1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause 3 * 4 * Copyright (c) 2007-2014 QLogic Corporation. All rights reserved. 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions 8 * are met: 9 * 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS' 17 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 19 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS 20 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 21 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 22 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 23 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 24 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 25 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF 26 * THE POSSIBILITY OF SUCH DAMAGE. 27 */ 28 29 #include <sys/cdefs.h> 30 __FBSDID("$FreeBSD$"); 31 32 #define BXE_DRIVER_VERSION "1.78.91" 33 34 #include "bxe.h" 35 #include "ecore_sp.h" 36 #include "ecore_init.h" 37 #include "ecore_init_ops.h" 38 39 #include "57710_int_offsets.h" 40 #include "57711_int_offsets.h" 41 #include "57712_int_offsets.h" 42 43 /* 44 * CTLTYPE_U64 and sysctl_handle_64 were added in r217616. Define these 45 * explicitly here for older kernels that don't include this changeset. 46 */ 47 #ifndef CTLTYPE_U64 48 #define CTLTYPE_U64 CTLTYPE_QUAD 49 #define sysctl_handle_64 sysctl_handle_quad 50 #endif 51 52 /* 53 * CSUM_TCP_IPV6 and CSUM_UDP_IPV6 were added in r236170. Define these 54 * here as zero(0) for older kernels that don't include this changeset 55 * thereby masking the functionality. 56 */ 57 #ifndef CSUM_TCP_IPV6 58 #define CSUM_TCP_IPV6 0 59 #define CSUM_UDP_IPV6 0 60 #endif 61 62 /* 63 * pci_find_cap was added in r219865. Re-define this at pci_find_extcap 64 * for older kernels that don't include this changeset. 65 */ 66 #if __FreeBSD_version < 900035 67 #define pci_find_cap pci_find_extcap 68 #endif 69 70 #define BXE_DEF_SB_ATT_IDX 0x0001 71 #define BXE_DEF_SB_IDX 0x0002 72 73 /* 74 * FLR Support - bxe_pf_flr_clnup() is called during nic_load in the per 75 * function HW initialization. 76 */ 77 #define FLR_WAIT_USEC 10000 /* 10 msecs */ 78 #define FLR_WAIT_INTERVAL 50 /* usecs */ 79 #define FLR_POLL_CNT (FLR_WAIT_USEC / FLR_WAIT_INTERVAL) /* 200 */ 80 81 struct pbf_pN_buf_regs { 82 int pN; 83 uint32_t init_crd; 84 uint32_t crd; 85 uint32_t crd_freed; 86 }; 87 88 struct pbf_pN_cmd_regs { 89 int pN; 90 uint32_t lines_occup; 91 uint32_t lines_freed; 92 }; 93 94 /* 95 * PCI Device ID Table used by bxe_probe(). 96 */ 97 #define BXE_DEVDESC_MAX 64 98 static struct bxe_device_type bxe_devs[] = { 99 { 100 BRCM_VENDORID, 101 CHIP_NUM_57710, 102 PCI_ANY_ID, PCI_ANY_ID, 103 "QLogic NetXtreme II BCM57710 10GbE" 104 }, 105 { 106 BRCM_VENDORID, 107 CHIP_NUM_57711, 108 PCI_ANY_ID, PCI_ANY_ID, 109 "QLogic NetXtreme II BCM57711 10GbE" 110 }, 111 { 112 BRCM_VENDORID, 113 CHIP_NUM_57711E, 114 PCI_ANY_ID, PCI_ANY_ID, 115 "QLogic NetXtreme II BCM57711E 10GbE" 116 }, 117 { 118 BRCM_VENDORID, 119 CHIP_NUM_57712, 120 PCI_ANY_ID, PCI_ANY_ID, 121 "QLogic NetXtreme II BCM57712 10GbE" 122 }, 123 { 124 BRCM_VENDORID, 125 CHIP_NUM_57712_MF, 126 PCI_ANY_ID, PCI_ANY_ID, 127 "QLogic NetXtreme II BCM57712 MF 10GbE" 128 }, 129 { 130 BRCM_VENDORID, 131 CHIP_NUM_57800, 132 PCI_ANY_ID, PCI_ANY_ID, 133 "QLogic NetXtreme II BCM57800 10GbE" 134 }, 135 { 136 BRCM_VENDORID, 137 CHIP_NUM_57800_MF, 138 PCI_ANY_ID, PCI_ANY_ID, 139 "QLogic NetXtreme II BCM57800 MF 10GbE" 140 }, 141 { 142 BRCM_VENDORID, 143 CHIP_NUM_57810, 144 PCI_ANY_ID, PCI_ANY_ID, 145 "QLogic NetXtreme II BCM57810 10GbE" 146 }, 147 { 148 BRCM_VENDORID, 149 CHIP_NUM_57810_MF, 150 PCI_ANY_ID, PCI_ANY_ID, 151 "QLogic NetXtreme II BCM57810 MF 10GbE" 152 }, 153 { 154 BRCM_VENDORID, 155 CHIP_NUM_57811, 156 PCI_ANY_ID, PCI_ANY_ID, 157 "QLogic NetXtreme II BCM57811 10GbE" 158 }, 159 { 160 BRCM_VENDORID, 161 CHIP_NUM_57811_MF, 162 PCI_ANY_ID, PCI_ANY_ID, 163 "QLogic NetXtreme II BCM57811 MF 10GbE" 164 }, 165 { 166 BRCM_VENDORID, 167 CHIP_NUM_57840_4_10, 168 PCI_ANY_ID, PCI_ANY_ID, 169 "QLogic NetXtreme II BCM57840 4x10GbE" 170 }, 171 { 172 QLOGIC_VENDORID, 173 CHIP_NUM_57840_4_10, 174 PCI_ANY_ID, PCI_ANY_ID, 175 "QLogic NetXtreme II BCM57840 4x10GbE" 176 }, 177 { 178 BRCM_VENDORID, 179 CHIP_NUM_57840_2_20, 180 PCI_ANY_ID, PCI_ANY_ID, 181 "QLogic NetXtreme II BCM57840 2x20GbE" 182 }, 183 { 184 BRCM_VENDORID, 185 CHIP_NUM_57840_MF, 186 PCI_ANY_ID, PCI_ANY_ID, 187 "QLogic NetXtreme II BCM57840 MF 10GbE" 188 }, 189 { 190 0, 0, 0, 0, NULL 191 } 192 }; 193 194 MALLOC_DECLARE(M_BXE_ILT); 195 MALLOC_DEFINE(M_BXE_ILT, "bxe_ilt", "bxe ILT pointer"); 196 197 /* 198 * FreeBSD device entry points. 199 */ 200 static int bxe_probe(device_t); 201 static int bxe_attach(device_t); 202 static int bxe_detach(device_t); 203 static int bxe_shutdown(device_t); 204 205 206 /* 207 * FreeBSD KLD module/device interface event handler method. 208 */ 209 static device_method_t bxe_methods[] = { 210 /* Device interface (device_if.h) */ 211 DEVMETHOD(device_probe, bxe_probe), 212 DEVMETHOD(device_attach, bxe_attach), 213 DEVMETHOD(device_detach, bxe_detach), 214 DEVMETHOD(device_shutdown, bxe_shutdown), 215 /* Bus interface (bus_if.h) */ 216 DEVMETHOD(bus_print_child, bus_generic_print_child), 217 DEVMETHOD(bus_driver_added, bus_generic_driver_added), 218 KOBJMETHOD_END 219 }; 220 221 /* 222 * FreeBSD KLD Module data declaration 223 */ 224 static driver_t bxe_driver = { 225 "bxe", /* module name */ 226 bxe_methods, /* event handler */ 227 sizeof(struct bxe_softc) /* extra data */ 228 }; 229 230 /* 231 * FreeBSD dev class is needed to manage dev instances and 232 * to associate with a bus type 233 */ 234 static devclass_t bxe_devclass; 235 236 MODULE_DEPEND(bxe, pci, 1, 1, 1); 237 MODULE_DEPEND(bxe, ether, 1, 1, 1); 238 DRIVER_MODULE(bxe, pci, bxe_driver, bxe_devclass, 0, 0); 239 240 DEBUGNET_DEFINE(bxe); 241 242 /* resources needed for unloading a previously loaded device */ 243 244 #define BXE_PREV_WAIT_NEEDED 1 245 struct mtx bxe_prev_mtx; 246 MTX_SYSINIT(bxe_prev_mtx, &bxe_prev_mtx, "bxe_prev_lock", MTX_DEF); 247 struct bxe_prev_list_node { 248 LIST_ENTRY(bxe_prev_list_node) node; 249 uint8_t bus; 250 uint8_t slot; 251 uint8_t path; 252 uint8_t aer; /* XXX automatic error recovery */ 253 uint8_t undi; 254 }; 255 static LIST_HEAD(, bxe_prev_list_node) bxe_prev_list = LIST_HEAD_INITIALIZER(bxe_prev_list); 256 257 static int load_count[2][3] = { {0} }; /* per-path: 0-common, 1-port0, 2-port1 */ 258 259 /* Tunable device values... */ 260 261 SYSCTL_NODE(_hw, OID_AUTO, bxe, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 262 "bxe driver parameters"); 263 264 /* Debug */ 265 unsigned long bxe_debug = 0; 266 SYSCTL_ULONG(_hw_bxe, OID_AUTO, debug, CTLFLAG_RDTUN, 267 &bxe_debug, 0, "Debug logging mode"); 268 269 /* Interrupt Mode: 0 (IRQ), 1 (MSI/IRQ), and 2 (MSI-X/MSI/IRQ) */ 270 static int bxe_interrupt_mode = INTR_MODE_MSIX; 271 SYSCTL_INT(_hw_bxe, OID_AUTO, interrupt_mode, CTLFLAG_RDTUN, 272 &bxe_interrupt_mode, 0, "Interrupt (MSI-X/MSI/INTx) mode"); 273 274 /* Number of Queues: 0 (Auto) or 1 to 16 (fixed queue number) */ 275 static int bxe_queue_count = 4; 276 SYSCTL_INT(_hw_bxe, OID_AUTO, queue_count, CTLFLAG_RDTUN, 277 &bxe_queue_count, 0, "Multi-Queue queue count"); 278 279 /* max number of buffers per queue (default RX_BD_USABLE) */ 280 static int bxe_max_rx_bufs = 0; 281 SYSCTL_INT(_hw_bxe, OID_AUTO, max_rx_bufs, CTLFLAG_RDTUN, 282 &bxe_max_rx_bufs, 0, "Maximum Number of Rx Buffers Per Queue"); 283 284 /* Host interrupt coalescing RX tick timer (usecs) */ 285 static int bxe_hc_rx_ticks = 25; 286 SYSCTL_INT(_hw_bxe, OID_AUTO, hc_rx_ticks, CTLFLAG_RDTUN, 287 &bxe_hc_rx_ticks, 0, "Host Coalescing Rx ticks"); 288 289 /* Host interrupt coalescing TX tick timer (usecs) */ 290 static int bxe_hc_tx_ticks = 50; 291 SYSCTL_INT(_hw_bxe, OID_AUTO, hc_tx_ticks, CTLFLAG_RDTUN, 292 &bxe_hc_tx_ticks, 0, "Host Coalescing Tx ticks"); 293 294 /* Maximum number of Rx packets to process at a time */ 295 static int bxe_rx_budget = 0xffffffff; 296 SYSCTL_INT(_hw_bxe, OID_AUTO, rx_budget, CTLFLAG_TUN, 297 &bxe_rx_budget, 0, "Rx processing budget"); 298 299 /* Maximum LRO aggregation size */ 300 static int bxe_max_aggregation_size = 0; 301 SYSCTL_INT(_hw_bxe, OID_AUTO, max_aggregation_size, CTLFLAG_TUN, 302 &bxe_max_aggregation_size, 0, "max aggregation size"); 303 304 /* PCI MRRS: -1 (Auto), 0 (128B), 1 (256B), 2 (512B), 3 (1KB) */ 305 static int bxe_mrrs = -1; 306 SYSCTL_INT(_hw_bxe, OID_AUTO, mrrs, CTLFLAG_RDTUN, 307 &bxe_mrrs, 0, "PCIe maximum read request size"); 308 309 /* AutoGrEEEn: 0 (hardware default), 1 (force on), 2 (force off) */ 310 static int bxe_autogreeen = 0; 311 SYSCTL_INT(_hw_bxe, OID_AUTO, autogreeen, CTLFLAG_RDTUN, 312 &bxe_autogreeen, 0, "AutoGrEEEn support"); 313 314 /* 4-tuple RSS support for UDP: 0 (disabled), 1 (enabled) */ 315 static int bxe_udp_rss = 0; 316 SYSCTL_INT(_hw_bxe, OID_AUTO, udp_rss, CTLFLAG_RDTUN, 317 &bxe_udp_rss, 0, "UDP RSS support"); 318 319 320 #define STAT_NAME_LEN 32 /* no stat names below can be longer than this */ 321 322 #define STATS_OFFSET32(stat_name) \ 323 (offsetof(struct bxe_eth_stats, stat_name) / 4) 324 325 #define Q_STATS_OFFSET32(stat_name) \ 326 (offsetof(struct bxe_eth_q_stats, stat_name) / 4) 327 328 static const struct { 329 uint32_t offset; 330 uint32_t size; 331 uint32_t flags; 332 #define STATS_FLAGS_PORT 1 333 #define STATS_FLAGS_FUNC 2 /* MF only cares about function stats */ 334 #define STATS_FLAGS_BOTH (STATS_FLAGS_FUNC | STATS_FLAGS_PORT) 335 char string[STAT_NAME_LEN]; 336 } bxe_eth_stats_arr[] = { 337 { STATS_OFFSET32(total_bytes_received_hi), 338 8, STATS_FLAGS_BOTH, "rx_bytes" }, 339 { STATS_OFFSET32(error_bytes_received_hi), 340 8, STATS_FLAGS_BOTH, "rx_error_bytes" }, 341 { STATS_OFFSET32(total_unicast_packets_received_hi), 342 8, STATS_FLAGS_BOTH, "rx_ucast_packets" }, 343 { STATS_OFFSET32(total_multicast_packets_received_hi), 344 8, STATS_FLAGS_BOTH, "rx_mcast_packets" }, 345 { STATS_OFFSET32(total_broadcast_packets_received_hi), 346 8, STATS_FLAGS_BOTH, "rx_bcast_packets" }, 347 { STATS_OFFSET32(rx_stat_dot3statsfcserrors_hi), 348 8, STATS_FLAGS_PORT, "rx_crc_errors" }, 349 { STATS_OFFSET32(rx_stat_dot3statsalignmenterrors_hi), 350 8, STATS_FLAGS_PORT, "rx_align_errors" }, 351 { STATS_OFFSET32(rx_stat_etherstatsundersizepkts_hi), 352 8, STATS_FLAGS_PORT, "rx_undersize_packets" }, 353 { STATS_OFFSET32(etherstatsoverrsizepkts_hi), 354 8, STATS_FLAGS_PORT, "rx_oversize_packets" }, 355 { STATS_OFFSET32(rx_stat_etherstatsfragments_hi), 356 8, STATS_FLAGS_PORT, "rx_fragments" }, 357 { STATS_OFFSET32(rx_stat_etherstatsjabbers_hi), 358 8, STATS_FLAGS_PORT, "rx_jabbers" }, 359 { STATS_OFFSET32(no_buff_discard_hi), 360 8, STATS_FLAGS_BOTH, "rx_discards" }, 361 { STATS_OFFSET32(mac_filter_discard), 362 4, STATS_FLAGS_PORT, "rx_filtered_packets" }, 363 { STATS_OFFSET32(mf_tag_discard), 364 4, STATS_FLAGS_PORT, "rx_mf_tag_discard" }, 365 { STATS_OFFSET32(pfc_frames_received_hi), 366 8, STATS_FLAGS_PORT, "pfc_frames_received" }, 367 { STATS_OFFSET32(pfc_frames_sent_hi), 368 8, STATS_FLAGS_PORT, "pfc_frames_sent" }, 369 { STATS_OFFSET32(brb_drop_hi), 370 8, STATS_FLAGS_PORT, "rx_brb_discard" }, 371 { STATS_OFFSET32(brb_truncate_hi), 372 8, STATS_FLAGS_PORT, "rx_brb_truncate" }, 373 { STATS_OFFSET32(pause_frames_received_hi), 374 8, STATS_FLAGS_PORT, "rx_pause_frames" }, 375 { STATS_OFFSET32(rx_stat_maccontrolframesreceived_hi), 376 8, STATS_FLAGS_PORT, "rx_mac_ctrl_frames" }, 377 { STATS_OFFSET32(nig_timer_max), 378 4, STATS_FLAGS_PORT, "rx_constant_pause_events" }, 379 { STATS_OFFSET32(total_bytes_transmitted_hi), 380 8, STATS_FLAGS_BOTH, "tx_bytes" }, 381 { STATS_OFFSET32(tx_stat_ifhcoutbadoctets_hi), 382 8, STATS_FLAGS_PORT, "tx_error_bytes" }, 383 { STATS_OFFSET32(total_unicast_packets_transmitted_hi), 384 8, STATS_FLAGS_BOTH, "tx_ucast_packets" }, 385 { STATS_OFFSET32(total_multicast_packets_transmitted_hi), 386 8, STATS_FLAGS_BOTH, "tx_mcast_packets" }, 387 { STATS_OFFSET32(total_broadcast_packets_transmitted_hi), 388 8, STATS_FLAGS_BOTH, "tx_bcast_packets" }, 389 { STATS_OFFSET32(tx_stat_dot3statsinternalmactransmiterrors_hi), 390 8, STATS_FLAGS_PORT, "tx_mac_errors" }, 391 { STATS_OFFSET32(rx_stat_dot3statscarriersenseerrors_hi), 392 8, STATS_FLAGS_PORT, "tx_carrier_errors" }, 393 { STATS_OFFSET32(tx_stat_dot3statssinglecollisionframes_hi), 394 8, STATS_FLAGS_PORT, "tx_single_collisions" }, 395 { STATS_OFFSET32(tx_stat_dot3statsmultiplecollisionframes_hi), 396 8, STATS_FLAGS_PORT, "tx_multi_collisions" }, 397 { STATS_OFFSET32(tx_stat_dot3statsdeferredtransmissions_hi), 398 8, STATS_FLAGS_PORT, "tx_deferred" }, 399 { STATS_OFFSET32(tx_stat_dot3statsexcessivecollisions_hi), 400 8, STATS_FLAGS_PORT, "tx_excess_collisions" }, 401 { STATS_OFFSET32(tx_stat_dot3statslatecollisions_hi), 402 8, STATS_FLAGS_PORT, "tx_late_collisions" }, 403 { STATS_OFFSET32(tx_stat_etherstatscollisions_hi), 404 8, STATS_FLAGS_PORT, "tx_total_collisions" }, 405 { STATS_OFFSET32(tx_stat_etherstatspkts64octets_hi), 406 8, STATS_FLAGS_PORT, "tx_64_byte_packets" }, 407 { STATS_OFFSET32(tx_stat_etherstatspkts65octetsto127octets_hi), 408 8, STATS_FLAGS_PORT, "tx_65_to_127_byte_packets" }, 409 { STATS_OFFSET32(tx_stat_etherstatspkts128octetsto255octets_hi), 410 8, STATS_FLAGS_PORT, "tx_128_to_255_byte_packets" }, 411 { STATS_OFFSET32(tx_stat_etherstatspkts256octetsto511octets_hi), 412 8, STATS_FLAGS_PORT, "tx_256_to_511_byte_packets" }, 413 { STATS_OFFSET32(tx_stat_etherstatspkts512octetsto1023octets_hi), 414 8, STATS_FLAGS_PORT, "tx_512_to_1023_byte_packets" }, 415 { STATS_OFFSET32(etherstatspkts1024octetsto1522octets_hi), 416 8, STATS_FLAGS_PORT, "tx_1024_to_1522_byte_packets" }, 417 { STATS_OFFSET32(etherstatspktsover1522octets_hi), 418 8, STATS_FLAGS_PORT, "tx_1523_to_9022_byte_packets" }, 419 { STATS_OFFSET32(pause_frames_sent_hi), 420 8, STATS_FLAGS_PORT, "tx_pause_frames" }, 421 { STATS_OFFSET32(total_tpa_aggregations_hi), 422 8, STATS_FLAGS_FUNC, "tpa_aggregations" }, 423 { STATS_OFFSET32(total_tpa_aggregated_frames_hi), 424 8, STATS_FLAGS_FUNC, "tpa_aggregated_frames"}, 425 { STATS_OFFSET32(total_tpa_bytes_hi), 426 8, STATS_FLAGS_FUNC, "tpa_bytes"}, 427 { STATS_OFFSET32(eee_tx_lpi), 428 4, STATS_FLAGS_PORT, "eee_tx_lpi"}, 429 { STATS_OFFSET32(rx_calls), 430 4, STATS_FLAGS_FUNC, "rx_calls"}, 431 { STATS_OFFSET32(rx_pkts), 432 4, STATS_FLAGS_FUNC, "rx_pkts"}, 433 { STATS_OFFSET32(rx_tpa_pkts), 434 4, STATS_FLAGS_FUNC, "rx_tpa_pkts"}, 435 { STATS_OFFSET32(rx_erroneous_jumbo_sge_pkts), 436 4, STATS_FLAGS_FUNC, "rx_erroneous_jumbo_sge_pkts"}, 437 { STATS_OFFSET32(rx_bxe_service_rxsgl), 438 4, STATS_FLAGS_FUNC, "rx_bxe_service_rxsgl"}, 439 { STATS_OFFSET32(rx_jumbo_sge_pkts), 440 4, STATS_FLAGS_FUNC, "rx_jumbo_sge_pkts"}, 441 { STATS_OFFSET32(rx_soft_errors), 442 4, STATS_FLAGS_FUNC, "rx_soft_errors"}, 443 { STATS_OFFSET32(rx_hw_csum_errors), 444 4, STATS_FLAGS_FUNC, "rx_hw_csum_errors"}, 445 { STATS_OFFSET32(rx_ofld_frames_csum_ip), 446 4, STATS_FLAGS_FUNC, "rx_ofld_frames_csum_ip"}, 447 { STATS_OFFSET32(rx_ofld_frames_csum_tcp_udp), 448 4, STATS_FLAGS_FUNC, "rx_ofld_frames_csum_tcp_udp"}, 449 { STATS_OFFSET32(rx_budget_reached), 450 4, STATS_FLAGS_FUNC, "rx_budget_reached"}, 451 { STATS_OFFSET32(tx_pkts), 452 4, STATS_FLAGS_FUNC, "tx_pkts"}, 453 { STATS_OFFSET32(tx_soft_errors), 454 4, STATS_FLAGS_FUNC, "tx_soft_errors"}, 455 { STATS_OFFSET32(tx_ofld_frames_csum_ip), 456 4, STATS_FLAGS_FUNC, "tx_ofld_frames_csum_ip"}, 457 { STATS_OFFSET32(tx_ofld_frames_csum_tcp), 458 4, STATS_FLAGS_FUNC, "tx_ofld_frames_csum_tcp"}, 459 { STATS_OFFSET32(tx_ofld_frames_csum_udp), 460 4, STATS_FLAGS_FUNC, "tx_ofld_frames_csum_udp"}, 461 { STATS_OFFSET32(tx_ofld_frames_lso), 462 4, STATS_FLAGS_FUNC, "tx_ofld_frames_lso"}, 463 { STATS_OFFSET32(tx_ofld_frames_lso_hdr_splits), 464 4, STATS_FLAGS_FUNC, "tx_ofld_frames_lso_hdr_splits"}, 465 { STATS_OFFSET32(tx_encap_failures), 466 4, STATS_FLAGS_FUNC, "tx_encap_failures"}, 467 { STATS_OFFSET32(tx_hw_queue_full), 468 4, STATS_FLAGS_FUNC, "tx_hw_queue_full"}, 469 { STATS_OFFSET32(tx_hw_max_queue_depth), 470 4, STATS_FLAGS_FUNC, "tx_hw_max_queue_depth"}, 471 { STATS_OFFSET32(tx_dma_mapping_failure), 472 4, STATS_FLAGS_FUNC, "tx_dma_mapping_failure"}, 473 { STATS_OFFSET32(tx_max_drbr_queue_depth), 474 4, STATS_FLAGS_FUNC, "tx_max_drbr_queue_depth"}, 475 { STATS_OFFSET32(tx_window_violation_std), 476 4, STATS_FLAGS_FUNC, "tx_window_violation_std"}, 477 { STATS_OFFSET32(tx_window_violation_tso), 478 4, STATS_FLAGS_FUNC, "tx_window_violation_tso"}, 479 { STATS_OFFSET32(tx_chain_lost_mbuf), 480 4, STATS_FLAGS_FUNC, "tx_chain_lost_mbuf"}, 481 { STATS_OFFSET32(tx_frames_deferred), 482 4, STATS_FLAGS_FUNC, "tx_frames_deferred"}, 483 { STATS_OFFSET32(tx_queue_xoff), 484 4, STATS_FLAGS_FUNC, "tx_queue_xoff"}, 485 { STATS_OFFSET32(mbuf_defrag_attempts), 486 4, STATS_FLAGS_FUNC, "mbuf_defrag_attempts"}, 487 { STATS_OFFSET32(mbuf_defrag_failures), 488 4, STATS_FLAGS_FUNC, "mbuf_defrag_failures"}, 489 { STATS_OFFSET32(mbuf_rx_bd_alloc_failed), 490 4, STATS_FLAGS_FUNC, "mbuf_rx_bd_alloc_failed"}, 491 { STATS_OFFSET32(mbuf_rx_bd_mapping_failed), 492 4, STATS_FLAGS_FUNC, "mbuf_rx_bd_mapping_failed"}, 493 { STATS_OFFSET32(mbuf_rx_tpa_alloc_failed), 494 4, STATS_FLAGS_FUNC, "mbuf_rx_tpa_alloc_failed"}, 495 { STATS_OFFSET32(mbuf_rx_tpa_mapping_failed), 496 4, STATS_FLAGS_FUNC, "mbuf_rx_tpa_mapping_failed"}, 497 { STATS_OFFSET32(mbuf_rx_sge_alloc_failed), 498 4, STATS_FLAGS_FUNC, "mbuf_rx_sge_alloc_failed"}, 499 { STATS_OFFSET32(mbuf_rx_sge_mapping_failed), 500 4, STATS_FLAGS_FUNC, "mbuf_rx_sge_mapping_failed"}, 501 { STATS_OFFSET32(mbuf_alloc_tx), 502 4, STATS_FLAGS_FUNC, "mbuf_alloc_tx"}, 503 { STATS_OFFSET32(mbuf_alloc_rx), 504 4, STATS_FLAGS_FUNC, "mbuf_alloc_rx"}, 505 { STATS_OFFSET32(mbuf_alloc_sge), 506 4, STATS_FLAGS_FUNC, "mbuf_alloc_sge"}, 507 { STATS_OFFSET32(mbuf_alloc_tpa), 508 4, STATS_FLAGS_FUNC, "mbuf_alloc_tpa"}, 509 { STATS_OFFSET32(tx_queue_full_return), 510 4, STATS_FLAGS_FUNC, "tx_queue_full_return"}, 511 { STATS_OFFSET32(bxe_tx_mq_sc_state_failures), 512 4, STATS_FLAGS_FUNC, "bxe_tx_mq_sc_state_failures"}, 513 { STATS_OFFSET32(tx_request_link_down_failures), 514 4, STATS_FLAGS_FUNC, "tx_request_link_down_failures"}, 515 { STATS_OFFSET32(bd_avail_too_less_failures), 516 4, STATS_FLAGS_FUNC, "bd_avail_too_less_failures"}, 517 { STATS_OFFSET32(tx_mq_not_empty), 518 4, STATS_FLAGS_FUNC, "tx_mq_not_empty"}, 519 { STATS_OFFSET32(nsegs_path1_errors), 520 4, STATS_FLAGS_FUNC, "nsegs_path1_errors"}, 521 { STATS_OFFSET32(nsegs_path2_errors), 522 4, STATS_FLAGS_FUNC, "nsegs_path2_errors"} 523 524 525 }; 526 527 static const struct { 528 uint32_t offset; 529 uint32_t size; 530 char string[STAT_NAME_LEN]; 531 } bxe_eth_q_stats_arr[] = { 532 { Q_STATS_OFFSET32(total_bytes_received_hi), 533 8, "rx_bytes" }, 534 { Q_STATS_OFFSET32(total_unicast_packets_received_hi), 535 8, "rx_ucast_packets" }, 536 { Q_STATS_OFFSET32(total_multicast_packets_received_hi), 537 8, "rx_mcast_packets" }, 538 { Q_STATS_OFFSET32(total_broadcast_packets_received_hi), 539 8, "rx_bcast_packets" }, 540 { Q_STATS_OFFSET32(no_buff_discard_hi), 541 8, "rx_discards" }, 542 { Q_STATS_OFFSET32(total_bytes_transmitted_hi), 543 8, "tx_bytes" }, 544 { Q_STATS_OFFSET32(total_unicast_packets_transmitted_hi), 545 8, "tx_ucast_packets" }, 546 { Q_STATS_OFFSET32(total_multicast_packets_transmitted_hi), 547 8, "tx_mcast_packets" }, 548 { Q_STATS_OFFSET32(total_broadcast_packets_transmitted_hi), 549 8, "tx_bcast_packets" }, 550 { Q_STATS_OFFSET32(total_tpa_aggregations_hi), 551 8, "tpa_aggregations" }, 552 { Q_STATS_OFFSET32(total_tpa_aggregated_frames_hi), 553 8, "tpa_aggregated_frames"}, 554 { Q_STATS_OFFSET32(total_tpa_bytes_hi), 555 8, "tpa_bytes"}, 556 { Q_STATS_OFFSET32(rx_calls), 557 4, "rx_calls"}, 558 { Q_STATS_OFFSET32(rx_pkts), 559 4, "rx_pkts"}, 560 { Q_STATS_OFFSET32(rx_tpa_pkts), 561 4, "rx_tpa_pkts"}, 562 { Q_STATS_OFFSET32(rx_erroneous_jumbo_sge_pkts), 563 4, "rx_erroneous_jumbo_sge_pkts"}, 564 { Q_STATS_OFFSET32(rx_bxe_service_rxsgl), 565 4, "rx_bxe_service_rxsgl"}, 566 { Q_STATS_OFFSET32(rx_jumbo_sge_pkts), 567 4, "rx_jumbo_sge_pkts"}, 568 { Q_STATS_OFFSET32(rx_soft_errors), 569 4, "rx_soft_errors"}, 570 { Q_STATS_OFFSET32(rx_hw_csum_errors), 571 4, "rx_hw_csum_errors"}, 572 { Q_STATS_OFFSET32(rx_ofld_frames_csum_ip), 573 4, "rx_ofld_frames_csum_ip"}, 574 { Q_STATS_OFFSET32(rx_ofld_frames_csum_tcp_udp), 575 4, "rx_ofld_frames_csum_tcp_udp"}, 576 { Q_STATS_OFFSET32(rx_budget_reached), 577 4, "rx_budget_reached"}, 578 { Q_STATS_OFFSET32(tx_pkts), 579 4, "tx_pkts"}, 580 { Q_STATS_OFFSET32(tx_soft_errors), 581 4, "tx_soft_errors"}, 582 { Q_STATS_OFFSET32(tx_ofld_frames_csum_ip), 583 4, "tx_ofld_frames_csum_ip"}, 584 { Q_STATS_OFFSET32(tx_ofld_frames_csum_tcp), 585 4, "tx_ofld_frames_csum_tcp"}, 586 { Q_STATS_OFFSET32(tx_ofld_frames_csum_udp), 587 4, "tx_ofld_frames_csum_udp"}, 588 { Q_STATS_OFFSET32(tx_ofld_frames_lso), 589 4, "tx_ofld_frames_lso"}, 590 { Q_STATS_OFFSET32(tx_ofld_frames_lso_hdr_splits), 591 4, "tx_ofld_frames_lso_hdr_splits"}, 592 { Q_STATS_OFFSET32(tx_encap_failures), 593 4, "tx_encap_failures"}, 594 { Q_STATS_OFFSET32(tx_hw_queue_full), 595 4, "tx_hw_queue_full"}, 596 { Q_STATS_OFFSET32(tx_hw_max_queue_depth), 597 4, "tx_hw_max_queue_depth"}, 598 { Q_STATS_OFFSET32(tx_dma_mapping_failure), 599 4, "tx_dma_mapping_failure"}, 600 { Q_STATS_OFFSET32(tx_max_drbr_queue_depth), 601 4, "tx_max_drbr_queue_depth"}, 602 { Q_STATS_OFFSET32(tx_window_violation_std), 603 4, "tx_window_violation_std"}, 604 { Q_STATS_OFFSET32(tx_window_violation_tso), 605 4, "tx_window_violation_tso"}, 606 { Q_STATS_OFFSET32(tx_chain_lost_mbuf), 607 4, "tx_chain_lost_mbuf"}, 608 { Q_STATS_OFFSET32(tx_frames_deferred), 609 4, "tx_frames_deferred"}, 610 { Q_STATS_OFFSET32(tx_queue_xoff), 611 4, "tx_queue_xoff"}, 612 { Q_STATS_OFFSET32(mbuf_defrag_attempts), 613 4, "mbuf_defrag_attempts"}, 614 { Q_STATS_OFFSET32(mbuf_defrag_failures), 615 4, "mbuf_defrag_failures"}, 616 { Q_STATS_OFFSET32(mbuf_rx_bd_alloc_failed), 617 4, "mbuf_rx_bd_alloc_failed"}, 618 { Q_STATS_OFFSET32(mbuf_rx_bd_mapping_failed), 619 4, "mbuf_rx_bd_mapping_failed"}, 620 { Q_STATS_OFFSET32(mbuf_rx_tpa_alloc_failed), 621 4, "mbuf_rx_tpa_alloc_failed"}, 622 { Q_STATS_OFFSET32(mbuf_rx_tpa_mapping_failed), 623 4, "mbuf_rx_tpa_mapping_failed"}, 624 { Q_STATS_OFFSET32(mbuf_rx_sge_alloc_failed), 625 4, "mbuf_rx_sge_alloc_failed"}, 626 { Q_STATS_OFFSET32(mbuf_rx_sge_mapping_failed), 627 4, "mbuf_rx_sge_mapping_failed"}, 628 { Q_STATS_OFFSET32(mbuf_alloc_tx), 629 4, "mbuf_alloc_tx"}, 630 { Q_STATS_OFFSET32(mbuf_alloc_rx), 631 4, "mbuf_alloc_rx"}, 632 { Q_STATS_OFFSET32(mbuf_alloc_sge), 633 4, "mbuf_alloc_sge"}, 634 { Q_STATS_OFFSET32(mbuf_alloc_tpa), 635 4, "mbuf_alloc_tpa"}, 636 { Q_STATS_OFFSET32(tx_queue_full_return), 637 4, "tx_queue_full_return"}, 638 { Q_STATS_OFFSET32(bxe_tx_mq_sc_state_failures), 639 4, "bxe_tx_mq_sc_state_failures"}, 640 { Q_STATS_OFFSET32(tx_request_link_down_failures), 641 4, "tx_request_link_down_failures"}, 642 { Q_STATS_OFFSET32(bd_avail_too_less_failures), 643 4, "bd_avail_too_less_failures"}, 644 { Q_STATS_OFFSET32(tx_mq_not_empty), 645 4, "tx_mq_not_empty"}, 646 { Q_STATS_OFFSET32(nsegs_path1_errors), 647 4, "nsegs_path1_errors"}, 648 { Q_STATS_OFFSET32(nsegs_path2_errors), 649 4, "nsegs_path2_errors"} 650 651 652 }; 653 654 #define BXE_NUM_ETH_STATS ARRAY_SIZE(bxe_eth_stats_arr) 655 #define BXE_NUM_ETH_Q_STATS ARRAY_SIZE(bxe_eth_q_stats_arr) 656 657 658 static void bxe_cmng_fns_init(struct bxe_softc *sc, 659 uint8_t read_cfg, 660 uint8_t cmng_type); 661 static int bxe_get_cmng_fns_mode(struct bxe_softc *sc); 662 static void storm_memset_cmng(struct bxe_softc *sc, 663 struct cmng_init *cmng, 664 uint8_t port); 665 static void bxe_set_reset_global(struct bxe_softc *sc); 666 static void bxe_set_reset_in_progress(struct bxe_softc *sc); 667 static uint8_t bxe_reset_is_done(struct bxe_softc *sc, 668 int engine); 669 static uint8_t bxe_clear_pf_load(struct bxe_softc *sc); 670 static uint8_t bxe_chk_parity_attn(struct bxe_softc *sc, 671 uint8_t *global, 672 uint8_t print); 673 static void bxe_int_disable(struct bxe_softc *sc); 674 static int bxe_release_leader_lock(struct bxe_softc *sc); 675 static void bxe_pf_disable(struct bxe_softc *sc); 676 static void bxe_free_fp_buffers(struct bxe_softc *sc); 677 static inline void bxe_update_rx_prod(struct bxe_softc *sc, 678 struct bxe_fastpath *fp, 679 uint16_t rx_bd_prod, 680 uint16_t rx_cq_prod, 681 uint16_t rx_sge_prod); 682 static void bxe_link_report_locked(struct bxe_softc *sc); 683 static void bxe_link_report(struct bxe_softc *sc); 684 static void bxe_link_status_update(struct bxe_softc *sc); 685 static void bxe_periodic_callout_func(void *xsc); 686 static void bxe_periodic_start(struct bxe_softc *sc); 687 static void bxe_periodic_stop(struct bxe_softc *sc); 688 static int bxe_alloc_rx_bd_mbuf(struct bxe_fastpath *fp, 689 uint16_t prev_index, 690 uint16_t index); 691 static int bxe_alloc_rx_tpa_mbuf(struct bxe_fastpath *fp, 692 int queue); 693 static int bxe_alloc_rx_sge_mbuf(struct bxe_fastpath *fp, 694 uint16_t index); 695 static uint8_t bxe_txeof(struct bxe_softc *sc, 696 struct bxe_fastpath *fp); 697 static void bxe_task_fp(struct bxe_fastpath *fp); 698 static __noinline void bxe_dump_mbuf(struct bxe_softc *sc, 699 struct mbuf *m, 700 uint8_t contents); 701 static int bxe_alloc_mem(struct bxe_softc *sc); 702 static void bxe_free_mem(struct bxe_softc *sc); 703 static int bxe_alloc_fw_stats_mem(struct bxe_softc *sc); 704 static void bxe_free_fw_stats_mem(struct bxe_softc *sc); 705 static int bxe_interrupt_attach(struct bxe_softc *sc); 706 static void bxe_interrupt_detach(struct bxe_softc *sc); 707 static void bxe_set_rx_mode(struct bxe_softc *sc); 708 static int bxe_init_locked(struct bxe_softc *sc); 709 static int bxe_stop_locked(struct bxe_softc *sc); 710 static void bxe_sp_err_timeout_task(void *arg, int pending); 711 void bxe_parity_recover(struct bxe_softc *sc); 712 void bxe_handle_error(struct bxe_softc *sc); 713 static __noinline int bxe_nic_load(struct bxe_softc *sc, 714 int load_mode); 715 static __noinline int bxe_nic_unload(struct bxe_softc *sc, 716 uint32_t unload_mode, 717 uint8_t keep_link); 718 719 static void bxe_handle_sp_tq(void *context, int pending); 720 static void bxe_handle_fp_tq(void *context, int pending); 721 722 static int bxe_add_cdev(struct bxe_softc *sc); 723 static void bxe_del_cdev(struct bxe_softc *sc); 724 int bxe_grc_dump(struct bxe_softc *sc); 725 static int bxe_alloc_buf_rings(struct bxe_softc *sc); 726 static void bxe_free_buf_rings(struct bxe_softc *sc); 727 728 /* calculate crc32 on a buffer (NOTE: crc32_length MUST be aligned to 8) */ 729 uint32_t 730 calc_crc32(uint8_t *crc32_packet, 731 uint32_t crc32_length, 732 uint32_t crc32_seed, 733 uint8_t complement) 734 { 735 uint32_t byte = 0; 736 uint32_t bit = 0; 737 uint8_t msb = 0; 738 uint32_t temp = 0; 739 uint32_t shft = 0; 740 uint8_t current_byte = 0; 741 uint32_t crc32_result = crc32_seed; 742 const uint32_t CRC32_POLY = 0x1edc6f41; 743 744 if ((crc32_packet == NULL) || 745 (crc32_length == 0) || 746 ((crc32_length % 8) != 0)) 747 { 748 return (crc32_result); 749 } 750 751 for (byte = 0; byte < crc32_length; byte = byte + 1) 752 { 753 current_byte = crc32_packet[byte]; 754 for (bit = 0; bit < 8; bit = bit + 1) 755 { 756 /* msb = crc32_result[31]; */ 757 msb = (uint8_t)(crc32_result >> 31); 758 759 crc32_result = crc32_result << 1; 760 761 /* it (msb != current_byte[bit]) */ 762 if (msb != (0x1 & (current_byte >> bit))) 763 { 764 crc32_result = crc32_result ^ CRC32_POLY; 765 /* crc32_result[0] = 1 */ 766 crc32_result |= 1; 767 } 768 } 769 } 770 771 /* Last step is to: 772 * 1. "mirror" every bit 773 * 2. swap the 4 bytes 774 * 3. complement each bit 775 */ 776 777 /* Mirror */ 778 temp = crc32_result; 779 shft = sizeof(crc32_result) * 8 - 1; 780 781 for (crc32_result >>= 1; crc32_result; crc32_result >>= 1) 782 { 783 temp <<= 1; 784 temp |= crc32_result & 1; 785 shft-- ; 786 } 787 788 /* temp[31-bit] = crc32_result[bit] */ 789 temp <<= shft; 790 791 /* Swap */ 792 /* crc32_result = {temp[7:0], temp[15:8], temp[23:16], temp[31:24]} */ 793 { 794 uint32_t t0, t1, t2, t3; 795 t0 = (0x000000ff & (temp >> 24)); 796 t1 = (0x0000ff00 & (temp >> 8)); 797 t2 = (0x00ff0000 & (temp << 8)); 798 t3 = (0xff000000 & (temp << 24)); 799 crc32_result = t0 | t1 | t2 | t3; 800 } 801 802 /* Complement */ 803 if (complement) 804 { 805 crc32_result = ~crc32_result; 806 } 807 808 return (crc32_result); 809 } 810 811 int 812 bxe_test_bit(int nr, 813 volatile unsigned long *addr) 814 { 815 return ((atomic_load_acq_long(addr) & (1 << nr)) != 0); 816 } 817 818 void 819 bxe_set_bit(unsigned int nr, 820 volatile unsigned long *addr) 821 { 822 atomic_set_acq_long(addr, (1 << nr)); 823 } 824 825 void 826 bxe_clear_bit(int nr, 827 volatile unsigned long *addr) 828 { 829 atomic_clear_acq_long(addr, (1 << nr)); 830 } 831 832 int 833 bxe_test_and_set_bit(int nr, 834 volatile unsigned long *addr) 835 { 836 unsigned long x; 837 nr = (1 << nr); 838 do { 839 x = *addr; 840 } while (atomic_cmpset_acq_long(addr, x, x | nr) == 0); 841 // if (x & nr) bit_was_set; else bit_was_not_set; 842 return (x & nr); 843 } 844 845 int 846 bxe_test_and_clear_bit(int nr, 847 volatile unsigned long *addr) 848 { 849 unsigned long x; 850 nr = (1 << nr); 851 do { 852 x = *addr; 853 } while (atomic_cmpset_acq_long(addr, x, x & ~nr) == 0); 854 // if (x & nr) bit_was_set; else bit_was_not_set; 855 return (x & nr); 856 } 857 858 int 859 bxe_cmpxchg(volatile int *addr, 860 int old, 861 int new) 862 { 863 int x; 864 do { 865 x = *addr; 866 } while (atomic_cmpset_acq_int(addr, old, new) == 0); 867 return (x); 868 } 869 870 /* 871 * Get DMA memory from the OS. 872 * 873 * Validates that the OS has provided DMA buffers in response to a 874 * bus_dmamap_load call and saves the physical address of those buffers. 875 * When the callback is used the OS will return 0 for the mapping function 876 * (bus_dmamap_load) so we use the value of map_arg->maxsegs to pass any 877 * failures back to the caller. 878 * 879 * Returns: 880 * Nothing. 881 */ 882 static void 883 bxe_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error) 884 { 885 struct bxe_dma *dma = arg; 886 887 if (error) { 888 dma->paddr = 0; 889 dma->nseg = 0; 890 BLOGE(dma->sc, "Failed DMA alloc '%s' (%d)!\n", dma->msg, error); 891 } else { 892 dma->paddr = segs->ds_addr; 893 dma->nseg = nseg; 894 } 895 } 896 897 /* 898 * Allocate a block of memory and map it for DMA. No partial completions 899 * allowed and release any resources acquired if we can't acquire all 900 * resources. 901 * 902 * Returns: 903 * 0 = Success, !0 = Failure 904 */ 905 int 906 bxe_dma_alloc(struct bxe_softc *sc, 907 bus_size_t size, 908 struct bxe_dma *dma, 909 const char *msg) 910 { 911 int rc; 912 913 if (dma->size > 0) { 914 BLOGE(sc, "dma block '%s' already has size %lu\n", msg, 915 (unsigned long)dma->size); 916 return (1); 917 } 918 919 memset(dma, 0, sizeof(*dma)); /* sanity */ 920 dma->sc = sc; 921 dma->size = size; 922 snprintf(dma->msg, sizeof(dma->msg), "%s", msg); 923 924 rc = bus_dma_tag_create(sc->parent_dma_tag, /* parent tag */ 925 BCM_PAGE_SIZE, /* alignment */ 926 0, /* boundary limit */ 927 BUS_SPACE_MAXADDR, /* restricted low */ 928 BUS_SPACE_MAXADDR, /* restricted hi */ 929 NULL, /* addr filter() */ 930 NULL, /* addr filter() arg */ 931 size, /* max map size */ 932 1, /* num discontinuous */ 933 size, /* max seg size */ 934 BUS_DMA_ALLOCNOW, /* flags */ 935 NULL, /* lock() */ 936 NULL, /* lock() arg */ 937 &dma->tag); /* returned dma tag */ 938 if (rc != 0) { 939 BLOGE(sc, "Failed to create dma tag for '%s' (%d)\n", msg, rc); 940 memset(dma, 0, sizeof(*dma)); 941 return (1); 942 } 943 944 rc = bus_dmamem_alloc(dma->tag, 945 (void **)&dma->vaddr, 946 (BUS_DMA_NOWAIT | BUS_DMA_ZERO), 947 &dma->map); 948 if (rc != 0) { 949 BLOGE(sc, "Failed to alloc dma mem for '%s' (%d)\n", msg, rc); 950 bus_dma_tag_destroy(dma->tag); 951 memset(dma, 0, sizeof(*dma)); 952 return (1); 953 } 954 955 rc = bus_dmamap_load(dma->tag, 956 dma->map, 957 dma->vaddr, 958 size, 959 bxe_dma_map_addr, /* BLOGD in here */ 960 dma, 961 BUS_DMA_NOWAIT); 962 if (rc != 0) { 963 BLOGE(sc, "Failed to load dma map for '%s' (%d)\n", msg, rc); 964 bus_dmamem_free(dma->tag, dma->vaddr, dma->map); 965 bus_dma_tag_destroy(dma->tag); 966 memset(dma, 0, sizeof(*dma)); 967 return (1); 968 } 969 970 return (0); 971 } 972 973 void 974 bxe_dma_free(struct bxe_softc *sc, 975 struct bxe_dma *dma) 976 { 977 if (dma->size > 0) { 978 DBASSERT(sc, (dma->tag != NULL), ("dma tag is NULL")); 979 980 bus_dmamap_sync(dma->tag, dma->map, 981 (BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE)); 982 bus_dmamap_unload(dma->tag, dma->map); 983 bus_dmamem_free(dma->tag, dma->vaddr, dma->map); 984 bus_dma_tag_destroy(dma->tag); 985 } 986 987 memset(dma, 0, sizeof(*dma)); 988 } 989 990 /* 991 * These indirect read and write routines are only during init. 992 * The locking is handled by the MCP. 993 */ 994 995 void 996 bxe_reg_wr_ind(struct bxe_softc *sc, 997 uint32_t addr, 998 uint32_t val) 999 { 1000 pci_write_config(sc->dev, PCICFG_GRC_ADDRESS, addr, 4); 1001 pci_write_config(sc->dev, PCICFG_GRC_DATA, val, 4); 1002 pci_write_config(sc->dev, PCICFG_GRC_ADDRESS, 0, 4); 1003 } 1004 1005 uint32_t 1006 bxe_reg_rd_ind(struct bxe_softc *sc, 1007 uint32_t addr) 1008 { 1009 uint32_t val; 1010 1011 pci_write_config(sc->dev, PCICFG_GRC_ADDRESS, addr, 4); 1012 val = pci_read_config(sc->dev, PCICFG_GRC_DATA, 4); 1013 pci_write_config(sc->dev, PCICFG_GRC_ADDRESS, 0, 4); 1014 1015 return (val); 1016 } 1017 1018 static int 1019 bxe_acquire_hw_lock(struct bxe_softc *sc, 1020 uint32_t resource) 1021 { 1022 uint32_t lock_status; 1023 uint32_t resource_bit = (1 << resource); 1024 int func = SC_FUNC(sc); 1025 uint32_t hw_lock_control_reg; 1026 int cnt; 1027 1028 /* validate the resource is within range */ 1029 if (resource > HW_LOCK_MAX_RESOURCE_VALUE) { 1030 BLOGE(sc, "(resource 0x%x > HW_LOCK_MAX_RESOURCE_VALUE)" 1031 " resource_bit 0x%x\n", resource, resource_bit); 1032 return (-1); 1033 } 1034 1035 if (func <= 5) { 1036 hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + (func * 8)); 1037 } else { 1038 hw_lock_control_reg = 1039 (MISC_REG_DRIVER_CONTROL_7 + ((func - 6) * 8)); 1040 } 1041 1042 /* validate the resource is not already taken */ 1043 lock_status = REG_RD(sc, hw_lock_control_reg); 1044 if (lock_status & resource_bit) { 1045 BLOGE(sc, "resource (0x%x) in use (status 0x%x bit 0x%x)\n", 1046 resource, lock_status, resource_bit); 1047 return (-1); 1048 } 1049 1050 /* try every 5ms for 5 seconds */ 1051 for (cnt = 0; cnt < 1000; cnt++) { 1052 REG_WR(sc, (hw_lock_control_reg + 4), resource_bit); 1053 lock_status = REG_RD(sc, hw_lock_control_reg); 1054 if (lock_status & resource_bit) { 1055 return (0); 1056 } 1057 DELAY(5000); 1058 } 1059 1060 BLOGE(sc, "Resource 0x%x resource_bit 0x%x lock timeout!\n", 1061 resource, resource_bit); 1062 return (-1); 1063 } 1064 1065 static int 1066 bxe_release_hw_lock(struct bxe_softc *sc, 1067 uint32_t resource) 1068 { 1069 uint32_t lock_status; 1070 uint32_t resource_bit = (1 << resource); 1071 int func = SC_FUNC(sc); 1072 uint32_t hw_lock_control_reg; 1073 1074 /* validate the resource is within range */ 1075 if (resource > HW_LOCK_MAX_RESOURCE_VALUE) { 1076 BLOGE(sc, "(resource 0x%x > HW_LOCK_MAX_RESOURCE_VALUE)" 1077 " resource_bit 0x%x\n", resource, resource_bit); 1078 return (-1); 1079 } 1080 1081 if (func <= 5) { 1082 hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + (func * 8)); 1083 } else { 1084 hw_lock_control_reg = 1085 (MISC_REG_DRIVER_CONTROL_7 + ((func - 6) * 8)); 1086 } 1087 1088 /* validate the resource is currently taken */ 1089 lock_status = REG_RD(sc, hw_lock_control_reg); 1090 if (!(lock_status & resource_bit)) { 1091 BLOGE(sc, "resource (0x%x) not in use (status 0x%x bit 0x%x)\n", 1092 resource, lock_status, resource_bit); 1093 return (-1); 1094 } 1095 1096 REG_WR(sc, hw_lock_control_reg, resource_bit); 1097 return (0); 1098 } 1099 static void bxe_acquire_phy_lock(struct bxe_softc *sc) 1100 { 1101 BXE_PHY_LOCK(sc); 1102 bxe_acquire_hw_lock(sc,HW_LOCK_RESOURCE_MDIO); 1103 } 1104 1105 static void bxe_release_phy_lock(struct bxe_softc *sc) 1106 { 1107 bxe_release_hw_lock(sc,HW_LOCK_RESOURCE_MDIO); 1108 BXE_PHY_UNLOCK(sc); 1109 } 1110 /* 1111 * Per pf misc lock must be acquired before the per port mcp lock. Otherwise, 1112 * had we done things the other way around, if two pfs from the same port 1113 * would attempt to access nvram at the same time, we could run into a 1114 * scenario such as: 1115 * pf A takes the port lock. 1116 * pf B succeeds in taking the same lock since they are from the same port. 1117 * pf A takes the per pf misc lock. Performs eeprom access. 1118 * pf A finishes. Unlocks the per pf misc lock. 1119 * Pf B takes the lock and proceeds to perform it's own access. 1120 * pf A unlocks the per port lock, while pf B is still working (!). 1121 * mcp takes the per port lock and corrupts pf B's access (and/or has it's own 1122 * access corrupted by pf B).* 1123 */ 1124 static int 1125 bxe_acquire_nvram_lock(struct bxe_softc *sc) 1126 { 1127 int port = SC_PORT(sc); 1128 int count, i; 1129 uint32_t val = 0; 1130 1131 /* acquire HW lock: protect against other PFs in PF Direct Assignment */ 1132 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_NVRAM); 1133 1134 /* adjust timeout for emulation/FPGA */ 1135 count = NVRAM_TIMEOUT_COUNT; 1136 if (CHIP_REV_IS_SLOW(sc)) { 1137 count *= 100; 1138 } 1139 1140 /* request access to nvram interface */ 1141 REG_WR(sc, MCP_REG_MCPR_NVM_SW_ARB, 1142 (MCPR_NVM_SW_ARB_ARB_REQ_SET1 << port)); 1143 1144 for (i = 0; i < count*10; i++) { 1145 val = REG_RD(sc, MCP_REG_MCPR_NVM_SW_ARB); 1146 if (val & (MCPR_NVM_SW_ARB_ARB_ARB1 << port)) { 1147 break; 1148 } 1149 1150 DELAY(5); 1151 } 1152 1153 if (!(val & (MCPR_NVM_SW_ARB_ARB_ARB1 << port))) { 1154 BLOGE(sc, "Cannot get access to nvram interface " 1155 "port %d val 0x%x (MCPR_NVM_SW_ARB_ARB_ARB1 << port)\n", 1156 port, val); 1157 return (-1); 1158 } 1159 1160 return (0); 1161 } 1162 1163 static int 1164 bxe_release_nvram_lock(struct bxe_softc *sc) 1165 { 1166 int port = SC_PORT(sc); 1167 int count, i; 1168 uint32_t val = 0; 1169 1170 /* adjust timeout for emulation/FPGA */ 1171 count = NVRAM_TIMEOUT_COUNT; 1172 if (CHIP_REV_IS_SLOW(sc)) { 1173 count *= 100; 1174 } 1175 1176 /* relinquish nvram interface */ 1177 REG_WR(sc, MCP_REG_MCPR_NVM_SW_ARB, 1178 (MCPR_NVM_SW_ARB_ARB_REQ_CLR1 << port)); 1179 1180 for (i = 0; i < count*10; i++) { 1181 val = REG_RD(sc, MCP_REG_MCPR_NVM_SW_ARB); 1182 if (!(val & (MCPR_NVM_SW_ARB_ARB_ARB1 << port))) { 1183 break; 1184 } 1185 1186 DELAY(5); 1187 } 1188 1189 if (val & (MCPR_NVM_SW_ARB_ARB_ARB1 << port)) { 1190 BLOGE(sc, "Cannot free access to nvram interface " 1191 "port %d val 0x%x (MCPR_NVM_SW_ARB_ARB_ARB1 << port)\n", 1192 port, val); 1193 return (-1); 1194 } 1195 1196 /* release HW lock: protect against other PFs in PF Direct Assignment */ 1197 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_NVRAM); 1198 1199 return (0); 1200 } 1201 1202 static void 1203 bxe_enable_nvram_access(struct bxe_softc *sc) 1204 { 1205 uint32_t val; 1206 1207 val = REG_RD(sc, MCP_REG_MCPR_NVM_ACCESS_ENABLE); 1208 1209 /* enable both bits, even on read */ 1210 REG_WR(sc, MCP_REG_MCPR_NVM_ACCESS_ENABLE, 1211 (val | MCPR_NVM_ACCESS_ENABLE_EN | MCPR_NVM_ACCESS_ENABLE_WR_EN)); 1212 } 1213 1214 static void 1215 bxe_disable_nvram_access(struct bxe_softc *sc) 1216 { 1217 uint32_t val; 1218 1219 val = REG_RD(sc, MCP_REG_MCPR_NVM_ACCESS_ENABLE); 1220 1221 /* disable both bits, even after read */ 1222 REG_WR(sc, MCP_REG_MCPR_NVM_ACCESS_ENABLE, 1223 (val & ~(MCPR_NVM_ACCESS_ENABLE_EN | 1224 MCPR_NVM_ACCESS_ENABLE_WR_EN))); 1225 } 1226 1227 static int 1228 bxe_nvram_read_dword(struct bxe_softc *sc, 1229 uint32_t offset, 1230 uint32_t *ret_val, 1231 uint32_t cmd_flags) 1232 { 1233 int count, i, rc; 1234 uint32_t val; 1235 1236 /* build the command word */ 1237 cmd_flags |= MCPR_NVM_COMMAND_DOIT; 1238 1239 /* need to clear DONE bit separately */ 1240 REG_WR(sc, MCP_REG_MCPR_NVM_COMMAND, MCPR_NVM_COMMAND_DONE); 1241 1242 /* address of the NVRAM to read from */ 1243 REG_WR(sc, MCP_REG_MCPR_NVM_ADDR, 1244 (offset & MCPR_NVM_ADDR_NVM_ADDR_VALUE)); 1245 1246 /* issue a read command */ 1247 REG_WR(sc, MCP_REG_MCPR_NVM_COMMAND, cmd_flags); 1248 1249 /* adjust timeout for emulation/FPGA */ 1250 count = NVRAM_TIMEOUT_COUNT; 1251 if (CHIP_REV_IS_SLOW(sc)) { 1252 count *= 100; 1253 } 1254 1255 /* wait for completion */ 1256 *ret_val = 0; 1257 rc = -1; 1258 for (i = 0; i < count; i++) { 1259 DELAY(5); 1260 val = REG_RD(sc, MCP_REG_MCPR_NVM_COMMAND); 1261 1262 if (val & MCPR_NVM_COMMAND_DONE) { 1263 val = REG_RD(sc, MCP_REG_MCPR_NVM_READ); 1264 /* we read nvram data in cpu order 1265 * but ethtool sees it as an array of bytes 1266 * converting to big-endian will do the work 1267 */ 1268 *ret_val = htobe32(val); 1269 rc = 0; 1270 break; 1271 } 1272 } 1273 1274 if (rc == -1) { 1275 BLOGE(sc, "nvram read timeout expired " 1276 "(offset 0x%x cmd_flags 0x%x val 0x%x)\n", 1277 offset, cmd_flags, val); 1278 } 1279 1280 return (rc); 1281 } 1282 1283 static int 1284 bxe_nvram_read(struct bxe_softc *sc, 1285 uint32_t offset, 1286 uint8_t *ret_buf, 1287 int buf_size) 1288 { 1289 uint32_t cmd_flags; 1290 uint32_t val; 1291 int rc; 1292 1293 if ((offset & 0x03) || (buf_size & 0x03) || (buf_size == 0)) { 1294 BLOGE(sc, "Invalid parameter, offset 0x%x buf_size 0x%x\n", 1295 offset, buf_size); 1296 return (-1); 1297 } 1298 1299 if ((offset + buf_size) > sc->devinfo.flash_size) { 1300 BLOGE(sc, "Invalid parameter, " 1301 "offset 0x%x + buf_size 0x%x > flash_size 0x%x\n", 1302 offset, buf_size, sc->devinfo.flash_size); 1303 return (-1); 1304 } 1305 1306 /* request access to nvram interface */ 1307 rc = bxe_acquire_nvram_lock(sc); 1308 if (rc) { 1309 return (rc); 1310 } 1311 1312 /* enable access to nvram interface */ 1313 bxe_enable_nvram_access(sc); 1314 1315 /* read the first word(s) */ 1316 cmd_flags = MCPR_NVM_COMMAND_FIRST; 1317 while ((buf_size > sizeof(uint32_t)) && (rc == 0)) { 1318 rc = bxe_nvram_read_dword(sc, offset, &val, cmd_flags); 1319 memcpy(ret_buf, &val, 4); 1320 1321 /* advance to the next dword */ 1322 offset += sizeof(uint32_t); 1323 ret_buf += sizeof(uint32_t); 1324 buf_size -= sizeof(uint32_t); 1325 cmd_flags = 0; 1326 } 1327 1328 if (rc == 0) { 1329 cmd_flags |= MCPR_NVM_COMMAND_LAST; 1330 rc = bxe_nvram_read_dword(sc, offset, &val, cmd_flags); 1331 memcpy(ret_buf, &val, 4); 1332 } 1333 1334 /* disable access to nvram interface */ 1335 bxe_disable_nvram_access(sc); 1336 bxe_release_nvram_lock(sc); 1337 1338 return (rc); 1339 } 1340 1341 static int 1342 bxe_nvram_write_dword(struct bxe_softc *sc, 1343 uint32_t offset, 1344 uint32_t val, 1345 uint32_t cmd_flags) 1346 { 1347 int count, i, rc; 1348 1349 /* build the command word */ 1350 cmd_flags |= (MCPR_NVM_COMMAND_DOIT | MCPR_NVM_COMMAND_WR); 1351 1352 /* need to clear DONE bit separately */ 1353 REG_WR(sc, MCP_REG_MCPR_NVM_COMMAND, MCPR_NVM_COMMAND_DONE); 1354 1355 /* write the data */ 1356 REG_WR(sc, MCP_REG_MCPR_NVM_WRITE, val); 1357 1358 /* address of the NVRAM to write to */ 1359 REG_WR(sc, MCP_REG_MCPR_NVM_ADDR, 1360 (offset & MCPR_NVM_ADDR_NVM_ADDR_VALUE)); 1361 1362 /* issue the write command */ 1363 REG_WR(sc, MCP_REG_MCPR_NVM_COMMAND, cmd_flags); 1364 1365 /* adjust timeout for emulation/FPGA */ 1366 count = NVRAM_TIMEOUT_COUNT; 1367 if (CHIP_REV_IS_SLOW(sc)) { 1368 count *= 100; 1369 } 1370 1371 /* wait for completion */ 1372 rc = -1; 1373 for (i = 0; i < count; i++) { 1374 DELAY(5); 1375 val = REG_RD(sc, MCP_REG_MCPR_NVM_COMMAND); 1376 if (val & MCPR_NVM_COMMAND_DONE) { 1377 rc = 0; 1378 break; 1379 } 1380 } 1381 1382 if (rc == -1) { 1383 BLOGE(sc, "nvram write timeout expired " 1384 "(offset 0x%x cmd_flags 0x%x val 0x%x)\n", 1385 offset, cmd_flags, val); 1386 } 1387 1388 return (rc); 1389 } 1390 1391 #define BYTE_OFFSET(offset) (8 * (offset & 0x03)) 1392 1393 static int 1394 bxe_nvram_write1(struct bxe_softc *sc, 1395 uint32_t offset, 1396 uint8_t *data_buf, 1397 int buf_size) 1398 { 1399 uint32_t cmd_flags; 1400 uint32_t align_offset; 1401 uint32_t val; 1402 int rc; 1403 1404 if ((offset + buf_size) > sc->devinfo.flash_size) { 1405 BLOGE(sc, "Invalid parameter, " 1406 "offset 0x%x + buf_size 0x%x > flash_size 0x%x\n", 1407 offset, buf_size, sc->devinfo.flash_size); 1408 return (-1); 1409 } 1410 1411 /* request access to nvram interface */ 1412 rc = bxe_acquire_nvram_lock(sc); 1413 if (rc) { 1414 return (rc); 1415 } 1416 1417 /* enable access to nvram interface */ 1418 bxe_enable_nvram_access(sc); 1419 1420 cmd_flags = (MCPR_NVM_COMMAND_FIRST | MCPR_NVM_COMMAND_LAST); 1421 align_offset = (offset & ~0x03); 1422 rc = bxe_nvram_read_dword(sc, align_offset, &val, cmd_flags); 1423 1424 if (rc == 0) { 1425 val &= ~(0xff << BYTE_OFFSET(offset)); 1426 val |= (*data_buf << BYTE_OFFSET(offset)); 1427 1428 /* nvram data is returned as an array of bytes 1429 * convert it back to cpu order 1430 */ 1431 val = be32toh(val); 1432 1433 rc = bxe_nvram_write_dword(sc, align_offset, val, cmd_flags); 1434 } 1435 1436 /* disable access to nvram interface */ 1437 bxe_disable_nvram_access(sc); 1438 bxe_release_nvram_lock(sc); 1439 1440 return (rc); 1441 } 1442 1443 static int 1444 bxe_nvram_write(struct bxe_softc *sc, 1445 uint32_t offset, 1446 uint8_t *data_buf, 1447 int buf_size) 1448 { 1449 uint32_t cmd_flags; 1450 uint32_t val; 1451 uint32_t written_so_far; 1452 int rc; 1453 1454 if (buf_size == 1) { 1455 return (bxe_nvram_write1(sc, offset, data_buf, buf_size)); 1456 } 1457 1458 if ((offset & 0x03) || (buf_size & 0x03) /* || (buf_size == 0) */) { 1459 BLOGE(sc, "Invalid parameter, offset 0x%x buf_size 0x%x\n", 1460 offset, buf_size); 1461 return (-1); 1462 } 1463 1464 if (buf_size == 0) { 1465 return (0); /* nothing to do */ 1466 } 1467 1468 if ((offset + buf_size) > sc->devinfo.flash_size) { 1469 BLOGE(sc, "Invalid parameter, " 1470 "offset 0x%x + buf_size 0x%x > flash_size 0x%x\n", 1471 offset, buf_size, sc->devinfo.flash_size); 1472 return (-1); 1473 } 1474 1475 /* request access to nvram interface */ 1476 rc = bxe_acquire_nvram_lock(sc); 1477 if (rc) { 1478 return (rc); 1479 } 1480 1481 /* enable access to nvram interface */ 1482 bxe_enable_nvram_access(sc); 1483 1484 written_so_far = 0; 1485 cmd_flags = MCPR_NVM_COMMAND_FIRST; 1486 while ((written_so_far < buf_size) && (rc == 0)) { 1487 if (written_so_far == (buf_size - sizeof(uint32_t))) { 1488 cmd_flags |= MCPR_NVM_COMMAND_LAST; 1489 } else if (((offset + 4) % NVRAM_PAGE_SIZE) == 0) { 1490 cmd_flags |= MCPR_NVM_COMMAND_LAST; 1491 } else if ((offset % NVRAM_PAGE_SIZE) == 0) { 1492 cmd_flags |= MCPR_NVM_COMMAND_FIRST; 1493 } 1494 1495 memcpy(&val, data_buf, 4); 1496 1497 rc = bxe_nvram_write_dword(sc, offset, val, cmd_flags); 1498 1499 /* advance to the next dword */ 1500 offset += sizeof(uint32_t); 1501 data_buf += sizeof(uint32_t); 1502 written_so_far += sizeof(uint32_t); 1503 cmd_flags = 0; 1504 } 1505 1506 /* disable access to nvram interface */ 1507 bxe_disable_nvram_access(sc); 1508 bxe_release_nvram_lock(sc); 1509 1510 return (rc); 1511 } 1512 1513 /* copy command into DMAE command memory and set DMAE command Go */ 1514 void 1515 bxe_post_dmae(struct bxe_softc *sc, 1516 struct dmae_cmd *dmae, 1517 int idx) 1518 { 1519 uint32_t cmd_offset; 1520 int i; 1521 1522 cmd_offset = (DMAE_REG_CMD_MEM + (sizeof(struct dmae_cmd) * idx)); 1523 for (i = 0; i < ((sizeof(struct dmae_cmd) / 4)); i++) { 1524 REG_WR(sc, (cmd_offset + (i * 4)), *(((uint32_t *)dmae) + i)); 1525 } 1526 1527 REG_WR(sc, dmae_reg_go_c[idx], 1); 1528 } 1529 1530 uint32_t 1531 bxe_dmae_opcode_add_comp(uint32_t opcode, 1532 uint8_t comp_type) 1533 { 1534 return (opcode | ((comp_type << DMAE_CMD_C_DST_SHIFT) | 1535 DMAE_CMD_C_TYPE_ENABLE)); 1536 } 1537 1538 uint32_t 1539 bxe_dmae_opcode_clr_src_reset(uint32_t opcode) 1540 { 1541 return (opcode & ~DMAE_CMD_SRC_RESET); 1542 } 1543 1544 uint32_t 1545 bxe_dmae_opcode(struct bxe_softc *sc, 1546 uint8_t src_type, 1547 uint8_t dst_type, 1548 uint8_t with_comp, 1549 uint8_t comp_type) 1550 { 1551 uint32_t opcode = 0; 1552 1553 opcode |= ((src_type << DMAE_CMD_SRC_SHIFT) | 1554 (dst_type << DMAE_CMD_DST_SHIFT)); 1555 1556 opcode |= (DMAE_CMD_SRC_RESET | DMAE_CMD_DST_RESET); 1557 1558 opcode |= (SC_PORT(sc) ? DMAE_CMD_PORT_1 : DMAE_CMD_PORT_0); 1559 1560 opcode |= ((SC_VN(sc) << DMAE_CMD_E1HVN_SHIFT) | 1561 (SC_VN(sc) << DMAE_CMD_DST_VN_SHIFT)); 1562 1563 opcode |= (DMAE_COM_SET_ERR << DMAE_CMD_ERR_POLICY_SHIFT); 1564 1565 #ifdef __BIG_ENDIAN 1566 opcode |= DMAE_CMD_ENDIANITY_B_DW_SWAP; 1567 #else 1568 opcode |= DMAE_CMD_ENDIANITY_DW_SWAP; 1569 #endif 1570 1571 if (with_comp) { 1572 opcode = bxe_dmae_opcode_add_comp(opcode, comp_type); 1573 } 1574 1575 return (opcode); 1576 } 1577 1578 static void 1579 bxe_prep_dmae_with_comp(struct bxe_softc *sc, 1580 struct dmae_cmd *dmae, 1581 uint8_t src_type, 1582 uint8_t dst_type) 1583 { 1584 memset(dmae, 0, sizeof(struct dmae_cmd)); 1585 1586 /* set the opcode */ 1587 dmae->opcode = bxe_dmae_opcode(sc, src_type, dst_type, 1588 TRUE, DMAE_COMP_PCI); 1589 1590 /* fill in the completion parameters */ 1591 dmae->comp_addr_lo = U64_LO(BXE_SP_MAPPING(sc, wb_comp)); 1592 dmae->comp_addr_hi = U64_HI(BXE_SP_MAPPING(sc, wb_comp)); 1593 dmae->comp_val = DMAE_COMP_VAL; 1594 } 1595 1596 /* issue a DMAE command over the init channel and wait for completion */ 1597 static int 1598 bxe_issue_dmae_with_comp(struct bxe_softc *sc, 1599 struct dmae_cmd *dmae) 1600 { 1601 uint32_t *wb_comp = BXE_SP(sc, wb_comp); 1602 int timeout = CHIP_REV_IS_SLOW(sc) ? 400000 : 4000; 1603 1604 BXE_DMAE_LOCK(sc); 1605 1606 /* reset completion */ 1607 *wb_comp = 0; 1608 1609 /* post the command on the channel used for initializations */ 1610 bxe_post_dmae(sc, dmae, INIT_DMAE_C(sc)); 1611 1612 /* wait for completion */ 1613 DELAY(5); 1614 1615 while ((*wb_comp & ~DMAE_PCI_ERR_FLAG) != DMAE_COMP_VAL) { 1616 if (!timeout || 1617 (sc->recovery_state != BXE_RECOVERY_DONE && 1618 sc->recovery_state != BXE_RECOVERY_NIC_LOADING)) { 1619 BLOGE(sc, "DMAE timeout! *wb_comp 0x%x recovery_state 0x%x\n", 1620 *wb_comp, sc->recovery_state); 1621 BXE_DMAE_UNLOCK(sc); 1622 return (DMAE_TIMEOUT); 1623 } 1624 1625 timeout--; 1626 DELAY(50); 1627 } 1628 1629 if (*wb_comp & DMAE_PCI_ERR_FLAG) { 1630 BLOGE(sc, "DMAE PCI error! *wb_comp 0x%x recovery_state 0x%x\n", 1631 *wb_comp, sc->recovery_state); 1632 BXE_DMAE_UNLOCK(sc); 1633 return (DMAE_PCI_ERROR); 1634 } 1635 1636 BXE_DMAE_UNLOCK(sc); 1637 return (0); 1638 } 1639 1640 void 1641 bxe_read_dmae(struct bxe_softc *sc, 1642 uint32_t src_addr, 1643 uint32_t len32) 1644 { 1645 struct dmae_cmd dmae; 1646 uint32_t *data; 1647 int i, rc; 1648 1649 DBASSERT(sc, (len32 <= 4), ("DMAE read length is %d", len32)); 1650 1651 if (!sc->dmae_ready) { 1652 data = BXE_SP(sc, wb_data[0]); 1653 1654 for (i = 0; i < len32; i++) { 1655 data[i] = (CHIP_IS_E1(sc)) ? 1656 bxe_reg_rd_ind(sc, (src_addr + (i * 4))) : 1657 REG_RD(sc, (src_addr + (i * 4))); 1658 } 1659 1660 return; 1661 } 1662 1663 /* set opcode and fixed command fields */ 1664 bxe_prep_dmae_with_comp(sc, &dmae, DMAE_SRC_GRC, DMAE_DST_PCI); 1665 1666 /* fill in addresses and len */ 1667 dmae.src_addr_lo = (src_addr >> 2); /* GRC addr has dword resolution */ 1668 dmae.src_addr_hi = 0; 1669 dmae.dst_addr_lo = U64_LO(BXE_SP_MAPPING(sc, wb_data)); 1670 dmae.dst_addr_hi = U64_HI(BXE_SP_MAPPING(sc, wb_data)); 1671 dmae.len = len32; 1672 1673 /* issue the command and wait for completion */ 1674 if ((rc = bxe_issue_dmae_with_comp(sc, &dmae)) != 0) { 1675 bxe_panic(sc, ("DMAE failed (%d)\n", rc)); 1676 } 1677 } 1678 1679 void 1680 bxe_write_dmae(struct bxe_softc *sc, 1681 bus_addr_t dma_addr, 1682 uint32_t dst_addr, 1683 uint32_t len32) 1684 { 1685 struct dmae_cmd dmae; 1686 int rc; 1687 1688 if (!sc->dmae_ready) { 1689 DBASSERT(sc, (len32 <= 4), ("DMAE not ready and length is %d", len32)); 1690 1691 if (CHIP_IS_E1(sc)) { 1692 ecore_init_ind_wr(sc, dst_addr, BXE_SP(sc, wb_data[0]), len32); 1693 } else { 1694 ecore_init_str_wr(sc, dst_addr, BXE_SP(sc, wb_data[0]), len32); 1695 } 1696 1697 return; 1698 } 1699 1700 /* set opcode and fixed command fields */ 1701 bxe_prep_dmae_with_comp(sc, &dmae, DMAE_SRC_PCI, DMAE_DST_GRC); 1702 1703 /* fill in addresses and len */ 1704 dmae.src_addr_lo = U64_LO(dma_addr); 1705 dmae.src_addr_hi = U64_HI(dma_addr); 1706 dmae.dst_addr_lo = (dst_addr >> 2); /* GRC addr has dword resolution */ 1707 dmae.dst_addr_hi = 0; 1708 dmae.len = len32; 1709 1710 /* issue the command and wait for completion */ 1711 if ((rc = bxe_issue_dmae_with_comp(sc, &dmae)) != 0) { 1712 bxe_panic(sc, ("DMAE failed (%d)\n", rc)); 1713 } 1714 } 1715 1716 void 1717 bxe_write_dmae_phys_len(struct bxe_softc *sc, 1718 bus_addr_t phys_addr, 1719 uint32_t addr, 1720 uint32_t len) 1721 { 1722 int dmae_wr_max = DMAE_LEN32_WR_MAX(sc); 1723 int offset = 0; 1724 1725 while (len > dmae_wr_max) { 1726 bxe_write_dmae(sc, 1727 (phys_addr + offset), /* src DMA address */ 1728 (addr + offset), /* dst GRC address */ 1729 dmae_wr_max); 1730 offset += (dmae_wr_max * 4); 1731 len -= dmae_wr_max; 1732 } 1733 1734 bxe_write_dmae(sc, 1735 (phys_addr + offset), /* src DMA address */ 1736 (addr + offset), /* dst GRC address */ 1737 len); 1738 } 1739 1740 void 1741 bxe_set_ctx_validation(struct bxe_softc *sc, 1742 struct eth_context *cxt, 1743 uint32_t cid) 1744 { 1745 /* ustorm cxt validation */ 1746 cxt->ustorm_ag_context.cdu_usage = 1747 CDU_RSRVD_VALUE_TYPE_A(HW_CID(sc, cid), 1748 CDU_REGION_NUMBER_UCM_AG, ETH_CONNECTION_TYPE); 1749 /* xcontext validation */ 1750 cxt->xstorm_ag_context.cdu_reserved = 1751 CDU_RSRVD_VALUE_TYPE_A(HW_CID(sc, cid), 1752 CDU_REGION_NUMBER_XCM_AG, ETH_CONNECTION_TYPE); 1753 } 1754 1755 static void 1756 bxe_storm_memset_hc_timeout(struct bxe_softc *sc, 1757 uint8_t port, 1758 uint8_t fw_sb_id, 1759 uint8_t sb_index, 1760 uint8_t ticks) 1761 { 1762 uint32_t addr = 1763 (BAR_CSTRORM_INTMEM + 1764 CSTORM_STATUS_BLOCK_DATA_TIMEOUT_OFFSET(fw_sb_id, sb_index)); 1765 1766 REG_WR8(sc, addr, ticks); 1767 1768 BLOGD(sc, DBG_LOAD, 1769 "port %d fw_sb_id %d sb_index %d ticks %d\n", 1770 port, fw_sb_id, sb_index, ticks); 1771 } 1772 1773 static void 1774 bxe_storm_memset_hc_disable(struct bxe_softc *sc, 1775 uint8_t port, 1776 uint16_t fw_sb_id, 1777 uint8_t sb_index, 1778 uint8_t disable) 1779 { 1780 uint32_t enable_flag = 1781 (disable) ? 0 : (1 << HC_INDEX_DATA_HC_ENABLED_SHIFT); 1782 uint32_t addr = 1783 (BAR_CSTRORM_INTMEM + 1784 CSTORM_STATUS_BLOCK_DATA_FLAGS_OFFSET(fw_sb_id, sb_index)); 1785 uint8_t flags; 1786 1787 /* clear and set */ 1788 flags = REG_RD8(sc, addr); 1789 flags &= ~HC_INDEX_DATA_HC_ENABLED; 1790 flags |= enable_flag; 1791 REG_WR8(sc, addr, flags); 1792 1793 BLOGD(sc, DBG_LOAD, 1794 "port %d fw_sb_id %d sb_index %d disable %d\n", 1795 port, fw_sb_id, sb_index, disable); 1796 } 1797 1798 void 1799 bxe_update_coalesce_sb_index(struct bxe_softc *sc, 1800 uint8_t fw_sb_id, 1801 uint8_t sb_index, 1802 uint8_t disable, 1803 uint16_t usec) 1804 { 1805 int port = SC_PORT(sc); 1806 uint8_t ticks = (usec / 4); /* XXX ??? */ 1807 1808 bxe_storm_memset_hc_timeout(sc, port, fw_sb_id, sb_index, ticks); 1809 1810 disable = (disable) ? 1 : ((usec) ? 0 : 1); 1811 bxe_storm_memset_hc_disable(sc, port, fw_sb_id, sb_index, disable); 1812 } 1813 1814 void 1815 elink_cb_udelay(struct bxe_softc *sc, 1816 uint32_t usecs) 1817 { 1818 DELAY(usecs); 1819 } 1820 1821 uint32_t 1822 elink_cb_reg_read(struct bxe_softc *sc, 1823 uint32_t reg_addr) 1824 { 1825 return (REG_RD(sc, reg_addr)); 1826 } 1827 1828 void 1829 elink_cb_reg_write(struct bxe_softc *sc, 1830 uint32_t reg_addr, 1831 uint32_t val) 1832 { 1833 REG_WR(sc, reg_addr, val); 1834 } 1835 1836 void 1837 elink_cb_reg_wb_write(struct bxe_softc *sc, 1838 uint32_t offset, 1839 uint32_t *wb_write, 1840 uint16_t len) 1841 { 1842 REG_WR_DMAE(sc, offset, wb_write, len); 1843 } 1844 1845 void 1846 elink_cb_reg_wb_read(struct bxe_softc *sc, 1847 uint32_t offset, 1848 uint32_t *wb_write, 1849 uint16_t len) 1850 { 1851 REG_RD_DMAE(sc, offset, wb_write, len); 1852 } 1853 1854 uint8_t 1855 elink_cb_path_id(struct bxe_softc *sc) 1856 { 1857 return (SC_PATH(sc)); 1858 } 1859 1860 void 1861 elink_cb_event_log(struct bxe_softc *sc, 1862 const elink_log_id_t elink_log_id, 1863 ...) 1864 { 1865 /* XXX */ 1866 BLOGI(sc, "ELINK EVENT LOG (%d)\n", elink_log_id); 1867 } 1868 1869 static int 1870 bxe_set_spio(struct bxe_softc *sc, 1871 int spio, 1872 uint32_t mode) 1873 { 1874 uint32_t spio_reg; 1875 1876 /* Only 2 SPIOs are configurable */ 1877 if ((spio != MISC_SPIO_SPIO4) && (spio != MISC_SPIO_SPIO5)) { 1878 BLOGE(sc, "Invalid SPIO 0x%x mode 0x%x\n", spio, mode); 1879 return (-1); 1880 } 1881 1882 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_SPIO); 1883 1884 /* read SPIO and mask except the float bits */ 1885 spio_reg = (REG_RD(sc, MISC_REG_SPIO) & MISC_SPIO_FLOAT); 1886 1887 switch (mode) { 1888 case MISC_SPIO_OUTPUT_LOW: 1889 BLOGD(sc, DBG_LOAD, "Set SPIO 0x%x -> output low\n", spio); 1890 /* clear FLOAT and set CLR */ 1891 spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS); 1892 spio_reg |= (spio << MISC_SPIO_CLR_POS); 1893 break; 1894 1895 case MISC_SPIO_OUTPUT_HIGH: 1896 BLOGD(sc, DBG_LOAD, "Set SPIO 0x%x -> output high\n", spio); 1897 /* clear FLOAT and set SET */ 1898 spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS); 1899 spio_reg |= (spio << MISC_SPIO_SET_POS); 1900 break; 1901 1902 case MISC_SPIO_INPUT_HI_Z: 1903 BLOGD(sc, DBG_LOAD, "Set SPIO 0x%x -> input\n", spio); 1904 /* set FLOAT */ 1905 spio_reg |= (spio << MISC_SPIO_FLOAT_POS); 1906 break; 1907 1908 default: 1909 break; 1910 } 1911 1912 REG_WR(sc, MISC_REG_SPIO, spio_reg); 1913 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_SPIO); 1914 1915 return (0); 1916 } 1917 1918 static int 1919 bxe_gpio_read(struct bxe_softc *sc, 1920 int gpio_num, 1921 uint8_t port) 1922 { 1923 /* The GPIO should be swapped if swap register is set and active */ 1924 int gpio_port = ((REG_RD(sc, NIG_REG_PORT_SWAP) && 1925 REG_RD(sc, NIG_REG_STRAP_OVERRIDE)) ^ port); 1926 int gpio_shift = (gpio_num + 1927 (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0)); 1928 uint32_t gpio_mask = (1 << gpio_shift); 1929 uint32_t gpio_reg; 1930 1931 if (gpio_num > MISC_REGISTERS_GPIO_3) { 1932 BLOGE(sc, "Invalid GPIO %d port 0x%x gpio_port %d gpio_shift %d" 1933 " gpio_mask 0x%x\n", gpio_num, port, gpio_port, gpio_shift, 1934 gpio_mask); 1935 return (-1); 1936 } 1937 1938 /* read GPIO value */ 1939 gpio_reg = REG_RD(sc, MISC_REG_GPIO); 1940 1941 /* get the requested pin value */ 1942 return ((gpio_reg & gpio_mask) == gpio_mask) ? 