xref: /freebsd/sys/dev/bxe/bxe.c (revision b4af4f93c682e445bf159f0d1ec90b636296c946)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (c) 2007-2014 QLogic Corporation. All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  *
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS'
17  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS
20  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
21  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
22  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
23  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
24  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
25  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
26  * THE POSSIBILITY OF SUCH DAMAGE.
27  */
28 
29 #include <sys/cdefs.h>
30 __FBSDID("$FreeBSD$");
31 
32 #define BXE_DRIVER_VERSION "1.78.91"
33 
34 #include "bxe.h"
35 #include "ecore_sp.h"
36 #include "ecore_init.h"
37 #include "ecore_init_ops.h"
38 
39 #include "57710_int_offsets.h"
40 #include "57711_int_offsets.h"
41 #include "57712_int_offsets.h"
42 
43 /*
44  * CTLTYPE_U64 and sysctl_handle_64 were added in r217616. Define these
45  * explicitly here for older kernels that don't include this changeset.
46  */
47 #ifndef CTLTYPE_U64
48 #define CTLTYPE_U64      CTLTYPE_QUAD
49 #define sysctl_handle_64 sysctl_handle_quad
50 #endif
51 
52 /*
53  * CSUM_TCP_IPV6 and CSUM_UDP_IPV6 were added in r236170. Define these
54  * here as zero(0) for older kernels that don't include this changeset
55  * thereby masking the functionality.
56  */
57 #ifndef CSUM_TCP_IPV6
58 #define CSUM_TCP_IPV6 0
59 #define CSUM_UDP_IPV6 0
60 #endif
61 
62 #define BXE_DEF_SB_ATT_IDX 0x0001
63 #define BXE_DEF_SB_IDX     0x0002
64 
65 /*
66  * FLR Support - bxe_pf_flr_clnup() is called during nic_load in the per
67  * function HW initialization.
68  */
69 #define FLR_WAIT_USEC     10000 /* 10 msecs */
70 #define FLR_WAIT_INTERVAL 50    /* usecs */
71 #define FLR_POLL_CNT      (FLR_WAIT_USEC / FLR_WAIT_INTERVAL) /* 200 */
72 
73 struct pbf_pN_buf_regs {
74     int pN;
75     uint32_t init_crd;
76     uint32_t crd;
77     uint32_t crd_freed;
78 };
79 
80 struct pbf_pN_cmd_regs {
81     int pN;
82     uint32_t lines_occup;
83     uint32_t lines_freed;
84 };
85 
86 /*
87  * PCI Device ID Table used by bxe_probe().
88  */
89 #define BXE_DEVDESC_MAX 64
90 static struct bxe_device_type bxe_devs[] = {
91     {
92         BRCM_VENDORID,
93         CHIP_NUM_57710,
94         PCI_ANY_ID, PCI_ANY_ID,
95         "QLogic NetXtreme II BCM57710 10GbE"
96     },
97     {
98         BRCM_VENDORID,
99         CHIP_NUM_57711,
100         PCI_ANY_ID, PCI_ANY_ID,
101         "QLogic NetXtreme II BCM57711 10GbE"
102     },
103     {
104         BRCM_VENDORID,
105         CHIP_NUM_57711E,
106         PCI_ANY_ID, PCI_ANY_ID,
107         "QLogic NetXtreme II BCM57711E 10GbE"
108     },
109     {
110         BRCM_VENDORID,
111         CHIP_NUM_57712,
112         PCI_ANY_ID, PCI_ANY_ID,
113         "QLogic NetXtreme II BCM57712 10GbE"
114     },
115     {
116         BRCM_VENDORID,
117         CHIP_NUM_57712_MF,
118         PCI_ANY_ID, PCI_ANY_ID,
119         "QLogic NetXtreme II BCM57712 MF 10GbE"
120     },
121     {
122         BRCM_VENDORID,
123         CHIP_NUM_57800,
124         PCI_ANY_ID, PCI_ANY_ID,
125         "QLogic NetXtreme II BCM57800 10GbE"
126     },
127     {
128         BRCM_VENDORID,
129         CHIP_NUM_57800_MF,
130         PCI_ANY_ID, PCI_ANY_ID,
131         "QLogic NetXtreme II BCM57800 MF 10GbE"
132     },
133     {
134         BRCM_VENDORID,
135         CHIP_NUM_57810,
136         PCI_ANY_ID, PCI_ANY_ID,
137         "QLogic NetXtreme II BCM57810 10GbE"
138     },
139     {
140         BRCM_VENDORID,
141         CHIP_NUM_57810_MF,
142         PCI_ANY_ID, PCI_ANY_ID,
143         "QLogic NetXtreme II BCM57810 MF 10GbE"
144     },
145     {
146         BRCM_VENDORID,
147         CHIP_NUM_57811,
148         PCI_ANY_ID, PCI_ANY_ID,
149         "QLogic NetXtreme II BCM57811 10GbE"
150     },
151     {
152         BRCM_VENDORID,
153         CHIP_NUM_57811_MF,
154         PCI_ANY_ID, PCI_ANY_ID,
155         "QLogic NetXtreme II BCM57811 MF 10GbE"
156     },
157     {
158         BRCM_VENDORID,
159         CHIP_NUM_57840_4_10,
160         PCI_ANY_ID, PCI_ANY_ID,
161         "QLogic NetXtreme II BCM57840 4x10GbE"
162     },
163     {
164         QLOGIC_VENDORID,
165         CHIP_NUM_57840_4_10,
166         PCI_ANY_ID, PCI_ANY_ID,
167         "QLogic NetXtreme II BCM57840 4x10GbE"
168     },
169     {
170         BRCM_VENDORID,
171         CHIP_NUM_57840_2_20,
172         PCI_ANY_ID, PCI_ANY_ID,
173         "QLogic NetXtreme II BCM57840 2x20GbE"
174     },
175     {
176         BRCM_VENDORID,
177         CHIP_NUM_57840_MF,
178         PCI_ANY_ID, PCI_ANY_ID,
179         "QLogic NetXtreme II BCM57840 MF 10GbE"
180     },
181     {
182         0, 0, 0, 0, NULL
183     }
184 };
185 
186 MALLOC_DECLARE(M_BXE_ILT);
187 MALLOC_DEFINE(M_BXE_ILT, "bxe_ilt", "bxe ILT pointer");
188 
189 /*
190  * FreeBSD device entry points.
191  */
192 static int bxe_probe(device_t);
193 static int bxe_attach(device_t);
194 static int bxe_detach(device_t);
195 static int bxe_shutdown(device_t);
196 
197 
198 /*
199  * FreeBSD KLD module/device interface event handler method.
200  */
201 static device_method_t bxe_methods[] = {
202     /* Device interface (device_if.h) */
203     DEVMETHOD(device_probe,     bxe_probe),
204     DEVMETHOD(device_attach,    bxe_attach),
205     DEVMETHOD(device_detach,    bxe_detach),
206     DEVMETHOD(device_shutdown,  bxe_shutdown),
207     /* Bus interface (bus_if.h) */
208     DEVMETHOD(bus_print_child,  bus_generic_print_child),
209     DEVMETHOD(bus_driver_added, bus_generic_driver_added),
210     KOBJMETHOD_END
211 };
212 
213 /*
214  * FreeBSD KLD Module data declaration
215  */
216 static driver_t bxe_driver = {
217     "bxe",                   /* module name */
218     bxe_methods,             /* event handler */
219     sizeof(struct bxe_softc) /* extra data */
220 };
221 
222 /*
223  * FreeBSD dev class is needed to manage dev instances and
224  * to associate with a bus type
225  */
226 static devclass_t bxe_devclass;
227 
228 MODULE_DEPEND(bxe, pci, 1, 1, 1);
229 MODULE_DEPEND(bxe, ether, 1, 1, 1);
230 DRIVER_MODULE(bxe, pci, bxe_driver, bxe_devclass, 0, 0);
231 
232 DEBUGNET_DEFINE(bxe);
233 
234 /* resources needed for unloading a previously loaded device */
235 
236 #define BXE_PREV_WAIT_NEEDED 1
237 struct mtx bxe_prev_mtx;
238 MTX_SYSINIT(bxe_prev_mtx, &bxe_prev_mtx, "bxe_prev_lock", MTX_DEF);
239 struct bxe_prev_list_node {
240     LIST_ENTRY(bxe_prev_list_node) node;
241     uint8_t bus;
242     uint8_t slot;
243     uint8_t path;
244     uint8_t aer; /* XXX automatic error recovery */
245     uint8_t undi;
246 };
247 static LIST_HEAD(, bxe_prev_list_node) bxe_prev_list = LIST_HEAD_INITIALIZER(bxe_prev_list);
248 
249 static int load_count[2][3] = { {0} }; /* per-path: 0-common, 1-port0, 2-port1 */
250 
251 /* Tunable device values... */
252 
253 SYSCTL_NODE(_hw, OID_AUTO, bxe, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
254     "bxe driver parameters");
255 
256 /* Debug */
257 unsigned long bxe_debug = 0;
258 SYSCTL_ULONG(_hw_bxe, OID_AUTO, debug, CTLFLAG_RDTUN,
259              &bxe_debug, 0, "Debug logging mode");
260 
261 /* Interrupt Mode: 0 (IRQ), 1 (MSI/IRQ), and 2 (MSI-X/MSI/IRQ) */
262 static int bxe_interrupt_mode = INTR_MODE_MSIX;
263 SYSCTL_INT(_hw_bxe, OID_AUTO, interrupt_mode, CTLFLAG_RDTUN,
264            &bxe_interrupt_mode, 0, "Interrupt (MSI-X/MSI/INTx) mode");
265 
266 /* Number of Queues: 0 (Auto) or 1 to 16 (fixed queue number) */
267 static int bxe_queue_count = 4;
268 SYSCTL_INT(_hw_bxe, OID_AUTO, queue_count, CTLFLAG_RDTUN,
269            &bxe_queue_count, 0, "Multi-Queue queue count");
270 
271 /* max number of buffers per queue (default RX_BD_USABLE) */
272 static int bxe_max_rx_bufs = 0;
273 SYSCTL_INT(_hw_bxe, OID_AUTO, max_rx_bufs, CTLFLAG_RDTUN,
274            &bxe_max_rx_bufs, 0, "Maximum Number of Rx Buffers Per Queue");
275 
276 /* Host interrupt coalescing RX tick timer (usecs) */
277 static int bxe_hc_rx_ticks = 25;
278 SYSCTL_INT(_hw_bxe, OID_AUTO, hc_rx_ticks, CTLFLAG_RDTUN,
279            &bxe_hc_rx_ticks, 0, "Host Coalescing Rx ticks");
280 
281 /* Host interrupt coalescing TX tick timer (usecs) */
282 static int bxe_hc_tx_ticks = 50;
283 SYSCTL_INT(_hw_bxe, OID_AUTO, hc_tx_ticks, CTLFLAG_RDTUN,
284            &bxe_hc_tx_ticks, 0, "Host Coalescing Tx ticks");
285 
286 /* Maximum number of Rx packets to process at a time */
287 static int bxe_rx_budget = 0xffffffff;
288 SYSCTL_INT(_hw_bxe, OID_AUTO, rx_budget, CTLFLAG_TUN,
289            &bxe_rx_budget, 0, "Rx processing budget");
290 
291 /* Maximum LRO aggregation size */
292 static int bxe_max_aggregation_size = 0;
293 SYSCTL_INT(_hw_bxe, OID_AUTO, max_aggregation_size, CTLFLAG_TUN,
294            &bxe_max_aggregation_size, 0, "max aggregation size");
295 
296 /* PCI MRRS: -1 (Auto), 0 (128B), 1 (256B), 2 (512B), 3 (1KB) */
297 static int bxe_mrrs = -1;
298 SYSCTL_INT(_hw_bxe, OID_AUTO, mrrs, CTLFLAG_RDTUN,
299            &bxe_mrrs, 0, "PCIe maximum read request size");
300 
301 /* AutoGrEEEn: 0 (hardware default), 1 (force on), 2 (force off) */
302 static int bxe_autogreeen = 0;
303 SYSCTL_INT(_hw_bxe, OID_AUTO, autogreeen, CTLFLAG_RDTUN,
304            &bxe_autogreeen, 0, "AutoGrEEEn support");
305 
306 /* 4-tuple RSS support for UDP: 0 (disabled), 1 (enabled) */
307 static int bxe_udp_rss = 0;
308 SYSCTL_INT(_hw_bxe, OID_AUTO, udp_rss, CTLFLAG_RDTUN,
309            &bxe_udp_rss, 0, "UDP RSS support");
310 
311 
312 #define STAT_NAME_LEN 32 /* no stat names below can be longer than this */
313 
314 #define STATS_OFFSET32(stat_name)                   \
315     (offsetof(struct bxe_eth_stats, stat_name) / 4)
316 
317 #define Q_STATS_OFFSET32(stat_name)                   \
318     (offsetof(struct bxe_eth_q_stats, stat_name) / 4)
319 
320 static const struct {
321     uint32_t offset;
322     uint32_t size;
323     uint32_t flags;
324 #define STATS_FLAGS_PORT  1
325 #define STATS_FLAGS_FUNC  2 /* MF only cares about function stats */
326 #define STATS_FLAGS_BOTH  (STATS_FLAGS_FUNC | STATS_FLAGS_PORT)
327     char string[STAT_NAME_LEN];
328 } bxe_eth_stats_arr[] = {
329     { STATS_OFFSET32(total_bytes_received_hi),
330                 8, STATS_FLAGS_BOTH, "rx_bytes" },
331     { STATS_OFFSET32(error_bytes_received_hi),
332                 8, STATS_FLAGS_BOTH, "rx_error_bytes" },
333     { STATS_OFFSET32(total_unicast_packets_received_hi),
334                 8, STATS_FLAGS_BOTH, "rx_ucast_packets" },
335     { STATS_OFFSET32(total_multicast_packets_received_hi),
336                 8, STATS_FLAGS_BOTH, "rx_mcast_packets" },
337     { STATS_OFFSET32(total_broadcast_packets_received_hi),
338                 8, STATS_FLAGS_BOTH, "rx_bcast_packets" },
339     { STATS_OFFSET32(rx_stat_dot3statsfcserrors_hi),
340                 8, STATS_FLAGS_PORT, "rx_crc_errors" },
341     { STATS_OFFSET32(rx_stat_dot3statsalignmenterrors_hi),
342                 8, STATS_FLAGS_PORT, "rx_align_errors" },
343     { STATS_OFFSET32(rx_stat_etherstatsundersizepkts_hi),
344                 8, STATS_FLAGS_PORT, "rx_undersize_packets" },
345     { STATS_OFFSET32(etherstatsoverrsizepkts_hi),
346                 8, STATS_FLAGS_PORT, "rx_oversize_packets" },
347     { STATS_OFFSET32(rx_stat_etherstatsfragments_hi),
348                 8, STATS_FLAGS_PORT, "rx_fragments" },
349     { STATS_OFFSET32(rx_stat_etherstatsjabbers_hi),
350                 8, STATS_FLAGS_PORT, "rx_jabbers" },
351     { STATS_OFFSET32(no_buff_discard_hi),
352                 8, STATS_FLAGS_BOTH, "rx_discards" },
353     { STATS_OFFSET32(mac_filter_discard),
354                 4, STATS_FLAGS_PORT, "rx_filtered_packets" },
355     { STATS_OFFSET32(mf_tag_discard),
356                 4, STATS_FLAGS_PORT, "rx_mf_tag_discard" },
357     { STATS_OFFSET32(pfc_frames_received_hi),
358                 8, STATS_FLAGS_PORT, "pfc_frames_received" },
359     { STATS_OFFSET32(pfc_frames_sent_hi),
360                 8, STATS_FLAGS_PORT, "pfc_frames_sent" },
361     { STATS_OFFSET32(brb_drop_hi),
362                 8, STATS_FLAGS_PORT, "rx_brb_discard" },
363     { STATS_OFFSET32(brb_truncate_hi),
364                 8, STATS_FLAGS_PORT, "rx_brb_truncate" },
365     { STATS_OFFSET32(pause_frames_received_hi),
366                 8, STATS_FLAGS_PORT, "rx_pause_frames" },
367     { STATS_OFFSET32(rx_stat_maccontrolframesreceived_hi),
368                 8, STATS_FLAGS_PORT, "rx_mac_ctrl_frames" },
369     { STATS_OFFSET32(nig_timer_max),
370                 4, STATS_FLAGS_PORT, "rx_constant_pause_events" },
371     { STATS_OFFSET32(total_bytes_transmitted_hi),
372                 8, STATS_FLAGS_BOTH, "tx_bytes" },
373     { STATS_OFFSET32(tx_stat_ifhcoutbadoctets_hi),
374                 8, STATS_FLAGS_PORT, "tx_error_bytes" },
375     { STATS_OFFSET32(total_unicast_packets_transmitted_hi),
376                 8, STATS_FLAGS_BOTH, "tx_ucast_packets" },
377     { STATS_OFFSET32(total_multicast_packets_transmitted_hi),
378                 8, STATS_FLAGS_BOTH, "tx_mcast_packets" },
379     { STATS_OFFSET32(total_broadcast_packets_transmitted_hi),
380                 8, STATS_FLAGS_BOTH, "tx_bcast_packets" },
381     { STATS_OFFSET32(tx_stat_dot3statsinternalmactransmiterrors_hi),
382                 8, STATS_FLAGS_PORT, "tx_mac_errors" },
383     { STATS_OFFSET32(rx_stat_dot3statscarriersenseerrors_hi),
384                 8, STATS_FLAGS_PORT, "tx_carrier_errors" },
385     { STATS_OFFSET32(tx_stat_dot3statssinglecollisionframes_hi),
386                 8, STATS_FLAGS_PORT, "tx_single_collisions" },
387     { STATS_OFFSET32(tx_stat_dot3statsmultiplecollisionframes_hi),
388                 8, STATS_FLAGS_PORT, "tx_multi_collisions" },
389     { STATS_OFFSET32(tx_stat_dot3statsdeferredtransmissions_hi),
390                 8, STATS_FLAGS_PORT, "tx_deferred" },
391     { STATS_OFFSET32(tx_stat_dot3statsexcessivecollisions_hi),
392                 8, STATS_FLAGS_PORT, "tx_excess_collisions" },
393     { STATS_OFFSET32(tx_stat_dot3statslatecollisions_hi),
394                 8, STATS_FLAGS_PORT, "tx_late_collisions" },
395     { STATS_OFFSET32(tx_stat_etherstatscollisions_hi),
396                 8, STATS_FLAGS_PORT, "tx_total_collisions" },
397     { STATS_OFFSET32(tx_stat_etherstatspkts64octets_hi),
398                 8, STATS_FLAGS_PORT, "tx_64_byte_packets" },
399     { STATS_OFFSET32(tx_stat_etherstatspkts65octetsto127octets_hi),
400                 8, STATS_FLAGS_PORT, "tx_65_to_127_byte_packets" },
401     { STATS_OFFSET32(tx_stat_etherstatspkts128octetsto255octets_hi),
402                 8, STATS_FLAGS_PORT, "tx_128_to_255_byte_packets" },
403     { STATS_OFFSET32(tx_stat_etherstatspkts256octetsto511octets_hi),
404                 8, STATS_FLAGS_PORT, "tx_256_to_511_byte_packets" },
405     { STATS_OFFSET32(tx_stat_etherstatspkts512octetsto1023octets_hi),
406                 8, STATS_FLAGS_PORT, "tx_512_to_1023_byte_packets" },
407     { STATS_OFFSET32(etherstatspkts1024octetsto1522octets_hi),
408                 8, STATS_FLAGS_PORT, "tx_1024_to_1522_byte_packets" },
409     { STATS_OFFSET32(etherstatspktsover1522octets_hi),
410                 8, STATS_FLAGS_PORT, "tx_1523_to_9022_byte_packets" },
411     { STATS_OFFSET32(pause_frames_sent_hi),
412                 8, STATS_FLAGS_PORT, "tx_pause_frames" },
413     { STATS_OFFSET32(total_tpa_aggregations_hi),
414                 8, STATS_FLAGS_FUNC, "tpa_aggregations" },
415     { STATS_OFFSET32(total_tpa_aggregated_frames_hi),
416                 8, STATS_FLAGS_FUNC, "tpa_aggregated_frames"},
417     { STATS_OFFSET32(total_tpa_bytes_hi),
418                 8, STATS_FLAGS_FUNC, "tpa_bytes"},
419     { STATS_OFFSET32(eee_tx_lpi),
420                 4, STATS_FLAGS_PORT, "eee_tx_lpi"},
421     { STATS_OFFSET32(rx_calls),
422                 4, STATS_FLAGS_FUNC, "rx_calls"},
423     { STATS_OFFSET32(rx_pkts),
424                 4, STATS_FLAGS_FUNC, "rx_pkts"},
425     { STATS_OFFSET32(rx_tpa_pkts),
426                 4, STATS_FLAGS_FUNC, "rx_tpa_pkts"},
427     { STATS_OFFSET32(rx_erroneous_jumbo_sge_pkts),
428                 4, STATS_FLAGS_FUNC, "rx_erroneous_jumbo_sge_pkts"},
429     { STATS_OFFSET32(rx_bxe_service_rxsgl),
430                 4, STATS_FLAGS_FUNC, "rx_bxe_service_rxsgl"},
431     { STATS_OFFSET32(rx_jumbo_sge_pkts),
432                 4, STATS_FLAGS_FUNC, "rx_jumbo_sge_pkts"},
433     { STATS_OFFSET32(rx_soft_errors),
434                 4, STATS_FLAGS_FUNC, "rx_soft_errors"},
435     { STATS_OFFSET32(rx_hw_csum_errors),
436                 4, STATS_FLAGS_FUNC, "rx_hw_csum_errors"},
437     { STATS_OFFSET32(rx_ofld_frames_csum_ip),
438                 4, STATS_FLAGS_FUNC, "rx_ofld_frames_csum_ip"},
439     { STATS_OFFSET32(rx_ofld_frames_csum_tcp_udp),
440                 4, STATS_FLAGS_FUNC, "rx_ofld_frames_csum_tcp_udp"},
441     { STATS_OFFSET32(rx_budget_reached),
442                 4, STATS_FLAGS_FUNC, "rx_budget_reached"},
443     { STATS_OFFSET32(tx_pkts),
444                 4, STATS_FLAGS_FUNC, "tx_pkts"},
445     { STATS_OFFSET32(tx_soft_errors),
446                 4, STATS_FLAGS_FUNC, "tx_soft_errors"},
447     { STATS_OFFSET32(tx_ofld_frames_csum_ip),
448                 4, STATS_FLAGS_FUNC, "tx_ofld_frames_csum_ip"},
449     { STATS_OFFSET32(tx_ofld_frames_csum_tcp),
450                 4, STATS_FLAGS_FUNC, "tx_ofld_frames_csum_tcp"},
451     { STATS_OFFSET32(tx_ofld_frames_csum_udp),
452                 4, STATS_FLAGS_FUNC, "tx_ofld_frames_csum_udp"},
453     { STATS_OFFSET32(tx_ofld_frames_lso),
454                 4, STATS_FLAGS_FUNC, "tx_ofld_frames_lso"},
455     { STATS_OFFSET32(tx_ofld_frames_lso_hdr_splits),
456                 4, STATS_FLAGS_FUNC, "tx_ofld_frames_lso_hdr_splits"},
457     { STATS_OFFSET32(tx_encap_failures),
458                 4, STATS_FLAGS_FUNC, "tx_encap_failures"},
459     { STATS_OFFSET32(tx_hw_queue_full),
460                 4, STATS_FLAGS_FUNC, "tx_hw_queue_full"},
461     { STATS_OFFSET32(tx_hw_max_queue_depth),
462                 4, STATS_FLAGS_FUNC, "tx_hw_max_queue_depth"},
463     { STATS_OFFSET32(tx_dma_mapping_failure),
464                 4, STATS_FLAGS_FUNC, "tx_dma_mapping_failure"},
465     { STATS_OFFSET32(tx_max_drbr_queue_depth),
466                 4, STATS_FLAGS_FUNC, "tx_max_drbr_queue_depth"},
467     { STATS_OFFSET32(tx_window_violation_std),
468                 4, STATS_FLAGS_FUNC, "tx_window_violation_std"},
469     { STATS_OFFSET32(tx_window_violation_tso),
470                 4, STATS_FLAGS_FUNC, "tx_window_violation_tso"},
471     { STATS_OFFSET32(tx_chain_lost_mbuf),
472                 4, STATS_FLAGS_FUNC, "tx_chain_lost_mbuf"},
473     { STATS_OFFSET32(tx_frames_deferred),
474                 4, STATS_FLAGS_FUNC, "tx_frames_deferred"},
475     { STATS_OFFSET32(tx_queue_xoff),
476                 4, STATS_FLAGS_FUNC, "tx_queue_xoff"},
477     { STATS_OFFSET32(mbuf_defrag_attempts),
478                 4, STATS_FLAGS_FUNC, "mbuf_defrag_attempts"},
479     { STATS_OFFSET32(mbuf_defrag_failures),
480                 4, STATS_FLAGS_FUNC, "mbuf_defrag_failures"},
481     { STATS_OFFSET32(mbuf_rx_bd_alloc_failed),
482                 4, STATS_FLAGS_FUNC, "mbuf_rx_bd_alloc_failed"},
483     { STATS_OFFSET32(mbuf_rx_bd_mapping_failed),
484                 4, STATS_FLAGS_FUNC, "mbuf_rx_bd_mapping_failed"},
485     { STATS_OFFSET32(mbuf_rx_tpa_alloc_failed),
486                 4, STATS_FLAGS_FUNC, "mbuf_rx_tpa_alloc_failed"},
487     { STATS_OFFSET32(mbuf_rx_tpa_mapping_failed),
488                 4, STATS_FLAGS_FUNC, "mbuf_rx_tpa_mapping_failed"},
489     { STATS_OFFSET32(mbuf_rx_sge_alloc_failed),
490                 4, STATS_FLAGS_FUNC, "mbuf_rx_sge_alloc_failed"},
491     { STATS_OFFSET32(mbuf_rx_sge_mapping_failed),
492                 4, STATS_FLAGS_FUNC, "mbuf_rx_sge_mapping_failed"},
493     { STATS_OFFSET32(mbuf_alloc_tx),
494                 4, STATS_FLAGS_FUNC, "mbuf_alloc_tx"},
495     { STATS_OFFSET32(mbuf_alloc_rx),
496                 4, STATS_FLAGS_FUNC, "mbuf_alloc_rx"},
497     { STATS_OFFSET32(mbuf_alloc_sge),
498                 4, STATS_FLAGS_FUNC, "mbuf_alloc_sge"},
499     { STATS_OFFSET32(mbuf_alloc_tpa),
500                 4, STATS_FLAGS_FUNC, "mbuf_alloc_tpa"},
501     { STATS_OFFSET32(tx_queue_full_return),
502                 4, STATS_FLAGS_FUNC, "tx_queue_full_return"},
503     { STATS_OFFSET32(bxe_tx_mq_sc_state_failures),
504                 4, STATS_FLAGS_FUNC, "bxe_tx_mq_sc_state_failures"},
505     { STATS_OFFSET32(tx_request_link_down_failures),
506                 4, STATS_FLAGS_FUNC, "tx_request_link_down_failures"},
507     { STATS_OFFSET32(bd_avail_too_less_failures),
508                 4, STATS_FLAGS_FUNC, "bd_avail_too_less_failures"},
509     { STATS_OFFSET32(tx_mq_not_empty),
510                 4, STATS_FLAGS_FUNC, "tx_mq_not_empty"},
511     { STATS_OFFSET32(nsegs_path1_errors),
512                 4, STATS_FLAGS_FUNC, "nsegs_path1_errors"},
513     { STATS_OFFSET32(nsegs_path2_errors),
514                 4, STATS_FLAGS_FUNC, "nsegs_path2_errors"}
515 
516 
517 };
518 
519 static const struct {
520     uint32_t offset;
521     uint32_t size;
522     char string[STAT_NAME_LEN];
523 } bxe_eth_q_stats_arr[] = {
524     { Q_STATS_OFFSET32(total_bytes_received_hi),
525                 8, "rx_bytes" },
526     { Q_STATS_OFFSET32(total_unicast_packets_received_hi),
527                 8, "rx_ucast_packets" },
528     { Q_STATS_OFFSET32(total_multicast_packets_received_hi),
529                 8, "rx_mcast_packets" },
530     { Q_STATS_OFFSET32(total_broadcast_packets_received_hi),
531                 8, "rx_bcast_packets" },
532     { Q_STATS_OFFSET32(no_buff_discard_hi),
533                 8, "rx_discards" },
534     { Q_STATS_OFFSET32(total_bytes_transmitted_hi),
535                 8, "tx_bytes" },
536     { Q_STATS_OFFSET32(total_unicast_packets_transmitted_hi),
537                 8, "tx_ucast_packets" },
538     { Q_STATS_OFFSET32(total_multicast_packets_transmitted_hi),
539                 8, "tx_mcast_packets" },
540     { Q_STATS_OFFSET32(total_broadcast_packets_transmitted_hi),
541                 8, "tx_bcast_packets" },
542     { Q_STATS_OFFSET32(total_tpa_aggregations_hi),
543                 8, "tpa_aggregations" },
544     { Q_STATS_OFFSET32(total_tpa_aggregated_frames_hi),
545                 8, "tpa_aggregated_frames"},
546     { Q_STATS_OFFSET32(total_tpa_bytes_hi),
547                 8, "tpa_bytes"},
548     { Q_STATS_OFFSET32(rx_calls),
549                 4, "rx_calls"},
550     { Q_STATS_OFFSET32(rx_pkts),
551                 4, "rx_pkts"},
552     { Q_STATS_OFFSET32(rx_tpa_pkts),
553                 4, "rx_tpa_pkts"},
554     { Q_STATS_OFFSET32(rx_erroneous_jumbo_sge_pkts),
555                 4, "rx_erroneous_jumbo_sge_pkts"},
556     { Q_STATS_OFFSET32(rx_bxe_service_rxsgl),
557                 4, "rx_bxe_service_rxsgl"},
558     { Q_STATS_OFFSET32(rx_jumbo_sge_pkts),
559                 4, "rx_jumbo_sge_pkts"},
560     { Q_STATS_OFFSET32(rx_soft_errors),
561                 4, "rx_soft_errors"},
562     { Q_STATS_OFFSET32(rx_hw_csum_errors),
563                 4, "rx_hw_csum_errors"},
564     { Q_STATS_OFFSET32(rx_ofld_frames_csum_ip),
565                 4, "rx_ofld_frames_csum_ip"},
566     { Q_STATS_OFFSET32(rx_ofld_frames_csum_tcp_udp),
567                 4, "rx_ofld_frames_csum_tcp_udp"},
568     { Q_STATS_OFFSET32(rx_budget_reached),
569                 4, "rx_budget_reached"},
570     { Q_STATS_OFFSET32(tx_pkts),
571                 4, "tx_pkts"},
572     { Q_STATS_OFFSET32(tx_soft_errors),
573                 4, "tx_soft_errors"},
574     { Q_STATS_OFFSET32(tx_ofld_frames_csum_ip),
575                 4, "tx_ofld_frames_csum_ip"},
576     { Q_STATS_OFFSET32(tx_ofld_frames_csum_tcp),
577                 4, "tx_ofld_frames_csum_tcp"},
578     { Q_STATS_OFFSET32(tx_ofld_frames_csum_udp),
579                 4, "tx_ofld_frames_csum_udp"},
580     { Q_STATS_OFFSET32(tx_ofld_frames_lso),
581                 4, "tx_ofld_frames_lso"},
582     { Q_STATS_OFFSET32(tx_ofld_frames_lso_hdr_splits),
583                 4, "tx_ofld_frames_lso_hdr_splits"},
584     { Q_STATS_OFFSET32(tx_encap_failures),
585                 4, "tx_encap_failures"},
586     { Q_STATS_OFFSET32(tx_hw_queue_full),
587                 4, "tx_hw_queue_full"},
588     { Q_STATS_OFFSET32(tx_hw_max_queue_depth),
589                 4, "tx_hw_max_queue_depth"},
590     { Q_STATS_OFFSET32(tx_dma_mapping_failure),
591                 4, "tx_dma_mapping_failure"},
592     { Q_STATS_OFFSET32(tx_max_drbr_queue_depth),
593                 4, "tx_max_drbr_queue_depth"},
594     { Q_STATS_OFFSET32(tx_window_violation_std),
595                 4, "tx_window_violation_std"},
596     { Q_STATS_OFFSET32(tx_window_violation_tso),
597                 4, "tx_window_violation_tso"},
598     { Q_STATS_OFFSET32(tx_chain_lost_mbuf),
599                 4, "tx_chain_lost_mbuf"},
600     { Q_STATS_OFFSET32(tx_frames_deferred),
601                 4, "tx_frames_deferred"},
602     { Q_STATS_OFFSET32(tx_queue_xoff),
603                 4, "tx_queue_xoff"},
604     { Q_STATS_OFFSET32(mbuf_defrag_attempts),
605                 4, "mbuf_defrag_attempts"},
606     { Q_STATS_OFFSET32(mbuf_defrag_failures),
607                 4, "mbuf_defrag_failures"},
608     { Q_STATS_OFFSET32(mbuf_rx_bd_alloc_failed),
609                 4, "mbuf_rx_bd_alloc_failed"},
610     { Q_STATS_OFFSET32(mbuf_rx_bd_mapping_failed),
611                 4, "mbuf_rx_bd_mapping_failed"},
612     { Q_STATS_OFFSET32(mbuf_rx_tpa_alloc_failed),
613                 4, "mbuf_rx_tpa_alloc_failed"},
614     { Q_STATS_OFFSET32(mbuf_rx_tpa_mapping_failed),
615                 4, "mbuf_rx_tpa_mapping_failed"},
616     { Q_STATS_OFFSET32(mbuf_rx_sge_alloc_failed),
617                 4, "mbuf_rx_sge_alloc_failed"},
618     { Q_STATS_OFFSET32(mbuf_rx_sge_mapping_failed),
619                 4, "mbuf_rx_sge_mapping_failed"},
620     { Q_STATS_OFFSET32(mbuf_alloc_tx),
621                 4, "mbuf_alloc_tx"},
622     { Q_STATS_OFFSET32(mbuf_alloc_rx),
623                 4, "mbuf_alloc_rx"},
624     { Q_STATS_OFFSET32(mbuf_alloc_sge),
625                 4, "mbuf_alloc_sge"},
626     { Q_STATS_OFFSET32(mbuf_alloc_tpa),
627                 4, "mbuf_alloc_tpa"},
628     { Q_STATS_OFFSET32(tx_queue_full_return),
629                 4, "tx_queue_full_return"},
630     { Q_STATS_OFFSET32(bxe_tx_mq_sc_state_failures),
631                 4, "bxe_tx_mq_sc_state_failures"},
632     { Q_STATS_OFFSET32(tx_request_link_down_failures),
633                 4, "tx_request_link_down_failures"},
634     { Q_STATS_OFFSET32(bd_avail_too_less_failures),
635                 4, "bd_avail_too_less_failures"},
636     { Q_STATS_OFFSET32(tx_mq_not_empty),
637                 4, "tx_mq_not_empty"},
638     { Q_STATS_OFFSET32(nsegs_path1_errors),
639                 4, "nsegs_path1_errors"},
640     { Q_STATS_OFFSET32(nsegs_path2_errors),
641                 4, "nsegs_path2_errors"}
642 
643 
644 };
645 
646 #define BXE_NUM_ETH_STATS   ARRAY_SIZE(bxe_eth_stats_arr)
647 #define BXE_NUM_ETH_Q_STATS ARRAY_SIZE(bxe_eth_q_stats_arr)
648 
649 
650 static void    bxe_cmng_fns_init(struct bxe_softc *sc,
651                                  uint8_t          read_cfg,
652                                  uint8_t          cmng_type);
653 static int     bxe_get_cmng_fns_mode(struct bxe_softc *sc);
654 static void    storm_memset_cmng(struct bxe_softc *sc,
655                                  struct cmng_init *cmng,
656                                  uint8_t          port);
657 static void    bxe_set_reset_global(struct bxe_softc *sc);
658 static void    bxe_set_reset_in_progress(struct bxe_softc *sc);
659 static uint8_t bxe_reset_is_done(struct bxe_softc *sc,
660                                  int              engine);
661 static uint8_t bxe_clear_pf_load(struct bxe_softc *sc);
662 static uint8_t bxe_chk_parity_attn(struct bxe_softc *sc,
663                                    uint8_t          *global,
664                                    uint8_t          print);
665 static void    bxe_int_disable(struct bxe_softc *sc);
666 static int     bxe_release_leader_lock(struct bxe_softc *sc);
667 static void    bxe_pf_disable(struct bxe_softc *sc);
668 static void    bxe_free_fp_buffers(struct bxe_softc *sc);
669 static inline void bxe_update_rx_prod(struct bxe_softc    *sc,
670                                       struct bxe_fastpath *fp,
671                                       uint16_t            rx_bd_prod,
672                                       uint16_t            rx_cq_prod,
673                                       uint16_t            rx_sge_prod);
674 static void    bxe_link_report_locked(struct bxe_softc *sc);
675 static void    bxe_link_report(struct bxe_softc *sc);
676 static void    bxe_link_status_update(struct bxe_softc *sc);
677 static void    bxe_periodic_callout_func(void *xsc);
678 static void    bxe_periodic_start(struct bxe_softc *sc);
679 static void    bxe_periodic_stop(struct bxe_softc *sc);
680 static int     bxe_alloc_rx_bd_mbuf(struct bxe_fastpath *fp,
681                                     uint16_t prev_index,
682                                     uint16_t index);
683 static int     bxe_alloc_rx_tpa_mbuf(struct bxe_fastpath *fp,
684                                      int                 queue);
685 static int     bxe_alloc_rx_sge_mbuf(struct bxe_fastpath *fp,
686                                      uint16_t            index);
687 static uint8_t bxe_txeof(struct bxe_softc *sc,
688                          struct bxe_fastpath *fp);
689 static void    bxe_task_fp(struct bxe_fastpath *fp);
690 static __noinline void bxe_dump_mbuf(struct bxe_softc *sc,
691                                      struct mbuf      *m,
692                                      uint8_t          contents);
693 static int     bxe_alloc_mem(struct bxe_softc *sc);
694 static void    bxe_free_mem(struct bxe_softc *sc);
695 static int     bxe_alloc_fw_stats_mem(struct bxe_softc *sc);
696 static void    bxe_free_fw_stats_mem(struct bxe_softc *sc);
697 static int     bxe_interrupt_attach(struct bxe_softc *sc);
698 static void    bxe_interrupt_detach(struct bxe_softc *sc);
699 static void    bxe_set_rx_mode(struct bxe_softc *sc);
700 static int     bxe_init_locked(struct bxe_softc *sc);
701 static int     bxe_stop_locked(struct bxe_softc *sc);
702 static void    bxe_sp_err_timeout_task(void *arg, int pending);
703 void           bxe_parity_recover(struct bxe_softc *sc);
704 void           bxe_handle_error(struct bxe_softc *sc);
705 static __noinline int bxe_nic_load(struct bxe_softc *sc,
706                                    int              load_mode);
707 static __noinline int bxe_nic_unload(struct bxe_softc *sc,
708                                      uint32_t         unload_mode,
709                                      uint8_t          keep_link);
710 
711 static void bxe_handle_sp_tq(void *context, int pending);
712 static void bxe_handle_fp_tq(void *context, int pending);
713 
714 static int bxe_add_cdev(struct bxe_softc *sc);
715 static void bxe_del_cdev(struct bxe_softc *sc);
716 int bxe_grc_dump(struct bxe_softc *sc);
717 static int bxe_alloc_buf_rings(struct bxe_softc *sc);
718 static void bxe_free_buf_rings(struct bxe_softc *sc);
719 
720 /* calculate crc32 on a buffer (NOTE: crc32_length MUST be aligned to 8) */
721 uint32_t
722 calc_crc32(uint8_t  *crc32_packet,
723            uint32_t crc32_length,
724            uint32_t crc32_seed,
725            uint8_t  complement)
726 {
727    uint32_t byte         = 0;
728    uint32_t bit          = 0;
729    uint8_t  msb          = 0;
730    uint32_t temp         = 0;
731    uint32_t shft         = 0;
732    uint8_t  current_byte = 0;
733    uint32_t crc32_result = crc32_seed;
734    const uint32_t CRC32_POLY = 0x1edc6f41;
735 
736    if ((crc32_packet == NULL) ||
737        (crc32_length == 0) ||
738        ((crc32_length % 8) != 0))
739     {
740         return (crc32_result);
741     }
742 
743     for (byte = 0; byte < crc32_length; byte = byte + 1)
744     {
745         current_byte = crc32_packet[byte];
746         for (bit = 0; bit < 8; bit = bit + 1)
747         {
748             /* msb = crc32_result[31]; */
749             msb = (uint8_t)(crc32_result >> 31);
750 
751             crc32_result = crc32_result << 1;
752 
753             /* it (msb != current_byte[bit]) */
754             if (msb != (0x1 & (current_byte >> bit)))
755             {
756                 crc32_result = crc32_result ^ CRC32_POLY;
757                 /* crc32_result[0] = 1 */
758                 crc32_result |= 1;
759             }
760         }
761     }
762 
763     /* Last step is to:
764      * 1. "mirror" every bit
765      * 2. swap the 4 bytes
766      * 3. complement each bit
767      */
768 
769     /* Mirror */
770     temp = crc32_result;
771     shft = sizeof(crc32_result) * 8 - 1;
772 
773     for (crc32_result >>= 1; crc32_result; crc32_result >>= 1)
774     {
775         temp <<= 1;
776         temp |= crc32_result & 1;
777         shft-- ;
778     }
779 
780     /* temp[31-bit] = crc32_result[bit] */
781     temp <<= shft;
782 
783     /* Swap */
784     /* crc32_result = {temp[7:0], temp[15:8], temp[23:16], temp[31:24]} */
785     {
786         uint32_t t0, t1, t2, t3;
787         t0 = (0x000000ff & (temp >> 24));
788         t1 = (0x0000ff00 & (temp >> 8));
789         t2 = (0x00ff0000 & (temp << 8));
790         t3 = (0xff000000 & (temp << 24));
791         crc32_result = t0 | t1 | t2 | t3;
792     }
793 
794     /* Complement */
795     if (complement)
796     {
797         crc32_result = ~crc32_result;
798     }
799 
800     return (crc32_result);
801 }
802 
803 int
804 bxe_test_bit(int                    nr,
805              volatile unsigned long *addr)
806 {
807     return ((atomic_load_acq_long(addr) & (1 << nr)) != 0);
808 }
809 
810 void
811 bxe_set_bit(unsigned int           nr,
812             volatile unsigned long *addr)
813 {
814     atomic_set_acq_long(addr, (1 << nr));
815 }
816 
817 void
818 bxe_clear_bit(int                    nr,
819               volatile unsigned long *addr)
820 {
821     atomic_clear_acq_long(addr, (1 << nr));
822 }
823 
824 int
825 bxe_test_and_set_bit(int                    nr,
826                        volatile unsigned long *addr)
827 {
828     unsigned long x;
829     nr = (1 << nr);
830     do {
831         x = *addr;
832     } while (atomic_cmpset_acq_long(addr, x, x | nr) == 0);
833     // if (x & nr) bit_was_set; else bit_was_not_set;
834     return (x & nr);
835 }
836 
837 int
838 bxe_test_and_clear_bit(int                    nr,
839                        volatile unsigned long *addr)
840 {
841     unsigned long x;
842     nr = (1 << nr);
843     do {
844         x = *addr;
845     } while (atomic_cmpset_acq_long(addr, x, x & ~nr) == 0);
846     // if (x & nr) bit_was_set; else bit_was_not_set;
847     return (x & nr);
848 }
849 
850 int
851 bxe_cmpxchg(volatile int *addr,
852             int          old,
853             int          new)
854 {
855     int x;
856     do {
857         x = *addr;
858     } while (atomic_cmpset_acq_int(addr, old, new) == 0);
859     return (x);
860 }
861 
862 /*
863  * Get DMA memory from the OS.
864  *
865  * Validates that the OS has provided DMA buffers in response to a
866  * bus_dmamap_load call and saves the physical address of those buffers.
867  * When the callback is used the OS will return 0 for the mapping function
868  * (bus_dmamap_load) so we use the value of map_arg->maxsegs to pass any
869  * failures back to the caller.
870  *
871  * Returns:
872  *   Nothing.
873  */
874 static void
875 bxe_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
876 {
877     struct bxe_dma *dma = arg;
878 
879     if (error) {
880         dma->paddr = 0;
881         dma->nseg  = 0;
882         BLOGE(dma->sc, "Failed DMA alloc '%s' (%d)!\n", dma->msg, error);
883     } else {
884         dma->paddr = segs->ds_addr;
885         dma->nseg  = nseg;
886     }
887 }
888 
889 /*
890  * Allocate a block of memory and map it for DMA. No partial completions
891  * allowed and release any resources acquired if we can't acquire all
892  * resources.
893  *
894  * Returns:
895  *   0 = Success, !0 = Failure
896  */
897 int
898 bxe_dma_alloc(struct bxe_softc *sc,
899               bus_size_t       size,
900               struct bxe_dma   *dma,
901               const char       *msg)
902 {
903     int rc;
904 
905     if (dma->size > 0) {
906         BLOGE(sc, "dma block '%s' already has size %lu\n", msg,
907               (unsigned long)dma->size);
908         return (1);
909     }
910 
911     memset(dma, 0, sizeof(*dma)); /* sanity */
912     dma->sc   = sc;
913     dma->size = size;
914     snprintf(dma->msg, sizeof(dma->msg), "%s", msg);
915 
916     rc = bus_dma_tag_create(sc->parent_dma_tag, /* parent tag */
917                             BCM_PAGE_SIZE,      /* alignment */
918                             0,                  /* boundary limit */
919                             BUS_SPACE_MAXADDR,  /* restricted low */
920                             BUS_SPACE_MAXADDR,  /* restricted hi */
921                             NULL,               /* addr filter() */
922                             NULL,               /* addr filter() arg */
923                             size,               /* max map size */
924                             1,                  /* num discontinuous */
925                             size,               /* max seg size */
926                             BUS_DMA_ALLOCNOW,   /* flags */
927                             NULL,               /* lock() */
928                             NULL,               /* lock() arg */
929                             &dma->tag);         /* returned dma tag */
930     if (rc != 0) {
931         BLOGE(sc, "Failed to create dma tag for '%s' (%d)\n", msg, rc);
932         memset(dma, 0, sizeof(*dma));
933         return (1);
934     }
935 
936     rc = bus_dmamem_alloc(dma->tag,
937                           (void **)&dma->vaddr,
938                           (BUS_DMA_NOWAIT | BUS_DMA_ZERO),
939                           &dma->map);
940     if (rc != 0) {
941         BLOGE(sc, "Failed to alloc dma mem for '%s' (%d)\n", msg, rc);
942         bus_dma_tag_destroy(dma->tag);
943         memset(dma, 0, sizeof(*dma));
944         return (1);
945     }
946 
947     rc = bus_dmamap_load(dma->tag,
948                          dma->map,
949                          dma->vaddr,
950                          size,
951                          bxe_dma_map_addr, /* BLOGD in here */
952                          dma,
953                          BUS_DMA_NOWAIT);
954     if (rc != 0) {
955         BLOGE(sc, "Failed to load dma map for '%s' (%d)\n", msg, rc);
956         bus_dmamem_free(dma->tag, dma->vaddr, dma->map);
957         bus_dma_tag_destroy(dma->tag);
958         memset(dma, 0, sizeof(*dma));
959         return (1);
960     }
961 
962     return (0);
963 }
964 
965 void
966 bxe_dma_free(struct bxe_softc *sc,
967              struct bxe_dma   *dma)
968 {
969     if (dma->size > 0) {
970         DBASSERT(sc, (dma->tag != NULL), ("dma tag is NULL"));
971 
972         bus_dmamap_sync(dma->tag, dma->map,
973                         (BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE));
974         bus_dmamap_unload(dma->tag, dma->map);
975         bus_dmamem_free(dma->tag, dma->vaddr, dma->map);
976         bus_dma_tag_destroy(dma->tag);
977     }
978 
979     memset(dma, 0, sizeof(*dma));
980 }
981 
982 /*
983  * These indirect read and write routines are only during init.
984  * The locking is handled by the MCP.
985  */
986 
987 void
988 bxe_reg_wr_ind(struct bxe_softc *sc,
989                uint32_t         addr,
990                uint32_t         val)
991 {
992     pci_write_config(sc->dev, PCICFG_GRC_ADDRESS, addr, 4);
993     pci_write_config(sc->dev, PCICFG_GRC_DATA, val, 4);
994     pci_write_config(sc->dev, PCICFG_GRC_ADDRESS, 0, 4);
995 }
996 
997 uint32_t
998 bxe_reg_rd_ind(struct bxe_softc *sc,
999                uint32_t         addr)
1000 {
1001     uint32_t val;
1002 
1003     pci_write_config(sc->dev, PCICFG_GRC_ADDRESS, addr, 4);
1004     val = pci_read_config(sc->dev, PCICFG_GRC_DATA, 4);
1005     pci_write_config(sc->dev, PCICFG_GRC_ADDRESS, 0, 4);
1006 
1007     return (val);
1008 }
1009 
1010 static int
1011 bxe_acquire_hw_lock(struct bxe_softc *sc,
1012                     uint32_t         resource)
1013 {
1014     uint32_t lock_status;
1015     uint32_t resource_bit = (1 << resource);
1016     int func = SC_FUNC(sc);
1017     uint32_t hw_lock_control_reg;
1018     int cnt;
1019 
1020     /* validate the resource is within range */
1021     if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
1022         BLOGE(sc, "(resource 0x%x > HW_LOCK_MAX_RESOURCE_VALUE)"
1023             " resource_bit 0x%x\n", resource, resource_bit);
1024         return (-1);
1025     }
1026 
1027     if (func <= 5) {
1028         hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + (func * 8));
1029     } else {
1030         hw_lock_control_reg =
1031                 (MISC_REG_DRIVER_CONTROL_7 + ((func - 6) * 8));
1032     }
1033 
1034     /* validate the resource is not already taken */
1035     lock_status = REG_RD(sc, hw_lock_control_reg);
1036     if (lock_status & resource_bit) {
1037         BLOGE(sc, "resource (0x%x) in use (status 0x%x bit 0x%x)\n",
1038               resource, lock_status, resource_bit);
1039         return (-1);
1040     }
1041 
1042     /* try every 5ms for 5 seconds */
1043     for (cnt = 0; cnt < 1000; cnt++) {
1044         REG_WR(sc, (hw_lock_control_reg + 4), resource_bit);
1045         lock_status = REG_RD(sc, hw_lock_control_reg);
1046         if (lock_status & resource_bit) {
1047             return (0);
1048         }
1049         DELAY(5000);
1050     }
1051 
1052     BLOGE(sc, "Resource 0x%x resource_bit 0x%x lock timeout!\n",
1053         resource, resource_bit);
1054     return (-1);
1055 }
1056 
1057 static int
1058 bxe_release_hw_lock(struct bxe_softc *sc,
1059                     uint32_t         resource)
1060 {
1061     uint32_t lock_status;
1062     uint32_t resource_bit = (1 << resource);
1063     int func = SC_FUNC(sc);
1064     uint32_t hw_lock_control_reg;
1065 
1066     /* validate the resource is within range */
1067     if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
1068         BLOGE(sc, "(resource 0x%x > HW_LOCK_MAX_RESOURCE_VALUE)"
1069             " resource_bit 0x%x\n", resource, resource_bit);
1070         return (-1);
1071     }
1072 
1073     if (func <= 5) {
1074         hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + (func * 8));
1075     } else {
1076         hw_lock_control_reg =
1077                 (MISC_REG_DRIVER_CONTROL_7 + ((func - 6) * 8));
1078     }
1079 
1080     /* validate the resource is currently taken */
1081     lock_status = REG_RD(sc, hw_lock_control_reg);
1082     if (!(lock_status & resource_bit)) {
1083         BLOGE(sc, "resource (0x%x) not in use (status 0x%x bit 0x%x)\n",
1084               resource, lock_status, resource_bit);
1085         return (-1);
1086     }
1087 
1088     REG_WR(sc, hw_lock_control_reg, resource_bit);
1089     return (0);
1090 }
1091 static void bxe_acquire_phy_lock(struct bxe_softc *sc)
1092 {
1093 	BXE_PHY_LOCK(sc);
1094 	bxe_acquire_hw_lock(sc,HW_LOCK_RESOURCE_MDIO);
1095 }
1096 
1097 static void bxe_release_phy_lock(struct bxe_softc *sc)
1098 {
1099 	bxe_release_hw_lock(sc,HW_LOCK_RESOURCE_MDIO);
1100 	BXE_PHY_UNLOCK(sc);
1101 }
1102 /*
1103  * Per pf misc lock must be acquired before the per port mcp lock. Otherwise,
1104  * had we done things the other way around, if two pfs from the same port
1105  * would attempt to access nvram at the same time, we could run into a
1106  * scenario such as:
1107  * pf A takes the port lock.
1108  * pf B succeeds in taking the same lock since they are from the same port.
1109  * pf A takes the per pf misc lock. Performs eeprom access.
1110  * pf A finishes. Unlocks the per pf misc lock.
1111  * Pf B takes the lock and proceeds to perform it's own access.
1112  * pf A unlocks the per port lock, while pf B is still working (!).
1113  * mcp takes the per port lock and corrupts pf B's access (and/or has it's own
1114  * access corrupted by pf B).*
1115  */
1116 static int
1117 bxe_acquire_nvram_lock(struct bxe_softc *sc)
1118 {
1119     int port = SC_PORT(sc);
1120     int count, i;
1121     uint32_t val = 0;
1122 
1123     /* acquire HW lock: protect against other PFs in PF Direct Assignment */
1124     bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_NVRAM);
1125 
1126     /* adjust timeout for emulation/FPGA */
1127     count = NVRAM_TIMEOUT_COUNT;
1128     if (CHIP_REV_IS_SLOW(sc)) {
1129         count *= 100;
1130     }
1131 
1132     /* request access to nvram interface */
1133     REG_WR(sc, MCP_REG_MCPR_NVM_SW_ARB,
1134            (MCPR_NVM_SW_ARB_ARB_REQ_SET1 << port));
1135 
1136     for (i = 0; i < count*10; i++) {
1137         val = REG_RD(sc, MCP_REG_MCPR_NVM_SW_ARB);
1138         if (val & (MCPR_NVM_SW_ARB_ARB_ARB1 << port)) {
1139             break;
1140         }
1141 
1142         DELAY(5);
1143     }
1144 
1145     if (!(val & (MCPR_NVM_SW_ARB_ARB_ARB1 << port))) {
1146         BLOGE(sc, "Cannot get access to nvram interface "
1147             "port %d val 0x%x (MCPR_NVM_SW_ARB_ARB_ARB1 << port)\n",
1148             port, val);
1149         return (-1);
1150     }
1151 
1152     return (0);
1153 }
1154 
1155 static int
1156 bxe_release_nvram_lock(struct bxe_softc *sc)
1157 {
1158     int port = SC_PORT(sc);
1159     int count, i;
1160     uint32_t val = 0;
1161 
1162     /* adjust timeout for emulation/FPGA */
1163     count = NVRAM_TIMEOUT_COUNT;
1164     if (CHIP_REV_IS_SLOW(sc)) {
1165         count *= 100;
1166     }
1167 
1168     /* relinquish nvram interface */
1169     REG_WR(sc, MCP_REG_MCPR_NVM_SW_ARB,
1170            (MCPR_NVM_SW_ARB_ARB_REQ_CLR1 << port));
1171 
1172     for (i = 0; i < count*10; i++) {
1173         val = REG_RD(sc, MCP_REG_MCPR_NVM_SW_ARB);
1174         if (!(val & (MCPR_NVM_SW_ARB_ARB_ARB1 << port))) {
1175             break;
1176         }
1177 
1178         DELAY(5);
1179     }
1180 
1181     if (val & (MCPR_NVM_SW_ARB_ARB_ARB1 << port)) {
1182         BLOGE(sc, "Cannot free access to nvram interface "
1183             "port %d val 0x%x (MCPR_NVM_SW_ARB_ARB_ARB1 << port)\n",
1184             port, val);
1185         return (-1);
1186     }
1187 
1188     /* release HW lock: protect against other PFs in PF Direct Assignment */
1189     bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_NVRAM);
1190 
1191     return (0);
1192 }
1193 
1194 static void
1195 bxe_enable_nvram_access(struct bxe_softc *sc)
1196 {
1197     uint32_t val;
1198 
1199     val = REG_RD(sc, MCP_REG_MCPR_NVM_ACCESS_ENABLE);
1200 
1201     /* enable both bits, even on read */
1202     REG_WR(sc, MCP_REG_MCPR_NVM_ACCESS_ENABLE,
1203            (val | MCPR_NVM_ACCESS_ENABLE_EN | MCPR_NVM_ACCESS_ENABLE_WR_EN));
1204 }
1205 
1206 static void
1207 bxe_disable_nvram_access(struct bxe_softc *sc)
1208 {
1209     uint32_t val;
1210 
1211     val = REG_RD(sc, MCP_REG_MCPR_NVM_ACCESS_ENABLE);
1212 
1213     /* disable both bits, even after read */
1214     REG_WR(sc, MCP_REG_MCPR_NVM_ACCESS_ENABLE,
1215            (val & ~(MCPR_NVM_ACCESS_ENABLE_EN |
1216                     MCPR_NVM_ACCESS_ENABLE_WR_EN)));
1217 }
1218 
1219 static int
1220 bxe_nvram_read_dword(struct bxe_softc *sc,
1221                      uint32_t         offset,
1222                      uint32_t         *ret_val,
1223                      uint32_t         cmd_flags)
1224 {
1225     int count, i, rc;
1226     uint32_t val;
1227 
1228     /* build the command word */
1229     cmd_flags |= MCPR_NVM_COMMAND_DOIT;
1230 
1231     /* need to clear DONE bit separately */
1232     REG_WR(sc, MCP_REG_MCPR_NVM_COMMAND, MCPR_NVM_COMMAND_DONE);
1233 
1234     /* address of the NVRAM to read from */
1235     REG_WR(sc, MCP_REG_MCPR_NVM_ADDR,
1236            (offset & MCPR_NVM_ADDR_NVM_ADDR_VALUE));
1237 
1238     /* issue a read command */
1239     REG_WR(sc, MCP_REG_MCPR_NVM_COMMAND, cmd_flags);
1240 
1241     /* adjust timeout for emulation/FPGA */
1242     count = NVRAM_TIMEOUT_COUNT;
1243     if (CHIP_REV_IS_SLOW(sc)) {
1244         count *= 100;
1245     }
1246 
1247     /* wait for completion */
1248     *ret_val = 0;
1249     rc = -1;
1250     for (i = 0; i < count; i++) {
1251         DELAY(5);
1252         val = REG_RD(sc, MCP_REG_MCPR_NVM_COMMAND);
1253 
1254         if (val & MCPR_NVM_COMMAND_DONE) {
1255             val = REG_RD(sc, MCP_REG_MCPR_NVM_READ);
1256             /* we read nvram data in cpu order
1257              * but ethtool sees it as an array of bytes
1258              * converting to big-endian will do the work
1259              */
1260             *ret_val = htobe32(val);
1261             rc = 0;
1262             break;
1263         }
1264     }
1265 
1266     if (rc == -1) {
1267         BLOGE(sc, "nvram read timeout expired "
1268             "(offset 0x%x cmd_flags 0x%x val 0x%x)\n",
1269             offset, cmd_flags, val);
1270     }
1271 
1272     return (rc);
1273 }
1274 
1275 static int
1276 bxe_nvram_read(struct bxe_softc *sc,
1277                uint32_t         offset,
1278                uint8_t          *ret_buf,
1279                int              buf_size)
1280 {
1281     uint32_t cmd_flags;
1282     uint32_t val;
1283     int rc;
1284 
1285     if ((offset & 0x03) || (buf_size & 0x03) || (buf_size == 0)) {
1286         BLOGE(sc, "Invalid parameter, offset 0x%x buf_size 0x%x\n",
1287               offset, buf_size);
1288         return (-1);
1289     }
1290 
1291     if ((offset + buf_size) > sc->devinfo.flash_size) {
1292         BLOGE(sc, "Invalid parameter, "
1293                   "offset 0x%x + buf_size 0x%x > flash_size 0x%x\n",
1294               offset, buf_size, sc->devinfo.flash_size);
1295         return (-1);
1296     }
1297 
1298     /* request access to nvram interface */
1299     rc = bxe_acquire_nvram_lock(sc);
1300     if (rc) {
1301         return (rc);
1302     }
1303 
1304     /* enable access to nvram interface */
1305     bxe_enable_nvram_access(sc);
1306 
1307     /* read the first word(s) */
1308     cmd_flags = MCPR_NVM_COMMAND_FIRST;
1309     while ((buf_size > sizeof(uint32_t)) && (rc == 0)) {
1310         rc = bxe_nvram_read_dword(sc, offset, &val, cmd_flags);
1311         memcpy(ret_buf, &val, 4);
1312 
1313         /* advance to the next dword */
1314         offset += sizeof(uint32_t);
1315         ret_buf += sizeof(uint32_t);
1316         buf_size -= sizeof(uint32_t);
1317         cmd_flags = 0;
1318     }
1319 
1320     if (rc == 0) {
1321         cmd_flags |= MCPR_NVM_COMMAND_LAST;
1322         rc = bxe_nvram_read_dword(sc, offset, &val, cmd_flags);
1323         memcpy(ret_buf, &val, 4);
1324     }
1325 
1326     /* disable access to nvram interface */
1327     bxe_disable_nvram_access(sc);
1328     bxe_release_nvram_lock(sc);
1329 
1330     return (rc);
1331 }
1332 
1333 static int
1334 bxe_nvram_write_dword(struct bxe_softc *sc,
1335                       uint32_t         offset,
1336                       uint32_t         val,
1337                       uint32_t         cmd_flags)
1338 {
1339     int count, i, rc;
1340 
1341     /* build the command word */
1342     cmd_flags |= (MCPR_NVM_COMMAND_DOIT | MCPR_NVM_COMMAND_WR);
1343 
1344     /* need to clear DONE bit separately */
1345     REG_WR(sc, MCP_REG_MCPR_NVM_COMMAND, MCPR_NVM_COMMAND_DONE);
1346 
1347     /* write the data */
1348     REG_WR(sc, MCP_REG_MCPR_NVM_WRITE, val);
1349 
1350     /* address of the NVRAM to write to */
1351     REG_WR(sc, MCP_REG_MCPR_NVM_ADDR,
1352            (offset & MCPR_NVM_ADDR_NVM_ADDR_VALUE));
1353 
1354     /* issue the write command */
1355     REG_WR(sc, MCP_REG_MCPR_NVM_COMMAND, cmd_flags);
1356 
1357     /* adjust timeout for emulation/FPGA */
1358     count = NVRAM_TIMEOUT_COUNT;
1359     if (CHIP_REV_IS_SLOW(sc)) {
1360         count *= 100;
1361     }
1362 
1363     /* wait for completion */
1364     rc = -1;
1365     for (i = 0; i < count; i++) {
1366         DELAY(5);
1367         val = REG_RD(sc, MCP_REG_MCPR_NVM_COMMAND);
1368         if (val & MCPR_NVM_COMMAND_DONE) {
1369             rc = 0;
1370             break;
1371         }
1372     }
1373 
1374     if (rc == -1) {
1375         BLOGE(sc, "nvram write timeout expired "
1376             "(offset 0x%x cmd_flags 0x%x val 0x%x)\n",
1377             offset, cmd_flags, val);
1378     }
1379 
1380     return (rc);
1381 }
1382 
1383 #define BYTE_OFFSET(offset) (8 * (offset & 0x03))
1384 
1385 static int
1386 bxe_nvram_write1(struct bxe_softc *sc,
1387                  uint32_t         offset,
1388                  uint8_t          *data_buf,
1389                  int              buf_size)
1390 {
1391     uint32_t cmd_flags;
1392     uint32_t align_offset;
1393     uint32_t val;
1394     int rc;
1395 
1396     if ((offset + buf_size) > sc->devinfo.flash_size) {
1397         BLOGE(sc, "Invalid parameter, "
1398                   "offset 0x%x + buf_size 0x%x > flash_size 0x%x\n",
1399               offset, buf_size, sc->devinfo.flash_size);
1400         return (-1);
1401     }
1402 
1403     /* request access to nvram interface */
1404     rc = bxe_acquire_nvram_lock(sc);
1405     if (rc) {
1406         return (rc);
1407     }
1408 
1409     /* enable access to nvram interface */
1410     bxe_enable_nvram_access(sc);
1411 
1412     cmd_flags = (MCPR_NVM_COMMAND_FIRST | MCPR_NVM_COMMAND_LAST);
1413     align_offset = (offset & ~0x03);
1414     rc = bxe_nvram_read_dword(sc, align_offset, &val, cmd_flags);
1415 
1416     if (rc == 0) {
1417         val &= ~(0xff << BYTE_OFFSET(offset));
1418         val |= (*data_buf << BYTE_OFFSET(offset));
1419 
1420         /* nvram data is returned as an array of bytes
1421          * convert it back to cpu order
1422          */
1423         val = be32toh(val);
1424 
1425         rc = bxe_nvram_write_dword(sc, align_offset, val, cmd_flags);
1426     }
1427 
1428     /* disable access to nvram interface */
1429     bxe_disable_nvram_access(sc);
1430     bxe_release_nvram_lock(sc);
1431 
1432     return (rc);
1433 }
1434 
1435 static int
1436 bxe_nvram_write(struct bxe_softc *sc,
1437                 uint32_t         offset,
1438                 uint8_t          *data_buf,
1439                 int              buf_size)
1440 {
1441     uint32_t cmd_flags;
1442     uint32_t val;
1443     uint32_t written_so_far;
1444     int rc;
1445 
1446     if (buf_size == 1) {
1447         return (bxe_nvram_write1(sc, offset, data_buf, buf_size));
1448     }
1449 
1450     if ((offset & 0x03) || (buf_size & 0x03) /* || (buf_size == 0) */) {
1451         BLOGE(sc, "Invalid parameter, offset 0x%x buf_size 0x%x\n",
1452               offset, buf_size);
1453         return (-1);
1454     }
1455 
1456     if (buf_size == 0) {
1457         return (0); /* nothing to do */
1458     }
1459 
1460     if ((offset + buf_size) > sc->devinfo.flash_size) {
1461         BLOGE(sc, "Invalid parameter, "
1462                   "offset 0x%x + buf_size 0x%x > flash_size 0x%x\n",
1463               offset, buf_size, sc->devinfo.flash_size);
1464         return (-1);
1465     }
1466 
1467     /* request access to nvram interface */
1468     rc = bxe_acquire_nvram_lock(sc);
1469     if (rc) {
1470         return (rc);
1471     }
1472 
1473     /* enable access to nvram interface */
1474     bxe_enable_nvram_access(sc);
1475 
1476     written_so_far = 0;
1477     cmd_flags = MCPR_NVM_COMMAND_FIRST;
1478     while ((written_so_far < buf_size) && (rc == 0)) {
1479         if (written_so_far == (buf_size - sizeof(uint32_t))) {
1480             cmd_flags |= MCPR_NVM_COMMAND_LAST;
1481         } else if (((offset + 4) % NVRAM_PAGE_SIZE) == 0) {
1482             cmd_flags |= MCPR_NVM_COMMAND_LAST;
1483         } else if ((offset % NVRAM_PAGE_SIZE) == 0) {
1484             cmd_flags |= MCPR_NVM_COMMAND_FIRST;
1485         }
1486 
1487         memcpy(&val, data_buf, 4);
1488 
1489         rc = bxe_nvram_write_dword(sc, offset, val, cmd_flags);
1490 
1491         /* advance to the next dword */
1492         offset += sizeof(uint32_t);
1493         data_buf += sizeof(uint32_t);
1494         written_so_far += sizeof(uint32_t);
1495         cmd_flags = 0;
1496     }
1497 
1498     /* disable access to nvram interface */
1499     bxe_disable_nvram_access(sc);
1500     bxe_release_nvram_lock(sc);
1501 
1502     return (rc);
1503 }
1504 
1505 /* copy command into DMAE command memory and set DMAE command Go */
1506 void
1507 bxe_post_dmae(struct bxe_softc    *sc,
1508               struct dmae_cmd *dmae,
1509               int                 idx)
1510 {
1511     uint32_t cmd_offset;
1512     int i;
1513 
1514     cmd_offset = (DMAE_REG_CMD_MEM + (sizeof(struct dmae_cmd) * idx));
1515     for (i = 0; i < ((sizeof(struct dmae_cmd) / 4)); i++) {
1516         REG_WR(sc, (cmd_offset + (i * 4)), *(((uint32_t *)dmae) + i));
1517     }
1518 
1519     REG_WR(sc, dmae_reg_go_c[idx], 1);
1520 }
1521 
1522 uint32_t
1523 bxe_dmae_opcode_add_comp(uint32_t opcode,
1524                          uint8_t  comp_type)
1525 {
1526     return (opcode | ((comp_type << DMAE_CMD_C_DST_SHIFT) |
1527                       DMAE_CMD_C_TYPE_ENABLE));
1528 }
1529 
1530 uint32_t
1531 bxe_dmae_opcode_clr_src_reset(uint32_t opcode)
1532 {
1533     return (opcode & ~DMAE_CMD_SRC_RESET);
1534 }
1535 
1536 uint32_t
1537 bxe_dmae_opcode(struct bxe_softc *sc,
1538                 uint8_t          src_type,
1539                 uint8_t          dst_type,
1540                 uint8_t          with_comp,
1541                 uint8_t          comp_type)
1542 {
1543     uint32_t opcode = 0;
1544 
1545     opcode |= ((src_type << DMAE_CMD_SRC_SHIFT) |
1546                (dst_type << DMAE_CMD_DST_SHIFT));
1547 
1548     opcode |= (DMAE_CMD_SRC_RESET | DMAE_CMD_DST_RESET);
1549 
1550     opcode |= (SC_PORT(sc) ? DMAE_CMD_PORT_1 : DMAE_CMD_PORT_0);
1551 
1552     opcode |= ((SC_VN(sc) << DMAE_CMD_E1HVN_SHIFT) |
1553                (SC_VN(sc) << DMAE_CMD_DST_VN_SHIFT));
1554 
1555     opcode |= (DMAE_COM_SET_ERR << DMAE_CMD_ERR_POLICY_SHIFT);
1556 
1557 #ifdef __BIG_ENDIAN
1558     opcode |= DMAE_CMD_ENDIANITY_B_DW_SWAP;
1559 #else
1560     opcode |= DMAE_CMD_ENDIANITY_DW_SWAP;
1561 #endif
1562 
1563     if (with_comp) {
1564         opcode = bxe_dmae_opcode_add_comp(opcode, comp_type);
1565     }
1566 
1567     return (opcode);
1568 }
1569 
1570 static void
1571 bxe_prep_dmae_with_comp(struct bxe_softc    *sc,
1572                         struct dmae_cmd *dmae,
1573                         uint8_t             src_type,
1574                         uint8_t             dst_type)
1575 {
1576     memset(dmae, 0, sizeof(struct dmae_cmd));
1577 
1578     /* set the opcode */
1579     dmae->opcode = bxe_dmae_opcode(sc, src_type, dst_type,
1580                                    TRUE, DMAE_COMP_PCI);
1581 
1582     /* fill in the completion parameters */
1583     dmae->comp_addr_lo = U64_LO(BXE_SP_MAPPING(sc, wb_comp));
1584     dmae->comp_addr_hi = U64_HI(BXE_SP_MAPPING(sc, wb_comp));
1585     dmae->comp_val     = DMAE_COMP_VAL;
1586 }
1587 
1588 /* issue a DMAE command over the init channel and wait for completion */
1589 static int
1590 bxe_issue_dmae_with_comp(struct bxe_softc    *sc,
1591                          struct dmae_cmd *dmae)
1592 {
1593     uint32_t *wb_comp = BXE_SP(sc, wb_comp);
1594     int timeout = CHIP_REV_IS_SLOW(sc) ? 400000 : 4000;
1595 
1596     BXE_DMAE_LOCK(sc);
1597 
1598     /* reset completion */
1599     *wb_comp = 0;
1600 
1601     /* post the command on the channel used for initializations */
1602     bxe_post_dmae(sc, dmae, INIT_DMAE_C(sc));
1603 
1604     /* wait for completion */
1605     DELAY(5);
1606 
1607     while ((*wb_comp & ~DMAE_PCI_ERR_FLAG) != DMAE_COMP_VAL) {
1608         if (!timeout ||
1609             (sc->recovery_state != BXE_RECOVERY_DONE &&
1610              sc->recovery_state != BXE_RECOVERY_NIC_LOADING)) {
1611             BLOGE(sc, "DMAE timeout! *wb_comp 0x%x recovery_state 0x%x\n",
1612                 *wb_comp, sc->recovery_state);
1613             BXE_DMAE_UNLOCK(sc);
1614             return (DMAE_TIMEOUT);
1615         }
1616 
1617         timeout--;
1618         DELAY(50);
1619     }
1620 
1621     if (*wb_comp & DMAE_PCI_ERR_FLAG) {
1622         BLOGE(sc, "DMAE PCI error! *wb_comp 0x%x recovery_state 0x%x\n",
1623                 *wb_comp, sc->recovery_state);
1624         BXE_DMAE_UNLOCK(sc);
1625         return (DMAE_PCI_ERROR);
1626     }
1627 
1628     BXE_DMAE_UNLOCK(sc);
1629     return (0);
1630 }
1631 
1632 void
1633 bxe_read_dmae(struct bxe_softc *sc,
1634               uint32_t         src_addr,
1635               uint32_t         len32)
1636 {
1637     struct dmae_cmd dmae;
1638     uint32_t *data;
1639     int i, rc;
1640 
1641     DBASSERT(sc, (len32 <= 4), ("DMAE read length is %d", len32));
1642 
1643     if (!sc->dmae_ready) {
1644         data = BXE_SP(sc, wb_data[0]);
1645 
1646         for (i = 0; i < len32; i++) {
1647             data[i] = (CHIP_IS_E1(sc)) ?
1648                           bxe_reg_rd_ind(sc, (src_addr + (i * 4))) :
1649                           REG_RD(sc, (src_addr + (i * 4)));
1650         }
1651 
1652         return;
1653     }
1654 
1655     /* set opcode and fixed command fields */
1656     bxe_prep_dmae_with_comp(sc, &dmae, DMAE_SRC_GRC, DMAE_DST_PCI);
1657 
1658     /* fill in addresses and len */
1659     dmae.src_addr_lo = (src_addr >> 2); /* GRC addr has dword resolution */
1660     dmae.src_addr_hi = 0;
1661     dmae.dst_addr_lo = U64_LO(BXE_SP_MAPPING(sc, wb_data));
1662     dmae.dst_addr_hi = U64_HI(BXE_SP_MAPPING(sc, wb_data));
1663     dmae.len         = len32;
1664 
1665     /* issue the command and wait for completion */
1666     if ((rc = bxe_issue_dmae_with_comp(sc, &dmae)) != 0) {
1667         bxe_panic(sc, ("DMAE failed (%d)\n", rc));
1668     }
1669 }
1670 
1671 void
1672 bxe_write_dmae(struct bxe_softc *sc,
1673                bus_addr_t       dma_addr,
1674                uint32_t         dst_addr,
1675                uint32_t         len32)
1676 {
1677     struct dmae_cmd dmae;
1678     int rc;
1679 
1680     if (!sc->dmae_ready) {
1681         DBASSERT(sc, (len32 <= 4), ("DMAE not ready and length is %d", len32));
1682 
1683         if (CHIP_IS_E1(sc)) {
1684             ecore_init_ind_wr(sc, dst_addr, BXE_SP(sc, wb_data[0]), len32);
1685         } else {
1686             ecore_init_str_wr(sc, dst_addr, BXE_SP(sc, wb_data[0]), len32);
1687         }
1688 
1689         return;
1690     }
1691 
1692     /* set opcode and fixed command fields */
1693     bxe_prep_dmae_with_comp(sc, &dmae, DMAE_SRC_PCI, DMAE_DST_GRC);
1694 
1695     /* fill in addresses and len */
1696     dmae.src_addr_lo = U64_LO(dma_addr);
1697     dmae.src_addr_hi = U64_HI(dma_addr);
1698     dmae.dst_addr_lo = (dst_addr >> 2); /* GRC addr has dword resolution */
1699     dmae.dst_addr_hi = 0;
1700     dmae.len         = len32;
1701 
1702     /* issue the command and wait for completion */
1703     if ((rc = bxe_issue_dmae_with_comp(sc, &dmae)) != 0) {
1704         bxe_panic(sc, ("DMAE failed (%d)\n", rc));
1705     }
1706 }
1707 
1708 void
1709 bxe_write_dmae_phys_len(struct bxe_softc *sc,
1710                         bus_addr_t       phys_addr,
1711                         uint32_t         addr,
1712                         uint32_t         len)
1713 {
1714     int dmae_wr_max = DMAE_LEN32_WR_MAX(sc);
1715     int offset = 0;
1716 
1717     while (len > dmae_wr_max) {
1718         bxe_write_dmae(sc,
1719                        (phys_addr + offset), /* src DMA address */
1720                        (addr + offset),      /* dst GRC address */
1721                        dmae_wr_max);
1722         offset += (dmae_wr_max * 4);
1723         len -= dmae_wr_max;
1724     }
1725 
1726     bxe_write_dmae(sc,
1727                    (phys_addr + offset), /* src DMA address */
1728                    (addr + offset),      /* dst GRC address */
1729                    len);
1730 }
1731 
1732 void
1733 bxe_set_ctx_validation(struct bxe_softc   *sc,
1734                        struct eth_context *cxt,
1735                        uint32_t           cid)
1736 {
1737     /* ustorm cxt validation */
1738     cxt->ustorm_ag_context.cdu_usage =
1739         CDU_RSRVD_VALUE_TYPE_A(HW_CID(sc, cid),
1740             CDU_REGION_NUMBER_UCM_AG, ETH_CONNECTION_TYPE);
1741     /* xcontext validation */
1742     cxt->xstorm_ag_context.cdu_reserved =
1743         CDU_RSRVD_VALUE_TYPE_A(HW_CID(sc, cid),
1744             CDU_REGION_NUMBER_XCM_AG, ETH_CONNECTION_TYPE);
1745 }
1746 
1747 static void
1748 bxe_storm_memset_hc_timeout(struct bxe_softc *sc,
1749                             uint8_t          port,
1750                             uint8_t          fw_sb_id,
1751                             uint8_t          sb_index,
1752                             uint8_t          ticks)
1753 {
1754     uint32_t addr =
1755         (BAR_CSTRORM_INTMEM +
1756          CSTORM_STATUS_BLOCK_DATA_TIMEOUT_OFFSET(fw_sb_id, sb_index));
1757 
1758     REG_WR8(sc, addr, ticks);
1759 
1760     BLOGD(sc, DBG_LOAD,
1761           "port %d fw_sb_id %d sb_index %d ticks %d\n",
1762           port, fw_sb_id, sb_index, ticks);
1763 }
1764 
1765 static void
1766 bxe_storm_memset_hc_disable(struct bxe_softc *sc,
1767                             uint8_t          port,
1768                             uint16_t         fw_sb_id,
1769                             uint8_t          sb_index,
1770                             uint8_t          disable)
1771 {
1772     uint32_t enable_flag =
1773         (disable) ? 0 : (1 << HC_INDEX_DATA_HC_ENABLED_SHIFT);
1774     uint32_t addr =
1775         (BAR_CSTRORM_INTMEM +
1776          CSTORM_STATUS_BLOCK_DATA_FLAGS_OFFSET(fw_sb_id, sb_index));
1777     uint8_t flags;
1778 
1779     /* clear and set */
1780     flags = REG_RD8(sc, addr);
1781     flags &= ~HC_INDEX_DATA_HC_ENABLED;
1782     flags |= enable_flag;
1783     REG_WR8(sc, addr, flags);
1784 
1785     BLOGD(sc, DBG_LOAD,
1786           "port %d fw_sb_id %d sb_index %d disable %d\n",
1787           port, fw_sb_id, sb_index, disable);
1788 }
1789 
1790 void
1791 bxe_update_coalesce_sb_index(struct bxe_softc *sc,
1792                              uint8_t          fw_sb_id,
1793                              uint8_t          sb_index,
1794                              uint8_t          disable,
1795                              uint16_t         usec)
1796 {
1797     int port = SC_PORT(sc);
1798     uint8_t ticks = (usec / 4); /* XXX ??? */
1799 
1800     bxe_storm_memset_hc_timeout(sc, port, fw_sb_id, sb_index, ticks);
1801 
1802     disable = (disable) ? 1 : ((usec) ? 0 : 1);
1803     bxe_storm_memset_hc_disable(sc, port, fw_sb_id, sb_index, disable);
1804 }
1805 
1806 void
1807 elink_cb_udelay(struct bxe_softc *sc,
1808                 uint32_t         usecs)
1809 {
1810     DELAY(usecs);
1811 }
1812 
1813 uint32_t
1814 elink_cb_reg_read(struct bxe_softc *sc,
1815                   uint32_t         reg_addr)
1816 {
1817     return (REG_RD(sc, reg_addr));
1818 }
1819 
1820 void
1821 elink_cb_reg_write(struct bxe_softc *sc,
1822                    uint32_t         reg_addr,
1823                    uint32_t         val)
1824 {
1825     REG_WR(sc, reg_addr, val);
1826 }
1827 
1828 void
1829 elink_cb_reg_wb_write(struct bxe_softc *sc,
1830                       uint32_t         offset,
1831                       uint32_t         *wb_write,
1832                       uint16_t         len)
1833 {
1834     REG_WR_DMAE(sc, offset, wb_write, len);
1835 }
1836 
1837 void
1838 elink_cb_reg_wb_read(struct bxe_softc *sc,
1839                      uint32_t         offset,
1840                      uint32_t         *wb_write,
1841                      uint16_t         len)
1842 {
1843     REG_RD_DMAE(sc, offset, wb_write, len);
1844 }
1845 
1846 uint8_t
1847 elink_cb_path_id(struct bxe_softc *sc)
1848 {
1849     return (SC_PATH(sc));
1850 }
1851 
1852 void
1853 elink_cb_event_log(struct bxe_softc     *sc,
1854                    const elink_log_id_t elink_log_id,
1855                    ...)
1856 {
1857     /* XXX */
1858     BLOGI(sc, "ELINK EVENT LOG (%d)\n", elink_log_id);
1859 }
1860 
1861 static int
1862 bxe_set_spio(struct bxe_softc *sc,
1863              int              spio,
1864              uint32_t         mode)
1865 {
1866     uint32_t spio_reg;
1867 
1868     /* Only 2 SPIOs are configurable */
1869     if ((spio != MISC_SPIO_SPIO4) && (spio != MISC_SPIO_SPIO5)) {
1870         BLOGE(sc, "Invalid SPIO 0x%x mode 0x%x\n", spio, mode);
1871         return (-1);
1872     }
1873 
1874     bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_SPIO);
1875 
1876     /* read SPIO and mask except the float bits */
1877     spio_reg = (REG_RD(sc, MISC_REG_SPIO) & MISC_SPIO_FLOAT);
1878 
1879     switch (mode) {
1880     case MISC_SPIO_OUTPUT_LOW:
1881         BLOGD(sc, DBG_LOAD, "Set SPIO 0x%x -> output low\n", spio);
1882         /* clear FLOAT and set CLR */
1883         spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS);
1884         spio_reg |=  (spio << MISC_SPIO_CLR_POS);
1885         break;
1886 
1887     case MISC_SPIO_OUTPUT_HIGH:
1888         BLOGD(sc, DBG_LOAD, "Set SPIO 0x%x -> output high\n", spio);
1889         /* clear FLOAT and set SET */
1890         spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS);
1891         spio_reg |=  (spio << MISC_SPIO_SET_POS);
1892         break;
1893 
1894     case MISC_SPIO_INPUT_HI_Z:
1895         BLOGD(sc, DBG_LOAD, "Set SPIO 0x%x -> input\n", spio);
1896         /* set FLOAT */
1897         spio_reg |= (spio << MISC_SPIO_FLOAT_POS);
1898         break;
1899 
1900     default:
1901         break;
1902     }
1903 
1904     REG_WR(sc, MISC_REG_SPIO, spio_reg);
1905     bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_SPIO);
1906 
1907     return (0);
1908 }
1909 
1910 static int
1911 bxe_gpio_read(struct bxe_softc *sc,
1912               int              gpio_num,
1913               uint8_t          port)
1914 {
1915     /* The GPIO should be swapped if swap register is set and active */
1916     int gpio_port = ((REG_RD(sc, NIG_REG_PORT_SWAP) &&
1917                       REG_RD(sc, NIG_REG_STRAP_OVERRIDE)) ^ port);
1918     int gpio_shift = (gpio_num +
1919                       (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0));
1920     uint32_t gpio_mask = (1 << gpio_shift);
1921     uint32_t gpio_reg;
1922 
1923     if (gpio_num > MISC_REGISTERS_GPIO_3) {
1924         BLOGE(sc, "Invalid GPIO %d port 0x%x gpio_port %d gpio_shift %d"
1925             " gpio_mask 0x%x\n", gpio_num, port, gpio_port, gpio_shift,
1926             gpio_mask);
1927         return (-1);
1928     }
1929 
1930     /* read GPIO value */
1931     gpio_reg = REG_RD(sc, MISC_REG_GPIO);
1932 
1933     /* get the requested pin value */
1934     return ((gpio_reg & gpio_mask) == gpio_mask) ? 1 : 0;
1935 }
1936 
1937 static int
1938 bxe_gpio_write(struct bxe_softc *sc,
1939                int              gpio_num,
1940                uint32_t         mode,
1941                uint8_t          port)
1942 {
1943     /* The GPIO should be swapped if swap register is set and active */
1944     int gpio_port = ((REG_RD(sc, NIG_REG_PORT_SWAP) &&
1945                       REG_RD(sc, NIG_REG_STRAP_OVERRIDE)) ^ port);
1946     int gpio_shift = (gpio_num +
1947                       (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0));
1948     uint32_t gpio_mask = (1 << gpio_shift);
1949     uint32_t gpio_reg;
1950 
1951     if (gpio_num > MISC_REGISTERS_GPIO_3) {
1952         BLOGE(sc, "Invalid GPIO %d mode 0x%x port 0x%x gpio_port %d"
1953             " gpio_shift %d gpio_mask 0x%x\n",
1954             gpio_num, mode, port, gpio_port, gpio_shift, gpio_mask);
1955         return (-1);
1956     }
1957 
1958     bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
1959 
1960     /* read GPIO and mask except the float bits */
1961     gpio_reg = (REG_RD(sc, MISC_REG_GPIO) & MISC_REGISTERS_GPIO_FLOAT);
1962 
1963     switch (mode) {
1964     case MISC_REGISTERS_GPIO_OUTPUT_LOW:
1965         BLOGD(sc, DBG_PHY,
1966               "Set GPIO %d (shift %d) -> output low\n",
1967               gpio_num, gpio_shift);
1968         /* clear FLOAT and set CLR */
1969         gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
1970         gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_CLR_POS);
1971         break;
1972 
1973     case MISC_REGISTERS_GPIO_OUTPUT_HIGH:
1974         BLOGD(sc, DBG_PHY,
1975               "Set GPIO %d (shift %d) -> output high\n",
1976               gpio_num, gpio_shift);
1977         /* clear FLOAT and set SET */
1978         gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
1979         gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_SET_POS);
1980         break;
1981 
1982     case MISC_REGISTERS_GPIO_INPUT_HI_Z:
1983         BLOGD(sc, DBG_PHY,
1984               "Set GPIO %d (shift %d) -> input\n",
1985               gpio_num, gpio_shift);
1986         /* set FLOAT */
1987         gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
1988         break;
1989 
1990     default:
1991         break;
1992     }
1993 
1994     REG_WR(sc, MISC_REG_GPIO, gpio_reg);
1995     bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
1996 
1997     return (0);
1998 }
1999 
2000 static int
2001 bxe_gpio_mult_write(struct bxe_softc *sc,
2002                     uint8_t          pins,
2003                     uint32_t         mode)
2004 {
2005     uint32_t gpio_reg;
2006 
2007     /* any port swapping should be handled by caller */
2008 
2009     bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
2010 
2011     /* read GPIO and mask except the float bits */
2012     gpio_reg = REG_RD(sc, MISC_REG_GPIO);
2013     gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_FLOAT_POS);
2014     gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_CLR_POS);
2015     gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_SET_POS);
2016 
2017     switch (mode) {
2018     case MISC_REGISTERS_GPIO_OUTPUT_LOW:
2019         BLOGD(sc, DBG_PHY, "Set GPIO 0x%x -> output low\n", pins);
2020         /* set CLR */
2021         gpio_reg |= (pins << MISC_REGISTERS_GPIO_CLR_POS);
2022         break;
2023 
2024     case MISC_REGISTERS_GPIO_OUTPUT_HIGH:
2025         BLOGD(sc, DBG_PHY, "Set GPIO 0x%x -> output high\n", pins);
2026         /* set SET */
2027         gpio_reg |= (pins << MISC_REGISTERS_GPIO_SET_POS);
2028         break;
2029 
2030     case MISC_REGISTERS_GPIO_INPUT_HI_Z:
2031         BLOGD(sc, DBG_PHY, "Set GPIO 0x%x -> input\n", pins);
2032         /* set FLOAT */
2033         gpio_reg |= (pins << MISC_REGISTERS_GPIO_FLOAT_POS);
2034         break;
2035 
2036     default:
2037         BLOGE(sc, "Invalid GPIO mode assignment pins 0x%x mode 0x%x"
2038             " gpio_reg 0x%x\n", pins, mode, gpio_reg);
2039         bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
2040         return (-1);
2041     }
2042 
2043     REG_WR(sc, MISC_REG_GPIO, gpio_reg);
2044     bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
2045 
2046     return (0);
2047 }
2048 
2049 static int
2050 bxe_gpio_int_write(struct bxe_softc *sc,
2051                    int              gpio_num,
2052                    uint32_t         mode,
2053                    uint8_t          port)
2054 {
2055     /* The GPIO should be swapped if swap register is set and active */
2056     int gpio_port = ((REG_RD(sc, NIG_REG_PORT_SWAP) &&
2057                       REG_RD(sc, NIG_REG_STRAP_OVERRIDE)) ^ port);
2058     int gpio_shift = (gpio_num +
2059                       (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0));
2060     uint32_t gpio_mask = (1 << gpio_shift);
2061     uint32_t gpio_reg;
2062 
2063     if (gpio_num > MISC_REGISTERS_GPIO_3) {
2064         BLOGE(sc, "Invalid GPIO %d mode 0x%x port 0x%x gpio_port %d"
2065             " gpio_shift %d gpio_mask 0x%x\n",
2066             gpio_num, mode, port, gpio_port, gpio_shift, gpio_mask);
2067         return (-1);
2068     }
2069 
2070     bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
2071 
2072     /* read GPIO int */
2073     gpio_reg = REG_RD(sc, MISC_REG_GPIO_INT);
2074 
2075     switch (mode) {
2076     case MISC_REGISTERS_GPIO_INT_OUTPUT_CLR:
2077         BLOGD(sc, DBG_PHY,
2078               "Clear GPIO INT %d (shift %d) -> output low\n",
2079               gpio_num, gpio_shift);
2080         /* clear SET and set CLR */
2081         gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS);
2082         gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS);
2083         break;
2084 
2085     case MISC_REGISTERS_GPIO_INT_OUTPUT_SET:
2086         BLOGD(sc, DBG_PHY,
2087               "Set GPIO INT %d (shift %d) -> output high\n",
2088               gpio_num, gpio_shift);
2089         /* clear CLR and set SET */
2090         gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS);
2091         gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS);
2092         break;
2093 
2094     default:
2095         break;
2096     }
2097 
2098     REG_WR(sc, MISC_REG_GPIO_INT, gpio_reg);
2099     bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
2100 
2101     return (0);
2102 }
2103 
2104 uint32_t
2105 elink_cb_gpio_read(struct bxe_softc *sc,
2106                    uint16_t         gpio_num,
2107                    uint8_t          port)
2108 {
2109     return (bxe_gpio_read(sc, gpio_num, port));
2110 }
2111 
2112 uint8_t
2113 elink_cb_gpio_write(struct bxe_softc *sc,
2114                     uint16_t         gpio_num,
2115                     uint8_t          mode, /* 0=low 1=high */
2116                     uint8_t          port)
2117 {
2118     return (bxe_gpio_write(sc, gpio_num, mode, port));
2119 }
2120 
2121 uint8_t
2122 elink_cb_gpio_mult_write(struct bxe_softc *sc,
2123                          uint8_t          pins,
2124                          uint8_t          mode) /* 0=low 1=high */
2125 {
2126     return (bxe_gpio_mult_write(sc, pins, mode));
2127 }
2128 
2129 uint8_t
2130 elink_cb_gpio_int_write(struct bxe_softc *sc,
2131                         uint16_t         gpio_num,
2132                         uint8_t          mode, /* 0=low 1=high */
2133                         uint8_t          port)
2134 {
2135     return (bxe_gpio_int_write(sc, gpio_num, mode, port));
2136 }
2137 
2138 void
2139 elink_cb_notify_link_changed(struct bxe_softc *sc)
2140 {
2141     REG_WR(sc, (MISC_REG_AEU_GENERAL_ATTN_12 +
2142                 (SC_FUNC(sc) * sizeof(uint32_t))), 1);
2143 }
2144 
2145 /* send the MCP a request, block until there is a reply */
2146 uint32_t
2147 elink_cb_fw_command(struct bxe_softc *sc,
2148                     uint32_t         command,
2149                     uint32_t         param)
2150 {
2151     int mb_idx = SC_FW_MB_IDX(sc);
2152     uint32_t seq;
2153     uint32_t rc = 0;
2154     uint32_t cnt = 1;
2155     uint8_t delay = CHIP_REV_IS_SLOW(sc) ? 100 : 10;
2156 
2157     BXE_FWMB_LOCK(sc);
2158 
2159     seq = ++sc->fw_seq;
2160     SHMEM_WR(sc, func_mb[mb_idx].drv_mb_param, param);
2161     SHMEM_WR(sc, func_mb[mb_idx].drv_mb_header, (command | seq));
2162 
2163     BLOGD(sc, DBG_PHY,
2164           "wrote command 0x%08x to FW MB param 0x%08x\n",
2165           (command | seq), param);
2166 
2167     /* Let the FW do it's magic. GIve it up to 5 seconds... */
2168     do {
2169         DELAY(delay * 1000);
2170         rc = SHMEM_RD(sc, func_mb[mb_idx].fw_mb_header);
2171     } while ((seq != (rc & FW_MSG_SEQ_NUMBER_MASK)) && (cnt++ < 500));
2172 
2173     BLOGD(sc, DBG_PHY,
2174           "[after %d ms] read 0x%x seq 0x%x from FW MB\n",
2175           cnt*delay, rc, seq);
2176 
2177     /* is this a reply to our command? */
2178     if (seq == (rc & FW_MSG_SEQ_NUMBER_MASK)) {
2179         rc &= FW_MSG_CODE_MASK;
2180     } else {
2181         /* Ruh-roh! */
2182         BLOGE(sc, "FW failed to respond!\n");
2183         // XXX bxe_fw_dump(sc);
2184         rc = 0;
2185     }
2186 
2187     BXE_FWMB_UNLOCK(sc);
2188     return (rc);
2189 }
2190 
2191 static uint32_t
2192 bxe_fw_command(struct bxe_softc *sc,
2193                uint32_t         command,
2194                uint32_t         param)
2195 {
2196     return (elink_cb_fw_command(sc, command, param));
2197 }
2198 
2199 static void
2200 __storm_memset_dma_mapping(struct bxe_softc *sc,
2201                            uint32_t         addr,
2202                            bus_addr_t       mapping)
2203 {
2204     REG_WR(sc, addr, U64_LO(mapping));
2205     REG_WR(sc, (addr + 4), U64_HI(mapping));
2206 }
2207 
2208 static void
2209 storm_memset_spq_addr(struct bxe_softc *sc,
2210                       bus_addr_t       mapping,
2211                       uint16_t         abs_fid)
2212 {
2213     uint32_t addr = (XSEM_REG_FAST_MEMORY +
2214                      XSTORM_SPQ_PAGE_BASE_OFFSET(abs_fid));
2215     __storm_memset_dma_mapping(sc, addr, mapping);
2216 }
2217 
2218 static void
2219 storm_memset_vf_to_pf(struct bxe_softc *sc,
2220                       uint16_t         abs_fid,
2221                       uint16_t         pf_id)
2222 {
2223     REG_WR8(sc, (BAR_XSTRORM_INTMEM + XSTORM_VF_TO_PF_OFFSET(abs_fid)), pf_id);
2224     REG_WR8(sc, (BAR_CSTRORM_INTMEM + CSTORM_VF_TO_PF_OFFSET(abs_fid)), pf_id);
2225     REG_WR8(sc, (BAR_TSTRORM_INTMEM + TSTORM_VF_TO_PF_OFFSET(abs_fid)), pf_id);
2226     REG_WR8(sc, (BAR_USTRORM_INTMEM + USTORM_VF_TO_PF_OFFSET(abs_fid)), pf_id);
2227 }
2228 
2229 static void
2230 storm_memset_func_en(struct bxe_softc *sc,
2231                      uint16_t         abs_fid,
2232                      uint8_t          enable)
2233 {
2234     REG_WR8(sc, (BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(abs_fid)), enable);
2235     REG_WR8(sc, (BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(abs_fid)), enable);
2236     REG_WR8(sc, (BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(abs_fid)), enable);
2237     REG_WR8(sc, (BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(abs_fid)), enable);
2238 }
2239 
2240 static void
2241 storm_memset_eq_data(struct bxe_softc       *sc,
2242                      struct event_ring_data *eq_data,
2243                      uint16_t               pfid)
2244 {
2245     uint32_t addr;
2246     size_t size;
2247 
2248     addr = (BAR_CSTRORM_INTMEM + CSTORM_EVENT_RING_DATA_OFFSET(pfid));
2249     size = sizeof(struct event_ring_data);
2250     ecore_storm_memset_struct(sc, addr, size, (uint32_t *)eq_data);
2251 }
2252 
2253 static void
2254 storm_memset_eq_prod(struct bxe_softc *sc,
2255                      uint16_t         eq_prod,
2256                      uint16_t         pfid)
2257 {
2258     uint32_t addr = (BAR_CSTRORM_INTMEM +
2259                      CSTORM_EVENT_RING_PROD_OFFSET(pfid));
2260     REG_WR16(sc, addr, eq_prod);
2261 }
2262 
2263 /*
2264  * Post a slowpath command.
2265  *
2266  * A slowpath command is used to propagate a configuration change through
2267  * the controller in a controlled manner, allowing each STORM processor and
2268  * other H/W blocks to phase in the change.  The commands sent on the
2269  * slowpath are referred to as ramrods.  Depending on the ramrod used the
2270  * completion of the ramrod will occur in different ways.  Here's a
2271  * breakdown of ramrods and how they complete:
2272  *
2273  * RAMROD_CMD_ID_ETH_PORT_SETUP
2274  *   Used to setup the leading connection on a port.  Completes on the
2275  *   Receive Completion Queue (RCQ) of that port (typically fp[0]).
2276  *
2277  * RAMROD_CMD_ID_ETH_CLIENT_SETUP
2278  *   Used to setup an additional connection on a port.  Completes on the
2279  *   RCQ of the multi-queue/RSS connection being initialized.
2280  *
2281  * RAMROD_CMD_ID_ETH_STAT_QUERY
2282  *   Used to force the storm processors to update the statistics database
2283  *   in host memory.  This ramrod is send on the leading connection CID and
2284  *   completes as an index increment of the CSTORM on the default status
2285  *   block.
2286  *
2287  * RAMROD_CMD_ID_ETH_UPDATE
2288  *   Used to update the state of the leading connection, usually to udpate
2289  *   the RSS indirection table.  Completes on the RCQ of the leading
2290  *   connection. (Not currently used under FreeBSD until OS support becomes
2291  *   available.)
2292  *
2293  * RAMROD_CMD_ID_ETH_HALT
2294  *   Used when tearing down a connection prior to driver unload.  Completes
2295  *   on the RCQ of the multi-queue/RSS connection being torn down.  Don't
2296  *   use this on the leading connection.
2297  *
2298  * RAMROD_CMD_ID_ETH_SET_MAC
2299  *   Sets the Unicast/Broadcast/Multicast used by the port.  Completes on
2300  *   the RCQ of the leading connection.
2301  *
2302  * RAMROD_CMD_ID_ETH_CFC_DEL
2303  *   Used when tearing down a conneciton prior to driver unload.  Completes
2304  *   on the RCQ of the leading connection (since the current connection
2305  *   has been completely removed from controller memory).
2306  *
2307  * RAMROD_CMD_ID_ETH_PORT_DEL
2308  *   Used to tear down the leading connection prior to driver unload,
2309  *   typically fp[0].  Completes as an index increment of the CSTORM on the
2310  *   default status block.
2311  *
2312  * RAMROD_CMD_ID_ETH_FORWARD_SETUP
2313  *   Used for connection offload.  Completes on the RCQ of the multi-queue
2314  *   RSS connection that is being offloaded.  (Not currently used under
2315  *   FreeBSD.)
2316  *
2317  * There can only be one command pending per function.
2318  *
2319  * Returns:
2320  *   0 = Success, !0 = Failure.
2321  */
2322 
2323 /* must be called under the spq lock */
2324 static inline
2325 struct eth_spe *bxe_sp_get_next(struct bxe_softc *sc)
2326 {
2327     struct eth_spe *next_spe = sc->spq_prod_bd;
2328 
2329     if (sc->spq_prod_bd == sc->spq_last_bd) {
2330         /* wrap back to the first eth_spq */
2331         sc->spq_prod_bd = sc->spq;
2332         sc->spq_prod_idx = 0;
2333     } else {
2334         sc->spq_prod_bd++;
2335         sc->spq_prod_idx++;
2336     }
2337 
2338     return (next_spe);
2339 }
2340 
2341 /* must be called under the spq lock */
2342 static inline
2343 void bxe_sp_prod_update(struct bxe_softc *sc)
2344 {
2345     int func = SC_FUNC(sc);
2346 
2347     /*
2348      * Make sure that BD data is updated before writing the producer.
2349      * BD data is written to the memory, the producer is read from the
2350      * memory, thus we need a full memory barrier to ensure the ordering.
2351      */
2352     mb();
2353 
2354     REG_WR16(sc, (BAR_XSTRORM_INTMEM + XSTORM_SPQ_PROD_OFFSET(func)),
2355              sc->spq_prod_idx);
2356 
2357     bus_space_barrier(sc->bar[BAR0].tag, sc->bar[BAR0].handle, 0, 0,
2358                       BUS_SPACE_BARRIER_WRITE);
2359 }
2360 
2361 /**
2362  * bxe_is_contextless_ramrod - check if the current command ends on EQ
2363  *
2364  * @cmd:      command to check
2365  * @cmd_type: command type
2366  */
2367 static inline
2368 int bxe_is_contextless_ramrod(int cmd,
2369                               int cmd_type)
2370 {
2371     if ((cmd_type == NONE_CONNECTION_TYPE) ||
2372         (cmd == RAMROD_CMD_ID_ETH_FORWARD_SETUP) ||
2373         (cmd == RAMROD_CMD_ID_ETH_CLASSIFICATION_RULES) ||
2374         (cmd == RAMROD_CMD_ID_ETH_FILTER_RULES) ||
2375         (cmd == RAMROD_CMD_ID_ETH_MULTICAST_RULES) ||
2376         (cmd == RAMROD_CMD_ID_ETH_SET_MAC) ||
2377         (cmd == RAMROD_CMD_ID_ETH_RSS_UPDATE)) {
2378         return (TRUE);
2379     } else {
2380         return (FALSE);
2381     }
2382 }
2383 
2384 /**
2385  * bxe_sp_post - place a single command on an SP ring
2386  *
2387  * @sc:         driver handle
2388  * @command:    command to place (e.g. SETUP, FILTER_RULES, etc.)
