_ACCEPT_ANY_VLAN, rx_accept_flags);
3662         bxe_set_bit(ECORE_ACCEPT_ANY_VLAN, tx_accept_flags);
3663     }
3664 
3665     return (0);
3666 }
3667 
3668 static int
3669 bxe_set_q_rx_mode(struct bxe_softc *sc,
3670                   uint8_t          cl_id,
3671                   unsigned long    rx_mode_flags,
3672                   unsigned long    rx_accept_flags,
3673                   unsigned long    tx_accept_flags,
3674                   unsigned long    ramrod_flags)
3675 {
3676     struct ecore_rx_mode_ramrod_params ramrod_param;
3677     int rc;
3678 
3679     memset(&ramrod_param, 0, sizeof(ramrod_param));
3680 
3681     /* Prepare ramrod parameters */
3682     ramrod_param.cid = 0;
3683     ramrod_param.cl_id = cl_id;
3684     ramrod_param.rx_mode_obj = &sc->rx_mode_obj;
3685     ramrod_param.func_id = SC_FUNC(sc);
3686 
3687     ramrod_param.pstate = &sc->sp_state;
3688     ramrod_param.state = ECORE_FILTER_RX_MODE_PENDING;
3689 
3690     ramrod_param.rdata = BXE_SP(sc, rx_mode_rdata);
3691     ramrod_param.rdata_mapping = BXE_SP_MAPPING(sc, rx_mode_rdata);
3692 
3693     bxe_set_bit(ECORE_FILTER_RX_MODE_PENDING, &sc->sp_state);
3694 
3695     ramrod_param.ramrod_flags = ramrod_flags;
3696     ramrod_param.rx_mode_flags = rx_mode_flags;
3697 
3698     ramrod_param.rx_accept_flags = rx_accept_flags;
3699     ramrod_param.tx_accept_flags = tx_accept_flags;
3700 
3701     rc = ecore_config_rx_mode(sc, &ramrod_param);
3702     if (rc < 0) {
3703         BLOGE(sc, "Set rx_mode %d cli_id 0x%x rx_mode_flags 0x%x "
3704             "rx_accept_flags 0x%x tx_accept_flags 0x%x "
3705             "ramrod_flags 0x%x rc %d failed\n", sc->rx_mode, cl_id,
3706             (uint32_t)rx_mode_flags, (uint32_t)rx_accept_flags,
3707             (uint32_t)tx_accept_flags, (uint32_t)ramrod_flags, rc);
3708         return (rc);
3709     }
3710 
3711     return (0);
3712 }
3713 
3714 static int
3715 bxe_set_storm_rx_mode(struct bxe_softc *sc)
3716 {
3717     unsigned long rx_mode_flags = 0, ramrod_flags = 0;
3718     unsigned long rx_accept_flags = 0, tx_accept_flags = 0;
3719     int rc;
3720 
3721     rc = bxe_fill_accept_flags(sc, sc->rx_mode, &rx_accept_flags,
3722                                &tx_accept_flags);
3723     if (rc) {
3724         return (rc);
3725     }
3726 
3727     bxe_set_bit(RAMROD_RX, &ramrod_flags);
3728     bxe_set_bit(RAMROD_TX, &ramrod_flags);
3729 
3730     /* XXX ensure all fastpath have same cl_id and/or move it to bxe_softc */
3731     return (bxe_set_q_rx_mode(sc, sc->fp[0].cl_id, rx_mode_flags,
3732                               rx_accept_flags, tx_accept_flags,
3733                               ramrod_flags));
3734 }
3735 
3736 /* returns the "mcp load_code" according to global load_count array */
3737 static int
3738 bxe_nic_load_no_mcp(struct bxe_softc *sc)
3739 {
3740     int path = SC_PATH(sc);
3741     int port = SC_PORT(sc);
3742 
3743     BLOGI(sc, "NO MCP - load counts[%d]      %d, %d, %d\n",
3744           path, load_count[path][0], load_count[path][1],
3745           load_count[path][2]);
3746     load_count[path][0]++;
3747     load_count[path][1 + port]++;
3748     BLOGI(sc, "NO MCP - new load counts[%d]  %d, %d, %d\n",
3749           path, load_count[path][0], load_count[path][1],
3750           load_count[path][2]);
3751     if (load_count[path][0] == 1) {
3752         return (FW_MSG_CODE_DRV_LOAD_COMMON);
3753     } else if (load_count[path][1 + port] == 1) {
3754         return (FW_MSG_CODE_DRV_LOAD_PORT);
3755     } else {
3756         return (FW_MSG_CODE_DRV_LOAD_FUNCTION);
3757     }
3758 }
3759 
3760 /* returns the "mcp load_code" according to global load_count array */
3761 static int
3762 bxe_nic_unload_no_mcp(struct bxe_softc *sc)
3763 {
3764     int port = SC_PORT(sc);
3765     int path = SC_PATH(sc);
3766 
3767     BLOGI(sc, "NO MCP - load counts[%d]      %d, %d, %d\n",
3768           path, load_count[path][0], load_count[path][1],
3769           load_count[path][2]);
3770     load_count[path][0]--;
3771     load_count[path][1 + port]--;
3772     BLOGI(sc, "NO MCP - new load counts[%d]  %d, %d, %d\n",
3773           path, load_count[path][0], load_count[path][1],
3774           load_count[path][2]);
3775     if (load_count[path][0] == 0) {
3776         return (FW_MSG_CODE_DRV_UNLOAD_COMMON);
3777     } else if (load_count[path][1 + port] == 0) {
3778         return (FW_MSG_CODE_DRV_UNLOAD_PORT);
3779     } else {
3780         return (FW_MSG_CODE_DRV_UNLOAD_FUNCTION);
3781     }
3782 }
3783 
3784 /* request unload mode from the MCP: COMMON, PORT or FUNCTION */
3785 static uint32_t
3786 bxe_send_unload_req(struct bxe_softc *sc,
3787                     int              unload_mode)
3788 {
3789     uint32_t reset_code = 0;
3790 
3791     /* Select the UNLOAD request mode */
3792     if (unload_mode == UNLOAD_NORMAL) {
3793         reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
3794     } else {
3795         reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
3796     }
3797 
3798     /* Send the request to the MCP */
3799     if (!BXE_NOMCP(sc)) {
3800         reset_code = bxe_fw_command(sc, reset_code, 0);
3801     } else {
3802         reset_code = bxe_nic_unload_no_mcp(sc);
3803     }
3804 
3805     return (reset_code);
3806 }
3807 
3808 /* send UNLOAD_DONE command to the MCP */
3809 static void
3810 bxe_send_unload_done(struct bxe_softc *sc,
3811                      uint8_t          keep_link)
3812 {
3813     uint32_t reset_param =
3814         keep_link ? DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET : 0;
3815 
3816     /* Report UNLOAD_DONE to MCP */
3817     if (!BXE_NOMCP(sc)) {
3818         bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_DONE, reset_param);
3819     }
3820 }
3821 
3822 static int
3823 bxe_func_wait_started(struct bxe_softc *sc)
3824 {
3825     int tout = 50;
3826 
3827     if (!sc->port.pmf) {
3828         return (0);
3829     }
3830 
3831     /*
3832      * (assumption: No Attention from MCP at this stage)
3833      * PMF probably in the middle of TX disable/enable transaction
3834      * 1. Sync IRS for default SB
3835      * 2. Sync SP queue - this guarantees us that attention handling started
3836      * 3. Wait, that TX disable/enable transaction completes
3837      *
3838      * 1+2 guarantee that if DCBX attention was scheduled it already changed
3839      * pending bit of transaction from STARTED-->TX_STOPPED, if we already
3840      * received completion for the transaction the state is TX_STOPPED.
3841      * State will return to STARTED after completion of TX_STOPPED-->STARTED
3842      * transaction.
3843      */
3844 
3845     /* XXX make sure default SB ISR is done */
3846     /* need a way to synchronize an irq (intr_mtx?) */
3847 
3848     /* XXX flush any work queues */
3849 
3850     while (ecore_func_get_state(sc, &sc->func_obj) !=
3851            ECORE_F_STATE_STARTED && tout--) {
3852         DELAY(20000);
3853     }
3854 
3855     if (ecore_func_get_state(sc, &sc->func_obj) != ECORE_F_STATE_STARTED) {
3856         /*
3857          * Failed to complete the transaction in a "good way"
3858          * Force both transactions with CLR bit.
3859          */
3860         struct ecore_func_state_params func_params = { NULL };
3861 
3862         BLOGE(sc, "Unexpected function state! "
3863                   "Forcing STARTED-->TX_STOPPED-->STARTED\n");
3864 
3865         func_params.f_obj = &sc->func_obj;
3866         bxe_set_bit(RAMROD_DRV_CLR_ONLY, &func_params.ramrod_flags);
3867 
3868         /* STARTED-->TX_STOPPED */
3869         func_params.cmd = ECORE_F_CMD_TX_STOP;
3870         ecore_func_state_change(sc, &func_params);
3871 
3872         /* TX_STOPPED-->STARTED */
3873         func_params.cmd = ECORE_F_CMD_TX_START;
3874         return (ecore_func_state_change(sc, &func_params));
3875     }
3876 
3877     return (0);
3878 }
3879 
3880 static int
3881 bxe_stop_queue(struct bxe_softc *sc,
3882                int              index)
3883 {
3884     struct bxe_fastpath *fp = &sc->fp[index];
3885     struct ecore_queue_state_params q_params = { NULL };
3886     int rc;
3887 
3888     BLOGD(sc, DBG_LOAD, "stopping queue %d cid %d\n", index, fp->index);
3889 
3890     q_params.q_obj = &sc->sp_objs[fp->index].q_obj;
3891     /* We want to wait for completion in this context */
3892     bxe_set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
3893 
3894     /* Stop the primary connection: */
3895 
3896     /* ...halt the connection */
3897     q_params.cmd = ECORE_Q_CMD_HALT;
3898     rc = ecore_queue_state_change(sc, &q_params);
3899     if (rc) {
3900         return (rc);
3901     }
3902 
3903     /* ...terminate the connection */
3904     q_params.cmd = ECORE_Q_CMD_TERMINATE;
3905     memset(&q_params.params.terminate, 0, sizeof(q_params.params.terminate));
3906     q_params.params.terminate.cid_index = FIRST_TX_COS_INDEX;
3907     rc = ecore_queue_state_change(sc, &q_params);
3908     if (rc) {
3909         return (rc);
3910     }
3911 
3912     /* ...delete cfc entry */
3913     q_params.cmd = ECORE_Q_CMD_CFC_DEL;
3914     memset(&q_params.params.cfc_del, 0, sizeof(q_params.params.cfc_del));
3915     q_params.params.cfc_del.cid_index = FIRST_TX_COS_INDEX;
3916     return (ecore_queue_state_change(sc, &q_params));
3917 }
3918 
3919 /* wait for the outstanding SP commands */
3920 static inline uint8_t
3921 bxe_wait_sp_comp(struct bxe_softc *sc,
3922                  unsigned long    mask)
3923 {
3924     unsigned long tmp;
3925     int tout = 5000; /* wait for 5 secs tops */
3926 
3927     while (tout--) {
3928         mb();
3929         if (!(atomic_load_acq_long(&sc->sp_state) & mask)) {
3930             return (TRUE);
3931         }
3932 
3933         DELAY(1000);
3934     }
3935 
3936     mb();
3937 
3938     tmp = atomic_load_acq_long(&sc->sp_state);
3939     if (tmp & mask) {
3940         BLOGE(sc, "Filtering completion timed out: "
3941                   "sp_state 0x%lx, mask 0x%lx\n",
3942               tmp, mask);
3943         return (FALSE);
3944     }
3945 
3946     return (FALSE);
3947 }
3948 
3949 static int
3950 bxe_func_stop(struct bxe_softc *sc)
3951 {
3952     struct ecore_func_state_params func_params = { NULL };
3953     int rc;
3954 
3955     /* prepare parameters for function state transitions */
3956     bxe_set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
3957     func_params.f_obj = &sc->func_obj;
3958     func_params.cmd = ECORE_F_CMD_STOP;
3959 
3960     /*
3961      * Try to stop the function the 'good way'. If it fails (in case
3962      * of a parity error during bxe_chip_cleanup()) and we are
3963      * not in a debug mode, perform a state transaction in order to
3964      * enable further HW_RESET transaction.
3965      */
3966     rc = ecore_func_state_change(sc, &func_params);
3967     if (rc) {
3968         BLOGE(sc, "FUNC_STOP ramrod failed. "
3969                   "Running a dry transaction (%d)\n", rc);
3970         bxe_set_bit(RAMROD_DRV_CLR_ONLY, &func_params.ramrod_flags);
3971         return (ecore_func_state_change(sc, &func_params));
3972     }
3973 
3974     return (0);
3975 }
3976 
3977 static int
3978 bxe_reset_hw(struct bxe_softc *sc,
3979              uint32_t         load_code)
3980 {
3981     struct ecore_func_state_params func_params = { NULL };
3982 
3983     /* Prepare parameters for function state transitions */
3984     bxe_set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
3985 
3986     func_params.f_obj = &sc->func_obj;
3987     func_params.cmd = ECORE_F_CMD_HW_RESET;
3988 
3989     func_params.params.hw_init.load_phase = load_code;
3990 
3991     return (ecore_func_state_change(sc, &func_params));
3992 }
3993 
3994 static void
3995 bxe_int_disable_sync(struct bxe_softc *sc,
3996                      int              disable_hw)
3997 {
3998     if (disable_hw) {
3999         /* prevent the HW from sending interrupts */
4000         bxe_int_disable(sc);
4001     }
4002 
4003     /* XXX need a way to synchronize ALL irqs (intr_mtx?) */
4004     /* make sure all ISRs are done */
4005 
4006     /* XXX make sure sp_task is not running */
4007     /* cancel and flush work queues */
4008 }
4009 
4010 static void
4011 bxe_chip_cleanup(struct bxe_softc *sc,
4012                  uint32_t         unload_mode,
4013                  uint8_t          keep_link)
4014 {
4015     int port = SC_PORT(sc);
4016     struct ecore_mcast_ramrod_params rparam = { NULL };
4017     uint32_t reset_code;
4018     int i, rc = 0;
4019 
4020     bxe_drain_tx_queues(sc);
4021 
4022     /* give HW time to discard old tx messages */
4023     DELAY(1000);
4024 
4025     /* Clean all ETH MACs */
4026     rc = bxe_del_all_macs(sc, &sc->sp_objs[0].mac_obj, ECORE_ETH_MAC, FALSE);
4027     if (rc < 0) {
4028         BLOGE(sc, "Failed to delete all ETH MACs (%d)\n", rc);
4029     }
4030 
4031     /* Clean up UC list  */
4032     rc = bxe_del_all_macs(sc, &sc->sp_objs[0].mac_obj, ECORE_UC_LIST_MAC, TRUE);
4033     if (rc < 0) {
4034         BLOGE(sc, "Failed to delete UC MACs list (%d)\n", rc);
4035     }
4036 
4037     /* Disable LLH */
4038     if (!CHIP_IS_E1(sc)) {
4039         REG_WR(sc, NIG_REG_LLH0_FUNC_EN + port*8, 0);
4040     }
4041 
4042     /* Set "drop all" to stop Rx */
4043 
4044     /*
4045      * We need to take the BXE_MCAST_LOCK() here in order to prevent
4046      * a race between the completion code and this code.
4047      */
4048     BXE_MCAST_LOCK(sc);
4049 
4050     if (bxe_test_bit(ECORE_FILTER_RX_MODE_PENDING, &sc->sp_state)) {
4051         bxe_set_bit(ECORE_FILTER_RX_MODE_SCHED, &sc->sp_state);
4052     } else {
4053         bxe_set_storm_rx_mode(sc);
4054     }
4055 
4056     /* Clean up multicast configuration */
4057     rparam.mcast_obj = &sc->mcast_obj;
4058     rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_DEL);
4059     if (rc < 0) {
4060         BLOGE(sc, "Failed to send DEL MCAST command (%d)\n", rc);
4061     }
4062 
4063     BXE_MCAST_UNLOCK(sc);
4064 
4065     // XXX bxe_iov_chip_cleanup(sc);
4066 
4067     /*
4068      * Send the UNLOAD_REQUEST to the MCP. This will return if
4069      * this function should perform FUNCTION, PORT, or COMMON HW
4070      * reset.
4071      */
4072     reset_code = bxe_send_unload_req(sc, unload_mode);
4073 
4074     /*
4075      * (assumption: No Attention from MCP at this stage)
4076      * PMF probably in the middle of TX disable/enable transaction
4077      */
4078     rc = bxe_func_wait_started(sc);
4079     if (rc) {
4080         BLOGE(sc, "bxe_func_wait_started failed (%d)\n", rc);
4081     }
4082 
4083     /*
4084      * Close multi and leading connections
4085      * Completions for ramrods are collected in a synchronous way
4086      */
4087     for (i = 0; i < sc->num_queues; i++) {
4088         if (bxe_stop_queue(sc, i)) {
4089             goto unload_error;
4090         }
4091     }
4092 
4093     /*
4094      * If SP settings didn't get completed so far - something
4095      * very wrong has happen.
4096      */
4097     if (!bxe_wait_sp_comp(sc, ~0x0UL)) {
4098         BLOGE(sc, "Common slow path ramrods got stuck!(%d)\n", rc);
4099     }
4100 
4101 unload_error:
4102 
4103     rc = bxe_func_stop(sc);
4104     if (rc) {
4105         BLOGE(sc, "Function stop failed!(%d)\n", rc);
4106     }
4107 
4108     /* disable HW interrupts */
4109     bxe_int_disable_sync(sc, TRUE);
4110 
4111     /* detach interrupts */
4112     bxe_interrupt_detach(sc);
4113 
4114     /* Reset the chip */
4115     rc = bxe_reset_hw(sc, reset_code);
4116     if (rc) {
4117         BLOGE(sc, "Hardware reset failed(%d)\n", rc);
4118     }
4119 
4120     /* Report UNLOAD_DONE to MCP */
4121     bxe_send_unload_done(sc, keep_link);
4122 }
4123 
4124 static void
4125 bxe_disable_close_the_gate(struct bxe_softc *sc)
4126 {
4127     uint32_t val;
4128     int port = SC_PORT(sc);
4129 
4130     BLOGD(sc, DBG_LOAD,
4131           "Disabling 'close the gates'\n");
4132 
4133     if (CHIP_IS_E1(sc)) {
4134         uint32_t addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
4135                                MISC_REG_AEU_MASK_ATTN_FUNC_0;
4136         val = REG_RD(sc, addr);
4137         val &= ~(0x300);
4138         REG_WR(sc, addr, val);
4139     } else {
4140         val = REG_RD(sc, MISC_REG_AEU_GENERAL_MASK);
4141         val &= ~(MISC_AEU_GENERAL_MASK_REG_AEU_PXP_CLOSE_MASK |
4142                  MISC_AEU_GENERAL_MASK_REG_AEU_NIG_CLOSE_MASK);
4143         REG_WR(sc, MISC_REG_AEU_GENERAL_MASK, val);
4144     }
4145 }
4146 
4147 /*
4148  * Cleans the object that have internal lists without sending
4149  * ramrods. Should be run when interrupts are disabled.
4150  */
4151 static void
4152 bxe_squeeze_objects(struct bxe_softc *sc)
4153 {
4154     unsigned long ramrod_flags = 0, vlan_mac_flags = 0;
4155     struct ecore_mcast_ramrod_params rparam = { NULL };
4156     struct ecore_vlan_mac_obj *mac_obj = &sc->sp_objs->mac_obj;
4157     int rc;
4158 
4159     /* Cleanup MACs' object first... */
4160 
4161     /* Wait for completion of requested */
4162     bxe_set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
4163     /* Perform a dry cleanup */
4164     bxe_set_bit(RAMROD_DRV_CLR_ONLY, &ramrod_flags);
4165 
4166     /* Clean ETH primary MAC */
4167     bxe_set_bit(ECORE_ETH_MAC, &vlan_mac_flags);
4168     rc = mac_obj->delete_all(sc, &sc->sp_objs->mac_obj, &vlan_mac_flags,
4169                              &ramrod_flags);
4170     if (rc != 0) {
4171         BLOGE(sc, "Failed to clean ETH MACs (%d)\n", rc);
4172     }
4173 
4174     /* Cleanup UC list */
4175     vlan_mac_flags = 0;
4176     bxe_set_bit(ECORE_UC_LIST_MAC, &vlan_mac_flags);
4177     rc = mac_obj->delete_all(sc, mac_obj, &vlan_mac_flags,
4178                              &ramrod_flags);
4179     if (rc != 0) {
4180         BLOGE(sc, "Failed to clean UC list MACs (%d)\n", rc);
4181     }
4182 
4183     /* Now clean mcast object... */
4184 
4185     rparam.mcast_obj = &sc->mcast_obj;
4186     bxe_set_bit(RAMROD_DRV_CLR_ONLY, &rparam.ramrod_flags);
4187 
4188     /* Add a DEL command... */
4189     rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_DEL);
4190     if (rc < 0) {
4191         BLOGE(sc, "Failed to send DEL MCAST command (%d)\n", rc);
4192     }
4193 
4194     /* now wait until all pending commands are cleared */
4195 
4196     rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_CONT);
4197     while (rc != 0) {
4198         if (rc < 0) {
4199             BLOGE(sc, "Failed to clean MCAST object (%d)\n", rc);
4200             return;
4201         }
4202 
4203         rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_CONT);
4204     }
4205 }
4206 
4207 /* stop the controller */
4208 static __noinline int
4209 bxe_nic_unload(struct bxe_softc *sc,
4210                uint32_t         unload_mode,
4211                uint8_t          keep_link)
4212 {
4213     uint8_t global = FALSE;
4214     uint32_t val;
4215     int i;
4216 
4217     BXE_CORE_LOCK_ASSERT(sc);
4218 
4219     if_setdrvflagbits(sc->ifp, 0, IFF_DRV_RUNNING);
4220 
4221     for (i = 0; i < sc->num_queues; i++) {
4222         struct bxe_fastpath *fp;
4223 
4224         fp = &sc->fp[i];
4225 	fp->watchdog_timer = 0;
4226         BXE_FP_TX_LOCK(fp);
4227         BXE_FP_TX_UNLOCK(fp);
4228     }
4229 
4230     BLOGD(sc, DBG_LOAD, "Starting NIC unload...\n");
4231 
4232     /* mark driver as unloaded in shmem2 */
4233     if (IS_PF(sc) && SHMEM2_HAS(sc, drv_capabilities_flag)) {
4234         val = SHMEM2_RD(sc, drv_capabilities_flag[SC_FW_MB_IDX(sc)]);
4235         SHMEM2_WR(sc, drv_capabilities_flag[SC_FW_MB_IDX(sc)],
4236                   val & ~DRV_FLAGS_CAPABILITIES_LOADED_L2);
4237     }
4238 
4239     if (IS_PF(sc) && sc->recovery_state != BXE_RECOVERY_DONE &&
4240         (sc->state == BXE_STATE_CLOSED || sc->state == BXE_STATE_ERROR)) {
4241 
4242 	if(CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) {
4243             /*
4244              * We can get here if the driver has been unloaded
4245              * during parity error recovery and is either waiting for a
4246              * leader to complete or for other functions to unload and
4247              * then ifconfig down has been issued. In this case we want to
4248              * unload and let other functions to complete a recovery
4249              * process.
4250              */
4251             sc->recovery_state = BXE_RECOVERY_DONE;
4252             sc->is_leader = 0;
4253             bxe_release_leader_lock(sc);
4254             mb();
4255             BLOGD(sc, DBG_LOAD, "Releasing a leadership...\n");
4256 	}
4257         BLOGE(sc, "Can't unload in closed or error state recover_state 0x%x"
4258             " state = 0x%x\n", sc->recovery_state, sc->state);
4259         return (-1);
4260     }
4261 
4262     /*
4263      * Nothing to do during unload if previous bxe_nic_load()
4264      * did not completed successfully - all resourses are released.
4265      */
4266     if ((sc->state == BXE_STATE_CLOSED) ||
4267         (sc->state == BXE_STATE_ERROR)) {
4268         return (0);
4269     }
4270 
4271     sc->state = BXE_STATE_CLOSING_WAITING_HALT;
4272     mb();
4273 
4274     /* stop tx */
4275     bxe_tx_disable(sc);
4276 
4277     sc->rx_mode = BXE_RX_MODE_NONE;
4278     /* XXX set rx mode ??? */
4279 
4280     if (IS_PF(sc) && !sc->grcdump_done) {
4281         /* set ALWAYS_ALIVE bit in shmem */
4282         sc->fw_drv_pulse_wr_seq |= DRV_PULSE_ALWAYS_ALIVE;
4283 
4284         bxe_drv_pulse(sc);
4285 
4286         bxe_stats_handle(sc, STATS_EVENT_STOP);
4287         bxe_save_statistics(sc);
4288     }
4289 
4290     /* wait till consumers catch up with producers in all queues */
4291     bxe_drain_tx_queues(sc);
4292 
4293     /* if VF indicate to PF this function is going down (PF will delete sp
4294      * elements and clear initializations
4295      */
4296     if (IS_VF(sc)) {
4297         ; /* bxe_vfpf_close_vf(sc); */
4298     } else if (unload_mode != UNLOAD_RECOVERY) {
4299         /* if this is a normal/close unload need to clean up chip */
4300         if (!sc->grcdump_done)
4301             bxe_chip_cleanup(sc, unload_mode, keep_link);
4302     } else {
4303         /* Send the UNLOAD_REQUEST to the MCP */
4304         bxe_send_unload_req(sc, unload_mode);
4305 
4306         /*
4307          * Prevent transactions to host from the functions on the
4308          * engine that doesn't reset global blocks in case of global
4309          * attention once gloabl blocks are reset and gates are opened
4310          * (the engine which leader will perform the recovery
4311          * last).
4312          */
4313         if (!CHIP_IS_E1x(sc)) {
4314             bxe_pf_disable(sc);
4315         }
4316 
4317         /* disable HW interrupts */
4318         bxe_int_disable_sync(sc, TRUE);
4319 
4320         /* detach interrupts */
4321         bxe_interrupt_detach(sc);
4322 
4323         /* Report UNLOAD_DONE to MCP */
4324         bxe_send_unload_done(sc, FALSE);
4325     }
4326 
4327     /*
4328      * At this stage no more interrupts will arrive so we may safely clean
4329      * the queue'able objects here in case they failed to get cleaned so far.
4330      */
4331     if (IS_PF(sc)) {
4332         bxe_squeeze_objects(sc);
4333     }
4334 
4335     /* There should be no more pending SP commands at this stage */
4336     sc->sp_state = 0;
4337 
4338     sc->port.pmf = 0;
4339 
4340     bxe_free_fp_buffers(sc);
4341 
4342     if (IS_PF(sc)) {
4343         bxe_free_mem(sc);
4344     }
4345 
4346     bxe_free_fw_stats_mem(sc);
4347 
4348     sc->state = BXE_STATE_CLOSED;
4349 
4350     /*
4351      * Check if there are pending parity attentions. If there are - set
4352      * RECOVERY_IN_PROGRESS.
4353      */
4354     if (IS_PF(sc) && bxe_chk_parity_attn(sc, &global, FALSE)) {
4355         bxe_set_reset_in_progress(sc);
4356 
4357         /* Set RESET_IS_GLOBAL if needed */
4358         if (global) {
4359             bxe_set_reset_global(sc);
4360         }
4361     }
4362 
4363     /*
4364      * The last driver must disable a "close the gate" if there is no
4365      * parity attention or "process kill" pending.
4366      */
4367     if (IS_PF(sc) && !bxe_clear_pf_load(sc) &&
4368         bxe_reset_is_done(sc, SC_PATH(sc))) {
4369         bxe_disable_close_the_gate(sc);
4370     }
4371 
4372     BLOGD(sc, DBG_LOAD, "Ended NIC unload\n");
4373 
4374     bxe_link_report(sc);
4375 
4376     return (0);
4377 }
4378 
4379 /*
4380  * Called by the OS to set various media options (i.e. link, speed, etc.) when
4381  * the user runs "ifconfig bxe media ..." or "ifconfig bxe mediaopt ...".
4382  */
4383 static int
4384 bxe_ifmedia_update(if_t ifp)
4385 {
4386     struct bxe_softc *sc = (struct bxe_softc *)if_getsoftc(ifp);
4387     struct ifmedia *ifm;
4388 
4389     ifm = &sc->ifmedia;
4390 
4391     /* We only support Ethernet media type. */
4392     if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER) {
4393         return (EINVAL);
4394     }
4395 
4396     switch (IFM_SUBTYPE(ifm->ifm_media)) {
4397     case IFM_AUTO:
4398          break;
4399     case IFM_10G_CX4:
4400     case IFM_10G_SR:
4401     case IFM_10G_T:
4402     case IFM_10G_TWINAX:
4403     default:
4404         /* We don't support changing the media type. */
4405         BLOGD(sc, DBG_LOAD, "Invalid media type (%d)\n",
4406               IFM_SUBTYPE(ifm->ifm_media));
4407         return (EINVAL);
4408     }
4409 
4410     return (0);
4411 }
4412 
4413 /*
4414  * Called by the OS to get the current media status (i.e. link, speed, etc.).
4415  */
4416 static void
4417 bxe_ifmedia_status(if_t ifp, struct ifmediareq *ifmr)
4418 {
4419     struct bxe_softc *sc = if_getsoftc(ifp);
4420 
4421     /* Bug 165447: the 'ifconfig' tool skips printing of the "status: ..."
4422        line if the IFM_AVALID flag is *NOT* set. So we need to set this
4423        flag unconditionally (irrespective of the admininistrative
4424        'up/down' state of the interface) to ensure that the line is always
4425        displayed.
4426     */
4427     ifmr->ifm_status = IFM_AVALID;
4428 
4429     /* Setup the default interface info. */
4430     ifmr->ifm_active = IFM_ETHER;
4431 
4432     /* Report link down if the driver isn't running. */
4433     if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) == 0) {
4434         ifmr->ifm_active |= IFM_NONE;
4435         BLOGD(sc, DBG_PHY, "in %s : nic still not loaded fully\n", __func__);
4436         BLOGD(sc, DBG_PHY, "in %s : link_up (1) : %d\n",
4437                 __func__, sc->link_vars.link_up);
4438         return;
4439     }
4440 
4441 
4442     if (sc->link_vars.link_up) {
4443         ifmr->ifm_status |= IFM_ACTIVE;
4444         ifmr->ifm_active |= IFM_FDX;
4445     } else {
4446         ifmr->ifm_active |= IFM_NONE;
4447         BLOGD(sc, DBG_PHY, "in %s : setting IFM_NONE\n",
4448                 __func__);
4449         return;
4450     }
4451 
4452     ifmr->ifm_active |= sc->media;
4453     return;
4454 }
4455 
4456 static void
4457 bxe_handle_chip_tq(void *context,
4458                    int  pending)
4459 {
4460     struct bxe_softc *sc = (struct bxe_softc *)context;
4461     long work = atomic_load_acq_long(&sc->chip_tq_flags);
4462 
4463     switch (work)
4464     {
4465 
4466     case CHIP_TQ_REINIT:
4467         if (if_getdrvflags(sc->ifp) & IFF_DRV_RUNNING) {
4468             /* restart the interface */
4469             BLOGD(sc, DBG_LOAD, "Restarting the interface...\n");
4470             bxe_periodic_stop(sc);
4471             BXE_CORE_LOCK(sc);
4472             bxe_stop_locked(sc);
4473             bxe_init_locked(sc);
4474             BXE_CORE_UNLOCK(sc);
4475         }
4476         break;
4477 
4478     default:
4479         break;
4480     }
4481 }
4482 
4483 /*
4484  * Handles any IOCTL calls from the operating system.
4485  *
4486  * Returns:
4487  *   0 = Success, >0 Failure
4488  */
4489 static int
4490 bxe_ioctl(if_t ifp,
4491           u_long       command,
4492           caddr_t      data)
4493 {
4494     struct bxe_softc *sc = if_getsoftc(ifp);
4495     struct ifreq *ifr = (struct ifreq *)data;
4496     int mask = 0;
4497     int reinit = 0;
4498     int error = 0;
4499 
4500     int mtu_min = (ETH_MIN_PACKET_SIZE - ETH_HLEN);
4501     int mtu_max = (MJUM9BYTES - ETH_OVERHEAD - IP_HEADER_ALIGNMENT_PADDING);
4502 
4503     switch (command)
4504     {
4505     case SIOCSIFMTU:
4506         BLOGD(sc, DBG_IOCTL, "Received SIOCSIFMTU ioctl (mtu=%d)\n",
4507               ifr->ifr_mtu);
4508 
4509         if (sc->mtu == ifr->ifr_mtu) {
4510             /* nothing to change */
4511             break;
4512         }
4513 
4514         if ((ifr->ifr_mtu < mtu_min) || (ifr->ifr_mtu > mtu_max)) {
4515             BLOGE(sc, "Unsupported MTU size %d (range is %d-%d)\n",
4516                   ifr->ifr_mtu, mtu_min, mtu_max);
4517             error = EINVAL;
4518             break;
4519         }
4520 
4521         atomic_store_rel_int((volatile unsigned int *)&sc->mtu,
4522                              (unsigned long)ifr->ifr_mtu);
4523 	/*
4524         atomic_store_rel_long((volatile unsigned long *)&if_getmtu(ifp),
4525                               (unsigned long)ifr->ifr_mtu);
4526 	XXX - Not sure why it needs to be atomic
4527 	*/
4528 	if_setmtu(ifp, ifr->ifr_mtu);
4529         reinit = 1;
4530         break;
4531 
4532     case SIOCSIFFLAGS:
4533         /* toggle the interface state up or down */
4534         BLOGD(sc, DBG_IOCTL, "Received SIOCSIFFLAGS ioctl\n");
4535 
4536 	BXE_CORE_LOCK(sc);
4537         /* check if the interface is up */
4538         if (if_getflags(ifp) & IFF_UP) {
4539             if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
4540                 /* set the receive mode flags */
4541                 bxe_set_rx_mode(sc);
4542             } else if(sc->state != BXE_STATE_DISABLED) {
4543 		bxe_init_locked(sc);
4544             }
4545         } else {
4546             if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
4547 		bxe_periodic_stop(sc);
4548 		bxe_stop_locked(sc);
4549             }
4550         }
4551 	BXE_CORE_UNLOCK(sc);
4552 
4553         break;
4554 
4555     case SIOCADDMULTI:
4556     case SIOCDELMULTI:
4557         /* add/delete multicast addresses */
4558         BLOGD(sc, DBG_IOCTL, "Received SIOCADDMULTI/SIOCDELMULTI ioctl\n");
4559 
4560         /* check if the interface is up */
4561         if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
4562             /* set the receive mode flags */
4563 	    BXE_CORE_LOCK(sc);
4564             bxe_set_rx_mode(sc);
4565 	    BXE_CORE_UNLOCK(sc);
4566         }
4567 
4568         break;
4569 
4570     case SIOCSIFCAP:
4571         /* find out which capabilities have changed */
4572         mask = (ifr->ifr_reqcap ^ if_getcapenable(ifp));
4573 
4574         BLOGD(sc, DBG_IOCTL, "Received SIOCSIFCAP ioctl (mask=0x%08x)\n",
4575               mask);
4576 
4577         /* toggle the LRO capabilites enable flag */
4578         if (mask & IFCAP_LRO) {
4579 	    if_togglecapenable(ifp, IFCAP_LRO);
4580             BLOGD(sc, DBG_IOCTL, "Turning LRO %s\n",
4581                   (if_getcapenable(ifp) & IFCAP_LRO) ? "ON" : "OFF");
4582             reinit = 1;
4583         }
4584 
4585         /* toggle the TXCSUM checksum capabilites enable flag */
4586         if (mask & IFCAP_TXCSUM) {
4587 	    if_togglecapenable(ifp, IFCAP_TXCSUM);
4588             BLOGD(sc, DBG_IOCTL, "Turning TXCSUM %s\n",
4589                   (if_getcapenable(ifp) & IFCAP_TXCSUM) ? "ON" : "OFF");
4590             if (if_getcapenable(ifp) & IFCAP_TXCSUM) {
4591                 if_sethwassistbits(ifp, (CSUM_IP      |
4592                                     CSUM_TCP      |
4593                                     CSUM_UDP      |
4594                                     CSUM_TSO      |
4595                                     CSUM_TCP_IPV6 |
4596                                     CSUM_UDP_IPV6), 0);
4597             } else {
4598 		if_clearhwassist(ifp); /* XXX */
4599             }
4600         }
4601 
4602         /* toggle the RXCSUM checksum capabilities enable flag */
4603         if (mask & IFCAP_RXCSUM) {
4604 	    if_togglecapenable(ifp, IFCAP_RXCSUM);
4605             BLOGD(sc, DBG_IOCTL, "Turning RXCSUM %s\n",
4606                   (if_getcapenable(ifp) & IFCAP_RXCSUM) ? "ON" : "OFF");
4607             if (if_getcapenable(ifp) & IFCAP_RXCSUM) {
4608                 if_sethwassistbits(ifp, (CSUM_IP      |
4609                                     CSUM_TCP      |
4610                                     CSUM_UDP      |
4611                                     CSUM_TSO      |
4612                                     CSUM_TCP_IPV6 |
4613                                     CSUM_UDP_IPV6), 0);
4614             } else {
4615 		if_clearhwassist(ifp); /* XXX */
4616             }
4617         }
4618 
4619         /* toggle TSO4 capabilities enabled flag */
4620         if (mask & IFCAP_TSO4) {
4621             if_togglecapenable(ifp, IFCAP_TSO4);
4622             BLOGD(sc, DBG_IOCTL, "Turning TSO4 %s\n",
4623                   (if_getcapenable(ifp) & IFCAP_TSO4) ? "ON" : "OFF");
4624         }
4625 
4626         /* toggle TSO6 capabilities enabled flag */
4627         if (mask & IFCAP_TSO6) {
4628 	    if_togglecapenable(ifp, IFCAP_TSO6);
4629             BLOGD(sc, DBG_IOCTL, "Turning TSO6 %s\n",
4630                   (if_getcapenable(ifp) & IFCAP_TSO6) ? "ON" : "OFF");
4631         }
4632 
4633         /* toggle VLAN_HWTSO capabilities enabled flag */
4634         if (mask & IFCAP_VLAN_HWTSO) {
4635 
4636 	    if_togglecapenable(ifp, IFCAP_VLAN_HWTSO);
4637             BLOGD(sc, DBG_IOCTL, "Turning VLAN_HWTSO %s\n",
4638                   (if_getcapenable(ifp) & IFCAP_VLAN_HWTSO) ? "ON" : "OFF");
4639         }
4640 
4641         /* toggle VLAN_HWCSUM capabilities enabled flag */
4642         if (mask & IFCAP_VLAN_HWCSUM) {
4643             /* XXX investigate this... */
4644             BLOGE(sc, "Changing VLAN_HWCSUM is not supported!\n");
4645             error = EINVAL;
4646         }
4647 
4648         /* toggle VLAN_MTU capabilities enable flag */
4649         if (mask & IFCAP_VLAN_MTU) {
4650             /* XXX investigate this... */
4651             BLOGE(sc, "Changing VLAN_MTU is not supported!\n");
4652             error = EINVAL;
4653         }
4654 
4655         /* toggle VLAN_HWTAGGING capabilities enabled flag */
4656         if (mask & IFCAP_VLAN_HWTAGGING) {
4657             /* XXX investigate this... */
4658             BLOGE(sc, "Changing VLAN_HWTAGGING is not supported!\n");
4659             error = EINVAL;
4660         }
4661 
4662         /* toggle VLAN_HWFILTER capabilities enabled flag */
4663         if (mask & IFCAP_VLAN_HWFILTER) {
4664             /* XXX investigate this... */
4665             BLOGE(sc, "Changing VLAN_HWFILTER is not supported!\n");
4666             error = EINVAL;
4667         }
4668 
4669         /* XXX not yet...
4670          * IFCAP_WOL_MAGIC
4671          */
4672 
4673         break;
4674 
4675     case SIOCSIFMEDIA:
4676     case SIOCGIFMEDIA:
4677         /* set/get interface media */
4678         BLOGD(sc, DBG_IOCTL,
4679               "Received SIOCSIFMEDIA/SIOCGIFMEDIA ioctl (cmd=%lu)\n",
4680               (command & 0xff));
4681         error = ifmedia_ioctl(ifp, ifr, &sc->ifmedia, command);
4682         break;
4683 
4684     default:
4685         BLOGD(sc, DBG_IOCTL, "Received Unknown Ioctl (cmd=%lu)\n",
4686               (command & 0xff));
4687         error = ether_ioctl(ifp, command, data);
4688         break;
4689     }
4690 
4691     if (reinit && (if_getdrvflags(sc->ifp) & IFF_DRV_RUNNING)) {
4692         BLOGD(sc, DBG_LOAD | DBG_IOCTL,
4693               "Re-initializing hardware from IOCTL change\n");
4694 	bxe_periodic_stop(sc);
4695 	BXE_CORE_LOCK(sc);
4696 	bxe_stop_locked(sc);
4697 	bxe_init_locked(sc);
4698 	BXE_CORE_UNLOCK(sc);
4699     }
4700 
4701     return (error);
4702 }
4703 
4704 static __noinline void
4705 bxe_dump_mbuf(struct bxe_softc *sc,
4706               struct mbuf      *m,
4707               uint8_t          contents)
4708 {
4709     char * type;
4710     int i = 0;
4711 
4712     if (!(sc->debug & DBG_MBUF)) {
4713         return;
4714     }
4715 
4716     if (m == NULL) {
4717         BLOGD(sc, DBG_MBUF, "mbuf: null pointer\n");
4718         return;
4719     }
4720 
4721     while (m) {
4722 
4723         BLOGD(sc, DBG_MBUF,
4724               "%02d: mbuf=%p m_len=%d m_flags=0x%b m_data=%p\n",
4725               i, m, m->m_len, m->m_flags, M_FLAG_BITS, m->m_data);
4726 
4727         if (m->m_flags & M_PKTHDR) {
4728              BLOGD(sc, DBG_MBUF,
4729                    "%02d: - m_pkthdr: tot_len=%d flags=0x%b csum_flags=%b\n",
4730                    i, m->m_pkthdr.len, m->m_flags, M_FLAG_BITS,
4731                    (int)m->m_pkthdr.csum_flags, CSUM_BITS);
4732         }
4733 
4734         if (m->m_flags & M_EXT) {
4735             switch (m->m_ext.ext_type) {
4736             case EXT_CLUSTER:    type = "EXT_CLUSTER";    break;
4737             case EXT_SFBUF:      type = "EXT_SFBUF";      break;
4738             case EXT_JUMBOP:     type = "EXT_JUMBOP";     break;
4739             case EXT_JUMBO9:     type = "EXT_JUMBO9";     break;
4740             case EXT_JUMBO16:    type = "EXT_JUMBO16";    break;
4741             case EXT_PACKET:     type = "EXT_PACKET";     break;
4742             case EXT_MBUF:       type = "EXT_MBUF";       break;
4743             case EXT_NET_DRV:    type = "EXT_NET_DRV";    break;
4744             case EXT_MOD_TYPE:   type = "EXT_MOD_TYPE";   break;
4745             case EXT_DISPOSABLE: type = "EXT_DISPOSABLE"; break;
4746             case EXT_EXTREF:     type = "EXT_EXTREF";     break;
4747             default:             type = "UNKNOWN";        break;
4748             }
4749 
4750             BLOGD(sc, DBG_MBUF,
4751                   "%02d: - m_ext: %p ext_size=%d type=%s\n",
4752                   i, m->m_ext.ext_buf, m->m_ext.ext_size, type);
4753         }
4754 
4755         if (contents) {
4756             bxe_dump_mbuf_data(sc, "mbuf data", m, TRUE);
4757         }
4758 
4759         m = m->m_next;
4760         i++;
4761     }
4762 }
4763 
4764 /*
4765  * Checks to ensure the 13 bd sliding window is >= MSS for TSO.
4766  * Check that (13 total bds - 3 bds) = 10 bd window >= MSS.
4767  * The window: 3 bds are = 1 for headers BD + 2 for parse BD and last BD
4768  * The headers comes in a separate bd in FreeBSD so 13-3=10.
4769  * Returns: 0 if OK to send, 1 if packet needs further defragmentation
4770  */
4771 static int
4772 bxe_chktso_window(struct bxe_softc  *sc,
4773                   int               nsegs,
4774                   bus_dma_segment_t *segs,
4775                   struct mbuf       *m)
4776 {
4777     uint32_t num_wnds, wnd_size, wnd_sum;
4778     int32_t frag_idx, wnd_idx;
4779     unsigned short lso_mss;
4780 
4781     wnd_sum = 0;
4782     wnd_size = 10;
4783     num_wnds = nsegs - wnd_size;
4784     lso_mss = htole16(m->m_pkthdr.tso_segsz);
4785 
4786     /*
4787      * Total header lengths Eth+IP+TCP in first FreeBSD mbuf so calculate the
4788      * first window sum of data while skipping the first assuming it is the
4789      * header in FreeBSD.
4790      */
4791     for (frag_idx = 1; (frag_idx <= wnd_size); frag_idx++) {
4792         wnd_sum += htole16(segs[frag_idx].ds_len);
4793     }
4794 
4795     /* check the first 10 bd window size */
4796     if (wnd_sum < lso_mss) {
4797         return (1);
4798     }
4799 
4800     /* run through the windows */
4801     for (wnd_idx = 0; wnd_idx < num_wnds; wnd_idx++, frag_idx++) {
4802         /* subtract the first mbuf->m_len of the last wndw(-header) */
4803         wnd_sum -= htole16(segs[wnd_idx+1].ds_len);
4804         /* add the next mbuf len to the len of our new window */
4805         wnd_sum += htole16(segs[frag_idx].ds_len);
4806         if (wnd_sum < lso_mss) {
4807             return (1);
4808         }
4809     }
4810 
4811     return (0);
4812 }
4813 
4814 static uint8_t
4815 bxe_set_pbd_csum_e2(struct bxe_fastpath *fp,
4816                     struct mbuf         *m,
4817                     uint32_t            *parsing_data)
4818 {
4819     struct ether_vlan_header *eh = NULL;
4820     struct ip *ip4 = NULL;
4821     struct ip6_hdr *ip6 = NULL;
4822     caddr_t ip = NULL;
4823     struct tcphdr *th = NULL;
4824     int e_hlen, ip_hlen, l4_off;
4825     uint16_t proto;
4826 
4827     if (m->m_pkthdr.csum_flags == CSUM_IP) {
4828         /* no L4 checksum offload needed */
4829         return (0);
4830     }
4831 
4832     /* get the Ethernet header */
4833     eh = mtod(m, struct ether_vlan_header *);
4834 
4835     /* handle VLAN encapsulation if present */
4836     if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) {
4837         e_hlen = (ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN);
4838         proto  = ntohs(eh->evl_proto);
4839     } else {
4840         e_hlen = ETHER_HDR_LEN;
4841         proto  = ntohs(eh->evl_encap_proto);
4842     }
4843 
4844     switch (proto) {
4845     case ETHERTYPE_IP:
4846         /* get the IP header, if mbuf len < 20 then header in next mbuf */
4847         ip4 = (m->m_len < sizeof(struct ip)) ?
4848                   (struct ip *)m->m_next->m_data :
4849                   (struct ip *)(m->m_data + e_hlen);
4850         /* ip_hl is number of 32-bit words */
4851         ip_hlen = (ip4->ip_hl << 2);
4852         ip = (caddr_t)ip4;
4853         break;
4854     case ETHERTYPE_IPV6:
4855         /* get the IPv6 header, if mbuf len < 40 then header in next mbuf */
4856         ip6 = (m->m_len < sizeof(struct ip6_hdr)) ?
4857                   (struct ip6_hdr *)m->m_next->m_data :
4858                   (struct ip6_hdr *)(m->m_data + e_hlen);
4859         /* XXX cannot support offload with IPv6 extensions */
4860         ip_hlen = sizeof(struct ip6_hdr);
4861         ip = (caddr_t)ip6;
4862         break;
4863     default:
4864         /* We can't offload in this case... */
4865         /* XXX error stat ??? */
4866         return (0);
4867     }
4868 
4869     /* XXX assuming L4 header is contiguous to IPv4/IPv6 in the same mbuf */
4870     l4_off = (e_hlen + ip_hlen);
4871 
4872     *parsing_data |=
4873         (((l4_off >> 1) << ETH_TX_PARSE_BD_E2_L4_HDR_START_OFFSET_W_SHIFT) &
4874          ETH_TX_PARSE_BD_E2_L4_HDR_START_OFFSET_W);
4875 
4876     if (m->m_pkthdr.csum_flags & (CSUM_TCP |
4877                                   CSUM_TSO |
4878                                   CSUM_TCP_IPV6)) {
4879         fp->eth_q_stats.tx_ofld_frames_csum_tcp++;
4880         th = (struct tcphdr *)(ip + ip_hlen);
4881         /* th_off is number of 32-bit words */
4882         *parsing_data |= ((th->th_off <<
4883                            ETH_TX_PARSE_BD_E2_TCP_HDR_LENGTH_DW_SHIFT) &
4884                           ETH_TX_PARSE_BD_E2_TCP_HDR_LENGTH_DW);
4885         return (l4_off + (th->th_off << 2)); /* entire header length */
4886     } else if (m->m_pkthdr.csum_flags & (CSUM_UDP |
4887                                          CSUM_UDP_IPV6)) {
4888         fp->eth_q_stats.tx_ofld_frames_csum_udp++;
4889         return (l4_off + sizeof(struct udphdr)); /* entire header length */
4890     } else {
4891         /* XXX error stat ??? */
4892         return (0);
4893     }
4894 }
4895 
4896 static uint8_t
4897 bxe_set_pbd_csum(struct bxe_fastpath        *fp,
4898                  struct mbuf                *m,
4899                  struct eth_tx_parse_bd_e1x *pbd)
4900 {
4901     struct ether_vlan_header *eh = NULL;
4902     struct ip *ip4 = NULL;
4903     struct ip6_hdr *ip6 = NULL;
4904     caddr_t ip = NULL;
4905     struct tcphdr *th = NULL;
4906     struct udphdr *uh = NULL;
4907     int e_hlen, ip_hlen;
4908     uint16_t proto;
4909     uint8_t hlen;
4910     uint16_t tmp_csum;
4911     uint32_t *tmp_uh;
4912 
4913     /* get the Ethernet header */
4914     eh = mtod(m, struct ether_vlan_header *);
4915 
4916     /* handle VLAN encapsulation if present */
4917     if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) {
4918         e_hlen = (ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN);
4919         proto  = ntohs(eh->evl_proto);
4920     } else {
4921         e_hlen = ETHER_HDR_LEN;
4922         proto  = ntohs(eh->evl_encap_proto);
4923     }
4924 
4925     switch (proto) {
4926     case ETHERTYPE_IP:
4927         /* get the IP header, if mbuf len < 20 then header in next mbuf */
4928         ip4 = (m->m_len < sizeof(struct ip)) ?
4929                   (struct ip *)m->m_next->m_data :
4930                   (struct ip *)(m->m_data + e_hlen);
4931         /* ip_hl is number of 32-bit words */
4932         ip_hlen = (ip4->ip_hl << 1);
4933         ip = (caddr_t)ip4;
4934         break;
4935     case ETHERTYPE_IPV6:
4936         /* get the IPv6 header, if mbuf len < 40 then header in next mbuf */
4937         ip6 = (m->m_len < sizeof(struct ip6_hdr)) ?
4938                   (struct ip6_hdr *)m->m_next->m_data :
4939                   (struct ip6_hdr *)(m->m_data + e_hlen);
4940         /* XXX cannot support offload with IPv6 extensions */
4941         ip_hlen = (sizeof(struct ip6_hdr) >> 1);
4942         ip = (caddr_t)ip6;
4943         break;
4944     default:
4945         /* We can't offload in this case... */
4946         /* XXX error stat ??? */
4947         return (0);
4948     }
4949 
4950     hlen = (e_hlen >> 1);
4951 
4952     /* note that rest of global_data is indirectly zeroed here */
4953     if (m->m_flags & M_VLANTAG) {
4954         pbd->global_data =
4955             htole16(hlen | (1 << ETH_TX_PARSE_BD_E1X_LLC_SNAP_EN_SHIFT));
4956     } else {
4957         pbd->global_data = htole16(hlen);
4958     }
4959 
4960     pbd->ip_hlen_w = ip_hlen;
4961 
4962     hlen += pbd->ip_hlen_w;
4963 
4964     /* XXX assuming L4 header is contiguous to IPv4/IPv6 in the same mbuf */
4965 
4966     if (m->m_pkthdr.csum_flags & (CSUM_TCP |
4967                                   CSUM_TSO |
4968                                   CSUM_TCP_IPV6)) {
4969         th = (struct tcphdr *)(ip + (ip_hlen << 1));
4970         /* th_off is number of 32-bit words */
4971         hlen += (uint16_t)(th->th_off << 1);
4972     } else if (m->m_pkthdr.csum_flags & (CSUM_UDP |
4973                                          CSUM_UDP_IPV6)) {
4974         uh = (struct udphdr *)(ip + (ip_hlen << 1));
4975         hlen += (sizeof(struct udphdr) / 2);
4976     } else {
4977         /* valid case as only CSUM_IP was set */
4978         return (0);
4979     }
4980 
4981     pbd->total_hlen_w = htole16(hlen);
4982 
4983     if (m->m_pkthdr.csum_flags & (CSUM_TCP |
4984                                   CSUM_TSO |
4985                                   CSUM_TCP_IPV6)) {
4986         fp->eth_q_stats.tx_ofld_frames_csum_tcp++;
4987         pbd->tcp_pseudo_csum = ntohs(th->th_sum);
4988     } else if (m->m_pkthdr.csum_flags & (CSUM_UDP |
4989                                          CSUM_UDP_IPV6)) {
4990         fp->eth_q_stats.tx_ofld_frames_csum_udp++;
4991 
4992         /*
4993          * Everest1 (i.e. 57710, 57711, 57711E) does not natively support UDP
4994          * checksums and does not know anything about the UDP header and where
4995          * the checksum field is located. It only knows about TCP. Therefore
4996          * we "lie" to the hardware for outgoing UDP packets w/ checksum
4997          * offload. Since the checksum field offset for TCP is 16 bytes and
4998          * for UDP it is 6 bytes we pass a pointer to the hardware that is 10
4999          * bytes less than the start of the UDP header. This allows the
5000          * hardware to write the checksum in the correct spot. But the
5001          * hardware will compute a checksum which includes the last 10 bytes
5002          * of the IP header. To correct this we tweak the stack computed
5003          * pseudo checksum by folding in the calculation of the inverse
5004          * checksum for those final 10 bytes of the IP header. This allows
5005          * the correct checksum to be computed by the hardware.
5006          */
5007 
5008         /* set pointer 10 bytes before UDP header */
5009         tmp_uh = (uint32_t *)((uint8_t *)uh - 10);
5010 
5011         /* calculate a pseudo header checksum over the first 10 bytes */
5012         tmp_csum = in_pseudo(*tmp_uh,
5013                              *(tmp_uh + 1),
5014                              *(uint16_t *)(tmp_uh + 2));
5015 
5016         pbd->tcp_pseudo_csum = ntohs(in_addword(uh->uh_sum, ~tmp_csum));
5017     }
5018 
5019     return (hlen * 2); /* entire header length, number of bytes */
5020 }
5021 
5022 static void
5023 bxe_set_pbd_lso_e2(struct mbuf *m,
5024                    uint32_t    *parsing_data)
5025 {
5026     *parsing_data |= ((m->m_pkthdr.tso_segsz <<
5027                        ETH_TX_PARSE_BD_E2_LSO_MSS_SHIFT) &
5028                       ETH_TX_PARSE_BD_E2_LSO_MSS);
5029 
5030     /* XXX test for IPv6 with extension header... */
5031 }
5032 
5033 static void
5034 bxe_set_pbd_lso(struct mbuf                *m,
5035                 struct eth_tx_parse_bd_e1x *pbd)
5036 {
5037     struct ether_vlan_header *eh = NULL;
5038     struct ip *ip = NULL;
5039     struct tcphdr *th = NULL;
5040     int e_hlen;
5041 
5042     /* get the Ethernet header */
5043     eh = mtod(m, struct ether_vlan_header *);
5044 
5045     /* handle VLAN encapsulation if present */
5046     e_hlen = (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) ?
5047                  (ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN) : ETHER_HDR_LEN;
5048 
5049     /* get the IP and TCP header, with LSO entire header in first mbuf */
5050     /* XXX assuming IPv4 */
5051     ip = (struct ip *)(m->m_data + e_hlen);
5052     th = (struct tcphdr *)((caddr_t)ip + (ip->ip_hl << 2));
5053 
5054     pbd->lso_mss = htole16(m->m_pkthdr.tso_segsz);
5055     pbd->tcp_send_seq = ntohl(th->th_seq);
5056     pbd->tcp_flags = ((ntohl(((uint32_t *)th)[3]) >> 16) & 0xff);
5057 
5058 #if 1
5059         /* XXX IPv4 */
5060         pbd->ip_id = ntohs(ip->ip_id);
5061         pbd->tcp_pseudo_csum =
5062             ntohs(in_pseudo(ip->ip_src.s_addr,
5063                             ip->ip_dst.s_addr,
5064                             htons(IPPROTO_TCP)));
5065 #else
5066         /* XXX IPv6 */
5067         pbd->tcp_pseudo_csum =
5068             ntohs(in_pseudo(&ip6->ip6_src,
5069                             &ip6->ip6_dst,
5070                             htons(IPPROTO_TCP)));
5071 #endif
5072 
5073     pbd->global_data |=
5074         htole16(ETH_TX_PARSE_BD_E1X_PSEUDO_CS_WITHOUT_LEN);
5075 }
5076 
5077 /*
5078  * Encapsulte an mbuf cluster into the tx bd chain and makes the memory
5079  * visible to the controller.
5080  *
5081  * If an mbuf is submitted to this routine and cannot be given to the
5082  * controller (e.g. it has too many fragments) then the function may free
5083  * the mbuf and return to the caller.
5084  *
5085  * Returns:
5086  *   0 = Success, !0 = Failure
5087  *   Note the side effect that an mbuf may be freed if it causes a problem.
5088  */
5089 static int
5090 bxe_tx_encap(struct bxe_fastpath *fp, struct mbuf **m_head)
5091 {
5092     bus_dma_segment_t segs[32];
5093     struct mbuf *m0;
5094     struct bxe_sw_tx_bd *tx_buf;
5095     struct eth_tx_parse_bd_e1x *pbd_e1x = NULL;
5096     struct eth_tx_parse_bd_e2 *pbd_e2 = NULL;
5097     /* struct eth_tx_parse_2nd_bd *pbd2 = NULL; */
5098     struct eth_tx_bd *tx_data_bd;
5099     struct eth_tx_bd *tx_total_pkt_size_bd;
5100     struct eth_tx_start_bd *tx_start_bd;
5101     uint16_t bd_prod, pkt_prod, total_pkt_size;
5102     uint8_t mac_type;
5103     int defragged, error, nsegs, rc, nbds, vlan_off, ovlan;
5104     struct bxe_softc *sc;
5105     uint16_t tx_bd_avail;
5106     struct ether_vlan_header *eh;
5107     uint32_t pbd_e2_parsing_data = 0;
5108     uint8_t hlen = 0;
5109     int tmp_bd;
5110     int i;
5111 
5112     sc = fp->sc;
5113 
5114     M_ASSERTPKTHDR(*m_head);
5115 
5116     m0 = *m_head;
5117     rc = defragged = nbds = ovlan = vlan_off = total_pkt_size = 0;
5118     tx_start_bd = NULL;
5119     tx_data_bd = NULL;
5120     tx_total_pkt_size_bd = NULL;
5121 
5122     /* get the H/W pointer for packets and BDs */
5123     pkt_prod = fp->tx_pkt_prod;
5124     bd_prod = fp->tx_bd_prod;
5125 
5126     mac_type = UNICAST_ADDRESS;
5127 
5128     /* map the mbuf into the next open DMAable memory */
5129     tx_buf = &fp->tx_mbuf_chain[TX_BD(pkt_prod)];
5130     error = bus_dmamap_load_mbuf_sg(fp->tx_mbuf_tag,
5131                                     tx_buf->m_map, m0,
5132                                     segs, &nsegs, BUS_DMA_NOWAIT);
5133 
5134     /* mapping errors */
5135     if(__predict_false(error != 0)) {
5136         fp->eth_q_stats.tx_dma_mapping_failure++;
5137         if (error == ENOMEM) {
5138             /* resource issue, try again later */
5139             rc = ENOMEM;
5140         } else if (error == EFBIG) {
5141             /* possibly recoverable with defragmentation */
5142             fp->eth_q_stats.mbuf_defrag_attempts++;
5143             m0 = m_defrag(*m_head, M_NOWAIT);
5144             if (m0 == NULL) {
5145                 fp->eth_q_stats.mbuf_defrag_failures++;
5146                 rc = ENOBUFS;
5147             } else {
5148                 /* defrag successful, try mapping again */
5149                 *m_head = m0;
5150                 error = bus_dmamap_load_mbuf_sg(fp->tx_mbuf_tag,
5151                                                 tx_buf->m_map, m0,
5152                                                 segs, &nsegs, BUS_DMA_NOWAIT);
5153                 if (error) {
5154                     fp->eth_q_stats.tx_dma_mapping_failure++;
5155                     rc = error;
5156                 }
5157             }
5158         } else {
5159             /* unknown, unrecoverable mapping error */
5160             BLOGE(sc, "Unknown TX mapping error rc=%d\n", error);
5161             bxe_dump_mbuf(sc, m0, FALSE);
5162             rc = error;
5163         }
5164 
5165         goto bxe_tx_encap_continue;
5166     }
5167 
5168     tx_bd_avail = bxe_tx_avail(sc, fp);
5169 
5170     /* make sure there is enough room in the send queue */
5171     if (__predict_false(tx_bd_avail < (nsegs + 2))) {
5172         /* Recoverable, try again later. */
5173         fp->eth_q_stats.tx_hw_queue_full++;
5174         bus_dmamap_unload(fp->tx_mbuf_tag, tx_buf->m_map);
5175         rc = ENOMEM;
5176         goto bxe_tx_encap_continue;
5177     }
5178 
5179     /* capture the current H/W TX chain high watermark */
5180     if (__predict_false(fp->eth_q_stats.tx_hw_max_queue_depth <
5181                         (TX_BD_USABLE - tx_bd_avail))) {
5182         fp->eth_q_stats.tx_hw_max_queue_depth = (TX_BD_USABLE - tx_bd_avail);
5183     }
5184 
5185     /* make sure it fits in the packet window */
5186     if (__predict_false(nsegs > BXE_MAX_SEGMENTS)) {
5187         /*
5188          * The mbuf may be to big for the controller to handle. If the frame
5189          * is a TSO frame we'll need to do an additional check.
5190          */
5191         if (m0->m_pkthdr.csum_flags & CSUM_TSO) {
5192             if (bxe_chktso_window(sc, nsegs, segs, m0) == 0) {
5193                 goto bxe_tx_encap_continue; /* OK to send */
5194             } else {
5195                 fp->eth_q_stats.tx_window_violation_tso++;
5196             }
5197         } else {
5198             fp->eth_q_stats.tx_window_violation_std++;
5199         }
5200 
5201         /* lets try to defragment this mbuf and remap it */
5202         fp->eth_q_stats.mbuf_defrag_attempts++;
5203         bus_dmamap_unload(fp->tx_mbuf_tag, tx_buf->m_map);
5204 
5205         m0 = m_defrag(*m_head, M_NOWAIT);
5206         if (m0 == NULL) {
5207             fp->eth_q_stats.mbuf_defrag_failures++;
5208             /* Ugh, just drop the frame... :( */
5209             rc = ENOBUFS;
5210         } else {
5211             /* defrag successful, try mapping again */
5212             *m_head = m0;
5213             error = bus_dmamap_load_mbuf_sg(fp->tx_mbuf_tag,
5214                                             tx_buf->m_map, m0,
5215                                             segs, &nsegs, BUS_DMA_NOWAIT);
5216             if (error) {
5217                 fp->eth_q_stats.tx_dma_mapping_failure++;
5218                 /* No sense in trying to defrag/copy chain, drop it. :( */
5219                 rc = error;
5220             } else {
5221                /* if the chain is still too long then drop it */
5222                 if(m0->m_pkthdr.csum_flags & CSUM_TSO) {
5223                     /*
5224                      * in case TSO is enabled nsegs should be checked against
5225                      * BXE_TSO_MAX_SEGMENTS
5226                      */
5227                     if (__predict_false(nsegs > BXE_TSO_MAX_SEGMENTS)) {
5228                         bus_dmamap_unload(fp->tx_mbuf_tag, tx_buf->m_map);
5229                         fp->eth_q_stats.nsegs_path1_errors++;
5230                         rc = ENODEV;
5231                     }
5232                 } else {
5233                     if (__predict_false(nsegs > BXE_MAX_SEGMENTS)) {
5234                         bus_dmamap_unload(fp->tx_mbuf_tag, tx_buf->m_map);
5235                         fp->eth_q_stats.nsegs_path2_errors++;
5236                         rc = ENODEV;
5237                     }
5238                 }
5239             }
5240         }
5241     }
5242 
5243 bxe_tx_encap_continue:
5244 
5245     /* Check for errors */
5246     if (rc) {
5247         if (rc == ENOMEM) {
5248             /* recoverable try again later  */
5249         } else {
5250             fp->eth_q_stats.tx_soft_errors++;
5251             fp->eth_q_stats.mbuf_alloc_tx--;
5252             m_freem(*m_head);
5253             *m_head = NULL;
5254         }
5255 
5256         return (rc);
5257     }
5258 
5259     /* set flag according to packet type (UNICAST_ADDRESS is default) */
5260     if (m0->m_flags & M_BCAST) {
5261         mac_type = BROADCAST_ADDRESS;
5262     } else if (m0->m_flags & M_MCAST) {
5263         mac_type = MULTICAST_ADDRESS;
5264     }
5265 
5266     /* store the mbuf into the mbuf ring */
5267     tx_buf->m        = m0;
5268     tx_buf->first_bd = fp->tx_bd_prod;
5269     tx_buf->flags    = 0;
5270 
5271     /* prepare the first transmit (start) BD for the mbuf */
5272     tx_start_bd = &fp->tx_chain[TX_BD(bd_prod)].start_bd;
5273 
5274     BLOGD(sc, DBG_TX,
5275           "sending pkt_prod=%u tx_buf=%p next_idx=%u bd=%u tx_start_bd=%p\n",
5276           pkt_prod, tx_buf, fp->tx_pkt_prod, bd_prod, tx_start_bd);
5277 
5278     tx_start_bd->addr_lo = htole32(U64_LO(segs[0].ds_addr));
5279     tx_start_bd->addr_hi = htole32(U64_HI(segs[0].ds_addr));
5280     tx_start_bd->nbytes  = htole16(segs[0].ds_len);
5281     total_pkt_size += tx_start_bd->nbytes;
5282     tx_start_bd->bd_flags.as_bitfield = ETH_TX_BD_FLAGS_START_BD;
5283 
5284     tx_start_bd->general_data = (1 << ETH_TX_START_BD_HDR_NBDS_SHIFT);
5285 
5286     /* all frames have at least Start BD + Parsing BD */
5287     nbds = nsegs + 1;
5288     tx_start_bd->nbd = htole16(nbds);
5289 
5290     if (m0->m_flags & M_VLANTAG) {
5291         tx_start_bd->vlan_or_ethertype = htole16(m0->m_pkthdr.ether_vtag);
5292         tx_start_bd->bd_flags.as_bitfield |=
5293             (X_ETH_OUTBAND_VLAN << ETH_TX_BD_FLAGS_VLAN_MODE_SHIFT);
5294     } else {
5295         /* vf tx, start bd must hold the ethertype for fw to enforce it */
5296         if (IS_VF(sc)) {
5297             /* map ethernet header to find type and header length */
5298             eh = mtod(m0, struct ether_vlan_header *);
5299             tx_start_bd->vlan_or_ethertype = eh->evl_encap_proto;
5300         } else {
5301             /* used by FW for packet accounting */
5302             tx_start_bd->vlan_or_ethertype = htole16(fp->tx_pkt_prod);
5303         }
5304     }
5305 
5306     /*
5307      * add a parsing BD from the chain. The parsing BD is always added
5308      * though it is only used for TSO and chksum
5309      */
5310     bd_prod = TX_BD_NEXT(bd_prod);
5311 
5312     if (m0->m_pkthdr.csum_flags) {
5313         if (m0->m_pkthdr.csum_flags & CSUM_IP) {
5314             fp->eth_q_stats.tx_ofld_frames_csum_ip++;
5315             tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_IP_CSUM;
5316         }
5317 
5318         if (m0->m_pkthdr.csum_flags & CSUM_TCP_IPV6) {
5319             tx_start_bd->bd_flags.as_bitfield |= (ETH_TX_BD_FLAGS_IPV6 |
5320                                                   ETH_TX_BD_FLAGS_L4_CSUM);
5321         } else if (m0->m_pkthdr.csum_flags & CSUM_UDP_IPV6) {
5322             tx_start_bd->bd_flags.as_bitfield |= (ETH_TX_BD_FLAGS_IPV6   |
5323                                                   ETH_TX_BD_FLAGS_IS_UDP |
5324                                                   ETH_TX_BD_FLAGS_L4_CSUM);
5325         } else if ((m0->m_pkthdr.csum_flags & CSUM_TCP) ||
5326                    (m0->m_pkthdr.csum_flags & CSUM_TSO)) {
5327             tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_L4_CSUM;
5328         } else if (m0->m_pkthdr.csum_flags & CSUM_UDP) {
5329             tx_start_bd->bd_flags.as_bitfield |= (ETH_TX_BD_FLAGS_L4_CSUM |
5330                                                   ETH_TX_BD_FLAGS_IS_UDP);
5331         }
5332     }
5333 
5334     if (!CHIP_IS_E1x(sc)) {
5335         pbd_e2 = &fp->tx_chain[TX_BD(bd_prod)].parse_bd_e2;
5336         memset(pbd_e2, 0, sizeof(struct eth_tx_parse_bd_e2));
5337 
5338         if (m0->m_pkthdr.csum_flags) {
5339             hlen = bxe_set_pbd_csum_e2(fp, m0, &pbd_e2_parsing_data);
5340         }
5341 
5342         SET_FLAG(pbd_e2_parsing_data, ETH_TX_PARSE_BD_E2_ETH_ADDR_TYPE,
5343                  mac_type);
5344     } else {
5345         uint16_t global_data = 0;
5346 
5347         pbd_e1x = &fp->tx_chain[TX_BD(bd_prod)].parse_bd_e1x;
5348         memset(pbd_e1x, 0, sizeof(struct eth_tx_parse_bd_e1x));
5349 
5350         if (m0->m_pkthdr.csum_flags) {
5351             hlen = bxe_set_pbd_csum(fp, m0, pbd_e1x);
5352         }
5353 
5354         SET_FLAG(global_data,
5355                  ETH_TX_PARSE_BD_E1X_ETH_ADDR_TYPE, mac_type);
5356         pbd_e1x->global_data |= htole16(global_data);
5357     }
5358 
5359     /* setup the parsing BD with TSO specific info */
5360     if (m0->m_pkthdr.csum_flags & CSUM_TSO) {
5361         fp->eth_q_stats.tx_ofld_frames_lso++;
5362         tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_SW_LSO;
5363 
5364         if (__predict_false(tx_start_bd->nbytes > hlen)) {
5365             fp->eth_q_stats.tx_ofld_frames_lso_hdr_splits++;
5366 
5367             /* split the first BD into header/data making the fw job easy */
5368             nbds++;
5369             tx_start_bd->nbd = htole16(nbds);
5370             tx_start_bd->nbytes = htole16(hlen);
5371 
5372             bd_prod = TX_BD_NEXT(bd_prod);
5373 
5374             /* new transmit BD after the tx_parse_bd */
5375             tx_data_bd = &fp->tx_chain[TX_BD(bd_prod)].reg_bd;
5376             tx_data_bd->addr_hi = htole32(U64_HI(segs[0].ds_addr + hlen));
5377             tx_data_bd->addr_lo = htole32(U64_LO(segs[0].ds_addr + hlen));
5378             tx_data_bd->nbytes  = htole16(segs[0].ds_len - hlen);
5379             if (tx_total_pkt_size_bd == NULL) {
5380                 tx_total_pkt_size_bd = tx_data_bd;
5381             }
5382 
5383             BLOGD(sc, DBG_TX,
5384                   "TSO split header size is %d (%x:%x) nbds %d\n",
5385                   le16toh(tx_start_bd->nbytes),
5386                   le32toh(tx_start_bd->addr_hi),
5387                   le32toh(tx_start_bd->addr_lo),
5388                   nbds);
5389         }
5390 
5391         if (!CHIP_IS_E1x(sc)) {
5392             bxe_set_pbd_lso_e2(m0, &pbd_e2_parsing_data);
5393         } else {
5394             bxe_set_pbd_lso(m0, pbd_e1x);
5395         }
5396     }
5397 
5398     if (pbd_e2_parsing_data) {
5399         pbd_e2->parsing_data = htole32(pbd_e2_parsing_data);
5400     }
5401 
5402     /* prepare remaining BDs, start tx bd contains first seg/frag */
5403     for (i = 1; i < nsegs ; i++) {
5404         bd_prod = TX_BD_NEXT(bd_prod);
5405         tx_data_bd = &fp->tx_chain[TX_BD(bd_prod)].reg_bd;
5406         tx_data_bd->addr_lo = htole32(U64_LO(segs[i].ds_addr));
5407         tx_data_bd->addr_hi = htole32(U64_HI(segs[i].ds_addr));
5408         tx_data_bd->nbytes  = htole16(segs[i].ds_len);
5409         if (tx_total_pkt_size_bd == NULL) {
5410             tx_total_pkt_size_bd = tx_data_bd;
5411         }
5412         total_pkt_size += tx_data_bd->nbytes;
5413     }
5414 
5415     BLOGD(sc, DBG_TX, "last bd %p\n", tx_data_bd);
5416 
5417     if (tx_total_pkt_size_bd != NULL) {
5418         tx_total_pkt_size_bd->total_pkt_bytes = total_pkt_size;
5419     }
5420 
5421     if (__predict_false(sc->debug & DBG_TX)) {
5422         tmp_bd = tx_buf->first_bd;
5423         for (i = 0; i < nbds; i++)
5424         {
5425             if (i == 0) {
5426                 BLOGD(sc, DBG_TX,
5427                       "TX Strt: %p bd=%d nbd=%d vlan=0x%x "
5428                       "bd_flags=0x%x hdr_nbds=%d\n",
5429                       tx_start_bd,
5430                       tmp_bd,
5431                       le16toh(tx_start_bd->nbd),
5432                       le16toh(tx_start_bd->vlan_or_ethertype),
5433                       tx_start_bd->bd_flags.as_bitfield,
5434                       (tx_start_bd->general_data & ETH_TX_START_BD_HDR_NBDS));
5435             } else if (i == 1) {
5436                 if (pbd_e1x) {
5437                     BLOGD(sc, DBG_TX,
5438                           "-> Prse: %p bd=%d global=0x%x ip_hlen_w=%u "
5439                           "ip_id=%u lso_mss=%u tcp_flags=0x%x csum=0x%x "
5440                           "tcp_seq=%u total_hlen_w=%u\n",
5441                           pbd_e1x,
5442                           tmp_bd,
5443                           pbd_e1x->global_data,
5444                           pbd_e1x->ip_hlen_w,
5445                           pbd_e1x->ip_id,
5446                           pbd_e1x->lso_mss,
5447                           pbd_e1x->tcp_flags,
5448                           pbd_e1x->tcp_pseudo_csum,
5449                           pbd_e1x->tcp_send_seq,
5450                           le16toh(pbd_e1x->total_hlen_w));
5451                 } else { /* if (pbd_e2) */
5452                     BLOGD(sc, DBG_TX,
5453                           "-> Parse: %p bd=%d dst=%02x:%02x:%02x "
5454                           "src=%02x:%02x:%02x parsing_data=0x%x\n",
5455                           pbd_e2,
5456                           tmp_bd,
5457                           pbd_e2->data.mac_addr.dst_hi,
5458                           pbd_e2->data.mac_addr.dst_mid,
5459                           pbd_e2->data.mac_addr.dst_lo,
5460                           pbd_e2->data.mac_addr.src_hi,
5461                           pbd_e2->data.mac_addr.src_mid,
5462                           pbd_e2->data.mac_addr.src_lo,
5463                           pbd_e2->parsing_data);
5464                 }
5465             }
5466 
5467             if (i != 1) { /* skip parse db as it doesn't hold data */
5468                 tx_data_bd = &fp->tx_chain[TX_BD(tmp_bd)].reg_bd;
5469                 BLOGD(sc, DBG_TX,
5470                       "-> Frag: %p bd=%d nbytes=%d hi=0x%x lo: 0x%x\n",
5471                       tx_data_bd,
5472                       tmp_bd,
5473                       le16toh(tx_data_bd->nbytes),
5474                       le32toh(tx_data_bd->addr_hi),
5475                       le32toh(tx_data_bd->addr_lo));
5476             }
5477 
5478             tmp_bd = TX_BD_NEXT(tmp_bd);
5479         }
5480     }
5481 
5482     BLOGD(sc, DBG_TX, "doorbell: nbds=%d bd=%u\n", nbds, bd_prod);
5483 
5484     /* update TX BD producer index value for next TX */
5485     bd_prod = TX_BD_NEXT(bd_prod);
5486 
5487     /*
5488      * If the chain of tx_bd's describing this frame is adjacent to or spans
5489      * an eth_tx_next_bd element then we need to increment the nbds value.
5490      */
5491     if (TX_BD_IDX(bd_prod) < nbds) {
5492         nbds++;
5493     }
5494 
5495     /* don't allow reordering of writes for nbd and packets */
5496     mb();
5497 
5498     fp->tx_db.data.prod += nbds;
5499 
5500     /* producer points to the next free tx_bd at this point */
5501     fp->tx_pkt_prod++;
5502     fp->tx_bd_prod = bd_prod;
5503 
5504     DOORBELL(sc, fp->index, fp->tx_db.raw);
5505 
5506     fp->eth_q_stats.tx_pkts++;
5507 
5508     /* Prevent speculative reads from getting ahead of the status block. */
5509     bus_space_barrier(sc->bar[BAR0].tag, sc->bar[BAR0].handle,
5510                       0, 0, BUS_SPACE_BARRIER_READ);
5511 
5512     /* Prevent speculative reads from getting ahead of the doorbell. */
5513     bus_space_barrier(sc->bar[BAR2].tag, sc->bar[BAR2].handle,
5514                       0, 0, BUS_SPACE_BARRIER_READ);
5515 
5516     return (0);
5517 }
5518 
5519 static void
5520 bxe_tx_start_locked(struct bxe_softc *sc,
5521                     if_t ifp,
5522                     struct bxe_fastpath *fp)
5523 {
5524     struct mbuf *m = NULL;
5525     int tx_count = 0;
5526     uint16_t tx_bd_avail;
5527 
5528     BXE_FP_TX_LOCK_ASSERT(fp);
5529 
5530     /* keep adding entries while there are frames to send */
5531     while (!if_sendq_empty(ifp)) {
5532 
5533         /*
5534          * check for any frames to send
5535          * dequeue can still be NULL even if queue is not empty
5536          */
5537         m = if_dequeue(ifp);
5538         if (__predict_false(m == NULL)) {
5539             break;
5540         }
5541 
5542         /* the mbuf now belongs to us */
5543         fp->eth_q_stats.mbuf_alloc_tx++;
5544 
5545         /*
5546          * Put the frame into the transmit ring. If we don't have room,
5547          * place the mbuf back at the head of the TX queue, set the
5548          * OACTIVE flag, and wait for the NIC to drain the chain.
5549          */
5550         if (__predict_false(bxe_tx_encap(fp, &m))) {
5551             fp->eth_q_stats.tx_encap_failures++;
5552             if (m != NULL) {
5553                 /* mark the TX queue as full and return the frame */
5554                 if_setdrvflagbits(ifp, IFF_DRV_OACTIVE, 0);
5555 		if_sendq_prepend(ifp, m);
5556                 fp->eth_q_stats.mbuf_alloc_tx--;
5557                 fp->eth_q_stats.tx_queue_xoff++;
5558             }
5559 
5560             /* stop looking for more work */
5561             break;
5562         }
5563 
5564         /* the frame was enqueued successfully */
5565         tx_count++;
5566 
5567         /* send a copy of the frame to any BPF listeners. */
5568         ether_bpf_mtap_if(ifp, m);
5569 
5570         tx_bd_avail = bxe_tx_avail(sc, fp);
5571 
5572         /* handle any completions if we're running low */
5573         if (tx_bd_avail < BXE_TX_CLEANUP_THRESHOLD) {
5574             /* bxe_txeof will set IFF_DRV_OACTIVE appropriately */
5575             bxe_txeof(sc, fp);
5576             if (if_getdrvflags(ifp) & IFF_DRV_OACTIVE) {
5577                 break;
5578             }
5579         }
5580     }
5581 
5582     /* all TX packets were dequeued and/or the tx ring is full */
5583     if (tx_count > 0) {
5584         /* reset the TX watchdog timeout timer */
5585         fp->watchdog_timer = BXE_TX_TIMEOUT;
5586     }
5587 }
5588 
5589 /* Legacy (non-RSS) dispatch routine */
5590 static void
5591 bxe_tx_start(if_t ifp)
5592 {
5593     struct bxe_softc *sc;
5594     struct bxe_fastpath *fp;
5595 
5596     sc = if_getsoftc(ifp);
5597 
5598     if (!(if_getdrvflags(ifp) & IFF_DRV_RUNNING)) {
5599         BLOGW(sc, "Interface not running, ignoring transmit request\n");
5600         return;
5601     }
5602 
5603     if (!sc->link_vars.link_up) {
5604         BLOGW(sc, "Interface link is down, ignoring transmit request\n");
5605         return;
5606     }
5607 
5608     fp = &sc->fp[0];
5609 
5610     if (if_getdrvflags(ifp) & IFF_DRV_OACTIVE) {
5611         fp->eth_q_stats.tx_queue_full_return++;
5612         return;
5613     }
5614 
5615     BXE_FP_TX_LOCK(fp);
5616     bxe_tx_start_locked(sc, ifp, fp);
5617     BXE_FP_TX_UNLOCK(fp);
5618 }
5619 
5620 static int
5621 bxe_tx_mq_start_locked(struct bxe_softc    *sc,
5622                        if_t                ifp,
5623                        struct bxe_fastpath *fp,
5624                        struct mbuf         *m)
5625 {
5626     struct buf_ring *tx_br = fp->tx_br;
5627     struct mbuf *next;
5628     int depth, rc, tx_count;
5629     uint16_t tx_bd_avail;
5630 
5631     rc = tx_count = 0;
5632 
5633     BXE_FP_TX_LOCK_ASSERT(fp);
5634 
5635     if (sc->state != BXE_STATE_OPEN)  {
5636         fp->eth_q_stats.bxe_tx_mq_sc_state_failures++;
5637         return ENETDOWN;
5638     }
5639 
5640     if (!tx_br) {
5641         BLOGE(sc, "Multiqueue TX and no buf_ring!\n");
5642         return (EINVAL);
5643     }
5644 
5645     if (m != NULL) {
5646         rc = drbr_enqueue(ifp, tx_br, m);
5647         if (rc != 0) {
5648             fp->eth_q_stats.tx_soft_errors++;
5649             goto bxe_tx_mq_start_locked_exit;
5650         }
5651     }
5652 
5653     if (!sc->link_vars.link_up || !(if_getdrvflags(ifp) & IFF_DRV_RUNNING)) {
5654         fp->eth_q_stats.tx_request_link_down_failures++;
5655         goto bxe_tx_mq_start_locked_exit;
5656     }
5657 
5658     /* fetch the depth of the driver queue */
5659     depth = drbr_inuse(ifp, tx_br);
5660     if (depth > fp->eth_q_stats.tx_max_drbr_queue_depth) {
5661         fp->eth_q_stats.tx_max_drbr_queue_depth = depth;
5662     }
5663 
5664     /* keep adding entries while there are frames to send */
5665     while ((next = drbr_peek(ifp, tx_br)) != NULL) {
5666         /* handle any completions if we're running low */
5667         tx_bd_avail = bxe_tx_avail(sc, fp);
5668         if (tx_bd_avail < BXE_TX_CLEANUP_THRESHOLD) {
5669             /* bxe_txeof will set IFF_DRV_OACTIVE appropriately */
5670             bxe_txeof(sc, fp);
5671             tx_bd_avail = bxe_tx_avail(sc, fp);
5672             if (tx_bd_avail < (BXE_TSO_MAX_SEGMENTS + 1)) {
5673                 fp->eth_q_stats.bd_avail_too_less_failures++;
5674                 m_freem(next);
5675                 drbr_advance(ifp, tx_br);
5676                 rc = ENOBUFS;
5677                 break;
5678             }
5679         }
5680 
5681         /* the mbuf now belongs to us */
5682         fp->eth_q_stats.mbuf_alloc_tx++;
5683 
5684         /*
5685          * Put the frame into the transmit ring. If we don't have room,
5686          * place the mbuf back at the head of the TX queue, set the
5687          * OACTIVE flag, and wait for the NIC to drain the chain.