1 : 0; 1943 } 1944 1945 static int 1946 bxe_gpio_write(struct bxe_softc *sc, 1947 int gpio_num, 1948 uint32_t mode, 1949 uint8_t port) 1950 { 1951 /* The GPIO should be swapped if swap register is set and active */ 1952 int gpio_port = ((REG_RD(sc, NIG_REG_PORT_SWAP) && 1953 REG_RD(sc, NIG_REG_STRAP_OVERRIDE)) ^ port); 1954 int gpio_shift = (gpio_num + 1955 (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0)); 1956 uint32_t gpio_mask = (1 << gpio_shift); 1957 uint32_t gpio_reg; 1958 1959 if (gpio_num > MISC_REGISTERS_GPIO_3) { 1960 BLOGE(sc, "Invalid GPIO %d mode 0x%x port 0x%x gpio_port %d" 1961 " gpio_shift %d gpio_mask 0x%x\n", 1962 gpio_num, mode, port, gpio_port, gpio_shift, gpio_mask); 1963 return (-1); 1964 } 1965 1966 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_GPIO); 1967 1968 /* read GPIO and mask except the float bits */ 1969 gpio_reg = (REG_RD(sc, MISC_REG_GPIO) & MISC_REGISTERS_GPIO_FLOAT); 1970 1971 switch (mode) { 1972 case MISC_REGISTERS_GPIO_OUTPUT_LOW: 1973 BLOGD(sc, DBG_PHY, 1974 "Set GPIO %d (shift %d) -> output low\n", 1975 gpio_num, gpio_shift); 1976 /* clear FLOAT and set CLR */ 1977 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS); 1978 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_CLR_POS); 1979 break; 1980 1981 case MISC_REGISTERS_GPIO_OUTPUT_HIGH: 1982 BLOGD(sc, DBG_PHY, 1983 "Set GPIO %d (shift %d) -> output high\n", 1984 gpio_num, gpio_shift); 1985 /* clear FLOAT and set SET */ 1986 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS); 1987 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_SET_POS); 1988 break; 1989 1990 case MISC_REGISTERS_GPIO_INPUT_HI_Z: 1991 BLOGD(sc, DBG_PHY, 1992 "Set GPIO %d (shift %d) -> input\n", 1993 gpio_num, gpio_shift); 1994 /* set FLOAT */ 1995 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS); 1996 break; 1997 1998 default: 1999 break; 2000 } 2001 2002 REG_WR(sc, MISC_REG_GPIO, gpio_reg); 2003 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_GPIO); 2004 2005 return (0); 2006 } 2007 2008 static int 2009 bxe_gpio_mult_write(struct bxe_softc *sc, 2010 uint8_t pins, 2011 uint32_t mode) 2012 { 2013 uint32_t gpio_reg; 2014 2015 /* any port swapping should be handled by caller */ 2016 2017 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_GPIO); 2018 2019 /* read GPIO and mask except the float bits */ 2020 gpio_reg = REG_RD(sc, MISC_REG_GPIO); 2021 gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_FLOAT_POS); 2022 gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_CLR_POS); 2023 gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_SET_POS); 2024 2025 switch (mode) { 2026 case MISC_REGISTERS_GPIO_OUTPUT_LOW: 2027 BLOGD(sc, DBG_PHY, "Set GPIO 0x%x -> output low\n", pins); 2028 /* set CLR */ 2029 gpio_reg |= (pins << MISC_REGISTERS_GPIO_CLR_POS); 2030 break; 2031 2032 case MISC_REGISTERS_GPIO_OUTPUT_HIGH: 2033 BLOGD(sc, DBG_PHY, "Set GPIO 0x%x -> output high\n", pins); 2034 /* set SET */ 2035 gpio_reg |= (pins << MISC_REGISTERS_GPIO_SET_POS); 2036 break; 2037 2038 case MISC_REGISTERS_GPIO_INPUT_HI_Z: 2039 BLOGD(sc, DBG_PHY, "Set GPIO 0x%x -> input\n", pins); 2040 /* set FLOAT */ 2041 gpio_reg |= (pins << MISC_REGISTERS_GPIO_FLOAT_POS); 2042 break; 2043 2044 default: 2045 BLOGE(sc, "Invalid GPIO mode assignment pins 0x%x mode 0x%x" 2046 " gpio_reg 0x%x\n", pins, mode, gpio_reg); 2047 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_GPIO); 2048 return (-1); 2049 } 2050 2051 REG_WR(sc, MISC_REG_GPIO, gpio_reg); 2052 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_GPIO); 2053 2054 return (0); 2055 } 2056 2057 static int 2058 bxe_gpio_int_write(struct bxe_softc *sc, 2059 int gpio_num, 2060 uint32_t mode, 2061 uint8_t port) 2062 { 2063 /* The GPIO should be swapped if swap register is set and active */ 2064 int gpio_port = ((REG_RD(sc, NIG_REG_PORT_SWAP) && 2065 REG_RD(sc, NIG_REG_STRAP_OVERRIDE)) ^ port); 2066 int gpio_shift = (gpio_num + 2067 (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0)); 2068 uint32_t gpio_mask = (1 << gpio_shift); 2069 uint32_t gpio_reg; 2070 2071 if (gpio_num > MISC_REGISTERS_GPIO_3) { 2072 BLOGE(sc, "Invalid GPIO %d mode 0x%x port 0x%x gpio_port %d" 2073 " gpio_shift %d gpio_mask 0x%x\n", 2074 gpio_num, mode, port, gpio_port, gpio_shift, gpio_mask); 2075 return (-1); 2076 } 2077 2078 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_GPIO); 2079 2080 /* read GPIO int */ 2081 gpio_reg = REG_RD(sc, MISC_REG_GPIO_INT); 2082 2083 switch (mode) { 2084 case MISC_REGISTERS_GPIO_INT_OUTPUT_CLR: 2085 BLOGD(sc, DBG_PHY, 2086 "Clear GPIO INT %d (shift %d) -> output low\n", 2087 gpio_num, gpio_shift); 2088 /* clear SET and set CLR */ 2089 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS); 2090 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS); 2091 break; 2092 2093 case MISC_REGISTERS_GPIO_INT_OUTPUT_SET: 2094 BLOGD(sc, DBG_PHY, 2095 "Set GPIO INT %d (shift %d) -> output high\n", 2096 gpio_num, gpio_shift); 2097 /* clear CLR and set SET */ 2098 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS); 2099 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS); 2100 break; 2101 2102 default: 2103 break; 2104 } 2105 2106 REG_WR(sc, MISC_REG_GPIO_INT, gpio_reg); 2107 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_GPIO); 2108 2109 return (0); 2110 } 2111 2112 uint32_t 2113 elink_cb_gpio_read(struct bxe_softc *sc, 2114 uint16_t gpio_num, 2115 uint8_t port) 2116 { 2117 return (bxe_gpio_read(sc, gpio_num, port)); 2118 } 2119 2120 uint8_t 2121 elink_cb_gpio_write(struct bxe_softc *sc, 2122 uint16_t gpio_num, 2123 uint8_t mode, /* 0=low 1=high */ 2124 uint8_t port) 2125 { 2126 return (bxe_gpio_write(sc, gpio_num, mode, port)); 2127 } 2128 2129 uint8_t 2130 elink_cb_gpio_mult_write(struct bxe_softc *sc, 2131 uint8_t pins, 2132 uint8_t mode) /* 0=low 1=high */ 2133 { 2134 return (bxe_gpio_mult_write(sc, pins, mode)); 2135 } 2136 2137 uint8_t 2138 elink_cb_gpio_int_write(struct bxe_softc *sc, 2139 uint16_t gpio_num, 2140 uint8_t mode, /* 0=low 1=high */ 2141 uint8_t port) 2142 { 2143 return (bxe_gpio_int_write(sc, gpio_num, mode, port)); 2144 } 2145 2146 void 2147 elink_cb_notify_link_changed(struct bxe_softc *sc) 2148 { 2149 REG_WR(sc, (MISC_REG_AEU_GENERAL_ATTN_12 + 2150 (SC_FUNC(sc) * sizeof(uint32_t))), 1); 2151 } 2152 2153 /* send the MCP a request, block until there is a reply */ 2154 uint32_t 2155 elink_cb_fw_command(struct bxe_softc *sc, 2156 uint32_t command, 2157 uint32_t param) 2158 { 2159 int mb_idx = SC_FW_MB_IDX(sc); 2160 uint32_t seq; 2161 uint32_t rc = 0; 2162 uint32_t cnt = 1; 2163 uint8_t delay = CHIP_REV_IS_SLOW(sc) ? 100 : 10; 2164 2165 BXE_FWMB_LOCK(sc); 2166 2167 seq = ++sc->fw_seq; 2168 SHMEM_WR(sc, func_mb[mb_idx].drv_mb_param, param); 2169 SHMEM_WR(sc, func_mb[mb_idx].drv_mb_header, (command | seq)); 2170 2171 BLOGD(sc, DBG_PHY, 2172 "wrote command 0x%08x to FW MB param 0x%08x\n", 2173 (command | seq), param); 2174 2175 /* Let the FW do it's magic. GIve it up to 5 seconds... */ 2176 do { 2177 DELAY(delay * 1000); 2178 rc = SHMEM_RD(sc, func_mb[mb_idx].fw_mb_header); 2179 } while ((seq != (rc & FW_MSG_SEQ_NUMBER_MASK)) && (cnt++ < 500)); 2180 2181 BLOGD(sc, DBG_PHY, 2182 "[after %d ms] read 0x%x seq 0x%x from FW MB\n", 2183 cnt*delay, rc, seq); 2184 2185 /* is this a reply to our command? */ 2186 if (seq == (rc & FW_MSG_SEQ_NUMBER_MASK)) { 2187 rc &= FW_MSG_CODE_MASK; 2188 } else { 2189 /* Ruh-roh! */ 2190 BLOGE(sc, "FW failed to respond!\n"); 2191 // XXX bxe_fw_dump(sc); 2192 rc = 0; 2193 } 2194 2195 BXE_FWMB_UNLOCK(sc); 2196 return (rc); 2197 } 2198 2199 static uint32_t 2200 bxe_fw_command(struct bxe_softc *sc, 2201 uint32_t command, 2202 uint32_t param) 2203 { 2204 return (elink_cb_fw_command(sc, command, param)); 2205 } 2206 2207 static void 2208 __storm_memset_dma_mapping(struct bxe_softc *sc, 2209 uint32_t addr, 2210 bus_addr_t mapping) 2211 { 2212 REG_WR(sc, addr, U64_LO(mapping)); 2213 REG_WR(sc, (addr + 4), U64_HI(mapping)); 2214 } 2215 2216 static void 2217 storm_memset_spq_addr(struct bxe_softc *sc, 2218 bus_addr_t mapping, 2219 uint16_t abs_fid) 2220 { 2221 uint32_t addr = (XSEM_REG_FAST_MEMORY + 2222 XSTORM_SPQ_PAGE_BASE_OFFSET(abs_fid)); 2223 __storm_memset_dma_mapping(sc, addr, mapping); 2224 } 2225 2226 static void 2227 storm_memset_vf_to_pf(struct bxe_softc *sc, 2228 uint16_t abs_fid, 2229 uint16_t pf_id) 2230 { 2231 REG_WR8(sc, (BAR_XSTRORM_INTMEM + XSTORM_VF_TO_PF_OFFSET(abs_fid)), pf_id); 2232 REG_WR8(sc, (BAR_CSTRORM_INTMEM + CSTORM_VF_TO_PF_OFFSET(abs_fid)), pf_id); 2233 REG_WR8(sc, (BAR_TSTRORM_INTMEM + TSTORM_VF_TO_PF_OFFSET(abs_fid)), pf_id); 2234 REG_WR8(sc, (BAR_USTRORM_INTMEM + USTORM_VF_TO_PF_OFFSET(abs_fid)), pf_id); 2235 } 2236 2237 static void 2238 storm_memset_func_en(struct bxe_softc *sc, 2239 uint16_t abs_fid, 2240 uint8_t enable) 2241 { 2242 REG_WR8(sc, (BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(abs_fid)), enable); 2243 REG_WR8(sc, (BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(abs_fid)), enable); 2244 REG_WR8(sc, (BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(abs_fid)), enable); 2245 REG_WR8(sc, (BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(abs_fid)), enable); 2246 } 2247 2248 static void 2249 storm_memset_eq_data(struct bxe_softc *sc, 2250 struct event_ring_data *eq_data, 2251 uint16_t pfid) 2252 { 2253 uint32_t addr; 2254 size_t size; 2255 2256 addr = (BAR_CSTRORM_INTMEM + CSTORM_EVENT_RING_DATA_OFFSET(pfid)); 2257 size = sizeof(struct event_ring_data); 2258 ecore_storm_memset_struct(sc, addr, size, (uint32_t *)eq_data); 2259 } 2260 2261 static void 2262 storm_memset_eq_prod(struct bxe_softc *sc, 2263 uint16_t eq_prod, 2264 uint16_t pfid) 2265 { 2266 uint32_t addr = (BAR_CSTRORM_INTMEM + 2267 CSTORM_EVENT_RING_PROD_OFFSET(pfid)); 2268 REG_WR16(sc, addr, eq_prod); 2269 } 2270 2271 /* 2272 * Post a slowpath command. 2273 * 2274 * A slowpath command is used to propagate a configuration change through 2275 * the controller in a controlled manner, allowing each STORM processor and 2276 * other H/W blocks to phase in the change. The commands sent on the 2277 * slowpath are referred to as ramrods. Depending on the ramrod used the 2278 * completion of the ramrod will occur in different ways. Here's a 2279 * breakdown of ramrods and how they complete: 2280 * 2281 * RAMROD_CMD_ID_ETH_PORT_SETUP 2282 * Used to setup the leading connection on a port. Completes on the 2283 * Receive Completion Queue (RCQ) of that port (typically fp[0]). 2284 * 2285 * RAMROD_CMD_ID_ETH_CLIENT_SETUP 2286 * Used to setup an additional connection on a port. Completes on the 2287 * RCQ of the multi-queue/RSS connection being initialized. 2288 * 2289 * RAMROD_CMD_ID_ETH_STAT_QUERY 2290 * Used to force the storm processors to update the statistics database 2291 * in host memory. This ramrod is send on the leading connection CID and 2292 * completes as an index increment of the CSTORM on the default status 2293 * block. 2294 * 2295 * RAMROD_CMD_ID_ETH_UPDATE 2296 * Used to update the state of the leading connection, usually to udpate 2297 * the RSS indirection table. Completes on the RCQ of the leading 2298 * connection. (Not currently used under FreeBSD until OS support becomes 2299 * available.) 2300 * 2301 * RAMROD_CMD_ID_ETH_HALT 2302 * Used when tearing down a connection prior to driver unload. Completes 2303 * on the RCQ of the multi-queue/RSS connection being torn down. Don't 2304 * use this on the leading connection. 2305 * 2306 * RAMROD_CMD_ID_ETH_SET_MAC 2307 * Sets the Unicast/Broadcast/Multicast used by the port. Completes on 2308 * the RCQ of the leading connection. 2309 * 2310 * RAMROD_CMD_ID_ETH_CFC_DEL 2311 * Used when tearing down a conneciton prior to driver unload. Completes 2312 * on the RCQ of the leading connection (since the current connection 2313 * has been completely removed from controller memory). 2314 * 2315 * RAMROD_CMD_ID_ETH_PORT_DEL 2316 * Used to tear down the leading connection prior to driver unload, 2317 * typically fp[0]. Completes as an index increment of the CSTORM on the 2318 * default status block. 2319 * 2320 * RAMROD_CMD_ID_ETH_FORWARD_SETUP 2321 * Used for connection offload. Completes on the RCQ of the multi-queue 2322 * RSS connection that is being offloaded. (Not currently used under 2323 * FreeBSD.) 2324 * 2325 * There can only be one command pending per function. 2326 * 2327 * Returns: 2328 * 0 = Success, !0 = Failure. 2329 */ 2330 2331 /* must be called under the spq lock */ 2332 static inline 2333 struct eth_spe *bxe_sp_get_next(struct bxe_softc *sc) 2334 { 2335 struct eth_spe *next_spe = sc->spq_prod_bd; 2336 2337 if (sc->spq_prod_bd == sc->spq_last_bd) { 2338 /* wrap back to the first eth_spq */ 2339 sc->spq_prod_bd = sc->spq; 2340 sc->spq_prod_idx = 0; 2341 } else { 2342 sc->spq_prod_bd++; 2343 sc->spq_prod_idx++; 2344 } 2345 2346 return (next_spe); 2347 } 2348 2349 /* must be called under the spq lock */ 2350 static inline 2351 void bxe_sp_prod_update(struct bxe_softc *sc) 2352 { 2353 int func = SC_FUNC(sc); 2354 2355 /* 2356 * Make sure that BD data is updated before writing the producer. 2357 * BD data is written to the memory, the producer is read from the 2358 * memory, thus we need a full memory barrier to ensure the ordering. 2359 */ 2360 mb(); 2361 2362 REG_WR16(sc, (BAR_XSTRORM_INTMEM + XSTORM_SPQ_PROD_OFFSET(func)), 2363 sc->spq_prod_idx); 2364 2365 bus_space_barrier(sc->bar[BAR0].tag, sc->bar[BAR0].handle, 0, 0, 2366 BUS_SPACE_BARRIER_WRITE); 2367 } 2368 2369 /** 2370 * bxe_is_contextless_ramrod - check if the current command ends on EQ 2371 * 2372 * @cmd: command to check 2373 * @cmd_type: command type 2374 */ 2375 static inline 2376 int bxe_is_contextless_ramrod(int cmd, 2377 int cmd_type) 2378 { 2379 if ((cmd_type == NONE_CONNECTION_TYPE) || 2380 (cmd == RAMROD_CMD_ID_ETH_FORWARD_SETUP) || 2381 (cmd == RAMROD_CMD_ID_ETH_CLASSIFICATION_RULES) || 2382 (cmd == RAMROD_CMD_ID_ETH_FILTER_RULES) || 2383 (cmd == RAMROD_CMD_ID_ETH_MULTICAST_RULES) || 2384 (cmd == RAMROD_CMD_ID_ETH_SET_MAC) || 2385 (cmd == RAMROD_CMD_ID_ETH_RSS_UPDATE)) { 2386 return (TRUE); 2387 } else { 2388 return (FALSE); 2389 } 2390 } 2391 2392 /** 2393 * bxe_sp_post - place a single command on an SP ring 2394 * 2395 * @sc: driver handle 2396 * @command: command to place (e.g. SETUP, FILTER_RULES, etc.) 2397 * @cid: SW CID the command is related to 2398 * @data_hi: command private data address (high 32 bits) 2399 * @data_lo: command private data address (low 32 bits) 2400 * @cmd_type: command type (e.g. NONE, ETH) 2401 * 2402 * SP data is handled as if it's always an address pair, thus data fields are 2403 * not swapped to little endian in upper functions. Instead this function swaps 2404 * data as if it's two uint32 fields. 2405 */ 2406 int 2407 bxe_sp_post(struct bxe_softc *sc, 2408 int command, 2409 int cid, 2410 uint32_t data_hi, 2411 uint32_t data_lo, 2412 int cmd_type) 2413 { 2414 struct eth_spe *spe; 2415 uint16_t type; 2416 int common; 2417 2418 common = bxe_is_contextless_ramrod(command, cmd_type); 2419 2420 BXE_SP_LOCK(sc); 2421 2422 if (common) { 2423 if (!atomic_load_acq_long(&sc->eq_spq_left)) { 2424 BLOGE(sc, "EQ ring is full!\n"); 2425 BXE_SP_UNLOCK(sc); 2426 return (-1); 2427 } 2428 } else { 2429 if (!atomic_load_acq_long(&sc->cq_spq_left)) { 2430 BLOGE(sc, "SPQ ring is full!\n"); 2431 BXE_SP_UNLOCK(sc); 2432 return (-1); 2433 } 2434 } 2435 2436 spe = bxe_sp_get_next(sc); 2437 2438 /* CID needs port number to be encoded int it */ 2439 spe->hdr.conn_and_cmd_data = 2440 htole32((command << SPE_HDR_T_CMD_ID_SHIFT) | HW_CID(sc, cid)); 2441 2442 type = (cmd_type << SPE_HDR_T_CONN_TYPE_SHIFT) & SPE_HDR_T_CONN_TYPE; 2443 2444 /* TBD: Check if it works for VFs */ 2445 type |= ((SC_FUNC(sc) << SPE_HDR_T_FUNCTION_ID_SHIFT) & 2446 SPE_HDR_T_FUNCTION_ID); 2447 2448 spe->hdr.type = htole16(type); 2449 2450 spe->data.update_data_addr.hi = htole32(data_hi); 2451 spe->data.update_data_addr.lo = htole32(data_lo); 2452 2453 /* 2454 * It's ok if the actual decrement is issued towards the memory 2455 * somewhere between the lock and unlock. Thus no more explict 2456 * memory barrier is needed. 2457 */ 2458 if (common) { 2459 atomic_subtract_acq_long(&sc->eq_spq_left, 1); 2460 } else { 2461 atomic_subtract_acq_long(&sc->cq_spq_left, 1); 2462 } 2463 2464 BLOGD(sc, DBG_SP, "SPQE -> %#jx\n", (uintmax_t)sc->spq_dma.paddr); 2465 BLOGD(sc, DBG_SP, "FUNC_RDATA -> %p / %#jx\n", 2466 BXE_SP(sc, func_rdata), (uintmax_t)BXE_SP_MAPPING(sc, func_rdata)); 2467 BLOGD(sc, DBG_SP, 2468 "SPQE[%x] (%x:%x) (cmd, common?) (%d,%d) hw_cid %x data (%x:%x) type(0x%x) left (CQ, EQ) (%lx,%lx)\n", 2469 sc->spq_prod_idx, 2470 (uint32_t)U64_HI(sc->spq_dma.paddr), 2471 (uint32_t)(U64_LO(sc->spq_dma.paddr) + (uint8_t *)sc->spq_prod_bd - (uint8_t *)sc->spq), 2472 command, 2473 common, 2474 HW_CID(sc, cid), 2475 data_hi, 2476 data_lo, 2477 type, 2478 atomic_load_acq_long(&sc->cq_spq_left), 2479 atomic_load_acq_long(&sc->eq_spq_left)); 2480 2481 bxe_sp_prod_update(sc); 2482 2483 BXE_SP_UNLOCK(sc); 2484 return (0); 2485 } 2486 2487 /** 2488 * bxe_debug_print_ind_table - prints the indirection table configuration. 2489 * 2490 * @sc: driver hanlde 2491 * @p: pointer to rss configuration 2492 */ 2493 2494 /* 2495 * FreeBSD Device probe function. 2496 * 2497 * Compares the device found to the driver's list of supported devices and 2498 * reports back to the bsd loader whether this is the right driver for the device. 2499 * This is the driver entry function called from the "kldload" command. 2500 * 2501 * Returns: 2502 * BUS_PROBE_DEFAULT on success, positive value on failure. 2503 */ 2504 static int 2505 bxe_probe(device_t dev) 2506 { 2507 struct bxe_device_type *t; 2508 char *descbuf; 2509 uint16_t did, sdid, svid, vid; 2510 2511 /* Find our device structure */ 2512 t = bxe_devs; 2513 2514 /* Get the data for the device to be probed. */ 2515 vid = pci_get_vendor(dev); 2516 did = pci_get_device(dev); 2517 svid = pci_get_subvendor(dev); 2518 sdid = pci_get_subdevice(dev); 2519 2520 /* Look through the list of known devices for a match. */ 2521 while (t->bxe_name != NULL) { 2522 if ((vid == t->bxe_vid) && (did == t->bxe_did) && 2523 ((svid == t->bxe_svid) || (t->bxe_svid == PCI_ANY_ID)) && 2524 ((sdid == t->bxe_sdid) || (t->bxe_sdid == PCI_ANY_ID))) { 2525 descbuf = malloc(BXE_DEVDESC_MAX, M_TEMP, M_NOWAIT); 2526 if (descbuf == NULL) 2527 return (ENOMEM); 2528 2529 /* Print out the device identity. */ 2530 snprintf(descbuf, BXE_DEVDESC_MAX, 2531 "%s (%c%d) BXE v:%s\n", t->bxe_name, 2532 (((pci_read_config(dev, PCIR_REVID, 4) & 2533 0xf0) >> 4) + 'A'), 2534 (pci_read_config(dev, PCIR_REVID, 4) & 0xf), 2535 BXE_DRIVER_VERSION); 2536 2537 device_set_desc_copy(dev, descbuf); 2538 free(descbuf, M_TEMP); 2539 return (BUS_PROBE_DEFAULT); 2540 } 2541 t++; 2542 } 2543 2544 return (ENXIO); 2545 } 2546 2547 static void 2548 bxe_init_mutexes(struct bxe_softc *sc) 2549 { 2550 #ifdef BXE_CORE_LOCK_SX 2551 snprintf(sc->core_sx_name, sizeof(sc->core_sx_name), 2552 "bxe%d_core_lock", sc->unit); 2553 sx_init(&sc->core_sx, sc->core_sx_name); 2554 #else 2555 snprintf(sc->core_mtx_name, sizeof(sc->core_mtx_name), 2556 "bxe%d_core_lock", sc->unit); 2557 mtx_init(&sc->core_mtx, sc->core_mtx_name, NULL, MTX_DEF); 2558 #endif 2559 2560 snprintf(sc->sp_mtx_name, sizeof(sc->sp_mtx_name), 2561 "bxe%d_sp_lock", sc->unit); 2562 mtx_init(&sc->sp_mtx, sc->sp_mtx_name, NULL, MTX_DEF); 2563 2564 snprintf(sc->dmae_mtx_name, sizeof(sc->dmae_mtx_name), 2565 "bxe%d_dmae_lock", sc->unit); 2566 mtx_init(&sc->dmae_mtx, sc->dmae_mtx_name, NULL, MTX_DEF); 2567 2568 snprintf(sc->port.phy_mtx_name, sizeof(sc->port.phy_mtx_name), 2569 "bxe%d_phy_lock", sc->unit); 2570 mtx_init(&sc->port.phy_mtx, sc->port.phy_mtx_name, NULL, MTX_DEF); 2571 2572 snprintf(sc->fwmb_mtx_name, sizeof(sc->fwmb_mtx_name), 2573 "bxe%d_fwmb_lock", sc->unit); 2574 mtx_init(&sc->fwmb_mtx, sc->fwmb_mtx_name, NULL, MTX_DEF); 2575 2576 snprintf(sc->print_mtx_name, sizeof(sc->print_mtx_name), 2577 "bxe%d_print_lock", sc->unit); 2578 mtx_init(&(sc->print_mtx), sc->print_mtx_name, NULL, MTX_DEF); 2579 2580 snprintf(sc->stats_mtx_name, sizeof(sc->stats_mtx_name), 2581 "bxe%d_stats_lock", sc->unit); 2582 mtx_init(&(sc->stats_mtx), sc->stats_mtx_name, NULL, MTX_DEF); 2583 2584 snprintf(sc->mcast_mtx_name, sizeof(sc->mcast_mtx_name), 2585 "bxe%d_mcast_lock", sc->unit); 2586 mtx_init(&(sc->mcast_mtx), sc->mcast_mtx_name, NULL, MTX_DEF); 2587 } 2588 2589 static void 2590 bxe_release_mutexes(struct bxe_softc *sc) 2591 { 2592 #ifdef BXE_CORE_LOCK_SX 2593 sx_destroy(&sc->core_sx); 2594 #else 2595 if (mtx_initialized(&sc->core_mtx)) { 2596 mtx_destroy(&sc->core_mtx); 2597 } 2598 #endif 2599 2600 if (mtx_initialized(&sc->sp_mtx)) { 2601 mtx_destroy(&sc->sp_mtx); 2602 } 2603 2604 if (mtx_initialized(&sc->dmae_mtx)) { 2605 mtx_destroy(&sc->dmae_mtx); 2606 } 2607 2608 if (mtx_initialized(&sc->port.phy_mtx)) { 2609 mtx_destroy(&sc->port.phy_mtx); 2610 } 2611 2612 if (mtx_initialized(&sc->fwmb_mtx)) { 2613 mtx_destroy(&sc->fwmb_mtx); 2614 } 2615 2616 if (mtx_initialized(&sc->print_mtx)) { 2617 mtx_destroy(&sc->print_mtx); 2618 } 2619 2620 if (mtx_initialized(&sc->stats_mtx)) { 2621 mtx_destroy(&sc->stats_mtx); 2622 } 2623 2624 if (mtx_initialized(&sc->mcast_mtx)) { 2625 mtx_destroy(&sc->mcast_mtx); 2626 } 2627 } 2628 2629 static void 2630 bxe_tx_disable(struct bxe_softc* sc) 2631 { 2632 if_t ifp = sc->ifp; 2633 2634 /* tell the stack the driver is stopped and TX queue is full */ 2635 if (ifp != NULL) { 2636 if_setdrvflags(ifp, 0); 2637 } 2638 } 2639 2640 static void 2641 bxe_drv_pulse(struct bxe_softc *sc) 2642 { 2643 SHMEM_WR(sc, func_mb[SC_FW_MB_IDX(sc)].drv_pulse_mb, 2644 sc->fw_drv_pulse_wr_seq); 2645 } 2646 2647 static inline uint16_t 2648 bxe_tx_avail(struct bxe_softc *sc, 2649 struct bxe_fastpath *fp) 2650 { 2651 int16_t used; 2652 uint16_t prod; 2653 uint16_t cons; 2654 2655 prod = fp->tx_bd_prod; 2656 cons = fp->tx_bd_cons; 2657 2658 used = SUB_S16(prod, cons); 2659 2660 return (int16_t)(sc->tx_ring_size) - used; 2661 } 2662 2663 static inline int 2664 bxe_tx_queue_has_work(struct bxe_fastpath *fp) 2665 { 2666 uint16_t hw_cons; 2667 2668 mb(); /* status block fields can change */ 2669 hw_cons = le16toh(*fp->tx_cons_sb); 2670 return (hw_cons != fp->tx_pkt_cons); 2671 } 2672 2673 static inline uint8_t 2674 bxe_has_tx_work(struct bxe_fastpath *fp) 2675 { 2676 /* expand this for multi-cos if ever supported */ 2677 return (bxe_tx_queue_has_work(fp)) ? TRUE : FALSE; 2678 } 2679 2680 static inline int 2681 bxe_has_rx_work(struct bxe_fastpath *fp) 2682 { 2683 uint16_t rx_cq_cons_sb; 2684 2685 mb(); /* status block fields can change */ 2686 rx_cq_cons_sb = le16toh(*fp->rx_cq_cons_sb); 2687 if ((rx_cq_cons_sb & RCQ_MAX) == RCQ_MAX) 2688 rx_cq_cons_sb++; 2689 return (fp->rx_cq_cons != rx_cq_cons_sb); 2690 } 2691 2692 static void 2693 bxe_sp_event(struct bxe_softc *sc, 2694 struct bxe_fastpath *fp, 2695 union eth_rx_cqe *rr_cqe) 2696 { 2697 int cid = SW_CID(rr_cqe->ramrod_cqe.conn_and_cmd_data); 2698 int command = CQE_CMD(rr_cqe->ramrod_cqe.conn_and_cmd_data); 2699 enum ecore_queue_cmd drv_cmd = ECORE_Q_CMD_MAX; 2700 struct ecore_queue_sp_obj *q_obj = &BXE_SP_OBJ(sc, fp).q_obj; 2701 2702 BLOGD(sc, DBG_SP, "fp=%d cid=%d got ramrod #%d state is %x type is %d\n", 2703 fp->index, cid, command, sc->state, rr_cqe->ramrod_cqe.ramrod_type); 2704 2705 switch (command) { 2706 case (RAMROD_CMD_ID_ETH_CLIENT_UPDATE): 2707 BLOGD(sc, DBG_SP, "got UPDATE ramrod. CID %d\n", cid); 2708 drv_cmd = ECORE_Q_CMD_UPDATE; 2709 break; 2710 2711 case (RAMROD_CMD_ID_ETH_CLIENT_SETUP): 2712 BLOGD(sc, DBG_SP, "got MULTI[%d] setup ramrod\n", cid); 2713 drv_cmd = ECORE_Q_CMD_SETUP; 2714 break; 2715 2716 case (RAMROD_CMD_ID_ETH_TX_QUEUE_SETUP): 2717 BLOGD(sc, DBG_SP, "got MULTI[%d] tx-only setup ramrod\n", cid); 2718 drv_cmd = ECORE_Q_CMD_SETUP_TX_ONLY; 2719 break; 2720 2721 case (RAMROD_CMD_ID_ETH_HALT): 2722 BLOGD(sc, DBG_SP, "got MULTI[%d] halt ramrod\n", cid); 2723 drv_cmd = ECORE_Q_CMD_HALT; 2724 break; 2725 2726 case (RAMROD_CMD_ID_ETH_TERMINATE): 2727 BLOGD(sc, DBG_SP, "got MULTI[%d] teminate ramrod\n", cid); 2728 drv_cmd = ECORE_Q_CMD_TERMINATE; 2729 break; 2730 2731 case (RAMROD_CMD_ID_ETH_EMPTY): 2732 BLOGD(sc, DBG_SP, "got MULTI[%d] empty ramrod\n", cid); 2733 drv_cmd = ECORE_Q_CMD_EMPTY; 2734 break; 2735 2736 default: 2737 BLOGD(sc, DBG_SP, "ERROR: unexpected MC reply (%d) on fp[%d]\n", 2738 command, fp->index); 2739 return; 2740 } 2741 2742 if ((drv_cmd != ECORE_Q_CMD_MAX) && 2743 q_obj->complete_cmd(sc, q_obj, drv_cmd)) { 2744 /* 2745 * q_obj->complete_cmd() failure means that this was 2746 * an unexpected completion. 2747 * 2748 * In this case we don't want to increase the sc->spq_left 2749 * because apparently we haven't sent this command the first 2750 * place. 2751 */ 2752 // bxe_panic(sc, ("Unexpected SP completion\n")); 2753 return; 2754 } 2755 2756 atomic_add_acq_long(&sc->cq_spq_left, 1); 2757 2758 BLOGD(sc, DBG_SP, "sc->cq_spq_left 0x%lx\n", 2759 atomic_load_acq_long(&sc->cq_spq_left)); 2760 } 2761 2762 /* 2763 * The current mbuf is part of an aggregation. Move the mbuf into the TPA 2764 * aggregation queue, put an empty mbuf back onto the receive chain, and mark 2765 * the current aggregation queue as in-progress. 2766 */ 2767 static void 2768 bxe_tpa_start(struct bxe_softc *sc, 2769 struct bxe_fastpath *fp, 2770 uint16_t queue, 2771 uint16_t cons, 2772 uint16_t prod, 2773 struct eth_fast_path_rx_cqe *cqe) 2774 { 2775 struct bxe_sw_rx_bd tmp_bd; 2776 struct bxe_sw_rx_bd *rx_buf; 2777 struct eth_rx_bd *rx_bd; 2778 int max_agg_queues; 2779 struct bxe_sw_tpa_info *tpa_info = &fp->rx_tpa_info[queue]; 2780 uint16_t index; 2781 2782 BLOGD(sc, DBG_LRO, "fp[%02d].tpa[%02d] TPA START " 2783 "cons=%d prod=%d\n", 2784 fp->index, queue, cons, prod); 2785 2786 max_agg_queues = MAX_AGG_QS(sc); 2787 2788 KASSERT((queue < max_agg_queues), 2789 ("fp[%02d] invalid aggr queue (%d >= %d)!", 2790 fp->index, queue, max_agg_queues)); 2791 2792 KASSERT((tpa_info->state == BXE_TPA_STATE_STOP), 2793 ("fp[%02d].tpa[%02d] starting aggr on queue not stopped!", 2794 fp->index, queue)); 2795 2796 /* copy the existing mbuf and mapping from the TPA pool */ 2797 tmp_bd = tpa_info->bd; 2798 2799 if (tmp_bd.m == NULL) { 2800 uint32_t *tmp; 2801 2802 tmp = (uint32_t *)cqe; 2803 2804 BLOGE(sc, "fp[%02d].tpa[%02d] cons[%d] prod[%d]mbuf not allocated!\n", 2805 fp->index, queue, cons, prod); 2806 BLOGE(sc, "cqe [0x%08x 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x]\n", 2807 *tmp, *(tmp+1), *(tmp+2), *(tmp+3), *(tmp+4), *(tmp+5), *(tmp+6), *(tmp+7)); 2808 2809 /* XXX Error handling? */ 2810 return; 2811 } 2812 2813 /* change the TPA queue to the start state */ 2814 tpa_info->state = BXE_TPA_STATE_START; 2815 tpa_info->placement_offset = cqe->placement_offset; 2816 tpa_info->parsing_flags = le16toh(cqe->pars_flags.flags); 2817 tpa_info->vlan_tag = le16toh(cqe->vlan_tag); 2818 tpa_info->len_on_bd = le16toh(cqe->len_on_bd); 2819 2820 fp->rx_tpa_queue_used |= (1 << queue); 2821 2822 /* 2823 * If all the buffer descriptors are filled with mbufs then fill in 2824 * the current consumer index with a new BD. Else if a maximum Rx 2825 * buffer limit is imposed then fill in the next producer index. 2826 */ 2827 index = (sc->max_rx_bufs != RX_BD_USABLE) ? 2828 prod : cons; 2829 2830 /* move the received mbuf and mapping to TPA pool */ 2831 tpa_info->bd = fp->rx_mbuf_chain[cons]; 2832 2833 /* release any existing RX BD mbuf mappings */ 2834 if (cons != index) { 2835 rx_buf = &fp->rx_mbuf_chain[cons]; 2836 2837 if (rx_buf->m_map != NULL) { 2838 bus_dmamap_sync(fp->rx_mbuf_tag, rx_buf->m_map, 2839 BUS_DMASYNC_POSTREAD); 2840 bus_dmamap_unload(fp->rx_mbuf_tag, rx_buf->m_map); 2841 } 2842 2843 /* 2844 * We get here when the maximum number of rx buffers is less than 2845 * RX_BD_USABLE. The mbuf is already saved above so it's OK to NULL 2846 * it out here without concern of a memory leak. 2847 */ 2848 fp->rx_mbuf_chain[cons].m = NULL; 2849 } 2850 2851 /* update the Rx SW BD with the mbuf info from the TPA pool */ 2852 fp->rx_mbuf_chain[index] = tmp_bd; 2853 2854 /* update the Rx BD with the empty mbuf phys address from the TPA pool */ 2855 rx_bd = &fp->rx_chain[index]; 2856 rx_bd->addr_hi = htole32(U64_HI(tpa_info->seg.ds_addr)); 2857 rx_bd->addr_lo = htole32(U64_LO(tpa_info->seg.ds_addr)); 2858 } 2859 2860 /* 2861 * When a TPA aggregation is completed, loop through the individual mbufs 2862 * of the aggregation, combining them into a single mbuf which will be sent 2863 * up the stack. Refill all freed SGEs with mbufs as we go along. 2864 */ 2865 static int 2866 bxe_fill_frag_mbuf(struct bxe_softc *sc, 2867 struct bxe_fastpath *fp, 2868 struct bxe_sw_tpa_info *tpa_info, 2869 uint16_t queue, 2870 uint16_t pages, 2871 struct mbuf *m, 2872 struct eth_end_agg_rx_cqe *cqe, 2873 uint16_t cqe_idx) 2874 { 2875 struct mbuf *m_frag; 2876 uint32_t frag_len, frag_size, i; 2877 uint16_t sge_idx; 2878 int rc = 0; 2879 int j; 2880 2881 frag_size = le16toh(cqe->pkt_len) - tpa_info->len_on_bd; 2882 2883 BLOGD(sc, DBG_LRO, 2884 "fp[%02d].tpa[%02d] TPA fill len_on_bd=%d frag_size=%d pages=%d\n", 2885 fp->index, queue, tpa_info->len_on_bd, frag_size, pages); 2886 2887 /* make sure the aggregated frame is not too big to handle */ 2888 if (pages > 8 * PAGES_PER_SGE) { 2889 2890 uint32_t *tmp = (uint32_t *)cqe; 2891 2892 BLOGE(sc, "fp[%02d].sge[0x%04x] has too many pages (%d)! " 2893 "pkt_len=%d len_on_bd=%d frag_size=%d\n", 2894 fp->index, cqe_idx, pages, le16toh(cqe->pkt_len), 2895 tpa_info->len_on_bd, frag_size); 2896 2897 BLOGE(sc, "cqe [0x%08x 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x]\n", 2898 *tmp, *(tmp+1), *(tmp+2), *(tmp+3), *(tmp+4), *(tmp+5), *(tmp+6), *(tmp+7)); 2899 2900 bxe_panic(sc, ("sge page count error\n")); 2901 return (EINVAL); 2902 } 2903 2904 /* 2905 * Scan through the scatter gather list pulling individual mbufs into a 2906 * single mbuf for the host stack. 2907 */ 2908 for (i = 0, j = 0; i < pages; i += PAGES_PER_SGE, j++) { 2909 sge_idx = RX_SGE(le16toh(cqe->sgl_or_raw_data.sgl[j])); 2910 2911 /* 2912 * Firmware gives the indices of the SGE as if the ring is an array 2913 * (meaning that the "next" element will consume 2 indices). 2914 */ 2915 frag_len = min(frag_size, (uint32_t)(SGE_PAGES)); 2916 2917 BLOGD(sc, DBG_LRO, "fp[%02d].tpa[%02d] TPA fill i=%d j=%d " 2918 "sge_idx=%d frag_size=%d frag_len=%d\n", 2919 fp->index, queue, i, j, sge_idx, frag_size, frag_len); 2920 2921 m_frag = fp->rx_sge_mbuf_chain[sge_idx].m; 2922 2923 /* allocate a new mbuf for the SGE */ 2924 rc = bxe_alloc_rx_sge_mbuf(fp, sge_idx); 2925 if (rc) { 2926 /* Leave all remaining SGEs in the ring! */ 2927 return (rc); 2928 } 2929 2930 /* update the fragment length */ 2931 m_frag->m_len = frag_len; 2932 2933 /* concatenate the fragment to the head mbuf */ 2934 m_cat(m, m_frag); 2935 fp->eth_q_stats.mbuf_alloc_sge--; 2936 2937 /* update the TPA mbuf size and remaining fragment size */ 2938 m->m_pkthdr.len += frag_len; 2939 frag_size -= frag_len; 2940 } 2941 2942 BLOGD(sc, DBG_LRO, 2943 "fp[%02d].tpa[%02d] TPA fill done frag_size=%d\n", 2944 fp->index, queue, frag_size); 2945 2946 return (rc); 2947 } 2948 2949 static inline void 2950 bxe_clear_sge_mask_next_elems(struct bxe_fastpath *fp) 2951 { 2952 int i, j; 2953 2954 for (i = 1; i <= RX_SGE_NUM_PAGES; i++) { 2955 int idx = RX_SGE_TOTAL_PER_PAGE * i - 1; 2956 2957 for (j = 0; j < 2; j++) { 2958 BIT_VEC64_CLEAR_BIT(fp->sge_mask, idx); 2959 idx--; 2960 } 2961 } 2962 } 2963 2964 static inline void 2965 bxe_init_sge_ring_bit_mask(struct bxe_fastpath *fp) 2966 { 2967 /* set the mask to all 1's, it's faster to compare to 0 than to 0xf's */ 2968 memset(fp->sge_mask, 0xff, sizeof(fp->sge_mask)); 2969 2970 /* 2971 * Clear the two last indices in the page to 1. These are the indices that 2972 * correspond to the "next" element, hence will never be indicated and 2973 * should be removed from the calculations. 2974 */ 2975 bxe_clear_sge_mask_next_elems(fp); 2976 } 2977 2978 static inline void 2979 bxe_update_last_max_sge(struct bxe_fastpath *fp, 2980 uint16_t idx) 2981 { 2982 uint16_t last_max = fp->last_max_sge; 2983 2984 if (SUB_S16(idx, last_max) > 0) { 2985 fp->last_max_sge = idx; 2986 } 2987 } 2988 2989 static inline void 2990 bxe_update_sge_prod(struct bxe_softc *sc, 2991 struct bxe_fastpath *fp, 2992 uint16_t sge_len, 2993 union eth_sgl_or_raw_data *cqe) 2994 { 2995 uint16_t last_max, last_elem, first_elem; 2996 uint16_t delta = 0; 2997 uint16_t i; 2998 2999 if (!sge_len) { 3000 return; 3001 } 3002 3003 /* first mark all used pages */ 3004 for (i = 0; i < sge_len; i++) { 3005 BIT_VEC64_CLEAR_BIT(fp->sge_mask, 3006 RX_SGE(le16toh(cqe->sgl[i]))); 3007 } 3008 3009 BLOGD(sc, DBG_LRO, 3010 "fp[%02d] fp_cqe->sgl[%d] = %d\n", 3011 fp->index, sge_len - 1, 3012 le16toh(cqe->sgl[sge_len - 1])); 3013 3014 /* assume that the last SGE index is the biggest */ 3015 bxe_update_last_max_sge(fp, 3016 le16toh(cqe->sgl[sge_len - 1])); 3017 3018 last_max = RX_SGE(fp->last_max_sge); 3019 last_elem = last_max >> BIT_VEC64_ELEM_SHIFT; 3020 first_elem = RX_SGE(fp->rx_sge_prod) >> BIT_VEC64_ELEM_SHIFT; 3021 3022 /* if ring is not full */ 3023 if (last_elem + 1 != first_elem) { 3024 last_elem++; 3025 } 3026 3027 /* now update the prod */ 3028 for (i = first_elem; i != last_elem; i = RX_SGE_NEXT_MASK_ELEM(i)) { 3029 if (__predict_true(fp->sge_mask[i])) { 3030 break; 3031 } 3032 3033 fp->sge_mask[i] = BIT_VEC64_ELEM_ONE_MASK; 3034 delta += BIT_VEC64_ELEM_SZ; 3035 } 3036 3037 if (delta > 0) { 3038 fp->rx_sge_prod += delta; 3039 /* clear page-end entries */ 3040 bxe_clear_sge_mask_next_elems(fp); 3041 } 3042 3043 BLOGD(sc, DBG_LRO, 3044 "fp[%02d] fp->last_max_sge=%d fp->rx_sge_prod=%d\n", 3045 fp->index, fp->last_max_sge, fp->rx_sge_prod); 3046 } 3047 3048 /* 3049 * The aggregation on the current TPA queue has completed. Pull the individual 3050 * mbuf fragments together into a single mbuf, perform all necessary checksum 3051 * calculations, and send the resuting mbuf to the stack. 3052 */ 3053 static void 3054 bxe_tpa_stop(struct bxe_softc *sc, 3055 struct bxe_fastpath *fp, 3056 struct bxe_sw_tpa_info *tpa_info, 3057 uint16_t queue, 3058 uint16_t pages, 3059 struct eth_end_agg_rx_cqe *cqe, 3060 uint16_t cqe_idx) 3061 { 3062 if_t ifp = sc->ifp; 3063 struct mbuf *m; 3064 int rc = 0; 3065 3066 BLOGD(sc, DBG_LRO, 3067 "fp[%02d].tpa[%02d] pad=%d pkt_len=%d pages=%d vlan=%d\n", 3068 fp->index, queue, tpa_info->placement_offset, 3069 le16toh(cqe->pkt_len), pages, tpa_info->vlan_tag); 3070 3071 m = tpa_info->bd.m; 3072 3073 /* allocate a replacement before modifying existing mbuf */ 3074 rc = bxe_alloc_rx_tpa_mbuf(fp, queue); 3075 if (rc) { 3076 /* drop the frame and log an error */ 3077 fp->eth_q_stats.rx_soft_errors++; 3078 goto bxe_tpa_stop_exit; 3079 } 3080 3081 /* we have a replacement, fixup the current mbuf */ 3082 m_adj(m, tpa_info->placement_offset); 3083 m->m_pkthdr.len = m->m_len = tpa_info->len_on_bd; 3084 3085 /* mark the checksums valid (taken care of by the firmware) */ 3086 fp->eth_q_stats.rx_ofld_frames_csum_ip++; 3087 fp->eth_q_stats.rx_ofld_frames_csum_tcp_udp++; 3088 m->m_pkthdr.csum_data = 0xffff; 3089 m->m_pkthdr.csum_flags |= (CSUM_IP_CHECKED | 3090 CSUM_IP_VALID | 3091 CSUM_DATA_VALID | 3092 CSUM_PSEUDO_HDR); 3093 3094 /* aggregate all of the SGEs into a single mbuf */ 3095 rc = bxe_fill_frag_mbuf(sc, fp, tpa_info, queue, pages, m, cqe, cqe_idx); 3096 if (rc) { 3097 /* drop the packet and log an error */ 3098 fp->eth_q_stats.rx_soft_errors++; 3099 m_freem(m); 3100 } else { 3101 if (tpa_info->parsing_flags & PARSING_FLAGS_INNER_VLAN_EXIST) { 3102 m->m_pkthdr.ether_vtag = tpa_info->vlan_tag; 3103 m->m_flags |= M_VLANTAG; 3104 } 3105 3106 /* assign packet to this interface interface */ 3107 if_setrcvif(m, ifp); 3108 3109 #if __FreeBSD_version >= 800000 3110 /* specify what RSS queue was used for this flow */ 3111 m->m_pkthdr.flowid = fp->index; 3112 BXE_SET_FLOWID(m); 3113 #endif 3114 3115 if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1); 3116 fp->eth_q_stats.rx_tpa_pkts++; 3117 3118 /* pass the frame to the stack */ 3119 if_input(ifp, m); 3120 } 3121 3122 /* we passed an mbuf up the stack or dropped the frame */ 3123 fp->eth_q_stats.mbuf_alloc_tpa--; 3124 3125 bxe_tpa_stop_exit: 3126 3127 fp->rx_tpa_info[queue].state = BXE_TPA_STATE_STOP; 3128 fp->rx_tpa_queue_used &= ~(1 << queue); 3129 } 3130 3131 static uint8_t 3132 bxe_service_rxsgl( 3133 struct bxe_fastpath *fp, 3134 uint16_t len, 3135 uint16_t lenonbd, 3136 struct mbuf *m, 3137 struct eth_fast_path_rx_cqe *cqe_fp) 3138 { 3139 struct mbuf *m_frag; 3140 uint16_t frags, frag_len; 3141 uint16_t sge_idx = 0; 3142 uint16_t j; 3143 uint8_t i, rc = 0; 3144 uint32_t frag_size; 3145 3146 /* adjust the mbuf */ 3147 m->m_len = lenonbd; 3148 3149 frag_size = len - lenonbd; 3150 frags = SGE_PAGE_ALIGN(frag_size) >> SGE_PAGE_SHIFT; 3151 3152 for (i = 0, j = 0; i < frags; i += PAGES_PER_SGE, j++) { 3153 sge_idx = RX_SGE(le16toh(cqe_fp->sgl_or_raw_data.sgl[j])); 3154 3155 m_frag = fp->rx_sge_mbuf_chain[sge_idx].m; 3156 frag_len = min(frag_size, (uint32_t)(SGE_PAGE_SIZE)); 3157 m_frag->m_len = frag_len; 3158 3159 /* allocate a new mbuf for the SGE */ 3160 rc = bxe_alloc_rx_sge_mbuf(fp, sge_idx); 3161 if (rc) { 3162 /* Leave all remaining SGEs in the ring! */ 3163 return (rc); 3164 } 3165 fp->eth_q_stats.mbuf_alloc_sge--; 3166 3167 /* concatenate the fragment to the head mbuf */ 3168 m_cat(m, m_frag); 3169 3170 frag_size -= frag_len; 3171 } 3172 3173 bxe_update_sge_prod(fp->sc, fp, frags, &cqe_fp->sgl_or_raw_data); 3174 3175 return rc; 3176 } 3177 3178 static uint8_t 3179 bxe_rxeof(struct bxe_softc *sc, 3180 struct bxe_fastpath *fp) 3181 { 3182 if_t ifp = sc->ifp; 3183 uint16_t bd_cons, bd_prod, bd_prod_fw, comp_ring_cons; 3184 uint16_t hw_cq_cons, sw_cq_cons, sw_cq_prod; 3185 int rx_pkts = 0; 3186 int rc = 0; 3187 3188 BXE_FP_RX_LOCK(fp); 3189 3190 /* CQ "next element" is of the size of the regular element */ 3191 hw_cq_cons = le16toh(*fp->rx_cq_cons_sb); 3192 if ((hw_cq_cons & RCQ_USABLE_PER_PAGE) == RCQ_USABLE_PER_PAGE) { 3193 hw_cq_cons++; 3194 } 3195 3196 bd_cons = fp->rx_bd_cons; 3197 bd_prod = fp->rx_bd_prod; 3198 bd_prod_fw = bd_prod; 3199 sw_cq_cons = fp->rx_cq_cons; 3200 sw_cq_prod = fp->rx_cq_prod; 3201 3202 /* 3203 * Memory barrier necessary as speculative reads of the rx 3204 * buffer can be ahead of the index in the status block 3205 */ 3206 rmb(); 3207 3208 BLOGD(sc, DBG_RX, 3209 "fp[%02d] Rx START hw_cq_cons=%u sw_cq_cons=%u\n", 3210 fp->index, hw_cq_cons, sw_cq_cons); 3211 3212 while (sw_cq_cons != hw_cq_cons) { 3213 struct bxe_sw_rx_bd *rx_buf = NULL; 3214 union eth_rx_cqe *cqe; 3215 struct eth_fast_path_rx_cqe *cqe_fp; 3216 uint8_t cqe_fp_flags; 3217 enum eth_rx_cqe_type cqe_fp_type; 3218 uint16_t len, lenonbd, pad; 3219 struct mbuf *m = NULL; 3220 3221 comp_ring_cons = RCQ(sw_cq_cons); 3222 bd_prod = RX_BD(bd_prod); 3223 bd_cons = RX_BD(bd_cons); 3224 3225 cqe = &fp->rcq_chain[comp_ring_cons]; 3226 cqe_fp = &cqe->fast_path_cqe; 3227 cqe_fp_flags = cqe_fp->type_error_flags; 3228 cqe_fp_type = cqe_fp_flags & ETH_FAST_PATH_RX_CQE_TYPE; 3229 3230 BLOGD(sc, DBG_RX, 3231 "fp[%02d] Rx hw_cq_cons=%d hw_sw_cons=%d " 3232 "BD prod=%d cons=%d CQE type=0x%x err=0x%x " 3233 "status=0x%x rss_hash=0x%x vlan=0x%x len=%u lenonbd=%u\n", 3234 fp->index, 3235 hw_cq_cons, 3236 sw_cq_cons, 3237 bd_prod, 3238 bd_cons, 3239 CQE_TYPE(cqe_fp_flags), 3240 cqe_fp_flags, 3241 cqe_fp->status_flags, 3242 le32toh(cqe_fp->rss_hash_result), 3243 le16toh(cqe_fp->vlan_tag), 3244 le16toh(cqe_fp->pkt_len_or_gro_seg_len), 3245 le16toh(cqe_fp->len_on_bd)); 3246 3247 /* is this a slowpath msg? */ 3248 if (__predict_false(CQE_TYPE_SLOW(cqe_fp_type))) { 3249 bxe_sp_event(sc, fp, cqe); 3250 goto next_cqe; 3251 } 3252 3253 rx_buf = &fp->rx_mbuf_chain[bd_cons]; 3254 3255 if (!CQE_TYPE_FAST(cqe_fp_type)) { 3256 struct bxe_sw_tpa_info *tpa_info; 3257 uint16_t frag_size, pages; 3258 uint8_t queue; 3259 3260 if (CQE_TYPE_START(cqe_fp_type)) { 3261 bxe_tpa_start(sc, fp, cqe_fp->queue_index, 3262 bd_cons, bd_prod, cqe_fp); 3263 m = NULL; /* packet not ready yet */ 3264 goto next_rx; 3265 } 3266 3267 KASSERT(CQE_TYPE_STOP(cqe_fp_type), 3268 ("CQE type is not STOP! (0x%x)\n", cqe_fp_type)); 3269 3270 queue = cqe->end_agg_cqe.queue_index; 3271 tpa_info = &fp->rx_tpa_info[queue]; 3272 3273 BLOGD(sc, DBG_LRO, "fp[%02d].tpa[%02d] TPA STOP\n", 3274 fp->index, queue); 3275 3276 frag_size = (le16toh(cqe->end_agg_cqe.pkt_len) - 3277 tpa_info->len_on_bd); 3278 pages = SGE_PAGE_ALIGN(frag_size) >> SGE_PAGE_SHIFT; 3279 3280 bxe_tpa_stop(sc, fp, tpa_info, queue, pages, 3281 &cqe->end_agg_cqe, comp_ring_cons); 3282 3283 bxe_update_sge_prod(sc, fp, pages, &cqe->end_agg_cqe.sgl_or_raw_data); 3284 3285 goto next_cqe; 3286 } 3287 3288 /* non TPA */ 3289 3290 /* is this an error packet? */ 3291 if (__predict_false(cqe_fp_flags & 3292 ETH_FAST_PATH_RX_CQE_PHY_DECODE_ERR_FLG)) { 3293 BLOGE(sc, "flags 0x%x rx packet %u\n", cqe_fp_flags, sw_cq_cons); 3294 fp->eth_q_stats.rx_soft_errors++; 3295 goto next_rx; 3296 } 3297 3298 len = le16toh(cqe_fp->pkt_len_or_gro_seg_len); 3299 lenonbd = le16toh(cqe_fp->len_on_bd); 3300 pad = cqe_fp->placement_offset; 3301 3302 m = rx_buf->m; 3303 3304 if (__predict_false(m == NULL)) { 3305 BLOGE(sc, "No mbuf in rx chain descriptor %d for fp[%02d]\n", 3306 bd_cons, fp->index); 3307 goto next_rx; 3308 } 3309 3310 /* XXX double copy if packet length under a threshold */ 3311 3312 /* 3313 * If all the buffer descriptors are filled with mbufs then fill in 3314 * the current consumer index with a new BD. Else if a maximum Rx 3315 * buffer limit is imposed then fill in the next producer index. 3316 */ 3317 rc = bxe_alloc_rx_bd_mbuf(fp, bd_cons, 3318 (sc->max_rx_bufs != RX_BD_USABLE) ? 3319 bd_prod : bd_cons); 3320 if (rc != 0) { 3321 3322 /* we simply reuse the received mbuf and don't post it to the stack */ 3323 m = NULL; 3324 3325 BLOGE(sc, "mbuf alloc fail for fp[%02d] rx chain (%d)\n", 3326 fp->index, rc); 3327 fp->eth_q_stats.rx_soft_errors++; 3328 3329 if (sc->max_rx_bufs != RX_BD_USABLE) { 3330 /* copy this consumer index to the producer index */ 3331 memcpy(&fp->rx_mbuf_chain[bd_prod], rx_buf, 3332 sizeof(struct bxe_sw_rx_bd)); 3333 memset(rx_buf, 0, sizeof(struct bxe_sw_rx_bd)); 3334 } 3335 3336 goto next_rx; 3337 } 3338 3339 /* current mbuf was detached from the bd */ 3340 fp->eth_q_stats.mbuf_alloc_rx--; 3341 3342 /* we allocated a replacement mbuf, fixup the current one */ 3343 m_adj(m, pad); 3344 m->m_pkthdr.len = m->m_len = len; 3345 3346 if ((len > 60) && (len > lenonbd)) { 3347 fp->eth_q_stats.rx_bxe_service_rxsgl++; 3348 rc = bxe_service_rxsgl(fp, len, lenonbd, m, cqe_fp); 3349 if (rc) 3350 break; 3351 fp->eth_q_stats.rx_jumbo_sge_pkts++; 3352 } else if (lenonbd < len) { 3353 fp->eth_q_stats.rx_erroneous_jumbo_sge_pkts++; 3354 } 3355 3356 /* assign packet to this interface interface */ 3357 if_setrcvif(m, ifp); 3358 3359 /* assume no hardware checksum has complated */ 3360 m->m_pkthdr.csum_flags = 0; 3361 3362 /* validate checksum if offload enabled */ 3363 if (if_getcapenable(ifp) & IFCAP_RXCSUM) { 3364 /* check for a valid IP frame */ 3365 if (!(cqe->fast_path_cqe.status_flags & 3366 ETH_FAST_PATH_RX_CQE_IP_XSUM_NO_VALIDATION_FLG)) { 3367 m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED; 3368 if (__predict_false(cqe_fp_flags & 3369 ETH_FAST_PATH_RX_CQE_IP_BAD_XSUM_FLG)) { 3370 fp->eth_q_stats.rx_hw_csum_errors++; 3371 } else { 3372 fp->eth_q_stats.rx_ofld_frames_csum_ip++; 3373 m->m_pkthdr.csum_flags |= CSUM_IP_VALID; 3374 } 3375 } 3376 3377 /* check for a valid TCP/UDP frame */ 3378 if (!(cqe->fast_path_cqe.status_flags & 3379 ETH_FAST_PATH_RX_CQE_L4_XSUM_NO_VALIDATION_FLG)) { 3380 if (__predict_false(cqe_fp_flags & 3381 ETH_FAST_PATH_RX_CQE_L4_BAD_XSUM_FLG)) { 3382 fp->eth_q_stats.rx_hw_csum_errors++; 3383 } else { 3384 fp->eth_q_stats.rx_ofld_frames_csum_tcp_udp++; 3385 m->m_pkthdr.csum_data = 0xFFFF; 3386 m->m_pkthdr.csum_flags |= (CSUM_DATA_VALID | 3387 CSUM_PSEUDO_HDR); 3388 } 3389 } 3390 } 3391 3392 /* if there is a VLAN tag then flag that info */ 3393 if (cqe->fast_path_cqe.pars_flags.flags & PARSING_FLAGS_INNER_VLAN_EXIST) { 3394 m->m_pkthdr.ether_vtag = cqe->fast_path_cqe.vlan_tag; 3395 m->m_flags |= M_VLANTAG; 3396 } 3397 3398 #if __FreeBSD_version >= 800000 3399 /* specify what RSS queue was used for this flow */ 3400 m->m_pkthdr.flowid = fp->index; 3401 BXE_SET_FLOWID(m); 3402 #endif 3403 3404 next_rx: 3405 3406 bd_cons = RX_BD_NEXT(bd_cons); 3407 bd_prod = RX_BD_NEXT(bd_prod); 3408 bd_prod_fw = RX_BD_NEXT(bd_prod_fw); 3409 3410 /* pass the frame to the stack */ 3411 if (__predict_true(m != NULL)) { 3412 if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1); 3413 rx_pkts++; 3414 if_input(ifp, m); 3415 } 3416 3417 next_cqe: 3418 3419 sw_cq_prod = RCQ_NEXT(sw_cq_prod); 3420 sw_cq_cons = RCQ_NEXT(sw_cq_cons); 3421 3422 /* limit spinning on the queue */ 3423 if (rc != 0) 3424 break; 3425 3426 if (rx_pkts == sc->rx_budget) { 3427 fp->eth_q_stats.rx_budget_reached++; 3428 break; 3429 } 3430 } /* while work to do */ 3431 3432 fp->rx_bd_cons = bd_cons; 3433 fp->rx_bd_prod = bd_prod_fw; 3434 fp->rx_cq_cons = sw_cq_cons; 3435 fp->rx_cq_prod = sw_cq_prod; 3436 3437 /* Update producers */ 3438 bxe_update_rx_prod(sc, fp, bd_prod_fw, sw_cq_prod, fp->rx_sge_prod); 3439 3440 fp->eth_q_stats.rx_pkts += rx_pkts; 3441 fp->eth_q_stats.rx_calls++; 3442 3443 BXE_FP_RX_UNLOCK(fp); 3444 3445 return (sw_cq_cons != hw_cq_cons); 3446 } 3447 3448 static uint16_t 3449 bxe_free_tx_pkt(struct bxe_softc *sc, 3450 struct bxe_fastpath *fp, 3451 uint16_t idx) 3452 { 3453 struct bxe_sw_tx_bd *tx_buf = &fp->tx_mbuf_chain[idx]; 3454 struct eth_tx_start_bd *tx_start_bd; 3455 uint16_t bd_idx = TX_BD(tx_buf->first_bd); 3456 uint16_t new_cons; 3457 int nbd; 3458 3459 /* unmap the mbuf from non-paged memory */ 3460 bus_dmamap_unload(fp->tx_mbuf_tag, tx_buf->m_map); 3461 3462 tx_start_bd = &fp->tx_chain[bd_idx].start_bd; 3463 nbd = le16toh(tx_start_bd->nbd) - 1; 3464 3465 new_cons = (tx_buf->first_bd + nbd); 3466 3467 /* free the mbuf */ 3468 if (__predict_true(tx_buf->m != NULL)) { 3469 m_freem(tx_buf->m); 3470 fp->eth_q_stats.mbuf_alloc_tx--; 3471 } else { 3472 fp->eth_q_stats.tx_chain_lost_mbuf++; 3473 } 3474 3475 tx_buf->m = NULL; 3476 tx_buf->first_bd = 0; 3477 3478 return (new_cons); 3479 } 3480 3481 /* transmit timeout watchdog */ 3482 static int 3483 bxe_watchdog(struct bxe_softc *sc, 3484 struct bxe_fastpath *fp) 3485 { 3486 BXE_FP_TX_LOCK(fp); 3487 3488 if ((fp->watchdog_timer == 0) || (--fp->watchdog_timer)) { 3489 BXE_FP_TX_UNLOCK(fp); 3490 return (0); 3491 } 3492 3493 BLOGE(sc, "TX watchdog timeout on fp[%02d], resetting!\n", fp->index); 3494 3495 BXE_FP_TX_UNLOCK(fp); 3496 BXE_SET_ERROR_BIT(sc, BXE_ERR_TXQ_STUCK); 3497 taskqueue_enqueue_timeout(taskqueue_thread, 3498 &sc->sp_err_timeout_task, hz/10); 3499 3500 return (-1); 3501 } 3502 3503 /* processes transmit completions */ 3504 static uint8_t 3505 bxe_txeof(struct bxe_softc *sc, 3506 struct bxe_fastpath *fp) 3507 { 3508 if_t ifp = sc->ifp; 3509 uint16_t bd_cons, hw_cons, sw_cons, pkt_cons; 3510 uint16_t tx_bd_avail; 3511 3512 BXE_FP_TX_LOCK_ASSERT(fp); 3513 3514 bd_cons = fp->tx_bd_cons; 3515 hw_cons = le16toh(*fp->tx_cons_sb); 3516 sw_cons = fp->tx_pkt_cons; 3517 3518 while (sw_cons != hw_cons) { 3519 pkt_cons = TX_BD(sw_cons); 3520 3521 BLOGD(sc, DBG_TX, 3522 "TX: fp[%d]: hw_cons=%u sw_cons=%u pkt_cons=%u\n", 3523 fp->index, hw_cons, sw_cons, pkt_cons); 3524 3525 bd_cons = bxe_free_tx_pkt(sc, fp, pkt_cons); 3526 3527 sw_cons++; 3528 } 3529 3530 fp->tx_pkt_cons = sw_cons; 3531 fp->tx_bd_cons = bd_cons; 3532 3533 BLOGD(sc, DBG_TX, 3534 "TX done: fp[%d]: hw_cons=%u sw_cons=%u sw_prod=%u\n", 3535 fp->index, hw_cons, fp->tx_pkt_cons, fp->tx_pkt_prod); 3536 3537 mb(); 3538 3539 tx_bd_avail = bxe_tx_avail(sc, fp); 3540 3541 if (tx_bd_avail < BXE_TX_CLEANUP_THRESHOLD) { 3542 if_setdrvflagbits(ifp, IFF_DRV_OACTIVE, 0); 3543 } else { 3544 if_setdrvflagbits(ifp, 0, IFF_DRV_OACTIVE); 3545 } 3546 3547 if (fp->tx_pkt_prod != fp->tx_pkt_cons) { 3548 /* reset the watchdog timer if there are pending transmits */ 3549 fp->watchdog_timer = BXE_TX_TIMEOUT; 3550 return (TRUE); 3551 } else { 3552 /* clear watchdog when there are no pending transmits */ 3553 fp->watchdog_timer = 0; 3554 return (FALSE); 3555 } 3556 } 3557 3558 static void 3559 bxe_drain_tx_queues(struct bxe_softc *sc) 3560 { 3561 struct bxe_fastpath *fp; 3562 int i, count; 3563 3564 /* wait until all TX fastpath tasks have completed */ 3565 for (i = 0; i < sc->num_queues; i++) { 3566 fp = &sc->fp[i]; 3567 3568 count = 1000; 3569 3570 while (bxe_has_tx_work(fp)) { 3571 3572 BXE_FP_TX_LOCK(fp); 3573 bxe_txeof(sc, fp); 3574 BXE_FP_TX_UNLOCK(fp); 3575 3576 if (count == 0) { 3577 BLOGE(sc, "Timeout waiting for fp[%d] " 3578 "transmits to complete!\n", i); 3579 bxe_panic(sc, ("tx drain failure\n")); 3580 return; 3581 } 3582 3583 count--; 3584 DELAY(1000); 3585 rmb(); 3586 } 3587 } 3588 3589 return; 3590 } 3591 3592 static int 3593 bxe_del_all_macs(struct bxe_softc *sc, 3594 struct ecore_vlan_mac_obj *mac_obj, 3595 int mac_type, 3596 uint8_t wait_for_comp) 3597 { 3598 unsigned long ramrod_flags = 0, vlan_mac_flags = 0; 3599 int rc; 3600 3601 /* wait for completion of requested */ 3602 if (wait_for_comp) { 3603 bxe_set_bit(RAMROD_COMP_WAIT, &ramrod_flags); 3604 } 3605 3606 /* Set the mac type of addresses we want to clear */ 3607 bxe_set_bit(mac_type, &vlan_mac_flags); 3608 3609 rc = mac_obj->delete_all(sc, mac_obj, &vlan_mac_flags, &ramrod_flags); 3610 if (rc < 0) { 3611 BLOGE(sc, "Failed to delete MACs (%d) mac_type %d wait_for_comp 0x%x\n", 3612 rc, mac_type, wait_for_comp); 3613 } 3614 3615 return (rc); 3616 } 3617 3618 static int 3619 bxe_fill_accept_flags(struct bxe_softc *sc, 3620 uint32_t rx_mode, 3621 unsigned long *rx_accept_flags, 3622 unsigned long *tx_accept_flags) 3623 { 3624 /* Clear the flags first */ 3625 *rx_accept_flags = 0; 3626 *tx_accept_flags = 0; 3627 3628 switch (rx_mode) { 3629 case BXE_RX_MODE_NONE: 3630 /* 3631 * 'drop all' supersedes any accept flags that may have been 3632 * passed to the function. 3633 */ 3634 break; 3635 3636 case BXE_RX_MODE_NORMAL: 3637 bxe_set_bit(ECORE_ACCEPT_UNICAST, rx_accept_flags); 3638 bxe_set_bit(ECORE_ACCEPT_MULTICAST, rx_accept_flags); 3639 bxe_set_bit(ECORE_ACCEPT_BROADCAST, rx_accept_flags); 3640 3641 /* internal switching mode */ 3642 bxe_set_bit(ECORE_ACCEPT_UNICAST, tx_accept_flags); 3643 bxe_set_bit(ECORE_ACCEPT_MULTICAST, tx_accept_flags); 3644 bxe_set_bit(ECORE_ACCEPT_BROADCAST, tx_accept_flags); 3645 3646 break; 3647 3648 case BXE_RX_MODE_ALLMULTI: 3649 bxe_set_bit(ECORE_ACCEPT_UNICAST, rx_accept_flags); 3650 bxe_set_bit(ECORE_ACCEPT_ALL_MULTICAST, rx_accept_flags); 3651 bxe_set_bit(ECORE_ACCEPT_BROADCAST, rx_accept_flags); 3652 3653 /* internal switching mode */ 3654 bxe_set_bit(ECORE_ACCEPT_UNICAST, tx_accept_flags); 3655 bxe_set_bit(ECORE_ACCEPT_ALL_MULTICAST, tx_accept_flags); 3656 bxe_set_bit(ECORE_ACCEPT_BROADCAST, tx_accept_flags); 3657 3658 break; 3659 3660 case BXE_RX_MODE_PROMISC: 3661 /* 3662 * According to deffinition of SI mode, iface in promisc mode 3663 * should receive matched and unmatched (in resolution of port) 3664 * unicast packets. 3665 */ 3666 bxe_set_bit(ECORE_ACCEPT_UNMATCHED, rx_accept_flags); 3667 bxe_set_bit(ECORE_ACCEPT_UNICAST, rx_accept_flags); 3668 bxe_set_bit(ECORE_ACCEPT_ALL_MULTICAST, rx_accept_flags); 3669 bxe_set_bit(ECORE_ACCEPT_BROADCAST, rx_accept_flags); 3670 3671 /* internal switching mode */ 3672 bxe_set_bit(ECORE_ACCEPT_ALL_MULTICAST, tx_accept_flags); 3673 bxe_set_bit(ECORE_ACCEPT_BROADCAST, tx_accept_flags); 3674 3675 if (IS_MF_SI(sc)) { 3676 bxe_set_bit(ECORE_ACCEPT_ALL_UNICAST, tx_accept_flags); 3677 } else { 3678 bxe_set_bit(ECORE_ACCEPT_UNICAST, tx_accept_flags); 3679 } 3680 3681 break; 3682 3683 default: 3684 BLOGE(sc, "Unknown rx_mode (0x%x)\n", rx_mode); 3685 return (-1); 3686 } 3687 3688 /* Set ACCEPT_ANY_VLAN as we do not enable filtering by VLAN */ 3689 if (rx_mode != BXE_RX_MODE_NONE) { 3690 bxe_set_bit(ECORE_ACCEPT_ANY_VLAN, rx_accept_flags); 3691 bxe_set_bit(ECORE_ACCEPT_ANY_VLAN, tx_accept_flags); 3692 } 3693 3694 return (0); 3695 } 3696 3697 static int 3698 bxe_set_q_rx_mode(struct bxe_softc *sc, 3699 uint8_t cl_id, 3700 unsigned long rx_mode_flags, 3701 unsigned long rx_accept_flags, 3702 unsigned long tx_accept_flags, 3703 unsigned long ramrod_flags) 3704 { 3705 struct ecore_rx_mode_ramrod_params ramrod_param; 3706 int rc; 3707 3708 memset(&ramrod_param, 0, sizeof(ramrod_param)); 3709 3710 /* Prepare ramrod parameters */ 3711 ramrod_param.cid = 0; 3712 ramrod_param.cl_id = cl_id; 3713 ramrod_param.rx_mode_obj = &sc->rx_mode_obj; 3714 ramrod_param.func_id = SC_FUNC(sc); 3715 3716 ramrod_param.pstate = &sc->sp_state; 3717 ramrod_param.state = ECORE_FILTER_RX_MODE_PENDING; 3718 3719 ramrod_param.rdata = BXE_SP(sc, rx_mode_rdata); 3720 ramrod_param.rdata_mapping = BXE_SP_MAPPING(sc, rx_mode_rdata); 3721 3722 bxe_set_bit(ECORE_FILTER_RX_MODE_PENDING, &sc->sp_state); 3723 3724 ramrod_param.ramrod_flags = ramrod_flags; 3725 ramrod_param.rx_mode_flags = rx_mode_flags; 3726 3727 ramrod_param.rx_accept_flags = rx_accept_flags; 3728 ramrod_param.tx_accept_flags = tx_accept_flags; 3729 3730 rc = ecore_config_rx_mode(sc, &ramrod_param); 3731 if (rc < 0) { 3732 BLOGE(sc, "Set rx_mode %d cli_id 0x%x rx_mode_flags 0x%x " 3733 "rx_accept_flags 0x%x tx_accept_flags 0x%x " 3734 "ramrod_flags 0x%x rc %d failed\n", sc->rx_mode, cl_id, 3735 (uint32_t)rx_mode_flags, (uint32_t)rx_accept_flags, 3736 (uint32_t)tx_accept_flags, (uint32_t)ramrod_flags, rc); 3737 return (rc); 3738 } 3739 3740 return (0); 3741 } 3742 3743 static int 3744 bxe_set_storm_rx_mode(struct bxe_softc *sc) 3745 { 3746 unsigned long rx_mode_flags = 0, ramrod_flags = 0; 3747 unsigned long rx_accept_flags = 0, tx_accept_flags = 0; 3748 int rc; 3749 3750 rc = bxe_fill_accept_flags(sc, sc->rx_mode, &rx_accept_flags, 3751 &tx_accept_flags); 3752 if (rc) { 3753 return (rc); 3754 } 3755 3756 bxe_set_bit(RAMROD_RX, &ramrod_flags); 3757 bxe_set_bit(RAMROD_TX, &ramrod_flags); 3758 3759 /* XXX ensure all fastpath have same cl_id and/or move it to bxe_softc */ 3760 return (bxe_set_q_rx_mode(sc, sc->fp[0].cl_id, rx_mode_flags, 3761 rx_accept_flags, tx_accept_flags, 3762 ramrod_flags)); 3763 } 3764 3765 /* returns the "mcp load_code" according to global load_count array */ 3766 static int 3767 bxe_nic_load_no_mcp(struct bxe_softc *sc) 3768 { 3769 int path = SC_PATH(sc); 3770 int port = SC_PORT(sc); 3771 3772 BLOGI(sc, "NO MCP - load counts[%d] %d, %d, %d\n", 3773 path, load_count[path][0], load_count[path][1], 3774 load_count[path][2]); 3775 load_count[path][0]++; 3776 load_count[path][1 + port]++; 3777 BLOGI(sc, "NO MCP - new load counts[%d] %d, %d, %d\n", 3778 path, load_count[path][0], load_count[path][1], 3779 load_count[path][2]); 3780 if (load_count[path][0] == 1) { 3781 return (FW_MSG_CODE_DRV_LOAD_COMMON); 3782 } else if (load_count[path][1 + port] == 1) { 3783 return (FW_MSG_CODE_DRV_LOAD_PORT); 3784 } else { 3785 return (FW_MSG_CODE_DRV_LOAD_FUNCTION); 3786 } 3787 } 3788 3789 /* returns the "mcp load_code" according to global load_count array */ 3790 static int 3791 bxe_nic_unload_no_mcp(struct bxe_softc *sc) 3792 { 3793 int port = SC_PORT(sc); 3794 int path = SC_PATH(sc); 3795 3796 BLOGI(sc, "NO MCP - load counts[%d] %d, %d, %d\n", 3797 path, load_count[path][0], load_count[path][1], 3798 load_count[path][2]); 3799 load_count[path][0]--; 3800 load_count[path][1 + port]--; 3801 BLOGI(sc, "NO MCP - new load counts[%d] %d, %d, %d\n", 3802 path, load_count[path][0], load_count[path][1], 3803 load_count[path][2]); 3804 if (load_count[path][0] == 0) { 3805 return (FW_MSG_CODE_DRV_UNLOAD_COMMON); 3806 } else if (load_count[path][1 + port] == 0) { 3807 return (FW_MSG_CODE_DRV_UNLOAD_PORT); 3808 } else { 3809 return (FW_MSG_CODE_DRV_UNLOAD_FUNCTION); 3810 } 3811 } 3812 3813 /* request unload mode from the MCP: COMMON, PORT or FUNCTION */ 3814 static uint32_t 3815 bxe_send_unload_req(struct bxe_softc *sc, 3816 int unload_mode) 3817 { 3818 uint32_t reset_code = 0; 3819 3820 /* Select the UNLOAD request mode */ 3821 if (unload_mode == UNLOAD_NORMAL) { 3822 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS; 3823 } else { 3824 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS; 3825 } 3826 3827 /* Send the request to the MCP */ 3828 if (!BXE_NOMCP(sc)) { 3829 reset_code = bxe_fw_command(sc, reset_code, 0); 3830 } else { 3831 reset_code = bxe_nic_unload_no_mcp(sc); 3832 } 3833 3834 return (reset_code); 3835 } 3836 3837 /* send UNLOAD_DONE command to the MCP */ 3838 static void 3839 bxe_send_unload_done(struct bxe_softc *sc, 3840 uint8_t keep_link) 3841 { 3842 uint32_t reset_param = 3843 keep_link ? DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET : 0; 3844 3845 /* Report UNLOAD_DONE to MCP */ 3846 if (!BXE_NOMCP(sc)) { 3847 bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_DONE, reset_param); 3848 } 3849 } 3850 3851 static int 3852 bxe_func_wait_started(struct bxe_softc *sc) 3853 { 3854 int tout = 50; 3855 3856 if (!sc->port.pmf) { 3857 return (0); 3858 } 3859 3860 /* 3861 * (assumption: No Attention from MCP at this stage) 3862 * PMF probably in the middle of TX disable/enable transaction 3863 * 1. Sync IRS for default SB 3864 * 2. Sync SP queue - this guarantees us that attention handling started 3865 * 3. Wait, that TX disable/enable transaction completes 3866 * 3867 * 1+2 guarantee that if DCBX attention was scheduled it already changed 3868 * pending bit of transaction from STARTED-->TX_STOPPED, if we already 3869 * received completion for the transaction the state is TX_STOPPED. 3870 * State will return to STARTED after completion of TX_STOPPED-->STARTED 3871 * transaction. 3872 */ 3873 3874 /* XXX make sure default SB ISR is done */ 3875 /* need a way to synchronize an irq (intr_mtx?) */ 3876 3877 /* XXX flush any work queues */ 3878 3879 while (ecore_func_get_state(sc, &sc->func_obj) != 3880 ECORE_F_STATE_STARTED && tout--) { 3881 DELAY(20000); 3882 } 3883 3884 if (ecore_func_get_state(sc, &sc->func_obj) != ECORE_F_STATE_STARTED) { 3885 /* 3886 * Failed to complete the transaction in a "good way" 3887 * Force both transactions with CLR bit. 3888 */ 3889 struct ecore_func_state_params func_params = { NULL }; 3890 3891 BLOGE(sc, "Unexpected function state! " 3892 "Forcing STARTED-->TX_STOPPED-->STARTED\n"); 3893 3894 func_params.f_obj = &sc->func_obj; 3895 bxe_set_bit(RAMROD_DRV_CLR_ONLY, &func_params.ramrod_flags); 3896 3897 /* STARTED-->TX_STOPPED */ 3898 func_params.cmd = ECORE_F_CMD_TX_STOP; 3899 ecore_func_state_change(sc, &func_params); 3900 3901 /* TX_STOPPED-->STARTED */ 3902 func_params.cmd = ECORE_F_CMD_TX_START; 3903 return (ecore_func_state_change(sc, &func_params)); 3904 } 3905 3906 return (0); 3907 } 3908 3909 static int 3910 bxe_stop_queue(struct bxe_softc *sc, 3911 int index) 3912 { 3913 struct bxe_fastpath *fp = &sc->fp[index]; 3914 struct ecore_queue_state_params q_params = { NULL }; 3915 int rc; 3916 3917 BLOGD(sc, DBG_LOAD, "stopping queue %d cid %d\n", index, fp->index); 3918 3919 q_params.q_obj = &sc->sp_objs[fp->index].q_obj; 3920 /* We want to wait for completion in this context */ 3921 bxe_set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags); 3922 3923 /* Stop the primary connection: */ 3924 3925 /* ...halt the connection */ 3926 q_params.cmd = ECORE_Q_CMD_HALT; 3927 rc = ecore_queue_state_change(sc, &q_params); 3928 if (rc) { 3929 return (rc); 3930 } 3931 3932 /* ...terminate the connection */ 3933 q_params.cmd = ECORE_Q_CMD_TERMINATE; 3934 memset(&q_params.params.terminate, 0, sizeof(q_params.params.terminate)); 3935 q_params.params.terminate.cid_index = FIRST_TX_COS_INDEX; 3936 rc = ecore_queue_state_change(sc, &q_params); 3937 if (rc) { 3938 return (rc); 3939 } 3940 3941 /* ...delete cfc entry */ 3942 q_params.cmd = ECORE_Q_CMD_CFC_DEL; 3943 memset(&q_params.params.cfc_del, 0, sizeof(q_params.params.cfc_del)); 3944 q_params.params.cfc_del.cid_index = FIRST_TX_COS_INDEX; 3945 return (ecore_queue_state_change(sc, &q_params)); 3946 } 3947 3948 /* wait for the outstanding SP commands */ 3949 static inline uint8_t 3950 bxe_wait_sp_comp(struct bxe_softc *sc, 3951 unsigned long mask) 3952 { 3953 unsigned long tmp; 3954 int tout = 5000; /* wait for 5 secs tops */ 3955 3956 while (tout--) { 3957 mb(); 3958 if (!(atomic_load_acq_long(&sc->sp_state) & mask)) { 3959 return (TRUE); 3960 } 3961 3962 DELAY(1000); 3963 } 3964 3965 mb(); 3966 3967 tmp = atomic_load_acq_long(&sc->sp_state); 3968 if (tmp & mask) { 3969 BLOGE(sc, "Filtering completion timed out: " 3970 "sp_state 0x%lx, mask 0x%lx\n", 3971 tmp, mask); 3972 return (FALSE); 3973 } 3974 3975 return (FALSE); 3976 } 3977 3978 static int 3979 bxe_func_stop(struct bxe_softc *sc) 3980 { 3981 struct ecore_func_state_params func_params = { NULL }; 3982 int rc; 3983 3984 /* prepare parameters for function state transitions */ 3985 bxe_set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags); 3986 func_params.f_obj = &sc->func_obj; 3987 func_params.cmd = ECORE_F_CMD_STOP; 3988 3989 /* 3990 * Try to stop the function the 'good way'. If it fails (in case 3991 * of a parity error during bxe_chip_cleanup()) and we are 3992 * not in a debug mode, perform a state transaction in order to 3993 * enable further HW_RESET transaction. 3994 */ 3995 rc = ecore_func_state_change(sc, &func_params); 3996 if (rc) { 3997 BLOGE(sc, "FUNC_STOP ramrod failed. " 3998 "Running a dry transaction (%d)\n", rc); 3999 bxe_set_bit(RAMROD_DRV_CLR_ONLY, &func_params.ramrod_flags); 4000 return (ecore_func_state_change(sc, &func_params)); 4001 } 4002 4003 return (0); 4004 } 4005 4006 static int 4007 bxe_reset_hw(struct bxe_softc *sc, 4008 uint32_t load_code) 4009 { 4010 struct ecore_func_state_params func_params = { NULL }; 4011 4012 /* Prepare parameters for function state transitions */ 4013 bxe_set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags); 4014 4015 func_params.f_obj = &sc->func_obj; 4016 func_params.cmd = ECORE_F_CMD_HW_RESET; 4017 4018 func_params.params.hw_init.load_phase = load_code; 4019 4020 return (ecore_func_state_change(sc, &func_params)); 4021 } 4022 4023 static void 4024 bxe_int_disable_sync(struct bxe_softc *sc, 4025 int disable_hw) 4026 { 4027 if (disable_hw) { 4028 /* prevent the HW from sending interrupts */ 4029 bxe_int_disable(sc); 4030 } 4031 4032 /* XXX need a way to synchronize ALL irqs (intr_mtx?) */ 4033 /* make sure all ISRs are done */ 4034 4035 /* XXX make sure sp_task is not running */ 4036 /* cancel and flush work queues */ 4037 } 4038 4039 static void 4040 bxe_chip_cleanup(struct bxe_softc *sc, 4041 uint32_t unload_mode, 4042 uint8_t keep_link) 4043 { 4044 int port = SC_PORT(sc); 4045 struct ecore_mcast_ramrod_params rparam = { NULL }; 4046 uint32_t reset_code; 4047 int i, rc = 0; 4048 4049 bxe_drain_tx_queues(sc); 4050 4051 /* give HW time to discard old tx messages */ 4052 DELAY(1000); 4053 4054 /* Clean all ETH MACs */ 4055 rc = bxe_del_all_macs(sc, &sc->sp_objs[0].mac_obj, ECORE_ETH_MAC, FALSE); 4056 if (rc < 0) { 4057 BLOGE(sc, "Failed to delete all ETH MACs (%d)\n", rc); 4058 } 4059 4060 /* Clean up UC list */ 4061 rc = bxe_del_all_macs(sc, &sc->sp_objs[0].mac_obj, ECORE_UC_LIST_MAC, TRUE); 4062 if (rc < 0) { 4063 BLOGE(sc, "Failed to delete UC MACs list (%d)\n", rc); 4064 } 4065 4066 /* Disable LLH */ 4067 if (!CHIP_IS_E1(sc)) { 4068 REG_WR(sc, NIG_REG_LLH0_FUNC_EN + port*8, 0); 4069 } 4070 4071 /* Set "drop all" to stop Rx */ 4072 4073 /* 4074 * We need to take the BXE_MCAST_LOCK() here in order to prevent 4075 * a race between the completion code and this code. 4076 */ 4077 BXE_MCAST_LOCK(sc); 4078 4079 if (bxe_test_bit(ECORE_FILTER_RX_MODE_PENDING, &sc->sp_state)) { 4080 bxe_set_bit(ECORE_FILTER_RX_MODE_SCHED, &sc->sp_state); 4081 } else { 4082 bxe_set_storm_rx_mode(sc); 4083 } 4084 4085 /* Clean up multicast configuration */ 4086 rparam.mcast_obj = &sc->mcast_obj; 4087 rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_DEL); 4088 if (rc < 0) { 4089 BLOGE(sc, "Failed to send DEL MCAST command (%d)\n", rc); 4090 } 4091 4092 BXE_MCAST_UNLOCK(sc); 4093 4094 // XXX bxe_iov_chip_cleanup(sc); 4095 4096 /* 4097 * Send the UNLOAD_REQUEST to the MCP. This will return if 4098 * this function should perform FUNCTION, PORT, or COMMON HW 4099 * reset. 