2389  * @cid:        SW CID the command is related to
2390  * @data_hi:    command private data address (high 32 bits)
2391  * @data_lo:    command private data address (low 32 bits)
2392  * @cmd_type:   command type (e.g. NONE, ETH)
2393  *
2394  * SP data is handled as if it's always an address pair, thus data fields are
2395  * not swapped to little endian in upper functions. Instead this function swaps
2396  * data as if it's two uint32 fields.
2397  */
2398 int
2399 bxe_sp_post(struct bxe_softc *sc,
2400             int              command,
2401             int              cid,
2402             uint32_t         data_hi,
2403             uint32_t         data_lo,
2404             int              cmd_type)
2405 {
2406     struct eth_spe *spe;
2407     uint16_t type;
2408     int common;
2409 
2410     common = bxe_is_contextless_ramrod(command, cmd_type);
2411 
2412     BXE_SP_LOCK(sc);
2413 
2414     if (common) {
2415         if (!atomic_load_acq_long(&sc->eq_spq_left)) {
2416             BLOGE(sc, "EQ ring is full!\n");
2417             BXE_SP_UNLOCK(sc);
2418             return (-1);
2419         }
2420     } else {
2421         if (!atomic_load_acq_long(&sc->cq_spq_left)) {
2422             BLOGE(sc, "SPQ ring is full!\n");
2423             BXE_SP_UNLOCK(sc);
2424             return (-1);
2425         }
2426     }
2427 
2428     spe = bxe_sp_get_next(sc);
2429 
2430     /* CID needs port number to be encoded int it */
2431     spe->hdr.conn_and_cmd_data =
2432         htole32((command << SPE_HDR_T_CMD_ID_SHIFT) | HW_CID(sc, cid));
2433 
2434     type = (cmd_type << SPE_HDR_T_CONN_TYPE_SHIFT) & SPE_HDR_T_CONN_TYPE;
2435 
2436     /* TBD: Check if it works for VFs */
2437     type |= ((SC_FUNC(sc) << SPE_HDR_T_FUNCTION_ID_SHIFT) &
2438              SPE_HDR_T_FUNCTION_ID);
2439 
2440     spe->hdr.type = htole16(type);
2441 
2442     spe->data.update_data_addr.hi = htole32(data_hi);
2443     spe->data.update_data_addr.lo = htole32(data_lo);
2444 
2445     /*
2446      * It's ok if the actual decrement is issued towards the memory
2447      * somewhere between the lock and unlock. Thus no more explict
2448      * memory barrier is needed.
2449      */
2450     if (common) {
2451         atomic_subtract_acq_long(&sc->eq_spq_left, 1);
2452     } else {
2453         atomic_subtract_acq_long(&sc->cq_spq_left, 1);
2454     }
2455 
2456     BLOGD(sc, DBG_SP, "SPQE -> %#jx\n", (uintmax_t)sc->spq_dma.paddr);
2457     BLOGD(sc, DBG_SP, "FUNC_RDATA -> %p / %#jx\n",
2458           BXE_SP(sc, func_rdata), (uintmax_t)BXE_SP_MAPPING(sc, func_rdata));
2459     BLOGD(sc, DBG_SP,
2460           "SPQE[%x] (%x:%x) (cmd, common?) (%d,%d) hw_cid %x data (%x:%x) type(0x%x) left (CQ, EQ) (%lx,%lx)\n",
2461           sc->spq_prod_idx,
2462           (uint32_t)U64_HI(sc->spq_dma.paddr),
2463           (uint32_t)(U64_LO(sc->spq_dma.paddr) + (uint8_t *)sc->spq_prod_bd - (uint8_t *)sc->spq),
2464           command,
2465           common,
2466           HW_CID(sc, cid),
2467           data_hi,
2468           data_lo,
2469           type,
2470           atomic_load_acq_long(&sc->cq_spq_left),
2471           atomic_load_acq_long(&sc->eq_spq_left));
2472 
2473     bxe_sp_prod_update(sc);
2474 
2475     BXE_SP_UNLOCK(sc);
2476     return (0);
2477 }
2478 
2479 /**
2480  * bxe_debug_print_ind_table - prints the indirection table configuration.
2481  *
2482  * @sc: driver hanlde
2483  * @p:  pointer to rss configuration
2484  */
2485 
2486 /*
2487  * FreeBSD Device probe function.
2488  *
2489  * Compares the device found to the driver's list of supported devices and
2490  * reports back to the bsd loader whether this is the right driver for the device.
2491  * This is the driver entry function called from the "kldload" command.
2492  *
2493  * Returns:
2494  *   BUS_PROBE_DEFAULT on success, positive value on failure.
2495  */
2496 static int
2497 bxe_probe(device_t dev)
2498 {
2499     struct bxe_device_type *t;
2500     char *descbuf;
2501     uint16_t did, sdid, svid, vid;
2502 
2503     /* Find our device structure */
2504     t = bxe_devs;
2505 
2506     /* Get the data for the device to be probed. */
2507     vid  = pci_get_vendor(dev);
2508     did  = pci_get_device(dev);
2509     svid = pci_get_subvendor(dev);
2510     sdid = pci_get_subdevice(dev);
2511 
2512     /* Look through the list of known devices for a match. */
2513     while (t->bxe_name != NULL) {
2514         if ((vid == t->bxe_vid) && (did == t->bxe_did) &&
2515             ((svid == t->bxe_svid) || (t->bxe_svid == PCI_ANY_ID)) &&
2516             ((sdid == t->bxe_sdid) || (t->bxe_sdid == PCI_ANY_ID))) {
2517             descbuf = malloc(BXE_DEVDESC_MAX, M_TEMP, M_NOWAIT);
2518             if (descbuf == NULL)
2519                 return (ENOMEM);
2520 
2521             /* Print out the device identity. */
2522             snprintf(descbuf, BXE_DEVDESC_MAX,
2523                      "%s (%c%d) BXE v:%s\n", t->bxe_name,
2524                      (((pci_read_config(dev, PCIR_REVID, 4) &
2525                         0xf0) >> 4) + 'A'),
2526                      (pci_read_config(dev, PCIR_REVID, 4) & 0xf),
2527                      BXE_DRIVER_VERSION);
2528 
2529             device_set_desc_copy(dev, descbuf);
2530             free(descbuf, M_TEMP);
2531             return (BUS_PROBE_DEFAULT);
2532         }
2533         t++;
2534     }
2535 
2536     return (ENXIO);
2537 }
2538 
2539 static void
2540 bxe_init_mutexes(struct bxe_softc *sc)
2541 {
2542 #ifdef BXE_CORE_LOCK_SX
2543     snprintf(sc->core_sx_name, sizeof(sc->core_sx_name),
2544              "bxe%d_core_lock", sc->unit);
2545     sx_init(&sc->core_sx, sc->core_sx_name);
2546 #else
2547     snprintf(sc->core_mtx_name, sizeof(sc->core_mtx_name),
2548              "bxe%d_core_lock", sc->unit);
2549     mtx_init(&sc->core_mtx, sc->core_mtx_name, NULL, MTX_DEF);
2550 #endif
2551 
2552     snprintf(sc->sp_mtx_name, sizeof(sc->sp_mtx_name),
2553              "bxe%d_sp_lock", sc->unit);
2554     mtx_init(&sc->sp_mtx, sc->sp_mtx_name, NULL, MTX_DEF);
2555 
2556     snprintf(sc->dmae_mtx_name, sizeof(sc->dmae_mtx_name),
2557              "bxe%d_dmae_lock", sc->unit);
2558     mtx_init(&sc->dmae_mtx, sc->dmae_mtx_name, NULL, MTX_DEF);
2559 
2560     snprintf(sc->port.phy_mtx_name, sizeof(sc->port.phy_mtx_name),
2561              "bxe%d_phy_lock", sc->unit);
2562     mtx_init(&sc->port.phy_mtx, sc->port.phy_mtx_name, NULL, MTX_DEF);
2563 
2564     snprintf(sc->fwmb_mtx_name, sizeof(sc->fwmb_mtx_name),
2565              "bxe%d_fwmb_lock", sc->unit);
2566     mtx_init(&sc->fwmb_mtx, sc->fwmb_mtx_name, NULL, MTX_DEF);
2567 
2568     snprintf(sc->print_mtx_name, sizeof(sc->print_mtx_name),
2569              "bxe%d_print_lock", sc->unit);
2570     mtx_init(&(sc->print_mtx), sc->print_mtx_name, NULL, MTX_DEF);
2571 
2572     snprintf(sc->stats_mtx_name, sizeof(sc->stats_mtx_name),
2573              "bxe%d_stats_lock", sc->unit);
2574     mtx_init(&(sc->stats_mtx), sc->stats_mtx_name, NULL, MTX_DEF);
2575 
2576     snprintf(sc->mcast_mtx_name, sizeof(sc->mcast_mtx_name),
2577              "bxe%d_mcast_lock", sc->unit);
2578     mtx_init(&(sc->mcast_mtx), sc->mcast_mtx_name, NULL, MTX_DEF);
2579 }
2580 
2581 static void
2582 bxe_release_mutexes(struct bxe_softc *sc)
2583 {
2584 #ifdef BXE_CORE_LOCK_SX
2585     sx_destroy(&sc->core_sx);
2586 #else
2587     if (mtx_initialized(&sc->core_mtx)) {
2588         mtx_destroy(&sc->core_mtx);
2589     }
2590 #endif
2591 
2592     if (mtx_initialized(&sc->sp_mtx)) {
2593         mtx_destroy(&sc->sp_mtx);
2594     }
2595 
2596     if (mtx_initialized(&sc->dmae_mtx)) {
2597         mtx_destroy(&sc->dmae_mtx);
2598     }
2599 
2600     if (mtx_initialized(&sc->port.phy_mtx)) {
2601         mtx_destroy(&sc->port.phy_mtx);
2602     }
2603 
2604     if (mtx_initialized(&sc->fwmb_mtx)) {
2605         mtx_destroy(&sc->fwmb_mtx);
2606     }
2607 
2608     if (mtx_initialized(&sc->print_mtx)) {
2609         mtx_destroy(&sc->print_mtx);
2610     }
2611 
2612     if (mtx_initialized(&sc->stats_mtx)) {
2613         mtx_destroy(&sc->stats_mtx);
2614     }
2615 
2616     if (mtx_initialized(&sc->mcast_mtx)) {
2617         mtx_destroy(&sc->mcast_mtx);
2618     }
2619 }
2620 
2621 static void
2622 bxe_tx_disable(struct bxe_softc* sc)
2623 {
2624     if_t ifp = sc->ifp;
2625 
2626     /* tell the stack the driver is stopped and TX queue is full */
2627     if (ifp !=  NULL) {
2628         if_setdrvflags(ifp, 0);
2629     }
2630 }
2631 
2632 static void
2633 bxe_drv_pulse(struct bxe_softc *sc)
2634 {
2635     SHMEM_WR(sc, func_mb[SC_FW_MB_IDX(sc)].drv_pulse_mb,
2636              sc->fw_drv_pulse_wr_seq);
2637 }
2638 
2639 static inline uint16_t
2640 bxe_tx_avail(struct bxe_softc *sc,
2641              struct bxe_fastpath *fp)
2642 {
2643     int16_t  used;
2644     uint16_t prod;
2645     uint16_t cons;
2646 
2647     prod = fp->tx_bd_prod;
2648     cons = fp->tx_bd_cons;
2649 
2650     used = SUB_S16(prod, cons);
2651 
2652     return (int16_t)(sc->tx_ring_size) - used;
2653 }
2654 
2655 static inline int
2656 bxe_tx_queue_has_work(struct bxe_fastpath *fp)
2657 {
2658     uint16_t hw_cons;
2659 
2660     mb(); /* status block fields can change */
2661     hw_cons = le16toh(*fp->tx_cons_sb);
2662     return (hw_cons != fp->tx_pkt_cons);
2663 }
2664 
2665 static inline uint8_t
2666 bxe_has_tx_work(struct bxe_fastpath *fp)
2667 {
2668     /* expand this for multi-cos if ever supported */
2669     return (bxe_tx_queue_has_work(fp)) ? TRUE : FALSE;
2670 }
2671 
2672 static inline int
2673 bxe_has_rx_work(struct bxe_fastpath *fp)
2674 {
2675     uint16_t rx_cq_cons_sb;
2676 
2677     mb(); /* status block fields can change */
2678     rx_cq_cons_sb = le16toh(*fp->rx_cq_cons_sb);
2679     if ((rx_cq_cons_sb & RCQ_MAX) == RCQ_MAX)
2680         rx_cq_cons_sb++;
2681     return (fp->rx_cq_cons != rx_cq_cons_sb);
2682 }
2683 
2684 static void
2685 bxe_sp_event(struct bxe_softc    *sc,
2686              struct bxe_fastpath *fp,
2687              union eth_rx_cqe    *rr_cqe)
2688 {
2689     int cid = SW_CID(rr_cqe->ramrod_cqe.conn_and_cmd_data);
2690     int command = CQE_CMD(rr_cqe->ramrod_cqe.conn_and_cmd_data);
2691     enum ecore_queue_cmd drv_cmd = ECORE_Q_CMD_MAX;
2692     struct ecore_queue_sp_obj *q_obj = &BXE_SP_OBJ(sc, fp).q_obj;
2693 
2694     BLOGD(sc, DBG_SP, "fp=%d cid=%d got ramrod #%d state is %x type is %d\n",
2695           fp->index, cid, command, sc->state, rr_cqe->ramrod_cqe.ramrod_type);
2696 
2697     switch (command) {
2698     case (RAMROD_CMD_ID_ETH_CLIENT_UPDATE):
2699         BLOGD(sc, DBG_SP, "got UPDATE ramrod. CID %d\n", cid);
2700         drv_cmd = ECORE_Q_CMD_UPDATE;
2701         break;
2702 
2703     case (RAMROD_CMD_ID_ETH_CLIENT_SETUP):
2704         BLOGD(sc, DBG_SP, "got MULTI[%d] setup ramrod\n", cid);
2705         drv_cmd = ECORE_Q_CMD_SETUP;
2706         break;
2707 
2708     case (RAMROD_CMD_ID_ETH_TX_QUEUE_SETUP):
2709         BLOGD(sc, DBG_SP, "got MULTI[%d] tx-only setup ramrod\n", cid);
2710         drv_cmd = ECORE_Q_CMD_SETUP_TX_ONLY;
2711         break;
2712 
2713     case (RAMROD_CMD_ID_ETH_HALT):
2714         BLOGD(sc, DBG_SP, "got MULTI[%d] halt ramrod\n", cid);
2715         drv_cmd = ECORE_Q_CMD_HALT;
2716         break;
2717 
2718     case (RAMROD_CMD_ID_ETH_TERMINATE):
2719         BLOGD(sc, DBG_SP, "got MULTI[%d] teminate ramrod\n", cid);
2720         drv_cmd = ECORE_Q_CMD_TERMINATE;
2721         break;
2722 
2723     case (RAMROD_CMD_ID_ETH_EMPTY):
2724         BLOGD(sc, DBG_SP, "got MULTI[%d] empty ramrod\n", cid);
2725         drv_cmd = ECORE_Q_CMD_EMPTY;
2726         break;
2727 
2728     default:
2729         BLOGD(sc, DBG_SP, "ERROR: unexpected MC reply (%d) on fp[%d]\n",
2730               command, fp->index);
2731         return;
2732     }
2733 
2734     if ((drv_cmd != ECORE_Q_CMD_MAX) &&
2735         q_obj->complete_cmd(sc, q_obj, drv_cmd)) {
2736         /*
2737          * q_obj->complete_cmd() failure means that this was
2738          * an unexpected completion.
2739          *
2740          * In this case we don't want to increase the sc->spq_left
2741          * because apparently we haven't sent this command the first
2742          * place.
2743          */
2744         // bxe_panic(sc, ("Unexpected SP completion\n"));
2745         return;
2746     }
2747 
2748     atomic_add_acq_long(&sc->cq_spq_left, 1);
2749 
2750     BLOGD(sc, DBG_SP, "sc->cq_spq_left 0x%lx\n",
2751           atomic_load_acq_long(&sc->cq_spq_left));
2752 }
2753 
2754 /*
2755  * The current mbuf is part of an aggregation. Move the mbuf into the TPA
2756  * aggregation queue, put an empty mbuf back onto the receive chain, and mark
2757  * the current aggregation queue as in-progress.
2758  */
2759 static void
2760 bxe_tpa_start(struct bxe_softc            *sc,
2761               struct bxe_fastpath         *fp,
2762               uint16_t                    queue,
2763               uint16_t                    cons,
2764               uint16_t                    prod,
2765               struct eth_fast_path_rx_cqe *cqe)
2766 {
2767     struct bxe_sw_rx_bd tmp_bd;
2768     struct bxe_sw_rx_bd *rx_buf;
2769     struct eth_rx_bd *rx_bd;
2770     int max_agg_queues;
2771     struct bxe_sw_tpa_info *tpa_info = &fp->rx_tpa_info[queue];
2772     uint16_t index;
2773 
2774     BLOGD(sc, DBG_LRO, "fp[%02d].tpa[%02d] TPA START "
2775                        "cons=%d prod=%d\n",
2776           fp->index, queue, cons, prod);
2777 
2778     max_agg_queues = MAX_AGG_QS(sc);
2779 
2780     KASSERT((queue < max_agg_queues),
2781             ("fp[%02d] invalid aggr queue (%d >= %d)!",
2782              fp->index, queue, max_agg_queues));
2783 
2784     KASSERT((tpa_info->state == BXE_TPA_STATE_STOP),
2785             ("fp[%02d].tpa[%02d] starting aggr on queue not stopped!",
2786              fp->index, queue));
2787 
2788     /* copy the existing mbuf and mapping from the TPA pool */
2789     tmp_bd = tpa_info->bd;
2790 
2791     if (tmp_bd.m == NULL) {
2792         uint32_t *tmp;
2793 
2794         tmp = (uint32_t *)cqe;
2795 
2796         BLOGE(sc, "fp[%02d].tpa[%02d] cons[%d] prod[%d]mbuf not allocated!\n",
2797               fp->index, queue, cons, prod);
2798         BLOGE(sc, "cqe [0x%08x 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x]\n",
2799             *tmp, *(tmp+1), *(tmp+2), *(tmp+3), *(tmp+4), *(tmp+5), *(tmp+6), *(tmp+7));
2800 
2801         /* XXX Error handling? */
2802         return;
2803     }
2804 
2805     /* change the TPA queue to the start state */
2806     tpa_info->state            = BXE_TPA_STATE_START;
2807     tpa_info->placement_offset = cqe->placement_offset;
2808     tpa_info->parsing_flags    = le16toh(cqe->pars_flags.flags);
2809     tpa_info->vlan_tag         = le16toh(cqe->vlan_tag);
2810     tpa_info->len_on_bd        = le16toh(cqe->len_on_bd);
2811 
2812     fp->rx_tpa_queue_used |= (1 << queue);
2813 
2814     /*
2815      * If all the buffer descriptors are filled with mbufs then fill in
2816      * the current consumer index with a new BD. Else if a maximum Rx
2817      * buffer limit is imposed then fill in the next producer index.
2818      */
2819     index = (sc->max_rx_bufs != RX_BD_USABLE) ?
2820                 prod : cons;
2821 
2822     /* move the received mbuf and mapping to TPA pool */
2823     tpa_info->bd = fp->rx_mbuf_chain[cons];
2824 
2825     /* release any existing RX BD mbuf mappings */
2826     if (cons != index) {
2827         rx_buf = &fp->rx_mbuf_chain[cons];
2828 
2829         if (rx_buf->m_map != NULL) {
2830             bus_dmamap_sync(fp->rx_mbuf_tag, rx_buf->m_map,
2831                             BUS_DMASYNC_POSTREAD);
2832             bus_dmamap_unload(fp->rx_mbuf_tag, rx_buf->m_map);
2833         }
2834 
2835         /*
2836          * We get here when the maximum number of rx buffers is less than
2837          * RX_BD_USABLE. The mbuf is already saved above so it's OK to NULL
2838          * it out here without concern of a memory leak.
2839          */
2840         fp->rx_mbuf_chain[cons].m = NULL;
2841     }
2842 
2843     /* update the Rx SW BD with the mbuf info from the TPA pool */
2844     fp->rx_mbuf_chain[index] = tmp_bd;
2845 
2846     /* update the Rx BD with the empty mbuf phys address from the TPA pool */
2847     rx_bd = &fp->rx_chain[index];
2848     rx_bd->addr_hi = htole32(U64_HI(tpa_info->seg.ds_addr));
2849     rx_bd->addr_lo = htole32(U64_LO(tpa_info->seg.ds_addr));
2850 }
2851 
2852 /*
2853  * When a TPA aggregation is completed, loop through the individual mbufs
2854  * of the aggregation, combining them into a single mbuf which will be sent
2855  * up the stack. Refill all freed SGEs with mbufs as we go along.
2856  */
2857 static int
2858 bxe_fill_frag_mbuf(struct bxe_softc          *sc,
2859                    struct bxe_fastpath       *fp,
2860                    struct bxe_sw_tpa_info    *tpa_info,
2861                    uint16_t                  queue,
2862                    uint16_t                  pages,
2863                    struct mbuf               *m,
2864 			       struct eth_end_agg_rx_cqe *cqe,
2865                    uint16_t                  cqe_idx)
2866 {
2867     struct mbuf *m_frag;
2868     uint32_t frag_len, frag_size, i;
2869     uint16_t sge_idx;
2870     int rc = 0;
2871     int j;
2872 
2873     frag_size = le16toh(cqe->pkt_len) - tpa_info->len_on_bd;
2874 
2875     BLOGD(sc, DBG_LRO,
2876           "fp[%02d].tpa[%02d] TPA fill len_on_bd=%d frag_size=%d pages=%d\n",
2877           fp->index, queue, tpa_info->len_on_bd, frag_size, pages);
2878 
2879     /* make sure the aggregated frame is not too big to handle */
2880     if (pages > 8 * PAGES_PER_SGE) {
2881 
2882         uint32_t *tmp = (uint32_t *)cqe;
2883 
2884         BLOGE(sc, "fp[%02d].sge[0x%04x] has too many pages (%d)! "
2885                   "pkt_len=%d len_on_bd=%d frag_size=%d\n",
2886               fp->index, cqe_idx, pages, le16toh(cqe->pkt_len),
2887               tpa_info->len_on_bd, frag_size);
2888 
2889         BLOGE(sc, "cqe [0x%08x 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x]\n",
2890             *tmp, *(tmp+1), *(tmp+2), *(tmp+3), *(tmp+4), *(tmp+5), *(tmp+6), *(tmp+7));
2891 
2892         bxe_panic(sc, ("sge page count error\n"));
2893         return (EINVAL);
2894     }
2895 
2896     /*
2897      * Scan through the scatter gather list pulling individual mbufs into a
2898      * single mbuf for the host stack.
2899      */
2900     for (i = 0, j = 0; i < pages; i += PAGES_PER_SGE, j++) {
2901         sge_idx = RX_SGE(le16toh(cqe->sgl_or_raw_data.sgl[j]));
2902 
2903         /*
2904          * Firmware gives the indices of the SGE as if the ring is an array
2905          * (meaning that the "next" element will consume 2 indices).
2906          */
2907         frag_len = min(frag_size, (uint32_t)(SGE_PAGES));
2908 
2909         BLOGD(sc, DBG_LRO, "fp[%02d].tpa[%02d] TPA fill i=%d j=%d "
2910                            "sge_idx=%d frag_size=%d frag_len=%d\n",
2911               fp->index, queue, i, j, sge_idx, frag_size, frag_len);
2912 
2913         m_frag = fp->rx_sge_mbuf_chain[sge_idx].m;
2914 
2915         /* allocate a new mbuf for the SGE */
2916         rc = bxe_alloc_rx_sge_mbuf(fp, sge_idx);
2917         if (rc) {
2918             /* Leave all remaining SGEs in the ring! */
2919             return (rc);
2920         }
2921 
2922         /* update the fragment length */
2923         m_frag->m_len = frag_len;
2924 
2925         /* concatenate the fragment to the head mbuf */
2926         m_cat(m, m_frag);
2927         fp->eth_q_stats.mbuf_alloc_sge--;
2928 
2929         /* update the TPA mbuf size and remaining fragment size */
2930         m->m_pkthdr.len += frag_len;
2931         frag_size -= frag_len;
2932     }
2933 
2934     BLOGD(sc, DBG_LRO,
2935           "fp[%02d].tpa[%02d] TPA fill done frag_size=%d\n",
2936           fp->index, queue, frag_size);
2937 
2938     return (rc);
2939 }
2940 
2941 static inline void
2942 bxe_clear_sge_mask_next_elems(struct bxe_fastpath *fp)
2943 {
2944     int i, j;
2945 
2946     for (i = 1; i <= RX_SGE_NUM_PAGES; i++) {
2947         int idx = RX_SGE_TOTAL_PER_PAGE * i - 1;
2948 
2949         for (j = 0; j < 2; j++) {
2950             BIT_VEC64_CLEAR_BIT(fp->sge_mask, idx);
2951             idx--;
2952         }
2953     }
2954 }
2955 
2956 static inline void
2957 bxe_init_sge_ring_bit_mask(struct bxe_fastpath *fp)
2958 {
2959     /* set the mask to all 1's, it's faster to compare to 0 than to 0xf's */
2960     memset(fp->sge_mask, 0xff, sizeof(fp->sge_mask));
2961 
2962     /*
2963      * Clear the two last indices in the page to 1. These are the indices that
2964      * correspond to the "next" element, hence will never be indicated and
2965      * should be removed from the calculations.
2966      */
2967     bxe_clear_sge_mask_next_elems(fp);
2968 }
2969 
2970 static inline void
2971 bxe_update_last_max_sge(struct bxe_fastpath *fp,
2972                         uint16_t            idx)
2973 {
2974     uint16_t last_max = fp->last_max_sge;
2975 
2976     if (SUB_S16(idx, last_max) > 0) {
2977         fp->last_max_sge = idx;
2978     }
2979 }
2980 
2981 static inline void
2982 bxe_update_sge_prod(struct bxe_softc          *sc,
2983                     struct bxe_fastpath       *fp,
2984                     uint16_t                  sge_len,
2985                     union eth_sgl_or_raw_data *cqe)
2986 {
2987     uint16_t last_max, last_elem, first_elem;
2988     uint16_t delta = 0;
2989     uint16_t i;
2990 
2991     if (!sge_len) {
2992         return;
2993     }
2994 
2995     /* first mark all used pages */
2996     for (i = 0; i < sge_len; i++) {
2997         BIT_VEC64_CLEAR_BIT(fp->sge_mask,
2998                             RX_SGE(le16toh(cqe->sgl[i])));
2999     }
3000 
3001     BLOGD(sc, DBG_LRO,
3002           "fp[%02d] fp_cqe->sgl[%d] = %d\n",
3003           fp->index, sge_len - 1,
3004           le16toh(cqe->sgl[sge_len - 1]));
3005 
3006     /* assume that the last SGE index is the biggest */
3007     bxe_update_last_max_sge(fp,
3008                             le16toh(cqe->sgl[sge_len - 1]));
3009 
3010     last_max = RX_SGE(fp->last_max_sge);
3011     last_elem = last_max >> BIT_VEC64_ELEM_SHIFT;
3012     first_elem = RX_SGE(fp->rx_sge_prod) >> BIT_VEC64_ELEM_SHIFT;
3013 
3014     /* if ring is not full */
3015     if (last_elem + 1 != first_elem) {
3016         last_elem++;
3017     }
3018 
3019     /* now update the prod */
3020     for (i = first_elem; i != last_elem; i = RX_SGE_NEXT_MASK_ELEM(i)) {
3021         if (__predict_true(fp->sge_mask[i])) {
3022             break;
3023         }
3024 
3025         fp->sge_mask[i] = BIT_VEC64_ELEM_ONE_MASK;
3026         delta += BIT_VEC64_ELEM_SZ;
3027     }
3028 
3029     if (delta > 0) {
3030         fp->rx_sge_prod += delta;
3031         /* clear page-end entries */
3032         bxe_clear_sge_mask_next_elems(fp);
3033     }
3034 
3035     BLOGD(sc, DBG_LRO,
3036           "fp[%02d] fp->last_max_sge=%d fp->rx_sge_prod=%d\n",
3037           fp->index, fp->last_max_sge, fp->rx_sge_prod);
3038 }
3039 
3040 /*
3041  * The aggregation on the current TPA queue has completed. Pull the individual
3042  * mbuf fragments together into a single mbuf, perform all necessary checksum
3043  * calculations, and send the resuting mbuf to the stack.
3044  */
3045 static void
3046 bxe_tpa_stop(struct bxe_softc          *sc,
3047              struct bxe_fastpath       *fp,
3048              struct bxe_sw_tpa_info    *tpa_info,
3049              uint16_t                  queue,
3050              uint16_t                  pages,
3051 			 struct eth_end_agg_rx_cqe *cqe,
3052              uint16_t                  cqe_idx)
3053 {
3054     if_t ifp = sc->ifp;
3055     struct mbuf *m;
3056     int rc = 0;
3057 
3058     BLOGD(sc, DBG_LRO,
3059           "fp[%02d].tpa[%02d] pad=%d pkt_len=%d pages=%d vlan=%d\n",
3060           fp->index, queue, tpa_info->placement_offset,
3061           le16toh(cqe->pkt_len), pages, tpa_info->vlan_tag);
3062 
3063     m = tpa_info->bd.m;
3064 
3065     /* allocate a replacement before modifying existing mbuf */
3066     rc = bxe_alloc_rx_tpa_mbuf(fp, queue);
3067     if (rc) {
3068         /* drop the frame and log an error */
3069         fp->eth_q_stats.rx_soft_errors++;
3070         goto bxe_tpa_stop_exit;
3071     }
3072 
3073     /* we have a replacement, fixup the current mbuf */
3074     m_adj(m, tpa_info->placement_offset);
3075     m->m_pkthdr.len = m->m_len = tpa_info->len_on_bd;
3076 
3077     /* mark the checksums valid (taken care of by the firmware) */
3078     fp->eth_q_stats.rx_ofld_frames_csum_ip++;
3079     fp->eth_q_stats.rx_ofld_frames_csum_tcp_udp++;
3080     m->m_pkthdr.csum_data = 0xffff;
3081     m->m_pkthdr.csum_flags |= (CSUM_IP_CHECKED |
3082                                CSUM_IP_VALID   |
3083                                CSUM_DATA_VALID |
3084                                CSUM_PSEUDO_HDR);
3085 
3086     /* aggregate all of the SGEs into a single mbuf */
3087     rc = bxe_fill_frag_mbuf(sc, fp, tpa_info, queue, pages, m, cqe, cqe_idx);
3088     if (rc) {
3089         /* drop the packet and log an error */
3090         fp->eth_q_stats.rx_soft_errors++;
3091         m_freem(m);
3092     } else {
3093         if (tpa_info->parsing_flags & PARSING_FLAGS_INNER_VLAN_EXIST) {
3094             m->m_pkthdr.ether_vtag = tpa_info->vlan_tag;
3095             m->m_flags |= M_VLANTAG;
3096         }
3097 
3098         /* assign packet to this interface interface */
3099         if_setrcvif(m, ifp);
3100 
3101         /* specify what RSS queue was used for this flow */
3102         m->m_pkthdr.flowid = fp->index;
3103         BXE_SET_FLOWID(m);
3104 
3105         if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1);
3106         fp->eth_q_stats.rx_tpa_pkts++;
3107 
3108         /* pass the frame to the stack */
3109         if_input(ifp, m);
3110     }
3111 
3112     /* we passed an mbuf up the stack or dropped the frame */
3113     fp->eth_q_stats.mbuf_alloc_tpa--;
3114 
3115 bxe_tpa_stop_exit:
3116 
3117     fp->rx_tpa_info[queue].state = BXE_TPA_STATE_STOP;
3118     fp->rx_tpa_queue_used &= ~(1 << queue);
3119 }
3120 
3121 static uint8_t
3122 bxe_service_rxsgl(
3123                  struct bxe_fastpath *fp,
3124                  uint16_t len,
3125                  uint16_t lenonbd,
3126                  struct mbuf *m,
3127                  struct eth_fast_path_rx_cqe *cqe_fp)
3128 {
3129     struct mbuf *m_frag;
3130     uint16_t frags, frag_len;
3131     uint16_t sge_idx = 0;
3132     uint16_t j;
3133     uint8_t i, rc = 0;
3134     uint32_t frag_size;
3135 
3136     /* adjust the mbuf */
3137     m->m_len = lenonbd;
3138 
3139     frag_size =  len - lenonbd;
3140     frags = SGE_PAGE_ALIGN(frag_size) >> SGE_PAGE_SHIFT;
3141 
3142     for (i = 0, j = 0; i < frags; i += PAGES_PER_SGE, j++) {
3143         sge_idx = RX_SGE(le16toh(cqe_fp->sgl_or_raw_data.sgl[j]));
3144 
3145         m_frag = fp->rx_sge_mbuf_chain[sge_idx].m;
3146         frag_len = min(frag_size, (uint32_t)(SGE_PAGE_SIZE));
3147         m_frag->m_len = frag_len;
3148 
3149        /* allocate a new mbuf for the SGE */
3150         rc = bxe_alloc_rx_sge_mbuf(fp, sge_idx);
3151         if (rc) {
3152             /* Leave all remaining SGEs in the ring! */
3153             return (rc);
3154         }
3155         fp->eth_q_stats.mbuf_alloc_sge--;
3156 
3157         /* concatenate the fragment to the head mbuf */
3158         m_cat(m, m_frag);
3159 
3160         frag_size -= frag_len;
3161     }
3162 
3163     bxe_update_sge_prod(fp->sc, fp, frags, &cqe_fp->sgl_or_raw_data);
3164 
3165     return rc;
3166 }
3167 
3168 static uint8_t
3169 bxe_rxeof(struct bxe_softc    *sc,
3170           struct bxe_fastpath *fp)
3171 {
3172     if_t ifp = sc->ifp;
3173     uint16_t bd_cons, bd_prod, bd_prod_fw, comp_ring_cons;
3174     uint16_t hw_cq_cons, sw_cq_cons, sw_cq_prod;
3175     int rx_pkts = 0;
3176     int rc = 0;
3177 
3178     BXE_FP_RX_LOCK(fp);
3179 
3180     /* CQ "next element" is of the size of the regular element */
3181     hw_cq_cons = le16toh(*fp->rx_cq_cons_sb);
3182     if ((hw_cq_cons & RCQ_USABLE_PER_PAGE) == RCQ_USABLE_PER_PAGE) {
3183         hw_cq_cons++;
3184     }
3185 
3186     bd_cons = fp->rx_bd_cons;
3187     bd_prod = fp->rx_bd_prod;
3188     bd_prod_fw = bd_prod;
3189     sw_cq_cons = fp->rx_cq_cons;
3190     sw_cq_prod = fp->rx_cq_prod;
3191 
3192     /*
3193      * Memory barrier necessary as speculative reads of the rx
3194      * buffer can be ahead of the index in the status block
3195      */
3196     rmb();
3197 
3198     BLOGD(sc, DBG_RX,
3199           "fp[%02d] Rx START hw_cq_cons=%u sw_cq_cons=%u\n",
3200           fp->index, hw_cq_cons, sw_cq_cons);
3201 
3202     while (sw_cq_cons != hw_cq_cons) {
3203         struct bxe_sw_rx_bd *rx_buf = NULL;
3204         union eth_rx_cqe *cqe;
3205         struct eth_fast_path_rx_cqe *cqe_fp;
3206         uint8_t cqe_fp_flags;
3207         enum eth_rx_cqe_type cqe_fp_type;
3208         uint16_t len, lenonbd,  pad;
3209         struct mbuf *m = NULL;
3210 
3211         comp_ring_cons = RCQ(sw_cq_cons);
3212         bd_prod = RX_BD(bd_prod);
3213         bd_cons = RX_BD(bd_cons);
3214 
3215         cqe          = &fp->rcq_chain[comp_ring_cons];
3216         cqe_fp       = &cqe->fast_path_cqe;
3217         cqe_fp_flags = cqe_fp->type_error_flags;
3218         cqe_fp_type  = cqe_fp_flags & ETH_FAST_PATH_RX_CQE_TYPE;
3219 
3220         BLOGD(sc, DBG_RX,
3221               "fp[%02d] Rx hw_cq_cons=%d hw_sw_cons=%d "
3222               "BD prod=%d cons=%d CQE type=0x%x err=0x%x "
3223               "status=0x%x rss_hash=0x%x vlan=0x%x len=%u lenonbd=%u\n",
3224               fp->index,
3225               hw_cq_cons,
3226               sw_cq_cons,
3227               bd_prod,
3228               bd_cons,
3229               CQE_TYPE(cqe_fp_flags),
3230               cqe_fp_flags,
3231               cqe_fp->status_flags,
3232               le32toh(cqe_fp->rss_hash_result),
3233               le16toh(cqe_fp->vlan_tag),
3234               le16toh(cqe_fp->pkt_len_or_gro_seg_len),
3235               le16toh(cqe_fp->len_on_bd));
3236 
3237         /* is this a slowpath msg? */
3238         if (__predict_false(CQE_TYPE_SLOW(cqe_fp_type))) {
3239             bxe_sp_event(sc, fp, cqe);
3240             goto next_cqe;
3241         }
3242 
3243         rx_buf = &fp->rx_mbuf_chain[bd_cons];
3244 
3245         if (!CQE_TYPE_FAST(cqe_fp_type)) {
3246             struct bxe_sw_tpa_info *tpa_info;
3247             uint16_t frag_size, pages;
3248             uint8_t queue;
3249 
3250             if (CQE_TYPE_START(cqe_fp_type)) {
3251                 bxe_tpa_start(sc, fp, cqe_fp->queue_index,
3252                               bd_cons, bd_prod, cqe_fp);
3253                 m = NULL; /* packet not ready yet */
3254                 goto next_rx;
3255             }
3256 
3257             KASSERT(CQE_TYPE_STOP(cqe_fp_type),
3258                     ("CQE type is not STOP! (0x%x)\n", cqe_fp_type));
3259 
3260             queue = cqe->end_agg_cqe.queue_index;
3261             tpa_info = &fp->rx_tpa_info[queue];
3262 
3263             BLOGD(sc, DBG_LRO, "fp[%02d].tpa[%02d] TPA STOP\n",
3264                   fp->index, queue);
3265 
3266             frag_size = (le16toh(cqe->end_agg_cqe.pkt_len) -
3267                          tpa_info->len_on_bd);
3268             pages = SGE_PAGE_ALIGN(frag_size) >> SGE_PAGE_SHIFT;
3269 
3270             bxe_tpa_stop(sc, fp, tpa_info, queue, pages,
3271                          &cqe->end_agg_cqe, comp_ring_cons);
3272 
3273             bxe_update_sge_prod(sc, fp, pages, &cqe->end_agg_cqe.sgl_or_raw_data);
3274 
3275             goto next_cqe;
3276         }
3277 
3278         /* non TPA */
3279 
3280         /* is this an error packet? */
3281         if (__predict_false(cqe_fp_flags &
3282                             ETH_FAST_PATH_RX_CQE_PHY_DECODE_ERR_FLG)) {
3283             BLOGE(sc, "flags 0x%x rx packet %u\n", cqe_fp_flags, sw_cq_cons);
3284             fp->eth_q_stats.rx_soft_errors++;
3285             goto next_rx;
3286         }
3287 
3288         len = le16toh(cqe_fp->pkt_len_or_gro_seg_len);
3289         lenonbd = le16toh(cqe_fp->len_on_bd);
3290         pad = cqe_fp->placement_offset;
3291 
3292         m = rx_buf->m;
3293 
3294         if (__predict_false(m == NULL)) {
3295             BLOGE(sc, "No mbuf in rx chain descriptor %d for fp[%02d]\n",
3296                   bd_cons, fp->index);
3297             goto next_rx;
3298         }
3299 
3300         /* XXX double copy if packet length under a threshold */
3301 
3302         /*
3303          * If all the buffer descriptors are filled with mbufs then fill in
3304          * the current consumer index with a new BD. Else if a maximum Rx
3305          * buffer limit is imposed then fill in the next producer index.
3306          */
3307         rc = bxe_alloc_rx_bd_mbuf(fp, bd_cons,
3308                                   (sc->max_rx_bufs != RX_BD_USABLE) ?
3309                                       bd_prod : bd_cons);
3310         if (rc != 0) {
3311 
3312             /* we simply reuse the received mbuf and don't post it to the stack */
3313             m = NULL;
3314 
3315             BLOGE(sc, "mbuf alloc fail for fp[%02d] rx chain (%d)\n",
3316                   fp->index, rc);
3317             fp->eth_q_stats.rx_soft_errors++;
3318 
3319             if (sc->max_rx_bufs != RX_BD_USABLE) {
3320                 /* copy this consumer index to the producer index */
3321                 memcpy(&fp->rx_mbuf_chain[bd_prod], rx_buf,
3322                        sizeof(struct bxe_sw_rx_bd));
3323                 memset(rx_buf, 0, sizeof(struct bxe_sw_rx_bd));
3324             }
3325 
3326             goto next_rx;
3327         }
3328 
3329         /* current mbuf was detached from the bd */
3330         fp->eth_q_stats.mbuf_alloc_rx--;
3331 
3332         /* we allocated a replacement mbuf, fixup the current one */
3333         m_adj(m, pad);
3334         m->m_pkthdr.len = m->m_len = len;
3335 
3336         if ((len > 60) && (len > lenonbd)) {
3337             fp->eth_q_stats.rx_bxe_service_rxsgl++;
3338             rc = bxe_service_rxsgl(fp, len, lenonbd, m, cqe_fp);
3339             if (rc)
3340                 break;
3341             fp->eth_q_stats.rx_jumbo_sge_pkts++;
3342         } else if (lenonbd < len) {
3343             fp->eth_q_stats.rx_erroneous_jumbo_sge_pkts++;
3344         }
3345 
3346         /* assign packet to this interface interface */
3347 	if_setrcvif(m, ifp);
3348 
3349         /* assume no hardware checksum has complated */
3350         m->m_pkthdr.csum_flags = 0;
3351 
3352         /* validate checksum if offload enabled */
3353         if (if_getcapenable(ifp) & IFCAP_RXCSUM) {
3354             /* check for a valid IP frame */
3355             if (!(cqe->fast_path_cqe.status_flags &
3356                   ETH_FAST_PATH_RX_CQE_IP_XSUM_NO_VALIDATION_FLG)) {
3357                 m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
3358                 if (__predict_false(cqe_fp_flags &
3359                                     ETH_FAST_PATH_RX_CQE_IP_BAD_XSUM_FLG)) {
3360                     fp->eth_q_stats.rx_hw_csum_errors++;
3361                 } else {
3362                     fp->eth_q_stats.rx_ofld_frames_csum_ip++;
3363                     m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
3364                 }
3365             }
3366 
3367             /* check for a valid TCP/UDP frame */
3368             if (!(cqe->fast_path_cqe.status_flags &
3369                   ETH_FAST_PATH_RX_CQE_L4_XSUM_NO_VALIDATION_FLG)) {
3370                 if (__predict_false(cqe_fp_flags &
3371                                     ETH_FAST_PATH_RX_CQE_L4_BAD_XSUM_FLG)) {
3372                     fp->eth_q_stats.rx_hw_csum_errors++;
3373                 } else {
3374                     fp->eth_q_stats.rx_ofld_frames_csum_tcp_udp++;
3375                     m->m_pkthdr.csum_data = 0xFFFF;
3376                     m->m_pkthdr.csum_flags |= (CSUM_DATA_VALID |
3377                                                CSUM_PSEUDO_HDR);
3378                 }
3379             }
3380         }
3381 
3382         /* if there is a VLAN tag then flag that info */
3383         if (cqe->fast_path_cqe.pars_flags.flags & PARSING_FLAGS_INNER_VLAN_EXIST) {
3384             m->m_pkthdr.ether_vtag = cqe->fast_path_cqe.vlan_tag;
3385             m->m_flags |= M_VLANTAG;
3386         }
3387 
3388         /* specify what RSS queue was used for this flow */
3389         m->m_pkthdr.flowid = fp->index;
3390         BXE_SET_FLOWID(m);
3391 
3392 next_rx:
3393 
3394         bd_cons    = RX_BD_NEXT(bd_cons);
3395         bd_prod    = RX_BD_NEXT(bd_prod);
3396         bd_prod_fw = RX_BD_NEXT(bd_prod_fw);
3397 
3398         /* pass the frame to the stack */
3399         if (__predict_true(m != NULL)) {
3400             if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1);
3401             rx_pkts++;
3402             if_input(ifp, m);
3403         }
3404 
3405 next_cqe:
3406 
3407         sw_cq_prod = RCQ_NEXT(sw_cq_prod);
3408         sw_cq_cons = RCQ_NEXT(sw_cq_cons);
3409 
3410         /* limit spinning on the queue */
3411         if (rc != 0)
3412             break;
3413 
3414         if (rx_pkts == sc->rx_budget) {
3415             fp->eth_q_stats.rx_budget_reached++;
3416             break;
3417         }
3418     } /* while work to do */
3419 
3420     fp->rx_bd_cons = bd_cons;
3421     fp->rx_bd_prod = bd_prod_fw;
3422     fp->rx_cq_cons = sw_cq_cons;
3423     fp->rx_cq_prod = sw_cq_prod;
3424 
3425     /* Update producers */
3426     bxe_update_rx_prod(sc, fp, bd_prod_fw, sw_cq_prod, fp->rx_sge_prod);
3427 
3428     fp->eth_q_stats.rx_pkts += rx_pkts;
3429     fp->eth_q_stats.rx_calls++;
3430 
3431     BXE_FP_RX_UNLOCK(fp);
3432 
3433     return (sw_cq_cons != hw_cq_cons);
3434 }
3435 
3436 static uint16_t
3437 bxe_free_tx_pkt(struct bxe_softc    *sc,
3438                 struct bxe_fastpath *fp,
3439                 uint16_t            idx)
3440 {
3441     struct bxe_sw_tx_bd *tx_buf = &fp->tx_mbuf_chain[idx];
3442     struct eth_tx_start_bd *tx_start_bd;
3443     uint16_t bd_idx = TX_BD(tx_buf->first_bd);
3444     uint16_t new_cons;
3445     int nbd;
3446 
3447     /* unmap the mbuf from non-paged memory */
3448     bus_dmamap_unload(fp->tx_mbuf_tag, tx_buf->m_map);
3449 
3450     tx_start_bd = &fp->tx_chain[bd_idx].start_bd;
3451     nbd = le16toh(tx_start_bd->nbd) - 1;
3452 
3453     new_cons = (tx_buf->first_bd + nbd);
3454 
3455     /* free the mbuf */
3456     if (__predict_true(tx_buf->m != NULL)) {
3457         m_freem(tx_buf->m);
3458         fp->eth_q_stats.mbuf_alloc_tx--;
3459     } else {
3460         fp->eth_q_stats.tx_chain_lost_mbuf++;
3461     }
3462 
3463     tx_buf->m = NULL;
3464     tx_buf->first_bd = 0;
3465 
3466     return (new_cons);
3467 }
3468 
3469 /* transmit timeout watchdog */
3470 static int
3471 bxe_watchdog(struct bxe_softc    *sc,
3472              struct bxe_fastpath *fp)
3473 {
3474     BXE_FP_TX_LOCK(fp);
3475 
3476     if ((fp->watchdog_timer == 0) || (--fp->watchdog_timer)) {
3477         BXE_FP_TX_UNLOCK(fp);
3478         return (0);
3479     }
3480 
3481     BLOGE(sc, "TX watchdog timeout on fp[%02d], resetting!\n", fp->index);
3482 
3483     BXE_FP_TX_UNLOCK(fp);
3484     BXE_SET_ERROR_BIT(sc, BXE_ERR_TXQ_STUCK);
3485     taskqueue_enqueue_timeout(taskqueue_thread,
3486         &sc->sp_err_timeout_task, hz/10);
3487 
3488     return (-1);
3489 }
3490 
3491 /* processes transmit completions */
3492 static uint8_t
3493 bxe_txeof(struct bxe_softc    *sc,
3494           struct bxe_fastpath *fp)
3495 {
3496     if_t ifp = sc->ifp;
3497     uint16_t bd_cons, hw_cons, sw_cons, pkt_cons;
3498     uint16_t tx_bd_avail;
3499 
3500     BXE_FP_TX_LOCK_ASSERT(fp);
3501 
3502     bd_cons = fp->tx_bd_cons;
3503     hw_cons = le16toh(*fp->tx_cons_sb);
3504     sw_cons = fp->tx_pkt_cons;
3505 
3506     while (sw_cons != hw_cons) {
3507         pkt_cons = TX_BD(sw_cons);
3508 
3509         BLOGD(sc, DBG_TX,
3510               "TX: fp[%d]: hw_cons=%u sw_cons=%u pkt_cons=%u\n",
3511               fp->index, hw_cons, sw_cons, pkt_cons);
3512 
3513         bd_cons = bxe_free_tx_pkt(sc, fp, pkt_cons);
3514 
3515         sw_cons++;
3516     }
3517 
3518     fp->tx_pkt_cons = sw_cons;
3519     fp->tx_bd_cons  = bd_cons;
3520 
3521     BLOGD(sc, DBG_TX,
3522           "TX done: fp[%d]: hw_cons=%u sw_cons=%u sw_prod=%u\n",
3523           fp->index, hw_cons, fp->tx_pkt_cons, fp->tx_pkt_prod);
3524 
3525     mb();
3526 
3527     tx_bd_avail = bxe_tx_avail(sc, fp);
3528 
3529     if (tx_bd_avail < BXE_TX_CLEANUP_THRESHOLD) {
3530         if_setdrvflagbits(ifp, IFF_DRV_OACTIVE, 0);
3531     } else {
3532         if_setdrvflagbits(ifp, 0, IFF_DRV_OACTIVE);
3533     }
3534 
3535     if (fp->tx_pkt_prod != fp->tx_pkt_cons) {
3536         /* reset the watchdog timer if there are pending transmits */
3537         fp->watchdog_timer = BXE_TX_TIMEOUT;
3538         return (TRUE);
3539     } else {
3540         /* clear watchdog when there are no pending transmits */
3541         fp->watchdog_timer = 0;
3542         return (FALSE);
3543     }
3544 }
3545 
3546 static void
3547 bxe_drain_tx_queues(struct bxe_softc *sc)
3548 {
3549     struct bxe_fastpath *fp;
3550     int i, count;
3551 
3552     /* wait until all TX fastpath tasks have completed */
3553     for (i = 0; i < sc->num_queues; i++) {
3554         fp = &sc->fp[i];
3555 
3556         count = 1000;
3557 
3558         while (bxe_has_tx_work(fp)) {
3559 
3560             BXE_FP_TX_LOCK(fp);
3561             bxe_txeof(sc, fp);
3562             BXE_FP_TX_UNLOCK(fp);
3563 
3564             if (count == 0) {
3565                 BLOGE(sc, "Timeout waiting for fp[%d] "
3566                           "transmits to complete!\n", i);
3567                 bxe_panic(sc, ("tx drain failure\n"));
3568                 return;
3569             }
3570 
3571             count--;
3572             DELAY(1000);
3573             rmb();
3574         }
3575     }
3576 
3577     return;
3578 }
3579 
3580 static int
3581 bxe_del_all_macs(struct bxe_softc          *sc,
3582                  struct ecore_vlan_mac_obj *mac_obj,
3583                  int                       mac_type,
3584                  uint8_t                   wait_for_comp)
3585 {
3586     unsigned long ramrod_flags = 0, vlan_mac_flags = 0;
3587     int rc;
3588 
3589     /* wait for completion of requested */
3590     if (wait_for_comp) {
3591         bxe_set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
3592     }
3593 
3594     /* Set the mac type of addresses we want to clear */
3595     bxe_set_bit(mac_type, &vlan_mac_flags);
3596 
3597     rc = mac_obj->delete_all(sc, mac_obj, &vlan_mac_flags, &ramrod_flags);
3598     if (rc < 0) {
3599         BLOGE(sc, "Failed to delete MACs (%d) mac_type %d wait_for_comp 0x%x\n",
3600             rc, mac_type, wait_for_comp);
3601     }
3602 
3603     return (rc);
3604 }
3605 
3606 static int
3607 bxe_fill_accept_flags(struct bxe_softc *sc,
3608                       uint32_t         rx_mode,
3609                       unsigned long    *rx_accept_flags,
3610                       unsigned long    *tx_accept_flags)
3611 {
3612     /* Clear the flags first */
3613     *rx_accept_flags = 0;
3614     *tx_accept_flags = 0;
3615 
3616     switch (rx_mode) {
3617     case BXE_RX_MODE_NONE:
3618         /*
3619          * 'drop all' supersedes any accept flags that may have been
3620          * passed to the function.
3621          */
3622         break;
3623 
3624     case BXE_RX_MODE_NORMAL:
3625         bxe_set_bit(ECORE_ACCEPT_UNICAST, rx_accept_flags);
3626         bxe_set_bit(ECORE_ACCEPT_MULTICAST, rx_accept_flags);
3627         bxe_set_bit(ECORE_ACCEPT_BROADCAST, rx_accept_flags);
3628 
3629         /* internal switching mode */
3630         bxe_set_bit(ECORE_ACCEPT_UNICAST, tx_accept_flags);
3631         bxe_set_bit(ECORE_ACCEPT_MULTICAST, tx_accept_flags);
3632         bxe_set_bit(ECORE_ACCEPT_BROADCAST, tx_accept_flags);
3633 
3634         break;
3635 
3636     case BXE_RX_MODE_ALLMULTI:
3637         bxe_set_bit(ECORE_ACCEPT_UNICAST, rx_accept_flags);
3638         bxe_set_bit(ECORE_ACCEPT_ALL_MULTICAST, rx_accept_flags);
3639         bxe_set_bit(ECORE_ACCEPT_BROADCAST, rx_accept_flags);
3640 
3641         /* internal switching mode */
3642         bxe_set_bit(ECORE_ACCEPT_UNICAST, tx_accept_flags);
3643         bxe_set_bit(ECORE_ACCEPT_ALL_MULTICAST, tx_accept_flags);
3644         bxe_set_bit(ECORE_ACCEPT_BROADCAST, tx_accept_flags);
3645 
3646         break;
3647 
3648     case BXE_RX_MODE_PROMISC:
3649         /*
3650          * According to deffinition of SI mode, iface in promisc mode
3651          * should receive matched and unmatched (in resolution of port)
3652          * unicast packets.
3653          */
3654         bxe_set_bit(ECORE_ACCEPT_UNMATCHED, rx_accept_flags);
3655         bxe_set_bit(ECORE_ACCEPT_UNICAST, rx_accept_flags);
3656         bxe_set_bit(ECORE_ACCEPT_ALL_MULTICAST, rx_accept_flags);
3657         bxe_set_bit(ECORE_ACCEPT_BROADCAST, rx_accept_flags);
3658 
3659         /* internal switching mode */
3660         bxe_set_bit(ECORE_ACCEPT_ALL_MULTICAST, tx_accept_flags);
3661         bxe_set_bit(ECORE_ACCEPT_BROADCAST, tx_accept_flags);
3662 
3663         if (IS_MF_SI(sc)) {
3664             bxe_set_bit(ECORE_ACCEPT_ALL_UNICAST, tx_accept_flags);
3665         } else {
3666             bxe_set_bit(ECORE_ACCEPT_UNICAST, tx_accept_flags);
3667         }
3668 
3669         break;
3670 
3671     default:
3672         BLOGE(sc, "Unknown rx_mode (0x%x)\n", rx_mode);
3673         return (-1);
3674     }
3675 
3676     /* Set ACCEPT_ANY_VLAN as we do not enable filtering by VLAN */
3677     if (rx_mode != BXE_RX_MODE_NONE) {
3678         bxe_set_bit(ECORE_ACCEPT_ANY_VLAN, rx_accept_flags);
3679         bxe_set_bit(ECORE_ACCEPT_ANY_VLAN, tx_accept_flags);
3680     }
3681 
3682     return (0);
3683 }
3684 
3685 static int
3686 bxe_set_q_rx_mode(struct bxe_softc *sc,
3687                   uint8_t          cl_id,
3688                   unsigned long    rx_mode_flags,
3689                   unsigned long    rx_accept_flags,
3690                   unsigned long    tx_accept_flags,
3691                   unsigned long    ramrod_flags)
3692 {
3693     struct ecore_rx_mode_ramrod_params ramrod_param;
3694     int rc;
3695 
3696     memset(&ramrod_param, 0, sizeof(ramrod_param));
3697 
3698     /* Prepare ramrod parameters */
3699     ramrod_param.cid = 0;
3700     ramrod_param.cl_id = cl_id;
3701     ramrod_param.rx_mode_obj = &sc->rx_mode_obj;
3702     ramrod_param.func_id = SC_FUNC(sc);
3703 
3704     ramrod_param.pstate = &sc->sp_state;
3705     ramrod_param.state = ECORE_FILTER_RX_MODE_PENDING;
3706 
3707     ramrod_param.rdata = BXE_SP(sc, rx_mode_rdata);
3708     ramrod_param.rdata_mapping = BXE_SP_MAPPING(sc, rx_mode_rdata);
3709 
3710     bxe_set_bit(ECORE_FILTER_RX_MODE_PENDING, &sc->sp_state);
3711 
3712     ramrod_param.ramrod_flags = ramrod_flags;
3713     ramrod_param.rx_mode_flags = rx_mode_flags;
3714 
3715     ramrod_param.rx_accept_flags = rx_accept_flags;
3716     ramrod_param.tx_accept_flags = tx_accept_flags;
3717 
3718     rc = ecore_config_rx_mode(sc, &ramrod_param);
3719     if (rc < 0) {
3720         BLOGE(sc, "Set rx_mode %d cli_id 0x%x rx_mode_flags 0x%x "
3721             "rx_accept_flags 0x%x tx_accept_flags 0x%x "
3722             "ramrod_flags 0x%x rc %d failed\n", sc->rx_mode, cl_id,
3723             (uint32_t)rx_mode_flags, (uint32_t)rx_accept_flags,
3724             (uint32_t)tx_accept_flags, (uint32_t)ramrod_flags, rc);
3725         return (rc);
3726     }
3727 
3728     return (0);
3729 }
3730 
3731 static int
3732 bxe_set_storm_rx_mode(struct bxe_softc *sc)
3733 {
3734     unsigned long rx_mode_flags = 0, ramrod_flags = 0;
3735     unsigned long rx_accept_flags = 0, tx_accept_flags = 0;
3736     int rc;
3737 
3738     rc = bxe_fill_accept_flags(sc, sc->rx_mode, &rx_accept_flags,
3739                                &tx_accept_flags);
3740     if (rc) {
3741         return (rc);
3742     }
3743 
3744     bxe_set_bit(RAMROD_RX, &ramrod_flags);
3745     bxe_set_bit(RAMROD_TX, &ramrod_flags);
3746 
3747     /* XXX ensure all fastpath have same cl_id and/or move it to bxe_softc */
3748     return (bxe_set_q_rx_mode(sc, sc->fp[0].cl_id, rx_mode_flags,
3749                               rx_accept_flags, tx_accept_flags,
3750                               ramrod_flags));
3751 }
3752 
3753 /* returns the "mcp load_code" according to global load_count array */
3754 static int
3755 bxe_nic_load_no_mcp(struct bxe_softc *sc)
3756 {
3757     int path = SC_PATH(sc);
3758     int port = SC_PORT(sc);
3759 
3760     BLOGI(sc, "NO MCP - load counts[%d]      %d, %d, %d\n",
3761           path, load_count[path][0], load_count[path][1],
3762           load_count[path][2]);
3763     load_count[path][0]++;
3764     load_count[path][1 + port]++;
3765     BLOGI(sc, "NO MCP - new load counts[%d]  %d, %d, %d\n",
3766           path, load_count[path][0], load_count[path][1],
3767           load_count[path][2]);
3768     if (load_count[path][0] == 1) {
3769         return (FW_MSG_CODE_DRV_LOAD_COMMON);
3770     } else if (load_count[path][1 + port] == 1) {
3771         return (FW_MSG_CODE_DRV_LOAD_PORT);
3772     } else {
3773         return (FW_MSG_CODE_DRV_LOAD_FUNCTION);
3774     }
3775 }
3776 
3777 /* returns the "mcp load_code" according to global load_count array */
3778 static int
3779 bxe_nic_unload_no_mcp(struct bxe_softc *sc)
3780 {
3781     int port = SC_PORT(sc);
3782     int path = SC_PATH(sc);
3783 
3784     BLOGI(sc, "NO MCP - load counts[%d]      %d, %d, %d\n",
3785           path, load_count[path][0], load_count[path][1],
3786           load_count[path][2]);
3787     load_count[path][0]--;
3788     load_count[path][1 + port]--;
3789     BLOGI(sc, "NO MCP - new load counts[%d]  %d, %d, %d\n",
3790           path, load_count[path][0], load_count[path][1],
3791           load_count[path][2]);
3792     if (load_count[path][0] == 0) {
3793         return (FW_MSG_CODE_DRV_UNLOAD_COMMON);
3794     } else if (load_count[path][1 + port] == 0) {
3795         return (FW_MSG_CODE_DRV_UNLOAD_PORT);
3796     } else {
3797         return (FW_MSG_CODE_DRV_UNLOAD_FUNCTION);
3798     }
3799 }
3800 
3801 /* request unload mode from the MCP: COMMON, PORT or FUNCTION */
3802 static uint32_t
3803 bxe_send_unload_req(struct bxe_softc *sc,
3804                     int              unload_mode)
3805 {
3806     uint32_t reset_code = 0;
3807 
3808     /* Select the UNLOAD request mode */
3809     if (unload_mode == UNLOAD_NORMAL) {
3810         reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
3811     } else {
3812         reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
3813     }
3814 
3815     /* Send the request to the MCP */
3816     if (!BXE_NOMCP(sc)) {
3817         reset_code = bxe_fw_command(sc, reset_code, 0);
3818     } else {
3819         reset_code = bxe_nic_unload_no_mcp(sc);
3820     }
3821 
3822     return (reset_code);
3823 }
3824 
3825 /* send UNLOAD_DONE command to the MCP */
3826 static void
3827 bxe_send_unload_done(struct bxe_softc *sc,
3828                      uint8_t          keep_link)
3829 {
3830     uint32_t reset_param =
3831         keep_link ? DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET : 0;
3832 
3833     /* Report UNLOAD_DONE to MCP */
3834     if (!BXE_NOMCP(sc)) {
3835         bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_DONE, reset_param);
3836     }
3837 }
3838 
3839 static int
3840 bxe_func_wait_started(struct bxe_softc *sc)
3841 {
3842     int tout = 50;
3843 
3844     if (!sc->port.pmf) {
3845         return (0);
3846     }
3847 
3848     /*
3849      * (assumption: No Attention from MCP at this stage)
3850      * PMF probably in the middle of TX disable/enable transaction
3851      * 1. Sync IRS for default SB
3852      * 2. Sync SP queue - this guarantees us that attention handling started
3853      * 3. Wait, that TX disable/enable transaction completes
3854      *
3855      * 1+2 guarantee that if DCBX attention was scheduled it already changed
3856      * pending bit of transaction from STARTED-->TX_STOPPED, if we already
3857      * received completion for the transaction the state is TX_STOPPED.
3858      * State will return to STARTED after completion of TX_STOPPED-->STARTED
3859      * transaction.
3860      */
3861 
3862     /* XXX make sure default SB ISR is done */
3863     /* need a way to synchronize an irq (intr_mtx?) */
3864 
3865     /* XXX flush any work queues */
3866 
3867     while (ecore_func_get_state(sc, &sc->func_obj) !=
3868            ECORE_F_STATE_STARTED && tout--) {
3869         DELAY(20000);
3870     }
3871 
3872     if (ecore_func_get_state(sc, &sc->func_obj) != ECORE_F_STATE_STARTED) {
3873         /*
3874          * Failed to complete the transaction in a "good way"
3875          * Force both transactions with CLR bit.
3876          */
3877         struct ecore_func_state_params func_params = { NULL };
3878 
3879         BLOGE(sc, "Unexpected function state! "
3880                   "Forcing STARTED-->TX_STOPPED-->STARTED\n");
3881 
3882         func_params.f_obj = &sc->func_obj;
3883         bxe_set_bit(RAMROD_DRV_CLR_ONLY, &func_params.ramrod_flags);
3884 
3885         /* STARTED-->TX_STOPPED */
3886         func_params.cmd = ECORE_F_CMD_TX_STOP;
3887         ecore_func_state_change(sc, &func_params);
3888 
3889         /* TX_STOPPED-->STARTED */
3890         func_params.cmd = ECORE_F_CMD_TX_START;
3891         return (ecore_func_state_change(sc, &func_params));
3892     }
3893 
3894     return (0);
3895 }
3896 
3897 static int
3898 bxe_stop_queue(struct bxe_softc *sc,
3899                int              index)
3900 {
3901     struct bxe_fastpath *fp = &sc->fp[index];
3902     struct ecore_queue_state_params q_params = { NULL };
3903     int rc;
3904 
3905     BLOGD(sc, DBG_LOAD, "stopping queue %d cid %d\n", index, fp->index);
3906 
3907     q_params.q_obj = &sc->sp_objs[fp->index].q_obj;
3908     /* We want to wait for completion in this context */
3909     bxe_set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
3910 
3911     /* Stop the primary connection: */
3912 
3913     /* ...halt the connection */
3914     q_params.cmd = ECORE_Q_CMD_HALT;
3915     rc = ecore_queue_state_change(sc, &q_params);
3916     if (rc) {
3917         return (rc);
3918     }
3919 
3920     /* ...terminate the connection */
3921     q_params.cmd = ECORE_Q_CMD_TERMINATE;
3922     memset(&q_params.params.terminate, 0, sizeof(q_params.params.terminate));
3923     q_params.params.terminate.cid_index = FIRST_TX_COS_INDEX;
3924     rc = ecore_queue_state_change(sc, &q_params);
3925     if (rc) {
3926         return (rc);
3927     }
3928 
3929     /* ...delete cfc entry */
3930     q_params.cmd = ECORE_Q_CMD_CFC_DEL;
3931     memset(&q_params.params.cfc_del, 0, sizeof(q_params.params.cfc_del));
3932     q_params.params.cfc_del.cid_index = FIRST_TX_COS_INDEX;
3933     return (ecore_queue_state_change(sc, &q_params));
3934 }
3935 
3936 /* wait for the outstanding SP commands */
3937 static inline uint8_t
3938 bxe_wait_sp_comp(struct bxe_softc *sc,
3939                  unsigned long    mask)
3940 {
3941     unsigned long tmp;
3942     int tout = 5000; /* wait for 5 secs tops */
3943 
3944     while (tout--) {
3945         mb();
3946         if (!(atomic_load_acq_long(&sc->sp_state) & mask)) {
3947             return (TRUE);
3948         }
3949 
3950         DELAY(1000);
3951     }
3952 
3953     mb();
3954 
3955     tmp = atomic_load_acq_long(&sc->sp_state);
3956     if (tmp & mask) {
3957         BLOGE(sc, "Filtering completion timed out: "
3958                   "sp_state 0x%lx, mask 0x%lx\n",
3959               tmp, mask);
3960         return (FALSE);
3961     }
3962 
3963     return (FALSE);
3964 }
3965 
3966 static int
3967 bxe_func_stop(struct bxe_softc *sc)
3968 {
3969     struct ecore_func_state_params func_params = { NULL };
3970     int rc;
3971 
3972     /* prepare parameters for function state transitions */
3973     bxe_set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
3974     func_params.f_obj = &sc->func_obj;
3975     func_params.cmd = ECORE_F_CMD_STOP;
3976 
3977     /*
3978      * Try to stop the function the 'good way'. If it fails (in case
3979      * of a parity error during bxe_chip_cleanup()) and we are
3980      * not in a debug mode, perform a state transaction in order to
3981      * enable further HW_RESET transaction.
3982      */
3983     rc = ecore_func_state_change(sc, &func_params);
3984     if (rc) {
3985         BLOGE(sc, "FUNC_STOP ramrod failed. "
3986                   "Running a dry transaction (%d)\n", rc);
3987         bxe_set_bit(RAMROD_DRV_CLR_ONLY, &func_params.ramrod_flags);
3988         return (ecore_func_state_change(sc, &func_params));
3989     }
3990 
3991     return (0);
3992 }
3993 
3994 static int
3995 bxe_reset_hw(struct bxe_softc *sc,
3996              uint32_t         load_code)
3997 {
3998     struct ecore_func_state_params func_params = { NULL };
3999 
4000     /* Prepare parameters for function state transitions */
4001     bxe_set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
4002 
4003     func_params.f_obj = &sc->func_obj;
4004     func_params.cmd = ECORE_F_CMD_HW_RESET;
4005 
4006     func_params.params.hw_init.load_phase = load_code;
4007 
4008     return (ecore_func_state_change(sc, &func_params));
4009 }
4010 
4011 static void
4012 bxe_int_disable_sync(struct bxe_softc *sc,
4013                      int              disable_hw)
4014 {
4015     if (disable_hw) {
4016         /* prevent the HW from sending interrupts */
4017         bxe_int_disable(sc);
4018     }
4019 
4020     /* XXX need a way to synchronize ALL irqs (intr_mtx?) */
4021     /* make sure all ISRs are done */
4022 
4023     /* XXX make sure sp_task is not running */
4024     /* cancel and flush work queues */
4025 }
4026 
4027 static void
4028 bxe_chip_cleanup(struct bxe_softc *sc,
4029                  uint32_t         unload_mode,
4030                  uint8_t          keep_link)
4031 {
4032     int port = SC_PORT(sc);
4033     struct ecore_mcast_ramrod_params rparam = { NULL };
4034     uint32_t reset_code;
4035     int i, rc = 0;
4036 
4037     bxe_drain_tx_queues(sc);
4038 
4039     /* give HW time to discard old tx messages */
4040     DELAY(1000);
4041 
4042     /* Clean all ETH MACs */
4043     rc = bxe_del_all_macs(sc, &sc->sp_objs[0].mac_obj, ECORE_ETH_MAC, FALSE);
4044     if (rc < 0) {
4045         BLOGE(sc, "Failed to delete all ETH MACs (%d)\n", rc);
4046     }
4047 
4048     /* Clean up UC list  */
4049     rc = bxe_del_all_macs(sc, &sc->sp_objs[0].mac_obj, ECORE_UC_LIST_MAC, TRUE);
4050     if (rc < 0) {
4051         BLOGE(sc, "Failed to delete UC MACs list (%d)\n", rc);
4052     }
4053 
4054     /* Disable LLH */
4055     if (!CHIP_IS_E1(sc)) {
4056         REG_WR(sc, NIG_REG_LLH0_FUNC_EN + port*8, 0);
4057     }
4058 
4059     /* Set "drop all" to stop Rx */
4060 
4061     /*
4062      * We need to take the BXE_MCAST_LOCK() here in order to prevent
4063      * a race between the completion code and this code.
4064      */
4065     BXE_MCAST_LOCK(sc);
4066 
4067     if (bxe_test_bit(ECORE_FILTER_RX_MODE_PENDING, &sc->sp_state)) {
4068         bxe_set_bit(ECORE_FILTER_RX_MODE_SCHED, &sc->sp_state);
4069     } else {
4070         bxe_set_storm_rx_mode(sc);
4071     }
4072 
4073     /* Clean up multicast configuration */
4074     rparam.mcast_obj = &sc->mcast_obj;
4075     rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_DEL);
4076     if (rc < 0) {
4077         BLOGE(sc, "Failed to send DEL MCAST command (%d)\n", rc);
4078     }
4079 
4080     BXE_MCAST_UNLOCK(sc);
4081 
4082     // XXX bxe_iov_chip_cleanup(sc);
4083 
4084     /*
4085      * Send the UNLOAD_REQUEST to the MCP. This will return if
4086      * this function should perform FUNCTION, PORT, or COMMON HW
4087      * reset.
4088      */
4089     reset_code = bxe_send_unload_req(sc, unload_mode);
4090 
4091     /*
4092      * (assumption: No Attention from MCP at this stage)
4093      * PMF probably in the middle of TX disable/enable transaction
4094      */
4095     rc = bxe_func_wait_started(sc);
4096     if (rc) {
4097         BLOGE(sc, "bxe_func_wait_started failed (%d)\n", rc);
4098     }
4099 
4100     /*
4101      * Close multi and leading connections
4102      * Completions for ramrods are collected in a synchronous way
4103      */
4104     for (i = 0; i < sc->num_queues; i++) {
4105         if (bxe_stop_queue(sc, i)) {
4106             goto unload_error;
4107         }
4108     }
4109 
4110     /*
4111      * If SP settings didn't get completed so far - something
4112      * very wrong has happen.
4113      */
4114     if (!bxe_wait_sp_comp(sc, ~0x0UL)) {
4115         BLOGE(sc, "Common slow path ramrods got stuck!(%d)\n", rc);
4116     }
4117 
4118 unload_error:
4119 
4120     rc = bxe_func_stop(sc);
4121     if (rc) {
4122         BLOGE(sc, "Function stop failed!(%d)\n", rc);
4123     }
4124 
4125     /* disable HW interrupts */
4126     bxe_int_disable_sync(sc, TRUE);
4127 
4128     /* detach interrupts */
4129     bxe_interrupt_detach(sc);
4130 
4131     /* Reset the chip */
4132     rc = bxe_reset_hw(sc, reset_code);
4133     if (rc) {
4134         BLOGE(sc, "Hardware reset failed(%d)\n", rc);
4135     }
4136 
4137     /* Report UNLOAD_DONE to MCP */
4138     bxe_send_unload_done(sc, keep_link);
4139 }
4140 
4141 static void
4142 bxe_disable_close_the_gate(struct bxe_softc *sc)
4143 {
4144     uint32_t val;
4145     int port = SC_PORT(sc);
4146 
4147     BLOGD(sc, DBG_LOAD,
4148           "Disabling 'close the gates'\n");
4149 
4150     if (CHIP_IS_E1(sc)) {
4151         uint32_t addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
4152                                MISC_REG_AEU_MASK_ATTN_FUNC_0;
4153         val = REG_RD(sc, addr);
4154         val &= ~(0x300);
4155         REG_WR(sc, addr, val);
4156     } else {
4157         val = REG_RD(sc, MISC_REG_AEU_GENERAL_MASK);
4158         val &= ~(MISC_AEU_GENERAL_MASK_REG_AEU_PXP_CLOSE_MASK |
4159                  MISC_AEU_GENERAL_MASK_REG_AEU_NIG_CLOSE_MASK);
4160         REG_WR(sc, MISC_REG_AEU_GENERAL_MASK, val);
4161     }
4162 }
4163 
4164 /*
4165  * Cleans the object that have internal lists without sending
4166  * ramrods. Should be run when interrutps are disabled.
4167  */
4168 static void
4169 bxe_squeeze_objects(struct bxe_softc *sc)
4170 {
4171     unsigned long ramrod_flags = 0, vlan_mac_flags = 0;
4172     struct ecore_mcast_ramrod_params rparam = { NULL };
4173     struct ecore_vlan_mac_obj *mac_obj = &sc->sp_objs->mac_obj;
4174     int rc;
4175 
4176     /* Cleanup MACs' object first... */
4177 
4178     /* Wait for completion of requested */
4179     bxe_set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
4180     /* Perform a dry cleanup */
4181     bxe_set_bit(RAMROD_DRV_CLR_ONLY, &ramrod_flags);
4182 
4183     /* Clean ETH primary MAC */
4184     bxe_set_bit(ECORE_ETH_MAC, &vlan_mac_flags);
4185     rc = mac_obj->delete_all(sc, &sc->sp_objs->mac_obj, &vlan_mac_flags,
4186                              &ramrod_flags);
4187     if (rc != 0) {
4188         BLOGE(sc, "Failed to clean ETH MACs (%d)\n", rc);
4189     }
4190 
4191     /* Cleanup UC list */
4192     vlan_mac_flags = 0;
4193     bxe_set_bit(ECORE_UC_LIST_MAC, &vlan_mac_flags);
4194     rc = mac_obj->delete_all(sc, mac_obj, &vlan_mac_flags,
4195                              &ramrod_flags);
4196     if (rc != 0) {
4197         BLOGE(sc, "Failed to clean UC list MACs (%d)\n", rc);
4198     }
4199 
4200     /* Now clean mcast object... */
4201 
4202     rparam.mcast_obj = &sc->mcast_obj;
4203     bxe_set_bit(RAMROD_DRV_CLR_ONLY, &rparam.ramrod_flags);
4204 
4205     /* Add a DEL command... */
4206     rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_DEL);
4207     if (rc < 0) {
4208         BLOGE(sc, "Failed to send DEL MCAST command (%d)\n", rc);
4209     }
4210 
4211     /* now wait until all pending commands are cleared */
4212 
4213     rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_CONT);
4214     while (rc != 0) {
4215         if (rc < 0) {
4216             BLOGE(sc, "Failed to clean MCAST object (%d)\n", rc);
4217             return;
4218         }
4219 
4220         rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_CONT);
4221     }
4222 }
4223 
4224 /* stop the controller */
4225 static __noinline int
4226 bxe_nic_unload(struct bxe_softc *sc,
4227                uint32_t         unload_mode,
4228                uint8_t          keep_link)
4229 {
4230     uint8_t global = FALSE;
4231     uint32_t val;
4232     int i;
4233 
4234     BXE_CORE_LOCK_ASSERT(sc);
4235 
4236     if_setdrvflagbits(sc->ifp, 0, IFF_DRV_RUNNING);
4237 
4238     for (i = 0; i < sc->num_queues; i++) {
4239         struct bxe_fastpath *fp;
4240 
4241         fp = &sc->fp[i];
4242 	fp->watchdog_timer = 0;
4243         BXE_FP_TX_LOCK(fp);
4244         BXE_FP_TX_UNLOCK(fp);
4245     }
4246 
4247     BLOGD(sc, DBG_LOAD, "Starting NIC unload...\n");
4248 
4249     /* mark driver as unloaded in shmem2 */
4250     if (IS_PF(sc) && SHMEM2_HAS(sc, drv_capabilities_flag)) {
4251         val = SHMEM2_RD(sc, drv_capabilities_flag[SC_FW_MB_IDX(sc)]);
4252         SHMEM2_WR(sc, drv_capabilities_flag[SC_FW_MB_IDX(sc)],
4253                   val & ~DRV_FLAGS_CAPABILITIES_LOADED_L2);
4254     }
4255 
4256     if (IS_PF(sc) && sc->recovery_state != BXE_RECOVERY_DONE &&
4257         (sc->state == BXE_STATE_CLOSED || sc->state == BXE_STATE_ERROR)) {
4258 
4259 	if(CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) {
4260             /*
4261              * We can get here if the driver has been unloaded
4262              * during parity error recovery and is either waiting for a
4263              * leader to complete or for other functions to unload and
4264              * then ifconfig down has been issued. In this case we want to
4265              * unload and let other functions to complete a recovery
4266              * process.
4267              */
4268             sc->recovery_state = BXE_RECOVERY_DONE;
4269             sc->is_leader = 0;
4270             bxe_release_leader_lock(sc);
4271             mb();
4272             BLOGD(sc, DBG_LOAD, "Releasing a leadership...\n");
4273 	}
4274         BLOGE(sc, "Can't unload in closed or error state recover_state 0x%x"
4275             " state = 0x%x\n", sc->recovery_state, sc->state);
4276         return (-1);
4277     }
4278 
4279     /*
4280      * Nothing to do during unload if previous bxe_nic_load()
4281      * did not completed successfully - all resourses are released.
4282      */
4283     if ((sc->state == BXE_STATE_CLOSED) ||
4284         (sc->state == BXE_STATE_ERROR)) {
4285         return (0);
4286     }
4287 
4288     sc->state = BXE_STATE_CLOSING_WAITING_HALT;
4289     mb();
4290 
4291     /* stop tx */
4292     bxe_tx_disable(sc);
4293 
4294     sc->rx_mode = BXE_RX_MODE_NONE;
4295     /* XXX set rx mode ??? */
4296 
4297     if (IS_PF(sc) && !sc->grcdump_done) {
4298         /* set ALWAYS_ALIVE bit in shmem */
4299         sc->fw_drv_pulse_wr_seq |= DRV_PULSE_ALWAYS_ALIVE;
4300 
4301         bxe_drv_pulse(sc);
4302 
4303         bxe_stats_handle(sc, STATS_EVENT_STOP);
4304         bxe_save_statistics(sc);
4305     }
4306 
4307     /* wait till consumers catch up with producers in all queues */
4308     bxe_drain_tx_queues(sc);
4309 
4310     /* if VF indicate to PF this function is going down (PF will delete sp
4311      * elements and clear initializations
4312      */
4313     if (IS_VF(sc)) {
4314         ; /* bxe_vfpf_close_vf(sc); */
4315     } else if (unload_mode != UNLOAD_RECOVERY) {
4316         /* if this is a normal/close unload need to clean up chip */
4317         if (!sc->grcdump_done)
4318             bxe_chip_cleanup(sc, unload_mode, keep_link);
4319     } else {
4320         /* Send the UNLOAD_REQUEST to the MCP */
4321         bxe_send_unload_req(sc, unload_mode);
4322 
4323         /*
4324          * Prevent transactions to host from the functions on the
4325          * engine that doesn't reset global blocks in case of global
4326          * attention once gloabl blocks are reset and gates are opened
4327          * (the engine which leader will perform the recovery
4328          * last).
4329          */
4330         if (!CHIP_IS_E1x(sc)) {
4331             bxe_pf_disable(sc);
4332         }
4333 
4334         /* disable HW interrupts */
4335         bxe_int_disable_sync(sc, TRUE);
4336 
4337         /* detach interrupts */
4338         bxe_interrupt_detach(sc);
4339 
4340         /* Report UNLOAD_DONE to MCP */
4341         bxe_send_unload_done(sc, FALSE);
4342     }
4343 
4344     /*
4345      * At this stage no more interrupts will arrive so we may safely clean
4346      * the queue'able objects here in case they failed to get cleaned so far.
4347      */
4348     if (IS_PF(sc)) {
4349         bxe_squeeze_objects(sc);
4350     }
4351 
4352     /* There should be no more pending SP commands at this stage */
4353     sc->sp_state = 0;
4354 
4355     sc->port.pmf = 0;
4356 
4357     bxe_free_fp_buffers(sc);
4358 
4359     if (IS_PF(sc)) {
4360         bxe_free_mem(sc);
4361     }
4362 
4363     bxe_free_fw_stats_mem(sc);
4364 
4365     sc->state = BXE_STATE_CLOSED;
4366 
4367     /*
4368      * Check if there are pending parity attentions. If there are - set
4369      * RECOVERY_IN_PROGRESS.
4370      */
4371     if (IS_PF(sc) && bxe_chk_parity_attn(sc, &global, FALSE)) {
4372         bxe_set_reset_in_progress(sc);
4373 
4374         /* Set RESET_IS_GLOBAL if needed */
4375         if (global) {
4376             bxe_set_reset_global(sc);
4377         }
4378     }
4379 
4380     /*
4381      * The last driver must disable a "close the gate" if there is no
4382      * parity attention or "process kill" pending.
4383      */
4384     if (IS_PF(sc) && !bxe_clear_pf_load(sc) &&
4385         bxe_reset_is_done(sc, SC_PATH(sc))) {
4386         bxe_disable_close_the_gate(sc);
4387     }
4388 
4389     BLOGD(sc, DBG_LOAD, "Ended NIC unload\n");
4390 
4391     bxe_link_report(sc);
4392 
4393     return (0);
4394 }
4395 
4396 /*
4397  * Called by the OS to set various media options (i.e. link, speed, etc.) when
4398  * the user runs "ifconfig bxe media ..." or "ifconfig bxe mediaopt ...".
4399  */
4400 static int
4401 bxe_ifmedia_update(struct ifnet  *ifp)
4402 {
4403     struct bxe_softc *sc = (struct bxe_softc *)if_getsoftc(ifp);
4404     struct ifmedia *ifm;
4405 
4406     ifm = &sc->ifmedia;
4407 
4408     /* We only support Ethernet media type. */
4409     if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER) {
4410         return (EINVAL);
4411     }
4412 
4413     switch (IFM_SUBTYPE(ifm->ifm_media)) {
4414     case IFM_AUTO:
4415          break;
4416     case IFM_10G_CX4:
4417     case IFM_10G_SR:
4418     case IFM_10G_T:
4419     case IFM_10G_TWINAX:
4420     default:
4421         /* We don't support changing the media type. */
4422         BLOGD(sc, DBG_LOAD, "Invalid media type (%d)\n",
4423               IFM_SUBTYPE(ifm->ifm_media));
4424         return (EINVAL);
4425     }
4426 
4427     return (0);
4428 }
4429 
4430 /*
4431  * Called by the OS to get the current media status (i.e. link, speed, etc.).
4432  */
4433 static void
4434 bxe_ifmedia_status(struct ifnet *ifp, struct ifmediareq *ifmr)
4435 {
4436     struct bxe_softc *sc = if_getsoftc(ifp);
4437 
4438     /* Bug 165447: the 'ifconfig' tool skips printing of the "status: ..."
4439        line if the IFM_AVALID flag is *NOT* set. So we need to set this
4440        flag unconditionally (irrespective of the admininistrative
4441        'up/down' state of the interface) to ensure that that line is always
4442        displayed.
4443     */
4444     ifmr->ifm_status = IFM_AVALID;
4445 
4446     /* Setup the default interface info. */
4447     ifmr->ifm_active = IFM_ETHER;
4448 
4449     /* Report link down if the driver isn't running. */
4450     if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
4451         ifmr->ifm_active |= IFM_NONE;
4452         BLOGD(sc, DBG_PHY, "in %s : nic still not loaded fully\n", __func__);
4453         BLOGD(sc, DBG_PHY, "in %s : link_up (1) : %d\n",
4454                 __func__, sc->link_vars.link_up);
4455         return;
4456     }
4457 
4458 
4459     if (sc->link_vars.link_up) {
4460         ifmr->ifm_status |= IFM_ACTIVE;
4461         ifmr->ifm_active |= IFM_FDX;
4462     } else {
4463         ifmr->ifm_active |= IFM_NONE;
4464         BLOGD(sc, DBG_PHY, "in %s : setting IFM_NONE\n",
4465                 __func__);
4466         return;
4467     }
4468 
4469     ifmr->ifm_active |= sc->media;
4470     return;
4471 }
4472 
4473 static void
4474 bxe_handle_chip_tq(void *context,
4475                    int  pending)
4476 {
4477     struct bxe_softc *sc = (struct bxe_softc *)context;
4478     long work = atomic_load_acq_long(&sc->chip_tq_flags);
4479 
4480     switch (work)
4481     {
4482 
4483     case CHIP_TQ_REINIT:
4484         if (if_getdrvflags(sc->ifp) & IFF_DRV_RUNNING) {
4485             /* restart the interface */
4486             BLOGD(sc, DBG_LOAD, "Restarting the interface...\n");
4487             bxe_periodic_stop(sc);
4488             BXE_CORE_LOCK(sc);
4489             bxe_stop_locked(sc);
4490             bxe_init_locked(sc);
4491             BXE_CORE_UNLOCK(sc);
4492         }
4493         break;
4494 
4495     default:
4496         break;
4497     }
4498 }
4499 
4500 /*
4501  * Handles any IOCTL calls from the operating system.
4502  *
4503  * Returns:
4504  *   0 = Success, >0 Failure
4505  */
4506 static int
4507 bxe_ioctl(if_t ifp,
4508           u_long       command,
4509           caddr_t      data)
4510 {
4511     struct bxe_softc *sc = if_getsoftc(ifp);
4512     struct ifreq *ifr = (struct ifreq *)data;
4513     int mask = 0;
4514     int reinit = 0;
4515     int error = 0;
4516 
4517     int mtu_min = (ETH_MIN_PACKET_SIZE - ETH_HLEN);
4518     int mtu_max = (MJUM9BYTES - ETH_OVERHEAD - IP_HEADER_ALIGNMENT_PADDING);
4519 
4520     switch (command)
4521     {
4522     case SIOCSIFMTU:
4523         BLOGD(sc, DBG_IOCTL, "Received SIOCSIFMTU ioctl (mtu=%d)\n",
4524               ifr->ifr_mtu);
4525 
4526         if (sc->mtu == ifr->ifr_mtu) {
4527             /* nothing to change */
4528             break;
4529         }
4530 
4531         if ((ifr->ifr_mtu < mtu_min) || (ifr->ifr_mtu > mtu_max)) {
4532             BLOGE(sc, "Unsupported MTU size %d (range is %d-%d)\n",
4533                   ifr->ifr_mtu, mtu_min, mtu_max);
4534             error = EINVAL;
4535             break;
4536         }
4537 
4538         atomic_store_rel_int((volatile unsigned int *)&sc->mtu,
4539                              (unsigned long)ifr->ifr_mtu);
4540 	/*
4541         atomic_store_rel_long((volatile unsigned long *)&if_getmtu(ifp),
4542                               (unsigned long)ifr->ifr_mtu);
4543 	XXX - Not sure why it needs to be atomic
4544 	*/
4545 	if_setmtu(ifp, ifr->ifr_mtu);
4546         reinit = 1;
4547         break;
4548 
4549     case SIOCSIFFLAGS:
4550         /* toggle the interface state up or down */
4551         BLOGD(sc, DBG_IOCTL, "Received SIOCSIFFLAGS ioctl\n");
4552 
4553 	BXE_CORE_LOCK(sc);
4554         /* check if the interface is up */
4555         if (if_getflags(ifp) & IFF_UP) {
4556             if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
4557                 /* set the receive mode flags */
4558                 bxe_set_rx_mode(sc);
4559             } else if(sc->state != BXE_STATE_DISABLED) {
4560 		bxe_init_locked(sc);
4561             }
4562         } else {
4563             if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
4564 		bxe_periodic_stop(sc);
4565 		bxe_stop_locked(sc);
4566             }
4567         }
4568 	BXE_CORE_UNLOCK(sc);
4569 
4570         break;
4571 
4572     case SIOCADDMULTI:
4573     case SIOCDELMULTI:
4574         /* add/delete multicast addresses */
4575         BLOGD(sc, DBG_IOCTL, "Received SIOCADDMULTI/SIOCDELMULTI ioctl\n");
4576 
4577         /* check if the interface is up */
4578         if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
4579             /* set the receive mode flags */
4580 	    BXE_CORE_LOCK(sc);
4581             bxe_set_rx_mode(sc);
4582 	    BXE_CORE_UNLOCK(sc);
4583         }
4584 
4585         break;
4586 
4587     case SIOCSIFCAP:
4588         /* find out which capabilities have changed */
4589         mask = (ifr->ifr_reqcap ^ if_getcapenable(ifp));
4590 
4591         BLOGD(sc, DBG_IOCTL, "Received SIOCSIFCAP ioctl (mask=0x%08x)\n",
4592               mask);
4593 
4594         /* toggle the LRO capabilites enable flag */
4595         if (mask & IFCAP_LRO) {
4596 	    if_togglecapenable(ifp, IFCAP_LRO);
4597             BLOGD(sc, DBG_IOCTL, "Turning LRO %s\n",
4598                   (if_getcapenable(ifp) & IFCAP_LRO) ? "ON" : "OFF");
4599             reinit = 1;
4600         }
4601 
4602         /* toggle the TXCSUM checksum capabilites enable flag */
4603         if (mask & IFCAP_TXCSUM) {
4604 	    if_togglecapenable(ifp, IFCAP_TXCSUM);
4605             BLOGD(sc, DBG_IOCTL, "Turning TXCSUM %s\n",
4606                   (if_getcapenable(ifp) & IFCAP_TXCSUM) ? "ON" : "OFF");
4607             if (if_getcapenable(ifp) & IFCAP_TXCSUM) {
4608                 if_sethwassistbits(ifp, (CSUM_IP      |
4609                                     CSUM_TCP      |
4610                                     CSUM_UDP      |
4611                                     CSUM_TSO      |
4612                                     CSUM_TCP_IPV6 |
4613                                     CSUM_UDP_IPV6), 0);
4614             } else {
4615 		if_clearhwassist(ifp); /* XXX */
4616             }
4617         }
4618 
4619         /* toggle the RXCSUM checksum capabilities enable flag */
4620         if (mask & IFCAP_RXCSUM) {
4621 	    if_togglecapenable(ifp, IFCAP_RXCSUM);
4622             BLOGD(sc, DBG_IOCTL, "Turning RXCSUM %s\n",
4623                   (if_getcapenable(ifp) & IFCAP_RXCSUM) ? "ON" : "OFF");
4624             if (if_getcapenable(ifp) & IFCAP_RXCSUM) {
4625                 if_sethwassistbits(ifp, (CSUM_IP      |
4626                                     CSUM_TCP      |
4627                                     CSUM_UDP      |
4628                                     CSUM_TSO      |
4629                                     CSUM_TCP_IPV6 |
4630                                     CSUM_UDP_IPV6), 0);
4631             } else {
4632 		if_clearhwassist(ifp); /* XXX */
4633             }
4634         }
4635 
4636         /* toggle TSO4 capabilities enabled flag */
4637         if (mask & IFCAP_TSO4) {
4638             if_togglecapenable(ifp, IFCAP_TSO4);
4639             BLOGD(sc, DBG_IOCTL, "Turning TSO4 %s\n",
4640                   (if_getcapenable(ifp) & IFCAP_TSO4) ? "ON" : "OFF");
4641         }
4642 
4643         /* toggle TSO6 capabilities enabled flag */
4644         if (mask & IFCAP_TSO6) {
4645 	    if_togglecapenable(ifp, IFCAP_TSO6);
4646             BLOGD(sc, DBG_IOCTL, "Turning TSO6 %s\n",
4647                   (if_getcapenable(ifp) & IFCAP_TSO6) ? "ON" : "OFF");
4648         }
4649 
4650         /* toggle VLAN_HWTSO capabilities enabled flag */
4651         if (mask & IFCAP_VLAN_HWTSO) {
4652 
4653 	    if_togglecapenable(ifp, IFCAP_VLAN_HWTSO);
4654             BLOGD(sc, DBG_IOCTL, "Turning VLAN_HWTSO %s\n",
4655                   (if_getcapenable(ifp) & IFCAP_VLAN_HWTSO) ? "ON" : "OFF");
4656         }
4657 
4658         /* toggle VLAN_HWCSUM capabilities enabled flag */
4659         if (mask & IFCAP_VLAN_HWCSUM) {
4660             /* XXX investigate this... */
4661             BLOGE(sc, "Changing VLAN_HWCSUM is not supported!\n");
4662             error = EINVAL;
4663         }
4664 
4665         /* toggle VLAN_MTU capabilities enable flag */
4666         if (mask & IFCAP_VLAN_MTU) {
4667             /* XXX investigate this... */
4668             BLOGE(sc, "Changing VLAN_MTU is not supported!\n");
4669             error = EINVAL;
4670         }
4671 
4672         /* toggle VLAN_HWTAGGING capabilities enabled flag */
4673         if (mask & IFCAP_VLAN_HWTAGGING) {
4674             /* XXX investigate this... */
4675             BLOGE(sc, "Changing VLAN_HWTAGGING is not supported!\n");
4676             error = EINVAL;
4677         }
4678 
4679         /* toggle VLAN_HWFILTER capabilities enabled flag */
4680         if (mask & IFCAP_VLAN_HWFILTER) {
4681             /* XXX investigate this... */
4682             BLOGE(sc, "Changing VLAN_HWFILTER is not supported!\n");
4683             error = EINVAL;
4684         }
4685 
4686         /* XXX not yet...
4687          * IFCAP_WOL_MAGIC
4688          */
4689 
4690         break;
4691 
4692     case SIOCSIFMEDIA:
4693     case SIOCGIFMEDIA:
4694         /* set/get interface media */
4695         BLOGD(sc, DBG_IOCTL,
4696               "Received SIOCSIFMEDIA/SIOCGIFMEDIA ioctl (cmd=%lu)\n",
4697               (command & 0xff));
4698         error = ifmedia_ioctl(ifp, ifr, &sc->ifmedia, command);
4699         break;
4700 
4701     default:
4702         BLOGD(sc, DBG_IOCTL, "Received Unknown Ioctl (cmd=%lu)\n",
4703               (command & 0xff));
4704         error = ether_ioctl(ifp, command, data);
4705         break;
4706     }
4707 
4708     if (reinit && (if_getdrvflags(sc->ifp) & IFF_DRV_RUNNING)) {
4709         BLOGD(sc, DBG_LOAD | DBG_IOCTL,
4710               "Re-initializing hardware from IOCTL change\n");
4711 	bxe_periodic_stop(sc);
4712 	BXE_CORE_LOCK(sc);
4713 	bxe_stop_locked(sc);
4714 	bxe_init_locked(sc);
4715 	BXE_CORE_UNLOCK(sc);
4716     }
4717 
4718     return (error);
4719 }
4720 
4721 static __noinline void
4722 bxe_dump_mbuf(struct bxe_softc *sc,
4723               struct mbuf      *m,
4724               uint8_t          contents)
4725 {
4726     char * type;
4727     int i = 0;
4728 
4729     if (!(sc->debug & DBG_MBUF)) {
4730         return;
4731     }
4732 
4733     if (m == NULL) {
4734         BLOGD(sc, DBG_MBUF, "mbuf: null pointer\n");
4735         return;
4736     }
4737 
4738     while (m) {
4739 
4740         BLOGD(sc, DBG_MBUF,
4741               "%02d: mbuf=%p m_len=%d m_flags=0x%b m_data=%p\n",
4742               i, m, m->m_len, m->m_flags, M_FLAG_BITS, m->m_data);
4743 
4744         if (m->m_flags & M_PKTHDR) {
4745              BLOGD(sc, DBG_MBUF,
4746                    "%02d: - m_pkthdr: tot_len=%d flags=0x%b csum_flags=%b\n",
4747                    i, m->m_pkthdr.len, m->m_flags, M_FLAG_BITS,
4748                    (int)m->m_pkthdr.csum_flags, CSUM_BITS);
4749         }
4750 
4751         if (m->m_flags & M_EXT) {
4752             switch (m->m_ext.ext_type) {
4753             case EXT_CLUSTER:    type = "EXT_CLUSTER";    break;
4754             case EXT_SFBUF:      type = "EXT_SFBUF";      break;
4755             case EXT_JUMBOP:     type = "EXT_JUMBOP";     break;
4756             case EXT_JUMBO9:     type = "EXT_JUMBO9";     break;
4757             case EXT_JUMBO16:    type = "EXT_JUMBO16";    break;
4758             case EXT_PACKET:     type = "EXT_PACKET";     break;
4759             case EXT_MBUF:       type = "EXT_MBUF";       break;
4760             case EXT_NET_DRV:    type = "EXT_NET_DRV";    break;
4761             case EXT_MOD_TYPE:   type = "EXT_MOD_TYPE";   break;
4762             case EXT_DISPOSABLE: type = "EXT_DISPOSABLE"; break;
4763             case EXT_EXTREF:     type = "EXT_EXTREF";     break;
4764             default:             type = "UNKNOWN";        break;
4765             }
4766 
4767             BLOGD(sc, DBG_MBUF,
4768                   "%02d: - m_ext: %p ext_size=%d type=%s\n",
4769                   i, m->m_ext.ext_buf, m->m_ext.ext_size, type);
4770         }
4771 
4772         if (contents) {
4773             bxe_dump_mbuf_data(sc, "mbuf data", m, TRUE);
4774         }
4775 
4776         m = m->m_next;
4777         i++;
4778     }
4779 }
4780 
4781 /*
4782  * Checks to ensure the 13 bd sliding window is >= MSS for TSO.
4783  * Check that (13 total bds - 3 bds) = 10 bd window >= MSS.
4784  * The window: 3 bds are = 1 for headers BD + 2 for parse BD and last BD
4785  * The headers comes in a separate bd in FreeBSD so 13-3=10.
4786  * Returns: 0 if OK to send, 1 if packet needs further defragmentation
4787  */
4788 static int
4789 bxe_chktso_window(struct bxe_softc  *sc,
4790                   int               nsegs,
4791                   bus_dma_segment_t *segs,
4792                   struct mbuf       *m)
4793 {
4794     uint32_t num_wnds, wnd_size, wnd_sum;
4795     int32_t frag_idx, wnd_idx;
4796     unsigned short lso_mss;
4797     int defrag;
4798 
4799     defrag = 0;
4800     wnd_sum = 0;
4801     wnd_size = 10;
4802     num_wnds = nsegs - wnd_size;
4803     lso_mss = htole16(m->m_pkthdr.tso_segsz);
4804 
4805     /*
4806      * Total header lengths Eth+IP+TCP in first FreeBSD mbuf so calculate the
4807      * first window sum of data while skipping the first assuming it is the
4808      * header in FreeBSD.
4809      */
4810     for (frag_idx = 1; (frag_idx <= wnd_size); frag_idx++) {
4811         wnd_sum += htole16(segs[frag_idx].ds_len);
4812     }
4813 
4814     /* check the first 10 bd window size */
4815     if (wnd_sum < lso_mss) {
4816         return (1);
4817     }
4818 
4819     /* run through the windows */
4820     for (wnd_idx = 0; wnd_idx < num_wnds; wnd_idx++, frag_idx++) {
4821         /* subtract the first mbuf->m_len of the last wndw(-header) */
4822         wnd_sum -= htole16(segs[wnd_idx+1].ds_len);
4823         /* add the next mbuf len to the len of our new window */
4824         wnd_sum += htole16(segs[frag_idx].ds_len);
4825         if (wnd_sum < lso_mss) {
4826             return (1);
4827         }
4828     }
4829 
4830     return (0);
4831 }
4832 
4833 static uint8_t
4834 bxe_set_pbd_csum_e2(struct bxe_fastpath *fp,
4835                     struct mbuf         *m,
4836                     uint32_t            *parsing_data)
4837 {
4838     struct ether_vlan_header *eh = NULL;
4839     struct ip *ip4 = NULL;
4840     struct ip6_hdr *ip6 = NULL;
4841     caddr_t ip = NULL;
4842     struct tcphdr *th = NULL;
4843     int e_hlen, ip_hlen, l4_off;
4844     uint16_t proto;
4845 
4846     if (m->m_pkthdr.csum_flags == CSUM_IP) {
4847         /* no L4 checksum offload needed */
4848         return (0);
4849     }
4850 
4851     /* get the Ethernet header */
4852     eh = mtod(m, struct ether_vlan_header *);
4853 
4854     /* handle VLAN encapsulation if present */
4855     if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) {
4856         e_hlen = (ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN);
4857         proto  = ntohs(eh->evl_proto);
4858     } else {
4859         e_hlen = ETHER_HDR_LEN;
4860         proto  = ntohs(eh->evl_encap_proto);
4861     }
4862 
4863     switch (proto) {
4864     case ETHERTYPE_IP:
4865         /* get the IP header, if mbuf len < 20 then header in next mbuf */
4866         ip4 = (m->m_len < sizeof(struct ip)) ?
4867                   (struct ip *)m->m_next->m_data :
4868                   (struct ip *)(m->m_data + e_hlen);
4869         /* ip_hl is number of 32-bit words */
4870         ip_hlen = (ip4->ip_hl << 2);
4871         ip = (caddr_t)ip4;
4872         break;
4873     case ETHERTYPE_IPV6:
4874         /* get the IPv6 header, if mbuf len < 40 then header in next mbuf */
4875         ip6 = (m->m_len < sizeof(struct ip6_hdr)) ?