5688          */
5689         rc = bxe_tx_encap(fp, &next);
5690         if (__predict_false(rc != 0)) {
5691             fp->eth_q_stats.tx_encap_failures++;
5692             if (next != NULL) {
5693                 /* mark the TX queue as full and save the frame */
5694                 if_setdrvflagbits(ifp, IFF_DRV_OACTIVE, 0);
5695                 drbr_putback(ifp, tx_br, next);
5696                 fp->eth_q_stats.mbuf_alloc_tx--;
5697                 fp->eth_q_stats.tx_frames_deferred++;
5698             } else
5699                 drbr_advance(ifp, tx_br);
5700 
5701             /* stop looking for more work */
5702             break;
5703         }
5704 
5705         /* the transmit frame was enqueued successfully */
5706         tx_count++;
5707 
5708         /* send a copy of the frame to any BPF listeners */
5709         ether_bpf_mtap_if(ifp, next);
5710 
5711         drbr_advance(ifp, tx_br);
5712     }
5713 
5714     /* all TX packets were dequeued and/or the tx ring is full */
5715     if (tx_count > 0) {
5716         /* reset the TX watchdog timeout timer */
5717         fp->watchdog_timer = BXE_TX_TIMEOUT;
5718     }
5719 
5720 bxe_tx_mq_start_locked_exit:
5721     /* If we didn't drain the drbr, enqueue a task in the future to do it. */
5722     if (!drbr_empty(ifp, tx_br)) {
5723         fp->eth_q_stats.tx_mq_not_empty++;
5724         taskqueue_enqueue_timeout(fp->tq, &fp->tx_timeout_task, 1);
5725     }
5726 
5727     return (rc);
5728 }
5729 
5730 static void
5731 bxe_tx_mq_start_deferred(void *arg,
5732                          int pending)
5733 {
5734     struct bxe_fastpath *fp = (struct bxe_fastpath *)arg;
5735     struct bxe_softc *sc = fp->sc;
5736     if_t ifp = sc->ifp;
5737 
5738     BXE_FP_TX_LOCK(fp);
5739     bxe_tx_mq_start_locked(sc, ifp, fp, NULL);
5740     BXE_FP_TX_UNLOCK(fp);
5741 }
5742 
5743 /* Multiqueue (TSS) dispatch routine. */
5744 static int
5745 bxe_tx_mq_start(if_t ifp,
5746                 struct mbuf  *m)
5747 {
5748     struct bxe_softc *sc = if_getsoftc(ifp);
5749     struct bxe_fastpath *fp;
5750     int fp_index, rc;
5751 
5752     fp_index = 0; /* default is the first queue */
5753 
5754     /* check if flowid is set */
5755 
5756     if (BXE_VALID_FLOWID(m))
5757         fp_index = (m->m_pkthdr.flowid % sc->num_queues);
5758 
5759     fp = &sc->fp[fp_index];
5760 
5761     if (sc->state != BXE_STATE_OPEN)  {
5762         fp->eth_q_stats.bxe_tx_mq_sc_state_failures++;
5763         return ENETDOWN;
5764     }
5765 
5766     if (BXE_FP_TX_TRYLOCK(fp)) {
5767         rc = bxe_tx_mq_start_locked(sc, ifp, fp, m);
5768         BXE_FP_TX_UNLOCK(fp);
5769     } else {
5770         rc = drbr_enqueue(ifp, fp->tx_br, m);
5771         taskqueue_enqueue(fp->tq, &fp->tx_task);
5772     }
5773 
5774     return (rc);
5775 }
5776 
5777 static void
5778 bxe_mq_flush(if_t ifp)
5779 {
5780     struct bxe_softc *sc = if_getsoftc(ifp);
5781     struct bxe_fastpath *fp;
5782     struct mbuf *m;
5783     int i;
5784 
5785     for (i = 0; i < sc->num_queues; i++) {
5786         fp = &sc->fp[i];
5787 
5788         if (fp->state != BXE_FP_STATE_IRQ) {
5789             BLOGD(sc, DBG_LOAD, "Not clearing fp[%02d] buf_ring (state=%d)\n",
5790                   fp->index, fp->state);
5791             continue;
5792         }
5793 
5794         if (fp->tx_br != NULL) {
5795             BLOGD(sc, DBG_LOAD, "Clearing fp[%02d] buf_ring\n", fp->index);
5796             BXE_FP_TX_LOCK(fp);
5797             while ((m = buf_ring_dequeue_sc(fp->tx_br)) != NULL) {
5798                 m_freem(m);
5799             }
5800             BXE_FP_TX_UNLOCK(fp);
5801         }
5802     }
5803 
5804     if_qflush(ifp);
5805 }
5806 
5807 static uint16_t
5808 bxe_cid_ilt_lines(struct bxe_softc *sc)
5809 {
5810     if (IS_SRIOV(sc)) {
5811         return ((BXE_FIRST_VF_CID + BXE_VF_CIDS) / ILT_PAGE_CIDS);
5812     }
5813     return (L2_ILT_LINES(sc));
5814 }
5815 
5816 static void
5817 bxe_ilt_set_info(struct bxe_softc *sc)
5818 {
5819     struct ilt_client_info *ilt_client;
5820     struct ecore_ilt *ilt = sc->ilt;
5821     uint16_t line = 0;
5822 
5823     ilt->start_line = FUNC_ILT_BASE(SC_FUNC(sc));
5824     BLOGD(sc, DBG_LOAD, "ilt starts at line %d\n", ilt->start_line);
5825 
5826     /* CDU */
5827     ilt_client = &ilt->clients[ILT_CLIENT_CDU];
5828     ilt_client->client_num = ILT_CLIENT_CDU;
5829     ilt_client->page_size = CDU_ILT_PAGE_SZ;
5830     ilt_client->flags = ILT_CLIENT_SKIP_MEM;
5831     ilt_client->start = line;
5832     line += bxe_cid_ilt_lines(sc);
5833 
5834     if (CNIC_SUPPORT(sc)) {
5835         line += CNIC_ILT_LINES;
5836     }
5837 
5838     ilt_client->end = (line - 1);
5839 
5840     BLOGD(sc, DBG_LOAD,
5841           "ilt client[CDU]: start %d, end %d, "
5842           "psz 0x%x, flags 0x%x, hw psz %d\n",
5843           ilt_client->start, ilt_client->end,
5844           ilt_client->page_size,
5845           ilt_client->flags,
5846           ilog2(ilt_client->page_size >> 12));
5847 
5848     /* QM */
5849     if (QM_INIT(sc->qm_cid_count)) {
5850         ilt_client = &ilt->clients[ILT_CLIENT_QM];
5851         ilt_client->client_num = ILT_CLIENT_QM;
5852         ilt_client->page_size = QM_ILT_PAGE_SZ;
5853         ilt_client->flags = 0;
5854         ilt_client->start = line;
5855 
5856         /* 4 bytes for each cid */
5857         line += DIV_ROUND_UP(sc->qm_cid_count * QM_QUEUES_PER_FUNC * 4,
5858                              QM_ILT_PAGE_SZ);
5859 
5860         ilt_client->end = (line - 1);
5861 
5862         BLOGD(sc, DBG_LOAD,
5863               "ilt client[QM]: start %d, end %d, "
5864               "psz 0x%x, flags 0x%x, hw psz %d\n",
5865               ilt_client->start, ilt_client->end,
5866               ilt_client->page_size, ilt_client->flags,
5867               ilog2(ilt_client->page_size >> 12));
5868     }
5869 
5870     if (CNIC_SUPPORT(sc)) {
5871         /* SRC */
5872         ilt_client = &ilt->clients[ILT_CLIENT_SRC];
5873         ilt_client->client_num = ILT_CLIENT_SRC;
5874         ilt_client->page_size = SRC_ILT_PAGE_SZ;
5875         ilt_client->flags = 0;
5876         ilt_client->start = line;
5877         line += SRC_ILT_LINES;
5878         ilt_client->end = (line - 1);
5879 
5880         BLOGD(sc, DBG_LOAD,
5881               "ilt client[SRC]: start %d, end %d, "
5882               "psz 0x%x, flags 0x%x, hw psz %d\n",
5883               ilt_client->start, ilt_client->end,
5884               ilt_client->page_size, ilt_client->flags,
5885               ilog2(ilt_client->page_size >> 12));
5886 
5887         /* TM */
5888         ilt_client = &ilt->clients[ILT_CLIENT_TM];
5889         ilt_client->client_num = ILT_CLIENT_TM;
5890         ilt_client->page_size = TM_ILT_PAGE_SZ;
5891         ilt_client->flags = 0;
5892         ilt_client->start = line;
5893         line += TM_ILT_LINES;
5894         ilt_client->end = (line - 1);
5895 
5896         BLOGD(sc, DBG_LOAD,
5897               "ilt client[TM]: start %d, end %d, "
5898               "psz 0x%x, flags 0x%x, hw psz %d\n",
5899               ilt_client->start, ilt_client->end,
5900               ilt_client->page_size, ilt_client->flags,
5901               ilog2(ilt_client->page_size >> 12));
5902     }
5903 
5904     KASSERT((line <= ILT_MAX_LINES), ("Invalid number of ILT lines!"));
5905 }
5906 
5907 static void
5908 bxe_set_fp_rx_buf_size(struct bxe_softc *sc)
5909 {
5910     int i;
5911     uint32_t rx_buf_size;
5912 
5913     rx_buf_size = (IP_HEADER_ALIGNMENT_PADDING + ETH_OVERHEAD + sc->mtu);
5914 
5915     for (i = 0; i < sc->num_queues; i++) {
5916         if(rx_buf_size <= MCLBYTES){
5917             sc->fp[i].rx_buf_size = rx_buf_size;
5918             sc->fp[i].mbuf_alloc_size = MCLBYTES;
5919         }else if (rx_buf_size <= MJUMPAGESIZE){
5920             sc->fp[i].rx_buf_size = rx_buf_size;
5921             sc->fp[i].mbuf_alloc_size = MJUMPAGESIZE;
5922         }else if (rx_buf_size <= (MJUMPAGESIZE + MCLBYTES)){
5923             sc->fp[i].rx_buf_size = MCLBYTES;
5924             sc->fp[i].mbuf_alloc_size = MCLBYTES;
5925         }else if (rx_buf_size <= (2 * MJUMPAGESIZE)){
5926             sc->fp[i].rx_buf_size = MJUMPAGESIZE;
5927             sc->fp[i].mbuf_alloc_size = MJUMPAGESIZE;
5928         }else {
5929             sc->fp[i].rx_buf_size = MCLBYTES;
5930             sc->fp[i].mbuf_alloc_size = MCLBYTES;
5931         }
5932     }
5933 }
5934 
5935 static int
5936 bxe_alloc_ilt_mem(struct bxe_softc *sc)
5937 {
5938     int rc = 0;
5939 
5940     if ((sc->ilt =
5941          (struct ecore_ilt *)malloc(sizeof(struct ecore_ilt),
5942                                     M_BXE_ILT,
5943                                     (M_NOWAIT | M_ZERO))) == NULL) {
5944         rc = 1;
5945     }
5946 
5947     return (rc);
5948 }
5949 
5950 static int
5951 bxe_alloc_ilt_lines_mem(struct bxe_softc *sc)
5952 {
5953     int rc = 0;
5954 
5955     if ((sc->ilt->lines =
5956          (struct ilt_line *)malloc((sizeof(struct ilt_line) * ILT_MAX_LINES),
5957                                     M_BXE_ILT,
5958                                     (M_NOWAIT | M_ZERO))) == NULL) {
5959         rc = 1;
5960     }
5961 
5962     return (rc);
5963 }
5964 
5965 static void
5966 bxe_free_ilt_mem(struct bxe_softc *sc)
5967 {
5968     if (sc->ilt != NULL) {
5969         free(sc->ilt, M_BXE_ILT);
5970         sc->ilt = NULL;
5971     }
5972 }
5973 
5974 static void
5975 bxe_free_ilt_lines_mem(struct bxe_softc *sc)
5976 {
5977     if (sc->ilt->lines != NULL) {
5978         free(sc->ilt->lines, M_BXE_ILT);
5979         sc->ilt->lines = NULL;
5980     }
5981 }
5982 
5983 static void
5984 bxe_free_mem(struct bxe_softc *sc)
5985 {
5986     int i;
5987 
5988     for (i = 0; i < L2_ILT_LINES(sc); i++) {
5989         bxe_dma_free(sc, &sc->context[i].vcxt_dma);
5990         sc->context[i].vcxt = NULL;
5991         sc->context[i].size = 0;
5992     }
5993 
5994     ecore_ilt_mem_op(sc, ILT_MEMOP_FREE);
5995 
5996     bxe_free_ilt_lines_mem(sc);
5997 
5998 }
5999 
6000 static int
6001 bxe_alloc_mem(struct bxe_softc *sc)
6002 {
6003 
6004     int context_size;
6005     int allocated;
6006     int i;
6007 
6008     /*
6009      * Allocate memory for CDU context:
6010      * This memory is allocated separately and not in the generic ILT
6011      * functions because CDU differs in few aspects:
6012      * 1. There can be multiple entities allocating memory for context -
6013      * regular L2, CNIC, and SRIOV drivers. Each separately controls
6014      * its own ILT lines.
6015      * 2. Since CDU page-size is not a single 4KB page (which is the case
6016      * for the other ILT clients), to be efficient we want to support
6017      * allocation of sub-page-size in the last entry.
6018      * 3. Context pointers are used by the driver to pass to FW / update
6019      * the context (for the other ILT clients the pointers are used just to
6020      * free the memory during unload).
6021      */
6022     context_size = (sizeof(union cdu_context) * BXE_L2_CID_COUNT(sc));
6023     for (i = 0, allocated = 0; allocated < context_size; i++) {
6024         sc->context[i].size = min(CDU_ILT_PAGE_SZ,
6025                                   (context_size - allocated));
6026 
6027         if (bxe_dma_alloc(sc, sc->context[i].size,
6028                           &sc->context[i].vcxt_dma,
6029                           "cdu context") != 0) {
6030             bxe_free_mem(sc);
6031             return (-1);
6032         }
6033 
6034         sc->context[i].vcxt =
6035             (union cdu_context *)sc->context[i].vcxt_dma.vaddr;
6036 
6037         allocated += sc->context[i].size;
6038     }
6039 
6040     bxe_alloc_ilt_lines_mem(sc);
6041 
6042     BLOGD(sc, DBG_LOAD, "ilt=%p start_line=%u lines=%p\n",
6043           sc->ilt, sc->ilt->start_line, sc->ilt->lines);
6044     {
6045         for (i = 0; i < 4; i++) {
6046             BLOGD(sc, DBG_LOAD,
6047                   "c%d page_size=%u start=%u end=%u num=%u flags=0x%x\n",
6048                   i,
6049                   sc->ilt->clients[i].page_size,
6050                   sc->ilt->clients[i].start,
6051                   sc->ilt->clients[i].end,
6052                   sc->ilt->clients[i].client_num,
6053                   sc->ilt->clients[i].flags);
6054         }
6055     }
6056     if (ecore_ilt_mem_op(sc, ILT_MEMOP_ALLOC)) {
6057         BLOGE(sc, "ecore_ilt_mem_op ILT_MEMOP_ALLOC failed\n");
6058         bxe_free_mem(sc);
6059         return (-1);
6060     }
6061 
6062     return (0);
6063 }
6064 
6065 static void
6066 bxe_free_rx_bd_chain(struct bxe_fastpath *fp)
6067 {
6068     int i;
6069 
6070     if (fp->rx_mbuf_tag == NULL) {
6071         return;
6072     }
6073 
6074     /* free all mbufs and unload all maps */
6075     for (i = 0; i < RX_BD_TOTAL; i++) {
6076         if (fp->rx_mbuf_chain[i].m_map != NULL) {
6077             bus_dmamap_sync(fp->rx_mbuf_tag,
6078                             fp->rx_mbuf_chain[i].m_map,
6079                             BUS_DMASYNC_POSTREAD);
6080             bus_dmamap_unload(fp->rx_mbuf_tag,
6081                               fp->rx_mbuf_chain[i].m_map);
6082         }
6083 
6084         if (fp->rx_mbuf_chain[i].m != NULL) {
6085             m_freem(fp->rx_mbuf_chain[i].m);
6086             fp->rx_mbuf_chain[i].m = NULL;
6087             fp->eth_q_stats.mbuf_alloc_rx--;
6088         }
6089     }
6090 }
6091 
6092 static void
6093 bxe_free_tpa_pool(struct bxe_fastpath *fp)
6094 {
6095     struct bxe_softc *sc;
6096     int i, max_agg_queues;
6097 
6098     sc = fp->sc;
6099 
6100     if (fp->rx_mbuf_tag == NULL) {
6101         return;
6102     }
6103 
6104     max_agg_queues = MAX_AGG_QS(sc);
6105 
6106     /* release all mbufs and unload all DMA maps in the TPA pool */
6107     for (i = 0; i < max_agg_queues; i++) {
6108         if (fp->rx_tpa_info[i].bd.m_map != NULL) {
6109             bus_dmamap_sync(fp->rx_mbuf_tag,
6110                             fp->rx_tpa_info[i].bd.m_map,
6111                             BUS_DMASYNC_POSTREAD);
6112             bus_dmamap_unload(fp->rx_mbuf_tag,
6113                               fp->rx_tpa_info[i].bd.m_map);
6114         }
6115 
6116         if (fp->rx_tpa_info[i].bd.m != NULL) {
6117             m_freem(fp->rx_tpa_info[i].bd.m);
6118             fp->rx_tpa_info[i].bd.m = NULL;
6119             fp->eth_q_stats.mbuf_alloc_tpa--;
6120         }
6121     }
6122 }
6123 
6124 static void
6125 bxe_free_sge_chain(struct bxe_fastpath *fp)
6126 {
6127     int i;
6128 
6129     if (fp->rx_sge_mbuf_tag == NULL) {
6130         return;
6131     }
6132 
6133     /* rree all mbufs and unload all maps */
6134     for (i = 0; i < RX_SGE_TOTAL; i++) {
6135         if (fp->rx_sge_mbuf_chain[i].m_map != NULL) {
6136             bus_dmamap_sync(fp->rx_sge_mbuf_tag,
6137                             fp->rx_sge_mbuf_chain[i].m_map,
6138                             BUS_DMASYNC_POSTREAD);
6139             bus_dmamap_unload(fp->rx_sge_mbuf_tag,
6140                               fp->rx_sge_mbuf_chain[i].m_map);
6141         }
6142 
6143         if (fp->rx_sge_mbuf_chain[i].m != NULL) {
6144             m_freem(fp->rx_sge_mbuf_chain[i].m);
6145             fp->rx_sge_mbuf_chain[i].m = NULL;
6146             fp->eth_q_stats.mbuf_alloc_sge--;
6147         }
6148     }
6149 }
6150 
6151 static void
6152 bxe_free_fp_buffers(struct bxe_softc *sc)
6153 {
6154     struct bxe_fastpath *fp;
6155     int i;
6156 
6157     for (i = 0; i < sc->num_queues; i++) {
6158         fp = &sc->fp[i];
6159 
6160         if (fp->tx_br != NULL) {
6161             /* just in case bxe_mq_flush() wasn't called */
6162             if (mtx_initialized(&fp->tx_mtx)) {
6163                 struct mbuf *m;
6164 
6165                 BXE_FP_TX_LOCK(fp);
6166                 while ((m = buf_ring_dequeue_sc(fp->tx_br)) != NULL)
6167                     m_freem(m);
6168                 BXE_FP_TX_UNLOCK(fp);
6169             }
6170         }
6171 
6172         /* free all RX buffers */
6173         bxe_free_rx_bd_chain(fp);
6174         bxe_free_tpa_pool(fp);
6175         bxe_free_sge_chain(fp);
6176 
6177         if (fp->eth_q_stats.mbuf_alloc_rx != 0) {
6178             BLOGE(sc, "failed to claim all rx mbufs (%d left)\n",
6179                   fp->eth_q_stats.mbuf_alloc_rx);
6180         }
6181 
6182         if (fp->eth_q_stats.mbuf_alloc_sge != 0) {
6183             BLOGE(sc, "failed to claim all sge mbufs (%d left)\n",
6184                   fp->eth_q_stats.mbuf_alloc_sge);
6185         }
6186 
6187         if (fp->eth_q_stats.mbuf_alloc_tpa != 0) {
6188             BLOGE(sc, "failed to claim all sge mbufs (%d left)\n",
6189                   fp->eth_q_stats.mbuf_alloc_tpa);
6190         }
6191 
6192         if (fp->eth_q_stats.mbuf_alloc_tx != 0) {
6193             BLOGE(sc, "failed to release tx mbufs (%d left)\n",
6194                   fp->eth_q_stats.mbuf_alloc_tx);
6195         }
6196 
6197         /* XXX verify all mbufs were reclaimed */
6198     }
6199 }
6200 
6201 static int
6202 bxe_alloc_rx_bd_mbuf(struct bxe_fastpath *fp,
6203                      uint16_t            prev_index,
6204                      uint16_t            index)
6205 {
6206     struct bxe_sw_rx_bd *rx_buf;
6207     struct eth_rx_bd *rx_bd;
6208     bus_dma_segment_t segs[1];
6209     bus_dmamap_t map;
6210     struct mbuf *m;
6211     int nsegs, rc;
6212 
6213     rc = 0;
6214 
6215     /* allocate the new RX BD mbuf */
6216     m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, fp->mbuf_alloc_size);
6217     if (__predict_false(m == NULL)) {
6218         fp->eth_q_stats.mbuf_rx_bd_alloc_failed++;
6219         return (ENOBUFS);
6220     }
6221 
6222     fp->eth_q_stats.mbuf_alloc_rx++;
6223 
6224     /* initialize the mbuf buffer length */
6225     m->m_pkthdr.len = m->m_len = fp->rx_buf_size;
6226 
6227     /* map the mbuf into non-paged pool */
6228     rc = bus_dmamap_load_mbuf_sg(fp->rx_mbuf_tag,
6229                                  fp->rx_mbuf_spare_map,
6230                                  m, segs, &nsegs, BUS_DMA_NOWAIT);
6231     if (__predict_false(rc != 0)) {
6232         fp->eth_q_stats.mbuf_rx_bd_mapping_failed++;
6233         m_freem(m);
6234         fp->eth_q_stats.mbuf_alloc_rx--;
6235         return (rc);
6236     }
6237 
6238     /* all mbufs must map to a single segment */
6239     KASSERT((nsegs == 1), ("Too many segments, %d returned!", nsegs));
6240 
6241     /* release any existing RX BD mbuf mappings */
6242 
6243     if (prev_index != index) {
6244         rx_buf = &fp->rx_mbuf_chain[prev_index];
6245 
6246         if (rx_buf->m_map != NULL) {
6247             bus_dmamap_sync(fp->rx_mbuf_tag, rx_buf->m_map,
6248                             BUS_DMASYNC_POSTREAD);
6249             bus_dmamap_unload(fp->rx_mbuf_tag, rx_buf->m_map);
6250         }
6251 
6252         /*
6253          * We only get here from bxe_rxeof() when the maximum number
6254          * of rx buffers is less than RX_BD_USABLE. bxe_rxeof() already
6255          * holds the mbuf in the prev_index so it's OK to NULL it out
6256          * here without concern of a memory leak.
6257          */
6258         fp->rx_mbuf_chain[prev_index].m = NULL;
6259     }
6260 
6261     rx_buf = &fp->rx_mbuf_chain[index];
6262 
6263     if (rx_buf->m_map != NULL) {
6264         bus_dmamap_sync(fp->rx_mbuf_tag, rx_buf->m_map,
6265                         BUS_DMASYNC_POSTREAD);
6266         bus_dmamap_unload(fp->rx_mbuf_tag, rx_buf->m_map);
6267     }
6268 
6269     /* save the mbuf and mapping info for a future packet */
6270     map = (prev_index != index) ?
6271               fp->rx_mbuf_chain[prev_index].m_map : rx_buf->m_map;
6272     rx_buf->m_map = fp->rx_mbuf_spare_map;
6273     fp->rx_mbuf_spare_map = map;
6274     bus_dmamap_sync(fp->rx_mbuf_tag, rx_buf->m_map,
6275                     BUS_DMASYNC_PREREAD);
6276     rx_buf->m = m;
6277 
6278     rx_bd = &fp->rx_chain[index];
6279     rx_bd->addr_hi = htole32(U64_HI(segs[0].ds_addr));
6280     rx_bd->addr_lo = htole32(U64_LO(segs[0].ds_addr));
6281 
6282     return (rc);
6283 }
6284 
6285 static int
6286 bxe_alloc_rx_tpa_mbuf(struct bxe_fastpath *fp,
6287                       int                 queue)
6288 {
6289     struct bxe_sw_tpa_info *tpa_info = &fp->rx_tpa_info[queue];
6290     bus_dma_segment_t segs[1];
6291     bus_dmamap_t map;
6292     struct mbuf *m;
6293     int nsegs;
6294     int rc = 0;
6295 
6296     /* allocate the new TPA mbuf */
6297     m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, fp->mbuf_alloc_size);
6298     if (__predict_false(m == NULL)) {
6299         fp->eth_q_stats.mbuf_rx_tpa_alloc_failed++;
6300         return (ENOBUFS);
6301     }
6302 
6303     fp->eth_q_stats.mbuf_alloc_tpa++;
6304 
6305     /* initialize the mbuf buffer length */
6306     m->m_pkthdr.len = m->m_len = fp->rx_buf_size;
6307 
6308     /* map the mbuf into non-paged pool */
6309     rc = bus_dmamap_load_mbuf_sg(fp->rx_mbuf_tag,
6310                                  fp->rx_tpa_info_mbuf_spare_map,
6311                                  m, segs, &nsegs, BUS_DMA_NOWAIT);
6312     if (__predict_false(rc != 0)) {
6313         fp->eth_q_stats.mbuf_rx_tpa_mapping_failed++;
6314         m_free(m);
6315         fp->eth_q_stats.mbuf_alloc_tpa--;
6316         return (rc);
6317     }
6318 
6319     /* all mbufs must map to a single segment */
6320     KASSERT((nsegs == 1), ("Too many segments, %d returned!", nsegs));
6321 
6322     /* release any existing TPA mbuf mapping */
6323     if (tpa_info->bd.m_map != NULL) {
6324         bus_dmamap_sync(fp->rx_mbuf_tag, tpa_info->bd.m_map,
6325                         BUS_DMASYNC_POSTREAD);
6326         bus_dmamap_unload(fp->rx_mbuf_tag, tpa_info->bd.m_map);
6327     }
6328 
6329     /* save the mbuf and mapping info for the TPA mbuf */
6330     map = tpa_info->bd.m_map;
6331     tpa_info->bd.m_map = fp->rx_tpa_info_mbuf_spare_map;
6332     fp->rx_tpa_info_mbuf_spare_map = map;
6333     bus_dmamap_sync(fp->rx_mbuf_tag, tpa_info->bd.m_map,
6334                     BUS_DMASYNC_PREREAD);
6335     tpa_info->bd.m = m;
6336     tpa_info->seg = segs[0];
6337 
6338     return (rc);
6339 }
6340 
6341 /*
6342  * Allocate an mbuf and assign it to the receive scatter gather chain. The
6343  * caller must take care to save a copy of the existing mbuf in the SG mbuf
6344  * chain.
6345  */
6346 static int
6347 bxe_alloc_rx_sge_mbuf(struct bxe_fastpath *fp,
6348                       uint16_t            index)
6349 {
6350     struct bxe_sw_rx_bd *sge_buf;
6351     struct eth_rx_sge *sge;
6352     bus_dma_segment_t segs[1];
6353     bus_dmamap_t map;
6354     struct mbuf *m;
6355     int nsegs;
6356     int rc = 0;
6357 
6358     /* allocate a new SGE mbuf */
6359     m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, SGE_PAGE_SIZE);
6360     if (__predict_false(m == NULL)) {
6361         fp->eth_q_stats.mbuf_rx_sge_alloc_failed++;
6362         return (ENOMEM);
6363     }
6364 
6365     fp->eth_q_stats.mbuf_alloc_sge++;
6366 
6367     /* initialize the mbuf buffer length */
6368     m->m_pkthdr.len = m->m_len = SGE_PAGE_SIZE;
6369 
6370     /* map the SGE mbuf into non-paged pool */
6371     rc = bus_dmamap_load_mbuf_sg(fp->rx_sge_mbuf_tag,
6372                                  fp->rx_sge_mbuf_spare_map,
6373                                  m, segs, &nsegs, BUS_DMA_NOWAIT);
6374     if (__predict_false(rc != 0)) {
6375         fp->eth_q_stats.mbuf_rx_sge_mapping_failed++;
6376         m_freem(m);
6377         fp->eth_q_stats.mbuf_alloc_sge--;
6378         return (rc);
6379     }
6380 
6381     /* all mbufs must map to a single segment */
6382     KASSERT((nsegs == 1), ("Too many segments, %d returned!", nsegs));
6383 
6384     sge_buf = &fp->rx_sge_mbuf_chain[index];
6385 
6386     /* release any existing SGE mbuf mapping */
6387     if (sge_buf->m_map != NULL) {
6388         bus_dmamap_sync(fp->rx_sge_mbuf_tag, sge_buf->m_map,
6389                         BUS_DMASYNC_POSTREAD);
6390         bus_dmamap_unload(fp->rx_sge_mbuf_tag, sge_buf->m_map);
6391     }
6392 
6393     /* save the mbuf and mapping info for a future packet */
6394     map = sge_buf->m_map;
6395     sge_buf->m_map = fp->rx_sge_mbuf_spare_map;
6396     fp->rx_sge_mbuf_spare_map = map;
6397     bus_dmamap_sync(fp->rx_sge_mbuf_tag, sge_buf->m_map,
6398                     BUS_DMASYNC_PREREAD);
6399     sge_buf->m = m;
6400 
6401     sge = &fp->rx_sge_chain[index];
6402     sge->addr_hi = htole32(U64_HI(segs[0].ds_addr));
6403     sge->addr_lo = htole32(U64_LO(segs[0].ds_addr));
6404 
6405     return (rc);
6406 }
6407 
6408 static __noinline int
6409 bxe_alloc_fp_buffers(struct bxe_softc *sc)
6410 {
6411     struct bxe_fastpath *fp;
6412     int i, j, rc = 0;
6413     int ring_prod, cqe_ring_prod;
6414     int max_agg_queues;
6415 
6416     for (i = 0; i < sc->num_queues; i++) {
6417         fp = &sc->fp[i];
6418 
6419         ring_prod = cqe_ring_prod = 0;
6420         fp->rx_bd_cons = 0;
6421         fp->rx_cq_cons = 0;
6422 
6423         /* allocate buffers for the RX BDs in RX BD chain */
6424         for (j = 0; j < sc->max_rx_bufs; j++) {
6425             rc = bxe_alloc_rx_bd_mbuf(fp, ring_prod, ring_prod);
6426             if (rc != 0) {
6427                 BLOGE(sc, "mbuf alloc fail for fp[%02d] rx chain (%d)\n",
6428                       i, rc);
6429                 goto bxe_alloc_fp_buffers_error;
6430             }
6431 
6432             ring_prod     = RX_BD_NEXT(ring_prod);
6433             cqe_ring_prod = RCQ_NEXT(cqe_ring_prod);
6434         }
6435 
6436         fp->rx_bd_prod = ring_prod;
6437         fp->rx_cq_prod = cqe_ring_prod;
6438         fp->eth_q_stats.rx_calls = fp->eth_q_stats.rx_pkts = 0;
6439 
6440         max_agg_queues = MAX_AGG_QS(sc);
6441 
6442         fp->tpa_enable = TRUE;
6443 
6444         /* fill the TPA pool */
6445         for (j = 0; j < max_agg_queues; j++) {
6446             rc = bxe_alloc_rx_tpa_mbuf(fp, j);
6447             if (rc != 0) {
6448                 BLOGE(sc, "mbuf alloc fail for fp[%02d] TPA queue %d\n",
6449                           i, j);
6450                 fp->tpa_enable = FALSE;
6451                 goto bxe_alloc_fp_buffers_error;
6452             }
6453 
6454             fp->rx_tpa_info[j].state = BXE_TPA_STATE_STOP;
6455         }
6456 
6457         if (fp->tpa_enable) {
6458             /* fill the RX SGE chain */
6459             ring_prod = 0;
6460             for (j = 0; j < RX_SGE_USABLE; j++) {
6461                 rc = bxe_alloc_rx_sge_mbuf(fp, ring_prod);
6462                 if (rc != 0) {
6463                     BLOGE(sc, "mbuf alloc fail for fp[%02d] SGE %d\n",
6464                               i, ring_prod);
6465                     fp->tpa_enable = FALSE;
6466                     ring_prod = 0;
6467                     goto bxe_alloc_fp_buffers_error;
6468                 }
6469 
6470                 ring_prod = RX_SGE_NEXT(ring_prod);
6471             }
6472 
6473             fp->rx_sge_prod = ring_prod;
6474         }
6475     }
6476 
6477     return (0);
6478 
6479 bxe_alloc_fp_buffers_error:
6480 
6481     /* unwind what was already allocated */
6482     bxe_free_rx_bd_chain(fp);
6483     bxe_free_tpa_pool(fp);
6484     bxe_free_sge_chain(fp);
6485 
6486     return (ENOBUFS);
6487 }
6488 
6489 static void
6490 bxe_free_fw_stats_mem(struct bxe_softc *sc)
6491 {
6492     bxe_dma_free(sc, &sc->fw_stats_dma);
6493 
6494     sc->fw_stats_num = 0;
6495 
6496     sc->fw_stats_req_size = 0;
6497     sc->fw_stats_req = NULL;
6498     sc->fw_stats_req_mapping = 0;
6499 
6500     sc->fw_stats_data_size = 0;
6501     sc->fw_stats_data = NULL;
6502     sc->fw_stats_data_mapping = 0;
6503 }
6504 
6505 static int
6506 bxe_alloc_fw_stats_mem(struct bxe_softc *sc)
6507 {
6508     uint8_t num_queue_stats;
6509     int num_groups;
6510 
6511     /* number of queues for statistics is number of eth queues */
6512     num_queue_stats = BXE_NUM_ETH_QUEUES(sc);
6513 
6514     /*
6515      * Total number of FW statistics requests =
6516      *   1 for port stats + 1 for PF stats + num of queues
6517      */
6518     sc->fw_stats_num = (2 + num_queue_stats);
6519 
6520     /*
6521      * Request is built from stats_query_header and an array of
6522      * stats_query_cmd_group each of which contains STATS_QUERY_CMD_COUNT
6523      * rules. The real number or requests is configured in the
6524      * stats_query_header.
6525      */
6526     num_groups =
6527         ((sc->fw_stats_num / STATS_QUERY_CMD_COUNT) +
6528          ((sc->fw_stats_num % STATS_QUERY_CMD_COUNT) ? 1 : 0));
6529 
6530     BLOGD(sc, DBG_LOAD, "stats fw_stats_num %d num_groups %d\n",
6531           sc->fw_stats_num, num_groups);
6532 
6533     sc->fw_stats_req_size =
6534         (sizeof(struct stats_query_header) +
6535          (num_groups * sizeof(struct stats_query_cmd_group)));
6536 
6537     /*
6538      * Data for statistics requests + stats_counter.
6539      * stats_counter holds per-STORM counters that are incremented when
6540      * STORM has finished with the current request. Memory for FCoE
6541      * offloaded statistics are counted anyway, even if they will not be sent.
6542      * VF stats are not accounted for here as the data of VF stats is stored
6543      * in memory allocated by the VF, not here.
6544      */
6545     sc->fw_stats_data_size =
6546         (sizeof(struct stats_counter) +
6547          sizeof(struct per_port_stats) +
6548          sizeof(struct per_pf_stats) +
6549          /* sizeof(struct fcoe_statistics_params) + */
6550          (sizeof(struct per_queue_stats) * num_queue_stats));
6551 
6552     if (bxe_dma_alloc(sc, (sc->fw_stats_req_size + sc->fw_stats_data_size),
6553                       &sc->fw_stats_dma, "fw stats") != 0) {
6554         bxe_free_fw_stats_mem(sc);
6555         return (-1);
6556     }
6557 
6558     /* set up the shortcuts */
6559 
6560     sc->fw_stats_req =
6561         (struct bxe_fw_stats_req *)sc->fw_stats_dma.vaddr;
6562     sc->fw_stats_req_mapping = sc->fw_stats_dma.paddr;
6563 
6564     sc->fw_stats_data =
6565         (struct bxe_fw_stats_data *)((uint8_t *)sc->fw_stats_dma.vaddr +
6566                                      sc->fw_stats_req_size);
6567     sc->fw_stats_data_mapping = (sc->fw_stats_dma.paddr +
6568                                  sc->fw_stats_req_size);
6569 
6570     BLOGD(sc, DBG_LOAD, "statistics request base address set to %#jx\n",
6571           (uintmax_t)sc->fw_stats_req_mapping);
6572 
6573     BLOGD(sc, DBG_LOAD, "statistics data base address set to %#jx\n",
6574           (uintmax_t)sc->fw_stats_data_mapping);
6575 
6576     return (0);
6577 }
6578 
6579 /*
6580  * Bits map:
6581  * 0-7  - Engine0 load counter.
6582  * 8-15 - Engine1 load counter.
6583  * 16   - Engine0 RESET_IN_PROGRESS bit.
6584  * 17   - Engine1 RESET_IN_PROGRESS bit.
6585  * 18   - Engine0 ONE_IS_LOADED. Set when there is at least one active
6586  *        function on the engine
6587  * 19   - Engine1 ONE_IS_LOADED.
6588  * 20   - Chip reset flow bit. When set none-leader must wait for both engines
6589  *        leader to complete (check for both RESET_IN_PROGRESS bits and not
6590  *        for just the one belonging to its engine).
6591  */
6592 #define BXE_RECOVERY_GLOB_REG     MISC_REG_GENERIC_POR_1
6593 #define BXE_PATH0_LOAD_CNT_MASK   0x000000ff
6594 #define BXE_PATH0_LOAD_CNT_SHIFT  0
6595 #define BXE_PATH1_LOAD_CNT_MASK   0x0000ff00
6596 #define BXE_PATH1_LOAD_CNT_SHIFT  8
6597 #define BXE_PATH0_RST_IN_PROG_BIT 0x00010000
6598 #define BXE_PATH1_RST_IN_PROG_BIT 0x00020000
6599 #define BXE_GLOBAL_RESET_BIT      0x00040000
6600 
6601 /* set the GLOBAL_RESET bit, should be run under rtnl lock */
6602 static void
6603 bxe_set_reset_global(struct bxe_softc *sc)
6604 {
6605     uint32_t val;
6606     bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
6607     val = REG_RD(sc, BXE_RECOVERY_GLOB_REG);
6608     REG_WR(sc, BXE_RECOVERY_GLOB_REG, val | BXE_GLOBAL_RESET_BIT);
6609     bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
6610 }
6611 
6612 /* clear the GLOBAL_RESET bit, should be run under rtnl lock */
6613 static void
6614 bxe_clear_reset_global(struct bxe_softc *sc)
6615 {
6616     uint32_t val;
6617     bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
6618     val = REG_RD(sc, BXE_RECOVERY_GLOB_REG);
6619     REG_WR(sc, BXE_RECOVERY_GLOB_REG, val & (~BXE_GLOBAL_RESET_BIT));
6620     bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
6621 }
6622 
6623 /* checks the GLOBAL_RESET bit, should be run under rtnl lock */
6624 static uint8_t
6625 bxe_reset_is_global(struct bxe_softc *sc)
6626 {
6627     uint32_t val = REG_RD(sc, BXE_RECOVERY_GLOB_REG);
6628     BLOGD(sc, DBG_LOAD, "GLOB_REG=0x%08x\n", val);
6629     return (val & BXE_GLOBAL_RESET_BIT) ? TRUE : FALSE;
6630 }
6631 
6632 /* clear RESET_IN_PROGRESS bit for the engine, should be run under rtnl lock */
6633 static void
6634 bxe_set_reset_done(struct bxe_softc *sc)
6635 {
6636     uint32_t val;
6637     uint32_t bit = SC_PATH(sc) ? BXE_PATH1_RST_IN_PROG_BIT :
6638                                  BXE_PATH0_RST_IN_PROG_BIT;
6639 
6640     bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
6641 
6642     val = REG_RD(sc, BXE_RECOVERY_GLOB_REG);
6643     /* Clear the bit */
6644     val &= ~bit;
6645     REG_WR(sc, BXE_RECOVERY_GLOB_REG, val);
6646 
6647     bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
6648 }
6649 
6650 /* set RESET_IN_PROGRESS for the engine, should be run under rtnl lock */
6651 static void
6652 bxe_set_reset_in_progress(struct bxe_softc *sc)
6653 {
6654     uint32_t val;
6655     uint32_t bit = SC_PATH(sc) ? BXE_PATH1_RST_IN_PROG_BIT :
6656                                  BXE_PATH0_RST_IN_PROG_BIT;
6657 
6658     bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
6659 
6660     val = REG_RD(sc, BXE_RECOVERY_GLOB_REG);
6661     /* Set the bit */
6662     val |= bit;
6663     REG_WR(sc, BXE_RECOVERY_GLOB_REG, val);
6664 
6665     bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
6666 }
6667 
6668 /* check RESET_IN_PROGRESS bit for an engine, should be run under rtnl lock */
6669 static uint8_t
6670 bxe_reset_is_done(struct bxe_softc *sc,
6671                   int              engine)
6672 {
6673     uint32_t val = REG_RD(sc, BXE_RECOVERY_GLOB_REG);
6674     uint32_t bit = engine ? BXE_PATH1_RST_IN_PROG_BIT :
6675                             BXE_PATH0_RST_IN_PROG_BIT;
6676 
6677     /* return false if bit is set */
6678     return (val & bit) ? FALSE : TRUE;
6679 }
6680 
6681 /* get the load status for an engine, should be run under rtnl lock */
6682 static uint8_t
6683 bxe_get_load_status(struct bxe_softc *sc,
6684                     int              engine)
6685 {
6686     uint32_t mask = engine ? BXE_PATH1_LOAD_CNT_MASK :
6687                              BXE_PATH0_LOAD_CNT_MASK;
6688     uint32_t shift = engine ? BXE_PATH1_LOAD_CNT_SHIFT :
6689                               BXE_PATH0_LOAD_CNT_SHIFT;
6690     uint32_t val = REG_RD(sc, BXE_RECOVERY_GLOB_REG);
6691 
6692     BLOGD(sc, DBG_LOAD, "Old value for GLOB_REG=0x%08x\n", val);
6693 
6694     val = ((val & mask) >> shift);
6695 
6696     BLOGD(sc, DBG_LOAD, "Load mask engine %d = 0x%08x\n", engine, val);
6697 
6698     return (val != 0);
6699 }
6700 
6701 /* set pf load mark */
6702 /* XXX needs to be under rtnl lock */
6703 static void
6704 bxe_set_pf_load(struct bxe_softc *sc)
6705 {
6706     uint32_t val;
6707     uint32_t val1;
6708     uint32_t mask = SC_PATH(sc) ? BXE_PATH1_LOAD_CNT_MASK :
6709                                   BXE_PATH0_LOAD_CNT_MASK;
6710     uint32_t shift = SC_PATH(sc) ? BXE_PATH1_LOAD_CNT_SHIFT :
6711                                    BXE_PATH0_LOAD_CNT_SHIFT;
6712 
6713     bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
6714 
6715     val = REG_RD(sc, BXE_RECOVERY_GLOB_REG);
6716     BLOGD(sc, DBG_LOAD, "Old value for GLOB_REG=0x%08x\n", val);
6717 
6718     /* get the current counter value */
6719     val1 = ((val & mask) >> shift);
6720 
6721     /* set bit of this PF */
6722     val1 |= (1 << SC_ABS_FUNC(sc));
6723 
6724     /* clear the old value */
6725     val &= ~mask;
6726 
6727     /* set the new one */
6728     val |= ((val1 << shift) & mask);
6729 
6730     REG_WR(sc, BXE_RECOVERY_GLOB_REG, val);
6731 
6732     bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
6733 }
6734 
6735 /* clear pf load mark */
6736 /* XXX needs to be under rtnl lock */
6737 static uint8_t
6738 bxe_clear_pf_load(struct bxe_softc *sc)
6739 {
6740     uint32_t val1, val;
6741     uint32_t mask = SC_PATH(sc) ? BXE_PATH1_LOAD_CNT_MASK :
6742                                   BXE_PATH0_LOAD_CNT_MASK;
6743     uint32_t shift = SC_PATH(sc) ? BXE_PATH1_LOAD_CNT_SHIFT :
6744                                    BXE_PATH0_LOAD_CNT_SHIFT;
6745 
6746     bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
6747     val = REG_RD(sc, BXE_RECOVERY_GLOB_REG);
6748     BLOGD(sc, DBG_LOAD, "Old GEN_REG_VAL=0x%08x\n", val);
6749 
6750     /* get the current counter value */
6751     val1 = (val & mask) >> shift;
6752 
6753     /* clear bit of that PF */
6754     val1 &= ~(1 << SC_ABS_FUNC(sc));
6755 
6756     /* clear the old value */
6757     val &= ~mask;
6758 
6759     /* set the new one */
6760     val |= ((val1 << shift) & mask);
6761 
6762     REG_WR(sc, BXE_RECOVERY_GLOB_REG, val);
6763     bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
6764     return (val1 != 0);
6765 }
6766 
6767 /* send load requrest to mcp and analyze response */
6768 static int
6769 bxe_nic_load_request(struct bxe_softc *sc,
6770                      uint32_t         *load_code)
6771 {
6772     /* init fw_seq */
6773     sc->fw_seq =
6774         (SHMEM_RD(sc, func_mb[SC_FW_MB_IDX(sc)].drv_mb_header) &
6775          DRV_MSG_SEQ_NUMBER_MASK);
6776 
6777     BLOGD(sc, DBG_LOAD, "initial fw_seq 0x%04x\n", sc->fw_seq);
6778 
6779     /* get the current FW pulse sequence */
6780     sc->fw_drv_pulse_wr_seq =
6781         (SHMEM_RD(sc, func_mb[SC_FW_MB_IDX(sc)].drv_pulse_mb) &
6782          DRV_PULSE_SEQ_MASK);
6783 
6784     BLOGD(sc, DBG_LOAD, "initial drv_pulse 0x%04x\n",
6785           sc->fw_drv_pulse_wr_seq);
6786 
6787     /* load request */
6788     (*load_code) = bxe_fw_command(sc, DRV_MSG_CODE_LOAD_REQ,
6789                                   DRV_MSG_CODE_LOAD_REQ_WITH_LFA);
6790 
6791     /* if the MCP fails to respond we must abort */
6792     if (!(*load_code)) {
6793         BLOGE(sc, "MCP response failure!\n");
6794         return (-1);
6795     }
6796 
6797     /* if MCP refused then must abort */
6798     if ((*load_code) == FW_MSG_CODE_DRV_LOAD_REFUSED) {
6799         BLOGE(sc, "MCP refused load request\n");
6800         return (-1);
6801     }
6802 
6803     return (0);
6804 }
6805 
6806 /*
6807  * Check whether another PF has already loaded FW to chip. In virtualized
6808  * environments a pf from anoth VM may have already initialized the device
6809  * including loading FW.
6810  */
6811 static int
6812 bxe_nic_load_analyze_req(struct bxe_softc *sc,
6813                          uint32_t         load_code)
6814 {
6815     uint32_t my_fw, loaded_fw;
6816 
6817     /* is another pf loaded on this engine? */
6818     if ((load_code != FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) &&
6819         (load_code != FW_MSG_CODE_DRV_LOAD_COMMON)) {
6820         /* build my FW version dword */
6821         my_fw = (BCM_5710_FW_MAJOR_VERSION +
6822                  (BCM_5710_FW_MINOR_VERSION << 8 ) +
6823                  (BCM_5710_FW_REVISION_VERSION << 16) +
6824                  (BCM_5710_FW_ENGINEERING_VERSION << 24));
6825 
6826         /* read loaded FW from chip */
6827         loaded_fw = REG_RD(sc, XSEM_REG_PRAM);
6828         BLOGD(sc, DBG_LOAD, "loaded FW 0x%08x / my FW 0x%08x\n",
6829               loaded_fw, my_fw);
6830 
6831         /* abort nic load if version mismatch */
6832         if (my_fw != loaded_fw) {
6833             BLOGE(sc, "FW 0x%08x already loaded (mine is 0x%08x)",
6834                   loaded_fw, my_fw);
6835             return (-1);
6836         }
6837     }
6838 
6839     return (0);
6840 }
6841 
6842 /* mark PMF if applicable */
6843 static void
6844 bxe_nic_load_pmf(struct bxe_softc *sc,
6845                  uint32_t         load_code)
6846 {
6847     uint32_t ncsi_oem_data_addr;
6848 
6849     if ((load_code == FW_MSG_CODE_DRV_LOAD_COMMON) ||
6850         (load_code == FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) ||
6851         (load_code == FW_MSG_CODE_DRV_LOAD_PORT)) {
6852         /*
6853          * Barrier here for ordering between the writing to sc->port.pmf here
6854          * and reading it from the periodic task.
6855          */
6856         sc->port.pmf = 1;
6857         mb();
6858     } else {
6859         sc->port.pmf = 0;
6860     }
6861 
6862     BLOGD(sc, DBG_LOAD, "pmf %d\n", sc->port.pmf);
6863 
6864     /* XXX needed? */
6865     if (load_code == FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) {
6866         if (SHMEM2_HAS(sc, ncsi_oem_data_addr)) {
6867             ncsi_oem_data_addr = SHMEM2_RD(sc, ncsi_oem_data_addr);
6868             if (ncsi_oem_data_addr) {
6869                 REG_WR(sc,
6870                        (ncsi_oem_data_addr +
6871                         offsetof(struct glob_ncsi_oem_data, driver_version)),
6872                        0);
6873             }
6874         }
6875     }
6876 }
6877 
6878 static void
6879 bxe_read_mf_cfg(struct bxe_softc *sc)
6880 {
6881     int n = (CHIP_IS_MODE_4_PORT(sc) ? 2 : 1);
6882     int abs_func;
6883     int vn;
6884 
6885     if (BXE_NOMCP(sc)) {
6886         return; /* what should be the default bvalue in this case */
6887     }
6888 
6889     /*
6890      * The formula for computing the absolute function number is...
6891      * For 2 port configuration (4 functions per port):
6892      *   abs_func = 2 * vn + SC_PORT + SC_PATH
6893      * For 4 port configuration (2 functions per port):
6894      *   abs_func = 4 * vn + 2 * SC_PORT + SC_PATH
6895      */
6896     for (vn = VN_0; vn < SC_MAX_VN_NUM(sc); vn++) {
6897         abs_func = (n * (2 * vn + SC_PORT(sc)) + SC_PATH(sc));
6898         if (abs_func >= E1H_FUNC_MAX) {
6899             break;
6900         }
6901         sc->devinfo.mf_info.mf_config[vn] =
6902             MFCFG_RD(sc, func_mf_config[abs_func].config);
6903     }
6904 
6905     if (sc->devinfo.mf_info.mf_config[SC_VN(sc)] &
6906         FUNC_MF_CFG_FUNC_DISABLED) {
6907         BLOGD(sc, DBG_LOAD, "mf_cfg function disabled\n");
6908         sc->flags |= BXE_MF_FUNC_DIS;
6909     } else {
6910         BLOGD(sc, DBG_LOAD, "mf_cfg function enabled\n");
6911         sc->flags &= ~BXE_MF_FUNC_DIS;
6912     }
6913 }
6914 
6915 /* acquire split MCP access lock register */
6916 static int bxe_acquire_alr(struct bxe_softc *sc)
6917 {
6918     uint32_t j, val;
6919 
6920     for (j = 0; j < 1000; j++) {
6921         val = (1UL << 31);
6922         REG_WR(sc, GRCBASE_MCP + 0x9c, val);
6923         val = REG_RD(sc, GRCBASE_MCP + 0x9c);
6924         if (val & (1L << 31))
6925             break;
6926 
6927         DELAY(5000);
6928     }
6929 
6930     if (!(val & (1L << 31))) {
6931         BLOGE(sc, "Cannot acquire MCP access lock register\n");
6932         return (-1);
6933     }
6934 
6935     return (0);
6936 }
6937 
6938 /* release split MCP access lock register */
6939 static void bxe_release_alr(struct bxe_softc *sc)
6940 {
6941     REG_WR(sc, GRCBASE_MCP + 0x9c, 0);
6942 }
6943 
6944 static void
6945 bxe_fan_failure(struct bxe_softc *sc)
6946 {
6947     int port = SC_PORT(sc);
6948     uint32_t ext_phy_config;
6949 
6950     /* mark the failure */
6951     ext_phy_config =
6952         SHMEM_RD(sc, dev_info.port_hw_config[port].external_phy_config);
6953 
6954     ext_phy_config &= ~PORT_HW_CFG_XGXS_EXT_PHY_TYPE_MASK;
6955     ext_phy_config |= PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE;
6956     SHMEM_WR(sc, dev_info.port_hw_config[port].external_phy_config,
6957              ext_phy_config);
6958 
6959     /* log the failure */
6960     BLOGW(sc, "Fan Failure has caused the driver to shutdown "
6961               "the card to prevent permanent damage. "
6962               "Please contact OEM Support for assistance\n");
6963 
6964     /* XXX */
6965 #if 1
6966     bxe_panic(sc, ("Schedule task to handle fan failure\n"));
6967 #else
6968     /*
6969      * Schedule device reset (unload)
6970      * This is due to some boards consuming sufficient power when driver is
6971      * up to overheat if fan fails.
6972      */
6973     bxe_set_bit(BXE_SP_RTNL_FAN_FAILURE, &sc->sp_rtnl_state);
6974     schedule_delayed_work(&sc->sp_rtnl_task, 0);
6975 #endif
6976 }
6977 
6978 /* this function is called upon a link interrupt */
6979 static void
6980 bxe_link_attn(struct bxe_softc *sc)
6981 {
6982     uint32_t pause_enabled = 0;
6983     struct host_port_stats *pstats;
6984     int cmng_fns;
6985     struct bxe_fastpath *fp;
6986     int i;
6987 
6988     /* Make sure that we are synced with the current statistics */
6989     bxe_stats_handle(sc, STATS_EVENT_STOP);
6990     BLOGD(sc, DBG_LOAD, "link_vars phy_flags : %x\n", sc->link_vars.phy_flags);
6991     elink_link_update(&sc->link_params, &sc->link_vars);
6992 
6993     if (sc->link_vars.link_up) {
6994 
6995         /* dropless flow control */
6996         if (!CHIP_IS_E1(sc) && sc->dropless_fc) {
6997             pause_enabled = 0;
6998 
6999             if (sc->link_vars.flow_ctrl & ELINK_FLOW_CTRL_TX) {
7000                 pause_enabled = 1;
7001             }
7002 
7003             REG_WR(sc,
7004                    (BAR_USTRORM_INTMEM +
7005                     USTORM_ETH_PAUSE_ENABLED_OFFSET(SC_PORT(sc))),
7006                    pause_enabled);
7007         }
7008 
7009         if (sc->link_vars.mac_type != ELINK_MAC_TYPE_EMAC) {
7010             pstats = BXE_SP(sc, port_stats);
7011             /* reset old mac stats */
7012             memset(&(pstats->mac_stx[0]), 0, sizeof(struct mac_stx));
7013         }
7014 
7015         if (sc->state == BXE_STATE_OPEN) {
7016             bxe_stats_handle(sc, STATS_EVENT_LINK_UP);
7017 	    /* Restart tx when the link comes back. */
7018 	    FOR_EACH_ETH_QUEUE(sc, i) {
7019 		fp = &sc->fp[i];
7020 		taskqueue_enqueue(fp->tq, &fp->tx_task);
7021 	    }
7022         }
7023 
7024     }
7025 
7026     if (sc->link_vars.link_up && sc->link_vars.line_speed) {
7027         cmng_fns = bxe_get_cmng_fns_mode(sc);
7028 
7029         if (cmng_fns != CMNG_FNS_NONE) {
7030             bxe_cmng_fns_init(sc, FALSE, cmng_fns);
7031             storm_memset_cmng(sc, &sc->cmng, SC_PORT(sc));
7032         } else {
7033             /* rate shaping and fairness are disabled */
7034             BLOGD(sc, DBG_LOAD, "single function mode without fairness\n");
7035         }
7036     }
7037 
7038     bxe_link_report_locked(sc);
7039 
7040     if (IS_MF(sc)) {
7041         ; // XXX bxe_link_sync_notify(sc);
7042     }
7043 }
7044 
7045 static void
7046 bxe_attn_int_asserted(struct bxe_softc *sc,
7047                       uint32_t         asserted)
7048 {
7049     int port = SC_PORT(sc);
7050     uint32_t aeu_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
7051                                MISC_REG_AEU_MASK_ATTN_FUNC_0;
7052     uint32_t nig_int_mask_addr = port ? NIG_REG_MASK_INTERRUPT_PORT1 :
7053                                         NIG_REG_MASK_INTERRUPT_PORT0;
7054     uint32_t aeu_mask;
7055     uint32_t nig_mask = 0;
7056     uint32_t reg_addr;
7057     uint32_t igu_acked;
7058     uint32_t cnt;
7059 
7060     if (sc->attn_state & asserted) {
7061         BLOGE(sc, "IGU ERROR attn=0x%08x\n", asserted);
7062     }
7063 
7064     bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
7065 
7066     aeu_mask = REG_RD(sc, aeu_addr);
7067 
7068     BLOGD(sc, DBG_INTR, "aeu_mask 0x%08x newly asserted 0x%08x\n",
7069           aeu_mask, asserted);
7070 
7071     aeu_mask &= ~(asserted & 0x3ff);
7072 
7073     BLOGD(sc, DBG_INTR, "new mask 0x%08x\n", aeu_mask);
7074 
7075     REG_WR(sc, aeu_addr, aeu_mask);
7076 
7077     bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
7078 
7079     BLOGD(sc, DBG_INTR, "attn_state 0x%08x\n", sc->attn_state);
7080     sc->attn_state |= asserted;
7081     BLOGD(sc, DBG_INTR, "new state 0x%08x\n", sc->attn_state);
7082 
7083     if (asserted & ATTN_HARD_WIRED_MASK) {
7084         if (asserted & ATTN_NIG_FOR_FUNC) {
7085 
7086 	    bxe_acquire_phy_lock(sc);
7087             /* save nig interrupt mask */
7088             nig_mask = REG_RD(sc, nig_int_mask_addr);
7089 
7090             /* If nig_mask is not set, no need to call the update function */
7091             if (nig_mask) {
7092                 REG_WR(sc, nig_int_mask_addr, 0);
7093 
7094                 bxe_link_attn(sc);
7095             }
7096 
7097             /* handle unicore attn? */
7098         }
7099 
7100         if (asserted & ATTN_SW_TIMER_4_FUNC) {
7101             BLOGD(sc, DBG_INTR, "ATTN_SW_TIMER_4_FUNC!\n");
7102         }
7103 
7104         if (asserted & GPIO_2_FUNC) {
7105             BLOGD(sc, DBG_INTR, "GPIO_2_FUNC!\n");
7106         }
7107 
7108         if (asserted & GPIO_3_FUNC) {
7109             BLOGD(sc, DBG_INTR, "GPIO_3_FUNC!\n");
7110         }
7111 
7112         if (asserted & GPIO_4_FUNC) {
7113             BLOGD(sc, DBG_INTR, "GPIO_4_FUNC!\n");
7114         }
7115 
7116         if (port == 0) {
7117             if (asserted & ATTN_GENERAL_ATTN_1) {
7118                 BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_1!\n");
7119                 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_1, 0x0);
7120             }
7121             if (asserted & ATTN_GENERAL_ATTN_2) {
7122                 BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_2!\n");
7123                 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_2, 0x0);
7124             }
7125             if (asserted & ATTN_GENERAL_ATTN_3) {
7126                 BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_3!\n");
7127                 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_3, 0x0);
7128             }
7129         } else {
7130             if (asserted & ATTN_GENERAL_ATTN_4) {
7131                 BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_4!\n");
7132                 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_4, 0x0);
7133             }
7134             if (asserted & ATTN_GENERAL_ATTN_5) {
7135                 BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_5!\n");
7136                 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_5, 0x0);
7137             }
7138             if (asserted & ATTN_GENERAL_ATTN_6) {
7139                 BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_6!\n");
7140                 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_6, 0x0);
7141             }
7142         }
7143     } /* hardwired */
7144 
7145     if (sc->devinfo.int_block == INT_BLOCK_HC) {
7146         reg_addr = (HC_REG_COMMAND_REG + port*32 + COMMAND_REG_ATTN_BITS_SET);
7147     } else {
7148         reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_SET_UPPER*8);
7149     }
7150 
7151     BLOGD(sc, DBG_INTR, "about to mask 0x%08x at %s addr 0x%08x\n",
7152           asserted,
7153           (sc->devinfo.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr);
7154     REG_WR(sc, reg_addr, asserted);
7155 
7156     /* now set back the mask */
7157     if (asserted & ATTN_NIG_FOR_FUNC) {
7158         /*
7159          * Verify that IGU ack through BAR was written before restoring
7160          * NIG mask. This loop should exit after 2-3 iterations max.
7161          */
7162         if (sc->devinfo.int_block != INT_BLOCK_HC) {
7163             cnt = 0;
7164 
7165             do {
7166                 igu_acked = REG_RD(sc, IGU_REG_ATTENTION_ACK_BITS);
7167             } while (((igu_acked & ATTN_NIG_FOR_FUNC) == 0) &&
7168                      (++cnt < MAX_IGU_ATTN_ACK_TO));
7169 
7170             if (!igu_acked) {
7171                 BLOGE(sc, "Failed to verify IGU ack on time\n");
7172             }
7173 
7174             mb();
7175         }
7176 
7177         REG_WR(sc, nig_int_mask_addr, nig_mask);
7178 
7179 	bxe_release_phy_lock(sc);
7180     }
7181 }
7182 
7183 static void
7184 bxe_print_next_block(struct bxe_softc *sc,
7185                      int              idx,
7186                      const char       *blk)
7187 {
7188     BLOGI(sc, "%s%s", idx ? ", " : "", blk);
7189 }
7190 
7191 static int
7192 bxe_check_blocks_with_parity0(struct bxe_softc *sc,
7193                               uint32_t         sig,
7194                               int              par_num,
7195                               uint8_t          print)
7196 {
7197     uint32_t cur_bit = 0;
7198     int i = 0;
7199 
7200     for (i = 0; sig; i++) {
7201         cur_bit = ((uint32_t)0x1 << i);
7202         if (sig & cur_bit) {
7203             switch (cur_bit) {
7204             case AEU_INPUTS_ATTN_BITS_BRB_PARITY_ERROR:
7205                 if (print)
7206                     bxe_print_next_block(sc, par_num++, "BRB");
7207                 break;
7208             case AEU_INPUTS_ATTN_BITS_PARSER_PARITY_ERROR:
7209                 if (print)
7210                     bxe_print_next_block(sc, par_num++, "PARSER");
7211                 break;
7212             case AEU_INPUTS_ATTN_BITS_TSDM_PARITY_ERROR:
7213                 if (print)
7214                     bxe_print_next_block(sc, par_num++, "TSDM");
7215                 break;
7216             case AEU_INPUTS_ATTN_BITS_SEARCHER_PARITY_ERROR:
7217                 if (print)
7218                     bxe_print_next_block(sc, par_num++, "SEARCHER");
7219                 break;
7220             case AEU_INPUTS_ATTN_BITS_TCM_PARITY_ERROR:
7221                 if (print)
7222                     bxe_print_next_block(sc, par_num++, "TCM");
7223                 break;
7224             case AEU_INPUTS_ATTN_BITS_TSEMI_PARITY_ERROR:
7225                 if (print)
7226                     bxe_print_next_block(sc, par_num++, "TSEMI");
7227                 break;
7228             case AEU_INPUTS_ATTN_BITS_PBCLIENT_PARITY_ERROR:
7229                 if (print)
7230                     bxe_print_next_block(sc, par_num++, "XPB");
7231                 break;
7232             }
7233 
7234             /* Clear the bit */
7235             sig &= ~cur_bit;
7236         }
7237     }
7238 
7239     return (par_num);
7240 }
7241 
7242 static int
7243 bxe_check_blocks_with_parity1(struct bxe_softc *sc,
7244                               uint32_t         sig,
7245                               int              par_num,
7246                               uint8_t          *global,
7247                               uint8_t          print)
7248 {
7249     int i = 0;
7250     uint32_t cur_bit = 0;
7251     for (i = 0; sig; i++) {
7252         cur_bit = ((uint32_t)0x1 << i);
7253         if (sig & cur_bit) {
7254             switch (cur_bit) {
7255             case AEU_INPUTS_ATTN_BITS_PBF_PARITY_ERROR:
7256                 if (print)
7257                     bxe_print_next_block(sc, par_num++, "PBF");
7258                 break;
7259             case AEU_INPUTS_ATTN_BITS_QM_PARITY_ERROR:
7260                 if (print)
7261                     bxe_print_next_block(sc, par_num++, "QM");
7262                 break;
7263             case AEU_INPUTS_ATTN_BITS_TIMERS_PARITY_ERROR:
7264                 if (print)
7265                     bxe_print_next_block(sc, par_num++, "TM");
7266                 break;
7267             case AEU_INPUTS_ATTN_BITS_XSDM_PARITY_ERROR:
7268                 if (print)
7269                     bxe_print_next_block(sc, par_num++, "XSDM");
7270                 break;
7271             case AEU_INPUTS_ATTN_BITS_XCM_PARITY_ERROR:
7272                 if (print)
7273                     bxe_print_next_block(sc, par_num++, "XCM");
7274                 break;
7275             case AEU_INPUTS_ATTN_BITS_XSEMI_PARITY_ERROR:
7276                 if (print)
7277                     bxe_print_next_block(sc, par_num++, "XSEMI");
7278                 break;
7279             case AEU_INPUTS_ATTN_BITS_DOORBELLQ_PARITY_ERROR:
7280                 if (print)
7281                     bxe_print_next_block(sc, par_num++, "DOORBELLQ");
7282                 break;
7283             case AEU_INPUTS_ATTN_BITS_NIG_PARITY_ERROR:
7284                 if (print)
7285                     bxe_print_next_block(sc, par_num++, "NIG");
7286                 break;
7287             case AEU_INPUTS_ATTN_BITS_VAUX_PCI_CORE_PARITY_ERROR:
7288                 if (print)
7289                     bxe_print_next_block(sc, par_num++, "VAUX PCI CORE");
7290                 *global = TRUE;
7291                 break;
7292             case AEU_INPUTS_ATTN_BITS_DEBUG_PARITY_ERROR:
7293                 if (print)
7294                     bxe_print_next_block(sc, par_num++, "DEBUG");
7295                 break;
7296             case AEU_INPUTS_ATTN_BITS_USDM_PARITY_ERROR:
7297                 if (print)
7298                     bxe_print_next_block(sc, par_num++, "USDM");
7299                 break;
7300             case AEU_INPUTS_ATTN_BITS_UCM_PARITY_ERROR:
7301                 if (print)
7302                     bxe_print_next_block(sc, par_num++, "UCM");
7303                 break;
7304             case AEU_INPUTS_ATTN_BITS_USEMI_PARITY_ERROR:
7305                 if (print)
7306                     bxe_print_next_block(sc, par_num++, "USEMI");
7307                 break;
7308             case AEU_INPUTS_ATTN_BITS_UPB_PARITY_ERROR:
7309                 if (print)
7310                     bxe_print_next_block(sc, par_num++, "UPB");
7311                 break;
7312             case AEU_INPUTS_ATTN_BITS_CSDM_PARITY_ERROR:
7313                 if (print)
7314                     bxe_print_next_block(sc, par_num++, "CSDM");
7315                 break;
7316             case AEU_INPUTS_ATTN_BITS_CCM_PARITY_ERROR:
7317                 if (print)
7318                     bxe_print_next_block(sc, par_num++, "CCM");
7319                 break;
7320             }
7321 
7322             /* Clear the bit */
7323             sig &= ~cur_bit;
7324         }
7325     }
7326 
7327     return (par_num);
7328 }
7329 
7330 static int
7331 bxe_check_blocks_with_parity2(struct bxe_softc *sc,
7332                               uint32_t         sig,
7333                               int              par_num,
7334                               uint8_t          print)
7335 {
7336     uint32_t cur_bit = 0;
7337     int i = 0;
7338 
7339     for (i = 0; sig; i++) {
7340         cur_bit = ((uint32_t)0x1 << i);
7341         if (sig & cur_bit) {
7342             switch (cur_bit) {
7343             case AEU_INPUTS_ATTN_BITS_CSEMI_PARITY_ERROR:
7344                 if (print)
7345                     bxe_print_next_block(sc, par_num++, "CSEMI");
7346                 break;
7347             case AEU_INPUTS_ATTN_BITS_PXP_PARITY_ERROR:
7348                 if (print)
7349                     bxe_print_next_block(sc, par_num++, "PXP");
7350                 break;
7351             case AEU_IN_ATTN_BITS_PXPPCICLOCKCLIENT_PARITY_ERROR:
7352                 if (print)
7353                     bxe_print_next_block(sc, par_num++, "PXPPCICLOCKCLIENT");
7354                 break;
7355             case AEU_INPUTS_ATTN_BITS_CFC_PARITY_ERROR:
7356                 if (print)
7357                     bxe_print_next_block(sc, par_num++, "CFC");
7358                 break;
7359             case AEU_INPUTS_ATTN_BITS_CDU_PARITY_ERROR:
7360                 if (print)
7361                     bxe_print_next_block(sc, par_num++, "CDU");
7362                 break;
7363             case AEU_INPUTS_ATTN_BITS_DMAE_PARITY_ERROR:
7364                 if (print)
7365                     bxe_print_next_block(sc, par_num++, "DMAE");
7366                 break;
7367             case AEU_INPUTS_ATTN_BITS_IGU_PARITY_ERROR:
7368                 if (print)
7369                     bxe_print_next_block(sc, par_num++, "IGU");
7370                 break;
7371             case AEU_INPUTS_ATTN_BITS_MISC_PARITY_ERROR:
7372                 if (print)
7373                     bxe_print_next_block(sc, par_num++, "MISC");
7374                 break;
7375             }
7376 
7377             /* Clear the bit */
7378             sig &= ~cur_bit;
7379         }
7380     }
7381 
7382     return (par_num);
7383 }
7384 
7385 static int
7386 bxe_check_blocks_with_parity3(struct bxe_softc *sc,
7387                               uint32_t         sig,
7388                               int              par_num,
7389                               uint8_t          *global,
7390                               uint8_t          print)
7391 {
7392     uint32_t cur_bit = 0;
7393     int i = 0;
7394 
7395     for (i = 0; sig; i++) {
7396         cur_bit = ((uint32_t)0x1 << i);
7397         if (sig & cur_bit) {
7398             switch (cur_bit) {
7399             case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_ROM_PARITY:
7400                 if (print)
7401                     bxe_print_next_block(sc, par_num++, "MCP ROM");
7402                 *global = TRUE;
7403                 break;
7404             case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_RX_PARITY:
7405                 if (print)
7406                     bxe_print_next_block(sc, par_num++,
7407                               "MCP UMP RX");
7408                 *global = TRUE;
7409                 break;
7410             case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_TX_PARITY:
7411                 if (print)
7412                     bxe_print_next_block(sc, par_num++,
7413                               "MCP UMP TX");
7414                 *global = TRUE;
7415                 break;
7416             case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY:
7417                 if (print)
7418                     bxe_print_next_block(sc, par_num++,
7419                               "MCP SCPAD");
7420                 *global = TRUE;
7421                 break;
7422             }
7423 
7424             /* Clear the bit */
7425             sig &= ~cur_bit;
7426         }
7427     }
7428 
7429     return (par_num);
7430 }
7431 
7432 static int
7433 bxe_check_blocks_with_parity4(struct bxe_softc *sc,
7434                               uint32_t         sig,
7435                               int              par_num,
7436                               uint8_t          print)
7437 {
7438     uint32_t cur_bit = 0;
7439     int i = 0;
7440 
7441     for (i = 0; sig; i++) {
7442         cur_bit = ((uint32_t)0x1 << i);
7443         if (sig & cur_bit) {
7444             switch (cur_bit) {
7445             case AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR:
7446                 if (print)
7447                     bxe_print_next_block(sc, par_num++, "PGLUE_B");
7448                 break;
7449             case AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR:
7450                 if (print)
7451                     bxe_print_next_block(sc, par_num++, "ATC");
7452                 break;
7453             }
7454 
7455             /* Clear the bit */
7456             sig &= ~cur_bit;
7457         }
7458     }
7459 
7460     return (par_num);
7461 }
7462 
7463 static uint8_t
7464 bxe_parity_attn(struct bxe_softc *sc,
7465                 uint8_t          *global,
7466                 uint8_t          print,
7467                 uint32_t         *sig)
7468 {
7469     int par_num = 0;
7470 
7471     if ((sig[0] & HW_PRTY_ASSERT_SET_0) ||
7472         (sig[1] & HW_PRTY_ASSERT_SET_1) ||
7473         (sig[2] & HW_PRTY_ASSERT_SET_2) ||
7474         (sig[3] & HW_PRTY_ASSERT_SET_3) ||
7475         (sig[4] & HW_PRTY_ASSERT_SET_4)) {
7476         BLOGE(sc, "Parity error: HW block parity attention:\n"
7477                   "[0]:0x%08x [1]:0x%08x [2]:0x%08x [3]:0x%08x [4]:0x%08x\n",
7478               (uint32_t)(sig[0] & HW_PRTY_ASSERT_SET_0),
7479               (uint32_t)(sig[1] & HW_PRTY_ASSERT_SET_1),
7480               (uint32_t)(sig[2] & HW_PRTY_ASSERT_SET_2),
7481               (uint32_t)(sig[3] & HW_PRTY_ASSERT_SET_3),
7482               (uint32_t)(sig[4] & HW_PRTY_ASSERT_SET_4));
7483 
7484         if (print)
7485             BLOGI(sc, "Parity errors detected in blocks: ");
7486 
7487         par_num =
7488             bxe_check_blocks_with_parity0(sc, sig[0] &
7489                                           HW_PRTY_ASSERT_SET_0,
7490                                           par_num, print);
7491         par_num =
7492             bxe_check_blocks_with_parity1(sc, sig[1] &
7493                                           HW_PRTY_ASSERT_SET_1,
7494                                           par_num, global, print);
7495         par_num =
7496             bxe_check_blocks_with_parity2(sc, sig[2] &
7497                                           HW_PRTY_ASSERT_SET_2,
7498                                           par_num, print);
7499         par_num =
7500             bxe_check_blocks_with_parity3(sc, sig[3] &
7501                                           HW_PRTY_ASSERT_SET_3,
7502                                           par_num, global, print);
7503         par_num =
7504             bxe_check_blocks_with_parity4(sc, sig[4] &
7505                                           HW_PRTY_ASSERT_SET_4,
7506                                           par_num, print);
7507 
7508         if (print)
7509             BLOGI(sc, "\n");
7510 
7511 	if( *global == TRUE ) {
7512                 BXE_SET_ERROR_BIT(sc, BXE_ERR_GLOBAL);
7513         }
7514 
7515         return (TRUE);
7516     }
7517 
7518     return (FALSE);
7519 }
7520 
7521 static uint8_t
7522 bxe_chk_parity_attn(struct bxe_softc *sc,
7523                     uint8_t          *global,
7524                     uint8_t          print)
7525 {
7526     struct attn_route attn = { {0} };
7527     int port = SC_PORT(sc);
7528 
7529     if(sc->state != BXE_STATE_OPEN)
7530         return FALSE;
7531 
7532     attn.sig[0] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + port*4);
7533     attn.sig[1] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 + port*4);
7534     attn.sig[2] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 + port*4);
7535     attn.sig[3] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 + port*4);
7536 
7537     /*
7538      * Since MCP attentions can't be disabled inside the block, we need to
7539      * read AEU registers to see whether they're currently disabled
7540      */
7541     attn.sig[3] &= ((REG_RD(sc, (!port ? MISC_REG_AEU_ENABLE4_FUNC_0_OUT_0
7542                                       : MISC_REG_AEU_ENABLE4_FUNC_1_OUT_0)) &
7543                          MISC_AEU_ENABLE_MCP_PRTY_BITS) |
7544                         ~MISC_AEU_ENABLE_MCP_PRTY_BITS);
7545 
7546 
7547     if (!CHIP_IS_E1x(sc))
7548         attn.sig[4] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 + port*4);
7549 
7550     return (bxe_parity_attn(sc, global, print, attn.sig));
7551 }
7552 
7553 static void
7554 bxe_attn_int_deasserted4(struct bxe_softc *sc,
7555                          uint32_t         attn)
7556 {
7557     uint32_t val;
7558     bool err_flg = false;
7559 
7560     if (attn & AEU_INPUTS_ATTN_BITS_PGLUE_HW_INTERRUPT) {
7561         val = REG_RD(sc, PGLUE_B_REG_PGLUE_B_INT_STS_CLR);
7562         BLOGE(sc, "PGLUE hw attention 0x%08x\n", val);
7563         err_flg = true;
7564         if (val & PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR)
7565             BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR\n");
7566         if (val & PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR)
7567             BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR\n");
7568         if (val & PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN)
7569             BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN\n");
7570         if (val & PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN)
7571             BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN\n");
7572         if (val & PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN)
7573             BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN\n");
7574         if (val & PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN)
7575             BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN\n");
7576         if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN)
7577             BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN\n");
7578         if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN)
7579             BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN\n");
7580         if (val & PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW)
7581             BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW\n");
7582     }
7583 
7584     if (attn & AEU_INPUTS_ATTN_BITS_ATC_HW_INTERRUPT) {
7585         val = REG_RD(sc, ATC_REG_ATC_INT_STS_CLR);
7586         BLOGE(sc, "ATC hw attention 0x%08x\n", val);
7587 	err_flg = true;
7588         if (val & ATC_ATC_INT_STS_REG_ADDRESS_ERROR)
7589             BLOGE(sc, "ATC_ATC_INT_STS_REG_ADDRESS_ERROR\n");
7590         if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND)
7591             BLOGE(sc, "ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND\n");
7592         if (val & ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS)
7593             BLOGE(sc, "ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS\n");
7594         if (val & ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT)
7595             BLOGE(sc, "ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT\n");
7596         if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR)
7597             BLOGE(sc, "ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR\n");
7598         if (val & ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU)
7599             BLOGE(sc, "ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU\n");
7600     }
7601 
7602     if (attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR |
7603                 AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)) {
7604         BLOGE(sc, "FATAL parity attention set4 0x%08x\n",
7605               (uint32_t)(attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR |
7606                                  AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)));
7607 	err_flg = true;
7608     }
7609     if (err_flg) {
7610 	BXE_SET_ERROR_BIT(sc, BXE_ERR_MISC);
7611 	taskqueue_enqueue_timeout(taskqueue_thread,
7612 	    &sc->sp_err_timeout_task, hz/10);
7613     }
7614 
7615 }
7616 
7617 static void
7618 bxe_e1h_disable(struct bxe_softc *sc)
7619 {
7620     int port = SC_PORT(sc);
7621 
7622     bxe_tx_disable(sc);
7623 
7624     REG_WR(sc, NIG_REG_LLH0_FUNC_EN + port*8, 0);
7625 }
7626 
7627 static void
7628 bxe_e1h_enable(struct bxe_softc *sc)
7629 {
7630     int port = SC_PORT(sc);
7631 
7632     REG_WR(sc, NIG_REG_LLH0_FUNC_EN + port*8, 1);
7633 
7634     // XXX bxe_tx_enable(sc);
7635 }
7636 
7637 /*
7638  * called due to MCP event (on pmf):
7639  *   reread new bandwidth configuration
7640  *   configure FW
7641  *   notify others function about the change
7642  */
7643 static void
7644 bxe_config_mf_bw(struct bxe_softc *sc)
7645 {
7646     if (sc->link_vars.link_up) {
7647         bxe_cmng_fns_init(sc, TRUE, CMNG_FNS_MINMAX);
7648         // XXX bxe_link_sync_notify(sc);
7649     }
7650 
7651     storm_memset_cmng(sc, &sc->cmng, SC_PORT(sc));
7652 }
7653 
7654 static void
7655 bxe_set_mf_bw(struct bxe_softc *sc)
7656 {
7657     bxe_config_mf_bw(sc);
7658     bxe_fw_command(sc, DRV_MSG_CODE_SET_MF_BW_ACK, 0);
7659 }
7660 
7661 static void
7662 bxe_handle_eee_event(struct bxe_softc *sc)
7663 {
7664     BLOGD(sc, DBG_INTR, "EEE - LLDP event\n");
7665     bxe_fw_command(sc, DRV_MSG_CODE_EEE_RESULTS_ACK, 0);
7666 }
7667 
7668 #define DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED 3
7669 
7670 static void
7671 bxe_drv_info_ether_stat(struct bxe_softc *sc)
7672 {
7673     struct eth_stats_info *ether_stat =
7674         &sc->sp->drv_info_to_mcp.ether_stat;
7675 
7676     strlcpy(ether_stat->version, BXE_DRIVER_VERSION,
7677             ETH_STAT_INFO_VERSION_LEN);
7678 
7679     /* XXX (+ MAC_PAD) taken from other driver... verify this is right */
7680     sc->sp_objs[0].mac_obj.get_n_elements(sc, &sc->sp_objs[0].mac_obj,
7681                                           DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED,
7682                                           ether_stat->mac_local + MAC_PAD,
7683                                           MAC_PAD, ETH_ALEN);
7684 
7685     ether_stat->mtu_size = sc->mtu;
7686 
7687     ether_stat->feature_flags |= FEATURE_ETH_CHKSUM_OFFLOAD_MASK;
7688     if (if_getcapenable(sc->ifp) & (IFCAP_TSO4 | IFCAP_TSO6)) {
7689         ether_stat->feature_flags |= FEATURE_ETH_LSO_MASK;
7690     }
7691 
7692     // XXX ether_stat->feature_flags |= ???;
7693 
7694     ether_stat->promiscuous_mode = 0; // (flags & PROMISC) ? 1 : 0;
7695 
7696     ether_stat->txq_size = sc->tx_ring_size;
7697     ether_stat->rxq_size = sc->rx_ring_size;
7698 }
7699 
7700 static void
7701 bxe_handle_drv_info_req(struct bxe_softc *sc)
7702 {
7703     enum drv_info_opcode op_code;
7704     uint32_t drv_info_ctl = SHMEM2_RD(sc, drv_info_control);
7705 
7706     /* if drv_info version supported by MFW doesn't match - send NACK */
7707     if ((drv_info_ctl & DRV_INFO_CONTROL_VER_MASK) != DRV_INFO_CUR_VER) {
7708         bxe_fw_command(sc, DRV_MSG_CODE_DRV_INFO_NACK, 0);
7709         return;
7710     }
7711 
7712     op_code = ((drv_info_ctl & DRV_INFO_CONTROL_OP_CODE_MASK) >>
7713                DRV_INFO_CONTROL_OP_CODE_SHIFT);
7714 
7715     memset(&sc->sp->drv_info_to_mcp, 0, sizeof(union drv_info_to_mcp));
7716 
7717     switch (op_code) {
7718     case ETH_STATS_OPCODE:
7719         bxe_drv_info_ether_stat(sc);
7720         break;
7721     case FCOE_STATS_OPCODE:
7722     case ISCSI_STATS_OPCODE:
7723     default:
7724         /* if op code isn't supported - send NACK */
7725         bxe_fw_command(sc, DRV_MSG_CODE_DRV_INFO_NACK, 0);
7726         return;
7727     }
7728 
7729     /*
7730      * If we got drv_info attn from MFW then these fields are defined in
7731      * shmem2 for sure
7732      */
7733     SHMEM2_WR(sc, drv_info_host_addr_lo,
7734               U64_LO(BXE_SP_MAPPING(sc, drv_info_to_mcp)));
7735     SHMEM2_WR(sc, drv_info_host_addr_hi,
7736               U64_HI(BXE_SP_MAPPING(sc, drv_info_to_mcp)));
7737 
7738     bxe_fw_command(sc, DRV_MSG_CODE_DRV_INFO_ACK, 0);
7739 }
7740 
7741 static void
7742 bxe_dcc_event(struct bxe_softc *sc,
7743               uint32_t         dcc_event)
7744 {
7745     BLOGD(sc, DBG_INTR, "dcc_event 0x%08x\n", dcc_event);
7746 
7747     if (dcc_event & DRV_STATUS_DCC_DISABLE_ENABLE_PF) {
7748         /*
7749          * This is the only place besides the function initialization
7750          * where the sc->flags can change so it is done without any
7751          * locks
7752          */
7753         if (sc->devinfo.mf_info.mf_config[SC_VN(sc)] & FUNC_MF_CFG_FUNC_DISABLED) {
7754             BLOGD(sc, DBG_INTR, "mf_cfg function disabled\n");
7755             sc->flags |= BXE_MF_FUNC_DIS;
7756             bxe_e1h_disable(sc);
7757         } else {
7758             BLOGD(sc, DBG_INTR, "mf_cfg function enabled\n");
7759             sc->flags &= ~BXE_MF_FUNC_DIS;
7760             bxe_e1h_enable(sc);
7761         }
7762         dcc_event &= ~DRV_STATUS_DCC_DISABLE_ENABLE_PF;
7763     }
7764 
7765     if (dcc_event & DRV_STATUS_DCC_BANDWIDTH_ALLOCATION) {
7766         bxe_config_mf_bw(sc);
7767         dcc_event &= ~DRV_STATUS_DCC_BANDWIDTH_ALLOCATION;
7768     }
7769 
7770     /* Report results to MCP */
7771     if (dcc_event)
7772         bxe_fw_command(sc, DRV_MSG_CODE_DCC_FAILURE, 0);
7773     else
7774         bxe_fw_command(sc, DRV_MSG_CODE_DCC_OK, 0);
7775 }
7776 
7777 static void
7778 bxe_pmf_update(struct bxe_softc *sc)
7779 {
7780     int port = SC_PORT(sc);
7781     uint32_t val;
7782 
7783     sc->port.pmf = 1;
7784     BLOGD(sc, DBG_INTR, "pmf %d\n", sc->port.pmf);
7785 
7786     /*
7787      * We need the mb() to ensure the ordering between the writing to
7788      * sc->port.pmf here and reading it from the bxe_periodic_task().
