1 /*- 2 * Copyright (c) 2007-2014 QLogic Corporation. All rights reserved. 3 * 4 * Redistribution and use in source and binary forms, with or without 5 * modification, are permitted provided that the following conditions 6 * are met: 7 * 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 14 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS' 15 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 17 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS 18 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 19 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 20 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 21 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 22 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 23 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF 24 * THE POSSIBILITY OF SUCH DAMAGE. 25 */ 26 27 #include <sys/cdefs.h> 28 __FBSDID("$FreeBSD$"); 29 30 #define BXE_DRIVER_VERSION "1.78.81" 31 32 #include "bxe.h" 33 #include "ecore_sp.h" 34 #include "ecore_init.h" 35 #include "ecore_init_ops.h" 36 37 #include "57710_int_offsets.h" 38 #include "57711_int_offsets.h" 39 #include "57712_int_offsets.h" 40 41 /* 42 * CTLTYPE_U64 and sysctl_handle_64 were added in r217616. Define these 43 * explicitly here for older kernels that don't include this changeset. 44 */ 45 #ifndef CTLTYPE_U64 46 #define CTLTYPE_U64 CTLTYPE_QUAD 47 #define sysctl_handle_64 sysctl_handle_quad 48 #endif 49 50 /* 51 * CSUM_TCP_IPV6 and CSUM_UDP_IPV6 were added in r236170. Define these 52 * here as zero(0) for older kernels that don't include this changeset 53 * thereby masking the functionality. 54 */ 55 #ifndef CSUM_TCP_IPV6 56 #define CSUM_TCP_IPV6 0 57 #define CSUM_UDP_IPV6 0 58 #endif 59 60 /* 61 * pci_find_cap was added in r219865. Re-define this at pci_find_extcap 62 * for older kernels that don't include this changeset. 63 */ 64 #if __FreeBSD_version < 900035 65 #define pci_find_cap pci_find_extcap 66 #endif 67 68 #define BXE_DEF_SB_ATT_IDX 0x0001 69 #define BXE_DEF_SB_IDX 0x0002 70 71 /* 72 * FLR Support - bxe_pf_flr_clnup() is called during nic_load in the per 73 * function HW initialization. 74 */ 75 #define FLR_WAIT_USEC 10000 /* 10 msecs */ 76 #define FLR_WAIT_INTERVAL 50 /* usecs */ 77 #define FLR_POLL_CNT (FLR_WAIT_USEC / FLR_WAIT_INTERVAL) /* 200 */ 78 79 struct pbf_pN_buf_regs { 80 int pN; 81 uint32_t init_crd; 82 uint32_t crd; 83 uint32_t crd_freed; 84 }; 85 86 struct pbf_pN_cmd_regs { 87 int pN; 88 uint32_t lines_occup; 89 uint32_t lines_freed; 90 }; 91 92 /* 93 * PCI Device ID Table used by bxe_probe(). 94 */ 95 #define BXE_DEVDESC_MAX 64 96 static struct bxe_device_type bxe_devs[] = { 97 { 98 BRCM_VENDORID, 99 CHIP_NUM_57710, 100 PCI_ANY_ID, PCI_ANY_ID, 101 "QLogic NetXtreme II BCM57710 10GbE" 102 }, 103 { 104 BRCM_VENDORID, 105 CHIP_NUM_57711, 106 PCI_ANY_ID, PCI_ANY_ID, 107 "QLogic NetXtreme II BCM57711 10GbE" 108 }, 109 { 110 BRCM_VENDORID, 111 CHIP_NUM_57711E, 112 PCI_ANY_ID, PCI_ANY_ID, 113 "QLogic NetXtreme II BCM57711E 10GbE" 114 }, 115 { 116 BRCM_VENDORID, 117 CHIP_NUM_57712, 118 PCI_ANY_ID, PCI_ANY_ID, 119 "QLogic NetXtreme II BCM57712 10GbE" 120 }, 121 { 122 BRCM_VENDORID, 123 CHIP_NUM_57712_MF, 124 PCI_ANY_ID, PCI_ANY_ID, 125 "QLogic NetXtreme II BCM57712 MF 10GbE" 126 }, 127 { 128 BRCM_VENDORID, 129 CHIP_NUM_57800, 130 PCI_ANY_ID, PCI_ANY_ID, 131 "QLogic NetXtreme II BCM57800 10GbE" 132 }, 133 { 134 BRCM_VENDORID, 135 CHIP_NUM_57800_MF, 136 PCI_ANY_ID, PCI_ANY_ID, 137 "QLogic NetXtreme II BCM57800 MF 10GbE" 138 }, 139 { 140 BRCM_VENDORID, 141 CHIP_NUM_57810, 142 PCI_ANY_ID, PCI_ANY_ID, 143 "QLogic NetXtreme II BCM57810 10GbE" 144 }, 145 { 146 BRCM_VENDORID, 147 CHIP_NUM_57810_MF, 148 PCI_ANY_ID, PCI_ANY_ID, 149 "QLogic NetXtreme II BCM57810 MF 10GbE" 150 }, 151 { 152 BRCM_VENDORID, 153 CHIP_NUM_57811, 154 PCI_ANY_ID, PCI_ANY_ID, 155 "QLogic NetXtreme II BCM57811 10GbE" 156 }, 157 { 158 BRCM_VENDORID, 159 CHIP_NUM_57811_MF, 160 PCI_ANY_ID, PCI_ANY_ID, 161 "QLogic NetXtreme II BCM57811 MF 10GbE" 162 }, 163 { 164 BRCM_VENDORID, 165 CHIP_NUM_57840_4_10, 166 PCI_ANY_ID, PCI_ANY_ID, 167 "QLogic NetXtreme II BCM57840 4x10GbE" 168 }, 169 { 170 BRCM_VENDORID, 171 CHIP_NUM_57840_MF, 172 PCI_ANY_ID, PCI_ANY_ID, 173 "QLogic NetXtreme II BCM57840 MF 10GbE" 174 }, 175 { 176 0, 0, 0, 0, NULL 177 } 178 }; 179 180 MALLOC_DECLARE(M_BXE_ILT); 181 MALLOC_DEFINE(M_BXE_ILT, "bxe_ilt", "bxe ILT pointer"); 182 183 /* 184 * FreeBSD device entry points. 185 */ 186 static int bxe_probe(device_t); 187 static int bxe_attach(device_t); 188 static int bxe_detach(device_t); 189 static int bxe_shutdown(device_t); 190 191 /* 192 * FreeBSD KLD module/device interface event handler method. 193 */ 194 static device_method_t bxe_methods[] = { 195 /* Device interface (device_if.h) */ 196 DEVMETHOD(device_probe, bxe_probe), 197 DEVMETHOD(device_attach, bxe_attach), 198 DEVMETHOD(device_detach, bxe_detach), 199 DEVMETHOD(device_shutdown, bxe_shutdown), 200 /* Bus interface (bus_if.h) */ 201 DEVMETHOD(bus_print_child, bus_generic_print_child), 202 DEVMETHOD(bus_driver_added, bus_generic_driver_added), 203 KOBJMETHOD_END 204 }; 205 206 /* 207 * FreeBSD KLD Module data declaration 208 */ 209 static driver_t bxe_driver = { 210 "bxe", /* module name */ 211 bxe_methods, /* event handler */ 212 sizeof(struct bxe_softc) /* extra data */ 213 }; 214 215 /* 216 * FreeBSD dev class is needed to manage dev instances and 217 * to associate with a bus type 218 */ 219 static devclass_t bxe_devclass; 220 221 MODULE_DEPEND(bxe, pci, 1, 1, 1); 222 MODULE_DEPEND(bxe, ether, 1, 1, 1); 223 DRIVER_MODULE(bxe, pci, bxe_driver, bxe_devclass, 0, 0); 224 225 /* resources needed for unloading a previously loaded device */ 226 227 #define BXE_PREV_WAIT_NEEDED 1 228 struct mtx bxe_prev_mtx; 229 MTX_SYSINIT(bxe_prev_mtx, &bxe_prev_mtx, "bxe_prev_lock", MTX_DEF); 230 struct bxe_prev_list_node { 231 LIST_ENTRY(bxe_prev_list_node) node; 232 uint8_t bus; 233 uint8_t slot; 234 uint8_t path; 235 uint8_t aer; /* XXX automatic error recovery */ 236 uint8_t undi; 237 }; 238 static LIST_HEAD(, bxe_prev_list_node) bxe_prev_list = LIST_HEAD_INITIALIZER(bxe_prev_list); 239 240 static int load_count[2][3] = { {0} }; /* per-path: 0-common, 1-port0, 2-port1 */ 241 242 /* Tunable device values... */ 243 244 SYSCTL_NODE(_hw, OID_AUTO, bxe, CTLFLAG_RD, 0, "bxe driver parameters"); 245 246 /* Debug */ 247 unsigned long bxe_debug = 0; 248 SYSCTL_ULONG(_hw_bxe, OID_AUTO, debug, CTLFLAG_RDTUN, 249 &bxe_debug, 0, "Debug logging mode"); 250 251 /* Interrupt Mode: 0 (IRQ), 1 (MSI/IRQ), and 2 (MSI-X/MSI/IRQ) */ 252 static int bxe_interrupt_mode = INTR_MODE_MSIX; 253 SYSCTL_INT(_hw_bxe, OID_AUTO, interrupt_mode, CTLFLAG_RDTUN, 254 &bxe_interrupt_mode, 0, "Interrupt (MSI-X/MSI/INTx) mode"); 255 256 /* Number of Queues: 0 (Auto) or 1 to 16 (fixed queue number) */ 257 static int bxe_queue_count = 4; 258 SYSCTL_INT(_hw_bxe, OID_AUTO, queue_count, CTLFLAG_RDTUN, 259 &bxe_queue_count, 0, "Multi-Queue queue count"); 260 261 /* max number of buffers per queue (default RX_BD_USABLE) */ 262 static int bxe_max_rx_bufs = 0; 263 SYSCTL_INT(_hw_bxe, OID_AUTO, max_rx_bufs, CTLFLAG_RDTUN, 264 &bxe_max_rx_bufs, 0, "Maximum Number of Rx Buffers Per Queue"); 265 266 /* Host interrupt coalescing RX tick timer (usecs) */ 267 static int bxe_hc_rx_ticks = 25; 268 SYSCTL_INT(_hw_bxe, OID_AUTO, hc_rx_ticks, CTLFLAG_RDTUN, 269 &bxe_hc_rx_ticks, 0, "Host Coalescing Rx ticks"); 270 271 /* Host interrupt coalescing TX tick timer (usecs) */ 272 static int bxe_hc_tx_ticks = 50; 273 SYSCTL_INT(_hw_bxe, OID_AUTO, hc_tx_ticks, CTLFLAG_RDTUN, 274 &bxe_hc_tx_ticks, 0, "Host Coalescing Tx ticks"); 275 276 /* Maximum number of Rx packets to process at a time */ 277 static int bxe_rx_budget = 0xffffffff; 278 SYSCTL_INT(_hw_bxe, OID_AUTO, rx_budget, CTLFLAG_TUN, 279 &bxe_rx_budget, 0, "Rx processing budget"); 280 281 /* Maximum LRO aggregation size */ 282 static int bxe_max_aggregation_size = 0; 283 SYSCTL_INT(_hw_bxe, OID_AUTO, max_aggregation_size, CTLFLAG_TUN, 284 &bxe_max_aggregation_size, 0, "max aggregation size"); 285 286 /* PCI MRRS: -1 (Auto), 0 (128B), 1 (256B), 2 (512B), 3 (1KB) */ 287 static int bxe_mrrs = -1; 288 SYSCTL_INT(_hw_bxe, OID_AUTO, mrrs, CTLFLAG_RDTUN, 289 &bxe_mrrs, 0, "PCIe maximum read request size"); 290 291 /* AutoGrEEEn: 0 (hardware default), 1 (force on), 2 (force off) */ 292 static int bxe_autogreeen = 0; 293 SYSCTL_INT(_hw_bxe, OID_AUTO, autogreeen, CTLFLAG_RDTUN, 294 &bxe_autogreeen, 0, "AutoGrEEEn support"); 295 296 /* 4-tuple RSS support for UDP: 0 (disabled), 1 (enabled) */ 297 static int bxe_udp_rss = 0; 298 SYSCTL_INT(_hw_bxe, OID_AUTO, udp_rss, CTLFLAG_RDTUN, 299 &bxe_udp_rss, 0, "UDP RSS support"); 300 301 302 #define STAT_NAME_LEN 32 /* no stat names below can be longer than this */ 303 304 #define STATS_OFFSET32(stat_name) \ 305 (offsetof(struct bxe_eth_stats, stat_name) / 4) 306 307 #define Q_STATS_OFFSET32(stat_name) \ 308 (offsetof(struct bxe_eth_q_stats, stat_name) / 4) 309 310 static const struct { 311 uint32_t offset; 312 uint32_t size; 313 uint32_t flags; 314 #define STATS_FLAGS_PORT 1 315 #define STATS_FLAGS_FUNC 2 /* MF only cares about function stats */ 316 #define STATS_FLAGS_BOTH (STATS_FLAGS_FUNC | STATS_FLAGS_PORT) 317 char string[STAT_NAME_LEN]; 318 } bxe_eth_stats_arr[] = { 319 { STATS_OFFSET32(total_bytes_received_hi), 320 8, STATS_FLAGS_BOTH, "rx_bytes" }, 321 { STATS_OFFSET32(error_bytes_received_hi), 322 8, STATS_FLAGS_BOTH, "rx_error_bytes" }, 323 { STATS_OFFSET32(total_unicast_packets_received_hi), 324 8, STATS_FLAGS_BOTH, "rx_ucast_packets" }, 325 { STATS_OFFSET32(total_multicast_packets_received_hi), 326 8, STATS_FLAGS_BOTH, "rx_mcast_packets" }, 327 { STATS_OFFSET32(total_broadcast_packets_received_hi), 328 8, STATS_FLAGS_BOTH, "rx_bcast_packets" }, 329 { STATS_OFFSET32(rx_stat_dot3statsfcserrors_hi), 330 8, STATS_FLAGS_PORT, "rx_crc_errors" }, 331 { STATS_OFFSET32(rx_stat_dot3statsalignmenterrors_hi), 332 8, STATS_FLAGS_PORT, "rx_align_errors" }, 333 { STATS_OFFSET32(rx_stat_etherstatsundersizepkts_hi), 334 8, STATS_FLAGS_PORT, "rx_undersize_packets" }, 335 { STATS_OFFSET32(etherstatsoverrsizepkts_hi), 336 8, STATS_FLAGS_PORT, "rx_oversize_packets" }, 337 { STATS_OFFSET32(rx_stat_etherstatsfragments_hi), 338 8, STATS_FLAGS_PORT, "rx_fragments" }, 339 { STATS_OFFSET32(rx_stat_etherstatsjabbers_hi), 340 8, STATS_FLAGS_PORT, "rx_jabbers" }, 341 { STATS_OFFSET32(no_buff_discard_hi), 342 8, STATS_FLAGS_BOTH, "rx_discards" }, 343 { STATS_OFFSET32(mac_filter_discard), 344 4, STATS_FLAGS_PORT, "rx_filtered_packets" }, 345 { STATS_OFFSET32(mf_tag_discard), 346 4, STATS_FLAGS_PORT, "rx_mf_tag_discard" }, 347 { STATS_OFFSET32(pfc_frames_received_hi), 348 8, STATS_FLAGS_PORT, "pfc_frames_received" }, 349 { STATS_OFFSET32(pfc_frames_sent_hi), 350 8, STATS_FLAGS_PORT, "pfc_frames_sent" }, 351 { STATS_OFFSET32(brb_drop_hi), 352 8, STATS_FLAGS_PORT, "rx_brb_discard" }, 353 { STATS_OFFSET32(brb_truncate_hi), 354 8, STATS_FLAGS_PORT, "rx_brb_truncate" }, 355 { STATS_OFFSET32(pause_frames_received_hi), 356 8, STATS_FLAGS_PORT, "rx_pause_frames" }, 357 { STATS_OFFSET32(rx_stat_maccontrolframesreceived_hi), 358 8, STATS_FLAGS_PORT, "rx_mac_ctrl_frames" }, 359 { STATS_OFFSET32(nig_timer_max), 360 4, STATS_FLAGS_PORT, "rx_constant_pause_events" }, 361 { STATS_OFFSET32(total_bytes_transmitted_hi), 362 8, STATS_FLAGS_BOTH, "tx_bytes" }, 363 { STATS_OFFSET32(tx_stat_ifhcoutbadoctets_hi), 364 8, STATS_FLAGS_PORT, "tx_error_bytes" }, 365 { STATS_OFFSET32(total_unicast_packets_transmitted_hi), 366 8, STATS_FLAGS_BOTH, "tx_ucast_packets" }, 367 { STATS_OFFSET32(total_multicast_packets_transmitted_hi), 368 8, STATS_FLAGS_BOTH, "tx_mcast_packets" }, 369 { STATS_OFFSET32(total_broadcast_packets_transmitted_hi), 370 8, STATS_FLAGS_BOTH, "tx_bcast_packets" }, 371 { STATS_OFFSET32(tx_stat_dot3statsinternalmactransmiterrors_hi), 372 8, STATS_FLAGS_PORT, "tx_mac_errors" }, 373 { STATS_OFFSET32(rx_stat_dot3statscarriersenseerrors_hi), 374 8, STATS_FLAGS_PORT, "tx_carrier_errors" }, 375 { STATS_OFFSET32(tx_stat_dot3statssinglecollisionframes_hi), 376 8, STATS_FLAGS_PORT, "tx_single_collisions" }, 377 { STATS_OFFSET32(tx_stat_dot3statsmultiplecollisionframes_hi), 378 8, STATS_FLAGS_PORT, "tx_multi_collisions" }, 379 { STATS_OFFSET32(tx_stat_dot3statsdeferredtransmissions_hi), 380 8, STATS_FLAGS_PORT, "tx_deferred" }, 381 { STATS_OFFSET32(tx_stat_dot3statsexcessivecollisions_hi), 382 8, STATS_FLAGS_PORT, "tx_excess_collisions" }, 383 { STATS_OFFSET32(tx_stat_dot3statslatecollisions_hi), 384 8, STATS_FLAGS_PORT, "tx_late_collisions" }, 385 { STATS_OFFSET32(tx_stat_etherstatscollisions_hi), 386 8, STATS_FLAGS_PORT, "tx_total_collisions" }, 387 { STATS_OFFSET32(tx_stat_etherstatspkts64octets_hi), 388 8, STATS_FLAGS_PORT, "tx_64_byte_packets" }, 389 { STATS_OFFSET32(tx_stat_etherstatspkts65octetsto127octets_hi), 390 8, STATS_FLAGS_PORT, "tx_65_to_127_byte_packets" }, 391 { STATS_OFFSET32(tx_stat_etherstatspkts128octetsto255octets_hi), 392 8, STATS_FLAGS_PORT, "tx_128_to_255_byte_packets" }, 393 { STATS_OFFSET32(tx_stat_etherstatspkts256octetsto511octets_hi), 394 8, STATS_FLAGS_PORT, "tx_256_to_511_byte_packets" }, 395 { STATS_OFFSET32(tx_stat_etherstatspkts512octetsto1023octets_hi), 396 8, STATS_FLAGS_PORT, "tx_512_to_1023_byte_packets" }, 397 { STATS_OFFSET32(etherstatspkts1024octetsto1522octets_hi), 398 8, STATS_FLAGS_PORT, "tx_1024_to_1522_byte_packets" }, 399 { STATS_OFFSET32(etherstatspktsover1522octets_hi), 400 8, STATS_FLAGS_PORT, "tx_1523_to_9022_byte_packets" }, 401 { STATS_OFFSET32(pause_frames_sent_hi), 402 8, STATS_FLAGS_PORT, "tx_pause_frames" }, 403 { STATS_OFFSET32(total_tpa_aggregations_hi), 404 8, STATS_FLAGS_FUNC, "tpa_aggregations" }, 405 { STATS_OFFSET32(total_tpa_aggregated_frames_hi), 406 8, STATS_FLAGS_FUNC, "tpa_aggregated_frames"}, 407 { STATS_OFFSET32(total_tpa_bytes_hi), 408 8, STATS_FLAGS_FUNC, "tpa_bytes"}, 409 { STATS_OFFSET32(eee_tx_lpi), 410 4, STATS_FLAGS_PORT, "eee_tx_lpi"}, 411 { STATS_OFFSET32(rx_calls), 412 4, STATS_FLAGS_FUNC, "rx_calls"}, 413 { STATS_OFFSET32(rx_pkts), 414 4, STATS_FLAGS_FUNC, "rx_pkts"}, 415 { STATS_OFFSET32(rx_tpa_pkts), 416 4, STATS_FLAGS_FUNC, "rx_tpa_pkts"}, 417 { STATS_OFFSET32(rx_erroneous_jumbo_sge_pkts), 418 4, STATS_FLAGS_FUNC, "rx_erroneous_jumbo_sge_pkts"}, 419 { STATS_OFFSET32(rx_bxe_service_rxsgl), 420 4, STATS_FLAGS_FUNC, "rx_bxe_service_rxsgl"}, 421 { STATS_OFFSET32(rx_jumbo_sge_pkts), 422 4, STATS_FLAGS_FUNC, "rx_jumbo_sge_pkts"}, 423 { STATS_OFFSET32(rx_soft_errors), 424 4, STATS_FLAGS_FUNC, "rx_soft_errors"}, 425 { STATS_OFFSET32(rx_hw_csum_errors), 426 4, STATS_FLAGS_FUNC, "rx_hw_csum_errors"}, 427 { STATS_OFFSET32(rx_ofld_frames_csum_ip), 428 4, STATS_FLAGS_FUNC, "rx_ofld_frames_csum_ip"}, 429 { STATS_OFFSET32(rx_ofld_frames_csum_tcp_udp), 430 4, STATS_FLAGS_FUNC, "rx_ofld_frames_csum_tcp_udp"}, 431 { STATS_OFFSET32(rx_budget_reached), 432 4, STATS_FLAGS_FUNC, "rx_budget_reached"}, 433 { STATS_OFFSET32(tx_pkts), 434 4, STATS_FLAGS_FUNC, "tx_pkts"}, 435 { STATS_OFFSET32(tx_soft_errors), 436 4, STATS_FLAGS_FUNC, "tx_soft_errors"}, 437 { STATS_OFFSET32(tx_ofld_frames_csum_ip), 438 4, STATS_FLAGS_FUNC, "tx_ofld_frames_csum_ip"}, 439 { STATS_OFFSET32(tx_ofld_frames_csum_tcp), 440 4, STATS_FLAGS_FUNC, "tx_ofld_frames_csum_tcp"}, 441 { STATS_OFFSET32(tx_ofld_frames_csum_udp), 442 4, STATS_FLAGS_FUNC, "tx_ofld_frames_csum_udp"}, 443 { STATS_OFFSET32(tx_ofld_frames_lso), 444 4, STATS_FLAGS_FUNC, "tx_ofld_frames_lso"}, 445 { STATS_OFFSET32(tx_ofld_frames_lso_hdr_splits), 446 4, STATS_FLAGS_FUNC, "tx_ofld_frames_lso_hdr_splits"}, 447 { STATS_OFFSET32(tx_encap_failures), 448 4, STATS_FLAGS_FUNC, "tx_encap_failures"}, 449 { STATS_OFFSET32(tx_hw_queue_full), 450 4, STATS_FLAGS_FUNC, "tx_hw_queue_full"}, 451 { STATS_OFFSET32(tx_hw_max_queue_depth), 452 4, STATS_FLAGS_FUNC, "tx_hw_max_queue_depth"}, 453 { STATS_OFFSET32(tx_dma_mapping_failure), 454 4, STATS_FLAGS_FUNC, "tx_dma_mapping_failure"}, 455 { STATS_OFFSET32(tx_max_drbr_queue_depth), 456 4, STATS_FLAGS_FUNC, "tx_max_drbr_queue_depth"}, 457 { STATS_OFFSET32(tx_window_violation_std), 458 4, STATS_FLAGS_FUNC, "tx_window_violation_std"}, 459 { STATS_OFFSET32(tx_window_violation_tso), 460 4, STATS_FLAGS_FUNC, "tx_window_violation_tso"}, 461 { STATS_OFFSET32(tx_chain_lost_mbuf), 462 4, STATS_FLAGS_FUNC, "tx_chain_lost_mbuf"}, 463 { STATS_OFFSET32(tx_frames_deferred), 464 4, STATS_FLAGS_FUNC, "tx_frames_deferred"}, 465 { STATS_OFFSET32(tx_queue_xoff), 466 4, STATS_FLAGS_FUNC, "tx_queue_xoff"}, 467 { STATS_OFFSET32(mbuf_defrag_attempts), 468 4, STATS_FLAGS_FUNC, "mbuf_defrag_attempts"}, 469 { STATS_OFFSET32(mbuf_defrag_failures), 470 4, STATS_FLAGS_FUNC, "mbuf_defrag_failures"}, 471 { STATS_OFFSET32(mbuf_rx_bd_alloc_failed), 472 4, STATS_FLAGS_FUNC, "mbuf_rx_bd_alloc_failed"}, 473 { STATS_OFFSET32(mbuf_rx_bd_mapping_failed), 474 4, STATS_FLAGS_FUNC, "mbuf_rx_bd_mapping_failed"}, 475 { STATS_OFFSET32(mbuf_rx_tpa_alloc_failed), 476 4, STATS_FLAGS_FUNC, "mbuf_rx_tpa_alloc_failed"}, 477 { STATS_OFFSET32(mbuf_rx_tpa_mapping_failed), 478 4, STATS_FLAGS_FUNC, "mbuf_rx_tpa_mapping_failed"}, 479 { STATS_OFFSET32(mbuf_rx_sge_alloc_failed), 480 4, STATS_FLAGS_FUNC, "mbuf_rx_sge_alloc_failed"}, 481 { STATS_OFFSET32(mbuf_rx_sge_mapping_failed), 482 4, STATS_FLAGS_FUNC, "mbuf_rx_sge_mapping_failed"}, 483 { STATS_OFFSET32(mbuf_alloc_tx), 484 4, STATS_FLAGS_FUNC, "mbuf_alloc_tx"}, 485 { STATS_OFFSET32(mbuf_alloc_rx), 486 4, STATS_FLAGS_FUNC, "mbuf_alloc_rx"}, 487 { STATS_OFFSET32(mbuf_alloc_sge), 488 4, STATS_FLAGS_FUNC, "mbuf_alloc_sge"}, 489 { STATS_OFFSET32(mbuf_alloc_tpa), 490 4, STATS_FLAGS_FUNC, "mbuf_alloc_tpa"} 491 }; 492 493 static const struct { 494 uint32_t offset; 495 uint32_t size; 496 char string[STAT_NAME_LEN]; 497 } bxe_eth_q_stats_arr[] = { 498 { Q_STATS_OFFSET32(total_bytes_received_hi), 499 8, "rx_bytes" }, 500 { Q_STATS_OFFSET32(total_unicast_packets_received_hi), 501 8, "rx_ucast_packets" }, 502 { Q_STATS_OFFSET32(total_multicast_packets_received_hi), 503 8, "rx_mcast_packets" }, 504 { Q_STATS_OFFSET32(total_broadcast_packets_received_hi), 505 8, "rx_bcast_packets" }, 506 { Q_STATS_OFFSET32(no_buff_discard_hi), 507 8, "rx_discards" }, 508 { Q_STATS_OFFSET32(total_bytes_transmitted_hi), 509 8, "tx_bytes" }, 510 { Q_STATS_OFFSET32(total_unicast_packets_transmitted_hi), 511 8, "tx_ucast_packets" }, 512 { Q_STATS_OFFSET32(total_multicast_packets_transmitted_hi), 513 8, "tx_mcast_packets" }, 514 { Q_STATS_OFFSET32(total_broadcast_packets_transmitted_hi), 515 8, "tx_bcast_packets" }, 516 { Q_STATS_OFFSET32(total_tpa_aggregations_hi), 517 8, "tpa_aggregations" }, 518 { Q_STATS_OFFSET32(total_tpa_aggregated_frames_hi), 519 8, "tpa_aggregated_frames"}, 520 { Q_STATS_OFFSET32(total_tpa_bytes_hi), 521 8, "tpa_bytes"}, 522 { Q_STATS_OFFSET32(rx_calls), 523 4, "rx_calls"}, 524 { Q_STATS_OFFSET32(rx_pkts), 525 4, "rx_pkts"}, 526 { Q_STATS_OFFSET32(rx_tpa_pkts), 527 4, "rx_tpa_pkts"}, 528 { Q_STATS_OFFSET32(rx_erroneous_jumbo_sge_pkts), 529 4, "rx_erroneous_jumbo_sge_pkts"}, 530 { Q_STATS_OFFSET32(rx_bxe_service_rxsgl), 531 4, "rx_bxe_service_rxsgl"}, 532 { Q_STATS_OFFSET32(rx_jumbo_sge_pkts), 533 4, "rx_jumbo_sge_pkts"}, 534 { Q_STATS_OFFSET32(rx_soft_errors), 535 4, "rx_soft_errors"}, 536 { Q_STATS_OFFSET32(rx_hw_csum_errors), 537 4, "rx_hw_csum_errors"}, 538 { Q_STATS_OFFSET32(rx_ofld_frames_csum_ip), 539 4, "rx_ofld_frames_csum_ip"}, 540 { Q_STATS_OFFSET32(rx_ofld_frames_csum_tcp_udp), 541 4, "rx_ofld_frames_csum_tcp_udp"}, 542 { Q_STATS_OFFSET32(rx_budget_reached), 543 4, "rx_budget_reached"}, 544 { Q_STATS_OFFSET32(tx_pkts), 545 4, "tx_pkts"}, 546 { Q_STATS_OFFSET32(tx_soft_errors), 547 4, "tx_soft_errors"}, 548 { Q_STATS_OFFSET32(tx_ofld_frames_csum_ip), 549 4, "tx_ofld_frames_csum_ip"}, 550 { Q_STATS_OFFSET32(tx_ofld_frames_csum_tcp), 551 4, "tx_ofld_frames_csum_tcp"}, 552 { Q_STATS_OFFSET32(tx_ofld_frames_csum_udp), 553 4, "tx_ofld_frames_csum_udp"}, 554 { Q_STATS_OFFSET32(tx_ofld_frames_lso), 555 4, "tx_ofld_frames_lso"}, 556 { Q_STATS_OFFSET32(tx_ofld_frames_lso_hdr_splits), 557 4, "tx_ofld_frames_lso_hdr_splits"}, 558 { Q_STATS_OFFSET32(tx_encap_failures), 559 4, "tx_encap_failures"}, 560 { Q_STATS_OFFSET32(tx_hw_queue_full), 561 4, "tx_hw_queue_full"}, 562 { Q_STATS_OFFSET32(tx_hw_max_queue_depth), 563 4, "tx_hw_max_queue_depth"}, 564 { Q_STATS_OFFSET32(tx_dma_mapping_failure), 565 4, "tx_dma_mapping_failure"}, 566 { Q_STATS_OFFSET32(tx_max_drbr_queue_depth), 567 4, "tx_max_drbr_queue_depth"}, 568 { Q_STATS_OFFSET32(tx_window_violation_std), 569 4, "tx_window_violation_std"}, 570 { Q_STATS_OFFSET32(tx_window_violation_tso), 571 4, "tx_window_violation_tso"}, 572 { Q_STATS_OFFSET32(tx_chain_lost_mbuf), 573 4, "tx_chain_lost_mbuf"}, 574 { Q_STATS_OFFSET32(tx_frames_deferred), 575 4, "tx_frames_deferred"}, 576 { Q_STATS_OFFSET32(tx_queue_xoff), 577 4, "tx_queue_xoff"}, 578 { Q_STATS_OFFSET32(mbuf_defrag_attempts), 579 4, "mbuf_defrag_attempts"}, 580 { Q_STATS_OFFSET32(mbuf_defrag_failures), 581 4, "mbuf_defrag_failures"}, 582 { Q_STATS_OFFSET32(mbuf_rx_bd_alloc_failed), 583 4, "mbuf_rx_bd_alloc_failed"}, 584 { Q_STATS_OFFSET32(mbuf_rx_bd_mapping_failed), 585 4, "mbuf_rx_bd_mapping_failed"}, 586 { Q_STATS_OFFSET32(mbuf_rx_tpa_alloc_failed), 587 4, "mbuf_rx_tpa_alloc_failed"}, 588 { Q_STATS_OFFSET32(mbuf_rx_tpa_mapping_failed), 589 4, "mbuf_rx_tpa_mapping_failed"}, 590 { Q_STATS_OFFSET32(mbuf_rx_sge_alloc_failed), 591 4, "mbuf_rx_sge_alloc_failed"}, 592 { Q_STATS_OFFSET32(mbuf_rx_sge_mapping_failed), 593 4, "mbuf_rx_sge_mapping_failed"}, 594 { Q_STATS_OFFSET32(mbuf_alloc_tx), 595 4, "mbuf_alloc_tx"}, 596 { Q_STATS_OFFSET32(mbuf_alloc_rx), 597 4, "mbuf_alloc_rx"}, 598 { Q_STATS_OFFSET32(mbuf_alloc_sge), 599 4, "mbuf_alloc_sge"}, 600 { Q_STATS_OFFSET32(mbuf_alloc_tpa), 601 4, "mbuf_alloc_tpa"} 602 }; 603 604 #define BXE_NUM_ETH_STATS ARRAY_SIZE(bxe_eth_stats_arr) 605 #define BXE_NUM_ETH_Q_STATS ARRAY_SIZE(bxe_eth_q_stats_arr) 606 607 608 static void bxe_cmng_fns_init(struct bxe_softc *sc, 609 uint8_t read_cfg, 610 uint8_t cmng_type); 611 static int bxe_get_cmng_fns_mode(struct bxe_softc *sc); 612 static void storm_memset_cmng(struct bxe_softc *sc, 613 struct cmng_init *cmng, 614 uint8_t port); 615 static void bxe_set_reset_global(struct bxe_softc *sc); 616 static void bxe_set_reset_in_progress(struct bxe_softc *sc); 617 static uint8_t bxe_reset_is_done(struct bxe_softc *sc, 618 int engine); 619 static uint8_t bxe_clear_pf_load(struct bxe_softc *sc); 620 static uint8_t bxe_chk_parity_attn(struct bxe_softc *sc, 621 uint8_t *global, 622 uint8_t print); 623 static void bxe_int_disable(struct bxe_softc *sc); 624 static int bxe_release_leader_lock(struct bxe_softc *sc); 625 static void bxe_pf_disable(struct bxe_softc *sc); 626 static void bxe_free_fp_buffers(struct bxe_softc *sc); 627 static inline void bxe_update_rx_prod(struct bxe_softc *sc, 628 struct bxe_fastpath *fp, 629 uint16_t rx_bd_prod, 630 uint16_t rx_cq_prod, 631 uint16_t rx_sge_prod); 632 static void bxe_link_report_locked(struct bxe_softc *sc); 633 static void bxe_link_report(struct bxe_softc *sc); 634 static void bxe_link_status_update(struct bxe_softc *sc); 635 static void bxe_periodic_callout_func(void *xsc); 636 static void bxe_periodic_start(struct bxe_softc *sc); 637 static void bxe_periodic_stop(struct bxe_softc *sc); 638 static int bxe_alloc_rx_bd_mbuf(struct bxe_fastpath *fp, 639 uint16_t prev_index, 640 uint16_t index); 641 static int bxe_alloc_rx_tpa_mbuf(struct bxe_fastpath *fp, 642 int queue); 643 static int bxe_alloc_rx_sge_mbuf(struct bxe_fastpath *fp, 644 uint16_t index); 645 static uint8_t bxe_txeof(struct bxe_softc *sc, 646 struct bxe_fastpath *fp); 647 static void bxe_task_fp(struct bxe_fastpath *fp); 648 static __noinline void bxe_dump_mbuf(struct bxe_softc *sc, 649 struct mbuf *m, 650 uint8_t contents); 651 static int bxe_alloc_mem(struct bxe_softc *sc); 652 static void bxe_free_mem(struct bxe_softc *sc); 653 static int bxe_alloc_fw_stats_mem(struct bxe_softc *sc); 654 static void bxe_free_fw_stats_mem(struct bxe_softc *sc); 655 static int bxe_interrupt_attach(struct bxe_softc *sc); 656 static void bxe_interrupt_detach(struct bxe_softc *sc); 657 static void bxe_set_rx_mode(struct bxe_softc *sc); 658 static int bxe_init_locked(struct bxe_softc *sc); 659 static int bxe_stop_locked(struct bxe_softc *sc); 660 static __noinline int bxe_nic_load(struct bxe_softc *sc, 661 int load_mode); 662 static __noinline int bxe_nic_unload(struct bxe_softc *sc, 663 uint32_t unload_mode, 664 uint8_t keep_link); 665 666 static void bxe_handle_sp_tq(void *context, int pending); 667 static void bxe_handle_fp_tq(void *context, int pending); 668 669 static int bxe_add_cdev(struct bxe_softc *sc); 670 static void bxe_del_cdev(struct bxe_softc *sc); 671 static int bxe_grc_dump(struct bxe_softc *sc); 672 static int bxe_alloc_buf_rings(struct bxe_softc *sc); 673 static void bxe_free_buf_rings(struct bxe_softc *sc); 674 675 /* calculate crc32 on a buffer (NOTE: crc32_length MUST be aligned to 8) */ 676 uint32_t 677 calc_crc32(uint8_t *crc32_packet, 678 uint32_t crc32_length, 679 uint32_t crc32_seed, 680 uint8_t complement) 681 { 682 uint32_t byte = 0; 683 uint32_t bit = 0; 684 uint8_t msb = 0; 685 uint32_t temp = 0; 686 uint32_t shft = 0; 687 uint8_t current_byte = 0; 688 uint32_t crc32_result = crc32_seed; 689 const uint32_t CRC32_POLY = 0x1edc6f41; 690 691 if ((crc32_packet == NULL) || 692 (crc32_length == 0) || 693 ((crc32_length % 8) != 0)) 694 { 695 return (crc32_result); 696 } 697 698 for (byte = 0; byte < crc32_length; byte = byte + 1) 699 { 700 current_byte = crc32_packet[byte]; 701 for (bit = 0; bit < 8; bit = bit + 1) 702 { 703 /* msb = crc32_result[31]; */ 704 msb = (uint8_t)(crc32_result >> 31); 705 706 crc32_result = crc32_result << 1; 707 708 /* it (msb != current_byte[bit]) */ 709 if (msb != (0x1 & (current_byte >> bit))) 710 { 711 crc32_result = crc32_result ^ CRC32_POLY; 712 /* crc32_result[0] = 1 */ 713 crc32_result |= 1; 714 } 715 } 716 } 717 718 /* Last step is to: 719 * 1. "mirror" every bit 720 * 2. swap the 4 bytes 721 * 3. complement each bit 722 */ 723 724 /* Mirror */ 725 temp = crc32_result; 726 shft = sizeof(crc32_result) * 8 - 1; 727 728 for (crc32_result >>= 1; crc32_result; crc32_result >>= 1) 729 { 730 temp <<= 1; 731 temp |= crc32_result & 1; 732 shft-- ; 733 } 734 735 /* temp[31-bit] = crc32_result[bit] */ 736 temp <<= shft; 737 738 /* Swap */ 739 /* crc32_result = {temp[7:0], temp[15:8], temp[23:16], temp[31:24]} */ 740 { 741 uint32_t t0, t1, t2, t3; 742 t0 = (0x000000ff & (temp >> 24)); 743 t1 = (0x0000ff00 & (temp >> 8)); 744 t2 = (0x00ff0000 & (temp << 8)); 745 t3 = (0xff000000 & (temp << 24)); 746 crc32_result = t0 | t1 | t2 | t3; 747 } 748 749 /* Complement */ 750 if (complement) 751 { 752 crc32_result = ~crc32_result; 753 } 754 755 return (crc32_result); 756 } 757 758 int 759 bxe_test_bit(int nr, 760 volatile unsigned long *addr) 761 { 762 return ((atomic_load_acq_long(addr) & (1 << nr)) != 0); 763 } 764 765 void 766 bxe_set_bit(unsigned int nr, 767 volatile unsigned long *addr) 768 { 769 atomic_set_acq_long(addr, (1 << nr)); 770 } 771 772 void 773 bxe_clear_bit(int nr, 774 volatile unsigned long *addr) 775 { 776 atomic_clear_acq_long(addr, (1 << nr)); 777 } 778 779 int 780 bxe_test_and_set_bit(int nr, 781 volatile unsigned long *addr) 782 { 783 unsigned long x; 784 nr = (1 << nr); 785 do { 786 x = *addr; 787 } while (atomic_cmpset_acq_long(addr, x, x | nr) == 0); 788 // if (x & nr) bit_was_set; else bit_was_not_set; 789 return (x & nr); 790 } 791 792 int 793 bxe_test_and_clear_bit(int nr, 794 volatile unsigned long *addr) 795 { 796 unsigned long x; 797 nr = (1 << nr); 798 do { 799 x = *addr; 800 } while (atomic_cmpset_acq_long(addr, x, x & ~nr) == 0); 801 // if (x & nr) bit_was_set; else bit_was_not_set; 802 return (x & nr); 803 } 804 805 int 806 bxe_cmpxchg(volatile int *addr, 807 int old, 808 int new) 809 { 810 int x; 811 do { 812 x = *addr; 813 } while (atomic_cmpset_acq_int(addr, old, new) == 0); 814 return (x); 815 } 816 817 /* 818 * Get DMA memory from the OS. 819 * 820 * Validates that the OS has provided DMA buffers in response to a 821 * bus_dmamap_load call and saves the physical address of those buffers. 822 * When the callback is used the OS will return 0 for the mapping function 823 * (bus_dmamap_load) so we use the value of map_arg->maxsegs to pass any 824 * failures back to the caller. 825 * 826 * Returns: 827 * Nothing. 828 */ 829 static void 830 bxe_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error) 831 { 832 struct bxe_dma *dma = arg; 833 834 if (error) { 835 dma->paddr = 0; 836 dma->nseg = 0; 837 BLOGE(dma->sc, "Failed DMA alloc '%s' (%d)!\n", dma->msg, error); 838 } else { 839 dma->paddr = segs->ds_addr; 840 dma->nseg = nseg; 841 } 842 } 843 844 /* 845 * Allocate a block of memory and map it for DMA. No partial completions 846 * allowed and release any resources acquired if we can't acquire all 847 * resources. 848 * 849 * Returns: 850 * 0 = Success, !0 = Failure 851 */ 852 int 853 bxe_dma_alloc(struct bxe_softc *sc, 854 bus_size_t size, 855 struct bxe_dma *dma, 856 const char *msg) 857 { 858 int rc; 859 860 if (dma->size > 0) { 861 BLOGE(sc, "dma block '%s' already has size %lu\n", msg, 862 (unsigned long)dma->size); 863 return (1); 864 } 865 866 memset(dma, 0, sizeof(*dma)); /* sanity */ 867 dma->sc = sc; 868 dma->size = size; 869 snprintf(dma->msg, sizeof(dma->msg), "%s", msg); 870 871 rc = bus_dma_tag_create(sc->parent_dma_tag, /* parent tag */ 872 BCM_PAGE_SIZE, /* alignment */ 873 0, /* boundary limit */ 874 BUS_SPACE_MAXADDR, /* restricted low */ 875 BUS_SPACE_MAXADDR, /* restricted hi */ 876 NULL, /* addr filter() */ 877 NULL, /* addr filter() arg */ 878 size, /* max map size */ 879 1, /* num discontinuous */ 880 size, /* max seg size */ 881 BUS_DMA_ALLOCNOW, /* flags */ 882 NULL, /* lock() */ 883 NULL, /* lock() arg */ 884 &dma->tag); /* returned dma tag */ 885 if (rc != 0) { 886 BLOGE(sc, "Failed to create dma tag for '%s' (%d)\n", msg, rc); 887 memset(dma, 0, sizeof(*dma)); 888 return (1); 889 } 890 891 rc = bus_dmamem_alloc(dma->tag, 892 (void **)&dma->vaddr, 893 (BUS_DMA_NOWAIT | BUS_DMA_ZERO), 894 &dma->map); 895 if (rc != 0) { 896 BLOGE(sc, "Failed to alloc dma mem for '%s' (%d)\n", msg, rc); 897 bus_dma_tag_destroy(dma->tag); 898 memset(dma, 0, sizeof(*dma)); 899 return (1); 900 } 901 902 rc = bus_dmamap_load(dma->tag, 903 dma->map, 904 dma->vaddr, 905 size, 906 bxe_dma_map_addr, /* BLOGD in here */ 907 dma, 908 BUS_DMA_NOWAIT); 909 if (rc != 0) { 910 BLOGE(sc, "Failed to load dma map for '%s' (%d)\n", msg, rc); 911 bus_dmamem_free(dma->tag, dma->vaddr, dma->map); 912 bus_dma_tag_destroy(dma->tag); 913 memset(dma, 0, sizeof(*dma)); 914 return (1); 915 } 916 917 return (0); 918 } 919 920 void 921 bxe_dma_free(struct bxe_softc *sc, 922 struct bxe_dma *dma) 923 { 924 if (dma->size > 0) { 925 DBASSERT(sc, (dma->tag != NULL), ("dma tag is NULL")); 926 927 bus_dmamap_sync(dma->tag, dma->map, 928 (BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE)); 929 bus_dmamap_unload(dma->tag, dma->map); 930 bus_dmamem_free(dma->tag, dma->vaddr, dma->map); 931 bus_dma_tag_destroy(dma->tag); 932 } 933 934 memset(dma, 0, sizeof(*dma)); 935 } 936 937 /* 938 * These indirect read and write routines are only during init. 939 * The locking is handled by the MCP. 940 */ 941 942 void 943 bxe_reg_wr_ind(struct bxe_softc *sc, 944 uint32_t addr, 945 uint32_t val) 946 { 947 pci_write_config(sc->dev, PCICFG_GRC_ADDRESS, addr, 4); 948 pci_write_config(sc->dev, PCICFG_GRC_DATA, val, 4); 949 pci_write_config(sc->dev, PCICFG_GRC_ADDRESS, 0, 4); 950 } 951 952 uint32_t 953 bxe_reg_rd_ind(struct bxe_softc *sc, 954 uint32_t addr) 955 { 956 uint32_t val; 957 958 pci_write_config(sc->dev, PCICFG_GRC_ADDRESS, addr, 4); 959 val = pci_read_config(sc->dev, PCICFG_GRC_DATA, 4); 960 pci_write_config(sc->dev, PCICFG_GRC_ADDRESS, 0, 4); 961 962 return (val); 963 } 964 965 static int 966 bxe_acquire_hw_lock(struct bxe_softc *sc, 967 uint32_t resource) 968 { 969 uint32_t lock_status; 970 uint32_t resource_bit = (1 << resource); 971 int func = SC_FUNC(sc); 972 uint32_t hw_lock_control_reg; 973 int cnt; 974 975 /* validate the resource is within range */ 976 if (resource > HW_LOCK_MAX_RESOURCE_VALUE) { 977 BLOGE(sc, "(resource 0x%x > HW_LOCK_MAX_RESOURCE_VALUE)" 978 " resource_bit 0x%x\n", resource, resource_bit); 979 return (-1); 980 } 981 982 if (func <= 5) { 983 hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + (func * 8)); 984 } else { 985 hw_lock_control_reg = 986 (MISC_REG_DRIVER_CONTROL_7 + ((func - 6) * 8)); 987 } 988 989 /* validate the resource is not already taken */ 990 lock_status = REG_RD(sc, hw_lock_control_reg); 991 if (lock_status & resource_bit) { 992 BLOGE(sc, "resource (0x%x) in use (status 0x%x bit 0x%x)\n", 993 resource, lock_status, resource_bit); 994 return (-1); 995 } 996 997 /* try every 5ms for 5 seconds */ 998 for (cnt = 0; cnt < 1000; cnt++) { 999 REG_WR(sc, (hw_lock_control_reg + 4), resource_bit); 1000 lock_status = REG_RD(sc, hw_lock_control_reg); 1001 if (lock_status & resource_bit) { 1002 return (0); 1003 } 1004 DELAY(5000); 1005 } 1006 1007 BLOGE(sc, "Resource 0x%x resource_bit 0x%x lock timeout!\n", 1008 resource, resource_bit); 1009 return (-1); 1010 } 1011 1012 static int 1013 bxe_release_hw_lock(struct bxe_softc *sc, 1014 uint32_t resource) 1015 { 1016 uint32_t lock_status; 1017 uint32_t resource_bit = (1 << resource); 1018 int func = SC_FUNC(sc); 1019 uint32_t hw_lock_control_reg; 1020 1021 /* validate the resource is within range */ 1022 if (resource > HW_LOCK_MAX_RESOURCE_VALUE) { 1023 BLOGE(sc, "(resource 0x%x > HW_LOCK_MAX_RESOURCE_VALUE)" 1024 " resource_bit 0x%x\n", resource, resource_bit); 1025 return (-1); 1026 } 1027 1028 if (func <= 5) { 1029 hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + (func * 8)); 1030 } else { 1031 hw_lock_control_reg = 1032 (MISC_REG_DRIVER_CONTROL_7 + ((func - 6) * 8)); 1033 } 1034 1035 /* validate the resource is currently taken */ 1036 lock_status = REG_RD(sc, hw_lock_control_reg); 1037 if (!(lock_status & resource_bit)) { 1038 BLOGE(sc, "resource (0x%x) not in use (status 0x%x bit 0x%x)\n", 1039 resource, lock_status, resource_bit); 1040 return (-1); 1041 } 1042 1043 REG_WR(sc, hw_lock_control_reg, resource_bit); 1044 return (0); 1045 } 1046 static void bxe_acquire_phy_lock(struct bxe_softc *sc) 1047 { 1048 BXE_PHY_LOCK(sc); 1049 bxe_acquire_hw_lock(sc,HW_LOCK_RESOURCE_MDIO); 1050 } 1051 1052 static void bxe_release_phy_lock(struct bxe_softc *sc) 1053 { 1054 bxe_release_hw_lock(sc,HW_LOCK_RESOURCE_MDIO); 1055 BXE_PHY_UNLOCK(sc); 1056 } 1057 /* 1058 * Per pf misc lock must be acquired before the per port mcp lock. Otherwise, 1059 * had we done things the other way around, if two pfs from the same port 1060 * would attempt to access nvram at the same time, we could run into a 1061 * scenario such as: 1062 * pf A takes the port lock. 1063 * pf B succeeds in taking the same lock since they are from the same port. 1064 * pf A takes the per pf misc lock. Performs eeprom access. 1065 * pf A finishes. Unlocks the per pf misc lock. 1066 * Pf B takes the lock and proceeds to perform it's own access. 1067 * pf A unlocks the per port lock, while pf B is still working (!). 1068 * mcp takes the per port lock and corrupts pf B's access (and/or has it's own 1069 * access corrupted by pf B).* 1070 */ 1071 static int 1072 bxe_acquire_nvram_lock(struct bxe_softc *sc) 1073 { 1074 int port = SC_PORT(sc); 1075 int count, i; 1076 uint32_t val = 0; 1077 1078 /* acquire HW lock: protect against other PFs in PF Direct Assignment */ 1079 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_NVRAM); 1080 1081 /* adjust timeout for emulation/FPGA */ 1082 count = NVRAM_TIMEOUT_COUNT; 1083 if (CHIP_REV_IS_SLOW(sc)) { 1084 count *= 100; 1085 } 1086 1087 /* request access to nvram interface */ 1088 REG_WR(sc, MCP_REG_MCPR_NVM_SW_ARB, 1089 (MCPR_NVM_SW_ARB_ARB_REQ_SET1 << port)); 1090 1091 for (i = 0; i < count*10; i++) { 1092 val = REG_RD(sc, MCP_REG_MCPR_NVM_SW_ARB); 1093 if (val & (MCPR_NVM_SW_ARB_ARB_ARB1 << port)) { 1094 break; 1095 } 1096 1097 DELAY(5); 1098 } 1099 1100 if (!(val & (MCPR_NVM_SW_ARB_ARB_ARB1 << port))) { 1101 BLOGE(sc, "Cannot get access to nvram interface " 1102 "port %d val 0x%x (MCPR_NVM_SW_ARB_ARB_ARB1 << port)\n", 1103 port, val); 1104 return (-1); 1105 } 1106 1107 return (0); 1108 } 1109 1110 static int 1111 bxe_release_nvram_lock(struct bxe_softc *sc) 1112 { 1113 int port = SC_PORT(sc); 1114 int count, i; 1115 uint32_t val = 0; 1116 1117 /* adjust timeout for emulation/FPGA */ 1118 count = NVRAM_TIMEOUT_COUNT; 1119 if (CHIP_REV_IS_SLOW(sc)) { 1120 count *= 100; 1121 } 1122 1123 /* relinquish nvram interface */ 1124 REG_WR(sc, MCP_REG_MCPR_NVM_SW_ARB, 1125 (MCPR_NVM_SW_ARB_ARB_REQ_CLR1 << port)); 1126 1127 for (i = 0; i < count*10; i++) { 1128 val = REG_RD(sc, MCP_REG_MCPR_NVM_SW_ARB); 1129 if (!(val & (MCPR_NVM_SW_ARB_ARB_ARB1 << port))) { 1130 break; 1131 } 1132 1133 DELAY(5); 1134 } 1135 1136 if (val & (MCPR_NVM_SW_ARB_ARB_ARB1 << port)) { 1137 BLOGE(sc, "Cannot free access to nvram interface " 1138 "port %d val 0x%x (MCPR_NVM_SW_ARB_ARB_ARB1 << port)\n", 1139 port, val); 1140 return (-1); 1141 } 1142 1143 /* release HW lock: protect against other PFs in PF Direct Assignment */ 1144 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_NVRAM); 1145 1146 return (0); 1147 } 1148 1149 static void 1150 bxe_enable_nvram_access(struct bxe_softc *sc) 1151 { 1152 uint32_t val; 1153 1154 val = REG_RD(sc, MCP_REG_MCPR_NVM_ACCESS_ENABLE); 1155 1156 /* enable both bits, even on read */ 1157 REG_WR(sc, MCP_REG_MCPR_NVM_ACCESS_ENABLE, 1158 (val | MCPR_NVM_ACCESS_ENABLE_EN | MCPR_NVM_ACCESS_ENABLE_WR_EN)); 1159 } 1160 1161 static void 1162 bxe_disable_nvram_access(struct bxe_softc *sc) 1163 { 1164 uint32_t val; 1165 1166 val = REG_RD(sc, MCP_REG_MCPR_NVM_ACCESS_ENABLE); 1167 1168 /* disable both bits, even after read */ 1169 REG_WR(sc, MCP_REG_MCPR_NVM_ACCESS_ENABLE, 1170 (val & ~(MCPR_NVM_ACCESS_ENABLE_EN | 1171 MCPR_NVM_ACCESS_ENABLE_WR_EN))); 1172 } 1173 1174 static int 1175 bxe_nvram_read_dword(struct bxe_softc *sc, 1176 uint32_t offset, 1177 uint32_t *ret_val, 1178 uint32_t cmd_flags) 1179 { 1180 int count, i, rc; 1181 uint32_t val; 1182 1183 /* build the command word */ 1184 cmd_flags |= MCPR_NVM_COMMAND_DOIT; 1185 1186 /* need to clear DONE bit separately */ 1187 REG_WR(sc, MCP_REG_MCPR_NVM_COMMAND, MCPR_NVM_COMMAND_DONE); 1188 1189 /* address of the NVRAM to read from */ 1190 REG_WR(sc, MCP_REG_MCPR_NVM_ADDR, 1191 (offset & MCPR_NVM_ADDR_NVM_ADDR_VALUE)); 1192 1193 /* issue a read command */ 1194 REG_WR(sc, MCP_REG_MCPR_NVM_COMMAND, cmd_flags); 1195 1196 /* adjust timeout for emulation/FPGA */ 1197 count = NVRAM_TIMEOUT_COUNT; 1198 if (CHIP_REV_IS_SLOW(sc)) { 1199 count *= 100; 1200 } 1201 1202 /* wait for completion */ 1203 *ret_val = 0; 1204 rc = -1; 1205 for (i = 0; i < count; i++) { 1206 DELAY(5); 1207 val = REG_RD(sc, MCP_REG_MCPR_NVM_COMMAND); 1208 1209 if (val & MCPR_NVM_COMMAND_DONE) { 1210 val = REG_RD(sc, MCP_REG_MCPR_NVM_READ); 1211 /* we read nvram data in cpu order 1212 * but ethtool sees it as an array of bytes 1213 * converting to big-endian will do the work 1214 */ 1215 *ret_val = htobe32(val); 1216 rc = 0; 1217 break; 1218 } 1219 } 1220 1221 if (rc == -1) { 1222 BLOGE(sc, "nvram read timeout expired " 1223 "(offset 0x%x cmd_flags 0x%x val 0x%x)\n", 1224 offset, cmd_flags, val); 1225 } 1226 1227 return (rc); 1228 } 1229 1230 static int 1231 bxe_nvram_read(struct bxe_softc *sc, 1232 uint32_t offset, 1233 uint8_t *ret_buf, 1234 int buf_size) 1235 { 1236 uint32_t cmd_flags; 1237 uint32_t val; 1238 int rc; 1239 1240 if ((offset & 0x03) || (buf_size & 0x03) || (buf_size == 0)) { 1241 BLOGE(sc, "Invalid parameter, offset 0x%x buf_size 0x%x\n", 1242 offset, buf_size); 1243 return (-1); 1244 } 1245 1246 if ((offset + buf_size) > sc->devinfo.flash_size) { 1247 BLOGE(sc, "Invalid parameter, " 1248 "offset 0x%x + buf_size 0x%x > flash_size 0x%x\n", 1249 offset, buf_size, sc->devinfo.flash_size); 1250 return (-1); 1251 } 1252 1253 /* request access to nvram interface */ 1254 rc = bxe_acquire_nvram_lock(sc); 1255 if (rc) { 1256 return (rc); 1257 } 1258 1259 /* enable access to nvram interface */ 1260 bxe_enable_nvram_access(sc); 1261 1262 /* read the first word(s) */ 1263 cmd_flags = MCPR_NVM_COMMAND_FIRST; 1264 while ((buf_size > sizeof(uint32_t)) && (rc == 0)) { 1265 rc = bxe_nvram_read_dword(sc, offset, &val, cmd_flags); 1266 memcpy(ret_buf, &val, 4); 1267 1268 /* advance to the next dword */ 1269 offset += sizeof(uint32_t); 1270 ret_buf += sizeof(uint32_t); 1271 buf_size -= sizeof(uint32_t); 1272 cmd_flags = 0; 1273 } 1274 1275 if (rc == 0) { 1276 cmd_flags |= MCPR_NVM_COMMAND_LAST; 1277 rc = bxe_nvram_read_dword(sc, offset, &val, cmd_flags); 1278 memcpy(ret_buf, &val, 4); 1279 } 1280 1281 /* disable access to nvram interface */ 1282 bxe_disable_nvram_access(sc); 1283 bxe_release_nvram_lock(sc); 1284 1285 return (rc); 1286 } 1287 1288 static int 1289 bxe_nvram_write_dword(struct bxe_softc *sc, 1290 uint32_t offset, 1291 uint32_t val, 1292 uint32_t cmd_flags) 1293 { 1294 int count, i, rc; 1295 1296 /* build the command word */ 1297 cmd_flags |= (MCPR_NVM_COMMAND_DOIT | MCPR_NVM_COMMAND_WR); 1298 1299 /* need to clear DONE bit separately */ 1300 REG_WR(sc, MCP_REG_MCPR_NVM_COMMAND, MCPR_NVM_COMMAND_DONE); 1301 1302 /* write the data */ 1303 REG_WR(sc, MCP_REG_MCPR_NVM_WRITE, val); 1304 1305 /* address of the NVRAM to write to */ 1306 REG_WR(sc, MCP_REG_MCPR_NVM_ADDR, 1307 (offset & MCPR_NVM_ADDR_NVM_ADDR_VALUE)); 1308 1309 /* issue the write command */ 1310 REG_WR(sc, MCP_REG_MCPR_NVM_COMMAND, cmd_flags); 1311 1312 /* adjust timeout for emulation/FPGA */ 1313 count = NVRAM_TIMEOUT_COUNT; 1314 if (CHIP_REV_IS_SLOW(sc)) { 1315 count *= 100; 1316 } 1317 1318 /* wait for completion */ 1319 rc = -1; 1320 for (i = 0; i < count; i++) { 1321 DELAY(5); 1322 val = REG_RD(sc, MCP_REG_MCPR_NVM_COMMAND); 1323 if (val & MCPR_NVM_COMMAND_DONE) { 1324 rc = 0; 1325 break; 1326 } 1327 } 1328 1329 if (rc == -1) { 1330 BLOGE(sc, "nvram write timeout expired " 1331 "(offset 0x%x cmd_flags 0x%x val 0x%x)\n", 1332 offset, cmd_flags, val); 1333 } 1334 1335 return (rc); 1336 } 1337 1338 #define BYTE_OFFSET(offset) (8 * (offset & 0x03)) 1339 1340 static int 1341 bxe_nvram_write1(struct bxe_softc *sc, 1342 uint32_t offset, 1343 uint8_t *data_buf, 1344 int buf_size) 1345 { 1346 uint32_t cmd_flags; 1347 uint32_t align_offset; 1348 uint32_t val; 1349 int rc; 1350 1351 if ((offset + buf_size) > sc->devinfo.flash_size) { 1352 BLOGE(sc, "Invalid parameter, " 1353 "offset 0x%x + buf_size 0x%x > flash_size 0x%x\n", 1354 offset, buf_size, sc->devinfo.flash_size); 1355 return (-1); 1356 } 1357 1358 /* request access to nvram interface */ 1359 rc = bxe_acquire_nvram_lock(sc); 1360 if (rc) { 1361 return (rc); 1362 } 1363 1364 /* enable access to nvram interface */ 1365 bxe_enable_nvram_access(sc); 1366 1367 cmd_flags = (MCPR_NVM_COMMAND_FIRST | MCPR_NVM_COMMAND_LAST); 1368 align_offset = (offset & ~0x03); 1369 rc = bxe_nvram_read_dword(sc, align_offset, &val, cmd_flags); 1370 1371 if (rc == 0) { 1372 val &= ~(0xff << BYTE_OFFSET(offset)); 1373 val |= (*data_buf << BYTE_OFFSET(offset)); 1374 1375 /* nvram data is returned as an array of bytes 1376 * convert it back to cpu order 1377 */ 1378 val = be32toh(val); 1379 1380 rc = bxe_nvram_write_dword(sc, align_offset, val, cmd_flags); 1381 } 1382 1383 /* disable access to nvram interface */ 1384 bxe_disable_nvram_access(sc); 1385 bxe_release_nvram_lock(sc); 1386 1387 return (rc); 1388 } 1389 1390 static int 1391 bxe_nvram_write(struct bxe_softc *sc, 1392 uint32_t offset, 1393 uint8_t *data_buf, 1394 int buf_size) 1395 { 1396 uint32_t cmd_flags; 1397 uint32_t val; 1398 uint32_t written_so_far; 1399 int rc; 1400 1401 if (buf_size == 1) { 1402 return (bxe_nvram_write1(sc, offset, data_buf, buf_size)); 1403 } 1404 1405 if ((offset & 0x03) || (buf_size & 0x03) /* || (buf_size == 0) */) { 1406 BLOGE(sc, "Invalid parameter, offset 0x%x buf_size 0x%x\n", 1407 offset, buf_size); 1408 return (-1); 1409 } 1410 1411 if (buf_size == 0) { 1412 return (0); /* nothing to do */ 1413 } 1414 1415 if ((offset + buf_size) > sc->devinfo.flash_size) { 1416 BLOGE(sc, "Invalid parameter, " 1417 "offset 0x%x + buf_size 0x%x > flash_size 0x%x\n", 1418 offset, buf_size, sc->devinfo.flash_size); 1419 return (-1); 1420 } 1421 1422 /* request access to nvram interface */ 1423 rc = bxe_acquire_nvram_lock(sc); 1424 if (rc) { 1425 return (rc); 1426 } 1427 1428 /* enable access to nvram interface */ 1429 bxe_enable_nvram_access(sc); 1430 1431 written_so_far = 0; 1432 cmd_flags = MCPR_NVM_COMMAND_FIRST; 1433 while ((written_so_far < buf_size) && (rc == 0)) { 1434 if (written_so_far == (buf_size - sizeof(uint32_t))) { 1435 cmd_flags |= MCPR_NVM_COMMAND_LAST; 1436 } else if (((offset + 4) % NVRAM_PAGE_SIZE) == 0) { 1437 cmd_flags |= MCPR_NVM_COMMAND_LAST; 1438 } else if ((offset % NVRAM_PAGE_SIZE) == 0) { 1439 cmd_flags |= MCPR_NVM_COMMAND_FIRST; 1440 } 1441 1442 memcpy(&val, data_buf, 4); 1443 1444 rc = bxe_nvram_write_dword(sc, offset, val, cmd_flags); 1445 1446 /* advance to the next dword */ 1447 offset += sizeof(uint32_t); 1448 data_buf += sizeof(uint32_t); 1449 written_so_far += sizeof(uint32_t); 1450 cmd_flags = 0; 1451 } 1452 1453 /* disable access to nvram interface */ 1454 bxe_disable_nvram_access(sc); 1455 bxe_release_nvram_lock(sc); 1456 1457 return (rc); 1458 } 1459 1460 /* copy command into DMAE command memory and set DMAE command Go */ 1461 void 1462 bxe_post_dmae(struct bxe_softc *sc, 1463 struct dmae_cmd *dmae, 1464 int idx) 1465 { 1466 uint32_t cmd_offset; 1467 int i; 1468 1469 cmd_offset = (DMAE_REG_CMD_MEM + (sizeof(struct dmae_cmd) * idx)); 1470 for (i = 0; i < ((sizeof(struct dmae_cmd) / 4)); i++) { 1471 REG_WR(sc, (cmd_offset + (i * 4)), *(((uint32_t *)dmae) + i)); 1472 } 1473 1474 REG_WR(sc, dmae_reg_go_c[idx], 1); 1475 } 1476 1477 uint32_t 1478 bxe_dmae_opcode_add_comp(uint32_t opcode, 1479 uint8_t comp_type) 1480 { 1481 return (opcode | ((comp_type << DMAE_CMD_C_DST_SHIFT) | 1482 DMAE_CMD_C_TYPE_ENABLE)); 1483 } 1484 1485 uint32_t 1486 bxe_dmae_opcode_clr_src_reset(uint32_t opcode) 1487 { 1488 return (opcode & ~DMAE_CMD_SRC_RESET); 1489 } 1490 1491 uint32_t 1492 bxe_dmae_opcode(struct bxe_softc *sc, 1493 uint8_t src_type, 1494 uint8_t dst_type, 1495 uint8_t with_comp, 1496 uint8_t comp_type) 1497 { 1498 uint32_t opcode = 0; 1499 1500 opcode |= ((src_type << DMAE_CMD_SRC_SHIFT) | 1501 (dst_type << DMAE_CMD_DST_SHIFT)); 1502 1503 opcode |= (DMAE_CMD_SRC_RESET | DMAE_CMD_DST_RESET); 1504 1505 opcode |= (SC_PORT(sc) ? DMAE_CMD_PORT_1 : DMAE_CMD_PORT_0); 1506 1507 opcode |= ((SC_VN(sc) << DMAE_CMD_E1HVN_SHIFT) | 1508 (SC_VN(sc) << DMAE_CMD_DST_VN_SHIFT)); 1509 1510 opcode |= (DMAE_COM_SET_ERR << DMAE_CMD_ERR_POLICY_SHIFT); 1511 1512 #ifdef __BIG_ENDIAN 1513 opcode |= DMAE_CMD_ENDIANITY_B_DW_SWAP; 1514 #else 1515 opcode |= DMAE_CMD_ENDIANITY_DW_SWAP; 1516 #endif 1517 1518 if (with_comp) { 1519 opcode = bxe_dmae_opcode_add_comp(opcode, comp_type); 1520 } 1521 1522 return (opcode); 1523 } 1524 1525 static void 1526 bxe_prep_dmae_with_comp(struct bxe_softc *sc, 1527 struct dmae_cmd *dmae, 1528 uint8_t src_type, 1529 uint8_t dst_type) 1530 { 1531 memset(dmae, 0, sizeof(struct dmae_cmd)); 1532 1533 /* set the opcode */ 1534 dmae->opcode = bxe_dmae_opcode(sc, src_type, dst_type, 1535 TRUE, DMAE_COMP_PCI); 1536 1537 /* fill in the completion parameters */ 1538 dmae->comp_addr_lo = U64_LO(BXE_SP_MAPPING(sc, wb_comp)); 1539 dmae->comp_addr_hi = U64_HI(BXE_SP_MAPPING(sc, wb_comp)); 1540 dmae->comp_val = DMAE_COMP_VAL; 1541 } 1542 1543 /* issue a DMAE command over the init channel and wait for completion */ 1544 static int 1545 bxe_issue_dmae_with_comp(struct bxe_softc *sc, 1546 struct dmae_cmd *dmae) 1547 { 1548 uint32_t *wb_comp = BXE_SP(sc, wb_comp); 1549 int timeout = CHIP_REV_IS_SLOW(sc) ? 400000 : 4000; 1550 1551 BXE_DMAE_LOCK(sc); 1552 1553 /* reset completion */ 1554 *wb_comp = 0; 1555 1556 /* post the command on the channel used for initializations */ 1557 bxe_post_dmae(sc, dmae, INIT_DMAE_C(sc)); 1558 1559 /* wait for completion */ 1560 DELAY(5); 1561 1562 while ((*wb_comp & ~DMAE_PCI_ERR_FLAG) != DMAE_COMP_VAL) { 1563 if (!timeout || 1564 (sc->recovery_state != BXE_RECOVERY_DONE && 1565 sc->recovery_state != BXE_RECOVERY_NIC_LOADING)) { 1566 BLOGE(sc, "DMAE timeout! *wb_comp 0x%x recovery_state 0x%x\n", 1567 *wb_comp, sc->recovery_state); 1568 BXE_DMAE_UNLOCK(sc); 1569 return (DMAE_TIMEOUT); 1570 } 1571 1572 timeout--; 1573 DELAY(50); 1574 } 1575 1576 if (*wb_comp & DMAE_PCI_ERR_FLAG) { 1577 BLOGE(sc, "DMAE PCI error! *wb_comp 0x%x recovery_state 0x%x\n", 1578 *wb_comp, sc->recovery_state); 1579 BXE_DMAE_UNLOCK(sc); 1580 return (DMAE_PCI_ERROR); 1581 } 1582 1583 BXE_DMAE_UNLOCK(sc); 1584 return (0); 1585 } 1586 1587 void 1588 bxe_read_dmae(struct bxe_softc *sc, 1589 uint32_t src_addr, 1590 uint32_t len32) 1591 { 1592 struct dmae_cmd dmae; 1593 uint32_t *data; 1594 int i, rc; 1595 1596 DBASSERT(sc, (len32 <= 4), ("DMAE read length is %d", len32)); 1597 1598 if (!sc->dmae_ready) { 1599 data = BXE_SP(sc, wb_data[0]); 1600 1601 for (i = 0; i < len32; i++) { 1602 data[i] = (CHIP_IS_E1(sc)) ? 1603 bxe_reg_rd_ind(sc, (src_addr + (i * 4))) : 1604 REG_RD(sc, (src_addr + (i * 4))); 1605 } 1606 1607 return; 1608 } 1609 1610 /* set opcode and fixed command fields */ 1611 bxe_prep_dmae_with_comp(sc, &dmae, DMAE_SRC_GRC, DMAE_DST_PCI); 1612 1613 /* fill in addresses and len */ 1614 dmae.src_addr_lo = (src_addr >> 2); /* GRC addr has dword resolution */ 1615 dmae.src_addr_hi = 0; 1616 dmae.dst_addr_lo = U64_LO(BXE_SP_MAPPING(sc, wb_data)); 1617 dmae.dst_addr_hi = U64_HI(BXE_SP_MAPPING(sc, wb_data)); 1618 dmae.len = len32; 1619 1620 /* issue the command and wait for completion */ 1621 if ((rc = bxe_issue_dmae_with_comp(sc, &dmae)) != 0) { 1622 bxe_panic(sc, ("DMAE failed (%d)\n", rc)); 1623 }; 1624 } 1625 1626 void 1627 bxe_write_dmae(struct bxe_softc *sc, 1628 bus_addr_t dma_addr, 1629 uint32_t dst_addr, 1630 uint32_t len32) 1631 { 1632 struct dmae_cmd dmae; 1633 int rc; 1634 1635 if (!sc->dmae_ready) { 1636 DBASSERT(sc, (len32 <= 4), ("DMAE not ready and length is %d", len32)); 1637 1638 if (CHIP_IS_E1(sc)) { 1639 ecore_init_ind_wr(sc, dst_addr, BXE_SP(sc, wb_data[0]), len32); 1640 } else { 1641 ecore_init_str_wr(sc, dst_addr, BXE_SP(sc, wb_data[0]), len32); 1642 } 1643 1644 return; 1645 } 1646 1647 /* set opcode and fixed command fields */ 1648 bxe_prep_dmae_with_comp(sc, &dmae, DMAE_SRC_PCI, DMAE_DST_GRC); 1649 1650 /* fill in addresses and len */ 1651 dmae.src_addr_lo = U64_LO(dma_addr); 1652 dmae.src_addr_hi = U64_HI(dma_addr); 1653 dmae.dst_addr_lo = (dst_addr >> 2); /* GRC addr has dword resolution */ 1654 dmae.dst_addr_hi = 0; 1655 dmae.len = len32; 1656 1657 /* issue the command and wait for completion */ 1658 if ((rc = bxe_issue_dmae_with_comp(sc, &dmae)) != 0) { 1659 bxe_panic(sc, ("DMAE failed (%d)\n", rc)); 1660 } 1661 } 1662 1663 void 1664 bxe_write_dmae_phys_len(struct bxe_softc *sc, 1665 bus_addr_t phys_addr, 1666 uint32_t addr, 1667 uint32_t len) 1668 { 1669 int dmae_wr_max = DMAE_LEN32_WR_MAX(sc); 1670 int offset = 0; 1671 1672 while (len > dmae_wr_max) { 1673 bxe_write_dmae(sc, 1674 (phys_addr + offset), /* src DMA address */ 1675 (addr + offset), /* dst GRC address */ 1676 dmae_wr_max); 1677 offset += (dmae_wr_max * 4); 1678 len -= dmae_wr_max; 1679 } 1680 1681 bxe_write_dmae(sc, 1682 (phys_addr + offset), /* src DMA address */ 1683 (addr + offset), /* dst GRC address */ 1684 len); 1685 } 1686 1687 void 1688 bxe_set_ctx_validation(struct bxe_softc *sc, 1689 struct eth_context *cxt, 1690 uint32_t cid) 1691 { 1692 /* ustorm cxt validation */ 1693 cxt->ustorm_ag_context.cdu_usage = 1694 CDU_RSRVD_VALUE_TYPE_A(HW_CID(sc, cid), 1695 CDU_REGION_NUMBER_UCM_AG, ETH_CONNECTION_TYPE); 1696 /* xcontext validation */ 1697 cxt->xstorm_ag_context.cdu_reserved = 1698 CDU_RSRVD_VALUE_TYPE_A(HW_CID(sc, cid), 1699 CDU_REGION_NUMBER_XCM_AG, ETH_CONNECTION_TYPE); 1700 } 1701 1702 static void 1703 bxe_storm_memset_hc_timeout(struct bxe_softc *sc, 1704 uint8_t port, 1705 uint8_t fw_sb_id, 1706 uint8_t sb_index, 1707 uint8_t ticks) 1708 { 1709 uint32_t addr = 1710 (BAR_CSTRORM_INTMEM + 1711 CSTORM_STATUS_BLOCK_DATA_TIMEOUT_OFFSET(fw_sb_id, sb_index)); 1712 1713 REG_WR8(sc, addr, ticks); 1714 1715 BLOGD(sc, DBG_LOAD, 1716 "port %d fw_sb_id %d sb_index %d ticks %d\n", 1717 port, fw_sb_id, sb_index, ticks); 1718 } 1719 1720 static void 1721 bxe_storm_memset_hc_disable(struct bxe_softc *sc, 1722 uint8_t port, 1723 uint16_t fw_sb_id, 1724 uint8_t sb_index, 1725 uint8_t disable) 1726 { 1727 uint32_t enable_flag = 1728 (disable) ? 0 : (1 << HC_INDEX_DATA_HC_ENABLED_SHIFT); 1729 uint32_t addr = 1730 (BAR_CSTRORM_INTMEM + 1731 CSTORM_STATUS_BLOCK_DATA_FLAGS_OFFSET(fw_sb_id, sb_index)); 1732 uint8_t flags; 1733 1734 /* clear and set */ 1735 flags = REG_RD8(sc, addr); 1736 flags &= ~HC_INDEX_DATA_HC_ENABLED; 1737 flags |= enable_flag; 1738 REG_WR8(sc, addr, flags); 1739 1740 BLOGD(sc, DBG_LOAD, 1741 "port %d fw_sb_id %d sb_index %d disable %d\n", 1742 port, fw_sb_id, sb_index, disable); 1743 } 1744 1745 void 1746 bxe_update_coalesce_sb_index(struct bxe_softc *sc, 1747 uint8_t fw_sb_id, 1748 uint8_t sb_index, 1749 uint8_t disable, 1750 uint16_t usec) 1751 { 1752 int port = SC_PORT(sc); 1753 uint8_t ticks = (usec / 4); /* XXX ??? */ 1754 1755 bxe_storm_memset_hc_timeout(sc, port, fw_sb_id, sb_index, ticks); 1756 1757 disable = (disable) ? 1 : ((usec) ? 0 : 1); 1758 bxe_storm_memset_hc_disable(sc, port, fw_sb_id, sb_index, disable); 1759 } 1760 1761 void 1762 elink_cb_udelay(struct bxe_softc *sc, 1763 uint32_t usecs) 1764 { 1765 DELAY(usecs); 1766 } 1767 1768 uint32_t 1769 elink_cb_reg_read(struct bxe_softc *sc, 1770 uint32_t reg_addr) 1771 { 1772 return (REG_RD(sc, reg_addr)); 1773 } 1774 1775 void 1776 elink_cb_reg_write(struct bxe_softc *sc, 1777 uint32_t reg_addr, 1778 uint32_t val) 1779 { 1780 REG_WR(sc, reg_addr, val); 1781 } 1782 1783 void 1784 elink_cb_reg_wb_write(struct bxe_softc *sc, 1785 uint32_t offset, 1786 uint32_t *wb_write, 1787 uint16_t len) 1788 { 1789 REG_WR_DMAE(sc, offset, wb_write, len); 1790 } 1791 1792 void 1793 elink_cb_reg_wb_read(struct bxe_softc *sc, 1794 uint32_t offset, 1795 uint32_t *wb_write, 1796 uint16_t len) 1797 { 1798 REG_RD_DMAE(sc, offset, wb_write, len); 1799 } 1800 1801 uint8_t 1802 elink_cb_path_id(struct bxe_softc *sc) 1803 { 1804 return (SC_PATH(sc)); 1805 } 1806 1807 void 1808 elink_cb_event_log(struct bxe_softc *sc, 1809 const elink_log_id_t elink_log_id, 1810 ...) 1811 { 1812 /* XXX */ 1813 BLOGI(sc, "ELINK EVENT LOG (%d)\n", elink_log_id); 1814 } 1815 1816 static int 1817 bxe_set_spio(struct bxe_softc *sc, 1818 int spio, 1819 uint32_t mode) 1820 { 1821 uint32_t spio_reg; 1822 1823 /* Only 2 SPIOs are configurable */ 1824 if ((spio != MISC_SPIO_SPIO4) && (spio != MISC_SPIO_SPIO5)) { 1825 BLOGE(sc, "Invalid SPIO 0x%x mode 0x%x\n", spio, mode); 1826 return (-1); 1827 } 1828 1829 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_SPIO); 1830 1831 /* read SPIO and mask except the float bits */ 1832 spio_reg = (REG_RD(sc, MISC_REG_SPIO) & MISC_SPIO_FLOAT); 1833 1834 switch (mode) { 1835 case MISC_SPIO_OUTPUT_LOW: 1836 BLOGD(sc, DBG_LOAD, "Set SPIO 0x%x -> output low\n", spio); 1837 /* clear FLOAT and set CLR */ 1838 spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS); 1839 spio_reg |= (spio << MISC_SPIO_CLR_POS); 1840 break; 1841 1842 case MISC_SPIO_OUTPUT_HIGH: 1843 BLOGD(sc, DBG_LOAD, "Set SPIO 0x%x -> output high\n", spio); 1844 /* clear FLOAT and set SET */ 1845 spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS); 1846 spio_reg |= (spio << MISC_SPIO_SET_POS); 1847 break; 1848 1849 case MISC_SPIO_INPUT_HI_Z: 1850 BLOGD(sc, DBG_LOAD, "Set SPIO 0x%x -> input\n", spio); 1851 /* set FLOAT */ 1852 spio_reg |= (spio << MISC_SPIO_FLOAT_POS); 1853 break; 1854 1855 default: 1856 break; 1857 } 1858 1859 REG_WR(sc, MISC_REG_SPIO, spio_reg); 1860 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_SPIO); 1861 1862 return (0); 1863 } 1864 1865 static int 1866 bxe_gpio_read(struct bxe_softc *sc, 1867 int gpio_num, 1868 uint8_t port) 1869 { 1870 /* The GPIO should be swapped if swap register is set and active */ 1871 int gpio_port = ((REG_RD(sc, NIG_REG_PORT_SWAP) && 1872 REG_RD(sc, NIG_REG_STRAP_OVERRIDE)) ^ port); 1873 int gpio_shift = (gpio_num + 1874 (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0)); 1875 uint32_t gpio_mask = (1 << gpio_shift); 1876 uint32_t gpio_reg; 1877 1878 if (gpio_num > MISC_REGISTERS_GPIO_3) { 1879 BLOGE(sc, "Invalid GPIO %d port 0x%x gpio_port %d gpio_shift %d" 1880 " gpio_mask 0x%x\n", gpio_num, port, gpio_port, gpio_shift, 1881 gpio_mask); 1882 return (-1); 1883 } 1884 1885 /* read GPIO value */ 1886 gpio_reg = REG_RD(sc, MISC_REG_GPIO); 1887 1888 /* get the requested pin value */ 1889 return ((gpio_reg & gpio_mask) == gpio_mask) ? 1 : 0; 1890 } 1891 1892 static int 1893 bxe_gpio_write(struct bxe_softc *sc, 1894 int gpio_num, 1895 uint32_t mode, 1896 uint8_t port) 1897 { 1898 /* The GPIO should be swapped if swap register is set and active */ 1899 int gpio_port = ((REG_RD(sc, NIG_REG_PORT_SWAP) && 1900 REG_RD(sc, NIG_REG_STRAP_OVERRIDE)) ^ port); 1901 int gpio_shift = (gpio_num + 1902 (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0)); 1903 uint32_t gpio_mask = (1 << gpio_shift); 1904 uint32_t gpio_reg; 1905 1906 if (gpio_num > MISC_REGISTERS_GPIO_3) { 1907 BLOGE(sc, "Invalid GPIO %d mode 0x%x port 0x%x gpio_port %d" 1908 " gpio_shift %d gpio_mask 0x%x\n", 1909 gpio_num, mode, port, gpio_port, gpio_shift, gpio_mask); 1910 return (-1); 1911 } 1912 1913 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_GPIO); 1914 1915 /* read GPIO and mask except the float bits */ 1916 gpio_reg = (REG_RD(sc, MISC_REG_GPIO) & MISC_REGISTERS_GPIO_FLOAT); 1917 1918 switch (mode) { 1919 case MISC_REGISTERS_GPIO_OUTPUT_LOW: 1920 BLOGD(sc, DBG_PHY, 1921 "Set GPIO %d (shift %d) -> output low\n", 1922 gpio_num, gpio_shift); 1923 /* clear FLOAT and set CLR */ 1924 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS); 1925 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_CLR_POS); 1926 break; 1927 1928 case MISC_REGISTERS_GPIO_OUTPUT_HIGH: 1929 BLOGD(sc, DBG_PHY, 1930 "Set GPIO %d (shift %d) -> output high\n", 1931 gpio_num, gpio_shift); 1932 /* clear FLOAT and set SET */ 1933 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS); 1934 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_SET_POS); 1935 break; 1936 1937 case MISC_REGISTERS_GPIO_INPUT_HI_Z: 1938 BLOGD(sc, DBG_PHY, 1939 "Set GPIO %d (shift %d) -> input\n", 1940 gpio_num, gpio_shift); 1941 /* set FLOAT */ 1942 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS); 1943 break; 1944 1945 default: 1946 break; 1947 } 1948 1949 REG_WR(sc, MISC_REG_GPIO, gpio_reg); 1950 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_GPIO); 1951 1952 return (0); 1953 } 1954 1955 static int 1956 bxe_gpio_mult_write(struct bxe_softc *sc, 1957 uint8_t pins, 1958 uint32_t mode) 1959 { 1960 uint32_t gpio_reg; 1961 1962 /* any port swapping should be handled by caller */ 1963 1964 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_GPIO); 1965 1966 /* read GPIO and mask except the float bits */ 1967 gpio_reg = REG_RD(sc, MISC_REG_GPIO); 1968 gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_FLOAT_POS); 1969 gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_CLR_POS); 1970 gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_SET_POS); 1971 1972 switch (mode) { 1973 case MISC_REGISTERS_GPIO_OUTPUT_LOW: 1974 BLOGD(sc, DBG_PHY, "Set GPIO 0x%x -> output low\n", pins); 1975 /* set CLR */ 1976 gpio_reg |= (pins << MISC_REGISTERS_GPIO_CLR_POS); 1977 break; 1978 1979 case MISC_REGISTERS_GPIO_OUTPUT_HIGH: 1980 BLOGD(sc, DBG_PHY, "Set GPIO 0x%x -> output high\n", pins); 1981 /* set SET */ 1982 gpio_reg |= (pins << MISC_REGISTERS_GPIO_SET_POS); 1983 break; 1984 1985 case MISC_REGISTERS_GPIO_INPUT_HI_Z: 1986 BLOGD(sc, DBG_PHY, "Set GPIO 0x%x -> input\n", pins); 1987 /* set FLOAT */ 1988 gpio_reg |= (pins << MISC_REGISTERS_GPIO_FLOAT_POS); 1989 break; 1990 1991 default: 1992 BLOGE(sc, "Invalid GPIO mode assignment pins 0x%x mode 0x%x" 1993 " gpio_reg 0x%x\n", pins, mode, gpio_reg); 1994 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_GPIO); 1995 return (-1); 1996 } 1997 1998 REG_WR(sc, MISC_REG_GPIO, gpio_reg); 1999 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_GPIO); 2000 2001 return (0); 2002 } 2003 2004 static int 2005 bxe_gpio_int_write(struct bxe_softc *sc, 2006 int gpio_num, 2007 uint32_t mode, 2008 uint8_t port) 2009 { 2010 /* The GPIO should be swapped if swap register is set and active */ 2011 int gpio_port = ((REG_RD(sc, NIG_REG_PORT_SWAP) && 2012 REG_RD(sc, NIG_REG_STRAP_OVERRIDE)) ^ port); 2013 int gpio_shift = (gpio_num + 2014 (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0)); 2015 uint32_t gpio_mask = (1 << gpio_shift); 2016 uint32_t gpio_reg; 2017 2018 if (gpio_num > MISC_REGISTERS_GPIO_3) { 2019 BLOGE(sc, "Invalid GPIO %d mode 0x%x port 0x%x gpio_port %d" 2020 " gpio_shift %d gpio_mask 0x%x\n", 2021 gpio_num, mode, port, gpio_port, gpio_shift, gpio_mask); 2022 return (-1); 2023 } 2024 2025 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_GPIO); 2026 2027 /* read GPIO int */ 2028 gpio_reg = REG_RD(sc, MISC_REG_GPIO_INT); 2029 2030 switch (mode) { 2031 case MISC_REGISTERS_GPIO_INT_OUTPUT_CLR: 2032 BLOGD(sc, DBG_PHY, 2033 "Clear GPIO INT %d (shift %d) -> output low\n", 2034 gpio_num, gpio_shift); 2035 /* clear SET and set CLR */ 2036 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS); 2037 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS); 2038 break; 2039 2040 case MISC_REGISTERS_GPIO_INT_OUTPUT_SET: 2041 BLOGD(sc, DBG_PHY, 2042 "Set GPIO INT %d (shift %d) -> output high\n", 2043 gpio_num, gpio_shift); 2044 /* clear CLR and set SET */ 2045 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS); 2046 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS); 2047 break; 2048 2049 default: 2050 break; 2051 } 2052 2053 REG_WR(sc, MISC_REG_GPIO_INT, gpio_reg); 2054 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_GPIO); 2055 2056 return (0); 2057 } 2058 2059 uint32_t 2060 elink_cb_gpio_read(struct bxe_softc *sc, 2061 uint16_t gpio_num, 2062 uint8_t port) 2063 { 2064 return (bxe_gpio_read(sc, gpio_num, port)); 2065 } 2066 2067 uint8_t 2068 elink_cb_gpio_write(struct bxe_softc *sc, 2069 uint16_t gpio_num, 2070 uint8_t mode, /* 0=low 1=high */ 2071 uint8_t port) 2072 { 2073 return (bxe_gpio_write(sc, gpio_num, mode, port)); 2074 } 2075 2076 uint8_t 2077 elink_cb_gpio_mult_write(struct bxe_softc *sc, 2078 uint8_t pins, 2079 uint8_t mode) /* 0=low 1=high */ 2080 { 2081 return (bxe_gpio_mult_write(sc, pins, mode)); 2082 } 2083 2084 uint8_t 2085 elink_cb_gpio_int_write(struct bxe_softc *sc, 2086 uint16_t gpio_num, 2087 uint8_t mode, /* 0=low 1=high */ 2088 uint8_t port) 2089 { 2090 return (bxe_gpio_int_write(sc, gpio_num, mode, port)); 2091 } 2092 2093 void 2094 elink_cb_notify_link_changed(struct bxe_softc *sc) 2095 { 2096 REG_WR(sc, (MISC_REG_AEU_GENERAL_ATTN_12 + 2097 (SC_FUNC(sc) * sizeof(uint32_t))), 1); 2098 } 2099 2100 /* send the MCP a request, block until there is a reply */ 2101 uint32_t 2102 elink_cb_fw_command(struct bxe_softc *sc, 2103 uint32_t command, 2104 uint32_t param) 2105 { 2106 int mb_idx = SC_FW_MB_IDX(sc); 2107 uint32_t seq; 2108 uint32_t rc = 0; 2109 uint32_t cnt = 1; 2110 uint8_t delay = CHIP_REV_IS_SLOW(sc) ? 100 : 10; 2111 2112 BXE_FWMB_LOCK(sc); 2113 2114 seq = ++sc->fw_seq; 2115 SHMEM_WR(sc, func_mb[mb_idx].drv_mb_param, param); 2116 SHMEM_WR(sc, func_mb[mb_idx].drv_mb_header, (command | seq)); 2117 2118 BLOGD(sc, DBG_PHY, 2119 "wrote command 0x%08x to FW MB param 0x%08x\n", 2120 (command | seq), param); 2121 2122 /* Let the FW do it's magic. GIve it up to 5 seconds... */ 2123 do { 2124 DELAY(delay * 1000); 2125 rc = SHMEM_RD(sc, func_mb[mb_idx].fw_mb_header); 2126 } while ((seq != (rc & FW_MSG_SEQ_NUMBER_MASK)) && (cnt++ < 500)); 2127 2128 BLOGD(sc, DBG_PHY, 2129 "[after %d ms] read 0x%x seq 0x%x from FW MB\n", 2130 cnt*delay, rc, seq); 2131 2132 /* is this a reply to our command? */ 2133 if (seq == (rc & FW_MSG_SEQ_NUMBER_MASK)) { 2134 rc &= FW_MSG_CODE_MASK; 2135 } else { 2136 /* Ruh-roh! */ 2137 BLOGE(sc, "FW failed to respond!\n"); 2138 // XXX bxe_fw_dump(sc); 2139 rc = 0; 2140 } 2141 2142 BXE_FWMB_UNLOCK(sc); 2143 return (rc); 2144 } 2145 2146 static uint32_t 2147 bxe_fw_command(struct bxe_softc *sc, 2148 uint32_t command, 2149 uint32_t param) 2150 { 2151 return (elink_cb_fw_command(sc, command, param)); 2152 } 2153 2154 static void 2155 __storm_memset_dma_mapping(struct bxe_softc *sc, 2156 uint32_t addr, 2157 bus_addr_t mapping) 2158 { 2159 REG_WR(sc, addr, U64_LO(mapping)); 2160 REG_WR(sc, (addr + 4), U64_HI(mapping)); 2161 } 2162 2163 static void 2164 storm_memset_spq_addr(struct bxe_softc *sc, 2165 bus_addr_t mapping, 2166 uint16_t abs_fid) 2167 { 2168 uint32_t addr = (XSEM_REG_FAST_MEMORY + 2169 XSTORM_SPQ_PAGE_BASE_OFFSET(abs_fid)); 2170 __storm_memset_dma_mapping(sc, addr, mapping); 2171 } 2172 2173 static void 2174 storm_memset_vf_to_pf(struct bxe_softc *sc, 2175 uint16_t abs_fid, 2176 uint16_t pf_id) 2177 { 2178 REG_WR8(sc, (BAR_XSTRORM_INTMEM + XSTORM_VF_TO_PF_OFFSET(abs_fid)), pf_id); 2179 REG_WR8(sc, (BAR_CSTRORM_INTMEM + CSTORM_VF_TO_PF_OFFSET(abs_fid)), pf_id); 2180 REG_WR8(sc, (BAR_TSTRORM_INTMEM + TSTORM_VF_TO_PF_OFFSET(abs_fid)), pf_id); 2181 REG_WR8(sc, (BAR_USTRORM_INTMEM + USTORM_VF_TO_PF_OFFSET(abs_fid)), pf_id); 2182 } 2183 2184 static void 2185 storm_memset_func_en(struct bxe_softc *sc, 2186 uint16_t abs_fid, 2187 uint8_t enable) 2188 { 2189 REG_WR8(sc, (BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(abs_fid)), enable); 2190 REG_WR8(sc, (BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(abs_fid)), enable); 2191 REG_WR8(sc, (BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(abs_fid)), enable); 2192 REG_WR8(sc, (BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(abs_fid)), enable); 2193 } 2194 2195 static void 2196 storm_memset_eq_data(struct bxe_softc *sc, 2197 struct event_ring_data *eq_data, 2198 uint16_t pfid) 2199 { 2200 uint32_t addr; 2201 size_t size; 2202 2203 addr = (BAR_CSTRORM_INTMEM + CSTORM_EVENT_RING_DATA_OFFSET(pfid)); 2204 size = sizeof(struct event_ring_data); 2205 ecore_storm_memset_struct(sc, addr, size, (uint32_t *)eq_data); 2206 } 2207 2208 static void 2209 storm_memset_eq_prod(struct bxe_softc *sc, 2210 uint16_t eq_prod, 2211 uint16_t pfid) 2212 { 2213 uint32_t addr = (BAR_CSTRORM_INTMEM + 2214 CSTORM_EVENT_RING_PROD_OFFSET(pfid)); 2215 REG_WR16(sc, addr, eq_prod); 2216 } 2217 2218 /* 2219 * Post a slowpath command. 2220 * 2221 * A slowpath command is used to propogate a configuration change through 2222 * the controller in a controlled manner, allowing each STORM processor and 2223 * other H/W blocks to phase in the change. The commands sent on the 2224 * slowpath are referred to as ramrods. Depending on the ramrod used the 2225 * completion of the ramrod will occur in different ways. Here's a 2226 * breakdown of ramrods and how they complete: 2227 * 2228 * RAMROD_CMD_ID_ETH_PORT_SETUP 2229 * Used to setup the leading connection on a port. Completes on the 2230 * Receive Completion Queue (RCQ) of that port (typically fp[0]). 2231 * 2232 * RAMROD_CMD_ID_ETH_CLIENT_SETUP 2233 * Used to setup an additional connection on a port. Completes on the 2234 * RCQ of the multi-queue/RSS connection being initialized. 2235 * 2236 * RAMROD_CMD_ID_ETH_STAT_QUERY 2237 * Used to force the storm processors to update the statistics database 2238 * in host memory. This ramrod is send on the leading connection CID and 2239 * completes as an index increment of the CSTORM on the default status 2240 * block. 2241 * 2242 * RAMROD_CMD_ID_ETH_UPDATE 2243 * Used to update the state of the leading connection, usually to udpate 2244 * the RSS indirection table. Completes on the RCQ of the leading 2245 * connection. (Not currently used under FreeBSD until OS support becomes 2246 * available.) 2247 * 2248 * RAMROD_CMD_ID_ETH_HALT 2249 * Used when tearing down a connection prior to driver unload. Completes 2250 * on the RCQ of the multi-queue/RSS connection being torn down. Don't 2251 * use this on the leading connection. 2252 * 2253 * RAMROD_CMD_ID_ETH_SET_MAC 2254 * Sets the Unicast/Broadcast/Multicast used by the port. Completes on 2255 * the RCQ of the leading connection. 2256 * 2257 * RAMROD_CMD_ID_ETH_CFC_DEL 2258 * Used when tearing down a conneciton prior to driver unload. Completes 2259 * on the RCQ of the leading connection (since the current connection 2260 * has been completely removed from controller memory). 2261 * 2262 * RAMROD_CMD_ID_ETH_PORT_DEL 2263 * Used to tear down the leading connection prior to driver unload, 2264 * typically fp[0]. Completes as an index increment of the CSTORM on the 2265 * default status block. 2266 * 2267 * RAMROD_CMD_ID_ETH_FORWARD_SETUP 2268 * Used for connection offload. Completes on the RCQ of the multi-queue 2269 * RSS connection that is being offloaded. (Not currently used under 2270 * FreeBSD.) 2271 * 2272 * There can only be one command pending per function. 2273 * 2274 * Returns: 2275 * 0 = Success, !0 = Failure. 2276 */ 2277 2278 /* must be called under the spq lock */ 2279 static inline 2280 struct eth_spe *bxe_sp_get_next(struct bxe_softc *sc) 2281 { 2282 struct eth_spe *next_spe = sc->spq_prod_bd; 2283 2284 if (sc->spq_prod_bd == sc->spq_last_bd) { 2285 /* wrap back to the first eth_spq */ 2286 sc->spq_prod_bd = sc->spq; 2287 sc->spq_prod_idx = 0; 2288 } else { 2289 sc->spq_prod_bd++; 2290 sc->spq_prod_idx++; 2291 } 2292 2293 return (next_spe); 2294 } 2295 2296 /* must be called under the spq lock */ 2297 static inline 2298 void bxe_sp_prod_update(struct bxe_softc *sc) 2299 { 2300 int func = SC_FUNC(sc); 2301 2302 /* 2303 * Make sure that BD data is updated before writing the producer. 2304 * BD data is written to the memory, the producer is read from the 2305 * memory, thus we need a full memory barrier to ensure the ordering. 