4876                   (struct ip6_hdr *)m->m_next->m_data :
4877                   (struct ip6_hdr *)(m->m_data + e_hlen);
4878         /* XXX cannot support offload with IPv6 extensions */
4879         ip_hlen = sizeof(struct ip6_hdr);
4880         ip = (caddr_t)ip6;
4881         break;
4882     default:
4883         /* We can't offload in this case... */
4884         /* XXX error stat ??? */
4885         return (0);
4886     }
4887 
4888     /* XXX assuming L4 header is contiguous to IPv4/IPv6 in the same mbuf */
4889     l4_off = (e_hlen + ip_hlen);
4890 
4891     *parsing_data |=
4892         (((l4_off >> 1) << ETH_TX_PARSE_BD_E2_L4_HDR_START_OFFSET_W_SHIFT) &
4893          ETH_TX_PARSE_BD_E2_L4_HDR_START_OFFSET_W);
4894 
4895     if (m->m_pkthdr.csum_flags & (CSUM_TCP |
4896                                   CSUM_TSO |
4897                                   CSUM_TCP_IPV6)) {
4898         fp->eth_q_stats.tx_ofld_frames_csum_tcp++;
4899         th = (struct tcphdr *)(ip + ip_hlen);
4900         /* th_off is number of 32-bit words */
4901         *parsing_data |= ((th->th_off <<
4902                            ETH_TX_PARSE_BD_E2_TCP_HDR_LENGTH_DW_SHIFT) &
4903                           ETH_TX_PARSE_BD_E2_TCP_HDR_LENGTH_DW);
4904         return (l4_off + (th->th_off << 2)); /* entire header length */
4905     } else if (m->m_pkthdr.csum_flags & (CSUM_UDP |
4906                                          CSUM_UDP_IPV6)) {
4907         fp->eth_q_stats.tx_ofld_frames_csum_udp++;
4908         return (l4_off + sizeof(struct udphdr)); /* entire header length */
4909     } else {
4910         /* XXX error stat ??? */
4911         return (0);
4912     }
4913 }
4914 
4915 static uint8_t
4916 bxe_set_pbd_csum(struct bxe_fastpath        *fp,
4917                  struct mbuf                *m,
4918                  struct eth_tx_parse_bd_e1x *pbd)
4919 {
4920     struct ether_vlan_header *eh = NULL;
4921     struct ip *ip4 = NULL;
4922     struct ip6_hdr *ip6 = NULL;
4923     caddr_t ip = NULL;
4924     struct tcphdr *th = NULL;
4925     struct udphdr *uh = NULL;
4926     int e_hlen, ip_hlen;
4927     uint16_t proto;
4928     uint8_t hlen;
4929     uint16_t tmp_csum;
4930     uint32_t *tmp_uh;
4931 
4932     /* get the Ethernet header */
4933     eh = mtod(m, struct ether_vlan_header *);
4934 
4935     /* handle VLAN encapsulation if present */
4936     if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) {
4937         e_hlen = (ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN);
4938         proto  = ntohs(eh->evl_proto);
4939     } else {
4940         e_hlen = ETHER_HDR_LEN;
4941         proto  = ntohs(eh->evl_encap_proto);
4942     }
4943 
4944     switch (proto) {
4945     case ETHERTYPE_IP:
4946         /* get the IP header, if mbuf len < 20 then header in next mbuf */
4947         ip4 = (m->m_len < sizeof(struct ip)) ?
4948                   (struct ip *)m->m_next->m_data :
4949                   (struct ip *)(m->m_data + e_hlen);
4950         /* ip_hl is number of 32-bit words */
4951         ip_hlen = (ip4->ip_hl << 1);
4952         ip = (caddr_t)ip4;
4953         break;
4954     case ETHERTYPE_IPV6:
4955         /* get the IPv6 header, if mbuf len < 40 then header in next mbuf */
4956         ip6 = (m->m_len < sizeof(struct ip6_hdr)) ?
4957                   (struct ip6_hdr *)m->m_next->m_data :
4958                   (struct ip6_hdr *)(m->m_data + e_hlen);
4959         /* XXX cannot support offload with IPv6 extensions */
4960         ip_hlen = (sizeof(struct ip6_hdr) >> 1);
4961         ip = (caddr_t)ip6;
4962         break;
4963     default:
4964         /* We can't offload in this case... */
4965         /* XXX error stat ??? */
4966         return (0);
4967     }
4968 
4969     hlen = (e_hlen >> 1);
4970 
4971     /* note that rest of global_data is indirectly zeroed here */
4972     if (m->m_flags & M_VLANTAG) {
4973         pbd->global_data =
4974             htole16(hlen | (1 << ETH_TX_PARSE_BD_E1X_LLC_SNAP_EN_SHIFT));
4975     } else {
4976         pbd->global_data = htole16(hlen);
4977     }
4978 
4979     pbd->ip_hlen_w = ip_hlen;
4980 
4981     hlen += pbd->ip_hlen_w;
4982 
4983     /* XXX assuming L4 header is contiguous to IPv4/IPv6 in the same mbuf */
4984 
4985     if (m->m_pkthdr.csum_flags & (CSUM_TCP |
4986                                   CSUM_TSO |
4987                                   CSUM_TCP_IPV6)) {
4988         th = (struct tcphdr *)(ip + (ip_hlen << 1));
4989         /* th_off is number of 32-bit words */
4990         hlen += (uint16_t)(th->th_off << 1);
4991     } else if (m->m_pkthdr.csum_flags & (CSUM_UDP |
4992                                          CSUM_UDP_IPV6)) {
4993         uh = (struct udphdr *)(ip + (ip_hlen << 1));
4994         hlen += (sizeof(struct udphdr) / 2);
4995     } else {
4996         /* valid case as only CSUM_IP was set */
4997         return (0);
4998     }
4999 
5000     pbd->total_hlen_w = htole16(hlen);
5001 
5002     if (m->m_pkthdr.csum_flags & (CSUM_TCP |
5003                                   CSUM_TSO |
5004                                   CSUM_TCP_IPV6)) {
5005         fp->eth_q_stats.tx_ofld_frames_csum_tcp++;
5006         pbd->tcp_pseudo_csum = ntohs(th->th_sum);
5007     } else if (m->m_pkthdr.csum_flags & (CSUM_UDP |
5008                                          CSUM_UDP_IPV6)) {
5009         fp->eth_q_stats.tx_ofld_frames_csum_udp++;
5010 
5011         /*
5012          * Everest1 (i.e. 57710, 57711, 57711E) does not natively support UDP
5013          * checksums and does not know anything about the UDP header and where
5014          * the checksum field is located. It only knows about TCP. Therefore
5015          * we "lie" to the hardware for outgoing UDP packets w/ checksum
5016          * offload. Since the checksum field offset for TCP is 16 bytes and
5017          * for UDP it is 6 bytes we pass a pointer to the hardware that is 10
5018          * bytes less than the start of the UDP header. This allows the
5019          * hardware to write the checksum in the correct spot. But the
5020          * hardware will compute a checksum which includes the last 10 bytes
5021          * of the IP header. To correct this we tweak the stack computed
5022          * pseudo checksum by folding in the calculation of the inverse
5023          * checksum for those final 10 bytes of the IP header. This allows
5024          * the correct checksum to be computed by the hardware.
5025          */
5026 
5027         /* set pointer 10 bytes before UDP header */
5028         tmp_uh = (uint32_t *)((uint8_t *)uh - 10);
5029 
5030         /* calculate a pseudo header checksum over the first 10 bytes */
5031         tmp_csum = in_pseudo(*tmp_uh,
5032                              *(tmp_uh + 1),
5033                              *(uint16_t *)(tmp_uh + 2));
5034 
5035         pbd->tcp_pseudo_csum = ntohs(in_addword(uh->uh_sum, ~tmp_csum));
5036     }
5037 
5038     return (hlen * 2); /* entire header length, number of bytes */
5039 }
5040 
5041 static void
5042 bxe_set_pbd_lso_e2(struct mbuf *m,
5043                    uint32_t    *parsing_data)
5044 {
5045     *parsing_data |= ((m->m_pkthdr.tso_segsz <<
5046                        ETH_TX_PARSE_BD_E2_LSO_MSS_SHIFT) &
5047                       ETH_TX_PARSE_BD_E2_LSO_MSS);
5048 
5049     /* XXX test for IPv6 with extension header... */
5050 }
5051 
5052 static void
5053 bxe_set_pbd_lso(struct mbuf                *m,
5054                 struct eth_tx_parse_bd_e1x *pbd)
5055 {
5056     struct ether_vlan_header *eh = NULL;
5057     struct ip *ip = NULL;
5058     struct tcphdr *th = NULL;
5059     int e_hlen;
5060 
5061     /* get the Ethernet header */
5062     eh = mtod(m, struct ether_vlan_header *);
5063 
5064     /* handle VLAN encapsulation if present */
5065     e_hlen = (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) ?
5066                  (ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN) : ETHER_HDR_LEN;
5067 
5068     /* get the IP and TCP header, with LSO entire header in first mbuf */
5069     /* XXX assuming IPv4 */
5070     ip = (struct ip *)(m->m_data + e_hlen);
5071     th = (struct tcphdr *)((caddr_t)ip + (ip->ip_hl << 2));
5072 
5073     pbd->lso_mss = htole16(m->m_pkthdr.tso_segsz);
5074     pbd->tcp_send_seq = ntohl(th->th_seq);
5075     pbd->tcp_flags = ((ntohl(((uint32_t *)th)[3]) >> 16) & 0xff);
5076 
5077 #if 1
5078         /* XXX IPv4 */
5079         pbd->ip_id = ntohs(ip->ip_id);
5080         pbd->tcp_pseudo_csum =
5081             ntohs(in_pseudo(ip->ip_src.s_addr,
5082                             ip->ip_dst.s_addr,
5083                             htons(IPPROTO_TCP)));
5084 #else
5085         /* XXX IPv6 */
5086         pbd->tcp_pseudo_csum =
5087             ntohs(in_pseudo(&ip6->ip6_src,
5088                             &ip6->ip6_dst,
5089                             htons(IPPROTO_TCP)));
5090 #endif
5091 
5092     pbd->global_data |=
5093         htole16(ETH_TX_PARSE_BD_E1X_PSEUDO_CS_WITHOUT_LEN);
5094 }
5095 
5096 /*
5097  * Encapsulte an mbuf cluster into the tx bd chain and makes the memory
5098  * visible to the controller.
5099  *
5100  * If an mbuf is submitted to this routine and cannot be given to the
5101  * controller (e.g. it has too many fragments) then the function may free
5102  * the mbuf and return to the caller.
5103  *
5104  * Returns:
5105  *   0 = Success, !0 = Failure
5106  *   Note the side effect that an mbuf may be freed if it causes a problem.
5107  */
5108 static int
5109 bxe_tx_encap(struct bxe_fastpath *fp, struct mbuf **m_head)
5110 {
5111     bus_dma_segment_t segs[32];
5112     struct mbuf *m0;
5113     struct bxe_sw_tx_bd *tx_buf;
5114     struct eth_tx_parse_bd_e1x *pbd_e1x = NULL;
5115     struct eth_tx_parse_bd_e2 *pbd_e2 = NULL;
5116     /* struct eth_tx_parse_2nd_bd *pbd2 = NULL; */
5117     struct eth_tx_bd *tx_data_bd;
5118     struct eth_tx_bd *tx_total_pkt_size_bd;
5119     struct eth_tx_start_bd *tx_start_bd;
5120     uint16_t bd_prod, pkt_prod, total_pkt_size;
5121     uint8_t mac_type;
5122     int defragged, error, nsegs, rc, nbds, vlan_off, ovlan;
5123     struct bxe_softc *sc;
5124     uint16_t tx_bd_avail;
5125     struct ether_vlan_header *eh;
5126     uint32_t pbd_e2_parsing_data = 0;
5127     uint8_t hlen = 0;
5128     int tmp_bd;
5129     int i;
5130 
5131     sc = fp->sc;
5132 
5133     M_ASSERTPKTHDR(*m_head);
5134 
5135     m0 = *m_head;
5136     rc = defragged = nbds = ovlan = vlan_off = total_pkt_size = 0;
5137     tx_start_bd = NULL;
5138     tx_data_bd = NULL;
5139     tx_total_pkt_size_bd = NULL;
5140 
5141     /* get the H/W pointer for packets and BDs */
5142     pkt_prod = fp->tx_pkt_prod;
5143     bd_prod = fp->tx_bd_prod;
5144 
5145     mac_type = UNICAST_ADDRESS;
5146 
5147     /* map the mbuf into the next open DMAable memory */
5148     tx_buf = &fp->tx_mbuf_chain[TX_BD(pkt_prod)];
5149     error = bus_dmamap_load_mbuf_sg(fp->tx_mbuf_tag,
5150                                     tx_buf->m_map, m0,
5151                                     segs, &nsegs, BUS_DMA_NOWAIT);
5152 
5153     /* mapping errors */
5154     if(__predict_false(error != 0)) {
5155         fp->eth_q_stats.tx_dma_mapping_failure++;
5156         if (error == ENOMEM) {
5157             /* resource issue, try again later */
5158             rc = ENOMEM;
5159         } else if (error == EFBIG) {
5160             /* possibly recoverable with defragmentation */
5161             fp->eth_q_stats.mbuf_defrag_attempts++;
5162             m0 = m_defrag(*m_head, M_NOWAIT);
5163             if (m0 == NULL) {
5164                 fp->eth_q_stats.mbuf_defrag_failures++;
5165                 rc = ENOBUFS;
5166             } else {
5167                 /* defrag successful, try mapping again */
5168                 *m_head = m0;
5169                 error = bus_dmamap_load_mbuf_sg(fp->tx_mbuf_tag,
5170                                                 tx_buf->m_map, m0,
5171                                                 segs, &nsegs, BUS_DMA_NOWAIT);
5172                 if (error) {
5173                     fp->eth_q_stats.tx_dma_mapping_failure++;
5174                     rc = error;
5175                 }
5176             }
5177         } else {
5178             /* unknown, unrecoverable mapping error */
5179             BLOGE(sc, "Unknown TX mapping error rc=%d\n", error);
5180             bxe_dump_mbuf(sc, m0, FALSE);
5181             rc = error;
5182         }
5183 
5184         goto bxe_tx_encap_continue;
5185     }
5186 
5187     tx_bd_avail = bxe_tx_avail(sc, fp);
5188 
5189     /* make sure there is enough room in the send queue */
5190     if (__predict_false(tx_bd_avail < (nsegs + 2))) {
5191         /* Recoverable, try again later. */
5192         fp->eth_q_stats.tx_hw_queue_full++;
5193         bus_dmamap_unload(fp->tx_mbuf_tag, tx_buf->m_map);
5194         rc = ENOMEM;
5195         goto bxe_tx_encap_continue;
5196     }
5197 
5198     /* capture the current H/W TX chain high watermark */
5199     if (__predict_false(fp->eth_q_stats.tx_hw_max_queue_depth <
5200                         (TX_BD_USABLE - tx_bd_avail))) {
5201         fp->eth_q_stats.tx_hw_max_queue_depth = (TX_BD_USABLE - tx_bd_avail);
5202     }
5203 
5204     /* make sure it fits in the packet window */
5205     if (__predict_false(nsegs > BXE_MAX_SEGMENTS)) {
5206         /*
5207          * The mbuf may be to big for the controller to handle. If the frame
5208          * is a TSO frame we'll need to do an additional check.
5209          */
5210         if (m0->m_pkthdr.csum_flags & CSUM_TSO) {
5211             if (bxe_chktso_window(sc, nsegs, segs, m0) == 0) {
5212                 goto bxe_tx_encap_continue; /* OK to send */
5213             } else {
5214                 fp->eth_q_stats.tx_window_violation_tso++;
5215             }
5216         } else {
5217             fp->eth_q_stats.tx_window_violation_std++;
5218         }
5219 
5220         /* lets try to defragment this mbuf and remap it */
5221         fp->eth_q_stats.mbuf_defrag_attempts++;
5222         bus_dmamap_unload(fp->tx_mbuf_tag, tx_buf->m_map);
5223 
5224         m0 = m_defrag(*m_head, M_NOWAIT);
5225         if (m0 == NULL) {
5226             fp->eth_q_stats.mbuf_defrag_failures++;
5227             /* Ugh, just drop the frame... :( */
5228             rc = ENOBUFS;
5229         } else {
5230             /* defrag successful, try mapping again */
5231             *m_head = m0;
5232             error = bus_dmamap_load_mbuf_sg(fp->tx_mbuf_tag,
5233                                             tx_buf->m_map, m0,
5234                                             segs, &nsegs, BUS_DMA_NOWAIT);
5235             if (error) {
5236                 fp->eth_q_stats.tx_dma_mapping_failure++;
5237                 /* No sense in trying to defrag/copy chain, drop it. :( */
5238                 rc = error;
5239             } else {
5240                /* if the chain is still too long then drop it */
5241                 if(m0->m_pkthdr.csum_flags & CSUM_TSO) {
5242                     /*
5243                      * in case TSO is enabled nsegs should be checked against
5244                      * BXE_TSO_MAX_SEGMENTS
5245                      */
5246                     if (__predict_false(nsegs > BXE_TSO_MAX_SEGMENTS)) {
5247                         bus_dmamap_unload(fp->tx_mbuf_tag, tx_buf->m_map);
5248                         fp->eth_q_stats.nsegs_path1_errors++;
5249                         rc = ENODEV;
5250                     }
5251                 } else {
5252                     if (__predict_false(nsegs > BXE_MAX_SEGMENTS)) {
5253                         bus_dmamap_unload(fp->tx_mbuf_tag, tx_buf->m_map);
5254                         fp->eth_q_stats.nsegs_path2_errors++;
5255                         rc = ENODEV;
5256                     }
5257                 }
5258             }
5259         }
5260     }
5261 
5262 bxe_tx_encap_continue:
5263 
5264     /* Check for errors */
5265     if (rc) {
5266         if (rc == ENOMEM) {
5267             /* recoverable try again later  */
5268         } else {
5269             fp->eth_q_stats.tx_soft_errors++;
5270             fp->eth_q_stats.mbuf_alloc_tx--;
5271             m_freem(*m_head);
5272             *m_head = NULL;
5273         }
5274 
5275         return (rc);
5276     }
5277 
5278     /* set flag according to packet type (UNICAST_ADDRESS is default) */
5279     if (m0->m_flags & M_BCAST) {
5280         mac_type = BROADCAST_ADDRESS;
5281     } else if (m0->m_flags & M_MCAST) {
5282         mac_type = MULTICAST_ADDRESS;
5283     }
5284 
5285     /* store the mbuf into the mbuf ring */
5286     tx_buf->m        = m0;
5287     tx_buf->first_bd = fp->tx_bd_prod;
5288     tx_buf->flags    = 0;
5289 
5290     /* prepare the first transmit (start) BD for the mbuf */
5291     tx_start_bd = &fp->tx_chain[TX_BD(bd_prod)].start_bd;
5292 
5293     BLOGD(sc, DBG_TX,
5294           "sending pkt_prod=%u tx_buf=%p next_idx=%u bd=%u tx_start_bd=%p\n",
5295           pkt_prod, tx_buf, fp->tx_pkt_prod, bd_prod, tx_start_bd);
5296 
5297     tx_start_bd->addr_lo = htole32(U64_LO(segs[0].ds_addr));
5298     tx_start_bd->addr_hi = htole32(U64_HI(segs[0].ds_addr));
5299     tx_start_bd->nbytes  = htole16(segs[0].ds_len);
5300     total_pkt_size += tx_start_bd->nbytes;
5301     tx_start_bd->bd_flags.as_bitfield = ETH_TX_BD_FLAGS_START_BD;
5302 
5303     tx_start_bd->general_data = (1 << ETH_TX_START_BD_HDR_NBDS_SHIFT);
5304 
5305     /* all frames have at least Start BD + Parsing BD */
5306     nbds = nsegs + 1;
5307     tx_start_bd->nbd = htole16(nbds);
5308 
5309     if (m0->m_flags & M_VLANTAG) {
5310         tx_start_bd->vlan_or_ethertype = htole16(m0->m_pkthdr.ether_vtag);
5311         tx_start_bd->bd_flags.as_bitfield |=
5312             (X_ETH_OUTBAND_VLAN << ETH_TX_BD_FLAGS_VLAN_MODE_SHIFT);
5313     } else {
5314         /* vf tx, start bd must hold the ethertype for fw to enforce it */
5315         if (IS_VF(sc)) {
5316             /* map ethernet header to find type and header length */
5317             eh = mtod(m0, struct ether_vlan_header *);
5318             tx_start_bd->vlan_or_ethertype = eh->evl_encap_proto;
5319         } else {
5320             /* used by FW for packet accounting */
5321             tx_start_bd->vlan_or_ethertype = htole16(fp->tx_pkt_prod);
5322         }
5323     }
5324 
5325     /*
5326      * add a parsing BD from the chain. The parsing BD is always added
5327      * though it is only used for TSO and chksum
5328      */
5329     bd_prod = TX_BD_NEXT(bd_prod);
5330 
5331     if (m0->m_pkthdr.csum_flags) {
5332         if (m0->m_pkthdr.csum_flags & CSUM_IP) {
5333             fp->eth_q_stats.tx_ofld_frames_csum_ip++;
5334             tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_IP_CSUM;
5335         }
5336 
5337         if (m0->m_pkthdr.csum_flags & CSUM_TCP_IPV6) {
5338             tx_start_bd->bd_flags.as_bitfield |= (ETH_TX_BD_FLAGS_IPV6 |
5339                                                   ETH_TX_BD_FLAGS_L4_CSUM);
5340         } else if (m0->m_pkthdr.csum_flags & CSUM_UDP_IPV6) {
5341             tx_start_bd->bd_flags.as_bitfield |= (ETH_TX_BD_FLAGS_IPV6   |
5342                                                   ETH_TX_BD_FLAGS_IS_UDP |
5343                                                   ETH_TX_BD_FLAGS_L4_CSUM);
5344         } else if ((m0->m_pkthdr.csum_flags & CSUM_TCP) ||
5345                    (m0->m_pkthdr.csum_flags & CSUM_TSO)) {
5346             tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_L4_CSUM;
5347         } else if (m0->m_pkthdr.csum_flags & CSUM_UDP) {
5348             tx_start_bd->bd_flags.as_bitfield |= (ETH_TX_BD_FLAGS_L4_CSUM |
5349                                                   ETH_TX_BD_FLAGS_IS_UDP);
5350         }
5351     }
5352 
5353     if (!CHIP_IS_E1x(sc)) {
5354         pbd_e2 = &fp->tx_chain[TX_BD(bd_prod)].parse_bd_e2;
5355         memset(pbd_e2, 0, sizeof(struct eth_tx_parse_bd_e2));
5356 
5357         if (m0->m_pkthdr.csum_flags) {
5358             hlen = bxe_set_pbd_csum_e2(fp, m0, &pbd_e2_parsing_data);
5359         }
5360 
5361         SET_FLAG(pbd_e2_parsing_data, ETH_TX_PARSE_BD_E2_ETH_ADDR_TYPE,
5362                  mac_type);
5363     } else {
5364         uint16_t global_data = 0;
5365 
5366         pbd_e1x = &fp->tx_chain[TX_BD(bd_prod)].parse_bd_e1x;
5367         memset(pbd_e1x, 0, sizeof(struct eth_tx_parse_bd_e1x));
5368 
5369         if (m0->m_pkthdr.csum_flags) {
5370             hlen = bxe_set_pbd_csum(fp, m0, pbd_e1x);
5371         }
5372 
5373         SET_FLAG(global_data,
5374                  ETH_TX_PARSE_BD_E1X_ETH_ADDR_TYPE, mac_type);
5375         pbd_e1x->global_data |= htole16(global_data);
5376     }
5377 
5378     /* setup the parsing BD with TSO specific info */
5379     if (m0->m_pkthdr.csum_flags & CSUM_TSO) {
5380         fp->eth_q_stats.tx_ofld_frames_lso++;
5381         tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_SW_LSO;
5382 
5383         if (__predict_false(tx_start_bd->nbytes > hlen)) {
5384             fp->eth_q_stats.tx_ofld_frames_lso_hdr_splits++;
5385 
5386             /* split the first BD into header/data making the fw job easy */
5387             nbds++;
5388             tx_start_bd->nbd = htole16(nbds);
5389             tx_start_bd->nbytes = htole16(hlen);
5390 
5391             bd_prod = TX_BD_NEXT(bd_prod);
5392 
5393             /* new transmit BD after the tx_parse_bd */
5394             tx_data_bd = &fp->tx_chain[TX_BD(bd_prod)].reg_bd;
5395             tx_data_bd->addr_hi = htole32(U64_HI(segs[0].ds_addr + hlen));
5396             tx_data_bd->addr_lo = htole32(U64_LO(segs[0].ds_addr + hlen));
5397             tx_data_bd->nbytes  = htole16(segs[0].ds_len - hlen);
5398             if (tx_total_pkt_size_bd == NULL) {
5399                 tx_total_pkt_size_bd = tx_data_bd;
5400             }
5401 
5402             BLOGD(sc, DBG_TX,
5403                   "TSO split header size is %d (%x:%x) nbds %d\n",
5404                   le16toh(tx_start_bd->nbytes),
5405                   le32toh(tx_start_bd->addr_hi),
5406                   le32toh(tx_start_bd->addr_lo),
5407                   nbds);
5408         }
5409 
5410         if (!CHIP_IS_E1x(sc)) {
5411             bxe_set_pbd_lso_e2(m0, &pbd_e2_parsing_data);
5412         } else {
5413             bxe_set_pbd_lso(m0, pbd_e1x);
5414         }
5415     }
5416 
5417     if (pbd_e2_parsing_data) {
5418         pbd_e2->parsing_data = htole32(pbd_e2_parsing_data);
5419     }
5420 
5421     /* prepare remaining BDs, start tx bd contains first seg/frag */
5422     for (i = 1; i < nsegs ; i++) {
5423         bd_prod = TX_BD_NEXT(bd_prod);
5424         tx_data_bd = &fp->tx_chain[TX_BD(bd_prod)].reg_bd;
5425         tx_data_bd->addr_lo = htole32(U64_LO(segs[i].ds_addr));
5426         tx_data_bd->addr_hi = htole32(U64_HI(segs[i].ds_addr));
5427         tx_data_bd->nbytes  = htole16(segs[i].ds_len);
5428         if (tx_total_pkt_size_bd == NULL) {
5429             tx_total_pkt_size_bd = tx_data_bd;
5430         }
5431         total_pkt_size += tx_data_bd->nbytes;
5432     }
5433 
5434     BLOGD(sc, DBG_TX, "last bd %p\n", tx_data_bd);
5435 
5436     if (tx_total_pkt_size_bd != NULL) {
5437         tx_total_pkt_size_bd->total_pkt_bytes = total_pkt_size;
5438     }
5439 
5440     if (__predict_false(sc->debug & DBG_TX)) {
5441         tmp_bd = tx_buf->first_bd;
5442         for (i = 0; i < nbds; i++)
5443         {
5444             if (i == 0) {
5445                 BLOGD(sc, DBG_TX,
5446                       "TX Strt: %p bd=%d nbd=%d vlan=0x%x "
5447                       "bd_flags=0x%x hdr_nbds=%d\n",
5448                       tx_start_bd,
5449                       tmp_bd,
5450                       le16toh(tx_start_bd->nbd),
5451                       le16toh(tx_start_bd->vlan_or_ethertype),
5452                       tx_start_bd->bd_flags.as_bitfield,
5453                       (tx_start_bd->general_data & ETH_TX_START_BD_HDR_NBDS));
5454             } else if (i == 1) {
5455                 if (pbd_e1x) {
5456                     BLOGD(sc, DBG_TX,
5457                           "-> Prse: %p bd=%d global=0x%x ip_hlen_w=%u "
5458                           "ip_id=%u lso_mss=%u tcp_flags=0x%x csum=0x%x "
5459                           "tcp_seq=%u total_hlen_w=%u\n",
5460                           pbd_e1x,
5461                           tmp_bd,
5462                           pbd_e1x->global_data,
5463                           pbd_e1x->ip_hlen_w,
5464                           pbd_e1x->ip_id,
5465                           pbd_e1x->lso_mss,
5466                           pbd_e1x->tcp_flags,
5467                           pbd_e1x->tcp_pseudo_csum,
5468                           pbd_e1x->tcp_send_seq,
5469                           le16toh(pbd_e1x->total_hlen_w));
5470                 } else { /* if (pbd_e2) */
5471                     BLOGD(sc, DBG_TX,
5472                           "-> Parse: %p bd=%d dst=%02x:%02x:%02x "
5473                           "src=%02x:%02x:%02x parsing_data=0x%x\n",
5474                           pbd_e2,
5475                           tmp_bd,
5476                           pbd_e2->data.mac_addr.dst_hi,
5477                           pbd_e2->data.mac_addr.dst_mid,
5478                           pbd_e2->data.mac_addr.dst_lo,
5479                           pbd_e2->data.mac_addr.src_hi,
5480                           pbd_e2->data.mac_addr.src_mid,
5481                           pbd_e2->data.mac_addr.src_lo,
5482                           pbd_e2->parsing_data);
5483                 }
5484             }
5485 
5486             if (i != 1) { /* skip parse db as it doesn't hold data */
5487                 tx_data_bd = &fp->tx_chain[TX_BD(tmp_bd)].reg_bd;
5488                 BLOGD(sc, DBG_TX,
5489                       "-> Frag: %p bd=%d nbytes=%d hi=0x%x lo: 0x%x\n",
5490                       tx_data_bd,
5491                       tmp_bd,
5492                       le16toh(tx_data_bd->nbytes),
5493                       le32toh(tx_data_bd->addr_hi),
5494                       le32toh(tx_data_bd->addr_lo));
5495             }
5496 
5497             tmp_bd = TX_BD_NEXT(tmp_bd);
5498         }
5499     }
5500 
5501     BLOGD(sc, DBG_TX, "doorbell: nbds=%d bd=%u\n", nbds, bd_prod);
5502 
5503     /* update TX BD producer index value for next TX */
5504     bd_prod = TX_BD_NEXT(bd_prod);
5505 
5506     /*
5507      * If the chain of tx_bd's describing this frame is adjacent to or spans
5508      * an eth_tx_next_bd element then we need to increment the nbds value.
5509      */
5510     if (TX_BD_IDX(bd_prod) < nbds) {
5511         nbds++;
5512     }
5513 
5514     /* don't allow reordering of writes for nbd and packets */
5515     mb();
5516 
5517     fp->tx_db.data.prod += nbds;
5518 
5519     /* producer points to the next free tx_bd at this point */
5520     fp->tx_pkt_prod++;
5521     fp->tx_bd_prod = bd_prod;
5522 
5523     DOORBELL(sc, fp->index, fp->tx_db.raw);
5524 
5525     fp->eth_q_stats.tx_pkts++;
5526 
5527     /* Prevent speculative reads from getting ahead of the status block. */
5528     bus_space_barrier(sc->bar[BAR0].tag, sc->bar[BAR0].handle,
5529                       0, 0, BUS_SPACE_BARRIER_READ);
5530 
5531     /* Prevent speculative reads from getting ahead of the doorbell. */
5532     bus_space_barrier(sc->bar[BAR2].tag, sc->bar[BAR2].handle,
5533                       0, 0, BUS_SPACE_BARRIER_READ);
5534 
5535     return (0);
5536 }
5537 
5538 static void
5539 bxe_tx_start_locked(struct bxe_softc *sc,
5540                     if_t ifp,
5541                     struct bxe_fastpath *fp)
5542 {
5543     struct mbuf *m = NULL;
5544     int tx_count = 0;
5545     uint16_t tx_bd_avail;
5546 
5547     BXE_FP_TX_LOCK_ASSERT(fp);
5548 
5549     /* keep adding entries while there are frames to send */
5550     while (!if_sendq_empty(ifp)) {
5551 
5552         /*
5553          * check for any frames to send
5554          * dequeue can still be NULL even if queue is not empty
5555          */
5556         m = if_dequeue(ifp);
5557         if (__predict_false(m == NULL)) {
5558             break;
5559         }
5560 
5561         /* the mbuf now belongs to us */
5562         fp->eth_q_stats.mbuf_alloc_tx++;
5563 
5564         /*
5565          * Put the frame into the transmit ring. If we don't have room,
5566          * place the mbuf back at the head of the TX queue, set the
5567          * OACTIVE flag, and wait for the NIC to drain the chain.
5568          */
5569         if (__predict_false(bxe_tx_encap(fp, &m))) {
5570             fp->eth_q_stats.tx_encap_failures++;
5571             if (m != NULL) {
5572                 /* mark the TX queue as full and return the frame */
5573                 if_setdrvflagbits(ifp, IFF_DRV_OACTIVE, 0);
5574 		if_sendq_prepend(ifp, m);
5575                 fp->eth_q_stats.mbuf_alloc_tx--;
5576                 fp->eth_q_stats.tx_queue_xoff++;
5577             }
5578 
5579             /* stop looking for more work */
5580             break;
5581         }
5582 
5583         /* the frame was enqueued successfully */
5584         tx_count++;
5585 
5586         /* send a copy of the frame to any BPF listeners. */
5587         if_etherbpfmtap(ifp, m);
5588 
5589         tx_bd_avail = bxe_tx_avail(sc, fp);
5590 
5591         /* handle any completions if we're running low */
5592         if (tx_bd_avail < BXE_TX_CLEANUP_THRESHOLD) {
5593             /* bxe_txeof will set IFF_DRV_OACTIVE appropriately */
5594             bxe_txeof(sc, fp);
5595             if (if_getdrvflags(ifp) & IFF_DRV_OACTIVE) {
5596                 break;
5597             }
5598         }
5599     }
5600 
5601     /* all TX packets were dequeued and/or the tx ring is full */
5602     if (tx_count > 0) {
5603         /* reset the TX watchdog timeout timer */
5604         fp->watchdog_timer = BXE_TX_TIMEOUT;
5605     }
5606 }
5607 
5608 /* Legacy (non-RSS) dispatch routine */
5609 static void
5610 bxe_tx_start(if_t ifp)
5611 {
5612     struct bxe_softc *sc;
5613     struct bxe_fastpath *fp;
5614 
5615     sc = if_getsoftc(ifp);
5616 
5617     if (!(if_getdrvflags(ifp) & IFF_DRV_RUNNING)) {
5618         BLOGW(sc, "Interface not running, ignoring transmit request\n");
5619         return;
5620     }
5621 
5622     if (!sc->link_vars.link_up) {
5623         BLOGW(sc, "Interface link is down, ignoring transmit request\n");
5624         return;
5625     }
5626 
5627     fp = &sc->fp[0];
5628 
5629     if (if_getdrvflags(ifp) & IFF_DRV_OACTIVE) {
5630         fp->eth_q_stats.tx_queue_full_return++;
5631         return;
5632     }
5633 
5634     BXE_FP_TX_LOCK(fp);
5635     bxe_tx_start_locked(sc, ifp, fp);
5636     BXE_FP_TX_UNLOCK(fp);
5637 }
5638 
5639 static int
5640 bxe_tx_mq_start_locked(struct bxe_softc    *sc,
5641                        if_t                ifp,
5642                        struct bxe_fastpath *fp,
5643                        struct mbuf         *m)
5644 {
5645     struct buf_ring *tx_br = fp->tx_br;
5646     struct mbuf *next;
5647     int depth, rc, tx_count;
5648     uint16_t tx_bd_avail;
5649 
5650     rc = tx_count = 0;
5651 
5652     BXE_FP_TX_LOCK_ASSERT(fp);
5653 
5654     if (sc->state != BXE_STATE_OPEN)  {
5655         fp->eth_q_stats.bxe_tx_mq_sc_state_failures++;
5656         return ENETDOWN;
5657     }
5658 
5659     if (!tx_br) {
5660         BLOGE(sc, "Multiqueue TX and no buf_ring!\n");
5661         return (EINVAL);
5662     }
5663 
5664     if (m != NULL) {
5665         rc = drbr_enqueue(ifp, tx_br, m);
5666         if (rc != 0) {
5667             fp->eth_q_stats.tx_soft_errors++;
5668             goto bxe_tx_mq_start_locked_exit;
5669         }
5670     }
5671 
5672     if (!sc->link_vars.link_up || !(if_getdrvflags(ifp) & IFF_DRV_RUNNING)) {
5673         fp->eth_q_stats.tx_request_link_down_failures++;
5674         goto bxe_tx_mq_start_locked_exit;
5675     }
5676 
5677     /* fetch the depth of the driver queue */
5678     depth = drbr_inuse_drv(ifp, tx_br);
5679     if (depth > fp->eth_q_stats.tx_max_drbr_queue_depth) {
5680         fp->eth_q_stats.tx_max_drbr_queue_depth = depth;
5681     }
5682 
5683     /* keep adding entries while there are frames to send */
5684     while ((next = drbr_peek(ifp, tx_br)) != NULL) {
5685         /* handle any completions if we're running low */
5686         tx_bd_avail = bxe_tx_avail(sc, fp);
5687         if (tx_bd_avail < BXE_TX_CLEANUP_THRESHOLD) {
5688             /* bxe_txeof will set IFF_DRV_OACTIVE appropriately */
5689             bxe_txeof(sc, fp);
5690             tx_bd_avail = bxe_tx_avail(sc, fp);
5691             if (tx_bd_avail < (BXE_TSO_MAX_SEGMENTS + 1)) {
5692                 fp->eth_q_stats.bd_avail_too_less_failures++;
5693                 m_freem(next);
5694                 drbr_advance(ifp, tx_br);
5695                 rc = ENOBUFS;
5696                 break;
5697             }
5698         }
5699 
5700         /* the mbuf now belongs to us */
5701         fp->eth_q_stats.mbuf_alloc_tx++;
5702 
5703         /*
5704          * Put the frame into the transmit ring. If we don't have room,
5705          * place the mbuf back at the head of the TX queue, set the
5706          * OACTIVE flag, and wait for the NIC to drain the chain.
5707          */
5708         rc = bxe_tx_encap(fp, &next);
5709         if (__predict_false(rc != 0)) {
5710             fp->eth_q_stats.tx_encap_failures++;
5711             if (next != NULL) {
5712                 /* mark the TX queue as full and save the frame */
5713                 if_setdrvflagbits(ifp, IFF_DRV_OACTIVE, 0);
5714                 drbr_putback(ifp, tx_br, next);
5715                 fp->eth_q_stats.mbuf_alloc_tx--;
5716                 fp->eth_q_stats.tx_frames_deferred++;
5717             } else
5718                 drbr_advance(ifp, tx_br);
5719 
5720             /* stop looking for more work */
5721             break;
5722         }
5723 
5724         /* the transmit frame was enqueued successfully */
5725         tx_count++;
5726 
5727         /* send a copy of the frame to any BPF listeners */
5728 	if_etherbpfmtap(ifp, next);
5729 
5730         drbr_advance(ifp, tx_br);
5731     }
5732 
5733     /* all TX packets were dequeued and/or the tx ring is full */
5734     if (tx_count > 0) {
5735         /* reset the TX watchdog timeout timer */
5736         fp->watchdog_timer = BXE_TX_TIMEOUT;
5737     }
5738 
5739 bxe_tx_mq_start_locked_exit:
5740     /* If we didn't drain the drbr, enqueue a task in the future to do it. */
5741     if (!drbr_empty(ifp, tx_br)) {
5742         fp->eth_q_stats.tx_mq_not_empty++;
5743         taskqueue_enqueue_timeout(fp->tq, &fp->tx_timeout_task, 1);
5744     }
5745 
5746     return (rc);
5747 }
5748 
5749 static void
5750 bxe_tx_mq_start_deferred(void *arg,
5751                          int pending)
5752 {
5753     struct bxe_fastpath *fp = (struct bxe_fastpath *)arg;
5754     struct bxe_softc *sc = fp->sc;
5755     if_t ifp = sc->ifp;
5756 
5757     BXE_FP_TX_LOCK(fp);
5758     bxe_tx_mq_start_locked(sc, ifp, fp, NULL);
5759     BXE_FP_TX_UNLOCK(fp);
5760 }
5761 
5762 /* Multiqueue (TSS) dispatch routine. */
5763 static int
5764 bxe_tx_mq_start(struct ifnet *ifp,
5765                 struct mbuf  *m)
5766 {
5767     struct bxe_softc *sc = if_getsoftc(ifp);
5768     struct bxe_fastpath *fp;
5769     int fp_index, rc;
5770 
5771     fp_index = 0; /* default is the first queue */
5772 
5773     /* check if flowid is set */
5774 
5775     if (BXE_VALID_FLOWID(m))
5776         fp_index = (m->m_pkthdr.flowid % sc->num_queues);
5777 
5778     fp = &sc->fp[fp_index];
5779 
5780     if (sc->state != BXE_STATE_OPEN)  {
5781         fp->eth_q_stats.bxe_tx_mq_sc_state_failures++;
5782         return ENETDOWN;
5783     }
5784 
5785     if (BXE_FP_TX_TRYLOCK(fp)) {
5786         rc = bxe_tx_mq_start_locked(sc, ifp, fp, m);
5787         BXE_FP_TX_UNLOCK(fp);
5788     } else {
5789         rc = drbr_enqueue(ifp, fp->tx_br, m);
5790         taskqueue_enqueue(fp->tq, &fp->tx_task);
5791     }
5792 
5793     return (rc);
5794 }
5795 
5796 static void
5797 bxe_mq_flush(struct ifnet *ifp)
5798 {
5799     struct bxe_softc *sc = if_getsoftc(ifp);
5800     struct bxe_fastpath *fp;
5801     struct mbuf *m;
5802     int i;
5803 
5804     for (i = 0; i < sc->num_queues; i++) {
5805         fp = &sc->fp[i];
5806 
5807         if (fp->state != BXE_FP_STATE_IRQ) {
5808             BLOGD(sc, DBG_LOAD, "Not clearing fp[%02d] buf_ring (state=%d)\n",
5809                   fp->index, fp->state);
5810             continue;
5811         }
5812 
5813         if (fp->tx_br != NULL) {
5814             BLOGD(sc, DBG_LOAD, "Clearing fp[%02d] buf_ring\n", fp->index);
5815             BXE_FP_TX_LOCK(fp);
5816             while ((m = buf_ring_dequeue_sc(fp->tx_br)) != NULL) {
5817                 m_freem(m);
5818             }
5819             BXE_FP_TX_UNLOCK(fp);
5820         }
5821     }
5822 
5823     if_qflush(ifp);
5824 }
5825 
5826 static uint16_t
5827 bxe_cid_ilt_lines(struct bxe_softc *sc)
5828 {
5829     if (IS_SRIOV(sc)) {
5830         return ((BXE_FIRST_VF_CID + BXE_VF_CIDS) / ILT_PAGE_CIDS);
5831     }
5832     return (L2_ILT_LINES(sc));
5833 }
5834 
5835 static void
5836 bxe_ilt_set_info(struct bxe_softc *sc)
5837 {
5838     struct ilt_client_info *ilt_client;
5839     struct ecore_ilt *ilt = sc->ilt;
5840     uint16_t line = 0;
5841 
5842     ilt->start_line = FUNC_ILT_BASE(SC_FUNC(sc));
5843     BLOGD(sc, DBG_LOAD, "ilt starts at line %d\n", ilt->start_line);
5844 
5845     /* CDU */
5846     ilt_client = &ilt->clients[ILT_CLIENT_CDU];
5847     ilt_client->client_num = ILT_CLIENT_CDU;
5848     ilt_client->page_size = CDU_ILT_PAGE_SZ;
5849     ilt_client->flags = ILT_CLIENT_SKIP_MEM;
5850     ilt_client->start = line;
5851     line += bxe_cid_ilt_lines(sc);
5852 
5853     if (CNIC_SUPPORT(sc)) {
5854         line += CNIC_ILT_LINES;
5855     }
5856 
5857     ilt_client->end = (line - 1);
5858 
5859     BLOGD(sc, DBG_LOAD,
5860           "ilt client[CDU]: start %d, end %d, "
5861           "psz 0x%x, flags 0x%x, hw psz %d\n",
5862           ilt_client->start, ilt_client->end,
5863           ilt_client->page_size,
5864           ilt_client->flags,
5865           ilog2(ilt_client->page_size >> 12));
5866 
5867     /* QM */
5868     if (QM_INIT(sc->qm_cid_count)) {
5869         ilt_client = &ilt->clients[ILT_CLIENT_QM];
5870         ilt_client->client_num = ILT_CLIENT_QM;
5871         ilt_client->page_size = QM_ILT_PAGE_SZ;
5872         ilt_client->flags = 0;
5873         ilt_client->start = line;
5874 
5875         /* 4 bytes for each cid */
5876         line += DIV_ROUND_UP(sc->qm_cid_count * QM_QUEUES_PER_FUNC * 4,
5877                              QM_ILT_PAGE_SZ);
5878 
5879         ilt_client->end = (line - 1);
5880 
5881         BLOGD(sc, DBG_LOAD,
5882               "ilt client[QM]: start %d, end %d, "
5883               "psz 0x%x, flags 0x%x, hw psz %d\n",
5884               ilt_client->start, ilt_client->end,
5885               ilt_client->page_size, ilt_client->flags,
5886               ilog2(ilt_client->page_size >> 12));
5887     }
5888 
5889     if (CNIC_SUPPORT(sc)) {
5890         /* SRC */
5891         ilt_client = &ilt->clients[ILT_CLIENT_SRC];
5892         ilt_client->client_num = ILT_CLIENT_SRC;
5893         ilt_client->page_size = SRC_ILT_PAGE_SZ;
5894         ilt_client->flags = 0;
5895         ilt_client->start = line;
5896         line += SRC_ILT_LINES;
5897         ilt_client->end = (line - 1);
5898 
5899         BLOGD(sc, DBG_LOAD,
5900               "ilt client[SRC]: start %d, end %d, "
5901               "psz 0x%x, flags 0x%x, hw psz %d\n",
5902               ilt_client->start, ilt_client->end,
5903               ilt_client->page_size, ilt_client->flags,
5904               ilog2(ilt_client->page_size >> 12));
5905 
5906         /* TM */
5907         ilt_client = &ilt->clients[ILT_CLIENT_TM];
5908         ilt_client->client_num = ILT_CLIENT_TM;
5909         ilt_client->page_size = TM_ILT_PAGE_SZ;
5910         ilt_client->flags = 0;
5911         ilt_client->start = line;
5912         line += TM_ILT_LINES;
5913         ilt_client->end = (line - 1);
5914 
5915         BLOGD(sc, DBG_LOAD,
5916               "ilt client[TM]: start %d, end %d, "
5917               "psz 0x%x, flags 0x%x, hw psz %d\n",
5918               ilt_client->start, ilt_client->end,
5919               ilt_client->page_size, ilt_client->flags,
5920               ilog2(ilt_client->page_size >> 12));
5921     }
5922 
5923     KASSERT((line <= ILT_MAX_LINES), ("Invalid number of ILT lines!"));
5924 }
5925 
5926 static void
5927 bxe_set_fp_rx_buf_size(struct bxe_softc *sc)
5928 {
5929     int i;
5930     uint32_t rx_buf_size;
5931 
5932     rx_buf_size = (IP_HEADER_ALIGNMENT_PADDING + ETH_OVERHEAD + sc->mtu);
5933 
5934     for (i = 0; i < sc->num_queues; i++) {
5935         if(rx_buf_size <= MCLBYTES){
5936             sc->fp[i].rx_buf_size = rx_buf_size;
5937             sc->fp[i].mbuf_alloc_size = MCLBYTES;
5938         }else if (rx_buf_size <= MJUMPAGESIZE){
5939             sc->fp[i].rx_buf_size = rx_buf_size;
5940             sc->fp[i].mbuf_alloc_size = MJUMPAGESIZE;
5941         }else if (rx_buf_size <= (MJUMPAGESIZE + MCLBYTES)){
5942             sc->fp[i].rx_buf_size = MCLBYTES;
5943             sc->fp[i].mbuf_alloc_size = MCLBYTES;
5944         }else if (rx_buf_size <= (2 * MJUMPAGESIZE)){
5945             sc->fp[i].rx_buf_size = MJUMPAGESIZE;
5946             sc->fp[i].mbuf_alloc_size = MJUMPAGESIZE;
5947         }else {
5948             sc->fp[i].rx_buf_size = MCLBYTES;
5949             sc->fp[i].mbuf_alloc_size = MCLBYTES;
5950         }
5951     }
5952 }
5953 
5954 static int
5955 bxe_alloc_ilt_mem(struct bxe_softc *sc)
5956 {
5957     int rc = 0;
5958 
5959     if ((sc->ilt =
5960          (struct ecore_ilt *)malloc(sizeof(struct ecore_ilt),
5961                                     M_BXE_ILT,
5962                                     (M_NOWAIT | M_ZERO))) == NULL) {
5963         rc = 1;
5964     }
5965 
5966     return (rc);
5967 }
5968 
5969 static int
5970 bxe_alloc_ilt_lines_mem(struct bxe_softc *sc)
5971 {
5972     int rc = 0;
5973 
5974     if ((sc->ilt->lines =
5975          (struct ilt_line *)malloc((sizeof(struct ilt_line) * ILT_MAX_LINES),
5976                                     M_BXE_ILT,
5977                                     (M_NOWAIT | M_ZERO))) == NULL) {
5978         rc = 1;
5979     }
5980 
5981     return (rc);
5982 }
5983 
5984 static void
5985 bxe_free_ilt_mem(struct bxe_softc *sc)
5986 {
5987     if (sc->ilt != NULL) {
5988         free(sc->ilt, M_BXE_ILT);
5989         sc->ilt = NULL;
5990     }
5991 }
5992 
5993 static void
5994 bxe_free_ilt_lines_mem(struct bxe_softc *sc)
5995 {
5996     if (sc->ilt->lines != NULL) {
5997         free(sc->ilt->lines, M_BXE_ILT);
5998         sc->ilt->lines = NULL;
5999     }
6000 }
6001 
6002 static void
6003 bxe_free_mem(struct bxe_softc *sc)
6004 {
6005     int i;
6006 
6007     for (i = 0; i < L2_ILT_LINES(sc); i++) {
6008         bxe_dma_free(sc, &sc->context[i].vcxt_dma);
6009         sc->context[i].vcxt = NULL;
6010         sc->context[i].size = 0;
6011     }
6012 
6013     ecore_ilt_mem_op(sc, ILT_MEMOP_FREE);
6014 
6015     bxe_free_ilt_lines_mem(sc);
6016 
6017 }
6018 
6019 static int
6020 bxe_alloc_mem(struct bxe_softc *sc)
6021 {
6022 
6023     int context_size;
6024     int allocated;
6025     int i;
6026 
6027     /*
6028      * Allocate memory for CDU context:
6029      * This memory is allocated separately and not in the generic ILT
6030      * functions because CDU differs in few aspects:
6031      * 1. There can be multiple entities allocating memory for context -
6032      * regular L2, CNIC, and SRIOV drivers. Each separately controls
6033      * its own ILT lines.
6034      * 2. Since CDU page-size is not a single 4KB page (which is the case
6035      * for the other ILT clients), to be efficient we want to support
6036      * allocation of sub-page-size in the last entry.
6037      * 3. Context pointers are used by the driver to pass to FW / update
6038      * the context (for the other ILT clients the pointers are used just to
6039      * free the memory during unload).
6040      */
6041     context_size = (sizeof(union cdu_context) * BXE_L2_CID_COUNT(sc));
6042     for (i = 0, allocated = 0; allocated < context_size; i++) {
6043         sc->context[i].size = min(CDU_ILT_PAGE_SZ,
6044                                   (context_size - allocated));
6045 
6046         if (bxe_dma_alloc(sc, sc->context[i].size,
6047                           &sc->context[i].vcxt_dma,
6048                           "cdu context") != 0) {
6049             bxe_free_mem(sc);
6050             return (-1);
6051         }
6052 
6053         sc->context[i].vcxt =
6054             (union cdu_context *)sc->context[i].vcxt_dma.vaddr;
6055 
6056         allocated += sc->context[i].size;
6057     }
6058 
6059     bxe_alloc_ilt_lines_mem(sc);
6060 
6061     BLOGD(sc, DBG_LOAD, "ilt=%p start_line=%u lines=%p\n",
6062           sc->ilt, sc->ilt->start_line, sc->ilt->lines);
6063     {
6064         for (i = 0; i < 4; i++) {
6065             BLOGD(sc, DBG_LOAD,
6066                   "c%d page_size=%u start=%u end=%u num=%u flags=0x%x\n",
6067                   i,
6068                   sc->ilt->clients[i].page_size,
6069                   sc->ilt->clients[i].start,
6070                   sc->ilt->clients[i].end,
6071                   sc->ilt->clients[i].client_num,
6072                   sc->ilt->clients[i].flags);
6073         }
6074     }
6075     if (ecore_ilt_mem_op(sc, ILT_MEMOP_ALLOC)) {
6076         BLOGE(sc, "ecore_ilt_mem_op ILT_MEMOP_ALLOC failed\n");
6077         bxe_free_mem(sc);
6078         return (-1);
6079     }
6080 
6081     return (0);
6082 }
6083 
6084 static void
6085 bxe_free_rx_bd_chain(struct bxe_fastpath *fp)
6086 {
6087     struct bxe_softc *sc;
6088     int i;
6089 
6090     sc = fp->sc;
6091 
6092     if (fp->rx_mbuf_tag == NULL) {
6093         return;
6094     }
6095 
6096     /* free all mbufs and unload all maps */
6097     for (i = 0; i < RX_BD_TOTAL; i++) {
6098         if (fp->rx_mbuf_chain[i].m_map != NULL) {
6099             bus_dmamap_sync(fp->rx_mbuf_tag,
6100                             fp->rx_mbuf_chain[i].m_map,
6101                             BUS_DMASYNC_POSTREAD);
6102             bus_dmamap_unload(fp->rx_mbuf_tag,
6103                               fp->rx_mbuf_chain[i].m_map);
6104         }
6105 
6106         if (fp->rx_mbuf_chain[i].m != NULL) {
6107             m_freem(fp->rx_mbuf_chain[i].m);
6108             fp->rx_mbuf_chain[i].m = NULL;
6109             fp->eth_q_stats.mbuf_alloc_rx--;
6110         }
6111     }
6112 }
6113 
6114 static void
6115 bxe_free_tpa_pool(struct bxe_fastpath *fp)
6116 {
6117     struct bxe_softc *sc;
6118     int i, max_agg_queues;
6119 
6120     sc = fp->sc;
6121 
6122     if (fp->rx_mbuf_tag == NULL) {
6123         return;
6124     }
6125 
6126     max_agg_queues = MAX_AGG_QS(sc);
6127 
6128     /* release all mbufs and unload all DMA maps in the TPA pool */
6129     for (i = 0; i < max_agg_queues; i++) {
6130         if (fp->rx_tpa_info[i].bd.m_map != NULL) {
6131             bus_dmamap_sync(fp->rx_mbuf_tag,
6132                             fp->rx_tpa_info[i].bd.m_map,
6133                             BUS_DMASYNC_POSTREAD);
6134             bus_dmamap_unload(fp->rx_mbuf_tag,
6135                               fp->rx_tpa_info[i].bd.m_map);
6136         }
6137 
6138         if (fp->rx_tpa_info[i].bd.m != NULL) {
6139             m_freem(fp->rx_tpa_info[i].bd.m);
6140             fp->rx_tpa_info[i].bd.m = NULL;
6141             fp->eth_q_stats.mbuf_alloc_tpa--;
6142         }
6143     }
6144 }
6145 
6146 static void
6147 bxe_free_sge_chain(struct bxe_fastpath *fp)
6148 {
6149     struct bxe_softc *sc;
6150     int i;
6151 
6152     sc = fp->sc;
6153 
6154     if (fp->rx_sge_mbuf_tag == NULL) {
6155         return;
6156     }
6157 
6158     /* rree all mbufs and unload all maps */
6159     for (i = 0; i < RX_SGE_TOTAL; i++) {
6160         if (fp->rx_sge_mbuf_chain[i].m_map != NULL) {
6161             bus_dmamap_sync(fp->rx_sge_mbuf_tag,
6162                             fp->rx_sge_mbuf_chain[i].m_map,
6163                             BUS_DMASYNC_POSTREAD);
6164             bus_dmamap_unload(fp->rx_sge_mbuf_tag,
6165                               fp->rx_sge_mbuf_chain[i].m_map);
6166         }
6167 
6168         if (fp->rx_sge_mbuf_chain[i].m != NULL) {
6169             m_freem(fp->rx_sge_mbuf_chain[i].m);
6170             fp->rx_sge_mbuf_chain[i].m = NULL;
6171             fp->eth_q_stats.mbuf_alloc_sge--;
6172         }
6173     }
6174 }
6175 
6176 static void
6177 bxe_free_fp_buffers(struct bxe_softc *sc)
6178 {
6179     struct bxe_fastpath *fp;
6180     int i;
6181 
6182     for (i = 0; i < sc->num_queues; i++) {
6183         fp = &sc->fp[i];
6184 
6185         if (fp->tx_br != NULL) {
6186             /* just in case bxe_mq_flush() wasn't called */
6187             if (mtx_initialized(&fp->tx_mtx)) {
6188                 struct mbuf *m;
6189 
6190                 BXE_FP_TX_LOCK(fp);
6191                 while ((m = buf_ring_dequeue_sc(fp->tx_br)) != NULL)
6192                     m_freem(m);
6193                 BXE_FP_TX_UNLOCK(fp);
6194             }
6195         }
6196 
6197         /* free all RX buffers */
6198         bxe_free_rx_bd_chain(fp);
6199         bxe_free_tpa_pool(fp);
6200         bxe_free_sge_chain(fp);
6201 
6202         if (fp->eth_q_stats.mbuf_alloc_rx != 0) {
6203             BLOGE(sc, "failed to claim all rx mbufs (%d left)\n",
6204                   fp->eth_q_stats.mbuf_alloc_rx);
6205         }
6206 
6207         if (fp->eth_q_stats.mbuf_alloc_sge != 0) {
6208             BLOGE(sc, "failed to claim all sge mbufs (%d left)\n",
6209                   fp->eth_q_stats.mbuf_alloc_sge);
6210         }
6211 
6212         if (fp->eth_q_stats.mbuf_alloc_tpa != 0) {
6213             BLOGE(sc, "failed to claim all sge mbufs (%d left)\n",
6214                   fp->eth_q_stats.mbuf_alloc_tpa);
6215         }
6216 
6217         if (fp->eth_q_stats.mbuf_alloc_tx != 0) {
6218             BLOGE(sc, "failed to release tx mbufs (%d left)\n",
6219                   fp->eth_q_stats.mbuf_alloc_tx);
6220         }
6221 
6222         /* XXX verify all mbufs were reclaimed */
6223     }
6224 }
6225 
6226 static int
6227 bxe_alloc_rx_bd_mbuf(struct bxe_fastpath *fp,
6228                      uint16_t            prev_index,
6229                      uint16_t            index)
6230 {
6231     struct bxe_sw_rx_bd *rx_buf;
6232     struct eth_rx_bd *rx_bd;
6233     bus_dma_segment_t segs[1];
6234     bus_dmamap_t map;
6235     struct mbuf *m;
6236     int nsegs, rc;
6237 
6238     rc = 0;
6239 
6240     /* allocate the new RX BD mbuf */
6241     m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, fp->mbuf_alloc_size);
6242     if (__predict_false(m == NULL)) {
6243         fp->eth_q_stats.mbuf_rx_bd_alloc_failed++;
6244         return (ENOBUFS);
6245     }
6246 
6247     fp->eth_q_stats.mbuf_alloc_rx++;
6248 
6249     /* initialize the mbuf buffer length */
6250     m->m_pkthdr.len = m->m_len = fp->rx_buf_size;
6251 
6252     /* map the mbuf into non-paged pool */
6253     rc = bus_dmamap_load_mbuf_sg(fp->rx_mbuf_tag,
6254                                  fp->rx_mbuf_spare_map,
6255                                  m, segs, &nsegs, BUS_DMA_NOWAIT);
6256     if (__predict_false(rc != 0)) {
6257         fp->eth_q_stats.mbuf_rx_bd_mapping_failed++;
6258         m_freem(m);
6259         fp->eth_q_stats.mbuf_alloc_rx--;
6260         return (rc);
6261     }
6262 
6263     /* all mbufs must map to a single segment */
6264     KASSERT((nsegs == 1), ("Too many segments, %d returned!", nsegs));
6265 
6266     /* release any existing RX BD mbuf mappings */
6267 
6268     if (prev_index != index) {
6269         rx_buf = &fp->rx_mbuf_chain[prev_index];
6270 
6271         if (rx_buf->m_map != NULL) {
6272             bus_dmamap_sync(fp->rx_mbuf_tag, rx_buf->m_map,
6273                             BUS_DMASYNC_POSTREAD);
6274             bus_dmamap_unload(fp->rx_mbuf_tag, rx_buf->m_map);
6275         }
6276 
6277         /*
6278          * We only get here from bxe_rxeof() when the maximum number
6279          * of rx buffers is less than RX_BD_USABLE. bxe_rxeof() already
6280          * holds the mbuf in the prev_index so it's OK to NULL it out
6281          * here without concern of a memory leak.
6282          */
6283         fp->rx_mbuf_chain[prev_index].m = NULL;
6284     }
6285 
6286     rx_buf = &fp->rx_mbuf_chain[index];
6287 
6288     if (rx_buf->m_map != NULL) {
6289         bus_dmamap_sync(fp->rx_mbuf_tag, rx_buf->m_map,
6290                         BUS_DMASYNC_POSTREAD);
6291         bus_dmamap_unload(fp->rx_mbuf_tag, rx_buf->m_map);
6292     }
6293 
6294     /* save the mbuf and mapping info for a future packet */
6295     map = (prev_index != index) ?
6296               fp->rx_mbuf_chain[prev_index].m_map : rx_buf->m_map;
6297     rx_buf->m_map = fp->rx_mbuf_spare_map;
6298     fp->rx_mbuf_spare_map = map;
6299     bus_dmamap_sync(fp->rx_mbuf_tag, rx_buf->m_map,
6300                     BUS_DMASYNC_PREREAD);
6301     rx_buf->m = m;
6302 
6303     rx_bd = &fp->rx_chain[index];
6304     rx_bd->addr_hi = htole32(U64_HI(segs[0].ds_addr));
6305     rx_bd->addr_lo = htole32(U64_LO(segs[0].ds_addr));
6306 
6307     return (rc);
6308 }
6309 
6310 static int
6311 bxe_alloc_rx_tpa_mbuf(struct bxe_fastpath *fp,
6312                       int                 queue)
6313 {
6314     struct bxe_sw_tpa_info *tpa_info = &fp->rx_tpa_info[queue];
6315     bus_dma_segment_t segs[1];
6316     bus_dmamap_t map;
6317     struct mbuf *m;
6318     int nsegs;
6319     int rc = 0;
6320 
6321     /* allocate the new TPA mbuf */
6322     m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, fp->mbuf_alloc_size);
6323     if (__predict_false(m == NULL)) {
6324         fp->eth_q_stats.mbuf_rx_tpa_alloc_failed++;
6325         return (ENOBUFS);
6326     }
6327 
6328     fp->eth_q_stats.mbuf_alloc_tpa++;
6329 
6330     /* initialize the mbuf buffer length */
6331     m->m_pkthdr.len = m->m_len = fp->rx_buf_size;
6332 
6333     /* map the mbuf into non-paged pool */
6334     rc = bus_dmamap_load_mbuf_sg(fp->rx_mbuf_tag,
6335                                  fp->rx_tpa_info_mbuf_spare_map,
6336                                  m, segs, &nsegs, BUS_DMA_NOWAIT);
6337     if (__predict_false(rc != 0)) {
6338         fp->eth_q_stats.mbuf_rx_tpa_mapping_failed++;
6339         m_free(m);
6340         fp->eth_q_stats.mbuf_alloc_tpa--;
6341         return (rc);
6342     }
6343 
6344     /* all mbufs must map to a single segment */
6345     KASSERT((nsegs == 1), ("Too many segments, %d returned!", nsegs));
6346 
6347     /* release any existing TPA mbuf mapping */
6348     if (tpa_info->bd.m_map != NULL) {
6349         bus_dmamap_sync(fp->rx_mbuf_tag, tpa_info->bd.m_map,
6350                         BUS_DMASYNC_POSTREAD);
6351         bus_dmamap_unload(fp->rx_mbuf_tag, tpa_info->bd.m_map);
6352     }
6353 
6354     /* save the mbuf and mapping info for the TPA mbuf */
6355     map = tpa_info->bd.m_map;
6356     tpa_info->bd.m_map = fp->rx_tpa_info_mbuf_spare_map;
6357     fp->rx_tpa_info_mbuf_spare_map = map;
6358     bus_dmamap_sync(fp->rx_mbuf_tag, tpa_info->bd.m_map,
6359                     BUS_DMASYNC_PREREAD);
6360     tpa_info->bd.m = m;
6361     tpa_info->seg = segs[0];
6362 
6363     return (rc);
6364 }
6365 
6366 /*
6367  * Allocate an mbuf and assign it to the receive scatter gather chain. The
6368  * caller must take care to save a copy of the existing mbuf in the SG mbuf
6369  * chain.
6370  */
6371 static int
6372 bxe_alloc_rx_sge_mbuf(struct bxe_fastpath *fp,
6373                       uint16_t            index)
6374 {
6375     struct bxe_sw_rx_bd *sge_buf;
6376     struct eth_rx_sge *sge;
6377     bus_dma_segment_t segs[1];
6378     bus_dmamap_t map;
6379     struct mbuf *m;
6380     int nsegs;
6381     int rc = 0;
6382 
6383     /* allocate a new SGE mbuf */
6384     m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, SGE_PAGE_SIZE);
6385     if (__predict_false(m == NULL)) {
6386         fp->eth_q_stats.mbuf_rx_sge_alloc_failed++;
6387         return (ENOMEM);
6388     }
6389 
6390     fp->eth_q_stats.mbuf_alloc_sge++;
6391 
6392     /* initialize the mbuf buffer length */
6393     m->m_pkthdr.len = m->m_len = SGE_PAGE_SIZE;
6394 
6395     /* map the SGE mbuf into non-paged pool */
6396     rc = bus_dmamap_load_mbuf_sg(fp->rx_sge_mbuf_tag,
6397                                  fp->rx_sge_mbuf_spare_map,
6398                                  m, segs, &nsegs, BUS_DMA_NOWAIT);
6399     if (__predict_false(rc != 0)) {
6400         fp->eth_q_stats.mbuf_rx_sge_mapping_failed++;
6401         m_freem(m);
6402         fp->eth_q_stats.mbuf_alloc_sge--;
6403         return (rc);
6404     }
6405 
6406     /* all mbufs must map to a single segment */
6407     KASSERT((nsegs == 1), ("Too many segments, %d returned!", nsegs));
6408 
6409     sge_buf = &fp->rx_sge_mbuf_chain[index];
6410 
6411     /* release any existing SGE mbuf mapping */
6412     if (sge_buf->m_map != NULL) {
6413         bus_dmamap_sync(fp->rx_sge_mbuf_tag, sge_buf->m_map,
6414                         BUS_DMASYNC_POSTREAD);
6415         bus_dmamap_unload(fp->rx_sge_mbuf_tag, sge_buf->m_map);
6416     }
6417 
6418     /* save the mbuf and mapping info for a future packet */
6419     map = sge_buf->m_map;
6420     sge_buf->m_map = fp->rx_sge_mbuf_spare_map;
6421     fp->rx_sge_mbuf_spare_map = map;
6422     bus_dmamap_sync(fp->rx_sge_mbuf_tag, sge_buf->m_map,
6423                     BUS_DMASYNC_PREREAD);
6424     sge_buf->m = m;
6425 
6426     sge = &fp->rx_sge_chain[index];
6427     sge->addr_hi = htole32(U64_HI(segs[0].ds_addr));
6428     sge->addr_lo = htole32(U64_LO(segs[0].ds_addr));
6429 
6430     return (rc);
6431 }
6432 
6433 static __noinline int
6434 bxe_alloc_fp_buffers(struct bxe_softc *sc)
6435 {
6436     struct bxe_fastpath *fp;
6437     int i, j, rc = 0;
6438     int ring_prod, cqe_ring_prod;
6439     int max_agg_queues;
6440 
6441     for (i = 0; i < sc->num_queues; i++) {
6442         fp = &sc->fp[i];
6443 
6444         ring_prod = cqe_ring_prod = 0;
6445         fp->rx_bd_cons = 0;
6446         fp->rx_cq_cons = 0;
6447 
6448         /* allocate buffers for the RX BDs in RX BD chain */
6449         for (j = 0; j < sc->max_rx_bufs; j++) {
6450             rc = bxe_alloc_rx_bd_mbuf(fp, ring_prod, ring_prod);
6451             if (rc != 0) {
6452                 BLOGE(sc, "mbuf alloc fail for fp[%02d] rx chain (%d)\n",
6453                       i, rc);
6454                 goto bxe_alloc_fp_buffers_error;
6455             }
6456 
6457             ring_prod     = RX_BD_NEXT(ring_prod);
6458             cqe_ring_prod = RCQ_NEXT(cqe_ring_prod);
6459         }
6460 
6461         fp->rx_bd_prod = ring_prod;
6462         fp->rx_cq_prod = cqe_ring_prod;
6463         fp->eth_q_stats.rx_calls = fp->eth_q_stats.rx_pkts = 0;
6464 
6465         max_agg_queues = MAX_AGG_QS(sc);
6466 
6467         fp->tpa_enable = TRUE;
6468 
6469         /* fill the TPA pool */
6470         for (j = 0; j < max_agg_queues; j++) {
6471             rc = bxe_alloc_rx_tpa_mbuf(fp, j);
6472             if (rc != 0) {
6473                 BLOGE(sc, "mbuf alloc fail for fp[%02d] TPA queue %d\n",
6474                           i, j);
6475                 fp->tpa_enable = FALSE;
6476                 goto bxe_alloc_fp_buffers_error;
6477             }
6478 
6479             fp->rx_tpa_info[j].state = BXE_TPA_STATE_STOP;
6480         }
6481 
6482         if (fp->tpa_enable) {
6483             /* fill the RX SGE chain */
6484             ring_prod = 0;
6485             for (j = 0; j < RX_SGE_USABLE; j++) {
6486                 rc = bxe_alloc_rx_sge_mbuf(fp, ring_prod);
6487                 if (rc != 0) {
6488                     BLOGE(sc, "mbuf alloc fail for fp[%02d] SGE %d\n",
6489                               i, ring_prod);
6490                     fp->tpa_enable = FALSE;
6491                     ring_prod = 0;
6492                     goto bxe_alloc_fp_buffers_error;
6493                 }
6494 
6495                 ring_prod = RX_SGE_NEXT(ring_prod);
6496             }
6497 
6498             fp->rx_sge_prod = ring_prod;
6499         }
6500     }
6501 
6502     return (0);
6503 
6504 bxe_alloc_fp_buffers_error:
6505 
6506     /* unwind what was already allocated */
6507     bxe_free_rx_bd_chain(fp);
6508     bxe_free_tpa_pool(fp);
6509     bxe_free_sge_chain(fp);
6510 
6511     return (ENOBUFS);
6512 }
6513 
6514 static void
6515 bxe_free_fw_stats_mem(struct bxe_softc *sc)
6516 {
6517     bxe_dma_free(sc, &sc->fw_stats_dma);
6518 
6519     sc->fw_stats_num = 0;
6520 
6521     sc->fw_stats_req_size = 0;
6522     sc->fw_stats_req = NULL;
6523     sc->fw_stats_req_mapping = 0;
6524 
6525     sc->fw_stats_data_size = 0;
6526     sc->fw_stats_data = NULL;
6527     sc->fw_stats_data_mapping = 0;
6528 }
6529 
6530 static int
6531 bxe_alloc_fw_stats_mem(struct bxe_softc *sc)
6532 {
6533     uint8_t num_queue_stats;
6534     int num_groups;
6535 
6536     /* number of queues for statistics is number of eth queues */
6537     num_queue_stats = BXE_NUM_ETH_QUEUES(sc);
6538 
6539     /*
6540      * Total number of FW statistics requests =
6541      *   1 for port stats + 1 for PF stats + num of queues
6542      */
6543     sc->fw_stats_num = (2 + num_queue_stats);
6544 
6545     /*
6546      * Request is built from stats_query_header and an array of
6547      * stats_query_cmd_group each of which contains STATS_QUERY_CMD_COUNT
6548      * rules. The real number or requests is configured in the
6549      * stats_query_header.
6550      */
6551     num_groups =
6552         ((sc->fw_stats_num / STATS_QUERY_CMD_COUNT) +
6553          ((sc->fw_stats_num % STATS_QUERY_CMD_COUNT) ? 1 : 0));
6554 
6555     BLOGD(sc, DBG_LOAD, "stats fw_stats_num %d num_groups %d\n",
6556           sc->fw_stats_num, num_groups);
6557 
6558     sc->fw_stats_req_size =
6559         (sizeof(struct stats_query_header) +
6560          (num_groups * sizeof(struct stats_query_cmd_group)));
6561 
6562     /*
6563      * Data for statistics requests + stats_counter.
6564      * stats_counter holds per-STORM counters that are incremented when
6565      * STORM has finished with the current request. Memory for FCoE
6566      * offloaded statistics are counted anyway, even if they will not be sent.
6567      * VF stats are not accounted for here as the data of VF stats is stored
6568      * in memory allocated by the VF, not here.
6569      */
6570     sc->fw_stats_data_size =
6571         (sizeof(struct stats_counter) +
6572          sizeof(struct per_port_stats) +
6573          sizeof(struct per_pf_stats) +
6574          /* sizeof(struct fcoe_statistics_params) + */
6575          (sizeof(struct per_queue_stats) * num_queue_stats));
6576 
6577     if (bxe_dma_alloc(sc, (sc->fw_stats_req_size + sc->fw_stats_data_size),
6578                       &sc->fw_stats_dma, "fw stats") != 0) {
6579         bxe_free_fw_stats_mem(sc);
6580         return (-1);
6581     }
6582 
6583     /* set up the shortcuts */
6584 
6585     sc->fw_stats_req =
6586         (struct bxe_fw_stats_req *)sc->fw_stats_dma.vaddr;
6587     sc->fw_stats_req_mapping = sc->fw_stats_dma.paddr;
6588 
6589     sc->fw_stats_data =
6590         (struct bxe_fw_stats_data *)((uint8_t *)sc->fw_stats_dma.vaddr +
6591                                      sc->fw_stats_req_size);
6592     sc->fw_stats_data_mapping = (sc->fw_stats_dma.paddr +
6593                                  sc->fw_stats_req_size);
6594 
6595     BLOGD(sc, DBG_LOAD, "statistics request base address set to %#jx\n",
6596           (uintmax_t)sc->fw_stats_req_mapping);
6597 
6598     BLOGD(sc, DBG_LOAD, "statistics data base address set to %#jx\n",
6599           (uintmax_t)sc->fw_stats_data_mapping);
6600 
6601     return (0);
6602 }
6603 
6604 /*
6605  * Bits map:
6606  * 0-7  - Engine0 load counter.
6607  * 8-15 - Engine1 load counter.
6608  * 16   - Engine0 RESET_IN_PROGRESS bit.
6609  * 17   - Engine1 RESET_IN_PROGRESS bit.
6610  * 18   - Engine0 ONE_IS_LOADED. Set when there is at least one active
6611  *        function on the engine
6612  * 19   - Engine1 ONE_IS_LOADED.
6613  * 20   - Chip reset flow bit. When set none-leader must wait for both engines
6614  *        leader to complete (check for both RESET_IN_PROGRESS bits and not
6615  *        for just the one belonging to its engine).
6616  */
6617 #define BXE_RECOVERY_GLOB_REG     MISC_REG_GENERIC_POR_1
6618 #define BXE_PATH0_LOAD_CNT_MASK   0x000000ff
6619 #define BXE_PATH0_LOAD_CNT_SHIFT  0
6620 #define BXE_PATH1_LOAD_CNT_MASK   0x0000ff00
6621 #define BXE_PATH1_LOAD_CNT_SHIFT  8
6622 #define BXE_PATH0_RST_IN_PROG_BIT 0x00010000
6623 #define BXE_PATH1_RST_IN_PROG_BIT 0x00020000
6624 #define BXE_GLOBAL_RESET_BIT      0x00040000
6625 
6626 /* set the GLOBAL_RESET bit, should be run under rtnl lock */
6627 static void
6628 bxe_set_reset_global(struct bxe_softc *sc)
6629 {
6630     uint32_t val;
6631     bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
6632     val = REG_RD(sc, BXE_RECOVERY_GLOB_REG);
6633     REG_WR(sc, BXE_RECOVERY_GLOB_REG, val | BXE_GLOBAL_RESET_BIT);
6634     bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
6635 }
6636 
6637 /* clear the GLOBAL_RESET bit, should be run under rtnl lock */
6638 static void
6639 bxe_clear_reset_global(struct bxe_softc *sc)
6640 {
6641     uint32_t val;
6642     bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
6643     val = REG_RD(sc, BXE_RECOVERY_GLOB_REG);
6644     REG_WR(sc, BXE_RECOVERY_GLOB_REG, val & (~BXE_GLOBAL_RESET_BIT));
6645     bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
6646 }
6647 
6648 /* checks the GLOBAL_RESET bit, should be run under rtnl lock */
6649 static uint8_t
6650 bxe_reset_is_global(struct bxe_softc *sc)
6651 {
6652     uint32_t val = REG_RD(sc, BXE_RECOVERY_GLOB_REG);
6653     BLOGD(sc, DBG_LOAD, "GLOB_REG=0x%08x\n", val);
6654     return (val & BXE_GLOBAL_RESET_BIT) ? TRUE : FALSE;
6655 }
6656 
6657 /* clear RESET_IN_PROGRESS bit for the engine, should be run under rtnl lock */
6658 static void
6659 bxe_set_reset_done(struct bxe_softc *sc)
6660 {
6661     uint32_t val;
6662     uint32_t bit = SC_PATH(sc) ? BXE_PATH1_RST_IN_PROG_BIT :
6663                                  BXE_PATH0_RST_IN_PROG_BIT;
6664 
6665     bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
6666 
6667     val = REG_RD(sc, BXE_RECOVERY_GLOB_REG);
6668     /* Clear the bit */
6669     val &= ~bit;
6670     REG_WR(sc, BXE_RECOVERY_GLOB_REG, val);
6671 
6672     bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
6673 }
6674 
6675 /* set RESET_IN_PROGRESS for the engine, should be run under rtnl lock */
6676 static void
6677 bxe_set_reset_in_progress(struct bxe_softc *sc)
6678 {
6679     uint32_t val;
6680     uint32_t bit = SC_PATH(sc) ? BXE_PATH1_RST_IN_PROG_BIT :
6681                                  BXE_PATH0_RST_IN_PROG_BIT;
6682 
6683     bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
6684 
6685     val = REG_RD(sc, BXE_RECOVERY_GLOB_REG);
6686     /* Set the bit */
6687     val |= bit;
6688     REG_WR(sc, BXE_RECOVERY_GLOB_REG, val);
6689 
6690     bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
6691 }
6692 
6693 /* check RESET_IN_PROGRESS bit for an engine, should be run under rtnl lock */
6694 static uint8_t
6695 bxe_reset_is_done(struct bxe_softc *sc,
6696                   int              engine)
6697 {
6698     uint32_t val = REG_RD(sc, BXE_RECOVERY_GLOB_REG);
6699     uint32_t bit = engine ? BXE_PATH1_RST_IN_PROG_BIT :
6700                             BXE_PATH0_RST_IN_PROG_BIT;
6701 
6702     /* return false if bit is set */
6703     return (val & bit) ? FALSE : TRUE;
6704 }
6705 
6706 /* get the load status for an engine, should be run under rtnl lock */
6707 static uint8_t
6708 bxe_get_load_status(struct bxe_softc *sc,
6709                     int              engine)
6710 {
6711     uint32_t mask = engine ? BXE_PATH1_LOAD_CNT_MASK :
6712                              BXE_PATH0_LOAD_CNT_MASK;
6713     uint32_t shift = engine ? BXE_PATH1_LOAD_CNT_SHIFT :
6714                               BXE_PATH0_LOAD_CNT_SHIFT;
6715     uint32_t val = REG_RD(sc, BXE_RECOVERY_GLOB_REG);
6716 
6717     BLOGD(sc, DBG_LOAD, "Old value for GLOB_REG=0x%08x\n", val);
6718 
6719     val = ((val & mask) >> shift);
6720 
6721     BLOGD(sc, DBG_LOAD, "Load mask engine %d = 0x%08x\n", engine, val);
6722 
6723     return (val != 0);
6724 }
6725 
6726 /* set pf load mark */
6727 /* XXX needs to be under rtnl lock */
6728 static void
6729 bxe_set_pf_load(struct bxe_softc *sc)
6730 {
6731     uint32_t val;
6732     uint32_t val1;
6733     uint32_t mask = SC_PATH(sc) ? BXE_PATH1_LOAD_CNT_MASK :
6734                                   BXE_PATH0_LOAD_CNT_MASK;
6735     uint32_t shift = SC_PATH(sc) ? BXE_PATH1_LOAD_CNT_SHIFT :
6736                                    BXE_PATH0_LOAD_CNT_SHIFT;
6737 
6738     bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
6739 
6740     val = REG_RD(sc, BXE_RECOVERY_GLOB_REG);
6741     BLOGD(sc, DBG_LOAD, "Old value for GLOB_REG=0x%08x\n", val);
6742 
6743     /* get the current counter value */
6744     val1 = ((val & mask) >> shift);
6745 
6746     /* set bit of this PF */
6747     val1 |= (1 << SC_ABS_FUNC(sc));
6748 
6749     /* clear the old value */
6750     val &= ~mask;
6751 
6752     /* set the new one */
6753     val |= ((val1 << shift) & mask);
6754 
6755     REG_WR(sc, BXE_RECOVERY_GLOB_REG, val);
6756 
6757     bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
6758 }
6759 
6760 /* clear pf load mark */
6761 /* XXX needs to be under rtnl lock */
6762 static uint8_t
6763 bxe_clear_pf_load(struct bxe_softc *sc)
6764 {
6765     uint32_t val1, val;
6766     uint32_t mask = SC_PATH(sc) ? BXE_PATH1_LOAD_CNT_MASK :
6767                                   BXE_PATH0_LOAD_CNT_MASK;
6768     uint32_t shift = SC_PATH(sc) ? BXE_PATH1_LOAD_CNT_SHIFT :
6769                                    BXE_PATH0_LOAD_CNT_SHIFT;
6770 
6771     bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
6772     val = REG_RD(sc, BXE_RECOVERY_GLOB_REG);
6773     BLOGD(sc, DBG_LOAD, "Old GEN_REG_VAL=0x%08x\n", val);
6774 
6775     /* get the current counter value */
6776     val1 = (val & mask) >> shift;
6777 
6778     /* clear bit of that PF */
6779     val1 &= ~(1 << SC_ABS_FUNC(sc));
6780 
6781     /* clear the old value */
6782     val &= ~mask;
6783 
6784     /* set the new one */
6785     val |= ((val1 << shift) & mask);
6786 
6787     REG_WR(sc, BXE_RECOVERY_GLOB_REG, val);
6788     bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
6789     return (val1 != 0);
6790 }
6791 
6792 /* send load requrest to mcp and analyze response */
6793 static int
6794 bxe_nic_load_request(struct bxe_softc *sc,
6795                      uint32_t         *load_code)
6796 {
6797     /* init fw_seq */
6798     sc->fw_seq =
6799         (SHMEM_RD(sc, func_mb[SC_FW_MB_IDX(sc)].drv_mb_header) &
6800          DRV_MSG_SEQ_NUMBER_MASK);
6801 
6802     BLOGD(sc, DBG_LOAD, "initial fw_seq 0x%04x\n", sc->fw_seq);
6803 
6804     /* get the current FW pulse sequence */
6805     sc->fw_drv_pulse_wr_seq =
6806         (SHMEM_RD(sc, func_mb[SC_FW_MB_IDX(sc)].drv_pulse_mb) &
6807          DRV_PULSE_SEQ_MASK);
6808 
6809     BLOGD(sc, DBG_LOAD, "initial drv_pulse 0x%04x\n",
6810           sc->fw_drv_pulse_wr_seq);
6811 
6812     /* load request */
6813     (*load_code) = bxe_fw_command(sc, DRV_MSG_CODE_LOAD_REQ,
6814                                   DRV_MSG_CODE_LOAD_REQ_WITH_LFA);
6815 
6816     /* if the MCP fails to respond we must abort */
6817     if (!(*load_code)) {
6818         BLOGE(sc, "MCP response failure!\n");
6819         return (-1);
6820     }
6821 
6822     /* if MCP refused then must abort */
6823     if ((*load_code) == FW_MSG_CODE_DRV_LOAD_REFUSED) {
6824         BLOGE(sc, "MCP refused load request\n");
6825         return (-1);
6826     }
6827 
6828     return (0);
6829 }
6830 
6831 /*
6832  * Check whether another PF has already loaded FW to chip. In virtualized
6833  * environments a pf from anoth VM may have already initialized the device
6834  * including loading FW.
6835  */
6836 static int
6837 bxe_nic_load_analyze_req(struct bxe_softc *sc,
6838                          uint32_t         load_code)
6839 {
6840     uint32_t my_fw, loaded_fw;
6841 
6842     /* is another pf loaded on this engine? */
6843     if ((load_code != FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) &&
6844         (load_code != FW_MSG_CODE_DRV_LOAD_COMMON)) {
6845         /* build my FW version dword */
6846         my_fw = (BCM_5710_FW_MAJOR_VERSION +
6847                  (BCM_5710_FW_MINOR_VERSION << 8 ) +
6848                  (BCM_5710_FW_REVISION_VERSION << 16) +
6849                  (BCM_5710_FW_ENGINEERING_VERSION << 24));
6850 
6851         /* read loaded FW from chip */
6852         loaded_fw = REG_RD(sc, XSEM_REG_PRAM);
6853         BLOGD(sc, DBG_LOAD, "loaded FW 0x%08x / my FW 0x%08x\n",
6854               loaded_fw, my_fw);
6855 
6856         /* abort nic load if version mismatch */
6857         if (my_fw != loaded_fw) {
6858             BLOGE(sc, "FW 0x%08x already loaded (mine is 0x%08x)",
6859                   loaded_fw, my_fw);
6860             return (-1);
6861         }
6862     }
6863 
6864     return (0);
6865 }
6866 
6867 /* mark PMF if applicable */
6868 static void
6869 bxe_nic_load_pmf(struct bxe_softc *sc,
6870                  uint32_t         load_code)
6871 {
6872     uint32_t ncsi_oem_data_addr;
6873 
6874     if ((load_code == FW_MSG_CODE_DRV_LOAD_COMMON) ||
6875         (load_code == FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) ||
6876         (load_code == FW_MSG_CODE_DRV_LOAD_PORT)) {
6877         /*
6878          * Barrier here for ordering between the writing to sc->port.pmf here
6879          * and reading it from the periodic task.
6880          */
6881         sc->port.pmf = 1;
6882         mb();
6883     } else {
6884         sc->port.pmf = 0;
6885     }
6886 
6887     BLOGD(sc, DBG_LOAD, "pmf %d\n", sc->port.pmf);
6888 
6889     /* XXX needed? */
6890     if (load_code == FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) {
6891         if (SHMEM2_HAS(sc, ncsi_oem_data_addr)) {
6892             ncsi_oem_data_addr = SHMEM2_RD(sc, ncsi_oem_data_addr);
6893             if (ncsi_oem_data_addr) {
6894                 REG_WR(sc,
6895                        (ncsi_oem_data_addr +
6896                         offsetof(struct glob_ncsi_oem_data, driver_version)),
6897                        0);
6898             }
6899         }
6900     }
6901 }
6902 
6903 static void
6904 bxe_read_mf_cfg(struct bxe_softc *sc)
6905 {
6906     int n = (CHIP_IS_MODE_4_PORT(sc) ? 2 : 1);
6907     int abs_func;
6908     int vn;
6909 
6910     if (BXE_NOMCP(sc)) {
6911         return; /* what should be the default bvalue in this case */
6912     }
6913 
6914     /*
6915      * The formula for computing the absolute function number is...
6916      * For 2 port configuration (4 functions per port):
6917      *   abs_func = 2 * vn + SC_PORT + SC_PATH
6918      * For 4 port configuration (2 functions per port):
6919      *   abs_func = 4 * vn + 2 * SC_PORT + SC_PATH
6920      */
6921     for (vn = VN_0; vn < SC_MAX_VN_NUM(sc); vn++) {
6922         abs_func = (n * (2 * vn + SC_PORT(sc)) + SC_PATH(sc));
6923         if (abs_func >= E1H_FUNC_MAX) {
6924             break;
6925         }
6926         sc->devinfo.mf_info.mf_config[vn] =
6927             MFCFG_RD(sc, func_mf_config[abs_func].config);
6928     }
6929 
6930     if (sc->devinfo.mf_info.mf_config[SC_VN(sc)] &
6931         FUNC_MF_CFG_FUNC_DISABLED) {
6932         BLOGD(sc, DBG_LOAD, "mf_cfg function disabled\n");
6933         sc->flags |= BXE_MF_FUNC_DIS;
6934     } else {
6935         BLOGD(sc, DBG_LOAD, "mf_cfg function enabled\n");
6936         sc->flags &= ~BXE_MF_FUNC_DIS;
6937     }
6938 }
6939 
6940 /* acquire split MCP access lock register */
6941 static int bxe_acquire_alr(struct bxe_softc *sc)
6942 {
6943     uint32_t j, val;
6944 
6945     for (j = 0; j < 1000; j++) {
6946         val = (1UL << 31);
6947         REG_WR(sc, GRCBASE_MCP + 0x9c, val);
6948         val = REG_RD(sc, GRCBASE_MCP + 0x9c);
6949         if (val & (1L << 31))
6950             break;
6951 
6952         DELAY(5000);
6953     }
6954 
6955     if (!(val & (1L << 31))) {
6956         BLOGE(sc, "Cannot acquire MCP access lock register\n");
6957         return (-1);
6958     }
6959 
6960     return (0);
6961 }
6962 
6963 /* release split MCP access lock register */
6964 static void bxe_release_alr(struct bxe_softc *sc)
6965 {
6966     REG_WR(sc, GRCBASE_MCP + 0x9c, 0);
6967 }
6968 
6969 static void
6970 bxe_fan_failure(struct bxe_softc *sc)
6971 {
6972     int port = SC_PORT(sc);
6973     uint32_t ext_phy_config;
6974 
6975     /* mark the failure */
6976     ext_phy_config =
6977         SHMEM_RD(sc, dev_info.port_hw_config[port].external_phy_config);
6978 
6979     ext_phy_config &= ~PORT_HW_CFG_XGXS_EXT_PHY_TYPE_MASK;
6980     ext_phy_config |= PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE;
6981     SHMEM_WR(sc, dev_info.port_hw_config[port].external_phy_config,
6982              ext_phy_config);
6983 
6984     /* log the failure */
6985     BLOGW(sc, "Fan Failure has caused the driver to shutdown "
6986               "the card to prevent permanent damage. "
6987               "Please contact OEM Support for assistance\n");
6988 
6989     /* XXX */
6990 #if 1
6991     bxe_panic(sc, ("Schedule task to handle fan failure\n"));
6992 #else
6993     /*
6994      * Schedule device reset (unload)
6995      * This is due to some boards consuming sufficient power when driver is
6996      * up to overheat if fan fails.
6997      */
6998     bxe_set_bit(BXE_SP_RTNL_FAN_FAILURE, &sc->sp_rtnl_state);
6999     schedule_delayed_work(&sc->sp_rtnl_task, 0);
7000 #endif
7001 }
7002 
7003 /* this function is called upon a link interrupt */
7004 static void
7005 bxe_link_attn(struct bxe_softc *sc)
7006 {
7007     uint32_t pause_enabled = 0;
7008     struct host_port_stats *pstats;
7009     int cmng_fns;
7010     struct bxe_fastpath *fp;
7011     int i;
7012 
7013     /* Make sure that we are synced with the current statistics */
7014     bxe_stats_handle(sc, STATS_EVENT_STOP);
7015     BLOGD(sc, DBG_LOAD, "link_vars phy_flags : %x\n", sc->link_vars.phy_flags);
7016     elink_link_update(&sc->link_params, &sc->link_vars);
7017 
7018     if (sc->link_vars.link_up) {
7019 
7020         /* dropless flow control */
7021         if (!CHIP_IS_E1(sc) && sc->dropless_fc) {
7022             pause_enabled = 0;
7023 
7024             if (sc->link_vars.flow_ctrl & ELINK_FLOW_CTRL_TX) {
7025                 pause_enabled = 1;
7026             }
7027 
7028             REG_WR(sc,
7029                    (BAR_USTRORM_INTMEM +
7030                     USTORM_ETH_PAUSE_ENABLED_OFFSET(SC_PORT(sc))),
7031                    pause_enabled);
7032         }
7033 
7034         if (sc->link_vars.mac_type != ELINK_MAC_TYPE_EMAC) {
7035             pstats = BXE_SP(sc, port_stats);
7036             /* reset old mac stats */
7037             memset(&(pstats->mac_stx[0]), 0, sizeof(struct mac_stx));
7038         }
7039 
7040         if (sc->state == BXE_STATE_OPEN) {
7041             bxe_stats_handle(sc, STATS_EVENT_LINK_UP);
7042 	    /* Restart tx when the link comes back. */
7043 	    FOR_EACH_ETH_QUEUE(sc, i) {
7044 		fp = &sc->fp[i];
7045 		taskqueue_enqueue(fp->tq, &fp->tx_task);
7046 	    }
7047         }
7048 
7049     }
7050 
7051     if (sc->link_vars.link_up && sc->link_vars.line_speed) {
7052         cmng_fns = bxe_get_cmng_fns_mode(sc);
7053 
7054         if (cmng_fns != CMNG_FNS_NONE) {
7055             bxe_cmng_fns_init(sc, FALSE, cmng_fns);
7056             storm_memset_cmng(sc, &sc->cmng, SC_PORT(sc));
7057         } else {
7058             /* rate shaping and fairness are disabled */
7059             BLOGD(sc, DBG_LOAD, "single function mode without fairness\n");
7060         }
7061     }
7062 
7063     bxe_link_report_locked(sc);
7064 
7065     if (IS_MF(sc)) {
7066         ; // XXX bxe_link_sync_notify(sc);
7067     }
7068 }
7069 
7070 static void
7071 bxe_attn_int_asserted(struct bxe_softc *sc,
7072                       uint32_t         asserted)
7073 {
7074     int port = SC_PORT(sc);
7075     uint32_t aeu_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
7076                                MISC_REG_AEU_MASK_ATTN_FUNC_0;
7077     uint32_t nig_int_mask_addr = port ? NIG_REG_MASK_INTERRUPT_PORT1 :
7078                                         NIG_REG_MASK_INTERRUPT_PORT0;
7079     uint32_t aeu_mask;
7080     uint32_t nig_mask = 0;
7081     uint32_t reg_addr;
7082     uint32_t igu_acked;
7083     uint32_t cnt;
7084 
7085     if (sc->attn_state & asserted) {
7086         BLOGE(sc, "IGU ERROR attn=0x%08x\n", asserted);
7087     }
7088 
7089     bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
7090 
7091     aeu_mask = REG_RD(sc, aeu_addr);
7092 
7093     BLOGD(sc, DBG_INTR, "aeu_mask 0x%08x newly asserted 0x%08x\n",
7094           aeu_mask, asserted);
7095 
7096     aeu_mask &= ~(asserted & 0x3ff);
7097 
7098     BLOGD(sc, DBG_INTR, "new mask 0x%08x\n", aeu_mask);
7099 
7100     REG_WR(sc, aeu_addr, aeu_mask);
7101 
7102     bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
7103 
7104     BLOGD(sc, DBG_INTR, "attn_state 0x%08x\n", sc->attn_state);
7105     sc->attn_state |= asserted;
7106     BLOGD(sc, DBG_INTR, "new state 0x%08x\n", sc->attn_state);
7107 
7108     if (asserted & ATTN_HARD_WIRED_MASK) {
7109         if (asserted & ATTN_NIG_FOR_FUNC) {
7110 
7111 	    bxe_acquire_phy_lock(sc);
7112             /* save nig interrupt mask */
7113             nig_mask = REG_RD(sc, nig_int_mask_addr);
7114 
7115             /* If nig_mask is not set, no need to call the update function */
7116             if (nig_mask) {
7117                 REG_WR(sc, nig_int_mask_addr, 0);
7118 
7119                 bxe_link_attn(sc);
7120             }
7121 
7122             /* handle unicore attn? */
7123         }
7124 
7125         if (asserted & ATTN_SW_TIMER_4_FUNC) {
7126             BLOGD(sc, DBG_INTR, "ATTN_SW_TIMER_4_FUNC!\n");
7127         }
7128 
7129         if (asserted & GPIO_2_FUNC) {
7130             BLOGD(sc, DBG_INTR, "GPIO_2_FUNC!\n");
7131         }
7132 
7133         if (asserted & GPIO_3_FUNC) {
7134             BLOGD(sc, DBG_INTR, "GPIO_3_FUNC!\n");
7135         }
7136 
7137         if (asserted & GPIO_4_FUNC) {
7138             BLOGD(sc, DBG_INTR, "GPIO_4_FUNC!\n");
7139         }
7140 
7141         if (port == 0) {
7142             if (asserted & ATTN_GENERAL_ATTN_1) {
7143                 BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_1!\n");
7144                 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_1, 0x0);
7145             }
7146             if (asserted & ATTN_GENERAL_ATTN_2) {
7147                 BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_2!\n");
7148                 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_2, 0x0);
7149             }
7150             if (asserted & ATTN_GENERAL_ATTN_3) {
7151                 BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_3!\n");
7152                 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_3, 0x0);
7153             }
7154         } else {
7155             if (asserted & ATTN_GENERAL_ATTN_4) {
7156                 BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_4!\n");
7157                 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_4, 0x0);
7158             }
7159             if (asserted & ATTN_GENERAL_ATTN_5) {
7160                 BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_5!\n");
7161                 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_5, 0x0);
7162             }
7163             if (asserted & ATTN_GENERAL_ATTN_6) {
7164                 BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_6!\n");
7165                 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_6, 0x0);
7166             }
7167         }
7168     } /* hardwired */
7169 
7170     if (sc->devinfo.int_block == INT_BLOCK_HC) {
7171         reg_addr = (HC_REG_COMMAND_REG + port*32 + COMMAND_REG_ATTN_BITS_SET);
7172     } else {
7173         reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_SET_UPPER*8);
7174     }
7175 
7176     BLOGD(sc, DBG_INTR, "about to mask 0x%08x at %s addr 0x%08x\n",
7177           asserted,
7178           (sc->devinfo.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr);
7179     REG_WR(sc, reg_addr, asserted);
7180 
7181     /* now set back the mask */
7182     if (asserted & ATTN_NIG_FOR_FUNC) {
7183         /*
7184          * Verify that IGU ack through BAR was written before restoring
7185          * NIG mask. This loop should exit after 2-3 iterations max.