7789      */
7790     mb();
7791 
7792     /* queue a periodic task */
7793     // XXX schedule task...
7794 
7795     // XXX bxe_dcbx_pmf_update(sc);
7796 
7797     /* enable nig attention */
7798     val = (0xff0f | (1 << (SC_VN(sc) + 4)));
7799     if (sc->devinfo.int_block == INT_BLOCK_HC) {
7800         REG_WR(sc, HC_REG_TRAILING_EDGE_0 + port*8, val);
7801         REG_WR(sc, HC_REG_LEADING_EDGE_0 + port*8, val);
7802     } else if (!CHIP_IS_E1x(sc)) {
7803         REG_WR(sc, IGU_REG_TRAILING_EDGE_LATCH, val);
7804         REG_WR(sc, IGU_REG_LEADING_EDGE_LATCH, val);
7805     }
7806 
7807     bxe_stats_handle(sc, STATS_EVENT_PMF);
7808 }
7809 
7810 static int
7811 bxe_mc_assert(struct bxe_softc *sc)
7812 {
7813     char last_idx;
7814     int i, rc = 0;
7815     uint32_t row0, row1, row2, row3;
7816 
7817     /* XSTORM */
7818     last_idx = REG_RD8(sc, BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_INDEX_OFFSET);
7819     if (last_idx)
7820         BLOGE(sc, "XSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
7821 
7822     /* print the asserts */
7823     for (i = 0; i < STORM_ASSERT_ARRAY_SIZE; i++) {
7824 
7825         row0 = REG_RD(sc, BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_OFFSET(i));
7826         row1 = REG_RD(sc, BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_OFFSET(i) + 4);
7827         row2 = REG_RD(sc, BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_OFFSET(i) + 8);
7828         row3 = REG_RD(sc, BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_OFFSET(i) + 12);
7829 
7830         if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
7831             BLOGE(sc, "XSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
7832                   i, row3, row2, row1, row0);
7833             rc++;
7834         } else {
7835             break;
7836         }
7837     }
7838 
7839     /* TSTORM */
7840     last_idx = REG_RD8(sc, BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_INDEX_OFFSET);
7841     if (last_idx) {
7842         BLOGE(sc, "TSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
7843     }
7844 
7845     /* print the asserts */
7846     for (i = 0; i < STORM_ASSERT_ARRAY_SIZE; i++) {
7847 
7848         row0 = REG_RD(sc, BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_OFFSET(i));
7849         row1 = REG_RD(sc, BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_OFFSET(i) + 4);
7850         row2 = REG_RD(sc, BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_OFFSET(i) + 8);
7851         row3 = REG_RD(sc, BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_OFFSET(i) + 12);
7852 
7853         if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
7854             BLOGE(sc, "TSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
7855                   i, row3, row2, row1, row0);
7856             rc++;
7857         } else {
7858             break;
7859         }
7860     }
7861 
7862     /* CSTORM */
7863     last_idx = REG_RD8(sc, BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_INDEX_OFFSET);
7864     if (last_idx) {
7865         BLOGE(sc, "CSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
7866     }
7867 
7868     /* print the asserts */
7869     for (i = 0; i < STORM_ASSERT_ARRAY_SIZE; i++) {
7870 
7871         row0 = REG_RD(sc, BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_OFFSET(i));
7872         row1 = REG_RD(sc, BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_OFFSET(i) + 4);
7873         row2 = REG_RD(sc, BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_OFFSET(i) + 8);
7874         row3 = REG_RD(sc, BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_OFFSET(i) + 12);
7875 
7876         if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
7877             BLOGE(sc, "CSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
7878                   i, row3, row2, row1, row0);
7879             rc++;
7880         } else {
7881             break;
7882         }
7883     }
7884 
7885     /* USTORM */
7886     last_idx = REG_RD8(sc, BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_INDEX_OFFSET);
7887     if (last_idx) {
7888         BLOGE(sc, "USTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
7889     }
7890 
7891     /* print the asserts */
7892     for (i = 0; i < STORM_ASSERT_ARRAY_SIZE; i++) {
7893 
7894         row0 = REG_RD(sc, BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_OFFSET(i));
7895         row1 = REG_RD(sc, BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_OFFSET(i) + 4);
7896         row2 = REG_RD(sc, BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_OFFSET(i) + 8);
7897         row3 = REG_RD(sc, BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_OFFSET(i) + 12);
7898 
7899         if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
7900             BLOGE(sc, "USTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
7901                   i, row3, row2, row1, row0);
7902             rc++;
7903         } else {
7904             break;
7905         }
7906     }
7907 
7908     return (rc);
7909 }
7910 
7911 static void
7912 bxe_attn_int_deasserted3(struct bxe_softc *sc,
7913                          uint32_t         attn)
7914 {
7915     int func = SC_FUNC(sc);
7916     uint32_t val;
7917 
7918     if (attn & EVEREST_GEN_ATTN_IN_USE_MASK) {
7919 
7920         if (attn & BXE_PMF_LINK_ASSERT(sc)) {
7921 
7922             REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
7923             bxe_read_mf_cfg(sc);
7924             sc->devinfo.mf_info.mf_config[SC_VN(sc)] =
7925                 MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].config);
7926             val = SHMEM_RD(sc, func_mb[SC_FW_MB_IDX(sc)].drv_status);
7927 
7928             if (val & DRV_STATUS_DCC_EVENT_MASK)
7929                 bxe_dcc_event(sc, (val & DRV_STATUS_DCC_EVENT_MASK));
7930 
7931             if (val & DRV_STATUS_SET_MF_BW)
7932                 bxe_set_mf_bw(sc);
7933 
7934             if (val & DRV_STATUS_DRV_INFO_REQ)
7935                 bxe_handle_drv_info_req(sc);
7936 
7937             if ((sc->port.pmf == 0) && (val & DRV_STATUS_PMF))
7938                 bxe_pmf_update(sc);
7939 
7940             if (val & DRV_STATUS_EEE_NEGOTIATION_RESULTS)
7941                 bxe_handle_eee_event(sc);
7942 
7943             if (sc->link_vars.periodic_flags &
7944                 ELINK_PERIODIC_FLAGS_LINK_EVENT) {
7945                 /* sync with link */
7946 		bxe_acquire_phy_lock(sc);
7947                 sc->link_vars.periodic_flags &=
7948                     ~ELINK_PERIODIC_FLAGS_LINK_EVENT;
7949 		bxe_release_phy_lock(sc);
7950                 if (IS_MF(sc))
7951                     ; // XXX bxe_link_sync_notify(sc);
7952                 bxe_link_report(sc);
7953             }
7954 
7955             /*
7956              * Always call it here: bxe_link_report() will
7957              * prevent the link indication duplication.
7958              */
7959             bxe_link_status_update(sc);
7960 
7961         } else if (attn & BXE_MC_ASSERT_BITS) {
7962 
7963             BLOGE(sc, "MC assert!\n");
7964             bxe_mc_assert(sc);
7965             REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_10, 0);
7966             REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_9, 0);
7967             REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_8, 0);
7968             REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_7, 0);
7969             bxe_int_disable(sc);
7970             BXE_SET_ERROR_BIT(sc, BXE_ERR_MC_ASSERT);
7971             taskqueue_enqueue_timeout(taskqueue_thread,
7972                 &sc->sp_err_timeout_task, hz/10);
7973 
7974         } else if (attn & BXE_MCP_ASSERT) {
7975 
7976             BLOGE(sc, "MCP assert!\n");
7977             REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_11, 0);
7978             BXE_SET_ERROR_BIT(sc, BXE_ERR_MCP_ASSERT);
7979             taskqueue_enqueue_timeout(taskqueue_thread,
7980                 &sc->sp_err_timeout_task, hz/10);
7981             bxe_int_disable(sc);  /*avoid repetive assert alert */
7982 
7983 
7984         } else {
7985             BLOGE(sc, "Unknown HW assert! (attn 0x%08x)\n", attn);
7986         }
7987     }
7988 
7989     if (attn & EVEREST_LATCHED_ATTN_IN_USE_MASK) {
7990         BLOGE(sc, "LATCHED attention 0x%08x (masked)\n", attn);
7991         if (attn & BXE_GRC_TIMEOUT) {
7992             val = CHIP_IS_E1(sc) ? 0 : REG_RD(sc, MISC_REG_GRC_TIMEOUT_ATTN);
7993             BLOGE(sc, "GRC time-out 0x%08x\n", val);
7994         }
7995         if (attn & BXE_GRC_RSV) {
7996             val = CHIP_IS_E1(sc) ? 0 : REG_RD(sc, MISC_REG_GRC_RSV_ATTN);
7997             BLOGE(sc, "GRC reserved 0x%08x\n", val);
7998         }
7999         REG_WR(sc, MISC_REG_AEU_CLR_LATCH_SIGNAL, 0x7ff);
8000     }
8001 }
8002 
8003 static void
8004 bxe_attn_int_deasserted2(struct bxe_softc *sc,
8005                          uint32_t         attn)
8006 {
8007     int port = SC_PORT(sc);
8008     int reg_offset;
8009     uint32_t val0, mask0, val1, mask1;
8010     uint32_t val;
8011     bool err_flg = false;
8012 
8013     if (attn & AEU_INPUTS_ATTN_BITS_CFC_HW_INTERRUPT) {
8014         val = REG_RD(sc, CFC_REG_CFC_INT_STS_CLR);
8015         BLOGE(sc, "CFC hw attention 0x%08x\n", val);
8016         /* CFC error attention */
8017         if (val & 0x2) {
8018             BLOGE(sc, "FATAL error from CFC\n");
8019 	    err_flg = true;
8020         }
8021     }
8022 
8023     if (attn & AEU_INPUTS_ATTN_BITS_PXP_HW_INTERRUPT) {
8024         val = REG_RD(sc, PXP_REG_PXP_INT_STS_CLR_0);
8025         BLOGE(sc, "PXP hw attention-0 0x%08x\n", val);
8026         /* RQ_USDMDP_FIFO_OVERFLOW */
8027         if (val & 0x18000) {
8028             BLOGE(sc, "FATAL error from PXP\n");
8029 	    err_flg = true;
8030         }
8031 
8032         if (!CHIP_IS_E1x(sc)) {
8033             val = REG_RD(sc, PXP_REG_PXP_INT_STS_CLR_1);
8034             BLOGE(sc, "PXP hw attention-1 0x%08x\n", val);
8035 	    err_flg = true;
8036         }
8037     }
8038 
8039 #define PXP2_EOP_ERROR_BIT  PXP2_PXP2_INT_STS_CLR_0_REG_WR_PGLUE_EOP_ERROR
8040 #define AEU_PXP2_HW_INT_BIT AEU_INPUTS_ATTN_BITS_PXPPCICLOCKCLIENT_HW_INTERRUPT
8041 
8042     if (attn & AEU_PXP2_HW_INT_BIT) {
8043         /*  CQ47854 workaround do not panic on
8044          *  PXP2_PXP2_INT_STS_0_REG_WR_PGLUE_EOP_ERROR
8045          */
8046         if (!CHIP_IS_E1x(sc)) {
8047             mask0 = REG_RD(sc, PXP2_REG_PXP2_INT_MASK_0);
8048             val1 = REG_RD(sc, PXP2_REG_PXP2_INT_STS_1);
8049             mask1 = REG_RD(sc, PXP2_REG_PXP2_INT_MASK_1);
8050             val0 = REG_RD(sc, PXP2_REG_PXP2_INT_STS_0);
8051             /*
8052              * If the only PXP2_EOP_ERROR_BIT is set in
8053              * STS0 and STS1 - clear it
8054              *
8055              * probably we lose additional attentions between
8056              * STS0 and STS_CLR0, in this case user will not
8057              * be notified about them
8058              */
8059             if (val0 & mask0 & PXP2_EOP_ERROR_BIT &&
8060                 !(val1 & mask1))
8061                 val0 = REG_RD(sc, PXP2_REG_PXP2_INT_STS_CLR_0);
8062 
8063             /* print the register, since no one can restore it */
8064             BLOGE(sc, "PXP2_REG_PXP2_INT_STS_CLR_0 0x%08x\n", val0);
8065 
8066             /*
8067              * if PXP2_PXP2_INT_STS_0_REG_WR_PGLUE_EOP_ERROR
8068              * then notify
8069              */
8070             if (val0 & PXP2_EOP_ERROR_BIT) {
8071                 BLOGE(sc, "PXP2_WR_PGLUE_EOP_ERROR\n");
8072 		err_flg = true;
8073 
8074                 /*
8075                  * if only PXP2_PXP2_INT_STS_0_REG_WR_PGLUE_EOP_ERROR is
8076                  * set then clear attention from PXP2 block without panic
8077                  */
8078                 if (((val0 & mask0) == PXP2_EOP_ERROR_BIT) &&
8079                     ((val1 & mask1) == 0))
8080                     attn &= ~AEU_PXP2_HW_INT_BIT;
8081             }
8082         }
8083     }
8084 
8085     if (attn & HW_INTERRUT_ASSERT_SET_2) {
8086         reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_2 :
8087                              MISC_REG_AEU_ENABLE1_FUNC_0_OUT_2);
8088 
8089         val = REG_RD(sc, reg_offset);
8090         val &= ~(attn & HW_INTERRUT_ASSERT_SET_2);
8091         REG_WR(sc, reg_offset, val);
8092 
8093         BLOGE(sc, "FATAL HW block attention set2 0x%x\n",
8094               (uint32_t)(attn & HW_INTERRUT_ASSERT_SET_2));
8095 	err_flg = true;
8096         bxe_panic(sc, ("HW block attention set2\n"));
8097     }
8098     if(err_flg) {
8099         BXE_SET_ERROR_BIT(sc, BXE_ERR_GLOBAL);
8100         taskqueue_enqueue_timeout(taskqueue_thread,
8101            &sc->sp_err_timeout_task, hz/10);
8102     }
8103 
8104 }
8105 
8106 static void
8107 bxe_attn_int_deasserted1(struct bxe_softc *sc,
8108                          uint32_t         attn)
8109 {
8110     int port = SC_PORT(sc);
8111     int reg_offset;
8112     uint32_t val;
8113     bool err_flg = false;
8114 
8115     if (attn & AEU_INPUTS_ATTN_BITS_DOORBELLQ_HW_INTERRUPT) {
8116         val = REG_RD(sc, DORQ_REG_DORQ_INT_STS_CLR);
8117         BLOGE(sc, "DB hw attention 0x%08x\n", val);
8118         /* DORQ discard attention */
8119         if (val & 0x2) {
8120             BLOGE(sc, "FATAL error from DORQ\n");
8121 	    err_flg = true;
8122         }
8123     }
8124 
8125     if (attn & HW_INTERRUT_ASSERT_SET_1) {
8126         reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_1 :
8127                              MISC_REG_AEU_ENABLE1_FUNC_0_OUT_1);
8128 
8129         val = REG_RD(sc, reg_offset);
8130         val &= ~(attn & HW_INTERRUT_ASSERT_SET_1);
8131         REG_WR(sc, reg_offset, val);
8132 
8133         BLOGE(sc, "FATAL HW block attention set1 0x%08x\n",
8134               (uint32_t)(attn & HW_INTERRUT_ASSERT_SET_1));
8135         err_flg = true;
8136         bxe_panic(sc, ("HW block attention set1\n"));
8137     }
8138     if(err_flg) {
8139         BXE_SET_ERROR_BIT(sc, BXE_ERR_MISC);
8140         taskqueue_enqueue_timeout(taskqueue_thread,
8141            &sc->sp_err_timeout_task, hz/10);
8142     }
8143 
8144 }
8145 
8146 static void
8147 bxe_attn_int_deasserted0(struct bxe_softc *sc,
8148                          uint32_t         attn)
8149 {
8150     int port = SC_PORT(sc);
8151     int reg_offset;
8152     uint32_t val;
8153 
8154     reg_offset = (port) ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
8155                           MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0;
8156 
8157     if (attn & AEU_INPUTS_ATTN_BITS_SPIO5) {
8158         val = REG_RD(sc, reg_offset);
8159         val &= ~AEU_INPUTS_ATTN_BITS_SPIO5;
8160         REG_WR(sc, reg_offset, val);
8161 
8162         BLOGW(sc, "SPIO5 hw attention\n");
8163 
8164         /* Fan failure attention */
8165         elink_hw_reset_phy(&sc->link_params);
8166         bxe_fan_failure(sc);
8167     }
8168 
8169     if ((attn & sc->link_vars.aeu_int_mask) && sc->port.pmf) {
8170 	bxe_acquire_phy_lock(sc);
8171         elink_handle_module_detect_int(&sc->link_params);
8172 	bxe_release_phy_lock(sc);
8173     }
8174 
8175     if (attn & HW_INTERRUT_ASSERT_SET_0) {
8176         val = REG_RD(sc, reg_offset);
8177         val &= ~(attn & HW_INTERRUT_ASSERT_SET_0);
8178         REG_WR(sc, reg_offset, val);
8179 
8180 
8181         BXE_SET_ERROR_BIT(sc, BXE_ERR_MISC);
8182         taskqueue_enqueue_timeout(taskqueue_thread,
8183            &sc->sp_err_timeout_task, hz/10);
8184 
8185         bxe_panic(sc, ("FATAL HW block attention set0 0x%lx\n",
8186                        (attn & HW_INTERRUT_ASSERT_SET_0)));
8187     }
8188 }
8189 
8190 static void
8191 bxe_attn_int_deasserted(struct bxe_softc *sc,
8192                         uint32_t         deasserted)
8193 {
8194     struct attn_route attn;
8195     struct attn_route *group_mask;
8196     int port = SC_PORT(sc);
8197     int index;
8198     uint32_t reg_addr;
8199     uint32_t val;
8200     uint32_t aeu_mask;
8201     uint8_t global = FALSE;
8202 
8203     /*
8204      * Need to take HW lock because MCP or other port might also
8205      * try to handle this event.
8206      */
8207     bxe_acquire_alr(sc);
8208 
8209     if (bxe_chk_parity_attn(sc, &global, TRUE)) {
8210         /* XXX
8211          * In case of parity errors don't handle attentions so that
8212          * other function would "see" parity errors.
8213          */
8214         // XXX schedule a recovery task...
8215         /* disable HW interrupts */
8216         bxe_int_disable(sc);
8217         BXE_SET_ERROR_BIT(sc, BXE_ERR_PARITY);
8218         taskqueue_enqueue_timeout(taskqueue_thread,
8219            &sc->sp_err_timeout_task, hz/10);
8220         bxe_release_alr(sc);
8221         return;
8222     }
8223 
8224     attn.sig[0] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + port*4);
8225     attn.sig[1] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 + port*4);
8226     attn.sig[2] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 + port*4);
8227     attn.sig[3] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 + port*4);
8228     if (!CHIP_IS_E1x(sc)) {
8229         attn.sig[4] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 + port*4);
8230     } else {
8231         attn.sig[4] = 0;
8232     }
8233 
8234     BLOGD(sc, DBG_INTR, "attn: 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x\n",
8235           attn.sig[0], attn.sig[1], attn.sig[2], attn.sig[3], attn.sig[4]);
8236 
8237     for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) {
8238         if (deasserted & (1 << index)) {
8239             group_mask = &sc->attn_group[index];
8240 
8241             BLOGD(sc, DBG_INTR,
8242                   "group[%d]: 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x\n", index,
8243                   group_mask->sig[0], group_mask->sig[1],
8244                   group_mask->sig[2], group_mask->sig[3],
8245                   group_mask->sig[4]);
8246 
8247             bxe_attn_int_deasserted4(sc, attn.sig[4] & group_mask->sig[4]);
8248             bxe_attn_int_deasserted3(sc, attn.sig[3] & group_mask->sig[3]);
8249             bxe_attn_int_deasserted1(sc, attn.sig[1] & group_mask->sig[1]);
8250             bxe_attn_int_deasserted2(sc, attn.sig[2] & group_mask->sig[2]);
8251             bxe_attn_int_deasserted0(sc, attn.sig[0] & group_mask->sig[0]);
8252         }
8253     }
8254 
8255     bxe_release_alr(sc);
8256 
8257     if (sc->devinfo.int_block == INT_BLOCK_HC) {
8258         reg_addr = (HC_REG_COMMAND_REG + port*32 +
8259                     COMMAND_REG_ATTN_BITS_CLR);
8260     } else {
8261         reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_CLR_UPPER*8);
8262     }
8263 
8264     val = ~deasserted;
8265     BLOGD(sc, DBG_INTR,
8266           "about to mask 0x%08x at %s addr 0x%08x\n", val,
8267           (sc->devinfo.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr);
8268     REG_WR(sc, reg_addr, val);
8269 
8270     if (~sc->attn_state & deasserted) {
8271         BLOGE(sc, "IGU error\n");
8272     }
8273 
8274     reg_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
8275                       MISC_REG_AEU_MASK_ATTN_FUNC_0;
8276 
8277     bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
8278 
8279     aeu_mask = REG_RD(sc, reg_addr);
8280 
8281     BLOGD(sc, DBG_INTR, "aeu_mask 0x%08x newly deasserted 0x%08x\n",
8282           aeu_mask, deasserted);
8283     aeu_mask |= (deasserted & 0x3ff);
8284     BLOGD(sc, DBG_INTR, "new mask 0x%08x\n", aeu_mask);
8285 
8286     REG_WR(sc, reg_addr, aeu_mask);
8287     bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
8288 
8289     BLOGD(sc, DBG_INTR, "attn_state 0x%08x\n", sc->attn_state);
8290     sc->attn_state &= ~deasserted;
8291     BLOGD(sc, DBG_INTR, "new state 0x%08x\n", sc->attn_state);
8292 }
8293 
8294 static void
8295 bxe_attn_int(struct bxe_softc *sc)
8296 {
8297     /* read local copy of bits */
8298     uint32_t attn_bits = le32toh(sc->def_sb->atten_status_block.attn_bits);
8299     uint32_t attn_ack = le32toh(sc->def_sb->atten_status_block.attn_bits_ack);
8300     uint32_t attn_state = sc->attn_state;
8301 
8302     /* look for changed bits */
8303     uint32_t asserted   =  attn_bits & ~attn_ack & ~attn_state;
8304     uint32_t deasserted = ~attn_bits &  attn_ack &  attn_state;
8305 
8306     BLOGD(sc, DBG_INTR,
8307           "attn_bits 0x%08x attn_ack 0x%08x asserted 0x%08x deasserted 0x%08x\n",
8308           attn_bits, attn_ack, asserted, deasserted);
8309 
8310     if (~(attn_bits ^ attn_ack) & (attn_bits ^ attn_state)) {
8311         BLOGE(sc, "BAD attention state\n");
8312     }
8313 
8314     /* handle bits that were raised */
8315     if (asserted) {
8316         bxe_attn_int_asserted(sc, asserted);
8317     }
8318 
8319     if (deasserted) {
8320         bxe_attn_int_deasserted(sc, deasserted);
8321     }
8322 }
8323 
8324 static uint16_t
8325 bxe_update_dsb_idx(struct bxe_softc *sc)
8326 {
8327     struct host_sp_status_block *def_sb = sc->def_sb;
8328     uint16_t rc = 0;
8329 
8330     mb(); /* status block is written to by the chip */
8331 
8332     if (sc->def_att_idx != def_sb->atten_status_block.attn_bits_index) {
8333         sc->def_att_idx = def_sb->atten_status_block.attn_bits_index;
8334         rc |= BXE_DEF_SB_ATT_IDX;
8335     }
8336 
8337     if (sc->def_idx != def_sb->sp_sb.running_index) {
8338         sc->def_idx = def_sb->sp_sb.running_index;
8339         rc |= BXE_DEF_SB_IDX;
8340     }
8341 
8342     mb();
8343 
8344     return (rc);
8345 }
8346 
8347 static inline struct ecore_queue_sp_obj *
8348 bxe_cid_to_q_obj(struct bxe_softc *sc,
8349                  uint32_t         cid)
8350 {
8351     BLOGD(sc, DBG_SP, "retrieving fp from cid %d\n", cid);
8352     return (&sc->sp_objs[CID_TO_FP(cid, sc)].q_obj);
8353 }
8354 
8355 static void
8356 bxe_handle_mcast_eqe(struct bxe_softc *sc)
8357 {
8358     struct ecore_mcast_ramrod_params rparam;
8359     int rc;
8360 
8361     memset(&rparam, 0, sizeof(rparam));
8362 
8363     rparam.mcast_obj = &sc->mcast_obj;
8364 
8365     BXE_MCAST_LOCK(sc);
8366 
8367     /* clear pending state for the last command */
8368     sc->mcast_obj.raw.clear_pending(&sc->mcast_obj.raw);
8369 
8370     /* if there are pending mcast commands - send them */
8371     if (sc->mcast_obj.check_pending(&sc->mcast_obj)) {
8372         rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_CONT);
8373         if (rc < 0) {
8374             BLOGD(sc, DBG_SP,
8375                 "ERROR: Failed to send pending mcast commands (%d)\n", rc);
8376         }
8377     }
8378 
8379     BXE_MCAST_UNLOCK(sc);
8380 }
8381 
8382 static void
8383 bxe_handle_classification_eqe(struct bxe_softc      *sc,
8384                               union event_ring_elem *elem)
8385 {
8386     unsigned long ramrod_flags = 0;
8387     int rc = 0;
8388     uint32_t cid = elem->message.data.eth_event.echo & BXE_SWCID_MASK;
8389     struct ecore_vlan_mac_obj *vlan_mac_obj;
8390 
8391     /* always push next commands out, don't wait here */
8392     bit_set(&ramrod_flags, RAMROD_CONT);
8393 
8394     switch (le32toh(elem->message.data.eth_event.echo) >> BXE_SWCID_SHIFT) {
8395     case ECORE_FILTER_MAC_PENDING:
8396         BLOGD(sc, DBG_SP, "Got SETUP_MAC completions\n");
8397         vlan_mac_obj = &sc->sp_objs[cid].mac_obj;
8398         break;
8399 
8400     case ECORE_FILTER_MCAST_PENDING:
8401         BLOGD(sc, DBG_SP, "Got SETUP_MCAST completions\n");
8402         /*
8403          * This is only relevant for 57710 where multicast MACs are
8404          * configured as unicast MACs using the same ramrod.
8405          */
8406         bxe_handle_mcast_eqe(sc);
8407         return;
8408 
8409     default:
8410         BLOGE(sc, "Unsupported classification command: %d\n",
8411               elem->message.data.eth_event.echo);
8412         return;
8413     }
8414 
8415     rc = vlan_mac_obj->complete(sc, vlan_mac_obj, elem, &ramrod_flags);
8416 
8417     if (rc < 0) {
8418         BLOGE(sc, "Failed to schedule new commands (%d)\n", rc);
8419     } else if (rc > 0) {
8420         BLOGD(sc, DBG_SP, "Scheduled next pending commands...\n");
8421     }
8422 }
8423 
8424 static void
8425 bxe_handle_rx_mode_eqe(struct bxe_softc      *sc,
8426                        union event_ring_elem *elem)
8427 {
8428     bxe_clear_bit(ECORE_FILTER_RX_MODE_PENDING, &sc->sp_state);
8429 
8430     /* send rx_mode command again if was requested */
8431     if (bxe_test_and_clear_bit(ECORE_FILTER_RX_MODE_SCHED,
8432                                &sc->sp_state)) {
8433         bxe_set_storm_rx_mode(sc);
8434     }
8435 }
8436 
8437 static void
8438 bxe_update_eq_prod(struct bxe_softc *sc,
8439                    uint16_t         prod)
8440 {
8441     storm_memset_eq_prod(sc, prod, SC_FUNC(sc));
8442     wmb(); /* keep prod updates ordered */
8443 }
8444 
8445 static void
8446 bxe_eq_int(struct bxe_softc *sc)
8447 {
8448     uint16_t hw_cons, sw_cons, sw_prod;
8449     union event_ring_elem *elem;
8450     uint8_t echo;
8451     uint32_t cid;
8452     uint8_t opcode;
8453     int spqe_cnt = 0;
8454     struct ecore_queue_sp_obj *q_obj;
8455     struct ecore_func_sp_obj *f_obj = &sc->func_obj;
8456     struct ecore_raw_obj *rss_raw = &sc->rss_conf_obj.raw;
8457 
8458     hw_cons = le16toh(*sc->eq_cons_sb);
8459 
8460     /*
8461      * The hw_cons range is 1-255, 257 - the sw_cons range is 0-254, 256.
8462      * when we get to the next-page we need to adjust so the loop
8463      * condition below will be met. The next element is the size of a
8464      * regular element and hence incrementing by 1
8465      */
8466     if ((hw_cons & EQ_DESC_MAX_PAGE) == EQ_DESC_MAX_PAGE) {
8467         hw_cons++;
8468     }
8469 
8470     /*
8471      * This function may never run in parallel with itself for a
8472      * specific sc and no need for a read memory barrier here.
8473      */
8474     sw_cons = sc->eq_cons;
8475     sw_prod = sc->eq_prod;
8476 
8477     BLOGD(sc, DBG_SP,"EQ: hw_cons=%u sw_cons=%u eq_spq_left=0x%lx\n",
8478           hw_cons, sw_cons, atomic_load_acq_long(&sc->eq_spq_left));
8479 
8480     for (;
8481          sw_cons != hw_cons;
8482          sw_prod = NEXT_EQ_IDX(sw_prod), sw_cons = NEXT_EQ_IDX(sw_cons)) {
8483 
8484         elem = &sc->eq[EQ_DESC(sw_cons)];
8485 
8486         /* elem CID originates from FW, actually LE */
8487         cid = SW_CID(elem->message.data.cfc_del_event.cid);
8488         opcode = elem->message.opcode;
8489 
8490         /* handle eq element */
8491         switch (opcode) {
8492 
8493         case EVENT_RING_OPCODE_STAT_QUERY:
8494             BLOGD(sc, DBG_SP, "got statistics completion event %d\n",
8495                   sc->stats_comp++);
8496             /* nothing to do with stats comp */
8497             goto next_spqe;
8498 
8499         case EVENT_RING_OPCODE_CFC_DEL:
8500             /* handle according to cid range */
8501             /* we may want to verify here that the sc state is HALTING */
8502             BLOGD(sc, DBG_SP, "got delete ramrod for MULTI[%d]\n", cid);
8503             q_obj = bxe_cid_to_q_obj(sc, cid);
8504             if (q_obj->complete_cmd(sc, q_obj, ECORE_Q_CMD_CFC_DEL)) {
8505                 break;
8506             }
8507             goto next_spqe;
8508 
8509         case EVENT_RING_OPCODE_STOP_TRAFFIC:
8510             BLOGD(sc, DBG_SP, "got STOP TRAFFIC\n");
8511             if (f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_TX_STOP)) {
8512                 break;
8513             }
8514             // XXX bxe_dcbx_set_params(sc, BXE_DCBX_STATE_TX_PAUSED);
8515             goto next_spqe;
8516 
8517         case EVENT_RING_OPCODE_START_TRAFFIC:
8518             BLOGD(sc, DBG_SP, "got START TRAFFIC\n");
8519             if (f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_TX_START)) {
8520                 break;
8521             }
8522             // XXX bxe_dcbx_set_params(sc, BXE_DCBX_STATE_TX_RELEASED);
8523             goto next_spqe;
8524 
8525         case EVENT_RING_OPCODE_FUNCTION_UPDATE:
8526             echo = elem->message.data.function_update_event.echo;
8527             if (echo == SWITCH_UPDATE) {
8528                 BLOGD(sc, DBG_SP, "got FUNC_SWITCH_UPDATE ramrod\n");
8529                 if (f_obj->complete_cmd(sc, f_obj,
8530                                         ECORE_F_CMD_SWITCH_UPDATE)) {
8531                     break;
8532                 }
8533             }
8534             else {
8535                 BLOGD(sc, DBG_SP,
8536                       "AFEX: ramrod completed FUNCTION_UPDATE\n");
8537             }
8538             goto next_spqe;
8539 
8540         case EVENT_RING_OPCODE_FORWARD_SETUP:
8541             q_obj = &bxe_fwd_sp_obj(sc, q_obj);
8542             if (q_obj->complete_cmd(sc, q_obj,
8543                                     ECORE_Q_CMD_SETUP_TX_ONLY)) {
8544                 break;
8545             }
8546             goto next_spqe;
8547 
8548         case EVENT_RING_OPCODE_FUNCTION_START:
8549             BLOGD(sc, DBG_SP, "got FUNC_START ramrod\n");
8550             if (f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_START)) {
8551                 break;
8552             }
8553             goto next_spqe;
8554 
8555         case EVENT_RING_OPCODE_FUNCTION_STOP:
8556             BLOGD(sc, DBG_SP, "got FUNC_STOP ramrod\n");
8557             if (f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_STOP)) {
8558                 break;
8559             }
8560             goto next_spqe;
8561         }
8562 
8563         switch (opcode | sc->state) {
8564         case (EVENT_RING_OPCODE_RSS_UPDATE_RULES | BXE_STATE_OPEN):
8565         case (EVENT_RING_OPCODE_RSS_UPDATE_RULES | BXE_STATE_OPENING_WAITING_PORT):
8566             cid = elem->message.data.eth_event.echo & BXE_SWCID_MASK;
8567             BLOGD(sc, DBG_SP, "got RSS_UPDATE ramrod. CID %d\n", cid);
8568             rss_raw->clear_pending(rss_raw);
8569             break;
8570 
8571         case (EVENT_RING_OPCODE_SET_MAC | BXE_STATE_OPEN):
8572         case (EVENT_RING_OPCODE_SET_MAC | BXE_STATE_DIAG):
8573         case (EVENT_RING_OPCODE_SET_MAC | BXE_STATE_CLOSING_WAITING_HALT):
8574         case (EVENT_RING_OPCODE_CLASSIFICATION_RULES | BXE_STATE_OPEN):
8575         case (EVENT_RING_OPCODE_CLASSIFICATION_RULES | BXE_STATE_DIAG):
8576         case (EVENT_RING_OPCODE_CLASSIFICATION_RULES | BXE_STATE_CLOSING_WAITING_HALT):
8577             BLOGD(sc, DBG_SP, "got (un)set mac ramrod\n");
8578             bxe_handle_classification_eqe(sc, elem);
8579             break;
8580 
8581         case (EVENT_RING_OPCODE_MULTICAST_RULES | BXE_STATE_OPEN):
8582         case (EVENT_RING_OPCODE_MULTICAST_RULES | BXE_STATE_DIAG):
8583         case (EVENT_RING_OPCODE_MULTICAST_RULES | BXE_STATE_CLOSING_WAITING_HALT):
8584             BLOGD(sc, DBG_SP, "got mcast ramrod\n");
8585             bxe_handle_mcast_eqe(sc);
8586             break;
8587 
8588         case (EVENT_RING_OPCODE_FILTERS_RULES | BXE_STATE_OPEN):
8589         case (EVENT_RING_OPCODE_FILTERS_RULES | BXE_STATE_DIAG):
8590         case (EVENT_RING_OPCODE_FILTERS_RULES | BXE_STATE_CLOSING_WAITING_HALT):
8591             BLOGD(sc, DBG_SP, "got rx_mode ramrod\n");
8592             bxe_handle_rx_mode_eqe(sc, elem);
8593             break;
8594 
8595         default:
8596             /* unknown event log error and continue */
8597             BLOGE(sc, "Unknown EQ event %d, sc->state 0x%x\n",
8598                   elem->message.opcode, sc->state);
8599         }
8600 
8601 next_spqe:
8602         spqe_cnt++;
8603     } /* for */
8604 
8605     mb();
8606     atomic_add_acq_long(&sc->eq_spq_left, spqe_cnt);
8607 
8608     sc->eq_cons = sw_cons;
8609     sc->eq_prod = sw_prod;
8610 
8611     /* make sure that above mem writes were issued towards the memory */
8612     wmb();
8613 
8614     /* update producer */
8615     bxe_update_eq_prod(sc, sc->eq_prod);
8616 }
8617 
8618 static void
8619 bxe_handle_sp_tq(void *context,
8620                  int  pending)
8621 {
8622     struct bxe_softc *sc = (struct bxe_softc *)context;
8623     uint16_t status;
8624 
8625     BLOGD(sc, DBG_SP, "---> SP TASK <---\n");
8626 
8627     /* what work needs to be performed? */
8628     status = bxe_update_dsb_idx(sc);
8629 
8630     BLOGD(sc, DBG_SP, "dsb status 0x%04x\n", status);
8631 
8632     /* HW attentions */
8633     if (status & BXE_DEF_SB_ATT_IDX) {
8634         BLOGD(sc, DBG_SP, "---> ATTN INTR <---\n");
8635         bxe_attn_int(sc);
8636         status &= ~BXE_DEF_SB_ATT_IDX;
8637     }
8638 
8639     /* SP events: STAT_QUERY and others */
8640     if (status & BXE_DEF_SB_IDX) {
8641         /* handle EQ completions */
8642         BLOGD(sc, DBG_SP, "---> EQ INTR <---\n");
8643         bxe_eq_int(sc);
8644         bxe_ack_sb(sc, sc->igu_dsb_id, USTORM_ID,
8645                    le16toh(sc->def_idx), IGU_INT_NOP, 1);
8646         status &= ~BXE_DEF_SB_IDX;
8647     }
8648 
8649     /* if status is non zero then something went wrong */
8650     if (__predict_false(status)) {
8651         BLOGE(sc, "Got an unknown SP interrupt! (0x%04x)\n", status);
8652     }
8653 
8654     /* ack status block only if something was actually handled */
8655     bxe_ack_sb(sc, sc->igu_dsb_id, ATTENTION_ID,
8656                le16toh(sc->def_att_idx), IGU_INT_ENABLE, 1);
8657 
8658     /*
8659      * Must be called after the EQ processing (since eq leads to sriov
8660      * ramrod completion flows).
8661      * This flow may have been scheduled by the arrival of a ramrod
8662      * completion, or by the sriov code rescheduling itself.
8663      */
8664     // XXX bxe_iov_sp_task(sc);
8665 
8666 }
8667 
8668 static void
8669 bxe_handle_fp_tq(void *context,
8670                  int  pending)
8671 {
8672     struct bxe_fastpath *fp = (struct bxe_fastpath *)context;
8673     struct bxe_softc *sc = fp->sc;
8674     /* uint8_t more_tx = FALSE; */
8675     uint8_t more_rx = FALSE;
8676 
8677     BLOGD(sc, DBG_INTR, "---> FP TASK QUEUE (%d) <---\n", fp->index);
8678 
8679     /* XXX
8680      * IFF_DRV_RUNNING state can't be checked here since we process
8681      * slowpath events on a client queue during setup. Instead
8682      * we need to add a "process/continue" flag here that the driver
8683      * can use to tell the task here not to do anything.
8684      */
8685 #if 0
8686     if (!(if_getdrvflags(sc->ifp) & IFF_DRV_RUNNING)) {
8687         return;
8688     }
8689 #endif
8690 
8691     /* update the fastpath index */
8692     bxe_update_fp_sb_idx(fp);
8693 
8694     /* XXX add loop here if ever support multiple tx CoS */
8695     /* fp->txdata[cos] */
8696     if (bxe_has_tx_work(fp)) {
8697         BXE_FP_TX_LOCK(fp);
8698         /* more_tx = */ bxe_txeof(sc, fp);
8699         BXE_FP_TX_UNLOCK(fp);
8700     }
8701 
8702     if (bxe_has_rx_work(fp)) {
8703         more_rx = bxe_rxeof(sc, fp);
8704     }
8705 
8706     if (more_rx /*|| more_tx*/) {
8707         /* still more work to do */
8708         taskqueue_enqueue(fp->tq, &fp->tq_task);
8709         return;
8710     }
8711 
8712     bxe_ack_sb(sc, fp->igu_sb_id, USTORM_ID,
8713                le16toh(fp->fp_hc_idx), IGU_INT_ENABLE, 1);
8714 }
8715 
8716 static void
8717 bxe_task_fp(struct bxe_fastpath *fp)
8718 {
8719     struct bxe_softc *sc = fp->sc;
8720     /* uint8_t more_tx = FALSE; */
8721     uint8_t more_rx = FALSE;
8722 
8723     BLOGD(sc, DBG_INTR, "---> FP TASK ISR (%d) <---\n", fp->index);
8724 
8725     /* update the fastpath index */
8726     bxe_update_fp_sb_idx(fp);
8727 
8728     /* XXX add loop here if ever support multiple tx CoS */
8729     /* fp->txdata[cos] */
8730     if (bxe_has_tx_work(fp)) {
8731         BXE_FP_TX_LOCK(fp);
8732         /* more_tx = */ bxe_txeof(sc, fp);
8733         BXE_FP_TX_UNLOCK(fp);
8734     }
8735 
8736     if (bxe_has_rx_work(fp)) {
8737         more_rx = bxe_rxeof(sc, fp);
8738     }
8739 
8740     if (more_rx /*|| more_tx*/) {
8741         /* still more work to do, bail out if this ISR and process later */
8742         taskqueue_enqueue(fp->tq, &fp->tq_task);
8743         return;
8744     }
8745 
8746     /*
8747      * Here we write the fastpath index taken before doing any tx or rx work.
8748      * It is very well possible other hw events occurred up to this point and
8749      * they were actually processed accordingly above. Since we're going to
8750      * write an older fastpath index, an interrupt is coming which we might
8751      * not do any work in.
8752      */
8753     bxe_ack_sb(sc, fp->igu_sb_id, USTORM_ID,
8754                le16toh(fp->fp_hc_idx), IGU_INT_ENABLE, 1);
8755 }
8756 
8757 /*
8758  * Legacy interrupt entry point.
8759  *
8760  * Verifies that the controller generated the interrupt and
8761  * then calls a separate routine to handle the various
8762  * interrupt causes: link, RX, and TX.
8763  */
8764 static void
8765 bxe_intr_legacy(void *xsc)
8766 {
8767     struct bxe_softc *sc = (struct bxe_softc *)xsc;
8768     struct bxe_fastpath *fp;
8769     uint16_t status, mask;
8770     int i;
8771 
8772     BLOGD(sc, DBG_INTR, "---> BXE INTx <---\n");
8773 
8774     /*
8775      * 0 for ustorm, 1 for cstorm
8776      * the bits returned from ack_int() are 0-15
8777      * bit 0 = attention status block
8778      * bit 1 = fast path status block
8779      * a mask of 0x2 or more = tx/rx event
8780      * a mask of 1 = slow path event
8781      */
8782 
8783     status = bxe_ack_int(sc);
8784 
8785     /* the interrupt is not for us */
8786     if (__predict_false(status == 0)) {
8787         BLOGD(sc, DBG_INTR, "Not our interrupt!\n");
8788         return;
8789     }
8790 
8791     BLOGD(sc, DBG_INTR, "Interrupt status 0x%04x\n", status);
8792 
8793     FOR_EACH_ETH_QUEUE(sc, i) {
8794         fp = &sc->fp[i];
8795         mask = (0x2 << (fp->index + CNIC_SUPPORT(sc)));
8796         if (status & mask) {
8797             /* acknowledge and disable further fastpath interrupts */
8798             bxe_ack_sb(sc, fp->igu_sb_id, USTORM_ID, 0, IGU_INT_DISABLE, 0);
8799             bxe_task_fp(fp);
8800             status &= ~mask;
8801         }
8802     }
8803 
8804     if (__predict_false(status & 0x1)) {
8805         /* acknowledge and disable further slowpath interrupts */
8806         bxe_ack_sb(sc, sc->igu_dsb_id, USTORM_ID, 0, IGU_INT_DISABLE, 0);
8807 
8808         /* schedule slowpath handler */
8809         taskqueue_enqueue(sc->sp_tq, &sc->sp_tq_task);
8810 
8811         status &= ~0x1;
8812     }
8813 
8814     if (__predict_false(status)) {
8815         BLOGW(sc, "Unexpected fastpath status (0x%08x)!\n", status);
8816     }
8817 }
8818 
8819 /* slowpath interrupt entry point */
8820 static void
8821 bxe_intr_sp(void *xsc)
8822 {
8823     struct bxe_softc *sc = (struct bxe_softc *)xsc;
8824 
8825     BLOGD(sc, (DBG_INTR | DBG_SP), "---> SP INTR <---\n");
8826 
8827     /* acknowledge and disable further slowpath interrupts */
8828     bxe_ack_sb(sc, sc->igu_dsb_id, USTORM_ID, 0, IGU_INT_DISABLE, 0);
8829 
8830     /* schedule slowpath handler */
8831     taskqueue_enqueue(sc->sp_tq, &sc->sp_tq_task);
8832 }
8833 
8834 /* fastpath interrupt entry point */
8835 static void
8836 bxe_intr_fp(void *xfp)
8837 {
8838     struct bxe_fastpath *fp = (struct bxe_fastpath *)xfp;
8839     struct bxe_softc *sc = fp->sc;
8840 
8841     BLOGD(sc, DBG_INTR, "---> FP INTR %d <---\n", fp->index);
8842 
8843     BLOGD(sc, DBG_INTR,
8844           "(cpu=%d) MSI-X fp=%d fw_sb=%d igu_sb=%d\n",
8845           curcpu, fp->index, fp->fw_sb_id, fp->igu_sb_id);
8846 
8847     /* acknowledge and disable further fastpath interrupts */
8848     bxe_ack_sb(sc, fp->igu_sb_id, USTORM_ID, 0, IGU_INT_DISABLE, 0);
8849 
8850     bxe_task_fp(fp);
8851 }
8852 
8853 /* Release all interrupts allocated by the driver. */
8854 static void
8855 bxe_interrupt_free(struct bxe_softc *sc)
8856 {
8857     int i;
8858 
8859     switch (sc->interrupt_mode) {
8860     case INTR_MODE_INTX:
8861         BLOGD(sc, DBG_LOAD, "Releasing legacy INTx vector\n");
8862         if (sc->intr[0].resource != NULL) {
8863             bus_release_resource(sc->dev,
8864                                  SYS_RES_IRQ,
8865                                  sc->intr[0].rid,
8866                                  sc->intr[0].resource);
8867         }
8868         break;
8869     case INTR_MODE_MSI:
8870         for (i = 0; i < sc->intr_count; i++) {
8871             BLOGD(sc, DBG_LOAD, "Releasing MSI vector %d\n", i);
8872             if (sc->intr[i].resource && sc->intr[i].rid) {
8873                 bus_release_resource(sc->dev,
8874                                      SYS_RES_IRQ,
8875                                      sc->intr[i].rid,
8876                                      sc->intr[i].resource);
8877             }
8878         }
8879         pci_release_msi(sc->dev);
8880         break;
8881     case INTR_MODE_MSIX:
8882         for (i = 0; i < sc->intr_count; i++) {
8883             BLOGD(sc, DBG_LOAD, "Releasing MSI-X vector %d\n", i);
8884             if (sc->intr[i].resource && sc->intr[i].rid) {
8885                 bus_release_resource(sc->dev,
8886                                      SYS_RES_IRQ,
8887                                      sc->intr[i].rid,
8888                                      sc->intr[i].resource);
8889             }
8890         }
8891         pci_release_msi(sc->dev);
8892         break;
8893     default:
8894         /* nothing to do as initial allocation failed */
8895         break;
8896     }
8897 }
8898 
8899 /*
8900  * This function determines and allocates the appropriate
8901  * interrupt based on system capabilites and user request.
8902  *
8903  * The user may force a particular interrupt mode, specify
8904  * the number of receive queues, specify the method for
8905  * distribuitng received frames to receive queues, or use
8906  * the default settings which will automatically select the
8907  * best supported combination.  In addition, the OS may or
8908  * may not support certain combinations of these settings.
8909  * This routine attempts to reconcile the settings requested
8910  * by the user with the capabilites available from the system
8911  * to select the optimal combination of features.
8912  *
8913  * Returns:
8914  *   0 = Success, !0 = Failure.
8915  */
8916 static int
8917 bxe_interrupt_alloc(struct bxe_softc *sc)
8918 {
8919     int msix_count = 0;
8920     int msi_count = 0;
8921     int num_requested = 0;
8922     int num_allocated = 0;
8923     int rid, i, j;
8924     int rc;
8925 
8926     /* get the number of available MSI/MSI-X interrupts from the OS */
8927     if (sc->interrupt_mode > 0) {
8928         if (sc->devinfo.pcie_cap_flags & BXE_MSIX_CAPABLE_FLAG) {
8929             msix_count = pci_msix_count(sc->dev);
8930         }
8931 
8932         if (sc->devinfo.pcie_cap_flags & BXE_MSI_CAPABLE_FLAG) {
8933             msi_count = pci_msi_count(sc->dev);
8934         }
8935 
8936         BLOGD(sc, DBG_LOAD, "%d MSI and %d MSI-X vectors available\n",
8937               msi_count, msix_count);
8938     }
8939 
8940     do { /* try allocating MSI-X interrupt resources (at least 2) */
8941         if (sc->interrupt_mode != INTR_MODE_MSIX) {
8942             break;
8943         }
8944 
8945         if (((sc->devinfo.pcie_cap_flags & BXE_MSIX_CAPABLE_FLAG) == 0) ||
8946             (msix_count < 2)) {
8947             sc->interrupt_mode = INTR_MODE_MSI; /* try MSI next */
8948             break;
8949         }
8950 
8951         /* ask for the necessary number of MSI-X vectors */
8952         num_requested = min((sc->num_queues + 1), msix_count);
8953 
8954         BLOGD(sc, DBG_LOAD, "Requesting %d MSI-X vectors\n", num_requested);
8955 
8956         num_allocated = num_requested;
8957         if ((rc = pci_alloc_msix(sc->dev, &num_allocated)) != 0) {
8958             BLOGE(sc, "MSI-X alloc failed! (%d)\n", rc);
8959             sc->interrupt_mode = INTR_MODE_MSI; /* try MSI next */
8960             break;
8961         }
8962 
8963         if (num_allocated < 2) { /* possible? */
8964             BLOGE(sc, "MSI-X allocation less than 2!\n");
8965             sc->interrupt_mode = INTR_MODE_MSI; /* try MSI next */
8966             pci_release_msi(sc->dev);
8967             break;
8968         }
8969 
8970         BLOGI(sc, "MSI-X vectors Requested %d and Allocated %d\n",
8971               num_requested, num_allocated);
8972 
8973         /* best effort so use the number of vectors allocated to us */
8974         sc->intr_count = num_allocated;
8975         sc->num_queues = num_allocated - 1;
8976 
8977         rid = 1; /* initial resource identifier */
8978 
8979         /* allocate the MSI-X vectors */
8980         for (i = 0; i < num_allocated; i++) {
8981             sc->intr[i].rid = (rid + i);
8982 
8983             if ((sc->intr[i].resource =
8984                  bus_alloc_resource_any(sc->dev,
8985                                         SYS_RES_IRQ,
8986                                         &sc->intr[i].rid,
8987                                         RF_ACTIVE)) == NULL) {
8988                 BLOGE(sc, "Failed to map MSI-X[%d] (rid=%d)!\n",
8989                       i, (rid + i));
8990 
8991                 for (j = (i - 1); j >= 0; j--) {
8992                     bus_release_resource(sc->dev,
8993                                          SYS_RES_IRQ,
8994                                          sc->intr[j].rid,
8995                                          sc->intr[j].resource);
8996                 }
8997 
8998                 sc->intr_count = 0;
8999                 sc->num_queues = 0;
9000                 sc->interrupt_mode = INTR_MODE_MSI; /* try MSI next */
9001                 pci_release_msi(sc->dev);
9002                 break;
9003             }
9004 
9005             BLOGD(sc, DBG_LOAD, "Mapped MSI-X[%d] (rid=%d)\n", i, (rid + i));
9006         }
9007     } while (0);
9008 
9009     do { /* try allocating MSI vector resources (at least 2) */
9010         if (sc->interrupt_mode != INTR_MODE_MSI) {
9011             break;
9012         }
9013 
9014         if (((sc->devinfo.pcie_cap_flags & BXE_MSI_CAPABLE_FLAG) == 0) ||
9015             (msi_count < 1)) {
9016             sc->interrupt_mode = INTR_MODE_INTX; /* try INTx next */
9017             break;
9018         }
9019 
9020         /* ask for a single MSI vector */
9021         num_requested = 1;
9022 
9023         BLOGD(sc, DBG_LOAD, "Requesting %d MSI vectors\n", num_requested);
9024 
9025         num_allocated = num_requested;
9026         if ((rc = pci_alloc_msi(sc->dev, &num_allocated)) != 0) {
9027             BLOGE(sc, "MSI alloc failed (%d)!\n", rc);
9028             sc->interrupt_mode = INTR_MODE_INTX; /* try INTx next */
9029             break;
9030         }
9031 
9032         if (num_allocated != 1) { /* possible? */
9033             BLOGE(sc, "MSI allocation is not 1!\n");
9034             sc->interrupt_mode = INTR_MODE_INTX; /* try INTx next */
9035             pci_release_msi(sc->dev);
9036             break;
9037         }
9038 
9039         BLOGI(sc, "MSI vectors Requested %d and Allocated %d\n",
9040               num_requested, num_allocated);
9041 
9042         /* best effort so use the number of vectors allocated to us */
9043         sc->intr_count = num_allocated;
9044         sc->num_queues = num_allocated;
9045 
9046         rid = 1; /* initial resource identifier */
9047 
9048         sc->intr[0].rid = rid;
9049 
9050         if ((sc->intr[0].resource =
9051              bus_alloc_resource_any(sc->dev,
9052                                     SYS_RES_IRQ,
9053                                     &sc->intr[0].rid,
9054                                     RF_ACTIVE)) == NULL) {
9055             BLOGE(sc, "Failed to map MSI[0] (rid=%d)!\n", rid);
9056             sc->intr_count = 0;
9057             sc->num_queues = 0;
9058             sc->interrupt_mode = INTR_MODE_INTX; /* try INTx next */
9059             pci_release_msi(sc->dev);
9060             break;
9061         }
9062 
9063         BLOGD(sc, DBG_LOAD, "Mapped MSI[0] (rid=%d)\n", rid);
9064     } while (0);
9065 
9066     do { /* try allocating INTx vector resources */
9067         if (sc->interrupt_mode != INTR_MODE_INTX) {
9068             break;
9069         }
9070 
9071         BLOGD(sc, DBG_LOAD, "Requesting legacy INTx interrupt\n");
9072 
9073         /* only one vector for INTx */
9074         sc->intr_count = 1;
9075         sc->num_queues = 1;
9076 
9077         rid = 0; /* initial resource identifier */
9078 
9079         sc->intr[0].rid = rid;
9080 
9081         if ((sc->intr[0].resource =
9082              bus_alloc_resource_any(sc->dev,
9083                                     SYS_RES_IRQ,
9084                                     &sc->intr[0].rid,
9085                                     (RF_ACTIVE | RF_SHAREABLE))) == NULL) {
9086             BLOGE(sc, "Failed to map INTx (rid=%d)!\n", rid);
9087             sc->intr_count = 0;
9088             sc->num_queues = 0;
9089             sc->interrupt_mode = -1; /* Failed! */
9090             break;
9091         }
9092 
9093         BLOGD(sc, DBG_LOAD, "Mapped INTx (rid=%d)\n", rid);
9094     } while (0);
9095 
9096     if (sc->interrupt_mode == -1) {
9097         BLOGE(sc, "Interrupt Allocation: FAILED!!!\n");
9098         rc = 1;
9099     } else {
9100         BLOGD(sc, DBG_LOAD,
9101               "Interrupt Allocation: interrupt_mode=%d, num_queues=%d\n",
9102               sc->interrupt_mode, sc->num_queues);
9103         rc = 0;
9104     }
9105 
9106     return (rc);
9107 }
9108 
9109 static void
9110 bxe_interrupt_detach(struct bxe_softc *sc)
9111 {
9112     struct bxe_fastpath *fp;
9113     int i;
9114 
9115     /* release interrupt resources */
9116     for (i = 0; i < sc->intr_count; i++) {
9117         if (sc->intr[i].resource && sc->intr[i].tag) {
9118             BLOGD(sc, DBG_LOAD, "Disabling interrupt vector %d\n", i);
9119             bus_teardown_intr(sc->dev, sc->intr[i].resource, sc->intr[i].tag);
9120         }
9121     }
9122 
9123     for (i = 0; i < sc->num_queues; i++) {
9124         fp = &sc->fp[i];
9125         if (fp->tq) {
9126             taskqueue_drain(fp->tq, &fp->tq_task);
9127             taskqueue_drain(fp->tq, &fp->tx_task);
9128             while (taskqueue_cancel_timeout(fp->tq, &fp->tx_timeout_task,
9129                 NULL))
9130                 taskqueue_drain_timeout(fp->tq, &fp->tx_timeout_task);
9131         }
9132 
9133         for (i = 0; i < sc->num_queues; i++) {
9134             fp = &sc->fp[i];
9135             if (fp->tq != NULL) {
9136                 taskqueue_free(fp->tq);
9137                 fp->tq = NULL;
9138             }
9139         }
9140     }
9141 
9142     if (sc->sp_tq) {
9143         taskqueue_drain(sc->sp_tq, &sc->sp_tq_task);
9144         taskqueue_free(sc->sp_tq);
9145         sc->sp_tq = NULL;
9146     }
9147 }
9148 
9149 /*
9150  * Enables interrupts and attach to the ISR.
9151  *
9152  * When using multiple MSI/MSI-X vectors the first vector
9153  * is used for slowpath operations while all remaining
9154  * vectors are used for fastpath operations.  If only a
9155  * single MSI/MSI-X vector is used (SINGLE_ISR) then the
9156  * ISR must look for both slowpath and fastpath completions.
9157  */
9158 static int
9159 bxe_interrupt_attach(struct bxe_softc *sc)
9160 {
9161     struct bxe_fastpath *fp;
9162     int rc = 0;
9163     int i;
9164 
9165     snprintf(sc->sp_tq_name, sizeof(sc->sp_tq_name),
9166              "bxe%d_sp_tq", sc->unit);
9167     TASK_INIT(&sc->sp_tq_task, 0, bxe_handle_sp_tq, sc);
9168     sc->sp_tq = taskqueue_create(sc->sp_tq_name, M_NOWAIT,
9169                                  taskqueue_thread_enqueue,
9170                                  &sc->sp_tq);
9171     taskqueue_start_threads(&sc->sp_tq, 1, PWAIT, /* lower priority */
9172                             "%s", sc->sp_tq_name);
9173 
9174 
9175     for (i = 0; i < sc->num_queues; i++) {
9176         fp = &sc->fp[i];
9177         snprintf(fp->tq_name, sizeof(fp->tq_name),
9178                  "bxe%d_fp%d_tq", sc->unit, i);
9179         NET_TASK_INIT(&fp->tq_task, 0, bxe_handle_fp_tq, fp);
9180         TASK_INIT(&fp->tx_task, 0, bxe_tx_mq_start_deferred, fp);
9181         fp->tq = taskqueue_create(fp->tq_name, M_NOWAIT,
9182                                   taskqueue_thread_enqueue,
9183                                   &fp->tq);
9184         TIMEOUT_TASK_INIT(fp->tq, &fp->tx_timeout_task, 0,
9185                           bxe_tx_mq_start_deferred, fp);
9186         taskqueue_start_threads(&fp->tq, 1, PI_NET, /* higher priority */
9187                                 "%s", fp->tq_name);
9188     }
9189 
9190     /* setup interrupt handlers */
9191     if (sc->interrupt_mode == INTR_MODE_MSIX) {
9192         BLOGD(sc, DBG_LOAD, "Enabling slowpath MSI-X[0] vector\n");
9193 
9194         /*
9195          * Setup the interrupt handler. Note that we pass the driver instance
9196          * to the interrupt handler for the slowpath.
9197          */
9198         if ((rc = bus_setup_intr(sc->dev, sc->intr[0].resource,
9199                                  (INTR_TYPE_NET | INTR_MPSAFE),
9200                                  NULL, bxe_intr_sp, sc,
9201                                  &sc->intr[0].tag)) != 0) {
9202             BLOGE(sc, "Failed to allocate MSI-X[0] vector (%d)\n", rc);
9203             goto bxe_interrupt_attach_exit;
9204         }
9205 
9206         bus_describe_intr(sc->dev, sc->intr[0].resource,
9207                           sc->intr[0].tag, "sp");
9208 
9209         /* bus_bind_intr(sc->dev, sc->intr[0].resource, 0); */
9210 
9211         /* initialize the fastpath vectors (note the first was used for sp) */
9212         for (i = 0; i < sc->num_queues; i++) {
9213             fp = &sc->fp[i];
9214             BLOGD(sc, DBG_LOAD, "Enabling MSI-X[%d] vector\n", (i + 1));
9215 
9216             /*
9217              * Setup the interrupt handler. Note that we pass the
9218              * fastpath context to the interrupt handler in this
9219              * case.
9220              */
9221             if ((rc = bus_setup_intr(sc->dev, sc->intr[i + 1].resource,
9222                                      (INTR_TYPE_NET | INTR_MPSAFE),
9223                                      NULL, bxe_intr_fp, fp,
9224                                      &sc->intr[i + 1].tag)) != 0) {
9225                 BLOGE(sc, "Failed to allocate MSI-X[%d] vector (%d)\n",
9226                       (i + 1), rc);
9227                 goto bxe_interrupt_attach_exit;
9228             }
9229 
9230             bus_describe_intr(sc->dev, sc->intr[i + 1].resource,
9231                               sc->intr[i + 1].tag, "fp%02d", i);
9232 
9233             /* bind the fastpath instance to a cpu */
9234             if (sc->num_queues > 1) {
9235                 bus_bind_intr(sc->dev, sc->intr[i + 1].resource, i);
9236             }
9237 
9238             fp->state = BXE_FP_STATE_IRQ;
9239         }
9240     } else if (sc->interrupt_mode == INTR_MODE_MSI) {
9241         BLOGD(sc, DBG_LOAD, "Enabling MSI[0] vector\n");
9242 
9243         /*
9244          * Setup the interrupt handler. Note that we pass the
9245          * driver instance to the interrupt handler which
9246          * will handle both the slowpath and fastpath.
9247          */
9248         if ((rc = bus_setup_intr(sc->dev, sc->intr[0].resource,
9249                                  (INTR_TYPE_NET | INTR_MPSAFE),
9250                                  NULL, bxe_intr_legacy, sc,
9251                                  &sc->intr[0].tag)) != 0) {
9252             BLOGE(sc, "Failed to allocate MSI[0] vector (%d)\n", rc);
9253             goto bxe_interrupt_attach_exit;
9254         }
9255 
9256     } else { /* (sc->interrupt_mode == INTR_MODE_INTX) */
9257         BLOGD(sc, DBG_LOAD, "Enabling INTx interrupts\n");
9258 
9259         /*
9260          * Setup the interrupt handler. Note that we pass the
9261          * driver instance to the interrupt handler which
9262          * will handle both the slowpath and fastpath.
9263          */
9264         if ((rc = bus_setup_intr(sc->dev, sc->intr[0].resource,
9265                                  (INTR_TYPE_NET | INTR_MPSAFE),
9266                                  NULL, bxe_intr_legacy, sc,
9267                                  &sc->intr[0].tag)) != 0) {
9268             BLOGE(sc, "Failed to allocate INTx interrupt (%d)\n", rc);
9269             goto bxe_interrupt_attach_exit;
9270         }
9271     }
9272 
9273 bxe_interrupt_attach_exit:
9274 
9275     return (rc);
9276 }
9277 
9278 static int  bxe_init_hw_common_chip(struct bxe_softc *sc);
9279 static int  bxe_init_hw_common(struct bxe_softc *sc);
9280 static int  bxe_init_hw_port(struct bxe_softc *sc);
9281 static int  bxe_init_hw_func(struct bxe_softc *sc);
9282 static void bxe_reset_common(struct bxe_softc *sc);
9283 static void bxe_reset_port(struct bxe_softc *sc);
9284 static void bxe_reset_func(struct bxe_softc *sc);
9285 static int  bxe_gunzip_init(struct bxe_softc *sc);
9286 static void bxe_gunzip_end(struct bxe_softc *sc);
9287 static int  bxe_init_firmware(struct bxe_softc *sc);
9288 static void bxe_release_firmware(struct bxe_softc *sc);
9289 
9290 static struct
9291 ecore_func_sp_drv_ops bxe_func_sp_drv = {
9292     .init_hw_cmn_chip = bxe_init_hw_common_chip,
9293     .init_hw_cmn      = bxe_init_hw_common,
9294     .init_hw_port     = bxe_init_hw_port,
9295     .init_hw_func     = bxe_init_hw_func,
9296 
9297     .reset_hw_cmn     = bxe_reset_common,
9298     .reset_hw_port    = bxe_reset_port,
9299     .reset_hw_func    = bxe_reset_func,
9300 
9301     .gunzip_init      = bxe_gunzip_init,
9302     .gunzip_end       = bxe_gunzip_end,
9303 
9304     .init_fw          = bxe_init_firmware,
9305     .release_fw       = bxe_release_firmware,
9306 };
9307 
9308 static void
9309 bxe_init_func_obj(struct bxe_softc *sc)
9310 {
9311     sc->dmae_ready = 0;
9312 
9313     ecore_init_func_obj(sc,
9314                         &sc->func_obj,
9315                         BXE_SP(sc, func_rdata),
9316                         BXE_SP_MAPPING(sc, func_rdata),
9317                         BXE_SP(sc, func_afex_rdata),
9318                         BXE_SP_MAPPING(sc, func_afex_rdata),
9319                         &bxe_func_sp_drv);
9320 }
9321 
9322 static int
9323 bxe_init_hw(struct bxe_softc *sc,
9324             uint32_t         load_code)
9325 {
9326     struct ecore_func_state_params func_params = { NULL };
9327     int rc;
9328 
9329     /* prepare the parameters for function state transitions */
9330     bit_set(&func_params.ramrod_flags, RAMROD_COMP_WAIT);
9331 
9332     func_params.f_obj = &sc->func_obj;
9333     func_params.cmd = ECORE_F_CMD_HW_INIT;
9334 
9335     func_params.params.hw_init.load_phase = load_code;
9336 
9337     /*
9338      * Via a plethora of function pointers, we will eventually reach
9339      * bxe_init_hw_common(), bxe_init_hw_port(), or bxe_init_hw_func().
9340      */
9341     rc = ecore_func_state_change(sc, &func_params);
9342 
9343     return (rc);
9344 }
9345 
9346 static void
9347 bxe_fill(struct bxe_softc *sc,
9348          uint32_t         addr,
9349          int              fill,
9350          uint32_t         len)
9351 {
9352     uint32_t i;
9353 
9354     if (!(len % 4) && !(addr % 4)) {
9355         for (i = 0; i < len; i += 4) {
9356             REG_WR(sc, (addr + i), fill);
9357         }
9358     } else {
9359         for (i = 0; i < len; i++) {
9360             REG_WR8(sc, (addr + i), fill);
9361         }
9362     }
9363 }
9364 
9365 /* writes FP SP data to FW - data_size in dwords */
9366 static void
9367 bxe_wr_fp_sb_data(struct bxe_softc *sc,
9368                   int              fw_sb_id,
9369                   uint32_t         *sb_data_p,
9370                   uint32_t         data_size)
9371 {
9372     int index;
9373 
9374     for (index = 0; index < data_size; index++) {
9375         REG_WR(sc,
9376                (BAR_CSTRORM_INTMEM +
9377                 CSTORM_STATUS_BLOCK_DATA_OFFSET(fw_sb_id) +
9378                 (sizeof(uint32_t) * index)),
9379                *(sb_data_p + index));
9380     }
9381 }
9382 
9383 static void
9384 bxe_zero_fp_sb(struct bxe_softc *sc,
9385                int              fw_sb_id)
9386 {
9387     struct hc_status_block_data_e2 sb_data_e2;
9388     struct hc_status_block_data_e1x sb_data_e1x;
9389     uint32_t *sb_data_p;
9390     uint32_t data_size = 0;
9391 
9392     if (!CHIP_IS_E1x(sc)) {
9393         memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2));
9394         sb_data_e2.common.state = SB_DISABLED;
9395         sb_data_e2.common.p_func.vf_valid = FALSE;
9396         sb_data_p = (uint32_t *)&sb_data_e2;
9397         data_size = (sizeof(struct hc_status_block_data_e2) /
9398                      sizeof(uint32_t));
9399     } else {
9400         memset(&sb_data_e1x, 0, sizeof(struct hc_status_block_data_e1x));
9401         sb_data_e1x.common.state = SB_DISABLED;
9402         sb_data_e1x.common.p_func.vf_valid = FALSE;
9403         sb_data_p = (uint32_t *)&sb_data_e1x;
9404         data_size = (sizeof(struct hc_status_block_data_e1x) /
9405                      sizeof(uint32_t));
9406     }
9407 
9408     bxe_wr_fp_sb_data(sc, fw_sb_id, sb_data_p, data_size);
9409 
9410     bxe_fill(sc, (BAR_CSTRORM_INTMEM + CSTORM_STATUS_BLOCK_OFFSET(fw_sb_id)),
9411              0, CSTORM_STATUS_BLOCK_SIZE);
9412     bxe_fill(sc, (BAR_CSTRORM_INTMEM + CSTORM_SYNC_BLOCK_OFFSET(fw_sb_id)),
9413              0, CSTORM_SYNC_BLOCK_SIZE);
9414 }
9415 
9416 static void
9417 bxe_wr_sp_sb_data(struct bxe_softc               *sc,
9418                   struct hc_sp_status_block_data *sp_sb_data)
9419 {
9420     int i;
9421 
9422     for (i = 0;
9423          i < (sizeof(struct hc_sp_status_block_data) / sizeof(uint32_t));
9424          i++) {
9425         REG_WR(sc,
9426                (BAR_CSTRORM_INTMEM +
9427                 CSTORM_SP_STATUS_BLOCK_DATA_OFFSET(SC_FUNC(sc)) +
9428                 (i * sizeof(uint32_t))),
9429                *((uint32_t *)sp_sb_data + i));
9430     }
9431 }
9432 
9433 static void
9434 bxe_zero_sp_sb(struct bxe_softc *sc)
9435 {
9436     struct hc_sp_status_block_data sp_sb_data;
9437 
9438     memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data));
9439 
9440     sp_sb_data.state           = SB_DISABLED;
9441     sp_sb_data.p_func.vf_valid = FALSE;
9442 
9443     bxe_wr_sp_sb_data(sc, &sp_sb_data);
9444 
9445     bxe_fill(sc,
9446              (BAR_CSTRORM_INTMEM +
9447               CSTORM_SP_STATUS_BLOCK_OFFSET(SC_FUNC(sc))),
9448               0, CSTORM_SP_STATUS_BLOCK_SIZE);
9449     bxe_fill(sc,
9450              (BAR_CSTRORM_INTMEM +
9451               CSTORM_SP_SYNC_BLOCK_OFFSET(SC_FUNC(sc))),
9452               0, CSTORM_SP_SYNC_BLOCK_SIZE);
9453 }
9454 
9455 static void
9456 bxe_setup_ndsb_state_machine(struct hc_status_block_sm *hc_sm,
9457                              int                       igu_sb_id,
9458                              int                       igu_seg_id)
9459 {
9460     hc_sm->igu_sb_id      = igu_sb_id;
9461     hc_sm->igu_seg_id     = igu_seg_id;
9462     hc_sm->timer_value    = 0xFF;
9463     hc_sm->time_to_expire = 0xFFFFFFFF;
9464 }
9465 
9466 static void
9467 bxe_map_sb_state_machines(struct hc_index_data *index_data)
9468 {
9469     /* zero out state machine indices */
9470 
9471     /* rx indices */
9472     index_data[HC_INDEX_ETH_RX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID;
9473 
9474     /* tx indices */
9475     index_data[HC_INDEX_OOO_TX_CQ_CONS].flags      &= ~HC_INDEX_DATA_SM_ID;
9476     index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags &= ~HC_INDEX_DATA_SM_ID;
9477     index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags &= ~HC_INDEX_DATA_SM_ID;
9478     index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags &= ~HC_INDEX_DATA_SM_ID;
9479 
9480     /* map indices */
9481 
9482     /* rx indices */
9483     index_data[HC_INDEX_ETH_RX_CQ_CONS].flags |=
9484         (SM_RX_ID << HC_INDEX_DATA_SM_ID_SHIFT);
9485 
9486     /* tx indices */
9487     index_data[HC_INDEX_OOO_TX_CQ_CONS].flags |=
9488         (SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT);
9489     index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags |=
9490         (SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT);
9491     index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags |=
9492         (SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT);
9493     index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags |=
9494         (SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT);
9495 }
9496 
9497 static void
9498 bxe_init_sb(struct bxe_softc *sc,
9499             bus_addr_t       busaddr,
9500             int              vfid,
9501             uint8_t          vf_valid,
9502             int              fw_sb_id,
9503             int              igu_sb_id)
9504 {
9505     struct hc_status_block_data_e2  sb_data_e2;
9506     struct hc_status_block_data_e1x sb_data_e1x;
9507     struct hc_status_block_sm       *hc_sm_p;
9508     uint32_t *sb_data_p;
9509     int igu_seg_id;
9510     int data_size;
9511 
9512     if (CHIP_INT_MODE_IS_BC(sc)) {
9513         igu_seg_id = HC_SEG_ACCESS_NORM;
9514     } else {
9515         igu_seg_id = IGU_SEG_ACCESS_NORM;
9516     }
9517 
9518     bxe_zero_fp_sb(sc, fw_sb_id);
9519 
9520     if (!CHIP_IS_E1x(sc)) {
9521         memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2));
9522         sb_data_e2.common.state = SB_ENABLED;
9523         sb_data_e2.common.p_func.pf_id = SC_FUNC(sc);
9524         sb_data_e2.common.p_func.vf_id = vfid;
9525         sb_data_e2.common.p_func.vf_valid = vf_valid;
9526         sb_data_e2.common.p_func.vnic_id = SC_VN(sc);
9527         sb_data_e2.common.same_igu_sb_1b = TRUE;
9528         sb_data_e2.common.host_sb_addr.hi = U64_HI(busaddr);
9529         sb_data_e2.common.host_sb_addr.lo = U64_LO(busaddr);
9530         hc_sm_p = sb_data_e2.common.state_machine;
9531         sb_data_p = (uint32_t *)&sb_data_e2;
9532         data_size = (sizeof(struct hc_status_block_data_e2) /
9533                      sizeof(uint32_t));
9534         bxe_map_sb_state_machines(sb_data_e2.index_data);
9535     } else {
9536         memset(&sb_data_e1x, 0, sizeof(struct hc_status_block_data_e1x));
9537         sb_data_e1x.common.state = SB_ENABLED;
9538         sb_data_e1x.common.p_func.pf_id = SC_FUNC(sc);
9539         sb_data_e1x.common.p_func.vf_id = 0xff;
9540         sb_data_e1x.common.p_func.vf_valid = FALSE;
9541         sb_data_e1x.common.p_func.vnic_id = SC_VN(sc);
9542         sb_data_e1x.common.same_igu_sb_1b = TRUE;
9543         sb_data_e1x.common.host_sb_addr.hi = U64_HI(busaddr);
9544         sb_data_e1x.common.host_sb_addr.lo = U64_LO(busaddr);
9545         hc_sm_p = sb_data_e1x.common.state_machine;
9546         sb_data_p = (uint32_t *)&sb_data_e1x;
9547         data_size = (sizeof(struct hc_status_block_data_e1x) /
9548                      sizeof(uint32_t));
9549         bxe_map_sb_state_machines(sb_data_e1x.index_data);
9550     }
9551 
9552     bxe_setup_ndsb_state_machine(&hc_sm_p[SM_RX_ID], igu_sb_id, igu_seg_id);
9553     bxe_setup_ndsb_state_machine(&hc_sm_p[SM_TX_ID], igu_sb_id, igu_seg_id);
9554 
9555     BLOGD(sc, DBG_LOAD, "Init FW SB %d\n", fw_sb_id);
9556 
9557     /* write indices to HW - PCI guarantees endianity of regpairs */
9558     bxe_wr_fp_sb_data(sc, fw_sb_id, sb_data_p, data_size);
9559 }
9560 
9561 static inline uint8_t
9562 bxe_fp_qzone_id(struct bxe_fastpath *fp)
9563 {
9564     if (CHIP_IS_E1x(fp->sc)) {
9565         return (fp->cl_id + SC_PORT(fp->sc) * ETH_MAX_RX_CLIENTS_E1H);
9566     } else {
9567         return (fp->cl_id);
9568     }
9569 }
9570 
9571 static inline uint32_t
9572 bxe_rx_ustorm_prods_offset(struct bxe_softc    *sc,
9573                            struct bxe_fastpath *fp)
9574 {
9575     uint32_t offset = BAR_USTRORM_INTMEM;
9576 
9577     if (!CHIP_IS_E1x(sc)) {
9578         offset += USTORM_RX_PRODS_E2_OFFSET(fp->cl_qzone_id);
9579     } else {
9580         offset += USTORM_RX_PRODS_E1X_OFFSET(SC_PORT(sc), fp->cl_id);
9581     }
9582 
9583     return (offset);
9584 }
9585 
9586 static void
9587 bxe_init_eth_fp(struct bxe_softc *sc,
9588                 int              idx)
9589 {
9590     struct bxe_fastpath *fp = &sc->fp[idx];
9591     uint32_t cids[ECORE_MULTI_TX_COS] = { 0 };
9592     unsigned long q_type = 0;
9593     int cos;
9594 
9595     fp->sc    = sc;
9596     fp->index = idx;
9597 
9598     fp->igu_sb_id = (sc->igu_base_sb + idx + CNIC_SUPPORT(sc));
9599     fp->fw_sb_id = (sc->base_fw_ndsb + idx + CNIC_SUPPORT(sc));
9600 
9601     fp->cl_id = (CHIP_IS_E1x(sc)) ?
9602                     (SC_L_ID(sc) + idx) :
9603                     /* want client ID same as IGU SB ID for non-E1 */
9604                     fp->igu_sb_id;
9605     fp->cl_qzone_id = bxe_fp_qzone_id(fp);
9606 
9607     /* setup sb indices */
9608     if (!CHIP_IS_E1x(sc)) {
9609         fp->sb_index_values  = fp->status_block.e2_sb->sb.index_values;
9610         fp->sb_running_index = fp->status_block.e2_sb->sb.running_index;
9611     } else {
9612         fp->sb_index_values  = fp->status_block.e1x_sb->sb.index_values;
9613         fp->sb_running_index = fp->status_block.e1x_sb->sb.running_index;
9614     }
9615 
9616     /* init shortcut */
9617     fp->ustorm_rx_prods_offset = bxe_rx_ustorm_prods_offset(sc, fp);
9618 
9619     fp->rx_cq_cons_sb = &fp->sb_index_values[HC_INDEX_ETH_RX_CQ_CONS];
9620 
9621     /*
9622      * XXX If multiple CoS is ever supported then each fastpath structure
9623      * will need to maintain tx producer/consumer/dma/etc values *per* CoS.
9624      */
9625     for (cos = 0; cos < sc->max_cos; cos++) {
9626         cids[cos] = idx;
9627     }
9628     fp->tx_cons_sb = &fp->sb_index_values[HC_INDEX_ETH_TX_CQ_CONS_COS0];
9629 
9630     /* nothing more for a VF to do */
9631     if (IS_VF(sc)) {
9632         return;
9633     }
9634 
9635     bxe_init_sb(sc, fp->sb_dma.paddr, BXE_VF_ID_INVALID, FALSE,
9636                 fp->fw_sb_id, fp->igu_sb_id);
9637 
9638     bxe_update_fp_sb_idx(fp);
9639 
9640     /* Configure Queue State object */
9641     bit_set(&q_type, ECORE_Q_TYPE_HAS_RX);
9642     bit_set(&q_type, ECORE_Q_TYPE_HAS_TX);
9643 
9644     ecore_init_queue_obj(sc,
9645                          &sc->sp_objs[idx].q_obj,
9646                          fp->cl_id,
9647                          cids,
9648                          sc->max_cos,
9649                          SC_FUNC(sc),
9650                          BXE_SP(sc, q_rdata),
9651                          BXE_SP_MAPPING(sc, q_rdata),
9652                          q_type);
9653 
9654     /* configure classification DBs */
9655     ecore_init_mac_obj(sc,
9656                        &sc->sp_objs[idx].mac_obj,
9657                        fp->cl_id,
9658                        idx,
9659                        SC_FUNC(sc),
9660                        BXE_SP(sc, mac_rdata),
9661                        BXE_SP_MAPPING(sc, mac_rdata),
9662                        ECORE_FILTER_MAC_PENDING,
9663                        &sc->sp_state,
9664                        ECORE_OBJ_TYPE_RX_TX,
9665                        &sc->macs_pool);
9666 
9667     BLOGD(sc, DBG_LOAD, "fp[%d]: sb=%p cl_id=%d fw_sb=%d igu_sb=%d\n",
9668           idx, fp->status_block.e2_sb, fp->cl_id, fp->fw_sb_id, fp->igu_sb_id);
9669 }
9670 
9671 static inline void
9672 bxe_update_rx_prod(struct bxe_softc    *sc,
9673                    struct bxe_fastpath *fp,
9674                    uint16_t            rx_bd_prod,
9675                    uint16_t            rx_cq_prod,
9676                    uint16_t            rx_sge_prod)
9677 {
9678     struct ustorm_eth_rx_producers rx_prods = { 0 };
9679     uint32_t i;
9680 
9681     /* update producers */
9682     rx_prods.bd_prod  = rx_bd_prod;
9683     rx_prods.cqe_prod = rx_cq_prod;
9684     rx_prods.sge_prod = rx_sge_prod;
9685 
9686     /*
9687      * Make sure that the BD and SGE data is updated before updating the
9688      * producers since FW might read the BD/SGE right after the producer
9689      * is updated.