4100 */ 4101 reset_code = bxe_send_unload_req(sc, unload_mode); 4102 4103 /* 4104 * (assumption: No Attention from MCP at this stage) 4105 * PMF probably in the middle of TX disable/enable transaction 4106 */ 4107 rc = bxe_func_wait_started(sc); 4108 if (rc) { 4109 BLOGE(sc, "bxe_func_wait_started failed (%d)\n", rc); 4110 } 4111 4112 /* 4113 * Close multi and leading connections 4114 * Completions for ramrods are collected in a synchronous way 4115 */ 4116 for (i = 0; i < sc->num_queues; i++) { 4117 if (bxe_stop_queue(sc, i)) { 4118 goto unload_error; 4119 } 4120 } 4121 4122 /* 4123 * If SP settings didn't get completed so far - something 4124 * very wrong has happen. 4125 */ 4126 if (!bxe_wait_sp_comp(sc, ~0x0UL)) { 4127 BLOGE(sc, "Common slow path ramrods got stuck!(%d)\n", rc); 4128 } 4129 4130 unload_error: 4131 4132 rc = bxe_func_stop(sc); 4133 if (rc) { 4134 BLOGE(sc, "Function stop failed!(%d)\n", rc); 4135 } 4136 4137 /* disable HW interrupts */ 4138 bxe_int_disable_sync(sc, TRUE); 4139 4140 /* detach interrupts */ 4141 bxe_interrupt_detach(sc); 4142 4143 /* Reset the chip */ 4144 rc = bxe_reset_hw(sc, reset_code); 4145 if (rc) { 4146 BLOGE(sc, "Hardware reset failed(%d)\n", rc); 4147 } 4148 4149 /* Report UNLOAD_DONE to MCP */ 4150 bxe_send_unload_done(sc, keep_link); 4151 } 4152 4153 static void 4154 bxe_disable_close_the_gate(struct bxe_softc *sc) 4155 { 4156 uint32_t val; 4157 int port = SC_PORT(sc); 4158 4159 BLOGD(sc, DBG_LOAD, 4160 "Disabling 'close the gates'\n"); 4161 4162 if (CHIP_IS_E1(sc)) { 4163 uint32_t addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 : 4164 MISC_REG_AEU_MASK_ATTN_FUNC_0; 4165 val = REG_RD(sc, addr); 4166 val &= ~(0x300); 4167 REG_WR(sc, addr, val); 4168 } else { 4169 val = REG_RD(sc, MISC_REG_AEU_GENERAL_MASK); 4170 val &= ~(MISC_AEU_GENERAL_MASK_REG_AEU_PXP_CLOSE_MASK | 4171 MISC_AEU_GENERAL_MASK_REG_AEU_NIG_CLOSE_MASK); 4172 REG_WR(sc, MISC_REG_AEU_GENERAL_MASK, val); 4173 } 4174 } 4175 4176 /* 4177 * Cleans the object that have internal lists without sending 4178 * ramrods. Should be run when interrutps are disabled. 4179 */ 4180 static void 4181 bxe_squeeze_objects(struct bxe_softc *sc) 4182 { 4183 unsigned long ramrod_flags = 0, vlan_mac_flags = 0; 4184 struct ecore_mcast_ramrod_params rparam = { NULL }; 4185 struct ecore_vlan_mac_obj *mac_obj = &sc->sp_objs->mac_obj; 4186 int rc; 4187 4188 /* Cleanup MACs' object first... */ 4189 4190 /* Wait for completion of requested */ 4191 bxe_set_bit(RAMROD_COMP_WAIT, &ramrod_flags); 4192 /* Perform a dry cleanup */ 4193 bxe_set_bit(RAMROD_DRV_CLR_ONLY, &ramrod_flags); 4194 4195 /* Clean ETH primary MAC */ 4196 bxe_set_bit(ECORE_ETH_MAC, &vlan_mac_flags); 4197 rc = mac_obj->delete_all(sc, &sc->sp_objs->mac_obj, &vlan_mac_flags, 4198 &ramrod_flags); 4199 if (rc != 0) { 4200 BLOGE(sc, "Failed to clean ETH MACs (%d)\n", rc); 4201 } 4202 4203 /* Cleanup UC list */ 4204 vlan_mac_flags = 0; 4205 bxe_set_bit(ECORE_UC_LIST_MAC, &vlan_mac_flags); 4206 rc = mac_obj->delete_all(sc, mac_obj, &vlan_mac_flags, 4207 &ramrod_flags); 4208 if (rc != 0) { 4209 BLOGE(sc, "Failed to clean UC list MACs (%d)\n", rc); 4210 } 4211 4212 /* Now clean mcast object... */ 4213 4214 rparam.mcast_obj = &sc->mcast_obj; 4215 bxe_set_bit(RAMROD_DRV_CLR_ONLY, &rparam.ramrod_flags); 4216 4217 /* Add a DEL command... */ 4218 rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_DEL); 4219 if (rc < 0) { 4220 BLOGE(sc, "Failed to send DEL MCAST command (%d)\n", rc); 4221 } 4222 4223 /* now wait until all pending commands are cleared */ 4224 4225 rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_CONT); 4226 while (rc != 0) { 4227 if (rc < 0) { 4228 BLOGE(sc, "Failed to clean MCAST object (%d)\n", rc); 4229 return; 4230 } 4231 4232 rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_CONT); 4233 } 4234 } 4235 4236 /* stop the controller */ 4237 static __noinline int 4238 bxe_nic_unload(struct bxe_softc *sc, 4239 uint32_t unload_mode, 4240 uint8_t keep_link) 4241 { 4242 uint8_t global = FALSE; 4243 uint32_t val; 4244 int i; 4245 4246 BXE_CORE_LOCK_ASSERT(sc); 4247 4248 if_setdrvflagbits(sc->ifp, 0, IFF_DRV_RUNNING); 4249 4250 for (i = 0; i < sc->num_queues; i++) { 4251 struct bxe_fastpath *fp; 4252 4253 fp = &sc->fp[i]; 4254 fp->watchdog_timer = 0; 4255 BXE_FP_TX_LOCK(fp); 4256 BXE_FP_TX_UNLOCK(fp); 4257 } 4258 4259 BLOGD(sc, DBG_LOAD, "Starting NIC unload...\n"); 4260 4261 /* mark driver as unloaded in shmem2 */ 4262 if (IS_PF(sc) && SHMEM2_HAS(sc, drv_capabilities_flag)) { 4263 val = SHMEM2_RD(sc, drv_capabilities_flag[SC_FW_MB_IDX(sc)]); 4264 SHMEM2_WR(sc, drv_capabilities_flag[SC_FW_MB_IDX(sc)], 4265 val & ~DRV_FLAGS_CAPABILITIES_LOADED_L2); 4266 } 4267 4268 if (IS_PF(sc) && sc->recovery_state != BXE_RECOVERY_DONE && 4269 (sc->state == BXE_STATE_CLOSED || sc->state == BXE_STATE_ERROR)) { 4270 4271 if(CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) { 4272 /* 4273 * We can get here if the driver has been unloaded 4274 * during parity error recovery and is either waiting for a 4275 * leader to complete or for other functions to unload and 4276 * then ifconfig down has been issued. In this case we want to 4277 * unload and let other functions to complete a recovery 4278 * process. 4279 */ 4280 sc->recovery_state = BXE_RECOVERY_DONE; 4281 sc->is_leader = 0; 4282 bxe_release_leader_lock(sc); 4283 mb(); 4284 BLOGD(sc, DBG_LOAD, "Releasing a leadership...\n"); 4285 } 4286 BLOGE(sc, "Can't unload in closed or error state recover_state 0x%x" 4287 " state = 0x%x\n", sc->recovery_state, sc->state); 4288 return (-1); 4289 } 4290 4291 /* 4292 * Nothing to do during unload if previous bxe_nic_load() 4293 * did not completed successfully - all resourses are released. 4294 */ 4295 if ((sc->state == BXE_STATE_CLOSED) || 4296 (sc->state == BXE_STATE_ERROR)) { 4297 return (0); 4298 } 4299 4300 sc->state = BXE_STATE_CLOSING_WAITING_HALT; 4301 mb(); 4302 4303 /* stop tx */ 4304 bxe_tx_disable(sc); 4305 4306 sc->rx_mode = BXE_RX_MODE_NONE; 4307 /* XXX set rx mode ??? */ 4308 4309 if (IS_PF(sc) && !sc->grcdump_done) { 4310 /* set ALWAYS_ALIVE bit in shmem */ 4311 sc->fw_drv_pulse_wr_seq |= DRV_PULSE_ALWAYS_ALIVE; 4312 4313 bxe_drv_pulse(sc); 4314 4315 bxe_stats_handle(sc, STATS_EVENT_STOP); 4316 bxe_save_statistics(sc); 4317 } 4318 4319 /* wait till consumers catch up with producers in all queues */ 4320 bxe_drain_tx_queues(sc); 4321 4322 /* if VF indicate to PF this function is going down (PF will delete sp 4323 * elements and clear initializations 4324 */ 4325 if (IS_VF(sc)) { 4326 ; /* bxe_vfpf_close_vf(sc); */ 4327 } else if (unload_mode != UNLOAD_RECOVERY) { 4328 /* if this is a normal/close unload need to clean up chip */ 4329 if (!sc->grcdump_done) 4330 bxe_chip_cleanup(sc, unload_mode, keep_link); 4331 } else { 4332 /* Send the UNLOAD_REQUEST to the MCP */ 4333 bxe_send_unload_req(sc, unload_mode); 4334 4335 /* 4336 * Prevent transactions to host from the functions on the 4337 * engine that doesn't reset global blocks in case of global 4338 * attention once gloabl blocks are reset and gates are opened 4339 * (the engine which leader will perform the recovery 4340 * last). 4341 */ 4342 if (!CHIP_IS_E1x(sc)) { 4343 bxe_pf_disable(sc); 4344 } 4345 4346 /* disable HW interrupts */ 4347 bxe_int_disable_sync(sc, TRUE); 4348 4349 /* detach interrupts */ 4350 bxe_interrupt_detach(sc); 4351 4352 /* Report UNLOAD_DONE to MCP */ 4353 bxe_send_unload_done(sc, FALSE); 4354 } 4355 4356 /* 4357 * At this stage no more interrupts will arrive so we may safely clean 4358 * the queue'able objects here in case they failed to get cleaned so far. 4359 */ 4360 if (IS_PF(sc)) { 4361 bxe_squeeze_objects(sc); 4362 } 4363 4364 /* There should be no more pending SP commands at this stage */ 4365 sc->sp_state = 0; 4366 4367 sc->port.pmf = 0; 4368 4369 bxe_free_fp_buffers(sc); 4370 4371 if (IS_PF(sc)) { 4372 bxe_free_mem(sc); 4373 } 4374 4375 bxe_free_fw_stats_mem(sc); 4376 4377 sc->state = BXE_STATE_CLOSED; 4378 4379 /* 4380 * Check if there are pending parity attentions. If there are - set 4381 * RECOVERY_IN_PROGRESS. 4382 */ 4383 if (IS_PF(sc) && bxe_chk_parity_attn(sc, &global, FALSE)) { 4384 bxe_set_reset_in_progress(sc); 4385 4386 /* Set RESET_IS_GLOBAL if needed */ 4387 if (global) { 4388 bxe_set_reset_global(sc); 4389 } 4390 } 4391 4392 /* 4393 * The last driver must disable a "close the gate" if there is no 4394 * parity attention or "process kill" pending. 4395 */ 4396 if (IS_PF(sc) && !bxe_clear_pf_load(sc) && 4397 bxe_reset_is_done(sc, SC_PATH(sc))) { 4398 bxe_disable_close_the_gate(sc); 4399 } 4400 4401 BLOGD(sc, DBG_LOAD, "Ended NIC unload\n"); 4402 4403 bxe_link_report(sc); 4404 4405 return (0); 4406 } 4407 4408 /* 4409 * Called by the OS to set various media options (i.e. link, speed, etc.) when 4410 * the user runs "ifconfig bxe media ..." or "ifconfig bxe mediaopt ...". 4411 */ 4412 static int 4413 bxe_ifmedia_update(struct ifnet *ifp) 4414 { 4415 struct bxe_softc *sc = (struct bxe_softc *)if_getsoftc(ifp); 4416 struct ifmedia *ifm; 4417 4418 ifm = &sc->ifmedia; 4419 4420 /* We only support Ethernet media type. */ 4421 if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER) { 4422 return (EINVAL); 4423 } 4424 4425 switch (IFM_SUBTYPE(ifm->ifm_media)) { 4426 case IFM_AUTO: 4427 break; 4428 case IFM_10G_CX4: 4429 case IFM_10G_SR: 4430 case IFM_10G_T: 4431 case IFM_10G_TWINAX: 4432 default: 4433 /* We don't support changing the media type. */ 4434 BLOGD(sc, DBG_LOAD, "Invalid media type (%d)\n", 4435 IFM_SUBTYPE(ifm->ifm_media)); 4436 return (EINVAL); 4437 } 4438 4439 return (0); 4440 } 4441 4442 /* 4443 * Called by the OS to get the current media status (i.e. link, speed, etc.). 4444 */ 4445 static void 4446 bxe_ifmedia_status(struct ifnet *ifp, struct ifmediareq *ifmr) 4447 { 4448 struct bxe_softc *sc = if_getsoftc(ifp); 4449 4450 /* Bug 165447: the 'ifconfig' tool skips printing of the "status: ..." 4451 line if the IFM_AVALID flag is *NOT* set. So we need to set this 4452 flag unconditionally (irrespective of the admininistrative 4453 'up/down' state of the interface) to ensure that that line is always 4454 displayed. 4455 */ 4456 ifmr->ifm_status = IFM_AVALID; 4457 4458 /* Setup the default interface info. */ 4459 ifmr->ifm_active = IFM_ETHER; 4460 4461 /* Report link down if the driver isn't running. */ 4462 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) { 4463 ifmr->ifm_active |= IFM_NONE; 4464 BLOGD(sc, DBG_PHY, "in %s : nic still not loaded fully\n", __func__); 4465 BLOGD(sc, DBG_PHY, "in %s : link_up (1) : %d\n", 4466 __func__, sc->link_vars.link_up); 4467 return; 4468 } 4469 4470 4471 if (sc->link_vars.link_up) { 4472 ifmr->ifm_status |= IFM_ACTIVE; 4473 ifmr->ifm_active |= IFM_FDX; 4474 } else { 4475 ifmr->ifm_active |= IFM_NONE; 4476 BLOGD(sc, DBG_PHY, "in %s : setting IFM_NONE\n", 4477 __func__); 4478 return; 4479 } 4480 4481 ifmr->ifm_active |= sc->media; 4482 return; 4483 } 4484 4485 static void 4486 bxe_handle_chip_tq(void *context, 4487 int pending) 4488 { 4489 struct bxe_softc *sc = (struct bxe_softc *)context; 4490 long work = atomic_load_acq_long(&sc->chip_tq_flags); 4491 4492 switch (work) 4493 { 4494 4495 case CHIP_TQ_REINIT: 4496 if (if_getdrvflags(sc->ifp) & IFF_DRV_RUNNING) { 4497 /* restart the interface */ 4498 BLOGD(sc, DBG_LOAD, "Restarting the interface...\n"); 4499 bxe_periodic_stop(sc); 4500 BXE_CORE_LOCK(sc); 4501 bxe_stop_locked(sc); 4502 bxe_init_locked(sc); 4503 BXE_CORE_UNLOCK(sc); 4504 } 4505 break; 4506 4507 default: 4508 break; 4509 } 4510 } 4511 4512 /* 4513 * Handles any IOCTL calls from the operating system. 4514 * 4515 * Returns: 4516 * 0 = Success, >0 Failure 4517 */ 4518 static int 4519 bxe_ioctl(if_t ifp, 4520 u_long command, 4521 caddr_t data) 4522 { 4523 struct bxe_softc *sc = if_getsoftc(ifp); 4524 struct ifreq *ifr = (struct ifreq *)data; 4525 int mask = 0; 4526 int reinit = 0; 4527 int error = 0; 4528 4529 int mtu_min = (ETH_MIN_PACKET_SIZE - ETH_HLEN); 4530 int mtu_max = (MJUM9BYTES - ETH_OVERHEAD - IP_HEADER_ALIGNMENT_PADDING); 4531 4532 switch (command) 4533 { 4534 case SIOCSIFMTU: 4535 BLOGD(sc, DBG_IOCTL, "Received SIOCSIFMTU ioctl (mtu=%d)\n", 4536 ifr->ifr_mtu); 4537 4538 if (sc->mtu == ifr->ifr_mtu) { 4539 /* nothing to change */ 4540 break; 4541 } 4542 4543 if ((ifr->ifr_mtu < mtu_min) || (ifr->ifr_mtu > mtu_max)) { 4544 BLOGE(sc, "Unsupported MTU size %d (range is %d-%d)\n", 4545 ifr->ifr_mtu, mtu_min, mtu_max); 4546 error = EINVAL; 4547 break; 4548 } 4549 4550 atomic_store_rel_int((volatile unsigned int *)&sc->mtu, 4551 (unsigned long)ifr->ifr_mtu); 4552 /* 4553 atomic_store_rel_long((volatile unsigned long *)&if_getmtu(ifp), 4554 (unsigned long)ifr->ifr_mtu); 4555 XXX - Not sure why it needs to be atomic 4556 */ 4557 if_setmtu(ifp, ifr->ifr_mtu); 4558 reinit = 1; 4559 break; 4560 4561 case SIOCSIFFLAGS: 4562 /* toggle the interface state up or down */ 4563 BLOGD(sc, DBG_IOCTL, "Received SIOCSIFFLAGS ioctl\n"); 4564 4565 BXE_CORE_LOCK(sc); 4566 /* check if the interface is up */ 4567 if (if_getflags(ifp) & IFF_UP) { 4568 if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) { 4569 /* set the receive mode flags */ 4570 bxe_set_rx_mode(sc); 4571 } else if(sc->state != BXE_STATE_DISABLED) { 4572 bxe_init_locked(sc); 4573 } 4574 } else { 4575 if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) { 4576 bxe_periodic_stop(sc); 4577 bxe_stop_locked(sc); 4578 } 4579 } 4580 BXE_CORE_UNLOCK(sc); 4581 4582 break; 4583 4584 case SIOCADDMULTI: 4585 case SIOCDELMULTI: 4586 /* add/delete multicast addresses */ 4587 BLOGD(sc, DBG_IOCTL, "Received SIOCADDMULTI/SIOCDELMULTI ioctl\n"); 4588 4589 /* check if the interface is up */ 4590 if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) { 4591 /* set the receive mode flags */ 4592 BXE_CORE_LOCK(sc); 4593 bxe_set_rx_mode(sc); 4594 BXE_CORE_UNLOCK(sc); 4595 } 4596 4597 break; 4598 4599 case SIOCSIFCAP: 4600 /* find out which capabilities have changed */ 4601 mask = (ifr->ifr_reqcap ^ if_getcapenable(ifp)); 4602 4603 BLOGD(sc, DBG_IOCTL, "Received SIOCSIFCAP ioctl (mask=0x%08x)\n", 4604 mask); 4605 4606 /* toggle the LRO capabilites enable flag */ 4607 if (mask & IFCAP_LRO) { 4608 if_togglecapenable(ifp, IFCAP_LRO); 4609 BLOGD(sc, DBG_IOCTL, "Turning LRO %s\n", 4610 (if_getcapenable(ifp) & IFCAP_LRO) ? "ON" : "OFF"); 4611 reinit = 1; 4612 } 4613 4614 /* toggle the TXCSUM checksum capabilites enable flag */ 4615 if (mask & IFCAP_TXCSUM) { 4616 if_togglecapenable(ifp, IFCAP_TXCSUM); 4617 BLOGD(sc, DBG_IOCTL, "Turning TXCSUM %s\n", 4618 (if_getcapenable(ifp) & IFCAP_TXCSUM) ? "ON" : "OFF"); 4619 if (if_getcapenable(ifp) & IFCAP_TXCSUM) { 4620 if_sethwassistbits(ifp, (CSUM_IP | 4621 CSUM_TCP | 4622 CSUM_UDP | 4623 CSUM_TSO | 4624 CSUM_TCP_IPV6 | 4625 CSUM_UDP_IPV6), 0); 4626 } else { 4627 if_clearhwassist(ifp); /* XXX */ 4628 } 4629 } 4630 4631 /* toggle the RXCSUM checksum capabilities enable flag */ 4632 if (mask & IFCAP_RXCSUM) { 4633 if_togglecapenable(ifp, IFCAP_RXCSUM); 4634 BLOGD(sc, DBG_IOCTL, "Turning RXCSUM %s\n", 4635 (if_getcapenable(ifp) & IFCAP_RXCSUM) ? "ON" : "OFF"); 4636 if (if_getcapenable(ifp) & IFCAP_RXCSUM) { 4637 if_sethwassistbits(ifp, (CSUM_IP | 4638 CSUM_TCP | 4639 CSUM_UDP | 4640 CSUM_TSO | 4641 CSUM_TCP_IPV6 | 4642 CSUM_UDP_IPV6), 0); 4643 } else { 4644 if_clearhwassist(ifp); /* XXX */ 4645 } 4646 } 4647 4648 /* toggle TSO4 capabilities enabled flag */ 4649 if (mask & IFCAP_TSO4) { 4650 if_togglecapenable(ifp, IFCAP_TSO4); 4651 BLOGD(sc, DBG_IOCTL, "Turning TSO4 %s\n", 4652 (if_getcapenable(ifp) & IFCAP_TSO4) ? "ON" : "OFF"); 4653 } 4654 4655 /* toggle TSO6 capabilities enabled flag */ 4656 if (mask & IFCAP_TSO6) { 4657 if_togglecapenable(ifp, IFCAP_TSO6); 4658 BLOGD(sc, DBG_IOCTL, "Turning TSO6 %s\n", 4659 (if_getcapenable(ifp) & IFCAP_TSO6) ? "ON" : "OFF"); 4660 } 4661 4662 /* toggle VLAN_HWTSO capabilities enabled flag */ 4663 if (mask & IFCAP_VLAN_HWTSO) { 4664 4665 if_togglecapenable(ifp, IFCAP_VLAN_HWTSO); 4666 BLOGD(sc, DBG_IOCTL, "Turning VLAN_HWTSO %s\n", 4667 (if_getcapenable(ifp) & IFCAP_VLAN_HWTSO) ? "ON" : "OFF"); 4668 } 4669 4670 /* toggle VLAN_HWCSUM capabilities enabled flag */ 4671 if (mask & IFCAP_VLAN_HWCSUM) { 4672 /* XXX investigate this... */ 4673 BLOGE(sc, "Changing VLAN_HWCSUM is not supported!\n"); 4674 error = EINVAL; 4675 } 4676 4677 /* toggle VLAN_MTU capabilities enable flag */ 4678 if (mask & IFCAP_VLAN_MTU) { 4679 /* XXX investigate this... */ 4680 BLOGE(sc, "Changing VLAN_MTU is not supported!\n"); 4681 error = EINVAL; 4682 } 4683 4684 /* toggle VLAN_HWTAGGING capabilities enabled flag */ 4685 if (mask & IFCAP_VLAN_HWTAGGING) { 4686 /* XXX investigate this... */ 4687 BLOGE(sc, "Changing VLAN_HWTAGGING is not supported!\n"); 4688 error = EINVAL; 4689 } 4690 4691 /* toggle VLAN_HWFILTER capabilities enabled flag */ 4692 if (mask & IFCAP_VLAN_HWFILTER) { 4693 /* XXX investigate this... */ 4694 BLOGE(sc, "Changing VLAN_HWFILTER is not supported!\n"); 4695 error = EINVAL; 4696 } 4697 4698 /* XXX not yet... 4699 * IFCAP_WOL_MAGIC 4700 */ 4701 4702 break; 4703 4704 case SIOCSIFMEDIA: 4705 case SIOCGIFMEDIA: 4706 /* set/get interface media */ 4707 BLOGD(sc, DBG_IOCTL, 4708 "Received SIOCSIFMEDIA/SIOCGIFMEDIA ioctl (cmd=%lu)\n", 4709 (command & 0xff)); 4710 error = ifmedia_ioctl(ifp, ifr, &sc->ifmedia, command); 4711 break; 4712 4713 default: 4714 BLOGD(sc, DBG_IOCTL, "Received Unknown Ioctl (cmd=%lu)\n", 4715 (command & 0xff)); 4716 error = ether_ioctl(ifp, command, data); 4717 break; 4718 } 4719 4720 if (reinit && (if_getdrvflags(sc->ifp) & IFF_DRV_RUNNING)) { 4721 BLOGD(sc, DBG_LOAD | DBG_IOCTL, 4722 "Re-initializing hardware from IOCTL change\n"); 4723 bxe_periodic_stop(sc); 4724 BXE_CORE_LOCK(sc); 4725 bxe_stop_locked(sc); 4726 bxe_init_locked(sc); 4727 BXE_CORE_UNLOCK(sc); 4728 } 4729 4730 return (error); 4731 } 4732 4733 static __noinline void 4734 bxe_dump_mbuf(struct bxe_softc *sc, 4735 struct mbuf *m, 4736 uint8_t contents) 4737 { 4738 char * type; 4739 int i = 0; 4740 4741 if (!(sc->debug & DBG_MBUF)) { 4742 return; 4743 } 4744 4745 if (m == NULL) { 4746 BLOGD(sc, DBG_MBUF, "mbuf: null pointer\n"); 4747 return; 4748 } 4749 4750 while (m) { 4751 4752 #if __FreeBSD_version >= 1000000 4753 BLOGD(sc, DBG_MBUF, 4754 "%02d: mbuf=%p m_len=%d m_flags=0x%b m_data=%p\n", 4755 i, m, m->m_len, m->m_flags, M_FLAG_BITS, m->m_data); 4756 4757 if (m->m_flags & M_PKTHDR) { 4758 BLOGD(sc, DBG_MBUF, 4759 "%02d: - m_pkthdr: tot_len=%d flags=0x%b csum_flags=%b\n", 4760 i, m->m_pkthdr.len, m->m_flags, M_FLAG_BITS, 4761 (int)m->m_pkthdr.csum_flags, CSUM_BITS); 4762 } 4763 #else 4764 BLOGD(sc, DBG_MBUF, 4765 "%02d: mbuf=%p m_len=%d m_flags=0x%b m_data=%p\n", 4766 i, m, m->m_len, m->m_flags, 4767 "\20\1M_EXT\2M_PKTHDR\3M_EOR\4M_RDONLY", m->m_data); 4768 4769 if (m->m_flags & M_PKTHDR) { 4770 BLOGD(sc, DBG_MBUF, 4771 "%02d: - m_pkthdr: tot_len=%d flags=0x%b csum_flags=%b\n", 4772 i, m->m_pkthdr.len, m->m_flags, 4773 "\20\12M_BCAST\13M_MCAST\14M_FRAG" 4774 "\15M_FIRSTFRAG\16M_LASTFRAG\21M_VLANTAG" 4775 "\22M_PROMISC\23M_NOFREE", 4776 (int)m->m_pkthdr.csum_flags, 4777 "\20\1CSUM_IP\2CSUM_TCP\3CSUM_UDP\4CSUM_IP_FRAGS" 4778 "\5CSUM_FRAGMENT\6CSUM_TSO\11CSUM_IP_CHECKED" 4779 "\12CSUM_IP_VALID\13CSUM_DATA_VALID" 4780 "\14CSUM_PSEUDO_HDR"); 4781 } 4782 #endif /* #if __FreeBSD_version >= 1000000 */ 4783 4784 if (m->m_flags & M_EXT) { 4785 switch (m->m_ext.ext_type) { 4786 case EXT_CLUSTER: type = "EXT_CLUSTER"; break; 4787 case EXT_SFBUF: type = "EXT_SFBUF"; break; 4788 case EXT_JUMBOP: type = "EXT_JUMBOP"; break; 4789 case EXT_JUMBO9: type = "EXT_JUMBO9"; break; 4790 case EXT_JUMBO16: type = "EXT_JUMBO16"; break; 4791 case EXT_PACKET: type = "EXT_PACKET"; break; 4792 case EXT_MBUF: type = "EXT_MBUF"; break; 4793 case EXT_NET_DRV: type = "EXT_NET_DRV"; break; 4794 case EXT_MOD_TYPE: type = "EXT_MOD_TYPE"; break; 4795 case EXT_DISPOSABLE: type = "EXT_DISPOSABLE"; break; 4796 case EXT_EXTREF: type = "EXT_EXTREF"; break; 4797 default: type = "UNKNOWN"; break; 4798 } 4799 4800 BLOGD(sc, DBG_MBUF, 4801 "%02d: - m_ext: %p ext_size=%d type=%s\n", 4802 i, m->m_ext.ext_buf, m->m_ext.ext_size, type); 4803 } 4804 4805 if (contents) { 4806 bxe_dump_mbuf_data(sc, "mbuf data", m, TRUE); 4807 } 4808 4809 m = m->m_next; 4810 i++; 4811 } 4812 } 4813 4814 /* 4815 * Checks to ensure the 13 bd sliding window is >= MSS for TSO. 4816 * Check that (13 total bds - 3 bds) = 10 bd window >= MSS. 4817 * The window: 3 bds are = 1 for headers BD + 2 for parse BD and last BD 4818 * The headers comes in a separate bd in FreeBSD so 13-3=10. 4819 * Returns: 0 if OK to send, 1 if packet needs further defragmentation 4820 */ 4821 static int 4822 bxe_chktso_window(struct bxe_softc *sc, 4823 int nsegs, 4824 bus_dma_segment_t *segs, 4825 struct mbuf *m) 4826 { 4827 uint32_t num_wnds, wnd_size, wnd_sum; 4828 int32_t frag_idx, wnd_idx; 4829 unsigned short lso_mss; 4830 int defrag; 4831 4832 defrag = 0; 4833 wnd_sum = 0; 4834 wnd_size = 10; 4835 num_wnds = nsegs - wnd_size; 4836 lso_mss = htole16(m->m_pkthdr.tso_segsz); 4837 4838 /* 4839 * Total header lengths Eth+IP+TCP in first FreeBSD mbuf so calculate the 4840 * first window sum of data while skipping the first assuming it is the 4841 * header in FreeBSD. 4842 */ 4843 for (frag_idx = 1; (frag_idx <= wnd_size); frag_idx++) { 4844 wnd_sum += htole16(segs[frag_idx].ds_len); 4845 } 4846 4847 /* check the first 10 bd window size */ 4848 if (wnd_sum < lso_mss) { 4849 return (1); 4850 } 4851 4852 /* run through the windows */ 4853 for (wnd_idx = 0; wnd_idx < num_wnds; wnd_idx++, frag_idx++) { 4854 /* subtract the first mbuf->m_len of the last wndw(-header) */ 4855 wnd_sum -= htole16(segs[wnd_idx+1].ds_len); 4856 /* add the next mbuf len to the len of our new window */ 4857 wnd_sum += htole16(segs[frag_idx].ds_len); 4858 if (wnd_sum < lso_mss) { 4859 return (1); 4860 } 4861 } 4862 4863 return (0); 4864 } 4865 4866 static uint8_t 4867 bxe_set_pbd_csum_e2(struct bxe_fastpath *fp, 4868 struct mbuf *m, 4869 uint32_t *parsing_data) 4870 { 4871 struct ether_vlan_header *eh = NULL; 4872 struct ip *ip4 = NULL; 4873 struct ip6_hdr *ip6 = NULL; 4874 caddr_t ip = NULL; 4875 struct tcphdr *th = NULL; 4876 int e_hlen, ip_hlen, l4_off; 4877 uint16_t proto; 4878 4879 if (m->m_pkthdr.csum_flags == CSUM_IP) { 4880 /* no L4 checksum offload needed */ 4881 return (0); 4882 } 4883 4884 /* get the Ethernet header */ 4885 eh = mtod(m, struct ether_vlan_header *); 4886 4887 /* handle VLAN encapsulation if present */ 4888 if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) { 4889 e_hlen = (ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN); 4890 proto = ntohs(eh->evl_proto); 4891 } else { 4892 e_hlen = ETHER_HDR_LEN; 4893 proto = ntohs(eh->evl_encap_proto); 4894 } 4895 4896 switch (proto) { 4897 case ETHERTYPE_IP: 4898 /* get the IP header, if mbuf len < 20 then header in next mbuf */ 4899 ip4 = (m->m_len < sizeof(struct ip)) ? 4900 (struct ip *)m->m_next->m_data : 4901 (struct ip *)(m->m_data + e_hlen); 4902 /* ip_hl is number of 32-bit words */ 4903 ip_hlen = (ip4->ip_hl << 2); 4904 ip = (caddr_t)ip4; 4905 break; 4906 case ETHERTYPE_IPV6: 4907 /* get the IPv6 header, if mbuf len < 40 then header in next mbuf */ 4908 ip6 = (m->m_len < sizeof(struct ip6_hdr)) ? 4909 (struct ip6_hdr *)m->m_next->m_data : 4910 (struct ip6_hdr *)(m->m_data + e_hlen); 4911 /* XXX cannot support offload with IPv6 extensions */ 4912 ip_hlen = sizeof(struct ip6_hdr); 4913 ip = (caddr_t)ip6; 4914 break; 4915 default: 4916 /* We can't offload in this case... */ 4917 /* XXX error stat ??? */ 4918 return (0); 4919 } 4920 4921 /* XXX assuming L4 header is contiguous to IPv4/IPv6 in the same mbuf */ 4922 l4_off = (e_hlen + ip_hlen); 4923 4924 *parsing_data |= 4925 (((l4_off >> 1) << ETH_TX_PARSE_BD_E2_L4_HDR_START_OFFSET_W_SHIFT) & 4926 ETH_TX_PARSE_BD_E2_L4_HDR_START_OFFSET_W); 4927 4928 if (m->m_pkthdr.csum_flags & (CSUM_TCP | 4929 CSUM_TSO | 4930 CSUM_TCP_IPV6)) { 4931 fp->eth_q_stats.tx_ofld_frames_csum_tcp++; 4932 th = (struct tcphdr *)(ip + ip_hlen); 4933 /* th_off is number of 32-bit words */ 4934 *parsing_data |= ((th->th_off << 4935 ETH_TX_PARSE_BD_E2_TCP_HDR_LENGTH_DW_SHIFT) & 4936 ETH_TX_PARSE_BD_E2_TCP_HDR_LENGTH_DW); 4937 return (l4_off + (th->th_off << 2)); /* entire header length */ 4938 } else if (m->m_pkthdr.csum_flags & (CSUM_UDP | 4939 CSUM_UDP_IPV6)) { 4940 fp->eth_q_stats.tx_ofld_frames_csum_udp++; 4941 return (l4_off + sizeof(struct udphdr)); /* entire header length */ 4942 } else { 4943 /* XXX error stat ??? */ 4944 return (0); 4945 } 4946 } 4947 4948 static uint8_t 4949 bxe_set_pbd_csum(struct bxe_fastpath *fp, 4950 struct mbuf *m, 4951 struct eth_tx_parse_bd_e1x *pbd) 4952 { 4953 struct ether_vlan_header *eh = NULL; 4954 struct ip *ip4 = NULL; 4955 struct ip6_hdr *ip6 = NULL; 4956 caddr_t ip = NULL; 4957 struct tcphdr *th = NULL; 4958 struct udphdr *uh = NULL; 4959 int e_hlen, ip_hlen; 4960 uint16_t proto; 4961 uint8_t hlen; 4962 uint16_t tmp_csum; 4963 uint32_t *tmp_uh; 4964 4965 /* get the Ethernet header */ 4966 eh = mtod(m, struct ether_vlan_header *); 4967 4968 /* handle VLAN encapsulation if present */ 4969 if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) { 4970 e_hlen = (ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN); 4971 proto = ntohs(eh->evl_proto); 4972 } else { 4973 e_hlen = ETHER_HDR_LEN; 4974 proto = ntohs(eh->evl_encap_proto); 4975 } 4976 4977 switch (proto) { 4978 case ETHERTYPE_IP: 4979 /* get the IP header, if mbuf len < 20 then header in next mbuf */ 4980 ip4 = (m->m_len < sizeof(struct ip)) ? 4981 (struct ip *)m->m_next->m_data : 4982 (struct ip *)(m->m_data + e_hlen); 4983 /* ip_hl is number of 32-bit words */ 4984 ip_hlen = (ip4->ip_hl << 1); 4985 ip = (caddr_t)ip4; 4986 break; 4987 case ETHERTYPE_IPV6: 4988 /* get the IPv6 header, if mbuf len < 40 then header in next mbuf */ 4989 ip6 = (m->m_len < sizeof(struct ip6_hdr)) ? 4990 (struct ip6_hdr *)m->m_next->m_data : 4991 (struct ip6_hdr *)(m->m_data + e_hlen); 4992 /* XXX cannot support offload with IPv6 extensions */ 4993 ip_hlen = (sizeof(struct ip6_hdr) >> 1); 4994 ip = (caddr_t)ip6; 4995 break; 4996 default: 4997 /* We can't offload in this case... */ 4998 /* XXX error stat ??? */ 4999 return (0); 5000 } 5001 5002 hlen = (e_hlen >> 1); 5003 5004 /* note that rest of global_data is indirectly zeroed here */ 5005 if (m->m_flags & M_VLANTAG) { 5006 pbd->global_data = 5007 htole16(hlen | (1 << ETH_TX_PARSE_BD_E1X_LLC_SNAP_EN_SHIFT)); 5008 } else { 5009 pbd->global_data = htole16(hlen); 5010 } 5011 5012 pbd->ip_hlen_w = ip_hlen; 5013 5014 hlen += pbd->ip_hlen_w; 5015 5016 /* XXX assuming L4 header is contiguous to IPv4/IPv6 in the same mbuf */ 5017 5018 if (m->m_pkthdr.csum_flags & (CSUM_TCP | 5019 CSUM_TSO | 5020 CSUM_TCP_IPV6)) { 5021 th = (struct tcphdr *)(ip + (ip_hlen << 1)); 5022 /* th_off is number of 32-bit words */ 5023 hlen += (uint16_t)(th->th_off << 1); 5024 } else if (m->m_pkthdr.csum_flags & (CSUM_UDP | 5025 CSUM_UDP_IPV6)) { 5026 uh = (struct udphdr *)(ip + (ip_hlen << 1)); 5027 hlen += (sizeof(struct udphdr) / 2); 5028 } else { 5029 /* valid case as only CSUM_IP was set */ 5030 return (0); 5031 } 5032 5033 pbd->total_hlen_w = htole16(hlen); 5034 5035 if (m->m_pkthdr.csum_flags & (CSUM_TCP | 5036 CSUM_TSO | 5037 CSUM_TCP_IPV6)) { 5038 fp->eth_q_stats.tx_ofld_frames_csum_tcp++; 5039 pbd->tcp_pseudo_csum = ntohs(th->th_sum); 5040 } else if (m->m_pkthdr.csum_flags & (CSUM_UDP | 5041 CSUM_UDP_IPV6)) { 5042 fp->eth_q_stats.tx_ofld_frames_csum_udp++; 5043 5044 /* 5045 * Everest1 (i.e. 57710, 57711, 57711E) does not natively support UDP 5046 * checksums and does not know anything about the UDP header and where 5047 * the checksum field is located. It only knows about TCP. Therefore 5048 * we "lie" to the hardware for outgoing UDP packets w/ checksum 5049 * offload. Since the checksum field offset for TCP is 16 bytes and 5050 * for UDP it is 6 bytes we pass a pointer to the hardware that is 10 5051 * bytes less than the start of the UDP header. This allows the 5052 * hardware to write the checksum in the correct spot. But the 5053 * hardware will compute a checksum which includes the last 10 bytes 5054 * of the IP header. To correct this we tweak the stack computed 5055 * pseudo checksum by folding in the calculation of the inverse 5056 * checksum for those final 10 bytes of the IP header. This allows 5057 * the correct checksum to be computed by the hardware. 5058 */ 5059 5060 /* set pointer 10 bytes before UDP header */ 5061 tmp_uh = (uint32_t *)((uint8_t *)uh - 10); 5062 5063 /* calculate a pseudo header checksum over the first 10 bytes */ 5064 tmp_csum = in_pseudo(*tmp_uh, 5065 *(tmp_uh + 1), 5066 *(uint16_t *)(tmp_uh + 2)); 5067 5068 pbd->tcp_pseudo_csum = ntohs(in_addword(uh->uh_sum, ~tmp_csum)); 5069 } 5070 5071 return (hlen * 2); /* entire header length, number of bytes */ 5072 } 5073 5074 static void 5075 bxe_set_pbd_lso_e2(struct mbuf *m, 5076 uint32_t *parsing_data) 5077 { 5078 *parsing_data |= ((m->m_pkthdr.tso_segsz << 5079 ETH_TX_PARSE_BD_E2_LSO_MSS_SHIFT) & 5080 ETH_TX_PARSE_BD_E2_LSO_MSS); 5081 5082 /* XXX test for IPv6 with extension header... */ 5083 } 5084 5085 static void 5086 bxe_set_pbd_lso(struct mbuf *m, 5087 struct eth_tx_parse_bd_e1x *pbd) 5088 { 5089 struct ether_vlan_header *eh = NULL; 5090 struct ip *ip = NULL; 5091 struct tcphdr *th = NULL; 5092 int e_hlen; 5093 5094 /* get the Ethernet header */ 5095 eh = mtod(m, struct ether_vlan_header *); 5096 5097 /* handle VLAN encapsulation if present */ 5098 e_hlen = (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) ? 5099 (ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN) : ETHER_HDR_LEN; 5100 5101 /* get the IP and TCP header, with LSO entire header in first mbuf */ 5102 /* XXX assuming IPv4 */ 5103 ip = (struct ip *)(m->m_data + e_hlen); 5104 th = (struct tcphdr *)((caddr_t)ip + (ip->ip_hl << 2)); 5105 5106 pbd->lso_mss = htole16(m->m_pkthdr.tso_segsz); 5107 pbd->tcp_send_seq = ntohl(th->th_seq); 5108 pbd->tcp_flags = ((ntohl(((uint32_t *)th)[3]) >> 16) & 0xff); 5109 5110 #if 1 5111 /* XXX IPv4 */ 5112 pbd->ip_id = ntohs(ip->ip_id); 5113 pbd->tcp_pseudo_csum = 5114 ntohs(in_pseudo(ip->ip_src.s_addr, 5115 ip->ip_dst.s_addr, 5116 htons(IPPROTO_TCP))); 5117 #else 5118 /* XXX IPv6 */ 5119 pbd->tcp_pseudo_csum = 5120 ntohs(in_pseudo(&ip6->ip6_src, 5121 &ip6->ip6_dst, 5122 htons(IPPROTO_TCP))); 5123 #endif 5124 5125 pbd->global_data |= 5126 htole16(ETH_TX_PARSE_BD_E1X_PSEUDO_CS_WITHOUT_LEN); 5127 } 5128 5129 /* 5130 * Encapsulte an mbuf cluster into the tx bd chain and makes the memory 5131 * visible to the controller. 5132 * 5133 * If an mbuf is submitted to this routine and cannot be given to the 5134 * controller (e.g. it has too many fragments) then the function may free 5135 * the mbuf and return to the caller. 5136 * 5137 * Returns: 5138 * 0 = Success, !0 = Failure 5139 * Note the side effect that an mbuf may be freed if it causes a problem. 5140 */ 5141 static int 5142 bxe_tx_encap(struct bxe_fastpath *fp, struct mbuf **m_head) 5143 { 5144 bus_dma_segment_t segs[32]; 5145 struct mbuf *m0; 5146 struct bxe_sw_tx_bd *tx_buf; 5147 struct eth_tx_parse_bd_e1x *pbd_e1x = NULL; 5148 struct eth_tx_parse_bd_e2 *pbd_e2 = NULL; 5149 /* struct eth_tx_parse_2nd_bd *pbd2 = NULL; */ 5150 struct eth_tx_bd *tx_data_bd; 5151 struct eth_tx_bd *tx_total_pkt_size_bd; 5152 struct eth_tx_start_bd *tx_start_bd; 5153 uint16_t bd_prod, pkt_prod, total_pkt_size; 5154 uint8_t mac_type; 5155 int defragged, error, nsegs, rc, nbds, vlan_off, ovlan; 5156 struct bxe_softc *sc; 5157 uint16_t tx_bd_avail; 5158 struct ether_vlan_header *eh; 5159 uint32_t pbd_e2_parsing_data = 0; 5160 uint8_t hlen = 0; 5161 int tmp_bd; 5162 int i; 5163 5164 sc = fp->sc; 5165 5166 #if __FreeBSD_version >= 800000 5167 M_ASSERTPKTHDR(*m_head); 5168 #endif /* #if __FreeBSD_version >= 800000 */ 5169 5170 m0 = *m_head; 5171 rc = defragged = nbds = ovlan = vlan_off = total_pkt_size = 0; 5172 tx_start_bd = NULL; 5173 tx_data_bd = NULL; 5174 tx_total_pkt_size_bd = NULL; 5175 5176 /* get the H/W pointer for packets and BDs */ 5177 pkt_prod = fp->tx_pkt_prod; 5178 bd_prod = fp->tx_bd_prod; 5179 5180 mac_type = UNICAST_ADDRESS; 5181 5182 /* map the mbuf into the next open DMAable memory */ 5183 tx_buf = &fp->tx_mbuf_chain[TX_BD(pkt_prod)]; 5184 error = bus_dmamap_load_mbuf_sg(fp->tx_mbuf_tag, 5185 tx_buf->m_map, m0, 5186 segs, &nsegs, BUS_DMA_NOWAIT); 5187 5188 /* mapping errors */ 5189 if(__predict_false(error != 0)) { 5190 fp->eth_q_stats.tx_dma_mapping_failure++; 5191 if (error == ENOMEM) { 5192 /* resource issue, try again later */ 5193 rc = ENOMEM; 5194 } else if (error == EFBIG) { 5195 /* possibly recoverable with defragmentation */ 5196 fp->eth_q_stats.mbuf_defrag_attempts++; 5197 m0 = m_defrag(*m_head, M_NOWAIT); 5198 if (m0 == NULL) { 5199 fp->eth_q_stats.mbuf_defrag_failures++; 5200 rc = ENOBUFS; 5201 } else { 5202 /* defrag successful, try mapping again */ 5203 *m_head = m0; 5204 error = bus_dmamap_load_mbuf_sg(fp->tx_mbuf_tag, 5205 tx_buf->m_map, m0, 5206 segs, &nsegs, BUS_DMA_NOWAIT); 5207 if (error) { 5208 fp->eth_q_stats.tx_dma_mapping_failure++; 5209 rc = error; 5210 } 5211 } 5212 } else { 5213 /* unknown, unrecoverable mapping error */ 5214 BLOGE(sc, "Unknown TX mapping error rc=%d\n", error); 5215 bxe_dump_mbuf(sc, m0, FALSE); 5216 rc = error; 5217 } 5218 5219 goto bxe_tx_encap_continue; 5220 } 5221 5222 tx_bd_avail = bxe_tx_avail(sc, fp); 5223 5224 /* make sure there is enough room in the send queue */ 5225 if (__predict_false(tx_bd_avail < (nsegs + 2))) { 5226 /* Recoverable, try again later. */ 5227 fp->eth_q_stats.tx_hw_queue_full++; 5228 bus_dmamap_unload(fp->tx_mbuf_tag, tx_buf->m_map); 5229 rc = ENOMEM; 5230 goto bxe_tx_encap_continue; 5231 } 5232 5233 /* capture the current H/W TX chain high watermark */ 5234 if (__predict_false(fp->eth_q_stats.tx_hw_max_queue_depth < 5235 (TX_BD_USABLE - tx_bd_avail))) { 5236 fp->eth_q_stats.tx_hw_max_queue_depth = (TX_BD_USABLE - tx_bd_avail); 5237 } 5238 5239 /* make sure it fits in the packet window */ 5240 if (__predict_false(nsegs > BXE_MAX_SEGMENTS)) { 5241 /* 5242 * The mbuf may be to big for the controller to handle. If the frame 5243 * is a TSO frame we'll need to do an additional check. 5244 */ 5245 if (m0->m_pkthdr.csum_flags & CSUM_TSO) { 5246 if (bxe_chktso_window(sc, nsegs, segs, m0) == 0) { 5247 goto bxe_tx_encap_continue; /* OK to send */ 5248 } else { 5249 fp->eth_q_stats.tx_window_violation_tso++; 5250 } 5251 } else { 5252 fp->eth_q_stats.tx_window_violation_std++; 5253 } 5254 5255 /* lets try to defragment this mbuf and remap it */ 5256 fp->eth_q_stats.mbuf_defrag_attempts++; 5257 bus_dmamap_unload(fp->tx_mbuf_tag, tx_buf->m_map); 5258 5259 m0 = m_defrag(*m_head, M_NOWAIT); 5260 if (m0 == NULL) { 5261 fp->eth_q_stats.mbuf_defrag_failures++; 5262 /* Ugh, just drop the frame... :( */ 5263 rc = ENOBUFS; 5264 } else { 5265 /* defrag successful, try mapping again */ 5266 *m_head = m0; 5267 error = bus_dmamap_load_mbuf_sg(fp->tx_mbuf_tag, 5268 tx_buf->m_map, m0, 5269 segs, &nsegs, BUS_DMA_NOWAIT); 5270 if (error) { 5271 fp->eth_q_stats.tx_dma_mapping_failure++; 5272 /* No sense in trying to defrag/copy chain, drop it. :( */ 5273 rc = error; 5274 } else { 5275 /* if the chain is still too long then drop it */ 5276 if(m0->m_pkthdr.csum_flags & CSUM_TSO) { 5277 /* 5278 * in case TSO is enabled nsegs should be checked against 5279 * BXE_TSO_MAX_SEGMENTS 5280 */ 5281 if (__predict_false(nsegs > BXE_TSO_MAX_SEGMENTS)) { 5282 bus_dmamap_unload(fp->tx_mbuf_tag, tx_buf->m_map); 5283 fp->eth_q_stats.nsegs_path1_errors++; 5284 rc = ENODEV; 5285 } 5286 } else { 5287 if (__predict_false(nsegs > BXE_MAX_SEGMENTS)) { 5288 bus_dmamap_unload(fp->tx_mbuf_tag, tx_buf->m_map); 5289 fp->eth_q_stats.nsegs_path2_errors++; 5290 rc = ENODEV; 5291 } 5292 } 5293 } 5294 } 5295 } 5296 5297 bxe_tx_encap_continue: 5298 5299 /* Check for errors */ 5300 if (rc) { 5301 if (rc == ENOMEM) { 5302 /* recoverable try again later */ 5303 } else { 5304 fp->eth_q_stats.tx_soft_errors++; 5305 fp->eth_q_stats.mbuf_alloc_tx--; 5306 m_freem(*m_head); 5307 *m_head = NULL; 5308 } 5309 5310 return (rc); 5311 } 5312 5313 /* set flag according to packet type (UNICAST_ADDRESS is default) */ 5314 if (m0->m_flags & M_BCAST) { 5315 mac_type = BROADCAST_ADDRESS; 5316 } else if (m0->m_flags & M_MCAST) { 5317 mac_type = MULTICAST_ADDRESS; 5318 } 5319 5320 /* store the mbuf into the mbuf ring */ 5321 tx_buf->m = m0; 5322 tx_buf->first_bd = fp->tx_bd_prod; 5323 tx_buf->flags = 0; 5324 5325 /* prepare the first transmit (start) BD for the mbuf */ 5326 tx_start_bd = &fp->tx_chain[TX_BD(bd_prod)].start_bd; 5327 5328 BLOGD(sc, DBG_TX, 5329 "sending pkt_prod=%u tx_buf=%p next_idx=%u bd=%u tx_start_bd=%p\n", 5330 pkt_prod, tx_buf, fp->tx_pkt_prod, bd_prod, tx_start_bd); 5331 5332 tx_start_bd->addr_lo = htole32(U64_LO(segs[0].ds_addr)); 5333 tx_start_bd->addr_hi = htole32(U64_HI(segs[0].ds_addr)); 5334 tx_start_bd->nbytes = htole16(segs[0].ds_len); 5335 total_pkt_size += tx_start_bd->nbytes; 5336 tx_start_bd->bd_flags.as_bitfield = ETH_TX_BD_FLAGS_START_BD; 5337 5338 tx_start_bd->general_data = (1 << ETH_TX_START_BD_HDR_NBDS_SHIFT); 5339 5340 /* all frames have at least Start BD + Parsing BD */ 5341 nbds = nsegs + 1; 5342 tx_start_bd->nbd = htole16(nbds); 5343 5344 if (m0->m_flags & M_VLANTAG) { 5345 tx_start_bd->vlan_or_ethertype = htole16(m0->m_pkthdr.ether_vtag); 5346 tx_start_bd->bd_flags.as_bitfield |= 5347 (X_ETH_OUTBAND_VLAN << ETH_TX_BD_FLAGS_VLAN_MODE_SHIFT); 5348 } else { 5349 /* vf tx, start bd must hold the ethertype for fw to enforce it */ 5350 if (IS_VF(sc)) { 5351 /* map ethernet header to find type and header length */ 5352 eh = mtod(m0, struct ether_vlan_header *); 5353 tx_start_bd->vlan_or_ethertype = eh->evl_encap_proto; 5354 } else { 5355 /* used by FW for packet accounting */ 5356 tx_start_bd->vlan_or_ethertype = htole16(fp->tx_pkt_prod); 5357 } 5358 } 5359 5360 /* 5361 * add a parsing BD from the chain. The parsing BD is always added 5362 * though it is only used for TSO and chksum 5363 */ 5364 bd_prod = TX_BD_NEXT(bd_prod); 5365 5366 if (m0->m_pkthdr.csum_flags) { 5367 if (m0->m_pkthdr.csum_flags & CSUM_IP) { 5368 fp->eth_q_stats.tx_ofld_frames_csum_ip++; 5369 tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_IP_CSUM; 5370 } 5371 5372 if (m0->m_pkthdr.csum_flags & CSUM_TCP_IPV6) { 5373 tx_start_bd->bd_flags.as_bitfield |= (ETH_TX_BD_FLAGS_IPV6 | 5374 ETH_TX_BD_FLAGS_L4_CSUM); 5375 } else if (m0->m_pkthdr.csum_flags & CSUM_UDP_IPV6) { 5376 tx_start_bd->bd_flags.as_bitfield |= (ETH_TX_BD_FLAGS_IPV6 | 5377 ETH_TX_BD_FLAGS_IS_UDP | 5378 ETH_TX_BD_FLAGS_L4_CSUM); 5379 } else if ((m0->m_pkthdr.csum_flags & CSUM_TCP) || 5380 (m0->m_pkthdr.csum_flags & CSUM_TSO)) { 5381 tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_L4_CSUM; 5382 } else if (m0->m_pkthdr.csum_flags & CSUM_UDP) { 5383 tx_start_bd->bd_flags.as_bitfield |= (ETH_TX_BD_FLAGS_L4_CSUM | 5384 ETH_TX_BD_FLAGS_IS_UDP); 5385 } 5386 } 5387 5388 if (!CHIP_IS_E1x(sc)) { 5389 pbd_e2 = &fp->tx_chain[TX_BD(bd_prod)].parse_bd_e2; 5390 memset(pbd_e2, 0, sizeof(struct eth_tx_parse_bd_e2)); 5391 5392 if (m0->m_pkthdr.csum_flags) { 5393 hlen = bxe_set_pbd_csum_e2(fp, m0, &pbd_e2_parsing_data); 5394 } 5395 5396 SET_FLAG(pbd_e2_parsing_data, ETH_TX_PARSE_BD_E2_ETH_ADDR_TYPE, 5397 mac_type); 5398 } else { 5399 uint16_t global_data = 0; 5400 5401 pbd_e1x = &fp->tx_chain[TX_BD(bd_prod)].parse_bd_e1x; 5402 memset(pbd_e1x, 0, sizeof(struct eth_tx_parse_bd_e1x)); 5403 5404 if (m0->m_pkthdr.csum_flags) { 5405 hlen = bxe_set_pbd_csum(fp, m0, pbd_e1x); 5406 } 5407 5408 SET_FLAG(global_data, 5409 ETH_TX_PARSE_BD_E1X_ETH_ADDR_TYPE, mac_type); 5410 pbd_e1x->global_data |= htole16(global_data); 5411 } 5412 5413 /* setup the parsing BD with TSO specific info */ 5414 if (m0->m_pkthdr.csum_flags & CSUM_TSO) { 5415 fp->eth_q_stats.tx_ofld_frames_lso++; 5416 tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_SW_LSO; 5417 5418 if (__predict_false(tx_start_bd->nbytes > hlen)) { 5419 fp->eth_q_stats.tx_ofld_frames_lso_hdr_splits++; 5420 5421 /* split the first BD into header/data making the fw job easy */ 5422 nbds++; 5423 tx_start_bd->nbd = htole16(nbds); 5424 tx_start_bd->nbytes = htole16(hlen); 5425 5426 bd_prod = TX_BD_NEXT(bd_prod); 5427 5428 /* new transmit BD after the tx_parse_bd */ 5429 tx_data_bd = &fp->tx_chain[TX_BD(bd_prod)].reg_bd; 5430 tx_data_bd->addr_hi = htole32(U64_HI(segs[0].ds_addr + hlen)); 5431 tx_data_bd->addr_lo = htole32(U64_LO(segs[0].ds_addr + hlen)); 5432 tx_data_bd->nbytes = htole16(segs[0].ds_len - hlen); 5433 if (tx_total_pkt_size_bd == NULL) { 5434 tx_total_pkt_size_bd = tx_data_bd; 5435 } 5436 5437 BLOGD(sc, DBG_TX, 5438 "TSO split header size is %d (%x:%x) nbds %d\n", 5439 le16toh(tx_start_bd->nbytes), 5440 le32toh(tx_start_bd->addr_hi), 5441 le32toh(tx_start_bd->addr_lo), 5442 nbds); 5443 } 5444 5445 if (!CHIP_IS_E1x(sc)) { 5446 bxe_set_pbd_lso_e2(m0, &pbd_e2_parsing_data); 5447 } else { 5448 bxe_set_pbd_lso(m0, pbd_e1x); 5449 } 5450 } 5451 5452 if (pbd_e2_parsing_data) { 5453 pbd_e2->parsing_data = htole32(pbd_e2_parsing_data); 5454 } 5455 5456 /* prepare remaining BDs, start tx bd contains first seg/frag */ 5457 for (i = 1; i < nsegs ; i++) { 5458 bd_prod = TX_BD_NEXT(bd_prod); 5459 tx_data_bd = &fp->tx_chain[TX_BD(bd_prod)].reg_bd; 5460 tx_data_bd->addr_lo = htole32(U64_LO(segs[i].ds_addr)); 5461 tx_data_bd->addr_hi = htole32(U64_HI(segs[i].ds_addr)); 5462 tx_data_bd->nbytes = htole16(segs[i].ds_len); 5463 if (tx_total_pkt_size_bd == NULL) { 5464 tx_total_pkt_size_bd = tx_data_bd; 5465 } 5466 total_pkt_size += tx_data_bd->nbytes; 5467 } 5468 5469 BLOGD(sc, DBG_TX, "last bd %p\n", tx_data_bd); 5470 5471 if (tx_total_pkt_size_bd != NULL) { 5472 tx_total_pkt_size_bd->total_pkt_bytes = total_pkt_size; 5473 } 5474 5475 if (__predict_false(sc->debug & DBG_TX)) { 5476 tmp_bd = tx_buf->first_bd; 5477 for (i = 0; i < nbds; i++) 5478 { 5479 if (i == 0) { 5480 BLOGD(sc, DBG_TX, 5481 "TX Strt: %p bd=%d nbd=%d vlan=0x%x " 5482 "bd_flags=0x%x hdr_nbds=%d\n", 5483 tx_start_bd, 5484 tmp_bd, 5485 le16toh(tx_start_bd->nbd), 5486 le16toh(tx_start_bd->vlan_or_ethertype), 5487 tx_start_bd->bd_flags.as_bitfield, 5488 (tx_start_bd->general_data & ETH_TX_START_BD_HDR_NBDS)); 5489 } else if (i == 1) { 5490 if (pbd_e1x) { 5491 BLOGD(sc, DBG_TX, 5492 "-> Prse: %p bd=%d global=0x%x ip_hlen_w=%u " 5493 "ip_id=%u lso_mss=%u tcp_flags=0x%x csum=0x%x " 5494 "tcp_seq=%u total_hlen_w=%u\n", 5495 pbd_e1x, 5496 tmp_bd, 5497 pbd_e1x->global_data, 5498 pbd_e1x->ip_hlen_w, 5499 pbd_e1x->ip_id, 5500 pbd_e1x->lso_mss, 5501 pbd_e1x->tcp_flags, 5502 pbd_e1x->tcp_pseudo_csum, 5503 pbd_e1x->tcp_send_seq, 5504 le16toh(pbd_e1x->total_hlen_w)); 5505 } else { /* if (pbd_e2) */ 5506 BLOGD(sc, DBG_TX, 5507 "-> Parse: %p bd=%d dst=%02x:%02x:%02x " 5508 "src=%02x:%02x:%02x parsing_data=0x%x\n", 5509 pbd_e2, 5510 tmp_bd, 5511 pbd_e2->data.mac_addr.dst_hi, 5512 pbd_e2->data.mac_addr.dst_mid, 5513 pbd_e2->data.mac_addr.dst_lo, 5514 pbd_e2->data.mac_addr.src_hi, 5515 pbd_e2->data.mac_addr.src_mid, 5516 pbd_e2->data.mac_addr.src_lo, 5517 pbd_e2->parsing_data); 5518 } 5519 } 5520 5521 if (i != 1) { /* skip parse db as it doesn't hold data */ 5522 tx_data_bd = &fp->tx_chain[TX_BD(tmp_bd)].reg_bd; 5523 BLOGD(sc, DBG_TX, 5524 "-> Frag: %p bd=%d nbytes=%d hi=0x%x lo: 0x%x\n", 5525 tx_data_bd, 5526 tmp_bd, 5527 le16toh(tx_data_bd->nbytes), 5528 le32toh(tx_data_bd->addr_hi), 5529 le32toh(tx_data_bd->addr_lo)); 5530 } 5531 5532 tmp_bd = TX_BD_NEXT(tmp_bd); 5533 } 5534 } 5535 5536 BLOGD(sc, DBG_TX, "doorbell: nbds=%d bd=%u\n", nbds, bd_prod); 5537 5538 /* update TX BD producer index value for next TX */ 5539 bd_prod = TX_BD_NEXT(bd_prod); 5540 5541 /* 5542 * If the chain of tx_bd's describing this frame is adjacent to or spans 5543 * an eth_tx_next_bd element then we need to increment the nbds value. 5544 */ 5545 if (TX_BD_IDX(bd_prod) < nbds) { 5546 nbds++; 5547 } 5548 5549 /* don't allow reordering of writes for nbd and packets */ 5550 mb(); 5551 5552 fp->tx_db.data.prod += nbds; 5553 5554 /* producer points to the next free tx_bd at this point */ 5555 fp->tx_pkt_prod++; 5556 fp->tx_bd_prod = bd_prod; 5557 5558 DOORBELL(sc, fp->index, fp->tx_db.raw); 5559 5560 fp->eth_q_stats.tx_pkts++; 5561 5562 /* Prevent speculative reads from getting ahead of the status block. */ 5563 bus_space_barrier(sc->bar[BAR0].tag, sc->bar[BAR0].handle, 5564 0, 0, BUS_SPACE_BARRIER_READ); 5565 5566 /* Prevent speculative reads from getting ahead of the doorbell. */ 5567 bus_space_barrier(sc->bar[BAR2].tag, sc->bar[BAR2].handle, 5568 0, 0, BUS_SPACE_BARRIER_READ); 5569 5570 return (0); 5571 } 5572 5573 static void 5574 bxe_tx_start_locked(struct bxe_softc *sc, 5575 if_t ifp, 5576 struct bxe_fastpath *fp) 5577 { 5578 struct mbuf *m = NULL; 5579 int tx_count = 0; 5580 uint16_t tx_bd_avail; 5581 5582 BXE_FP_TX_LOCK_ASSERT(fp); 5583 5584 /* keep adding entries while there are frames to send */ 5585 while (!if_sendq_empty(ifp)) { 5586 5587 /* 5588 * check for any frames to send 5589 * dequeue can still be NULL even if queue is not empty 5590 */ 5591 m = if_dequeue(ifp); 5592 if (__predict_false(m == NULL)) { 5593 break; 5594 } 5595 5596 /* the mbuf now belongs to us */ 5597 fp->eth_q_stats.mbuf_alloc_tx++; 5598 5599 /* 5600 * Put the frame into the transmit ring. If we don't have room, 5601 * place the mbuf back at the head of the TX queue, set the 5602 * OACTIVE flag, and wait for the NIC to drain the chain. 5603 */ 5604 if (__predict_false(bxe_tx_encap(fp, &m))) { 5605 fp->eth_q_stats.tx_encap_failures++; 5606 if (m != NULL) { 5607 /* mark the TX queue as full and return the frame */ 5608 if_setdrvflagbits(ifp, IFF_DRV_OACTIVE, 0); 5609 if_sendq_prepend(ifp, m); 5610 fp->eth_q_stats.mbuf_alloc_tx--; 5611 fp->eth_q_stats.tx_queue_xoff++; 5612 } 5613 5614 /* stop looking for more work */ 5615 break; 5616 } 5617 5618 /* the frame was enqueued successfully */ 5619 tx_count++; 5620 5621 /* send a copy of the frame to any BPF listeners. */ 5622 if_etherbpfmtap(ifp, m); 5623 5624 tx_bd_avail = bxe_tx_avail(sc, fp); 5625 5626 /* handle any completions if we're running low */ 5627 if (tx_bd_avail < BXE_TX_CLEANUP_THRESHOLD) { 5628 /* bxe_txeof will set IFF_DRV_OACTIVE appropriately */ 5629 bxe_txeof(sc, fp); 5630 if (if_getdrvflags(ifp) & IFF_DRV_OACTIVE) { 5631 break; 5632 } 5633 } 5634 } 5635 5636 /* all TX packets were dequeued and/or the tx ring is full */ 5637 if (tx_count > 0) { 5638 /* reset the TX watchdog timeout timer */ 5639 fp->watchdog_timer = BXE_TX_TIMEOUT; 5640 } 5641 } 5642 5643 /* Legacy (non-RSS) dispatch routine */ 5644 static void 5645 bxe_tx_start(if_t ifp) 5646 { 5647 struct bxe_softc *sc; 5648 struct bxe_fastpath *fp; 5649 5650 sc = if_getsoftc(ifp); 5651 5652 if (!(if_getdrvflags(ifp) & IFF_DRV_RUNNING)) { 5653 BLOGW(sc, "Interface not running, ignoring transmit request\n"); 5654 return; 5655 } 5656 5657 if (!sc->link_vars.link_up) { 5658 BLOGW(sc, "Interface link is down, ignoring transmit request\n"); 5659 return; 5660 } 5661 5662 fp = &sc->fp[0]; 5663 5664 if (if_getdrvflags(ifp) & IFF_DRV_OACTIVE) { 5665 fp->eth_q_stats.tx_queue_full_return++; 5666 return; 5667 } 5668 5669 BXE_FP_TX_LOCK(fp); 5670 bxe_tx_start_locked(sc, ifp, fp); 5671 BXE_FP_TX_UNLOCK(fp); 5672 } 5673 5674 #if __FreeBSD_version >= 901504 5675 5676 static int 5677 bxe_tx_mq_start_locked(struct bxe_softc *sc, 5678 if_t ifp, 5679 struct bxe_fastpath *fp, 5680 struct mbuf *m) 5681 { 5682 struct buf_ring *tx_br = fp->tx_br; 5683 struct mbuf *next; 5684 int depth, rc, tx_count; 5685 uint16_t tx_bd_avail; 5686 5687 rc = tx_count = 0; 5688 5689 BXE_FP_TX_LOCK_ASSERT(fp); 5690 5691 if (sc->state != BXE_STATE_OPEN) { 5692 fp->eth_q_stats.bxe_tx_mq_sc_state_failures++; 5693 return ENETDOWN; 5694 } 5695 5696 if (!tx_br) { 5697 BLOGE(sc, "Multiqueue TX and no buf_ring!\n"); 5698 return (EINVAL); 5699 } 5700 5701 if (m != NULL) { 5702 rc = drbr_enqueue(ifp, tx_br, m); 5703 if (rc != 0) { 5704 fp->eth_q_stats.tx_soft_errors++; 5705 goto bxe_tx_mq_start_locked_exit; 5706 } 5707 } 5708 5709 if (!sc->link_vars.link_up || !(if_getdrvflags(ifp) & IFF_DRV_RUNNING)) { 5710 fp->eth_q_stats.tx_request_link_down_failures++; 5711 goto bxe_tx_mq_start_locked_exit; 5712 } 5713 5714 /* fetch the depth of the driver queue */ 5715 depth = drbr_inuse_drv(ifp, tx_br); 5716 if (depth > fp->eth_q_stats.tx_max_drbr_queue_depth) { 5717 fp->eth_q_stats.tx_max_drbr_queue_depth = depth; 5718 } 5719 5720 /* keep adding entries while there are frames to send */ 5721 while ((next = drbr_peek(ifp, tx_br)) != NULL) { 5722 /* handle any completions if we're running low */ 5723 tx_bd_avail = bxe_tx_avail(sc, fp); 5724 if (tx_bd_avail < BXE_TX_CLEANUP_THRESHOLD) { 5725 /* bxe_txeof will set IFF_DRV_OACTIVE appropriately */ 5726 bxe_txeof(sc, fp); 5727 tx_bd_avail = bxe_tx_avail(sc, fp); 5728 if (tx_bd_avail < (BXE_TSO_MAX_SEGMENTS + 1)) { 5729 fp->eth_q_stats.bd_avail_too_less_failures++; 5730 m_freem(next); 5731 drbr_advance(ifp, tx_br); 5732 rc = ENOBUFS; 5733 break; 5734 } 5735 } 5736 5737 /* the mbuf now belongs to us */ 5738 fp->eth_q_stats.mbuf_alloc_tx++; 5739 5740 /* 5741 * Put the frame into the transmit ring. If we don't have room, 5742 * place the mbuf back at the head of the TX queue, set the 5743 * OACTIVE flag, and wait for the NIC to drain the chain. 5744 */ 5745 rc = bxe_tx_encap(fp, &next); 5746 if (__predict_false(rc != 0)) { 5747 fp->eth_q_stats.tx_encap_failures++; 5748 if (next != NULL) { 5749 /* mark the TX queue as full and save the frame */ 5750 if_setdrvflagbits(ifp, IFF_DRV_OACTIVE, 0); 5751 drbr_putback(ifp, tx_br, next); 5752 fp->eth_q_stats.mbuf_alloc_tx--; 5753 fp->eth_q_stats.tx_frames_deferred++; 5754 } else 5755 drbr_advance(ifp, tx_br); 5756 5757 /* stop looking for more work */ 5758 break; 5759 } 5760 5761 /* the transmit frame was enqueued successfully */ 5762 tx_count++; 5763 5764 /* send a copy of the frame to any BPF listeners */ 5765 if_etherbpfmtap(ifp, next); 5766 5767 drbr_advance(ifp, tx_br); 5768 } 5769 5770 /* all TX packets were dequeued and/or the tx ring is full */ 5771 if (tx_count > 0) { 5772 /* reset the TX watchdog timeout timer */ 5773 fp->watchdog_timer = BXE_TX_TIMEOUT; 5774 } 5775 5776 bxe_tx_mq_start_locked_exit: 5777 /* If we didn't drain the drbr, enqueue a task in the future to do it. */ 5778 if (!drbr_empty(ifp, tx_br)) { 5779 fp->eth_q_stats.tx_mq_not_empty++; 5780 taskqueue_enqueue_timeout(fp->tq, &fp->tx_timeout_task, 1); 5781 } 5782 5783 return (rc); 5784 } 5785 5786 static void 5787 bxe_tx_mq_start_deferred(void *arg, 5788 int pending) 5789 { 5790 struct bxe_fastpath *fp = (struct bxe_fastpath *)arg; 5791 struct bxe_softc *sc = fp->sc; 5792 if_t ifp = sc->ifp; 5793 5794 BXE_FP_TX_LOCK(fp); 5795 bxe_tx_mq_start_locked(sc, ifp, fp, NULL); 5796 BXE_FP_TX_UNLOCK(fp); 5797 } 5798 5799 /* Multiqueue (TSS) dispatch routine. */ 5800 static int 5801 bxe_tx_mq_start(struct ifnet *ifp, 5802 struct mbuf *m) 5803 { 5804 struct bxe_softc *sc = if_getsoftc(ifp); 5805 struct bxe_fastpath *fp; 5806 int fp_index, rc; 5807 5808 fp_index = 0; /* default is the first queue */ 5809 5810 /* check if flowid is set */ 5811 5812 if (BXE_VALID_FLOWID(m)) 5813 fp_index = (m->m_pkthdr.flowid % sc->num_queues); 5814 5815 fp = &sc->fp[fp_index]; 5816 5817 if (sc->state != BXE_STATE_OPEN) { 5818 fp->eth_q_stats.bxe_tx_mq_sc_state_failures++; 5819 return ENETDOWN; 5820 } 5821 5822 if (BXE_FP_TX_TRYLOCK(fp)) { 5823 rc = bxe_tx_mq_start_locked(sc, ifp, fp, m); 5824 BXE_FP_TX_UNLOCK(fp); 5825 } else { 5826 rc = drbr_enqueue(ifp, fp->tx_br, m); 5827 taskqueue_enqueue(fp->tq, &fp->tx_task); 5828 } 5829 5830 return (rc); 5831 } 5832 5833 static void 5834 bxe_mq_flush(struct ifnet *ifp) 5835 { 5836 struct bxe_softc *sc = if_getsoftc(ifp); 5837 struct bxe_fastpath *fp; 5838 struct mbuf *m; 5839 int i; 5840 5841 for (i = 0; i < sc->num_queues; i++) { 5842 fp = &sc->fp[i]; 5843 5844 if (fp->state != BXE_FP_STATE_IRQ) { 5845 BLOGD(sc, DBG_LOAD, "Not clearing fp[%02d] buf_ring (state=%d)\n", 5846 fp->index, fp->state); 5847 continue; 5848 } 5849 5850 if (fp->tx_br != NULL) { 5851 BLOGD(sc, DBG_LOAD, "Clearing fp[%02d] buf_ring\n", fp->index); 5852 BXE_FP_TX_LOCK(fp); 5853 while ((m = buf_ring_dequeue_sc(fp->tx_br)) != NULL) { 5854 m_freem(m); 5855 } 5856 BXE_FP_TX_UNLOCK(fp); 5857 } 5858 } 5859 5860 if_qflush(ifp); 5861 } 5862 5863 #endif /* FreeBSD_version >= 901504 */ 5864 5865 static uint16_t 5866 bxe_cid_ilt_lines(struct bxe_softc *sc) 5867 { 5868 if (IS_SRIOV(sc)) { 5869 return ((BXE_FIRST_VF_CID + BXE_VF_CIDS) / ILT_PAGE_CIDS); 5870 } 5871 return (L2_ILT_LINES(sc)); 5872 } 5873 5874 static void 5875 bxe_ilt_set_info(struct bxe_softc *sc) 5876 { 5877 struct ilt_client_info *ilt_client; 5878 struct ecore_ilt *ilt = sc->ilt; 5879 uint16_t line = 0; 5880 5881 ilt->start_line = FUNC_ILT_BASE(SC_FUNC(sc)); 5882 BLOGD(sc, DBG_LOAD, "ilt starts at line %d\n", ilt->start_line); 5883 5884 /* CDU */ 5885 ilt_client = &ilt->clients[ILT_CLIENT_CDU]; 5886 ilt_client->client_num = ILT_CLIENT_CDU; 5887 ilt_client->page_size = CDU_ILT_PAGE_SZ; 5888 ilt_client->flags = ILT_CLIENT_SKIP_MEM; 5889 ilt_client->start = line; 5890 line += bxe_cid_ilt_lines(sc); 5891 5892 if (CNIC_SUPPORT(sc)) { 5893 line += CNIC_ILT_LINES; 5894 } 5895 5896 ilt_client->end = (line - 1); 5897 5898 BLOGD(sc, DBG_LOAD, 5899 "ilt client[CDU]: start %d, end %d, " 5900 "psz 0x%x, flags 0x%x, hw psz %d\n", 5901 ilt_client->start, ilt_client->end, 5902 ilt_client->page_size, 5903 ilt_client->flags, 5904 ilog2(ilt_client->page_size >> 12)); 5905 5906 /* QM */ 5907 if (QM_INIT(sc->qm_cid_count)) { 5908 ilt_client = &ilt->clients[ILT_CLIENT_QM]; 5909 ilt_client->client_num = ILT_CLIENT_QM; 5910 ilt_client->page_size = QM_ILT_PAGE_SZ; 5911 ilt_client->flags = 0; 5912 ilt_client->start = line; 5913 5914 /* 4 bytes for each cid */ 5915 line += DIV_ROUND_UP(sc->qm_cid_count * QM_QUEUES_PER_FUNC * 4, 5916 QM_ILT_PAGE_SZ); 5917 5918 ilt_client->end = (line - 1); 5919 5920 BLOGD(sc, DBG_LOAD, 5921 "ilt client[QM]: start %d, end %d, " 5922 "psz 0x%x, flags 0x%x, hw psz %d\n", 5923 ilt_client->start, ilt_client->end, 5924 ilt_client->page_size, ilt_client->flags, 5925 ilog2(ilt_client->page_size >> 12)); 5926 } 5927 5928 if (CNIC_SUPPORT(sc)) { 5929 /* SRC */ 5930 ilt_client = &ilt->clients[ILT_CLIENT_SRC]; 5931 ilt_client->client_num = ILT_CLIENT_SRC; 5932 ilt_client->page_size = SRC_ILT_PAGE_SZ; 5933 ilt_client->flags = 0; 5934 ilt_client->start = line; 5935 line += SRC_ILT_LINES; 5936 ilt_client->end = (line - 1); 5937 5938 BLOGD(sc, DBG_LOAD, 5939 "ilt client[SRC]: start %d, end %d, " 5940 "psz 0x%x, flags 0x%x, hw psz %d\n", 5941 ilt_client->start, ilt_client->end, 5942 ilt_client->page_size, ilt_client->flags, 5943 ilog2(ilt_client->page_size >> 12)); 5944 5945 /* TM */ 5946 ilt_client = &ilt->clients[ILT_CLIENT_TM]; 5947 ilt_client->client_num = ILT_CLIENT_TM; 5948 ilt_client->page_size = TM_ILT_PAGE_SZ; 5949 ilt_client->flags = 0; 5950 ilt_client->start = line; 5951 line += TM_ILT_LINES; 5952 ilt_client->end = (line - 1); 5953 5954 BLOGD(sc, DBG_LOAD, 5955 "ilt client[TM]: start %d, end %d, " 5956 "psz 0x%x, flags 0x%x, hw psz %d\n", 5957 ilt_client->start, ilt_client->end, 5958 ilt_client->page_size, ilt_client->flags, 5959 ilog2(ilt_client->page_size >> 12)); 5960 } 5961 5962 KASSERT((line <= ILT_MAX_LINES), ("Invalid number of ILT lines!")); 5963 } 5964 5965 static void 5966 bxe_set_fp_rx_buf_size(struct bxe_softc *sc) 5967 { 5968 int i; 5969 uint32_t rx_buf_size; 5970 5971 rx_buf_size = (IP_HEADER_ALIGNMENT_PADDING + ETH_OVERHEAD + sc->mtu); 5972 5973 for (i = 0; i < sc->num_queues; i++) { 5974 if(rx_buf_size <= MCLBYTES){ 5975 sc->fp[i].rx_buf_size = rx_buf_size; 5976 sc->fp[i].mbuf_alloc_size = MCLBYTES; 5977 }else if (rx_buf_size <= MJUMPAGESIZE){ 5978 sc->fp[i].rx_buf_size = rx_buf_size; 5979 sc->fp[i].mbuf_alloc_size = MJUMPAGESIZE; 5980 }else if (rx_buf_size <= (MJUMPAGESIZE + MCLBYTES)){ 5981 sc->fp[i].rx_buf_size = MCLBYTES; 5982 sc->fp[i].mbuf_alloc_size = MCLBYTES; 5983 }else if (rx_buf_size <= (2 * MJUMPAGESIZE)){ 5984 sc->fp[i].rx_buf_size = MJUMPAGESIZE; 5985 sc->fp[i].mbuf_alloc_size = MJUMPAGESIZE; 5986 }else { 5987 sc->fp[i].rx_buf_size = MCLBYTES; 5988 sc->fp[i].mbuf_alloc_size = MCLBYTES; 5989 } 5990 } 5991 } 5992 5993 static int 5994 bxe_alloc_ilt_mem(struct bxe_softc *sc) 5995 { 5996 int rc = 0; 5997 5998 if ((sc->ilt = 5999 (struct ecore_ilt *)malloc(sizeof(struct ecore_ilt), 6000 M_BXE_ILT, 6001 (M_NOWAIT | M_ZERO))) == NULL) { 6002 rc = 1; 6003 } 6004 6005 return (rc); 6006 } 6007 6008 static int 6009 bxe_alloc_ilt_lines_mem(struct bxe_softc *sc) 6010 { 6011 int rc = 0; 6012 6013 if ((sc->ilt->lines = 6014 (struct ilt_line *)malloc((sizeof(struct ilt_line) * ILT_MAX_LINES), 6015 M_BXE_ILT, 6016 (M_NOWAIT | M_ZERO))) == NULL) { 6017 rc = 1; 6018 } 6019 6020 return (rc); 6021 } 6022 6023 static void 6024 bxe_free_ilt_mem(struct bxe_softc *sc) 6025 { 6026 if (sc->ilt != NULL) { 6027 free(sc->ilt, M_BXE_ILT); 6028 sc->ilt = NULL; 6029 } 6030 } 6031 6032 static void 6033 bxe_free_ilt_lines_mem(struct bxe_softc *sc) 6034 { 6035 if (sc->ilt->lines != NULL) { 6036 free(sc->ilt->lines, M_BXE_ILT); 6037 sc->ilt->lines = NULL; 6038 } 6039 } 6040 6041 static void 6042 bxe_free_mem(struct bxe_softc *sc) 6043 { 6044 int i; 6045 6046 for (i = 0; i < L2_ILT_LINES(sc); i++) { 6047 bxe_dma_free(sc, &sc->context[i].vcxt_dma); 6048 sc->context[i].vcxt = NULL; 6049 sc->context[i].size = 0; 6050 } 6051 6052 ecore_ilt_mem_op(sc, ILT_MEMOP_FREE); 6053 6054 bxe_free_ilt_lines_mem(sc); 6055 6056 } 6057 6058 static int 6059 bxe_alloc_mem(struct bxe_softc *sc) 6060 { 6061 6062 int context_size; 6063 int allocated; 6064 int i; 6065 6066 /* 6067 * Allocate memory for CDU context: 6068 * This memory is allocated separately and not in the generic ILT 6069 * functions because CDU differs in few aspects: 6070 * 1. There can be multiple entities allocating memory for context - 6071 * regular L2, CNIC, and SRIOV drivers. Each separately controls 6072 * its own ILT lines. 6073 * 2. Since CDU page-size is not a single 4KB page (which is the case 6074 * for the other ILT clients), to be efficient we want to support 6075 * allocation of sub-page-size in the last entry. 6076 * 3. Context pointers are used by the driver to pass to FW / update 6077 * the context (for the other ILT clients the pointers are used just to 6078 * free the memory during unload). 