7186          */
7187         if (sc->devinfo.int_block != INT_BLOCK_HC) {
7188             cnt = 0;
7189 
7190             do {
7191                 igu_acked = REG_RD(sc, IGU_REG_ATTENTION_ACK_BITS);
7192             } while (((igu_acked & ATTN_NIG_FOR_FUNC) == 0) &&
7193                      (++cnt < MAX_IGU_ATTN_ACK_TO));
7194 
7195             if (!igu_acked) {
7196                 BLOGE(sc, "Failed to verify IGU ack on time\n");
7197             }
7198 
7199             mb();
7200         }
7201 
7202         REG_WR(sc, nig_int_mask_addr, nig_mask);
7203 
7204 	bxe_release_phy_lock(sc);
7205     }
7206 }
7207 
7208 static void
7209 bxe_print_next_block(struct bxe_softc *sc,
7210                      int              idx,
7211                      const char       *blk)
7212 {
7213     BLOGI(sc, "%s%s", idx ? ", " : "", blk);
7214 }
7215 
7216 static int
7217 bxe_check_blocks_with_parity0(struct bxe_softc *sc,
7218                               uint32_t         sig,
7219                               int              par_num,
7220                               uint8_t          print)
7221 {
7222     uint32_t cur_bit = 0;
7223     int i = 0;
7224 
7225     for (i = 0; sig; i++) {
7226         cur_bit = ((uint32_t)0x1 << i);
7227         if (sig & cur_bit) {
7228             switch (cur_bit) {
7229             case AEU_INPUTS_ATTN_BITS_BRB_PARITY_ERROR:
7230                 if (print)
7231                     bxe_print_next_block(sc, par_num++, "BRB");
7232                 break;
7233             case AEU_INPUTS_ATTN_BITS_PARSER_PARITY_ERROR:
7234                 if (print)
7235                     bxe_print_next_block(sc, par_num++, "PARSER");
7236                 break;
7237             case AEU_INPUTS_ATTN_BITS_TSDM_PARITY_ERROR:
7238                 if (print)
7239                     bxe_print_next_block(sc, par_num++, "TSDM");
7240                 break;
7241             case AEU_INPUTS_ATTN_BITS_SEARCHER_PARITY_ERROR:
7242                 if (print)
7243                     bxe_print_next_block(sc, par_num++, "SEARCHER");
7244                 break;
7245             case AEU_INPUTS_ATTN_BITS_TCM_PARITY_ERROR:
7246                 if (print)
7247                     bxe_print_next_block(sc, par_num++, "TCM");
7248                 break;
7249             case AEU_INPUTS_ATTN_BITS_TSEMI_PARITY_ERROR:
7250                 if (print)
7251                     bxe_print_next_block(sc, par_num++, "TSEMI");
7252                 break;
7253             case AEU_INPUTS_ATTN_BITS_PBCLIENT_PARITY_ERROR:
7254                 if (print)
7255                     bxe_print_next_block(sc, par_num++, "XPB");
7256                 break;
7257             }
7258 
7259             /* Clear the bit */
7260             sig &= ~cur_bit;
7261         }
7262     }
7263 
7264     return (par_num);
7265 }
7266 
7267 static int
7268 bxe_check_blocks_with_parity1(struct bxe_softc *sc,
7269                               uint32_t         sig,
7270                               int              par_num,
7271                               uint8_t          *global,
7272                               uint8_t          print)
7273 {
7274     int i = 0;
7275     uint32_t cur_bit = 0;
7276     for (i = 0; sig; i++) {
7277         cur_bit = ((uint32_t)0x1 << i);
7278         if (sig & cur_bit) {
7279             switch (cur_bit) {
7280             case AEU_INPUTS_ATTN_BITS_PBF_PARITY_ERROR:
7281                 if (print)
7282                     bxe_print_next_block(sc, par_num++, "PBF");
7283                 break;
7284             case AEU_INPUTS_ATTN_BITS_QM_PARITY_ERROR:
7285                 if (print)
7286                     bxe_print_next_block(sc, par_num++, "QM");
7287                 break;
7288             case AEU_INPUTS_ATTN_BITS_TIMERS_PARITY_ERROR:
7289                 if (print)
7290                     bxe_print_next_block(sc, par_num++, "TM");
7291                 break;
7292             case AEU_INPUTS_ATTN_BITS_XSDM_PARITY_ERROR:
7293                 if (print)
7294                     bxe_print_next_block(sc, par_num++, "XSDM");
7295                 break;
7296             case AEU_INPUTS_ATTN_BITS_XCM_PARITY_ERROR:
7297                 if (print)
7298                     bxe_print_next_block(sc, par_num++, "XCM");
7299                 break;
7300             case AEU_INPUTS_ATTN_BITS_XSEMI_PARITY_ERROR:
7301                 if (print)
7302                     bxe_print_next_block(sc, par_num++, "XSEMI");
7303                 break;
7304             case AEU_INPUTS_ATTN_BITS_DOORBELLQ_PARITY_ERROR:
7305                 if (print)
7306                     bxe_print_next_block(sc, par_num++, "DOORBELLQ");
7307                 break;
7308             case AEU_INPUTS_ATTN_BITS_NIG_PARITY_ERROR:
7309                 if (print)
7310                     bxe_print_next_block(sc, par_num++, "NIG");
7311                 break;
7312             case AEU_INPUTS_ATTN_BITS_VAUX_PCI_CORE_PARITY_ERROR:
7313                 if (print)
7314                     bxe_print_next_block(sc, par_num++, "VAUX PCI CORE");
7315                 *global = TRUE;
7316                 break;
7317             case AEU_INPUTS_ATTN_BITS_DEBUG_PARITY_ERROR:
7318                 if (print)
7319                     bxe_print_next_block(sc, par_num++, "DEBUG");
7320                 break;
7321             case AEU_INPUTS_ATTN_BITS_USDM_PARITY_ERROR:
7322                 if (print)
7323                     bxe_print_next_block(sc, par_num++, "USDM");
7324                 break;
7325             case AEU_INPUTS_ATTN_BITS_UCM_PARITY_ERROR:
7326                 if (print)
7327                     bxe_print_next_block(sc, par_num++, "UCM");
7328                 break;
7329             case AEU_INPUTS_ATTN_BITS_USEMI_PARITY_ERROR:
7330                 if (print)
7331                     bxe_print_next_block(sc, par_num++, "USEMI");
7332                 break;
7333             case AEU_INPUTS_ATTN_BITS_UPB_PARITY_ERROR:
7334                 if (print)
7335                     bxe_print_next_block(sc, par_num++, "UPB");
7336                 break;
7337             case AEU_INPUTS_ATTN_BITS_CSDM_PARITY_ERROR:
7338                 if (print)
7339                     bxe_print_next_block(sc, par_num++, "CSDM");
7340                 break;
7341             case AEU_INPUTS_ATTN_BITS_CCM_PARITY_ERROR:
7342                 if (print)
7343                     bxe_print_next_block(sc, par_num++, "CCM");
7344                 break;
7345             }
7346 
7347             /* Clear the bit */
7348             sig &= ~cur_bit;
7349         }
7350     }
7351 
7352     return (par_num);
7353 }
7354 
7355 static int
7356 bxe_check_blocks_with_parity2(struct bxe_softc *sc,
7357                               uint32_t         sig,
7358                               int              par_num,
7359                               uint8_t          print)
7360 {
7361     uint32_t cur_bit = 0;
7362     int i = 0;
7363 
7364     for (i = 0; sig; i++) {
7365         cur_bit = ((uint32_t)0x1 << i);
7366         if (sig & cur_bit) {
7367             switch (cur_bit) {
7368             case AEU_INPUTS_ATTN_BITS_CSEMI_PARITY_ERROR:
7369                 if (print)
7370                     bxe_print_next_block(sc, par_num++, "CSEMI");
7371                 break;
7372             case AEU_INPUTS_ATTN_BITS_PXP_PARITY_ERROR:
7373                 if (print)
7374                     bxe_print_next_block(sc, par_num++, "PXP");
7375                 break;
7376             case AEU_IN_ATTN_BITS_PXPPCICLOCKCLIENT_PARITY_ERROR:
7377                 if (print)
7378                     bxe_print_next_block(sc, par_num++, "PXPPCICLOCKCLIENT");
7379                 break;
7380             case AEU_INPUTS_ATTN_BITS_CFC_PARITY_ERROR:
7381                 if (print)
7382                     bxe_print_next_block(sc, par_num++, "CFC");
7383                 break;
7384             case AEU_INPUTS_ATTN_BITS_CDU_PARITY_ERROR:
7385                 if (print)
7386                     bxe_print_next_block(sc, par_num++, "CDU");
7387                 break;
7388             case AEU_INPUTS_ATTN_BITS_DMAE_PARITY_ERROR:
7389                 if (print)
7390                     bxe_print_next_block(sc, par_num++, "DMAE");
7391                 break;
7392             case AEU_INPUTS_ATTN_BITS_IGU_PARITY_ERROR:
7393                 if (print)
7394                     bxe_print_next_block(sc, par_num++, "IGU");
7395                 break;
7396             case AEU_INPUTS_ATTN_BITS_MISC_PARITY_ERROR:
7397                 if (print)
7398                     bxe_print_next_block(sc, par_num++, "MISC");
7399                 break;
7400             }
7401 
7402             /* Clear the bit */
7403             sig &= ~cur_bit;
7404         }
7405     }
7406 
7407     return (par_num);
7408 }
7409 
7410 static int
7411 bxe_check_blocks_with_parity3(struct bxe_softc *sc,
7412                               uint32_t         sig,
7413                               int              par_num,
7414                               uint8_t          *global,
7415                               uint8_t          print)
7416 {
7417     uint32_t cur_bit = 0;
7418     int i = 0;
7419 
7420     for (i = 0; sig; i++) {
7421         cur_bit = ((uint32_t)0x1 << i);
7422         if (sig & cur_bit) {
7423             switch (cur_bit) {
7424             case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_ROM_PARITY:
7425                 if (print)
7426                     bxe_print_next_block(sc, par_num++, "MCP ROM");
7427                 *global = TRUE;
7428                 break;
7429             case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_RX_PARITY:
7430                 if (print)
7431                     bxe_print_next_block(sc, par_num++,
7432                               "MCP UMP RX");
7433                 *global = TRUE;
7434                 break;
7435             case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_TX_PARITY:
7436                 if (print)
7437                     bxe_print_next_block(sc, par_num++,
7438                               "MCP UMP TX");
7439                 *global = TRUE;
7440                 break;
7441             case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY:
7442                 if (print)
7443                     bxe_print_next_block(sc, par_num++,
7444                               "MCP SCPAD");
7445                 *global = TRUE;
7446                 break;
7447             }
7448 
7449             /* Clear the bit */
7450             sig &= ~cur_bit;
7451         }
7452     }
7453 
7454     return (par_num);
7455 }
7456 
7457 static int
7458 bxe_check_blocks_with_parity4(struct bxe_softc *sc,
7459                               uint32_t         sig,
7460                               int              par_num,
7461                               uint8_t          print)
7462 {
7463     uint32_t cur_bit = 0;
7464     int i = 0;
7465 
7466     for (i = 0; sig; i++) {
7467         cur_bit = ((uint32_t)0x1 << i);
7468         if (sig & cur_bit) {
7469             switch (cur_bit) {
7470             case AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR:
7471                 if (print)
7472                     bxe_print_next_block(sc, par_num++, "PGLUE_B");
7473                 break;
7474             case AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR:
7475                 if (print)
7476                     bxe_print_next_block(sc, par_num++, "ATC");
7477                 break;
7478             }
7479 
7480             /* Clear the bit */
7481             sig &= ~cur_bit;
7482         }
7483     }
7484 
7485     return (par_num);
7486 }
7487 
7488 static uint8_t
7489 bxe_parity_attn(struct bxe_softc *sc,
7490                 uint8_t          *global,
7491                 uint8_t          print,
7492                 uint32_t         *sig)
7493 {
7494     int par_num = 0;
7495 
7496     if ((sig[0] & HW_PRTY_ASSERT_SET_0) ||
7497         (sig[1] & HW_PRTY_ASSERT_SET_1) ||
7498         (sig[2] & HW_PRTY_ASSERT_SET_2) ||
7499         (sig[3] & HW_PRTY_ASSERT_SET_3) ||
7500         (sig[4] & HW_PRTY_ASSERT_SET_4)) {
7501         BLOGE(sc, "Parity error: HW block parity attention:\n"
7502                   "[0]:0x%08x [1]:0x%08x [2]:0x%08x [3]:0x%08x [4]:0x%08x\n",
7503               (uint32_t)(sig[0] & HW_PRTY_ASSERT_SET_0),
7504               (uint32_t)(sig[1] & HW_PRTY_ASSERT_SET_1),
7505               (uint32_t)(sig[2] & HW_PRTY_ASSERT_SET_2),
7506               (uint32_t)(sig[3] & HW_PRTY_ASSERT_SET_3),
7507               (uint32_t)(sig[4] & HW_PRTY_ASSERT_SET_4));
7508 
7509         if (print)
7510             BLOGI(sc, "Parity errors detected in blocks: ");
7511 
7512         par_num =
7513             bxe_check_blocks_with_parity0(sc, sig[0] &
7514                                           HW_PRTY_ASSERT_SET_0,
7515                                           par_num, print);
7516         par_num =
7517             bxe_check_blocks_with_parity1(sc, sig[1] &
7518                                           HW_PRTY_ASSERT_SET_1,
7519                                           par_num, global, print);
7520         par_num =
7521             bxe_check_blocks_with_parity2(sc, sig[2] &
7522                                           HW_PRTY_ASSERT_SET_2,
7523                                           par_num, print);
7524         par_num =
7525             bxe_check_blocks_with_parity3(sc, sig[3] &
7526                                           HW_PRTY_ASSERT_SET_3,
7527                                           par_num, global, print);
7528         par_num =
7529             bxe_check_blocks_with_parity4(sc, sig[4] &
7530                                           HW_PRTY_ASSERT_SET_4,
7531                                           par_num, print);
7532 
7533         if (print)
7534             BLOGI(sc, "\n");
7535 
7536 	if( *global == TRUE ) {
7537                 BXE_SET_ERROR_BIT(sc, BXE_ERR_GLOBAL);
7538         }
7539 
7540         return (TRUE);
7541     }
7542 
7543     return (FALSE);
7544 }
7545 
7546 static uint8_t
7547 bxe_chk_parity_attn(struct bxe_softc *sc,
7548                     uint8_t          *global,
7549                     uint8_t          print)
7550 {
7551     struct attn_route attn = { {0} };
7552     int port = SC_PORT(sc);
7553 
7554     if(sc->state != BXE_STATE_OPEN)
7555         return FALSE;
7556 
7557     attn.sig[0] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + port*4);
7558     attn.sig[1] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 + port*4);
7559     attn.sig[2] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 + port*4);
7560     attn.sig[3] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 + port*4);
7561 
7562     /*
7563      * Since MCP attentions can't be disabled inside the block, we need to
7564      * read AEU registers to see whether they're currently disabled
7565      */
7566     attn.sig[3] &= ((REG_RD(sc, (!port ? MISC_REG_AEU_ENABLE4_FUNC_0_OUT_0
7567                                       : MISC_REG_AEU_ENABLE4_FUNC_1_OUT_0)) &
7568                          MISC_AEU_ENABLE_MCP_PRTY_BITS) |
7569                         ~MISC_AEU_ENABLE_MCP_PRTY_BITS);
7570 
7571 
7572     if (!CHIP_IS_E1x(sc))
7573         attn.sig[4] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 + port*4);
7574 
7575     return (bxe_parity_attn(sc, global, print, attn.sig));
7576 }
7577 
7578 static void
7579 bxe_attn_int_deasserted4(struct bxe_softc *sc,
7580                          uint32_t         attn)
7581 {
7582     uint32_t val;
7583     boolean_t err_flg = FALSE;
7584 
7585     if (attn & AEU_INPUTS_ATTN_BITS_PGLUE_HW_INTERRUPT) {
7586         val = REG_RD(sc, PGLUE_B_REG_PGLUE_B_INT_STS_CLR);
7587         BLOGE(sc, "PGLUE hw attention 0x%08x\n", val);
7588         err_flg = TRUE;
7589         if (val & PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR)
7590             BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR\n");
7591         if (val & PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR)
7592             BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR\n");
7593         if (val & PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN)
7594             BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN\n");
7595         if (val & PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN)
7596             BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN\n");
7597         if (val & PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN)
7598             BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN\n");
7599         if (val & PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN)
7600             BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN\n");
7601         if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN)
7602             BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN\n");
7603         if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN)
7604             BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN\n");
7605         if (val & PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW)
7606             BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW\n");
7607     }
7608 
7609     if (attn & AEU_INPUTS_ATTN_BITS_ATC_HW_INTERRUPT) {
7610         val = REG_RD(sc, ATC_REG_ATC_INT_STS_CLR);
7611         BLOGE(sc, "ATC hw attention 0x%08x\n", val);
7612 	err_flg = TRUE;
7613         if (val & ATC_ATC_INT_STS_REG_ADDRESS_ERROR)
7614             BLOGE(sc, "ATC_ATC_INT_STS_REG_ADDRESS_ERROR\n");
7615         if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND)
7616             BLOGE(sc, "ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND\n");
7617         if (val & ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS)
7618             BLOGE(sc, "ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS\n");
7619         if (val & ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT)
7620             BLOGE(sc, "ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT\n");
7621         if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR)
7622             BLOGE(sc, "ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR\n");
7623         if (val & ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU)
7624             BLOGE(sc, "ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU\n");
7625     }
7626 
7627     if (attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR |
7628                 AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)) {
7629         BLOGE(sc, "FATAL parity attention set4 0x%08x\n",
7630               (uint32_t)(attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR |
7631                                  AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)));
7632 	err_flg = TRUE;
7633     }
7634     if (err_flg) {
7635 	BXE_SET_ERROR_BIT(sc, BXE_ERR_MISC);
7636 	taskqueue_enqueue_timeout(taskqueue_thread,
7637 	    &sc->sp_err_timeout_task, hz/10);
7638     }
7639 
7640 }
7641 
7642 static void
7643 bxe_e1h_disable(struct bxe_softc *sc)
7644 {
7645     int port = SC_PORT(sc);
7646 
7647     bxe_tx_disable(sc);
7648 
7649     REG_WR(sc, NIG_REG_LLH0_FUNC_EN + port*8, 0);
7650 }
7651 
7652 static void
7653 bxe_e1h_enable(struct bxe_softc *sc)
7654 {
7655     int port = SC_PORT(sc);
7656 
7657     REG_WR(sc, NIG_REG_LLH0_FUNC_EN + port*8, 1);
7658 
7659     // XXX bxe_tx_enable(sc);
7660 }
7661 
7662 /*
7663  * called due to MCP event (on pmf):
7664  *   reread new bandwidth configuration
7665  *   configure FW
7666  *   notify others function about the change
7667  */
7668 static void
7669 bxe_config_mf_bw(struct bxe_softc *sc)
7670 {
7671     if (sc->link_vars.link_up) {
7672         bxe_cmng_fns_init(sc, TRUE, CMNG_FNS_MINMAX);
7673         // XXX bxe_link_sync_notify(sc);
7674     }
7675 
7676     storm_memset_cmng(sc, &sc->cmng, SC_PORT(sc));
7677 }
7678 
7679 static void
7680 bxe_set_mf_bw(struct bxe_softc *sc)
7681 {
7682     bxe_config_mf_bw(sc);
7683     bxe_fw_command(sc, DRV_MSG_CODE_SET_MF_BW_ACK, 0);
7684 }
7685 
7686 static void
7687 bxe_handle_eee_event(struct bxe_softc *sc)
7688 {
7689     BLOGD(sc, DBG_INTR, "EEE - LLDP event\n");
7690     bxe_fw_command(sc, DRV_MSG_CODE_EEE_RESULTS_ACK, 0);
7691 }
7692 
7693 #define DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED 3
7694 
7695 static void
7696 bxe_drv_info_ether_stat(struct bxe_softc *sc)
7697 {
7698     struct eth_stats_info *ether_stat =
7699         &sc->sp->drv_info_to_mcp.ether_stat;
7700 
7701     strlcpy(ether_stat->version, BXE_DRIVER_VERSION,
7702             ETH_STAT_INFO_VERSION_LEN);
7703 
7704     /* XXX (+ MAC_PAD) taken from other driver... verify this is right */
7705     sc->sp_objs[0].mac_obj.get_n_elements(sc, &sc->sp_objs[0].mac_obj,
7706                                           DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED,
7707                                           ether_stat->mac_local + MAC_PAD,
7708                                           MAC_PAD, ETH_ALEN);
7709 
7710     ether_stat->mtu_size = sc->mtu;
7711 
7712     ether_stat->feature_flags |= FEATURE_ETH_CHKSUM_OFFLOAD_MASK;
7713     if (if_getcapenable(sc->ifp) & (IFCAP_TSO4 | IFCAP_TSO6)) {
7714         ether_stat->feature_flags |= FEATURE_ETH_LSO_MASK;
7715     }
7716 
7717     // XXX ether_stat->feature_flags |= ???;
7718 
7719     ether_stat->promiscuous_mode = 0; // (flags & PROMISC) ? 1 : 0;
7720 
7721     ether_stat->txq_size = sc->tx_ring_size;
7722     ether_stat->rxq_size = sc->rx_ring_size;
7723 }
7724 
7725 static void
7726 bxe_handle_drv_info_req(struct bxe_softc *sc)
7727 {
7728     enum drv_info_opcode op_code;
7729     uint32_t drv_info_ctl = SHMEM2_RD(sc, drv_info_control);
7730 
7731     /* if drv_info version supported by MFW doesn't match - send NACK */
7732     if ((drv_info_ctl & DRV_INFO_CONTROL_VER_MASK) != DRV_INFO_CUR_VER) {
7733         bxe_fw_command(sc, DRV_MSG_CODE_DRV_INFO_NACK, 0);
7734         return;
7735     }
7736 
7737     op_code = ((drv_info_ctl & DRV_INFO_CONTROL_OP_CODE_MASK) >>
7738                DRV_INFO_CONTROL_OP_CODE_SHIFT);
7739 
7740     memset(&sc->sp->drv_info_to_mcp, 0, sizeof(union drv_info_to_mcp));
7741 
7742     switch (op_code) {
7743     case ETH_STATS_OPCODE:
7744         bxe_drv_info_ether_stat(sc);
7745         break;
7746     case FCOE_STATS_OPCODE:
7747     case ISCSI_STATS_OPCODE:
7748     default:
7749         /* if op code isn't supported - send NACK */
7750         bxe_fw_command(sc, DRV_MSG_CODE_DRV_INFO_NACK, 0);
7751         return;
7752     }
7753 
7754     /*
7755      * If we got drv_info attn from MFW then these fields are defined in
7756      * shmem2 for sure
7757      */
7758     SHMEM2_WR(sc, drv_info_host_addr_lo,
7759               U64_LO(BXE_SP_MAPPING(sc, drv_info_to_mcp)));
7760     SHMEM2_WR(sc, drv_info_host_addr_hi,
7761               U64_HI(BXE_SP_MAPPING(sc, drv_info_to_mcp)));
7762 
7763     bxe_fw_command(sc, DRV_MSG_CODE_DRV_INFO_ACK, 0);
7764 }
7765 
7766 static void
7767 bxe_dcc_event(struct bxe_softc *sc,
7768               uint32_t         dcc_event)
7769 {
7770     BLOGD(sc, DBG_INTR, "dcc_event 0x%08x\n", dcc_event);
7771 
7772     if (dcc_event & DRV_STATUS_DCC_DISABLE_ENABLE_PF) {
7773         /*
7774          * This is the only place besides the function initialization
7775          * where the sc->flags can change so it is done without any
7776          * locks
7777          */
7778         if (sc->devinfo.mf_info.mf_config[SC_VN(sc)] & FUNC_MF_CFG_FUNC_DISABLED) {
7779             BLOGD(sc, DBG_INTR, "mf_cfg function disabled\n");
7780             sc->flags |= BXE_MF_FUNC_DIS;
7781             bxe_e1h_disable(sc);
7782         } else {
7783             BLOGD(sc, DBG_INTR, "mf_cfg function enabled\n");
7784             sc->flags &= ~BXE_MF_FUNC_DIS;
7785             bxe_e1h_enable(sc);
7786         }
7787         dcc_event &= ~DRV_STATUS_DCC_DISABLE_ENABLE_PF;
7788     }
7789 
7790     if (dcc_event & DRV_STATUS_DCC_BANDWIDTH_ALLOCATION) {
7791         bxe_config_mf_bw(sc);
7792         dcc_event &= ~DRV_STATUS_DCC_BANDWIDTH_ALLOCATION;
7793     }
7794 
7795     /* Report results to MCP */
7796     if (dcc_event)
7797         bxe_fw_command(sc, DRV_MSG_CODE_DCC_FAILURE, 0);
7798     else
7799         bxe_fw_command(sc, DRV_MSG_CODE_DCC_OK, 0);
7800 }
7801 
7802 static void
7803 bxe_pmf_update(struct bxe_softc *sc)
7804 {
7805     int port = SC_PORT(sc);
7806     uint32_t val;
7807 
7808     sc->port.pmf = 1;
7809     BLOGD(sc, DBG_INTR, "pmf %d\n", sc->port.pmf);
7810 
7811     /*
7812      * We need the mb() to ensure the ordering between the writing to
7813      * sc->port.pmf here and reading it from the bxe_periodic_task().
7814      */
7815     mb();
7816 
7817     /* queue a periodic task */
7818     // XXX schedule task...
7819 
7820     // XXX bxe_dcbx_pmf_update(sc);
7821 
7822     /* enable nig attention */
7823     val = (0xff0f | (1 << (SC_VN(sc) + 4)));
7824     if (sc->devinfo.int_block == INT_BLOCK_HC) {
7825         REG_WR(sc, HC_REG_TRAILING_EDGE_0 + port*8, val);
7826         REG_WR(sc, HC_REG_LEADING_EDGE_0 + port*8, val);
7827     } else if (!CHIP_IS_E1x(sc)) {
7828         REG_WR(sc, IGU_REG_TRAILING_EDGE_LATCH, val);
7829         REG_WR(sc, IGU_REG_LEADING_EDGE_LATCH, val);
7830     }
7831 
7832     bxe_stats_handle(sc, STATS_EVENT_PMF);
7833 }
7834 
7835 static int
7836 bxe_mc_assert(struct bxe_softc *sc)
7837 {
7838     char last_idx;
7839     int i, rc = 0;
7840     uint32_t row0, row1, row2, row3;
7841 
7842     /* XSTORM */
7843     last_idx = REG_RD8(sc, BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_INDEX_OFFSET);
7844     if (last_idx)
7845         BLOGE(sc, "XSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
7846 
7847     /* print the asserts */
7848     for (i = 0; i < STORM_ASSERT_ARRAY_SIZE; i++) {
7849 
7850         row0 = REG_RD(sc, BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_OFFSET(i));
7851         row1 = REG_RD(sc, BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_OFFSET(i) + 4);
7852         row2 = REG_RD(sc, BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_OFFSET(i) + 8);
7853         row3 = REG_RD(sc, BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_OFFSET(i) + 12);
7854 
7855         if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
7856             BLOGE(sc, "XSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
7857                   i, row3, row2, row1, row0);
7858             rc++;
7859         } else {
7860             break;
7861         }
7862     }
7863 
7864     /* TSTORM */
7865     last_idx = REG_RD8(sc, BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_INDEX_OFFSET);
7866     if (last_idx) {
7867         BLOGE(sc, "TSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
7868     }
7869 
7870     /* print the asserts */
7871     for (i = 0; i < STORM_ASSERT_ARRAY_SIZE; i++) {
7872 
7873         row0 = REG_RD(sc, BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_OFFSET(i));
7874         row1 = REG_RD(sc, BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_OFFSET(i) + 4);
7875         row2 = REG_RD(sc, BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_OFFSET(i) + 8);
7876         row3 = REG_RD(sc, BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_OFFSET(i) + 12);
7877 
7878         if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
7879             BLOGE(sc, "TSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
7880                   i, row3, row2, row1, row0);
7881             rc++;
7882         } else {
7883             break;
7884         }
7885     }
7886 
7887     /* CSTORM */
7888     last_idx = REG_RD8(sc, BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_INDEX_OFFSET);
7889     if (last_idx) {
7890         BLOGE(sc, "CSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
7891     }
7892 
7893     /* print the asserts */
7894     for (i = 0; i < STORM_ASSERT_ARRAY_SIZE; i++) {
7895 
7896         row0 = REG_RD(sc, BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_OFFSET(i));
7897         row1 = REG_RD(sc, BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_OFFSET(i) + 4);
7898         row2 = REG_RD(sc, BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_OFFSET(i) + 8);
7899         row3 = REG_RD(sc, BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_OFFSET(i) + 12);
7900 
7901         if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
7902             BLOGE(sc, "CSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
7903                   i, row3, row2, row1, row0);
7904             rc++;
7905         } else {
7906             break;
7907         }
7908     }
7909 
7910     /* USTORM */
7911     last_idx = REG_RD8(sc, BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_INDEX_OFFSET);
7912     if (last_idx) {
7913         BLOGE(sc, "USTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
7914     }
7915 
7916     /* print the asserts */
7917     for (i = 0; i < STORM_ASSERT_ARRAY_SIZE; i++) {
7918 
7919         row0 = REG_RD(sc, BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_OFFSET(i));
7920         row1 = REG_RD(sc, BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_OFFSET(i) + 4);
7921         row2 = REG_RD(sc, BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_OFFSET(i) + 8);
7922         row3 = REG_RD(sc, BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_OFFSET(i) + 12);
7923 
7924         if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
7925             BLOGE(sc, "USTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
7926                   i, row3, row2, row1, row0);
7927             rc++;
7928         } else {
7929             break;
7930         }
7931     }
7932 
7933     return (rc);
7934 }
7935 
7936 static void
7937 bxe_attn_int_deasserted3(struct bxe_softc *sc,
7938                          uint32_t         attn)
7939 {
7940     int func = SC_FUNC(sc);
7941     uint32_t val;
7942 
7943     if (attn & EVEREST_GEN_ATTN_IN_USE_MASK) {
7944 
7945         if (attn & BXE_PMF_LINK_ASSERT(sc)) {
7946 
7947             REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
7948             bxe_read_mf_cfg(sc);
7949             sc->devinfo.mf_info.mf_config[SC_VN(sc)] =
7950                 MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].config);
7951             val = SHMEM_RD(sc, func_mb[SC_FW_MB_IDX(sc)].drv_status);
7952 
7953             if (val & DRV_STATUS_DCC_EVENT_MASK)
7954                 bxe_dcc_event(sc, (val & DRV_STATUS_DCC_EVENT_MASK));
7955 
7956             if (val & DRV_STATUS_SET_MF_BW)
7957                 bxe_set_mf_bw(sc);
7958 
7959             if (val & DRV_STATUS_DRV_INFO_REQ)
7960                 bxe_handle_drv_info_req(sc);
7961 
7962             if ((sc->port.pmf == 0) && (val & DRV_STATUS_PMF))
7963                 bxe_pmf_update(sc);
7964 
7965             if (val & DRV_STATUS_EEE_NEGOTIATION_RESULTS)
7966                 bxe_handle_eee_event(sc);
7967 
7968             if (sc->link_vars.periodic_flags &
7969                 ELINK_PERIODIC_FLAGS_LINK_EVENT) {
7970                 /* sync with link */
7971 		bxe_acquire_phy_lock(sc);
7972                 sc->link_vars.periodic_flags &=
7973                     ~ELINK_PERIODIC_FLAGS_LINK_EVENT;
7974 		bxe_release_phy_lock(sc);
7975                 if (IS_MF(sc))
7976                     ; // XXX bxe_link_sync_notify(sc);
7977                 bxe_link_report(sc);
7978             }
7979 
7980             /*
7981              * Always call it here: bxe_link_report() will
7982              * prevent the link indication duplication.
7983              */
7984             bxe_link_status_update(sc);
7985 
7986         } else if (attn & BXE_MC_ASSERT_BITS) {
7987 
7988             BLOGE(sc, "MC assert!\n");
7989             bxe_mc_assert(sc);
7990             REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_10, 0);
7991             REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_9, 0);
7992             REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_8, 0);
7993             REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_7, 0);
7994             bxe_int_disable(sc);
7995             BXE_SET_ERROR_BIT(sc, BXE_ERR_MC_ASSERT);
7996             taskqueue_enqueue_timeout(taskqueue_thread,
7997                 &sc->sp_err_timeout_task, hz/10);
7998 
7999         } else if (attn & BXE_MCP_ASSERT) {
8000 
8001             BLOGE(sc, "MCP assert!\n");
8002             REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_11, 0);
8003             BXE_SET_ERROR_BIT(sc, BXE_ERR_MCP_ASSERT);
8004             taskqueue_enqueue_timeout(taskqueue_thread,
8005                 &sc->sp_err_timeout_task, hz/10);
8006             bxe_int_disable(sc);  /*avoid repetive assert alert */
8007 
8008 
8009         } else {
8010             BLOGE(sc, "Unknown HW assert! (attn 0x%08x)\n", attn);
8011         }
8012     }
8013 
8014     if (attn & EVEREST_LATCHED_ATTN_IN_USE_MASK) {
8015         BLOGE(sc, "LATCHED attention 0x%08x (masked)\n", attn);
8016         if (attn & BXE_GRC_TIMEOUT) {
8017             val = CHIP_IS_E1(sc) ? 0 : REG_RD(sc, MISC_REG_GRC_TIMEOUT_ATTN);
8018             BLOGE(sc, "GRC time-out 0x%08x\n", val);
8019         }
8020         if (attn & BXE_GRC_RSV) {
8021             val = CHIP_IS_E1(sc) ? 0 : REG_RD(sc, MISC_REG_GRC_RSV_ATTN);
8022             BLOGE(sc, "GRC reserved 0x%08x\n", val);
8023         }
8024         REG_WR(sc, MISC_REG_AEU_CLR_LATCH_SIGNAL, 0x7ff);
8025     }
8026 }
8027 
8028 static void
8029 bxe_attn_int_deasserted2(struct bxe_softc *sc,
8030                          uint32_t         attn)
8031 {
8032     int port = SC_PORT(sc);
8033     int reg_offset;
8034     uint32_t val0, mask0, val1, mask1;
8035     uint32_t val;
8036     boolean_t err_flg = FALSE;
8037 
8038     if (attn & AEU_INPUTS_ATTN_BITS_CFC_HW_INTERRUPT) {
8039         val = REG_RD(sc, CFC_REG_CFC_INT_STS_CLR);
8040         BLOGE(sc, "CFC hw attention 0x%08x\n", val);
8041         /* CFC error attention */
8042         if (val & 0x2) {
8043             BLOGE(sc, "FATAL error from CFC\n");
8044 	    err_flg = TRUE;
8045         }
8046     }
8047 
8048     if (attn & AEU_INPUTS_ATTN_BITS_PXP_HW_INTERRUPT) {
8049         val = REG_RD(sc, PXP_REG_PXP_INT_STS_CLR_0);
8050         BLOGE(sc, "PXP hw attention-0 0x%08x\n", val);
8051         /* RQ_USDMDP_FIFO_OVERFLOW */
8052         if (val & 0x18000) {
8053             BLOGE(sc, "FATAL error from PXP\n");
8054 	    err_flg = TRUE;
8055         }
8056 
8057         if (!CHIP_IS_E1x(sc)) {
8058             val = REG_RD(sc, PXP_REG_PXP_INT_STS_CLR_1);
8059             BLOGE(sc, "PXP hw attention-1 0x%08x\n", val);
8060 	    err_flg = TRUE;
8061         }
8062     }
8063 
8064 #define PXP2_EOP_ERROR_BIT  PXP2_PXP2_INT_STS_CLR_0_REG_WR_PGLUE_EOP_ERROR
8065 #define AEU_PXP2_HW_INT_BIT AEU_INPUTS_ATTN_BITS_PXPPCICLOCKCLIENT_HW_INTERRUPT
8066 
8067     if (attn & AEU_PXP2_HW_INT_BIT) {
8068         /*  CQ47854 workaround do not panic on
8069          *  PXP2_PXP2_INT_STS_0_REG_WR_PGLUE_EOP_ERROR
8070          */
8071         if (!CHIP_IS_E1x(sc)) {
8072             mask0 = REG_RD(sc, PXP2_REG_PXP2_INT_MASK_0);
8073             val1 = REG_RD(sc, PXP2_REG_PXP2_INT_STS_1);
8074             mask1 = REG_RD(sc, PXP2_REG_PXP2_INT_MASK_1);
8075             val0 = REG_RD(sc, PXP2_REG_PXP2_INT_STS_0);
8076             /*
8077              * If the only PXP2_EOP_ERROR_BIT is set in
8078              * STS0 and STS1 - clear it
8079              *
8080              * probably we lose additional attentions between
8081              * STS0 and STS_CLR0, in this case user will not
8082              * be notified about them
8083              */
8084             if (val0 & mask0 & PXP2_EOP_ERROR_BIT &&
8085                 !(val1 & mask1))
8086                 val0 = REG_RD(sc, PXP2_REG_PXP2_INT_STS_CLR_0);
8087 
8088             /* print the register, since no one can restore it */
8089             BLOGE(sc, "PXP2_REG_PXP2_INT_STS_CLR_0 0x%08x\n", val0);
8090 
8091             /*
8092              * if PXP2_PXP2_INT_STS_0_REG_WR_PGLUE_EOP_ERROR
8093              * then notify
8094              */
8095             if (val0 & PXP2_EOP_ERROR_BIT) {
8096                 BLOGE(sc, "PXP2_WR_PGLUE_EOP_ERROR\n");
8097 		err_flg = TRUE;
8098 
8099                 /*
8100                  * if only PXP2_PXP2_INT_STS_0_REG_WR_PGLUE_EOP_ERROR is
8101                  * set then clear attention from PXP2 block without panic
8102                  */
8103                 if (((val0 & mask0) == PXP2_EOP_ERROR_BIT) &&
8104                     ((val1 & mask1) == 0))
8105                     attn &= ~AEU_PXP2_HW_INT_BIT;
8106             }
8107         }
8108     }
8109 
8110     if (attn & HW_INTERRUT_ASSERT_SET_2) {
8111         reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_2 :
8112                              MISC_REG_AEU_ENABLE1_FUNC_0_OUT_2);
8113 
8114         val = REG_RD(sc, reg_offset);
8115         val &= ~(attn & HW_INTERRUT_ASSERT_SET_2);
8116         REG_WR(sc, reg_offset, val);
8117 
8118         BLOGE(sc, "FATAL HW block attention set2 0x%x\n",
8119               (uint32_t)(attn & HW_INTERRUT_ASSERT_SET_2));
8120 	err_flg = TRUE;
8121         bxe_panic(sc, ("HW block attention set2\n"));
8122     }
8123     if(err_flg) {
8124         BXE_SET_ERROR_BIT(sc, BXE_ERR_GLOBAL);
8125         taskqueue_enqueue_timeout(taskqueue_thread,
8126            &sc->sp_err_timeout_task, hz/10);
8127     }
8128 
8129 }
8130 
8131 static void
8132 bxe_attn_int_deasserted1(struct bxe_softc *sc,
8133                          uint32_t         attn)
8134 {
8135     int port = SC_PORT(sc);
8136     int reg_offset;
8137     uint32_t val;
8138     boolean_t err_flg = FALSE;
8139 
8140     if (attn & AEU_INPUTS_ATTN_BITS_DOORBELLQ_HW_INTERRUPT) {
8141         val = REG_RD(sc, DORQ_REG_DORQ_INT_STS_CLR);
8142         BLOGE(sc, "DB hw attention 0x%08x\n", val);
8143         /* DORQ discard attention */
8144         if (val & 0x2) {
8145             BLOGE(sc, "FATAL error from DORQ\n");
8146 	    err_flg = TRUE;
8147         }
8148     }
8149 
8150     if (attn & HW_INTERRUT_ASSERT_SET_1) {
8151         reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_1 :
8152                              MISC_REG_AEU_ENABLE1_FUNC_0_OUT_1);
8153 
8154         val = REG_RD(sc, reg_offset);
8155         val &= ~(attn & HW_INTERRUT_ASSERT_SET_1);
8156         REG_WR(sc, reg_offset, val);
8157 
8158         BLOGE(sc, "FATAL HW block attention set1 0x%08x\n",
8159               (uint32_t)(attn & HW_INTERRUT_ASSERT_SET_1));
8160         err_flg = TRUE;
8161         bxe_panic(sc, ("HW block attention set1\n"));
8162     }
8163     if(err_flg) {
8164         BXE_SET_ERROR_BIT(sc, BXE_ERR_MISC);
8165         taskqueue_enqueue_timeout(taskqueue_thread,
8166            &sc->sp_err_timeout_task, hz/10);
8167     }
8168 
8169 }
8170 
8171 static void
8172 bxe_attn_int_deasserted0(struct bxe_softc *sc,
8173                          uint32_t         attn)
8174 {
8175     int port = SC_PORT(sc);
8176     int reg_offset;
8177     uint32_t val;
8178 
8179     reg_offset = (port) ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
8180                           MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0;
8181 
8182     if (attn & AEU_INPUTS_ATTN_BITS_SPIO5) {
8183         val = REG_RD(sc, reg_offset);
8184         val &= ~AEU_INPUTS_ATTN_BITS_SPIO5;
8185         REG_WR(sc, reg_offset, val);
8186 
8187         BLOGW(sc, "SPIO5 hw attention\n");
8188 
8189         /* Fan failure attention */
8190         elink_hw_reset_phy(&sc->link_params);
8191         bxe_fan_failure(sc);
8192     }
8193 
8194     if ((attn & sc->link_vars.aeu_int_mask) && sc->port.pmf) {
8195 	bxe_acquire_phy_lock(sc);
8196         elink_handle_module_detect_int(&sc->link_params);
8197 	bxe_release_phy_lock(sc);
8198     }
8199 
8200     if (attn & HW_INTERRUT_ASSERT_SET_0) {
8201         val = REG_RD(sc, reg_offset);
8202         val &= ~(attn & HW_INTERRUT_ASSERT_SET_0);
8203         REG_WR(sc, reg_offset, val);
8204 
8205 
8206         BXE_SET_ERROR_BIT(sc, BXE_ERR_MISC);
8207         taskqueue_enqueue_timeout(taskqueue_thread,
8208            &sc->sp_err_timeout_task, hz/10);
8209 
8210         bxe_panic(sc, ("FATAL HW block attention set0 0x%lx\n",
8211                        (attn & HW_INTERRUT_ASSERT_SET_0)));
8212     }
8213 }
8214 
8215 static void
8216 bxe_attn_int_deasserted(struct bxe_softc *sc,
8217                         uint32_t         deasserted)
8218 {
8219     struct attn_route attn;
8220     struct attn_route *group_mask;
8221     int port = SC_PORT(sc);
8222     int index;
8223     uint32_t reg_addr;
8224     uint32_t val;
8225     uint32_t aeu_mask;
8226     uint8_t global = FALSE;
8227 
8228     /*
8229      * Need to take HW lock because MCP or other port might also
8230      * try to handle this event.
8231      */
8232     bxe_acquire_alr(sc);
8233 
8234     if (bxe_chk_parity_attn(sc, &global, TRUE)) {
8235         /* XXX
8236          * In case of parity errors don't handle attentions so that
8237          * other function would "see" parity errors.
8238          */
8239         // XXX schedule a recovery task...
8240         /* disable HW interrupts */
8241         bxe_int_disable(sc);
8242         BXE_SET_ERROR_BIT(sc, BXE_ERR_PARITY);
8243         taskqueue_enqueue_timeout(taskqueue_thread,
8244            &sc->sp_err_timeout_task, hz/10);
8245         bxe_release_alr(sc);
8246         return;
8247     }
8248 
8249     attn.sig[0] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + port*4);
8250     attn.sig[1] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 + port*4);
8251     attn.sig[2] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 + port*4);
8252     attn.sig[3] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 + port*4);
8253     if (!CHIP_IS_E1x(sc)) {
8254         attn.sig[4] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 + port*4);
8255     } else {
8256         attn.sig[4] = 0;
8257     }
8258 
8259     BLOGD(sc, DBG_INTR, "attn: 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x\n",
8260           attn.sig[0], attn.sig[1], attn.sig[2], attn.sig[3], attn.sig[4]);
8261 
8262     for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) {
8263         if (deasserted & (1 << index)) {
8264             group_mask = &sc->attn_group[index];
8265 
8266             BLOGD(sc, DBG_INTR,
8267                   "group[%d]: 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x\n", index,
8268                   group_mask->sig[0], group_mask->sig[1],
8269                   group_mask->sig[2], group_mask->sig[3],
8270                   group_mask->sig[4]);
8271 
8272             bxe_attn_int_deasserted4(sc, attn.sig[4] & group_mask->sig[4]);
8273             bxe_attn_int_deasserted3(sc, attn.sig[3] & group_mask->sig[3]);
8274             bxe_attn_int_deasserted1(sc, attn.sig[1] & group_mask->sig[1]);
8275             bxe_attn_int_deasserted2(sc, attn.sig[2] & group_mask->sig[2]);
8276             bxe_attn_int_deasserted0(sc, attn.sig[0] & group_mask->sig[0]);
8277         }
8278     }
8279 
8280     bxe_release_alr(sc);
8281 
8282     if (sc->devinfo.int_block == INT_BLOCK_HC) {
8283         reg_addr = (HC_REG_COMMAND_REG + port*32 +
8284                     COMMAND_REG_ATTN_BITS_CLR);
8285     } else {
8286         reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_CLR_UPPER*8);
8287     }
8288 
8289     val = ~deasserted;
8290     BLOGD(sc, DBG_INTR,
8291           "about to mask 0x%08x at %s addr 0x%08x\n", val,
8292           (sc->devinfo.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr);
8293     REG_WR(sc, reg_addr, val);
8294 
8295     if (~sc->attn_state & deasserted) {
8296         BLOGE(sc, "IGU error\n");
8297     }
8298 
8299     reg_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
8300                       MISC_REG_AEU_MASK_ATTN_FUNC_0;
8301 
8302     bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
8303 
8304     aeu_mask = REG_RD(sc, reg_addr);
8305 
8306     BLOGD(sc, DBG_INTR, "aeu_mask 0x%08x newly deasserted 0x%08x\n",
8307           aeu_mask, deasserted);
8308     aeu_mask |= (deasserted & 0x3ff);
8309     BLOGD(sc, DBG_INTR, "new mask 0x%08x\n", aeu_mask);
8310 
8311     REG_WR(sc, reg_addr, aeu_mask);
8312     bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
8313 
8314     BLOGD(sc, DBG_INTR, "attn_state 0x%08x\n", sc->attn_state);
8315     sc->attn_state &= ~deasserted;
8316     BLOGD(sc, DBG_INTR, "new state 0x%08x\n", sc->attn_state);
8317 }
8318 
8319 static void
8320 bxe_attn_int(struct bxe_softc *sc)
8321 {
8322     /* read local copy of bits */
8323     uint32_t attn_bits = le32toh(sc->def_sb->atten_status_block.attn_bits);
8324     uint32_t attn_ack = le32toh(sc->def_sb->atten_status_block.attn_bits_ack);
8325     uint32_t attn_state = sc->attn_state;
8326 
8327     /* look for changed bits */
8328     uint32_t asserted   =  attn_bits & ~attn_ack & ~attn_state;
8329     uint32_t deasserted = ~attn_bits &  attn_ack &  attn_state;
8330 
8331     BLOGD(sc, DBG_INTR,
8332           "attn_bits 0x%08x attn_ack 0x%08x asserted 0x%08x deasserted 0x%08x\n",
8333           attn_bits, attn_ack, asserted, deasserted);
8334 
8335     if (~(attn_bits ^ attn_ack) & (attn_bits ^ attn_state)) {
8336         BLOGE(sc, "BAD attention state\n");
8337     }
8338 
8339     /* handle bits that were raised */
8340     if (asserted) {
8341         bxe_attn_int_asserted(sc, asserted);
8342     }
8343 
8344     if (deasserted) {
8345         bxe_attn_int_deasserted(sc, deasserted);
8346     }
8347 }
8348 
8349 static uint16_t
8350 bxe_update_dsb_idx(struct bxe_softc *sc)
8351 {
8352     struct host_sp_status_block *def_sb = sc->def_sb;
8353     uint16_t rc = 0;
8354 
8355     mb(); /* status block is written to by the chip */
8356 
8357     if (sc->def_att_idx != def_sb->atten_status_block.attn_bits_index) {
8358         sc->def_att_idx = def_sb->atten_status_block.attn_bits_index;
8359         rc |= BXE_DEF_SB_ATT_IDX;
8360     }
8361 
8362     if (sc->def_idx != def_sb->sp_sb.running_index) {
8363         sc->def_idx = def_sb->sp_sb.running_index;
8364         rc |= BXE_DEF_SB_IDX;
8365     }
8366 
8367     mb();
8368 
8369     return (rc);
8370 }
8371 
8372 static inline struct ecore_queue_sp_obj *
8373 bxe_cid_to_q_obj(struct bxe_softc *sc,
8374                  uint32_t         cid)
8375 {
8376     BLOGD(sc, DBG_SP, "retrieving fp from cid %d\n", cid);
8377     return (&sc->sp_objs[CID_TO_FP(cid, sc)].q_obj);
8378 }
8379 
8380 static void
8381 bxe_handle_mcast_eqe(struct bxe_softc *sc)
8382 {
8383     struct ecore_mcast_ramrod_params rparam;
8384     int rc;
8385 
8386     memset(&rparam, 0, sizeof(rparam));
8387 
8388     rparam.mcast_obj = &sc->mcast_obj;
8389 
8390     BXE_MCAST_LOCK(sc);
8391 
8392     /* clear pending state for the last command */
8393     sc->mcast_obj.raw.clear_pending(&sc->mcast_obj.raw);
8394 
8395     /* if there are pending mcast commands - send them */
8396     if (sc->mcast_obj.check_pending(&sc->mcast_obj)) {
8397         rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_CONT);
8398         if (rc < 0) {
8399             BLOGD(sc, DBG_SP,
8400                 "ERROR: Failed to send pending mcast commands (%d)\n", rc);
8401         }
8402     }
8403 
8404     BXE_MCAST_UNLOCK(sc);
8405 }
8406 
8407 static void
8408 bxe_handle_classification_eqe(struct bxe_softc      *sc,
8409                               union event_ring_elem *elem)
8410 {
8411     unsigned long ramrod_flags = 0;
8412     int rc = 0;
8413     uint32_t cid = elem->message.data.eth_event.echo & BXE_SWCID_MASK;
8414     struct ecore_vlan_mac_obj *vlan_mac_obj;
8415 
8416     /* always push next commands out, don't wait here */
8417     bit_set(&ramrod_flags, RAMROD_CONT);
8418 
8419     switch (le32toh(elem->message.data.eth_event.echo) >> BXE_SWCID_SHIFT) {
8420     case ECORE_FILTER_MAC_PENDING:
8421         BLOGD(sc, DBG_SP, "Got SETUP_MAC completions\n");
8422         vlan_mac_obj = &sc->sp_objs[cid].mac_obj;
8423         break;
8424 
8425     case ECORE_FILTER_MCAST_PENDING:
8426         BLOGD(sc, DBG_SP, "Got SETUP_MCAST completions\n");
8427         /*
8428          * This is only relevant for 57710 where multicast MACs are
8429          * configured as unicast MACs using the same ramrod.
8430          */
8431         bxe_handle_mcast_eqe(sc);
8432         return;
8433 
8434     default:
8435         BLOGE(sc, "Unsupported classification command: %d\n",
8436               elem->message.data.eth_event.echo);
8437         return;
8438     }
8439 
8440     rc = vlan_mac_obj->complete(sc, vlan_mac_obj, elem, &ramrod_flags);
8441 
8442     if (rc < 0) {
8443         BLOGE(sc, "Failed to schedule new commands (%d)\n", rc);
8444     } else if (rc > 0) {
8445         BLOGD(sc, DBG_SP, "Scheduled next pending commands...\n");
8446     }
8447 }
8448 
8449 static void
8450 bxe_handle_rx_mode_eqe(struct bxe_softc      *sc,
8451                        union event_ring_elem *elem)
8452 {
8453     bxe_clear_bit(ECORE_FILTER_RX_MODE_PENDING, &sc->sp_state);
8454 
8455     /* send rx_mode command again if was requested */
8456     if (bxe_test_and_clear_bit(ECORE_FILTER_RX_MODE_SCHED,
8457                                &sc->sp_state)) {
8458         bxe_set_storm_rx_mode(sc);
8459     }
8460 }
8461 
8462 static void
8463 bxe_update_eq_prod(struct bxe_softc *sc,
8464                    uint16_t         prod)
8465 {
8466     storm_memset_eq_prod(sc, prod, SC_FUNC(sc));
8467     wmb(); /* keep prod updates ordered */
8468 }
8469 
8470 static void
8471 bxe_eq_int(struct bxe_softc *sc)
8472 {
8473     uint16_t hw_cons, sw_cons, sw_prod;
8474     union event_ring_elem *elem;
8475     uint8_t echo;
8476     uint32_t cid;
8477     uint8_t opcode;
8478     int spqe_cnt = 0;
8479     struct ecore_queue_sp_obj *q_obj;
8480     struct ecore_func_sp_obj *f_obj = &sc->func_obj;
8481     struct ecore_raw_obj *rss_raw = &sc->rss_conf_obj.raw;
8482 
8483     hw_cons = le16toh(*sc->eq_cons_sb);
8484 
8485     /*
8486      * The hw_cons range is 1-255, 257 - the sw_cons range is 0-254, 256.
8487      * when we get to the next-page we need to adjust so the loop
8488      * condition below will be met. The next element is the size of a
8489      * regular element and hence incrementing by 1
8490      */
8491     if ((hw_cons & EQ_DESC_MAX_PAGE) == EQ_DESC_MAX_PAGE) {
8492         hw_cons++;
8493     }
8494 
8495     /*
8496      * This function may never run in parallel with itself for a
8497      * specific sc and no need for a read memory barrier here.
8498      */
8499     sw_cons = sc->eq_cons;
8500     sw_prod = sc->eq_prod;
8501 
8502     BLOGD(sc, DBG_SP,"EQ: hw_cons=%u sw_cons=%u eq_spq_left=0x%lx\n",
8503           hw_cons, sw_cons, atomic_load_acq_long(&sc->eq_spq_left));
8504 
8505     for (;
8506          sw_cons != hw_cons;
8507          sw_prod = NEXT_EQ_IDX(sw_prod), sw_cons = NEXT_EQ_IDX(sw_cons)) {
8508 
8509         elem = &sc->eq[EQ_DESC(sw_cons)];
8510 
8511         /* elem CID originates from FW, actually LE */
8512         cid = SW_CID(elem->message.data.cfc_del_event.cid);
8513         opcode = elem->message.opcode;
8514 
8515         /* handle eq element */
8516         switch (opcode) {
8517 
8518         case EVENT_RING_OPCODE_STAT_QUERY:
8519             BLOGD(sc, DBG_SP, "got statistics completion event %d\n",
8520                   sc->stats_comp++);
8521             /* nothing to do with stats comp */
8522             goto next_spqe;
8523 
8524         case EVENT_RING_OPCODE_CFC_DEL:
8525             /* handle according to cid range */
8526             /* we may want to verify here that the sc state is HALTING */
8527             BLOGD(sc, DBG_SP, "got delete ramrod for MULTI[%d]\n", cid);
8528             q_obj = bxe_cid_to_q_obj(sc, cid);
8529             if (q_obj->complete_cmd(sc, q_obj, ECORE_Q_CMD_CFC_DEL)) {
8530                 break;
8531             }
8532             goto next_spqe;
8533 
8534         case EVENT_RING_OPCODE_STOP_TRAFFIC:
8535             BLOGD(sc, DBG_SP, "got STOP TRAFFIC\n");
8536             if (f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_TX_STOP)) {
8537                 break;
8538             }
8539             // XXX bxe_dcbx_set_params(sc, BXE_DCBX_STATE_TX_PAUSED);
8540             goto next_spqe;
8541 
8542         case EVENT_RING_OPCODE_START_TRAFFIC:
8543             BLOGD(sc, DBG_SP, "got START TRAFFIC\n");
8544             if (f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_TX_START)) {
8545                 break;
8546             }
8547             // XXX bxe_dcbx_set_params(sc, BXE_DCBX_STATE_TX_RELEASED);
8548             goto next_spqe;
8549 
8550         case EVENT_RING_OPCODE_FUNCTION_UPDATE:
8551             echo = elem->message.data.function_update_event.echo;
8552             if (echo == SWITCH_UPDATE) {
8553                 BLOGD(sc, DBG_SP, "got FUNC_SWITCH_UPDATE ramrod\n");
8554                 if (f_obj->complete_cmd(sc, f_obj,
8555                                         ECORE_F_CMD_SWITCH_UPDATE)) {
8556                     break;
8557                 }
8558             }
8559             else {
8560                 BLOGD(sc, DBG_SP,
8561                       "AFEX: ramrod completed FUNCTION_UPDATE\n");
8562             }
8563             goto next_spqe;
8564 
8565         case EVENT_RING_OPCODE_FORWARD_SETUP:
8566             q_obj = &bxe_fwd_sp_obj(sc, q_obj);
8567             if (q_obj->complete_cmd(sc, q_obj,
8568                                     ECORE_Q_CMD_SETUP_TX_ONLY)) {
8569                 break;
8570             }
8571             goto next_spqe;
8572 
8573         case EVENT_RING_OPCODE_FUNCTION_START:
8574             BLOGD(sc, DBG_SP, "got FUNC_START ramrod\n");
8575             if (f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_START)) {
8576                 break;
8577             }
8578             goto next_spqe;
8579 
8580         case EVENT_RING_OPCODE_FUNCTION_STOP:
8581             BLOGD(sc, DBG_SP, "got FUNC_STOP ramrod\n");
8582             if (f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_STOP)) {
8583                 break;
8584             }
8585             goto next_spqe;
8586         }
8587 
8588         switch (opcode | sc->state) {
8589         case (EVENT_RING_OPCODE_RSS_UPDATE_RULES | BXE_STATE_OPEN):
8590         case (EVENT_RING_OPCODE_RSS_UPDATE_RULES | BXE_STATE_OPENING_WAITING_PORT):
8591             cid = elem->message.data.eth_event.echo & BXE_SWCID_MASK;
8592             BLOGD(sc, DBG_SP, "got RSS_UPDATE ramrod. CID %d\n", cid);
8593             rss_raw->clear_pending(rss_raw);
8594             break;
8595 
8596         case (EVENT_RING_OPCODE_SET_MAC | BXE_STATE_OPEN):
8597         case (EVENT_RING_OPCODE_SET_MAC | BXE_STATE_DIAG):
8598         case (EVENT_RING_OPCODE_SET_MAC | BXE_STATE_CLOSING_WAITING_HALT):
8599         case (EVENT_RING_OPCODE_CLASSIFICATION_RULES | BXE_STATE_OPEN):
8600         case (EVENT_RING_OPCODE_CLASSIFICATION_RULES | BXE_STATE_DIAG):
8601         case (EVENT_RING_OPCODE_CLASSIFICATION_RULES | BXE_STATE_CLOSING_WAITING_HALT):
8602             BLOGD(sc, DBG_SP, "got (un)set mac ramrod\n");
8603             bxe_handle_classification_eqe(sc, elem);
8604             break;
8605 
8606         case (EVENT_RING_OPCODE_MULTICAST_RULES | BXE_STATE_OPEN):
8607         case (EVENT_RING_OPCODE_MULTICAST_RULES | BXE_STATE_DIAG):
8608         case (EVENT_RING_OPCODE_MULTICAST_RULES | BXE_STATE_CLOSING_WAITING_HALT):
8609             BLOGD(sc, DBG_SP, "got mcast ramrod\n");
8610             bxe_handle_mcast_eqe(sc);
8611             break;
8612 
8613         case (EVENT_RING_OPCODE_FILTERS_RULES | BXE_STATE_OPEN):
8614         case (EVENT_RING_OPCODE_FILTERS_RULES | BXE_STATE_DIAG):
8615         case (EVENT_RING_OPCODE_FILTERS_RULES | BXE_STATE_CLOSING_WAITING_HALT):
8616             BLOGD(sc, DBG_SP, "got rx_mode ramrod\n");
8617             bxe_handle_rx_mode_eqe(sc, elem);
8618             break;
8619 
8620         default:
8621             /* unknown event log error and continue */
8622             BLOGE(sc, "Unknown EQ event %d, sc->state 0x%x\n",
8623                   elem->message.opcode, sc->state);
8624         }
8625 
8626 next_spqe:
8627         spqe_cnt++;
8628     } /* for */
8629 
8630     mb();
8631     atomic_add_acq_long(&sc->eq_spq_left, spqe_cnt);
8632 
8633     sc->eq_cons = sw_cons;
8634     sc->eq_prod = sw_prod;
8635 
8636     /* make sure that above mem writes were issued towards the memory */
8637     wmb();
8638 
8639     /* update producer */
8640     bxe_update_eq_prod(sc, sc->eq_prod);
8641 }
8642 
8643 static void
8644 bxe_handle_sp_tq(void *context,
8645                  int  pending)
8646 {
8647     struct bxe_softc *sc = (struct bxe_softc *)context;
8648     uint16_t status;
8649 
8650     BLOGD(sc, DBG_SP, "---> SP TASK <---\n");
8651 
8652     /* what work needs to be performed? */
8653     status = bxe_update_dsb_idx(sc);
8654 
8655     BLOGD(sc, DBG_SP, "dsb status 0x%04x\n", status);
8656 
8657     /* HW attentions */
8658     if (status & BXE_DEF_SB_ATT_IDX) {
8659         BLOGD(sc, DBG_SP, "---> ATTN INTR <---\n");
8660         bxe_attn_int(sc);
8661         status &= ~BXE_DEF_SB_ATT_IDX;
8662     }
8663 
8664     /* SP events: STAT_QUERY and others */
8665     if (status & BXE_DEF_SB_IDX) {
8666         /* handle EQ completions */
8667         BLOGD(sc, DBG_SP, "---> EQ INTR <---\n");
8668         bxe_eq_int(sc);
8669         bxe_ack_sb(sc, sc->igu_dsb_id, USTORM_ID,
8670                    le16toh(sc->def_idx), IGU_INT_NOP, 1);
8671         status &= ~BXE_DEF_SB_IDX;
8672     }
8673 
8674     /* if status is non zero then something went wrong */
8675     if (__predict_false(status)) {
8676         BLOGE(sc, "Got an unknown SP interrupt! (0x%04x)\n", status);
8677     }
8678 
8679     /* ack status block only if something was actually handled */
8680     bxe_ack_sb(sc, sc->igu_dsb_id, ATTENTION_ID,
8681                le16toh(sc->def_att_idx), IGU_INT_ENABLE, 1);
8682 
8683     /*
8684      * Must be called after the EQ processing (since eq leads to sriov
8685      * ramrod completion flows).
8686      * This flow may have been scheduled by the arrival of a ramrod
8687      * completion, or by the sriov code rescheduling itself.
8688      */
8689     // XXX bxe_iov_sp_task(sc);
8690 
8691 }
8692 
8693 static void
8694 bxe_handle_fp_tq(void *context,
8695                  int  pending)
8696 {
8697     struct bxe_fastpath *fp = (struct bxe_fastpath *)context;
8698     struct bxe_softc *sc = fp->sc;
8699     uint8_t more_tx = FALSE;
8700     uint8_t more_rx = FALSE;
8701 
8702     BLOGD(sc, DBG_INTR, "---> FP TASK QUEUE (%d) <---\n", fp->index);
8703 
8704     /* XXX
8705      * IFF_DRV_RUNNING state can't be checked here since we process
8706      * slowpath events on a client queue during setup. Instead
8707      * we need to add a "process/continue" flag here that the driver
8708      * can use to tell the task here not to do anything.
8709      */
8710 #if 0
8711     if (!(if_getdrvflags(sc->ifp) & IFF_DRV_RUNNING)) {
8712         return;
8713     }
8714 #endif
8715 
8716     /* update the fastpath index */
8717     bxe_update_fp_sb_idx(fp);
8718 
8719     /* XXX add loop here if ever support multiple tx CoS */
8720     /* fp->txdata[cos] */
8721     if (bxe_has_tx_work(fp)) {
8722         BXE_FP_TX_LOCK(fp);
8723         more_tx = bxe_txeof(sc, fp);
8724         BXE_FP_TX_UNLOCK(fp);
8725     }
8726 
8727     if (bxe_has_rx_work(fp)) {
8728         more_rx = bxe_rxeof(sc, fp);
8729     }
8730 
8731     if (more_rx /*|| more_tx*/) {
8732         /* still more work to do */
8733         taskqueue_enqueue(fp->tq, &fp->tq_task);
8734         return;
8735     }
8736 
8737     bxe_ack_sb(sc, fp->igu_sb_id, USTORM_ID,
8738                le16toh(fp->fp_hc_idx), IGU_INT_ENABLE, 1);
8739 }
8740 
8741 static void
8742 bxe_task_fp(struct bxe_fastpath *fp)
8743 {
8744     struct bxe_softc *sc = fp->sc;
8745     uint8_t more_tx = FALSE;
8746     uint8_t more_rx = FALSE;
8747 
8748     BLOGD(sc, DBG_INTR, "---> FP TASK ISR (%d) <---\n", fp->index);
8749 
8750     /* update the fastpath index */
8751     bxe_update_fp_sb_idx(fp);
8752 
8753     /* XXX add loop here if ever support multiple tx CoS */
8754     /* fp->txdata[cos] */
8755     if (bxe_has_tx_work(fp)) {
8756         BXE_FP_TX_LOCK(fp);
8757         more_tx = bxe_txeof(sc, fp);
8758         BXE_FP_TX_UNLOCK(fp);
8759     }
8760 
8761     if (bxe_has_rx_work(fp)) {
8762         more_rx = bxe_rxeof(sc, fp);
8763     }
8764 
8765     if (more_rx /*|| more_tx*/) {
8766         /* still more work to do, bail out if this ISR and process later */
8767         taskqueue_enqueue(fp->tq, &fp->tq_task);
8768         return;
8769     }
8770 
8771     /*
8772      * Here we write the fastpath index taken before doing any tx or rx work.
8773      * It is very well possible other hw events occurred up to this point and
8774      * they were actually processed accordingly above. Since we're going to
8775      * write an older fastpath index, an interrupt is coming which we might
8776      * not do any work in.
8777      */
8778     bxe_ack_sb(sc, fp->igu_sb_id, USTORM_ID,
8779                le16toh(fp->fp_hc_idx), IGU_INT_ENABLE, 1);
8780 }
8781 
8782 /*
8783  * Legacy interrupt entry point.
8784  *
8785  * Verifies that the controller generated the interrupt and
8786  * then calls a separate routine to handle the various
8787  * interrupt causes: link, RX, and TX.
8788  */
8789 static void
8790 bxe_intr_legacy(void *xsc)
8791 {
8792     struct bxe_softc *sc = (struct bxe_softc *)xsc;
8793     struct bxe_fastpath *fp;
8794     uint16_t status, mask;
8795     int i;
8796 
8797     BLOGD(sc, DBG_INTR, "---> BXE INTx <---\n");
8798 
8799     /*
8800      * 0 for ustorm, 1 for cstorm
8801      * the bits returned from ack_int() are 0-15
8802      * bit 0 = attention status block
8803      * bit 1 = fast path status block
8804      * a mask of 0x2 or more = tx/rx event
8805      * a mask of 1 = slow path event
8806      */
8807 
8808     status = bxe_ack_int(sc);
8809 
8810     /* the interrupt is not for us */
8811     if (__predict_false(status == 0)) {
8812         BLOGD(sc, DBG_INTR, "Not our interrupt!\n");
8813         return;
8814     }
8815 
8816     BLOGD(sc, DBG_INTR, "Interrupt status 0x%04x\n", status);
8817 
8818     FOR_EACH_ETH_QUEUE(sc, i) {
8819         fp = &sc->fp[i];
8820         mask = (0x2 << (fp->index + CNIC_SUPPORT(sc)));
8821         if (status & mask) {
8822             /* acknowledge and disable further fastpath interrupts */
8823             bxe_ack_sb(sc, fp->igu_sb_id, USTORM_ID, 0, IGU_INT_DISABLE, 0);
8824             bxe_task_fp(fp);
8825             status &= ~mask;
8826         }
8827     }
8828 
8829     if (__predict_false(status & 0x1)) {
8830         /* acknowledge and disable further slowpath interrupts */
8831         bxe_ack_sb(sc, sc->igu_dsb_id, USTORM_ID, 0, IGU_INT_DISABLE, 0);
8832 
8833         /* schedule slowpath handler */
8834         taskqueue_enqueue(sc->sp_tq, &sc->sp_tq_task);
8835 
8836         status &= ~0x1;
8837     }
8838 
8839     if (__predict_false(status)) {
8840         BLOGW(sc, "Unexpected fastpath status (0x%08x)!\n", status);
8841     }
8842 }
8843 
8844 /* slowpath interrupt entry point */
8845 static void
8846 bxe_intr_sp(void *xsc)
8847 {
8848     struct bxe_softc *sc = (struct bxe_softc *)xsc;
8849 
8850     BLOGD(sc, (DBG_INTR | DBG_SP), "---> SP INTR <---\n");
8851 
8852     /* acknowledge and disable further slowpath interrupts */
8853     bxe_ack_sb(sc, sc->igu_dsb_id, USTORM_ID, 0, IGU_INT_DISABLE, 0);
8854 
8855     /* schedule slowpath handler */
8856     taskqueue_enqueue(sc->sp_tq, &sc->sp_tq_task);
8857 }
8858 
8859 /* fastpath interrupt entry point */
8860 static void
8861 bxe_intr_fp(void *xfp)
8862 {
8863     struct bxe_fastpath *fp = (struct bxe_fastpath *)xfp;
8864     struct bxe_softc *sc = fp->sc;
8865 
8866     BLOGD(sc, DBG_INTR, "---> FP INTR %d <---\n", fp->index);
8867 
8868     BLOGD(sc, DBG_INTR,
8869           "(cpu=%d) MSI-X fp=%d fw_sb=%d igu_sb=%d\n",
8870           curcpu, fp->index, fp->fw_sb_id, fp->igu_sb_id);
8871 
8872     /* acknowledge and disable further fastpath interrupts */
8873     bxe_ack_sb(sc, fp->igu_sb_id, USTORM_ID, 0, IGU_INT_DISABLE, 0);
8874 
8875     bxe_task_fp(fp);
8876 }
8877 
8878 /* Release all interrupts allocated by the driver. */
8879 static void
8880 bxe_interrupt_free(struct bxe_softc *sc)
8881 {
8882     int i;
8883 
8884     switch (sc->interrupt_mode) {
8885     case INTR_MODE_INTX:
8886         BLOGD(sc, DBG_LOAD, "Releasing legacy INTx vector\n");
8887         if (sc->intr[0].resource != NULL) {
8888             bus_release_resource(sc->dev,
8889                                  SYS_RES_IRQ,
8890                                  sc->intr[0].rid,
8891                                  sc->intr[0].resource);
8892         }
8893         break;
8894     case INTR_MODE_MSI:
8895         for (i = 0; i < sc->intr_count; i++) {
8896             BLOGD(sc, DBG_LOAD, "Releasing MSI vector %d\n", i);
8897             if (sc->intr[i].resource && sc->intr[i].rid) {
8898                 bus_release_resource(sc->dev,
8899                                      SYS_RES_IRQ,
8900                                      sc->intr[i].rid,
8901                                      sc->intr[i].resource);
8902             }
8903         }
8904         pci_release_msi(sc->dev);
8905         break;
8906     case INTR_MODE_MSIX:
8907         for (i = 0; i < sc->intr_count; i++) {
8908             BLOGD(sc, DBG_LOAD, "Releasing MSI-X vector %d\n", i);
8909             if (sc->intr[i].resource && sc->intr[i].rid) {
8910                 bus_release_resource(sc->dev,
8911                                      SYS_RES_IRQ,
8912                                      sc->intr[i].rid,
8913                                      sc->intr[i].resource);
8914             }
8915         }
8916         pci_release_msi(sc->dev);
8917         break;
8918     default:
8919         /* nothing to do as initial allocation failed */
8920         break;
8921     }
8922 }
8923 
8924 /*
8925  * This function determines and allocates the appropriate
8926  * interrupt based on system capabilites and user request.
8927  *
8928  * The user may force a particular interrupt mode, specify
8929  * the number of receive queues, specify the method for
8930  * distribuitng received frames to receive queues, or use
8931  * the default settings which will automatically select the
8932  * best supported combination.  In addition, the OS may or
8933  * may not support certain combinations of these settings.
8934  * This routine attempts to reconcile the settings requested
8935  * by the user with the capabilites available from the system
8936  * to select the optimal combination of features.
8937  *
8938  * Returns:
8939  *   0 = Success, !0 = Failure.
8940  */
8941 static int
8942 bxe_interrupt_alloc(struct bxe_softc *sc)
8943 {
8944     int msix_count = 0;
8945     int msi_count = 0;
8946     int num_requested = 0;
8947     int num_allocated = 0;
8948     int rid, i, j;
8949     int rc;
8950 
8951     /* get the number of available MSI/MSI-X interrupts from the OS */
8952     if (sc->interrupt_mode > 0) {
8953         if (sc->devinfo.pcie_cap_flags & BXE_MSIX_CAPABLE_FLAG) {
8954             msix_count = pci_msix_count(sc->dev);
8955         }
8956 
8957         if (sc->devinfo.pcie_cap_flags & BXE_MSI_CAPABLE_FLAG) {
8958             msi_count = pci_msi_count(sc->dev);
8959         }
8960 
8961         BLOGD(sc, DBG_LOAD, "%d MSI and %d MSI-X vectors available\n",
8962               msi_count, msix_count);
8963     }
8964 
8965     do { /* try allocating MSI-X interrupt resources (at least 2) */
8966         if (sc->interrupt_mode != INTR_MODE_MSIX) {
8967             break;
8968         }
8969 
8970         if (((sc->devinfo.pcie_cap_flags & BXE_MSIX_CAPABLE_FLAG) == 0) ||
8971             (msix_count < 2)) {
8972             sc->interrupt_mode = INTR_MODE_MSI; /* try MSI next */
8973             break;
8974         }
8975 
8976         /* ask for the necessary number of MSI-X vectors */
8977         num_requested = min((sc->num_queues + 1), msix_count);
8978 
8979         BLOGD(sc, DBG_LOAD, "Requesting %d MSI-X vectors\n", num_requested);
8980 
8981         num_allocated = num_requested;
8982         if ((rc = pci_alloc_msix(sc->dev, &num_allocated)) != 0) {
8983             BLOGE(sc, "MSI-X alloc failed! (%d)\n", rc);
8984             sc->interrupt_mode = INTR_MODE_MSI; /* try MSI next */
8985             break;
8986         }
8987 
8988         if (num_allocated < 2) { /* possible? */
8989             BLOGE(sc, "MSI-X allocation less than 2!\n");
8990             sc->interrupt_mode = INTR_MODE_MSI; /* try MSI next */
8991             pci_release_msi(sc->dev);
8992             break;
8993         }
8994 
8995         BLOGI(sc, "MSI-X vectors Requested %d and Allocated %d\n",
8996               num_requested, num_allocated);
8997 
8998         /* best effort so use the number of vectors allocated to us */
8999         sc->intr_count = num_allocated;
9000         sc->num_queues = num_allocated - 1;
9001 
9002         rid = 1; /* initial resource identifier */
9003 
9004         /* allocate the MSI-X vectors */
9005         for (i = 0; i < num_allocated; i++) {
9006             sc->intr[i].rid = (rid + i);
9007 
9008             if ((sc->intr[i].resource =
9009                  bus_alloc_resource_any(sc->dev,
9010                                         SYS_RES_IRQ,
9011                                         &sc->intr[i].rid,
9012                                         RF_ACTIVE)) == NULL) {
9013                 BLOGE(sc, "Failed to map MSI-X[%d] (rid=%d)!\n",
9014                       i, (rid + i));
9015 
9016                 for (j = (i - 1); j >= 0; j--) {
9017                     bus_release_resource(sc->dev,
9018                                          SYS_RES_IRQ,
9019                                          sc->intr[j].rid,
9020                                          sc->intr[j].resource);
9021                 }
9022 
9023                 sc->intr_count = 0;
9024                 sc->num_queues = 0;
9025                 sc->interrupt_mode = INTR_MODE_MSI; /* try MSI next */
9026                 pci_release_msi(sc->dev);
9027                 break;
9028             }
9029 
9030             BLOGD(sc, DBG_LOAD, "Mapped MSI-X[%d] (rid=%d)\n", i, (rid + i));
9031         }
9032     } while (0);
9033 
9034     do { /* try allocating MSI vector resources (at least 2) */
9035         if (sc->interrupt_mode != INTR_MODE_MSI) {
9036             break;
9037         }
9038 
9039         if (((sc->devinfo.pcie_cap_flags & BXE_MSI_CAPABLE_FLAG) == 0) ||
9040             (msi_count < 1)) {
9041             sc->interrupt_mode = INTR_MODE_INTX; /* try INTx next */
9042             break;
9043         }
9044 
9045         /* ask for a single MSI vector */
9046         num_requested = 1;
9047 
9048         BLOGD(sc, DBG_LOAD, "Requesting %d MSI vectors\n", num_requested);
9049 
9050         num_allocated = num_requested;
9051         if ((rc = pci_alloc_msi(sc->dev, &num_allocated)) != 0) {
9052             BLOGE(sc, "MSI alloc failed (%d)!\n", rc);
9053             sc->interrupt_mode = INTR_MODE_INTX; /* try INTx next */
9054             break;
9055         }
9056 
9057         if (num_allocated != 1) { /* possible? */
9058             BLOGE(sc, "MSI allocation is not 1!\n");
9059             sc->interrupt_mode = INTR_MODE_INTX; /* try INTx next */
9060             pci_release_msi(sc->dev);
9061             break;
9062         }
9063 
9064         BLOGI(sc, "MSI vectors Requested %d and Allocated %d\n",
9065               num_requested, num_allocated);
9066 
9067         /* best effort so use the number of vectors allocated to us */
9068         sc->intr_count = num_allocated;
9069         sc->num_queues = num_allocated;
9070 
9071         rid = 1; /* initial resource identifier */
9072 
9073         sc->intr[0].rid = rid;
9074 
9075         if ((sc->intr[0].resource =
9076              bus_alloc_resource_any(sc->dev,
9077                                     SYS_RES_IRQ,
9078                                     &sc->intr[0].rid,
9079                                     RF_ACTIVE)) == NULL) {
9080             BLOGE(sc, "Failed to map MSI[0] (rid=%d)!\n", rid);
9081             sc->intr_count = 0;
9082             sc->num_queues = 0;
9083             sc->interrupt_mode = INTR_MODE_INTX; /* try INTx next */
9084             pci_release_msi(sc->dev);
9085             break;
9086         }
9087 
9088         BLOGD(sc, DBG_LOAD, "Mapped MSI[0] (rid=%d)\n", rid);
9089     } while (0);
9090 
9091     do { /* try allocating INTx vector resources */
9092         if (sc->interrupt_mode != INTR_MODE_INTX) {
9093             break;
9094         }
9095 
9096         BLOGD(sc, DBG_LOAD, "Requesting legacy INTx interrupt\n");
9097 
9098         /* only one vector for INTx */
9099         sc->intr_count = 1;
9100         sc->num_queues = 1;
9101 
9102         rid = 0; /* initial resource identifier */
9103 
9104         sc->intr[0].rid = rid;
9105 
9106         if ((sc->intr[0].resource =
9107              bus_alloc_resource_any(sc->dev,
9108                                     SYS_RES_IRQ,
9109                                     &sc->intr[0].rid,
9110                                     (RF_ACTIVE | RF_SHAREABLE))) == NULL) {
9111             BLOGE(sc, "Failed to map INTx (rid=%d)!\n", rid);
9112             sc->intr_count = 0;
9113             sc->num_queues = 0;
9114             sc->interrupt_mode = -1; /* Failed! */
9115             break;
9116         }
9117 
9118         BLOGD(sc, DBG_LOAD, "Mapped INTx (rid=%d)\n", rid);
9119     } while (0);
9120 
9121     if (sc->interrupt_mode == -1) {
9122         BLOGE(sc, "Interrupt Allocation: FAILED!!!\n");
9123         rc = 1;
9124     } else {
9125         BLOGD(sc, DBG_LOAD,
9126               "Interrupt Allocation: interrupt_mode=%d, num_queues=%d\n",
9127               sc->interrupt_mode, sc->num_queues);
9128         rc = 0;
9129     }
9130 
9131     return (rc);
9132 }
9133 
9134 static void
9135 bxe_interrupt_detach(struct bxe_softc *sc)
9136 {
9137     struct bxe_fastpath *fp;
9138     int i;
9139 
9140     /* release interrupt resources */
9141     for (i = 0; i < sc->intr_count; i++) {
9142         if (sc->intr[i].resource && sc->intr[i].tag) {
9143             BLOGD(sc, DBG_LOAD, "Disabling interrupt vector %d\n", i);
9144             bus_teardown_intr(sc->dev, sc->intr[i].resource, sc->intr[i].tag);
9145         }
9146     }
9147 
9148     for (i = 0; i < sc->num_queues; i++) {
9149         fp = &sc->fp[i];
9150         if (fp->tq) {
9151             taskqueue_drain(fp->tq, &fp->tq_task);
9152             taskqueue_drain(fp->tq, &fp->tx_task);
9153             while (taskqueue_cancel_timeout(fp->tq, &fp->tx_timeout_task,
9154                 NULL))
9155                 taskqueue_drain_timeout(fp->tq, &fp->tx_timeout_task);
9156         }
9157 
9158         for (i = 0; i < sc->num_queues; i++) {
9159             fp = &sc->fp[i];
9160             if (fp->tq != NULL) {
9161                 taskqueue_free(fp->tq);
9162                 fp->tq = NULL;
9163             }
9164         }
9165     }
9166 
9167     if (sc->sp_tq) {
9168         taskqueue_drain(sc->sp_tq, &sc->sp_tq_task);
9169         taskqueue_free(sc->sp_tq);
9170         sc->sp_tq = NULL;
9171     }
9172 }
9173 
9174 /*
9175  * Enables interrupts and attach to the ISR.
9176  *
9177  * When using multiple MSI/MSI-X vectors the first vector
9178  * is used for slowpath operations while all remaining
9179  * vectors are used for fastpath operations.  If only a
9180  * single MSI/MSI-X vector is used (SINGLE_ISR) then the
9181  * ISR must look for both slowpath and fastpath completions.
9182  */
9183 static int
9184 bxe_interrupt_attach(struct bxe_softc *sc)
9185 {
9186     struct bxe_fastpath *fp;
9187     int rc = 0;
9188     int i;
9189 
9190     snprintf(sc->sp_tq_name, sizeof(sc->sp_tq_name),
9191              "bxe%d_sp_tq", sc->unit);
9192     TASK_INIT(&sc->sp_tq_task, 0, bxe_handle_sp_tq, sc);
9193     sc->sp_tq = taskqueue_create(sc->sp_tq_name, M_NOWAIT,
9194                                  taskqueue_thread_enqueue,
9195                                  &sc->sp_tq);
9196     taskqueue_start_threads(&sc->sp_tq, 1, PWAIT, /* lower priority */
9197                             "%s", sc->sp_tq_name);
9198 
9199 
9200     for (i = 0; i < sc->num_queues; i++) {
9201         fp = &sc->fp[i];
9202         snprintf(fp->tq_name, sizeof(fp->tq_name),
9203                  "bxe%d_fp%d_tq", sc->unit, i);
9204         NET_TASK_INIT(&fp->tq_task, 0, bxe_handle_fp_tq, fp);
9205         TASK_INIT(&fp->tx_task, 0, bxe_tx_mq_start_deferred, fp);
9206         fp->tq = taskqueue_create(fp->tq_name, M_NOWAIT,
9207                                   taskqueue_thread_enqueue,
9208                                   &fp->tq);
9209         TIMEOUT_TASK_INIT(fp->tq, &fp->tx_timeout_task, 0,
9210                           bxe_tx_mq_start_deferred, fp);
9211         taskqueue_start_threads(&fp->tq, 1, PI_NET, /* higher priority */
9212                                 "%s", fp->tq_name);
9213     }
9214 
9215     /* setup interrupt handlers */
9216     if (sc->interrupt_mode == INTR_MODE_MSIX) {
9217         BLOGD(sc, DBG_LOAD, "Enabling slowpath MSI-X[0] vector\n");
9218 
9219         /*
9220          * Setup the interrupt handler. Note that we pass the driver instance
9221          * to the interrupt handler for the slowpath.
9222          */
9223         if ((rc = bus_setup_intr(sc->dev, sc->intr[0].resource,
9224                                  (INTR_TYPE_NET | INTR_MPSAFE),
9225                                  NULL, bxe_intr_sp, sc,
9226                                  &sc->intr[0].tag)) != 0) {
9227             BLOGE(sc, "Failed to allocate MSI-X[0] vector (%d)\n", rc);
9228             goto bxe_interrupt_attach_exit;
9229         }
9230 
9231         bus_describe_intr(sc->dev, sc->intr[0].resource,
9232                           sc->intr[0].tag, "sp");
9233 
9234         /* bus_bind_intr(sc->dev, sc->intr[0].resource, 0); */
9235 
9236         /* initialize the fastpath vectors (note the first was used for sp) */
9237         for (i = 0; i < sc->num_queues; i++) {
9238             fp = &sc->fp[i];
9239             BLOGD(sc, DBG_LOAD, "Enabling MSI-X[%d] vector\n", (i + 1));
9240 
9241             /*
9242              * Setup the interrupt handler. Note that we pass the
9243              * fastpath context to the interrupt handler in this
9244              * case.
9245              */
9246             if ((rc = bus_setup_intr(sc->dev, sc->intr[i + 1].resource,
9247                                      (INTR_TYPE_NET | INTR_MPSAFE),
9248                                      NULL, bxe_intr_fp, fp,
9249                                      &sc->intr[i + 1].tag)) != 0) {
9250                 BLOGE(sc, "Failed to allocate MSI-X[%d] vector (%d)\n",
9251                       (i + 1), rc);
9252                 goto bxe_interrupt_attach_exit;
9253             }
9254 
9255             bus_describe_intr(sc->dev, sc->intr[i + 1].resource,
9256                               sc->intr[i + 1].tag, "fp%02d", i);
9257 
9258             /* bind the fastpath instance to a cpu */
9259             if (sc->num_queues > 1) {
9260                 bus_bind_intr(sc->dev, sc->intr[i + 1].resource, i);
9261             }
9262 
9263             fp->state = BXE_FP_STATE_IRQ;
9264         }
9265     } else if (sc->interrupt_mode == INTR_MODE_MSI) {
9266         BLOGD(sc, DBG_LOAD, "Enabling MSI[0] vector\n");
9267 
9268         /*
9269          * Setup the interrupt handler. Note that we pass the
9270          * driver instance to the interrupt handler which
9271          * will handle both the slowpath and fastpath.
9272          */
9273         if ((rc = bus_setup_intr(sc->dev, sc->intr[0].resource,
9274                                  (INTR_TYPE_NET | INTR_MPSAFE),
9275                                  NULL, bxe_intr_legacy, sc,
9276                                  &sc->intr[0].tag)) != 0) {
9277             BLOGE(sc, "Failed to allocate MSI[0] vector (%d)\n", rc);
9278             goto bxe_interrupt_attach_exit;
9279         }
9280 
9281     } else { /* (sc->interrupt_mode == INTR_MODE_INTX) */
9282         BLOGD(sc, DBG_LOAD, "Enabling INTx interrupts\n");
9283 
9284         /*
9285          * Setup the interrupt handler. Note that we pass the
9286          * driver instance to the interrupt handler which
9287          * will handle both the slowpath and fastpath.
9288          */
9289         if ((rc = bus_setup_intr(sc->dev, sc->intr[0].resource,
9290                                  (INTR_TYPE_NET | INTR_MPSAFE),
9291                                  NULL, bxe_intr_legacy, sc,
9292                                  &sc->intr[0].tag)) != 0) {
9293             BLOGE(sc, "Failed to allocate INTx interrupt (%d)\n", rc);
9294             goto bxe_interrupt_attach_exit;
9295         }
9296     }
9297 
9298 bxe_interrupt_attach_exit:
9299 
9300     return (rc);
9301 }
9302 
9303 static int  bxe_init_hw_common_chip(struct bxe_softc *sc);
9304 static int  bxe_init_hw_common(struct bxe_softc *sc);
9305 static int  bxe_init_hw_port(struct bxe_softc *sc);
9306 static int  bxe_init_hw_func(struct bxe_softc *sc);
9307 static void bxe_reset_common(struct bxe_softc *sc);
9308 static void bxe_reset_port(struct bxe_softc *sc);
9309 static void bxe_reset_func(struct bxe_softc *sc);
9310 static int  bxe_gunzip_init(struct bxe_softc *sc);
9311 static void bxe_gunzip_end(struct bxe_softc *sc);
9312 static int  bxe_init_firmware(struct bxe_softc *sc);
9313 static void bxe_release_firmware(struct bxe_softc *sc);
9314 
9315 static struct
9316 ecore_func_sp_drv_ops bxe_func_sp_drv = {
9317     .init_hw_cmn_chip = bxe_init_hw_common_chip,
9318     .init_hw_cmn      = bxe_init_hw_common,
9319     .init_hw_port     = bxe_init_hw_port,
9320     .init_hw_func     = bxe_init_hw_func,
9321 
9322     .reset_hw_cmn     = bxe_reset_common,
9323     .reset_hw_port    = bxe_reset_port,
9324     .reset_hw_func    = bxe_reset_func,
9325 
9326     .gunzip_init      = bxe_gunzip_init,
9327     .gunzip_end       = bxe_gunzip_end,
9328 
9329     .init_fw          = bxe_init_firmware,
9330     .release_fw       = bxe_release_firmware,
9331 };
9332 
9333 static void
9334 bxe_init_func_obj(struct bxe_softc *sc)
9335 {
9336     sc->dmae_ready = 0;
9337 
9338     ecore_init_func_obj(sc,
9339                         &sc->func_obj,
9340                         BXE_SP(sc, func_rdata),
9341                         BXE_SP_MAPPING(sc, func_rdata),
9342                         BXE_SP(sc, func_afex_rdata),
9343                         BXE_SP_MAPPING(sc, func_afex_rdata),
9344                         &bxe_func_sp_drv);
9345 }
9346 
9347 static int
9348 bxe_init_hw(struct bxe_softc *sc,
9349             uint32_t         load_code)
9350 {
9351     struct ecore_func_state_params func_params = { NULL };
9352     int rc;
9353 
9354     /* prepare the parameters for function state transitions */
9355     bit_set(&func_params.ramrod_flags, RAMROD_COMP_WAIT);
9356 
9357     func_params.f_obj = &sc->func_obj;
9358     func_params.cmd = ECORE_F_CMD_HW_INIT;
9359 
9360     func_params.params.hw_init.load_phase = load_code;
9361 
9362     /*
9363      * Via a plethora of function pointers, we will eventually reach
9364      * bxe_init_hw_common(), bxe_init_hw_port(), or bxe_init_hw_func().
9365      */
9366     rc = ecore_func_state_change(sc, &func_params);
9367 
9368     return (rc);
9369 }
9370 
9371 static void
9372 bxe_fill(struct bxe_softc *sc,
9373          uint32_t         addr,
9374          int              fill,
9375          uint32_t         len)
9376 {
9377     uint32_t i;
9378 
9379     if (!(len % 4) && !(addr % 4)) {
9380         for (i = 0; i < len; i += 4) {
9381             REG_WR(sc, (addr + i), fill);
9382         }
9383     } else {
9384         for (i = 0; i < len; i++) {
9385             REG_WR8(sc, (addr + i), fill);
9386         }
9387     }
9388 }
9389 
9390 /* writes FP SP data to FW - data_size in dwords */
9391 static void
9392 bxe_wr_fp_sb_data(struct bxe_softc *sc,
9393                   int              fw_sb_id,
9394                   uint32_t         *sb_data_p,
9395                   uint32_t         data_size)
9396 {
9397     int index;
9398 
9399     for (index = 0; index < data_size; index++) {
9400         REG_WR(sc,
9401                (BAR_CSTRORM_INTMEM +
9402                 CSTORM_STATUS_BLOCK_DATA_OFFSET(fw_sb_id) +
9403                 (sizeof(uint32_t) * index)),
9404                *(sb_data_p + index));
9405     }
9406 }
9407 
9408 static void
9409 bxe_zero_fp_sb(struct bxe_softc *sc,
9410                int              fw_sb_id)
9411 {
9412     struct hc_status_block_data_e2 sb_data_e2;
9413     struct hc_status_block_data_e1x sb_data_e1x;
9414     uint32_t *sb_data_p;
9415     uint32_t data_size = 0;
9416 
9417     if (!CHIP_IS_E1x(sc)) {
9418         memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2));
9419         sb_data_e2.common.state = SB_DISABLED;
9420         sb_data_e2.common.p_func.vf_valid = FALSE;
9421         sb_data_p = (uint32_t *)&sb_data_e2;
9422         data_size = (sizeof(struct hc_status_block_data_e2) /
9423                      sizeof(uint32_t));
9424     } else {
9425         memset(&sb_data_e1x, 0, sizeof(struct hc_status_block_data_e1x));
9426         sb_data_e1x.common.state = SB_DISABLED;
9427         sb_data_e1x.common.p_func.vf_valid = FALSE;
9428         sb_data_p = (uint32_t *)&sb_data_e1x;
9429         data_size = (sizeof(struct hc_status_block_data_e1x) /
9430                      sizeof(uint32_t));
9431     }
9432 
9433     bxe_wr_fp_sb_data(sc, fw_sb_id, sb_data_p, data_size);
9434 
9435     bxe_fill(sc, (BAR_CSTRORM_INTMEM + CSTORM_STATUS_BLOCK_OFFSET(fw_sb_id)),
9436              0, CSTORM_STATUS_BLOCK_SIZE);
9437     bxe_fill(sc, (BAR_CSTRORM_INTMEM + CSTORM_SYNC_BLOCK_OFFSET(fw_sb_id)),
9438              0, CSTORM_SYNC_BLOCK_SIZE);
9439 }
9440 
9441 static void
9442 bxe_wr_sp_sb_data(struct bxe_softc               *sc,
9443                   struct hc_sp_status_block_data *sp_sb_data)
9444 {
9445     int i;
9446 
9447     for (i = 0;
9448          i < (sizeof(struct hc_sp_status_block_data) / sizeof(uint32_t));
9449          i++) {
9450         REG_WR(sc,
9451                (BAR_CSTRORM_INTMEM +
9452                 CSTORM_SP_STATUS_BLOCK_DATA_OFFSET(SC_FUNC(sc)) +
9453                 (i * sizeof(uint32_t))),
9454                *((uint32_t *)sp_sb_data + i));
9455     }
9456 }
9457 
9458 static void
9459 bxe_zero_sp_sb(struct bxe_softc *sc)
9460 {
9461     struct hc_sp_status_block_data sp_sb_data;
9462 
9463     memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data));
9464 
9465     sp_sb_data.state           = SB_DISABLED;
9466     sp_sb_data.p_func.vf_valid = FALSE;
9467 
9468     bxe_wr_sp_sb_data(sc, &sp_sb_data);
9469 
9470     bxe_fill(sc,
9471              (BAR_CSTRORM_INTMEM +
9472               CSTORM_SP_STATUS_BLOCK_OFFSET(SC_FUNC(sc))),
9473               0, CSTORM_SP_STATUS_BLOCK_SIZE);
9474     bxe_fill(sc,
9475              (BAR_CSTRORM_INTMEM +
9476               CSTORM_SP_SYNC_BLOCK_OFFSET(SC_FUNC(sc))),
9477               0, CSTORM_SP_SYNC_BLOCK_SIZE);
9478 }
9479 
9480 static void
9481 bxe_setup_ndsb_state_machine(struct hc_status_block_sm *hc_sm,
9482                              int                       igu_sb_id,
9483                              int                       igu_seg_id)
9484 {
9485     hc_sm->igu_sb_id      = igu_sb_id;
9486     hc_sm->igu_seg_id     = igu_seg_id;
9487     hc_sm->timer_value    = 0xFF;
9488     hc_sm->time_to_expire = 0xFFFFFFFF;
9489 }
9490 
9491 static void
9492 bxe_map_sb_state_machines(struct hc_index_data *index_data)
9493 {
9494     /* zero out state machine indices */
9495 
9496     /* rx indices */
9497     index_data[HC_INDEX_ETH_RX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID;
9498 
9499     /* tx indices */
9500     index_data[HC_INDEX_OOO_TX_CQ_CONS].flags      &= ~HC_INDEX_DATA_SM_ID;
9501     index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags &= ~HC_INDEX_DATA_SM_ID;
9502     index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags &= ~HC_INDEX_DATA_SM_ID;
9503     index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags &= ~HC_INDEX_DATA_SM_ID;
9504 
9505     /* map indices */
9506 
9507     /* rx indices */
9508     index_data[HC_INDEX_ETH_RX_CQ_CONS].flags |=
9509         (SM_RX_ID << HC_INDEX_DATA_SM_ID_SHIFT);
9510 
9511     /* tx indices */
9512     index_data[HC_INDEX_OOO_TX_CQ_CONS].flags |=
9513         (SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT);
9514     index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags |=
9515         (SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT);
9516     index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags |=
9517         (SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT);
9518     index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags |=
9519         (SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT);
9520 }
9521 
9522 static void
9523 bxe_init_sb(struct bxe_softc *sc,
9524             bus_addr_t       busaddr,
9525             int              vfid,
9526             uint8_t          vf_valid,
9527             int              fw_sb_id,
9528             int              igu_sb_id)
9529 {
9530     struct hc_status_block_data_e2  sb_data_e2;
9531     struct hc_status_block_data_e1x sb_data_e1x;
9532     struct hc_status_block_sm       *hc_sm_p;
9533     uint32_t *sb_data_p;
9534     int igu_seg_id;
9535     int data_size;
9536 
9537     if (CHIP_INT_MODE_IS_BC(sc)) {
9538         igu_seg_id = HC_SEG_ACCESS_NORM;
9539     } else {
9540         igu_seg_id = IGU_SEG_ACCESS_NORM;
9541     }
9542 
9543     bxe_zero_fp_sb(sc, fw_sb_id);
9544 
9545     if (!CHIP_IS_E1x(sc)) {
9546         memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2));
9547         sb_data_e2.common.state = SB_ENABLED;
9548         sb_data_e2.common.p_func.pf_id = SC_FUNC(sc);
9549         sb_data_e2.common.p_func.vf_id = vfid;
9550         sb_data_e2.common.p_func.vf_valid = vf_valid;
9551         sb_data_e2.common.p_func.vnic_id = SC_VN(sc);
9552         sb_data_e2.common.same_igu_sb_1b = TRUE;
9553         sb_data_e2.common.host_sb_addr.hi = U64_HI(busaddr);
9554         sb_data_e2.common.host_sb_addr.lo = U64_LO(busaddr);
9555         hc_sm_p = sb_data_e2.common.state_machine;
9556         sb_data_p = (uint32_t *)&sb_data_e2;
9557         data_size = (sizeof(struct hc_status_block_data_e2) /
9558                      sizeof(uint32_t));
9559         bxe_map_sb_state_machines(sb_data_e2.index_data);
9560     } else {
9561         memset(&sb_data_e1x, 0, sizeof(struct hc_status_block_data_e1x));
9562         sb_data_e1x.common.state = SB_ENABLED;
9563         sb_data_e1x.common.p_func.pf_id = SC_FUNC(sc);
9564         sb_data_e1x.common.p_func.vf_id = 0xff;
9565         sb_data_e1x.common.p_func.vf_valid = FALSE;
9566         sb_data_e1x.common.p_func.vnic_id = SC_VN(sc);
9567         sb_data_e1x.common.same_igu_sb_1b = TRUE;
9568         sb_data_e1x.common.host_sb_addr.hi = U64_HI(busaddr);
9569         sb_data_e1x.common.host_sb_addr.lo = U64_LO(busaddr);
9570         hc_sm_p = sb_data_e1x.common.state_machine;
9571         sb_data_p = (uint32_t *)&sb_data_e1x;
9572         data_size = (sizeof(struct hc_status_block_data_e1x) /
9573                      sizeof(uint32_t));
9574         bxe_map_sb_state_machines(sb_data_e1x.index_data);
9575     }
9576 
9577     bxe_setup_ndsb_state_machine(&hc_sm_p[SM_RX_ID], igu_sb_id, igu_seg_id);
9578     bxe_setup_ndsb_state_machine(&hc_sm_p[SM_TX_ID], igu_sb_id, igu_seg_id);
9579 
9580     BLOGD(sc, DBG_LOAD, "Init FW SB %d\n", fw_sb_id);
9581 
9582     /* write indices to HW - PCI guarantees endianity of regpairs */
9583     bxe_wr_fp_sb_data(sc, fw_sb_id, sb_data_p, data_size);
9584 }
9585 
9586 static inline uint8_t
9587 bxe_fp_qzone_id(struct bxe_fastpath *fp)
9588 {
9589     if (CHIP_IS_E1x(fp->sc)) {
9590         return (fp->cl_id + SC_PORT(fp->sc) * ETH_MAX_RX_CLIENTS_E1H);
9591     } else {
9592         return (fp->cl_id);
9593     }
9594 }
9595 
9596 static inline uint32_t
9597 bxe_rx_ustorm_prods_offset(struct bxe_softc    *sc,
9598                            struct bxe_fastpath *fp)
9599 {
9600     uint32_t offset = BAR_USTRORM_INTMEM;
9601 
9602     if (!CHIP_IS_E1x(sc)) {
9603         offset += USTORM_RX_PRODS_E2_OFFSET(fp->cl_qzone_id);
9604     } else {
9605         offset += USTORM_RX_PRODS_E1X_OFFSET(SC_PORT(sc), fp->cl_id);
9606     }
9607 
9608     return (offset);
9609 }
9610 
9611 static void
9612 bxe_init_eth_fp(struct bxe_softc *sc,
9613                 int              idx)
9614 {
9615     struct bxe_fastpath *fp = &sc->fp[idx];
9616     uint32_t cids[ECORE_MULTI_TX_COS] = { 0 };
9617     unsigned long q_type = 0;
9618     int cos;
9619 
9620     fp->sc    = sc;
9621     fp->index = idx;
9622 
9623     fp->igu_sb_id = (sc->igu_base_sb + idx + CNIC_SUPPORT(sc));
9624     fp->fw_sb_id = (sc->base_fw_ndsb + idx + CNIC_SUPPORT(sc));
9625 
9626     fp->cl_id = (CHIP_IS_E1x(sc)) ?
9627                     (SC_L_ID(sc) + idx) :
9628                     /* want client ID same as IGU SB ID for non-E1 */
9629                     fp->igu_sb_id;
9630     fp->cl_qzone_id = bxe_fp_qzone_id(fp);
9631 
9632     /* setup sb indices */
9633     if (!CHIP_IS_E1x(sc)) {
9634         fp->sb_index_values  = fp->status_block.e2_sb->sb.index_values;
9635         fp->sb_running_index = fp->status_block.e2_sb->sb.running_index;
9636     } else {
9637         fp->sb_index_values  = fp->status_block.e1x_sb->sb.index_values;
9638         fp->sb_running_index = fp->status_block.e1x_sb->sb.running_index;
9639     }
9640 
9641     /* init shortcut */
9642     fp->ustorm_rx_prods_offset = bxe_rx_ustorm_prods_offset(sc, fp);
9643 
9644     fp->rx_cq_cons_sb = &fp->sb_index_values[HC_INDEX_ETH_RX_CQ_CONS];
9645 
9646     /*
9647      * XXX If multiple CoS is ever supported then each fastpath structure
9648      * will need to maintain tx producer/consumer/dma/etc values *per* CoS.
9649      */
9650     for (cos = 0; cos < sc->max_cos; cos++) {
9651         cids[cos] = idx;
9652     }
9653     fp->tx_cons_sb = &fp->sb_index_values[HC_INDEX_ETH_TX_CQ_CONS_COS0];
9654 
9655     /* nothing more for a VF to do */
9656     if (IS_VF(sc)) {
9657         return;
9658     }
9659 
9660     bxe_init_sb(sc, fp->sb_dma.paddr, BXE_VF_ID_INVALID, FALSE,
9661                 fp->fw_sb_id, fp->igu_sb_id);
9662 
9663     bxe_update_fp_sb_idx(fp);
9664 
9665     /* Configure Queue State object */
9666     bit_set(&q_type, ECORE_Q_TYPE_HAS_RX);
9667     bit_set(&q_type, ECORE_Q_TYPE_HAS_TX);
9668 
9669     ecore_init_queue_obj(sc,
9670                          &sc->sp_objs[idx].q_obj,
9671                          fp->cl_id,
9672                          cids,
9673                          sc->max_cos,
9674                          SC_FUNC(sc),
9675                          BXE_SP(sc, q_rdata),
9676                          BXE_SP_MAPPING(sc, q_rdata),
9677                          q_type);
9678 
9679     /* configure classification DBs */
9680     ecore_init_mac_obj(sc,
9681                        &sc->sp_objs[idx].mac_obj,
9682                        fp->cl_id,
9683                        idx,
9684                        SC_FUNC(sc),
9685                        BXE_SP(sc, mac_rdata),
9686                        BXE_SP_MAPPING(sc, mac_rdata),
9687                        ECORE_FILTER_MAC_PENDING,
9688                        &sc->sp_state,
9689                        ECORE_OBJ_TYPE_RX_TX,
9690                        &sc->macs_pool);
9691 
9692     BLOGD(sc, DBG_LOAD, "fp[%d]: sb=%p cl_id=%d fw_sb=%d igu_sb=%d\n",
9693           idx, fp->status_block.e2_sb, fp->cl_id, fp->fw_sb_id, fp->igu_sb_id);
9694 }
9695 
9696 static inline void
9697 bxe_update_rx_prod(struct bxe_softc    *sc,
9698                    struct bxe_fastpath *fp,
9699                    uint16_t            rx_bd_prod,
9700                    uint16_t            rx_cq_prod,
9701                    uint16_t            rx_sge_prod)
9702 {
9703     struct ustorm_eth_rx_producers rx_prods = { 0 };
9704     uint32_t i;
9705 
9706     /* update producers */
9707     rx_prods.bd_prod  = rx_bd_prod;
9708     rx_prods.cqe_prod = rx_cq_prod;
9709     rx_prods.sge_prod = rx_sge_prod;
9710 
9711     /*
9712      * Make sure that the BD and SGE data is updated before updating the
9713      * producers since FW might read the BD/SGE right after the producer
9714      * is updated.
9715      * This is only applicable for weak-ordered memory model archs such
9716      * as IA-64. The following barrier is also mandatory since FW will
9717      * assumes BDs must have buffers.
9718      */
9719     wmb();
9720 
9721     for (i = 0; i < (sizeof(rx_prods) / 4); i++) {
9722         REG_WR(sc,
9723                (fp->ustorm_rx_prods_offset + (i * 4)),
9724                ((uint32_t *)&rx_prods)[i]);
9725     }
9726 
9727     wmb(); /* keep prod updates ordered */
9728 
9729     BLOGD(sc, DBG_RX,
9730           "RX fp[%d]: wrote prods bd_prod=%u cqe_prod=%u sge_prod=%u\n",
9731           fp->index, rx_bd_prod, rx_cq_prod, rx_sge_prod);
9732 }
9733 
9734 static void
9735 bxe_init_rx_rings(struct bxe_softc *sc)
9736 {
9737     struct bxe_fastpath *fp;
9738     int i;
9739 
9740     for (i = 0; i < sc->num_queues; i++) {
9741         fp = &sc->fp[i];
9742 
9743         fp->rx_bd_cons = 0;
9744 
9745         /*
9746          * Activate the BD ring...
9747          * Warning, this will generate an interrupt (to the TSTORM)
9748          * so this can only be done after the chip is initialized
9749          */
9750         bxe_update_rx_prod(sc, fp,
9751                            fp->rx_bd_prod,
9752                            fp->rx_cq_prod,
9753                            fp->rx_sge_prod);
9754 
9755         if (i != 0) {
9756             continue;
9757         }
9758 
9759         if (CHIP_IS_E1(sc)) {
9760             REG_WR(sc,
9761                    (BAR_USTRORM_INTMEM +
9762                     USTORM_MEM_WORKAROUND_ADDRESS_OFFSET(SC_FUNC(sc))),
9763                    U64_LO(fp->rcq_dma.paddr));
9764             REG_WR(sc,
9765                    (BAR_USTRORM_INTMEM +
9766                     USTORM_MEM_WORKAROUND_ADDRESS_OFFSET(SC_FUNC(sc)) + 4),
9767                    U64_HI(fp->rcq_dma.paddr));
9768         }
9769     }
9770 }
9771 
9772 static void
9773 bxe_init_tx_ring_one(struct bxe_fastpath *fp)
9774 {
9775     SET_FLAG(fp->tx_db.data.header.data, DOORBELL_HDR_T_DB_TYPE, 1);
9776     fp->tx_db.data.zero_fill1 = 0;
9777     fp->tx_db.data.prod = 0;
9778 
9779     fp->tx_pkt_prod = 0;
9780     fp->tx_pkt_cons = 0;
9781     fp->tx_bd_prod = 0;
9782     fp->tx_bd_cons = 0;
9783     fp->eth_q_stats.tx_pkts = 0;
9784 }
9785 
9786 static inline void
9787 bxe_init_tx_rings(struct bxe_softc *sc)
9788 {
9789     int i;
9790 
9791     for (i = 0; i < sc->num_queues; i++) {
9792         bxe_init_tx_ring_one(&sc->fp[i]);
9793     }
9794 }
9795 
9796 static void
9797 bxe_init_def_sb(struct bxe_softc *sc)
9798 {
9799     struct host_sp_status_block *def_sb = sc->def_sb;
9800     bus_addr_t mapping = sc->def_sb_dma.paddr;
9801     int igu_sp_sb_index;
9802     int igu_seg_id;
9803     int port = SC_PORT(sc);
9804     int func = SC_FUNC(sc);
9805     int reg_offset, reg_offset_en5;
9806     uint64_t section;
9807     int index, sindex;
9808     struct hc_sp_status_block_data sp_sb_data;
9809 
9810     memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data));
9811 
9812     if (CHIP_INT_MODE_IS_BC(sc)) {
9813         igu_sp_sb_index = DEF_SB_IGU_ID;
9814         igu_seg_id = HC_SEG_ACCESS_DEF;
9815     } else {
9816         igu_sp_sb_index = sc->igu_dsb_id;
9817         igu_seg_id = IGU_SEG_ACCESS_DEF;
9818     }
9819 
9820     /* attentions */
9821     section = ((uint64_t)mapping +
9822                offsetof(struct host_sp_status_block, atten_status_block));
9823     def_sb->atten_status_block.status_block_id = igu_sp_sb_index;
9824     sc->attn_state = 0;
9825 
9826     reg_offset = (port) ?