9690      * This is only applicable for weak-ordered memory model archs such
9691      * as IA-64. The following barrier is also mandatory since FW will
9692      * assumes BDs must have buffers.
9693      */
9694     wmb();
9695 
9696     for (i = 0; i < (sizeof(rx_prods) / 4); i++) {
9697         REG_WR(sc,
9698                (fp->ustorm_rx_prods_offset + (i * 4)),
9699                ((uint32_t *)&rx_prods)[i]);
9700     }
9701 
9702     wmb(); /* keep prod updates ordered */
9703 
9704     BLOGD(sc, DBG_RX,
9705           "RX fp[%d]: wrote prods bd_prod=%u cqe_prod=%u sge_prod=%u\n",
9706           fp->index, rx_bd_prod, rx_cq_prod, rx_sge_prod);
9707 }
9708 
9709 static void
9710 bxe_init_rx_rings(struct bxe_softc *sc)
9711 {
9712     struct bxe_fastpath *fp;
9713     int i;
9714 
9715     for (i = 0; i < sc->num_queues; i++) {
9716         fp = &sc->fp[i];
9717 
9718         fp->rx_bd_cons = 0;
9719 
9720         /*
9721          * Activate the BD ring...
9722          * Warning, this will generate an interrupt (to the TSTORM)
9723          * so this can only be done after the chip is initialized
9724          */
9725         bxe_update_rx_prod(sc, fp,
9726                            fp->rx_bd_prod,
9727                            fp->rx_cq_prod,
9728                            fp->rx_sge_prod);
9729 
9730         if (i != 0) {
9731             continue;
9732         }
9733 
9734         if (CHIP_IS_E1(sc)) {
9735             REG_WR(sc,
9736                    (BAR_USTRORM_INTMEM +
9737                     USTORM_MEM_WORKAROUND_ADDRESS_OFFSET(SC_FUNC(sc))),
9738                    U64_LO(fp->rcq_dma.paddr));
9739             REG_WR(sc,
9740                    (BAR_USTRORM_INTMEM +
9741                     USTORM_MEM_WORKAROUND_ADDRESS_OFFSET(SC_FUNC(sc)) + 4),
9742                    U64_HI(fp->rcq_dma.paddr));
9743         }
9744     }
9745 }
9746 
9747 static void
9748 bxe_init_tx_ring_one(struct bxe_fastpath *fp)
9749 {
9750     SET_FLAG(fp->tx_db.data.header.data, DOORBELL_HDR_T_DB_TYPE, 1);
9751     fp->tx_db.data.zero_fill1 = 0;
9752     fp->tx_db.data.prod = 0;
9753 
9754     fp->tx_pkt_prod = 0;
9755     fp->tx_pkt_cons = 0;
9756     fp->tx_bd_prod = 0;
9757     fp->tx_bd_cons = 0;
9758     fp->eth_q_stats.tx_pkts = 0;
9759 }
9760 
9761 static inline void
9762 bxe_init_tx_rings(struct bxe_softc *sc)
9763 {
9764     int i;
9765 
9766     for (i = 0; i < sc->num_queues; i++) {
9767         bxe_init_tx_ring_one(&sc->fp[i]);
9768     }
9769 }
9770 
9771 static void
9772 bxe_init_def_sb(struct bxe_softc *sc)
9773 {
9774     struct host_sp_status_block *def_sb = sc->def_sb;
9775     bus_addr_t mapping = sc->def_sb_dma.paddr;
9776     int igu_sp_sb_index;
9777     int igu_seg_id;
9778     int port = SC_PORT(sc);
9779     int func = SC_FUNC(sc);
9780     int reg_offset, reg_offset_en5;
9781     uint64_t section;
9782     int index, sindex;
9783     struct hc_sp_status_block_data sp_sb_data;
9784 
9785     memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data));
9786 
9787     if (CHIP_INT_MODE_IS_BC(sc)) {
9788         igu_sp_sb_index = DEF_SB_IGU_ID;
9789         igu_seg_id = HC_SEG_ACCESS_DEF;
9790     } else {
9791         igu_sp_sb_index = sc->igu_dsb_id;
9792         igu_seg_id = IGU_SEG_ACCESS_DEF;
9793     }
9794 
9795     /* attentions */
9796     section = ((uint64_t)mapping +
9797                offsetof(struct host_sp_status_block, atten_status_block));
9798     def_sb->atten_status_block.status_block_id = igu_sp_sb_index;
9799     sc->attn_state = 0;
9800 
9801     reg_offset = (port) ?
9802                      MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
9803                      MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0;
9804     reg_offset_en5 = (port) ?
9805                          MISC_REG_AEU_ENABLE5_FUNC_1_OUT_0 :
9806                          MISC_REG_AEU_ENABLE5_FUNC_0_OUT_0;
9807 
9808     for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) {
9809         /* take care of sig[0]..sig[4] */
9810         for (sindex = 0; sindex < 4; sindex++) {
9811             sc->attn_group[index].sig[sindex] =
9812                 REG_RD(sc, (reg_offset + (sindex * 0x4) + (0x10 * index)));
9813         }
9814 
9815         if (!CHIP_IS_E1x(sc)) {
9816             /*
9817              * enable5 is separate from the rest of the registers,
9818              * and the address skip is 4 and not 16 between the
9819              * different groups
9820              */
9821             sc->attn_group[index].sig[4] =
9822                 REG_RD(sc, (reg_offset_en5 + (0x4 * index)));
9823         } else {
9824             sc->attn_group[index].sig[4] = 0;
9825         }
9826     }
9827 
9828     if (sc->devinfo.int_block == INT_BLOCK_HC) {
9829         reg_offset = (port) ?
9830                          HC_REG_ATTN_MSG1_ADDR_L :
9831                          HC_REG_ATTN_MSG0_ADDR_L;
9832         REG_WR(sc, reg_offset, U64_LO(section));
9833         REG_WR(sc, (reg_offset + 4), U64_HI(section));
9834     } else if (!CHIP_IS_E1x(sc)) {
9835         REG_WR(sc, IGU_REG_ATTN_MSG_ADDR_L, U64_LO(section));
9836         REG_WR(sc, IGU_REG_ATTN_MSG_ADDR_H, U64_HI(section));
9837     }
9838 
9839     section = ((uint64_t)mapping +
9840                offsetof(struct host_sp_status_block, sp_sb));
9841 
9842     bxe_zero_sp_sb(sc);
9843 
9844     /* PCI guarantees endianity of regpair */
9845     sp_sb_data.state           = SB_ENABLED;
9846     sp_sb_data.host_sb_addr.lo = U64_LO(section);
9847     sp_sb_data.host_sb_addr.hi = U64_HI(section);
9848     sp_sb_data.igu_sb_id       = igu_sp_sb_index;
9849     sp_sb_data.igu_seg_id      = igu_seg_id;
9850     sp_sb_data.p_func.pf_id    = func;
9851     sp_sb_data.p_func.vnic_id  = SC_VN(sc);
9852     sp_sb_data.p_func.vf_id    = 0xff;
9853 
9854     bxe_wr_sp_sb_data(sc, &sp_sb_data);
9855 
9856     bxe_ack_sb(sc, sc->igu_dsb_id, USTORM_ID, 0, IGU_INT_ENABLE, 0);
9857 }
9858 
9859 static void
9860 bxe_init_sp_ring(struct bxe_softc *sc)
9861 {
9862     atomic_store_rel_long(&sc->cq_spq_left, MAX_SPQ_PENDING);
9863     sc->spq_prod_idx = 0;
9864     sc->dsb_sp_prod = &sc->def_sb->sp_sb.index_values[HC_SP_INDEX_ETH_DEF_CONS];
9865     sc->spq_prod_bd = sc->spq;
9866     sc->spq_last_bd = (sc->spq_prod_bd + MAX_SP_DESC_CNT);
9867 }
9868 
9869 static void
9870 bxe_init_eq_ring(struct bxe_softc *sc)
9871 {
9872     union event_ring_elem *elem;
9873     int i;
9874 
9875     for (i = 1; i <= NUM_EQ_PAGES; i++) {
9876         elem = &sc->eq[EQ_DESC_CNT_PAGE * i - 1];
9877 
9878         elem->next_page.addr.hi = htole32(U64_HI(sc->eq_dma.paddr +
9879                                                  BCM_PAGE_SIZE *
9880                                                  (i % NUM_EQ_PAGES)));
9881         elem->next_page.addr.lo = htole32(U64_LO(sc->eq_dma.paddr +
9882                                                  BCM_PAGE_SIZE *
9883                                                  (i % NUM_EQ_PAGES)));
9884     }
9885 
9886     sc->eq_cons    = 0;
9887     sc->eq_prod    = NUM_EQ_DESC;
9888     sc->eq_cons_sb = &sc->def_sb->sp_sb.index_values[HC_SP_INDEX_EQ_CONS];
9889 
9890     atomic_store_rel_long(&sc->eq_spq_left,
9891                           (min((MAX_SP_DESC_CNT - MAX_SPQ_PENDING),
9892                                NUM_EQ_DESC) - 1));
9893 }
9894 
9895 static void
9896 bxe_init_internal_common(struct bxe_softc *sc)
9897 {
9898     int i;
9899 
9900     /*
9901      * Zero this manually as its initialization is currently missing
9902      * in the initTool.
9903      */
9904     for (i = 0; i < (USTORM_AGG_DATA_SIZE >> 2); i++) {
9905         REG_WR(sc,
9906                (BAR_USTRORM_INTMEM + USTORM_AGG_DATA_OFFSET + (i * 4)),
9907                0);
9908     }
9909 
9910     if (!CHIP_IS_E1x(sc)) {
9911         REG_WR8(sc, (BAR_CSTRORM_INTMEM + CSTORM_IGU_MODE_OFFSET),
9912                 CHIP_INT_MODE_IS_BC(sc) ? HC_IGU_BC_MODE : HC_IGU_NBC_MODE);
9913     }
9914 }
9915 
9916 static void
9917 bxe_init_internal(struct bxe_softc *sc,
9918                   uint32_t         load_code)
9919 {
9920     switch (load_code) {
9921     case FW_MSG_CODE_DRV_LOAD_COMMON:
9922     case FW_MSG_CODE_DRV_LOAD_COMMON_CHIP:
9923         bxe_init_internal_common(sc);
9924         /* no break */
9925 
9926     case FW_MSG_CODE_DRV_LOAD_PORT:
9927         /* nothing to do */
9928         /* no break */
9929 
9930     case FW_MSG_CODE_DRV_LOAD_FUNCTION:
9931         /* internal memory per function is initialized inside bxe_pf_init */
9932         break;
9933 
9934     default:
9935         BLOGE(sc, "Unknown load_code (0x%x) from MCP\n", load_code);
9936         break;
9937     }
9938 }
9939 
9940 static void
9941 storm_memset_func_cfg(struct bxe_softc                         *sc,
9942                       struct tstorm_eth_function_common_config *tcfg,
9943                       uint16_t                                  abs_fid)
9944 {
9945     uint32_t addr;
9946     size_t size;
9947 
9948     addr = (BAR_TSTRORM_INTMEM +
9949             TSTORM_FUNCTION_COMMON_CONFIG_OFFSET(abs_fid));
9950     size = sizeof(struct tstorm_eth_function_common_config);
9951     ecore_storm_memset_struct(sc, addr, size, (uint32_t *)tcfg);
9952 }
9953 
9954 static void
9955 bxe_func_init(struct bxe_softc            *sc,
9956               struct bxe_func_init_params *p)
9957 {
9958     struct tstorm_eth_function_common_config tcfg = { 0 };
9959 
9960     if (CHIP_IS_E1x(sc)) {
9961         storm_memset_func_cfg(sc, &tcfg, p->func_id);
9962     }
9963 
9964     /* Enable the function in the FW */
9965     storm_memset_vf_to_pf(sc, p->func_id, p->pf_id);
9966     storm_memset_func_en(sc, p->func_id, 1);
9967 
9968     /* spq */
9969     if (p->func_flgs & FUNC_FLG_SPQ) {
9970         storm_memset_spq_addr(sc, p->spq_map, p->func_id);
9971         REG_WR(sc,
9972                (XSEM_REG_FAST_MEMORY + XSTORM_SPQ_PROD_OFFSET(p->func_id)),
9973                p->spq_prod);
9974     }
9975 }
9976 
9977 /*
9978  * Calculates the sum of vn_min_rates.
9979  * It's needed for further normalizing of the min_rates.
9980  * Returns:
9981  *   sum of vn_min_rates.
9982  *     or
9983  *   0 - if all the min_rates are 0.
9984  * In the later case fainess algorithm should be deactivated.
9985  * If all min rates are not zero then those that are zeroes will be set to 1.
9986  */
9987 static void
9988 bxe_calc_vn_min(struct bxe_softc       *sc,
9989                 struct cmng_init_input *input)
9990 {
9991     uint32_t vn_cfg;
9992     uint32_t vn_min_rate;
9993     int all_zero = 1;
9994     int vn;
9995 
9996     for (vn = VN_0; vn < SC_MAX_VN_NUM(sc); vn++) {
9997         vn_cfg = sc->devinfo.mf_info.mf_config[vn];
9998         vn_min_rate = (((vn_cfg & FUNC_MF_CFG_MIN_BW_MASK) >>
9999                         FUNC_MF_CFG_MIN_BW_SHIFT) * 100);
10000 
10001         if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE) {
10002             /* skip hidden VNs */
10003             vn_min_rate = 0;
10004         } else if (!vn_min_rate) {
10005             /* If min rate is zero - set it to 100 */
10006             vn_min_rate = DEF_MIN_RATE;
10007         } else {
10008             all_zero = 0;
10009         }
10010 
10011         input->vnic_min_rate[vn] = vn_min_rate;
10012     }
10013 
10014     /* if ETS or all min rates are zeros - disable fairness */
10015     if (BXE_IS_ETS_ENABLED(sc)) {
10016         input->flags.cmng_enables &= ~CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
10017         BLOGD(sc, DBG_LOAD, "Fairness disabled (ETS)\n");
10018     } else if (all_zero) {
10019         input->flags.cmng_enables &= ~CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
10020         BLOGD(sc, DBG_LOAD,
10021               "Fariness disabled (all MIN values are zeroes)\n");
10022     } else {
10023         input->flags.cmng_enables |= CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
10024     }
10025 }
10026 
10027 static inline uint16_t
10028 bxe_extract_max_cfg(struct bxe_softc *sc,
10029                     uint32_t         mf_cfg)
10030 {
10031     uint16_t max_cfg = ((mf_cfg & FUNC_MF_CFG_MAX_BW_MASK) >>
10032                         FUNC_MF_CFG_MAX_BW_SHIFT);
10033 
10034     if (!max_cfg) {
10035         BLOGD(sc, DBG_LOAD, "Max BW configured to 0 - using 100 instead\n");
10036         max_cfg = 100;
10037     }
10038 
10039     return (max_cfg);
10040 }
10041 
10042 static void
10043 bxe_calc_vn_max(struct bxe_softc       *sc,
10044                 int                    vn,
10045                 struct cmng_init_input *input)
10046 {
10047     uint16_t vn_max_rate;
10048     uint32_t vn_cfg = sc->devinfo.mf_info.mf_config[vn];
10049     uint32_t max_cfg;
10050 
10051     if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE) {
10052         vn_max_rate = 0;
10053     } else {
10054         max_cfg = bxe_extract_max_cfg(sc, vn_cfg);
10055 
10056         if (IS_MF_SI(sc)) {
10057             /* max_cfg in percents of linkspeed */
10058             vn_max_rate = ((sc->link_vars.line_speed * max_cfg) / 100);
10059         } else { /* SD modes */
10060             /* max_cfg is absolute in 100Mb units */
10061             vn_max_rate = (max_cfg * 100);
10062         }
10063     }
10064 
10065     BLOGD(sc, DBG_LOAD, "vn %d: vn_max_rate %d\n", vn, vn_max_rate);
10066 
10067     input->vnic_max_rate[vn] = vn_max_rate;
10068 }
10069 
10070 static void
10071 bxe_cmng_fns_init(struct bxe_softc *sc,
10072                   uint8_t          read_cfg,
10073                   uint8_t          cmng_type)
10074 {
10075     struct cmng_init_input input;
10076     int vn;
10077 
10078     memset(&input, 0, sizeof(struct cmng_init_input));
10079 
10080     input.port_rate = sc->link_vars.line_speed;
10081 
10082     if (cmng_type == CMNG_FNS_MINMAX) {
10083         /* read mf conf from shmem */
10084         if (read_cfg) {
10085             bxe_read_mf_cfg(sc);
10086         }
10087 
10088         /* get VN min rate and enable fairness if not 0 */
10089         bxe_calc_vn_min(sc, &input);
10090 
10091         /* get VN max rate */
10092         if (sc->port.pmf) {
10093             for (vn = VN_0; vn < SC_MAX_VN_NUM(sc); vn++) {
10094                 bxe_calc_vn_max(sc, vn, &input);
10095             }
10096         }
10097 
10098         /* always enable rate shaping and fairness */
10099         input.flags.cmng_enables |= CMNG_FLAGS_PER_PORT_RATE_SHAPING_VN;
10100 
10101         ecore_init_cmng(&input, &sc->cmng);
10102         return;
10103     }
10104 
10105     /* rate shaping and fairness are disabled */
10106     BLOGD(sc, DBG_LOAD, "rate shaping and fairness have been disabled\n");
10107 }
10108 
10109 static int
10110 bxe_get_cmng_fns_mode(struct bxe_softc *sc)
10111 {
10112     if (CHIP_REV_IS_SLOW(sc)) {
10113         return (CMNG_FNS_NONE);
10114     }
10115 
10116     if (IS_MF(sc)) {
10117         return (CMNG_FNS_MINMAX);
10118     }
10119 
10120     return (CMNG_FNS_NONE);
10121 }
10122 
10123 static void
10124 storm_memset_cmng(struct bxe_softc *sc,
10125                   struct cmng_init *cmng,
10126                   uint8_t          port)
10127 {
10128     int vn;
10129     int func;
10130     uint32_t addr;
10131     size_t size;
10132 
10133     addr = (BAR_XSTRORM_INTMEM +
10134             XSTORM_CMNG_PER_PORT_VARS_OFFSET(port));
10135     size = sizeof(struct cmng_struct_per_port);
10136     ecore_storm_memset_struct(sc, addr, size, (uint32_t *)&cmng->port);
10137 
10138     for (vn = VN_0; vn < SC_MAX_VN_NUM(sc); vn++) {
10139         func = func_by_vn(sc, vn);
10140 
10141         addr = (BAR_XSTRORM_INTMEM +
10142                 XSTORM_RATE_SHAPING_PER_VN_VARS_OFFSET(func));
10143         size = sizeof(struct rate_shaping_vars_per_vn);
10144         ecore_storm_memset_struct(sc, addr, size,
10145                                   (uint32_t *)&cmng->vnic.vnic_max_rate[vn]);
10146 
10147         addr = (BAR_XSTRORM_INTMEM +
10148                 XSTORM_FAIRNESS_PER_VN_VARS_OFFSET(func));
10149         size = sizeof(struct fairness_vars_per_vn);
10150         ecore_storm_memset_struct(sc, addr, size,
10151                                   (uint32_t *)&cmng->vnic.vnic_min_rate[vn]);
10152     }
10153 }
10154 
10155 static void
10156 bxe_pf_init(struct bxe_softc *sc)
10157 {
10158     struct bxe_func_init_params func_init = { 0 };
10159     struct event_ring_data eq_data = { { 0 } };
10160     uint16_t flags;
10161 
10162     if (!CHIP_IS_E1x(sc)) {
10163         /* reset IGU PF statistics: MSIX + ATTN */
10164         /* PF */
10165         REG_WR(sc,
10166                (IGU_REG_STATISTIC_NUM_MESSAGE_SENT +
10167                 (BXE_IGU_STAS_MSG_VF_CNT * 4) +
10168                 ((CHIP_IS_MODE_4_PORT(sc) ? SC_FUNC(sc) : SC_VN(sc)) * 4)),
10169                0);
10170         /* ATTN */
10171         REG_WR(sc,
10172                (IGU_REG_STATISTIC_NUM_MESSAGE_SENT +
10173                 (BXE_IGU_STAS_MSG_VF_CNT * 4) +
10174                 (BXE_IGU_STAS_MSG_PF_CNT * 4) +
10175                 ((CHIP_IS_MODE_4_PORT(sc) ? SC_FUNC(sc) : SC_VN(sc)) * 4)),
10176                0);
10177     }
10178 
10179     /* function setup flags */
10180     flags = (FUNC_FLG_STATS | FUNC_FLG_LEADING | FUNC_FLG_SPQ);
10181 
10182     /*
10183      * This flag is relevant for E1x only.
10184      * E2 doesn't have a TPA configuration in a function level.
10185      */
10186     flags |= (if_getcapenable(sc->ifp) & IFCAP_LRO) ? FUNC_FLG_TPA : 0;
10187 
10188     func_init.func_flgs = flags;
10189     func_init.pf_id     = SC_FUNC(sc);
10190     func_init.func_id   = SC_FUNC(sc);
10191     func_init.spq_map   = sc->spq_dma.paddr;
10192     func_init.spq_prod  = sc->spq_prod_idx;
10193 
10194     bxe_func_init(sc, &func_init);
10195 
10196     memset(&sc->cmng, 0, sizeof(struct cmng_struct_per_port));
10197 
10198     /*
10199      * Congestion management values depend on the link rate.
10200      * There is no active link so initial link rate is set to 10Gbps.
10201      * When the link comes up the congestion management values are
10202      * re-calculated according to the actual link rate.
10203      */
10204     sc->link_vars.line_speed = SPEED_10000;
10205     bxe_cmng_fns_init(sc, TRUE, bxe_get_cmng_fns_mode(sc));
10206 
10207     /* Only the PMF sets the HW */
10208     if (sc->port.pmf) {
10209         storm_memset_cmng(sc, &sc->cmng, SC_PORT(sc));
10210     }
10211 
10212     /* init Event Queue - PCI bus guarantees correct endainity */
10213     eq_data.base_addr.hi = U64_HI(sc->eq_dma.paddr);
10214     eq_data.base_addr.lo = U64_LO(sc->eq_dma.paddr);
10215     eq_data.producer     = sc->eq_prod;
10216     eq_data.index_id     = HC_SP_INDEX_EQ_CONS;
10217     eq_data.sb_id        = DEF_SB_ID;
10218     storm_memset_eq_data(sc, &eq_data, SC_FUNC(sc));
10219 }
10220 
10221 static void
10222 bxe_hc_int_enable(struct bxe_softc *sc)
10223 {
10224     int port = SC_PORT(sc);
10225     uint32_t addr = (port) ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0;
10226     uint32_t val = REG_RD(sc, addr);
10227     uint8_t msix = (sc->interrupt_mode == INTR_MODE_MSIX) ? TRUE : FALSE;
10228     uint8_t single_msix = ((sc->interrupt_mode == INTR_MODE_MSIX) &&
10229                            (sc->intr_count == 1)) ? TRUE : FALSE;
10230     uint8_t msi = (sc->interrupt_mode == INTR_MODE_MSI) ? TRUE : FALSE;
10231 
10232     if (msix) {
10233         val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
10234                  HC_CONFIG_0_REG_INT_LINE_EN_0);
10235         val |= (HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
10236                 HC_CONFIG_0_REG_ATTN_BIT_EN_0);
10237         if (single_msix) {
10238             val |= HC_CONFIG_0_REG_SINGLE_ISR_EN_0;
10239         }
10240     } else if (msi) {
10241         val &= ~HC_CONFIG_0_REG_INT_LINE_EN_0;
10242         val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
10243                 HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
10244                 HC_CONFIG_0_REG_ATTN_BIT_EN_0);
10245     } else {
10246         val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
10247                 HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
10248                 HC_CONFIG_0_REG_INT_LINE_EN_0 |
10249                 HC_CONFIG_0_REG_ATTN_BIT_EN_0);
10250 
10251         if (!CHIP_IS_E1(sc)) {
10252             BLOGD(sc, DBG_INTR, "write %x to HC %d (addr 0x%x)\n",
10253                   val, port, addr);
10254 
10255             REG_WR(sc, addr, val);
10256 
10257             val &= ~HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0;
10258         }
10259     }
10260 
10261     if (CHIP_IS_E1(sc)) {
10262         REG_WR(sc, (HC_REG_INT_MASK + port*4), 0x1FFFF);
10263     }
10264 
10265     BLOGD(sc, DBG_INTR, "write %x to HC %d (addr 0x%x) mode %s\n",
10266           val, port, addr, ((msix) ? "MSI-X" : ((msi) ? "MSI" : "INTx")));
10267 
10268     REG_WR(sc, addr, val);
10269 
10270     /* ensure that HC_CONFIG is written before leading/trailing edge config */
10271     mb();
10272 
10273     if (!CHIP_IS_E1(sc)) {
10274         /* init leading/trailing edge */
10275         if (IS_MF(sc)) {
10276             val = (0xee0f | (1 << (SC_VN(sc) + 4)));
10277             if (sc->port.pmf) {
10278                 /* enable nig and gpio3 attention */
10279                 val |= 0x1100;
10280             }
10281         } else {
10282             val = 0xffff;
10283         }
10284 
10285         REG_WR(sc, (HC_REG_TRAILING_EDGE_0 + port*8), val);
10286         REG_WR(sc, (HC_REG_LEADING_EDGE_0 + port*8), val);
10287     }
10288 
10289     /* make sure that interrupts are indeed enabled from here on */
10290     mb();
10291 }
10292 
10293 static void
10294 bxe_igu_int_enable(struct bxe_softc *sc)
10295 {
10296     uint32_t val;
10297     uint8_t msix = (sc->interrupt_mode == INTR_MODE_MSIX) ? TRUE : FALSE;
10298     uint8_t single_msix = ((sc->interrupt_mode == INTR_MODE_MSIX) &&
10299                            (sc->intr_count == 1)) ? TRUE : FALSE;
10300     uint8_t msi = (sc->interrupt_mode == INTR_MODE_MSI) ? TRUE : FALSE;
10301 
10302     val = REG_RD(sc, IGU_REG_PF_CONFIGURATION);
10303 
10304     if (msix) {
10305         val &= ~(IGU_PF_CONF_INT_LINE_EN |
10306                  IGU_PF_CONF_SINGLE_ISR_EN);
10307         val |= (IGU_PF_CONF_MSI_MSIX_EN |
10308                 IGU_PF_CONF_ATTN_BIT_EN);
10309         if (single_msix) {
10310             val |= IGU_PF_CONF_SINGLE_ISR_EN;
10311         }
10312     } else if (msi) {
10313         val &= ~IGU_PF_CONF_INT_LINE_EN;
10314         val |= (IGU_PF_CONF_MSI_MSIX_EN |
10315                 IGU_PF_CONF_ATTN_BIT_EN |
10316                 IGU_PF_CONF_SINGLE_ISR_EN);
10317     } else {
10318         val &= ~IGU_PF_CONF_MSI_MSIX_EN;
10319         val |= (IGU_PF_CONF_INT_LINE_EN |
10320                 IGU_PF_CONF_ATTN_BIT_EN |
10321                 IGU_PF_CONF_SINGLE_ISR_EN);
10322     }
10323 
10324     /* clean previous status - need to configure igu prior to ack*/
10325     if ((!msix) || single_msix) {
10326         REG_WR(sc, IGU_REG_PF_CONFIGURATION, val);
10327         bxe_ack_int(sc);
10328     }
10329 
10330     val |= IGU_PF_CONF_FUNC_EN;
10331 
10332     BLOGD(sc, DBG_INTR, "write 0x%x to IGU mode %s\n",
10333           val, ((msix) ? "MSI-X" : ((msi) ? "MSI" : "INTx")));
10334 
10335     REG_WR(sc, IGU_REG_PF_CONFIGURATION, val);
10336 
10337     mb();
10338 
10339     /* init leading/trailing edge */
10340     if (IS_MF(sc)) {
10341         val = (0xee0f | (1 << (SC_VN(sc) + 4)));
10342         if (sc->port.pmf) {
10343             /* enable nig and gpio3 attention */
10344             val |= 0x1100;
10345         }
10346     } else {
10347         val = 0xffff;
10348     }
10349 
10350     REG_WR(sc, IGU_REG_TRAILING_EDGE_LATCH, val);
10351     REG_WR(sc, IGU_REG_LEADING_EDGE_LATCH, val);
10352 
10353     /* make sure that interrupts are indeed enabled from here on */
10354     mb();
10355 }
10356 
10357 static void
10358 bxe_int_enable(struct bxe_softc *sc)
10359 {
10360     if (sc->devinfo.int_block == INT_BLOCK_HC) {
10361         bxe_hc_int_enable(sc);
10362     } else {
10363         bxe_igu_int_enable(sc);
10364     }
10365 }
10366 
10367 static void
10368 bxe_hc_int_disable(struct bxe_softc *sc)
10369 {
10370     int port = SC_PORT(sc);
10371     uint32_t addr = (port) ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0;
10372     uint32_t val = REG_RD(sc, addr);
10373 
10374     /*
10375      * In E1 we must use only PCI configuration space to disable MSI/MSIX
10376      * capablility. It's forbidden to disable IGU_PF_CONF_MSI_MSIX_EN in HC
10377      * block
10378      */
10379     if (CHIP_IS_E1(sc)) {
10380         /*
10381          * Since IGU_PF_CONF_MSI_MSIX_EN still always on use mask register
10382          * to prevent from HC sending interrupts after we exit the function
10383          */
10384         REG_WR(sc, (HC_REG_INT_MASK + port*4), 0);
10385 
10386         val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
10387                  HC_CONFIG_0_REG_INT_LINE_EN_0 |
10388                  HC_CONFIG_0_REG_ATTN_BIT_EN_0);
10389     } else {
10390         val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
10391                  HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
10392                  HC_CONFIG_0_REG_INT_LINE_EN_0 |
10393                  HC_CONFIG_0_REG_ATTN_BIT_EN_0);
10394     }
10395 
10396     BLOGD(sc, DBG_INTR, "write %x to HC %d (addr 0x%x)\n", val, port, addr);
10397 
10398     /* flush all outstanding writes */
10399     mb();
10400 
10401     REG_WR(sc, addr, val);
10402     if (REG_RD(sc, addr) != val) {
10403         BLOGE(sc, "proper val not read from HC IGU!\n");
10404     }
10405 }
10406 
10407 static void
10408 bxe_igu_int_disable(struct bxe_softc *sc)
10409 {
10410     uint32_t val = REG_RD(sc, IGU_REG_PF_CONFIGURATION);
10411 
10412     val &= ~(IGU_PF_CONF_MSI_MSIX_EN |
10413              IGU_PF_CONF_INT_LINE_EN |
10414              IGU_PF_CONF_ATTN_BIT_EN);
10415 
10416     BLOGD(sc, DBG_INTR, "write %x to IGU\n", val);
10417 
10418     /* flush all outstanding writes */
10419     mb();
10420 
10421     REG_WR(sc, IGU_REG_PF_CONFIGURATION, val);
10422     if (REG_RD(sc, IGU_REG_PF_CONFIGURATION) != val) {
10423         BLOGE(sc, "proper val not read from IGU!\n");
10424     }
10425 }
10426 
10427 static void
10428 bxe_int_disable(struct bxe_softc *sc)
10429 {
10430     if (sc->devinfo.int_block == INT_BLOCK_HC) {
10431         bxe_hc_int_disable(sc);
10432     } else {
10433         bxe_igu_int_disable(sc);
10434     }
10435 }
10436 
10437 static void
10438 bxe_nic_init(struct bxe_softc *sc,
10439              int              load_code)
10440 {
10441     int i;
10442 
10443     for (i = 0; i < sc->num_queues; i++) {
10444         bxe_init_eth_fp(sc, i);
10445     }
10446 
10447     rmb(); /* ensure status block indices were read */
10448 
10449     bxe_init_rx_rings(sc);
10450     bxe_init_tx_rings(sc);
10451 
10452     if (IS_VF(sc)) {
10453         return;
10454     }
10455 
10456     /* initialize MOD_ABS interrupts */
10457     elink_init_mod_abs_int(sc, &sc->link_vars,
10458                            sc->devinfo.chip_id,
10459                            sc->devinfo.shmem_base,
10460                            sc->devinfo.shmem2_base,
10461                            SC_PORT(sc));
10462 
10463     bxe_init_def_sb(sc);
10464     bxe_update_dsb_idx(sc);
10465     bxe_init_sp_ring(sc);
10466     bxe_init_eq_ring(sc);
10467     bxe_init_internal(sc, load_code);
10468     bxe_pf_init(sc);
10469     bxe_stats_init(sc);
10470 
10471     /* flush all before enabling interrupts */
10472     mb();
10473 
10474     bxe_int_enable(sc);
10475 
10476     /* check for SPIO5 */
10477     bxe_attn_int_deasserted0(sc,
10478                              REG_RD(sc,
10479                                     (MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 +
10480                                      SC_PORT(sc)*4)) &
10481                              AEU_INPUTS_ATTN_BITS_SPIO5);
10482 }
10483 
10484 static inline void
10485 bxe_init_objs(struct bxe_softc *sc)
10486 {
10487     /* mcast rules must be added to tx if tx switching is enabled */
10488     ecore_obj_type o_type =
10489         (sc->flags & BXE_TX_SWITCHING) ? ECORE_OBJ_TYPE_RX_TX :
10490                                          ECORE_OBJ_TYPE_RX;
10491 
10492     /* RX_MODE controlling object */
10493     ecore_init_rx_mode_obj(sc, &sc->rx_mode_obj);
10494 
10495     /* multicast configuration controlling object */
10496     ecore_init_mcast_obj(sc,
10497                          &sc->mcast_obj,
10498                          sc->fp[0].cl_id,
10499                          sc->fp[0].index,
10500                          SC_FUNC(sc),
10501                          SC_FUNC(sc),
10502                          BXE_SP(sc, mcast_rdata),
10503                          BXE_SP_MAPPING(sc, mcast_rdata),
10504                          ECORE_FILTER_MCAST_PENDING,
10505                          &sc->sp_state,
10506                          o_type);
10507 
10508     /* Setup CAM credit pools */
10509     ecore_init_mac_credit_pool(sc,
10510                                &sc->macs_pool,
10511                                SC_FUNC(sc),
10512                                CHIP_IS_E1x(sc) ? VNICS_PER_PORT(sc) :
10513                                                  VNICS_PER_PATH(sc));
10514 
10515     ecore_init_vlan_credit_pool(sc,
10516                                 &sc->vlans_pool,
10517                                 SC_ABS_FUNC(sc) >> 1,
10518                                 CHIP_IS_E1x(sc) ? VNICS_PER_PORT(sc) :
10519                                                   VNICS_PER_PATH(sc));
10520 
10521     /* RSS configuration object */
10522     ecore_init_rss_config_obj(sc,
10523                               &sc->rss_conf_obj,
10524                               sc->fp[0].cl_id,
10525                               sc->fp[0].index,
10526                               SC_FUNC(sc),
10527                               SC_FUNC(sc),
10528                               BXE_SP(sc, rss_rdata),
10529                               BXE_SP_MAPPING(sc, rss_rdata),
10530                               ECORE_FILTER_RSS_CONF_PENDING,
10531                               &sc->sp_state, ECORE_OBJ_TYPE_RX);
10532 }
10533 
10534 /*
10535  * Initialize the function. This must be called before sending CLIENT_SETUP
10536  * for the first client.
10537  */
10538 static inline int
10539 bxe_func_start(struct bxe_softc *sc)
10540 {
10541     struct ecore_func_state_params func_params = { NULL };
10542     struct ecore_func_start_params *start_params = &func_params.params.start;
10543 
10544     /* Prepare parameters for function state transitions */
10545     bit_set(&func_params.ramrod_flags, RAMROD_COMP_WAIT);
10546 
10547     func_params.f_obj = &sc->func_obj;
10548     func_params.cmd = ECORE_F_CMD_START;
10549 
10550     /* Function parameters */
10551     start_params->mf_mode     = sc->devinfo.mf_info.mf_mode;
10552     start_params->sd_vlan_tag = OVLAN(sc);
10553 
10554     if (CHIP_IS_E2(sc) || CHIP_IS_E3(sc)) {
10555         start_params->network_cos_mode = STATIC_COS;
10556     } else { /* CHIP_IS_E1X */
10557         start_params->network_cos_mode = FW_WRR;
10558     }
10559 
10560     //start_params->gre_tunnel_mode = 0;
10561     //start_params->gre_tunnel_rss  = 0;
10562 
10563     return (ecore_func_state_change(sc, &func_params));
10564 }
10565 
10566 static int
10567 bxe_set_power_state(struct bxe_softc *sc,
10568                     uint8_t          state)
10569 {
10570     uint16_t pmcsr;
10571 
10572     /* If there is no power capability, silently succeed */
10573     if (!(sc->devinfo.pcie_cap_flags & BXE_PM_CAPABLE_FLAG)) {
10574         BLOGW(sc, "No power capability\n");
10575         return (0);
10576     }
10577 
10578     pmcsr = pci_read_config(sc->dev,
10579                             (sc->devinfo.pcie_pm_cap_reg + PCIR_POWER_STATUS),
10580                             2);
10581 
10582     switch (state) {
10583     case PCI_PM_D0:
10584         pci_write_config(sc->dev,
10585                          (sc->devinfo.pcie_pm_cap_reg + PCIR_POWER_STATUS),
10586                          ((pmcsr & ~PCIM_PSTAT_DMASK) | PCIM_PSTAT_PME), 2);
10587 
10588         if (pmcsr & PCIM_PSTAT_DMASK) {
10589             /* delay required during transition out of D3hot */
10590             DELAY(20000);
10591         }
10592 
10593         break;
10594 
10595     case PCI_PM_D3hot:
10596         /* XXX if there are other clients above don't shut down the power */
10597 
10598         /* don't shut down the power for emulation and FPGA */
10599         if (CHIP_REV_IS_SLOW(sc)) {
10600             return (0);
10601         }
10602 
10603         pmcsr &= ~PCIM_PSTAT_DMASK;
10604         pmcsr |= PCIM_PSTAT_D3;
10605 
10606         if (sc->wol) {
10607             pmcsr |= PCIM_PSTAT_PMEENABLE;
10608         }
10609 
10610         pci_write_config(sc->dev,
10611                          (sc->devinfo.pcie_pm_cap_reg + PCIR_POWER_STATUS),
10612                          pmcsr, 4);
10613 
10614         /*
10615          * No more memory access after this point until device is brought back
10616          * to D0 state.
10617          */
10618         break;
10619 
10620     default:
10621         BLOGE(sc, "Can't support PCI power state = 0x%x pmcsr 0x%x\n",
10622             state, pmcsr);
10623         return (-1);
10624     }
10625 
10626     return (0);
10627 }
10628 
10629 
10630 /* return true if succeeded to acquire the lock */
10631 static uint8_t
10632 bxe_trylock_hw_lock(struct bxe_softc *sc,
10633                     uint32_t         resource)
10634 {
10635     uint32_t lock_status;
10636     uint32_t resource_bit = (1 << resource);
10637     int func = SC_FUNC(sc);
10638     uint32_t hw_lock_control_reg;
10639 
10640     BLOGD(sc, DBG_LOAD, "Trying to take a resource lock 0x%x\n", resource);
10641 
10642     /* Validating that the resource is within range */
10643     if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
10644         BLOGD(sc, DBG_LOAD,
10645               "resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
10646               resource, HW_LOCK_MAX_RESOURCE_VALUE);
10647         return (FALSE);
10648     }
10649 
10650     if (func <= 5) {
10651         hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
10652     } else {
10653         hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
10654     }
10655 
10656     /* try to acquire the lock */
10657     REG_WR(sc, hw_lock_control_reg + 4, resource_bit);
10658     lock_status = REG_RD(sc, hw_lock_control_reg);
10659     if (lock_status & resource_bit) {
10660         return (TRUE);
10661     }
10662 
10663     BLOGE(sc, "Failed to get a resource lock 0x%x func %d "
10664         "lock_status 0x%x resource_bit 0x%x\n", resource, func,
10665         lock_status, resource_bit);
10666 
10667     return (FALSE);
10668 }
10669 
10670 /*
10671  * Get the recovery leader resource id according to the engine this function
10672  * belongs to. Currently only only 2 engines is supported.
10673  */
10674 static int
10675 bxe_get_leader_lock_resource(struct bxe_softc *sc)
10676 {
10677     if (SC_PATH(sc)) {
10678         return (HW_LOCK_RESOURCE_RECOVERY_LEADER_1);
10679     } else {
10680         return (HW_LOCK_RESOURCE_RECOVERY_LEADER_0);
10681     }
10682 }
10683 
10684 /* try to acquire a leader lock for current engine */
10685 static uint8_t
10686 bxe_trylock_leader_lock(struct bxe_softc *sc)
10687 {
10688     return (bxe_trylock_hw_lock(sc, bxe_get_leader_lock_resource(sc)));
10689 }
10690 
10691 static int
10692 bxe_release_leader_lock(struct bxe_softc *sc)
10693 {
10694     return (bxe_release_hw_lock(sc, bxe_get_leader_lock_resource(sc)));
10695 }
10696 
10697 /* close gates #2, #3 and #4 */
10698 static void
10699 bxe_set_234_gates(struct bxe_softc *sc,
10700                   uint8_t          close)
10701 {
10702     uint32_t val;
10703 
10704     /* gates #2 and #4a are closed/opened for "not E1" only */
10705     if (!CHIP_IS_E1(sc)) {
10706         /* #4 */
10707         REG_WR(sc, PXP_REG_HST_DISCARD_DOORBELLS, !!close);
10708         /* #2 */
10709         REG_WR(sc, PXP_REG_HST_DISCARD_INTERNAL_WRITES, !!close);
10710     }
10711 
10712     /* #3 */
10713     if (CHIP_IS_E1x(sc)) {
10714         /* prevent interrupts from HC on both ports */
10715         val = REG_RD(sc, HC_REG_CONFIG_1);
10716         REG_WR(sc, HC_REG_CONFIG_1,
10717                (!close) ? (val | HC_CONFIG_1_REG_BLOCK_DISABLE_1) :
10718                (val & ~(uint32_t)HC_CONFIG_1_REG_BLOCK_DISABLE_1));
10719 
10720         val = REG_RD(sc, HC_REG_CONFIG_0);
10721         REG_WR(sc, HC_REG_CONFIG_0,
10722                (!close) ? (val | HC_CONFIG_0_REG_BLOCK_DISABLE_0) :
10723                (val & ~(uint32_t)HC_CONFIG_0_REG_BLOCK_DISABLE_0));
10724     } else {
10725         /* Prevent incoming interrupts in IGU */
10726         val = REG_RD(sc, IGU_REG_BLOCK_CONFIGURATION);
10727 
10728         REG_WR(sc, IGU_REG_BLOCK_CONFIGURATION,
10729                (!close) ?
10730                (val | IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE) :
10731                (val & ~(uint32_t)IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE));
10732     }
10733 
10734     BLOGD(sc, DBG_LOAD, "%s gates #2, #3 and #4\n",
10735           close ? "closing" : "opening");
10736 
10737     wmb();
10738 }
10739 
10740 /* poll for pending writes bit, it should get cleared in no more than 1s */
10741 static int
10742 bxe_er_poll_igu_vq(struct bxe_softc *sc)
10743 {
10744     uint32_t cnt = 1000;
10745     uint32_t pend_bits = 0;
10746 
10747     do {
10748         pend_bits = REG_RD(sc, IGU_REG_PENDING_BITS_STATUS);
10749 
10750         if (pend_bits == 0) {
10751             break;
10752         }
10753 
10754         DELAY(1000);
10755     } while (--cnt > 0);
10756 
10757     if (cnt == 0) {
10758         BLOGE(sc, "Still pending IGU requests bits=0x%08x!\n", pend_bits);
10759         return (-1);
10760     }
10761 
10762     return (0);
10763 }
10764 
10765 #define SHARED_MF_CLP_MAGIC  0x80000000 /* 'magic' bit */
10766 
10767 static void
10768 bxe_clp_reset_prep(struct bxe_softc *sc,
10769                    uint32_t         *magic_val)
10770 {
10771     /* Do some magic... */
10772     uint32_t val = MFCFG_RD(sc, shared_mf_config.clp_mb);
10773     *magic_val = val & SHARED_MF_CLP_MAGIC;
10774     MFCFG_WR(sc, shared_mf_config.clp_mb, val | SHARED_MF_CLP_MAGIC);
10775 }
10776 
10777 /* restore the value of the 'magic' bit */
10778 static void
10779 bxe_clp_reset_done(struct bxe_softc *sc,
10780                    uint32_t         magic_val)
10781 {
10782     /* Restore the 'magic' bit value... */
10783     uint32_t val = MFCFG_RD(sc, shared_mf_config.clp_mb);
10784     MFCFG_WR(sc, shared_mf_config.clp_mb,
10785               (val & (~SHARED_MF_CLP_MAGIC)) | magic_val);
10786 }
10787 
10788 /* prepare for MCP reset, takes care of CLP configurations */
10789 static void
10790 bxe_reset_mcp_prep(struct bxe_softc *sc,
10791                    uint32_t         *magic_val)
10792 {
10793     uint32_t shmem;
10794     uint32_t validity_offset;
10795 
10796     /* set `magic' bit in order to save MF config */
10797     if (!CHIP_IS_E1(sc)) {
10798         bxe_clp_reset_prep(sc, magic_val);
10799     }
10800 
10801     /* get shmem offset */
10802     shmem = REG_RD(sc, MISC_REG_SHARED_MEM_ADDR);
10803     validity_offset =
10804         offsetof(struct shmem_region, validity_map[SC_PORT(sc)]);
10805 
10806     /* Clear validity map flags */
10807     if (shmem > 0) {
10808         REG_WR(sc, shmem + validity_offset, 0);
10809     }
10810 }
10811 
10812 #define MCP_TIMEOUT      5000   /* 5 seconds (in ms) */
10813 #define MCP_ONE_TIMEOUT  100    /* 100 ms */
10814 
10815 static void
10816 bxe_mcp_wait_one(struct bxe_softc *sc)
10817 {
10818     /* special handling for emulation and FPGA (10 times longer) */
10819     if (CHIP_REV_IS_SLOW(sc)) {
10820         DELAY((MCP_ONE_TIMEOUT*10) * 1000);
10821     } else {
10822         DELAY((MCP_ONE_TIMEOUT) * 1000);
10823     }
10824 }
10825 
10826 /* initialize shmem_base and waits for validity signature to appear */
10827 static int
10828 bxe_init_shmem(struct bxe_softc *sc)
10829 {
10830     int cnt = 0;
10831     uint32_t val = 0;
10832 
10833     do {
10834         sc->devinfo.shmem_base     =
10835         sc->link_params.shmem_base =
10836             REG_RD(sc, MISC_REG_SHARED_MEM_ADDR);
10837 
10838         if (sc->devinfo.shmem_base) {
10839             val = SHMEM_RD(sc, validity_map[SC_PORT(sc)]);
10840             if (val & SHR_MEM_VALIDITY_MB)
10841                 return (0);
10842         }
10843 
10844         bxe_mcp_wait_one(sc);
10845 
10846     } while (cnt++ < (MCP_TIMEOUT / MCP_ONE_TIMEOUT));
10847 
10848     BLOGE(sc, "BAD MCP validity signature\n");
10849 
10850     return (-1);
10851 }
10852 
10853 static int
10854 bxe_reset_mcp_comp(struct bxe_softc *sc,
10855                    uint32_t         magic_val)
10856 {
10857     int rc = bxe_init_shmem(sc);
10858 
10859     /* Restore the `magic' bit value */
10860     if (!CHIP_IS_E1(sc)) {
10861         bxe_clp_reset_done(sc, magic_val);
10862     }
10863 
10864     return (rc);
10865 }
10866 
10867 static void
10868 bxe_pxp_prep(struct bxe_softc *sc)
10869 {
10870     if (!CHIP_IS_E1(sc)) {
10871         REG_WR(sc, PXP2_REG_RD_START_INIT, 0);
10872         REG_WR(sc, PXP2_REG_RQ_RBC_DONE, 0);
10873         wmb();
10874     }
10875 }
10876 
10877 /*
10878  * Reset the whole chip except for:
10879  *      - PCIE core
10880  *      - PCI Glue, PSWHST, PXP/PXP2 RF (all controlled by one reset bit)
10881  *      - IGU
10882  *      - MISC (including AEU)
10883  *      - GRC
10884  *      - RBCN, RBCP
10885  */
10886 static void
10887 bxe_process_kill_chip_reset(struct bxe_softc *sc,
10888                             uint8_t          global)
10889 {
10890     uint32_t not_reset_mask1, reset_mask1, not_reset_mask2, reset_mask2;
10891     uint32_t global_bits2, stay_reset2;
10892 
10893     /*
10894      * Bits that have to be set in reset_mask2 if we want to reset 'global'
10895      * (per chip) blocks.
10896      */
10897     global_bits2 =
10898         MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CPU |
10899         MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CORE;
10900 
10901     /*
10902      * Don't reset the following blocks.
10903      * Important: per port blocks (such as EMAC, BMAC, UMAC) can't be
10904      *            reset, as in 4 port device they might still be owned
10905      *            by the MCP (there is only one leader per path).
10906      */
10907     not_reset_mask1 =
10908         MISC_REGISTERS_RESET_REG_1_RST_HC |
10909         MISC_REGISTERS_RESET_REG_1_RST_PXPV |
10910         MISC_REGISTERS_RESET_REG_1_RST_PXP;
10911 
10912     not_reset_mask2 =
10913         MISC_REGISTERS_RESET_REG_2_RST_PCI_MDIO |
10914         MISC_REGISTERS_RESET_REG_2_RST_EMAC0_HARD_CORE |
10915         MISC_REGISTERS_RESET_REG_2_RST_EMAC1_HARD_CORE |
10916         MISC_REGISTERS_RESET_REG_2_RST_MISC_CORE |
10917         MISC_REGISTERS_RESET_REG_2_RST_RBCN |
10918         MISC_REGISTERS_RESET_REG_2_RST_GRC  |
10919         MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_REG_HARD_CORE |
10920         MISC_REGISTERS_RESET_REG_2_RST_MCP_N_HARD_CORE_RST_B |
10921         MISC_REGISTERS_RESET_REG_2_RST_ATC |
10922         MISC_REGISTERS_RESET_REG_2_PGLC |
10923         MISC_REGISTERS_RESET_REG_2_RST_BMAC0 |
10924         MISC_REGISTERS_RESET_REG_2_RST_BMAC1 |
10925         MISC_REGISTERS_RESET_REG_2_RST_EMAC0 |
10926         MISC_REGISTERS_RESET_REG_2_RST_EMAC1 |
10927         MISC_REGISTERS_RESET_REG_2_UMAC0 |
10928         MISC_REGISTERS_RESET_REG_2_UMAC1;
10929 
10930     /*
10931      * Keep the following blocks in reset:
10932      *  - all xxMACs are handled by the elink code.
10933      */
10934     stay_reset2 =
10935         MISC_REGISTERS_RESET_REG_2_XMAC |
10936         MISC_REGISTERS_RESET_REG_2_XMAC_SOFT;
10937 
10938     /* Full reset masks according to the chip */
10939     reset_mask1 = 0xffffffff;
10940 
10941     if (CHIP_IS_E1(sc))
10942         reset_mask2 = 0xffff;
10943     else if (CHIP_IS_E1H(sc))
10944         reset_mask2 = 0x1ffff;
10945     else if (CHIP_IS_E2(sc))
10946         reset_mask2 = 0xfffff;
10947     else /* CHIP_IS_E3 */
10948         reset_mask2 = 0x3ffffff;
10949 
10950     /* Don't reset global blocks unless we need to */
10951     if (!global)
10952         reset_mask2 &= ~global_bits2;
10953 
10954     /*
10955      * In case of attention in the QM, we need to reset PXP
10956      * (MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR) before QM
10957      * because otherwise QM reset would release 'close the gates' shortly
10958      * before resetting the PXP, then the PSWRQ would send a write
10959      * request to PGLUE. Then when PXP is reset, PGLUE would try to
10960      * read the payload data from PSWWR, but PSWWR would not
10961      * respond. The write queue in PGLUE would stuck, dmae commands
10962      * would not return. Therefore it's important to reset the second
10963      * reset register (containing the
10964      * MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR bit) before the
10965      * first one (containing the MISC_REGISTERS_RESET_REG_1_RST_QM
10966      * bit).
10967      */
10968     REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR,
10969            reset_mask2 & (~not_reset_mask2));
10970 
10971     REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
10972            reset_mask1 & (~not_reset_mask1));
10973 
10974     mb();
10975     wmb();
10976 
10977     REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET,
10978            reset_mask2 & (~stay_reset2));
10979 
10980     mb();
10981     wmb();
10982 
10983     REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, reset_mask1);
10984     wmb();
10985 }
10986 
10987 static int
10988 bxe_process_kill(struct bxe_softc *sc,
10989                  uint8_t          global)
10990 {
10991     int cnt = 1000;
10992     uint32_t val = 0;
10993     uint32_t sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1, pgl_exp_rom2;
10994     uint32_t tags_63_32 = 0;
10995 
10996     /* Empty the Tetris buffer, wait for 1s */
10997     do {
10998         sr_cnt  = REG_RD(sc, PXP2_REG_RD_SR_CNT);
10999         blk_cnt = REG_RD(sc, PXP2_REG_RD_BLK_CNT);
11000         port_is_idle_0 = REG_RD(sc, PXP2_REG_RD_PORT_IS_IDLE_0);
11001         port_is_idle_1 = REG_RD(sc, PXP2_REG_RD_PORT_IS_IDLE_1);
11002         pgl_exp_rom2 = REG_RD(sc, PXP2_REG_PGL_EXP_ROM2);
11003         if (CHIP_IS_E3(sc)) {
11004             tags_63_32 = REG_RD(sc, PGLUE_B_REG_TAGS_63_32);
11005         }
11006 
11007         if ((sr_cnt == 0x7e) && (blk_cnt == 0xa0) &&
11008             ((port_is_idle_0 & 0x1) == 0x1) &&
11009             ((port_is_idle_1 & 0x1) == 0x1) &&
11010             (pgl_exp_rom2 == 0xffffffff) &&
11011             (!CHIP_IS_E3(sc) || (tags_63_32 == 0xffffffff)))
11012             break;
11013         DELAY(1000);
11014     } while (cnt-- > 0);
11015 
11016     if (cnt <= 0) {
11017         BLOGE(sc, "ERROR: Tetris buffer didn't get empty or there "
11018                   "are still outstanding read requests after 1s! "
11019                   "sr_cnt=0x%08x, blk_cnt=0x%08x, port_is_idle_0=0x%08x, "
11020                   "port_is_idle_1=0x%08x, pgl_exp_rom2=0x%08x\n",
11021               sr_cnt, blk_cnt, port_is_idle_0,
11022               port_is_idle_1, pgl_exp_rom2);
11023         return (-1);
11024     }
11025 
11026     mb();
11027 
11028     /* Close gates #2, #3 and #4 */
11029     bxe_set_234_gates(sc, TRUE);
11030 
11031     /* Poll for IGU VQs for 57712 and newer chips */
11032     if (!CHIP_IS_E1x(sc) && bxe_er_poll_igu_vq(sc)) {
11033         return (-1);
11034     }
11035 
11036     /* XXX indicate that "process kill" is in progress to MCP */
11037 
11038     /* clear "unprepared" bit */
11039     REG_WR(sc, MISC_REG_UNPREPARED, 0);
11040     mb();
11041 
11042     /* Make sure all is written to the chip before the reset */
11043     wmb();
11044 
11045     /*
11046      * Wait for 1ms to empty GLUE and PCI-E core queues,
11047      * PSWHST, GRC and PSWRD Tetris buffer.
11048      */
11049     DELAY(1000);
11050 
11051     /* Prepare to chip reset: */
11052     /* MCP */
11053     if (global) {
11054         bxe_reset_mcp_prep(sc, &val);
11055     }
11056 
11057     /* PXP */
11058     bxe_pxp_prep(sc);
11059     mb();
11060 
11061     /* reset the chip */
11062     bxe_process_kill_chip_reset(sc, global);
11063     mb();
11064 
11065     /* clear errors in PGB */
11066     if (!CHIP_IS_E1(sc))
11067         REG_WR(sc, PGLUE_B_REG_LATCHED_ERRORS_CLR, 0x7f);
11068 
11069     /* Recover after reset: */
11070     /* MCP */
11071     if (global && bxe_reset_mcp_comp(sc, val)) {
11072         return (-1);
11073     }
11074 
11075     /* XXX add resetting the NO_MCP mode DB here */
11076 
11077     /* Open the gates #2, #3 and #4 */
11078     bxe_set_234_gates(sc, FALSE);
11079 
11080     /* XXX
11081      * IGU/AEU preparation bring back the AEU/IGU to a reset state
11082      * re-enable attentions
11083      */
11084 
11085     return (0);
11086 }
11087 
11088 static int
11089 bxe_leader_reset(struct bxe_softc *sc)
11090 {
11091     int rc = 0;
11092     uint8_t global = bxe_reset_is_global(sc);
11093     uint32_t load_code;
11094 
11095     /*
11096      * If not going to reset MCP, load "fake" driver to reset HW while
11097      * driver is owner of the HW.
11098      */
11099     if (!global && !BXE_NOMCP(sc)) {
11100         load_code = bxe_fw_command(sc, DRV_MSG_CODE_LOAD_REQ,
11101                                    DRV_MSG_CODE_LOAD_REQ_WITH_LFA);
11102         if (!load_code) {
11103             BLOGE(sc, "MCP response failure, aborting\n");
11104             rc = -1;
11105             goto exit_leader_reset;
11106         }
11107 
11108         if ((load_code != FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) &&
11109             (load_code != FW_MSG_CODE_DRV_LOAD_COMMON)) {
11110             BLOGE(sc, "MCP unexpected response, aborting\n");
11111             rc = -1;
11112             goto exit_leader_reset2;
11113         }
11114 
11115         load_code = bxe_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0);
11116         if (!load_code) {
11117             BLOGE(sc, "MCP response failure, aborting\n");
11118             rc = -1;
11119             goto exit_leader_reset2;
11120         }
11121     }
11122 
11123     /* try to recover after the failure */
11124     if (bxe_process_kill(sc, global)) {
11125         BLOGE(sc, "Something bad occurred on engine %d!\n", SC_PATH(sc));
11126         rc = -1;
11127         goto exit_leader_reset2;
11128     }
11129 
11130     /*
11131      * Clear the RESET_IN_PROGRESS and RESET_GLOBAL bits and update the driver
11132      * state.
11133      */
11134     bxe_set_reset_done(sc);
11135     if (global) {
11136         bxe_clear_reset_global(sc);
11137     }
11138 
11139 exit_leader_reset2:
11140 
11141     /* unload "fake driver" if it was loaded */
11142     if (!global && !BXE_NOMCP(sc)) {
11143         bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP, 0);
11144         bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_DONE, 0);
11145     }
11146 
11147 exit_leader_reset:
11148 
11149     sc->is_leader = 0;
11150     bxe_release_leader_lock(sc);
11151 
11152     mb();
11153     return (rc);
11154 }
11155 
11156 /*
11157  * prepare INIT transition, parameters configured:
11158  *   - HC configuration
11159  *   - Queue's CDU context
11160  */
11161 static void
11162 bxe_pf_q_prep_init(struct bxe_softc               *sc,
11163                    struct bxe_fastpath            *fp,
11164                    struct ecore_queue_init_params *init_params)
11165 {
11166     uint8_t cos;
11167     int cxt_index, cxt_offset;
11168 
11169     bxe_set_bit(ECORE_Q_FLG_HC, &init_params->rx.flags);
11170     bxe_set_bit(ECORE_Q_FLG_HC, &init_params->tx.flags);
11171 
11172     bxe_set_bit(ECORE_Q_FLG_HC_EN, &init_params->rx.flags);
11173     bxe_set_bit(ECORE_Q_FLG_HC_EN, &init_params->tx.flags);
11174 
11175     /* HC rate */
11176     init_params->rx.hc_rate =
11177         sc->hc_rx_ticks ? (1000000 / sc->hc_rx_ticks) : 0;
11178     init_params->tx.hc_rate =
11179         sc->hc_tx_ticks ? (1000000 / sc->hc_tx_ticks) : 0;
11180 
11181     /* FW SB ID */
11182     init_params->rx.fw_sb_id = init_params->tx.fw_sb_id = fp->fw_sb_id;
11183 
11184     /* CQ index among the SB indices */
11185     init_params->rx.sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS;
11186     init_params->tx.sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS;
11187 
11188     /* set maximum number of COSs supported by this queue */
11189     init_params->max_cos = sc->max_cos;
11190 
11191     BLOGD(sc, DBG_LOAD, "fp %d setting queue params max cos to %d\n",
11192           fp->index, init_params->max_cos);
11193 
11194     /* set the context pointers queue object */
11195     for (cos = FIRST_TX_COS_INDEX; cos < init_params->max_cos; cos++) {
11196         /* XXX change index/cid here if ever support multiple tx CoS */
11197         /* fp->txdata[cos]->cid */
11198         cxt_index = fp->index / ILT_PAGE_CIDS;
11199         cxt_offset = fp->index - (cxt_index * ILT_PAGE_CIDS);
11200         init_params->cxts[cos] = &sc->context[cxt_index].vcxt[cxt_offset].eth;
11201     }
11202 }
11203 
11204 /* set flags that are common for the Tx-only and not normal connections */
11205 static unsigned long
11206 bxe_get_common_flags(struct bxe_softc    *sc,
11207                      struct bxe_fastpath *fp,
11208                      uint8_t             zero_stats)
11209 {
11210     unsigned long flags = 0;
11211 
11212     /* PF driver will always initialize the Queue to an ACTIVE state */
11213     bxe_set_bit(ECORE_Q_FLG_ACTIVE, &flags);
11214 
11215     /*
11216      * tx only connections collect statistics (on the same index as the
11217      * parent connection). The statistics are zeroed when the parent
11218      * connection is initialized.
11219      */
11220 
11221     bxe_set_bit(ECORE_Q_FLG_STATS, &flags);
11222     if (zero_stats) {
11223         bxe_set_bit(ECORE_Q_FLG_ZERO_STATS, &flags);
11224     }
11225 
11226     /*
11227      * tx only connections can support tx-switching, though their
11228      * CoS-ness doesn't survive the loopback
11229      */
11230     if (sc->flags & BXE_TX_SWITCHING) {
11231         bxe_set_bit(ECORE_Q_FLG_TX_SWITCH, &flags);
11232     }
11233 
11234     bxe_set_bit(ECORE_Q_FLG_PCSUM_ON_PKT, &flags);
11235 
11236     return (flags);
11237 }
11238 
11239 static unsigned long
11240 bxe_get_q_flags(struct bxe_softc    *sc,
11241                 struct bxe_fastpath *fp,
11242                 uint8_t             leading)
11243 {
11244     unsigned long flags = 0;
11245 
11246     if (IS_MF_SD(sc)) {
11247         bxe_set_bit(ECORE_Q_FLG_OV, &flags);
11248     }
11249 
11250     if (if_getcapenable(sc->ifp) & IFCAP_LRO) {
11251         bxe_set_bit(ECORE_Q_FLG_TPA, &flags);
11252         bxe_set_bit(ECORE_Q_FLG_TPA_IPV6, &flags);
11253     }
11254 
11255     if (leading) {
11256         bxe_set_bit(ECORE_Q_FLG_LEADING_RSS, &flags);
11257         bxe_set_bit(ECORE_Q_FLG_MCAST, &flags);
11258     }
11259 
11260     bxe_set_bit(ECORE_Q_FLG_VLAN, &flags);
11261 
11262     /* merge with common flags */
11263     return (flags | bxe_get_common_flags(sc, fp, TRUE));
11264 }
11265 
11266 static void
11267 bxe_pf_q_prep_general(struct bxe_softc                  *sc,
11268                       struct bxe_fastpath               *fp,
11269                       struct ecore_general_setup_params *gen_init,
11270                       uint8_t                           cos)
11271 {
11272     gen_init->stat_id = bxe_stats_id(fp);
11273     gen_init->spcl_id = fp->cl_id;
11274     gen_init->mtu = sc->mtu;
11275     gen_init->cos = cos;
11276 }
11277 
11278 static void
11279 bxe_pf_rx_q_prep(struct bxe_softc              *sc,
11280                  struct bxe_fastpath           *fp,
11281                  struct rxq_pause_params       *pause,
11282                  struct ecore_rxq_setup_params *rxq_init)
11283 {
11284     uint8_t max_sge = 0;
11285     uint16_t sge_sz = 0;
11286     uint16_t tpa_agg_size = 0;
11287 
11288     pause->sge_th_lo = SGE_TH_LO(sc);
11289     pause->sge_th_hi = SGE_TH_HI(sc);
11290 
11291     /* validate SGE ring has enough to cross high threshold */
11292     if (sc->dropless_fc &&
11293             (pause->sge_th_hi + FW_PREFETCH_CNT) >
11294             (RX_SGE_USABLE_PER_PAGE * RX_SGE_NUM_PAGES)) {
11295         BLOGW(sc, "sge ring threshold limit\n");
11296     }
11297 
11298     /* minimum max_aggregation_size is 2*MTU (two full buffers) */
11299     tpa_agg_size = (2 * sc->mtu);
11300     if (tpa_agg_size < sc->max_aggregation_size) {
11301         tpa_agg_size = sc->max_aggregation_size;
11302     }
11303 
11304     max_sge = SGE_PAGE_ALIGN(sc->mtu) >> SGE_PAGE_SHIFT;
11305     max_sge = ((max_sge + PAGES_PER_SGE - 1) &
11306                    (~(PAGES_PER_SGE - 1))) >> PAGES_PER_SGE_SHIFT;
11307     sge_sz = (uint16_t)min(SGE_PAGES, 0xffff);
11308 
11309     /* pause - not for e1 */
11310     if (!CHIP_IS_E1(sc)) {
11311         pause->bd_th_lo = BD_TH_LO(sc);
11312         pause->bd_th_hi = BD_TH_HI(sc);
11313 
11314         pause->rcq_th_lo = RCQ_TH_LO(sc);
11315         pause->rcq_th_hi = RCQ_TH_HI(sc);
11316 
11317         /* validate rings have enough entries to cross high thresholds */
11318         if (sc->dropless_fc &&
11319             pause->bd_th_hi + FW_PREFETCH_CNT >
11320             sc->rx_ring_size) {
11321             BLOGW(sc, "rx bd ring threshold limit\n");
11322         }
11323 
11324         if (sc->dropless_fc &&
11325             pause->rcq_th_hi + FW_PREFETCH_CNT >
11326             RCQ_NUM_PAGES * RCQ_USABLE_PER_PAGE) {
11327             BLOGW(sc, "rcq ring threshold limit\n");
11328         }
11329 
11330         pause->pri_map = 1;
11331     }
11332 
11333     /* rxq setup */
11334     rxq_init->dscr_map   = fp->rx_dma.paddr;
11335     rxq_init->sge_map    = fp->rx_sge_dma.paddr;
11336     rxq_init->rcq_map    = fp->rcq_dma.paddr;
11337     rxq_init->rcq_np_map = (fp->rcq_dma.paddr + BCM_PAGE_SIZE);
11338 
11339     /*
11340      * This should be a maximum number of data bytes that may be
11341      * placed on the BD (not including paddings).
11342      */
11343     rxq_init->buf_sz = (fp->rx_buf_size -
11344                         IP_HEADER_ALIGNMENT_PADDING);
11345 
11346     rxq_init->cl_qzone_id     = fp->cl_qzone_id;
11347     rxq_init->tpa_agg_sz      = tpa_agg_size;
11348     rxq_init->sge_buf_sz      = sge_sz;
11349     rxq_init->max_sges_pkt    = max_sge;
11350     rxq_init->rss_engine_id   = SC_FUNC(sc);
11351     rxq_init->mcast_engine_id = SC_FUNC(sc);
11352 
11353     /*
11354      * Maximum number or simultaneous TPA aggregation for this Queue.
11355      * For PF Clients it should be the maximum available number.
11356      * VF driver(s) may want to define it to a smaller value.
11357      */
11358     rxq_init->max_tpa_queues = MAX_AGG_QS(sc);
11359 
11360     rxq_init->cache_line_log = BXE_RX_ALIGN_SHIFT;
11361     rxq_init->fw_sb_id = fp->fw_sb_id;
11362 
11363     rxq_init->sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS;
11364 
11365     /*
11366      * configure silent vlan removal
11367      * if multi function mode is afex, then mask default vlan
11368      */
11369     if (IS_MF_AFEX(sc)) {
11370         rxq_init->silent_removal_value =
11371             sc->devinfo.mf_info.afex_def_vlan_tag;
11372         rxq_init->silent_removal_mask = EVL_VLID_MASK;
11373     }
11374 }
11375 
11376 static void
11377 bxe_pf_tx_q_prep(struct bxe_softc              *sc,
11378                  struct bxe_fastpath           *fp,
11379                  struct ecore_txq_setup_params *txq_init,
11380                  uint8_t                       cos)
11381 {
11382     /*
11383      * XXX If multiple CoS is ever supported then each fastpath structure
11384      * will need to maintain tx producer/consumer/dma/etc values *per* CoS.
11385      * fp->txdata[cos]->tx_dma.paddr;
11386      */
11387     txq_init->dscr_map     = fp->tx_dma.paddr;
11388     txq_init->sb_cq_index  = HC_INDEX_ETH_FIRST_TX_CQ_CONS + cos;
11389     txq_init->traffic_type = LLFC_TRAFFIC_TYPE_NW;
11390     txq_init->fw_sb_id     = fp->fw_sb_id;
11391 
11392     /*
11393      * set the TSS leading client id for TX classfication to the
11394      * leading RSS client id
11395      */
11396     txq_init->tss_leading_cl_id = BXE_FP(sc, 0, cl_id);
11397 }
11398 
11399 /*
11400  * This function performs 2 steps in a queue state machine:
11401  *   1) RESET->INIT
11402  *   2) INIT->SETUP
11403  */
11404 static int
11405 bxe_setup_queue(struct bxe_softc    *sc,
11406                 struct bxe_fastpath *fp,
11407                 uint8_t             leading)
11408 {
11409     struct ecore_queue_state_params q_params = { NULL };
11410     struct ecore_queue_setup_params *setup_params =
11411                         &q_params.params.setup;
11412     int rc;
11413 
11414     BLOGD(sc, DBG_LOAD, "setting up queue %d\n", fp->index);
11415 
11416     bxe_ack_sb(sc, fp->igu_sb_id, USTORM_ID, 0, IGU_INT_ENABLE, 0);
11417 
11418     q_params.q_obj = &BXE_SP_OBJ(sc, fp).q_obj;
11419 
11420     /* we want to wait for completion in this context */
11421     bxe_set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
11422 
11423     /* prepare the INIT parameters */
11424     bxe_pf_q_prep_init(sc, fp, &q_params.params.init);
11425 
11426     /* Set the command */
11427     q_params.cmd = ECORE_Q_CMD_INIT;
11428 
11429     /* Change the state to INIT */
11430     rc = ecore_queue_state_change(sc, &q_params);
11431     if (rc) {
11432         BLOGE(sc, "Queue(%d) INIT failed rc = %d\n", fp->index, rc);
11433         return (rc);
11434     }
11435 
11436     BLOGD(sc, DBG_LOAD, "init complete\n");
11437 
11438     /* now move the Queue to the SETUP state */
11439     memset(setup_params, 0, sizeof(*setup_params));
11440 
11441     /* set Queue flags */
11442     setup_params->flags = bxe_get_q_flags(sc, fp, leading);
11443 
11444     /* set general SETUP parameters */
11445     bxe_pf_q_prep_general(sc, fp, &setup_params->gen_params,
11446                           FIRST_TX_COS_INDEX);
11447 
11448     bxe_pf_rx_q_prep(sc, fp,
11449                      &setup_params->pause_params,
11450                      &setup_params->rxq_params);
11451 
11452     bxe_pf_tx_q_prep(sc, fp,
11453                      &setup_params->txq_params,
11454                      FIRST_TX_COS_INDEX);
11455 
11456     /* Set the command */
11457     q_params.cmd = ECORE_Q_CMD_SETUP;
11458 
11459     /* change the state to SETUP */
11460     rc = ecore_queue_state_change(sc, &q_params);
11461     if (rc) {
11462         BLOGE(sc, "Queue(%d) SETUP failed (rc = %d)\n", fp->index, rc);
11463         return (rc);
11464     }
11465 
11466     return (rc);
11467 }
11468 
11469 static int
11470 bxe_setup_leading(struct bxe_softc *sc)
11471 {
11472     return (bxe_setup_queue(sc, &sc->fp[0], TRUE));
11473 }
11474 
11475 static int
11476 bxe_config_rss_pf(struct bxe_softc            *sc,
11477                   struct ecore_rss_config_obj *rss_obj,
11478                   uint8_t                     config_hash)
11479 {
11480     struct ecore_config_rss_params params = { NULL };
11481     int i;
11482 
11483     /*
11484      * Although RSS is meaningless when there is a single HW queue we
11485      * still need it enabled in order to have HW Rx hash generated.
11486      */
11487 
11488     params.rss_obj = rss_obj;
11489 
11490     bxe_set_bit(RAMROD_COMP_WAIT, &params.ramrod_flags);
11491 
11492     bxe_set_bit(ECORE_RSS_MODE_REGULAR, &params.rss_flags);
11493 
11494     /* RSS configuration */
11495     bxe_set_bit(ECORE_RSS_IPV4, &params.rss_flags);
11496     bxe_set_bit(ECORE_RSS_IPV4_TCP, &params.rss_flags);
11497     bxe_set_bit(ECORE_RSS_IPV6, &params.rss_flags);
11498     bxe_set_bit(ECORE_RSS_IPV6_TCP, &params.rss_flags);
11499     if (rss_obj->udp_rss_v4) {
11500         bxe_set_bit(ECORE_RSS_IPV4_UDP, &params.rss_flags);
11501     }
11502     if (rss_obj->udp_rss_v6) {
11503         bxe_set_bit(ECORE_RSS_IPV6_UDP, &params.rss_flags);
11504     }
11505 
11506     /* Hash bits */
11507     params.rss_result_mask = MULTI_MASK;
11508 
11509     memcpy(params.ind_table, rss_obj->ind_table, sizeof(params.ind_table));
11510 
11511     if (config_hash) {
11512         /* RSS keys */
11513         for (i = 0; i < sizeof(params.rss_key) / 4; i++) {
11514             params.rss_key[i] = arc4random();
11515         }
11516 
11517         bxe_set_bit(ECORE_RSS_SET_SRCH, &params.rss_flags);
11518     }
11519 
11520     return (ecore_config_rss(sc, &params));
11521 }
11522 
11523 static int
11524 bxe_config_rss_eth(struct bxe_softc *sc,
11525                    uint8_t          config_hash)
11526 {
11527     return (bxe_config_rss_pf(sc, &sc->rss_conf_obj, config_hash));
11528 }
11529 
11530 static int
11531 bxe_init_rss_pf(struct bxe_softc *sc)
11532 {
11533     uint8_t num_eth_queues = BXE_NUM_ETH_QUEUES(sc);
11534     int i;
11535 
11536     /*
11537      * Prepare the initial contents of the indirection table if
11538      * RSS is enabled
11539      */
11540     for (i = 0; i < sizeof(sc->rss_conf_obj.ind_table); i++) {
11541         sc->rss_conf_obj.ind_table[i] =
11542             (sc->fp->cl_id + (i % num_eth_queues));
11543     }
11544 
11545     if (sc->udp_rss) {
11546         sc->rss_conf_obj.udp_rss_v4 = sc->rss_conf_obj.udp_rss_v6 = 1;
11547     }
11548 
11549     /*
11550      * For 57710 and 57711 SEARCHER configuration (rss_keys) is
11551      * per-port, so if explicit configuration is needed, do it only
11552      * for a PMF.
11553      *
11554      * For 57712 and newer it's a per-function configuration.
11555      */
11556     return (bxe_config_rss_eth(sc, sc->port.pmf || !CHIP_IS_E1x(sc)));
11557 }
11558 
11559 static int
11560 bxe_set_mac_one(struct bxe_softc          *sc,
11561                 uint8_t                   *mac,
11562                 struct ecore_vlan_mac_obj *obj,
11563                 uint8_t                   set,
11564                 int                       mac_type,
11565                 unsigned long             *ramrod_flags)
11566 {
11567     struct ecore_vlan_mac_ramrod_params ramrod_param;
11568     int rc;
11569 
11570     memset(&ramrod_param, 0, sizeof(ramrod_param));
11571 
11572     /* fill in general parameters */
11573     ramrod_param.vlan_mac_obj = obj;
11574     ramrod_param.ramrod_flags = *ramrod_flags;
11575 
11576     /* fill a user request section if needed */
11577     if (!bxe_test_bit(RAMROD_CONT, ramrod_flags)) {
11578         memcpy(ramrod_param.user_req.u.mac.mac, mac, ETH_ALEN);
11579 
11580         bxe_set_bit(mac_type, &ramrod_param.user_req.vlan_mac_flags);
11581 
11582         /* Set the command: ADD or DEL */
11583         ramrod_param.user_req.cmd = (set) ? ECORE_VLAN_MAC_ADD :
11584                                             ECORE_VLAN_MAC_DEL;
11585     }
11586 
11587     rc = ecore_config_vlan_mac(sc, &ramrod_param);
11588 
11589     if (rc == ECORE_EXISTS) {
11590         BLOGD(sc, DBG_SP, "Failed to schedule ADD operations (EEXIST)\n");
11591         /* do not treat adding same MAC as error */
11592         rc = 0;
11593     } else if (rc < 0) {
11594         BLOGE(sc, "%s MAC failed (%d)\n", (set ? "Set" : "Delete"), rc);
11595     }
11596 
11597     return (rc);
11598 }
11599 
11600 static int
11601 bxe_set_eth_mac(struct bxe_softc *sc,
11602                 uint8_t          set)
11603 {
11604     unsigned long ramrod_flags = 0;
11605 
11606     BLOGD(sc, DBG_LOAD, "Adding Ethernet MAC\n");
11607 
11608     bxe_set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
11609 
11610     /* Eth MAC is set on RSS leading client (fp[0]) */
11611     return (bxe_set_mac_one(sc, sc->link_params.mac_addr,
11612                             &sc->sp_objs->mac_obj,
11613                             set, ECORE_ETH_MAC, &ramrod_flags));
11614 }
11615 
11616 static int
11617 bxe_get_cur_phy_idx(struct bxe_softc *sc)
11618 {
11619     uint32_t sel_phy_idx = 0;
11620 
11621     if (sc->link_params.num_phys <= 1) {
11622         return (ELINK_INT_PHY);
11623     }
11624 
11625     if (sc->link_vars.link_up) {
11626         sel_phy_idx = ELINK_EXT_PHY1;
11627         /* In case link is SERDES, check if the ELINK_EXT_PHY2 is the one */
11628         if ((sc->link_vars.link_status & LINK_STATUS_SERDES_LINK) &&
11629             (sc->link_params.phy[ELINK_EXT_PHY2].supported &
11630              ELINK_SUPPORTED_FIBRE))
11631             sel_phy_idx = ELINK_EXT_PHY2;
11632     } else {
11633         switch (elink_phy_selection(&sc->link_params)) {
11634         case PORT_HW_CFG_PHY_SELECTION_HARDWARE_DEFAULT:
11635         case PORT_HW_CFG_PHY_SELECTION_FIRST_PHY:
11636         case PORT_HW_CFG_PHY_SELECTION_FIRST_PHY_PRIORITY:
11637                sel_phy_idx = ELINK_EXT_PHY1;
11638                break;
11639         case PORT_HW_CFG_PHY_SELECTION_SECOND_PHY:
11640         case PORT_HW_CFG_PHY_SELECTION_SECOND_PHY_PRIORITY:
11641                sel_phy_idx = ELINK_EXT_PHY2;
11642                break;
11643         }
11644     }
11645 
11646     return (sel_phy_idx);
11647 }
11648 
11649 static int
11650 bxe_get_link_cfg_idx(struct bxe_softc *sc)
11651 {
11652     uint32_t sel_phy_idx = bxe_get_cur_phy_idx(sc);
11653 
11654     /*
11655      * The selected activated PHY is always after swapping (in case PHY
11656      * swapping is enabled). So when swapping is enabled, we need to reverse
11657      * the configuration
11658      */
11659 
11660     if (sc->link_params.multi_phy_config & PORT_HW_CFG_PHY_SWAPPED_ENABLED) {
11661         if (sel_phy_idx == ELINK_EXT_PHY1)
11662             sel_phy_idx = ELINK_EXT_PHY2;
11663         else if (sel_phy_idx == ELINK_EXT_PHY2)
11664             sel_phy_idx = ELINK_EXT_PHY1;
11665     }
11666 
11667     return (ELINK_LINK_CONFIG_IDX(sel_phy_idx));
11668 }
11669 
11670 static void
11671 bxe_set_requested_fc(struct bxe_softc *sc)
11672 {
11673     /*
11674      * Initialize link parameters structure variables
11675      * It is recommended to turn off RX FC for jumbo frames
11676      * for better performance
11677      */
11678     if (CHIP_IS_E1x(sc) && (sc->mtu > 5000)) {
11679         sc->link_params.req_fc_auto_adv = ELINK_FLOW_CTRL_TX;
11680     } else {
11681         sc->link_params.req_fc_auto_adv = ELINK_FLOW_CTRL_BOTH;
11682     }
11683 }
11684 
11685 static void
11686 bxe_calc_fc_adv(struct bxe_softc *sc)
11687 {
11688     uint8_t cfg_idx = bxe_get_link_cfg_idx(sc);
11689 
11690 
11691     sc->port.advertising[cfg_idx] &= ~(ADVERTISED_Asym_Pause |
11692                                            ADVERTISED_Pause);
11693 
11694     switch (sc->link_vars.ieee_fc &
11695             MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_MASK) {
11696 
11697     case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_BOTH:
11698         sc->port.advertising[cfg_idx] |= (ADVERTISED_Asym_Pause |
11699                                           ADVERTISED_Pause);
11700         break;
11701 
11702     case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_ASYMMETRIC:
11703         sc->port.advertising[cfg_idx] |= ADVERTISED_Asym_Pause;
11704         break;
11705 
11706     default:
11707         break;
11708 
11709     }
11710 }
11711 
11712 static uint16_t
11713 bxe_get_mf_speed(struct bxe_softc *sc)
11714 {
11715     uint16_t line_speed = sc->link_vars.line_speed;
11716     if (IS_MF(sc)) {
11717         uint16_t maxCfg =
11718             bxe_extract_max_cfg(sc, sc->devinfo.mf_info.mf_config[SC_VN(sc)]);
11719 
11720         /* calculate the current MAX line speed limit for the MF devices */
11721         if (IS_MF_SI(sc)) {
11722             line_speed = (line_speed * maxCfg) / 100;
11723         } else { /* SD mode */
11724             uint16_t vn_max_rate = maxCfg * 100;
11725 
11726             if (vn_max_rate < line_speed) {
11727                 line_speed = vn_max_rate;
11728             }
11729         }
11730     }
11731 
11732     return (line_speed);
11733 }
11734 
11735 static void
11736 bxe_fill_report_data(struct bxe_softc            *sc,
11737                      struct bxe_link_report_data *data)
11738 {
11739     uint16_t line_speed = bxe_get_mf_speed(sc);
11740 
11741     memset(data, 0, sizeof(*data));
11742 
11743     /* fill the report data with the effective line speed */
11744     data->line_speed = line_speed;
11745 
11746     /* Link is down */
11747     if (!sc->link_vars.link_up || (sc->flags & BXE_MF_FUNC_DIS)) {
11748         bxe_set_bit(BXE_LINK_REPORT_LINK_DOWN, &data->link_report_flags);
11749     }
11750 
11751     /* Full DUPLEX */
11752     if (sc->link_vars.duplex == DUPLEX_FULL) {
11753         bxe_set_bit(BXE_LINK_REPORT_FULL_DUPLEX, &data->link_report_flags);
11754     }
11755 
11756     /* Rx Flow Control is ON */
11757     if (sc->link_vars.flow_ctrl & ELINK_FLOW_CTRL_RX) {
11758         bxe_set_bit(BXE_LINK_REPORT_RX_FC_ON, &data->link_report_flags);
11759     }
11760 
11761     /* Tx Flow Control is ON */
11762     if (sc->link_vars.flow_ctrl & ELINK_FLOW_CTRL_TX) {
11763         bxe_set_bit(BXE_LINK_REPORT_TX_FC_ON, &data->link_report_flags);
11764     }
11765 }
11766 
11767 /* report link status to OS, should be called under phy_lock */
11768 static void
11769 bxe_link_report_locked(struct bxe_softc *sc)
11770 {
11771     struct bxe_link_report_data cur_data;
11772 
11773     /* reread mf_cfg */
11774     if (IS_PF(sc) && !CHIP_IS_E1(sc)) {
11775         bxe_read_mf_cfg(sc);
11776     }
11777 
11778     /* Read the current link report info */
11779     bxe_fill_report_data(sc, &cur_data);
11780 
11781     /* Don't report link down or exactly the same link status twice */
11782     if (!memcmp(&cur_data, &sc->last_reported_link, sizeof(cur_data)) ||
11783         (bxe_test_bit(BXE_LINK_REPORT_LINK_DOWN,
11784                       &sc->last_reported_link.link_report_flags) &&
11785          bxe_test_bit(BXE_LINK_REPORT_LINK_DOWN,
11786                       &cur_data.link_report_flags))) {
11787         return;
11788     }
11789 
11790 	ELINK_DEBUG_P2(sc, "Change in link status : cur_data = %x, last_reported_link = %x\n",
11791 					cur_data.link_report_flags, sc->last_reported_link.link_report_flags);
11792     sc->link_cnt++;
11793 
11794 	ELINK_DEBUG_P1(sc, "link status change count = %x\n", sc->link_cnt);
11795     /* report new link params and remember the state for the next time */
11796     memcpy(&sc->last_reported_link, &cur_data, sizeof(cur_data));
11797 
11798     if (bxe_test_bit(BXE_LINK_REPORT_LINK_DOWN,
11799                      &cur_data.link_report_flags)) {
11800         if_link_state_change(sc->ifp, LINK_STATE_DOWN);
11801     } else {
11802         const char *duplex;
11803         const char *flow;
11804 
11805         if (bxe_test_and_clear_bit(BXE_LINK_REPORT_FULL_DUPLEX,
11806                                    &cur_data.link_report_flags)) {
11807             duplex = "full";
11808 			ELINK_DEBUG_P0(sc, "link set to full duplex\n");
11809         } else {
11810             duplex = "half";
11811 			ELINK_DEBUG_P0(sc, "link set to half duplex\n");
11812         }
11813 
11814         /*
11815          * Handle the FC at the end so that only these flags would be
11816          * possibly set. This way we may easily check if there is no FC
11817          * enabled.