6079 */ 6080 context_size = (sizeof(union cdu_context) * BXE_L2_CID_COUNT(sc)); 6081 for (i = 0, allocated = 0; allocated < context_size; i++) { 6082 sc->context[i].size = min(CDU_ILT_PAGE_SZ, 6083 (context_size - allocated)); 6084 6085 if (bxe_dma_alloc(sc, sc->context[i].size, 6086 &sc->context[i].vcxt_dma, 6087 "cdu context") != 0) { 6088 bxe_free_mem(sc); 6089 return (-1); 6090 } 6091 6092 sc->context[i].vcxt = 6093 (union cdu_context *)sc->context[i].vcxt_dma.vaddr; 6094 6095 allocated += sc->context[i].size; 6096 } 6097 6098 bxe_alloc_ilt_lines_mem(sc); 6099 6100 BLOGD(sc, DBG_LOAD, "ilt=%p start_line=%u lines=%p\n", 6101 sc->ilt, sc->ilt->start_line, sc->ilt->lines); 6102 { 6103 for (i = 0; i < 4; i++) { 6104 BLOGD(sc, DBG_LOAD, 6105 "c%d page_size=%u start=%u end=%u num=%u flags=0x%x\n", 6106 i, 6107 sc->ilt->clients[i].page_size, 6108 sc->ilt->clients[i].start, 6109 sc->ilt->clients[i].end, 6110 sc->ilt->clients[i].client_num, 6111 sc->ilt->clients[i].flags); 6112 } 6113 } 6114 if (ecore_ilt_mem_op(sc, ILT_MEMOP_ALLOC)) { 6115 BLOGE(sc, "ecore_ilt_mem_op ILT_MEMOP_ALLOC failed\n"); 6116 bxe_free_mem(sc); 6117 return (-1); 6118 } 6119 6120 return (0); 6121 } 6122 6123 static void 6124 bxe_free_rx_bd_chain(struct bxe_fastpath *fp) 6125 { 6126 struct bxe_softc *sc; 6127 int i; 6128 6129 sc = fp->sc; 6130 6131 if (fp->rx_mbuf_tag == NULL) { 6132 return; 6133 } 6134 6135 /* free all mbufs and unload all maps */ 6136 for (i = 0; i < RX_BD_TOTAL; i++) { 6137 if (fp->rx_mbuf_chain[i].m_map != NULL) { 6138 bus_dmamap_sync(fp->rx_mbuf_tag, 6139 fp->rx_mbuf_chain[i].m_map, 6140 BUS_DMASYNC_POSTREAD); 6141 bus_dmamap_unload(fp->rx_mbuf_tag, 6142 fp->rx_mbuf_chain[i].m_map); 6143 } 6144 6145 if (fp->rx_mbuf_chain[i].m != NULL) { 6146 m_freem(fp->rx_mbuf_chain[i].m); 6147 fp->rx_mbuf_chain[i].m = NULL; 6148 fp->eth_q_stats.mbuf_alloc_rx--; 6149 } 6150 } 6151 } 6152 6153 static void 6154 bxe_free_tpa_pool(struct bxe_fastpath *fp) 6155 { 6156 struct bxe_softc *sc; 6157 int i, max_agg_queues; 6158 6159 sc = fp->sc; 6160 6161 if (fp->rx_mbuf_tag == NULL) { 6162 return; 6163 } 6164 6165 max_agg_queues = MAX_AGG_QS(sc); 6166 6167 /* release all mbufs and unload all DMA maps in the TPA pool */ 6168 for (i = 0; i < max_agg_queues; i++) { 6169 if (fp->rx_tpa_info[i].bd.m_map != NULL) { 6170 bus_dmamap_sync(fp->rx_mbuf_tag, 6171 fp->rx_tpa_info[i].bd.m_map, 6172 BUS_DMASYNC_POSTREAD); 6173 bus_dmamap_unload(fp->rx_mbuf_tag, 6174 fp->rx_tpa_info[i].bd.m_map); 6175 } 6176 6177 if (fp->rx_tpa_info[i].bd.m != NULL) { 6178 m_freem(fp->rx_tpa_info[i].bd.m); 6179 fp->rx_tpa_info[i].bd.m = NULL; 6180 fp->eth_q_stats.mbuf_alloc_tpa--; 6181 } 6182 } 6183 } 6184 6185 static void 6186 bxe_free_sge_chain(struct bxe_fastpath *fp) 6187 { 6188 struct bxe_softc *sc; 6189 int i; 6190 6191 sc = fp->sc; 6192 6193 if (fp->rx_sge_mbuf_tag == NULL) { 6194 return; 6195 } 6196 6197 /* rree all mbufs and unload all maps */ 6198 for (i = 0; i < RX_SGE_TOTAL; i++) { 6199 if (fp->rx_sge_mbuf_chain[i].m_map != NULL) { 6200 bus_dmamap_sync(fp->rx_sge_mbuf_tag, 6201 fp->rx_sge_mbuf_chain[i].m_map, 6202 BUS_DMASYNC_POSTREAD); 6203 bus_dmamap_unload(fp->rx_sge_mbuf_tag, 6204 fp->rx_sge_mbuf_chain[i].m_map); 6205 } 6206 6207 if (fp->rx_sge_mbuf_chain[i].m != NULL) { 6208 m_freem(fp->rx_sge_mbuf_chain[i].m); 6209 fp->rx_sge_mbuf_chain[i].m = NULL; 6210 fp->eth_q_stats.mbuf_alloc_sge--; 6211 } 6212 } 6213 } 6214 6215 static void 6216 bxe_free_fp_buffers(struct bxe_softc *sc) 6217 { 6218 struct bxe_fastpath *fp; 6219 int i; 6220 6221 for (i = 0; i < sc->num_queues; i++) { 6222 fp = &sc->fp[i]; 6223 6224 #if __FreeBSD_version >= 901504 6225 if (fp->tx_br != NULL) { 6226 /* just in case bxe_mq_flush() wasn't called */ 6227 if (mtx_initialized(&fp->tx_mtx)) { 6228 struct mbuf *m; 6229 6230 BXE_FP_TX_LOCK(fp); 6231 while ((m = buf_ring_dequeue_sc(fp->tx_br)) != NULL) 6232 m_freem(m); 6233 BXE_FP_TX_UNLOCK(fp); 6234 } 6235 } 6236 #endif 6237 6238 /* free all RX buffers */ 6239 bxe_free_rx_bd_chain(fp); 6240 bxe_free_tpa_pool(fp); 6241 bxe_free_sge_chain(fp); 6242 6243 if (fp->eth_q_stats.mbuf_alloc_rx != 0) { 6244 BLOGE(sc, "failed to claim all rx mbufs (%d left)\n", 6245 fp->eth_q_stats.mbuf_alloc_rx); 6246 } 6247 6248 if (fp->eth_q_stats.mbuf_alloc_sge != 0) { 6249 BLOGE(sc, "failed to claim all sge mbufs (%d left)\n", 6250 fp->eth_q_stats.mbuf_alloc_sge); 6251 } 6252 6253 if (fp->eth_q_stats.mbuf_alloc_tpa != 0) { 6254 BLOGE(sc, "failed to claim all sge mbufs (%d left)\n", 6255 fp->eth_q_stats.mbuf_alloc_tpa); 6256 } 6257 6258 if (fp->eth_q_stats.mbuf_alloc_tx != 0) { 6259 BLOGE(sc, "failed to release tx mbufs (%d left)\n", 6260 fp->eth_q_stats.mbuf_alloc_tx); 6261 } 6262 6263 /* XXX verify all mbufs were reclaimed */ 6264 } 6265 } 6266 6267 static int 6268 bxe_alloc_rx_bd_mbuf(struct bxe_fastpath *fp, 6269 uint16_t prev_index, 6270 uint16_t index) 6271 { 6272 struct bxe_sw_rx_bd *rx_buf; 6273 struct eth_rx_bd *rx_bd; 6274 bus_dma_segment_t segs[1]; 6275 bus_dmamap_t map; 6276 struct mbuf *m; 6277 int nsegs, rc; 6278 6279 rc = 0; 6280 6281 /* allocate the new RX BD mbuf */ 6282 m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, fp->mbuf_alloc_size); 6283 if (__predict_false(m == NULL)) { 6284 fp->eth_q_stats.mbuf_rx_bd_alloc_failed++; 6285 return (ENOBUFS); 6286 } 6287 6288 fp->eth_q_stats.mbuf_alloc_rx++; 6289 6290 /* initialize the mbuf buffer length */ 6291 m->m_pkthdr.len = m->m_len = fp->rx_buf_size; 6292 6293 /* map the mbuf into non-paged pool */ 6294 rc = bus_dmamap_load_mbuf_sg(fp->rx_mbuf_tag, 6295 fp->rx_mbuf_spare_map, 6296 m, segs, &nsegs, BUS_DMA_NOWAIT); 6297 if (__predict_false(rc != 0)) { 6298 fp->eth_q_stats.mbuf_rx_bd_mapping_failed++; 6299 m_freem(m); 6300 fp->eth_q_stats.mbuf_alloc_rx--; 6301 return (rc); 6302 } 6303 6304 /* all mbufs must map to a single segment */ 6305 KASSERT((nsegs == 1), ("Too many segments, %d returned!", nsegs)); 6306 6307 /* release any existing RX BD mbuf mappings */ 6308 6309 if (prev_index != index) { 6310 rx_buf = &fp->rx_mbuf_chain[prev_index]; 6311 6312 if (rx_buf->m_map != NULL) { 6313 bus_dmamap_sync(fp->rx_mbuf_tag, rx_buf->m_map, 6314 BUS_DMASYNC_POSTREAD); 6315 bus_dmamap_unload(fp->rx_mbuf_tag, rx_buf->m_map); 6316 } 6317 6318 /* 6319 * We only get here from bxe_rxeof() when the maximum number 6320 * of rx buffers is less than RX_BD_USABLE. bxe_rxeof() already 6321 * holds the mbuf in the prev_index so it's OK to NULL it out 6322 * here without concern of a memory leak. 6323 */ 6324 fp->rx_mbuf_chain[prev_index].m = NULL; 6325 } 6326 6327 rx_buf = &fp->rx_mbuf_chain[index]; 6328 6329 if (rx_buf->m_map != NULL) { 6330 bus_dmamap_sync(fp->rx_mbuf_tag, rx_buf->m_map, 6331 BUS_DMASYNC_POSTREAD); 6332 bus_dmamap_unload(fp->rx_mbuf_tag, rx_buf->m_map); 6333 } 6334 6335 /* save the mbuf and mapping info for a future packet */ 6336 map = (prev_index != index) ? 6337 fp->rx_mbuf_chain[prev_index].m_map : rx_buf->m_map; 6338 rx_buf->m_map = fp->rx_mbuf_spare_map; 6339 fp->rx_mbuf_spare_map = map; 6340 bus_dmamap_sync(fp->rx_mbuf_tag, rx_buf->m_map, 6341 BUS_DMASYNC_PREREAD); 6342 rx_buf->m = m; 6343 6344 rx_bd = &fp->rx_chain[index]; 6345 rx_bd->addr_hi = htole32(U64_HI(segs[0].ds_addr)); 6346 rx_bd->addr_lo = htole32(U64_LO(segs[0].ds_addr)); 6347 6348 return (rc); 6349 } 6350 6351 static int 6352 bxe_alloc_rx_tpa_mbuf(struct bxe_fastpath *fp, 6353 int queue) 6354 { 6355 struct bxe_sw_tpa_info *tpa_info = &fp->rx_tpa_info[queue]; 6356 bus_dma_segment_t segs[1]; 6357 bus_dmamap_t map; 6358 struct mbuf *m; 6359 int nsegs; 6360 int rc = 0; 6361 6362 /* allocate the new TPA mbuf */ 6363 m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, fp->mbuf_alloc_size); 6364 if (__predict_false(m == NULL)) { 6365 fp->eth_q_stats.mbuf_rx_tpa_alloc_failed++; 6366 return (ENOBUFS); 6367 } 6368 6369 fp->eth_q_stats.mbuf_alloc_tpa++; 6370 6371 /* initialize the mbuf buffer length */ 6372 m->m_pkthdr.len = m->m_len = fp->rx_buf_size; 6373 6374 /* map the mbuf into non-paged pool */ 6375 rc = bus_dmamap_load_mbuf_sg(fp->rx_mbuf_tag, 6376 fp->rx_tpa_info_mbuf_spare_map, 6377 m, segs, &nsegs, BUS_DMA_NOWAIT); 6378 if (__predict_false(rc != 0)) { 6379 fp->eth_q_stats.mbuf_rx_tpa_mapping_failed++; 6380 m_free(m); 6381 fp->eth_q_stats.mbuf_alloc_tpa--; 6382 return (rc); 6383 } 6384 6385 /* all mbufs must map to a single segment */ 6386 KASSERT((nsegs == 1), ("Too many segments, %d returned!", nsegs)); 6387 6388 /* release any existing TPA mbuf mapping */ 6389 if (tpa_info->bd.m_map != NULL) { 6390 bus_dmamap_sync(fp->rx_mbuf_tag, tpa_info->bd.m_map, 6391 BUS_DMASYNC_POSTREAD); 6392 bus_dmamap_unload(fp->rx_mbuf_tag, tpa_info->bd.m_map); 6393 } 6394 6395 /* save the mbuf and mapping info for the TPA mbuf */ 6396 map = tpa_info->bd.m_map; 6397 tpa_info->bd.m_map = fp->rx_tpa_info_mbuf_spare_map; 6398 fp->rx_tpa_info_mbuf_spare_map = map; 6399 bus_dmamap_sync(fp->rx_mbuf_tag, tpa_info->bd.m_map, 6400 BUS_DMASYNC_PREREAD); 6401 tpa_info->bd.m = m; 6402 tpa_info->seg = segs[0]; 6403 6404 return (rc); 6405 } 6406 6407 /* 6408 * Allocate an mbuf and assign it to the receive scatter gather chain. The 6409 * caller must take care to save a copy of the existing mbuf in the SG mbuf 6410 * chain. 6411 */ 6412 static int 6413 bxe_alloc_rx_sge_mbuf(struct bxe_fastpath *fp, 6414 uint16_t index) 6415 { 6416 struct bxe_sw_rx_bd *sge_buf; 6417 struct eth_rx_sge *sge; 6418 bus_dma_segment_t segs[1]; 6419 bus_dmamap_t map; 6420 struct mbuf *m; 6421 int nsegs; 6422 int rc = 0; 6423 6424 /* allocate a new SGE mbuf */ 6425 m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, SGE_PAGE_SIZE); 6426 if (__predict_false(m == NULL)) { 6427 fp->eth_q_stats.mbuf_rx_sge_alloc_failed++; 6428 return (ENOMEM); 6429 } 6430 6431 fp->eth_q_stats.mbuf_alloc_sge++; 6432 6433 /* initialize the mbuf buffer length */ 6434 m->m_pkthdr.len = m->m_len = SGE_PAGE_SIZE; 6435 6436 /* map the SGE mbuf into non-paged pool */ 6437 rc = bus_dmamap_load_mbuf_sg(fp->rx_sge_mbuf_tag, 6438 fp->rx_sge_mbuf_spare_map, 6439 m, segs, &nsegs, BUS_DMA_NOWAIT); 6440 if (__predict_false(rc != 0)) { 6441 fp->eth_q_stats.mbuf_rx_sge_mapping_failed++; 6442 m_freem(m); 6443 fp->eth_q_stats.mbuf_alloc_sge--; 6444 return (rc); 6445 } 6446 6447 /* all mbufs must map to a single segment */ 6448 KASSERT((nsegs == 1), ("Too many segments, %d returned!", nsegs)); 6449 6450 sge_buf = &fp->rx_sge_mbuf_chain[index]; 6451 6452 /* release any existing SGE mbuf mapping */ 6453 if (sge_buf->m_map != NULL) { 6454 bus_dmamap_sync(fp->rx_sge_mbuf_tag, sge_buf->m_map, 6455 BUS_DMASYNC_POSTREAD); 6456 bus_dmamap_unload(fp->rx_sge_mbuf_tag, sge_buf->m_map); 6457 } 6458 6459 /* save the mbuf and mapping info for a future packet */ 6460 map = sge_buf->m_map; 6461 sge_buf->m_map = fp->rx_sge_mbuf_spare_map; 6462 fp->rx_sge_mbuf_spare_map = map; 6463 bus_dmamap_sync(fp->rx_sge_mbuf_tag, sge_buf->m_map, 6464 BUS_DMASYNC_PREREAD); 6465 sge_buf->m = m; 6466 6467 sge = &fp->rx_sge_chain[index]; 6468 sge->addr_hi = htole32(U64_HI(segs[0].ds_addr)); 6469 sge->addr_lo = htole32(U64_LO(segs[0].ds_addr)); 6470 6471 return (rc); 6472 } 6473 6474 static __noinline int 6475 bxe_alloc_fp_buffers(struct bxe_softc *sc) 6476 { 6477 struct bxe_fastpath *fp; 6478 int i, j, rc = 0; 6479 int ring_prod, cqe_ring_prod; 6480 int max_agg_queues; 6481 6482 for (i = 0; i < sc->num_queues; i++) { 6483 fp = &sc->fp[i]; 6484 6485 ring_prod = cqe_ring_prod = 0; 6486 fp->rx_bd_cons = 0; 6487 fp->rx_cq_cons = 0; 6488 6489 /* allocate buffers for the RX BDs in RX BD chain */ 6490 for (j = 0; j < sc->max_rx_bufs; j++) { 6491 rc = bxe_alloc_rx_bd_mbuf(fp, ring_prod, ring_prod); 6492 if (rc != 0) { 6493 BLOGE(sc, "mbuf alloc fail for fp[%02d] rx chain (%d)\n", 6494 i, rc); 6495 goto bxe_alloc_fp_buffers_error; 6496 } 6497 6498 ring_prod = RX_BD_NEXT(ring_prod); 6499 cqe_ring_prod = RCQ_NEXT(cqe_ring_prod); 6500 } 6501 6502 fp->rx_bd_prod = ring_prod; 6503 fp->rx_cq_prod = cqe_ring_prod; 6504 fp->eth_q_stats.rx_calls = fp->eth_q_stats.rx_pkts = 0; 6505 6506 max_agg_queues = MAX_AGG_QS(sc); 6507 6508 fp->tpa_enable = TRUE; 6509 6510 /* fill the TPA pool */ 6511 for (j = 0; j < max_agg_queues; j++) { 6512 rc = bxe_alloc_rx_tpa_mbuf(fp, j); 6513 if (rc != 0) { 6514 BLOGE(sc, "mbuf alloc fail for fp[%02d] TPA queue %d\n", 6515 i, j); 6516 fp->tpa_enable = FALSE; 6517 goto bxe_alloc_fp_buffers_error; 6518 } 6519 6520 fp->rx_tpa_info[j].state = BXE_TPA_STATE_STOP; 6521 } 6522 6523 if (fp->tpa_enable) { 6524 /* fill the RX SGE chain */ 6525 ring_prod = 0; 6526 for (j = 0; j < RX_SGE_USABLE; j++) { 6527 rc = bxe_alloc_rx_sge_mbuf(fp, ring_prod); 6528 if (rc != 0) { 6529 BLOGE(sc, "mbuf alloc fail for fp[%02d] SGE %d\n", 6530 i, ring_prod); 6531 fp->tpa_enable = FALSE; 6532 ring_prod = 0; 6533 goto bxe_alloc_fp_buffers_error; 6534 } 6535 6536 ring_prod = RX_SGE_NEXT(ring_prod); 6537 } 6538 6539 fp->rx_sge_prod = ring_prod; 6540 } 6541 } 6542 6543 return (0); 6544 6545 bxe_alloc_fp_buffers_error: 6546 6547 /* unwind what was already allocated */ 6548 bxe_free_rx_bd_chain(fp); 6549 bxe_free_tpa_pool(fp); 6550 bxe_free_sge_chain(fp); 6551 6552 return (ENOBUFS); 6553 } 6554 6555 static void 6556 bxe_free_fw_stats_mem(struct bxe_softc *sc) 6557 { 6558 bxe_dma_free(sc, &sc->fw_stats_dma); 6559 6560 sc->fw_stats_num = 0; 6561 6562 sc->fw_stats_req_size = 0; 6563 sc->fw_stats_req = NULL; 6564 sc->fw_stats_req_mapping = 0; 6565 6566 sc->fw_stats_data_size = 0; 6567 sc->fw_stats_data = NULL; 6568 sc->fw_stats_data_mapping = 0; 6569 } 6570 6571 static int 6572 bxe_alloc_fw_stats_mem(struct bxe_softc *sc) 6573 { 6574 uint8_t num_queue_stats; 6575 int num_groups; 6576 6577 /* number of queues for statistics is number of eth queues */ 6578 num_queue_stats = BXE_NUM_ETH_QUEUES(sc); 6579 6580 /* 6581 * Total number of FW statistics requests = 6582 * 1 for port stats + 1 for PF stats + num of queues 6583 */ 6584 sc->fw_stats_num = (2 + num_queue_stats); 6585 6586 /* 6587 * Request is built from stats_query_header and an array of 6588 * stats_query_cmd_group each of which contains STATS_QUERY_CMD_COUNT 6589 * rules. The real number or requests is configured in the 6590 * stats_query_header. 6591 */ 6592 num_groups = 6593 ((sc->fw_stats_num / STATS_QUERY_CMD_COUNT) + 6594 ((sc->fw_stats_num % STATS_QUERY_CMD_COUNT) ? 1 : 0)); 6595 6596 BLOGD(sc, DBG_LOAD, "stats fw_stats_num %d num_groups %d\n", 6597 sc->fw_stats_num, num_groups); 6598 6599 sc->fw_stats_req_size = 6600 (sizeof(struct stats_query_header) + 6601 (num_groups * sizeof(struct stats_query_cmd_group))); 6602 6603 /* 6604 * Data for statistics requests + stats_counter. 6605 * stats_counter holds per-STORM counters that are incremented when 6606 * STORM has finished with the current request. Memory for FCoE 6607 * offloaded statistics are counted anyway, even if they will not be sent. 6608 * VF stats are not accounted for here as the data of VF stats is stored 6609 * in memory allocated by the VF, not here. 6610 */ 6611 sc->fw_stats_data_size = 6612 (sizeof(struct stats_counter) + 6613 sizeof(struct per_port_stats) + 6614 sizeof(struct per_pf_stats) + 6615 /* sizeof(struct fcoe_statistics_params) + */ 6616 (sizeof(struct per_queue_stats) * num_queue_stats)); 6617 6618 if (bxe_dma_alloc(sc, (sc->fw_stats_req_size + sc->fw_stats_data_size), 6619 &sc->fw_stats_dma, "fw stats") != 0) { 6620 bxe_free_fw_stats_mem(sc); 6621 return (-1); 6622 } 6623 6624 /* set up the shortcuts */ 6625 6626 sc->fw_stats_req = 6627 (struct bxe_fw_stats_req *)sc->fw_stats_dma.vaddr; 6628 sc->fw_stats_req_mapping = sc->fw_stats_dma.paddr; 6629 6630 sc->fw_stats_data = 6631 (struct bxe_fw_stats_data *)((uint8_t *)sc->fw_stats_dma.vaddr + 6632 sc->fw_stats_req_size); 6633 sc->fw_stats_data_mapping = (sc->fw_stats_dma.paddr + 6634 sc->fw_stats_req_size); 6635 6636 BLOGD(sc, DBG_LOAD, "statistics request base address set to %#jx\n", 6637 (uintmax_t)sc->fw_stats_req_mapping); 6638 6639 BLOGD(sc, DBG_LOAD, "statistics data base address set to %#jx\n", 6640 (uintmax_t)sc->fw_stats_data_mapping); 6641 6642 return (0); 6643 } 6644 6645 /* 6646 * Bits map: 6647 * 0-7 - Engine0 load counter. 6648 * 8-15 - Engine1 load counter. 6649 * 16 - Engine0 RESET_IN_PROGRESS bit. 6650 * 17 - Engine1 RESET_IN_PROGRESS bit. 6651 * 18 - Engine0 ONE_IS_LOADED. Set when there is at least one active 6652 * function on the engine 6653 * 19 - Engine1 ONE_IS_LOADED. 6654 * 20 - Chip reset flow bit. When set none-leader must wait for both engines 6655 * leader to complete (check for both RESET_IN_PROGRESS bits and not 6656 * for just the one belonging to its engine). 6657 */ 6658 #define BXE_RECOVERY_GLOB_REG MISC_REG_GENERIC_POR_1 6659 #define BXE_PATH0_LOAD_CNT_MASK 0x000000ff 6660 #define BXE_PATH0_LOAD_CNT_SHIFT 0 6661 #define BXE_PATH1_LOAD_CNT_MASK 0x0000ff00 6662 #define BXE_PATH1_LOAD_CNT_SHIFT 8 6663 #define BXE_PATH0_RST_IN_PROG_BIT 0x00010000 6664 #define BXE_PATH1_RST_IN_PROG_BIT 0x00020000 6665 #define BXE_GLOBAL_RESET_BIT 0x00040000 6666 6667 /* set the GLOBAL_RESET bit, should be run under rtnl lock */ 6668 static void 6669 bxe_set_reset_global(struct bxe_softc *sc) 6670 { 6671 uint32_t val; 6672 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG); 6673 val = REG_RD(sc, BXE_RECOVERY_GLOB_REG); 6674 REG_WR(sc, BXE_RECOVERY_GLOB_REG, val | BXE_GLOBAL_RESET_BIT); 6675 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG); 6676 } 6677 6678 /* clear the GLOBAL_RESET bit, should be run under rtnl lock */ 6679 static void 6680 bxe_clear_reset_global(struct bxe_softc *sc) 6681 { 6682 uint32_t val; 6683 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG); 6684 val = REG_RD(sc, BXE_RECOVERY_GLOB_REG); 6685 REG_WR(sc, BXE_RECOVERY_GLOB_REG, val & (~BXE_GLOBAL_RESET_BIT)); 6686 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG); 6687 } 6688 6689 /* checks the GLOBAL_RESET bit, should be run under rtnl lock */ 6690 static uint8_t 6691 bxe_reset_is_global(struct bxe_softc *sc) 6692 { 6693 uint32_t val = REG_RD(sc, BXE_RECOVERY_GLOB_REG); 6694 BLOGD(sc, DBG_LOAD, "GLOB_REG=0x%08x\n", val); 6695 return (val & BXE_GLOBAL_RESET_BIT) ? TRUE : FALSE; 6696 } 6697 6698 /* clear RESET_IN_PROGRESS bit for the engine, should be run under rtnl lock */ 6699 static void 6700 bxe_set_reset_done(struct bxe_softc *sc) 6701 { 6702 uint32_t val; 6703 uint32_t bit = SC_PATH(sc) ? BXE_PATH1_RST_IN_PROG_BIT : 6704 BXE_PATH0_RST_IN_PROG_BIT; 6705 6706 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG); 6707 6708 val = REG_RD(sc, BXE_RECOVERY_GLOB_REG); 6709 /* Clear the bit */ 6710 val &= ~bit; 6711 REG_WR(sc, BXE_RECOVERY_GLOB_REG, val); 6712 6713 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG); 6714 } 6715 6716 /* set RESET_IN_PROGRESS for the engine, should be run under rtnl lock */ 6717 static void 6718 bxe_set_reset_in_progress(struct bxe_softc *sc) 6719 { 6720 uint32_t val; 6721 uint32_t bit = SC_PATH(sc) ? BXE_PATH1_RST_IN_PROG_BIT : 6722 BXE_PATH0_RST_IN_PROG_BIT; 6723 6724 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG); 6725 6726 val = REG_RD(sc, BXE_RECOVERY_GLOB_REG); 6727 /* Set the bit */ 6728 val |= bit; 6729 REG_WR(sc, BXE_RECOVERY_GLOB_REG, val); 6730 6731 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG); 6732 } 6733 6734 /* check RESET_IN_PROGRESS bit for an engine, should be run under rtnl lock */ 6735 static uint8_t 6736 bxe_reset_is_done(struct bxe_softc *sc, 6737 int engine) 6738 { 6739 uint32_t val = REG_RD(sc, BXE_RECOVERY_GLOB_REG); 6740 uint32_t bit = engine ? BXE_PATH1_RST_IN_PROG_BIT : 6741 BXE_PATH0_RST_IN_PROG_BIT; 6742 6743 /* return false if bit is set */ 6744 return (val & bit) ? FALSE : TRUE; 6745 } 6746 6747 /* get the load status for an engine, should be run under rtnl lock */ 6748 static uint8_t 6749 bxe_get_load_status(struct bxe_softc *sc, 6750 int engine) 6751 { 6752 uint32_t mask = engine ? BXE_PATH1_LOAD_CNT_MASK : 6753 BXE_PATH0_LOAD_CNT_MASK; 6754 uint32_t shift = engine ? BXE_PATH1_LOAD_CNT_SHIFT : 6755 BXE_PATH0_LOAD_CNT_SHIFT; 6756 uint32_t val = REG_RD(sc, BXE_RECOVERY_GLOB_REG); 6757 6758 BLOGD(sc, DBG_LOAD, "Old value for GLOB_REG=0x%08x\n", val); 6759 6760 val = ((val & mask) >> shift); 6761 6762 BLOGD(sc, DBG_LOAD, "Load mask engine %d = 0x%08x\n", engine, val); 6763 6764 return (val != 0); 6765 } 6766 6767 /* set pf load mark */ 6768 /* XXX needs to be under rtnl lock */ 6769 static void 6770 bxe_set_pf_load(struct bxe_softc *sc) 6771 { 6772 uint32_t val; 6773 uint32_t val1; 6774 uint32_t mask = SC_PATH(sc) ? BXE_PATH1_LOAD_CNT_MASK : 6775 BXE_PATH0_LOAD_CNT_MASK; 6776 uint32_t shift = SC_PATH(sc) ? BXE_PATH1_LOAD_CNT_SHIFT : 6777 BXE_PATH0_LOAD_CNT_SHIFT; 6778 6779 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG); 6780 6781 val = REG_RD(sc, BXE_RECOVERY_GLOB_REG); 6782 BLOGD(sc, DBG_LOAD, "Old value for GLOB_REG=0x%08x\n", val); 6783 6784 /* get the current counter value */ 6785 val1 = ((val & mask) >> shift); 6786 6787 /* set bit of this PF */ 6788 val1 |= (1 << SC_ABS_FUNC(sc)); 6789 6790 /* clear the old value */ 6791 val &= ~mask; 6792 6793 /* set the new one */ 6794 val |= ((val1 << shift) & mask); 6795 6796 REG_WR(sc, BXE_RECOVERY_GLOB_REG, val); 6797 6798 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG); 6799 } 6800 6801 /* clear pf load mark */ 6802 /* XXX needs to be under rtnl lock */ 6803 static uint8_t 6804 bxe_clear_pf_load(struct bxe_softc *sc) 6805 { 6806 uint32_t val1, val; 6807 uint32_t mask = SC_PATH(sc) ? BXE_PATH1_LOAD_CNT_MASK : 6808 BXE_PATH0_LOAD_CNT_MASK; 6809 uint32_t shift = SC_PATH(sc) ? BXE_PATH1_LOAD_CNT_SHIFT : 6810 BXE_PATH0_LOAD_CNT_SHIFT; 6811 6812 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG); 6813 val = REG_RD(sc, BXE_RECOVERY_GLOB_REG); 6814 BLOGD(sc, DBG_LOAD, "Old GEN_REG_VAL=0x%08x\n", val); 6815 6816 /* get the current counter value */ 6817 val1 = (val & mask) >> shift; 6818 6819 /* clear bit of that PF */ 6820 val1 &= ~(1 << SC_ABS_FUNC(sc)); 6821 6822 /* clear the old value */ 6823 val &= ~mask; 6824 6825 /* set the new one */ 6826 val |= ((val1 << shift) & mask); 6827 6828 REG_WR(sc, BXE_RECOVERY_GLOB_REG, val); 6829 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG); 6830 return (val1 != 0); 6831 } 6832 6833 /* send load requrest to mcp and analyze response */ 6834 static int 6835 bxe_nic_load_request(struct bxe_softc *sc, 6836 uint32_t *load_code) 6837 { 6838 /* init fw_seq */ 6839 sc->fw_seq = 6840 (SHMEM_RD(sc, func_mb[SC_FW_MB_IDX(sc)].drv_mb_header) & 6841 DRV_MSG_SEQ_NUMBER_MASK); 6842 6843 BLOGD(sc, DBG_LOAD, "initial fw_seq 0x%04x\n", sc->fw_seq); 6844 6845 /* get the current FW pulse sequence */ 6846 sc->fw_drv_pulse_wr_seq = 6847 (SHMEM_RD(sc, func_mb[SC_FW_MB_IDX(sc)].drv_pulse_mb) & 6848 DRV_PULSE_SEQ_MASK); 6849 6850 BLOGD(sc, DBG_LOAD, "initial drv_pulse 0x%04x\n", 6851 sc->fw_drv_pulse_wr_seq); 6852 6853 /* load request */ 6854 (*load_code) = bxe_fw_command(sc, DRV_MSG_CODE_LOAD_REQ, 6855 DRV_MSG_CODE_LOAD_REQ_WITH_LFA); 6856 6857 /* if the MCP fails to respond we must abort */ 6858 if (!(*load_code)) { 6859 BLOGE(sc, "MCP response failure!\n"); 6860 return (-1); 6861 } 6862 6863 /* if MCP refused then must abort */ 6864 if ((*load_code) == FW_MSG_CODE_DRV_LOAD_REFUSED) { 6865 BLOGE(sc, "MCP refused load request\n"); 6866 return (-1); 6867 } 6868 6869 return (0); 6870 } 6871 6872 /* 6873 * Check whether another PF has already loaded FW to chip. In virtualized 6874 * environments a pf from anoth VM may have already initialized the device 6875 * including loading FW. 6876 */ 6877 static int 6878 bxe_nic_load_analyze_req(struct bxe_softc *sc, 6879 uint32_t load_code) 6880 { 6881 uint32_t my_fw, loaded_fw; 6882 6883 /* is another pf loaded on this engine? */ 6884 if ((load_code != FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) && 6885 (load_code != FW_MSG_CODE_DRV_LOAD_COMMON)) { 6886 /* build my FW version dword */ 6887 my_fw = (BCM_5710_FW_MAJOR_VERSION + 6888 (BCM_5710_FW_MINOR_VERSION << 8 ) + 6889 (BCM_5710_FW_REVISION_VERSION << 16) + 6890 (BCM_5710_FW_ENGINEERING_VERSION << 24)); 6891 6892 /* read loaded FW from chip */ 6893 loaded_fw = REG_RD(sc, XSEM_REG_PRAM); 6894 BLOGD(sc, DBG_LOAD, "loaded FW 0x%08x / my FW 0x%08x\n", 6895 loaded_fw, my_fw); 6896 6897 /* abort nic load if version mismatch */ 6898 if (my_fw != loaded_fw) { 6899 BLOGE(sc, "FW 0x%08x already loaded (mine is 0x%08x)", 6900 loaded_fw, my_fw); 6901 return (-1); 6902 } 6903 } 6904 6905 return (0); 6906 } 6907 6908 /* mark PMF if applicable */ 6909 static void 6910 bxe_nic_load_pmf(struct bxe_softc *sc, 6911 uint32_t load_code) 6912 { 6913 uint32_t ncsi_oem_data_addr; 6914 6915 if ((load_code == FW_MSG_CODE_DRV_LOAD_COMMON) || 6916 (load_code == FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) || 6917 (load_code == FW_MSG_CODE_DRV_LOAD_PORT)) { 6918 /* 6919 * Barrier here for ordering between the writing to sc->port.pmf here 6920 * and reading it from the periodic task. 6921 */ 6922 sc->port.pmf = 1; 6923 mb(); 6924 } else { 6925 sc->port.pmf = 0; 6926 } 6927 6928 BLOGD(sc, DBG_LOAD, "pmf %d\n", sc->port.pmf); 6929 6930 /* XXX needed? */ 6931 if (load_code == FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) { 6932 if (SHMEM2_HAS(sc, ncsi_oem_data_addr)) { 6933 ncsi_oem_data_addr = SHMEM2_RD(sc, ncsi_oem_data_addr); 6934 if (ncsi_oem_data_addr) { 6935 REG_WR(sc, 6936 (ncsi_oem_data_addr + 6937 offsetof(struct glob_ncsi_oem_data, driver_version)), 6938 0); 6939 } 6940 } 6941 } 6942 } 6943 6944 static void 6945 bxe_read_mf_cfg(struct bxe_softc *sc) 6946 { 6947 int n = (CHIP_IS_MODE_4_PORT(sc) ? 2 : 1); 6948 int abs_func; 6949 int vn; 6950 6951 if (BXE_NOMCP(sc)) { 6952 return; /* what should be the default bvalue in this case */ 6953 } 6954 6955 /* 6956 * The formula for computing the absolute function number is... 6957 * For 2 port configuration (4 functions per port): 6958 * abs_func = 2 * vn + SC_PORT + SC_PATH 6959 * For 4 port configuration (2 functions per port): 6960 * abs_func = 4 * vn + 2 * SC_PORT + SC_PATH 6961 */ 6962 for (vn = VN_0; vn < SC_MAX_VN_NUM(sc); vn++) { 6963 abs_func = (n * (2 * vn + SC_PORT(sc)) + SC_PATH(sc)); 6964 if (abs_func >= E1H_FUNC_MAX) { 6965 break; 6966 } 6967 sc->devinfo.mf_info.mf_config[vn] = 6968 MFCFG_RD(sc, func_mf_config[abs_func].config); 6969 } 6970 6971 if (sc->devinfo.mf_info.mf_config[SC_VN(sc)] & 6972 FUNC_MF_CFG_FUNC_DISABLED) { 6973 BLOGD(sc, DBG_LOAD, "mf_cfg function disabled\n"); 6974 sc->flags |= BXE_MF_FUNC_DIS; 6975 } else { 6976 BLOGD(sc, DBG_LOAD, "mf_cfg function enabled\n"); 6977 sc->flags &= ~BXE_MF_FUNC_DIS; 6978 } 6979 } 6980 6981 /* acquire split MCP access lock register */ 6982 static int bxe_acquire_alr(struct bxe_softc *sc) 6983 { 6984 uint32_t j, val; 6985 6986 for (j = 0; j < 1000; j++) { 6987 val = (1UL << 31); 6988 REG_WR(sc, GRCBASE_MCP + 0x9c, val); 6989 val = REG_RD(sc, GRCBASE_MCP + 0x9c); 6990 if (val & (1L << 31)) 6991 break; 6992 6993 DELAY(5000); 6994 } 6995 6996 if (!(val & (1L << 31))) { 6997 BLOGE(sc, "Cannot acquire MCP access lock register\n"); 6998 return (-1); 6999 } 7000 7001 return (0); 7002 } 7003 7004 /* release split MCP access lock register */ 7005 static void bxe_release_alr(struct bxe_softc *sc) 7006 { 7007 REG_WR(sc, GRCBASE_MCP + 0x9c, 0); 7008 } 7009 7010 static void 7011 bxe_fan_failure(struct bxe_softc *sc) 7012 { 7013 int port = SC_PORT(sc); 7014 uint32_t ext_phy_config; 7015 7016 /* mark the failure */ 7017 ext_phy_config = 7018 SHMEM_RD(sc, dev_info.port_hw_config[port].external_phy_config); 7019 7020 ext_phy_config &= ~PORT_HW_CFG_XGXS_EXT_PHY_TYPE_MASK; 7021 ext_phy_config |= PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE; 7022 SHMEM_WR(sc, dev_info.port_hw_config[port].external_phy_config, 7023 ext_phy_config); 7024 7025 /* log the failure */ 7026 BLOGW(sc, "Fan Failure has caused the driver to shutdown " 7027 "the card to prevent permanent damage. " 7028 "Please contact OEM Support for assistance\n"); 7029 7030 /* XXX */ 7031 #if 1 7032 bxe_panic(sc, ("Schedule task to handle fan failure\n")); 7033 #else 7034 /* 7035 * Schedule device reset (unload) 7036 * This is due to some boards consuming sufficient power when driver is 7037 * up to overheat if fan fails. 7038 */ 7039 bxe_set_bit(BXE_SP_RTNL_FAN_FAILURE, &sc->sp_rtnl_state); 7040 schedule_delayed_work(&sc->sp_rtnl_task, 0); 7041 #endif 7042 } 7043 7044 /* this function is called upon a link interrupt */ 7045 static void 7046 bxe_link_attn(struct bxe_softc *sc) 7047 { 7048 uint32_t pause_enabled = 0; 7049 struct host_port_stats *pstats; 7050 int cmng_fns; 7051 struct bxe_fastpath *fp; 7052 int i; 7053 7054 /* Make sure that we are synced with the current statistics */ 7055 bxe_stats_handle(sc, STATS_EVENT_STOP); 7056 BLOGD(sc, DBG_LOAD, "link_vars phy_flags : %x\n", sc->link_vars.phy_flags); 7057 elink_link_update(&sc->link_params, &sc->link_vars); 7058 7059 if (sc->link_vars.link_up) { 7060 7061 /* dropless flow control */ 7062 if (!CHIP_IS_E1(sc) && sc->dropless_fc) { 7063 pause_enabled = 0; 7064 7065 if (sc->link_vars.flow_ctrl & ELINK_FLOW_CTRL_TX) { 7066 pause_enabled = 1; 7067 } 7068 7069 REG_WR(sc, 7070 (BAR_USTRORM_INTMEM + 7071 USTORM_ETH_PAUSE_ENABLED_OFFSET(SC_PORT(sc))), 7072 pause_enabled); 7073 } 7074 7075 if (sc->link_vars.mac_type != ELINK_MAC_TYPE_EMAC) { 7076 pstats = BXE_SP(sc, port_stats); 7077 /* reset old mac stats */ 7078 memset(&(pstats->mac_stx[0]), 0, sizeof(struct mac_stx)); 7079 } 7080 7081 if (sc->state == BXE_STATE_OPEN) { 7082 bxe_stats_handle(sc, STATS_EVENT_LINK_UP); 7083 /* Restart tx when the link comes back. */ 7084 FOR_EACH_ETH_QUEUE(sc, i) { 7085 fp = &sc->fp[i]; 7086 taskqueue_enqueue(fp->tq, &fp->tx_task); 7087 } 7088 } 7089 7090 } 7091 7092 if (sc->link_vars.link_up && sc->link_vars.line_speed) { 7093 cmng_fns = bxe_get_cmng_fns_mode(sc); 7094 7095 if (cmng_fns != CMNG_FNS_NONE) { 7096 bxe_cmng_fns_init(sc, FALSE, cmng_fns); 7097 storm_memset_cmng(sc, &sc->cmng, SC_PORT(sc)); 7098 } else { 7099 /* rate shaping and fairness are disabled */ 7100 BLOGD(sc, DBG_LOAD, "single function mode without fairness\n"); 7101 } 7102 } 7103 7104 bxe_link_report_locked(sc); 7105 7106 if (IS_MF(sc)) { 7107 ; // XXX bxe_link_sync_notify(sc); 7108 } 7109 } 7110 7111 static void 7112 bxe_attn_int_asserted(struct bxe_softc *sc, 7113 uint32_t asserted) 7114 { 7115 int port = SC_PORT(sc); 7116 uint32_t aeu_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 : 7117 MISC_REG_AEU_MASK_ATTN_FUNC_0; 7118 uint32_t nig_int_mask_addr = port ? NIG_REG_MASK_INTERRUPT_PORT1 : 7119 NIG_REG_MASK_INTERRUPT_PORT0; 7120 uint32_t aeu_mask; 7121 uint32_t nig_mask = 0; 7122 uint32_t reg_addr; 7123 uint32_t igu_acked; 7124 uint32_t cnt; 7125 7126 if (sc->attn_state & asserted) { 7127 BLOGE(sc, "IGU ERROR attn=0x%08x\n", asserted); 7128 } 7129 7130 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port); 7131 7132 aeu_mask = REG_RD(sc, aeu_addr); 7133 7134 BLOGD(sc, DBG_INTR, "aeu_mask 0x%08x newly asserted 0x%08x\n", 7135 aeu_mask, asserted); 7136 7137 aeu_mask &= ~(asserted & 0x3ff); 7138 7139 BLOGD(sc, DBG_INTR, "new mask 0x%08x\n", aeu_mask); 7140 7141 REG_WR(sc, aeu_addr, aeu_mask); 7142 7143 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port); 7144 7145 BLOGD(sc, DBG_INTR, "attn_state 0x%08x\n", sc->attn_state); 7146 sc->attn_state |= asserted; 7147 BLOGD(sc, DBG_INTR, "new state 0x%08x\n", sc->attn_state); 7148 7149 if (asserted & ATTN_HARD_WIRED_MASK) { 7150 if (asserted & ATTN_NIG_FOR_FUNC) { 7151 7152 bxe_acquire_phy_lock(sc); 7153 /* save nig interrupt mask */ 7154 nig_mask = REG_RD(sc, nig_int_mask_addr); 7155 7156 /* If nig_mask is not set, no need to call the update function */ 7157 if (nig_mask) { 7158 REG_WR(sc, nig_int_mask_addr, 0); 7159 7160 bxe_link_attn(sc); 7161 } 7162 7163 /* handle unicore attn? */ 7164 } 7165 7166 if (asserted & ATTN_SW_TIMER_4_FUNC) { 7167 BLOGD(sc, DBG_INTR, "ATTN_SW_TIMER_4_FUNC!\n"); 7168 } 7169 7170 if (asserted & GPIO_2_FUNC) { 7171 BLOGD(sc, DBG_INTR, "GPIO_2_FUNC!\n"); 7172 } 7173 7174 if (asserted & GPIO_3_FUNC) { 7175 BLOGD(sc, DBG_INTR, "GPIO_3_FUNC!\n"); 7176 } 7177 7178 if (asserted & GPIO_4_FUNC) { 7179 BLOGD(sc, DBG_INTR, "GPIO_4_FUNC!\n"); 7180 } 7181 7182 if (port == 0) { 7183 if (asserted & ATTN_GENERAL_ATTN_1) { 7184 BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_1!\n"); 7185 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_1, 0x0); 7186 } 7187 if (asserted & ATTN_GENERAL_ATTN_2) { 7188 BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_2!\n"); 7189 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_2, 0x0); 7190 } 7191 if (asserted & ATTN_GENERAL_ATTN_3) { 7192 BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_3!\n"); 7193 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_3, 0x0); 7194 } 7195 } else { 7196 if (asserted & ATTN_GENERAL_ATTN_4) { 7197 BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_4!\n"); 7198 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_4, 0x0); 7199 } 7200 if (asserted & ATTN_GENERAL_ATTN_5) { 7201 BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_5!\n"); 7202 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_5, 0x0); 7203 } 7204 if (asserted & ATTN_GENERAL_ATTN_6) { 7205 BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_6!\n"); 7206 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_6, 0x0); 7207 } 7208 } 7209 } /* hardwired */ 7210 7211 if (sc->devinfo.int_block == INT_BLOCK_HC) { 7212 reg_addr = (HC_REG_COMMAND_REG + port*32 + COMMAND_REG_ATTN_BITS_SET); 7213 } else { 7214 reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_SET_UPPER*8); 7215 } 7216 7217 BLOGD(sc, DBG_INTR, "about to mask 0x%08x at %s addr 0x%08x\n", 7218 asserted, 7219 (sc->devinfo.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr); 7220 REG_WR(sc, reg_addr, asserted); 7221 7222 /* now set back the mask */ 7223 if (asserted & ATTN_NIG_FOR_FUNC) { 7224 /* 7225 * Verify that IGU ack through BAR was written before restoring 7226 * NIG mask. This loop should exit after 2-3 iterations max. 7227 */ 7228 if (sc->devinfo.int_block != INT_BLOCK_HC) { 7229 cnt = 0; 7230 7231 do { 7232 igu_acked = REG_RD(sc, IGU_REG_ATTENTION_ACK_BITS); 7233 } while (((igu_acked & ATTN_NIG_FOR_FUNC) == 0) && 7234 (++cnt < MAX_IGU_ATTN_ACK_TO)); 7235 7236 if (!igu_acked) { 7237 BLOGE(sc, "Failed to verify IGU ack on time\n"); 7238 } 7239 7240 mb(); 7241 } 7242 7243 REG_WR(sc, nig_int_mask_addr, nig_mask); 7244 7245 bxe_release_phy_lock(sc); 7246 } 7247 } 7248 7249 static void 7250 bxe_print_next_block(struct bxe_softc *sc, 7251 int idx, 7252 const char *blk) 7253 { 7254 BLOGI(sc, "%s%s", idx ? ", " : "", blk); 7255 } 7256 7257 static int 7258 bxe_check_blocks_with_parity0(struct bxe_softc *sc, 7259 uint32_t sig, 7260 int par_num, 7261 uint8_t print) 7262 { 7263 uint32_t cur_bit = 0; 7264 int i = 0; 7265 7266 for (i = 0; sig; i++) { 7267 cur_bit = ((uint32_t)0x1 << i); 7268 if (sig & cur_bit) { 7269 switch (cur_bit) { 7270 case AEU_INPUTS_ATTN_BITS_BRB_PARITY_ERROR: 7271 if (print) 7272 bxe_print_next_block(sc, par_num++, "BRB"); 7273 break; 7274 case AEU_INPUTS_ATTN_BITS_PARSER_PARITY_ERROR: 7275 if (print) 7276 bxe_print_next_block(sc, par_num++, "PARSER"); 7277 break; 7278 case AEU_INPUTS_ATTN_BITS_TSDM_PARITY_ERROR: 7279 if (print) 7280 bxe_print_next_block(sc, par_num++, "TSDM"); 7281 break; 7282 case AEU_INPUTS_ATTN_BITS_SEARCHER_PARITY_ERROR: 7283 if (print) 7284 bxe_print_next_block(sc, par_num++, "SEARCHER"); 7285 break; 7286 case AEU_INPUTS_ATTN_BITS_TCM_PARITY_ERROR: 7287 if (print) 7288 bxe_print_next_block(sc, par_num++, "TCM"); 7289 break; 7290 case AEU_INPUTS_ATTN_BITS_TSEMI_PARITY_ERROR: 7291 if (print) 7292 bxe_print_next_block(sc, par_num++, "TSEMI"); 7293 break; 7294 case AEU_INPUTS_ATTN_BITS_PBCLIENT_PARITY_ERROR: 7295 if (print) 7296 bxe_print_next_block(sc, par_num++, "XPB"); 7297 break; 7298 } 7299 7300 /* Clear the bit */ 7301 sig &= ~cur_bit; 7302 } 7303 } 7304 7305 return (par_num); 7306 } 7307 7308 static int 7309 bxe_check_blocks_with_parity1(struct bxe_softc *sc, 7310 uint32_t sig, 7311 int par_num, 7312 uint8_t *global, 7313 uint8_t print) 7314 { 7315 int i = 0; 7316 uint32_t cur_bit = 0; 7317 for (i = 0; sig; i++) { 7318 cur_bit = ((uint32_t)0x1 << i); 7319 if (sig & cur_bit) { 7320 switch (cur_bit) { 7321 case AEU_INPUTS_ATTN_BITS_PBF_PARITY_ERROR: 7322 if (print) 7323 bxe_print_next_block(sc, par_num++, "PBF"); 7324 break; 7325 case AEU_INPUTS_ATTN_BITS_QM_PARITY_ERROR: 7326 if (print) 7327 bxe_print_next_block(sc, par_num++, "QM"); 7328 break; 7329 case AEU_INPUTS_ATTN_BITS_TIMERS_PARITY_ERROR: 7330 if (print) 7331 bxe_print_next_block(sc, par_num++, "TM"); 7332 break; 7333 case AEU_INPUTS_ATTN_BITS_XSDM_PARITY_ERROR: 7334 if (print) 7335 bxe_print_next_block(sc, par_num++, "XSDM"); 7336 break; 7337 case AEU_INPUTS_ATTN_BITS_XCM_PARITY_ERROR: 7338 if (print) 7339 bxe_print_next_block(sc, par_num++, "XCM"); 7340 break; 7341 case AEU_INPUTS_ATTN_BITS_XSEMI_PARITY_ERROR: 7342 if (print) 7343 bxe_print_next_block(sc, par_num++, "XSEMI"); 7344 break; 7345 case AEU_INPUTS_ATTN_BITS_DOORBELLQ_PARITY_ERROR: 7346 if (print) 7347 bxe_print_next_block(sc, par_num++, "DOORBELLQ"); 7348 break; 7349 case AEU_INPUTS_ATTN_BITS_NIG_PARITY_ERROR: 7350 if (print) 7351 bxe_print_next_block(sc, par_num++, "NIG"); 7352 break; 7353 case AEU_INPUTS_ATTN_BITS_VAUX_PCI_CORE_PARITY_ERROR: 7354 if (print) 7355 bxe_print_next_block(sc, par_num++, "VAUX PCI CORE"); 7356 *global = TRUE; 7357 break; 7358 case AEU_INPUTS_ATTN_BITS_DEBUG_PARITY_ERROR: 7359 if (print) 7360 bxe_print_next_block(sc, par_num++, "DEBUG"); 7361 break; 7362 case AEU_INPUTS_ATTN_BITS_USDM_PARITY_ERROR: 7363 if (print) 7364 bxe_print_next_block(sc, par_num++, "USDM"); 7365 break; 7366 case AEU_INPUTS_ATTN_BITS_UCM_PARITY_ERROR: 7367 if (print) 7368 bxe_print_next_block(sc, par_num++, "UCM"); 7369 break; 7370 case AEU_INPUTS_ATTN_BITS_USEMI_PARITY_ERROR: 7371 if (print) 7372 bxe_print_next_block(sc, par_num++, "USEMI"); 7373 break; 7374 case AEU_INPUTS_ATTN_BITS_UPB_PARITY_ERROR: 7375 if (print) 7376 bxe_print_next_block(sc, par_num++, "UPB"); 7377 break; 7378 case AEU_INPUTS_ATTN_BITS_CSDM_PARITY_ERROR: 7379 if (print) 7380 bxe_print_next_block(sc, par_num++, "CSDM"); 7381 break; 7382 case AEU_INPUTS_ATTN_BITS_CCM_PARITY_ERROR: 7383 if (print) 7384 bxe_print_next_block(sc, par_num++, "CCM"); 7385 break; 7386 } 7387 7388 /* Clear the bit */ 7389 sig &= ~cur_bit; 7390 } 7391 } 7392 7393 return (par_num); 7394 } 7395 7396 static int 7397 bxe_check_blocks_with_parity2(struct bxe_softc *sc, 7398 uint32_t sig, 7399 int par_num, 7400 uint8_t print) 7401 { 7402 uint32_t cur_bit = 0; 7403 int i = 0; 7404 7405 for (i = 0; sig; i++) { 7406 cur_bit = ((uint32_t)0x1 << i); 7407 if (sig & cur_bit) { 7408 switch (cur_bit) { 7409 case AEU_INPUTS_ATTN_BITS_CSEMI_PARITY_ERROR: 7410 if (print) 7411 bxe_print_next_block(sc, par_num++, "CSEMI"); 7412 break; 7413 case AEU_INPUTS_ATTN_BITS_PXP_PARITY_ERROR: 7414 if (print) 7415 bxe_print_next_block(sc, par_num++, "PXP"); 7416 break; 7417 case AEU_IN_ATTN_BITS_PXPPCICLOCKCLIENT_PARITY_ERROR: 7418 if (print) 7419 bxe_print_next_block(sc, par_num++, "PXPPCICLOCKCLIENT"); 7420 break; 7421 case AEU_INPUTS_ATTN_BITS_CFC_PARITY_ERROR: 7422 if (print) 7423 bxe_print_next_block(sc, par_num++, "CFC"); 7424 break; 7425 case AEU_INPUTS_ATTN_BITS_CDU_PARITY_ERROR: 7426 if (print) 7427 bxe_print_next_block(sc, par_num++, "CDU"); 7428 break; 7429 case AEU_INPUTS_ATTN_BITS_DMAE_PARITY_ERROR: 7430 if (print) 7431 bxe_print_next_block(sc, par_num++, "DMAE"); 7432 break; 7433 case AEU_INPUTS_ATTN_BITS_IGU_PARITY_ERROR: 7434 if (print) 7435 bxe_print_next_block(sc, par_num++, "IGU"); 7436 break; 7437 case AEU_INPUTS_ATTN_BITS_MISC_PARITY_ERROR: 7438 if (print) 7439 bxe_print_next_block(sc, par_num++, "MISC"); 7440 break; 7441 } 7442 7443 /* Clear the bit */ 7444 sig &= ~cur_bit; 7445 } 7446 } 7447 7448 return (par_num); 7449 } 7450 7451 static int 7452 bxe_check_blocks_with_parity3(struct bxe_softc *sc, 7453 uint32_t sig, 7454 int par_num, 7455 uint8_t *global, 7456 uint8_t print) 7457 { 7458 uint32_t cur_bit = 0; 7459 int i = 0; 7460 7461 for (i = 0; sig; i++) { 7462 cur_bit = ((uint32_t)0x1 << i); 7463 if (sig & cur_bit) { 7464 switch (cur_bit) { 7465 case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_ROM_PARITY: 7466 if (print) 7467 bxe_print_next_block(sc, par_num++, "MCP ROM"); 7468 *global = TRUE; 7469 break; 7470 case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_RX_PARITY: 7471 if (print) 7472 bxe_print_next_block(sc, par_num++, 7473 "MCP UMP RX"); 7474 *global = TRUE; 7475 break; 7476 case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_TX_PARITY: 7477 if (print) 7478 bxe_print_next_block(sc, par_num++, 7479 "MCP UMP TX"); 7480 *global = TRUE; 7481 break; 7482 case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY: 7483 if (print) 7484 bxe_print_next_block(sc, par_num++, 7485 "MCP SCPAD"); 7486 *global = TRUE; 7487 break; 7488 } 7489 7490 /* Clear the bit */ 7491 sig &= ~cur_bit; 7492 } 7493 } 7494 7495 return (par_num); 7496 } 7497 7498 static int 7499 bxe_check_blocks_with_parity4(struct bxe_softc *sc, 7500 uint32_t sig, 7501 int par_num, 7502 uint8_t print) 7503 { 7504 uint32_t cur_bit = 0; 7505 int i = 0; 7506 7507 for (i = 0; sig; i++) { 7508 cur_bit = ((uint32_t)0x1 << i); 7509 if (sig & cur_bit) { 7510 switch (cur_bit) { 7511 case AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR: 7512 if (print) 7513 bxe_print_next_block(sc, par_num++, "PGLUE_B"); 7514 break; 7515 case AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR: 7516 if (print) 7517 bxe_print_next_block(sc, par_num++, "ATC"); 7518 break; 7519 } 7520 7521 /* Clear the bit */ 7522 sig &= ~cur_bit; 7523 } 7524 } 7525 7526 return (par_num); 7527 } 7528 7529 static uint8_t 7530 bxe_parity_attn(struct bxe_softc *sc, 7531 uint8_t *global, 7532 uint8_t print, 7533 uint32_t *sig) 7534 { 7535 int par_num = 0; 7536 7537 if ((sig[0] & HW_PRTY_ASSERT_SET_0) || 7538 (sig[1] & HW_PRTY_ASSERT_SET_1) || 7539 (sig[2] & HW_PRTY_ASSERT_SET_2) || 7540 (sig[3] & HW_PRTY_ASSERT_SET_3) || 7541 (sig[4] & HW_PRTY_ASSERT_SET_4)) { 7542 BLOGE(sc, "Parity error: HW block parity attention:\n" 7543 "[0]:0x%08x [1]:0x%08x [2]:0x%08x [3]:0x%08x [4]:0x%08x\n", 7544 (uint32_t)(sig[0] & HW_PRTY_ASSERT_SET_0), 7545 (uint32_t)(sig[1] & HW_PRTY_ASSERT_SET_1), 7546 (uint32_t)(sig[2] & HW_PRTY_ASSERT_SET_2), 7547 (uint32_t)(sig[3] & HW_PRTY_ASSERT_SET_3), 7548 (uint32_t)(sig[4] & HW_PRTY_ASSERT_SET_4)); 7549 7550 if (print) 7551 BLOGI(sc, "Parity errors detected in blocks: "); 7552 7553 par_num = 7554 bxe_check_blocks_with_parity0(sc, sig[0] & 7555 HW_PRTY_ASSERT_SET_0, 7556 par_num, print); 7557 par_num = 7558 bxe_check_blocks_with_parity1(sc, sig[1] & 7559 HW_PRTY_ASSERT_SET_1, 7560 par_num, global, print); 7561 par_num = 7562 bxe_check_blocks_with_parity2(sc, sig[2] & 7563 HW_PRTY_ASSERT_SET_2, 7564 par_num, print); 7565 par_num = 7566 bxe_check_blocks_with_parity3(sc, sig[3] & 7567 HW_PRTY_ASSERT_SET_3, 7568 par_num, global, print); 7569 par_num = 7570 bxe_check_blocks_with_parity4(sc, sig[4] & 7571 HW_PRTY_ASSERT_SET_4, 7572 par_num, print); 7573 7574 if (print) 7575 BLOGI(sc, "\n"); 7576 7577 if( *global == TRUE ) { 7578 BXE_SET_ERROR_BIT(sc, BXE_ERR_GLOBAL); 7579 } 7580 7581 return (TRUE); 7582 } 7583 7584 return (FALSE); 7585 } 7586 7587 static uint8_t 7588 bxe_chk_parity_attn(struct bxe_softc *sc, 7589 uint8_t *global, 7590 uint8_t print) 7591 { 7592 struct attn_route attn = { {0} }; 7593 int port = SC_PORT(sc); 7594 7595 if(sc->state != BXE_STATE_OPEN) 7596 return FALSE; 7597 7598 attn.sig[0] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + port*4); 7599 attn.sig[1] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 + port*4); 7600 attn.sig[2] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 + port*4); 7601 attn.sig[3] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 + port*4); 7602 7603 /* 7604 * Since MCP attentions can't be disabled inside the block, we need to 7605 * read AEU registers to see whether they're currently disabled 7606 */ 7607 attn.sig[3] &= ((REG_RD(sc, (!port ? MISC_REG_AEU_ENABLE4_FUNC_0_OUT_0 7608 : MISC_REG_AEU_ENABLE4_FUNC_1_OUT_0)) & 7609 MISC_AEU_ENABLE_MCP_PRTY_BITS) | 7610 ~MISC_AEU_ENABLE_MCP_PRTY_BITS); 7611 7612 7613 if (!CHIP_IS_E1x(sc)) 7614 attn.sig[4] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 + port*4); 7615 7616 return (bxe_parity_attn(sc, global, print, attn.sig)); 7617 } 7618 7619 static void 7620 bxe_attn_int_deasserted4(struct bxe_softc *sc, 7621 uint32_t attn) 7622 { 7623 uint32_t val; 7624 boolean_t err_flg = FALSE; 7625 7626 if (attn & AEU_INPUTS_ATTN_BITS_PGLUE_HW_INTERRUPT) { 7627 val = REG_RD(sc, PGLUE_B_REG_PGLUE_B_INT_STS_CLR); 7628 BLOGE(sc, "PGLUE hw attention 0x%08x\n", val); 7629 err_flg = TRUE; 7630 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR) 7631 BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR\n"); 7632 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR) 7633 BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR\n"); 7634 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN) 7635 BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN\n"); 7636 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN) 7637 BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN\n"); 7638 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN) 7639 BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN\n"); 7640 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN) 7641 BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN\n"); 7642 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN) 7643 BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN\n"); 7644 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN) 7645 BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN\n"); 7646 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW) 7647 BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW\n"); 7648 } 7649 7650 if (attn & AEU_INPUTS_ATTN_BITS_ATC_HW_INTERRUPT) { 7651 val = REG_RD(sc, ATC_REG_ATC_INT_STS_CLR); 7652 BLOGE(sc, "ATC hw attention 0x%08x\n", val); 7653 err_flg = TRUE; 7654 if (val & ATC_ATC_INT_STS_REG_ADDRESS_ERROR) 7655 BLOGE(sc, "ATC_ATC_INT_STS_REG_ADDRESS_ERROR\n"); 7656 if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND) 7657 BLOGE(sc, "ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND\n"); 7658 if (val & ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS) 7659 BLOGE(sc, "ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS\n"); 7660 if (val & ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT) 7661 BLOGE(sc, "ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT\n"); 7662 if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR) 7663 BLOGE(sc, "ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR\n"); 7664 if (val & ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU) 7665 BLOGE(sc, "ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU\n"); 7666 } 7667 7668 if (attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR | 7669 AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)) { 7670 BLOGE(sc, "FATAL parity attention set4 0x%08x\n", 7671 (uint32_t)(attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR | 7672 AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR))); 7673 err_flg = TRUE; 7674 } 7675 if (err_flg) { 7676 BXE_SET_ERROR_BIT(sc, BXE_ERR_MISC); 7677 taskqueue_enqueue_timeout(taskqueue_thread, 7678 &sc->sp_err_timeout_task, hz/10); 7679 } 7680 7681 } 7682 7683 static void 7684 bxe_e1h_disable(struct bxe_softc *sc) 7685 { 7686 int port = SC_PORT(sc); 7687 7688 bxe_tx_disable(sc); 7689 7690 REG_WR(sc, NIG_REG_LLH0_FUNC_EN + port*8, 0); 7691 } 7692 7693 static void 7694 bxe_e1h_enable(struct bxe_softc *sc) 7695 { 7696 int port = SC_PORT(sc); 7697 7698 REG_WR(sc, NIG_REG_LLH0_FUNC_EN + port*8, 1); 7699 7700 // XXX bxe_tx_enable(sc); 7701 } 7702 7703 /* 7704 * called due to MCP event (on pmf): 7705 * reread new bandwidth configuration 7706 * configure FW 7707 * notify others function about the change 7708 */ 7709 static void 7710 bxe_config_mf_bw(struct bxe_softc *sc) 7711 { 7712 if (sc->link_vars.link_up) { 7713 bxe_cmng_fns_init(sc, TRUE, CMNG_FNS_MINMAX); 7714 // XXX bxe_link_sync_notify(sc); 7715 } 7716 7717 storm_memset_cmng(sc, &sc->cmng, SC_PORT(sc)); 7718 } 7719 7720 static void 7721 bxe_set_mf_bw(struct bxe_softc *sc) 7722 { 7723 bxe_config_mf_bw(sc); 7724 bxe_fw_command(sc, DRV_MSG_CODE_SET_MF_BW_ACK, 0); 7725 } 7726 7727 static void 7728 bxe_handle_eee_event(struct bxe_softc *sc) 7729 { 7730 BLOGD(sc, DBG_INTR, "EEE - LLDP event\n"); 7731 bxe_fw_command(sc, DRV_MSG_CODE_EEE_RESULTS_ACK, 0); 7732 } 7733 7734 #define DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED 3 7735 7736 static void 7737 bxe_drv_info_ether_stat(struct bxe_softc *sc) 7738 { 7739 struct eth_stats_info *ether_stat = 7740 &sc->sp->drv_info_to_mcp.ether_stat; 7741 7742 strlcpy(ether_stat->version, BXE_DRIVER_VERSION, 7743 ETH_STAT_INFO_VERSION_LEN); 7744 7745 /* XXX (+ MAC_PAD) taken from other driver... verify this is right */ 7746 sc->sp_objs[0].mac_obj.get_n_elements(sc, &sc->sp_objs[0].mac_obj, 7747 DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED, 7748 ether_stat->mac_local + MAC_PAD, 7749 MAC_PAD, ETH_ALEN); 7750 7751 ether_stat->mtu_size = sc->mtu; 7752 7753 ether_stat->feature_flags |= FEATURE_ETH_CHKSUM_OFFLOAD_MASK; 7754 if (if_getcapenable(sc->ifp) & (IFCAP_TSO4 | IFCAP_TSO6)) { 7755 ether_stat->feature_flags |= FEATURE_ETH_LSO_MASK; 7756 } 7757 7758 // XXX ether_stat->feature_flags |= ???; 7759 7760 ether_stat->promiscuous_mode = 0; // (flags & PROMISC) ? 1 : 0; 7761 7762 ether_stat->txq_size = sc->tx_ring_size; 7763 ether_stat->rxq_size = sc->rx_ring_size; 7764 } 7765 7766 static void 7767 bxe_handle_drv_info_req(struct bxe_softc *sc) 7768 { 7769 enum drv_info_opcode op_code; 7770 uint32_t drv_info_ctl = SHMEM2_RD(sc, drv_info_control); 7771 7772 /* if drv_info version supported by MFW doesn't match - send NACK */ 7773 if ((drv_info_ctl & DRV_INFO_CONTROL_VER_MASK) != DRV_INFO_CUR_VER) { 7774 bxe_fw_command(sc, DRV_MSG_CODE_DRV_INFO_NACK, 0); 7775 return; 7776 } 7777 7778 op_code = ((drv_info_ctl & DRV_INFO_CONTROL_OP_CODE_MASK) >> 7779 DRV_INFO_CONTROL_OP_CODE_SHIFT); 7780 7781 memset(&sc->sp->drv_info_to_mcp, 0, sizeof(union drv_info_to_mcp)); 7782 7783 switch (op_code) { 7784 case ETH_STATS_OPCODE: 7785 bxe_drv_info_ether_stat(sc); 7786 break; 7787 case FCOE_STATS_OPCODE: 7788 case ISCSI_STATS_OPCODE: 7789 default: 7790 /* if op code isn't supported - send NACK */ 7791 bxe_fw_command(sc, DRV_MSG_CODE_DRV_INFO_NACK, 0); 7792 return; 7793 } 7794 7795 /* 7796 * If we got drv_info attn from MFW then these fields are defined in 7797 * shmem2 for sure 7798 */ 7799 SHMEM2_WR(sc, drv_info_host_addr_lo, 7800 U64_LO(BXE_SP_MAPPING(sc, drv_info_to_mcp))); 7801 SHMEM2_WR(sc, drv_info_host_addr_hi, 7802 U64_HI(BXE_SP_MAPPING(sc, drv_info_to_mcp))); 7803 7804 bxe_fw_command(sc, DRV_MSG_CODE_DRV_INFO_ACK, 0); 7805 } 7806 7807 static void 7808 bxe_dcc_event(struct bxe_softc *sc, 7809 uint32_t dcc_event) 7810 { 7811 BLOGD(sc, DBG_INTR, "dcc_event 0x%08x\n", dcc_event); 7812 7813 if (dcc_event & DRV_STATUS_DCC_DISABLE_ENABLE_PF) { 7814 /* 7815 * This is the only place besides the function initialization 7816 * where the sc->flags can change so it is done without any 7817 * locks 7818 */ 7819 if (sc->devinfo.mf_info.mf_config[SC_VN(sc)] & FUNC_MF_CFG_FUNC_DISABLED) { 7820 BLOGD(sc, DBG_INTR, "mf_cfg function disabled\n"); 7821 sc->flags |= BXE_MF_FUNC_DIS; 7822 bxe_e1h_disable(sc); 7823 } else { 7824 BLOGD(sc, DBG_INTR, "mf_cfg function enabled\n"); 7825 sc->flags &= ~BXE_MF_FUNC_DIS; 7826 bxe_e1h_enable(sc); 7827 } 7828 dcc_event &= ~DRV_STATUS_DCC_DISABLE_ENABLE_PF; 7829 } 7830 7831 if (dcc_event & DRV_STATUS_DCC_BANDWIDTH_ALLOCATION) { 7832 bxe_config_mf_bw(sc); 7833 dcc_event &= ~DRV_STATUS_DCC_BANDWIDTH_ALLOCATION; 7834 } 7835 7836 /* Report results to MCP */ 7837 if (dcc_event) 7838 bxe_fw_command(sc, DRV_MSG_CODE_DCC_FAILURE, 0); 7839 else 7840 bxe_fw_command(sc, DRV_MSG_CODE_DCC_OK, 0); 7841 } 7842 7843 static void 7844 bxe_pmf_update(struct bxe_softc *sc) 7845 { 7846 int port = SC_PORT(sc); 7847 uint32_t val; 7848 7849 sc->port.pmf = 1; 7850 BLOGD(sc, DBG_INTR, "pmf %d\n", sc->port.pmf); 7851 7852 /* 7853 * We need the mb() to ensure the ordering between the writing to 7854 * sc->port.pmf here and reading it from the bxe_periodic_task(). 7855 */ 7856 mb(); 7857 7858 /* queue a periodic task */ 7859 // XXX schedule task... 7860 7861 // XXX bxe_dcbx_pmf_update(sc); 7862 7863 /* enable nig attention */ 7864 val = (0xff0f | (1 << (SC_VN(sc) + 4))); 7865 if (sc->devinfo.int_block == INT_BLOCK_HC) { 7866 REG_WR(sc, HC_REG_TRAILING_EDGE_0 + port*8, val); 7867 REG_WR(sc, HC_REG_LEADING_EDGE_0 + port*8, val); 7868 } else if (!CHIP_IS_E1x(sc)) { 7869 REG_WR(sc, IGU_REG_TRAILING_EDGE_LATCH, val); 7870 REG_WR(sc, IGU_REG_LEADING_EDGE_LATCH, val); 7871 } 7872 7873 bxe_stats_handle(sc, STATS_EVENT_PMF); 7874 } 7875 7876 static int 7877 bxe_mc_assert(struct bxe_softc *sc) 7878 { 7879 char last_idx; 7880 int i, rc = 0; 7881 uint32_t row0, row1, row2, row3; 7882 7883 /* XSTORM */ 7884 last_idx = REG_RD8(sc, BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_INDEX_OFFSET); 7885 if (last_idx) 7886 BLOGE(sc, "XSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx); 7887 7888 /* print the asserts */ 7889 for (i = 0; i < STORM_ASSERT_ARRAY_SIZE; i++) { 7890 7891 row0 = REG_RD(sc, BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_OFFSET(i)); 7892 row1 = REG_RD(sc, BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_OFFSET(i) + 4); 7893 row2 = REG_RD(sc, BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_OFFSET(i) + 8); 7894 row3 = REG_RD(sc, BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_OFFSET(i) + 12); 7895 7896 if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) { 7897 BLOGE(sc, "XSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n", 7898 i, row3, row2, row1, row0); 7899 rc++; 7900 } else { 7901 break; 7902 } 7903 } 7904 7905 /* TSTORM */ 7906 last_idx = REG_RD8(sc, BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_INDEX_OFFSET); 7907 if (last_idx) { 7908 BLOGE(sc, "TSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx); 7909 } 7910 7911 /* print the asserts */ 7912 for (i = 0; i < STORM_ASSERT_ARRAY_SIZE; i++) { 7913 7914 row0 = REG_RD(sc, BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_OFFSET(i)); 7915 row1 = REG_RD(sc, BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_OFFSET(i) + 4); 7916 row2 = REG_RD(sc, BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_OFFSET(i) + 8); 7917 row3 = REG_RD(sc, BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_OFFSET(i) + 12); 7918 7919 if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) { 7920 BLOGE(sc, "TSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n", 7921 i, row3, row2, row1, row0); 7922 rc++; 7923 } else { 7924 break; 7925 } 7926 } 7927 7928 /* CSTORM */ 7929 last_idx = REG_RD8(sc, BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_INDEX_OFFSET); 7930 if (last_idx) { 7931 BLOGE(sc, "CSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx); 7932 } 7933 7934 /* print the asserts */ 7935 for (i = 0; i < STORM_ASSERT_ARRAY_SIZE; i++) { 7936 7937 row0 = REG_RD(sc, BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_OFFSET(i)); 7938 row1 = REG_RD(sc, BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_OFFSET(i) + 4); 7939 row2 = REG_RD(sc, BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_OFFSET(i) + 8); 7940 row3 = REG_RD(sc, BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_OFFSET(i) + 12); 7941 7942 if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) { 7943 BLOGE(sc, "CSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n", 7944 i, row3, row2, row1, row0); 7945 rc++; 7946 } else { 7947 break; 7948 } 7949 } 7950 7951 /* USTORM */ 7952 last_idx = REG_RD8(sc, BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_INDEX_OFFSET); 7953 if (last_idx) { 7954 BLOGE(sc, "USTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx); 7955 } 7956 7957 /* print the asserts */ 7958 for (i = 0; i < STORM_ASSERT_ARRAY_SIZE; i++) { 7959 7960 row0 = REG_RD(sc, BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_OFFSET(i)); 7961 row1 = REG_RD(sc, BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_OFFSET(i) + 4); 7962 row2 = REG_RD(sc, BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_OFFSET(i) + 8); 7963 row3 = REG_RD(sc, BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_OFFSET(i) + 12); 7964 7965 if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) { 7966 BLOGE(sc, "USTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n", 7967 i, row3, row2, row1, row0); 7968 rc++; 7969 } else { 7970 break; 7971 } 7972 } 7973 7974 return (rc); 7975 } 7976 7977 static void 7978 bxe_attn_int_deasserted3(struct bxe_softc *sc, 7979 uint32_t attn) 7980 { 7981 int func = SC_FUNC(sc); 7982 uint32_t val; 7983 7984 if (attn & EVEREST_GEN_ATTN_IN_USE_MASK) { 7985 7986 if (attn & BXE_PMF_LINK_ASSERT(sc)) { 7987 7988 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0); 7989 bxe_read_mf_cfg(sc); 7990 sc->devinfo.mf_info.mf_config[SC_VN(sc)] = 7991 MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].config); 7992 val = SHMEM_RD(sc, func_mb[SC_FW_MB_IDX(sc)].drv_status); 7993 7994 if (val & DRV_STATUS_DCC_EVENT_MASK) 7995 bxe_dcc_event(sc, (val & DRV_STATUS_DCC_EVENT_MASK)); 7996 7997 if (val & DRV_STATUS_SET_MF_BW) 7998 bxe_set_mf_bw(sc); 7999 8000 if (val & DRV_STATUS_DRV_INFO_REQ) 8001 bxe_handle_drv_info_req(sc); 8002 8003 if ((sc->port.pmf == 0) && (val & DRV_STATUS_PMF)) 8004 bxe_pmf_update(sc); 8005 8006 if (val & DRV_STATUS_EEE_NEGOTIATION_RESULTS) 8007 bxe_handle_eee_event(sc); 8008 8009 if (sc->link_vars.periodic_flags & 8010 ELINK_PERIODIC_FLAGS_LINK_EVENT) { 8011 /* sync with link */ 8012 bxe_acquire_phy_lock(sc); 8013 sc->link_vars.periodic_flags &= 8014 ~ELINK_PERIODIC_FLAGS_LINK_EVENT; 8015 bxe_release_phy_lock(sc); 8016 if (IS_MF(sc)) 8017 ; // XXX bxe_link_sync_notify(sc); 8018 bxe_link_report(sc); 8019 } 8020 8021 /* 8022 * Always call it here: bxe_link_report() will 8023 * prevent the link indication duplication. 8024 */ 8025 bxe_link_status_update(sc); 8026 8027 } else if (attn & BXE_MC_ASSERT_BITS) { 8028 8029 BLOGE(sc, "MC assert!\n"); 8030 bxe_mc_assert(sc); 8031 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_10, 0); 8032 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_9, 0); 8033 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_8, 0); 8034 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_7, 0); 8035 bxe_int_disable(sc); 8036 BXE_SET_ERROR_BIT(sc, BXE_ERR_MC_ASSERT); 8037 taskqueue_enqueue_timeout(taskqueue_thread, 8038 &sc->sp_err_timeout_task, hz/10); 8039 8040 } else if (attn & BXE_MCP_ASSERT) { 8041 8042 BLOGE(sc, "MCP assert!\n"); 8043 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_11, 0); 8044 BXE_SET_ERROR_BIT(sc, BXE_ERR_MCP_ASSERT); 8045 taskqueue_enqueue_timeout(taskqueue_thread, 8046 &sc->sp_err_timeout_task, hz/10); 8047 bxe_int_disable(sc); /*avoid repetive assert alert */ 8048 8049 8050 } else { 8051 BLOGE(sc, "Unknown HW assert! (attn 0x%08x)\n", attn); 8052 } 8053 } 8054 8055 if (attn & EVEREST_LATCHED_ATTN_IN_USE_MASK) { 8056 BLOGE(sc, "LATCHED attention 0x%08x (masked)\n", attn); 8057 if (attn & BXE_GRC_TIMEOUT) { 8058 val = CHIP_IS_E1(sc) ? 0 : REG_RD(sc, MISC_REG_GRC_TIMEOUT_ATTN); 8059 BLOGE(sc, "GRC time-out 0x%08x\n", val); 8060 } 8061 if (attn & BXE_GRC_RSV) { 8062 val = CHIP_IS_E1(sc) ? 0 : REG_RD(sc, MISC_REG_GRC_RSV_ATTN); 8063 BLOGE(sc, "GRC reserved 0x%08x\n", val); 8064 } 8065 REG_WR(sc, MISC_REG_AEU_CLR_LATCH_SIGNAL, 0x7ff); 8066 } 8067 } 8068 8069 static void 8070 bxe_attn_int_deasserted2(struct bxe_softc *sc, 8071 uint32_t attn) 8072 { 8073 int port = SC_PORT(sc); 8074 int reg_offset; 8075 uint32_t val0, mask0, val1, mask1; 8076 uint32_t val; 8077 boolean_t err_flg = FALSE; 8078 8079 if (attn & AEU_INPUTS_ATTN_BITS_CFC_HW_INTERRUPT) { 8080 val = REG_RD(sc, CFC_REG_CFC_INT_STS_CLR); 8081 BLOGE(sc, "CFC hw attention 0x%08x\n", val); 8082 /* CFC error attention */ 8083 if (val & 0x2) { 8084 BLOGE(sc, "FATAL error from CFC\n"); 8085 err_flg = TRUE; 8086 } 8087 } 8088 8089 if (attn & AEU_INPUTS_ATTN_BITS_PXP_HW_INTERRUPT) { 8090 val = REG_RD(sc, PXP_REG_PXP_INT_STS_CLR_0); 8091 BLOGE(sc, "PXP hw attention-0 0x%08x\n", val); 8092 /* RQ_USDMDP_FIFO_OVERFLOW */ 8093 if (val & 0x18000) { 8094 BLOGE(sc, "FATAL error from PXP\n"); 8095 err_flg = TRUE; 8096 } 8097 8098 if (!CHIP_IS_E1x(sc)) { 8099 val = REG_RD(sc, PXP_REG_PXP_INT_STS_CLR_1); 8100 BLOGE(sc, "PXP hw attention-1 0x%08x\n", val); 8101 err_flg = TRUE; 8102 } 8103 } 8104 8105 #define PXP2_EOP_ERROR_BIT PXP2_PXP2_INT_STS_CLR_0_REG_WR_PGLUE_EOP_ERROR 8106 #define AEU_PXP2_HW_INT_BIT AEU_INPUTS_ATTN_BITS_PXPPCICLOCKCLIENT_HW_INTERRUPT 8107 8108 if (attn & AEU_PXP2_HW_INT_BIT) { 8109 /* CQ47854 workaround do not panic on 8110 * PXP2_PXP2_INT_STS_0_REG_WR_PGLUE_EOP_ERROR 8111 */ 8112 if (!CHIP_IS_E1x(sc)) { 8113 mask0 = REG_RD(sc, PXP2_REG_PXP2_INT_MASK_0); 8114 val1 = REG_RD(sc, PXP2_REG_PXP2_INT_STS_1); 8115 mask1 = REG_RD(sc, PXP2_REG_PXP2_INT_MASK_1); 8116 val0 = REG_RD(sc, PXP2_REG_PXP2_INT_STS_0); 8117 /* 8118 * If the only PXP2_EOP_ERROR_BIT is set in 8119 * STS0 and STS1 - clear it 8120 * 8121 * probably we lose additional attentions between 8122 * STS0 and STS_CLR0, in this case user will not 8123 * be notified about them 8124 */ 8125 if (val0 & mask0 & PXP2_EOP_ERROR_BIT && 8126 !