9827                      MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
9828                      MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0;
9829     reg_offset_en5 = (port) ?
9830                          MISC_REG_AEU_ENABLE5_FUNC_1_OUT_0 :
9831                          MISC_REG_AEU_ENABLE5_FUNC_0_OUT_0;
9832 
9833     for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) {
9834         /* take care of sig[0]..sig[4] */
9835         for (sindex = 0; sindex < 4; sindex++) {
9836             sc->attn_group[index].sig[sindex] =
9837                 REG_RD(sc, (reg_offset + (sindex * 0x4) + (0x10 * index)));
9838         }
9839 
9840         if (!CHIP_IS_E1x(sc)) {
9841             /*
9842              * enable5 is separate from the rest of the registers,
9843              * and the address skip is 4 and not 16 between the
9844              * different groups
9845              */
9846             sc->attn_group[index].sig[4] =
9847                 REG_RD(sc, (reg_offset_en5 + (0x4 * index)));
9848         } else {
9849             sc->attn_group[index].sig[4] = 0;
9850         }
9851     }
9852 
9853     if (sc->devinfo.int_block == INT_BLOCK_HC) {
9854         reg_offset = (port) ?
9855                          HC_REG_ATTN_MSG1_ADDR_L :
9856                          HC_REG_ATTN_MSG0_ADDR_L;
9857         REG_WR(sc, reg_offset, U64_LO(section));
9858         REG_WR(sc, (reg_offset + 4), U64_HI(section));
9859     } else if (!CHIP_IS_E1x(sc)) {
9860         REG_WR(sc, IGU_REG_ATTN_MSG_ADDR_L, U64_LO(section));
9861         REG_WR(sc, IGU_REG_ATTN_MSG_ADDR_H, U64_HI(section));
9862     }
9863 
9864     section = ((uint64_t)mapping +
9865                offsetof(struct host_sp_status_block, sp_sb));
9866 
9867     bxe_zero_sp_sb(sc);
9868 
9869     /* PCI guarantees endianity of regpair */
9870     sp_sb_data.state           = SB_ENABLED;
9871     sp_sb_data.host_sb_addr.lo = U64_LO(section);
9872     sp_sb_data.host_sb_addr.hi = U64_HI(section);
9873     sp_sb_data.igu_sb_id       = igu_sp_sb_index;
9874     sp_sb_data.igu_seg_id      = igu_seg_id;
9875     sp_sb_data.p_func.pf_id    = func;
9876     sp_sb_data.p_func.vnic_id  = SC_VN(sc);
9877     sp_sb_data.p_func.vf_id    = 0xff;
9878 
9879     bxe_wr_sp_sb_data(sc, &sp_sb_data);
9880 
9881     bxe_ack_sb(sc, sc->igu_dsb_id, USTORM_ID, 0, IGU_INT_ENABLE, 0);
9882 }
9883 
9884 static void
9885 bxe_init_sp_ring(struct bxe_softc *sc)
9886 {
9887     atomic_store_rel_long(&sc->cq_spq_left, MAX_SPQ_PENDING);
9888     sc->spq_prod_idx = 0;
9889     sc->dsb_sp_prod = &sc->def_sb->sp_sb.index_values[HC_SP_INDEX_ETH_DEF_CONS];
9890     sc->spq_prod_bd = sc->spq;
9891     sc->spq_last_bd = (sc->spq_prod_bd + MAX_SP_DESC_CNT);
9892 }
9893 
9894 static void
9895 bxe_init_eq_ring(struct bxe_softc *sc)
9896 {
9897     union event_ring_elem *elem;
9898     int i;
9899 
9900     for (i = 1; i <= NUM_EQ_PAGES; i++) {
9901         elem = &sc->eq[EQ_DESC_CNT_PAGE * i - 1];
9902 
9903         elem->next_page.addr.hi = htole32(U64_HI(sc->eq_dma.paddr +
9904                                                  BCM_PAGE_SIZE *
9905                                                  (i % NUM_EQ_PAGES)));
9906         elem->next_page.addr.lo = htole32(U64_LO(sc->eq_dma.paddr +
9907                                                  BCM_PAGE_SIZE *
9908                                                  (i % NUM_EQ_PAGES)));
9909     }
9910 
9911     sc->eq_cons    = 0;
9912     sc->eq_prod    = NUM_EQ_DESC;
9913     sc->eq_cons_sb = &sc->def_sb->sp_sb.index_values[HC_SP_INDEX_EQ_CONS];
9914 
9915     atomic_store_rel_long(&sc->eq_spq_left,
9916                           (min((MAX_SP_DESC_CNT - MAX_SPQ_PENDING),
9917                                NUM_EQ_DESC) - 1));
9918 }
9919 
9920 static void
9921 bxe_init_internal_common(struct bxe_softc *sc)
9922 {
9923     int i;
9924 
9925     /*
9926      * Zero this manually as its initialization is currently missing
9927      * in the initTool.
9928      */
9929     for (i = 0; i < (USTORM_AGG_DATA_SIZE >> 2); i++) {
9930         REG_WR(sc,
9931                (BAR_USTRORM_INTMEM + USTORM_AGG_DATA_OFFSET + (i * 4)),
9932                0);
9933     }
9934 
9935     if (!CHIP_IS_E1x(sc)) {
9936         REG_WR8(sc, (BAR_CSTRORM_INTMEM + CSTORM_IGU_MODE_OFFSET),
9937                 CHIP_INT_MODE_IS_BC(sc) ? HC_IGU_BC_MODE : HC_IGU_NBC_MODE);
9938     }
9939 }
9940 
9941 static void
9942 bxe_init_internal(struct bxe_softc *sc,
9943                   uint32_t         load_code)
9944 {
9945     switch (load_code) {
9946     case FW_MSG_CODE_DRV_LOAD_COMMON:
9947     case FW_MSG_CODE_DRV_LOAD_COMMON_CHIP:
9948         bxe_init_internal_common(sc);
9949         /* no break */
9950 
9951     case FW_MSG_CODE_DRV_LOAD_PORT:
9952         /* nothing to do */
9953         /* no break */
9954 
9955     case FW_MSG_CODE_DRV_LOAD_FUNCTION:
9956         /* internal memory per function is initialized inside bxe_pf_init */
9957         break;
9958 
9959     default:
9960         BLOGE(sc, "Unknown load_code (0x%x) from MCP\n", load_code);
9961         break;
9962     }
9963 }
9964 
9965 static void
9966 storm_memset_func_cfg(struct bxe_softc                         *sc,
9967                       struct tstorm_eth_function_common_config *tcfg,
9968                       uint16_t                                  abs_fid)
9969 {
9970     uint32_t addr;
9971     size_t size;
9972 
9973     addr = (BAR_TSTRORM_INTMEM +
9974             TSTORM_FUNCTION_COMMON_CONFIG_OFFSET(abs_fid));
9975     size = sizeof(struct tstorm_eth_function_common_config);
9976     ecore_storm_memset_struct(sc, addr, size, (uint32_t *)tcfg);
9977 }
9978 
9979 static void
9980 bxe_func_init(struct bxe_softc            *sc,
9981               struct bxe_func_init_params *p)
9982 {
9983     struct tstorm_eth_function_common_config tcfg = { 0 };
9984 
9985     if (CHIP_IS_E1x(sc)) {
9986         storm_memset_func_cfg(sc, &tcfg, p->func_id);
9987     }
9988 
9989     /* Enable the function in the FW */
9990     storm_memset_vf_to_pf(sc, p->func_id, p->pf_id);
9991     storm_memset_func_en(sc, p->func_id, 1);
9992 
9993     /* spq */
9994     if (p->func_flgs & FUNC_FLG_SPQ) {
9995         storm_memset_spq_addr(sc, p->spq_map, p->func_id);
9996         REG_WR(sc,
9997                (XSEM_REG_FAST_MEMORY + XSTORM_SPQ_PROD_OFFSET(p->func_id)),
9998                p->spq_prod);
9999     }
10000 }
10001 
10002 /*
10003  * Calculates the sum of vn_min_rates.
10004  * It's needed for further normalizing of the min_rates.
10005  * Returns:
10006  *   sum of vn_min_rates.
10007  *     or
10008  *   0 - if all the min_rates are 0.
10009  * In the later case fainess algorithm should be deactivated.
10010  * If all min rates are not zero then those that are zeroes will be set to 1.
10011  */
10012 static void
10013 bxe_calc_vn_min(struct bxe_softc       *sc,
10014                 struct cmng_init_input *input)
10015 {
10016     uint32_t vn_cfg;
10017     uint32_t vn_min_rate;
10018     int all_zero = 1;
10019     int vn;
10020 
10021     for (vn = VN_0; vn < SC_MAX_VN_NUM(sc); vn++) {
10022         vn_cfg = sc->devinfo.mf_info.mf_config[vn];
10023         vn_min_rate = (((vn_cfg & FUNC_MF_CFG_MIN_BW_MASK) >>
10024                         FUNC_MF_CFG_MIN_BW_SHIFT) * 100);
10025 
10026         if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE) {
10027             /* skip hidden VNs */
10028             vn_min_rate = 0;
10029         } else if (!vn_min_rate) {
10030             /* If min rate is zero - set it to 100 */
10031             vn_min_rate = DEF_MIN_RATE;
10032         } else {
10033             all_zero = 0;
10034         }
10035 
10036         input->vnic_min_rate[vn] = vn_min_rate;
10037     }
10038 
10039     /* if ETS or all min rates are zeros - disable fairness */
10040     if (BXE_IS_ETS_ENABLED(sc)) {
10041         input->flags.cmng_enables &= ~CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
10042         BLOGD(sc, DBG_LOAD, "Fairness disabled (ETS)\n");
10043     } else if (all_zero) {
10044         input->flags.cmng_enables &= ~CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
10045         BLOGD(sc, DBG_LOAD,
10046               "Fariness disabled (all MIN values are zeroes)\n");
10047     } else {
10048         input->flags.cmng_enables |= CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
10049     }
10050 }
10051 
10052 static inline uint16_t
10053 bxe_extract_max_cfg(struct bxe_softc *sc,
10054                     uint32_t         mf_cfg)
10055 {
10056     uint16_t max_cfg = ((mf_cfg & FUNC_MF_CFG_MAX_BW_MASK) >>
10057                         FUNC_MF_CFG_MAX_BW_SHIFT);
10058 
10059     if (!max_cfg) {
10060         BLOGD(sc, DBG_LOAD, "Max BW configured to 0 - using 100 instead\n");
10061         max_cfg = 100;
10062     }
10063 
10064     return (max_cfg);
10065 }
10066 
10067 static void
10068 bxe_calc_vn_max(struct bxe_softc       *sc,
10069                 int                    vn,
10070                 struct cmng_init_input *input)
10071 {
10072     uint16_t vn_max_rate;
10073     uint32_t vn_cfg = sc->devinfo.mf_info.mf_config[vn];
10074     uint32_t max_cfg;
10075 
10076     if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE) {
10077         vn_max_rate = 0;
10078     } else {
10079         max_cfg = bxe_extract_max_cfg(sc, vn_cfg);
10080 
10081         if (IS_MF_SI(sc)) {
10082             /* max_cfg in percents of linkspeed */
10083             vn_max_rate = ((sc->link_vars.line_speed * max_cfg) / 100);
10084         } else { /* SD modes */
10085             /* max_cfg is absolute in 100Mb units */
10086             vn_max_rate = (max_cfg * 100);
10087         }
10088     }
10089 
10090     BLOGD(sc, DBG_LOAD, "vn %d: vn_max_rate %d\n", vn, vn_max_rate);
10091 
10092     input->vnic_max_rate[vn] = vn_max_rate;
10093 }
10094 
10095 static void
10096 bxe_cmng_fns_init(struct bxe_softc *sc,
10097                   uint8_t          read_cfg,
10098                   uint8_t          cmng_type)
10099 {
10100     struct cmng_init_input input;
10101     int vn;
10102 
10103     memset(&input, 0, sizeof(struct cmng_init_input));
10104 
10105     input.port_rate = sc->link_vars.line_speed;
10106 
10107     if (cmng_type == CMNG_FNS_MINMAX) {
10108         /* read mf conf from shmem */
10109         if (read_cfg) {
10110             bxe_read_mf_cfg(sc);
10111         }
10112 
10113         /* get VN min rate and enable fairness if not 0 */
10114         bxe_calc_vn_min(sc, &input);
10115 
10116         /* get VN max rate */
10117         if (sc->port.pmf) {
10118             for (vn = VN_0; vn < SC_MAX_VN_NUM(sc); vn++) {
10119                 bxe_calc_vn_max(sc, vn, &input);
10120             }
10121         }
10122 
10123         /* always enable rate shaping and fairness */
10124         input.flags.cmng_enables |= CMNG_FLAGS_PER_PORT_RATE_SHAPING_VN;
10125 
10126         ecore_init_cmng(&input, &sc->cmng);
10127         return;
10128     }
10129 
10130     /* rate shaping and fairness are disabled */
10131     BLOGD(sc, DBG_LOAD, "rate shaping and fairness have been disabled\n");
10132 }
10133 
10134 static int
10135 bxe_get_cmng_fns_mode(struct bxe_softc *sc)
10136 {
10137     if (CHIP_REV_IS_SLOW(sc)) {
10138         return (CMNG_FNS_NONE);
10139     }
10140 
10141     if (IS_MF(sc)) {
10142         return (CMNG_FNS_MINMAX);
10143     }
10144 
10145     return (CMNG_FNS_NONE);
10146 }
10147 
10148 static void
10149 storm_memset_cmng(struct bxe_softc *sc,
10150                   struct cmng_init *cmng,
10151                   uint8_t          port)
10152 {
10153     int vn;
10154     int func;
10155     uint32_t addr;
10156     size_t size;
10157 
10158     addr = (BAR_XSTRORM_INTMEM +
10159             XSTORM_CMNG_PER_PORT_VARS_OFFSET(port));
10160     size = sizeof(struct cmng_struct_per_port);
10161     ecore_storm_memset_struct(sc, addr, size, (uint32_t *)&cmng->port);
10162 
10163     for (vn = VN_0; vn < SC_MAX_VN_NUM(sc); vn++) {
10164         func = func_by_vn(sc, vn);
10165 
10166         addr = (BAR_XSTRORM_INTMEM +
10167                 XSTORM_RATE_SHAPING_PER_VN_VARS_OFFSET(func));
10168         size = sizeof(struct rate_shaping_vars_per_vn);
10169         ecore_storm_memset_struct(sc, addr, size,
10170                                   (uint32_t *)&cmng->vnic.vnic_max_rate[vn]);
10171 
10172         addr = (BAR_XSTRORM_INTMEM +
10173                 XSTORM_FAIRNESS_PER_VN_VARS_OFFSET(func));
10174         size = sizeof(struct fairness_vars_per_vn);
10175         ecore_storm_memset_struct(sc, addr, size,
10176                                   (uint32_t *)&cmng->vnic.vnic_min_rate[vn]);
10177     }
10178 }
10179 
10180 static void
10181 bxe_pf_init(struct bxe_softc *sc)
10182 {
10183     struct bxe_func_init_params func_init = { 0 };
10184     struct event_ring_data eq_data = { { 0 } };
10185     uint16_t flags;
10186 
10187     if (!CHIP_IS_E1x(sc)) {
10188         /* reset IGU PF statistics: MSIX + ATTN */
10189         /* PF */
10190         REG_WR(sc,
10191                (IGU_REG_STATISTIC_NUM_MESSAGE_SENT +
10192                 (BXE_IGU_STAS_MSG_VF_CNT * 4) +
10193                 ((CHIP_IS_MODE_4_PORT(sc) ? SC_FUNC(sc) : SC_VN(sc)) * 4)),
10194                0);
10195         /* ATTN */
10196         REG_WR(sc,
10197                (IGU_REG_STATISTIC_NUM_MESSAGE_SENT +
10198                 (BXE_IGU_STAS_MSG_VF_CNT * 4) +
10199                 (BXE_IGU_STAS_MSG_PF_CNT * 4) +
10200                 ((CHIP_IS_MODE_4_PORT(sc) ? SC_FUNC(sc) : SC_VN(sc)) * 4)),
10201                0);
10202     }
10203 
10204     /* function setup flags */
10205     flags = (FUNC_FLG_STATS | FUNC_FLG_LEADING | FUNC_FLG_SPQ);
10206 
10207     /*
10208      * This flag is relevant for E1x only.
10209      * E2 doesn't have a TPA configuration in a function level.
10210      */
10211     flags |= (if_getcapenable(sc->ifp) & IFCAP_LRO) ? FUNC_FLG_TPA : 0;
10212 
10213     func_init.func_flgs = flags;
10214     func_init.pf_id     = SC_FUNC(sc);
10215     func_init.func_id   = SC_FUNC(sc);
10216     func_init.spq_map   = sc->spq_dma.paddr;
10217     func_init.spq_prod  = sc->spq_prod_idx;
10218 
10219     bxe_func_init(sc, &func_init);
10220 
10221     memset(&sc->cmng, 0, sizeof(struct cmng_struct_per_port));
10222 
10223     /*
10224      * Congestion management values depend on the link rate.
10225      * There is no active link so initial link rate is set to 10Gbps.
10226      * When the link comes up the congestion management values are
10227      * re-calculated according to the actual link rate.
10228      */
10229     sc->link_vars.line_speed = SPEED_10000;
10230     bxe_cmng_fns_init(sc, TRUE, bxe_get_cmng_fns_mode(sc));
10231 
10232     /* Only the PMF sets the HW */
10233     if (sc->port.pmf) {
10234         storm_memset_cmng(sc, &sc->cmng, SC_PORT(sc));
10235     }
10236 
10237     /* init Event Queue - PCI bus guarantees correct endainity */
10238     eq_data.base_addr.hi = U64_HI(sc->eq_dma.paddr);
10239     eq_data.base_addr.lo = U64_LO(sc->eq_dma.paddr);
10240     eq_data.producer     = sc->eq_prod;
10241     eq_data.index_id     = HC_SP_INDEX_EQ_CONS;
10242     eq_data.sb_id        = DEF_SB_ID;
10243     storm_memset_eq_data(sc, &eq_data, SC_FUNC(sc));
10244 }
10245 
10246 static void
10247 bxe_hc_int_enable(struct bxe_softc *sc)
10248 {
10249     int port = SC_PORT(sc);
10250     uint32_t addr = (port) ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0;
10251     uint32_t val = REG_RD(sc, addr);
10252     uint8_t msix = (sc->interrupt_mode == INTR_MODE_MSIX) ? TRUE : FALSE;
10253     uint8_t single_msix = ((sc->interrupt_mode == INTR_MODE_MSIX) &&
10254                            (sc->intr_count == 1)) ? TRUE : FALSE;
10255     uint8_t msi = (sc->interrupt_mode == INTR_MODE_MSI) ? TRUE : FALSE;
10256 
10257     if (msix) {
10258         val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
10259                  HC_CONFIG_0_REG_INT_LINE_EN_0);
10260         val |= (HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
10261                 HC_CONFIG_0_REG_ATTN_BIT_EN_0);
10262         if (single_msix) {
10263             val |= HC_CONFIG_0_REG_SINGLE_ISR_EN_0;
10264         }
10265     } else if (msi) {
10266         val &= ~HC_CONFIG_0_REG_INT_LINE_EN_0;
10267         val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
10268                 HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
10269                 HC_CONFIG_0_REG_ATTN_BIT_EN_0);
10270     } else {
10271         val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
10272                 HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
10273                 HC_CONFIG_0_REG_INT_LINE_EN_0 |
10274                 HC_CONFIG_0_REG_ATTN_BIT_EN_0);
10275 
10276         if (!CHIP_IS_E1(sc)) {
10277             BLOGD(sc, DBG_INTR, "write %x to HC %d (addr 0x%x)\n",
10278                   val, port, addr);
10279 
10280             REG_WR(sc, addr, val);
10281 
10282             val &= ~HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0;
10283         }
10284     }
10285 
10286     if (CHIP_IS_E1(sc)) {
10287         REG_WR(sc, (HC_REG_INT_MASK + port*4), 0x1FFFF);
10288     }
10289 
10290     BLOGD(sc, DBG_INTR, "write %x to HC %d (addr 0x%x) mode %s\n",
10291           val, port, addr, ((msix) ? "MSI-X" : ((msi) ? "MSI" : "INTx")));
10292 
10293     REG_WR(sc, addr, val);
10294 
10295     /* ensure that HC_CONFIG is written before leading/trailing edge config */
10296     mb();
10297 
10298     if (!CHIP_IS_E1(sc)) {
10299         /* init leading/trailing edge */
10300         if (IS_MF(sc)) {
10301             val = (0xee0f | (1 << (SC_VN(sc) + 4)));
10302             if (sc->port.pmf) {
10303                 /* enable nig and gpio3 attention */
10304                 val |= 0x1100;
10305             }
10306         } else {
10307             val = 0xffff;
10308         }
10309 
10310         REG_WR(sc, (HC_REG_TRAILING_EDGE_0 + port*8), val);
10311         REG_WR(sc, (HC_REG_LEADING_EDGE_0 + port*8), val);
10312     }
10313 
10314     /* make sure that interrupts are indeed enabled from here on */
10315     mb();
10316 }
10317 
10318 static void
10319 bxe_igu_int_enable(struct bxe_softc *sc)
10320 {
10321     uint32_t val;
10322     uint8_t msix = (sc->interrupt_mode == INTR_MODE_MSIX) ? TRUE : FALSE;
10323     uint8_t single_msix = ((sc->interrupt_mode == INTR_MODE_MSIX) &&
10324                            (sc->intr_count == 1)) ? TRUE : FALSE;
10325     uint8_t msi = (sc->interrupt_mode == INTR_MODE_MSI) ? TRUE : FALSE;
10326 
10327     val = REG_RD(sc, IGU_REG_PF_CONFIGURATION);
10328 
10329     if (msix) {
10330         val &= ~(IGU_PF_CONF_INT_LINE_EN |
10331                  IGU_PF_CONF_SINGLE_ISR_EN);
10332         val |= (IGU_PF_CONF_MSI_MSIX_EN |
10333                 IGU_PF_CONF_ATTN_BIT_EN);
10334         if (single_msix) {
10335             val |= IGU_PF_CONF_SINGLE_ISR_EN;
10336         }
10337     } else if (msi) {
10338         val &= ~IGU_PF_CONF_INT_LINE_EN;
10339         val |= (IGU_PF_CONF_MSI_MSIX_EN |
10340                 IGU_PF_CONF_ATTN_BIT_EN |
10341                 IGU_PF_CONF_SINGLE_ISR_EN);
10342     } else {
10343         val &= ~IGU_PF_CONF_MSI_MSIX_EN;
10344         val |= (IGU_PF_CONF_INT_LINE_EN |
10345                 IGU_PF_CONF_ATTN_BIT_EN |
10346                 IGU_PF_CONF_SINGLE_ISR_EN);
10347     }
10348 
10349     /* clean previous status - need to configure igu prior to ack*/
10350     if ((!msix) || single_msix) {
10351         REG_WR(sc, IGU_REG_PF_CONFIGURATION, val);
10352         bxe_ack_int(sc);
10353     }
10354 
10355     val |= IGU_PF_CONF_FUNC_EN;
10356 
10357     BLOGD(sc, DBG_INTR, "write 0x%x to IGU mode %s\n",
10358           val, ((msix) ? "MSI-X" : ((msi) ? "MSI" : "INTx")));
10359 
10360     REG_WR(sc, IGU_REG_PF_CONFIGURATION, val);
10361 
10362     mb();
10363 
10364     /* init leading/trailing edge */
10365     if (IS_MF(sc)) {
10366         val = (0xee0f | (1 << (SC_VN(sc) + 4)));
10367         if (sc->port.pmf) {
10368             /* enable nig and gpio3 attention */
10369             val |= 0x1100;
10370         }
10371     } else {
10372         val = 0xffff;
10373     }
10374 
10375     REG_WR(sc, IGU_REG_TRAILING_EDGE_LATCH, val);
10376     REG_WR(sc, IGU_REG_LEADING_EDGE_LATCH, val);
10377 
10378     /* make sure that interrupts are indeed enabled from here on */
10379     mb();
10380 }
10381 
10382 static void
10383 bxe_int_enable(struct bxe_softc *sc)
10384 {
10385     if (sc->devinfo.int_block == INT_BLOCK_HC) {
10386         bxe_hc_int_enable(sc);
10387     } else {
10388         bxe_igu_int_enable(sc);
10389     }
10390 }
10391 
10392 static void
10393 bxe_hc_int_disable(struct bxe_softc *sc)
10394 {
10395     int port = SC_PORT(sc);
10396     uint32_t addr = (port) ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0;
10397     uint32_t val = REG_RD(sc, addr);
10398 
10399     /*
10400      * In E1 we must use only PCI configuration space to disable MSI/MSIX
10401      * capablility. It's forbidden to disable IGU_PF_CONF_MSI_MSIX_EN in HC
10402      * block
10403      */
10404     if (CHIP_IS_E1(sc)) {
10405         /*
10406          * Since IGU_PF_CONF_MSI_MSIX_EN still always on use mask register
10407          * to prevent from HC sending interrupts after we exit the function
10408          */
10409         REG_WR(sc, (HC_REG_INT_MASK + port*4), 0);
10410 
10411         val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
10412                  HC_CONFIG_0_REG_INT_LINE_EN_0 |
10413                  HC_CONFIG_0_REG_ATTN_BIT_EN_0);
10414     } else {
10415         val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
10416                  HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
10417                  HC_CONFIG_0_REG_INT_LINE_EN_0 |
10418                  HC_CONFIG_0_REG_ATTN_BIT_EN_0);
10419     }
10420 
10421     BLOGD(sc, DBG_INTR, "write %x to HC %d (addr 0x%x)\n", val, port, addr);
10422 
10423     /* flush all outstanding writes */
10424     mb();
10425 
10426     REG_WR(sc, addr, val);
10427     if (REG_RD(sc, addr) != val) {
10428         BLOGE(sc, "proper val not read from HC IGU!\n");
10429     }
10430 }
10431 
10432 static void
10433 bxe_igu_int_disable(struct bxe_softc *sc)
10434 {
10435     uint32_t val = REG_RD(sc, IGU_REG_PF_CONFIGURATION);
10436 
10437     val &= ~(IGU_PF_CONF_MSI_MSIX_EN |
10438              IGU_PF_CONF_INT_LINE_EN |
10439              IGU_PF_CONF_ATTN_BIT_EN);
10440 
10441     BLOGD(sc, DBG_INTR, "write %x to IGU\n", val);
10442 
10443     /* flush all outstanding writes */
10444     mb();
10445 
10446     REG_WR(sc, IGU_REG_PF_CONFIGURATION, val);
10447     if (REG_RD(sc, IGU_REG_PF_CONFIGURATION) != val) {
10448         BLOGE(sc, "proper val not read from IGU!\n");
10449     }
10450 }
10451 
10452 static void
10453 bxe_int_disable(struct bxe_softc *sc)
10454 {
10455     if (sc->devinfo.int_block == INT_BLOCK_HC) {
10456         bxe_hc_int_disable(sc);
10457     } else {
10458         bxe_igu_int_disable(sc);
10459     }
10460 }
10461 
10462 static void
10463 bxe_nic_init(struct bxe_softc *sc,
10464              int              load_code)
10465 {
10466     int i;
10467 
10468     for (i = 0; i < sc->num_queues; i++) {
10469         bxe_init_eth_fp(sc, i);
10470     }
10471 
10472     rmb(); /* ensure status block indices were read */
10473 
10474     bxe_init_rx_rings(sc);
10475     bxe_init_tx_rings(sc);
10476 
10477     if (IS_VF(sc)) {
10478         return;
10479     }
10480 
10481     /* initialize MOD_ABS interrupts */
10482     elink_init_mod_abs_int(sc, &sc->link_vars,
10483                            sc->devinfo.chip_id,
10484                            sc->devinfo.shmem_base,
10485                            sc->devinfo.shmem2_base,
10486                            SC_PORT(sc));
10487 
10488     bxe_init_def_sb(sc);
10489     bxe_update_dsb_idx(sc);
10490     bxe_init_sp_ring(sc);
10491     bxe_init_eq_ring(sc);
10492     bxe_init_internal(sc, load_code);
10493     bxe_pf_init(sc);
10494     bxe_stats_init(sc);
10495 
10496     /* flush all before enabling interrupts */
10497     mb();
10498 
10499     bxe_int_enable(sc);
10500 
10501     /* check for SPIO5 */
10502     bxe_attn_int_deasserted0(sc,
10503                              REG_RD(sc,
10504                                     (MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 +
10505                                      SC_PORT(sc)*4)) &
10506                              AEU_INPUTS_ATTN_BITS_SPIO5);
10507 }
10508 
10509 static inline void
10510 bxe_init_objs(struct bxe_softc *sc)
10511 {
10512     /* mcast rules must be added to tx if tx switching is enabled */
10513     ecore_obj_type o_type =
10514         (sc->flags & BXE_TX_SWITCHING) ? ECORE_OBJ_TYPE_RX_TX :
10515                                          ECORE_OBJ_TYPE_RX;
10516 
10517     /* RX_MODE controlling object */
10518     ecore_init_rx_mode_obj(sc, &sc->rx_mode_obj);
10519 
10520     /* multicast configuration controlling object */
10521     ecore_init_mcast_obj(sc,
10522                          &sc->mcast_obj,
10523                          sc->fp[0].cl_id,
10524                          sc->fp[0].index,
10525                          SC_FUNC(sc),
10526                          SC_FUNC(sc),
10527                          BXE_SP(sc, mcast_rdata),
10528                          BXE_SP_MAPPING(sc, mcast_rdata),
10529                          ECORE_FILTER_MCAST_PENDING,
10530                          &sc->sp_state,
10531                          o_type);
10532 
10533     /* Setup CAM credit pools */
10534     ecore_init_mac_credit_pool(sc,
10535                                &sc->macs_pool,
10536                                SC_FUNC(sc),
10537                                CHIP_IS_E1x(sc) ? VNICS_PER_PORT(sc) :
10538                                                  VNICS_PER_PATH(sc));
10539 
10540     ecore_init_vlan_credit_pool(sc,
10541                                 &sc->vlans_pool,
10542                                 SC_ABS_FUNC(sc) >> 1,
10543                                 CHIP_IS_E1x(sc) ? VNICS_PER_PORT(sc) :
10544                                                   VNICS_PER_PATH(sc));
10545 
10546     /* RSS configuration object */
10547     ecore_init_rss_config_obj(sc,
10548                               &sc->rss_conf_obj,
10549                               sc->fp[0].cl_id,
10550                               sc->fp[0].index,
10551                               SC_FUNC(sc),
10552                               SC_FUNC(sc),
10553                               BXE_SP(sc, rss_rdata),
10554                               BXE_SP_MAPPING(sc, rss_rdata),
10555                               ECORE_FILTER_RSS_CONF_PENDING,
10556                               &sc->sp_state, ECORE_OBJ_TYPE_RX);
10557 }
10558 
10559 /*
10560  * Initialize the function. This must be called before sending CLIENT_SETUP
10561  * for the first client.
10562  */
10563 static inline int
10564 bxe_func_start(struct bxe_softc *sc)
10565 {
10566     struct ecore_func_state_params func_params = { NULL };
10567     struct ecore_func_start_params *start_params = &func_params.params.start;
10568 
10569     /* Prepare parameters for function state transitions */
10570     bit_set(&func_params.ramrod_flags, RAMROD_COMP_WAIT);
10571 
10572     func_params.f_obj = &sc->func_obj;
10573     func_params.cmd = ECORE_F_CMD_START;
10574 
10575     /* Function parameters */
10576     start_params->mf_mode     = sc->devinfo.mf_info.mf_mode;
10577     start_params->sd_vlan_tag = OVLAN(sc);
10578 
10579     if (CHIP_IS_E2(sc) || CHIP_IS_E3(sc)) {
10580         start_params->network_cos_mode = STATIC_COS;
10581     } else { /* CHIP_IS_E1X */
10582         start_params->network_cos_mode = FW_WRR;
10583     }
10584 
10585     //start_params->gre_tunnel_mode = 0;
10586     //start_params->gre_tunnel_rss  = 0;
10587 
10588     return (ecore_func_state_change(sc, &func_params));
10589 }
10590 
10591 static int
10592 bxe_set_power_state(struct bxe_softc *sc,
10593                     uint8_t          state)
10594 {
10595     uint16_t pmcsr;
10596 
10597     /* If there is no power capability, silently succeed */
10598     if (!(sc->devinfo.pcie_cap_flags & BXE_PM_CAPABLE_FLAG)) {
10599         BLOGW(sc, "No power capability\n");
10600         return (0);
10601     }
10602 
10603     pmcsr = pci_read_config(sc->dev,
10604                             (sc->devinfo.pcie_pm_cap_reg + PCIR_POWER_STATUS),
10605                             2);
10606 
10607     switch (state) {
10608     case PCI_PM_D0:
10609         pci_write_config(sc->dev,
10610                          (sc->devinfo.pcie_pm_cap_reg + PCIR_POWER_STATUS),
10611                          ((pmcsr & ~PCIM_PSTAT_DMASK) | PCIM_PSTAT_PME), 2);
10612 
10613         if (pmcsr & PCIM_PSTAT_DMASK) {
10614             /* delay required during transition out of D3hot */
10615             DELAY(20000);
10616         }
10617 
10618         break;
10619 
10620     case PCI_PM_D3hot:
10621         /* XXX if there are other clients above don't shut down the power */
10622 
10623         /* don't shut down the power for emulation and FPGA */
10624         if (CHIP_REV_IS_SLOW(sc)) {
10625             return (0);
10626         }
10627 
10628         pmcsr &= ~PCIM_PSTAT_DMASK;
10629         pmcsr |= PCIM_PSTAT_D3;
10630 
10631         if (sc->wol) {
10632             pmcsr |= PCIM_PSTAT_PMEENABLE;
10633         }
10634 
10635         pci_write_config(sc->dev,
10636                          (sc->devinfo.pcie_pm_cap_reg + PCIR_POWER_STATUS),
10637                          pmcsr, 4);
10638 
10639         /*
10640          * No more memory access after this point until device is brought back
10641          * to D0 state.
10642          */
10643         break;
10644 
10645     default:
10646         BLOGE(sc, "Can't support PCI power state = 0x%x pmcsr 0x%x\n",
10647             state, pmcsr);
10648         return (-1);
10649     }
10650 
10651     return (0);
10652 }
10653 
10654 
10655 /* return true if succeeded to acquire the lock */
10656 static uint8_t
10657 bxe_trylock_hw_lock(struct bxe_softc *sc,
10658                     uint32_t         resource)
10659 {
10660     uint32_t lock_status;
10661     uint32_t resource_bit = (1 << resource);
10662     int func = SC_FUNC(sc);
10663     uint32_t hw_lock_control_reg;
10664 
10665     BLOGD(sc, DBG_LOAD, "Trying to take a resource lock 0x%x\n", resource);
10666 
10667     /* Validating that the resource is within range */
10668     if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
10669         BLOGD(sc, DBG_LOAD,
10670               "resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
10671               resource, HW_LOCK_MAX_RESOURCE_VALUE);
10672         return (FALSE);
10673     }
10674 
10675     if (func <= 5) {
10676         hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
10677     } else {
10678         hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
10679     }
10680 
10681     /* try to acquire the lock */
10682     REG_WR(sc, hw_lock_control_reg + 4, resource_bit);
10683     lock_status = REG_RD(sc, hw_lock_control_reg);
10684     if (lock_status & resource_bit) {
10685         return (TRUE);
10686     }
10687 
10688     BLOGE(sc, "Failed to get a resource lock 0x%x func %d "
10689         "lock_status 0x%x resource_bit 0x%x\n", resource, func,
10690         lock_status, resource_bit);
10691 
10692     return (FALSE);
10693 }
10694 
10695 /*
10696  * Get the recovery leader resource id according to the engine this function
10697  * belongs to. Currently only only 2 engines is supported.
10698  */
10699 static int
10700 bxe_get_leader_lock_resource(struct bxe_softc *sc)
10701 {
10702     if (SC_PATH(sc)) {
10703         return (HW_LOCK_RESOURCE_RECOVERY_LEADER_1);
10704     } else {
10705         return (HW_LOCK_RESOURCE_RECOVERY_LEADER_0);
10706     }
10707 }
10708 
10709 /* try to acquire a leader lock for current engine */
10710 static uint8_t
10711 bxe_trylock_leader_lock(struct bxe_softc *sc)
10712 {
10713     return (bxe_trylock_hw_lock(sc, bxe_get_leader_lock_resource(sc)));
10714 }
10715 
10716 static int
10717 bxe_release_leader_lock(struct bxe_softc *sc)
10718 {
10719     return (bxe_release_hw_lock(sc, bxe_get_leader_lock_resource(sc)));
10720 }
10721 
10722 /* close gates #2, #3 and #4 */
10723 static void
10724 bxe_set_234_gates(struct bxe_softc *sc,
10725                   uint8_t          close)
10726 {
10727     uint32_t val;
10728 
10729     /* gates #2 and #4a are closed/opened for "not E1" only */
10730     if (!CHIP_IS_E1(sc)) {
10731         /* #4 */
10732         REG_WR(sc, PXP_REG_HST_DISCARD_DOORBELLS, !!close);
10733         /* #2 */
10734         REG_WR(sc, PXP_REG_HST_DISCARD_INTERNAL_WRITES, !!close);
10735     }
10736 
10737     /* #3 */
10738     if (CHIP_IS_E1x(sc)) {
10739         /* prevent interrupts from HC on both ports */
10740         val = REG_RD(sc, HC_REG_CONFIG_1);
10741         REG_WR(sc, HC_REG_CONFIG_1,
10742                (!close) ? (val | HC_CONFIG_1_REG_BLOCK_DISABLE_1) :
10743                (val & ~(uint32_t)HC_CONFIG_1_REG_BLOCK_DISABLE_1));
10744 
10745         val = REG_RD(sc, HC_REG_CONFIG_0);
10746         REG_WR(sc, HC_REG_CONFIG_0,
10747                (!close) ? (val | HC_CONFIG_0_REG_BLOCK_DISABLE_0) :
10748                (val & ~(uint32_t)HC_CONFIG_0_REG_BLOCK_DISABLE_0));
10749     } else {
10750         /* Prevent incoming interrupts in IGU */
10751         val = REG_RD(sc, IGU_REG_BLOCK_CONFIGURATION);
10752 
10753         REG_WR(sc, IGU_REG_BLOCK_CONFIGURATION,
10754                (!close) ?
10755                (val | IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE) :
10756                (val & ~(uint32_t)IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE));
10757     }
10758 
10759     BLOGD(sc, DBG_LOAD, "%s gates #2, #3 and #4\n",
10760           close ? "closing" : "opening");
10761 
10762     wmb();
10763 }
10764 
10765 /* poll for pending writes bit, it should get cleared in no more than 1s */
10766 static int
10767 bxe_er_poll_igu_vq(struct bxe_softc *sc)
10768 {
10769     uint32_t cnt = 1000;
10770     uint32_t pend_bits = 0;
10771 
10772     do {
10773         pend_bits = REG_RD(sc, IGU_REG_PENDING_BITS_STATUS);
10774 
10775         if (pend_bits == 0) {
10776             break;
10777         }
10778 
10779         DELAY(1000);
10780     } while (--cnt > 0);
10781 
10782     if (cnt == 0) {
10783         BLOGE(sc, "Still pending IGU requests bits=0x%08x!\n", pend_bits);
10784         return (-1);
10785     }
10786 
10787     return (0);
10788 }
10789 
10790 #define SHARED_MF_CLP_MAGIC  0x80000000 /* 'magic' bit */
10791 
10792 static void
10793 bxe_clp_reset_prep(struct bxe_softc *sc,
10794                    uint32_t         *magic_val)
10795 {
10796     /* Do some magic... */
10797     uint32_t val = MFCFG_RD(sc, shared_mf_config.clp_mb);
10798     *magic_val = val & SHARED_MF_CLP_MAGIC;
10799     MFCFG_WR(sc, shared_mf_config.clp_mb, val | SHARED_MF_CLP_MAGIC);
10800 }
10801 
10802 /* restore the value of the 'magic' bit */
10803 static void
10804 bxe_clp_reset_done(struct bxe_softc *sc,
10805                    uint32_t         magic_val)
10806 {
10807     /* Restore the 'magic' bit value... */
10808     uint32_t val = MFCFG_RD(sc, shared_mf_config.clp_mb);
10809     MFCFG_WR(sc, shared_mf_config.clp_mb,
10810               (val & (~SHARED_MF_CLP_MAGIC)) | magic_val);
10811 }
10812 
10813 /* prepare for MCP reset, takes care of CLP configurations */
10814 static void
10815 bxe_reset_mcp_prep(struct bxe_softc *sc,
10816                    uint32_t         *magic_val)
10817 {
10818     uint32_t shmem;
10819     uint32_t validity_offset;
10820 
10821     /* set `magic' bit in order to save MF config */
10822     if (!CHIP_IS_E1(sc)) {
10823         bxe_clp_reset_prep(sc, magic_val);
10824     }
10825 
10826     /* get shmem offset */
10827     shmem = REG_RD(sc, MISC_REG_SHARED_MEM_ADDR);
10828     validity_offset =
10829         offsetof(struct shmem_region, validity_map[SC_PORT(sc)]);
10830 
10831     /* Clear validity map flags */
10832     if (shmem > 0) {
10833         REG_WR(sc, shmem + validity_offset, 0);
10834     }
10835 }
10836 
10837 #define MCP_TIMEOUT      5000   /* 5 seconds (in ms) */
10838 #define MCP_ONE_TIMEOUT  100    /* 100 ms */
10839 
10840 static void
10841 bxe_mcp_wait_one(struct bxe_softc *sc)
10842 {
10843     /* special handling for emulation and FPGA (10 times longer) */
10844     if (CHIP_REV_IS_SLOW(sc)) {
10845         DELAY((MCP_ONE_TIMEOUT*10) * 1000);
10846     } else {
10847         DELAY((MCP_ONE_TIMEOUT) * 1000);
10848     }
10849 }
10850 
10851 /* initialize shmem_base and waits for validity signature to appear */
10852 static int
10853 bxe_init_shmem(struct bxe_softc *sc)
10854 {
10855     int cnt = 0;
10856     uint32_t val = 0;
10857 
10858     do {
10859         sc->devinfo.shmem_base     =
10860         sc->link_params.shmem_base =
10861             REG_RD(sc, MISC_REG_SHARED_MEM_ADDR);
10862 
10863         if (sc->devinfo.shmem_base) {
10864             val = SHMEM_RD(sc, validity_map[SC_PORT(sc)]);
10865             if (val & SHR_MEM_VALIDITY_MB)
10866                 return (0);
10867         }
10868 
10869         bxe_mcp_wait_one(sc);
10870 
10871     } while (cnt++ < (MCP_TIMEOUT / MCP_ONE_TIMEOUT));
10872 
10873     BLOGE(sc, "BAD MCP validity signature\n");
10874 
10875     return (-1);
10876 }
10877 
10878 static int
10879 bxe_reset_mcp_comp(struct bxe_softc *sc,
10880                    uint32_t         magic_val)
10881 {
10882     int rc = bxe_init_shmem(sc);
10883 
10884     /* Restore the `magic' bit value */
10885     if (!CHIP_IS_E1(sc)) {
10886         bxe_clp_reset_done(sc, magic_val);
10887     }
10888 
10889     return (rc);
10890 }
10891 
10892 static void
10893 bxe_pxp_prep(struct bxe_softc *sc)
10894 {
10895     if (!CHIP_IS_E1(sc)) {
10896         REG_WR(sc, PXP2_REG_RD_START_INIT, 0);
10897         REG_WR(sc, PXP2_REG_RQ_RBC_DONE, 0);
10898         wmb();
10899     }
10900 }
10901 
10902 /*
10903  * Reset the whole chip except for:
10904  *      - PCIE core
10905  *      - PCI Glue, PSWHST, PXP/PXP2 RF (all controlled by one reset bit)
10906  *      - IGU
10907  *      - MISC (including AEU)
10908  *      - GRC
10909  *      - RBCN, RBCP
10910  */
10911 static void
10912 bxe_process_kill_chip_reset(struct bxe_softc *sc,
10913                             uint8_t          global)
10914 {
10915     uint32_t not_reset_mask1, reset_mask1, not_reset_mask2, reset_mask2;
10916     uint32_t global_bits2, stay_reset2;
10917 
10918     /*
10919      * Bits that have to be set in reset_mask2 if we want to reset 'global'
10920      * (per chip) blocks.
10921      */
10922     global_bits2 =
10923         MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CPU |
10924         MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CORE;
10925 
10926     /*
10927      * Don't reset the following blocks.
10928      * Important: per port blocks (such as EMAC, BMAC, UMAC) can't be
10929      *            reset, as in 4 port device they might still be owned
10930      *            by the MCP (there is only one leader per path).
10931      */
10932     not_reset_mask1 =
10933         MISC_REGISTERS_RESET_REG_1_RST_HC |
10934         MISC_REGISTERS_RESET_REG_1_RST_PXPV |
10935         MISC_REGISTERS_RESET_REG_1_RST_PXP;
10936 
10937     not_reset_mask2 =
10938         MISC_REGISTERS_RESET_REG_2_RST_PCI_MDIO |
10939         MISC_REGISTERS_RESET_REG_2_RST_EMAC0_HARD_CORE |
10940         MISC_REGISTERS_RESET_REG_2_RST_EMAC1_HARD_CORE |
10941         MISC_REGISTERS_RESET_REG_2_RST_MISC_CORE |
10942         MISC_REGISTERS_RESET_REG_2_RST_RBCN |
10943         MISC_REGISTERS_RESET_REG_2_RST_GRC  |
10944         MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_REG_HARD_CORE |
10945         MISC_REGISTERS_RESET_REG_2_RST_MCP_N_HARD_CORE_RST_B |
10946         MISC_REGISTERS_RESET_REG_2_RST_ATC |
10947         MISC_REGISTERS_RESET_REG_2_PGLC |
10948         MISC_REGISTERS_RESET_REG_2_RST_BMAC0 |
10949         MISC_REGISTERS_RESET_REG_2_RST_BMAC1 |
10950         MISC_REGISTERS_RESET_REG_2_RST_EMAC0 |
10951         MISC_REGISTERS_RESET_REG_2_RST_EMAC1 |
10952         MISC_REGISTERS_RESET_REG_2_UMAC0 |
10953         MISC_REGISTERS_RESET_REG_2_UMAC1;
10954 
10955     /*
10956      * Keep the following blocks in reset:
10957      *  - all xxMACs are handled by the elink code.
10958      */
10959     stay_reset2 =
10960         MISC_REGISTERS_RESET_REG_2_XMAC |
10961         MISC_REGISTERS_RESET_REG_2_XMAC_SOFT;
10962 
10963     /* Full reset masks according to the chip */
10964     reset_mask1 = 0xffffffff;
10965 
10966     if (CHIP_IS_E1(sc))
10967         reset_mask2 = 0xffff;
10968     else if (CHIP_IS_E1H(sc))
10969         reset_mask2 = 0x1ffff;
10970     else if (CHIP_IS_E2(sc))
10971         reset_mask2 = 0xfffff;
10972     else /* CHIP_IS_E3 */
10973         reset_mask2 = 0x3ffffff;
10974 
10975     /* Don't reset global blocks unless we need to */
10976     if (!global)
10977         reset_mask2 &= ~global_bits2;
10978 
10979     /*
10980      * In case of attention in the QM, we need to reset PXP
10981      * (MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR) before QM
10982      * because otherwise QM reset would release 'close the gates' shortly
10983      * before resetting the PXP, then the PSWRQ would send a write
10984      * request to PGLUE. Then when PXP is reset, PGLUE would try to
10985      * read the payload data from PSWWR, but PSWWR would not
10986      * respond. The write queue in PGLUE would stuck, dmae commands
10987      * would not return. Therefore it's important to reset the second
10988      * reset register (containing the
10989      * MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR bit) before the
10990      * first one (containing the MISC_REGISTERS_RESET_REG_1_RST_QM
10991      * bit).
10992      */
10993     REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR,
10994            reset_mask2 & (~not_reset_mask2));
10995 
10996     REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
10997            reset_mask1 & (~not_reset_mask1));
10998 
10999     mb();
11000     wmb();
11001 
11002     REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET,
11003            reset_mask2 & (~stay_reset2));
11004 
11005     mb();
11006     wmb();
11007 
11008     REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, reset_mask1);
11009     wmb();
11010 }
11011 
11012 static int
11013 bxe_process_kill(struct bxe_softc *sc,
11014                  uint8_t          global)
11015 {
11016     int cnt = 1000;
11017     uint32_t val = 0;
11018     uint32_t sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1, pgl_exp_rom2;
11019     uint32_t tags_63_32 = 0;
11020 
11021     /* Empty the Tetris buffer, wait for 1s */
11022     do {
11023         sr_cnt  = REG_RD(sc, PXP2_REG_RD_SR_CNT);
11024         blk_cnt = REG_RD(sc, PXP2_REG_RD_BLK_CNT);
11025         port_is_idle_0 = REG_RD(sc, PXP2_REG_RD_PORT_IS_IDLE_0);
11026         port_is_idle_1 = REG_RD(sc, PXP2_REG_RD_PORT_IS_IDLE_1);
11027         pgl_exp_rom2 = REG_RD(sc, PXP2_REG_PGL_EXP_ROM2);
11028         if (CHIP_IS_E3(sc)) {
11029             tags_63_32 = REG_RD(sc, PGLUE_B_REG_TAGS_63_32);
11030         }
11031 
11032         if ((sr_cnt == 0x7e) && (blk_cnt == 0xa0) &&
11033             ((port_is_idle_0 & 0x1) == 0x1) &&
11034             ((port_is_idle_1 & 0x1) == 0x1) &&
11035             (pgl_exp_rom2 == 0xffffffff) &&
11036             (!CHIP_IS_E3(sc) || (tags_63_32 == 0xffffffff)))
11037             break;
11038         DELAY(1000);
11039     } while (cnt-- > 0);
11040 
11041     if (cnt <= 0) {
11042         BLOGE(sc, "ERROR: Tetris buffer didn't get empty or there "
11043                   "are still outstanding read requests after 1s! "
11044                   "sr_cnt=0x%08x, blk_cnt=0x%08x, port_is_idle_0=0x%08x, "
11045                   "port_is_idle_1=0x%08x, pgl_exp_rom2=0x%08x\n",
11046               sr_cnt, blk_cnt, port_is_idle_0,
11047               port_is_idle_1, pgl_exp_rom2);
11048         return (-1);
11049     }
11050 
11051     mb();
11052 
11053     /* Close gates #2, #3 and #4 */
11054     bxe_set_234_gates(sc, TRUE);
11055 
11056     /* Poll for IGU VQs for 57712 and newer chips */
11057     if (!CHIP_IS_E1x(sc) && bxe_er_poll_igu_vq(sc)) {
11058         return (-1);
11059     }
11060 
11061     /* XXX indicate that "process kill" is in progress to MCP */
11062 
11063     /* clear "unprepared" bit */
11064     REG_WR(sc, MISC_REG_UNPREPARED, 0);
11065     mb();
11066 
11067     /* Make sure all is written to the chip before the reset */
11068     wmb();
11069 
11070     /*
11071      * Wait for 1ms to empty GLUE and PCI-E core queues,
11072      * PSWHST, GRC and PSWRD Tetris buffer.
11073      */
11074     DELAY(1000);
11075 
11076     /* Prepare to chip reset: */
11077     /* MCP */
11078     if (global) {
11079         bxe_reset_mcp_prep(sc, &val);
11080     }
11081 
11082     /* PXP */
11083     bxe_pxp_prep(sc);
11084     mb();
11085 
11086     /* reset the chip */
11087     bxe_process_kill_chip_reset(sc, global);
11088     mb();
11089 
11090     /* clear errors in PGB */
11091     if (!CHIP_IS_E1(sc))
11092         REG_WR(sc, PGLUE_B_REG_LATCHED_ERRORS_CLR, 0x7f);
11093 
11094     /* Recover after reset: */
11095     /* MCP */
11096     if (global && bxe_reset_mcp_comp(sc, val)) {
11097         return (-1);
11098     }
11099 
11100     /* XXX add resetting the NO_MCP mode DB here */
11101 
11102     /* Open the gates #2, #3 and #4 */
11103     bxe_set_234_gates(sc, FALSE);
11104 
11105     /* XXX
11106      * IGU/AEU preparation bring back the AEU/IGU to a reset state
11107      * re-enable attentions
11108      */
11109 
11110     return (0);
11111 }
11112 
11113 static int
11114 bxe_leader_reset(struct bxe_softc *sc)
11115 {
11116     int rc = 0;
11117     uint8_t global = bxe_reset_is_global(sc);
11118     uint32_t load_code;
11119 
11120     /*
11121      * If not going to reset MCP, load "fake" driver to reset HW while
11122      * driver is owner of the HW.
11123      */
11124     if (!global && !BXE_NOMCP(sc)) {
11125         load_code = bxe_fw_command(sc, DRV_MSG_CODE_LOAD_REQ,
11126                                    DRV_MSG_CODE_LOAD_REQ_WITH_LFA);
11127         if (!load_code) {
11128             BLOGE(sc, "MCP response failure, aborting\n");
11129             rc = -1;
11130             goto exit_leader_reset;
11131         }
11132 
11133         if ((load_code != FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) &&
11134             (load_code != FW_MSG_CODE_DRV_LOAD_COMMON)) {
11135             BLOGE(sc, "MCP unexpected response, aborting\n");
11136             rc = -1;
11137             goto exit_leader_reset2;
11138         }
11139 
11140         load_code = bxe_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0);
11141         if (!load_code) {
11142             BLOGE(sc, "MCP response failure, aborting\n");
11143             rc = -1;
11144             goto exit_leader_reset2;
11145         }
11146     }
11147 
11148     /* try to recover after the failure */
11149     if (bxe_process_kill(sc, global)) {
11150         BLOGE(sc, "Something bad occurred on engine %d!\n", SC_PATH(sc));
11151         rc = -1;
11152         goto exit_leader_reset2;
11153     }
11154 
11155     /*
11156      * Clear the RESET_IN_PROGRESS and RESET_GLOBAL bits and update the driver
11157      * state.
11158      */
11159     bxe_set_reset_done(sc);
11160     if (global) {
11161         bxe_clear_reset_global(sc);
11162     }
11163 
11164 exit_leader_reset2:
11165 
11166     /* unload "fake driver" if it was loaded */
11167     if (!global && !BXE_NOMCP(sc)) {
11168         bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP, 0);
11169         bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_DONE, 0);
11170     }
11171 
11172 exit_leader_reset:
11173 
11174     sc->is_leader = 0;
11175     bxe_release_leader_lock(sc);
11176 
11177     mb();
11178     return (rc);
11179 }
11180 
11181 /*
11182  * prepare INIT transition, parameters configured:
11183  *   - HC configuration
11184  *   - Queue's CDU context
11185  */
11186 static void
11187 bxe_pf_q_prep_init(struct bxe_softc               *sc,
11188                    struct bxe_fastpath            *fp,
11189                    struct ecore_queue_init_params *init_params)
11190 {
11191     uint8_t cos;
11192     int cxt_index, cxt_offset;
11193 
11194     bxe_set_bit(ECORE_Q_FLG_HC, &init_params->rx.flags);
11195     bxe_set_bit(ECORE_Q_FLG_HC, &init_params->tx.flags);
11196 
11197     bxe_set_bit(ECORE_Q_FLG_HC_EN, &init_params->rx.flags);
11198     bxe_set_bit(ECORE_Q_FLG_HC_EN, &init_params->tx.flags);
11199 
11200     /* HC rate */
11201     init_params->rx.hc_rate =
11202         sc->hc_rx_ticks ? (1000000 / sc->hc_rx_ticks) : 0;
11203     init_params->tx.hc_rate =
11204         sc->hc_tx_ticks ? (1000000 / sc->hc_tx_ticks) : 0;
11205 
11206     /* FW SB ID */
11207     init_params->rx.fw_sb_id = init_params->tx.fw_sb_id = fp->fw_sb_id;
11208 
11209     /* CQ index among the SB indices */
11210     init_params->rx.sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS;
11211     init_params->tx.sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS;
11212 
11213     /* set maximum number of COSs supported by this queue */
11214     init_params->max_cos = sc->max_cos;
11215 
11216     BLOGD(sc, DBG_LOAD, "fp %d setting queue params max cos to %d\n",
11217           fp->index, init_params->max_cos);
11218 
11219     /* set the context pointers queue object */
11220     for (cos = FIRST_TX_COS_INDEX; cos < init_params->max_cos; cos++) {
11221         /* XXX change index/cid here if ever support multiple tx CoS */
11222         /* fp->txdata[cos]->cid */
11223         cxt_index = fp->index / ILT_PAGE_CIDS;
11224         cxt_offset = fp->index - (cxt_index * ILT_PAGE_CIDS);
11225         init_params->cxts[cos] = &sc->context[cxt_index].vcxt[cxt_offset].eth;
11226     }
11227 }
11228 
11229 /* set flags that are common for the Tx-only and not normal connections */
11230 static unsigned long
11231 bxe_get_common_flags(struct bxe_softc    *sc,
11232                      struct bxe_fastpath *fp,
11233                      uint8_t             zero_stats)
11234 {
11235     unsigned long flags = 0;
11236 
11237     /* PF driver will always initialize the Queue to an ACTIVE state */
11238     bxe_set_bit(ECORE_Q_FLG_ACTIVE, &flags);
11239 
11240     /*
11241      * tx only connections collect statistics (on the same index as the
11242      * parent connection). The statistics are zeroed when the parent
11243      * connection is initialized.
11244      */
11245 
11246     bxe_set_bit(ECORE_Q_FLG_STATS, &flags);
11247     if (zero_stats) {
11248         bxe_set_bit(ECORE_Q_FLG_ZERO_STATS, &flags);
11249     }
11250 
11251     /*
11252      * tx only connections can support tx-switching, though their
11253      * CoS-ness doesn't survive the loopback
11254      */
11255     if (sc->flags & BXE_TX_SWITCHING) {
11256         bxe_set_bit(ECORE_Q_FLG_TX_SWITCH, &flags);
11257     }
11258 
11259     bxe_set_bit(ECORE_Q_FLG_PCSUM_ON_PKT, &flags);
11260 
11261     return (flags);
11262 }
11263 
11264 static unsigned long
11265 bxe_get_q_flags(struct bxe_softc    *sc,
11266                 struct bxe_fastpath *fp,
11267                 uint8_t             leading)
11268 {
11269     unsigned long flags = 0;
11270 
11271     if (IS_MF_SD(sc)) {
11272         bxe_set_bit(ECORE_Q_FLG_OV, &flags);
11273     }
11274 
11275     if (if_getcapenable(sc->ifp) & IFCAP_LRO) {
11276         bxe_set_bit(ECORE_Q_FLG_TPA, &flags);
11277         bxe_set_bit(ECORE_Q_FLG_TPA_IPV6, &flags);
11278     }
11279 
11280     if (leading) {
11281         bxe_set_bit(ECORE_Q_FLG_LEADING_RSS, &flags);
11282         bxe_set_bit(ECORE_Q_FLG_MCAST, &flags);
11283     }
11284 
11285     bxe_set_bit(ECORE_Q_FLG_VLAN, &flags);
11286 
11287     /* merge with common flags */
11288     return (flags | bxe_get_common_flags(sc, fp, TRUE));
11289 }
11290 
11291 static void
11292 bxe_pf_q_prep_general(struct bxe_softc                  *sc,
11293                       struct bxe_fastpath               *fp,
11294                       struct ecore_general_setup_params *gen_init,
11295                       uint8_t                           cos)
11296 {
11297     gen_init->stat_id = bxe_stats_id(fp);
11298     gen_init->spcl_id = fp->cl_id;
11299     gen_init->mtu = sc->mtu;
11300     gen_init->cos = cos;
11301 }
11302 
11303 static void
11304 bxe_pf_rx_q_prep(struct bxe_softc              *sc,
11305                  struct bxe_fastpath           *fp,
11306                  struct rxq_pause_params       *pause,
11307                  struct ecore_rxq_setup_params *rxq_init)
11308 {
11309     uint8_t max_sge = 0;
11310     uint16_t sge_sz = 0;
11311     uint16_t tpa_agg_size = 0;
11312 
11313     pause->sge_th_lo = SGE_TH_LO(sc);
11314     pause->sge_th_hi = SGE_TH_HI(sc);
11315 
11316     /* validate SGE ring has enough to cross high threshold */
11317     if (sc->dropless_fc &&
11318             (pause->sge_th_hi + FW_PREFETCH_CNT) >
11319             (RX_SGE_USABLE_PER_PAGE * RX_SGE_NUM_PAGES)) {
11320         BLOGW(sc, "sge ring threshold limit\n");
11321     }
11322 
11323     /* minimum max_aggregation_size is 2*MTU (two full buffers) */
11324     tpa_agg_size = (2 * sc->mtu);
11325     if (tpa_agg_size < sc->max_aggregation_size) {
11326         tpa_agg_size = sc->max_aggregation_size;
11327     }
11328 
11329     max_sge = SGE_PAGE_ALIGN(sc->mtu) >> SGE_PAGE_SHIFT;
11330     max_sge = ((max_sge + PAGES_PER_SGE - 1) &
11331                    (~(PAGES_PER_SGE - 1))) >> PAGES_PER_SGE_SHIFT;
11332     sge_sz = (uint16_t)min(SGE_PAGES, 0xffff);
11333 
11334     /* pause - not for e1 */
11335     if (!CHIP_IS_E1(sc)) {
11336         pause->bd_th_lo = BD_TH_LO(sc);
11337         pause->bd_th_hi = BD_TH_HI(sc);
11338 
11339         pause->rcq_th_lo = RCQ_TH_LO(sc);
11340         pause->rcq_th_hi = RCQ_TH_HI(sc);
11341 
11342         /* validate rings have enough entries to cross high thresholds */
11343         if (sc->dropless_fc &&
11344             pause->bd_th_hi + FW_PREFETCH_CNT >
11345             sc->rx_ring_size) {
11346             BLOGW(sc, "rx bd ring threshold limit\n");
11347         }
11348 
11349         if (sc->dropless_fc &&
11350             pause->rcq_th_hi + FW_PREFETCH_CNT >
11351             RCQ_NUM_PAGES * RCQ_USABLE_PER_PAGE) {
11352             BLOGW(sc, "rcq ring threshold limit\n");
11353         }
11354 
11355         pause->pri_map = 1;
11356     }
11357 
11358     /* rxq setup */
11359     rxq_init->dscr_map   = fp->rx_dma.paddr;
11360     rxq_init->sge_map    = fp->rx_sge_dma.paddr;
11361     rxq_init->rcq_map    = fp->rcq_dma.paddr;
11362     rxq_init->rcq_np_map = (fp->rcq_dma.paddr + BCM_PAGE_SIZE);
11363 
11364     /*
11365      * This should be a maximum number of data bytes that may be
11366      * placed on the BD (not including paddings).
11367      */
11368     rxq_init->buf_sz = (fp->rx_buf_size -
11369                         IP_HEADER_ALIGNMENT_PADDING);
11370 
11371     rxq_init->cl_qzone_id     = fp->cl_qzone_id;
11372     rxq_init->tpa_agg_sz      = tpa_agg_size;
11373     rxq_init->sge_buf_sz      = sge_sz;
11374     rxq_init->max_sges_pkt    = max_sge;
11375     rxq_init->rss_engine_id   = SC_FUNC(sc);
11376     rxq_init->mcast_engine_id = SC_FUNC(sc);
11377 
11378     /*
11379      * Maximum number or simultaneous TPA aggregation for this Queue.
11380      * For PF Clients it should be the maximum available number.
11381      * VF driver(s) may want to define it to a smaller value.
11382      */
11383     rxq_init->max_tpa_queues = MAX_AGG_QS(sc);
11384 
11385     rxq_init->cache_line_log = BXE_RX_ALIGN_SHIFT;
11386     rxq_init->fw_sb_id = fp->fw_sb_id;
11387 
11388     rxq_init->sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS;
11389 
11390     /*
11391      * configure silent vlan removal
11392      * if multi function mode is afex, then mask default vlan
11393      */
11394     if (IS_MF_AFEX(sc)) {
11395         rxq_init->silent_removal_value =
11396             sc->devinfo.mf_info.afex_def_vlan_tag;
11397         rxq_init->silent_removal_mask = EVL_VLID_MASK;
11398     }
11399 }
11400 
11401 static void
11402 bxe_pf_tx_q_prep(struct bxe_softc              *sc,
11403                  struct bxe_fastpath           *fp,
11404                  struct ecore_txq_setup_params *txq_init,
11405                  uint8_t                       cos)
11406 {
11407     /*
11408      * XXX If multiple CoS is ever supported then each fastpath structure
11409      * will need to maintain tx producer/consumer/dma/etc values *per* CoS.
11410      * fp->txdata[cos]->tx_dma.paddr;
11411      */
11412     txq_init->dscr_map     = fp->tx_dma.paddr;
11413     txq_init->sb_cq_index  = HC_INDEX_ETH_FIRST_TX_CQ_CONS + cos;
11414     txq_init->traffic_type = LLFC_TRAFFIC_TYPE_NW;
11415     txq_init->fw_sb_id     = fp->fw_sb_id;
11416 
11417     /*
11418      * set the TSS leading client id for TX classfication to the
11419      * leading RSS client id
11420      */
11421     txq_init->tss_leading_cl_id = BXE_FP(sc, 0, cl_id);
11422 }
11423 
11424 /*
11425  * This function performs 2 steps in a queue state machine:
11426  *   1) RESET->INIT
11427  *   2) INIT->SETUP
11428  */
11429 static int
11430 bxe_setup_queue(struct bxe_softc    *sc,
11431                 struct bxe_fastpath *fp,
11432                 uint8_t             leading)
11433 {
11434     struct ecore_queue_state_params q_params = { NULL };
11435     struct ecore_queue_setup_params *setup_params =
11436                         &q_params.params.setup;
11437     int rc;
11438 
11439     BLOGD(sc, DBG_LOAD, "setting up queue %d\n", fp->index);
11440 
11441     bxe_ack_sb(sc, fp->igu_sb_id, USTORM_ID, 0, IGU_INT_ENABLE, 0);
11442 
11443     q_params.q_obj = &BXE_SP_OBJ(sc, fp).q_obj;
11444 
11445     /* we want to wait for completion in this context */
11446     bxe_set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
11447 
11448     /* prepare the INIT parameters */
11449     bxe_pf_q_prep_init(sc, fp, &q_params.params.init);
11450 
11451     /* Set the command */
11452     q_params.cmd = ECORE_Q_CMD_INIT;
11453 
11454     /* Change the state to INIT */
11455     rc = ecore_queue_state_change(sc, &q_params);
11456     if (rc) {
11457         BLOGE(sc, "Queue(%d) INIT failed rc = %d\n", fp->index, rc);
11458         return (rc);
11459     }
11460 
11461     BLOGD(sc, DBG_LOAD, "init complete\n");
11462 
11463     /* now move the Queue to the SETUP state */
11464     memset(setup_params, 0, sizeof(*setup_params));
11465 
11466     /* set Queue flags */
11467     setup_params->flags = bxe_get_q_flags(sc, fp, leading);
11468 
11469     /* set general SETUP parameters */
11470     bxe_pf_q_prep_general(sc, fp, &setup_params->gen_params,
11471                           FIRST_TX_COS_INDEX);
11472 
11473     bxe_pf_rx_q_prep(sc, fp,
11474                      &setup_params->pause_params,
11475                      &setup_params->rxq_params);
11476 
11477     bxe_pf_tx_q_prep(sc, fp,
11478                      &setup_params->txq_params,
11479                      FIRST_TX_COS_INDEX);
11480 
11481     /* Set the command */
11482     q_params.cmd = ECORE_Q_CMD_SETUP;
11483 
11484     /* change the state to SETUP */
11485     rc = ecore_queue_state_change(sc, &q_params);
11486     if (rc) {
11487         BLOGE(sc, "Queue(%d) SETUP failed (rc = %d)\n", fp->index, rc);
11488         return (rc);
11489     }
11490 
11491     return (rc);
11492 }
11493 
11494 static int
11495 bxe_setup_leading(struct bxe_softc *sc)
11496 {
11497     return (bxe_setup_queue(sc, &sc->fp[0], TRUE));
11498 }
11499 
11500 static int
11501 bxe_config_rss_pf(struct bxe_softc            *sc,
11502                   struct ecore_rss_config_obj *rss_obj,
11503                   uint8_t                     config_hash)
11504 {
11505     struct ecore_config_rss_params params = { NULL };
11506     int i;
11507 
11508     /*
11509      * Although RSS is meaningless when there is a single HW queue we
11510      * still need it enabled in order to have HW Rx hash generated.
11511      */
11512 
11513     params.rss_obj = rss_obj;
11514 
11515     bxe_set_bit(RAMROD_COMP_WAIT, &params.ramrod_flags);
11516 
11517     bxe_set_bit(ECORE_RSS_MODE_REGULAR, &params.rss_flags);
11518 
11519     /* RSS configuration */
11520     bxe_set_bit(ECORE_RSS_IPV4, &params.rss_flags);
11521     bxe_set_bit(ECORE_RSS_IPV4_TCP, &params.rss_flags);
11522     bxe_set_bit(ECORE_RSS_IPV6, &params.rss_flags);
11523     bxe_set_bit(ECORE_RSS_IPV6_TCP, &params.rss_flags);
11524     if (rss_obj->udp_rss_v4) {
11525         bxe_set_bit(ECORE_RSS_IPV4_UDP, &params.rss_flags);
11526     }
11527     if (rss_obj->udp_rss_v6) {
11528         bxe_set_bit(ECORE_RSS_IPV6_UDP, &params.rss_flags);
11529     }
11530 
11531     /* Hash bits */
11532     params.rss_result_mask = MULTI_MASK;
11533 
11534     memcpy(params.ind_table, rss_obj->ind_table, sizeof(params.ind_table));
11535 
11536     if (config_hash) {
11537         /* RSS keys */
11538         for (i = 0; i < sizeof(params.rss_key) / 4; i++) {
11539             params.rss_key[i] = arc4random();
11540         }
11541 
11542         bxe_set_bit(ECORE_RSS_SET_SRCH, &params.rss_flags);
11543     }
11544 
11545     return (ecore_config_rss(sc, &params));
11546 }
11547 
11548 static int
11549 bxe_config_rss_eth(struct bxe_softc *sc,
11550                    uint8_t          config_hash)
11551 {
11552     return (bxe_config_rss_pf(sc, &sc->rss_conf_obj, config_hash));
11553 }
11554 
11555 static int
11556 bxe_init_rss_pf(struct bxe_softc *sc)
11557 {
11558     uint8_t num_eth_queues = BXE_NUM_ETH_QUEUES(sc);
11559     int i;
11560 
11561     /*
11562      * Prepare the initial contents of the indirection table if
11563      * RSS is enabled
11564      */
11565     for (i = 0; i < sizeof(sc->rss_conf_obj.ind_table); i++) {
11566         sc->rss_conf_obj.ind_table[i] =
11567             (sc->fp->cl_id + (i % num_eth_queues));
11568     }
11569 
11570     if (sc->udp_rss) {
11571         sc->rss_conf_obj.udp_rss_v4 = sc->rss_conf_obj.udp_rss_v6 = 1;
11572     }
11573 
11574     /*
11575      * For 57710 and 57711 SEARCHER configuration (rss_keys) is
11576      * per-port, so if explicit configuration is needed, do it only
11577      * for a PMF.
11578      *
11579      * For 57712 and newer it's a per-function configuration.
11580      */
11581     return (bxe_config_rss_eth(sc, sc->port.pmf || !CHIP_IS_E1x(sc)));
11582 }
11583 
11584 static int
11585 bxe_set_mac_one(struct bxe_softc          *sc,
11586                 uint8_t                   *mac,
11587                 struct ecore_vlan_mac_obj *obj,
11588                 uint8_t                   set,
11589                 int                       mac_type,
11590                 unsigned long             *ramrod_flags)
11591 {
11592     struct ecore_vlan_mac_ramrod_params ramrod_param;
11593     int rc;
11594 
11595     memset(&ramrod_param, 0, sizeof(ramrod_param));
11596 
11597     /* fill in general parameters */
11598     ramrod_param.vlan_mac_obj = obj;
11599     ramrod_param.ramrod_flags = *ramrod_flags;
11600 
11601     /* fill a user request section if needed */
11602     if (!bxe_test_bit(RAMROD_CONT, ramrod_flags)) {
11603         memcpy(ramrod_param.user_req.u.mac.mac, mac, ETH_ALEN);
11604 
11605         bxe_set_bit(mac_type, &ramrod_param.user_req.vlan_mac_flags);
11606 
11607         /* Set the command: ADD or DEL */
11608         ramrod_param.user_req.cmd = (set) ? ECORE_VLAN_MAC_ADD :
11609                                             ECORE_VLAN_MAC_DEL;
11610     }
11611 
11612     rc = ecore_config_vlan_mac(sc, &ramrod_param);
11613 
11614     if (rc == ECORE_EXISTS) {
11615         BLOGD(sc, DBG_SP, "Failed to schedule ADD operations (EEXIST)\n");
11616         /* do not treat adding same MAC as error */
11617         rc = 0;
11618     } else if (rc < 0) {
11619         BLOGE(sc, "%s MAC failed (%d)\n", (set ? "Set" : "Delete"), rc);
11620     }
11621 
11622     return (rc);
11623 }
11624 
11625 static int
11626 bxe_set_eth_mac(struct bxe_softc *sc,
11627                 uint8_t          set)
11628 {
11629     unsigned long ramrod_flags = 0;
11630 
11631     BLOGD(sc, DBG_LOAD, "Adding Ethernet MAC\n");
11632 
11633     bxe_set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
11634 
11635     /* Eth MAC is set on RSS leading client (fp[0]) */
11636     return (bxe_set_mac_one(sc, sc->link_params.mac_addr,
11637                             &sc->sp_objs->mac_obj,
11638                             set, ECORE_ETH_MAC, &ramrod_flags));
11639 }
11640 
11641 static int
11642 bxe_get_cur_phy_idx(struct bxe_softc *sc)
11643 {
11644     uint32_t sel_phy_idx = 0;
11645 
11646     if (sc->link_params.num_phys <= 1) {
11647         return (ELINK_INT_PHY);
11648     }
11649 
11650     if (sc->link_vars.link_up) {
11651         sel_phy_idx = ELINK_EXT_PHY1;
11652         /* In case link is SERDES, check if the ELINK_EXT_PHY2 is the one */
11653         if ((sc->link_vars.link_status & LINK_STATUS_SERDES_LINK) &&
11654             (sc->link_params.phy[ELINK_EXT_PHY2].supported &
11655              ELINK_SUPPORTED_FIBRE))
11656             sel_phy_idx = ELINK_EXT_PHY2;
11657     } else {
11658         switch (elink_phy_selection(&sc->link_params)) {
11659         case PORT_HW_CFG_PHY_SELECTION_HARDWARE_DEFAULT:
11660         case PORT_HW_CFG_PHY_SELECTION_FIRST_PHY:
11661         case PORT_HW_CFG_PHY_SELECTION_FIRST_PHY_PRIORITY:
11662                sel_phy_idx = ELINK_EXT_PHY1;
11663                break;
11664         case PORT_HW_CFG_PHY_SELECTION_SECOND_PHY:
11665         case PORT_HW_CFG_PHY_SELECTION_SECOND_PHY_PRIORITY:
11666                sel_phy_idx = ELINK_EXT_PHY2;
11667                break;
11668         }
11669     }
11670 
11671     return (sel_phy_idx);
11672 }
11673 
11674 static int
11675 bxe_get_link_cfg_idx(struct bxe_softc *sc)
11676 {
11677     uint32_t sel_phy_idx = bxe_get_cur_phy_idx(sc);
11678 
11679     /*
11680      * The selected activated PHY is always after swapping (in case PHY
11681      * swapping is enabled). So when swapping is enabled, we need to reverse
11682      * the configuration
11683      */
11684 
11685     if (sc->link_params.multi_phy_config & PORT_HW_CFG_PHY_SWAPPED_ENABLED) {
11686         if (sel_phy_idx == ELINK_EXT_PHY1)
11687             sel_phy_idx = ELINK_EXT_PHY2;
11688         else if (sel_phy_idx == ELINK_EXT_PHY2)
11689             sel_phy_idx = ELINK_EXT_PHY1;
11690     }
11691 
11692     return (ELINK_LINK_CONFIG_IDX(sel_phy_idx));
11693 }
11694 
11695 static void
11696 bxe_set_requested_fc(struct bxe_softc *sc)
11697 {
11698     /*
11699      * Initialize link parameters structure variables
11700      * It is recommended to turn off RX FC for jumbo frames
11701      * for better performance
11702      */
11703     if (CHIP_IS_E1x(sc) && (sc->mtu > 5000)) {
11704         sc->link_params.req_fc_auto_adv = ELINK_FLOW_CTRL_TX;
11705     } else {
11706         sc->link_params.req_fc_auto_adv = ELINK_FLOW_CTRL_BOTH;
11707     }
11708 }
11709 
11710 static void
11711 bxe_calc_fc_adv(struct bxe_softc *sc)
11712 {
11713     uint8_t cfg_idx = bxe_get_link_cfg_idx(sc);
11714 
11715 
11716     sc->port.advertising[cfg_idx] &= ~(ADVERTISED_Asym_Pause |
11717                                            ADVERTISED_Pause);
11718 
11719     switch (sc->link_vars.ieee_fc &
11720             MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_MASK) {
11721 
11722     case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_BOTH:
11723         sc->port.advertising[cfg_idx] |= (ADVERTISED_Asym_Pause |
11724                                           ADVERTISED_Pause);
11725         break;
11726 
11727     case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_ASYMMETRIC:
11728         sc->port.advertising[cfg_idx] |= ADVERTISED_Asym_Pause;
11729         break;
11730 
11731     default:
11732         break;
11733 
11734     }
11735 }
11736 
11737 static uint16_t
11738 bxe_get_mf_speed(struct bxe_softc *sc)
11739 {
11740     uint16_t line_speed = sc->link_vars.line_speed;
11741     if (IS_MF(sc)) {
11742         uint16_t maxCfg =
11743             bxe_extract_max_cfg(sc, sc->devinfo.mf_info.mf_config[SC_VN(sc)]);
11744 
11745         /* calculate the current MAX line speed limit for the MF devices */
11746         if (IS_MF_SI(sc)) {
11747             line_speed = (line_speed * maxCfg) / 100;
11748         } else { /* SD mode */
11749             uint16_t vn_max_rate = maxCfg * 100;
11750 
11751             if (vn_max_rate < line_speed) {
11752                 line_speed = vn_max_rate;
11753             }
11754         }
11755     }
11756 
11757     return (line_speed);
11758 }
11759 
11760 static void
11761 bxe_fill_report_data(struct bxe_softc            *sc,
11762                      struct bxe_link_report_data *data)
11763 {
11764     uint16_t line_speed = bxe_get_mf_speed(sc);
11765 
11766     memset(data, 0, sizeof(*data));
11767 
11768     /* fill the report data with the effective line speed */
11769     data->line_speed = line_speed;
11770 
11771     /* Link is down */
11772     if (!sc->link_vars.link_up || (sc->flags & BXE_MF_FUNC_DIS)) {
11773         bxe_set_bit(BXE_LINK_REPORT_LINK_DOWN, &data->link_report_flags);
11774     }
11775 
11776     /* Full DUPLEX */
11777     if (sc->link_vars.duplex == DUPLEX_FULL) {
11778         bxe_set_bit(BXE_LINK_REPORT_FULL_DUPLEX, &data->link_report_flags);
11779     }
11780 
11781     /* Rx Flow Control is ON */
11782     if (sc->link_vars.flow_ctrl & ELINK_FLOW_CTRL_RX) {
11783         bxe_set_bit(BXE_LINK_REPORT_RX_FC_ON, &data->link_report_flags);
11784     }
11785 
11786     /* Tx Flow Control is ON */
11787     if (sc->link_vars.flow_ctrl & ELINK_FLOW_CTRL_TX) {
11788         bxe_set_bit(BXE_LINK_REPORT_TX_FC_ON, &data->link_report_flags);
11789     }
11790 }
11791 
11792 /* report link status to OS, should be called under phy_lock */
11793 static void
11794 bxe_link_report_locked(struct bxe_softc *sc)
11795 {
11796     struct bxe_link_report_data cur_data;
11797 
11798     /* reread mf_cfg */
11799     if (IS_PF(sc) && !CHIP_IS_E1(sc)) {
11800         bxe_read_mf_cfg(sc);
11801     }
11802 
11803     /* Read the current link report info */
11804     bxe_fill_report_data(sc, &cur_data);
11805 
11806     /* Don't report link down or exactly the same link status twice */
11807     if (!memcmp(&cur_data, &sc->last_reported_link, sizeof(cur_data)) ||
11808         (bxe_test_bit(BXE_LINK_REPORT_LINK_DOWN,
11809                       &sc->last_reported_link.link_report_flags) &&
11810          bxe_test_bit(BXE_LINK_REPORT_LINK_DOWN,
11811                       &cur_data.link_report_flags))) {
11812         return;
11813     }
11814 
11815 	ELINK_DEBUG_P2(sc, "Change in link status : cur_data = %x, last_reported_link = %x\n",
11816 					cur_data.link_report_flags, sc->last_reported_link.link_report_flags);
11817     sc->link_cnt++;
11818 
11819 	ELINK_DEBUG_P1(sc, "link status change count = %x\n", sc->link_cnt);
11820     /* report new link params and remember the state for the next time */
11821     memcpy(&sc->last_reported_link, &cur_data, sizeof(cur_data));
11822 
11823     if (bxe_test_bit(BXE_LINK_REPORT_LINK_DOWN,
11824                      &cur_data.link_report_flags)) {
11825         if_link_state_change(sc->ifp, LINK_STATE_DOWN);
11826     } else {
11827         const char *duplex;
11828         const char *flow;
11829 
11830         if (bxe_test_and_clear_bit(BXE_LINK_REPORT_FULL_DUPLEX,
11831                                    &cur_data.link_report_flags)) {
11832             duplex = "full";
11833 			ELINK_DEBUG_P0(sc, "link set to full duplex\n");
11834         } else {
11835             duplex = "half";
11836 			ELINK_DEBUG_P0(sc, "link set to half duplex\n");
11837         }
11838 
11839         /*
11840          * Handle the FC at the end so that only these flags would be
11841          * possibly set. This way we may easily check if there is no FC
11842          * enabled.
11843          */
11844         if (cur_data.link_report_flags) {
11845             if (bxe_test_bit(BXE_LINK_REPORT_RX_FC_ON,
11846                              &cur_data.link_report_flags) &&
11847                 bxe_test_bit(BXE_LINK_REPORT_TX_FC_ON,
11848                              &cur_data.link_report_flags)) {
11849                 flow = "ON - receive & transmit";
11850             } else if (bxe_test_bit(BXE_LINK_REPORT_RX_FC_ON,
11851                                     &cur_data.link_report_flags) &&
11852                        !bxe_test_bit(BXE_LINK_REPORT_TX_FC_ON,
11853                                      &cur_data.link_report_flags)) {
11854                 flow = "ON - receive";
11855             } else if (!bxe_test_bit(BXE_LINK_REPORT_RX_FC_ON,
11856                                      &cur_data.link_report_flags) &&
11857                        bxe_test_bit(BXE_LINK_REPORT_TX_FC_ON,
11858                                     &cur_data.link_report_flags)) {
11859                 flow = "ON - transmit";
11860             } else {
11861                 flow = "none"; /* possible? */
11862             }
11863         } else {
11864             flow = "none";
11865         }
11866 
11867         if_link_state_change(sc->ifp, LINK_STATE_UP);
11868         BLOGI(sc, "NIC Link is Up, %d Mbps %s duplex, Flow control: %s\n",
11869               cur_data.line_speed, duplex, flow);
11870     }
11871 }
11872 
11873 static void
11874 bxe_link_report(struct bxe_softc *sc)
11875 {
11876     bxe_acquire_phy_lock(sc);
11877     bxe_link_report_locked(sc);
11878     bxe_release_phy_lock(sc);
11879 }
11880 
11881 static void
11882 bxe_link_status_update(struct bxe_softc *sc)
11883 {
11884     if (sc->state != BXE_STATE_OPEN) {
11885         return;
11886     }
11887 
11888     if (IS_PF(sc) && !CHIP_REV_IS_SLOW(sc)) {
11889         elink_link_status_update(&sc->link_params, &sc->link_vars);
11890     } else {
11891         sc->port.supported[0] |= (ELINK_SUPPORTED_10baseT_Half |
11892                                   ELINK_SUPPORTED_10baseT_Full |
11893                                   ELINK_SUPPORTED_100baseT_Half |
11894                                   ELINK_SUPPORTED_100baseT_Full |
11895                                   ELINK_SUPPORTED_1000baseT_Full |
11896                                   ELINK_SUPPORTED_2500baseX_Full |
11897                                   ELINK_SUPPORTED_10000baseT_Full |
11898                                   ELINK_SUPPORTED_TP |
11899                                   ELINK_SUPPORTED_FIBRE |
11900                                   ELINK_SUPPORTED_Autoneg |
11901                                   ELINK_SUPPORTED_Pause |
11902                                   ELINK_SUPPORTED_Asym_Pause);
11903         sc->port.advertising[0] = sc->port.supported[0];
11904 
11905         sc->link_params.sc                = sc;
11906         sc->link_params.port              = SC_PORT(sc);
11907         sc->link_params.req_duplex[0]     = DUPLEX_FULL;
11908         sc->link_params.req_flow_ctrl[0]  = ELINK_FLOW_CTRL_NONE;
11909         sc->link_params.req_line_speed[0] = SPEED_10000;
11910         sc->link_params.speed_cap_mask[0] = 0x7f0000;
11911         sc->link_params.switch_cfg        = ELINK_SWITCH_CFG_10G;
11912 
11913         if (CHIP_REV_IS_FPGA(sc)) {
11914             sc->link_vars.mac_type    = ELINK_MAC_TYPE_EMAC;
11915             sc->link_vars.line_speed  = ELINK_SPEED_1000;
11916             sc->link_vars.link_status = (LINK_STATUS_LINK_UP |
11917                                          LINK_STATUS_SPEED_AND_DUPLEX_1000TFD);
11918         } else {
11919             sc->link_vars.mac_type    = ELINK_MAC_TYPE_BMAC;
11920             sc->link_vars.line_speed  = ELINK_SPEED_10000;
11921             sc->link_vars.link_status = (LINK_STATUS_LINK_UP |
11922                                          LINK_STATUS_SPEED_AND_DUPLEX_10GTFD);
11923         }
11924 
11925         sc->link_vars.link_up = 1;
11926 
11927         sc->link_vars.duplex    = DUPLEX_FULL;
11928         sc->link_vars.flow_ctrl = ELINK_FLOW_CTRL_NONE;
11929 
11930         if (IS_PF(sc)) {
11931             REG_WR(sc, NIG_REG_EGRESS_DRAIN0_MODE + sc->link_params.port*4, 0);
11932             bxe_stats_handle(sc, STATS_EVENT_LINK_UP);
11933             bxe_link_report(sc);
11934         }
11935     }
11936 
11937     if (IS_PF(sc)) {
11938         if (sc->link_vars.link_up) {
11939             bxe_stats_handle(sc, STATS_EVENT_LINK_UP);
11940         } else {
11941             bxe_stats_handle(sc, STATS_EVENT_STOP);
11942         }
11943         bxe_link_report(sc);
11944     } else {
11945         bxe_link_report(sc);
11946         bxe_stats_handle(sc, STATS_EVENT_LINK_UP);
11947     }
11948 }
11949 
11950 static int
11951 bxe_initial_phy_init(struct bxe_softc *sc,
11952                      int              load_mode)
11953 {
11954     int rc, cfg_idx = bxe_get_link_cfg_idx(sc);
11955     uint16_t req_line_speed = sc->link_params.req_line_speed[cfg_idx];
11956     struct elink_params *lp = &sc->link_params;
11957 
11958     bxe_set_requested_fc(sc);
11959 
11960     if (CHIP_REV_IS_SLOW(sc)) {
11961         uint32_t bond = CHIP_BOND_ID(sc);
11962         uint32_t feat = 0;
11963 
11964         if (CHIP_IS_E2(sc) && CHIP_IS_MODE_4_PORT(sc)) {
11965             feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_BMAC;
11966         } else if (bond & 0x4) {
11967             if (CHIP_IS_E3(sc)) {
11968                 feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_XMAC;
11969             } else {
11970                 feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_BMAC;
11971             }
11972         } else if (bond & 0x8) {
11973             if (CHIP_IS_E3(sc)) {
11974                 feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_UMAC;
11975             } else {
11976                 feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_EMAC;
11977             }
11978         }
11979 
11980         /* disable EMAC for E3 and above */
11981         if (bond & 0x2) {
11982             feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_EMAC;
11983         }
11984 
11985         sc->link_params.feature_config_flags |= feat;
11986     }
11987 
11988     bxe_acquire_phy_lock(sc);
11989 
11990     if (load_mode == LOAD_DIAG) {
11991         lp->loopback_mode = ELINK_LOOPBACK_XGXS;
11992         /* Prefer doing PHY loopback at 10G speed, if possible */
11993         if (lp->req_line_speed[cfg_idx] < ELINK_SPEED_10000) {
11994             if (lp->speed_cap_mask[cfg_idx] &
11995                 PORT_HW_CFG_SPEED_CAPABILITY_D0_10G) {
11996                 lp->req_line_speed[cfg_idx] = ELINK_SPEED_10000;
11997             } else {
11998                 lp->req_line_speed[cfg_idx] = ELINK_SPEED_1000;
11999             }
12000         }
12001     }
12002 
12003     if (load_mode == LOAD_LOOPBACK_EXT) {
12004         lp->loopback_mode = ELINK_LOOPBACK_EXT;
12005     }
12006 
12007     rc = elink_phy_init(&sc->link_params, &sc->link_vars);
12008 
12009     bxe_release_phy_lock(sc);
12010 
12011     bxe_calc_fc_adv(sc);
12012 
12013     if (sc->link_vars.link_up) {
12014         bxe_stats_handle(sc, STATS_EVENT_LINK_UP);
12015         bxe_link_report(sc);
12016     }
12017 
12018     if (!CHIP_REV_IS_SLOW(sc)) {
12019         bxe_periodic_start(sc);
12020     }
12021 
12022     sc->link_params.req_line_speed[cfg_idx] = req_line_speed;
12023     return (rc);
12024 }
12025 
12026 static u_int
12027 bxe_push_maddr(void *arg, struct sockaddr_dl *sdl, u_int cnt)
12028 {
12029     struct ecore_mcast_list_elem *mc_mac = arg;
12030 
12031     mc_mac += cnt;
12032     mc_mac->mac = (uint8_t *)LLADDR(sdl);
12033 
12034     return (1);
12035 }
12036 
12037 static int
12038 bxe_init_mcast_macs_list(struct bxe_softc                 *sc,
12039                          struct ecore_mcast_ramrod_params *p)
12040 {
12041     if_t ifp = sc->ifp;
12042     int mc_count;
12043     struct ecore_mcast_list_elem *mc_mac;
12044 
12045     ECORE_LIST_INIT(&p->mcast_list);
12046     p->mcast_list_len = 0;
12047 
12048     /* XXXGL: multicast count may change later */
12049     mc_count = if_llmaddr_count(ifp);
12050 
12051     if (!mc_count) {
12052         return (0);
12053     }
12054 
12055     mc_mac = malloc(sizeof(*mc_mac) * mc_count, M_DEVBUF,
12056                     (M_NOWAIT | M_ZERO));
12057     if (!mc_mac) {
12058         BLOGE(sc, "Failed to allocate temp mcast list\n");
12059         return (-1);
12060     }
12061     bzero(mc_mac, (sizeof(*mc_mac) * mc_count));
12062     if_foreach_llmaddr(ifp, bxe_push_maddr, mc_mac);
12063 
12064     for (int i = 0; i < mc_count; i ++) {
12065         ECORE_LIST_PUSH_TAIL(&mc_mac[i].link, &p->mcast_list);
12066         BLOGD(sc, DBG_LOAD,
12067               "Setting MCAST %02X:%02X:%02X:%02X:%02X:%02X and mc_count %d\n",
12068               mc_mac[i].mac[0], mc_mac[i].mac[1], mc_mac[i].mac[2],
12069               mc_mac[i].mac[3], mc_mac[i].mac[4], mc_mac[i].mac[5],
12070               mc_count);
12071     }
12072 
12073     p->mcast_list_len = mc_count;
12074 
12075     return (0);
12076 }
12077 
12078 static void
12079 bxe_free_mcast_macs_list(struct ecore_mcast_ramrod_params *p)
12080 {
12081     struct ecore_mcast_list_elem *mc_mac =
12082         ECORE_LIST_FIRST_ENTRY(&p->mcast_list,
12083                                struct ecore_mcast_list_elem,
12084                                link);
12085 
12086     if (mc_mac) {
12087         /* only a single free as all mc_macs are in the same heap array */
12088         free(mc_mac, M_DEVBUF);
12089     }
12090 }
12091 static int
12092 bxe_set_mc_list(struct bxe_softc *sc)
12093 {
12094     struct ecore_mcast_ramrod_params rparam = { NULL };
12095     int rc = 0;
12096 
12097     rparam.mcast_obj = &sc->mcast_obj;
12098 
12099     BXE_MCAST_LOCK(sc);
12100 
12101     /* first, clear all configured multicast MACs */
12102     rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_DEL);
12103     if (rc < 0) {
12104         BLOGE(sc, "Failed to clear multicast configuration: %d\n", rc);
12105         /* Manual backport parts of FreeBSD upstream r284470. */
12106         BXE_MCAST_UNLOCK(sc);
12107         return (rc);
12108     }
12109 
12110     /* configure a new MACs list */
12111     rc = bxe_init_mcast_macs_list(sc, &rparam);
12112     if (rc) {
12113         BLOGE(sc, "Failed to create mcast MACs list (%d)\n", rc);
12114         BXE_MCAST_UNLOCK(sc);
12115         return (rc);
12116     }
12117 
12118     /* Now add the new MACs */
12119     rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_ADD);
12120     if (rc < 0) {
12121         BLOGE(sc, "Failed to set new mcast config (%d)\n", rc);
12122     }
12123 
12124     bxe_free_mcast_macs_list(&rparam);
12125 
12126     BXE_MCAST_UNLOCK(sc);
12127 
12128     return (rc);
12129 }
12130 
12131 struct bxe_set_addr_ctx {
12132    struct bxe_softc *sc;
12133    unsigned long ramrod_flags;
12134    int rc;
12135 };
12136 
12137 static u_int
12138 bxe_set_addr(void *arg, struct sockaddr_dl *sdl, u_int cnt)
12139 {
12140     struct bxe_set_addr_ctx *ctx = arg;
12141     struct ecore_vlan_mac_obj *mac_obj = &ctx->sc->sp_objs->mac_obj;
12142     int rc;
12143 
12144     if (ctx->rc < 0)
12145 	return (0);
12146 
12147     rc = bxe_set_mac_one(ctx->sc, (uint8_t *)LLADDR(sdl), mac_obj, TRUE,
12148                          ECORE_UC_LIST_MAC, &ctx->ramrod_flags);
12149 
12150     /* do not treat adding same MAC as an error */
12151     if (rc == -EEXIST)
12152 	BLOGD(ctx->sc, DBG_SP, "Failed to schedule ADD operations (EEXIST)\n");
12153     else if (rc < 0) {
12154             BLOGE(ctx->sc, "Failed to schedule ADD operations (%d)\n", rc);
12155             ctx->rc = rc;
12156     }
12157 
12158     return (1);
12159 }
12160 
12161 static int
12162 bxe_set_uc_list(struct bxe_softc *sc)
12163 {
12164     if_t ifp = sc->ifp;
12165     struct ecore_vlan_mac_obj *mac_obj = &sc->sp_objs->mac_obj;
12166     struct bxe_set_addr_ctx ctx = { sc, 0, 0 };
12167     int rc;
12168 
12169     /* first schedule a cleanup up of old configuration */
12170     rc = bxe_del_all_macs(sc, mac_obj, ECORE_UC_LIST_MAC, FALSE);
12171     if (rc < 0) {
12172         BLOGE(sc, "Failed to schedule delete of all ETH MACs (%d)\n", rc);
12173         return (rc);
12174     }
12175 
12176     if_foreach_lladdr(ifp, bxe_set_addr, &ctx);
12177     if (ctx.rc < 0)
12178 	return (ctx.rc);
12179 
12180     /* Execute the pending commands */
12181     bit_set(&ctx.ramrod_flags, RAMROD_CONT);
12182     return (bxe_set_mac_one(sc, NULL, mac_obj, FALSE /* don't care */,
12183                             ECORE_UC_LIST_MAC, &ctx.ramrod_flags));
12184 }
12185 
12186 static void
12187 bxe_set_rx_mode(struct bxe_softc *sc)
12188 {
12189     if_t ifp = sc->ifp;
12190     uint32_t rx_mode = BXE_RX_MODE_NORMAL;
12191 
12192     if (sc->state != BXE_STATE_OPEN) {
12193         BLOGD(sc, DBG_SP, "state is %x, returning\n", sc->state);
12194         return;
12195     }
12196 
12197     BLOGD(sc, DBG_SP, "if_flags(ifp)=0x%x\n", if_getflags(sc->ifp));
12198 
12199     if (if_getflags(ifp) & IFF_PROMISC) {
12200         rx_mode = BXE_RX_MODE_PROMISC;
12201     } else if ((if_getflags(ifp) & IFF_ALLMULTI) ||
12202                ((if_getamcount(ifp) > BXE_MAX_MULTICAST) &&
12203                 CHIP_IS_E1(sc))) {
12204         rx_mode = BXE_RX_MODE_ALLMULTI;
12205     } else {
12206         if (IS_PF(sc)) {
12207             /* some multicasts */
12208             if (bxe_set_mc_list(sc) < 0) {
12209                 rx_mode = BXE_RX_MODE_ALLMULTI;
12210             }
12211             if (bxe_set_uc_list(sc) < 0) {
12212                 rx_mode = BXE_RX_MODE_PROMISC;
12213             }
12214         }
12215     }
12216 
12217     sc->rx_mode = rx_mode;
12218 
12219     /* schedule the rx_mode command */
12220     if (bxe_test_bit(ECORE_FILTER_RX_MODE_PENDING, &sc->sp_state)) {
12221         BLOGD(sc, DBG_LOAD, "Scheduled setting rx_mode with ECORE...\n");
12222         bxe_set_bit(ECORE_FILTER_RX_MODE_SCHED, &sc->sp_state);
12223         return;
12224     }
12225 
12226     if (IS_PF(sc)) {
12227         bxe_set_storm_rx_mode(sc);
12228     }
12229 }
12230 
12231 
12232 /* update flags in shmem */
12233 static void
12234 bxe_update_drv_flags(struct bxe_softc *sc,
12235                      uint32_t         flags,
12236                      uint32_t         set)
12237 {
12238     uint32_t drv_flags;
12239 
12240     if (SHMEM2_HAS(sc, drv_flags)) {
12241         bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_DRV_FLAGS);
12242         drv_flags = SHMEM2_RD(sc, drv_flags);
12243 
12244         if (set) {
12245             SET_FLAGS(drv_flags, flags);
12246         } else {
12247             RESET_FLAGS(drv_flags, flags);
12248         }
12249 
12250         SHMEM2_WR(sc, drv_flags, drv_flags);
12251         BLOGD(sc, DBG_LOAD, "drv_flags 0x%08x\n", drv_flags);
12252 
12253         bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_DRV_FLAGS);
12254     }
12255 }
12256 
12257 /* periodic timer callout routine, only runs when the interface is up */
12258 
12259 static void
12260 bxe_periodic_callout_func(void *xsc)
12261 {
12262     struct bxe_softc *sc = (struct bxe_softc *)xsc;
12263     int i;
12264 
12265     if (!BXE_CORE_TRYLOCK(sc)) {
12266         /* just bail and try again next time */
12267 
12268         if ((sc->state == BXE_STATE_OPEN) &&
12269             (atomic_load_acq_long(&sc->periodic_flags) == PERIODIC_GO)) {
12270             /* schedule the next periodic callout */
12271             callout_reset(&sc->periodic_callout, hz,
12272                           bxe_periodic_callout_func, sc);
12273         }
12274 
12275         return;
12276     }
12277 
12278     if ((sc->state != BXE_STATE_OPEN) ||
12279         (atomic_load_acq_long(&sc->periodic_flags) == PERIODIC_STOP)) {
12280         BLOGW(sc, "periodic callout exit (state=0x%x)\n", sc->state);
12281         BXE_CORE_UNLOCK(sc);
12282         return;
12283         }
12284 
12285 
12286     /* Check for TX timeouts on any fastpath. */
12287     FOR_EACH_QUEUE(sc, i) {
12288         if (bxe_watchdog(sc, &sc->fp[i]) != 0) {
12289             /* Ruh-Roh, chip was reset! */
12290             break;
12291         }
12292     }
12293 
12294     if (!CHIP_REV_IS_SLOW(sc)) {
12295         /*
12296          * This barrier is needed to ensure the ordering between the writing
12297          * to the sc->port.pmf in the bxe_nic_load() or bxe_pmf_update() and
12298          * the reading here.
12299          */
12300         mb();
12301         if (sc->port.pmf) {
12302 	    bxe_acquire_phy_lock(sc);
12303             elink_period_func(&sc->link_params, &sc->link_vars);
12304 	    bxe_release_phy_lock(sc);
12305         }
12306     }
12307 
12308     if (IS_PF(sc) && !(sc->flags & BXE_NO_PULSE)) {
12309         int mb_idx = SC_FW_MB_IDX(sc);
12310         uint32_t drv_pulse;
12311         uint32_t mcp_pulse;
12312 
12313         ++sc->fw_drv_pulse_wr_seq;
12314         sc->fw_drv_pulse_wr_seq &= DRV_PULSE_SEQ_MASK;
12315 
12316         drv_pulse = sc->fw_drv_pulse_wr_seq;
12317         bxe_drv_pulse(sc);
12318 
12319         mcp_pulse = (SHMEM_RD(sc, func_mb[mb_idx].mcp_pulse_mb) &
12320                      MCP_PULSE_SEQ_MASK);
12321 
12322         /*
12323          * The delta between driver pulse and mcp response should
12324          * be 1 (before mcp response) or 0 (after mcp response).