11818          */
11819         if (cur_data.link_report_flags) {
11820             if (bxe_test_bit(BXE_LINK_REPORT_RX_FC_ON,
11821                              &cur_data.link_report_flags) &&
11822                 bxe_test_bit(BXE_LINK_REPORT_TX_FC_ON,
11823                              &cur_data.link_report_flags)) {
11824                 flow = "ON - receive & transmit";
11825             } else if (bxe_test_bit(BXE_LINK_REPORT_RX_FC_ON,
11826                                     &cur_data.link_report_flags) &&
11827                        !bxe_test_bit(BXE_LINK_REPORT_TX_FC_ON,
11828                                      &cur_data.link_report_flags)) {
11829                 flow = "ON - receive";
11830             } else if (!bxe_test_bit(BXE_LINK_REPORT_RX_FC_ON,
11831                                      &cur_data.link_report_flags) &&
11832                        bxe_test_bit(BXE_LINK_REPORT_TX_FC_ON,
11833                                     &cur_data.link_report_flags)) {
11834                 flow = "ON - transmit";
11835             } else {
11836                 flow = "none"; /* possible? */
11837             }
11838         } else {
11839             flow = "none";
11840         }
11841 
11842         if_link_state_change(sc->ifp, LINK_STATE_UP);
11843         BLOGI(sc, "NIC Link is Up, %d Mbps %s duplex, Flow control: %s\n",
11844               cur_data.line_speed, duplex, flow);
11845     }
11846 }
11847 
11848 static void
11849 bxe_link_report(struct bxe_softc *sc)
11850 {
11851     bxe_acquire_phy_lock(sc);
11852     bxe_link_report_locked(sc);
11853     bxe_release_phy_lock(sc);
11854 }
11855 
11856 static void
11857 bxe_link_status_update(struct bxe_softc *sc)
11858 {
11859     if (sc->state != BXE_STATE_OPEN) {
11860         return;
11861     }
11862 
11863     if (IS_PF(sc) && !CHIP_REV_IS_SLOW(sc)) {
11864         elink_link_status_update(&sc->link_params, &sc->link_vars);
11865     } else {
11866         sc->port.supported[0] |= (ELINK_SUPPORTED_10baseT_Half |
11867                                   ELINK_SUPPORTED_10baseT_Full |
11868                                   ELINK_SUPPORTED_100baseT_Half |
11869                                   ELINK_SUPPORTED_100baseT_Full |
11870                                   ELINK_SUPPORTED_1000baseT_Full |
11871                                   ELINK_SUPPORTED_2500baseX_Full |
11872                                   ELINK_SUPPORTED_10000baseT_Full |
11873                                   ELINK_SUPPORTED_TP |
11874                                   ELINK_SUPPORTED_FIBRE |
11875                                   ELINK_SUPPORTED_Autoneg |
11876                                   ELINK_SUPPORTED_Pause |
11877                                   ELINK_SUPPORTED_Asym_Pause);
11878         sc->port.advertising[0] = sc->port.supported[0];
11879 
11880         sc->link_params.sc                = sc;
11881         sc->link_params.port              = SC_PORT(sc);
11882         sc->link_params.req_duplex[0]     = DUPLEX_FULL;
11883         sc->link_params.req_flow_ctrl[0]  = ELINK_FLOW_CTRL_NONE;
11884         sc->link_params.req_line_speed[0] = SPEED_10000;
11885         sc->link_params.speed_cap_mask[0] = 0x7f0000;
11886         sc->link_params.switch_cfg        = ELINK_SWITCH_CFG_10G;
11887 
11888         if (CHIP_REV_IS_FPGA(sc)) {
11889             sc->link_vars.mac_type    = ELINK_MAC_TYPE_EMAC;
11890             sc->link_vars.line_speed  = ELINK_SPEED_1000;
11891             sc->link_vars.link_status = (LINK_STATUS_LINK_UP |
11892                                          LINK_STATUS_SPEED_AND_DUPLEX_1000TFD);
11893         } else {
11894             sc->link_vars.mac_type    = ELINK_MAC_TYPE_BMAC;
11895             sc->link_vars.line_speed  = ELINK_SPEED_10000;
11896             sc->link_vars.link_status = (LINK_STATUS_LINK_UP |
11897                                          LINK_STATUS_SPEED_AND_DUPLEX_10GTFD);
11898         }
11899 
11900         sc->link_vars.link_up = 1;
11901 
11902         sc->link_vars.duplex    = DUPLEX_FULL;
11903         sc->link_vars.flow_ctrl = ELINK_FLOW_CTRL_NONE;
11904 
11905         if (IS_PF(sc)) {
11906             REG_WR(sc, NIG_REG_EGRESS_DRAIN0_MODE + sc->link_params.port*4, 0);
11907             bxe_stats_handle(sc, STATS_EVENT_LINK_UP);
11908             bxe_link_report(sc);
11909         }
11910     }
11911 
11912     if (IS_PF(sc)) {
11913         if (sc->link_vars.link_up) {
11914             bxe_stats_handle(sc, STATS_EVENT_LINK_UP);
11915         } else {
11916             bxe_stats_handle(sc, STATS_EVENT_STOP);
11917         }
11918         bxe_link_report(sc);
11919     } else {
11920         bxe_link_report(sc);
11921         bxe_stats_handle(sc, STATS_EVENT_LINK_UP);
11922     }
11923 }
11924 
11925 static int
11926 bxe_initial_phy_init(struct bxe_softc *sc,
11927                      int              load_mode)
11928 {
11929     int rc, cfg_idx = bxe_get_link_cfg_idx(sc);
11930     uint16_t req_line_speed = sc->link_params.req_line_speed[cfg_idx];
11931     struct elink_params *lp = &sc->link_params;
11932 
11933     bxe_set_requested_fc(sc);
11934 
11935     if (CHIP_REV_IS_SLOW(sc)) {
11936         uint32_t bond = CHIP_BOND_ID(sc);
11937         uint32_t feat = 0;
11938 
11939         if (CHIP_IS_E2(sc) && CHIP_IS_MODE_4_PORT(sc)) {
11940             feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_BMAC;
11941         } else if (bond & 0x4) {
11942             if (CHIP_IS_E3(sc)) {
11943                 feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_XMAC;
11944             } else {
11945                 feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_BMAC;
11946             }
11947         } else if (bond & 0x8) {
11948             if (CHIP_IS_E3(sc)) {
11949                 feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_UMAC;
11950             } else {
11951                 feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_EMAC;
11952             }
11953         }
11954 
11955         /* disable EMAC for E3 and above */
11956         if (bond & 0x2) {
11957             feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_EMAC;
11958         }
11959 
11960         sc->link_params.feature_config_flags |= feat;
11961     }
11962 
11963     bxe_acquire_phy_lock(sc);
11964 
11965     if (load_mode == LOAD_DIAG) {
11966         lp->loopback_mode = ELINK_LOOPBACK_XGXS;
11967         /* Prefer doing PHY loopback at 10G speed, if possible */
11968         if (lp->req_line_speed[cfg_idx] < ELINK_SPEED_10000) {
11969             if (lp->speed_cap_mask[cfg_idx] &
11970                 PORT_HW_CFG_SPEED_CAPABILITY_D0_10G) {
11971                 lp->req_line_speed[cfg_idx] = ELINK_SPEED_10000;
11972             } else {
11973                 lp->req_line_speed[cfg_idx] = ELINK_SPEED_1000;
11974             }
11975         }
11976     }
11977 
11978     if (load_mode == LOAD_LOOPBACK_EXT) {
11979         lp->loopback_mode = ELINK_LOOPBACK_EXT;
11980     }
11981 
11982     rc = elink_phy_init(&sc->link_params, &sc->link_vars);
11983 
11984     bxe_release_phy_lock(sc);
11985 
11986     bxe_calc_fc_adv(sc);
11987 
11988     if (sc->link_vars.link_up) {
11989         bxe_stats_handle(sc, STATS_EVENT_LINK_UP);
11990         bxe_link_report(sc);
11991     }
11992 
11993     if (!CHIP_REV_IS_SLOW(sc)) {
11994         bxe_periodic_start(sc);
11995     }
11996 
11997     sc->link_params.req_line_speed[cfg_idx] = req_line_speed;
11998     return (rc);
11999 }
12000 
12001 static u_int
12002 bxe_push_maddr(void *arg, struct sockaddr_dl *sdl, u_int cnt)
12003 {
12004     struct ecore_mcast_list_elem *mc_mac = arg;
12005 
12006     mc_mac += cnt;
12007     mc_mac->mac = (uint8_t *)LLADDR(sdl);
12008 
12009     return (1);
12010 }
12011 
12012 static int
12013 bxe_init_mcast_macs_list(struct bxe_softc                 *sc,
12014                          struct ecore_mcast_ramrod_params *p)
12015 {
12016     if_t ifp = sc->ifp;
12017     int mc_count;
12018     struct ecore_mcast_list_elem *mc_mac;
12019 
12020     ECORE_LIST_INIT(&p->mcast_list);
12021     p->mcast_list_len = 0;
12022 
12023     /* XXXGL: multicast count may change later */
12024     mc_count = if_llmaddr_count(ifp);
12025 
12026     if (!mc_count) {
12027         return (0);
12028     }
12029 
12030     mc_mac = malloc(sizeof(*mc_mac) * mc_count, M_DEVBUF,
12031                     (M_NOWAIT | M_ZERO));
12032     if (!mc_mac) {
12033         BLOGE(sc, "Failed to allocate temp mcast list\n");
12034         return (-1);
12035     }
12036     bzero(mc_mac, (sizeof(*mc_mac) * mc_count));
12037     if_foreach_llmaddr(ifp, bxe_push_maddr, mc_mac);
12038 
12039     for (int i = 0; i < mc_count; i ++) {
12040         ECORE_LIST_PUSH_TAIL(&mc_mac[i].link, &p->mcast_list);
12041         BLOGD(sc, DBG_LOAD,
12042               "Setting MCAST %02X:%02X:%02X:%02X:%02X:%02X and mc_count %d\n",
12043               mc_mac[i].mac[0], mc_mac[i].mac[1], mc_mac[i].mac[2],
12044               mc_mac[i].mac[3], mc_mac[i].mac[4], mc_mac[i].mac[5],
12045               mc_count);
12046     }
12047 
12048     p->mcast_list_len = mc_count;
12049 
12050     return (0);
12051 }
12052 
12053 static void
12054 bxe_free_mcast_macs_list(struct ecore_mcast_ramrod_params *p)
12055 {
12056     struct ecore_mcast_list_elem *mc_mac =
12057         ECORE_LIST_FIRST_ENTRY(&p->mcast_list,
12058                                struct ecore_mcast_list_elem,
12059                                link);
12060 
12061     if (mc_mac) {
12062         /* only a single free as all mc_macs are in the same heap array */
12063         free(mc_mac, M_DEVBUF);
12064     }
12065 }
12066 static int
12067 bxe_set_mc_list(struct bxe_softc *sc)
12068 {
12069     struct ecore_mcast_ramrod_params rparam = { NULL };
12070     int rc = 0;
12071 
12072     rparam.mcast_obj = &sc->mcast_obj;
12073 
12074     BXE_MCAST_LOCK(sc);
12075 
12076     /* first, clear all configured multicast MACs */
12077     rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_DEL);
12078     if (rc < 0) {
12079         BLOGE(sc, "Failed to clear multicast configuration: %d\n", rc);
12080         /* Manual backport parts of FreeBSD upstream r284470. */
12081         BXE_MCAST_UNLOCK(sc);
12082         return (rc);
12083     }
12084 
12085     /* configure a new MACs list */
12086     rc = bxe_init_mcast_macs_list(sc, &rparam);
12087     if (rc) {
12088         BLOGE(sc, "Failed to create mcast MACs list (%d)\n", rc);
12089         BXE_MCAST_UNLOCK(sc);
12090         return (rc);
12091     }
12092 
12093     /* Now add the new MACs */
12094     rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_ADD);
12095     if (rc < 0) {
12096         BLOGE(sc, "Failed to set new mcast config (%d)\n", rc);
12097     }
12098 
12099     bxe_free_mcast_macs_list(&rparam);
12100 
12101     BXE_MCAST_UNLOCK(sc);
12102 
12103     return (rc);
12104 }
12105 
12106 struct bxe_set_addr_ctx {
12107    struct bxe_softc *sc;
12108    unsigned long ramrod_flags;
12109    int rc;
12110 };
12111 
12112 static u_int
12113 bxe_set_addr(void *arg, struct sockaddr_dl *sdl, u_int cnt)
12114 {
12115     struct bxe_set_addr_ctx *ctx = arg;
12116     struct ecore_vlan_mac_obj *mac_obj = &ctx->sc->sp_objs->mac_obj;
12117     int rc;
12118 
12119     if (ctx->rc < 0)
12120 	return (0);
12121 
12122     rc = bxe_set_mac_one(ctx->sc, (uint8_t *)LLADDR(sdl), mac_obj, TRUE,
12123                          ECORE_UC_LIST_MAC, &ctx->ramrod_flags);
12124 
12125     /* do not treat adding same MAC as an error */
12126     if (rc == -EEXIST)
12127 	BLOGD(ctx->sc, DBG_SP, "Failed to schedule ADD operations (EEXIST)\n");
12128     else if (rc < 0) {
12129             BLOGE(ctx->sc, "Failed to schedule ADD operations (%d)\n", rc);
12130             ctx->rc = rc;
12131     }
12132 
12133     return (1);
12134 }
12135 
12136 static int
12137 bxe_set_uc_list(struct bxe_softc *sc)
12138 {
12139     if_t ifp = sc->ifp;
12140     struct ecore_vlan_mac_obj *mac_obj = &sc->sp_objs->mac_obj;
12141     struct bxe_set_addr_ctx ctx = { sc, 0, 0 };
12142     int rc;
12143 
12144     /* first schedule a cleanup up of old configuration */
12145     rc = bxe_del_all_macs(sc, mac_obj, ECORE_UC_LIST_MAC, FALSE);
12146     if (rc < 0) {
12147         BLOGE(sc, "Failed to schedule delete of all ETH MACs (%d)\n", rc);
12148         return (rc);
12149     }
12150 
12151     if_foreach_lladdr(ifp, bxe_set_addr, &ctx);
12152     if (ctx.rc < 0)
12153 	return (ctx.rc);
12154 
12155     /* Execute the pending commands */
12156     bit_set(&ctx.ramrod_flags, RAMROD_CONT);
12157     return (bxe_set_mac_one(sc, NULL, mac_obj, FALSE /* don't care */,
12158                             ECORE_UC_LIST_MAC, &ctx.ramrod_flags));
12159 }
12160 
12161 static void
12162 bxe_set_rx_mode(struct bxe_softc *sc)
12163 {
12164     if_t ifp = sc->ifp;
12165     uint32_t rx_mode = BXE_RX_MODE_NORMAL;
12166 
12167     if (sc->state != BXE_STATE_OPEN) {
12168         BLOGD(sc, DBG_SP, "state is %x, returning\n", sc->state);
12169         return;
12170     }
12171 
12172     BLOGD(sc, DBG_SP, "if_flags(ifp)=0x%x\n", if_getflags(sc->ifp));
12173 
12174     if (if_getflags(ifp) & IFF_PROMISC) {
12175         rx_mode = BXE_RX_MODE_PROMISC;
12176     } else if ((if_getflags(ifp) & IFF_ALLMULTI) ||
12177                (if_llmaddr_count(ifp) > BXE_MAX_MULTICAST &&
12178                 CHIP_IS_E1(sc))) {
12179         rx_mode = BXE_RX_MODE_ALLMULTI;
12180     } else {
12181         if (IS_PF(sc)) {
12182             /* some multicasts */
12183             if (bxe_set_mc_list(sc) < 0) {
12184                 rx_mode = BXE_RX_MODE_ALLMULTI;
12185             }
12186             if (bxe_set_uc_list(sc) < 0) {
12187                 rx_mode = BXE_RX_MODE_PROMISC;
12188             }
12189         }
12190     }
12191 
12192     sc->rx_mode = rx_mode;
12193 
12194     /* schedule the rx_mode command */
12195     if (bxe_test_bit(ECORE_FILTER_RX_MODE_PENDING, &sc->sp_state)) {
12196         BLOGD(sc, DBG_LOAD, "Scheduled setting rx_mode with ECORE...\n");
12197         bxe_set_bit(ECORE_FILTER_RX_MODE_SCHED, &sc->sp_state);
12198         return;
12199     }
12200 
12201     if (IS_PF(sc)) {
12202         bxe_set_storm_rx_mode(sc);
12203     }
12204 }
12205 
12206 
12207 /* update flags in shmem */
12208 static void
12209 bxe_update_drv_flags(struct bxe_softc *sc,
12210                      uint32_t         flags,
12211                      uint32_t         set)
12212 {
12213     uint32_t drv_flags;
12214 
12215     if (SHMEM2_HAS(sc, drv_flags)) {
12216         bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_DRV_FLAGS);
12217         drv_flags = SHMEM2_RD(sc, drv_flags);
12218 
12219         if (set) {
12220             SET_FLAGS(drv_flags, flags);
12221         } else {
12222             RESET_FLAGS(drv_flags, flags);
12223         }
12224 
12225         SHMEM2_WR(sc, drv_flags, drv_flags);
12226         BLOGD(sc, DBG_LOAD, "drv_flags 0x%08x\n", drv_flags);
12227 
12228         bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_DRV_FLAGS);
12229     }
12230 }
12231 
12232 /* periodic timer callout routine, only runs when the interface is up */
12233 
12234 static void
12235 bxe_periodic_callout_func(void *xsc)
12236 {
12237     struct bxe_softc *sc = (struct bxe_softc *)xsc;
12238     int i;
12239 
12240     if (!BXE_CORE_TRYLOCK(sc)) {
12241         /* just bail and try again next time */
12242 
12243         if ((sc->state == BXE_STATE_OPEN) &&
12244             (atomic_load_acq_long(&sc->periodic_flags) == PERIODIC_GO)) {
12245             /* schedule the next periodic callout */
12246             callout_reset(&sc->periodic_callout, hz,
12247                           bxe_periodic_callout_func, sc);
12248         }
12249 
12250         return;
12251     }
12252 
12253     if ((sc->state != BXE_STATE_OPEN) ||
12254         (atomic_load_acq_long(&sc->periodic_flags) == PERIODIC_STOP)) {
12255         BLOGW(sc, "periodic callout exit (state=0x%x)\n", sc->state);
12256         BXE_CORE_UNLOCK(sc);
12257         return;
12258         }
12259 
12260 
12261     /* Check for TX timeouts on any fastpath. */
12262     FOR_EACH_QUEUE(sc, i) {
12263         if (bxe_watchdog(sc, &sc->fp[i]) != 0) {
12264             /* Ruh-Roh, chip was reset! */
12265             break;
12266         }
12267     }
12268 
12269     if (!CHIP_REV_IS_SLOW(sc)) {
12270         /*
12271          * This barrier is needed to ensure the ordering between the writing
12272          * to the sc->port.pmf in the bxe_nic_load() or bxe_pmf_update() and
12273          * the reading here.
12274          */
12275         mb();
12276         if (sc->port.pmf) {
12277 	    bxe_acquire_phy_lock(sc);
12278             elink_period_func(&sc->link_params, &sc->link_vars);
12279 	    bxe_release_phy_lock(sc);
12280         }
12281     }
12282 
12283     if (IS_PF(sc) && !(sc->flags & BXE_NO_PULSE)) {
12284         int mb_idx = SC_FW_MB_IDX(sc);
12285         uint32_t drv_pulse;
12286         uint32_t mcp_pulse;
12287 
12288         ++sc->fw_drv_pulse_wr_seq;
12289         sc->fw_drv_pulse_wr_seq &= DRV_PULSE_SEQ_MASK;
12290 
12291         drv_pulse = sc->fw_drv_pulse_wr_seq;
12292         bxe_drv_pulse(sc);
12293 
12294         mcp_pulse = (SHMEM_RD(sc, func_mb[mb_idx].mcp_pulse_mb) &
12295                      MCP_PULSE_SEQ_MASK);
12296 
12297         /*
12298          * The delta between driver pulse and mcp response should
12299          * be 1 (before mcp response) or 0 (after mcp response).
12300          */
12301         if ((drv_pulse != mcp_pulse) &&
12302             (drv_pulse != ((mcp_pulse + 1) & MCP_PULSE_SEQ_MASK))) {
12303             /* someone lost a heartbeat... */
12304             BLOGE(sc, "drv_pulse (0x%x) != mcp_pulse (0x%x)\n",
12305                   drv_pulse, mcp_pulse);
12306         }
12307     }
12308 
12309     /* state is BXE_STATE_OPEN */
12310     bxe_stats_handle(sc, STATS_EVENT_UPDATE);
12311 
12312     BXE_CORE_UNLOCK(sc);
12313 
12314     if ((sc->state == BXE_STATE_OPEN) &&
12315         (atomic_load_acq_long(&sc->periodic_flags) == PERIODIC_GO)) {
12316         /* schedule the next periodic callout */
12317         callout_reset(&sc->periodic_callout, hz,
12318                       bxe_periodic_callout_func, sc);
12319     }
12320 }
12321 
12322 static void
12323 bxe_periodic_start(struct bxe_softc *sc)
12324 {
12325     atomic_store_rel_long(&sc->periodic_flags, PERIODIC_GO);
12326     callout_reset(&sc->periodic_callout, hz, bxe_periodic_callout_func, sc);
12327 }
12328 
12329 static void
12330 bxe_periodic_stop(struct bxe_softc *sc)
12331 {
12332     atomic_store_rel_long(&sc->periodic_flags, PERIODIC_STOP);
12333     callout_drain(&sc->periodic_callout);
12334 }
12335 
12336 void
12337 bxe_parity_recover(struct bxe_softc *sc)
12338 {
12339     uint8_t global = FALSE;
12340     uint32_t error_recovered, error_unrecovered;
12341 
12342 
12343     if ((sc->recovery_state == BXE_RECOVERY_FAILED) &&
12344         (sc->state == BXE_STATE_ERROR)) {
12345         BLOGE(sc, "RECOVERY failed, "
12346             "stack notified driver is NOT running! "
12347             "Please reboot/power cycle the system.\n");
12348         return;
12349     }
12350 
12351     while (1) {
12352         BLOGD(sc, DBG_SP,
12353            "%s sc=%p state=0x%x rec_state=0x%x error_status=%x\n",
12354             __func__, sc, sc->state, sc->recovery_state, sc->error_status);
12355 
12356         switch(sc->recovery_state) {
12357 
12358         case BXE_RECOVERY_INIT:
12359             bxe_chk_parity_attn(sc, &global, FALSE);
12360 
12361             if ((CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) ||
12362                 (sc->error_status & BXE_ERR_MCP_ASSERT) ||
12363                 (sc->error_status & BXE_ERR_GLOBAL)) {
12364 
12365                 BXE_CORE_LOCK(sc);
12366                 if (if_getdrvflags(sc->ifp) & IFF_DRV_RUNNING) {
12367                     bxe_periodic_stop(sc);
12368                 }
12369                 bxe_nic_unload(sc, UNLOAD_RECOVERY, false);
12370                 sc->state = BXE_STATE_ERROR;
12371                 sc->recovery_state = BXE_RECOVERY_FAILED;
12372                 BLOGE(sc, " No Recovery tried for error 0x%x"
12373                     " stack notified driver is NOT running!"
12374                     " Please reboot/power cycle the system.\n",
12375                     sc->error_status);
12376                 BXE_CORE_UNLOCK(sc);
12377                 return;
12378             }
12379 
12380 
12381            /* Try to get a LEADER_LOCK HW lock */
12382             if (bxe_trylock_leader_lock(sc)) {
12383 
12384                 bxe_set_reset_in_progress(sc);
12385                 /*
12386                  * Check if there is a global attention and if
12387                  * there was a global attention, set the global
12388                  * reset bit.
12389                  */
12390                 if (global) {
12391                     bxe_set_reset_global(sc);
12392                 }
12393                 sc->is_leader = 1;
12394             }
12395 
12396             /* If interface has been removed - break */
12397 
12398             if (if_getdrvflags(sc->ifp) & IFF_DRV_RUNNING) {
12399                 bxe_periodic_stop(sc);
12400             }
12401 
12402             BXE_CORE_LOCK(sc);
12403             bxe_nic_unload(sc,UNLOAD_RECOVERY, false);
12404             sc->recovery_state = BXE_RECOVERY_WAIT;
12405             BXE_CORE_UNLOCK(sc);
12406 
12407             /*
12408              * Ensure "is_leader", MCP command sequence and
12409              * "recovery_state" update values are seen on other
12410              * CPUs.
12411              */
12412             mb();
12413             break;
12414         case BXE_RECOVERY_WAIT:
12415 
12416             if (sc->is_leader) {
12417                 int other_engine = SC_PATH(sc) ? 0 : 1;
12418                 bool other_load_status =
12419                     bxe_get_load_status(sc, other_engine);
12420                 bool load_status =
12421                     bxe_get_load_status(sc, SC_PATH(sc));
12422                 global = bxe_reset_is_global(sc);
12423 
12424                 /*
12425                  * In case of a parity in a global block, let
12426                  * the first leader that performs a
12427                  * leader_reset() reset the global blocks in
12428                  * order to clear global attentions. Otherwise
12429                  * the gates will remain closed for that
12430                  * engine.
12431                  */
12432                 if (load_status ||
12433                     (global && other_load_status)) {
12434                     /*
12435                      * Wait until all other functions get
12436                      * down.
12437                      */
12438                     taskqueue_enqueue_timeout(taskqueue_thread,
12439                         &sc->sp_err_timeout_task, hz/10);
12440                     return;
12441                 } else {
12442                     /*
12443                      * If all other functions got down
12444                      * try to bring the chip back to
12445                      * normal. In any case it's an exit
12446                      * point for a leader.
12447                      */
12448                     if (bxe_leader_reset(sc)) {
12449                         BLOGE(sc, "RECOVERY failed, "
12450                             "stack notified driver is NOT running!\n");
12451                         sc->recovery_state = BXE_RECOVERY_FAILED;
12452                         sc->state = BXE_STATE_ERROR;
12453                         mb();
12454                         return;
12455                     }
12456 
12457                     /*
12458                      * If we are here, means that the
12459                      * leader has succeeded and doesn't
12460                      * want to be a leader any more. Try
12461                      * to continue as a none-leader.
12462                      */
12463                 break;
12464                 }
12465 
12466             } else { /* non-leader */
12467                 if (!bxe_reset_is_done(sc, SC_PATH(sc))) {
12468                     /*
12469                      * Try to get a LEADER_LOCK HW lock as
12470                      * long as a former leader may have
12471                      * been unloaded by the user or
12472                      * released a leadership by another
12473                      * reason.
12474                      */
12475                     if (bxe_trylock_leader_lock(sc)) {
12476                         /*
12477                          * I'm a leader now! Restart a
12478                          * switch case.
12479                          */
12480                         sc->is_leader = 1;
12481                         break;
12482                     }
12483 
12484                     taskqueue_enqueue_timeout(taskqueue_thread,
12485                         &sc->sp_err_timeout_task, hz/10);
12486                     return;
12487 
12488                 } else {
12489                     /*
12490                      * If there was a global attention, wait
12491                      * for it to be cleared.
12492                      */
12493                     if (bxe_reset_is_global(sc)) {
12494                         taskqueue_enqueue_timeout(taskqueue_thread,
12495                             &sc->sp_err_timeout_task, hz/10);
12496                         return;
12497                      }
12498 
12499                      error_recovered =
12500                          sc->eth_stats.recoverable_error;
12501                      error_unrecovered =
12502                          sc->eth_stats.unrecoverable_error;
12503                      BXE_CORE_LOCK(sc);
12504                      sc->recovery_state =
12505                          BXE_RECOVERY_NIC_LOADING;
12506                      if (bxe_nic_load(sc, LOAD_NORMAL)) {
12507                          error_unrecovered++;
12508                          sc->recovery_state = BXE_RECOVERY_FAILED;
12509                          sc->state = BXE_STATE_ERROR;
12510                          BLOGE(sc, "Recovery is NOT successful, "
12511                             " state=0x%x recovery_state=0x%x error=%x\n",
12512                             sc->state, sc->recovery_state, sc->error_status);
12513                          sc->error_status = 0;
12514                      } else {
12515                          sc->recovery_state =
12516                              BXE_RECOVERY_DONE;
12517                          error_recovered++;
12518                          BLOGI(sc, "Recovery is successful from errors %x,"
12519                             " state=0x%x"
12520                             " recovery_state=0x%x \n", sc->error_status,
12521                             sc->state, sc->recovery_state);
12522                          mb();
12523                      }
12524                      sc->error_status = 0;
12525                      BXE_CORE_UNLOCK(sc);
12526                      sc->eth_stats.recoverable_error =
12527                          error_recovered;
12528                      sc->eth_stats.unrecoverable_error =
12529                          error_unrecovered;
12530 
12531                      return;
12532                  }
12533              }
12534          default:
12535              return;
12536          }
12537     }
12538 }
12539 void
12540 bxe_handle_error(struct bxe_softc * sc)
12541 {
12542 
12543     if(sc->recovery_state == BXE_RECOVERY_WAIT) {
12544         return;
12545     }
12546     if(sc->error_status) {
12547         if (sc->state == BXE_STATE_OPEN)  {
12548             bxe_int_disable(sc);
12549         }
12550         if (sc->link_vars.link_up) {
12551             if_link_state_change(sc->ifp, LINK_STATE_DOWN);
12552         }
12553         sc->recovery_state = BXE_RECOVERY_INIT;
12554         BLOGI(sc, "bxe%d: Recovery started errors 0x%x recovery state 0x%x\n",
12555             sc->unit, sc->error_status, sc->recovery_state);
12556         bxe_parity_recover(sc);
12557    }
12558 }
12559 
12560 static void
12561 bxe_sp_err_timeout_task(void *arg, int pending)
12562 {
12563 
12564     struct bxe_softc *sc = (struct bxe_softc *)arg;
12565 
12566     BLOGD(sc, DBG_SP,
12567         "%s state = 0x%x rec state=0x%x error_status=%x\n",
12568         __func__, sc->state, sc->recovery_state, sc->error_status);
12569 
12570     if((sc->recovery_state == BXE_RECOVERY_FAILED) &&
12571        (sc->state == BXE_STATE_ERROR)) {
12572         return;
12573     }
12574     /* if can be taken */
12575     if ((sc->error_status) && (sc->trigger_grcdump)) {
12576         bxe_grc_dump(sc);
12577     }
12578     if (sc->recovery_state != BXE_RECOVERY_DONE) {
12579         bxe_handle_error(sc);
12580         bxe_parity_recover(sc);
12581     } else if (sc->error_status) {
12582         bxe_handle_error(sc);
12583     }
12584 
12585     return;
12586 }
12587 
12588 /* start the controller */
12589 static __noinline int
12590 bxe_nic_load(struct bxe_softc *sc,
12591              int              load_mode)
12592 {
12593     uint32_t val;
12594     int load_code = 0;
12595     int i, rc = 0;
12596 
12597     BXE_CORE_LOCK_ASSERT(sc);
12598 
12599     BLOGD(sc, DBG_LOAD, "Starting NIC load...\n");
12600 
12601     sc->state = BXE_STATE_OPENING_WAITING_LOAD;
12602 
12603     if (IS_PF(sc)) {
12604         /* must be called before memory allocation and HW init */
12605         bxe_ilt_set_info(sc);
12606     }
12607 
12608     sc->last_reported_link_state = LINK_STATE_UNKNOWN;
12609 
12610     bxe_set_fp_rx_buf_size(sc);
12611 
12612     if (bxe_alloc_fp_buffers(sc) != 0) {
12613         BLOGE(sc, "Failed to allocate fastpath memory\n");
12614         sc->state = BXE_STATE_CLOSED;
12615         rc = ENOMEM;
12616         goto bxe_nic_load_error0;
12617     }
12618 
12619     if (bxe_alloc_mem(sc) != 0) {
12620         sc->state = BXE_STATE_CLOSED;
12621         rc = ENOMEM;
12622         goto bxe_nic_load_error0;
12623     }
12624 
12625     if (bxe_alloc_fw_stats_mem(sc) != 0) {
12626         sc->state = BXE_STATE_CLOSED;
12627         rc = ENOMEM;
12628         goto bxe_nic_load_error0;
12629     }
12630 
12631     if (IS_PF(sc)) {
12632         /* set pf load just before approaching the MCP */
12633         bxe_set_pf_load(sc);
12634 
12635         /* if MCP exists send load request and analyze response */
12636         if (!BXE_NOMCP(sc)) {
12637             /* attempt to load pf */
12638             if (bxe_nic_load_request(sc, &load_code) != 0) {
12639                 sc->state = BXE_STATE_CLOSED;
12640                 rc = ENXIO;
12641                 goto bxe_nic_load_error1;
12642             }
12643 
12644             /* what did the MCP say? */
12645             if (bxe_nic_load_analyze_req(sc, load_code) != 0) {
12646                 bxe_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0);
12647                 sc->state = BXE_STATE_CLOSED;
12648                 rc = ENXIO;
12649                 goto bxe_nic_load_error2;
12650             }
12651         } else {
12652             BLOGI(sc, "Device has no MCP!\n");
12653             load_code = bxe_nic_load_no_mcp(sc);
12654         }
12655 
12656         /* mark PMF if applicable */
12657         bxe_nic_load_pmf(sc, load_code);
12658 
12659         /* Init Function state controlling object */
12660         bxe_init_func_obj(sc);
12661 
12662         /* Initialize HW */
12663         if (bxe_init_hw(sc, load_code) != 0) {
12664             BLOGE(sc, "HW init failed\n");
12665             bxe_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0);
12666             sc->state = BXE_STATE_CLOSED;
12667             rc = ENXIO;
12668             goto bxe_nic_load_error2;
12669         }
12670     }
12671 
12672     /* set ALWAYS_ALIVE bit in shmem */
12673     sc->fw_drv_pulse_wr_seq |= DRV_PULSE_ALWAYS_ALIVE;
12674     bxe_drv_pulse(sc);
12675     sc->flags |= BXE_NO_PULSE;
12676 
12677     /* attach interrupts */
12678     if (bxe_interrupt_attach(sc) != 0) {
12679         sc->state = BXE_STATE_CLOSED;
12680         rc = ENXIO;
12681         goto bxe_nic_load_error2;
12682     }
12683 
12684     bxe_nic_init(sc, load_code);
12685 
12686     /* Init per-function objects */
12687     if (IS_PF(sc)) {
12688         bxe_init_objs(sc);
12689         // XXX bxe_iov_nic_init(sc);
12690 
12691         /* set AFEX default VLAN tag to an invalid value */
12692         sc->devinfo.mf_info.afex_def_vlan_tag = -1;
12693         // XXX bxe_nic_load_afex_dcc(sc, load_code);
12694 
12695         sc->state = BXE_STATE_OPENING_WAITING_PORT;
12696         rc = bxe_func_start(sc);
12697         if (rc) {
12698             BLOGE(sc, "Function start failed! rc = %d\n", rc);
12699             bxe_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0);
12700             sc->state = BXE_STATE_ERROR;
12701             goto bxe_nic_load_error3;
12702         }
12703 
12704         /* send LOAD_DONE command to MCP */
12705         if (!BXE_NOMCP(sc)) {
12706             load_code = bxe_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0);
12707             if (!load_code) {
12708                 BLOGE(sc, "MCP response failure, aborting\n");
12709                 sc->state = BXE_STATE_ERROR;
12710                 rc = ENXIO;
12711                 goto bxe_nic_load_error3;
12712             }
12713         }
12714 
12715         rc = bxe_setup_leading(sc);
12716         if (rc) {
12717             BLOGE(sc, "Setup leading failed! rc = %d\n", rc);
12718             sc->state = BXE_STATE_ERROR;
12719             goto bxe_nic_load_error3;
12720         }
12721 
12722         FOR_EACH_NONDEFAULT_ETH_QUEUE(sc, i) {
12723             rc = bxe_setup_queue(sc, &sc->fp[i], FALSE);
12724             if (rc) {
12725                 BLOGE(sc, "Queue(%d) setup failed rc = %d\n", i, rc);
12726                 sc->state = BXE_STATE_ERROR;
12727                 goto bxe_nic_load_error3;
12728             }
12729         }
12730 
12731         rc = bxe_init_rss_pf(sc);
12732         if (rc) {
12733             BLOGE(sc, "PF RSS init failed\n");
12734             sc->state = BXE_STATE_ERROR;
12735             goto bxe_nic_load_error3;
12736         }
12737     }
12738     /* XXX VF */
12739 
12740     /* now when Clients are configured we are ready to work */
12741     sc->state = BXE_STATE_OPEN;
12742 
12743     /* Configure a ucast MAC */
12744     if (IS_PF(sc)) {
12745         rc = bxe_set_eth_mac(sc, TRUE);
12746     }
12747     if (rc) {
12748         BLOGE(sc, "Setting Ethernet MAC failed rc = %d\n", rc);
12749         sc->state = BXE_STATE_ERROR;
12750         goto bxe_nic_load_error3;
12751     }
12752 
12753     if (sc->port.pmf) {
12754         rc = bxe_initial_phy_init(sc, /* XXX load_mode */LOAD_OPEN);
12755         if (rc) {
12756             sc->state = BXE_STATE_ERROR;
12757             goto bxe_nic_load_error3;
12758         }
12759     }
12760 
12761     sc->link_params.feature_config_flags &=
12762         ~ELINK_FEATURE_CONFIG_BOOT_FROM_SAN;
12763 
12764     /* start fast path */
12765 
12766     /* Initialize Rx filter */
12767     bxe_set_rx_mode(sc);
12768 
12769     /* start the Tx */
12770     switch (/* XXX load_mode */LOAD_OPEN) {
12771     case LOAD_NORMAL:
12772     case LOAD_OPEN:
12773         break;
12774 
12775     case LOAD_DIAG:
12776     case LOAD_LOOPBACK_EXT:
12777         sc->state = BXE_STATE_DIAG;
12778         break;
12779 
12780     default:
12781         break;
12782     }
12783 
12784     if (sc->port.pmf) {
12785         bxe_update_drv_flags(sc, 1 << DRV_FLAGS_PORT_MASK, 0);
12786     } else {
12787         bxe_link_status_update(sc);
12788     }
12789 
12790     /* start the periodic timer callout */
12791     bxe_periodic_start(sc);
12792 
12793     if (IS_PF(sc) && SHMEM2_HAS(sc, drv_capabilities_flag)) {
12794         /* mark driver is loaded in shmem2 */
12795         val = SHMEM2_RD(sc, drv_capabilities_flag[SC_FW_MB_IDX(sc)]);
12796         SHMEM2_WR(sc, drv_capabilities_flag[SC_FW_MB_IDX(sc)],
12797                   (val |
12798                    DRV_FLAGS_CAPABILITIES_LOADED_SUPPORTED |
12799                    DRV_FLAGS_CAPABILITIES_LOADED_L2));
12800     }
12801 
12802     /* wait for all pending SP commands to complete */
12803     if (IS_PF(sc) && !bxe_wait_sp_comp(sc, ~0x0UL)) {
12804         BLOGE(sc, "Timeout waiting for all SPs to complete!\n");
12805         bxe_periodic_stop(sc);
12806         bxe_nic_unload(sc, UNLOAD_CLOSE, FALSE);
12807         return (ENXIO);
12808     }
12809 
12810     /* Tell the stack the driver is running! */
12811     if_setdrvflags(sc->ifp, IFF_DRV_RUNNING);
12812 
12813     BLOGD(sc, DBG_LOAD, "NIC successfully loaded\n");
12814 
12815     return (0);
12816 
12817 bxe_nic_load_error3:
12818 
12819     if (IS_PF(sc)) {
12820         bxe_int_disable_sync(sc, 1);
12821 
12822         /* clean out queued objects */
12823         bxe_squeeze_objects(sc);
12824     }
12825 
12826     bxe_interrupt_detach(sc);
12827 
12828 bxe_nic_load_error2:
12829 
12830     if (IS_PF(sc) && !BXE_NOMCP(sc)) {
12831         bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP, 0);
12832         bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_DONE, 0);
12833     }
12834 
12835     sc->port.pmf = 0;
12836 
12837 bxe_nic_load_error1:
12838 
12839     /* clear pf_load status, as it was already set */
12840     if (IS_PF(sc)) {
12841         bxe_clear_pf_load(sc);
12842     }
12843 
12844 bxe_nic_load_error0:
12845 
12846     bxe_free_fw_stats_mem(sc);
12847     bxe_free_fp_buffers(sc);
12848     bxe_free_mem(sc);
12849 
12850     return (rc);
12851 }
12852 
12853 static int
12854 bxe_init_locked(struct bxe_softc *sc)
12855 {
12856     int other_engine = SC_PATH(sc) ? 0 : 1;
12857     uint8_t other_load_status, load_status;
12858     uint8_t global = FALSE;
12859     int rc;
12860 
12861     BXE_CORE_LOCK_ASSERT(sc);
12862 
12863     /* check if the driver is already running */
12864     if (if_getdrvflags(sc->ifp) & IFF_DRV_RUNNING) {
12865         BLOGD(sc, DBG_LOAD, "Init called while driver is running!\n");
12866         return (0);
12867     }
12868 
12869     if((sc->state == BXE_STATE_ERROR) &&
12870         (sc->recovery_state == BXE_RECOVERY_FAILED)) {
12871         BLOGE(sc, "Initialization not done, "
12872                   "as previous recovery failed."
12873                   "Reboot/Power-cycle the system\n" );
12874         return (ENXIO);
12875     }
12876 
12877 
12878     bxe_set_power_state(sc, PCI_PM_D0);
12879 
12880     /*
12881      * If parity occurred during the unload, then attentions and/or
12882      * RECOVERY_IN_PROGRES may still be set. If so we want the first function
12883      * loaded on the current engine to complete the recovery. Parity recovery
12884      * is only relevant for PF driver.
12885      */
12886     if (IS_PF(sc)) {
12887         other_load_status = bxe_get_load_status(sc, other_engine);
12888         load_status = bxe_get_load_status(sc, SC_PATH(sc));
12889 
12890         if (!bxe_reset_is_done(sc, SC_PATH(sc)) ||
12891             bxe_chk_parity_attn(sc, &global, TRUE)) {
12892             do {
12893                 /*
12894                  * If there are attentions and they are in global blocks, set
12895                  * the GLOBAL_RESET bit regardless whether it will be this
12896                  * function that will complete the recovery or not.
12897                  */
12898                 if (global) {
12899                     bxe_set_reset_global(sc);
12900                 }
12901 
12902                 /*
12903                  * Only the first function on the current engine should try
12904                  * to recover in open. In case of attentions in global blocks
12905                  * only the first in the chip should try to recover.
12906                  */
12907                 if ((!load_status && (!global || !other_load_status)) &&
12908                     bxe_trylock_leader_lock(sc) && !bxe_leader_reset(sc)) {
12909                     BLOGI(sc, "Recovered during init\n");
12910                     break;
12911                 }
12912 
12913                 /* recovery has failed... */
12914                 bxe_set_power_state(sc, PCI_PM_D3hot);
12915                 sc->recovery_state = BXE_RECOVERY_FAILED;
12916 
12917                 BLOGE(sc, "Recovery flow hasn't properly "
12918                           "completed yet, try again later. "
12919                           "If you still see this message after a "
12920                           "few retries then power cycle is required.\n");
12921 
12922                 rc = ENXIO;
12923                 goto bxe_init_locked_done;
12924             } while (0);
12925         }
12926     }
12927 
12928     sc->recovery_state = BXE_RECOVERY_DONE;
12929 
12930     rc = bxe_nic_load(sc, LOAD_OPEN);
12931 
12932 bxe_init_locked_done:
12933 
12934     if (rc) {
12935         /* Tell the stack the driver is NOT running! */
12936         BLOGE(sc, "Initialization failed, "
12937                   "stack notified driver is NOT running!\n");
12938 	if_setdrvflagbits(sc->ifp, 0, IFF_DRV_RUNNING);
12939     }
12940 
12941     return (rc);
12942 }
12943 
12944 static int
12945 bxe_stop_locked(struct bxe_softc *sc)
12946 {
12947     BXE_CORE_LOCK_ASSERT(sc);
12948     return (bxe_nic_unload(sc, UNLOAD_NORMAL, TRUE));
12949 }
12950 
12951 /*
12952  * Handles controller initialization when called from an unlocked routine.
12953  * ifconfig calls this function.
12954  *
12955  * Returns:
12956  *   void
12957  */
12958 static void
12959 bxe_init(void *xsc)
12960 {
12961     struct bxe_softc *sc = (struct bxe_softc *)xsc;
12962 
12963     BXE_CORE_LOCK(sc);
12964     bxe_init_locked(sc);
12965     BXE_CORE_UNLOCK(sc);
12966 }
12967 
12968 static void
12969 bxe_init_ifnet(struct bxe_softc *sc)
12970 {
12971     if_t ifp;
12972     int capabilities;
12973 
12974     /* ifconfig entrypoint for media type/status reporting */
12975     ifmedia_init(&sc->ifmedia, IFM_IMASK,
12976                  bxe_ifmedia_update,
12977                  bxe_ifmedia_status);
12978 
12979     /* set the default interface values */
12980     ifmedia_add(&sc->ifmedia, (IFM_ETHER | IFM_FDX | sc->media), 0, NULL);
12981     ifmedia_add(&sc->ifmedia, (IFM_ETHER | IFM_AUTO), 0, NULL);
12982     ifmedia_set(&sc->ifmedia, (IFM_ETHER | IFM_AUTO));
12983 
12984     sc->ifmedia.ifm_media = sc->ifmedia.ifm_cur->ifm_media; /* XXX ? */
12985 	BLOGI(sc, "IFMEDIA flags : %x\n", sc->ifmedia.ifm_media);
12986 
12987     /* allocate the ifnet structure */
12988     ifp = if_gethandle(IFT_ETHER);
12989 
12990     if_setsoftc(ifp, sc);
12991     if_initname(ifp, device_get_name(sc->dev), device_get_unit(sc->dev));
12992     if_setflags(ifp, (IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST));
12993     if_setioctlfn(ifp, bxe_ioctl);
12994     if_setstartfn(ifp, bxe_tx_start);
12995     if_setgetcounterfn(ifp, bxe_get_counter);
12996     if_settransmitfn(ifp, bxe_tx_mq_start);
12997     if_setqflushfn(ifp, bxe_mq_flush);
12998     if_setinitfn(ifp, bxe_init);
12999     if_setmtu(ifp, sc->mtu);
13000     if_sethwassist(ifp, (CSUM_IP      |
13001                         CSUM_TCP      |
13002                         CSUM_UDP      |
13003                         CSUM_TSO      |
13004                         CSUM_TCP_IPV6 |
13005                         CSUM_UDP_IPV6));
13006 
13007     capabilities =
13008         (IFCAP_VLAN_MTU       |
13009          IFCAP_VLAN_HWTAGGING |
13010          IFCAP_VLAN_HWTSO     |
13011          IFCAP_VLAN_HWFILTER  |
13012          IFCAP_VLAN_HWCSUM    |
13013          IFCAP_HWCSUM         |
13014          IFCAP_JUMBO_MTU      |
13015          IFCAP_LRO            |
13016          IFCAP_TSO4           |
13017          IFCAP_TSO6           |
13018          IFCAP_WOL_MAGIC);
13019     if_setcapabilitiesbit(ifp, capabilities, 0); /* XXX */
13020     if_setcapenable(ifp, if_getcapabilities(ifp));
13021     if_setbaudrate(ifp, IF_Gbps(10));
13022 /* XXX */
13023     if_setsendqlen(ifp, sc->tx_ring_size);
13024     if_setsendqready(ifp);
13025 /* XXX */
13026 
13027     sc->ifp = ifp;
13028 
13029     /* attach to the Ethernet interface list */
13030     ether_ifattach(ifp, sc->link_params.mac_addr);
13031 
13032     /* Attach driver debugnet methods. */
13033     DEBUGNET_SET(ifp, bxe);
13034 }
13035 
13036 static void
13037 bxe_deallocate_bars(struct bxe_softc *sc)
13038 {
13039     int i;
13040 
13041     for (i = 0; i < MAX_BARS; i++) {
13042         if (sc->bar[i].resource != NULL) {
13043             bus_release_resource(sc->dev,
13044                                  SYS_RES_MEMORY,
13045                                  sc->bar[i].rid,
13046                                  sc->bar[i].resource);
13047             BLOGD(sc, DBG_LOAD, "Released PCI BAR%d [%02x] memory\n",
13048                   i, PCIR_BAR(i));
13049         }
13050     }
13051 }
13052 
13053 static int
13054 bxe_allocate_bars(struct bxe_softc *sc)
13055 {
13056     u_int flags;
13057     int i;
13058 
13059     memset(sc->bar, 0, sizeof(sc->bar));
13060 
13061     for (i = 0; i < MAX_BARS; i++) {
13062 
13063         /* memory resources reside at BARs 0, 2, 4 */
13064         /* Run `pciconf -lb` to see mappings */
13065         if ((i != 0) && (i != 2) && (i != 4)) {
13066             continue;
13067         }
13068 
13069         sc->bar[i].rid = PCIR_BAR(i);
13070 
13071         flags = RF_ACTIVE;
13072         if (i == 0) {
13073             flags |= RF_SHAREABLE;
13074         }
13075 
13076         if ((sc->bar[i].resource =
13077              bus_alloc_resource_any(sc->dev,
13078                                     SYS_RES_MEMORY,
13079                                     &sc->bar[i].rid,
13080                                     flags)) == NULL) {
13081             return (0);
13082         }
13083 
13084         sc->bar[i].tag    = rman_get_bustag(sc->bar[i].resource);
13085         sc->bar[i].handle = rman_get_bushandle(sc->bar[i].resource);
13086         sc->bar[i].kva    = (vm_offset_t)rman_get_virtual(sc->bar[i].resource);
13087 
13088         BLOGI(sc, "PCI BAR%d [%02x] memory allocated: %#jx-%#jx (%jd) -> %#jx\n",
13089               i, PCIR_BAR(i),
13090               rman_get_start(sc->bar[i].resource),
13091               rman_get_end(sc->bar[i].resource),
13092               rman_get_size(sc->bar[i].resource),
13093               (uintmax_t)sc->bar[i].kva);
13094     }
13095 
13096     return (0);
13097 }
13098 
13099 static void
13100 bxe_get_function_num(struct bxe_softc *sc)
13101 {
13102     uint32_t val = 0;
13103 
13104     /*
13105      * Read the ME register to get the function number. The ME register
13106      * holds the relative-function number and absolute-function number. The
13107      * absolute-function number appears only in E2 and above. Before that
13108      * these bits always contained zero, therefore we cannot blindly use them.
13109      */
13110 
13111     val = REG_RD(sc, BAR_ME_REGISTER);
13112 
13113     sc->pfunc_rel =
13114         (uint8_t)((val & ME_REG_PF_NUM) >> ME_REG_PF_NUM_SHIFT);
13115     sc->path_id =
13116         (uint8_t)((val & ME_REG_ABS_PF_NUM) >> ME_REG_ABS_PF_NUM_SHIFT) & 1;
13117 
13118     if (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) {
13119         sc->pfunc_abs = ((sc->pfunc_rel << 1) | sc->path_id);
13120     } else {
13121         sc->pfunc_abs = (sc->pfunc_rel | sc->path_id);
13122     }
13123 
13124     BLOGD(sc, DBG_LOAD,
13125           "Relative function %d, Absolute function %d, Path %d\n",
13126           sc->pfunc_rel, sc->pfunc_abs, sc->path_id);
13127 }
13128 
13129 static uint32_t
13130 bxe_get_shmem_mf_cfg_base(struct bxe_softc *sc)
13131 {
13132     uint32_t shmem2_size;
13133     uint32_t offset;
13134     uint32_t mf_cfg_offset_value;
13135 
13136     /* Non 57712 */
13137     offset = (SHMEM_RD(sc, func_mb) +
13138               (MAX_FUNC_NUM * sizeof(struct drv_func_mb)));
13139 
13140     /* 57712 plus */
13141     if (sc->devinfo.shmem2_base != 0) {
13142         shmem2_size = SHMEM2_RD(sc, size);
13143         if (shmem2_size > offsetof(struct shmem2_region, mf_cfg_addr)) {
13144             mf_cfg_offset_value = SHMEM2_RD(sc, mf_cfg_addr);
13145             if (SHMEM_MF_CFG_ADDR_NONE != mf_cfg_offset_value) {
13146                 offset = mf_cfg_offset_value;
13147             }
13148         }
13149     }
13150 
13151     return (offset);
13152 }
13153 
13154 static uint32_t
13155 bxe_pcie_capability_read(struct bxe_softc *sc,
13156                          int    reg,
13157                          int    width)
13158 {
13159     int pcie_reg;
13160 
13161     /* ensure PCIe capability is enabled */
13162     if (pci_find_cap(sc->dev, PCIY_EXPRESS, &pcie_reg) == 0) {
13163         if (pcie_reg != 0) {
13164             BLOGD(sc, DBG_LOAD, "PCIe capability at 0x%04x\n", pcie_reg);
13165             return (pci_read_config(sc->dev, (pcie_reg + reg), width));
13166         }
13167     }
13168 
13169     BLOGE(sc, "PCIe capability NOT FOUND!!!\n");
13170 
13171     return (0);
13172 }
13173 
13174 static uint8_t
13175 bxe_is_pcie_pending(struct bxe_softc *sc)
13176 {
13177     return (bxe_pcie_capability_read(sc, PCIER_DEVICE_STA, 2) &
13178             PCIEM_STA_TRANSACTION_PND);
13179 }
13180 
13181 /*
13182  * Walk the PCI capabiites list for the device to find what features are
13183  * supported. These capabilites may be enabled/disabled by firmware so it's
13184  * best to walk the list rather than make assumptions.
13185  */
13186 static void
13187 bxe_probe_pci_caps(struct bxe_softc *sc)
13188 {
13189     uint16_t link_status;
13190     int reg;
13191 
13192     /* check if PCI Power Management is enabled */
13193     if (pci_find_cap(sc->dev, PCIY_PMG, &reg) == 0) {
13194         if (reg != 0) {
13195             BLOGD(sc, DBG_LOAD, "Found PM capability at 0x%04x\n", reg);
13196 
13197             sc->devinfo.pcie_cap_flags |= BXE_PM_CAPABLE_FLAG;
13198             sc->devinfo.pcie_pm_cap_reg = (uint16_t)reg;
13199         }
13200     }
13201 
13202     link_status = bxe_pcie_capability_read(sc, PCIER_LINK_STA, 2);
13203 
13204     /* handle PCIe 2.0 workarounds for 57710 */
13205     if (CHIP_IS_E1(sc)) {
13206         /* workaround for 57710 errata E4_57710_27462 */
13207         sc->devinfo.pcie_link_speed =
13208             (REG_RD(sc, 0x3d04) & (1 << 24)) ? 2 : 1;
13209 
13210         /* workaround for 57710 errata E4_57710_27488 */
13211         sc->devinfo.pcie_link_width =
13212             ((link_status & PCIEM_LINK_STA_WIDTH) >> 4);
13213         if (sc->devinfo.pcie_link_speed > 1) {
13214             sc->devinfo.pcie_link_width =
13215                 ((link_status & PCIEM_LINK_STA_WIDTH) >> 4) >> 1;
13216         }
13217     } else {
13218         sc->devinfo.pcie_link_speed =
13219             (link_status & PCIEM_LINK_STA_SPEED);
13220         sc->devinfo.pcie_link_width =
13221             ((link_status & PCIEM_LINK_STA_WIDTH) >> 4);
13222     }
13223 
13224     BLOGD(sc, DBG_LOAD, "PCIe link speed=%d width=%d\n",
13225           sc->devinfo.pcie_link_speed, sc->devinfo.pcie_link_width);
13226 
13227     sc->devinfo.pcie_cap_flags |= BXE_PCIE_CAPABLE_FLAG;
13228     sc->devinfo.pcie_pcie_cap_reg = (uint16_t)reg;
13229 
13230     /* check if MSI capability is enabled */
13231     if (pci_find_cap(sc->dev, PCIY_MSI, &reg) == 0) {
13232         if (reg != 0) {
13233             BLOGD(sc, DBG_LOAD, "Found MSI capability at 0x%04x\n", reg);
13234 
13235             sc->devinfo.pcie_cap_flags |= BXE_MSI_CAPABLE_FLAG;
13236             sc->devinfo.pcie_msi_cap_reg = (uint16_t)reg;
13237         }
13238     }
13239 
13240     /* check if MSI-X capability is enabled */
13241     if (pci_find_cap(sc->dev, PCIY_MSIX, &reg) == 0) {
13242         if (reg != 0) {
13243             BLOGD(sc, DBG_LOAD, "Found MSI-X capability at 0x%04x\n", reg);
13244 
13245             sc->devinfo.pcie_cap_flags |= BXE_MSIX_CAPABLE_FLAG;
13246             sc->devinfo.pcie_msix_cap_reg = (uint16_t)reg;
13247         }
13248     }
13249 }
13250 
13251 static int
13252 bxe_get_shmem_mf_cfg_info_sd(struct bxe_softc *sc)
13253 {
13254     struct bxe_mf_info *mf_info = &sc->devinfo.mf_info;
13255     uint32_t val;
13256 
13257     /* get the outer vlan if we're in switch-dependent mode */
13258 
13259     val = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].e1hov_tag);
13260     mf_info->ext_id = (uint16_t)val;
13261 
13262     mf_info->multi_vnics_mode = 1;
13263 
13264     if (!VALID_OVLAN(mf_info->ext_id)) {
13265         BLOGE(sc, "Invalid VLAN (%d)\n", mf_info->ext_id);
13266         return (1);
13267     }
13268 
13269     /* get the capabilities */
13270     if ((mf_info->mf_config[SC_VN(sc)] & FUNC_MF_CFG_PROTOCOL_MASK) ==
13271         FUNC_MF_CFG_PROTOCOL_ISCSI) {
13272         mf_info->mf_protos_supported |= MF_PROTO_SUPPORT_ISCSI;
13273     } else if ((mf_info->mf_config[SC_VN(sc)] & FUNC_MF_CFG_PROTOCOL_MASK) ==
13274                FUNC_MF_CFG_PROTOCOL_FCOE) {
13275         mf_info->mf_protos_supported |= MF_PROTO_SUPPORT_FCOE;
13276     } else {
13277         mf_info->mf_protos_supported |= MF_PROTO_SUPPORT_ETHERNET;
13278     }
13279 
13280     mf_info->vnics_per_port =
13281         (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) ? 2 : 4;
13282 
13283     return (0);
13284 }
13285 
13286 static uint32_t
13287 bxe_get_shmem_ext_proto_support_flags(struct bxe_softc *sc)
13288 {
13289     uint32_t retval = 0;
13290     uint32_t val;
13291 
13292     val = MFCFG_RD(sc, func_ext_config[SC_ABS_FUNC(sc)].func_cfg);
13293 
13294     if (val & MACP_FUNC_CFG_FLAGS_ENABLED) {
13295         if (val & MACP_FUNC_CFG_FLAGS_ETHERNET) {
13296             retval |= MF_PROTO_SUPPORT_ETHERNET;
13297         }
13298         if (val & MACP_FUNC_CFG_FLAGS_ISCSI_OFFLOAD) {
13299             retval |= MF_PROTO_SUPPORT_ISCSI;
13300         }
13301         if (val & MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD) {
13302             retval |= MF_PROTO_SUPPORT_FCOE;
13303         }
13304     }
13305 
13306     return (retval);
13307 }
13308 
13309 static int
13310 bxe_get_shmem_mf_cfg_info_si(struct bxe_softc *sc)
13311 {
13312     struct bxe_mf_info *mf_info = &sc->devinfo.mf_info;
13313     uint32_t val;
13314 
13315     /*
13316      * There is no outer vlan if we're in switch-independent mode.
13317      * If the mac is valid then assume multi-function.
13318      */
13319 
13320     val = MFCFG_RD(sc, func_ext_config[SC_ABS_FUNC(sc)].func_cfg);
13321 
13322     mf_info->multi_vnics_mode = ((val & MACP_FUNC_CFG_FLAGS_MASK) != 0);
13323 
13324     mf_info->mf_protos_supported = bxe_get_shmem_ext_proto_support_flags(sc);
13325 
13326     mf_info->vnics_per_port =
13327         (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) ? 2 : 4;
13328 
13329     return (0);
13330 }
13331 
13332 static int
13333 bxe_get_shmem_mf_cfg_info_niv(struct bxe_softc *sc)
13334 {
13335     struct bxe_mf_info *mf_info = &sc->devinfo.mf_info;
13336     uint32_t e1hov_tag;
13337     uint32_t func_config;
13338     uint32_t niv_config;
13339 
13340     mf_info->multi_vnics_mode = 1;
13341 
13342     e1hov_tag   = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].e1hov_tag);
13343     func_config = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].config);
13344     niv_config  = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].afex_config);
13345 
13346     mf_info->ext_id =
13347         (uint16_t)((e1hov_tag & FUNC_MF_CFG_E1HOV_TAG_MASK) >>
13348                    FUNC_MF_CFG_E1HOV_TAG_SHIFT);
13349 
13350     mf_info->default_vlan =
13351         (uint16_t)((e1hov_tag & FUNC_MF_CFG_AFEX_VLAN_MASK) >>
13352                    FUNC_MF_CFG_AFEX_VLAN_SHIFT);
13353 
13354     mf_info->niv_allowed_priorities =
13355         (uint8_t)((niv_config & FUNC_MF_CFG_AFEX_COS_FILTER_MASK) >>
13356                   FUNC_MF_CFG_AFEX_COS_FILTER_SHIFT);
13357 
13358     mf_info->niv_default_cos =
13359         (uint8_t)((func_config & FUNC_MF_CFG_TRANSMIT_PRIORITY_MASK) >>
13360                   FUNC_MF_CFG_TRANSMIT_PRIORITY_SHIFT);
13361 
13362     mf_info->afex_vlan_mode =
13363         ((niv_config & FUNC_MF_CFG_AFEX_VLAN_MODE_MASK) >>
13364          FUNC_MF_CFG_AFEX_VLAN_MODE_SHIFT);
13365 
13366     mf_info->niv_mba_enabled =
13367         ((niv_config & FUNC_MF_CFG_AFEX_MBA_ENABLED_MASK) >>
13368          FUNC_MF_CFG_AFEX_MBA_ENABLED_SHIFT);
13369 
13370     mf_info->mf_protos_supported = bxe_get_shmem_ext_proto_support_flags(sc);
13371 
13372     mf_info->vnics_per_port =
13373         (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) ? 2 : 4;
13374 
13375     return (0);
13376 }
13377 
13378 static int
13379 bxe_check_valid_mf_cfg(struct bxe_softc *sc)
13380 {
13381     struct bxe_mf_info *mf_info = &sc->devinfo.mf_info;
13382     uint32_t mf_cfg1;
13383     uint32_t mf_cfg2;
13384     uint32_t ovlan1;
13385     uint32_t ovlan2;
13386     uint8_t i, j;
13387 
13388     BLOGD(sc, DBG_LOAD, "MF config parameters for function %d\n",
13389           SC_PORT(sc));
13390     BLOGD(sc, DBG_LOAD, "\tmf_config=0x%x\n",
13391           mf_info->mf_config[SC_VN(sc)]);
13392     BLOGD(sc, DBG_LOAD, "\tmulti_vnics_mode=%d\n",
13393           mf_info->multi_vnics_mode);
13394     BLOGD(sc, DBG_LOAD, "\tvnics_per_port=%d\n",
13395           mf_info->vnics_per_port);
13396     BLOGD(sc, DBG_LOAD, "\tovlan/vifid=%d\n",
13397           mf_info->ext_id);
13398     BLOGD(sc, DBG_LOAD, "\tmin_bw=%d/%d/%d/%d\n",
13399           mf_info->min_bw[0], mf_info->min_bw[1],
13400           mf_info->min_bw[2], mf_info->min_bw[3]);
13401     BLOGD(sc, DBG_LOAD, "\tmax_bw=%d/%d/%d/%d\n",
13402           mf_info->max_bw[0], mf_info->max_bw[1],
13403           mf_info->max_bw[2], mf_info->max_bw[3]);
13404     BLOGD(sc, DBG_LOAD, "\tmac_addr: %s\n",
13405           sc->mac_addr_str);
13406 
13407     /* various MF mode sanity checks... */
13408 
13409     if (mf_info->mf_config[SC_VN(sc)] & FUNC_MF_CFG_FUNC_HIDE) {
13410         BLOGE(sc, "Enumerated function %d is marked as hidden\n",
13411               SC_PORT(sc));
13412         return (1);
13413     }
13414 
13415     if ((mf_info->vnics_per_port > 1) && !mf_info->multi_vnics_mode) {
13416         BLOGE(sc, "vnics_per_port=%d multi_vnics_mode=%d\n",
13417               mf_info->vnics_per_port, mf_info->multi_vnics_mode);
13418         return (1);
13419     }
13420 
13421     if (mf_info->mf_mode == MULTI_FUNCTION_SD) {
13422         /* vnic id > 0 must have valid ovlan in switch-dependent mode */
13423         if ((SC_VN(sc) > 0) && !VALID_OVLAN(OVLAN(sc))) {
13424             BLOGE(sc, "mf_mode=SD vnic_id=%d ovlan=%d\n",
13425                   SC_VN(sc), OVLAN(sc));
13426             return (1);
13427         }
13428 
13429         if (!VALID_OVLAN(OVLAN(sc)) && mf_info->multi_vnics_mode) {
13430             BLOGE(sc, "mf_mode=SD multi_vnics_mode=%d ovlan=%d\n",
13431                   mf_info->multi_vnics_mode, OVLAN(sc));
13432             return (1);
13433         }
13434 
13435         /*
13436          * Verify all functions are either MF or SF mode. If MF, make sure
13437          * sure that all non-hidden functions have a valid ovlan. If SF,
13438          * make sure that all non-hidden functions have an invalid ovlan.
13439          */
13440         FOREACH_ABS_FUNC_IN_PORT(sc, i) {
13441             mf_cfg1 = MFCFG_RD(sc, func_mf_config[i].config);
13442             ovlan1  = MFCFG_RD(sc, func_mf_config[i].e1hov_tag);
13443             if (!(mf_cfg1 & FUNC_MF_CFG_FUNC_HIDE) &&
13444                 (((mf_info->multi_vnics_mode) && !VALID_OVLAN(ovlan1)) ||
13445                  ((!mf_info->multi_vnics_mode) && VALID_OVLAN(ovlan1)))) {
13446                 BLOGE(sc, "mf_mode=SD function %d MF config "
13447                           "mismatch, multi_vnics_mode=%d ovlan=%d\n",
13448                       i, mf_info->multi_vnics_mode, ovlan1);
13449                 return (1);
13450             }
13451         }
13452 
13453         /* Verify all funcs on the same port each have a different ovlan. */
13454         FOREACH_ABS_FUNC_IN_PORT(sc, i) {
13455             mf_cfg1 = MFCFG_RD(sc, func_mf_config[i].config);
13456             ovlan1  = MFCFG_RD(sc, func_mf_config[i].e1hov_tag);
13457             /* iterate from the next function on the port to the max func */
13458             for (j = i + 2; j < MAX_FUNC_NUM; j += 2) {
13459                 mf_cfg2 = MFCFG_RD(sc, func_mf_config[j].config);
13460                 ovlan2  = MFCFG_RD(sc, func_mf_config[j].e1hov_tag);
13461                 if (!(mf_cfg1 & FUNC_MF_CFG_FUNC_HIDE) &&
13462                     VALID_OVLAN(ovlan1) &&
13463                     !(mf_cfg2 & FUNC_MF_CFG_FUNC_HIDE) &&
13464                     VALID_OVLAN(ovlan2) &&
13465                     (ovlan1 == ovlan2)) {
13466                     BLOGE(sc, "mf_mode=SD functions %d and %d "
13467                               "have the same ovlan (%d)\n",
13468                           i, j, ovlan1);
13469                     return (1);
13470                 }
13471             }
13472         }
13473     } /* MULTI_FUNCTION_SD */
13474 
13475     return (0);
13476 }
13477 
13478 static int
13479 bxe_get_mf_cfg_info(struct bxe_softc *sc)
13480 {
13481     struct bxe_mf_info *mf_info = &sc->devinfo.mf_info;
13482     uint32_t val, mac_upper;
13483     uint8_t i, vnic;
13484 
13485     /* initialize mf_info defaults */
13486     mf_info->vnics_per_port   = 1;
13487     mf_info->multi_vnics_mode = FALSE;
13488     mf_info->path_has_ovlan   = FALSE;
13489     mf_info->mf_mode          = SINGLE_FUNCTION;
13490 
13491     if (!CHIP_IS_MF_CAP(sc)) {
13492         return (0);
13493     }
13494 
13495     if (sc->devinfo.mf_cfg_base == SHMEM_MF_CFG_ADDR_NONE) {
13496         BLOGE(sc, "Invalid mf_cfg_base!\n");
13497         return (1);
13498     }
13499 
13500     /* get the MF mode (switch dependent / independent / single-function) */
13501 
13502     val = SHMEM_RD(sc, dev_info.shared_feature_config.config);
13503 
13504     switch (val & SHARED_FEAT_CFG_FORCE_SF_MODE_MASK)
13505     {
13506     case SHARED_FEAT_CFG_FORCE_SF_MODE_SWITCH_INDEPT:
13507 
13508         mac_upper = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].mac_upper);
13509 
13510         /* check for legal upper mac bytes */
13511         if (mac_upper != FUNC_MF_CFG_UPPERMAC_DEFAULT) {
13512             mf_info->mf_mode = MULTI_FUNCTION_SI;
13513         } else {
13514             BLOGE(sc, "Invalid config for Switch Independent mode\n");
13515         }
13516 
13517         break;
13518 
13519     case SHARED_FEAT_CFG_FORCE_SF_MODE_MF_ALLOWED:
13520     case SHARED_FEAT_CFG_FORCE_SF_MODE_SPIO4:
13521 
13522         /* get outer vlan configuration */
13523         val = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].e1hov_tag);
13524 
13525         if ((val & FUNC_MF_CFG_E1HOV_TAG_MASK) !=
13526             FUNC_MF_CFG_E1HOV_TAG_DEFAULT) {
13527             mf_info->mf_mode = MULTI_FUNCTION_SD;
13528         } else {
13529             BLOGE(sc, "Invalid config for Switch Dependent mode\n");
13530         }
13531 
13532         break;
13533 
13534     case SHARED_FEAT_CFG_FORCE_SF_MODE_FORCED_SF:
13535 
13536         /* not in MF mode, vnics_per_port=1 and multi_vnics_mode=FALSE */
13537         return (0);
13538 
13539     case SHARED_FEAT_CFG_FORCE_SF_MODE_AFEX_MODE:
13540 
13541         /*
13542          * Mark MF mode as NIV if MCP version includes NPAR-SD support
13543          * and the MAC address is valid.
13544          */
13545         mac_upper = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].mac_upper);
13546 
13547         if ((SHMEM2_HAS(sc, afex_driver_support)) &&
13548             (mac_upper != FUNC_MF_CFG_UPPERMAC_DEFAULT)) {
13549             mf_info->mf_mode = MULTI_FUNCTION_AFEX;
13550         } else {
13551             BLOGE(sc, "Invalid config for AFEX mode\n");
13552         }
13553 
13554         break;
13555 
13556     default:
13557 
13558         BLOGE(sc, "Unknown MF mode (0x%08x)\n",
13559               (val & SHARED_FEAT_CFG_FORCE_SF_MODE_MASK));
13560 
13561         return (1);
13562     }
13563 
13564     /* set path mf_mode (which could be different than function mf_mode) */
13565     if (mf_info->mf_mode == MULTI_FUNCTION_SD) {
13566         mf_info->path_has_ovlan = TRUE;
13567     } else if (mf_info->mf_mode == SINGLE_FUNCTION) {
13568         /*
13569          * Decide on path multi vnics mode. If we're not in MF mode and in
13570          * 4-port mode, this is good enough to check vnic-0 of the other port
13571          * on the same path
13572          */
13573         if (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) {
13574             uint8_t other_port = !(PORT_ID(sc) & 1);
13575             uint8_t abs_func_other_port = (SC_PATH(sc) + (2 * other_port));
13576 
13577             val = MFCFG_RD(sc, func_mf_config[abs_func_other_port].e1hov_tag);
13578 
13579             mf_info->path_has_ovlan = VALID_OVLAN((uint16_t)val) ? 1 : 0;
13580         }
13581     }
13582 
13583     if (mf_info->mf_mode == SINGLE_FUNCTION) {
13584         /* invalid MF config */
13585         if (SC_VN(sc) >= 1) {
13586             BLOGE(sc, "VNIC ID >= 1 in SF mode\n");
13587             return (1);
13588         }
13589 
13590         return (0);
13591     }
13592 
13593     /* get the MF configuration */
13594     mf_info->mf_config[SC_VN(sc)] =
13595         MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].config);
13596 
13597     switch(mf_info->mf_mode)
13598     {
13599     case MULTI_FUNCTION_SD:
13600 
13601         bxe_get_shmem_mf_cfg_info_sd(sc);
13602         break;
13603 
13604     case MULTI_FUNCTION_SI:
13605 
13606         bxe_get_shmem_mf_cfg_info_si(sc);
13607         break;
13608 
13609     case MULTI_FUNCTION_AFEX:
13610 
13611         bxe_get_shmem_mf_cfg_info_niv(sc);
13612         break;
13613 
13614     default:
13615 
13616         BLOGE(sc, "Get MF config failed (mf_mode=0x%08x)\n",
13617               mf_info->mf_mode);
13618         return (1);
13619     }
13620 
13621     /* get the congestion management parameters */
13622 
13623     vnic = 0;
13624     FOREACH_ABS_FUNC_IN_PORT(sc, i) {
13625         /* get min/max bw */
13626         val = MFCFG_RD(sc, func_mf_config[i].config);
13627         mf_info->min_bw[vnic] =
13628             ((val & FUNC_MF_CFG_MIN_BW_MASK) >> FUNC_MF_CFG_MIN_BW_SHIFT);
13629         mf_info->max_bw[vnic] =
13630             ((val & FUNC_MF_CFG_MAX_BW_MASK) >> FUNC_MF_CFG_MAX_BW_SHIFT);
13631         vnic++;
13632     }
13633 
13634     return (bxe_check_valid_mf_cfg(sc));
13635 }
13636 
13637 static int
13638 bxe_get_shmem_info(struct bxe_softc *sc)
13639 {
13640     int port;
13641     uint32_t mac_hi, mac_lo, val;
13642 
13643     port = SC_PORT(sc);
13644     mac_hi = mac_lo = 0;
13645 
13646     sc->link_params.sc   = sc;
13647     sc->link_params.port = port;
13648 
13649     /* get the hardware config info */
13650     sc->devinfo.hw_config =
13651         SHMEM_RD(sc, dev_info.shared_hw_config.config);
13652     sc->devinfo.hw_config2 =
13653         SHMEM_RD(sc, dev_info.shared_hw_config.config2);
13654 
13655     sc->link_params.hw_led_mode =
13656         ((sc->devinfo.hw_config & SHARED_HW_CFG_LED_MODE_MASK) >>
13657          SHARED_HW_CFG_LED_MODE_SHIFT);
13658 
13659     /* get the port feature config */
13660     sc->port.config =
13661         SHMEM_RD(sc, dev_info.port_feature_config[port].config);
13662 
13663     /* get the link params */
13664     sc->link_params.speed_cap_mask[0] =
13665         SHMEM_RD(sc, dev_info.port_hw_config[port].speed_capability_mask);
13666     sc->link_params.speed_cap_mask[1] =
13667         SHMEM_RD(sc, dev_info.port_hw_config[port].speed_capability_mask2);
13668 
13669     /* get the lane config */
13670     sc->link_params.lane_config =
13671         SHMEM_RD(sc, dev_info.port_hw_config[port].lane_config);
13672 
13673     /* get the link config */
13674     val = SHMEM_RD(sc, dev_info.port_feature_config[port].link_config);
13675     sc->port.link_config[ELINK_INT_PHY] = val;
13676     sc->link_params.switch_cfg = (val & PORT_FEATURE_CONNECTED_SWITCH_MASK);
13677     sc->port.link_config[ELINK_EXT_PHY1] =
13678         SHMEM_RD(sc, dev_info.port_feature_config[port].link_config2);
13679 
13680     /* get the override preemphasis flag and enable it or turn it off */
13681     val = SHMEM_RD(sc, dev_info.shared_feature_config.config);
13682     if (val & SHARED_FEAT_CFG_OVERRIDE_PREEMPHASIS_CFG_ENABLED) {
13683         sc->link_params.feature_config_flags |=
13684             ELINK_FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED;
13685     } else {
13686         sc->link_params.feature_config_flags &=
13687             ~ELINK_FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED;
13688     }
13689 
13690     /* get the initial value of the link params */
13691     sc->link_params.multi_phy_config =
13692         SHMEM_RD(sc, dev_info.port_hw_config[port].multi_phy_config);
13693 
13694     /* get external phy info */
13695     sc->port.ext_phy_config =
13696         SHMEM_RD(sc, dev_info.port_hw_config[port].external_phy_config);
13697 
13698     /* get the multifunction configuration */
13699     bxe_get_mf_cfg_info(sc);
13700 
13701     /* get the mac address */
13702     if (IS_MF(sc)) {
13703         mac_hi = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].mac_upper);
13704         mac_lo = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].mac_lower);
13705     } else {
13706         mac_hi = SHMEM_RD(sc, dev_info.port_hw_config[port].mac_upper);
13707         mac_lo = SHMEM_RD(sc, dev_info.port_hw_config[port].mac_lower);
13708     }
13709 
13710     if ((mac_lo == 0) && (mac_hi == 0)) {
13711         *sc->mac_addr_str = 0;
13712         BLOGE(sc, "No Ethernet address programmed!\n");
13713     } else {
13714         sc->link_params.mac_addr[0] = (uint8_t)(mac_hi >> 8);
13715         sc->link_params.mac_addr[1] = (uint8_t)(mac_hi);
13716         sc->link_params.mac_addr[2] = (uint8_t)(mac_lo >> 24);
13717         sc->link_params.mac_addr[3] = (uint8_t)(mac_lo >> 16);
13718         sc->link_params.mac_addr[4] = (uint8_t)(mac_lo >> 8);
13719         sc->link_params.mac_addr[5] = (uint8_t)(mac_lo);
13720         snprintf(sc->mac_addr_str, sizeof(sc->mac_addr_str),
13721                  "%02x:%02x:%02x:%02x:%02x:%02x",
13722                  sc->link_params.mac_addr[0], sc->link_params.mac_addr[1],
13723                  sc->link_params.mac_addr[2], sc->link_params.mac_addr[3],
13724                  sc->link_params.mac_addr[4], sc->link_params.mac_addr[5]);
13725         BLOGD(sc, DBG_LOAD, "Ethernet address: %s\n", sc->mac_addr_str);
13726     }
13727 
13728     return (0);
13729 }
13730 
13731 static void
13732 bxe_get_tunable_params(struct bxe_softc *sc)
13733 {
13734     /* sanity checks */
13735 
13736     if ((bxe_interrupt_mode != INTR_MODE_INTX) &&
13737         (bxe_interrupt_mode != INTR_MODE_MSI)  &&
13738         (bxe_interrupt_mode != INTR_MODE_MSIX)) {
13739         BLOGW(sc, "invalid interrupt_mode value (%d)\n", bxe_interrupt_mode);
13740         bxe_interrupt_mode = INTR_MODE_MSIX;
13741     }
13742 
13743     if ((bxe_queue_count < 0) || (bxe_queue_count > MAX_RSS_CHAINS)) {
13744         BLOGW(sc, "invalid queue_count value (%d)\n", bxe_queue_count);
13745         bxe_queue_count = 0;
13746     }
13747 
13748     if ((bxe_max_rx_bufs < 1) || (bxe_max_rx_bufs > RX_BD_USABLE)) {
13749         if (bxe_max_rx_bufs == 0) {
13750             bxe_max_rx_bufs = RX_BD_USABLE;
13751         } else {
13752             BLOGW(sc, "invalid max_rx_bufs (%d)\n", bxe_max_rx_bufs);
13753             bxe_max_rx_bufs = 2048;
13754         }
13755     }
13756 
13757     if ((bxe_hc_rx_ticks < 1) || (bxe_hc_rx_ticks > 100)) {
13758         BLOGW(sc, "invalid hc_rx_ticks (%d)\n", bxe_hc_rx_ticks);
13759         bxe_hc_rx_ticks = 25;
13760     }
13761 
13762     if ((bxe_hc_tx_ticks < 1) || (bxe_hc_tx_ticks > 100)) {
13763         BLOGW(sc, "invalid hc_tx_ticks (%d)\n", bxe_hc_tx_ticks);
13764         bxe_hc_tx_ticks = 50;
13765     }
13766 
13767     if (bxe_max_aggregation_size == 0) {
13768         bxe_max_aggregation_size = TPA_AGG_SIZE;
13769     }
13770 
13771     if (bxe_max_aggregation_size > 0xffff) {
13772         BLOGW(sc, "invalid max_aggregation_size (%d)\n",
13773               bxe_max_aggregation_size);
13774         bxe_max_aggregation_size = TPA_AGG_SIZE;
13775     }
13776 
13777     if ((bxe_mrrs < -1) || (bxe_mrrs > 3)) {
13778         BLOGW(sc, "invalid mrrs (%d)\n", bxe_mrrs);
13779         bxe_mrrs = -1;
13780     }
13781 
13782     if ((bxe_autogreeen < 0) || (bxe_autogreeen > 2)) {
13783         BLOGW(sc, "invalid autogreeen (%d)\n", bxe_autogreeen);
13784         bxe_autogreeen = 0;
13785     }
13786 
13787     if ((bxe_udp_rss < 0) || (bxe_udp_rss > 1)) {
13788         BLOGW(sc, "invalid udp_rss (%d)\n", bxe_udp_rss);
13789         bxe_udp_rss = 0;
13790     }
13791 
13792     /* pull in user settings */
13793 
13794     sc->interrupt_mode       = bxe_interrupt_mode;
13795     sc->max_rx_bufs          = bxe_max_rx_bufs;
13796     sc->hc_rx_ticks          = bxe_hc_rx_ticks;
13797     sc->hc_tx_ticks          = bxe_hc_tx_ticks;
13798     sc->max_aggregation_size = bxe_max_aggregation_size;
13799     sc->mrrs                 = bxe_mrrs;
13800     sc->autogreeen           = bxe_autogreeen;
13801     sc->udp_rss              = bxe_udp_rss;
13802 
13803     if (bxe_interrupt_mode == INTR_MODE_INTX) {
13804         sc->num_queues = 1;
13805     } else { /* INTR_MODE_MSI or INTR_MODE_MSIX */
13806         sc->num_queues =
13807             min((bxe_queue_count ? bxe_queue_count : mp_ncpus),
13808                 MAX_RSS_CHAINS);
13809         if (sc->num_queues > mp_ncpus) {
13810             sc->num_queues = mp_ncpus;
13811         }
13812     }
13813 
13814     BLOGD(sc, DBG_LOAD,
13815           "User Config: "
13816           "debug=0x%lx "
13817           "interrupt_mode=%d "
13818           "queue_count=%d "
13819           "hc_rx_ticks=%d "
13820           "hc_tx_ticks=%d "
13821           "rx_budget=%d "
13822           "max_aggregation_size=%d "
13823           "mrrs=%d "
13824           "autogreeen=%d "
13825           "udp_rss=%d\n",
13826           bxe_debug,
13827           sc->interrupt_mode,
13828           sc->num_queues,
13829           sc->hc_rx_ticks,
13830           sc->hc_tx_ticks,
13831           bxe_rx_budget,
13832           sc->max_aggregation_size,
13833           sc->mrrs,
13834           sc->autogreeen,
13835           sc->udp_rss);
13836 }
13837 
13838 static int
13839 bxe_media_detect(struct bxe_softc *sc)
13840 {
13841     int port_type;
13842     uint32_t phy_idx = bxe_get_cur_phy_idx(sc);
13843 
13844     switch (sc->link_params.phy[phy_idx].media_type) {
13845     case ELINK_ETH_PHY_SFPP_10G_FIBER:
13846     case ELINK_ETH_PHY_XFP_FIBER:
13847         BLOGI(sc, "Found 10Gb Fiber media.\n");
13848         sc->media = IFM_10G_SR;
13849         port_type = PORT_FIBRE;
13850         break;
13851     case ELINK_ETH_PHY_SFP_1G_FIBER:
13852         BLOGI(sc, "Found 1Gb Fiber media.\n");
13853         sc->media = IFM_1000_SX;
13854         port_type = PORT_FIBRE;
13855         break;
13856     case ELINK_ETH_PHY_KR:
13857     case ELINK_ETH_PHY_CX4:
13858         BLOGI(sc, "Found 10GBase-CX4 media.\n");
13859         sc->media = IFM_10G_CX4;
13860         port_type = PORT_FIBRE;
13861         break;
13862     case ELINK_ETH_PHY_DA_TWINAX:
13863         BLOGI(sc, "Found 10Gb Twinax media.\n");
13864         sc->media = IFM_10G_TWINAX;
13865         port_type = PORT_DA;
13866         break;
13867     case ELINK_ETH_PHY_BASE_T:
13868         if (sc->link_params.speed_cap_mask[0] &
13869             PORT_HW_CFG_SPEED_CAPABILITY_D0_10G) {
13870             BLOGI(sc, "Found 10GBase-T media.\n");
13871             sc->media = IFM_10G_T;
13872             port_type = PORT_TP;
13873         } else {
13874             BLOGI(sc, "Found 1000Base-T media.\n");
13875             sc->media = IFM_1000_T;
13876             port_type = PORT_TP;
13877         }
13878         break;
13879     case ELINK_ETH_PHY_NOT_PRESENT:
13880         BLOGI(sc, "Media not present.\n");
13881         sc->media = 0;
13882         port_type = PORT_OTHER;
13883         break;
13884     case ELINK_ETH_PHY_UNSPECIFIED:
13885     default:
13886         BLOGI(sc, "Unknown media!\n");
13887         sc->media = 0;
13888         port_type = PORT_OTHER;
13889         break;
13890     }
13891     return port_type;
13892 }
13893 
13894 #define GET_FIELD(value, fname)                     \
13895     (((value) & (fname##_MASK)) >> (fname##_SHIFT))
13896 #define IGU_FID(val) GET_FIELD((val), IGU_REG_MAPPING_MEMORY_FID)
13897 #define IGU_VEC(val) GET_FIELD((val), IGU_REG_MAPPING_MEMORY_VECTOR)
13898 
13899 static int
13900 bxe_get_igu_cam_info(struct bxe_softc *sc)
13901 {
13902     int pfid = SC_FUNC(sc);
13903     int igu_sb_id;
13904     uint32_t val;
13905     uint8_t fid, igu_sb_cnt = 0;
13906 
13907     sc->igu_base_sb = 0xff;
13908 
13909     if (CHIP_INT_MODE_IS_BC(sc)) {
13910         int vn = SC_VN(sc);
13911         igu_sb_cnt = sc->igu_sb_cnt;
13912         sc->igu_base_sb = ((CHIP_IS_MODE_4_PORT(sc) ? pfid : vn) *
13913                            FP_SB_MAX_E1x);
13914         sc->igu_dsb_id = (E1HVN_MAX * FP_SB_MAX_E1x +
13915                           (CHIP_IS_MODE_4_PORT(sc) ? pfid : vn));
13916         return (0);
13917     }
13918 
13919     /* IGU in normal mode - read CAM */
13920     for (igu_sb_id = 0;
13921          igu_sb_id < IGU_REG_MAPPING_MEMORY_SIZE;
13922          igu_sb_id++) {
13923         val = REG_RD(sc, IGU_REG_MAPPING_MEMORY + igu_sb_id * 4);
13924         if (!(val & IGU_REG_MAPPING_MEMORY_VALID)) {
13925             continue;
13926         }
13927         fid = IGU_FID(val);
13928         if ((fid & IGU_FID_ENCODE_IS_PF)) {
13929             if ((fid & IGU_FID_PF_NUM_MASK) != pfid) {
13930                 continue;
13931             }
13932             if (IGU_VEC(val) == 0) {
13933                 /* default status block */
13934                 sc->igu_dsb_id = igu_sb_id;
13935             } else {
13936                 if (sc->igu_base_sb == 0xff) {
13937                     sc->igu_base_sb = igu_sb_id;
13938                 }
13939                 igu_sb_cnt++;
13940             }
13941         }
13942     }
13943 
13944     /*
13945      * Due to new PF resource allocation by MFW T7.4 and above, it's optional
13946      * that number of CAM entries will not be equal to the value advertised in
13947      * PCI. Driver should use the minimal value of both as the actual status
13948      * block count
13949      */
13950     sc->igu_sb_cnt = min(sc->igu_sb_cnt, igu_sb_cnt);
13951 
13952     if (igu_sb_cnt == 0) {
13953         BLOGE(sc, "CAM configuration error\n");
13954         return (-1);
13955     }
13956 
13957     return (0);
13958 }
13959 
13960 /*
13961  * Gather various information from the device config space, the device itself,
13962  * shmem, and the user input.