(val1 & mask1)) 8127 val0 = REG_RD(sc, PXP2_REG_PXP2_INT_STS_CLR_0); 8128 8129 /* print the register, since no one can restore it */ 8130 BLOGE(sc, "PXP2_REG_PXP2_INT_STS_CLR_0 0x%08x\n", val0); 8131 8132 /* 8133 * if PXP2_PXP2_INT_STS_0_REG_WR_PGLUE_EOP_ERROR 8134 * then notify 8135 */ 8136 if (val0 & PXP2_EOP_ERROR_BIT) { 8137 BLOGE(sc, "PXP2_WR_PGLUE_EOP_ERROR\n"); 8138 err_flg = TRUE; 8139 8140 /* 8141 * if only PXP2_PXP2_INT_STS_0_REG_WR_PGLUE_EOP_ERROR is 8142 * set then clear attention from PXP2 block without panic 8143 */ 8144 if (((val0 & mask0) == PXP2_EOP_ERROR_BIT) && 8145 ((val1 & mask1) == 0)) 8146 attn &= ~AEU_PXP2_HW_INT_BIT; 8147 } 8148 } 8149 } 8150 8151 if (attn & HW_INTERRUT_ASSERT_SET_2) { 8152 reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_2 : 8153 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_2); 8154 8155 val = REG_RD(sc, reg_offset); 8156 val &= ~(attn & HW_INTERRUT_ASSERT_SET_2); 8157 REG_WR(sc, reg_offset, val); 8158 8159 BLOGE(sc, "FATAL HW block attention set2 0x%x\n", 8160 (uint32_t)(attn & HW_INTERRUT_ASSERT_SET_2)); 8161 err_flg = TRUE; 8162 bxe_panic(sc, ("HW block attention set2\n")); 8163 } 8164 if(err_flg) { 8165 BXE_SET_ERROR_BIT(sc, BXE_ERR_GLOBAL); 8166 taskqueue_enqueue_timeout(taskqueue_thread, 8167 &sc->sp_err_timeout_task, hz/10); 8168 } 8169 8170 } 8171 8172 static void 8173 bxe_attn_int_deasserted1(struct bxe_softc *sc, 8174 uint32_t attn) 8175 { 8176 int port = SC_PORT(sc); 8177 int reg_offset; 8178 uint32_t val; 8179 boolean_t err_flg = FALSE; 8180 8181 if (attn & AEU_INPUTS_ATTN_BITS_DOORBELLQ_HW_INTERRUPT) { 8182 val = REG_RD(sc, DORQ_REG_DORQ_INT_STS_CLR); 8183 BLOGE(sc, "DB hw attention 0x%08x\n", val); 8184 /* DORQ discard attention */ 8185 if (val & 0x2) { 8186 BLOGE(sc, "FATAL error from DORQ\n"); 8187 err_flg = TRUE; 8188 } 8189 } 8190 8191 if (attn & HW_INTERRUT_ASSERT_SET_1) { 8192 reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_1 : 8193 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_1); 8194 8195 val = REG_RD(sc, reg_offset); 8196 val &= ~(attn & HW_INTERRUT_ASSERT_SET_1); 8197 REG_WR(sc, reg_offset, val); 8198 8199 BLOGE(sc, "FATAL HW block attention set1 0x%08x\n", 8200 (uint32_t)(attn & HW_INTERRUT_ASSERT_SET_1)); 8201 err_flg = TRUE; 8202 bxe_panic(sc, ("HW block attention set1\n")); 8203 } 8204 if(err_flg) { 8205 BXE_SET_ERROR_BIT(sc, BXE_ERR_MISC); 8206 taskqueue_enqueue_timeout(taskqueue_thread, 8207 &sc->sp_err_timeout_task, hz/10); 8208 } 8209 8210 } 8211 8212 static void 8213 bxe_attn_int_deasserted0(struct bxe_softc *sc, 8214 uint32_t attn) 8215 { 8216 int port = SC_PORT(sc); 8217 int reg_offset; 8218 uint32_t val; 8219 8220 reg_offset = (port) ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 : 8221 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0; 8222 8223 if (attn & AEU_INPUTS_ATTN_BITS_SPIO5) { 8224 val = REG_RD(sc, reg_offset); 8225 val &= ~AEU_INPUTS_ATTN_BITS_SPIO5; 8226 REG_WR(sc, reg_offset, val); 8227 8228 BLOGW(sc, "SPIO5 hw attention\n"); 8229 8230 /* Fan failure attention */ 8231 elink_hw_reset_phy(&sc->link_params); 8232 bxe_fan_failure(sc); 8233 } 8234 8235 if ((attn & sc->link_vars.aeu_int_mask) && sc->port.pmf) { 8236 bxe_acquire_phy_lock(sc); 8237 elink_handle_module_detect_int(&sc->link_params); 8238 bxe_release_phy_lock(sc); 8239 } 8240 8241 if (attn & HW_INTERRUT_ASSERT_SET_0) { 8242 val = REG_RD(sc, reg_offset); 8243 val &= ~(attn & HW_INTERRUT_ASSERT_SET_0); 8244 REG_WR(sc, reg_offset, val); 8245 8246 8247 BXE_SET_ERROR_BIT(sc, BXE_ERR_MISC); 8248 taskqueue_enqueue_timeout(taskqueue_thread, 8249 &sc->sp_err_timeout_task, hz/10); 8250 8251 bxe_panic(sc, ("FATAL HW block attention set0 0x%lx\n", 8252 (attn & HW_INTERRUT_ASSERT_SET_0))); 8253 } 8254 } 8255 8256 static void 8257 bxe_attn_int_deasserted(struct bxe_softc *sc, 8258 uint32_t deasserted) 8259 { 8260 struct attn_route attn; 8261 struct attn_route *group_mask; 8262 int port = SC_PORT(sc); 8263 int index; 8264 uint32_t reg_addr; 8265 uint32_t val; 8266 uint32_t aeu_mask; 8267 uint8_t global = FALSE; 8268 8269 /* 8270 * Need to take HW lock because MCP or other port might also 8271 * try to handle this event. 8272 */ 8273 bxe_acquire_alr(sc); 8274 8275 if (bxe_chk_parity_attn(sc, &global, TRUE)) { 8276 /* XXX 8277 * In case of parity errors don't handle attentions so that 8278 * other function would "see" parity errors. 8279 */ 8280 // XXX schedule a recovery task... 8281 /* disable HW interrupts */ 8282 bxe_int_disable(sc); 8283 BXE_SET_ERROR_BIT(sc, BXE_ERR_PARITY); 8284 taskqueue_enqueue_timeout(taskqueue_thread, 8285 &sc->sp_err_timeout_task, hz/10); 8286 bxe_release_alr(sc); 8287 return; 8288 } 8289 8290 attn.sig[0] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + port*4); 8291 attn.sig[1] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 + port*4); 8292 attn.sig[2] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 + port*4); 8293 attn.sig[3] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 + port*4); 8294 if (!CHIP_IS_E1x(sc)) { 8295 attn.sig[4] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 + port*4); 8296 } else { 8297 attn.sig[4] = 0; 8298 } 8299 8300 BLOGD(sc, DBG_INTR, "attn: 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x\n", 8301 attn.sig[0], attn.sig[1], attn.sig[2], attn.sig[3], attn.sig[4]); 8302 8303 for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) { 8304 if (deasserted & (1 << index)) { 8305 group_mask = &sc->attn_group[index]; 8306 8307 BLOGD(sc, DBG_INTR, 8308 "group[%d]: 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x\n", index, 8309 group_mask->sig[0], group_mask->sig[1], 8310 group_mask->sig[2], group_mask->sig[3], 8311 group_mask->sig[4]); 8312 8313 bxe_attn_int_deasserted4(sc, attn.sig[4] & group_mask->sig[4]); 8314 bxe_attn_int_deasserted3(sc, attn.sig[3] & group_mask->sig[3]); 8315 bxe_attn_int_deasserted1(sc, attn.sig[1] & group_mask->sig[1]); 8316 bxe_attn_int_deasserted2(sc, attn.sig[2] & group_mask->sig[2]); 8317 bxe_attn_int_deasserted0(sc, attn.sig[0] & group_mask->sig[0]); 8318 } 8319 } 8320 8321 bxe_release_alr(sc); 8322 8323 if (sc->devinfo.int_block == INT_BLOCK_HC) { 8324 reg_addr = (HC_REG_COMMAND_REG + port*32 + 8325 COMMAND_REG_ATTN_BITS_CLR); 8326 } else { 8327 reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_CLR_UPPER*8); 8328 } 8329 8330 val = ~deasserted; 8331 BLOGD(sc, DBG_INTR, 8332 "about to mask 0x%08x at %s addr 0x%08x\n", val, 8333 (sc->devinfo.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr); 8334 REG_WR(sc, reg_addr, val); 8335 8336 if (~sc->attn_state & deasserted) { 8337 BLOGE(sc, "IGU error\n"); 8338 } 8339 8340 reg_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 : 8341 MISC_REG_AEU_MASK_ATTN_FUNC_0; 8342 8343 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port); 8344 8345 aeu_mask = REG_RD(sc, reg_addr); 8346 8347 BLOGD(sc, DBG_INTR, "aeu_mask 0x%08x newly deasserted 0x%08x\n", 8348 aeu_mask, deasserted); 8349 aeu_mask |= (deasserted & 0x3ff); 8350 BLOGD(sc, DBG_INTR, "new mask 0x%08x\n", aeu_mask); 8351 8352 REG_WR(sc, reg_addr, aeu_mask); 8353 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port); 8354 8355 BLOGD(sc, DBG_INTR, "attn_state 0x%08x\n", sc->attn_state); 8356 sc->attn_state &= ~deasserted; 8357 BLOGD(sc, DBG_INTR, "new state 0x%08x\n", sc->attn_state); 8358 } 8359 8360 static void 8361 bxe_attn_int(struct bxe_softc *sc) 8362 { 8363 /* read local copy of bits */ 8364 uint32_t attn_bits = le32toh(sc->def_sb->atten_status_block.attn_bits); 8365 uint32_t attn_ack = le32toh(sc->def_sb->atten_status_block.attn_bits_ack); 8366 uint32_t attn_state = sc->attn_state; 8367 8368 /* look for changed bits */ 8369 uint32_t asserted = attn_bits & ~attn_ack & ~attn_state; 8370 uint32_t deasserted = ~attn_bits & attn_ack & attn_state; 8371 8372 BLOGD(sc, DBG_INTR, 8373 "attn_bits 0x%08x attn_ack 0x%08x asserted 0x%08x deasserted 0x%08x\n", 8374 attn_bits, attn_ack, asserted, deasserted); 8375 8376 if (~(attn_bits ^ attn_ack) & (attn_bits ^ attn_state)) { 8377 BLOGE(sc, "BAD attention state\n"); 8378 } 8379 8380 /* handle bits that were raised */ 8381 if (asserted) { 8382 bxe_attn_int_asserted(sc, asserted); 8383 } 8384 8385 if (deasserted) { 8386 bxe_attn_int_deasserted(sc, deasserted); 8387 } 8388 } 8389 8390 static uint16_t 8391 bxe_update_dsb_idx(struct bxe_softc *sc) 8392 { 8393 struct host_sp_status_block *def_sb = sc->def_sb; 8394 uint16_t rc = 0; 8395 8396 mb(); /* status block is written to by the chip */ 8397 8398 if (sc->def_att_idx != def_sb->atten_status_block.attn_bits_index) { 8399 sc->def_att_idx = def_sb->atten_status_block.attn_bits_index; 8400 rc |= BXE_DEF_SB_ATT_IDX; 8401 } 8402 8403 if (sc->def_idx != def_sb->sp_sb.running_index) { 8404 sc->def_idx = def_sb->sp_sb.running_index; 8405 rc |= BXE_DEF_SB_IDX; 8406 } 8407 8408 mb(); 8409 8410 return (rc); 8411 } 8412 8413 static inline struct ecore_queue_sp_obj * 8414 bxe_cid_to_q_obj(struct bxe_softc *sc, 8415 uint32_t cid) 8416 { 8417 BLOGD(sc, DBG_SP, "retrieving fp from cid %d\n", cid); 8418 return (&sc->sp_objs[CID_TO_FP(cid, sc)].q_obj); 8419 } 8420 8421 static void 8422 bxe_handle_mcast_eqe(struct bxe_softc *sc) 8423 { 8424 struct ecore_mcast_ramrod_params rparam; 8425 int rc; 8426 8427 memset(&rparam, 0, sizeof(rparam)); 8428 8429 rparam.mcast_obj = &sc->mcast_obj; 8430 8431 BXE_MCAST_LOCK(sc); 8432 8433 /* clear pending state for the last command */ 8434 sc->mcast_obj.raw.clear_pending(&sc->mcast_obj.raw); 8435 8436 /* if there are pending mcast commands - send them */ 8437 if (sc->mcast_obj.check_pending(&sc->mcast_obj)) { 8438 rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_CONT); 8439 if (rc < 0) { 8440 BLOGD(sc, DBG_SP, 8441 "ERROR: Failed to send pending mcast commands (%d)\n", rc); 8442 } 8443 } 8444 8445 BXE_MCAST_UNLOCK(sc); 8446 } 8447 8448 static void 8449 bxe_handle_classification_eqe(struct bxe_softc *sc, 8450 union event_ring_elem *elem) 8451 { 8452 unsigned long ramrod_flags = 0; 8453 int rc = 0; 8454 uint32_t cid = elem->message.data.eth_event.echo & BXE_SWCID_MASK; 8455 struct ecore_vlan_mac_obj *vlan_mac_obj; 8456 8457 /* always push next commands out, don't wait here */ 8458 bit_set(&ramrod_flags, RAMROD_CONT); 8459 8460 switch (le32toh(elem->message.data.eth_event.echo) >> BXE_SWCID_SHIFT) { 8461 case ECORE_FILTER_MAC_PENDING: 8462 BLOGD(sc, DBG_SP, "Got SETUP_MAC completions\n"); 8463 vlan_mac_obj = &sc->sp_objs[cid].mac_obj; 8464 break; 8465 8466 case ECORE_FILTER_MCAST_PENDING: 8467 BLOGD(sc, DBG_SP, "Got SETUP_MCAST completions\n"); 8468 /* 8469 * This is only relevant for 57710 where multicast MACs are 8470 * configured as unicast MACs using the same ramrod. 8471 */ 8472 bxe_handle_mcast_eqe(sc); 8473 return; 8474 8475 default: 8476 BLOGE(sc, "Unsupported classification command: %d\n", 8477 elem->message.data.eth_event.echo); 8478 return; 8479 } 8480 8481 rc = vlan_mac_obj->complete(sc, vlan_mac_obj, elem, &ramrod_flags); 8482 8483 if (rc < 0) { 8484 BLOGE(sc, "Failed to schedule new commands (%d)\n", rc); 8485 } else if (rc > 0) { 8486 BLOGD(sc, DBG_SP, "Scheduled next pending commands...\n"); 8487 } 8488 } 8489 8490 static void 8491 bxe_handle_rx_mode_eqe(struct bxe_softc *sc, 8492 union event_ring_elem *elem) 8493 { 8494 bxe_clear_bit(ECORE_FILTER_RX_MODE_PENDING, &sc->sp_state); 8495 8496 /* send rx_mode command again if was requested */ 8497 if (bxe_test_and_clear_bit(ECORE_FILTER_RX_MODE_SCHED, 8498 &sc->sp_state)) { 8499 bxe_set_storm_rx_mode(sc); 8500 } 8501 } 8502 8503 static void 8504 bxe_update_eq_prod(struct bxe_softc *sc, 8505 uint16_t prod) 8506 { 8507 storm_memset_eq_prod(sc, prod, SC_FUNC(sc)); 8508 wmb(); /* keep prod updates ordered */ 8509 } 8510 8511 static void 8512 bxe_eq_int(struct bxe_softc *sc) 8513 { 8514 uint16_t hw_cons, sw_cons, sw_prod; 8515 union event_ring_elem *elem; 8516 uint8_t echo; 8517 uint32_t cid; 8518 uint8_t opcode; 8519 int spqe_cnt = 0; 8520 struct ecore_queue_sp_obj *q_obj; 8521 struct ecore_func_sp_obj *f_obj = &sc->func_obj; 8522 struct ecore_raw_obj *rss_raw = &sc->rss_conf_obj.raw; 8523 8524 hw_cons = le16toh(*sc->eq_cons_sb); 8525 8526 /* 8527 * The hw_cons range is 1-255, 257 - the sw_cons range is 0-254, 256. 8528 * when we get to the next-page we need to adjust so the loop 8529 * condition below will be met. The next element is the size of a 8530 * regular element and hence incrementing by 1 8531 */ 8532 if ((hw_cons & EQ_DESC_MAX_PAGE) == EQ_DESC_MAX_PAGE) { 8533 hw_cons++; 8534 } 8535 8536 /* 8537 * This function may never run in parallel with itself for a 8538 * specific sc and no need for a read memory barrier here. 8539 */ 8540 sw_cons = sc->eq_cons; 8541 sw_prod = sc->eq_prod; 8542 8543 BLOGD(sc, DBG_SP,"EQ: hw_cons=%u sw_cons=%u eq_spq_left=0x%lx\n", 8544 hw_cons, sw_cons, atomic_load_acq_long(&sc->eq_spq_left)); 8545 8546 for (; 8547 sw_cons != hw_cons; 8548 sw_prod = NEXT_EQ_IDX(sw_prod), sw_cons = NEXT_EQ_IDX(sw_cons)) { 8549 8550 elem = &sc->eq[EQ_DESC(sw_cons)]; 8551 8552 /* elem CID originates from FW, actually LE */ 8553 cid = SW_CID(elem->message.data.cfc_del_event.cid); 8554 opcode = elem->message.opcode; 8555 8556 /* handle eq element */ 8557 switch (opcode) { 8558 8559 case EVENT_RING_OPCODE_STAT_QUERY: 8560 BLOGD(sc, DBG_SP, "got statistics completion event %d\n", 8561 sc->stats_comp++); 8562 /* nothing to do with stats comp */ 8563 goto next_spqe; 8564 8565 case EVENT_RING_OPCODE_CFC_DEL: 8566 /* handle according to cid range */ 8567 /* we may want to verify here that the sc state is HALTING */ 8568 BLOGD(sc, DBG_SP, "got delete ramrod for MULTI[%d]\n", cid); 8569 q_obj = bxe_cid_to_q_obj(sc, cid); 8570 if (q_obj->complete_cmd(sc, q_obj, ECORE_Q_CMD_CFC_DEL)) { 8571 break; 8572 } 8573 goto next_spqe; 8574 8575 case EVENT_RING_OPCODE_STOP_TRAFFIC: 8576 BLOGD(sc, DBG_SP, "got STOP TRAFFIC\n"); 8577 if (f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_TX_STOP)) { 8578 break; 8579 } 8580 // XXX bxe_dcbx_set_params(sc, BXE_DCBX_STATE_TX_PAUSED); 8581 goto next_spqe; 8582 8583 case EVENT_RING_OPCODE_START_TRAFFIC: 8584 BLOGD(sc, DBG_SP, "got START TRAFFIC\n"); 8585 if (f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_TX_START)) { 8586 break; 8587 } 8588 // XXX bxe_dcbx_set_params(sc, BXE_DCBX_STATE_TX_RELEASED); 8589 goto next_spqe; 8590 8591 case EVENT_RING_OPCODE_FUNCTION_UPDATE: 8592 echo = elem->message.data.function_update_event.echo; 8593 if (echo == SWITCH_UPDATE) { 8594 BLOGD(sc, DBG_SP, "got FUNC_SWITCH_UPDATE ramrod\n"); 8595 if (f_obj->complete_cmd(sc, f_obj, 8596 ECORE_F_CMD_SWITCH_UPDATE)) { 8597 break; 8598 } 8599 } 8600 else { 8601 BLOGD(sc, DBG_SP, 8602 "AFEX: ramrod completed FUNCTION_UPDATE\n"); 8603 } 8604 goto next_spqe; 8605 8606 case EVENT_RING_OPCODE_FORWARD_SETUP: 8607 q_obj = &bxe_fwd_sp_obj(sc, q_obj); 8608 if (q_obj->complete_cmd(sc, q_obj, 8609 ECORE_Q_CMD_SETUP_TX_ONLY)) { 8610 break; 8611 } 8612 goto next_spqe; 8613 8614 case EVENT_RING_OPCODE_FUNCTION_START: 8615 BLOGD(sc, DBG_SP, "got FUNC_START ramrod\n"); 8616 if (f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_START)) { 8617 break; 8618 } 8619 goto next_spqe; 8620 8621 case EVENT_RING_OPCODE_FUNCTION_STOP: 8622 BLOGD(sc, DBG_SP, "got FUNC_STOP ramrod\n"); 8623 if (f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_STOP)) { 8624 break; 8625 } 8626 goto next_spqe; 8627 } 8628 8629 switch (opcode | sc->state) { 8630 case (EVENT_RING_OPCODE_RSS_UPDATE_RULES | BXE_STATE_OPEN): 8631 case (EVENT_RING_OPCODE_RSS_UPDATE_RULES | BXE_STATE_OPENING_WAITING_PORT): 8632 cid = elem->message.data.eth_event.echo & BXE_SWCID_MASK; 8633 BLOGD(sc, DBG_SP, "got RSS_UPDATE ramrod. CID %d\n", cid); 8634 rss_raw->clear_pending(rss_raw); 8635 break; 8636 8637 case (EVENT_RING_OPCODE_SET_MAC | BXE_STATE_OPEN): 8638 case (EVENT_RING_OPCODE_SET_MAC | BXE_STATE_DIAG): 8639 case (EVENT_RING_OPCODE_SET_MAC | BXE_STATE_CLOSING_WAITING_HALT): 8640 case (EVENT_RING_OPCODE_CLASSIFICATION_RULES | BXE_STATE_OPEN): 8641 case (EVENT_RING_OPCODE_CLASSIFICATION_RULES | BXE_STATE_DIAG): 8642 case (EVENT_RING_OPCODE_CLASSIFICATION_RULES | BXE_STATE_CLOSING_WAITING_HALT): 8643 BLOGD(sc, DBG_SP, "got (un)set mac ramrod\n"); 8644 bxe_handle_classification_eqe(sc, elem); 8645 break; 8646 8647 case (EVENT_RING_OPCODE_MULTICAST_RULES | BXE_STATE_OPEN): 8648 case (EVENT_RING_OPCODE_MULTICAST_RULES | BXE_STATE_DIAG): 8649 case (EVENT_RING_OPCODE_MULTICAST_RULES | BXE_STATE_CLOSING_WAITING_HALT): 8650 BLOGD(sc, DBG_SP, "got mcast ramrod\n"); 8651 bxe_handle_mcast_eqe(sc); 8652 break; 8653 8654 case (EVENT_RING_OPCODE_FILTERS_RULES | BXE_STATE_OPEN): 8655 case (EVENT_RING_OPCODE_FILTERS_RULES | BXE_STATE_DIAG): 8656 case (EVENT_RING_OPCODE_FILTERS_RULES | BXE_STATE_CLOSING_WAITING_HALT): 8657 BLOGD(sc, DBG_SP, "got rx_mode ramrod\n"); 8658 bxe_handle_rx_mode_eqe(sc, elem); 8659 break; 8660 8661 default: 8662 /* unknown event log error and continue */ 8663 BLOGE(sc, "Unknown EQ event %d, sc->state 0x%x\n", 8664 elem->message.opcode, sc->state); 8665 } 8666 8667 next_spqe: 8668 spqe_cnt++; 8669 } /* for */ 8670 8671 mb(); 8672 atomic_add_acq_long(&sc->eq_spq_left, spqe_cnt); 8673 8674 sc->eq_cons = sw_cons; 8675 sc->eq_prod = sw_prod; 8676 8677 /* make sure that above mem writes were issued towards the memory */ 8678 wmb(); 8679 8680 /* update producer */ 8681 bxe_update_eq_prod(sc, sc->eq_prod); 8682 } 8683 8684 static void 8685 bxe_handle_sp_tq(void *context, 8686 int pending) 8687 { 8688 struct bxe_softc *sc = (struct bxe_softc *)context; 8689 uint16_t status; 8690 8691 BLOGD(sc, DBG_SP, "---> SP TASK <---\n"); 8692 8693 /* what work needs to be performed? */ 8694 status = bxe_update_dsb_idx(sc); 8695 8696 BLOGD(sc, DBG_SP, "dsb status 0x%04x\n", status); 8697 8698 /* HW attentions */ 8699 if (status & BXE_DEF_SB_ATT_IDX) { 8700 BLOGD(sc, DBG_SP, "---> ATTN INTR <---\n"); 8701 bxe_attn_int(sc); 8702 status &= ~BXE_DEF_SB_ATT_IDX; 8703 } 8704 8705 /* SP events: STAT_QUERY and others */ 8706 if (status & BXE_DEF_SB_IDX) { 8707 /* handle EQ completions */ 8708 BLOGD(sc, DBG_SP, "---> EQ INTR <---\n"); 8709 bxe_eq_int(sc); 8710 bxe_ack_sb(sc, sc->igu_dsb_id, USTORM_ID, 8711 le16toh(sc->def_idx), IGU_INT_NOP, 1); 8712 status &= ~BXE_DEF_SB_IDX; 8713 } 8714 8715 /* if status is non zero then something went wrong */ 8716 if (__predict_false(status)) { 8717 BLOGE(sc, "Got an unknown SP interrupt! (0x%04x)\n", status); 8718 } 8719 8720 /* ack status block only if something was actually handled */ 8721 bxe_ack_sb(sc, sc->igu_dsb_id, ATTENTION_ID, 8722 le16toh(sc->def_att_idx), IGU_INT_ENABLE, 1); 8723 8724 /* 8725 * Must be called after the EQ processing (since eq leads to sriov 8726 * ramrod completion flows). 8727 * This flow may have been scheduled by the arrival of a ramrod 8728 * completion, or by the sriov code rescheduling itself. 8729 */ 8730 // XXX bxe_iov_sp_task(sc); 8731 8732 } 8733 8734 static void 8735 bxe_handle_fp_tq(void *context, 8736 int pending) 8737 { 8738 struct bxe_fastpath *fp = (struct bxe_fastpath *)context; 8739 struct bxe_softc *sc = fp->sc; 8740 uint8_t more_tx = FALSE; 8741 uint8_t more_rx = FALSE; 8742 8743 BLOGD(sc, DBG_INTR, "---> FP TASK QUEUE (%d) <---\n", fp->index); 8744 8745 /* XXX 8746 * IFF_DRV_RUNNING state can't be checked here since we process 8747 * slowpath events on a client queue during setup. Instead 8748 * we need to add a "process/continue" flag here that the driver 8749 * can use to tell the task here not to do anything. 8750 */ 8751 #if 0 8752 if (!(if_getdrvflags(sc->ifp) & IFF_DRV_RUNNING)) { 8753 return; 8754 } 8755 #endif 8756 8757 /* update the fastpath index */ 8758 bxe_update_fp_sb_idx(fp); 8759 8760 /* XXX add loop here if ever support multiple tx CoS */ 8761 /* fp->txdata[cos] */ 8762 if (bxe_has_tx_work(fp)) { 8763 BXE_FP_TX_LOCK(fp); 8764 more_tx = bxe_txeof(sc, fp); 8765 BXE_FP_TX_UNLOCK(fp); 8766 } 8767 8768 if (bxe_has_rx_work(fp)) { 8769 more_rx = bxe_rxeof(sc, fp); 8770 } 8771 8772 if (more_rx /*|| more_tx*/) { 8773 /* still more work to do */ 8774 taskqueue_enqueue(fp->tq, &fp->tq_task); 8775 return; 8776 } 8777 8778 bxe_ack_sb(sc, fp->igu_sb_id, USTORM_ID, 8779 le16toh(fp->fp_hc_idx), IGU_INT_ENABLE, 1); 8780 } 8781 8782 static void 8783 bxe_task_fp(struct bxe_fastpath *fp) 8784 { 8785 struct bxe_softc *sc = fp->sc; 8786 uint8_t more_tx = FALSE; 8787 uint8_t more_rx = FALSE; 8788 8789 BLOGD(sc, DBG_INTR, "---> FP TASK ISR (%d) <---\n", fp->index); 8790 8791 /* update the fastpath index */ 8792 bxe_update_fp_sb_idx(fp); 8793 8794 /* XXX add loop here if ever support multiple tx CoS */ 8795 /* fp->txdata[cos] */ 8796 if (bxe_has_tx_work(fp)) { 8797 BXE_FP_TX_LOCK(fp); 8798 more_tx = bxe_txeof(sc, fp); 8799 BXE_FP_TX_UNLOCK(fp); 8800 } 8801 8802 if (bxe_has_rx_work(fp)) { 8803 more_rx = bxe_rxeof(sc, fp); 8804 } 8805 8806 if (more_rx /*|| more_tx*/) { 8807 /* still more work to do, bail out if this ISR and process later */ 8808 taskqueue_enqueue(fp->tq, &fp->tq_task); 8809 return; 8810 } 8811 8812 /* 8813 * Here we write the fastpath index taken before doing any tx or rx work. 8814 * It is very well possible other hw events occurred up to this point and 8815 * they were actually processed accordingly above. Since we're going to 8816 * write an older fastpath index, an interrupt is coming which we might 8817 * not do any work in. 8818 */ 8819 bxe_ack_sb(sc, fp->igu_sb_id, USTORM_ID, 8820 le16toh(fp->fp_hc_idx), IGU_INT_ENABLE, 1); 8821 } 8822 8823 /* 8824 * Legacy interrupt entry point. 8825 * 8826 * Verifies that the controller generated the interrupt and 8827 * then calls a separate routine to handle the various 8828 * interrupt causes: link, RX, and TX. 8829 */ 8830 static void 8831 bxe_intr_legacy(void *xsc) 8832 { 8833 struct bxe_softc *sc = (struct bxe_softc *)xsc; 8834 struct bxe_fastpath *fp; 8835 uint16_t status, mask; 8836 int i; 8837 8838 BLOGD(sc, DBG_INTR, "---> BXE INTx <---\n"); 8839 8840 /* 8841 * 0 for ustorm, 1 for cstorm 8842 * the bits returned from ack_int() are 0-15 8843 * bit 0 = attention status block 8844 * bit 1 = fast path status block 8845 * a mask of 0x2 or more = tx/rx event 8846 * a mask of 1 = slow path event 8847 */ 8848 8849 status = bxe_ack_int(sc); 8850 8851 /* the interrupt is not for us */ 8852 if (__predict_false(status == 0)) { 8853 BLOGD(sc, DBG_INTR, "Not our interrupt!\n"); 8854 return; 8855 } 8856 8857 BLOGD(sc, DBG_INTR, "Interrupt status 0x%04x\n", status); 8858 8859 FOR_EACH_ETH_QUEUE(sc, i) { 8860 fp = &sc->fp[i]; 8861 mask = (0x2 << (fp->index + CNIC_SUPPORT(sc))); 8862 if (status & mask) { 8863 /* acknowledge and disable further fastpath interrupts */ 8864 bxe_ack_sb(sc, fp->igu_sb_id, USTORM_ID, 0, IGU_INT_DISABLE, 0); 8865 bxe_task_fp(fp); 8866 status &= ~mask; 8867 } 8868 } 8869 8870 if (__predict_false(status & 0x1)) { 8871 /* acknowledge and disable further slowpath interrupts */ 8872 bxe_ack_sb(sc, sc->igu_dsb_id, USTORM_ID, 0, IGU_INT_DISABLE, 0); 8873 8874 /* schedule slowpath handler */ 8875 taskqueue_enqueue(sc->sp_tq, &sc->sp_tq_task); 8876 8877 status &= ~0x1; 8878 } 8879 8880 if (__predict_false(status)) { 8881 BLOGW(sc, "Unexpected fastpath status (0x%08x)!\n", status); 8882 } 8883 } 8884 8885 /* slowpath interrupt entry point */ 8886 static void 8887 bxe_intr_sp(void *xsc) 8888 { 8889 struct bxe_softc *sc = (struct bxe_softc *)xsc; 8890 8891 BLOGD(sc, (DBG_INTR | DBG_SP), "---> SP INTR <---\n"); 8892 8893 /* acknowledge and disable further slowpath interrupts */ 8894 bxe_ack_sb(sc, sc->igu_dsb_id, USTORM_ID, 0, IGU_INT_DISABLE, 0); 8895 8896 /* schedule slowpath handler */ 8897 taskqueue_enqueue(sc->sp_tq, &sc->sp_tq_task); 8898 } 8899 8900 /* fastpath interrupt entry point */ 8901 static void 8902 bxe_intr_fp(void *xfp) 8903 { 8904 struct bxe_fastpath *fp = (struct bxe_fastpath *)xfp; 8905 struct bxe_softc *sc = fp->sc; 8906 8907 BLOGD(sc, DBG_INTR, "---> FP INTR %d <---\n", fp->index); 8908 8909 BLOGD(sc, DBG_INTR, 8910 "(cpu=%d) MSI-X fp=%d fw_sb=%d igu_sb=%d\n", 8911 curcpu, fp->index, fp->fw_sb_id, fp->igu_sb_id); 8912 8913 /* acknowledge and disable further fastpath interrupts */ 8914 bxe_ack_sb(sc, fp->igu_sb_id, USTORM_ID, 0, IGU_INT_DISABLE, 0); 8915 8916 bxe_task_fp(fp); 8917 } 8918 8919 /* Release all interrupts allocated by the driver. */ 8920 static void 8921 bxe_interrupt_free(struct bxe_softc *sc) 8922 { 8923 int i; 8924 8925 switch (sc->interrupt_mode) { 8926 case INTR_MODE_INTX: 8927 BLOGD(sc, DBG_LOAD, "Releasing legacy INTx vector\n"); 8928 if (sc->intr[0].resource != NULL) { 8929 bus_release_resource(sc->dev, 8930 SYS_RES_IRQ, 8931 sc->intr[0].rid, 8932 sc->intr[0].resource); 8933 } 8934 break; 8935 case INTR_MODE_MSI: 8936 for (i = 0; i < sc->intr_count; i++) { 8937 BLOGD(sc, DBG_LOAD, "Releasing MSI vector %d\n", i); 8938 if (sc->intr[i].resource && sc->intr[i].rid) { 8939 bus_release_resource(sc->dev, 8940 SYS_RES_IRQ, 8941 sc->intr[i].rid, 8942 sc->intr[i].resource); 8943 } 8944 } 8945 pci_release_msi(sc->dev); 8946 break; 8947 case INTR_MODE_MSIX: 8948 for (i = 0; i < sc->intr_count; i++) { 8949 BLOGD(sc, DBG_LOAD, "Releasing MSI-X vector %d\n", i); 8950 if (sc->intr[i].resource && sc->intr[i].rid) { 8951 bus_release_resource(sc->dev, 8952 SYS_RES_IRQ, 8953 sc->intr[i].rid, 8954 sc->intr[i].resource); 8955 } 8956 } 8957 pci_release_msi(sc->dev); 8958 break; 8959 default: 8960 /* nothing to do as initial allocation failed */ 8961 break; 8962 } 8963 } 8964 8965 /* 8966 * This function determines and allocates the appropriate 8967 * interrupt based on system capabilites and user request. 8968 * 8969 * The user may force a particular interrupt mode, specify 8970 * the number of receive queues, specify the method for 8971 * distribuitng received frames to receive queues, or use 8972 * the default settings which will automatically select the 8973 * best supported combination. In addition, the OS may or 8974 * may not support certain combinations of these settings. 8975 * This routine attempts to reconcile the settings requested 8976 * by the user with the capabilites available from the system 8977 * to select the optimal combination of features. 8978 * 8979 * Returns: 8980 * 0 = Success, !0 = Failure. 8981 */ 8982 static int 8983 bxe_interrupt_alloc(struct bxe_softc *sc) 8984 { 8985 int msix_count = 0; 8986 int msi_count = 0; 8987 int num_requested = 0; 8988 int num_allocated = 0; 8989 int rid, i, j; 8990 int rc; 8991 8992 /* get the number of available MSI/MSI-X interrupts from the OS */ 8993 if (sc->interrupt_mode > 0) { 8994 if (sc->devinfo.pcie_cap_flags & BXE_MSIX_CAPABLE_FLAG) { 8995 msix_count = pci_msix_count(sc->dev); 8996 } 8997 8998 if (sc->devinfo.pcie_cap_flags & BXE_MSI_CAPABLE_FLAG) { 8999 msi_count = pci_msi_count(sc->dev); 9000 } 9001 9002 BLOGD(sc, DBG_LOAD, "%d MSI and %d MSI-X vectors available\n", 9003 msi_count, msix_count); 9004 } 9005 9006 do { /* try allocating MSI-X interrupt resources (at least 2) */ 9007 if (sc->interrupt_mode != INTR_MODE_MSIX) { 9008 break; 9009 } 9010 9011 if (((sc->devinfo.pcie_cap_flags & BXE_MSIX_CAPABLE_FLAG) == 0) || 9012 (msix_count < 2)) { 9013 sc->interrupt_mode = INTR_MODE_MSI; /* try MSI next */ 9014 break; 9015 } 9016 9017 /* ask for the necessary number of MSI-X vectors */ 9018 num_requested = min((sc->num_queues + 1), msix_count); 9019 9020 BLOGD(sc, DBG_LOAD, "Requesting %d MSI-X vectors\n", num_requested); 9021 9022 num_allocated = num_requested; 9023 if ((rc = pci_alloc_msix(sc->dev, &num_allocated)) != 0) { 9024 BLOGE(sc, "MSI-X alloc failed! (%d)\n", rc); 9025 sc->interrupt_mode = INTR_MODE_MSI; /* try MSI next */ 9026 break; 9027 } 9028 9029 if (num_allocated < 2) { /* possible? */ 9030 BLOGE(sc, "MSI-X allocation less than 2!\n"); 9031 sc->interrupt_mode = INTR_MODE_MSI; /* try MSI next */ 9032 pci_release_msi(sc->dev); 9033 break; 9034 } 9035 9036 BLOGI(sc, "MSI-X vectors Requested %d and Allocated %d\n", 9037 num_requested, num_allocated); 9038 9039 /* best effort so use the number of vectors allocated to us */ 9040 sc->intr_count = num_allocated; 9041 sc->num_queues = num_allocated - 1; 9042 9043 rid = 1; /* initial resource identifier */ 9044 9045 /* allocate the MSI-X vectors */ 9046 for (i = 0; i < num_allocated; i++) { 9047 sc->intr[i].rid = (rid + i); 9048 9049 if ((sc->intr[i].resource = 9050 bus_alloc_resource_any(sc->dev, 9051 SYS_RES_IRQ, 9052 &sc->intr[i].rid, 9053 RF_ACTIVE)) == NULL) { 9054 BLOGE(sc, "Failed to map MSI-X[%d] (rid=%d)!\n", 9055 i, (rid + i)); 9056 9057 for (j = (i - 1); j >= 0; j--) { 9058 bus_release_resource(sc->dev, 9059 SYS_RES_IRQ, 9060 sc->intr[j].rid, 9061 sc->intr[j].resource); 9062 } 9063 9064 sc->intr_count = 0; 9065 sc->num_queues = 0; 9066 sc->interrupt_mode = INTR_MODE_MSI; /* try MSI next */ 9067 pci_release_msi(sc->dev); 9068 break; 9069 } 9070 9071 BLOGD(sc, DBG_LOAD, "Mapped MSI-X[%d] (rid=%d)\n", i, (rid + i)); 9072 } 9073 } while (0); 9074 9075 do { /* try allocating MSI vector resources (at least 2) */ 9076 if (sc->interrupt_mode != INTR_MODE_MSI) { 9077 break; 9078 } 9079 9080 if (((sc->devinfo.pcie_cap_flags & BXE_MSI_CAPABLE_FLAG) == 0) || 9081 (msi_count < 1)) { 9082 sc->interrupt_mode = INTR_MODE_INTX; /* try INTx next */ 9083 break; 9084 } 9085 9086 /* ask for a single MSI vector */ 9087 num_requested = 1; 9088 9089 BLOGD(sc, DBG_LOAD, "Requesting %d MSI vectors\n", num_requested); 9090 9091 num_allocated = num_requested; 9092 if ((rc = pci_alloc_msi(sc->dev, &num_allocated)) != 0) { 9093 BLOGE(sc, "MSI alloc failed (%d)!\n", rc); 9094 sc->interrupt_mode = INTR_MODE_INTX; /* try INTx next */ 9095 break; 9096 } 9097 9098 if (num_allocated != 1) { /* possible? */ 9099 BLOGE(sc, "MSI allocation is not 1!\n"); 9100 sc->interrupt_mode = INTR_MODE_INTX; /* try INTx next */ 9101 pci_release_msi(sc->dev); 9102 break; 9103 } 9104 9105 BLOGI(sc, "MSI vectors Requested %d and Allocated %d\n", 9106 num_requested, num_allocated); 9107 9108 /* best effort so use the number of vectors allocated to us */ 9109 sc->intr_count = num_allocated; 9110 sc->num_queues = num_allocated; 9111 9112 rid = 1; /* initial resource identifier */ 9113 9114 sc->intr[0].rid = rid; 9115 9116 if ((sc->intr[0].resource = 9117 bus_alloc_resource_any(sc->dev, 9118 SYS_RES_IRQ, 9119 &sc->intr[0].rid, 9120 RF_ACTIVE)) == NULL) { 9121 BLOGE(sc, "Failed to map MSI[0] (rid=%d)!\n", rid); 9122 sc->intr_count = 0; 9123 sc->num_queues = 0; 9124 sc->interrupt_mode = INTR_MODE_INTX; /* try INTx next */ 9125 pci_release_msi(sc->dev); 9126 break; 9127 } 9128 9129 BLOGD(sc, DBG_LOAD, "Mapped MSI[0] (rid=%d)\n", rid); 9130 } while (0); 9131 9132 do { /* try allocating INTx vector resources */ 9133 if (sc->interrupt_mode != INTR_MODE_INTX) { 9134 break; 9135 } 9136 9137 BLOGD(sc, DBG_LOAD, "Requesting legacy INTx interrupt\n"); 9138 9139 /* only one vector for INTx */ 9140 sc->intr_count = 1; 9141 sc->num_queues = 1; 9142 9143 rid = 0; /* initial resource identifier */ 9144 9145 sc->intr[0].rid = rid; 9146 9147 if ((sc->intr[0].resource = 9148 bus_alloc_resource_any(sc->dev, 9149 SYS_RES_IRQ, 9150 &sc->intr[0].rid, 9151 (RF_ACTIVE | RF_SHAREABLE))) == NULL) { 9152 BLOGE(sc, "Failed to map INTx (rid=%d)!\n", rid); 9153 sc->intr_count = 0; 9154 sc->num_queues = 0; 9155 sc->interrupt_mode = -1; /* Failed! */ 9156 break; 9157 } 9158 9159 BLOGD(sc, DBG_LOAD, "Mapped INTx (rid=%d)\n", rid); 9160 } while (0); 9161 9162 if (sc->interrupt_mode == -1) { 9163 BLOGE(sc, "Interrupt Allocation: FAILED!!!\n"); 9164 rc = 1; 9165 } else { 9166 BLOGD(sc, DBG_LOAD, 9167 "Interrupt Allocation: interrupt_mode=%d, num_queues=%d\n", 9168 sc->interrupt_mode, sc->num_queues); 9169 rc = 0; 9170 } 9171 9172 return (rc); 9173 } 9174 9175 static void 9176 bxe_interrupt_detach(struct bxe_softc *sc) 9177 { 9178 struct bxe_fastpath *fp; 9179 int i; 9180 9181 /* release interrupt resources */ 9182 for (i = 0; i < sc->intr_count; i++) { 9183 if (sc->intr[i].resource && sc->intr[i].tag) { 9184 BLOGD(sc, DBG_LOAD, "Disabling interrupt vector %d\n", i); 9185 bus_teardown_intr(sc->dev, sc->intr[i].resource, sc->intr[i].tag); 9186 } 9187 } 9188 9189 for (i = 0; i < sc->num_queues; i++) { 9190 fp = &sc->fp[i]; 9191 if (fp->tq) { 9192 taskqueue_drain(fp->tq, &fp->tq_task); 9193 taskqueue_drain(fp->tq, &fp->tx_task); 9194 while (taskqueue_cancel_timeout(fp->tq, &fp->tx_timeout_task, 9195 NULL)) 9196 taskqueue_drain_timeout(fp->tq, &fp->tx_timeout_task); 9197 } 9198 9199 for (i = 0; i < sc->num_queues; i++) { 9200 fp = &sc->fp[i]; 9201 if (fp->tq != NULL) { 9202 taskqueue_free(fp->tq); 9203 fp->tq = NULL; 9204 } 9205 } 9206 } 9207 9208 if (sc->sp_tq) { 9209 taskqueue_drain(sc->sp_tq, &sc->sp_tq_task); 9210 taskqueue_free(sc->sp_tq); 9211 sc->sp_tq = NULL; 9212 } 9213 } 9214 9215 /* 9216 * Enables interrupts and attach to the ISR. 9217 * 9218 * When using multiple MSI/MSI-X vectors the first vector 9219 * is used for slowpath operations while all remaining 9220 * vectors are used for fastpath operations. If only a 9221 * single MSI/MSI-X vector is used (SINGLE_ISR) then the 9222 * ISR must look for both slowpath and fastpath completions. 9223 */ 9224 static int 9225 bxe_interrupt_attach(struct bxe_softc *sc) 9226 { 9227 struct bxe_fastpath *fp; 9228 int rc = 0; 9229 int i; 9230 9231 snprintf(sc->sp_tq_name, sizeof(sc->sp_tq_name), 9232 "bxe%d_sp_tq", sc->unit); 9233 TASK_INIT(&sc->sp_tq_task, 0, bxe_handle_sp_tq, sc); 9234 sc->sp_tq = taskqueue_create(sc->sp_tq_name, M_NOWAIT, 9235 taskqueue_thread_enqueue, 9236 &sc->sp_tq); 9237 taskqueue_start_threads(&sc->sp_tq, 1, PWAIT, /* lower priority */ 9238 "%s", sc->sp_tq_name); 9239 9240 9241 for (i = 0; i < sc->num_queues; i++) { 9242 fp = &sc->fp[i]; 9243 snprintf(fp->tq_name, sizeof(fp->tq_name), 9244 "bxe%d_fp%d_tq", sc->unit, i); 9245 NET_TASK_INIT(&fp->tq_task, 0, bxe_handle_fp_tq, fp); 9246 TASK_INIT(&fp->tx_task, 0, bxe_tx_mq_start_deferred, fp); 9247 fp->tq = taskqueue_create(fp->tq_name, M_NOWAIT, 9248 taskqueue_thread_enqueue, 9249 &fp->tq); 9250 TIMEOUT_TASK_INIT(fp->tq, &fp->tx_timeout_task, 0, 9251 bxe_tx_mq_start_deferred, fp); 9252 taskqueue_start_threads(&fp->tq, 1, PI_NET, /* higher priority */ 9253 "%s", fp->tq_name); 9254 } 9255 9256 /* setup interrupt handlers */ 9257 if (sc->interrupt_mode == INTR_MODE_MSIX) { 9258 BLOGD(sc, DBG_LOAD, "Enabling slowpath MSI-X[0] vector\n"); 9259 9260 /* 9261 * Setup the interrupt handler. Note that we pass the driver instance 9262 * to the interrupt handler for the slowpath. 9263 */ 9264 if ((rc = bus_setup_intr(sc->dev, sc->intr[0].resource, 9265 (INTR_TYPE_NET | INTR_MPSAFE), 9266 NULL, bxe_intr_sp, sc, 9267 &sc->intr[0].tag)) != 0) { 9268 BLOGE(sc, "Failed to allocate MSI-X[0] vector (%d)\n", rc); 9269 goto bxe_interrupt_attach_exit; 9270 } 9271 9272 bus_describe_intr(sc->dev, sc->intr[0].resource, 9273 sc->intr[0].tag, "sp"); 9274 9275 /* bus_bind_intr(sc->dev, sc->intr[0].resource, 0); */ 9276 9277 /* initialize the fastpath vectors (note the first was used for sp) */ 9278 for (i = 0; i < sc->num_queues; i++) { 9279 fp = &sc->fp[i]; 9280 BLOGD(sc, DBG_LOAD, "Enabling MSI-X[%d] vector\n", (i + 1)); 9281 9282 /* 9283 * Setup the interrupt handler. Note that we pass the 9284 * fastpath context to the interrupt handler in this 9285 * case. 9286 */ 9287 if ((rc = bus_setup_intr(sc->dev, sc->intr[i + 1].resource, 9288 (INTR_TYPE_NET | INTR_MPSAFE), 9289 NULL, bxe_intr_fp, fp, 9290 &sc->intr[i + 1].tag)) != 0) { 9291 BLOGE(sc, "Failed to allocate MSI-X[%d] vector (%d)\n", 9292 (i + 1), rc); 9293 goto bxe_interrupt_attach_exit; 9294 } 9295 9296 bus_describe_intr(sc->dev, sc->intr[i + 1].resource, 9297 sc->intr[i + 1].tag, "fp%02d", i); 9298 9299 /* bind the fastpath instance to a cpu */ 9300 if (sc->num_queues > 1) { 9301 bus_bind_intr(sc->dev, sc->intr[i + 1].resource, i); 9302 } 9303 9304 fp->state = BXE_FP_STATE_IRQ; 9305 } 9306 } else if (sc->interrupt_mode == INTR_MODE_MSI) { 9307 BLOGD(sc, DBG_LOAD, "Enabling MSI[0] vector\n"); 9308 9309 /* 9310 * Setup the interrupt handler. Note that we pass the 9311 * driver instance to the interrupt handler which 9312 * will handle both the slowpath and fastpath. 9313 */ 9314 if ((rc = bus_setup_intr(sc->dev, sc->intr[0].resource, 9315 (INTR_TYPE_NET | INTR_MPSAFE), 9316 NULL, bxe_intr_legacy, sc, 9317 &sc->intr[0].tag)) != 0) { 9318 BLOGE(sc, "Failed to allocate MSI[0] vector (%d)\n", rc); 9319 goto bxe_interrupt_attach_exit; 9320 } 9321 9322 } else { /* (sc->interrupt_mode == INTR_MODE_INTX) */ 9323 BLOGD(sc, DBG_LOAD, "Enabling INTx interrupts\n"); 9324 9325 /* 9326 * Setup the interrupt handler. Note that we pass the 9327 * driver instance to the interrupt handler which 9328 * will handle both the slowpath and fastpath. 9329 */ 9330 if ((rc = bus_setup_intr(sc->dev, sc->intr[0].resource, 9331 (INTR_TYPE_NET | INTR_MPSAFE), 9332 NULL, bxe_intr_legacy, sc, 9333 &sc->intr[0].tag)) != 0) { 9334 BLOGE(sc, "Failed to allocate INTx interrupt (%d)\n", rc); 9335 goto bxe_interrupt_attach_exit; 9336 } 9337 } 9338 9339 bxe_interrupt_attach_exit: 9340 9341 return (rc); 9342 } 9343 9344 static int bxe_init_hw_common_chip(struct bxe_softc *sc); 9345 static int bxe_init_hw_common(struct bxe_softc *sc); 9346 static int bxe_init_hw_port(struct bxe_softc *sc); 9347 static int bxe_init_hw_func(struct bxe_softc *sc); 9348 static void bxe_reset_common(struct bxe_softc *sc); 9349 static void bxe_reset_port(struct bxe_softc *sc); 9350 static void bxe_reset_func(struct bxe_softc *sc); 9351 static int bxe_gunzip_init(struct bxe_softc *sc); 9352 static void bxe_gunzip_end(struct bxe_softc *sc); 9353 static int bxe_init_firmware(struct bxe_softc *sc); 9354 static void bxe_release_firmware(struct bxe_softc *sc); 9355 9356 static struct 9357 ecore_func_sp_drv_ops bxe_func_sp_drv = { 9358 .init_hw_cmn_chip = bxe_init_hw_common_chip, 9359 .init_hw_cmn = bxe_init_hw_common, 9360 .init_hw_port = bxe_init_hw_port, 9361 .init_hw_func = bxe_init_hw_func, 9362 9363 .reset_hw_cmn = bxe_reset_common, 9364 .reset_hw_port = bxe_reset_port, 9365 .reset_hw_func = bxe_reset_func, 9366 9367 .gunzip_init = bxe_gunzip_init, 9368 .gunzip_end = bxe_gunzip_end, 9369 9370 .init_fw = bxe_init_firmware, 9371 .release_fw = bxe_release_firmware, 9372 }; 9373 9374 static void 9375 bxe_init_func_obj(struct bxe_softc *sc) 9376 { 9377 sc->dmae_ready = 0; 9378 9379 ecore_init_func_obj(sc, 9380 &sc->func_obj, 9381 BXE_SP(sc, func_rdata), 9382 BXE_SP_MAPPING(sc, func_rdata), 9383 BXE_SP(sc, func_afex_rdata), 9384 BXE_SP_MAPPING(sc, func_afex_rdata), 9385 &bxe_func_sp_drv); 9386 } 9387 9388 static int 9389 bxe_init_hw(struct bxe_softc *sc, 9390 uint32_t load_code) 9391 { 9392 struct ecore_func_state_params func_params = { NULL }; 9393 int rc; 9394 9395 /* prepare the parameters for function state transitions */ 9396 bit_set(&func_params.ramrod_flags, RAMROD_COMP_WAIT); 9397 9398 func_params.f_obj = &sc->func_obj; 9399 func_params.cmd = ECORE_F_CMD_HW_INIT; 9400 9401 func_params.params.hw_init.load_phase = load_code; 9402 9403 /* 9404 * Via a plethora of function pointers, we will eventually reach 9405 * bxe_init_hw_common(), bxe_init_hw_port(), or bxe_init_hw_func(). 9406 */ 9407 rc = ecore_func_state_change(sc, &func_params); 9408 9409 return (rc); 9410 } 9411 9412 static void 9413 bxe_fill(struct bxe_softc *sc, 9414 uint32_t addr, 9415 int fill, 9416 uint32_t len) 9417 { 9418 uint32_t i; 9419 9420 if (!(len % 4) && !(addr % 4)) { 9421 for (i = 0; i < len; i += 4) { 9422 REG_WR(sc, (addr + i), fill); 9423 } 9424 } else { 9425 for (i = 0; i < len; i++) { 9426 REG_WR8(sc, (addr + i), fill); 9427 } 9428 } 9429 } 9430 9431 /* writes FP SP data to FW - data_size in dwords */ 9432 static void 9433 bxe_wr_fp_sb_data(struct bxe_softc *sc, 9434 int fw_sb_id, 9435 uint32_t *sb_data_p, 9436 uint32_t data_size) 9437 { 9438 int index; 9439 9440 for (index = 0; index < data_size; index++) { 9441 REG_WR(sc, 9442 (BAR_CSTRORM_INTMEM + 9443 CSTORM_STATUS_BLOCK_DATA_OFFSET(fw_sb_id) + 9444 (sizeof(uint32_t) * index)), 9445 *(sb_data_p + index)); 9446 } 9447 } 9448 9449 static void 9450 bxe_zero_fp_sb(struct bxe_softc *sc, 9451 int fw_sb_id) 9452 { 9453 struct hc_status_block_data_e2 sb_data_e2; 9454 struct hc_status_block_data_e1x sb_data_e1x; 9455 uint32_t *sb_data_p; 9456 uint32_t data_size = 0; 9457 9458 if (!CHIP_IS_E1x(sc)) { 9459 memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2)); 9460 sb_data_e2.common.state = SB_DISABLED; 9461 sb_data_e2.common.p_func.vf_valid = FALSE; 9462 sb_data_p = (uint32_t *)&sb_data_e2; 9463 data_size = (sizeof(struct hc_status_block_data_e2) / 9464 sizeof(uint32_t)); 9465 } else { 9466 memset(&sb_data_e1x, 0, sizeof(struct hc_status_block_data_e1x)); 9467 sb_data_e1x.common.state = SB_DISABLED; 9468 sb_data_e1x.common.p_func.vf_valid = FALSE; 9469 sb_data_p = (uint32_t *)&sb_data_e1x; 9470 data_size = (sizeof(struct hc_status_block_data_e1x) / 9471 sizeof(uint32_t)); 9472 } 9473 9474 bxe_wr_fp_sb_data(sc, fw_sb_id, sb_data_p, data_size); 9475 9476 bxe_fill(sc, (BAR_CSTRORM_INTMEM + CSTORM_STATUS_BLOCK_OFFSET(fw_sb_id)), 9477 0, CSTORM_STATUS_BLOCK_SIZE); 9478 bxe_fill(sc, (BAR_CSTRORM_INTMEM + CSTORM_SYNC_BLOCK_OFFSET(fw_sb_id)), 9479 0, CSTORM_SYNC_BLOCK_SIZE); 9480 } 9481 9482 static void 9483 bxe_wr_sp_sb_data(struct bxe_softc *sc, 9484 struct hc_sp_status_block_data *sp_sb_data) 9485 { 9486 int i; 9487 9488 for (i = 0; 9489 i < (sizeof(struct hc_sp_status_block_data) / sizeof(uint32_t)); 9490 i++) { 9491 REG_WR(sc, 9492 (BAR_CSTRORM_INTMEM + 9493 CSTORM_SP_STATUS_BLOCK_DATA_OFFSET(SC_FUNC(sc)) + 9494 (i * sizeof(uint32_t))), 9495 *((uint32_t *)sp_sb_data + i)); 9496 } 9497 } 9498 9499 static void 9500 bxe_zero_sp_sb(struct bxe_softc *sc) 9501 { 9502 struct hc_sp_status_block_data sp_sb_data; 9503 9504 memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data)); 9505 9506 sp_sb_data.state = SB_DISABLED; 9507 sp_sb_data.p_func.vf_valid = FALSE; 9508 9509 bxe_wr_sp_sb_data(sc, &sp_sb_data); 9510 9511 bxe_fill(sc, 9512 (BAR_CSTRORM_INTMEM + 9513 CSTORM_SP_STATUS_BLOCK_OFFSET(SC_FUNC(sc))), 9514 0, CSTORM_SP_STATUS_BLOCK_SIZE); 9515 bxe_fill(sc, 9516 (BAR_CSTRORM_INTMEM + 9517 CSTORM_SP_SYNC_BLOCK_OFFSET(SC_FUNC(sc))), 9518 0, CSTORM_SP_SYNC_BLOCK_SIZE); 9519 } 9520 9521 static void 9522 bxe_setup_ndsb_state_machine(struct hc_status_block_sm *hc_sm, 9523 int igu_sb_id, 9524 int igu_seg_id) 9525 { 9526 hc_sm->igu_sb_id = igu_sb_id; 9527 hc_sm->igu_seg_id = igu_seg_id; 9528 hc_sm->timer_value = 0xFF; 9529 hc_sm->time_to_expire = 0xFFFFFFFF; 9530 } 9531 9532 static void 9533 bxe_map_sb_state_machines(struct hc_index_data *index_data) 9534 { 9535 /* zero out state machine indices */ 9536 9537 /* rx indices */ 9538 index_data[HC_INDEX_ETH_RX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID; 9539 9540 /* tx indices */ 9541 index_data[HC_INDEX_OOO_TX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID; 9542 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags &= ~HC_INDEX_DATA_SM_ID; 9543 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags &= ~HC_INDEX_DATA_SM_ID; 9544 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags &= ~HC_INDEX_DATA_SM_ID; 9545 9546 /* map indices */ 9547 9548 /* rx indices */ 9549 index_data[HC_INDEX_ETH_RX_CQ_CONS].flags |= 9550 (SM_RX_ID << HC_INDEX_DATA_SM_ID_SHIFT); 9551 9552 /* tx indices */ 9553 index_data[HC_INDEX_OOO_TX_CQ_CONS].flags |= 9554 (SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT); 9555 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags |= 9556 (SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT); 9557 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags |= 9558 (SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT); 9559 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags |= 9560 (SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT); 9561 } 9562 9563 static void 9564 bxe_init_sb(struct bxe_softc *sc, 9565 bus_addr_t busaddr, 9566 int vfid, 9567 uint8_t vf_valid, 9568 int fw_sb_id, 9569 int igu_sb_id) 9570 { 9571 struct hc_status_block_data_e2 sb_data_e2; 9572 struct hc_status_block_data_e1x sb_data_e1x; 9573 struct hc_status_block_sm *hc_sm_p; 9574 uint32_t *sb_data_p; 9575 int igu_seg_id; 9576 int data_size; 9577 9578 if (CHIP_INT_MODE_IS_BC(sc)) { 9579 igu_seg_id = HC_SEG_ACCESS_NORM; 9580 } else { 9581 igu_seg_id = IGU_SEG_ACCESS_NORM; 9582 } 9583 9584 bxe_zero_fp_sb(sc, fw_sb_id); 9585 9586 if (!CHIP_IS_E1x(sc)) { 9587 memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2)); 9588 sb_data_e2.common.state = SB_ENABLED; 9589 sb_data_e2.common.p_func.pf_id = SC_FUNC(sc); 9590 sb_data_e2.common.p_func.vf_id = vfid; 9591 sb_data_e2.common.p_func.vf_valid = vf_valid; 9592 sb_data_e2.common.p_func.vnic_id = SC_VN(sc); 9593 sb_data_e2.common.same_igu_sb_1b = TRUE; 9594 sb_data_e2.common.host_sb_addr.hi = U64_HI(busaddr); 9595 sb_data_e2.common.host_sb_addr.lo = U64_LO(busaddr); 9596 hc_sm_p = sb_data_e2.common.state_machine; 9597 sb_data_p = (uint32_t *)&sb_data_e2; 9598 data_size = (sizeof(struct hc_status_block_data_e2) / 9599 sizeof(uint32_t)); 9600 bxe_map_sb_state_machines(sb_data_e2.index_data); 9601 } else { 9602 memset(&sb_data_e1x, 0, sizeof(struct hc_status_block_data_e1x)); 9603 sb_data_e1x.common.state = SB_ENABLED; 9604 sb_data_e1x.common.p_func.pf_id = SC_FUNC(sc); 9605 sb_data_e1x.common.p_func.vf_id = 0xff; 9606 sb_data_e1x.common.p_func.vf_valid = FALSE; 9607 sb_data_e1x.common.p_func.vnic_id = SC_VN(sc); 9608 sb_data_e1x.common.same_igu_sb_1b = TRUE; 9609 sb_data_e1x.common.host_sb_addr.hi = U64_HI(busaddr); 9610 sb_data_e1x.common.host_sb_addr.lo = U64_LO(busaddr); 9611 hc_sm_p = sb_data_e1x.common.state_machine; 9612 sb_data_p = (uint32_t *)&sb_data_e1x; 9613 data_size = (sizeof(struct hc_status_block_data_e1x) / 9614 sizeof(uint32_t)); 9615 bxe_map_sb_state_machines(sb_data_e1x.index_data); 9616 } 9617 9618 bxe_setup_ndsb_state_machine(&hc_sm_p[SM_RX_ID], igu_sb_id, igu_seg_id); 9619 bxe_setup_ndsb_state_machine(&hc_sm_p[SM_TX_ID], igu_sb_id, igu_seg_id); 9620 9621 BLOGD(sc, DBG_LOAD, "Init FW SB %d\n", fw_sb_id); 9622 9623 /* write indices to HW - PCI guarantees endianity of regpairs */ 9624 bxe_wr_fp_sb_data(sc, fw_sb_id, sb_data_p, data_size); 9625 } 9626 9627 static inline uint8_t 9628 bxe_fp_qzone_id(struct bxe_fastpath *fp) 9629 { 9630 if (CHIP_IS_E1x(fp->sc)) { 9631 return (fp->cl_id + SC_PORT(fp->sc) * ETH_MAX_RX_CLIENTS_E1H); 9632 } else { 9633 return (fp->cl_id); 9634 } 9635 } 9636 9637 static inline uint32_t 9638 bxe_rx_ustorm_prods_offset(struct bxe_softc *sc, 9639 struct bxe_fastpath *fp) 9640 { 9641 uint32_t offset = BAR_USTRORM_INTMEM; 9642 9643 if (!CHIP_IS_E1x(sc)) { 9644 offset += USTORM_RX_PRODS_E2_OFFSET(fp->cl_qzone_id); 9645 } else { 9646 offset += USTORM_RX_PRODS_E1X_OFFSET(SC_PORT(sc), fp->cl_id); 9647 } 9648 9649 return (offset); 9650 } 9651 9652 static void 9653 bxe_init_eth_fp(struct bxe_softc *sc, 9654 int idx) 9655 { 9656 struct bxe_fastpath *fp = &sc->fp[idx]; 9657 uint32_t cids[ECORE_MULTI_TX_COS] = { 0 }; 9658 unsigned long q_type = 0; 9659 int cos; 9660 9661 fp->sc = sc; 9662 fp->index = idx; 9663 9664 fp->igu_sb_id = (sc->igu_base_sb + idx + CNIC_SUPPORT(sc)); 9665 fp->fw_sb_id = (sc->base_fw_ndsb + idx + CNIC_SUPPORT(sc)); 9666 9667 fp->cl_id = (CHIP_IS_E1x(sc)) ? 9668 (SC_L_ID(sc) + idx) : 9669 /* want client ID same as IGU SB ID for non-E1 */ 9670 fp->igu_sb_id; 9671 fp->cl_qzone_id = bxe_fp_qzone_id(fp); 9672 9673 /* setup sb indices */ 9674 if (!CHIP_IS_E1x(sc)) { 9675 fp->sb_index_values = fp->status_block.e2_sb->sb.index_values; 9676 fp->sb_running_index = fp->status_block.e2_sb->sb.running_index; 9677 } else { 9678 fp->sb_index_values = fp->status_block.e1x_sb->sb.index_values; 9679 fp->sb_running_index = fp->status_block.e1x_sb->sb.running_index; 9680 } 9681 9682 /* init shortcut */ 9683 fp->ustorm_rx_prods_offset = bxe_rx_ustorm_prods_offset(sc, fp); 9684 9685 fp->rx_cq_cons_sb = &fp->sb_index_values[HC_INDEX_ETH_RX_CQ_CONS]; 9686 9687 /* 9688 * XXX If multiple CoS is ever supported then each fastpath structure 9689 * will need to maintain tx producer/consumer/dma/etc values *per* CoS. 9690 */ 9691 for (cos = 0; cos < sc->max_cos; cos++) { 9692 cids[cos] = idx; 9693 } 9694 fp->tx_cons_sb = &fp->sb_index_values[HC_INDEX_ETH_TX_CQ_CONS_COS0]; 9695 9696 /* nothing more for a VF to do */ 9697 if (IS_VF(sc)) { 9698 return; 9699 } 9700 9701 bxe_init_sb(sc, fp->sb_dma.paddr, BXE_VF_ID_INVALID, FALSE, 9702 fp->fw_sb_id, fp->igu_sb_id); 9703 9704 bxe_update_fp_sb_idx(fp); 9705 9706 /* Configure Queue State object */ 9707 bit_set(&q_type, ECORE_Q_TYPE_HAS_RX); 9708 bit_set(&q_type, ECORE_Q_TYPE_HAS_TX); 9709 9710 ecore_init_queue_obj(sc, 9711 &sc->sp_objs[idx].q_obj, 9712 fp->cl_id, 9713 cids, 9714 sc->max_cos, 9715 SC_FUNC(sc), 9716 BXE_SP(sc, q_rdata), 9717 BXE_SP_MAPPING(sc, q_rdata), 9718 q_type); 9719 9720 /* configure classification DBs */ 9721 ecore_init_mac_obj(sc, 9722 &sc->sp_objs[idx].mac_obj, 9723 fp->cl_id, 9724 idx, 9725 SC_FUNC(sc), 9726 BXE_SP(sc, mac_rdata), 9727 BXE_SP_MAPPING(sc, mac_rdata), 9728 ECORE_FILTER_MAC_PENDING, 9729 &sc->sp_state, 9730 ECORE_OBJ_TYPE_RX_TX, 9731 &sc->macs_pool); 9732 9733 BLOGD(sc, DBG_LOAD, "fp[%d]: sb=%p cl_id=%d fw_sb=%d igu_sb=%d\n", 9734 idx, fp->status_block.e2_sb, fp->cl_id, fp->fw_sb_id, fp->igu_sb_id); 9735 } 9736 9737 static inline void 9738 bxe_update_rx_prod(struct bxe_softc *sc, 9739 struct bxe_fastpath *fp, 9740 uint16_t rx_bd_prod, 9741 uint16_t rx_cq_prod, 9742 uint16_t rx_sge_prod) 9743 { 9744 struct ustorm_eth_rx_producers rx_prods = { 0 }; 9745 uint32_t i; 9746 9747 /* update producers */ 9748 rx_prods.bd_prod = rx_bd_prod; 9749 rx_prods.cqe_prod = rx_cq_prod; 9750 rx_prods.sge_prod = rx_sge_prod; 9751 9752 /* 9753 * Make sure that the BD and SGE data is updated before updating the 9754 * producers since FW might read the BD/SGE right after the producer 9755 * is updated. 9756 * This is only applicable for weak-ordered memory model archs such 9757 * as IA-64. The following barrier is also mandatory since FW will 9758 * assumes BDs must have buffers. 9759 */ 9760 wmb(); 9761 9762 for (i = 0; i < (sizeof(rx_prods) / 4); i++) { 9763 REG_WR(sc, 9764 (fp->ustorm_rx_prods_offset + (i * 4)), 9765 ((uint32_t *)&rx_prods)[i]); 9766 } 9767 9768 wmb(); /* keep prod updates ordered */ 9769 9770 BLOGD(sc, DBG_RX, 9771 "RX fp[%d]: wrote prods bd_prod=%u cqe_prod=%u sge_prod=%u\n", 9772 fp->index, rx_bd_prod, rx_cq_prod, rx_sge_prod); 9773 } 9774 9775 static void 9776 bxe_init_rx_rings(struct bxe_softc *sc) 9777 { 9778 struct bxe_fastpath *fp; 9779 int i; 9780 9781 for (i = 0; i < sc->num_queues; i++) { 9782 fp = &sc->fp[i]; 9783 9784 fp->rx_bd_cons = 0; 9785 9786 /* 9787 * Activate the BD ring... 9788 * Warning, this will generate an interrupt (to the TSTORM) 9789 * so this can only be done after the chip is initialized 9790 */ 9791 bxe_update_rx_prod(sc, fp, 9792 fp->rx_bd_prod, 9793 fp->rx_cq_prod, 9794 fp->rx_sge_prod); 9795 9796 if (i != 0) { 9797 continue; 9798 } 9799 9800 if (CHIP_IS_E1(sc)) { 9801 REG_WR(sc, 9802 (BAR_USTRORM_INTMEM + 9803 USTORM_MEM_WORKAROUND_ADDRESS_OFFSET(SC_FUNC(sc))), 9804 U64_LO(fp->rcq_dma.paddr)); 9805 REG_WR(sc, 9806 (BAR_USTRORM_INTMEM + 9807 USTORM_MEM_WORKAROUND_ADDRESS_OFFSET(SC_FUNC(sc)) + 4), 9808 U64_HI(fp->rcq_dma.paddr)); 9809 } 9810 } 9811 } 9812 9813 static void 9814 bxe_init_tx_ring_one(struct bxe_fastpath *fp) 9815 { 9816 SET_FLAG(fp->tx_db.data.header.data, DOORBELL_HDR_T_DB_TYPE, 1); 9817 fp->tx_db.data.zero_fill1 = 0; 9818 fp->tx_db.data.prod = 0; 9819 9820 fp->tx_pkt_prod = 0; 9821 fp->tx_pkt_cons = 0; 9822 fp->tx_bd_prod = 0; 9823 fp->tx_bd_cons = 0; 9824 fp->eth_q_stats.tx_pkts = 0; 9825 } 9826 9827 static inline void 9828 bxe_init_tx_rings(struct bxe_softc *sc) 9829 { 9830 int i; 9831 9832 for (i = 0; i < sc->num_queues; i++) { 9833 bxe_init_tx_ring_one(&sc->fp[i]); 9834 } 9835 } 9836 9837 static void 9838 bxe_init_def_sb(struct bxe_softc *sc) 9839 { 9840 struct host_sp_status_block *def_sb = sc->def_sb; 9841 bus_addr_t mapping = sc->def_sb_dma.paddr; 9842 int igu_sp_sb_index; 9843 int igu_seg_id; 9844 int port = SC_PORT(sc); 9845 int func = SC_FUNC(sc); 9846 int reg_offset, reg_offset_en5; 9847 uint64_t section; 9848 int index, sindex; 9849 struct hc_sp_status_block_data sp_sb_data; 9850 9851 memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data)); 9852 9853 if (CHIP_INT_MODE_IS_BC(sc)) { 9854 igu_sp_sb_index = DEF_SB_IGU_ID; 9855 igu_seg_id = HC_SEG_ACCESS_DEF; 9856 } else { 9857 igu_sp_sb_index = sc->igu_dsb_id; 9858 igu_seg_id = IGU_SEG_ACCESS_DEF; 9859 } 9860 9861 /* attentions */ 9862 section = ((uint64_t)mapping + 9863 offsetof(struct host_sp_status_block, atten_status_block)); 9864 def_sb->atten_status_block.status_block_id = igu_sp_sb_index; 9865 sc->attn_state = 0; 9866 9867 reg_offset = (port) ? 9868 MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 : 9869 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0; 9870 reg_offset_en5 = (port) ? 9871 MISC_REG_AEU_ENABLE5_FUNC_1_OUT_0 : 9872 MISC_REG_AEU_ENABLE5_FUNC_0_OUT_0; 9873 9874 for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) { 9875 /* take care of sig[0]..sig[4] */ 9876 for (sindex = 0; sindex < 4; sindex++) { 9877 sc->attn_group[index].sig[sindex] = 9878 REG_RD(sc, (reg_offset + (sindex * 0x4) + (0x10 * index))); 9879 } 9880 9881 if (!CHIP_IS_E1x(sc)) { 9882 /* 9883 * enable5 is separate from the rest of the registers, 9884 * and the address skip is 4 and not 16 between the 9885 * different groups 9886 */ 9887 sc->attn_group[index].sig[4] = 9888 REG_RD(sc, (reg_offset_en5 + (0x4 * index))); 9889 } else { 9890 sc->attn_group[index].sig[4] = 0; 9891 } 9892 } 9893 9894 if (sc->devinfo.int_block == INT_BLOCK_HC) { 9895 reg_offset = (port) ? 9896 HC_REG_ATTN_MSG1_ADDR_L : 9897 HC_REG_ATTN_MSG0_ADDR_L; 9898 REG_WR(sc, reg_offset, U64_LO(section)); 9899 REG_WR(sc, (reg_offset + 4), U64_HI(section)); 9900 } else if (!CHIP_IS_E1x(sc)) { 9901 REG_WR(sc, IGU_REG_ATTN_MSG_ADDR_L, U64_LO(section)); 9902 REG_WR(sc, IGU_REG_ATTN_MSG_ADDR_H, U64_HI(section)); 9903 } 9904 9905 section = ((uint64_t)mapping + 9906 offsetof(struct host_sp_status_block, sp_sb)); 9907 9908 bxe_zero_sp_sb(sc); 9909 9910 /* PCI guarantees endianity of regpair */ 9911 sp_sb_data.state = SB_ENABLED; 9912 sp_sb_data.host_sb_addr.lo = U64_LO(section); 9913 sp_sb_data.host_sb_addr.hi = U64_HI(section); 9914 sp_sb_data.igu_sb_id = igu_sp_sb_index; 9915 sp_sb_data.igu_seg_id = igu_seg_id; 9916 sp_sb_data.p_func.pf_id = func; 9917 sp_sb_data.p_func.vnic_id = SC_VN(sc); 9918 sp_sb_data.p_func.vf_id = 0xff; 9919 9920 bxe_wr_sp_sb_data(sc, &sp_sb_data); 9921 9922 bxe_ack_sb(sc, sc->igu_dsb_id, USTORM_ID, 0, IGU_INT_ENABLE, 0); 9923 } 9924 9925 static void 9926 bxe_init_sp_ring(struct bxe_softc *sc) 9927 { 9928 atomic_store_rel_long(&sc->cq_spq_left, MAX_SPQ_PENDING); 9929 sc->spq_prod_idx = 0; 9930 sc->dsb_sp_prod = &sc->def_sb->sp_sb.index_values[HC_SP_INDEX_ETH_DEF_CONS]; 9931 sc->spq_prod_bd = sc->spq; 9932 sc->spq_last_bd = (sc->spq_prod_bd + MAX_SP_DESC_CNT); 9933 } 9934 9935 static void 9936 bxe_init_eq_ring(struct bxe_softc *sc) 9937 { 9938 union event_ring_elem *elem; 9939 int i; 9940 9941 for (i = 1; i <= NUM_EQ_PAGES; i++) { 9942 elem = &sc->eq[EQ_DESC_CNT_PAGE * i - 1]; 9943 9944 elem->next_page.addr.hi = htole32(U64_HI(sc->eq_dma.paddr + 9945 BCM_PAGE_SIZE * 9946 (i % NUM_EQ_PAGES))); 9947 elem->next_page.addr.lo = htole32(U64_LO(sc->eq_dma.paddr + 9948 BCM_PAGE_SIZE * 9949 (i % NUM_EQ_PAGES))); 9950 } 9951 9952 sc->eq_cons = 0; 9953 sc->eq_prod = NUM_EQ_DESC; 9954 sc->eq_cons_sb = &sc->def_sb->sp_sb.index_values[HC_SP_INDEX_EQ_CONS]; 9955 9956 atomic_store_rel_long(&sc->eq_spq_left, 9957 (min((MAX_SP_DESC_CNT - MAX_SPQ_PENDING), 9958 NUM_EQ_DESC) - 1)); 9959 } 9960 9961 static void 9962 bxe_init_internal_common(struct bxe_softc *sc) 9963 { 9964 int i; 9965 9966 /* 9967 * Zero this manually as its initialization is currently missing 9968 * in the initTool. 9969 */ 9970 for (i = 0; i < (USTORM_AGG_DATA_SIZE >> 2); i++) { 9971 REG_WR(sc, 9972 (BAR_USTRORM_INTMEM + USTORM_AGG_DATA_OFFSET + (i * 4)), 9973 0); 9974 } 9975 9976 if (!CHIP_IS_E1x(sc)) { 9977 REG_WR8(sc, (BAR_CSTRORM_INTMEM + CSTORM_IGU_MODE_OFFSET), 9978 CHIP_INT_MODE_IS_BC(sc) ? HC_IGU_BC_MODE : HC_IGU_NBC_MODE); 9979 } 9980 } 9981 9982 static void 9983 bxe_init_internal(struct bxe_softc *sc, 9984 uint32_t load_code) 9985 { 9986 switch (load_code) { 9987 case FW_MSG_CODE_DRV_LOAD_COMMON: 9988 case FW_MSG_CODE_DRV_LOAD_COMMON_CHIP: 9989 bxe_init_internal_common(sc); 9990 /* no break */ 9991 9992 case FW_MSG_CODE_DRV_LOAD_PORT: 9993 /* nothing to do */ 9994 /* no break */ 9995 9996 case FW_MSG_CODE_DRV_LOAD_FUNCTION: 9997 /* internal memory per function is initialized inside bxe_pf_init */ 9998 break; 9999 10000 default: 10001 BLOGE(sc, "Unknown load_code (0x%x) from MCP\n", load_code); 10002 break; 10003 } 10004 } 10005 10006 static void 10007 storm_memset_func_cfg(struct bxe_softc *sc, 10008 struct tstorm_eth_function_common_config *tcfg, 10009 uint16_t abs_fid) 10010 { 10011 uint32_t addr; 10012 size_t size; 10013 10014 addr = (BAR_TSTRORM_INTMEM + 10015 TSTORM_FUNCTION_COMMON_CONFIG_OFFSET(abs_fid)); 10016 size = sizeof(struct tstorm_eth_function_common_config); 10017 ecore_storm_memset_struct(sc, addr, size, (uint32_t *)tcfg); 10018 } 10019 10020 static void 10021 bxe_func_init(struct bxe_softc *sc, 10022 struct bxe_func_init_params *p) 10023 { 10024 struct tstorm_eth_function_common_config tcfg = { 0 }; 10025 10026 if (CHIP_IS_E1x(sc)) { 10027 storm_memset_func_cfg(sc, &tcfg, p->func_id); 10028 } 10029 10030 /* Enable the function in the FW */ 10031 storm_memset_vf_to_pf(sc, p->func_id, p->pf_id); 10032 storm_memset_func_en(sc, p->func_id, 1); 10033 10034 /* spq */ 10035 if (p->func_flgs & FUNC_FLG_SPQ) { 10036 storm_memset_spq_addr(sc, p->spq_map, p->func_id); 10037 REG_WR(sc, 10038 (XSEM_REG_FAST_MEMORY + XSTORM_SPQ_PROD_OFFSET(p->func_id)), 10039 p->spq_prod); 10040 } 10041 } 10042 10043 /* 10044 * Calculates the sum of vn_min_rates. 10045 * It's needed for further normalizing of the min_rates. 10046 * Returns: 10047 * sum of vn_min_rates. 10048 * or 10049 * 0 - if all the min_rates are 0. 10050 * In the later case fainess algorithm should be deactivated. 10051 * If all min rates are not zero then those that are zeroes will be set to 1. 10052 */ 10053 static void 10054 bxe_calc_vn_min(struct bxe_softc *sc, 10055 struct cmng_init_input *input) 10056 { 10057 uint32_t vn_cfg; 10058 uint32_t vn_min_rate; 10059 int all_zero = 1; 10060 int vn; 10061 10062 for (vn = VN_0; vn < SC_MAX_VN_NUM(sc); vn++) { 10063 vn_cfg = sc->devinfo.mf_info.mf_config[vn]; 10064 vn_min_rate = (((vn_cfg & FUNC_MF_CFG_MIN_BW_MASK) >> 10065 FUNC_MF_CFG_MIN_BW_SHIFT) * 100); 10066 10067 if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE) { 10068 /* skip hidden VNs */ 10069 vn_min_rate = 0; 10070 } else if (!vn_min_rate) { 10071 /* If min rate is zero - set it to 100 */ 10072 vn_min_rate = DEF_MIN_RATE; 10073 } else { 10074 all_zero = 0; 10075 } 10076 10077 input->vnic_min_rate[vn] = vn_min_rate; 10078 } 10079 10080 /* if ETS or all min rates are zeros - disable fairness */ 10081 if (BXE_IS_ETS_ENABLED(sc)) { 10082 input->flags.cmng_enables &= ~CMNG_FLAGS_PER_PORT_FAIRNESS_VN; 10083 BLOGD(sc, DBG_LOAD, "Fairness disabled (ETS)\n"); 10084 } else if (all_zero) { 10085 input->flags.cmng_enables &= ~CMNG_FLAGS_PER_PORT_FAIRNESS_VN; 10086 BLOGD(sc, DBG_LOAD, 10087 "Fariness disabled (all MIN values are zeroes)\n"); 10088 } else { 10089 input->flags.cmng_enables |= CMNG_FLAGS_PER_PORT_FAIRNESS_VN; 10090 } 10091 } 10092 10093 static inline uint16_t 10094 bxe_extract_max_cfg(struct bxe_softc *sc, 10095 uint32_t mf_cfg) 10096 { 10097 uint16_t max_cfg = ((mf_cfg & FUNC_MF_CFG_MAX_BW_MASK) >> 10098 FUNC_MF_CFG_MAX_BW_SHIFT); 10099 10100 if (!max_cfg) { 10101 BLOGD(sc, DBG_LOAD, "Max BW configured to 0 - using 100 instead\n"); 10102 max_cfg = 100; 10103 } 10104 10105 return (max_cfg); 10106 } 10107 10108 static void 10109 bxe_calc_vn_max(struct bxe_softc *sc, 10110 int vn, 10111 struct cmng_init_input *input) 10112 { 10113 uint16_t vn_max_rate; 10114 uint32_t vn_cfg = sc->devinfo.mf_info.mf_config[vn]; 10115 uint32_t max_cfg; 10116 10117 if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE) { 10118 vn_max_rate = 0; 10119 } else { 10120 max_cfg = bxe_extract_max_cfg(sc, vn_cfg); 10121 10122 if (IS_MF_SI(sc)) { 10123 /* max_cfg in percents of linkspeed */ 10124 vn_max_rate = ((sc->link_vars.line_speed * max_cfg) / 100); 10125 } else { /* SD modes */ 10126 /* max_cfg is absolute in 100Mb units */ 10127 vn_max_rate = (max_cfg * 100); 10128 } 10129 } 10130 10131 BLOGD(sc, DBG_LOAD, "vn %d: vn_max_rate %d\n", vn, vn_max_rate); 10132 10133 input->vnic_max_rate[vn] = vn_max_rate; 10134 } 10135 10136 static void 10137 bxe_cmng_fns_init(struct bxe_softc *sc, 10138 uint8_t read_cfg, 10139 uint8_t cmng_type) 10140 { 10141 struct cmng_init_input input; 10142 int vn; 10143 10144 memset(&input, 0, sizeof(struct cmng_init_input)); 10145 10146 input.port_rate = sc->link_vars.line_speed; 10147 10148 if (cmng_type == CMNG_FNS_MINMAX) { 10149 /* read mf conf from shmem */ 10150 if (read_cfg) { 10151 bxe_read_mf_cfg(sc); 10152 } 10153 10154 /* get VN min rate and enable fairness if not 0 */ 10155 bxe_calc_vn_min(sc, &input); 10156 10157 /* get VN max rate */ 10158 if (sc->port.pmf) { 10159 for (vn = VN_0; vn < SC_MAX_VN_NUM(sc); vn++) { 10160 bxe_calc_vn_max(sc, vn, &input); 10161 } 10162 } 10163 10164 /* always enable rate shaping and fairness */ 10165 input.flags.cmng_enables |= CMNG_FLAGS_PER_PORT_RATE_SHAPING_VN; 10166 10167 ecore_init_cmng(&input, &sc->cmng); 10168 return; 10169 } 10170 10171 /* rate shaping and fairness are disabled */ 10172 BLOGD(sc, DBG_LOAD, "rate shaping and fairness have been disabled\n"); 10173 } 10174 10175 static int 10176 bxe_get_cmng_fns_mode(struct bxe_softc *sc) 10177 { 10178 if (CHIP_REV_IS_SLOW(sc)) { 10179 return (CMNG_FNS_NONE); 10180 } 10181 10182 if (IS_MF(sc)) { 10183 return (CMNG_FNS_MINMAX); 10184 } 10185 10186 return (CMNG_FNS_NONE); 10187 } 10188 10189 static void 10190 storm_memset_cmng(struct bxe_softc *sc, 10191 struct cmng_init *cmng, 10192 uint8_t port) 10193 { 10194 int vn; 10195 int func; 10196 uint32_t addr; 10197 size_t size; 10198 10199 addr = (BAR_XSTRORM_INTMEM + 10200 XSTORM_CMNG_PER_PORT_VARS_OFFSET(port)); 10201 size = sizeof(struct cmng_struct_per_port); 10202 ecore_storm_memset_struct(sc, addr, size, (uint32_t *)&cmng->port); 10203 10204 for (vn = VN_0; vn < SC_MAX_VN_NUM(sc); vn++) { 10205 func = func_by_vn(sc, vn); 10206 10207 addr = (BAR_XSTRORM_INTMEM + 10208 XSTORM_RATE_SHAPING_PER_VN_VARS_OFFSET(func)); 10209 size = sizeof(struct rate_shaping_vars_per_vn); 10210 ecore_storm_memset_struct(sc, addr, size, 10211 (uint32_t *)&cmng->vnic.vnic_max_rate[vn]); 10212 10213 addr = (BAR_XSTRORM_INTMEM + 10214 XSTORM_FAIRNESS_PER_VN_VARS_OFFSET(func)); 10215 size = sizeof(struct fairness_vars_per_vn); 10216 ecore_storm_memset_struct(sc, addr, size, 10217 (uint32_t *)&cmng->vnic.vnic_min_rate[vn]); 10218 } 10219 } 10220 10221 static void 10222 bxe_pf_init(struct bxe_softc *sc) 10223 { 10224 struct bxe_func_init_params func_init = { 0 }; 10225 struct event_ring_data eq_data = { { 0 } }; 10226 uint16_t flags; 10227 10228 if (!CHIP_IS_E1x(sc)) { 10229 /* reset IGU PF statistics: MSIX + ATTN */ 10230 /* PF */ 10231 REG_WR(sc, 10232 (IGU_REG_STATISTIC_NUM_MESSAGE_SENT + 10233 (BXE_IGU_STAS_MSG_VF_CNT * 4) + 10234 ((CHIP_IS_MODE_4_PORT(sc) ? SC_FUNC(sc) : SC_VN(sc)) * 4)), 10235 0); 10236 /* ATTN */ 10237 REG_WR(sc, 10238 (IGU_REG_STATISTIC_NUM_MESSAGE_SENT + 10239 (BXE_IGU_STAS_MSG_VF_CNT * 4) + 10240 (BXE_IGU_STAS_MSG_PF_CNT * 4) + 10241 ((CHIP_IS_MODE_4_PORT(sc) ? SC_FUNC(sc) : SC_VN(sc)) * 4)), 10242 0); 10243 } 10244 10245 /* function setup flags */ 10246 flags = (FUNC_FLG_STATS | FUNC_FLG_LEADING | FUNC_FLG_SPQ); 10247 10248 /* 10249 * This flag is relevant for E1x only. 10250 * E2 doesn't have a TPA configuration in a function level. 