12325          */
12326         if ((drv_pulse != mcp_pulse) &&
12327             (drv_pulse != ((mcp_pulse + 1) & MCP_PULSE_SEQ_MASK))) {
12328             /* someone lost a heartbeat... */
12329             BLOGE(sc, "drv_pulse (0x%x) != mcp_pulse (0x%x)\n",
12330                   drv_pulse, mcp_pulse);
12331         }
12332     }
12333 
12334     /* state is BXE_STATE_OPEN */
12335     bxe_stats_handle(sc, STATS_EVENT_UPDATE);
12336 
12337     BXE_CORE_UNLOCK(sc);
12338 
12339     if ((sc->state == BXE_STATE_OPEN) &&
12340         (atomic_load_acq_long(&sc->periodic_flags) == PERIODIC_GO)) {
12341         /* schedule the next periodic callout */
12342         callout_reset(&sc->periodic_callout, hz,
12343                       bxe_periodic_callout_func, sc);
12344     }
12345 }
12346 
12347 static void
12348 bxe_periodic_start(struct bxe_softc *sc)
12349 {
12350     atomic_store_rel_long(&sc->periodic_flags, PERIODIC_GO);
12351     callout_reset(&sc->periodic_callout, hz, bxe_periodic_callout_func, sc);
12352 }
12353 
12354 static void
12355 bxe_periodic_stop(struct bxe_softc *sc)
12356 {
12357     atomic_store_rel_long(&sc->periodic_flags, PERIODIC_STOP);
12358     callout_drain(&sc->periodic_callout);
12359 }
12360 
12361 void
12362 bxe_parity_recover(struct bxe_softc *sc)
12363 {
12364     uint8_t global = FALSE;
12365     uint32_t error_recovered, error_unrecovered;
12366     bool is_parity;
12367 
12368 
12369     if ((sc->recovery_state == BXE_RECOVERY_FAILED) &&
12370         (sc->state == BXE_STATE_ERROR)) {
12371         BLOGE(sc, "RECOVERY failed, "
12372             "stack notified driver is NOT running! "
12373             "Please reboot/power cycle the system.\n");
12374         return;
12375     }
12376 
12377     while (1) {
12378         BLOGD(sc, DBG_SP,
12379            "%s sc=%p state=0x%x rec_state=0x%x error_status=%x\n",
12380             __func__, sc, sc->state, sc->recovery_state, sc->error_status);
12381 
12382         switch(sc->recovery_state) {
12383 
12384         case BXE_RECOVERY_INIT:
12385             is_parity = bxe_chk_parity_attn(sc, &global, FALSE);
12386 
12387             if ((CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) ||
12388                 (sc->error_status & BXE_ERR_MCP_ASSERT) ||
12389                 (sc->error_status & BXE_ERR_GLOBAL)) {
12390 
12391                 BXE_CORE_LOCK(sc);
12392                 if (if_getdrvflags(sc->ifp) & IFF_DRV_RUNNING) {
12393                     bxe_periodic_stop(sc);
12394                 }
12395                 bxe_nic_unload(sc, UNLOAD_RECOVERY, false);
12396                 sc->state = BXE_STATE_ERROR;
12397                 sc->recovery_state = BXE_RECOVERY_FAILED;
12398                 BLOGE(sc, " No Recovery tried for error 0x%x"
12399                     " stack notified driver is NOT running!"
12400                     " Please reboot/power cycle the system.\n",
12401                     sc->error_status);
12402                 BXE_CORE_UNLOCK(sc);
12403                 return;
12404             }
12405 
12406 
12407            /* Try to get a LEADER_LOCK HW lock */
12408             if (bxe_trylock_leader_lock(sc)) {
12409 
12410                 bxe_set_reset_in_progress(sc);
12411                 /*
12412                  * Check if there is a global attention and if
12413                  * there was a global attention, set the global
12414                  * reset bit.
12415                  */
12416                 if (global) {
12417                     bxe_set_reset_global(sc);
12418                 }
12419                 sc->is_leader = 1;
12420             }
12421 
12422             /* If interface has been removed - break */
12423 
12424             if (if_getdrvflags(sc->ifp) & IFF_DRV_RUNNING) {
12425                 bxe_periodic_stop(sc);
12426             }
12427 
12428             BXE_CORE_LOCK(sc);
12429             bxe_nic_unload(sc,UNLOAD_RECOVERY, false);
12430             sc->recovery_state = BXE_RECOVERY_WAIT;
12431             BXE_CORE_UNLOCK(sc);
12432 
12433             /*
12434              * Ensure "is_leader", MCP command sequence and
12435              * "recovery_state" update values are seen on other
12436              * CPUs.
12437              */
12438             mb();
12439             break;
12440         case BXE_RECOVERY_WAIT:
12441 
12442             if (sc->is_leader) {
12443                 int other_engine = SC_PATH(sc) ? 0 : 1;
12444                 bool other_load_status =
12445                     bxe_get_load_status(sc, other_engine);
12446                 bool load_status =
12447                     bxe_get_load_status(sc, SC_PATH(sc));
12448                 global = bxe_reset_is_global(sc);
12449 
12450                 /*
12451                  * In case of a parity in a global block, let
12452                  * the first leader that performs a
12453                  * leader_reset() reset the global blocks in
12454                  * order to clear global attentions. Otherwise
12455                  * the gates will remain closed for that
12456                  * engine.
12457                  */
12458                 if (load_status ||
12459                     (global && other_load_status)) {
12460                     /*
12461                      * Wait until all other functions get
12462                      * down.
12463                      */
12464                     taskqueue_enqueue_timeout(taskqueue_thread,
12465                         &sc->sp_err_timeout_task, hz/10);
12466                     return;
12467                 } else {
12468                     /*
12469                      * If all other functions got down
12470                      * try to bring the chip back to
12471                      * normal. In any case it's an exit
12472                      * point for a leader.
12473                      */
12474                     if (bxe_leader_reset(sc)) {
12475                         BLOGE(sc, "RECOVERY failed, "
12476                             "stack notified driver is NOT running!\n");
12477                         sc->recovery_state = BXE_RECOVERY_FAILED;
12478                         sc->state = BXE_STATE_ERROR;
12479                         mb();
12480                         return;
12481                     }
12482 
12483                     /*
12484                      * If we are here, means that the
12485                      * leader has succeeded and doesn't
12486                      * want to be a leader any more. Try
12487                      * to continue as a none-leader.
12488                      */
12489                 break;
12490                 }
12491 
12492             } else { /* non-leader */
12493                 if (!bxe_reset_is_done(sc, SC_PATH(sc))) {
12494                     /*
12495                      * Try to get a LEADER_LOCK HW lock as
12496                      * long as a former leader may have
12497                      * been unloaded by the user or
12498                      * released a leadership by another
12499                      * reason.
12500                      */
12501                     if (bxe_trylock_leader_lock(sc)) {
12502                         /*
12503                          * I'm a leader now! Restart a
12504                          * switch case.
12505                          */
12506                         sc->is_leader = 1;
12507                         break;
12508                     }
12509 
12510                     taskqueue_enqueue_timeout(taskqueue_thread,
12511                         &sc->sp_err_timeout_task, hz/10);
12512                     return;
12513 
12514                 } else {
12515                     /*
12516                      * If there was a global attention, wait
12517                      * for it to be cleared.
12518                      */
12519                     if (bxe_reset_is_global(sc)) {
12520                         taskqueue_enqueue_timeout(taskqueue_thread,
12521                             &sc->sp_err_timeout_task, hz/10);
12522                         return;
12523                      }
12524 
12525                      error_recovered =
12526                          sc->eth_stats.recoverable_error;
12527                      error_unrecovered =
12528                          sc->eth_stats.unrecoverable_error;
12529                      BXE_CORE_LOCK(sc);
12530                      sc->recovery_state =
12531                          BXE_RECOVERY_NIC_LOADING;
12532                      if (bxe_nic_load(sc, LOAD_NORMAL)) {
12533                          error_unrecovered++;
12534                          sc->recovery_state = BXE_RECOVERY_FAILED;
12535                          sc->state = BXE_STATE_ERROR;
12536                          BLOGE(sc, "Recovery is NOT successfull, "
12537                             " state=0x%x recovery_state=0x%x error=%x\n",
12538                             sc->state, sc->recovery_state, sc->error_status);
12539                          sc->error_status = 0;
12540                      } else {
12541                          sc->recovery_state =
12542                              BXE_RECOVERY_DONE;
12543                          error_recovered++;
12544                          BLOGI(sc, "Recovery is successfull from errors %x,"
12545                             " state=0x%x"
12546                             " recovery_state=0x%x \n", sc->error_status,
12547                             sc->state, sc->recovery_state);
12548                          mb();
12549                      }
12550                      sc->error_status = 0;
12551                      BXE_CORE_UNLOCK(sc);
12552                      sc->eth_stats.recoverable_error =
12553                          error_recovered;
12554                      sc->eth_stats.unrecoverable_error =
12555                          error_unrecovered;
12556 
12557                      return;
12558                  }
12559              }
12560          default:
12561              return;
12562          }
12563     }
12564 }
12565 void
12566 bxe_handle_error(struct bxe_softc * sc)
12567 {
12568 
12569     if(sc->recovery_state == BXE_RECOVERY_WAIT) {
12570         return;
12571     }
12572     if(sc->error_status) {
12573         if (sc->state == BXE_STATE_OPEN)  {
12574             bxe_int_disable(sc);
12575         }
12576         if (sc->link_vars.link_up) {
12577             if_link_state_change(sc->ifp, LINK_STATE_DOWN);
12578         }
12579         sc->recovery_state = BXE_RECOVERY_INIT;
12580         BLOGI(sc, "bxe%d: Recovery started errors 0x%x recovery state 0x%x\n",
12581             sc->unit, sc->error_status, sc->recovery_state);
12582         bxe_parity_recover(sc);
12583    }
12584 }
12585 
12586 static void
12587 bxe_sp_err_timeout_task(void *arg, int pending)
12588 {
12589 
12590     struct bxe_softc *sc = (struct bxe_softc *)arg;
12591 
12592     BLOGD(sc, DBG_SP,
12593         "%s state = 0x%x rec state=0x%x error_status=%x\n",
12594         __func__, sc->state, sc->recovery_state, sc->error_status);
12595 
12596     if((sc->recovery_state == BXE_RECOVERY_FAILED) &&
12597        (sc->state == BXE_STATE_ERROR)) {
12598         return;
12599     }
12600     /* if can be taken */
12601     if ((sc->error_status) && (sc->trigger_grcdump)) {
12602         bxe_grc_dump(sc);
12603     }
12604     if (sc->recovery_state != BXE_RECOVERY_DONE) {
12605         bxe_handle_error(sc);
12606         bxe_parity_recover(sc);
12607     } else if (sc->error_status) {
12608         bxe_handle_error(sc);
12609     }
12610 
12611     return;
12612 }
12613 
12614 /* start the controller */
12615 static __noinline int
12616 bxe_nic_load(struct bxe_softc *sc,
12617              int              load_mode)
12618 {
12619     uint32_t val;
12620     int load_code = 0;
12621     int i, rc = 0;
12622 
12623     BXE_CORE_LOCK_ASSERT(sc);
12624 
12625     BLOGD(sc, DBG_LOAD, "Starting NIC load...\n");
12626 
12627     sc->state = BXE_STATE_OPENING_WAITING_LOAD;
12628 
12629     if (IS_PF(sc)) {
12630         /* must be called before memory allocation and HW init */
12631         bxe_ilt_set_info(sc);
12632     }
12633 
12634     sc->last_reported_link_state = LINK_STATE_UNKNOWN;
12635 
12636     bxe_set_fp_rx_buf_size(sc);
12637 
12638     if (bxe_alloc_fp_buffers(sc) != 0) {
12639         BLOGE(sc, "Failed to allocate fastpath memory\n");
12640         sc->state = BXE_STATE_CLOSED;
12641         rc = ENOMEM;
12642         goto bxe_nic_load_error0;
12643     }
12644 
12645     if (bxe_alloc_mem(sc) != 0) {
12646         sc->state = BXE_STATE_CLOSED;
12647         rc = ENOMEM;
12648         goto bxe_nic_load_error0;
12649     }
12650 
12651     if (bxe_alloc_fw_stats_mem(sc) != 0) {
12652         sc->state = BXE_STATE_CLOSED;
12653         rc = ENOMEM;
12654         goto bxe_nic_load_error0;
12655     }
12656 
12657     if (IS_PF(sc)) {
12658         /* set pf load just before approaching the MCP */
12659         bxe_set_pf_load(sc);
12660 
12661         /* if MCP exists send load request and analyze response */
12662         if (!BXE_NOMCP(sc)) {
12663             /* attempt to load pf */
12664             if (bxe_nic_load_request(sc, &load_code) != 0) {
12665                 sc->state = BXE_STATE_CLOSED;
12666                 rc = ENXIO;
12667                 goto bxe_nic_load_error1;
12668             }
12669 
12670             /* what did the MCP say? */
12671             if (bxe_nic_load_analyze_req(sc, load_code) != 0) {
12672                 bxe_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0);
12673                 sc->state = BXE_STATE_CLOSED;
12674                 rc = ENXIO;
12675                 goto bxe_nic_load_error2;
12676             }
12677         } else {
12678             BLOGI(sc, "Device has no MCP!\n");
12679             load_code = bxe_nic_load_no_mcp(sc);
12680         }
12681 
12682         /* mark PMF if applicable */
12683         bxe_nic_load_pmf(sc, load_code);
12684 
12685         /* Init Function state controlling object */
12686         bxe_init_func_obj(sc);
12687 
12688         /* Initialize HW */
12689         if (bxe_init_hw(sc, load_code) != 0) {
12690             BLOGE(sc, "HW init failed\n");
12691             bxe_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0);
12692             sc->state = BXE_STATE_CLOSED;
12693             rc = ENXIO;
12694             goto bxe_nic_load_error2;
12695         }
12696     }
12697 
12698     /* set ALWAYS_ALIVE bit in shmem */
12699     sc->fw_drv_pulse_wr_seq |= DRV_PULSE_ALWAYS_ALIVE;
12700     bxe_drv_pulse(sc);
12701     sc->flags |= BXE_NO_PULSE;
12702 
12703     /* attach interrupts */
12704     if (bxe_interrupt_attach(sc) != 0) {
12705         sc->state = BXE_STATE_CLOSED;
12706         rc = ENXIO;
12707         goto bxe_nic_load_error2;
12708     }
12709 
12710     bxe_nic_init(sc, load_code);
12711 
12712     /* Init per-function objects */
12713     if (IS_PF(sc)) {
12714         bxe_init_objs(sc);
12715         // XXX bxe_iov_nic_init(sc);
12716 
12717         /* set AFEX default VLAN tag to an invalid value */
12718         sc->devinfo.mf_info.afex_def_vlan_tag = -1;
12719         // XXX bxe_nic_load_afex_dcc(sc, load_code);
12720 
12721         sc->state = BXE_STATE_OPENING_WAITING_PORT;
12722         rc = bxe_func_start(sc);
12723         if (rc) {
12724             BLOGE(sc, "Function start failed! rc = %d\n", rc);
12725             bxe_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0);
12726             sc->state = BXE_STATE_ERROR;
12727             goto bxe_nic_load_error3;
12728         }
12729 
12730         /* send LOAD_DONE command to MCP */
12731         if (!BXE_NOMCP(sc)) {
12732             load_code = bxe_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0);
12733             if (!load_code) {
12734                 BLOGE(sc, "MCP response failure, aborting\n");
12735                 sc->state = BXE_STATE_ERROR;
12736                 rc = ENXIO;
12737                 goto bxe_nic_load_error3;
12738             }
12739         }
12740 
12741         rc = bxe_setup_leading(sc);
12742         if (rc) {
12743             BLOGE(sc, "Setup leading failed! rc = %d\n", rc);
12744             sc->state = BXE_STATE_ERROR;
12745             goto bxe_nic_load_error3;
12746         }
12747 
12748         FOR_EACH_NONDEFAULT_ETH_QUEUE(sc, i) {
12749             rc = bxe_setup_queue(sc, &sc->fp[i], FALSE);
12750             if (rc) {
12751                 BLOGE(sc, "Queue(%d) setup failed rc = %d\n", i, rc);
12752                 sc->state = BXE_STATE_ERROR;
12753                 goto bxe_nic_load_error3;
12754             }
12755         }
12756 
12757         rc = bxe_init_rss_pf(sc);
12758         if (rc) {
12759             BLOGE(sc, "PF RSS init failed\n");
12760             sc->state = BXE_STATE_ERROR;
12761             goto bxe_nic_load_error3;
12762         }
12763     }
12764     /* XXX VF */
12765 
12766     /* now when Clients are configured we are ready to work */
12767     sc->state = BXE_STATE_OPEN;
12768 
12769     /* Configure a ucast MAC */
12770     if (IS_PF(sc)) {
12771         rc = bxe_set_eth_mac(sc, TRUE);
12772     }
12773     if (rc) {
12774         BLOGE(sc, "Setting Ethernet MAC failed rc = %d\n", rc);
12775         sc->state = BXE_STATE_ERROR;
12776         goto bxe_nic_load_error3;
12777     }
12778 
12779     if (sc->port.pmf) {
12780         rc = bxe_initial_phy_init(sc, /* XXX load_mode */LOAD_OPEN);
12781         if (rc) {
12782             sc->state = BXE_STATE_ERROR;
12783             goto bxe_nic_load_error3;
12784         }
12785     }
12786 
12787     sc->link_params.feature_config_flags &=
12788         ~ELINK_FEATURE_CONFIG_BOOT_FROM_SAN;
12789 
12790     /* start fast path */
12791 
12792     /* Initialize Rx filter */
12793     bxe_set_rx_mode(sc);
12794 
12795     /* start the Tx */
12796     switch (/* XXX load_mode */LOAD_OPEN) {
12797     case LOAD_NORMAL:
12798     case LOAD_OPEN:
12799         break;
12800 
12801     case LOAD_DIAG:
12802     case LOAD_LOOPBACK_EXT:
12803         sc->state = BXE_STATE_DIAG;
12804         break;
12805 
12806     default:
12807         break;
12808     }
12809 
12810     if (sc->port.pmf) {
12811         bxe_update_drv_flags(sc, 1 << DRV_FLAGS_PORT_MASK, 0);
12812     } else {
12813         bxe_link_status_update(sc);
12814     }
12815 
12816     /* start the periodic timer callout */
12817     bxe_periodic_start(sc);
12818 
12819     if (IS_PF(sc) && SHMEM2_HAS(sc, drv_capabilities_flag)) {
12820         /* mark driver is loaded in shmem2 */
12821         val = SHMEM2_RD(sc, drv_capabilities_flag[SC_FW_MB_IDX(sc)]);
12822         SHMEM2_WR(sc, drv_capabilities_flag[SC_FW_MB_IDX(sc)],
12823                   (val |
12824                    DRV_FLAGS_CAPABILITIES_LOADED_SUPPORTED |
12825                    DRV_FLAGS_CAPABILITIES_LOADED_L2));
12826     }
12827 
12828     /* wait for all pending SP commands to complete */
12829     if (IS_PF(sc) && !bxe_wait_sp_comp(sc, ~0x0UL)) {
12830         BLOGE(sc, "Timeout waiting for all SPs to complete!\n");
12831         bxe_periodic_stop(sc);
12832         bxe_nic_unload(sc, UNLOAD_CLOSE, FALSE);
12833         return (ENXIO);
12834     }
12835 
12836     /* Tell the stack the driver is running! */
12837     if_setdrvflags(sc->ifp, IFF_DRV_RUNNING);
12838 
12839     BLOGD(sc, DBG_LOAD, "NIC successfully loaded\n");
12840 
12841     return (0);
12842 
12843 bxe_nic_load_error3:
12844 
12845     if (IS_PF(sc)) {
12846         bxe_int_disable_sync(sc, 1);
12847 
12848         /* clean out queued objects */
12849         bxe_squeeze_objects(sc);
12850     }
12851 
12852     bxe_interrupt_detach(sc);
12853 
12854 bxe_nic_load_error2:
12855 
12856     if (IS_PF(sc) && !BXE_NOMCP(sc)) {
12857         bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP, 0);
12858         bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_DONE, 0);
12859     }
12860 
12861     sc->port.pmf = 0;
12862 
12863 bxe_nic_load_error1:
12864 
12865     /* clear pf_load status, as it was already set */
12866     if (IS_PF(sc)) {
12867         bxe_clear_pf_load(sc);
12868     }
12869 
12870 bxe_nic_load_error0:
12871 
12872     bxe_free_fw_stats_mem(sc);
12873     bxe_free_fp_buffers(sc);
12874     bxe_free_mem(sc);
12875 
12876     return (rc);
12877 }
12878 
12879 static int
12880 bxe_init_locked(struct bxe_softc *sc)
12881 {
12882     int other_engine = SC_PATH(sc) ? 0 : 1;
12883     uint8_t other_load_status, load_status;
12884     uint8_t global = FALSE;
12885     int rc;
12886 
12887     BXE_CORE_LOCK_ASSERT(sc);
12888 
12889     /* check if the driver is already running */
12890     if (if_getdrvflags(sc->ifp) & IFF_DRV_RUNNING) {
12891         BLOGD(sc, DBG_LOAD, "Init called while driver is running!\n");
12892         return (0);
12893     }
12894 
12895     if((sc->state == BXE_STATE_ERROR) &&
12896         (sc->recovery_state == BXE_RECOVERY_FAILED)) {
12897         BLOGE(sc, "Initialization not done, "
12898                   "as previous recovery failed."
12899                   "Reboot/Power-cycle the system\n" );
12900         return (ENXIO);
12901     }
12902 
12903 
12904     bxe_set_power_state(sc, PCI_PM_D0);
12905 
12906     /*
12907      * If parity occurred during the unload, then attentions and/or
12908      * RECOVERY_IN_PROGRES may still be set. If so we want the first function
12909      * loaded on the current engine to complete the recovery. Parity recovery
12910      * is only relevant for PF driver.
12911      */
12912     if (IS_PF(sc)) {
12913         other_load_status = bxe_get_load_status(sc, other_engine);
12914         load_status = bxe_get_load_status(sc, SC_PATH(sc));
12915 
12916         if (!bxe_reset_is_done(sc, SC_PATH(sc)) ||
12917             bxe_chk_parity_attn(sc, &global, TRUE)) {
12918             do {
12919                 /*
12920                  * If there are attentions and they are in global blocks, set
12921                  * the GLOBAL_RESET bit regardless whether it will be this
12922                  * function that will complete the recovery or not.
12923                  */
12924                 if (global) {
12925                     bxe_set_reset_global(sc);
12926                 }
12927 
12928                 /*
12929                  * Only the first function on the current engine should try
12930                  * to recover in open. In case of attentions in global blocks
12931                  * only the first in the chip should try to recover.
12932                  */
12933                 if ((!load_status && (!global || !other_load_status)) &&
12934                     bxe_trylock_leader_lock(sc) && !bxe_leader_reset(sc)) {
12935                     BLOGI(sc, "Recovered during init\n");
12936                     break;
12937                 }
12938 
12939                 /* recovery has failed... */
12940                 bxe_set_power_state(sc, PCI_PM_D3hot);
12941                 sc->recovery_state = BXE_RECOVERY_FAILED;
12942 
12943                 BLOGE(sc, "Recovery flow hasn't properly "
12944                           "completed yet, try again later. "
12945                           "If you still see this message after a "
12946                           "few retries then power cycle is required.\n");
12947 
12948                 rc = ENXIO;
12949                 goto bxe_init_locked_done;
12950             } while (0);
12951         }
12952     }
12953 
12954     sc->recovery_state = BXE_RECOVERY_DONE;
12955 
12956     rc = bxe_nic_load(sc, LOAD_OPEN);
12957 
12958 bxe_init_locked_done:
12959 
12960     if (rc) {
12961         /* Tell the stack the driver is NOT running! */
12962         BLOGE(sc, "Initialization failed, "
12963                   "stack notified driver is NOT running!\n");
12964 	if_setdrvflagbits(sc->ifp, 0, IFF_DRV_RUNNING);
12965     }
12966 
12967     return (rc);
12968 }
12969 
12970 static int
12971 bxe_stop_locked(struct bxe_softc *sc)
12972 {
12973     BXE_CORE_LOCK_ASSERT(sc);
12974     return (bxe_nic_unload(sc, UNLOAD_NORMAL, TRUE));
12975 }
12976 
12977 /*
12978  * Handles controller initialization when called from an unlocked routine.
12979  * ifconfig calls this function.
12980  *
12981  * Returns:
12982  *   void
12983  */
12984 static void
12985 bxe_init(void *xsc)
12986 {
12987     struct bxe_softc *sc = (struct bxe_softc *)xsc;
12988 
12989     BXE_CORE_LOCK(sc);
12990     bxe_init_locked(sc);
12991     BXE_CORE_UNLOCK(sc);
12992 }
12993 
12994 static int
12995 bxe_init_ifnet(struct bxe_softc *sc)
12996 {
12997     if_t ifp;
12998     int capabilities;
12999 
13000     /* ifconfig entrypoint for media type/status reporting */
13001     ifmedia_init(&sc->ifmedia, IFM_IMASK,
13002                  bxe_ifmedia_update,
13003                  bxe_ifmedia_status);
13004 
13005     /* set the default interface values */
13006     ifmedia_add(&sc->ifmedia, (IFM_ETHER | IFM_FDX | sc->media), 0, NULL);
13007     ifmedia_add(&sc->ifmedia, (IFM_ETHER | IFM_AUTO), 0, NULL);
13008     ifmedia_set(&sc->ifmedia, (IFM_ETHER | IFM_AUTO));
13009 
13010     sc->ifmedia.ifm_media = sc->ifmedia.ifm_cur->ifm_media; /* XXX ? */
13011 	BLOGI(sc, "IFMEDIA flags : %x\n", sc->ifmedia.ifm_media);
13012 
13013     /* allocate the ifnet structure */
13014     if ((ifp = if_gethandle(IFT_ETHER)) == NULL) {
13015         BLOGE(sc, "Interface allocation failed!\n");
13016         return (ENXIO);
13017     }
13018 
13019     if_setsoftc(ifp, sc);
13020     if_initname(ifp, device_get_name(sc->dev), device_get_unit(sc->dev));
13021     if_setflags(ifp, (IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST));
13022     if_setioctlfn(ifp, bxe_ioctl);
13023     if_setstartfn(ifp, bxe_tx_start);
13024     if_setgetcounterfn(ifp, bxe_get_counter);
13025     if_settransmitfn(ifp, bxe_tx_mq_start);
13026     if_setqflushfn(ifp, bxe_mq_flush);
13027     if_setinitfn(ifp, bxe_init);
13028     if_setmtu(ifp, sc->mtu);
13029     if_sethwassist(ifp, (CSUM_IP      |
13030                         CSUM_TCP      |
13031                         CSUM_UDP      |
13032                         CSUM_TSO      |
13033                         CSUM_TCP_IPV6 |
13034                         CSUM_UDP_IPV6));
13035 
13036     capabilities =
13037         (IFCAP_VLAN_MTU       |
13038          IFCAP_VLAN_HWTAGGING |
13039          IFCAP_VLAN_HWTSO     |
13040          IFCAP_VLAN_HWFILTER  |
13041          IFCAP_VLAN_HWCSUM    |
13042          IFCAP_HWCSUM         |
13043          IFCAP_JUMBO_MTU      |
13044          IFCAP_LRO            |
13045          IFCAP_TSO4           |
13046          IFCAP_TSO6           |
13047          IFCAP_WOL_MAGIC);
13048     if_setcapabilitiesbit(ifp, capabilities, 0); /* XXX */
13049     if_setcapenable(ifp, if_getcapabilities(ifp));
13050     if_setbaudrate(ifp, IF_Gbps(10));
13051 /* XXX */
13052     if_setsendqlen(ifp, sc->tx_ring_size);
13053     if_setsendqready(ifp);
13054 /* XXX */
13055 
13056     sc->ifp = ifp;
13057 
13058     /* attach to the Ethernet interface list */
13059     ether_ifattach(ifp, sc->link_params.mac_addr);
13060 
13061     /* Attach driver debugnet methods. */
13062     DEBUGNET_SET(ifp, bxe);
13063 
13064     return (0);
13065 }
13066 
13067 static void
13068 bxe_deallocate_bars(struct bxe_softc *sc)
13069 {
13070     int i;
13071 
13072     for (i = 0; i < MAX_BARS; i++) {
13073         if (sc->bar[i].resource != NULL) {
13074             bus_release_resource(sc->dev,
13075                                  SYS_RES_MEMORY,
13076                                  sc->bar[i].rid,
13077                                  sc->bar[i].resource);
13078             BLOGD(sc, DBG_LOAD, "Released PCI BAR%d [%02x] memory\n",
13079                   i, PCIR_BAR(i));
13080         }
13081     }
13082 }
13083 
13084 static int
13085 bxe_allocate_bars(struct bxe_softc *sc)
13086 {
13087     u_int flags;
13088     int i;
13089 
13090     memset(sc->bar, 0, sizeof(sc->bar));
13091 
13092     for (i = 0; i < MAX_BARS; i++) {
13093 
13094         /* memory resources reside at BARs 0, 2, 4 */
13095         /* Run `pciconf -lb` to see mappings */
13096         if ((i != 0) && (i != 2) && (i != 4)) {
13097             continue;
13098         }
13099 
13100         sc->bar[i].rid = PCIR_BAR(i);
13101 
13102         flags = RF_ACTIVE;
13103         if (i == 0) {
13104             flags |= RF_SHAREABLE;
13105         }
13106 
13107         if ((sc->bar[i].resource =
13108              bus_alloc_resource_any(sc->dev,
13109                                     SYS_RES_MEMORY,
13110                                     &sc->bar[i].rid,
13111                                     flags)) == NULL) {
13112             return (0);
13113         }
13114 
13115         sc->bar[i].tag    = rman_get_bustag(sc->bar[i].resource);
13116         sc->bar[i].handle = rman_get_bushandle(sc->bar[i].resource);
13117         sc->bar[i].kva    = (vm_offset_t)rman_get_virtual(sc->bar[i].resource);
13118 
13119         BLOGI(sc, "PCI BAR%d [%02x] memory allocated: %#jx-%#jx (%jd) -> %#jx\n",
13120               i, PCIR_BAR(i),
13121               rman_get_start(sc->bar[i].resource),
13122               rman_get_end(sc->bar[i].resource),
13123               rman_get_size(sc->bar[i].resource),
13124               (uintmax_t)sc->bar[i].kva);
13125     }
13126 
13127     return (0);
13128 }
13129 
13130 static void
13131 bxe_get_function_num(struct bxe_softc *sc)
13132 {
13133     uint32_t val = 0;
13134 
13135     /*
13136      * Read the ME register to get the function number. The ME register
13137      * holds the relative-function number and absolute-function number. The
13138      * absolute-function number appears only in E2 and above. Before that
13139      * these bits always contained zero, therefore we cannot blindly use them.
13140      */
13141 
13142     val = REG_RD(sc, BAR_ME_REGISTER);
13143 
13144     sc->pfunc_rel =
13145         (uint8_t)((val & ME_REG_PF_NUM) >> ME_REG_PF_NUM_SHIFT);
13146     sc->path_id =
13147         (uint8_t)((val & ME_REG_ABS_PF_NUM) >> ME_REG_ABS_PF_NUM_SHIFT) & 1;
13148 
13149     if (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) {
13150         sc->pfunc_abs = ((sc->pfunc_rel << 1) | sc->path_id);
13151     } else {
13152         sc->pfunc_abs = (sc->pfunc_rel | sc->path_id);
13153     }
13154 
13155     BLOGD(sc, DBG_LOAD,
13156           "Relative function %d, Absolute function %d, Path %d\n",
13157           sc->pfunc_rel, sc->pfunc_abs, sc->path_id);
13158 }
13159 
13160 static uint32_t
13161 bxe_get_shmem_mf_cfg_base(struct bxe_softc *sc)
13162 {
13163     uint32_t shmem2_size;
13164     uint32_t offset;
13165     uint32_t mf_cfg_offset_value;
13166 
13167     /* Non 57712 */
13168     offset = (SHMEM_RD(sc, func_mb) +
13169               (MAX_FUNC_NUM * sizeof(struct drv_func_mb)));
13170 
13171     /* 57712 plus */
13172     if (sc->devinfo.shmem2_base != 0) {
13173         shmem2_size = SHMEM2_RD(sc, size);
13174         if (shmem2_size > offsetof(struct shmem2_region, mf_cfg_addr)) {
13175             mf_cfg_offset_value = SHMEM2_RD(sc, mf_cfg_addr);
13176             if (SHMEM_MF_CFG_ADDR_NONE != mf_cfg_offset_value) {
13177                 offset = mf_cfg_offset_value;
13178             }
13179         }
13180     }
13181 
13182     return (offset);
13183 }
13184 
13185 static uint32_t
13186 bxe_pcie_capability_read(struct bxe_softc *sc,
13187                          int    reg,
13188                          int    width)
13189 {
13190     int pcie_reg;
13191 
13192     /* ensure PCIe capability is enabled */
13193     if (pci_find_cap(sc->dev, PCIY_EXPRESS, &pcie_reg) == 0) {
13194         if (pcie_reg != 0) {
13195             BLOGD(sc, DBG_LOAD, "PCIe capability at 0x%04x\n", pcie_reg);
13196             return (pci_read_config(sc->dev, (pcie_reg + reg), width));
13197         }
13198     }
13199 
13200     BLOGE(sc, "PCIe capability NOT FOUND!!!\n");
13201 
13202     return (0);
13203 }
13204 
13205 static uint8_t
13206 bxe_is_pcie_pending(struct bxe_softc *sc)
13207 {
13208     return (bxe_pcie_capability_read(sc, PCIER_DEVICE_STA, 2) &
13209             PCIEM_STA_TRANSACTION_PND);
13210 }
13211 
13212 /*
13213  * Walk the PCI capabiites list for the device to find what features are
13214  * supported. These capabilites may be enabled/disabled by firmware so it's
13215  * best to walk the list rather than make assumptions.
13216  */
13217 static void
13218 bxe_probe_pci_caps(struct bxe_softc *sc)
13219 {
13220     uint16_t link_status;
13221     int reg;
13222 
13223     /* check if PCI Power Management is enabled */
13224     if (pci_find_cap(sc->dev, PCIY_PMG, &reg) == 0) {
13225         if (reg != 0) {
13226             BLOGD(sc, DBG_LOAD, "Found PM capability at 0x%04x\n", reg);
13227 
13228             sc->devinfo.pcie_cap_flags |= BXE_PM_CAPABLE_FLAG;
13229             sc->devinfo.pcie_pm_cap_reg = (uint16_t)reg;
13230         }
13231     }
13232 
13233     link_status = bxe_pcie_capability_read(sc, PCIER_LINK_STA, 2);
13234 
13235     /* handle PCIe 2.0 workarounds for 57710 */
13236     if (CHIP_IS_E1(sc)) {
13237         /* workaround for 57710 errata E4_57710_27462 */
13238         sc->devinfo.pcie_link_speed =
13239             (REG_RD(sc, 0x3d04) & (1 << 24)) ? 2 : 1;
13240 
13241         /* workaround for 57710 errata E4_57710_27488 */
13242         sc->devinfo.pcie_link_width =
13243             ((link_status & PCIEM_LINK_STA_WIDTH) >> 4);
13244         if (sc->devinfo.pcie_link_speed > 1) {
13245             sc->devinfo.pcie_link_width =
13246                 ((link_status & PCIEM_LINK_STA_WIDTH) >> 4) >> 1;
13247         }
13248     } else {
13249         sc->devinfo.pcie_link_speed =
13250             (link_status & PCIEM_LINK_STA_SPEED);
13251         sc->devinfo.pcie_link_width =
13252             ((link_status & PCIEM_LINK_STA_WIDTH) >> 4);
13253     }
13254 
13255     BLOGD(sc, DBG_LOAD, "PCIe link speed=%d width=%d\n",
13256           sc->devinfo.pcie_link_speed, sc->devinfo.pcie_link_width);
13257 
13258     sc->devinfo.pcie_cap_flags |= BXE_PCIE_CAPABLE_FLAG;
13259     sc->devinfo.pcie_pcie_cap_reg = (uint16_t)reg;
13260 
13261     /* check if MSI capability is enabled */
13262     if (pci_find_cap(sc->dev, PCIY_MSI, &reg) == 0) {
13263         if (reg != 0) {
13264             BLOGD(sc, DBG_LOAD, "Found MSI capability at 0x%04x\n", reg);
13265 
13266             sc->devinfo.pcie_cap_flags |= BXE_MSI_CAPABLE_FLAG;
13267             sc->devinfo.pcie_msi_cap_reg = (uint16_t)reg;
13268         }
13269     }
13270 
13271     /* check if MSI-X capability is enabled */
13272     if (pci_find_cap(sc->dev, PCIY_MSIX, &reg) == 0) {
13273         if (reg != 0) {
13274             BLOGD(sc, DBG_LOAD, "Found MSI-X capability at 0x%04x\n", reg);
13275 
13276             sc->devinfo.pcie_cap_flags |= BXE_MSIX_CAPABLE_FLAG;
13277             sc->devinfo.pcie_msix_cap_reg = (uint16_t)reg;
13278         }
13279     }
13280 }
13281 
13282 static int
13283 bxe_get_shmem_mf_cfg_info_sd(struct bxe_softc *sc)
13284 {
13285     struct bxe_mf_info *mf_info = &sc->devinfo.mf_info;
13286     uint32_t val;
13287 
13288     /* get the outer vlan if we're in switch-dependent mode */
13289 
13290     val = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].e1hov_tag);
13291     mf_info->ext_id = (uint16_t)val;
13292 
13293     mf_info->multi_vnics_mode = 1;
13294 
13295     if (!VALID_OVLAN(mf_info->ext_id)) {
13296         BLOGE(sc, "Invalid VLAN (%d)\n", mf_info->ext_id);
13297         return (1);
13298     }
13299 
13300     /* get the capabilities */
13301     if ((mf_info->mf_config[SC_VN(sc)] & FUNC_MF_CFG_PROTOCOL_MASK) ==
13302         FUNC_MF_CFG_PROTOCOL_ISCSI) {
13303         mf_info->mf_protos_supported |= MF_PROTO_SUPPORT_ISCSI;
13304     } else if ((mf_info->mf_config[SC_VN(sc)] & FUNC_MF_CFG_PROTOCOL_MASK) ==
13305                FUNC_MF_CFG_PROTOCOL_FCOE) {
13306         mf_info->mf_protos_supported |= MF_PROTO_SUPPORT_FCOE;
13307     } else {
13308         mf_info->mf_protos_supported |= MF_PROTO_SUPPORT_ETHERNET;
13309     }
13310 
13311     mf_info->vnics_per_port =
13312         (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) ? 2 : 4;
13313 
13314     return (0);
13315 }
13316 
13317 static uint32_t
13318 bxe_get_shmem_ext_proto_support_flags(struct bxe_softc *sc)
13319 {
13320     uint32_t retval = 0;
13321     uint32_t val;
13322 
13323     val = MFCFG_RD(sc, func_ext_config[SC_ABS_FUNC(sc)].func_cfg);
13324 
13325     if (val & MACP_FUNC_CFG_FLAGS_ENABLED) {
13326         if (val & MACP_FUNC_CFG_FLAGS_ETHERNET) {
13327             retval |= MF_PROTO_SUPPORT_ETHERNET;
13328         }
13329         if (val & MACP_FUNC_CFG_FLAGS_ISCSI_OFFLOAD) {
13330             retval |= MF_PROTO_SUPPORT_ISCSI;
13331         }
13332         if (val & MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD) {
13333             retval |= MF_PROTO_SUPPORT_FCOE;
13334         }
13335     }
13336 
13337     return (retval);
13338 }
13339 
13340 static int
13341 bxe_get_shmem_mf_cfg_info_si(struct bxe_softc *sc)
13342 {
13343     struct bxe_mf_info *mf_info = &sc->devinfo.mf_info;
13344     uint32_t val;
13345 
13346     /*
13347      * There is no outer vlan if we're in switch-independent mode.
13348      * If the mac is valid then assume multi-function.
13349      */
13350 
13351     val = MFCFG_RD(sc, func_ext_config[SC_ABS_FUNC(sc)].func_cfg);
13352 
13353     mf_info->multi_vnics_mode = ((val & MACP_FUNC_CFG_FLAGS_MASK) != 0);
13354 
13355     mf_info->mf_protos_supported = bxe_get_shmem_ext_proto_support_flags(sc);
13356 
13357     mf_info->vnics_per_port =
13358         (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) ? 2 : 4;
13359 
13360     return (0);
13361 }
13362 
13363 static int
13364 bxe_get_shmem_mf_cfg_info_niv(struct bxe_softc *sc)
13365 {
13366     struct bxe_mf_info *mf_info = &sc->devinfo.mf_info;
13367     uint32_t e1hov_tag;
13368     uint32_t func_config;
13369     uint32_t niv_config;
13370 
13371     mf_info->multi_vnics_mode = 1;
13372 
13373     e1hov_tag   = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].e1hov_tag);
13374     func_config = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].config);
13375     niv_config  = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].afex_config);
13376 
13377     mf_info->ext_id =
13378         (uint16_t)((e1hov_tag & FUNC_MF_CFG_E1HOV_TAG_MASK) >>
13379                    FUNC_MF_CFG_E1HOV_TAG_SHIFT);
13380 
13381     mf_info->default_vlan =
13382         (uint16_t)((e1hov_tag & FUNC_MF_CFG_AFEX_VLAN_MASK) >>
13383                    FUNC_MF_CFG_AFEX_VLAN_SHIFT);
13384 
13385     mf_info->niv_allowed_priorities =
13386         (uint8_t)((niv_config & FUNC_MF_CFG_AFEX_COS_FILTER_MASK) >>
13387                   FUNC_MF_CFG_AFEX_COS_FILTER_SHIFT);
13388 
13389     mf_info->niv_default_cos =
13390         (uint8_t)((func_config & FUNC_MF_CFG_TRANSMIT_PRIORITY_MASK) >>
13391                   FUNC_MF_CFG_TRANSMIT_PRIORITY_SHIFT);
13392 
13393     mf_info->afex_vlan_mode =
13394         ((niv_config & FUNC_MF_CFG_AFEX_VLAN_MODE_MASK) >>
13395          FUNC_MF_CFG_AFEX_VLAN_MODE_SHIFT);
13396 
13397     mf_info->niv_mba_enabled =
13398         ((niv_config & FUNC_MF_CFG_AFEX_MBA_ENABLED_MASK) >>
13399          FUNC_MF_CFG_AFEX_MBA_ENABLED_SHIFT);
13400 
13401     mf_info->mf_protos_supported = bxe_get_shmem_ext_proto_support_flags(sc);
13402 
13403     mf_info->vnics_per_port =
13404         (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) ? 2 : 4;
13405 
13406     return (0);
13407 }
13408 
13409 static int
13410 bxe_check_valid_mf_cfg(struct bxe_softc *sc)
13411 {
13412     struct bxe_mf_info *mf_info = &sc->devinfo.mf_info;
13413     uint32_t mf_cfg1;
13414     uint32_t mf_cfg2;
13415     uint32_t ovlan1;
13416     uint32_t ovlan2;
13417     uint8_t i, j;
13418 
13419     BLOGD(sc, DBG_LOAD, "MF config parameters for function %d\n",
13420           SC_PORT(sc));
13421     BLOGD(sc, DBG_LOAD, "\tmf_config=0x%x\n",
13422           mf_info->mf_config[SC_VN(sc)]);
13423     BLOGD(sc, DBG_LOAD, "\tmulti_vnics_mode=%d\n",
13424           mf_info->multi_vnics_mode);
13425     BLOGD(sc, DBG_LOAD, "\tvnics_per_port=%d\n",
13426           mf_info->vnics_per_port);
13427     BLOGD(sc, DBG_LOAD, "\tovlan/vifid=%d\n",
13428           mf_info->ext_id);
13429     BLOGD(sc, DBG_LOAD, "\tmin_bw=%d/%d/%d/%d\n",
13430           mf_info->min_bw[0], mf_info->min_bw[1],
13431           mf_info->min_bw[2], mf_info->min_bw[3]);
13432     BLOGD(sc, DBG_LOAD, "\tmax_bw=%d/%d/%d/%d\n",
13433           mf_info->max_bw[0], mf_info->max_bw[1],
13434           mf_info->max_bw[2], mf_info->max_bw[3]);
13435     BLOGD(sc, DBG_LOAD, "\tmac_addr: %s\n",
13436           sc->mac_addr_str);
13437 
13438     /* various MF mode sanity checks... */
13439 
13440     if (mf_info->mf_config[SC_VN(sc)] & FUNC_MF_CFG_FUNC_HIDE) {
13441         BLOGE(sc, "Enumerated function %d is marked as hidden\n",
13442               SC_PORT(sc));
13443         return (1);
13444     }
13445 
13446     if ((mf_info->vnics_per_port > 1) && !mf_info->multi_vnics_mode) {
13447         BLOGE(sc, "vnics_per_port=%d multi_vnics_mode=%d\n",
13448               mf_info->vnics_per_port, mf_info->multi_vnics_mode);
13449         return (1);
13450     }
13451 
13452     if (mf_info->mf_mode == MULTI_FUNCTION_SD) {
13453         /* vnic id > 0 must have valid ovlan in switch-dependent mode */
13454         if ((SC_VN(sc) > 0) && !VALID_OVLAN(OVLAN(sc))) {
13455             BLOGE(sc, "mf_mode=SD vnic_id=%d ovlan=%d\n",
13456                   SC_VN(sc), OVLAN(sc));
13457             return (1);
13458         }
13459 
13460         if (!VALID_OVLAN(OVLAN(sc)) && mf_info->multi_vnics_mode) {
13461             BLOGE(sc, "mf_mode=SD multi_vnics_mode=%d ovlan=%d\n",
13462                   mf_info->multi_vnics_mode, OVLAN(sc));
13463             return (1);
13464         }
13465 
13466         /*
13467          * Verify all functions are either MF or SF mode. If MF, make sure
13468          * sure that all non-hidden functions have a valid ovlan. If SF,
13469          * make sure that all non-hidden functions have an invalid ovlan.
13470          */
13471         FOREACH_ABS_FUNC_IN_PORT(sc, i) {
13472             mf_cfg1 = MFCFG_RD(sc, func_mf_config[i].config);
13473             ovlan1  = MFCFG_RD(sc, func_mf_config[i].e1hov_tag);
13474             if (!(mf_cfg1 & FUNC_MF_CFG_FUNC_HIDE) &&
13475                 (((mf_info->multi_vnics_mode) && !VALID_OVLAN(ovlan1)) ||
13476                  ((!mf_info->multi_vnics_mode) && VALID_OVLAN(ovlan1)))) {
13477                 BLOGE(sc, "mf_mode=SD function %d MF config "
13478                           "mismatch, multi_vnics_mode=%d ovlan=%d\n",
13479                       i, mf_info->multi_vnics_mode, ovlan1);
13480                 return (1);
13481             }
13482         }
13483 
13484         /* Verify all funcs on the same port each have a different ovlan. */
13485         FOREACH_ABS_FUNC_IN_PORT(sc, i) {
13486             mf_cfg1 = MFCFG_RD(sc, func_mf_config[i].config);
13487             ovlan1  = MFCFG_RD(sc, func_mf_config[i].e1hov_tag);
13488             /* iterate from the next function on the port to the max func */
13489             for (j = i + 2; j < MAX_FUNC_NUM; j += 2) {
13490                 mf_cfg2 = MFCFG_RD(sc, func_mf_config[j].config);
13491                 ovlan2  = MFCFG_RD(sc, func_mf_config[j].e1hov_tag);
13492                 if (!(mf_cfg1 & FUNC_MF_CFG_FUNC_HIDE) &&
13493                     VALID_OVLAN(ovlan1) &&
13494                     !(mf_cfg2 & FUNC_MF_CFG_FUNC_HIDE) &&
13495                     VALID_OVLAN(ovlan2) &&
13496                     (ovlan1 == ovlan2)) {
13497                     BLOGE(sc, "mf_mode=SD functions %d and %d "
13498                               "have the same ovlan (%d)\n",
13499                           i, j, ovlan1);
13500                     return (1);
13501                 }
13502             }
13503         }
13504     } /* MULTI_FUNCTION_SD */
13505 
13506     return (0);
13507 }
13508 
13509 static int
13510 bxe_get_mf_cfg_info(struct bxe_softc *sc)
13511 {
13512     struct bxe_mf_info *mf_info = &sc->devinfo.mf_info;
13513     uint32_t val, mac_upper;
13514     uint8_t i, vnic;
13515 
13516     /* initialize mf_info defaults */
13517     mf_info->vnics_per_port   = 1;
13518     mf_info->multi_vnics_mode = FALSE;
13519     mf_info->path_has_ovlan   = FALSE;
13520     mf_info->mf_mode          = SINGLE_FUNCTION;
13521 
13522     if (!CHIP_IS_MF_CAP(sc)) {
13523         return (0);
13524     }
13525 
13526     if (sc->devinfo.mf_cfg_base == SHMEM_MF_CFG_ADDR_NONE) {
13527         BLOGE(sc, "Invalid mf_cfg_base!\n");
13528         return (1);
13529     }
13530 
13531     /* get the MF mode (switch dependent / independent / single-function) */
13532 
13533     val = SHMEM_RD(sc, dev_info.shared_feature_config.config);
13534 
13535     switch (val & SHARED_FEAT_CFG_FORCE_SF_MODE_MASK)
13536     {
13537     case SHARED_FEAT_CFG_FORCE_SF_MODE_SWITCH_INDEPT:
13538 
13539         mac_upper = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].mac_upper);
13540 
13541         /* check for legal upper mac bytes */
13542         if (mac_upper != FUNC_MF_CFG_UPPERMAC_DEFAULT) {
13543             mf_info->mf_mode = MULTI_FUNCTION_SI;
13544         } else {
13545             BLOGE(sc, "Invalid config for Switch Independent mode\n");
13546         }
13547 
13548         break;
13549 
13550     case SHARED_FEAT_CFG_FORCE_SF_MODE_MF_ALLOWED:
13551     case SHARED_FEAT_CFG_FORCE_SF_MODE_SPIO4:
13552 
13553         /* get outer vlan configuration */
13554         val = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].e1hov_tag);
13555 
13556         if ((val & FUNC_MF_CFG_E1HOV_TAG_MASK) !=
13557             FUNC_MF_CFG_E1HOV_TAG_DEFAULT) {
13558             mf_info->mf_mode = MULTI_FUNCTION_SD;
13559         } else {
13560             BLOGE(sc, "Invalid config for Switch Dependent mode\n");
13561         }
13562 
13563         break;
13564 
13565     case SHARED_FEAT_CFG_FORCE_SF_MODE_FORCED_SF:
13566 
13567         /* not in MF mode, vnics_per_port=1 and multi_vnics_mode=FALSE */
13568         return (0);
13569 
13570     case SHARED_FEAT_CFG_FORCE_SF_MODE_AFEX_MODE:
13571 
13572         /*
13573          * Mark MF mode as NIV if MCP version includes NPAR-SD support
13574          * and the MAC address is valid.
13575          */
13576         mac_upper = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].mac_upper);
13577 
13578         if ((SHMEM2_HAS(sc, afex_driver_support)) &&
13579             (mac_upper != FUNC_MF_CFG_UPPERMAC_DEFAULT)) {
13580             mf_info->mf_mode = MULTI_FUNCTION_AFEX;
13581         } else {
13582             BLOGE(sc, "Invalid config for AFEX mode\n");
13583         }
13584 
13585         break;
13586 
13587     default:
13588 
13589         BLOGE(sc, "Unknown MF mode (0x%08x)\n",
13590               (val & SHARED_FEAT_CFG_FORCE_SF_MODE_MASK));
13591 
13592         return (1);
13593     }
13594 
13595     /* set path mf_mode (which could be different than function mf_mode) */
13596     if (mf_info->mf_mode == MULTI_FUNCTION_SD) {
13597         mf_info->path_has_ovlan = TRUE;
13598     } else if (mf_info->mf_mode == SINGLE_FUNCTION) {
13599         /*
13600          * Decide on path multi vnics mode. If we're not in MF mode and in
13601          * 4-port mode, this is good enough to check vnic-0 of the other port
13602          * on the same path
13603          */
13604         if (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) {
13605             uint8_t other_port = !(PORT_ID(sc) & 1);
13606             uint8_t abs_func_other_port = (SC_PATH(sc) + (2 * other_port));
13607 
13608             val = MFCFG_RD(sc, func_mf_config[abs_func_other_port].e1hov_tag);
13609 
13610             mf_info->path_has_ovlan = VALID_OVLAN((uint16_t)val) ? 1 : 0;
13611         }
13612     }
13613 
13614     if (mf_info->mf_mode == SINGLE_FUNCTION) {
13615         /* invalid MF config */
13616         if (SC_VN(sc) >= 1) {
13617             BLOGE(sc, "VNIC ID >= 1 in SF mode\n");
13618             return (1);
13619         }
13620 
13621         return (0);
13622     }
13623 
13624     /* get the MF configuration */
13625     mf_info->mf_config[SC_VN(sc)] =
13626         MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].config);
13627 
13628     switch(mf_info->mf_mode)
13629     {
13630     case MULTI_FUNCTION_SD:
13631 
13632         bxe_get_shmem_mf_cfg_info_sd(sc);
13633         break;
13634 
13635     case MULTI_FUNCTION_SI:
13636 
13637         bxe_get_shmem_mf_cfg_info_si(sc);
13638         break;
13639 
13640     case MULTI_FUNCTION_AFEX:
13641 
13642         bxe_get_shmem_mf_cfg_info_niv(sc);
13643         break;
13644 
13645     default:
13646 
13647         BLOGE(sc, "Get MF config failed (mf_mode=0x%08x)\n",
13648               mf_info->mf_mode);
13649         return (1);
13650     }
13651 
13652     /* get the congestion management parameters */
13653 
13654     vnic = 0;
13655     FOREACH_ABS_FUNC_IN_PORT(sc, i) {
13656         /* get min/max bw */
13657         val = MFCFG_RD(sc, func_mf_config[i].config);
13658         mf_info->min_bw[vnic] =
13659             ((val & FUNC_MF_CFG_MIN_BW_MASK) >> FUNC_MF_CFG_MIN_BW_SHIFT);
13660         mf_info->max_bw[vnic] =
13661             ((val & FUNC_MF_CFG_MAX_BW_MASK) >> FUNC_MF_CFG_MAX_BW_SHIFT);
13662         vnic++;
13663     }
13664 
13665     return (bxe_check_valid_mf_cfg(sc));
13666 }
13667 
13668 static int
13669 bxe_get_shmem_info(struct bxe_softc *sc)
13670 {
13671     int port;
13672     uint32_t mac_hi, mac_lo, val;
13673 
13674     port = SC_PORT(sc);
13675     mac_hi = mac_lo = 0;
13676 
13677     sc->link_params.sc   = sc;
13678     sc->link_params.port = port;
13679 
13680     /* get the hardware config info */
13681     sc->devinfo.hw_config =
13682         SHMEM_RD(sc, dev_info.shared_hw_config.config);
13683     sc->devinfo.hw_config2 =
13684         SHMEM_RD(sc, dev_info.shared_hw_config.config2);
13685 
13686     sc->link_params.hw_led_mode =
13687         ((sc->devinfo.hw_config & SHARED_HW_CFG_LED_MODE_MASK) >>
13688          SHARED_HW_CFG_LED_MODE_SHIFT);
13689 
13690     /* get the port feature config */
13691     sc->port.config =
13692         SHMEM_RD(sc, dev_info.port_feature_config[port].config);
13693 
13694     /* get the link params */
13695     sc->link_params.speed_cap_mask[0] =
13696         SHMEM_RD(sc, dev_info.port_hw_config[port].speed_capability_mask);
13697     sc->link_params.speed_cap_mask[1] =
13698         SHMEM_RD(sc, dev_info.port_hw_config[port].speed_capability_mask2);
13699 
13700     /* get the lane config */
13701     sc->link_params.lane_config =
13702         SHMEM_RD(sc, dev_info.port_hw_config[port].lane_config);
13703 
13704     /* get the link config */
13705     val = SHMEM_RD(sc, dev_info.port_feature_config[port].link_config);
13706     sc->port.link_config[ELINK_INT_PHY] = val;
13707     sc->link_params.switch_cfg = (val & PORT_FEATURE_CONNECTED_SWITCH_MASK);
13708     sc->port.link_config[ELINK_EXT_PHY1] =
13709         SHMEM_RD(sc, dev_info.port_feature_config[port].link_config2);
13710 
13711     /* get the override preemphasis flag and enable it or turn it off */
13712     val = SHMEM_RD(sc, dev_info.shared_feature_config.config);
13713     if (val & SHARED_FEAT_CFG_OVERRIDE_PREEMPHASIS_CFG_ENABLED) {
13714         sc->link_params.feature_config_flags |=
13715             ELINK_FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED;
13716     } else {
13717         sc->link_params.feature_config_flags &=
13718             ~ELINK_FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED;
13719     }
13720 
13721     /* get the initial value of the link params */
13722     sc->link_params.multi_phy_config =
13723         SHMEM_RD(sc, dev_info.port_hw_config[port].multi_phy_config);
13724 
13725     /* get external phy info */
13726     sc->port.ext_phy_config =
13727         SHMEM_RD(sc, dev_info.port_hw_config[port].external_phy_config);
13728 
13729     /* get the multifunction configuration */
13730     bxe_get_mf_cfg_info(sc);
13731 
13732     /* get the mac address */
13733     if (IS_MF(sc)) {
13734         mac_hi = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].mac_upper);
13735         mac_lo = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].mac_lower);
13736     } else {
13737         mac_hi = SHMEM_RD(sc, dev_info.port_hw_config[port].mac_upper);
13738         mac_lo = SHMEM_RD(sc, dev_info.port_hw_config[port].mac_lower);
13739     }
13740 
13741     if ((mac_lo == 0) && (mac_hi == 0)) {
13742         *sc->mac_addr_str = 0;
13743         BLOGE(sc, "No Ethernet address programmed!\n");
13744     } else {
13745         sc->link_params.mac_addr[0] = (uint8_t)(mac_hi >> 8);
13746         sc->link_params.mac_addr[1] = (uint8_t)(mac_hi);
13747         sc->link_params.mac_addr[2] = (uint8_t)(mac_lo >> 24);
13748         sc->link_params.mac_addr[3] = (uint8_t)(mac_lo >> 16);
13749         sc->link_params.mac_addr[4] = (uint8_t)(mac_lo >> 8);
13750         sc->link_params.mac_addr[5] = (uint8_t)(mac_lo);
13751         snprintf(sc->mac_addr_str, sizeof(sc->mac_addr_str),
13752                  "%02x:%02x:%02x:%02x:%02x:%02x",
13753                  sc->link_params.mac_addr[0], sc->link_params.mac_addr[1],
13754                  sc->link_params.mac_addr[2], sc->link_params.mac_addr[3],
13755                  sc->link_params.mac_addr[4], sc->link_params.mac_addr[5]);
13756         BLOGD(sc, DBG_LOAD, "Ethernet address: %s\n", sc->mac_addr_str);
13757     }
13758 
13759     return (0);
13760 }
13761 
13762 static void
13763 bxe_get_tunable_params(struct bxe_softc *sc)
13764 {
13765     /* sanity checks */
13766 
13767     if ((bxe_interrupt_mode != INTR_MODE_INTX) &&
13768         (bxe_interrupt_mode != INTR_MODE_MSI)  &&
13769         (bxe_interrupt_mode != INTR_MODE_MSIX)) {
13770         BLOGW(sc, "invalid interrupt_mode value (%d)\n", bxe_interrupt_mode);
13771         bxe_interrupt_mode = INTR_MODE_MSIX;
13772     }
13773 
13774     if ((bxe_queue_count < 0) || (bxe_queue_count > MAX_RSS_CHAINS)) {
13775         BLOGW(sc, "invalid queue_count value (%d)\n", bxe_queue_count);
13776         bxe_queue_count = 0;
13777     }
13778 
13779     if ((bxe_max_rx_bufs < 1) || (bxe_max_rx_bufs > RX_BD_USABLE)) {
13780         if (bxe_max_rx_bufs == 0) {
13781             bxe_max_rx_bufs = RX_BD_USABLE;
13782         } else {
13783             BLOGW(sc, "invalid max_rx_bufs (%d)\n", bxe_max_rx_bufs);
13784             bxe_max_rx_bufs = 2048;
13785         }
13786     }
13787 
13788     if ((bxe_hc_rx_ticks < 1) || (bxe_hc_rx_ticks > 100)) {
13789         BLOGW(sc, "invalid hc_rx_ticks (%d)\n", bxe_hc_rx_ticks);
13790         bxe_hc_rx_ticks = 25;
13791     }
13792 
13793     if ((bxe_hc_tx_ticks < 1) || (bxe_hc_tx_ticks > 100)) {
13794         BLOGW(sc, "invalid hc_tx_ticks (%d)\n", bxe_hc_tx_ticks);
13795         bxe_hc_tx_ticks = 50;
13796     }
13797 
13798     if (bxe_max_aggregation_size == 0) {
13799         bxe_max_aggregation_size = TPA_AGG_SIZE;
13800     }
13801 
13802     if (bxe_max_aggregation_size > 0xffff) {
13803         BLOGW(sc, "invalid max_aggregation_size (%d)\n",
13804               bxe_max_aggregation_size);
13805         bxe_max_aggregation_size = TPA_AGG_SIZE;
13806     }
13807 
13808     if ((bxe_mrrs < -1) || (bxe_mrrs > 3)) {
13809         BLOGW(sc, "invalid mrrs (%d)\n", bxe_mrrs);
13810         bxe_mrrs = -1;
13811     }
13812 
13813     if ((bxe_autogreeen < 0) || (bxe_autogreeen > 2)) {
13814         BLOGW(sc, "invalid autogreeen (%d)\n", bxe_autogreeen);
13815         bxe_autogreeen = 0;
13816     }
13817 
13818     if ((bxe_udp_rss < 0) || (bxe_udp_rss > 1)) {
13819         BLOGW(sc, "invalid udp_rss (%d)\n", bxe_udp_rss);
13820         bxe_udp_rss = 0;
13821     }
13822 
13823     /* pull in user settings */
13824 
13825     sc->interrupt_mode       = bxe_interrupt_mode;
13826     sc->max_rx_bufs          = bxe_max_rx_bufs;
13827     sc->hc_rx_ticks          = bxe_hc_rx_ticks;
13828     sc->hc_tx_ticks          = bxe_hc_tx_ticks;
13829     sc->max_aggregation_size = bxe_max_aggregation_size;
13830     sc->mrrs                 = bxe_mrrs;
13831     sc->autogreeen           = bxe_autogreeen;
13832     sc->udp_rss              = bxe_udp_rss;
13833 
13834     if (bxe_interrupt_mode == INTR_MODE_INTX) {
13835         sc->num_queues = 1;
13836     } else { /* INTR_MODE_MSI or INTR_MODE_MSIX */
13837         sc->num_queues =
13838             min((bxe_queue_count ? bxe_queue_count : mp_ncpus),
13839                 MAX_RSS_CHAINS);
13840         if (sc->num_queues > mp_ncpus) {
13841             sc->num_queues = mp_ncpus;
13842         }
13843     }
13844 
13845     BLOGD(sc, DBG_LOAD,
13846           "User Config: "
13847           "debug=0x%lx "
13848           "interrupt_mode=%d "
13849           "queue_count=%d "
13850           "hc_rx_ticks=%d "
13851           "hc_tx_ticks=%d "
13852           "rx_budget=%d "
13853           "max_aggregation_size=%d "
13854           "mrrs=%d "
13855           "autogreeen=%d "
13856           "udp_rss=%d\n",
13857           bxe_debug,
13858           sc->interrupt_mode,
13859           sc->num_queues,
13860           sc->hc_rx_ticks,
13861           sc->hc_tx_ticks,
13862           bxe_rx_budget,
13863           sc->max_aggregation_size,
13864           sc->mrrs,
13865           sc->autogreeen,
13866           sc->udp_rss);
13867 }
13868 
13869 static int
13870 bxe_media_detect(struct bxe_softc *sc)
13871 {
13872     int port_type;
13873     uint32_t phy_idx = bxe_get_cur_phy_idx(sc);
13874 
13875     switch (sc->link_params.phy[phy_idx].media_type) {
13876     case ELINK_ETH_PHY_SFPP_10G_FIBER:
13877     case ELINK_ETH_PHY_XFP_FIBER:
13878         BLOGI(sc, "Found 10Gb Fiber media.\n");
13879         sc->media = IFM_10G_SR;
13880         port_type = PORT_FIBRE;
13881         break;
13882     case ELINK_ETH_PHY_SFP_1G_FIBER:
13883         BLOGI(sc, "Found 1Gb Fiber media.\n");
13884         sc->media = IFM_1000_SX;
13885         port_type = PORT_FIBRE;
13886         break;
13887     case ELINK_ETH_PHY_KR:
13888     case ELINK_ETH_PHY_CX4:
13889         BLOGI(sc, "Found 10GBase-CX4 media.\n");
13890         sc->media = IFM_10G_CX4;
13891         port_type = PORT_FIBRE;
13892         break;
13893     case ELINK_ETH_PHY_DA_TWINAX:
13894         BLOGI(sc, "Found 10Gb Twinax media.\n");
13895         sc->media = IFM_10G_TWINAX;
13896         port_type = PORT_DA;
13897         break;
13898     case ELINK_ETH_PHY_BASE_T:
13899         if (sc->link_params.speed_cap_mask[0] &
13900             PORT_HW_CFG_SPEED_CAPABILITY_D0_10G) {
13901             BLOGI(sc, "Found 10GBase-T media.\n");
13902             sc->media = IFM_10G_T;
13903             port_type = PORT_TP;
13904         } else {
13905             BLOGI(sc, "Found 1000Base-T media.\n");
13906             sc->media = IFM_1000_T;
13907             port_type = PORT_TP;
13908         }
13909         break;
13910     case ELINK_ETH_PHY_NOT_PRESENT:
13911         BLOGI(sc, "Media not present.\n");
13912         sc->media = 0;
13913         port_type = PORT_OTHER;
13914         break;
13915     case ELINK_ETH_PHY_UNSPECIFIED:
13916     default:
13917         BLOGI(sc, "Unknown media!\n");
13918         sc->media = 0;
13919         port_type = PORT_OTHER;
13920         break;
13921     }
13922     return port_type;
13923 }
13924 
13925 #define GET_FIELD(value, fname)                     \
13926     (((value) & (fname##_MASK)) >> (fname##_SHIFT))
13927 #define IGU_FID(val) GET_FIELD((val), IGU_REG_MAPPING_MEMORY_FID)
13928 #define IGU_VEC(val) GET_FIELD((val), IGU_REG_MAPPING_MEMORY_VECTOR)
13929 
13930 static int
13931 bxe_get_igu_cam_info(struct bxe_softc *sc)
13932 {
13933     int pfid = SC_FUNC(sc);
13934     int igu_sb_id;
13935     uint32_t val;
13936     uint8_t fid, igu_sb_cnt = 0;
13937 
13938     sc->igu_base_sb = 0xff;
13939 
13940     if (CHIP_INT_MODE_IS_BC(sc)) {
13941         int vn = SC_VN(sc);
13942         igu_sb_cnt = sc->igu_sb_cnt;
13943         sc->igu_base_sb = ((CHIP_IS_MODE_4_PORT(sc) ? pfid : vn) *
13944                            FP_SB_MAX_E1x);
13945         sc->igu_dsb_id = (E1HVN_MAX * FP_SB_MAX_E1x +
13946                           (CHIP_IS_MODE_4_PORT(sc) ? pfid : vn));
13947         return (0);
13948     }
13949 
13950     /* IGU in normal mode - read CAM */
13951     for (igu_sb_id = 0;
13952          igu_sb_id < IGU_REG_MAPPING_MEMORY_SIZE;
13953          igu_sb_id++) {
13954         val = REG_RD(sc, IGU_REG_MAPPING_MEMORY + igu_sb_id * 4);
13955         if (!(val & IGU_REG_MAPPING_MEMORY_VALID)) {
13956             continue;
13957         }
13958         fid = IGU_FID(val);
13959         if ((fid & IGU_FID_ENCODE_IS_PF)) {
13960             if ((fid & IGU_FID_PF_NUM_MASK) != pfid) {
13961                 continue;
13962             }
13963             if (IGU_VEC(val) == 0) {
13964                 /* default status block */
13965                 sc->igu_dsb_id = igu_sb_id;
13966             } else {
13967                 if (sc->igu_base_sb == 0xff) {
13968                     sc->igu_base_sb = igu_sb_id;
13969                 }
13970                 igu_sb_cnt++;
13971             }
13972         }
13973     }
13974 
13975     /*
13976      * Due to new PF resource allocation by MFW T7.4 and above, it's optional
13977      * that number of CAM entries will not be equal to the value advertised in
13978      * PCI. Driver should use the minimal value of both as the actual status
13979      * block count
13980      */
13981     sc->igu_sb_cnt = min(sc->igu_sb_cnt, igu_sb_cnt);
13982 
13983     if (igu_sb_cnt == 0) {
13984         BLOGE(sc, "CAM configuration error\n");
13985         return (-1);
13986     }
13987 
13988     return (0);
13989 }
13990 
13991 /*
13992  * Gather various information from the device config space, the device itself,
13993  * shmem, and the user input.
13994  */
13995 static int
13996 bxe_get_device_info(struct bxe_softc *sc)
13997 {
13998     uint32_t val;
13999     int rc;
14000 
14001     /* Get the data for the device */
14002     sc->devinfo.vendor_id    = pci_get_vendor(sc->dev);
14003     sc->devinfo.device_id    = pci_get_device(sc->dev);
14004     sc->devinfo.subvendor_id = pci_get_subvendor(sc->dev);
14005     sc->devinfo.subdevice_id = pci_get_subdevice(sc->dev);
14006 
14007     /* get the chip revision (chip metal comes from pci config space) */
14008     sc->devinfo.chip_id     =
14009     sc->link_params.chip_id =
14010         (((REG_RD(sc, MISC_REG_CHIP_NUM)                   & 0xffff) << 16) |
14011          ((REG_RD(sc, MISC_REG_CHIP_REV)                   & 0xf)    << 12) |
14012          (((REG_RD(sc, PCICFG_OFFSET + PCI_ID_VAL3) >> 24) & 0xf)    << 4)  |
14013          ((REG_RD(sc, MISC_REG_BOND_ID)                    & 0xf)    << 0));
14014 
14015     /* force 57811 according to MISC register */
14016     if (REG_RD(sc, MISC_REG_CHIP_TYPE) & MISC_REG_CHIP_TYPE_57811_MASK) {
14017         if (CHIP_IS_57810(sc)) {
14018             sc->devinfo.chip_id = ((CHIP_NUM_57811 << 16) |
14019                                    (sc->devinfo.chip_id & 0x0000ffff));
14020         } else if (CHIP_IS_57810_MF(sc)) {
14021             sc->devinfo.chip_id = ((CHIP_NUM_57811_MF << 16) |
14022                                    (sc->devinfo.chip_id & 0x0000ffff));
14023         }
14024         sc->devinfo.chip_id |= 0x1;
14025     }
14026 
14027     BLOGD(sc, DBG_LOAD,
14028           "chip_id=0x%08x (num=0x%04x rev=0x%01x metal=0x%02x bond=0x%01x)\n",
14029           sc->devinfo.chip_id,
14030           ((sc->devinfo.chip_id >> 16) & 0xffff),
14031           ((sc->devinfo.chip_id >> 12) & 0xf),
14032           ((sc->devinfo.chip_id >>  4) & 0xff),
14033           ((sc->devinfo.chip_id >>  0) & 0xf));
14034 
14035     val = (REG_RD(sc, 0x2874) & 0x55);
14036     if ((sc->devinfo.chip_id & 0x1) ||
14037         (CHIP_IS_E1(sc) && val) ||
14038         (CHIP_IS_E1H(sc) && (val == 0x55))) {
14039         sc->flags |= BXE_ONE_PORT_FLAG;
14040         BLOGD(sc, DBG_LOAD, "single port device\n");
14041     }
14042 
14043     /* set the doorbell size */
14044     sc->doorbell_size = (1 << BXE_DB_SHIFT);
14045 
14046     /* determine whether the device is in 2 port or 4 port mode */
14047     sc->devinfo.chip_port_mode = CHIP_PORT_MODE_NONE; /* E1 & E1h*/
14048     if (CHIP_IS_E2E3(sc)) {
14049         /*
14050          * Read port4mode_en_ovwr[0]:
14051          *   If 1, four port mode is in port4mode_en_ovwr[1].
14052          *   If 0, four port mode is in port4mode_en[0].
14053          */
14054         val = REG_RD(sc, MISC_REG_PORT4MODE_EN_OVWR);
14055         if (val & 1) {
14056             val = ((val >> 1) & 1);
14057         } else {
14058             val = REG_RD(sc, MISC_REG_PORT4MODE_EN);
14059         }
14060 
14061         sc->devinfo.chip_port_mode =
14062             (val) ? CHIP_4_PORT_MODE : CHIP_2_PORT_MODE;
14063 
14064         BLOGD(sc, DBG_LOAD, "Port mode = %s\n", (val) ? "4" : "2");
14065     }
14066 
14067     /* get the function and path info for the device */
14068     bxe_get_function_num(sc);
14069 
14070     /* get the shared memory base address */
14071     sc->devinfo.shmem_base     =
14072     sc->link_params.shmem_base =
14073         REG_RD(sc, MISC_REG_SHARED_MEM_ADDR);
14074     sc->devinfo.shmem2_base =
14075         REG_RD(sc, (SC_PATH(sc) ? MISC_REG_GENERIC_CR_1 :
14076                                   MISC_REG_GENERIC_CR_0));
14077 
14078     BLOGD(sc, DBG_LOAD, "shmem_base=0x%08x, shmem2_base=0x%08x\n",
14079           sc->devinfo.shmem_base, sc->devinfo.shmem2_base);
14080 
14081     if (!sc->devinfo.shmem_base) {
14082         /* this should ONLY prevent upcoming shmem reads */
14083         BLOGI(sc, "MCP not active\n");
14084         sc->flags |= BXE_NO_MCP_FLAG;
14085         return (0);
14086     }
14087 
14088     /* make sure the shared memory contents are valid */
14089     val = SHMEM_RD(sc, validity_map[SC_PORT(sc)]);
14090     if ((val & (SHR_MEM_VALIDITY_DEV_INFO | SHR_MEM_VALIDITY_MB)) !=
14091         (SHR_MEM_VALIDITY_DEV_INFO | SHR_MEM_VALIDITY_MB)) {
14092         BLOGE(sc, "Invalid SHMEM validity signature: 0x%08x\n", val);
14093         return (0);
14094     }
14095     BLOGD(sc, DBG_LOAD, "Valid SHMEM validity signature: 0x%08x\n", val);
14096 
14097     /* get the bootcode version */
14098     sc->devinfo.bc_ver = SHMEM_RD(sc, dev_info.bc_rev);
14099     snprintf(sc->devinfo.bc_ver_str,
14100              sizeof(sc->devinfo.bc_ver_str),
14101              "%d.%d.%d",
14102              ((sc->devinfo.bc_ver >> 24) & 0xff),
14103              ((sc->devinfo.bc_ver >> 16) & 0xff),
14104              ((sc->devinfo.bc_ver >>  8) & 0xff));
14105     BLOGD(sc, DBG_LOAD, "Bootcode version: %s\n", sc->devinfo.bc_ver_str);
14106 
14107     /* get the bootcode shmem address */
14108     sc->devinfo.mf_cfg_base = bxe_get_shmem_mf_cfg_base(sc);
14109     BLOGD(sc, DBG_LOAD, "mf_cfg_base=0x08%x \n", sc->devinfo.mf_cfg_base);
14110 
14111     /* clean indirect addresses as they're not used */
14112     pci_write_config(sc->dev, PCICFG_GRC_ADDRESS, 0, 4);
14113     if (IS_PF(sc)) {
14114         REG_WR(sc, PXP2_REG_PGL_ADDR_88_F0, 0);
14115         REG_WR(sc, PXP2_REG_PGL_ADDR_8C_F0, 0);
14116         REG_WR(sc, PXP2_REG_PGL_ADDR_90_F0, 0);
14117         REG_WR(sc, PXP2_REG_PGL_ADDR_94_F0, 0);
14118         if (CHIP_IS_E1x(sc)) {
14119             REG_WR(sc, PXP2_REG_PGL_ADDR_88_F1, 0);
14120             REG_WR(sc, PXP2_REG_PGL_ADDR_8C_F1, 0);
14121             REG_WR(sc, PXP2_REG_PGL_ADDR_90_F1, 0);
14122             REG_WR(sc, PXP2_REG_PGL_ADDR_94_F1, 0);
14123         }
14124 
14125         /*
14126          * Enable internal target-read (in case we are probed after PF
14127          * FLR). Must be done prior to any BAR read access. Only for
14128          * 57712 and up
14129          */
14130         if (!CHIP_IS_E1x(sc)) {
14131             REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
14132         }
14133     }
14134 
14135     /* get the nvram size */
14136     val = REG_RD(sc, MCP_REG_MCPR_NVM_CFG4);
14137     sc->devinfo.flash_size =
14138         (NVRAM_1MB_SIZE << (val & MCPR_NVM_CFG4_FLASH_SIZE));
14139     BLOGD(sc, DBG_LOAD, "nvram flash size: %d\n", sc->devinfo.flash_size);
14140 
14141     /* get PCI capabilites */
14142     bxe_probe_pci_caps(sc);
14143 
14144     bxe_set_power_state(sc, PCI_PM_D0);
14145 
14146     /* get various configuration parameters from shmem */
14147     bxe_get_shmem_info(sc);
14148 
14149     if (sc->devinfo.pcie_msix_cap_reg != 0) {
14150         val = pci_read_config(sc->dev,
14151                               (sc->devinfo.pcie_msix_cap_reg +
14152                                PCIR_MSIX_CTRL),
14153                               2);
14154         sc->igu_sb_cnt = (val & PCIM_MSIXCTRL_TABLE_SIZE);
14155     } else {
14156         sc->igu_sb_cnt = 1;
14157     }
14158 
14159     sc->igu_base_addr = BAR_IGU_INTMEM;
14160 
14161     /* initialize IGU parameters */
14162     if (CHIP_IS_E1x(sc)) {
14163         sc->devinfo.int_block = INT_BLOCK_HC;
14164         sc->igu_dsb_id = DEF_SB_IGU_ID;
14165         sc->igu_base_sb = 0;
14166     } else {
14167         sc->devinfo.int_block = INT_BLOCK_IGU;
14168 
14169         /* do not allow device reset during IGU info preocessing */
14170         bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RESET);
14171 
14172         val = REG_RD(sc, IGU_REG_BLOCK_CONFIGURATION);
14173 
14174         if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) {
14175             int tout = 5000;
14176 
14177             BLOGD(sc, DBG_LOAD, "FORCING IGU Normal Mode\n");
14178 
14179             val &= ~(IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN);
14180             REG_WR(sc, IGU_REG_BLOCK_CONFIGURATION, val);
14181             REG_WR(sc, IGU_REG_RESET_MEMORIES, 0x7f);
14182 
14183             while (tout && REG_RD(sc, IGU_REG_RESET_MEMORIES)) {
14184                 tout--;
14185                 DELAY(1000);
14186             }
14187 
14188             if (REG_RD(sc, IGU_REG_RESET_MEMORIES)) {
14189                 BLOGD(sc, DBG_LOAD, "FORCING IGU Normal Mode failed!!!\n");
14190                 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RESET);
14191                 return (-1);
14192             }
14193         }
14194 
14195         if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) {
14196             BLOGD(sc, DBG_LOAD, "IGU Backward Compatible Mode\n");
14197             sc->devinfo.int_block |= INT_BLOCK_MODE_BW_COMP;
14198         } else {
14199             BLOGD(sc, DBG_LOAD, "IGU Normal Mode\n");
14200         }
14201 
14202         rc = bxe_get_igu_cam_info(sc);
14203 
14204         bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RESET);
14205 
14206         if (rc) {
14207             return (rc);
14208         }
14209     }
14210 
14211     /*
14212      * Get base FW non-default (fast path) status block ID. This value is
14213      * used to initialize the fw_sb_id saved on the fp/queue structure to
14214      * determine the id used by the FW.
14215      */
14216     if (CHIP_IS_E1x(sc)) {
14217         sc->base_fw_ndsb = ((SC_PORT(sc) * FP_SB_MAX_E1x) + SC_L_ID(sc));
14218     } else {
14219         /*
14220          * 57712+ - We currently use one FW SB per IGU SB (Rx and Tx of
14221          * the same queue are indicated on the same IGU SB). So we prefer
14222          * FW and IGU SBs to be the same value.