2306 */ 2307 mb(); 2308 2309 REG_WR16(sc, (BAR_XSTRORM_INTMEM + XSTORM_SPQ_PROD_OFFSET(func)), 2310 sc->spq_prod_idx); 2311 2312 bus_space_barrier(sc->bar[BAR0].tag, sc->bar[BAR0].handle, 0, 0, 2313 BUS_SPACE_BARRIER_WRITE); 2314 } 2315 2316 /** 2317 * bxe_is_contextless_ramrod - check if the current command ends on EQ 2318 * 2319 * @cmd: command to check 2320 * @cmd_type: command type 2321 */ 2322 static inline 2323 int bxe_is_contextless_ramrod(int cmd, 2324 int cmd_type) 2325 { 2326 if ((cmd_type == NONE_CONNECTION_TYPE) || 2327 (cmd == RAMROD_CMD_ID_ETH_FORWARD_SETUP) || 2328 (cmd == RAMROD_CMD_ID_ETH_CLASSIFICATION_RULES) || 2329 (cmd == RAMROD_CMD_ID_ETH_FILTER_RULES) || 2330 (cmd == RAMROD_CMD_ID_ETH_MULTICAST_RULES) || 2331 (cmd == RAMROD_CMD_ID_ETH_SET_MAC) || 2332 (cmd == RAMROD_CMD_ID_ETH_RSS_UPDATE)) { 2333 return (TRUE); 2334 } else { 2335 return (FALSE); 2336 } 2337 } 2338 2339 /** 2340 * bxe_sp_post - place a single command on an SP ring 2341 * 2342 * @sc: driver handle 2343 * @command: command to place (e.g. SETUP, FILTER_RULES, etc.) 2344 * @cid: SW CID the command is related to 2345 * @data_hi: command private data address (high 32 bits) 2346 * @data_lo: command private data address (low 32 bits) 2347 * @cmd_type: command type (e.g. NONE, ETH) 2348 * 2349 * SP data is handled as if it's always an address pair, thus data fields are 2350 * not swapped to little endian in upper functions. Instead this function swaps 2351 * data as if it's two uint32 fields. 2352 */ 2353 int 2354 bxe_sp_post(struct bxe_softc *sc, 2355 int command, 2356 int cid, 2357 uint32_t data_hi, 2358 uint32_t data_lo, 2359 int cmd_type) 2360 { 2361 struct eth_spe *spe; 2362 uint16_t type; 2363 int common; 2364 2365 common = bxe_is_contextless_ramrod(command, cmd_type); 2366 2367 BXE_SP_LOCK(sc); 2368 2369 if (common) { 2370 if (!atomic_load_acq_long(&sc->eq_spq_left)) { 2371 BLOGE(sc, "EQ ring is full!\n"); 2372 BXE_SP_UNLOCK(sc); 2373 return (-1); 2374 } 2375 } else { 2376 if (!atomic_load_acq_long(&sc->cq_spq_left)) { 2377 BLOGE(sc, "SPQ ring is full!\n"); 2378 BXE_SP_UNLOCK(sc); 2379 return (-1); 2380 } 2381 } 2382 2383 spe = bxe_sp_get_next(sc); 2384 2385 /* CID needs port number to be encoded int it */ 2386 spe->hdr.conn_and_cmd_data = 2387 htole32((command << SPE_HDR_T_CMD_ID_SHIFT) | HW_CID(sc, cid)); 2388 2389 type = (cmd_type << SPE_HDR_T_CONN_TYPE_SHIFT) & SPE_HDR_T_CONN_TYPE; 2390 2391 /* TBD: Check if it works for VFs */ 2392 type |= ((SC_FUNC(sc) << SPE_HDR_T_FUNCTION_ID_SHIFT) & 2393 SPE_HDR_T_FUNCTION_ID); 2394 2395 spe->hdr.type = htole16(type); 2396 2397 spe->data.update_data_addr.hi = htole32(data_hi); 2398 spe->data.update_data_addr.lo = htole32(data_lo); 2399 2400 /* 2401 * It's ok if the actual decrement is issued towards the memory 2402 * somewhere between the lock and unlock. Thus no more explict 2403 * memory barrier is needed. 2404 */ 2405 if (common) { 2406 atomic_subtract_acq_long(&sc->eq_spq_left, 1); 2407 } else { 2408 atomic_subtract_acq_long(&sc->cq_spq_left, 1); 2409 } 2410 2411 BLOGD(sc, DBG_SP, "SPQE -> %#jx\n", (uintmax_t)sc->spq_dma.paddr); 2412 BLOGD(sc, DBG_SP, "FUNC_RDATA -> %p / %#jx\n", 2413 BXE_SP(sc, func_rdata), (uintmax_t)BXE_SP_MAPPING(sc, func_rdata)); 2414 BLOGD(sc, DBG_SP, 2415 "SPQE[%x] (%x:%x) (cmd, common?) (%d,%d) hw_cid %x data (%x:%x) type(0x%x) left (CQ, EQ) (%lx,%lx)\n", 2416 sc->spq_prod_idx, 2417 (uint32_t)U64_HI(sc->spq_dma.paddr), 2418 (uint32_t)(U64_LO(sc->spq_dma.paddr) + (uint8_t *)sc->spq_prod_bd - (uint8_t *)sc->spq), 2419 command, 2420 common, 2421 HW_CID(sc, cid), 2422 data_hi, 2423 data_lo, 2424 type, 2425 atomic_load_acq_long(&sc->cq_spq_left), 2426 atomic_load_acq_long(&sc->eq_spq_left)); 2427 2428 bxe_sp_prod_update(sc); 2429 2430 BXE_SP_UNLOCK(sc); 2431 return (0); 2432 } 2433 2434 /** 2435 * bxe_debug_print_ind_table - prints the indirection table configuration. 2436 * 2437 * @sc: driver hanlde 2438 * @p: pointer to rss configuration 2439 */ 2440 2441 /* 2442 * FreeBSD Device probe function. 2443 * 2444 * Compares the device found to the driver's list of supported devices and 2445 * reports back to the bsd loader whether this is the right driver for the device. 2446 * This is the driver entry function called from the "kldload" command. 2447 * 2448 * Returns: 2449 * BUS_PROBE_DEFAULT on success, positive value on failure. 2450 */ 2451 static int 2452 bxe_probe(device_t dev) 2453 { 2454 struct bxe_softc *sc; 2455 struct bxe_device_type *t; 2456 char *descbuf; 2457 uint16_t did, sdid, svid, vid; 2458 2459 /* Find our device structure */ 2460 sc = device_get_softc(dev); 2461 sc->dev = dev; 2462 t = bxe_devs; 2463 2464 /* Get the data for the device to be probed. */ 2465 vid = pci_get_vendor(dev); 2466 did = pci_get_device(dev); 2467 svid = pci_get_subvendor(dev); 2468 sdid = pci_get_subdevice(dev); 2469 2470 BLOGD(sc, DBG_LOAD, 2471 "%s(); VID = 0x%04X, DID = 0x%04X, SVID = 0x%04X, " 2472 "SDID = 0x%04X\n", __FUNCTION__, vid, did, svid, sdid); 2473 2474 /* Look through the list of known devices for a match. */ 2475 while (t->bxe_name != NULL) { 2476 if ((vid == t->bxe_vid) && (did == t->bxe_did) && 2477 ((svid == t->bxe_svid) || (t->bxe_svid == PCI_ANY_ID)) && 2478 ((sdid == t->bxe_sdid) || (t->bxe_sdid == PCI_ANY_ID))) { 2479 descbuf = malloc(BXE_DEVDESC_MAX, M_TEMP, M_NOWAIT); 2480 if (descbuf == NULL) 2481 return (ENOMEM); 2482 2483 /* Print out the device identity. */ 2484 snprintf(descbuf, BXE_DEVDESC_MAX, 2485 "%s (%c%d) BXE v:%s\n", t->bxe_name, 2486 (((pci_read_config(dev, PCIR_REVID, 4) & 2487 0xf0) >> 4) + 'A'), 2488 (pci_read_config(dev, PCIR_REVID, 4) & 0xf), 2489 BXE_DRIVER_VERSION); 2490 2491 device_set_desc_copy(dev, descbuf); 2492 free(descbuf, M_TEMP); 2493 return (BUS_PROBE_DEFAULT); 2494 } 2495 t++; 2496 } 2497 2498 return (ENXIO); 2499 } 2500 2501 static void 2502 bxe_init_mutexes(struct bxe_softc *sc) 2503 { 2504 #ifdef BXE_CORE_LOCK_SX 2505 snprintf(sc->core_sx_name, sizeof(sc->core_sx_name), 2506 "bxe%d_core_lock", sc->unit); 2507 sx_init(&sc->core_sx, sc->core_sx_name); 2508 #else 2509 snprintf(sc->core_mtx_name, sizeof(sc->core_mtx_name), 2510 "bxe%d_core_lock", sc->unit); 2511 mtx_init(&sc->core_mtx, sc->core_mtx_name, NULL, MTX_DEF); 2512 #endif 2513 2514 snprintf(sc->sp_mtx_name, sizeof(sc->sp_mtx_name), 2515 "bxe%d_sp_lock", sc->unit); 2516 mtx_init(&sc->sp_mtx, sc->sp_mtx_name, NULL, MTX_DEF); 2517 2518 snprintf(sc->dmae_mtx_name, sizeof(sc->dmae_mtx_name), 2519 "bxe%d_dmae_lock", sc->unit); 2520 mtx_init(&sc->dmae_mtx, sc->dmae_mtx_name, NULL, MTX_DEF); 2521 2522 snprintf(sc->port.phy_mtx_name, sizeof(sc->port.phy_mtx_name), 2523 "bxe%d_phy_lock", sc->unit); 2524 mtx_init(&sc->port.phy_mtx, sc->port.phy_mtx_name, NULL, MTX_DEF); 2525 2526 snprintf(sc->fwmb_mtx_name, sizeof(sc->fwmb_mtx_name), 2527 "bxe%d_fwmb_lock", sc->unit); 2528 mtx_init(&sc->fwmb_mtx, sc->fwmb_mtx_name, NULL, MTX_DEF); 2529 2530 snprintf(sc->print_mtx_name, sizeof(sc->print_mtx_name), 2531 "bxe%d_print_lock", sc->unit); 2532 mtx_init(&(sc->print_mtx), sc->print_mtx_name, NULL, MTX_DEF); 2533 2534 snprintf(sc->stats_mtx_name, sizeof(sc->stats_mtx_name), 2535 "bxe%d_stats_lock", sc->unit); 2536 mtx_init(&(sc->stats_mtx), sc->stats_mtx_name, NULL, MTX_DEF); 2537 2538 snprintf(sc->mcast_mtx_name, sizeof(sc->mcast_mtx_name), 2539 "bxe%d_mcast_lock", sc->unit); 2540 mtx_init(&(sc->mcast_mtx), sc->mcast_mtx_name, NULL, MTX_DEF); 2541 } 2542 2543 static void 2544 bxe_release_mutexes(struct bxe_softc *sc) 2545 { 2546 #ifdef BXE_CORE_LOCK_SX 2547 sx_destroy(&sc->core_sx); 2548 #else 2549 if (mtx_initialized(&sc->core_mtx)) { 2550 mtx_destroy(&sc->core_mtx); 2551 } 2552 #endif 2553 2554 if (mtx_initialized(&sc->sp_mtx)) { 2555 mtx_destroy(&sc->sp_mtx); 2556 } 2557 2558 if (mtx_initialized(&sc->dmae_mtx)) { 2559 mtx_destroy(&sc->dmae_mtx); 2560 } 2561 2562 if (mtx_initialized(&sc->port.phy_mtx)) { 2563 mtx_destroy(&sc->port.phy_mtx); 2564 } 2565 2566 if (mtx_initialized(&sc->fwmb_mtx)) { 2567 mtx_destroy(&sc->fwmb_mtx); 2568 } 2569 2570 if (mtx_initialized(&sc->print_mtx)) { 2571 mtx_destroy(&sc->print_mtx); 2572 } 2573 2574 if (mtx_initialized(&sc->stats_mtx)) { 2575 mtx_destroy(&sc->stats_mtx); 2576 } 2577 2578 if (mtx_initialized(&sc->mcast_mtx)) { 2579 mtx_destroy(&sc->mcast_mtx); 2580 } 2581 } 2582 2583 static void 2584 bxe_tx_disable(struct bxe_softc* sc) 2585 { 2586 if_t ifp = sc->ifp; 2587 2588 /* tell the stack the driver is stopped and TX queue is full */ 2589 if (ifp != NULL) { 2590 if_setdrvflags(ifp, 0); 2591 } 2592 } 2593 2594 static void 2595 bxe_drv_pulse(struct bxe_softc *sc) 2596 { 2597 SHMEM_WR(sc, func_mb[SC_FW_MB_IDX(sc)].drv_pulse_mb, 2598 sc->fw_drv_pulse_wr_seq); 2599 } 2600 2601 static inline uint16_t 2602 bxe_tx_avail(struct bxe_softc *sc, 2603 struct bxe_fastpath *fp) 2604 { 2605 int16_t used; 2606 uint16_t prod; 2607 uint16_t cons; 2608 2609 prod = fp->tx_bd_prod; 2610 cons = fp->tx_bd_cons; 2611 2612 used = SUB_S16(prod, cons); 2613 2614 return (int16_t)(sc->tx_ring_size) - used; 2615 } 2616 2617 static inline int 2618 bxe_tx_queue_has_work(struct bxe_fastpath *fp) 2619 { 2620 uint16_t hw_cons; 2621 2622 mb(); /* status block fields can change */ 2623 hw_cons = le16toh(*fp->tx_cons_sb); 2624 return (hw_cons != fp->tx_pkt_cons); 2625 } 2626 2627 static inline uint8_t 2628 bxe_has_tx_work(struct bxe_fastpath *fp) 2629 { 2630 /* expand this for multi-cos if ever supported */ 2631 return (bxe_tx_queue_has_work(fp)) ? TRUE : FALSE; 2632 } 2633 2634 static inline int 2635 bxe_has_rx_work(struct bxe_fastpath *fp) 2636 { 2637 uint16_t rx_cq_cons_sb; 2638 2639 mb(); /* status block fields can change */ 2640 rx_cq_cons_sb = le16toh(*fp->rx_cq_cons_sb); 2641 if ((rx_cq_cons_sb & RCQ_MAX) == RCQ_MAX) 2642 rx_cq_cons_sb++; 2643 return (fp->rx_cq_cons != rx_cq_cons_sb); 2644 } 2645 2646 static void 2647 bxe_sp_event(struct bxe_softc *sc, 2648 struct bxe_fastpath *fp, 2649 union eth_rx_cqe *rr_cqe) 2650 { 2651 int cid = SW_CID(rr_cqe->ramrod_cqe.conn_and_cmd_data); 2652 int command = CQE_CMD(rr_cqe->ramrod_cqe.conn_and_cmd_data); 2653 enum ecore_queue_cmd drv_cmd = ECORE_Q_CMD_MAX; 2654 struct ecore_queue_sp_obj *q_obj = &BXE_SP_OBJ(sc, fp).q_obj; 2655 2656 BLOGD(sc, DBG_SP, "fp=%d cid=%d got ramrod #%d state is %x type is %d\n", 2657 fp->index, cid, command, sc->state, rr_cqe->ramrod_cqe.ramrod_type); 2658 2659 switch (command) { 2660 case (RAMROD_CMD_ID_ETH_CLIENT_UPDATE): 2661 BLOGD(sc, DBG_SP, "got UPDATE ramrod. CID %d\n", cid); 2662 drv_cmd = ECORE_Q_CMD_UPDATE; 2663 break; 2664 2665 case (RAMROD_CMD_ID_ETH_CLIENT_SETUP): 2666 BLOGD(sc, DBG_SP, "got MULTI[%d] setup ramrod\n", cid); 2667 drv_cmd = ECORE_Q_CMD_SETUP; 2668 break; 2669 2670 case (RAMROD_CMD_ID_ETH_TX_QUEUE_SETUP): 2671 BLOGD(sc, DBG_SP, "got MULTI[%d] tx-only setup ramrod\n", cid); 2672 drv_cmd = ECORE_Q_CMD_SETUP_TX_ONLY; 2673 break; 2674 2675 case (RAMROD_CMD_ID_ETH_HALT): 2676 BLOGD(sc, DBG_SP, "got MULTI[%d] halt ramrod\n", cid); 2677 drv_cmd = ECORE_Q_CMD_HALT; 2678 break; 2679 2680 case (RAMROD_CMD_ID_ETH_TERMINATE): 2681 BLOGD(sc, DBG_SP, "got MULTI[%d] teminate ramrod\n", cid); 2682 drv_cmd = ECORE_Q_CMD_TERMINATE; 2683 break; 2684 2685 case (RAMROD_CMD_ID_ETH_EMPTY): 2686 BLOGD(sc, DBG_SP, "got MULTI[%d] empty ramrod\n", cid); 2687 drv_cmd = ECORE_Q_CMD_EMPTY; 2688 break; 2689 2690 default: 2691 BLOGD(sc, DBG_SP, "ERROR: unexpected MC reply (%d) on fp[%d]\n", 2692 command, fp->index); 2693 return; 2694 } 2695 2696 if ((drv_cmd != ECORE_Q_CMD_MAX) && 2697 q_obj->complete_cmd(sc, q_obj, drv_cmd)) { 2698 /* 2699 * q_obj->complete_cmd() failure means that this was 2700 * an unexpected completion. 2701 * 2702 * In this case we don't want to increase the sc->spq_left 2703 * because apparently we haven't sent this command the first 2704 * place. 2705 */ 2706 // bxe_panic(sc, ("Unexpected SP completion\n")); 2707 return; 2708 } 2709 2710 atomic_add_acq_long(&sc->cq_spq_left, 1); 2711 2712 BLOGD(sc, DBG_SP, "sc->cq_spq_left 0x%lx\n", 2713 atomic_load_acq_long(&sc->cq_spq_left)); 2714 } 2715 2716 /* 2717 * The current mbuf is part of an aggregation. Move the mbuf into the TPA 2718 * aggregation queue, put an empty mbuf back onto the receive chain, and mark 2719 * the current aggregation queue as in-progress. 2720 */ 2721 static void 2722 bxe_tpa_start(struct bxe_softc *sc, 2723 struct bxe_fastpath *fp, 2724 uint16_t queue, 2725 uint16_t cons, 2726 uint16_t prod, 2727 struct eth_fast_path_rx_cqe *cqe) 2728 { 2729 struct bxe_sw_rx_bd tmp_bd; 2730 struct bxe_sw_rx_bd *rx_buf; 2731 struct eth_rx_bd *rx_bd; 2732 int max_agg_queues; 2733 struct bxe_sw_tpa_info *tpa_info = &fp->rx_tpa_info[queue]; 2734 uint16_t index; 2735 2736 BLOGD(sc, DBG_LRO, "fp[%02d].tpa[%02d] TPA START " 2737 "cons=%d prod=%d\n", 2738 fp->index, queue, cons, prod); 2739 2740 max_agg_queues = MAX_AGG_QS(sc); 2741 2742 KASSERT((queue < max_agg_queues), 2743 ("fp[%02d] invalid aggr queue (%d >= %d)!", 2744 fp->index, queue, max_agg_queues)); 2745 2746 KASSERT((tpa_info->state == BXE_TPA_STATE_STOP), 2747 ("fp[%02d].tpa[%02d] starting aggr on queue not stopped!", 2748 fp->index, queue)); 2749 2750 /* copy the existing mbuf and mapping from the TPA pool */ 2751 tmp_bd = tpa_info->bd; 2752 2753 if (tmp_bd.m == NULL) { 2754 uint32_t *tmp; 2755 2756 tmp = (uint32_t *)cqe; 2757 2758 BLOGE(sc, "fp[%02d].tpa[%02d] cons[%d] prod[%d]mbuf not allocated!\n", 2759 fp->index, queue, cons, prod); 2760 BLOGE(sc, "cqe [0x%08x 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x]\n", 2761 *tmp, *(tmp+1), *(tmp+2), *(tmp+3), *(tmp+4), *(tmp+5), *(tmp+6), *(tmp+7)); 2762 2763 /* XXX Error handling? */ 2764 return; 2765 } 2766 2767 /* change the TPA queue to the start state */ 2768 tpa_info->state = BXE_TPA_STATE_START; 2769 tpa_info->placement_offset = cqe->placement_offset; 2770 tpa_info->parsing_flags = le16toh(cqe->pars_flags.flags); 2771 tpa_info->vlan_tag = le16toh(cqe->vlan_tag); 2772 tpa_info->len_on_bd = le16toh(cqe->len_on_bd); 2773 2774 fp->rx_tpa_queue_used |= (1 << queue); 2775 2776 /* 2777 * If all the buffer descriptors are filled with mbufs then fill in 2778 * the current consumer index with a new BD. Else if a maximum Rx 2779 * buffer limit is imposed then fill in the next producer index. 2780 */ 2781 index = (sc->max_rx_bufs != RX_BD_USABLE) ? 2782 prod : cons; 2783 2784 /* move the received mbuf and mapping to TPA pool */ 2785 tpa_info->bd = fp->rx_mbuf_chain[cons]; 2786 2787 /* release any existing RX BD mbuf mappings */ 2788 if (cons != index) { 2789 rx_buf = &fp->rx_mbuf_chain[cons]; 2790 2791 if (rx_buf->m_map != NULL) { 2792 bus_dmamap_sync(fp->rx_mbuf_tag, rx_buf->m_map, 2793 BUS_DMASYNC_POSTREAD); 2794 bus_dmamap_unload(fp->rx_mbuf_tag, rx_buf->m_map); 2795 } 2796 2797 /* 2798 * We get here when the maximum number of rx buffers is less than 2799 * RX_BD_USABLE. The mbuf is already saved above so it's OK to NULL 2800 * it out here without concern of a memory leak. 2801 */ 2802 fp->rx_mbuf_chain[cons].m = NULL; 2803 } 2804 2805 /* update the Rx SW BD with the mbuf info from the TPA pool */ 2806 fp->rx_mbuf_chain[index] = tmp_bd; 2807 2808 /* update the Rx BD with the empty mbuf phys address from the TPA pool */ 2809 rx_bd = &fp->rx_chain[index]; 2810 rx_bd->addr_hi = htole32(U64_HI(tpa_info->seg.ds_addr)); 2811 rx_bd->addr_lo = htole32(U64_LO(tpa_info->seg.ds_addr)); 2812 } 2813 2814 /* 2815 * When a TPA aggregation is completed, loop through the individual mbufs 2816 * of the aggregation, combining them into a single mbuf which will be sent 2817 * up the stack. Refill all freed SGEs with mbufs as we go along. 2818 */ 2819 static int 2820 bxe_fill_frag_mbuf(struct bxe_softc *sc, 2821 struct bxe_fastpath *fp, 2822 struct bxe_sw_tpa_info *tpa_info, 2823 uint16_t queue, 2824 uint16_t pages, 2825 struct mbuf *m, 2826 struct eth_end_agg_rx_cqe *cqe, 2827 uint16_t cqe_idx) 2828 { 2829 struct mbuf *m_frag; 2830 uint32_t frag_len, frag_size, i; 2831 uint16_t sge_idx; 2832 int rc = 0; 2833 int j; 2834 2835 frag_size = le16toh(cqe->pkt_len) - tpa_info->len_on_bd; 2836 2837 BLOGD(sc, DBG_LRO, 2838 "fp[%02d].tpa[%02d] TPA fill len_on_bd=%d frag_size=%d pages=%d\n", 2839 fp->index, queue, tpa_info->len_on_bd, frag_size, pages); 2840 2841 /* make sure the aggregated frame is not too big to handle */ 2842 if (pages > 8 * PAGES_PER_SGE) { 2843 2844 uint32_t *tmp = (uint32_t *)cqe; 2845 2846 BLOGE(sc, "fp[%02d].sge[0x%04x] has too many pages (%d)! " 2847 "pkt_len=%d len_on_bd=%d frag_size=%d\n", 2848 fp->index, cqe_idx, pages, le16toh(cqe->pkt_len), 2849 tpa_info->len_on_bd, frag_size); 2850 2851 BLOGE(sc, "cqe [0x%08x 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x]\n", 2852 *tmp, *(tmp+1), *(tmp+2), *(tmp+3), *(tmp+4), *(tmp+5), *(tmp+6), *(tmp+7)); 2853 2854 bxe_panic(sc, ("sge page count error\n")); 2855 return (EINVAL); 2856 } 2857 2858 /* 2859 * Scan through the scatter gather list pulling individual mbufs into a 2860 * single mbuf for the host stack. 2861 */ 2862 for (i = 0, j = 0; i < pages; i += PAGES_PER_SGE, j++) { 2863 sge_idx = RX_SGE(le16toh(cqe->sgl_or_raw_data.sgl[j])); 2864 2865 /* 2866 * Firmware gives the indices of the SGE as if the ring is an array 2867 * (meaning that the "next" element will consume 2 indices). 2868 */ 2869 frag_len = min(frag_size, (uint32_t)(SGE_PAGES)); 2870 2871 BLOGD(sc, DBG_LRO, "fp[%02d].tpa[%02d] TPA fill i=%d j=%d " 2872 "sge_idx=%d frag_size=%d frag_len=%d\n", 2873 fp->index, queue, i, j, sge_idx, frag_size, frag_len); 2874 2875 m_frag = fp->rx_sge_mbuf_chain[sge_idx].m; 2876 2877 /* allocate a new mbuf for the SGE */ 2878 rc = bxe_alloc_rx_sge_mbuf(fp, sge_idx); 2879 if (rc) { 2880 /* Leave all remaining SGEs in the ring! */ 2881 return (rc); 2882 } 2883 2884 /* update the fragment length */ 2885 m_frag->m_len = frag_len; 2886 2887 /* concatenate the fragment to the head mbuf */ 2888 m_cat(m, m_frag); 2889 fp->eth_q_stats.mbuf_alloc_sge--; 2890 2891 /* update the TPA mbuf size and remaining fragment size */ 2892 m->m_pkthdr.len += frag_len; 2893 frag_size -= frag_len; 2894 } 2895 2896 BLOGD(sc, DBG_LRO, 2897 "fp[%02d].tpa[%02d] TPA fill done frag_size=%d\n", 2898 fp->index, queue, frag_size); 2899 2900 return (rc); 2901 } 2902 2903 static inline void 2904 bxe_clear_sge_mask_next_elems(struct bxe_fastpath *fp) 2905 { 2906 int i, j; 2907 2908 for (i = 1; i <= RX_SGE_NUM_PAGES; i++) { 2909 int idx = RX_SGE_TOTAL_PER_PAGE * i - 1; 2910 2911 for (j = 0; j < 2; j++) { 2912 BIT_VEC64_CLEAR_BIT(fp->sge_mask, idx); 2913 idx--; 2914 } 2915 } 2916 } 2917 2918 static inline void 2919 bxe_init_sge_ring_bit_mask(struct bxe_fastpath *fp) 2920 { 2921 /* set the mask to all 1's, it's faster to compare to 0 than to 0xf's */ 2922 memset(fp->sge_mask, 0xff, sizeof(fp->sge_mask)); 2923 2924 /* 2925 * Clear the two last indices in the page to 1. These are the indices that 2926 * correspond to the "next" element, hence will never be indicated and 2927 * should be removed from the calculations. 2928 */ 2929 bxe_clear_sge_mask_next_elems(fp); 2930 } 2931 2932 static inline void 2933 bxe_update_last_max_sge(struct bxe_fastpath *fp, 2934 uint16_t idx) 2935 { 2936 uint16_t last_max = fp->last_max_sge; 2937 2938 if (SUB_S16(idx, last_max) > 0) { 2939 fp->last_max_sge = idx; 2940 } 2941 } 2942 2943 static inline void 2944 bxe_update_sge_prod(struct bxe_softc *sc, 2945 struct bxe_fastpath *fp, 2946 uint16_t sge_len, 2947 union eth_sgl_or_raw_data *cqe) 2948 { 2949 uint16_t last_max, last_elem, first_elem; 2950 uint16_t delta = 0; 2951 uint16_t i; 2952 2953 if (!sge_len) { 2954 return; 2955 } 2956 2957 /* first mark all used pages */ 2958 for (i = 0; i < sge_len; i++) { 2959 BIT_VEC64_CLEAR_BIT(fp->sge_mask, 2960 RX_SGE(le16toh(cqe->sgl[i]))); 2961 } 2962 2963 BLOGD(sc, DBG_LRO, 2964 "fp[%02d] fp_cqe->sgl[%d] = %d\n", 2965 fp->index, sge_len - 1, 2966 le16toh(cqe->sgl[sge_len - 1])); 2967 2968 /* assume that the last SGE index is the biggest */ 2969 bxe_update_last_max_sge(fp, 2970 le16toh(cqe->sgl[sge_len - 1])); 2971 2972 last_max = RX_SGE(fp->last_max_sge); 2973 last_elem = last_max >> BIT_VEC64_ELEM_SHIFT; 2974 first_elem = RX_SGE(fp->rx_sge_prod) >> BIT_VEC64_ELEM_SHIFT; 2975 2976 /* if ring is not full */ 2977 if (last_elem + 1 != first_elem) { 2978 last_elem++; 2979 } 2980 2981 /* now update the prod */ 2982 for (i = first_elem; i != last_elem; i = RX_SGE_NEXT_MASK_ELEM(i)) { 2983 if (__predict_true(fp->sge_mask[i])) { 2984 break; 2985 } 2986 2987 fp->sge_mask[i] = BIT_VEC64_ELEM_ONE_MASK; 2988 delta += BIT_VEC64_ELEM_SZ; 2989 } 2990 2991 if (delta > 0) { 2992 fp->rx_sge_prod += delta; 2993 /* clear page-end entries */ 2994 bxe_clear_sge_mask_next_elems(fp); 2995 } 2996 2997 BLOGD(sc, DBG_LRO, 2998 "fp[%02d] fp->last_max_sge=%d fp->rx_sge_prod=%d\n", 2999 fp->index, fp->last_max_sge, fp->rx_sge_prod); 3000 } 3001 3002 /* 3003 * The aggregation on the current TPA queue has completed. Pull the individual 3004 * mbuf fragments together into a single mbuf, perform all necessary checksum 3005 * calculations, and send the resuting mbuf to the stack. 3006 */ 3007 static void 3008 bxe_tpa_stop(struct bxe_softc *sc, 3009 struct bxe_fastpath *fp, 3010 struct bxe_sw_tpa_info *tpa_info, 3011 uint16_t queue, 3012 uint16_t pages, 3013 struct eth_end_agg_rx_cqe *cqe, 3014 uint16_t cqe_idx) 3015 { 3016 if_t ifp = sc->ifp; 3017 struct mbuf *m; 3018 int rc = 0; 3019 3020 BLOGD(sc, DBG_LRO, 3021 "fp[%02d].tpa[%02d] pad=%d pkt_len=%d pages=%d vlan=%d\n", 3022 fp->index, queue, tpa_info->placement_offset, 3023 le16toh(cqe->pkt_len), pages, tpa_info->vlan_tag); 3024 3025 m = tpa_info->bd.m; 3026 3027 /* allocate a replacement before modifying existing mbuf */ 3028 rc = bxe_alloc_rx_tpa_mbuf(fp, queue); 3029 if (rc) { 3030 /* drop the frame and log an error */ 3031 fp->eth_q_stats.rx_soft_errors++; 3032 goto bxe_tpa_stop_exit; 3033 } 3034 3035 /* we have a replacement, fixup the current mbuf */ 3036 m_adj(m, tpa_info->placement_offset); 3037 m->m_pkthdr.len = m->m_len = tpa_info->len_on_bd; 3038 3039 /* mark the checksums valid (taken care of by the firmware) */ 3040 fp->eth_q_stats.rx_ofld_frames_csum_ip++; 3041 fp->eth_q_stats.rx_ofld_frames_csum_tcp_udp++; 3042 m->m_pkthdr.csum_data = 0xffff; 3043 m->m_pkthdr.csum_flags |= (CSUM_IP_CHECKED | 3044 CSUM_IP_VALID | 3045 CSUM_DATA_VALID | 3046 CSUM_PSEUDO_HDR); 3047 3048 /* aggregate all of the SGEs into a single mbuf */ 3049 rc = bxe_fill_frag_mbuf(sc, fp, tpa_info, queue, pages, m, cqe, cqe_idx); 3050 if (rc) { 3051 /* drop the packet and log an error */ 3052 fp->eth_q_stats.rx_soft_errors++; 3053 m_freem(m); 3054 } else { 3055 if (tpa_info->parsing_flags & PARSING_FLAGS_INNER_VLAN_EXIST) { 3056 m->m_pkthdr.ether_vtag = tpa_info->vlan_tag; 3057 m->m_flags |= M_VLANTAG; 3058 } 3059 3060 /* assign packet to this interface interface */ 3061 if_setrcvif(m, ifp); 3062 3063 #if __FreeBSD_version >= 800000 3064 /* specify what RSS queue was used for this flow */ 3065 m->m_pkthdr.flowid = fp->index; 3066 M_HASHTYPE_SET(m, M_HASHTYPE_OPAQUE); 3067 #endif 3068 3069 if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1); 3070 fp->eth_q_stats.rx_tpa_pkts++; 3071 3072 /* pass the frame to the stack */ 3073 if_input(ifp, m); 3074 } 3075 3076 /* we passed an mbuf up the stack or dropped the frame */ 3077 fp->eth_q_stats.mbuf_alloc_tpa--; 3078 3079 bxe_tpa_stop_exit: 3080 3081 fp->rx_tpa_info[queue].state = BXE_TPA_STATE_STOP; 3082 fp->rx_tpa_queue_used &= ~(1 << queue); 3083 } 3084 3085 static uint8_t 3086 bxe_service_rxsgl( 3087 struct bxe_fastpath *fp, 3088 uint16_t len, 3089 uint16_t lenonbd, 3090 struct mbuf *m, 3091 struct eth_fast_path_rx_cqe *cqe_fp) 3092 { 3093 struct mbuf *m_frag; 3094 uint16_t frags, frag_len; 3095 uint16_t sge_idx = 0; 3096 uint16_t j; 3097 uint8_t i, rc = 0; 3098 uint32_t frag_size; 3099 3100 /* adjust the mbuf */ 3101 m->m_len = lenonbd; 3102 3103 frag_size = len - lenonbd; 3104 frags = SGE_PAGE_ALIGN(frag_size) >> SGE_PAGE_SHIFT; 3105 3106 for (i = 0, j = 0; i < frags; i += PAGES_PER_SGE, j++) { 3107 sge_idx = RX_SGE(le16toh(cqe_fp->sgl_or_raw_data.sgl[j])); 3108 3109 m_frag = fp->rx_sge_mbuf_chain[sge_idx].m; 3110 frag_len = min(frag_size, (uint32_t)(SGE_PAGE_SIZE)); 3111 m_frag->m_len = frag_len; 3112 3113 /* allocate a new mbuf for the SGE */ 3114 rc = bxe_alloc_rx_sge_mbuf(fp, sge_idx); 3115 if (rc) { 3116 /* Leave all remaining SGEs in the ring! */ 3117 return (rc); 3118 } 3119 fp->eth_q_stats.mbuf_alloc_sge--; 3120 3121 /* concatenate the fragment to the head mbuf */ 3122 m_cat(m, m_frag); 3123 3124 frag_size -= frag_len; 3125 } 3126 3127 bxe_update_sge_prod(fp->sc, fp, frags, &cqe_fp->sgl_or_raw_data); 3128 3129 return rc; 3130 } 3131 3132 static uint8_t 3133 bxe_rxeof(struct bxe_softc *sc, 3134 struct bxe_fastpath *fp) 3135 { 3136 if_t ifp = sc->ifp; 3137 uint16_t bd_cons, bd_prod, bd_prod_fw, comp_ring_cons; 3138 uint16_t hw_cq_cons, sw_cq_cons, sw_cq_prod; 3139 int rx_pkts = 0; 3140 int rc = 0; 3141 3142 BXE_FP_RX_LOCK(fp); 3143 3144 /* CQ "next element" is of the size of the regular element */ 3145 hw_cq_cons = le16toh(*fp->rx_cq_cons_sb); 3146 if ((hw_cq_cons & RCQ_USABLE_PER_PAGE) == RCQ_USABLE_PER_PAGE) { 3147 hw_cq_cons++; 3148 } 3149 3150 bd_cons = fp->rx_bd_cons; 3151 bd_prod = fp->rx_bd_prod; 3152 bd_prod_fw = bd_prod; 3153 sw_cq_cons = fp->rx_cq_cons; 3154 sw_cq_prod = fp->rx_cq_prod; 3155 3156 /* 3157 * Memory barrier necessary as speculative reads of the rx 3158 * buffer can be ahead of the index in the status block 3159 */ 3160 rmb(); 3161 3162 BLOGD(sc, DBG_RX, 3163 "fp[%02d] Rx START hw_cq_cons=%u sw_cq_cons=%u\n", 3164 fp->index, hw_cq_cons, sw_cq_cons); 3165 3166 while (sw_cq_cons != hw_cq_cons) { 3167 struct bxe_sw_rx_bd *rx_buf = NULL; 3168 union eth_rx_cqe *cqe; 3169 struct eth_fast_path_rx_cqe *cqe_fp; 3170 uint8_t cqe_fp_flags; 3171 enum eth_rx_cqe_type cqe_fp_type; 3172 uint16_t len, lenonbd, pad; 3173 struct mbuf *m = NULL; 3174 3175 comp_ring_cons = RCQ(sw_cq_cons); 3176 bd_prod = RX_BD(bd_prod); 3177 bd_cons = RX_BD(bd_cons); 3178 3179 cqe = &fp->rcq_chain[comp_ring_cons]; 3180 cqe_fp = &cqe->fast_path_cqe; 3181 cqe_fp_flags = cqe_fp->type_error_flags; 3182 cqe_fp_type = cqe_fp_flags & ETH_FAST_PATH_RX_CQE_TYPE; 3183 3184 BLOGD(sc, DBG_RX, 3185 "fp[%02d] Rx hw_cq_cons=%d hw_sw_cons=%d " 3186 "BD prod=%d cons=%d CQE type=0x%x err=0x%x " 3187 "status=0x%x rss_hash=0x%x vlan=0x%x len=%u lenonbd=%u\n", 3188 fp->index, 3189 hw_cq_cons, 3190 sw_cq_cons, 3191 bd_prod, 3192 bd_cons, 3193 CQE_TYPE(cqe_fp_flags), 3194 cqe_fp_flags, 3195 cqe_fp->status_flags, 3196 le32toh(cqe_fp->rss_hash_result), 3197 le16toh(cqe_fp->vlan_tag), 3198 le16toh(cqe_fp->pkt_len_or_gro_seg_len), 3199 le16toh(cqe_fp->len_on_bd)); 3200 3201 /* is this a slowpath msg? */ 3202 if (__predict_false(CQE_TYPE_SLOW(cqe_fp_type))) { 3203 bxe_sp_event(sc, fp, cqe); 3204 goto next_cqe; 3205 } 3206 3207 rx_buf = &fp->rx_mbuf_chain[bd_cons]; 3208 3209 if (!CQE_TYPE_FAST(cqe_fp_type)) { 3210 struct bxe_sw_tpa_info *tpa_info; 3211 uint16_t frag_size, pages; 3212 uint8_t queue; 3213 3214 if (CQE_TYPE_START(cqe_fp_type)) { 3215 bxe_tpa_start(sc, fp, cqe_fp->queue_index, 3216 bd_cons, bd_prod, cqe_fp); 3217 m = NULL; /* packet not ready yet */ 3218 goto next_rx; 3219 } 3220 3221 KASSERT(CQE_TYPE_STOP(cqe_fp_type), 3222 ("CQE type is not STOP! (0x%x)\n", cqe_fp_type)); 3223 3224 queue = cqe->end_agg_cqe.queue_index; 3225 tpa_info = &fp->rx_tpa_info[queue]; 3226 3227 BLOGD(sc, DBG_LRO, "fp[%02d].tpa[%02d] TPA STOP\n", 3228 fp->index, queue); 3229 3230 frag_size = (le16toh(cqe->end_agg_cqe.pkt_len) - 3231 tpa_info->len_on_bd); 3232 pages = SGE_PAGE_ALIGN(frag_size) >> SGE_PAGE_SHIFT; 3233 3234 bxe_tpa_stop(sc, fp, tpa_info, queue, pages, 3235 &cqe->end_agg_cqe, comp_ring_cons); 3236 3237 bxe_update_sge_prod(sc, fp, pages, &cqe->end_agg_cqe.sgl_or_raw_data); 3238 3239 goto next_cqe; 3240 } 3241 3242 /* non TPA */ 3243 3244 /* is this an error packet? */ 3245 if (__predict_false(cqe_fp_flags & 3246 ETH_FAST_PATH_RX_CQE_PHY_DECODE_ERR_FLG)) { 3247 BLOGE(sc, "flags 0x%x rx packet %u\n", cqe_fp_flags, sw_cq_cons); 3248 fp->eth_q_stats.rx_soft_errors++; 3249 goto next_rx; 3250 } 3251 3252 len = le16toh(cqe_fp->pkt_len_or_gro_seg_len); 3253 lenonbd = le16toh(cqe_fp->len_on_bd); 3254 pad = cqe_fp->placement_offset; 3255 3256 m = rx_buf->m; 3257 3258 if (__predict_false(m == NULL)) { 3259 BLOGE(sc, "No mbuf in rx chain descriptor %d for fp[%02d]\n", 3260 bd_cons, fp->index); 3261 goto next_rx; 3262 } 3263 3264 /* XXX double copy if packet length under a threshold */ 3265 3266 /* 3267 * If all the buffer descriptors are filled with mbufs then fill in 3268 * the current consumer index with a new BD. Else if a maximum Rx 3269 * buffer limit is imposed then fill in the next producer index. 3270 */ 3271 rc = bxe_alloc_rx_bd_mbuf(fp, bd_cons, 3272 (sc->max_rx_bufs != RX_BD_USABLE) ? 3273 bd_prod : bd_cons); 3274 if (rc != 0) { 3275 3276 /* we simply reuse the received mbuf and don't post it to the stack */ 3277 m = NULL; 3278 3279 BLOGE(sc, "mbuf alloc fail for fp[%02d] rx chain (%d)\n", 3280 fp->index, rc); 3281 fp->eth_q_stats.rx_soft_errors++; 3282 3283 if (sc->max_rx_bufs != RX_BD_USABLE) { 3284 /* copy this consumer index to the producer index */ 3285 memcpy(&fp->rx_mbuf_chain[bd_prod], rx_buf, 3286 sizeof(struct bxe_sw_rx_bd)); 3287 memset(rx_buf, 0, sizeof(struct bxe_sw_rx_bd)); 3288 } 3289 3290 goto next_rx; 3291 } 3292 3293 /* current mbuf was detached from the bd */ 3294 fp->eth_q_stats.mbuf_alloc_rx--; 3295 3296 /* we allocated a replacement mbuf, fixup the current one */ 3297 m_adj(m, pad); 3298 m->m_pkthdr.len = m->m_len = len; 3299 3300 if ((len > 60) && (len > lenonbd)) { 3301 fp->eth_q_stats.rx_bxe_service_rxsgl++; 3302 rc = bxe_service_rxsgl(fp, len, lenonbd, m, cqe_fp); 3303 if (rc) 3304 break; 3305 fp->eth_q_stats.rx_jumbo_sge_pkts++; 3306 } else if (lenonbd < len) { 3307 fp->eth_q_stats.rx_erroneous_jumbo_sge_pkts++; 3308 } 3309 3310 /* assign packet to this interface interface */ 3311 if_setrcvif(m, ifp); 3312 3313 /* assume no hardware checksum has complated */ 3314 m->m_pkthdr.csum_flags = 0; 3315 3316 /* validate checksum if offload enabled */ 3317 if (if_getcapenable(ifp) & IFCAP_RXCSUM) { 3318 /* check for a valid IP frame */ 3319 if (!(cqe->fast_path_cqe.status_flags & 3320 ETH_FAST_PATH_RX_CQE_IP_XSUM_NO_VALIDATION_FLG)) { 3321 m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED; 3322 if (__predict_false(cqe_fp_flags & 3323 ETH_FAST_PATH_RX_CQE_IP_BAD_XSUM_FLG)) { 3324 fp->eth_q_stats.rx_hw_csum_errors++; 3325 } else { 3326 fp->eth_q_stats.rx_ofld_frames_csum_ip++; 3327 m->m_pkthdr.csum_flags |= CSUM_IP_VALID; 3328 } 3329 } 3330 3331 /* check for a valid TCP/UDP frame */ 3332 if (!(cqe->fast_path_cqe.status_flags & 3333 ETH_FAST_PATH_RX_CQE_L4_XSUM_NO_VALIDATION_FLG)) { 3334 if (__predict_false(cqe_fp_flags & 3335 ETH_FAST_PATH_RX_CQE_L4_BAD_XSUM_FLG)) { 3336 fp->eth_q_stats.rx_hw_csum_errors++; 3337 } else { 3338 fp->eth_q_stats.rx_ofld_frames_csum_tcp_udp++; 3339 m->m_pkthdr.csum_data = 0xFFFF; 3340 m->m_pkthdr.csum_flags |= (CSUM_DATA_VALID | 3341 CSUM_PSEUDO_HDR); 3342 } 3343 } 3344 } 3345 3346 /* if there is a VLAN tag then flag that info */ 3347 if (cqe->fast_path_cqe.pars_flags.flags & PARSING_FLAGS_INNER_VLAN_EXIST) { 3348 m->m_pkthdr.ether_vtag = cqe->fast_path_cqe.vlan_tag; 3349 m->m_flags |= M_VLANTAG; 3350 } 3351 3352 #if __FreeBSD_version >= 800000 3353 /* specify what RSS queue was used for this flow */ 3354 m->m_pkthdr.flowid = fp->index; 3355 M_HASHTYPE_SET(m, M_HASHTYPE_OPAQUE); 3356 #endif 3357 3358 next_rx: 3359 3360 bd_cons = RX_BD_NEXT(bd_cons); 3361 bd_prod = RX_BD_NEXT(bd_prod); 3362 bd_prod_fw = RX_BD_NEXT(bd_prod_fw); 3363 3364 /* pass the frame to the stack */ 3365 if (__predict_true(m != NULL)) { 3366 if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1); 3367 rx_pkts++; 3368 if_input(ifp, m); 3369 } 3370 3371 next_cqe: 3372 3373 sw_cq_prod = RCQ_NEXT(sw_cq_prod); 3374 sw_cq_cons = RCQ_NEXT(sw_cq_cons); 3375 3376 /* limit spinning on the queue */ 3377 if (rc != 0) 3378 break; 3379 3380 if (rx_pkts == sc->rx_budget) { 3381 fp->eth_q_stats.rx_budget_reached++; 3382 break; 3383 } 3384 } /* while work to do */ 3385 3386 fp->rx_bd_cons = bd_cons; 3387 fp->rx_bd_prod = bd_prod_fw; 3388 fp->rx_cq_cons = sw_cq_cons; 3389 fp->rx_cq_prod = sw_cq_prod; 3390 3391 /* Update producers */ 3392 bxe_update_rx_prod(sc, fp, bd_prod_fw, sw_cq_prod, fp->rx_sge_prod); 3393 3394 fp->eth_q_stats.rx_pkts += rx_pkts; 3395 fp->eth_q_stats.rx_calls++; 3396 3397 BXE_FP_RX_UNLOCK(fp); 3398 3399 return (sw_cq_cons != hw_cq_cons); 3400 } 3401 3402 static uint16_t 3403 bxe_free_tx_pkt(struct bxe_softc *sc, 3404 struct bxe_fastpath *fp, 3405 uint16_t idx) 3406 { 3407 struct bxe_sw_tx_bd *tx_buf = &fp->tx_mbuf_chain[idx]; 3408 struct eth_tx_start_bd *tx_start_bd; 3409 uint16_t bd_idx = TX_BD(tx_buf->first_bd); 3410 uint16_t new_cons; 3411 int nbd; 3412 3413 /* unmap the mbuf from non-paged memory */ 3414 bus_dmamap_unload(fp->tx_mbuf_tag, tx_buf->m_map); 3415 3416 tx_start_bd = &fp->tx_chain[bd_idx].start_bd; 3417 nbd = le16toh(tx_start_bd->nbd) - 1; 3418 3419 new_cons = (tx_buf->first_bd + nbd); 3420 3421 /* free the mbuf */ 3422 if (__predict_true(tx_buf->m != NULL)) { 3423 m_freem(tx_buf->m); 3424 fp->eth_q_stats.mbuf_alloc_tx--; 3425 } else { 3426 fp->eth_q_stats.tx_chain_lost_mbuf++; 3427 } 3428 3429 tx_buf->m = NULL; 3430 tx_buf->first_bd = 0; 3431 3432 return (new_cons); 3433 } 3434 3435 /* transmit timeout watchdog */ 3436 static int 3437 bxe_watchdog(struct bxe_softc *sc, 3438 struct bxe_fastpath *fp) 3439 { 3440 BXE_FP_TX_LOCK(fp); 3441 3442 if ((fp->watchdog_timer == 0) || (--fp->watchdog_timer)) { 3443 BXE_FP_TX_UNLOCK(fp); 3444 return (0); 3445 } 3446 3447 BLOGE(sc, "TX watchdog timeout on fp[%02d], resetting!\n", fp->index); 3448 3449 BXE_FP_TX_UNLOCK(fp); 3450 3451 atomic_store_rel_long(&sc->chip_tq_flags, CHIP_TQ_REINIT); 3452 taskqueue_enqueue(sc->chip_tq, &sc->chip_tq_task); 3453 3454 return (-1); 3455 } 3456 3457 /* processes transmit completions */ 3458 static uint8_t 3459 bxe_txeof(struct bxe_softc *sc, 3460 struct bxe_fastpath *fp) 3461 { 3462 if_t ifp = sc->ifp; 3463 uint16_t bd_cons, hw_cons, sw_cons, pkt_cons; 3464 uint16_t tx_bd_avail; 3465 3466 BXE_FP_TX_LOCK_ASSERT(fp); 3467 3468 bd_cons = fp->tx_bd_cons; 3469 hw_cons = le16toh(*fp->tx_cons_sb); 3470 sw_cons = fp->tx_pkt_cons; 3471 3472 while (sw_cons != hw_cons) { 3473 pkt_cons = TX_BD(sw_cons); 3474 3475 BLOGD(sc, DBG_TX, 3476 "TX: fp[%d]: hw_cons=%u sw_cons=%u pkt_cons=%u\n", 3477 fp->index, hw_cons, sw_cons, pkt_cons); 3478 3479 bd_cons = bxe_free_tx_pkt(sc, fp, pkt_cons); 3480 3481 sw_cons++; 3482 } 3483 3484 fp->tx_pkt_cons = sw_cons; 3485 fp->tx_bd_cons = bd_cons; 3486 3487 BLOGD(sc, DBG_TX, 3488 "TX done: fp[%d]: hw_cons=%u sw_cons=%u sw_prod=%u\n", 3489 fp->index, hw_cons, fp->tx_pkt_cons, fp->tx_pkt_prod); 3490 3491 mb(); 3492 3493 tx_bd_avail = bxe_tx_avail(sc, fp); 3494 3495 if (tx_bd_avail < BXE_TX_CLEANUP_THRESHOLD) { 3496 if_setdrvflagbits(ifp, IFF_DRV_OACTIVE, 0); 3497 } else { 3498 if_setdrvflagbits(ifp, 0, IFF_DRV_OACTIVE); 3499 } 3500 3501 if (fp->tx_pkt_prod != fp->tx_pkt_cons) { 3502 /* reset the watchdog timer if there are pending transmits */ 3503 fp->watchdog_timer = BXE_TX_TIMEOUT; 3504 return (TRUE); 3505 } else { 3506 /* clear watchdog when there are no pending transmits */ 3507 fp->watchdog_timer = 0; 3508 return (FALSE); 3509 } 3510 } 3511 3512 static void 3513 bxe_drain_tx_queues(struct bxe_softc *sc) 3514 { 3515 struct bxe_fastpath *fp; 3516 int i, count; 3517 3518 /* wait until all TX fastpath tasks have completed */ 3519 for (i = 0; i < sc->num_queues; i++) { 3520 fp = &sc->fp[i]; 3521 3522 count = 1000; 3523 3524 while (bxe_has_tx_work(fp)) { 3525 3526 BXE_FP_TX_LOCK(fp); 3527 bxe_txeof(sc, fp); 3528 BXE_FP_TX_UNLOCK(fp); 3529 3530 if (count == 0) { 3531 BLOGE(sc, "Timeout waiting for fp[%d] " 3532 "transmits to complete!\n", i); 3533 bxe_panic(sc, ("tx drain failure\n")); 3534 return; 3535 } 3536 3537 count--; 3538 DELAY(1000); 3539 rmb(); 3540 } 3541 } 3542 3543 return; 3544 } 3545 3546 static int 3547 bxe_del_all_macs(struct bxe_softc *sc, 3548 struct ecore_vlan_mac_obj *mac_obj, 3549 int mac_type, 3550 uint8_t wait_for_comp) 3551 { 3552 unsigned long ramrod_flags = 0, vlan_mac_flags = 0; 3553 int rc; 3554 3555 /* wait for completion of requested */ 3556 if (wait_for_comp) { 3557 bxe_set_bit(RAMROD_COMP_WAIT, &ramrod_flags); 3558 } 3559 3560 /* Set the mac type of addresses we want to clear */ 3561 bxe_set_bit(mac_type, &vlan_mac_flags); 3562 3563 rc = mac_obj->delete_all(sc, mac_obj, &vlan_mac_flags, &ramrod_flags); 3564 if (rc < 0) { 3565 BLOGE(sc, "Failed to delete MACs (%d) mac_type %d wait_for_comp 0x%x\n", 3566 rc, mac_type, wait_for_comp); 3567 } 3568 3569 return (rc); 3570 } 3571 3572 static int 3573 bxe_fill_accept_flags(struct bxe_softc *sc, 3574 uint32_t rx_mode, 3575 unsigned long *rx_accept_flags, 3576 unsigned long *tx_accept_flags) 3577 { 3578 /* Clear the flags first */ 3579 *rx_accept_flags = 0; 3580 *tx_accept_flags = 0; 3581 3582 switch (rx_mode) { 3583 case BXE_RX_MODE_NONE: 3584 /* 3585 * 'drop all' supersedes any accept flags that may have been 3586 * passed to the function. 3587 */ 3588 break; 3589 3590 case BXE_RX_MODE_NORMAL: 3591 bxe_set_bit(ECORE_ACCEPT_UNICAST, rx_accept_flags); 3592 bxe_set_bit(ECORE_ACCEPT_MULTICAST, rx_accept_flags); 3593 bxe_set_bit(ECORE_ACCEPT_BROADCAST, rx_accept_flags); 3594 3595 /* internal switching mode */ 3596 bxe_set_bit(ECORE_ACCEPT_UNICAST, tx_accept_flags); 3597 bxe_set_bit(ECORE_ACCEPT_MULTICAST, tx_accept_flags); 3598 bxe_set_bit(ECORE_ACCEPT_BROADCAST, tx_accept_flags); 3599 3600 break; 3601 3602 case BXE_RX_MODE_ALLMULTI: 3603 bxe_set_bit(ECORE_ACCEPT_UNICAST, rx_accept_flags); 3604 bxe_set_bit(ECORE_ACCEPT_ALL_MULTICAST, rx_accept_flags); 3605 bxe_set_bit(ECORE_ACCEPT_BROADCAST, rx_accept_flags); 3606 3607 /* internal switching mode */ 3608 bxe_set_bit(ECORE_ACCEPT_UNICAST, tx_accept_flags); 3609 bxe_set_bit(ECORE_ACCEPT_ALL_MULTICAST, tx_accept_flags); 3610 bxe_set_bit(ECORE_ACCEPT_BROADCAST, tx_accept_flags); 3611 3612 break; 3613 3614 case BXE_RX_MODE_PROMISC: 3615 /* 3616 * According to deffinition of SI mode, iface in promisc mode 3617 * should receive matched and unmatched (in resolution of port) 3618 * unicast packets. 3619 */ 3620 bxe_set_bit(ECORE_ACCEPT_UNMATCHED, rx_accept_flags); 3621 bxe_set_bit(ECORE_ACCEPT_UNICAST, rx_accept_flags); 3622 bxe_set_bit(ECORE_ACCEPT_ALL_MULTICAST, rx_accept_flags); 3623 bxe_set_bit(ECORE_ACCEPT_BROADCAST, rx_accept_flags); 3624 3625 /* internal switching mode */ 3626 bxe_set_bit(ECORE_ACCEPT_ALL_MULTICAST, tx_accept_flags); 3627 bxe_set_bit(ECORE_ACCEPT_BROADCAST, tx_accept_flags); 3628 3629 if (IS_MF_SI(sc)) { 3630 bxe_set_bit(ECORE_ACCEPT_ALL_UNICAST, tx_accept_flags); 3631 } else { 3632 bxe_set_bit(ECORE_ACCEPT_UNICAST, tx_accept_flags); 3633 } 3634 3635 break; 3636 3637 default: 3638 BLOGE(sc, "Unknown rx_mode (0x%x)\n", rx_mode); 3639 return (-1); 3640 } 3641 3642 /* Set ACCEPT_ANY_VLAN as we do not enable filtering by VLAN */ 3643 if (rx_mode != BXE_RX_MODE_NONE) { 3644 bxe_set_bit(ECORE_ACCEPT_ANY_VLAN, rx_accept_flags); 3645 bxe_set_bit(ECORE_ACCEPT_ANY_VLAN, tx_accept_flags); 3646 } 3647 3648 return (0); 3649 } 3650 3651 static int 3652 bxe_set_q_rx_mode(struct bxe_softc *sc, 3653 uint8_t cl_id, 3654 unsigned long rx_mode_flags, 3655 unsigned long rx_accept_flags, 3656 unsigned long tx_accept_flags, 3657 unsigned long ramrod_flags) 3658 { 3659 struct ecore_rx_mode_ramrod_params ramrod_param; 3660 int rc; 3661 3662 memset(&ramrod_param, 0, sizeof(ramrod_param)); 3663 3664 /* Prepare ramrod parameters */ 3665 ramrod_param.cid = 0; 3666 ramrod_param.cl_id = cl_id; 3667 ramrod_param.rx_mode_obj = &sc->rx_mode_obj; 3668 ramrod_param.func_id = SC_FUNC(sc); 3669 3670 ramrod_param.pstate = &sc->sp_state; 3671 ramrod_param.state = ECORE_FILTER_RX_MODE_PENDING; 3672 3673 ramrod_param.rdata = BXE_SP(sc, rx_mode_rdata); 3674 ramrod_param.rdata_mapping = BXE_SP_MAPPING(sc, rx_mode_rdata); 3675 3676 bxe_set_bit(ECORE_FILTER_RX_MODE_PENDING, &sc->sp_state); 3677 3678 ramrod_param.ramrod_flags = ramrod_flags; 3679 ramrod_param.rx_mode_flags = rx_mode_flags; 3680 3681 ramrod_param.rx_accept_flags = rx_accept_flags; 3682 ramrod_param.tx_accept_flags = tx_accept_flags; 3683 3684 rc = ecore_config_rx_mode(sc, &ramrod_param); 3685 if (rc < 0) { 3686 BLOGE(sc, "Set rx_mode %d cli_id 0x%x rx_mode_flags 0x%x " 3687 "rx_accept_flags 0x%x tx_accept_flags 0x%x " 3688 "ramrod_flags 0x%x rc %d failed\n", sc->rx_mode, cl_id, 3689 (uint32_t)rx_mode_flags, (uint32_t)rx_accept_flags, 3690 (uint32_t)tx_accept_flags, (uint32_t)ramrod_flags, rc); 3691 return (rc); 3692 } 3693 3694 return (0); 3695 } 3696 3697 static int 3698 bxe_set_storm_rx_mode(struct bxe_softc *sc) 3699 { 3700 unsigned long rx_mode_flags = 0, ramrod_flags = 0; 3701 unsigned long rx_accept_flags = 0, tx_accept_flags = 0; 3702 int rc; 3703 3704 rc = bxe_fill_accept_flags(sc, sc->rx_mode, &rx_accept_flags, 3705 &tx_accept_flags); 3706 if (rc) { 3707 return (rc); 3708 } 3709 3710 bxe_set_bit(RAMROD_RX, &ramrod_flags); 3711 bxe_set_bit(RAMROD_TX, &ramrod_flags); 3712 3713 /* XXX ensure all fastpath have same cl_id and/or move it to bxe_softc */ 3714 return (bxe_set_q_rx_mode(sc, sc->fp[0].cl_id, rx_mode_flags, 3715 rx_accept_flags, tx_accept_flags, 3716 ramrod_flags)); 3717 } 3718 3719 /* returns the "mcp load_code" according to global load_count array */ 3720 static int 3721 bxe_nic_load_no_mcp(struct bxe_softc *sc) 3722 { 3723 int path = SC_PATH(sc); 3724 int port = SC_PORT(sc); 3725 3726 BLOGI(sc, "NO MCP - load counts[%d] %d, %d, %d\n", 3727 path, load_count[path][0], load_count[path][1], 3728 load_count[path][2]); 3729 load_count[path][0]++; 3730 load_count[path][1 + port]++; 3731 BLOGI(sc, "NO MCP - new load counts[%d] %d, %d, %d\n", 3732 path, load_count[path][0], load_count[path][1], 3733 load_count[path][2]); 3734 if (load_count[path][0] == 1) { 3735 return (FW_MSG_CODE_DRV_LOAD_COMMON); 3736 } else if (load_count[path][1 + port] == 1) { 3737 return (FW_MSG_CODE_DRV_LOAD_PORT); 3738 } else { 3739 return (FW_MSG_CODE_DRV_LOAD_FUNCTION); 3740 } 3741 } 3742 3743 /* returns the "mcp load_code" according to global load_count array */ 3744 static int 3745 bxe_nic_unload_no_mcp(struct bxe_softc *sc) 3746 { 3747 int port = SC_PORT(sc); 3748 int path = SC_PATH(sc); 3749 3750 BLOGI(sc, "NO MCP - load counts[%d] %d, %d, %d\n", 3751 path, load_count[path][0], load_count[path][1], 3752 load_count[path][2]); 3753 load_count[path][0]--; 3754 load_count[path][1 + port]--; 3755 BLOGI(sc, "NO MCP - new load counts[%d] %d, %d, %d\n", 3756 path, load_count[path][0], load_count[path][1], 3757 load_count[path][2]); 3758 if (load_count[path][0] == 0) { 3759 return (FW_MSG_CODE_DRV_UNLOAD_COMMON); 3760 } else if (load_count[path][1 + port] == 0) { 3761 return (FW_MSG_CODE_DRV_UNLOAD_PORT); 3762 } else { 3763 return (FW_MSG_CODE_DRV_UNLOAD_FUNCTION); 3764 } 3765 } 3766 3767 /* request unload mode from the MCP: COMMON, PORT or FUNCTION */ 3768 static uint32_t 3769 bxe_send_unload_req(struct bxe_softc *sc, 3770 int unload_mode) 3771 { 3772 uint32_t reset_code = 0; 3773 3774 /* Select the UNLOAD request mode */ 3775 if (unload_mode == UNLOAD_NORMAL) { 3776 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS; 3777 } else { 3778 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS; 3779 } 3780 3781 /* Send the request to the MCP */ 3782 if (!BXE_NOMCP(sc)) { 3783 reset_code = bxe_fw_command(sc, reset_code, 0); 3784 } else { 3785 reset_code = bxe_nic_unload_no_mcp(sc); 3786 } 3787 3788 return (reset_code); 3789 } 3790 3791 /* send UNLOAD_DONE command to the MCP */ 3792 static void 3793 bxe_send_unload_done(struct bxe_softc *sc, 3794 uint8_t keep_link) 3795 { 3796 uint32_t reset_param = 3797 keep_link ? DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET : 0; 3798 3799 /* Report UNLOAD_DONE to MCP */ 3800 if (!BXE_NOMCP(sc)) { 3801 bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_DONE, reset_param); 3802 } 3803 } 3804 3805 static int 3806 bxe_func_wait_started(struct bxe_softc *sc) 3807 { 3808 int tout = 50; 3809 3810 if (!sc->port.pmf) { 3811 return (0); 3812 } 3813 3814 /* 3815 * (assumption: No Attention from MCP at this stage) 3816 * PMF probably in the middle of TX disable/enable transaction 3817 * 1. Sync IRS for default SB 3818 * 2. Sync SP queue - this guarantees us that attention handling started 3819 * 3. Wait, that TX disable/enable transaction completes 3820 * 3821 * 1+2 guarantee that if DCBX attention was scheduled it already changed 3822 * pending bit of transaction from STARTED-->TX_STOPPED, if we already 3823 * received completion for the transaction the state is TX_STOPPED. 3824 * State will return to STARTED after completion of TX_STOPPED-->STARTED 3825 * transaction. 3826 */ 3827 3828 /* XXX make sure default SB ISR is done */ 3829 /* need a way to synchronize an irq (intr_mtx?) */ 3830 3831 /* XXX flush any work queues */ 3832 3833 while (ecore_func_get_state(sc, &sc->func_obj) != 3834 ECORE_F_STATE_STARTED && tout--) { 3835 DELAY(20000); 3836 } 3837 3838 if (ecore_func_get_state(sc, &sc->func_obj) != ECORE_F_STATE_STARTED) { 3839 /* 3840 * Failed to complete the transaction in a "good way" 3841 * Force both transactions with CLR bit. 3842 */ 3843 struct ecore_func_state_params func_params = { NULL }; 3844 3845 BLOGE(sc, "Unexpected function state! " 3846 "Forcing STARTED-->TX_STOPPED-->STARTED\n"); 3847 3848 func_params.f_obj = &sc->func_obj; 3849 bxe_set_bit(RAMROD_DRV_CLR_ONLY, &func_params.ramrod_flags); 3850 3851 /* STARTED-->TX_STOPPED */ 3852 func_params.cmd = ECORE_F_CMD_TX_STOP; 3853 ecore_func_state_change(sc, &func_params); 3854 3855 /* TX_STOPPED-->STARTED */ 3856 func_params.cmd = ECORE_F_CMD_TX_START; 3857 return (ecore_func_state_change(sc, &func_params)); 3858 } 3859 3860 return (0); 3861 } 3862 3863 static int 3864 bxe_stop_queue(struct bxe_softc *sc, 3865 int index) 3866 { 3867 struct bxe_fastpath *fp = &sc->fp[index]; 3868 struct ecore_queue_state_params q_params = { NULL }; 3869 int rc; 3870 3871 BLOGD(sc, DBG_LOAD, "stopping queue %d cid %d\n", index, fp->index); 3872 3873 q_params.q_obj = &sc->sp_objs[fp->index].q_obj; 3874 /* We want to wait for completion in this context */ 3875 bxe_set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags); 3876 3877 /* Stop the primary connection: */ 3878 3879 /* ...halt the connection */ 3880 q_params.cmd = ECORE_Q_CMD_HALT; 3881 rc = ecore_queue_state_change(sc, &q_params); 3882 if (rc) { 3883 return (rc); 3884 } 3885 3886 /* ...terminate the connection */ 3887 q_params.cmd = ECORE_Q_CMD_TERMINATE; 3888 memset(&q_params.params.terminate, 0, sizeof(q_params.params.terminate)); 3889 q_params.params.terminate.cid_index = FIRST_TX_COS_INDEX; 3890 rc = ecore_queue_state_change(sc, &q_params); 3891 if (rc) { 3892 return (rc); 3893 } 3894 3895 /* ...delete cfc entry */ 3896 q_params.cmd = ECORE_Q_CMD_CFC_DEL; 3897 memset(&q_params.params.cfc_del, 0, sizeof(q_params.params.cfc_del)); 3898 q_params.params.cfc_del.cid_index = FIRST_TX_COS_INDEX; 3899 return (ecore_queue_state_change(sc, &q_params)); 3900 } 3901 3902 /* wait for the outstanding SP commands */ 3903 static inline uint8_t 3904 bxe_wait_sp_comp(struct bxe_softc *sc, 3905 unsigned long mask) 3906 { 3907 unsigned long tmp; 3908 int tout = 5000; /* wait for 5 secs tops */ 3909 3910 while (tout--) { 3911 mb(); 3912 if (!(atomic_load_acq_long(&sc->sp_state) & mask)) { 3913 return (TRUE); 3914 } 3915 3916 DELAY(1000); 3917 } 3918 3919 mb(); 3920 3921 tmp = atomic_load_acq_long(&sc->sp_state); 3922 if (tmp & mask) { 3923 BLOGE(sc, "Filtering completion timed out: " 3924 "sp_state 0x%lx, mask 0x%lx\n", 3925 tmp, mask); 3926 return (FALSE); 3927 } 3928 3929 return (FALSE); 3930 } 3931 3932 static int 3933 bxe_func_stop(struct bxe_softc *sc) 3934 { 3935 struct ecore_func_state_params func_params = { NULL }; 3936 int rc; 3937 3938 /* prepare parameters for function state transitions */ 3939 bxe_set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags); 3940 func_params.f_obj = &sc->func_obj; 3941 func_params.cmd = ECORE_F_CMD_STOP; 3942 3943 /* 3944 * Try to stop the function the 'good way'. If it fails (in case 3945 * of a parity error during bxe_chip_cleanup()) and we are 3946 * not in a debug mode, perform a state transaction in order to 3947 * enable further HW_RESET transaction. 3948 */ 3949 rc = ecore_func_state_change(sc, &func_params); 3950 if (rc) { 3951 BLOGE(sc, "FUNC_STOP ramrod failed. " 3952 "Running a dry transaction (%d)\n", rc); 3953 bxe_set_bit(RAMROD_DRV_CLR_ONLY, &func_params.ramrod_flags); 3954 return (ecore_func_state_change(sc, &func_params)); 3955 } 3956 3957 return (0); 3958 } 3959 3960 static int 3961 bxe_reset_hw(struct bxe_softc *sc, 3962 uint32_t load_code) 3963 { 3964 struct ecore_func_state_params func_params = { NULL }; 3965 3966 /* Prepare parameters for function state transitions */ 3967 bxe_set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags); 3968 3969 func_params.f_obj = &sc->func_obj; 3970 func_params.cmd = ECORE_F_CMD_HW_RESET; 3971 3972 func_params.params.hw_init.load_phase = load_code; 3973 3974 return (ecore_func_state_change(sc, &func_params)); 3975 } 3976 3977 static void 3978 bxe_int_disable_sync(struct bxe_softc *sc, 3979 int disable_hw) 3980 { 3981 if (disable_hw) { 3982 /* prevent the HW from sending interrupts */ 3983 bxe_int_disable(sc); 3984 } 3985 3986 /* XXX need a way to synchronize ALL irqs (intr_mtx?) */ 3987 /* make sure all ISRs are done */ 3988 3989 /* XXX make sure sp_task is not running */ 3990 /* cancel and flush work queues */ 3991 } 3992 3993 static void 3994 bxe_chip_cleanup(struct bxe_softc *sc, 3995 uint32_t unload_mode, 3996 uint8_t keep_link) 3997 { 3998 int port = SC_PORT(sc); 3999 struct ecore_mcast_ramrod_params rparam = { NULL }; 4000 uint32_t reset_code; 4001 int i, rc = 0; 4002 4003 bxe_drain_tx_queues(sc); 4004 4005 /* give HW time to discard old tx messages */ 4006 DELAY(1000); 4007 4008 /* Clean all ETH MACs */ 4009 rc = bxe_del_all_macs(sc, &sc->sp_objs[0].mac_obj, ECORE_ETH_MAC, FALSE); 4010 if (rc < 0) { 4011 BLOGE(sc, "Failed to delete all ETH MACs (%d)\n", rc); 4012 } 4013 4014 /* Clean up UC list */ 4015 rc = bxe_del_all_macs(sc, &sc->sp_objs[0].mac_obj, ECORE_UC_LIST_MAC, TRUE); 4016 if (rc < 0) { 4017 BLOGE(sc, "Failed to delete UC MACs list (%d)\n", rc); 4018 } 4019 4020 /* Disable LLH */ 4021 if (!CHIP_IS_E1(sc)) { 4022 REG_WR(sc, NIG_REG_LLH0_FUNC_EN + port*8, 0); 4023 } 4024 4025 /* Set "drop all" to stop Rx */ 4026 4027 /* 4028 * We need to take the BXE_MCAST_LOCK() here in order to prevent 4029 * a race between the completion code and this code. 4030 */ 4031 BXE_MCAST_LOCK(sc); 4032 4033 if (bxe_test_bit(ECORE_FILTER_RX_MODE_PENDING, &sc->sp_state)) { 4034 bxe_set_bit(ECORE_FILTER_RX_MODE_SCHED, &sc->sp_state); 4035 } else { 4036 bxe_set_storm_rx_mode(sc); 4037 } 4038 4039 /* Clean up multicast configuration */ 4040 rparam.mcast_obj = &sc->mcast_obj; 4041 rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_DEL); 4042 if (rc < 0) { 4043 BLOGE(sc, "Failed to send DEL MCAST command (%d)\n", rc); 4044 } 4045 4046 BXE_MCAST_UNLOCK(sc); 4047 4048 // XXX bxe_iov_chip_cleanup(sc); 4049 4050 /* 4051 * Send the UNLOAD_REQUEST to the MCP. This will return if 4052 * this function should perform FUNCTION, PORT, or COMMON HW 4053 * reset. 4054 */ 4055 reset_code = bxe_send_unload_req(sc, unload_mode); 4056 4057 /* 4058 * (assumption: No Attention from MCP at this stage) 4059 * PMF probably in the middle of TX disable/enable transaction 4060 */ 4061 rc = bxe_func_wait_started(sc); 4062 if (rc) { 4063 BLOGE(sc, "bxe_func_wait_started failed (%d)\n", rc); 4064 } 4065 4066 /* 4067 * Close multi and leading connections 4068 * Completions for ramrods are collected in a synchronous way 4069 */ 4070 for (i = 0; i < sc->num_queues; i++) { 4071 if (bxe_stop_queue(sc, i)) { 4072 goto unload_error; 4073 } 4074 } 4075 4076 /* 4077 * If SP settings didn't get completed so far - something 4078 * very wrong has happen. 4079 */ 4080 if (!bxe_wait_sp_comp(sc, ~0x0UL)) { 4081 BLOGE(sc, "Common slow path ramrods got stuck!(%d)\n", rc); 4082 } 4083 4084 unload_error: 4085 4086 rc = bxe_func_stop(sc); 4087 if (rc) { 4088 BLOGE(sc, "Function stop failed!(%d)\n", rc); 4089 } 4090 4091 /* disable HW interrupts */ 4092 bxe_int_disable_sync(sc, TRUE); 4093 4094 /* detach interrupts */ 4095 bxe_interrupt_detach(sc); 4096 4097 /* Reset the chip */ 4098 rc = bxe_reset_hw(sc, reset_code); 4099 if (rc) { 4100 BLOGE(sc, "Hardware reset failed(%d)\n", rc); 4101 } 4102 4103 /* Report UNLOAD_DONE to MCP */ 4104 bxe_send_unload_done(sc, keep_link); 4105 } 4106 4107 static void 4108 bxe_disable_close_the_gate(struct bxe_softc *sc) 4109 { 4110 uint32_t val; 4111 int port = SC_PORT(sc); 4112 4113 BLOGD(sc, DBG_LOAD, 4114 "Disabling 'close the gates'\n"); 4115 4116 if (CHIP_IS_E1(sc)) { 4117 uint32_t addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 : 4118 MISC_REG_AEU_MASK_ATTN_FUNC_0; 4119 val = REG_RD(sc, addr); 4120 val &= ~(0x300); 4121 REG_WR(sc, addr, val); 4122 } else { 4123 val = REG_RD(sc, MISC_REG_AEU_GENERAL_MASK); 4124 val &= ~(MISC_AEU_GENERAL_MASK_REG_AEU_PXP_CLOSE_MASK | 4125 MISC_AEU_GENERAL_MASK_REG_AEU_NIG_CLOSE_MASK); 4126 REG_WR(sc, MISC_REG_AEU_GENERAL_MASK, val); 4127 } 4128 } 4129 4130 /* 4131 * Cleans the object that have internal lists without sending 4132 * ramrods. Should be run when interrutps are disabled. 4133 */ 4134 static void 4135 bxe_squeeze_objects(struct bxe_softc *sc) 4136 { 4137 unsigned long ramrod_flags = 0, vlan_mac_flags = 0; 4138 struct ecore_mcast_ramrod_params rparam = { NULL }; 4139 struct ecore_vlan_mac_obj *mac_obj = &sc->sp_objs->mac_obj; 4140 int rc; 4141 4142 /* Cleanup MACs' object first... */ 4143 4144 /* Wait for completion of requested */ 4145 bxe_set_bit(RAMROD_COMP_WAIT, &ramrod_flags); 4146 /* Perform a dry cleanup */ 4147 bxe_set_bit(RAMROD_DRV_CLR_ONLY, &ramrod_flags); 4148 4149 /* Clean ETH primary MAC */ 4150 bxe_set_bit(ECORE_ETH_MAC, &vlan_mac_flags); 4151 rc = mac_obj->delete_all(sc, &sc->sp_objs->mac_obj, &vlan_mac_flags, 4152 &ramrod_flags); 4153 if (rc != 0) { 4154 BLOGE(sc, "Failed to clean ETH MACs (%d)\n", rc); 4155 } 4156 4157 /* Cleanup UC list */ 4158 vlan_mac_flags = 0; 4159 bxe_set_bit(ECORE_UC_LIST_MAC, &vlan_mac_flags); 4160 rc = mac_obj->delete_all(sc, mac_obj, &vlan_mac_flags, 4161 &ramrod_flags); 4162 if (rc != 0) { 4163 BLOGE(sc, "Failed to clean UC list MACs (%d)\n", rc); 4164 } 4165 4166 /* Now clean mcast object... */ 4167 4168 rparam.mcast_obj = &sc->mcast_obj; 4169 bxe_set_bit(RAMROD_DRV_CLR_ONLY, &rparam.ramrod_flags); 4170 4171 /* Add a DEL command... */ 4172 rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_DEL); 4173 if (rc < 0) { 4174 BLOGE(sc, "Failed to send DEL MCAST command (%d)\n", rc); 4175 } 4176 4177 /* now wait until all pending commands are cleared */ 4178 4179 rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_CONT); 4180 while (rc != 0) { 4181 if (rc < 0) { 4182 BLOGE(sc, "Failed to clean MCAST object (%d)\n", rc); 4183 return; 4184 } 4185 4186 rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_CONT); 4187 } 4188 } 4189 4190 /* stop the controller */ 4191 static __noinline int 4192 bxe_nic_unload(struct bxe_softc *sc, 4193 uint32_t unload_mode, 4194 uint8_t keep_link) 4195 { 4196 uint8_t global = FALSE; 4197 uint32_t val; 4198 int i; 4199 4200 BXE_CORE_LOCK_ASSERT(sc); 4201 4202 if_setdrvflagbits(sc->ifp, 0, IFF_DRV_RUNNING); 4203 4204 for (i = 0; i < sc->num_queues; i++) { 4205 struct bxe_fastpath *fp; 4206 4207 fp = &sc->fp[i]; 4208 BXE_FP_TX_LOCK(fp); 4209 BXE_FP_TX_UNLOCK(fp); 4210 } 4211 4212 BLOGD(sc, DBG_LOAD, "Starting NIC unload...\n"); 4213 4214 /* mark driver as unloaded in shmem2 */ 4215 if (IS_PF(sc) && SHMEM2_HAS(sc, drv_capabilities_flag)) { 4216 val = SHMEM2_RD(sc, drv_capabilities_flag[SC_FW_MB_IDX(sc)]); 4217 SHMEM2_WR(sc, drv_capabilities_flag[SC_FW_MB_IDX(sc)], 4218 val & ~DRV_FLAGS_CAPABILITIES_LOADED_L2); 4219 } 4220 4221 if (IS_PF(sc) && sc->recovery_state != BXE_RECOVERY_DONE && 4222 (sc->state == BXE_STATE_CLOSED || sc->state == BXE_STATE_ERROR)) { 4223 /* 4224 * We can get here if the driver has been unloaded 4225 * during parity error recovery and is either waiting for a 4226 * leader to complete or for other functions to unload and 4227 * then ifconfig down has been issued. In this case we want to 4228 * unload and let other functions to complete a recovery 4229 * process. 4230 */ 4231 sc->recovery_state = BXE_RECOVERY_DONE; 4232 sc->is_leader = 0; 4233 bxe_release_leader_lock(sc); 4234 mb(); 4235 4236 BLOGD(sc, DBG_LOAD, "Releasing a leadership...\n"); 4237 BLOGE(sc, "Can't unload in closed or error state recover_state 0x%x" 4238 " state = 0x%x\n", sc->recovery_state, sc->state); 4239 return (-1); 4240 } 4241 4242 /* 4243 * Nothing to do during unload if previous bxe_nic_load() 4244 * did not completed succesfully - all resourses are released. 4245 */ 4246 if ((sc->state == BXE_STATE_CLOSED) || 4247 (sc->state == BXE_STATE_ERROR)) { 4248 return (0); 4249 } 4250 4251 sc->state = BXE_STATE_CLOSING_WAITING_HALT; 4252 mb(); 4253 4254 /* stop tx */ 4255 bxe_tx_disable(sc); 4256 4257 sc->rx_mode = BXE_RX_MODE_NONE; 4258 /* XXX set rx mode ??? */ 4259 4260 if (IS_PF(sc) && !sc->grcdump_done) { 4261 /* set ALWAYS_ALIVE bit in shmem */ 4262 sc->fw_drv_pulse_wr_seq |= DRV_PULSE_ALWAYS_ALIVE; 4263 4264 bxe_drv_pulse(sc); 4265 4266 bxe_stats_handle(sc, STATS_EVENT_STOP); 4267 bxe_save_statistics(sc); 4268 } 4269 4270 /* wait till consumers catch up with producers in all queues */ 4271 bxe_drain_tx_queues(sc); 4272 4273 /* if VF indicate to PF this function is going down (PF will delete sp 4274 * elements and clear initializations 4275 */ 4276 if (IS_VF(sc)) { 4277 ; /* bxe_vfpf_close_vf(sc); */ 4278 } else if (unload_mode != UNLOAD_RECOVERY) { 4279 /* if this is a normal/close unload need to clean up chip */ 4280 if (!sc->grcdump_done) 4281 bxe_chip_cleanup(sc, unload_mode, keep_link); 4282 } else { 4283 /* Send the UNLOAD_REQUEST to the MCP */ 4284 bxe_send_unload_req(sc, unload_mode); 4285 4286 /* 4287 * Prevent transactions to host from the functions on the 4288 * engine that doesn't reset global blocks in case of global 4289 * attention once gloabl blocks are reset and gates are opened 4290 * (the engine which leader will perform the recovery 4291 * last). 4292 */ 4293 if (!CHIP_IS_E1x(sc)) { 4294 bxe_pf_disable(sc); 4295 } 4296 4297 /* disable HW interrupts */ 4298 bxe_int_disable_sync(sc, TRUE); 4299 4300 /* detach interrupts */ 4301 bxe_interrupt_detach(sc); 4302 4303 /* Report UNLOAD_DONE to MCP */ 4304 bxe_send_unload_done(sc, FALSE); 4305 } 4306 4307 /* 4308 * At this stage no more interrupts will arrive so we may safely clean 4309 * the queue'able objects here in case they failed to get cleaned so far. 4310 */ 4311 if (IS_PF(sc)) { 4312 bxe_squeeze_objects(sc); 4313 } 4314 4315 /* There should be no more pending SP commands at this stage */ 4316 sc->sp_state = 0; 4317 4318 sc->port.pmf = 0; 4319 4320 bxe_free_fp_buffers(sc); 4321 4322 if (IS_PF(sc)) { 4323 bxe_free_mem(sc); 4324 } 4325 4326 bxe_free_fw_stats_mem(sc); 4327 4328 sc->state = BXE_STATE_CLOSED; 4329 4330 /* 4331 * Check if there are pending parity attentions. If there are - set 4332 * RECOVERY_IN_PROGRESS. 4333 */ 4334 if (IS_PF(sc) && bxe_chk_parity_attn(sc, &global, FALSE)) { 4335 bxe_set_reset_in_progress(sc); 4336 4337 /* Set RESET_IS_GLOBAL if needed */ 4338 if (global) { 4339 bxe_set_reset_global(sc); 4340 } 4341 } 4342 4343 /* 4344 * The last driver must disable a "close the gate" if there is no 4345 * parity attention or "process kill" pending. 4346 */ 4347 if (IS_PF(sc) && !bxe_clear_pf_load(sc) && 4348 bxe_reset_is_done(sc, SC_PATH(sc))) { 4349 bxe_disable_close_the_gate(sc); 4350 } 4351 4352 BLOGD(sc, DBG_LOAD, "Ended NIC unload\n"); 4353 4354 return (0); 4355 } 4356 4357 /* 4358 * Called by the OS to set various media options (i.e. link, speed, etc.) when 4359 * the user runs "ifconfig bxe media ..." or "ifconfig bxe mediaopt ...". 4360 */ 4361 static int 4362 bxe_ifmedia_update(struct ifnet *ifp) 4363 { 4364 struct bxe_softc *sc = (struct bxe_softc *)if_getsoftc(ifp); 4365 struct ifmedia *ifm; 4366 4367 ifm = &sc->ifmedia; 4368 4369 /* We only support Ethernet media type. */ 4370 if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER) { 4371 return (EINVAL); 4372 } 4373 4374 switch (IFM_SUBTYPE(ifm->ifm_media)) { 4375 case IFM_AUTO: 4376 break; 4377 case IFM_10G_CX4: 4378 case IFM_10G_SR: 4379 case IFM_10G_T: 4380 case IFM_10G_TWINAX: 4381 default: 4382 /* We don't support changing the media type. */ 4383 BLOGD(sc, DBG_LOAD, "Invalid media type (%d)\n", 4384 IFM_SUBTYPE(ifm->ifm_media)); 4385 return (EINVAL); 4386 } 4387 4388 return (0); 4389 } 4390 4391 /* 4392 * Called by the OS to get the current media status (i.e. link, speed, etc.). 4393 */ 4394 static void 4395 bxe_ifmedia_status(struct ifnet *ifp, struct ifmediareq *ifmr) 4396 { 4397 struct bxe_softc *sc = if_getsoftc(ifp); 4398 4399 /* Report link down if the driver isn't running. */ 4400 if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) == 0) { 4401 ifmr->ifm_active |= IFM_NONE; 4402 return; 4403 } 4404 4405 /* Setup the default interface info. */ 4406 ifmr->ifm_status = IFM_AVALID; 4407 ifmr->ifm_active = IFM_ETHER; 4408 4409 if (sc->link_vars.link_up) { 4410 ifmr->ifm_status |= IFM_ACTIVE; 4411 } else { 4412 ifmr->ifm_active |= IFM_NONE; 4413 return; 4414 } 4415 4416 ifmr->ifm_active |= sc->media; 4417 4418 if (sc->link_vars.duplex == DUPLEX_FULL) { 4419 ifmr->ifm_active |= IFM_FDX; 4420 } else { 4421 ifmr->ifm_active |= IFM_HDX; 4422 } 4423 } 4424 4425 static int 4426 bxe_ioctl_nvram(struct bxe_softc *sc, 4427 uint32_t priv_op, 4428 struct ifreq *ifr) 4429 { 4430 struct bxe_nvram_data nvdata_base; 4431 struct bxe_nvram_data *nvdata; 4432 int len; 4433 int error = 0; 4434 4435 copyin(ifr->ifr_data, &nvdata_base, sizeof(nvdata_base)); 4436 4437 len = (sizeof(struct bxe_nvram_data) + 4438 nvdata_base.len - 4439 sizeof(uint32_t)); 4440 4441 if (len > sizeof(struct bxe_nvram_data)) { 4442 if ((nvdata = (struct bxe_nvram_data *) 4443 malloc(len, M_DEVBUF, 4444 (M_NOWAIT | M_ZERO))) == NULL) { 4445 BLOGE(sc, "BXE_IOC_RD_NVRAM malloc failed priv_op 0x%x " 4446 " len = 0x%x\n", priv_op, len); 4447 return (1); 4448 } 4449 memcpy(nvdata, &nvdata_base, sizeof(struct bxe_nvram_data)); 4450 } else { 4451 nvdata = &nvdata_base; 4452 } 4453 4454 if (priv_op == BXE_IOC_RD_NVRAM) { 4455 BLOGD(sc, DBG_IOCTL, "IOC_RD_NVRAM 0x%x %d\n", 4456 nvdata->offset, nvdata->len); 4457 error = bxe_nvram_read(sc, 4458 nvdata->offset, 4459 (uint8_t *)nvdata->value, 4460 nvdata->len); 4461 copyout(nvdata, ifr->ifr_data, len); 4462 } else { /* BXE_IOC_WR_NVRAM */ 4463 BLOGD(sc, DBG_IOCTL, "IOC_WR_NVRAM 0x%x %d\n", 4464 nvdata->offset, nvdata->len); 4465 copyin(ifr->ifr_data, nvdata, len); 4466 error = bxe_nvram_write(sc, 4467 nvdata->offset, 4468 (uint8_t *)nvdata->value, 4469 nvdata->len); 4470 } 4471 4472 if (len > sizeof(struct bxe_nvram_data)) { 4473 free(nvdata, M_DEVBUF); 4474 } 4475 4476 return (error); 4477 } 4478 4479 static int 4480 bxe_ioctl_stats_show(struct bxe_softc *sc, 4481 uint32_t priv_op, 4482 struct ifreq *ifr) 4483 { 4484 const size_t str_size = (BXE_NUM_ETH_STATS * STAT_NAME_LEN); 4485 const size_t stats_size = (BXE_NUM_ETH_STATS * sizeof(uint64_t)); 4486 caddr_t p_tmp; 4487 uint32_t *offset; 4488 int i; 4489 4490 switch (priv_op) 4491 { 4492 case BXE_IOC_STATS_SHOW_NUM: 4493 memset(ifr->ifr_data, 0, sizeof(union bxe_stats_show_data)); 4494 ((union bxe_stats_show_data *)ifr->ifr_data)->desc.num = 4495 BXE_NUM_ETH_STATS; 4496 ((union bxe_stats_show_data *)ifr->ifr_data)->desc.len = 4497 STAT_NAME_LEN; 4498 return (0); 4499 4500 case BXE_IOC_STATS_SHOW_STR: 4501 memset(ifr->ifr_data, 0, str_size); 4502 p_tmp = ifr->ifr_data; 4503 for (i = 0; i < BXE_NUM_ETH_STATS; i++) { 4504 strcpy(p_tmp, bxe_eth_stats_arr[i].string); 4505 p_tmp += STAT_NAME_LEN; 4506 } 4507 return (0); 4508 4509 case BXE_IOC_STATS_SHOW_CNT: 4510 memset(ifr->ifr_data, 0, stats_size); 4511 p_tmp = ifr->ifr_data; 4512 for (i = 0; i < BXE_NUM_ETH_STATS; i++) { 4513 offset = ((uint32_t *)&sc->eth_stats + 4514 bxe_eth_stats_arr[i].offset); 4515 switch (bxe_eth_stats_arr[i].size) { 4516 case 4: 4517 *((uint64_t *)p_tmp) = (uint64_t)*offset; 4518 break; 4519 case 8: 4520 *((uint64_t *)p_tmp) = HILO_U64(*offset, *(offset + 1)); 4521 break; 4522 default: 4523 *((uint64_t *)p_tmp) = 0; 4524 } 4525 p_tmp += sizeof(uint64_t); 4526 } 4527 return (0); 4528 4529 default: 4530 return (-1); 4531 } 4532 } 4533 4534 static void 4535 bxe_handle_chip_tq(void *context, 4536 int pending) 4537 { 4538 struct bxe_softc *sc = (struct bxe_softc *)context; 4539 long work = atomic_load_acq_long(&sc->chip_tq_flags); 4540 4541 switch (work) 4542 { 4543 4544 case CHIP_TQ_REINIT: 4545 if (if_getdrvflags(sc->ifp) & IFF_DRV_RUNNING) { 4546 /* restart the interface */ 4547 BLOGD(sc, DBG_LOAD, "Restarting the interface...\n"); 4548 bxe_periodic_stop(sc); 4549 BXE_CORE_LOCK(sc); 4550 bxe_stop_locked(sc); 4551 bxe_init_locked(sc); 4552 BXE_CORE_UNLOCK(sc); 4553 } 4554 break; 4555 4556 default: 4557 break; 4558 } 4559 } 4560 4561 /* 4562 * Handles any IOCTL calls from the operating system. 4563 * 4564 * Returns: 4565 * 0 = Success, >0 Failure 4566 */ 4567 static int 4568 bxe_ioctl(if_t ifp, 4569 u_long command, 4570 caddr_t data) 4571 { 4572 struct bxe_softc *sc = if_getsoftc(ifp); 4573 struct ifreq *ifr = (struct ifreq *)data; 4574 struct bxe_nvram_data *nvdata; 4575 uint32_t priv_op; 4576 int mask = 0; 4577 int reinit = 0; 4578 int error = 0; 4579 4580 int mtu_min = (ETH_MIN_PACKET_SIZE - ETH_HLEN); 4581 int mtu_max = (MJUM9BYTES - ETH_OVERHEAD - IP_HEADER_ALIGNMENT_PADDING); 4582 4583 switch (command) 4584 { 4585 case SIOCSIFMTU: 4586 BLOGD(sc, DBG_IOCTL, "Received SIOCSIFMTU ioctl (mtu=%d)\n", 4587 ifr->ifr_mtu); 4588 4589 if (sc->mtu == ifr->ifr_mtu) { 4590 /* nothing to change */ 4591 break; 4592 } 4593 4594 if ((ifr->ifr_mtu < mtu_min) || (ifr->ifr_mtu > mtu_max)) { 4595 BLOGE(sc, "Unsupported MTU size %d (range is %d-%d)\n", 4596 ifr->ifr_mtu, mtu_min, mtu_max); 4597 error = EINVAL; 4598 break; 4599 } 4600 4601 atomic_store_rel_int((volatile unsigned int *)&sc->mtu, 4602 (unsigned long)ifr->ifr_mtu); 4603 /* 4604 atomic_store_rel_long((volatile unsigned long *)&if_getmtu(ifp), 4605 (unsigned long)ifr->ifr_mtu); 4606 XXX - Not sure why it needs to be atomic 4607 */ 4608 if_setmtu(ifp, ifr->ifr_mtu); 4609 reinit = 1; 4610 break; 4611 4612 case SIOCSIFFLAGS: 4613 /* toggle the interface state up or down */ 4614 BLOGD(sc, DBG_IOCTL, "Received SIOCSIFFLAGS ioctl\n"); 4615 4616 BXE_CORE_LOCK(sc); 4617 /* check if the interface is up */ 4618 if (if_getflags(ifp) & IFF_UP) { 4619 if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) { 4620 /* set the receive mode flags */ 4621 bxe_set_rx_mode(sc); 4622 } else { 4623 bxe_init_locked(sc); 4624 } 4625 } else { 4626 if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) { 4627 bxe_periodic_stop(sc); 4628 bxe_stop_locked(sc); 4629 } 4630 } 4631 BXE_CORE_UNLOCK(sc); 4632 4633 break; 4634 4635 case SIOCADDMULTI: 4636 case SIOCDELMULTI: 4637 /* add/delete multicast addresses */ 4638 BLOGD(sc, DBG_IOCTL, "Received SIOCADDMULTI/SIOCDELMULTI ioctl\n"); 4639 4640 /* check if the interface is up */ 4641 if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) { 4642 /* set the receive mode flags */ 4643 BXE_CORE_LOCK(sc); 4644 bxe_set_rx_mode(sc); 4645 BXE_CORE_UNLOCK(sc); 4646 } 4647 4648 break; 4649 4650 case SIOCSIFCAP: 4651 /* find out which capabilities have changed */ 4652 mask = (ifr->ifr_reqcap ^ if_getcapenable(ifp)); 4653 4654 BLOGD(sc, DBG_IOCTL, "Received SIOCSIFCAP ioctl (mask=0x%08x)\n", 4655 mask); 4656 4657 /* toggle the LRO capabilites enable flag */ 4658 if (mask & IFCAP_LRO) { 4659 if_togglecapenable(ifp, IFCAP_LRO); 4660 BLOGD(sc, DBG_IOCTL, "Turning LRO %s\n", 4661 (if_getcapenable(ifp) & IFCAP_LRO) ? "ON" : "OFF"); 4662 reinit = 1; 4663 } 4664 4665 /* toggle the TXCSUM checksum capabilites enable flag */ 4666 if (mask & IFCAP_TXCSUM) { 4667 if_togglecapenable(ifp, IFCAP_TXCSUM); 4668 BLOGD(sc, DBG_IOCTL, "Turning TXCSUM %s\n", 4669 (if_getcapenable(ifp) & IFCAP_TXCSUM) ? "ON" : "OFF"); 4670 if (if_getcapenable(ifp) & IFCAP_TXCSUM) { 4671 if_sethwassistbits(ifp, (CSUM_IP | 4672 CSUM_TCP | 4673 CSUM_UDP | 4674 CSUM_TSO | 4675 CSUM_TCP_IPV6 | 4676 CSUM_UDP_IPV6), 0); 4677 } else { 4678 if_clearhwassist(ifp); /* XXX */ 4679 } 4680 } 4681 4682 /* toggle the RXCSUM checksum capabilities enable flag */ 4683 if (mask & IFCAP_RXCSUM) { 4684 if_togglecapenable(ifp, IFCAP_RXCSUM); 4685 BLOGD(sc, DBG_IOCTL, "Turning RXCSUM %s\n", 4686 (if_getcapenable(ifp) & IFCAP_RXCSUM) ? "ON" : "OFF"); 4687 if (if_getcapenable(ifp) & IFCAP_RXCSUM) { 4688 if_sethwassistbits(ifp, (CSUM_IP | 4689 CSUM_TCP | 4690 CSUM_UDP | 4691 CSUM_TSO | 4692 CSUM_TCP_IPV6 | 4693 CSUM_UDP_IPV6), 0); 4694 } else { 4695 if_clearhwassist(ifp); /* XXX */ 4696 } 4697 } 4698 4699 /* toggle TSO4 capabilities enabled flag */ 4700 if (mask & IFCAP_TSO4) { 4701 if_togglecapenable(ifp, IFCAP_TSO4); 4702 BLOGD(sc, DBG_IOCTL, "Turning TSO4 %s\n", 4703 (if_getcapenable(ifp) & IFCAP_TSO4) ? "ON" : "OFF"); 4704 } 4705 4706 /* toggle TSO6 capabilities enabled flag */ 4707 if (mask & IFCAP_TSO6) { 4708 if_togglecapenable(ifp, IFCAP_TSO6); 4709 BLOGD(sc, DBG_IOCTL, "Turning TSO6 %s\n", 4710 (if_getcapenable(ifp) & IFCAP_TSO6) ? "ON" : "OFF"); 4711 } 4712 4713 /* toggle VLAN_HWTSO capabilities enabled flag */ 4714 if (mask & IFCAP_VLAN_HWTSO) { 4715 4716 if_togglecapenable(ifp, IFCAP_VLAN_HWTSO); 4717 BLOGD(sc, DBG_IOCTL, "Turning VLAN_HWTSO %s\n", 4718 (if_getcapenable(ifp) & IFCAP_VLAN_HWTSO) ? "ON" : "OFF"); 4719 } 4720 4721 /* toggle VLAN_HWCSUM capabilities enabled flag */ 4722 if (mask & IFCAP_VLAN_HWCSUM) { 4723 /* XXX investigate this... */ 4724 BLOGE(sc, "Changing VLAN_HWCSUM is not supported!\n"); 4725 error = EINVAL; 4726 } 4727 4728 /* toggle VLAN_MTU capabilities enable flag */ 4729 if (mask & IFCAP_VLAN_MTU) { 4730 /* XXX investigate this... */ 4731 BLOGE(sc, "Changing VLAN_MTU is not supported!\n"); 4732 error = EINVAL; 4733 } 4734 4735 /* toggle VLAN_HWTAGGING capabilities enabled flag */ 4736 if (mask & IFCAP_VLAN_HWTAGGING) { 4737 /* XXX investigate this... */ 4738 BLOGE(sc, "Changing VLAN_HWTAGGING is not supported!\n"); 4739 error = EINVAL; 4740 } 4741 4742 /* toggle VLAN_HWFILTER capabilities enabled flag */ 4743 if (mask & IFCAP_VLAN_HWFILTER) { 4744 /* XXX investigate this... */ 4745 BLOGE(sc, "Changing VLAN_HWFILTER is not supported!