13963  */
13964 static int
13965 bxe_get_device_info(struct bxe_softc *sc)
13966 {
13967     uint32_t val;
13968     int rc;
13969 
13970     /* Get the data for the device */
13971     sc->devinfo.vendor_id    = pci_get_vendor(sc->dev);
13972     sc->devinfo.device_id    = pci_get_device(sc->dev);
13973     sc->devinfo.subvendor_id = pci_get_subvendor(sc->dev);
13974     sc->devinfo.subdevice_id = pci_get_subdevice(sc->dev);
13975 
13976     /* get the chip revision (chip metal comes from pci config space) */
13977     sc->devinfo.chip_id     =
13978     sc->link_params.chip_id =
13979         (((REG_RD(sc, MISC_REG_CHIP_NUM)                   & 0xffff) << 16) |
13980          ((REG_RD(sc, MISC_REG_CHIP_REV)                   & 0xf)    << 12) |
13981          (((REG_RD(sc, PCICFG_OFFSET + PCI_ID_VAL3) >> 24) & 0xf)    << 4)  |
13982          ((REG_RD(sc, MISC_REG_BOND_ID)                    & 0xf)    << 0));
13983 
13984     /* force 57811 according to MISC register */
13985     if (REG_RD(sc, MISC_REG_CHIP_TYPE) & MISC_REG_CHIP_TYPE_57811_MASK) {
13986         if (CHIP_IS_57810(sc)) {
13987             sc->devinfo.chip_id = ((CHIP_NUM_57811 << 16) |
13988                                    (sc->devinfo.chip_id & 0x0000ffff));
13989         } else if (CHIP_IS_57810_MF(sc)) {
13990             sc->devinfo.chip_id = ((CHIP_NUM_57811_MF << 16) |
13991                                    (sc->devinfo.chip_id & 0x0000ffff));
13992         }
13993         sc->devinfo.chip_id |= 0x1;
13994     }
13995 
13996     BLOGD(sc, DBG_LOAD,
13997           "chip_id=0x%08x (num=0x%04x rev=0x%01x metal=0x%02x bond=0x%01x)\n",
13998           sc->devinfo.chip_id,
13999           ((sc->devinfo.chip_id >> 16) & 0xffff),
14000           ((sc->devinfo.chip_id >> 12) & 0xf),
14001           ((sc->devinfo.chip_id >>  4) & 0xff),
14002           ((sc->devinfo.chip_id >>  0) & 0xf));
14003 
14004     val = (REG_RD(sc, 0x2874) & 0x55);
14005     if ((sc->devinfo.chip_id & 0x1) ||
14006         (CHIP_IS_E1(sc) && val) ||
14007         (CHIP_IS_E1H(sc) && (val == 0x55))) {
14008         sc->flags |= BXE_ONE_PORT_FLAG;
14009         BLOGD(sc, DBG_LOAD, "single port device\n");
14010     }
14011 
14012     /* set the doorbell size */
14013     sc->doorbell_size = (1 << BXE_DB_SHIFT);
14014 
14015     /* determine whether the device is in 2 port or 4 port mode */
14016     sc->devinfo.chip_port_mode = CHIP_PORT_MODE_NONE; /* E1 & E1h*/
14017     if (CHIP_IS_E2E3(sc)) {
14018         /*
14019          * Read port4mode_en_ovwr[0]:
14020          *   If 1, four port mode is in port4mode_en_ovwr[1].
14021          *   If 0, four port mode is in port4mode_en[0].
14022          */
14023         val = REG_RD(sc, MISC_REG_PORT4MODE_EN_OVWR);
14024         if (val & 1) {
14025             val = ((val >> 1) & 1);
14026         } else {
14027             val = REG_RD(sc, MISC_REG_PORT4MODE_EN);
14028         }
14029 
14030         sc->devinfo.chip_port_mode =
14031             (val) ? CHIP_4_PORT_MODE : CHIP_2_PORT_MODE;
14032 
14033         BLOGD(sc, DBG_LOAD, "Port mode = %s\n", (val) ? "4" : "2");
14034     }
14035 
14036     /* get the function and path info for the device */
14037     bxe_get_function_num(sc);
14038 
14039     /* get the shared memory base address */
14040     sc->devinfo.shmem_base     =
14041     sc->link_params.shmem_base =
14042         REG_RD(sc, MISC_REG_SHARED_MEM_ADDR);
14043     sc->devinfo.shmem2_base =
14044         REG_RD(sc, (SC_PATH(sc) ? MISC_REG_GENERIC_CR_1 :
14045                                   MISC_REG_GENERIC_CR_0));
14046 
14047     BLOGD(sc, DBG_LOAD, "shmem_base=0x%08x, shmem2_base=0x%08x\n",
14048           sc->devinfo.shmem_base, sc->devinfo.shmem2_base);
14049 
14050     if (!sc->devinfo.shmem_base) {
14051         /* this should ONLY prevent upcoming shmem reads */
14052         BLOGI(sc, "MCP not active\n");
14053         sc->flags |= BXE_NO_MCP_FLAG;
14054         return (0);
14055     }
14056 
14057     /* make sure the shared memory contents are valid */
14058     val = SHMEM_RD(sc, validity_map[SC_PORT(sc)]);
14059     if ((val & (SHR_MEM_VALIDITY_DEV_INFO | SHR_MEM_VALIDITY_MB)) !=
14060         (SHR_MEM_VALIDITY_DEV_INFO | SHR_MEM_VALIDITY_MB)) {
14061         BLOGE(sc, "Invalid SHMEM validity signature: 0x%08x\n", val);
14062         return (0);
14063     }
14064     BLOGD(sc, DBG_LOAD, "Valid SHMEM validity signature: 0x%08x\n", val);
14065 
14066     /* get the bootcode version */
14067     sc->devinfo.bc_ver = SHMEM_RD(sc, dev_info.bc_rev);
14068     snprintf(sc->devinfo.bc_ver_str,
14069              sizeof(sc->devinfo.bc_ver_str),
14070              "%d.%d.%d",
14071              ((sc->devinfo.bc_ver >> 24) & 0xff),
14072              ((sc->devinfo.bc_ver >> 16) & 0xff),
14073              ((sc->devinfo.bc_ver >>  8) & 0xff));
14074     BLOGD(sc, DBG_LOAD, "Bootcode version: %s\n", sc->devinfo.bc_ver_str);
14075 
14076     /* get the bootcode shmem address */
14077     sc->devinfo.mf_cfg_base = bxe_get_shmem_mf_cfg_base(sc);
14078     BLOGD(sc, DBG_LOAD, "mf_cfg_base=0x08%x \n", sc->devinfo.mf_cfg_base);
14079 
14080     /* clean indirect addresses as they're not used */
14081     pci_write_config(sc->dev, PCICFG_GRC_ADDRESS, 0, 4);
14082     if (IS_PF(sc)) {
14083         REG_WR(sc, PXP2_REG_PGL_ADDR_88_F0, 0);
14084         REG_WR(sc, PXP2_REG_PGL_ADDR_8C_F0, 0);
14085         REG_WR(sc, PXP2_REG_PGL_ADDR_90_F0, 0);
14086         REG_WR(sc, PXP2_REG_PGL_ADDR_94_F0, 0);
14087         if (CHIP_IS_E1x(sc)) {
14088             REG_WR(sc, PXP2_REG_PGL_ADDR_88_F1, 0);
14089             REG_WR(sc, PXP2_REG_PGL_ADDR_8C_F1, 0);
14090             REG_WR(sc, PXP2_REG_PGL_ADDR_90_F1, 0);
14091             REG_WR(sc, PXP2_REG_PGL_ADDR_94_F1, 0);
14092         }
14093 
14094         /*
14095          * Enable internal target-read (in case we are probed after PF
14096          * FLR). Must be done prior to any BAR read access. Only for
14097          * 57712 and up
14098          */
14099         if (!CHIP_IS_E1x(sc)) {
14100             REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
14101         }
14102     }
14103 
14104     /* get the nvram size */
14105     val = REG_RD(sc, MCP_REG_MCPR_NVM_CFG4);
14106     sc->devinfo.flash_size =
14107         (NVRAM_1MB_SIZE << (val & MCPR_NVM_CFG4_FLASH_SIZE));
14108     BLOGD(sc, DBG_LOAD, "nvram flash size: %d\n", sc->devinfo.flash_size);
14109 
14110     /* get PCI capabilites */
14111     bxe_probe_pci_caps(sc);
14112 
14113     bxe_set_power_state(sc, PCI_PM_D0);
14114 
14115     /* get various configuration parameters from shmem */
14116     bxe_get_shmem_info(sc);
14117 
14118     if (sc->devinfo.pcie_msix_cap_reg != 0) {
14119         val = pci_read_config(sc->dev,
14120                               (sc->devinfo.pcie_msix_cap_reg +
14121                                PCIR_MSIX_CTRL),
14122                               2);
14123         sc->igu_sb_cnt = (val & PCIM_MSIXCTRL_TABLE_SIZE);
14124     } else {
14125         sc->igu_sb_cnt = 1;
14126     }
14127 
14128     sc->igu_base_addr = BAR_IGU_INTMEM;
14129 
14130     /* initialize IGU parameters */
14131     if (CHIP_IS_E1x(sc)) {
14132         sc->devinfo.int_block = INT_BLOCK_HC;
14133         sc->igu_dsb_id = DEF_SB_IGU_ID;
14134         sc->igu_base_sb = 0;
14135     } else {
14136         sc->devinfo.int_block = INT_BLOCK_IGU;
14137 
14138         /* do not allow device reset during IGU info preocessing */
14139         bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RESET);
14140 
14141         val = REG_RD(sc, IGU_REG_BLOCK_CONFIGURATION);
14142 
14143         if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) {
14144             int tout = 5000;
14145 
14146             BLOGD(sc, DBG_LOAD, "FORCING IGU Normal Mode\n");
14147 
14148             val &= ~(IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN);
14149             REG_WR(sc, IGU_REG_BLOCK_CONFIGURATION, val);
14150             REG_WR(sc, IGU_REG_RESET_MEMORIES, 0x7f);
14151 
14152             while (tout && REG_RD(sc, IGU_REG_RESET_MEMORIES)) {
14153                 tout--;
14154                 DELAY(1000);
14155             }
14156 
14157             if (REG_RD(sc, IGU_REG_RESET_MEMORIES)) {
14158                 BLOGD(sc, DBG_LOAD, "FORCING IGU Normal Mode failed!!!\n");
14159                 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RESET);
14160                 return (-1);
14161             }
14162         }
14163 
14164         if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) {
14165             BLOGD(sc, DBG_LOAD, "IGU Backward Compatible Mode\n");
14166             sc->devinfo.int_block |= INT_BLOCK_MODE_BW_COMP;
14167         } else {
14168             BLOGD(sc, DBG_LOAD, "IGU Normal Mode\n");
14169         }
14170 
14171         rc = bxe_get_igu_cam_info(sc);
14172 
14173         bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RESET);
14174 
14175         if (rc) {
14176             return (rc);
14177         }
14178     }
14179 
14180     /*
14181      * Get base FW non-default (fast path) status block ID. This value is
14182      * used to initialize the fw_sb_id saved on the fp/queue structure to
14183      * determine the id used by the FW.
14184      */
14185     if (CHIP_IS_E1x(sc)) {
14186         sc->base_fw_ndsb = ((SC_PORT(sc) * FP_SB_MAX_E1x) + SC_L_ID(sc));
14187     } else {
14188         /*
14189          * 57712+ - We currently use one FW SB per IGU SB (Rx and Tx of
14190          * the same queue are indicated on the same IGU SB). So we prefer
14191          * FW and IGU SBs to be the same value.
14192          */
14193         sc->base_fw_ndsb = sc->igu_base_sb;
14194     }
14195 
14196     BLOGD(sc, DBG_LOAD,
14197           "igu_dsb_id=%d igu_base_sb=%d igu_sb_cnt=%d base_fw_ndsb=%d\n",
14198           sc->igu_dsb_id, sc->igu_base_sb,
14199           sc->igu_sb_cnt, sc->base_fw_ndsb);
14200 
14201     elink_phy_probe(&sc->link_params);
14202 
14203     return (0);
14204 }
14205 
14206 static void
14207 bxe_link_settings_supported(struct bxe_softc *sc,
14208                             uint32_t         switch_cfg)
14209 {
14210     uint32_t cfg_size = 0;
14211     uint32_t idx;
14212     uint8_t port = SC_PORT(sc);
14213 
14214     /* aggregation of supported attributes of all external phys */
14215     sc->port.supported[0] = 0;
14216     sc->port.supported[1] = 0;
14217 
14218     switch (sc->link_params.num_phys) {
14219     case 1:
14220         sc->port.supported[0] = sc->link_params.phy[ELINK_INT_PHY].supported;
14221         cfg_size = 1;
14222         break;
14223     case 2:
14224         sc->port.supported[0] = sc->link_params.phy[ELINK_EXT_PHY1].supported;
14225         cfg_size = 1;
14226         break;
14227     case 3:
14228         if (sc->link_params.multi_phy_config &
14229             PORT_HW_CFG_PHY_SWAPPED_ENABLED) {
14230             sc->port.supported[1] =
14231                 sc->link_params.phy[ELINK_EXT_PHY1].supported;
14232             sc->port.supported[0] =
14233                 sc->link_params.phy[ELINK_EXT_PHY2].supported;
14234         } else {
14235             sc->port.supported[0] =
14236                 sc->link_params.phy[ELINK_EXT_PHY1].supported;
14237             sc->port.supported[1] =
14238                 sc->link_params.phy[ELINK_EXT_PHY2].supported;
14239         }
14240         cfg_size = 2;
14241         break;
14242     }
14243 
14244     if (!(sc->port.supported[0] || sc->port.supported[1])) {
14245         BLOGE(sc, "Invalid phy config in NVRAM (PHY1=0x%08x PHY2=0x%08x)\n",
14246               SHMEM_RD(sc,
14247                        dev_info.port_hw_config[port].external_phy_config),
14248               SHMEM_RD(sc,
14249                        dev_info.port_hw_config[port].external_phy_config2));
14250         return;
14251     }
14252 
14253     if (CHIP_IS_E3(sc))
14254         sc->port.phy_addr = REG_RD(sc, MISC_REG_WC0_CTRL_PHY_ADDR);
14255     else {
14256         switch (switch_cfg) {
14257         case ELINK_SWITCH_CFG_1G:
14258             sc->port.phy_addr =
14259                 REG_RD(sc, NIG_REG_SERDES0_CTRL_PHY_ADDR + port*0x10);
14260             break;
14261         case ELINK_SWITCH_CFG_10G:
14262             sc->port.phy_addr =
14263                 REG_RD(sc, NIG_REG_XGXS0_CTRL_PHY_ADDR + port*0x18);
14264             break;
14265         default:
14266             BLOGE(sc, "Invalid switch config in link_config=0x%08x\n",
14267                   sc->port.link_config[0]);
14268             return;
14269         }
14270     }
14271 
14272     BLOGD(sc, DBG_LOAD, "PHY addr 0x%08x\n", sc->port.phy_addr);
14273 
14274     /* mask what we support according to speed_cap_mask per configuration */
14275     for (idx = 0; idx < cfg_size; idx++) {
14276         if (!(sc->link_params.speed_cap_mask[idx] &
14277               PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_HALF)) {
14278             sc->port.supported[idx] &= ~ELINK_SUPPORTED_10baseT_Half;
14279         }
14280 
14281         if (!(sc->link_params.speed_cap_mask[idx] &
14282               PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_FULL)) {
14283             sc->port.supported[idx] &= ~ELINK_SUPPORTED_10baseT_Full;
14284         }
14285 
14286         if (!(sc->link_params.speed_cap_mask[idx] &
14287               PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_HALF)) {
14288             sc->port.supported[idx] &= ~ELINK_SUPPORTED_100baseT_Half;
14289         }
14290 
14291         if (!(sc->link_params.speed_cap_mask[idx] &
14292               PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_FULL)) {
14293             sc->port.supported[idx] &= ~ELINK_SUPPORTED_100baseT_Full;
14294         }
14295 
14296         if (!(sc->link_params.speed_cap_mask[idx] &
14297               PORT_HW_CFG_SPEED_CAPABILITY_D0_1G)) {
14298             sc->port.supported[idx] &= ~ELINK_SUPPORTED_1000baseT_Full;
14299         }
14300 
14301         if (!(sc->link_params.speed_cap_mask[idx] &
14302               PORT_HW_CFG_SPEED_CAPABILITY_D0_2_5G)) {
14303             sc->port.supported[idx] &= ~ELINK_SUPPORTED_2500baseX_Full;
14304         }
14305 
14306         if (!(sc->link_params.speed_cap_mask[idx] &
14307               PORT_HW_CFG_SPEED_CAPABILITY_D0_10G)) {
14308             sc->port.supported[idx] &= ~ELINK_SUPPORTED_10000baseT_Full;
14309         }
14310 
14311         if (!(sc->link_params.speed_cap_mask[idx] &
14312               PORT_HW_CFG_SPEED_CAPABILITY_D0_20G)) {
14313             sc->port.supported[idx] &= ~ELINK_SUPPORTED_20000baseKR2_Full;
14314         }
14315     }
14316 
14317     BLOGD(sc, DBG_LOAD, "PHY supported 0=0x%08x 1=0x%08x\n",
14318           sc->port.supported[0], sc->port.supported[1]);
14319 	ELINK_DEBUG_P2(sc, "PHY supported 0=0x%08x 1=0x%08x\n",
14320 					sc->port.supported[0], sc->port.supported[1]);
14321 }
14322 
14323 static void
14324 bxe_link_settings_requested(struct bxe_softc *sc)
14325 {
14326     uint32_t link_config;
14327     uint32_t idx;
14328     uint32_t cfg_size = 0;
14329 
14330     sc->port.advertising[0] = 0;
14331     sc->port.advertising[1] = 0;
14332 
14333     switch (sc->link_params.num_phys) {
14334     case 1:
14335     case 2:
14336         cfg_size = 1;
14337         break;
14338     case 3:
14339         cfg_size = 2;
14340         break;
14341     }
14342 
14343     for (idx = 0; idx < cfg_size; idx++) {
14344         sc->link_params.req_duplex[idx] = DUPLEX_FULL;
14345         link_config = sc->port.link_config[idx];
14346 
14347         switch (link_config & PORT_FEATURE_LINK_SPEED_MASK) {
14348         case PORT_FEATURE_LINK_SPEED_AUTO:
14349             if (sc->port.supported[idx] & ELINK_SUPPORTED_Autoneg) {
14350                 sc->link_params.req_line_speed[idx] = ELINK_SPEED_AUTO_NEG;
14351                 sc->port.advertising[idx] |= sc->port.supported[idx];
14352                 if (sc->link_params.phy[ELINK_EXT_PHY1].type ==
14353                     PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM84833)
14354                     sc->port.advertising[idx] |=
14355                         (ELINK_SUPPORTED_100baseT_Half |
14356                          ELINK_SUPPORTED_100baseT_Full);
14357             } else {
14358                 /* force 10G, no AN */
14359                 sc->link_params.req_line_speed[idx] = ELINK_SPEED_10000;
14360                 sc->port.advertising[idx] |=
14361                     (ADVERTISED_10000baseT_Full | ADVERTISED_FIBRE);
14362                 continue;
14363             }
14364             break;
14365 
14366         case PORT_FEATURE_LINK_SPEED_10M_FULL:
14367             if (sc->port.supported[idx] & ELINK_SUPPORTED_10baseT_Full) {
14368                 sc->link_params.req_line_speed[idx] = ELINK_SPEED_10;
14369                 sc->port.advertising[idx] |= (ADVERTISED_10baseT_Full |
14370                                               ADVERTISED_TP);
14371             } else {
14372                 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x "
14373                           "speed_cap_mask=0x%08x\n",
14374                       link_config, sc->link_params.speed_cap_mask[idx]);
14375                 return;
14376             }
14377             break;
14378 
14379         case PORT_FEATURE_LINK_SPEED_10M_HALF:
14380             if (sc->port.supported[idx] & ELINK_SUPPORTED_10baseT_Half) {
14381                 sc->link_params.req_line_speed[idx] = ELINK_SPEED_10;
14382                 sc->link_params.req_duplex[idx] = DUPLEX_HALF;
14383                 sc->port.advertising[idx] |= (ADVERTISED_10baseT_Half |
14384                                               ADVERTISED_TP);
14385 				ELINK_DEBUG_P1(sc, "driver requesting DUPLEX_HALF req_duplex = %x!\n",
14386 								sc->link_params.req_duplex[idx]);
14387             } else {
14388                 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x "
14389                           "speed_cap_mask=0x%08x\n",
14390                       link_config, sc->link_params.speed_cap_mask[idx]);
14391                 return;
14392             }
14393             break;
14394 
14395         case PORT_FEATURE_LINK_SPEED_100M_FULL:
14396             if (sc->port.supported[idx] & ELINK_SUPPORTED_100baseT_Full) {
14397                 sc->link_params.req_line_speed[idx] = ELINK_SPEED_100;
14398                 sc->port.advertising[idx] |= (ADVERTISED_100baseT_Full |
14399                                               ADVERTISED_TP);
14400             } else {
14401                 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x "
14402                           "speed_cap_mask=0x%08x\n",
14403                       link_config, sc->link_params.speed_cap_mask[idx]);
14404                 return;
14405             }
14406             break;
14407 
14408         case PORT_FEATURE_LINK_SPEED_100M_HALF:
14409             if (sc->port.supported[idx] & ELINK_SUPPORTED_100baseT_Half) {
14410                 sc->link_params.req_line_speed[idx] = ELINK_SPEED_100;
14411                 sc->link_params.req_duplex[idx] = DUPLEX_HALF;
14412                 sc->port.advertising[idx] |= (ADVERTISED_100baseT_Half |
14413                                               ADVERTISED_TP);
14414             } else {
14415                 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x "
14416                           "speed_cap_mask=0x%08x\n",
14417                       link_config, sc->link_params.speed_cap_mask[idx]);
14418                 return;
14419             }
14420             break;
14421 
14422         case PORT_FEATURE_LINK_SPEED_1G:
14423             if (sc->port.supported[idx] & ELINK_SUPPORTED_1000baseT_Full) {
14424                 sc->link_params.req_line_speed[idx] = ELINK_SPEED_1000;
14425                 sc->port.advertising[idx] |= (ADVERTISED_1000baseT_Full |
14426                                               ADVERTISED_TP);
14427             } else {
14428                 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x "
14429                           "speed_cap_mask=0x%08x\n",
14430                       link_config, sc->link_params.speed_cap_mask[idx]);
14431                 return;
14432             }
14433             break;
14434 
14435         case PORT_FEATURE_LINK_SPEED_2_5G:
14436             if (sc->port.supported[idx] & ELINK_SUPPORTED_2500baseX_Full) {
14437                 sc->link_params.req_line_speed[idx] = ELINK_SPEED_2500;
14438                 sc->port.advertising[idx] |= (ADVERTISED_2500baseX_Full |
14439                                               ADVERTISED_TP);
14440             } else {
14441                 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x "
14442                           "speed_cap_mask=0x%08x\n",
14443                       link_config, sc->link_params.speed_cap_mask[idx]);
14444                 return;
14445             }
14446             break;
14447 
14448         case PORT_FEATURE_LINK_SPEED_10G_CX4:
14449             if (sc->port.supported[idx] & ELINK_SUPPORTED_10000baseT_Full) {
14450                 sc->link_params.req_line_speed[idx] = ELINK_SPEED_10000;
14451                 sc->port.advertising[idx] |= (ADVERTISED_10000baseT_Full |
14452                                               ADVERTISED_FIBRE);
14453             } else {
14454                 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x "
14455                           "speed_cap_mask=0x%08x\n",
14456                       link_config, sc->link_params.speed_cap_mask[idx]);
14457                 return;
14458             }
14459             break;
14460 
14461         case PORT_FEATURE_LINK_SPEED_20G:
14462             sc->link_params.req_line_speed[idx] = ELINK_SPEED_20000;
14463             break;
14464 
14465         default:
14466             BLOGE(sc, "Invalid NVRAM config link_config=0x%08x "
14467                       "speed_cap_mask=0x%08x\n",
14468                   link_config, sc->link_params.speed_cap_mask[idx]);
14469             sc->link_params.req_line_speed[idx] = ELINK_SPEED_AUTO_NEG;
14470             sc->port.advertising[idx] = sc->port.supported[idx];
14471             break;
14472         }
14473 
14474         sc->link_params.req_flow_ctrl[idx] =
14475             (link_config & PORT_FEATURE_FLOW_CONTROL_MASK);
14476 
14477         if (sc->link_params.req_flow_ctrl[idx] == ELINK_FLOW_CTRL_AUTO) {
14478             if (!(sc->port.supported[idx] & ELINK_SUPPORTED_Autoneg)) {
14479                 sc->link_params.req_flow_ctrl[idx] = ELINK_FLOW_CTRL_NONE;
14480             } else {
14481                 bxe_set_requested_fc(sc);
14482             }
14483         }
14484 
14485         BLOGD(sc, DBG_LOAD, "req_line_speed=%d req_duplex=%d "
14486                             "req_flow_ctrl=0x%x advertising=0x%x\n",
14487               sc->link_params.req_line_speed[idx],
14488               sc->link_params.req_duplex[idx],
14489               sc->link_params.req_flow_ctrl[idx],
14490               sc->port.advertising[idx]);
14491 		ELINK_DEBUG_P3(sc, "req_line_speed=%d req_duplex=%d "
14492 						"advertising=0x%x\n",
14493 						sc->link_params.req_line_speed[idx],
14494 						sc->link_params.req_duplex[idx],
14495 						sc->port.advertising[idx]);
14496     }
14497 }
14498 
14499 static void
14500 bxe_get_phy_info(struct bxe_softc *sc)
14501 {
14502     uint8_t port = SC_PORT(sc);
14503     uint32_t config = sc->port.config;
14504     uint32_t eee_mode;
14505 
14506     /* shmem data already read in bxe_get_shmem_info() */
14507 
14508     ELINK_DEBUG_P3(sc, "lane_config=0x%08x speed_cap_mask0=0x%08x "
14509                         "link_config0=0x%08x\n",
14510                sc->link_params.lane_config,
14511                sc->link_params.speed_cap_mask[0],
14512                sc->port.link_config[0]);
14513 
14514 
14515     bxe_link_settings_supported(sc, sc->link_params.switch_cfg);
14516     bxe_link_settings_requested(sc);
14517 
14518     if (sc->autogreeen == AUTO_GREEN_FORCE_ON) {
14519         sc->link_params.feature_config_flags |=
14520             ELINK_FEATURE_CONFIG_AUTOGREEEN_ENABLED;
14521     } else if (sc->autogreeen == AUTO_GREEN_FORCE_OFF) {
14522         sc->link_params.feature_config_flags &=
14523             ~ELINK_FEATURE_CONFIG_AUTOGREEEN_ENABLED;
14524     } else if (config & PORT_FEAT_CFG_AUTOGREEEN_ENABLED) {
14525         sc->link_params.feature_config_flags |=
14526             ELINK_FEATURE_CONFIG_AUTOGREEEN_ENABLED;
14527     }
14528 
14529     /* configure link feature according to nvram value */
14530     eee_mode =
14531         (((SHMEM_RD(sc, dev_info.port_feature_config[port].eee_power_mode)) &
14532           PORT_FEAT_CFG_EEE_POWER_MODE_MASK) >>
14533          PORT_FEAT_CFG_EEE_POWER_MODE_SHIFT);
14534     if (eee_mode != PORT_FEAT_CFG_EEE_POWER_MODE_DISABLED) {
14535         sc->link_params.eee_mode = (ELINK_EEE_MODE_ADV_LPI |
14536                                     ELINK_EEE_MODE_ENABLE_LPI |
14537                                     ELINK_EEE_MODE_OUTPUT_TIME);
14538     } else {
14539         sc->link_params.eee_mode = 0;
14540     }
14541 
14542     /* get the media type */
14543     bxe_media_detect(sc);
14544 	ELINK_DEBUG_P1(sc, "detected media type\n", sc->media);
14545 }
14546 
14547 static void
14548 bxe_get_params(struct bxe_softc *sc)
14549 {
14550     /* get user tunable params */
14551     bxe_get_tunable_params(sc);
14552 
14553     /* select the RX and TX ring sizes */
14554     sc->tx_ring_size = TX_BD_USABLE;
14555     sc->rx_ring_size = RX_BD_USABLE;
14556 
14557     /* XXX disable WoL */
14558     sc->wol = 0;
14559 }
14560 
14561 static void
14562 bxe_set_modes_bitmap(struct bxe_softc *sc)
14563 {
14564     uint32_t flags = 0;
14565 
14566     if (CHIP_REV_IS_FPGA(sc)) {
14567         SET_FLAGS(flags, MODE_FPGA);
14568     } else if (CHIP_REV_IS_EMUL(sc)) {
14569         SET_FLAGS(flags, MODE_EMUL);
14570     } else {
14571         SET_FLAGS(flags, MODE_ASIC);
14572     }
14573 
14574     if (CHIP_IS_MODE_4_PORT(sc)) {
14575         SET_FLAGS(flags, MODE_PORT4);
14576     } else {
14577         SET_FLAGS(flags, MODE_PORT2);
14578     }
14579 
14580     if (CHIP_IS_E2(sc)) {
14581         SET_FLAGS(flags, MODE_E2);
14582     } else if (CHIP_IS_E3(sc)) {
14583         SET_FLAGS(flags, MODE_E3);
14584         if (CHIP_REV(sc) == CHIP_REV_Ax) {
14585             SET_FLAGS(flags, MODE_E3_A0);
14586         } else /*if (CHIP_REV(sc) == CHIP_REV_Bx)*/ {
14587             SET_FLAGS(flags, MODE_E3_B0 | MODE_COS3);
14588         }
14589     }
14590 
14591     if (IS_MF(sc)) {
14592         SET_FLAGS(flags, MODE_MF);
14593         switch (sc->devinfo.mf_info.mf_mode) {
14594         case MULTI_FUNCTION_SD:
14595             SET_FLAGS(flags, MODE_MF_SD);
14596             break;
14597         case MULTI_FUNCTION_SI:
14598             SET_FLAGS(flags, MODE_MF_SI);
14599             break;
14600         case MULTI_FUNCTION_AFEX:
14601             SET_FLAGS(flags, MODE_MF_AFEX);
14602             break;
14603         }
14604     } else {
14605         SET_FLAGS(flags, MODE_SF);
14606     }
14607 
14608 #if defined(__LITTLE_ENDIAN)
14609     SET_FLAGS(flags, MODE_LITTLE_ENDIAN);
14610 #else /* __BIG_ENDIAN */
14611     SET_FLAGS(flags, MODE_BIG_ENDIAN);
14612 #endif
14613 
14614     INIT_MODE_FLAGS(sc) = flags;
14615 }
14616 
14617 static int
14618 bxe_alloc_hsi_mem(struct bxe_softc *sc)
14619 {
14620     struct bxe_fastpath *fp;
14621     bus_addr_t busaddr;
14622     int max_agg_queues;
14623     int max_segments;
14624     bus_size_t max_size;
14625     bus_size_t max_seg_size;
14626     char buf[32];
14627     int rc;
14628     int i, j;
14629 
14630     /* XXX zero out all vars here and call bxe_alloc_hsi_mem on error */
14631 
14632     /* allocate the parent bus DMA tag */
14633     rc = bus_dma_tag_create(bus_get_dma_tag(sc->dev), /* parent tag */
14634                             1,                        /* alignment */
14635                             0,                        /* boundary limit */
14636                             BUS_SPACE_MAXADDR,        /* restricted low */
14637                             BUS_SPACE_MAXADDR,        /* restricted hi */
14638                             NULL,                     /* addr filter() */
14639                             NULL,                     /* addr filter() arg */
14640                             BUS_SPACE_MAXSIZE_32BIT,  /* max map size */
14641                             BUS_SPACE_UNRESTRICTED,   /* num discontinuous */
14642                             BUS_SPACE_MAXSIZE_32BIT,  /* max seg size */
14643                             0,                        /* flags */
14644                             NULL,                     /* lock() */
14645                             NULL,                     /* lock() arg */
14646                             &sc->parent_dma_tag);     /* returned dma tag */
14647     if (rc != 0) {
14648         BLOGE(sc, "Failed to alloc parent DMA tag (%d)!\n", rc);
14649         return (1);
14650     }
14651 
14652     /************************/
14653     /* DEFAULT STATUS BLOCK */
14654     /************************/
14655 
14656     if (bxe_dma_alloc(sc, sizeof(struct host_sp_status_block),
14657                       &sc->def_sb_dma, "default status block") != 0) {
14658         /* XXX */
14659         bus_dma_tag_destroy(sc->parent_dma_tag);
14660         return (1);
14661     }
14662 
14663     sc->def_sb = (struct host_sp_status_block *)sc->def_sb_dma.vaddr;
14664 
14665     /***************/
14666     /* EVENT QUEUE */
14667     /***************/
14668 
14669     if (bxe_dma_alloc(sc, BCM_PAGE_SIZE,
14670                       &sc->eq_dma, "event queue") != 0) {
14671         /* XXX */
14672         bxe_dma_free(sc, &sc->def_sb_dma);
14673         sc->def_sb = NULL;
14674         bus_dma_tag_destroy(sc->parent_dma_tag);
14675         return (1);
14676     }
14677 
14678     sc->eq = (union event_ring_elem * )sc->eq_dma.vaddr;
14679 
14680     /*************/
14681     /* SLOW PATH */
14682     /*************/
14683 
14684     if (bxe_dma_alloc(sc, sizeof(struct bxe_slowpath),
14685                       &sc->sp_dma, "slow path") != 0) {
14686         /* XXX */
14687         bxe_dma_free(sc, &sc->eq_dma);
14688         sc->eq = NULL;
14689         bxe_dma_free(sc, &sc->def_sb_dma);
14690         sc->def_sb = NULL;
14691         bus_dma_tag_destroy(sc->parent_dma_tag);
14692         return (1);
14693     }
14694 
14695     sc->sp = (struct bxe_slowpath *)sc->sp_dma.vaddr;
14696 
14697     /*******************/
14698     /* SLOW PATH QUEUE */
14699     /*******************/
14700 
14701     if (bxe_dma_alloc(sc, BCM_PAGE_SIZE,
14702                       &sc->spq_dma, "slow path queue") != 0) {
14703         /* XXX */
14704         bxe_dma_free(sc, &sc->sp_dma);
14705         sc->sp = NULL;
14706         bxe_dma_free(sc, &sc->eq_dma);
14707         sc->eq = NULL;
14708         bxe_dma_free(sc, &sc->def_sb_dma);
14709         sc->def_sb = NULL;
14710         bus_dma_tag_destroy(sc->parent_dma_tag);
14711         return (1);
14712     }
14713 
14714     sc->spq = (struct eth_spe *)sc->spq_dma.vaddr;
14715 
14716     /***************************/
14717     /* FW DECOMPRESSION BUFFER */
14718     /***************************/
14719 
14720     if (bxe_dma_alloc(sc, FW_BUF_SIZE, &sc->gz_buf_dma,
14721                       "fw decompression buffer") != 0) {
14722         /* XXX */
14723         bxe_dma_free(sc, &sc->spq_dma);
14724         sc->spq = NULL;
14725         bxe_dma_free(sc, &sc->sp_dma);
14726         sc->sp = NULL;
14727         bxe_dma_free(sc, &sc->eq_dma);
14728         sc->eq = NULL;
14729         bxe_dma_free(sc, &sc->def_sb_dma);
14730         sc->def_sb = NULL;
14731         bus_dma_tag_destroy(sc->parent_dma_tag);
14732         return (1);
14733     }
14734 
14735     sc->gz_buf = (void *)sc->gz_buf_dma.vaddr;
14736 
14737     if ((sc->gz_strm =
14738          malloc(sizeof(*sc->gz_strm), M_DEVBUF, M_NOWAIT)) == NULL) {
14739         /* XXX */
14740         bxe_dma_free(sc, &sc->gz_buf_dma);
14741         sc->gz_buf = NULL;
14742         bxe_dma_free(sc, &sc->spq_dma);
14743         sc->spq = NULL;
14744         bxe_dma_free(sc, &sc->sp_dma);
14745         sc->sp = NULL;
14746         bxe_dma_free(sc, &sc->eq_dma);
14747         sc->eq = NULL;
14748         bxe_dma_free(sc, &sc->def_sb_dma);
14749         sc->def_sb = NULL;
14750         bus_dma_tag_destroy(sc->parent_dma_tag);
14751         return (1);
14752     }
14753 
14754     /*************/
14755     /* FASTPATHS */
14756     /*************/
14757 
14758     /* allocate DMA memory for each fastpath structure */
14759     for (i = 0; i < sc->num_queues; i++) {
14760         fp = &sc->fp[i];
14761         fp->sc    = sc;
14762         fp->index = i;
14763 
14764         /*******************/
14765         /* FP STATUS BLOCK */
14766         /*******************/
14767 
14768         snprintf(buf, sizeof(buf), "fp %d status block", i);
14769         if (bxe_dma_alloc(sc, sizeof(union bxe_host_hc_status_block),
14770                           &fp->sb_dma, buf) != 0) {
14771             /* XXX unwind and free previous fastpath allocations */
14772             BLOGE(sc, "Failed to alloc %s\n", buf);
14773             return (1);
14774         } else {
14775             if (CHIP_IS_E2E3(sc)) {
14776                 fp->status_block.e2_sb =
14777                     (struct host_hc_status_block_e2 *)fp->sb_dma.vaddr;
14778             } else {
14779                 fp->status_block.e1x_sb =
14780                     (struct host_hc_status_block_e1x *)fp->sb_dma.vaddr;
14781             }
14782         }
14783 
14784         /******************/
14785         /* FP TX BD CHAIN */
14786         /******************/
14787 
14788         snprintf(buf, sizeof(buf), "fp %d tx bd chain", i);
14789         if (bxe_dma_alloc(sc, (BCM_PAGE_SIZE * TX_BD_NUM_PAGES),
14790                           &fp->tx_dma, buf) != 0) {
14791             /* XXX unwind and free previous fastpath allocations */
14792             BLOGE(sc, "Failed to alloc %s\n", buf);
14793             return (1);
14794         } else {
14795             fp->tx_chain = (union eth_tx_bd_types *)fp->tx_dma.vaddr;
14796         }
14797 
14798         /* link together the tx bd chain pages */
14799         for (j = 1; j <= TX_BD_NUM_PAGES; j++) {
14800             /* index into the tx bd chain array to last entry per page */
14801             struct eth_tx_next_bd *tx_next_bd =
14802                 &fp->tx_chain[TX_BD_TOTAL_PER_PAGE * j - 1].next_bd;
14803             /* point to the next page and wrap from last page */
14804             busaddr = (fp->tx_dma.paddr +
14805                        (BCM_PAGE_SIZE * (j % TX_BD_NUM_PAGES)));
14806             tx_next_bd->addr_hi = htole32(U64_HI(busaddr));
14807             tx_next_bd->addr_lo = htole32(U64_LO(busaddr));
14808         }
14809 
14810         /******************/
14811         /* FP RX BD CHAIN */
14812         /******************/
14813 
14814         snprintf(buf, sizeof(buf), "fp %d rx bd chain", i);
14815         if (bxe_dma_alloc(sc, (BCM_PAGE_SIZE * RX_BD_NUM_PAGES),
14816                           &fp->rx_dma, buf) != 0) {
14817             /* XXX unwind and free previous fastpath allocations */
14818             BLOGE(sc, "Failed to alloc %s\n", buf);
14819             return (1);
14820         } else {
14821             fp->rx_chain = (struct eth_rx_bd *)fp->rx_dma.vaddr;
14822         }
14823 
14824         /* link together the rx bd chain pages */
14825         for (j = 1; j <= RX_BD_NUM_PAGES; j++) {
14826             /* index into the rx bd chain array to last entry per page */
14827             struct eth_rx_bd *rx_bd =
14828                 &fp->rx_chain[RX_BD_TOTAL_PER_PAGE * j - 2];
14829             /* point to the next page and wrap from last page */
14830             busaddr = (fp->rx_dma.paddr +
14831                        (BCM_PAGE_SIZE * (j % RX_BD_NUM_PAGES)));
14832             rx_bd->addr_hi = htole32(U64_HI(busaddr));
14833             rx_bd->addr_lo = htole32(U64_LO(busaddr));
14834         }
14835 
14836         /*******************/
14837         /* FP RX RCQ CHAIN */
14838         /*******************/
14839 
14840         snprintf(buf, sizeof(buf), "fp %d rcq chain", i);
14841         if (bxe_dma_alloc(sc, (BCM_PAGE_SIZE * RCQ_NUM_PAGES),
14842                           &fp->rcq_dma, buf) != 0) {
14843             /* XXX unwind and free previous fastpath allocations */
14844             BLOGE(sc, "Failed to alloc %s\n", buf);
14845             return (1);
14846         } else {
14847             fp->rcq_chain = (union eth_rx_cqe *)fp->rcq_dma.vaddr;
14848         }
14849 
14850         /* link together the rcq chain pages */
14851         for (j = 1; j <= RCQ_NUM_PAGES; j++) {
14852             /* index into the rcq chain array to last entry per page */
14853             struct eth_rx_cqe_next_page *rx_cqe_next =
14854                 (struct eth_rx_cqe_next_page *)
14855                 &fp->rcq_chain[RCQ_TOTAL_PER_PAGE * j - 1];
14856             /* point to the next page and wrap from last page */
14857             busaddr = (fp->rcq_dma.paddr +
14858                        (BCM_PAGE_SIZE * (j % RCQ_NUM_PAGES)));
14859             rx_cqe_next->addr_hi = htole32(U64_HI(busaddr));
14860             rx_cqe_next->addr_lo = htole32(U64_LO(busaddr));
14861         }
14862 
14863         /*******************/
14864         /* FP RX SGE CHAIN */
14865         /*******************/
14866 
14867         snprintf(buf, sizeof(buf), "fp %d sge chain", i);
14868         if (bxe_dma_alloc(sc, (BCM_PAGE_SIZE * RX_SGE_NUM_PAGES),
14869                           &fp->rx_sge_dma, buf) != 0) {
14870             /* XXX unwind and free previous fastpath allocations */
14871             BLOGE(sc, "Failed to alloc %s\n", buf);
14872             return (1);
14873         } else {
14874             fp->rx_sge_chain = (struct eth_rx_sge *)fp->rx_sge_dma.vaddr;
14875         }
14876 
14877         /* link together the sge chain pages */
14878         for (j = 1; j <= RX_SGE_NUM_PAGES; j++) {
14879             /* index into the rcq chain array to last entry per page */
14880             struct eth_rx_sge *rx_sge =
14881                 &fp->rx_sge_chain[RX_SGE_TOTAL_PER_PAGE * j - 2];
14882             /* point to the next page and wrap from last page */
14883             busaddr = (fp->rx_sge_dma.paddr +
14884                        (BCM_PAGE_SIZE * (j % RX_SGE_NUM_PAGES)));
14885             rx_sge->addr_hi = htole32(U64_HI(busaddr));
14886             rx_sge->addr_lo = htole32(U64_LO(busaddr));
14887         }
14888 
14889         /***********************/
14890         /* FP TX MBUF DMA MAPS */
14891         /***********************/
14892 
14893         /* set required sizes before mapping to conserve resources */
14894         if (if_getcapenable(sc->ifp) & (IFCAP_TSO4 | IFCAP_TSO6)) {
14895             max_size     = BXE_TSO_MAX_SIZE;
14896             max_segments = BXE_TSO_MAX_SEGMENTS;
14897             max_seg_size = BXE_TSO_MAX_SEG_SIZE;
14898         } else {
14899             max_size     = (MCLBYTES * BXE_MAX_SEGMENTS);
14900             max_segments = BXE_MAX_SEGMENTS;
14901             max_seg_size = MCLBYTES;
14902         }
14903 
14904         /* create a dma tag for the tx mbufs */
14905         rc = bus_dma_tag_create(sc->parent_dma_tag, /* parent tag */
14906                                 1,                  /* alignment */
14907                                 0,                  /* boundary limit */
14908                                 BUS_SPACE_MAXADDR,  /* restricted low */
14909                                 BUS_SPACE_MAXADDR,  /* restricted hi */
14910                                 NULL,               /* addr filter() */
14911                                 NULL,               /* addr filter() arg */
14912                                 max_size,           /* max map size */
14913                                 max_segments,       /* num discontinuous */
14914                                 max_seg_size,       /* max seg size */
14915                                 0,                  /* flags */
14916                                 NULL,               /* lock() */
14917                                 NULL,               /* lock() arg */
14918                                 &fp->tx_mbuf_tag);  /* returned dma tag */
14919         if (rc != 0) {
14920             /* XXX unwind and free previous fastpath allocations */
14921             BLOGE(sc, "Failed to create dma tag for "
14922                       "'fp %d tx mbufs' (%d)\n", i, rc);
14923             return (1);
14924         }
14925 
14926         /* create dma maps for each of the tx mbuf clusters */
14927         for (j = 0; j < TX_BD_TOTAL; j++) {
14928             if (bus_dmamap_create(fp->tx_mbuf_tag,
14929                                   BUS_DMA_NOWAIT,
14930                                   &fp->tx_mbuf_chain[j].m_map)) {
14931                 /* XXX unwind and free previous fastpath allocations */
14932                 BLOGE(sc, "Failed to create dma map for "
14933                           "'fp %d tx mbuf %d' (%d)\n", i, j, rc);
14934                 return (1);
14935             }
14936         }
14937 
14938         /***********************/
14939         /* FP RX MBUF DMA MAPS */
14940         /***********************/
14941 
14942         /* create a dma tag for the rx mbufs */
14943         rc = bus_dma_tag_create(sc->parent_dma_tag, /* parent tag */
14944                                 1,                  /* alignment */
14945                                 0,                  /* boundary limit */
14946                                 BUS_SPACE_MAXADDR,  /* restricted low */
14947                                 BUS_SPACE_MAXADDR,  /* restricted hi */
14948                                 NULL,               /* addr filter() */
14949                                 NULL,               /* addr filter() arg */
14950                                 MJUM9BYTES,         /* max map size */
14951                                 1,                  /* num discontinuous */
14952                                 MJUM9BYTES,         /* max seg size */
14953                                 0,                  /* flags */
14954                                 NULL,               /* lock() */
14955                                 NULL,               /* lock() arg */
14956                                 &fp->rx_mbuf_tag);  /* returned dma tag */
14957         if (rc != 0) {
14958             /* XXX unwind and free previous fastpath allocations */
14959             BLOGE(sc, "Failed to create dma tag for "
14960                       "'fp %d rx mbufs' (%d)\n", i, rc);
14961             return (1);
14962         }
14963 
14964         /* create dma maps for each of the rx mbuf clusters */
14965         for (j = 0; j < RX_BD_TOTAL; j++) {
14966             if (bus_dmamap_create(fp->rx_mbuf_tag,
14967                                   BUS_DMA_NOWAIT,
14968                                   &fp->rx_mbuf_chain[j].m_map)) {
14969                 /* XXX unwind and free previous fastpath allocations */
14970                 BLOGE(sc, "Failed to create dma map for "
14971                           "'fp %d rx mbuf %d' (%d)\n", i, j, rc);
14972                 return (1);
14973             }
14974         }
14975 
14976         /* create dma map for the spare rx mbuf cluster */
14977         if (bus_dmamap_create(fp->rx_mbuf_tag,
14978                               BUS_DMA_NOWAIT,
14979                               &fp->rx_mbuf_spare_map)) {
14980             /* XXX unwind and free previous fastpath allocations */
14981             BLOGE(sc, "Failed to create dma map for "
14982                       "'fp %d spare rx mbuf' (%d)\n", i, rc);
14983             return (1);
14984         }
14985 
14986         /***************************/
14987         /* FP RX SGE MBUF DMA MAPS */
14988         /***************************/
14989 
14990         /* create a dma tag for the rx sge mbufs */
14991         rc = bus_dma_tag_create(sc->parent_dma_tag, /* parent tag */
14992                                 1,                  /* alignment */
14993                                 0,                  /* boundary limit */
14994                                 BUS_SPACE_MAXADDR,  /* restricted low */
14995                                 BUS_SPACE_MAXADDR,  /* restricted hi */
14996                                 NULL,               /* addr filter() */
14997                                 NULL,               /* addr filter() arg */
14998                                 BCM_PAGE_SIZE,      /* max map size */
14999                                 1,                  /* num discontinuous */
15000                                 BCM_PAGE_SIZE,      /* max seg size */
15001                                 0,                  /* flags */
15002                                 NULL,               /* lock() */
15003                                 NULL,               /* lock() arg */
15004                                 &fp->rx_sge_mbuf_tag); /* returned dma tag */
15005         if (rc != 0) {
15006             /* XXX unwind and free previous fastpath allocations */
15007             BLOGE(sc, "Failed to create dma tag for "
15008                       "'fp %d rx sge mbufs' (%d)\n", i, rc);
15009             return (1);
15010         }
15011 
15012         /* create dma maps for the rx sge mbuf clusters */
15013         for (j = 0; j < RX_SGE_TOTAL; j++) {
15014             if (bus_dmamap_create(fp->rx_sge_mbuf_tag,
15015                                   BUS_DMA_NOWAIT,
15016                                   &fp->rx_sge_mbuf_chain[j].m_map)) {
15017                 /* XXX unwind and free previous fastpath allocations */
15018                 BLOGE(sc, "Failed to create dma map for "
15019                           "'fp %d rx sge mbuf %d' (%d)\n", i, j, rc);
15020                 return (1);
15021             }
15022         }
15023 
15024         /* create dma map for the spare rx sge mbuf cluster */
15025         if (bus_dmamap_create(fp->rx_sge_mbuf_tag,
15026                               BUS_DMA_NOWAIT,
15027                               &fp->rx_sge_mbuf_spare_map)) {
15028             /* XXX unwind and free previous fastpath allocations */
15029             BLOGE(sc, "Failed to create dma map for "
15030                       "'fp %d spare rx sge mbuf' (%d)\n", i, rc);
15031             return (1);
15032         }
15033 
15034         /***************************/
15035         /* FP RX TPA MBUF DMA MAPS */
15036         /***************************/
15037 
15038         /* create dma maps for the rx tpa mbuf clusters */
15039         max_agg_queues = MAX_AGG_QS(sc);
15040 
15041         for (j = 0; j < max_agg_queues; j++) {
15042             if (bus_dmamap_create(fp->rx_mbuf_tag,
15043                                   BUS_DMA_NOWAIT,
15044                                   &fp->rx_tpa_info[j].bd.m_map)) {
15045                 /* XXX unwind and free previous fastpath allocations */
15046                 BLOGE(sc, "Failed to create dma map for "
15047                           "'fp %d rx tpa mbuf %d' (%d)\n", i, j, rc);
15048                 return (1);
15049             }
15050         }
15051 
15052         /* create dma map for the spare rx tpa mbuf cluster */
15053         if (bus_dmamap_create(fp->rx_mbuf_tag,
15054                               BUS_DMA_NOWAIT,
15055                               &fp->rx_tpa_info_mbuf_spare_map)) {
15056             /* XXX unwind and free previous fastpath allocations */
15057             BLOGE(sc, "Failed to create dma map for "
15058                       "'fp %d spare rx tpa mbuf' (%d)\n", i, rc);
15059             return (1);
15060         }
15061 
15062         bxe_init_sge_ring_bit_mask(fp);
15063     }
15064 
15065     return (0);
15066 }
15067 
15068 static void
15069 bxe_free_hsi_mem(struct bxe_softc *sc)
15070 {
15071     struct bxe_fastpath *fp;
15072     int max_agg_queues;
15073     int i, j;
15074 
15075     if (sc->parent_dma_tag == NULL) {
15076         return; /* assume nothing was allocated */
15077     }
15078 
15079     for (i = 0; i < sc->num_queues; i++) {
15080         fp = &sc->fp[i];
15081 
15082         /*******************/
15083         /* FP STATUS BLOCK */
15084         /*******************/
15085 
15086         bxe_dma_free(sc, &fp->sb_dma);
15087         memset(&fp->status_block, 0, sizeof(fp->status_block));
15088 
15089         /******************/
15090         /* FP TX BD CHAIN */
15091         /******************/
15092 
15093         bxe_dma_free(sc, &fp->tx_dma);
15094         fp->tx_chain = NULL;
15095 
15096         /******************/
15097         /* FP RX BD CHAIN */
15098         /******************/
15099 
15100         bxe_dma_free(sc, &fp->rx_dma);
15101         fp->rx_chain = NULL;
15102 
15103         /*******************/
15104         /* FP RX RCQ CHAIN */
15105         /*******************/
15106 
15107         bxe_dma_free(sc, &fp->rcq_dma);
15108         fp->rcq_chain = NULL;
15109 
15110         /*******************/
15111         /* FP RX SGE CHAIN */
15112         /*******************/
15113 
15114         bxe_dma_free(sc, &fp->rx_sge_dma);
15115         fp->rx_sge_chain = NULL;
15116 
15117         /***********************/
15118         /* FP TX MBUF DMA MAPS */
15119         /***********************/
15120 
15121         if (fp->tx_mbuf_tag != NULL) {
15122             for (j = 0; j < TX_BD_TOTAL; j++) {
15123                 if (fp->tx_mbuf_chain[j].m_map != NULL) {
15124                     bus_dmamap_unload(fp->tx_mbuf_tag,
15125                                       fp->tx_mbuf_chain[j].m_map);
15126                     bus_dmamap_destroy(fp->tx_mbuf_tag,
15127                                        fp->tx_mbuf_chain[j].m_map);
15128                 }
15129             }
15130 
15131             bus_dma_tag_destroy(fp->tx_mbuf_tag);
15132             fp->tx_mbuf_tag = NULL;
15133         }
15134 
15135         /***********************/
15136         /* FP RX MBUF DMA MAPS */
15137         /***********************/
15138 
15139         if (fp->rx_mbuf_tag != NULL) {
15140             for (j = 0; j < RX_BD_TOTAL; j++) {
15141                 if (fp->rx_mbuf_chain[j].m_map != NULL) {
15142                     bus_dmamap_unload(fp->rx_mbuf_tag,
15143                                       fp->rx_mbuf_chain[j].m_map);
15144                     bus_dmamap_destroy(fp->rx_mbuf_tag,
15145                                        fp->rx_mbuf_chain[j].m_map);
15146                 }
15147             }
15148 
15149             if (fp->rx_mbuf_spare_map != NULL) {
15150                 bus_dmamap_unload(fp->rx_mbuf_tag, fp->rx_mbuf_spare_map);
15151                 bus_dmamap_destroy(fp->rx_mbuf_tag, fp->rx_mbuf_spare_map);
15152             }
15153 
15154             /***************************/
15155             /* FP RX TPA MBUF DMA MAPS */
15156             /***************************/
15157 
15158             max_agg_queues = MAX_AGG_QS(sc);
15159 
15160             for (j = 0; j < max_agg_queues; j++) {
15161                 if (fp->rx_tpa_info[j].bd.m_map != NULL) {
15162                     bus_dmamap_unload(fp->rx_mbuf_tag,
15163                                       fp->rx_tpa_info[j].bd.m_map);
15164                     bus_dmamap_destroy(fp->rx_mbuf_tag,
15165                                        fp->rx_tpa_info[j].bd.m_map);
15166                 }
15167             }
15168 
15169             if (fp->rx_tpa_info_mbuf_spare_map != NULL) {
15170                 bus_dmamap_unload(fp->rx_mbuf_tag,
15171                                   fp->rx_tpa_info_mbuf_spare_map);
15172                 bus_dmamap_destroy(fp->rx_mbuf_tag,
15173                                    fp->rx_tpa_info_mbuf_spare_map);
15174             }
15175 
15176             bus_dma_tag_destroy(fp->rx_mbuf_tag);
15177             fp->rx_mbuf_tag = NULL;
15178         }
15179 
15180         /***************************/
15181         /* FP RX SGE MBUF DMA MAPS */
15182         /***************************/
15183 
15184         if (fp->rx_sge_mbuf_tag != NULL) {
15185             for (j = 0; j < RX_SGE_TOTAL; j++) {
15186                 if (fp->rx_sge_mbuf_chain[j].m_map != NULL) {
15187                     bus_dmamap_unload(fp->rx_sge_mbuf_tag,
15188                                       fp->rx_sge_mbuf_chain[j].m_map);
15189                     bus_dmamap_destroy(fp->rx_sge_mbuf_tag,
15190                                        fp->rx_sge_mbuf_chain[j].m_map);
15191                 }
15192             }
15193 
15194             if (fp->rx_sge_mbuf_spare_map != NULL) {
15195                 bus_dmamap_unload(fp->rx_sge_mbuf_tag,
15196                                   fp->rx_sge_mbuf_spare_map);
15197                 bus_dmamap_destroy(fp->rx_sge_mbuf_tag,
15198                                    fp->rx_sge_mbuf_spare_map);
15199             }
15200 
15201             bus_dma_tag_destroy(fp->rx_sge_mbuf_tag);
15202             fp->rx_sge_mbuf_tag = NULL;
15203         }
15204     }
15205 
15206     /***************************/
15207     /* FW DECOMPRESSION BUFFER */
15208     /***************************/
15209 
15210     bxe_dma_free(sc, &sc->gz_buf_dma);
15211     sc->gz_buf = NULL;
15212     free(sc->gz_strm, M_DEVBUF);
15213     sc->gz_strm = NULL;
15214 
15215     /*******************/
15216     /* SLOW PATH QUEUE */
15217     /*******************/
15218 
15219     bxe_dma_free(sc, &sc->spq_dma);
15220     sc->spq = NULL;
15221 
15222     /*************/
15223     /* SLOW PATH */
15224     /*************/
15225 
15226     bxe_dma_free(sc, &sc->sp_dma);
15227     sc->sp = NULL;
15228 
15229     /***************/
15230     /* EVENT QUEUE */
15231     /***************/
15232 
15233     bxe_dma_free(sc, &sc->eq_dma);
15234     sc->eq = NULL;
15235 
15236     /************************/
15237     /* DEFAULT STATUS BLOCK */
15238     /************************/
15239 
15240     bxe_dma_free(sc, &sc->def_sb_dma);
15241     sc->def_sb = NULL;
15242 
15243     bus_dma_tag_destroy(sc->parent_dma_tag);
15244     sc->parent_dma_tag = NULL;
15245 }
15246 
15247 /*
15248  * Previous driver DMAE transaction may have occurred when pre-boot stage
15249  * ended and boot began. This would invalidate the addresses of the
15250  * transaction, resulting in was-error bit set in the PCI causing all
15251  * hw-to-host PCIe transactions to timeout. If this happened we want to clear
15252  * the interrupt which detected this from the pglueb and the was-done bit
15253  */
15254 static void
15255 bxe_prev_interrupted_dmae(struct bxe_softc *sc)
15256 {
15257     uint32_t val;
15258 
15259     if (!CHIP_IS_E1x(sc)) {
15260         val = REG_RD(sc, PGLUE_B_REG_PGLUE_B_INT_STS);
15261         if (val & PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN) {
15262             BLOGD(sc, DBG_LOAD,
15263                   "Clearing 'was-error' bit that was set in pglueb");
15264             REG_WR(sc, PGLUE_B_REG_WAS_ERROR_PF_7_0_CLR, 1 << SC_FUNC(sc));
15265         }
15266     }
15267 }
15268 
15269 static int
15270 bxe_prev_mcp_done(struct bxe_softc *sc)
15271 {
15272     uint32_t rc = bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_DONE,
15273                                  DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET);
15274     if (!rc) {
15275         BLOGE(sc, "MCP response failure, aborting\n");
15276         return (-1);
15277     }
15278 
15279     return (0);
15280 }
15281 
15282 static struct bxe_prev_list_node *
15283 bxe_prev_path_get_entry(struct bxe_softc *sc)
15284 {
15285     struct bxe_prev_list_node *tmp;
15286 
15287     LIST_FOREACH(tmp, &bxe_prev_list, node) {
15288         if ((sc->pcie_bus == tmp->bus) &&
15289             (sc->pcie_device == tmp->slot) &&
15290             (SC_PATH(sc) == tmp->path)) {
15291             return (tmp);
15292         }
15293     }
15294 
15295     return (NULL);
15296 }
15297 
15298 static uint8_t
15299 bxe_prev_is_path_marked(struct bxe_softc *sc)
15300 {
15301     struct bxe_prev_list_node *tmp;
15302     int rc = FALSE;
15303 
15304     mtx_lock(&bxe_prev_mtx);
15305 
15306     tmp = bxe_prev_path_get_entry(sc);
15307     if (tmp) {
15308         if (tmp->aer) {
15309             BLOGD(sc, DBG_LOAD,
15310                   "Path %d/%d/%d was marked by AER\n",
15311                   sc->pcie_bus, sc->pcie_device, SC_PATH(sc));
15312         } else {
15313             rc = TRUE;
15314             BLOGD(sc, DBG_LOAD,
15315                   "Path %d/%d/%d was already cleaned from previous drivers\n",
15316                   sc->pcie_bus, sc->pcie_device, SC_PATH(sc));
15317         }
15318     }
15319 
15320     mtx_unlock(&bxe_prev_mtx);
15321 
15322     return (rc);
15323 }
15324 
15325 static int
15326 bxe_prev_mark_path(struct bxe_softc *sc,
15327                    uint8_t          after_undi)
15328 {
15329     struct bxe_prev_list_node *tmp;
15330 
15331     mtx_lock(&bxe_prev_mtx);
15332 
15333     /* Check whether the entry for this path already exists */
15334     tmp = bxe_prev_path_get_entry(sc);
15335     if (tmp) {
15336         if (!tmp->aer) {
15337             BLOGD(sc, DBG_LOAD,
15338                   "Re-marking AER in path %d/%d/%d\n",
15339                   sc->pcie_bus, sc->pcie_device, SC_PATH(sc));
15340         } else {
15341             BLOGD(sc, DBG_LOAD,
15342                   "Removing AER indication from path %d/%d/%d\n",
15343                   sc->pcie_bus, sc->pcie_device, SC_PATH(sc));
15344             tmp->aer = 0;
15345         }
15346 
15347         mtx_unlock(&bxe_prev_mtx);
15348         return (0);
15349     }
15350 
15351     mtx_unlock(&bxe_prev_mtx);
15352 
15353     /* Create an entry for this path and add it */
15354     tmp = malloc(sizeof(struct bxe_prev_list_node), M_DEVBUF,
15355                  (M_NOWAIT | M_ZERO));
15356     if (!tmp) {
15357         BLOGE(sc, "Failed to allocate 'bxe_prev_list_node'\n");
15358         return (-1);
15359     }
15360 
15361     tmp->bus  = sc->pcie_bus;
15362     tmp->slot = sc->pcie_device;
15363     tmp->path = SC_PATH(sc);
15364     tmp->aer  = 0;
15365     tmp->undi = after_undi ? (1 << SC_PORT(sc)) : 0;
15366 
15367     mtx_lock(&bxe_prev_mtx);
15368 
15369     BLOGD(sc, DBG_LOAD,
15370           "Marked path %d/%d/%d - finished previous unload\n",
15371           sc->pcie_bus, sc->pcie_device, SC_PATH(sc));
15372     LIST_INSERT_HEAD(&bxe_prev_list, tmp, node);
15373 
15374     mtx_unlock(&bxe_prev_mtx);
15375 
15376     return (0);
15377 }
15378 
15379 static int
15380 bxe_do_flr(struct bxe_softc *sc)
15381 {
15382     int i;
15383 
15384     /* only E2 and onwards support FLR */
15385     if (CHIP_IS_E1x(sc)) {
15386         BLOGD(sc, DBG_LOAD, "FLR not supported in E1/E1H\n");
15387         return (-1);
15388     }
15389 
15390     /* only bootcode REQ_BC_VER_4_INITIATE_FLR and onwards support flr */
15391     if (sc->devinfo.bc_ver < REQ_BC_VER_4_INITIATE_FLR) {
15392         BLOGD(sc, DBG_LOAD, "FLR not supported by BC_VER: 0x%08x\n",
15393               sc->devinfo.bc_ver);
15394         return (-1);
15395     }
15396 
15397     /* Wait for Transaction Pending bit clean */
15398     for (i = 0; i < 4; i++) {
15399         if (i) {
15400             DELAY(((1 << (i - 1)) * 100) * 1000);
15401         }
15402 
15403         if (!bxe_is_pcie_pending(sc)) {
15404             goto clear;
15405         }
15406     }
15407 
15408     BLOGE(sc, "PCIE transaction is not cleared, "
15409               "proceeding with reset anyway\n");
15410 
15411 clear:
15412 
15413     BLOGD(sc, DBG_LOAD, "Initiating FLR\n");
15414     bxe_fw_command(sc, DRV_MSG_CODE_INITIATE_FLR, 0);
15415 
15416     return (0);
15417 }
15418 
15419 struct bxe_mac_vals {
15420     uint32_t xmac_addr;
15421     uint32_t xmac_val;
15422     uint32_t emac_addr;
15423     uint32_t emac_val;
15424     uint32_t umac_addr;
15425     uint32_t umac_val;
15426     uint32_t bmac_addr;
15427     uint32_t bmac_val[2];
15428 };
15429 
15430 static void
15431 bxe_prev_unload_close_mac(struct bxe_softc *sc,
15432                           struct bxe_mac_vals *vals)
15433 {
15434     uint32_t val, base_addr, offset, mask, reset_reg;
15435     uint8_t mac_stopped = FALSE;
15436     uint8_t port = SC_PORT(sc);
15437     uint32_t wb_data[2];
15438 
15439     /* reset addresses as they also mark which values were changed */
15440     vals->bmac_addr = 0;
15441     vals->umac_addr = 0;
15442     vals->xmac_addr = 0;
15443     vals->emac_addr = 0;
15444 
15445     reset_reg = REG_RD(sc, MISC_REG_RESET_REG_2);
15446 
15447     if (!CHIP_IS_E3(sc)) {
15448         val = REG_RD(sc, NIG_REG_BMAC0_REGS_OUT_EN + port * 4);
15449         mask = MISC_REGISTERS_RESET_REG_2_RST_BMAC0 << port;
15450         if ((mask & reset_reg) && val) {
15451             BLOGD(sc, DBG_LOAD, "Disable BMAC Rx\n");
15452             base_addr = SC_PORT(sc) ? NIG_REG_INGRESS_BMAC1_MEM
15453                                     : NIG_REG_INGRESS_BMAC0_MEM;
15454             offset = CHIP_IS_E2(sc) ? BIGMAC2_REGISTER_BMAC_CONTROL
15455                                     : BIGMAC_REGISTER_BMAC_CONTROL;
15456 
15457             /*
15458              * use rd/wr since we cannot use dmae. This is safe
15459              * since MCP won't access the bus due to the request
15460              * to unload, and no function on the path can be
15461              * loaded at this time.
15462              */
15463             wb_data[0] = REG_RD(sc, base_addr + offset);
15464             wb_data[1] = REG_RD(sc, base_addr + offset + 0x4);
15465             vals->bmac_addr = base_addr + offset;
15466             vals->bmac_val[0] = wb_data[0];
15467             vals->bmac_val[1] = wb_data[1];
15468             wb_data[0] &= ~ELINK_BMAC_CONTROL_RX_ENABLE;
15469             REG_WR(sc, vals->bmac_addr, wb_data[0]);
15470             REG_WR(sc, vals->bmac_addr + 0x4, wb_data[1]);
15471         }
15472 
15473         BLOGD(sc, DBG_LOAD, "Disable EMAC Rx\n");
15474         vals->emac_addr = NIG_REG_NIG_EMAC0_EN + SC_PORT(sc)*4;
15475         vals->emac_val = REG_RD(sc, vals->emac_addr);
15476         REG_WR(sc, vals->emac_addr, 0);
15477         mac_stopped = TRUE;
15478     } else {
15479         if (reset_reg & MISC_REGISTERS_RESET_REG_2_XMAC) {
15480             BLOGD(sc, DBG_LOAD, "Disable XMAC Rx\n");
15481             base_addr = SC_PORT(sc) ? GRCBASE_XMAC1 : GRCBASE_XMAC0;
15482             val = REG_RD(sc, base_addr + XMAC_REG_PFC_CTRL_HI);
15483             REG_WR(sc, base_addr + XMAC_REG_PFC_CTRL_HI, val & ~(1 << 1));
15484             REG_WR(sc, base_addr + XMAC_REG_PFC_CTRL_HI, val | (1 << 1));
15485             vals->xmac_addr = base_addr + XMAC_REG_CTRL;
15486             vals->xmac_val = REG_RD(sc, vals->xmac_addr);
15487             REG_WR(sc, vals->xmac_addr, 0);
15488             mac_stopped = TRUE;
15489         }
15490 
15491         mask = MISC_REGISTERS_RESET_REG_2_UMAC0 << port;
15492         if (mask & reset_reg) {
15493             BLOGD(sc, DBG_LOAD, "Disable UMAC Rx\n");
15494             base_addr = SC_PORT(sc) ? GRCBASE_UMAC1 : GRCBASE_UMAC0;
15495             vals->umac_addr = base_addr + UMAC_REG_COMMAND_CONFIG;
15496             vals->umac_val = REG_RD(sc, vals->umac_addr);
15497             REG_WR(sc, vals->umac_addr, 0);
15498             mac_stopped = TRUE;
15499         }
15500     }
15501 
15502     if (mac_stopped) {
15503         DELAY(20000);
15504     }
15505 }
15506 
15507 #define BXE_PREV_UNDI_PROD_ADDR(p)  (BAR_TSTRORM_INTMEM + 0x1508 + ((p) << 4))
15508 #define BXE_PREV_UNDI_RCQ(val)      ((val) & 0xffff)
15509 #define BXE_PREV_UNDI_BD(val)       ((val) >> 16 & 0xffff)
15510 #define BXE_PREV_UNDI_PROD(rcq, bd) ((bd) << 16 | (rcq))
15511 
15512 static void
15513 bxe_prev_unload_undi_inc(struct bxe_softc *sc,
15514                          uint8_t          port,
15515                          uint8_t          inc)
15516 {
15517     uint16_t rcq, bd;
15518     uint32_t tmp_reg = REG_RD(sc, BXE_PREV_UNDI_PROD_ADDR(port));
15519 
15520     rcq = BXE_PREV_UNDI_RCQ(tmp_reg) + inc;
15521     bd = BXE_PREV_UNDI_BD(tmp_reg) + inc;
15522 
15523     tmp_reg = BXE_PREV_UNDI_PROD(rcq, bd);
15524     REG_WR(sc, BXE_PREV_UNDI_PROD_ADDR(port), tmp_reg);
15525 
15526     BLOGD(sc, DBG_LOAD,
15527           "UNDI producer [%d] rings bd -> 0x%04x, rcq -> 0x%04x\n",
15528           port, bd, rcq);
15529 }
15530 
15531 static int
15532 bxe_prev_unload_common(struct bxe_softc *sc)
15533 {
15534     uint32_t reset_reg, tmp_reg = 0, rc;
15535     uint8_t prev_undi = FALSE;
15536     struct bxe_mac_vals mac_vals;
15537     uint32_t timer_count = 1000;
15538     uint32_t prev_brb;
15539 
15540     /*
15541      * It is possible a previous function received 'common' answer,
15542      * but hasn't loaded yet, therefore creating a scenario of
15543      * multiple functions receiving 'common' on the same path.
15544      */
15545     BLOGD(sc, DBG_LOAD, "Common unload Flow\n");
15546 
15547     memset(&mac_vals, 0, sizeof(mac_vals));
15548 
15549     if (bxe_prev_is_path_marked(sc)) {
15550         return (bxe_prev_mcp_done(sc));
15551     }
15552 
15553     reset_reg = REG_RD(sc, MISC_REG_RESET_REG_1);
15554 
15555     /* Reset should be performed after BRB is emptied */
15556     if (reset_reg & MISC_REGISTERS_RESET_REG_1_RST_BRB1) {
15557         /* Close the MAC Rx to prevent BRB from filling up */
15558         bxe_prev_unload_close_mac(sc, &mac_vals);
15559 
15560         /* close LLH filters towards the BRB */
15561         elink_set_rx_filter(&sc->link_params, 0);
15562 
15563         /*
15564          * Check if the UNDI driver was previously loaded.
15565          * UNDI driver initializes CID offset for normal bell to 0x7
15566          */
15567         if (reset_reg & MISC_REGISTERS_RESET_REG_1_RST_DORQ) {
15568             tmp_reg = REG_RD(sc, DORQ_REG_NORM_CID_OFST);
15569             if (tmp_reg == 0x7) {
15570                 BLOGD(sc, DBG_LOAD, "UNDI previously loaded\n");
15571                 prev_undi = TRUE;
15572                 /* clear the UNDI indication */
15573                 REG_WR(sc, DORQ_REG_NORM_CID_OFST, 0);
15574                 /* clear possible idle check errors */
15575                 REG_RD(sc, NIG_REG_NIG_INT_STS_CLR_0);
15576             }
15577         }
15578 
15579         /* wait until BRB is empty */
15580         tmp_reg = REG_RD(sc, BRB1_REG_NUM_OF_FULL_BLOCKS);
15581         while (timer_count) {
15582             prev_brb = tmp_reg;
15583 
15584             tmp_reg = REG_RD(sc, BRB1_REG_NUM_OF_FULL_BLOCKS);
15585             if (!tmp_reg) {
15586                 break;
15587             }
15588 
15589             BLOGD(sc, DBG_LOAD, "BRB still has 0x%08x\n", tmp_reg);
15590 
15591             /* reset timer as long as BRB actually gets emptied */
15592             if (prev_brb > tmp_reg) {
15593                 timer_count = 1000;
15594             } else {
15595                 timer_count--;
15596             }
15597 
15598             /* If UNDI resides in memory, manually increment it */
15599             if (prev_undi) {
15600                 bxe_prev_unload_undi_inc(sc, SC_PORT(sc), 1);
15601             }
15602 
15603             DELAY(10);
15604         }
15605 
15606         if (!timer_count) {
15607             BLOGE(sc, "Failed to empty BRB\n");
15608         }
15609     }
15610 
15611     /* No packets are in the pipeline, path is ready for reset */
15612     bxe_reset_common(sc);
15613 
15614     if (mac_vals.xmac_addr) {
15615         REG_WR(sc, mac_vals.xmac_addr, mac_vals.xmac_val);
15616     }
15617     if (mac_vals.umac_addr) {
15618         REG_WR(sc, mac_vals.umac_addr, mac_vals.umac_val);
15619     }
15620     if (mac_vals.emac_addr) {
15621         REG_WR(sc, mac_vals.emac_addr, mac_vals.emac_val);
15622     }
15623     if (mac_vals.bmac_addr) {
15624         REG_WR(sc, mac_vals.bmac_addr, mac_vals.bmac_val[0]);
15625         REG_WR(sc, mac_vals.bmac_addr + 4, mac_vals.bmac_val[1]);
15626     }
15627 
15628     rc = bxe_prev_mark_path(sc, prev_undi);
15629     if (rc) {
15630         bxe_prev_mcp_done(sc);
15631         return (rc);
15632     }
15633 
15634     return (bxe_prev_mcp_done(sc));
15635 }
15636 
15637 static int
15638 bxe_prev_unload_uncommon(struct bxe_softc *sc)
15639 {
15640     int rc;
15641 
15642     BLOGD(sc, DBG_LOAD, "Uncommon unload Flow\n");
15643 
15644     /* Test if previous unload process was already finished for this path */
15645     if (bxe_prev_is_path_marked(sc)) {
15646         return (bxe_prev_mcp_done(sc));
15647     }
15648 
15649     BLOGD(sc, DBG_LOAD, "Path is unmarked\n");
15650 
15651     /*
15652      * If function has FLR capabilities, and existing FW version matches
15653      * the one required, then FLR will be sufficient to clean any residue
15654      * left by previous driver
15655      */
15656     rc = bxe_nic_load_analyze_req(sc, FW_MSG_CODE_DRV_LOAD_FUNCTION);
15657     if (!rc) {
15658         /* fw version is good */
15659         BLOGD(sc, DBG_LOAD, "FW version matches our own, attempting FLR\n");
15660         rc = bxe_do_flr(sc);
15661     }
15662 
15663     if (!rc) {
15664         /* FLR was performed */
15665         BLOGD(sc, DBG_LOAD, "FLR successful\n");
15666         return (0);
15667     }
15668 
15669     BLOGD(sc, DBG_LOAD, "Could not FLR\n");
15670 
15671     /* Close the MCP request, return failure*/
15672     rc = bxe_prev_mcp_done(sc);
15673     if (!rc) {
15674         rc = BXE_PREV_WAIT_NEEDED;
15675     }
15676 
15677     return (rc);
15678 }
15679 
15680 static int
15681 bxe_prev_unload(struct bxe_softc *sc)
15682 {
15683     int time_counter = 10;
15684     uint32_t fw, hw_lock_reg, hw_lock_val;
15685     uint32_t rc = 0;
15686 
15687     /*
15688      * Clear HW from errors which may have resulted from an interrupted
15689      * DMAE transaction.