14223          */
14224         sc->base_fw_ndsb = sc->igu_base_sb;
14225     }
14226 
14227     BLOGD(sc, DBG_LOAD,
14228           "igu_dsb_id=%d igu_base_sb=%d igu_sb_cnt=%d base_fw_ndsb=%d\n",
14229           sc->igu_dsb_id, sc->igu_base_sb,
14230           sc->igu_sb_cnt, sc->base_fw_ndsb);
14231 
14232     elink_phy_probe(&sc->link_params);
14233 
14234     return (0);
14235 }
14236 
14237 static void
14238 bxe_link_settings_supported(struct bxe_softc *sc,
14239                             uint32_t         switch_cfg)
14240 {
14241     uint32_t cfg_size = 0;
14242     uint32_t idx;
14243     uint8_t port = SC_PORT(sc);
14244 
14245     /* aggregation of supported attributes of all external phys */
14246     sc->port.supported[0] = 0;
14247     sc->port.supported[1] = 0;
14248 
14249     switch (sc->link_params.num_phys) {
14250     case 1:
14251         sc->port.supported[0] = sc->link_params.phy[ELINK_INT_PHY].supported;
14252         cfg_size = 1;
14253         break;
14254     case 2:
14255         sc->port.supported[0] = sc->link_params.phy[ELINK_EXT_PHY1].supported;
14256         cfg_size = 1;
14257         break;
14258     case 3:
14259         if (sc->link_params.multi_phy_config &
14260             PORT_HW_CFG_PHY_SWAPPED_ENABLED) {
14261             sc->port.supported[1] =
14262                 sc->link_params.phy[ELINK_EXT_PHY1].supported;
14263             sc->port.supported[0] =
14264                 sc->link_params.phy[ELINK_EXT_PHY2].supported;
14265         } else {
14266             sc->port.supported[0] =
14267                 sc->link_params.phy[ELINK_EXT_PHY1].supported;
14268             sc->port.supported[1] =
14269                 sc->link_params.phy[ELINK_EXT_PHY2].supported;
14270         }
14271         cfg_size = 2;
14272         break;
14273     }
14274 
14275     if (!(sc->port.supported[0] || sc->port.supported[1])) {
14276         BLOGE(sc, "Invalid phy config in NVRAM (PHY1=0x%08x PHY2=0x%08x)\n",
14277               SHMEM_RD(sc,
14278                        dev_info.port_hw_config[port].external_phy_config),
14279               SHMEM_RD(sc,
14280                        dev_info.port_hw_config[port].external_phy_config2));
14281         return;
14282     }
14283 
14284     if (CHIP_IS_E3(sc))
14285         sc->port.phy_addr = REG_RD(sc, MISC_REG_WC0_CTRL_PHY_ADDR);
14286     else {
14287         switch (switch_cfg) {
14288         case ELINK_SWITCH_CFG_1G:
14289             sc->port.phy_addr =
14290                 REG_RD(sc, NIG_REG_SERDES0_CTRL_PHY_ADDR + port*0x10);
14291             break;
14292         case ELINK_SWITCH_CFG_10G:
14293             sc->port.phy_addr =
14294                 REG_RD(sc, NIG_REG_XGXS0_CTRL_PHY_ADDR + port*0x18);
14295             break;
14296         default:
14297             BLOGE(sc, "Invalid switch config in link_config=0x%08x\n",
14298                   sc->port.link_config[0]);
14299             return;
14300         }
14301     }
14302 
14303     BLOGD(sc, DBG_LOAD, "PHY addr 0x%08x\n", sc->port.phy_addr);
14304 
14305     /* mask what we support according to speed_cap_mask per configuration */
14306     for (idx = 0; idx < cfg_size; idx++) {
14307         if (!(sc->link_params.speed_cap_mask[idx] &
14308               PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_HALF)) {
14309             sc->port.supported[idx] &= ~ELINK_SUPPORTED_10baseT_Half;
14310         }
14311 
14312         if (!(sc->link_params.speed_cap_mask[idx] &
14313               PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_FULL)) {
14314             sc->port.supported[idx] &= ~ELINK_SUPPORTED_10baseT_Full;
14315         }
14316 
14317         if (!(sc->link_params.speed_cap_mask[idx] &
14318               PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_HALF)) {
14319             sc->port.supported[idx] &= ~ELINK_SUPPORTED_100baseT_Half;
14320         }
14321 
14322         if (!(sc->link_params.speed_cap_mask[idx] &
14323               PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_FULL)) {
14324             sc->port.supported[idx] &= ~ELINK_SUPPORTED_100baseT_Full;
14325         }
14326 
14327         if (!(sc->link_params.speed_cap_mask[idx] &
14328               PORT_HW_CFG_SPEED_CAPABILITY_D0_1G)) {
14329             sc->port.supported[idx] &= ~ELINK_SUPPORTED_1000baseT_Full;
14330         }
14331 
14332         if (!(sc->link_params.speed_cap_mask[idx] &
14333               PORT_HW_CFG_SPEED_CAPABILITY_D0_2_5G)) {
14334             sc->port.supported[idx] &= ~ELINK_SUPPORTED_2500baseX_Full;
14335         }
14336 
14337         if (!(sc->link_params.speed_cap_mask[idx] &
14338               PORT_HW_CFG_SPEED_CAPABILITY_D0_10G)) {
14339             sc->port.supported[idx] &= ~ELINK_SUPPORTED_10000baseT_Full;
14340         }
14341 
14342         if (!(sc->link_params.speed_cap_mask[idx] &
14343               PORT_HW_CFG_SPEED_CAPABILITY_D0_20G)) {
14344             sc->port.supported[idx] &= ~ELINK_SUPPORTED_20000baseKR2_Full;
14345         }
14346     }
14347 
14348     BLOGD(sc, DBG_LOAD, "PHY supported 0=0x%08x 1=0x%08x\n",
14349           sc->port.supported[0], sc->port.supported[1]);
14350 	ELINK_DEBUG_P2(sc, "PHY supported 0=0x%08x 1=0x%08x\n",
14351 					sc->port.supported[0], sc->port.supported[1]);
14352 }
14353 
14354 static void
14355 bxe_link_settings_requested(struct bxe_softc *sc)
14356 {
14357     uint32_t link_config;
14358     uint32_t idx;
14359     uint32_t cfg_size = 0;
14360 
14361     sc->port.advertising[0] = 0;
14362     sc->port.advertising[1] = 0;
14363 
14364     switch (sc->link_params.num_phys) {
14365     case 1:
14366     case 2:
14367         cfg_size = 1;
14368         break;
14369     case 3:
14370         cfg_size = 2;
14371         break;
14372     }
14373 
14374     for (idx = 0; idx < cfg_size; idx++) {
14375         sc->link_params.req_duplex[idx] = DUPLEX_FULL;
14376         link_config = sc->port.link_config[idx];
14377 
14378         switch (link_config & PORT_FEATURE_LINK_SPEED_MASK) {
14379         case PORT_FEATURE_LINK_SPEED_AUTO:
14380             if (sc->port.supported[idx] & ELINK_SUPPORTED_Autoneg) {
14381                 sc->link_params.req_line_speed[idx] = ELINK_SPEED_AUTO_NEG;
14382                 sc->port.advertising[idx] |= sc->port.supported[idx];
14383                 if (sc->link_params.phy[ELINK_EXT_PHY1].type ==
14384                     PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM84833)
14385                     sc->port.advertising[idx] |=
14386                         (ELINK_SUPPORTED_100baseT_Half |
14387                          ELINK_SUPPORTED_100baseT_Full);
14388             } else {
14389                 /* force 10G, no AN */
14390                 sc->link_params.req_line_speed[idx] = ELINK_SPEED_10000;
14391                 sc->port.advertising[idx] |=
14392                     (ADVERTISED_10000baseT_Full | ADVERTISED_FIBRE);
14393                 continue;
14394             }
14395             break;
14396 
14397         case PORT_FEATURE_LINK_SPEED_10M_FULL:
14398             if (sc->port.supported[idx] & ELINK_SUPPORTED_10baseT_Full) {
14399                 sc->link_params.req_line_speed[idx] = ELINK_SPEED_10;
14400                 sc->port.advertising[idx] |= (ADVERTISED_10baseT_Full |
14401                                               ADVERTISED_TP);
14402             } else {
14403                 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x "
14404                           "speed_cap_mask=0x%08x\n",
14405                       link_config, sc->link_params.speed_cap_mask[idx]);
14406                 return;
14407             }
14408             break;
14409 
14410         case PORT_FEATURE_LINK_SPEED_10M_HALF:
14411             if (sc->port.supported[idx] & ELINK_SUPPORTED_10baseT_Half) {
14412                 sc->link_params.req_line_speed[idx] = ELINK_SPEED_10;
14413                 sc->link_params.req_duplex[idx] = DUPLEX_HALF;
14414                 sc->port.advertising[idx] |= (ADVERTISED_10baseT_Half |
14415                                               ADVERTISED_TP);
14416 				ELINK_DEBUG_P1(sc, "driver requesting DUPLEX_HALF req_duplex = %x!\n",
14417 								sc->link_params.req_duplex[idx]);
14418             } else {
14419                 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x "
14420                           "speed_cap_mask=0x%08x\n",
14421                       link_config, sc->link_params.speed_cap_mask[idx]);
14422                 return;
14423             }
14424             break;
14425 
14426         case PORT_FEATURE_LINK_SPEED_100M_FULL:
14427             if (sc->port.supported[idx] & ELINK_SUPPORTED_100baseT_Full) {
14428                 sc->link_params.req_line_speed[idx] = ELINK_SPEED_100;
14429                 sc->port.advertising[idx] |= (ADVERTISED_100baseT_Full |
14430                                               ADVERTISED_TP);
14431             } else {
14432                 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x "
14433                           "speed_cap_mask=0x%08x\n",
14434                       link_config, sc->link_params.speed_cap_mask[idx]);
14435                 return;
14436             }
14437             break;
14438 
14439         case PORT_FEATURE_LINK_SPEED_100M_HALF:
14440             if (sc->port.supported[idx] & ELINK_SUPPORTED_100baseT_Half) {
14441                 sc->link_params.req_line_speed[idx] = ELINK_SPEED_100;
14442                 sc->link_params.req_duplex[idx] = DUPLEX_HALF;
14443                 sc->port.advertising[idx] |= (ADVERTISED_100baseT_Half |
14444                                               ADVERTISED_TP);
14445             } else {
14446                 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x "
14447                           "speed_cap_mask=0x%08x\n",
14448                       link_config, sc->link_params.speed_cap_mask[idx]);
14449                 return;
14450             }
14451             break;
14452 
14453         case PORT_FEATURE_LINK_SPEED_1G:
14454             if (sc->port.supported[idx] & ELINK_SUPPORTED_1000baseT_Full) {
14455                 sc->link_params.req_line_speed[idx] = ELINK_SPEED_1000;
14456                 sc->port.advertising[idx] |= (ADVERTISED_1000baseT_Full |
14457                                               ADVERTISED_TP);
14458             } else {
14459                 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x "
14460                           "speed_cap_mask=0x%08x\n",
14461                       link_config, sc->link_params.speed_cap_mask[idx]);
14462                 return;
14463             }
14464             break;
14465 
14466         case PORT_FEATURE_LINK_SPEED_2_5G:
14467             if (sc->port.supported[idx] & ELINK_SUPPORTED_2500baseX_Full) {
14468                 sc->link_params.req_line_speed[idx] = ELINK_SPEED_2500;
14469                 sc->port.advertising[idx] |= (ADVERTISED_2500baseX_Full |
14470                                               ADVERTISED_TP);
14471             } else {
14472                 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x "
14473                           "speed_cap_mask=0x%08x\n",
14474                       link_config, sc->link_params.speed_cap_mask[idx]);
14475                 return;
14476             }
14477             break;
14478 
14479         case PORT_FEATURE_LINK_SPEED_10G_CX4:
14480             if (sc->port.supported[idx] & ELINK_SUPPORTED_10000baseT_Full) {
14481                 sc->link_params.req_line_speed[idx] = ELINK_SPEED_10000;
14482                 sc->port.advertising[idx] |= (ADVERTISED_10000baseT_Full |
14483                                               ADVERTISED_FIBRE);
14484             } else {
14485                 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x "
14486                           "speed_cap_mask=0x%08x\n",
14487                       link_config, sc->link_params.speed_cap_mask[idx]);
14488                 return;
14489             }
14490             break;
14491 
14492         case PORT_FEATURE_LINK_SPEED_20G:
14493             sc->link_params.req_line_speed[idx] = ELINK_SPEED_20000;
14494             break;
14495 
14496         default:
14497             BLOGE(sc, "Invalid NVRAM config link_config=0x%08x "
14498                       "speed_cap_mask=0x%08x\n",
14499                   link_config, sc->link_params.speed_cap_mask[idx]);
14500             sc->link_params.req_line_speed[idx] = ELINK_SPEED_AUTO_NEG;
14501             sc->port.advertising[idx] = sc->port.supported[idx];
14502             break;
14503         }
14504 
14505         sc->link_params.req_flow_ctrl[idx] =
14506             (link_config & PORT_FEATURE_FLOW_CONTROL_MASK);
14507 
14508         if (sc->link_params.req_flow_ctrl[idx] == ELINK_FLOW_CTRL_AUTO) {
14509             if (!(sc->port.supported[idx] & ELINK_SUPPORTED_Autoneg)) {
14510                 sc->link_params.req_flow_ctrl[idx] = ELINK_FLOW_CTRL_NONE;
14511             } else {
14512                 bxe_set_requested_fc(sc);
14513             }
14514         }
14515 
14516         BLOGD(sc, DBG_LOAD, "req_line_speed=%d req_duplex=%d "
14517                             "req_flow_ctrl=0x%x advertising=0x%x\n",
14518               sc->link_params.req_line_speed[idx],
14519               sc->link_params.req_duplex[idx],
14520               sc->link_params.req_flow_ctrl[idx],
14521               sc->port.advertising[idx]);
14522 		ELINK_DEBUG_P3(sc, "req_line_speed=%d req_duplex=%d "
14523 						"advertising=0x%x\n",
14524 						sc->link_params.req_line_speed[idx],
14525 						sc->link_params.req_duplex[idx],
14526 						sc->port.advertising[idx]);
14527     }
14528 }
14529 
14530 static void
14531 bxe_get_phy_info(struct bxe_softc *sc)
14532 {
14533     uint8_t port = SC_PORT(sc);
14534     uint32_t config = sc->port.config;
14535     uint32_t eee_mode;
14536 
14537     /* shmem data already read in bxe_get_shmem_info() */
14538 
14539     ELINK_DEBUG_P3(sc, "lane_config=0x%08x speed_cap_mask0=0x%08x "
14540                         "link_config0=0x%08x\n",
14541                sc->link_params.lane_config,
14542                sc->link_params.speed_cap_mask[0],
14543                sc->port.link_config[0]);
14544 
14545 
14546     bxe_link_settings_supported(sc, sc->link_params.switch_cfg);
14547     bxe_link_settings_requested(sc);
14548 
14549     if (sc->autogreeen == AUTO_GREEN_FORCE_ON) {
14550         sc->link_params.feature_config_flags |=
14551             ELINK_FEATURE_CONFIG_AUTOGREEEN_ENABLED;
14552     } else if (sc->autogreeen == AUTO_GREEN_FORCE_OFF) {
14553         sc->link_params.feature_config_flags &=
14554             ~ELINK_FEATURE_CONFIG_AUTOGREEEN_ENABLED;
14555     } else if (config & PORT_FEAT_CFG_AUTOGREEEN_ENABLED) {
14556         sc->link_params.feature_config_flags |=
14557             ELINK_FEATURE_CONFIG_AUTOGREEEN_ENABLED;
14558     }
14559 
14560     /* configure link feature according to nvram value */
14561     eee_mode =
14562         (((SHMEM_RD(sc, dev_info.port_feature_config[port].eee_power_mode)) &
14563           PORT_FEAT_CFG_EEE_POWER_MODE_MASK) >>
14564          PORT_FEAT_CFG_EEE_POWER_MODE_SHIFT);
14565     if (eee_mode != PORT_FEAT_CFG_EEE_POWER_MODE_DISABLED) {
14566         sc->link_params.eee_mode = (ELINK_EEE_MODE_ADV_LPI |
14567                                     ELINK_EEE_MODE_ENABLE_LPI |
14568                                     ELINK_EEE_MODE_OUTPUT_TIME);
14569     } else {
14570         sc->link_params.eee_mode = 0;
14571     }
14572 
14573     /* get the media type */
14574     bxe_media_detect(sc);
14575 	ELINK_DEBUG_P1(sc, "detected media type\n", sc->media);
14576 }
14577 
14578 static void
14579 bxe_get_params(struct bxe_softc *sc)
14580 {
14581     /* get user tunable params */
14582     bxe_get_tunable_params(sc);
14583 
14584     /* select the RX and TX ring sizes */
14585     sc->tx_ring_size = TX_BD_USABLE;
14586     sc->rx_ring_size = RX_BD_USABLE;
14587 
14588     /* XXX disable WoL */
14589     sc->wol = 0;
14590 }
14591 
14592 static void
14593 bxe_set_modes_bitmap(struct bxe_softc *sc)
14594 {
14595     uint32_t flags = 0;
14596 
14597     if (CHIP_REV_IS_FPGA(sc)) {
14598         SET_FLAGS(flags, MODE_FPGA);
14599     } else if (CHIP_REV_IS_EMUL(sc)) {
14600         SET_FLAGS(flags, MODE_EMUL);
14601     } else {
14602         SET_FLAGS(flags, MODE_ASIC);
14603     }
14604 
14605     if (CHIP_IS_MODE_4_PORT(sc)) {
14606         SET_FLAGS(flags, MODE_PORT4);
14607     } else {
14608         SET_FLAGS(flags, MODE_PORT2);
14609     }
14610 
14611     if (CHIP_IS_E2(sc)) {
14612         SET_FLAGS(flags, MODE_E2);
14613     } else if (CHIP_IS_E3(sc)) {
14614         SET_FLAGS(flags, MODE_E3);
14615         if (CHIP_REV(sc) == CHIP_REV_Ax) {
14616             SET_FLAGS(flags, MODE_E3_A0);
14617         } else /*if (CHIP_REV(sc) == CHIP_REV_Bx)*/ {
14618             SET_FLAGS(flags, MODE_E3_B0 | MODE_COS3);
14619         }
14620     }
14621 
14622     if (IS_MF(sc)) {
14623         SET_FLAGS(flags, MODE_MF);
14624         switch (sc->devinfo.mf_info.mf_mode) {
14625         case MULTI_FUNCTION_SD:
14626             SET_FLAGS(flags, MODE_MF_SD);
14627             break;
14628         case MULTI_FUNCTION_SI:
14629             SET_FLAGS(flags, MODE_MF_SI);
14630             break;
14631         case MULTI_FUNCTION_AFEX:
14632             SET_FLAGS(flags, MODE_MF_AFEX);
14633             break;
14634         }
14635     } else {
14636         SET_FLAGS(flags, MODE_SF);
14637     }
14638 
14639 #if defined(__LITTLE_ENDIAN)
14640     SET_FLAGS(flags, MODE_LITTLE_ENDIAN);
14641 #else /* __BIG_ENDIAN */
14642     SET_FLAGS(flags, MODE_BIG_ENDIAN);
14643 #endif
14644 
14645     INIT_MODE_FLAGS(sc) = flags;
14646 }
14647 
14648 static int
14649 bxe_alloc_hsi_mem(struct bxe_softc *sc)
14650 {
14651     struct bxe_fastpath *fp;
14652     bus_addr_t busaddr;
14653     int max_agg_queues;
14654     int max_segments;
14655     bus_size_t max_size;
14656     bus_size_t max_seg_size;
14657     char buf[32];
14658     int rc;
14659     int i, j;
14660 
14661     /* XXX zero out all vars here and call bxe_alloc_hsi_mem on error */
14662 
14663     /* allocate the parent bus DMA tag */
14664     rc = bus_dma_tag_create(bus_get_dma_tag(sc->dev), /* parent tag */
14665                             1,                        /* alignment */
14666                             0,                        /* boundary limit */
14667                             BUS_SPACE_MAXADDR,        /* restricted low */
14668                             BUS_SPACE_MAXADDR,        /* restricted hi */
14669                             NULL,                     /* addr filter() */
14670                             NULL,                     /* addr filter() arg */
14671                             BUS_SPACE_MAXSIZE_32BIT,  /* max map size */
14672                             BUS_SPACE_UNRESTRICTED,   /* num discontinuous */
14673                             BUS_SPACE_MAXSIZE_32BIT,  /* max seg size */
14674                             0,                        /* flags */
14675                             NULL,                     /* lock() */
14676                             NULL,                     /* lock() arg */
14677                             &sc->parent_dma_tag);     /* returned dma tag */
14678     if (rc != 0) {
14679         BLOGE(sc, "Failed to alloc parent DMA tag (%d)!\n", rc);
14680         return (1);
14681     }
14682 
14683     /************************/
14684     /* DEFAULT STATUS BLOCK */
14685     /************************/
14686 
14687     if (bxe_dma_alloc(sc, sizeof(struct host_sp_status_block),
14688                       &sc->def_sb_dma, "default status block") != 0) {
14689         /* XXX */
14690         bus_dma_tag_destroy(sc->parent_dma_tag);
14691         return (1);
14692     }
14693 
14694     sc->def_sb = (struct host_sp_status_block *)sc->def_sb_dma.vaddr;
14695 
14696     /***************/
14697     /* EVENT QUEUE */
14698     /***************/
14699 
14700     if (bxe_dma_alloc(sc, BCM_PAGE_SIZE,
14701                       &sc->eq_dma, "event queue") != 0) {
14702         /* XXX */
14703         bxe_dma_free(sc, &sc->def_sb_dma);
14704         sc->def_sb = NULL;
14705         bus_dma_tag_destroy(sc->parent_dma_tag);
14706         return (1);
14707     }
14708 
14709     sc->eq = (union event_ring_elem * )sc->eq_dma.vaddr;
14710 
14711     /*************/
14712     /* SLOW PATH */
14713     /*************/
14714 
14715     if (bxe_dma_alloc(sc, sizeof(struct bxe_slowpath),
14716                       &sc->sp_dma, "slow path") != 0) {
14717         /* XXX */
14718         bxe_dma_free(sc, &sc->eq_dma);
14719         sc->eq = NULL;
14720         bxe_dma_free(sc, &sc->def_sb_dma);
14721         sc->def_sb = NULL;
14722         bus_dma_tag_destroy(sc->parent_dma_tag);
14723         return (1);
14724     }
14725 
14726     sc->sp = (struct bxe_slowpath *)sc->sp_dma.vaddr;
14727 
14728     /*******************/
14729     /* SLOW PATH QUEUE */
14730     /*******************/
14731 
14732     if (bxe_dma_alloc(sc, BCM_PAGE_SIZE,
14733                       &sc->spq_dma, "slow path queue") != 0) {
14734         /* XXX */
14735         bxe_dma_free(sc, &sc->sp_dma);
14736         sc->sp = NULL;
14737         bxe_dma_free(sc, &sc->eq_dma);
14738         sc->eq = NULL;
14739         bxe_dma_free(sc, &sc->def_sb_dma);
14740         sc->def_sb = NULL;
14741         bus_dma_tag_destroy(sc->parent_dma_tag);
14742         return (1);
14743     }
14744 
14745     sc->spq = (struct eth_spe *)sc->spq_dma.vaddr;
14746 
14747     /***************************/
14748     /* FW DECOMPRESSION BUFFER */
14749     /***************************/
14750 
14751     if (bxe_dma_alloc(sc, FW_BUF_SIZE, &sc->gz_buf_dma,
14752                       "fw decompression buffer") != 0) {
14753         /* XXX */
14754         bxe_dma_free(sc, &sc->spq_dma);
14755         sc->spq = NULL;
14756         bxe_dma_free(sc, &sc->sp_dma);
14757         sc->sp = NULL;
14758         bxe_dma_free(sc, &sc->eq_dma);
14759         sc->eq = NULL;
14760         bxe_dma_free(sc, &sc->def_sb_dma);
14761         sc->def_sb = NULL;
14762         bus_dma_tag_destroy(sc->parent_dma_tag);
14763         return (1);
14764     }
14765 
14766     sc->gz_buf = (void *)sc->gz_buf_dma.vaddr;
14767 
14768     if ((sc->gz_strm =
14769          malloc(sizeof(*sc->gz_strm), M_DEVBUF, M_NOWAIT)) == NULL) {
14770         /* XXX */
14771         bxe_dma_free(sc, &sc->gz_buf_dma);
14772         sc->gz_buf = NULL;
14773         bxe_dma_free(sc, &sc->spq_dma);
14774         sc->spq = NULL;
14775         bxe_dma_free(sc, &sc->sp_dma);
14776         sc->sp = NULL;
14777         bxe_dma_free(sc, &sc->eq_dma);
14778         sc->eq = NULL;
14779         bxe_dma_free(sc, &sc->def_sb_dma);
14780         sc->def_sb = NULL;
14781         bus_dma_tag_destroy(sc->parent_dma_tag);
14782         return (1);
14783     }
14784 
14785     /*************/
14786     /* FASTPATHS */
14787     /*************/
14788 
14789     /* allocate DMA memory for each fastpath structure */
14790     for (i = 0; i < sc->num_queues; i++) {
14791         fp = &sc->fp[i];
14792         fp->sc    = sc;
14793         fp->index = i;
14794 
14795         /*******************/
14796         /* FP STATUS BLOCK */
14797         /*******************/
14798 
14799         snprintf(buf, sizeof(buf), "fp %d status block", i);
14800         if (bxe_dma_alloc(sc, sizeof(union bxe_host_hc_status_block),
14801                           &fp->sb_dma, buf) != 0) {
14802             /* XXX unwind and free previous fastpath allocations */
14803             BLOGE(sc, "Failed to alloc %s\n", buf);
14804             return (1);
14805         } else {
14806             if (CHIP_IS_E2E3(sc)) {
14807                 fp->status_block.e2_sb =
14808                     (struct host_hc_status_block_e2 *)fp->sb_dma.vaddr;
14809             } else {
14810                 fp->status_block.e1x_sb =
14811                     (struct host_hc_status_block_e1x *)fp->sb_dma.vaddr;
14812             }
14813         }
14814 
14815         /******************/
14816         /* FP TX BD CHAIN */
14817         /******************/
14818 
14819         snprintf(buf, sizeof(buf), "fp %d tx bd chain", i);
14820         if (bxe_dma_alloc(sc, (BCM_PAGE_SIZE * TX_BD_NUM_PAGES),
14821                           &fp->tx_dma, buf) != 0) {
14822             /* XXX unwind and free previous fastpath allocations */
14823             BLOGE(sc, "Failed to alloc %s\n", buf);
14824             return (1);
14825         } else {
14826             fp->tx_chain = (union eth_tx_bd_types *)fp->tx_dma.vaddr;
14827         }
14828 
14829         /* link together the tx bd chain pages */
14830         for (j = 1; j <= TX_BD_NUM_PAGES; j++) {
14831             /* index into the tx bd chain array to last entry per page */
14832             struct eth_tx_next_bd *tx_next_bd =
14833                 &fp->tx_chain[TX_BD_TOTAL_PER_PAGE * j - 1].next_bd;
14834             /* point to the next page and wrap from last page */
14835             busaddr = (fp->tx_dma.paddr +
14836                        (BCM_PAGE_SIZE * (j % TX_BD_NUM_PAGES)));
14837             tx_next_bd->addr_hi = htole32(U64_HI(busaddr));
14838             tx_next_bd->addr_lo = htole32(U64_LO(busaddr));
14839         }
14840 
14841         /******************/
14842         /* FP RX BD CHAIN */
14843         /******************/
14844 
14845         snprintf(buf, sizeof(buf), "fp %d rx bd chain", i);
14846         if (bxe_dma_alloc(sc, (BCM_PAGE_SIZE * RX_BD_NUM_PAGES),
14847                           &fp->rx_dma, buf) != 0) {
14848             /* XXX unwind and free previous fastpath allocations */
14849             BLOGE(sc, "Failed to alloc %s\n", buf);
14850             return (1);
14851         } else {
14852             fp->rx_chain = (struct eth_rx_bd *)fp->rx_dma.vaddr;
14853         }
14854 
14855         /* link together the rx bd chain pages */
14856         for (j = 1; j <= RX_BD_NUM_PAGES; j++) {
14857             /* index into the rx bd chain array to last entry per page */
14858             struct eth_rx_bd *rx_bd =
14859                 &fp->rx_chain[RX_BD_TOTAL_PER_PAGE * j - 2];
14860             /* point to the next page and wrap from last page */
14861             busaddr = (fp->rx_dma.paddr +
14862                        (BCM_PAGE_SIZE * (j % RX_BD_NUM_PAGES)));
14863             rx_bd->addr_hi = htole32(U64_HI(busaddr));
14864             rx_bd->addr_lo = htole32(U64_LO(busaddr));
14865         }
14866 
14867         /*******************/
14868         /* FP RX RCQ CHAIN */
14869         /*******************/
14870 
14871         snprintf(buf, sizeof(buf), "fp %d rcq chain", i);
14872         if (bxe_dma_alloc(sc, (BCM_PAGE_SIZE * RCQ_NUM_PAGES),
14873                           &fp->rcq_dma, buf) != 0) {
14874             /* XXX unwind and free previous fastpath allocations */
14875             BLOGE(sc, "Failed to alloc %s\n", buf);
14876             return (1);
14877         } else {
14878             fp->rcq_chain = (union eth_rx_cqe *)fp->rcq_dma.vaddr;
14879         }
14880 
14881         /* link together the rcq chain pages */
14882         for (j = 1; j <= RCQ_NUM_PAGES; j++) {
14883             /* index into the rcq chain array to last entry per page */
14884             struct eth_rx_cqe_next_page *rx_cqe_next =
14885                 (struct eth_rx_cqe_next_page *)
14886                 &fp->rcq_chain[RCQ_TOTAL_PER_PAGE * j - 1];
14887             /* point to the next page and wrap from last page */
14888             busaddr = (fp->rcq_dma.paddr +
14889                        (BCM_PAGE_SIZE * (j % RCQ_NUM_PAGES)));
14890             rx_cqe_next->addr_hi = htole32(U64_HI(busaddr));
14891             rx_cqe_next->addr_lo = htole32(U64_LO(busaddr));
14892         }
14893 
14894         /*******************/
14895         /* FP RX SGE CHAIN */
14896         /*******************/
14897 
14898         snprintf(buf, sizeof(buf), "fp %d sge chain", i);
14899         if (bxe_dma_alloc(sc, (BCM_PAGE_SIZE * RX_SGE_NUM_PAGES),
14900                           &fp->rx_sge_dma, buf) != 0) {
14901             /* XXX unwind and free previous fastpath allocations */
14902             BLOGE(sc, "Failed to alloc %s\n", buf);
14903             return (1);
14904         } else {
14905             fp->rx_sge_chain = (struct eth_rx_sge *)fp->rx_sge_dma.vaddr;
14906         }
14907 
14908         /* link together the sge chain pages */
14909         for (j = 1; j <= RX_SGE_NUM_PAGES; j++) {
14910             /* index into the rcq chain array to last entry per page */
14911             struct eth_rx_sge *rx_sge =
14912                 &fp->rx_sge_chain[RX_SGE_TOTAL_PER_PAGE * j - 2];
14913             /* point to the next page and wrap from last page */
14914             busaddr = (fp->rx_sge_dma.paddr +
14915                        (BCM_PAGE_SIZE * (j % RX_SGE_NUM_PAGES)));
14916             rx_sge->addr_hi = htole32(U64_HI(busaddr));
14917             rx_sge->addr_lo = htole32(U64_LO(busaddr));
14918         }
14919 
14920         /***********************/
14921         /* FP TX MBUF DMA MAPS */
14922         /***********************/
14923 
14924         /* set required sizes before mapping to conserve resources */
14925         if (if_getcapenable(sc->ifp) & (IFCAP_TSO4 | IFCAP_TSO6)) {
14926             max_size     = BXE_TSO_MAX_SIZE;
14927             max_segments = BXE_TSO_MAX_SEGMENTS;
14928             max_seg_size = BXE_TSO_MAX_SEG_SIZE;
14929         } else {
14930             max_size     = (MCLBYTES * BXE_MAX_SEGMENTS);
14931             max_segments = BXE_MAX_SEGMENTS;
14932             max_seg_size = MCLBYTES;
14933         }
14934 
14935         /* create a dma tag for the tx mbufs */
14936         rc = bus_dma_tag_create(sc->parent_dma_tag, /* parent tag */
14937                                 1,                  /* alignment */
14938                                 0,                  /* boundary limit */
14939                                 BUS_SPACE_MAXADDR,  /* restricted low */
14940                                 BUS_SPACE_MAXADDR,  /* restricted hi */
14941                                 NULL,               /* addr filter() */
14942                                 NULL,               /* addr filter() arg */
14943                                 max_size,           /* max map size */
14944                                 max_segments,       /* num discontinuous */
14945                                 max_seg_size,       /* max seg size */
14946                                 0,                  /* flags */
14947                                 NULL,               /* lock() */
14948                                 NULL,               /* lock() arg */
14949                                 &fp->tx_mbuf_tag);  /* returned dma tag */
14950         if (rc != 0) {
14951             /* XXX unwind and free previous fastpath allocations */
14952             BLOGE(sc, "Failed to create dma tag for "
14953                       "'fp %d tx mbufs' (%d)\n", i, rc);
14954             return (1);
14955         }
14956 
14957         /* create dma maps for each of the tx mbuf clusters */
14958         for (j = 0; j < TX_BD_TOTAL; j++) {
14959             if (bus_dmamap_create(fp->tx_mbuf_tag,
14960                                   BUS_DMA_NOWAIT,
14961                                   &fp->tx_mbuf_chain[j].m_map)) {
14962                 /* XXX unwind and free previous fastpath allocations */
14963                 BLOGE(sc, "Failed to create dma map for "
14964                           "'fp %d tx mbuf %d' (%d)\n", i, j, rc);
14965                 return (1);
14966             }
14967         }
14968 
14969         /***********************/
14970         /* FP RX MBUF DMA MAPS */
14971         /***********************/
14972 
14973         /* create a dma tag for the rx mbufs */
14974         rc = bus_dma_tag_create(sc->parent_dma_tag, /* parent tag */
14975                                 1,                  /* alignment */
14976                                 0,                  /* boundary limit */
14977                                 BUS_SPACE_MAXADDR,  /* restricted low */
14978                                 BUS_SPACE_MAXADDR,  /* restricted hi */
14979                                 NULL,               /* addr filter() */
14980                                 NULL,               /* addr filter() arg */
14981                                 MJUM9BYTES,         /* max map size */
14982                                 1,                  /* num discontinuous */
14983                                 MJUM9BYTES,         /* max seg size */
14984                                 0,                  /* flags */
14985                                 NULL,               /* lock() */
14986                                 NULL,               /* lock() arg */
14987                                 &fp->rx_mbuf_tag);  /* returned dma tag */
14988         if (rc != 0) {
14989             /* XXX unwind and free previous fastpath allocations */
14990             BLOGE(sc, "Failed to create dma tag for "
14991                       "'fp %d rx mbufs' (%d)\n", i, rc);
14992             return (1);
14993         }
14994 
14995         /* create dma maps for each of the rx mbuf clusters */
14996         for (j = 0; j < RX_BD_TOTAL; j++) {
14997             if (bus_dmamap_create(fp->rx_mbuf_tag,
14998                                   BUS_DMA_NOWAIT,
14999                                   &fp->rx_mbuf_chain[j].m_map)) {
15000                 /* XXX unwind and free previous fastpath allocations */
15001                 BLOGE(sc, "Failed to create dma map for "
15002                           "'fp %d rx mbuf %d' (%d)\n", i, j, rc);
15003                 return (1);
15004             }
15005         }
15006 
15007         /* create dma map for the spare rx mbuf cluster */
15008         if (bus_dmamap_create(fp->rx_mbuf_tag,
15009                               BUS_DMA_NOWAIT,
15010                               &fp->rx_mbuf_spare_map)) {
15011             /* XXX unwind and free previous fastpath allocations */
15012             BLOGE(sc, "Failed to create dma map for "
15013                       "'fp %d spare rx mbuf' (%d)\n", i, rc);
15014             return (1);
15015         }
15016 
15017         /***************************/
15018         /* FP RX SGE MBUF DMA MAPS */
15019         /***************************/
15020 
15021         /* create a dma tag for the rx sge mbufs */
15022         rc = bus_dma_tag_create(sc->parent_dma_tag, /* parent tag */
15023                                 1,                  /* alignment */
15024                                 0,                  /* boundary limit */
15025                                 BUS_SPACE_MAXADDR,  /* restricted low */
15026                                 BUS_SPACE_MAXADDR,  /* restricted hi */
15027                                 NULL,               /* addr filter() */
15028                                 NULL,               /* addr filter() arg */
15029                                 BCM_PAGE_SIZE,      /* max map size */
15030                                 1,                  /* num discontinuous */
15031                                 BCM_PAGE_SIZE,      /* max seg size */
15032                                 0,                  /* flags */
15033                                 NULL,               /* lock() */
15034                                 NULL,               /* lock() arg */
15035                                 &fp->rx_sge_mbuf_tag); /* returned dma tag */
15036         if (rc != 0) {
15037             /* XXX unwind and free previous fastpath allocations */
15038             BLOGE(sc, "Failed to create dma tag for "
15039                       "'fp %d rx sge mbufs' (%d)\n", i, rc);
15040             return (1);
15041         }
15042 
15043         /* create dma maps for the rx sge mbuf clusters */
15044         for (j = 0; j < RX_SGE_TOTAL; j++) {
15045             if (bus_dmamap_create(fp->rx_sge_mbuf_tag,
15046                                   BUS_DMA_NOWAIT,
15047                                   &fp->rx_sge_mbuf_chain[j].m_map)) {
15048                 /* XXX unwind and free previous fastpath allocations */
15049                 BLOGE(sc, "Failed to create dma map for "
15050                           "'fp %d rx sge mbuf %d' (%d)\n", i, j, rc);
15051                 return (1);
15052             }
15053         }
15054 
15055         /* create dma map for the spare rx sge mbuf cluster */
15056         if (bus_dmamap_create(fp->rx_sge_mbuf_tag,
15057                               BUS_DMA_NOWAIT,
15058                               &fp->rx_sge_mbuf_spare_map)) {
15059             /* XXX unwind and free previous fastpath allocations */
15060             BLOGE(sc, "Failed to create dma map for "
15061                       "'fp %d spare rx sge mbuf' (%d)\n", i, rc);
15062             return (1);
15063         }
15064 
15065         /***************************/
15066         /* FP RX TPA MBUF DMA MAPS */
15067         /***************************/
15068 
15069         /* create dma maps for the rx tpa mbuf clusters */
15070         max_agg_queues = MAX_AGG_QS(sc);
15071 
15072         for (j = 0; j < max_agg_queues; j++) {
15073             if (bus_dmamap_create(fp->rx_mbuf_tag,
15074                                   BUS_DMA_NOWAIT,
15075                                   &fp->rx_tpa_info[j].bd.m_map)) {
15076                 /* XXX unwind and free previous fastpath allocations */
15077                 BLOGE(sc, "Failed to create dma map for "
15078                           "'fp %d rx tpa mbuf %d' (%d)\n", i, j, rc);
15079                 return (1);
15080             }
15081         }
15082 
15083         /* create dma map for the spare rx tpa mbuf cluster */
15084         if (bus_dmamap_create(fp->rx_mbuf_tag,
15085                               BUS_DMA_NOWAIT,
15086                               &fp->rx_tpa_info_mbuf_spare_map)) {
15087             /* XXX unwind and free previous fastpath allocations */
15088             BLOGE(sc, "Failed to create dma map for "
15089                       "'fp %d spare rx tpa mbuf' (%d)\n", i, rc);
15090             return (1);
15091         }
15092 
15093         bxe_init_sge_ring_bit_mask(fp);
15094     }
15095 
15096     return (0);
15097 }
15098 
15099 static void
15100 bxe_free_hsi_mem(struct bxe_softc *sc)
15101 {
15102     struct bxe_fastpath *fp;
15103     int max_agg_queues;
15104     int i, j;
15105 
15106     if (sc->parent_dma_tag == NULL) {
15107         return; /* assume nothing was allocated */
15108     }
15109 
15110     for (i = 0; i < sc->num_queues; i++) {
15111         fp = &sc->fp[i];
15112 
15113         /*******************/
15114         /* FP STATUS BLOCK */
15115         /*******************/
15116 
15117         bxe_dma_free(sc, &fp->sb_dma);
15118         memset(&fp->status_block, 0, sizeof(fp->status_block));
15119 
15120         /******************/
15121         /* FP TX BD CHAIN */
15122         /******************/
15123 
15124         bxe_dma_free(sc, &fp->tx_dma);
15125         fp->tx_chain = NULL;
15126 
15127         /******************/
15128         /* FP RX BD CHAIN */
15129         /******************/
15130 
15131         bxe_dma_free(sc, &fp->rx_dma);
15132         fp->rx_chain = NULL;
15133 
15134         /*******************/
15135         /* FP RX RCQ CHAIN */
15136         /*******************/
15137 
15138         bxe_dma_free(sc, &fp->rcq_dma);
15139         fp->rcq_chain = NULL;
15140 
15141         /*******************/
15142         /* FP RX SGE CHAIN */
15143         /*******************/
15144 
15145         bxe_dma_free(sc, &fp->rx_sge_dma);
15146         fp->rx_sge_chain = NULL;
15147 
15148         /***********************/
15149         /* FP TX MBUF DMA MAPS */
15150         /***********************/
15151 
15152         if (fp->tx_mbuf_tag != NULL) {
15153             for (j = 0; j < TX_BD_TOTAL; j++) {
15154                 if (fp->tx_mbuf_chain[j].m_map != NULL) {
15155                     bus_dmamap_unload(fp->tx_mbuf_tag,
15156                                       fp->tx_mbuf_chain[j].m_map);
15157                     bus_dmamap_destroy(fp->tx_mbuf_tag,
15158                                        fp->tx_mbuf_chain[j].m_map);
15159                 }
15160             }
15161 
15162             bus_dma_tag_destroy(fp->tx_mbuf_tag);
15163             fp->tx_mbuf_tag = NULL;
15164         }
15165 
15166         /***********************/
15167         /* FP RX MBUF DMA MAPS */
15168         /***********************/
15169 
15170         if (fp->rx_mbuf_tag != NULL) {
15171             for (j = 0; j < RX_BD_TOTAL; j++) {
15172                 if (fp->rx_mbuf_chain[j].m_map != NULL) {
15173                     bus_dmamap_unload(fp->rx_mbuf_tag,
15174                                       fp->rx_mbuf_chain[j].m_map);
15175                     bus_dmamap_destroy(fp->rx_mbuf_tag,
15176                                        fp->rx_mbuf_chain[j].m_map);
15177                 }
15178             }
15179 
15180             if (fp->rx_mbuf_spare_map != NULL) {
15181                 bus_dmamap_unload(fp->rx_mbuf_tag, fp->rx_mbuf_spare_map);
15182                 bus_dmamap_destroy(fp->rx_mbuf_tag, fp->rx_mbuf_spare_map);
15183             }
15184 
15185             /***************************/
15186             /* FP RX TPA MBUF DMA MAPS */
15187             /***************************/
15188 
15189             max_agg_queues = MAX_AGG_QS(sc);
15190 
15191             for (j = 0; j < max_agg_queues; j++) {
15192                 if (fp->rx_tpa_info[j].bd.m_map != NULL) {
15193                     bus_dmamap_unload(fp->rx_mbuf_tag,
15194                                       fp->rx_tpa_info[j].bd.m_map);
15195                     bus_dmamap_destroy(fp->rx_mbuf_tag,
15196                                        fp->rx_tpa_info[j].bd.m_map);
15197                 }
15198             }
15199 
15200             if (fp->rx_tpa_info_mbuf_spare_map != NULL) {
15201                 bus_dmamap_unload(fp->rx_mbuf_tag,
15202                                   fp->rx_tpa_info_mbuf_spare_map);
15203                 bus_dmamap_destroy(fp->rx_mbuf_tag,
15204                                    fp->rx_tpa_info_mbuf_spare_map);
15205             }
15206 
15207             bus_dma_tag_destroy(fp->rx_mbuf_tag);
15208             fp->rx_mbuf_tag = NULL;
15209         }
15210 
15211         /***************************/
15212         /* FP RX SGE MBUF DMA MAPS */
15213         /***************************/
15214 
15215         if (fp->rx_sge_mbuf_tag != NULL) {
15216             for (j = 0; j < RX_SGE_TOTAL; j++) {
15217                 if (fp->rx_sge_mbuf_chain[j].m_map != NULL) {
15218                     bus_dmamap_unload(fp->rx_sge_mbuf_tag,
15219                                       fp->rx_sge_mbuf_chain[j].m_map);
15220                     bus_dmamap_destroy(fp->rx_sge_mbuf_tag,
15221                                        fp->rx_sge_mbuf_chain[j].m_map);
15222                 }
15223             }
15224 
15225             if (fp->rx_sge_mbuf_spare_map != NULL) {
15226                 bus_dmamap_unload(fp->rx_sge_mbuf_tag,
15227                                   fp->rx_sge_mbuf_spare_map);
15228                 bus_dmamap_destroy(fp->rx_sge_mbuf_tag,
15229                                    fp->rx_sge_mbuf_spare_map);
15230             }
15231 
15232             bus_dma_tag_destroy(fp->rx_sge_mbuf_tag);
15233             fp->rx_sge_mbuf_tag = NULL;
15234         }
15235     }
15236 
15237     /***************************/
15238     /* FW DECOMPRESSION BUFFER */
15239     /***************************/
15240 
15241     bxe_dma_free(sc, &sc->gz_buf_dma);
15242     sc->gz_buf = NULL;
15243     free(sc->gz_strm, M_DEVBUF);
15244     sc->gz_strm = NULL;
15245 
15246     /*******************/
15247     /* SLOW PATH QUEUE */
15248     /*******************/
15249 
15250     bxe_dma_free(sc, &sc->spq_dma);
15251     sc->spq = NULL;
15252 
15253     /*************/
15254     /* SLOW PATH */
15255     /*************/
15256 
15257     bxe_dma_free(sc, &sc->sp_dma);
15258     sc->sp = NULL;
15259 
15260     /***************/
15261     /* EVENT QUEUE */
15262     /***************/
15263 
15264     bxe_dma_free(sc, &sc->eq_dma);
15265     sc->eq = NULL;
15266 
15267     /************************/
15268     /* DEFAULT STATUS BLOCK */
15269     /************************/
15270 
15271     bxe_dma_free(sc, &sc->def_sb_dma);
15272     sc->def_sb = NULL;
15273 
15274     bus_dma_tag_destroy(sc->parent_dma_tag);
15275     sc->parent_dma_tag = NULL;
15276 }
15277 
15278 /*
15279  * Previous driver DMAE transaction may have occurred when pre-boot stage
15280  * ended and boot began. This would invalidate the addresses of the
15281  * transaction, resulting in was-error bit set in the PCI causing all
15282  * hw-to-host PCIe transactions to timeout. If this happened we want to clear
15283  * the interrupt which detected this from the pglueb and the was-done bit
15284  */
15285 static void
15286 bxe_prev_interrupted_dmae(struct bxe_softc *sc)
15287 {
15288     uint32_t val;
15289 
15290     if (!CHIP_IS_E1x(sc)) {
15291         val = REG_RD(sc, PGLUE_B_REG_PGLUE_B_INT_STS);
15292         if (val & PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN) {
15293             BLOGD(sc, DBG_LOAD,
15294                   "Clearing 'was-error' bit that was set in pglueb");
15295             REG_WR(sc, PGLUE_B_REG_WAS_ERROR_PF_7_0_CLR, 1 << SC_FUNC(sc));
15296         }
15297     }
15298 }
15299 
15300 static int
15301 bxe_prev_mcp_done(struct bxe_softc *sc)
15302 {
15303     uint32_t rc = bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_DONE,
15304                                  DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET);
15305     if (!rc) {
15306         BLOGE(sc, "MCP response failure, aborting\n");
15307         return (-1);
15308     }
15309 
15310     return (0);
15311 }
15312 
15313 static struct bxe_prev_list_node *
15314 bxe_prev_path_get_entry(struct bxe_softc *sc)
15315 {
15316     struct bxe_prev_list_node *tmp;
15317 
15318     LIST_FOREACH(tmp, &bxe_prev_list, node) {
15319         if ((sc->pcie_bus == tmp->bus) &&
15320             (sc->pcie_device == tmp->slot) &&
15321             (SC_PATH(sc) == tmp->path)) {
15322             return (tmp);
15323         }
15324     }
15325 
15326     return (NULL);
15327 }
15328 
15329 static uint8_t
15330 bxe_prev_is_path_marked(struct bxe_softc *sc)
15331 {
15332     struct bxe_prev_list_node *tmp;
15333     int rc = FALSE;
15334 
15335     mtx_lock(&bxe_prev_mtx);
15336 
15337     tmp = bxe_prev_path_get_entry(sc);
15338     if (tmp) {
15339         if (tmp->aer) {
15340             BLOGD(sc, DBG_LOAD,
15341                   "Path %d/%d/%d was marked by AER\n",
15342                   sc->pcie_bus, sc->pcie_device, SC_PATH(sc));
15343         } else {
15344             rc = TRUE;
15345             BLOGD(sc, DBG_LOAD,
15346                   "Path %d/%d/%d was already cleaned from previous drivers\n",
15347                   sc->pcie_bus, sc->pcie_device, SC_PATH(sc));
15348         }
15349     }
15350 
15351     mtx_unlock(&bxe_prev_mtx);
15352 
15353     return (rc);
15354 }
15355 
15356 static int
15357 bxe_prev_mark_path(struct bxe_softc *sc,
15358                    uint8_t          after_undi)
15359 {
15360     struct bxe_prev_list_node *tmp;
15361 
15362     mtx_lock(&bxe_prev_mtx);
15363 
15364     /* Check whether the entry for this path already exists */
15365     tmp = bxe_prev_path_get_entry(sc);
15366     if (tmp) {
15367         if (!tmp->aer) {
15368             BLOGD(sc, DBG_LOAD,
15369                   "Re-marking AER in path %d/%d/%d\n",
15370                   sc->pcie_bus, sc->pcie_device, SC_PATH(sc));
15371         } else {
15372             BLOGD(sc, DBG_LOAD,
15373                   "Removing AER indication from path %d/%d/%d\n",
15374                   sc->pcie_bus, sc->pcie_device, SC_PATH(sc));
15375             tmp->aer = 0;
15376         }
15377 
15378         mtx_unlock(&bxe_prev_mtx);
15379         return (0);
15380     }
15381 
15382     mtx_unlock(&bxe_prev_mtx);
15383 
15384     /* Create an entry for this path and add it */
15385     tmp = malloc(sizeof(struct bxe_prev_list_node), M_DEVBUF,
15386                  (M_NOWAIT | M_ZERO));
15387     if (!tmp) {
15388         BLOGE(sc, "Failed to allocate 'bxe_prev_list_node'\n");
15389         return (-1);
15390     }
15391 
15392     tmp->bus  = sc->pcie_bus;
15393     tmp->slot = sc->pcie_device;
15394     tmp->path = SC_PATH(sc);
15395     tmp->aer  = 0;
15396     tmp->undi = after_undi ? (1 << SC_PORT(sc)) : 0;
15397 
15398     mtx_lock(&bxe_prev_mtx);
15399 
15400     BLOGD(sc, DBG_LOAD,
15401           "Marked path %d/%d/%d - finished previous unload\n",
15402           sc->pcie_bus, sc->pcie_device, SC_PATH(sc));
15403     LIST_INSERT_HEAD(&bxe_prev_list, tmp, node);
15404 
15405     mtx_unlock(&bxe_prev_mtx);
15406 
15407     return (0);
15408 }
15409 
15410 static int
15411 bxe_do_flr(struct bxe_softc *sc)
15412 {
15413     int i;
15414 
15415     /* only E2 and onwards support FLR */
15416     if (CHIP_IS_E1x(sc)) {
15417         BLOGD(sc, DBG_LOAD, "FLR not supported in E1/E1H\n");
15418         return (-1);
15419     }
15420 
15421     /* only bootcode REQ_BC_VER_4_INITIATE_FLR and onwards support flr */
15422     if (sc->devinfo.bc_ver < REQ_BC_VER_4_INITIATE_FLR) {
15423         BLOGD(sc, DBG_LOAD, "FLR not supported by BC_VER: 0x%08x\n",
15424               sc->devinfo.bc_ver);
15425         return (-1);
15426     }
15427 
15428     /* Wait for Transaction Pending bit clean */
15429     for (i = 0; i < 4; i++) {
15430         if (i) {
15431             DELAY(((1 << (i - 1)) * 100) * 1000);
15432         }
15433 
15434         if (!bxe_is_pcie_pending(sc)) {
15435             goto clear;
15436         }
15437     }
15438 
15439     BLOGE(sc, "PCIE transaction is not cleared, "
15440               "proceeding with reset anyway\n");
15441 
15442 clear:
15443 
15444     BLOGD(sc, DBG_LOAD, "Initiating FLR\n");
15445     bxe_fw_command(sc, DRV_MSG_CODE_INITIATE_FLR, 0);
15446 
15447     return (0);
15448 }
15449 
15450 struct bxe_mac_vals {
15451     uint32_t xmac_addr;
15452     uint32_t xmac_val;
15453     uint32_t emac_addr;
15454     uint32_t emac_val;
15455     uint32_t umac_addr;
15456     uint32_t umac_val;
15457     uint32_t bmac_addr;
15458     uint32_t bmac_val[2];
15459 };
15460 
15461 static void
15462 bxe_prev_unload_close_mac(struct bxe_softc *sc,
15463                           struct bxe_mac_vals *vals)
15464 {
15465     uint32_t val, base_addr, offset, mask, reset_reg;
15466     uint8_t mac_stopped = FALSE;
15467     uint8_t port = SC_PORT(sc);
15468     uint32_t wb_data[2];
15469 
15470     /* reset addresses as they also mark which values were changed */
15471     vals->bmac_addr = 0;
15472     vals->umac_addr = 0;
15473     vals->xmac_addr = 0;
15474     vals->emac_addr = 0;
15475 
15476     reset_reg = REG_RD(sc, MISC_REG_RESET_REG_2);
15477 
15478     if (!CHIP_IS_E3(sc)) {
15479         val = REG_RD(sc, NIG_REG_BMAC0_REGS_OUT_EN + port * 4);
15480         mask = MISC_REGISTERS_RESET_REG_2_RST_BMAC0 << port;
15481         if ((mask & reset_reg) && val) {
15482             BLOGD(sc, DBG_LOAD, "Disable BMAC Rx\n");
15483             base_addr = SC_PORT(sc) ? NIG_REG_INGRESS_BMAC1_MEM
15484                                     : NIG_REG_INGRESS_BMAC0_MEM;
15485             offset = CHIP_IS_E2(sc) ? BIGMAC2_REGISTER_BMAC_CONTROL
15486                                     : BIGMAC_REGISTER_BMAC_CONTROL;
15487 
15488             /*
15489              * use rd/wr since we cannot use dmae. This is safe
15490              * since MCP won't access the bus due to the request
15491              * to unload, and no function on the path can be
15492              * loaded at this time.
15493              */
15494             wb_data[0] = REG_RD(sc, base_addr + offset);
15495             wb_data[1] = REG_RD(sc, base_addr + offset + 0x4);
15496             vals->bmac_addr = base_addr + offset;
15497             vals->bmac_val[0] = wb_data[0];
15498             vals->bmac_val[1] = wb_data[1];
15499             wb_data[0] &= ~ELINK_BMAC_CONTROL_RX_ENABLE;
15500             REG_WR(sc, vals->bmac_addr, wb_data[0]);
15501             REG_WR(sc, vals->bmac_addr + 0x4, wb_data[1]);
15502         }
15503 
15504         BLOGD(sc, DBG_LOAD, "Disable EMAC Rx\n");
15505         vals->emac_addr = NIG_REG_NIG_EMAC0_EN + SC_PORT(sc)*4;
15506         vals->emac_val = REG_RD(sc, vals->emac_addr);
15507         REG_WR(sc, vals->emac_addr, 0);
15508         mac_stopped = TRUE;
15509     } else {
15510         if (reset_reg & MISC_REGISTERS_RESET_REG_2_XMAC) {
15511             BLOGD(sc, DBG_LOAD, "Disable XMAC Rx\n");
15512             base_addr = SC_PORT(sc) ? GRCBASE_XMAC1 : GRCBASE_XMAC0;
15513             val = REG_RD(sc, base_addr + XMAC_REG_PFC_CTRL_HI);
15514             REG_WR(sc, base_addr + XMAC_REG_PFC_CTRL_HI, val & ~(1 << 1));
15515             REG_WR(sc, base_addr + XMAC_REG_PFC_CTRL_HI, val | (1 << 1));
15516             vals->xmac_addr = base_addr + XMAC_REG_CTRL;
15517             vals->xmac_val = REG_RD(sc, vals->xmac_addr);
15518             REG_WR(sc, vals->xmac_addr, 0);
15519             mac_stopped = TRUE;
15520         }
15521 
15522         mask = MISC_REGISTERS_RESET_REG_2_UMAC0 << port;
15523         if (mask & reset_reg) {
15524             BLOGD(sc, DBG_LOAD, "Disable UMAC Rx\n");
15525             base_addr = SC_PORT(sc) ? GRCBASE_UMAC1 : GRCBASE_UMAC0;
15526             vals->umac_addr = base_addr + UMAC_REG_COMMAND_CONFIG;
15527             vals->umac_val = REG_RD(sc, vals->umac_addr);
15528             REG_WR(sc, vals->umac_addr, 0);
15529             mac_stopped = TRUE;
15530         }
15531     }
15532 
15533     if (mac_stopped) {
15534         DELAY(20000);
15535     }
15536 }
15537 
15538 #define BXE_PREV_UNDI_PROD_ADDR(p)  (BAR_TSTRORM_INTMEM + 0x1508 + ((p) << 4))
15539 #define BXE_PREV_UNDI_RCQ(val)      ((val) & 0xffff)
15540 #define BXE_PREV_UNDI_BD(val)       ((val) >> 16 & 0xffff)
15541 #define BXE_PREV_UNDI_PROD(rcq, bd) ((bd) << 16 | (rcq))
15542 
15543 static void
15544 bxe_prev_unload_undi_inc(struct bxe_softc *sc,
15545                          uint8_t          port,
15546                          uint8_t          inc)
15547 {
15548     uint16_t rcq, bd;
15549     uint32_t tmp_reg = REG_RD(sc, BXE_PREV_UNDI_PROD_ADDR(port));
15550 
15551     rcq = BXE_PREV_UNDI_RCQ(tmp_reg) + inc;
15552     bd = BXE_PREV_UNDI_BD(tmp_reg) + inc;
15553 
15554     tmp_reg = BXE_PREV_UNDI_PROD(rcq, bd);
15555     REG_WR(sc, BXE_PREV_UNDI_PROD_ADDR(port), tmp_reg);
15556 
15557     BLOGD(sc, DBG_LOAD,
15558           "UNDI producer [%d] rings bd -> 0x%04x, rcq -> 0x%04x\n",
15559           port, bd, rcq);
15560 }
15561 
15562 static int
15563 bxe_prev_unload_common(struct bxe_softc *sc)
15564 {
15565     uint32_t reset_reg, tmp_reg = 0, rc;
15566     uint8_t prev_undi = FALSE;
15567     struct bxe_mac_vals mac_vals;
15568     uint32_t timer_count = 1000;
15569     uint32_t prev_brb;
15570 
15571     /*
15572      * It is possible a previous function received 'common' answer,
15573      * but hasn't loaded yet, therefore creating a scenario of
15574      * multiple functions receiving 'common' on the same path.
15575      */
15576     BLOGD(sc, DBG_LOAD, "Common unload Flow\n");
15577 
15578     memset(&mac_vals, 0, sizeof(mac_vals));
15579 
15580     if (bxe_prev_is_path_marked(sc)) {
15581         return (bxe_prev_mcp_done(sc));
15582     }
15583 
15584     reset_reg = REG_RD(sc, MISC_REG_RESET_REG_1);
15585 
15586     /* Reset should be performed after BRB is emptied */
15587     if (reset_reg & MISC_REGISTERS_RESET_REG_1_RST_BRB1) {
15588         /* Close the MAC Rx to prevent BRB from filling up */
15589         bxe_prev_unload_close_mac(sc, &mac_vals);
15590 
15591         /* close LLH filters towards the BRB */
15592         elink_set_rx_filter(&sc->link_params, 0);
15593 
15594         /*
15595          * Check if the UNDI driver was previously loaded.
15596          * UNDI driver initializes CID offset for normal bell to 0x7
15597          */
15598         if (reset_reg & MISC_REGISTERS_RESET_REG_1_RST_DORQ) {
15599             tmp_reg = REG_RD(sc, DORQ_REG_NORM_CID_OFST);
15600             if (tmp_reg == 0x7) {
15601                 BLOGD(sc, DBG_LOAD, "UNDI previously loaded\n");
15602                 prev_undi = TRUE;
15603                 /* clear the UNDI indication */
15604                 REG_WR(sc, DORQ_REG_NORM_CID_OFST, 0);
15605                 /* clear possible idle check errors */
15606                 REG_RD(sc, NIG_REG_NIG_INT_STS_CLR_0);
15607             }
15608         }
15609 
15610         /* wait until BRB is empty */
15611         tmp_reg = REG_RD(sc, BRB1_REG_NUM_OF_FULL_BLOCKS);
15612         while (timer_count) {
15613             prev_brb = tmp_reg;
15614 
15615             tmp_reg = REG_RD(sc, BRB1_REG_NUM_OF_FULL_BLOCKS);
15616             if (!tmp_reg) {
15617                 break;
15618             }
15619 
15620             BLOGD(sc, DBG_LOAD, "BRB still has 0x%08x\n", tmp_reg);
15621 
15622             /* reset timer as long as BRB actually gets emptied */
15623             if (prev_brb > tmp_reg) {
15624                 timer_count = 1000;
15625             } else {
15626                 timer_count--;
15627             }
15628 
15629             /* If UNDI resides in memory, manually increment it */
15630             if (prev_undi) {
15631                 bxe_prev_unload_undi_inc(sc, SC_PORT(sc), 1);
15632             }
15633 
15634             DELAY(10);
15635         }
15636 
15637         if (!timer_count) {
15638             BLOGE(sc, "Failed to empty BRB\n");
15639         }
15640     }
15641 
15642     /* No packets are in the pipeline, path is ready for reset */
15643     bxe_reset_common(sc);
15644 
15645     if (mac_vals.xmac_addr) {
15646         REG_WR(sc, mac_vals.xmac_addr, mac_vals.xmac_val);
15647     }
15648     if (mac_vals.umac_addr) {
15649         REG_WR(sc, mac_vals.umac_addr, mac_vals.umac_val);
15650     }
15651     if (mac_vals.emac_addr) {
15652         REG_WR(sc, mac_vals.emac_addr, mac_vals.emac_val);
15653     }
15654     if (mac_vals.bmac_addr) {
15655         REG_WR(sc, mac_vals.bmac_addr, mac_vals.bmac_val[0]);
15656         REG_WR(sc, mac_vals.bmac_addr + 4, mac_vals.bmac_val[1]);
15657     }
15658 
15659     rc = bxe_prev_mark_path(sc, prev_undi);
15660     if (rc) {
15661         bxe_prev_mcp_done(sc);
15662         return (rc);
15663     }
15664 
15665     return (bxe_prev_mcp_done(sc));
15666 }
15667 
15668 static int
15669 bxe_prev_unload_uncommon(struct bxe_softc *sc)
15670 {
15671     int rc;
15672 
15673     BLOGD(sc, DBG_LOAD, "Uncommon unload Flow\n");
15674 
15675     /* Test if previous unload process was already finished for this path */
15676     if (bxe_prev_is_path_marked(sc)) {
15677         return (bxe_prev_mcp_done(sc));
15678     }
15679 
15680     BLOGD(sc, DBG_LOAD, "Path is unmarked\n");
15681 
15682     /*
15683      * If function has FLR capabilities, and existing FW version matches
15684      * the one required, then FLR will be sufficient to clean any residue
15685      * left by previous driver
15686      */
15687     rc = bxe_nic_load_analyze_req(sc, FW_MSG_CODE_DRV_LOAD_FUNCTION);
15688     if (!rc) {
15689         /* fw version is good */
15690         BLOGD(sc, DBG_LOAD, "FW version matches our own, attempting FLR\n");
15691         rc = bxe_do_flr(sc);
15692     }
15693 
15694     if (!rc) {
15695         /* FLR was performed */
15696         BLOGD(sc, DBG_LOAD, "FLR successful\n");
15697         return (0);
15698     }
15699 
15700     BLOGD(sc, DBG_LOAD, "Could not FLR\n");
15701 
15702     /* Close the MCP request, return failure*/
15703     rc = bxe_prev_mcp_done(sc);
15704     if (!rc) {
15705         rc = BXE_PREV_WAIT_NEEDED;
15706     }
15707 
15708     return (rc);
15709 }
15710 
15711 static int
15712 bxe_prev_unload(struct bxe_softc *sc)
15713 {
15714     int time_counter = 10;
15715     uint32_t fw, hw_lock_reg, hw_lock_val;
15716     uint32_t rc = 0;
15717 
15718     /*
15719      * Clear HW from errors which may have resulted from an interrupted
15720      * DMAE transaction.
15721      */
15722     bxe_prev_interrupted_dmae(sc);
15723 
15724     /* Release previously held locks */
15725     hw_lock_reg =
15726         (SC_FUNC(sc) <= 5) ?
15727             (MISC_REG_DRIVER_CONTROL_1 + SC_FUNC(sc) * 8) :
15728             (MISC_REG_DRIVER_CONTROL_7 + (SC_FUNC(sc) - 6) * 8);
15729 
15730     hw_lock_val = (REG_RD(sc, hw_lock_reg));
15731     if (hw_lock_val) {
15732         if (hw_lock_val & HW_LOCK_RESOURCE_NVRAM) {
15733             BLOGD(sc, DBG_LOAD, "Releasing previously held NVRAM lock\n");
15734             REG_WR(sc, MCP_REG_MCPR_NVM_SW_ARB,
15735                    (MCPR_NVM_SW_ARB_ARB_REQ_CLR1 << SC_PORT(sc)));
15736         }
15737         BLOGD(sc, DBG_LOAD, "Releasing previously held HW lock\n");
15738         REG_WR(sc, hw_lock_reg, 0xffffffff);
15739     } else {
15740         BLOGD(sc, DBG_LOAD, "No need to release HW/NVRAM locks\n");
15741     }
15742 
15743     if (MCPR_ACCESS_LOCK_LOCK & REG_RD(sc, MCP_REG_MCPR_ACCESS_LOCK)) {
15744         BLOGD(sc, DBG_LOAD, "Releasing previously held ALR\n");
15745         REG_WR(sc, MCP_REG_MCPR_ACCESS_LOCK, 0);
15746     }
15747 
15748     do {
15749         /* Lock MCP using an unload request */
15750         fw = bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS, 0);
15751         if (!fw) {
15752             BLOGE(sc, "MCP response failure, aborting\n");
15753             rc = -1;
15754             break;
15755         }
15756 
15757         if (fw == FW_MSG_CODE_DRV_UNLOAD_COMMON) {
15758             rc = bxe_prev_unload_common(sc);
15759             break;
15760         }
15761 
15762         /* non-common reply from MCP night require looping */
15763         rc = bxe_prev_unload_uncommon(sc);
15764         if (rc != BXE_PREV_WAIT_NEEDED) {
15765             break;
15766         }
15767 
15768         DELAY(20000);
15769     } while (--time_counter);
15770 
15771     if (!time_counter || rc) {
15772         BLOGE(sc, "Failed to unload previous driver!"
15773             " time_counter %d rc %d\n", time_counter, rc);
15774         rc = -1;
15775     }
15776 
15777     return (rc);
15778 }
15779 
15780 void
15781 bxe_dcbx_set_state(struct bxe_softc *sc,
15782                    uint8_t          dcb_on,
15783                    uint32_t         dcbx_enabled)
15784 {
15785     if (!CHIP_IS_E1x(sc)) {
15786         sc->dcb_state = dcb_on;
15787         sc->dcbx_enabled = dcbx_enabled;
15788     } else {
15789         sc->dcb_state = FALSE;
15790         sc->dcbx_enabled = BXE_DCBX_ENABLED_INVALID;
15791     }
15792     BLOGD(sc, DBG_LOAD,
15793           "DCB state [%s:%s]\n",
15794           dcb_on ? "ON" : "OFF",
15795           (dcbx_enabled == BXE_DCBX_ENABLED_OFF) ? "user-mode" :
15796           (dcbx_enabled == BXE_DCBX_ENABLED_ON_NEG_OFF) ? "on-chip static" :
15797           (dcbx_enabled == BXE_DCBX_ENABLED_ON_NEG_ON) ?
15798           "on-chip with negotiation" : "invalid");
15799 }
15800 
15801 /* must be called after sriov-enable */
15802 static int
15803 bxe_set_qm_cid_count(struct bxe_softc *sc)
15804 {
15805     int cid_count = BXE_L2_MAX_CID(sc);
15806 
15807     if (IS_SRIOV(sc)) {
15808         cid_count += BXE_VF_CIDS;
15809     }
15810 
15811     if (CNIC_SUPPORT(sc)) {
15812         cid_count += CNIC_CID_MAX;
15813     }
15814 
15815     return (roundup(cid_count, QM_CID_ROUND));
15816 }
15817 
15818 static void
15819 bxe_init_multi_cos(struct bxe_softc *sc)
15820 {
15821     int pri, cos;
15822 
15823     uint32_t pri_map = 0; /* XXX change to user config */
15824 
15825     for (pri = 0; pri < BXE_MAX_PRIORITY; pri++) {
15826         cos = ((pri_map & (0xf << (pri * 4))) >> (pri * 4));
15827         if (cos < sc->max_cos) {
15828             sc->prio_to_cos[pri] = cos;
15829         } else {
15830             BLOGW(sc, "Invalid COS %d for priority %d "
15831                       "(max COS is %d), setting to 0\n",
15832                   cos, pri, (sc->max_cos - 1));
15833             sc->prio_to_cos[pri] = 0;
15834         }
15835     }
15836 }
15837 
15838 static int
15839 bxe_sysctl_state(SYSCTL_HANDLER_ARGS)
15840 {
15841     struct bxe_softc *sc;
15842     int error, result;
15843 
15844     result = 0;
15845     error = sysctl_handle_int(oidp, &result, 0, req);
15846 
15847     if (error || !req->newptr) {
15848         return (error);
15849     }
15850 
15851     if (result == 1) {
15852         uint32_t  temp;
15853         sc = (struct bxe_softc *)arg1;
15854 
15855         BLOGI(sc, "... dumping driver state ...\n");
15856         temp = SHMEM2_RD(sc, temperature_in_half_celsius);
15857         BLOGI(sc, "\t Device Temperature = %d Celsius\n", (temp/2));
15858     }
15859 
15860     return (error);
15861 }
15862 
15863 static int
15864 bxe_sysctl_eth_stat(SYSCTL_HANDLER_ARGS)
15865 {
15866     struct bxe_softc *sc = (struct bxe_softc *)arg1;
15867     uint32_t *eth_stats = (uint32_t *)&sc->eth_stats;
15868     uint32_t *offset;
15869     uint64_t value = 0;
15870     int index = (int)arg2;
15871 
15872     if (index >= BXE_NUM_ETH_STATS) {
15873         BLOGE(sc, "bxe_eth_stats index out of range (%d)\n", index);
15874         return (-1);
15875     }
15876 
15877     offset = (eth_stats + bxe_eth_stats_arr[index].offset);
15878 
15879     switch (bxe_eth_stats_arr[index].size) {
15880     case 4:
15881         value = (uint64_t)*offset;
15882         break;
15883     case 8:
15884         value = HILO_U64(*offset, *(offset + 1));
15885         break;
15886     default:
15887         BLOGE(sc, "Invalid bxe_eth_stats size (index=%d size=%d)\n",
15888               index, bxe_eth_stats_arr[index].size);
15889         return (-1);
15890     }
15891 
15892     return (sysctl_handle_64(oidp, &value, 0, req));
15893 }
15894 
15895 static int
15896 bxe_sysctl_eth_q_stat(SYSCTL_HANDLER_ARGS)
15897 {
15898     struct bxe_softc *sc = (struct bxe_softc *)arg1;
15899     uint32_t *eth_stats;
15900     uint32_t *offset;
15901     uint64_t value = 0;
15902     uint32_t q_stat = (uint32_t)arg2;
15903     uint32_t fp_index = ((q_stat >> 16) & 0xffff);
15904     uint32_t index = (q_stat & 0xffff);
15905 
15906     eth_stats = (uint32_t *)&sc->fp[fp_index].eth_q_stats;
15907 
15908     if (index >= BXE_NUM_ETH_Q_STATS) {
15909         BLOGE(sc, "bxe_eth_q_stats index out of range (%d)\n", index);
15910         return (-1);
15911     }
15912 
15913     offset = (eth_stats + bxe_eth_q_stats_arr[index].offset);
15914 
15915     switch (bxe_eth_q_stats_arr[index].size) {
15916     case 4:
15917         value = (uint64_t)*offset;
15918         break;
15919     case 8:
15920         value = HILO_U64(*offset, *(offset + 1));
15921         break;
15922     default:
15923         BLOGE(sc, "Invalid bxe_eth_q_stats size (index=%d size=%d)\n",
15924               index, bxe_eth_q_stats_arr[index].size);
15925         return (-1);
15926     }
15927 
15928     return (sysctl_handle_64(oidp, &value, 0, req));
15929 }
15930 
15931 static void bxe_force_link_reset(struct bxe_softc *sc)
15932 {
15933 
15934         bxe_acquire_phy_lock(sc);
15935         elink_link_reset(&sc->link_params, &sc->link_vars, 1);
15936         bxe_release_phy_lock(sc);
15937 }
15938 
15939 static int
15940 bxe_sysctl_pauseparam(SYSCTL_HANDLER_ARGS)
15941 {
15942         struct bxe_softc *sc = (struct bxe_softc *)arg1;
15943         uint32_t cfg_idx = bxe_get_link_cfg_idx(sc);
15944         int rc = 0;
15945         int error;
15946         int result;
15947 
15948 
15949         error = sysctl_handle_int(oidp, &sc->bxe_pause_param, 0, req);
15950 
15951         if (error || !req->newptr) {
15952                 return (error);
15953         }
15954         if ((sc->bxe_pause_param < 0) ||  (sc->bxe_pause_param > 8)) {
15955                 BLOGW(sc, "invalid pause param (%d) - use intergers between 1 & 8\n",sc->bxe_pause_param);
15956                 sc->bxe_pause_param = 8;
15957         }
15958 
15959         result = (sc->bxe_pause_param << PORT_FEATURE_FLOW_CONTROL_SHIFT);
15960 
15961 
15962         if((result & 0x400) && !(sc->port.supported[cfg_idx] & ELINK_SUPPORTED_Autoneg))  {
15963                         BLOGW(sc, "Does not support Autoneg pause_param %d\n", sc->bxe_pause_param);
15964                         return -EINVAL;
15965         }
15966 
15967         if(IS_MF(sc))
15968                 return 0;
15969        sc->link_params.req_flow_ctrl[cfg_idx] = ELINK_FLOW_CTRL_AUTO;
15970         if(result & ELINK_FLOW_CTRL_RX)
15971                 sc->link_params.req_flow_ctrl[cfg_idx] |= ELINK_FLOW_CTRL_RX;
15972 
15973         if(result & ELINK_FLOW_CTRL_TX)
15974                 sc->link_params.req_flow_ctrl[cfg_idx] |= ELINK_FLOW_CTRL_TX;
15975         if(sc->link_params.req_flow_ctrl[cfg_idx] == ELINK_FLOW_CTRL_AUTO)
15976                 sc->link_params.req_flow_ctrl[cfg_idx] = ELINK_FLOW_CTRL_NONE;
15977 
15978         if(result & 0x400) {
15979                 if (sc->link_params.req_line_speed[cfg_idx] == ELINK_SPEED_AUTO_NEG) {
15980                         sc->link_params.req_flow_ctrl[cfg_idx] =
15981                                 ELINK_FLOW_CTRL_AUTO;
15982                 }
15983                 sc->link_params.req_fc_auto_adv = 0;
15984                 if (result & ELINK_FLOW_CTRL_RX)
15985                         sc->link_params.req_fc_auto_adv |= ELINK_FLOW_CTRL_RX;
15986 
15987                 if (result & ELINK_FLOW_CTRL_TX)
15988                         sc->link_params.req_fc_auto_adv |= ELINK_FLOW_CTRL_TX;
15989                 if (!sc->link_params.req_fc_auto_adv)
15990                         sc->link_params.req_fc_auto_adv |= ELINK_FLOW_CTRL_NONE;
15991         }
15992          if (IS_PF(sc)) {
15993                         if (sc->link_vars.link_up) {
15994                                 bxe_stats_handle(sc, STATS_EVENT_STOP);
15995                         }
15996 			if (if_getdrvflags(sc->ifp) & IFF_DRV_RUNNING) {
15997                         bxe_force_link_reset(sc);
15998                         bxe_acquire_phy_lock(sc);
15999 
16000                         rc = elink_phy_init(&sc->link_params, &sc->link_vars);
16001 
16002                         bxe_release_phy_lock(sc);
16003 
16004                         bxe_calc_fc_adv(sc);
16005                         }
16006         }
16007         return rc;
16008 }
16009 
16010 
16011 static void
16012 bxe_add_sysctls(struct bxe_softc *sc)
16013 {
16014     struct sysctl_ctx_list *ctx;
16015     struct sysctl_oid_list *children;
16016     struct sysctl_oid *queue_top, *queue;
16017     struct sysctl_oid_list *queue_top_children, *queue_children;
16018     char queue_num_buf[32];
16019     uint32_t q_stat;
16020     int i, j;
16021 
16022     ctx = device_get_sysctl_ctx(sc->dev);
16023     children = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev));
16024 
16025     SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "version",
16026                       CTLFLAG_RD, BXE_DRIVER_VERSION, 0,
16027                       "version");
16028 
16029     snprintf(sc->fw_ver_str, sizeof(sc->fw_ver_str), "%d.%d.%d.%d",
16030              BCM_5710_FW_MAJOR_VERSION,
16031              BCM_5710_FW_MINOR_VERSION,
16032              BCM_5710_FW_REVISION_VERSION,
16033              BCM_5710_FW_ENGINEERING_VERSION);
16034 
16035     snprintf(sc->mf_mode_str, sizeof(sc->mf_mode_str), "%s",
16036         ((sc->devinfo.mf_info.mf_mode == SINGLE_FUNCTION)     ? "Single"  :
16037          (sc->devinfo.mf_info.mf_mode == MULTI_FUNCTION_SD)   ? "MF-SD"   :
16038          (sc->devinfo.mf_info.mf_mode == MULTI_FUNCTION_SI)   ? "MF-SI"   :
16039          (sc->devinfo.mf_info.mf_mode == MULTI_FUNCTION_AFEX) ? "MF-AFEX" :
16040                                                                 "Unknown"));
16041     SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "mf_vnics",
16042                     CTLFLAG_RD, &sc->devinfo.mf_info.vnics_per_port, 0,
16043                     "multifunction vnics per port");
16044 
16045     snprintf(sc->pci_link_str, sizeof(sc->pci_link_str), "%s x%d",
16046         ((sc->devinfo.pcie_link_speed == 1) ? "2.5GT/s" :
16047          (sc->devinfo.pcie_link_speed == 2) ? "5.0GT/s" :
16048          (sc->devinfo.pcie_link_speed == 4) ? "8.0GT/s" :
16049                                               "???GT/s"),
16050         sc->devinfo.pcie_link_width);
16051 
16052     sc->debug = bxe_debug;
16053 
16054     SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "bc_version",
16055                       CTLFLAG_RD, sc->devinfo.bc_ver_str, 0,
16056                       "bootcode version");
16057     SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "fw_version",
16058                       CTLFLAG_RD, sc->fw_ver_str, 0,
16059                       "firmware version");
16060     SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "mf_mode",
16061                       CTLFLAG_RD, sc->mf_mode_str, 0,
16062                       "multifunction mode");
16063     SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "mac_addr",
16064                       CTLFLAG_RD, sc->mac_addr_str, 0,
16065                       "mac address");
16066     SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "pci_link",
16067                       CTLFLAG_RD, sc->pci_link_str, 0,
16068                       "pci link status");
16069     SYSCTL_ADD_ULONG(ctx, children, OID_AUTO, "debug",
16070                     CTLFLAG_RW, &sc->debug,
16071                     "debug logging mode");
16072 
16073     sc->trigger_grcdump = 0;
16074     SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "trigger_grcdump",
16075                    CTLFLAG_RW, &sc->trigger_grcdump, 0,
16076                    "trigger grcdump should be invoked"
16077                    "  before collecting grcdump");
16078 
16079     sc->grcdump_started = 0;
16080     sc->grcdump_done = 0;
16081     SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "grcdump_done",
16082                    CTLFLAG_RD, &sc->grcdump_done, 0,
16083                    "set by driver when grcdump is done");
16084 
16085     sc->rx_budget = bxe_rx_budget;
16086     SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "rx_budget",
16087                     CTLFLAG_RW, &sc->rx_budget, 0,
16088                     "rx processing budget");
16089 
16090     SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "pause_param",
16091         CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, sc, 0,
16092         bxe_sysctl_pauseparam, "IU",
16093         "need pause frames- DEF:0/TX:1/RX:2/BOTH:3/AUTO:4/AUTOTX:5/AUTORX:6/AUTORXTX:7/NONE:8");
16094 
16095 
16096     SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "state",
16097         CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, sc, 0,
16098         bxe_sysctl_state, "IU", "dump driver state");
16099 
16100     for (i = 0; i < BXE_NUM_ETH_STATS; i++) {
16101         SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
16102             bxe_eth_stats_arr[i].string,
16103             CTLTYPE_U64 | CTLFLAG_RD | CTLFLAG_NEEDGIANT, sc, i,
16104             bxe_sysctl_eth_stat, "LU", bxe_eth_stats_arr[i].string);
16105     }
16106 
16107     /* add a new parent node for all queues "dev.bxe.#.queue" */
16108     queue_top = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "queue",
16109         CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "queue");
16110     queue_top_children = SYSCTL_CHILDREN(queue_top);
16111 
16112     for (i = 0; i < sc->num_queues; i++) {
16113         /* add a new parent node for a single queue "dev.bxe.#.queue.#" */
16114         snprintf(queue_num_buf, sizeof(queue_num_buf), "%d", i);
16115         queue = SYSCTL_ADD_NODE(ctx, queue_top_children, OID_AUTO,
16116             queue_num_buf, CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "single queue");
16117         queue_children = SYSCTL_CHILDREN(queue);
16118 
16119         for (j = 0; j < BXE_NUM_ETH_Q_STATS; j++) {
16120             q_stat = ((i << 16) | j);
16121             SYSCTL_ADD_PROC(ctx, queue_children, OID_AUTO,
16122                  bxe_eth_q_stats_arr[j].string,
16123                  CTLTYPE_U64 | CTLFLAG_RD | CTLFLAG_NEEDGIANT, sc, q_stat,
16124                  bxe_sysctl_eth_q_stat, "LU", bxe_eth_q_stats_arr[j].string);
16125         }
16126     }
16127 }
16128 
16129 static int
16130 bxe_alloc_buf_rings(struct bxe_softc *sc)
16131 {
16132     int i;
16133     struct bxe_fastpath *fp;
16134 
16135     for (i = 0; i < sc->num_queues; i++) {
16136 
16137         fp = &sc->fp[i];
16138 
16139         fp->tx_br = buf_ring_alloc(BXE_BR_SIZE, M_DEVBUF,
16140                                    M_NOWAIT, &fp->tx_mtx);
16141         if (fp->tx_br == NULL)
16142             return (-1);
16143     }
16144 
16145     return (0);
16146 }
16147 
16148 static void
16149 bxe_free_buf_rings(struct bxe_softc *sc)
16150 {
16151     int i;
16152     struct bxe_fastpath *fp;
16153 
16154     for (i = 0; i < sc->num_queues; i++) {
16155 
16156         fp = &sc->fp[i];
16157 
16158         if (fp->tx_br) {
16159             buf_ring_free(fp->tx_br, M_DEVBUF);
16160             fp->tx_br = NULL;
16161         }
16162     }
16163 }
16164 
16165 static void
16166 bxe_init_fp_mutexs(struct bxe_softc *sc)
16167 {
16168     int i;
16169     struct bxe_fastpath *fp;
16170 
16171     for (i = 0; i < sc->num_queues; i++) {
16172 
16173         fp = &sc->fp[i];
16174 
16175         snprintf(fp->tx_mtx_name, sizeof(fp->tx_mtx_name),
16176             "bxe%d_fp%d_tx_lock", sc->unit, i);
16177         mtx_init(&fp->tx_mtx, fp->tx_mtx_name, NULL, MTX_DEF);
16178 
16179         snprintf(fp->rx_mtx_name, sizeof(fp->rx_mtx_name),
16180             "bxe%d_fp%d_rx_lock", sc->unit, i);
16181         mtx_init(&fp->rx_mtx, fp->rx_mtx_name, NULL, MTX_DEF);
16182     }
16183 }
16184 
16185 static void
16186 bxe_destroy_fp_mutexs(struct bxe_softc *sc)
16187 {
16188     int i;
16189     struct bxe_fastpath *fp;
16190 
16191     for (i = 0; i < sc->num_queues; i++) {
16192 
16193         fp = &sc->fp[i];
16194 
16195         if (mtx_initialized(&fp->tx_mtx)) {
16196             mtx_destroy(&fp->tx_mtx);
16197         }
16198 
16199         if (mtx_initialized(&fp->rx_mtx)) {
16200             mtx_destroy(&fp->rx_mtx);
16201         }
16202     }
16203 }
16204 
16205 
16206 /*
16207  * Device attach function.
16208  *
16209  * Allocates device resources, performs secondary chip identification, and
16210  * initializes driver instance variables. This function is called from driver
16211  * load after a successful probe.
16212  *
16213  * Returns:
16214  *   0 = Success, >0 = Failure
16215  */
16216 static int
16217 bxe_attach(device_t dev)
16218 {
16219     struct bxe_softc *sc;
16220 
16221     sc = device_get_softc(dev);
16222 
16223     BLOGD(sc, DBG_LOAD, "Starting attach...\n");
16224 
16225     sc->state = BXE_STATE_CLOSED;
16226 
16227     sc->dev  = dev;
16228     sc->unit = device_get_unit(dev);
16229 
16230     BLOGD(sc, DBG_LOAD, "softc = %p\n", sc);
16231 
16232     sc->pcie_bus    = pci_get_bus(dev);
16233     sc->pcie_device = pci_get_slot(dev);
16234     sc->pcie_func   = pci_get_function(dev);
16235 
16236     /* enable bus master capability */
16237     pci_enable_busmaster(dev);
16238 
16239     /* get the BARs */
16240     if (bxe_allocate_bars(sc) != 0) {
16241         return (ENXIO);
16242     }
16243 
16244     /* initialize the mutexes */
16245     bxe_init_mutexes(sc);
16246 
16247     /* prepare the periodic callout */
16248     callout_init(&sc->periodic_callout, 0);
16249 
16250     /* prepare the chip taskqueue */
16251     sc->chip_tq_flags = CHIP_TQ_NONE;
16252     snprintf(sc->chip_tq_name, sizeof(sc->chip_tq_name),
16253              "bxe%d_chip_tq", sc->unit);
16254     TASK_INIT(&sc->chip_tq_task, 0, bxe_handle_chip_tq, sc);
16255     sc->chip_tq = taskqueue_create(sc->chip_tq_name, M_NOWAIT,
16256                                    taskqueue_thread_enqueue,
16257                                    &sc->chip_tq);
16258     taskqueue_start_threads(&sc->chip_tq, 1, PWAIT, /* lower priority */
16259                             "%s", sc->chip_tq_name);
16260 
16261     TIMEOUT_TASK_INIT(taskqueue_thread,
16262         &sc->sp_err_timeout_task, 0, bxe_sp_err_timeout_task,  sc);
16263 
16264 
16265     /* get device info and set params */
16266     if (bxe_get_device_info(sc) != 0) {
16267         BLOGE(sc, "getting device info\n");
16268         bxe_deallocate_bars(sc);
16269         pci_disable_busmaster(dev);
16270         return (ENXIO);
16271     }
16272 
16273     /* get final misc params */
16274     bxe_get_params(sc);
16275 
16276     /* set the default MTU (changed via ifconfig) */
16277     sc->mtu = ETHERMTU;
16278 
16279     bxe_set_modes_bitmap(sc);
16280 
16281     /* XXX
16282      * If in AFEX mode and the function is configured for FCoE
16283      * then bail... no L2 allowed.
16284      */
16285 
16286     /* get phy settings from shmem and 'and' against admin settings */
16287     bxe_get_phy_info(sc);
16288 
16289     /* initialize the FreeBSD ifnet interface */
16290     if (bxe_init_ifnet(sc) != 0) {
16291         bxe_release_mutexes(sc);
16292         bxe_deallocate_bars(sc);
16293         pci_disable_busmaster(dev);
16294         return (ENXIO);
16295     }
16296 
16297     if (bxe_add_cdev(sc) != 0) {
16298         if (sc->ifp != NULL) {
16299             ether_ifdetach(sc->ifp);
16300         }
16301         ifmedia_removeall(&sc->ifmedia);
16302         bxe_release_mutexes(sc);
16303         bxe_deallocate_bars(sc);
16304         pci_disable_busmaster(dev);
16305         return (ENXIO);
16306     }
16307 
16308     /* allocate device interrupts */
16309     if (bxe_interrupt_alloc(sc) != 0) {
16310         bxe_del_cdev(sc);
16311         if (sc->ifp != NULL) {
16312             ether_ifdetach(sc->ifp);
16313         }
16314         ifmedia_removeall(&sc->ifmedia);
16315         bxe_release_mutexes(sc);
16316         bxe_deallocate_bars(sc);
16317         pci_disable_busmaster(dev);
16318         return (ENXIO);
16319     }
16320 
16321     bxe_init_fp_mutexs(sc);
16322 
16323     if (bxe_alloc_buf_rings(sc) != 0) {
16324 	bxe_free_buf_rings(sc);
16325         bxe_interrupt_free(sc);
16326         bxe_del_cdev(sc);
16327         if (sc->ifp != NULL) {
16328             ether_ifdetach(sc->ifp);
16329         }
16330         ifmedia_removeall(&sc->ifmedia);
16331         bxe_release_mutexes(sc);
16332         bxe_deallocate_bars(sc);
16333         pci_disable_busmaster(dev);
16334         return (ENXIO);
16335     }
16336 
16337     /* allocate ilt */
16338     if (bxe_alloc_ilt_mem(sc) != 0) {
16339 	bxe_free_buf_rings(sc);
16340         bxe_interrupt_free(sc);
16341         bxe_del_cdev(sc);
16342         if (sc->ifp != NULL) {
16343             ether_ifdetach(sc->ifp);
16344         }
16345         ifmedia_removeall(&sc->ifmedia);
16346         bxe_release_mutexes(sc);
16347         bxe_deallocate_bars(sc);
16348         pci_disable_busmaster(dev);
16349         return (ENXIO);
16350     }
16351 
16352     /* allocate the host hardware/software hsi structures */
16353     if (bxe_alloc_hsi_mem(sc) != 0) {
16354         bxe_free_ilt_mem(sc);
16355 	bxe_free_buf_rings(sc);
16356         bxe_interrupt_free(sc);
16357         bxe_del_cdev(sc);
16358         if (sc->ifp != NULL) {
16359             ether_ifdetach(sc->ifp);
16360         }
16361         ifmedia_removeall(&sc->ifmedia);
16362         bxe_release_mutexes(sc);
16363         bxe_deallocate_bars(sc);
16364         pci_disable_busmaster(dev);
16365         return (ENXIO);
16366     }
16367 
16368     /* need to reset chip if UNDI was active */
16369     if (IS_PF(sc) && !BXE_NOMCP(sc)) {
16370         /* init fw_seq */
16371         sc->fw_seq =
16372             (SHMEM_RD(sc, func_mb[SC_FW_MB_IDX(sc)].drv_mb_header) &
16373              DRV_MSG_SEQ_NUMBER_MASK);
16374         BLOGD(sc, DBG_LOAD, "prev unload fw_seq 0x%04x\n", sc->fw_seq);
16375         bxe_prev_unload(sc);
16376     }
16377 
16378 #if 1
16379     /* XXX */
16380     bxe_dcbx_set_state(sc, FALSE, BXE_DCBX_ENABLED_OFF);
16381 #else
16382     if (SHMEM2_HAS(sc, dcbx_lldp_params_offset) &&
16383         SHMEM2_HAS(sc, dcbx_lldp_dcbx_stat_offset) &&
16384         SHMEM2_RD(sc, dcbx_lldp_params_offset) &&
16385         SHMEM2_RD(sc, dcbx_lldp_dcbx_stat_offset)) {
16386         bxe_dcbx_set_state(sc, TRUE, BXE_DCBX_ENABLED_ON_NEG_ON);
16387         bxe_dcbx_init_params(sc);
16388     } else {
16389         bxe_dcbx_set_state(sc, FALSE, BXE_DCBX_ENABLED_OFF);
16390     }
16391 #endif
16392 
16393     /* calculate qm_cid_count */
16394     sc->qm_cid_count = bxe_set_qm_cid_count(sc);
16395     BLOGD(sc, DBG_LOAD, "qm_cid_count=%d\n", sc->qm_cid_count);
16396 
16397     sc->max_cos = 1;
16398     bxe_init_multi_cos(sc);
16399 
16400     bxe_add_sysctls(sc);
16401 
16402     return (0);
16403 }
16404 
16405 /*
16406  * Device detach function.
16407  *
16408  * Stops the controller, resets the controller, and releases resources.
16409  *
16410  * Returns:
16411  *   0 = Success, >0 = Failure
16412  */
16413 static int
16414 bxe_detach(device_t dev)
16415 {
16416     struct bxe_softc *sc;
16417     if_t ifp;
16418 
16419     sc = device_get_softc(dev);
16420 
16421     BLOGD(sc, DBG_LOAD, "Starting detach...\n");
16422 
16423     ifp = sc->ifp;
16424     if (ifp != NULL && if_vlantrunkinuse(ifp)) {
16425         BLOGE(sc, "Cannot detach while VLANs are in use.\n");
16426         return(EBUSY);
16427     }
16428 
16429     bxe_del_cdev(sc);
16430 
16431     /* stop the periodic callout */
16432     bxe_periodic_stop(sc);
16433 
16434     /* stop the chip taskqueue */
16435     atomic_store_rel_long(&sc->chip_tq_flags, CHIP_TQ_NONE);
16436     if (sc->chip_tq) {
16437         taskqueue_drain(sc->chip_tq, &sc->chip_tq_task);
16438         taskqueue_free(sc->chip_tq);
16439         sc->chip_tq = NULL;
16440         taskqueue_drain_timeout(taskqueue_thread,
16441             &sc->sp_err_timeout_task);
16442     }
16443 
16444     /* stop and reset the controller if it was open */
16445     if (sc->state != BXE_STATE_CLOSED) {
16446         BXE_CORE_LOCK(sc);
16447         bxe_nic_unload(sc, UNLOAD_CLOSE, TRUE);
16448         sc->state = BXE_STATE_DISABLED;
16449         BXE_CORE_UNLOCK(sc);
16450     }
16451 
16452     /* release the network interface */
16453     if (ifp != NULL) {
16454         ether_ifdetach(ifp);
16455     }
16456     ifmedia_removeall(&sc->ifmedia);
16457 
16458     /* XXX do the following based on driver state... */
16459 
16460     /* free the host hardware/software hsi structures */
16461     bxe_free_hsi_mem(sc);
16462 
16463     /* free ilt */
16464     bxe_free_ilt_mem(sc);
16465 
16466     bxe_free_buf_rings(sc);
16467 
16468     /* release the interrupts */
16469     bxe_interrupt_free(sc);
16470 
16471     /* Release the mutexes*/
16472     bxe_destroy_fp_mutexs(sc);
16473     bxe_release_mutexes(sc);
16474 
16475 
16476     /* Release the PCIe BAR mapped memory */
16477     bxe_deallocate_bars(sc);
16478 
16479     /* Release the FreeBSD interface. */
16480     if (sc->ifp != NULL) {
16481         if_free(sc->ifp);
16482     }
16483 
16484     pci_disable_busmaster(dev);
16485 
16486     return (0);
16487 }
16488 
16489 /*
16490  * Device shutdown function.
16491  *
16492  * Stops and resets the controller.
16493  *
16494  * Returns:
16495  *   Nothing
16496  */
16497 static int
16498 bxe_shutdown(device_t dev)
16499 {
16500     struct bxe_softc *sc;
16501 
16502     sc = device_get_softc(dev);
16503 
16504     BLOGD(sc, DBG_LOAD, "Starting shutdown...\n");
16505 
16506     /* stop the periodic callout */
16507     bxe_periodic_stop(sc);
16508 
16509     if (sc->state != BXE_STATE_CLOSED) {
16510     	BXE_CORE_LOCK(sc);
16511     	bxe_nic_unload(sc, UNLOAD_NORMAL, FALSE);
16512     	BXE_CORE_UNLOCK(sc);
16513     }
16514 
16515     return (0);
16516 }
16517 
16518 void
16519 bxe_igu_ack_sb(struct bxe_softc *sc,
16520                uint8_t          igu_sb_id,
16521                uint8_t          segment,
16522                uint16_t         index,
16523                uint8_t          op,
16524                uint8_t          update)
16525 {
16526     uint32_t igu_addr = sc->igu_base_addr;
16527     igu_addr += (IGU_CMD_INT_ACK_BASE + igu_sb_id)*8;
16528     bxe_igu_ack_sb_gen(sc, igu_sb_id, segment, index, op, update, igu_addr);
16529 }
16530 
16531 static void
16532 bxe_igu_clear_sb_gen(struct bxe_softc *sc,
16533                      uint8_t          func,
16534                      uint8_t          idu_sb_id,
16535                      uint8_t          is_pf)
16536 {
16537     uint32_t data, ctl, cnt = 100;
16538     uint32_t igu_addr_data = IGU_REG_COMMAND_REG_32LSB_DATA;
16539     uint32_t igu_addr_ctl = IGU_REG_COMMAND_REG_CTRL;
16540     uint32_t igu_addr_ack = IGU_REG_CSTORM_TYPE_0_SB_CLEANUP + (idu_sb_id/32)*4;
16541     uint32_t sb_bit =  1 << (idu_sb_id%32);
16542     uint32_t func_encode = func | (is_pf ? 1 : 0) << IGU_FID_ENCODE_IS_PF_SHIFT;
16543     uint32_t addr_encode = IGU_CMD_E2_PROD_UPD_BASE + idu_sb_id;
16544 
16545     /* Not supported in BC mode */
16546     if (CHIP_INT_MODE_IS_BC(sc)) {
16547         return;
16548     }
16549 
16550     data = ((IGU_USE_REGISTER_cstorm_type_0_sb_cleanup <<
16551              IGU_REGULAR_CLEANUP_TYPE_SHIFT) |
16552             IGU_REGULAR_CLEANUP_SET |
16553             IGU_REGULAR_BCLEANUP);
16554 
16555     ctl = ((addr_encode << IGU_CTRL_REG_ADDRESS_SHIFT) |
16556            (func_encode << IGU_CTRL_REG_FID_SHIFT) |
16557            (IGU_CTRL_CMD_TYPE_WR << IGU_CTRL_REG_TYPE_SHIFT));
16558 
16559     BLOGD(sc, DBG_LOAD, "write 0x%08x to IGU(via GRC) addr 0x%x\n",
16560             data, igu_addr_data);
16561     REG_WR(sc, igu_addr_data, data);
16562 
16563     bus_space_barrier(sc->bar[BAR0].tag, sc->bar[BAR0].handle, 0, 0,
16564                       BUS_SPACE_BARRIER_WRITE);
16565     mb();
16566 
16567     BLOGD(sc, DBG_LOAD, "write 0x%08x to IGU(via GRC) addr 0x%x\n",
16568             ctl, igu_addr_ctl);
16569     REG_WR(sc, igu_addr_ctl, ctl);
16570 
16571     bus_space_barrier(sc->bar[BAR0].tag, sc->bar[BAR0].handle, 0, 0,
16572                       BUS_SPACE_BARRIER_WRITE);
16573     mb();
16574 
16575     /* wait for clean up to finish */
16576     while (!(REG_RD(sc, igu_addr_ack) & sb_bit) && --cnt) {
16577         DELAY(20000);
16578     }
16579 
16580     if (!(REG_RD(sc, igu_addr_ack) & sb_bit)) {
16581         BLOGD(sc, DBG_LOAD,
16582               "Unable to finish IGU cleanup: "
16583               "idu_sb_id %d offset %d bit %d (cnt %d)\n",
16584               idu_sb_id, idu_sb_id/32, idu_sb_id%32, cnt);
16585     }
16586 }
16587 
16588 static void
16589 bxe_igu_clear_sb(struct bxe_softc *sc,
16590                  uint8_t          idu_sb_id)
16591 {
16592     bxe_igu_clear_sb_gen(sc, SC_FUNC(sc), idu_sb_id, TRUE /*PF*/);
16593 }
16594 
16595 
16596 
16597 
16598 
16599 
16600 
16601 /*******************/
16602 /* ECORE CALLBACKS */
16603 /*******************/
16604 
16605 static void
16606 bxe_reset_common(struct bxe_softc *sc)
16607 {
16608     uint32_t val = 0x1400;
16609 
16610     /* reset_common */
16611     REG_WR(sc, (GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR), 0xd3ffff7f);
16612 
16613     if (CHIP_IS_E3(sc)) {
16614         val |= MISC_REGISTERS_RESET_REG_2_MSTAT0;
16615         val |= MISC_REGISTERS_RESET_REG_2_MSTAT1;
16616     }
16617 
16618     REG_WR(sc, (GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR), val);
16619 }
16620 
16621 static void
16622 bxe_common_init_phy(struct bxe_softc *sc)
16623 {
16624     uint32_t shmem_base[2];
16625     uint32_t shmem2_base[2];
16626 
16627     /* Avoid common init in case MFW supports LFA */
16628     if (SHMEM2_RD(sc, size) >
16629         (uint32_t)offsetof(struct shmem2_region,
16630                            lfa_host_addr[SC_PORT(sc)])) {
16631         return;
16632     }
16633 
16634     shmem_base[0]  = sc->devinfo.shmem_base;
16635     shmem2_base[0] = sc->devinfo.shmem2_base;
16636 
16637     if (!CHIP_IS_E1x(sc)) {
16638         shmem_base[1]  = SHMEM2_RD(sc, other_shmem_base_addr);
16639         shmem2_base[1] = SHMEM2_RD(sc, other_shmem2_base_addr);
16640     }
16641 
16642     bxe_acquire_phy_lock(sc);
16643     elink_common_init_phy(sc, shmem_base, shmem2_base,
16644                           sc->devinfo.chip_id, 0);
16645     bxe_release_phy_lock(sc);
16646 }
16647 
16648 static void
16649 bxe_pf_disable(struct bxe_softc *sc)
16650 {
16651     uint32_t val = REG_RD(sc, IGU_REG_PF_CONFIGURATION);
16652 
16653     val &= ~IGU_PF_CONF_FUNC_EN;
16654 
16655     REG_WR(sc, IGU_REG_PF_CONFIGURATION, val);
16656     REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
16657     REG_WR(sc, CFC_REG_WEAK_ENABLE_PF, 0);
16658 }
16659 
16660 static void
16661 bxe_init_pxp(struct bxe_softc *sc)
16662 {
16663     uint16_t devctl;
16664     int r_order, w_order;
16665 
16666     devctl = bxe_pcie_capability_read(sc, PCIER_DEVICE_CTL, 2);
16667 
16668     BLOGD(sc, DBG_LOAD, "read 0x%08x from devctl\n", devctl);
16669 
16670     w_order = ((devctl & PCIEM_CTL_MAX_PAYLOAD) >> 5);
16671 
16672     if (sc->mrrs == -1) {
16673         r_order = ((devctl & PCIEM_CTL_MAX_READ_REQUEST) >> 12);
16674     } else {
16675         BLOGD(sc, DBG_LOAD, "forcing read order to %d\n", sc->mrrs);
16676         r_order = sc->mrrs;
16677     }
16678 
16679     ecore_init_pxp_arb(sc, r_order, w_order);
16680 }
16681 
16682 static uint32_t
16683 bxe_get_pretend_reg(struct bxe_softc *sc)
16684 {
16685     uint32_t base = PXP2_REG_PGL_PRETEND_FUNC_F0;
16686     uint32_t stride = (PXP2_REG_PGL_PRETEND_FUNC_F1 - base);
16687     return (base + (SC_ABS_FUNC(sc)) * stride);
16688 }
16689 
16690 /*
16691  * Called only on E1H or E2.
16692  * When pretending to be PF, the pretend value is the function number 0..7.
16693  * When pretending to be VF, the pretend val is the PF-num:VF-valid:ABS-VFID
16694  * combination.
16695  */
16696 static int
16697 bxe_pretend_func(struct bxe_softc *sc,
16698                  uint16_t         pretend_func_val)
16699 {
16700     uint32_t pretend_reg;
16701 
16702     if (CHIP_IS_E1H(sc) && (pretend_func_val > E1H_FUNC_MAX)) {
16703         return (-1);
16704     }
16705 
16706     /* get my own pretend register */
16707     pretend_reg = bxe_get_pretend_reg(sc);
16708     REG_WR(sc, pretend_reg, pretend_func_val);
16709     REG_RD(sc, pretend_reg);
16710     return (0);
16711 }
16712 
16713 static void
16714 bxe_iov_init_dmae(struct bxe_softc *sc)
16715 {
16716     return;
16717 }
16718 
16719 static void
16720 bxe_iov_init_dq(struct bxe_softc *sc)
16721 {
16722     return;
16723 }
16724 
16725 /* send a NIG loopback debug packet */
16726 static void
16727 bxe_lb_pckt(struct bxe_softc *sc)
16728 {
16729     uint32_t wb_write[3];
16730 
16731     /* Ethernet source and destination addresses */
16732     wb_write[0] = 0x55555555;
16733     wb_write[1] = 0x55555555;
16734     wb_write[2] = 0x20;     /* SOP */
16735     REG_WR_DMAE(sc, NIG_REG_DEBUG_PACKET_LB, wb_write, 3);
16736 
16737     /* NON-IP protocol */
16738     wb_write[0] = 0x09000000;
16739     wb_write[1] = 0x55555555;
16740     wb_write[2] = 0x10;     /* EOP, eop_bvalid = 0 */
16741     REG_WR_DMAE(sc, NIG_REG_DEBUG_PACKET_LB, wb_write, 3);
16742 }
16743 
16744 /*
16745  * Some of the internal memories are not directly readable from the driver.
16746  * To test them we send debug packets.
16747  */
16748 static int
16749 bxe_int_mem_test(struct bxe_softc *sc)
16750 {
16751     int factor;
16752     int count, i;
16753     uint32_t val = 0;
16754 
16755     if (CHIP_REV_IS_FPGA(sc)) {
16756         factor = 120;
16757     } else if (CHIP_REV_IS_EMUL(sc)) {
16758         factor = 200;
16759     } else {
16760         factor = 1;
16761     }
16762 
16763     /* disable inputs of parser neighbor blocks */
16764     REG_WR(sc, TSDM_REG_ENABLE_IN1, 0x0);
16765     REG_WR(sc, TCM_REG_PRS_IFEN, 0x0);
16766     REG_WR(sc, CFC_REG_DEBUG0, 0x1);
16767     REG_WR(sc, NIG_REG_PRS_REQ_IN_EN, 0x0);
16768 
16769     /*  write 0 to parser credits for CFC search request */
16770     REG_WR(sc, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0);
16771 
16772     /* send Ethernet packet */
16773     bxe_lb_pckt(sc);
16774 
16775     /* TODO do i reset NIG statistic? */
16776     /* Wait until NIG register shows 1 packet of size 0x10 */
16777     count = 1000 * factor;
16778     while (count) {
16779         bxe_read_dmae(sc, NIG_REG_STAT2_BRB_OCTET, 2);
16780         val = *BXE_SP(sc, wb_data[0]);
16781         if (val == 0x10) {
16782             break;
16783         }
16784 
16785         DELAY(10000);
16786         count--;
16787     }
16788 
16789     if (val != 0x10) {
16790         BLOGE(sc, "NIG timeout val=0x%x\n", val);
16791         return (-1);
16792     }
16793 
16794     /* wait until PRS register shows 1 packet */
16795     count = (1000 * factor);
16796     while (count) {
16797         val = REG_RD(sc, PRS_REG_NUM_OF_PACKETS);
16798         if (val == 1) {
16799             break;
16800         }
16801 
16802         DELAY(10000);
16803         count--;
16804     }
16805 
16806     if (val != 0x1) {
16807         BLOGE(sc, "PRS timeout val=0x%x\n", val);
16808         return (-2);
16809     }
16810 
16811     /* Reset and init BRB, PRS */
16812     REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03);
16813     DELAY(50000);
16814     REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03);
16815     DELAY(50000);
16816     ecore_init_block(sc, BLOCK_BRB1, PHASE_COMMON);
16817     ecore_init_block(sc, BLOCK_PRS, PHASE_COMMON);
16818 
16819     /* Disable inputs of parser neighbor blocks */
16820     REG_WR(sc, TSDM_REG_ENABLE_IN1, 0x0);
16821     REG_WR(sc, TCM_REG_PRS_IFEN, 0x0);
16822     REG_WR(sc, CFC_REG_DEBUG0, 0x1);
16823     REG_WR(sc, NIG_REG_PRS_REQ_IN_EN, 0x0);
16824 
16825     /* Write 0 to parser credits for CFC search request */
16826     REG_WR(sc, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0);
16827 
16828     /* send 10 Ethernet packets */
16829     for (i = 0; i < 10; i++) {
16830         bxe_lb_pckt(sc);
16831     }
16832 
16833     /* Wait until NIG register shows 10+1 packets of size 11*0x10 = 0xb0 */
16834     count = (1000 * factor);
16835     while (count) {
16836         bxe_read_dmae(sc, NIG_REG_STAT2_BRB_OCTET, 2);
16837         val = *BXE_SP(sc, wb_data[0]);
16838         if (val == 0xb0) {
16839             break;
16840         }
16841 
16842         DELAY(10000);
16843         count--;
16844     }
16845 
16846     if (val != 0xb0) {
16847         BLOGE(sc, "NIG timeout val=0x%x\n", val);
16848         return (-3);
16849     }
16850 
16851     /* Wait until PRS register shows 2 packets */
16852     val = REG_RD(sc, PRS_REG_NUM_OF_PACKETS);
16853     if (val != 2) {
16854         BLOGE(sc, "PRS timeout val=0x%x\n", val);
16855     }
16856 
16857     /* Write 1 to parser credits for CFC search request */
16858     REG_WR(sc, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x1);
16859 
16860     /* Wait until PRS register shows 3 packets */
16861     DELAY(10000 * factor);
16862 
16863     /* Wait until NIG register shows 1 packet of size 0x10 */
16864     val = REG_RD(sc, PRS_REG_NUM_OF_PACKETS);
16865     if (val != 3) {
16866         BLOGE(sc, "PRS timeout val=0x%x\n", val);
16867     }
16868 
16869     /* clear NIG EOP FIFO */
16870     for (i = 0; i < 11; i++) {
16871         REG_RD(sc, NIG_REG_INGRESS_EOP_LB_FIFO);
16872     }
16873 
16874     val = REG_RD(sc, NIG_REG_INGRESS_EOP_LB_EMPTY);
16875     if (val != 1) {
16876         BLOGE(sc, "clear of NIG failed val=0x%x\n", val);
16877         return (-4);
16878     }
16879 
16880     /* Reset and init BRB, PRS, NIG */
16881     REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03);
16882     DELAY(50000);
16883     REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03);
16884     DELAY(50000);
16885     ecore_init_block(sc, BLOCK_BRB1, PHASE_COMMON);
16886     ecore_init_block(sc, BLOCK_PRS, PHASE_COMMON);
16887     if (!CNIC_SUPPORT(sc)) {
16888         /* set NIC mode */
16889         REG_WR(sc, PRS_REG_NIC_MODE, 1);
16890     }
16891 
16892     /* Enable inputs of parser neighbor blocks */
16893     REG_WR(sc, TSDM_REG_ENABLE_IN1, 0x7fffffff);
16894     REG_WR(sc, TCM_REG_PRS_IFEN, 0x1);
16895     REG_WR(sc, CFC_REG_DEBUG0, 0x0);
16896     REG_WR(sc, NIG_REG_PRS_REQ_IN_EN, 0x1);
16897 
16898     return (0);
16899 }
16900 
16901 static void
16902 bxe_setup_fan_failure_detection(struct bxe_softc *sc)
16903 {
16904     int is_required;
16905     uint32_t val;
16906     int port;
16907 
16908     is_required = 0;
16909     val = (SHMEM_RD(sc, dev_info.shared_hw_config.config2) &
16910            SHARED_HW_CFG_FAN_FAILURE_MASK);
16911 
16912     if (val == SHARED_HW_CFG_FAN_FAILURE_ENABLED) {
16913         is_required = 1;
16914     }
16915     /*
16916      * The fan failure mechanism is usually related to the PHY type since
16917      * the power consumption of the board is affected by the PHY. Currently,
16918      * fan is required for most designs with SFX7101, BCM8727 and BCM8481.
16919      */
16920     else if (val == SHARED_HW_CFG_FAN_FAILURE_PHY_TYPE) {
16921         for (port = PORT_0; port < PORT_MAX; port++) {
16922             is_required |= elink_fan_failure_det_req(sc,
16923                                                      sc->devinfo.shmem_base,
16924                                                      sc->devinfo.shmem2_base,
16925                                                      port);
16926         }
16927     }
16928 
16929     BLOGD(sc, DBG_LOAD, "fan detection setting: %d\n", is_required);
16930 
16931     if (is_required == 0) {
16932         return;
16933     }
16934 
16935     /* Fan failure is indicated by SPIO 5 */
16936     bxe_set_spio(sc, MISC_SPIO_SPIO5, MISC_SPIO_INPUT_HI_Z);
16937 
16938     /* set to active low mode */
16939     val = REG_RD(sc, MISC_REG_SPIO_INT);
16940     val |= (MISC_SPIO_SPIO5 << MISC_SPIO_INT_OLD_SET_POS);
16941     REG_WR(sc, MISC_REG_SPIO_INT, val);
16942 
16943     /* enable interrupt to signal the IGU */
16944     val = REG_RD(sc, MISC_REG_SPIO_EVENT_EN);
16945     val |= MISC_SPIO_SPIO5;
16946     REG_WR(sc, MISC_REG_SPIO_EVENT_EN, val);
16947 }
16948 
16949 static void
16950 bxe_enable_blocks_attention(struct bxe_softc *sc)
16951 {
16952     uint32_t val;
16953 
16954     REG_WR(sc, PXP_REG_PXP_INT_MASK_0, 0);
16955     if (!CHIP_IS_E1x(sc)) {
16956         REG_WR(sc, PXP_REG_PXP_INT_MASK_1, 0x40);
16957     } else {
16958         REG_WR(sc, PXP_REG_PXP_INT_MASK_1, 0);
16959     }
16960     REG_WR(sc, DORQ_REG_DORQ_INT_MASK, 0);
16961     REG_WR(sc, CFC_REG_CFC_INT_MASK, 0);
16962     /*
16963      * mask read length error interrupts in brb for parser
16964      * (parsing unit and 'checksum and crc' unit)
16965      * these errors are legal (PU reads fixed length and CAC can cause
16966      * read length error on truncated packets)
16967      */
16968     REG_WR(sc, BRB1_REG_BRB1_INT_MASK, 0xFC00);
16969     REG_WR(sc, QM_REG_QM_INT_MASK, 0);
16970     REG_WR(sc, TM_REG_TM_INT_MASK, 0);
16971     REG_WR(sc, XSDM_REG_XSDM_INT_MASK_0, 0);
16972     REG_WR(sc, XSDM_REG_XSDM_INT_MASK_1, 0);
16973     REG_WR(sc, XCM_REG_XCM_INT_MASK, 0);
16974 /*      REG_WR(sc, XSEM_REG_XSEM_INT_MASK_0, 0); */
16975 /*      REG_WR(sc, XSEM_REG_XSEM_INT_MASK_1, 0); */
16976     REG_WR(sc, USDM_REG_USDM_INT_MASK_0, 0);
16977     REG_WR(sc, USDM_REG_USDM_INT_MASK_1, 0);
16978     REG_WR(sc, UCM_REG_UCM_INT_MASK, 0);
16979 /*      REG_WR(sc, USEM_REG_USEM_INT_MASK_0, 0); */
16980 /*      REG_WR(sc, USEM_REG_USEM_INT_MASK_1, 0); */
16981     REG_WR(sc, GRCBASE_UPB + PB_REG_PB_INT_MASK, 0);
16982     REG_WR(sc, CSDM_REG_CSDM_INT_MASK_0, 0);
16983     REG_WR(sc, CSDM_REG_CSDM_INT_MASK_1, 0);
16984     REG_WR(sc, CCM_REG_CCM_INT_MASK, 0);
16985 /*      REG_WR(sc, CSEM_REG_CSEM_INT_MASK_0, 0); */
16986 /*      REG_WR(sc, CSEM_REG_CSEM_INT_MASK_1, 0); */
16987 
16988     val = (PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_AFT |
16989            PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_OF |
16990            PXP2_PXP2_INT_MASK_0_REG_PGL_PCIE_ATTN);
16991     if (!CHIP_IS_E1x(sc)) {
16992         val |= (PXP2_PXP2_INT_MASK_0_REG_PGL_READ_BLOCKED |
16993                 PXP2_PXP2_INT_MASK_0_REG_PGL_WRITE_BLOCKED);
16994     }
16995     REG_WR(sc, PXP2_REG_PXP2_INT_MASK_0, val);
16996 
16997     REG_WR(sc, TSDM_REG_TSDM_INT_MASK_0, 0);
16998     REG_WR(sc, TSDM_REG_TSDM_INT_MASK_1, 0);
16999     REG_WR(sc, TCM_REG_TCM_INT_MASK, 0);
17000 /*      REG_WR(sc, TSEM_REG_TSEM_INT_MASK_0, 0); */
17001 
17002     if (!CHIP_IS_E1x(sc)) {
17003         /* enable VFC attentions: bits 11 and 12, bits 31:13 reserved */
17004         REG_WR(sc, TSEM_REG_TSEM_INT_MASK_1, 0x07ff);
17005     }
17006 
17007     REG_WR(sc, CDU_REG_CDU_INT_MASK, 0);
17008     REG_WR(sc, DMAE_REG_DMAE_INT_MASK, 0);
17009 /*      REG_WR(sc, MISC_REG_MISC_INT_MASK, 0); */
17010     REG_WR(sc, PBF_REG_PBF_INT_MASK, 0x18);     /* bit 3,4 masked */
17011 }
17012 
17013 /**
17014  * bxe_init_hw_common - initialize the HW at the COMMON phase.
17015  *
17016  * @sc:     driver handle
17017  */
17018 static int
17019 bxe_init_hw_common(struct bxe_softc *sc)
17020 {
17021     uint8_t abs_func_id;
17022     uint32_t val;
17023 
17024     BLOGD(sc, DBG_LOAD, "starting common init for func %d\n",
17025           SC_ABS_FUNC(sc));
17026 
17027     /*
17028      * take the RESET lock to protect undi_unload flow from accessing
17029      * registers while we are resetting the chip
17030      */
17031     bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RESET);
17032 
17033     bxe_reset_common(sc);
17034 
17035     REG_WR(sc, (GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET), 0xffffffff);
17036 
17037     val = 0xfffc;
17038     if (CHIP_IS_E3(sc)) {
17039         val |= MISC_REGISTERS_RESET_REG_2_MSTAT0;
17040         val |= MISC_REGISTERS_RESET_REG_2_MSTAT1;
17041     }
17042 
17043     REG_WR(sc, (GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET), val);
17044 
17045     bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RESET);
17046 
17047     ecore_init_block(sc, BLOCK_MISC, PHASE_COMMON);
17048     BLOGD(sc, DBG_LOAD, "after misc block init\n");
17049 
17050     if (!CHIP_IS_E1x(sc)) {
17051         /*
17052          * 4-port mode or 2-port mode we need to turn off master-enable for
17053          * everyone. After that we turn it back on for self. So, we disregard
17054          * multi-function, and always disable all functions on the given path,
17055          * this means 0,2,4,6 for path 0 and 1,3,5,7 for path 1
17056          */
17057         for (abs_func_id = SC_PATH(sc);
17058              abs_func_id < (E2_FUNC_MAX * 2);
17059              abs_func_id += 2) {
17060             if (abs_func_id == SC_ABS_FUNC(sc)) {
17061                 REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
17062                 continue;
17063             }
17064 
17065             bxe_pretend_func(sc, abs_func_id);
17066 
17067             /* clear pf enable */
17068             bxe_pf_disable(sc);
17069 
17070             bxe_pretend_func(sc, SC_ABS_FUNC(sc));
17071         }
17072     }
17073 
17074     BLOGD(sc, DBG_LOAD, "after pf disable\n");
17075 
17076     ecore_init_block(sc, BLOCK_PXP, PHASE_COMMON);
17077 
17078     if (CHIP_IS_E1(sc)) {
17079         /*
17080          * enable HW interrupt from PXP on USDM overflow
17081          * bit 16 on INT_MASK_0
17082          */
17083         REG_WR(sc, PXP_REG_PXP_INT_MASK_0, 0);
17084     }
17085 
17086     ecore_init_block(sc, BLOCK_PXP2, PHASE_COMMON);
17087     bxe_init_pxp(sc);
17088 
17089 #ifdef __BIG_ENDIAN
17090     REG_WR(sc, PXP2_REG_RQ_QM_ENDIAN_M, 1);
17091     REG_WR(sc, PXP2_REG_RQ_TM_ENDIAN_M, 1);
17092     REG_WR(sc, PXP2_REG_RQ_SRC_ENDIAN_M, 1);
17093     REG_WR(sc, PXP2_REG_RQ_CDU_ENDIAN_M, 1);
17094     REG_WR(sc, PXP2_REG_RQ_DBG_ENDIAN_M, 1);
17095     /* make sure this value is 0 */
17096     REG_WR(sc, PXP2_REG_RQ_HC_ENDIAN_M, 0);
17097 
17098     //REG_WR(sc, PXP2_REG_RD_PBF_SWAP_MODE, 1);
17099     REG_WR(sc, PXP2_REG_RD_QM_SWAP_MODE, 1);
17100     REG_WR(sc, PXP2_REG_RD_TM_SWAP_MODE, 1);
17101     REG_WR(sc, PXP2_REG_RD_SRC_SWAP_MODE, 1);
17102     REG_WR(sc, PXP2_REG_RD_CDURD_SWAP_MODE, 1);
17103 #endif
17104 
17105     ecore_ilt_init_page_size(sc, INITOP_SET);
17106 
17107     if (CHIP_REV_IS_FPGA(sc) && CHIP_IS_E1H(sc)) {
17108         REG_WR(sc, PXP2_REG_PGL_TAGS_LIMIT, 0x1);
17109     }
17110 
17111     /* let the HW do it's magic... */
17112     DELAY(100000);
17113 
17114     /* finish PXP init */
17115     val = REG_RD(sc, PXP2_REG_RQ_CFG_DONE);
17116     if (val != 1) {
17117         BLOGE(sc, "PXP2 CFG failed PXP2_REG_RQ_CFG_DONE val = 0x%x\n",
17118             val);
17119         return (-1);
17120     }
17121     val = REG_RD(sc, PXP2_REG_RD_INIT_DONE);
17122     if (val != 1) {
17123         BLOGE(sc, "PXP2 RD_INIT failed val = 0x%x\n", val);
17124         return (-1);
17125     }
17126 
17127     BLOGD(sc, DBG_LOAD, "after pxp init\n");
17128 
17129     /*
17130      * Timer bug workaround for E2 only. We need to set the entire ILT to have
17131      * entries with value "0" and valid bit on. This needs to be done by the
17132      * first PF that is loaded in a path (i.e. common phase)
17133      */
17134     if (!CHIP_IS_E1x(sc)) {
17135 /*
17136  * In E2 there is a bug in the timers block that can cause function 6 / 7
17137  * (i.e. vnic3) to start even if it is marked as "scan-off".
17138  * This occurs when a different function (func2,3) is being marked
17139  * as "scan-off". Real-life scenario for example: if a driver is being
17140  * load-unloaded while func6,7 are down. This will cause the timer to access
17141  * the ilt, translate to a logical address and send a request to read/write.
17142  * Since the ilt for the function that is down is not valid, this will cause
17143  * a translation error which is unrecoverable.
17144  * The Workaround is intended to make sure that when this happens nothing
17145  * fatal will occur. The workaround:
17146  *  1.  First PF driver which loads on a path will:
17147  *      a.  After taking the chip out of reset, by using pretend,
17148  *          it will write "0" to the following registers of
17149  *          the other vnics.
17150  *          REG_WR(pdev, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
17151  *          REG_WR(pdev, CFC_REG_WEAK_ENABLE_PF,0);
17152  *          REG_WR(pdev, CFC_REG_STRONG_ENABLE_PF,0);
17153  *          And for itself it will write '1' to
17154  *          PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER to enable
17155  *          dmae-operations (writing to pram for example.)
17156  *          note: can be done for only function 6,7 but cleaner this
17157  *            way.
17158  *      b.  Write zero+valid to the entire ILT.
17159  *      c.  Init the first_timers_ilt_entry, last_timers_ilt_entry of
17160  *          VNIC3 (of that port). The range allocated will be the
17161  *          entire ILT. This is needed to prevent  ILT range error.
17162  *  2.  Any PF driver load flow:
17163  *      a.  ILT update with the physical addresses of the allocated
17164  *          logical pages.
17165  *      b.  Wait 20msec. - note that this timeout is needed to make
17166  *          sure there are no requests in one of the PXP internal
17167  *          queues with "old" ILT addresses.
17168  *      c.  PF enable in the PGLC.
17169  *      d.  Clear the was_error of the PF in the PGLC. (could have
17170  *          occurred while driver was down)
17171  *      e.  PF enable in the CFC (WEAK + STRONG)
17172  *      f.  Timers scan enable
17173  *  3.  PF driver unload flow:
17174  *      a.  Clear the Timers scan_en.
17175  *      b.  Polling for scan_on=0 for that PF.
17176  *      c.  Clear the PF enable bit in the PXP.
17177  *      d.  Clear the PF enable in the CFC (WEAK + STRONG)
17178  *      e.  Write zero+valid to all ILT entries (The valid bit must
17179  *          stay set)
17180  *      f.  If this is VNIC 3 of a port then also init
17181  *          first_timers_ilt_entry to zero and last_timers_ilt_entry
17182  *          to the last enrty in the ILT.
17183  *
17184  *      Notes:
17185  *      Currently the PF error in the PGLC is non recoverable.
17186  *      In the future the there will be a recovery routine for this error.
17187  *      Currently attention is masked.
17188  *      Having an MCP lock on the load/unload process does not guarantee that
17189  *      there is no Timer disable during Func6/7 enable. This is because the
17190  *      Timers scan is currently being cleared by the MCP on FLR.
17191  *      Step 2.d can be done only for PF6/7 and the driver can also check if
17192  *      there is error before clearing it. But the flow above is simpler and
17193  *      more general.
17194  *      All ILT entries are written by zero+valid and not just PF6/7
17195  *      ILT entries since in the future the ILT entries allocation for
17196  *      PF-s might be dynamic.