\n"); 4746 error = EINVAL; 4747 } 4748 4749 /* XXX not yet... 4750 * IFCAP_WOL_MAGIC 4751 */ 4752 4753 break; 4754 4755 case SIOCSIFMEDIA: 4756 case SIOCGIFMEDIA: 4757 /* set/get interface media */ 4758 BLOGD(sc, DBG_IOCTL, 4759 "Received SIOCSIFMEDIA/SIOCGIFMEDIA ioctl (cmd=%lu)\n", 4760 (command & 0xff)); 4761 error = ifmedia_ioctl(ifp, ifr, &sc->ifmedia, command); 4762 break; 4763 4764 case SIOCGPRIVATE_0: 4765 copyin(ifr->ifr_data, &priv_op, sizeof(priv_op)); 4766 4767 switch (priv_op) 4768 { 4769 case BXE_IOC_RD_NVRAM: 4770 case BXE_IOC_WR_NVRAM: 4771 nvdata = (struct bxe_nvram_data *)ifr->ifr_data; 4772 BLOGD(sc, DBG_IOCTL, 4773 "Received Private NVRAM ioctl addr=0x%x size=%u\n", 4774 nvdata->offset, nvdata->len); 4775 error = bxe_ioctl_nvram(sc, priv_op, ifr); 4776 break; 4777 4778 case BXE_IOC_STATS_SHOW_NUM: 4779 case BXE_IOC_STATS_SHOW_STR: 4780 case BXE_IOC_STATS_SHOW_CNT: 4781 BLOGD(sc, DBG_IOCTL, "Received Private Stats ioctl (%d)\n", 4782 priv_op); 4783 error = bxe_ioctl_stats_show(sc, priv_op, ifr); 4784 break; 4785 4786 default: 4787 BLOGW(sc, "Received Private Unknown ioctl (%d)\n", priv_op); 4788 error = EINVAL; 4789 break; 4790 } 4791 4792 break; 4793 4794 default: 4795 BLOGD(sc, DBG_IOCTL, "Received Unknown Ioctl (cmd=%lu)\n", 4796 (command & 0xff)); 4797 error = ether_ioctl(ifp, command, data); 4798 break; 4799 } 4800 4801 if (reinit && (if_getdrvflags(sc->ifp) & IFF_DRV_RUNNING)) { 4802 BLOGD(sc, DBG_LOAD | DBG_IOCTL, 4803 "Re-initializing hardware from IOCTL change\n"); 4804 bxe_periodic_stop(sc); 4805 BXE_CORE_LOCK(sc); 4806 bxe_stop_locked(sc); 4807 bxe_init_locked(sc); 4808 BXE_CORE_UNLOCK(sc); 4809 } 4810 4811 return (error); 4812 } 4813 4814 static __noinline void 4815 bxe_dump_mbuf(struct bxe_softc *sc, 4816 struct mbuf *m, 4817 uint8_t contents) 4818 { 4819 char * type; 4820 int i = 0; 4821 4822 if (!(sc->debug & DBG_MBUF)) { 4823 return; 4824 } 4825 4826 if (m == NULL) { 4827 BLOGD(sc, DBG_MBUF, "mbuf: null pointer\n"); 4828 return; 4829 } 4830 4831 while (m) { 4832 BLOGD(sc, DBG_MBUF, 4833 "%02d: mbuf=%p m_len=%d m_flags=0x%b m_data=%p\n", 4834 i, m, m->m_len, m->m_flags, M_FLAG_BITS, m->m_data); 4835 4836 if (m->m_flags & M_PKTHDR) { 4837 BLOGD(sc, DBG_MBUF, 4838 "%02d: - m_pkthdr: tot_len=%d flags=0x%b csum_flags=%b\n", 4839 i, m->m_pkthdr.len, m->m_flags, M_FLAG_BITS, 4840 (int)m->m_pkthdr.csum_flags, CSUM_BITS); 4841 } 4842 4843 if (m->m_flags & M_EXT) { 4844 switch (m->m_ext.ext_type) { 4845 case EXT_CLUSTER: type = "EXT_CLUSTER"; break; 4846 case EXT_SFBUF: type = "EXT_SFBUF"; break; 4847 case EXT_JUMBOP: type = "EXT_JUMBOP"; break; 4848 case EXT_JUMBO9: type = "EXT_JUMBO9"; break; 4849 case EXT_JUMBO16: type = "EXT_JUMBO16"; break; 4850 case EXT_PACKET: type = "EXT_PACKET"; break; 4851 case EXT_MBUF: type = "EXT_MBUF"; break; 4852 case EXT_NET_DRV: type = "EXT_NET_DRV"; break; 4853 case EXT_MOD_TYPE: type = "EXT_MOD_TYPE"; break; 4854 case EXT_DISPOSABLE: type = "EXT_DISPOSABLE"; break; 4855 case EXT_EXTREF: type = "EXT_EXTREF"; break; 4856 default: type = "UNKNOWN"; break; 4857 } 4858 4859 BLOGD(sc, DBG_MBUF, 4860 "%02d: - m_ext: %p ext_size=%d type=%s\n", 4861 i, m->m_ext.ext_buf, m->m_ext.ext_size, type); 4862 } 4863 4864 if (contents) { 4865 bxe_dump_mbuf_data(sc, "mbuf data", m, TRUE); 4866 } 4867 4868 m = m->m_next; 4869 i++; 4870 } 4871 } 4872 4873 /* 4874 * Checks to ensure the 13 bd sliding window is >= MSS for TSO. 4875 * Check that (13 total bds - 3 bds) = 10 bd window >= MSS. 4876 * The window: 3 bds are = 1 for headers BD + 2 for parse BD and last BD 4877 * The headers comes in a seperate bd in FreeBSD so 13-3=10. 4878 * Returns: 0 if OK to send, 1 if packet needs further defragmentation 4879 */ 4880 static int 4881 bxe_chktso_window(struct bxe_softc *sc, 4882 int nsegs, 4883 bus_dma_segment_t *segs, 4884 struct mbuf *m) 4885 { 4886 uint32_t num_wnds, wnd_size, wnd_sum; 4887 int32_t frag_idx, wnd_idx; 4888 unsigned short lso_mss; 4889 int defrag; 4890 4891 defrag = 0; 4892 wnd_sum = 0; 4893 wnd_size = 10; 4894 num_wnds = nsegs - wnd_size; 4895 lso_mss = htole16(m->m_pkthdr.tso_segsz); 4896 4897 /* 4898 * Total header lengths Eth+IP+TCP in first FreeBSD mbuf so calculate the 4899 * first window sum of data while skipping the first assuming it is the 4900 * header in FreeBSD. 4901 */ 4902 for (frag_idx = 1; (frag_idx <= wnd_size); frag_idx++) { 4903 wnd_sum += htole16(segs[frag_idx].ds_len); 4904 } 4905 4906 /* check the first 10 bd window size */ 4907 if (wnd_sum < lso_mss) { 4908 return (1); 4909 } 4910 4911 /* run through the windows */ 4912 for (wnd_idx = 0; wnd_idx < num_wnds; wnd_idx++, frag_idx++) { 4913 /* subtract the first mbuf->m_len of the last wndw(-header) */ 4914 wnd_sum -= htole16(segs[wnd_idx+1].ds_len); 4915 /* add the next mbuf len to the len of our new window */ 4916 wnd_sum += htole16(segs[frag_idx].ds_len); 4917 if (wnd_sum < lso_mss) { 4918 return (1); 4919 } 4920 } 4921 4922 return (0); 4923 } 4924 4925 static uint8_t 4926 bxe_set_pbd_csum_e2(struct bxe_fastpath *fp, 4927 struct mbuf *m, 4928 uint32_t *parsing_data) 4929 { 4930 struct ether_vlan_header *eh = NULL; 4931 struct ip *ip4 = NULL; 4932 struct ip6_hdr *ip6 = NULL; 4933 caddr_t ip = NULL; 4934 struct tcphdr *th = NULL; 4935 int e_hlen, ip_hlen, l4_off; 4936 uint16_t proto; 4937 4938 if (m->m_pkthdr.csum_flags == CSUM_IP) { 4939 /* no L4 checksum offload needed */ 4940 return (0); 4941 } 4942 4943 /* get the Ethernet header */ 4944 eh = mtod(m, struct ether_vlan_header *); 4945 4946 /* handle VLAN encapsulation if present */ 4947 if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) { 4948 e_hlen = (ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN); 4949 proto = ntohs(eh->evl_proto); 4950 } else { 4951 e_hlen = ETHER_HDR_LEN; 4952 proto = ntohs(eh->evl_encap_proto); 4953 } 4954 4955 switch (proto) { 4956 case ETHERTYPE_IP: 4957 /* get the IP header, if mbuf len < 20 then header in next mbuf */ 4958 ip4 = (m->m_len < sizeof(struct ip)) ? 4959 (struct ip *)m->m_next->m_data : 4960 (struct ip *)(m->m_data + e_hlen); 4961 /* ip_hl is number of 32-bit words */ 4962 ip_hlen = (ip4->ip_hl << 2); 4963 ip = (caddr_t)ip4; 4964 break; 4965 case ETHERTYPE_IPV6: 4966 /* get the IPv6 header, if mbuf len < 40 then header in next mbuf */ 4967 ip6 = (m->m_len < sizeof(struct ip6_hdr)) ? 4968 (struct ip6_hdr *)m->m_next->m_data : 4969 (struct ip6_hdr *)(m->m_data + e_hlen); 4970 /* XXX cannot support offload with IPv6 extensions */ 4971 ip_hlen = sizeof(struct ip6_hdr); 4972 ip = (caddr_t)ip6; 4973 break; 4974 default: 4975 /* We can't offload in this case... */ 4976 /* XXX error stat ??? */ 4977 return (0); 4978 } 4979 4980 /* XXX assuming L4 header is contiguous to IPv4/IPv6 in the same mbuf */ 4981 l4_off = (e_hlen + ip_hlen); 4982 4983 *parsing_data |= 4984 (((l4_off >> 1) << ETH_TX_PARSE_BD_E2_L4_HDR_START_OFFSET_W_SHIFT) & 4985 ETH_TX_PARSE_BD_E2_L4_HDR_START_OFFSET_W); 4986 4987 if (m->m_pkthdr.csum_flags & (CSUM_TCP | 4988 CSUM_TSO | 4989 CSUM_TCP_IPV6)) { 4990 fp->eth_q_stats.tx_ofld_frames_csum_tcp++; 4991 th = (struct tcphdr *)(ip + ip_hlen); 4992 /* th_off is number of 32-bit words */ 4993 *parsing_data |= ((th->th_off << 4994 ETH_TX_PARSE_BD_E2_TCP_HDR_LENGTH_DW_SHIFT) & 4995 ETH_TX_PARSE_BD_E2_TCP_HDR_LENGTH_DW); 4996 return (l4_off + (th->th_off << 2)); /* entire header length */ 4997 } else if (m->m_pkthdr.csum_flags & (CSUM_UDP | 4998 CSUM_UDP_IPV6)) { 4999 fp->eth_q_stats.tx_ofld_frames_csum_udp++; 5000 return (l4_off + sizeof(struct udphdr)); /* entire header length */ 5001 } else { 5002 /* XXX error stat ??? */ 5003 return (0); 5004 } 5005 } 5006 5007 static uint8_t 5008 bxe_set_pbd_csum(struct bxe_fastpath *fp, 5009 struct mbuf *m, 5010 struct eth_tx_parse_bd_e1x *pbd) 5011 { 5012 struct ether_vlan_header *eh = NULL; 5013 struct ip *ip4 = NULL; 5014 struct ip6_hdr *ip6 = NULL; 5015 caddr_t ip = NULL; 5016 struct tcphdr *th = NULL; 5017 struct udphdr *uh = NULL; 5018 int e_hlen, ip_hlen; 5019 uint16_t proto; 5020 uint8_t hlen; 5021 uint16_t tmp_csum; 5022 uint32_t *tmp_uh; 5023 5024 /* get the Ethernet header */ 5025 eh = mtod(m, struct ether_vlan_header *); 5026 5027 /* handle VLAN encapsulation if present */ 5028 if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) { 5029 e_hlen = (ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN); 5030 proto = ntohs(eh->evl_proto); 5031 } else { 5032 e_hlen = ETHER_HDR_LEN; 5033 proto = ntohs(eh->evl_encap_proto); 5034 } 5035 5036 switch (proto) { 5037 case ETHERTYPE_IP: 5038 /* get the IP header, if mbuf len < 20 then header in next mbuf */ 5039 ip4 = (m->m_len < sizeof(struct ip)) ? 5040 (struct ip *)m->m_next->m_data : 5041 (struct ip *)(m->m_data + e_hlen); 5042 /* ip_hl is number of 32-bit words */ 5043 ip_hlen = (ip4->ip_hl << 1); 5044 ip = (caddr_t)ip4; 5045 break; 5046 case ETHERTYPE_IPV6: 5047 /* get the IPv6 header, if mbuf len < 40 then header in next mbuf */ 5048 ip6 = (m->m_len < sizeof(struct ip6_hdr)) ? 5049 (struct ip6_hdr *)m->m_next->m_data : 5050 (struct ip6_hdr *)(m->m_data + e_hlen); 5051 /* XXX cannot support offload with IPv6 extensions */ 5052 ip_hlen = (sizeof(struct ip6_hdr) >> 1); 5053 ip = (caddr_t)ip6; 5054 break; 5055 default: 5056 /* We can't offload in this case... */ 5057 /* XXX error stat ??? */ 5058 return (0); 5059 } 5060 5061 hlen = (e_hlen >> 1); 5062 5063 /* note that rest of global_data is indirectly zeroed here */ 5064 if (m->m_flags & M_VLANTAG) { 5065 pbd->global_data = 5066 htole16(hlen | (1 << ETH_TX_PARSE_BD_E1X_LLC_SNAP_EN_SHIFT)); 5067 } else { 5068 pbd->global_data = htole16(hlen); 5069 } 5070 5071 pbd->ip_hlen_w = ip_hlen; 5072 5073 hlen += pbd->ip_hlen_w; 5074 5075 /* XXX assuming L4 header is contiguous to IPv4/IPv6 in the same mbuf */ 5076 5077 if (m->m_pkthdr.csum_flags & (CSUM_TCP | 5078 CSUM_TSO | 5079 CSUM_TCP_IPV6)) { 5080 th = (struct tcphdr *)(ip + (ip_hlen << 1)); 5081 /* th_off is number of 32-bit words */ 5082 hlen += (uint16_t)(th->th_off << 1); 5083 } else if (m->m_pkthdr.csum_flags & (CSUM_UDP | 5084 CSUM_UDP_IPV6)) { 5085 uh = (struct udphdr *)(ip + (ip_hlen << 1)); 5086 hlen += (sizeof(struct udphdr) / 2); 5087 } else { 5088 /* valid case as only CSUM_IP was set */ 5089 return (0); 5090 } 5091 5092 pbd->total_hlen_w = htole16(hlen); 5093 5094 if (m->m_pkthdr.csum_flags & (CSUM_TCP | 5095 CSUM_TSO | 5096 CSUM_TCP_IPV6)) { 5097 fp->eth_q_stats.tx_ofld_frames_csum_tcp++; 5098 pbd->tcp_pseudo_csum = ntohs(th->th_sum); 5099 } else if (m->m_pkthdr.csum_flags & (CSUM_UDP | 5100 CSUM_UDP_IPV6)) { 5101 fp->eth_q_stats.tx_ofld_frames_csum_udp++; 5102 5103 /* 5104 * Everest1 (i.e. 57710, 57711, 57711E) does not natively support UDP 5105 * checksums and does not know anything about the UDP header and where 5106 * the checksum field is located. It only knows about TCP. Therefore 5107 * we "lie" to the hardware for outgoing UDP packets w/ checksum 5108 * offload. Since the checksum field offset for TCP is 16 bytes and 5109 * for UDP it is 6 bytes we pass a pointer to the hardware that is 10 5110 * bytes less than the start of the UDP header. This allows the 5111 * hardware to write the checksum in the correct spot. But the 5112 * hardware will compute a checksum which includes the last 10 bytes 5113 * of the IP header. To correct this we tweak the stack computed 5114 * pseudo checksum by folding in the calculation of the inverse 5115 * checksum for those final 10 bytes of the IP header. This allows 5116 * the correct checksum to be computed by the hardware. 5117 */ 5118 5119 /* set pointer 10 bytes before UDP header */ 5120 tmp_uh = (uint32_t *)((uint8_t *)uh - 10); 5121 5122 /* calculate a pseudo header checksum over the first 10 bytes */ 5123 tmp_csum = in_pseudo(*tmp_uh, 5124 *(tmp_uh + 1), 5125 *(uint16_t *)(tmp_uh + 2)); 5126 5127 pbd->tcp_pseudo_csum = ntohs(in_addword(uh->uh_sum, ~tmp_csum)); 5128 } 5129 5130 return (hlen * 2); /* entire header length, number of bytes */ 5131 } 5132 5133 static void 5134 bxe_set_pbd_lso_e2(struct mbuf *m, 5135 uint32_t *parsing_data) 5136 { 5137 *parsing_data |= ((m->m_pkthdr.tso_segsz << 5138 ETH_TX_PARSE_BD_E2_LSO_MSS_SHIFT) & 5139 ETH_TX_PARSE_BD_E2_LSO_MSS); 5140 5141 /* XXX test for IPv6 with extension header... */ 5142 } 5143 5144 static void 5145 bxe_set_pbd_lso(struct mbuf *m, 5146 struct eth_tx_parse_bd_e1x *pbd) 5147 { 5148 struct ether_vlan_header *eh = NULL; 5149 struct ip *ip = NULL; 5150 struct tcphdr *th = NULL; 5151 int e_hlen; 5152 5153 /* get the Ethernet header */ 5154 eh = mtod(m, struct ether_vlan_header *); 5155 5156 /* handle VLAN encapsulation if present */ 5157 e_hlen = (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) ? 5158 (ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN) : ETHER_HDR_LEN; 5159 5160 /* get the IP and TCP header, with LSO entire header in first mbuf */ 5161 /* XXX assuming IPv4 */ 5162 ip = (struct ip *)(m->m_data + e_hlen); 5163 th = (struct tcphdr *)((caddr_t)ip + (ip->ip_hl << 2)); 5164 5165 pbd->lso_mss = htole16(m->m_pkthdr.tso_segsz); 5166 pbd->tcp_send_seq = ntohl(th->th_seq); 5167 pbd->tcp_flags = ((ntohl(((uint32_t *)th)[3]) >> 16) & 0xff); 5168 5169 #if 1 5170 /* XXX IPv4 */ 5171 pbd->ip_id = ntohs(ip->ip_id); 5172 pbd->tcp_pseudo_csum = 5173 ntohs(in_pseudo(ip->ip_src.s_addr, 5174 ip->ip_dst.s_addr, 5175 htons(IPPROTO_TCP))); 5176 #else 5177 /* XXX IPv6 */ 5178 pbd->tcp_pseudo_csum = 5179 ntohs(in_pseudo(&ip6->ip6_src, 5180 &ip6->ip6_dst, 5181 htons(IPPROTO_TCP))); 5182 #endif 5183 5184 pbd->global_data |= 5185 htole16(ETH_TX_PARSE_BD_E1X_PSEUDO_CS_WITHOUT_LEN); 5186 } 5187 5188 /* 5189 * Encapsulte an mbuf cluster into the tx bd chain and makes the memory 5190 * visible to the controller. 5191 * 5192 * If an mbuf is submitted to this routine and cannot be given to the 5193 * controller (e.g. it has too many fragments) then the function may free 5194 * the mbuf and return to the caller. 5195 * 5196 * Returns: 5197 * 0 = Success, !0 = Failure 5198 * Note the side effect that an mbuf may be freed if it causes a problem. 5199 */ 5200 static int 5201 bxe_tx_encap(struct bxe_fastpath *fp, struct mbuf **m_head) 5202 { 5203 bus_dma_segment_t segs[32]; 5204 struct mbuf *m0; 5205 struct bxe_sw_tx_bd *tx_buf; 5206 struct eth_tx_parse_bd_e1x *pbd_e1x = NULL; 5207 struct eth_tx_parse_bd_e2 *pbd_e2 = NULL; 5208 /* struct eth_tx_parse_2nd_bd *pbd2 = NULL; */ 5209 struct eth_tx_bd *tx_data_bd; 5210 struct eth_tx_bd *tx_total_pkt_size_bd; 5211 struct eth_tx_start_bd *tx_start_bd; 5212 uint16_t bd_prod, pkt_prod, total_pkt_size; 5213 uint8_t mac_type; 5214 int defragged, error, nsegs, rc, nbds, vlan_off, ovlan; 5215 struct bxe_softc *sc; 5216 uint16_t tx_bd_avail; 5217 struct ether_vlan_header *eh; 5218 uint32_t pbd_e2_parsing_data = 0; 5219 uint8_t hlen = 0; 5220 int tmp_bd; 5221 int i; 5222 5223 sc = fp->sc; 5224 5225 M_ASSERTPKTHDR(*m_head); 5226 5227 m0 = *m_head; 5228 rc = defragged = nbds = ovlan = vlan_off = total_pkt_size = 0; 5229 tx_start_bd = NULL; 5230 tx_data_bd = NULL; 5231 tx_total_pkt_size_bd = NULL; 5232 5233 /* get the H/W pointer for packets and BDs */ 5234 pkt_prod = fp->tx_pkt_prod; 5235 bd_prod = fp->tx_bd_prod; 5236 5237 mac_type = UNICAST_ADDRESS; 5238 5239 /* map the mbuf into the next open DMAable memory */ 5240 tx_buf = &fp->tx_mbuf_chain[TX_BD(pkt_prod)]; 5241 error = bus_dmamap_load_mbuf_sg(fp->tx_mbuf_tag, 5242 tx_buf->m_map, m0, 5243 segs, &nsegs, BUS_DMA_NOWAIT); 5244 5245 /* mapping errors */ 5246 if(__predict_false(error != 0)) { 5247 fp->eth_q_stats.tx_dma_mapping_failure++; 5248 if (error == ENOMEM) { 5249 /* resource issue, try again later */ 5250 rc = ENOMEM; 5251 } else if (error == EFBIG) { 5252 /* possibly recoverable with defragmentation */ 5253 fp->eth_q_stats.mbuf_defrag_attempts++; 5254 m0 = m_defrag(*m_head, M_NOWAIT); 5255 if (m0 == NULL) { 5256 fp->eth_q_stats.mbuf_defrag_failures++; 5257 rc = ENOBUFS; 5258 } else { 5259 /* defrag successful, try mapping again */ 5260 *m_head = m0; 5261 error = bus_dmamap_load_mbuf_sg(fp->tx_mbuf_tag, 5262 tx_buf->m_map, m0, 5263 segs, &nsegs, BUS_DMA_NOWAIT); 5264 if (error) { 5265 fp->eth_q_stats.tx_dma_mapping_failure++; 5266 rc = error; 5267 } 5268 } 5269 } else { 5270 /* unknown, unrecoverable mapping error */ 5271 BLOGE(sc, "Unknown TX mapping error rc=%d\n", error); 5272 bxe_dump_mbuf(sc, m0, FALSE); 5273 rc = error; 5274 } 5275 5276 goto bxe_tx_encap_continue; 5277 } 5278 5279 tx_bd_avail = bxe_tx_avail(sc, fp); 5280 5281 /* make sure there is enough room in the send queue */ 5282 if (__predict_false(tx_bd_avail < (nsegs + 2))) { 5283 /* Recoverable, try again later. */ 5284 fp->eth_q_stats.tx_hw_queue_full++; 5285 bus_dmamap_unload(fp->tx_mbuf_tag, tx_buf->m_map); 5286 rc = ENOMEM; 5287 goto bxe_tx_encap_continue; 5288 } 5289 5290 /* capture the current H/W TX chain high watermark */ 5291 if (__predict_false(fp->eth_q_stats.tx_hw_max_queue_depth < 5292 (TX_BD_USABLE - tx_bd_avail))) { 5293 fp->eth_q_stats.tx_hw_max_queue_depth = (TX_BD_USABLE - tx_bd_avail); 5294 } 5295 5296 /* make sure it fits in the packet window */ 5297 if (__predict_false(nsegs > BXE_MAX_SEGMENTS)) { 5298 /* 5299 * The mbuf may be to big for the controller to handle. If the frame 5300 * is a TSO frame we'll need to do an additional check. 5301 */ 5302 if (m0->m_pkthdr.csum_flags & CSUM_TSO) { 5303 if (bxe_chktso_window(sc, nsegs, segs, m0) == 0) { 5304 goto bxe_tx_encap_continue; /* OK to send */ 5305 } else { 5306 fp->eth_q_stats.tx_window_violation_tso++; 5307 } 5308 } else { 5309 fp->eth_q_stats.tx_window_violation_std++; 5310 } 5311 5312 /* lets try to defragment this mbuf and remap it */ 5313 fp->eth_q_stats.mbuf_defrag_attempts++; 5314 bus_dmamap_unload(fp->tx_mbuf_tag, tx_buf->m_map); 5315 5316 m0 = m_defrag(*m_head, M_NOWAIT); 5317 if (m0 == NULL) { 5318 fp->eth_q_stats.mbuf_defrag_failures++; 5319 /* Ugh, just drop the frame... :( */ 5320 rc = ENOBUFS; 5321 } else { 5322 /* defrag successful, try mapping again */ 5323 *m_head = m0; 5324 error = bus_dmamap_load_mbuf_sg(fp->tx_mbuf_tag, 5325 tx_buf->m_map, m0, 5326 segs, &nsegs, BUS_DMA_NOWAIT); 5327 if (error) { 5328 fp->eth_q_stats.tx_dma_mapping_failure++; 5329 /* No sense in trying to defrag/copy chain, drop it. :( */ 5330 rc = error; 5331 } 5332 else { 5333 /* if the chain is still too long then drop it */ 5334 if (__predict_false(nsegs > BXE_MAX_SEGMENTS)) { 5335 bus_dmamap_unload(fp->tx_mbuf_tag, tx_buf->m_map); 5336 rc = ENODEV; 5337 } 5338 } 5339 } 5340 } 5341 5342 bxe_tx_encap_continue: 5343 5344 /* Check for errors */ 5345 if (rc) { 5346 if (rc == ENOMEM) { 5347 /* recoverable try again later */ 5348 } else { 5349 fp->eth_q_stats.tx_soft_errors++; 5350 fp->eth_q_stats.mbuf_alloc_tx--; 5351 m_freem(*m_head); 5352 *m_head = NULL; 5353 } 5354 5355 return (rc); 5356 } 5357 5358 /* set flag according to packet type (UNICAST_ADDRESS is default) */ 5359 if (m0->m_flags & M_BCAST) { 5360 mac_type = BROADCAST_ADDRESS; 5361 } else if (m0->m_flags & M_MCAST) { 5362 mac_type = MULTICAST_ADDRESS; 5363 } 5364 5365 /* store the mbuf into the mbuf ring */ 5366 tx_buf->m = m0; 5367 tx_buf->first_bd = fp->tx_bd_prod; 5368 tx_buf->flags = 0; 5369 5370 /* prepare the first transmit (start) BD for the mbuf */ 5371 tx_start_bd = &fp->tx_chain[TX_BD(bd_prod)].start_bd; 5372 5373 BLOGD(sc, DBG_TX, 5374 "sending pkt_prod=%u tx_buf=%p next_idx=%u bd=%u tx_start_bd=%p\n", 5375 pkt_prod, tx_buf, fp->tx_pkt_prod, bd_prod, tx_start_bd); 5376 5377 tx_start_bd->addr_lo = htole32(U64_LO(segs[0].ds_addr)); 5378 tx_start_bd->addr_hi = htole32(U64_HI(segs[0].ds_addr)); 5379 tx_start_bd->nbytes = htole16(segs[0].ds_len); 5380 total_pkt_size += tx_start_bd->nbytes; 5381 tx_start_bd->bd_flags.as_bitfield = ETH_TX_BD_FLAGS_START_BD; 5382 5383 tx_start_bd->general_data = (1 << ETH_TX_START_BD_HDR_NBDS_SHIFT); 5384 5385 /* all frames have at least Start BD + Parsing BD */ 5386 nbds = nsegs + 1; 5387 tx_start_bd->nbd = htole16(nbds); 5388 5389 if (m0->m_flags & M_VLANTAG) { 5390 tx_start_bd->vlan_or_ethertype = htole16(m0->m_pkthdr.ether_vtag); 5391 tx_start_bd->bd_flags.as_bitfield |= 5392 (X_ETH_OUTBAND_VLAN << ETH_TX_BD_FLAGS_VLAN_MODE_SHIFT); 5393 } else { 5394 /* vf tx, start bd must hold the ethertype for fw to enforce it */ 5395 if (IS_VF(sc)) { 5396 /* map ethernet header to find type and header length */ 5397 eh = mtod(m0, struct ether_vlan_header *); 5398 tx_start_bd->vlan_or_ethertype = eh->evl_encap_proto; 5399 } else { 5400 /* used by FW for packet accounting */ 5401 tx_start_bd->vlan_or_ethertype = htole16(fp->tx_pkt_prod); 5402 } 5403 } 5404 5405 /* 5406 * add a parsing BD from the chain. The parsing BD is always added 5407 * though it is only used for TSO and chksum 5408 */ 5409 bd_prod = TX_BD_NEXT(bd_prod); 5410 5411 if (m0->m_pkthdr.csum_flags) { 5412 if (m0->m_pkthdr.csum_flags & CSUM_IP) { 5413 fp->eth_q_stats.tx_ofld_frames_csum_ip++; 5414 tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_IP_CSUM; 5415 } 5416 5417 if (m0->m_pkthdr.csum_flags & CSUM_TCP_IPV6) { 5418 tx_start_bd->bd_flags.as_bitfield |= (ETH_TX_BD_FLAGS_IPV6 | 5419 ETH_TX_BD_FLAGS_L4_CSUM); 5420 } else if (m0->m_pkthdr.csum_flags & CSUM_UDP_IPV6) { 5421 tx_start_bd->bd_flags.as_bitfield |= (ETH_TX_BD_FLAGS_IPV6 | 5422 ETH_TX_BD_FLAGS_IS_UDP | 5423 ETH_TX_BD_FLAGS_L4_CSUM); 5424 } else if ((m0->m_pkthdr.csum_flags & CSUM_TCP) || 5425 (m0->m_pkthdr.csum_flags & CSUM_TSO)) { 5426 tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_L4_CSUM; 5427 } else if (m0->m_pkthdr.csum_flags & CSUM_UDP) { 5428 tx_start_bd->bd_flags.as_bitfield |= (ETH_TX_BD_FLAGS_L4_CSUM | 5429 ETH_TX_BD_FLAGS_IS_UDP); 5430 } 5431 } 5432 5433 if (!CHIP_IS_E1x(sc)) { 5434 pbd_e2 = &fp->tx_chain[TX_BD(bd_prod)].parse_bd_e2; 5435 memset(pbd_e2, 0, sizeof(struct eth_tx_parse_bd_e2)); 5436 5437 if (m0->m_pkthdr.csum_flags) { 5438 hlen = bxe_set_pbd_csum_e2(fp, m0, &pbd_e2_parsing_data); 5439 } 5440 5441 SET_FLAG(pbd_e2_parsing_data, ETH_TX_PARSE_BD_E2_ETH_ADDR_TYPE, 5442 mac_type); 5443 } else { 5444 uint16_t global_data = 0; 5445 5446 pbd_e1x = &fp->tx_chain[TX_BD(bd_prod)].parse_bd_e1x; 5447 memset(pbd_e1x, 0, sizeof(struct eth_tx_parse_bd_e1x)); 5448 5449 if (m0->m_pkthdr.csum_flags) { 5450 hlen = bxe_set_pbd_csum(fp, m0, pbd_e1x); 5451 } 5452 5453 SET_FLAG(global_data, 5454 ETH_TX_PARSE_BD_E1X_ETH_ADDR_TYPE, mac_type); 5455 pbd_e1x->global_data |= htole16(global_data); 5456 } 5457 5458 /* setup the parsing BD with TSO specific info */ 5459 if (m0->m_pkthdr.csum_flags & CSUM_TSO) { 5460 fp->eth_q_stats.tx_ofld_frames_lso++; 5461 tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_SW_LSO; 5462 5463 if (__predict_false(tx_start_bd->nbytes > hlen)) { 5464 fp->eth_q_stats.tx_ofld_frames_lso_hdr_splits++; 5465 5466 /* split the first BD into header/data making the fw job easy */ 5467 nbds++; 5468 tx_start_bd->nbd = htole16(nbds); 5469 tx_start_bd->nbytes = htole16(hlen); 5470 5471 bd_prod = TX_BD_NEXT(bd_prod); 5472 5473 /* new transmit BD after the tx_parse_bd */ 5474 tx_data_bd = &fp->tx_chain[TX_BD(bd_prod)].reg_bd; 5475 tx_data_bd->addr_hi = htole32(U64_HI(segs[0].ds_addr + hlen)); 5476 tx_data_bd->addr_lo = htole32(U64_LO(segs[0].ds_addr + hlen)); 5477 tx_data_bd->nbytes = htole16(segs[0].ds_len - hlen); 5478 if (tx_total_pkt_size_bd == NULL) { 5479 tx_total_pkt_size_bd = tx_data_bd; 5480 } 5481 5482 BLOGD(sc, DBG_TX, 5483 "TSO split header size is %d (%x:%x) nbds %d\n", 5484 le16toh(tx_start_bd->nbytes), 5485 le32toh(tx_start_bd->addr_hi), 5486 le32toh(tx_start_bd->addr_lo), 5487 nbds); 5488 } 5489 5490 if (!CHIP_IS_E1x(sc)) { 5491 bxe_set_pbd_lso_e2(m0, &pbd_e2_parsing_data); 5492 } else { 5493 bxe_set_pbd_lso(m0, pbd_e1x); 5494 } 5495 } 5496 5497 if (pbd_e2_parsing_data) { 5498 pbd_e2->parsing_data = htole32(pbd_e2_parsing_data); 5499 } 5500 5501 /* prepare remaining BDs, start tx bd contains first seg/frag */ 5502 for (i = 1; i < nsegs ; i++) { 5503 bd_prod = TX_BD_NEXT(bd_prod); 5504 tx_data_bd = &fp->tx_chain[TX_BD(bd_prod)].reg_bd; 5505 tx_data_bd->addr_lo = htole32(U64_LO(segs[i].ds_addr)); 5506 tx_data_bd->addr_hi = htole32(U64_HI(segs[i].ds_addr)); 5507 tx_data_bd->nbytes = htole16(segs[i].ds_len); 5508 if (tx_total_pkt_size_bd == NULL) { 5509 tx_total_pkt_size_bd = tx_data_bd; 5510 } 5511 total_pkt_size += tx_data_bd->nbytes; 5512 } 5513 5514 BLOGD(sc, DBG_TX, "last bd %p\n", tx_data_bd); 5515 5516 if (tx_total_pkt_size_bd != NULL) { 5517 tx_total_pkt_size_bd->total_pkt_bytes = total_pkt_size; 5518 } 5519 5520 if (__predict_false(sc->debug & DBG_TX)) { 5521 tmp_bd = tx_buf->first_bd; 5522 for (i = 0; i < nbds; i++) 5523 { 5524 if (i == 0) { 5525 BLOGD(sc, DBG_TX, 5526 "TX Strt: %p bd=%d nbd=%d vlan=0x%x " 5527 "bd_flags=0x%x hdr_nbds=%d\n", 5528 tx_start_bd, 5529 tmp_bd, 5530 le16toh(tx_start_bd->nbd), 5531 le16toh(tx_start_bd->vlan_or_ethertype), 5532 tx_start_bd->bd_flags.as_bitfield, 5533 (tx_start_bd->general_data & ETH_TX_START_BD_HDR_NBDS)); 5534 } else if (i == 1) { 5535 if (pbd_e1x) { 5536 BLOGD(sc, DBG_TX, 5537 "-> Prse: %p bd=%d global=0x%x ip_hlen_w=%u " 5538 "ip_id=%u lso_mss=%u tcp_flags=0x%x csum=0x%x " 5539 "tcp_seq=%u total_hlen_w=%u\n", 5540 pbd_e1x, 5541 tmp_bd, 5542 pbd_e1x->global_data, 5543 pbd_e1x->ip_hlen_w, 5544 pbd_e1x->ip_id, 5545 pbd_e1x->lso_mss, 5546 pbd_e1x->tcp_flags, 5547 pbd_e1x->tcp_pseudo_csum, 5548 pbd_e1x->tcp_send_seq, 5549 le16toh(pbd_e1x->total_hlen_w)); 5550 } else { /* if (pbd_e2) */ 5551 BLOGD(sc, DBG_TX, 5552 "-> Parse: %p bd=%d dst=%02x:%02x:%02x " 5553 "src=%02x:%02x:%02x parsing_data=0x%x\n", 5554 pbd_e2, 5555 tmp_bd, 5556 pbd_e2->data.mac_addr.dst_hi, 5557 pbd_e2->data.mac_addr.dst_mid, 5558 pbd_e2->data.mac_addr.dst_lo, 5559 pbd_e2->data.mac_addr.src_hi, 5560 pbd_e2->data.mac_addr.src_mid, 5561 pbd_e2->data.mac_addr.src_lo, 5562 pbd_e2->parsing_data); 5563 } 5564 } 5565 5566 if (i != 1) { /* skip parse db as it doesn't hold data */ 5567 tx_data_bd = &fp->tx_chain[TX_BD(tmp_bd)].reg_bd; 5568 BLOGD(sc, DBG_TX, 5569 "-> Frag: %p bd=%d nbytes=%d hi=0x%x lo: 0x%x\n", 5570 tx_data_bd, 5571 tmp_bd, 5572 le16toh(tx_data_bd->nbytes), 5573 le32toh(tx_data_bd->addr_hi), 5574 le32toh(tx_data_bd->addr_lo)); 5575 } 5576 5577 tmp_bd = TX_BD_NEXT(tmp_bd); 5578 } 5579 } 5580 5581 BLOGD(sc, DBG_TX, "doorbell: nbds=%d bd=%u\n", nbds, bd_prod); 5582 5583 /* update TX BD producer index value for next TX */ 5584 bd_prod = TX_BD_NEXT(bd_prod); 5585 5586 /* 5587 * If the chain of tx_bd's describing this frame is adjacent to or spans 5588 * an eth_tx_next_bd element then we need to increment the nbds value. 5589 */ 5590 if (TX_BD_IDX(bd_prod) < nbds) { 5591 nbds++; 5592 } 5593 5594 /* don't allow reordering of writes for nbd and packets */ 5595 mb(); 5596 5597 fp->tx_db.data.prod += nbds; 5598 5599 /* producer points to the next free tx_bd at this point */ 5600 fp->tx_pkt_prod++; 5601 fp->tx_bd_prod = bd_prod; 5602 5603 DOORBELL(sc, fp->index, fp->tx_db.raw); 5604 5605 fp->eth_q_stats.tx_pkts++; 5606 5607 /* Prevent speculative reads from getting ahead of the status block. */ 5608 bus_space_barrier(sc->bar[BAR0].tag, sc->bar[BAR0].handle, 5609 0, 0, BUS_SPACE_BARRIER_READ); 5610 5611 /* Prevent speculative reads from getting ahead of the doorbell. */ 5612 bus_space_barrier(sc->bar[BAR2].tag, sc->bar[BAR2].handle, 5613 0, 0, BUS_SPACE_BARRIER_READ); 5614 5615 return (0); 5616 } 5617 5618 static void 5619 bxe_tx_start_locked(struct bxe_softc *sc, 5620 if_t ifp, 5621 struct bxe_fastpath *fp) 5622 { 5623 struct mbuf *m = NULL; 5624 int tx_count = 0; 5625 uint16_t tx_bd_avail; 5626 5627 BXE_FP_TX_LOCK_ASSERT(fp); 5628 5629 /* keep adding entries while there are frames to send */ 5630 while (!if_sendq_empty(ifp)) { 5631 5632 /* 5633 * check for any frames to send 5634 * dequeue can still be NULL even if queue is not empty 5635 */ 5636 m = if_dequeue(ifp); 5637 if (__predict_false(m == NULL)) { 5638 break; 5639 } 5640 5641 /* the mbuf now belongs to us */ 5642 fp->eth_q_stats.mbuf_alloc_tx++; 5643 5644 /* 5645 * Put the frame into the transmit ring. If we don't have room, 5646 * place the mbuf back at the head of the TX queue, set the 5647 * OACTIVE flag, and wait for the NIC to drain the chain. 5648 */ 5649 if (__predict_false(bxe_tx_encap(fp, &m))) { 5650 fp->eth_q_stats.tx_encap_failures++; 5651 if (m != NULL) { 5652 /* mark the TX queue as full and return the frame */ 5653 if_setdrvflagbits(ifp, IFF_DRV_OACTIVE, 0); 5654 if_sendq_prepend(ifp, m); 5655 fp->eth_q_stats.mbuf_alloc_tx--; 5656 fp->eth_q_stats.tx_queue_xoff++; 5657 } 5658 5659 /* stop looking for more work */ 5660 break; 5661 } 5662 5663 /* the frame was enqueued successfully */ 5664 tx_count++; 5665 5666 /* send a copy of the frame to any BPF listeners. */ 5667 if_etherbpfmtap(ifp, m); 5668 5669 tx_bd_avail = bxe_tx_avail(sc, fp); 5670 5671 /* handle any completions if we're running low */ 5672 if (tx_bd_avail < BXE_TX_CLEANUP_THRESHOLD) { 5673 /* bxe_txeof will set IFF_DRV_OACTIVE appropriately */ 5674 bxe_txeof(sc, fp); 5675 if (if_getdrvflags(ifp) & IFF_DRV_OACTIVE) { 5676 break; 5677 } 5678 } 5679 } 5680 5681 /* all TX packets were dequeued and/or the tx ring is full */ 5682 if (tx_count > 0) { 5683 /* reset the TX watchdog timeout timer */ 5684 fp->watchdog_timer = BXE_TX_TIMEOUT; 5685 } 5686 } 5687 5688 /* Legacy (non-RSS) dispatch routine */ 5689 static void 5690 bxe_tx_start(if_t ifp) 5691 { 5692 struct bxe_softc *sc; 5693 struct bxe_fastpath *fp; 5694 5695 sc = if_getsoftc(ifp); 5696 5697 if (!(if_getdrvflags(ifp) & IFF_DRV_RUNNING)) { 5698 BLOGW(sc, "Interface not running, ignoring transmit request\n"); 5699 return; 5700 } 5701 5702 if (if_getdrvflags(ifp) & IFF_DRV_OACTIVE) { 5703 BLOGW(sc, "Interface TX queue is full, ignoring transmit request\n"); 5704 return; 5705 } 5706 5707 if (!sc->link_vars.link_up) { 5708 BLOGW(sc, "Interface link is down, ignoring transmit request\n"); 5709 return; 5710 } 5711 5712 fp = &sc->fp[0]; 5713 5714 BXE_FP_TX_LOCK(fp); 5715 bxe_tx_start_locked(sc, ifp, fp); 5716 BXE_FP_TX_UNLOCK(fp); 5717 } 5718 5719 #if __FreeBSD_version >= 800000 5720 5721 static int 5722 bxe_tx_mq_start_locked(struct bxe_softc *sc, 5723 if_t ifp, 5724 struct bxe_fastpath *fp, 5725 struct mbuf *m) 5726 { 5727 struct buf_ring *tx_br = fp->tx_br; 5728 struct mbuf *next; 5729 int depth, rc, tx_count; 5730 uint16_t tx_bd_avail; 5731 5732 rc = tx_count = 0; 5733 5734 BXE_FP_TX_LOCK_ASSERT(fp); 5735 5736 if (!tx_br) { 5737 BLOGE(sc, "Multiqueue TX and no buf_ring!\n"); 5738 return (EINVAL); 5739 } 5740 5741 if (!sc->link_vars.link_up || 5742 (if_getdrvflags(ifp) & 5743 (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) != IFF_DRV_RUNNING) { 5744 rc = drbr_enqueue_drv(ifp, tx_br, m); 5745 goto bxe_tx_mq_start_locked_exit; 5746 } 5747 5748 /* fetch the depth of the driver queue */ 5749 depth = drbr_inuse_drv(ifp, tx_br); 5750 if (depth > fp->eth_q_stats.tx_max_drbr_queue_depth) { 5751 fp->eth_q_stats.tx_max_drbr_queue_depth = depth; 5752 } 5753 5754 if (m == NULL) { 5755 /* no new work, check for pending frames */ 5756 next = drbr_dequeue_drv(ifp, tx_br); 5757 } else if (drbr_needs_enqueue_drv(ifp, tx_br)) { 5758 /* have both new and pending work, maintain packet order */ 5759 rc = drbr_enqueue_drv(ifp, tx_br, m); 5760 if (rc != 0) { 5761 fp->eth_q_stats.tx_soft_errors++; 5762 goto bxe_tx_mq_start_locked_exit; 5763 } 5764 next = drbr_dequeue_drv(ifp, tx_br); 5765 } else { 5766 /* new work only and nothing pending */ 5767 next = m; 5768 } 5769 5770 /* keep adding entries while there are frames to send */ 5771 while (next != NULL) { 5772 5773 /* the mbuf now belongs to us */ 5774 fp->eth_q_stats.mbuf_alloc_tx++; 5775 5776 /* 5777 * Put the frame into the transmit ring. If we don't have room, 5778 * place the mbuf back at the head of the TX queue, set the 5779 * OACTIVE flag, and wait for the NIC to drain the chain. 5780 */ 5781 rc = bxe_tx_encap(fp, &next); 5782 if (__predict_false(rc != 0)) { 5783 fp->eth_q_stats.tx_encap_failures++; 5784 if (next != NULL) { 5785 /* mark the TX queue as full and save the frame */ 5786 if_setdrvflagbits(ifp, IFF_DRV_OACTIVE, 0); 5787 /* XXX this may reorder the frame */ 5788 rc = drbr_enqueue_drv(ifp, tx_br, next); 5789 fp->eth_q_stats.mbuf_alloc_tx--; 5790 fp->eth_q_stats.tx_frames_deferred++; 5791 } 5792 5793 /* stop looking for more work */ 5794 break; 5795 } 5796 5797 /* the transmit frame was enqueued successfully */ 5798 tx_count++; 5799 5800 /* send a copy of the frame to any BPF listeners */ 5801 if_etherbpfmtap(ifp, next); 5802 5803 tx_bd_avail = bxe_tx_avail(sc, fp); 5804 5805 /* handle any completions if we're running low */ 5806 if (tx_bd_avail < BXE_TX_CLEANUP_THRESHOLD) { 5807 /* bxe_txeof will set IFF_DRV_OACTIVE appropriately */ 5808 bxe_txeof(sc, fp); 5809 if (if_getdrvflags(ifp) & IFF_DRV_OACTIVE) { 5810 break; 5811 } 5812 } 5813 5814 next = drbr_dequeue_drv(ifp, tx_br); 5815 } 5816 5817 /* all TX packets were dequeued and/or the tx ring is full */ 5818 if (tx_count > 0) { 5819 /* reset the TX watchdog timeout timer */ 5820 fp->watchdog_timer = BXE_TX_TIMEOUT; 5821 } 5822 5823 bxe_tx_mq_start_locked_exit: 5824 5825 return (rc); 5826 } 5827 5828 /* Multiqueue (TSS) dispatch routine. */ 5829 static int 5830 bxe_tx_mq_start(struct ifnet *ifp, 5831 struct mbuf *m) 5832 { 5833 struct bxe_softc *sc = if_getsoftc(ifp); 5834 struct bxe_fastpath *fp; 5835 int fp_index, rc; 5836 5837 fp_index = 0; /* default is the first queue */ 5838 5839 /* check if flowid is set */ 5840 if (M_HASHTYPE_GET(m) != M_HASHTYPE_NONE) 5841 fp_index = (m->m_pkthdr.flowid % sc->num_queues); 5842 5843 fp = &sc->fp[fp_index]; 5844 5845 if (BXE_FP_TX_TRYLOCK(fp)) { 5846 rc = bxe_tx_mq_start_locked(sc, ifp, fp, m); 5847 BXE_FP_TX_UNLOCK(fp); 5848 } else 5849 rc = drbr_enqueue_drv(ifp, fp->tx_br, m); 5850 5851 return (rc); 5852 } 5853 5854 static void 5855 bxe_mq_flush(struct ifnet *ifp) 5856 { 5857 struct bxe_softc *sc = if_getsoftc(ifp); 5858 struct bxe_fastpath *fp; 5859 struct mbuf *m; 5860 int i; 5861 5862 for (i = 0; i < sc->num_queues; i++) { 5863 fp = &sc->fp[i]; 5864 5865 if (fp->state != BXE_FP_STATE_OPEN) { 5866 BLOGD(sc, DBG_LOAD, "Not clearing fp[%02d] buf_ring (state=%d)\n", 5867 fp->index, fp->state); 5868 continue; 5869 } 5870 5871 if (fp->tx_br != NULL) { 5872 BLOGD(sc, DBG_LOAD, "Clearing fp[%02d] buf_ring\n", fp->index); 5873 BXE_FP_TX_LOCK(fp); 5874 while ((m = buf_ring_dequeue_sc(fp->tx_br)) != NULL) { 5875 m_freem(m); 5876 } 5877 BXE_FP_TX_UNLOCK(fp); 5878 } 5879 } 5880 5881 if_qflush(ifp); 5882 } 5883 5884 #endif /* FreeBSD_version >= 800000 */ 5885 5886 static uint16_t 5887 bxe_cid_ilt_lines(struct bxe_softc *sc) 5888 { 5889 if (IS_SRIOV(sc)) { 5890 return ((BXE_FIRST_VF_CID + BXE_VF_CIDS) / ILT_PAGE_CIDS); 5891 } 5892 return (L2_ILT_LINES(sc)); 5893 } 5894 5895 static void 5896 bxe_ilt_set_info(struct bxe_softc *sc) 5897 { 5898 struct ilt_client_info *ilt_client; 5899 struct ecore_ilt *ilt = sc->ilt; 5900 uint16_t line = 0; 5901 5902 ilt->start_line = FUNC_ILT_BASE(SC_FUNC(sc)); 5903 BLOGD(sc, DBG_LOAD, "ilt starts at line %d\n", ilt->start_line); 5904 5905 /* CDU */ 5906 ilt_client = &ilt->clients[ILT_CLIENT_CDU]; 5907 ilt_client->client_num = ILT_CLIENT_CDU; 5908 ilt_client->page_size = CDU_ILT_PAGE_SZ; 5909 ilt_client->flags = ILT_CLIENT_SKIP_MEM; 5910 ilt_client->start = line; 5911 line += bxe_cid_ilt_lines(sc); 5912 5913 if (CNIC_SUPPORT(sc)) { 5914 line += CNIC_ILT_LINES; 5915 } 5916 5917 ilt_client->end = (line - 1); 5918 5919 BLOGD(sc, DBG_LOAD, 5920 "ilt client[CDU]: start %d, end %d, " 5921 "psz 0x%x, flags 0x%x, hw psz %d\n", 5922 ilt_client->start, ilt_client->end, 5923 ilt_client->page_size, 5924 ilt_client->flags, 5925 ilog2(ilt_client->page_size >> 12)); 5926 5927 /* QM */ 5928 if (QM_INIT(sc->qm_cid_count)) { 5929 ilt_client = &ilt->clients[ILT_CLIENT_QM]; 5930 ilt_client->client_num = ILT_CLIENT_QM; 5931 ilt_client->page_size = QM_ILT_PAGE_SZ; 5932 ilt_client->flags = 0; 5933 ilt_client->start = line; 5934 5935 /* 4 bytes for each cid */ 5936 line += DIV_ROUND_UP(sc->qm_cid_count * QM_QUEUES_PER_FUNC * 4, 5937 QM_ILT_PAGE_SZ); 5938 5939 ilt_client->end = (line - 1); 5940 5941 BLOGD(sc, DBG_LOAD, 5942 "ilt client[QM]: start %d, end %d, " 5943 "psz 0x%x, flags 0x%x, hw psz %d\n", 5944 ilt_client->start, ilt_client->end, 5945 ilt_client->page_size, ilt_client->flags, 5946 ilog2(ilt_client->page_size >> 12)); 5947 } 5948 5949 if (CNIC_SUPPORT(sc)) { 5950 /* SRC */ 5951 ilt_client = &ilt->clients[ILT_CLIENT_SRC]; 5952 ilt_client->client_num = ILT_CLIENT_SRC; 5953 ilt_client->page_size = SRC_ILT_PAGE_SZ; 5954 ilt_client->flags = 0; 5955 ilt_client->start = line; 5956 line += SRC_ILT_LINES; 5957 ilt_client->end = (line - 1); 5958 5959 BLOGD(sc, DBG_LOAD, 5960 "ilt client[SRC]: start %d, end %d, " 5961 "psz 0x%x, flags 0x%x, hw psz %d\n", 5962 ilt_client->start, ilt_client->end, 5963 ilt_client->page_size, ilt_client->flags, 5964 ilog2(ilt_client->page_size >> 12)); 5965 5966 /* TM */ 5967 ilt_client = &ilt->clients[ILT_CLIENT_TM]; 5968 ilt_client->client_num = ILT_CLIENT_TM; 5969 ilt_client->page_size = TM_ILT_PAGE_SZ; 5970 ilt_client->flags = 0; 5971 ilt_client->start = line; 5972 line += TM_ILT_LINES; 5973 ilt_client->end = (line - 1); 5974 5975 BLOGD(sc, DBG_LOAD, 5976 "ilt client[TM]: start %d, end %d, " 5977 "psz 0x%x, flags 0x%x, hw psz %d\n", 5978 ilt_client->start, ilt_client->end, 5979 ilt_client->page_size, ilt_client->flags, 5980 ilog2(ilt_client->page_size >> 12)); 5981 } 5982 5983 KASSERT((line <= ILT_MAX_LINES), ("Invalid number of ILT lines!")); 5984 } 5985 5986 static void 5987 bxe_set_fp_rx_buf_size(struct bxe_softc *sc) 5988 { 5989 int i; 5990 uint32_t rx_buf_size; 5991 5992 rx_buf_size = (IP_HEADER_ALIGNMENT_PADDING + ETH_OVERHEAD + sc->mtu); 5993 5994 for (i = 0; i < sc->num_queues; i++) { 5995 if(rx_buf_size <= MCLBYTES){ 5996 sc->fp[i].rx_buf_size = rx_buf_size; 5997 sc->fp[i].mbuf_alloc_size = MCLBYTES; 5998 }else if (rx_buf_size <= MJUMPAGESIZE){ 5999 sc->fp[i].rx_buf_size = rx_buf_size; 6000 sc->fp[i].mbuf_alloc_size = MJUMPAGESIZE; 6001 }else if (rx_buf_size <= (MJUMPAGESIZE + MCLBYTES)){ 6002 sc->fp[i].rx_buf_size = MCLBYTES; 6003 sc->fp[i].mbuf_alloc_size = MCLBYTES; 6004 }else if (rx_buf_size <= (2 * MJUMPAGESIZE)){ 6005 sc->fp[i].rx_buf_size = MJUMPAGESIZE; 6006 sc->fp[i].mbuf_alloc_size = MJUMPAGESIZE; 6007 }else { 6008 sc->fp[i].rx_buf_size = MCLBYTES; 6009 sc->fp[i].mbuf_alloc_size = MCLBYTES; 6010 } 6011 } 6012 } 6013 6014 static int 6015 bxe_alloc_ilt_mem(struct bxe_softc *sc) 6016 { 6017 int rc = 0; 6018 6019 if ((sc->ilt = 6020 (struct ecore_ilt *)malloc(sizeof(struct ecore_ilt), 6021 M_BXE_ILT, 6022 (M_NOWAIT | M_ZERO))) == NULL) { 6023 rc = 1; 6024 } 6025 6026 return (rc); 6027 } 6028 6029 static int 6030 bxe_alloc_ilt_lines_mem(struct bxe_softc *sc) 6031 { 6032 int rc = 0; 6033 6034 if ((sc->ilt->lines = 6035 (struct ilt_line *)malloc((sizeof(struct ilt_line) * ILT_MAX_LINES), 6036 M_BXE_ILT, 6037 (M_NOWAIT | M_ZERO))) == NULL) { 6038 rc = 1; 6039 } 6040 6041 return (rc); 6042 } 6043 6044 static void 6045 bxe_free_ilt_mem(struct bxe_softc *sc) 6046 { 6047 if (sc->ilt != NULL) { 6048 free(sc->ilt, M_BXE_ILT); 6049 sc->ilt = NULL; 6050 } 6051 } 6052 6053 static void 6054 bxe_free_ilt_lines_mem(struct bxe_softc *sc) 6055 { 6056 if (sc->ilt->lines != NULL) { 6057 free(sc->ilt->lines, M_BXE_ILT); 6058 sc->ilt->lines = NULL; 6059 } 6060 } 6061 6062 static void 6063 bxe_free_mem(struct bxe_softc *sc) 6064 { 6065 int i; 6066 6067 for (i = 0; i < L2_ILT_LINES(sc); i++) { 6068 bxe_dma_free(sc, &sc->context[i].vcxt_dma); 6069 sc->context[i].vcxt = NULL; 6070 sc->context[i].size = 0; 6071 } 6072 6073 ecore_ilt_mem_op(sc, ILT_MEMOP_FREE); 6074 6075 bxe_free_ilt_lines_mem(sc); 6076 6077 } 6078 6079 static int 6080 bxe_alloc_mem(struct bxe_softc *sc) 6081 { 6082 int context_size; 6083 int allocated; 6084 int i; 6085 6086 /* 6087 * Allocate memory for CDU context: 6088 * This memory is allocated separately and not in the generic ILT 6089 * functions because CDU differs in few aspects: 6090 * 1. There can be multiple entities allocating memory for context - 6091 * regular L2, CNIC, and SRIOV drivers. Each separately controls 6092 * its own ILT lines. 6093 * 2. Since CDU page-size is not a single 4KB page (which is the case 6094 * for the other ILT clients), to be efficient we want to support 6095 * allocation of sub-page-size in the last entry. 6096 * 3. Context pointers are used by the driver to pass to FW / update 6097 * the context (for the other ILT clients the pointers are used just to 6098 * free the memory during unload). 6099 */ 6100 context_size = (sizeof(union cdu_context) * BXE_L2_CID_COUNT(sc)); 6101 for (i = 0, allocated = 0; allocated < context_size; i++) { 6102 sc->context[i].size = min(CDU_ILT_PAGE_SZ, 6103 (context_size - allocated)); 6104 6105 if (bxe_dma_alloc(sc, sc->context[i].size, 6106 &sc->context[i].vcxt_dma, 6107 "cdu context") != 0) { 6108 bxe_free_mem(sc); 6109 return (-1); 6110 } 6111 6112 sc->context[i].vcxt = 6113 (union cdu_context *)sc->context[i].vcxt_dma.vaddr; 6114 6115 allocated += sc->context[i].size; 6116 } 6117 6118 bxe_alloc_ilt_lines_mem(sc); 6119 6120 BLOGD(sc, DBG_LOAD, "ilt=%p start_line=%u lines=%p\n", 6121 sc->ilt, sc->ilt->start_line, sc->ilt->lines); 6122 { 6123 for (i = 0; i < 4; i++) { 6124 BLOGD(sc, DBG_LOAD, 6125 "c%d page_size=%u start=%u end=%u num=%u flags=0x%x\n", 6126 i, 6127 sc->ilt->clients[i].page_size, 6128 sc->ilt->clients[i].start, 6129 sc->ilt->clients[i].end, 6130 sc->ilt->clients[i].client_num, 6131 sc->ilt->clients[i].flags); 6132 } 6133 } 6134 if (ecore_ilt_mem_op(sc, ILT_MEMOP_ALLOC)) { 6135 BLOGE(sc, "ecore_ilt_mem_op ILT_MEMOP_ALLOC failed\n"); 6136 bxe_free_mem(sc); 6137 return (-1); 6138 } 6139 6140 return (0); 6141 } 6142 6143 static void 6144 bxe_free_rx_bd_chain(struct bxe_fastpath *fp) 6145 { 6146 struct bxe_softc *sc; 6147 int i; 6148 6149 sc = fp->sc; 6150 6151 if (fp->rx_mbuf_tag == NULL) { 6152 return; 6153 } 6154 6155 /* free all mbufs and unload all maps */ 6156 for (i = 0; i < RX_BD_TOTAL; i++) { 6157 if (fp->rx_mbuf_chain[i].m_map != NULL) { 6158 bus_dmamap_sync(fp->rx_mbuf_tag, 6159 fp->rx_mbuf_chain[i].m_map, 6160 BUS_DMASYNC_POSTREAD); 6161 bus_dmamap_unload(fp->rx_mbuf_tag, 6162 fp->rx_mbuf_chain[i].m_map); 6163 } 6164 6165 if (fp->rx_mbuf_chain[i].m != NULL) { 6166 m_freem(fp->rx_mbuf_chain[i].m); 6167 fp->rx_mbuf_chain[i].m = NULL; 6168 fp->eth_q_stats.mbuf_alloc_rx--; 6169 } 6170 } 6171 } 6172 6173 static void 6174 bxe_free_tpa_pool(struct bxe_fastpath *fp) 6175 { 6176 struct bxe_softc *sc; 6177 int i, max_agg_queues; 6178 6179 sc = fp->sc; 6180 6181 if (fp->rx_mbuf_tag == NULL) { 6182 return; 6183 } 6184 6185 max_agg_queues = MAX_AGG_QS(sc); 6186 6187 /* release all mbufs and unload all DMA maps in the TPA pool */ 6188 for (i = 0; i < max_agg_queues; i++) { 6189 if (fp->rx_tpa_info[i].bd.m_map != NULL) { 6190 bus_dmamap_sync(fp->rx_mbuf_tag, 6191 fp->rx_tpa_info[i].bd.m_map, 6192 BUS_DMASYNC_POSTREAD); 6193 bus_dmamap_unload(fp->rx_mbuf_tag, 6194 fp->rx_tpa_info[i].bd.m_map); 6195 } 6196 6197 if (fp->rx_tpa_info[i].bd.m != NULL) { 6198 m_freem(fp->rx_tpa_info[i].bd.m); 6199 fp->rx_tpa_info[i].bd.m = NULL; 6200 fp->eth_q_stats.mbuf_alloc_tpa--; 6201 } 6202 } 6203 } 6204 6205 static void 6206 bxe_free_sge_chain(struct bxe_fastpath *fp) 6207 { 6208 struct bxe_softc *sc; 6209 int i; 6210 6211 sc = fp->sc; 6212 6213 if (fp->rx_sge_mbuf_tag == NULL) { 6214 return; 6215 } 6216 6217 /* rree all mbufs and unload all maps */ 6218 for (i = 0; i < RX_SGE_TOTAL; i++) { 6219 if (fp->rx_sge_mbuf_chain[i].m_map != NULL) { 6220 bus_dmamap_sync(fp->rx_sge_mbuf_tag, 6221 fp->rx_sge_mbuf_chain[i].m_map, 6222 BUS_DMASYNC_POSTREAD); 6223 bus_dmamap_unload(fp->rx_sge_mbuf_tag, 6224 fp->rx_sge_mbuf_chain[i].m_map); 6225 } 6226 6227 if (fp->rx_sge_mbuf_chain[i].m != NULL) { 6228 m_freem(fp->rx_sge_mbuf_chain[i].m); 6229 fp->rx_sge_mbuf_chain[i].m = NULL; 6230 fp->eth_q_stats.mbuf_alloc_sge--; 6231 } 6232 } 6233 } 6234 6235 static void 6236 bxe_free_fp_buffers(struct bxe_softc *sc) 6237 { 6238 struct bxe_fastpath *fp; 6239 int i; 6240 6241 for (i = 0; i < sc->num_queues; i++) { 6242 fp = &sc->fp[i]; 6243 6244 #if __FreeBSD_version >= 800000 6245 if (fp->tx_br != NULL) { 6246 /* just in case bxe_mq_flush() wasn't called */ 6247 if (mtx_initialized(&fp->tx_mtx)) { 6248 struct mbuf *m; 6249 6250 BXE_FP_TX_LOCK(fp); 6251 while ((m = buf_ring_dequeue_sc(fp->tx_br)) != NULL) 6252 m_freem(m); 6253 BXE_FP_TX_UNLOCK(fp); 6254 } 6255 } 6256 #endif 6257 6258 /* free all RX buffers */ 6259 bxe_free_rx_bd_chain(fp); 6260 bxe_free_tpa_pool(fp); 6261 bxe_free_sge_chain(fp); 6262 6263 if (fp->eth_q_stats.mbuf_alloc_rx != 0) { 6264 BLOGE(sc, "failed to claim all rx mbufs (%d left)\n", 6265 fp->eth_q_stats.mbuf_alloc_rx); 6266 } 6267 6268 if (fp->eth_q_stats.mbuf_alloc_sge != 0) { 6269 BLOGE(sc, "failed to claim all sge mbufs (%d left)\n", 6270 fp->eth_q_stats.mbuf_alloc_sge); 6271 } 6272 6273 if (fp->eth_q_stats.mbuf_alloc_tpa != 0) { 6274 BLOGE(sc, "failed to claim all sge mbufs (%d left)\n", 6275 fp->eth_q_stats.mbuf_alloc_tpa); 6276 } 6277 6278 if (fp->eth_q_stats.mbuf_alloc_tx != 0) { 6279 BLOGE(sc, "failed to release tx mbufs (%d left)\n", 6280 fp->eth_q_stats.mbuf_alloc_tx); 6281 } 6282 6283 /* XXX verify all mbufs were reclaimed */ 6284 } 6285 } 6286 6287 static int 6288 bxe_alloc_rx_bd_mbuf(struct bxe_fastpath *fp, 6289 uint16_t prev_index, 6290 uint16_t index) 6291 { 6292 struct bxe_sw_rx_bd *rx_buf; 6293 struct eth_rx_bd *rx_bd; 6294 bus_dma_segment_t segs[1]; 6295 bus_dmamap_t map; 6296 struct mbuf *m; 6297 int nsegs, rc; 6298 6299 rc = 0; 6300 6301 /* allocate the new RX BD mbuf */ 6302 m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, fp->mbuf_alloc_size); 6303 if (__predict_false(m == NULL)) { 6304 fp->eth_q_stats.mbuf_rx_bd_alloc_failed++; 6305 return (ENOBUFS); 6306 } 6307 6308 fp->eth_q_stats.mbuf_alloc_rx++; 6309 6310 /* initialize the mbuf buffer length */ 6311 m->m_pkthdr.len = m->m_len = fp->rx_buf_size; 6312 6313 /* map the mbuf into non-paged pool */ 6314 rc = bus_dmamap_load_mbuf_sg(fp->rx_mbuf_tag, 6315 fp->rx_mbuf_spare_map, 6316 m, segs, &nsegs, BUS_DMA_NOWAIT); 6317 if (__predict_false(rc != 0)) { 6318 fp->eth_q_stats.mbuf_rx_bd_mapping_failed++; 6319 m_freem(m); 6320 fp->eth_q_stats.mbuf_alloc_rx--; 6321 return (rc); 6322 } 6323 6324 /* all mbufs must map to a single segment */ 6325 KASSERT((nsegs == 1), ("Too many segments, %d returned!", nsegs)); 6326 6327 /* release any existing RX BD mbuf mappings */ 6328 6329 if (prev_index != index) { 6330 rx_buf = &fp->rx_mbuf_chain[prev_index]; 6331 6332 if (rx_buf->m_map != NULL) { 6333 bus_dmamap_sync(fp->rx_mbuf_tag, rx_buf->m_map, 6334 BUS_DMASYNC_POSTREAD); 6335 bus_dmamap_unload(fp->rx_mbuf_tag, rx_buf->m_map); 6336 } 6337 6338 /* 6339 * We only get here from bxe_rxeof() when the maximum number 6340 * of rx buffers is less than RX_BD_USABLE. bxe_rxeof() already 6341 * holds the mbuf in the prev_index so it's OK to NULL it out 6342 * here without concern of a memory leak. 6343 */ 6344 fp->rx_mbuf_chain[prev_index].m = NULL; 6345 } 6346 6347 rx_buf = &fp->rx_mbuf_chain[index]; 6348 6349 if (rx_buf->m_map != NULL) { 6350 bus_dmamap_sync(fp->rx_mbuf_tag, rx_buf->m_map, 6351 BUS_DMASYNC_POSTREAD); 6352 bus_dmamap_unload(fp->rx_mbuf_tag, rx_buf->m_map); 6353 } 6354 6355 /* save the mbuf and mapping info for a future packet */ 6356 map = (prev_index != index) ? 6357 fp->rx_mbuf_chain[prev_index].m_map : rx_buf->m_map; 6358 rx_buf->m_map = fp->rx_mbuf_spare_map; 6359 fp->rx_mbuf_spare_map = map; 6360 bus_dmamap_sync(fp->rx_mbuf_tag, rx_buf->m_map, 6361 BUS_DMASYNC_PREREAD); 6362 rx_buf->m = m; 6363 6364 rx_bd = &fp->rx_chain[index]; 6365 rx_bd->addr_hi = htole32(U64_HI(segs[0].ds_addr)); 6366 rx_bd->addr_lo = htole32(U64_LO(segs[0].ds_addr)); 6367 6368 return (rc); 6369 } 6370 6371 static int 6372 bxe_alloc_rx_tpa_mbuf(struct bxe_fastpath *fp, 6373 int queue) 6374 { 6375 struct bxe_sw_tpa_info *tpa_info = &fp->rx_tpa_info[queue]; 6376 bus_dma_segment_t segs[1]; 6377 bus_dmamap_t map; 6378 struct mbuf *m; 6379 int nsegs; 6380 int rc = 0; 6381 6382 /* allocate the new TPA mbuf */ 6383 m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, fp->mbuf_alloc_size); 6384 if (__predict_false(m == NULL)) { 6385 fp->eth_q_stats.mbuf_rx_tpa_alloc_failed++; 6386 return (ENOBUFS); 6387 } 6388 6389 fp->eth_q_stats.mbuf_alloc_tpa++; 6390 6391 /* initialize the mbuf buffer length */ 6392 m->m_pkthdr.len = m->m_len = fp->rx_buf_size; 6393 6394 /* map the mbuf into non-paged pool */ 6395 rc = bus_dmamap_load_mbuf_sg(fp->rx_mbuf_tag, 6396 fp->rx_tpa_info_mbuf_spare_map, 6397 m, segs, &nsegs, BUS_DMA_NOWAIT); 6398 if (__predict_false(rc != 0)) { 6399 fp->eth_q_stats.mbuf_rx_tpa_mapping_failed++; 6400 m_free(m); 6401 fp->eth_q_stats.mbuf_alloc_tpa--; 6402 return (rc); 6403 } 6404 6405 /* all mbufs must map to a single segment */ 6406 KASSERT((nsegs == 1), ("Too many segments, %d returned!", nsegs)); 6407 6408 /* release any existing TPA mbuf mapping */ 6409 if (tpa_info->bd.m_map != NULL) { 6410 bus_dmamap_sync(fp->rx_mbuf_tag, tpa_info->bd.m_map, 6411 BUS_DMASYNC_POSTREAD); 6412 bus_dmamap_unload(fp->rx_mbuf_tag, tpa_info->bd.m_map); 6413 } 6414 6415 /* save the mbuf and mapping info for the TPA mbuf */ 6416 map = tpa_info->bd.m_map; 6417 tpa_info->bd.m_map = fp->rx_tpa_info_mbuf_spare_map; 6418 fp->rx_tpa_info_mbuf_spare_map = map; 6419 bus_dmamap_sync(fp->rx_mbuf_tag, tpa_info->bd.m_map, 6420 BUS_DMASYNC_PREREAD); 6421 tpa_info->bd.m = m; 6422 tpa_info->seg = segs[0]; 6423 6424 return (rc); 6425 } 6426 6427 /* 6428 * Allocate an mbuf and assign it to the receive scatter gather chain. The 6429 * caller must take care to save a copy of the existing mbuf in the SG mbuf 6430 * chain. 6431 */ 6432 static int 6433 bxe_alloc_rx_sge_mbuf(struct bxe_fastpath *fp, 6434 uint16_t index) 6435 { 6436 struct bxe_sw_rx_bd *sge_buf; 6437 struct eth_rx_sge *sge; 6438 bus_dma_segment_t segs[1]; 6439 bus_dmamap_t map; 6440 struct mbuf *m; 6441 int nsegs; 6442 int rc = 0; 6443 6444 /* allocate a new SGE mbuf */ 6445 m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, SGE_PAGE_SIZE); 6446 if (__predict_false(m == NULL)) { 6447 fp->eth_q_stats.mbuf_rx_sge_alloc_failed++; 6448 return (ENOMEM); 6449 } 6450 6451 fp->eth_q_stats.mbuf_alloc_sge++; 6452 6453 /* initialize the mbuf buffer length */ 6454 m->m_pkthdr.len = m->m_len = SGE_PAGE_SIZE; 6455 6456 /* map the SGE mbuf into non-paged pool */ 6457 rc = bus_dmamap_load_mbuf_sg(fp->rx_sge_mbuf_tag, 6458 fp->rx_sge_mbuf_spare_map, 6459 m, segs, &nsegs, BUS_DMA_NOWAIT); 6460 if (__predict_false(rc != 0)) { 6461 fp->eth_q_stats.mbuf_rx_sge_mapping_failed++; 6462 m_freem(m); 6463 fp->eth_q_stats.mbuf_alloc_sge--; 6464 return (rc); 6465 } 6466 6467 /* all mbufs must map to a single segment */ 6468 KASSERT((nsegs == 1), ("Too many segments, %d returned!", nsegs)); 6469 6470 sge_buf = &fp->rx_sge_mbuf_chain[index]; 6471 6472 /* release any existing SGE mbuf mapping */ 6473 if (sge_buf->m_map != NULL) { 6474 bus_dmamap_sync(fp->rx_sge_mbuf_tag, sge_buf->m_map, 6475 BUS_DMASYNC_POSTREAD); 6476 bus_dmamap_unload(fp->rx_sge_mbuf_tag, sge_buf->m_map); 6477 } 6478 6479 /* save the mbuf and mapping info for a future packet */ 6480 map = sge_buf->m_map; 6481 sge_buf->m_map = fp->rx_sge_mbuf_spare_map; 6482 fp->rx_sge_mbuf_spare_map = map; 6483 bus_dmamap_sync(fp->rx_sge_mbuf_tag, sge_buf->m_map, 6484 BUS_DMASYNC_PREREAD); 6485 sge_buf->m = m; 6486 6487 sge = &fp->rx_sge_chain[index]; 6488 sge->addr_hi = htole32(U64_HI(segs[0].ds_addr)); 6489 sge->addr_lo = htole32(U64_LO(segs[0].ds_addr)); 6490 6491 return (rc); 6492 } 6493 6494 static __noinline int 6495 bxe_alloc_fp_buffers(struct bxe_softc *sc) 6496 { 6497 struct bxe_fastpath *fp; 6498 int i, j, rc = 0; 6499 int ring_prod, cqe_ring_prod; 6500 int max_agg_queues; 6501 6502 for (i = 0; i < sc->num_queues; i++) { 6503 fp = &sc->fp[i]; 6504 6505 ring_prod = cqe_ring_prod = 0; 6506 fp->rx_bd_cons = 0; 6507 fp->rx_cq_cons = 0; 6508 6509 /* allocate buffers for the RX BDs in RX BD chain */ 6510 for (j = 0; j < sc->max_rx_bufs; j++) { 6511 rc = bxe_alloc_rx_bd_mbuf(fp, ring_prod, ring_prod); 6512 if (rc != 0) { 6513 BLOGE(sc, "mbuf alloc fail for fp[%02d] rx chain (%d)\n", 6514 i, rc); 6515 goto bxe_alloc_fp_buffers_error; 6516 } 6517 6518 ring_prod = RX_BD_NEXT(ring_prod); 6519 cqe_ring_prod = RCQ_NEXT(cqe_ring_prod); 6520 } 6521 6522 fp->rx_bd_prod = ring_prod; 6523 fp->rx_cq_prod = cqe_ring_prod; 6524 fp->eth_q_stats.rx_calls = fp->eth_q_stats.rx_pkts = 0; 6525 6526 max_agg_queues = MAX_AGG_QS(sc); 6527 6528 fp->tpa_enable = TRUE; 6529 6530 /* fill the TPA pool */ 6531 for (j = 0; j < max_agg_queues; j++) { 6532 rc = bxe_alloc_rx_tpa_mbuf(fp, j); 6533 if (rc != 0) { 6534 BLOGE(sc, "mbuf alloc fail for fp[%02d] TPA queue %d\n", 6535 i, j); 6536 fp->tpa_enable = FALSE; 6537 goto bxe_alloc_fp_buffers_error; 6538 } 6539 6540 fp->rx_tpa_info[j].state = BXE_TPA_STATE_STOP; 6541 } 6542 6543 if (fp->tpa_enable) { 6544 /* fill the RX SGE chain */ 6545 ring_prod = 0; 6546 for (j = 0; j < RX_SGE_USABLE; j++) { 6547 rc = bxe_alloc_rx_sge_mbuf(fp, ring_prod); 6548 if (rc != 0) { 6549 BLOGE(sc, "mbuf alloc fail for fp[%02d] SGE %d\n", 6550 i, ring_prod); 6551 fp->tpa_enable = FALSE; 6552 ring_prod = 0; 6553 goto bxe_alloc_fp_buffers_error; 6554 } 6555 6556 ring_prod = RX_SGE_NEXT(ring_prod); 6557 } 6558 6559 fp->rx_sge_prod = ring_prod; 6560 } 6561 } 6562 6563 return (0); 6564 6565 bxe_alloc_fp_buffers_error: 6566 6567 /* unwind what was already allocated */ 6568 bxe_free_rx_bd_chain(fp); 6569 bxe_free_tpa_pool(fp); 6570 bxe_free_sge_chain(fp); 6571 6572 return (ENOBUFS); 6573 } 6574 6575 static void 6576 bxe_free_fw_stats_mem(struct bxe_softc *sc) 6577 { 6578 bxe_dma_free(sc, &sc->fw_stats_dma); 6579 6580 sc->fw_stats_num = 0; 6581 6582 sc->fw_stats_req_size = 0; 6583 sc->fw_stats_req = NULL; 6584 sc->fw_stats_req_mapping = 0; 6585 6586 sc->fw_stats_data_size = 0; 6587 sc->fw_stats_data = NULL; 6588 sc->fw_stats_data_mapping = 0; 6589 } 6590 6591 static int 6592 bxe_alloc_fw_stats_mem(struct bxe_softc *sc) 6593 { 6594 uint8_t num_queue_stats; 6595 int num_groups; 6596 6597 /* number of queues for statistics is number of eth queues */ 6598 num_queue_stats = BXE_NUM_ETH_QUEUES(sc); 6599 6600 /* 6601 * Total number of FW statistics requests = 6602 * 1 for port stats + 1 for PF stats + num of queues 6603 */ 6604 sc->fw_stats_num = (2 + num_queue_stats); 6605 6606 /* 6607 * Request is built from stats_query_header and an array of 6608 * stats_query_cmd_group each of which contains STATS_QUERY_CMD_COUNT 6609 * rules. The real number or requests is configured in the 6610 * stats_query_header. 6611 */ 6612 num_groups = 6613 ((sc->fw_stats_num / STATS_QUERY_CMD_COUNT) + 6614 ((sc->fw_stats_num % STATS_QUERY_CMD_COUNT) ? 1 : 0)); 6615 6616 BLOGD(sc, DBG_LOAD, "stats fw_stats_num %d num_groups %d\n", 6617 sc->fw_stats_num, num_groups); 6618 6619 sc->fw_stats_req_size = 6620 (sizeof(struct stats_query_header) + 6621 (num_groups * sizeof(struct stats_query_cmd_group))); 6622 6623 /* 6624 * Data for statistics requests + stats_counter. 6625 * stats_counter holds per-STORM counters that are incremented when 6626 * STORM has finished with the current request. Memory for FCoE 6627 * offloaded statistics are counted anyway, even if they will not be sent. 6628 * VF stats are not accounted for here as the data of VF stats is stored 6629 * in memory allocated by the VF, not here. 6630 */ 6631 sc->fw_stats_data_size = 6632 (sizeof(struct stats_counter) + 6633 sizeof(struct per_port_stats) + 6634 sizeof(struct per_pf_stats) + 6635 /* sizeof(struct fcoe_statistics_params) + */ 6636 (sizeof(struct per_queue_stats) * num_queue_stats)); 6637 6638 if (bxe_dma_alloc(sc, (sc->fw_stats_req_size + sc->fw_stats_data_size), 6639 &sc->fw_stats_dma, "fw stats") != 0) { 6640 bxe_free_fw_stats_mem(sc); 6641 return (-1); 6642 } 6643 6644 /* set up the shortcuts */ 6645 6646 sc->fw_stats_req = 6647 (struct bxe_fw_stats_req *)sc->fw_stats_dma.vaddr; 6648 sc->fw_stats_req_mapping = sc->fw_stats_dma.paddr; 6649 6650 sc->fw_stats_data = 6651 (struct bxe_fw_stats_data *)((uint8_t *)sc->fw_stats_dma.vaddr + 6652 sc->fw_stats_req_size); 6653 sc->fw_stats_data_mapping = (sc->fw_stats_dma.paddr + 6654 sc->fw_stats_req_size); 6655 6656 BLOGD(sc, DBG_LOAD, "statistics request base address set to %#jx\n", 6657 (uintmax_t)sc->fw_stats_req_mapping); 6658 6659 BLOGD(sc, DBG_LOAD, "statistics data base address set to %#jx\n", 6660 (uintmax_t)sc->fw_stats_data_mapping); 6661 6662 return (0); 6663 } 6664 6665 /* 6666 * Bits map: 6667 * 0-7 - Engine0 load counter. 6668 * 8-15 - Engine1 load counter. 6669 * 16 - Engine0 RESET_IN_PROGRESS bit. 6670 * 17 - Engine1 RESET_IN_PROGRESS bit. 6671 * 18 - Engine0 ONE_IS_LOADED. Set when there is at least one active 6672 * function on the engine 6673 * 19 - Engine1 ONE_IS_LOADED. 6674 * 20 - Chip reset flow bit. When set none-leader must wait for both engines 6675 * leader to complete (check for both RESET_IN_PROGRESS bits and not 6676 * for just the one belonging to its engine). 6677 */ 6678 #define BXE_RECOVERY_GLOB_REG MISC_REG_GENERIC_POR_1 6679 #define BXE_PATH0_LOAD_CNT_MASK 0x000000ff 6680 #define BXE_PATH0_LOAD_CNT_SHIFT 0 6681 #define BXE_PATH1_LOAD_CNT_MASK 0x0000ff00 6682 #define BXE_PATH1_LOAD_CNT_SHIFT 8 6683 #define BXE_PATH0_RST_IN_PROG_BIT 0x00010000 6684 #define BXE_PATH1_RST_IN_PROG_BIT 0x00020000 6685 #define BXE_GLOBAL_RESET_BIT 0x00040000 6686 6687 /* set the GLOBAL_RESET bit, should be run under rtnl lock */ 6688 static void 6689 bxe_set_reset_global(struct bxe_softc *sc) 6690 { 6691 uint32_t val; 6692 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG); 6693 val = REG_RD(sc, BXE_RECOVERY_GLOB_REG); 6694 REG_WR(sc, BXE_RECOVERY_GLOB_REG, val | BXE_GLOBAL_RESET_BIT); 6695 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG); 6696 } 6697 6698 /* clear the GLOBAL_RESET bit, should be run under rtnl lock */ 6699 static void 6700 bxe_clear_reset_global(struct bxe_softc *sc) 6701 { 6702 uint32_t val; 6703 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG); 6704 val = REG_RD(sc, BXE_RECOVERY_GLOB_REG); 6705 REG_WR(sc, BXE_RECOVERY_GLOB_REG, val & (~BXE_GLOBAL_RESET_BIT)); 6706 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG); 6707 } 6708 6709 /* checks the GLOBAL_RESET bit, should be run under rtnl lock */ 6710 static uint8_t 6711 bxe_reset_is_global(struct bxe_softc *sc) 6712 { 6713 uint32_t val = REG_RD(sc, BXE_RECOVERY_GLOB_REG); 6714 BLOGD(sc, DBG_LOAD, "GLOB_REG=0x%08x\n", val); 6715 return (val & BXE_GLOBAL_RESET_BIT) ? TRUE : FALSE; 6716 } 6717 6718 /* clear RESET_IN_PROGRESS bit for the engine, should be run under rtnl lock */ 6719 static void 6720 bxe_set_reset_done(struct bxe_softc *sc) 6721 { 6722 uint32_t val; 6723 uint32_t bit = SC_PATH(sc) ? BXE_PATH1_RST_IN_PROG_BIT : 6724 BXE_PATH0_RST_IN_PROG_BIT; 6725 6726 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG); 6727 6728 val = REG_RD(sc, BXE_RECOVERY_GLOB_REG); 6729 /* Clear the bit */ 6730 val &= ~bit; 6731 REG_WR(sc, BXE_RECOVERY_GLOB_REG, val); 6732 6733 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG); 6734 } 6735 6736 /* set RESET_IN_PROGRESS for the engine, should be run under rtnl lock */ 6737 static void 6738 bxe_set_reset_in_progress(struct bxe_softc *sc) 6739 { 6740 uint32_t val; 6741 uint32_t bit = SC_PATH(sc) ? BXE_PATH1_RST_IN_PROG_BIT : 6742 BXE_PATH0_RST_IN_PROG_BIT; 6743 6744 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG); 6745 6746 val = REG_RD(sc, BXE_RECOVERY_GLOB_REG); 6747 /* Set the bit */ 6748 val |= bit; 6749 REG_WR(sc, BXE_RECOVERY_GLOB_REG, val); 6750 6751 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG); 6752 } 6753 6754 /* check RESET_IN_PROGRESS bit for an engine, should be run under rtnl lock */ 6755 static uint8_t 6756 bxe_reset_is_done(struct bxe_softc *sc, 6757 int engine) 6758 { 6759 uint32_t val = REG_RD(sc, BXE_RECOVERY_GLOB_REG); 6760 uint32_t bit = engine ? BXE_PATH1_RST_IN_PROG_BIT : 6761 BXE_PATH0_RST_IN_PROG_BIT; 6762 6763 /* return false if bit is set */ 6764 return (val & bit) ? FALSE : TRUE; 6765 } 6766 6767 /* get the load status for an engine, should be run under rtnl lock */ 6768 static uint8_t 6769 bxe_get_load_status(struct bxe_softc *sc, 6770 int engine) 6771 { 6772 uint32_t mask = engine ? BXE_PATH1_LOAD_CNT_MASK : 6773 BXE_PATH0_LOAD_CNT_MASK; 6774 uint32_t shift = engine ? BXE_PATH1_LOAD_CNT_SHIFT : 6775 BXE_PATH0_LOAD_CNT_SHIFT; 6776 uint32_t val = REG_RD(sc, BXE_RECOVERY_GLOB_REG); 6777 6778 BLOGD(sc, DBG_LOAD, "Old value for GLOB_REG=0x%08x\n", val); 6779 6780 val = ((val & mask) >> shift); 6781 6782 BLOGD(sc, DBG_LOAD, "Load mask engine %d = 0x%08x\n", engine, val); 6783 6784 return (val != 0); 6785 } 6786 6787 /* set pf load mark */ 6788 /* XXX needs to be under rtnl lock */ 6789 static void 6790 bxe_set_pf_load(struct bxe_softc *sc) 6791 { 6792 uint32_t val; 6793 uint32_t val1; 6794 uint32_t mask = SC_PATH(sc) ? BXE_PATH1_LOAD_CNT_MASK : 6795 BXE_PATH0_LOAD_CNT_MASK; 6796 uint32_t shift = SC_PATH(sc) ? BXE_PATH1_LOAD_CNT_SHIFT : 6797 BXE_PATH0_LOAD_CNT_SHIFT; 6798 6799 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG); 6800 6801 val = REG_RD(sc, BXE_RECOVERY_GLOB_REG); 6802 BLOGD(sc, DBG_LOAD, "Old value for GLOB_REG=0x%08x\n", val); 6803 6804 /* get the current counter value */ 6805 val1 = ((val & mask) >> shift); 6806 6807 /* set bit of this PF */ 6808 val1 |= (1 << SC_ABS_FUNC(sc)); 6809 6810 /* clear the old value */ 6811 val &= ~mask; 6812 6813 /* set the new one */ 6814 val |= ((val1 << shift) & mask); 6815 6816 REG_WR(sc, BXE_RECOVERY_GLOB_REG, val); 6817 6818 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG); 6819 } 6820 6821 /* clear pf load mark */ 6822 /* XXX needs to be under rtnl lock */ 6823 static uint8_t 6824 bxe_clear_pf_load(struct bxe_softc *sc) 6825 { 6826 uint32_t val1, val; 6827 uint32_t mask = SC_PATH(sc) ? BXE_PATH1_LOAD_CNT_MASK : 6828 BXE_PATH0_LOAD_CNT_MASK; 6829 uint32_t shift = SC_PATH(sc) ? BXE_PATH1_LOAD_CNT_SHIFT : 6830 BXE_PATH0_LOAD_CNT_SHIFT; 6831 6832 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG); 6833 val = REG_RD(sc, BXE_RECOVERY_GLOB_REG); 6834 BLOGD(sc, DBG_LOAD, "Old GEN_REG_VAL=0x%08x\n", val); 6835 6836 /* get the current counter value */ 6837 val1 = (val & mask) >> shift; 6838 6839 /* clear bit of that PF */ 6840 val1 &= ~(1 << SC_ABS_FUNC(sc)); 6841 6842 /* clear the old value */ 6843 val &= ~mask; 6844 6845 /* set the new one */ 6846 val |= ((val1 << shift) & mask); 6847 6848 REG_WR(sc, BXE_RECOVERY_GLOB_REG, val); 6849 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG); 6850 return (val1 != 0); 6851 } 6852 6853 /* send load requrest to mcp and analyze response */ 6854 static int 6855 bxe_nic_load_request(struct bxe_softc *sc, 6856 uint32_t *load_code) 6857 { 6858 /* init fw_seq */ 6859 sc->fw_seq = 6860 (SHMEM_RD(sc, func_mb[SC_FW_MB_IDX(sc)].drv_mb_header) & 6861 DRV_MSG_SEQ_NUMBER_MASK); 6862 6863 BLOGD(sc, DBG_LOAD, "initial fw_seq 0x%04x\n", sc->fw_seq); 6864 6865 /* get the current FW pulse sequence */ 6866 sc->fw_drv_pulse_wr_seq = 6867 (SHMEM_RD(sc, func_mb[SC_FW_MB_IDX(sc)].drv_pulse_mb) & 6868 DRV_PULSE_SEQ_MASK); 6869 6870 BLOGD(sc, DBG_LOAD, "initial drv_pulse 0x%04x\n", 6871 sc->fw_drv_pulse_wr_seq); 6872 6873 /* load request */ 6874 (*load_code) = bxe_fw_command(sc, DRV_MSG_CODE_LOAD_REQ, 6875 DRV_MSG_CODE_LOAD_REQ_WITH_LFA); 6876 6877 /* if the MCP fails to respond we must abort */ 6878 if (!(*load_code)) { 6879 BLOGE(sc, "MCP response failure!\n"); 6880 return (-1); 6881 } 6882 6883 /* if MCP refused then must abort */ 6884 if ((*load_code) == FW_MSG_CODE_DRV_LOAD_REFUSED) { 6885 BLOGE(sc, "MCP refused load request\n"); 6886 return (-1); 6887 } 6888 6889 return (0); 6890 } 6891 6892 /* 6893 * Check whether another PF has already loaded FW to chip. In virtualized 6894 * environments a pf from anoth VM may have already initialized the device 6895 * including loading FW. 6896 */ 6897 static int 6898 bxe_nic_load_analyze_req(struct bxe_softc *sc, 6899 uint32_t load_code) 6900 { 6901 uint32_t my_fw, loaded_fw; 6902 6903 /* is another pf loaded on this engine? */ 6904 if ((load_code != FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) && 6905 (load_code != FW_MSG_CODE_DRV_LOAD_COMMON)) { 6906 /* build my FW version dword */ 6907 my_fw = (BCM_5710_FW_MAJOR_VERSION + 6908 (BCM_5710_FW_MINOR_VERSION << 8 ) + 6909 (BCM_5710_FW_REVISION_VERSION << 16) + 6910 (BCM_5710_FW_ENGINEERING_VERSION << 24)); 6911 6912 /* read loaded FW from chip */ 6913 loaded_fw = REG_RD(sc, XSEM_REG_PRAM); 6914 BLOGD(sc, DBG_LOAD, "loaded FW 0x%08x / my FW 0x%08x\n", 6915 loaded_fw, my_fw); 6916 6917 /* abort nic load if version mismatch */ 6918 if (my_fw != loaded_fw) { 6919 BLOGE(sc, "FW 0x%08x already loaded (mine is 0x%08x)", 6920 loaded_fw, my_fw); 6921 return (-1); 6922 } 6923 } 6924 6925 return (0); 6926 } 6927 6928 /* mark PMF if applicable */ 6929 static void 6930 bxe_nic_load_pmf(struct bxe_softc *sc, 6931 uint32_t load_code) 6932 { 6933 uint32_t ncsi_oem_data_addr; 6934 6935 if ((load_code == FW_MSG_CODE_DRV_LOAD_COMMON) || 6936 (load_code == FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) || 6937 (load_code == FW_MSG_CODE_DRV_LOAD_PORT)) { 6938 /* 6939 * Barrier here for ordering between the writing to sc->port.pmf here 6940 * and reading it from the periodic task. 6941 */ 6942 sc->port.pmf = 1; 6943 mb(); 6944 } else { 6945 sc->port.pmf = 0; 6946 } 6947 6948 BLOGD(sc, DBG_LOAD, "pmf %d\n", sc->port.pmf); 6949 6950 /* XXX needed? */ 6951 if (load_code == FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) { 6952 if (SHMEM2_HAS(sc, ncsi_oem_data_addr)) { 6953 ncsi_oem_data_addr = SHMEM2_RD(sc, ncsi_oem_data_addr); 6954 if (ncsi_oem_data_addr) { 6955 REG_WR(sc, 6956 (ncsi_oem_data_addr + 6957 offsetof(struct glob_ncsi_oem_data, driver_version)), 6958 0); 6959 } 6960 } 6961 } 6962 } 6963 6964 static void 6965 bxe_read_mf_cfg(struct bxe_softc *sc) 6966 { 6967 int n = (CHIP_IS_MODE_4_PORT(sc) ? 2 : 1); 6968 int abs_func; 6969 int vn; 6970 6971 if (BXE_NOMCP(sc)) { 6972 return; /* what should be the default bvalue in this case */ 6973 } 6974 6975 /* 6976 * The formula for computing the absolute function number is... 6977 * For 2 port configuration (4 functions per port): 6978 * abs_func = 2 * vn + SC_PORT + SC_PATH 6979 * For 4 port configuration (2 functions per port): 6980 * abs_func = 4 * vn + 2 * SC_PORT + SC_PATH 6981 */ 6982 for (vn = VN_0; vn < SC_MAX_VN_NUM(sc); vn++) { 6983 abs_func = (n * (2 * vn + SC_PORT(sc)) + SC_PATH(sc)); 6984 if (abs_func >= E1H_FUNC_MAX) { 6985 break; 6986 } 6987 sc->devinfo.mf_info.mf_config[vn] = 6988 MFCFG_RD(sc, func_mf_config[abs_func].config); 6989 } 6990 6991 if (sc->devinfo.mf_info.mf_config[SC_VN(sc)] & 6992 FUNC_MF_CFG_FUNC_DISABLED) { 6993 BLOGD(sc, DBG_LOAD, "mf_cfg function disabled\n"); 6994 sc->flags |= BXE_MF_FUNC_DIS; 6995 } else { 6996 BLOGD(sc, DBG_LOAD, "mf_cfg function enabled\n"); 6997 sc->flags &= ~BXE_MF_FUNC_DIS; 6998 } 6999 } 7000 7001 /* acquire split MCP access lock register */ 7002 static int bxe_acquire_alr(struct bxe_softc *sc) 7003 { 7004 uint32_t j, val; 7005 7006 for (j = 0; j < 1000; j++) { 7007 val = (1UL << 31); 7008 REG_WR(sc, GRCBASE_MCP + 0x9c, val); 7009 val = REG_RD(sc, GRCBASE_MCP + 0x9c); 7010 if (val & (1L << 31)) 7011 break; 7012 7013 DELAY(5000); 7014 } 7015 7016 if (!(val & (1L << 31))) { 7017 BLOGE(sc, "Cannot acquire MCP access lock register\n"); 7018 return (-1); 7019 } 7020 7021 return (0); 7022 } 7023 7024 /* release split MCP access lock register */ 7025 static void bxe_release_alr(struct bxe_softc *sc) 7026 { 7027 REG_WR(sc, GRCBASE_MCP + 0x9c, 0); 7028 } 7029 7030 static void 7031 bxe_fan_failure(struct bxe_softc *sc) 7032 { 7033 int port = SC_PORT(sc); 7034 uint32_t ext_phy_config; 7035 7036 /* mark the failure */ 7037 ext_phy_config = 7038 SHMEM_RD(sc, dev_info.port_hw_config[port].external_phy_config); 7039 7040 ext_phy_config &= ~PORT_HW_CFG_XGXS_EXT_PHY_TYPE_MASK; 7041 ext_phy_config |= PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE; 7042 SHMEM_WR(sc, dev_info.port_hw_config[port].external_phy_config, 7043 ext_phy_config); 7044 7045 /* log the failure */ 7046 BLOGW(sc, "Fan Failure has caused the driver to shutdown " 7047 "the card to prevent permanent damage. " 7048 "Please contact OEM Support for assistance\n"); 7049 7050 /* XXX */ 7051 #if 1 7052 bxe_panic(sc, ("Schedule task to handle fan failure\n")); 7053 #else 7054 /* 7055 * Schedule device reset (unload) 7056 * This is due to some boards consuming sufficient power when driver is 7057 * up to overheat if fan fails. 7058 */ 7059 bxe_set_bit(BXE_SP_RTNL_FAN_FAILURE, &sc->sp_rtnl_state); 7060 schedule_delayed_work(&sc->sp_rtnl_task, 0); 7061 #endif 7062 } 7063 7064 /* this function is called upon a link interrupt */ 7065 static void 7066 bxe_link_attn(struct bxe_softc *sc) 7067 { 7068 uint32_t pause_enabled = 0; 7069 struct host_port_stats *pstats; 7070 int cmng_fns; 7071 7072 /* Make sure that we are synced with the current statistics */ 7073 bxe_stats_handle(sc, STATS_EVENT_STOP); 7074 7075 elink_link_update(&sc->link_params, &sc->link_vars); 7076 7077 if (sc->link_vars.link_up) { 7078 7079 /* dropless flow control */ 7080 if (!CHIP_IS_E1(sc) && sc->dropless_fc) { 7081 pause_enabled = 0; 7082 7083 if (sc->link_vars.flow_ctrl & ELINK_FLOW_CTRL_TX) { 7084 pause_enabled = 1; 7085 } 7086 7087 REG_WR(sc, 7088 (BAR_USTRORM_INTMEM + 7089 USTORM_ETH_PAUSE_ENABLED_OFFSET(SC_PORT(sc))), 7090 pause_enabled); 7091 } 7092 7093 if (sc->link_vars.mac_type != ELINK_MAC_TYPE_EMAC) { 7094 pstats = BXE_SP(sc, port_stats); 7095 /* reset old mac stats */ 7096 memset(&(pstats->mac_stx[0]), 0, sizeof(struct mac_stx)); 7097 } 7098 7099 if (sc->state == BXE_STATE_OPEN) { 7100 bxe_stats_handle(sc, STATS_EVENT_LINK_UP); 7101 } 7102 } 7103 7104 if (sc->link_vars.link_up && sc->link_vars.line_speed) { 7105 cmng_fns = bxe_get_cmng_fns_mode(sc); 7106 7107 if (cmng_fns != CMNG_FNS_NONE) { 7108 bxe_cmng_fns_init(sc, FALSE, cmng_fns); 7109 storm_memset_cmng(sc, &sc->cmng, SC_PORT(sc)); 7110 } else { 7111 /* rate shaping and fairness are disabled */ 7112 BLOGD(sc, DBG_LOAD, "single function mode without fairness\n"); 7113 } 7114 } 7115 7116 bxe_link_report_locked(sc); 7117 7118 if (IS_MF(sc)) { 7119 ; // XXX bxe_link_sync_notify(sc); 7120 } 7121 } 7122 7123 static void 7124 bxe_attn_int_asserted(struct bxe_softc *sc, 7125 uint32_t asserted) 7126 { 7127 int port = SC_PORT(sc); 7128 uint32_t aeu_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 : 7129 MISC_REG_AEU_MASK_ATTN_FUNC_0; 7130 uint32_t nig_int_mask_addr = port ? NIG_REG_MASK_INTERRUPT_PORT1 : 7131 NIG_REG_MASK_INTERRUPT_PORT0; 7132 uint32_t aeu_mask; 7133 uint32_t nig_mask = 0; 7134 uint32_t reg_addr; 7135 uint32_t igu_acked; 7136 uint32_t cnt; 7137 7138 if (sc->attn_state & asserted) { 7139 BLOGE(sc, "IGU ERROR attn=0x%08x\n", asserted); 7140 } 7141 7142 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port); 7143 7144 aeu_mask = REG_RD(sc, aeu_addr); 7145 7146 BLOGD(sc, DBG_INTR, "aeu_mask 0x%08x newly asserted 0x%08x\n", 7147 aeu_mask, asserted); 7148 7149 aeu_mask &= ~(asserted & 0x3ff); 7150 7151 BLOGD(sc, DBG_INTR, "new mask 0x%08x\n", aeu_mask); 7152 7153 REG_WR(sc, aeu_addr, aeu_mask); 7154 7155 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port); 7156 7157 BLOGD(sc, DBG_INTR, "attn_state 0x%08x\n", sc->attn_state); 7158 sc->attn_state |= asserted; 7159 BLOGD(sc, DBG_INTR, "new state 0x%08x\n", sc->attn_state); 7160 7161 if (asserted & ATTN_HARD_WIRED_MASK) { 7162 if (asserted & ATTN_NIG_FOR_FUNC) { 7163 7164 bxe_acquire_phy_lock(sc); 7165 /* save nig interrupt mask */ 7166 nig_mask = REG_RD(sc, nig_int_mask_addr); 7167 7168 /* If nig_mask is not set, no need to call the update function */ 7169 if (nig_mask) { 7170 REG_WR(sc, nig_int_mask_addr, 0); 7171 7172 bxe_link_attn(sc); 7173 } 7174 7175 /* handle unicore attn? */ 7176 } 7177 7178 if (asserted & ATTN_SW_TIMER_4_FUNC) { 7179 BLOGD(sc, DBG_INTR, "ATTN_SW_TIMER_4_FUNC!