10251 */ 10252 flags |= (if_getcapenable(sc->ifp) & IFCAP_LRO) ? FUNC_FLG_TPA : 0; 10253 10254 func_init.func_flgs = flags; 10255 func_init.pf_id = SC_FUNC(sc); 10256 func_init.func_id = SC_FUNC(sc); 10257 func_init.spq_map = sc->spq_dma.paddr; 10258 func_init.spq_prod = sc->spq_prod_idx; 10259 10260 bxe_func_init(sc, &func_init); 10261 10262 memset(&sc->cmng, 0, sizeof(struct cmng_struct_per_port)); 10263 10264 /* 10265 * Congestion management values depend on the link rate. 10266 * There is no active link so initial link rate is set to 10Gbps. 10267 * When the link comes up the congestion management values are 10268 * re-calculated according to the actual link rate. 10269 */ 10270 sc->link_vars.line_speed = SPEED_10000; 10271 bxe_cmng_fns_init(sc, TRUE, bxe_get_cmng_fns_mode(sc)); 10272 10273 /* Only the PMF sets the HW */ 10274 if (sc->port.pmf) { 10275 storm_memset_cmng(sc, &sc->cmng, SC_PORT(sc)); 10276 } 10277 10278 /* init Event Queue - PCI bus guarantees correct endainity */ 10279 eq_data.base_addr.hi = U64_HI(sc->eq_dma.paddr); 10280 eq_data.base_addr.lo = U64_LO(sc->eq_dma.paddr); 10281 eq_data.producer = sc->eq_prod; 10282 eq_data.index_id = HC_SP_INDEX_EQ_CONS; 10283 eq_data.sb_id = DEF_SB_ID; 10284 storm_memset_eq_data(sc, &eq_data, SC_FUNC(sc)); 10285 } 10286 10287 static void 10288 bxe_hc_int_enable(struct bxe_softc *sc) 10289 { 10290 int port = SC_PORT(sc); 10291 uint32_t addr = (port) ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0; 10292 uint32_t val = REG_RD(sc, addr); 10293 uint8_t msix = (sc->interrupt_mode == INTR_MODE_MSIX) ? TRUE : FALSE; 10294 uint8_t single_msix = ((sc->interrupt_mode == INTR_MODE_MSIX) && 10295 (sc->intr_count == 1)) ? TRUE : FALSE; 10296 uint8_t msi = (sc->interrupt_mode == INTR_MODE_MSI) ? TRUE : FALSE; 10297 10298 if (msix) { 10299 val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 | 10300 HC_CONFIG_0_REG_INT_LINE_EN_0); 10301 val |= (HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 | 10302 HC_CONFIG_0_REG_ATTN_BIT_EN_0); 10303 if (single_msix) { 10304 val |= HC_CONFIG_0_REG_SINGLE_ISR_EN_0; 10305 } 10306 } else if (msi) { 10307 val &= ~HC_CONFIG_0_REG_INT_LINE_EN_0; 10308 val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 | 10309 HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 | 10310 HC_CONFIG_0_REG_ATTN_BIT_EN_0); 10311 } else { 10312 val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 | 10313 HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 | 10314 HC_CONFIG_0_REG_INT_LINE_EN_0 | 10315 HC_CONFIG_0_REG_ATTN_BIT_EN_0); 10316 10317 if (!CHIP_IS_E1(sc)) { 10318 BLOGD(sc, DBG_INTR, "write %x to HC %d (addr 0x%x)\n", 10319 val, port, addr); 10320 10321 REG_WR(sc, addr, val); 10322 10323 val &= ~HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0; 10324 } 10325 } 10326 10327 if (CHIP_IS_E1(sc)) { 10328 REG_WR(sc, (HC_REG_INT_MASK + port*4), 0x1FFFF); 10329 } 10330 10331 BLOGD(sc, DBG_INTR, "write %x to HC %d (addr 0x%x) mode %s\n", 10332 val, port, addr, ((msix) ? "MSI-X" : ((msi) ? "MSI" : "INTx"))); 10333 10334 REG_WR(sc, addr, val); 10335 10336 /* ensure that HC_CONFIG is written before leading/trailing edge config */ 10337 mb(); 10338 10339 if (!CHIP_IS_E1(sc)) { 10340 /* init leading/trailing edge */ 10341 if (IS_MF(sc)) { 10342 val = (0xee0f | (1 << (SC_VN(sc) + 4))); 10343 if (sc->port.pmf) { 10344 /* enable nig and gpio3 attention */ 10345 val |= 0x1100; 10346 } 10347 } else { 10348 val = 0xffff; 10349 } 10350 10351 REG_WR(sc, (HC_REG_TRAILING_EDGE_0 + port*8), val); 10352 REG_WR(sc, (HC_REG_LEADING_EDGE_0 + port*8), val); 10353 } 10354 10355 /* make sure that interrupts are indeed enabled from here on */ 10356 mb(); 10357 } 10358 10359 static void 10360 bxe_igu_int_enable(struct bxe_softc *sc) 10361 { 10362 uint32_t val; 10363 uint8_t msix = (sc->interrupt_mode == INTR_MODE_MSIX) ? TRUE : FALSE; 10364 uint8_t single_msix = ((sc->interrupt_mode == INTR_MODE_MSIX) && 10365 (sc->intr_count == 1)) ? TRUE : FALSE; 10366 uint8_t msi = (sc->interrupt_mode == INTR_MODE_MSI) ? TRUE : FALSE; 10367 10368 val = REG_RD(sc, IGU_REG_PF_CONFIGURATION); 10369 10370 if (msix) { 10371 val &= ~(IGU_PF_CONF_INT_LINE_EN | 10372 IGU_PF_CONF_SINGLE_ISR_EN); 10373 val |= (IGU_PF_CONF_MSI_MSIX_EN | 10374 IGU_PF_CONF_ATTN_BIT_EN); 10375 if (single_msix) { 10376 val |= IGU_PF_CONF_SINGLE_ISR_EN; 10377 } 10378 } else if (msi) { 10379 val &= ~IGU_PF_CONF_INT_LINE_EN; 10380 val |= (IGU_PF_CONF_MSI_MSIX_EN | 10381 IGU_PF_CONF_ATTN_BIT_EN | 10382 IGU_PF_CONF_SINGLE_ISR_EN); 10383 } else { 10384 val &= ~IGU_PF_CONF_MSI_MSIX_EN; 10385 val |= (IGU_PF_CONF_INT_LINE_EN | 10386 IGU_PF_CONF_ATTN_BIT_EN | 10387 IGU_PF_CONF_SINGLE_ISR_EN); 10388 } 10389 10390 /* clean previous status - need to configure igu prior to ack*/ 10391 if ((!msix) || single_msix) { 10392 REG_WR(sc, IGU_REG_PF_CONFIGURATION, val); 10393 bxe_ack_int(sc); 10394 } 10395 10396 val |= IGU_PF_CONF_FUNC_EN; 10397 10398 BLOGD(sc, DBG_INTR, "write 0x%x to IGU mode %s\n", 10399 val, ((msix) ? "MSI-X" : ((msi) ? "MSI" : "INTx"))); 10400 10401 REG_WR(sc, IGU_REG_PF_CONFIGURATION, val); 10402 10403 mb(); 10404 10405 /* init leading/trailing edge */ 10406 if (IS_MF(sc)) { 10407 val = (0xee0f | (1 << (SC_VN(sc) + 4))); 10408 if (sc->port.pmf) { 10409 /* enable nig and gpio3 attention */ 10410 val |= 0x1100; 10411 } 10412 } else { 10413 val = 0xffff; 10414 } 10415 10416 REG_WR(sc, IGU_REG_TRAILING_EDGE_LATCH, val); 10417 REG_WR(sc, IGU_REG_LEADING_EDGE_LATCH, val); 10418 10419 /* make sure that interrupts are indeed enabled from here on */ 10420 mb(); 10421 } 10422 10423 static void 10424 bxe_int_enable(struct bxe_softc *sc) 10425 { 10426 if (sc->devinfo.int_block == INT_BLOCK_HC) { 10427 bxe_hc_int_enable(sc); 10428 } else { 10429 bxe_igu_int_enable(sc); 10430 } 10431 } 10432 10433 static void 10434 bxe_hc_int_disable(struct bxe_softc *sc) 10435 { 10436 int port = SC_PORT(sc); 10437 uint32_t addr = (port) ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0; 10438 uint32_t val = REG_RD(sc, addr); 10439 10440 /* 10441 * In E1 we must use only PCI configuration space to disable MSI/MSIX 10442 * capablility. It's forbidden to disable IGU_PF_CONF_MSI_MSIX_EN in HC 10443 * block 10444 */ 10445 if (CHIP_IS_E1(sc)) { 10446 /* 10447 * Since IGU_PF_CONF_MSI_MSIX_EN still always on use mask register 10448 * to prevent from HC sending interrupts after we exit the function 10449 */ 10450 REG_WR(sc, (HC_REG_INT_MASK + port*4), 0); 10451 10452 val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 | 10453 HC_CONFIG_0_REG_INT_LINE_EN_0 | 10454 HC_CONFIG_0_REG_ATTN_BIT_EN_0); 10455 } else { 10456 val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 | 10457 HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 | 10458 HC_CONFIG_0_REG_INT_LINE_EN_0 | 10459 HC_CONFIG_0_REG_ATTN_BIT_EN_0); 10460 } 10461 10462 BLOGD(sc, DBG_INTR, "write %x to HC %d (addr 0x%x)\n", val, port, addr); 10463 10464 /* flush all outstanding writes */ 10465 mb(); 10466 10467 REG_WR(sc, addr, val); 10468 if (REG_RD(sc, addr) != val) { 10469 BLOGE(sc, "proper val not read from HC IGU!\n"); 10470 } 10471 } 10472 10473 static void 10474 bxe_igu_int_disable(struct bxe_softc *sc) 10475 { 10476 uint32_t val = REG_RD(sc, IGU_REG_PF_CONFIGURATION); 10477 10478 val &= ~(IGU_PF_CONF_MSI_MSIX_EN | 10479 IGU_PF_CONF_INT_LINE_EN | 10480 IGU_PF_CONF_ATTN_BIT_EN); 10481 10482 BLOGD(sc, DBG_INTR, "write %x to IGU\n", val); 10483 10484 /* flush all outstanding writes */ 10485 mb(); 10486 10487 REG_WR(sc, IGU_REG_PF_CONFIGURATION, val); 10488 if (REG_RD(sc, IGU_REG_PF_CONFIGURATION) != val) { 10489 BLOGE(sc, "proper val not read from IGU!\n"); 10490 } 10491 } 10492 10493 static void 10494 bxe_int_disable(struct bxe_softc *sc) 10495 { 10496 if (sc->devinfo.int_block == INT_BLOCK_HC) { 10497 bxe_hc_int_disable(sc); 10498 } else { 10499 bxe_igu_int_disable(sc); 10500 } 10501 } 10502 10503 static void 10504 bxe_nic_init(struct bxe_softc *sc, 10505 int load_code) 10506 { 10507 int i; 10508 10509 for (i = 0; i < sc->num_queues; i++) { 10510 bxe_init_eth_fp(sc, i); 10511 } 10512 10513 rmb(); /* ensure status block indices were read */ 10514 10515 bxe_init_rx_rings(sc); 10516 bxe_init_tx_rings(sc); 10517 10518 if (IS_VF(sc)) { 10519 return; 10520 } 10521 10522 /* initialize MOD_ABS interrupts */ 10523 elink_init_mod_abs_int(sc, &sc->link_vars, 10524 sc->devinfo.chip_id, 10525 sc->devinfo.shmem_base, 10526 sc->devinfo.shmem2_base, 10527 SC_PORT(sc)); 10528 10529 bxe_init_def_sb(sc); 10530 bxe_update_dsb_idx(sc); 10531 bxe_init_sp_ring(sc); 10532 bxe_init_eq_ring(sc); 10533 bxe_init_internal(sc, load_code); 10534 bxe_pf_init(sc); 10535 bxe_stats_init(sc); 10536 10537 /* flush all before enabling interrupts */ 10538 mb(); 10539 10540 bxe_int_enable(sc); 10541 10542 /* check for SPIO5 */ 10543 bxe_attn_int_deasserted0(sc, 10544 REG_RD(sc, 10545 (MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + 10546 SC_PORT(sc)*4)) & 10547 AEU_INPUTS_ATTN_BITS_SPIO5); 10548 } 10549 10550 static inline void 10551 bxe_init_objs(struct bxe_softc *sc) 10552 { 10553 /* mcast rules must be added to tx if tx switching is enabled */ 10554 ecore_obj_type o_type = 10555 (sc->flags & BXE_TX_SWITCHING) ? ECORE_OBJ_TYPE_RX_TX : 10556 ECORE_OBJ_TYPE_RX; 10557 10558 /* RX_MODE controlling object */ 10559 ecore_init_rx_mode_obj(sc, &sc->rx_mode_obj); 10560 10561 /* multicast configuration controlling object */ 10562 ecore_init_mcast_obj(sc, 10563 &sc->mcast_obj, 10564 sc->fp[0].cl_id, 10565 sc->fp[0].index, 10566 SC_FUNC(sc), 10567 SC_FUNC(sc), 10568 BXE_SP(sc, mcast_rdata), 10569 BXE_SP_MAPPING(sc, mcast_rdata), 10570 ECORE_FILTER_MCAST_PENDING, 10571 &sc->sp_state, 10572 o_type); 10573 10574 /* Setup CAM credit pools */ 10575 ecore_init_mac_credit_pool(sc, 10576 &sc->macs_pool, 10577 SC_FUNC(sc), 10578 CHIP_IS_E1x(sc) ? VNICS_PER_PORT(sc) : 10579 VNICS_PER_PATH(sc)); 10580 10581 ecore_init_vlan_credit_pool(sc, 10582 &sc->vlans_pool, 10583 SC_ABS_FUNC(sc) >> 1, 10584 CHIP_IS_E1x(sc) ? VNICS_PER_PORT(sc) : 10585 VNICS_PER_PATH(sc)); 10586 10587 /* RSS configuration object */ 10588 ecore_init_rss_config_obj(sc, 10589 &sc->rss_conf_obj, 10590 sc->fp[0].cl_id, 10591 sc->fp[0].index, 10592 SC_FUNC(sc), 10593 SC_FUNC(sc), 10594 BXE_SP(sc, rss_rdata), 10595 BXE_SP_MAPPING(sc, rss_rdata), 10596 ECORE_FILTER_RSS_CONF_PENDING, 10597 &sc->sp_state, ECORE_OBJ_TYPE_RX); 10598 } 10599 10600 /* 10601 * Initialize the function. This must be called before sending CLIENT_SETUP 10602 * for the first client. 10603 */ 10604 static inline int 10605 bxe_func_start(struct bxe_softc *sc) 10606 { 10607 struct ecore_func_state_params func_params = { NULL }; 10608 struct ecore_func_start_params *start_params = &func_params.params.start; 10609 10610 /* Prepare parameters for function state transitions */ 10611 bit_set(&func_params.ramrod_flags, RAMROD_COMP_WAIT); 10612 10613 func_params.f_obj = &sc->func_obj; 10614 func_params.cmd = ECORE_F_CMD_START; 10615 10616 /* Function parameters */ 10617 start_params->mf_mode = sc->devinfo.mf_info.mf_mode; 10618 start_params->sd_vlan_tag = OVLAN(sc); 10619 10620 if (CHIP_IS_E2(sc) || CHIP_IS_E3(sc)) { 10621 start_params->network_cos_mode = STATIC_COS; 10622 } else { /* CHIP_IS_E1X */ 10623 start_params->network_cos_mode = FW_WRR; 10624 } 10625 10626 //start_params->gre_tunnel_mode = 0; 10627 //start_params->gre_tunnel_rss = 0; 10628 10629 return (ecore_func_state_change(sc, &func_params)); 10630 } 10631 10632 static int 10633 bxe_set_power_state(struct bxe_softc *sc, 10634 uint8_t state) 10635 { 10636 uint16_t pmcsr; 10637 10638 /* If there is no power capability, silently succeed */ 10639 if (!(sc->devinfo.pcie_cap_flags & BXE_PM_CAPABLE_FLAG)) { 10640 BLOGW(sc, "No power capability\n"); 10641 return (0); 10642 } 10643 10644 pmcsr = pci_read_config(sc->dev, 10645 (sc->devinfo.pcie_pm_cap_reg + PCIR_POWER_STATUS), 10646 2); 10647 10648 switch (state) { 10649 case PCI_PM_D0: 10650 pci_write_config(sc->dev, 10651 (sc->devinfo.pcie_pm_cap_reg + PCIR_POWER_STATUS), 10652 ((pmcsr & ~PCIM_PSTAT_DMASK) | PCIM_PSTAT_PME), 2); 10653 10654 if (pmcsr & PCIM_PSTAT_DMASK) { 10655 /* delay required during transition out of D3hot */ 10656 DELAY(20000); 10657 } 10658 10659 break; 10660 10661 case PCI_PM_D3hot: 10662 /* XXX if there are other clients above don't shut down the power */ 10663 10664 /* don't shut down the power for emulation and FPGA */ 10665 if (CHIP_REV_IS_SLOW(sc)) { 10666 return (0); 10667 } 10668 10669 pmcsr &= ~PCIM_PSTAT_DMASK; 10670 pmcsr |= PCIM_PSTAT_D3; 10671 10672 if (sc->wol) { 10673 pmcsr |= PCIM_PSTAT_PMEENABLE; 10674 } 10675 10676 pci_write_config(sc->dev, 10677 (sc->devinfo.pcie_pm_cap_reg + PCIR_POWER_STATUS), 10678 pmcsr, 4); 10679 10680 /* 10681 * No more memory access after this point until device is brought back 10682 * to D0 state. 10683 */ 10684 break; 10685 10686 default: 10687 BLOGE(sc, "Can't support PCI power state = 0x%x pmcsr 0x%x\n", 10688 state, pmcsr); 10689 return (-1); 10690 } 10691 10692 return (0); 10693 } 10694 10695 10696 /* return true if succeeded to acquire the lock */ 10697 static uint8_t 10698 bxe_trylock_hw_lock(struct bxe_softc *sc, 10699 uint32_t resource) 10700 { 10701 uint32_t lock_status; 10702 uint32_t resource_bit = (1 << resource); 10703 int func = SC_FUNC(sc); 10704 uint32_t hw_lock_control_reg; 10705 10706 BLOGD(sc, DBG_LOAD, "Trying to take a resource lock 0x%x\n", resource); 10707 10708 /* Validating that the resource is within range */ 10709 if (resource > HW_LOCK_MAX_RESOURCE_VALUE) { 10710 BLOGD(sc, DBG_LOAD, 10711 "resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n", 10712 resource, HW_LOCK_MAX_RESOURCE_VALUE); 10713 return (FALSE); 10714 } 10715 10716 if (func <= 5) { 10717 hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8); 10718 } else { 10719 hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8); 10720 } 10721 10722 /* try to acquire the lock */ 10723 REG_WR(sc, hw_lock_control_reg + 4, resource_bit); 10724 lock_status = REG_RD(sc, hw_lock_control_reg); 10725 if (lock_status & resource_bit) { 10726 return (TRUE); 10727 } 10728 10729 BLOGE(sc, "Failed to get a resource lock 0x%x func %d " 10730 "lock_status 0x%x resource_bit 0x%x\n", resource, func, 10731 lock_status, resource_bit); 10732 10733 return (FALSE); 10734 } 10735 10736 /* 10737 * Get the recovery leader resource id according to the engine this function 10738 * belongs to. Currently only only 2 engines is supported. 10739 */ 10740 static int 10741 bxe_get_leader_lock_resource(struct bxe_softc *sc) 10742 { 10743 if (SC_PATH(sc)) { 10744 return (HW_LOCK_RESOURCE_RECOVERY_LEADER_1); 10745 } else { 10746 return (HW_LOCK_RESOURCE_RECOVERY_LEADER_0); 10747 } 10748 } 10749 10750 /* try to acquire a leader lock for current engine */ 10751 static uint8_t 10752 bxe_trylock_leader_lock(struct bxe_softc *sc) 10753 { 10754 return (bxe_trylock_hw_lock(sc, bxe_get_leader_lock_resource(sc))); 10755 } 10756 10757 static int 10758 bxe_release_leader_lock(struct bxe_softc *sc) 10759 { 10760 return (bxe_release_hw_lock(sc, bxe_get_leader_lock_resource(sc))); 10761 } 10762 10763 /* close gates #2, #3 and #4 */ 10764 static void 10765 bxe_set_234_gates(struct bxe_softc *sc, 10766 uint8_t close) 10767 { 10768 uint32_t val; 10769 10770 /* gates #2 and #4a are closed/opened for "not E1" only */ 10771 if (!CHIP_IS_E1(sc)) { 10772 /* #4 */ 10773 REG_WR(sc, PXP_REG_HST_DISCARD_DOORBELLS, !!close); 10774 /* #2 */ 10775 REG_WR(sc, PXP_REG_HST_DISCARD_INTERNAL_WRITES, !!close); 10776 } 10777 10778 /* #3 */ 10779 if (CHIP_IS_E1x(sc)) { 10780 /* prevent interrupts from HC on both ports */ 10781 val = REG_RD(sc, HC_REG_CONFIG_1); 10782 REG_WR(sc, HC_REG_CONFIG_1, 10783 (!close) ? (val | HC_CONFIG_1_REG_BLOCK_DISABLE_1) : 10784 (val & ~(uint32_t)HC_CONFIG_1_REG_BLOCK_DISABLE_1)); 10785 10786 val = REG_RD(sc, HC_REG_CONFIG_0); 10787 REG_WR(sc, HC_REG_CONFIG_0, 10788 (!close) ? (val | HC_CONFIG_0_REG_BLOCK_DISABLE_0) : 10789 (val & ~(uint32_t)HC_CONFIG_0_REG_BLOCK_DISABLE_0)); 10790 } else { 10791 /* Prevent incoming interrupts in IGU */ 10792 val = REG_RD(sc, IGU_REG_BLOCK_CONFIGURATION); 10793 10794 REG_WR(sc, IGU_REG_BLOCK_CONFIGURATION, 10795 (!close) ? 10796 (val | IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE) : 10797 (val & ~(uint32_t)IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE)); 10798 } 10799 10800 BLOGD(sc, DBG_LOAD, "%s gates #2, #3 and #4\n", 10801 close ? "closing" : "opening"); 10802 10803 wmb(); 10804 } 10805 10806 /* poll for pending writes bit, it should get cleared in no more than 1s */ 10807 static int 10808 bxe_er_poll_igu_vq(struct bxe_softc *sc) 10809 { 10810 uint32_t cnt = 1000; 10811 uint32_t pend_bits = 0; 10812 10813 do { 10814 pend_bits = REG_RD(sc, IGU_REG_PENDING_BITS_STATUS); 10815 10816 if (pend_bits == 0) { 10817 break; 10818 } 10819 10820 DELAY(1000); 10821 } while (--cnt > 0); 10822 10823 if (cnt == 0) { 10824 BLOGE(sc, "Still pending IGU requests bits=0x%08x!\n", pend_bits); 10825 return (-1); 10826 } 10827 10828 return (0); 10829 } 10830 10831 #define SHARED_MF_CLP_MAGIC 0x80000000 /* 'magic' bit */ 10832 10833 static void 10834 bxe_clp_reset_prep(struct bxe_softc *sc, 10835 uint32_t *magic_val) 10836 { 10837 /* Do some magic... */ 10838 uint32_t val = MFCFG_RD(sc, shared_mf_config.clp_mb); 10839 *magic_val = val & SHARED_MF_CLP_MAGIC; 10840 MFCFG_WR(sc, shared_mf_config.clp_mb, val | SHARED_MF_CLP_MAGIC); 10841 } 10842 10843 /* restore the value of the 'magic' bit */ 10844 static void 10845 bxe_clp_reset_done(struct bxe_softc *sc, 10846 uint32_t magic_val) 10847 { 10848 /* Restore the 'magic' bit value... */ 10849 uint32_t val = MFCFG_RD(sc, shared_mf_config.clp_mb); 10850 MFCFG_WR(sc, shared_mf_config.clp_mb, 10851 (val & (~SHARED_MF_CLP_MAGIC)) | magic_val); 10852 } 10853 10854 /* prepare for MCP reset, takes care of CLP configurations */ 10855 static void 10856 bxe_reset_mcp_prep(struct bxe_softc *sc, 10857 uint32_t *magic_val) 10858 { 10859 uint32_t shmem; 10860 uint32_t validity_offset; 10861 10862 /* set `magic' bit in order to save MF config */ 10863 if (!CHIP_IS_E1(sc)) { 10864 bxe_clp_reset_prep(sc, magic_val); 10865 } 10866 10867 /* get shmem offset */ 10868 shmem = REG_RD(sc, MISC_REG_SHARED_MEM_ADDR); 10869 validity_offset = 10870 offsetof(struct shmem_region, validity_map[SC_PORT(sc)]); 10871 10872 /* Clear validity map flags */ 10873 if (shmem > 0) { 10874 REG_WR(sc, shmem + validity_offset, 0); 10875 } 10876 } 10877 10878 #define MCP_TIMEOUT 5000 /* 5 seconds (in ms) */ 10879 #define MCP_ONE_TIMEOUT 100 /* 100 ms */ 10880 10881 static void 10882 bxe_mcp_wait_one(struct bxe_softc *sc) 10883 { 10884 /* special handling for emulation and FPGA (10 times longer) */ 10885 if (CHIP_REV_IS_SLOW(sc)) { 10886 DELAY((MCP_ONE_TIMEOUT*10) * 1000); 10887 } else { 10888 DELAY((MCP_ONE_TIMEOUT) * 1000); 10889 } 10890 } 10891 10892 /* initialize shmem_base and waits for validity signature to appear */ 10893 static int 10894 bxe_init_shmem(struct bxe_softc *sc) 10895 { 10896 int cnt = 0; 10897 uint32_t val = 0; 10898 10899 do { 10900 sc->devinfo.shmem_base = 10901 sc->link_params.shmem_base = 10902 REG_RD(sc, MISC_REG_SHARED_MEM_ADDR); 10903 10904 if (sc->devinfo.shmem_base) { 10905 val = SHMEM_RD(sc, validity_map[SC_PORT(sc)]); 10906 if (val & SHR_MEM_VALIDITY_MB) 10907 return (0); 10908 } 10909 10910 bxe_mcp_wait_one(sc); 10911 10912 } while (cnt++ < (MCP_TIMEOUT / MCP_ONE_TIMEOUT)); 10913 10914 BLOGE(sc, "BAD MCP validity signature\n"); 10915 10916 return (-1); 10917 } 10918 10919 static int 10920 bxe_reset_mcp_comp(struct bxe_softc *sc, 10921 uint32_t magic_val) 10922 { 10923 int rc = bxe_init_shmem(sc); 10924 10925 /* Restore the `magic' bit value */ 10926 if (!CHIP_IS_E1(sc)) { 10927 bxe_clp_reset_done(sc, magic_val); 10928 } 10929 10930 return (rc); 10931 } 10932 10933 static void 10934 bxe_pxp_prep(struct bxe_softc *sc) 10935 { 10936 if (!CHIP_IS_E1(sc)) { 10937 REG_WR(sc, PXP2_REG_RD_START_INIT, 0); 10938 REG_WR(sc, PXP2_REG_RQ_RBC_DONE, 0); 10939 wmb(); 10940 } 10941 } 10942 10943 /* 10944 * Reset the whole chip except for: 10945 * - PCIE core 10946 * - PCI Glue, PSWHST, PXP/PXP2 RF (all controlled by one reset bit) 10947 * - IGU 10948 * - MISC (including AEU) 10949 * - GRC 10950 * - RBCN, RBCP 10951 */ 10952 static void 10953 bxe_process_kill_chip_reset(struct bxe_softc *sc, 10954 uint8_t global) 10955 { 10956 uint32_t not_reset_mask1, reset_mask1, not_reset_mask2, reset_mask2; 10957 uint32_t global_bits2, stay_reset2; 10958 10959 /* 10960 * Bits that have to be set in reset_mask2 if we want to reset 'global' 10961 * (per chip) blocks. 10962 */ 10963 global_bits2 = 10964 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CPU | 10965 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CORE; 10966 10967 /* 10968 * Don't reset the following blocks. 10969 * Important: per port blocks (such as EMAC, BMAC, UMAC) can't be 10970 * reset, as in 4 port device they might still be owned 10971 * by the MCP (there is only one leader per path). 10972 */ 10973 not_reset_mask1 = 10974 MISC_REGISTERS_RESET_REG_1_RST_HC | 10975 MISC_REGISTERS_RESET_REG_1_RST_PXPV | 10976 MISC_REGISTERS_RESET_REG_1_RST_PXP; 10977 10978 not_reset_mask2 = 10979 MISC_REGISTERS_RESET_REG_2_RST_PCI_MDIO | 10980 MISC_REGISTERS_RESET_REG_2_RST_EMAC0_HARD_CORE | 10981 MISC_REGISTERS_RESET_REG_2_RST_EMAC1_HARD_CORE | 10982 MISC_REGISTERS_RESET_REG_2_RST_MISC_CORE | 10983 MISC_REGISTERS_RESET_REG_2_RST_RBCN | 10984 MISC_REGISTERS_RESET_REG_2_RST_GRC | 10985 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_REG_HARD_CORE | 10986 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_HARD_CORE_RST_B | 10987 MISC_REGISTERS_RESET_REG_2_RST_ATC | 10988 MISC_REGISTERS_RESET_REG_2_PGLC | 10989 MISC_REGISTERS_RESET_REG_2_RST_BMAC0 | 10990 MISC_REGISTERS_RESET_REG_2_RST_BMAC1 | 10991 MISC_REGISTERS_RESET_REG_2_RST_EMAC0 | 10992 MISC_REGISTERS_RESET_REG_2_RST_EMAC1 | 10993 MISC_REGISTERS_RESET_REG_2_UMAC0 | 10994 MISC_REGISTERS_RESET_REG_2_UMAC1; 10995 10996 /* 10997 * Keep the following blocks in reset: 10998 * - all xxMACs are handled by the elink code. 10999 */ 11000 stay_reset2 = 11001 MISC_REGISTERS_RESET_REG_2_XMAC | 11002 MISC_REGISTERS_RESET_REG_2_XMAC_SOFT; 11003 11004 /* Full reset masks according to the chip */ 11005 reset_mask1 = 0xffffffff; 11006 11007 if (CHIP_IS_E1(sc)) 11008 reset_mask2 = 0xffff; 11009 else if (CHIP_IS_E1H(sc)) 11010 reset_mask2 = 0x1ffff; 11011 else if (CHIP_IS_E2(sc)) 11012 reset_mask2 = 0xfffff; 11013 else /* CHIP_IS_E3 */ 11014 reset_mask2 = 0x3ffffff; 11015 11016 /* Don't reset global blocks unless we need to */ 11017 if (!global) 11018 reset_mask2 &= ~global_bits2; 11019 11020 /* 11021 * In case of attention in the QM, we need to reset PXP 11022 * (MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR) before QM 11023 * because otherwise QM reset would release 'close the gates' shortly 11024 * before resetting the PXP, then the PSWRQ would send a write 11025 * request to PGLUE. Then when PXP is reset, PGLUE would try to 11026 * read the payload data from PSWWR, but PSWWR would not 11027 * respond. The write queue in PGLUE would stuck, dmae commands 11028 * would not return. Therefore it's important to reset the second 11029 * reset register (containing the 11030 * MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR bit) before the 11031 * first one (containing the MISC_REGISTERS_RESET_REG_1_RST_QM 11032 * bit). 11033 */ 11034 REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR, 11035 reset_mask2 & (~not_reset_mask2)); 11036 11037 REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 11038 reset_mask1 & (~not_reset_mask1)); 11039 11040 mb(); 11041 wmb(); 11042 11043 REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET, 11044 reset_mask2 & (~stay_reset2)); 11045 11046 mb(); 11047 wmb(); 11048 11049 REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, reset_mask1); 11050 wmb(); 11051 } 11052 11053 static int 11054 bxe_process_kill(struct bxe_softc *sc, 11055 uint8_t global) 11056 { 11057 int cnt = 1000; 11058 uint32_t val = 0; 11059 uint32_t sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1, pgl_exp_rom2; 11060 uint32_t tags_63_32 = 0; 11061 11062 /* Empty the Tetris buffer, wait for 1s */ 11063 do { 11064 sr_cnt = REG_RD(sc, PXP2_REG_RD_SR_CNT); 11065 blk_cnt = REG_RD(sc, PXP2_REG_RD_BLK_CNT); 11066 port_is_idle_0 = REG_RD(sc, PXP2_REG_RD_PORT_IS_IDLE_0); 11067 port_is_idle_1 = REG_RD(sc, PXP2_REG_RD_PORT_IS_IDLE_1); 11068 pgl_exp_rom2 = REG_RD(sc, PXP2_REG_PGL_EXP_ROM2); 11069 if (CHIP_IS_E3(sc)) { 11070 tags_63_32 = REG_RD(sc, PGLUE_B_REG_TAGS_63_32); 11071 } 11072 11073 if ((sr_cnt == 0x7e) && (blk_cnt == 0xa0) && 11074 ((port_is_idle_0 & 0x1) == 0x1) && 11075 ((port_is_idle_1 & 0x1) == 0x1) && 11076 (pgl_exp_rom2 == 0xffffffff) && 11077 (!CHIP_IS_E3(sc) || (tags_63_32 == 0xffffffff))) 11078 break; 11079 DELAY(1000); 11080 } while (cnt-- > 0); 11081 11082 if (cnt <= 0) { 11083 BLOGE(sc, "ERROR: Tetris buffer didn't get empty or there " 11084 "are still outstanding read requests after 1s! " 11085 "sr_cnt=0x%08x, blk_cnt=0x%08x, port_is_idle_0=0x%08x, " 11086 "port_is_idle_1=0x%08x, pgl_exp_rom2=0x%08x\n", 11087 sr_cnt, blk_cnt, port_is_idle_0, 11088 port_is_idle_1, pgl_exp_rom2); 11089 return (-1); 11090 } 11091 11092 mb(); 11093 11094 /* Close gates #2, #3 and #4 */ 11095 bxe_set_234_gates(sc, TRUE); 11096 11097 /* Poll for IGU VQs for 57712 and newer chips */ 11098 if (!CHIP_IS_E1x(sc) && bxe_er_poll_igu_vq(sc)) { 11099 return (-1); 11100 } 11101 11102 /* XXX indicate that "process kill" is in progress to MCP */ 11103 11104 /* clear "unprepared" bit */ 11105 REG_WR(sc, MISC_REG_UNPREPARED, 0); 11106 mb(); 11107 11108 /* Make sure all is written to the chip before the reset */ 11109 wmb(); 11110 11111 /* 11112 * Wait for 1ms to empty GLUE and PCI-E core queues, 11113 * PSWHST, GRC and PSWRD Tetris buffer. 11114 */ 11115 DELAY(1000); 11116 11117 /* Prepare to chip reset: */ 11118 /* MCP */ 11119 if (global) { 11120 bxe_reset_mcp_prep(sc, &val); 11121 } 11122 11123 /* PXP */ 11124 bxe_pxp_prep(sc); 11125 mb(); 11126 11127 /* reset the chip */ 11128 bxe_process_kill_chip_reset(sc, global); 11129 mb(); 11130 11131 /* clear errors in PGB */ 11132 if (!CHIP_IS_E1(sc)) 11133 REG_WR(sc, PGLUE_B_REG_LATCHED_ERRORS_CLR, 0x7f); 11134 11135 /* Recover after reset: */ 11136 /* MCP */ 11137 if (global && bxe_reset_mcp_comp(sc, val)) { 11138 return (-1); 11139 } 11140 11141 /* XXX add resetting the NO_MCP mode DB here */ 11142 11143 /* Open the gates #2, #3 and #4 */ 11144 bxe_set_234_gates(sc, FALSE); 11145 11146 /* XXX 11147 * IGU/AEU preparation bring back the AEU/IGU to a reset state 11148 * re-enable attentions 11149 */ 11150 11151 return (0); 11152 } 11153 11154 static int 11155 bxe_leader_reset(struct bxe_softc *sc) 11156 { 11157 int rc = 0; 11158 uint8_t global = bxe_reset_is_global(sc); 11159 uint32_t load_code; 11160 11161 /* 11162 * If not going to reset MCP, load "fake" driver to reset HW while 11163 * driver is owner of the HW. 11164 */ 11165 if (!global && !BXE_NOMCP(sc)) { 11166 load_code = bxe_fw_command(sc, DRV_MSG_CODE_LOAD_REQ, 11167 DRV_MSG_CODE_LOAD_REQ_WITH_LFA); 11168 if (!load_code) { 11169 BLOGE(sc, "MCP response failure, aborting\n"); 11170 rc = -1; 11171 goto exit_leader_reset; 11172 } 11173 11174 if ((load_code != FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) && 11175 (load_code != FW_MSG_CODE_DRV_LOAD_COMMON)) { 11176 BLOGE(sc, "MCP unexpected response, aborting\n"); 11177 rc = -1; 11178 goto exit_leader_reset2; 11179 } 11180 11181 load_code = bxe_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0); 11182 if (!load_code) { 11183 BLOGE(sc, "MCP response failure, aborting\n"); 11184 rc = -1; 11185 goto exit_leader_reset2; 11186 } 11187 } 11188 11189 /* try to recover after the failure */ 11190 if (bxe_process_kill(sc, global)) { 11191 BLOGE(sc, "Something bad occurred on engine %d!\n", SC_PATH(sc)); 11192 rc = -1; 11193 goto exit_leader_reset2; 11194 } 11195 11196 /* 11197 * Clear the RESET_IN_PROGRESS and RESET_GLOBAL bits and update the driver 11198 * state. 11199 */ 11200 bxe_set_reset_done(sc); 11201 if (global) { 11202 bxe_clear_reset_global(sc); 11203 } 11204 11205 exit_leader_reset2: 11206 11207 /* unload "fake driver" if it was loaded */ 11208 if (!global && !BXE_NOMCP(sc)) { 11209 bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP, 0); 11210 bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_DONE, 0); 11211 } 11212 11213 exit_leader_reset: 11214 11215 sc->is_leader = 0; 11216 bxe_release_leader_lock(sc); 11217 11218 mb(); 11219 return (rc); 11220 } 11221 11222 /* 11223 * prepare INIT transition, parameters configured: 11224 * - HC configuration 11225 * - Queue's CDU context 11226 */ 11227 static void 11228 bxe_pf_q_prep_init(struct bxe_softc *sc, 11229 struct bxe_fastpath *fp, 11230 struct ecore_queue_init_params *init_params) 11231 { 11232 uint8_t cos; 11233 int cxt_index, cxt_offset; 11234 11235 bxe_set_bit(ECORE_Q_FLG_HC, &init_params->rx.flags); 11236 bxe_set_bit(ECORE_Q_FLG_HC, &init_params->tx.flags); 11237 11238 bxe_set_bit(ECORE_Q_FLG_HC_EN, &init_params->rx.flags); 11239 bxe_set_bit(ECORE_Q_FLG_HC_EN, &init_params->tx.flags); 11240 11241 /* HC rate */ 11242 init_params->rx.hc_rate = 11243 sc->hc_rx_ticks ? (1000000 / sc->hc_rx_ticks) : 0; 11244 init_params->tx.hc_rate = 11245 sc->hc_tx_ticks ? (1000000 / sc->hc_tx_ticks) : 0; 11246 11247 /* FW SB ID */ 11248 init_params->rx.fw_sb_id = init_params->tx.fw_sb_id = fp->fw_sb_id; 11249 11250 /* CQ index among the SB indices */ 11251 init_params->rx.sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS; 11252 init_params->tx.sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS; 11253 11254 /* set maximum number of COSs supported by this queue */ 11255 init_params->max_cos = sc->max_cos; 11256 11257 BLOGD(sc, DBG_LOAD, "fp %d setting queue params max cos to %d\n", 11258 fp->index, init_params->max_cos); 11259 11260 /* set the context pointers queue object */ 11261 for (cos = FIRST_TX_COS_INDEX; cos < init_params->max_cos; cos++) { 11262 /* XXX change index/cid here if ever support multiple tx CoS */ 11263 /* fp->txdata[cos]->cid */ 11264 cxt_index = fp->index / ILT_PAGE_CIDS; 11265 cxt_offset = fp->index - (cxt_index * ILT_PAGE_CIDS); 11266 init_params->cxts[cos] = &sc->context[cxt_index].vcxt[cxt_offset].eth; 11267 } 11268 } 11269 11270 /* set flags that are common for the Tx-only and not normal connections */ 11271 static unsigned long 11272 bxe_get_common_flags(struct bxe_softc *sc, 11273 struct bxe_fastpath *fp, 11274 uint8_t zero_stats) 11275 { 11276 unsigned long flags = 0; 11277 11278 /* PF driver will always initialize the Queue to an ACTIVE state */ 11279 bxe_set_bit(ECORE_Q_FLG_ACTIVE, &flags); 11280 11281 /* 11282 * tx only connections collect statistics (on the same index as the 11283 * parent connection). The statistics are zeroed when the parent 11284 * connection is initialized. 11285 */ 11286 11287 bxe_set_bit(ECORE_Q_FLG_STATS, &flags); 11288 if (zero_stats) { 11289 bxe_set_bit(ECORE_Q_FLG_ZERO_STATS, &flags); 11290 } 11291 11292 /* 11293 * tx only connections can support tx-switching, though their 11294 * CoS-ness doesn't survive the loopback 11295 */ 11296 if (sc->flags & BXE_TX_SWITCHING) { 11297 bxe_set_bit(ECORE_Q_FLG_TX_SWITCH, &flags); 11298 } 11299 11300 bxe_set_bit(ECORE_Q_FLG_PCSUM_ON_PKT, &flags); 11301 11302 return (flags); 11303 } 11304 11305 static unsigned long 11306 bxe_get_q_flags(struct bxe_softc *sc, 11307 struct bxe_fastpath *fp, 11308 uint8_t leading) 11309 { 11310 unsigned long flags = 0; 11311 11312 if (IS_MF_SD(sc)) { 11313 bxe_set_bit(ECORE_Q_FLG_OV, &flags); 11314 } 11315 11316 if (if_getcapenable(sc->ifp) & IFCAP_LRO) { 11317 bxe_set_bit(ECORE_Q_FLG_TPA, &flags); 11318 #if __FreeBSD_version >= 800000 11319 bxe_set_bit(ECORE_Q_FLG_TPA_IPV6, &flags); 11320 #endif 11321 } 11322 11323 if (leading) { 11324 bxe_set_bit(ECORE_Q_FLG_LEADING_RSS, &flags); 11325 bxe_set_bit(ECORE_Q_FLG_MCAST, &flags); 11326 } 11327 11328 bxe_set_bit(ECORE_Q_FLG_VLAN, &flags); 11329 11330 /* merge with common flags */ 11331 return (flags | bxe_get_common_flags(sc, fp, TRUE)); 11332 } 11333 11334 static void 11335 bxe_pf_q_prep_general(struct bxe_softc *sc, 11336 struct bxe_fastpath *fp, 11337 struct ecore_general_setup_params *gen_init, 11338 uint8_t cos) 11339 { 11340 gen_init->stat_id = bxe_stats_id(fp); 11341 gen_init->spcl_id = fp->cl_id; 11342 gen_init->mtu = sc->mtu; 11343 gen_init->cos = cos; 11344 } 11345 11346 static void 11347 bxe_pf_rx_q_prep(struct bxe_softc *sc, 11348 struct bxe_fastpath *fp, 11349 struct rxq_pause_params *pause, 11350 struct ecore_rxq_setup_params *rxq_init) 11351 { 11352 uint8_t max_sge = 0; 11353 uint16_t sge_sz = 0; 11354 uint16_t tpa_agg_size = 0; 11355 11356 pause->sge_th_lo = SGE_TH_LO(sc); 11357 pause->sge_th_hi = SGE_TH_HI(sc); 11358 11359 /* validate SGE ring has enough to cross high threshold */ 11360 if (sc->dropless_fc && 11361 (pause->sge_th_hi + FW_PREFETCH_CNT) > 11362 (RX_SGE_USABLE_PER_PAGE * RX_SGE_NUM_PAGES)) { 11363 BLOGW(sc, "sge ring threshold limit\n"); 11364 } 11365 11366 /* minimum max_aggregation_size is 2*MTU (two full buffers) */ 11367 tpa_agg_size = (2 * sc->mtu); 11368 if (tpa_agg_size < sc->max_aggregation_size) { 11369 tpa_agg_size = sc->max_aggregation_size; 11370 } 11371 11372 max_sge = SGE_PAGE_ALIGN(sc->mtu) >> SGE_PAGE_SHIFT; 11373 max_sge = ((max_sge + PAGES_PER_SGE - 1) & 11374 (~(PAGES_PER_SGE - 1))) >> PAGES_PER_SGE_SHIFT; 11375 sge_sz = (uint16_t)min(SGE_PAGES, 0xffff); 11376 11377 /* pause - not for e1 */ 11378 if (!CHIP_IS_E1(sc)) { 11379 pause->bd_th_lo = BD_TH_LO(sc); 11380 pause->bd_th_hi = BD_TH_HI(sc); 11381 11382 pause->rcq_th_lo = RCQ_TH_LO(sc); 11383 pause->rcq_th_hi = RCQ_TH_HI(sc); 11384 11385 /* validate rings have enough entries to cross high thresholds */ 11386 if (sc->dropless_fc && 11387 pause->bd_th_hi + FW_PREFETCH_CNT > 11388 sc->rx_ring_size) { 11389 BLOGW(sc, "rx bd ring threshold limit\n"); 11390 } 11391 11392 if (sc->dropless_fc && 11393 pause->rcq_th_hi + FW_PREFETCH_CNT > 11394 RCQ_NUM_PAGES * RCQ_USABLE_PER_PAGE) { 11395 BLOGW(sc, "rcq ring threshold limit\n"); 11396 } 11397 11398 pause->pri_map = 1; 11399 } 11400 11401 /* rxq setup */ 11402 rxq_init->dscr_map = fp->rx_dma.paddr; 11403 rxq_init->sge_map = fp->rx_sge_dma.paddr; 11404 rxq_init->rcq_map = fp->rcq_dma.paddr; 11405 rxq_init->rcq_np_map = (fp->rcq_dma.paddr + BCM_PAGE_SIZE); 11406 11407 /* 11408 * This should be a maximum number of data bytes that may be 11409 * placed on the BD (not including paddings). 11410 */ 11411 rxq_init->buf_sz = (fp->rx_buf_size - 11412 IP_HEADER_ALIGNMENT_PADDING); 11413 11414 rxq_init->cl_qzone_id = fp->cl_qzone_id; 11415 rxq_init->tpa_agg_sz = tpa_agg_size; 11416 rxq_init->sge_buf_sz = sge_sz; 11417 rxq_init->max_sges_pkt = max_sge; 11418 rxq_init->rss_engine_id = SC_FUNC(sc); 11419 rxq_init->mcast_engine_id = SC_FUNC(sc); 11420 11421 /* 11422 * Maximum number or simultaneous TPA aggregation for this Queue. 11423 * For PF Clients it should be the maximum available number. 11424 * VF driver(s) may want to define it to a smaller value. 11425 */ 11426 rxq_init->max_tpa_queues = MAX_AGG_QS(sc); 11427 11428 rxq_init->cache_line_log = BXE_RX_ALIGN_SHIFT; 11429 rxq_init->fw_sb_id = fp->fw_sb_id; 11430 11431 rxq_init->sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS; 11432 11433 /* 11434 * configure silent vlan removal 11435 * if multi function mode is afex, then mask default vlan 11436 */ 11437 if (IS_MF_AFEX(sc)) { 11438 rxq_init->silent_removal_value = 11439 sc->devinfo.mf_info.afex_def_vlan_tag; 11440 rxq_init->silent_removal_mask = EVL_VLID_MASK; 11441 } 11442 } 11443 11444 static void 11445 bxe_pf_tx_q_prep(struct bxe_softc *sc, 11446 struct bxe_fastpath *fp, 11447 struct ecore_txq_setup_params *txq_init, 11448 uint8_t cos) 11449 { 11450 /* 11451 * XXX If multiple CoS is ever supported then each fastpath structure 11452 * will need to maintain tx producer/consumer/dma/etc values *per* CoS. 11453 * fp->txdata[cos]->tx_dma.paddr; 11454 */ 11455 txq_init->dscr_map = fp->tx_dma.paddr; 11456 txq_init->sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS + cos; 11457 txq_init->traffic_type = LLFC_TRAFFIC_TYPE_NW; 11458 txq_init->fw_sb_id = fp->fw_sb_id; 11459 11460 /* 11461 * set the TSS leading client id for TX classfication to the 11462 * leading RSS client id 11463 */ 11464 txq_init->tss_leading_cl_id = BXE_FP(sc, 0, cl_id); 11465 } 11466 11467 /* 11468 * This function performs 2 steps in a queue state machine: 11469 * 1) RESET->INIT 11470 * 2) INIT->SETUP 11471 */ 11472 static int 11473 bxe_setup_queue(struct bxe_softc *sc, 11474 struct bxe_fastpath *fp, 11475 uint8_t leading) 11476 { 11477 struct ecore_queue_state_params q_params = { NULL }; 11478 struct ecore_queue_setup_params *setup_params = 11479 &q_params.params.setup; 11480 int rc; 11481 11482 BLOGD(sc, DBG_LOAD, "setting up queue %d\n", fp->index); 11483 11484 bxe_ack_sb(sc, fp->igu_sb_id, USTORM_ID, 0, IGU_INT_ENABLE, 0); 11485 11486 q_params.q_obj = &BXE_SP_OBJ(sc, fp).q_obj; 11487 11488 /* we want to wait for completion in this context */ 11489 bxe_set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags); 11490 11491 /* prepare the INIT parameters */ 11492 bxe_pf_q_prep_init(sc, fp, &q_params.params.init); 11493 11494 /* Set the command */ 11495 q_params.cmd = ECORE_Q_CMD_INIT; 11496 11497 /* Change the state to INIT */ 11498 rc = ecore_queue_state_change(sc, &q_params); 11499 if (rc) { 11500 BLOGE(sc, "Queue(%d) INIT failed rc = %d\n", fp->index, rc); 11501 return (rc); 11502 } 11503 11504 BLOGD(sc, DBG_LOAD, "init complete\n"); 11505 11506 /* now move the Queue to the SETUP state */ 11507 memset(setup_params, 0, sizeof(*setup_params)); 11508 11509 /* set Queue flags */ 11510 setup_params->flags = bxe_get_q_flags(sc, fp, leading); 11511 11512 /* set general SETUP parameters */ 11513 bxe_pf_q_prep_general(sc, fp, &setup_params->gen_params, 11514 FIRST_TX_COS_INDEX); 11515 11516 bxe_pf_rx_q_prep(sc, fp, 11517 &setup_params->pause_params, 11518 &setup_params->rxq_params); 11519 11520 bxe_pf_tx_q_prep(sc, fp, 11521 &setup_params->txq_params, 11522 FIRST_TX_COS_INDEX); 11523 11524 /* Set the command */ 11525 q_params.cmd = ECORE_Q_CMD_SETUP; 11526 11527 /* change the state to SETUP */ 11528 rc = ecore_queue_state_change(sc, &q_params); 11529 if (rc) { 11530 BLOGE(sc, "Queue(%d) SETUP failed (rc = %d)\n", fp->index, rc); 11531 return (rc); 11532 } 11533 11534 return (rc); 11535 } 11536 11537 static int 11538 bxe_setup_leading(struct bxe_softc *sc) 11539 { 11540 return (bxe_setup_queue(sc, &sc->fp[0], TRUE)); 11541 } 11542 11543 static int 11544 bxe_config_rss_pf(struct bxe_softc *sc, 11545 struct ecore_rss_config_obj *rss_obj, 11546 uint8_t config_hash) 11547 { 11548 struct ecore_config_rss_params params = { NULL }; 11549 int i; 11550 11551 /* 11552 * Although RSS is meaningless when there is a single HW queue we 11553 * still need it enabled in order to have HW Rx hash generated. 11554 */ 11555 11556 params.rss_obj = rss_obj; 11557 11558 bxe_set_bit(RAMROD_COMP_WAIT, ¶ms.ramrod_flags); 11559 11560 bxe_set_bit(ECORE_RSS_MODE_REGULAR, ¶ms.rss_flags); 11561 11562 /* RSS configuration */ 11563 bxe_set_bit(ECORE_RSS_IPV4, ¶ms.rss_flags); 11564 bxe_set_bit(ECORE_RSS_IPV4_TCP, ¶ms.rss_flags); 11565 bxe_set_bit(ECORE_RSS_IPV6, ¶ms.rss_flags); 11566 bxe_set_bit(ECORE_RSS_IPV6_TCP, ¶ms.rss_flags); 11567 if (rss_obj->udp_rss_v4) { 11568 bxe_set_bit(ECORE_RSS_IPV4_UDP, ¶ms.rss_flags); 11569 } 11570 if (rss_obj->udp_rss_v6) { 11571 bxe_set_bit(ECORE_RSS_IPV6_UDP, ¶ms.rss_flags); 11572 } 11573 11574 /* Hash bits */ 11575 params.rss_result_mask = MULTI_MASK; 11576 11577 memcpy(params.ind_table, rss_obj->ind_table, sizeof(params.ind_table)); 11578 11579 if (config_hash) { 11580 /* RSS keys */ 11581 for (i = 0; i < sizeof(params.rss_key) / 4; i++) { 11582 params.rss_key[i] = arc4random(); 11583 } 11584 11585 bxe_set_bit(ECORE_RSS_SET_SRCH, ¶ms.rss_flags); 11586 } 11587 11588 return (ecore_config_rss(sc, ¶ms)); 11589 } 11590 11591 static int 11592 bxe_config_rss_eth(struct bxe_softc *sc, 11593 uint8_t config_hash) 11594 { 11595 return (bxe_config_rss_pf(sc, &sc->rss_conf_obj, config_hash)); 11596 } 11597 11598 static int 11599 bxe_init_rss_pf(struct bxe_softc *sc) 11600 { 11601 uint8_t num_eth_queues = BXE_NUM_ETH_QUEUES(sc); 11602 int i; 11603 11604 /* 11605 * Prepare the initial contents of the indirection table if 11606 * RSS is enabled 11607 */ 11608 for (i = 0; i < sizeof(sc->rss_conf_obj.ind_table); i++) { 11609 sc->rss_conf_obj.ind_table[i] = 11610 (sc->fp->cl_id + (i % num_eth_queues)); 11611 } 11612 11613 if (sc->udp_rss) { 11614 sc->rss_conf_obj.udp_rss_v4 = sc->rss_conf_obj.udp_rss_v6 = 1; 11615 } 11616 11617 /* 11618 * For 57710 and 57711 SEARCHER configuration (rss_keys) is 11619 * per-port, so if explicit configuration is needed, do it only 11620 * for a PMF. 11621 * 11622 * For 57712 and newer it's a per-function configuration. 11623 */ 11624 return (bxe_config_rss_eth(sc, sc->port.pmf || !CHIP_IS_E1x(sc))); 11625 } 11626 11627 static int 11628 bxe_set_mac_one(struct bxe_softc *sc, 11629 uint8_t *mac, 11630 struct ecore_vlan_mac_obj *obj, 11631 uint8_t set, 11632 int mac_type, 11633 unsigned long *ramrod_flags) 11634 { 11635 struct ecore_vlan_mac_ramrod_params ramrod_param; 11636 int rc; 11637 11638 memset(&ramrod_param, 0, sizeof(ramrod_param)); 11639 11640 /* fill in general parameters */ 11641 ramrod_param.vlan_mac_obj = obj; 11642 ramrod_param.ramrod_flags = *ramrod_flags; 11643 11644 /* fill a user request section if needed */ 11645 if (!bxe_test_bit(RAMROD_CONT, ramrod_flags)) { 11646 memcpy(ramrod_param.user_req.u.mac.mac, mac, ETH_ALEN); 11647 11648 bxe_set_bit(mac_type, &ramrod_param.user_req.vlan_mac_flags); 11649 11650 /* Set the command: ADD or DEL */ 11651 ramrod_param.user_req.cmd = (set) ? ECORE_VLAN_MAC_ADD : 11652 ECORE_VLAN_MAC_DEL; 11653 } 11654 11655 rc = ecore_config_vlan_mac(sc, &ramrod_param); 11656 11657 if (rc == ECORE_EXISTS) { 11658 BLOGD(sc, DBG_SP, "Failed to schedule ADD operations (EEXIST)\n"); 11659 /* do not treat adding same MAC as error */ 11660 rc = 0; 11661 } else if (rc < 0) { 11662 BLOGE(sc, "%s MAC failed (%d)\n", (set ? "Set" : "Delete"), rc); 11663 } 11664 11665 return (rc); 11666 } 11667 11668 static int 11669 bxe_set_eth_mac(struct bxe_softc *sc, 11670 uint8_t set) 11671 { 11672 unsigned long ramrod_flags = 0; 11673 11674 BLOGD(sc, DBG_LOAD, "Adding Ethernet MAC\n"); 11675 11676 bxe_set_bit(RAMROD_COMP_WAIT, &ramrod_flags); 11677 11678 /* Eth MAC is set on RSS leading client (fp[0]) */ 11679 return (bxe_set_mac_one(sc, sc->link_params.mac_addr, 11680 &sc->sp_objs->mac_obj, 11681 set, ECORE_ETH_MAC, &ramrod_flags)); 11682 } 11683 11684 static int 11685 bxe_get_cur_phy_idx(struct bxe_softc *sc) 11686 { 11687 uint32_t sel_phy_idx = 0; 11688 11689 if (sc->link_params.num_phys <= 1) { 11690 return (ELINK_INT_PHY); 11691 } 11692 11693 if (sc->link_vars.link_up) { 11694 sel_phy_idx = ELINK_EXT_PHY1; 11695 /* In case link is SERDES, check if the ELINK_EXT_PHY2 is the one */ 11696 if ((sc->link_vars.link_status & LINK_STATUS_SERDES_LINK) && 11697 (sc->link_params.phy[ELINK_EXT_PHY2].supported & 11698 ELINK_SUPPORTED_FIBRE)) 11699 sel_phy_idx = ELINK_EXT_PHY2; 11700 } else { 11701 switch (elink_phy_selection(&sc->link_params)) { 11702 case PORT_HW_CFG_PHY_SELECTION_HARDWARE_DEFAULT: 11703 case PORT_HW_CFG_PHY_SELECTION_FIRST_PHY: 11704 case PORT_HW_CFG_PHY_SELECTION_FIRST_PHY_PRIORITY: 11705 sel_phy_idx = ELINK_EXT_PHY1; 11706 break; 11707 case PORT_HW_CFG_PHY_SELECTION_SECOND_PHY: 11708 case PORT_HW_CFG_PHY_SELECTION_SECOND_PHY_PRIORITY: 11709 sel_phy_idx = ELINK_EXT_PHY2; 11710 break; 11711 } 11712 } 11713 11714 return (sel_phy_idx); 11715 } 11716 11717 static int 11718 bxe_get_link_cfg_idx(struct bxe_softc *sc) 11719 { 11720 uint32_t sel_phy_idx = bxe_get_cur_phy_idx(sc); 11721 11722 /* 11723 * The selected activated PHY is always after swapping (in case PHY 11724 * swapping is enabled). So when swapping is enabled, we need to reverse 11725 * the configuration 11726 */ 11727 11728 if (sc->link_params.multi_phy_config & PORT_HW_CFG_PHY_SWAPPED_ENABLED) { 11729 if (sel_phy_idx == ELINK_EXT_PHY1) 11730 sel_phy_idx = ELINK_EXT_PHY2; 11731 else if (sel_phy_idx == ELINK_EXT_PHY2) 11732 sel_phy_idx = ELINK_EXT_PHY1; 11733 } 11734 11735 return (ELINK_LINK_CONFIG_IDX(sel_phy_idx)); 11736 } 11737 11738 static void 11739 bxe_set_requested_fc(struct bxe_softc *sc) 11740 { 11741 /* 11742 * Initialize link parameters structure variables 11743 * It is recommended to turn off RX FC for jumbo frames 11744 * for better performance 11745 */ 11746 if (CHIP_IS_E1x(sc) && (sc->mtu > 5000)) { 11747 sc->link_params.req_fc_auto_adv = ELINK_FLOW_CTRL_TX; 11748 } else { 11749 sc->link_params.req_fc_auto_adv = ELINK_FLOW_CTRL_BOTH; 11750 } 11751 } 11752 11753 static void 11754 bxe_calc_fc_adv(struct bxe_softc *sc) 11755 { 11756 uint8_t cfg_idx = bxe_get_link_cfg_idx(sc); 11757 11758 11759 sc->port.advertising[cfg_idx] &= ~(ADVERTISED_Asym_Pause | 11760 ADVERTISED_Pause); 11761 11762 switch (sc->link_vars.ieee_fc & 11763 MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_MASK) { 11764 11765 case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_BOTH: 11766 sc->port.advertising[cfg_idx] |= (ADVERTISED_Asym_Pause | 11767 ADVERTISED_Pause); 11768 break; 11769 11770 case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_ASYMMETRIC: 11771 sc->port.advertising[cfg_idx] |= ADVERTISED_Asym_Pause; 11772 break; 11773 11774 default: 11775 break; 11776 11777 } 11778 } 11779 11780 static uint16_t 11781 bxe_get_mf_speed(struct bxe_softc *sc) 11782 { 11783 uint16_t line_speed = sc->link_vars.line_speed; 11784 if (IS_MF(sc)) { 11785 uint16_t maxCfg = 11786 bxe_extract_max_cfg(sc, sc->devinfo.mf_info.mf_config[SC_VN(sc)]); 11787 11788 /* calculate the current MAX line speed limit for the MF devices */ 11789 if (IS_MF_SI(sc)) { 11790 line_speed = (line_speed * maxCfg) / 100; 11791 } else { /* SD mode */ 11792 uint16_t vn_max_rate = maxCfg * 100; 11793 11794 if (vn_max_rate < line_speed) { 11795 line_speed = vn_max_rate; 11796 } 11797 } 11798 } 11799 11800 return (line_speed); 11801 } 11802 11803 static void 11804 bxe_fill_report_data(struct bxe_softc *sc, 11805 struct bxe_link_report_data *data) 11806 { 11807 uint16_t line_speed = bxe_get_mf_speed(sc); 11808 11809 memset(data, 0, sizeof(*data)); 11810 11811 /* fill the report data with the effective line speed */ 11812 data->line_speed = line_speed; 11813 11814 /* Link is down */ 11815 if (!sc->link_vars.link_up || (sc->flags & BXE_MF_FUNC_DIS)) { 11816 bxe_set_bit(BXE_LINK_REPORT_LINK_DOWN, &data->link_report_flags); 11817 } 11818 11819 /* Full DUPLEX */ 11820 if (sc->link_vars.duplex == DUPLEX_FULL) { 11821 bxe_set_bit(BXE_LINK_REPORT_FULL_DUPLEX, &data->link_report_flags); 11822 } 11823 11824 /* Rx Flow Control is ON */ 11825 if (sc->link_vars.flow_ctrl & ELINK_FLOW_CTRL_RX) { 11826 bxe_set_bit(BXE_LINK_REPORT_RX_FC_ON, &data->link_report_flags); 11827 } 11828 11829 /* Tx Flow Control is ON */ 11830 if (sc->link_vars.flow_ctrl & ELINK_FLOW_CTRL_TX) { 11831 bxe_set_bit(BXE_LINK_REPORT_TX_FC_ON, &data->link_report_flags); 11832 } 11833 } 11834 11835 /* report link status to OS, should be called under phy_lock */ 11836 static void 11837 bxe_link_report_locked(struct bxe_softc *sc) 11838 { 11839 struct bxe_link_report_data cur_data; 11840 11841 /* reread mf_cfg */ 11842 if (IS_PF(sc) && !CHIP_IS_E1(sc)) { 11843 bxe_read_mf_cfg(sc); 11844 } 11845 11846 /* Read the current link report info */ 11847 bxe_fill_report_data(sc, &cur_data); 11848 11849 /* Don't report link down or exactly the same link status twice */ 11850 if (!memcmp(&cur_data, &sc->last_reported_link, sizeof(cur_data)) || 11851 (bxe_test_bit(BXE_LINK_REPORT_LINK_DOWN, 11852 &sc->last_reported_link.link_report_flags) && 11853 bxe_test_bit(BXE_LINK_REPORT_LINK_DOWN, 11854 &cur_data.link_report_flags))) { 11855 return; 11856 } 11857 11858 ELINK_DEBUG_P2(sc, "Change in link status : cur_data = %x, last_reported_link = %x\n", 11859 cur_data.link_report_flags, sc->last_reported_link.link_report_flags); 11860 sc->link_cnt++; 11861 11862 ELINK_DEBUG_P1(sc, "link status change count = %x\n", sc->link_cnt); 11863 /* report new link params and remember the state for the next time */ 11864 memcpy(&sc->last_reported_link, &cur_data, sizeof(cur_data)); 11865 11866 if (bxe_test_bit(BXE_LINK_REPORT_LINK_DOWN, 11867 &cur_data.link_report_flags)) { 11868 if_link_state_change(sc->ifp, LINK_STATE_DOWN); 11869 } else { 11870 const char *duplex; 11871 const char *flow; 11872 11873 if (bxe_test_and_clear_bit(BXE_LINK_REPORT_FULL_DUPLEX, 11874 &cur_data.link_report_flags)) { 11875 duplex = "full"; 11876 ELINK_DEBUG_P0(sc, "link set to full duplex\n"); 11877 } else { 11878 duplex = "half"; 11879 ELINK_DEBUG_P0(sc, "link set to half duplex\n"); 11880 } 11881 11882 /* 11883 * Handle the FC at the end so that only these flags would be 11884 * possibly set. This way we may easily check if there is no FC 11885 * enabled. 11886 */ 11887 if (cur_data.link_report_flags) { 11888 if (bxe_test_bit(BXE_LINK_REPORT_RX_FC_ON, 11889 &cur_data.link_report_flags) && 11890 bxe_test_bit(BXE_LINK_REPORT_TX_FC_ON, 11891 &cur_data.link_report_flags)) { 11892 flow = "ON - receive & transmit"; 11893 } else if (bxe_test_bit(BXE_LINK_REPORT_RX_FC_ON, 11894 &cur_data.link_report_flags) && 11895 !bxe_test_bit(BXE_LINK_REPORT_TX_FC_ON, 11896 &cur_data.link_report_flags)) { 11897 flow = "ON - receive"; 11898 } else if (!bxe_test_bit(BXE_LINK_REPORT_RX_FC_ON, 11899 &cur_data.link_report_flags) && 11900 bxe_test_bit(BXE_LINK_REPORT_TX_FC_ON, 11901 &cur_data.link_report_flags)) { 11902 flow = "ON - transmit"; 11903 } else { 11904 flow = "none"; /* possible? */ 11905 } 11906 } else { 11907 flow = "none"; 11908 } 11909 11910 if_link_state_change(sc->ifp, LINK_STATE_UP); 11911 BLOGI(sc, "NIC Link is Up, %d Mbps %s duplex, Flow control: %s\n", 11912 cur_data.line_speed, duplex, flow); 11913 } 11914 } 11915 11916 static void 11917 bxe_link_report(struct bxe_softc *sc) 11918 { 11919 bxe_acquire_phy_lock(sc); 11920 bxe_link_report_locked(sc); 11921 bxe_release_phy_lock(sc); 11922 } 11923 11924 static void 11925 bxe_link_status_update(struct bxe_softc *sc) 11926 { 11927 if (sc->state != BXE_STATE_OPEN) { 11928 return; 11929 } 11930 11931 if (IS_PF(sc) && !CHIP_REV_IS_SLOW(sc)) { 11932 elink_link_status_update(&sc->link_params, &sc->link_vars); 11933 } else { 11934 sc->port.supported[0] |= (ELINK_SUPPORTED_10baseT_Half | 11935 ELINK_SUPPORTED_10baseT_Full | 11936 ELINK_SUPPORTED_100baseT_Half | 11937 ELINK_SUPPORTED_100baseT_Full | 11938 ELINK_SUPPORTED_1000baseT_Full | 11939 ELINK_SUPPORTED_2500baseX_Full | 11940 ELINK_SUPPORTED_10000baseT_Full | 11941 ELINK_SUPPORTED_TP | 11942 ELINK_SUPPORTED_FIBRE | 11943 ELINK_SUPPORTED_Autoneg | 11944 ELINK_SUPPORTED_Pause | 11945 ELINK_SUPPORTED_Asym_Pause); 11946 sc->port.advertising[0] = sc->port.supported[0]; 11947 11948 sc->link_params.sc = sc; 11949 sc->link_params.port = SC_PORT(sc); 11950 sc->link_params.req_duplex[0] = DUPLEX_FULL; 11951 sc->link_params.req_flow_ctrl[0] = ELINK_FLOW_CTRL_NONE; 11952 sc->link_params.req_line_speed[0] = SPEED_10000; 11953 sc->link_params.speed_cap_mask[0] = 0x7f0000; 11954 sc->link_params.switch_cfg = ELINK_SWITCH_CFG_10G; 11955 11956 if (CHIP_REV_IS_FPGA(sc)) { 11957 sc->link_vars.mac_type = ELINK_MAC_TYPE_EMAC; 11958 sc->link_vars.line_speed = ELINK_SPEED_1000; 11959 sc->link_vars.link_status = (LINK_STATUS_LINK_UP | 11960 LINK_STATUS_SPEED_AND_DUPLEX_1000TFD); 11961 } else { 11962 sc->link_vars.mac_type = ELINK_MAC_TYPE_BMAC; 11963 sc->link_vars.line_speed = ELINK_SPEED_10000; 11964 sc->link_vars.link_status = (LINK_STATUS_LINK_UP | 11965 LINK_STATUS_SPEED_AND_DUPLEX_10GTFD); 11966 } 11967 11968 sc->link_vars.link_up = 1; 11969 11970 sc->link_vars.duplex = DUPLEX_FULL; 11971 sc->link_vars.flow_ctrl = ELINK_FLOW_CTRL_NONE; 11972 11973 if (IS_PF(sc)) { 11974 REG_WR(sc, NIG_REG_EGRESS_DRAIN0_MODE + sc->link_params.port*4, 0); 11975 bxe_stats_handle(sc, STATS_EVENT_LINK_UP); 11976 bxe_link_report(sc); 11977 } 11978 } 11979 11980 if (IS_PF(sc)) { 11981 if (sc->link_vars.link_up) { 11982 bxe_stats_handle(sc, STATS_EVENT_LINK_UP); 11983 } else { 11984 bxe_stats_handle(sc, STATS_EVENT_STOP); 11985 } 11986 bxe_link_report(sc); 11987 } else { 11988 bxe_link_report(sc); 11989 bxe_stats_handle(sc, STATS_EVENT_LINK_UP); 11990 } 11991 } 11992 11993 static int 11994 bxe_initial_phy_init(struct bxe_softc *sc, 11995 int load_mode) 11996 { 11997 int rc, cfg_idx = bxe_get_link_cfg_idx(sc); 11998 uint16_t req_line_speed = sc->link_params.req_line_speed[cfg_idx]; 11999 struct elink_params *lp = &sc->link_params; 12000 12001 bxe_set_requested_fc(sc); 12002 12003 if (CHIP_REV_IS_SLOW(sc)) { 12004 uint32_t bond = CHIP_BOND_ID(sc); 12005 uint32_t feat = 0; 12006 12007 if (CHIP_IS_E2(sc) && CHIP_IS_MODE_4_PORT(sc)) { 12008 feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_BMAC; 12009 } else if (bond & 0x4) { 12010 if (CHIP_IS_E3(sc)) { 12011 feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_XMAC; 12012 } else { 12013 feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_BMAC; 12014 } 12015 } else if (bond & 0x8) { 12016 if (CHIP_IS_E3(sc)) { 12017 feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_UMAC; 12018 } else { 12019 feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_EMAC; 12020 } 12021 } 12022 12023 /* disable EMAC for E3 and above */ 12024 if (bond & 0x2) { 12025 feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_EMAC; 12026 } 12027 12028 sc->link_params.feature_config_flags |= feat; 12029 } 12030 12031 bxe_acquire_phy_lock(sc); 12032 12033 if (load_mode == LOAD_DIAG) { 12034 lp->loopback_mode = ELINK_LOOPBACK_XGXS; 12035 /* Prefer doing PHY loopback at 10G speed, if possible */ 12036 if (lp->req_line_speed[cfg_idx] < ELINK_SPEED_10000) { 12037 if (lp->speed_cap_mask[cfg_idx] & 12038 PORT_HW_CFG_SPEED_CAPABILITY_D0_10G) { 12039 lp->req_line_speed[cfg_idx] = ELINK_SPEED_10000; 12040 } else { 12041 lp->req_line_speed[cfg_idx] = ELINK_SPEED_1000; 12042 } 12043 } 12044 } 12045 12046 if (load_mode == LOAD_LOOPBACK_EXT) { 12047 lp->loopback_mode = ELINK_LOOPBACK_EXT; 12048 } 12049 12050 rc = elink_phy_init(&sc->link_params, &sc->link_vars); 12051 12052 bxe_release_phy_lock(sc); 12053 12054 bxe_calc_fc_adv(sc); 12055 12056 if (sc->link_vars.link_up) { 12057 bxe_stats_handle(sc, STATS_EVENT_LINK_UP); 12058 bxe_link_report(sc); 12059 } 12060 12061 if (!CHIP_REV_IS_SLOW(sc)) { 12062 bxe_periodic_start(sc); 12063 } 12064 12065 sc->link_params.req_line_speed[cfg_idx] = req_line_speed; 12066 return (rc); 12067 } 12068 12069 static u_int 12070 bxe_push_maddr(void *arg, struct sockaddr_dl *sdl, u_int cnt) 12071 { 12072 struct ecore_mcast_list_elem *mc_mac = arg; 12073 12074 mc_mac += cnt; 12075 mc_mac->mac = (uint8_t *)LLADDR(sdl); 12076 12077 return (1); 12078 } 12079 12080 static int 12081 bxe_init_mcast_macs_list(struct bxe_softc *sc, 12082 struct ecore_mcast_ramrod_params *p) 12083 { 12084 if_t ifp = sc->ifp; 12085 int mc_count; 12086 struct ecore_mcast_list_elem *mc_mac; 12087 12088 ECORE_LIST_INIT(&p->mcast_list); 12089 p->mcast_list_len = 0; 12090 12091 /* XXXGL: multicast count may change later */ 12092 mc_count = if_llmaddr_count(ifp); 12093 12094 if (!mc_count) { 12095 return (0); 12096 } 12097 12098 mc_mac = malloc(sizeof(*mc_mac) * mc_count, M_DEVBUF, 12099 (M_NOWAIT | M_ZERO)); 12100 if (!mc_mac) { 12101 BLOGE(sc, "Failed to allocate temp mcast list\n"); 12102 return (-1); 12103 } 12104 bzero(mc_mac, (sizeof(*mc_mac) * mc_count)); 12105 if_foreach_llmaddr(ifp, bxe_push_maddr, mc_mac); 12106 12107 for (int i = 0; i < mc_count; i ++) { 12108 ECORE_LIST_PUSH_TAIL(&mc_mac[i].link, &p->mcast_list); 12109 BLOGD(sc, DBG_LOAD, 12110 "Setting MCAST %02X:%02X:%02X:%02X:%02X:%02X and mc_count %d\n", 12111 mc_mac[i].mac[0], mc_mac[i].mac[1], mc_mac[i].mac[2], 12112 mc_mac[i].mac[3], mc_mac[i].mac[4], mc_mac[i].mac[5], 12113 mc_count); 12114 } 12115 12116 p->mcast_list_len = mc_count; 12117 12118 return (0); 12119 } 12120 12121 static void 12122 bxe_free_mcast_macs_list(struct ecore_mcast_ramrod_params *p) 12123 { 12124 struct ecore_mcast_list_elem *mc_mac = 12125 ECORE_LIST_FIRST_ENTRY(&p->mcast_list, 12126 struct ecore_mcast_list_elem, 12127 link); 12128 12129 if (mc_mac) { 12130 /* only a single free as all mc_macs are in the same heap array */ 12131 free(mc_mac, M_DEVBUF); 12132 } 12133 } 12134 static int 12135 bxe_set_mc_list(struct bxe_softc *sc) 12136 { 12137 struct ecore_mcast_ramrod_params rparam = { NULL }; 12138 int rc = 0; 12139 12140 rparam.mcast_obj = &sc->mcast_obj; 12141 12142 BXE_MCAST_LOCK(sc); 12143 12144 /* first, clear all configured multicast MACs */ 12145 rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_DEL); 12146 if (rc < 0) { 12147 BLOGE(sc, "Failed to clear multicast configuration: %d\n", rc); 12148 /* Manual backport parts of FreeBSD upstream r284470. */ 12149 BXE_MCAST_UNLOCK(sc); 12150 return (rc); 12151 } 12152 12153 /* configure a new MACs list */ 12154 rc = bxe_init_mcast_macs_list(sc, &rparam); 12155 if (rc) { 12156 BLOGE(sc, "Failed to create mcast MACs list (%d)\n", rc); 12157 BXE_MCAST_UNLOCK(sc); 12158 return (rc); 12159 } 12160 12161 /* Now add the new MACs */ 12162 rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_ADD); 12163 if (rc < 0) { 12164 BLOGE(sc, "Failed to set new mcast config (%d)\n", rc); 12165 } 12166 12167 bxe_free_mcast_macs_list(&rparam); 12168 12169 BXE_MCAST_UNLOCK(sc); 12170 12171 return (rc); 12172 } 12173 12174 struct bxe_set_addr_ctx { 12175 struct bxe_softc *sc; 12176 unsigned long ramrod_flags; 12177 int rc; 12178 }; 12179 12180 static u_int 12181 bxe_set_addr(void *arg, struct sockaddr_dl *sdl, u_int cnt) 12182 { 12183 struct bxe_set_addr_ctx *ctx = arg; 12184 struct ecore_vlan_mac_obj *mac_obj = &ctx->sc->sp_objs->mac_obj; 12185 int rc; 12186 12187 if (ctx->rc < 0) 12188 return (0); 12189 12190 rc = bxe_set_mac_one(ctx->sc, (uint8_t *)LLADDR(sdl), mac_obj, TRUE, 12191 ECORE_UC_LIST_MAC, &ctx->ramrod_flags); 12192 12193 /* do not treat adding same MAC as an error */ 12194 if (rc == -EEXIST) 12195 BLOGD(ctx->sc, DBG_SP, "Failed to schedule ADD operations (EEXIST)\n"); 12196 else if (rc < 0) { 12197 BLOGE(ctx->sc, "Failed to schedule ADD operations (%d)\n", rc); 12198 ctx->rc = rc; 12199 } 12200 12201 return (1); 12202 } 12203 12204 static int 12205 bxe_set_uc_list(struct bxe_softc *sc) 12206 { 12207 if_t ifp = sc->ifp; 12208 struct ecore_vlan_mac_obj *mac_obj = &sc->sp_objs->mac_obj; 12209 struct bxe_set_addr_ctx ctx = { sc, 0, 0 }; 12210 int rc; 12211 12212 /* first schedule a cleanup up of old configuration */ 12213 rc = bxe_del_all_macs(sc, mac_obj, ECORE_UC_LIST_MAC, FALSE); 12214 if (rc < 0) { 12215 BLOGE(sc, "Failed to schedule delete of all ETH MACs (%d)\n", rc); 12216 return (rc); 12217 } 12218 12219 if_foreach_lladdr(ifp, bxe_set_addr, &ctx); 12220 if (ctx.rc < 0) 12221 return (ctx.rc); 12222 12223 /* Execute the pending commands */ 12224 bit_set(&ctx.ramrod_flags, RAMROD_CONT); 12225 return (bxe_set_mac_one(sc, NULL, mac_obj, FALSE /* don't care */, 12226 ECORE_UC_LIST_MAC, &ctx.ramrod_flags)); 12227 } 12228 12229 static void 12230 bxe_set_rx_mode(struct bxe_softc *sc) 12231 { 12232 if_t ifp = sc->ifp; 12233 uint32_t rx_mode = BXE_RX_MODE_NORMAL; 12234 12235 if (sc->state != BXE_STATE_OPEN) { 12236 BLOGD(sc, DBG_SP, "state is %x, returning\n", sc->state); 12237 return; 12238 } 12239 12240 BLOGD(sc, DBG_SP, "if_flags(ifp)=0x%x\n", if_getflags(sc->ifp)); 12241 12242 if (if_getflags(ifp) & IFF_PROMISC) { 12243 rx_mode = BXE_RX_MODE_PROMISC; 12244 } else if ((if_getflags(ifp) & IFF_ALLMULTI) || 12245 ((if_getamcount(ifp) > BXE_MAX_MULTICAST) && 12246 CHIP_IS_E1(sc))) { 12247 rx_mode = BXE_RX_MODE_ALLMULTI; 12248 } else { 12249 if (IS_PF(sc)) { 12250 /* some multicasts */ 12251 if (bxe_set_mc_list(sc) < 0) { 12252 rx_mode = BXE_RX_MODE_ALLMULTI; 12253 } 12254 if (bxe_set_uc_list(sc) < 0) { 12255 rx_mode = BXE_RX_MODE_PROMISC; 12256 } 12257 } 12258 } 12259 12260 sc->rx_mode = rx_mode; 12261 12262 /* schedule the rx_mode command */ 12263 if (bxe_test_bit(ECORE_FILTER_RX_MODE_PENDING, &sc->sp_state)) { 12264 BLOGD(sc, DBG_LOAD, "Scheduled setting rx_mode with ECORE...