17197  */
17198         struct ilt_client_info ilt_cli;
17199         struct ecore_ilt ilt;
17200 
17201         memset(&ilt_cli, 0, sizeof(struct ilt_client_info));
17202         memset(&ilt, 0, sizeof(struct ecore_ilt));
17203 
17204         /* initialize dummy TM client */
17205         ilt_cli.start      = 0;
17206         ilt_cli.end        = ILT_NUM_PAGE_ENTRIES - 1;
17207         ilt_cli.client_num = ILT_CLIENT_TM;
17208 
17209         /*
17210          * Step 1: set zeroes to all ilt page entries with valid bit on
17211          * Step 2: set the timers first/last ilt entry to point
17212          * to the entire range to prevent ILT range error for 3rd/4th
17213          * vnic (this code assumes existence of the vnic)
17214          *
17215          * both steps performed by call to ecore_ilt_client_init_op()
17216          * with dummy TM client
17217          *
17218          * we must use pretend since PXP2_REG_RQ_##blk##_FIRST_ILT
17219          * and his brother are split registers
17220          */
17221 
17222         bxe_pretend_func(sc, (SC_PATH(sc) + 6));
17223         ecore_ilt_client_init_op_ilt(sc, &ilt, &ilt_cli, INITOP_CLEAR);
17224         bxe_pretend_func(sc, SC_ABS_FUNC(sc));
17225 
17226         REG_WR(sc, PXP2_REG_RQ_DRAM_ALIGN, BXE_PXP_DRAM_ALIGN);
17227         REG_WR(sc, PXP2_REG_RQ_DRAM_ALIGN_RD, BXE_PXP_DRAM_ALIGN);
17228         REG_WR(sc, PXP2_REG_RQ_DRAM_ALIGN_SEL, 1);
17229     }
17230 
17231     REG_WR(sc, PXP2_REG_RQ_DISABLE_INPUTS, 0);
17232     REG_WR(sc, PXP2_REG_RD_DISABLE_INPUTS, 0);
17233 
17234     if (!CHIP_IS_E1x(sc)) {
17235         int factor = CHIP_REV_IS_EMUL(sc) ? 1000 :
17236                      (CHIP_REV_IS_FPGA(sc) ? 400 : 0);
17237 
17238         ecore_init_block(sc, BLOCK_PGLUE_B, PHASE_COMMON);
17239         ecore_init_block(sc, BLOCK_ATC, PHASE_COMMON);
17240 
17241         /* let the HW do it's magic... */
17242         do {
17243             DELAY(200000);
17244             val = REG_RD(sc, ATC_REG_ATC_INIT_DONE);
17245         } while (factor-- && (val != 1));
17246 
17247         if (val != 1) {
17248             BLOGE(sc, "ATC_INIT failed val = 0x%x\n", val);
17249             return (-1);
17250         }
17251     }
17252 
17253     BLOGD(sc, DBG_LOAD, "after pglue and atc init\n");
17254 
17255     ecore_init_block(sc, BLOCK_DMAE, PHASE_COMMON);
17256 
17257     bxe_iov_init_dmae(sc);
17258 
17259     /* clean the DMAE memory */
17260     sc->dmae_ready = 1;
17261     ecore_init_fill(sc, TSEM_REG_PRAM, 0, 8, 1);
17262 
17263     ecore_init_block(sc, BLOCK_TCM, PHASE_COMMON);
17264 
17265     ecore_init_block(sc, BLOCK_UCM, PHASE_COMMON);
17266 
17267     ecore_init_block(sc, BLOCK_CCM, PHASE_COMMON);
17268 
17269     ecore_init_block(sc, BLOCK_XCM, PHASE_COMMON);
17270 
17271     bxe_read_dmae(sc, XSEM_REG_PASSIVE_BUFFER, 3);
17272     bxe_read_dmae(sc, CSEM_REG_PASSIVE_BUFFER, 3);
17273     bxe_read_dmae(sc, TSEM_REG_PASSIVE_BUFFER, 3);
17274     bxe_read_dmae(sc, USEM_REG_PASSIVE_BUFFER, 3);
17275 
17276     ecore_init_block(sc, BLOCK_QM, PHASE_COMMON);
17277 
17278     /* QM queues pointers table */
17279     ecore_qm_init_ptr_table(sc, sc->qm_cid_count, INITOP_SET);
17280 
17281     /* soft reset pulse */
17282     REG_WR(sc, QM_REG_SOFT_RESET, 1);
17283     REG_WR(sc, QM_REG_SOFT_RESET, 0);
17284 
17285     if (CNIC_SUPPORT(sc))
17286         ecore_init_block(sc, BLOCK_TM, PHASE_COMMON);
17287 
17288     ecore_init_block(sc, BLOCK_DORQ, PHASE_COMMON);
17289     REG_WR(sc, DORQ_REG_DPM_CID_OFST, BXE_DB_SHIFT);
17290     if (!CHIP_REV_IS_SLOW(sc)) {
17291         /* enable hw interrupt from doorbell Q */
17292         REG_WR(sc, DORQ_REG_DORQ_INT_MASK, 0);
17293     }
17294 
17295     ecore_init_block(sc, BLOCK_BRB1, PHASE_COMMON);
17296 
17297     ecore_init_block(sc, BLOCK_PRS, PHASE_COMMON);
17298     REG_WR(sc, PRS_REG_A_PRSU_20, 0xf);
17299 
17300     if (!CHIP_IS_E1(sc)) {
17301         REG_WR(sc, PRS_REG_E1HOV_MODE, sc->devinfo.mf_info.path_has_ovlan);
17302     }
17303 
17304     if (!CHIP_IS_E1x(sc) && !CHIP_IS_E3B0(sc)) {
17305         if (IS_MF_AFEX(sc)) {
17306             /*
17307              * configure that AFEX and VLAN headers must be
17308              * received in AFEX mode
17309              */
17310             REG_WR(sc, PRS_REG_HDRS_AFTER_BASIC, 0xE);
17311             REG_WR(sc, PRS_REG_MUST_HAVE_HDRS, 0xA);
17312             REG_WR(sc, PRS_REG_HDRS_AFTER_TAG_0, 0x6);
17313             REG_WR(sc, PRS_REG_TAG_ETHERTYPE_0, 0x8926);
17314             REG_WR(sc, PRS_REG_TAG_LEN_0, 0x4);
17315         } else {
17316             /*
17317              * Bit-map indicating which L2 hdrs may appear
17318              * after the basic Ethernet header
17319              */
17320             REG_WR(sc, PRS_REG_HDRS_AFTER_BASIC,
17321                    sc->devinfo.mf_info.path_has_ovlan ? 7 : 6);
17322         }
17323     }
17324 
17325     ecore_init_block(sc, BLOCK_TSDM, PHASE_COMMON);
17326     ecore_init_block(sc, BLOCK_CSDM, PHASE_COMMON);
17327     ecore_init_block(sc, BLOCK_USDM, PHASE_COMMON);
17328     ecore_init_block(sc, BLOCK_XSDM, PHASE_COMMON);
17329 
17330     if (!CHIP_IS_E1x(sc)) {
17331         /* reset VFC memories */
17332         REG_WR(sc, TSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST,
17333                VFC_MEMORIES_RST_REG_CAM_RST |
17334                VFC_MEMORIES_RST_REG_RAM_RST);
17335         REG_WR(sc, XSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST,
17336                VFC_MEMORIES_RST_REG_CAM_RST |
17337                VFC_MEMORIES_RST_REG_RAM_RST);
17338 
17339         DELAY(20000);
17340     }
17341 
17342     ecore_init_block(sc, BLOCK_TSEM, PHASE_COMMON);
17343     ecore_init_block(sc, BLOCK_USEM, PHASE_COMMON);
17344     ecore_init_block(sc, BLOCK_CSEM, PHASE_COMMON);
17345     ecore_init_block(sc, BLOCK_XSEM, PHASE_COMMON);
17346 
17347     /* sync semi rtc */
17348     REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
17349            0x80000000);
17350     REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET,
17351            0x80000000);
17352 
17353     ecore_init_block(sc, BLOCK_UPB, PHASE_COMMON);
17354     ecore_init_block(sc, BLOCK_XPB, PHASE_COMMON);
17355     ecore_init_block(sc, BLOCK_PBF, PHASE_COMMON);
17356 
17357     if (!CHIP_IS_E1x(sc)) {
17358         if (IS_MF_AFEX(sc)) {
17359             /*
17360              * configure that AFEX and VLAN headers must be
17361              * sent in AFEX mode
17362              */
17363             REG_WR(sc, PBF_REG_HDRS_AFTER_BASIC, 0xE);
17364             REG_WR(sc, PBF_REG_MUST_HAVE_HDRS, 0xA);
17365             REG_WR(sc, PBF_REG_HDRS_AFTER_TAG_0, 0x6);
17366             REG_WR(sc, PBF_REG_TAG_ETHERTYPE_0, 0x8926);
17367             REG_WR(sc, PBF_REG_TAG_LEN_0, 0x4);
17368         } else {
17369             REG_WR(sc, PBF_REG_HDRS_AFTER_BASIC,
17370                    sc->devinfo.mf_info.path_has_ovlan ? 7 : 6);
17371         }
17372     }
17373 
17374     REG_WR(sc, SRC_REG_SOFT_RST, 1);
17375 
17376     ecore_init_block(sc, BLOCK_SRC, PHASE_COMMON);
17377 
17378     if (CNIC_SUPPORT(sc)) {
17379         REG_WR(sc, SRC_REG_KEYSEARCH_0, 0x63285672);
17380         REG_WR(sc, SRC_REG_KEYSEARCH_1, 0x24b8f2cc);
17381         REG_WR(sc, SRC_REG_KEYSEARCH_2, 0x223aef9b);
17382         REG_WR(sc, SRC_REG_KEYSEARCH_3, 0x26001e3a);
17383         REG_WR(sc, SRC_REG_KEYSEARCH_4, 0x7ae91116);
17384         REG_WR(sc, SRC_REG_KEYSEARCH_5, 0x5ce5230b);
17385         REG_WR(sc, SRC_REG_KEYSEARCH_6, 0x298d8adf);
17386         REG_WR(sc, SRC_REG_KEYSEARCH_7, 0x6eb0ff09);
17387         REG_WR(sc, SRC_REG_KEYSEARCH_8, 0x1830f82f);
17388         REG_WR(sc, SRC_REG_KEYSEARCH_9, 0x01e46be7);
17389     }
17390     REG_WR(sc, SRC_REG_SOFT_RST, 0);
17391 
17392     if (sizeof(union cdu_context) != 1024) {
17393         /* we currently assume that a context is 1024 bytes */
17394         BLOGE(sc, "please adjust the size of cdu_context(%ld)\n",
17395               (long)sizeof(union cdu_context));
17396     }
17397 
17398     ecore_init_block(sc, BLOCK_CDU, PHASE_COMMON);
17399     val = (4 << 24) + (0 << 12) + 1024;
17400     REG_WR(sc, CDU_REG_CDU_GLOBAL_PARAMS, val);
17401 
17402     ecore_init_block(sc, BLOCK_CFC, PHASE_COMMON);
17403 
17404     REG_WR(sc, CFC_REG_INIT_REG, 0x7FF);
17405     /* enable context validation interrupt from CFC */
17406     REG_WR(sc, CFC_REG_CFC_INT_MASK, 0);
17407 
17408     /* set the thresholds to prevent CFC/CDU race */
17409     REG_WR(sc, CFC_REG_DEBUG0, 0x20020000);
17410     ecore_init_block(sc, BLOCK_HC, PHASE_COMMON);
17411 
17412     if (!CHIP_IS_E1x(sc) && BXE_NOMCP(sc)) {
17413         REG_WR(sc, IGU_REG_RESET_MEMORIES, 0x36);
17414     }
17415 
17416     ecore_init_block(sc, BLOCK_IGU, PHASE_COMMON);
17417     ecore_init_block(sc, BLOCK_MISC_AEU, PHASE_COMMON);
17418 
17419     /* Reset PCIE errors for debug */
17420     REG_WR(sc, 0x2814, 0xffffffff);
17421     REG_WR(sc, 0x3820, 0xffffffff);
17422 
17423     if (!CHIP_IS_E1x(sc)) {
17424         REG_WR(sc, PCICFG_OFFSET + PXPCS_TL_CONTROL_5,
17425                (PXPCS_TL_CONTROL_5_ERR_UNSPPORT1 |
17426                 PXPCS_TL_CONTROL_5_ERR_UNSPPORT));
17427         REG_WR(sc, PCICFG_OFFSET + PXPCS_TL_FUNC345_STAT,
17428                (PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT4 |
17429                 PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT3 |
17430                 PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT2));
17431         REG_WR(sc, PCICFG_OFFSET + PXPCS_TL_FUNC678_STAT,
17432                (PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT7 |
17433                 PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT6 |
17434                 PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT5));
17435     }
17436 
17437     ecore_init_block(sc, BLOCK_NIG, PHASE_COMMON);
17438 
17439     if (!CHIP_IS_E1(sc)) {
17440         /* in E3 this done in per-port section */
17441         if (!CHIP_IS_E3(sc))
17442             REG_WR(sc, NIG_REG_LLH_MF_MODE, IS_MF(sc));
17443     }
17444 
17445     if (CHIP_IS_E1H(sc)) {
17446         /* not applicable for E2 (and above ...) */
17447         REG_WR(sc, NIG_REG_LLH_E1HOV_MODE, IS_MF_SD(sc));
17448     }
17449 
17450     if (CHIP_REV_IS_SLOW(sc)) {
17451         DELAY(200000);
17452     }
17453 
17454     /* finish CFC init */
17455     val = reg_poll(sc, CFC_REG_LL_INIT_DONE, 1, 100, 10);
17456     if (val != 1) {
17457         BLOGE(sc, "CFC LL_INIT failed val=0x%x\n", val);
17458         return (-1);
17459     }
17460     val = reg_poll(sc, CFC_REG_AC_INIT_DONE, 1, 100, 10);
17461     if (val != 1) {
17462         BLOGE(sc, "CFC AC_INIT failed val=0x%x\n", val);
17463         return (-1);
17464     }
17465     val = reg_poll(sc, CFC_REG_CAM_INIT_DONE, 1, 100, 10);
17466     if (val != 1) {
17467         BLOGE(sc, "CFC CAM_INIT failed val=0x%x\n", val);
17468         return (-1);
17469     }
17470     REG_WR(sc, CFC_REG_DEBUG0, 0);
17471 
17472     if (CHIP_IS_E1(sc)) {
17473         /* read NIG statistic to see if this is our first up since powerup */
17474         bxe_read_dmae(sc, NIG_REG_STAT2_BRB_OCTET, 2);
17475         val = *BXE_SP(sc, wb_data[0]);
17476 
17477         /* do internal memory self test */
17478         if ((val == 0) && bxe_int_mem_test(sc)) {
17479             BLOGE(sc, "internal mem self test failed val=0x%x\n", val);
17480             return (-1);
17481         }
17482     }
17483 
17484     bxe_setup_fan_failure_detection(sc);
17485 
17486     /* clear PXP2 attentions */
17487     REG_RD(sc, PXP2_REG_PXP2_INT_STS_CLR_0);
17488 
17489     bxe_enable_blocks_attention(sc);
17490 
17491     if (!CHIP_REV_IS_SLOW(sc)) {
17492         ecore_enable_blocks_parity(sc);
17493     }
17494 
17495     if (!BXE_NOMCP(sc)) {
17496         if (CHIP_IS_E1x(sc)) {
17497             bxe_common_init_phy(sc);
17498         }
17499     }
17500 
17501     return (0);
17502 }
17503 
17504 /**
17505  * bxe_init_hw_common_chip - init HW at the COMMON_CHIP phase.
17506  *
17507  * @sc:     driver handle
17508  */
17509 static int
17510 bxe_init_hw_common_chip(struct bxe_softc *sc)
17511 {
17512     int rc = bxe_init_hw_common(sc);
17513 
17514     if (rc) {
17515         BLOGE(sc, "bxe_init_hw_common failed rc=%d\n", rc);
17516         return (rc);
17517     }
17518 
17519     /* In E2 2-PORT mode, same ext phy is used for the two paths */
17520     if (!BXE_NOMCP(sc)) {
17521         bxe_common_init_phy(sc);
17522     }
17523 
17524     return (0);
17525 }
17526 
17527 static int
17528 bxe_init_hw_port(struct bxe_softc *sc)
17529 {
17530     int port = SC_PORT(sc);
17531     int init_phase = port ? PHASE_PORT1 : PHASE_PORT0;
17532     uint32_t low, high;
17533     uint32_t val;
17534 
17535     BLOGD(sc, DBG_LOAD, "starting port init for port %d\n", port);
17536 
17537     REG_WR(sc, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0);
17538 
17539     ecore_init_block(sc, BLOCK_MISC, init_phase);
17540     ecore_init_block(sc, BLOCK_PXP, init_phase);
17541     ecore_init_block(sc, BLOCK_PXP2, init_phase);
17542 
17543     /*
17544      * Timers bug workaround: disables the pf_master bit in pglue at
17545      * common phase, we need to enable it here before any dmae access are
17546      * attempted. Therefore we manually added the enable-master to the
17547      * port phase (it also happens in the function phase)
17548      */
17549     if (!CHIP_IS_E1x(sc)) {
17550         REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
17551     }
17552 
17553     ecore_init_block(sc, BLOCK_ATC, init_phase);
17554     ecore_init_block(sc, BLOCK_DMAE, init_phase);
17555     ecore_init_block(sc, BLOCK_PGLUE_B, init_phase);
17556     ecore_init_block(sc, BLOCK_QM, init_phase);
17557 
17558     ecore_init_block(sc, BLOCK_TCM, init_phase);
17559     ecore_init_block(sc, BLOCK_UCM, init_phase);
17560     ecore_init_block(sc, BLOCK_CCM, init_phase);
17561     ecore_init_block(sc, BLOCK_XCM, init_phase);
17562 
17563     /* QM cid (connection) count */
17564     ecore_qm_init_cid_count(sc, sc->qm_cid_count, INITOP_SET);
17565 
17566     if (CNIC_SUPPORT(sc)) {
17567         ecore_init_block(sc, BLOCK_TM, init_phase);
17568         REG_WR(sc, TM_REG_LIN0_SCAN_TIME + port*4, 20);
17569         REG_WR(sc, TM_REG_LIN0_MAX_ACTIVE_CID + port*4, 31);
17570     }
17571 
17572     ecore_init_block(sc, BLOCK_DORQ, init_phase);
17573 
17574     ecore_init_block(sc, BLOCK_BRB1, init_phase);
17575 
17576     if (CHIP_IS_E1(sc) || CHIP_IS_E1H(sc)) {
17577         if (IS_MF(sc)) {
17578             low = (BXE_ONE_PORT(sc) ? 160 : 246);
17579         } else if (sc->mtu > 4096) {
17580             if (BXE_ONE_PORT(sc)) {
17581                 low = 160;
17582             } else {
17583                 val = sc->mtu;
17584                 /* (24*1024 + val*4)/256 */
17585                 low = (96 + (val / 64) + ((val % 64) ? 1 : 0));
17586             }
17587         } else {
17588             low = (BXE_ONE_PORT(sc) ? 80 : 160);
17589         }
17590         high = (low + 56); /* 14*1024/256 */
17591         REG_WR(sc, BRB1_REG_PAUSE_LOW_THRESHOLD_0 + port*4, low);
17592         REG_WR(sc, BRB1_REG_PAUSE_HIGH_THRESHOLD_0 + port*4, high);
17593     }
17594 
17595     if (CHIP_IS_MODE_4_PORT(sc)) {
17596         REG_WR(sc, SC_PORT(sc) ?
17597                BRB1_REG_MAC_GUARANTIED_1 :
17598                BRB1_REG_MAC_GUARANTIED_0, 40);
17599     }
17600 
17601     ecore_init_block(sc, BLOCK_PRS, init_phase);
17602     if (CHIP_IS_E3B0(sc)) {
17603         if (IS_MF_AFEX(sc)) {
17604             /* configure headers for AFEX mode */
17605             REG_WR(sc, SC_PORT(sc) ?
17606                    PRS_REG_HDRS_AFTER_BASIC_PORT_1 :
17607                    PRS_REG_HDRS_AFTER_BASIC_PORT_0, 0xE);
17608             REG_WR(sc, SC_PORT(sc) ?
17609                    PRS_REG_HDRS_AFTER_TAG_0_PORT_1 :
17610                    PRS_REG_HDRS_AFTER_TAG_0_PORT_0, 0x6);
17611             REG_WR(sc, SC_PORT(sc) ?
17612                    PRS_REG_MUST_HAVE_HDRS_PORT_1 :
17613                    PRS_REG_MUST_HAVE_HDRS_PORT_0, 0xA);
17614         } else {
17615             /* Ovlan exists only if we are in multi-function +
17616              * switch-dependent mode, in switch-independent there
17617              * is no ovlan headers
17618              */
17619             REG_WR(sc, SC_PORT(sc) ?
17620                    PRS_REG_HDRS_AFTER_BASIC_PORT_1 :
17621                    PRS_REG_HDRS_AFTER_BASIC_PORT_0,
17622                    (sc->devinfo.mf_info.path_has_ovlan ? 7 : 6));
17623         }
17624     }
17625 
17626     ecore_init_block(sc, BLOCK_TSDM, init_phase);
17627     ecore_init_block(sc, BLOCK_CSDM, init_phase);
17628     ecore_init_block(sc, BLOCK_USDM, init_phase);
17629     ecore_init_block(sc, BLOCK_XSDM, init_phase);
17630 
17631     ecore_init_block(sc, BLOCK_TSEM, init_phase);
17632     ecore_init_block(sc, BLOCK_USEM, init_phase);
17633     ecore_init_block(sc, BLOCK_CSEM, init_phase);
17634     ecore_init_block(sc, BLOCK_XSEM, init_phase);
17635 
17636     ecore_init_block(sc, BLOCK_UPB, init_phase);
17637     ecore_init_block(sc, BLOCK_XPB, init_phase);
17638 
17639     ecore_init_block(sc, BLOCK_PBF, init_phase);
17640 
17641     if (CHIP_IS_E1x(sc)) {
17642         /* configure PBF to work without PAUSE mtu 9000 */
17643         REG_WR(sc, PBF_REG_P0_PAUSE_ENABLE + port*4, 0);
17644 
17645         /* update threshold */
17646         REG_WR(sc, PBF_REG_P0_ARB_THRSH + port*4, (9040/16));
17647         /* update init credit */
17648         REG_WR(sc, PBF_REG_P0_INIT_CRD + port*4, (9040/16) + 553 - 22);
17649 
17650         /* probe changes */
17651         REG_WR(sc, PBF_REG_INIT_P0 + port*4, 1);
17652         DELAY(50);
17653         REG_WR(sc, PBF_REG_INIT_P0 + port*4, 0);
17654     }
17655 
17656     if (CNIC_SUPPORT(sc)) {
17657         ecore_init_block(sc, BLOCK_SRC, init_phase);
17658     }
17659 
17660     ecore_init_block(sc, BLOCK_CDU, init_phase);
17661     ecore_init_block(sc, BLOCK_CFC, init_phase);
17662 
17663     if (CHIP_IS_E1(sc)) {
17664         REG_WR(sc, HC_REG_LEADING_EDGE_0 + port*8, 0);
17665         REG_WR(sc, HC_REG_TRAILING_EDGE_0 + port*8, 0);
17666     }
17667     ecore_init_block(sc, BLOCK_HC, init_phase);
17668 
17669     ecore_init_block(sc, BLOCK_IGU, init_phase);
17670 
17671     ecore_init_block(sc, BLOCK_MISC_AEU, init_phase);
17672     /* init aeu_mask_attn_func_0/1:
17673      *  - SF mode: bits 3-7 are masked. only bits 0-2 are in use
17674      *  - MF mode: bit 3 is masked. bits 0-2 are in use as in SF
17675      *             bits 4-7 are used for "per vn group attention" */
17676     val = IS_MF(sc) ? 0xF7 : 0x7;
17677     /* Enable DCBX attention for all but E1 */
17678     val |= CHIP_IS_E1(sc) ? 0 : 0x10;
17679     REG_WR(sc, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, val);
17680 
17681     ecore_init_block(sc, BLOCK_NIG, init_phase);
17682 
17683     if (!CHIP_IS_E1x(sc)) {
17684         /* Bit-map indicating which L2 hdrs may appear after the
17685          * basic Ethernet header
17686          */
17687         if (IS_MF_AFEX(sc)) {
17688             REG_WR(sc, SC_PORT(sc) ?
17689                    NIG_REG_P1_HDRS_AFTER_BASIC :
17690                    NIG_REG_P0_HDRS_AFTER_BASIC, 0xE);
17691         } else {
17692             REG_WR(sc, SC_PORT(sc) ?
17693                    NIG_REG_P1_HDRS_AFTER_BASIC :
17694                    NIG_REG_P0_HDRS_AFTER_BASIC,
17695                    IS_MF_SD(sc) ? 7 : 6);
17696         }
17697 
17698         if (CHIP_IS_E3(sc)) {
17699             REG_WR(sc, SC_PORT(sc) ?
17700                    NIG_REG_LLH1_MF_MODE :
17701                    NIG_REG_LLH_MF_MODE, IS_MF(sc));
17702         }
17703     }
17704     if (!CHIP_IS_E3(sc)) {
17705         REG_WR(sc, NIG_REG_XGXS_SERDES0_MODE_SEL + port*4, 1);
17706     }
17707 
17708     if (!CHIP_IS_E1(sc)) {
17709         /* 0x2 disable mf_ov, 0x1 enable */
17710         REG_WR(sc, NIG_REG_LLH0_BRB1_DRV_MASK_MF + port*4,
17711                (IS_MF_SD(sc) ? 0x1 : 0x2));
17712 
17713         if (!CHIP_IS_E1x(sc)) {
17714             val = 0;
17715             switch (sc->devinfo.mf_info.mf_mode) {
17716             case MULTI_FUNCTION_SD:
17717                 val = 1;
17718                 break;
17719             case MULTI_FUNCTION_SI:
17720             case MULTI_FUNCTION_AFEX:
17721                 val = 2;
17722                 break;
17723             }
17724 
17725             REG_WR(sc, (SC_PORT(sc) ? NIG_REG_LLH1_CLS_TYPE :
17726                         NIG_REG_LLH0_CLS_TYPE), val);
17727         }
17728         REG_WR(sc, NIG_REG_LLFC_ENABLE_0 + port*4, 0);
17729         REG_WR(sc, NIG_REG_LLFC_OUT_EN_0 + port*4, 0);
17730         REG_WR(sc, NIG_REG_PAUSE_ENABLE_0 + port*4, 1);
17731     }
17732 
17733     /* If SPIO5 is set to generate interrupts, enable it for this port */
17734     val = REG_RD(sc, MISC_REG_SPIO_EVENT_EN);
17735     if (val & MISC_SPIO_SPIO5) {
17736         uint32_t reg_addr = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
17737                                     MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
17738         val = REG_RD(sc, reg_addr);
17739         val |= AEU_INPUTS_ATTN_BITS_SPIO5;
17740         REG_WR(sc, reg_addr, val);
17741     }
17742 
17743     return (0);
17744 }
17745 
17746 static uint32_t
17747 bxe_flr_clnup_reg_poll(struct bxe_softc *sc,
17748                        uint32_t         reg,
17749                        uint32_t         expected,
17750                        uint32_t         poll_count)
17751 {
17752     uint32_t cur_cnt = poll_count;
17753     uint32_t val;
17754 
17755     while ((val = REG_RD(sc, reg)) != expected && cur_cnt--) {
17756         DELAY(FLR_WAIT_INTERVAL);
17757     }
17758 
17759     return (val);
17760 }
17761 
17762 static int
17763 bxe_flr_clnup_poll_hw_counter(struct bxe_softc *sc,
17764                               uint32_t         reg,
17765                               char             *msg,
17766                               uint32_t         poll_cnt)
17767 {
17768     uint32_t val = bxe_flr_clnup_reg_poll(sc, reg, 0, poll_cnt);
17769 
17770     if (val != 0) {
17771         BLOGE(sc, "%s usage count=%d\n", msg, val);
17772         return (1);
17773     }
17774 
17775     return (0);
17776 }
17777 
17778 /* Common routines with VF FLR cleanup */
17779 static uint32_t
17780 bxe_flr_clnup_poll_count(struct bxe_softc *sc)
17781 {
17782     /* adjust polling timeout */
17783     if (CHIP_REV_IS_EMUL(sc)) {
17784         return (FLR_POLL_CNT * 2000);
17785     }
17786 
17787     if (CHIP_REV_IS_FPGA(sc)) {
17788         return (FLR_POLL_CNT * 120);
17789     }
17790 
17791     return (FLR_POLL_CNT);
17792 }
17793 
17794 static int
17795 bxe_poll_hw_usage_counters(struct bxe_softc *sc,
17796                            uint32_t         poll_cnt)
17797 {
17798     /* wait for CFC PF usage-counter to zero (includes all the VFs) */
17799     if (bxe_flr_clnup_poll_hw_counter(sc,
17800                                       CFC_REG_NUM_LCIDS_INSIDE_PF,
17801                                       "CFC PF usage counter timed out",
17802                                       poll_cnt)) {
17803         return (1);
17804     }
17805 
17806     /* Wait for DQ PF usage-counter to zero (until DQ cleanup) */
17807     if (bxe_flr_clnup_poll_hw_counter(sc,
17808                                       DORQ_REG_PF_USAGE_CNT,
17809                                       "DQ PF usage counter timed out",
17810                                       poll_cnt)) {
17811         return (1);
17812     }
17813 
17814     /* Wait for QM PF usage-counter to zero (until DQ cleanup) */
17815     if (bxe_flr_clnup_poll_hw_counter(sc,
17816                                       QM_REG_PF_USG_CNT_0 + 4*SC_FUNC(sc),
17817                                       "QM PF usage counter timed out",
17818                                       poll_cnt)) {
17819         return (1);
17820     }
17821 
17822     /* Wait for Timer PF usage-counters to zero (until DQ cleanup) */
17823     if (bxe_flr_clnup_poll_hw_counter(sc,
17824                                       TM_REG_LIN0_VNIC_UC + 4*SC_PORT(sc),
17825                                       "Timers VNIC usage counter timed out",
17826                                       poll_cnt)) {
17827         return (1);
17828     }
17829 
17830     if (bxe_flr_clnup_poll_hw_counter(sc,
17831                                       TM_REG_LIN0_NUM_SCANS + 4*SC_PORT(sc),
17832                                       "Timers NUM_SCANS usage counter timed out",
17833                                       poll_cnt)) {
17834         return (1);
17835     }
17836 
17837     /* Wait DMAE PF usage counter to zero */
17838     if (bxe_flr_clnup_poll_hw_counter(sc,
17839                                       dmae_reg_go_c[INIT_DMAE_C(sc)],
17840                                       "DMAE dommand register timed out",
17841                                       poll_cnt)) {
17842         return (1);
17843     }
17844 
17845     return (0);
17846 }
17847 
17848 #define OP_GEN_PARAM(param)                                            \
17849     (((param) << SDM_OP_GEN_COMP_PARAM_SHIFT) & SDM_OP_GEN_COMP_PARAM)
17850 #define OP_GEN_TYPE(type)                                           \
17851     (((type) << SDM_OP_GEN_COMP_TYPE_SHIFT) & SDM_OP_GEN_COMP_TYPE)
17852 #define OP_GEN_AGG_VECT(index)                                             \
17853     (((index) << SDM_OP_GEN_AGG_VECT_IDX_SHIFT) & SDM_OP_GEN_AGG_VECT_IDX)
17854 
17855 static int
17856 bxe_send_final_clnup(struct bxe_softc *sc,
17857                      uint8_t          clnup_func,
17858                      uint32_t         poll_cnt)
17859 {
17860     uint32_t op_gen_command = 0;
17861     uint32_t comp_addr = (BAR_CSTRORM_INTMEM +
17862                           CSTORM_FINAL_CLEANUP_COMPLETE_OFFSET(clnup_func));
17863     int ret = 0;
17864 
17865     if (REG_RD(sc, comp_addr)) {
17866         BLOGE(sc, "Cleanup complete was not 0 before sending\n");
17867         return (1);
17868     }
17869 
17870     op_gen_command |= OP_GEN_PARAM(XSTORM_AGG_INT_FINAL_CLEANUP_INDEX);
17871     op_gen_command |= OP_GEN_TYPE(XSTORM_AGG_INT_FINAL_CLEANUP_COMP_TYPE);
17872     op_gen_command |= OP_GEN_AGG_VECT(clnup_func);
17873     op_gen_command |= 1 << SDM_OP_GEN_AGG_VECT_IDX_VALID_SHIFT;
17874 
17875     BLOGD(sc, DBG_LOAD, "sending FW Final cleanup\n");
17876     REG_WR(sc, XSDM_REG_OPERATION_GEN, op_gen_command);
17877 
17878     if (bxe_flr_clnup_reg_poll(sc, comp_addr, 1, poll_cnt) != 1) {
17879         BLOGE(sc, "FW final cleanup did not succeed\n");
17880         BLOGD(sc, DBG_LOAD, "At timeout completion address contained %x\n",
17881               (REG_RD(sc, comp_addr)));
17882         bxe_panic(sc, ("FLR cleanup failed\n"));
17883         return (1);
17884     }
17885 
17886     /* Zero completion for nxt FLR */
17887     REG_WR(sc, comp_addr, 0);
17888 
17889     return (ret);
17890 }
17891 
17892 static void
17893 bxe_pbf_pN_buf_flushed(struct bxe_softc       *sc,
17894                        struct pbf_pN_buf_regs *regs,
17895                        uint32_t               poll_count)
17896 {
17897     uint32_t init_crd, crd, crd_start, crd_freed, crd_freed_start;
17898     uint32_t cur_cnt = poll_count;
17899 
17900     crd_freed = crd_freed_start = REG_RD(sc, regs->crd_freed);
17901     crd = crd_start = REG_RD(sc, regs->crd);
17902     init_crd = REG_RD(sc, regs->init_crd);
17903 
17904     BLOGD(sc, DBG_LOAD, "INIT CREDIT[%d] : %x\n", regs->pN, init_crd);
17905     BLOGD(sc, DBG_LOAD, "CREDIT[%d]      : s:%x\n", regs->pN, crd);
17906     BLOGD(sc, DBG_LOAD, "CREDIT_FREED[%d]: s:%x\n", regs->pN, crd_freed);
17907 
17908     while ((crd != init_crd) &&
17909            ((uint32_t)((int32_t)crd_freed - (int32_t)crd_freed_start) <
17910             (init_crd - crd_start))) {
17911         if (cur_cnt--) {
17912             DELAY(FLR_WAIT_INTERVAL);
17913             crd = REG_RD(sc, regs->crd);
17914             crd_freed = REG_RD(sc, regs->crd_freed);
17915         } else {
17916             BLOGD(sc, DBG_LOAD, "PBF tx buffer[%d] timed out\n", regs->pN);
17917             BLOGD(sc, DBG_LOAD, "CREDIT[%d]      : c:%x\n", regs->pN, crd);
17918             BLOGD(sc, DBG_LOAD, "CREDIT_FREED[%d]: c:%x\n", regs->pN, crd_freed);
17919             break;
17920         }
17921     }
17922 
17923     BLOGD(sc, DBG_LOAD, "Waited %d*%d usec for PBF tx buffer[%d]\n",
17924           poll_count-cur_cnt, FLR_WAIT_INTERVAL, regs->pN);
17925 }
17926 
17927 static void
17928 bxe_pbf_pN_cmd_flushed(struct bxe_softc       *sc,
17929                        struct pbf_pN_cmd_regs *regs,
17930                        uint32_t               poll_count)
17931 {
17932     uint32_t occup, to_free, freed, freed_start;
17933     uint32_t cur_cnt = poll_count;
17934 
17935     occup = to_free = REG_RD(sc, regs->lines_occup);
17936     freed = freed_start = REG_RD(sc, regs->lines_freed);
17937 
17938     BLOGD(sc, DBG_LOAD, "OCCUPANCY[%d]   : s:%x\n", regs->pN, occup);
17939     BLOGD(sc, DBG_LOAD, "LINES_FREED[%d] : s:%x\n", regs->pN, freed);
17940 
17941     while (occup &&
17942            ((uint32_t)((int32_t)freed - (int32_t)freed_start) < to_free)) {
17943         if (cur_cnt--) {
17944             DELAY(FLR_WAIT_INTERVAL);
17945             occup = REG_RD(sc, regs->lines_occup);
17946             freed = REG_RD(sc, regs->lines_freed);
17947         } else {
17948             BLOGD(sc, DBG_LOAD, "PBF cmd queue[%d] timed out\n", regs->pN);
17949             BLOGD(sc, DBG_LOAD, "OCCUPANCY[%d]   : s:%x\n", regs->pN, occup);
17950             BLOGD(sc, DBG_LOAD, "LINES_FREED[%d] : s:%x\n", regs->pN, freed);
17951             break;
17952         }
17953     }
17954 
17955     BLOGD(sc, DBG_LOAD, "Waited %d*%d usec for PBF cmd queue[%d]\n",
17956           poll_count - cur_cnt, FLR_WAIT_INTERVAL, regs->pN);
17957 }
17958 
17959 static void
17960 bxe_tx_hw_flushed(struct bxe_softc *sc, uint32_t poll_count)
17961 {
17962     struct pbf_pN_cmd_regs cmd_regs[] = {
17963         {0, (CHIP_IS_E3B0(sc)) ?
17964             PBF_REG_TQ_OCCUPANCY_Q0 :
17965             PBF_REG_P0_TQ_OCCUPANCY,
17966             (CHIP_IS_E3B0(sc)) ?
17967             PBF_REG_TQ_LINES_FREED_CNT_Q0 :
17968             PBF_REG_P0_TQ_LINES_FREED_CNT},
17969         {1, (CHIP_IS_E3B0(sc)) ?
17970             PBF_REG_TQ_OCCUPANCY_Q1 :
17971             PBF_REG_P1_TQ_OCCUPANCY,
17972             (CHIP_IS_E3B0(sc)) ?
17973             PBF_REG_TQ_LINES_FREED_CNT_Q1 :
17974             PBF_REG_P1_TQ_LINES_FREED_CNT},
17975         {4, (CHIP_IS_E3B0(sc)) ?
17976             PBF_REG_TQ_OCCUPANCY_LB_Q :
17977             PBF_REG_P4_TQ_OCCUPANCY,
17978             (CHIP_IS_E3B0(sc)) ?
17979             PBF_REG_TQ_LINES_FREED_CNT_LB_Q :
17980             PBF_REG_P4_TQ_LINES_FREED_CNT}
17981     };
17982 
17983     struct pbf_pN_buf_regs buf_regs[] = {
17984         {0, (CHIP_IS_E3B0(sc)) ?
17985             PBF_REG_INIT_CRD_Q0 :
17986             PBF_REG_P0_INIT_CRD ,
17987             (CHIP_IS_E3B0(sc)) ?
17988             PBF_REG_CREDIT_Q0 :
17989             PBF_REG_P0_CREDIT,
17990             (CHIP_IS_E3B0(sc)) ?
17991             PBF_REG_INTERNAL_CRD_FREED_CNT_Q0 :
17992             PBF_REG_P0_INTERNAL_CRD_FREED_CNT},
17993         {1, (CHIP_IS_E3B0(sc)) ?
17994             PBF_REG_INIT_CRD_Q1 :
17995             PBF_REG_P1_INIT_CRD,
17996             (CHIP_IS_E3B0(sc)) ?
17997             PBF_REG_CREDIT_Q1 :
17998             PBF_REG_P1_CREDIT,
17999             (CHIP_IS_E3B0(sc)) ?
18000             PBF_REG_INTERNAL_CRD_FREED_CNT_Q1 :
18001             PBF_REG_P1_INTERNAL_CRD_FREED_CNT},
18002         {4, (CHIP_IS_E3B0(sc)) ?
18003             PBF_REG_INIT_CRD_LB_Q :
18004             PBF_REG_P4_INIT_CRD,
18005             (CHIP_IS_E3B0(sc)) ?
18006             PBF_REG_CREDIT_LB_Q :
18007             PBF_REG_P4_CREDIT,
18008             (CHIP_IS_E3B0(sc)) ?
18009             PBF_REG_INTERNAL_CRD_FREED_CNT_LB_Q :
18010             PBF_REG_P4_INTERNAL_CRD_FREED_CNT},
18011     };
18012 
18013     int i;
18014 
18015     /* Verify the command queues are flushed P0, P1, P4 */
18016     for (i = 0; i < ARRAY_SIZE(cmd_regs); i++) {
18017         bxe_pbf_pN_cmd_flushed(sc, &cmd_regs[i], poll_count);
18018     }
18019 
18020     /* Verify the transmission buffers are flushed P0, P1, P4 */
18021     for (i = 0; i < ARRAY_SIZE(buf_regs); i++) {
18022         bxe_pbf_pN_buf_flushed(sc, &buf_regs[i], poll_count);
18023     }
18024 }
18025 
18026 static void
18027 bxe_hw_enable_status(struct bxe_softc *sc)
18028 {
18029     uint32_t val;
18030 
18031     val = REG_RD(sc, CFC_REG_WEAK_ENABLE_PF);
18032     BLOGD(sc, DBG_LOAD, "CFC_REG_WEAK_ENABLE_PF is 0x%x\n", val);
18033 
18034     val = REG_RD(sc, PBF_REG_DISABLE_PF);
18035     BLOGD(sc, DBG_LOAD, "PBF_REG_DISABLE_PF is 0x%x\n", val);
18036 
18037     val = REG_RD(sc, IGU_REG_PCI_PF_MSI_EN);
18038     BLOGD(sc, DBG_LOAD, "IGU_REG_PCI_PF_MSI_EN is 0x%x\n", val);
18039 
18040     val = REG_RD(sc, IGU_REG_PCI_PF_MSIX_EN);
18041     BLOGD(sc, DBG_LOAD, "IGU_REG_PCI_PF_MSIX_EN is 0x%x\n", val);
18042 
18043     val = REG_RD(sc, IGU_REG_PCI_PF_MSIX_FUNC_MASK);
18044     BLOGD(sc, DBG_LOAD, "IGU_REG_PCI_PF_MSIX_FUNC_MASK is 0x%x\n", val);
18045 
18046     val = REG_RD(sc, PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR);
18047     BLOGD(sc, DBG_LOAD, "PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR is 0x%x\n", val);
18048 
18049     val = REG_RD(sc, PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR);
18050     BLOGD(sc, DBG_LOAD, "PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR is 0x%x\n", val);
18051 
18052     val = REG_RD(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER);
18053     BLOGD(sc, DBG_LOAD, "PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER is 0x%x\n", val);
18054 }
18055 
18056 static int
18057 bxe_pf_flr_clnup(struct bxe_softc *sc)
18058 {
18059     uint32_t poll_cnt = bxe_flr_clnup_poll_count(sc);
18060 
18061     BLOGD(sc, DBG_LOAD, "Cleanup after FLR PF[%d]\n", SC_ABS_FUNC(sc));
18062 
18063     /* Re-enable PF target read access */
18064     REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
18065 
18066     /* Poll HW usage counters */
18067     BLOGD(sc, DBG_LOAD, "Polling usage counters\n");
18068     if (bxe_poll_hw_usage_counters(sc, poll_cnt)) {
18069         return (-1);
18070     }
18071 
18072     /* Zero the igu 'trailing edge' and 'leading edge' */
18073 
18074     /* Send the FW cleanup command */
18075     if (bxe_send_final_clnup(sc, (uint8_t)SC_FUNC(sc), poll_cnt)) {
18076         return (-1);
18077     }
18078 
18079     /* ATC cleanup */
18080 
18081     /* Verify TX hw is flushed */
18082     bxe_tx_hw_flushed(sc, poll_cnt);
18083 
18084     /* Wait 100ms (not adjusted according to platform) */
18085     DELAY(100000);
18086 
18087     /* Verify no pending pci transactions */
18088     if (bxe_is_pcie_pending(sc)) {
18089         BLOGE(sc, "PCIE Transactions still pending\n");
18090     }
18091 
18092     /* Debug */
18093     bxe_hw_enable_status(sc);
18094 
18095     /*
18096      * Master enable - Due to WB DMAE writes performed before this
18097      * register is re-initialized as part of the regular function init
18098      */
18099     REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
18100 
18101     return (0);
18102 }
18103 
18104 static int
18105 bxe_init_hw_func(struct bxe_softc *sc)
18106 {
18107     int port = SC_PORT(sc);
18108     int func = SC_FUNC(sc);
18109     int init_phase = PHASE_PF0 + func;
18110     struct ecore_ilt *ilt = sc->ilt;
18111     uint16_t cdu_ilt_start;
18112     uint32_t addr, val;
18113     uint32_t main_mem_base, main_mem_size, main_mem_prty_clr;
18114     int i, main_mem_width, rc;
18115 
18116     BLOGD(sc, DBG_LOAD, "starting func init for func %d\n", func);
18117 
18118     /* FLR cleanup */
18119     if (!CHIP_IS_E1x(sc)) {
18120         rc = bxe_pf_flr_clnup(sc);
18121         if (rc) {
18122             BLOGE(sc, "FLR cleanup failed!\n");
18123             // XXX bxe_fw_dump(sc);
18124             // XXX bxe_idle_chk(sc);
18125             return (rc);
18126         }
18127     }
18128 
18129     /* set MSI reconfigure capability */
18130     if (sc->devinfo.int_block == INT_BLOCK_HC) {
18131         addr = (port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0);
18132         val = REG_RD(sc, addr);
18133         val |= HC_CONFIG_0_REG_MSI_ATTN_EN_0;
18134         REG_WR(sc, addr, val);
18135     }
18136 
18137     ecore_init_block(sc, BLOCK_PXP, init_phase);
18138     ecore_init_block(sc, BLOCK_PXP2, init_phase);
18139 
18140     ilt = sc->ilt;
18141     cdu_ilt_start = ilt->clients[ILT_CLIENT_CDU].start;
18142 
18143     for (i = 0; i < L2_ILT_LINES(sc); i++) {
18144         ilt->lines[cdu_ilt_start + i].page = sc->context[i].vcxt;
18145         ilt->lines[cdu_ilt_start + i].page_mapping =
18146             sc->context[i].vcxt_dma.paddr;
18147         ilt->lines[cdu_ilt_start + i].size = sc->context[i].size;
18148     }
18149     ecore_ilt_init_op(sc, INITOP_SET);
18150 
18151     /* Set NIC mode */
18152     REG_WR(sc, PRS_REG_NIC_MODE, 1);
18153     BLOGD(sc, DBG_LOAD, "NIC MODE configured\n");
18154 
18155     if (!CHIP_IS_E1x(sc)) {
18156         uint32_t pf_conf = IGU_PF_CONF_FUNC_EN;
18157 
18158         /* Turn on a single ISR mode in IGU if driver is going to use
18159          * INT#x or MSI
18160          */
18161         if (sc->interrupt_mode != INTR_MODE_MSIX) {
18162             pf_conf |= IGU_PF_CONF_SINGLE_ISR_EN;
18163         }
18164 
18165         /*
18166          * Timers workaround bug: function init part.
18167          * Need to wait 20msec after initializing ILT,
18168          * needed to make sure there are no requests in
18169          * one of the PXP internal queues with "old" ILT addresses
18170          */
18171         DELAY(20000);
18172 
18173         /*
18174          * Master enable - Due to WB DMAE writes performed before this
18175          * register is re-initialized as part of the regular function
18176          * init
18177          */
18178         REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
18179         /* Enable the function in IGU */
18180         REG_WR(sc, IGU_REG_PF_CONFIGURATION, pf_conf);
18181     }
18182 
18183     sc->dmae_ready = 1;
18184 
18185     ecore_init_block(sc, BLOCK_PGLUE_B, init_phase);
18186 
18187     if (!CHIP_IS_E1x(sc))
18188         REG_WR(sc, PGLUE_B_REG_WAS_ERROR_PF_7_0_CLR, func);
18189 
18190     ecore_init_block(sc, BLOCK_ATC, init_phase);
18191     ecore_init_block(sc, BLOCK_DMAE, init_phase);
18192     ecore_init_block(sc, BLOCK_NIG, init_phase);
18193     ecore_init_block(sc, BLOCK_SRC, init_phase);
18194     ecore_init_block(sc, BLOCK_MISC, init_phase);
18195     ecore_init_block(sc, BLOCK_TCM, init_phase);
18196     ecore_init_block(sc, BLOCK_UCM, init_phase);
18197     ecore_init_block(sc, BLOCK_CCM, init_phase);
18198     ecore_init_block(sc, BLOCK_XCM, init_phase);
18199     ecore_init_block(sc, BLOCK_TSEM, init_phase);
18200     ecore_init_block(sc, BLOCK_USEM, init_phase);
18201     ecore_init_block(sc, BLOCK_CSEM, init_phase);
18202     ecore_init_block(sc, BLOCK_XSEM, init_phase);
18203 
18204     if (!CHIP_IS_E1x(sc))
18205         REG_WR(sc, QM_REG_PF_EN, 1);
18206 
18207     if (!CHIP_IS_E1x(sc)) {
18208         REG_WR(sc, TSEM_REG_VFPF_ERR_NUM, BXE_MAX_NUM_OF_VFS + func);
18209         REG_WR(sc, USEM_REG_VFPF_ERR_NUM, BXE_MAX_NUM_OF_VFS + func);
18210         REG_WR(sc, CSEM_REG_VFPF_ERR_NUM, BXE_MAX_NUM_OF_VFS + func);
18211         REG_WR(sc, XSEM_REG_VFPF_ERR_NUM, BXE_MAX_NUM_OF_VFS + func);
18212     }
18213     ecore_init_block(sc, BLOCK_QM, init_phase);
18214 
18215     ecore_init_block(sc, BLOCK_TM, init_phase);
18216     ecore_init_block(sc, BLOCK_DORQ, init_phase);
18217 
18218     bxe_iov_init_dq(sc);
18219 
18220     ecore_init_block(sc, BLOCK_BRB1, init_phase);
18221     ecore_init_block(sc, BLOCK_PRS, init_phase);
18222     ecore_init_block(sc, BLOCK_TSDM, init_phase);
18223     ecore_init_block(sc, BLOCK_CSDM, init_phase);
18224     ecore_init_block(sc, BLOCK_USDM, init_phase);
18225     ecore_init_block(sc, BLOCK_XSDM, init_phase);
18226     ecore_init_block(sc, BLOCK_UPB, init_phase);
18227     ecore_init_block(sc, BLOCK_XPB, init_phase);
18228     ecore_init_block(sc, BLOCK_PBF, init_phase);
18229     if (!CHIP_IS_E1x(sc))
18230         REG_WR(sc, PBF_REG_DISABLE_PF, 0);
18231 
18232     ecore_init_block(sc, BLOCK_CDU, init_phase);
18233 
18234     ecore_init_block(sc, BLOCK_CFC, init_phase);
18235 
18236     if (!CHIP_IS_E1x(sc))
18237         REG_WR(sc, CFC_REG_WEAK_ENABLE_PF, 1);
18238 
18239     if (IS_MF(sc)) {
18240         REG_WR(sc, NIG_REG_LLH0_FUNC_EN + port*8, 1);
18241         REG_WR(sc, NIG_REG_LLH0_FUNC_VLAN_ID + port*8, OVLAN(sc));
18242     }
18243 
18244     ecore_init_block(sc, BLOCK_MISC_AEU, init_phase);
18245 
18246     /* HC init per function */
18247     if (sc->devinfo.int_block == INT_BLOCK_HC) {
18248         if (CHIP_IS_E1H(sc)) {
18249             REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
18250 
18251             REG_WR(sc, HC_REG_LEADING_EDGE_0 + port*8, 0);
18252             REG_WR(sc, HC_REG_TRAILING_EDGE_0 + port*8, 0);
18253         }
18254         ecore_init_block(sc, BLOCK_HC, init_phase);
18255 
18256     } else {
18257         int num_segs, sb_idx, prod_offset;
18258 
18259         REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
18260 
18261         if (!CHIP_IS_E1x(sc)) {
18262             REG_WR(sc, IGU_REG_LEADING_EDGE_LATCH, 0);
18263             REG_WR(sc, IGU_REG_TRAILING_EDGE_LATCH, 0);
18264         }
18265 
18266         ecore_init_block(sc, BLOCK_IGU, init_phase);
18267 
18268         if (!CHIP_IS_E1x(sc)) {
18269             int dsb_idx = 0;
18270             /**
18271              * Producer memory:
18272              * E2 mode: address 0-135 match to the mapping memory;
18273              * 136 - PF0 default prod; 137 - PF1 default prod;
18274              * 138 - PF2 default prod; 139 - PF3 default prod;
18275              * 140 - PF0 attn prod;    141 - PF1 attn prod;
18276              * 142 - PF2 attn prod;    143 - PF3 attn prod;
18277              * 144-147 reserved.
18278              *
18279              * E1.5 mode - In backward compatible mode;
18280              * for non default SB; each even line in the memory
18281              * holds the U producer and each odd line hold
18282              * the C producer. The first 128 producers are for
18283              * NDSB (PF0 - 0-31; PF1 - 32-63 and so on). The last 20
18284              * producers are for the DSB for each PF.
18285              * Each PF has five segments: (the order inside each
18286              * segment is PF0; PF1; PF2; PF3) - 128-131 U prods;
18287              * 132-135 C prods; 136-139 X prods; 140-143 T prods;
18288              * 144-147 attn prods;
18289              */
18290             /* non-default-status-blocks */
18291             num_segs = CHIP_INT_MODE_IS_BC(sc) ?
18292                 IGU_BC_NDSB_NUM_SEGS : IGU_NORM_NDSB_NUM_SEGS;
18293             for (sb_idx = 0; sb_idx < sc->igu_sb_cnt; sb_idx++) {
18294                 prod_offset = (sc->igu_base_sb + sb_idx) *
18295                     num_segs;
18296 
18297                 for (i = 0; i < num_segs; i++) {
18298                     addr = IGU_REG_PROD_CONS_MEMORY +
18299                             (prod_offset + i) * 4;
18300                     REG_WR(sc, addr, 0);
18301                 }
18302                 /* send consumer update with value 0 */
18303                 bxe_ack_sb(sc, sc->igu_base_sb + sb_idx,
18304                            USTORM_ID, 0, IGU_INT_NOP, 1);
18305                 bxe_igu_clear_sb(sc, sc->igu_base_sb + sb_idx);
18306             }
18307 
18308             /* default-status-blocks */
18309             num_segs = CHIP_INT_MODE_IS_BC(sc) ?
18310                 IGU_BC_DSB_NUM_SEGS : IGU_NORM_DSB_NUM_SEGS;
18311 
18312             if (CHIP_IS_MODE_4_PORT(sc))
18313                 dsb_idx = SC_FUNC(sc);
18314             else
18315                 dsb_idx = SC_VN(sc);
18316 
18317             prod_offset = (CHIP_INT_MODE_IS_BC(sc) ?
18318                        IGU_BC_BASE_DSB_PROD + dsb_idx :
18319                        IGU_NORM_BASE_DSB_PROD + dsb_idx);
18320 
18321             /*
18322              * igu prods come in chunks of E1HVN_MAX (4) -
18323              * does not matters what is the current chip mode
18324              */
18325             for (i = 0; i < (num_segs * E1HVN_MAX);
18326                  i += E1HVN_MAX) {
18327                 addr = IGU_REG_PROD_CONS_MEMORY +
18328                             (prod_offset + i)*4;
18329                 REG_WR(sc, addr, 0);
18330             }
18331             /* send consumer update with 0 */
18332             if (CHIP_INT_MODE_IS_BC(sc)) {
18333                 bxe_ack_sb(sc, sc->igu_dsb_id,
18334                            USTORM_ID, 0, IGU_INT_NOP, 1);
18335                 bxe_ack_sb(sc, sc->igu_dsb_id,
18336                            CSTORM_ID, 0, IGU_INT_NOP, 1);
18337                 bxe_ack_sb(sc, sc->igu_dsb_id,
18338                            XSTORM_ID, 0, IGU_INT_NOP, 1);
18339                 bxe_ack_sb(sc, sc->igu_dsb_id,
18340                            TSTORM_ID, 0, IGU_INT_NOP, 1);
18341                 bxe_ack_sb(sc, sc->igu_dsb_id,
18342                            ATTENTION_ID, 0, IGU_INT_NOP, 1);
18343             } else {
18344                 bxe_ack_sb(sc, sc->igu_dsb_id,
18345                            USTORM_ID, 0, IGU_INT_NOP, 1);
18346                 bxe_ack_sb(sc, sc->igu_dsb_id,
18347                            ATTENTION_ID, 0, IGU_INT_NOP, 1);
18348             }
18349             bxe_igu_clear_sb(sc, sc->igu_dsb_id);
18350 
18351             /* !!! these should become driver const once
18352                rf-tool supports split-68 const */
18353             REG_WR(sc, IGU_REG_SB_INT_BEFORE_MASK_LSB, 0);
18354             REG_WR(sc, IGU_REG_SB_INT_BEFORE_MASK_MSB, 0);
18355             REG_WR(sc, IGU_REG_SB_MASK_LSB, 0);
18356             REG_WR(sc, IGU_REG_SB_MASK_MSB, 0);
18357             REG_WR(sc, IGU_REG_PBA_STATUS_LSB, 0);
18358             REG_WR(sc, IGU_REG_PBA_STATUS_MSB, 0);
18359         }
18360     }
18361 
18362     /* Reset PCIE errors for debug */
18363     REG_WR(sc, 0x2114, 0xffffffff);
18364     REG_WR(sc, 0x2120, 0xffffffff);
18365 
18366     if (CHIP_IS_E1x(sc)) {
18367         main_mem_size = HC_REG_MAIN_MEMORY_SIZE / 2; /*dwords*/
18368         main_mem_base = HC_REG_MAIN_MEMORY +
18369                 SC_PORT(sc) * (main_mem_size * 4);
18370         main_mem_prty_clr = HC_REG_HC_PRTY_STS_CLR;
18371         main_mem_width = 8;
18372 
18373         val = REG_RD(sc, main_mem_prty_clr);
18374         if (val) {
18375             BLOGD(sc, DBG_LOAD,
18376                   "Parity errors in HC block during function init (0x%x)!\n",
18377                   val);
18378         }
18379 
18380         /* Clear "false" parity errors in MSI-X table */
18381         for (i = main_mem_base;
18382              i < main_mem_base + main_mem_size * 4;
18383              i += main_mem_width) {
18384             bxe_read_dmae(sc, i, main_mem_width / 4);
18385             bxe_write_dmae(sc, BXE_SP_MAPPING(sc, wb_data),
18386                            i, main_mem_width / 4);
18387         }
18388         /* Clear HC parity attention */
18389         REG_RD(sc, main_mem_prty_clr);
18390     }
18391 
18392 #if 1
18393     /* Enable STORMs SP logging */
18394     REG_WR8(sc, BAR_USTRORM_INTMEM +
18395            USTORM_RECORD_SLOW_PATH_OFFSET(SC_FUNC(sc)), 1);
18396     REG_WR8(sc, BAR_TSTRORM_INTMEM +
18397            TSTORM_RECORD_SLOW_PATH_OFFSET(SC_FUNC(sc)), 1);
18398     REG_WR8(sc, BAR_CSTRORM_INTMEM +
18399            CSTORM_RECORD_SLOW_PATH_OFFSET(SC_FUNC(sc)), 1);
18400     REG_WR8(sc, BAR_XSTRORM_INTMEM +
18401            XSTORM_RECORD_SLOW_PATH_OFFSET(SC_FUNC(sc)), 1);
18402 #endif
18403 
18404     elink_phy_probe(&sc->link_params);
18405 
18406     return (0);
18407 }
18408 
18409 static void
18410 bxe_link_reset(struct bxe_softc *sc)
18411 {
18412     if (!BXE_NOMCP(sc)) {
18413 	bxe_acquire_phy_lock(sc);
18414         elink_lfa_reset(&sc->link_params, &sc->link_vars);
18415 	bxe_release_phy_lock(sc);
18416     } else {
18417         if (!CHIP_REV_IS_SLOW(sc)) {
18418             BLOGW(sc, "Bootcode is missing - cannot reset link\n");
18419         }
18420     }
18421 }
18422 
18423 static void
18424 bxe_reset_port(struct bxe_softc *sc)
18425 {
18426     int port = SC_PORT(sc);
18427     uint32_t val;
18428 
18429 	ELINK_DEBUG_P0(sc, "bxe_reset_port called\n");
18430     /* reset physical Link */
18431     bxe_link_reset(sc);
18432 
18433     REG_WR(sc, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0);
18434 
18435     /* Do not rcv packets to BRB */
18436     REG_WR(sc, NIG_REG_LLH0_BRB1_DRV_MASK + port*4, 0x0);
18437     /* Do not direct rcv packets that are not for MCP to the BRB */
18438     REG_WR(sc, (port ? NIG_REG_LLH1_BRB1_NOT_MCP :
18439                NIG_REG_LLH0_BRB1_NOT_MCP), 0x0);
18440 
18441     /* Configure AEU */
18442     REG_WR(sc, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, 0);
18443 
18444     DELAY(100000);
18445 
18446     /* Check for BRB port occupancy */
18447     val = REG_RD(sc, BRB1_REG_PORT_NUM_OCC_BLOCKS_0 + port*4);
18448     if (val) {
18449         BLOGD(sc, DBG_LOAD,
18450               "BRB1 is not empty, %d blocks are occupied\n", val);
18451     }
18452 
18453     /* TODO: Close Doorbell port? */
18454 }
18455 
18456 static void
18457 bxe_ilt_wr(struct bxe_softc *sc,
18458            uint32_t         index,
18459            bus_addr_t       addr)
18460 {
18461     int reg;
18462     uint32_t wb_write[2];
18463 
18464     if (CHIP_IS_E1(sc)) {
18465         reg = PXP2_REG_RQ_ONCHIP_AT + index*8;
18466     } else {
18467         reg = PXP2_REG_RQ_ONCHIP_AT_B0 + index*8;
18468     }
18469 
18470     wb_write[0] = ONCHIP_ADDR1(addr);
18471     wb_write[1] = ONCHIP_ADDR2(addr);
18472     REG_WR_DMAE(sc, reg, wb_write, 2);
18473 }
18474 
18475 static void
18476 bxe_clear_func_ilt(struct bxe_softc *sc,
18477                    uint32_t         func)
18478 {
18479     uint32_t i, base = FUNC_ILT_BASE(func);
18480     for (i = base; i < base + ILT_PER_FUNC; i++) {
18481         bxe_ilt_wr(sc, i, 0);
18482     }
18483 }
18484 
18485 static void
18486 bxe_reset_func(struct bxe_softc *sc)
18487 {
18488     struct bxe_fastpath *fp;
18489     int port = SC_PORT(sc);
18490     int func = SC_FUNC(sc);
18491     int i;
18492 
18493     /* Disable the function in the FW */
18494     REG_WR8(sc, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(func), 0);
18495     REG_WR8(sc, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(func), 0);
18496     REG_WR8(sc, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(func), 0);
18497     REG_WR8(sc, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(func), 0);
18498 
18499     /* FP SBs */
18500     FOR_EACH_ETH_QUEUE(sc, i) {
18501         fp = &sc->fp[i];
18502         REG_WR8(sc, BAR_CSTRORM_INTMEM +
18503                 CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET(fp->fw_sb_id),
18504                 SB_DISABLED);
18505     }
18506 
18507     /* SP SB */
18508     REG_WR8(sc, BAR_CSTRORM_INTMEM +
18509             CSTORM_SP_STATUS_BLOCK_DATA_STATE_OFFSET(func),
18510             SB_DISABLED);
18511 
18512     for (i = 0; i < XSTORM_SPQ_DATA_SIZE / 4; i++) {
18513         REG_WR(sc, BAR_XSTRORM_INTMEM + XSTORM_SPQ_DATA_OFFSET(func), 0);
18514     }
18515 
18516     /* Configure IGU */
18517     if (sc->devinfo.int_block == INT_BLOCK_HC) {
18518         REG_WR(sc, HC_REG_LEADING_EDGE_0 + port*8, 0);
18519         REG_WR(sc, HC_REG_TRAILING_EDGE_0 + port*8, 0);
18520     } else {
18521         REG_WR(sc, IGU_REG_LEADING_EDGE_LATCH, 0);
18522         REG_WR(sc, IGU_REG_TRAILING_EDGE_LATCH, 0);
18523     }
18524 
18525     if (CNIC_LOADED(sc)) {
18526         /* Disable Timer scan */
18527         REG_WR(sc, TM_REG_EN_LINEAR0_TIMER + port*4, 0);
18528         /*
18529          * Wait for at least 10ms and up to 2 second for the timers
18530          * scan to complete
18531          */
18532         for (i = 0; i < 200; i++) {
18533             DELAY(10000);
18534             if (!REG_RD(sc, TM_REG_LIN0_SCAN_ON + port*4))
18535                 break;
18536         }
18537     }
18538 
18539     /* Clear ILT */
18540     bxe_clear_func_ilt(sc, func);
18541 
18542     /*
18543      * Timers workaround bug for E2: if this is vnic-3,
18544      * we need to set the entire ilt range for this timers.
18545      */
18546     if (!CHIP_IS_E1x(sc) && SC_VN(sc) == 3) {
18547         struct ilt_client_info ilt_cli;
18548         /* use dummy TM client */
18549         memset(&ilt_cli, 0, sizeof(struct ilt_client_info));
18550         ilt_cli.start = 0;
18551         ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1;
18552         ilt_cli.client_num = ILT_CLIENT_TM;
18553 
18554         ecore_ilt_boundry_init_op(sc, &ilt_cli, 0, INITOP_CLEAR);
18555     }
18556 
18557     /* this assumes that reset_port() called before reset_func()*/
18558     if (!CHIP_IS_E1x(sc)) {
18559         bxe_pf_disable(sc);
18560     }
18561 
18562     sc->dmae_ready = 0;
18563 }
18564 
18565 static int
18566 bxe_gunzip_init(struct bxe_softc *sc)
18567 {
18568     return (0);
18569 }
18570 
18571 static void
18572 bxe_gunzip_end(struct bxe_softc *sc)
18573 {
18574     return;
18575 }
18576 
18577 static int
18578 bxe_init_firmware(struct bxe_softc *sc)
18579 {
18580     if (CHIP_IS_E1(sc)) {
18581         ecore_init_e1_firmware(sc);
18582         sc->iro_array = e1_iro_arr;
18583     } else if (CHIP_IS_E1H(sc)) {
18584         ecore_init_e1h_firmware(sc);
18585         sc->iro_array = e1h_iro_arr;
18586     } else if (!CHIP_IS_E1x(sc)) {
18587         ecore_init_e2_firmware(sc);
18588         sc->iro_array = e2_iro_arr;
18589     } else {
18590         BLOGE(sc, "Unsupported chip revision\n");
18591         return (-1);
18592     }
18593 
18594     return (0);
18595 }
18596 
18597 static void
18598 bxe_release_firmware(struct bxe_softc *sc)
18599 {
18600     /* Do nothing */
18601     return;
18602 }
18603 
18604 static int
18605 ecore_gunzip(struct bxe_softc *sc,
18606              const uint8_t    *zbuf,
18607              int              len)
18608 {
18609     /* XXX : Implement... */
18610     BLOGD(sc, DBG_LOAD, "ECORE_GUNZIP NOT IMPLEMENTED\n");
18611     return (FALSE);
18612 }
18613 
18614 static void
18615 ecore_reg_wr_ind(struct bxe_softc *sc,
18616                  uint32_t         addr,
18617                  uint32_t         val)
18618 {
18619     bxe_reg_wr_ind(sc, addr, val);
18620 }
18621 
18622 static void
18623 ecore_write_dmae_phys_len(struct bxe_softc *sc,
18624                           bus_addr_t       phys_addr,
18625                           uint32_t         addr,
18626                           uint32_t         len)
18627 {
18628     bxe_write_dmae_phys_len(sc, phys_addr, addr, len);
18629 }
18630 
18631 void
18632 ecore_storm_memset_struct(struct bxe_softc *sc,
18633                           uint32_t         addr,
18634                           size_t           size,
18635                           uint32_t         *data)
18636 {
18637     uint8_t i;
18638     for (i = 0; i < size/4; i++) {
18639         REG_WR(sc, addr + (i * 4), data[i]);
18640     }
18641 }
18642 
18643 
18644 /*
18645  * character device - ioctl interface definitions
18646  */
18647 
18648 
18649 #include "bxe_dump.h"
18650 #include "bxe_ioctl.h"
18651 #include <sys/conf.h>
18652 
18653 static int bxe_eioctl(struct cdev *dev, u_long cmd, caddr_t data, int fflag,
18654                 struct thread *td);
18655 
18656 static struct cdevsw bxe_cdevsw = {
18657     .d_version = D_VERSION,
18658     .d_ioctl = bxe_eioctl,
18659     .d_name = "bxecnic",
18660 };
18661 
18662 #define BXE_PATH(sc)    (CHIP_IS_E1x(sc) ? 0 : (sc->pcie_func & 1))
18663 
18664 
18665 #define DUMP_ALL_PRESETS        0x1FFF
18666 #define DUMP_MAX_PRESETS        13
18667 #define IS_E1_REG(chips)        ((chips & DUMP_CHIP_E1) == DUMP_CHIP_E1)
18668 #define IS_E1H_REG(chips)       ((chips & DUMP_CHIP_E1H) == DUMP_CHIP_E1H)
18669 #define IS_E2_REG(chips)        ((chips & DUMP_CHIP_E2) == DUMP_CHIP_E2)
18670 #define IS_E3A0_REG(chips)      ((chips & DUMP_CHIP_E3A0) == DUMP_CHIP_E3A0)
18671 #define IS_E3B0_REG(chips)      ((chips & DUMP_CHIP_E3B0) == DUMP_CHIP_E3B0)
18672 
18673 #define IS_REG_IN_PRESET(presets, idx)  \
18674                 ((presets & (1 << (idx-1))) == (1 << (idx-1)))
18675 
18676 
18677 static int
18678 bxe_get_preset_regs_len(struct bxe_softc *sc, uint32_t preset)
18679 {
18680     if (CHIP_IS_E1(sc))
18681         return dump_num_registers[0][preset-1];
18682     else if (CHIP_IS_E1H(sc))
18683         return dump_num_registers[1][preset-1];
18684     else if (CHIP_IS_E2(sc))
18685         return dump_num_registers[2][preset-1];
18686     else if (CHIP_IS_E3A0(sc))
18687         return dump_num_registers[3][preset-1];
18688     else if (CHIP_IS_E3B0(sc))
18689         return dump_num_registers[4][preset-1];
18690     else
18691         return 0;
18692 }
18693 
18694 static int
18695 bxe_get_total_regs_len32(struct bxe_softc *sc)
18696 {
18697     uint32_t preset_idx;
18698     int regdump_len32 = 0;
18699 
18700 
18701     /* Calculate the total preset regs length */
18702     for (preset_idx = 1; preset_idx <= DUMP_MAX_PRESETS; preset_idx++) {
18703         regdump_len32 += bxe_get_preset_regs_len(sc, preset_idx);
18704     }
18705 
18706     return regdump_len32;
18707 }
18708 
18709 static const uint32_t *
18710 __bxe_get_page_addr_ar(struct bxe_softc *sc)
18711 {
18712     if (CHIP_IS_E2(sc))
18713         return page_vals_e2;
18714     else if (CHIP_IS_E3(sc))
18715         return page_vals_e3;
18716     else
18717         return NULL;
18718 }
18719 
18720 static uint32_t
18721 __bxe_get_page_reg_num(struct bxe_softc *sc)
18722 {
18723     if (CHIP_IS_E2(sc))
18724         return PAGE_MODE_VALUES_E2;
18725     else if (CHIP_IS_E3(sc))
18726         return PAGE_MODE_VALUES_E3;
18727     else
18728         return 0;
18729 }
18730 
18731 static const uint32_t *
18732 __bxe_get_page_write_ar(struct bxe_softc *sc)
18733 {
18734     if (CHIP_IS_E2(sc))
18735         return page_write_regs_e2;
18736     else if (CHIP_IS_E3(sc))
18737         return page_write_regs_e3;
18738     else
18739         return NULL;
18740 }
18741 
18742 static uint32_t
18743 __bxe_get_page_write_num(struct bxe_softc *sc)
18744 {
18745     if (CHIP_IS_E2(sc))
18746         return PAGE_WRITE_REGS_E2;
18747     else if (CHIP_IS_E3(sc))
18748         return PAGE_WRITE_REGS_E3;
18749     else
18750         return 0;
18751 }
18752 
18753 static const struct reg_addr *
18754 __bxe_get_page_read_ar(struct bxe_softc *sc)
18755 {
18756     if (CHIP_IS_E2(sc))
18757         return page_read_regs_e2;
18758     else if (CHIP_IS_E3(sc))
18759         return page_read_regs_e3;
18760     else
18761         return NULL;
18762 }
18763 
18764 static uint32_t
18765 __bxe_get_page_read_num(struct bxe_softc *sc)
18766 {
18767     if (CHIP_IS_E2(sc))
18768         return PAGE_READ_REGS_E2;
18769     else if (CHIP_IS_E3(sc))
18770         return PAGE_READ_REGS_E3;
18771     else
18772         return 0;
18773 }
18774 
18775 static bool
18776 bxe_is_reg_in_chip(struct bxe_softc *sc, const struct reg_addr *reg_info)
18777 {
18778     if (CHIP_IS_E1(sc))
18779         return IS_E1_REG(reg_info->chips);
18780     else if (CHIP_IS_E1H(sc))
18781         return IS_E1H_REG(reg_info->chips);
18782     else if (CHIP_IS_E2(sc))
18783         return IS_E2_REG(reg_info->chips);
18784     else if (CHIP_IS_E3A0(sc))
18785         return IS_E3A0_REG(reg_info->chips);
18786     else if (CHIP_IS_E3B0(sc))
18787         return IS_E3B0_REG(reg_info->chips);
18788     else
18789         return 0;
18790 }
18791 
18792 static bool
18793 bxe_is_wreg_in_chip(struct bxe_softc *sc, const struct wreg_addr *wreg_info)
18794 {
18795     if (CHIP_IS_E1(sc))
18796         return IS_E1_REG(wreg_info->chips);
18797     else if (CHIP_IS_E1H(sc))
18798         return IS_E1H_REG(wreg_info->chips);
18799     else if (CHIP_IS_E2(sc))
18800         return IS_E2_REG(wreg_info->chips);
18801     else if (CHIP_IS_E3A0(sc))
18802         return IS_E3A0_REG(wreg_info->chips);
18803     else if (CHIP_IS_E3B0(sc))
18804         return IS_E3B0_REG(wreg_info->chips);
18805     else
18806         return 0;
18807 }
18808 
18809 /**
18810  * bxe_read_pages_regs - read "paged" registers
18811  *
18812  * @bp          device handle
18813  * @p           output buffer
18814  *
18815  * Reads "paged" memories: memories that may only be read by first writing to a
18816  * specific address ("write address") and then reading from a specific address
18817  * ("read address"). There may be more than one write address per "page" and
18818  * more than one read address per write address.
18819  */
18820 static void
18821 bxe_read_pages_regs(struct bxe_softc *sc, uint32_t *p, uint32_t preset)
18822 {
18823     uint32_t i, j, k, n;
18824 
18825     /* addresses of the paged registers */
18826     const uint32_t *page_addr = __bxe_get_page_addr_ar(sc);
18827     /* number of paged registers */
18828     int num_pages = __bxe_get_page_reg_num(sc);
18829     /* write addresses */
18830     const uint32_t *write_addr = __bxe_get_page_write_ar(sc);
18831     /* number of write addresses */
18832     int write_num = __bxe_get_page_write_num(sc);
18833     /* read addresses info */
18834     const struct reg_addr *read_addr = __bxe_get_page_read_ar(sc);
18835     /* number of read addresses */
18836     int read_num = __bxe_get_page_read_num(sc);
18837     uint32_t addr, size;
18838 
18839     for (i = 0; i < num_pages; i++) {
18840         for (j = 0; j < write_num; j++) {
18841             REG_WR(sc, write_addr[j], page_addr[i]);
18842 
18843             for (k = 0; k < read_num; k++) {
18844                 if (IS_REG_IN_PRESET(read_addr[k].presets, preset)) {
18845                     size = read_addr[k].size;
18846                     for (n = 0; n < size; n++) {
18847                         addr = read_addr[k].addr + n*4;
18848                         *p++ = REG_RD(sc, addr);
18849                     }
18850                 }
18851             }
18852         }
18853     }
18854     return;
18855 }
18856 
18857 
18858 static int
18859 bxe_get_preset_regs(struct bxe_softc *sc, uint32_t *p, uint32_t preset)
18860 {
18861     uint32_t i, j, addr;
18862     const struct wreg_addr *wreg_addr_p = NULL;
18863 
18864     if (CHIP_IS_E1(sc))
18865         wreg_addr_p = &wreg_addr_e1;
18866     else if (CHIP_IS_E1H(sc))
18867         wreg_addr_p = &wreg_addr_e1h;
18868     else if (CHIP_IS_E2(sc))
18869         wreg_addr_p = &wreg_addr_e2;
18870     else if (CHIP_IS_E3A0(sc))
18871         wreg_addr_p = &wreg_addr_e3;
18872     else if (CHIP_IS_E3B0(sc))
18873         wreg_addr_p = &wreg_addr_e3b0;
18874     else
18875         return (-1);
18876 
18877     /* Read the idle_chk registers */
18878     for (i = 0; i < IDLE_REGS_COUNT; i++) {
18879         if (bxe_is_reg_in_chip(sc, &idle_reg_addrs[i]) &&
18880             IS_REG_IN_PRESET(idle_reg_addrs[i].presets, preset)) {
18881             for (j = 0; j < idle_reg_addrs[i].size; j++)
18882                 *p++ = REG_RD(sc, idle_reg_addrs[i].addr + j*4);
18883         }
18884     }
18885 
18886     /* Read the regular registers */
18887     for (i = 0; i < REGS_COUNT; i++) {
18888         if (bxe_is_reg_in_chip(sc, &reg_addrs[i]) &&
18889             IS_REG_IN_PRESET(reg_addrs[i].presets, preset)) {
18890             for (j = 0; j < reg_addrs[i].size; j++)
18891                 *p++ = REG_RD(sc, reg_addrs[i].addr + j*4);
18892         }
18893     }
18894 
18895     /* Read the CAM registers */
18896     if (bxe_is_wreg_in_chip(sc, wreg_addr_p) &&
18897         IS_REG_IN_PRESET(wreg_addr_p->presets, preset)) {
18898         for (i = 0; i < wreg_addr_p->size; i++) {
18899             *p++ = REG_RD(sc, wreg_addr_p->addr + i*4);
18900 
18901             /* In case of wreg_addr register, read additional
18902                registers from read_regs array
18903              */
18904             for (j = 0; j < wreg_addr_p->read_regs_count; j++) {
18905                 addr = *(wreg_addr_p->read_regs);
18906                 *p++ = REG_RD(sc, addr + j*4);
18907             }
18908         }
18909     }
18910 
18911     /* Paged registers are supported in E2 & E3 only */
18912     if (CHIP_IS_E2(sc) || CHIP_IS_E3(sc)) {
18913         /* Read "paged" registers */
18914         bxe_read_pages_regs(sc, p, preset);
18915     }
18916 
18917     return 0;
18918 }
18919 
18920 int
18921 bxe_grc_dump(struct bxe_softc *sc)
18922 {
18923     int rval = 0;
18924     uint32_t preset_idx;
18925     uint8_t *buf;
18926     uint32_t size;
18927     struct  dump_header *d_hdr;
18928     uint32_t i;
18929     uint32_t reg_val;
18930     uint32_t reg_addr;
18931     uint32_t cmd_offset;
18932     struct ecore_ilt *ilt = SC_ILT(sc);
18933     struct bxe_fastpath *fp;
18934     struct ilt_client_info *ilt_cli;
18935     int grc_dump_size;
18936 
18937 
18938     if (sc->grcdump_done || sc->grcdump_started)
18939 	return (rval);
18940 
18941     sc->grcdump_started = 1;
18942     BLOGI(sc, "Started collecting grcdump\n");
18943 
18944     grc_dump_size = (bxe_get_total_regs_len32(sc) * sizeof(uint32_t)) +
18945                 sizeof(struct  dump_header);
18946 
18947     sc->grc_dump = malloc(grc_dump_size, M_DEVBUF, M_NOWAIT);
18948 
18949     if (sc->grc_dump == NULL) {
18950         BLOGW(sc, "Unable to allocate memory for grcdump collection\n");
18951         return(ENOMEM);
18952     }
18953 
18954 
18955 
18956     /* Disable parity attentions as long as following dump may
18957      * cause false alarms by reading never written registers. We
18958      * will re-enable parity attentions right after the dump.
18959      */
18960 
18961     /* Disable parity on path 0 */
18962     bxe_pretend_func(sc, 0);
18963 
18964     ecore_disable_blocks_parity(sc);
18965 
18966     /* Disable parity on path 1 */
18967     bxe_pretend_func(sc, 1);
18968     ecore_disable_blocks_parity(sc);
18969 
18970     /* Return to current function */
18971     bxe_pretend_func(sc, SC_ABS_FUNC(sc));
18972 
18973     buf = sc->grc_dump;
18974     d_hdr = sc->grc_dump;
18975 
18976     d_hdr->header_size = (sizeof(struct  dump_header) >> 2) - 1;
18977     d_hdr->version = BNX2X_DUMP_VERSION;
18978     d_hdr->preset = DUMP_ALL_PRESETS;
18979 
18980     if (CHIP_IS_E1(sc)) {
18981         d_hdr->dump_meta_data = DUMP_CHIP_E1;
18982     } else if (CHIP_IS_E1H(sc)) {
18983         d_hdr->dump_meta_data = DUMP_CHIP_E1H;
18984     } else if (CHIP_IS_E2(sc)) {
18985         d_hdr->dump_meta_data = DUMP_CHIP_E2 |
18986                 (BXE_PATH(sc) ? DUMP_PATH_1 : DUMP_PATH_0);
18987     } else if (CHIP_IS_E3A0(sc)) {
18988         d_hdr->dump_meta_data = DUMP_CHIP_E3A0 |
18989                 (BXE_PATH(sc) ? DUMP_PATH_1 : DUMP_PATH_0);
18990     } else if (CHIP_IS_E3B0(sc)) {
18991         d_hdr->dump_meta_data = DUMP_CHIP_E3B0 |
18992                 (BXE_PATH(sc) ? DUMP_PATH_1 : DUMP_PATH_0);
18993     }
18994 
18995     buf += sizeof(struct  dump_header);
18996 
18997     for (preset_idx = 1; preset_idx <= DUMP_MAX_PRESETS; preset_idx++) {
18998 
18999         /* Skip presets with IOR */
19000         if ((preset_idx == 2) || (preset_idx == 5) || (preset_idx == 8) ||
19001             (preset_idx == 11))
19002             continue;
19003 
19004         rval = bxe_get_preset_regs(sc, (uint32_t *)buf, preset_idx);
19005 
19006 	if (rval)
19007             break;
19008 
19009         size = bxe_get_preset_regs_len(sc, preset_idx) * (sizeof (uint32_t));
19010 
19011         buf += size;
19012     }
19013 
19014     bxe_pretend_func(sc, 0);
19015     ecore_clear_blocks_parity(sc);
19016     ecore_enable_blocks_parity(sc);
19017 
19018     bxe_pretend_func(sc, 1);
19019     ecore_clear_blocks_parity(sc);
19020     ecore_enable_blocks_parity(sc);
19021 
19022     /* Return to current function */
19023     bxe_pretend_func(sc, SC_ABS_FUNC(sc));
19024 
19025 
19026 
19027     if(sc->state == BXE_STATE_OPEN) {
19028         if(sc->fw_stats_req  != NULL) {
19029     		BLOGI(sc, "fw stats start_paddr %#jx end_paddr %#jx vaddr %p size 0x%x\n",
19030         			(uintmax_t)sc->fw_stats_req_mapping,
19031         			(uintmax_t)sc->fw_stats_data_mapping,
19032         			sc->fw_stats_req, (sc->fw_stats_req_size + sc->fw_stats_data_size));
19033 		}
19034 		if(sc->def_sb != NULL) {
19035 			BLOGI(sc, "def_status_block paddr %p vaddr %p size 0x%zx\n",
19036         			(void *)sc->def_sb_dma.paddr, sc->def_sb,
19037         			sizeof(struct host_sp_status_block));
19038 		}
19039 		if(sc->eq_dma.vaddr != NULL) {
19040     		BLOGI(sc, "event_queue paddr %#jx vaddr %p size 0x%x\n",
19041         			(uintmax_t)sc->eq_dma.paddr, sc->eq_dma.vaddr, BCM_PAGE_SIZE);
19042 		}
19043 		if(sc->sp_dma.vaddr != NULL) {
19044     		BLOGI(sc, "slow path paddr %#jx vaddr %p size 0x%zx\n",
19045         			(uintmax_t)sc->sp_dma.paddr, sc->sp_dma.vaddr,
19046         			sizeof(struct bxe_slowpath));
19047 		}
19048 		if(sc->spq_dma.vaddr != NULL) {
19049     		BLOGI(sc, "slow path queue paddr %#jx vaddr %p size 0x%x\n",
19050         			(uintmax_t)sc->spq_dma.paddr, sc->spq_dma.vaddr, BCM_PAGE_SIZE);
19051 		}
19052 		if(sc->gz_buf_dma.vaddr != NULL) {
19053     		BLOGI(sc, "fw_buf paddr %#jx vaddr %p size 0x%x\n",
19054         			(uintmax_t)sc->gz_buf_dma.paddr, sc->gz_buf_dma.vaddr,
19055         			FW_BUF_SIZE);
19056 		}
19057     	for (i = 0; i < sc->num_queues; i++) {
19058         	fp = &sc->fp[i];
19059 			if(fp->sb_dma.vaddr != NULL && fp->tx_dma.vaddr != NULL &&
19060                         fp->rx_dma.vaddr != NULL && fp->rcq_dma.vaddr != NULL &&
19061                         fp->rx_sge_dma.vaddr != NULL) {
19062 
19063 				BLOGI(sc, "FP status block fp %d paddr %#jx vaddr %p size 0x%zx\n", i,
19064             			(uintmax_t)fp->sb_dma.paddr, fp->sb_dma.vaddr,
19065             			sizeof(union bxe_host_hc_status_block));
19066 				BLOGI(sc, "TX BD CHAIN fp %d paddr %#jx vaddr %p size 0x%x\n", i,
19067             			(uintmax_t)fp->tx_dma.paddr, fp->tx_dma.vaddr,
19068             			(BCM_PAGE_SIZE * TX_BD_NUM_PAGES));
19069         		BLOGI(sc, "RX BD CHAIN fp %d paddr %#jx vaddr %p size 0x%x\n", i,
19070             			(uintmax_t)fp->rx_dma.paddr, fp->rx_dma.vaddr,
19071             			(BCM_PAGE_SIZE * RX_BD_NUM_PAGES));
19072         		BLOGI(sc, "RX RCQ CHAIN fp %d paddr %#jx vaddr %p size 0x%zx\n", i,
19073             			(uintmax_t)fp->rcq_dma.paddr, fp->rcq_dma.vaddr,
19074             			(BCM_PAGE_SIZE * RCQ_NUM_PAGES));
19075         		BLOGI(sc, "RX SGE CHAIN fp %d paddr %#jx vaddr %p size 0x%x\n", i,
19076             			(uintmax_t)fp->rx_sge_dma.paddr, fp->rx_sge_dma.vaddr,
19077             			(BCM_PAGE_SIZE * RX_SGE_NUM_PAGES));
19078     		}
19079 		}
19080 		if(ilt != NULL ) {
19081     		ilt_cli = &ilt->clients[1];
19082 			if(ilt->lines != NULL) {
19083     		for (i = ilt_cli->start; i <= ilt_cli->end; i++) {
19084         		BLOGI(sc, "ECORE_ILT paddr %#jx vaddr %p size 0x%x\n",
19085             			(uintmax_t)(((struct bxe_dma *)((&ilt->lines[i])->page))->paddr),
19086             			((struct bxe_dma *)((&ilt->lines[i])->page))->vaddr, BCM_PAGE_SIZE);
19087     		}
19088 			}
19089 		}
19090 
19091 
19092     	cmd_offset = DMAE_REG_CMD_MEM;
19093     	for (i = 0; i < 224; i++) {
19094         	reg_addr = (cmd_offset +(i * 4));
19095         	reg_val = REG_RD(sc, reg_addr);
19096         	BLOGI(sc, "DMAE_REG_CMD_MEM i=%d reg_addr 0x%x reg_val 0x%08x\n",i,
19097             			reg_addr, reg_val);
19098     	}
19099 	}
19100 
19101     BLOGI(sc, "Collection of grcdump done\n");
19102     sc->grcdump_done = 1;
19103     return(rval);
19104 }
19105 
19106 static int
19107 bxe_add_cdev(struct bxe_softc *sc)
19108 {
19109     sc->eeprom = malloc(BXE_EEPROM_MAX_DATA_LEN, M_DEVBUF, M_NOWAIT);
19110 
19111     if (sc->eeprom == NULL) {
19112         BLOGW(sc, "Unable to alloc for eeprom size buffer\n");
19113         return (-1);
19114     }
19115 
19116     sc->ioctl_dev = make_dev(&bxe_cdevsw,
19117                             sc->ifp->if_dunit,
19118                             UID_ROOT,
19119                             GID_WHEEL,
19120                             0600,
19121                             "%s",
19122                             if_name(sc->ifp));
19123 
19124     if (sc->ioctl_dev == NULL) {
19125         free(sc->eeprom, M_DEVBUF);
19126         sc->eeprom = NULL;
19127         return (-1);
19128     }
19129 
19130     sc->ioctl_dev->si_drv1 = sc;
19131 
19132     return (0);
19133 }
19134 
19135 static void
19136 bxe_del_cdev(struct bxe_softc *sc)
19137 {
19138     if (sc->ioctl_dev != NULL)
19139         destroy_dev(sc->ioctl_dev);
19140 
19141     if (sc->eeprom != NULL) {
19142         free(sc->eeprom, M_DEVBUF);
19143         sc->eeprom = NULL;
19144     }
19145     sc->ioctl_dev = NULL;
19146 
19147     return;
19148 }
19149 
19150 static bool bxe_is_nvram_accessible(struct bxe_softc *sc)
19151 {
19152 
19153     if ((if_getdrvflags(sc->ifp) & IFF_DRV_RUNNING) == 0)
19154         return FALSE;
19155 
19156     return TRUE;
19157 }
19158 
19159 
19160 static int
19161 bxe_wr_eeprom(struct bxe_softc *sc, void *data, uint32_t offset, uint32_t len)
19162 {
19163     int rval = 0;
19164 
19165     if(!bxe_is_nvram_accessible(sc)) {
19166         BLOGW(sc, "Cannot access eeprom when interface is down\n");
19167         return (-EAGAIN);
19168     }
19169     rval = bxe_nvram_write(sc, offset, (uint8_t *)data, len);
19170 
19171 
19172    return (rval);
19173 }
19174 
19175 static int
19176 bxe_rd_eeprom(struct bxe_softc *sc, void *data, uint32_t offset, uint32_t len)
19177 {
19178     int rval = 0;
19179 
19180     if(!bxe_is_nvram_accessible(sc)) {
19181         BLOGW(sc, "Cannot access eeprom when interface is down\n");
19182         return (-EAGAIN);
19183     }
19184     rval = bxe_nvram_read(sc, offset, (uint8_t *)data, len);
19185 
19186    return (rval);
19187 }
19188 
19189 static int
19190 bxe_eeprom_rd_wr(struct bxe_softc *sc, bxe_eeprom_t *eeprom)
19191 {
19192     int rval = 0;
19193 
19194     switch (eeprom->eeprom_cmd) {
19195 
19196     case BXE_EEPROM_CMD_SET_EEPROM:
19197 
19198         rval = copyin(eeprom->eeprom_data, sc->eeprom,
19199                        eeprom->eeprom_data_len);
19200 
19201         if (rval)
19202             break;
19203 
19204         rval = bxe_wr_eeprom(sc, sc->eeprom, eeprom->eeprom_offset,
19205                        eeprom->eeprom_data_len);
19206         break;
19207 
19208     case BXE_EEPROM_CMD_GET_EEPROM:
19209 
19210         rval = bxe_rd_eeprom(sc, sc->eeprom, eeprom->eeprom_offset,
19211                        eeprom->eeprom_data_len);
19212 
19213         if (rval) {
19214             break;
19215         }
19216 
19217         rval = copyout(sc->eeprom, eeprom->eeprom_data,
19218                        eeprom->eeprom_data_len);
19219         break;
19220 
19221     default:
19222             rval = EINVAL;
19223             break;
19224     }
19225 
19226     if (rval) {
19227         BLOGW(sc, "ioctl cmd %d  failed rval %d\n", eeprom->eeprom_cmd, rval);
19228     }
19229 
19230     return (rval);
19231 }
19232 
19233 static int
19234 bxe_get_settings(struct bxe_softc *sc, bxe_dev_setting_t *dev_p)
19235 {
19236     uint32_t ext_phy_config;
19237     int port = SC_PORT(sc);
19238     int cfg_idx = bxe_get_link_cfg_idx(sc);
19239 
19240     dev_p->supported = sc->port.supported[cfg_idx] |
19241             (sc->port.supported[cfg_idx ^ 1] &
19242             (ELINK_SUPPORTED_TP | ELINK_SUPPORTED_FIBRE));
19243     dev_p->advertising = sc->port.advertising[cfg_idx];
19244     if(sc->link_params.phy[bxe_get_cur_phy_idx(sc)].media_type ==
19245         ELINK_ETH_PHY_SFP_1G_FIBER) {
19246         dev_p->supported = ~(ELINK_SUPPORTED_10000baseT_Full);
19247         dev_p->advertising &= ~(ADVERTISED_10000baseT_Full);
19248     }
19249     if ((sc->state == BXE_STATE_OPEN) && sc->link_vars.link_up &&
19250         !(sc->flags & BXE_MF_FUNC_DIS)) {
19251         dev_p->duplex = sc->link_vars.duplex;
19252         if (IS_MF(sc) && !BXE_NOMCP(sc))
19253             dev_p->speed = bxe_get_mf_speed(sc);
19254         else
19255             dev_p->speed = sc->link_vars.line_speed;
19256     } else {
19257         dev_p->duplex = DUPLEX_UNKNOWN;
19258         dev_p->speed = SPEED_UNKNOWN;
19259     }
19260 
19261     dev_p->port = bxe_media_detect(sc);
19262 
19263     ext_phy_config = SHMEM_RD(sc,
19264                          dev_info.port_hw_config[port].external_phy_config);
19265     if((ext_phy_config & PORT_HW_CFG_XGXS_EXT_PHY_TYPE_MASK) ==
19266         PORT_HW_CFG_XGXS_EXT_PHY_TYPE_DIRECT)
19267         dev_p->phy_address =  sc->port.phy_addr;
19268     else if(((ext_phy_config & PORT_HW_CFG_XGXS_EXT_PHY_TYPE_MASK) !=
19269             PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE) &&
19270         ((ext_phy_config & PORT_HW_CFG_XGXS_EXT_PHY_TYPE_MASK) !=
19271             PORT_HW_CFG_XGXS_EXT_PHY_TYPE_NOT_CONN))
19272         dev_p->phy_address = ELINK_XGXS_EXT_PHY_ADDR(ext_phy_config);
19273     else
19274         dev_p->phy_address = 0;
19275 
19276     if(sc->link_params.req_line_speed[cfg_idx] == ELINK_SPEED_AUTO_NEG)
19277         dev_p->autoneg = AUTONEG_ENABLE;
19278     else
19279        dev_p->autoneg = AUTONEG_DISABLE;
19280 
19281 
19282     return 0;
19283 }
19284 
19285 static int
19286 bxe_eioctl(struct cdev *dev, u_long cmd, caddr_t data, int fflag,
19287         struct thread *td)
19288 {
19289     struct bxe_softc    *sc;
19290     int                 rval = 0;
19291     device_t            pci_dev;
19292     bxe_grcdump_t       *dump = NULL;
19293     int grc_dump_size;
19294     bxe_drvinfo_t   *drv_infop = NULL;
19295     bxe_dev_setting_t  *dev_p;
19296     bxe_dev_setting_t  dev_set;
19297     bxe_get_regs_t  *reg_p;
19298     bxe_reg_rdw_t *reg_rdw_p;
19299     bxe_pcicfg_rdw_t *cfg_rdw_p;
19300     bxe_perm_mac_addr_t *mac_addr_p;
19301 
19302 
19303     if ((sc = (struct bxe_softc *)dev->si_drv1) == NULL)
19304         return ENXIO;
19305 
19306     pci_dev= sc->dev;
19307 
19308     dump = (bxe_grcdump_t *)data;
19309 
19310     switch(cmd) {
19311 
19312         case BXE_GRC_DUMP_SIZE:
19313             dump->pci_func = sc->pcie_func;
19314             dump->grcdump_size =
19315                 (bxe_get_total_regs_len32(sc) * sizeof(uint32_t)) +
19316                      sizeof(struct  dump_header);
19317             break;
19318 
19319         case BXE_GRC_DUMP:
19320 
19321             grc_dump_size = (bxe_get_total_regs_len32(sc) * sizeof(uint32_t)) +
19322                                 sizeof(struct  dump_header);
19323             if ((!sc->trigger_grcdump) || (dump->grcdump == NULL) ||
19324                 (dump->grcdump_size < grc_dump_size)) {
19325                 rval = EINVAL;
19326                 break;
19327             }
19328 
19329             if((sc->trigger_grcdump) && (!sc->grcdump_done) &&
19330                 (!sc->grcdump_started)) {
19331                 rval =  bxe_grc_dump(sc);
19332             }
19333 
19334             if((!rval) && (sc->grcdump_done) && (sc->grcdump_started) &&
19335                 (sc->grc_dump != NULL))  {
19336                 dump->grcdump_dwords = grc_dump_size >> 2;
19337                 rval = copyout(sc->grc_dump, dump->grcdump, grc_dump_size);
19338                 free(sc->grc_dump, M_DEVBUF);
19339                 sc->grc_dump = NULL;
19340                 sc->grcdump_started = 0;
19341                 sc->grcdump_done = 0;
19342             }
19343 
19344             break;
19345 
19346         case BXE_DRV_INFO:
19347             drv_infop = (bxe_drvinfo_t *)data;
19348             snprintf(drv_infop->drv_name, BXE_DRV_NAME_LENGTH, "%s", "bxe");
19349             snprintf(drv_infop->drv_version, BXE_DRV_VERSION_LENGTH, "v:%s",
19350                 BXE_DRIVER_VERSION);
19351             snprintf(drv_infop->mfw_version, BXE_MFW_VERSION_LENGTH, "%s",
19352                 sc->devinfo.bc_ver_str);
19353             snprintf(drv_infop->stormfw_version, BXE_STORMFW_VERSION_LENGTH,
19354                 "%s", sc->fw_ver_str);
19355             drv_infop->eeprom_dump_len = sc->devinfo.flash_size;
19356             drv_infop->reg_dump_len =
19357                 (bxe_get_total_regs_len32(sc) * sizeof(uint32_t))
19358                     + sizeof(struct  dump_header);
19359             snprintf(drv_infop->bus_info, BXE_BUS_INFO_LENGTH, "%d:%d:%d",
19360                 sc->pcie_bus, sc->pcie_device, sc->pcie_func);
19361             break;
19362 
19363         case BXE_DEV_SETTING:
19364             dev_p = (bxe_dev_setting_t *)data;
19365             bxe_get_settings(sc, &dev_set);
19366             dev_p->supported = dev_set.supported;
19367             dev_p->advertising = dev_set.advertising;
19368             dev_p->speed = dev_set.speed;
19369             dev_p->duplex = dev_set.duplex;
19370             dev_p->port = dev_set.port;
19371             dev_p->phy_address = dev_set.phy_address;
19372             dev_p->autoneg = dev_set.autoneg;
19373 
19374             break;
19375 
19376         case BXE_GET_REGS:
19377 
19378             reg_p = (bxe_get_regs_t *)data;
19379             grc_dump_size = reg_p->reg_buf_len;
19380 
19381             if((!sc->grcdump_done) && (!sc->grcdump_started)) {
19382                 bxe_grc_dump(sc);
19383             }
19384             if((sc->grcdump_done) && (sc->grcdump_started) &&
19385                 (sc->grc_dump != NULL))  {
19386                 rval = copyout(sc->grc_dump, reg_p->reg_buf, grc_dump_size);
19387                 free(sc->grc_dump, M_DEVBUF);
19388                 sc->grc_dump = NULL;
19389                 sc->grcdump_started = 0;
19390                 sc->grcdump_done = 0;
19391             }
19392 
19393             break;
19394 
19395         case BXE_RDW_REG:
19396             reg_rdw_p = (bxe_reg_rdw_t *)data;
19397             if((reg_rdw_p->reg_cmd == BXE_READ_REG_CMD) &&
19398                 (reg_rdw_p->reg_access_type == BXE_REG_ACCESS_DIRECT))
19399                 reg_rdw_p->reg_val = REG_RD(sc, reg_rdw_p->reg_id);
19400 
19401             if((reg_rdw_p->reg_cmd == BXE_WRITE_REG_CMD) &&
19402                 (reg_rdw_p->reg_access_type == BXE_REG_ACCESS_DIRECT))
19403                 REG_WR(sc, reg_rdw_p->reg_id, reg_rdw_p->reg_val);
19404 
19405             break;
19406 
19407         case BXE_RDW_PCICFG:
19408             cfg_rdw_p = (bxe_pcicfg_rdw_t *)data;
19409             if(cfg_rdw_p->cfg_cmd == BXE_READ_PCICFG) {
19410 
19411                 cfg_rdw_p->cfg_val = pci_read_config(sc->dev, cfg_rdw_p->cfg_id,
19412                                          cfg_rdw_p->cfg_width);
19413 
19414             } else if(cfg_rdw_p->cfg_cmd == BXE_WRITE_PCICFG) {
19415                 pci_write_config(sc->dev, cfg_rdw_p->cfg_id, cfg_rdw_p->cfg_val,
19416                             cfg_rdw_p->cfg_width);
19417             } else {
19418                 BLOGW(sc, "BXE_RDW_PCICFG ioctl wrong cmd passed\n");
19419             }
19420             break;
19421 
19422         case BXE_MAC_ADDR:
19423             mac_addr_p = (bxe_perm_mac_addr_t *)data;
19424             snprintf(mac_addr_p->mac_addr_str, sizeof(sc->mac_addr_str), "%s",
19425                 sc->mac_addr_str);
19426             break;
19427 
19428         case BXE_EEPROM:
19429             rval = bxe_eeprom_rd_wr(sc, (bxe_eeprom_t *)data);
19430             break;
19431 
19432 
19433         default:
19434             break;
19435     }
19436 
19437     return (rval);
19438 }
19439 
19440 #ifdef DEBUGNET
19441 static void
19442 bxe_debugnet_init(struct ifnet *ifp, int *nrxr, int *ncl, int *clsize)
19443 {
19444 	struct bxe_softc *sc;
19445 
19446 	sc = if_getsoftc(ifp);
19447 	BXE_CORE_LOCK(sc);
19448 	*nrxr = sc->num_queues;
19449 	*ncl = DEBUGNET_MAX_IN_FLIGHT;
19450 	*clsize = sc->fp[0].mbuf_alloc_size;
19451 	BXE_CORE_UNLOCK(sc);
19452 }
19453 
19454 static void
19455 bxe_debugnet_event(struct ifnet *ifp __unused, enum debugnet_ev event __unused)
19456 {
19457 }
19458 
19459 static int
19460 bxe_debugnet_transmit(struct ifnet *ifp, struct mbuf *m)
19461 {
19462 	struct bxe_softc *sc;
19463 	int error;
19464 
19465 	sc = if_getsoftc(ifp);
19466 	if ((if_getdrvflags(ifp) & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
19467 	    IFF_DRV_RUNNING || !sc->link_vars.link_up)
19468 		return (ENOENT);
19469 
19470 	error = bxe_tx_encap(&sc->fp[0], &m);
19471 	if (error != 0 && m != NULL)
19472 		m_freem(m);
19473 	return (error);
19474 }
19475 
19476 static int
19477 bxe_debugnet_poll(struct ifnet *ifp, int count)
19478 {
19479 	struct bxe_softc *sc;
19480 	int i;
19481 
19482 	sc = if_getsoftc(ifp);
19483 	if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) == 0 ||
19484 	    !sc->link_vars.link_up)
19485 		return (ENOENT);
19486 
19487 	for (i = 0; i < sc->num_queues; i++)
19488 		(void)bxe_rxeof(sc, &sc->fp[i]);
19489 	(void)bxe_txeof(sc, &sc->fp[0]);
19490 	return (0);
19491 }
19492 #endif /* DEBUGNET */
19493