\n"); 7180 } 7181 7182 if (asserted & GPIO_2_FUNC) { 7183 BLOGD(sc, DBG_INTR, "GPIO_2_FUNC!\n"); 7184 } 7185 7186 if (asserted & GPIO_3_FUNC) { 7187 BLOGD(sc, DBG_INTR, "GPIO_3_FUNC!\n"); 7188 } 7189 7190 if (asserted & GPIO_4_FUNC) { 7191 BLOGD(sc, DBG_INTR, "GPIO_4_FUNC!\n"); 7192 } 7193 7194 if (port == 0) { 7195 if (asserted & ATTN_GENERAL_ATTN_1) { 7196 BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_1!\n"); 7197 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_1, 0x0); 7198 } 7199 if (asserted & ATTN_GENERAL_ATTN_2) { 7200 BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_2!\n"); 7201 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_2, 0x0); 7202 } 7203 if (asserted & ATTN_GENERAL_ATTN_3) { 7204 BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_3!\n"); 7205 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_3, 0x0); 7206 } 7207 } else { 7208 if (asserted & ATTN_GENERAL_ATTN_4) { 7209 BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_4!\n"); 7210 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_4, 0x0); 7211 } 7212 if (asserted & ATTN_GENERAL_ATTN_5) { 7213 BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_5!\n"); 7214 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_5, 0x0); 7215 } 7216 if (asserted & ATTN_GENERAL_ATTN_6) { 7217 BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_6!\n"); 7218 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_6, 0x0); 7219 } 7220 } 7221 } /* hardwired */ 7222 7223 if (sc->devinfo.int_block == INT_BLOCK_HC) { 7224 reg_addr = (HC_REG_COMMAND_REG + port*32 + COMMAND_REG_ATTN_BITS_SET); 7225 } else { 7226 reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_SET_UPPER*8); 7227 } 7228 7229 BLOGD(sc, DBG_INTR, "about to mask 0x%08x at %s addr 0x%08x\n", 7230 asserted, 7231 (sc->devinfo.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr); 7232 REG_WR(sc, reg_addr, asserted); 7233 7234 /* now set back the mask */ 7235 if (asserted & ATTN_NIG_FOR_FUNC) { 7236 /* 7237 * Verify that IGU ack through BAR was written before restoring 7238 * NIG mask. This loop should exit after 2-3 iterations max. 7239 */ 7240 if (sc->devinfo.int_block != INT_BLOCK_HC) { 7241 cnt = 0; 7242 7243 do { 7244 igu_acked = REG_RD(sc, IGU_REG_ATTENTION_ACK_BITS); 7245 } while (((igu_acked & ATTN_NIG_FOR_FUNC) == 0) && 7246 (++cnt < MAX_IGU_ATTN_ACK_TO)); 7247 7248 if (!igu_acked) { 7249 BLOGE(sc, "Failed to verify IGU ack on time\n"); 7250 } 7251 7252 mb(); 7253 } 7254 7255 REG_WR(sc, nig_int_mask_addr, nig_mask); 7256 7257 bxe_release_phy_lock(sc); 7258 } 7259 } 7260 7261 static void 7262 bxe_print_next_block(struct bxe_softc *sc, 7263 int idx, 7264 const char *blk) 7265 { 7266 BLOGI(sc, "%s%s", idx ? ", " : "", blk); 7267 } 7268 7269 static int 7270 bxe_check_blocks_with_parity0(struct bxe_softc *sc, 7271 uint32_t sig, 7272 int par_num, 7273 uint8_t print) 7274 { 7275 uint32_t cur_bit = 0; 7276 int i = 0; 7277 7278 for (i = 0; sig; i++) { 7279 cur_bit = ((uint32_t)0x1 << i); 7280 if (sig & cur_bit) { 7281 switch (cur_bit) { 7282 case AEU_INPUTS_ATTN_BITS_BRB_PARITY_ERROR: 7283 if (print) 7284 bxe_print_next_block(sc, par_num++, "BRB"); 7285 break; 7286 case AEU_INPUTS_ATTN_BITS_PARSER_PARITY_ERROR: 7287 if (print) 7288 bxe_print_next_block(sc, par_num++, "PARSER"); 7289 break; 7290 case AEU_INPUTS_ATTN_BITS_TSDM_PARITY_ERROR: 7291 if (print) 7292 bxe_print_next_block(sc, par_num++, "TSDM"); 7293 break; 7294 case AEU_INPUTS_ATTN_BITS_SEARCHER_PARITY_ERROR: 7295 if (print) 7296 bxe_print_next_block(sc, par_num++, "SEARCHER"); 7297 break; 7298 case AEU_INPUTS_ATTN_BITS_TCM_PARITY_ERROR: 7299 if (print) 7300 bxe_print_next_block(sc, par_num++, "TCM"); 7301 break; 7302 case AEU_INPUTS_ATTN_BITS_TSEMI_PARITY_ERROR: 7303 if (print) 7304 bxe_print_next_block(sc, par_num++, "TSEMI"); 7305 break; 7306 case AEU_INPUTS_ATTN_BITS_PBCLIENT_PARITY_ERROR: 7307 if (print) 7308 bxe_print_next_block(sc, par_num++, "XPB"); 7309 break; 7310 } 7311 7312 /* Clear the bit */ 7313 sig &= ~cur_bit; 7314 } 7315 } 7316 7317 return (par_num); 7318 } 7319 7320 static int 7321 bxe_check_blocks_with_parity1(struct bxe_softc *sc, 7322 uint32_t sig, 7323 int par_num, 7324 uint8_t *global, 7325 uint8_t print) 7326 { 7327 int i = 0; 7328 uint32_t cur_bit = 0; 7329 for (i = 0; sig; i++) { 7330 cur_bit = ((uint32_t)0x1 << i); 7331 if (sig & cur_bit) { 7332 switch (cur_bit) { 7333 case AEU_INPUTS_ATTN_BITS_PBF_PARITY_ERROR: 7334 if (print) 7335 bxe_print_next_block(sc, par_num++, "PBF"); 7336 break; 7337 case AEU_INPUTS_ATTN_BITS_QM_PARITY_ERROR: 7338 if (print) 7339 bxe_print_next_block(sc, par_num++, "QM"); 7340 break; 7341 case AEU_INPUTS_ATTN_BITS_TIMERS_PARITY_ERROR: 7342 if (print) 7343 bxe_print_next_block(sc, par_num++, "TM"); 7344 break; 7345 case AEU_INPUTS_ATTN_BITS_XSDM_PARITY_ERROR: 7346 if (print) 7347 bxe_print_next_block(sc, par_num++, "XSDM"); 7348 break; 7349 case AEU_INPUTS_ATTN_BITS_XCM_PARITY_ERROR: 7350 if (print) 7351 bxe_print_next_block(sc, par_num++, "XCM"); 7352 break; 7353 case AEU_INPUTS_ATTN_BITS_XSEMI_PARITY_ERROR: 7354 if (print) 7355 bxe_print_next_block(sc, par_num++, "XSEMI"); 7356 break; 7357 case AEU_INPUTS_ATTN_BITS_DOORBELLQ_PARITY_ERROR: 7358 if (print) 7359 bxe_print_next_block(sc, par_num++, "DOORBELLQ"); 7360 break; 7361 case AEU_INPUTS_ATTN_BITS_NIG_PARITY_ERROR: 7362 if (print) 7363 bxe_print_next_block(sc, par_num++, "NIG"); 7364 break; 7365 case AEU_INPUTS_ATTN_BITS_VAUX_PCI_CORE_PARITY_ERROR: 7366 if (print) 7367 bxe_print_next_block(sc, par_num++, "VAUX PCI CORE"); 7368 *global = TRUE; 7369 break; 7370 case AEU_INPUTS_ATTN_BITS_DEBUG_PARITY_ERROR: 7371 if (print) 7372 bxe_print_next_block(sc, par_num++, "DEBUG"); 7373 break; 7374 case AEU_INPUTS_ATTN_BITS_USDM_PARITY_ERROR: 7375 if (print) 7376 bxe_print_next_block(sc, par_num++, "USDM"); 7377 break; 7378 case AEU_INPUTS_ATTN_BITS_UCM_PARITY_ERROR: 7379 if (print) 7380 bxe_print_next_block(sc, par_num++, "UCM"); 7381 break; 7382 case AEU_INPUTS_ATTN_BITS_USEMI_PARITY_ERROR: 7383 if (print) 7384 bxe_print_next_block(sc, par_num++, "USEMI"); 7385 break; 7386 case AEU_INPUTS_ATTN_BITS_UPB_PARITY_ERROR: 7387 if (print) 7388 bxe_print_next_block(sc, par_num++, "UPB"); 7389 break; 7390 case AEU_INPUTS_ATTN_BITS_CSDM_PARITY_ERROR: 7391 if (print) 7392 bxe_print_next_block(sc, par_num++, "CSDM"); 7393 break; 7394 case AEU_INPUTS_ATTN_BITS_CCM_PARITY_ERROR: 7395 if (print) 7396 bxe_print_next_block(sc, par_num++, "CCM"); 7397 break; 7398 } 7399 7400 /* Clear the bit */ 7401 sig &= ~cur_bit; 7402 } 7403 } 7404 7405 return (par_num); 7406 } 7407 7408 static int 7409 bxe_check_blocks_with_parity2(struct bxe_softc *sc, 7410 uint32_t sig, 7411 int par_num, 7412 uint8_t print) 7413 { 7414 uint32_t cur_bit = 0; 7415 int i = 0; 7416 7417 for (i = 0; sig; i++) { 7418 cur_bit = ((uint32_t)0x1 << i); 7419 if (sig & cur_bit) { 7420 switch (cur_bit) { 7421 case AEU_INPUTS_ATTN_BITS_CSEMI_PARITY_ERROR: 7422 if (print) 7423 bxe_print_next_block(sc, par_num++, "CSEMI"); 7424 break; 7425 case AEU_INPUTS_ATTN_BITS_PXP_PARITY_ERROR: 7426 if (print) 7427 bxe_print_next_block(sc, par_num++, "PXP"); 7428 break; 7429 case AEU_IN_ATTN_BITS_PXPPCICLOCKCLIENT_PARITY_ERROR: 7430 if (print) 7431 bxe_print_next_block(sc, par_num++, "PXPPCICLOCKCLIENT"); 7432 break; 7433 case AEU_INPUTS_ATTN_BITS_CFC_PARITY_ERROR: 7434 if (print) 7435 bxe_print_next_block(sc, par_num++, "CFC"); 7436 break; 7437 case AEU_INPUTS_ATTN_BITS_CDU_PARITY_ERROR: 7438 if (print) 7439 bxe_print_next_block(sc, par_num++, "CDU"); 7440 break; 7441 case AEU_INPUTS_ATTN_BITS_DMAE_PARITY_ERROR: 7442 if (print) 7443 bxe_print_next_block(sc, par_num++, "DMAE"); 7444 break; 7445 case AEU_INPUTS_ATTN_BITS_IGU_PARITY_ERROR: 7446 if (print) 7447 bxe_print_next_block(sc, par_num++, "IGU"); 7448 break; 7449 case AEU_INPUTS_ATTN_BITS_MISC_PARITY_ERROR: 7450 if (print) 7451 bxe_print_next_block(sc, par_num++, "MISC"); 7452 break; 7453 } 7454 7455 /* Clear the bit */ 7456 sig &= ~cur_bit; 7457 } 7458 } 7459 7460 return (par_num); 7461 } 7462 7463 static int 7464 bxe_check_blocks_with_parity3(struct bxe_softc *sc, 7465 uint32_t sig, 7466 int par_num, 7467 uint8_t *global, 7468 uint8_t print) 7469 { 7470 uint32_t cur_bit = 0; 7471 int i = 0; 7472 7473 for (i = 0; sig; i++) { 7474 cur_bit = ((uint32_t)0x1 << i); 7475 if (sig & cur_bit) { 7476 switch (cur_bit) { 7477 case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_ROM_PARITY: 7478 if (print) 7479 bxe_print_next_block(sc, par_num++, "MCP ROM"); 7480 *global = TRUE; 7481 break; 7482 case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_RX_PARITY: 7483 if (print) 7484 bxe_print_next_block(sc, par_num++, 7485 "MCP UMP RX"); 7486 *global = TRUE; 7487 break; 7488 case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_TX_PARITY: 7489 if (print) 7490 bxe_print_next_block(sc, par_num++, 7491 "MCP UMP TX"); 7492 *global = TRUE; 7493 break; 7494 case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY: 7495 if (print) 7496 bxe_print_next_block(sc, par_num++, 7497 "MCP SCPAD"); 7498 *global = TRUE; 7499 break; 7500 } 7501 7502 /* Clear the bit */ 7503 sig &= ~cur_bit; 7504 } 7505 } 7506 7507 return (par_num); 7508 } 7509 7510 static int 7511 bxe_check_blocks_with_parity4(struct bxe_softc *sc, 7512 uint32_t sig, 7513 int par_num, 7514 uint8_t print) 7515 { 7516 uint32_t cur_bit = 0; 7517 int i = 0; 7518 7519 for (i = 0; sig; i++) { 7520 cur_bit = ((uint32_t)0x1 << i); 7521 if (sig & cur_bit) { 7522 switch (cur_bit) { 7523 case AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR: 7524 if (print) 7525 bxe_print_next_block(sc, par_num++, "PGLUE_B"); 7526 break; 7527 case AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR: 7528 if (print) 7529 bxe_print_next_block(sc, par_num++, "ATC"); 7530 break; 7531 } 7532 7533 /* Clear the bit */ 7534 sig &= ~cur_bit; 7535 } 7536 } 7537 7538 return (par_num); 7539 } 7540 7541 static uint8_t 7542 bxe_parity_attn(struct bxe_softc *sc, 7543 uint8_t *global, 7544 uint8_t print, 7545 uint32_t *sig) 7546 { 7547 int par_num = 0; 7548 7549 if ((sig[0] & HW_PRTY_ASSERT_SET_0) || 7550 (sig[1] & HW_PRTY_ASSERT_SET_1) || 7551 (sig[2] & HW_PRTY_ASSERT_SET_2) || 7552 (sig[3] & HW_PRTY_ASSERT_SET_3) || 7553 (sig[4] & HW_PRTY_ASSERT_SET_4)) { 7554 BLOGE(sc, "Parity error: HW block parity attention:\n" 7555 "[0]:0x%08x [1]:0x%08x [2]:0x%08x [3]:0x%08x [4]:0x%08x\n", 7556 (uint32_t)(sig[0] & HW_PRTY_ASSERT_SET_0), 7557 (uint32_t)(sig[1] & HW_PRTY_ASSERT_SET_1), 7558 (uint32_t)(sig[2] & HW_PRTY_ASSERT_SET_2), 7559 (uint32_t)(sig[3] & HW_PRTY_ASSERT_SET_3), 7560 (uint32_t)(sig[4] & HW_PRTY_ASSERT_SET_4)); 7561 7562 if (print) 7563 BLOGI(sc, "Parity errors detected in blocks: "); 7564 7565 par_num = 7566 bxe_check_blocks_with_parity0(sc, sig[0] & 7567 HW_PRTY_ASSERT_SET_0, 7568 par_num, print); 7569 par_num = 7570 bxe_check_blocks_with_parity1(sc, sig[1] & 7571 HW_PRTY_ASSERT_SET_1, 7572 par_num, global, print); 7573 par_num = 7574 bxe_check_blocks_with_parity2(sc, sig[2] & 7575 HW_PRTY_ASSERT_SET_2, 7576 par_num, print); 7577 par_num = 7578 bxe_check_blocks_with_parity3(sc, sig[3] & 7579 HW_PRTY_ASSERT_SET_3, 7580 par_num, global, print); 7581 par_num = 7582 bxe_check_blocks_with_parity4(sc, sig[4] & 7583 HW_PRTY_ASSERT_SET_4, 7584 par_num, print); 7585 7586 if (print) 7587 BLOGI(sc, "\n"); 7588 7589 return (TRUE); 7590 } 7591 7592 return (FALSE); 7593 } 7594 7595 static uint8_t 7596 bxe_chk_parity_attn(struct bxe_softc *sc, 7597 uint8_t *global, 7598 uint8_t print) 7599 { 7600 struct attn_route attn = { {0} }; 7601 int port = SC_PORT(sc); 7602 7603 attn.sig[0] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + port*4); 7604 attn.sig[1] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 + port*4); 7605 attn.sig[2] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 + port*4); 7606 attn.sig[3] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 + port*4); 7607 7608 /* 7609 * Since MCP attentions can't be disabled inside the block, we need to 7610 * read AEU registers to see whether they're currently disabled 7611 */ 7612 attn.sig[3] &= ((REG_RD(sc, (!port ? MISC_REG_AEU_ENABLE4_FUNC_0_OUT_0 7613 : MISC_REG_AEU_ENABLE4_FUNC_1_OUT_0)) & 7614 MISC_AEU_ENABLE_MCP_PRTY_BITS) | 7615 ~MISC_AEU_ENABLE_MCP_PRTY_BITS); 7616 7617 7618 if (!CHIP_IS_E1x(sc)) 7619 attn.sig[4] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 + port*4); 7620 7621 return (bxe_parity_attn(sc, global, print, attn.sig)); 7622 } 7623 7624 static void 7625 bxe_attn_int_deasserted4(struct bxe_softc *sc, 7626 uint32_t attn) 7627 { 7628 uint32_t val; 7629 7630 if (attn & AEU_INPUTS_ATTN_BITS_PGLUE_HW_INTERRUPT) { 7631 val = REG_RD(sc, PGLUE_B_REG_PGLUE_B_INT_STS_CLR); 7632 BLOGE(sc, "PGLUE hw attention 0x%08x\n", val); 7633 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR) 7634 BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR\n"); 7635 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR) 7636 BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR\n"); 7637 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN) 7638 BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN\n"); 7639 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN) 7640 BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN\n"); 7641 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN) 7642 BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN\n"); 7643 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN) 7644 BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN\n"); 7645 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN) 7646 BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN\n"); 7647 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN) 7648 BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN\n"); 7649 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW) 7650 BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW\n"); 7651 } 7652 7653 if (attn & AEU_INPUTS_ATTN_BITS_ATC_HW_INTERRUPT) { 7654 val = REG_RD(sc, ATC_REG_ATC_INT_STS_CLR); 7655 BLOGE(sc, "ATC hw attention 0x%08x\n", val); 7656 if (val & ATC_ATC_INT_STS_REG_ADDRESS_ERROR) 7657 BLOGE(sc, "ATC_ATC_INT_STS_REG_ADDRESS_ERROR\n"); 7658 if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND) 7659 BLOGE(sc, "ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND\n"); 7660 if (val & ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS) 7661 BLOGE(sc, "ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS\n"); 7662 if (val & ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT) 7663 BLOGE(sc, "ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT\n"); 7664 if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR) 7665 BLOGE(sc, "ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR\n"); 7666 if (val & ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU) 7667 BLOGE(sc, "ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU\n"); 7668 } 7669 7670 if (attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR | 7671 AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)) { 7672 BLOGE(sc, "FATAL parity attention set4 0x%08x\n", 7673 (uint32_t)(attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR | 7674 AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR))); 7675 } 7676 } 7677 7678 static void 7679 bxe_e1h_disable(struct bxe_softc *sc) 7680 { 7681 int port = SC_PORT(sc); 7682 7683 bxe_tx_disable(sc); 7684 7685 REG_WR(sc, NIG_REG_LLH0_FUNC_EN + port*8, 0); 7686 } 7687 7688 static void 7689 bxe_e1h_enable(struct bxe_softc *sc) 7690 { 7691 int port = SC_PORT(sc); 7692 7693 REG_WR(sc, NIG_REG_LLH0_FUNC_EN + port*8, 1); 7694 7695 // XXX bxe_tx_enable(sc); 7696 } 7697 7698 /* 7699 * called due to MCP event (on pmf): 7700 * reread new bandwidth configuration 7701 * configure FW 7702 * notify others function about the change 7703 */ 7704 static void 7705 bxe_config_mf_bw(struct bxe_softc *sc) 7706 { 7707 if (sc->link_vars.link_up) { 7708 bxe_cmng_fns_init(sc, TRUE, CMNG_FNS_MINMAX); 7709 // XXX bxe_link_sync_notify(sc); 7710 } 7711 7712 storm_memset_cmng(sc, &sc->cmng, SC_PORT(sc)); 7713 } 7714 7715 static void 7716 bxe_set_mf_bw(struct bxe_softc *sc) 7717 { 7718 bxe_config_mf_bw(sc); 7719 bxe_fw_command(sc, DRV_MSG_CODE_SET_MF_BW_ACK, 0); 7720 } 7721 7722 static void 7723 bxe_handle_eee_event(struct bxe_softc *sc) 7724 { 7725 BLOGD(sc, DBG_INTR, "EEE - LLDP event\n"); 7726 bxe_fw_command(sc, DRV_MSG_CODE_EEE_RESULTS_ACK, 0); 7727 } 7728 7729 #define DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED 3 7730 7731 static void 7732 bxe_drv_info_ether_stat(struct bxe_softc *sc) 7733 { 7734 struct eth_stats_info *ether_stat = 7735 &sc->sp->drv_info_to_mcp.ether_stat; 7736 7737 strlcpy(ether_stat->version, BXE_DRIVER_VERSION, 7738 ETH_STAT_INFO_VERSION_LEN); 7739 7740 /* XXX (+ MAC_PAD) taken from other driver... verify this is right */ 7741 sc->sp_objs[0].mac_obj.get_n_elements(sc, &sc->sp_objs[0].mac_obj, 7742 DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED, 7743 ether_stat->mac_local + MAC_PAD, 7744 MAC_PAD, ETH_ALEN); 7745 7746 ether_stat->mtu_size = sc->mtu; 7747 7748 ether_stat->feature_flags |= FEATURE_ETH_CHKSUM_OFFLOAD_MASK; 7749 if (if_getcapenable(sc->ifp) & (IFCAP_TSO4 | IFCAP_TSO6)) { 7750 ether_stat->feature_flags |= FEATURE_ETH_LSO_MASK; 7751 } 7752 7753 // XXX ether_stat->feature_flags |= ???; 7754 7755 ether_stat->promiscuous_mode = 0; // (flags & PROMISC) ? 1 : 0; 7756 7757 ether_stat->txq_size = sc->tx_ring_size; 7758 ether_stat->rxq_size = sc->rx_ring_size; 7759 } 7760 7761 static void 7762 bxe_handle_drv_info_req(struct bxe_softc *sc) 7763 { 7764 enum drv_info_opcode op_code; 7765 uint32_t drv_info_ctl = SHMEM2_RD(sc, drv_info_control); 7766 7767 /* if drv_info version supported by MFW doesn't match - send NACK */ 7768 if ((drv_info_ctl & DRV_INFO_CONTROL_VER_MASK) != DRV_INFO_CUR_VER) { 7769 bxe_fw_command(sc, DRV_MSG_CODE_DRV_INFO_NACK, 0); 7770 return; 7771 } 7772 7773 op_code = ((drv_info_ctl & DRV_INFO_CONTROL_OP_CODE_MASK) >> 7774 DRV_INFO_CONTROL_OP_CODE_SHIFT); 7775 7776 memset(&sc->sp->drv_info_to_mcp, 0, sizeof(union drv_info_to_mcp)); 7777 7778 switch (op_code) { 7779 case ETH_STATS_OPCODE: 7780 bxe_drv_info_ether_stat(sc); 7781 break; 7782 case FCOE_STATS_OPCODE: 7783 case ISCSI_STATS_OPCODE: 7784 default: 7785 /* if op code isn't supported - send NACK */ 7786 bxe_fw_command(sc, DRV_MSG_CODE_DRV_INFO_NACK, 0); 7787 return; 7788 } 7789 7790 /* 7791 * If we got drv_info attn from MFW then these fields are defined in 7792 * shmem2 for sure 7793 */ 7794 SHMEM2_WR(sc, drv_info_host_addr_lo, 7795 U64_LO(BXE_SP_MAPPING(sc, drv_info_to_mcp))); 7796 SHMEM2_WR(sc, drv_info_host_addr_hi, 7797 U64_HI(BXE_SP_MAPPING(sc, drv_info_to_mcp))); 7798 7799 bxe_fw_command(sc, DRV_MSG_CODE_DRV_INFO_ACK, 0); 7800 } 7801 7802 static void 7803 bxe_dcc_event(struct bxe_softc *sc, 7804 uint32_t dcc_event) 7805 { 7806 BLOGD(sc, DBG_INTR, "dcc_event 0x%08x\n", dcc_event); 7807 7808 if (dcc_event & DRV_STATUS_DCC_DISABLE_ENABLE_PF) { 7809 /* 7810 * This is the only place besides the function initialization 7811 * where the sc->flags can change so it is done without any 7812 * locks 7813 */ 7814 if (sc->devinfo.mf_info.mf_config[SC_VN(sc)] & FUNC_MF_CFG_FUNC_DISABLED) { 7815 BLOGD(sc, DBG_INTR, "mf_cfg function disabled\n"); 7816 sc->flags |= BXE_MF_FUNC_DIS; 7817 bxe_e1h_disable(sc); 7818 } else { 7819 BLOGD(sc, DBG_INTR, "mf_cfg function enabled\n"); 7820 sc->flags &= ~BXE_MF_FUNC_DIS; 7821 bxe_e1h_enable(sc); 7822 } 7823 dcc_event &= ~DRV_STATUS_DCC_DISABLE_ENABLE_PF; 7824 } 7825 7826 if (dcc_event & DRV_STATUS_DCC_BANDWIDTH_ALLOCATION) { 7827 bxe_config_mf_bw(sc); 7828 dcc_event &= ~DRV_STATUS_DCC_BANDWIDTH_ALLOCATION; 7829 } 7830 7831 /* Report results to MCP */ 7832 if (dcc_event) 7833 bxe_fw_command(sc, DRV_MSG_CODE_DCC_FAILURE, 0); 7834 else 7835 bxe_fw_command(sc, DRV_MSG_CODE_DCC_OK, 0); 7836 } 7837 7838 static void 7839 bxe_pmf_update(struct bxe_softc *sc) 7840 { 7841 int port = SC_PORT(sc); 7842 uint32_t val; 7843 7844 sc->port.pmf = 1; 7845 BLOGD(sc, DBG_INTR, "pmf %d\n", sc->port.pmf); 7846 7847 /* 7848 * We need the mb() to ensure the ordering between the writing to 7849 * sc->port.pmf here and reading it from the bxe_periodic_task(). 7850 */ 7851 mb(); 7852 7853 /* queue a periodic task */ 7854 // XXX schedule task... 7855 7856 // XXX bxe_dcbx_pmf_update(sc); 7857 7858 /* enable nig attention */ 7859 val = (0xff0f | (1 << (SC_VN(sc) + 4))); 7860 if (sc->devinfo.int_block == INT_BLOCK_HC) { 7861 REG_WR(sc, HC_REG_TRAILING_EDGE_0 + port*8, val); 7862 REG_WR(sc, HC_REG_LEADING_EDGE_0 + port*8, val); 7863 } else if (!CHIP_IS_E1x(sc)) { 7864 REG_WR(sc, IGU_REG_TRAILING_EDGE_LATCH, val); 7865 REG_WR(sc, IGU_REG_LEADING_EDGE_LATCH, val); 7866 } 7867 7868 bxe_stats_handle(sc, STATS_EVENT_PMF); 7869 } 7870 7871 static int 7872 bxe_mc_assert(struct bxe_softc *sc) 7873 { 7874 char last_idx; 7875 int i, rc = 0; 7876 uint32_t row0, row1, row2, row3; 7877 7878 /* XSTORM */ 7879 last_idx = REG_RD8(sc, BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_INDEX_OFFSET); 7880 if (last_idx) 7881 BLOGE(sc, "XSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx); 7882 7883 /* print the asserts */ 7884 for (i = 0; i < STORM_ASSERT_ARRAY_SIZE; i++) { 7885 7886 row0 = REG_RD(sc, BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_OFFSET(i)); 7887 row1 = REG_RD(sc, BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_OFFSET(i) + 4); 7888 row2 = REG_RD(sc, BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_OFFSET(i) + 8); 7889 row3 = REG_RD(sc, BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_OFFSET(i) + 12); 7890 7891 if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) { 7892 BLOGE(sc, "XSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n", 7893 i, row3, row2, row1, row0); 7894 rc++; 7895 } else { 7896 break; 7897 } 7898 } 7899 7900 /* TSTORM */ 7901 last_idx = REG_RD8(sc, BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_INDEX_OFFSET); 7902 if (last_idx) { 7903 BLOGE(sc, "TSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx); 7904 } 7905 7906 /* print the asserts */ 7907 for (i = 0; i < STORM_ASSERT_ARRAY_SIZE; i++) { 7908 7909 row0 = REG_RD(sc, BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_OFFSET(i)); 7910 row1 = REG_RD(sc, BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_OFFSET(i) + 4); 7911 row2 = REG_RD(sc, BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_OFFSET(i) + 8); 7912 row3 = REG_RD(sc, BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_OFFSET(i) + 12); 7913 7914 if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) { 7915 BLOGE(sc, "TSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n", 7916 i, row3, row2, row1, row0); 7917 rc++; 7918 } else { 7919 break; 7920 } 7921 } 7922 7923 /* CSTORM */ 7924 last_idx = REG_RD8(sc, BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_INDEX_OFFSET); 7925 if (last_idx) { 7926 BLOGE(sc, "CSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx); 7927 } 7928 7929 /* print the asserts */ 7930 for (i = 0; i < STORM_ASSERT_ARRAY_SIZE; i++) { 7931 7932 row0 = REG_RD(sc, BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_OFFSET(i)); 7933 row1 = REG_RD(sc, BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_OFFSET(i) + 4); 7934 row2 = REG_RD(sc, BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_OFFSET(i) + 8); 7935 row3 = REG_RD(sc, BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_OFFSET(i) + 12); 7936 7937 if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) { 7938 BLOGE(sc, "CSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n", 7939 i, row3, row2, row1, row0); 7940 rc++; 7941 } else { 7942 break; 7943 } 7944 } 7945 7946 /* USTORM */ 7947 last_idx = REG_RD8(sc, BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_INDEX_OFFSET); 7948 if (last_idx) { 7949 BLOGE(sc, "USTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx); 7950 } 7951 7952 /* print the asserts */ 7953 for (i = 0; i < STORM_ASSERT_ARRAY_SIZE; i++) { 7954 7955 row0 = REG_RD(sc, BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_OFFSET(i)); 7956 row1 = REG_RD(sc, BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_OFFSET(i) + 4); 7957 row2 = REG_RD(sc, BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_OFFSET(i) + 8); 7958 row3 = REG_RD(sc, BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_OFFSET(i) + 12); 7959 7960 if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) { 7961 BLOGE(sc, "USTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n", 7962 i, row3, row2, row1, row0); 7963 rc++; 7964 } else { 7965 break; 7966 } 7967 } 7968 7969 return (rc); 7970 } 7971 7972 static void 7973 bxe_attn_int_deasserted3(struct bxe_softc *sc, 7974 uint32_t attn) 7975 { 7976 int func = SC_FUNC(sc); 7977 uint32_t val; 7978 7979 if (attn & EVEREST_GEN_ATTN_IN_USE_MASK) { 7980 7981 if (attn & BXE_PMF_LINK_ASSERT(sc)) { 7982 7983 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0); 7984 bxe_read_mf_cfg(sc); 7985 sc->devinfo.mf_info.mf_config[SC_VN(sc)] = 7986 MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].config); 7987 val = SHMEM_RD(sc, func_mb[SC_FW_MB_IDX(sc)].drv_status); 7988 7989 if (val & DRV_STATUS_DCC_EVENT_MASK) 7990 bxe_dcc_event(sc, (val & DRV_STATUS_DCC_EVENT_MASK)); 7991 7992 if (val & DRV_STATUS_SET_MF_BW) 7993 bxe_set_mf_bw(sc); 7994 7995 if (val & DRV_STATUS_DRV_INFO_REQ) 7996 bxe_handle_drv_info_req(sc); 7997 7998 if ((sc->port.pmf == 0) && (val & DRV_STATUS_PMF)) 7999 bxe_pmf_update(sc); 8000 8001 if (val & DRV_STATUS_EEE_NEGOTIATION_RESULTS) 8002 bxe_handle_eee_event(sc); 8003 8004 if (sc->link_vars.periodic_flags & 8005 ELINK_PERIODIC_FLAGS_LINK_EVENT) { 8006 /* sync with link */ 8007 bxe_acquire_phy_lock(sc); 8008 sc->link_vars.periodic_flags &= 8009 ~ELINK_PERIODIC_FLAGS_LINK_EVENT; 8010 bxe_release_phy_lock(sc); 8011 if (IS_MF(sc)) 8012 ; // XXX bxe_link_sync_notify(sc); 8013 bxe_link_report(sc); 8014 } 8015 8016 /* 8017 * Always call it here: bxe_link_report() will 8018 * prevent the link indication duplication. 8019 */ 8020 bxe_link_status_update(sc); 8021 8022 } else if (attn & BXE_MC_ASSERT_BITS) { 8023 8024 BLOGE(sc, "MC assert!\n"); 8025 bxe_mc_assert(sc); 8026 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_10, 0); 8027 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_9, 0); 8028 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_8, 0); 8029 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_7, 0); 8030 bxe_panic(sc, ("MC assert!\n")); 8031 8032 } else if (attn & BXE_MCP_ASSERT) { 8033 8034 BLOGE(sc, "MCP assert!\n"); 8035 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_11, 0); 8036 // XXX bxe_fw_dump(sc); 8037 8038 } else { 8039 BLOGE(sc, "Unknown HW assert! (attn 0x%08x)\n", attn); 8040 } 8041 } 8042 8043 if (attn & EVEREST_LATCHED_ATTN_IN_USE_MASK) { 8044 BLOGE(sc, "LATCHED attention 0x%08x (masked)\n", attn); 8045 if (attn & BXE_GRC_TIMEOUT) { 8046 val = CHIP_IS_E1(sc) ? 0 : REG_RD(sc, MISC_REG_GRC_TIMEOUT_ATTN); 8047 BLOGE(sc, "GRC time-out 0x%08x\n", val); 8048 } 8049 if (attn & BXE_GRC_RSV) { 8050 val = CHIP_IS_E1(sc) ? 0 : REG_RD(sc, MISC_REG_GRC_RSV_ATTN); 8051 BLOGE(sc, "GRC reserved 0x%08x\n", val); 8052 } 8053 REG_WR(sc, MISC_REG_AEU_CLR_LATCH_SIGNAL, 0x7ff); 8054 } 8055 } 8056 8057 static void 8058 bxe_attn_int_deasserted2(struct bxe_softc *sc, 8059 uint32_t attn) 8060 { 8061 int port = SC_PORT(sc); 8062 int reg_offset; 8063 uint32_t val0, mask0, val1, mask1; 8064 uint32_t val; 8065 8066 if (attn & AEU_INPUTS_ATTN_BITS_CFC_HW_INTERRUPT) { 8067 val = REG_RD(sc, CFC_REG_CFC_INT_STS_CLR); 8068 BLOGE(sc, "CFC hw attention 0x%08x\n", val); 8069 /* CFC error attention */ 8070 if (val & 0x2) { 8071 BLOGE(sc, "FATAL error from CFC\n"); 8072 } 8073 } 8074 8075 if (attn & AEU_INPUTS_ATTN_BITS_PXP_HW_INTERRUPT) { 8076 val = REG_RD(sc, PXP_REG_PXP_INT_STS_CLR_0); 8077 BLOGE(sc, "PXP hw attention-0 0x%08x\n", val); 8078 /* RQ_USDMDP_FIFO_OVERFLOW */ 8079 if (val & 0x18000) { 8080 BLOGE(sc, "FATAL error from PXP\n"); 8081 } 8082 8083 if (!CHIP_IS_E1x(sc)) { 8084 val = REG_RD(sc, PXP_REG_PXP_INT_STS_CLR_1); 8085 BLOGE(sc, "PXP hw attention-1 0x%08x\n", val); 8086 } 8087 } 8088 8089 #define PXP2_EOP_ERROR_BIT PXP2_PXP2_INT_STS_CLR_0_REG_WR_PGLUE_EOP_ERROR 8090 #define AEU_PXP2_HW_INT_BIT AEU_INPUTS_ATTN_BITS_PXPPCICLOCKCLIENT_HW_INTERRUPT 8091 8092 if (attn & AEU_PXP2_HW_INT_BIT) { 8093 /* CQ47854 workaround do not panic on 8094 * PXP2_PXP2_INT_STS_0_REG_WR_PGLUE_EOP_ERROR 8095 */ 8096 if (!CHIP_IS_E1x(sc)) { 8097 mask0 = REG_RD(sc, PXP2_REG_PXP2_INT_MASK_0); 8098 val1 = REG_RD(sc, PXP2_REG_PXP2_INT_STS_1); 8099 mask1 = REG_RD(sc, PXP2_REG_PXP2_INT_MASK_1); 8100 val0 = REG_RD(sc, PXP2_REG_PXP2_INT_STS_0); 8101 /* 8102 * If the olny PXP2_EOP_ERROR_BIT is set in 8103 * STS0 and STS1 - clear it 8104 * 8105 * probably we lose additional attentions between 8106 * STS0 and STS_CLR0, in this case user will not 8107 * be notified about them 8108 */ 8109 if (val0 & mask0 & PXP2_EOP_ERROR_BIT && 8110 !(val1 & mask1)) 8111 val0 = REG_RD(sc, PXP2_REG_PXP2_INT_STS_CLR_0); 8112 8113 /* print the register, since no one can restore it */ 8114 BLOGE(sc, "PXP2_REG_PXP2_INT_STS_CLR_0 0x%08x\n", val0); 8115 8116 /* 8117 * if PXP2_PXP2_INT_STS_0_REG_WR_PGLUE_EOP_ERROR 8118 * then notify 8119 */ 8120 if (val0 & PXP2_EOP_ERROR_BIT) { 8121 BLOGE(sc, "PXP2_WR_PGLUE_EOP_ERROR\n"); 8122 8123 /* 8124 * if only PXP2_PXP2_INT_STS_0_REG_WR_PGLUE_EOP_ERROR is 8125 * set then clear attention from PXP2 block without panic 8126 */ 8127 if (((val0 & mask0) == PXP2_EOP_ERROR_BIT) && 8128 ((val1 & mask1) == 0)) 8129 attn &= ~AEU_PXP2_HW_INT_BIT; 8130 } 8131 } 8132 } 8133 8134 if (attn & HW_INTERRUT_ASSERT_SET_2) { 8135 reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_2 : 8136 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_2); 8137 8138 val = REG_RD(sc, reg_offset); 8139 val &= ~(attn & HW_INTERRUT_ASSERT_SET_2); 8140 REG_WR(sc, reg_offset, val); 8141 8142 BLOGE(sc, "FATAL HW block attention set2 0x%x\n", 8143 (uint32_t)(attn & HW_INTERRUT_ASSERT_SET_2)); 8144 bxe_panic(sc, ("HW block attention set2\n")); 8145 } 8146 } 8147 8148 static void 8149 bxe_attn_int_deasserted1(struct bxe_softc *sc, 8150 uint32_t attn) 8151 { 8152 int port = SC_PORT(sc); 8153 int reg_offset; 8154 uint32_t val; 8155 8156 if (attn & AEU_INPUTS_ATTN_BITS_DOORBELLQ_HW_INTERRUPT) { 8157 val = REG_RD(sc, DORQ_REG_DORQ_INT_STS_CLR); 8158 BLOGE(sc, "DB hw attention 0x%08x\n", val); 8159 /* DORQ discard attention */ 8160 if (val & 0x2) { 8161 BLOGE(sc, "FATAL error from DORQ\n"); 8162 } 8163 } 8164 8165 if (attn & HW_INTERRUT_ASSERT_SET_1) { 8166 reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_1 : 8167 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_1); 8168 8169 val = REG_RD(sc, reg_offset); 8170 val &= ~(attn & HW_INTERRUT_ASSERT_SET_1); 8171 REG_WR(sc, reg_offset, val); 8172 8173 BLOGE(sc, "FATAL HW block attention set1 0x%08x\n", 8174 (uint32_t)(attn & HW_INTERRUT_ASSERT_SET_1)); 8175 bxe_panic(sc, ("HW block attention set1\n")); 8176 } 8177 } 8178 8179 static void 8180 bxe_attn_int_deasserted0(struct bxe_softc *sc, 8181 uint32_t attn) 8182 { 8183 int port = SC_PORT(sc); 8184 int reg_offset; 8185 uint32_t val; 8186 8187 reg_offset = (port) ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 : 8188 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0; 8189 8190 if (attn & AEU_INPUTS_ATTN_BITS_SPIO5) { 8191 val = REG_RD(sc, reg_offset); 8192 val &= ~AEU_INPUTS_ATTN_BITS_SPIO5; 8193 REG_WR(sc, reg_offset, val); 8194 8195 BLOGW(sc, "SPIO5 hw attention\n"); 8196 8197 /* Fan failure attention */ 8198 elink_hw_reset_phy(&sc->link_params); 8199 bxe_fan_failure(sc); 8200 } 8201 8202 if ((attn & sc->link_vars.aeu_int_mask) && sc->port.pmf) { 8203 bxe_acquire_phy_lock(sc); 8204 elink_handle_module_detect_int(&sc->link_params); 8205 bxe_release_phy_lock(sc); 8206 } 8207 8208 if (attn & HW_INTERRUT_ASSERT_SET_0) { 8209 val = REG_RD(sc, reg_offset); 8210 val &= ~(attn & HW_INTERRUT_ASSERT_SET_0); 8211 REG_WR(sc, reg_offset, val); 8212 8213 bxe_panic(sc, ("FATAL HW block attention set0 0x%lx\n", 8214 (attn & HW_INTERRUT_ASSERT_SET_0))); 8215 } 8216 } 8217 8218 static void 8219 bxe_attn_int_deasserted(struct bxe_softc *sc, 8220 uint32_t deasserted) 8221 { 8222 struct attn_route attn; 8223 struct attn_route *group_mask; 8224 int port = SC_PORT(sc); 8225 int index; 8226 uint32_t reg_addr; 8227 uint32_t val; 8228 uint32_t aeu_mask; 8229 uint8_t global = FALSE; 8230 8231 /* 8232 * Need to take HW lock because MCP or other port might also 8233 * try to handle this event. 8234 */ 8235 bxe_acquire_alr(sc); 8236 8237 if (bxe_chk_parity_attn(sc, &global, TRUE)) { 8238 /* XXX 8239 * In case of parity errors don't handle attentions so that 8240 * other function would "see" parity errors. 8241 */ 8242 sc->recovery_state = BXE_RECOVERY_INIT; 8243 // XXX schedule a recovery task... 8244 /* disable HW interrupts */ 8245 bxe_int_disable(sc); 8246 bxe_release_alr(sc); 8247 return; 8248 } 8249 8250 attn.sig[0] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + port*4); 8251 attn.sig[1] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 + port*4); 8252 attn.sig[2] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 + port*4); 8253 attn.sig[3] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 + port*4); 8254 if (!CHIP_IS_E1x(sc)) { 8255 attn.sig[4] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 + port*4); 8256 } else { 8257 attn.sig[4] = 0; 8258 } 8259 8260 BLOGD(sc, DBG_INTR, "attn: 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x\n", 8261 attn.sig[0], attn.sig[1], attn.sig[2], attn.sig[3], attn.sig[4]); 8262 8263 for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) { 8264 if (deasserted & (1 << index)) { 8265 group_mask = &sc->attn_group[index]; 8266 8267 BLOGD(sc, DBG_INTR, 8268 "group[%d]: 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x\n", index, 8269 group_mask->sig[0], group_mask->sig[1], 8270 group_mask->sig[2], group_mask->sig[3], 8271 group_mask->sig[4]); 8272 8273 bxe_attn_int_deasserted4(sc, attn.sig[4] & group_mask->sig[4]); 8274 bxe_attn_int_deasserted3(sc, attn.sig[3] & group_mask->sig[3]); 8275 bxe_attn_int_deasserted1(sc, attn.sig[1] & group_mask->sig[1]); 8276 bxe_attn_int_deasserted2(sc, attn.sig[2] & group_mask->sig[2]); 8277 bxe_attn_int_deasserted0(sc, attn.sig[0] & group_mask->sig[0]); 8278 } 8279 } 8280 8281 bxe_release_alr(sc); 8282 8283 if (sc->devinfo.int_block == INT_BLOCK_HC) { 8284 reg_addr = (HC_REG_COMMAND_REG + port*32 + 8285 COMMAND_REG_ATTN_BITS_CLR); 8286 } else { 8287 reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_CLR_UPPER*8); 8288 } 8289 8290 val = ~deasserted; 8291 BLOGD(sc, DBG_INTR, 8292 "about to mask 0x%08x at %s addr 0x%08x\n", val, 8293 (sc->devinfo.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr); 8294 REG_WR(sc, reg_addr, val); 8295 8296 if (~sc->attn_state & deasserted) { 8297 BLOGE(sc, "IGU error\n"); 8298 } 8299 8300 reg_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 : 8301 MISC_REG_AEU_MASK_ATTN_FUNC_0; 8302 8303 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port); 8304 8305 aeu_mask = REG_RD(sc, reg_addr); 8306 8307 BLOGD(sc, DBG_INTR, "aeu_mask 0x%08x newly deasserted 0x%08x\n", 8308 aeu_mask, deasserted); 8309 aeu_mask |= (deasserted & 0x3ff); 8310 BLOGD(sc, DBG_INTR, "new mask 0x%08x\n", aeu_mask); 8311 8312 REG_WR(sc, reg_addr, aeu_mask); 8313 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port); 8314 8315 BLOGD(sc, DBG_INTR, "attn_state 0x%08x\n", sc->attn_state); 8316 sc->attn_state &= ~deasserted; 8317 BLOGD(sc, DBG_INTR, "new state 0x%08x\n", sc->attn_state); 8318 } 8319 8320 static void 8321 bxe_attn_int(struct bxe_softc *sc) 8322 { 8323 /* read local copy of bits */ 8324 uint32_t attn_bits = le32toh(sc->def_sb->atten_status_block.attn_bits); 8325 uint32_t attn_ack = le32toh(sc->def_sb->atten_status_block.attn_bits_ack); 8326 uint32_t attn_state = sc->attn_state; 8327 8328 /* look for changed bits */ 8329 uint32_t asserted = attn_bits & ~attn_ack & ~attn_state; 8330 uint32_t deasserted = ~attn_bits & attn_ack & attn_state; 8331 8332 BLOGD(sc, DBG_INTR, 8333 "attn_bits 0x%08x attn_ack 0x%08x asserted 0x%08x deasserted 0x%08x\n", 8334 attn_bits, attn_ack, asserted, deasserted); 8335 8336 if (~(attn_bits ^ attn_ack) & (attn_bits ^ attn_state)) { 8337 BLOGE(sc, "BAD attention state\n"); 8338 } 8339 8340 /* handle bits that were raised */ 8341 if (asserted) { 8342 bxe_attn_int_asserted(sc, asserted); 8343 } 8344 8345 if (deasserted) { 8346 bxe_attn_int_deasserted(sc, deasserted); 8347 } 8348 } 8349 8350 static uint16_t 8351 bxe_update_dsb_idx(struct bxe_softc *sc) 8352 { 8353 struct host_sp_status_block *def_sb = sc->def_sb; 8354 uint16_t rc = 0; 8355 8356 mb(); /* status block is written to by the chip */ 8357 8358 if (sc->def_att_idx != def_sb->atten_status_block.attn_bits_index) { 8359 sc->def_att_idx = def_sb->atten_status_block.attn_bits_index; 8360 rc |= BXE_DEF_SB_ATT_IDX; 8361 } 8362 8363 if (sc->def_idx != def_sb->sp_sb.running_index) { 8364 sc->def_idx = def_sb->sp_sb.running_index; 8365 rc |= BXE_DEF_SB_IDX; 8366 } 8367 8368 mb(); 8369 8370 return (rc); 8371 } 8372 8373 static inline struct ecore_queue_sp_obj * 8374 bxe_cid_to_q_obj(struct bxe_softc *sc, 8375 uint32_t cid) 8376 { 8377 BLOGD(sc, DBG_SP, "retrieving fp from cid %d\n", cid); 8378 return (&sc->sp_objs[CID_TO_FP(cid, sc)].q_obj); 8379 } 8380 8381 static void 8382 bxe_handle_mcast_eqe(struct bxe_softc *sc) 8383 { 8384 struct ecore_mcast_ramrod_params rparam; 8385 int rc; 8386 8387 memset(&rparam, 0, sizeof(rparam)); 8388 8389 rparam.mcast_obj = &sc->mcast_obj; 8390 8391 BXE_MCAST_LOCK(sc); 8392 8393 /* clear pending state for the last command */ 8394 sc->mcast_obj.raw.clear_pending(&sc->mcast_obj.raw); 8395 8396 /* if there are pending mcast commands - send them */ 8397 if (sc->mcast_obj.check_pending(&sc->mcast_obj)) { 8398 rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_CONT); 8399 if (rc < 0) { 8400 BLOGD(sc, DBG_SP, 8401 "ERROR: Failed to send pending mcast commands (%d)\n", rc); 8402 } 8403 } 8404 8405 BXE_MCAST_UNLOCK(sc); 8406 } 8407 8408 static void 8409 bxe_handle_classification_eqe(struct bxe_softc *sc, 8410 union event_ring_elem *elem) 8411 { 8412 unsigned long ramrod_flags = 0; 8413 int rc = 0; 8414 uint32_t cid = elem->message.data.eth_event.echo & BXE_SWCID_MASK; 8415 struct ecore_vlan_mac_obj *vlan_mac_obj; 8416 8417 /* always push next commands out, don't wait here */ 8418 bit_set(&ramrod_flags, RAMROD_CONT); 8419 8420 switch (le32toh(elem->message.data.eth_event.echo) >> BXE_SWCID_SHIFT) { 8421 case ECORE_FILTER_MAC_PENDING: 8422 BLOGD(sc, DBG_SP, "Got SETUP_MAC completions\n"); 8423 vlan_mac_obj = &sc->sp_objs[cid].mac_obj; 8424 break; 8425 8426 case ECORE_FILTER_MCAST_PENDING: 8427 BLOGD(sc, DBG_SP, "Got SETUP_MCAST completions\n"); 8428 /* 8429 * This is only relevant for 57710 where multicast MACs are 8430 * configured as unicast MACs using the same ramrod. 8431 */ 8432 bxe_handle_mcast_eqe(sc); 8433 return; 8434 8435 default: 8436 BLOGE(sc, "Unsupported classification command: %d\n", 8437 elem->message.data.eth_event.echo); 8438 return; 8439 } 8440 8441 rc = vlan_mac_obj->complete(sc, vlan_mac_obj, elem, &ramrod_flags); 8442 8443 if (rc < 0) { 8444 BLOGE(sc, "Failed to schedule new commands (%d)\n", rc); 8445 } else if (rc > 0) { 8446 BLOGD(sc, DBG_SP, "Scheduled next pending commands...\n"); 8447 } 8448 } 8449 8450 static void 8451 bxe_handle_rx_mode_eqe(struct bxe_softc *sc, 8452 union event_ring_elem *elem) 8453 { 8454 bxe_clear_bit(ECORE_FILTER_RX_MODE_PENDING, &sc->sp_state); 8455 8456 /* send rx_mode command again if was requested */ 8457 if (bxe_test_and_clear_bit(ECORE_FILTER_RX_MODE_SCHED, 8458 &sc->sp_state)) { 8459 bxe_set_storm_rx_mode(sc); 8460 } 8461 } 8462 8463 static void 8464 bxe_update_eq_prod(struct bxe_softc *sc, 8465 uint16_t prod) 8466 { 8467 storm_memset_eq_prod(sc, prod, SC_FUNC(sc)); 8468 wmb(); /* keep prod updates ordered */ 8469 } 8470 8471 static void 8472 bxe_eq_int(struct bxe_softc *sc) 8473 { 8474 uint16_t hw_cons, sw_cons, sw_prod; 8475 union event_ring_elem *elem; 8476 uint8_t echo; 8477 uint32_t cid; 8478 uint8_t opcode; 8479 int spqe_cnt = 0; 8480 struct ecore_queue_sp_obj *q_obj; 8481 struct ecore_func_sp_obj *f_obj = &sc->func_obj; 8482 struct ecore_raw_obj *rss_raw = &sc->rss_conf_obj.raw; 8483 8484 hw_cons = le16toh(*sc->eq_cons_sb); 8485 8486 /* 8487 * The hw_cons range is 1-255, 257 - the sw_cons range is 0-254, 256. 8488 * when we get to the next-page we need to adjust so the loop 8489 * condition below will be met. The next element is the size of a 8490 * regular element and hence incrementing by 1 8491 */ 8492 if ((hw_cons & EQ_DESC_MAX_PAGE) == EQ_DESC_MAX_PAGE) { 8493 hw_cons++; 8494 } 8495 8496 /* 8497 * This function may never run in parallel with itself for a 8498 * specific sc and no need for a read memory barrier here. 8499 */ 8500 sw_cons = sc->eq_cons; 8501 sw_prod = sc->eq_prod; 8502 8503 BLOGD(sc, DBG_SP,"EQ: hw_cons=%u sw_cons=%u eq_spq_left=0x%lx\n", 8504 hw_cons, sw_cons, atomic_load_acq_long(&sc->eq_spq_left)); 8505 8506 for (; 8507 sw_cons != hw_cons; 8508 sw_prod = NEXT_EQ_IDX(sw_prod), sw_cons = NEXT_EQ_IDX(sw_cons)) { 8509 8510 elem = &sc->eq[EQ_DESC(sw_cons)]; 8511 8512 /* elem CID originates from FW, actually LE */ 8513 cid = SW_CID(elem->message.data.cfc_del_event.cid); 8514 opcode = elem->message.opcode; 8515 8516 /* handle eq element */ 8517 switch (opcode) { 8518 8519 case EVENT_RING_OPCODE_STAT_QUERY: 8520 BLOGD(sc, DBG_SP, "got statistics completion event %d\n", 8521 sc->stats_comp++); 8522 /* nothing to do with stats comp */ 8523 goto next_spqe; 8524 8525 case EVENT_RING_OPCODE_CFC_DEL: 8526 /* handle according to cid range */ 8527 /* we may want to verify here that the sc state is HALTING */ 8528 BLOGD(sc, DBG_SP, "got delete ramrod for MULTI[%d]\n", cid); 8529 q_obj = bxe_cid_to_q_obj(sc, cid); 8530 if (q_obj->complete_cmd(sc, q_obj, ECORE_Q_CMD_CFC_DEL)) { 8531 break; 8532 } 8533 goto next_spqe; 8534 8535 case EVENT_RING_OPCODE_STOP_TRAFFIC: 8536 BLOGD(sc, DBG_SP, "got STOP TRAFFIC\n"); 8537 if (f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_TX_STOP)) { 8538 break; 8539 } 8540 // XXX bxe_dcbx_set_params(sc, BXE_DCBX_STATE_TX_PAUSED); 8541 goto next_spqe; 8542 8543 case EVENT_RING_OPCODE_START_TRAFFIC: 8544 BLOGD(sc, DBG_SP, "got START TRAFFIC\n"); 8545 if (f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_TX_START)) { 8546 break; 8547 } 8548 // XXX bxe_dcbx_set_params(sc, BXE_DCBX_STATE_TX_RELEASED); 8549 goto next_spqe; 8550 8551 case EVENT_RING_OPCODE_FUNCTION_UPDATE: 8552 echo = elem->message.data.function_update_event.echo; 8553 if (echo == SWITCH_UPDATE) { 8554 BLOGD(sc, DBG_SP, "got FUNC_SWITCH_UPDATE ramrod\n"); 8555 if (f_obj->complete_cmd(sc, f_obj, 8556 ECORE_F_CMD_SWITCH_UPDATE)) { 8557 break; 8558 } 8559 } 8560 else { 8561 BLOGD(sc, DBG_SP, 8562 "AFEX: ramrod completed FUNCTION_UPDATE\n"); 8563 } 8564 goto next_spqe; 8565 8566 case EVENT_RING_OPCODE_FORWARD_SETUP: 8567 q_obj = &bxe_fwd_sp_obj(sc, q_obj); 8568 if (q_obj->complete_cmd(sc, q_obj, 8569 ECORE_Q_CMD_SETUP_TX_ONLY)) { 8570 break; 8571 } 8572 goto next_spqe; 8573 8574 case EVENT_RING_OPCODE_FUNCTION_START: 8575 BLOGD(sc, DBG_SP, "got FUNC_START ramrod\n"); 8576 if (f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_START)) { 8577 break; 8578 } 8579 goto next_spqe; 8580 8581 case EVENT_RING_OPCODE_FUNCTION_STOP: 8582 BLOGD(sc, DBG_SP, "got FUNC_STOP ramrod\n"); 8583 if (f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_STOP)) { 8584 break; 8585 } 8586 goto next_spqe; 8587 } 8588 8589 switch (opcode | sc->state) { 8590 case (EVENT_RING_OPCODE_RSS_UPDATE_RULES | BXE_STATE_OPEN): 8591 case (EVENT_RING_OPCODE_RSS_UPDATE_RULES | BXE_STATE_OPENING_WAITING_PORT): 8592 cid = elem->message.data.eth_event.echo & BXE_SWCID_MASK; 8593 BLOGD(sc, DBG_SP, "got RSS_UPDATE ramrod. CID %d\n", cid); 8594 rss_raw->clear_pending(rss_raw); 8595 break; 8596 8597 case (EVENT_RING_OPCODE_SET_MAC | BXE_STATE_OPEN): 8598 case (EVENT_RING_OPCODE_SET_MAC | BXE_STATE_DIAG): 8599 case (EVENT_RING_OPCODE_SET_MAC | BXE_STATE_CLOSING_WAITING_HALT): 8600 case (EVENT_RING_OPCODE_CLASSIFICATION_RULES | BXE_STATE_OPEN): 8601 case (EVENT_RING_OPCODE_CLASSIFICATION_RULES | BXE_STATE_DIAG): 8602 case (EVENT_RING_OPCODE_CLASSIFICATION_RULES | BXE_STATE_CLOSING_WAITING_HALT): 8603 BLOGD(sc, DBG_SP, "got (un)set mac ramrod\n"); 8604 bxe_handle_classification_eqe(sc, elem); 8605 break; 8606 8607 case (EVENT_RING_OPCODE_MULTICAST_RULES | BXE_STATE_OPEN): 8608 case (EVENT_RING_OPCODE_MULTICAST_RULES | BXE_STATE_DIAG): 8609 case (EVENT_RING_OPCODE_MULTICAST_RULES | BXE_STATE_CLOSING_WAITING_HALT): 8610 BLOGD(sc, DBG_SP, "got mcast ramrod\n"); 8611 bxe_handle_mcast_eqe(sc); 8612 break; 8613 8614 case (EVENT_RING_OPCODE_FILTERS_RULES | BXE_STATE_OPEN): 8615 case (EVENT_RING_OPCODE_FILTERS_RULES | BXE_STATE_DIAG): 8616 case (EVENT_RING_OPCODE_FILTERS_RULES | BXE_STATE_CLOSING_WAITING_HALT): 8617 BLOGD(sc, DBG_SP, "got rx_mode ramrod\n"); 8618 bxe_handle_rx_mode_eqe(sc, elem); 8619 break; 8620 8621 default: 8622 /* unknown event log error and continue */ 8623 BLOGE(sc, "Unknown EQ event %d, sc->state 0x%x\n", 8624 elem->message.opcode, sc->state); 8625 } 8626 8627 next_spqe: 8628 spqe_cnt++; 8629 } /* for */ 8630 8631 mb(); 8632 atomic_add_acq_long(&sc->eq_spq_left, spqe_cnt); 8633 8634 sc->eq_cons = sw_cons; 8635 sc->eq_prod = sw_prod; 8636 8637 /* make sure that above mem writes were issued towards the memory */ 8638 wmb(); 8639 8640 /* update producer */ 8641 bxe_update_eq_prod(sc, sc->eq_prod); 8642 } 8643 8644 static void 8645 bxe_handle_sp_tq(void *context, 8646 int pending) 8647 { 8648 struct bxe_softc *sc = (struct bxe_softc *)context; 8649 uint16_t status; 8650 8651 BLOGD(sc, DBG_SP, "---> SP TASK <---\n"); 8652 8653 /* what work needs to be performed? */ 8654 status = bxe_update_dsb_idx(sc); 8655 8656 BLOGD(sc, DBG_SP, "dsb status 0x%04x\n", status); 8657 8658 /* HW attentions */ 8659 if (status & BXE_DEF_SB_ATT_IDX) { 8660 BLOGD(sc, DBG_SP, "---> ATTN INTR <---\n"); 8661 bxe_attn_int(sc); 8662 status &= ~BXE_DEF_SB_ATT_IDX; 8663 } 8664 8665 /* SP events: STAT_QUERY and others */ 8666 if (status & BXE_DEF_SB_IDX) { 8667 /* handle EQ completions */ 8668 BLOGD(sc, DBG_SP, "---> EQ INTR <---\n"); 8669 bxe_eq_int(sc); 8670 bxe_ack_sb(sc, sc->igu_dsb_id, USTORM_ID, 8671 le16toh(sc->def_idx), IGU_INT_NOP, 1); 8672 status &= ~BXE_DEF_SB_IDX; 8673 } 8674 8675 /* if status is non zero then something went wrong */ 8676 if (__predict_false(status)) { 8677 BLOGE(sc, "Got an unknown SP interrupt! (0x%04x)\n", status); 8678 } 8679 8680 /* ack status block only if something was actually handled */ 8681 bxe_ack_sb(sc, sc->igu_dsb_id, ATTENTION_ID, 8682 le16toh(sc->def_att_idx), IGU_INT_ENABLE, 1); 8683 8684 /* 8685 * Must be called after the EQ processing (since eq leads to sriov 8686 * ramrod completion flows). 8687 * This flow may have been scheduled by the arrival of a ramrod 8688 * completion, or by the sriov code rescheduling itself. 8689 */ 8690 // XXX bxe_iov_sp_task(sc); 8691 8692 } 8693 8694 static void 8695 bxe_handle_fp_tq(void *context, 8696 int pending) 8697 { 8698 struct bxe_fastpath *fp = (struct bxe_fastpath *)context; 8699 struct bxe_softc *sc = fp->sc; 8700 uint8_t more_tx = FALSE; 8701 uint8_t more_rx = FALSE; 8702 8703 BLOGD(sc, DBG_INTR, "---> FP TASK QUEUE (%d) <---\n", fp->index); 8704 8705 /* XXX 8706 * IFF_DRV_RUNNING state can't be checked here since we process 8707 * slowpath events on a client queue during setup. Instead 8708 * we need to add a "process/continue" flag here that the driver 8709 * can use to tell the task here not to do anything. 8710 */ 8711 #if 0 8712 if (!(if_getdrvflags(sc->ifp) & IFF_DRV_RUNNING)) { 8713 return; 8714 } 8715 #endif 8716 8717 /* update the fastpath index */ 8718 bxe_update_fp_sb_idx(fp); 8719 8720 /* XXX add loop here if ever support multiple tx CoS */ 8721 /* fp->txdata[cos] */ 8722 if (bxe_has_tx_work(fp)) { 8723 BXE_FP_TX_LOCK(fp); 8724 more_tx = bxe_txeof(sc, fp); 8725 BXE_FP_TX_UNLOCK(fp); 8726 } 8727 8728 if (bxe_has_rx_work(fp)) { 8729 more_rx = bxe_rxeof(sc, fp); 8730 } 8731 8732 if (more_rx /*|| more_tx*/) { 8733 /* still more work to do */ 8734 taskqueue_enqueue(fp->tq, &fp->tq_task); 8735 return; 8736 } 8737 8738 bxe_ack_sb(sc, fp->igu_sb_id, USTORM_ID, 8739 le16toh(fp->fp_hc_idx), IGU_INT_ENABLE, 1); 8740 } 8741 8742 static void 8743 bxe_task_fp(struct bxe_fastpath *fp) 8744 { 8745 struct bxe_softc *sc = fp->sc; 8746 uint8_t more_tx = FALSE; 8747 uint8_t more_rx = FALSE; 8748 8749 BLOGD(sc, DBG_INTR, "---> FP TASK ISR (%d) <---\n", fp->index); 8750 8751 /* update the fastpath index */ 8752 bxe_update_fp_sb_idx(fp); 8753 8754 /* XXX add loop here if ever support multiple tx CoS */ 8755 /* fp->txdata[cos] */ 8756 if (bxe_has_tx_work(fp)) { 8757 BXE_FP_TX_LOCK(fp); 8758 more_tx = bxe_txeof(sc, fp); 8759 BXE_FP_TX_UNLOCK(fp); 8760 } 8761 8762 if (bxe_has_rx_work(fp)) { 8763 more_rx = bxe_rxeof(sc, fp); 8764 } 8765 8766 if (more_rx /*|| more_tx*/) { 8767 /* still more work to do, bail out if this ISR and process later */ 8768 taskqueue_enqueue(fp->tq, &fp->tq_task); 8769 return; 8770 } 8771 8772 /* 8773 * Here we write the fastpath index taken before doing any tx or rx work. 8774 * It is very well possible other hw events occurred up to this point and 8775 * they were actually processed accordingly above. Since we're going to 8776 * write an older fastpath index, an interrupt is coming which we might 8777 * not do any work in. 8778 */ 8779 bxe_ack_sb(sc, fp->igu_sb_id, USTORM_ID, 8780 le16toh(fp->fp_hc_idx), IGU_INT_ENABLE, 1); 8781 } 8782 8783 /* 8784 * Legacy interrupt entry point. 8785 * 8786 * Verifies that the controller generated the interrupt and 8787 * then calls a separate routine to handle the various 8788 * interrupt causes: link, RX, and TX. 8789 */ 8790 static void 8791 bxe_intr_legacy(void *xsc) 8792 { 8793 struct bxe_softc *sc = (struct bxe_softc *)xsc; 8794 struct bxe_fastpath *fp; 8795 uint16_t status, mask; 8796 int i; 8797 8798 BLOGD(sc, DBG_INTR, "---> BXE INTx <---\n"); 8799 8800 /* 8801 * 0 for ustorm, 1 for cstorm 8802 * the bits returned from ack_int() are 0-15 8803 * bit 0 = attention status block 8804 * bit 1 = fast path status block 8805 * a mask of 0x2 or more = tx/rx event 8806 * a mask of 1 = slow path event 8807 */ 8808 8809 status = bxe_ack_int(sc); 8810 8811 /* the interrupt is not for us */ 8812 if (__predict_false(status == 0)) { 8813 BLOGD(sc, DBG_INTR, "Not our interrupt!\n"); 8814 return; 8815 } 8816 8817 BLOGD(sc, DBG_INTR, "Interrupt status 0x%04x\n", status); 8818 8819 FOR_EACH_ETH_QUEUE(sc, i) { 8820 fp = &sc->fp[i]; 8821 mask = (0x2 << (fp->index + CNIC_SUPPORT(sc))); 8822 if (status & mask) { 8823 /* acknowledge and disable further fastpath interrupts */ 8824 bxe_ack_sb(sc, fp->igu_sb_id, USTORM_ID, 0, IGU_INT_DISABLE, 0); 8825 bxe_task_fp(fp); 8826 status &= ~mask; 8827 } 8828 } 8829 8830 if (__predict_false(status & 0x1)) { 8831 /* acknowledge and disable further slowpath interrupts */ 8832 bxe_ack_sb(sc, sc->igu_dsb_id, USTORM_ID, 0, IGU_INT_DISABLE, 0); 8833 8834 /* schedule slowpath handler */ 8835 taskqueue_enqueue(sc->sp_tq, &sc->sp_tq_task); 8836 8837 status &= ~0x1; 8838 } 8839 8840 if (__predict_false(status)) { 8841 BLOGW(sc, "Unexpected fastpath status (0x%08x)!\n", status); 8842 } 8843 } 8844 8845 /* slowpath interrupt entry point */ 8846 static void 8847 bxe_intr_sp(void *xsc) 8848 { 8849 struct bxe_softc *sc = (struct bxe_softc *)xsc; 8850 8851 BLOGD(sc, (DBG_INTR | DBG_SP), "---> SP INTR <---\n"); 8852 8853 /* acknowledge and disable further slowpath interrupts */ 8854 bxe_ack_sb(sc, sc->igu_dsb_id, USTORM_ID, 0, IGU_INT_DISABLE, 0); 8855 8856 /* schedule slowpath handler */ 8857 taskqueue_enqueue(sc->sp_tq, &sc->sp_tq_task); 8858 } 8859 8860 /* fastpath interrupt entry point */ 8861 static void 8862 bxe_intr_fp(void *xfp) 8863 { 8864 struct bxe_fastpath *fp = (struct bxe_fastpath *)xfp; 8865 struct bxe_softc *sc = fp->sc; 8866 8867 BLOGD(sc, DBG_INTR, "---> FP INTR %d <---\n", fp->index); 8868 8869 BLOGD(sc, DBG_INTR, 8870 "(cpu=%d) MSI-X fp=%d fw_sb=%d igu_sb=%d\n", 8871 curcpu, fp->index, fp->fw_sb_id, fp->igu_sb_id); 8872 8873 /* acknowledge and disable further fastpath interrupts */ 8874 bxe_ack_sb(sc, fp->igu_sb_id, USTORM_ID, 0, IGU_INT_DISABLE, 0); 8875 8876 bxe_task_fp(fp); 8877 } 8878 8879 /* Release all interrupts allocated by the driver. */ 8880 static void 8881 bxe_interrupt_free(struct bxe_softc *sc) 8882 { 8883 int i; 8884 8885 switch (sc->interrupt_mode) { 8886 case INTR_MODE_INTX: 8887 BLOGD(sc, DBG_LOAD, "Releasing legacy INTx vector\n"); 8888 if (sc->intr[0].resource != NULL) { 8889 bus_release_resource(sc->dev, 8890 SYS_RES_IRQ, 8891 sc->intr[0].rid, 8892 sc->intr[0].resource); 8893 } 8894 break; 8895 case INTR_MODE_MSI: 8896 for (i = 0; i < sc->intr_count; i++) { 8897 BLOGD(sc, DBG_LOAD, "Releasing MSI vector %d\n", i); 8898 if (sc->intr[i].resource && sc->intr[i].rid) { 8899 bus_release_resource(sc->dev, 8900 SYS_RES_IRQ, 8901 sc->intr[i].rid, 8902 sc->intr[i].resource); 8903 } 8904 } 8905 pci_release_msi(sc->dev); 8906 break; 8907 case INTR_MODE_MSIX: 8908 for (i = 0; i < sc->intr_count; i++) { 8909 BLOGD(sc, DBG_LOAD, "Releasing MSI-X vector %d\n", i); 8910 if (sc->intr[i].resource && sc->intr[i].rid) { 8911 bus_release_resource(sc->dev, 8912 SYS_RES_IRQ, 8913 sc->intr[i].rid, 8914 sc->intr[i].resource); 8915 } 8916 } 8917 pci_release_msi(sc->dev); 8918 break; 8919 default: 8920 /* nothing to do as initial allocation failed */ 8921 break; 8922 } 8923 } 8924 8925 /* 8926 * This function determines and allocates the appropriate 8927 * interrupt based on system capabilites and user request. 8928 * 8929 * The user may force a particular interrupt mode, specify 8930 * the number of receive queues, specify the method for 8931 * distribuitng received frames to receive queues, or use 8932 * the default settings which will automatically select the 8933 * best supported combination. In addition, the OS may or 8934 * may not support certain combinations of these settings. 8935 * This routine attempts to reconcile the settings requested 8936 * by the user with the capabilites available from the system 8937 * to select the optimal combination of features. 8938 * 8939 * Returns: 8940 * 0 = Success, !0 = Failure. 8941 */ 8942 static int 8943 bxe_interrupt_alloc(struct bxe_softc *sc) 8944 { 8945 int msix_count = 0; 8946 int msi_count = 0; 8947 int num_requested = 0; 8948 int num_allocated = 0; 8949 int rid, i, j; 8950 int rc; 8951 8952 /* get the number of available MSI/MSI-X interrupts from the OS */ 8953 if (sc->interrupt_mode > 0) { 8954 if (sc->devinfo.pcie_cap_flags & BXE_MSIX_CAPABLE_FLAG) { 8955 msix_count = pci_msix_count(sc->dev); 8956 } 8957 8958 if (sc->devinfo.pcie_cap_flags & BXE_MSI_CAPABLE_FLAG) { 8959 msi_count = pci_msi_count(sc->dev); 8960 } 8961 8962 BLOGD(sc, DBG_LOAD, "%d MSI and %d MSI-X vectors available\n", 8963 msi_count, msix_count); 8964 } 8965 8966 do { /* try allocating MSI-X interrupt resources (at least 2) */ 8967 if (sc->interrupt_mode != INTR_MODE_MSIX) { 8968 break; 8969 } 8970 8971 if (((sc->devinfo.pcie_cap_flags & BXE_MSIX_CAPABLE_FLAG) == 0) || 8972 (msix_count < 2)) { 8973 sc->interrupt_mode = INTR_MODE_MSI; /* try MSI next */ 8974 break; 8975 } 8976 8977 /* ask for the necessary number of MSI-X vectors */ 8978 num_requested = min((sc->num_queues + 1), msix_count); 8979 8980 BLOGD(sc, DBG_LOAD, "Requesting %d MSI-X vectors\n", num_requested); 8981 8982 num_allocated = num_requested; 8983 if ((rc = pci_alloc_msix(sc->dev, &num_allocated)) != 0) { 8984 BLOGE(sc, "MSI-X alloc failed! (%d)\n", rc); 8985 sc->interrupt_mode = INTR_MODE_MSI; /* try MSI next */ 8986 break; 8987 } 8988 8989 if (num_allocated < 2) { /* possible? */ 8990 BLOGE(sc, "MSI-X allocation less than 2!\n"); 8991 sc->interrupt_mode = INTR_MODE_MSI; /* try MSI next */ 8992 pci_release_msi(sc->dev); 8993 break; 8994 } 8995 8996 BLOGI(sc, "MSI-X vectors Requested %d and Allocated %d\n", 8997 num_requested, num_allocated); 8998 8999 /* best effort so use the number of vectors allocated to us */ 9000 sc->intr_count = num_allocated; 9001 sc->num_queues = num_allocated - 1; 9002 9003 rid = 1; /* initial resource identifier */ 9004 9005 /* allocate the MSI-X vectors */ 9006 for (i = 0; i < num_allocated; i++) { 9007 sc->intr[i].rid = (rid + i); 9008 9009 if ((sc->intr[i].resource = 9010 bus_alloc_resource_any(sc->dev, 9011 SYS_RES_IRQ, 9012 &sc->intr[i].rid, 9013 RF_ACTIVE)) == NULL) { 9014 BLOGE(sc, "Failed to map MSI-X[%d] (rid=%d)!\n", 9015 i, (rid + i)); 9016 9017 for (j = (i - 1); j >= 0; j--) { 9018 bus_release_resource(sc->dev, 9019 SYS_RES_IRQ, 9020 sc->intr[j].rid, 9021 sc->intr[j].resource); 9022 } 9023 9024 sc->intr_count = 0; 9025 sc->num_queues = 0; 9026 sc->interrupt_mode = INTR_MODE_MSI; /* try MSI next */ 9027 pci_release_msi(sc->dev); 9028 break; 9029 } 9030 9031 BLOGD(sc, DBG_LOAD, "Mapped MSI-X[%d] (rid=%d)\n", i, (rid + i)); 9032 } 9033 } while (0); 9034 9035 do { /* try allocating MSI vector resources (at least 2) */ 9036 if (sc->interrupt_mode != INTR_MODE_MSI) { 9037 break; 9038 } 9039 9040 if (((sc->devinfo.pcie_cap_flags & BXE_MSI_CAPABLE_FLAG) == 0) || 9041 (msi_count < 1)) { 9042 sc->interrupt_mode = INTR_MODE_INTX; /* try INTx next */ 9043 break; 9044 } 9045 9046 /* ask for a single MSI vector */ 9047 num_requested = 1; 9048 9049 BLOGD(sc, DBG_LOAD, "Requesting %d MSI vectors\n", num_requested); 9050 9051 num_allocated = num_requested; 9052 if ((rc = pci_alloc_msi(sc->dev, &num_allocated)) != 0) { 9053 BLOGE(sc, "MSI alloc failed (%d)!\n", rc); 9054 sc->interrupt_mode = INTR_MODE_INTX; /* try INTx next */ 9055 break; 9056 } 9057 9058 if (num_allocated != 1) { /* possible? */ 9059 BLOGE(sc, "MSI allocation is not 1!\n"); 9060 sc->interrupt_mode = INTR_MODE_INTX; /* try INTx next */ 9061 pci_release_msi(sc->dev); 9062 break; 9063 } 9064 9065 BLOGI(sc, "MSI vectors Requested %d and Allocated %d\n", 9066 num_requested, num_allocated); 9067 9068 /* best effort so use the number of vectors allocated to us */ 9069 sc->intr_count = num_allocated; 9070 sc->num_queues = num_allocated; 9071 9072 rid = 1; /* initial resource identifier */ 9073 9074 sc->intr[0].rid = rid; 9075 9076 if ((sc->intr[0].resource = 9077 bus_alloc_resource_any(sc->dev, 9078 SYS_RES_IRQ, 9079 &sc->intr[0].rid, 9080 RF_ACTIVE)) == NULL) { 9081 BLOGE(sc, "Failed to map MSI[0] (rid=%d)!\n", rid); 9082 sc->intr_count = 0; 9083 sc->num_queues = 0; 9084 sc->interrupt_mode = INTR_MODE_INTX; /* try INTx next */ 9085 pci_release_msi(sc->dev); 9086 break; 9087 } 9088 9089 BLOGD(sc, DBG_LOAD, "Mapped MSI[0] (rid=%d)\n", rid); 9090 } while (0); 9091 9092 do { /* try allocating INTx vector resources */ 9093 if (sc->interrupt_mode != INTR_MODE_INTX) { 9094 break; 9095 } 9096 9097 BLOGD(sc, DBG_LOAD, "Requesting legacy INTx interrupt\n"); 9098 9099 /* only one vector for INTx */ 9100 sc->intr_count = 1; 9101 sc->num_queues = 1; 9102 9103 rid = 0; /* initial resource identifier */ 9104 9105 sc->intr[0].rid = rid; 9106 9107 if ((sc->intr[0].resource = 9108 bus_alloc_resource_any(sc->dev, 9109 SYS_RES_IRQ, 9110 &sc->intr[0].rid, 9111 (RF_ACTIVE | RF_SHAREABLE))) == NULL) { 9112 BLOGE(sc, "Failed to map INTx (rid=%d)!\n", rid); 9113 sc->intr_count = 0; 9114 sc->num_queues = 0; 9115 sc->interrupt_mode = -1; /* Failed! */ 9116 break; 9117 } 9118 9119 BLOGD(sc, DBG_LOAD, "Mapped INTx (rid=%d)\n", rid); 9120 } while (0); 9121 9122 if (sc->interrupt_mode == -1) { 9123 BLOGE(sc, "Interrupt Allocation: FAILED!!!\n"); 9124 rc = 1; 9125 } else { 9126 BLOGD(sc, DBG_LOAD, 9127 "Interrupt Allocation: interrupt_mode=%d, num_queues=%d\n", 9128 sc->interrupt_mode, sc->num_queues); 9129 rc = 0; 9130 } 9131 9132 return (rc); 9133 } 9134 9135 static void 9136 bxe_interrupt_detach(struct bxe_softc *sc) 9137 { 9138 struct bxe_fastpath *fp; 9139 int i; 9140 9141 /* release interrupt resources */ 9142 for (i = 0; i < sc->intr_count; i++) { 9143 if (sc->intr[i].resource && sc->intr[i].tag) { 9144 BLOGD(sc, DBG_LOAD, "Disabling interrupt vector %d\n", i); 9145 bus_teardown_intr(sc->dev, sc->intr[i].resource, sc->intr[i].tag); 9146 } 9147 } 9148 9149 for (i = 0; i < sc->num_queues; i++) { 9150 fp = &sc->fp[i]; 9151 if (fp->tq) { 9152 taskqueue_drain(fp->tq, &fp->tq_task); 9153 taskqueue_free(fp->tq); 9154 fp->tq = NULL; 9155 } 9156 } 9157 9158 9159 if (sc->sp_tq) { 9160 taskqueue_drain(sc->sp_tq, &sc->sp_tq_task); 9161 taskqueue_free(sc->sp_tq); 9162 sc->sp_tq = NULL; 9163 } 9164 } 9165 9166 /* 9167 * Enables interrupts and attach to the ISR. 9168 * 9169 * When using multiple MSI/MSI-X vectors the first vector 9170 * is used for slowpath operations while all remaining 9171 * vectors are used for fastpath operations. If only a 9172 * single MSI/MSI-X vector is used (SINGLE_ISR) then the 9173 * ISR must look for both slowpath and fastpath completions. 9174 */ 9175 static int 9176 bxe_interrupt_attach(struct bxe_softc *sc) 9177 { 9178 struct bxe_fastpath *fp; 9179 int rc = 0; 9180 int i; 9181 9182 snprintf(sc->sp_tq_name, sizeof(sc->sp_tq_name), 9183 "bxe%d_sp_tq", sc->unit); 9184 TASK_INIT(&sc->sp_tq_task, 0, bxe_handle_sp_tq, sc); 9185 sc->sp_tq = taskqueue_create_fast(sc->sp_tq_name, M_NOWAIT, 9186 taskqueue_thread_enqueue, 9187 &sc->sp_tq); 9188 taskqueue_start_threads(&sc->sp_tq, 1, PWAIT, /* lower priority */ 9189 "%s", sc->sp_tq_name); 9190 9191 9192 for (i = 0; i < sc->num_queues; i++) { 9193 fp = &sc->fp[i]; 9194 snprintf(fp->tq_name, sizeof(fp->tq_name), 9195 "bxe%d_fp%d_tq", sc->unit, i); 9196 TASK_INIT(&fp->tq_task, 0, bxe_handle_fp_tq, fp); 9197 fp->tq = taskqueue_create_fast(fp->tq_name, M_NOWAIT, 9198 taskqueue_thread_enqueue, 9199 &fp->tq); 9200 taskqueue_start_threads(&fp->tq, 1, PI_NET, /* higher priority */ 9201 "%s", fp->tq_name); 9202 } 9203 9204 /* setup interrupt handlers */ 9205 if (sc->interrupt_mode == INTR_MODE_MSIX) { 9206 BLOGD(sc, DBG_LOAD, "Enabling slowpath MSI-X[0] vector\n"); 9207 9208 /* 9209 * Setup the interrupt handler. Note that we pass the driver instance 9210 * to the interrupt handler for the slowpath. 9211 */ 9212 if ((rc = bus_setup_intr(sc->dev, sc->intr[0].resource, 9213 (INTR_TYPE_NET | INTR_MPSAFE), 9214 NULL, bxe_intr_sp, sc, 9215 &sc->intr[0].tag)) != 0) { 9216 BLOGE(sc, "Failed to allocate MSI-X[0] vector (%d)\n", rc); 9217 goto bxe_interrupt_attach_exit; 9218 } 9219 9220 bus_describe_intr(sc->dev, sc->intr[0].resource, 9221 sc->intr[0].tag, "sp"); 9222 9223 /* bus_bind_intr(sc->dev, sc->intr[0].resource, 0); */ 9224 9225 /* initialize the fastpath vectors (note the first was used for sp) */ 9226 for (i = 0; i < sc->num_queues; i++) { 9227 fp = &sc->fp[i]; 9228 BLOGD(sc, DBG_LOAD, "Enabling MSI-X[%d] vector\n", (i + 1)); 9229 9230 /* 9231 * Setup the interrupt handler. Note that we pass the 9232 * fastpath context to the interrupt handler in this 9233 * case. 9234 */ 9235 if ((rc = bus_setup_intr(sc->dev, sc->intr[i + 1].resource, 9236 (INTR_TYPE_NET | INTR_MPSAFE), 9237 NULL, bxe_intr_fp, fp, 9238 &sc->intr[i + 1].tag)) != 0) { 9239 BLOGE(sc, "Failed to allocate MSI-X[%d] vector (%d)\n", 9240 (i + 1), rc); 9241 goto bxe_interrupt_attach_exit; 9242 } 9243 9244 bus_describe_intr(sc->dev, sc->intr[i + 1].resource, 9245 sc->intr[i + 1].tag, "fp%02d", i); 9246 9247 /* bind the fastpath instance to a cpu */ 9248 if (sc->num_queues > 1) { 9249 bus_bind_intr(sc->dev, sc->intr[i + 1].resource, i); 9250 } 9251 9252 fp->state = BXE_FP_STATE_IRQ; 9253 } 9254 } else if (sc->interrupt_mode == INTR_MODE_MSI) { 9255 BLOGD(sc, DBG_LOAD, "Enabling MSI[0] vector\n"); 9256 9257 /* 9258 * Setup the interrupt handler. Note that we pass the 9259 * driver instance to the interrupt handler which 9260 * will handle both the slowpath and fastpath. 9261 */ 9262 if ((rc = bus_setup_intr(sc->dev, sc->intr[0].resource, 9263 (INTR_TYPE_NET | INTR_MPSAFE), 9264 NULL, bxe_intr_legacy, sc, 9265 &sc->intr[0].tag)) != 0) { 9266 BLOGE(sc, "Failed to allocate MSI[0] vector (%d)\n", rc); 9267 goto bxe_interrupt_attach_exit; 9268 } 9269 9270 } else { /* (sc->interrupt_mode == INTR_MODE_INTX) */ 9271 BLOGD(sc, DBG_LOAD, "Enabling INTx interrupts\n"); 9272 9273 /* 9274 * Setup the interrupt handler. Note that we pass the 9275 * driver instance to the interrupt handler which 9276 * will handle both the slowpath and fastpath. 9277 */ 9278 if ((rc = bus_setup_intr(sc->dev, sc->intr[0].resource, 9279 (INTR_TYPE_NET | INTR_MPSAFE), 9280 NULL, bxe_intr_legacy, sc, 9281 &sc->intr[0].tag)) != 0) { 9282 BLOGE(sc, "Failed to allocate INTx interrupt (%d)\n", rc); 9283 goto bxe_interrupt_attach_exit; 9284 } 9285 } 9286 9287 bxe_interrupt_attach_exit: 9288 9289 return (rc); 9290 } 9291 9292 static int bxe_init_hw_common_chip(struct bxe_softc *sc); 9293 static int bxe_init_hw_common(struct bxe_softc *sc); 9294 static int bxe_init_hw_port(struct bxe_softc *sc); 9295 static int bxe_init_hw_func(struct bxe_softc *sc); 9296 static void bxe_reset_common(struct bxe_softc *sc); 9297 static void bxe_reset_port(struct bxe_softc *sc); 9298 static void bxe_reset_func(struct bxe_softc *sc); 9299 static int bxe_gunzip_init(struct bxe_softc *sc); 9300 static void bxe_gunzip_end(struct bxe_softc *sc); 9301 static int bxe_init_firmware(struct bxe_softc *sc); 9302 static void bxe_release_firmware(struct bxe_softc *sc); 9303 9304 static struct 9305 ecore_func_sp_drv_ops bxe_func_sp_drv = { 9306 .init_hw_cmn_chip = bxe_init_hw_common_chip, 9307 .init_hw_cmn = bxe_init_hw_common, 9308 .init_hw_port = bxe_init_hw_port, 9309 .init_hw_func = bxe_init_hw_func, 9310 9311 .reset_hw_cmn = bxe_reset_common, 9312 .reset_hw_port = bxe_reset_port, 9313 .reset_hw_func = bxe_reset_func, 9314 9315 .gunzip_init = bxe_gunzip_init, 9316 .gunzip_end = bxe_gunzip_end, 9317 9318 .init_fw = bxe_init_firmware, 9319 .release_fw = bxe_release_firmware, 9320 }; 9321 9322 static void 9323 bxe_init_func_obj(struct bxe_softc *sc) 9324 { 9325 sc->dmae_ready = 0; 9326 9327 ecore_init_func_obj(sc, 9328 &sc->func_obj, 9329 BXE_SP(sc, func_rdata), 9330 BXE_SP_MAPPING(sc, func_rdata), 9331 BXE_SP(sc, func_afex_rdata), 9332 BXE_SP_MAPPING(sc, func_afex_rdata), 9333 &bxe_func_sp_drv); 9334 } 9335 9336 static int 9337 bxe_init_hw(struct bxe_softc *sc, 9338 uint32_t load_code) 9339 { 9340 struct ecore_func_state_params func_params = { NULL }; 9341 int rc; 9342 9343 /* prepare the parameters for function state transitions */ 9344 bit_set(&func_params.ramrod_flags, RAMROD_COMP_WAIT); 9345 9346 func_params.f_obj = &sc->func_obj; 9347 func_params.cmd = ECORE_F_CMD_HW_INIT; 9348 9349 func_params.params.hw_init.load_phase = load_code; 9350 9351 /* 9352 * Via a plethora of function pointers, we will eventually reach 9353 * bxe_init_hw_common(), bxe_init_hw_port(), or bxe_init_hw_func(). 9354 */ 9355 rc = ecore_func_state_change(sc, &func_params); 9356 9357 return (rc); 9358 } 9359 9360 static void 9361 bxe_fill(struct bxe_softc *sc, 9362 uint32_t addr, 9363 int fill, 9364 uint32_t len) 9365 { 9366 uint32_t i; 9367 9368 if (!(len % 4) && !