15690      */
15691     bxe_prev_interrupted_dmae(sc);
15692 
15693     /* Release previously held locks */
15694     hw_lock_reg =
15695         (SC_FUNC(sc) <= 5) ?
15696             (MISC_REG_DRIVER_CONTROL_1 + SC_FUNC(sc) * 8) :
15697             (MISC_REG_DRIVER_CONTROL_7 + (SC_FUNC(sc) - 6) * 8);
15698 
15699     hw_lock_val = (REG_RD(sc, hw_lock_reg));
15700     if (hw_lock_val) {
15701         if (hw_lock_val & HW_LOCK_RESOURCE_NVRAM) {
15702             BLOGD(sc, DBG_LOAD, "Releasing previously held NVRAM lock\n");
15703             REG_WR(sc, MCP_REG_MCPR_NVM_SW_ARB,
15704                    (MCPR_NVM_SW_ARB_ARB_REQ_CLR1 << SC_PORT(sc)));
15705         }
15706         BLOGD(sc, DBG_LOAD, "Releasing previously held HW lock\n");
15707         REG_WR(sc, hw_lock_reg, 0xffffffff);
15708     } else {
15709         BLOGD(sc, DBG_LOAD, "No need to release HW/NVRAM locks\n");
15710     }
15711 
15712     if (MCPR_ACCESS_LOCK_LOCK & REG_RD(sc, MCP_REG_MCPR_ACCESS_LOCK)) {
15713         BLOGD(sc, DBG_LOAD, "Releasing previously held ALR\n");
15714         REG_WR(sc, MCP_REG_MCPR_ACCESS_LOCK, 0);
15715     }
15716 
15717     do {
15718         /* Lock MCP using an unload request */
15719         fw = bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS, 0);
15720         if (!fw) {
15721             BLOGE(sc, "MCP response failure, aborting\n");
15722             rc = -1;
15723             break;
15724         }
15725 
15726         if (fw == FW_MSG_CODE_DRV_UNLOAD_COMMON) {
15727             rc = bxe_prev_unload_common(sc);
15728             break;
15729         }
15730 
15731         /* non-common reply from MCP night require looping */
15732         rc = bxe_prev_unload_uncommon(sc);
15733         if (rc != BXE_PREV_WAIT_NEEDED) {
15734             break;
15735         }
15736 
15737         DELAY(20000);
15738     } while (--time_counter);
15739 
15740     if (!time_counter || rc) {
15741         BLOGE(sc, "Failed to unload previous driver!"
15742             " time_counter %d rc %d\n", time_counter, rc);
15743         rc = -1;
15744     }
15745 
15746     return (rc);
15747 }
15748 
15749 void
15750 bxe_dcbx_set_state(struct bxe_softc *sc,
15751                    uint8_t          dcb_on,
15752                    uint32_t         dcbx_enabled)
15753 {
15754     if (!CHIP_IS_E1x(sc)) {
15755         sc->dcb_state = dcb_on;
15756         sc->dcbx_enabled = dcbx_enabled;
15757     } else {
15758         sc->dcb_state = FALSE;
15759         sc->dcbx_enabled = BXE_DCBX_ENABLED_INVALID;
15760     }
15761     BLOGD(sc, DBG_LOAD,
15762           "DCB state [%s:%s]\n",
15763           dcb_on ? "ON" : "OFF",
15764           (dcbx_enabled == BXE_DCBX_ENABLED_OFF) ? "user-mode" :
15765           (dcbx_enabled == BXE_DCBX_ENABLED_ON_NEG_OFF) ? "on-chip static" :
15766           (dcbx_enabled == BXE_DCBX_ENABLED_ON_NEG_ON) ?
15767           "on-chip with negotiation" : "invalid");
15768 }
15769 
15770 /* must be called after sriov-enable */
15771 static int
15772 bxe_set_qm_cid_count(struct bxe_softc *sc)
15773 {
15774     int cid_count = BXE_L2_MAX_CID(sc);
15775 
15776     if (IS_SRIOV(sc)) {
15777         cid_count += BXE_VF_CIDS;
15778     }
15779 
15780     if (CNIC_SUPPORT(sc)) {
15781         cid_count += CNIC_CID_MAX;
15782     }
15783 
15784     return (roundup(cid_count, QM_CID_ROUND));
15785 }
15786 
15787 static void
15788 bxe_init_multi_cos(struct bxe_softc *sc)
15789 {
15790     int pri, cos;
15791 
15792     uint32_t pri_map = 0; /* XXX change to user config */
15793 
15794     for (pri = 0; pri < BXE_MAX_PRIORITY; pri++) {
15795         cos = ((pri_map & (0xf << (pri * 4))) >> (pri * 4));
15796         if (cos < sc->max_cos) {
15797             sc->prio_to_cos[pri] = cos;
15798         } else {
15799             BLOGW(sc, "Invalid COS %d for priority %d "
15800                       "(max COS is %d), setting to 0\n",
15801                   cos, pri, (sc->max_cos - 1));
15802             sc->prio_to_cos[pri] = 0;
15803         }
15804     }
15805 }
15806 
15807 static int
15808 bxe_sysctl_state(SYSCTL_HANDLER_ARGS)
15809 {
15810     struct bxe_softc *sc;
15811     int error, result;
15812 
15813     result = 0;
15814     error = sysctl_handle_int(oidp, &result, 0, req);
15815 
15816     if (error || !req->newptr) {
15817         return (error);
15818     }
15819 
15820     if (result == 1) {
15821         uint32_t  temp;
15822         sc = (struct bxe_softc *)arg1;
15823 
15824         BLOGI(sc, "... dumping driver state ...\n");
15825         temp = SHMEM2_RD(sc, temperature_in_half_celsius);
15826         BLOGI(sc, "\t Device Temperature = %d Celsius\n", (temp/2));
15827     }
15828 
15829     return (error);
15830 }
15831 
15832 static int
15833 bxe_sysctl_eth_stat(SYSCTL_HANDLER_ARGS)
15834 {
15835     struct bxe_softc *sc = (struct bxe_softc *)arg1;
15836     uint32_t *eth_stats = (uint32_t *)&sc->eth_stats;
15837     uint32_t *offset;
15838     uint64_t value = 0;
15839     int index = (int)arg2;
15840 
15841     if (index >= BXE_NUM_ETH_STATS) {
15842         BLOGE(sc, "bxe_eth_stats index out of range (%d)\n", index);
15843         return (-1);
15844     }
15845 
15846     offset = (eth_stats + bxe_eth_stats_arr[index].offset);
15847 
15848     switch (bxe_eth_stats_arr[index].size) {
15849     case 4:
15850         value = (uint64_t)*offset;
15851         break;
15852     case 8:
15853         value = HILO_U64(*offset, *(offset + 1));
15854         break;
15855     default:
15856         BLOGE(sc, "Invalid bxe_eth_stats size (index=%d size=%d)\n",
15857               index, bxe_eth_stats_arr[index].size);
15858         return (-1);
15859     }
15860 
15861     return (sysctl_handle_64(oidp, &value, 0, req));
15862 }
15863 
15864 static int
15865 bxe_sysctl_eth_q_stat(SYSCTL_HANDLER_ARGS)
15866 {
15867     struct bxe_softc *sc = (struct bxe_softc *)arg1;
15868     uint32_t *eth_stats;
15869     uint32_t *offset;
15870     uint64_t value = 0;
15871     uint32_t q_stat = (uint32_t)arg2;
15872     uint32_t fp_index = ((q_stat >> 16) & 0xffff);
15873     uint32_t index = (q_stat & 0xffff);
15874 
15875     eth_stats = (uint32_t *)&sc->fp[fp_index].eth_q_stats;
15876 
15877     if (index >= BXE_NUM_ETH_Q_STATS) {
15878         BLOGE(sc, "bxe_eth_q_stats index out of range (%d)\n", index);
15879         return (-1);
15880     }
15881 
15882     offset = (eth_stats + bxe_eth_q_stats_arr[index].offset);
15883 
15884     switch (bxe_eth_q_stats_arr[index].size) {
15885     case 4:
15886         value = (uint64_t)*offset;
15887         break;
15888     case 8:
15889         value = HILO_U64(*offset, *(offset + 1));
15890         break;
15891     default:
15892         BLOGE(sc, "Invalid bxe_eth_q_stats size (index=%d size=%d)\n",
15893               index, bxe_eth_q_stats_arr[index].size);
15894         return (-1);
15895     }
15896 
15897     return (sysctl_handle_64(oidp, &value, 0, req));
15898 }
15899 
15900 static void bxe_force_link_reset(struct bxe_softc *sc)
15901 {
15902 
15903         bxe_acquire_phy_lock(sc);
15904         elink_link_reset(&sc->link_params, &sc->link_vars, 1);
15905         bxe_release_phy_lock(sc);
15906 }
15907 
15908 static int
15909 bxe_sysctl_pauseparam(SYSCTL_HANDLER_ARGS)
15910 {
15911         struct bxe_softc *sc = (struct bxe_softc *)arg1;
15912         uint32_t cfg_idx = bxe_get_link_cfg_idx(sc);
15913         int rc = 0;
15914         int error;
15915         int result;
15916 
15917 
15918         error = sysctl_handle_int(oidp, &sc->bxe_pause_param, 0, req);
15919 
15920         if (error || !req->newptr) {
15921                 return (error);
15922         }
15923         if ((sc->bxe_pause_param < 0) ||  (sc->bxe_pause_param > 8)) {
15924                 BLOGW(sc, "invalid pause param (%d) - use integers between 1 & 8\n",sc->bxe_pause_param);
15925                 sc->bxe_pause_param = 8;
15926         }
15927 
15928         result = (sc->bxe_pause_param << PORT_FEATURE_FLOW_CONTROL_SHIFT);
15929 
15930 
15931         if((result & 0x400) && !(sc->port.supported[cfg_idx] & ELINK_SUPPORTED_Autoneg))  {
15932                         BLOGW(sc, "Does not support Autoneg pause_param %d\n", sc->bxe_pause_param);
15933                         return -EINVAL;
15934         }
15935 
15936         if(IS_MF(sc))
15937                 return 0;
15938        sc->link_params.req_flow_ctrl[cfg_idx] = ELINK_FLOW_CTRL_AUTO;
15939         if(result & ELINK_FLOW_CTRL_RX)
15940                 sc->link_params.req_flow_ctrl[cfg_idx] |= ELINK_FLOW_CTRL_RX;
15941 
15942         if(result & ELINK_FLOW_CTRL_TX)
15943                 sc->link_params.req_flow_ctrl[cfg_idx] |= ELINK_FLOW_CTRL_TX;
15944         if(sc->link_params.req_flow_ctrl[cfg_idx] == ELINK_FLOW_CTRL_AUTO)
15945                 sc->link_params.req_flow_ctrl[cfg_idx] = ELINK_FLOW_CTRL_NONE;
15946 
15947         if(result & 0x400) {
15948                 if (sc->link_params.req_line_speed[cfg_idx] == ELINK_SPEED_AUTO_NEG) {
15949                         sc->link_params.req_flow_ctrl[cfg_idx] =
15950                                 ELINK_FLOW_CTRL_AUTO;
15951                 }
15952                 sc->link_params.req_fc_auto_adv = 0;
15953                 if (result & ELINK_FLOW_CTRL_RX)
15954                         sc->link_params.req_fc_auto_adv |= ELINK_FLOW_CTRL_RX;
15955 
15956                 if (result & ELINK_FLOW_CTRL_TX)
15957                         sc->link_params.req_fc_auto_adv |= ELINK_FLOW_CTRL_TX;
15958                 if (!sc->link_params.req_fc_auto_adv)
15959                         sc->link_params.req_fc_auto_adv |= ELINK_FLOW_CTRL_NONE;
15960         }
15961          if (IS_PF(sc)) {
15962                         if (sc->link_vars.link_up) {
15963                                 bxe_stats_handle(sc, STATS_EVENT_STOP);
15964                         }
15965 			if (if_getdrvflags(sc->ifp) & IFF_DRV_RUNNING) {
15966                         bxe_force_link_reset(sc);
15967                         bxe_acquire_phy_lock(sc);
15968 
15969                         rc = elink_phy_init(&sc->link_params, &sc->link_vars);
15970 
15971                         bxe_release_phy_lock(sc);
15972 
15973                         bxe_calc_fc_adv(sc);
15974                         }
15975         }
15976         return rc;
15977 }
15978 
15979 
15980 static void
15981 bxe_add_sysctls(struct bxe_softc *sc)
15982 {
15983     struct sysctl_ctx_list *ctx;
15984     struct sysctl_oid_list *children;
15985     struct sysctl_oid *queue_top, *queue;
15986     struct sysctl_oid_list *queue_top_children, *queue_children;
15987     char queue_num_buf[32];
15988     uint32_t q_stat;
15989     int i, j;
15990 
15991     ctx = device_get_sysctl_ctx(sc->dev);
15992     children = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev));
15993 
15994     SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "version",
15995                       CTLFLAG_RD, BXE_DRIVER_VERSION, 0,
15996                       "version");
15997 
15998     snprintf(sc->fw_ver_str, sizeof(sc->fw_ver_str), "%d.%d.%d.%d",
15999              BCM_5710_FW_MAJOR_VERSION,
16000              BCM_5710_FW_MINOR_VERSION,
16001              BCM_5710_FW_REVISION_VERSION,
16002              BCM_5710_FW_ENGINEERING_VERSION);
16003 
16004     snprintf(sc->mf_mode_str, sizeof(sc->mf_mode_str), "%s",
16005         ((sc->devinfo.mf_info.mf_mode == SINGLE_FUNCTION)     ? "Single"  :
16006          (sc->devinfo.mf_info.mf_mode == MULTI_FUNCTION_SD)   ? "MF-SD"   :
16007          (sc->devinfo.mf_info.mf_mode == MULTI_FUNCTION_SI)   ? "MF-SI"   :
16008          (sc->devinfo.mf_info.mf_mode == MULTI_FUNCTION_AFEX) ? "MF-AFEX" :
16009                                                                 "Unknown"));
16010     SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "mf_vnics",
16011                     CTLFLAG_RD, &sc->devinfo.mf_info.vnics_per_port, 0,
16012                     "multifunction vnics per port");
16013 
16014     snprintf(sc->pci_link_str, sizeof(sc->pci_link_str), "%s x%d",
16015         ((sc->devinfo.pcie_link_speed == 1) ? "2.5GT/s" :
16016          (sc->devinfo.pcie_link_speed == 2) ? "5.0GT/s" :
16017          (sc->devinfo.pcie_link_speed == 4) ? "8.0GT/s" :
16018                                               "???GT/s"),
16019         sc->devinfo.pcie_link_width);
16020 
16021     sc->debug = bxe_debug;
16022 
16023     SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "bc_version",
16024                       CTLFLAG_RD, sc->devinfo.bc_ver_str, 0,
16025                       "bootcode version");
16026     SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "fw_version",
16027                       CTLFLAG_RD, sc->fw_ver_str, 0,
16028                       "firmware version");
16029     SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "mf_mode",
16030                       CTLFLAG_RD, sc->mf_mode_str, 0,
16031                       "multifunction mode");
16032     SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "mac_addr",
16033                       CTLFLAG_RD, sc->mac_addr_str, 0,
16034                       "mac address");
16035     SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "pci_link",
16036                       CTLFLAG_RD, sc->pci_link_str, 0,
16037                       "pci link status");
16038     SYSCTL_ADD_ULONG(ctx, children, OID_AUTO, "debug",
16039                     CTLFLAG_RW, &sc->debug,
16040                     "debug logging mode");
16041 
16042     sc->trigger_grcdump = 0;
16043     SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "trigger_grcdump",
16044                    CTLFLAG_RW, &sc->trigger_grcdump, 0,
16045                    "trigger grcdump should be invoked"
16046                    "  before collecting grcdump");
16047 
16048     sc->grcdump_started = 0;
16049     sc->grcdump_done = 0;
16050     SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "grcdump_done",
16051                    CTLFLAG_RD, &sc->grcdump_done, 0,
16052                    "set by driver when grcdump is done");
16053 
16054     sc->rx_budget = bxe_rx_budget;
16055     SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "rx_budget",
16056                     CTLFLAG_RW, &sc->rx_budget, 0,
16057                     "rx processing budget");
16058 
16059     SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "pause_param",
16060         CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_MPSAFE, sc, 0,
16061         bxe_sysctl_pauseparam, "IU",
16062         "need pause frames- DEF:0/TX:1/RX:2/BOTH:3/AUTO:4/AUTOTX:5/AUTORX:6/AUTORXTX:7/NONE:8");
16063 
16064 
16065     SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "state",
16066         CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_MPSAFE, sc, 0,
16067         bxe_sysctl_state, "IU", "dump driver state");
16068 
16069     for (i = 0; i < BXE_NUM_ETH_STATS; i++) {
16070         SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
16071             bxe_eth_stats_arr[i].string,
16072             CTLTYPE_U64 | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, i,
16073             bxe_sysctl_eth_stat, "LU", bxe_eth_stats_arr[i].string);
16074     }
16075 
16076     /* add a new parent node for all queues "dev.bxe.#.queue" */
16077     queue_top = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "queue",
16078         CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "queue");
16079     queue_top_children = SYSCTL_CHILDREN(queue_top);
16080 
16081     for (i = 0; i < sc->num_queues; i++) {
16082         /* add a new parent node for a single queue "dev.bxe.#.queue.#" */
16083         snprintf(queue_num_buf, sizeof(queue_num_buf), "%d", i);
16084         queue = SYSCTL_ADD_NODE(ctx, queue_top_children, OID_AUTO,
16085             queue_num_buf, CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "single queue");
16086         queue_children = SYSCTL_CHILDREN(queue);
16087 
16088         for (j = 0; j < BXE_NUM_ETH_Q_STATS; j++) {
16089             q_stat = ((i << 16) | j);
16090             SYSCTL_ADD_PROC(ctx, queue_children, OID_AUTO,
16091                  bxe_eth_q_stats_arr[j].string,
16092                  CTLTYPE_U64 | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, q_stat,
16093                  bxe_sysctl_eth_q_stat, "LU", bxe_eth_q_stats_arr[j].string);
16094         }
16095     }
16096 }
16097 
16098 static int
16099 bxe_alloc_buf_rings(struct bxe_softc *sc)
16100 {
16101     int i;
16102     struct bxe_fastpath *fp;
16103 
16104     for (i = 0; i < sc->num_queues; i++) {
16105 
16106         fp = &sc->fp[i];
16107 
16108         fp->tx_br = buf_ring_alloc(BXE_BR_SIZE, M_DEVBUF,
16109                                    M_NOWAIT, &fp->tx_mtx);
16110         if (fp->tx_br == NULL)
16111             return (-1);
16112     }
16113 
16114     return (0);
16115 }
16116 
16117 static void
16118 bxe_free_buf_rings(struct bxe_softc *sc)
16119 {
16120     int i;
16121     struct bxe_fastpath *fp;
16122 
16123     for (i = 0; i < sc->num_queues; i++) {
16124 
16125         fp = &sc->fp[i];
16126 
16127         if (fp->tx_br) {
16128             buf_ring_free(fp->tx_br, M_DEVBUF);
16129             fp->tx_br = NULL;
16130         }
16131     }
16132 }
16133 
16134 static void
16135 bxe_init_fp_mutexs(struct bxe_softc *sc)
16136 {
16137     int i;
16138     struct bxe_fastpath *fp;
16139 
16140     for (i = 0; i < sc->num_queues; i++) {
16141 
16142         fp = &sc->fp[i];
16143 
16144         snprintf(fp->tx_mtx_name, sizeof(fp->tx_mtx_name),
16145             "bxe%d_fp%d_tx_lock", sc->unit, i);
16146         mtx_init(&fp->tx_mtx, fp->tx_mtx_name, NULL, MTX_DEF);
16147 
16148         snprintf(fp->rx_mtx_name, sizeof(fp->rx_mtx_name),
16149             "bxe%d_fp%d_rx_lock", sc->unit, i);
16150         mtx_init(&fp->rx_mtx, fp->rx_mtx_name, NULL, MTX_DEF);
16151     }
16152 }
16153 
16154 static void
16155 bxe_destroy_fp_mutexs(struct bxe_softc *sc)
16156 {
16157     int i;
16158     struct bxe_fastpath *fp;
16159 
16160     for (i = 0; i < sc->num_queues; i++) {
16161 
16162         fp = &sc->fp[i];
16163 
16164         if (mtx_initialized(&fp->tx_mtx)) {
16165             mtx_destroy(&fp->tx_mtx);
16166         }
16167 
16168         if (mtx_initialized(&fp->rx_mtx)) {
16169             mtx_destroy(&fp->rx_mtx);
16170         }
16171     }
16172 }
16173 
16174 
16175 /*
16176  * Device attach function.
16177  *
16178  * Allocates device resources, performs secondary chip identification, and
16179  * initializes driver instance variables. This function is called from driver
16180  * load after a successful probe.
16181  *
16182  * Returns:
16183  *   0 = Success, >0 = Failure
16184  */
16185 static int
16186 bxe_attach(device_t dev)
16187 {
16188     struct bxe_softc *sc;
16189 
16190     sc = device_get_softc(dev);
16191 
16192     BLOGD(sc, DBG_LOAD, "Starting attach...\n");
16193 
16194     sc->state = BXE_STATE_CLOSED;
16195 
16196     sc->dev  = dev;
16197     sc->unit = device_get_unit(dev);
16198 
16199     BLOGD(sc, DBG_LOAD, "softc = %p\n", sc);
16200 
16201     sc->pcie_bus    = pci_get_bus(dev);
16202     sc->pcie_device = pci_get_slot(dev);
16203     sc->pcie_func   = pci_get_function(dev);
16204 
16205     /* enable bus master capability */
16206     pci_enable_busmaster(dev);
16207 
16208     /* get the BARs */
16209     if (bxe_allocate_bars(sc) != 0) {
16210         return (ENXIO);
16211     }
16212 
16213     /* initialize the mutexes */
16214     bxe_init_mutexes(sc);
16215 
16216     /* prepare the periodic callout */
16217     callout_init(&sc->periodic_callout, 1);
16218 
16219     /* prepare the chip taskqueue */
16220     sc->chip_tq_flags = CHIP_TQ_NONE;
16221     snprintf(sc->chip_tq_name, sizeof(sc->chip_tq_name),
16222              "bxe%d_chip_tq", sc->unit);
16223     TASK_INIT(&sc->chip_tq_task, 0, bxe_handle_chip_tq, sc);
16224     sc->chip_tq = taskqueue_create(sc->chip_tq_name, M_NOWAIT,
16225                                    taskqueue_thread_enqueue,
16226                                    &sc->chip_tq);
16227     taskqueue_start_threads(&sc->chip_tq, 1, PWAIT, /* lower priority */
16228                             "%s", sc->chip_tq_name);
16229 
16230     TIMEOUT_TASK_INIT(taskqueue_thread,
16231         &sc->sp_err_timeout_task, 0, bxe_sp_err_timeout_task,  sc);
16232 
16233 
16234     /* get device info and set params */
16235     if (bxe_get_device_info(sc) != 0) {
16236         BLOGE(sc, "getting device info\n");
16237         bxe_deallocate_bars(sc);
16238         pci_disable_busmaster(dev);
16239         return (ENXIO);
16240     }
16241 
16242     /* get final misc params */
16243     bxe_get_params(sc);
16244 
16245     /* set the default MTU (changed via ifconfig) */
16246     sc->mtu = ETHERMTU;
16247 
16248     bxe_set_modes_bitmap(sc);
16249 
16250     /* XXX
16251      * If in AFEX mode and the function is configured for FCoE
16252      * then bail... no L2 allowed.
16253      */
16254 
16255     /* get phy settings from shmem and 'and' against admin settings */
16256     bxe_get_phy_info(sc);
16257 
16258     /* initialize the FreeBSD ifnet interface */
16259     bxe_init_ifnet(sc);
16260 
16261     if (bxe_add_cdev(sc) != 0) {
16262         if (sc->ifp != NULL) {
16263             ether_ifdetach(sc->ifp);
16264         }
16265         ifmedia_removeall(&sc->ifmedia);
16266         bxe_release_mutexes(sc);
16267         bxe_deallocate_bars(sc);
16268         pci_disable_busmaster(dev);
16269         return (ENXIO);
16270     }
16271 
16272     /* allocate device interrupts */
16273     if (bxe_interrupt_alloc(sc) != 0) {
16274         bxe_del_cdev(sc);
16275         if (sc->ifp != NULL) {
16276             ether_ifdetach(sc->ifp);
16277         }
16278         ifmedia_removeall(&sc->ifmedia);
16279         bxe_release_mutexes(sc);
16280         bxe_deallocate_bars(sc);
16281         pci_disable_busmaster(dev);
16282         return (ENXIO);
16283     }
16284 
16285     bxe_init_fp_mutexs(sc);
16286 
16287     if (bxe_alloc_buf_rings(sc) != 0) {
16288 	bxe_free_buf_rings(sc);
16289         bxe_interrupt_free(sc);
16290         bxe_del_cdev(sc);
16291         if (sc->ifp != NULL) {
16292             ether_ifdetach(sc->ifp);
16293         }
16294         ifmedia_removeall(&sc->ifmedia);
16295         bxe_release_mutexes(sc);
16296         bxe_deallocate_bars(sc);
16297         pci_disable_busmaster(dev);
16298         return (ENXIO);
16299     }
16300 
16301     /* allocate ilt */
16302     if (bxe_alloc_ilt_mem(sc) != 0) {
16303 	bxe_free_buf_rings(sc);
16304         bxe_interrupt_free(sc);
16305         bxe_del_cdev(sc);
16306         if (sc->ifp != NULL) {
16307             ether_ifdetach(sc->ifp);
16308         }
16309         ifmedia_removeall(&sc->ifmedia);
16310         bxe_release_mutexes(sc);
16311         bxe_deallocate_bars(sc);
16312         pci_disable_busmaster(dev);
16313         return (ENXIO);
16314     }
16315 
16316     /* allocate the host hardware/software hsi structures */
16317     if (bxe_alloc_hsi_mem(sc) != 0) {
16318         bxe_free_ilt_mem(sc);
16319 	bxe_free_buf_rings(sc);
16320         bxe_interrupt_free(sc);
16321         bxe_del_cdev(sc);
16322         if (sc->ifp != NULL) {
16323             ether_ifdetach(sc->ifp);
16324         }
16325         ifmedia_removeall(&sc->ifmedia);
16326         bxe_release_mutexes(sc);
16327         bxe_deallocate_bars(sc);
16328         pci_disable_busmaster(dev);
16329         return (ENXIO);
16330     }
16331 
16332     /* need to reset chip if UNDI was active */
16333     if (IS_PF(sc) && !BXE_NOMCP(sc)) {
16334         /* init fw_seq */
16335         sc->fw_seq =
16336             (SHMEM_RD(sc, func_mb[SC_FW_MB_IDX(sc)].drv_mb_header) &
16337              DRV_MSG_SEQ_NUMBER_MASK);
16338         BLOGD(sc, DBG_LOAD, "prev unload fw_seq 0x%04x\n", sc->fw_seq);
16339         bxe_prev_unload(sc);
16340     }
16341 
16342 #if 1
16343     /* XXX */
16344     bxe_dcbx_set_state(sc, FALSE, BXE_DCBX_ENABLED_OFF);
16345 #else
16346     if (SHMEM2_HAS(sc, dcbx_lldp_params_offset) &&
16347         SHMEM2_HAS(sc, dcbx_lldp_dcbx_stat_offset) &&
16348         SHMEM2_RD(sc, dcbx_lldp_params_offset) &&
16349         SHMEM2_RD(sc, dcbx_lldp_dcbx_stat_offset)) {
16350         bxe_dcbx_set_state(sc, TRUE, BXE_DCBX_ENABLED_ON_NEG_ON);
16351         bxe_dcbx_init_params(sc);
16352     } else {
16353         bxe_dcbx_set_state(sc, FALSE, BXE_DCBX_ENABLED_OFF);
16354     }
16355 #endif
16356 
16357     /* calculate qm_cid_count */
16358     sc->qm_cid_count = bxe_set_qm_cid_count(sc);
16359     BLOGD(sc, DBG_LOAD, "qm_cid_count=%d\n", sc->qm_cid_count);
16360 
16361     sc->max_cos = 1;
16362     bxe_init_multi_cos(sc);
16363 
16364     bxe_add_sysctls(sc);
16365 
16366     return (0);
16367 }
16368 
16369 /*
16370  * Device detach function.
16371  *
16372  * Stops the controller, resets the controller, and releases resources.
16373  *
16374  * Returns:
16375  *   0 = Success, >0 = Failure
16376  */
16377 static int
16378 bxe_detach(device_t dev)
16379 {
16380     struct bxe_softc *sc;
16381     if_t ifp;
16382 
16383     sc = device_get_softc(dev);
16384 
16385     BLOGD(sc, DBG_LOAD, "Starting detach...\n");
16386 
16387     ifp = sc->ifp;
16388     if (ifp != NULL && if_vlantrunkinuse(ifp)) {
16389         BLOGE(sc, "Cannot detach while VLANs are in use.\n");
16390         return(EBUSY);
16391     }
16392 
16393     bxe_del_cdev(sc);
16394 
16395     /* stop the periodic callout */
16396     bxe_periodic_stop(sc);
16397 
16398     /* stop the chip taskqueue */
16399     atomic_store_rel_long(&sc->chip_tq_flags, CHIP_TQ_NONE);
16400     if (sc->chip_tq) {
16401         taskqueue_drain(sc->chip_tq, &sc->chip_tq_task);
16402         taskqueue_free(sc->chip_tq);
16403         sc->chip_tq = NULL;
16404         taskqueue_drain_timeout(taskqueue_thread,
16405             &sc->sp_err_timeout_task);
16406     }
16407 
16408     /* stop and reset the controller if it was open */
16409     if (sc->state != BXE_STATE_CLOSED) {
16410         BXE_CORE_LOCK(sc);
16411         bxe_nic_unload(sc, UNLOAD_CLOSE, TRUE);
16412         sc->state = BXE_STATE_DISABLED;
16413         BXE_CORE_UNLOCK(sc);
16414     }
16415 
16416     /* release the network interface */
16417     if (ifp != NULL) {
16418         ether_ifdetach(ifp);
16419     }
16420     ifmedia_removeall(&sc->ifmedia);
16421 
16422     /* XXX do the following based on driver state... */
16423 
16424     /* free the host hardware/software hsi structures */
16425     bxe_free_hsi_mem(sc);
16426 
16427     /* free ilt */
16428     bxe_free_ilt_mem(sc);
16429 
16430     bxe_free_buf_rings(sc);
16431 
16432     /* release the interrupts */
16433     bxe_interrupt_free(sc);
16434 
16435     /* Release the mutexes*/
16436     bxe_destroy_fp_mutexs(sc);
16437     bxe_release_mutexes(sc);
16438 
16439 
16440     /* Release the PCIe BAR mapped memory */
16441     bxe_deallocate_bars(sc);
16442 
16443     /* Release the FreeBSD interface. */
16444     if (sc->ifp != NULL) {
16445         if_free(sc->ifp);
16446     }
16447 
16448     pci_disable_busmaster(dev);
16449 
16450     return (0);
16451 }
16452 
16453 /*
16454  * Device shutdown function.
16455  *
16456  * Stops and resets the controller.
16457  *
16458  * Returns:
16459  *   Nothing
16460  */
16461 static int
16462 bxe_shutdown(device_t dev)
16463 {
16464     struct bxe_softc *sc;
16465 
16466     sc = device_get_softc(dev);
16467 
16468     BLOGD(sc, DBG_LOAD, "Starting shutdown...\n");
16469 
16470     /* stop the periodic callout */
16471     bxe_periodic_stop(sc);
16472 
16473     if (sc->state != BXE_STATE_CLOSED) {
16474     	BXE_CORE_LOCK(sc);
16475     	bxe_nic_unload(sc, UNLOAD_NORMAL, FALSE);
16476     	BXE_CORE_UNLOCK(sc);
16477     }
16478 
16479     return (0);
16480 }
16481 
16482 void
16483 bxe_igu_ack_sb(struct bxe_softc *sc,
16484                uint8_t          igu_sb_id,
16485                uint8_t          segment,
16486                uint16_t         index,
16487                uint8_t          op,
16488                uint8_t          update)
16489 {
16490     uint32_t igu_addr = sc->igu_base_addr;
16491     igu_addr += (IGU_CMD_INT_ACK_BASE + igu_sb_id)*8;
16492     bxe_igu_ack_sb_gen(sc, igu_sb_id, segment, index, op, update, igu_addr);
16493 }
16494 
16495 static void
16496 bxe_igu_clear_sb_gen(struct bxe_softc *sc,
16497                      uint8_t          func,
16498                      uint8_t          idu_sb_id,
16499                      uint8_t          is_pf)
16500 {
16501     uint32_t data, ctl, cnt = 100;
16502     uint32_t igu_addr_data = IGU_REG_COMMAND_REG_32LSB_DATA;
16503     uint32_t igu_addr_ctl = IGU_REG_COMMAND_REG_CTRL;
16504     uint32_t igu_addr_ack = IGU_REG_CSTORM_TYPE_0_SB_CLEANUP + (idu_sb_id/32)*4;
16505     uint32_t sb_bit =  1 << (idu_sb_id%32);
16506     uint32_t func_encode = func | (is_pf ? 1 : 0) << IGU_FID_ENCODE_IS_PF_SHIFT;
16507     uint32_t addr_encode = IGU_CMD_E2_PROD_UPD_BASE + idu_sb_id;
16508 
16509     /* Not supported in BC mode */
16510     if (CHIP_INT_MODE_IS_BC(sc)) {
16511         return;
16512     }
16513 
16514     data = ((IGU_USE_REGISTER_cstorm_type_0_sb_cleanup <<
16515              IGU_REGULAR_CLEANUP_TYPE_SHIFT) |
16516             IGU_REGULAR_CLEANUP_SET |
16517             IGU_REGULAR_BCLEANUP);
16518 
16519     ctl = ((addr_encode << IGU_CTRL_REG_ADDRESS_SHIFT) |
16520            (func_encode << IGU_CTRL_REG_FID_SHIFT) |
16521            (IGU_CTRL_CMD_TYPE_WR << IGU_CTRL_REG_TYPE_SHIFT));
16522 
16523     BLOGD(sc, DBG_LOAD, "write 0x%08x to IGU(via GRC) addr 0x%x\n",
16524             data, igu_addr_data);
16525     REG_WR(sc, igu_addr_data, data);
16526 
16527     bus_space_barrier(sc->bar[BAR0].tag, sc->bar[BAR0].handle, 0, 0,
16528                       BUS_SPACE_BARRIER_WRITE);
16529     mb();
16530 
16531     BLOGD(sc, DBG_LOAD, "write 0x%08x to IGU(via GRC) addr 0x%x\n",
16532             ctl, igu_addr_ctl);
16533     REG_WR(sc, igu_addr_ctl, ctl);
16534 
16535     bus_space_barrier(sc->bar[BAR0].tag, sc->bar[BAR0].handle, 0, 0,
16536                       BUS_SPACE_BARRIER_WRITE);
16537     mb();
16538 
16539     /* wait for clean up to finish */
16540     while (!(REG_RD(sc, igu_addr_ack) & sb_bit) && --cnt) {
16541         DELAY(20000);
16542     }
16543 
16544     if (!(REG_RD(sc, igu_addr_ack) & sb_bit)) {
16545         BLOGD(sc, DBG_LOAD,
16546               "Unable to finish IGU cleanup: "
16547               "idu_sb_id %d offset %d bit %d (cnt %d)\n",
16548               idu_sb_id, idu_sb_id/32, idu_sb_id%32, cnt);
16549     }
16550 }
16551 
16552 static void
16553 bxe_igu_clear_sb(struct bxe_softc *sc,
16554                  uint8_t          idu_sb_id)
16555 {
16556     bxe_igu_clear_sb_gen(sc, SC_FUNC(sc), idu_sb_id, TRUE /*PF*/);
16557 }
16558 
16559 
16560 
16561 
16562 
16563 
16564 
16565 /*******************/
16566 /* ECORE CALLBACKS */
16567 /*******************/
16568 
16569 static void
16570 bxe_reset_common(struct bxe_softc *sc)
16571 {
16572     uint32_t val = 0x1400;
16573 
16574     /* reset_common */
16575     REG_WR(sc, (GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR), 0xd3ffff7f);
16576 
16577     if (CHIP_IS_E3(sc)) {
16578         val |= MISC_REGISTERS_RESET_REG_2_MSTAT0;
16579         val |= MISC_REGISTERS_RESET_REG_2_MSTAT1;
16580     }
16581 
16582     REG_WR(sc, (GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR), val);
16583 }
16584 
16585 static void
16586 bxe_common_init_phy(struct bxe_softc *sc)
16587 {
16588     uint32_t shmem_base[2];
16589     uint32_t shmem2_base[2];
16590 
16591     /* Avoid common init in case MFW supports LFA */
16592     if (SHMEM2_RD(sc, size) >
16593         (uint32_t)offsetof(struct shmem2_region,
16594                            lfa_host_addr[SC_PORT(sc)])) {
16595         return;
16596     }
16597 
16598     shmem_base[0]  = sc->devinfo.shmem_base;
16599     shmem2_base[0] = sc->devinfo.shmem2_base;
16600 
16601     if (!CHIP_IS_E1x(sc)) {
16602         shmem_base[1]  = SHMEM2_RD(sc, other_shmem_base_addr);
16603         shmem2_base[1] = SHMEM2_RD(sc, other_shmem2_base_addr);
16604     }
16605 
16606     bxe_acquire_phy_lock(sc);
16607     elink_common_init_phy(sc, shmem_base, shmem2_base,
16608                           sc->devinfo.chip_id, 0);
16609     bxe_release_phy_lock(sc);
16610 }
16611 
16612 static void
16613 bxe_pf_disable(struct bxe_softc *sc)
16614 {
16615     uint32_t val = REG_RD(sc, IGU_REG_PF_CONFIGURATION);
16616 
16617     val &= ~IGU_PF_CONF_FUNC_EN;
16618 
16619     REG_WR(sc, IGU_REG_PF_CONFIGURATION, val);
16620     REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
16621     REG_WR(sc, CFC_REG_WEAK_ENABLE_PF, 0);
16622 }
16623 
16624 static void
16625 bxe_init_pxp(struct bxe_softc *sc)
16626 {
16627     uint16_t devctl;
16628     int r_order, w_order;
16629 
16630     devctl = bxe_pcie_capability_read(sc, PCIER_DEVICE_CTL, 2);
16631 
16632     BLOGD(sc, DBG_LOAD, "read 0x%08x from devctl\n", devctl);
16633 
16634     w_order = ((devctl & PCIEM_CTL_MAX_PAYLOAD) >> 5);
16635 
16636     if (sc->mrrs == -1) {
16637         r_order = ((devctl & PCIEM_CTL_MAX_READ_REQUEST) >> 12);
16638     } else {
16639         BLOGD(sc, DBG_LOAD, "forcing read order to %d\n", sc->mrrs);
16640         r_order = sc->mrrs;
16641     }
16642 
16643     ecore_init_pxp_arb(sc, r_order, w_order);
16644 }
16645 
16646 static uint32_t
16647 bxe_get_pretend_reg(struct bxe_softc *sc)
16648 {
16649     uint32_t base = PXP2_REG_PGL_PRETEND_FUNC_F0;
16650     uint32_t stride = (PXP2_REG_PGL_PRETEND_FUNC_F1 - base);
16651     return (base + (SC_ABS_FUNC(sc)) * stride);
16652 }
16653 
16654 /*
16655  * Called only on E1H or E2.
16656  * When pretending to be PF, the pretend value is the function number 0..7.
16657  * When pretending to be VF, the pretend val is the PF-num:VF-valid:ABS-VFID
16658  * combination.
16659  */
16660 static int
16661 bxe_pretend_func(struct bxe_softc *sc,
16662                  uint16_t         pretend_func_val)
16663 {
16664     uint32_t pretend_reg;
16665 
16666     if (CHIP_IS_E1H(sc) && (pretend_func_val > E1H_FUNC_MAX)) {
16667         return (-1);
16668     }
16669 
16670     /* get my own pretend register */
16671     pretend_reg = bxe_get_pretend_reg(sc);
16672     REG_WR(sc, pretend_reg, pretend_func_val);
16673     REG_RD(sc, pretend_reg);
16674     return (0);
16675 }
16676 
16677 static void
16678 bxe_iov_init_dmae(struct bxe_softc *sc)
16679 {
16680     return;
16681 }
16682 
16683 static void
16684 bxe_iov_init_dq(struct bxe_softc *sc)
16685 {
16686     return;
16687 }
16688 
16689 /* send a NIG loopback debug packet */
16690 static void
16691 bxe_lb_pckt(struct bxe_softc *sc)
16692 {
16693     uint32_t wb_write[3];
16694 
16695     /* Ethernet source and destination addresses */
16696     wb_write[0] = 0x55555555;
16697     wb_write[1] = 0x55555555;
16698     wb_write[2] = 0x20;     /* SOP */
16699     REG_WR_DMAE(sc, NIG_REG_DEBUG_PACKET_LB, wb_write, 3);
16700 
16701     /* NON-IP protocol */
16702     wb_write[0] = 0x09000000;
16703     wb_write[1] = 0x55555555;
16704     wb_write[2] = 0x10;     /* EOP, eop_bvalid = 0 */
16705     REG_WR_DMAE(sc, NIG_REG_DEBUG_PACKET_LB, wb_write, 3);
16706 }
16707 
16708 /*
16709  * Some of the internal memories are not directly readable from the driver.
16710  * To test them we send debug packets.
16711  */
16712 static int
16713 bxe_int_mem_test(struct bxe_softc *sc)
16714 {
16715     int factor;
16716     int count, i;
16717     uint32_t val = 0;
16718 
16719     if (CHIP_REV_IS_FPGA(sc)) {
16720         factor = 120;
16721     } else if (CHIP_REV_IS_EMUL(sc)) {
16722         factor = 200;
16723     } else {
16724         factor = 1;
16725     }
16726 
16727     /* disable inputs of parser neighbor blocks */
16728     REG_WR(sc, TSDM_REG_ENABLE_IN1, 0x0);
16729     REG_WR(sc, TCM_REG_PRS_IFEN, 0x0);
16730     REG_WR(sc, CFC_REG_DEBUG0, 0x1);
16731     REG_WR(sc, NIG_REG_PRS_REQ_IN_EN, 0x0);
16732 
16733     /*  write 0 to parser credits for CFC search request */
16734     REG_WR(sc, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0);
16735 
16736     /* send Ethernet packet */
16737     bxe_lb_pckt(sc);
16738 
16739     /* TODO do i reset NIG statistic? */
16740     /* Wait until NIG register shows 1 packet of size 0x10 */
16741     count = 1000 * factor;
16742     while (count) {
16743         bxe_read_dmae(sc, NIG_REG_STAT2_BRB_OCTET, 2);
16744         val = *BXE_SP(sc, wb_data[0]);
16745         if (val == 0x10) {
16746             break;
16747         }
16748 
16749         DELAY(10000);
16750         count--;
16751     }
16752 
16753     if (val != 0x10) {
16754         BLOGE(sc, "NIG timeout val=0x%x\n", val);
16755         return (-1);
16756     }
16757 
16758     /* wait until PRS register shows 1 packet */
16759     count = (1000 * factor);
16760     while (count) {
16761         val = REG_RD(sc, PRS_REG_NUM_OF_PACKETS);
16762         if (val == 1) {
16763             break;
16764         }
16765 
16766         DELAY(10000);
16767         count--;
16768     }
16769 
16770     if (val != 0x1) {
16771         BLOGE(sc, "PRS timeout val=0x%x\n", val);
16772         return (-2);
16773     }
16774 
16775     /* Reset and init BRB, PRS */
16776     REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03);
16777     DELAY(50000);
16778     REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03);
16779     DELAY(50000);
16780     ecore_init_block(sc, BLOCK_BRB1, PHASE_COMMON);
16781     ecore_init_block(sc, BLOCK_PRS, PHASE_COMMON);
16782 
16783     /* Disable inputs of parser neighbor blocks */
16784     REG_WR(sc, TSDM_REG_ENABLE_IN1, 0x0);
16785     REG_WR(sc, TCM_REG_PRS_IFEN, 0x0);
16786     REG_WR(sc, CFC_REG_DEBUG0, 0x1);
16787     REG_WR(sc, NIG_REG_PRS_REQ_IN_EN, 0x0);
16788 
16789     /* Write 0 to parser credits for CFC search request */
16790     REG_WR(sc, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0);
16791 
16792     /* send 10 Ethernet packets */
16793     for (i = 0; i < 10; i++) {
16794         bxe_lb_pckt(sc);
16795     }
16796 
16797     /* Wait until NIG register shows 10+1 packets of size 11*0x10 = 0xb0 */
16798     count = (1000 * factor);
16799     while (count) {
16800         bxe_read_dmae(sc, NIG_REG_STAT2_BRB_OCTET, 2);
16801         val = *BXE_SP(sc, wb_data[0]);
16802         if (val == 0xb0) {
16803             break;
16804         }
16805 
16806         DELAY(10000);
16807         count--;
16808     }
16809 
16810     if (val != 0xb0) {
16811         BLOGE(sc, "NIG timeout val=0x%x\n", val);
16812         return (-3);
16813     }
16814 
16815     /* Wait until PRS register shows 2 packets */
16816     val = REG_RD(sc, PRS_REG_NUM_OF_PACKETS);
16817     if (val != 2) {
16818         BLOGE(sc, "PRS timeout val=0x%x\n", val);
16819     }
16820 
16821     /* Write 1 to parser credits for CFC search request */
16822     REG_WR(sc, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x1);
16823 
16824     /* Wait until PRS register shows 3 packets */
16825     DELAY(10000 * factor);
16826 
16827     /* Wait until NIG register shows 1 packet of size 0x10 */
16828     val = REG_RD(sc, PRS_REG_NUM_OF_PACKETS);
16829     if (val != 3) {
16830         BLOGE(sc, "PRS timeout val=0x%x\n", val);
16831     }
16832 
16833     /* clear NIG EOP FIFO */
16834     for (i = 0; i < 11; i++) {
16835         REG_RD(sc, NIG_REG_INGRESS_EOP_LB_FIFO);
16836     }
16837 
16838     val = REG_RD(sc, NIG_REG_INGRESS_EOP_LB_EMPTY);
16839     if (val != 1) {
16840         BLOGE(sc, "clear of NIG failed val=0x%x\n", val);
16841         return (-4);
16842     }
16843 
16844     /* Reset and init BRB, PRS, NIG */
16845     REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03);
16846     DELAY(50000);
16847     REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03);
16848     DELAY(50000);
16849     ecore_init_block(sc, BLOCK_BRB1, PHASE_COMMON);
16850     ecore_init_block(sc, BLOCK_PRS, PHASE_COMMON);
16851     if (!CNIC_SUPPORT(sc)) {
16852         /* set NIC mode */
16853         REG_WR(sc, PRS_REG_NIC_MODE, 1);
16854     }
16855 
16856     /* Enable inputs of parser neighbor blocks */
16857     REG_WR(sc, TSDM_REG_ENABLE_IN1, 0x7fffffff);
16858     REG_WR(sc, TCM_REG_PRS_IFEN, 0x1);
16859     REG_WR(sc, CFC_REG_DEBUG0, 0x0);
16860     REG_WR(sc, NIG_REG_PRS_REQ_IN_EN, 0x1);
16861 
16862     return (0);
16863 }
16864 
16865 static void
16866 bxe_setup_fan_failure_detection(struct bxe_softc *sc)
16867 {
16868     int is_required;
16869     uint32_t val;
16870     int port;
16871 
16872     is_required = 0;
16873     val = (SHMEM_RD(sc, dev_info.shared_hw_config.config2) &
16874            SHARED_HW_CFG_FAN_FAILURE_MASK);
16875 
16876     if (val == SHARED_HW_CFG_FAN_FAILURE_ENABLED) {
16877         is_required = 1;
16878     }
16879     /*
16880      * The fan failure mechanism is usually related to the PHY type since
16881      * the power consumption of the board is affected by the PHY. Currently,
16882      * fan is required for most designs with SFX7101, BCM8727 and BCM8481.
16883      */
16884     else if (val == SHARED_HW_CFG_FAN_FAILURE_PHY_TYPE) {
16885         for (port = PORT_0; port < PORT_MAX; port++) {
16886             is_required |= elink_fan_failure_det_req(sc,
16887                                                      sc->devinfo.shmem_base,
16888                                                      sc->devinfo.shmem2_base,
16889                                                      port);
16890         }
16891     }
16892 
16893     BLOGD(sc, DBG_LOAD, "fan detection setting: %d\n", is_required);
16894 
16895     if (is_required == 0) {
16896         return;
16897     }
16898 
16899     /* Fan failure is indicated by SPIO 5 */
16900     bxe_set_spio(sc, MISC_SPIO_SPIO5, MISC_SPIO_INPUT_HI_Z);
16901 
16902     /* set to active low mode */
16903     val = REG_RD(sc, MISC_REG_SPIO_INT);
16904     val |= (MISC_SPIO_SPIO5 << MISC_SPIO_INT_OLD_SET_POS);
16905     REG_WR(sc, MISC_REG_SPIO_INT, val);
16906 
16907     /* enable interrupt to signal the IGU */
16908     val = REG_RD(sc, MISC_REG_SPIO_EVENT_EN);
16909     val |= MISC_SPIO_SPIO5;
16910     REG_WR(sc, MISC_REG_SPIO_EVENT_EN, val);
16911 }
16912 
16913 static void
16914 bxe_enable_blocks_attention(struct bxe_softc *sc)
16915 {
16916     uint32_t val;
16917 
16918     REG_WR(sc, PXP_REG_PXP_INT_MASK_0, 0);
16919     if (!CHIP_IS_E1x(sc)) {
16920         REG_WR(sc, PXP_REG_PXP_INT_MASK_1, 0x40);
16921     } else {
16922         REG_WR(sc, PXP_REG_PXP_INT_MASK_1, 0);
16923     }
16924     REG_WR(sc, DORQ_REG_DORQ_INT_MASK, 0);
16925     REG_WR(sc, CFC_REG_CFC_INT_MASK, 0);
16926     /*
16927      * mask read length error interrupts in brb for parser
16928      * (parsing unit and 'checksum and crc' unit)
16929      * these errors are legal (PU reads fixed length and CAC can cause
16930      * read length error on truncated packets)
16931      */
16932     REG_WR(sc, BRB1_REG_BRB1_INT_MASK, 0xFC00);
16933     REG_WR(sc, QM_REG_QM_INT_MASK, 0);
16934     REG_WR(sc, TM_REG_TM_INT_MASK, 0);
16935     REG_WR(sc, XSDM_REG_XSDM_INT_MASK_0, 0);
16936     REG_WR(sc, XSDM_REG_XSDM_INT_MASK_1, 0);
16937     REG_WR(sc, XCM_REG_XCM_INT_MASK, 0);
16938 /*      REG_WR(sc, XSEM_REG_XSEM_INT_MASK_0, 0); */
16939 /*      REG_WR(sc, XSEM_REG_XSEM_INT_MASK_1, 0); */
16940     REG_WR(sc, USDM_REG_USDM_INT_MASK_0, 0);
16941     REG_WR(sc, USDM_REG_USDM_INT_MASK_1, 0);
16942     REG_WR(sc, UCM_REG_UCM_INT_MASK, 0);
16943 /*      REG_WR(sc, USEM_REG_USEM_INT_MASK_0, 0); */
16944 /*      REG_WR(sc, USEM_REG_USEM_INT_MASK_1, 0); */
16945     REG_WR(sc, GRCBASE_UPB + PB_REG_PB_INT_MASK, 0);
16946     REG_WR(sc, CSDM_REG_CSDM_INT_MASK_0, 0);
16947     REG_WR(sc, CSDM_REG_CSDM_INT_MASK_1, 0);
16948     REG_WR(sc, CCM_REG_CCM_INT_MASK, 0);
16949 /*      REG_WR(sc, CSEM_REG_CSEM_INT_MASK_0, 0); */
16950 /*      REG_WR(sc, CSEM_REG_CSEM_INT_MASK_1, 0); */
16951 
16952     val = (PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_AFT |
16953            PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_OF |
16954            PXP2_PXP2_INT_MASK_0_REG_PGL_PCIE_ATTN);
16955     if (!CHIP_IS_E1x(sc)) {
16956         val |= (PXP2_PXP2_INT_MASK_0_REG_PGL_READ_BLOCKED |
16957                 PXP2_PXP2_INT_MASK_0_REG_PGL_WRITE_BLOCKED);
16958     }
16959     REG_WR(sc, PXP2_REG_PXP2_INT_MASK_0, val);
16960 
16961     REG_WR(sc, TSDM_REG_TSDM_INT_MASK_0, 0);
16962     REG_WR(sc, TSDM_REG_TSDM_INT_MASK_1, 0);
16963     REG_WR(sc, TCM_REG_TCM_INT_MASK, 0);
16964 /*      REG_WR(sc, TSEM_REG_TSEM_INT_MASK_0, 0); */
16965 
16966     if (!CHIP_IS_E1x(sc)) {
16967         /* enable VFC attentions: bits 11 and 12, bits 31:13 reserved */
16968         REG_WR(sc, TSEM_REG_TSEM_INT_MASK_1, 0x07ff);
16969     }
16970 
16971     REG_WR(sc, CDU_REG_CDU_INT_MASK, 0);
16972     REG_WR(sc, DMAE_REG_DMAE_INT_MASK, 0);
16973 /*      REG_WR(sc, MISC_REG_MISC_INT_MASK, 0); */
16974     REG_WR(sc, PBF_REG_PBF_INT_MASK, 0x18);     /* bit 3,4 masked */
16975 }
16976 
16977 /**
16978  * bxe_init_hw_common - initialize the HW at the COMMON phase.
16979  *
16980  * @sc:     driver handle
16981  */
16982 static int
16983 bxe_init_hw_common(struct bxe_softc *sc)
16984 {
16985     uint8_t abs_func_id;
16986     uint32_t val;
16987 
16988     BLOGD(sc, DBG_LOAD, "starting common init for func %d\n",
16989           SC_ABS_FUNC(sc));
16990 
16991     /*
16992      * take the RESET lock to protect undi_unload flow from accessing
16993      * registers while we are resetting the chip
16994      */
16995     bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RESET);
16996 
16997     bxe_reset_common(sc);
16998 
16999     REG_WR(sc, (GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET), 0xffffffff);
17000 
17001     val = 0xfffc;
17002     if (CHIP_IS_E3(sc)) {
17003         val |= MISC_REGISTERS_RESET_REG_2_MSTAT0;
17004         val |= MISC_REGISTERS_RESET_REG_2_MSTAT1;
17005     }
17006 
17007     REG_WR(sc, (GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET), val);
17008 
17009     bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RESET);
17010 
17011     ecore_init_block(sc, BLOCK_MISC, PHASE_COMMON);
17012     BLOGD(sc, DBG_LOAD, "after misc block init\n");
17013 
17014     if (!CHIP_IS_E1x(sc)) {
17015         /*
17016          * 4-port mode or 2-port mode we need to turn off master-enable for
17017          * everyone. After that we turn it back on for self. So, we disregard
17018          * multi-function, and always disable all functions on the given path,
17019          * this means 0,2,4,6 for path 0 and 1,3,5,7 for path 1
17020          */
17021         for (abs_func_id = SC_PATH(sc);
17022              abs_func_id < (E2_FUNC_MAX * 2);
17023              abs_func_id += 2) {
17024             if (abs_func_id == SC_ABS_FUNC(sc)) {
17025                 REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
17026                 continue;
17027             }
17028 
17029             bxe_pretend_func(sc, abs_func_id);
17030 
17031             /* clear pf enable */
17032             bxe_pf_disable(sc);
17033 
17034             bxe_pretend_func(sc, SC_ABS_FUNC(sc));
17035         }
17036     }
17037 
17038     BLOGD(sc, DBG_LOAD, "after pf disable\n");
17039 
17040     ecore_init_block(sc, BLOCK_PXP, PHASE_COMMON);
17041 
17042     if (CHIP_IS_E1(sc)) {
17043         /*
17044          * enable HW interrupt from PXP on USDM overflow
17045          * bit 16 on INT_MASK_0
17046          */
17047         REG_WR(sc, PXP_REG_PXP_INT_MASK_0, 0);
17048     }
17049 
17050     ecore_init_block(sc, BLOCK_PXP2, PHASE_COMMON);
17051     bxe_init_pxp(sc);
17052 
17053 #ifdef __BIG_ENDIAN
17054     REG_WR(sc, PXP2_REG_RQ_QM_ENDIAN_M, 1);
17055     REG_WR(sc, PXP2_REG_RQ_TM_ENDIAN_M, 1);
17056     REG_WR(sc, PXP2_REG_RQ_SRC_ENDIAN_M, 1);
17057     REG_WR(sc, PXP2_REG_RQ_CDU_ENDIAN_M, 1);
17058     REG_WR(sc, PXP2_REG_RQ_DBG_ENDIAN_M, 1);
17059     /* make sure this value is 0 */
17060     REG_WR(sc, PXP2_REG_RQ_HC_ENDIAN_M, 0);
17061 
17062     //REG_WR(sc, PXP2_REG_RD_PBF_SWAP_MODE, 1);
17063     REG_WR(sc, PXP2_REG_RD_QM_SWAP_MODE, 1);
17064     REG_WR(sc, PXP2_REG_RD_TM_SWAP_MODE, 1);
17065     REG_WR(sc, PXP2_REG_RD_SRC_SWAP_MODE, 1);
17066     REG_WR(sc, PXP2_REG_RD_CDURD_SWAP_MODE, 1);
17067 #endif
17068 
17069     ecore_ilt_init_page_size(sc, INITOP_SET);
17070 
17071     if (CHIP_REV_IS_FPGA(sc) && CHIP_IS_E1H(sc)) {
17072         REG_WR(sc, PXP2_REG_PGL_TAGS_LIMIT, 0x1);
17073     }
17074 
17075     /* let the HW do it's magic... */
17076     DELAY(100000);
17077 
17078     /* finish PXP init */
17079     val = REG_RD(sc, PXP2_REG_RQ_CFG_DONE);
17080     if (val != 1) {
17081         BLOGE(sc, "PXP2 CFG failed PXP2_REG_RQ_CFG_DONE val = 0x%x\n",
17082             val);
17083         return (-1);
17084     }
17085     val = REG_RD(sc, PXP2_REG_RD_INIT_DONE);
17086     if (val != 1) {
17087         BLOGE(sc, "PXP2 RD_INIT failed val = 0x%x\n", val);
17088         return (-1);
17089     }
17090 
17091     BLOGD(sc, DBG_LOAD, "after pxp init\n");
17092 
17093     /*
17094      * Timer bug workaround for E2 only. We need to set the entire ILT to have
17095      * entries with value "0" and valid bit on. This needs to be done by the
17096      * first PF that is loaded in a path (i.e. common phase)
17097      */
17098     if (!CHIP_IS_E1x(sc)) {
17099 /*
17100  * In E2 there is a bug in the timers block that can cause function 6 / 7
17101  * (i.e. vnic3) to start even if it is marked as "scan-off".
17102  * This occurs when a different function (func2,3) is being marked
17103  * as "scan-off". Real-life scenario for example: if a driver is being
17104  * load-unloaded while func6,7 are down. This will cause the timer to access
17105  * the ilt, translate to a logical address and send a request to read/write.
17106  * Since the ilt for the function that is down is not valid, this will cause
17107  * a translation error which is unrecoverable.
17108  * The Workaround is intended to make sure that when this happens nothing
17109  * fatal will occur. The workaround:
17110  *  1.  First PF driver which loads on a path will:
17111  *      a.  After taking the chip out of reset, by using pretend,
17112  *          it will write "0" to the following registers of
17113  *          the other vnics.
17114  *          REG_WR(pdev, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
17115  *          REG_WR(pdev, CFC_REG_WEAK_ENABLE_PF,0);
17116  *          REG_WR(pdev, CFC_REG_STRONG_ENABLE_PF,0);
17117  *          And for itself it will write '1' to
17118  *          PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER to enable
17119  *          dmae-operations (writing to pram for example.)
17120  *          note: can be done for only function 6,7 but cleaner this
17121  *            way.
17122  *      b.  Write zero+valid to the entire ILT.
17123  *      c.  Init the first_timers_ilt_entry, last_timers_ilt_entry of
17124  *          VNIC3 (of that port). The range allocated will be the
17125  *          entire ILT. This is needed to prevent  ILT range error.
17126  *  2.  Any PF driver load flow:
17127  *      a.  ILT update with the physical addresses of the allocated
17128  *          logical pages.
17129  *      b.  Wait 20msec. - note that this timeout is needed to make
17130  *          sure there are no requests in one of the PXP internal
17131  *          queues with "old" ILT addresses.
17132  *      c.  PF enable in the PGLC.
17133  *      d.  Clear the was_error of the PF in the PGLC. (could have
17134  *          occurred while driver was down)
17135  *      e.  PF enable in the CFC (WEAK + STRONG)
17136  *      f.  Timers scan enable
17137  *  3.  PF driver unload flow:
17138  *      a.  Clear the Timers scan_en.
17139  *      b.  Polling for scan_on=0 for that PF.
17140  *      c.  Clear the PF enable bit in the PXP.
17141  *      d.  Clear the PF enable in the CFC (WEAK + STRONG)
17142  *      e.  Write zero+valid to all ILT entries (The valid bit must
17143  *          stay set)
17144  *      f.  If this is VNIC 3 of a port then also init
17145  *          first_timers_ilt_entry to zero and last_timers_ilt_entry
17146  *          to the last entry in the ILT.
17147  *
17148  *      Notes:
17149  *      Currently the PF error in the PGLC is non recoverable.
17150  *      In the future the there will be a recovery routine for this error.
17151  *      Currently attention is masked.
17152  *      Having an MCP lock on the load/unload process does not guarantee that
17153  *      there is no Timer disable during Func6/7 enable. This is because the
17154  *      Timers scan is currently being cleared by the MCP on FLR.
17155  *      Step 2.d can be done only for PF6/7 and the driver can also check if
17156  *      there is error before clearing it. But the flow above is simpler and
17157  *      more general.
17158  *      All ILT entries are written by zero+valid and not just PF6/7
17159  *      ILT entries since in the future the ILT entries allocation for
17160  *      PF-s might be dynamic.
17161  */
17162         struct ilt_client_info ilt_cli;
17163         struct ecore_ilt ilt;
17164 
17165         memset(&ilt_cli, 0, sizeof(struct ilt_client_info));
17166         memset(&ilt, 0, sizeof(struct ecore_ilt));
17167 
17168         /* initialize dummy TM client */
17169         ilt_cli.start      = 0;
17170         ilt_cli.end        = ILT_NUM_PAGE_ENTRIES - 1;
17171         ilt_cli.client_num = ILT_CLIENT_TM;
17172 
17173         /*
17174          * Step 1: set zeroes to all ilt page entries with valid bit on
17175          * Step 2: set the timers first/last ilt entry to point
17176          * to the entire range to prevent ILT range error for 3rd/4th
17177          * vnic (this code assumes existence of the vnic)
17178          *
17179          * both steps performed by call to ecore_ilt_client_init_op()
17180          * with dummy TM client
17181          *
17182          * we must use pretend since PXP2_REG_RQ_##blk##_FIRST_ILT
17183          * and his brother are split registers
17184          */
17185 
17186         bxe_pretend_func(sc, (SC_PATH(sc) + 6));
17187         ecore_ilt_client_init_op_ilt(sc, &ilt, &ilt_cli, INITOP_CLEAR);
17188         bxe_pretend_func(sc, SC_ABS_FUNC(sc));
17189 
17190         REG_WR(sc, PXP2_REG_RQ_DRAM_ALIGN, BXE_PXP_DRAM_ALIGN);
17191         REG_WR(sc, PXP2_REG_RQ_DRAM_ALIGN_RD, BXE_PXP_DRAM_ALIGN);
17192         REG_WR(sc, PXP2_REG_RQ_DRAM_ALIGN_SEL, 1);
17193     }
17194 
17195     REG_WR(sc, PXP2_REG_RQ_DISABLE_INPUTS, 0);
17196     REG_WR(sc, PXP2_REG_RD_DISABLE_INPUTS, 0);
17197 
17198     if (!CHIP_IS_E1x(sc)) {
17199         int factor = CHIP_REV_IS_EMUL(sc) ? 1000 :
17200                      (CHIP_REV_IS_FPGA(sc) ? 400 : 0);
17201 
17202         ecore_init_block(sc, BLOCK_PGLUE_B, PHASE_COMMON);
17203         ecore_init_block(sc, BLOCK_ATC, PHASE_COMMON);
17204 
17205         /* let the HW do it's magic... */
17206         do {
17207             DELAY(200000);
17208             val = REG_RD(sc, ATC_REG_ATC_INIT_DONE);
17209         } while (factor-- && (val != 1));
17210 
17211         if (val != 1) {
17212             BLOGE(sc, "ATC_INIT failed val = 0x%x\n", val);
17213             return (-1);
17214         }
17215     }
17216 
17217     BLOGD(sc, DBG_LOAD, "after pglue and atc init\n");
17218 
17219     ecore_init_block(sc, BLOCK_DMAE, PHASE_COMMON);
17220 
17221     bxe_iov_init_dmae(sc);
17222 
17223     /* clean the DMAE memory */
17224     sc->dmae_ready = 1;
17225     ecore_init_fill(sc, TSEM_REG_PRAM, 0, 8, 1);
17226 
17227     ecore_init_block(sc, BLOCK_TCM, PHASE_COMMON);
17228 
17229     ecore_init_block(sc, BLOCK_UCM, PHASE_COMMON);
17230 
17231     ecore_init_block(sc, BLOCK_CCM, PHASE_COMMON);
17232 
17233     ecore_init_block(sc, BLOCK_XCM, PHASE_COMMON);
17234 
17235     bxe_read_dmae(sc, XSEM_REG_PASSIVE_BUFFER, 3);
17236     bxe_read_dmae(sc, CSEM_REG_PASSIVE_BUFFER, 3);
17237     bxe_read_dmae(sc, TSEM_REG_PASSIVE_BUFFER, 3);
17238     bxe_read_dmae(sc, USEM_REG_PASSIVE_BUFFER, 3);
17239 
17240     ecore_init_block(sc, BLOCK_QM, PHASE_COMMON);
17241 
17242     /* QM queues pointers table */
17243     ecore_qm_init_ptr_table(sc, sc->qm_cid_count, INITOP_SET);
17244 
17245     /* soft reset pulse */
17246     REG_WR(sc, QM_REG_SOFT_RESET, 1);
17247     REG_WR(sc, QM_REG_SOFT_RESET, 0);
17248 
17249     if (CNIC_SUPPORT(sc))
17250         ecore_init_block(sc, BLOCK_TM, PHASE_COMMON);
17251 
17252     ecore_init_block(sc, BLOCK_DORQ, PHASE_COMMON);
17253     REG_WR(sc, DORQ_REG_DPM_CID_OFST, BXE_DB_SHIFT);
17254     if (!CHIP_REV_IS_SLOW(sc)) {
17255         /* enable hw interrupt from doorbell Q */
17256         REG_WR(sc, DORQ_REG_DORQ_INT_MASK, 0);
17257     }
17258 
17259     ecore_init_block(sc, BLOCK_BRB1, PHASE_COMMON);
17260 
17261     ecore_init_block(sc, BLOCK_PRS, PHASE_COMMON);
17262     REG_WR(sc, PRS_REG_A_PRSU_20, 0xf);
17263 
17264     if (!CHIP_IS_E1(sc)) {
17265         REG_WR(sc, PRS_REG_E1HOV_MODE, sc->devinfo.mf_info.path_has_ovlan);
17266     }
17267 
17268     if (!CHIP_IS_E1x(sc) && !CHIP_IS_E3B0(sc)) {
17269         if (IS_MF_AFEX(sc)) {
17270             /*
17271              * configure that AFEX and VLAN headers must be
17272              * received in AFEX mode
17273              */
17274             REG_WR(sc, PRS_REG_HDRS_AFTER_BASIC, 0xE);
17275             REG_WR(sc, PRS_REG_MUST_HAVE_HDRS, 0xA);
17276             REG_WR(sc, PRS_REG_HDRS_AFTER_TAG_0, 0x6);
17277             REG_WR(sc, PRS_REG_TAG_ETHERTYPE_0, 0x8926);
17278             REG_WR(sc, PRS_REG_TAG_LEN_0, 0x4);
17279         } else {
17280             /*
17281              * Bit-map indicating which L2 hdrs may appear
17282              * after the basic Ethernet header
17283              */
17284             REG_WR(sc, PRS_REG_HDRS_AFTER_BASIC,
17285                    sc->devinfo.mf_info.path_has_ovlan ? 7 : 6);
17286         }
17287     }
17288 
17289     ecore_init_block(sc, BLOCK_TSDM, PHASE_COMMON);
17290     ecore_init_block(sc, BLOCK_CSDM, PHASE_COMMON);
17291     ecore_init_block(sc, BLOCK_USDM, PHASE_COMMON);
17292     ecore_init_block(sc, BLOCK_XSDM, PHASE_COMMON);
17293 
17294     if (!CHIP_IS_E1x(sc)) {
17295         /* reset VFC memories */
17296         REG_WR(sc, TSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST,
17297                VFC_MEMORIES_RST_REG_CAM_RST |
17298                VFC_MEMORIES_RST_REG_RAM_RST);
17299         REG_WR(sc, XSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST,
17300                VFC_MEMORIES_RST_REG_CAM_RST |
17301                VFC_MEMORIES_RST_REG_RAM_RST);
17302 
17303         DELAY(20000);
17304     }
17305 
17306     ecore_init_block(sc, BLOCK_TSEM, PHASE_COMMON);
17307     ecore_init_block(sc, BLOCK_USEM, PHASE_COMMON);
17308     ecore_init_block(sc, BLOCK_CSEM, PHASE_COMMON);
17309     ecore_init_block(sc, BLOCK_XSEM, PHASE_COMMON);
17310 
17311     /* sync semi rtc */
17312     REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
17313            0x80000000);
17314     REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET,
17315            0x80000000);
17316 
17317     ecore_init_block(sc, BLOCK_UPB, PHASE_COMMON);
17318     ecore_init_block(sc, BLOCK_XPB, PHASE_COMMON);
17319     ecore_init_block(sc, BLOCK_PBF, PHASE_COMMON);
17320 
17321     if (!CHIP_IS_E1x(sc)) {
17322         if (IS_MF_AFEX(sc)) {
17323             /*
17324              * configure that AFEX and VLAN headers must be
17325              * sent in AFEX mode
17326              */
17327             REG_WR(sc, PBF_REG_HDRS_AFTER_BASIC, 0xE);
17328             REG_WR(sc, PBF_REG_MUST_HAVE_HDRS, 0xA);
17329             REG_WR(sc, PBF_REG_HDRS_AFTER_TAG_0, 0x6);
17330             REG_WR(sc, PBF_REG_TAG_ETHERTYPE_0, 0x8926);
17331             REG_WR(sc, PBF_REG_TAG_LEN_0, 0x4);
17332         } else {
17333             REG_WR(sc, PBF_REG_HDRS_AFTER_BASIC,
17334                    sc->devinfo.mf_info.path_has_ovlan ? 7 : 6);
17335         }
17336     }
17337 
17338     REG_WR(sc, SRC_REG_SOFT_RST, 1);
17339 
17340     ecore_init_block(sc, BLOCK_SRC, PHASE_COMMON);
17341 
17342     if (CNIC_SUPPORT(sc)) {
17343         REG_WR(sc, SRC_REG_KEYSEARCH_0, 0x63285672);
17344         REG_WR(sc, SRC_REG_KEYSEARCH_1, 0x24b8f2cc);
17345         REG_WR(sc, SRC_REG_KEYSEARCH_2, 0x223aef9b);
17346         REG_WR(sc, SRC_REG_KEYSEARCH_3, 0x26001e3a);
17347         REG_WR(sc, SRC_REG_KEYSEARCH_4, 0x7ae91116);
17348         REG_WR(sc, SRC_REG_KEYSEARCH_5, 0x5ce5230b);
17349         REG_WR(sc, SRC_REG_KEYSEARCH_6, 0x298d8adf);
17350         REG_WR(sc, SRC_REG_KEYSEARCH_7, 0x6eb0ff09);
17351         REG_WR(sc, SRC_REG_KEYSEARCH_8, 0x1830f82f);
17352         REG_WR(sc, SRC_REG_KEYSEARCH_9, 0x01e46be7);
17353     }
17354     REG_WR(sc, SRC_REG_SOFT_RST, 0);
17355 
17356     if (sizeof(union cdu_context) != 1024) {
17357         /* we currently assume that a context is 1024 bytes */
17358         BLOGE(sc, "please adjust the size of cdu_context(%ld)\n",
17359               (long)sizeof(union cdu_context));
17360     }
17361 
17362     ecore_init_block(sc, BLOCK_CDU, PHASE_COMMON);
17363     val = (4 << 24) + (0 << 12) + 1024;
17364     REG_WR(sc, CDU_REG_CDU_GLOBAL_PARAMS, val);
17365 
17366     ecore_init_block(sc, BLOCK_CFC, PHASE_COMMON);
17367 
17368     REG_WR(sc, CFC_REG_INIT_REG, 0x7FF);
17369     /* enable context validation interrupt from CFC */
17370     REG_WR(sc, CFC_REG_CFC_INT_MASK, 0);
17371 
17372     /* set the thresholds to prevent CFC/CDU race */
17373     REG_WR(sc, CFC_REG_DEBUG0, 0x20020000);
17374     ecore_init_block(sc, BLOCK_HC, PHASE_COMMON);
17375 
17376     if (!CHIP_IS_E1x(sc) && BXE_NOMCP(sc)) {
17377         REG_WR(sc, IGU_REG_RESET_MEMORIES, 0x36);
17378     }
17379 
17380     ecore_init_block(sc, BLOCK_IGU, PHASE_COMMON);
17381     ecore_init_block(sc, BLOCK_MISC_AEU, PHASE_COMMON);
17382 
17383     /* Reset PCIE errors for debug */
17384     REG_WR(sc, 0x2814, 0xffffffff);
17385     REG_WR(sc, 0x3820, 0xffffffff);
17386 
17387     if (!CHIP_IS_E1x(sc)) {
17388         REG_WR(sc, PCICFG_OFFSET + PXPCS_TL_CONTROL_5,
17389                (PXPCS_TL_CONTROL_5_ERR_UNSPPORT1 |
17390                 PXPCS_TL_CONTROL_5_ERR_UNSPPORT));
17391         REG_WR(sc, PCICFG_OFFSET + PXPCS_TL_FUNC345_STAT,
17392                (PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT4 |
17393                 PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT3 |
17394                 PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT2));
17395         REG_WR(sc, PCICFG_OFFSET + PXPCS_TL_FUNC678_STAT,
17396                (PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT7 |
17397                 PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT6 |
17398                 PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT5));
17399     }
17400 
17401     ecore_init_block(sc, BLOCK_NIG, PHASE_COMMON);
17402 
17403     if (!CHIP_IS_E1(sc)) {
17404         /* in E3 this done in per-port section */
17405         if (!CHIP_IS_E3(sc))
17406             REG_WR(sc, NIG_REG_LLH_MF_MODE, IS_MF(sc));
17407     }
17408 
17409     if (CHIP_IS_E1H(sc)) {
17410         /* not applicable for E2 (and above ...) */
17411         REG_WR(sc, NIG_REG_LLH_E1HOV_MODE, IS_MF_SD(sc));
17412     }
17413 
17414     if (CHIP_REV_IS_SLOW(sc)) {
17415         DELAY(200000);
17416     }
17417 
17418     /* finish CFC init */
17419     val = reg_poll(sc, CFC_REG_LL_INIT_DONE, 1, 100, 10);
17420     if (val != 1) {
17421         BLOGE(sc, "CFC LL_INIT failed val=0x%x\n", val);
17422         return (-1);
17423     }
17424     val = reg_poll(sc, CFC_REG_AC_INIT_DONE, 1, 100, 10);
17425     if (val != 1) {
17426         BLOGE(sc, "CFC AC_INIT failed val=0x%x\n", val);
17427         return (-1);
17428     }
17429     val = reg_poll(sc, CFC_REG_CAM_INIT_DONE, 1, 100, 10);
17430     if (val != 1) {
17431         BLOGE(sc, "CFC CAM_INIT failed val=0x%x\n", val);
17432         return (-1);
17433     }
17434     REG_WR(sc, CFC_REG_DEBUG0, 0);
17435 
17436     if (CHIP_IS_E1(sc)) {
17437         /* read NIG statistic to see if this is our first up since powerup */
17438         bxe_read_dmae(sc, NIG_REG_STAT2_BRB_OCTET, 2);
17439         val = *BXE_SP(sc, wb_data[0]);
17440 
17441         /* do internal memory self test */
17442         if ((val == 0) && bxe_int_mem_test(sc)) {
17443             BLOGE(sc, "internal mem self test failed val=0x%x\n", val);
17444             return (-1);
17445         }
17446     }
17447 
17448     bxe_setup_fan_failure_detection(sc);
17449 
17450     /* clear PXP2 attentions */
17451     REG_RD(sc, PXP2_REG_PXP2_INT_STS_CLR_0);
17452 
17453     bxe_enable_blocks_attention(sc);
17454 
17455     if (!CHIP_REV_IS_SLOW(sc)) {
17456         ecore_enable_blocks_parity(sc);
17457     }
17458 
17459     if (!BXE_NOMCP(sc)) {
17460         if (CHIP_IS_E1x(sc)) {
17461             bxe_common_init_phy(sc);
17462         }
17463     }
17464 
17465     return (0);
17466 }
17467 
17468 /**
17469  * bxe_init_hw_common_chip - init HW at the COMMON_CHIP phase.