\n"); 12265 bxe_set_bit(ECORE_FILTER_RX_MODE_SCHED, &sc->sp_state); 12266 return; 12267 } 12268 12269 if (IS_PF(sc)) { 12270 bxe_set_storm_rx_mode(sc); 12271 } 12272 } 12273 12274 12275 /* update flags in shmem */ 12276 static void 12277 bxe_update_drv_flags(struct bxe_softc *sc, 12278 uint32_t flags, 12279 uint32_t set) 12280 { 12281 uint32_t drv_flags; 12282 12283 if (SHMEM2_HAS(sc, drv_flags)) { 12284 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_DRV_FLAGS); 12285 drv_flags = SHMEM2_RD(sc, drv_flags); 12286 12287 if (set) { 12288 SET_FLAGS(drv_flags, flags); 12289 } else { 12290 RESET_FLAGS(drv_flags, flags); 12291 } 12292 12293 SHMEM2_WR(sc, drv_flags, drv_flags); 12294 BLOGD(sc, DBG_LOAD, "drv_flags 0x%08x\n", drv_flags); 12295 12296 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_DRV_FLAGS); 12297 } 12298 } 12299 12300 /* periodic timer callout routine, only runs when the interface is up */ 12301 12302 static void 12303 bxe_periodic_callout_func(void *xsc) 12304 { 12305 struct bxe_softc *sc = (struct bxe_softc *)xsc; 12306 int i; 12307 12308 if (!BXE_CORE_TRYLOCK(sc)) { 12309 /* just bail and try again next time */ 12310 12311 if ((sc->state == BXE_STATE_OPEN) && 12312 (atomic_load_acq_long(&sc->periodic_flags) == PERIODIC_GO)) { 12313 /* schedule the next periodic callout */ 12314 callout_reset(&sc->periodic_callout, hz, 12315 bxe_periodic_callout_func, sc); 12316 } 12317 12318 return; 12319 } 12320 12321 if ((sc->state != BXE_STATE_OPEN) || 12322 (atomic_load_acq_long(&sc->periodic_flags) == PERIODIC_STOP)) { 12323 BLOGW(sc, "periodic callout exit (state=0x%x)\n", sc->state); 12324 BXE_CORE_UNLOCK(sc); 12325 return; 12326 } 12327 12328 12329 /* Check for TX timeouts on any fastpath. */ 12330 FOR_EACH_QUEUE(sc, i) { 12331 if (bxe_watchdog(sc, &sc->fp[i]) != 0) { 12332 /* Ruh-Roh, chip was reset! */ 12333 break; 12334 } 12335 } 12336 12337 if (!CHIP_REV_IS_SLOW(sc)) { 12338 /* 12339 * This barrier is needed to ensure the ordering between the writing 12340 * to the sc->port.pmf in the bxe_nic_load() or bxe_pmf_update() and 12341 * the reading here. 12342 */ 12343 mb(); 12344 if (sc->port.pmf) { 12345 bxe_acquire_phy_lock(sc); 12346 elink_period_func(&sc->link_params, &sc->link_vars); 12347 bxe_release_phy_lock(sc); 12348 } 12349 } 12350 12351 if (IS_PF(sc) && !(sc->flags & BXE_NO_PULSE)) { 12352 int mb_idx = SC_FW_MB_IDX(sc); 12353 uint32_t drv_pulse; 12354 uint32_t mcp_pulse; 12355 12356 ++sc->fw_drv_pulse_wr_seq; 12357 sc->fw_drv_pulse_wr_seq &= DRV_PULSE_SEQ_MASK; 12358 12359 drv_pulse = sc->fw_drv_pulse_wr_seq; 12360 bxe_drv_pulse(sc); 12361 12362 mcp_pulse = (SHMEM_RD(sc, func_mb[mb_idx].mcp_pulse_mb) & 12363 MCP_PULSE_SEQ_MASK); 12364 12365 /* 12366 * The delta between driver pulse and mcp response should 12367 * be 1 (before mcp response) or 0 (after mcp response). 12368 */ 12369 if ((drv_pulse != mcp_pulse) && 12370 (drv_pulse != ((mcp_pulse + 1) & MCP_PULSE_SEQ_MASK))) { 12371 /* someone lost a heartbeat... */ 12372 BLOGE(sc, "drv_pulse (0x%x) != mcp_pulse (0x%x)\n", 12373 drv_pulse, mcp_pulse); 12374 } 12375 } 12376 12377 /* state is BXE_STATE_OPEN */ 12378 bxe_stats_handle(sc, STATS_EVENT_UPDATE); 12379 12380 BXE_CORE_UNLOCK(sc); 12381 12382 if ((sc->state == BXE_STATE_OPEN) && 12383 (atomic_load_acq_long(&sc->periodic_flags) == PERIODIC_GO)) { 12384 /* schedule the next periodic callout */ 12385 callout_reset(&sc->periodic_callout, hz, 12386 bxe_periodic_callout_func, sc); 12387 } 12388 } 12389 12390 static void 12391 bxe_periodic_start(struct bxe_softc *sc) 12392 { 12393 atomic_store_rel_long(&sc->periodic_flags, PERIODIC_GO); 12394 callout_reset(&sc->periodic_callout, hz, bxe_periodic_callout_func, sc); 12395 } 12396 12397 static void 12398 bxe_periodic_stop(struct bxe_softc *sc) 12399 { 12400 atomic_store_rel_long(&sc->periodic_flags, PERIODIC_STOP); 12401 callout_drain(&sc->periodic_callout); 12402 } 12403 12404 void 12405 bxe_parity_recover(struct bxe_softc *sc) 12406 { 12407 uint8_t global = FALSE; 12408 uint32_t error_recovered, error_unrecovered; 12409 bool is_parity; 12410 12411 12412 if ((sc->recovery_state == BXE_RECOVERY_FAILED) && 12413 (sc->state == BXE_STATE_ERROR)) { 12414 BLOGE(sc, "RECOVERY failed, " 12415 "stack notified driver is NOT running! " 12416 "Please reboot/power cycle the system.\n"); 12417 return; 12418 } 12419 12420 while (1) { 12421 BLOGD(sc, DBG_SP, 12422 "%s sc=%p state=0x%x rec_state=0x%x error_status=%x\n", 12423 __func__, sc, sc->state, sc->recovery_state, sc->error_status); 12424 12425 switch(sc->recovery_state) { 12426 12427 case BXE_RECOVERY_INIT: 12428 is_parity = bxe_chk_parity_attn(sc, &global, FALSE); 12429 12430 if ((CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) || 12431 (sc->error_status & BXE_ERR_MCP_ASSERT) || 12432 (sc->error_status & BXE_ERR_GLOBAL)) { 12433 12434 BXE_CORE_LOCK(sc); 12435 if (if_getdrvflags(sc->ifp) & IFF_DRV_RUNNING) { 12436 bxe_periodic_stop(sc); 12437 } 12438 bxe_nic_unload(sc, UNLOAD_RECOVERY, false); 12439 sc->state = BXE_STATE_ERROR; 12440 sc->recovery_state = BXE_RECOVERY_FAILED; 12441 BLOGE(sc, " No Recovery tried for error 0x%x" 12442 " stack notified driver is NOT running!" 12443 " Please reboot/power cycle the system.\n", 12444 sc->error_status); 12445 BXE_CORE_UNLOCK(sc); 12446 return; 12447 } 12448 12449 12450 /* Try to get a LEADER_LOCK HW lock */ 12451 if (bxe_trylock_leader_lock(sc)) { 12452 12453 bxe_set_reset_in_progress(sc); 12454 /* 12455 * Check if there is a global attention and if 12456 * there was a global attention, set the global 12457 * reset bit. 12458 */ 12459 if (global) { 12460 bxe_set_reset_global(sc); 12461 } 12462 sc->is_leader = 1; 12463 } 12464 12465 /* If interface has been removed - break */ 12466 12467 if (if_getdrvflags(sc->ifp) & IFF_DRV_RUNNING) { 12468 bxe_periodic_stop(sc); 12469 } 12470 12471 BXE_CORE_LOCK(sc); 12472 bxe_nic_unload(sc,UNLOAD_RECOVERY, false); 12473 sc->recovery_state = BXE_RECOVERY_WAIT; 12474 BXE_CORE_UNLOCK(sc); 12475 12476 /* 12477 * Ensure "is_leader", MCP command sequence and 12478 * "recovery_state" update values are seen on other 12479 * CPUs. 12480 */ 12481 mb(); 12482 break; 12483 case BXE_RECOVERY_WAIT: 12484 12485 if (sc->is_leader) { 12486 int other_engine = SC_PATH(sc) ? 0 : 1; 12487 bool other_load_status = 12488 bxe_get_load_status(sc, other_engine); 12489 bool load_status = 12490 bxe_get_load_status(sc, SC_PATH(sc)); 12491 global = bxe_reset_is_global(sc); 12492 12493 /* 12494 * In case of a parity in a global block, let 12495 * the first leader that performs a 12496 * leader_reset() reset the global blocks in 12497 * order to clear global attentions. Otherwise 12498 * the gates will remain closed for that 12499 * engine. 12500 */ 12501 if (load_status || 12502 (global && other_load_status)) { 12503 /* 12504 * Wait until all other functions get 12505 * down. 12506 */ 12507 taskqueue_enqueue_timeout(taskqueue_thread, 12508 &sc->sp_err_timeout_task, hz/10); 12509 return; 12510 } else { 12511 /* 12512 * If all other functions got down 12513 * try to bring the chip back to 12514 * normal. In any case it's an exit 12515 * point for a leader. 12516 */ 12517 if (bxe_leader_reset(sc)) { 12518 BLOGE(sc, "RECOVERY failed, " 12519 "stack notified driver is NOT running!\n"); 12520 sc->recovery_state = BXE_RECOVERY_FAILED; 12521 sc->state = BXE_STATE_ERROR; 12522 mb(); 12523 return; 12524 } 12525 12526 /* 12527 * If we are here, means that the 12528 * leader has succeeded and doesn't 12529 * want to be a leader any more. Try 12530 * to continue as a none-leader. 12531 */ 12532 break; 12533 } 12534 12535 } else { /* non-leader */ 12536 if (!bxe_reset_is_done(sc, SC_PATH(sc))) { 12537 /* 12538 * Try to get a LEADER_LOCK HW lock as 12539 * long as a former leader may have 12540 * been unloaded by the user or 12541 * released a leadership by another 12542 * reason. 12543 */ 12544 if (bxe_trylock_leader_lock(sc)) { 12545 /* 12546 * I'm a leader now! Restart a 12547 * switch case. 12548 */ 12549 sc->is_leader = 1; 12550 break; 12551 } 12552 12553 taskqueue_enqueue_timeout(taskqueue_thread, 12554 &sc->sp_err_timeout_task, hz/10); 12555 return; 12556 12557 } else { 12558 /* 12559 * If there was a global attention, wait 12560 * for it to be cleared. 12561 */ 12562 if (bxe_reset_is_global(sc)) { 12563 taskqueue_enqueue_timeout(taskqueue_thread, 12564 &sc->sp_err_timeout_task, hz/10); 12565 return; 12566 } 12567 12568 error_recovered = 12569 sc->eth_stats.recoverable_error; 12570 error_unrecovered = 12571 sc->eth_stats.unrecoverable_error; 12572 BXE_CORE_LOCK(sc); 12573 sc->recovery_state = 12574 BXE_RECOVERY_NIC_LOADING; 12575 if (bxe_nic_load(sc, LOAD_NORMAL)) { 12576 error_unrecovered++; 12577 sc->recovery_state = BXE_RECOVERY_FAILED; 12578 sc->state = BXE_STATE_ERROR; 12579 BLOGE(sc, "Recovery is NOT successfull, " 12580 " state=0x%x recovery_state=0x%x error=%x\n", 12581 sc->state, sc->recovery_state, sc->error_status); 12582 sc->error_status = 0; 12583 } else { 12584 sc->recovery_state = 12585 BXE_RECOVERY_DONE; 12586 error_recovered++; 12587 BLOGI(sc, "Recovery is successfull from errors %x," 12588 " state=0x%x" 12589 " recovery_state=0x%x \n", sc->error_status, 12590 sc->state, sc->recovery_state); 12591 mb(); 12592 } 12593 sc->error_status = 0; 12594 BXE_CORE_UNLOCK(sc); 12595 sc->eth_stats.recoverable_error = 12596 error_recovered; 12597 sc->eth_stats.unrecoverable_error = 12598 error_unrecovered; 12599 12600 return; 12601 } 12602 } 12603 default: 12604 return; 12605 } 12606 } 12607 } 12608 void 12609 bxe_handle_error(struct bxe_softc * sc) 12610 { 12611 12612 if(sc->recovery_state == BXE_RECOVERY_WAIT) { 12613 return; 12614 } 12615 if(sc->error_status) { 12616 if (sc->state == BXE_STATE_OPEN) { 12617 bxe_int_disable(sc); 12618 } 12619 if (sc->link_vars.link_up) { 12620 if_link_state_change(sc->ifp, LINK_STATE_DOWN); 12621 } 12622 sc->recovery_state = BXE_RECOVERY_INIT; 12623 BLOGI(sc, "bxe%d: Recovery started errors 0x%x recovery state 0x%x\n", 12624 sc->unit, sc->error_status, sc->recovery_state); 12625 bxe_parity_recover(sc); 12626 } 12627 } 12628 12629 static void 12630 bxe_sp_err_timeout_task(void *arg, int pending) 12631 { 12632 12633 struct bxe_softc *sc = (struct bxe_softc *)arg; 12634 12635 BLOGD(sc, DBG_SP, 12636 "%s state = 0x%x rec state=0x%x error_status=%x\n", 12637 __func__, sc->state, sc->recovery_state, sc->error_status); 12638 12639 if((sc->recovery_state == BXE_RECOVERY_FAILED) && 12640 (sc->state == BXE_STATE_ERROR)) { 12641 return; 12642 } 12643 /* if can be taken */ 12644 if ((sc->error_status) && (sc->trigger_grcdump)) { 12645 bxe_grc_dump(sc); 12646 } 12647 if (sc->recovery_state != BXE_RECOVERY_DONE) { 12648 bxe_handle_error(sc); 12649 bxe_parity_recover(sc); 12650 } else if (sc->error_status) { 12651 bxe_handle_error(sc); 12652 } 12653 12654 return; 12655 } 12656 12657 /* start the controller */ 12658 static __noinline int 12659 bxe_nic_load(struct bxe_softc *sc, 12660 int load_mode) 12661 { 12662 uint32_t val; 12663 int load_code = 0; 12664 int i, rc = 0; 12665 12666 BXE_CORE_LOCK_ASSERT(sc); 12667 12668 BLOGD(sc, DBG_LOAD, "Starting NIC load...\n"); 12669 12670 sc->state = BXE_STATE_OPENING_WAITING_LOAD; 12671 12672 if (IS_PF(sc)) { 12673 /* must be called before memory allocation and HW init */ 12674 bxe_ilt_set_info(sc); 12675 } 12676 12677 sc->last_reported_link_state = LINK_STATE_UNKNOWN; 12678 12679 bxe_set_fp_rx_buf_size(sc); 12680 12681 if (bxe_alloc_fp_buffers(sc) != 0) { 12682 BLOGE(sc, "Failed to allocate fastpath memory\n"); 12683 sc->state = BXE_STATE_CLOSED; 12684 rc = ENOMEM; 12685 goto bxe_nic_load_error0; 12686 } 12687 12688 if (bxe_alloc_mem(sc) != 0) { 12689 sc->state = BXE_STATE_CLOSED; 12690 rc = ENOMEM; 12691 goto bxe_nic_load_error0; 12692 } 12693 12694 if (bxe_alloc_fw_stats_mem(sc) != 0) { 12695 sc->state = BXE_STATE_CLOSED; 12696 rc = ENOMEM; 12697 goto bxe_nic_load_error0; 12698 } 12699 12700 if (IS_PF(sc)) { 12701 /* set pf load just before approaching the MCP */ 12702 bxe_set_pf_load(sc); 12703 12704 /* if MCP exists send load request and analyze response */ 12705 if (!BXE_NOMCP(sc)) { 12706 /* attempt to load pf */ 12707 if (bxe_nic_load_request(sc, &load_code) != 0) { 12708 sc->state = BXE_STATE_CLOSED; 12709 rc = ENXIO; 12710 goto bxe_nic_load_error1; 12711 } 12712 12713 /* what did the MCP say? */ 12714 if (bxe_nic_load_analyze_req(sc, load_code) != 0) { 12715 bxe_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0); 12716 sc->state = BXE_STATE_CLOSED; 12717 rc = ENXIO; 12718 goto bxe_nic_load_error2; 12719 } 12720 } else { 12721 BLOGI(sc, "Device has no MCP!\n"); 12722 load_code = bxe_nic_load_no_mcp(sc); 12723 } 12724 12725 /* mark PMF if applicable */ 12726 bxe_nic_load_pmf(sc, load_code); 12727 12728 /* Init Function state controlling object */ 12729 bxe_init_func_obj(sc); 12730 12731 /* Initialize HW */ 12732 if (bxe_init_hw(sc, load_code) != 0) { 12733 BLOGE(sc, "HW init failed\n"); 12734 bxe_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0); 12735 sc->state = BXE_STATE_CLOSED; 12736 rc = ENXIO; 12737 goto bxe_nic_load_error2; 12738 } 12739 } 12740 12741 /* set ALWAYS_ALIVE bit in shmem */ 12742 sc->fw_drv_pulse_wr_seq |= DRV_PULSE_ALWAYS_ALIVE; 12743 bxe_drv_pulse(sc); 12744 sc->flags |= BXE_NO_PULSE; 12745 12746 /* attach interrupts */ 12747 if (bxe_interrupt_attach(sc) != 0) { 12748 sc->state = BXE_STATE_CLOSED; 12749 rc = ENXIO; 12750 goto bxe_nic_load_error2; 12751 } 12752 12753 bxe_nic_init(sc, load_code); 12754 12755 /* Init per-function objects */ 12756 if (IS_PF(sc)) { 12757 bxe_init_objs(sc); 12758 // XXX bxe_iov_nic_init(sc); 12759 12760 /* set AFEX default VLAN tag to an invalid value */ 12761 sc->devinfo.mf_info.afex_def_vlan_tag = -1; 12762 // XXX bxe_nic_load_afex_dcc(sc, load_code); 12763 12764 sc->state = BXE_STATE_OPENING_WAITING_PORT; 12765 rc = bxe_func_start(sc); 12766 if (rc) { 12767 BLOGE(sc, "Function start failed! rc = %d\n", rc); 12768 bxe_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0); 12769 sc->state = BXE_STATE_ERROR; 12770 goto bxe_nic_load_error3; 12771 } 12772 12773 /* send LOAD_DONE command to MCP */ 12774 if (!BXE_NOMCP(sc)) { 12775 load_code = bxe_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0); 12776 if (!load_code) { 12777 BLOGE(sc, "MCP response failure, aborting\n"); 12778 sc->state = BXE_STATE_ERROR; 12779 rc = ENXIO; 12780 goto bxe_nic_load_error3; 12781 } 12782 } 12783 12784 rc = bxe_setup_leading(sc); 12785 if (rc) { 12786 BLOGE(sc, "Setup leading failed! rc = %d\n", rc); 12787 sc->state = BXE_STATE_ERROR; 12788 goto bxe_nic_load_error3; 12789 } 12790 12791 FOR_EACH_NONDEFAULT_ETH_QUEUE(sc, i) { 12792 rc = bxe_setup_queue(sc, &sc->fp[i], FALSE); 12793 if (rc) { 12794 BLOGE(sc, "Queue(%d) setup failed rc = %d\n", i, rc); 12795 sc->state = BXE_STATE_ERROR; 12796 goto bxe_nic_load_error3; 12797 } 12798 } 12799 12800 rc = bxe_init_rss_pf(sc); 12801 if (rc) { 12802 BLOGE(sc, "PF RSS init failed\n"); 12803 sc->state = BXE_STATE_ERROR; 12804 goto bxe_nic_load_error3; 12805 } 12806 } 12807 /* XXX VF */ 12808 12809 /* now when Clients are configured we are ready to work */ 12810 sc->state = BXE_STATE_OPEN; 12811 12812 /* Configure a ucast MAC */ 12813 if (IS_PF(sc)) { 12814 rc = bxe_set_eth_mac(sc, TRUE); 12815 } 12816 if (rc) { 12817 BLOGE(sc, "Setting Ethernet MAC failed rc = %d\n", rc); 12818 sc->state = BXE_STATE_ERROR; 12819 goto bxe_nic_load_error3; 12820 } 12821 12822 if (sc->port.pmf) { 12823 rc = bxe_initial_phy_init(sc, /* XXX load_mode */LOAD_OPEN); 12824 if (rc) { 12825 sc->state = BXE_STATE_ERROR; 12826 goto bxe_nic_load_error3; 12827 } 12828 } 12829 12830 sc->link_params.feature_config_flags &= 12831 ~ELINK_FEATURE_CONFIG_BOOT_FROM_SAN; 12832 12833 /* start fast path */ 12834 12835 /* Initialize Rx filter */ 12836 bxe_set_rx_mode(sc); 12837 12838 /* start the Tx */ 12839 switch (/* XXX load_mode */LOAD_OPEN) { 12840 case LOAD_NORMAL: 12841 case LOAD_OPEN: 12842 break; 12843 12844 case LOAD_DIAG: 12845 case LOAD_LOOPBACK_EXT: 12846 sc->state = BXE_STATE_DIAG; 12847 break; 12848 12849 default: 12850 break; 12851 } 12852 12853 if (sc->port.pmf) { 12854 bxe_update_drv_flags(sc, 1 << DRV_FLAGS_PORT_MASK, 0); 12855 } else { 12856 bxe_link_status_update(sc); 12857 } 12858 12859 /* start the periodic timer callout */ 12860 bxe_periodic_start(sc); 12861 12862 if (IS_PF(sc) && SHMEM2_HAS(sc, drv_capabilities_flag)) { 12863 /* mark driver is loaded in shmem2 */ 12864 val = SHMEM2_RD(sc, drv_capabilities_flag[SC_FW_MB_IDX(sc)]); 12865 SHMEM2_WR(sc, drv_capabilities_flag[SC_FW_MB_IDX(sc)], 12866 (val | 12867 DRV_FLAGS_CAPABILITIES_LOADED_SUPPORTED | 12868 DRV_FLAGS_CAPABILITIES_LOADED_L2)); 12869 } 12870 12871 /* wait for all pending SP commands to complete */ 12872 if (IS_PF(sc) && !bxe_wait_sp_comp(sc, ~0x0UL)) { 12873 BLOGE(sc, "Timeout waiting for all SPs to complete!\n"); 12874 bxe_periodic_stop(sc); 12875 bxe_nic_unload(sc, UNLOAD_CLOSE, FALSE); 12876 return (ENXIO); 12877 } 12878 12879 /* Tell the stack the driver is running! */ 12880 if_setdrvflags(sc->ifp, IFF_DRV_RUNNING); 12881 12882 BLOGD(sc, DBG_LOAD, "NIC successfully loaded\n"); 12883 12884 return (0); 12885 12886 bxe_nic_load_error3: 12887 12888 if (IS_PF(sc)) { 12889 bxe_int_disable_sync(sc, 1); 12890 12891 /* clean out queued objects */ 12892 bxe_squeeze_objects(sc); 12893 } 12894 12895 bxe_interrupt_detach(sc); 12896 12897 bxe_nic_load_error2: 12898 12899 if (IS_PF(sc) && !BXE_NOMCP(sc)) { 12900 bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP, 0); 12901 bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_DONE, 0); 12902 } 12903 12904 sc->port.pmf = 0; 12905 12906 bxe_nic_load_error1: 12907 12908 /* clear pf_load status, as it was already set */ 12909 if (IS_PF(sc)) { 12910 bxe_clear_pf_load(sc); 12911 } 12912 12913 bxe_nic_load_error0: 12914 12915 bxe_free_fw_stats_mem(sc); 12916 bxe_free_fp_buffers(sc); 12917 bxe_free_mem(sc); 12918 12919 return (rc); 12920 } 12921 12922 static int 12923 bxe_init_locked(struct bxe_softc *sc) 12924 { 12925 int other_engine = SC_PATH(sc) ? 0 : 1; 12926 uint8_t other_load_status, load_status; 12927 uint8_t global = FALSE; 12928 int rc; 12929 12930 BXE_CORE_LOCK_ASSERT(sc); 12931 12932 /* check if the driver is already running */ 12933 if (if_getdrvflags(sc->ifp) & IFF_DRV_RUNNING) { 12934 BLOGD(sc, DBG_LOAD, "Init called while driver is running!\n"); 12935 return (0); 12936 } 12937 12938 if((sc->state == BXE_STATE_ERROR) && 12939 (sc->recovery_state == BXE_RECOVERY_FAILED)) { 12940 BLOGE(sc, "Initialization not done, " 12941 "as previous recovery failed." 12942 "Reboot/Power-cycle the system\n" ); 12943 return (ENXIO); 12944 } 12945 12946 12947 bxe_set_power_state(sc, PCI_PM_D0); 12948 12949 /* 12950 * If parity occurred during the unload, then attentions and/or 12951 * RECOVERY_IN_PROGRES may still be set. If so we want the first function 12952 * loaded on the current engine to complete the recovery. Parity recovery 12953 * is only relevant for PF driver. 12954 */ 12955 if (IS_PF(sc)) { 12956 other_load_status = bxe_get_load_status(sc, other_engine); 12957 load_status = bxe_get_load_status(sc, SC_PATH(sc)); 12958 12959 if (!bxe_reset_is_done(sc, SC_PATH(sc)) || 12960 bxe_chk_parity_attn(sc, &global, TRUE)) { 12961 do { 12962 /* 12963 * If there are attentions and they are in global blocks, set 12964 * the GLOBAL_RESET bit regardless whether it will be this 12965 * function that will complete the recovery or not. 12966 */ 12967 if (global) { 12968 bxe_set_reset_global(sc); 12969 } 12970 12971 /* 12972 * Only the first function on the current engine should try 12973 * to recover in open. In case of attentions in global blocks 12974 * only the first in the chip should try to recover. 12975 */ 12976 if ((!load_status && (!global || !other_load_status)) && 12977 bxe_trylock_leader_lock(sc) && !bxe_leader_reset(sc)) { 12978 BLOGI(sc, "Recovered during init\n"); 12979 break; 12980 } 12981 12982 /* recovery has failed... */ 12983 bxe_set_power_state(sc, PCI_PM_D3hot); 12984 sc->recovery_state = BXE_RECOVERY_FAILED; 12985 12986 BLOGE(sc, "Recovery flow hasn't properly " 12987 "completed yet, try again later. " 12988 "If you still see this message after a " 12989 "few retries then power cycle is required.\n"); 12990 12991 rc = ENXIO; 12992 goto bxe_init_locked_done; 12993 } while (0); 12994 } 12995 } 12996 12997 sc->recovery_state = BXE_RECOVERY_DONE; 12998 12999 rc = bxe_nic_load(sc, LOAD_OPEN); 13000 13001 bxe_init_locked_done: 13002 13003 if (rc) { 13004 /* Tell the stack the driver is NOT running! */ 13005 BLOGE(sc, "Initialization failed, " 13006 "stack notified driver is NOT running!\n"); 13007 if_setdrvflagbits(sc->ifp, 0, IFF_DRV_RUNNING); 13008 } 13009 13010 return (rc); 13011 } 13012 13013 static int 13014 bxe_stop_locked(struct bxe_softc *sc) 13015 { 13016 BXE_CORE_LOCK_ASSERT(sc); 13017 return (bxe_nic_unload(sc, UNLOAD_NORMAL, TRUE)); 13018 } 13019 13020 /* 13021 * Handles controller initialization when called from an unlocked routine. 13022 * ifconfig calls this function. 13023 * 13024 * Returns: 13025 * void 13026 */ 13027 static void 13028 bxe_init(void *xsc) 13029 { 13030 struct bxe_softc *sc = (struct bxe_softc *)xsc; 13031 13032 BXE_CORE_LOCK(sc); 13033 bxe_init_locked(sc); 13034 BXE_CORE_UNLOCK(sc); 13035 } 13036 13037 static int 13038 bxe_init_ifnet(struct bxe_softc *sc) 13039 { 13040 if_t ifp; 13041 int capabilities; 13042 13043 /* ifconfig entrypoint for media type/status reporting */ 13044 ifmedia_init(&sc->ifmedia, IFM_IMASK, 13045 bxe_ifmedia_update, 13046 bxe_ifmedia_status); 13047 13048 /* set the default interface values */ 13049 ifmedia_add(&sc->ifmedia, (IFM_ETHER | IFM_FDX | sc->media), 0, NULL); 13050 ifmedia_add(&sc->ifmedia, (IFM_ETHER | IFM_AUTO), 0, NULL); 13051 ifmedia_set(&sc->ifmedia, (IFM_ETHER | IFM_AUTO)); 13052 13053 sc->ifmedia.ifm_media = sc->ifmedia.ifm_cur->ifm_media; /* XXX ? */ 13054 BLOGI(sc, "IFMEDIA flags : %x\n", sc->ifmedia.ifm_media); 13055 13056 /* allocate the ifnet structure */ 13057 if ((ifp = if_gethandle(IFT_ETHER)) == NULL) { 13058 BLOGE(sc, "Interface allocation failed!\n"); 13059 return (ENXIO); 13060 } 13061 13062 if_setsoftc(ifp, sc); 13063 if_initname(ifp, device_get_name(sc->dev), device_get_unit(sc->dev)); 13064 if_setflags(ifp, (IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST)); 13065 if_setioctlfn(ifp, bxe_ioctl); 13066 if_setstartfn(ifp, bxe_tx_start); 13067 if_setgetcounterfn(ifp, bxe_get_counter); 13068 #if __FreeBSD_version >= 901504 13069 if_settransmitfn(ifp, bxe_tx_mq_start); 13070 if_setqflushfn(ifp, bxe_mq_flush); 13071 #endif 13072 #ifdef FreeBSD8_0 13073 if_settimer(ifp, 0); 13074 #endif 13075 if_setinitfn(ifp, bxe_init); 13076 if_setmtu(ifp, sc->mtu); 13077 if_sethwassist(ifp, (CSUM_IP | 13078 CSUM_TCP | 13079 CSUM_UDP | 13080 CSUM_TSO | 13081 CSUM_TCP_IPV6 | 13082 CSUM_UDP_IPV6)); 13083 13084 capabilities = 13085 #if __FreeBSD_version < 700000 13086 (IFCAP_VLAN_MTU | 13087 IFCAP_VLAN_HWTAGGING | 13088 IFCAP_HWCSUM | 13089 IFCAP_JUMBO_MTU | 13090 IFCAP_LRO); 13091 #else 13092 (IFCAP_VLAN_MTU | 13093 IFCAP_VLAN_HWTAGGING | 13094 IFCAP_VLAN_HWTSO | 13095 IFCAP_VLAN_HWFILTER | 13096 IFCAP_VLAN_HWCSUM | 13097 IFCAP_HWCSUM | 13098 IFCAP_JUMBO_MTU | 13099 IFCAP_LRO | 13100 IFCAP_TSO4 | 13101 IFCAP_TSO6 | 13102 IFCAP_WOL_MAGIC); 13103 #endif 13104 if_setcapabilitiesbit(ifp, capabilities, 0); /* XXX */ 13105 if_setcapenable(ifp, if_getcapabilities(ifp)); 13106 if_setbaudrate(ifp, IF_Gbps(10)); 13107 /* XXX */ 13108 if_setsendqlen(ifp, sc->tx_ring_size); 13109 if_setsendqready(ifp); 13110 /* XXX */ 13111 13112 sc->ifp = ifp; 13113 13114 /* attach to the Ethernet interface list */ 13115 ether_ifattach(ifp, sc->link_params.mac_addr); 13116 13117 /* Attach driver debugnet methods. */ 13118 DEBUGNET_SET(ifp, bxe); 13119 13120 return (0); 13121 } 13122 13123 static void 13124 bxe_deallocate_bars(struct bxe_softc *sc) 13125 { 13126 int i; 13127 13128 for (i = 0; i < MAX_BARS; i++) { 13129 if (sc->bar[i].resource != NULL) { 13130 bus_release_resource(sc->dev, 13131 SYS_RES_MEMORY, 13132 sc->bar[i].rid, 13133 sc->bar[i].resource); 13134 BLOGD(sc, DBG_LOAD, "Released PCI BAR%d [%02x] memory\n", 13135 i, PCIR_BAR(i)); 13136 } 13137 } 13138 } 13139 13140 static int 13141 bxe_allocate_bars(struct bxe_softc *sc) 13142 { 13143 u_int flags; 13144 int i; 13145 13146 memset(sc->bar, 0, sizeof(sc->bar)); 13147 13148 for (i = 0; i < MAX_BARS; i++) { 13149 13150 /* memory resources reside at BARs 0, 2, 4 */ 13151 /* Run `pciconf -lb` to see mappings */ 13152 if ((i != 0) && (i != 2) && (i != 4)) { 13153 continue; 13154 } 13155 13156 sc->bar[i].rid = PCIR_BAR(i); 13157 13158 flags = RF_ACTIVE; 13159 if (i == 0) { 13160 flags |= RF_SHAREABLE; 13161 } 13162 13163 if ((sc->bar[i].resource = 13164 bus_alloc_resource_any(sc->dev, 13165 SYS_RES_MEMORY, 13166 &sc->bar[i].rid, 13167 flags)) == NULL) { 13168 return (0); 13169 } 13170 13171 sc->bar[i].tag = rman_get_bustag(sc->bar[i].resource); 13172 sc->bar[i].handle = rman_get_bushandle(sc->bar[i].resource); 13173 sc->bar[i].kva = (vm_offset_t)rman_get_virtual(sc->bar[i].resource); 13174 13175 BLOGI(sc, "PCI BAR%d [%02x] memory allocated: %#jx-%#jx (%jd) -> %#jx\n", 13176 i, PCIR_BAR(i), 13177 rman_get_start(sc->bar[i].resource), 13178 rman_get_end(sc->bar[i].resource), 13179 rman_get_size(sc->bar[i].resource), 13180 (uintmax_t)sc->bar[i].kva); 13181 } 13182 13183 return (0); 13184 } 13185 13186 static void 13187 bxe_get_function_num(struct bxe_softc *sc) 13188 { 13189 uint32_t val = 0; 13190 13191 /* 13192 * Read the ME register to get the function number. The ME register 13193 * holds the relative-function number and absolute-function number. The 13194 * absolute-function number appears only in E2 and above. Before that 13195 * these bits always contained zero, therefore we cannot blindly use them. 13196 */ 13197 13198 val = REG_RD(sc, BAR_ME_REGISTER); 13199 13200 sc->pfunc_rel = 13201 (uint8_t)((val & ME_REG_PF_NUM) >> ME_REG_PF_NUM_SHIFT); 13202 sc->path_id = 13203 (uint8_t)((val & ME_REG_ABS_PF_NUM) >> ME_REG_ABS_PF_NUM_SHIFT) & 1; 13204 13205 if (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) { 13206 sc->pfunc_abs = ((sc->pfunc_rel << 1) | sc->path_id); 13207 } else { 13208 sc->pfunc_abs = (sc->pfunc_rel | sc->path_id); 13209 } 13210 13211 BLOGD(sc, DBG_LOAD, 13212 "Relative function %d, Absolute function %d, Path %d\n", 13213 sc->pfunc_rel, sc->pfunc_abs, sc->path_id); 13214 } 13215 13216 static uint32_t 13217 bxe_get_shmem_mf_cfg_base(struct bxe_softc *sc) 13218 { 13219 uint32_t shmem2_size; 13220 uint32_t offset; 13221 uint32_t mf_cfg_offset_value; 13222 13223 /* Non 57712 */ 13224 offset = (SHMEM_RD(sc, func_mb) + 13225 (MAX_FUNC_NUM * sizeof(struct drv_func_mb))); 13226 13227 /* 57712 plus */ 13228 if (sc->devinfo.shmem2_base != 0) { 13229 shmem2_size = SHMEM2_RD(sc, size); 13230 if (shmem2_size > offsetof(struct shmem2_region, mf_cfg_addr)) { 13231 mf_cfg_offset_value = SHMEM2_RD(sc, mf_cfg_addr); 13232 if (SHMEM_MF_CFG_ADDR_NONE != mf_cfg_offset_value) { 13233 offset = mf_cfg_offset_value; 13234 } 13235 } 13236 } 13237 13238 return (offset); 13239 } 13240 13241 static uint32_t 13242 bxe_pcie_capability_read(struct bxe_softc *sc, 13243 int reg, 13244 int width) 13245 { 13246 int pcie_reg; 13247 13248 /* ensure PCIe capability is enabled */ 13249 if (pci_find_cap(sc->dev, PCIY_EXPRESS, &pcie_reg) == 0) { 13250 if (pcie_reg != 0) { 13251 BLOGD(sc, DBG_LOAD, "PCIe capability at 0x%04x\n", pcie_reg); 13252 return (pci_read_config(sc->dev, (pcie_reg + reg), width)); 13253 } 13254 } 13255 13256 BLOGE(sc, "PCIe capability NOT FOUND!!!\n"); 13257 13258 return (0); 13259 } 13260 13261 static uint8_t 13262 bxe_is_pcie_pending(struct bxe_softc *sc) 13263 { 13264 return (bxe_pcie_capability_read(sc, PCIR_EXPRESS_DEVICE_STA, 2) & 13265 PCIM_EXP_STA_TRANSACTION_PND); 13266 } 13267 13268 /* 13269 * Walk the PCI capabiites list for the device to find what features are 13270 * supported. These capabilites may be enabled/disabled by firmware so it's 13271 * best to walk the list rather than make assumptions. 13272 */ 13273 static void 13274 bxe_probe_pci_caps(struct bxe_softc *sc) 13275 { 13276 uint16_t link_status; 13277 int reg; 13278 13279 /* check if PCI Power Management is enabled */ 13280 if (pci_find_cap(sc->dev, PCIY_PMG, ®) == 0) { 13281 if (reg != 0) { 13282 BLOGD(sc, DBG_LOAD, "Found PM capability at 0x%04x\n", reg); 13283 13284 sc->devinfo.pcie_cap_flags |= BXE_PM_CAPABLE_FLAG; 13285 sc->devinfo.pcie_pm_cap_reg = (uint16_t)reg; 13286 } 13287 } 13288 13289 link_status = bxe_pcie_capability_read(sc, PCIR_EXPRESS_LINK_STA, 2); 13290 13291 /* handle PCIe 2.0 workarounds for 57710 */ 13292 if (CHIP_IS_E1(sc)) { 13293 /* workaround for 57710 errata E4_57710_27462 */ 13294 sc->devinfo.pcie_link_speed = 13295 (REG_RD(sc, 0x3d04) & (1 << 24)) ? 2 : 1; 13296 13297 /* workaround for 57710 errata E4_57710_27488 */ 13298 sc->devinfo.pcie_link_width = 13299 ((link_status & PCIM_LINK_STA_WIDTH) >> 4); 13300 if (sc->devinfo.pcie_link_speed > 1) { 13301 sc->devinfo.pcie_link_width = 13302 ((link_status & PCIM_LINK_STA_WIDTH) >> 4) >> 1; 13303 } 13304 } else { 13305 sc->devinfo.pcie_link_speed = 13306 (link_status & PCIM_LINK_STA_SPEED); 13307 sc->devinfo.pcie_link_width = 13308 ((link_status & PCIM_LINK_STA_WIDTH) >> 4); 13309 } 13310 13311 BLOGD(sc, DBG_LOAD, "PCIe link speed=%d width=%d\n", 13312 sc->devinfo.pcie_link_speed, sc->devinfo.pcie_link_width); 13313 13314 sc->devinfo.pcie_cap_flags |= BXE_PCIE_CAPABLE_FLAG; 13315 sc->devinfo.pcie_pcie_cap_reg = (uint16_t)reg; 13316 13317 /* check if MSI capability is enabled */ 13318 if (pci_find_cap(sc->dev, PCIY_MSI, ®) == 0) { 13319 if (reg != 0) { 13320 BLOGD(sc, DBG_LOAD, "Found MSI capability at 0x%04x\n", reg); 13321 13322 sc->devinfo.pcie_cap_flags |= BXE_MSI_CAPABLE_FLAG; 13323 sc->devinfo.pcie_msi_cap_reg = (uint16_t)reg; 13324 } 13325 } 13326 13327 /* check if MSI-X capability is enabled */ 13328 if (pci_find_cap(sc->dev, PCIY_MSIX, ®) == 0) { 13329 if (reg != 0) { 13330 BLOGD(sc, DBG_LOAD, "Found MSI-X capability at 0x%04x\n", reg); 13331 13332 sc->devinfo.pcie_cap_flags |= BXE_MSIX_CAPABLE_FLAG; 13333 sc->devinfo.pcie_msix_cap_reg = (uint16_t)reg; 13334 } 13335 } 13336 } 13337 13338 static int 13339 bxe_get_shmem_mf_cfg_info_sd(struct bxe_softc *sc) 13340 { 13341 struct bxe_mf_info *mf_info = &sc->devinfo.mf_info; 13342 uint32_t val; 13343 13344 /* get the outer vlan if we're in switch-dependent mode */ 13345 13346 val = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].e1hov_tag); 13347 mf_info->ext_id = (uint16_t)val; 13348 13349 mf_info->multi_vnics_mode = 1; 13350 13351 if (!VALID_OVLAN(mf_info->ext_id)) { 13352 BLOGE(sc, "Invalid VLAN (%d)\n", mf_info->ext_id); 13353 return (1); 13354 } 13355 13356 /* get the capabilities */ 13357 if ((mf_info->mf_config[SC_VN(sc)] & FUNC_MF_CFG_PROTOCOL_MASK) == 13358 FUNC_MF_CFG_PROTOCOL_ISCSI) { 13359 mf_info->mf_protos_supported |= MF_PROTO_SUPPORT_ISCSI; 13360 } else if ((mf_info->mf_config[SC_VN(sc)] & FUNC_MF_CFG_PROTOCOL_MASK) == 13361 FUNC_MF_CFG_PROTOCOL_FCOE) { 13362 mf_info->mf_protos_supported |= MF_PROTO_SUPPORT_FCOE; 13363 } else { 13364 mf_info->mf_protos_supported |= MF_PROTO_SUPPORT_ETHERNET; 13365 } 13366 13367 mf_info->vnics_per_port = 13368 (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) ? 2 : 4; 13369 13370 return (0); 13371 } 13372 13373 static uint32_t 13374 bxe_get_shmem_ext_proto_support_flags(struct bxe_softc *sc) 13375 { 13376 uint32_t retval = 0; 13377 uint32_t val; 13378 13379 val = MFCFG_RD(sc, func_ext_config[SC_ABS_FUNC(sc)].func_cfg); 13380 13381 if (val & MACP_FUNC_CFG_FLAGS_ENABLED) { 13382 if (val & MACP_FUNC_CFG_FLAGS_ETHERNET) { 13383 retval |= MF_PROTO_SUPPORT_ETHERNET; 13384 } 13385 if (val & MACP_FUNC_CFG_FLAGS_ISCSI_OFFLOAD) { 13386 retval |= MF_PROTO_SUPPORT_ISCSI; 13387 } 13388 if (val & MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD) { 13389 retval |= MF_PROTO_SUPPORT_FCOE; 13390 } 13391 } 13392 13393 return (retval); 13394 } 13395 13396 static int 13397 bxe_get_shmem_mf_cfg_info_si(struct bxe_softc *sc) 13398 { 13399 struct bxe_mf_info *mf_info = &sc->devinfo.mf_info; 13400 uint32_t val; 13401 13402 /* 13403 * There is no outer vlan if we're in switch-independent mode. 13404 * If the mac is valid then assume multi-function. 13405 */ 13406 13407 val = MFCFG_RD(sc, func_ext_config[SC_ABS_FUNC(sc)].func_cfg); 13408 13409 mf_info->multi_vnics_mode = ((val & MACP_FUNC_CFG_FLAGS_MASK) != 0); 13410 13411 mf_info->mf_protos_supported = bxe_get_shmem_ext_proto_support_flags(sc); 13412 13413 mf_info->vnics_per_port = 13414 (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) ? 2 : 4; 13415 13416 return (0); 13417 } 13418 13419 static int 13420 bxe_get_shmem_mf_cfg_info_niv(struct bxe_softc *sc) 13421 { 13422 struct bxe_mf_info *mf_info = &sc->devinfo.mf_info; 13423 uint32_t e1hov_tag; 13424 uint32_t func_config; 13425 uint32_t niv_config; 13426 13427 mf_info->multi_vnics_mode = 1; 13428 13429 e1hov_tag = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].e1hov_tag); 13430 func_config = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].config); 13431 niv_config = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].afex_config); 13432 13433 mf_info->ext_id = 13434 (uint16_t)((e1hov_tag & FUNC_MF_CFG_E1HOV_TAG_MASK) >> 13435 FUNC_MF_CFG_E1HOV_TAG_SHIFT); 13436 13437 mf_info->default_vlan = 13438 (uint16_t)((e1hov_tag & FUNC_MF_CFG_AFEX_VLAN_MASK) >> 13439 FUNC_MF_CFG_AFEX_VLAN_SHIFT); 13440 13441 mf_info->niv_allowed_priorities = 13442 (uint8_t)((niv_config & FUNC_MF_CFG_AFEX_COS_FILTER_MASK) >> 13443 FUNC_MF_CFG_AFEX_COS_FILTER_SHIFT); 13444 13445 mf_info->niv_default_cos = 13446 (uint8_t)((func_config & FUNC_MF_CFG_TRANSMIT_PRIORITY_MASK) >> 13447 FUNC_MF_CFG_TRANSMIT_PRIORITY_SHIFT); 13448 13449 mf_info->afex_vlan_mode = 13450 ((niv_config & FUNC_MF_CFG_AFEX_VLAN_MODE_MASK) >> 13451 FUNC_MF_CFG_AFEX_VLAN_MODE_SHIFT); 13452 13453 mf_info->niv_mba_enabled = 13454 ((niv_config & FUNC_MF_CFG_AFEX_MBA_ENABLED_MASK) >> 13455 FUNC_MF_CFG_AFEX_MBA_ENABLED_SHIFT); 13456 13457 mf_info->mf_protos_supported = bxe_get_shmem_ext_proto_support_flags(sc); 13458 13459 mf_info->vnics_per_port = 13460 (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) ? 2 : 4; 13461 13462 return (0); 13463 } 13464 13465 static int 13466 bxe_check_valid_mf_cfg(struct bxe_softc *sc) 13467 { 13468 struct bxe_mf_info *mf_info = &sc->devinfo.mf_info; 13469 uint32_t mf_cfg1; 13470 uint32_t mf_cfg2; 13471 uint32_t ovlan1; 13472 uint32_t ovlan2; 13473 uint8_t i, j; 13474 13475 BLOGD(sc, DBG_LOAD, "MF config parameters for function %d\n", 13476 SC_PORT(sc)); 13477 BLOGD(sc, DBG_LOAD, "\tmf_config=0x%x\n", 13478 mf_info->mf_config[SC_VN(sc)]); 13479 BLOGD(sc, DBG_LOAD, "\tmulti_vnics_mode=%d\n", 13480 mf_info->multi_vnics_mode); 13481 BLOGD(sc, DBG_LOAD, "\tvnics_per_port=%d\n", 13482 mf_info->vnics_per_port); 13483 BLOGD(sc, DBG_LOAD, "\tovlan/vifid=%d\n", 13484 mf_info->ext_id); 13485 BLOGD(sc, DBG_LOAD, "\tmin_bw=%d/%d/%d/%d\n", 13486 mf_info->min_bw[0], mf_info->min_bw[1], 13487 mf_info->min_bw[2], mf_info->min_bw[3]); 13488 BLOGD(sc, DBG_LOAD, "\tmax_bw=%d/%d/%d/%d\n", 13489 mf_info->max_bw[0], mf_info->max_bw[1], 13490 mf_info->max_bw[2], mf_info->max_bw[3]); 13491 BLOGD(sc, DBG_LOAD, "\tmac_addr: %s\n", 13492 sc->mac_addr_str); 13493 13494 /* various MF mode sanity checks... */ 13495 13496 if (mf_info->mf_config[SC_VN(sc)] & FUNC_MF_CFG_FUNC_HIDE) { 13497 BLOGE(sc, "Enumerated function %d is marked as hidden\n", 13498 SC_PORT(sc)); 13499 return (1); 13500 } 13501 13502 if ((mf_info->vnics_per_port > 1) && !mf_info->multi_vnics_mode) { 13503 BLOGE(sc, "vnics_per_port=%d multi_vnics_mode=%d\n", 13504 mf_info->vnics_per_port, mf_info->multi_vnics_mode); 13505 return (1); 13506 } 13507 13508 if (mf_info->mf_mode == MULTI_FUNCTION_SD) { 13509 /* vnic id > 0 must have valid ovlan in switch-dependent mode */ 13510 if ((SC_VN(sc) > 0) && !VALID_OVLAN(OVLAN(sc))) { 13511 BLOGE(sc, "mf_mode=SD vnic_id=%d ovlan=%d\n", 13512 SC_VN(sc), OVLAN(sc)); 13513 return (1); 13514 } 13515 13516 if (!VALID_OVLAN(OVLAN(sc)) && mf_info->multi_vnics_mode) { 13517 BLOGE(sc, "mf_mode=SD multi_vnics_mode=%d ovlan=%d\n", 13518 mf_info->multi_vnics_mode, OVLAN(sc)); 13519 return (1); 13520 } 13521 13522 /* 13523 * Verify all functions are either MF or SF mode. If MF, make sure 13524 * sure that all non-hidden functions have a valid ovlan. If SF, 13525 * make sure that all non-hidden functions have an invalid ovlan. 13526 */ 13527 FOREACH_ABS_FUNC_IN_PORT(sc, i) { 13528 mf_cfg1 = MFCFG_RD(sc, func_mf_config[i].config); 13529 ovlan1 = MFCFG_RD(sc, func_mf_config[i].e1hov_tag); 13530 if (!(mf_cfg1 & FUNC_MF_CFG_FUNC_HIDE) && 13531 (((mf_info->multi_vnics_mode) && !VALID_OVLAN(ovlan1)) || 13532 ((!mf_info->multi_vnics_mode) && VALID_OVLAN(ovlan1)))) { 13533 BLOGE(sc, "mf_mode=SD function %d MF config " 13534 "mismatch, multi_vnics_mode=%d ovlan=%d\n", 13535 i, mf_info->multi_vnics_mode, ovlan1); 13536 return (1); 13537 } 13538 } 13539 13540 /* Verify all funcs on the same port each have a different ovlan. */ 13541 FOREACH_ABS_FUNC_IN_PORT(sc, i) { 13542 mf_cfg1 = MFCFG_RD(sc, func_mf_config[i].config); 13543 ovlan1 = MFCFG_RD(sc, func_mf_config[i].e1hov_tag); 13544 /* iterate from the next function on the port to the max func */ 13545 for (j = i + 2; j < MAX_FUNC_NUM; j += 2) { 13546 mf_cfg2 = MFCFG_RD(sc, func_mf_config[j].config); 13547 ovlan2 = MFCFG_RD(sc, func_mf_config[j].e1hov_tag); 13548 if (!(mf_cfg1 & FUNC_MF_CFG_FUNC_HIDE) && 13549 VALID_OVLAN(ovlan1) && 13550 !(mf_cfg2 & FUNC_MF_CFG_FUNC_HIDE) && 13551 VALID_OVLAN(ovlan2) && 13552 (ovlan1 == ovlan2)) { 13553 BLOGE(sc, "mf_mode=SD functions %d and %d " 13554 "have the same ovlan (%d)\n", 13555 i, j, ovlan1); 13556 return (1); 13557 } 13558 } 13559 } 13560 } /* MULTI_FUNCTION_SD */ 13561 13562 return (0); 13563 } 13564 13565 static int 13566 bxe_get_mf_cfg_info(struct bxe_softc *sc) 13567 { 13568 struct bxe_mf_info *mf_info = &sc->devinfo.mf_info; 13569 uint32_t val, mac_upper; 13570 uint8_t i, vnic; 13571 13572 /* initialize mf_info defaults */ 13573 mf_info->vnics_per_port = 1; 13574 mf_info->multi_vnics_mode = FALSE; 13575 mf_info->path_has_ovlan = FALSE; 13576 mf_info->mf_mode = SINGLE_FUNCTION; 13577 13578 if (!CHIP_IS_MF_CAP(sc)) { 13579 return (0); 13580 } 13581 13582 if (sc->devinfo.mf_cfg_base == SHMEM_MF_CFG_ADDR_NONE) { 13583 BLOGE(sc, "Invalid mf_cfg_base!\n"); 13584 return (1); 13585 } 13586 13587 /* get the MF mode (switch dependent / independent / single-function) */ 13588 13589 val = SHMEM_RD(sc, dev_info.shared_feature_config.config); 13590 13591 switch (val & SHARED_FEAT_CFG_FORCE_SF_MODE_MASK) 13592 { 13593 case SHARED_FEAT_CFG_FORCE_SF_MODE_SWITCH_INDEPT: 13594 13595 mac_upper = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].mac_upper); 13596 13597 /* check for legal upper mac bytes */ 13598 if (mac_upper != FUNC_MF_CFG_UPPERMAC_DEFAULT) { 13599 mf_info->mf_mode = MULTI_FUNCTION_SI; 13600 } else { 13601 BLOGE(sc, "Invalid config for Switch Independent mode\n"); 13602 } 13603 13604 break; 13605 13606 case SHARED_FEAT_CFG_FORCE_SF_MODE_MF_ALLOWED: 13607 case SHARED_FEAT_CFG_FORCE_SF_MODE_SPIO4: 13608 13609 /* get outer vlan configuration */ 13610 val = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].e1hov_tag); 13611 13612 if ((val & FUNC_MF_CFG_E1HOV_TAG_MASK) != 13613 FUNC_MF_CFG_E1HOV_TAG_DEFAULT) { 13614 mf_info->mf_mode = MULTI_FUNCTION_SD; 13615 } else { 13616 BLOGE(sc, "Invalid config for Switch Dependent mode\n"); 13617 } 13618 13619 break; 13620 13621 case SHARED_FEAT_CFG_FORCE_SF_MODE_FORCED_SF: 13622 13623 /* not in MF mode, vnics_per_port=1 and multi_vnics_mode=FALSE */ 13624 return (0); 13625 13626 case SHARED_FEAT_CFG_FORCE_SF_MODE_AFEX_MODE: 13627 13628 /* 13629 * Mark MF mode as NIV if MCP version includes NPAR-SD support 13630 * and the MAC address is valid. 13631 */ 13632 mac_upper = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].mac_upper); 13633 13634 if ((SHMEM2_HAS(sc, afex_driver_support)) && 13635 (mac_upper != FUNC_MF_CFG_UPPERMAC_DEFAULT)) { 13636 mf_info->mf_mode = MULTI_FUNCTION_AFEX; 13637 } else { 13638 BLOGE(sc, "Invalid config for AFEX mode\n"); 13639 } 13640 13641 break; 13642 13643 default: 13644 13645 BLOGE(sc, "Unknown MF mode (0x%08x)\n", 13646 (val & SHARED_FEAT_CFG_FORCE_SF_MODE_MASK)); 13647 13648 return (1); 13649 } 13650 13651 /* set path mf_mode (which could be different than function mf_mode) */ 13652 if (mf_info->mf_mode == MULTI_FUNCTION_SD) { 13653 mf_info->path_has_ovlan = TRUE; 13654 } else if (mf_info->mf_mode == SINGLE_FUNCTION) { 13655 /* 13656 * Decide on path multi vnics mode. If we're not in MF mode and in 13657 * 4-port mode, this is good enough to check vnic-0 of the other port 13658 * on the same path 13659 */ 13660 if (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) { 13661 uint8_t other_port = !(PORT_ID(sc) & 1); 13662 uint8_t abs_func_other_port = (SC_PATH(sc) + (2 * other_port)); 13663 13664 val = MFCFG_RD(sc, func_mf_config[abs_func_other_port].e1hov_tag); 13665 13666 mf_info->path_has_ovlan = VALID_OVLAN((uint16_t)val) ? 1 : 0; 13667 } 13668 } 13669 13670 if (mf_info->mf_mode == SINGLE_FUNCTION) { 13671 /* invalid MF config */ 13672 if (SC_VN(sc) >= 1) { 13673 BLOGE(sc, "VNIC ID >= 1 in SF mode\n"); 13674 return (1); 13675 } 13676 13677 return (0); 13678 } 13679 13680 /* get the MF configuration */ 13681 mf_info->mf_config[SC_VN(sc)] = 13682 MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].config); 13683 13684 switch(mf_info->mf_mode) 13685 { 13686 case MULTI_FUNCTION_SD: 13687 13688 bxe_get_shmem_mf_cfg_info_sd(sc); 13689 break; 13690 13691 case MULTI_FUNCTION_SI: 13692 13693 bxe_get_shmem_mf_cfg_info_si(sc); 13694 break; 13695 13696 case MULTI_FUNCTION_AFEX: 13697 13698 bxe_get_shmem_mf_cfg_info_niv(sc); 13699 break; 13700 13701 default: 13702 13703 BLOGE(sc, "Get MF config failed (mf_mode=0x%08x)\n", 13704 mf_info->mf_mode); 13705 return (1); 13706 } 13707 13708 /* get the congestion management parameters */ 13709 13710 vnic = 0; 13711 FOREACH_ABS_FUNC_IN_PORT(sc, i) { 13712 /* get min/max bw */ 13713 val = MFCFG_RD(sc, func_mf_config[i].config); 13714 mf_info->min_bw[vnic] = 13715 ((val & FUNC_MF_CFG_MIN_BW_MASK) >> FUNC_MF_CFG_MIN_BW_SHIFT); 13716 mf_info->max_bw[vnic] = 13717 ((val & FUNC_MF_CFG_MAX_BW_MASK) >> FUNC_MF_CFG_MAX_BW_SHIFT); 13718 vnic++; 13719 } 13720 13721 return (bxe_check_valid_mf_cfg(sc)); 13722 } 13723 13724 static int 13725 bxe_get_shmem_info(struct bxe_softc *sc) 13726 { 13727 int port; 13728 uint32_t mac_hi, mac_lo, val; 13729 13730 port = SC_PORT(sc); 13731 mac_hi = mac_lo = 0; 13732 13733 sc->link_params.sc = sc; 13734 sc->link_params.port = port; 13735 13736 /* get the hardware config info */ 13737 sc->devinfo.hw_config = 13738 SHMEM_RD(sc, dev_info.shared_hw_config.config); 13739 sc->devinfo.hw_config2 = 13740 SHMEM_RD(sc, dev_info.shared_hw_config.config2); 13741 13742 sc->link_params.hw_led_mode = 13743 ((sc->devinfo.hw_config & SHARED_HW_CFG_LED_MODE_MASK) >> 13744 SHARED_HW_CFG_LED_MODE_SHIFT); 13745 13746 /* get the port feature config */ 13747 sc->port.config = 13748 SHMEM_RD(sc, dev_info.port_feature_config[port].config); 13749 13750 /* get the link params */ 13751 sc->link_params.speed_cap_mask[0] = 13752 SHMEM_RD(sc, dev_info.port_hw_config[port].speed_capability_mask); 13753 sc->link_params.speed_cap_mask[1] = 13754 SHMEM_RD(sc, dev_info.port_hw_config[port].speed_capability_mask2); 13755 13756 /* get the lane config */ 13757 sc->link_params.lane_config = 13758 SHMEM_RD(sc, dev_info.port_hw_config[port].lane_config); 13759 13760 /* get the link config */ 13761 val = SHMEM_RD(sc, dev_info.port_feature_config[port].link_config); 13762 sc->port.link_config[ELINK_INT_PHY] = val; 13763 sc->link_params.switch_cfg = (val & PORT_FEATURE_CONNECTED_SWITCH_MASK); 13764 sc->port.link_config[ELINK_EXT_PHY1] = 13765 SHMEM_RD(sc, dev_info.port_feature_config[port].link_config2); 13766 13767 /* get the override preemphasis flag and enable it or turn it off */ 13768 val = SHMEM_RD(sc, dev_info.shared_feature_config.config); 13769 if (val & SHARED_FEAT_CFG_OVERRIDE_PREEMPHASIS_CFG_ENABLED) { 13770 sc->link_params.feature_config_flags |= 13771 ELINK_FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED; 13772 } else { 13773 sc->link_params.feature_config_flags &= 13774 ~ELINK_FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED; 13775 } 13776 13777 /* get the initial value of the link params */ 13778 sc->link_params.multi_phy_config = 13779 SHMEM_RD(sc, dev_info.port_hw_config[port].multi_phy_config); 13780 13781 /* get external phy info */ 13782 sc->port.ext_phy_config = 13783 SHMEM_RD(sc, dev_info.port_hw_config[port].external_phy_config); 13784 13785 /* get the multifunction configuration */ 13786 bxe_get_mf_cfg_info(sc); 13787 13788 /* get the mac address */ 13789 if (IS_MF(sc)) { 13790 mac_hi = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].mac_upper); 13791 mac_lo = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].mac_lower); 13792 } else { 13793 mac_hi = SHMEM_RD(sc, dev_info.port_hw_config[port].mac_upper); 13794 mac_lo = SHMEM_RD(sc, dev_info.port_hw_config[port].mac_lower); 13795 } 13796 13797 if ((mac_lo == 0) && (mac_hi == 0)) { 13798 *sc->mac_addr_str = 0; 13799 BLOGE(sc, "No Ethernet address programmed!\n"); 13800 } else { 13801 sc->link_params.mac_addr[0] = (uint8_t)(mac_hi >> 8); 13802 sc->link_params.mac_addr[1] = (uint8_t)(mac_hi); 13803 sc->link_params.mac_addr[2] = (uint8_t)(mac_lo >> 24); 13804 sc->link_params.mac_addr[3] = (uint8_t)(mac_lo >> 16); 13805 sc->link_params.mac_addr[4] = (uint8_t)(mac_lo >> 8); 13806 sc->link_params.mac_addr[5] = (uint8_t)(mac_lo); 13807 snprintf(sc->mac_addr_str, sizeof(sc->mac_addr_str), 13808 "%02x:%02x:%02x:%02x:%02x:%02x", 13809 sc->link_params.mac_addr[0], sc->link_params.mac_addr[1], 13810 sc->link_params.mac_addr[2], sc->link_params.mac_addr[3], 13811 sc->link_params.mac_addr[4], sc->link_params.mac_addr[5]); 13812 BLOGD(sc, DBG_LOAD, "Ethernet address: %s\n", sc->mac_addr_str); 13813 } 13814 13815 return (0); 13816 } 13817 13818 static void 13819 bxe_get_tunable_params(struct bxe_softc *sc) 13820 { 13821 /* sanity checks */ 13822 13823 if ((bxe_interrupt_mode != INTR_MODE_INTX) && 13824 (bxe_interrupt_mode != INTR_MODE_MSI) && 13825 (bxe_interrupt_mode != INTR_MODE_MSIX)) { 13826 BLOGW(sc, "invalid interrupt_mode value (%d)\n", bxe_interrupt_mode); 13827 bxe_interrupt_mode = INTR_MODE_MSIX; 13828 } 13829 13830 if ((bxe_queue_count < 0) || (bxe_queue_count > MAX_RSS_CHAINS)) { 13831 BLOGW(sc, "invalid queue_count value (%d)\n", bxe_queue_count); 13832 bxe_queue_count = 0; 13833 } 13834 13835 if ((bxe_max_rx_bufs < 1) || (bxe_max_rx_bufs > RX_BD_USABLE)) { 13836 if (bxe_max_rx_bufs == 0) { 13837 bxe_max_rx_bufs = RX_BD_USABLE; 13838 } else { 13839 BLOGW(sc, "invalid max_rx_bufs (%d)\n", bxe_max_rx_bufs); 13840 bxe_max_rx_bufs = 2048; 13841 } 13842 } 13843 13844 if ((bxe_hc_rx_ticks < 1) || (bxe_hc_rx_ticks > 100)) { 13845 BLOGW(sc, "invalid hc_rx_ticks (%d)\n", bxe_hc_rx_ticks); 13846 bxe_hc_rx_ticks = 25; 13847 } 13848 13849 if ((bxe_hc_tx_ticks < 1) || (bxe_hc_tx_ticks > 100)) { 13850 BLOGW(sc, "invalid hc_tx_ticks (%d)\n", bxe_hc_tx_ticks); 13851 bxe_hc_tx_ticks = 50; 13852 } 13853 13854 if (bxe_max_aggregation_size == 0) { 13855 bxe_max_aggregation_size = TPA_AGG_SIZE; 13856 } 13857 13858 if (bxe_max_aggregation_size > 0xffff) { 13859 BLOGW(sc, "invalid max_aggregation_size (%d)\n", 13860 bxe_max_aggregation_size); 13861 bxe_max_aggregation_size = TPA_AGG_SIZE; 13862 } 13863 13864 if ((bxe_mrrs < -1) || (bxe_mrrs > 3)) { 13865 BLOGW(sc, "invalid mrrs (%d)\n", bxe_mrrs); 13866 bxe_mrrs = -1; 13867 } 13868 13869 if ((bxe_autogreeen < 0) || (bxe_autogreeen > 2)) { 13870 BLOGW(sc, "invalid autogreeen (%d)\n", bxe_autogreeen); 13871 bxe_autogreeen = 0; 13872 } 13873 13874 if ((bxe_udp_rss < 0) || (bxe_udp_rss > 1)) { 13875 BLOGW(sc, "invalid udp_rss (%d)\n", bxe_udp_rss); 13876 bxe_udp_rss = 0; 13877 } 13878 13879 /* pull in user settings */ 13880 13881 sc->interrupt_mode = bxe_interrupt_mode; 13882 sc->max_rx_bufs = bxe_max_rx_bufs; 13883 sc->hc_rx_ticks = bxe_hc_rx_ticks; 13884 sc->hc_tx_ticks = bxe_hc_tx_ticks; 13885 sc->max_aggregation_size = bxe_max_aggregation_size; 13886 sc->mrrs = bxe_mrrs; 13887 sc->autogreeen = bxe_autogreeen; 13888 sc->udp_rss = bxe_udp_rss; 13889 13890 if (bxe_interrupt_mode == INTR_MODE_INTX) { 13891 sc->num_queues = 1; 13892 } else { /* INTR_MODE_MSI or INTR_MODE_MSIX */ 13893 sc->num_queues = 13894 min((bxe_queue_count ? bxe_queue_count : mp_ncpus), 13895 MAX_RSS_CHAINS); 13896 if (sc->num_queues > mp_ncpus) { 13897 sc->num_queues = mp_ncpus; 13898 } 13899 } 13900 13901 BLOGD(sc, DBG_LOAD, 13902 "User Config: " 13903 "debug=0x%lx " 13904 "interrupt_mode=%d " 13905 "queue_count=%d " 13906 "hc_rx_ticks=%d " 13907 "hc_tx_ticks=%d " 13908 "rx_budget=%d " 13909 "max_aggregation_size=%d " 13910 "mrrs=%d " 13911 "autogreeen=%d " 13912 "udp_rss=%d\n", 13913 bxe_debug, 13914 sc->interrupt_mode, 13915 sc->num_queues, 13916 sc->hc_rx_ticks, 13917 sc->hc_tx_ticks, 13918 bxe_rx_budget, 13919 sc->max_aggregation_size, 13920 sc->mrrs, 13921 sc->autogreeen, 13922 sc->udp_rss); 13923 } 13924 13925 static int 13926 bxe_media_detect(struct bxe_softc *sc) 13927 { 13928 int port_type; 13929 uint32_t phy_idx = bxe_get_cur_phy_idx(sc); 13930 13931 switch (sc->link_params.phy[phy_idx].media_type) { 13932 case ELINK_ETH_PHY_SFPP_10G_FIBER: 13933 case ELINK_ETH_PHY_XFP_FIBER: 13934 BLOGI(sc, "Found 10Gb Fiber media.\n"); 13935 sc->media = IFM_10G_SR; 13936 port_type = PORT_FIBRE; 13937 break; 13938 case ELINK_ETH_PHY_SFP_1G_FIBER: 13939 BLOGI(sc, "Found 1Gb Fiber media.\n"); 13940 sc->media = IFM_1000_SX; 13941 port_type = PORT_FIBRE; 13942 break; 13943 case ELINK_ETH_PHY_KR: 13944 case ELINK_ETH_PHY_CX4: 13945 BLOGI(sc, "Found 10GBase-CX4 media.\n"); 13946 sc->media = IFM_10G_CX4; 13947 port_type = PORT_FIBRE; 13948 break; 13949 case ELINK_ETH_PHY_DA_TWINAX: 13950 BLOGI(sc, "Found 10Gb Twinax media.\n"); 13951 sc->media = IFM_10G_TWINAX; 13952 port_type = PORT_DA; 13953 break; 13954 case ELINK_ETH_PHY_BASE_T: 13955 if (sc->link_params.speed_cap_mask[0] & 13956 PORT_HW_CFG_SPEED_CAPABILITY_D0_10G) { 13957 BLOGI(sc, "Found 10GBase-T media.\n"); 13958 sc->media = IFM_10G_T; 13959 port_type = PORT_TP; 13960 } else { 13961 BLOGI(sc, "Found 1000Base-T media.\n"); 13962 sc->media = IFM_1000_T; 13963 port_type = PORT_TP; 13964 } 13965 break; 13966 case ELINK_ETH_PHY_NOT_PRESENT: 13967 BLOGI(sc, "Media not present.\n"); 13968 sc->media = 0; 13969 port_type = PORT_OTHER; 13970 break; 13971 case ELINK_ETH_PHY_UNSPECIFIED: 13972 default: 13973 BLOGI(sc, "Unknown media!\n"); 13974 sc->media = 0; 13975 port_type = PORT_OTHER; 13976 break; 13977 } 13978 return port_type; 13979 } 13980 13981 #define GET_FIELD(value, fname) \ 13982 (((value) & (fname##_MASK)) >> (fname##_SHIFT)) 13983 #define IGU_FID(val) GET_FIELD((val), IGU_REG_MAPPING_MEMORY_FID) 13984 #define IGU_VEC(val) GET_FIELD((val), IGU_REG_MAPPING_MEMORY_VECTOR) 13985 13986 static int 13987 bxe_get_igu_cam_info(struct bxe_softc *sc) 13988 { 13989 int pfid = SC_FUNC(sc); 13990 int igu_sb_id; 13991 uint32_t val; 13992 uint8_t fid, igu_sb_cnt = 0; 13993 13994 sc->igu_base_sb = 0xff; 13995 13996 if (CHIP_INT_MODE_IS_BC(sc)) { 13997 int vn = SC_VN(sc); 13998 igu_sb_cnt = sc->igu_sb_cnt; 13999 sc->igu_base_sb = ((CHIP_IS_MODE_4_PORT(sc) ? pfid : vn) * 14000 FP_SB_MAX_E1x); 14001 sc->igu_dsb_id = (E1HVN_MAX * FP_SB_MAX_E1x + 14002 (CHIP_IS_MODE_4_PORT(sc) ? pfid : vn)); 14003 return (0); 14004 } 14005 14006 /* IGU in normal mode - read CAM */ 14007 for (igu_sb_id = 0; 14008 igu_sb_id < IGU_REG_MAPPING_MEMORY_SIZE; 14009 igu_sb_id++) { 14010 val = REG_RD(sc, IGU_REG_MAPPING_MEMORY + igu_sb_id * 4); 14011 if (!(val & IGU_REG_MAPPING_MEMORY_VALID)) { 14012 continue; 14013 } 14014 fid = IGU_FID(val); 14015 if ((fid & IGU_FID_ENCODE_IS_PF)) { 14016 if ((fid & IGU_FID_PF_NUM_MASK) != pfid) { 14017 continue; 14018 } 14019 if (IGU_VEC(val) == 0) { 14020 /* default status block */ 14021 sc->igu_dsb_id = igu_sb_id; 14022 } else { 14023 if (sc->igu_base_sb == 0xff) { 14024 sc->igu_base_sb = igu_sb_id; 14025 } 14026 igu_sb_cnt++; 14027 } 14028 } 14029 } 14030 14031 /* 14032 * Due to new PF resource allocation by MFW T7.4 and above, it's optional 14033 * that number of CAM entries will not be equal to the value advertised in 14034 * PCI. Driver should use the minimal value of both as the actual status 14035 * block count 14036 */ 14037 sc->igu_sb_cnt = min(sc->igu_sb_cnt, igu_sb_cnt); 14038 14039 if (igu_sb_cnt == 0) { 14040 BLOGE(sc, "CAM configuration error\n"); 14041 return (-1); 14042 } 14043 14044 return (0); 14045 } 14046 14047 /* 14048 * Gather various information from the device config space, the device itself, 14049 * shmem, and the user input. 14050 */ 14051 static int 14052 bxe_get_device_info(struct bxe_softc *sc) 14053 { 14054 uint32_t val; 14055 int rc; 14056 14057 /* Get the data for the device */ 14058 sc->devinfo.vendor_id = pci_get_vendor(sc->dev); 14059 sc->devinfo.device_id = pci_get_device(sc->dev); 14060 sc->devinfo.subvendor_id = pci_get_subvendor(sc->dev); 14061 sc->devinfo.subdevice_id = pci_get_subdevice(sc->dev); 14062 14063 /* get the chip revision (chip metal comes from pci config space) */ 14064 sc->devinfo.chip_id = 14065 sc->link_params.chip_id = 14066 (((REG_RD(sc, MISC_REG_CHIP_NUM) & 0xffff) << 16) | 14067 ((REG_RD(sc, MISC_REG_CHIP_REV) & 0xf) << 12) | 14068 (((REG_RD(sc, PCICFG_OFFSET + PCI_ID_VAL3) >> 24) & 0xf) << 4) | 14069 ((REG_RD(sc, MISC_REG_BOND_ID) & 0xf) << 0)); 14070 14071 /* force 57811 according to MISC register */ 14072 if (REG_RD(sc, MISC_REG_CHIP_TYPE) & MISC_REG_CHIP_TYPE_57811_MASK) { 14073 if (CHIP_IS_57810(sc)) { 14074 sc->devinfo.chip_id = ((CHIP_NUM_57811 << 16) | 14075 (sc->devinfo.chip_id & 0x0000ffff)); 14076 } else if (CHIP_IS_57810_MF(sc)) { 14077 sc->devinfo.chip_id = ((CHIP_NUM_57811_MF << 16) | 14078 (sc->devinfo.chip_id & 0x0000ffff)); 14079 } 14080 sc->devinfo.chip_id |= 0x1; 14081 } 14082 14083 BLOGD(sc, DBG_LOAD, 14084 "chip_id=0x%08x (num=0x%04x rev=0x%01x metal=0x%02x bond=0x%01x)\n", 14085 sc->devinfo.chip_id, 14086 ((sc->devinfo.chip_id >> 16) & 0xffff), 14087 ((sc->devinfo.chip_id >> 12) & 0xf), 14088 ((sc->devinfo.chip_id >> 4) & 0xff), 14089 ((sc->devinfo.chip_id >> 0) & 0xf)); 14090 14091 val = (REG_RD(sc, 0x2874) & 0x55); 14092 if ((sc->devinfo.chip_id & 0x1) || 14093 (CHIP_IS_E1(sc) && val) || 14094 (CHIP_IS_E1H(sc) && (val == 0x55))) { 14095 sc->flags |= BXE_ONE_PORT_FLAG; 14096 BLOGD(sc, DBG_LOAD, "single port device\n"); 14097 } 14098 14099 /* set the doorbell size */ 14100 sc->doorbell_size = (1 << BXE_DB_SHIFT); 14101 14102 /* determine whether the device is in 2 port or 4 port mode */ 14103 sc->devinfo.chip_port_mode = CHIP_PORT_MODE_NONE; /* E1 & E1h*/ 14104 if (CHIP_IS_E2E3(sc)) { 14105 /* 14106 * Read port4mode_en_ovwr[0]: 14107 * If 1, four port mode is in port4mode_en_ovwr[1]. 14108 * If 0, four port mode is in port4mode_en[0]. 14109 */ 14110 val = REG_RD(sc, MISC_REG_PORT4MODE_EN_OVWR); 14111 if (val & 1) { 14112 val = ((val >> 1) & 1); 14113 } else { 14114 val = REG_RD(sc, MISC_REG_PORT4MODE_EN); 14115 } 14116 14117 sc->devinfo.chip_port_mode = 14118 (val) ? CHIP_4_PORT_MODE : CHIP_2_PORT_MODE; 14119 14120 BLOGD(sc, DBG_LOAD, "Port mode = %s\n", (val) ? "4" : "2"); 14121 } 14122 14123 /* get the function and path info for the device */ 14124 bxe_get_function_num(sc); 14125 14126 /* get the shared memory base address */ 14127 sc->devinfo.shmem_base = 14128 sc->link_params.shmem_base = 14129 REG_RD(sc, MISC_REG_SHARED_MEM_ADDR); 14130 sc->devinfo.shmem2_base = 14131 REG_RD(sc, (SC_PATH(sc) ? MISC_REG_GENERIC_CR_1 : 14132 MISC_REG_GENERIC_CR_0)); 14133 14134 BLOGD(sc, DBG_LOAD, "shmem_base=0x%08x, shmem2_base=0x%08x\n", 14135 sc->devinfo.shmem_base, sc->devinfo.shmem2_base); 14136 14137 if (!sc->devinfo.shmem_base) { 14138 /* this should ONLY prevent upcoming shmem reads */ 14139 BLOGI(sc, "MCP not active\n"); 14140 sc->flags |= BXE_NO_MCP_FLAG; 14141 return (0); 14142 } 14143 14144 /* make sure the shared memory contents are valid */ 14145 val = SHMEM_RD(sc, validity_map[SC_PORT(sc)]); 14146 if ((val & (SHR_MEM_VALIDITY_DEV_INFO | SHR_MEM_VALIDITY_MB)) != 14147 (SHR_MEM_VALIDITY_DEV_INFO | SHR_MEM_VALIDITY_MB)) { 14148 BLOGE(sc, "Invalid SHMEM validity signature: 0x%08x\n", val); 14149 return (0); 14150 } 14151 BLOGD(sc, DBG_LOAD, "Valid SHMEM validity signature: 0x%08x\n", val); 14152 14153 /* get the bootcode version */ 14154 sc->devinfo.bc_ver = SHMEM_RD(sc, dev_info.bc_rev); 14155 snprintf(sc->devinfo.bc_ver_str, 14156 sizeof(sc->devinfo.bc_ver_str), 14157 "%d.%d.%d", 14158 ((sc->devinfo.bc_ver >> 24) & 0xff), 14159 ((sc->devinfo.bc_ver >> 16) & 0xff), 14160 ((sc->devinfo.bc_ver >> 8) & 0xff)); 14161 BLOGD(sc, DBG_LOAD, "Bootcode version: %s\n", sc->devinfo.bc_ver_str); 14162 14163 /* get the bootcode shmem address */ 14164 sc->devinfo.mf_cfg_base = bxe_get_shmem_mf_cfg_base(sc); 14165 BLOGD(sc, DBG_LOAD, "mf_cfg_base=0x08%x \n", sc->devinfo.mf_cfg_base); 14166 14167 /* clean indirect addresses as they're not used */ 14168 pci_write_config(sc->dev, PCICFG_GRC_ADDRESS, 0, 4); 14169 if (IS_PF(sc)) { 14170 REG_WR(sc, PXP2_REG_PGL_ADDR_88_F0, 0); 14171 REG_WR(sc, PXP2_REG_PGL_ADDR_8C_F0, 0); 14172 REG_WR(sc, PXP2_REG_PGL_ADDR_90_F0, 0); 14173 REG_WR(sc, PXP2_REG_PGL_ADDR_94_F0, 0); 14174 if (CHIP_IS_E1x(sc)) { 14175 REG_WR(sc, PXP2_REG_PGL_ADDR_88_F1, 0); 14176 REG_WR(sc, PXP2_REG_PGL_ADDR_8C_F1, 0); 14177 REG_WR(sc, PXP2_REG_PGL_ADDR_90_F1, 0); 14178 REG_WR(sc, PXP2_REG_PGL_ADDR_94_F1, 0); 14179 } 14180 14181 /* 14182 * Enable internal target-read (in case we are probed after PF 14183 * FLR). Must be done prior to any BAR read access. Only for 14184 * 57712 and up 14185 */ 14186 if (!CHIP_IS_E1x(sc)) { 14187 REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1); 14188 } 14189 } 14190 14191 /* get the nvram size */ 14192 val = REG_RD(sc, MCP_REG_MCPR_NVM_CFG4); 14193 sc->devinfo.flash_size = 14194 (NVRAM_1MB_SIZE << (val & MCPR_NVM_CFG4_FLASH_SIZE)); 14195 BLOGD(sc, DBG_LOAD, "nvram flash size: %d\n", sc->devinfo.flash_size); 14196 14197 /* get PCI capabilites */ 14198 bxe_probe_pci_caps(sc); 14199 14200 bxe_set_power_state(sc, PCI_PM_D0); 14201 14202 /* get various configuration parameters from shmem */ 14203 bxe_get_shmem_info(sc); 14204 14205 if (sc->devinfo.pcie_msix_cap_reg != 0) { 14206 val = pci_read_config(sc->dev, 14207 (sc->devinfo.pcie_msix_cap_reg + 14208 PCIR_MSIX_CTRL), 14209 2); 14210 sc->igu_sb_cnt = (val & PCIM_MSIXCTRL_TABLE_SIZE); 14211 } else { 14212 sc->igu_sb_cnt = 1; 14213 } 14214 14215 sc->igu_base_addr = BAR_IGU_INTMEM; 14216 14217 /* initialize IGU parameters */ 14218 if (CHIP_IS_E1x(sc)) { 14219 sc->devinfo.int_block = INT_BLOCK_HC; 14220 sc->igu_dsb_id = DEF_SB_IGU_ID; 14221 sc->igu_base_sb = 0; 14222 } else { 14223 sc->devinfo.int_block = INT_BLOCK_IGU; 14224 14225 /* do not allow device reset during IGU info preocessing */ 14226 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RESET); 14227 14228 val = REG_RD(sc, IGU_REG_BLOCK_CONFIGURATION); 14229 14230 if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) { 14231 int tout = 5000; 14232 14233 BLOGD(sc, DBG_LOAD, "FORCING IGU Normal Mode\n"); 14234 14235 val &= ~(IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN); 14236 REG_WR(sc, IGU_REG_BLOCK_CONFIGURATION, val); 14237 REG_WR(sc, IGU_REG_RESET_MEMORIES, 0x7f); 14238 14239 while (tout && REG_RD(sc, IGU_REG_RESET_MEMORIES)) { 14240 tout--; 14241 DELAY(1000); 14242 } 14243 14244 if (REG_RD(sc, IGU_REG_RESET_MEMORIES)) { 14245 BLOGD(sc, DBG_LOAD, "FORCING IGU Normal Mode failed!!!