(addr % 4)) { 9369 for (i = 0; i < len; i += 4) { 9370 REG_WR(sc, (addr + i), fill); 9371 } 9372 } else { 9373 for (i = 0; i < len; i++) { 9374 REG_WR8(sc, (addr + i), fill); 9375 } 9376 } 9377 } 9378 9379 /* writes FP SP data to FW - data_size in dwords */ 9380 static void 9381 bxe_wr_fp_sb_data(struct bxe_softc *sc, 9382 int fw_sb_id, 9383 uint32_t *sb_data_p, 9384 uint32_t data_size) 9385 { 9386 int index; 9387 9388 for (index = 0; index < data_size; index++) { 9389 REG_WR(sc, 9390 (BAR_CSTRORM_INTMEM + 9391 CSTORM_STATUS_BLOCK_DATA_OFFSET(fw_sb_id) + 9392 (sizeof(uint32_t) * index)), 9393 *(sb_data_p + index)); 9394 } 9395 } 9396 9397 static void 9398 bxe_zero_fp_sb(struct bxe_softc *sc, 9399 int fw_sb_id) 9400 { 9401 struct hc_status_block_data_e2 sb_data_e2; 9402 struct hc_status_block_data_e1x sb_data_e1x; 9403 uint32_t *sb_data_p; 9404 uint32_t data_size = 0; 9405 9406 if (!CHIP_IS_E1x(sc)) { 9407 memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2)); 9408 sb_data_e2.common.state = SB_DISABLED; 9409 sb_data_e2.common.p_func.vf_valid = FALSE; 9410 sb_data_p = (uint32_t *)&sb_data_e2; 9411 data_size = (sizeof(struct hc_status_block_data_e2) / 9412 sizeof(uint32_t)); 9413 } else { 9414 memset(&sb_data_e1x, 0, sizeof(struct hc_status_block_data_e1x)); 9415 sb_data_e1x.common.state = SB_DISABLED; 9416 sb_data_e1x.common.p_func.vf_valid = FALSE; 9417 sb_data_p = (uint32_t *)&sb_data_e1x; 9418 data_size = (sizeof(struct hc_status_block_data_e1x) / 9419 sizeof(uint32_t)); 9420 } 9421 9422 bxe_wr_fp_sb_data(sc, fw_sb_id, sb_data_p, data_size); 9423 9424 bxe_fill(sc, (BAR_CSTRORM_INTMEM + CSTORM_STATUS_BLOCK_OFFSET(fw_sb_id)), 9425 0, CSTORM_STATUS_BLOCK_SIZE); 9426 bxe_fill(sc, (BAR_CSTRORM_INTMEM + CSTORM_SYNC_BLOCK_OFFSET(fw_sb_id)), 9427 0, CSTORM_SYNC_BLOCK_SIZE); 9428 } 9429 9430 static void 9431 bxe_wr_sp_sb_data(struct bxe_softc *sc, 9432 struct hc_sp_status_block_data *sp_sb_data) 9433 { 9434 int i; 9435 9436 for (i = 0; 9437 i < (sizeof(struct hc_sp_status_block_data) / sizeof(uint32_t)); 9438 i++) { 9439 REG_WR(sc, 9440 (BAR_CSTRORM_INTMEM + 9441 CSTORM_SP_STATUS_BLOCK_DATA_OFFSET(SC_FUNC(sc)) + 9442 (i * sizeof(uint32_t))), 9443 *((uint32_t *)sp_sb_data + i)); 9444 } 9445 } 9446 9447 static void 9448 bxe_zero_sp_sb(struct bxe_softc *sc) 9449 { 9450 struct hc_sp_status_block_data sp_sb_data; 9451 9452 memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data)); 9453 9454 sp_sb_data.state = SB_DISABLED; 9455 sp_sb_data.p_func.vf_valid = FALSE; 9456 9457 bxe_wr_sp_sb_data(sc, &sp_sb_data); 9458 9459 bxe_fill(sc, 9460 (BAR_CSTRORM_INTMEM + 9461 CSTORM_SP_STATUS_BLOCK_OFFSET(SC_FUNC(sc))), 9462 0, CSTORM_SP_STATUS_BLOCK_SIZE); 9463 bxe_fill(sc, 9464 (BAR_CSTRORM_INTMEM + 9465 CSTORM_SP_SYNC_BLOCK_OFFSET(SC_FUNC(sc))), 9466 0, CSTORM_SP_SYNC_BLOCK_SIZE); 9467 } 9468 9469 static void 9470 bxe_setup_ndsb_state_machine(struct hc_status_block_sm *hc_sm, 9471 int igu_sb_id, 9472 int igu_seg_id) 9473 { 9474 hc_sm->igu_sb_id = igu_sb_id; 9475 hc_sm->igu_seg_id = igu_seg_id; 9476 hc_sm->timer_value = 0xFF; 9477 hc_sm->time_to_expire = 0xFFFFFFFF; 9478 } 9479 9480 static void 9481 bxe_map_sb_state_machines(struct hc_index_data *index_data) 9482 { 9483 /* zero out state machine indices */ 9484 9485 /* rx indices */ 9486 index_data[HC_INDEX_ETH_RX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID; 9487 9488 /* tx indices */ 9489 index_data[HC_INDEX_OOO_TX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID; 9490 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags &= ~HC_INDEX_DATA_SM_ID; 9491 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags &= ~HC_INDEX_DATA_SM_ID; 9492 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags &= ~HC_INDEX_DATA_SM_ID; 9493 9494 /* map indices */ 9495 9496 /* rx indices */ 9497 index_data[HC_INDEX_ETH_RX_CQ_CONS].flags |= 9498 (SM_RX_ID << HC_INDEX_DATA_SM_ID_SHIFT); 9499 9500 /* tx indices */ 9501 index_data[HC_INDEX_OOO_TX_CQ_CONS].flags |= 9502 (SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT); 9503 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags |= 9504 (SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT); 9505 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags |= 9506 (SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT); 9507 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags |= 9508 (SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT); 9509 } 9510 9511 static void 9512 bxe_init_sb(struct bxe_softc *sc, 9513 bus_addr_t busaddr, 9514 int vfid, 9515 uint8_t vf_valid, 9516 int fw_sb_id, 9517 int igu_sb_id) 9518 { 9519 struct hc_status_block_data_e2 sb_data_e2; 9520 struct hc_status_block_data_e1x sb_data_e1x; 9521 struct hc_status_block_sm *hc_sm_p; 9522 uint32_t *sb_data_p; 9523 int igu_seg_id; 9524 int data_size; 9525 9526 if (CHIP_INT_MODE_IS_BC(sc)) { 9527 igu_seg_id = HC_SEG_ACCESS_NORM; 9528 } else { 9529 igu_seg_id = IGU_SEG_ACCESS_NORM; 9530 } 9531 9532 bxe_zero_fp_sb(sc, fw_sb_id); 9533 9534 if (!CHIP_IS_E1x(sc)) { 9535 memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2)); 9536 sb_data_e2.common.state = SB_ENABLED; 9537 sb_data_e2.common.p_func.pf_id = SC_FUNC(sc); 9538 sb_data_e2.common.p_func.vf_id = vfid; 9539 sb_data_e2.common.p_func.vf_valid = vf_valid; 9540 sb_data_e2.common.p_func.vnic_id = SC_VN(sc); 9541 sb_data_e2.common.same_igu_sb_1b = TRUE; 9542 sb_data_e2.common.host_sb_addr.hi = U64_HI(busaddr); 9543 sb_data_e2.common.host_sb_addr.lo = U64_LO(busaddr); 9544 hc_sm_p = sb_data_e2.common.state_machine; 9545 sb_data_p = (uint32_t *)&sb_data_e2; 9546 data_size = (sizeof(struct hc_status_block_data_e2) / 9547 sizeof(uint32_t)); 9548 bxe_map_sb_state_machines(sb_data_e2.index_data); 9549 } else { 9550 memset(&sb_data_e1x, 0, sizeof(struct hc_status_block_data_e1x)); 9551 sb_data_e1x.common.state = SB_ENABLED; 9552 sb_data_e1x.common.p_func.pf_id = SC_FUNC(sc); 9553 sb_data_e1x.common.p_func.vf_id = 0xff; 9554 sb_data_e1x.common.p_func.vf_valid = FALSE; 9555 sb_data_e1x.common.p_func.vnic_id = SC_VN(sc); 9556 sb_data_e1x.common.same_igu_sb_1b = TRUE; 9557 sb_data_e1x.common.host_sb_addr.hi = U64_HI(busaddr); 9558 sb_data_e1x.common.host_sb_addr.lo = U64_LO(busaddr); 9559 hc_sm_p = sb_data_e1x.common.state_machine; 9560 sb_data_p = (uint32_t *)&sb_data_e1x; 9561 data_size = (sizeof(struct hc_status_block_data_e1x) / 9562 sizeof(uint32_t)); 9563 bxe_map_sb_state_machines(sb_data_e1x.index_data); 9564 } 9565 9566 bxe_setup_ndsb_state_machine(&hc_sm_p[SM_RX_ID], igu_sb_id, igu_seg_id); 9567 bxe_setup_ndsb_state_machine(&hc_sm_p[SM_TX_ID], igu_sb_id, igu_seg_id); 9568 9569 BLOGD(sc, DBG_LOAD, "Init FW SB %d\n", fw_sb_id); 9570 9571 /* write indices to HW - PCI guarantees endianity of regpairs */ 9572 bxe_wr_fp_sb_data(sc, fw_sb_id, sb_data_p, data_size); 9573 } 9574 9575 static inline uint8_t 9576 bxe_fp_qzone_id(struct bxe_fastpath *fp) 9577 { 9578 if (CHIP_IS_E1x(fp->sc)) { 9579 return (fp->cl_id + SC_PORT(fp->sc) * ETH_MAX_RX_CLIENTS_E1H); 9580 } else { 9581 return (fp->cl_id); 9582 } 9583 } 9584 9585 static inline uint32_t 9586 bxe_rx_ustorm_prods_offset(struct bxe_softc *sc, 9587 struct bxe_fastpath *fp) 9588 { 9589 uint32_t offset = BAR_USTRORM_INTMEM; 9590 9591 if (!CHIP_IS_E1x(sc)) { 9592 offset += USTORM_RX_PRODS_E2_OFFSET(fp->cl_qzone_id); 9593 } else { 9594 offset += USTORM_RX_PRODS_E1X_OFFSET(SC_PORT(sc), fp->cl_id); 9595 } 9596 9597 return (offset); 9598 } 9599 9600 static void 9601 bxe_init_eth_fp(struct bxe_softc *sc, 9602 int idx) 9603 { 9604 struct bxe_fastpath *fp = &sc->fp[idx]; 9605 uint32_t cids[ECORE_MULTI_TX_COS] = { 0 }; 9606 unsigned long q_type = 0; 9607 int cos; 9608 9609 fp->sc = sc; 9610 fp->index = idx; 9611 9612 fp->igu_sb_id = (sc->igu_base_sb + idx + CNIC_SUPPORT(sc)); 9613 fp->fw_sb_id = (sc->base_fw_ndsb + idx + CNIC_SUPPORT(sc)); 9614 9615 fp->cl_id = (CHIP_IS_E1x(sc)) ? 9616 (SC_L_ID(sc) + idx) : 9617 /* want client ID same as IGU SB ID for non-E1 */ 9618 fp->igu_sb_id; 9619 fp->cl_qzone_id = bxe_fp_qzone_id(fp); 9620 9621 /* setup sb indices */ 9622 if (!CHIP_IS_E1x(sc)) { 9623 fp->sb_index_values = fp->status_block.e2_sb->sb.index_values; 9624 fp->sb_running_index = fp->status_block.e2_sb->sb.running_index; 9625 } else { 9626 fp->sb_index_values = fp->status_block.e1x_sb->sb.index_values; 9627 fp->sb_running_index = fp->status_block.e1x_sb->sb.running_index; 9628 } 9629 9630 /* init shortcut */ 9631 fp->ustorm_rx_prods_offset = bxe_rx_ustorm_prods_offset(sc, fp); 9632 9633 fp->rx_cq_cons_sb = &fp->sb_index_values[HC_INDEX_ETH_RX_CQ_CONS]; 9634 9635 /* 9636 * XXX If multiple CoS is ever supported then each fastpath structure 9637 * will need to maintain tx producer/consumer/dma/etc values *per* CoS. 9638 */ 9639 for (cos = 0; cos < sc->max_cos; cos++) { 9640 cids[cos] = idx; 9641 } 9642 fp->tx_cons_sb = &fp->sb_index_values[HC_INDEX_ETH_TX_CQ_CONS_COS0]; 9643 9644 /* nothing more for a VF to do */ 9645 if (IS_VF(sc)) { 9646 return; 9647 } 9648 9649 bxe_init_sb(sc, fp->sb_dma.paddr, BXE_VF_ID_INVALID, FALSE, 9650 fp->fw_sb_id, fp->igu_sb_id); 9651 9652 bxe_update_fp_sb_idx(fp); 9653 9654 /* Configure Queue State object */ 9655 bit_set(&q_type, ECORE_Q_TYPE_HAS_RX); 9656 bit_set(&q_type, ECORE_Q_TYPE_HAS_TX); 9657 9658 ecore_init_queue_obj(sc, 9659 &sc->sp_objs[idx].q_obj, 9660 fp->cl_id, 9661 cids, 9662 sc->max_cos, 9663 SC_FUNC(sc), 9664 BXE_SP(sc, q_rdata), 9665 BXE_SP_MAPPING(sc, q_rdata), 9666 q_type); 9667 9668 /* configure classification DBs */ 9669 ecore_init_mac_obj(sc, 9670 &sc->sp_objs[idx].mac_obj, 9671 fp->cl_id, 9672 idx, 9673 SC_FUNC(sc), 9674 BXE_SP(sc, mac_rdata), 9675 BXE_SP_MAPPING(sc, mac_rdata), 9676 ECORE_FILTER_MAC_PENDING, 9677 &sc->sp_state, 9678 ECORE_OBJ_TYPE_RX_TX, 9679 &sc->macs_pool); 9680 9681 BLOGD(sc, DBG_LOAD, "fp[%d]: sb=%p cl_id=%d fw_sb=%d igu_sb=%d\n", 9682 idx, fp->status_block.e2_sb, fp->cl_id, fp->fw_sb_id, fp->igu_sb_id); 9683 } 9684 9685 static inline void 9686 bxe_update_rx_prod(struct bxe_softc *sc, 9687 struct bxe_fastpath *fp, 9688 uint16_t rx_bd_prod, 9689 uint16_t rx_cq_prod, 9690 uint16_t rx_sge_prod) 9691 { 9692 struct ustorm_eth_rx_producers rx_prods = { 0 }; 9693 uint32_t i; 9694 9695 /* update producers */ 9696 rx_prods.bd_prod = rx_bd_prod; 9697 rx_prods.cqe_prod = rx_cq_prod; 9698 rx_prods.sge_prod = rx_sge_prod; 9699 9700 /* 9701 * Make sure that the BD and SGE data is updated before updating the 9702 * producers since FW might read the BD/SGE right after the producer 9703 * is updated. 9704 * This is only applicable for weak-ordered memory model archs such 9705 * as IA-64. The following barrier is also mandatory since FW will 9706 * assumes BDs must have buffers. 9707 */ 9708 wmb(); 9709 9710 for (i = 0; i < (sizeof(rx_prods) / 4); i++) { 9711 REG_WR(sc, 9712 (fp->ustorm_rx_prods_offset + (i * 4)), 9713 ((uint32_t *)&rx_prods)[i]); 9714 } 9715 9716 wmb(); /* keep prod updates ordered */ 9717 9718 BLOGD(sc, DBG_RX, 9719 "RX fp[%d]: wrote prods bd_prod=%u cqe_prod=%u sge_prod=%u\n", 9720 fp->index, rx_bd_prod, rx_cq_prod, rx_sge_prod); 9721 } 9722 9723 static void 9724 bxe_init_rx_rings(struct bxe_softc *sc) 9725 { 9726 struct bxe_fastpath *fp; 9727 int i; 9728 9729 for (i = 0; i < sc->num_queues; i++) { 9730 fp = &sc->fp[i]; 9731 9732 fp->rx_bd_cons = 0; 9733 9734 /* 9735 * Activate the BD ring... 9736 * Warning, this will generate an interrupt (to the TSTORM) 9737 * so this can only be done after the chip is initialized 9738 */ 9739 bxe_update_rx_prod(sc, fp, 9740 fp->rx_bd_prod, 9741 fp->rx_cq_prod, 9742 fp->rx_sge_prod); 9743 9744 if (i != 0) { 9745 continue; 9746 } 9747 9748 if (CHIP_IS_E1(sc)) { 9749 REG_WR(sc, 9750 (BAR_USTRORM_INTMEM + 9751 USTORM_MEM_WORKAROUND_ADDRESS_OFFSET(SC_FUNC(sc))), 9752 U64_LO(fp->rcq_dma.paddr)); 9753 REG_WR(sc, 9754 (BAR_USTRORM_INTMEM + 9755 USTORM_MEM_WORKAROUND_ADDRESS_OFFSET(SC_FUNC(sc)) + 4), 9756 U64_HI(fp->rcq_dma.paddr)); 9757 } 9758 } 9759 } 9760 9761 static void 9762 bxe_init_tx_ring_one(struct bxe_fastpath *fp) 9763 { 9764 SET_FLAG(fp->tx_db.data.header.data, DOORBELL_HDR_T_DB_TYPE, 1); 9765 fp->tx_db.data.zero_fill1 = 0; 9766 fp->tx_db.data.prod = 0; 9767 9768 fp->tx_pkt_prod = 0; 9769 fp->tx_pkt_cons = 0; 9770 fp->tx_bd_prod = 0; 9771 fp->tx_bd_cons = 0; 9772 fp->eth_q_stats.tx_pkts = 0; 9773 } 9774 9775 static inline void 9776 bxe_init_tx_rings(struct bxe_softc *sc) 9777 { 9778 int i; 9779 9780 for (i = 0; i < sc->num_queues; i++) { 9781 bxe_init_tx_ring_one(&sc->fp[i]); 9782 } 9783 } 9784 9785 static void 9786 bxe_init_def_sb(struct bxe_softc *sc) 9787 { 9788 struct host_sp_status_block *def_sb = sc->def_sb; 9789 bus_addr_t mapping = sc->def_sb_dma.paddr; 9790 int igu_sp_sb_index; 9791 int igu_seg_id; 9792 int port = SC_PORT(sc); 9793 int func = SC_FUNC(sc); 9794 int reg_offset, reg_offset_en5; 9795 uint64_t section; 9796 int index, sindex; 9797 struct hc_sp_status_block_data sp_sb_data; 9798 9799 memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data)); 9800 9801 if (CHIP_INT_MODE_IS_BC(sc)) { 9802 igu_sp_sb_index = DEF_SB_IGU_ID; 9803 igu_seg_id = HC_SEG_ACCESS_DEF; 9804 } else { 9805 igu_sp_sb_index = sc->igu_dsb_id; 9806 igu_seg_id = IGU_SEG_ACCESS_DEF; 9807 } 9808 9809 /* attentions */ 9810 section = ((uint64_t)mapping + 9811 offsetof(struct host_sp_status_block, atten_status_block)); 9812 def_sb->atten_status_block.status_block_id = igu_sp_sb_index; 9813 sc->attn_state = 0; 9814 9815 reg_offset = (port) ? 9816 MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 : 9817 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0; 9818 reg_offset_en5 = (port) ? 9819 MISC_REG_AEU_ENABLE5_FUNC_1_OUT_0 : 9820 MISC_REG_AEU_ENABLE5_FUNC_0_OUT_0; 9821 9822 for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) { 9823 /* take care of sig[0]..sig[4] */ 9824 for (sindex = 0; sindex < 4; sindex++) { 9825 sc->attn_group[index].sig[sindex] = 9826 REG_RD(sc, (reg_offset + (sindex * 0x4) + (0x10 * index))); 9827 } 9828 9829 if (!CHIP_IS_E1x(sc)) { 9830 /* 9831 * enable5 is separate from the rest of the registers, 9832 * and the address skip is 4 and not 16 between the 9833 * different groups 9834 */ 9835 sc->attn_group[index].sig[4] = 9836 REG_RD(sc, (reg_offset_en5 + (0x4 * index))); 9837 } else { 9838 sc->attn_group[index].sig[4] = 0; 9839 } 9840 } 9841 9842 if (sc->devinfo.int_block == INT_BLOCK_HC) { 9843 reg_offset = (port) ? 9844 HC_REG_ATTN_MSG1_ADDR_L : 9845 HC_REG_ATTN_MSG0_ADDR_L; 9846 REG_WR(sc, reg_offset, U64_LO(section)); 9847 REG_WR(sc, (reg_offset + 4), U64_HI(section)); 9848 } else if (!CHIP_IS_E1x(sc)) { 9849 REG_WR(sc, IGU_REG_ATTN_MSG_ADDR_L, U64_LO(section)); 9850 REG_WR(sc, IGU_REG_ATTN_MSG_ADDR_H, U64_HI(section)); 9851 } 9852 9853 section = ((uint64_t)mapping + 9854 offsetof(struct host_sp_status_block, sp_sb)); 9855 9856 bxe_zero_sp_sb(sc); 9857 9858 /* PCI guarantees endianity of regpair */ 9859 sp_sb_data.state = SB_ENABLED; 9860 sp_sb_data.host_sb_addr.lo = U64_LO(section); 9861 sp_sb_data.host_sb_addr.hi = U64_HI(section); 9862 sp_sb_data.igu_sb_id = igu_sp_sb_index; 9863 sp_sb_data.igu_seg_id = igu_seg_id; 9864 sp_sb_data.p_func.pf_id = func; 9865 sp_sb_data.p_func.vnic_id = SC_VN(sc); 9866 sp_sb_data.p_func.vf_id = 0xff; 9867 9868 bxe_wr_sp_sb_data(sc, &sp_sb_data); 9869 9870 bxe_ack_sb(sc, sc->igu_dsb_id, USTORM_ID, 0, IGU_INT_ENABLE, 0); 9871 } 9872 9873 static void 9874 bxe_init_sp_ring(struct bxe_softc *sc) 9875 { 9876 atomic_store_rel_long(&sc->cq_spq_left, MAX_SPQ_PENDING); 9877 sc->spq_prod_idx = 0; 9878 sc->dsb_sp_prod = &sc->def_sb->sp_sb.index_values[HC_SP_INDEX_ETH_DEF_CONS]; 9879 sc->spq_prod_bd = sc->spq; 9880 sc->spq_last_bd = (sc->spq_prod_bd + MAX_SP_DESC_CNT); 9881 } 9882 9883 static void 9884 bxe_init_eq_ring(struct bxe_softc *sc) 9885 { 9886 union event_ring_elem *elem; 9887 int i; 9888 9889 for (i = 1; i <= NUM_EQ_PAGES; i++) { 9890 elem = &sc->eq[EQ_DESC_CNT_PAGE * i - 1]; 9891 9892 elem->next_page.addr.hi = htole32(U64_HI(sc->eq_dma.paddr + 9893 BCM_PAGE_SIZE * 9894 (i % NUM_EQ_PAGES))); 9895 elem->next_page.addr.lo = htole32(U64_LO(sc->eq_dma.paddr + 9896 BCM_PAGE_SIZE * 9897 (i % NUM_EQ_PAGES))); 9898 } 9899 9900 sc->eq_cons = 0; 9901 sc->eq_prod = NUM_EQ_DESC; 9902 sc->eq_cons_sb = &sc->def_sb->sp_sb.index_values[HC_SP_INDEX_EQ_CONS]; 9903 9904 atomic_store_rel_long(&sc->eq_spq_left, 9905 (min((MAX_SP_DESC_CNT - MAX_SPQ_PENDING), 9906 NUM_EQ_DESC) - 1)); 9907 } 9908 9909 static void 9910 bxe_init_internal_common(struct bxe_softc *sc) 9911 { 9912 int i; 9913 9914 if (IS_MF_SI(sc)) { 9915 /* 9916 * In switch independent mode, the TSTORM needs to accept 9917 * packets that failed classification, since approximate match 9918 * mac addresses aren't written to NIG LLH. 9919 */ 9920 REG_WR8(sc, 9921 (BAR_TSTRORM_INTMEM + TSTORM_ACCEPT_CLASSIFY_FAILED_OFFSET), 9922 2); 9923 } else if (!CHIP_IS_E1(sc)) { /* 57710 doesn't support MF */ 9924 REG_WR8(sc, 9925 (BAR_TSTRORM_INTMEM + TSTORM_ACCEPT_CLASSIFY_FAILED_OFFSET), 9926 0); 9927 } 9928 9929 /* 9930 * Zero this manually as its initialization is currently missing 9931 * in the initTool. 9932 */ 9933 for (i = 0; i < (USTORM_AGG_DATA_SIZE >> 2); i++) { 9934 REG_WR(sc, 9935 (BAR_USTRORM_INTMEM + USTORM_AGG_DATA_OFFSET + (i * 4)), 9936 0); 9937 } 9938 9939 if (!CHIP_IS_E1x(sc)) { 9940 REG_WR8(sc, (BAR_CSTRORM_INTMEM + CSTORM_IGU_MODE_OFFSET), 9941 CHIP_INT_MODE_IS_BC(sc) ? HC_IGU_BC_MODE : HC_IGU_NBC_MODE); 9942 } 9943 } 9944 9945 static void 9946 bxe_init_internal(struct bxe_softc *sc, 9947 uint32_t load_code) 9948 { 9949 switch (load_code) { 9950 case FW_MSG_CODE_DRV_LOAD_COMMON: 9951 case FW_MSG_CODE_DRV_LOAD_COMMON_CHIP: 9952 bxe_init_internal_common(sc); 9953 /* no break */ 9954 9955 case FW_MSG_CODE_DRV_LOAD_PORT: 9956 /* nothing to do */ 9957 /* no break */ 9958 9959 case FW_MSG_CODE_DRV_LOAD_FUNCTION: 9960 /* internal memory per function is initialized inside bxe_pf_init */ 9961 break; 9962 9963 default: 9964 BLOGE(sc, "Unknown load_code (0x%x) from MCP\n", load_code); 9965 break; 9966 } 9967 } 9968 9969 static void 9970 storm_memset_func_cfg(struct bxe_softc *sc, 9971 struct tstorm_eth_function_common_config *tcfg, 9972 uint16_t abs_fid) 9973 { 9974 uint32_t addr; 9975 size_t size; 9976 9977 addr = (BAR_TSTRORM_INTMEM + 9978 TSTORM_FUNCTION_COMMON_CONFIG_OFFSET(abs_fid)); 9979 size = sizeof(struct tstorm_eth_function_common_config); 9980 ecore_storm_memset_struct(sc, addr, size, (uint32_t *)tcfg); 9981 } 9982 9983 static void 9984 bxe_func_init(struct bxe_softc *sc, 9985 struct bxe_func_init_params *p) 9986 { 9987 struct tstorm_eth_function_common_config tcfg = { 0 }; 9988 9989 if (CHIP_IS_E1x(sc)) { 9990 storm_memset_func_cfg(sc, &tcfg, p->func_id); 9991 } 9992 9993 /* Enable the function in the FW */ 9994 storm_memset_vf_to_pf(sc, p->func_id, p->pf_id); 9995 storm_memset_func_en(sc, p->func_id, 1); 9996 9997 /* spq */ 9998 if (p->func_flgs & FUNC_FLG_SPQ) { 9999 storm_memset_spq_addr(sc, p->spq_map, p->func_id); 10000 REG_WR(sc, 10001 (XSEM_REG_FAST_MEMORY + XSTORM_SPQ_PROD_OFFSET(p->func_id)), 10002 p->spq_prod); 10003 } 10004 } 10005 10006 /* 10007 * Calculates the sum of vn_min_rates. 10008 * It's needed for further normalizing of the min_rates. 10009 * Returns: 10010 * sum of vn_min_rates. 10011 * or 10012 * 0 - if all the min_rates are 0. 10013 * In the later case fainess algorithm should be deactivated. 10014 * If all min rates are not zero then those that are zeroes will be set to 1. 10015 */ 10016 static void 10017 bxe_calc_vn_min(struct bxe_softc *sc, 10018 struct cmng_init_input *input) 10019 { 10020 uint32_t vn_cfg; 10021 uint32_t vn_min_rate; 10022 int all_zero = 1; 10023 int vn; 10024 10025 for (vn = VN_0; vn < SC_MAX_VN_NUM(sc); vn++) { 10026 vn_cfg = sc->devinfo.mf_info.mf_config[vn]; 10027 vn_min_rate = (((vn_cfg & FUNC_MF_CFG_MIN_BW_MASK) >> 10028 FUNC_MF_CFG_MIN_BW_SHIFT) * 100); 10029 10030 if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE) { 10031 /* skip hidden VNs */ 10032 vn_min_rate = 0; 10033 } else if (!vn_min_rate) { 10034 /* If min rate is zero - set it to 100 */ 10035 vn_min_rate = DEF_MIN_RATE; 10036 } else { 10037 all_zero = 0; 10038 } 10039 10040 input->vnic_min_rate[vn] = vn_min_rate; 10041 } 10042 10043 /* if ETS or all min rates are zeros - disable fairness */ 10044 if (BXE_IS_ETS_ENABLED(sc)) { 10045 input->flags.cmng_enables &= ~CMNG_FLAGS_PER_PORT_FAIRNESS_VN; 10046 BLOGD(sc, DBG_LOAD, "Fairness disabled (ETS)\n"); 10047 } else if (all_zero) { 10048 input->flags.cmng_enables &= ~CMNG_FLAGS_PER_PORT_FAIRNESS_VN; 10049 BLOGD(sc, DBG_LOAD, 10050 "Fariness disabled (all MIN values are zeroes)\n"); 10051 } else { 10052 input->flags.cmng_enables |= CMNG_FLAGS_PER_PORT_FAIRNESS_VN; 10053 } 10054 } 10055 10056 static inline uint16_t 10057 bxe_extract_max_cfg(struct bxe_softc *sc, 10058 uint32_t mf_cfg) 10059 { 10060 uint16_t max_cfg = ((mf_cfg & FUNC_MF_CFG_MAX_BW_MASK) >> 10061 FUNC_MF_CFG_MAX_BW_SHIFT); 10062 10063 if (!max_cfg) { 10064 BLOGD(sc, DBG_LOAD, "Max BW configured to 0 - using 100 instead\n"); 10065 max_cfg = 100; 10066 } 10067 10068 return (max_cfg); 10069 } 10070 10071 static void 10072 bxe_calc_vn_max(struct bxe_softc *sc, 10073 int vn, 10074 struct cmng_init_input *input) 10075 { 10076 uint16_t vn_max_rate; 10077 uint32_t vn_cfg = sc->devinfo.mf_info.mf_config[vn]; 10078 uint32_t max_cfg; 10079 10080 if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE) { 10081 vn_max_rate = 0; 10082 } else { 10083 max_cfg = bxe_extract_max_cfg(sc, vn_cfg); 10084 10085 if (IS_MF_SI(sc)) { 10086 /* max_cfg in percents of linkspeed */ 10087 vn_max_rate = ((sc->link_vars.line_speed * max_cfg) / 100); 10088 } else { /* SD modes */ 10089 /* max_cfg is absolute in 100Mb units */ 10090 vn_max_rate = (max_cfg * 100); 10091 } 10092 } 10093 10094 BLOGD(sc, DBG_LOAD, "vn %d: vn_max_rate %d\n", vn, vn_max_rate); 10095 10096 input->vnic_max_rate[vn] = vn_max_rate; 10097 } 10098 10099 static void 10100 bxe_cmng_fns_init(struct bxe_softc *sc, 10101 uint8_t read_cfg, 10102 uint8_t cmng_type) 10103 { 10104 struct cmng_init_input input; 10105 int vn; 10106 10107 memset(&input, 0, sizeof(struct cmng_init_input)); 10108 10109 input.port_rate = sc->link_vars.line_speed; 10110 10111 if (cmng_type == CMNG_FNS_MINMAX) { 10112 /* read mf conf from shmem */ 10113 if (read_cfg) { 10114 bxe_read_mf_cfg(sc); 10115 } 10116 10117 /* get VN min rate and enable fairness if not 0 */ 10118 bxe_calc_vn_min(sc, &input); 10119 10120 /* get VN max rate */ 10121 if (sc->port.pmf) { 10122 for (vn = VN_0; vn < SC_MAX_VN_NUM(sc); vn++) { 10123 bxe_calc_vn_max(sc, vn, &input); 10124 } 10125 } 10126 10127 /* always enable rate shaping and fairness */ 10128 input.flags.cmng_enables |= CMNG_FLAGS_PER_PORT_RATE_SHAPING_VN; 10129 10130 ecore_init_cmng(&input, &sc->cmng); 10131 return; 10132 } 10133 10134 /* rate shaping and fairness are disabled */ 10135 BLOGD(sc, DBG_LOAD, "rate shaping and fairness have been disabled\n"); 10136 } 10137 10138 static int 10139 bxe_get_cmng_fns_mode(struct bxe_softc *sc) 10140 { 10141 if (CHIP_REV_IS_SLOW(sc)) { 10142 return (CMNG_FNS_NONE); 10143 } 10144 10145 if (IS_MF(sc)) { 10146 return (CMNG_FNS_MINMAX); 10147 } 10148 10149 return (CMNG_FNS_NONE); 10150 } 10151 10152 static void 10153 storm_memset_cmng(struct bxe_softc *sc, 10154 struct cmng_init *cmng, 10155 uint8_t port) 10156 { 10157 int vn; 10158 int func; 10159 uint32_t addr; 10160 size_t size; 10161 10162 addr = (BAR_XSTRORM_INTMEM + 10163 XSTORM_CMNG_PER_PORT_VARS_OFFSET(port)); 10164 size = sizeof(struct cmng_struct_per_port); 10165 ecore_storm_memset_struct(sc, addr, size, (uint32_t *)&cmng->port); 10166 10167 for (vn = VN_0; vn < SC_MAX_VN_NUM(sc); vn++) { 10168 func = func_by_vn(sc, vn); 10169 10170 addr = (BAR_XSTRORM_INTMEM + 10171 XSTORM_RATE_SHAPING_PER_VN_VARS_OFFSET(func)); 10172 size = sizeof(struct rate_shaping_vars_per_vn); 10173 ecore_storm_memset_struct(sc, addr, size, 10174 (uint32_t *)&cmng->vnic.vnic_max_rate[vn]); 10175 10176 addr = (BAR_XSTRORM_INTMEM + 10177 XSTORM_FAIRNESS_PER_VN_VARS_OFFSET(func)); 10178 size = sizeof(struct fairness_vars_per_vn); 10179 ecore_storm_memset_struct(sc, addr, size, 10180 (uint32_t *)&cmng->vnic.vnic_min_rate[vn]); 10181 } 10182 } 10183 10184 static void 10185 bxe_pf_init(struct bxe_softc *sc) 10186 { 10187 struct bxe_func_init_params func_init = { 0 }; 10188 struct event_ring_data eq_data = { { 0 } }; 10189 uint16_t flags; 10190 10191 if (!CHIP_IS_E1x(sc)) { 10192 /* reset IGU PF statistics: MSIX + ATTN */ 10193 /* PF */ 10194 REG_WR(sc, 10195 (IGU_REG_STATISTIC_NUM_MESSAGE_SENT + 10196 (BXE_IGU_STAS_MSG_VF_CNT * 4) + 10197 ((CHIP_IS_MODE_4_PORT(sc) ? SC_FUNC(sc) : SC_VN(sc)) * 4)), 10198 0); 10199 /* ATTN */ 10200 REG_WR(sc, 10201 (IGU_REG_STATISTIC_NUM_MESSAGE_SENT + 10202 (BXE_IGU_STAS_MSG_VF_CNT * 4) + 10203 (BXE_IGU_STAS_MSG_PF_CNT * 4) + 10204 ((CHIP_IS_MODE_4_PORT(sc) ? SC_FUNC(sc) : SC_VN(sc)) * 4)), 10205 0); 10206 } 10207 10208 /* function setup flags */ 10209 flags = (FUNC_FLG_STATS | FUNC_FLG_LEADING | FUNC_FLG_SPQ); 10210 10211 /* 10212 * This flag is relevant for E1x only. 10213 * E2 doesn't have a TPA configuration in a function level. 10214 */ 10215 flags |= (if_getcapenable(sc->ifp) & IFCAP_LRO) ? FUNC_FLG_TPA : 0; 10216 10217 func_init.func_flgs = flags; 10218 func_init.pf_id = SC_FUNC(sc); 10219 func_init.func_id = SC_FUNC(sc); 10220 func_init.spq_map = sc->spq_dma.paddr; 10221 func_init.spq_prod = sc->spq_prod_idx; 10222 10223 bxe_func_init(sc, &func_init); 10224 10225 memset(&sc->cmng, 0, sizeof(struct cmng_struct_per_port)); 10226 10227 /* 10228 * Congestion management values depend on the link rate. 10229 * There is no active link so initial link rate is set to 10Gbps. 10230 * When the link comes up the congestion management values are 10231 * re-calculated according to the actual link rate. 10232 */ 10233 sc->link_vars.line_speed = SPEED_10000; 10234 bxe_cmng_fns_init(sc, TRUE, bxe_get_cmng_fns_mode(sc)); 10235 10236 /* Only the PMF sets the HW */ 10237 if (sc->port.pmf) { 10238 storm_memset_cmng(sc, &sc->cmng, SC_PORT(sc)); 10239 } 10240 10241 /* init Event Queue - PCI bus guarantees correct endainity */ 10242 eq_data.base_addr.hi = U64_HI(sc->eq_dma.paddr); 10243 eq_data.base_addr.lo = U64_LO(sc->eq_dma.paddr); 10244 eq_data.producer = sc->eq_prod; 10245 eq_data.index_id = HC_SP_INDEX_EQ_CONS; 10246 eq_data.sb_id = DEF_SB_ID; 10247 storm_memset_eq_data(sc, &eq_data, SC_FUNC(sc)); 10248 } 10249 10250 static void 10251 bxe_hc_int_enable(struct bxe_softc *sc) 10252 { 10253 int port = SC_PORT(sc); 10254 uint32_t addr = (port) ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0; 10255 uint32_t val = REG_RD(sc, addr); 10256 uint8_t msix = (sc->interrupt_mode == INTR_MODE_MSIX) ? TRUE : FALSE; 10257 uint8_t single_msix = ((sc->interrupt_mode == INTR_MODE_MSIX) && 10258 (sc->intr_count == 1)) ? TRUE : FALSE; 10259 uint8_t msi = (sc->interrupt_mode == INTR_MODE_MSI) ? TRUE : FALSE; 10260 10261 if (msix) { 10262 val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 | 10263 HC_CONFIG_0_REG_INT_LINE_EN_0); 10264 val |= (HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 | 10265 HC_CONFIG_0_REG_ATTN_BIT_EN_0); 10266 if (single_msix) { 10267 val |= HC_CONFIG_0_REG_SINGLE_ISR_EN_0; 10268 } 10269 } else if (msi) { 10270 val &= ~HC_CONFIG_0_REG_INT_LINE_EN_0; 10271 val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 | 10272 HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 | 10273 HC_CONFIG_0_REG_ATTN_BIT_EN_0); 10274 } else { 10275 val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 | 10276 HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 | 10277 HC_CONFIG_0_REG_INT_LINE_EN_0 | 10278 HC_CONFIG_0_REG_ATTN_BIT_EN_0); 10279 10280 if (!CHIP_IS_E1(sc)) { 10281 BLOGD(sc, DBG_INTR, "write %x to HC %d (addr 0x%x)\n", 10282 val, port, addr); 10283 10284 REG_WR(sc, addr, val); 10285 10286 val &= ~HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0; 10287 } 10288 } 10289 10290 if (CHIP_IS_E1(sc)) { 10291 REG_WR(sc, (HC_REG_INT_MASK + port*4), 0x1FFFF); 10292 } 10293 10294 BLOGD(sc, DBG_INTR, "write %x to HC %d (addr 0x%x) mode %s\n", 10295 val, port, addr, ((msix) ? "MSI-X" : ((msi) ? "MSI" : "INTx"))); 10296 10297 REG_WR(sc, addr, val); 10298 10299 /* ensure that HC_CONFIG is written before leading/trailing edge config */ 10300 mb(); 10301 10302 if (!CHIP_IS_E1(sc)) { 10303 /* init leading/trailing edge */ 10304 if (IS_MF(sc)) { 10305 val = (0xee0f | (1 << (SC_VN(sc) + 4))); 10306 if (sc->port.pmf) { 10307 /* enable nig and gpio3 attention */ 10308 val |= 0x1100; 10309 } 10310 } else { 10311 val = 0xffff; 10312 } 10313 10314 REG_WR(sc, (HC_REG_TRAILING_EDGE_0 + port*8), val); 10315 REG_WR(sc, (HC_REG_LEADING_EDGE_0 + port*8), val); 10316 } 10317 10318 /* make sure that interrupts are indeed enabled from here on */ 10319 mb(); 10320 } 10321 10322 static void 10323 bxe_igu_int_enable(struct bxe_softc *sc) 10324 { 10325 uint32_t val; 10326 uint8_t msix = (sc->interrupt_mode == INTR_MODE_MSIX) ? TRUE : FALSE; 10327 uint8_t single_msix = ((sc->interrupt_mode == INTR_MODE_MSIX) && 10328 (sc->intr_count == 1)) ? TRUE : FALSE; 10329 uint8_t msi = (sc->interrupt_mode == INTR_MODE_MSI) ? TRUE : FALSE; 10330 10331 val = REG_RD(sc, IGU_REG_PF_CONFIGURATION); 10332 10333 if (msix) { 10334 val &= ~(IGU_PF_CONF_INT_LINE_EN | 10335 IGU_PF_CONF_SINGLE_ISR_EN); 10336 val |= (IGU_PF_CONF_MSI_MSIX_EN | 10337 IGU_PF_CONF_ATTN_BIT_EN); 10338 if (single_msix) { 10339 val |= IGU_PF_CONF_SINGLE_ISR_EN; 10340 } 10341 } else if (msi) { 10342 val &= ~IGU_PF_CONF_INT_LINE_EN; 10343 val |= (IGU_PF_CONF_MSI_MSIX_EN | 10344 IGU_PF_CONF_ATTN_BIT_EN | 10345 IGU_PF_CONF_SINGLE_ISR_EN); 10346 } else { 10347 val &= ~IGU_PF_CONF_MSI_MSIX_EN; 10348 val |= (IGU_PF_CONF_INT_LINE_EN | 10349 IGU_PF_CONF_ATTN_BIT_EN | 10350 IGU_PF_CONF_SINGLE_ISR_EN); 10351 } 10352 10353 /* clean previous status - need to configure igu prior to ack*/ 10354 if ((!msix) || single_msix) { 10355 REG_WR(sc, IGU_REG_PF_CONFIGURATION, val); 10356 bxe_ack_int(sc); 10357 } 10358 10359 val |= IGU_PF_CONF_FUNC_EN; 10360 10361 BLOGD(sc, DBG_INTR, "write 0x%x to IGU mode %s\n", 10362 val, ((msix) ? "MSI-X" : ((msi) ? "MSI" : "INTx"))); 10363 10364 REG_WR(sc, IGU_REG_PF_CONFIGURATION, val); 10365 10366 mb(); 10367 10368 /* init leading/trailing edge */ 10369 if (IS_MF(sc)) { 10370 val = (0xee0f | (1 << (SC_VN(sc) + 4))); 10371 if (sc->port.pmf) { 10372 /* enable nig and gpio3 attention */ 10373 val |= 0x1100; 10374 } 10375 } else { 10376 val = 0xffff; 10377 } 10378 10379 REG_WR(sc, IGU_REG_TRAILING_EDGE_LATCH, val); 10380 REG_WR(sc, IGU_REG_LEADING_EDGE_LATCH, val); 10381 10382 /* make sure that interrupts are indeed enabled from here on */ 10383 mb(); 10384 } 10385 10386 static void 10387 bxe_int_enable(struct bxe_softc *sc) 10388 { 10389 if (sc->devinfo.int_block == INT_BLOCK_HC) { 10390 bxe_hc_int_enable(sc); 10391 } else { 10392 bxe_igu_int_enable(sc); 10393 } 10394 } 10395 10396 static void 10397 bxe_hc_int_disable(struct bxe_softc *sc) 10398 { 10399 int port = SC_PORT(sc); 10400 uint32_t addr = (port) ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0; 10401 uint32_t val = REG_RD(sc, addr); 10402 10403 /* 10404 * In E1 we must use only PCI configuration space to disable MSI/MSIX 10405 * capablility. It's forbidden to disable IGU_PF_CONF_MSI_MSIX_EN in HC 10406 * block 10407 */ 10408 if (CHIP_IS_E1(sc)) { 10409 /* 10410 * Since IGU_PF_CONF_MSI_MSIX_EN still always on use mask register 10411 * to prevent from HC sending interrupts after we exit the function 10412 */ 10413 REG_WR(sc, (HC_REG_INT_MASK + port*4), 0); 10414 10415 val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 | 10416 HC_CONFIG_0_REG_INT_LINE_EN_0 | 10417 HC_CONFIG_0_REG_ATTN_BIT_EN_0); 10418 } else { 10419 val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 | 10420 HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 | 10421 HC_CONFIG_0_REG_INT_LINE_EN_0 | 10422 HC_CONFIG_0_REG_ATTN_BIT_EN_0); 10423 } 10424 10425 BLOGD(sc, DBG_INTR, "write %x to HC %d (addr 0x%x)\n", val, port, addr); 10426 10427 /* flush all outstanding writes */ 10428 mb(); 10429 10430 REG_WR(sc, addr, val); 10431 if (REG_RD(sc, addr) != val) { 10432 BLOGE(sc, "proper val not read from HC IGU!\n"); 10433 } 10434 } 10435 10436 static void 10437 bxe_igu_int_disable(struct bxe_softc *sc) 10438 { 10439 uint32_t val = REG_RD(sc, IGU_REG_PF_CONFIGURATION); 10440 10441 val &= ~(IGU_PF_CONF_MSI_MSIX_EN | 10442 IGU_PF_CONF_INT_LINE_EN | 10443 IGU_PF_CONF_ATTN_BIT_EN); 10444 10445 BLOGD(sc, DBG_INTR, "write %x to IGU\n", val); 10446 10447 /* flush all outstanding writes */ 10448 mb(); 10449 10450 REG_WR(sc, IGU_REG_PF_CONFIGURATION, val); 10451 if (REG_RD(sc, IGU_REG_PF_CONFIGURATION) != val) { 10452 BLOGE(sc, "proper val not read from IGU!\n"); 10453 } 10454 } 10455 10456 static void 10457 bxe_int_disable(struct bxe_softc *sc) 10458 { 10459 if (sc->devinfo.int_block == INT_BLOCK_HC) { 10460 bxe_hc_int_disable(sc); 10461 } else { 10462 bxe_igu_int_disable(sc); 10463 } 10464 } 10465 10466 static void 10467 bxe_nic_init(struct bxe_softc *sc, 10468 int load_code) 10469 { 10470 int i; 10471 10472 for (i = 0; i < sc->num_queues; i++) { 10473 bxe_init_eth_fp(sc, i); 10474 } 10475 10476 rmb(); /* ensure status block indices were read */ 10477 10478 bxe_init_rx_rings(sc); 10479 bxe_init_tx_rings(sc); 10480 10481 if (IS_VF(sc)) { 10482 return; 10483 } 10484 10485 /* initialize MOD_ABS interrupts */ 10486 elink_init_mod_abs_int(sc, &sc->link_vars, 10487 sc->devinfo.chip_id, 10488 sc->devinfo.shmem_base, 10489 sc->devinfo.shmem2_base, 10490 SC_PORT(sc)); 10491 10492 bxe_init_def_sb(sc); 10493 bxe_update_dsb_idx(sc); 10494 bxe_init_sp_ring(sc); 10495 bxe_init_eq_ring(sc); 10496 bxe_init_internal(sc, load_code); 10497 bxe_pf_init(sc); 10498 bxe_stats_init(sc); 10499 10500 /* flush all before enabling interrupts */ 10501 mb(); 10502 10503 bxe_int_enable(sc); 10504 10505 /* check for SPIO5 */ 10506 bxe_attn_int_deasserted0(sc, 10507 REG_RD(sc, 10508 (MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + 10509 SC_PORT(sc)*4)) & 10510 AEU_INPUTS_ATTN_BITS_SPIO5); 10511 } 10512 10513 static inline void 10514 bxe_init_objs(struct bxe_softc *sc) 10515 { 10516 /* mcast rules must be added to tx if tx switching is enabled */ 10517 ecore_obj_type o_type = 10518 (sc->flags & BXE_TX_SWITCHING) ? ECORE_OBJ_TYPE_RX_TX : 10519 ECORE_OBJ_TYPE_RX; 10520 10521 /* RX_MODE controlling object */ 10522 ecore_init_rx_mode_obj(sc, &sc->rx_mode_obj); 10523 10524 /* multicast configuration controlling object */ 10525 ecore_init_mcast_obj(sc, 10526 &sc->mcast_obj, 10527 sc->fp[0].cl_id, 10528 sc->fp[0].index, 10529 SC_FUNC(sc), 10530 SC_FUNC(sc), 10531 BXE_SP(sc, mcast_rdata), 10532 BXE_SP_MAPPING(sc, mcast_rdata), 10533 ECORE_FILTER_MCAST_PENDING, 10534 &sc->sp_state, 10535 o_type); 10536 10537 /* Setup CAM credit pools */ 10538 ecore_init_mac_credit_pool(sc, 10539 &sc->macs_pool, 10540 SC_FUNC(sc), 10541 CHIP_IS_E1x(sc) ? VNICS_PER_PORT(sc) : 10542 VNICS_PER_PATH(sc)); 10543 10544 ecore_init_vlan_credit_pool(sc, 10545 &sc->vlans_pool, 10546 SC_ABS_FUNC(sc) >> 1, 10547 CHIP_IS_E1x(sc) ? VNICS_PER_PORT(sc) : 10548 VNICS_PER_PATH(sc)); 10549 10550 /* RSS configuration object */ 10551 ecore_init_rss_config_obj(sc, 10552 &sc->rss_conf_obj, 10553 sc->fp[0].cl_id, 10554 sc->fp[0].index, 10555 SC_FUNC(sc), 10556 SC_FUNC(sc), 10557 BXE_SP(sc, rss_rdata), 10558 BXE_SP_MAPPING(sc, rss_rdata), 10559 ECORE_FILTER_RSS_CONF_PENDING, 10560 &sc->sp_state, ECORE_OBJ_TYPE_RX); 10561 } 10562 10563 /* 10564 * Initialize the function. This must be called before sending CLIENT_SETUP 10565 * for the first client. 10566 */ 10567 static inline int 10568 bxe_func_start(struct bxe_softc *sc) 10569 { 10570 struct ecore_func_state_params func_params = { NULL }; 10571 struct ecore_func_start_params *start_params = &func_params.params.start; 10572 10573 /* Prepare parameters for function state transitions */ 10574 bit_set(&func_params.ramrod_flags, RAMROD_COMP_WAIT); 10575 10576 func_params.f_obj = &sc->func_obj; 10577 func_params.cmd = ECORE_F_CMD_START; 10578 10579 /* Function parameters */ 10580 start_params->mf_mode = sc->devinfo.mf_info.mf_mode; 10581 start_params->sd_vlan_tag = OVLAN(sc); 10582 10583 if (CHIP_IS_E2(sc) || CHIP_IS_E3(sc)) { 10584 start_params->network_cos_mode = STATIC_COS; 10585 } else { /* CHIP_IS_E1X */ 10586 start_params->network_cos_mode = FW_WRR; 10587 } 10588 10589 //start_params->gre_tunnel_mode = 0; 10590 //start_params->gre_tunnel_rss = 0; 10591 10592 return (ecore_func_state_change(sc, &func_params)); 10593 } 10594 10595 static int 10596 bxe_set_power_state(struct bxe_softc *sc, 10597 uint8_t state) 10598 { 10599 uint16_t pmcsr; 10600 10601 /* If there is no power capability, silently succeed */ 10602 if (!(sc->devinfo.pcie_cap_flags & BXE_PM_CAPABLE_FLAG)) { 10603 BLOGW(sc, "No power capability\n"); 10604 return (0); 10605 } 10606 10607 pmcsr = pci_read_config(sc->dev, 10608 (sc->devinfo.pcie_pm_cap_reg + PCIR_POWER_STATUS), 10609 2); 10610 10611 switch (state) { 10612 case PCI_PM_D0: 10613 pci_write_config(sc->dev, 10614 (sc->devinfo.pcie_pm_cap_reg + PCIR_POWER_STATUS), 10615 ((pmcsr & ~PCIM_PSTAT_DMASK) | PCIM_PSTAT_PME), 2); 10616 10617 if (pmcsr & PCIM_PSTAT_DMASK) { 10618 /* delay required during transition out of D3hot */ 10619 DELAY(20000); 10620 } 10621 10622 break; 10623 10624 case PCI_PM_D3hot: 10625 /* XXX if there are other clients above don't shut down the power */ 10626 10627 /* don't shut down the power for emulation and FPGA */ 10628 if (CHIP_REV_IS_SLOW(sc)) { 10629 return (0); 10630 } 10631 10632 pmcsr &= ~PCIM_PSTAT_DMASK; 10633 pmcsr |= PCIM_PSTAT_D3; 10634 10635 if (sc->wol) { 10636 pmcsr |= PCIM_PSTAT_PMEENABLE; 10637 } 10638 10639 pci_write_config(sc->dev, 10640 (sc->devinfo.pcie_pm_cap_reg + PCIR_POWER_STATUS), 10641 pmcsr, 4); 10642 10643 /* 10644 * No more memory access after this point until device is brought back 10645 * to D0 state. 10646 */ 10647 break; 10648 10649 default: 10650 BLOGE(sc, "Can't support PCI power state = 0x%x pmcsr 0x%x\n", 10651 state, pmcsr); 10652 return (-1); 10653 } 10654 10655 return (0); 10656 } 10657 10658 10659 /* return true if succeeded to acquire the lock */ 10660 static uint8_t 10661 bxe_trylock_hw_lock(struct bxe_softc *sc, 10662 uint32_t resource) 10663 { 10664 uint32_t lock_status; 10665 uint32_t resource_bit = (1 << resource); 10666 int func = SC_FUNC(sc); 10667 uint32_t hw_lock_control_reg; 10668 10669 BLOGD(sc, DBG_LOAD, "Trying to take a resource lock 0x%x\n", resource); 10670 10671 /* Validating that the resource is within range */ 10672 if (resource > HW_LOCK_MAX_RESOURCE_VALUE) { 10673 BLOGD(sc, DBG_LOAD, 10674 "resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n", 10675 resource, HW_LOCK_MAX_RESOURCE_VALUE); 10676 return (FALSE); 10677 } 10678 10679 if (func <= 5) { 10680 hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8); 10681 } else { 10682 hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8); 10683 } 10684 10685 /* try to acquire the lock */ 10686 REG_WR(sc, hw_lock_control_reg + 4, resource_bit); 10687 lock_status = REG_RD(sc, hw_lock_control_reg); 10688 if (lock_status & resource_bit) { 10689 return (TRUE); 10690 } 10691 10692 BLOGE(sc, "Failed to get a resource lock 0x%x func %d " 10693 "lock_status 0x%x resource_bit 0x%x\n", resource, func, 10694 lock_status, resource_bit); 10695 10696 return (FALSE); 10697 } 10698 10699 /* 10700 * Get the recovery leader resource id according to the engine this function 10701 * belongs to. Currently only only 2 engines is supported. 10702 */ 10703 static int 10704 bxe_get_leader_lock_resource(struct bxe_softc *sc) 10705 { 10706 if (SC_PATH(sc)) { 10707 return (HW_LOCK_RESOURCE_RECOVERY_LEADER_1); 10708 } else { 10709 return (HW_LOCK_RESOURCE_RECOVERY_LEADER_0); 10710 } 10711 } 10712 10713 /* try to acquire a leader lock for current engine */ 10714 static uint8_t 10715 bxe_trylock_leader_lock(struct bxe_softc *sc) 10716 { 10717 return (bxe_trylock_hw_lock(sc, bxe_get_leader_lock_resource(sc))); 10718 } 10719 10720 static int 10721 bxe_release_leader_lock(struct bxe_softc *sc) 10722 { 10723 return (bxe_release_hw_lock(sc, bxe_get_leader_lock_resource(sc))); 10724 } 10725 10726 /* close gates #2, #3 and #4 */ 10727 static void 10728 bxe_set_234_gates(struct bxe_softc *sc, 10729 uint8_t close) 10730 { 10731 uint32_t val; 10732 10733 /* gates #2 and #4a are closed/opened for "not E1" only */ 10734 if (!CHIP_IS_E1(sc)) { 10735 /* #4 */ 10736 REG_WR(sc, PXP_REG_HST_DISCARD_DOORBELLS, !!close); 10737 /* #2 */ 10738 REG_WR(sc, PXP_REG_HST_DISCARD_INTERNAL_WRITES, !!close); 10739 } 10740 10741 /* #3 */ 10742 if (CHIP_IS_E1x(sc)) { 10743 /* prevent interrupts from HC on both ports */ 10744 val = REG_RD(sc, HC_REG_CONFIG_1); 10745 REG_WR(sc, HC_REG_CONFIG_1, 10746 (!close) ? (val | HC_CONFIG_1_REG_BLOCK_DISABLE_1) : 10747 (val & ~(uint32_t)HC_CONFIG_1_REG_BLOCK_DISABLE_1)); 10748 10749 val = REG_RD(sc, HC_REG_CONFIG_0); 10750 REG_WR(sc, HC_REG_CONFIG_0, 10751 (!close) ? (val | HC_CONFIG_0_REG_BLOCK_DISABLE_0) : 10752 (val & ~(uint32_t)HC_CONFIG_0_REG_BLOCK_DISABLE_0)); 10753 } else { 10754 /* Prevent incomming interrupts in IGU */ 10755 val = REG_RD(sc, IGU_REG_BLOCK_CONFIGURATION); 10756 10757 REG_WR(sc, IGU_REG_BLOCK_CONFIGURATION, 10758 (!close) ? 10759 (val | IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE) : 10760 (val & ~(uint32_t)IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE)); 10761 } 10762 10763 BLOGD(sc, DBG_LOAD, "%s gates #2, #3 and #4\n", 10764 close ? "closing" : "opening"); 10765 10766 wmb(); 10767 } 10768 10769 /* poll for pending writes bit, it should get cleared in no more than 1s */ 10770 static int 10771 bxe_er_poll_igu_vq(struct bxe_softc *sc) 10772 { 10773 uint32_t cnt = 1000; 10774 uint32_t pend_bits = 0; 10775 10776 do { 10777 pend_bits = REG_RD(sc, IGU_REG_PENDING_BITS_STATUS); 10778 10779 if (pend_bits == 0) { 10780 break; 10781 } 10782 10783 DELAY(1000); 10784 } while (--cnt > 0); 10785 10786 if (cnt == 0) { 10787 BLOGE(sc, "Still pending IGU requests bits=0x%08x!\n", pend_bits); 10788 return (-1); 10789 } 10790 10791 return (0); 10792 } 10793 10794 #define SHARED_MF_CLP_MAGIC 0x80000000 /* 'magic' bit */ 10795 10796 static void 10797 bxe_clp_reset_prep(struct bxe_softc *sc, 10798 uint32_t *magic_val) 10799 { 10800 /* Do some magic... */ 10801 uint32_t val = MFCFG_RD(sc, shared_mf_config.clp_mb); 10802 *magic_val = val & SHARED_MF_CLP_MAGIC; 10803 MFCFG_WR(sc, shared_mf_config.clp_mb, val | SHARED_MF_CLP_MAGIC); 10804 } 10805 10806 /* restore the value of the 'magic' bit */ 10807 static void 10808 bxe_clp_reset_done(struct bxe_softc *sc, 10809 uint32_t magic_val) 10810 { 10811 /* Restore the 'magic' bit value... */ 10812 uint32_t val = MFCFG_RD(sc, shared_mf_config.clp_mb); 10813 MFCFG_WR(sc, shared_mf_config.clp_mb, 10814 (val & (~SHARED_MF_CLP_MAGIC)) | magic_val); 10815 } 10816 10817 /* prepare for MCP reset, takes care of CLP configurations */ 10818 static void 10819 bxe_reset_mcp_prep(struct bxe_softc *sc, 10820 uint32_t *magic_val) 10821 { 10822 uint32_t shmem; 10823 uint32_t validity_offset; 10824 10825 /* set `magic' bit in order to save MF config */ 10826 if (!CHIP_IS_E1(sc)) { 10827 bxe_clp_reset_prep(sc, magic_val); 10828 } 10829 10830 /* get shmem offset */ 10831 shmem = REG_RD(sc, MISC_REG_SHARED_MEM_ADDR); 10832 validity_offset = 10833 offsetof(struct shmem_region, validity_map[SC_PORT(sc)]); 10834 10835 /* Clear validity map flags */ 10836 if (shmem > 0) { 10837 REG_WR(sc, shmem + validity_offset, 0); 10838 } 10839 } 10840 10841 #define MCP_TIMEOUT 5000 /* 5 seconds (in ms) */ 10842 #define MCP_ONE_TIMEOUT 100 /* 100 ms */ 10843 10844 static void 10845 bxe_mcp_wait_one(struct bxe_softc *sc) 10846 { 10847 /* special handling for emulation and FPGA (10 times longer) */ 10848 if (CHIP_REV_IS_SLOW(sc)) { 10849 DELAY((MCP_ONE_TIMEOUT*10) * 1000); 10850 } else { 10851 DELAY((MCP_ONE_TIMEOUT) * 1000); 10852 } 10853 } 10854 10855 /* initialize shmem_base and waits for validity signature to appear */ 10856 static int 10857 bxe_init_shmem(struct bxe_softc *sc) 10858 { 10859 int cnt = 0; 10860 uint32_t val = 0; 10861 10862 do { 10863 sc->devinfo.shmem_base = 10864 sc->link_params.shmem_base = 10865 REG_RD(sc, MISC_REG_SHARED_MEM_ADDR); 10866 10867 if (sc->devinfo.shmem_base) { 10868 val = SHMEM_RD(sc, validity_map[SC_PORT(sc)]); 10869 if (val & SHR_MEM_VALIDITY_MB) 10870 return (0); 10871 } 10872 10873 bxe_mcp_wait_one(sc); 10874 10875 } while (cnt++ < (MCP_TIMEOUT / MCP_ONE_TIMEOUT)); 10876 10877 BLOGE(sc, "BAD MCP validity signature\n"); 10878 10879 return (-1); 10880 } 10881 10882 static int 10883 bxe_reset_mcp_comp(struct bxe_softc *sc, 10884 uint32_t magic_val) 10885 { 10886 int rc = bxe_init_shmem(sc); 10887 10888 /* Restore the `magic' bit value */ 10889 if (!CHIP_IS_E1(sc)) { 10890 bxe_clp_reset_done(sc, magic_val); 10891 } 10892 10893 return (rc); 10894 } 10895 10896 static void 10897 bxe_pxp_prep(struct bxe_softc *sc) 10898 { 10899 if (!CHIP_IS_E1(sc)) { 10900 REG_WR(sc, PXP2_REG_RD_START_INIT, 0); 10901 REG_WR(sc, PXP2_REG_RQ_RBC_DONE, 0); 10902 wmb(); 10903 } 10904 } 10905 10906 /* 10907 * Reset the whole chip except for: 10908 * - PCIE core 10909 * - PCI Glue, PSWHST, PXP/PXP2 RF (all controlled by one reset bit) 10910 * - IGU 10911 * - MISC (including AEU) 10912 * - GRC 10913 * - RBCN, RBCP 10914 */ 10915 static void 10916 bxe_process_kill_chip_reset(struct bxe_softc *sc, 10917 uint8_t global) 10918 { 10919 uint32_t not_reset_mask1, reset_mask1, not_reset_mask2, reset_mask2; 10920 uint32_t global_bits2, stay_reset2; 10921 10922 /* 10923 * Bits that have to be set in reset_mask2 if we want to reset 'global' 10924 * (per chip) blocks. 10925 */ 10926 global_bits2 = 10927 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CPU | 10928 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CORE; 10929 10930 /* 10931 * Don't reset the following blocks. 10932 * Important: per port blocks (such as EMAC, BMAC, UMAC) can't be 10933 * reset, as in 4 port device they might still be owned 10934 * by the MCP (there is only one leader per path). 10935 */ 10936 not_reset_mask1 = 10937 MISC_REGISTERS_RESET_REG_1_RST_HC | 10938 MISC_REGISTERS_RESET_REG_1_RST_PXPV | 10939 MISC_REGISTERS_RESET_REG_1_RST_PXP; 10940 10941 not_reset_mask2 = 10942 MISC_REGISTERS_RESET_REG_2_RST_PCI_MDIO | 10943 MISC_REGISTERS_RESET_REG_2_RST_EMAC0_HARD_CORE | 10944 MISC_REGISTERS_RESET_REG_2_RST_EMAC1_HARD_CORE | 10945 MISC_REGISTERS_RESET_REG_2_RST_MISC_CORE | 10946 MISC_REGISTERS_RESET_REG_2_RST_RBCN | 10947 MISC_REGISTERS_RESET_REG_2_RST_GRC | 10948 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_REG_HARD_CORE | 10949 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_HARD_CORE_RST_B | 10950 MISC_REGISTERS_RESET_REG_2_RST_ATC | 10951 MISC_REGISTERS_RESET_REG_2_PGLC | 10952 MISC_REGISTERS_RESET_REG_2_RST_BMAC0 | 10953 MISC_REGISTERS_RESET_REG_2_RST_BMAC1 | 10954 MISC_REGISTERS_RESET_REG_2_RST_EMAC0 | 10955 MISC_REGISTERS_RESET_REG_2_RST_EMAC1 | 10956 MISC_REGISTERS_RESET_REG_2_UMAC0 | 10957 MISC_REGISTERS_RESET_REG_2_UMAC1; 10958 10959 /* 10960 * Keep the following blocks in reset: 10961 * - all xxMACs are handled by the elink code. 10962 */ 10963 stay_reset2 = 10964 MISC_REGISTERS_RESET_REG_2_XMAC | 10965 MISC_REGISTERS_RESET_REG_2_XMAC_SOFT; 10966 10967 /* Full reset masks according to the chip */ 10968 reset_mask1 = 0xffffffff; 10969 10970 if (CHIP_IS_E1(sc)) 10971 reset_mask2 = 0xffff; 10972 else if (CHIP_IS_E1H(sc)) 10973 reset_mask2 = 0x1ffff; 10974 else if (CHIP_IS_E2(sc)) 10975 reset_mask2 = 0xfffff; 10976 else /* CHIP_IS_E3 */ 10977 reset_mask2 = 0x3ffffff; 10978 10979 /* Don't reset global blocks unless we need to */ 10980 if (!global) 10981 reset_mask2 &= ~global_bits2; 10982 10983 /* 10984 * In case of attention in the QM, we need to reset PXP 10985 * (MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR) before QM 10986 * because otherwise QM reset would release 'close the gates' shortly 10987 * before resetting the PXP, then the PSWRQ would send a write 10988 * request to PGLUE. Then when PXP is reset, PGLUE would try to 10989 * read the payload data from PSWWR, but PSWWR would not 10990 * respond. The write queue in PGLUE would stuck, dmae commands 10991 * would not return. Therefore it's important to reset the second 10992 * reset register (containing the 10993 * MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR bit) before the 10994 * first one (containing the MISC_REGISTERS_RESET_REG_1_RST_QM 10995 * bit). 10996 */ 10997 REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR, 10998 reset_mask2 & (~not_reset_mask2)); 10999 11000 REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 11001 reset_mask1 & (~not_reset_mask1)); 11002 11003 mb(); 11004 wmb(); 11005 11006 REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET, 11007 reset_mask2 & (~stay_reset2)); 11008 11009 mb(); 11010 wmb(); 11011 11012 REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, reset_mask1); 11013 wmb(); 11014 } 11015 11016 static int 11017 bxe_process_kill(struct bxe_softc *sc, 11018 uint8_t global) 11019 { 11020 int cnt = 1000; 11021 uint32_t val = 0; 11022 uint32_t sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1, pgl_exp_rom2; 11023 uint32_t tags_63_32 = 0; 11024 11025 /* Empty the Tetris buffer, wait for 1s */ 11026 do { 11027 sr_cnt = REG_RD(sc, PXP2_REG_RD_SR_CNT); 11028 blk_cnt = REG_RD(sc, PXP2_REG_RD_BLK_CNT); 11029 port_is_idle_0 = REG_RD(sc, PXP2_REG_RD_PORT_IS_IDLE_0); 11030 port_is_idle_1 = REG_RD(sc, PXP2_REG_RD_PORT_IS_IDLE_1); 11031 pgl_exp_rom2 = REG_RD(sc, PXP2_REG_PGL_EXP_ROM2); 11032 if (CHIP_IS_E3(sc)) { 11033 tags_63_32 = REG_RD(sc, PGLUE_B_REG_TAGS_63_32); 11034 } 11035 11036 if ((sr_cnt == 0x7e) && (blk_cnt == 0xa0) && 11037 ((port_is_idle_0 & 0x1) == 0x1) && 11038 ((port_is_idle_1 & 0x1) == 0x1) && 11039 (pgl_exp_rom2 == 0xffffffff) && 11040 (!CHIP_IS_E3(sc) || (tags_63_32 == 0xffffffff))) 11041 break; 11042 DELAY(1000); 11043 } while (cnt-- > 0); 11044 11045 if (cnt <= 0) { 11046 BLOGE(sc, "ERROR: Tetris buffer didn't get empty or there " 11047 "are still outstanding read requests after 1s! " 11048 "sr_cnt=0x%08x, blk_cnt=0x%08x, port_is_idle_0=0x%08x, " 11049 "port_is_idle_1=0x%08x, pgl_exp_rom2=0x%08x\n", 11050 sr_cnt, blk_cnt, port_is_idle_0, 11051 port_is_idle_1, pgl_exp_rom2); 11052 return (-1); 11053 } 11054 11055 mb(); 11056 11057 /* Close gates #2, #3 and #4 */ 11058 bxe_set_234_gates(sc, TRUE); 11059 11060 /* Poll for IGU VQs for 57712 and newer chips */ 11061 if (!CHIP_IS_E1x(sc) && bxe_er_poll_igu_vq(sc)) { 11062 return (-1); 11063 } 11064 11065 /* XXX indicate that "process kill" is in progress to MCP */ 11066 11067 /* clear "unprepared" bit */ 11068 REG_WR(sc, MISC_REG_UNPREPARED, 0); 11069 mb(); 11070 11071 /* Make sure all is written to the chip before the reset */ 11072 wmb(); 11073 11074 /* 11075 * Wait for 1ms to empty GLUE and PCI-E core queues, 11076 * PSWHST, GRC and PSWRD Tetris buffer. 11077 */ 11078 DELAY(1000); 11079 11080 /* Prepare to chip reset: */ 11081 /* MCP */ 11082 if (global) { 11083 bxe_reset_mcp_prep(sc, &val); 11084 } 11085 11086 /* PXP */ 11087 bxe_pxp_prep(sc); 11088 mb(); 11089 11090 /* reset the chip */ 11091 bxe_process_kill_chip_reset(sc, global); 11092 mb(); 11093 11094 /* clear errors in PGB */ 11095 if (!CHIP_IS_E1(sc)) 11096 REG_WR(sc, PGLUE_B_REG_LATCHED_ERRORS_CLR, 0x7f); 11097 11098 /* Recover after reset: */ 11099 /* MCP */ 11100 if (global && bxe_reset_mcp_comp(sc, val)) { 11101 return (-1); 11102 } 11103 11104 /* XXX add resetting the NO_MCP mode DB here */ 11105 11106 /* Open the gates #2, #3 and #4 */ 11107 bxe_set_234_gates(sc, FALSE); 11108 11109 /* XXX 11110 * IGU/AEU preparation bring back the AEU/IGU to a reset state 11111 * re-enable attentions 11112 */ 11113 11114 return (0); 11115 } 11116 11117 static int 11118 bxe_leader_reset(struct bxe_softc *sc) 11119 { 11120 int rc = 0; 11121 uint8_t global = bxe_reset_is_global(sc); 11122 uint32_t load_code; 11123 11124 /* 11125 * If not going to reset MCP, load "fake" driver to reset HW while 11126 * driver is owner of the HW. 11127 */ 11128 if (!global && !BXE_NOMCP(sc)) { 11129 load_code = bxe_fw_command(sc, DRV_MSG_CODE_LOAD_REQ, 11130 DRV_MSG_CODE_LOAD_REQ_WITH_LFA); 11131 if (!load_code) { 11132 BLOGE(sc, "MCP response failure, aborting\n"); 11133 rc = -1; 11134 goto exit_leader_reset; 11135 } 11136 11137 if ((load_code != FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) && 11138 (load_code != FW_MSG_CODE_DRV_LOAD_COMMON)) { 11139 BLOGE(sc, "MCP unexpected response, aborting\n"); 11140 rc = -1; 11141 goto exit_leader_reset2; 11142 } 11143 11144 load_code = bxe_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0); 11145 if (!load_code) { 11146 BLOGE(sc, "MCP response failure, aborting\n"); 11147 rc = -1; 11148 goto exit_leader_reset2; 11149 } 11150 } 11151 11152 /* try to recover after the failure */ 11153 if (bxe_process_kill(sc, global)) { 11154 BLOGE(sc, "Something bad occurred on engine %d!\n", SC_PATH(sc)); 11155 rc = -1; 11156 goto exit_leader_reset2; 11157 } 11158 11159 /* 11160 * Clear the RESET_IN_PROGRESS and RESET_GLOBAL bits and update the driver 11161 * state. 11162 */ 11163 bxe_set_reset_done(sc); 11164 if (global) { 11165 bxe_clear_reset_global(sc); 11166 } 11167 11168 exit_leader_reset2: 11169 11170 /* unload "fake driver" if it was loaded */ 11171 if (!global && !BXE_NOMCP(sc)) { 11172 bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP, 0); 11173 bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_DONE, 0); 11174 } 11175 11176 exit_leader_reset: 11177 11178 sc->is_leader = 0; 11179 bxe_release_leader_lock(sc); 11180 11181 mb(); 11182 return (rc); 11183 } 11184 11185 /* 11186 * prepare INIT transition, parameters configured: 11187 * - HC configuration 11188 * - Queue's CDU context 11189 */ 11190 static void 11191 bxe_pf_q_prep_init(struct bxe_softc *sc, 11192 struct bxe_fastpath *fp, 11193 struct ecore_queue_init_params *init_params) 11194 { 11195 uint8_t cos; 11196 int cxt_index, cxt_offset; 11197 11198 bxe_set_bit(ECORE_Q_FLG_HC, &init_params->rx.flags); 11199 bxe_set_bit(ECORE_Q_FLG_HC, &init_params->tx.flags); 11200 11201 bxe_set_bit(ECORE_Q_FLG_HC_EN, &init_params->rx.flags); 11202 bxe_set_bit(ECORE_Q_FLG_HC_EN, &init_params->tx.flags); 11203 11204 /* HC rate */ 11205 init_params->rx.hc_rate = 11206 sc->hc_rx_ticks ? (1000000 / sc->hc_rx_ticks) : 0; 11207 init_params->tx.hc_rate = 11208 sc->hc_tx_ticks ? (1000000 / sc->hc_tx_ticks) : 0; 11209 11210 /* FW SB ID */ 11211 init_params->rx.fw_sb_id = init_params->tx.fw_sb_id = fp->fw_sb_id; 11212 11213 /* CQ index among the SB indices */ 11214 init_params->rx.sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS; 11215 init_params->tx.sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS; 11216 11217 /* set maximum number of COSs supported by this queue */ 11218 init_params->max_cos = sc->max_cos; 11219 11220 BLOGD(sc, DBG_LOAD, "fp %d setting queue params max cos to %d\n", 11221 fp->index, init_params->max_cos); 11222 11223 /* set the context pointers queue object */ 11224 for (cos = FIRST_TX_COS_INDEX; cos < init_params->max_cos; cos++) { 11225 /* XXX change index/cid here if ever support multiple tx CoS */ 11226 /* fp->txdata[cos]->cid */ 11227 cxt_index = fp->index / ILT_PAGE_CIDS; 11228 cxt_offset = fp->index - (cxt_index * ILT_PAGE_CIDS); 11229 init_params->cxts[cos] = &sc->context[cxt_index].vcxt[cxt_offset].eth; 11230 } 11231 } 11232 11233 /* set flags that are common for the Tx-only and not normal connections */ 11234 static unsigned long 11235 bxe_get_common_flags(struct bxe_softc *sc, 11236 struct bxe_fastpath *fp, 11237 uint8_t zero_stats) 11238 { 11239 unsigned long flags = 0; 11240 11241 /* PF driver will always initialize the Queue to an ACTIVE state */ 11242 bxe_set_bit(ECORE_Q_FLG_ACTIVE, &flags); 11243 11244 /* 11245 * tx only connections collect statistics (on the same index as the 11246 * parent connection). The statistics are zeroed when the parent 11247 * connection is initialized. 11248 */ 11249 11250 bxe_set_bit(ECORE_Q_FLG_STATS, &flags); 11251 if (zero_stats) { 11252 bxe_set_bit(ECORE_Q_FLG_ZERO_STATS, &flags); 11253 } 11254 11255 /* 11256 * tx only connections can support tx-switching, though their 11257 * CoS-ness doesn't survive the loopback 11258 */ 11259 if (sc->flags & BXE_TX_SWITCHING) { 11260 bxe_set_bit(ECORE_Q_FLG_TX_SWITCH, &flags); 11261 } 11262 11263 bxe_set_bit(ECORE_Q_FLG_PCSUM_ON_PKT, &flags); 11264 11265 return (flags); 11266 } 11267 11268 static unsigned long 11269 bxe_get_q_flags(struct bxe_softc *sc, 11270 struct bxe_fastpath *fp, 11271 uint8_t leading) 11272 { 11273 unsigned long flags = 0; 11274 11275 if (IS_MF_SD(sc)) { 11276 bxe_set_bit(ECORE_Q_FLG_OV, &flags); 11277 } 11278 11279 if (if_getcapenable(sc->ifp) & IFCAP_LRO) { 11280 bxe_set_bit(ECORE_Q_FLG_TPA, &flags); 11281 bxe_set_bit(ECORE_Q_FLG_TPA_IPV6, &flags); 11282 } 11283 11284 if (leading) { 11285 bxe_set_bit(ECORE_Q_FLG_LEADING_RSS, &flags); 11286 bxe_set_bit(ECORE_Q_FLG_MCAST, &flags); 11287 } 11288 11289 bxe_set_bit(ECORE_Q_FLG_VLAN, &flags); 11290 11291 /* merge with common flags */ 11292 return (flags | bxe_get_common_flags(sc, fp, TRUE)); 11293 } 11294 11295 static void 11296 bxe_pf_q_prep_general(struct bxe_softc *sc, 11297 struct bxe_fastpath *fp, 11298 struct ecore_general_setup_params *gen_init, 11299 uint8_t cos) 11300 { 11301 gen_init->stat_id = bxe_stats_id(fp); 11302 gen_init->spcl_id = fp->cl_id; 11303 gen_init->mtu = sc->mtu; 11304 gen_init->cos = cos; 11305 } 11306 11307 static void 11308 bxe_pf_rx_q_prep(struct bxe_softc *sc, 11309 struct bxe_fastpath *fp, 11310 struct rxq_pause_params *pause, 11311 struct ecore_rxq_setup_params *rxq_init) 11312 { 11313 uint8_t max_sge = 0; 11314 uint16_t sge_sz = 0; 11315 uint16_t tpa_agg_size = 0; 11316 11317 pause->sge_th_lo = SGE_TH_LO(sc); 11318 pause->sge_th_hi = SGE_TH_HI(sc); 11319 11320 /* validate SGE ring has enough to cross high threshold */ 11321 if (sc->dropless_fc && 11322 (pause->sge_th_hi + FW_PREFETCH_CNT) > 11323 (RX_SGE_USABLE_PER_PAGE * RX_SGE_NUM_PAGES)) { 11324 BLOGW(sc, "sge ring threshold limit\n"); 11325 } 11326 11327 /* minimum max_aggregation_size is 2*MTU (two full buffers) */ 11328 tpa_agg_size = (2 * sc->mtu); 11329 if (tpa_agg_size < sc->max_aggregation_size) { 11330 tpa_agg_size = sc->max_aggregation_size; 11331 } 11332 11333 max_sge = SGE_PAGE_ALIGN(sc->mtu) >> SGE_PAGE_SHIFT; 11334 max_sge = ((max_sge + PAGES_PER_SGE - 1) & 11335 (~(PAGES_PER_SGE - 1))) >> PAGES_PER_SGE_SHIFT; 11336 sge_sz = (uint16_t)min(SGE_PAGES, 0xffff); 11337 11338 /* pause - not for e1 */ 11339 if (!CHIP_IS_E1(sc)) { 11340 pause->bd_th_lo = BD_TH_LO(sc); 11341 pause->bd_th_hi = BD_TH_HI(sc); 11342 11343 pause->rcq_th_lo = RCQ_TH_LO(sc); 11344 pause->rcq_th_hi = RCQ_TH_HI(sc); 11345 11346 /* validate rings have enough entries to cross high thresholds */ 11347 if (sc->dropless_fc && 11348 pause->bd_th_hi + FW_PREFETCH_CNT > 11349 sc->rx_ring_size) { 11350 BLOGW(sc, "rx bd ring threshold limit\n"); 11351 } 11352 11353 if (sc->dropless_fc && 11354 pause->rcq_th_hi + FW_PREFETCH_CNT > 11355 RCQ_NUM_PAGES * RCQ_USABLE_PER_PAGE) { 11356 BLOGW(sc, "rcq ring threshold limit\n"); 11357 } 11358 11359 pause->pri_map = 1; 11360 } 11361 11362 /* rxq setup */ 11363 rxq_init->dscr_map = fp->rx_dma.paddr; 11364 rxq_init->sge_map = fp->rx_sge_dma.paddr; 11365 rxq_init->rcq_map = fp->rcq_dma.paddr; 11366 rxq_init->rcq_np_map = (fp->rcq_dma.paddr + BCM_PAGE_SIZE); 11367 11368 /* 11369 * This should be a maximum number of data bytes that may be 11370 * placed on the BD (not including paddings). 11371 */ 11372 rxq_init->buf_sz = (fp->rx_buf_size - 11373 IP_HEADER_ALIGNMENT_PADDING); 11374 11375 rxq_init->cl_qzone_id = fp->cl_qzone_id; 11376 rxq_init->tpa_agg_sz = tpa_agg_size; 11377 rxq_init->sge_buf_sz = sge_sz; 11378 rxq_init->max_sges_pkt = max_sge; 11379 rxq_init->rss_engine_id = SC_FUNC(sc); 11380 rxq_init->mcast_engine_id = SC_FUNC(sc); 11381 11382 /* 11383 * Maximum number or simultaneous TPA aggregation for this Queue. 11384 * For PF Clients it should be the maximum available number. 11385 * VF driver(s) may want to define it to a smaller value. 11386 */ 11387 rxq_init->max_tpa_queues = MAX_AGG_QS(sc); 11388 11389 rxq_init->cache_line_log = BXE_RX_ALIGN_SHIFT; 11390 rxq_init->fw_sb_id = fp->fw_sb_id; 11391 11392 rxq_init->sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS; 11393 11394 /* 11395 * configure silent vlan removal 11396 * if multi function mode is afex, then mask default vlan 11397 */ 11398 if (IS_MF_AFEX(sc)) { 11399 rxq_init->silent_removal_value = 11400 sc->devinfo.mf_info.afex_def_vlan_tag; 11401 rxq_init->silent_removal_mask = EVL_VLID_MASK; 11402 } 11403 } 11404 11405 static void 11406 bxe_pf_tx_q_prep(struct bxe_softc *sc, 11407 struct bxe_fastpath *fp, 11408 struct ecore_txq_setup_params *txq_init, 11409 uint8_t cos) 11410 { 11411 /* 11412 * XXX If multiple CoS is ever supported then each fastpath structure 11413 * will need to maintain tx producer/consumer/dma/etc values *per* CoS. 11414 * fp->txdata[cos]->tx_dma.paddr; 11415 */ 11416 txq_init->dscr_map = fp->tx_dma.paddr; 11417 txq_init->sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS + cos; 11418 txq_init->traffic_type = LLFC_TRAFFIC_TYPE_NW; 11419 txq_init->fw_sb_id = fp->fw_sb_id; 11420 11421 /* 11422 * set the TSS leading client id for TX classfication to the 11423 * leading RSS client id 11424 */ 11425 txq_init->tss_leading_cl_id = BXE_FP(sc, 0, cl_id); 11426 } 11427 11428 /* 11429 * This function performs 2 steps in a queue state machine: 11430 * 1) RESET->INIT 11431 * 2) INIT->SETUP 11432 */ 11433 static int 11434 bxe_setup_queue(struct bxe_softc *sc, 11435 struct bxe_fastpath *fp, 11436 uint8_t leading) 11437 { 11438 struct ecore_queue_state_params q_params = { NULL }; 11439 struct ecore_queue_setup_params *setup_params = 11440 &q_params.params.setup; 11441 int rc; 11442 11443 BLOGD(sc, DBG_LOAD, "setting up queue %d\n", fp->index); 11444 11445 bxe_ack_sb(sc, fp->igu_sb_id, USTORM_ID, 0, IGU_INT_ENABLE, 0); 11446 11447 q_params.q_obj = &BXE_SP_OBJ(sc, fp).q_obj; 11448 11449 /* we want to wait for completion in this context */ 11450 bxe_set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags); 11451 11452 /* prepare the INIT parameters */ 11453 bxe_pf_q_prep_init(sc, fp, &q_params.params.init); 11454 11455 /* Set the command */ 11456 q_params.cmd = ECORE_Q_CMD_INIT; 11457 11458 /* Change the state to INIT */ 11459 rc = ecore_queue_state_change(sc, &q_params); 11460 if (rc) { 11461 BLOGE(sc, "Queue(%d) INIT failed rc = %d\n", fp->index, rc); 11462 return (rc); 11463 } 11464 11465 BLOGD(sc, DBG_LOAD, "init complete\n"); 11466 11467 /* now move the Queue to the SETUP state */ 11468 memset(setup_params, 0, sizeof(*setup_params)); 11469 11470 /* set Queue flags */ 11471 setup_params->flags = bxe_get_q_flags(sc, fp, leading); 11472 11473 /* set general SETUP parameters */ 11474 bxe_pf_q_prep_general(sc, fp, &setup_params->gen_params, 11475 FIRST_TX_COS_INDEX); 11476 11477 bxe_pf_rx_q_prep(sc, fp, 11478 &setup_params->pause_params, 11479 &setup_params->rxq_params); 11480 11481 bxe_pf_tx_q_prep(sc, fp, 11482 &setup_params->txq_params, 11483 FIRST_TX_COS_INDEX); 11484 11485 /* Set the command */ 11486 q_params.cmd = ECORE_Q_CMD_SETUP; 11487 11488 /* change the state to SETUP */ 11489 rc = ecore_queue_state_change(sc, &q_params); 11490 if (rc) { 11491 BLOGE(sc, "Queue(%d) SETUP failed (rc = %d)\n", fp->index, rc); 11492 return (rc); 11493 } 11494 11495 return (rc); 11496 } 11497 11498 static int 11499 bxe_setup_leading(struct bxe_softc *sc) 11500 { 11501 return (bxe_setup_queue(sc, &sc->fp[0], TRUE)); 11502 } 11503 11504 static int 11505 bxe_config_rss_pf(struct bxe_softc *sc, 11506 struct ecore_rss_config_obj *rss_obj, 11507 uint8_t config_hash) 11508 { 11509 struct ecore_config_rss_params params = { NULL }; 11510 int i; 11511 11512 /* 11513 * Although RSS is meaningless when there is a single HW queue we 11514 * still need it enabled in order to have HW Rx hash generated. 11515 */ 11516 11517 params.rss_obj = rss_obj; 11518 11519 bxe_set_bit(RAMROD_COMP_WAIT, ¶ms.ramrod_flags); 11520 11521 bxe_set_bit(ECORE_RSS_MODE_REGULAR, ¶ms.rss_flags); 11522 11523 /* RSS configuration */ 11524 bxe_set_bit(ECORE_RSS_IPV4, ¶ms.rss_flags); 11525 bxe_set_bit(ECORE_RSS_IPV4_TCP, ¶ms.rss_flags); 11526 bxe_set_bit(ECORE_RSS_IPV6, ¶ms.rss_flags); 11527 bxe_set_bit(ECORE_RSS_IPV6_TCP, ¶ms.rss_flags); 11528 if (rss_obj->udp_rss_v4) { 11529 bxe_set_bit(ECORE_RSS_IPV4_UDP, ¶ms.rss_flags); 11530 } 11531 if (rss_obj->udp_rss_v6) { 11532 bxe_set_bit(ECORE_RSS_IPV6_UDP, ¶ms.rss_flags); 11533 } 11534 11535 /* Hash bits */ 11536 params.rss_result_mask = MULTI_MASK; 11537 11538 memcpy(params.ind_table, rss_obj->ind_table, sizeof(params.ind_table)); 11539 11540 if (config_hash) { 11541 /* RSS keys */ 11542 for (i = 0; i < sizeof(params.rss_key) / 4; i++) { 11543 params.rss_key[i] = arc4random(); 11544 } 11545 11546 bxe_set_bit(ECORE_RSS_SET_SRCH, ¶ms.rss_flags); 11547 } 11548 11549 return (ecore_config_rss(sc, ¶ms)); 11550 } 11551 11552 static int 11553 bxe_config_rss_eth(struct bxe_softc *sc, 11554 uint8_t config_hash) 11555 { 11556 return (bxe_config_rss_pf(sc, &sc->rss_conf_obj, config_hash)); 11557 } 11558 11559 static int 11560 bxe_init_rss_pf(struct bxe_softc *sc) 11561 { 11562 uint8_t num_eth_queues = BXE_NUM_ETH_QUEUES(sc); 11563 int i; 11564 11565 /* 11566 * Prepare the initial contents of the indirection table if 11567 * RSS is enabled 11568 */ 11569 for (i = 0; i < sizeof(sc->rss_conf_obj.ind_table); i++) { 11570 sc->rss_conf_obj.ind_table[i] = 11571 (sc->fp->cl_id + (i % num_eth_queues)); 11572 } 11573 11574 if (sc->udp_rss) { 11575 sc->rss_conf_obj.udp_rss_v4 = sc->rss_conf_obj.udp_rss_v6 = 1; 11576 } 11577 11578 /* 11579 * For 57710 and 57711 SEARCHER configuration (rss_keys) is 11580 * per-port, so if explicit configuration is needed, do it only 11581 * for a PMF. 11582 * 11583 * For 57712 and newer it's a per-function configuration. 11584 */ 11585 return (bxe_config_rss_eth(sc, sc->port.pmf || !CHIP_IS_E1x(sc))); 11586 } 11587 11588 static int 11589 bxe_set_mac_one(struct bxe_softc *sc, 11590 uint8_t *mac, 11591 struct ecore_vlan_mac_obj *obj, 11592 uint8_t set, 11593 int mac_type, 11594 unsigned long *ramrod_flags) 11595 { 11596 struct ecore_vlan_mac_ramrod_params ramrod_param; 11597 int rc; 11598 11599 memset(&ramrod_param, 0, sizeof(ramrod_param)); 11600 11601 /* fill in general parameters */ 11602 ramrod_param.vlan_mac_obj = obj; 11603 ramrod_param.ramrod_flags = *ramrod_flags; 11604 11605 /* fill a user request section if needed */ 11606 if (!bxe_test_bit(RAMROD_CONT, ramrod_flags)) { 11607 memcpy(ramrod_param.user_req.u.mac.mac, mac, ETH_ALEN); 11608 11609 bxe_set_bit(mac_type, &ramrod_param.user_req.vlan_mac_flags); 11610 11611 /* Set the command: ADD or DEL */ 11612 ramrod_param.user_req.cmd = (set) ? ECORE_VLAN_MAC_ADD : 11613 ECORE_VLAN_MAC_DEL; 11614 } 11615 11616 rc = ecore_config_vlan_mac(sc, &ramrod_param); 11617 11618 if (rc == ECORE_EXISTS) { 11619 BLOGD(sc, DBG_SP, "Failed to schedule ADD operations (EEXIST)\n"); 11620 /* do not treat adding same MAC as error */ 11621 rc = 0; 11622 } else if (rc < 0) { 11623 BLOGE(sc, "%s MAC failed (%d)\n", (set ? "Set" : "Delete"), rc); 11624 } 11625 11626 return (rc); 11627 } 11628 11629 static int 11630 bxe_set_eth_mac(struct bxe_softc *sc, 11631 uint8_t set) 11632 { 11633 unsigned long ramrod_flags = 0; 11634 11635 BLOGD(sc, DBG_LOAD, "Adding Ethernet MAC\n"); 11636 11637 bxe_set_bit(RAMROD_COMP_WAIT, &ramrod_flags); 11638 11639 /* Eth MAC is set on RSS leading client (fp[0]) */ 11640 return (bxe_set_mac_one(sc, sc->link_params.mac_addr, 11641 &sc->sp_objs->mac_obj, 11642 set, ECORE_ETH_MAC, &ramrod_flags)); 11643 } 11644 11645 static int 11646 bxe_get_cur_phy_idx(struct bxe_softc *sc) 11647 { 11648 uint32_t sel_phy_idx = 0; 11649 11650 if (sc->link_params.num_phys <= 1) { 11651 return (ELINK_INT_PHY); 11652 } 11653 11654 if (sc->link_vars.link_up) { 11655 sel_phy_idx = ELINK_EXT_PHY1; 11656 /* In case link is SERDES, check if the ELINK_EXT_PHY2 is the one */ 11657 if ((sc->link_vars.link_status & LINK_STATUS_SERDES_LINK) && 11658 (sc->link_params.phy[ELINK_EXT_PHY2].supported & 11659 ELINK_SUPPORTED_FIBRE)) 11660 sel_phy_idx = ELINK_EXT_PHY2; 11661 } else { 11662 switch (elink_phy_selection(&sc->link_params)) { 11663 case PORT_HW_CFG_PHY_SELECTION_HARDWARE_DEFAULT: 11664 case PORT_HW_CFG_PHY_SELECTION_FIRST_PHY: 11665 case PORT_HW_CFG_PHY_SELECTION_FIRST_PHY_PRIORITY: 11666 sel_phy_idx = ELINK_EXT_PHY1; 11667 break; 11668 case PORT_HW_CFG_PHY_SELECTION_SECOND_PHY: 11669 case PORT_HW_CFG_PHY_SELECTION_SECOND_PHY_PRIORITY: 11670 sel_phy_idx = ELINK_EXT_PHY2; 11671 break; 11672 } 11673 } 11674 11675 return (sel_phy_idx); 11676 } 11677 11678 static int 11679 bxe_get_link_cfg_idx(struct bxe_softc *sc) 11680 { 11681 uint32_t sel_phy_idx = bxe_get_cur_phy_idx(sc); 11682 11683 /* 11684 * The selected activated PHY is always after swapping (in case PHY 11685 * swapping is enabled). So when swapping is enabled, we need to reverse 11686 * the configuration 11687 */ 11688 11689 if (sc->link_params.multi_phy_config & PORT_HW_CFG_PHY_SWAPPED_ENABLED) { 11690 if (sel_phy_idx == ELINK_EXT_PHY1) 11691 sel_phy_idx = ELINK_EXT_PHY2; 11692 else if (sel_phy_idx == ELINK_EXT_PHY2) 11693 sel_phy_idx = ELINK_EXT_PHY1; 11694 } 11695 11696 return (ELINK_LINK_CONFIG_IDX(sel_phy_idx)); 11697 } 11698 11699 static void 11700 bxe_set_requested_fc(struct bxe_softc *sc) 11701 { 11702 /* 11703 * Initialize link parameters structure variables 11704 * It is recommended to turn off RX FC for jumbo frames 11705 * for better performance 11706 */ 11707 if (CHIP_IS_E1x(sc) && (sc->mtu > 5000)) { 11708 sc->link_params.req_fc_auto_adv = ELINK_FLOW_CTRL_TX; 11709 } else { 11710 sc->link_params.req_fc_auto_adv = ELINK_FLOW_CTRL_BOTH; 11711 } 11712 } 11713 11714 static void 11715 bxe_calc_fc_adv(struct bxe_softc *sc) 11716 { 11717 uint8_t cfg_idx = bxe_get_link_cfg_idx(sc); 11718 switch (sc->link_vars.ieee_fc & 11719 MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_MASK) { 11720 case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_NONE: 11721 default: 11722 sc->port.advertising[cfg_idx] &= ~(ADVERTISED_Asym_Pause | 11723 ADVERTISED_Pause); 11724 break; 11725 11726 case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_BOTH: 11727 sc->port.advertising[cfg_idx] |= (ADVERTISED_Asym_Pause | 11728 ADVERTISED_Pause); 11729 break; 11730 11731 case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_ASYMMETRIC: 11732 sc->port.advertising[cfg_idx] |= ADVERTISED_Asym_Pause; 11733 break; 11734 } 11735 } 11736 11737 static uint16_t 11738 bxe_get_mf_speed(struct bxe_softc *sc) 11739 { 11740 uint16_t line_speed = sc->link_vars.line_speed; 11741 if (IS_MF(sc)) { 11742 uint16_t maxCfg = 11743 bxe_extract_max_cfg(sc, sc->devinfo.mf_info.mf_config[SC_VN(sc)]); 11744 11745 /* calculate the current MAX line speed limit for the MF devices */ 11746 if (IS_MF_SI(sc)) { 11747 line_speed = (line_speed * maxCfg) / 100; 11748 } else { /* SD mode */ 11749 uint16_t vn_max_rate = maxCfg * 100; 11750 11751 if (vn_max_rate < line_speed) { 11752 line_speed = vn_max_rate; 11753 } 11754 } 11755 } 11756 11757 return (line_speed); 11758 } 11759 11760 static void 11761 bxe_fill_report_data(struct bxe_softc *sc, 11762 struct bxe_link_report_data *data) 11763 { 11764 uint16_t line_speed = bxe_get_mf_speed(sc); 11765 11766 memset(data, 0, sizeof(*data)); 11767 11768 /* fill the report data with the effective line speed */ 11769 data->line_speed = line_speed; 11770 11771 /* Link is down */ 11772 if (!sc->link_vars.link_up || (sc->flags & BXE_MF_FUNC_DIS)) { 11773 bxe_set_bit(BXE_LINK_REPORT_LINK_DOWN, &data->link_report_flags); 11774 } 11775 11776 /* Full DUPLEX */ 11777 if (sc->link_vars.duplex == DUPLEX_FULL) { 11778 bxe_set_bit(BXE_LINK_REPORT_FULL_DUPLEX, &data->link_report_flags); 11779 } 11780 11781 /* Rx Flow Control is ON */ 11782 if (sc->link_vars.flow_ctrl & ELINK_FLOW_CTRL_RX) { 11783 bxe_set_bit(BXE_LINK_REPORT_RX_FC_ON, &data->link_report_flags); 11784 } 11785 11786 /* Tx Flow Control is ON */ 11787 if (sc->link_vars.flow_ctrl & ELINK_FLOW_CTRL_TX) { 11788 bxe_set_bit(BXE_LINK_REPORT_TX_FC_ON, &data->link_report_flags); 11789 } 11790 } 11791 11792 /* report link status to OS, should be called under phy_lock */ 11793 static void 11794 bxe_link_report_locked(struct bxe_softc *sc) 11795 { 11796 struct bxe_link_report_data cur_data; 11797 11798 /* reread mf_cfg */ 11799 if (IS_PF(sc) && !CHIP_IS_E1(sc)) { 11800 bxe_read_mf_cfg(sc); 11801 } 11802 11803 /* Read the current link report info */ 11804 bxe_fill_report_data(sc, &cur_data); 11805 11806 /* Don't report link down or exactly the same link status twice */ 11807 if (!memcmp(&cur_data, &sc->last_reported_link, sizeof(cur_data)) || 11808 (bxe_test_bit(BXE_LINK_REPORT_LINK_DOWN, 11809 &sc->last_reported_link.link_report_flags) && 11810 bxe_test_bit(BXE_LINK_REPORT_LINK_DOWN, 11811 &cur_data.link_report_flags))) { 11812 return; 11813 } 11814 11815 sc->link_cnt++; 11816 11817 /* report new link params and remember the state for the next time */ 11818 memcpy(&sc->last_reported_link, &cur_data, sizeof(cur_data)); 11819 11820 if (bxe_test_bit(BXE_LINK_REPORT_LINK_DOWN, 11821 &cur_data.link_report_flags)) { 11822 if_link_state_change(sc->ifp, LINK_STATE_DOWN); 11823 BLOGI(sc, "NIC Link is Down\n"); 11824 } else { 11825 const char *duplex; 11826 const char *flow; 11827 11828 if (bxe_test_and_clear_bit(BXE_LINK_REPORT_FULL_DUPLEX, 11829 &cur_data.link_report_flags)) { 11830 duplex = "full"; 11831 } else { 11832 duplex = "half"; 11833 } 11834 11835 /* 11836 * Handle the FC at the end so that only these flags would be 11837 * possibly set. This way we may easily check if there is no FC 11838 * enabled. 