17470  *
17471  * @sc:     driver handle
17472  */
17473 static int
17474 bxe_init_hw_common_chip(struct bxe_softc *sc)
17475 {
17476     int rc = bxe_init_hw_common(sc);
17477 
17478     if (rc) {
17479         BLOGE(sc, "bxe_init_hw_common failed rc=%d\n", rc);
17480         return (rc);
17481     }
17482 
17483     /* In E2 2-PORT mode, same ext phy is used for the two paths */
17484     if (!BXE_NOMCP(sc)) {
17485         bxe_common_init_phy(sc);
17486     }
17487 
17488     return (0);
17489 }
17490 
17491 static int
17492 bxe_init_hw_port(struct bxe_softc *sc)
17493 {
17494     int port = SC_PORT(sc);
17495     int init_phase = port ? PHASE_PORT1 : PHASE_PORT0;
17496     uint32_t low, high;
17497     uint32_t val;
17498 
17499     BLOGD(sc, DBG_LOAD, "starting port init for port %d\n", port);
17500 
17501     REG_WR(sc, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0);
17502 
17503     ecore_init_block(sc, BLOCK_MISC, init_phase);
17504     ecore_init_block(sc, BLOCK_PXP, init_phase);
17505     ecore_init_block(sc, BLOCK_PXP2, init_phase);
17506 
17507     /*
17508      * Timers bug workaround: disables the pf_master bit in pglue at
17509      * common phase, we need to enable it here before any dmae access are
17510      * attempted. Therefore we manually added the enable-master to the
17511      * port phase (it also happens in the function phase)
17512      */
17513     if (!CHIP_IS_E1x(sc)) {
17514         REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
17515     }
17516 
17517     ecore_init_block(sc, BLOCK_ATC, init_phase);
17518     ecore_init_block(sc, BLOCK_DMAE, init_phase);
17519     ecore_init_block(sc, BLOCK_PGLUE_B, init_phase);
17520     ecore_init_block(sc, BLOCK_QM, init_phase);
17521 
17522     ecore_init_block(sc, BLOCK_TCM, init_phase);
17523     ecore_init_block(sc, BLOCK_UCM, init_phase);
17524     ecore_init_block(sc, BLOCK_CCM, init_phase);
17525     ecore_init_block(sc, BLOCK_XCM, init_phase);
17526 
17527     /* QM cid (connection) count */
17528     ecore_qm_init_cid_count(sc, sc->qm_cid_count, INITOP_SET);
17529 
17530     if (CNIC_SUPPORT(sc)) {
17531         ecore_init_block(sc, BLOCK_TM, init_phase);
17532         REG_WR(sc, TM_REG_LIN0_SCAN_TIME + port*4, 20);
17533         REG_WR(sc, TM_REG_LIN0_MAX_ACTIVE_CID + port*4, 31);
17534     }
17535 
17536     ecore_init_block(sc, BLOCK_DORQ, init_phase);
17537 
17538     ecore_init_block(sc, BLOCK_BRB1, init_phase);
17539 
17540     if (CHIP_IS_E1(sc) || CHIP_IS_E1H(sc)) {
17541         if (IS_MF(sc)) {
17542             low = (BXE_ONE_PORT(sc) ? 160 : 246);
17543         } else if (sc->mtu > 4096) {
17544             if (BXE_ONE_PORT(sc)) {
17545                 low = 160;
17546             } else {
17547                 val = sc->mtu;
17548                 /* (24*1024 + val*4)/256 */
17549                 low = (96 + (val / 64) + ((val % 64) ? 1 : 0));
17550             }
17551         } else {
17552             low = (BXE_ONE_PORT(sc) ? 80 : 160);
17553         }
17554         high = (low + 56); /* 14*1024/256 */
17555         REG_WR(sc, BRB1_REG_PAUSE_LOW_THRESHOLD_0 + port*4, low);
17556         REG_WR(sc, BRB1_REG_PAUSE_HIGH_THRESHOLD_0 + port*4, high);
17557     }
17558 
17559     if (CHIP_IS_MODE_4_PORT(sc)) {
17560         REG_WR(sc, SC_PORT(sc) ?
17561                BRB1_REG_MAC_GUARANTIED_1 :
17562                BRB1_REG_MAC_GUARANTIED_0, 40);
17563     }
17564 
17565     ecore_init_block(sc, BLOCK_PRS, init_phase);
17566     if (CHIP_IS_E3B0(sc)) {
17567         if (IS_MF_AFEX(sc)) {
17568             /* configure headers for AFEX mode */
17569             REG_WR(sc, SC_PORT(sc) ?
17570                    PRS_REG_HDRS_AFTER_BASIC_PORT_1 :
17571                    PRS_REG_HDRS_AFTER_BASIC_PORT_0, 0xE);
17572             REG_WR(sc, SC_PORT(sc) ?
17573                    PRS_REG_HDRS_AFTER_TAG_0_PORT_1 :
17574                    PRS_REG_HDRS_AFTER_TAG_0_PORT_0, 0x6);
17575             REG_WR(sc, SC_PORT(sc) ?
17576                    PRS_REG_MUST_HAVE_HDRS_PORT_1 :
17577                    PRS_REG_MUST_HAVE_HDRS_PORT_0, 0xA);
17578         } else {
17579             /* Ovlan exists only if we are in multi-function +
17580              * switch-dependent mode, in switch-independent there
17581              * is no ovlan headers
17582              */
17583             REG_WR(sc, SC_PORT(sc) ?
17584                    PRS_REG_HDRS_AFTER_BASIC_PORT_1 :
17585                    PRS_REG_HDRS_AFTER_BASIC_PORT_0,
17586                    (sc->devinfo.mf_info.path_has_ovlan ? 7 : 6));
17587         }
17588     }
17589 
17590     ecore_init_block(sc, BLOCK_TSDM, init_phase);
17591     ecore_init_block(sc, BLOCK_CSDM, init_phase);
17592     ecore_init_block(sc, BLOCK_USDM, init_phase);
17593     ecore_init_block(sc, BLOCK_XSDM, init_phase);
17594 
17595     ecore_init_block(sc, BLOCK_TSEM, init_phase);
17596     ecore_init_block(sc, BLOCK_USEM, init_phase);
17597     ecore_init_block(sc, BLOCK_CSEM, init_phase);
17598     ecore_init_block(sc, BLOCK_XSEM, init_phase);
17599 
17600     ecore_init_block(sc, BLOCK_UPB, init_phase);
17601     ecore_init_block(sc, BLOCK_XPB, init_phase);
17602 
17603     ecore_init_block(sc, BLOCK_PBF, init_phase);
17604 
17605     if (CHIP_IS_E1x(sc)) {
17606         /* configure PBF to work without PAUSE mtu 9000 */
17607         REG_WR(sc, PBF_REG_P0_PAUSE_ENABLE + port*4, 0);
17608 
17609         /* update threshold */
17610         REG_WR(sc, PBF_REG_P0_ARB_THRSH + port*4, (9040/16));
17611         /* update init credit */
17612         REG_WR(sc, PBF_REG_P0_INIT_CRD + port*4, (9040/16) + 553 - 22);
17613 
17614         /* probe changes */
17615         REG_WR(sc, PBF_REG_INIT_P0 + port*4, 1);
17616         DELAY(50);
17617         REG_WR(sc, PBF_REG_INIT_P0 + port*4, 0);
17618     }
17619 
17620     if (CNIC_SUPPORT(sc)) {
17621         ecore_init_block(sc, BLOCK_SRC, init_phase);
17622     }
17623 
17624     ecore_init_block(sc, BLOCK_CDU, init_phase);
17625     ecore_init_block(sc, BLOCK_CFC, init_phase);
17626 
17627     if (CHIP_IS_E1(sc)) {
17628         REG_WR(sc, HC_REG_LEADING_EDGE_0 + port*8, 0);
17629         REG_WR(sc, HC_REG_TRAILING_EDGE_0 + port*8, 0);
17630     }
17631     ecore_init_block(sc, BLOCK_HC, init_phase);
17632 
17633     ecore_init_block(sc, BLOCK_IGU, init_phase);
17634 
17635     ecore_init_block(sc, BLOCK_MISC_AEU, init_phase);
17636     /* init aeu_mask_attn_func_0/1:
17637      *  - SF mode: bits 3-7 are masked. only bits 0-2 are in use
17638      *  - MF mode: bit 3 is masked. bits 0-2 are in use as in SF
17639      *             bits 4-7 are used for "per vn group attention" */
17640     val = IS_MF(sc) ? 0xF7 : 0x7;
17641     /* Enable DCBX attention for all but E1 */
17642     val |= CHIP_IS_E1(sc) ? 0 : 0x10;
17643     REG_WR(sc, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, val);
17644 
17645     ecore_init_block(sc, BLOCK_NIG, init_phase);
17646 
17647     if (!CHIP_IS_E1x(sc)) {
17648         /* Bit-map indicating which L2 hdrs may appear after the
17649          * basic Ethernet header
17650          */
17651         if (IS_MF_AFEX(sc)) {
17652             REG_WR(sc, SC_PORT(sc) ?
17653                    NIG_REG_P1_HDRS_AFTER_BASIC :
17654                    NIG_REG_P0_HDRS_AFTER_BASIC, 0xE);
17655         } else {
17656             REG_WR(sc, SC_PORT(sc) ?
17657                    NIG_REG_P1_HDRS_AFTER_BASIC :
17658                    NIG_REG_P0_HDRS_AFTER_BASIC,
17659                    IS_MF_SD(sc) ? 7 : 6);
17660         }
17661 
17662         if (CHIP_IS_E3(sc)) {
17663             REG_WR(sc, SC_PORT(sc) ?
17664                    NIG_REG_LLH1_MF_MODE :
17665                    NIG_REG_LLH_MF_MODE, IS_MF(sc));
17666         }
17667     }
17668     if (!CHIP_IS_E3(sc)) {
17669         REG_WR(sc, NIG_REG_XGXS_SERDES0_MODE_SEL + port*4, 1);
17670     }
17671 
17672     if (!CHIP_IS_E1(sc)) {
17673         /* 0x2 disable mf_ov, 0x1 enable */
17674         REG_WR(sc, NIG_REG_LLH0_BRB1_DRV_MASK_MF + port*4,
17675                (IS_MF_SD(sc) ? 0x1 : 0x2));
17676 
17677         if (!CHIP_IS_E1x(sc)) {
17678             val = 0;
17679             switch (sc->devinfo.mf_info.mf_mode) {
17680             case MULTI_FUNCTION_SD:
17681                 val = 1;
17682                 break;
17683             case MULTI_FUNCTION_SI:
17684             case MULTI_FUNCTION_AFEX:
17685                 val = 2;
17686                 break;
17687             }
17688 
17689             REG_WR(sc, (SC_PORT(sc) ? NIG_REG_LLH1_CLS_TYPE :
17690                         NIG_REG_LLH0_CLS_TYPE), val);
17691         }
17692         REG_WR(sc, NIG_REG_LLFC_ENABLE_0 + port*4, 0);
17693         REG_WR(sc, NIG_REG_LLFC_OUT_EN_0 + port*4, 0);
17694         REG_WR(sc, NIG_REG_PAUSE_ENABLE_0 + port*4, 1);
17695     }
17696 
17697     /* If SPIO5 is set to generate interrupts, enable it for this port */
17698     val = REG_RD(sc, MISC_REG_SPIO_EVENT_EN);
17699     if (val & MISC_SPIO_SPIO5) {
17700         uint32_t reg_addr = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
17701                                     MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
17702         val = REG_RD(sc, reg_addr);
17703         val |= AEU_INPUTS_ATTN_BITS_SPIO5;
17704         REG_WR(sc, reg_addr, val);
17705     }
17706 
17707     return (0);
17708 }
17709 
17710 static uint32_t
17711 bxe_flr_clnup_reg_poll(struct bxe_softc *sc,
17712                        uint32_t         reg,
17713                        uint32_t         expected,
17714                        uint32_t         poll_count)
17715 {
17716     uint32_t cur_cnt = poll_count;
17717     uint32_t val;
17718 
17719     while ((val = REG_RD(sc, reg)) != expected && cur_cnt--) {
17720         DELAY(FLR_WAIT_INTERVAL);
17721     }
17722 
17723     return (val);
17724 }
17725 
17726 static int
17727 bxe_flr_clnup_poll_hw_counter(struct bxe_softc *sc,
17728                               uint32_t         reg,
17729                               char             *msg,
17730                               uint32_t         poll_cnt)
17731 {
17732     uint32_t val = bxe_flr_clnup_reg_poll(sc, reg, 0, poll_cnt);
17733 
17734     if (val != 0) {
17735         BLOGE(sc, "%s usage count=%d\n", msg, val);
17736         return (1);
17737     }
17738 
17739     return (0);
17740 }
17741 
17742 /* Common routines with VF FLR cleanup */
17743 static uint32_t
17744 bxe_flr_clnup_poll_count(struct bxe_softc *sc)
17745 {
17746     /* adjust polling timeout */
17747     if (CHIP_REV_IS_EMUL(sc)) {
17748         return (FLR_POLL_CNT * 2000);
17749     }
17750 
17751     if (CHIP_REV_IS_FPGA(sc)) {
17752         return (FLR_POLL_CNT * 120);
17753     }
17754 
17755     return (FLR_POLL_CNT);
17756 }
17757 
17758 static int
17759 bxe_poll_hw_usage_counters(struct bxe_softc *sc,
17760                            uint32_t         poll_cnt)
17761 {
17762     /* wait for CFC PF usage-counter to zero (includes all the VFs) */
17763     if (bxe_flr_clnup_poll_hw_counter(sc,
17764                                       CFC_REG_NUM_LCIDS_INSIDE_PF,
17765                                       "CFC PF usage counter timed out",
17766                                       poll_cnt)) {
17767         return (1);
17768     }
17769 
17770     /* Wait for DQ PF usage-counter to zero (until DQ cleanup) */
17771     if (bxe_flr_clnup_poll_hw_counter(sc,
17772                                       DORQ_REG_PF_USAGE_CNT,
17773                                       "DQ PF usage counter timed out",
17774                                       poll_cnt)) {
17775         return (1);
17776     }
17777 
17778     /* Wait for QM PF usage-counter to zero (until DQ cleanup) */
17779     if (bxe_flr_clnup_poll_hw_counter(sc,
17780                                       QM_REG_PF_USG_CNT_0 + 4*SC_FUNC(sc),
17781                                       "QM PF usage counter timed out",
17782                                       poll_cnt)) {
17783         return (1);
17784     }
17785 
17786     /* Wait for Timer PF usage-counters to zero (until DQ cleanup) */
17787     if (bxe_flr_clnup_poll_hw_counter(sc,
17788                                       TM_REG_LIN0_VNIC_UC + 4*SC_PORT(sc),
17789                                       "Timers VNIC usage counter timed out",
17790                                       poll_cnt)) {
17791         return (1);
17792     }
17793 
17794     if (bxe_flr_clnup_poll_hw_counter(sc,
17795                                       TM_REG_LIN0_NUM_SCANS + 4*SC_PORT(sc),
17796                                       "Timers NUM_SCANS usage counter timed out",
17797                                       poll_cnt)) {
17798         return (1);
17799     }
17800 
17801     /* Wait DMAE PF usage counter to zero */
17802     if (bxe_flr_clnup_poll_hw_counter(sc,
17803                                       dmae_reg_go_c[INIT_DMAE_C(sc)],
17804                                       "DMAE dommand register timed out",
17805                                       poll_cnt)) {
17806         return (1);
17807     }
17808 
17809     return (0);
17810 }
17811 
17812 #define OP_GEN_PARAM(param)                                            \
17813     (((param) << SDM_OP_GEN_COMP_PARAM_SHIFT) & SDM_OP_GEN_COMP_PARAM)
17814 #define OP_GEN_TYPE(type)                                           \
17815     (((type) << SDM_OP_GEN_COMP_TYPE_SHIFT) & SDM_OP_GEN_COMP_TYPE)
17816 #define OP_GEN_AGG_VECT(index)                                             \
17817     (((index) << SDM_OP_GEN_AGG_VECT_IDX_SHIFT) & SDM_OP_GEN_AGG_VECT_IDX)
17818 
17819 static int
17820 bxe_send_final_clnup(struct bxe_softc *sc,
17821                      uint8_t          clnup_func,
17822                      uint32_t         poll_cnt)
17823 {
17824     uint32_t op_gen_command = 0;
17825     uint32_t comp_addr = (BAR_CSTRORM_INTMEM +
17826                           CSTORM_FINAL_CLEANUP_COMPLETE_OFFSET(clnup_func));
17827     int ret = 0;
17828 
17829     if (REG_RD(sc, comp_addr)) {
17830         BLOGE(sc, "Cleanup complete was not 0 before sending\n");
17831         return (1);
17832     }
17833 
17834     op_gen_command |= OP_GEN_PARAM(XSTORM_AGG_INT_FINAL_CLEANUP_INDEX);
17835     op_gen_command |= OP_GEN_TYPE(XSTORM_AGG_INT_FINAL_CLEANUP_COMP_TYPE);
17836     op_gen_command |= OP_GEN_AGG_VECT(clnup_func);
17837     op_gen_command |= 1 << SDM_OP_GEN_AGG_VECT_IDX_VALID_SHIFT;
17838 
17839     BLOGD(sc, DBG_LOAD, "sending FW Final cleanup\n");
17840     REG_WR(sc, XSDM_REG_OPERATION_GEN, op_gen_command);
17841 
17842     if (bxe_flr_clnup_reg_poll(sc, comp_addr, 1, poll_cnt) != 1) {
17843         BLOGE(sc, "FW final cleanup did not succeed\n");
17844         BLOGD(sc, DBG_LOAD, "At timeout completion address contained %x\n",
17845               (REG_RD(sc, comp_addr)));
17846         bxe_panic(sc, ("FLR cleanup failed\n"));
17847         return (1);
17848     }
17849 
17850     /* Zero completion for nxt FLR */
17851     REG_WR(sc, comp_addr, 0);
17852 
17853     return (ret);
17854 }
17855 
17856 static void
17857 bxe_pbf_pN_buf_flushed(struct bxe_softc       *sc,
17858                        struct pbf_pN_buf_regs *regs,
17859                        uint32_t               poll_count)
17860 {
17861     uint32_t init_crd, crd, crd_start, crd_freed, crd_freed_start;
17862     uint32_t cur_cnt = poll_count;
17863 
17864     crd_freed = crd_freed_start = REG_RD(sc, regs->crd_freed);
17865     crd = crd_start = REG_RD(sc, regs->crd);
17866     init_crd = REG_RD(sc, regs->init_crd);
17867 
17868     BLOGD(sc, DBG_LOAD, "INIT CREDIT[%d] : %x\n", regs->pN, init_crd);
17869     BLOGD(sc, DBG_LOAD, "CREDIT[%d]      : s:%x\n", regs->pN, crd);
17870     BLOGD(sc, DBG_LOAD, "CREDIT_FREED[%d]: s:%x\n", regs->pN, crd_freed);
17871 
17872     while ((crd != init_crd) &&
17873            ((uint32_t)((int32_t)crd_freed - (int32_t)crd_freed_start) <
17874             (init_crd - crd_start))) {
17875         if (cur_cnt--) {
17876             DELAY(FLR_WAIT_INTERVAL);
17877             crd = REG_RD(sc, regs->crd);
17878             crd_freed = REG_RD(sc, regs->crd_freed);
17879         } else {
17880             BLOGD(sc, DBG_LOAD, "PBF tx buffer[%d] timed out\n", regs->pN);
17881             BLOGD(sc, DBG_LOAD, "CREDIT[%d]      : c:%x\n", regs->pN, crd);
17882             BLOGD(sc, DBG_LOAD, "CREDIT_FREED[%d]: c:%x\n", regs->pN, crd_freed);
17883             break;
17884         }
17885     }
17886 
17887     BLOGD(sc, DBG_LOAD, "Waited %d*%d usec for PBF tx buffer[%d]\n",
17888           poll_count-cur_cnt, FLR_WAIT_INTERVAL, regs->pN);
17889 }
17890 
17891 static void
17892 bxe_pbf_pN_cmd_flushed(struct bxe_softc       *sc,
17893                        struct pbf_pN_cmd_regs *regs,
17894                        uint32_t               poll_count)
17895 {
17896     uint32_t occup, to_free, freed, freed_start;
17897     uint32_t cur_cnt = poll_count;
17898 
17899     occup = to_free = REG_RD(sc, regs->lines_occup);
17900     freed = freed_start = REG_RD(sc, regs->lines_freed);
17901 
17902     BLOGD(sc, DBG_LOAD, "OCCUPANCY[%d]   : s:%x\n", regs->pN, occup);
17903     BLOGD(sc, DBG_LOAD, "LINES_FREED[%d] : s:%x\n", regs->pN, freed);
17904 
17905     while (occup &&
17906            ((uint32_t)((int32_t)freed - (int32_t)freed_start) < to_free)) {
17907         if (cur_cnt--) {
17908             DELAY(FLR_WAIT_INTERVAL);
17909             occup = REG_RD(sc, regs->lines_occup);
17910             freed = REG_RD(sc, regs->lines_freed);
17911         } else {
17912             BLOGD(sc, DBG_LOAD, "PBF cmd queue[%d] timed out\n", regs->pN);
17913             BLOGD(sc, DBG_LOAD, "OCCUPANCY[%d]   : s:%x\n", regs->pN, occup);
17914             BLOGD(sc, DBG_LOAD, "LINES_FREED[%d] : s:%x\n", regs->pN, freed);
17915             break;
17916         }
17917     }
17918 
17919     BLOGD(sc, DBG_LOAD, "Waited %d*%d usec for PBF cmd queue[%d]\n",
17920           poll_count - cur_cnt, FLR_WAIT_INTERVAL, regs->pN);
17921 }
17922 
17923 static void
17924 bxe_tx_hw_flushed(struct bxe_softc *sc, uint32_t poll_count)
17925 {
17926     struct pbf_pN_cmd_regs cmd_regs[] = {
17927         {0, (CHIP_IS_E3B0(sc)) ?
17928             PBF_REG_TQ_OCCUPANCY_Q0 :
17929             PBF_REG_P0_TQ_OCCUPANCY,
17930             (CHIP_IS_E3B0(sc)) ?
17931             PBF_REG_TQ_LINES_FREED_CNT_Q0 :
17932             PBF_REG_P0_TQ_LINES_FREED_CNT},
17933         {1, (CHIP_IS_E3B0(sc)) ?
17934             PBF_REG_TQ_OCCUPANCY_Q1 :
17935             PBF_REG_P1_TQ_OCCUPANCY,
17936             (CHIP_IS_E3B0(sc)) ?
17937             PBF_REG_TQ_LINES_FREED_CNT_Q1 :
17938             PBF_REG_P1_TQ_LINES_FREED_CNT},
17939         {4, (CHIP_IS_E3B0(sc)) ?
17940             PBF_REG_TQ_OCCUPANCY_LB_Q :
17941             PBF_REG_P4_TQ_OCCUPANCY,
17942             (CHIP_IS_E3B0(sc)) ?
17943             PBF_REG_TQ_LINES_FREED_CNT_LB_Q :
17944             PBF_REG_P4_TQ_LINES_FREED_CNT}
17945     };
17946 
17947     struct pbf_pN_buf_regs buf_regs[] = {
17948         {0, (CHIP_IS_E3B0(sc)) ?
17949             PBF_REG_INIT_CRD_Q0 :
17950             PBF_REG_P0_INIT_CRD ,
17951             (CHIP_IS_E3B0(sc)) ?
17952             PBF_REG_CREDIT_Q0 :
17953             PBF_REG_P0_CREDIT,
17954             (CHIP_IS_E3B0(sc)) ?
17955             PBF_REG_INTERNAL_CRD_FREED_CNT_Q0 :
17956             PBF_REG_P0_INTERNAL_CRD_FREED_CNT},
17957         {1, (CHIP_IS_E3B0(sc)) ?
17958             PBF_REG_INIT_CRD_Q1 :
17959             PBF_REG_P1_INIT_CRD,
17960             (CHIP_IS_E3B0(sc)) ?
17961             PBF_REG_CREDIT_Q1 :
17962             PBF_REG_P1_CREDIT,
17963             (CHIP_IS_E3B0(sc)) ?
17964             PBF_REG_INTERNAL_CRD_FREED_CNT_Q1 :
17965             PBF_REG_P1_INTERNAL_CRD_FREED_CNT},
17966         {4, (CHIP_IS_E3B0(sc)) ?
17967             PBF_REG_INIT_CRD_LB_Q :
17968             PBF_REG_P4_INIT_CRD,
17969             (CHIP_IS_E3B0(sc)) ?
17970             PBF_REG_CREDIT_LB_Q :
17971             PBF_REG_P4_CREDIT,
17972             (CHIP_IS_E3B0(sc)) ?
17973             PBF_REG_INTERNAL_CRD_FREED_CNT_LB_Q :
17974             PBF_REG_P4_INTERNAL_CRD_FREED_CNT},
17975     };
17976 
17977     int i;
17978 
17979     /* Verify the command queues are flushed P0, P1, P4 */
17980     for (i = 0; i < ARRAY_SIZE(cmd_regs); i++) {
17981         bxe_pbf_pN_cmd_flushed(sc, &cmd_regs[i], poll_count);
17982     }
17983 
17984     /* Verify the transmission buffers are flushed P0, P1, P4 */
17985     for (i = 0; i < ARRAY_SIZE(buf_regs); i++) {
17986         bxe_pbf_pN_buf_flushed(sc, &buf_regs[i], poll_count);
17987     }
17988 }
17989 
17990 static void
17991 bxe_hw_enable_status(struct bxe_softc *sc)
17992 {
17993     uint32_t val;
17994 
17995     val = REG_RD(sc, CFC_REG_WEAK_ENABLE_PF);
17996     BLOGD(sc, DBG_LOAD, "CFC_REG_WEAK_ENABLE_PF is 0x%x\n", val);
17997 
17998     val = REG_RD(sc, PBF_REG_DISABLE_PF);
17999     BLOGD(sc, DBG_LOAD, "PBF_REG_DISABLE_PF is 0x%x\n", val);
18000 
18001     val = REG_RD(sc, IGU_REG_PCI_PF_MSI_EN);
18002     BLOGD(sc, DBG_LOAD, "IGU_REG_PCI_PF_MSI_EN is 0x%x\n", val);
18003 
18004     val = REG_RD(sc, IGU_REG_PCI_PF_MSIX_EN);
18005     BLOGD(sc, DBG_LOAD, "IGU_REG_PCI_PF_MSIX_EN is 0x%x\n", val);
18006 
18007     val = REG_RD(sc, IGU_REG_PCI_PF_MSIX_FUNC_MASK);
18008     BLOGD(sc, DBG_LOAD, "IGU_REG_PCI_PF_MSIX_FUNC_MASK is 0x%x\n", val);
18009 
18010     val = REG_RD(sc, PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR);
18011     BLOGD(sc, DBG_LOAD, "PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR is 0x%x\n", val);
18012 
18013     val = REG_RD(sc, PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR);
18014     BLOGD(sc, DBG_LOAD, "PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR is 0x%x\n", val);
18015 
18016     val = REG_RD(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER);
18017     BLOGD(sc, DBG_LOAD, "PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER is 0x%x\n", val);
18018 }
18019 
18020 static int
18021 bxe_pf_flr_clnup(struct bxe_softc *sc)
18022 {
18023     uint32_t poll_cnt = bxe_flr_clnup_poll_count(sc);
18024 
18025     BLOGD(sc, DBG_LOAD, "Cleanup after FLR PF[%d]\n", SC_ABS_FUNC(sc));
18026 
18027     /* Re-enable PF target read access */
18028     REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
18029 
18030     /* Poll HW usage counters */
18031     BLOGD(sc, DBG_LOAD, "Polling usage counters\n");
18032     if (bxe_poll_hw_usage_counters(sc, poll_cnt)) {
18033         return (-1);
18034     }
18035 
18036     /* Zero the igu 'trailing edge' and 'leading edge' */
18037 
18038     /* Send the FW cleanup command */
18039     if (bxe_send_final_clnup(sc, (uint8_t)SC_FUNC(sc), poll_cnt)) {
18040         return (-1);
18041     }
18042 
18043     /* ATC cleanup */
18044 
18045     /* Verify TX hw is flushed */
18046     bxe_tx_hw_flushed(sc, poll_cnt);
18047 
18048     /* Wait 100ms (not adjusted according to platform) */
18049     DELAY(100000);
18050 
18051     /* Verify no pending pci transactions */
18052     if (bxe_is_pcie_pending(sc)) {
18053         BLOGE(sc, "PCIE Transactions still pending\n");
18054     }
18055 
18056     /* Debug */
18057     bxe_hw_enable_status(sc);
18058 
18059     /*
18060      * Master enable - Due to WB DMAE writes performed before this
18061      * register is re-initialized as part of the regular function init
18062      */
18063     REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
18064 
18065     return (0);
18066 }
18067 
18068 static int
18069 bxe_init_hw_func(struct bxe_softc *sc)
18070 {
18071     int port = SC_PORT(sc);
18072     int func = SC_FUNC(sc);
18073     int init_phase = PHASE_PF0 + func;
18074     struct ecore_ilt *ilt = sc->ilt;
18075     uint16_t cdu_ilt_start;
18076     uint32_t addr, val;
18077     uint32_t main_mem_base, main_mem_size, main_mem_prty_clr;
18078     int i, main_mem_width, rc;
18079 
18080     BLOGD(sc, DBG_LOAD, "starting func init for func %d\n", func);
18081 
18082     /* FLR cleanup */
18083     if (!CHIP_IS_E1x(sc)) {
18084         rc = bxe_pf_flr_clnup(sc);
18085         if (rc) {
18086             BLOGE(sc, "FLR cleanup failed!\n");
18087             // XXX bxe_fw_dump(sc);
18088             // XXX bxe_idle_chk(sc);
18089             return (rc);
18090         }
18091     }
18092 
18093     /* set MSI reconfigure capability */
18094     if (sc->devinfo.int_block == INT_BLOCK_HC) {
18095         addr = (port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0);
18096         val = REG_RD(sc, addr);
18097         val |= HC_CONFIG_0_REG_MSI_ATTN_EN_0;
18098         REG_WR(sc, addr, val);
18099     }
18100 
18101     ecore_init_block(sc, BLOCK_PXP, init_phase);
18102     ecore_init_block(sc, BLOCK_PXP2, init_phase);
18103 
18104     ilt = sc->ilt;
18105     cdu_ilt_start = ilt->clients[ILT_CLIENT_CDU].start;
18106 
18107     for (i = 0; i < L2_ILT_LINES(sc); i++) {
18108         ilt->lines[cdu_ilt_start + i].page = sc->context[i].vcxt;
18109         ilt->lines[cdu_ilt_start + i].page_mapping =
18110             sc->context[i].vcxt_dma.paddr;
18111         ilt->lines[cdu_ilt_start + i].size = sc->context[i].size;
18112     }
18113     ecore_ilt_init_op(sc, INITOP_SET);
18114 
18115     /* Set NIC mode */
18116     REG_WR(sc, PRS_REG_NIC_MODE, 1);
18117     BLOGD(sc, DBG_LOAD, "NIC MODE configured\n");
18118 
18119     if (!CHIP_IS_E1x(sc)) {
18120         uint32_t pf_conf = IGU_PF_CONF_FUNC_EN;
18121 
18122         /* Turn on a single ISR mode in IGU if driver is going to use
18123          * INT#x or MSI
18124          */
18125         if (sc->interrupt_mode != INTR_MODE_MSIX) {
18126             pf_conf |= IGU_PF_CONF_SINGLE_ISR_EN;
18127         }
18128 
18129         /*
18130          * Timers workaround bug: function init part.
18131          * Need to wait 20msec after initializing ILT,
18132          * needed to make sure there are no requests in
18133          * one of the PXP internal queues with "old" ILT addresses
18134          */
18135         DELAY(20000);
18136 
18137         /*
18138          * Master enable - Due to WB DMAE writes performed before this
18139          * register is re-initialized as part of the regular function
18140          * init
18141          */
18142         REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
18143         /* Enable the function in IGU */
18144         REG_WR(sc, IGU_REG_PF_CONFIGURATION, pf_conf);
18145     }
18146 
18147     sc->dmae_ready = 1;
18148 
18149     ecore_init_block(sc, BLOCK_PGLUE_B, init_phase);
18150 
18151     if (!CHIP_IS_E1x(sc))
18152         REG_WR(sc, PGLUE_B_REG_WAS_ERROR_PF_7_0_CLR, func);
18153 
18154     ecore_init_block(sc, BLOCK_ATC, init_phase);
18155     ecore_init_block(sc, BLOCK_DMAE, init_phase);
18156     ecore_init_block(sc, BLOCK_NIG, init_phase);
18157     ecore_init_block(sc, BLOCK_SRC, init_phase);
18158     ecore_init_block(sc, BLOCK_MISC, init_phase);
18159     ecore_init_block(sc, BLOCK_TCM, init_phase);
18160     ecore_init_block(sc, BLOCK_UCM, init_phase);
18161     ecore_init_block(sc, BLOCK_CCM, init_phase);
18162     ecore_init_block(sc, BLOCK_XCM, init_phase);
18163     ecore_init_block(sc, BLOCK_TSEM, init_phase);
18164     ecore_init_block(sc, BLOCK_USEM, init_phase);
18165     ecore_init_block(sc, BLOCK_CSEM, init_phase);
18166     ecore_init_block(sc, BLOCK_XSEM, init_phase);
18167 
18168     if (!CHIP_IS_E1x(sc))
18169         REG_WR(sc, QM_REG_PF_EN, 1);
18170 
18171     if (!CHIP_IS_E1x(sc)) {
18172         REG_WR(sc, TSEM_REG_VFPF_ERR_NUM, BXE_MAX_NUM_OF_VFS + func);
18173         REG_WR(sc, USEM_REG_VFPF_ERR_NUM, BXE_MAX_NUM_OF_VFS + func);
18174         REG_WR(sc, CSEM_REG_VFPF_ERR_NUM, BXE_MAX_NUM_OF_VFS + func);
18175         REG_WR(sc, XSEM_REG_VFPF_ERR_NUM, BXE_MAX_NUM_OF_VFS + func);
18176     }
18177     ecore_init_block(sc, BLOCK_QM, init_phase);
18178 
18179     ecore_init_block(sc, BLOCK_TM, init_phase);
18180     ecore_init_block(sc, BLOCK_DORQ, init_phase);
18181 
18182     bxe_iov_init_dq(sc);
18183 
18184     ecore_init_block(sc, BLOCK_BRB1, init_phase);
18185     ecore_init_block(sc, BLOCK_PRS, init_phase);
18186     ecore_init_block(sc, BLOCK_TSDM, init_phase);
18187     ecore_init_block(sc, BLOCK_CSDM, init_phase);
18188     ecore_init_block(sc, BLOCK_USDM, init_phase);
18189     ecore_init_block(sc, BLOCK_XSDM, init_phase);
18190     ecore_init_block(sc, BLOCK_UPB, init_phase);
18191     ecore_init_block(sc, BLOCK_XPB, init_phase);
18192     ecore_init_block(sc, BLOCK_PBF, init_phase);
18193     if (!CHIP_IS_E1x(sc))
18194         REG_WR(sc, PBF_REG_DISABLE_PF, 0);
18195 
18196     ecore_init_block(sc, BLOCK_CDU, init_phase);
18197 
18198     ecore_init_block(sc, BLOCK_CFC, init_phase);
18199 
18200     if (!CHIP_IS_E1x(sc))
18201         REG_WR(sc, CFC_REG_WEAK_ENABLE_PF, 1);
18202 
18203     if (IS_MF(sc)) {
18204         REG_WR(sc, NIG_REG_LLH0_FUNC_EN + port*8, 1);
18205         REG_WR(sc, NIG_REG_LLH0_FUNC_VLAN_ID + port*8, OVLAN(sc));
18206     }
18207 
18208     ecore_init_block(sc, BLOCK_MISC_AEU, init_phase);
18209 
18210     /* HC init per function */
18211     if (sc->devinfo.int_block == INT_BLOCK_HC) {
18212         if (CHIP_IS_E1H(sc)) {
18213             REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
18214 
18215             REG_WR(sc, HC_REG_LEADING_EDGE_0 + port*8, 0);
18216             REG_WR(sc, HC_REG_TRAILING_EDGE_0 + port*8, 0);
18217         }
18218         ecore_init_block(sc, BLOCK_HC, init_phase);
18219 
18220     } else {
18221         int num_segs, sb_idx, prod_offset;
18222 
18223         REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
18224 
18225         if (!CHIP_IS_E1x(sc)) {
18226             REG_WR(sc, IGU_REG_LEADING_EDGE_LATCH, 0);
18227             REG_WR(sc, IGU_REG_TRAILING_EDGE_LATCH, 0);
18228         }
18229 
18230         ecore_init_block(sc, BLOCK_IGU, init_phase);
18231 
18232         if (!CHIP_IS_E1x(sc)) {
18233             int dsb_idx = 0;
18234             /**
18235              * Producer memory:
18236              * E2 mode: address 0-135 match to the mapping memory;
18237              * 136 - PF0 default prod; 137 - PF1 default prod;
18238              * 138 - PF2 default prod; 139 - PF3 default prod;
18239              * 140 - PF0 attn prod;    141 - PF1 attn prod;
18240              * 142 - PF2 attn prod;    143 - PF3 attn prod;
18241              * 144-147 reserved.
18242              *
18243              * E1.5 mode - In backward compatible mode;
18244              * for non default SB; each even line in the memory
18245              * holds the U producer and each odd line hold
18246              * the C producer. The first 128 producers are for
18247              * NDSB (PF0 - 0-31; PF1 - 32-63 and so on). The last 20
18248              * producers are for the DSB for each PF.
18249              * Each PF has five segments: (the order inside each
18250              * segment is PF0; PF1; PF2; PF3) - 128-131 U prods;
18251              * 132-135 C prods; 136-139 X prods; 140-143 T prods;
18252              * 144-147 attn prods;
18253              */
18254             /* non-default-status-blocks */
18255             num_segs = CHIP_INT_MODE_IS_BC(sc) ?
18256                 IGU_BC_NDSB_NUM_SEGS : IGU_NORM_NDSB_NUM_SEGS;
18257             for (sb_idx = 0; sb_idx < sc->igu_sb_cnt; sb_idx++) {
18258                 prod_offset = (sc->igu_base_sb + sb_idx) *
18259                     num_segs;
18260 
18261                 for (i = 0; i < num_segs; i++) {
18262                     addr = IGU_REG_PROD_CONS_MEMORY +
18263                             (prod_offset + i) * 4;
18264                     REG_WR(sc, addr, 0);
18265                 }
18266                 /* send consumer update with value 0 */
18267                 bxe_ack_sb(sc, sc->igu_base_sb + sb_idx,
18268                            USTORM_ID, 0, IGU_INT_NOP, 1);
18269                 bxe_igu_clear_sb(sc, sc->igu_base_sb + sb_idx);
18270             }
18271 
18272             /* default-status-blocks */
18273             num_segs = CHIP_INT_MODE_IS_BC(sc) ?
18274                 IGU_BC_DSB_NUM_SEGS : IGU_NORM_DSB_NUM_SEGS;
18275 
18276             if (CHIP_IS_MODE_4_PORT(sc))
18277                 dsb_idx = SC_FUNC(sc);
18278             else
18279                 dsb_idx = SC_VN(sc);
18280 
18281             prod_offset = (CHIP_INT_MODE_IS_BC(sc) ?
18282                        IGU_BC_BASE_DSB_PROD + dsb_idx :
18283                        IGU_NORM_BASE_DSB_PROD + dsb_idx);
18284 
18285             /*
18286              * igu prods come in chunks of E1HVN_MAX (4) -
18287              * does not matters what is the current chip mode
18288              */
18289             for (i = 0; i < (num_segs * E1HVN_MAX);
18290                  i += E1HVN_MAX) {
18291                 addr = IGU_REG_PROD_CONS_MEMORY +
18292                             (prod_offset + i)*4;
18293                 REG_WR(sc, addr, 0);
18294             }
18295             /* send consumer update with 0 */
18296             if (CHIP_INT_MODE_IS_BC(sc)) {
18297                 bxe_ack_sb(sc, sc->igu_dsb_id,
18298                            USTORM_ID, 0, IGU_INT_NOP, 1);
18299                 bxe_ack_sb(sc, sc->igu_dsb_id,
18300                            CSTORM_ID, 0, IGU_INT_NOP, 1);
18301                 bxe_ack_sb(sc, sc->igu_dsb_id,
18302                            XSTORM_ID, 0, IGU_INT_NOP, 1);
18303                 bxe_ack_sb(sc, sc->igu_dsb_id,
18304                            TSTORM_ID, 0, IGU_INT_NOP, 1);
18305                 bxe_ack_sb(sc, sc->igu_dsb_id,
18306                            ATTENTION_ID, 0, IGU_INT_NOP, 1);
18307             } else {
18308                 bxe_ack_sb(sc, sc->igu_dsb_id,
18309                            USTORM_ID, 0, IGU_INT_NOP, 1);
18310                 bxe_ack_sb(sc, sc->igu_dsb_id,
18311                            ATTENTION_ID, 0, IGU_INT_NOP, 1);
18312             }
18313             bxe_igu_clear_sb(sc, sc->igu_dsb_id);
18314 
18315             /* !!! these should become driver const once
18316                rf-tool supports split-68 const */
18317             REG_WR(sc, IGU_REG_SB_INT_BEFORE_MASK_LSB, 0);
18318             REG_WR(sc, IGU_REG_SB_INT_BEFORE_MASK_MSB, 0);
18319             REG_WR(sc, IGU_REG_SB_MASK_LSB, 0);
18320             REG_WR(sc, IGU_REG_SB_MASK_MSB, 0);
18321             REG_WR(sc, IGU_REG_PBA_STATUS_LSB, 0);
18322             REG_WR(sc, IGU_REG_PBA_STATUS_MSB, 0);
18323         }
18324     }
18325 
18326     /* Reset PCIE errors for debug */
18327     REG_WR(sc, 0x2114, 0xffffffff);
18328     REG_WR(sc, 0x2120, 0xffffffff);
18329 
18330     if (CHIP_IS_E1x(sc)) {
18331         main_mem_size = HC_REG_MAIN_MEMORY_SIZE / 2; /*dwords*/
18332         main_mem_base = HC_REG_MAIN_MEMORY +
18333                 SC_PORT(sc) * (main_mem_size * 4);
18334         main_mem_prty_clr = HC_REG_HC_PRTY_STS_CLR;
18335         main_mem_width = 8;
18336 
18337         val = REG_RD(sc, main_mem_prty_clr);
18338         if (val) {
18339             BLOGD(sc, DBG_LOAD,
18340                   "Parity errors in HC block during function init (0x%x)!\n",
18341                   val);
18342         }
18343 
18344         /* Clear "false" parity errors in MSI-X table */
18345         for (i = main_mem_base;
18346              i < main_mem_base + main_mem_size * 4;
18347              i += main_mem_width) {
18348             bxe_read_dmae(sc, i, main_mem_width / 4);
18349             bxe_write_dmae(sc, BXE_SP_MAPPING(sc, wb_data),
18350                            i, main_mem_width / 4);
18351         }
18352         /* Clear HC parity attention */
18353         REG_RD(sc, main_mem_prty_clr);
18354     }
18355 
18356 #if 1
18357     /* Enable STORMs SP logging */
18358     REG_WR8(sc, BAR_USTRORM_INTMEM +
18359            USTORM_RECORD_SLOW_PATH_OFFSET(SC_FUNC(sc)), 1);
18360     REG_WR8(sc, BAR_TSTRORM_INTMEM +
18361            TSTORM_RECORD_SLOW_PATH_OFFSET(SC_FUNC(sc)), 1);
18362     REG_WR8(sc, BAR_CSTRORM_INTMEM +
18363            CSTORM_RECORD_SLOW_PATH_OFFSET(SC_FUNC(sc)), 1);
18364     REG_WR8(sc, BAR_XSTRORM_INTMEM +
18365            XSTORM_RECORD_SLOW_PATH_OFFSET(SC_FUNC(sc)), 1);
18366 #endif
18367 
18368     elink_phy_probe(&sc->link_params);
18369 
18370     return (0);
18371 }
18372 
18373 static void
18374 bxe_link_reset(struct bxe_softc *sc)
18375 {
18376     if (!BXE_NOMCP(sc)) {
18377 	bxe_acquire_phy_lock(sc);
18378         elink_lfa_reset(&sc->link_params, &sc->link_vars);
18379 	bxe_release_phy_lock(sc);
18380     } else {
18381         if (!CHIP_REV_IS_SLOW(sc)) {
18382             BLOGW(sc, "Bootcode is missing - cannot reset link\n");
18383         }
18384     }
18385 }
18386 
18387 static void
18388 bxe_reset_port(struct bxe_softc *sc)
18389 {
18390     int port = SC_PORT(sc);
18391     uint32_t val;
18392 
18393 	ELINK_DEBUG_P0(sc, "bxe_reset_port called\n");
18394     /* reset physical Link */
18395     bxe_link_reset(sc);
18396 
18397     REG_WR(sc, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0);
18398 
18399     /* Do not rcv packets to BRB */
18400     REG_WR(sc, NIG_REG_LLH0_BRB1_DRV_MASK + port*4, 0x0);
18401     /* Do not direct rcv packets that are not for MCP to the BRB */
18402     REG_WR(sc, (port ? NIG_REG_LLH1_BRB1_NOT_MCP :
18403                NIG_REG_LLH0_BRB1_NOT_MCP), 0x0);
18404 
18405     /* Configure AEU */
18406     REG_WR(sc, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, 0);
18407 
18408     DELAY(100000);
18409 
18410     /* Check for BRB port occupancy */
18411     val = REG_RD(sc, BRB1_REG_PORT_NUM_OCC_BLOCKS_0 + port*4);
18412     if (val) {
18413         BLOGD(sc, DBG_LOAD,
18414               "BRB1 is not empty, %d blocks are occupied\n", val);
18415     }
18416 
18417     /* TODO: Close Doorbell port? */
18418 }
18419 
18420 static void
18421 bxe_ilt_wr(struct bxe_softc *sc,
18422            uint32_t         index,
18423            bus_addr_t       addr)
18424 {
18425     int reg;
18426     uint32_t wb_write[2];
18427 
18428     if (CHIP_IS_E1(sc)) {
18429         reg = PXP2_REG_RQ_ONCHIP_AT + index*8;
18430     } else {
18431         reg = PXP2_REG_RQ_ONCHIP_AT_B0 + index*8;
18432     }
18433 
18434     wb_write[0] = ONCHIP_ADDR1(addr);
18435     wb_write[1] = ONCHIP_ADDR2(addr);
18436     REG_WR_DMAE(sc, reg, wb_write, 2);
18437 }
18438 
18439 static void
18440 bxe_clear_func_ilt(struct bxe_softc *sc,
18441                    uint32_t         func)
18442 {
18443     uint32_t i, base = FUNC_ILT_BASE(func);
18444     for (i = base; i < base + ILT_PER_FUNC; i++) {
18445         bxe_ilt_wr(sc, i, 0);
18446     }
18447 }
18448 
18449 static void
18450 bxe_reset_func(struct bxe_softc *sc)
18451 {
18452     struct bxe_fastpath *fp;
18453     int port = SC_PORT(sc);
18454     int func = SC_FUNC(sc);
18455     int i;
18456 
18457     /* Disable the function in the FW */
18458     REG_WR8(sc, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(func), 0);
18459     REG_WR8(sc, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(func), 0);
18460     REG_WR8(sc, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(func), 0);
18461     REG_WR8(sc, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(func), 0);
18462 
18463     /* FP SBs */
18464     FOR_EACH_ETH_QUEUE(sc, i) {
18465         fp = &sc->fp[i];
18466         REG_WR8(sc, BAR_CSTRORM_INTMEM +
18467                 CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET(fp->fw_sb_id),
18468                 SB_DISABLED);
18469     }
18470 
18471     /* SP SB */
18472     REG_WR8(sc, BAR_CSTRORM_INTMEM +
18473             CSTORM_SP_STATUS_BLOCK_DATA_STATE_OFFSET(func),
18474             SB_DISABLED);
18475 
18476     for (i = 0; i < XSTORM_SPQ_DATA_SIZE / 4; i++) {
18477         REG_WR(sc, BAR_XSTRORM_INTMEM + XSTORM_SPQ_DATA_OFFSET(func), 0);
18478     }
18479 
18480     /* Configure IGU */
18481     if (sc->devinfo.int_block == INT_BLOCK_HC) {
18482         REG_WR(sc, HC_REG_LEADING_EDGE_0 + port*8, 0);
18483         REG_WR(sc, HC_REG_TRAILING_EDGE_0 + port*8, 0);
18484     } else {
18485         REG_WR(sc, IGU_REG_LEADING_EDGE_LATCH, 0);
18486         REG_WR(sc, IGU_REG_TRAILING_EDGE_LATCH, 0);
18487     }
18488 
18489     if (CNIC_LOADED(sc)) {
18490         /* Disable Timer scan */
18491         REG_WR(sc, TM_REG_EN_LINEAR0_TIMER + port*4, 0);
18492         /*
18493          * Wait for at least 10ms and up to 2 second for the timers
18494          * scan to complete
18495          */
18496         for (i = 0; i < 200; i++) {
18497             DELAY(10000);
18498             if (!REG_RD(sc, TM_REG_LIN0_SCAN_ON + port*4))
18499                 break;
18500         }
18501     }
18502 
18503     /* Clear ILT */
18504     bxe_clear_func_ilt(sc, func);
18505 
18506     /*
18507      * Timers workaround bug for E2: if this is vnic-3,
18508      * we need to set the entire ilt range for this timers.
18509      */
18510     if (!CHIP_IS_E1x(sc) && SC_VN(sc) == 3) {
18511         struct ilt_client_info ilt_cli;
18512         /* use dummy TM client */
18513         memset(&ilt_cli, 0, sizeof(struct ilt_client_info));
18514         ilt_cli.start = 0;
18515         ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1;
18516         ilt_cli.client_num = ILT_CLIENT_TM;
18517 
18518         ecore_ilt_boundry_init_op(sc, &ilt_cli, 0, INITOP_CLEAR);
18519     }
18520 
18521     /* this assumes that reset_port() called before reset_func()*/
18522     if (!CHIP_IS_E1x(sc)) {
18523         bxe_pf_disable(sc);
18524     }
18525 
18526     sc->dmae_ready = 0;
18527 }
18528 
18529 static int
18530 bxe_gunzip_init(struct bxe_softc *sc)
18531 {
18532     return (0);
18533 }
18534 
18535 static void
18536 bxe_gunzip_end(struct bxe_softc *sc)
18537 {
18538     return;
18539 }
18540 
18541 static int
18542 bxe_init_firmware(struct bxe_softc *sc)
18543 {
18544     if (CHIP_IS_E1(sc)) {
18545         ecore_init_e1_firmware(sc);
18546         sc->iro_array = e1_iro_arr;
18547     } else if (CHIP_IS_E1H(sc)) {
18548         ecore_init_e1h_firmware(sc);
18549         sc->iro_array = e1h_iro_arr;
18550     } else if (!CHIP_IS_E1x(sc)) {
18551         ecore_init_e2_firmware(sc);
18552         sc->iro_array = e2_iro_arr;
18553     } else {
18554         BLOGE(sc, "Unsupported chip revision\n");
18555         return (-1);
18556     }
18557 
18558     return (0);
18559 }
18560 
18561 static void
18562 bxe_release_firmware(struct bxe_softc *sc)
18563 {
18564     /* Do nothing */
18565     return;
18566 }
18567 
18568 static int
18569 ecore_gunzip(struct bxe_softc *sc,
18570              const uint8_t    *zbuf,
18571              int              len)
18572 {
18573     /* XXX : Implement... */
18574     BLOGD(sc, DBG_LOAD, "ECORE_GUNZIP NOT IMPLEMENTED\n");
18575     return (FALSE);
18576 }
18577 
18578 static void
18579 ecore_reg_wr_ind(struct bxe_softc *sc,
18580                  uint32_t         addr,
18581                  uint32_t         val)
18582 {
18583     bxe_reg_wr_ind(sc, addr, val);
18584 }
18585 
18586 static void
18587 ecore_write_dmae_phys_len(struct bxe_softc *sc,
18588                           bus_addr_t       phys_addr,
18589                           uint32_t         addr,
18590                           uint32_t         len)
18591 {
18592     bxe_write_dmae_phys_len(sc, phys_addr, addr, len);
18593 }
18594 
18595 void
18596 ecore_storm_memset_struct(struct bxe_softc *sc,
18597                           uint32_t         addr,
18598                           size_t           size,
18599                           uint32_t         *data)
18600 {
18601     uint8_t i;
18602     for (i = 0; i < size/4; i++) {
18603         REG_WR(sc, addr + (i * 4), data[i]);
18604     }
18605 }
18606 
18607 
18608 /*
18609  * character device - ioctl interface definitions
18610  */
18611 
18612 
18613 #include "bxe_dump.h"
18614 #include "bxe_ioctl.h"
18615 #include <sys/conf.h>
18616 
18617 static int bxe_eioctl(struct cdev *dev, u_long cmd, caddr_t data, int fflag,
18618                 struct thread *td);
18619 
18620 static struct cdevsw bxe_cdevsw = {
18621     .d_version = D_VERSION,
18622     .d_ioctl = bxe_eioctl,
18623     .d_name = "bxecnic",
18624 };
18625 
18626 #define BXE_PATH(sc)    (CHIP_IS_E1x(sc) ? 0 : (sc->pcie_func & 1))
18627 
18628 
18629 #define DUMP_ALL_PRESETS        0x1FFF
18630 #define DUMP_MAX_PRESETS        13
18631 #define IS_E1_REG(chips)        ((chips & DUMP_CHIP_E1) == DUMP_CHIP_E1)
18632 #define IS_E1H_REG(chips)       ((chips & DUMP_CHIP_E1H) == DUMP_CHIP_E1H)
18633 #define IS_E2_REG(chips)        ((chips & DUMP_CHIP_E2) == DUMP_CHIP_E2)
18634 #define IS_E3A0_REG(chips)      ((chips & DUMP_CHIP_E3A0) == DUMP_CHIP_E3A0)
18635 #define IS_E3B0_REG(chips)      ((chips & DUMP_CHIP_E3B0) == DUMP_CHIP_E3B0)
18636 
18637 #define IS_REG_IN_PRESET(presets, idx)  \
18638                 ((presets & (1 << (idx-1))) == (1 << (idx-1)))
18639 
18640 
18641 static int
18642 bxe_get_preset_regs_len(struct bxe_softc *sc, uint32_t preset)
18643 {
18644     if (CHIP_IS_E1(sc))
18645         return dump_num_registers[0][preset-1];
18646     else if (CHIP_IS_E1H(sc))
18647         return dump_num_registers[1][preset-1];
18648     else if (CHIP_IS_E2(sc))
18649         return dump_num_registers[2][preset-1];
18650     else if (CHIP_IS_E3A0(sc))
18651         return dump_num_registers[3][preset-1];
18652     else if (CHIP_IS_E3B0(sc))
18653         return dump_num_registers[4][preset-1];
18654     else
18655         return 0;
18656 }
18657 
18658 static int
18659 bxe_get_total_regs_len32(struct bxe_softc *sc)
18660 {
18661     uint32_t preset_idx;
18662     int regdump_len32 = 0;
18663 
18664 
18665     /* Calculate the total preset regs length */
18666     for (preset_idx = 1; preset_idx <= DUMP_MAX_PRESETS; preset_idx++) {
18667         regdump_len32 += bxe_get_preset_regs_len(sc, preset_idx);
18668     }
18669 
18670     return regdump_len32;
18671 }
18672 
18673 static const uint32_t *
18674 __bxe_get_page_addr_ar(struct bxe_softc *sc)
18675 {
18676     if (CHIP_IS_E2(sc))
18677         return page_vals_e2;
18678     else if (CHIP_IS_E3(sc))
18679         return page_vals_e3;
18680     else
18681         return NULL;
18682 }
18683 
18684 static uint32_t
18685 __bxe_get_page_reg_num(struct bxe_softc *sc)
18686 {
18687     if (CHIP_IS_E2(sc))
18688         return PAGE_MODE_VALUES_E2;
18689     else if (CHIP_IS_E3(sc))
18690         return PAGE_MODE_VALUES_E3;
18691     else
18692         return 0;
18693 }
18694 
18695 static const uint32_t *
18696 __bxe_get_page_write_ar(struct bxe_softc *sc)
18697 {
18698     if (CHIP_IS_E2(sc))
18699         return page_write_regs_e2;
18700     else if (CHIP_IS_E3(sc))
18701         return page_write_regs_e3;
18702     else
18703         return NULL;
18704 }
18705 
18706 static uint32_t
18707 __bxe_get_page_write_num(struct bxe_softc *sc)
18708 {
18709     if (CHIP_IS_E2(sc))
18710         return PAGE_WRITE_REGS_E2;
18711     else if (CHIP_IS_E3(sc))
18712         return PAGE_WRITE_REGS_E3;
18713     else
18714         return 0;
18715 }
18716 
18717 static const struct reg_addr *
18718 __bxe_get_page_read_ar(struct bxe_softc *sc)
18719 {
18720     if (CHIP_IS_E2(sc))
18721         return page_read_regs_e2;
18722     else if (CHIP_IS_E3(sc))
18723         return page_read_regs_e3;
18724     else
18725         return NULL;
18726 }
18727 
18728 static uint32_t
18729 __bxe_get_page_read_num(struct bxe_softc *sc)
18730 {
18731     if (CHIP_IS_E2(sc))
18732         return PAGE_READ_REGS_E2;
18733     else if (CHIP_IS_E3(sc))
18734         return PAGE_READ_REGS_E3;
18735     else
18736         return 0;
18737 }
18738 
18739 static bool
18740 bxe_is_reg_in_chip(struct bxe_softc *sc, const struct reg_addr *reg_info)
18741 {
18742     if (CHIP_IS_E1(sc))
18743         return IS_E1_REG(reg_info->chips);
18744     else if (CHIP_IS_E1H(sc))
18745         return IS_E1H_REG(reg_info->chips);
18746     else if (CHIP_IS_E2(sc))
18747         return IS_E2_REG(reg_info->chips);
18748     else if (CHIP_IS_E3A0(sc))
18749         return IS_E3A0_REG(reg_info->chips);
18750     else if (CHIP_IS_E3B0(sc))
18751         return IS_E3B0_REG(reg_info->chips);
18752     else
18753         return 0;
18754 }
18755 
18756 static bool
18757 bxe_is_wreg_in_chip(struct bxe_softc *sc, const struct wreg_addr *wreg_info)
18758 {
18759     if (CHIP_IS_E1(sc))
18760         return IS_E1_REG(wreg_info->chips);
18761     else if (CHIP_IS_E1H(sc))
18762         return IS_E1H_REG(wreg_info->chips);
18763     else if (CHIP_IS_E2(sc))
18764         return IS_E2_REG(wreg_info->chips);
18765     else if (CHIP_IS_E3A0(sc))
18766         return IS_E3A0_REG(wreg_info->chips);
18767     else if (CHIP_IS_E3B0(sc))
18768         return IS_E3B0_REG(wreg_info->chips);
18769     else
18770         return 0;
18771 }
18772 
18773 /**
18774  * bxe_read_pages_regs - read "paged" registers
18775  *
18776  * @bp          device handle
18777  * @p           output buffer
18778  *
18779  * Reads "paged" memories: memories that may only be read by first writing to a
18780  * specific address ("write address") and then reading from a specific address
18781  * ("read address"). There may be more than one write address per "page" and
18782  * more than one read address per write address.
18783  */
18784 static void
18785 bxe_read_pages_regs(struct bxe_softc *sc, uint32_t *p, uint32_t preset)
18786 {
18787     uint32_t i, j, k, n;
18788 
18789     /* addresses of the paged registers */
18790     const uint32_t *page_addr = __bxe_get_page_addr_ar(sc);
18791     /* number of paged registers */
18792     int num_pages = __bxe_get_page_reg_num(sc);
18793     /* write addresses */
18794     const uint32_t *write_addr = __bxe_get_page_write_ar(sc);
18795     /* number of write addresses */
18796     int write_num = __bxe_get_page_write_num(sc);
18797     /* read addresses info */
18798     const struct reg_addr *read_addr = __bxe_get_page_read_ar(sc);
18799     /* number of read addresses */
18800     int read_num = __bxe_get_page_read_num(sc);
18801     uint32_t addr, size;
18802 
18803     for (i = 0; i < num_pages; i++) {
18804         for (j = 0; j < write_num; j++) {
18805             REG_WR(sc, write_addr[j], page_addr[i]);
18806 
18807             for (k = 0; k < read_num; k++) {
18808                 if (IS_REG_IN_PRESET(read_addr[k].presets, preset)) {
18809                     size = read_addr[k].size;
18810                     for (n = 0; n < size; n++) {
18811                         addr = read_addr[k].addr + n*4;
18812                         *p++ = REG_RD(sc, addr);
18813                     }
18814                 }
18815             }
18816         }
18817     }
18818     return;
18819 }
18820 
18821 
18822 static int
18823 bxe_get_preset_regs(struct bxe_softc *sc, uint32_t *p, uint32_t preset)
18824 {
18825     uint32_t i, j, addr;
18826     const struct wreg_addr *wreg_addr_p = NULL;
18827 
18828     if (CHIP_IS_E1(sc))
18829         wreg_addr_p = &wreg_addr_e1;
18830     else if (CHIP_IS_E1H(sc))
18831         wreg_addr_p = &wreg_addr_e1h;
18832     else if (CHIP_IS_E2(sc))
18833         wreg_addr_p = &wreg_addr_e2;
18834     else if (CHIP_IS_E3A0(sc))
18835         wreg_addr_p = &wreg_addr_e3;
18836     else if (CHIP_IS_E3B0(sc))
18837         wreg_addr_p = &wreg_addr_e3b0;
18838     else
18839         return (-1);
18840 
18841     /* Read the idle_chk registers */
18842     for (i = 0; i < IDLE_REGS_COUNT; i++) {
18843         if (bxe_is_reg_in_chip(sc, &idle_reg_addrs[i]) &&
18844             IS_REG_IN_PRESET(idle_reg_addrs[i].presets, preset)) {
18845             for (j = 0; j < idle_reg_addrs[i].size; j++)
18846                 *p++ = REG_RD(sc, idle_reg_addrs[i].addr + j*4);
18847         }
18848     }
18849 
18850     /* Read the regular registers */
18851     for (i = 0; i < REGS_COUNT; i++) {
18852         if (bxe_is_reg_in_chip(sc, &reg_addrs[i]) &&
18853             IS_REG_IN_PRESET(reg_addrs[i].presets, preset)) {
18854             for (j = 0; j < reg_addrs[i].size; j++)
18855                 *p++ = REG_RD(sc, reg_addrs[i].addr + j*4);
18856         }
18857     }
18858 
18859     /* Read the CAM registers */
18860     if (bxe_is_wreg_in_chip(sc, wreg_addr_p) &&
18861         IS_REG_IN_PRESET(wreg_addr_p->presets, preset)) {
18862         for (i = 0; i < wreg_addr_p->size; i++) {
18863             *p++ = REG_RD(sc, wreg_addr_p->addr + i*4);
18864 
18865             /* In case of wreg_addr register, read additional
18866                registers from read_regs array
18867              */
18868             for (j = 0; j < wreg_addr_p->read_regs_count; j++) {
18869                 addr = *(wreg_addr_p->read_regs);
18870                 *p++ = REG_RD(sc, addr + j*4);
18871             }
18872         }
18873     }
18874 
18875     /* Paged registers are supported in E2 & E3 only */
18876     if (CHIP_IS_E2(sc) || CHIP_IS_E3(sc)) {
18877         /* Read "paged" registers */
18878         bxe_read_pages_regs(sc, p, preset);
18879     }
18880 
18881     return 0;
18882 }
18883 
18884 int
18885 bxe_grc_dump(struct bxe_softc *sc)
18886 {
18887     int rval = 0;
18888     uint32_t preset_idx;
18889     uint8_t *buf;
18890     uint32_t size;
18891     struct  dump_header *d_hdr;
18892     uint32_t i;
18893     uint32_t reg_val;
18894     uint32_t reg_addr;
18895     uint32_t cmd_offset;
18896     struct ecore_ilt *ilt = SC_ILT(sc);
18897     struct bxe_fastpath *fp;
18898     struct ilt_client_info *ilt_cli;
18899     int grc_dump_size;
18900 
18901 
18902     if (sc->grcdump_done || sc->grcdump_started)
18903 	return (rval);
18904 
18905     sc->grcdump_started = 1;
18906     BLOGI(sc, "Started collecting grcdump\n");
18907 
18908     grc_dump_size = (bxe_get_total_regs_len32(sc) * sizeof(uint32_t)) +
18909                 sizeof(struct  dump_header);
18910 
18911     sc->grc_dump = malloc(grc_dump_size, M_DEVBUF, M_NOWAIT);
18912 
18913     if (sc->grc_dump == NULL) {
18914         BLOGW(sc, "Unable to allocate memory for grcdump collection\n");
18915         return(ENOMEM);
18916     }
18917 
18918 
18919 
18920     /* Disable parity attentions as long as following dump may
18921      * cause false alarms by reading never written registers. We
18922      * will re-enable parity attentions right after the dump.
18923      */
18924 
18925     /* Disable parity on path 0 */
18926     bxe_pretend_func(sc, 0);
18927 
18928     ecore_disable_blocks_parity(sc);
18929 
18930     /* Disable parity on path 1 */
18931     bxe_pretend_func(sc, 1);
18932     ecore_disable_blocks_parity(sc);
18933 
18934     /* Return to current function */
18935     bxe_pretend_func(sc, SC_ABS_FUNC(sc));
18936 
18937     buf = sc->grc_dump;
18938     d_hdr = sc->grc_dump;
18939 
18940     d_hdr->header_size = (sizeof(struct  dump_header) >> 2) - 1;
18941     d_hdr->version = BNX2X_DUMP_VERSION;
18942     d_hdr->preset = DUMP_ALL_PRESETS;
18943 
18944     if (CHIP_IS_E1(sc)) {
18945         d_hdr->dump_meta_data = DUMP_CHIP_E1;
18946     } else if (CHIP_IS_E1H(sc)) {
18947         d_hdr->dump_meta_data = DUMP_CHIP_E1H;
18948     } else if (CHIP_IS_E2(sc)) {
18949         d_hdr->dump_meta_data = DUMP_CHIP_E2 |
18950                 (BXE_PATH(sc) ? DUMP_PATH_1 : DUMP_PATH_0);
18951     } else if (CHIP_IS_E3A0(sc)) {
18952         d_hdr->dump_meta_data = DUMP_CHIP_E3A0 |
18953                 (BXE_PATH(sc) ? DUMP_PATH_1 : DUMP_PATH_0);
18954     } else if (CHIP_IS_E3B0(sc)) {
18955         d_hdr->dump_meta_data = DUMP_CHIP_E3B0 |
18956                 (BXE_PATH(sc) ? DUMP_PATH_1 : DUMP_PATH_0);
18957     }
18958 
18959     buf += sizeof(struct  dump_header);
18960 
18961     for (preset_idx = 1; preset_idx <= DUMP_MAX_PRESETS; preset_idx++) {
18962 
18963         /* Skip presets with IOR */
18964         if ((preset_idx == 2) || (preset_idx == 5) || (preset_idx == 8) ||
18965             (preset_idx == 11))
18966             continue;
18967 
18968         rval = bxe_get_preset_regs(sc, (uint32_t *)buf, preset_idx);
18969 
18970 	if (rval)
18971             break;
18972 
18973         size = bxe_get_preset_regs_len(sc, preset_idx) * (sizeof (uint32_t));
18974 
18975         buf += size;
18976     }
18977 
18978     bxe_pretend_func(sc, 0);
18979     ecore_clear_blocks_parity(sc);
18980     ecore_enable_blocks_parity(sc);
18981 
18982     bxe_pretend_func(sc, 1);
18983     ecore_clear_blocks_parity(sc);
18984     ecore_enable_blocks_parity(sc);
18985 
18986     /* Return to current function */
18987     bxe_pretend_func(sc, SC_ABS_FUNC(sc));
18988 
18989 
18990 
18991     if(sc->state == BXE_STATE_OPEN) {
18992         if(sc->fw_stats_req  != NULL) {
18993     		BLOGI(sc, "fw stats start_paddr %#jx end_paddr %#jx vaddr %p size 0x%x\n",
18994         			(uintmax_t)sc->fw_stats_req_mapping,
18995         			(uintmax_t)sc->fw_stats_data_mapping,
18996         			sc->fw_stats_req, (sc->fw_stats_req_size + sc->fw_stats_data_size));
18997 		}
18998 		if(sc->def_sb != NULL) {
18999 			BLOGI(sc, "def_status_block paddr %p vaddr %p size 0x%zx\n",
19000         			(void *)sc->def_sb_dma.paddr, sc->def_sb,
19001         			sizeof(struct host_sp_status_block));
19002 		}
19003 		if(sc->eq_dma.vaddr != NULL) {
19004     		BLOGI(sc, "event_queue paddr %#jx vaddr %p size 0x%x\n",
19005         			(uintmax_t)sc->eq_dma.paddr, sc->eq_dma.vaddr, BCM_PAGE_SIZE);
19006 		}
19007 		if(sc->sp_dma.vaddr != NULL) {
19008     		BLOGI(sc, "slow path paddr %#jx vaddr %p size 0x%zx\n",
19009         			(uintmax_t)sc->sp_dma.paddr, sc->sp_dma.vaddr,
19010         			sizeof(struct bxe_slowpath));
19011 		}
19012 		if(sc->spq_dma.vaddr != NULL) {
19013     		BLOGI(sc, "slow path queue paddr %#jx vaddr %p size 0x%x\n",
19014         			(uintmax_t)sc->spq_dma.paddr, sc->spq_dma.vaddr, BCM_PAGE_SIZE);
19015 		}
19016 		if(sc->gz_buf_dma.vaddr != NULL) {
19017     		BLOGI(sc, "fw_buf paddr %#jx vaddr %p size 0x%x\n",
19018         			(uintmax_t)sc->gz_buf_dma.paddr, sc->gz_buf_dma.vaddr,
19019         			FW_BUF_SIZE);
19020 		}
19021     	for (i = 0; i < sc->num_queues; i++) {
19022         	fp = &sc->fp[i];
19023 			if(fp->sb_dma.vaddr != NULL && fp->tx_dma.vaddr != NULL &&
19024                         fp->rx_dma.vaddr != NULL && fp->rcq_dma.vaddr != NULL &&
19025                         fp->rx_sge_dma.vaddr != NULL) {
19026 
19027 				BLOGI(sc, "FP status block fp %d paddr %#jx vaddr %p size 0x%zx\n", i,
19028             			(uintmax_t)fp->sb_dma.paddr, fp->sb_dma.vaddr,
19029             			sizeof(union bxe_host_hc_status_block));
19030 				BLOGI(sc, "TX BD CHAIN fp %d paddr %#jx vaddr %p size 0x%x\n", i,
19031             			(uintmax_t)fp->tx_dma.paddr, fp->tx_dma.vaddr,
19032             			(BCM_PAGE_SIZE * TX_BD_NUM_PAGES));
19033         		BLOGI(sc, "RX BD CHAIN fp %d paddr %#jx vaddr %p size 0x%x\n", i,
19034             			(uintmax_t)fp->rx_dma.paddr, fp->rx_dma.vaddr,
19035             			(BCM_PAGE_SIZE * RX_BD_NUM_PAGES));
19036         		BLOGI(sc, "RX RCQ CHAIN fp %d paddr %#jx vaddr %p size 0x%zx\n", i,
19037             			(uintmax_t)fp->rcq_dma.paddr, fp->rcq_dma.vaddr,
19038             			(BCM_PAGE_SIZE * RCQ_NUM_PAGES));
19039         		BLOGI(sc, "RX SGE CHAIN fp %d paddr %#jx vaddr %p size 0x%x\n", i,
19040             			(uintmax_t)fp->rx_sge_dma.paddr, fp->rx_sge_dma.vaddr,
19041             			(BCM_PAGE_SIZE * RX_SGE_NUM_PAGES));
19042     		}
19043 		}
19044 		if(ilt != NULL ) {
19045     		ilt_cli = &ilt->clients[1];
19046 			if(ilt->lines != NULL) {
19047     		for (i = ilt_cli->start; i <= ilt_cli->end; i++) {
19048         		BLOGI(sc, "ECORE_ILT paddr %#jx vaddr %p size 0x%x\n",
19049             			(uintmax_t)(((struct bxe_dma *)((&ilt->lines[i])->page))->paddr),
19050             			((struct bxe_dma *)((&ilt->lines[i])->page))->vaddr, BCM_PAGE_SIZE);
19051     		}
19052 			}
19053 		}
19054 
19055 
19056     	cmd_offset = DMAE_REG_CMD_MEM;
19057     	for (i = 0; i < 224; i++) {
19058         	reg_addr = (cmd_offset +(i * 4));
19059         	reg_val = REG_RD(sc, reg_addr);
19060         	BLOGI(sc, "DMAE_REG_CMD_MEM i=%d reg_addr 0x%x reg_val 0x%08x\n",i,
19061             			reg_addr, reg_val);
19062     	}
19063 	}
19064 
19065     BLOGI(sc, "Collection of grcdump done\n");
19066     sc->grcdump_done = 1;
19067     return(rval);
19068 }
19069 
19070 static int
19071 bxe_add_cdev(struct bxe_softc *sc)
19072 {
19073     sc->eeprom = malloc(BXE_EEPROM_MAX_DATA_LEN, M_DEVBUF, M_NOWAIT);
19074 
19075     if (sc->eeprom == NULL) {
19076         BLOGW(sc, "Unable to alloc for eeprom size buffer\n");
19077         return (-1);
19078     }
19079 
19080     sc->ioctl_dev = make_dev(&bxe_cdevsw,
19081                             if_getdunit(sc->ifp),
19082                             UID_ROOT,
19083                             GID_WHEEL,
19084                             0600,
19085                             "%s",
19086                             if_name(sc->ifp));
19087 
19088     if (sc->ioctl_dev == NULL) {
19089         free(sc->eeprom, M_DEVBUF);
19090         sc->eeprom = NULL;
19091         return (-1);
19092     }
19093 
19094     sc->ioctl_dev->si_drv1 = sc;
19095 
19096     return (0);
19097 }
19098 
19099 static void
19100 bxe_del_cdev(struct bxe_softc *sc)
19101 {
19102     if (sc->ioctl_dev != NULL)
19103         destroy_dev(sc->ioctl_dev);
19104 
19105     if (sc->eeprom != NULL) {
19106         free(sc->eeprom, M_DEVBUF);
19107         sc->eeprom = NULL;
19108     }
19109     sc->ioctl_dev = NULL;
19110 
19111     return;
19112 }
19113 
19114 static bool bxe_is_nvram_accessible(struct bxe_softc *sc)
19115 {
19116 
19117     if ((if_getdrvflags(sc->ifp) & IFF_DRV_RUNNING) == 0)
19118         return FALSE;
19119 
19120     return TRUE;
19121 }
19122 
19123 
19124 static int
19125 bxe_wr_eeprom(struct bxe_softc *sc, void *data, uint32_t offset, uint32_t len)
19126 {
19127     int rval = 0;
19128 
19129     if(!bxe_is_nvram_accessible(sc)) {
19130         BLOGW(sc, "Cannot access eeprom when interface is down\n");
19131         return (-EAGAIN);
19132     }
19133     rval = bxe_nvram_write(sc, offset, (uint8_t *)data, len);
19134 
19135 
19136    return (rval);
19137 }
19138 
19139 static int
19140 bxe_rd_eeprom(struct bxe_softc *sc, void *data, uint32_t offset, uint32_t len)
19141 {
19142     int rval = 0;
19143 
19144     if(!bxe_is_nvram_accessible(sc)) {
19145         BLOGW(sc, "Cannot access eeprom when interface is down\n");
19146         return (-EAGAIN);
19147     }
19148     rval = bxe_nvram_read(sc, offset, (uint8_t *)data, len);
19149 
19150    return (rval);
19151 }
19152 
19153 static int
19154 bxe_eeprom_rd_wr(struct bxe_softc *sc, bxe_eeprom_t *eeprom)
19155 {
19156     int rval = 0;
19157 
19158     switch (eeprom->eeprom_cmd) {
19159 
19160     case BXE_EEPROM_CMD_SET_EEPROM:
19161 
19162         rval = copyin(eeprom->eeprom_data, sc->eeprom,
19163                        eeprom->eeprom_data_len);
19164 
19165         if (rval)
19166             break;
19167 
19168         rval = bxe_wr_eeprom(sc, sc->eeprom, eeprom->eeprom_offset,
19169                        eeprom->eeprom_data_len);
19170         break;
19171 
19172     case BXE_EEPROM_CMD_GET_EEPROM:
19173 
19174         rval = bxe_rd_eeprom(sc, sc->eeprom, eeprom->eeprom_offset,
19175                        eeprom->eeprom_data_len);
19176 
19177         if (rval) {
19178             break;
19179         }
19180 
19181         rval = copyout(sc->eeprom, eeprom->eeprom_data,
19182                        eeprom->eeprom_data_len);
19183         break;
19184 
19185     default:
19186             rval = EINVAL;
19187             break;
19188     }
19189 
19190     if (rval) {
19191         BLOGW(sc, "ioctl cmd %d  failed rval %d\n", eeprom->eeprom_cmd, rval);
19192     }
19193 
19194     return (rval);
19195 }
19196 
19197 static int
19198 bxe_get_settings(struct bxe_softc *sc, bxe_dev_setting_t *dev_p)
19199 {
19200     uint32_t ext_phy_config;
19201     int port = SC_PORT(sc);
19202     int cfg_idx = bxe_get_link_cfg_idx(sc);
19203 
19204     dev_p->supported = sc->port.supported[cfg_idx] |
19205             (sc->port.supported[cfg_idx ^ 1] &
19206             (ELINK_SUPPORTED_TP | ELINK_SUPPORTED_FIBRE));
19207     dev_p->advertising = sc->port.advertising[cfg_idx];
19208     if(sc->link_params.phy[bxe_get_cur_phy_idx(sc)].media_type ==
19209         ELINK_ETH_PHY_SFP_1G_FIBER) {
19210         dev_p->supported = ~(ELINK_SUPPORTED_10000baseT_Full);
19211         dev_p->advertising &= ~(ADVERTISED_10000baseT_Full);
19212     }
19213     if ((sc->state == BXE_STATE_OPEN) && sc->link_vars.link_up &&
19214         !(sc->flags & BXE_MF_FUNC_DIS)) {
19215         dev_p->duplex = sc->link_vars.duplex;
19216         if (IS_MF(sc) && !BXE_NOMCP(sc))
19217             dev_p->speed = bxe_get_mf_speed(sc);
19218         else
19219             dev_p->speed = sc->link_vars.line_speed;
19220     } else {
19221         dev_p->duplex = DUPLEX_UNKNOWN;
19222         dev_p->speed = SPEED_UNKNOWN;
19223     }
19224 
19225     dev_p->port = bxe_media_detect(sc);
19226 
19227     ext_phy_config = SHMEM_RD(sc,
19228                          dev_info.port_hw_config[port].external_phy_config);
19229     if((ext_phy_config & PORT_HW_CFG_XGXS_EXT_PHY_TYPE_MASK) ==
19230         PORT_HW_CFG_XGXS_EXT_PHY_TYPE_DIRECT)
19231         dev_p->phy_address =  sc->port.phy_addr;
19232     else if(((ext_phy_config & PORT_HW_CFG_XGXS_EXT_PHY_TYPE_MASK) !=
19233             PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE) &&
19234         ((ext_phy_config & PORT_HW_CFG_XGXS_EXT_PHY_TYPE_MASK) !=
19235             PORT_HW_CFG_XGXS_EXT_PHY_TYPE_NOT_CONN))
19236         dev_p->phy_address = ELINK_XGXS_EXT_PHY_ADDR(ext_phy_config);
19237     else
19238         dev_p->phy_address = 0;
19239 
19240     if(sc->link_params.req_line_speed[cfg_idx] == ELINK_SPEED_AUTO_NEG)
19241         dev_p->autoneg = AUTONEG_ENABLE;
19242     else
19243        dev_p->autoneg = AUTONEG_DISABLE;
19244 
19245 
19246     return 0;
19247 }
19248 
19249 static int
19250 bxe_eioctl(struct cdev *dev, u_long cmd, caddr_t data, int fflag,
19251         struct thread *td)
19252 {
19253     struct bxe_softc    *sc;
19254     int                 rval = 0;
19255     bxe_grcdump_t       *dump = NULL;
19256     int grc_dump_size;
19257     bxe_drvinfo_t   *drv_infop = NULL;
19258     bxe_dev_setting_t  *dev_p;
19259     bxe_dev_setting_t  dev_set;
19260     bxe_get_regs_t  *reg_p;
19261     bxe_reg_rdw_t *reg_rdw_p;
19262     bxe_pcicfg_rdw_t *cfg_rdw_p;
19263     bxe_perm_mac_addr_t *mac_addr_p;
19264 
19265 
19266     if ((sc = (struct bxe_softc *)dev->si_drv1) == NULL)
19267         return ENXIO;
19268 
19269     dump = (bxe_grcdump_t *)data;
19270 
19271     switch(cmd) {
19272 
19273         case BXE_GRC_DUMP_SIZE:
19274             dump->pci_func = sc->pcie_func;
19275             dump->grcdump_size =
19276                 (bxe_get_total_regs_len32(sc) * sizeof(uint32_t)) +
19277                      sizeof(struct  dump_header);
19278             break;
19279 
19280         case BXE_GRC_DUMP:
19281 
19282             grc_dump_size = (bxe_get_total_regs_len32(sc) * sizeof(uint32_t)) +
19283                                 sizeof(struct  dump_header);
19284             if ((!sc->trigger_grcdump) || (dump->grcdump == NULL) ||
19285                 (dump->grcdump_size < grc_dump_size)) {
19286                 rval = EINVAL;
19287                 break;
19288             }
19289 
19290             if((sc->trigger_grcdump) && (!sc->grcdump_done) &&
19291                 (!sc->grcdump_started)) {
19292                 rval =  bxe_grc_dump(sc);
19293             }
19294 
19295             if((!rval) && (sc->grcdump_done) && (sc->grcdump_started) &&
19296                 (sc->grc_dump != NULL))  {
19297                 dump->grcdump_dwords = grc_dump_size >> 2;
19298                 rval = copyout(sc->grc_dump, dump->grcdump, grc_dump_size);
19299                 free(sc->grc_dump, M_DEVBUF);
19300                 sc->grc_dump = NULL;
19301                 sc->grcdump_started = 0;
19302                 sc->grcdump_done = 0;
19303             }
19304 
19305             break;
19306 
19307         case BXE_DRV_INFO:
19308             drv_infop = (bxe_drvinfo_t *)data;
19309             snprintf(drv_infop->drv_name, BXE_DRV_NAME_LENGTH, "%s", "bxe");
19310             snprintf(drv_infop->drv_version, BXE_DRV_VERSION_LENGTH, "v:%s",
19311                 BXE_DRIVER_VERSION);
19312             snprintf(drv_infop->mfw_version, BXE_MFW_VERSION_LENGTH, "%s",
19313                 sc->devinfo.bc_ver_str);
19314             snprintf(drv_infop->stormfw_version, BXE_STORMFW_VERSION_LENGTH,
19315                 "%s", sc->fw_ver_str);
19316             drv_infop->eeprom_dump_len = sc->devinfo.flash_size;
19317             drv_infop->reg_dump_len =
19318                 (bxe_get_total_regs_len32(sc) * sizeof(uint32_t))
19319                     + sizeof(struct  dump_header);
19320             snprintf(drv_infop->bus_info, BXE_BUS_INFO_LENGTH, "%d:%d:%d",
19321                 sc->pcie_bus, sc->pcie_device, sc->pcie_func);
19322             break;
19323 
19324         case BXE_DEV_SETTING:
19325             dev_p = (bxe_dev_setting_t *)data;
19326             bxe_get_settings(sc, &dev_set);
19327             dev_p->supported = dev_set.supported;
19328             dev_p->advertising = dev_set.advertising;
19329             dev_p->speed = dev_set.speed;
19330             dev_p->duplex = dev_set.duplex;
19331             dev_p->port = dev_set.port;
19332             dev_p->phy_address = dev_set.phy_address;
19333             dev_p->autoneg = dev_set.autoneg;
19334 
19335             break;
19336 
19337         case BXE_GET_REGS:
19338 
19339             reg_p = (bxe_get_regs_t *)data;
19340             grc_dump_size = reg_p->reg_buf_len;
19341 
19342             if((!sc->grcdump_done) && (!sc->grcdump_started)) {
19343                 bxe_grc_dump(sc);
19344             }
19345             if((sc->grcdump_done) && (sc->grcdump_started) &&
19346                 (sc->grc_dump != NULL))  {
19347                 rval = copyout(sc->grc_dump, reg_p->reg_buf, grc_dump_size);
19348                 free(sc->grc_dump, M_DEVBUF);
19349                 sc->grc_dump = NULL;
19350                 sc->grcdump_started = 0;
19351                 sc->grcdump_done = 0;
19352             }
19353 
19354             break;
19355 
19356         case BXE_RDW_REG:
19357             reg_rdw_p = (bxe_reg_rdw_t *)data;
19358             if((reg_rdw_p->reg_cmd == BXE_READ_REG_CMD) &&
19359                 (reg_rdw_p->reg_access_type == BXE_REG_ACCESS_DIRECT))
19360                 reg_rdw_p->reg_val = REG_RD(sc, reg_rdw_p->reg_id);
19361 
19362             if((reg_rdw_p->reg_cmd == BXE_WRITE_REG_CMD) &&
19363                 (reg_rdw_p->reg_access_type == BXE_REG_ACCESS_DIRECT))
19364                 REG_WR(sc, reg_rdw_p->reg_id, reg_rdw_p->reg_val);
19365 
19366             break;
19367 
19368         case BXE_RDW_PCICFG:
19369             cfg_rdw_p = (bxe_pcicfg_rdw_t *)data;
19370             if(cfg_rdw_p->cfg_cmd == BXE_READ_PCICFG) {
19371 
19372                 cfg_rdw_p->cfg_val = pci_read_config(sc->dev, cfg_rdw_p->cfg_id,
19373                                          cfg_rdw_p->cfg_width);
19374 
19375             } else if(cfg_rdw_p->cfg_cmd == BXE_WRITE_PCICFG) {
19376                 pci_write_config(sc->dev, cfg_rdw_p->cfg_id, cfg_rdw_p->cfg_val,
19377                             cfg_rdw_p->cfg_width);
19378             } else {
19379                 BLOGW(sc, "BXE_RDW_PCICFG ioctl wrong cmd passed\n");
19380             }
19381             break;
19382 
19383         case BXE_MAC_ADDR:
19384             mac_addr_p = (bxe_perm_mac_addr_t *)data;
19385             snprintf(mac_addr_p->mac_addr_str, sizeof(sc->mac_addr_str), "%s",
19386                 sc->mac_addr_str);
19387             break;
19388 
19389         case BXE_EEPROM:
19390             rval = bxe_eeprom_rd_wr(sc, (bxe_eeprom_t *)data);
19391             break;
19392 
19393 
19394         default:
19395             break;
19396     }
19397 
19398     return (rval);
19399 }
19400 
19401 #ifdef DEBUGNET
19402 static void
19403 bxe_debugnet_init(if_t ifp, int *nrxr, int *ncl, int *clsize)
19404 {
19405 	struct bxe_softc *sc;
19406 
19407 	sc = if_getsoftc(ifp);
19408 	BXE_CORE_LOCK(sc);
19409 	*nrxr = sc->num_queues;
19410 	*ncl = DEBUGNET_MAX_IN_FLIGHT;
19411 	*clsize = sc->fp[0].mbuf_alloc_size;
19412 	BXE_CORE_UNLOCK(sc);
19413 }
19414 
19415 static void
19416 bxe_debugnet_event(if_t ifp __unused, enum debugnet_ev event __unused)
19417 {
19418 }
19419 
19420 static int
19421 bxe_debugnet_transmit(if_t ifp, struct mbuf *m)
19422 {
19423 	struct bxe_softc *sc;
19424 	int error;
19425 
19426 	sc = if_getsoftc(ifp);
19427 	if ((if_getdrvflags(ifp) & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
19428 	    IFF_DRV_RUNNING || !sc->link_vars.link_up)
19429 		return (ENOENT);
19430 
19431 	error = bxe_tx_encap(&sc->fp[0], &m);
19432 	if (error != 0 && m != NULL)
19433 		m_freem(m);
19434 	return (error);
19435 }
19436 
19437 static int
19438 bxe_debugnet_poll(if_t ifp, int count)
19439 {
19440 	struct bxe_softc *sc;
19441 	int i;
19442 
19443 	sc = if_getsoftc(ifp);
19444 	if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) == 0 ||
19445 	    !sc->link_vars.link_up)
19446 		return (ENOENT);
19447 
19448 	for (i = 0; i < sc->num_queues; i++)
19449 		(void)bxe_rxeof(sc, &sc->fp[i]);
19450 	(void)bxe_txeof(sc, &sc->fp[0]);
19451 	return (0);
19452 }
19453 #endif /* DEBUGNET */
19454