11839 */ 11840 if (cur_data.link_report_flags) { 11841 if (bxe_test_bit(BXE_LINK_REPORT_RX_FC_ON, 11842 &cur_data.link_report_flags) && 11843 bxe_test_bit(BXE_LINK_REPORT_TX_FC_ON, 11844 &cur_data.link_report_flags)) { 11845 flow = "ON - receive & transmit"; 11846 } else if (bxe_test_bit(BXE_LINK_REPORT_RX_FC_ON, 11847 &cur_data.link_report_flags) && 11848 !bxe_test_bit(BXE_LINK_REPORT_TX_FC_ON, 11849 &cur_data.link_report_flags)) { 11850 flow = "ON - receive"; 11851 } else if (!bxe_test_bit(BXE_LINK_REPORT_RX_FC_ON, 11852 &cur_data.link_report_flags) && 11853 bxe_test_bit(BXE_LINK_REPORT_TX_FC_ON, 11854 &cur_data.link_report_flags)) { 11855 flow = "ON - transmit"; 11856 } else { 11857 flow = "none"; /* possible? */ 11858 } 11859 } else { 11860 flow = "none"; 11861 } 11862 11863 if_link_state_change(sc->ifp, LINK_STATE_UP); 11864 BLOGI(sc, "NIC Link is Up, %d Mbps %s duplex, Flow control: %s\n", 11865 cur_data.line_speed, duplex, flow); 11866 } 11867 } 11868 11869 static void 11870 bxe_link_report(struct bxe_softc *sc) 11871 { 11872 bxe_acquire_phy_lock(sc); 11873 bxe_link_report_locked(sc); 11874 bxe_release_phy_lock(sc); 11875 } 11876 11877 static void 11878 bxe_link_status_update(struct bxe_softc *sc) 11879 { 11880 if (sc->state != BXE_STATE_OPEN) { 11881 return; 11882 } 11883 11884 if (IS_PF(sc) && !CHIP_REV_IS_SLOW(sc)) { 11885 elink_link_status_update(&sc->link_params, &sc->link_vars); 11886 } else { 11887 sc->port.supported[0] |= (ELINK_SUPPORTED_10baseT_Half | 11888 ELINK_SUPPORTED_10baseT_Full | 11889 ELINK_SUPPORTED_100baseT_Half | 11890 ELINK_SUPPORTED_100baseT_Full | 11891 ELINK_SUPPORTED_1000baseT_Full | 11892 ELINK_SUPPORTED_2500baseX_Full | 11893 ELINK_SUPPORTED_10000baseT_Full | 11894 ELINK_SUPPORTED_TP | 11895 ELINK_SUPPORTED_FIBRE | 11896 ELINK_SUPPORTED_Autoneg | 11897 ELINK_SUPPORTED_Pause | 11898 ELINK_SUPPORTED_Asym_Pause); 11899 sc->port.advertising[0] = sc->port.supported[0]; 11900 11901 sc->link_params.sc = sc; 11902 sc->link_params.port = SC_PORT(sc); 11903 sc->link_params.req_duplex[0] = DUPLEX_FULL; 11904 sc->link_params.req_flow_ctrl[0] = ELINK_FLOW_CTRL_NONE; 11905 sc->link_params.req_line_speed[0] = SPEED_10000; 11906 sc->link_params.speed_cap_mask[0] = 0x7f0000; 11907 sc->link_params.switch_cfg = ELINK_SWITCH_CFG_10G; 11908 11909 if (CHIP_REV_IS_FPGA(sc)) { 11910 sc->link_vars.mac_type = ELINK_MAC_TYPE_EMAC; 11911 sc->link_vars.line_speed = ELINK_SPEED_1000; 11912 sc->link_vars.link_status = (LINK_STATUS_LINK_UP | 11913 LINK_STATUS_SPEED_AND_DUPLEX_1000TFD); 11914 } else { 11915 sc->link_vars.mac_type = ELINK_MAC_TYPE_BMAC; 11916 sc->link_vars.line_speed = ELINK_SPEED_10000; 11917 sc->link_vars.link_status = (LINK_STATUS_LINK_UP | 11918 LINK_STATUS_SPEED_AND_DUPLEX_10GTFD); 11919 } 11920 11921 sc->link_vars.link_up = 1; 11922 11923 sc->link_vars.duplex = DUPLEX_FULL; 11924 sc->link_vars.flow_ctrl = ELINK_FLOW_CTRL_NONE; 11925 11926 if (IS_PF(sc)) { 11927 REG_WR(sc, NIG_REG_EGRESS_DRAIN0_MODE + sc->link_params.port*4, 0); 11928 bxe_stats_handle(sc, STATS_EVENT_LINK_UP); 11929 bxe_link_report(sc); 11930 } 11931 } 11932 11933 if (IS_PF(sc)) { 11934 if (sc->link_vars.link_up) { 11935 bxe_stats_handle(sc, STATS_EVENT_LINK_UP); 11936 } else { 11937 bxe_stats_handle(sc, STATS_EVENT_STOP); 11938 } 11939 bxe_link_report(sc); 11940 } else { 11941 bxe_link_report(sc); 11942 bxe_stats_handle(sc, STATS_EVENT_LINK_UP); 11943 } 11944 } 11945 11946 static int 11947 bxe_initial_phy_init(struct bxe_softc *sc, 11948 int load_mode) 11949 { 11950 int rc, cfg_idx = bxe_get_link_cfg_idx(sc); 11951 uint16_t req_line_speed = sc->link_params.req_line_speed[cfg_idx]; 11952 struct elink_params *lp = &sc->link_params; 11953 11954 bxe_set_requested_fc(sc); 11955 11956 if (CHIP_REV_IS_SLOW(sc)) { 11957 uint32_t bond = CHIP_BOND_ID(sc); 11958 uint32_t feat = 0; 11959 11960 if (CHIP_IS_E2(sc) && CHIP_IS_MODE_4_PORT(sc)) { 11961 feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_BMAC; 11962 } else if (bond & 0x4) { 11963 if (CHIP_IS_E3(sc)) { 11964 feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_XMAC; 11965 } else { 11966 feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_BMAC; 11967 } 11968 } else if (bond & 0x8) { 11969 if (CHIP_IS_E3(sc)) { 11970 feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_UMAC; 11971 } else { 11972 feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_EMAC; 11973 } 11974 } 11975 11976 /* disable EMAC for E3 and above */ 11977 if (bond & 0x2) { 11978 feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_EMAC; 11979 } 11980 11981 sc->link_params.feature_config_flags |= feat; 11982 } 11983 11984 bxe_acquire_phy_lock(sc); 11985 11986 if (load_mode == LOAD_DIAG) { 11987 lp->loopback_mode = ELINK_LOOPBACK_XGXS; 11988 /* Prefer doing PHY loopback at 10G speed, if possible */ 11989 if (lp->req_line_speed[cfg_idx] < ELINK_SPEED_10000) { 11990 if (lp->speed_cap_mask[cfg_idx] & 11991 PORT_HW_CFG_SPEED_CAPABILITY_D0_10G) { 11992 lp->req_line_speed[cfg_idx] = ELINK_SPEED_10000; 11993 } else { 11994 lp->req_line_speed[cfg_idx] = ELINK_SPEED_1000; 11995 } 11996 } 11997 } 11998 11999 if (load_mode == LOAD_LOOPBACK_EXT) { 12000 lp->loopback_mode = ELINK_LOOPBACK_EXT; 12001 } 12002 12003 rc = elink_phy_init(&sc->link_params, &sc->link_vars); 12004 12005 bxe_release_phy_lock(sc); 12006 12007 bxe_calc_fc_adv(sc); 12008 12009 if (sc->link_vars.link_up) { 12010 bxe_stats_handle(sc, STATS_EVENT_LINK_UP); 12011 bxe_link_report(sc); 12012 } 12013 12014 if (!CHIP_REV_IS_SLOW(sc)) { 12015 bxe_periodic_start(sc); 12016 } 12017 12018 sc->link_params.req_line_speed[cfg_idx] = req_line_speed; 12019 return (rc); 12020 } 12021 12022 /* must be called under IF_ADDR_LOCK */ 12023 12024 static int 12025 bxe_set_mc_list(struct bxe_softc *sc) 12026 { 12027 struct ecore_mcast_ramrod_params rparam = { NULL }; 12028 int rc = 0; 12029 int mc_count = 0; 12030 int mcnt, i; 12031 struct ecore_mcast_list_elem *mc_mac, *mc_mac_start; 12032 unsigned char *mta; 12033 if_t ifp = sc->ifp; 12034 12035 mc_count = if_multiaddr_count(ifp, -1);/* XXX they don't have a limit */ 12036 if (!mc_count) 12037 return (0); 12038 12039 mta = malloc(sizeof(unsigned char) * ETHER_ADDR_LEN * 12040 mc_count, M_DEVBUF, M_NOWAIT); 12041 12042 if(mta == NULL) { 12043 BLOGE(sc, "Failed to allocate temp mcast list\n"); 12044 return (-1); 12045 } 12046 bzero(mta, (sizeof(unsigned char) * ETHER_ADDR_LEN * mc_count)); 12047 12048 mc_mac = malloc(sizeof(*mc_mac) * mc_count, M_DEVBUF, (M_NOWAIT | M_ZERO)); 12049 mc_mac_start = mc_mac; 12050 12051 if (!mc_mac) { 12052 free(mta, M_DEVBUF); 12053 BLOGE(sc, "Failed to allocate temp mcast list\n"); 12054 return (-1); 12055 } 12056 bzero(mc_mac, (sizeof(*mc_mac) * mc_count)); 12057 12058 /* mta and mcnt not expected to be different */ 12059 if_multiaddr_array(ifp, mta, &mcnt, mc_count); 12060 12061 12062 rparam.mcast_obj = &sc->mcast_obj; 12063 ECORE_LIST_INIT(&rparam.mcast_list); 12064 12065 for(i=0; i< mcnt; i++) { 12066 12067 mc_mac->mac = (uint8_t *)(mta + (i * ETHER_ADDR_LEN)); 12068 ECORE_LIST_PUSH_TAIL(&mc_mac->link, &rparam.mcast_list); 12069 12070 BLOGD(sc, DBG_LOAD, 12071 "Setting MCAST %02X:%02X:%02X:%02X:%02X:%02X\n", 12072 mc_mac->mac[0], mc_mac->mac[1], mc_mac->mac[2], 12073 mc_mac->mac[3], mc_mac->mac[4], mc_mac->mac[5]); 12074 12075 mc_mac++; 12076 } 12077 rparam.mcast_list_len = mc_count; 12078 12079 BXE_MCAST_LOCK(sc); 12080 12081 /* first, clear all configured multicast MACs */ 12082 rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_DEL); 12083 if (rc < 0) { 12084 BLOGE(sc, "Failed to clear multicast configuration: %d\n", rc); 12085 BXE_MCAST_UNLOCK(sc); 12086 free(mc_mac_start, M_DEVBUF); 12087 free(mta, M_DEVBUF); 12088 return (rc); 12089 } 12090 12091 /* Now add the new MACs */ 12092 rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_ADD); 12093 if (rc < 0) { 12094 BLOGE(sc, "Failed to set new mcast config (%d)\n", rc); 12095 } 12096 12097 BXE_MCAST_UNLOCK(sc); 12098 12099 free(mc_mac_start, M_DEVBUF); 12100 free(mta, M_DEVBUF); 12101 12102 return (rc); 12103 } 12104 12105 static int 12106 bxe_set_uc_list(struct bxe_softc *sc) 12107 { 12108 if_t ifp = sc->ifp; 12109 struct ecore_vlan_mac_obj *mac_obj = &sc->sp_objs->mac_obj; 12110 struct ifaddr *ifa; 12111 unsigned long ramrod_flags = 0; 12112 int rc; 12113 12114 #if __FreeBSD_version < 800000 12115 IF_ADDR_LOCK(ifp); 12116 #else 12117 if_addr_rlock(ifp); 12118 #endif 12119 12120 /* first schedule a cleanup up of old configuration */ 12121 rc = bxe_del_all_macs(sc, mac_obj, ECORE_UC_LIST_MAC, FALSE); 12122 if (rc < 0) { 12123 BLOGE(sc, "Failed to schedule delete of all ETH MACs (%d)\n", rc); 12124 #if __FreeBSD_version < 800000 12125 IF_ADDR_UNLOCK(ifp); 12126 #else 12127 if_addr_runlock(ifp); 12128 #endif 12129 return (rc); 12130 } 12131 12132 ifa = if_getifaddr(ifp); /* XXX Is this structure */ 12133 while (ifa) { 12134 if (ifa->ifa_addr->sa_family != AF_LINK) { 12135 ifa = TAILQ_NEXT(ifa, ifa_link); 12136 continue; 12137 } 12138 12139 rc = bxe_set_mac_one(sc, (uint8_t *)LLADDR((struct sockaddr_dl *)ifa->ifa_addr), 12140 mac_obj, TRUE, ECORE_UC_LIST_MAC, &ramrod_flags); 12141 if (rc == -EEXIST) { 12142 BLOGD(sc, DBG_SP, "Failed to schedule ADD operations (EEXIST)\n"); 12143 /* do not treat adding same MAC as an error */ 12144 rc = 0; 12145 } else if (rc < 0) { 12146 BLOGE(sc, "Failed to schedule ADD operations (%d)\n", rc); 12147 #if __FreeBSD_version < 800000 12148 IF_ADDR_UNLOCK(ifp); 12149 #else 12150 if_addr_runlock(ifp); 12151 #endif 12152 return (rc); 12153 } 12154 12155 ifa = TAILQ_NEXT(ifa, ifa_link); 12156 } 12157 12158 #if __FreeBSD_version < 800000 12159 IF_ADDR_UNLOCK(ifp); 12160 #else 12161 if_addr_runlock(ifp); 12162 #endif 12163 12164 /* Execute the pending commands */ 12165 bit_set(&ramrod_flags, RAMROD_CONT); 12166 return (bxe_set_mac_one(sc, NULL, mac_obj, FALSE /* don't care */, 12167 ECORE_UC_LIST_MAC, &ramrod_flags)); 12168 } 12169 12170 static void 12171 bxe_set_rx_mode(struct bxe_softc *sc) 12172 { 12173 if_t ifp = sc->ifp; 12174 uint32_t rx_mode = BXE_RX_MODE_NORMAL; 12175 12176 if (sc->state != BXE_STATE_OPEN) { 12177 BLOGD(sc, DBG_SP, "state is %x, returning\n", sc->state); 12178 return; 12179 } 12180 12181 BLOGD(sc, DBG_SP, "if_flags(ifp)=0x%x\n", if_getflags(sc->ifp)); 12182 12183 if (if_getflags(ifp) & IFF_PROMISC) { 12184 rx_mode = BXE_RX_MODE_PROMISC; 12185 } else if ((if_getflags(ifp) & IFF_ALLMULTI) || 12186 ((if_getamcount(ifp) > BXE_MAX_MULTICAST) && 12187 CHIP_IS_E1(sc))) { 12188 rx_mode = BXE_RX_MODE_ALLMULTI; 12189 } else { 12190 if (IS_PF(sc)) { 12191 /* some multicasts */ 12192 if (bxe_set_mc_list(sc) < 0) { 12193 rx_mode = BXE_RX_MODE_ALLMULTI; 12194 } 12195 if (bxe_set_uc_list(sc) < 0) { 12196 rx_mode = BXE_RX_MODE_PROMISC; 12197 } 12198 } 12199 } 12200 12201 sc->rx_mode = rx_mode; 12202 12203 /* schedule the rx_mode command */ 12204 if (bxe_test_bit(ECORE_FILTER_RX_MODE_PENDING, &sc->sp_state)) { 12205 BLOGD(sc, DBG_LOAD, "Scheduled setting rx_mode with ECORE...\n"); 12206 bxe_set_bit(ECORE_FILTER_RX_MODE_SCHED, &sc->sp_state); 12207 return; 12208 } 12209 12210 if (IS_PF(sc)) { 12211 bxe_set_storm_rx_mode(sc); 12212 } 12213 } 12214 12215 12216 /* update flags in shmem */ 12217 static void 12218 bxe_update_drv_flags(struct bxe_softc *sc, 12219 uint32_t flags, 12220 uint32_t set) 12221 { 12222 uint32_t drv_flags; 12223 12224 if (SHMEM2_HAS(sc, drv_flags)) { 12225 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_DRV_FLAGS); 12226 drv_flags = SHMEM2_RD(sc, drv_flags); 12227 12228 if (set) { 12229 SET_FLAGS(drv_flags, flags); 12230 } else { 12231 RESET_FLAGS(drv_flags, flags); 12232 } 12233 12234 SHMEM2_WR(sc, drv_flags, drv_flags); 12235 BLOGD(sc, DBG_LOAD, "drv_flags 0x%08x\n", drv_flags); 12236 12237 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_DRV_FLAGS); 12238 } 12239 } 12240 12241 /* periodic timer callout routine, only runs when the interface is up */ 12242 12243 static void 12244 bxe_periodic_callout_func(void *xsc) 12245 { 12246 struct bxe_softc *sc = (struct bxe_softc *)xsc; 12247 int i; 12248 12249 if (!BXE_CORE_TRYLOCK(sc)) { 12250 /* just bail and try again next time */ 12251 12252 if ((sc->state == BXE_STATE_OPEN) && 12253 (atomic_load_acq_long(&sc->periodic_flags) == PERIODIC_GO)) { 12254 /* schedule the next periodic callout */ 12255 callout_reset(&sc->periodic_callout, hz, 12256 bxe_periodic_callout_func, sc); 12257 } 12258 12259 return; 12260 } 12261 12262 if ((sc->state != BXE_STATE_OPEN) || 12263 (atomic_load_acq_long(&sc->periodic_flags) == PERIODIC_STOP)) { 12264 BLOGW(sc, "periodic callout exit (state=0x%x)\n", sc->state); 12265 BXE_CORE_UNLOCK(sc); 12266 return; 12267 } 12268 12269 /* Check for TX timeouts on any fastpath. */ 12270 FOR_EACH_QUEUE(sc, i) { 12271 if (bxe_watchdog(sc, &sc->fp[i]) != 0) { 12272 /* Ruh-Roh, chip was reset! */ 12273 break; 12274 } 12275 } 12276 12277 if (!CHIP_REV_IS_SLOW(sc)) { 12278 /* 12279 * This barrier is needed to ensure the ordering between the writing 12280 * to the sc->port.pmf in the bxe_nic_load() or bxe_pmf_update() and 12281 * the reading here. 12282 */ 12283 mb(); 12284 if (sc->port.pmf) { 12285 bxe_acquire_phy_lock(sc); 12286 elink_period_func(&sc->link_params, &sc->link_vars); 12287 bxe_release_phy_lock(sc); 12288 } 12289 } 12290 12291 if (IS_PF(sc) && !(sc->flags & BXE_NO_PULSE)) { 12292 int mb_idx = SC_FW_MB_IDX(sc); 12293 uint32_t drv_pulse; 12294 uint32_t mcp_pulse; 12295 12296 ++sc->fw_drv_pulse_wr_seq; 12297 sc->fw_drv_pulse_wr_seq &= DRV_PULSE_SEQ_MASK; 12298 12299 drv_pulse = sc->fw_drv_pulse_wr_seq; 12300 bxe_drv_pulse(sc); 12301 12302 mcp_pulse = (SHMEM_RD(sc, func_mb[mb_idx].mcp_pulse_mb) & 12303 MCP_PULSE_SEQ_MASK); 12304 12305 /* 12306 * The delta between driver pulse and mcp response should 12307 * be 1 (before mcp response) or 0 (after mcp response). 12308 */ 12309 if ((drv_pulse != mcp_pulse) && 12310 (drv_pulse != ((mcp_pulse + 1) & MCP_PULSE_SEQ_MASK))) { 12311 /* someone lost a heartbeat... */ 12312 BLOGE(sc, "drv_pulse (0x%x) != mcp_pulse (0x%x)\n", 12313 drv_pulse, mcp_pulse); 12314 } 12315 } 12316 12317 /* state is BXE_STATE_OPEN */ 12318 bxe_stats_handle(sc, STATS_EVENT_UPDATE); 12319 12320 BXE_CORE_UNLOCK(sc); 12321 12322 if ((sc->state == BXE_STATE_OPEN) && 12323 (atomic_load_acq_long(&sc->periodic_flags) == PERIODIC_GO)) { 12324 /* schedule the next periodic callout */ 12325 callout_reset(&sc->periodic_callout, hz, 12326 bxe_periodic_callout_func, sc); 12327 } 12328 } 12329 12330 static void 12331 bxe_periodic_start(struct bxe_softc *sc) 12332 { 12333 atomic_store_rel_long(&sc->periodic_flags, PERIODIC_GO); 12334 callout_reset(&sc->periodic_callout, hz, bxe_periodic_callout_func, sc); 12335 } 12336 12337 static void 12338 bxe_periodic_stop(struct bxe_softc *sc) 12339 { 12340 atomic_store_rel_long(&sc->periodic_flags, PERIODIC_STOP); 12341 callout_drain(&sc->periodic_callout); 12342 } 12343 12344 /* start the controller */ 12345 static __noinline int 12346 bxe_nic_load(struct bxe_softc *sc, 12347 int load_mode) 12348 { 12349 uint32_t val; 12350 int load_code = 0; 12351 int i, rc = 0; 12352 12353 BXE_CORE_LOCK_ASSERT(sc); 12354 12355 BLOGD(sc, DBG_LOAD, "Starting NIC load...\n"); 12356 12357 sc->state = BXE_STATE_OPENING_WAITING_LOAD; 12358 12359 if (IS_PF(sc)) { 12360 /* must be called before memory allocation and HW init */ 12361 bxe_ilt_set_info(sc); 12362 } 12363 12364 sc->last_reported_link_state = LINK_STATE_UNKNOWN; 12365 12366 bxe_set_fp_rx_buf_size(sc); 12367 12368 if (bxe_alloc_fp_buffers(sc) != 0) { 12369 BLOGE(sc, "Failed to allocate fastpath memory\n"); 12370 sc->state = BXE_STATE_CLOSED; 12371 rc = ENOMEM; 12372 goto bxe_nic_load_error0; 12373 } 12374 12375 if (bxe_alloc_mem(sc) != 0) { 12376 sc->state = BXE_STATE_CLOSED; 12377 rc = ENOMEM; 12378 goto bxe_nic_load_error0; 12379 } 12380 12381 if (bxe_alloc_fw_stats_mem(sc) != 0) { 12382 sc->state = BXE_STATE_CLOSED; 12383 rc = ENOMEM; 12384 goto bxe_nic_load_error0; 12385 } 12386 12387 if (IS_PF(sc)) { 12388 /* set pf load just before approaching the MCP */ 12389 bxe_set_pf_load(sc); 12390 12391 /* if MCP exists send load request and analyze response */ 12392 if (!BXE_NOMCP(sc)) { 12393 /* attempt to load pf */ 12394 if (bxe_nic_load_request(sc, &load_code) != 0) { 12395 sc->state = BXE_STATE_CLOSED; 12396 rc = ENXIO; 12397 goto bxe_nic_load_error1; 12398 } 12399 12400 /* what did the MCP say? */ 12401 if (bxe_nic_load_analyze_req(sc, load_code) != 0) { 12402 bxe_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0); 12403 sc->state = BXE_STATE_CLOSED; 12404 rc = ENXIO; 12405 goto bxe_nic_load_error2; 12406 } 12407 } else { 12408 BLOGI(sc, "Device has no MCP!\n"); 12409 load_code = bxe_nic_load_no_mcp(sc); 12410 } 12411 12412 /* mark PMF if applicable */ 12413 bxe_nic_load_pmf(sc, load_code); 12414 12415 /* Init Function state controlling object */ 12416 bxe_init_func_obj(sc); 12417 12418 /* Initialize HW */ 12419 if (bxe_init_hw(sc, load_code) != 0) { 12420 BLOGE(sc, "HW init failed\n"); 12421 bxe_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0); 12422 sc->state = BXE_STATE_CLOSED; 12423 rc = ENXIO; 12424 goto bxe_nic_load_error2; 12425 } 12426 } 12427 12428 /* set ALWAYS_ALIVE bit in shmem */ 12429 sc->fw_drv_pulse_wr_seq |= DRV_PULSE_ALWAYS_ALIVE; 12430 bxe_drv_pulse(sc); 12431 sc->flags |= BXE_NO_PULSE; 12432 12433 /* attach interrupts */ 12434 if (bxe_interrupt_attach(sc) != 0) { 12435 sc->state = BXE_STATE_CLOSED; 12436 rc = ENXIO; 12437 goto bxe_nic_load_error2; 12438 } 12439 12440 bxe_nic_init(sc, load_code); 12441 12442 /* Init per-function objects */ 12443 if (IS_PF(sc)) { 12444 bxe_init_objs(sc); 12445 // XXX bxe_iov_nic_init(sc); 12446 12447 /* set AFEX default VLAN tag to an invalid value */ 12448 sc->devinfo.mf_info.afex_def_vlan_tag = -1; 12449 // XXX bxe_nic_load_afex_dcc(sc, load_code); 12450 12451 sc->state = BXE_STATE_OPENING_WAITING_PORT; 12452 rc = bxe_func_start(sc); 12453 if (rc) { 12454 BLOGE(sc, "Function start failed! rc = %d\n", rc); 12455 bxe_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0); 12456 sc->state = BXE_STATE_ERROR; 12457 goto bxe_nic_load_error3; 12458 } 12459 12460 /* send LOAD_DONE command to MCP */ 12461 if (!BXE_NOMCP(sc)) { 12462 load_code = bxe_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0); 12463 if (!load_code) { 12464 BLOGE(sc, "MCP response failure, aborting\n"); 12465 sc->state = BXE_STATE_ERROR; 12466 rc = ENXIO; 12467 goto bxe_nic_load_error3; 12468 } 12469 } 12470 12471 rc = bxe_setup_leading(sc); 12472 if (rc) { 12473 BLOGE(sc, "Setup leading failed! rc = %d\n", rc); 12474 sc->state = BXE_STATE_ERROR; 12475 goto bxe_nic_load_error3; 12476 } 12477 12478 FOR_EACH_NONDEFAULT_ETH_QUEUE(sc, i) { 12479 rc = bxe_setup_queue(sc, &sc->fp[i], FALSE); 12480 if (rc) { 12481 BLOGE(sc, "Queue(%d) setup failed rc = %d\n", i, rc); 12482 sc->state = BXE_STATE_ERROR; 12483 goto bxe_nic_load_error3; 12484 } 12485 } 12486 12487 rc = bxe_init_rss_pf(sc); 12488 if (rc) { 12489 BLOGE(sc, "PF RSS init failed\n"); 12490 sc->state = BXE_STATE_ERROR; 12491 goto bxe_nic_load_error3; 12492 } 12493 } 12494 /* XXX VF */ 12495 12496 /* now when Clients are configured we are ready to work */ 12497 sc->state = BXE_STATE_OPEN; 12498 12499 /* Configure a ucast MAC */ 12500 if (IS_PF(sc)) { 12501 rc = bxe_set_eth_mac(sc, TRUE); 12502 } 12503 if (rc) { 12504 BLOGE(sc, "Setting Ethernet MAC failed rc = %d\n", rc); 12505 sc->state = BXE_STATE_ERROR; 12506 goto bxe_nic_load_error3; 12507 } 12508 12509 if (sc->port.pmf) { 12510 rc = bxe_initial_phy_init(sc, /* XXX load_mode */LOAD_OPEN); 12511 if (rc) { 12512 sc->state = BXE_STATE_ERROR; 12513 goto bxe_nic_load_error3; 12514 } 12515 } 12516 12517 sc->link_params.feature_config_flags &= 12518 ~ELINK_FEATURE_CONFIG_BOOT_FROM_SAN; 12519 12520 /* start fast path */ 12521 12522 /* Initialize Rx filter */ 12523 bxe_set_rx_mode(sc); 12524 12525 /* start the Tx */ 12526 switch (/* XXX load_mode */LOAD_OPEN) { 12527 case LOAD_NORMAL: 12528 case LOAD_OPEN: 12529 break; 12530 12531 case LOAD_DIAG: 12532 case LOAD_LOOPBACK_EXT: 12533 sc->state = BXE_STATE_DIAG; 12534 break; 12535 12536 default: 12537 break; 12538 } 12539 12540 if (sc->port.pmf) { 12541 bxe_update_drv_flags(sc, 1 << DRV_FLAGS_PORT_MASK, 0); 12542 } else { 12543 bxe_link_status_update(sc); 12544 } 12545 12546 /* start the periodic timer callout */ 12547 bxe_periodic_start(sc); 12548 12549 if (IS_PF(sc) && SHMEM2_HAS(sc, drv_capabilities_flag)) { 12550 /* mark driver is loaded in shmem2 */ 12551 val = SHMEM2_RD(sc, drv_capabilities_flag[SC_FW_MB_IDX(sc)]); 12552 SHMEM2_WR(sc, drv_capabilities_flag[SC_FW_MB_IDX(sc)], 12553 (val | 12554 DRV_FLAGS_CAPABILITIES_LOADED_SUPPORTED | 12555 DRV_FLAGS_CAPABILITIES_LOADED_L2)); 12556 } 12557 12558 /* wait for all pending SP commands to complete */ 12559 if (IS_PF(sc) && !bxe_wait_sp_comp(sc, ~0x0UL)) { 12560 BLOGE(sc, "Timeout waiting for all SPs to complete!\n"); 12561 bxe_periodic_stop(sc); 12562 bxe_nic_unload(sc, UNLOAD_CLOSE, FALSE); 12563 return (ENXIO); 12564 } 12565 12566 /* Tell the stack the driver is running! */ 12567 if_setdrvflags(sc->ifp, IFF_DRV_RUNNING); 12568 12569 BLOGD(sc, DBG_LOAD, "NIC successfully loaded\n"); 12570 12571 return (0); 12572 12573 bxe_nic_load_error3: 12574 12575 if (IS_PF(sc)) { 12576 bxe_int_disable_sync(sc, 1); 12577 12578 /* clean out queued objects */ 12579 bxe_squeeze_objects(sc); 12580 } 12581 12582 bxe_interrupt_detach(sc); 12583 12584 bxe_nic_load_error2: 12585 12586 if (IS_PF(sc) && !BXE_NOMCP(sc)) { 12587 bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP, 0); 12588 bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_DONE, 0); 12589 } 12590 12591 sc->port.pmf = 0; 12592 12593 bxe_nic_load_error1: 12594 12595 /* clear pf_load status, as it was already set */ 12596 if (IS_PF(sc)) { 12597 bxe_clear_pf_load(sc); 12598 } 12599 12600 bxe_nic_load_error0: 12601 12602 bxe_free_fw_stats_mem(sc); 12603 bxe_free_fp_buffers(sc); 12604 bxe_free_mem(sc); 12605 12606 return (rc); 12607 } 12608 12609 static int 12610 bxe_init_locked(struct bxe_softc *sc) 12611 { 12612 int other_engine = SC_PATH(sc) ? 0 : 1; 12613 uint8_t other_load_status, load_status; 12614 uint8_t global = FALSE; 12615 int rc; 12616 12617 BXE_CORE_LOCK_ASSERT(sc); 12618 12619 /* check if the driver is already running */ 12620 if (if_getdrvflags(sc->ifp) & IFF_DRV_RUNNING) { 12621 BLOGD(sc, DBG_LOAD, "Init called while driver is running!\n"); 12622 return (0); 12623 } 12624 12625 bxe_set_power_state(sc, PCI_PM_D0); 12626 12627 /* 12628 * If parity occurred during the unload, then attentions and/or 12629 * RECOVERY_IN_PROGRES may still be set. If so we want the first function 12630 * loaded on the current engine to complete the recovery. Parity recovery 12631 * is only relevant for PF driver. 12632 */ 12633 if (IS_PF(sc)) { 12634 other_load_status = bxe_get_load_status(sc, other_engine); 12635 load_status = bxe_get_load_status(sc, SC_PATH(sc)); 12636 12637 if (!bxe_reset_is_done(sc, SC_PATH(sc)) || 12638 bxe_chk_parity_attn(sc, &global, TRUE)) { 12639 do { 12640 /* 12641 * If there are attentions and they are in global blocks, set 12642 * the GLOBAL_RESET bit regardless whether it will be this 12643 * function that will complete the recovery or not. 12644 */ 12645 if (global) { 12646 bxe_set_reset_global(sc); 12647 } 12648 12649 /* 12650 * Only the first function on the current engine should try 12651 * to recover in open. In case of attentions in global blocks 12652 * only the first in the chip should try to recover. 12653 */ 12654 if ((!load_status && (!global || !other_load_status)) && 12655 bxe_trylock_leader_lock(sc) && !bxe_leader_reset(sc)) { 12656 BLOGI(sc, "Recovered during init\n"); 12657 break; 12658 } 12659 12660 /* recovery has failed... */ 12661 bxe_set_power_state(sc, PCI_PM_D3hot); 12662 sc->recovery_state = BXE_RECOVERY_FAILED; 12663 12664 BLOGE(sc, "Recovery flow hasn't properly " 12665 "completed yet, try again later. " 12666 "If you still see this message after a " 12667 "few retries then power cycle is required.\n"); 12668 12669 rc = ENXIO; 12670 goto bxe_init_locked_done; 12671 } while (0); 12672 } 12673 } 12674 12675 sc->recovery_state = BXE_RECOVERY_DONE; 12676 12677 rc = bxe_nic_load(sc, LOAD_OPEN); 12678 12679 bxe_init_locked_done: 12680 12681 if (rc) { 12682 /* Tell the stack the driver is NOT running! */ 12683 BLOGE(sc, "Initialization failed, " 12684 "stack notified driver is NOT running!\n"); 12685 if_setdrvflagbits(sc->ifp, 0, IFF_DRV_RUNNING); 12686 } 12687 12688 return (rc); 12689 } 12690 12691 static int 12692 bxe_stop_locked(struct bxe_softc *sc) 12693 { 12694 BXE_CORE_LOCK_ASSERT(sc); 12695 return (bxe_nic_unload(sc, UNLOAD_NORMAL, TRUE)); 12696 } 12697 12698 /* 12699 * Handles controller initialization when called from an unlocked routine. 12700 * ifconfig calls this function. 12701 * 12702 * Returns: 12703 * void 12704 */ 12705 static void 12706 bxe_init(void *xsc) 12707 { 12708 struct bxe_softc *sc = (struct bxe_softc *)xsc; 12709 12710 BXE_CORE_LOCK(sc); 12711 bxe_init_locked(sc); 12712 BXE_CORE_UNLOCK(sc); 12713 } 12714 12715 static int 12716 bxe_init_ifnet(struct bxe_softc *sc) 12717 { 12718 if_t ifp; 12719 int capabilities; 12720 12721 /* ifconfig entrypoint for media type/status reporting */ 12722 ifmedia_init(&sc->ifmedia, IFM_IMASK, 12723 bxe_ifmedia_update, 12724 bxe_ifmedia_status); 12725 12726 /* set the default interface values */ 12727 ifmedia_add(&sc->ifmedia, (IFM_ETHER | IFM_FDX | sc->media), 0, NULL); 12728 ifmedia_add(&sc->ifmedia, (IFM_ETHER | IFM_AUTO), 0, NULL); 12729 ifmedia_set(&sc->ifmedia, (IFM_ETHER | IFM_AUTO)); 12730 12731 sc->ifmedia.ifm_media = sc->ifmedia.ifm_cur->ifm_media; /* XXX ? */ 12732 12733 /* allocate the ifnet structure */ 12734 if ((ifp = if_gethandle(IFT_ETHER)) == NULL) { 12735 BLOGE(sc, "Interface allocation failed!\n"); 12736 return (ENXIO); 12737 } 12738 12739 if_setsoftc(ifp, sc); 12740 if_initname(ifp, device_get_name(sc->dev), device_get_unit(sc->dev)); 12741 if_setflags(ifp, (IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST)); 12742 if_setioctlfn(ifp, bxe_ioctl); 12743 if_setstartfn(ifp, bxe_tx_start); 12744 if_setgetcounterfn(ifp, bxe_get_counter); 12745 #if __FreeBSD_version >= 800000 12746 if_settransmitfn(ifp, bxe_tx_mq_start); 12747 if_setqflushfn(ifp, bxe_mq_flush); 12748 #endif 12749 #ifdef FreeBSD8_0 12750 if_settimer(ifp, 0); 12751 #endif 12752 if_setinitfn(ifp, bxe_init); 12753 if_setmtu(ifp, sc->mtu); 12754 if_sethwassist(ifp, (CSUM_IP | 12755 CSUM_TCP | 12756 CSUM_UDP | 12757 CSUM_TSO | 12758 CSUM_TCP_IPV6 | 12759 CSUM_UDP_IPV6)); 12760 12761 capabilities = 12762 #if __FreeBSD_version < 700000 12763 (IFCAP_VLAN_MTU | 12764 IFCAP_VLAN_HWTAGGING | 12765 IFCAP_HWCSUM | 12766 IFCAP_JUMBO_MTU | 12767 IFCAP_LRO); 12768 #else 12769 (IFCAP_VLAN_MTU | 12770 IFCAP_VLAN_HWTAGGING | 12771 IFCAP_VLAN_HWTSO | 12772 IFCAP_VLAN_HWFILTER | 12773 IFCAP_VLAN_HWCSUM | 12774 IFCAP_HWCSUM | 12775 IFCAP_JUMBO_MTU | 12776 IFCAP_LRO | 12777 IFCAP_TSO4 | 12778 IFCAP_TSO6 | 12779 IFCAP_WOL_MAGIC); 12780 #endif 12781 if_setcapabilitiesbit(ifp, capabilities, 0); /* XXX */ 12782 if_setbaudrate(ifp, IF_Gbps(10)); 12783 /* XXX */ 12784 if_setsendqlen(ifp, sc->tx_ring_size); 12785 if_setsendqready(ifp); 12786 /* XXX */ 12787 12788 sc->ifp = ifp; 12789 12790 /* attach to the Ethernet interface list */ 12791 ether_ifattach(ifp, sc->link_params.mac_addr); 12792 12793 return (0); 12794 } 12795 12796 static void 12797 bxe_deallocate_bars(struct bxe_softc *sc) 12798 { 12799 int i; 12800 12801 for (i = 0; i < MAX_BARS; i++) { 12802 if (sc->bar[i].resource != NULL) { 12803 bus_release_resource(sc->dev, 12804 SYS_RES_MEMORY, 12805 sc->bar[i].rid, 12806 sc->bar[i].resource); 12807 BLOGD(sc, DBG_LOAD, "Released PCI BAR%d [%02x] memory\n", 12808 i, PCIR_BAR(i)); 12809 } 12810 } 12811 } 12812 12813 static int 12814 bxe_allocate_bars(struct bxe_softc *sc) 12815 { 12816 u_int flags; 12817 int i; 12818 12819 memset(sc->bar, 0, sizeof(sc->bar)); 12820 12821 for (i = 0; i < MAX_BARS; i++) { 12822 12823 /* memory resources reside at BARs 0, 2, 4 */ 12824 /* Run `pciconf -lb` to see mappings */ 12825 if ((i != 0) && (i != 2) && (i != 4)) { 12826 continue; 12827 } 12828 12829 sc->bar[i].rid = PCIR_BAR(i); 12830 12831 flags = RF_ACTIVE; 12832 if (i == 0) { 12833 flags |= RF_SHAREABLE; 12834 } 12835 12836 if ((sc->bar[i].resource = 12837 bus_alloc_resource_any(sc->dev, 12838 SYS_RES_MEMORY, 12839 &sc->bar[i].rid, 12840 flags)) == NULL) { 12841 return (0); 12842 } 12843 12844 sc->bar[i].tag = rman_get_bustag(sc->bar[i].resource); 12845 sc->bar[i].handle = rman_get_bushandle(sc->bar[i].resource); 12846 sc->bar[i].kva = (vm_offset_t)rman_get_virtual(sc->bar[i].resource); 12847 12848 BLOGI(sc, "PCI BAR%d [%02x] memory allocated: %p-%p (%ld) -> %p\n", 12849 i, PCIR_BAR(i), 12850 (void *)rman_get_start(sc->bar[i].resource), 12851 (void *)rman_get_end(sc->bar[i].resource), 12852 rman_get_size(sc->bar[i].resource), 12853 (void *)sc->bar[i].kva); 12854 } 12855 12856 return (0); 12857 } 12858 12859 static void 12860 bxe_get_function_num(struct bxe_softc *sc) 12861 { 12862 uint32_t val = 0; 12863 12864 /* 12865 * Read the ME register to get the function number. The ME register 12866 * holds the relative-function number and absolute-function number. The 12867 * absolute-function number appears only in E2 and above. Before that 12868 * these bits always contained zero, therefore we cannot blindly use them. 12869 */ 12870 12871 val = REG_RD(sc, BAR_ME_REGISTER); 12872 12873 sc->pfunc_rel = 12874 (uint8_t)((val & ME_REG_PF_NUM) >> ME_REG_PF_NUM_SHIFT); 12875 sc->path_id = 12876 (uint8_t)((val & ME_REG_ABS_PF_NUM) >> ME_REG_ABS_PF_NUM_SHIFT) & 1; 12877 12878 if (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) { 12879 sc->pfunc_abs = ((sc->pfunc_rel << 1) | sc->path_id); 12880 } else { 12881 sc->pfunc_abs = (sc->pfunc_rel | sc->path_id); 12882 } 12883 12884 BLOGD(sc, DBG_LOAD, 12885 "Relative function %d, Absolute function %d, Path %d\n", 12886 sc->pfunc_rel, sc->pfunc_abs, sc->path_id); 12887 } 12888 12889 static uint32_t 12890 bxe_get_shmem_mf_cfg_base(struct bxe_softc *sc) 12891 { 12892 uint32_t shmem2_size; 12893 uint32_t offset; 12894 uint32_t mf_cfg_offset_value; 12895 12896 /* Non 57712 */ 12897 offset = (SHMEM_RD(sc, func_mb) + 12898 (MAX_FUNC_NUM * sizeof(struct drv_func_mb))); 12899 12900 /* 57712 plus */ 12901 if (sc->devinfo.shmem2_base != 0) { 12902 shmem2_size = SHMEM2_RD(sc, size); 12903 if (shmem2_size > offsetof(struct shmem2_region, mf_cfg_addr)) { 12904 mf_cfg_offset_value = SHMEM2_RD(sc, mf_cfg_addr); 12905 if (SHMEM_MF_CFG_ADDR_NONE != mf_cfg_offset_value) { 12906 offset = mf_cfg_offset_value; 12907 } 12908 } 12909 } 12910 12911 return (offset); 12912 } 12913 12914 static uint32_t 12915 bxe_pcie_capability_read(struct bxe_softc *sc, 12916 int reg, 12917 int width) 12918 { 12919 int pcie_reg; 12920 12921 /* ensure PCIe capability is enabled */ 12922 if (pci_find_cap(sc->dev, PCIY_EXPRESS, &pcie_reg) == 0) { 12923 if (pcie_reg != 0) { 12924 BLOGD(sc, DBG_LOAD, "PCIe capability at 0x%04x\n", pcie_reg); 12925 return (pci_read_config(sc->dev, (pcie_reg + reg), width)); 12926 } 12927 } 12928 12929 BLOGE(sc, "PCIe capability NOT FOUND!!!\n"); 12930 12931 return (0); 12932 } 12933 12934 static uint8_t 12935 bxe_is_pcie_pending(struct bxe_softc *sc) 12936 { 12937 return (bxe_pcie_capability_read(sc, PCIR_EXPRESS_DEVICE_STA, 2) & 12938 PCIM_EXP_STA_TRANSACTION_PND); 12939 } 12940 12941 /* 12942 * Walk the PCI capabiites list for the device to find what features are 12943 * supported. These capabilites may be enabled/disabled by firmware so it's 12944 * best to walk the list rather than make assumptions. 12945 */ 12946 static void 12947 bxe_probe_pci_caps(struct bxe_softc *sc) 12948 { 12949 uint16_t link_status; 12950 int reg; 12951 12952 /* check if PCI Power Management is enabled */ 12953 if (pci_find_cap(sc->dev, PCIY_PMG, ®) == 0) { 12954 if (reg != 0) { 12955 BLOGD(sc, DBG_LOAD, "Found PM capability at 0x%04x\n", reg); 12956 12957 sc->devinfo.pcie_cap_flags |= BXE_PM_CAPABLE_FLAG; 12958 sc->devinfo.pcie_pm_cap_reg = (uint16_t)reg; 12959 } 12960 } 12961 12962 link_status = bxe_pcie_capability_read(sc, PCIR_EXPRESS_LINK_STA, 2); 12963 12964 /* handle PCIe 2.0 workarounds for 57710 */ 12965 if (CHIP_IS_E1(sc)) { 12966 /* workaround for 57710 errata E4_57710_27462 */ 12967 sc->devinfo.pcie_link_speed = 12968 (REG_RD(sc, 0x3d04) & (1 << 24)) ? 2 : 1; 12969 12970 /* workaround for 57710 errata E4_57710_27488 */ 12971 sc->devinfo.pcie_link_width = 12972 ((link_status & PCIM_LINK_STA_WIDTH) >> 4); 12973 if (sc->devinfo.pcie_link_speed > 1) { 12974 sc->devinfo.pcie_link_width = 12975 ((link_status & PCIM_LINK_STA_WIDTH) >> 4) >> 1; 12976 } 12977 } else { 12978 sc->devinfo.pcie_link_speed = 12979 (link_status & PCIM_LINK_STA_SPEED); 12980 sc->devinfo.pcie_link_width = 12981 ((link_status & PCIM_LINK_STA_WIDTH) >> 4); 12982 } 12983 12984 BLOGD(sc, DBG_LOAD, "PCIe link speed=%d width=%d\n", 12985 sc->devinfo.pcie_link_speed, sc->devinfo.pcie_link_width); 12986 12987 sc->devinfo.pcie_cap_flags |= BXE_PCIE_CAPABLE_FLAG; 12988 sc->devinfo.pcie_pcie_cap_reg = (uint16_t)reg; 12989 12990 /* check if MSI capability is enabled */ 12991 if (pci_find_cap(sc->dev, PCIY_MSI, ®) == 0) { 12992 if (reg != 0) { 12993 BLOGD(sc, DBG_LOAD, "Found MSI capability at 0x%04x\n", reg); 12994 12995 sc->devinfo.pcie_cap_flags |= BXE_MSI_CAPABLE_FLAG; 12996 sc->devinfo.pcie_msi_cap_reg = (uint16_t)reg; 12997 } 12998 } 12999 13000 /* check if MSI-X capability is enabled */ 13001 if (pci_find_cap(sc->dev, PCIY_MSIX, ®) == 0) { 13002 if (reg != 0) { 13003 BLOGD(sc, DBG_LOAD, "Found MSI-X capability at 0x%04x\n", reg); 13004 13005 sc->devinfo.pcie_cap_flags |= BXE_MSIX_CAPABLE_FLAG; 13006 sc->devinfo.pcie_msix_cap_reg = (uint16_t)reg; 13007 } 13008 } 13009 } 13010 13011 static int 13012 bxe_get_shmem_mf_cfg_info_sd(struct bxe_softc *sc) 13013 { 13014 struct bxe_mf_info *mf_info = &sc->devinfo.mf_info; 13015 uint32_t val; 13016 13017 /* get the outer vlan if we're in switch-dependent mode */ 13018 13019 val = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].e1hov_tag); 13020 mf_info->ext_id = (uint16_t)val; 13021 13022 mf_info->multi_vnics_mode = 1; 13023 13024 if (!VALID_OVLAN(mf_info->ext_id)) { 13025 BLOGE(sc, "Invalid VLAN (%d)\n", mf_info->ext_id); 13026 return (1); 13027 } 13028 13029 /* get the capabilities */ 13030 if ((mf_info->mf_config[SC_VN(sc)] & FUNC_MF_CFG_PROTOCOL_MASK) == 13031 FUNC_MF_CFG_PROTOCOL_ISCSI) { 13032 mf_info->mf_protos_supported |= MF_PROTO_SUPPORT_ISCSI; 13033 } else if ((mf_info->mf_config[SC_VN(sc)] & FUNC_MF_CFG_PROTOCOL_MASK) == 13034 FUNC_MF_CFG_PROTOCOL_FCOE) { 13035 mf_info->mf_protos_supported |= MF_PROTO_SUPPORT_FCOE; 13036 } else { 13037 mf_info->mf_protos_supported |= MF_PROTO_SUPPORT_ETHERNET; 13038 } 13039 13040 mf_info->vnics_per_port = 13041 (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) ? 2 : 4; 13042 13043 return (0); 13044 } 13045 13046 static uint32_t 13047 bxe_get_shmem_ext_proto_support_flags(struct bxe_softc *sc) 13048 { 13049 uint32_t retval = 0; 13050 uint32_t val; 13051 13052 val = MFCFG_RD(sc, func_ext_config[SC_ABS_FUNC(sc)].func_cfg); 13053 13054 if (val & MACP_FUNC_CFG_FLAGS_ENABLED) { 13055 if (val & MACP_FUNC_CFG_FLAGS_ETHERNET) { 13056 retval |= MF_PROTO_SUPPORT_ETHERNET; 13057 } 13058 if (val & MACP_FUNC_CFG_FLAGS_ISCSI_OFFLOAD) { 13059 retval |= MF_PROTO_SUPPORT_ISCSI; 13060 } 13061 if (val & MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD) { 13062 retval |= MF_PROTO_SUPPORT_FCOE; 13063 } 13064 } 13065 13066 return (retval); 13067 } 13068 13069 static int 13070 bxe_get_shmem_mf_cfg_info_si(struct bxe_softc *sc) 13071 { 13072 struct bxe_mf_info *mf_info = &sc->devinfo.mf_info; 13073 uint32_t val; 13074 13075 /* 13076 * There is no outer vlan if we're in switch-independent mode. 13077 * If the mac is valid then assume multi-function. 13078 */ 13079 13080 val = MFCFG_RD(sc, func_ext_config[SC_ABS_FUNC(sc)].func_cfg); 13081 13082 mf_info->multi_vnics_mode = ((val & MACP_FUNC_CFG_FLAGS_MASK) != 0); 13083 13084 mf_info->mf_protos_supported = bxe_get_shmem_ext_proto_support_flags(sc); 13085 13086 mf_info->vnics_per_port = 13087 (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) ? 2 : 4; 13088 13089 return (0); 13090 } 13091 13092 static int 13093 bxe_get_shmem_mf_cfg_info_niv(struct bxe_softc *sc) 13094 { 13095 struct bxe_mf_info *mf_info = &sc->devinfo.mf_info; 13096 uint32_t e1hov_tag; 13097 uint32_t func_config; 13098 uint32_t niv_config; 13099 13100 mf_info->multi_vnics_mode = 1; 13101 13102 e1hov_tag = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].e1hov_tag); 13103 func_config = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].config); 13104 niv_config = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].afex_config); 13105 13106 mf_info->ext_id = 13107 (uint16_t)((e1hov_tag & FUNC_MF_CFG_E1HOV_TAG_MASK) >> 13108 FUNC_MF_CFG_E1HOV_TAG_SHIFT); 13109 13110 mf_info->default_vlan = 13111 (uint16_t)((e1hov_tag & FUNC_MF_CFG_AFEX_VLAN_MASK) >> 13112 FUNC_MF_CFG_AFEX_VLAN_SHIFT); 13113 13114 mf_info->niv_allowed_priorities = 13115 (uint8_t)((niv_config & FUNC_MF_CFG_AFEX_COS_FILTER_MASK) >> 13116 FUNC_MF_CFG_AFEX_COS_FILTER_SHIFT); 13117 13118 mf_info->niv_default_cos = 13119 (uint8_t)((func_config & FUNC_MF_CFG_TRANSMIT_PRIORITY_MASK) >> 13120 FUNC_MF_CFG_TRANSMIT_PRIORITY_SHIFT); 13121 13122 mf_info->afex_vlan_mode = 13123 ((niv_config & FUNC_MF_CFG_AFEX_VLAN_MODE_MASK) >> 13124 FUNC_MF_CFG_AFEX_VLAN_MODE_SHIFT); 13125 13126 mf_info->niv_mba_enabled = 13127 ((niv_config & FUNC_MF_CFG_AFEX_MBA_ENABLED_MASK) >> 13128 FUNC_MF_CFG_AFEX_MBA_ENABLED_SHIFT); 13129 13130 mf_info->mf_protos_supported = bxe_get_shmem_ext_proto_support_flags(sc); 13131 13132 mf_info->vnics_per_port = 13133 (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) ? 2 : 4; 13134 13135 return (0); 13136 } 13137 13138 static int 13139 bxe_check_valid_mf_cfg(struct bxe_softc *sc) 13140 { 13141 struct bxe_mf_info *mf_info = &sc->devinfo.mf_info; 13142 uint32_t mf_cfg1; 13143 uint32_t mf_cfg2; 13144 uint32_t ovlan1; 13145 uint32_t ovlan2; 13146 uint8_t i, j; 13147 13148 BLOGD(sc, DBG_LOAD, "MF config parameters for function %d\n", 13149 SC_PORT(sc)); 13150 BLOGD(sc, DBG_LOAD, "\tmf_config=0x%x\n", 13151 mf_info->mf_config[SC_VN(sc)]); 13152 BLOGD(sc, DBG_LOAD, "\tmulti_vnics_mode=%d\n", 13153 mf_info->multi_vnics_mode); 13154 BLOGD(sc, DBG_LOAD, "\tvnics_per_port=%d\n", 13155 mf_info->vnics_per_port); 13156 BLOGD(sc, DBG_LOAD, "\tovlan/vifid=%d\n", 13157 mf_info->ext_id); 13158 BLOGD(sc, DBG_LOAD, "\tmin_bw=%d/%d/%d/%d\n", 13159 mf_info->min_bw[0], mf_info->min_bw[1], 13160 mf_info->min_bw[2], mf_info->min_bw[3]); 13161 BLOGD(sc, DBG_LOAD, "\tmax_bw=%d/%d/%d/%d\n", 13162 mf_info->max_bw[0], mf_info->max_bw[1], 13163 mf_info->max_bw[2], mf_info->max_bw[3]); 13164 BLOGD(sc, DBG_LOAD, "\tmac_addr: %s\n", 13165 sc->mac_addr_str); 13166 13167 /* various MF mode sanity checks... */ 13168 13169 if (mf_info->mf_config[SC_VN(sc)] & FUNC_MF_CFG_FUNC_HIDE) { 13170 BLOGE(sc, "Enumerated function %d is marked as hidden\n", 13171 SC_PORT(sc)); 13172 return (1); 13173 } 13174 13175 if ((mf_info->vnics_per_port > 1) && !mf_info->multi_vnics_mode) { 13176 BLOGE(sc, "vnics_per_port=%d multi_vnics_mode=%d\n", 13177 mf_info->vnics_per_port, mf_info->multi_vnics_mode); 13178 return (1); 13179 } 13180 13181 if (mf_info->mf_mode == MULTI_FUNCTION_SD) { 13182 /* vnic id > 0 must have valid ovlan in switch-dependent mode */ 13183 if ((SC_VN(sc) > 0) && !VALID_OVLAN(OVLAN(sc))) { 13184 BLOGE(sc, "mf_mode=SD vnic_id=%d ovlan=%d\n", 13185 SC_VN(sc), OVLAN(sc)); 13186 return (1); 13187 } 13188 13189 if (!VALID_OVLAN(OVLAN(sc)) && mf_info->multi_vnics_mode) { 13190 BLOGE(sc, "mf_mode=SD multi_vnics_mode=%d ovlan=%d\n", 13191 mf_info->multi_vnics_mode, OVLAN(sc)); 13192 return (1); 13193 } 13194 13195 /* 13196 * Verify all functions are either MF or SF mode. If MF, make sure 13197 * sure that all non-hidden functions have a valid ovlan. If SF, 13198 * make sure that all non-hidden functions have an invalid ovlan. 13199 */ 13200 FOREACH_ABS_FUNC_IN_PORT(sc, i) { 13201 mf_cfg1 = MFCFG_RD(sc, func_mf_config[i].config); 13202 ovlan1 = MFCFG_RD(sc, func_mf_config[i].e1hov_tag); 13203 if (!(mf_cfg1 & FUNC_MF_CFG_FUNC_HIDE) && 13204 (((mf_info->multi_vnics_mode) && !VALID_OVLAN(ovlan1)) || 13205 ((!mf_info->multi_vnics_mode) && VALID_OVLAN(ovlan1)))) { 13206 BLOGE(sc, "mf_mode=SD function %d MF config " 13207 "mismatch, multi_vnics_mode=%d ovlan=%d\n", 13208 i, mf_info->multi_vnics_mode, ovlan1); 13209 return (1); 13210 } 13211 } 13212 13213 /* Verify all funcs on the same port each have a different ovlan. */ 13214 FOREACH_ABS_FUNC_IN_PORT(sc, i) { 13215 mf_cfg1 = MFCFG_RD(sc, func_mf_config[i].config); 13216 ovlan1 = MFCFG_RD(sc, func_mf_config[i].e1hov_tag); 13217 /* iterate from the next function on the port to the max func */ 13218 for (j = i + 2; j < MAX_FUNC_NUM; j += 2) { 13219 mf_cfg2 = MFCFG_RD(sc, func_mf_config[j].config); 13220 ovlan2 = MFCFG_RD(sc, func_mf_config[j].e1hov_tag); 13221 if (!(mf_cfg1 & FUNC_MF_CFG_FUNC_HIDE) && 13222 VALID_OVLAN(ovlan1) && 13223 !(mf_cfg2 & FUNC_MF_CFG_FUNC_HIDE) && 13224 VALID_OVLAN(ovlan2) && 13225 (ovlan1 == ovlan2)) { 13226 BLOGE(sc, "mf_mode=SD functions %d and %d " 13227 "have the same ovlan (%d)\n", 13228 i, j, ovlan1); 13229 return (1); 13230 } 13231 } 13232 } 13233 } /* MULTI_FUNCTION_SD */ 13234 13235 return (0); 13236 } 13237 13238 static int 13239 bxe_get_mf_cfg_info(struct bxe_softc *sc) 13240 { 13241 struct bxe_mf_info *mf_info = &sc->devinfo.mf_info; 13242 uint32_t val, mac_upper; 13243 uint8_t i, vnic; 13244 13245 /* initialize mf_info defaults */ 13246 mf_info->vnics_per_port = 1; 13247 mf_info->multi_vnics_mode = FALSE; 13248 mf_info->path_has_ovlan = FALSE; 13249 mf_info->mf_mode = SINGLE_FUNCTION; 13250 13251 if (!CHIP_IS_MF_CAP(sc)) { 13252 return (0); 13253 } 13254 13255 if (sc->devinfo.mf_cfg_base == SHMEM_MF_CFG_ADDR_NONE) { 13256 BLOGE(sc, "Invalid mf_cfg_base!\n"); 13257 return (1); 13258 } 13259 13260 /* get the MF mode (switch dependent / independent / single-function) */ 13261 13262 val = SHMEM_RD(sc, dev_info.shared_feature_config.config); 13263 13264 switch (val & SHARED_FEAT_CFG_FORCE_SF_MODE_MASK) 13265 { 13266 case SHARED_FEAT_CFG_FORCE_SF_MODE_SWITCH_INDEPT: 13267 13268 mac_upper = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].mac_upper); 13269 13270 /* check for legal upper mac bytes */ 13271 if (mac_upper != FUNC_MF_CFG_UPPERMAC_DEFAULT) { 13272 mf_info->mf_mode = MULTI_FUNCTION_SI; 13273 } else { 13274 BLOGE(sc, "Invalid config for Switch Independent mode\n"); 13275 } 13276 13277 break; 13278 13279 case SHARED_FEAT_CFG_FORCE_SF_MODE_MF_ALLOWED: 13280 case SHARED_FEAT_CFG_FORCE_SF_MODE_SPIO4: 13281 13282 /* get outer vlan configuration */ 13283 val = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].e1hov_tag); 13284 13285 if ((val & FUNC_MF_CFG_E1HOV_TAG_MASK) != 13286 FUNC_MF_CFG_E1HOV_TAG_DEFAULT) { 13287 mf_info->mf_mode = MULTI_FUNCTION_SD; 13288 } else { 13289 BLOGE(sc, "Invalid config for Switch Dependent mode\n"); 13290 } 13291 13292 break; 13293 13294 case SHARED_FEAT_CFG_FORCE_SF_MODE_FORCED_SF: 13295 13296 /* not in MF mode, vnics_per_port=1 and multi_vnics_mode=FALSE */ 13297 return (0); 13298 13299 case SHARED_FEAT_CFG_FORCE_SF_MODE_AFEX_MODE: 13300 13301 /* 13302 * Mark MF mode as NIV if MCP version includes NPAR-SD support 13303 * and the MAC address is valid. 13304 */ 13305 mac_upper = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].mac_upper); 13306 13307 if ((SHMEM2_HAS(sc, afex_driver_support)) && 13308 (mac_upper != FUNC_MF_CFG_UPPERMAC_DEFAULT)) { 13309 mf_info->mf_mode = MULTI_FUNCTION_AFEX; 13310 } else { 13311 BLOGE(sc, "Invalid config for AFEX mode\n"); 13312 } 13313 13314 break; 13315 13316 default: 13317 13318 BLOGE(sc, "Unknown MF mode (0x%08x)\n", 13319 (val & SHARED_FEAT_CFG_FORCE_SF_MODE_MASK)); 13320 13321 return (1); 13322 } 13323 13324 /* set path mf_mode (which could be different than function mf_mode) */ 13325 if (mf_info->mf_mode == MULTI_FUNCTION_SD) { 13326 mf_info->path_has_ovlan = TRUE; 13327 } else if (mf_info->mf_mode == SINGLE_FUNCTION) { 13328 /* 13329 * Decide on path multi vnics mode. If we're not in MF mode and in 13330 * 4-port mode, this is good enough to check vnic-0 of the other port 13331 * on the same path 13332 */ 13333 if (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) { 13334 uint8_t other_port = !(PORT_ID(sc) & 1); 13335 uint8_t abs_func_other_port = (SC_PATH(sc) + (2 * other_port)); 13336 13337 val = MFCFG_RD(sc, func_mf_config[abs_func_other_port].e1hov_tag); 13338 13339 mf_info->path_has_ovlan = VALID_OVLAN((uint16_t)val) ? 1 : 0; 13340 } 13341 } 13342 13343 if (mf_info->mf_mode == SINGLE_FUNCTION) { 13344 /* invalid MF config */ 13345 if (SC_VN(sc) >= 1) { 13346 BLOGE(sc, "VNIC ID >= 1 in SF mode\n"); 13347 return (1); 13348 } 13349 13350 return (0); 13351 } 13352 13353 /* get the MF configuration */ 13354 mf_info->mf_config[SC_VN(sc)] = 13355 MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].config); 13356 13357 switch(mf_info->mf_mode) 13358 { 13359 case MULTI_FUNCTION_SD: 13360 13361 bxe_get_shmem_mf_cfg_info_sd(sc); 13362 break; 13363 13364 case MULTI_FUNCTION_SI: 13365 13366 bxe_get_shmem_mf_cfg_info_si(sc); 13367 break; 13368 13369 case MULTI_FUNCTION_AFEX: 13370 13371 bxe_get_shmem_mf_cfg_info_niv(sc); 13372 break; 13373 13374 default: 13375 13376 BLOGE(sc, "Get MF config failed (mf_mode=0x%08x)\n", 13377 mf_info->mf_mode); 13378 return (1); 13379 } 13380 13381 /* get the congestion management parameters */ 13382 13383 vnic = 0; 13384 FOREACH_ABS_FUNC_IN_PORT(sc, i) { 13385 /* get min/max bw */ 13386 val = MFCFG_RD(sc, func_mf_config[i].config); 13387 mf_info->min_bw[vnic] = 13388 ((val & FUNC_MF_CFG_MIN_BW_MASK) >> FUNC_MF_CFG_MIN_BW_SHIFT); 13389 mf_info->max_bw[vnic] = 13390 ((val & FUNC_MF_CFG_MAX_BW_MASK) >> FUNC_MF_CFG_MAX_BW_SHIFT); 13391 vnic++; 13392 } 13393 13394 return (bxe_check_valid_mf_cfg(sc)); 13395 } 13396 13397 static int 13398 bxe_get_shmem_info(struct bxe_softc *sc) 13399 { 13400 int port; 13401 uint32_t mac_hi, mac_lo, val; 13402 13403 port = SC_PORT(sc); 13404 mac_hi = mac_lo = 0; 13405 13406 sc->link_params.sc = sc; 13407 sc->link_params.port = port; 13408 13409 /* get the hardware config info */ 13410 sc->devinfo.hw_config = 13411 SHMEM_RD(sc, dev_info.shared_hw_config.config); 13412 sc->devinfo.hw_config2 = 13413 SHMEM_RD(sc, dev_info.shared_hw_config.config2); 13414 13415 sc->link_params.hw_led_mode = 13416 ((sc->devinfo.hw_config & SHARED_HW_CFG_LED_MODE_MASK) >> 13417 SHARED_HW_CFG_LED_MODE_SHIFT); 13418 13419 /* get the port feature config */ 13420 sc->port.config = 13421 SHMEM_RD(sc, dev_info.port_feature_config[port].config), 13422 13423 /* get the link params */ 13424 sc->link_params.speed_cap_mask[0] = 13425 SHMEM_RD(sc, dev_info.port_hw_config[port].speed_capability_mask); 13426 sc->link_params.speed_cap_mask[1] = 13427 SHMEM_RD(sc, dev_info.port_hw_config[port].speed_capability_mask2); 13428 13429 /* get the lane config */ 13430 sc->link_params.lane_config = 13431 SHMEM_RD(sc, dev_info.port_hw_config[port].lane_config); 13432 13433 /* get the link config */ 13434 val = SHMEM_RD(sc, dev_info.port_feature_config[port].link_config); 13435 sc->port.link_config[ELINK_INT_PHY] = val; 13436 sc->link_params.switch_cfg = (val & PORT_FEATURE_CONNECTED_SWITCH_MASK); 13437 sc->port.link_config[ELINK_EXT_PHY1] = 13438 SHMEM_RD(sc, dev_info.port_feature_config[port].link_config2); 13439 13440 /* get the override preemphasis flag and enable it or turn it off */ 13441 val = SHMEM_RD(sc, dev_info.shared_feature_config.config); 13442 if (val & SHARED_FEAT_CFG_OVERRIDE_PREEMPHASIS_CFG_ENABLED) { 13443 sc->link_params.feature_config_flags |= 13444 ELINK_FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED; 13445 } else { 13446 sc->link_params.feature_config_flags &= 13447 ~ELINK_FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED; 13448 } 13449 13450 /* get the initial value of the link params */ 13451 sc->link_params.multi_phy_config = 13452 SHMEM_RD(sc, dev_info.port_hw_config[port].multi_phy_config); 13453 13454 /* get external phy info */ 13455 sc->port.ext_phy_config = 13456 SHMEM_RD(sc, dev_info.port_hw_config[port].external_phy_config); 13457 13458 /* get the multifunction configuration */ 13459 bxe_get_mf_cfg_info(sc); 13460 13461 /* get the mac address */ 13462 if (IS_MF(sc)) { 13463 mac_hi = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].mac_upper); 13464 mac_lo = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].mac_lower); 13465 } else { 13466 mac_hi = SHMEM_RD(sc, dev_info.port_hw_config[port].mac_upper); 13467 mac_lo = SHMEM_RD(sc, dev_info.port_hw_config[port].mac_lower); 13468 } 13469 13470 if ((mac_lo == 0) && (mac_hi == 0)) { 13471 *sc->mac_addr_str = 0; 13472 BLOGE(sc, "No Ethernet address programmed!\n"); 13473 } else { 13474 sc->link_params.mac_addr[0] = (uint8_t)(mac_hi >> 8); 13475 sc->link_params.mac_addr[1] = (uint8_t)(mac_hi); 13476 sc->link_params.mac_addr[2] = (uint8_t)(mac_lo >> 24); 13477 sc->link_params.mac_addr[3] = (uint8_t)(mac_lo >> 16); 13478 sc->link_params.mac_addr[4] = (uint8_t)(mac_lo >> 8); 13479 sc->link_params.mac_addr[5] = (uint8_t)(mac_lo); 13480 snprintf(sc->mac_addr_str, sizeof(sc->mac_addr_str), 13481 "%02x:%02x:%02x:%02x:%02x:%02x", 13482 sc->link_params.mac_addr[0], sc->link_params.mac_addr[1], 13483 sc->link_params.mac_addr[2], sc->link_params.mac_addr[3], 13484 sc->link_params.mac_addr[4], sc->link_params.mac_addr[5]); 13485 BLOGD(sc, DBG_LOAD, "Ethernet address: %s\n", sc->mac_addr_str); 13486 } 13487 13488 return (0); 13489 } 13490 13491 static void 13492 bxe_get_tunable_params(struct bxe_softc *sc) 13493 { 13494 /* sanity checks */ 13495 13496 if ((bxe_interrupt_mode != INTR_MODE_INTX) && 13497 (bxe_interrupt_mode != INTR_MODE_MSI) && 13498 (bxe_interrupt_mode != INTR_MODE_MSIX)) { 13499 BLOGW(sc, "invalid interrupt_mode value (%d)\n", bxe_interrupt_mode); 13500 bxe_interrupt_mode = INTR_MODE_MSIX; 13501 } 13502 13503 if ((bxe_queue_count < 0) || (bxe_queue_count > MAX_RSS_CHAINS)) { 13504 BLOGW(sc, "invalid queue_count value (%d)\n", bxe_queue_count); 13505 bxe_queue_count = 0; 13506 } 13507 13508 if ((bxe_max_rx_bufs < 1) || (bxe_max_rx_bufs > RX_BD_USABLE)) { 13509 if (bxe_max_rx_bufs == 0) { 13510 bxe_max_rx_bufs = RX_BD_USABLE; 13511 } else { 13512 BLOGW(sc, "invalid max_rx_bufs (%d)\n", bxe_max_rx_bufs); 13513 bxe_max_rx_bufs = 2048; 13514 } 13515 } 13516 13517 if ((bxe_hc_rx_ticks < 1) || (bxe_hc_rx_ticks > 100)) { 13518 BLOGW(sc, "invalid hc_rx_ticks (%d)\n", bxe_hc_rx_ticks); 13519 bxe_hc_rx_ticks = 25; 13520 } 13521 13522 if ((bxe_hc_tx_ticks < 1) || (bxe_hc_tx_ticks > 100)) { 13523 BLOGW(sc, "invalid hc_tx_ticks (%d)\n", bxe_hc_tx_ticks); 13524 bxe_hc_tx_ticks = 50; 13525 } 13526 13527 if (bxe_max_aggregation_size == 0) { 13528 bxe_max_aggregation_size = TPA_AGG_SIZE; 13529 } 13530 13531 if (bxe_max_aggregation_size > 0xffff) { 13532 BLOGW(sc, "invalid max_aggregation_size (%d)\n", 13533 bxe_max_aggregation_size); 13534 bxe_max_aggregation_size = TPA_AGG_SIZE; 13535 } 13536 13537 if ((bxe_mrrs < -1) || (bxe_mrrs > 3)) { 13538 BLOGW(sc, "invalid mrrs (%d)\n", bxe_mrrs); 13539 bxe_mrrs = -1; 13540 } 13541 13542 if ((bxe_autogreeen < 0) || (bxe_autogreeen > 2)) { 13543 BLOGW(sc, "invalid autogreeen (%d)\n", bxe_autogreeen); 13544 bxe_autogreeen = 0; 13545 } 13546 13547 if ((bxe_udp_rss < 0) || (bxe_udp_rss > 1)) { 13548 BLOGW(sc, "invalid udp_rss (%d)\n", bxe_udp_rss); 13549 bxe_udp_rss = 0; 13550 } 13551 13552 /* pull in user settings */ 13553 13554 sc->interrupt_mode = bxe_interrupt_mode; 13555 sc->max_rx_bufs = bxe_max_rx_bufs; 13556 sc->hc_rx_ticks = bxe_hc_rx_ticks; 13557 sc->hc_tx_ticks = bxe_hc_tx_ticks; 13558 sc->max_aggregation_size = bxe_max_aggregation_size; 13559 sc->mrrs = bxe_mrrs; 13560 sc->autogreeen = bxe_autogreeen; 13561 sc->udp_rss = bxe_udp_rss; 13562 13563 if (bxe_interrupt_mode == INTR_MODE_INTX) { 13564 sc->num_queues = 1; 13565 } else { /* INTR_MODE_MSI or INTR_MODE_MSIX */ 13566 sc->num_queues = 13567 min((bxe_queue_count ? bxe_queue_count : mp_ncpus), 13568 MAX_RSS_CHAINS); 13569 if (sc->num_queues > mp_ncpus) { 13570 sc->num_queues = mp_ncpus; 13571 } 13572 } 13573 13574 BLOGD(sc, DBG_LOAD, 13575 "User Config: " 13576 "debug=0x%lx " 13577 "interrupt_mode=%d " 13578 "queue_count=%d " 13579 "hc_rx_ticks=%d " 13580 "hc_tx_ticks=%d " 13581 "rx_budget=%d " 13582 "max_aggregation_size=%d " 13583 "mrrs=%d " 13584 "autogreeen=%d " 13585 "udp_rss=%d\n", 13586 bxe_debug, 13587 sc->interrupt_mode, 13588 sc->num_queues, 13589 sc->hc_rx_ticks, 13590 sc->hc_tx_ticks, 13591 bxe_rx_budget, 13592 sc->max_aggregation_size, 13593 sc->mrrs, 13594 sc->autogreeen, 13595 sc->udp_rss); 13596 } 13597 13598 static void 13599 bxe_media_detect(struct bxe_softc *sc) 13600 { 13601 uint32_t phy_idx = bxe_get_cur_phy_idx(sc); 13602 switch (sc->link_params.phy[phy_idx].media_type) { 13603 case ELINK_ETH_PHY_SFPP_10G_FIBER: 13604 case ELINK_ETH_PHY_XFP_FIBER: 13605 BLOGI(sc, "Found 10Gb Fiber media.\n"); 13606 sc->media = IFM_10G_SR; 13607 break; 13608 case ELINK_ETH_PHY_SFP_1G_FIBER: 13609 BLOGI(sc, "Found 1Gb Fiber media.\n"); 13610 sc->media = IFM_1000_SX; 13611 break; 13612 case ELINK_ETH_PHY_KR: 13613 case ELINK_ETH_PHY_CX4: 13614 BLOGI(sc, "Found 10GBase-CX4 media.\n"); 13615 sc->media = IFM_10G_CX4; 13616 break; 13617 case ELINK_ETH_PHY_DA_TWINAX: 13618 BLOGI(sc, "Found 10Gb Twinax media.\n"); 13619 sc->media = IFM_10G_TWINAX; 13620 break; 13621 case ELINK_ETH_PHY_BASE_T: 13622 if (sc->link_params.speed_cap_mask[0] & 13623 PORT_HW_CFG_SPEED_CAPABILITY_D0_10G) { 13624 BLOGI(sc, "Found 10GBase-T media.\n"); 13625 sc->media = IFM_10G_T; 13626 } else { 13627 BLOGI(sc, "Found 1000Base-T media.\n"); 13628 sc->media = IFM_1000_T; 13629 } 13630 break; 13631 case ELINK_ETH_PHY_NOT_PRESENT: 13632 BLOGI(sc, "Media not present.\n"); 13633 sc->media = 0; 13634 break; 13635 case ELINK_ETH_PHY_UNSPECIFIED: 13636 default: 13637 BLOGI(sc, "Unknown media!\n"); 13638 sc->media = 0; 13639 break; 13640 } 13641 } 13642 13643 #define GET_FIELD(value, fname) \ 13644 (((value) & (fname##_MASK)) >> (fname##_SHIFT)) 13645 #define IGU_FID(val) GET_FIELD((val), IGU_REG_MAPPING_MEMORY_FID) 13646 #define IGU_VEC(val) GET_FIELD((val), IGU_REG_MAPPING_MEMORY_VECTOR) 13647 13648 static int 13649 bxe_get_igu_cam_info(struct bxe_softc *sc) 13650 { 13651 int pfid = SC_FUNC(sc); 13652 int igu_sb_id; 13653 uint32_t val; 13654 uint8_t fid, igu_sb_cnt = 0; 13655 13656 sc->igu_base_sb = 0xff; 13657 13658 if (CHIP_INT_MODE_IS_BC(sc)) { 13659 int vn = SC_VN(sc); 13660 igu_sb_cnt = sc->igu_sb_cnt; 13661 sc->igu_base_sb = ((CHIP_IS_MODE_4_PORT(sc) ? pfid : vn) * 13662 FP_SB_MAX_E1x); 13663 sc->igu_dsb_id = (E1HVN_MAX * FP_SB_MAX_E1x + 13664 (CHIP_IS_MODE_4_PORT(sc) ? pfid : vn)); 13665 return (0); 13666 } 13667 13668 /* IGU in normal mode - read CAM */ 13669 for (igu_sb_id = 0; 13670 igu_sb_id < IGU_REG_MAPPING_MEMORY_SIZE; 13671 igu_sb_id++) { 13672 val = REG_RD(sc, IGU_REG_MAPPING_MEMORY + igu_sb_id * 4); 13673 if (!(val & IGU_REG_MAPPING_MEMORY_VALID)) { 13674 continue; 13675 } 13676 fid = IGU_FID(val); 13677 if ((fid & IGU_FID_ENCODE_IS_PF)) { 13678 if ((fid & IGU_FID_PF_NUM_MASK) != pfid) { 13679 continue; 13680 } 13681 if (IGU_VEC(val) == 0) { 13682 /* default status block */ 13683 sc->igu_dsb_id = igu_sb_id; 13684 } else { 13685 if (sc->igu_base_sb == 0xff) { 13686 sc->igu_base_sb = igu_sb_id; 13687 } 13688 igu_sb_cnt++; 13689 } 13690 } 13691 } 13692 13693 /* 13694 * Due to new PF resource allocation by MFW T7.4 and above, it's optional 13695 * that number of CAM entries will not be equal to the value advertised in 13696 * PCI. Driver should use the minimal value of both as the actual status 13697 * block count 13698 */ 13699 sc->igu_sb_cnt = min(sc->igu_sb_cnt, igu_sb_cnt); 13700 13701 if (igu_sb_cnt == 0) { 13702 BLOGE(sc, "CAM configuration error\n"); 13703 return (-1); 13704 } 13705 13706 return (0); 13707 } 13708 13709 /* 13710 * Gather various information from the device config space, the device itself, 13711 * shmem, and the user input. 13712 */ 13713 static int 13714 bxe_get_device_info(struct bxe_softc *sc) 13715 { 13716 uint32_t val; 13717 int rc; 13718 13719 /* Get the data for the device */ 13720 sc->devinfo.vendor_id = pci_get_vendor(sc->dev); 13721 sc->devinfo.device_id = pci_get_device(sc->dev); 13722 sc->devinfo.subvendor_id = pci_get_subvendor(sc->dev); 13723 sc->devinfo.subdevice_id = pci_get_subdevice(sc->dev); 13724 13725 /* get the chip revision (chip metal comes from pci config space) */ 13726 sc->devinfo.chip_id = 13727 sc->link_params.chip_id = 13728 (((REG_RD(sc, MISC_REG_CHIP_NUM) & 0xffff) << 16) | 13729 ((REG_RD(sc, MISC_REG_CHIP_REV) & 0xf) << 12) | 13730 (((REG_RD(sc, PCICFG_OFFSET + PCI_ID_VAL3) >> 24) & 0xf) << 4) | 13731 ((REG_RD(sc, MISC_REG_BOND_ID) & 0xf) << 0)); 13732 13733 /* force 57811 according to MISC register */ 13734 if (REG_RD(sc, MISC_REG_CHIP_TYPE) & MISC_REG_CHIP_TYPE_57811_MASK) { 13735 if (CHIP_IS_57810(sc)) { 13736 sc->devinfo.chip_id = ((CHIP_NUM_57811 << 16) | 13737 (sc->devinfo.chip_id & 0x0000ffff)); 13738 } else if (CHIP_IS_57810_MF(sc)) { 13739 sc->devinfo.chip_id = ((CHIP_NUM_57811_MF << 16) | 13740 (sc->devinfo.chip_id & 0x0000ffff)); 13741 } 13742 sc->devinfo.chip_id |= 0x1; 13743 } 13744 13745 BLOGD(sc, DBG_LOAD, 13746 "chip_id=0x%08x (num=0x%04x rev=0x%01x metal=0x%02x bond=0x%01x)\n", 13747 sc->devinfo.chip_id, 13748 ((sc->devinfo.chip_id >> 16) & 0xffff), 13749 ((sc->devinfo.chip_id >> 12) & 0xf), 13750 ((sc->devinfo.chip_id >> 4) & 0xff), 13751 ((sc->devinfo.chip_id >> 0) & 0xf)); 13752 13753 val = (REG_RD(sc, 0x2874) & 0x55); 13754 if ((sc->devinfo.chip_id & 0x1) || 13755 (CHIP_IS_E1(sc) && val) || 13756 (CHIP_IS_E1H(sc) && (val == 0x55))) { 13757 sc->flags |= BXE_ONE_PORT_FLAG; 13758 BLOGD(sc, DBG_LOAD, "single port device\n"); 13759 } 13760 13761 /* set the doorbell size */ 13762 sc->doorbell_size = (1 << BXE_DB_SHIFT); 13763 13764 /* determine whether the device is in 2 port or 4 port mode */ 13765 sc->devinfo.chip_port_mode = CHIP_PORT_MODE_NONE; /* E1 & E1h*/ 13766 if (CHIP_IS_E2E3(sc)) { 13767 /* 13768 * Read port4mode_en_ovwr[0]: 13769 * If 1, four port mode is in port4mode_en_ovwr[1]. 13770 * If 0, four port mode is in port4mode_en[0]. 13771 */ 13772 val = REG_RD(sc, MISC_REG_PORT4MODE_EN_OVWR); 13773 if (val & 1) { 13774 val = ((val >> 1) & 1); 13775 } else { 13776 val = REG_RD(sc, MISC_REG_PORT4MODE_EN); 13777 } 13778 13779 sc->devinfo.chip_port_mode = 13780 (val) ? CHIP_4_PORT_MODE : CHIP_2_PORT_MODE; 13781 13782 BLOGD(sc, DBG_LOAD, "Port mode = %s\n", (val) ? "4" : "2"); 13783 } 13784 13785 /* get the function and path info for the device */ 13786 bxe_get_function_num(sc); 13787 13788 /* get the shared memory base address */ 13789 sc->devinfo.shmem_base = 13790 sc->link_params.shmem_base = 13791 REG_RD(sc, MISC_REG_SHARED_MEM_ADDR); 13792 sc->devinfo.shmem2_base = 13793 REG_RD(sc, (SC_PATH(sc) ? MISC_REG_GENERIC_CR_1 : 13794 MISC_REG_GENERIC_CR_0)); 13795 13796 BLOGD(sc, DBG_LOAD, "shmem_base=0x%08x, shmem2_base=0x%08x\n", 13797 sc->devinfo.shmem_base, sc->devinfo.shmem2_base); 13798 13799 if (!sc->devinfo.shmem_base) { 13800 /* this should ONLY prevent upcoming shmem reads */ 13801 BLOGI(sc, "MCP not active\n"); 13802 sc->flags |= BXE_NO_MCP_FLAG; 13803 return (0); 13804 } 13805 13806 /* make sure the shared memory contents are valid */ 13807 val = SHMEM_RD(sc, validity_map[SC_PORT(sc)]); 13808 if ((val & (SHR_MEM_VALIDITY_DEV_INFO | SHR_MEM_VALIDITY_MB)) != 13809 (SHR_MEM_VALIDITY_DEV_INFO | SHR_MEM_VALIDITY_MB)) { 13810 BLOGE(sc, "Invalid SHMEM validity signature: 0x%08x\n", val); 13811 return (0); 13812 } 13813 BLOGD(sc, DBG_LOAD, "Valid SHMEM validity signature: 0x%08x\n", val); 13814 13815 /* get the bootcode version */ 13816 sc->devinfo.bc_ver = SHMEM_RD(sc, dev_info.bc_rev); 13817 snprintf(sc->devinfo.bc_ver_str, 13818 sizeof(sc->devinfo.bc_ver_str), 13819 "%d.%d.%d", 13820 ((sc->devinfo.bc_ver >> 24) & 0xff), 13821 ((sc->devinfo.bc_ver >> 16) & 0xff), 13822 ((sc->devinfo.bc_ver >> 8) & 0xff)); 13823 BLOGD(sc, DBG_LOAD, "Bootcode version: %s\n", sc->devinfo.bc_ver_str); 13824 13825 /* get the bootcode shmem address */ 13826 sc->devinfo.mf_cfg_base = bxe_get_shmem_mf_cfg_base(sc); 13827 BLOGD(sc, DBG_LOAD, "mf_cfg_base=0x08%x \n", sc->devinfo.mf_cfg_base); 13828 13829 /* clean indirect addresses as they're not used */ 13830 pci_write_config(sc->dev, PCICFG_GRC_ADDRESS, 0, 4); 13831 if (IS_PF(sc)) { 13832 REG_WR(sc, PXP2_REG_PGL_ADDR_88_F0, 0); 13833 REG_WR(sc, PXP2_REG_PGL_ADDR_8C_F0, 0); 13834 REG_WR(sc, PXP2_REG_PGL_ADDR_90_F0, 0); 13835 REG_WR(sc, PXP2_REG_PGL_ADDR_94_F0, 0); 13836 if (CHIP_IS_E1x(sc)) { 13837 REG_WR(sc, PXP2_REG_PGL_ADDR_88_F1, 0); 13838 REG_WR(sc, PXP2_REG_PGL_ADDR_8C_F1, 0); 13839 REG_WR(sc, PXP2_REG_PGL_ADDR_90_F1, 0); 13840 REG_WR(sc, PXP2_REG_PGL_ADDR_94_F1, 0); 13841 } 13842 13843 /* 13844 * Enable internal target-read (in case we are probed after PF 13845 * FLR). Must be done prior to any BAR read access. Only for 13846 * 57712 and up 13847 */ 13848 if (!CHIP_IS_E1x(sc)) { 13849 REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1); 13850 } 13851 } 13852 13853 /* get the nvram size */ 13854 val = REG_RD(sc, MCP_REG_MCPR_NVM_CFG4); 13855 sc->devinfo.flash_size = 13856 (NVRAM_1MB_SIZE << (val & MCPR_NVM_CFG4_FLASH_SIZE)); 13857 BLOGD(sc, DBG_LOAD, "nvram flash size: %d\n", sc->devinfo.flash_size); 13858 13859 /* get PCI capabilites */ 13860 bxe_probe_pci_caps(sc); 13861 13862 bxe_set_power_state(sc, PCI_PM_D0); 13863 13864 /* get various configuration parameters from shmem */ 13865 bxe_get_shmem_info(sc); 13866 13867 if (sc->devinfo.pcie_msix_cap_reg != 0) { 13868 val = pci_read_config(sc->dev, 13869 (sc->devinfo.pcie_msix_cap_reg + 13870 PCIR_MSIX_CTRL), 13871 2); 13872 sc->igu_sb_cnt = (val & PCIM_MSIXCTRL_TABLE_SIZE); 13873 } else { 13874 sc->igu_sb_cnt = 1; 13875 } 13876 13877 sc->igu_base_addr = BAR_IGU_INTMEM; 13878 13879 /* initialize IGU parameters */ 13880 if (CHIP_IS_E1x(sc)) { 13881 sc->devinfo.int_block = INT_BLOCK_HC; 13882 sc->igu_dsb_id = DEF_SB_IGU_ID; 13883 sc->igu_base_sb = 0; 13884 } else { 13885 sc->devinfo.int_block = INT_BLOCK_IGU; 13886 13887 /* do not allow device reset during IGU info preocessing */ 13888 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RESET); 13889 13890 val = REG_RD(sc, IGU_REG_BLOCK_CONFIGURATION); 13891 13892 if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) { 13893 int tout = 5000; 13894 13895 BLOGD(sc, DBG_LOAD, "FORCING IGU Normal Mode\n"); 13896 13897 val &= ~(IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN); 13898 REG_WR(sc, IGU_REG_BLOCK_CONFIGURATION, val); 13899 REG_WR(sc, IGU_REG_RESET_MEMORIES, 0x7f); 13900 13901 while (tout && REG_RD(sc, IGU_REG_RESET_MEMORIES)) { 13902 tout--; 13903 DELAY(1000); 13904 } 13905 13906 if (REG_RD(sc, IGU_REG_RESET_MEMORIES)) { 13907 BLOGD(sc, DBG_LOAD, "FORCING IGU Normal Mode failed!!!\n"); 13908 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RESET); 13909 return (-1); 13910 } 13911 } 13912 13913 if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) { 13914 BLOGD(sc, DBG_LOAD, "IGU Backward Compatible Mode\n"); 13915 sc->devinfo.int_block |= INT_BLOCK_MODE_BW_COMP; 13916 } else { 13917 BLOGD(sc, DBG_LOAD, "IGU Normal Mode\n"); 13918 } 13919 13920 rc = bxe_get_igu_cam_info(sc); 13921 13922 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RESET); 13923 13924 if (rc) { 13925 return (rc); 13926 } 13927 } 13928 13929 /* 13930 * Get base FW non-default (fast path) status block ID. This value is 13931 * used to initialize the fw_sb_id saved on the fp/queue structure to 13932 * determine the id used by the FW. 13933 */ 13934 if (CHIP_IS_E1x(sc)) { 13935 sc->base_fw_ndsb = ((SC_PORT(sc) * FP_SB_MAX_E1x) + SC_L_ID(sc)); 13936 } else { 13937 /* 13938 * 57712+ - We currently use one FW SB per IGU SB (Rx and Tx of 13939 * the same queue are indicated on the same IGU SB). So we prefer 13940 * FW and IGU SBs to be the same value. 13941 */ 13942 sc->base_fw_ndsb = sc->igu_base_sb; 13943 } 13944 13945 BLOGD(sc, DBG_LOAD, 13946 "igu_dsb_id=%d igu_base_sb=%d igu_sb_cnt=%d base_fw_ndsb=%d\n", 13947 sc->igu_dsb_id, sc->igu_base_sb, 13948 sc->igu_sb_cnt, sc->base_fw_ndsb); 13949 13950 elink_phy_probe(&sc->link_params); 13951 13952 return (0); 13953 } 13954 13955 static void 13956 bxe_link_settings_supported(struct bxe_softc *sc, 13957 uint32_t switch_cfg) 13958 { 13959 uint32_t cfg_size = 0; 13960 uint32_t idx; 13961 uint8_t port = SC_PORT(sc); 13962 13963 /* aggregation of supported attributes of all external phys */ 13964 sc->port.supported[0] = 0; 13965 sc->port.supported[1] = 0; 13966 13967 switch (sc->link_params.num_phys) { 13968 case 1: 13969 sc->port.supported[0] = sc->link_params.phy[ELINK_INT_PHY].supported; 13970 cfg_size = 1; 13971 break; 13972 case 2: 13973 sc->port.supported[0] = sc->link_params.phy[ELINK_EXT_PHY1].supported; 13974 cfg_size = 1; 13975 break; 13976 case 3: 13977 if (sc->link_params.multi_phy_config & 13978 PORT_HW_CFG_PHY_SWAPPED_ENABLED) { 13979 sc->port.supported[1] = 13980 sc->link_params.phy[ELINK_EXT_PHY1].supported; 13981 sc->port.supported[0] = 13982 sc->link_params.phy[ELINK_EXT_PHY2].supported; 13983 } else { 13984 sc->port.supported[0] = 13985 sc->link_params.phy[ELINK_EXT_PHY1].supported; 13986 sc->port.supported[1] = 13987 sc->link_params.phy[ELINK_EXT_PHY2].supported; 13988 } 13989 cfg_size = 2; 13990 break; 13991 } 13992 13993 if (!(sc->port.supported[0] || sc->port.supported[1])) { 13994 BLOGE(sc, "Invalid phy config in NVRAM (PHY1=0x%08x PHY2=0x%08x)\n", 13995 SHMEM_RD(sc, 13996 dev_info.port_hw_config[port].external_phy_config), 13997 SHMEM_RD(sc, 13998 dev_info.port_hw_config[port].external_phy_config2)); 13999 return; 14000 } 14001 14002 if (CHIP_IS_E3(sc)) 14003 sc->port.phy_addr = REG_RD(sc, MISC_REG_WC0_CTRL_PHY_ADDR); 14004 else { 14005 switch (switch_cfg) { 14006 case ELINK_SWITCH_CFG_1G: 14007 sc->port.phy_addr = 14008 REG_RD(sc, NIG_REG_SERDES0_CTRL_PHY_ADDR + port*0x10); 14009 break; 14010 case ELINK_SWITCH_CFG_10G: 14011 sc->port.phy_addr = 14012 REG_RD(sc, NIG_REG_XGXS0_CTRL_PHY_ADDR + port*0x18); 14013 break; 14014 default: 14015 BLOGE(sc, "Invalid switch config in link_config=0x%08x\n", 14016 sc->port.link_config[0]); 14017 return; 14018 } 14019 } 14020 14021 BLOGD(sc, DBG_LOAD, "PHY addr 0x%08x\n", sc->port.phy_addr); 14022 14023 /* mask what we support according to speed_cap_mask per configuration */ 14024 for (idx = 0; idx < cfg_size; idx++) { 14025 if (!(sc->link_params.speed_cap_mask[idx] & 14026 PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_HALF)) { 14027 sc->port.supported[idx] &= ~ELINK_SUPPORTED_10baseT_Half; 14028 } 14029 14030 if (!(sc->link_params.speed_cap_mask[idx] & 14031 PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_FULL)) { 14032 sc->port.supported[idx] &= ~ELINK_SUPPORTED_10baseT_Full; 14033 } 14034 14035 if (!(sc->link_params.speed_cap_mask[idx] & 14036 PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_HALF)) { 14037 sc->port.supported[idx] &= ~ELINK_SUPPORTED_100baseT_Half; 14038 } 14039 14040 if (!(sc->link_params.speed_cap_mask[idx] & 14041 PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_FULL)) { 14042 sc->port.supported[idx] &= ~ELINK_SUPPORTED_100baseT_Full; 14043 } 14044 14045 if (!(sc->link_params.speed_cap_mask[idx] & 14046 PORT_HW_CFG_SPEED_CAPABILITY_D0_1G)) { 14047 sc->port.supported[idx] &= ~ELINK_SUPPORTED_1000baseT_Full; 14048 } 14049 14050 if (!(sc->link_params.speed_cap_mask[idx] & 14051 PORT_HW_CFG_SPEED_CAPABILITY_D0_2_5G)) { 14052 sc->port.supported[idx] &= ~ELINK_SUPPORTED_2500baseX_Full; 14053 } 14054 14055 if (!(sc->link_params.speed_cap_mask[idx] & 14056 PORT_HW_CFG_SPEED_CAPABILITY_D0_10G)) { 14057 sc->port.supported[idx] &= ~ELINK_SUPPORTED_10000baseT_Full; 14058 } 14059 14060 if (!(sc->link_params.speed_cap_mask[idx] & 14061 PORT_HW_CFG_SPEED_CAPABILITY_D0_20G)) { 14062 sc->port.supported[idx] &= ~ELINK_SUPPORTED_20000baseKR2_Full; 14063 } 14064 } 14065 14066 BLOGD(sc, DBG_LOAD, "PHY supported 0=0x%08x 1=0x%08x\n", 14067 sc->port.supported[0], sc->port.supported[1]); 14068 } 14069 14070 static void 14071 bxe_link_settings_requested(struct bxe_softc *sc) 14072 { 14073 uint32_t link_config; 14074 uint32_t idx; 14075 uint32_t cfg_size = 0; 14076 14077 sc->port.advertising[0] = 0; 14078 sc->port.advertising[1] = 0; 14079 14080 switch (sc->link_params.num_phys) { 14081 case 1: 14082 case 2: 14083 cfg_size = 1; 14084 break; 14085 case 3: 14086 cfg_size = 2; 14087 break; 14088 } 14089 14090 for (idx = 0; idx < cfg_size; idx++) { 14091 sc->link_params.req_duplex[idx] = DUPLEX_FULL; 14092 link_config = sc->port.link_config[idx]; 14093 14094 switch (link_config & PORT_FEATURE_LINK_SPEED_MASK) { 14095 case PORT_FEATURE_LINK_SPEED_AUTO: 14096 if (sc->port.supported[idx] & ELINK_SUPPORTED_Autoneg) { 14097 sc->link_params.req_line_speed[idx] = ELINK_SPEED_AUTO_NEG; 14098 sc->port.advertising[idx] |= sc->port.supported[idx]; 14099 if (sc->link_params.phy[ELINK_EXT_PHY1].type == 14100 PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM84833) 14101 sc->port.advertising[idx] |= 14102 (ELINK_SUPPORTED_100baseT_Half | 14103 ELINK_SUPPORTED_100baseT_Full); 14104 } else { 14105 /* force 10G, no AN */ 14106 sc->link_params.req_line_speed[idx] = ELINK_SPEED_10000; 14107 sc->port.advertising[idx] |= 14108 (ADVERTISED_10000baseT_Full | ADVERTISED_FIBRE); 14109 continue; 14110 } 14111 break; 14112 14113 case PORT_FEATURE_LINK_SPEED_10M_FULL: 14114 if (sc->port.supported[idx] & ELINK_SUPPORTED_10baseT_Full) { 14115 sc->link_params.req_line_speed[idx] = ELINK_SPEED_10; 14116 sc->port.advertising[idx] |= (ADVERTISED_10baseT_Full | 14117 ADVERTISED_TP); 14118 } else { 14119 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x " 14120 "speed_cap_mask=0x%08x\n", 14121 link_config, sc->link_params.speed_cap_mask[idx]); 14122 return; 14123 } 14124 break; 14125 14126 case PORT_FEATURE_LINK_SPEED_10M_HALF: 14127 if (sc->port.supported[idx] & ELINK_SUPPORTED_10baseT_Half) { 14128 sc->link_params.req_line_speed[idx] = ELINK_SPEED_10; 14129 sc->link_params.req_duplex[idx] = DUPLEX_HALF; 14130 sc->port.advertising[idx] |= (ADVERTISED_10baseT_Half | 14131 ADVERTISED_TP); 14132 } else { 14133 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x " 14134 "speed_cap_mask=0x%08x\n", 14135 link_config, sc->link_params.speed_cap_mask[idx]); 14136 return; 14137 } 14138 break; 14139 14140 case PORT_FEATURE_LINK_SPEED_100M_FULL: 14141 if (sc->port.supported[idx] & ELINK_SUPPORTED_100baseT_Full) { 14142 sc->link_params.req_line_speed[idx] = ELINK_SPEED_100; 14143 sc->port.advertising[idx] |= (ADVERTISED_100baseT_Full | 14144 ADVERTISED_TP); 14145 } else { 14146 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x " 14147 "speed_cap_mask=0x%08x\n", 14148 link_config, sc->link_params.speed_cap_mask[idx]); 14149 return; 14150 } 14151 break; 14152 14153 case PORT_FEATURE_LINK_SPEED_100M_HALF: 14154 if (sc->port.supported[idx] & ELINK_SUPPORTED_100baseT_Half) { 14155 sc->link_params.req_line_speed[idx] = ELINK_SPEED_100; 14156 sc->link_params.req_duplex[idx] = DUPLEX_HALF; 14157 sc->port.advertising[idx] |= (ADVERTISED_100baseT_Half | 14158 ADVERTISED_TP); 14159 } else { 14160 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x " 14161 "speed_cap_mask=0x%08x\n", 14162 link_config, sc->link_params.speed_cap_mask[idx]); 14163 return; 14164 } 14165 break; 14166 14167 case PORT_FEATURE_LINK_SPEED_1G: 14168 if (sc->port.supported[idx] & ELINK_SUPPORTED_1000baseT_Full) { 14169 sc->link_params.req_line_speed[idx] = ELINK_SPEED_1000; 14170 sc->port.advertising[idx] |= (ADVERTISED_1000baseT_Full | 14171 ADVERTISED_TP); 14172 } else { 14173 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x " 14174 "speed_cap_mask=0x%08x\n", 14175 link_config, sc->link_params.speed_cap_mask[idx]); 14176 return; 14177 } 14178 break; 14179 14180 case PORT_FEATURE_LINK_SPEED_2_5G: 14181 if (sc->port.supported[idx] & ELINK_SUPPORTED_2500baseX_Full) { 14182 sc->link_params.req_line_speed[idx] = ELINK_SPEED_2500; 14183 sc->port.advertising[idx] |= (ADVERTISED_2500baseX_Full | 14184 ADVERTISED_TP); 14185 } else { 14186 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x " 14187 "speed_cap_mask=0x%08x\n", 14188 link_config, sc->link_params.speed_cap_mask[idx]); 14189 return; 14190 } 14191 break; 14192 14193 case PORT_FEATURE_LINK_SPEED_10G_CX4: 14194 if (sc->port.supported[idx] & ELINK_SUPPORTED_10000baseT_Full) { 14195 sc->link_params.req_line_speed[idx] = ELINK_SPEED_10000; 14196 sc->port.advertising[idx] |= (ADVERTISED_10000baseT_Full | 14197 ADVERTISED_FIBRE); 14198 } else { 14199 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x " 14200 "speed_cap_mask=0x%08x\n", 14201 link_config, sc->link_params.speed_cap_mask[idx]); 14202 return; 14203 } 14204 break; 14205 14206 case PORT_FEATURE_LINK_SPEED_20G: 14207 sc->link_params.req_line_speed[idx] = ELINK_SPEED_20000; 14208 break; 14209 14210 default: 14211 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x " 14212 "speed_cap_mask=0x%08x\n", 14213 link_config, sc->link_params.speed_cap_mask[idx]); 14214 sc->link_params.req_line_speed[idx] = ELINK_SPEED_AUTO_NEG; 14215 sc->port.advertising[idx] = sc->port.supported[idx]; 14216 break; 14217 } 14218 14219 sc->link_params.req_flow_ctrl[idx] = 14220 (link_config & PORT_FEATURE_FLOW_CONTROL_MASK); 14221 14222 if (sc->link_params.req_flow_ctrl[idx] == ELINK_FLOW_CTRL_AUTO) { 14223 if (!(sc->port.supported[idx] & ELINK_SUPPORTED_Autoneg)) { 14224 sc->link_params.req_flow_ctrl[idx] = ELINK_FLOW_CTRL_NONE; 14225 } else { 14226 bxe_set_requested_fc(sc); 14227 } 14228 } 14229 14230 BLOGD(sc, DBG_LOAD, "req_line_speed=%d req_duplex=%d " 14231 "req_flow_ctrl=0x%x advertising=0x%x\n", 14232 sc->link_params.req_line_speed[idx], 14233 sc->link_params.req_duplex[idx], 14234 sc->link_params.req_flow_ctrl[idx], 14235 sc->port.advertising[idx]); 14236 } 14237 } 14238 14239 static void 14240 bxe_get_phy_info(struct bxe_softc *sc) 14241 { 14242 uint8_t port = SC_PORT(sc); 14243 uint32_t config = sc->port.config; 14244 uint32_t eee_mode; 14245 14246 /* shmem data already read in bxe_get_shmem_info() */ 14247 14248 BLOGD(sc, DBG_LOAD, "lane_config=0x%08x speed_cap_mask0=0x%08x " 14249 "link_config0=0x%08x\n", 14250 sc->link_params.lane_config, 14251 sc->link_params.speed_cap_mask[0], 14252 sc->port.link_config[0]); 14253 14254 bxe_link_settings_supported(sc, sc->link_params.switch_cfg); 14255 bxe_link_settings_requested(sc); 14256 14257 if (sc->autogreeen == AUTO_GREEN_FORCE_ON) { 14258 sc->link_params.feature_config_flags |= 14259 ELINK_FEATURE_CONFIG_AUTOGREEEN_ENABLED; 14260 } else if (sc->autogreeen == AUTO_GREEN_FORCE_OFF) { 14261 sc->link_params.feature_config_flags &= 14262 ~ELINK_FEATURE_CONFIG_AUTOGREEEN_ENABLED; 14263 } else if (config & PORT_FEAT_CFG_AUTOGREEEN_ENABLED) { 14264 sc->link_params.feature_config_flags |= 14265 ELINK_FEATURE_CONFIG_AUTOGREEEN_ENABLED; 14266 } 14267 14268 /* configure link feature according to nvram value */ 14269 eee_mode = 14270 (((SHMEM_RD(sc, dev_info.port_feature_config[port].eee_power_mode)) & 14271 PORT_FEAT_CFG_EEE_POWER_MODE_MASK) >> 14272 PORT_FEAT_CFG_EEE_POWER_MODE_SHIFT); 14273 if (eee_mode != PORT_FEAT_CFG_EEE_POWER_MODE_DISABLED) { 14274 sc->link_params.eee_mode = (ELINK_EEE_MODE_ADV_LPI | 14275 ELINK_EEE_MODE_ENABLE_LPI | 14276 ELINK_EEE_MODE_OUTPUT_TIME); 14277 } else { 14278 sc->link_params.eee_mode = 0; 14279 } 14280 14281 /* get the media type */ 14282 bxe_media_detect(sc); 14283 } 14284 14285 static void 14286 bxe_get_params(struct bxe_softc *sc) 14287 { 14288 /* get user tunable params */ 14289 bxe_get_tunable_params(sc); 14290 14291 /* select the RX and TX ring sizes */ 14292 sc->tx_ring_size = TX_BD_USABLE; 14293 sc->rx_ring_size = RX_BD_USABLE; 14294 14295 /* XXX disable WoL */ 14296 sc->wol = 0; 14297 } 14298 14299 static void 14300 bxe_set_modes_bitmap(struct bxe_softc *sc) 14301 { 14302 uint32_t flags = 0; 14303 14304 if (CHIP_REV_IS_FPGA(sc)) { 14305 SET_FLAGS(flags, MODE_FPGA); 14306 } else if (CHIP_REV_IS_EMUL(sc)) { 14307 SET_FLAGS(flags, MODE_EMUL); 14308 } else { 14309 SET_FLAGS(flags, MODE_ASIC); 14310 } 14311 14312 if (CHIP_IS_MODE_4_PORT(sc)) { 14313 SET_FLAGS(flags, MODE_PORT4); 14314 } else { 14315 SET_FLAGS(flags, MODE_PORT2); 14316 } 14317 14318 if (CHIP_IS_E2(sc)) { 14319 SET_FLAGS(flags, MODE_E2); 14320 } else if (CHIP_IS_E3(sc)) { 14321 SET_FLAGS(flags, MODE_E3); 14322 if (CHIP_REV(sc) == CHIP_REV_Ax) { 14323 SET_FLAGS(flags, MODE_E3_A0); 14324 } else /*if (CHIP_REV(sc) == CHIP_REV_Bx)*/ { 14325 SET_FLAGS(flags, MODE_E3_B0 | MODE_COS3); 14326 } 14327 } 14328 14329 if (IS_MF(sc)) { 14330 SET_FLAGS(flags, MODE_MF); 14331 switch (sc->devinfo.mf_info.mf_mode) { 14332 case MULTI_FUNCTION_SD: 14333 SET_FLAGS(flags, MODE_MF_SD); 14334 break; 14335 case MULTI_FUNCTION_SI: 14336 SET_FLAGS(flags, MODE_MF_SI); 14337 break; 14338 case MULTI_FUNCTION_AFEX: 14339 SET_FLAGS(flags, MODE_MF_AFEX); 14340 break; 14341 } 14342 } else { 14343 SET_FLAGS(flags, MODE_SF); 14344 } 14345 14346 #if defined(__LITTLE_ENDIAN) 14347 SET_FLAGS(flags, MODE_LITTLE_ENDIAN); 14348 #else /* __BIG_ENDIAN */ 14349 SET_FLAGS(flags, MODE_BIG_ENDIAN); 14350 #endif 14351 14352 INIT_MODE_FLAGS(sc) = flags; 14353 } 14354 14355 static int 14356 bxe_alloc_hsi_mem(struct bxe_softc *sc) 14357 { 14358 struct bxe_fastpath *fp; 14359 bus_addr_t busaddr; 14360 int max_agg_queues; 14361 int max_segments; 14362 bus_size_t max_size; 14363 bus_size_t max_seg_size; 14364 char buf[32]; 14365 int rc; 14366 int i, j; 14367 14368 /* XXX zero out all vars here and call bxe_alloc_hsi_mem on error */ 14369 14370 /* allocate the parent bus DMA tag */ 14371 rc = bus_dma_tag_create(bus_get_dma_tag(sc->dev), /* parent tag */ 14372 1, /* alignment */ 14373 0, /* boundary limit */ 14374 BUS_SPACE_MAXADDR, /* restricted low */ 14375 BUS_SPACE_MAXADDR, /* restricted hi */ 14376 NULL, /* addr filter() */ 14377 NULL, /* addr filter() arg */ 14378 BUS_SPACE_MAXSIZE_32BIT, /* max map size */ 14379 BUS_SPACE_UNRESTRICTED, /* num discontinuous */ 14380 BUS_SPACE_MAXSIZE_32BIT, /* max seg size */ 14381 0, /* flags */ 14382 NULL, /* lock() */ 14383 NULL, /* lock() arg */ 14384 &sc->parent_dma_tag); /* returned dma tag */ 14385 if (rc != 0) { 14386 BLOGE(sc, "Failed to alloc parent DMA tag (%d)!\n", rc); 14387 return (1); 14388 } 14389 14390 /************************/ 14391 /* DEFAULT STATUS BLOCK */ 14392 /************************/ 14393 14394 if (bxe_dma_alloc(sc, sizeof(struct host_sp_status_block), 14395 &sc->def_sb_dma, "default status block") != 0) { 14396 /* XXX */ 14397 bus_dma_tag_destroy(sc->parent_dma_tag); 14398 return (1); 14399 } 14400 14401 sc->def_sb = (struct host_sp_status_block *)sc->def_sb_dma.vaddr; 14402 14403 /***************/ 14404 /* EVENT QUEUE */ 14405 /***************/ 14406 14407 if (bxe_dma_alloc(sc, BCM_PAGE_SIZE, 14408 &sc->eq_dma, "event queue") != 0) { 14409 /* XXX */ 14410 bxe_dma_free(sc, &sc->def_sb_dma); 14411 sc->def_sb = NULL; 14412 bus_dma_tag_destroy(sc->parent_dma_tag); 14413 return (1); 14414 } 14415 14416 sc->eq = (union event_ring_elem * )sc->eq_dma.vaddr; 14417 14418 /*************/ 14419 /* SLOW PATH */ 14420 /*************/ 14421 14422 if (bxe_dma_alloc(sc, sizeof(struct bxe_slowpath), 14423 &sc->sp_dma, "slow path") != 0) { 14424 /* XXX */ 14425 bxe_dma_free(sc, &sc->eq_dma); 14426 sc->eq = NULL; 14427 bxe_dma_free(sc, &sc->def_sb_dma); 14428 sc->def_sb = NULL; 14429 bus_dma_tag_destroy(sc->parent_dma_tag); 14430 return (1); 14431 } 14432 14433 sc->sp = (struct bxe_slowpath *)sc->sp_dma.vaddr; 14434 14435 /*******************/ 14436 /* SLOW PATH QUEUE */ 14437 /*******************/ 14438 14439 if (bxe_dma_alloc(sc, BCM_PAGE_SIZE, 14440 &sc->spq_dma, "slow path queue") != 0) { 14441 /* XXX */ 14442 bxe_dma_free(sc, &sc->sp_dma); 14443 sc->sp = NULL; 14444 bxe_dma_free(sc, &sc->eq_dma); 14445 sc->eq = NULL; 14446 bxe_dma_free(sc, &sc->def_sb_dma); 14447 sc->def_sb = NULL; 14448 bus_dma_tag_destroy(sc->parent_dma_tag); 14449 return (1); 14450 } 14451 14452 sc->spq = (struct eth_spe *)sc->spq_dma.vaddr; 14453 14454 /***************************/ 14455 /* FW DECOMPRESSION BUFFER */ 14456 /***************************/ 14457 14458 if (bxe_dma_alloc(sc, FW_BUF_SIZE, &sc->gz_buf_dma, 14459 "fw decompression buffer") != 0) { 14460 /* XXX */ 14461 bxe_dma_free(sc, &sc->spq_dma); 14462 sc->spq = NULL; 14463 bxe_dma_free(sc, &sc->sp_dma); 14464 sc->sp = NULL; 14465 bxe_dma_free(sc, &sc->eq_dma); 14466 sc->eq = NULL; 14467 bxe_dma_free(sc, &sc->def_sb_dma); 14468 sc->def_sb = NULL; 14469 bus_dma_tag_destroy(sc->parent_dma_tag); 14470 return (1); 14471 } 14472 14473 sc->gz_buf = (void *)sc->gz_buf_dma.vaddr; 14474 14475 if ((sc->gz_strm = 14476 malloc(sizeof(*sc->gz_strm), M_DEVBUF, M_NOWAIT)) == NULL) { 14477 /* XXX */ 14478 bxe_dma_free(sc, &sc->gz_buf_dma); 14479 sc->gz_buf = NULL; 14480 bxe_dma_free(sc, &sc->spq_dma); 14481 sc->spq = NULL; 14482 bxe_dma_free(sc, &sc->sp_dma); 14483 sc->sp = NULL; 14484 bxe_dma_free(sc, &sc->eq_dma); 14485 sc->eq = NULL; 14486 bxe_dma_free(sc, &sc->def_sb_dma); 14487 sc->def_sb = NULL; 14488 bus_dma_tag_destroy(sc->parent_dma_tag); 14489 return (1); 14490 } 14491 14492 /*************/ 14493 /* FASTPATHS */ 14494 /*************/ 14495 14496 /* allocate DMA memory for each fastpath structure */ 14497 for (i = 0; i < sc->num_queues; i++) { 14498 fp = &sc->fp[i]; 14499 fp->sc = sc; 14500 fp->index = i; 14501 14502 /*******************/ 14503 /* FP STATUS BLOCK */ 14504 /*******************/ 14505 14506 snprintf(buf, sizeof(buf), "fp %d status block", i); 14507 if (bxe_dma_alloc(sc, sizeof(union bxe_host_hc_status_block), 14508 &fp->sb_dma, buf) != 0) { 14509 /* XXX unwind and free previous fastpath allocations */ 14510 BLOGE(sc, "Failed to alloc %s\n", buf); 14511 return (1); 14512 } else { 14513 if (CHIP_IS_E2E3(sc)) { 14514 fp->status_block.e2_sb = 14515 (struct host_hc_status_block_e2 *)fp->sb_dma.vaddr; 14516 } else { 14517 fp->status_block.e1x_sb = 14518 (struct host_hc_status_block_e1x *)fp->sb_dma.vaddr; 14519 } 14520 } 14521 14522 /******************/ 14523 /* FP TX BD CHAIN */ 14524 /******************/ 14525 14526 snprintf(buf, sizeof(buf), "fp %d tx bd chain", i); 14527 if (bxe_dma_alloc(sc, (BCM_PAGE_SIZE * TX_BD_NUM_PAGES), 14528 &fp->tx_dma, buf) != 0) { 14529 /* XXX unwind and free previous fastpath allocations */ 14530 BLOGE(sc, "Failed to alloc %s\n", buf); 14531 return (1); 14532 } else { 14533 fp->tx_chain = (union eth_tx_bd_types *)fp->tx_dma.vaddr; 14534 } 14535 14536 /* link together the tx bd chain pages */ 14537 for (j = 1; j <= TX_BD_NUM_PAGES; j++) { 14538 /* index into the tx bd chain array to last entry per page */ 14539 struct eth_tx_next_bd *tx_next_bd = 14540 &fp->tx_chain[TX_BD_TOTAL_PER_PAGE * j - 1].next_bd; 14541 /* point to the next page and wrap from last page */ 14542 busaddr = (fp->tx_dma.paddr + 14543 (BCM_PAGE_SIZE * (j % TX_BD_NUM_PAGES))); 14544 tx_next_bd->addr_hi = htole32(U64_HI(busaddr)); 14545 tx_next_bd->addr_lo = htole32(U64_LO(busaddr)); 14546 } 14547 14548 /******************/ 14549 /* FP RX BD CHAIN */ 14550 /******************/ 14551 14552 snprintf(buf, sizeof(buf), "fp %d rx bd chain", i); 14553 if (bxe_dma_alloc(sc, (BCM_PAGE_SIZE * RX_BD_NUM_PAGES), 14554 &fp->rx_dma, buf) != 0) { 14555 /* XXX unwind and free previous fastpath allocations */ 14556 BLOGE(sc, "Failed to alloc %s\n", buf); 14557 return (1); 14558 } else { 14559 fp->rx_chain = (struct eth_rx_bd *)fp->rx_dma.vaddr; 14560 } 14561 14562 /* link together the rx bd chain pages */ 14563 for (j = 1; j <= RX_BD_NUM_PAGES; j++) { 14564 /* index into the rx bd chain array to last entry per page */ 14565 struct eth_rx_bd *rx_bd = 14566 &fp->rx_chain[RX_BD_TOTAL_PER_PAGE * j - 2]; 14567 /* point to the next page and wrap from last page */ 14568 busaddr = (fp->rx_dma.paddr + 14569 (BCM_PAGE_SIZE * (j % RX_BD_NUM_PAGES))); 14570 rx_bd->addr_hi = htole32(U64_HI(busaddr)); 14571 rx_bd->addr_lo = htole32(U64_LO(busaddr)); 14572 } 14573 14574 /*******************/ 14575 /* FP RX RCQ CHAIN */ 14576 /*******************/ 14577 14578 snprintf(buf, sizeof(buf), "fp %d rcq chain", i); 14579 if (bxe_dma_alloc(sc, (BCM_PAGE_SIZE * RCQ_NUM_PAGES), 14580 &fp->rcq_dma, buf) != 0) { 14581 /* XXX unwind and free previous fastpath allocations */ 14582 BLOGE(sc, "Failed to alloc %s\n", buf); 14583 return (1); 14584 } else { 14585 fp->rcq_chain = (union eth_rx_cqe *)fp->rcq_dma.vaddr; 14586 } 14587 14588 /* link together the rcq chain pages */ 14589 for (j = 1; j <= RCQ_NUM_PAGES; j++) { 14590 /* index into the rcq chain array to last entry per page */ 14591 struct eth_rx_cqe_next_page *rx_cqe_next = 14592 (struct eth_rx_cqe_next_page *) 14593 &fp->rcq_chain[RCQ_TOTAL_PER_PAGE * j - 1]; 14594 /* point to the next page and wrap from last page */ 14595 busaddr = (fp->rcq_dma.paddr + 14596 (BCM_PAGE_SIZE * (j % RCQ_NUM_PAGES))); 14597 rx_cqe_next->addr_hi = htole32(U64_HI(busaddr)); 14598 rx_cqe_next->addr_lo = htole32(U64_LO(busaddr)); 14599 } 14600 14601 /*******************/ 14602 /* FP RX SGE CHAIN */ 14603 /*******************/ 14604 14605 snprintf(buf, sizeof(buf), "fp %d sge chain", i); 14606 if (bxe_dma_alloc(sc, (BCM_PAGE_SIZE * RX_SGE_NUM_PAGES), 14607 &fp->rx_sge_dma, buf) != 0) { 14608 /* XXX unwind and free previous fastpath allocations */ 14609 BLOGE(sc, "Failed to alloc %s\n", buf); 14610 return (1); 14611 } else { 14612 fp->rx_sge_chain = (struct eth_rx_sge *)fp->rx_sge_dma.vaddr; 14613 } 14614 14615 /* link together the sge chain pages */ 14616 for (j = 1; j <= RX_SGE_NUM_PAGES; j++) { 14617 /* index into the rcq chain array to last entry per page */ 14618 struct eth_rx_sge *rx_sge = 14619 &fp->rx_sge_chain[RX_SGE_TOTAL_PER_PAGE * j - 2]; 14620 /* point to the next page and wrap from last page */ 14621 busaddr = (fp->rx_sge_dma.paddr + 14622 (BCM_PAGE_SIZE * (j % RX_SGE_NUM_PAGES))); 14623 rx_sge->addr_hi = htole32(U64_HI(busaddr)); 14624 rx_sge->addr_lo = htole32(U64_LO(busaddr)); 14625 } 14626 14627 /***********************/ 14628 /* FP TX MBUF DMA MAPS */ 14629 /***********************/ 14630 14631 /* set required sizes before mapping to conserve resources */ 14632 if (if_getcapenable(sc->ifp) & (IFCAP_TSO4 | IFCAP_TSO6)) { 14633 max_size = BXE_TSO_MAX_SIZE; 14634 max_segments = BXE_TSO_MAX_SEGMENTS; 14635 max_seg_size = BXE_TSO_MAX_SEG_SIZE; 14636 } else { 14637 max_size = (MCLBYTES * BXE_MAX_SEGMENTS); 14638 max_segments = BXE_MAX_SEGMENTS; 14639 max_seg_size = MCLBYTES; 14640 } 14641 14642 /* create a dma tag for the tx mbufs */ 14643 rc = bus_dma_tag_create(sc->parent_dma_tag, /* parent tag */ 14644 1, /* alignment */ 14645 0, /* boundary limit */ 14646 BUS_SPACE_MAXADDR, /* restricted low */ 14647 BUS_SPACE_MAXADDR, /* restricted hi */ 14648 NULL, /* addr filter() */ 14649 NULL, /* addr filter() arg */ 14650 max_size, /* max map size */ 14651 max_segments, /* num discontinuous */ 14652 max_seg_size, /* max seg size */ 14653 0, /* flags */ 14654 NULL, /* lock() */ 14655 NULL, /* lock() arg */ 14656 &fp->tx_mbuf_tag); /* returned dma tag */ 14657 if (rc != 0) { 14658 /* XXX unwind and free previous fastpath allocations */ 14659 BLOGE(sc, "Failed to create dma tag for " 14660 "'fp %d tx mbufs' (%d)\n", i, rc); 14661 return (1); 14662 } 14663 14664 /* create dma maps for each of the tx mbuf clusters */ 14665 for (j = 0; j < TX_BD_TOTAL; j++) { 14666 if (bus_dmamap_create(fp->tx_mbuf_tag, 14667 BUS_DMA_NOWAIT, 14668 &fp->tx_mbuf_chain[j].m_map)) { 14669 /* XXX unwind and free previous fastpath allocations */ 14670 BLOGE(sc, "Failed to create dma map for " 14671 "'fp %d tx mbuf %d' (%d)\n", i, j, rc); 14672 return (1); 14673 } 14674 } 14675 14676 /***********************/ 14677 /* FP RX MBUF DMA MAPS */ 14678 /***********************/ 14679 14680 /* create a dma tag for the rx mbufs */ 14681 rc = bus_dma_tag_create(sc->parent_dma_tag, /* parent tag */ 14682 1, /* alignment */ 14683 0, /* boundary limit */ 14684 BUS_SPACE_MAXADDR, /* restricted low */ 14685 BUS_SPACE_MAXADDR, /* restricted hi */ 14686 NULL, /* addr filter() */ 14687 NULL, /* addr filter() arg */ 14688 MJUM9BYTES, /* max map size */ 14689 1, /* num discontinuous */ 14690 MJUM9BYTES, /* max seg size */ 14691 0, /* flags */ 14692 NULL, /* lock() */ 14693 NULL, /* lock() arg */ 14694 &fp->rx_mbuf_tag); /* returned dma tag */ 14695 if (rc != 0) { 14696 /* XXX unwind and free previous fastpath allocations */ 14697 BLOGE(sc, "Failed to create dma tag for " 14698 "'fp %d rx mbufs' (%d)\n", i, rc); 14699 return (1); 14700 } 14701 14702 /* create dma maps for each of the rx mbuf clusters */ 14703 for (j = 0; j < RX_BD_TOTAL; j++) { 14704 if (bus_dmamap_create(fp->rx_mbuf_tag, 14705 BUS_DMA_NOWAIT, 14706 &fp->rx_mbuf_chain[j].m_map)) { 14707 /* XXX unwind and free previous fastpath allocations */ 14708 BLOGE(sc, "Failed to create dma map for " 14709 "'fp %d rx mbuf %d' (%d)\n", i, j, rc); 14710 return (1); 14711 } 14712 } 14713 14714 /* create dma map for the spare rx mbuf cluster */ 14715 if (bus_dmamap_create(fp->rx_mbuf_tag, 14716 BUS_DMA_NOWAIT, 14717 &fp->rx_mbuf_spare_map)) { 14718 /* XXX unwind and free previous fastpath allocations */ 14719 BLOGE(sc, "Failed to create dma map for " 14720 "'fp %d spare rx mbuf' (%d)\n", i, rc); 14721 return (1); 14722 } 14723 14724 /***************************/ 14725 /* FP RX SGE MBUF DMA MAPS */ 14726 /***************************/ 14727 14728 /* create a dma tag for the rx sge mbufs */ 14729 rc = bus_dma_tag_create(sc->parent_dma_tag, /* parent tag */ 14730 1, /* alignment */ 14731 0, /* boundary limit */ 14732 BUS_SPACE_MAXADDR, /* restricted low */ 14733 BUS_SPACE_MAXADDR, /* restricted hi */ 14734 NULL, /* addr filter() */ 14735 NULL, /* addr filter() arg */ 14736 BCM_PAGE_SIZE, /* max map size */ 14737 1, /* num discontinuous */ 14738 BCM_PAGE_SIZE, /* max seg size */ 14739 0, /* flags */ 14740 NULL, /* lock() */ 14741 NULL, /* lock() arg */ 14742 &fp->rx_sge_mbuf_tag); /* returned dma tag */ 14743 if (rc != 0) { 14744 /* XXX unwind and free previous fastpath allocations */ 14745 BLOGE(sc, "Failed to create dma tag for " 14746 "'fp %d rx sge mbufs' (%d)\n", i, rc); 14747 return (1); 14748 } 14749 14750 /* create dma maps for the rx sge mbuf clusters */ 14751 for (j = 0; j < RX_SGE_TOTAL; j++) { 14752 if (bus_dmamap_create(fp->rx_sge_mbuf_tag, 14753 BUS_DMA_NOWAIT, 14754 &fp->rx_sge_mbuf_chain[j].m_map)) { 14755 /* XXX unwind and free previous fastpath allocations */ 14756 BLOGE(sc, "Failed to create dma map for " 14757 "'fp %d rx sge mbuf %d' (%d)\n", i, j, rc); 14758 return (1); 14759 } 14760 } 14761 14762 /* create dma map for the spare rx sge mbuf cluster */ 14763 if (bus_dmamap_create(fp->rx_sge_mbuf_tag, 14764 BUS_DMA_NOWAIT, 14765 &fp->rx_sge_mbuf_spare_map)) { 14766 /* XXX unwind and free previous fastpath allocations */ 14767 BLOGE(sc, "Failed to create dma map for " 14768 "'fp %d spare rx sge mbuf' (%d)\n", i, rc); 14769 return (1); 14770 } 14771 14772 /***************************/ 14773 /* FP RX TPA MBUF DMA MAPS */ 14774 /***************************/ 14775 14776 /* create dma maps for the rx tpa mbuf clusters */ 14777 max_agg_queues = MAX_AGG_QS(sc); 14778 14779 for (j = 0; j < max_agg_queues; j++) { 14780 if (bus_dmamap_create(fp->rx_mbuf_tag, 14781 BUS_DMA_NOWAIT, 14782 &fp->rx_tpa_info[j].bd.m_map)) { 14783 /* XXX unwind and free previous fastpath allocations */ 14784 BLOGE(sc, "Failed to create dma map for " 14785 "'fp %d rx tpa mbuf %d' (%d)\n", i, j, rc); 14786 return (1); 14787 } 14788 } 14789 14790 /* create dma map for the spare rx tpa mbuf cluster */ 14791 if (bus_dmamap_create(fp->rx_mbuf_tag, 14792 BUS_DMA_NOWAIT, 14793 &fp->rx_tpa_info_mbuf_spare_map)) { 14794 /* XXX unwind and free previous fastpath allocations */ 14795 BLOGE(sc, "Failed to create dma map for " 14796 "'fp %d spare rx tpa mbuf' (%d)\n", i, rc); 14797 return (1); 14798 } 14799 14800 bxe_init_sge_ring_bit_mask(fp); 14801 } 14802 14803 return (0); 14804 } 14805 14806 static void 14807 bxe_free_hsi_mem(struct bxe_softc *sc) 14808 { 14809 struct bxe_fastpath *fp; 14810 int max_agg_queues; 14811 int i, j; 14812 14813 if (sc->parent_dma_tag == NULL) { 14814 return; /* assume nothing was allocated */ 14815 } 14816 14817 for (i = 0; i < sc->num_queues; i++) { 14818 fp = &sc->fp[i]; 14819 14820 /*******************/ 14821 /* FP STATUS BLOCK */ 14822 /*******************/ 14823 14824 bxe_dma_free(sc, &fp->sb_dma); 14825 memset(&fp->status_block, 0, sizeof(fp->status_block)); 14826 14827 /******************/ 14828 /* FP TX BD CHAIN */ 14829 /******************/ 14830 14831 bxe_dma_free(sc, &fp->tx_dma); 14832 fp->tx_chain = NULL; 14833 14834 /******************/ 14835 /* FP RX BD CHAIN */ 14836 /******************/ 14837 14838 bxe_dma_free(sc, &fp->rx_dma); 14839 fp->rx_chain = NULL; 14840 14841 /*******************/ 14842 /* FP RX RCQ CHAIN */ 14843 /*******************/ 14844 14845 bxe_dma_free(sc, &fp->rcq_dma); 14846 fp->rcq_chain = NULL; 14847 14848 /*******************/ 14849 /* FP RX SGE CHAIN */ 14850 /*******************/ 14851 14852 bxe_dma_free(sc, &fp->rx_sge_dma); 14853 fp->rx_sge_chain = NULL; 14854 14855 /***********************/ 14856 /* FP TX MBUF DMA MAPS */ 14857 /***********************/ 14858 14859 if (fp->tx_mbuf_tag != NULL) { 14860 for (j = 0; j < TX_BD_TOTAL; j++) { 14861 if (fp->tx_mbuf_chain[j].m_map != NULL) { 14862 bus_dmamap_unload(fp->tx_mbuf_tag, 14863 fp->tx_mbuf_chain[j].m_map); 14864 bus_dmamap_destroy(fp->tx_mbuf_tag, 14865 fp->tx_mbuf_chain[j].m_map); 14866 } 14867 } 14868 14869 bus_dma_tag_destroy(fp->tx_mbuf_tag); 14870 fp->tx_mbuf_tag = NULL; 14871 } 14872 14873 /***********************/ 14874 /* FP RX MBUF DMA MAPS */ 14875 /***********************/ 14876 14877 if (fp->rx_mbuf_tag != NULL) { 14878 for (j = 0; j < RX_BD_TOTAL; j++) { 14879 if (fp->rx_mbuf_chain[j].m_map != NULL) { 14880 bus_dmamap_unload(fp->rx_mbuf_tag, 14881 fp->rx_mbuf_chain[j].m_map); 14882 bus_dmamap_destroy(fp->rx_mbuf_tag, 14883 fp->rx_mbuf_chain[j].m_map); 14884 } 14885 } 14886 14887 if (fp->rx_mbuf_spare_map != NULL) { 14888 bus_dmamap_unload(fp->rx_mbuf_tag, fp->rx_mbuf_spare_map); 14889 bus_dmamap_destroy(fp->rx_mbuf_tag, fp->rx_mbuf_spare_map); 14890 } 14891 14892 /***************************/ 14893 /* FP RX TPA MBUF DMA MAPS */ 14894 /***************************/ 14895 14896 max_agg_queues = MAX_AGG_QS(sc); 14897 14898 for (j = 0; j < max_agg_queues; j++) { 14899 if (fp->rx_tpa_info[j].bd.m_map != NULL) { 14900 bus_dmamap_unload(fp->rx_mbuf_tag, 14901 fp->rx_tpa_info[j].bd.m_map); 14902 bus_dmamap_destroy(fp->rx_mbuf_tag, 14903 fp->rx_tpa_info[j].bd.m_map); 14904 } 14905 } 14906 14907 if (fp->rx_tpa_info_mbuf_spare_map != NULL) { 14908 bus_dmamap_unload(fp->rx_mbuf_tag, 14909 fp->rx_tpa_info_mbuf_spare_map); 14910 bus_dmamap_destroy(fp->rx_mbuf_tag, 14911 fp->rx_tpa_info_mbuf_spare_map); 14912 } 14913 14914 bus_dma_tag_destroy(fp->rx_mbuf_tag); 14915 fp->rx_mbuf_tag = NULL; 14916 } 14917 14918 /***************************/ 14919 /* FP RX SGE MBUF DMA MAPS */ 14920 /***************************/ 14921 14922 if (fp->rx_sge_mbuf_tag != NULL) { 14923 for (j = 0; j < RX_SGE_TOTAL; j++) { 14924 if (fp->rx_sge_mbuf_chain[j].m_map != NULL) { 14925 bus_dmamap_unload(fp->rx_sge_mbuf_tag, 14926 fp->rx_sge_mbuf_chain[j].m_map); 14927 bus_dmamap_destroy(fp->rx_sge_mbuf_tag, 14928 fp->rx_sge_mbuf_chain[j].m_map); 14929 } 14930 } 14931 14932 if (fp->rx_sge_mbuf_spare_map != NULL) { 14933 bus_dmamap_unload(fp->rx_sge_mbuf_tag, 14934 fp->rx_sge_mbuf_spare_map); 14935 bus_dmamap_destroy(fp->rx_sge_mbuf_tag, 14936 fp->rx_sge_mbuf_spare_map); 14937 } 14938 14939 bus_dma_tag_destroy(fp->rx_sge_mbuf_tag); 14940 fp->rx_sge_mbuf_tag = NULL; 14941 } 14942 } 14943 14944 /***************************/ 14945 /* FW DECOMPRESSION BUFFER */ 14946 /***************************/ 14947 14948 bxe_dma_free(sc, &sc->gz_buf_dma); 14949 sc->gz_buf = NULL; 14950 free(sc->gz_strm, M_DEVBUF); 14951 sc->gz_strm = NULL; 14952 14953 /*******************/ 14954 /* SLOW PATH QUEUE */ 14955 /*******************/ 14956 14957 bxe_dma_free(sc, &sc->spq_dma); 14958 sc->spq = NULL; 14959 14960 /*************/ 14961 /* SLOW PATH */ 14962 /*************/ 14963 14964 bxe_dma_free(sc, &sc->sp_dma); 14965 sc->sp = NULL; 14966 14967 /***************/ 14968 /* EVENT QUEUE */ 14969 /***************/ 14970 14971 bxe_dma_free(sc, &sc->eq_dma); 14972 sc->eq = NULL; 14973 14974 /************************/ 14975 /* DEFAULT STATUS BLOCK */ 14976 /************************/ 14977 14978 bxe_dma_free(sc, &sc->def_sb_dma); 14979 sc->def_sb = NULL; 14980 14981 bus_dma_tag_destroy(sc->parent_dma_tag); 14982 sc->parent_dma_tag = NULL; 14983 } 14984 14985 /* 14986 * Previous driver DMAE transaction may have occurred when pre-boot stage 14987 * ended and boot began. This would invalidate the addresses of the 14988 * transaction, resulting in was-error bit set in the PCI causing all 14989 * hw-to-host PCIe transactions to timeout. If this happened we want to clear 14990 * the interrupt which detected this from the pglueb and the was-done bit 14991 */ 14992 static void 14993 bxe_prev_interrupted_dmae(struct bxe_softc *sc) 14994 { 14995 uint32_t val; 14996 14997 if (!CHIP_IS_E1x(sc)) { 14998 val = REG_RD(sc, PGLUE_B_REG_PGLUE_B_INT_STS); 14999 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN) { 15000 BLOGD(sc, DBG_LOAD, 15001 "Clearing 'was-error' bit that was set in pglueb"); 15002 REG_WR(sc, PGLUE_B_REG_WAS_ERROR_PF_7_0_CLR, 1 << SC_FUNC(sc)); 15003 } 15004 } 15005 } 15006 15007 static int 15008 bxe_prev_mcp_done(struct bxe_softc *sc) 15009 { 15010 uint32_t rc = bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_DONE, 15011 DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET); 15012 if (!rc) { 15013 BLOGE(sc, "MCP response failure, aborting\n"); 15014 return (-1); 15015 } 15016 15017 return (0); 15018 } 15019 15020 static struct bxe_prev_list_node * 15021 bxe_prev_path_get_entry(struct bxe_softc *sc) 15022 { 15023 struct bxe_prev_list_node *tmp; 15024 15025 LIST_FOREACH(tmp, &bxe_prev_list, node) { 15026 if ((sc->pcie_bus == tmp->bus) && 15027 (sc->pcie_device == tmp->slot) && 15028 (SC_PATH(sc) == tmp->path)) { 15029 return (tmp); 15030 } 15031 } 15032 15033 return (NULL); 15034 } 15035 15036 static uint8_t 15037 bxe_prev_is_path_marked(struct bxe_softc *sc) 15038 { 15039 struct bxe_prev_list_node *tmp; 15040 int rc = FALSE; 15041 15042 mtx_lock(&bxe_prev_mtx); 15043 15044 tmp = bxe_prev_path_get_entry(sc); 15045 if (tmp) { 15046 if (tmp->aer) { 15047 BLOGD(sc, DBG_LOAD, 15048 "Path %d/%d/%d was marked by AER\n", 15049 sc->pcie_bus, sc->pcie_device, SC_PATH(sc)); 15050 } else { 15051 rc = TRUE; 15052 BLOGD(sc, DBG_LOAD, 15053 "Path %d/%d/%d was already cleaned from previous drivers\n", 15054 sc->pcie_bus, sc->pcie_device, SC_PATH(sc)); 15055 } 15056 } 15057 15058 mtx_unlock(&bxe_prev_mtx); 15059 15060 return (rc); 15061 } 15062 15063 static int 15064 bxe_prev_mark_path(struct bxe_softc *sc, 15065 uint8_t after_undi) 15066 { 15067 struct bxe_prev_list_node *tmp; 15068 15069 mtx_lock(&bxe_prev_mtx); 15070 15071 /* Check whether the entry for this path already exists */ 15072 tmp = bxe_prev_path_get_entry(sc); 15073 if (tmp) { 15074 if (!tmp->aer) { 15075 BLOGD(sc, DBG_LOAD, 15076 "Re-marking AER in path %d/%d/%d\n", 15077 sc->pcie_bus, sc->pcie_device, SC_PATH(sc)); 15078 } else { 15079 BLOGD(sc, DBG_LOAD, 15080 "Removing AER indication from path %d/%d/%d\n", 15081 sc->pcie_bus, sc->pcie_device, SC_PATH(sc)); 15082 tmp->aer = 0; 15083 } 15084 15085 mtx_unlock(&bxe_prev_mtx); 15086 return (0); 15087 } 15088 15089 mtx_unlock(&bxe_prev_mtx); 15090 15091 /* Create an entry for this path and add it */ 15092 tmp = malloc(sizeof(struct bxe_prev_list_node), M_DEVBUF, 15093 (M_NOWAIT | M_ZERO)); 15094 if (!tmp) { 15095 BLOGE(sc, "Failed to allocate 'bxe_prev_list_node'\n"); 15096 return (-1); 15097 } 15098 15099 tmp->bus = sc->pcie_bus; 15100 tmp->slot = sc->pcie_device; 15101 tmp->path = SC_PATH(sc); 15102 tmp->aer = 0; 15103 tmp->undi = after_undi ? (1 << SC_PORT(sc)) : 0; 15104 15105 mtx_lock(&bxe_prev_mtx); 15106 15107 BLOGD(sc, DBG_LOAD, 15108 "Marked path %d/%d/%d - finished previous unload\n", 15109 sc->pcie_bus, sc->pcie_device, SC_PATH(sc)); 15110 LIST_INSERT_HEAD(&bxe_prev_list, tmp, node); 15111 15112 mtx_unlock(&bxe_prev_mtx); 15113 15114 return (0); 15115 } 15116 15117 static int 15118 bxe_do_flr(struct bxe_softc *sc) 15119 { 15120 int i; 15121 15122 /* only E2 and onwards support FLR */ 15123 if (CHIP_IS_E1x(sc)) { 15124 BLOGD(sc, DBG_LOAD, "FLR not supported in E1/E1H\n"); 15125 return (-1); 15126 } 15127 15128 /* only bootcode REQ_BC_VER_4_INITIATE_FLR and onwards support flr */ 15129 if (sc->devinfo.bc_ver < REQ_BC_VER_4_INITIATE_FLR) { 15130 BLOGD(sc, DBG_LOAD, "FLR not supported by BC_VER: 0x%08x\n", 15131 sc->devinfo.bc_ver); 15132 return (-1); 15133 } 15134 15135 /* Wait for Transaction Pending bit clean */ 15136 for (i = 0; i < 4; i++) { 15137 if (i) { 15138 DELAY(((1 << (i - 1)) * 100) * 1000); 15139 } 15140 15141 if (!bxe_is_pcie_pending(sc)) { 15142 goto clear; 15143 } 15144 } 15145 15146 BLOGE(sc, "PCIE transaction is not cleared, " 15147 "proceeding with reset anyway\n"); 15148 15149 clear: 15150 15151 BLOGD(sc, DBG_LOAD, "Initiating FLR\n"); 15152 bxe_fw_command(sc, DRV_MSG_CODE_INITIATE_FLR, 0); 15153 15154 return (0); 15155 } 15156 15157 struct bxe_mac_vals { 15158 uint32_t xmac_addr; 15159 uint32_t xmac_val; 15160 uint32_t emac_addr; 15161 uint32_t emac_val; 15162 uint32_t umac_addr; 15163 uint32_t umac_val; 15164 uint32_t bmac_addr; 15165 uint32_t bmac_val[2]; 15166 }; 15167 15168 static void 15169 bxe_prev_unload_close_mac(struct bxe_softc *sc, 15170 struct bxe_mac_vals *vals) 15171 { 15172 uint32_t val, base_addr, offset, mask, reset_reg; 15173 uint8_t mac_stopped = FALSE; 15174 uint8_t port = SC_PORT(sc); 15175 uint32_t wb_data[2]; 15176 15177 /* reset addresses as they also mark which values were changed */ 15178 vals->bmac_addr = 0; 15179 vals->umac_addr = 0; 15180 vals->xmac_addr = 0; 15181 vals->emac_addr = 0; 15182 15183 reset_reg = REG_RD(sc, MISC_REG_RESET_REG_2); 15184 15185 if (!CHIP_IS_E3(sc)) { 15186 val = REG_RD(sc, NIG_REG_BMAC0_REGS_OUT_EN + port * 4); 15187 mask = MISC_REGISTERS_RESET_REG_2_RST_BMAC0 << port; 15188 if ((mask & reset_reg) && val) { 15189 BLOGD(sc, DBG_LOAD, "Disable BMAC Rx\n"); 15190 base_addr = SC_PORT(sc) ? NIG_REG_INGRESS_BMAC1_MEM 15191 : NIG_REG_INGRESS_BMAC0_MEM; 15192 offset = CHIP_IS_E2(sc) ? BIGMAC2_REGISTER_BMAC_CONTROL 15193 : BIGMAC_REGISTER_BMAC_CONTROL; 15194 15195 /* 15196 * use rd/wr since we cannot use dmae. This is safe 15197 * since MCP won't access the bus due to the request 15198 * to unload, and no function on the path can be 15199 * loaded at this time. 15200 */ 15201 wb_data[0] = REG_RD(sc, base_addr + offset); 15202 wb_data[1] = REG_RD(sc, base_addr + offset + 0x4); 15203 vals->bmac_addr = base_addr + offset; 15204 vals->bmac_val[0] = wb_data[0]; 15205 vals->bmac_val[1] = wb_data[1]; 15206 wb_data[0] &= ~ELINK_BMAC_CONTROL_RX_ENABLE; 15207 REG_WR(sc, vals->bmac_addr, wb_data[0]); 15208 REG_WR(sc, vals->bmac_addr + 0x4, wb_data[1]); 15209 } 15210 15211 BLOGD(sc, DBG_LOAD, "Disable EMAC Rx\n"); 15212 vals->emac_addr = NIG_REG_NIG_EMAC0_EN + SC_PORT(sc)*4; 15213 vals->emac_val = REG_RD(sc, vals->emac_addr); 15214 REG_WR(sc, vals->emac_addr, 0); 15215 mac_stopped = TRUE; 15216 } else { 15217 if (reset_reg & MISC_REGISTERS_RESET_REG_2_XMAC) { 15218 BLOGD(sc, DBG_LOAD, "Disable XMAC Rx\n"); 15219 base_addr = SC_PORT(sc) ? GRCBASE_XMAC1 : GRCBASE_XMAC0; 15220 val = REG_RD(sc, base_addr + XMAC_REG_PFC_CTRL_HI); 15221 REG_WR(sc, base_addr + XMAC_REG_PFC_CTRL_HI, val & ~(1 << 1)); 15222 REG_WR(sc, base_addr + XMAC_REG_PFC_CTRL_HI, val | (1 << 1)); 15223 vals->xmac_addr = base_addr + XMAC_REG_CTRL; 15224 vals->xmac_val = REG_RD(sc, vals->xmac_addr); 15225 REG_WR(sc, vals->xmac_addr, 0); 15226 mac_stopped = TRUE; 15227 } 15228 15229 mask = MISC_REGISTERS_RESET_REG_2_UMAC0 << port; 15230 if (mask & reset_reg) { 15231 BLOGD(sc, DBG_LOAD, "Disable UMAC Rx\n"); 15232 base_addr = SC_PORT(sc) ? GRCBASE_UMAC1 : GRCBASE_UMAC0; 15233 vals->umac_addr = base_addr + UMAC_REG_COMMAND_CONFIG; 15234 vals->umac_val = REG_RD(sc, vals->umac_addr); 15235 REG_WR(sc, vals->umac_addr, 0); 15236 mac_stopped = TRUE; 15237 } 15238 } 15239 15240 if (mac_stopped) { 15241 DELAY(20000); 15242 } 15243 } 15244 15245 #define BXE_PREV_UNDI_PROD_ADDR(p) (BAR_TSTRORM_INTMEM + 0x1508 + ((p) << 4)) 15246 #define BXE_PREV_UNDI_RCQ(val) ((val) & 0xffff) 15247 #define BXE_PREV_UNDI_BD(val) ((val) >> 16 & 0xffff) 15248 #define BXE_PREV_UNDI_PROD(rcq, bd) ((bd) << 16 | (rcq)) 15249 15250 static void 15251 bxe_prev_unload_undi_inc(struct bxe_softc *sc, 15252 uint8_t port, 15253 uint8_t inc) 15254 { 15255 uint16_t rcq, bd; 15256 uint32_t tmp_reg = REG_RD(sc, BXE_PREV_UNDI_PROD_ADDR(port)); 15257 15258 rcq = BXE_PREV_UNDI_RCQ(tmp_reg) + inc; 15259 bd = BXE_PREV_UNDI_BD(tmp_reg) + inc; 15260 15261 tmp_reg = BXE_PREV_UNDI_PROD(rcq, bd); 15262 REG_WR(sc, BXE_PREV_UNDI_PROD_ADDR(port), tmp_reg); 15263 15264 BLOGD(sc, DBG_LOAD, 15265 "UNDI producer [%d] rings bd -> 0x%04x, rcq -> 0x%04x\n", 15266 port, bd, rcq); 15267 } 15268 15269 static int 15270 bxe_prev_unload_common(struct bxe_softc *sc) 15271 { 15272 uint32_t reset_reg, tmp_reg = 0, rc; 15273 uint8_t prev_undi = FALSE; 15274 struct bxe_mac_vals mac_vals; 15275 uint32_t timer_count = 1000; 15276 uint32_t prev_brb; 15277 15278 /* 15279 * It is possible a previous function received 'common' answer, 15280 * but hasn't loaded yet, therefore creating a scenario of 15281 * multiple functions receiving 'common' on the same path. 15282 */ 15283 BLOGD(sc, DBG_LOAD, "Common unload Flow\n"); 15284 15285 memset(&mac_vals, 0, sizeof(mac_vals)); 15286 15287 if (bxe_prev_is_path_marked(sc)) { 15288 return (bxe_prev_mcp_done(sc)); 15289 } 15290 15291 reset_reg = REG_RD(sc, MISC_REG_RESET_REG_1); 15292 15293 /* Reset should be performed after BRB is emptied */ 15294 if (reset_reg & MISC_REGISTERS_RESET_REG_1_RST_BRB1) { 15295 /* Close the MAC Rx to prevent BRB from filling up */ 15296 bxe_prev_unload_close_mac(sc, &mac_vals); 15297 15298 /* close LLH filters towards the BRB */ 15299 elink_set_rx_filter(&sc->link_params, 0); 15300 15301 /* 15302 * Check if the UNDI driver was previously loaded. 15303 * UNDI driver initializes CID offset for normal bell to 0x7 15304 */ 15305 if (reset_reg & MISC_REGISTERS_RESET_REG_1_RST_DORQ) { 15306 tmp_reg = REG_RD(sc, DORQ_REG_NORM_CID_OFST); 15307 if (tmp_reg == 0x7) { 15308 BLOGD(sc, DBG_LOAD, "UNDI previously loaded\n"); 15309 prev_undi = TRUE; 15310 /* clear the UNDI indication */ 15311 REG_WR(sc, DORQ_REG_NORM_CID_OFST, 0); 15312 /* clear possible idle check errors */ 15313 REG_RD(sc, NIG_REG_NIG_INT_STS_CLR_0); 15314 } 15315 } 15316 15317 /* wait until BRB is empty */ 15318 tmp_reg = REG_RD(sc, BRB1_REG_NUM_OF_FULL_BLOCKS); 15319 while (timer_count) { 15320 prev_brb = tmp_reg; 15321 15322 tmp_reg = REG_RD(sc, BRB1_REG_NUM_OF_FULL_BLOCKS); 15323 if (!tmp_reg) { 15324 break; 15325 } 15326 15327 BLOGD(sc, DBG_LOAD, "BRB still has 0x%08x\n", tmp_reg); 15328 15329 /* reset timer as long as BRB actually gets emptied */ 15330 if (prev_brb > tmp_reg) { 15331 timer_count = 1000; 15332 } else { 15333 timer_count--; 15334 } 15335 15336 /* If UNDI resides in memory, manually increment it */ 15337 if (prev_undi) { 15338 bxe_prev_unload_undi_inc(sc, SC_PORT(sc), 1); 15339 } 15340 15341 DELAY(10); 15342 } 15343 15344 if (!timer_count) { 15345 BLOGE(sc, "Failed to empty BRB\n"); 15346 } 15347 } 15348 15349 /* No packets are in the pipeline, path is ready for reset */ 15350 bxe_reset_common(sc); 15351 15352 if (mac_vals.xmac_addr) { 15353 REG_WR(sc, mac_vals.xmac_addr, mac_vals.xmac_val); 15354 } 15355 if (mac_vals.umac_addr) { 15356 REG_WR(sc, mac_vals.umac_addr, mac_vals.umac_val); 15357 } 15358 if (mac_vals.emac_addr) { 15359 REG_WR(sc, mac_vals.emac_addr, mac_vals.emac_val); 15360 } 15361 if (mac_vals.bmac_addr) { 15362 REG_WR(sc, mac_vals.bmac_addr, mac_vals.bmac_val[0]); 15363 REG_WR(sc, mac_vals.bmac_addr + 4, mac_vals.bmac_val[1]); 15364 } 15365 15366 rc = bxe_prev_mark_path(sc, prev_undi); 15367 if (rc) { 15368 bxe_prev_mcp_done(sc); 15369 return (rc); 15370 } 15371 15372 return (bxe_prev_mcp_done(sc)); 15373 } 15374 15375 static int 15376 bxe_prev_unload_uncommon(struct bxe_softc *sc) 15377 { 15378 int rc; 15379 15380 BLOGD(sc, DBG_LOAD, "Uncommon unload Flow\n"); 15381 15382 /* Test if previous unload process was already finished for this path */ 15383 if (bxe_prev_is_path_marked(sc)) { 15384 return (bxe_prev_mcp_done(sc)); 15385 } 15386 15387 BLOGD(sc, DBG_LOAD, "Path is unmarked\n"); 15388 15389 /* 15390 * If function has FLR capabilities, and existing FW version matches 15391 * the one required, then FLR will be sufficient to clean any residue 15392 * left by previous driver 15393 */ 15394 rc = bxe_nic_load_analyze_req(sc, FW_MSG_CODE_DRV_LOAD_FUNCTION); 15395 if (!rc) { 15396 /* fw version is good */ 15397 BLOGD(sc, DBG_LOAD, "FW version matches our own, attempting FLR\n"); 15398 rc = bxe_do_flr(sc); 15399 } 15400 15401 if (!rc) { 15402 /* FLR was performed */ 15403 BLOGD(sc, DBG_LOAD, "FLR successful\n"); 15404 return (0); 15405 } 15406 15407 BLOGD(sc, DBG_LOAD, "Could not FLR\n"); 15408 15409 /* Close the MCP request, return failure*/ 15410 rc = bxe_prev_mcp_done(sc); 15411 if (!rc) { 15412 rc = BXE_PREV_WAIT_NEEDED; 15413 } 15414 15415 return (rc); 15416 } 15417 15418 static int 15419 bxe_prev_unload(struct bxe_softc *sc) 15420 { 15421 int time_counter = 10; 15422 uint32_t fw, hw_lock_reg, hw_lock_val; 15423 uint32_t rc = 0; 15424 15425 /* 15426 * Clear HW from errors which may have resulted from an interrupted 15427 * DMAE transaction. 15428 */ 15429 bxe_prev_interrupted_dmae(sc); 15430 15431 /* Release previously held locks */ 15432 hw_lock_reg = 15433 (SC_FUNC(sc) <= 5) ? 15434 (MISC_REG_DRIVER_CONTROL_1 + SC_FUNC(sc) * 8) : 15435 (MISC_REG_DRIVER_CONTROL_7 + (SC_FUNC(sc) - 6) * 8); 15436 15437 hw_lock_val = (REG_RD(sc, hw_lock_reg)); 15438 if (hw_lock_val) { 15439 if (hw_lock_val & HW_LOCK_RESOURCE_NVRAM) { 15440 BLOGD(sc, DBG_LOAD, "Releasing previously held NVRAM lock\n"); 15441 REG_WR(sc, MCP_REG_MCPR_NVM_SW_ARB, 15442 (MCPR_NVM_SW_ARB_ARB_REQ_CLR1 << SC_PORT(sc))); 15443 } 15444 BLOGD(sc, DBG_LOAD, "Releasing previously held HW lock\n"); 15445 REG_WR(sc, hw_lock_reg, 0xffffffff); 15446 } else { 15447 BLOGD(sc, DBG_LOAD, "No need to release HW/NVRAM locks\n"); 15448 } 15449 15450 if (MCPR_ACCESS_LOCK_LOCK & REG_RD(sc, MCP_REG_MCPR_ACCESS_LOCK)) { 15451 BLOGD(sc, DBG_LOAD, "Releasing previously held ALR\n"); 15452 REG_WR(sc, MCP_REG_MCPR_ACCESS_LOCK, 0); 15453 } 15454 15455 do { 15456 /* Lock MCP using an unload request */ 15457 fw = bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS, 0); 15458 if (!fw) { 15459 BLOGE(sc, "MCP response failure, aborting\n"); 15460 rc = -1; 15461 break; 15462 } 15463 15464 if (fw == FW_MSG_CODE_DRV_UNLOAD_COMMON) { 15465 rc = bxe_prev_unload_common(sc); 15466 break; 15467 } 15468 15469 /* non-common reply from MCP night require looping */ 15470 rc = bxe_prev_unload_uncommon(sc); 15471 if (rc != BXE_PREV_WAIT_NEEDED) { 15472 break; 15473 } 15474 15475 DELAY(20000); 15476 } while (--time_counter); 15477 15478 if (!time_counter || rc) { 15479 BLOGE(sc, "Failed to unload previous driver!" 15480 " time_counter %d rc %d\n", time_counter, rc); 15481 rc = -1; 15482 } 15483 15484 return (rc); 15485 } 15486 15487 void 15488 bxe_dcbx_set_state(struct bxe_softc *sc, 15489 uint8_t dcb_on, 15490 uint32_t dcbx_enabled) 15491 { 15492 if (!CHIP_IS_E1x(sc)) { 15493 sc->dcb_state = dcb_on; 15494 sc->dcbx_enabled = dcbx_enabled; 15495 } else { 15496 sc->dcb_state = FALSE; 15497 sc->dcbx_enabled = BXE_DCBX_ENABLED_INVALID; 15498 } 15499 BLOGD(sc, DBG_LOAD, 15500 "DCB state [%s:%s]\n", 15501 dcb_on ? "ON" : "OFF", 15502 (dcbx_enabled == BXE_DCBX_ENABLED_OFF) ? "user-mode" : 15503 (dcbx_enabled == BXE_DCBX_ENABLED_ON_NEG_OFF) ? "on-chip static" : 15504 (dcbx_enabled == BXE_DCBX_ENABLED_ON_NEG_ON) ? 15505 "on-chip with negotiation" : "invalid"); 15506 } 15507 15508 /* must be called after sriov-enable */ 15509 static int 15510 bxe_set_qm_cid_count(struct bxe_softc *sc) 15511 { 15512 int cid_count = BXE_L2_MAX_CID(sc); 15513 15514 if (IS_SRIOV(sc)) { 15515 cid_count += BXE_VF_CIDS; 15516 } 15517 15518 if (CNIC_SUPPORT(sc)) { 15519 cid_count += CNIC_CID_MAX; 15520 } 15521 15522 return (roundup(cid_count, QM_CID_ROUND)); 15523 } 15524 15525 static void 15526 bxe_init_multi_cos(struct bxe_softc *sc) 15527 { 15528 int pri, cos; 15529 15530 uint32_t pri_map = 0; /* XXX change to user config */ 15531 15532 for (pri = 0; pri < BXE_MAX_PRIORITY; pri++) { 15533 cos = ((pri_map & (0xf << (pri * 4))) >> (pri * 4)); 15534 if (cos < sc->max_cos) { 15535 sc->prio_to_cos[pri] = cos; 15536 } else { 15537 BLOGW(sc, "Invalid COS %d for priority %d " 15538 "(max COS is %d), setting to 0\n", 15539 cos, pri, (sc->max_cos - 1)); 15540 sc->prio_to_cos[pri] = 0; 15541 } 15542 } 15543 } 15544 15545 static int 15546 bxe_sysctl_state(SYSCTL_HANDLER_ARGS) 15547 { 15548 struct bxe_softc *sc; 15549 int error, result; 15550 15551 result = 0; 15552 error = sysctl_handle_int(oidp, &result, 0, req); 15553 15554 if (error || !req->newptr) { 15555 return (error); 15556 } 15557 15558 if (result == 1) { 15559 uint32_t temp; 15560 sc = (struct bxe_softc *)arg1; 15561 15562 BLOGI(sc, "... dumping driver state ...\n"); 15563 temp = SHMEM2_RD(sc, temperature_in_half_celsius); 15564 BLOGI(sc, "\t Device Temperature = %d Celsius\n", (temp/2)); 15565 } 15566 15567 return (error); 15568 } 15569 15570 static int 15571 bxe_sysctl_trigger_grcdump(SYSCTL_HANDLER_ARGS) 15572 { 15573 struct bxe_softc *sc; 15574 int error, result; 15575 15576 result = 0; 15577 error = sysctl_handle_int(oidp, &result, 0, req); 15578 15579 if (error || !req->newptr) { 15580 return (error); 15581 } 15582 15583 if (result == 1) { 15584 sc = (struct bxe_softc *)arg1; 15585 15586 BLOGI(sc, "... grcdump start ...\n"); 15587 bxe_grc_dump(sc); 15588 BLOGI(sc, "... grcdump done ...\n"); 15589 } 15590 15591 return (error); 15592 } 15593 15594 static int 15595 bxe_sysctl_eth_stat(SYSCTL_HANDLER_ARGS) 15596 { 15597 struct bxe_softc *sc = (struct bxe_softc *)arg1; 15598 uint32_t *eth_stats = (uint32_t *)&sc->eth_stats; 15599 uint32_t *offset; 15600 uint64_t value = 0; 15601 int index = (int)arg2; 15602 15603 if (index >= BXE_NUM_ETH_STATS) { 15604 BLOGE(sc, "bxe_eth_stats index out of range (%d)\n", index); 15605 return (-1); 15606 } 15607 15608 offset = (eth_stats + bxe_eth_stats_arr[index].offset); 15609 15610 switch (bxe_eth_stats_arr[index].size) { 15611 case 4: 15612 value = (uint64_t)*offset; 15613 break; 15614 case 8: 15615 value = HILO_U64(*offset, *(offset + 1)); 15616 break; 15617 default: 15618 BLOGE(sc, "Invalid bxe_eth_stats size (index=%d size=%d)\n", 15619 index, bxe_eth_stats_arr[index].size); 15620 return (-1); 15621 } 15622 15623 return (sysctl_handle_64(oidp, &value, 0, req)); 15624 } 15625 15626 static int 15627 bxe_sysctl_eth_q_stat(SYSCTL_HANDLER_ARGS) 15628 { 15629 struct bxe_softc *sc = (struct bxe_softc *)arg1; 15630 uint32_t *eth_stats; 15631 uint32_t *offset; 15632 uint64_t value = 0; 15633 uint32_t q_stat = (uint32_t)arg2; 15634 uint32_t fp_index = ((q_stat >> 16) & 0xffff); 15635 uint32_t index = (q_stat & 0xffff); 15636 15637 eth_stats = (uint32_t *)&sc->fp[fp_index].eth_q_stats; 15638 15639 if (index >= BXE_NUM_ETH_Q_STATS) { 15640 BLOGE(sc, "bxe_eth_q_stats index out of range (%d)\n", index); 15641 return (-1); 15642 } 15643 15644 offset = (eth_stats + bxe_eth_q_stats_arr[index].offset); 15645 15646 switch (bxe_eth_q_stats_arr[index].size) { 15647 case 4: 15648 value = (uint64_t)*offset; 15649 break; 15650 case 8: 15651 value = HILO_U64(*offset, *(offset + 1)); 15652 break; 15653 default: 15654 BLOGE(sc, "Invalid bxe_eth_q_stats size (index=%d size=%d)\n", 15655 index, bxe_eth_q_stats_arr[index].size); 15656 return (-1); 15657 } 15658 15659 return (sysctl_handle_64(oidp, &value, 0, req)); 15660 } 15661 15662 static void 15663 bxe_add_sysctls(struct bxe_softc *sc) 15664 { 15665 struct sysctl_ctx_list *ctx; 15666 struct sysctl_oid_list *children; 15667 struct sysctl_oid *queue_top, *queue; 15668 struct sysctl_oid_list *queue_top_children, *queue_children; 15669 char queue_num_buf[32]; 15670 uint32_t q_stat; 15671 int i, j; 15672 15673 ctx = device_get_sysctl_ctx(sc->dev); 15674 children = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev)); 15675 15676 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "version", 15677 CTLFLAG_RD, BXE_DRIVER_VERSION, 0, 15678 "version"); 15679 15680 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "bc_version", 15681 CTLFLAG_RD, sc->devinfo.bc_ver_str, 0, 15682 "bootcode version"); 15683 15684 snprintf(sc->fw_ver_str, sizeof(sc->fw_ver_str), "%d.%d.%d.%d", 15685 BCM_5710_FW_MAJOR_VERSION, 15686 BCM_5710_FW_MINOR_VERSION, 15687 BCM_5710_FW_REVISION_VERSION, 15688 BCM_5710_FW_ENGINEERING_VERSION); 15689 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "fw_version", 15690 CTLFLAG_RD, sc->fw_ver_str, 0, 15691 "firmware version"); 15692 15693 snprintf(sc->mf_mode_str, sizeof(sc->mf_mode_str), "%s", 15694 ((sc->devinfo.mf_info.mf_mode == SINGLE_FUNCTION) ? "Single" : 15695 (sc->devinfo.mf_info.mf_mode == MULTI_FUNCTION_SD) ? "MF-SD" : 15696 (sc->devinfo.mf_info.mf_mode == MULTI_FUNCTION_SI) ? "MF-SI" : 15697 (sc->devinfo.mf_info.mf_mode == MULTI_FUNCTION_AFEX) ? "MF-AFEX" : 15698 "Unknown")); 15699 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "mf_mode", 15700 CTLFLAG_RD, sc->mf_mode_str, 0, 15701 "multifunction mode"); 15702 15703 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "mf_vnics", 15704 CTLFLAG_RD, &sc->devinfo.mf_info.vnics_per_port, 0, 15705 "multifunction vnics per port"); 15706 15707 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "mac_addr", 15708 CTLFLAG_RD, sc->mac_addr_str, 0, 15709 "mac address"); 15710 15711 snprintf(sc->pci_link_str, sizeof(sc->pci_link_str), "%s x%d", 15712 ((sc->devinfo.pcie_link_speed == 1) ? "2.5GT/s" : 15713 (sc->devinfo.pcie_link_speed == 2) ? "5.0GT/s" : 15714 (sc->devinfo.pcie_link_speed == 4) ? "8.0GT/s" : 15715 "???GT/s"), 15716 sc->devinfo.pcie_link_width); 15717 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "pci_link", 15718 CTLFLAG_RD, sc->pci_link_str, 0, 15719 "pci link status"); 15720 15721 sc->debug = bxe_debug; 15722 SYSCTL_ADD_ULONG(ctx, children, OID_AUTO, "debug", 15723 CTLFLAG_RW, &sc->debug, 15724 "debug logging mode"); 15725 15726 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "trigger_grcdump", 15727 CTLTYPE_UINT | CTLFLAG_RW, sc, 0, 15728 bxe_sysctl_trigger_grcdump, "IU", 15729 "set by driver when a grcdump is needed"); 15730 15731 sc->grcdump_done = 0; 15732 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "grcdump_done", 15733 CTLFLAG_RW, &sc->grcdump_done, 0, 15734 "set by driver when grcdump is done"); 15735 15736 sc->rx_budget = bxe_rx_budget; 15737 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "rx_budget", 15738 CTLFLAG_RW, &sc->rx_budget, 0, 15739 "rx processing budget"); 15740 15741 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "state", 15742 CTLTYPE_UINT | CTLFLAG_RW, sc, 0, 15743 bxe_sysctl_state, "IU", "dump driver state"); 15744 15745 for (i = 0; i < BXE_NUM_ETH_STATS; i++) { 15746 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, 15747 bxe_eth_stats_arr[i].string, 15748 CTLTYPE_U64 | CTLFLAG_RD, sc, i, 15749 bxe_sysctl_eth_stat, "LU", 15750 bxe_eth_stats_arr[i].string); 15751 } 15752 15753 /* add a new parent node for all queues "dev.bxe.#.queue" */ 15754 queue_top = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "queue", 15755 CTLFLAG_RD, NULL, "queue"); 15756 queue_top_children = SYSCTL_CHILDREN(queue_top); 15757 15758 for (i = 0; i < sc->num_queues; i++) { 15759 /* add a new parent node for a single queue "dev.bxe.#.queue.#" */ 15760 snprintf(queue_num_buf, sizeof(queue_num_buf), "%d", i); 15761 queue = SYSCTL_ADD_NODE(ctx, queue_top_children, OID_AUTO, 15762 queue_num_buf, CTLFLAG_RD, NULL, 15763 "single queue"); 15764 queue_children = SYSCTL_CHILDREN(queue); 15765 15766 for (j = 0; j < BXE_NUM_ETH_Q_STATS; j++) { 15767 q_stat = ((i << 16) | j); 15768 SYSCTL_ADD_PROC(ctx, queue_children, OID_AUTO, 15769 bxe_eth_q_stats_arr[j].string, 15770 CTLTYPE_U64 | CTLFLAG_RD, sc, q_stat, 15771 bxe_sysctl_eth_q_stat, "LU", 15772 bxe_eth_q_stats_arr[j].string); 15773 } 15774 } 15775 } 15776 15777 static int 15778 bxe_alloc_buf_rings(struct bxe_softc *sc) 15779 { 15780 #if __FreeBSD_version >= 800000 15781 15782 int i; 15783 struct bxe_fastpath *fp; 15784 15785 for (i = 0; i < sc->num_queues; i++) { 15786 15787 fp = &sc->fp[i]; 15788 15789 fp->tx_br = buf_ring_alloc(BXE_BR_SIZE, M_DEVBUF, 15790 M_NOWAIT, &fp->tx_mtx); 15791 if (fp->tx_br == NULL) 15792 return (-1); 15793 } 15794 #endif 15795 return (0); 15796 } 15797 15798 static void 15799 bxe_free_buf_rings(struct bxe_softc *sc) 15800 { 15801 #if __FreeBSD_version >= 800000 15802 15803 int i; 15804 struct bxe_fastpath *fp; 15805 15806 for (i = 0; i < sc->num_queues; i++) { 15807 15808 fp = &sc->fp[i]; 15809 15810 if (fp->tx_br) { 15811 buf_ring_free(fp->tx_br, M_DEVBUF); 15812 fp->tx_br = NULL; 15813 } 15814 } 15815 15816 #endif 15817 } 15818 15819 static void 15820 bxe_init_fp_mutexs(struct bxe_softc *sc) 15821 { 15822 int i; 15823 struct bxe_fastpath *fp; 15824 15825 for (i = 0; i < sc->num_queues; i++) { 15826 15827 fp = &sc->fp[i]; 15828 15829 snprintf(fp->tx_mtx_name, sizeof(fp->tx_mtx_name), 15830 "bxe%d_fp%d_tx_lock", sc->unit, i); 15831 mtx_init(&fp->tx_mtx, fp->tx_mtx_name, NULL, MTX_DEF); 15832 15833 snprintf(fp->rx_mtx_name, sizeof(fp->rx_mtx_name), 15834 "bxe%d_fp%d_rx_lock", sc->unit, i); 15835 mtx_init(&fp->rx_mtx, fp->rx_mtx_name, NULL, MTX_DEF); 15836 } 15837 } 15838 15839 static void 15840 bxe_destroy_fp_mutexs(struct bxe_softc *sc) 15841 { 15842 int i; 15843 struct bxe_fastpath *fp; 15844 15845 for (i = 0; i < sc->num_queues; i++) { 15846 15847 fp = &sc->fp[i]; 15848 15849 if (mtx_initialized(&fp->tx_mtx)) { 15850 mtx_destroy(&fp->tx_mtx); 15851 } 15852 15853 if (mtx_initialized(&fp->rx_mtx)) { 15854 mtx_destroy(&fp->rx_mtx); 15855 } 15856 } 15857 } 15858 15859 15860 /* 15861 * Device attach function. 15862 * 15863 * Allocates device resources, performs secondary chip identification, and 15864 * initializes driver instance variables. This function is called from driver 15865 * load after a successful probe. 15866 * 15867 * Returns: 15868 * 0 = Success, >0 = Failure 15869 */ 15870 static int 15871 bxe_attach(device_t dev) 15872 { 15873 struct bxe_softc *sc; 15874 15875 sc = device_get_softc(dev); 15876 15877 BLOGD(sc, DBG_LOAD, "Starting attach...\n"); 15878 15879 sc->state = BXE_STATE_CLOSED; 15880 15881 sc->dev = dev; 15882 sc->unit = device_get_unit(dev); 15883 15884 BLOGD(sc, DBG_LOAD, "softc = %p\n", sc); 15885 15886 sc->pcie_bus = pci_get_bus(dev); 15887 sc->pcie_device = pci_get_slot(dev); 15888 sc->pcie_func = pci_get_function(dev); 15889 15890 /* enable bus master capability */ 15891 pci_enable_busmaster(dev); 15892 15893 /* get the BARs */ 15894 if (bxe_allocate_bars(sc) != 0) { 15895 return (ENXIO); 15896 } 15897 15898 /* initialize the mutexes */ 15899 bxe_init_mutexes(sc); 15900 15901 /* prepare the periodic callout */ 15902 callout_init(&sc->periodic_callout, 0); 15903 15904 /* prepare the chip taskqueue */ 15905 sc->chip_tq_flags = CHIP_TQ_NONE; 15906 snprintf(sc->chip_tq_name, sizeof(sc->chip_tq_name), 15907 "bxe%d_chip_tq", sc->unit); 15908 TASK_INIT(&sc->chip_tq_task, 0, bxe_handle_chip_tq, sc); 15909 sc->chip_tq = taskqueue_create(sc->chip_tq_name, M_NOWAIT, 15910 taskqueue_thread_enqueue, 15911 &sc->chip_tq); 15912 taskqueue_start_threads(&sc->chip_tq, 1, PWAIT, /* lower priority */ 15913 "%s", sc->chip_tq_name); 15914 15915 /* get device info and set params */ 15916 if (bxe_get_device_info(sc) != 0) { 15917 BLOGE(sc, "getting device info\n"); 15918 bxe_deallocate_bars(sc); 15919 pci_disable_busmaster(dev); 15920 return (ENXIO); 15921 } 15922 15923 /* get final misc params */ 15924 bxe_get_params(sc); 15925 15926 /* set the default MTU (changed via ifconfig) */ 15927 sc->mtu = ETHERMTU; 15928 15929 bxe_set_modes_bitmap(sc); 15930 15931 /* XXX 15932 * If in AFEX mode and the function is configured for FCoE 15933 * then bail... no L2 allowed. 15934 */ 15935 15936 /* get phy settings from shmem and 'and' against admin settings */ 15937 bxe_get_phy_info(sc); 15938 15939 /* initialize the FreeBSD ifnet interface */ 15940 if (bxe_init_ifnet(sc) != 0) { 15941 bxe_release_mutexes(sc); 15942 bxe_deallocate_bars(sc); 15943 pci_disable_busmaster(dev); 15944 return (ENXIO); 15945 } 15946 15947 if (bxe_add_cdev(sc) != 0) { 15948 if (sc->ifp != NULL) { 15949 ether_ifdetach(sc->ifp); 15950 } 15951 ifmedia_removeall(&sc->ifmedia); 15952 bxe_release_mutexes(sc); 15953 bxe_deallocate_bars(sc); 15954 pci_disable_busmaster(dev); 15955 return (ENXIO); 15956 } 15957 15958 /* allocate device interrupts */ 15959 if (bxe_interrupt_alloc(sc) != 0) { 15960 bxe_del_cdev(sc); 15961 if (sc->ifp != NULL) { 15962 ether_ifdetach(sc->ifp); 15963 } 15964 ifmedia_removeall(&sc->ifmedia); 15965 bxe_release_mutexes(sc); 15966 bxe_deallocate_bars(sc); 15967 pci_disable_busmaster(dev); 15968 return (ENXIO); 15969 } 15970 15971 bxe_init_fp_mutexs(sc); 15972 15973 if (bxe_alloc_buf_rings(sc) != 0) { 15974 bxe_free_buf_rings(sc); 15975 bxe_interrupt_free(sc); 15976 bxe_del_cdev(sc); 15977 if (sc->ifp != NULL) { 15978 ether_ifdetach(sc->ifp); 15979 } 15980 ifmedia_removeall(&sc->ifmedia); 15981 bxe_release_mutexes(sc); 15982 bxe_deallocate_bars(sc); 15983 pci_disable_busmaster(dev); 15984 return (ENXIO); 15985 } 15986 15987 /* allocate ilt */ 15988 if (bxe_alloc_ilt_mem(sc) != 0) { 15989 bxe_free_buf_rings(sc); 15990 bxe_interrupt_free(sc); 15991 bxe_del_cdev(sc); 15992 if (sc->ifp != NULL) { 15993 ether_ifdetach(sc->ifp); 15994 } 15995 ifmedia_removeall(&sc->ifmedia); 15996 bxe_release_mutexes(sc); 15997 bxe_deallocate_bars(sc); 15998 pci_disable_busmaster(dev); 15999 return (ENXIO); 16000 } 16001 16002 /* allocate the host hardware/software hsi structures */ 16003 if (bxe_alloc_hsi_mem(sc) != 0) { 16004 bxe_free_ilt_mem(sc); 16005 bxe_free_buf_rings(sc); 16006 bxe_interrupt_free(sc); 16007 bxe_del_cdev(sc); 16008 if (sc->ifp != NULL) { 16009 ether_ifdetach(sc->ifp); 16010 } 16011 ifmedia_removeall(&sc->ifmedia); 16012 bxe_release_mutexes(sc); 16013 bxe_deallocate_bars(sc); 16014 pci_disable_busmaster(dev); 16015 return (ENXIO); 16016 } 16017 16018 /* need to reset chip if UNDI was active */ 16019 if (IS_PF(sc) && !BXE_NOMCP(sc)) { 16020 /* init fw_seq */ 16021 sc->fw_seq = 16022 (SHMEM_RD(sc, func_mb[SC_FW_MB_IDX(sc)].drv_mb_header) & 16023 DRV_MSG_SEQ_NUMBER_MASK); 16024 BLOGD(sc, DBG_LOAD, "prev unload fw_seq 0x%04x\n", sc->fw_seq); 16025 bxe_prev_unload(sc); 16026 } 16027 16028 #if 1 16029 /* XXX */ 16030 bxe_dcbx_set_state(sc, FALSE, BXE_DCBX_ENABLED_OFF); 16031 #else 16032 if (SHMEM2_HAS(sc, dcbx_lldp_params_offset) && 16033 SHMEM2_HAS(sc, dcbx_lldp_dcbx_stat_offset) && 16034 SHMEM2_RD(sc, dcbx_lldp_params_offset) && 16035 SHMEM2_RD(sc, dcbx_lldp_dcbx_stat_offset)) { 16036 bxe_dcbx_set_state(sc, TRUE, BXE_DCBX_ENABLED_ON_NEG_ON); 16037 bxe_dcbx_init_params(sc); 16038 } else { 16039 bxe_dcbx_set_state(sc, FALSE, BXE_DCBX_ENABLED_OFF); 16040 } 16041 #endif 16042 16043 /* calculate qm_cid_count */ 16044 sc->qm_cid_count = bxe_set_qm_cid_count(sc); 16045 BLOGD(sc, DBG_LOAD, "qm_cid_count=%d\n", sc->qm_cid_count); 16046 16047 sc->max_cos = 1; 16048 bxe_init_multi_cos(sc); 16049 16050 bxe_add_sysctls(sc); 16051 16052 return (0); 16053 } 16054 16055 /* 16056 * Device detach function. 16057 * 16058 * Stops the controller, resets the controller, and releases resources. 16059 * 16060 * Returns: 16061 * 0 = Success, >0 = Failure 16062 */ 16063 static int 16064 bxe_detach(device_t dev) 16065 { 16066 struct bxe_softc *sc; 16067 if_t ifp; 16068 16069 sc = device_get_softc(dev); 16070 16071 BLOGD(sc, DBG_LOAD, "Starting detach...\n"); 16072 16073 ifp = sc->ifp; 16074 if (ifp != NULL && if_vlantrunkinuse(ifp)) { 16075 BLOGE(sc, "Cannot detach while VLANs are in use.\n"); 16076 return(EBUSY); 16077 } 16078 16079 bxe_del_cdev(sc); 16080 16081 /* stop the periodic callout */ 16082 bxe_periodic_stop(sc); 16083 16084 /* stop the chip taskqueue */ 16085 atomic_store_rel_long(&sc->chip_tq_flags, CHIP_TQ_NONE); 16086 if (sc->chip_tq) { 16087 taskqueue_drain(sc->chip_tq, &sc->chip_tq_task); 16088 taskqueue_free(sc->chip_tq); 16089 sc->chip_tq = NULL; 16090 } 16091 16092 /* stop and reset the controller if it was open */ 16093 if (sc->state != BXE_STATE_CLOSED) { 16094 BXE_CORE_LOCK(sc); 16095 bxe_nic_unload(sc, UNLOAD_CLOSE, TRUE); 16096 BXE_CORE_UNLOCK(sc); 16097 } 16098 16099 /* release the network interface */ 16100 if (ifp != NULL) { 16101 ether_ifdetach(ifp); 16102 } 16103 ifmedia_removeall(&sc->ifmedia); 16104 16105 /* XXX do the following based on driver state... */ 16106 16107 /* free the host hardware/software hsi structures */ 16108 bxe_free_hsi_mem(sc); 16109 16110 /* free ilt */ 16111 bxe_free_ilt_mem(sc); 16112 16113 bxe_free_buf_rings(sc); 16114 16115 /* release the interrupts */ 16116 bxe_interrupt_free(sc); 16117 16118 /* Release the mutexes*/ 16119 bxe_destroy_fp_mutexs(sc); 16120 bxe_release_mutexes(sc); 16121 16122 16123 /* Release the PCIe BAR mapped memory */ 16124 bxe_deallocate_bars(sc); 16125 16126 /* Release the FreeBSD interface. */ 16127 if (sc->ifp != NULL) { 16128 if_free(sc->ifp); 16129 } 16130 16131 pci_disable_busmaster(dev); 16132 16133 return (0); 16134 } 16135 16136 /* 16137 * Device shutdown function. 16138 * 16139 * Stops and resets the controller. 16140 * 16141 * Returns: 16142 * Nothing 16143 */ 16144 static int 16145 bxe_shutdown(device_t dev) 16146 { 16147 struct bxe_softc *sc; 16148 16149 sc = device_get_softc(dev); 16150 16151 BLOGD(sc, DBG_LOAD, "Starting shutdown...\n"); 16152 16153 /* stop the periodic callout */ 16154 bxe_periodic_stop(sc); 16155 16156 BXE_CORE_LOCK(sc); 16157 bxe_nic_unload(sc, UNLOAD_NORMAL, FALSE); 16158 BXE_CORE_UNLOCK(sc); 16159 16160 return (0); 16161 } 16162 16163 void 16164 bxe_igu_ack_sb(struct bxe_softc *sc, 16165 uint8_t igu_sb_id, 16166 uint8_t segment, 16167 uint16_t index, 16168 uint8_t op, 16169 uint8_t update) 16170 { 16171 uint32_t igu_addr = sc->igu_base_addr; 16172 igu_addr += (IGU_CMD_INT_ACK_BASE + igu_sb_id)*8; 16173 bxe_igu_ack_sb_gen(sc, igu_sb_id, segment, index, op, update, igu_addr); 16174 } 16175 16176 static void 16177 bxe_igu_clear_sb_gen(struct bxe_softc *sc, 16178 uint8_t func, 16179 uint8_t idu_sb_id, 16180 uint8_t is_pf) 16181 { 16182 uint32_t data, ctl, cnt = 100; 16183 uint32_t igu_addr_data = IGU_REG_COMMAND_REG_32LSB_DATA; 16184 uint32_t igu_addr_ctl = IGU_REG_COMMAND_REG_CTRL; 16185 uint32_t igu_addr_ack = IGU_REG_CSTORM_TYPE_0_SB_CLEANUP + (idu_sb_id/32)*4; 16186 uint32_t sb_bit = 1 << (idu_sb_id%32); 16187 uint32_t func_encode = func | (is_pf ? 1 : 0) << IGU_FID_ENCODE_IS_PF_SHIFT; 16188 uint32_t addr_encode = IGU_CMD_E2_PROD_UPD_BASE + idu_sb_id; 16189 16190 /* Not supported in BC mode */ 16191 if (CHIP_INT_MODE_IS_BC(sc)) { 16192 return; 16193 } 16194 16195 data = ((IGU_USE_REGISTER_cstorm_type_0_sb_cleanup << 16196 IGU_REGULAR_CLEANUP_TYPE_SHIFT) | 16197 IGU_REGULAR_CLEANUP_SET | 16198 IGU_REGULAR_BCLEANUP); 16199 16200 ctl = ((addr_encode << IGU_CTRL_REG_ADDRESS_SHIFT) | 16201 (func_encode << IGU_CTRL_REG_FID_SHIFT) | 16202 (IGU_CTRL_CMD_TYPE_WR << IGU_CTRL_REG_TYPE_SHIFT)); 16203 16204 BLOGD(sc, DBG_LOAD, "write 0x%08x to IGU(via GRC) addr 0x%x\n", 16205 data, igu_addr_data); 16206 REG_WR(sc, igu_addr_data, data); 16207 16208 bus_space_barrier(sc->bar[BAR0].tag, sc->bar[BAR0].handle, 0, 0, 16209 BUS_SPACE_BARRIER_WRITE); 16210 mb(); 16211 16212 BLOGD(sc, DBG_LOAD, "write 0x%08x to IGU(via GRC) addr 0x%x\n", 16213 ctl, igu_addr_ctl); 16214 REG_WR(sc, igu_addr_ctl, ctl); 16215 16216 bus_space_barrier(sc->bar[BAR0].tag, sc->bar[BAR0].handle, 0, 0, 16217 BUS_SPACE_BARRIER_WRITE); 16218 mb(); 16219 16220 /* wait for clean up to finish */ 16221 while (!(REG_RD(sc, igu_addr_ack) & sb_bit) && --cnt) { 16222 DELAY(20000); 16223 } 16224 16225 if (!(REG_RD(sc, igu_addr_ack) & sb_bit)) { 16226 BLOGD(sc, DBG_LOAD, 16227 "Unable to finish IGU cleanup: " 16228 "idu_sb_id %d offset %d bit %d (cnt %d)\n", 16229 idu_sb_id, idu_sb_id/32, idu_sb_id%32, cnt); 16230 } 16231 } 16232 16233 static void 16234 bxe_igu_clear_sb(struct bxe_softc *sc, 16235 uint8_t idu_sb_id) 16236 { 16237 bxe_igu_clear_sb_gen(sc, SC_FUNC(sc), idu_sb_id, TRUE /*PF*/); 16238 } 16239 16240 16241 16242 16243 16244 16245 16246 /*******************/ 16247 /* ECORE CALLBACKS */ 16248 /*******************/ 16249 16250 static void 16251 bxe_reset_common(struct bxe_softc *sc) 16252 { 16253 uint32_t val = 0x1400; 16254 16255 /* reset_common */ 16256 REG_WR(sc, (GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR), 0xd3ffff7f); 16257 16258 if (CHIP_IS_E3(sc)) { 16259 val |= MISC_REGISTERS_RESET_REG_2_MSTAT0; 16260 val |= MISC_REGISTERS_RESET_REG_2_MSTAT1; 16261 } 16262 16263 REG_WR(sc, (GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR), val); 16264 } 16265 16266 static void 16267 bxe_common_init_phy(struct bxe_softc *sc) 16268 { 16269 uint32_t shmem_base[2]; 16270 uint32_t shmem2_base[2]; 16271 16272 /* Avoid common init in case MFW supports LFA */ 16273 if (SHMEM2_RD(sc, size) > 16274 (uint32_t)offsetof(struct shmem2_region, 16275 lfa_host_addr[SC_PORT(sc)])) { 16276 return; 16277 } 16278 16279 shmem_base[0] = sc->devinfo.shmem_base; 16280 shmem2_base[0] = sc->devinfo.shmem2_base; 16281 16282 if (!CHIP_IS_E1x(sc)) { 16283 shmem_base[1] = SHMEM2_RD(sc, other_shmem_base_addr); 16284 shmem2_base[1] = SHMEM2_RD(sc, other_shmem2_base_addr); 16285 } 16286 16287 bxe_acquire_phy_lock(sc); 16288 elink_common_init_phy(sc, shmem_base, shmem2_base, 16289 sc->devinfo.chip_id, 0); 16290 bxe_release_phy_lock(sc); 16291 } 16292 16293 static void 16294 bxe_pf_disable(struct bxe_softc *sc) 16295 { 16296 uint32_t val = REG_RD(sc, IGU_REG_PF_CONFIGURATION); 16297 16298 val &= ~IGU_PF_CONF_FUNC_EN; 16299 16300 REG_WR(sc, IGU_REG_PF_CONFIGURATION, val); 16301 REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0); 16302 REG_WR(sc, CFC_REG_WEAK_ENABLE_PF, 0); 16303 } 16304 16305 static void 16306 bxe_init_pxp(struct bxe_softc *sc) 16307 { 16308 uint16_t devctl; 16309 int r_order, w_order; 16310 16311 devctl = bxe_pcie_capability_read(sc, PCIR_EXPRESS_DEVICE_CTL, 2); 16312 16313 BLOGD(sc, DBG_LOAD, "read 0x%08x from devctl\n", devctl); 16314 16315 w_order = ((devctl & PCIM_EXP_CTL_MAX_PAYLOAD) >> 5); 16316 16317 if (sc->mrrs == -1) { 16318 r_order = ((devctl & PCIM_EXP_CTL_MAX_READ_REQUEST) >> 12); 16319 } else { 16320 BLOGD(sc, DBG_LOAD, "forcing read order to %d\n", sc->mrrs); 16321 r_order = sc->mrrs; 16322 } 16323 16324 ecore_init_pxp_arb(sc, r_order, w_order); 16325 } 16326 16327 static uint32_t 16328 bxe_get_pretend_reg(struct bxe_softc *sc) 16329 { 16330 uint32_t base = PXP2_REG_PGL_PRETEND_FUNC_F0; 16331 uint32_t stride = (PXP2_REG_PGL_PRETEND_FUNC_F1 - base); 16332 return (base + (SC_ABS_FUNC(sc)) * stride); 16333 } 16334 16335 /* 16336 * Called only on E1H or E2. 16337 * When pretending to be PF, the pretend value is the function number 0..7. 16338 * When pretending to be VF, the pretend val is the PF-num:VF-valid:ABS-VFID 16339 * combination. 16340 */ 16341 static int 16342 bxe_pretend_func(struct bxe_softc *sc, 16343 uint16_t pretend_func_val) 16344 { 16345 uint32_t pretend_reg; 16346 16347 if (CHIP_IS_E1H(sc) && (pretend_func_val > E1H_FUNC_MAX)) { 16348 return (-1); 16349 } 16350 16351 /* get my own pretend register */ 16352 pretend_reg = bxe_get_pretend_reg(sc); 16353 REG_WR(sc, pretend_reg, pretend_func_val); 16354 REG_RD(sc, pretend_reg); 16355 return (0); 16356 } 16357 16358 static void 16359 bxe_iov_init_dmae(struct bxe_softc *sc) 16360 { 16361 return; 16362 } 16363 16364 static void 16365 bxe_iov_init_dq(struct bxe_softc *sc) 16366 { 16367 return; 16368 } 16369 16370 /* send a NIG loopback debug packet */ 16371 static void 16372 bxe_lb_pckt(struct bxe_softc *sc) 16373 { 16374 uint32_t wb_write[3]; 16375 16376 /* Ethernet source and destination addresses */ 16377 wb_write[0] = 0x55555555; 16378 wb_write[1] = 0x55555555; 16379 wb_write[2] = 0x20; /* SOP */ 16380 REG_WR_DMAE(sc, NIG_REG_DEBUG_PACKET_LB, wb_write, 3); 16381 16382 /* NON-IP protocol */ 16383 wb_write[0] = 0x09000000; 16384 wb_write[1] = 0x55555555; 16385 wb_write[2] = 0x10; /* EOP, eop_bvalid = 0 */ 16386 REG_WR_DMAE(sc, NIG_REG_DEBUG_PACKET_LB, wb_write, 3); 16387 } 16388 16389 /* 16390 * Some of the internal memories are not directly readable from the driver. 16391 * To test them we send debug packets. 16392 */ 16393 static int 16394 bxe_int_mem_test(struct bxe_softc *sc) 16395 { 16396 int factor; 16397 int count, i; 16398 uint32_t val = 0; 16399 16400 if (CHIP_REV_IS_FPGA(sc)) { 16401 factor = 120; 16402 } else if (CHIP_REV_IS_EMUL(sc)) { 16403 factor = 200; 16404 } else { 16405 factor = 1; 16406 } 16407 16408 /* disable inputs of parser neighbor blocks */ 16409 REG_WR(sc, TSDM_REG_ENABLE_IN1, 0x0); 16410 REG_WR(sc, TCM_REG_PRS_IFEN, 0x0); 16411 REG_WR(sc, CFC_REG_DEBUG0, 0x1); 16412 REG_WR(sc, NIG_REG_PRS_REQ_IN_EN, 0x0); 16413 16414 /* write 0 to parser credits for CFC search request */ 16415 REG_WR(sc, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0); 16416 16417 /* send Ethernet packet */ 16418 bxe_lb_pckt(sc); 16419 16420 /* TODO do i reset NIG statistic? */ 16421 /* Wait until NIG register shows 1 packet of size 0x10 */ 16422 count = 1000 * factor; 16423 while (count) { 16424 bxe_read_dmae(sc, NIG_REG_STAT2_BRB_OCTET, 2); 16425 val = *BXE_SP(sc, wb_data[0]); 16426 if (val == 0x10) { 16427 break; 16428 } 16429 16430 DELAY(10000); 16431 count--; 16432 } 16433 16434 if (val != 0x10) { 16435 BLOGE(sc, "NIG timeout val=0x%x\n", val); 16436 return (-1); 16437 } 16438 16439 /* wait until PRS register shows 1 packet */ 16440 count = (1000 * factor); 16441 while (count) { 16442 val = REG_RD(sc, PRS_REG_NUM_OF_PACKETS); 16443 if (val == 1) { 16444 break; 16445 } 16446 16447 DELAY(10000); 16448 count--; 16449 } 16450 16451 if (val != 0x1) { 16452 BLOGE(sc, "PRS timeout val=0x%x\n", val); 16453 return (-2); 16454 } 16455 16456 /* Reset and init BRB, PRS */ 16457 REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03); 16458 DELAY(50000); 16459 REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03); 16460 DELAY(50000); 16461 ecore_init_block(sc, BLOCK_BRB1, PHASE_COMMON); 16462 ecore_init_block(sc, BLOCK_PRS, PHASE_COMMON); 16463 16464 /* Disable inputs of parser neighbor blocks */ 16465 REG_WR(sc, TSDM_REG_ENABLE_IN1, 0x0); 16466 REG_WR(sc, TCM_REG_PRS_IFEN, 0x0); 16467 REG_WR(sc, CFC_REG_DEBUG0, 0x1); 16468 REG_WR(sc, NIG_REG_PRS_REQ_IN_EN, 0x0); 16469 16470 /* Write 0 to parser credits for CFC search request */ 16471 REG_WR(sc, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0); 16472 16473 /* send 10 Ethernet packets */ 16474 for (i = 0; i < 10; i++) { 16475 bxe_lb_pckt(sc); 16476 } 16477 16478 /* Wait until NIG register shows 10+1 packets of size 11*0x10 = 0xb0 */ 16479 count = (1000 * factor); 16480 while (count) { 16481 bxe_read_dmae(sc, NIG_REG_STAT2_BRB_OCTET, 2); 16482 val = *BXE_SP(sc, wb_data[0]); 16483 if (val == 0xb0) { 16484 break; 16485 } 16486 16487 DELAY(10000); 16488 count--; 16489 } 16490 16491 if (val != 0xb0) { 16492 BLOGE(sc, "NIG timeout val=0x%x\n", val); 16493 return (-3); 16494 } 16495 16496 /* Wait until PRS register shows 2 packets */ 16497 val = REG_RD(sc, PRS_REG_NUM_OF_PACKETS); 16498 if (val != 2) { 16499 BLOGE(sc, "PRS timeout val=0x%x\n", val); 16500 } 16501 16502 /* Write 1 to parser credits for CFC search request */ 16503 REG_WR(sc, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x1); 16504 16505 /* Wait until PRS register shows 3 packets */ 16506 DELAY(10000 * factor); 16507 16508 /* Wait until NIG register shows 1 packet of size 0x10 */ 16509 val = REG_RD(sc, PRS_REG_NUM_OF_PACKETS); 16510 if (val != 3) { 16511 BLOGE(sc, "PRS timeout val=0x%x\n", val); 16512 } 16513 16514 /* clear NIG EOP FIFO */ 16515 for (i = 0; i < 11; i++) { 16516 REG_RD(sc, NIG_REG_INGRESS_EOP_LB_FIFO); 16517 } 16518 16519 val = REG_RD(sc, NIG_REG_INGRESS_EOP_LB_EMPTY); 16520 if (val != 1) { 16521 BLOGE(sc, "clear of NIG failed val=0x%x\n", val); 16522 return (-4); 16523 } 16524 16525 /* Reset and init BRB, PRS, NIG */ 16526 REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03); 16527 DELAY(50000); 16528 REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03); 16529 DELAY(50000); 16530 ecore_init_block(sc, BLOCK_BRB1, PHASE_COMMON); 16531 ecore_init_block(sc, BLOCK_PRS, PHASE_COMMON); 16532 if (!CNIC_SUPPORT(sc)) { 16533 /* set NIC mode */ 16534 REG_WR(sc, PRS_REG_NIC_MODE, 1); 16535 } 16536 16537 /* Enable inputs of parser neighbor blocks */ 16538 REG_WR(sc, TSDM_REG_ENABLE_IN1, 0x7fffffff); 16539 REG_WR(sc, TCM_REG_PRS_IFEN, 0x1); 16540 REG_WR(sc, CFC_REG_DEBUG0, 0x0); 16541 REG_WR(sc, NIG_REG_PRS_REQ_IN_EN, 0x1); 16542 16543 return (0); 16544 } 16545 16546 static void 16547 bxe_setup_fan_failure_detection(struct bxe_softc *sc) 16548 { 16549 int is_required; 16550 uint32_t val; 16551 int port; 16552 16553 is_required = 0; 16554 val = (SHMEM_RD(sc, dev_info.shared_hw_config.config2) & 16555 SHARED_HW_CFG_FAN_FAILURE_MASK); 16556 16557 if (val == SHARED_HW_CFG_FAN_FAILURE_ENABLED) { 16558 is_required = 1; 16559 } 16560 /* 16561 * The fan failure mechanism is usually related to the PHY type since 16562 * the power consumption of the board is affected by the PHY. Currently, 16563 * fan is required for most designs with SFX7101, BCM8727 and BCM8481. 16564 */ 16565 else if (val == SHARED_HW_CFG_FAN_FAILURE_PHY_TYPE) { 16566 for (port = PORT_0; port < PORT_MAX; port++) { 16567 is_required |= elink_fan_failure_det_req(sc, 16568 sc->devinfo.shmem_base, 16569 sc->devinfo.shmem2_base, 16570 port); 16571 } 16572 } 16573 16574 BLOGD(sc, DBG_LOAD, "fan detection setting: %d\n", is_required); 16575 16576 if (is_required == 0) { 16577 return; 16578 } 16579 16580 /* Fan failure is indicated by SPIO 5 */ 16581 bxe_set_spio(sc, MISC_SPIO_SPIO5, MISC_SPIO_INPUT_HI_Z); 16582 16583 /* set to active low mode */ 16584 val = REG_RD(sc, MISC_REG_SPIO_INT); 16585 val |= (MISC_SPIO_SPIO5 << MISC_SPIO_INT_OLD_SET_POS); 16586 REG_WR(sc, MISC_REG_SPIO_INT, val); 16587 16588 /* enable interrupt to signal the IGU */ 16589 val = REG_RD(sc, MISC_REG_SPIO_EVENT_EN); 16590 val |= MISC_SPIO_SPIO5; 16591 REG_WR(sc, MISC_REG_SPIO_EVENT_EN, val); 16592 } 16593 16594 static void 16595 bxe_enable_blocks_attention(struct bxe_softc *sc) 16596 { 16597 uint32_t val; 16598 16599 REG_WR(sc, PXP_REG_PXP_INT_MASK_0, 0); 16600 if (!CHIP_IS_E1x(sc)) { 16601 REG_WR(sc, PXP_REG_PXP_INT_MASK_1, 0x40); 16602 } else { 16603 REG_WR(sc, PXP_REG_PXP_INT_MASK_1, 0); 16604 } 16605 REG_WR(sc, DORQ_REG_DORQ_INT_MASK, 0); 16606 REG_WR(sc, CFC_REG_CFC_INT_MASK, 0); 16607 /* 16608 * mask read length error interrupts in brb for parser 16609 * (parsing unit and 'checksum and crc' unit) 16610 * these errors are legal (PU reads fixed length and CAC can cause 16611 * read length error on truncated packets) 16612 */ 16613 REG_WR(sc, BRB1_REG_BRB1_INT_MASK, 0xFC00); 16614 REG_WR(sc, QM_REG_QM_INT_MASK, 0); 16615 REG_WR(sc, TM_REG_TM_INT_MASK, 0); 16616 REG_WR(sc, XSDM_REG_XSDM_INT_MASK_0, 0); 16617 REG_WR(sc, XSDM_REG_XSDM_INT_MASK_1, 0); 16618 REG_WR(sc, XCM_REG_XCM_INT_MASK, 0); 16619 /* REG_WR(sc, XSEM_REG_XSEM_INT_MASK_0, 0); */ 16620 /* REG_WR(sc, XSEM_REG_XSEM_INT_MASK_1, 0); */ 16621 REG_WR(sc, USDM_REG_USDM_INT_MASK_0, 0); 16622 REG_WR(sc, USDM_REG_USDM_INT_MASK_1, 0); 16623 REG_WR(sc, UCM_REG_UCM_INT_MASK, 0); 16624 /* REG_WR(sc, USEM_REG_USEM_INT_MASK_0, 0); */ 16625 /* REG_WR(sc, USEM_REG_USEM_INT_MASK_1, 0); */ 16626 REG_WR(sc, GRCBASE_UPB + PB_REG_PB_INT_MASK, 0); 16627 REG_WR(sc, CSDM_REG_CSDM_INT_MASK_0, 0); 16628 REG_WR(sc, CSDM_REG_CSDM_INT_MASK_1, 0); 16629 REG_WR(sc, CCM_REG_CCM_INT_MASK, 0); 16630 /* REG_WR(sc, CSEM_REG_CSEM_INT_MASK_0, 0); */ 16631 /* REG_WR(sc, CSEM_REG_CSEM_INT_MASK_1, 0); */ 16632 16633 val = (PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_AFT | 16634 PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_OF | 16635 PXP2_PXP2_INT_MASK_0_REG_PGL_PCIE_ATTN); 16636 if (!CHIP_IS_E1x(sc)) { 16637 val |= (PXP2_PXP2_INT_MASK_0_REG_PGL_READ_BLOCKED | 16638 PXP2_PXP2_INT_MASK_0_REG_PGL_WRITE_BLOCKED); 16639 } 16640 REG_WR(sc, PXP2_REG_PXP2_INT_MASK_0, val); 16641 16642 REG_WR(sc, TSDM_REG_TSDM_INT_MASK_0, 0); 16643 REG_WR(sc, TSDM_REG_TSDM_INT_MASK_1, 0); 16644 REG_WR(sc, TCM_REG_TCM_INT_MASK, 0); 16645 /* REG_WR(sc, TSEM_REG_TSEM_INT_MASK_0, 0); */ 16646 16647 if (!CHIP_IS_E1x(sc)) { 16648 /* enable VFC attentions: bits 11 and 12, bits 31:13 reserved */ 16649 REG_WR(sc, TSEM_REG_TSEM_INT_MASK_1, 0x07ff); 16650 } 16651 16652 REG_WR(sc, CDU_REG_CDU_INT_MASK, 0); 16653 REG_WR(sc, DMAE_REG_DMAE_INT_MASK, 0); 16654 /* REG_WR(sc, MISC_REG_MISC_INT_MASK, 0); */ 16655 REG_WR(sc, PBF_REG_PBF_INT_MASK, 0x18); /* bit 3,4 masked */ 16656 } 16657 16658 /** 16659 * bxe_init_hw_common - initialize the HW at the COMMON phase. 16660 * 16661 * @sc: driver handle 16662 */ 16663 static int 16664 bxe_init_hw_common(struct bxe_softc *sc) 16665 { 16666 uint8_t abs_func_id; 16667 uint32_t val; 16668 16669 BLOGD(sc, DBG_LOAD, "starting common init for func %d\n", 16670 SC_ABS_FUNC(sc)); 16671 16672 /* 16673 * take the RESET lock to protect undi_unload flow from accessing 16674 * registers while we are resetting the chip 16675 */ 16676 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RESET); 16677 16678 bxe_reset_common(sc); 16679 16680 REG_WR(sc, (GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET), 0xffffffff); 16681 16682 val = 0xfffc; 16683 if (CHIP_IS_E3(sc)) { 16684 val |= MISC_REGISTERS_RESET_REG_2_MSTAT0; 16685 val |= MISC_REGISTERS_RESET_REG_2_MSTAT1; 16686 } 16687 16688 REG_WR(sc, (GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET), val); 16689 16690 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RESET); 16691 16692 ecore_init_block(sc, BLOCK_MISC, PHASE_COMMON); 16693 BLOGD(sc, DBG_LOAD, "after misc block init\n"); 16694 16695 if (!CHIP_IS_E1x(sc)) { 16696 /* 16697 * 4-port mode or 2-port mode we need to turn off master-enable for 16698 * everyone. After that we turn it back on for self. So, we disregard 16699 * multi-function, and always disable all functions on the given path, 16700 * this means 0,2,4,6 for path 0 and 1,3,5,7 for path 1 16701 */ 16702 for (abs_func_id = SC_PATH(sc); 16703 abs_func_id < (E2_FUNC_MAX * 2); 16704 abs_func_id += 2) { 16705 if (abs_func_id == SC_ABS_FUNC(sc)) { 16706 REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1); 16707 continue; 16708 } 16709 16710 bxe_pretend_func(sc, abs_func_id); 16711 16712 /* clear pf enable */ 16713 bxe_pf_disable(sc); 16714 16715 bxe_pretend_func(sc, SC_ABS_FUNC(sc)); 16716 } 16717 } 16718 16719 BLOGD(sc, DBG_LOAD, "after pf disable\n"); 16720 16721 ecore_init_block(sc, BLOCK_PXP, PHASE_COMMON); 16722 16723 if (CHIP_IS_E1(sc)) { 16724 /* 16725 * enable HW interrupt from PXP on USDM overflow 16726 * bit 16 on INT_MASK_0 16727 */ 16728 REG_WR(sc, PXP_REG_PXP_INT_MASK_0, 0); 16729 } 16730 16731 ecore_init_block(sc, BLOCK_PXP2, PHASE_COMMON); 16732 bxe_init_pxp(sc); 16733 16734 #ifdef __BIG_ENDIAN 16735 REG_WR(sc, PXP2_REG_RQ_QM_ENDIAN_M, 1); 16736 REG_WR(sc, PXP2_REG_RQ_TM_ENDIAN_M, 1); 16737 REG_WR(sc, PXP2_REG_RQ_SRC_ENDIAN_M, 1); 16738 REG_WR(sc, PXP2_REG_RQ_CDU_ENDIAN_M, 1); 16739 REG_WR(sc, PXP2_REG_RQ_DBG_ENDIAN_M, 1); 16740 /* make sure this value is 0 */ 16741 REG_WR(sc, PXP2_REG_RQ_HC_ENDIAN_M, 0); 16742 16743 //REG_WR(sc, PXP2_REG_RD_PBF_SWAP_MODE, 1); 16744 REG_WR(sc, PXP2_REG_RD_QM_SWAP_MODE, 1); 16745 REG_WR(sc, PXP2_REG_RD_TM_SWAP_MODE, 1); 16746 REG_WR(sc, PXP2_REG_RD_SRC_SWAP_MODE, 1); 16747 REG_WR(sc, PXP2_REG_RD_CDURD_SWAP_MODE, 1); 16748 #endif 16749 16750 ecore_ilt_init_page_size(sc, INITOP_SET); 16751 16752 if (CHIP_REV_IS_FPGA(sc) && CHIP_IS_E1H(sc)) { 16753 REG_WR(sc, PXP2_REG_PGL_TAGS_LIMIT, 0x1); 16754 } 16755 16756 /* let the HW do it's magic... */ 16757 DELAY(100000); 16758 16759 /* finish PXP init */ 16760 val = REG_RD(sc, PXP2_REG_RQ_CFG_DONE); 16761 if (val != 1) { 16762 BLOGE(sc, "PXP2 CFG failed PXP2_REG_RQ_CFG_DONE val = 0x%x\n", 16763 val); 16764 return (-1); 16765 } 16766 val = REG_RD(sc, PXP2_REG_RD_INIT_DONE); 16767 if (val != 1) { 16768 BLOGE(sc, "PXP2 RD_INIT failed val = 0x%x\n", val); 16769 return (-1); 16770 } 16771 16772 BLOGD(sc, DBG_LOAD, "after pxp init\n"); 16773 16774 /* 16775 * Timer bug workaround for E2 only. We need to set the entire ILT to have 16776 * entries with value "0" and valid bit on. This needs to be done by the 16777 * first PF that is loaded in a path (i.e. common phase) 16778 */ 16779 if (!CHIP_IS_E1x(sc)) { 16780 /* 16781 * In E2 there is a bug in the timers block that can cause function 6 / 7 16782 * (i.e. vnic3) to start even if it is marked as "scan-off". 16783 * This occurs when a different function (func2,3) is being marked 16784 * as "scan-off". Real-life scenario for example: if a driver is being 16785 * load-unloaded while func6,7 are down. This will cause the timer to access 16786 * the ilt, translate to a logical address and send a request to read/write. 16787 * Since the ilt for the function that is down is not valid, this will cause 16788 * a translation error which is unrecoverable. 16789 * The Workaround is intended to make sure that when this happens nothing 16790 * fatal will occur. The workaround: 16791 * 1. First PF driver which loads on a path will: 16792 * a. After taking the chip out of reset, by using pretend, 16793 * it will write "0" to the following registers of 16794 * the other vnics. 16795 * REG_WR(pdev, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0); 16796 * REG_WR(pdev, CFC_REG_WEAK_ENABLE_PF,0); 16797 * REG_WR(pdev, CFC_REG_STRONG_ENABLE_PF,0); 16798 * And for itself it will write '1' to 16799 * PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER to enable 16800 * dmae-operations (writing to pram for example.) 16801 * note: can be done for only function 6,7 but cleaner this 16802 * way. 16803 * b. Write zero+valid to the entire ILT. 16804 * c. Init the first_timers_ilt_entry, last_timers_ilt_entry of 16805 * VNIC3 (of that port). The range allocated will be the 16806 * entire ILT. This is needed to prevent ILT range error. 16807 * 2. Any PF driver load flow: 16808 * a. ILT update with the physical addresses of the allocated 16809 * logical pages. 16810 * b. Wait 20msec. - note that this timeout is needed to make 16811 * sure there are no requests in one of the PXP internal 16812 * queues with "old" ILT addresses. 16813 * c. PF enable in the PGLC. 16814 * d. Clear the was_error of the PF in the PGLC. (could have 16815 * occurred while driver was down) 16816 * e. PF enable in the CFC (WEAK + STRONG) 16817 * f. Timers scan enable 16818 * 3. PF driver unload flow: 16819 * a. Clear the Timers scan_en. 16820 * b. Polling for scan_on=0 for that PF. 16821 * c. Clear the PF enable bit in the PXP. 16822 * d. Clear the PF enable in the CFC (WEAK + STRONG) 16823 * e. Write zero+valid to all ILT entries (The valid bit must 16824 * stay set) 16825 * f. If this is VNIC 3 of a port then also init 16826 * first_timers_ilt_entry to zero and last_timers_ilt_entry 16827 * to the last enrty in the ILT. 16828 * 16829 * Notes: 16830 * Currently the PF error in the PGLC is non recoverable. 16831 * In the future the there will be a recovery routine for this error. 16832 * Currently attention is masked. 16833 * Having an MCP lock on the load/unload process does not guarantee that 16834 * there is no Timer disable during Func6/7 enable. This is because the 16835 * Timers scan is currently being cleared by the MCP on FLR. 16836 * Step 2.d can be done only for PF6/7 and the driver can also check if 16837 * there is error before clearing it. But the flow above is simpler and 16838 * more general. 16839 * All ILT entries are written by zero+valid and not just PF6/7 16840 * ILT entries since in the future the ILT entries allocation for 16841 * PF-s might be dynamic. 16842 */ 16843 struct ilt_client_info ilt_cli; 16844 struct ecore_ilt ilt; 16845 16846 memset(&ilt_cli, 0, sizeof(struct ilt_client_info)); 16847 memset(&ilt, 0, sizeof(struct ecore_ilt)); 16848 16849 /* initialize dummy TM client */ 16850 ilt_cli.start = 0; 16851 ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1; 16852 ilt_cli.client_num = ILT_CLIENT_TM; 16853 16854 /* 16855 * Step 1: set zeroes to all ilt page entries with valid bit on 16856 * Step 2: set the timers first/last ilt entry to point 16857 * to the entire range to prevent ILT range error for 3rd/4th 16858 * vnic (this code assumes existence of the vnic) 16859 * 16860 * both steps performed by call to ecore_ilt_client_init_op() 16861 * with dummy TM client 16862 * 16863 * we must use pretend since PXP2_REG_RQ_##blk##_FIRST_ILT 16864 * and his brother are split registers 16865 */ 16866 16867 bxe_pretend_func(sc, (SC_PATH(sc) + 6)); 16868 ecore_ilt_client_init_op_ilt(sc, &ilt, &ilt_cli, INITOP_CLEAR); 16869 bxe_pretend_func(sc, SC_ABS_FUNC(sc)); 16870 16871 REG_WR(sc, PXP2_REG_RQ_DRAM_ALIGN, BXE_PXP_DRAM_ALIGN); 16872 REG_WR(sc, PXP2_REG_RQ_DRAM_ALIGN_RD, BXE_PXP_DRAM_ALIGN); 16873 REG_WR(sc, PXP2_REG_RQ_DRAM_ALIGN_SEL, 1); 16874 } 16875 16876 REG_WR(sc, PXP2_REG_RQ_DISABLE_INPUTS, 0); 16877 REG_WR(sc, PXP2_REG_RD_DISABLE_INPUTS, 0); 16878 16879 if (!CHIP_IS_E1x(sc)) { 16880 int factor = CHIP_REV_IS_EMUL(sc) ? 1000 : 16881 (CHIP_REV_IS_FPGA(sc) ? 400 : 0); 16882 16883 ecore_init_block(sc, BLOCK_PGLUE_B, PHASE_COMMON); 16884 ecore_init_block(sc, BLOCK_ATC, PHASE_COMMON); 16885 16886 /* let the HW do it's magic... */ 16887 do { 16888 DELAY(200000); 16889 val = REG_RD(sc, ATC_REG_ATC_INIT_DONE); 16890 } while (factor-- && (val != 1)); 16891 16892 if (val != 1) { 16893 BLOGE(sc, "ATC_INIT failed val = 0x%x\n", val); 16894 return (-1); 16895 } 16896 } 16897 16898 BLOGD(sc, DBG_LOAD, "after pglue and atc init\n"); 16899 16900 ecore_init_block(sc, BLOCK_DMAE, PHASE_COMMON); 16901 16902 bxe_iov_init_dmae(sc); 16903 16904 /* clean the DMAE memory */ 16905 sc->dmae_ready = 1; 16906 ecore_init_fill(sc, TSEM_REG_PRAM, 0, 8, 1); 16907 16908 ecore_init_block(sc, BLOCK_TCM, PHASE_COMMON); 16909 16910 ecore_init_block(sc, BLOCK_UCM, PHASE_COMMON); 16911 16912 ecore_init_block(sc, BLOCK_CCM, PHASE_COMMON); 16913 16914 ecore_init_block(sc, BLOCK_XCM, PHASE_COMMON); 16915 16916 bxe_read_dmae(sc, XSEM_REG_PASSIVE_BUFFER, 3); 16917 bxe_read_dmae(sc, CSEM_REG_PASSIVE_BUFFER, 3); 16918 bxe_read_dmae(sc, TSEM_REG_PASSIVE_BUFFER, 3); 16919 bxe_read_dmae(sc, USEM_REG_PASSIVE_BUFFER, 3); 16920 16921 ecore_init_block(sc, BLOCK_QM, PHASE_COMMON); 16922 16923 /* QM queues pointers table */ 16924 ecore_qm_init_ptr_table(sc, sc->qm_cid_count, INITOP_SET); 16925 16926 /* soft reset pulse */ 16927 REG_WR(sc, QM_REG_SOFT_RESET, 1); 16928 REG_WR(sc, QM_REG_SOFT_RESET, 0); 16929 16930 if (CNIC_SUPPORT(sc)) 16931 ecore_init_block(sc, BLOCK_TM, PHASE_COMMON); 16932 16933 ecore_init_block(sc, BLOCK_DORQ, PHASE_COMMON); 16934 REG_WR(sc, DORQ_REG_DPM_CID_OFST, BXE_DB_SHIFT); 16935 if (!CHIP_REV_IS_SLOW(sc)) { 16936 /* enable hw interrupt from doorbell Q */ 16937 REG_WR(sc, DORQ_REG_DORQ_INT_MASK, 0); 16938 } 16939 16940 ecore_init_block(sc, BLOCK_BRB1, PHASE_COMMON); 16941 16942 ecore_init_block(sc, BLOCK_PRS, PHASE_COMMON); 16943 REG_WR(sc, PRS_REG_A_PRSU_20, 0xf); 16944 16945 if (!CHIP_IS_E1(sc)) { 16946 REG_WR(sc, PRS_REG_E1HOV_MODE, sc->devinfo.mf_info.path_has_ovlan); 16947 } 16948 16949 if (!CHIP_IS_E1x(sc) && !CHIP_IS_E3B0(sc)) { 16950 if (IS_MF_AFEX(sc)) { 16951 /* 16952 * configure that AFEX and VLAN headers must be 16953 * received in AFEX mode 16954 */ 16955 REG_WR(sc, PRS_REG_HDRS_AFTER_BASIC, 0xE); 16956 REG_WR(sc, PRS_REG_MUST_HAVE_HDRS, 0xA); 16957 REG_WR(sc, PRS_REG_HDRS_AFTER_TAG_0, 0x6); 16958 REG_WR(sc, PRS_REG_TAG_ETHERTYPE_0, 0x8926); 16959 REG_WR(sc, PRS_REG_TAG_LEN_0, 0x4); 16960 } else { 16961 /* 16962 * Bit-map indicating which L2 hdrs may appear 16963 * after the basic Ethernet header 16964 */ 16965 REG_WR(sc, PRS_REG_HDRS_AFTER_BASIC, 16966 sc->devinfo.mf_info.path_has_ovlan ? 7 : 6); 16967 } 16968 } 16969 16970 ecore_init_block(sc, BLOCK_TSDM, PHASE_COMMON); 16971 ecore_init_block(sc, BLOCK_CSDM, PHASE_COMMON); 16972 ecore_init_block(sc, BLOCK_USDM, PHASE_COMMON); 16973 ecore_init_block(sc, BLOCK_XSDM, PHASE_COMMON); 16974 16975 if (!CHIP_IS_E1x(sc)) { 16976 /* reset VFC memories */ 16977 REG_WR(sc, TSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST, 16978 VFC_MEMORIES_RST_REG_CAM_RST | 16979 VFC_MEMORIES_RST_REG_RAM_RST); 16980 REG_WR(sc, XSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST, 16981 VFC_MEMORIES_RST_REG_CAM_RST | 16982 VFC_MEMORIES_RST_REG_RAM_RST); 16983 16984 DELAY(20000); 16985 } 16986 16987 ecore_init_block(sc, BLOCK_TSEM, PHASE_COMMON); 16988 ecore_init_block(sc, BLOCK_USEM, PHASE_COMMON); 16989 ecore_init_block(sc, BLOCK_CSEM, PHASE_COMMON); 16990 ecore_init_block(sc, BLOCK_XSEM, PHASE_COMMON); 16991 16992 /* sync semi rtc */ 16993 REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 16994 0x80000000); 16995 REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 16996 0x80000000); 16997 16998 ecore_init_block(sc, BLOCK_UPB, PHASE_COMMON); 16999 ecore_init_block(sc, BLOCK_XPB, PHASE_COMMON); 17000 ecore_init_block(sc, BLOCK_PBF, PHASE_COMMON); 17001 17002 if (!CHIP_IS_E1x(sc)) { 17003 if (IS_MF_AFEX(sc)) { 17004 /* 17005 * configure that AFEX and VLAN headers must be 17006 * sent in AFEX mode 17007 */ 17008 REG_WR(sc, PBF_REG_HDRS_AFTER_BASIC, 0xE); 17009 REG_WR(sc, PBF_REG_MUST_HAVE_HDRS, 0xA); 17010 REG_WR(sc, PBF_REG_HDRS_AFTER_TAG_0, 0x6); 17011 REG_WR(sc, PBF_REG_TAG_ETHERTYPE_0, 0x8926); 17012 REG_WR(sc, PBF_REG_TAG_LEN_0, 0x4); 17013 } else { 17014 REG_WR(sc, PBF_REG_HDRS_AFTER_BASIC, 17015 sc->devinfo.mf_info.path_has_ovlan ? 7 : 6); 17016 } 17017 } 17018 17019 REG_WR(sc, SRC_REG_SOFT_RST, 1); 17020 17021 ecore_init_block(sc, BLOCK_SRC, PHASE_COMMON); 17022 17023 if (CNIC_SUPPORT(sc)) { 17024 REG_WR(sc, SRC_REG_KEYSEARCH_0, 0x63285672); 17025 REG_WR(sc, SRC_REG_KEYSEARCH_1, 0x24b8f2cc); 17026 REG_WR(sc, SRC_REG_KEYSEARCH_2, 0x223aef9b); 17027 REG_WR(sc, SRC_REG_KEYSEARCH_3, 0x26001e3a); 17028 REG_WR(sc, SRC_REG_KEYSEARCH_4, 0x7ae91116); 17029 REG_WR(sc, SRC_REG_KEYSEARCH_5, 0x5ce5230b); 17030 REG_WR(sc, SRC_REG_KEYSEARCH_6, 0x298d8adf); 17031 REG_WR(sc, SRC_REG_KEYSEARCH_7, 0x6eb0ff09); 17032 REG_WR(sc, SRC_REG_KEYSEARCH_8, 0x1830f82f); 17033 REG_WR(sc, SRC_REG_KEYSEARCH_9, 0x01e46be7); 17034 } 17035 REG_WR(sc, SRC_REG_SOFT_RST, 0); 17036 17037 if (sizeof(union cdu_context) != 1024) { 17038 /* we currently assume that a context is 1024 bytes */ 17039 BLOGE(sc, "please adjust the size of cdu_context(%ld)\n", 17040 (long)sizeof(union cdu_context)); 17041 } 17042 17043 ecore_init_block(sc, BLOCK_CDU, PHASE_COMMON); 17044 val = (4 << 24) + (0 << 12) + 1024; 17045 REG_WR(sc, CDU_REG_CDU_GLOBAL_PARAMS, val); 17046 17047 ecore_init_block(sc, BLOCK_CFC, PHASE_COMMON); 17048 17049 REG_WR(sc, CFC_REG_INIT_REG, 0x7FF); 17050 /* enable context validation interrupt from CFC */ 17051 REG_WR(sc, CFC_REG_CFC_INT_MASK, 0); 17052 17053 /* set the thresholds to prevent CFC/CDU race */ 17054 REG_WR(sc, CFC_REG_DEBUG0, 0x20020000); 17055 ecore_init_block(sc, BLOCK_HC, PHASE_COMMON); 17056 17057 if (!CHIP_IS_E1x(sc) && BXE_NOMCP(sc)) { 17058 REG_WR(sc, IGU_REG_RESET_MEMORIES, 0x36); 17059 } 17060 17061 ecore_init_block(sc, BLOCK_IGU, PHASE_COMMON); 17062 ecore_init_block(sc, BLOCK_MISC_AEU, PHASE_COMMON); 17063 17064 /* Reset PCIE errors for debug */ 17065 REG_WR(sc, 0x2814, 0xffffffff); 17066 REG_WR(sc, 0x3820, 0xffffffff); 17067 17068 if (!CHIP_IS_E1x(sc)) { 17069 REG_WR(sc, PCICFG_OFFSET + PXPCS_TL_CONTROL_5, 17070 (PXPCS_TL_CONTROL_5_ERR_UNSPPORT1 | 17071 PXPCS_TL_CONTROL_5_ERR_UNSPPORT)); 17072 REG_WR(sc, PCICFG_OFFSET + PXPCS_TL_FUNC345_STAT, 17073 (PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT4 | 17074 PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT3 | 17075 PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT2)); 17076 REG_WR(sc, PCICFG_OFFSET + PXPCS_TL_FUNC678_STAT, 17077 (PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT7 | 17078 PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT6 | 17079 PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT5)); 17080 } 17081 17082 ecore_init_block(sc, BLOCK_NIG, PHASE_COMMON); 17083 17084 if (!CHIP_IS_E1(sc)) { 17085 /* in E3 this done in per-port section */ 17086 if (!CHIP_IS_E3(sc)) 17087 REG_WR(sc, NIG_REG_LLH_MF_MODE, IS_MF(sc)); 17088 } 17089 17090 if (CHIP_IS_E1H(sc)) { 17091 /* not applicable for E2 (and above ...) */ 17092 REG_WR(sc, NIG_REG_LLH_E1HOV_MODE, IS_MF_SD(sc)); 17093 } 17094 17095 if (CHIP_REV_IS_SLOW(sc)) { 17096 DELAY(200000); 17097 } 17098 17099 /* finish CFC init */ 17100 val = reg_poll(sc, CFC_REG_LL_INIT_DONE, 1, 100, 10); 17101 if (val != 1) { 17102 BLOGE(sc, "CFC LL_INIT failed val=0x%x\n", val); 17103 return (-1); 17104 } 17105 val = reg_poll(sc, CFC_REG_AC_INIT_DONE, 1, 100, 10); 17106 if (val != 1) { 17107 BLOGE(sc, "CFC AC_INIT failed val=0x%x\n", val); 17108 return (-1); 17109 } 17110 val = reg_poll(sc, CFC_REG_CAM_INIT_DONE, 1, 100, 10); 17111 if (val != 1) { 17112 BLOGE(sc, "CFC CAM_INIT failed val=0x%x\n", val); 17113 return (-1); 17114 } 17115 REG_WR(sc, CFC_REG_DEBUG0, 0); 17116 17117 if (CHIP_IS_E1(sc)) { 17118 /* read NIG statistic to see if this is our first up since powerup */ 17119 bxe_read_dmae(sc, NIG_REG_STAT2_BRB_OCTET, 2); 17120 val = *BXE_SP(sc, wb_data[0]); 17121 17122 /* do internal memory self test */ 17123 if ((val == 0) && bxe_int_mem_test(sc)) { 17124 BLOGE(sc, "internal mem self test failed val=0x%x\n", val); 17125 return (-1); 17126 } 17127 } 17128 17129 bxe_setup_fan_failure_detection(sc); 17130 17131 /* clear PXP2 attentions */ 17132 REG_RD(sc, PXP2_REG_PXP2_INT_STS_CLR_0); 17133 17134 bxe_enable_blocks_attention(sc); 17135 17136 if (!CHIP_REV_IS_SLOW(sc)) { 17137 ecore_enable_blocks_parity(sc); 17138 } 17139 17140 if (!BXE_NOMCP(sc)) { 17141 if (CHIP_IS_E1x(sc)) { 17142 bxe_common_init_phy(sc); 17143 } 17144 } 17145 17146 return (0); 17147 } 17148 17149 /** 17150 * bxe_init_hw_common_chip - init HW at the COMMON_CHIP phase. 17151 * 17152 * @sc: driver handle 17153 */ 17154 static int 17155 bxe_init_hw_common_chip(struct bxe_softc *sc) 17156 { 17157 int rc = bxe_init_hw_common(sc); 17158 17159 if (rc) { 17160 BLOGE(sc, "bxe_init_hw_common failed rc=%d\n", rc); 17161 return (rc); 17162 } 17163 17164 /* In E2 2-PORT mode, same ext phy is used for the two paths */ 17165 if (!BXE_NOMCP(sc)) { 17166 bxe_common_init_phy(sc); 17167 } 17168 17169 return (0); 17170 } 17171 17172 static int 17173 bxe_init_hw_port(struct bxe_softc *sc) 17174 { 17175 int port = SC_PORT(sc); 17176 int init_phase = port ? PHASE_PORT1 : PHASE_PORT0; 17177 uint32_t low, high; 17178 uint32_t val; 17179 17180 BLOGD(sc, DBG_LOAD, "starting port init for port %d\n", port); 17181 17182 REG_WR(sc, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0); 17183 17184 ecore_init_block(sc, BLOCK_MISC, init_phase); 17185 ecore_init_block(sc, BLOCK_PXP, init_phase); 17186 ecore_init_block(sc, BLOCK_PXP2, init_phase); 17187 17188 /* 17189 * Timers bug workaround: disables the pf_master bit in pglue at 17190 * common phase, we need to enable it here before any dmae access are 17191 * attempted. Therefore we manually added the enable-master to the 17192 * port phase (it also happens in the function phase) 17193 */ 17194 if (!CHIP_IS_E1x(sc)) { 17195 REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1); 17196 } 17197 17198 ecore_init_block(sc, BLOCK_ATC, init_phase); 17199 ecore_init_block(sc, BLOCK_DMAE, init_phase); 17200 ecore_init_block(sc, BLOCK_PGLUE_B, init_phase); 17201 ecore_init_block(sc, BLOCK_QM, init_phase); 17202 17203 ecore_init_block(sc, BLOCK_TCM, init_phase); 17204 ecore_init_block(sc, BLOCK_UCM, init_phase); 17205 ecore_init_block(sc, BLOCK_CCM, init_phase); 17206 ecore_init_block(sc, BLOCK_XCM, init_phase); 17207 17208 /* QM cid (connection) count */ 17209 ecore_qm_init_cid_count(sc, sc->qm_cid_count, INITOP_SET); 17210 17211 if (CNIC_SUPPORT(sc)) { 17212 ecore_init_block(sc, BLOCK_TM, init_phase); 17213 REG_WR(sc, TM_REG_LIN0_SCAN_TIME + port*4, 20); 17214 REG_WR(sc, TM_REG_LIN0_MAX_ACTIVE_CID + port*4, 31); 17215 } 17216 17217 ecore_init_block(sc, BLOCK_DORQ, init_phase); 17218 17219 ecore_init_block(sc, BLOCK_BRB1, init_phase); 17220 17221 if (CHIP_IS_E1(sc) || CHIP_IS_E1H(sc)) { 17222 if (IS_MF(sc)) { 17223 low = (BXE_ONE_PORT(sc) ? 160 : 246); 17224 } else if (sc->mtu > 4096) { 17225 if (BXE_ONE_PORT(sc)) { 17226 low = 160; 17227 } else { 17228 val = sc->mtu; 17229 /* (24*1024 + val*4)/256 */ 17230 low = (96 + (val / 64) + ((val % 64) ? 1 : 0)); 17231 } 17232 } else { 17233 low = (BXE_ONE_PORT(sc) ? 80 : 160); 17234 } 17235 high = (low + 56); /* 14*1024/256 */ 17236 REG_WR(sc, BRB1_REG_PAUSE_LOW_THRESHOLD_0 + port*4, low); 17237 REG_WR(sc, BRB1_REG_PAUSE_HIGH_THRESHOLD_0 + port*4, high); 17238 } 17239 17240 if (CHIP_IS_MODE_4_PORT(sc)) { 17241 REG_WR(sc, SC_PORT(sc) ? 17242 BRB1_REG_MAC_GUARANTIED_1 : 17243 BRB1_REG_MAC_GUARANTIED_0, 40); 17244 } 17245 17246 ecore_init_block(sc, BLOCK_PRS, init_phase); 17247 if (CHIP_IS_E3B0(sc)) { 17248 if (IS_MF_AFEX(sc)) { 17249 /* configure headers for AFEX mode */ 17250 REG_WR(sc, SC_PORT(sc) ? 17251 PRS_REG_HDRS_AFTER_BASIC_PORT_1 : 17252 PRS_REG_HDRS_AFTER_BASIC_PORT_0, 0xE); 17253 REG_WR(sc, SC_PORT(sc) ? 17254 PRS_REG_HDRS_AFTER_TAG_0_PORT_1 : 17255 PRS_REG_HDRS_AFTER_TAG_0_PORT_0, 0x6); 17256 REG_WR(sc, SC_PORT(sc) ? 17257 PRS_REG_MUST_HAVE_HDRS_PORT_1 : 17258 PRS_REG_MUST_HAVE_HDRS_PORT_0, 0xA); 17259 } else { 17260 /* Ovlan exists only if we are in multi-function + 17261 * switch-dependent mode, in switch-independent there 17262 * is no ovlan headers 17263 */ 17264 REG_WR(sc, SC_PORT(sc) ? 17265 PRS_REG_HDRS_AFTER_BASIC_PORT_1 : 17266 PRS_REG_HDRS_AFTER_BASIC_PORT_0, 17267 (sc->devinfo.mf_info.path_has_ovlan ? 7 : 6)); 17268 } 17269 } 17270 17271 ecore_init_block(sc, BLOCK_TSDM, init_phase); 17272 ecore_init_block(sc, BLOCK_CSDM, init_phase); 17273 ecore_init_block(sc, BLOCK_USDM, init_phase); 17274 ecore_init_block(sc, BLOCK_XSDM, init_phase); 17275 17276 ecore_init_block(sc, BLOCK_TSEM, init_phase); 17277 ecore_init_block(sc, BLOCK_USEM, init_phase); 17278 ecore_init_block(sc, BLOCK_CSEM, init_phase); 17279 ecore_init_block(sc, BLOCK_XSEM, init_phase); 17280 17281 ecore_init_block(sc, BLOCK_UPB, init_phase); 17282 ecore_init_block(sc, BLOCK_XPB, init_phase); 17283 17284 ecore_init_block(sc, BLOCK_PBF, init_phase); 17285 17286 if (CHIP_IS_E1x(sc)) { 17287 /* configure PBF to work without PAUSE mtu 9000 */ 17288 REG_WR(sc, PBF_REG_P0_PAUSE_ENABLE + port*4, 0); 17289 17290 /* update threshold */ 17291 REG_WR(sc, PBF_REG_P0_ARB_THRSH + port*4, (9040/16)); 17292 /* update init credit */ 17293 REG_WR(sc, PBF_REG_P0_INIT_CRD + port*4, (9040/16) + 553 - 22); 17294 17295 /* probe changes */ 17296 REG_WR(sc, PBF_REG_INIT_P0 + port*4, 1); 17297 DELAY(50); 17298 REG_WR(sc, PBF_REG_INIT_P0 + port*4, 0); 17299 } 17300 17301 if (CNIC_SUPPORT(sc)) { 17302 ecore_init_block(sc, BLOCK_SRC, init_phase); 17303 } 17304 17305 ecore_init_block(sc, BLOCK_CDU, init_phase); 17306 ecore_init_block(sc, BLOCK_CFC, init_phase); 17307 17308 if (CHIP_IS_E1(sc)) { 17309 REG_WR(sc, HC_REG_LEADING_EDGE_0 + port*8, 0); 17310 REG_WR(sc, HC_REG_TRAILING_EDGE_0 + port*8, 0); 17311 } 17312 ecore_init_block(sc, BLOCK_HC, init_phase); 17313 17314 ecore_init_block(sc, BLOCK_IGU, init_phase); 17315 17316 ecore_init_block(sc, BLOCK_MISC_AEU, init_phase); 17317 /* init aeu_mask_attn_func_0/1: 17318 * - SF mode: bits 3-7 are masked. only bits 0-2 are in use 17319 * - MF mode: bit 3 is masked. bits 0-2 are in use as in SF 17320 * bits 4-7 are used for "per vn group attention" */ 17321 val = IS_MF(sc) ? 0xF7 : 0x7; 17322 /* Enable DCBX attention for all but E1 */ 17323 val |= CHIP_IS_E1(sc) ? 0 : 0x10; 17324 REG_WR(sc, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, val); 17325 17326 ecore_init_block(sc, BLOCK_NIG, init_phase); 17327 17328 if (!CHIP_IS_E1x(sc)) { 17329 /* Bit-map indicating which L2 hdrs may appear after the 17330 * basic Ethernet header 17331 */ 17332 if (IS_MF_AFEX(sc)) { 17333 REG_WR(sc, SC_PORT(sc) ? 17334 NIG_REG_P1_HDRS_AFTER_BASIC : 17335 NIG_REG_P0_HDRS_AFTER_BASIC, 0xE); 17336 } else { 17337 REG_WR(sc, SC_PORT(sc) ? 17338 NIG_REG_P1_HDRS_AFTER_BASIC : 17339 NIG_REG_P0_HDRS_AFTER_BASIC, 17340 IS_MF_SD(sc) ? 7 : 6); 17341 } 17342 17343 if (CHIP_IS_E3(sc)) { 17344 REG_WR(sc, SC_PORT(sc) ? 17345 NIG_REG_LLH1_MF_MODE : 17346 NIG_REG_LLH_MF_MODE, IS_MF(sc)); 17347 } 17348 } 17349 if (!CHIP_IS_E3(sc)) { 17350 REG_WR(sc, NIG_REG_XGXS_SERDES0_MODE_SEL + port*4, 1); 17351 } 17352 17353 if (!CHIP_IS_E1(sc)) { 17354 /* 0x2 disable mf_ov, 0x1 enable */ 17355 REG_WR(sc, NIG_REG_LLH0_BRB1_DRV_MASK_MF + port*4, 17356 (IS_MF_SD(sc) ? 0x1 : 0x2)); 17357 17358 if (!CHIP_IS_E1x(sc)) { 17359 val = 0; 17360 switch (sc->devinfo.mf_info.mf_mode) { 17361 case MULTI_FUNCTION_SD: 17362 val = 1; 17363 break; 17364 case MULTI_FUNCTION_SI: 17365 case MULTI_FUNCTION_AFEX: 17366 val = 2; 17367 break; 17368 } 17369 17370 REG_WR(sc, (SC_PORT(sc) ? NIG_REG_LLH1_CLS_TYPE : 17371 NIG_REG_LLH0_CLS_TYPE), val); 17372 } 17373 REG_WR(sc, NIG_REG_LLFC_ENABLE_0 + port*4, 0); 17374 REG_WR(sc, NIG_REG_LLFC_OUT_EN_0 + port*4, 0); 17375 REG_WR(sc, NIG_REG_PAUSE_ENABLE_0 + port*4, 1); 17376 } 17377 17378 /* If SPIO5 is set to generate interrupts, enable it for this port */ 17379 val = REG_RD(sc, MISC_REG_SPIO_EVENT_EN); 17380 if (val & MISC_SPIO_SPIO5) { 17381 uint32_t reg_addr = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 : 17382 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0); 17383 val = REG_RD(sc, reg_addr); 17384 val |= AEU_INPUTS_ATTN_BITS_SPIO5; 17385 REG_WR(sc, reg_addr, val); 17386 } 17387 17388 return (0); 17389 } 17390 17391 static uint32_t 17392 bxe_flr_clnup_reg_poll(struct bxe_softc *sc, 17393 uint32_t reg, 17394 uint32_t expected, 17395 uint32_t poll_count) 17396 { 17397 uint32_t cur_cnt = poll_count; 17398 uint32_t val; 17399 17400 while ((val = REG_RD(sc, reg)) != expected && cur_cnt--) { 17401 DELAY(FLR_WAIT_INTERVAL); 17402 } 17403 17404 return (val); 17405 } 17406 17407 static int 17408 bxe_flr_clnup_poll_hw_counter(struct bxe_softc *sc, 17409 uint32_t reg, 17410 char *msg, 17411 uint32_t poll_cnt) 17412 { 17413 uint32_t val = bxe_flr_clnup_reg_poll(sc, reg, 0, poll_cnt); 17414 17415 if (val != 0) { 17416 BLOGE(sc, "%s usage count=%d\n", msg, val); 17417 return (1); 17418 } 17419 17420 return (0); 17421 } 17422 17423 /* Common routines with VF FLR cleanup */ 17424 static uint32_t 17425 bxe_flr_clnup_poll_count(struct bxe_softc *sc) 17426 { 17427 /* adjust polling timeout */ 17428 if (CHIP_REV_IS_EMUL(sc)) { 17429 return (FLR_POLL_CNT * 2000); 17430 } 17431 17432 if (CHIP_REV_IS_FPGA(sc)) { 17433 return (FLR_POLL_CNT * 120); 17434 } 17435 17436 return (FLR_POLL_CNT); 17437 } 17438 17439 static int 17440 bxe_poll_hw_usage_counters(struct bxe_softc *sc, 17441 uint32_t poll_cnt) 17442 { 17443 /* wait for CFC PF usage-counter to zero (includes all the VFs) */ 17444 if (bxe_flr_clnup_poll_hw_counter(sc, 17445 CFC_REG_NUM_LCIDS_INSIDE_PF, 17446 "CFC PF usage counter timed out", 17447 poll_cnt)) { 17448 return (1); 17449 } 17450 17451 /* Wait for DQ PF usage-counter to zero (until DQ cleanup) */ 17452 if (bxe_flr_clnup_poll_hw_counter(sc, 17453 DORQ_REG_PF_USAGE_CNT, 17454 "DQ PF usage counter timed out", 17455 poll_cnt)) { 17456 return (1); 17457 } 17458 17459 /* Wait for QM PF usage-counter to zero (until DQ cleanup) */ 17460 if (bxe_flr_clnup_poll_hw_counter(sc, 17461 QM_REG_PF_USG_CNT_0 + 4*SC_FUNC(sc), 17462 "QM PF usage counter timed out", 17463 poll_cnt)) { 17464 return (1); 17465 } 17466 17467 /* Wait for Timer PF usage-counters to zero (until DQ cleanup) */ 17468 if (bxe_flr_clnup_poll_hw_counter(sc, 17469 TM_REG_LIN0_VNIC_UC + 4*SC_PORT(sc), 17470 "Timers VNIC usage counter timed out", 17471 poll_cnt)) { 17472 return (1); 17473 } 17474 17475 if (bxe_flr_clnup_poll_hw_counter(sc, 17476 TM_REG_LIN0_NUM_SCANS + 4*SC_PORT(sc), 17477 "Timers NUM_SCANS usage counter timed out", 17478 poll_cnt)) { 17479 return (1); 17480 } 17481 17482 /* Wait DMAE PF usage counter to zero */ 17483 if (bxe_flr_clnup_poll_hw_counter(sc, 17484 dmae_reg_go_c[INIT_DMAE_C(sc)], 17485 "DMAE dommand register timed out", 17486 poll_cnt)) { 17487 return (1); 17488 } 17489 17490 return (0); 17491 } 17492 17493 #define OP_GEN_PARAM(param) \ 17494 (((param) << SDM_OP_GEN_COMP_PARAM_SHIFT) & SDM_OP_GEN_COMP_PARAM) 17495 #define OP_GEN_TYPE(type) \ 17496 (((type) << SDM_OP_GEN_COMP_TYPE_SHIFT) & SDM_OP_GEN_COMP_TYPE) 17497 #define OP_GEN_AGG_VECT(index) \ 17498 (((index) << SDM_OP_GEN_AGG_VECT_IDX_SHIFT) & SDM_OP_GEN_AGG_VECT_IDX) 17499 17500 static int 17501 bxe_send_final_clnup(struct bxe_softc *sc, 17502 uint8_t clnup_func, 17503 uint32_t poll_cnt) 17504 { 17505 uint32_t op_gen_command = 0; 17506 uint32_t comp_addr = (BAR_CSTRORM_INTMEM + 17507 CSTORM_FINAL_CLEANUP_COMPLETE_OFFSET(clnup_func)); 17508 int ret = 0; 17509 17510 if (REG_RD(sc, comp_addr)) { 17511 BLOGE(sc, "Cleanup complete was not 0 before sending\n"); 17512 return (1); 17513 } 17514 17515 op_gen_command |= OP_GEN_PARAM(XSTORM_AGG_INT_FINAL_CLEANUP_INDEX); 17516 op_gen_command |= OP_GEN_TYPE(XSTORM_AGG_INT_FINAL_CLEANUP_COMP_TYPE); 17517 op_gen_command |= OP_GEN_AGG_VECT(clnup_func); 17518 op_gen_command |= 1 << SDM_OP_GEN_AGG_VECT_IDX_VALID_SHIFT; 17519 17520 BLOGD(sc, DBG_LOAD, "sending FW Final cleanup\n"); 17521 REG_WR(sc, XSDM_REG_OPERATION_GEN, op_gen_command); 17522 17523 if (bxe_flr_clnup_reg_poll(sc, comp_addr, 1, poll_cnt) != 1) { 17524 BLOGE(sc, "FW final cleanup did not succeed\n"); 17525 BLOGD(sc, DBG_LOAD, "At timeout completion address contained %x\n", 17526 (REG_RD(sc, comp_addr))); 17527 bxe_panic(sc, ("FLR cleanup failed\n")); 17528 return (1); 17529 } 17530 17531 /* Zero completion for nxt FLR */ 17532 REG_WR(sc, comp_addr, 0); 17533 17534 return (ret); 17535 } 17536 17537 static void 17538 bxe_pbf_pN_buf_flushed(struct bxe_softc *sc, 17539 struct pbf_pN_buf_regs *regs, 17540 uint32_t poll_count) 17541 { 17542 uint32_t init_crd, crd, crd_start, crd_freed, crd_freed_start; 17543 uint32_t cur_cnt = poll_count; 17544 17545 crd_freed = crd_freed_start = REG_RD(sc, regs->crd_freed); 17546 crd = crd_start = REG_RD(sc, regs->crd); 17547 init_crd = REG_RD(sc, regs->init_crd); 17548 17549 BLOGD(sc, DBG_LOAD, "INIT CREDIT[%d] : %x\n", regs->pN, init_crd); 17550 BLOGD(sc, DBG_LOAD, "CREDIT[%d] : s:%x\n", regs->pN, crd); 17551 BLOGD(sc, DBG_LOAD, "CREDIT_FREED[%d]: s:%x\n", regs->pN, crd_freed); 17552 17553 while ((crd != init_crd) && 17554 ((uint32_t)((int32_t)crd_freed - (int32_t)crd_freed_start) < 17555 (init_crd - crd_start))) { 17556 if (cur_cnt--) { 17557 DELAY(FLR_WAIT_INTERVAL); 17558 crd = REG_RD(sc, regs->crd); 17559 crd_freed = REG_RD(sc, regs->crd_freed); 17560 } else { 17561 BLOGD(sc, DBG_LOAD, "PBF tx buffer[%d] timed out\n", regs->pN); 17562 BLOGD(sc, DBG_LOAD, "CREDIT[%d] : c:%x\n", regs->pN, crd); 17563 BLOGD(sc, DBG_LOAD, "CREDIT_FREED[%d]: c:%x\n", regs->pN, crd_freed); 17564 break; 17565 } 17566 } 17567 17568 BLOGD(sc, DBG_LOAD, "Waited %d*%d usec for PBF tx buffer[%d]\n", 17569 poll_count-cur_cnt, FLR_WAIT_INTERVAL, regs->pN); 17570 } 17571 17572 static void 17573 bxe_pbf_pN_cmd_flushed(struct bxe_softc *sc, 17574 struct pbf_pN_cmd_regs *regs, 17575 uint32_t poll_count) 17576 { 17577 uint32_t occup, to_free, freed, freed_start; 17578 uint32_t cur_cnt = poll_count; 17579 17580 occup = to_free = REG_RD(sc, regs->lines_occup); 17581 freed = freed_start = REG_RD(sc, regs->lines_freed); 17582 17583 BLOGD(sc, DBG_LOAD, "OCCUPANCY[%d] : s:%x\n", regs->pN, occup); 17584 BLOGD(sc, DBG_LOAD, "LINES_FREED[%d] : s:%x\n", regs->pN, freed); 17585 17586 while (occup && 17587 ((uint32_t)((int32_t)freed - (int32_t)freed_start) < to_free)) { 17588 if (cur_cnt--) { 17589 DELAY(FLR_WAIT_INTERVAL); 17590 occup = REG_RD(sc, regs->lines_occup); 17591 freed = REG_RD(sc, regs->lines_freed); 17592 } else { 17593 BLOGD(sc, DBG_LOAD, "PBF cmd queue[%d] timed out\n", regs->pN); 17594 BLOGD(sc, DBG_LOAD, "OCCUPANCY[%d] : s:%x\n", regs->pN, occup); 17595 BLOGD(sc, DBG_LOAD, "LINES_FREED[%d] : s:%x\n", regs->pN, freed); 17596 break; 17597 } 17598 } 17599 17600 BLOGD(sc, DBG_LOAD, "Waited %d*%d usec for PBF cmd queue[%d]\n", 17601 poll_count - cur_cnt, FLR_WAIT_INTERVAL, regs->pN); 17602 } 17603 17604 static void 17605 bxe_tx_hw_flushed(struct bxe_softc *sc, uint32_t poll_count) 17606 { 17607 struct pbf_pN_cmd_regs cmd_regs[] = { 17608 {0, (CHIP_IS_E3B0(sc)) ? 17609 PBF_REG_TQ_OCCUPANCY_Q0 : 17610 PBF_REG_P0_TQ_OCCUPANCY, 17611 (CHIP_IS_E3B0(sc)) ? 17612 PBF_REG_TQ_LINES_FREED_CNT_Q0 : 17613 PBF_REG_P0_TQ_LINES_FREED_CNT}, 17614 {1, (CHIP_IS_E3B0(sc)) ? 17615 PBF_REG_TQ_OCCUPANCY_Q1 : 17616 PBF_REG_P1_TQ_OCCUPANCY, 17617 (CHIP_IS_E3B0(sc)) ? 17618 PBF_REG_TQ_LINES_FREED_CNT_Q1 : 17619 PBF_REG_P1_TQ_LINES_FREED_CNT}, 17620 {4, (CHIP_IS_E3B0(sc)) ? 17621 PBF_REG_TQ_OCCUPANCY_LB_Q : 17622 PBF_REG_P4_TQ_OCCUPANCY, 17623 (CHIP_IS_E3B0(sc)) ? 17624 PBF_REG_TQ_LINES_FREED_CNT_LB_Q : 17625 PBF_REG_P4_TQ_LINES_FREED_CNT} 17626 }; 17627 17628 struct pbf_pN_buf_regs buf_regs[] = { 17629 {0, (CHIP_IS_E3B0(sc)) ? 17630 PBF_REG_INIT_CRD_Q0 : 17631 PBF_REG_P0_INIT_CRD , 17632 (CHIP_IS_E3B0(sc)) ? 17633 PBF_REG_CREDIT_Q0 : 17634 PBF_REG_P0_CREDIT, 17635 (CHIP_IS_E3B0(sc)) ? 17636 PBF_REG_INTERNAL_CRD_FREED_CNT_Q0 : 17637 PBF_REG_P0_INTERNAL_CRD_FREED_CNT}, 17638 {1, (CHIP_IS_E3B0(sc)) ? 17639 PBF_REG_INIT_CRD_Q1 : 17640 PBF_REG_P1_INIT_CRD, 17641 (CHIP_IS_E3B0(sc)) ? 17642 PBF_REG_CREDIT_Q1 : 17643 PBF_REG_P1_CREDIT, 17644 (CHIP_IS_E3B0(sc)) ? 17645 PBF_REG_INTERNAL_CRD_FREED_CNT_Q1 : 17646 PBF_REG_P1_INTERNAL_CRD_FREED_CNT}, 17647 {4, (CHIP_IS_E3B0(sc)) ? 17648 PBF_REG_INIT_CRD_LB_Q : 17649 PBF_REG_P4_INIT_CRD, 17650 (CHIP_IS_E3B0(sc)) ? 17651 PBF_REG_CREDIT_LB_Q : 17652 PBF_REG_P4_CREDIT, 17653 (CHIP_IS_E3B0(sc)) ? 17654 PBF_REG_INTERNAL_CRD_FREED_CNT_LB_Q : 17655 PBF_REG_P4_INTERNAL_CRD_FREED_CNT}, 17656 }; 17657 17658 int i; 17659 17660 /* Verify the command queues are flushed P0, P1, P4 */ 17661 for (i = 0; i < ARRAY_SIZE(cmd_regs); i++) { 17662 bxe_pbf_pN_cmd_flushed(sc, &cmd_regs[i], poll_count); 17663 } 17664 17665 /* Verify the transmission buffers are flushed P0, P1, P4 */ 17666 for (i = 0; i < ARRAY_SIZE(buf_regs); i++) { 17667 bxe_pbf_pN_buf_flushed(sc, &buf_regs[i], poll_count); 17668 } 17669 } 17670 17671 static void 17672 bxe_hw_enable_status(struct bxe_softc *sc) 17673 { 17674 uint32_t val; 17675 17676 val = REG_RD(sc, CFC_REG_WEAK_ENABLE_PF); 17677 BLOGD(sc, DBG_LOAD, "CFC_REG_WEAK_ENABLE_PF is 0x%x\n", val); 17678 17679 val = REG_RD(sc, PBF_REG_DISABLE_PF); 17680 BLOGD(sc, DBG_LOAD, "PBF_REG_DISABLE_PF is 0x%x\n", val); 17681 17682 val = REG_RD(sc, IGU_REG_PCI_PF_MSI_EN); 17683 BLOGD(sc, DBG_LOAD, "IGU_REG_PCI_PF_MSI_EN is 0x%x\n", val); 17684 17685 val = REG_RD(sc, IGU_REG_PCI_PF_MSIX_EN); 17686 BLOGD(sc, DBG_LOAD, "IGU_REG_PCI_PF_MSIX_EN is 0x%x\n", val); 17687 17688 val = REG_RD(sc, IGU_REG_PCI_PF_MSIX_FUNC_MASK); 17689 BLOGD(sc, DBG_LOAD, "IGU_REG_PCI_PF_MSIX_FUNC_MASK is 0x%x\n", val); 17690 17691 val = REG_RD(sc, PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR); 17692 BLOGD(sc, DBG_LOAD, "PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR is 0x%x\n", val); 17693 17694 val = REG_RD(sc, PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR); 17695 BLOGD(sc, DBG_LOAD, "PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR is 0x%x\n", val); 17696 17697 val = REG_RD(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER); 17698 BLOGD(sc, DBG_LOAD, "PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER is 0x%x\n", val); 17699 } 17700 17701 static int 17702 bxe_pf_flr_clnup(struct bxe_softc *sc) 17703 { 17704 uint32_t poll_cnt = bxe_flr_clnup_poll_count(sc); 17705 17706 BLOGD(sc, DBG_LOAD, "Cleanup after FLR PF[%d]\n", SC_ABS_FUNC(sc)); 17707 17708 /* Re-enable PF target read access */ 17709 REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1); 17710 17711 /* Poll HW usage counters */ 17712 BLOGD(sc, DBG_LOAD, "Polling usage counters\n"); 17713 if (bxe_poll_hw_usage_counters(sc, poll_cnt)) { 17714 return (-1); 17715 } 17716 17717 /* Zero the igu 'trailing edge' and 'leading edge' */ 17718 17719 /* Send the FW cleanup command */ 17720 if (bxe_send_final_clnup(sc, (uint8_t)SC_FUNC(sc), poll_cnt)) { 17721 return (-1); 17722 } 17723 17724 /* ATC cleanup */ 17725 17726 /* Verify TX hw is flushed */ 17727 bxe_tx_hw_flushed(sc, poll_cnt); 17728 17729 /* Wait 100ms (not adjusted according to platform) */ 17730 DELAY(100000); 17731 17732 /* Verify no pending pci transactions */ 17733 if (bxe_is_pcie_pending(sc)) { 17734 BLOGE(sc, "PCIE Transactions still pending\n"); 17735 } 17736 17737 /* Debug */ 17738 bxe_hw_enable_status(sc); 17739 17740 /* 17741 * Master enable - Due to WB DMAE writes performed before this 17742 * register is re-initialized as part of the regular function init 17743 */ 17744 REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1); 17745 17746 return (0); 17747 } 17748 17749 static int 17750 bxe_init_hw_func(struct bxe_softc *sc) 17751 { 17752 int port = SC_PORT(sc); 17753 int func = SC_FUNC(sc); 17754 int init_phase = PHASE_PF0 + func; 17755 struct ecore_ilt *ilt = sc->ilt; 17756 uint16_t cdu_ilt_start; 17757 uint32_t addr, val; 17758 uint32_t main_mem_base, main_mem_size, main_mem_prty_clr; 17759 int i, main_mem_width, rc; 17760 17761 BLOGD(sc, DBG_LOAD, "starting func init for func %d\n", func); 17762 17763 /* FLR cleanup */ 17764 if (!CHIP_IS_E1x(sc)) { 17765 rc = bxe_pf_flr_clnup(sc); 17766 if (rc) { 17767 BLOGE(sc, "FLR cleanup failed!\n"); 17768 // XXX bxe_fw_dump(sc); 17769 // XXX bxe_idle_chk(sc); 17770 return (rc); 17771 } 17772 } 17773 17774 /* set MSI reconfigure capability */ 17775 if (sc->devinfo.int_block == INT_BLOCK_HC) { 17776 addr = (port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0); 17777 val = REG_RD(sc, addr); 17778 val |= HC_CONFIG_0_REG_MSI_ATTN_EN_0; 17779 REG_WR(sc, addr, val); 17780 } 17781 17782 ecore_init_block(sc, BLOCK_PXP, init_phase); 17783 ecore_init_block(sc, BLOCK_PXP2, init_phase); 17784 17785 ilt = sc->ilt; 17786 cdu_ilt_start = ilt->clients[ILT_CLIENT_CDU].start; 17787 17788 for (i = 0; i < L2_ILT_LINES(sc); i++) { 17789 ilt->lines[cdu_ilt_start + i].page = sc->context[i].vcxt; 17790 ilt->lines[cdu_ilt_start + i].page_mapping = 17791 sc->context[i].vcxt_dma.paddr; 17792 ilt->lines[cdu_ilt_start + i].size = sc->context[i].size; 17793 } 17794 ecore_ilt_init_op(sc, INITOP_SET); 17795 17796 /* Set NIC mode */ 17797 REG_WR(sc, PRS_REG_NIC_MODE, 1); 17798 BLOGD(sc, DBG_LOAD, "NIC MODE configured\n"); 17799 17800 if (!CHIP_IS_E1x(sc)) { 17801 uint32_t pf_conf = IGU_PF_CONF_FUNC_EN; 17802 17803 /* Turn on a single ISR mode in IGU if driver is going to use 17804 * INT#x or MSI 17805 */ 17806 if (sc->interrupt_mode != INTR_MODE_MSIX) { 17807 pf_conf |= IGU_PF_CONF_SINGLE_ISR_EN; 17808 } 17809 17810 /* 17811 * Timers workaround bug: function init part. 17812 * Need to wait 20msec after initializing ILT, 17813 * needed to make sure there are no requests in 17814 * one of the PXP internal queues with "old" ILT addresses 17815 */ 17816 DELAY(20000); 17817 17818 /* 17819 * Master enable - Due to WB DMAE writes performed before this 17820 * register is re-initialized as part of the regular function 17821 * init 17822 */ 17823 REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1); 17824 /* Enable the function in IGU */ 17825 REG_WR(sc, IGU_REG_PF_CONFIGURATION, pf_conf); 17826 } 17827 17828 sc->dmae_ready = 1; 17829 17830 ecore_init_block(sc, BLOCK_PGLUE_B, init_phase); 17831 17832 if (!CHIP_IS_E1x(sc)) 17833 REG_WR(sc, PGLUE_B_REG_WAS_ERROR_PF_7_0_CLR, func); 17834 17835 ecore_init_block(sc, BLOCK_ATC, init_phase); 17836 ecore_init_block(sc, BLOCK_DMAE, init_phase); 17837 ecore_init_block(sc, BLOCK_NIG, init_phase); 17838 ecore_init_block(sc, BLOCK_SRC, init_phase); 17839 ecore_init_block(sc, BLOCK_MISC, init_phase); 17840 ecore_init_block(sc, BLOCK_TCM, init_phase); 17841 ecore_init_block(sc, BLOCK_UCM, init_phase); 17842 ecore_init_block(sc, BLOCK_CCM, init_phase); 17843 ecore_init_block(sc, BLOCK_XCM, init_phase); 17844 ecore_init_block(sc, BLOCK_TSEM, init_phase); 17845 ecore_init_block(sc, BLOCK_USEM, init_phase); 17846 ecore_init_block(sc, BLOCK_CSEM, init_phase); 17847 ecore_init_block(sc, BLOCK_XSEM, init_phase); 17848 17849 if (!CHIP_IS_E1x(sc)) 17850 REG_WR(sc, QM_REG_PF_EN, 1); 17851 17852 if (!CHIP_IS_E1x(sc)) { 17853 REG_WR(sc, TSEM_REG_VFPF_ERR_NUM, BXE_MAX_NUM_OF_VFS + func); 17854 REG_WR(sc, USEM_REG_VFPF_ERR_NUM, BXE_MAX_NUM_OF_VFS + func); 17855 REG_WR(sc, CSEM_REG_VFPF_ERR_NUM, BXE_MAX_NUM_OF_VFS + func); 17856 REG_WR(sc, XSEM_REG_VFPF_ERR_NUM, BXE_MAX_NUM_OF_VFS + func); 17857 } 17858 ecore_init_block(sc, BLOCK_QM, init_phase); 17859 17860 ecore_init_block(sc, BLOCK_TM, init_phase); 17861 ecore_init_block(sc, BLOCK_DORQ, init_phase); 17862 17863 bxe_iov_init_dq(sc); 17864 17865 ecore_init_block(sc, BLOCK_BRB1, init_phase); 17866 ecore_init_block(sc, BLOCK_PRS, init_phase); 17867 ecore_init_block(sc, BLOCK_TSDM, init_phase); 17868 ecore_init_block(sc, BLOCK_CSDM, init_phase); 17869 ecore_init_block(sc, BLOCK_USDM, init_phase); 17870 ecore_init_block(sc, BLOCK_XSDM, init_phase); 17871 ecore_init_block(sc, BLOCK_UPB, init_phase); 17872 ecore_init_block(sc, BLOCK_XPB, init_phase); 17873 ecore_init_block(sc, BLOCK_PBF, init_phase); 17874 if (!CHIP_IS_E1x(sc)) 17875 REG_WR(sc, PBF_REG_DISABLE_PF, 0); 17876 17877 ecore_init_block(sc, BLOCK_CDU, init_phase); 17878 17879 ecore_init_block(sc, BLOCK_CFC, init_phase); 17880 17881 if (!CHIP_IS_E1x(sc)) 17882 REG_WR(sc, CFC_REG_WEAK_ENABLE_PF, 1); 17883 17884 if (IS_MF(sc)) { 17885 REG_WR(sc, NIG_REG_LLH0_FUNC_EN + port*8, 1); 17886 REG_WR(sc, NIG_REG_LLH0_FUNC_VLAN_ID + port*8, OVLAN(sc)); 17887 } 17888 17889 ecore_init_block(sc, BLOCK_MISC_AEU, init_phase); 17890 17891 /* HC init per function */ 17892 if (sc->devinfo.int_block == INT_BLOCK_HC) { 17893 if (CHIP_IS_E1H(sc)) { 17894 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0); 17895 17896 REG_WR(sc, HC_REG_LEADING_EDGE_0 + port*8, 0); 17897 REG_WR(sc, HC_REG_TRAILING_EDGE_0 + port*8, 0); 17898 } 17899 ecore_init_block(sc, BLOCK_HC, init_phase); 17900 17901 } else { 17902 int num_segs, sb_idx, prod_offset; 17903 17904 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0); 17905 17906 if (!CHIP_IS_E1x(sc)) { 17907 REG_WR(sc, IGU_REG_LEADING_EDGE_LATCH, 0); 17908 REG_WR(sc, IGU_REG_TRAILING_EDGE_LATCH, 0); 17909 } 17910 17911 ecore_init_block(sc, BLOCK_IGU, init_phase); 17912 17913 if (!CHIP_IS_E1x(sc)) { 17914 int dsb_idx = 0; 17915 /** 17916 * Producer memory: 17917 * E2 mode: address 0-135 match to the mapping memory; 17918 * 136 - PF0 default prod; 137 - PF1 default prod; 17919 * 138 - PF2 default prod; 139 - PF3 default prod; 17920 * 140 - PF0 attn prod; 141 - PF1 attn prod; 17921 * 142 - PF2 attn prod; 143 - PF3 attn prod; 17922 * 144-147 reserved. 17923 * 17924 * E1.5 mode - In backward compatible mode; 17925 * for non default SB; each even line in the memory 17926 * holds the U producer and each odd line hold 17927 * the C producer. The first 128 producers are for 17928 * NDSB (PF0 - 0-31; PF1 - 32-63 and so on). The last 20 17929 * producers are for the DSB for each PF. 17930 * Each PF has five segments: (the order inside each 17931 * segment is PF0; PF1; PF2; PF3) - 128-131 U prods; 17932 * 132-135 C prods; 136-139 X prods; 140-143 T prods; 17933 * 144-147 attn prods; 17934 */ 17935 /* non-default-status-blocks */ 17936 num_segs = CHIP_INT_MODE_IS_BC(sc) ? 17937 IGU_BC_NDSB_NUM_SEGS : IGU_NORM_NDSB_NUM_SEGS; 17938 for (sb_idx = 0; sb_idx < sc->igu_sb_cnt; sb_idx++) { 17939 prod_offset = (sc->igu_base_sb + sb_idx) * 17940 num_segs; 17941 17942 for (i = 0; i < num_segs; i++) { 17943 addr = IGU_REG_PROD_CONS_MEMORY + 17944 (prod_offset + i) * 4; 17945 REG_WR(sc, addr, 0); 17946 } 17947 /* send consumer update with value 0 */ 17948 bxe_ack_sb(sc, sc->igu_base_sb + sb_idx, 17949 USTORM_ID, 0, IGU_INT_NOP, 1); 17950 bxe_igu_clear_sb(sc, sc->igu_base_sb + sb_idx); 17951 } 17952 17953 /* default-status-blocks */ 17954 num_segs = CHIP_INT_MODE_IS_BC(sc) ? 17955 IGU_BC_DSB_NUM_SEGS : IGU_NORM_DSB_NUM_SEGS; 17956 17957 if (CHIP_IS_MODE_4_PORT(sc)) 17958 dsb_idx = SC_FUNC(sc); 17959 else 17960 dsb_idx = SC_VN(sc); 17961 17962 prod_offset = (CHIP_INT_MODE_IS_BC(sc) ? 17963 IGU_BC_BASE_DSB_PROD + dsb_idx : 17964 IGU_NORM_BASE_DSB_PROD + dsb_idx); 17965 17966 /* 17967 * igu prods come in chunks of E1HVN_MAX (4) - 17968 * does not matters what is the current chip mode 17969 */ 17970 for (i = 0; i < (num_segs * E1HVN_MAX); 17971 i += E1HVN_MAX) { 17972 addr = IGU_REG_PROD_CONS_MEMORY + 17973 (prod_offset + i)*4; 17974 REG_WR(sc, addr, 0); 17975 } 17976 /* send consumer update with 0 */ 17977 if (CHIP_INT_MODE_IS_BC(sc)) { 17978 bxe_ack_sb(sc, sc->igu_dsb_id, 17979 USTORM_ID, 0, IGU_INT_NOP, 1); 17980 bxe_ack_sb(sc, sc->igu_dsb_id, 17981 CSTORM_ID, 0, IGU_INT_NOP, 1); 17982 bxe_ack_sb(sc, sc->igu_dsb_id, 17983 XSTORM_ID, 0, IGU_INT_NOP, 1); 17984 bxe_ack_sb(sc, sc->igu_dsb_id, 17985 TSTORM_ID, 0, IGU_INT_NOP, 1); 17986 bxe_ack_sb(sc, sc->igu_dsb_id, 17987 ATTENTION_ID, 0, IGU_INT_NOP, 1); 17988 } else { 17989 bxe_ack_sb(sc, sc->igu_dsb_id, 17990 USTORM_ID, 0, IGU_INT_NOP, 1); 17991 bxe_ack_sb(sc, sc->igu_dsb_id, 17992 ATTENTION_ID, 0, IGU_INT_NOP, 1); 17993 } 17994 bxe_igu_clear_sb(sc, sc->igu_dsb_id); 17995 17996 /* !!! these should become driver const once 17997 rf-tool supports split-68 const */ 17998 REG_WR(sc, IGU_REG_SB_INT_BEFORE_MASK_LSB, 0); 17999 REG_WR(sc, IGU_REG_SB_INT_BEFORE_MASK_MSB, 0); 18000 REG_WR(sc, IGU_REG_SB_MASK_LSB, 0); 18001 REG_WR(sc, IGU_REG_SB_MASK_MSB, 0); 18002 REG_WR(sc, IGU_REG_PBA_STATUS_LSB, 0); 18003 REG_WR(sc, IGU_REG_PBA_STATUS_MSB, 0); 18004 } 18005 } 18006 18007 /* Reset PCIE errors for debug */ 18008 REG_WR(sc, 0x2114, 0xffffffff); 18009 REG_WR(sc, 0x2120, 0xffffffff); 18010 18011 if (CHIP_IS_E1x(sc)) { 18012 main_mem_size = HC_REG_MAIN_MEMORY_SIZE / 2; /*dwords*/ 18013 main_mem_base = HC_REG_MAIN_MEMORY + 18014 SC_PORT(sc) * (main_mem_size * 4); 18015 main_mem_prty_clr = HC_REG_HC_PRTY_STS_CLR; 18016 main_mem_width = 8; 18017 18018 val = REG_RD(sc, main_mem_prty_clr); 18019 if (val) { 18020 BLOGD(sc, DBG_LOAD, 18021 "Parity errors in HC block during function init (0x%x)!\n", 18022 val); 18023 } 18024 18025 /* Clear "false" parity errors in MSI-X table */ 18026 for (i = main_mem_base; 18027 i < main_mem_base + main_mem_size * 4; 18028 i += main_mem_width) { 18029 bxe_read_dmae(sc, i, main_mem_width / 4); 18030 bxe_write_dmae(sc, BXE_SP_MAPPING(sc, wb_data), 18031 i, main_mem_width / 4); 18032 } 18033 /* Clear HC parity attention */ 18034 REG_RD(sc, main_mem_prty_clr); 18035 } 18036 18037 #if 1 18038 /* Enable STORMs SP logging */ 18039 REG_WR8(sc, BAR_USTRORM_INTMEM + 18040 USTORM_RECORD_SLOW_PATH_OFFSET(SC_FUNC(sc)), 1); 18041 REG_WR8(sc, BAR_TSTRORM_INTMEM + 18042 TSTORM_RECORD_SLOW_PATH_OFFSET(SC_FUNC(sc)), 1); 18043 REG_WR8(sc, BAR_CSTRORM_INTMEM + 18044 CSTORM_RECORD_SLOW_PATH_OFFSET(SC_FUNC(sc)), 1); 18045 REG_WR8(sc, BAR_XSTRORM_INTMEM + 18046 XSTORM_RECORD_SLOW_PATH_OFFSET(SC_FUNC(sc)), 1); 18047 #endif 18048 18049 elink_phy_probe(&sc->link_params); 18050 18051 return (0); 18052 } 18053 18054 static void 18055 bxe_link_reset(struct bxe_softc *sc) 18056 { 18057 if (!BXE_NOMCP(sc)) { 18058 bxe_acquire_phy_lock(sc); 18059 elink_lfa_reset(&sc->link_params, &sc->link_vars); 18060 bxe_release_phy_lock(sc); 18061 } else { 18062 if (!CHIP_REV_IS_SLOW(sc)) { 18063 BLOGW(sc, "Bootcode is missing - cannot reset link\n"); 18064 } 18065 } 18066 } 18067 18068 static void 18069 bxe_reset_port(struct bxe_softc *sc) 18070 { 18071 int port = SC_PORT(sc); 18072 uint32_t val; 18073 18074 /* reset physical Link */ 18075 bxe_link_reset(sc); 18076 18077 REG_WR(sc, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0); 18078 18079 /* Do not rcv packets to BRB */ 18080 REG_WR(sc, NIG_REG_LLH0_BRB1_DRV_MASK + port*4, 0x0); 18081 /* Do not direct rcv packets that are not for MCP to the BRB */ 18082 REG_WR(sc, (port ? NIG_REG_LLH1_BRB1_NOT_MCP : 18083 NIG_REG_LLH0_BRB1_NOT_MCP), 0x0); 18084 18085 /* Configure AEU */ 18086 REG_WR(sc, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, 0); 18087 18088 DELAY(100000); 18089 18090 /* Check for BRB port occupancy */ 18091 val = REG_RD(sc, BRB1_REG_PORT_NUM_OCC_BLOCKS_0 + port*4); 18092 if (val) { 18093 BLOGD(sc, DBG_LOAD, 18094 "BRB1 is not empty, %d blocks are occupied\n", val); 18095 } 18096 18097 /* TODO: Close Doorbell port? */ 18098 } 18099 18100 static void 18101 bxe_ilt_wr(struct bxe_softc *sc, 18102 uint32_t index, 18103 bus_addr_t addr) 18104 { 18105 int reg; 18106 uint32_t wb_write[2]; 18107 18108 if (CHIP_IS_E1(sc)) { 18109 reg = PXP2_REG_RQ_ONCHIP_AT + index*8; 18110 } else { 18111 reg = PXP2_REG_RQ_ONCHIP_AT_B0 + index*8; 18112 } 18113 18114 wb_write[0] = ONCHIP_ADDR1(addr); 18115 wb_write[1] = ONCHIP_ADDR2(addr); 18116 REG_WR_DMAE(sc, reg, wb_write, 2); 18117 } 18118 18119 static void 18120 bxe_clear_func_ilt(struct bxe_softc *sc, 18121 uint32_t func) 18122 { 18123 uint32_t i, base = FUNC_ILT_BASE(func); 18124 for (i = base; i < base + ILT_PER_FUNC; i++) { 18125 bxe_ilt_wr(sc, i, 0); 18126 } 18127 } 18128 18129 static void 18130 bxe_reset_func(struct bxe_softc *sc) 18131 { 18132 struct bxe_fastpath *fp; 18133 int port = SC_PORT(sc); 18134 int func = SC_FUNC(sc); 18135 int i; 18136 18137 /* Disable the function in the FW */ 18138 REG_WR8(sc, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(func), 0); 18139 REG_WR8(sc, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(func), 0); 18140 REG_WR8(sc, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(func), 0); 18141 REG_WR8(sc, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(func), 0); 18142 18143 /* FP SBs */ 18144 FOR_EACH_ETH_QUEUE(sc, i) { 18145 fp = &sc->fp[i]; 18146 REG_WR8(sc, BAR_CSTRORM_INTMEM + 18147 CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET(fp->fw_sb_id), 18148 SB_DISABLED); 18149 } 18150 18151 /* SP SB */ 18152 REG_WR8(sc, BAR_CSTRORM_INTMEM + 18153 CSTORM_SP_STATUS_BLOCK_DATA_STATE_OFFSET(func), 18154 SB_DISABLED); 18155 18156 for (i = 0; i < XSTORM_SPQ_DATA_SIZE / 4; i++) { 18157 REG_WR(sc, BAR_XSTRORM_INTMEM + XSTORM_SPQ_DATA_OFFSET(func), 0); 18158 } 18159 18160 /* Configure IGU */ 18161 if (sc->devinfo.int_block == INT_BLOCK_HC) { 18162 REG_WR(sc, HC_REG_LEADING_EDGE_0 + port*8, 0); 18163 REG_WR(sc, HC_REG_TRAILING_EDGE_0 + port*8, 0); 18164 } else { 18165 REG_WR(sc, IGU_REG_LEADING_EDGE_LATCH, 0); 18166 REG_WR(sc, IGU_REG_TRAILING_EDGE_LATCH, 0); 18167 } 18168 18169 if (CNIC_LOADED(sc)) { 18170 /* Disable Timer scan */ 18171 REG_WR(sc, TM_REG_EN_LINEAR0_TIMER + port*4, 0); 18172 /* 18173 * Wait for at least 10ms and up to 2 second for the timers 18174 * scan to complete 18175 */ 18176 for (i = 0; i < 200; i++) { 18177 DELAY(10000); 18178 if (!REG_RD(sc, TM_REG_LIN0_SCAN_ON + port*4)) 18179 break; 18180 } 18181 } 18182 18183 /* Clear ILT */ 18184 bxe_clear_func_ilt(sc, func); 18185 18186 /* 18187 * Timers workaround bug for E2: if this is vnic-3, 18188 * we need to set the entire ilt range for this timers. 18189 */ 18190 if (!CHIP_IS_E1x(sc) && SC_VN(sc) == 3) { 18191 struct ilt_client_info ilt_cli; 18192 /* use dummy TM client */ 18193 memset(&ilt_cli, 0, sizeof(struct ilt_client_info)); 18194 ilt_cli.start = 0; 18195 ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1; 18196 ilt_cli.client_num = ILT_CLIENT_TM; 18197 18198 ecore_ilt_boundry_init_op(sc, &ilt_cli, 0, INITOP_CLEAR); 18199 } 18200 18201 /* this assumes that reset_port() called before reset_func()*/ 18202 if (!CHIP_IS_E1x(sc)) { 18203 bxe_pf_disable(sc); 18204 } 18205 18206 sc->dmae_ready = 0; 18207 } 18208 18209 static int 18210 bxe_gunzip_init(struct bxe_softc *sc) 18211 { 18212 return (0); 18213 } 18214 18215 static void 18216 bxe_gunzip_end(struct bxe_softc *sc) 18217 { 18218 return; 18219 } 18220 18221 static int 18222 bxe_init_firmware(struct bxe_softc *sc) 18223 { 18224 if (CHIP_IS_E1(sc)) { 18225 ecore_init_e1_firmware(sc); 18226 sc->iro_array = e1_iro_arr; 18227 } else if (CHIP_IS_E1H(sc)) { 18228 ecore_init_e1h_firmware(sc); 18229 sc->iro_array = e1h_iro_arr; 18230 } else if (!CHIP_IS_E1x(sc)) { 18231 ecore_init_e2_firmware(sc); 18232 sc->iro_array = e2_iro_arr; 18233 } else { 18234 BLOGE(sc, "Unsupported chip revision\n"); 18235 return (-1); 18236 } 18237 18238 return (0); 18239 } 18240 18241 static void 18242 bxe_release_firmware(struct bxe_softc *sc) 18243 { 18244 /* Do nothing */ 18245 return; 18246 } 18247 18248 static int 18249 ecore_gunzip(struct bxe_softc *sc, 18250 const uint8_t *zbuf, 18251 int len) 18252 { 18253 /* XXX : Implement... */ 18254 BLOGD(sc, DBG_LOAD, "ECORE_GUNZIP NOT IMPLEMENTED\n"); 18255 return (FALSE); 18256 } 18257 18258 static void 18259 ecore_reg_wr_ind(struct bxe_softc *sc, 18260 uint32_t addr, 18261 uint32_t val) 18262 { 18263 bxe_reg_wr_ind(sc, addr, val); 18264 } 18265 18266 static void 18267 ecore_write_dmae_phys_len(struct bxe_softc *sc, 18268 bus_addr_t phys_addr, 18269 uint32_t addr, 18270 uint32_t len) 18271 { 18272 bxe_write_dmae_phys_len(sc, phys_addr, addr, len); 18273 } 18274 18275 void 18276 ecore_storm_memset_struct(struct bxe_softc *sc, 18277 uint32_t addr, 18278 size_t size, 18279 uint32_t *data) 18280 { 18281 uint8_t i; 18282 for (i = 0; i < size/4; i++) { 18283 REG_WR(sc, addr + (i * 4), data[i]); 18284 } 18285 } 18286 18287 18288 /* 18289 * character device - ioctl interface definitions 18290 */ 18291 18292 18293 #include "bxe_dump.h" 18294 #include "bxe_ioctl.h" 18295 #include <sys/conf.h> 18296 18297 static int bxe_eioctl(struct cdev *dev, u_long cmd, caddr_t data, int fflag, 18298 struct thread *td); 18299 18300 static struct cdevsw bxe_cdevsw = { 18301 .d_version = D_VERSION, 18302 .d_ioctl = bxe_eioctl, 18303 .d_name = "bxecnic", 18304 }; 18305 18306 #define BXE_PATH(sc) (CHIP_IS_E1x(sc) ? 0 : (sc->pcie_func & 1)) 18307 18308 18309 #define DUMP_ALL_PRESETS 0x1FFF 18310 #define DUMP_MAX_PRESETS 13 18311 #define IS_E1_REG(chips) ((chips & DUMP_CHIP_E1) == DUMP_CHIP_E1) 18312 #define IS_E1H_REG(chips) ((chips & DUMP_CHIP_E1H) == DUMP_CHIP_E1H) 18313 #define IS_E2_REG(chips) ((chips & DUMP_CHIP_E2) == DUMP_CHIP_E2) 18314 #define IS_E3A0_REG(chips) ((chips & DUMP_CHIP_E3A0) == DUMP_CHIP_E3A0) 18315 #define IS_E3B0_REG(chips) ((chips & DUMP_CHIP_E3B0) == DUMP_CHIP_E3B0) 18316 18317 #define IS_REG_IN_PRESET(presets, idx) \ 18318 ((presets & (1 << (idx-1))) == (1 << (idx-1))) 18319 18320 18321 static int 18322 bxe_get_preset_regs_len(struct bxe_softc *sc, uint32_t preset) 18323 { 18324 if (CHIP_IS_E1(sc)) 18325 return dump_num_registers[0][preset-1]; 18326 else if (CHIP_IS_E1H(sc)) 18327 return dump_num_registers[1][preset-1]; 18328 else if (CHIP_IS_E2(sc)) 18329 return dump_num_registers[2][preset-1]; 18330 else if (CHIP_IS_E3A0(sc)) 18331 return dump_num_registers[3][preset-1]; 18332 else if (CHIP_IS_E3B0(sc)) 18333 return dump_num_registers[4][preset-1]; 18334 else 18335 return 0; 18336 } 18337 18338 static int 18339 bxe_get_total_regs_len32(struct bxe_softc *sc) 18340 { 18341 uint32_t preset_idx; 18342 int regdump_len32 = 0; 18343 18344 18345 /* Calculate the total preset regs length */ 18346 for (preset_idx = 1; preset_idx <= DUMP_MAX_PRESETS; preset_idx++) { 18347 regdump_len32 += bxe_get_preset_regs_len(sc, preset_idx); 18348 } 18349 18350 return regdump_len32; 18351 } 18352 18353 static const uint32_t * 18354 __bxe_get_page_addr_ar(struct bxe_softc *sc) 18355 { 18356 if (CHIP_IS_E2(sc)) 18357 return page_vals_e2; 18358 else if (CHIP_IS_E3(sc)) 18359 return page_vals_e3; 18360 else 18361 return NULL; 18362 } 18363 18364 static uint32_t 18365 __bxe_get_page_reg_num(struct bxe_softc *sc) 18366 { 18367 if (CHIP_IS_E2(sc)) 18368 return PAGE_MODE_VALUES_E2; 18369 else if (CHIP_IS_E3(sc)) 18370 return PAGE_MODE_VALUES_E3; 18371 else 18372 return 0; 18373 } 18374 18375 static const uint32_t * 18376 __bxe_get_page_write_ar(struct bxe_softc *sc) 18377 { 18378 if (CHIP_IS_E2(sc)) 18379 return page_write_regs_e2; 18380 else if (CHIP_IS_E3(sc)) 18381 return page_write_regs_e3; 18382 else 18383 return NULL; 18384 } 18385 18386 static uint32_t 18387 __bxe_get_page_write_num(struct bxe_softc *sc) 18388 { 18389 if (CHIP_IS_E2(sc)) 18390 return PAGE_WRITE_REGS_E2; 18391 else if (CHIP_IS_E3(sc)) 18392 return PAGE_WRITE_REGS_E3; 18393 else 18394 return 0; 18395 } 18396 18397 static const struct reg_addr * 18398 __bxe_get_page_read_ar(struct bxe_softc *sc) 18399 { 18400 if (CHIP_IS_E2(sc)) 18401 return page_read_regs_e2; 18402 else if (CHIP_IS_E3(sc)) 18403 return page_read_regs_e3; 18404 else 18405 return NULL; 18406 } 18407 18408 static uint32_t 18409 __bxe_get_page_read_num(struct bxe_softc *sc) 18410 { 18411 if (CHIP_IS_E2(sc)) 18412 return PAGE_READ_REGS_E2; 18413 else if (CHIP_IS_E3(sc)) 18414 return PAGE_READ_REGS_E3; 18415 else 18416 return 0; 18417 } 18418 18419 static bool 18420 bxe_is_reg_in_chip(struct bxe_softc *sc, const struct reg_addr *reg_info) 18421 { 18422 if (CHIP_IS_E1(sc)) 18423 return IS_E1_REG(reg_info->chips); 18424 else if (CHIP_IS_E1H(sc)) 18425 return IS_E1H_REG(reg_info->chips); 18426 else if (CHIP_IS_E2(sc)) 18427 return IS_E2_REG(reg_info->chips); 18428 else if (CHIP_IS_E3A0(sc)) 18429 return IS_E3A0_REG(reg_info->chips); 18430 else if (CHIP_IS_E3B0(sc)) 18431 return IS_E3B0_REG(reg_info->chips); 18432 else 18433 return 0; 18434 } 18435 18436 static bool 18437 bxe_is_wreg_in_chip(struct bxe_softc *sc, const struct wreg_addr *wreg_info) 18438 { 18439 if (CHIP_IS_E1(sc)) 18440 return IS_E1_REG(wreg_info->chips); 18441 else if (CHIP_IS_E1H(sc)) 18442 return IS_E1H_REG(wreg_info->chips); 18443 else if (CHIP_IS_E2(sc)) 18444 return IS_E2_REG(wreg_info->chips); 18445 else if (CHIP_IS_E3A0(sc)) 18446 return IS_E3A0_REG(wreg_info->chips); 18447 else if (CHIP_IS_E3B0(sc)) 18448 return IS_E3B0_REG(wreg_info->chips); 18449 else 18450 return 0; 18451 } 18452 18453 /** 18454 * bxe_read_pages_regs - read "paged" registers 18455 * 18456 * @bp device handle 18457 * @p output buffer 18458 * 18459 * Reads "paged" memories: memories that may only be read by first writing to a 18460 * specific address ("write address") and then reading from a specific address 18461 * ("read address"). There may be more than one write address per "page" and 18462 * more than one read address per write address. 18463 */ 18464 static void 18465 bxe_read_pages_regs(struct bxe_softc *sc, uint32_t *p, uint32_t preset) 18466 { 18467 uint32_t i, j, k, n; 18468 18469 /* addresses of the paged registers */ 18470 const uint32_t *page_addr = __bxe_get_page_addr_ar(sc); 18471 /* number of paged registers */ 18472 int num_pages = __bxe_get_page_reg_num(sc); 18473 /* write addresses */ 18474 const uint32_t *write_addr = __bxe_get_page_write_ar(sc); 18475 /* number of write addresses */ 18476 int write_num = __bxe_get_page_write_num(sc); 18477 /* read addresses info */ 18478 const struct reg_addr *read_addr = __bxe_get_page_read_ar(sc); 18479 /* number of read addresses */ 18480 int read_num = __bxe_get_page_read_num(sc); 18481 uint32_t addr, size; 18482 18483 for (i = 0; i < num_pages; i++) { 18484 for (j = 0; j < write_num; j++) { 18485 REG_WR(sc, write_addr[j], page_addr[i]); 18486 18487 for (k = 0; k < read_num; k++) { 18488 if (IS_REG_IN_PRESET(read_addr[k].presets, preset)) { 18489 size = read_addr[k].size; 18490 for (n = 0; n < size; n++) { 18491 addr = read_addr[k].addr + n*4; 18492 *p++ = REG_RD(sc, addr); 18493 } 18494 } 18495 } 18496 } 18497 } 18498 return; 18499 } 18500 18501 18502 static int 18503 bxe_get_preset_regs(struct bxe_softc *sc, uint32_t *p, uint32_t preset) 18504 { 18505 uint32_t i, j, addr; 18506 const struct wreg_addr *wreg_addr_p = NULL; 18507 18508 if (CHIP_IS_E1(sc)) 18509 wreg_addr_p = &wreg_addr_e1; 18510 else if (CHIP_IS_E1H(sc)) 18511 wreg_addr_p = &wreg_addr_e1h; 18512 else if (CHIP_IS_E2(sc)) 18513 wreg_addr_p = &wreg_addr_e2; 18514 else if (CHIP_IS_E3A0(sc)) 18515 wreg_addr_p = &wreg_addr_e3; 18516 else if (CHIP_IS_E3B0(sc)) 18517 wreg_addr_p = &wreg_addr_e3b0; 18518 else 18519 return (-1); 18520 18521 /* Read the idle_chk registers */ 18522 for (i = 0; i < IDLE_REGS_COUNT; i++) { 18523 if (bxe_is_reg_in_chip(sc, &idle_reg_addrs[i]) && 18524 IS_REG_IN_PRESET(idle_reg_addrs[i].presets, preset)) { 18525 for (j = 0; j < idle_reg_addrs[i].size; j++) 18526 *p++ = REG_RD(sc, idle_reg_addrs[i].addr + j*4); 18527 } 18528 } 18529 18530 /* Read the regular registers */ 18531 for (i = 0; i < REGS_COUNT; i++) { 18532 if (bxe_is_reg_in_chip(sc, ®_addrs[i]) && 18533 IS_REG_IN_PRESET(reg_addrs[i].presets, preset)) { 18534 for (j = 0; j < reg_addrs[i].size; j++) 18535 *p++ = REG_RD(sc, reg_addrs[i].addr + j*4); 18536 } 18537 } 18538 18539 /* Read the CAM registers */ 18540 if (bxe_is_wreg_in_chip(sc, wreg_addr_p) && 18541 IS_REG_IN_PRESET(wreg_addr_p->presets, preset)) { 18542 for (i = 0; i < wreg_addr_p->size; i++) { 18543 *p++ = REG_RD(sc, wreg_addr_p->addr + i*4); 18544 18545 /* In case of wreg_addr register, read additional 18546 registers from read_regs array 18547 */ 18548 for (j = 0; j < wreg_addr_p->read_regs_count; j++) { 18549 addr = *(wreg_addr_p->read_regs); 18550 *p++ = REG_RD(sc, addr + j*4); 18551 } 18552 } 18553 } 18554 18555 /* Paged registers are supported in E2 & E3 only */ 18556 if (CHIP_IS_E2(sc) || CHIP_IS_E3(sc)) { 18557 /* Read "paged" registers */ 18558 bxe_read_pages_regs(sc, p, preset); 18559 } 18560 18561 return 0; 18562 } 18563 18564 static int 18565 bxe_grc_dump(struct bxe_softc *sc) 18566 { 18567 int rval = 0; 18568 uint32_t preset_idx; 18569 uint8_t *buf; 18570 uint32_t size; 18571 struct dump_header *d_hdr; 18572 18573 if (sc->grcdump_done) 18574 return (rval); 18575 18576 ecore_disable_blocks_parity(sc); 18577 18578 buf = sc->grc_dump; 18579 d_hdr = sc->grc_dump; 18580 18581 d_hdr->header_size = (sizeof(struct dump_header) >> 2) - 1; 18582 d_hdr->version = BNX2X_DUMP_VERSION; 18583 d_hdr->preset = DUMP_ALL_PRESETS; 18584 18585 if (CHIP_IS_E1(sc)) { 18586 d_hdr->dump_meta_data = DUMP_CHIP_E1; 18587 } else if (CHIP_IS_E1H(sc)) { 18588 d_hdr->dump_meta_data = DUMP_CHIP_E1H; 18589 } else if (CHIP_IS_E2(sc)) { 18590 d_hdr->dump_meta_data = DUMP_CHIP_E2 | 18591 (BXE_PATH(sc) ? DUMP_PATH_1 : DUMP_PATH_0); 18592 } else if (CHIP_IS_E3A0(sc)) { 18593 d_hdr->dump_meta_data = DUMP_CHIP_E3A0 | 18594 (BXE_PATH(sc) ? DUMP_PATH_1 : DUMP_PATH_0); 18595 } else if (CHIP_IS_E3B0(sc)) { 18596 d_hdr->dump_meta_data = DUMP_CHIP_E3B0 | 18597 (BXE_PATH(sc) ? DUMP_PATH_1 : DUMP_PATH_0); 18598 } 18599 18600 buf += sizeof(struct dump_header); 18601 18602 for (preset_idx = 1; preset_idx <= DUMP_MAX_PRESETS; preset_idx++) { 18603 18604 /* Skip presets with IOR */ 18605 if ((preset_idx == 2) || (preset_idx == 5) || (preset_idx == 8) || 18606 (preset_idx == 11)) 18607 continue; 18608 18609 rval = bxe_get_preset_regs(sc, sc->grc_dump, preset_idx); 18610 18611 if (rval) 18612 break; 18613 18614 size = bxe_get_preset_regs_len(sc, preset_idx) * (sizeof (uint32_t)); 18615 18616 buf += size; 18617 } 18618 18619 ecore_clear_blocks_parity(sc); 18620 ecore_enable_blocks_parity(sc); 18621 18622 sc->grcdump_done = 1; 18623 return(rval); 18624 } 18625 18626 static int 18627 bxe_add_cdev(struct bxe_softc *sc) 18628 { 18629 int grc_dump_size; 18630 18631 grc_dump_size = (bxe_get_total_regs_len32(sc) * sizeof(uint32_t)) + 18632 sizeof(struct dump_header); 18633 18634 sc->grc_dump = malloc(grc_dump_size, M_DEVBUF, M_NOWAIT); 18635 18636 if (sc->grc_dump == NULL) 18637 return (-1); 18638 18639 sc->ioctl_dev = make_dev(&bxe_cdevsw, 18640 sc->ifp->if_dunit, 18641 UID_ROOT, 18642 GID_WHEEL, 18643 0600, 18644 "%s", 18645 if_name(sc->ifp)); 18646 18647 if (sc->ioctl_dev == NULL) { 18648 18649 free(sc->grc_dump, M_DEVBUF); 18650 18651 return (-1); 18652 } 18653 18654 sc->ioctl_dev->si_drv1 = sc; 18655 18656 return (0); 18657 } 18658 18659 static void 18660 bxe_del_cdev(struct bxe_softc *sc) 18661 { 18662 if (sc->ioctl_dev != NULL) 18663 destroy_dev(sc->ioctl_dev); 18664 18665 if (sc->grc_dump == NULL) 18666 free(sc->grc_dump, M_DEVBUF); 18667 18668 return; 18669 } 18670 18671 static int 18672 bxe_eioctl(struct cdev *dev, u_long cmd, caddr_t data, int fflag, 18673 struct thread *td) 18674 { 18675 struct bxe_softc *sc; 18676 int rval = 0; 18677 device_t pci_dev; 18678 bxe_grcdump_t *dump = NULL; 18679 int grc_dump_size; 18680 18681 if ((sc = (struct bxe_softc *)dev->si_drv1) == NULL) 18682 return ENXIO; 18683 18684 pci_dev= sc->dev; 18685 18686 dump = (bxe_grcdump_t *)data; 18687 18688 switch(cmd) { 18689 18690 case BXE_GRC_DUMP_SIZE: 18691 dump->pci_func = sc->pcie_func; 18692 dump->grcdump_size = (bxe_get_total_regs_len32(sc) * sizeof(uint32_t)) + 18693 sizeof(struct dump_header); 18694 break; 18695 18696 case BXE_GRC_DUMP: 18697 18698 grc_dump_size = (bxe_get_total_regs_len32(sc) * sizeof(uint32_t)) + 18699 sizeof(struct dump_header); 18700 18701 if ((sc->grc_dump == NULL) || (dump->grcdump == NULL) || 18702 (dump->grcdump_size < grc_dump_size) || (!sc->grcdump_done)) { 18703 rval = EINVAL; 18704 break; 18705 } 18706 dump->grcdump_dwords = grc_dump_size >> 2; 18707 rval = copyout(sc->grc_dump, dump->grcdump, grc_dump_size); 18708 sc->grcdump_done = 0; 18709 18710 break; 18711 18712 default: 18713 break; 18714 } 18715 18716 return (rval); 18717 } 18718