\n"); 14246 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RESET); 14247 return (-1); 14248 } 14249 } 14250 14251 if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) { 14252 BLOGD(sc, DBG_LOAD, "IGU Backward Compatible Mode\n"); 14253 sc->devinfo.int_block |= INT_BLOCK_MODE_BW_COMP; 14254 } else { 14255 BLOGD(sc, DBG_LOAD, "IGU Normal Mode\n"); 14256 } 14257 14258 rc = bxe_get_igu_cam_info(sc); 14259 14260 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RESET); 14261 14262 if (rc) { 14263 return (rc); 14264 } 14265 } 14266 14267 /* 14268 * Get base FW non-default (fast path) status block ID. This value is 14269 * used to initialize the fw_sb_id saved on the fp/queue structure to 14270 * determine the id used by the FW. 14271 */ 14272 if (CHIP_IS_E1x(sc)) { 14273 sc->base_fw_ndsb = ((SC_PORT(sc) * FP_SB_MAX_E1x) + SC_L_ID(sc)); 14274 } else { 14275 /* 14276 * 57712+ - We currently use one FW SB per IGU SB (Rx and Tx of 14277 * the same queue are indicated on the same IGU SB). So we prefer 14278 * FW and IGU SBs to be the same value. 14279 */ 14280 sc->base_fw_ndsb = sc->igu_base_sb; 14281 } 14282 14283 BLOGD(sc, DBG_LOAD, 14284 "igu_dsb_id=%d igu_base_sb=%d igu_sb_cnt=%d base_fw_ndsb=%d\n", 14285 sc->igu_dsb_id, sc->igu_base_sb, 14286 sc->igu_sb_cnt, sc->base_fw_ndsb); 14287 14288 elink_phy_probe(&sc->link_params); 14289 14290 return (0); 14291 } 14292 14293 static void 14294 bxe_link_settings_supported(struct bxe_softc *sc, 14295 uint32_t switch_cfg) 14296 { 14297 uint32_t cfg_size = 0; 14298 uint32_t idx; 14299 uint8_t port = SC_PORT(sc); 14300 14301 /* aggregation of supported attributes of all external phys */ 14302 sc->port.supported[0] = 0; 14303 sc->port.supported[1] = 0; 14304 14305 switch (sc->link_params.num_phys) { 14306 case 1: 14307 sc->port.supported[0] = sc->link_params.phy[ELINK_INT_PHY].supported; 14308 cfg_size = 1; 14309 break; 14310 case 2: 14311 sc->port.supported[0] = sc->link_params.phy[ELINK_EXT_PHY1].supported; 14312 cfg_size = 1; 14313 break; 14314 case 3: 14315 if (sc->link_params.multi_phy_config & 14316 PORT_HW_CFG_PHY_SWAPPED_ENABLED) { 14317 sc->port.supported[1] = 14318 sc->link_params.phy[ELINK_EXT_PHY1].supported; 14319 sc->port.supported[0] = 14320 sc->link_params.phy[ELINK_EXT_PHY2].supported; 14321 } else { 14322 sc->port.supported[0] = 14323 sc->link_params.phy[ELINK_EXT_PHY1].supported; 14324 sc->port.supported[1] = 14325 sc->link_params.phy[ELINK_EXT_PHY2].supported; 14326 } 14327 cfg_size = 2; 14328 break; 14329 } 14330 14331 if (!(sc->port.supported[0] || sc->port.supported[1])) { 14332 BLOGE(sc, "Invalid phy config in NVRAM (PHY1=0x%08x PHY2=0x%08x)\n", 14333 SHMEM_RD(sc, 14334 dev_info.port_hw_config[port].external_phy_config), 14335 SHMEM_RD(sc, 14336 dev_info.port_hw_config[port].external_phy_config2)); 14337 return; 14338 } 14339 14340 if (CHIP_IS_E3(sc)) 14341 sc->port.phy_addr = REG_RD(sc, MISC_REG_WC0_CTRL_PHY_ADDR); 14342 else { 14343 switch (switch_cfg) { 14344 case ELINK_SWITCH_CFG_1G: 14345 sc->port.phy_addr = 14346 REG_RD(sc, NIG_REG_SERDES0_CTRL_PHY_ADDR + port*0x10); 14347 break; 14348 case ELINK_SWITCH_CFG_10G: 14349 sc->port.phy_addr = 14350 REG_RD(sc, NIG_REG_XGXS0_CTRL_PHY_ADDR + port*0x18); 14351 break; 14352 default: 14353 BLOGE(sc, "Invalid switch config in link_config=0x%08x\n", 14354 sc->port.link_config[0]); 14355 return; 14356 } 14357 } 14358 14359 BLOGD(sc, DBG_LOAD, "PHY addr 0x%08x\n", sc->port.phy_addr); 14360 14361 /* mask what we support according to speed_cap_mask per configuration */ 14362 for (idx = 0; idx < cfg_size; idx++) { 14363 if (!(sc->link_params.speed_cap_mask[idx] & 14364 PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_HALF)) { 14365 sc->port.supported[idx] &= ~ELINK_SUPPORTED_10baseT_Half; 14366 } 14367 14368 if (!(sc->link_params.speed_cap_mask[idx] & 14369 PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_FULL)) { 14370 sc->port.supported[idx] &= ~ELINK_SUPPORTED_10baseT_Full; 14371 } 14372 14373 if (!(sc->link_params.speed_cap_mask[idx] & 14374 PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_HALF)) { 14375 sc->port.supported[idx] &= ~ELINK_SUPPORTED_100baseT_Half; 14376 } 14377 14378 if (!(sc->link_params.speed_cap_mask[idx] & 14379 PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_FULL)) { 14380 sc->port.supported[idx] &= ~ELINK_SUPPORTED_100baseT_Full; 14381 } 14382 14383 if (!(sc->link_params.speed_cap_mask[idx] & 14384 PORT_HW_CFG_SPEED_CAPABILITY_D0_1G)) { 14385 sc->port.supported[idx] &= ~ELINK_SUPPORTED_1000baseT_Full; 14386 } 14387 14388 if (!(sc->link_params.speed_cap_mask[idx] & 14389 PORT_HW_CFG_SPEED_CAPABILITY_D0_2_5G)) { 14390 sc->port.supported[idx] &= ~ELINK_SUPPORTED_2500baseX_Full; 14391 } 14392 14393 if (!(sc->link_params.speed_cap_mask[idx] & 14394 PORT_HW_CFG_SPEED_CAPABILITY_D0_10G)) { 14395 sc->port.supported[idx] &= ~ELINK_SUPPORTED_10000baseT_Full; 14396 } 14397 14398 if (!(sc->link_params.speed_cap_mask[idx] & 14399 PORT_HW_CFG_SPEED_CAPABILITY_D0_20G)) { 14400 sc->port.supported[idx] &= ~ELINK_SUPPORTED_20000baseKR2_Full; 14401 } 14402 } 14403 14404 BLOGD(sc, DBG_LOAD, "PHY supported 0=0x%08x 1=0x%08x\n", 14405 sc->port.supported[0], sc->port.supported[1]); 14406 ELINK_DEBUG_P2(sc, "PHY supported 0=0x%08x 1=0x%08x\n", 14407 sc->port.supported[0], sc->port.supported[1]); 14408 } 14409 14410 static void 14411 bxe_link_settings_requested(struct bxe_softc *sc) 14412 { 14413 uint32_t link_config; 14414 uint32_t idx; 14415 uint32_t cfg_size = 0; 14416 14417 sc->port.advertising[0] = 0; 14418 sc->port.advertising[1] = 0; 14419 14420 switch (sc->link_params.num_phys) { 14421 case 1: 14422 case 2: 14423 cfg_size = 1; 14424 break; 14425 case 3: 14426 cfg_size = 2; 14427 break; 14428 } 14429 14430 for (idx = 0; idx < cfg_size; idx++) { 14431 sc->link_params.req_duplex[idx] = DUPLEX_FULL; 14432 link_config = sc->port.link_config[idx]; 14433 14434 switch (link_config & PORT_FEATURE_LINK_SPEED_MASK) { 14435 case PORT_FEATURE_LINK_SPEED_AUTO: 14436 if (sc->port.supported[idx] & ELINK_SUPPORTED_Autoneg) { 14437 sc->link_params.req_line_speed[idx] = ELINK_SPEED_AUTO_NEG; 14438 sc->port.advertising[idx] |= sc->port.supported[idx]; 14439 if (sc->link_params.phy[ELINK_EXT_PHY1].type == 14440 PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM84833) 14441 sc->port.advertising[idx] |= 14442 (ELINK_SUPPORTED_100baseT_Half | 14443 ELINK_SUPPORTED_100baseT_Full); 14444 } else { 14445 /* force 10G, no AN */ 14446 sc->link_params.req_line_speed[idx] = ELINK_SPEED_10000; 14447 sc->port.advertising[idx] |= 14448 (ADVERTISED_10000baseT_Full | ADVERTISED_FIBRE); 14449 continue; 14450 } 14451 break; 14452 14453 case PORT_FEATURE_LINK_SPEED_10M_FULL: 14454 if (sc->port.supported[idx] & ELINK_SUPPORTED_10baseT_Full) { 14455 sc->link_params.req_line_speed[idx] = ELINK_SPEED_10; 14456 sc->port.advertising[idx] |= (ADVERTISED_10baseT_Full | 14457 ADVERTISED_TP); 14458 } else { 14459 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x " 14460 "speed_cap_mask=0x%08x\n", 14461 link_config, sc->link_params.speed_cap_mask[idx]); 14462 return; 14463 } 14464 break; 14465 14466 case PORT_FEATURE_LINK_SPEED_10M_HALF: 14467 if (sc->port.supported[idx] & ELINK_SUPPORTED_10baseT_Half) { 14468 sc->link_params.req_line_speed[idx] = ELINK_SPEED_10; 14469 sc->link_params.req_duplex[idx] = DUPLEX_HALF; 14470 sc->port.advertising[idx] |= (ADVERTISED_10baseT_Half | 14471 ADVERTISED_TP); 14472 ELINK_DEBUG_P1(sc, "driver requesting DUPLEX_HALF req_duplex = %x!\n", 14473 sc->link_params.req_duplex[idx]); 14474 } else { 14475 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x " 14476 "speed_cap_mask=0x%08x\n", 14477 link_config, sc->link_params.speed_cap_mask[idx]); 14478 return; 14479 } 14480 break; 14481 14482 case PORT_FEATURE_LINK_SPEED_100M_FULL: 14483 if (sc->port.supported[idx] & ELINK_SUPPORTED_100baseT_Full) { 14484 sc->link_params.req_line_speed[idx] = ELINK_SPEED_100; 14485 sc->port.advertising[idx] |= (ADVERTISED_100baseT_Full | 14486 ADVERTISED_TP); 14487 } else { 14488 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x " 14489 "speed_cap_mask=0x%08x\n", 14490 link_config, sc->link_params.speed_cap_mask[idx]); 14491 return; 14492 } 14493 break; 14494 14495 case PORT_FEATURE_LINK_SPEED_100M_HALF: 14496 if (sc->port.supported[idx] & ELINK_SUPPORTED_100baseT_Half) { 14497 sc->link_params.req_line_speed[idx] = ELINK_SPEED_100; 14498 sc->link_params.req_duplex[idx] = DUPLEX_HALF; 14499 sc->port.advertising[idx] |= (ADVERTISED_100baseT_Half | 14500 ADVERTISED_TP); 14501 } else { 14502 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x " 14503 "speed_cap_mask=0x%08x\n", 14504 link_config, sc->link_params.speed_cap_mask[idx]); 14505 return; 14506 } 14507 break; 14508 14509 case PORT_FEATURE_LINK_SPEED_1G: 14510 if (sc->port.supported[idx] & ELINK_SUPPORTED_1000baseT_Full) { 14511 sc->link_params.req_line_speed[idx] = ELINK_SPEED_1000; 14512 sc->port.advertising[idx] |= (ADVERTISED_1000baseT_Full | 14513 ADVERTISED_TP); 14514 } else { 14515 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x " 14516 "speed_cap_mask=0x%08x\n", 14517 link_config, sc->link_params.speed_cap_mask[idx]); 14518 return; 14519 } 14520 break; 14521 14522 case PORT_FEATURE_LINK_SPEED_2_5G: 14523 if (sc->port.supported[idx] & ELINK_SUPPORTED_2500baseX_Full) { 14524 sc->link_params.req_line_speed[idx] = ELINK_SPEED_2500; 14525 sc->port.advertising[idx] |= (ADVERTISED_2500baseX_Full | 14526 ADVERTISED_TP); 14527 } else { 14528 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x " 14529 "speed_cap_mask=0x%08x\n", 14530 link_config, sc->link_params.speed_cap_mask[idx]); 14531 return; 14532 } 14533 break; 14534 14535 case PORT_FEATURE_LINK_SPEED_10G_CX4: 14536 if (sc->port.supported[idx] & ELINK_SUPPORTED_10000baseT_Full) { 14537 sc->link_params.req_line_speed[idx] = ELINK_SPEED_10000; 14538 sc->port.advertising[idx] |= (ADVERTISED_10000baseT_Full | 14539 ADVERTISED_FIBRE); 14540 } else { 14541 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x " 14542 "speed_cap_mask=0x%08x\n", 14543 link_config, sc->link_params.speed_cap_mask[idx]); 14544 return; 14545 } 14546 break; 14547 14548 case PORT_FEATURE_LINK_SPEED_20G: 14549 sc->link_params.req_line_speed[idx] = ELINK_SPEED_20000; 14550 break; 14551 14552 default: 14553 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x " 14554 "speed_cap_mask=0x%08x\n", 14555 link_config, sc->link_params.speed_cap_mask[idx]); 14556 sc->link_params.req_line_speed[idx] = ELINK_SPEED_AUTO_NEG; 14557 sc->port.advertising[idx] = sc->port.supported[idx]; 14558 break; 14559 } 14560 14561 sc->link_params.req_flow_ctrl[idx] = 14562 (link_config & PORT_FEATURE_FLOW_CONTROL_MASK); 14563 14564 if (sc->link_params.req_flow_ctrl[idx] == ELINK_FLOW_CTRL_AUTO) { 14565 if (!(sc->port.supported[idx] & ELINK_SUPPORTED_Autoneg)) { 14566 sc->link_params.req_flow_ctrl[idx] = ELINK_FLOW_CTRL_NONE; 14567 } else { 14568 bxe_set_requested_fc(sc); 14569 } 14570 } 14571 14572 BLOGD(sc, DBG_LOAD, "req_line_speed=%d req_duplex=%d " 14573 "req_flow_ctrl=0x%x advertising=0x%x\n", 14574 sc->link_params.req_line_speed[idx], 14575 sc->link_params.req_duplex[idx], 14576 sc->link_params.req_flow_ctrl[idx], 14577 sc->port.advertising[idx]); 14578 ELINK_DEBUG_P3(sc, "req_line_speed=%d req_duplex=%d " 14579 "advertising=0x%x\n", 14580 sc->link_params.req_line_speed[idx], 14581 sc->link_params.req_duplex[idx], 14582 sc->port.advertising[idx]); 14583 } 14584 } 14585 14586 static void 14587 bxe_get_phy_info(struct bxe_softc *sc) 14588 { 14589 uint8_t port = SC_PORT(sc); 14590 uint32_t config = sc->port.config; 14591 uint32_t eee_mode; 14592 14593 /* shmem data already read in bxe_get_shmem_info() */ 14594 14595 ELINK_DEBUG_P3(sc, "lane_config=0x%08x speed_cap_mask0=0x%08x " 14596 "link_config0=0x%08x\n", 14597 sc->link_params.lane_config, 14598 sc->link_params.speed_cap_mask[0], 14599 sc->port.link_config[0]); 14600 14601 14602 bxe_link_settings_supported(sc, sc->link_params.switch_cfg); 14603 bxe_link_settings_requested(sc); 14604 14605 if (sc->autogreeen == AUTO_GREEN_FORCE_ON) { 14606 sc->link_params.feature_config_flags |= 14607 ELINK_FEATURE_CONFIG_AUTOGREEEN_ENABLED; 14608 } else if (sc->autogreeen == AUTO_GREEN_FORCE_OFF) { 14609 sc->link_params.feature_config_flags &= 14610 ~ELINK_FEATURE_CONFIG_AUTOGREEEN_ENABLED; 14611 } else if (config & PORT_FEAT_CFG_AUTOGREEEN_ENABLED) { 14612 sc->link_params.feature_config_flags |= 14613 ELINK_FEATURE_CONFIG_AUTOGREEEN_ENABLED; 14614 } 14615 14616 /* configure link feature according to nvram value */ 14617 eee_mode = 14618 (((SHMEM_RD(sc, dev_info.port_feature_config[port].eee_power_mode)) & 14619 PORT_FEAT_CFG_EEE_POWER_MODE_MASK) >> 14620 PORT_FEAT_CFG_EEE_POWER_MODE_SHIFT); 14621 if (eee_mode != PORT_FEAT_CFG_EEE_POWER_MODE_DISABLED) { 14622 sc->link_params.eee_mode = (ELINK_EEE_MODE_ADV_LPI | 14623 ELINK_EEE_MODE_ENABLE_LPI | 14624 ELINK_EEE_MODE_OUTPUT_TIME); 14625 } else { 14626 sc->link_params.eee_mode = 0; 14627 } 14628 14629 /* get the media type */ 14630 bxe_media_detect(sc); 14631 ELINK_DEBUG_P1(sc, "detected media type\n", sc->media); 14632 } 14633 14634 static void 14635 bxe_get_params(struct bxe_softc *sc) 14636 { 14637 /* get user tunable params */ 14638 bxe_get_tunable_params(sc); 14639 14640 /* select the RX and TX ring sizes */ 14641 sc->tx_ring_size = TX_BD_USABLE; 14642 sc->rx_ring_size = RX_BD_USABLE; 14643 14644 /* XXX disable WoL */ 14645 sc->wol = 0; 14646 } 14647 14648 static void 14649 bxe_set_modes_bitmap(struct bxe_softc *sc) 14650 { 14651 uint32_t flags = 0; 14652 14653 if (CHIP_REV_IS_FPGA(sc)) { 14654 SET_FLAGS(flags, MODE_FPGA); 14655 } else if (CHIP_REV_IS_EMUL(sc)) { 14656 SET_FLAGS(flags, MODE_EMUL); 14657 } else { 14658 SET_FLAGS(flags, MODE_ASIC); 14659 } 14660 14661 if (CHIP_IS_MODE_4_PORT(sc)) { 14662 SET_FLAGS(flags, MODE_PORT4); 14663 } else { 14664 SET_FLAGS(flags, MODE_PORT2); 14665 } 14666 14667 if (CHIP_IS_E2(sc)) { 14668 SET_FLAGS(flags, MODE_E2); 14669 } else if (CHIP_IS_E3(sc)) { 14670 SET_FLAGS(flags, MODE_E3); 14671 if (CHIP_REV(sc) == CHIP_REV_Ax) { 14672 SET_FLAGS(flags, MODE_E3_A0); 14673 } else /*if (CHIP_REV(sc) == CHIP_REV_Bx)*/ { 14674 SET_FLAGS(flags, MODE_E3_B0 | MODE_COS3); 14675 } 14676 } 14677 14678 if (IS_MF(sc)) { 14679 SET_FLAGS(flags, MODE_MF); 14680 switch (sc->devinfo.mf_info.mf_mode) { 14681 case MULTI_FUNCTION_SD: 14682 SET_FLAGS(flags, MODE_MF_SD); 14683 break; 14684 case MULTI_FUNCTION_SI: 14685 SET_FLAGS(flags, MODE_MF_SI); 14686 break; 14687 case MULTI_FUNCTION_AFEX: 14688 SET_FLAGS(flags, MODE_MF_AFEX); 14689 break; 14690 } 14691 } else { 14692 SET_FLAGS(flags, MODE_SF); 14693 } 14694 14695 #if defined(__LITTLE_ENDIAN) 14696 SET_FLAGS(flags, MODE_LITTLE_ENDIAN); 14697 #else /* __BIG_ENDIAN */ 14698 SET_FLAGS(flags, MODE_BIG_ENDIAN); 14699 #endif 14700 14701 INIT_MODE_FLAGS(sc) = flags; 14702 } 14703 14704 static int 14705 bxe_alloc_hsi_mem(struct bxe_softc *sc) 14706 { 14707 struct bxe_fastpath *fp; 14708 bus_addr_t busaddr; 14709 int max_agg_queues; 14710 int max_segments; 14711 bus_size_t max_size; 14712 bus_size_t max_seg_size; 14713 char buf[32]; 14714 int rc; 14715 int i, j; 14716 14717 /* XXX zero out all vars here and call bxe_alloc_hsi_mem on error */ 14718 14719 /* allocate the parent bus DMA tag */ 14720 rc = bus_dma_tag_create(bus_get_dma_tag(sc->dev), /* parent tag */ 14721 1, /* alignment */ 14722 0, /* boundary limit */ 14723 BUS_SPACE_MAXADDR, /* restricted low */ 14724 BUS_SPACE_MAXADDR, /* restricted hi */ 14725 NULL, /* addr filter() */ 14726 NULL, /* addr filter() arg */ 14727 BUS_SPACE_MAXSIZE_32BIT, /* max map size */ 14728 BUS_SPACE_UNRESTRICTED, /* num discontinuous */ 14729 BUS_SPACE_MAXSIZE_32BIT, /* max seg size */ 14730 0, /* flags */ 14731 NULL, /* lock() */ 14732 NULL, /* lock() arg */ 14733 &sc->parent_dma_tag); /* returned dma tag */ 14734 if (rc != 0) { 14735 BLOGE(sc, "Failed to alloc parent DMA tag (%d)!\n", rc); 14736 return (1); 14737 } 14738 14739 /************************/ 14740 /* DEFAULT STATUS BLOCK */ 14741 /************************/ 14742 14743 if (bxe_dma_alloc(sc, sizeof(struct host_sp_status_block), 14744 &sc->def_sb_dma, "default status block") != 0) { 14745 /* XXX */ 14746 bus_dma_tag_destroy(sc->parent_dma_tag); 14747 return (1); 14748 } 14749 14750 sc->def_sb = (struct host_sp_status_block *)sc->def_sb_dma.vaddr; 14751 14752 /***************/ 14753 /* EVENT QUEUE */ 14754 /***************/ 14755 14756 if (bxe_dma_alloc(sc, BCM_PAGE_SIZE, 14757 &sc->eq_dma, "event queue") != 0) { 14758 /* XXX */ 14759 bxe_dma_free(sc, &sc->def_sb_dma); 14760 sc->def_sb = NULL; 14761 bus_dma_tag_destroy(sc->parent_dma_tag); 14762 return (1); 14763 } 14764 14765 sc->eq = (union event_ring_elem * )sc->eq_dma.vaddr; 14766 14767 /*************/ 14768 /* SLOW PATH */ 14769 /*************/ 14770 14771 if (bxe_dma_alloc(sc, sizeof(struct bxe_slowpath), 14772 &sc->sp_dma, "slow path") != 0) { 14773 /* XXX */ 14774 bxe_dma_free(sc, &sc->eq_dma); 14775 sc->eq = NULL; 14776 bxe_dma_free(sc, &sc->def_sb_dma); 14777 sc->def_sb = NULL; 14778 bus_dma_tag_destroy(sc->parent_dma_tag); 14779 return (1); 14780 } 14781 14782 sc->sp = (struct bxe_slowpath *)sc->sp_dma.vaddr; 14783 14784 /*******************/ 14785 /* SLOW PATH QUEUE */ 14786 /*******************/ 14787 14788 if (bxe_dma_alloc(sc, BCM_PAGE_SIZE, 14789 &sc->spq_dma, "slow path queue") != 0) { 14790 /* XXX */ 14791 bxe_dma_free(sc, &sc->sp_dma); 14792 sc->sp = NULL; 14793 bxe_dma_free(sc, &sc->eq_dma); 14794 sc->eq = NULL; 14795 bxe_dma_free(sc, &sc->def_sb_dma); 14796 sc->def_sb = NULL; 14797 bus_dma_tag_destroy(sc->parent_dma_tag); 14798 return (1); 14799 } 14800 14801 sc->spq = (struct eth_spe *)sc->spq_dma.vaddr; 14802 14803 /***************************/ 14804 /* FW DECOMPRESSION BUFFER */ 14805 /***************************/ 14806 14807 if (bxe_dma_alloc(sc, FW_BUF_SIZE, &sc->gz_buf_dma, 14808 "fw decompression buffer") != 0) { 14809 /* XXX */ 14810 bxe_dma_free(sc, &sc->spq_dma); 14811 sc->spq = NULL; 14812 bxe_dma_free(sc, &sc->sp_dma); 14813 sc->sp = NULL; 14814 bxe_dma_free(sc, &sc->eq_dma); 14815 sc->eq = NULL; 14816 bxe_dma_free(sc, &sc->def_sb_dma); 14817 sc->def_sb = NULL; 14818 bus_dma_tag_destroy(sc->parent_dma_tag); 14819 return (1); 14820 } 14821 14822 sc->gz_buf = (void *)sc->gz_buf_dma.vaddr; 14823 14824 if ((sc->gz_strm = 14825 malloc(sizeof(*sc->gz_strm), M_DEVBUF, M_NOWAIT)) == NULL) { 14826 /* XXX */ 14827 bxe_dma_free(sc, &sc->gz_buf_dma); 14828 sc->gz_buf = NULL; 14829 bxe_dma_free(sc, &sc->spq_dma); 14830 sc->spq = NULL; 14831 bxe_dma_free(sc, &sc->sp_dma); 14832 sc->sp = NULL; 14833 bxe_dma_free(sc, &sc->eq_dma); 14834 sc->eq = NULL; 14835 bxe_dma_free(sc, &sc->def_sb_dma); 14836 sc->def_sb = NULL; 14837 bus_dma_tag_destroy(sc->parent_dma_tag); 14838 return (1); 14839 } 14840 14841 /*************/ 14842 /* FASTPATHS */ 14843 /*************/ 14844 14845 /* allocate DMA memory for each fastpath structure */ 14846 for (i = 0; i < sc->num_queues; i++) { 14847 fp = &sc->fp[i]; 14848 fp->sc = sc; 14849 fp->index = i; 14850 14851 /*******************/ 14852 /* FP STATUS BLOCK */ 14853 /*******************/ 14854 14855 snprintf(buf, sizeof(buf), "fp %d status block", i); 14856 if (bxe_dma_alloc(sc, sizeof(union bxe_host_hc_status_block), 14857 &fp->sb_dma, buf) != 0) { 14858 /* XXX unwind and free previous fastpath allocations */ 14859 BLOGE(sc, "Failed to alloc %s\n", buf); 14860 return (1); 14861 } else { 14862 if (CHIP_IS_E2E3(sc)) { 14863 fp->status_block.e2_sb = 14864 (struct host_hc_status_block_e2 *)fp->sb_dma.vaddr; 14865 } else { 14866 fp->status_block.e1x_sb = 14867 (struct host_hc_status_block_e1x *)fp->sb_dma.vaddr; 14868 } 14869 } 14870 14871 /******************/ 14872 /* FP TX BD CHAIN */ 14873 /******************/ 14874 14875 snprintf(buf, sizeof(buf), "fp %d tx bd chain", i); 14876 if (bxe_dma_alloc(sc, (BCM_PAGE_SIZE * TX_BD_NUM_PAGES), 14877 &fp->tx_dma, buf) != 0) { 14878 /* XXX unwind and free previous fastpath allocations */ 14879 BLOGE(sc, "Failed to alloc %s\n", buf); 14880 return (1); 14881 } else { 14882 fp->tx_chain = (union eth_tx_bd_types *)fp->tx_dma.vaddr; 14883 } 14884 14885 /* link together the tx bd chain pages */ 14886 for (j = 1; j <= TX_BD_NUM_PAGES; j++) { 14887 /* index into the tx bd chain array to last entry per page */ 14888 struct eth_tx_next_bd *tx_next_bd = 14889 &fp->tx_chain[TX_BD_TOTAL_PER_PAGE * j - 1].next_bd; 14890 /* point to the next page and wrap from last page */ 14891 busaddr = (fp->tx_dma.paddr + 14892 (BCM_PAGE_SIZE * (j % TX_BD_NUM_PAGES))); 14893 tx_next_bd->addr_hi = htole32(U64_HI(busaddr)); 14894 tx_next_bd->addr_lo = htole32(U64_LO(busaddr)); 14895 } 14896 14897 /******************/ 14898 /* FP RX BD CHAIN */ 14899 /******************/ 14900 14901 snprintf(buf, sizeof(buf), "fp %d rx bd chain", i); 14902 if (bxe_dma_alloc(sc, (BCM_PAGE_SIZE * RX_BD_NUM_PAGES), 14903 &fp->rx_dma, buf) != 0) { 14904 /* XXX unwind and free previous fastpath allocations */ 14905 BLOGE(sc, "Failed to alloc %s\n", buf); 14906 return (1); 14907 } else { 14908 fp->rx_chain = (struct eth_rx_bd *)fp->rx_dma.vaddr; 14909 } 14910 14911 /* link together the rx bd chain pages */ 14912 for (j = 1; j <= RX_BD_NUM_PAGES; j++) { 14913 /* index into the rx bd chain array to last entry per page */ 14914 struct eth_rx_bd *rx_bd = 14915 &fp->rx_chain[RX_BD_TOTAL_PER_PAGE * j - 2]; 14916 /* point to the next page and wrap from last page */ 14917 busaddr = (fp->rx_dma.paddr + 14918 (BCM_PAGE_SIZE * (j % RX_BD_NUM_PAGES))); 14919 rx_bd->addr_hi = htole32(U64_HI(busaddr)); 14920 rx_bd->addr_lo = htole32(U64_LO(busaddr)); 14921 } 14922 14923 /*******************/ 14924 /* FP RX RCQ CHAIN */ 14925 /*******************/ 14926 14927 snprintf(buf, sizeof(buf), "fp %d rcq chain", i); 14928 if (bxe_dma_alloc(sc, (BCM_PAGE_SIZE * RCQ_NUM_PAGES), 14929 &fp->rcq_dma, buf) != 0) { 14930 /* XXX unwind and free previous fastpath allocations */ 14931 BLOGE(sc, "Failed to alloc %s\n", buf); 14932 return (1); 14933 } else { 14934 fp->rcq_chain = (union eth_rx_cqe *)fp->rcq_dma.vaddr; 14935 } 14936 14937 /* link together the rcq chain pages */ 14938 for (j = 1; j <= RCQ_NUM_PAGES; j++) { 14939 /* index into the rcq chain array to last entry per page */ 14940 struct eth_rx_cqe_next_page *rx_cqe_next = 14941 (struct eth_rx_cqe_next_page *) 14942 &fp->rcq_chain[RCQ_TOTAL_PER_PAGE * j - 1]; 14943 /* point to the next page and wrap from last page */ 14944 busaddr = (fp->rcq_dma.paddr + 14945 (BCM_PAGE_SIZE * (j % RCQ_NUM_PAGES))); 14946 rx_cqe_next->addr_hi = htole32(U64_HI(busaddr)); 14947 rx_cqe_next->addr_lo = htole32(U64_LO(busaddr)); 14948 } 14949 14950 /*******************/ 14951 /* FP RX SGE CHAIN */ 14952 /*******************/ 14953 14954 snprintf(buf, sizeof(buf), "fp %d sge chain", i); 14955 if (bxe_dma_alloc(sc, (BCM_PAGE_SIZE * RX_SGE_NUM_PAGES), 14956 &fp->rx_sge_dma, buf) != 0) { 14957 /* XXX unwind and free previous fastpath allocations */ 14958 BLOGE(sc, "Failed to alloc %s\n", buf); 14959 return (1); 14960 } else { 14961 fp->rx_sge_chain = (struct eth_rx_sge *)fp->rx_sge_dma.vaddr; 14962 } 14963 14964 /* link together the sge chain pages */ 14965 for (j = 1; j <= RX_SGE_NUM_PAGES; j++) { 14966 /* index into the rcq chain array to last entry per page */ 14967 struct eth_rx_sge *rx_sge = 14968 &fp->rx_sge_chain[RX_SGE_TOTAL_PER_PAGE * j - 2]; 14969 /* point to the next page and wrap from last page */ 14970 busaddr = (fp->rx_sge_dma.paddr + 14971 (BCM_PAGE_SIZE * (j % RX_SGE_NUM_PAGES))); 14972 rx_sge->addr_hi = htole32(U64_HI(busaddr)); 14973 rx_sge->addr_lo = htole32(U64_LO(busaddr)); 14974 } 14975 14976 /***********************/ 14977 /* FP TX MBUF DMA MAPS */ 14978 /***********************/ 14979 14980 /* set required sizes before mapping to conserve resources */ 14981 if (if_getcapenable(sc->ifp) & (IFCAP_TSO4 | IFCAP_TSO6)) { 14982 max_size = BXE_TSO_MAX_SIZE; 14983 max_segments = BXE_TSO_MAX_SEGMENTS; 14984 max_seg_size = BXE_TSO_MAX_SEG_SIZE; 14985 } else { 14986 max_size = (MCLBYTES * BXE_MAX_SEGMENTS); 14987 max_segments = BXE_MAX_SEGMENTS; 14988 max_seg_size = MCLBYTES; 14989 } 14990 14991 /* create a dma tag for the tx mbufs */ 14992 rc = bus_dma_tag_create(sc->parent_dma_tag, /* parent tag */ 14993 1, /* alignment */ 14994 0, /* boundary limit */ 14995 BUS_SPACE_MAXADDR, /* restricted low */ 14996 BUS_SPACE_MAXADDR, /* restricted hi */ 14997 NULL, /* addr filter() */ 14998 NULL, /* addr filter() arg */ 14999 max_size, /* max map size */ 15000 max_segments, /* num discontinuous */ 15001 max_seg_size, /* max seg size */ 15002 0, /* flags */ 15003 NULL, /* lock() */ 15004 NULL, /* lock() arg */ 15005 &fp->tx_mbuf_tag); /* returned dma tag */ 15006 if (rc != 0) { 15007 /* XXX unwind and free previous fastpath allocations */ 15008 BLOGE(sc, "Failed to create dma tag for " 15009 "'fp %d tx mbufs' (%d)\n", i, rc); 15010 return (1); 15011 } 15012 15013 /* create dma maps for each of the tx mbuf clusters */ 15014 for (j = 0; j < TX_BD_TOTAL; j++) { 15015 if (bus_dmamap_create(fp->tx_mbuf_tag, 15016 BUS_DMA_NOWAIT, 15017 &fp->tx_mbuf_chain[j].m_map)) { 15018 /* XXX unwind and free previous fastpath allocations */ 15019 BLOGE(sc, "Failed to create dma map for " 15020 "'fp %d tx mbuf %d' (%d)\n", i, j, rc); 15021 return (1); 15022 } 15023 } 15024 15025 /***********************/ 15026 /* FP RX MBUF DMA MAPS */ 15027 /***********************/ 15028 15029 /* create a dma tag for the rx mbufs */ 15030 rc = bus_dma_tag_create(sc->parent_dma_tag, /* parent tag */ 15031 1, /* alignment */ 15032 0, /* boundary limit */ 15033 BUS_SPACE_MAXADDR, /* restricted low */ 15034 BUS_SPACE_MAXADDR, /* restricted hi */ 15035 NULL, /* addr filter() */ 15036 NULL, /* addr filter() arg */ 15037 MJUM9BYTES, /* max map size */ 15038 1, /* num discontinuous */ 15039 MJUM9BYTES, /* max seg size */ 15040 0, /* flags */ 15041 NULL, /* lock() */ 15042 NULL, /* lock() arg */ 15043 &fp->rx_mbuf_tag); /* returned dma tag */ 15044 if (rc != 0) { 15045 /* XXX unwind and free previous fastpath allocations */ 15046 BLOGE(sc, "Failed to create dma tag for " 15047 "'fp %d rx mbufs' (%d)\n", i, rc); 15048 return (1); 15049 } 15050 15051 /* create dma maps for each of the rx mbuf clusters */ 15052 for (j = 0; j < RX_BD_TOTAL; j++) { 15053 if (bus_dmamap_create(fp->rx_mbuf_tag, 15054 BUS_DMA_NOWAIT, 15055 &fp->rx_mbuf_chain[j].m_map)) { 15056 /* XXX unwind and free previous fastpath allocations */ 15057 BLOGE(sc, "Failed to create dma map for " 15058 "'fp %d rx mbuf %d' (%d)\n", i, j, rc); 15059 return (1); 15060 } 15061 } 15062 15063 /* create dma map for the spare rx mbuf cluster */ 15064 if (bus_dmamap_create(fp->rx_mbuf_tag, 15065 BUS_DMA_NOWAIT, 15066 &fp->rx_mbuf_spare_map)) { 15067 /* XXX unwind and free previous fastpath allocations */ 15068 BLOGE(sc, "Failed to create dma map for " 15069 "'fp %d spare rx mbuf' (%d)\n", i, rc); 15070 return (1); 15071 } 15072 15073 /***************************/ 15074 /* FP RX SGE MBUF DMA MAPS */ 15075 /***************************/ 15076 15077 /* create a dma tag for the rx sge mbufs */ 15078 rc = bus_dma_tag_create(sc->parent_dma_tag, /* parent tag */ 15079 1, /* alignment */ 15080 0, /* boundary limit */ 15081 BUS_SPACE_MAXADDR, /* restricted low */ 15082 BUS_SPACE_MAXADDR, /* restricted hi */ 15083 NULL, /* addr filter() */ 15084 NULL, /* addr filter() arg */ 15085 BCM_PAGE_SIZE, /* max map size */ 15086 1, /* num discontinuous */ 15087 BCM_PAGE_SIZE, /* max seg size */ 15088 0, /* flags */ 15089 NULL, /* lock() */ 15090 NULL, /* lock() arg */ 15091 &fp->rx_sge_mbuf_tag); /* returned dma tag */ 15092 if (rc != 0) { 15093 /* XXX unwind and free previous fastpath allocations */ 15094 BLOGE(sc, "Failed to create dma tag for " 15095 "'fp %d rx sge mbufs' (%d)\n", i, rc); 15096 return (1); 15097 } 15098 15099 /* create dma maps for the rx sge mbuf clusters */ 15100 for (j = 0; j < RX_SGE_TOTAL; j++) { 15101 if (bus_dmamap_create(fp->rx_sge_mbuf_tag, 15102 BUS_DMA_NOWAIT, 15103 &fp->rx_sge_mbuf_chain[j].m_map)) { 15104 /* XXX unwind and free previous fastpath allocations */ 15105 BLOGE(sc, "Failed to create dma map for " 15106 "'fp %d rx sge mbuf %d' (%d)\n", i, j, rc); 15107 return (1); 15108 } 15109 } 15110 15111 /* create dma map for the spare rx sge mbuf cluster */ 15112 if (bus_dmamap_create(fp->rx_sge_mbuf_tag, 15113 BUS_DMA_NOWAIT, 15114 &fp->rx_sge_mbuf_spare_map)) { 15115 /* XXX unwind and free previous fastpath allocations */ 15116 BLOGE(sc, "Failed to create dma map for " 15117 "'fp %d spare rx sge mbuf' (%d)\n", i, rc); 15118 return (1); 15119 } 15120 15121 /***************************/ 15122 /* FP RX TPA MBUF DMA MAPS */ 15123 /***************************/ 15124 15125 /* create dma maps for the rx tpa mbuf clusters */ 15126 max_agg_queues = MAX_AGG_QS(sc); 15127 15128 for (j = 0; j < max_agg_queues; j++) { 15129 if (bus_dmamap_create(fp->rx_mbuf_tag, 15130 BUS_DMA_NOWAIT, 15131 &fp->rx_tpa_info[j].bd.m_map)) { 15132 /* XXX unwind and free previous fastpath allocations */ 15133 BLOGE(sc, "Failed to create dma map for " 15134 "'fp %d rx tpa mbuf %d' (%d)\n", i, j, rc); 15135 return (1); 15136 } 15137 } 15138 15139 /* create dma map for the spare rx tpa mbuf cluster */ 15140 if (bus_dmamap_create(fp->rx_mbuf_tag, 15141 BUS_DMA_NOWAIT, 15142 &fp->rx_tpa_info_mbuf_spare_map)) { 15143 /* XXX unwind and free previous fastpath allocations */ 15144 BLOGE(sc, "Failed to create dma map for " 15145 "'fp %d spare rx tpa mbuf' (%d)\n", i, rc); 15146 return (1); 15147 } 15148 15149 bxe_init_sge_ring_bit_mask(fp); 15150 } 15151 15152 return (0); 15153 } 15154 15155 static void 15156 bxe_free_hsi_mem(struct bxe_softc *sc) 15157 { 15158 struct bxe_fastpath *fp; 15159 int max_agg_queues; 15160 int i, j; 15161 15162 if (sc->parent_dma_tag == NULL) { 15163 return; /* assume nothing was allocated */ 15164 } 15165 15166 for (i = 0; i < sc->num_queues; i++) { 15167 fp = &sc->fp[i]; 15168 15169 /*******************/ 15170 /* FP STATUS BLOCK */ 15171 /*******************/ 15172 15173 bxe_dma_free(sc, &fp->sb_dma); 15174 memset(&fp->status_block, 0, sizeof(fp->status_block)); 15175 15176 /******************/ 15177 /* FP TX BD CHAIN */ 15178 /******************/ 15179 15180 bxe_dma_free(sc, &fp->tx_dma); 15181 fp->tx_chain = NULL; 15182 15183 /******************/ 15184 /* FP RX BD CHAIN */ 15185 /******************/ 15186 15187 bxe_dma_free(sc, &fp->rx_dma); 15188 fp->rx_chain = NULL; 15189 15190 /*******************/ 15191 /* FP RX RCQ CHAIN */ 15192 /*******************/ 15193 15194 bxe_dma_free(sc, &fp->rcq_dma); 15195 fp->rcq_chain = NULL; 15196 15197 /*******************/ 15198 /* FP RX SGE CHAIN */ 15199 /*******************/ 15200 15201 bxe_dma_free(sc, &fp->rx_sge_dma); 15202 fp->rx_sge_chain = NULL; 15203 15204 /***********************/ 15205 /* FP TX MBUF DMA MAPS */ 15206 /***********************/ 15207 15208 if (fp->tx_mbuf_tag != NULL) { 15209 for (j = 0; j < TX_BD_TOTAL; j++) { 15210 if (fp->tx_mbuf_chain[j].m_map != NULL) { 15211 bus_dmamap_unload(fp->tx_mbuf_tag, 15212 fp->tx_mbuf_chain[j].m_map); 15213 bus_dmamap_destroy(fp->tx_mbuf_tag, 15214 fp->tx_mbuf_chain[j].m_map); 15215 } 15216 } 15217 15218 bus_dma_tag_destroy(fp->tx_mbuf_tag); 15219 fp->tx_mbuf_tag = NULL; 15220 } 15221 15222 /***********************/ 15223 /* FP RX MBUF DMA MAPS */ 15224 /***********************/ 15225 15226 if (fp->rx_mbuf_tag != NULL) { 15227 for (j = 0; j < RX_BD_TOTAL; j++) { 15228 if (fp->rx_mbuf_chain[j].m_map != NULL) { 15229 bus_dmamap_unload(fp->rx_mbuf_tag, 15230 fp->rx_mbuf_chain[j].m_map); 15231 bus_dmamap_destroy(fp->rx_mbuf_tag, 15232 fp->rx_mbuf_chain[j].m_map); 15233 } 15234 } 15235 15236 if (fp->rx_mbuf_spare_map != NULL) { 15237 bus_dmamap_unload(fp->rx_mbuf_tag, fp->rx_mbuf_spare_map); 15238 bus_dmamap_destroy(fp->rx_mbuf_tag, fp->rx_mbuf_spare_map); 15239 } 15240 15241 /***************************/ 15242 /* FP RX TPA MBUF DMA MAPS */ 15243 /***************************/ 15244 15245 max_agg_queues = MAX_AGG_QS(sc); 15246 15247 for (j = 0; j < max_agg_queues; j++) { 15248 if (fp->rx_tpa_info[j].bd.m_map != NULL) { 15249 bus_dmamap_unload(fp->rx_mbuf_tag, 15250 fp->rx_tpa_info[j].bd.m_map); 15251 bus_dmamap_destroy(fp->rx_mbuf_tag, 15252 fp->rx_tpa_info[j].bd.m_map); 15253 } 15254 } 15255 15256 if (fp->rx_tpa_info_mbuf_spare_map != NULL) { 15257 bus_dmamap_unload(fp->rx_mbuf_tag, 15258 fp->rx_tpa_info_mbuf_spare_map); 15259 bus_dmamap_destroy(fp->rx_mbuf_tag, 15260 fp->rx_tpa_info_mbuf_spare_map); 15261 } 15262 15263 bus_dma_tag_destroy(fp->rx_mbuf_tag); 15264 fp->rx_mbuf_tag = NULL; 15265 } 15266 15267 /***************************/ 15268 /* FP RX SGE MBUF DMA MAPS */ 15269 /***************************/ 15270 15271 if (fp->rx_sge_mbuf_tag != NULL) { 15272 for (j = 0; j < RX_SGE_TOTAL; j++) { 15273 if (fp->rx_sge_mbuf_chain[j].m_map != NULL) { 15274 bus_dmamap_unload(fp->rx_sge_mbuf_tag, 15275 fp->rx_sge_mbuf_chain[j].m_map); 15276 bus_dmamap_destroy(fp->rx_sge_mbuf_tag, 15277 fp->rx_sge_mbuf_chain[j].m_map); 15278 } 15279 } 15280 15281 if (fp->rx_sge_mbuf_spare_map != NULL) { 15282 bus_dmamap_unload(fp->rx_sge_mbuf_tag, 15283 fp->rx_sge_mbuf_spare_map); 15284 bus_dmamap_destroy(fp->rx_sge_mbuf_tag, 15285 fp->rx_sge_mbuf_spare_map); 15286 } 15287 15288 bus_dma_tag_destroy(fp->rx_sge_mbuf_tag); 15289 fp->rx_sge_mbuf_tag = NULL; 15290 } 15291 } 15292 15293 /***************************/ 15294 /* FW DECOMPRESSION BUFFER */ 15295 /***************************/ 15296 15297 bxe_dma_free(sc, &sc->gz_buf_dma); 15298 sc->gz_buf = NULL; 15299 free(sc->gz_strm, M_DEVBUF); 15300 sc->gz_strm = NULL; 15301 15302 /*******************/ 15303 /* SLOW PATH QUEUE */ 15304 /*******************/ 15305 15306 bxe_dma_free(sc, &sc->spq_dma); 15307 sc->spq = NULL; 15308 15309 /*************/ 15310 /* SLOW PATH */ 15311 /*************/ 15312 15313 bxe_dma_free(sc, &sc->sp_dma); 15314 sc->sp = NULL; 15315 15316 /***************/ 15317 /* EVENT QUEUE */ 15318 /***************/ 15319 15320 bxe_dma_free(sc, &sc->eq_dma); 15321 sc->eq = NULL; 15322 15323 /************************/ 15324 /* DEFAULT STATUS BLOCK */ 15325 /************************/ 15326 15327 bxe_dma_free(sc, &sc->def_sb_dma); 15328 sc->def_sb = NULL; 15329 15330 bus_dma_tag_destroy(sc->parent_dma_tag); 15331 sc->parent_dma_tag = NULL; 15332 } 15333 15334 /* 15335 * Previous driver DMAE transaction may have occurred when pre-boot stage 15336 * ended and boot began. This would invalidate the addresses of the 15337 * transaction, resulting in was-error bit set in the PCI causing all 15338 * hw-to-host PCIe transactions to timeout. If this happened we want to clear 15339 * the interrupt which detected this from the pglueb and the was-done bit 15340 */ 15341 static void 15342 bxe_prev_interrupted_dmae(struct bxe_softc *sc) 15343 { 15344 uint32_t val; 15345 15346 if (!CHIP_IS_E1x(sc)) { 15347 val = REG_RD(sc, PGLUE_B_REG_PGLUE_B_INT_STS); 15348 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN) { 15349 BLOGD(sc, DBG_LOAD, 15350 "Clearing 'was-error' bit that was set in pglueb"); 15351 REG_WR(sc, PGLUE_B_REG_WAS_ERROR_PF_7_0_CLR, 1 << SC_FUNC(sc)); 15352 } 15353 } 15354 } 15355 15356 static int 15357 bxe_prev_mcp_done(struct bxe_softc *sc) 15358 { 15359 uint32_t rc = bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_DONE, 15360 DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET); 15361 if (!rc) { 15362 BLOGE(sc, "MCP response failure, aborting\n"); 15363 return (-1); 15364 } 15365 15366 return (0); 15367 } 15368 15369 static struct bxe_prev_list_node * 15370 bxe_prev_path_get_entry(struct bxe_softc *sc) 15371 { 15372 struct bxe_prev_list_node *tmp; 15373 15374 LIST_FOREACH(tmp, &bxe_prev_list, node) { 15375 if ((sc->pcie_bus == tmp->bus) && 15376 (sc->pcie_device == tmp->slot) && 15377 (SC_PATH(sc) == tmp->path)) { 15378 return (tmp); 15379 } 15380 } 15381 15382 return (NULL); 15383 } 15384 15385 static uint8_t 15386 bxe_prev_is_path_marked(struct bxe_softc *sc) 15387 { 15388 struct bxe_prev_list_node *tmp; 15389 int rc = FALSE; 15390 15391 mtx_lock(&bxe_prev_mtx); 15392 15393 tmp = bxe_prev_path_get_entry(sc); 15394 if (tmp) { 15395 if (tmp->aer) { 15396 BLOGD(sc, DBG_LOAD, 15397 "Path %d/%d/%d was marked by AER\n", 15398 sc->pcie_bus, sc->pcie_device, SC_PATH(sc)); 15399 } else { 15400 rc = TRUE; 15401 BLOGD(sc, DBG_LOAD, 15402 "Path %d/%d/%d was already cleaned from previous drivers\n", 15403 sc->pcie_bus, sc->pcie_device, SC_PATH(sc)); 15404 } 15405 } 15406 15407 mtx_unlock(&bxe_prev_mtx); 15408 15409 return (rc); 15410 } 15411 15412 static int 15413 bxe_prev_mark_path(struct bxe_softc *sc, 15414 uint8_t after_undi) 15415 { 15416 struct bxe_prev_list_node *tmp; 15417 15418 mtx_lock(&bxe_prev_mtx); 15419 15420 /* Check whether the entry for this path already exists */ 15421 tmp = bxe_prev_path_get_entry(sc); 15422 if (tmp) { 15423 if (!tmp->aer) { 15424 BLOGD(sc, DBG_LOAD, 15425 "Re-marking AER in path %d/%d/%d\n", 15426 sc->pcie_bus, sc->pcie_device, SC_PATH(sc)); 15427 } else { 15428 BLOGD(sc, DBG_LOAD, 15429 "Removing AER indication from path %d/%d/%d\n", 15430 sc->pcie_bus, sc->pcie_device, SC_PATH(sc)); 15431 tmp->aer = 0; 15432 } 15433 15434 mtx_unlock(&bxe_prev_mtx); 15435 return (0); 15436 } 15437 15438 mtx_unlock(&bxe_prev_mtx); 15439 15440 /* Create an entry for this path and add it */ 15441 tmp = malloc(sizeof(struct bxe_prev_list_node), M_DEVBUF, 15442 (M_NOWAIT | M_ZERO)); 15443 if (!tmp) { 15444 BLOGE(sc, "Failed to allocate 'bxe_prev_list_node'\n"); 15445 return (-1); 15446 } 15447 15448 tmp->bus = sc->pcie_bus; 15449 tmp->slot = sc->pcie_device; 15450 tmp->path = SC_PATH(sc); 15451 tmp->aer = 0; 15452 tmp->undi = after_undi ? (1 << SC_PORT(sc)) : 0; 15453 15454 mtx_lock(&bxe_prev_mtx); 15455 15456 BLOGD(sc, DBG_LOAD, 15457 "Marked path %d/%d/%d - finished previous unload\n", 15458 sc->pcie_bus, sc->pcie_device, SC_PATH(sc)); 15459 LIST_INSERT_HEAD(&bxe_prev_list, tmp, node); 15460 15461 mtx_unlock(&bxe_prev_mtx); 15462 15463 return (0); 15464 } 15465 15466 static int 15467 bxe_do_flr(struct bxe_softc *sc) 15468 { 15469 int i; 15470 15471 /* only E2 and onwards support FLR */ 15472 if (CHIP_IS_E1x(sc)) { 15473 BLOGD(sc, DBG_LOAD, "FLR not supported in E1/E1H\n"); 15474 return (-1); 15475 } 15476 15477 /* only bootcode REQ_BC_VER_4_INITIATE_FLR and onwards support flr */ 15478 if (sc->devinfo.bc_ver < REQ_BC_VER_4_INITIATE_FLR) { 15479 BLOGD(sc, DBG_LOAD, "FLR not supported by BC_VER: 0x%08x\n", 15480 sc->devinfo.bc_ver); 15481 return (-1); 15482 } 15483 15484 /* Wait for Transaction Pending bit clean */ 15485 for (i = 0; i < 4; i++) { 15486 if (i) { 15487 DELAY(((1 << (i - 1)) * 100) * 1000); 15488 } 15489 15490 if (!bxe_is_pcie_pending(sc)) { 15491 goto clear; 15492 } 15493 } 15494 15495 BLOGE(sc, "PCIE transaction is not cleared, " 15496 "proceeding with reset anyway\n"); 15497 15498 clear: 15499 15500 BLOGD(sc, DBG_LOAD, "Initiating FLR\n"); 15501 bxe_fw_command(sc, DRV_MSG_CODE_INITIATE_FLR, 0); 15502 15503 return (0); 15504 } 15505 15506 struct bxe_mac_vals { 15507 uint32_t xmac_addr; 15508 uint32_t xmac_val; 15509 uint32_t emac_addr; 15510 uint32_t emac_val; 15511 uint32_t umac_addr; 15512 uint32_t umac_val; 15513 uint32_t bmac_addr; 15514 uint32_t bmac_val[2]; 15515 }; 15516 15517 static void 15518 bxe_prev_unload_close_mac(struct bxe_softc *sc, 15519 struct bxe_mac_vals *vals) 15520 { 15521 uint32_t val, base_addr, offset, mask, reset_reg; 15522 uint8_t mac_stopped = FALSE; 15523 uint8_t port = SC_PORT(sc); 15524 uint32_t wb_data[2]; 15525 15526 /* reset addresses as they also mark which values were changed */ 15527 vals->bmac_addr = 0; 15528 vals->umac_addr = 0; 15529 vals->xmac_addr = 0; 15530 vals->emac_addr = 0; 15531 15532 reset_reg = REG_RD(sc, MISC_REG_RESET_REG_2); 15533 15534 if (!CHIP_IS_E3(sc)) { 15535 val = REG_RD(sc, NIG_REG_BMAC0_REGS_OUT_EN + port * 4); 15536 mask = MISC_REGISTERS_RESET_REG_2_RST_BMAC0 << port; 15537 if ((mask & reset_reg) && val) { 15538 BLOGD(sc, DBG_LOAD, "Disable BMAC Rx\n"); 15539 base_addr = SC_PORT(sc) ? NIG_REG_INGRESS_BMAC1_MEM 15540 : NIG_REG_INGRESS_BMAC0_MEM; 15541 offset = CHIP_IS_E2(sc) ? BIGMAC2_REGISTER_BMAC_CONTROL 15542 : BIGMAC_REGISTER_BMAC_CONTROL; 15543 15544 /* 15545 * use rd/wr since we cannot use dmae. This is safe 15546 * since MCP won't access the bus due to the request 15547 * to unload, and no function on the path can be 15548 * loaded at this time. 15549 */ 15550 wb_data[0] = REG_RD(sc, base_addr + offset); 15551 wb_data[1] = REG_RD(sc, base_addr + offset + 0x4); 15552 vals->bmac_addr = base_addr + offset; 15553 vals->bmac_val[0] = wb_data[0]; 15554 vals->bmac_val[1] = wb_data[1]; 15555 wb_data[0] &= ~ELINK_BMAC_CONTROL_RX_ENABLE; 15556 REG_WR(sc, vals->bmac_addr, wb_data[0]); 15557 REG_WR(sc, vals->bmac_addr + 0x4, wb_data[1]); 15558 } 15559 15560 BLOGD(sc, DBG_LOAD, "Disable EMAC Rx\n"); 15561 vals->emac_addr = NIG_REG_NIG_EMAC0_EN + SC_PORT(sc)*4; 15562 vals->emac_val = REG_RD(sc, vals->emac_addr); 15563 REG_WR(sc, vals->emac_addr, 0); 15564 mac_stopped = TRUE; 15565 } else { 15566 if (reset_reg & MISC_REGISTERS_RESET_REG_2_XMAC) { 15567 BLOGD(sc, DBG_LOAD, "Disable XMAC Rx\n"); 15568 base_addr = SC_PORT(sc) ? GRCBASE_XMAC1 : GRCBASE_XMAC0; 15569 val = REG_RD(sc, base_addr + XMAC_REG_PFC_CTRL_HI); 15570 REG_WR(sc, base_addr + XMAC_REG_PFC_CTRL_HI, val & ~(1 << 1)); 15571 REG_WR(sc, base_addr + XMAC_REG_PFC_CTRL_HI, val | (1 << 1)); 15572 vals->xmac_addr = base_addr + XMAC_REG_CTRL; 15573 vals->xmac_val = REG_RD(sc, vals->xmac_addr); 15574 REG_WR(sc, vals->xmac_addr, 0); 15575 mac_stopped = TRUE; 15576 } 15577 15578 mask = MISC_REGISTERS_RESET_REG_2_UMAC0 << port; 15579 if (mask & reset_reg) { 15580 BLOGD(sc, DBG_LOAD, "Disable UMAC Rx\n"); 15581 base_addr = SC_PORT(sc) ? GRCBASE_UMAC1 : GRCBASE_UMAC0; 15582 vals->umac_addr = base_addr + UMAC_REG_COMMAND_CONFIG; 15583 vals->umac_val = REG_RD(sc, vals->umac_addr); 15584 REG_WR(sc, vals->umac_addr, 0); 15585 mac_stopped = TRUE; 15586 } 15587 } 15588 15589 if (mac_stopped) { 15590 DELAY(20000); 15591 } 15592 } 15593 15594 #define BXE_PREV_UNDI_PROD_ADDR(p) (BAR_TSTRORM_INTMEM + 0x1508 + ((p) << 4)) 15595 #define BXE_PREV_UNDI_RCQ(val) ((val) & 0xffff) 15596 #define BXE_PREV_UNDI_BD(val) ((val) >> 16 & 0xffff) 15597 #define BXE_PREV_UNDI_PROD(rcq, bd) ((bd) << 16 | (rcq)) 15598 15599 static void 15600 bxe_prev_unload_undi_inc(struct bxe_softc *sc, 15601 uint8_t port, 15602 uint8_t inc) 15603 { 15604 uint16_t rcq, bd; 15605 uint32_t tmp_reg = REG_RD(sc, BXE_PREV_UNDI_PROD_ADDR(port)); 15606 15607 rcq = BXE_PREV_UNDI_RCQ(tmp_reg) + inc; 15608 bd = BXE_PREV_UNDI_BD(tmp_reg) + inc; 15609 15610 tmp_reg = BXE_PREV_UNDI_PROD(rcq, bd); 15611 REG_WR(sc, BXE_PREV_UNDI_PROD_ADDR(port), tmp_reg); 15612 15613 BLOGD(sc, DBG_LOAD, 15614 "UNDI producer [%d] rings bd -> 0x%04x, rcq -> 0x%04x\n", 15615 port, bd, rcq); 15616 } 15617 15618 static int 15619 bxe_prev_unload_common(struct bxe_softc *sc) 15620 { 15621 uint32_t reset_reg, tmp_reg = 0, rc; 15622 uint8_t prev_undi = FALSE; 15623 struct bxe_mac_vals mac_vals; 15624 uint32_t timer_count = 1000; 15625 uint32_t prev_brb; 15626 15627 /* 15628 * It is possible a previous function received 'common' answer, 15629 * but hasn't loaded yet, therefore creating a scenario of 15630 * multiple functions receiving 'common' on the same path. 15631 */ 15632 BLOGD(sc, DBG_LOAD, "Common unload Flow\n"); 15633 15634 memset(&mac_vals, 0, sizeof(mac_vals)); 15635 15636 if (bxe_prev_is_path_marked(sc)) { 15637 return (bxe_prev_mcp_done(sc)); 15638 } 15639 15640 reset_reg = REG_RD(sc, MISC_REG_RESET_REG_1); 15641 15642 /* Reset should be performed after BRB is emptied */ 15643 if (reset_reg & MISC_REGISTERS_RESET_REG_1_RST_BRB1) { 15644 /* Close the MAC Rx to prevent BRB from filling up */ 15645 bxe_prev_unload_close_mac(sc, &mac_vals); 15646 15647 /* close LLH filters towards the BRB */ 15648 elink_set_rx_filter(&sc->link_params, 0); 15649 15650 /* 15651 * Check if the UNDI driver was previously loaded. 15652 * UNDI driver initializes CID offset for normal bell to 0x7 15653 */ 15654 if (reset_reg & MISC_REGISTERS_RESET_REG_1_RST_DORQ) { 15655 tmp_reg = REG_RD(sc, DORQ_REG_NORM_CID_OFST); 15656 if (tmp_reg == 0x7) { 15657 BLOGD(sc, DBG_LOAD, "UNDI previously loaded\n"); 15658 prev_undi = TRUE; 15659 /* clear the UNDI indication */ 15660 REG_WR(sc, DORQ_REG_NORM_CID_OFST, 0); 15661 /* clear possible idle check errors */ 15662 REG_RD(sc, NIG_REG_NIG_INT_STS_CLR_0); 15663 } 15664 } 15665 15666 /* wait until BRB is empty */ 15667 tmp_reg = REG_RD(sc, BRB1_REG_NUM_OF_FULL_BLOCKS); 15668 while (timer_count) { 15669 prev_brb = tmp_reg; 15670 15671 tmp_reg = REG_RD(sc, BRB1_REG_NUM_OF_FULL_BLOCKS); 15672 if (!tmp_reg) { 15673 break; 15674 } 15675 15676 BLOGD(sc, DBG_LOAD, "BRB still has 0x%08x\n", tmp_reg); 15677 15678 /* reset timer as long as BRB actually gets emptied */ 15679 if (prev_brb > tmp_reg) { 15680 timer_count = 1000; 15681 } else { 15682 timer_count--; 15683 } 15684 15685 /* If UNDI resides in memory, manually increment it */ 15686 if (prev_undi) { 15687 bxe_prev_unload_undi_inc(sc, SC_PORT(sc), 1); 15688 } 15689 15690 DELAY(10); 15691 } 15692 15693 if (!timer_count) { 15694 BLOGE(sc, "Failed to empty BRB\n"); 15695 } 15696 } 15697 15698 /* No packets are in the pipeline, path is ready for reset */ 15699 bxe_reset_common(sc); 15700 15701 if (mac_vals.xmac_addr) { 15702 REG_WR(sc, mac_vals.xmac_addr, mac_vals.xmac_val); 15703 } 15704 if (mac_vals.umac_addr) { 15705 REG_WR(sc, mac_vals.umac_addr, mac_vals.umac_val); 15706 } 15707 if (mac_vals.emac_addr) { 15708 REG_WR(sc, mac_vals.emac_addr, mac_vals.emac_val); 15709 } 15710 if (mac_vals.bmac_addr) { 15711 REG_WR(sc, mac_vals.bmac_addr, mac_vals.bmac_val[0]); 15712 REG_WR(sc, mac_vals.bmac_addr + 4, mac_vals.bmac_val[1]); 15713 } 15714 15715 rc = bxe_prev_mark_path(sc, prev_undi); 15716 if (rc) { 15717 bxe_prev_mcp_done(sc); 15718 return (rc); 15719 } 15720 15721 return (bxe_prev_mcp_done(sc)); 15722 } 15723 15724 static int 15725 bxe_prev_unload_uncommon(struct bxe_softc *sc) 15726 { 15727 int rc; 15728 15729 BLOGD(sc, DBG_LOAD, "Uncommon unload Flow\n"); 15730 15731 /* Test if previous unload process was already finished for this path */ 15732 if (bxe_prev_is_path_marked(sc)) { 15733 return (bxe_prev_mcp_done(sc)); 15734 } 15735 15736 BLOGD(sc, DBG_LOAD, "Path is unmarked\n"); 15737 15738 /* 15739 * If function has FLR capabilities, and existing FW version matches 15740 * the one required, then FLR will be sufficient to clean any residue 15741 * left by previous driver 15742 */ 15743 rc = bxe_nic_load_analyze_req(sc, FW_MSG_CODE_DRV_LOAD_FUNCTION); 15744 if (!rc) { 15745 /* fw version is good */ 15746 BLOGD(sc, DBG_LOAD, "FW version matches our own, attempting FLR\n"); 15747 rc = bxe_do_flr(sc); 15748 } 15749 15750 if (!rc) { 15751 /* FLR was performed */ 15752 BLOGD(sc, DBG_LOAD, "FLR successful\n"); 15753 return (0); 15754 } 15755 15756 BLOGD(sc, DBG_LOAD, "Could not FLR\n"); 15757 15758 /* Close the MCP request, return failure*/ 15759 rc = bxe_prev_mcp_done(sc); 15760 if (!rc) { 15761 rc = BXE_PREV_WAIT_NEEDED; 15762 } 15763 15764 return (rc); 15765 } 15766 15767 static int 15768 bxe_prev_unload(struct bxe_softc *sc) 15769 { 15770 int time_counter = 10; 15771 uint32_t fw, hw_lock_reg, hw_lock_val; 15772 uint32_t rc = 0; 15773 15774 /* 15775 * Clear HW from errors which may have resulted from an interrupted 15776 * DMAE transaction. 15777 */ 15778 bxe_prev_interrupted_dmae(sc); 15779 15780 /* Release previously held locks */ 15781 hw_lock_reg = 15782 (SC_FUNC(sc) <= 5) ? 15783 (MISC_REG_DRIVER_CONTROL_1 + SC_FUNC(sc) * 8) : 15784 (MISC_REG_DRIVER_CONTROL_7 + (SC_FUNC(sc) - 6) * 8); 15785 15786 hw_lock_val = (REG_RD(sc, hw_lock_reg)); 15787 if (hw_lock_val) { 15788 if (hw_lock_val & HW_LOCK_RESOURCE_NVRAM) { 15789 BLOGD(sc, DBG_LOAD, "Releasing previously held NVRAM lock\n"); 15790 REG_WR(sc, MCP_REG_MCPR_NVM_SW_ARB, 15791 (MCPR_NVM_SW_ARB_ARB_REQ_CLR1 << SC_PORT(sc))); 15792 } 15793 BLOGD(sc, DBG_LOAD, "Releasing previously held HW lock\n"); 15794 REG_WR(sc, hw_lock_reg, 0xffffffff); 15795 } else { 15796 BLOGD(sc, DBG_LOAD, "No need to release HW/NVRAM locks\n"); 15797 } 15798 15799 if (MCPR_ACCESS_LOCK_LOCK & REG_RD(sc, MCP_REG_MCPR_ACCESS_LOCK)) { 15800 BLOGD(sc, DBG_LOAD, "Releasing previously held ALR\n"); 15801 REG_WR(sc, MCP_REG_MCPR_ACCESS_LOCK, 0); 15802 } 15803 15804 do { 15805 /* Lock MCP using an unload request */ 15806 fw = bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS, 0); 15807 if (!fw) { 15808 BLOGE(sc, "MCP response failure, aborting\n"); 15809 rc = -1; 15810 break; 15811 } 15812 15813 if (fw == FW_MSG_CODE_DRV_UNLOAD_COMMON) { 15814 rc = bxe_prev_unload_common(sc); 15815 break; 15816 } 15817 15818 /* non-common reply from MCP night require looping */ 15819 rc = bxe_prev_unload_uncommon(sc); 15820 if (rc != BXE_PREV_WAIT_NEEDED) { 15821 break; 15822 } 15823 15824 DELAY(20000); 15825 } while (--time_counter); 15826 15827 if (!time_counter || rc) { 15828 BLOGE(sc, "Failed to unload previous driver!" 15829 " time_counter %d rc %d\n", time_counter, rc); 15830 rc = -1; 15831 } 15832 15833 return (rc); 15834 } 15835 15836 void 15837 bxe_dcbx_set_state(struct bxe_softc *sc, 15838 uint8_t dcb_on, 15839 uint32_t dcbx_enabled) 15840 { 15841 if (!CHIP_IS_E1x(sc)) { 15842 sc->dcb_state = dcb_on; 15843 sc->dcbx_enabled = dcbx_enabled; 15844 } else { 15845 sc->dcb_state = FALSE; 15846 sc->dcbx_enabled = BXE_DCBX_ENABLED_INVALID; 15847 } 15848 BLOGD(sc, DBG_LOAD, 15849 "DCB state [%s:%s]\n", 15850 dcb_on ? "ON" : "OFF", 15851 (dcbx_enabled == BXE_DCBX_ENABLED_OFF) ? "user-mode" : 15852 (dcbx_enabled == BXE_DCBX_ENABLED_ON_NEG_OFF) ? "on-chip static" : 15853 (dcbx_enabled == BXE_DCBX_ENABLED_ON_NEG_ON) ? 15854 "on-chip with negotiation" : "invalid"); 15855 } 15856 15857 /* must be called after sriov-enable */ 15858 static int 15859 bxe_set_qm_cid_count(struct bxe_softc *sc) 15860 { 15861 int cid_count = BXE_L2_MAX_CID(sc); 15862 15863 if (IS_SRIOV(sc)) { 15864 cid_count += BXE_VF_CIDS; 15865 } 15866 15867 if (CNIC_SUPPORT(sc)) { 15868 cid_count += CNIC_CID_MAX; 15869 } 15870 15871 return (roundup(cid_count, QM_CID_ROUND)); 15872 } 15873 15874 static void 15875 bxe_init_multi_cos(struct bxe_softc *sc) 15876 { 15877 int pri, cos; 15878 15879 uint32_t pri_map = 0; /* XXX change to user config */ 15880 15881 for (pri = 0; pri < BXE_MAX_PRIORITY; pri++) { 15882 cos = ((pri_map & (0xf << (pri * 4))) >> (pri * 4)); 15883 if (cos < sc->max_cos) { 15884 sc->prio_to_cos[pri] = cos; 15885 } else { 15886 BLOGW(sc, "Invalid COS %d for priority %d " 15887 "(max COS is %d), setting to 0\n", 15888 cos, pri, (sc->max_cos - 1)); 15889 sc->prio_to_cos[pri] = 0; 15890 } 15891 } 15892 } 15893 15894 static int 15895 bxe_sysctl_state(SYSCTL_HANDLER_ARGS) 15896 { 15897 struct bxe_softc *sc; 15898 int error, result; 15899 15900 result = 0; 15901 error = sysctl_handle_int(oidp, &result, 0, req); 15902 15903 if (error || !req->newptr) { 15904 return (error); 15905 } 15906 15907 if (result == 1) { 15908 uint32_t temp; 15909 sc = (struct bxe_softc *)arg1; 15910 15911 BLOGI(sc, "... dumping driver state ...\n"); 15912 temp = SHMEM2_RD(sc, temperature_in_half_celsius); 15913 BLOGI(sc, "\t Device Temperature = %d Celsius\n", (temp/2)); 15914 } 15915 15916 return (error); 15917 } 15918 15919 static int 15920 bxe_sysctl_eth_stat(SYSCTL_HANDLER_ARGS) 15921 { 15922 struct bxe_softc *sc = (struct bxe_softc *)arg1; 15923 uint32_t *eth_stats = (uint32_t *)&sc->eth_stats; 15924 uint32_t *offset; 15925 uint64_t value = 0; 15926 int index = (int)arg2; 15927 15928 if (index >= BXE_NUM_ETH_STATS) { 15929 BLOGE(sc, "bxe_eth_stats index out of range (%d)\n", index); 15930 return (-1); 15931 } 15932 15933 offset = (eth_stats + bxe_eth_stats_arr[index].offset); 15934 15935 switch (bxe_eth_stats_arr[index].size) { 15936 case 4: 15937 value = (uint64_t)*offset; 15938 break; 15939 case 8: 15940 value = HILO_U64(*offset, *(offset + 1)); 15941 break; 15942 default: 15943 BLOGE(sc, "Invalid bxe_eth_stats size (index=%d size=%d)\n", 15944 index, bxe_eth_stats_arr[index].size); 15945 return (-1); 15946 } 15947 15948 return (sysctl_handle_64(oidp, &value, 0, req)); 15949 } 15950 15951 static int 15952 bxe_sysctl_eth_q_stat(SYSCTL_HANDLER_ARGS) 15953 { 15954 struct bxe_softc *sc = (struct bxe_softc *)arg1; 15955 uint32_t *eth_stats; 15956 uint32_t *offset; 15957 uint64_t value = 0; 15958 uint32_t q_stat = (uint32_t)arg2; 15959 uint32_t fp_index = ((q_stat >> 16) & 0xffff); 15960 uint32_t index = (q_stat & 0xffff); 15961 15962 eth_stats = (uint32_t *)&sc->fp[fp_index].eth_q_stats; 15963 15964 if (index >= BXE_NUM_ETH_Q_STATS) { 15965 BLOGE(sc, "bxe_eth_q_stats index out of range (%d)\n", index); 15966 return (-1); 15967 } 15968 15969 offset = (eth_stats + bxe_eth_q_stats_arr[index].offset); 15970 15971 switch (bxe_eth_q_stats_arr[index].size) { 15972 case 4: 15973 value = (uint64_t)*offset; 15974 break; 15975 case 8: 15976 value = HILO_U64(*offset, *(offset + 1)); 15977 break; 15978 default: 15979 BLOGE(sc, "Invalid bxe_eth_q_stats size (index=%d size=%d)\n", 15980 index, bxe_eth_q_stats_arr[index].size); 15981 return (-1); 15982 } 15983 15984 return (sysctl_handle_64(oidp, &value, 0, req)); 15985 } 15986 15987 static void bxe_force_link_reset(struct bxe_softc *sc) 15988 { 15989 15990 bxe_acquire_phy_lock(sc); 15991 elink_link_reset(&sc->link_params, &sc->link_vars, 1); 15992 bxe_release_phy_lock(sc); 15993 } 15994 15995 static int 15996 bxe_sysctl_pauseparam(SYSCTL_HANDLER_ARGS) 15997 { 15998 struct bxe_softc *sc = (struct bxe_softc *)arg1;; 15999 uint32_t cfg_idx = bxe_get_link_cfg_idx(sc); 16000 int rc = 0; 16001 int error; 16002 int result; 16003 16004 16005 error = sysctl_handle_int(oidp, &sc->bxe_pause_param, 0, req); 16006 16007 if (error || !req->newptr) { 16008 return (error); 16009 } 16010 if ((sc->bxe_pause_param < 0) || (sc->bxe_pause_param > 8)) { 16011 BLOGW(sc, "invalid pause param (%d) - use intergers between 1 & 8\n",sc->bxe_pause_param); 16012 sc->bxe_pause_param = 8; 16013 } 16014 16015 result = (sc->bxe_pause_param << PORT_FEATURE_FLOW_CONTROL_SHIFT); 16016 16017 16018 if((result & 0x400) && !(sc->port.supported[cfg_idx] & ELINK_SUPPORTED_Autoneg)) { 16019 BLOGW(sc, "Does not support Autoneg pause_param %d\n", sc->bxe_pause_param); 16020 return -EINVAL; 16021 } 16022 16023 if(IS_MF(sc)) 16024 return 0; 16025 sc->link_params.req_flow_ctrl[cfg_idx] = ELINK_FLOW_CTRL_AUTO; 16026 if(result & ELINK_FLOW_CTRL_RX) 16027 sc->link_params.req_flow_ctrl[cfg_idx] |= ELINK_FLOW_CTRL_RX; 16028 16029 if(result & ELINK_FLOW_CTRL_TX) 16030 sc->link_params.req_flow_ctrl[cfg_idx] |= ELINK_FLOW_CTRL_TX; 16031 if(sc->link_params.req_flow_ctrl[cfg_idx] == ELINK_FLOW_CTRL_AUTO) 16032 sc->link_params.req_flow_ctrl[cfg_idx] = ELINK_FLOW_CTRL_NONE; 16033 16034 if(result & 0x400) { 16035 if (sc->link_params.req_line_speed[cfg_idx] == ELINK_SPEED_AUTO_NEG) { 16036 sc->link_params.req_flow_ctrl[cfg_idx] = 16037 ELINK_FLOW_CTRL_AUTO; 16038 } 16039 sc->link_params.req_fc_auto_adv = 0; 16040 if (result & ELINK_FLOW_CTRL_RX) 16041 sc->link_params.req_fc_auto_adv |= ELINK_FLOW_CTRL_RX; 16042 16043 if (result & ELINK_FLOW_CTRL_TX) 16044 sc->link_params.req_fc_auto_adv |= ELINK_FLOW_CTRL_TX; 16045 if (!sc->link_params.req_fc_auto_adv) 16046 sc->link_params.req_fc_auto_adv |= ELINK_FLOW_CTRL_NONE; 16047 } 16048 if (IS_PF(sc)) { 16049 if (sc->link_vars.link_up) { 16050 bxe_stats_handle(sc, STATS_EVENT_STOP); 16051 } 16052 if (if_getdrvflags(sc->ifp) & IFF_DRV_RUNNING) { 16053 bxe_force_link_reset(sc); 16054 bxe_acquire_phy_lock(sc); 16055 16056 rc = elink_phy_init(&sc->link_params, &sc->link_vars); 16057 16058 bxe_release_phy_lock(sc); 16059 16060 bxe_calc_fc_adv(sc); 16061 } 16062 } 16063 return rc; 16064 } 16065 16066 16067 static void 16068 bxe_add_sysctls(struct bxe_softc *sc) 16069 { 16070 struct sysctl_ctx_list *ctx; 16071 struct sysctl_oid_list *children; 16072 struct sysctl_oid *queue_top, *queue; 16073 struct sysctl_oid_list *queue_top_children, *queue_children; 16074 char queue_num_buf[32]; 16075 uint32_t q_stat; 16076 int i, j; 16077 16078 ctx = device_get_sysctl_ctx(sc->dev); 16079 children = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev)); 16080 16081 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "version", 16082 CTLFLAG_RD, BXE_DRIVER_VERSION, 0, 16083 "version"); 16084 16085 snprintf(sc->fw_ver_str, sizeof(sc->fw_ver_str), "%d.%d.%d.%d", 16086 BCM_5710_FW_MAJOR_VERSION, 16087 BCM_5710_FW_MINOR_VERSION, 16088 BCM_5710_FW_REVISION_VERSION, 16089 BCM_5710_FW_ENGINEERING_VERSION); 16090 16091 snprintf(sc->mf_mode_str, sizeof(sc->mf_mode_str), "%s", 16092 ((sc->devinfo.mf_info.mf_mode == SINGLE_FUNCTION) ? "Single" : 16093 (sc->devinfo.mf_info.mf_mode == MULTI_FUNCTION_SD) ? "MF-SD" : 16094 (sc->devinfo.mf_info.mf_mode == MULTI_FUNCTION_SI) ? "MF-SI" : 16095 (sc->devinfo.mf_info.mf_mode == MULTI_FUNCTION_AFEX) ? "MF-AFEX" : 16096 "Unknown")); 16097 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "mf_vnics", 16098 CTLFLAG_RD, &sc->devinfo.mf_info.vnics_per_port, 0, 16099 "multifunction vnics per port"); 16100 16101 snprintf(sc->pci_link_str, sizeof(sc->pci_link_str), "%s x%d", 16102 ((sc->devinfo.pcie_link_speed == 1) ? "2.5GT/s" : 16103 (sc->devinfo.pcie_link_speed == 2) ? "5.0GT/s" : 16104 (sc->devinfo.pcie_link_speed == 4) ? "8.0GT/s" : 16105 "???GT/s"), 16106 sc->devinfo.pcie_link_width); 16107 16108 sc->debug = bxe_debug; 16109 16110 #if __FreeBSD_version >= 900000 16111 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "bc_version", 16112 CTLFLAG_RD, sc->devinfo.bc_ver_str, 0, 16113 "bootcode version"); 16114 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "fw_version", 16115 CTLFLAG_RD, sc->fw_ver_str, 0, 16116 "firmware version"); 16117 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "mf_mode", 16118 CTLFLAG_RD, sc->mf_mode_str, 0, 16119 "multifunction mode"); 16120 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "mac_addr", 16121 CTLFLAG_RD, sc->mac_addr_str, 0, 16122 "mac address"); 16123 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "pci_link", 16124 CTLFLAG_RD, sc->pci_link_str, 0, 16125 "pci link status"); 16126 SYSCTL_ADD_ULONG(ctx, children, OID_AUTO, "debug", 16127 CTLFLAG_RW, &sc->debug, 16128 "debug logging mode"); 16129 #else 16130 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "bc_version", 16131 CTLFLAG_RD, &sc->devinfo.bc_ver_str, 0, 16132 "bootcode version"); 16133 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "fw_version", 16134 CTLFLAG_RD, &sc->fw_ver_str, 0, 16135 "firmware version"); 16136 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "mf_mode", 16137 CTLFLAG_RD, &sc->mf_mode_str, 0, 16138 "multifunction mode"); 16139 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "mac_addr", 16140 CTLFLAG_RD, &sc->mac_addr_str, 0, 16141 "mac address"); 16142 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "pci_link", 16143 CTLFLAG_RD, &sc->pci_link_str, 0, 16144 "pci link status"); 16145 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "debug", 16146 CTLFLAG_RW, &sc->debug, 0, 16147 "debug logging mode"); 16148 #endif /* #if __FreeBSD_version >= 900000 */ 16149 16150 sc->trigger_grcdump = 0; 16151 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "trigger_grcdump", 16152 CTLFLAG_RW, &sc->trigger_grcdump, 0, 16153 "trigger grcdump should be invoked" 16154 " before collecting grcdump"); 16155 16156 sc->grcdump_started = 0; 16157 sc->grcdump_done = 0; 16158 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "grcdump_done", 16159 CTLFLAG_RD, &sc->grcdump_done, 0, 16160 "set by driver when grcdump is done"); 16161 16162 sc->rx_budget = bxe_rx_budget; 16163 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "rx_budget", 16164 CTLFLAG_RW, &sc->rx_budget, 0, 16165 "rx processing budget"); 16166 16167 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "pause_param", 16168 CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, sc, 0, 16169 bxe_sysctl_pauseparam, "IU", 16170 "need pause frames- DEF:0/TX:1/RX:2/BOTH:3/AUTO:4/AUTOTX:5/AUTORX:6/AUTORXTX:7/NONE:8"); 16171 16172 16173 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "state", 16174 CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, sc, 0, 16175 bxe_sysctl_state, "IU", "dump driver state"); 16176 16177 for (i = 0; i < BXE_NUM_ETH_STATS; i++) { 16178 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, 16179 bxe_eth_stats_arr[i].string, 16180 CTLTYPE_U64 | CTLFLAG_RD | CTLFLAG_NEEDGIANT, sc, i, 16181 bxe_sysctl_eth_stat, "LU", bxe_eth_stats_arr[i].string); 16182 } 16183 16184 /* add a new parent node for all queues "dev.bxe.#.queue" */ 16185 queue_top = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "queue", 16186 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "queue"); 16187 queue_top_children = SYSCTL_CHILDREN(queue_top); 16188 16189 for (i = 0; i < sc->num_queues; i++) { 16190 /* add a new parent node for a single queue "dev.bxe.#.queue.#" */ 16191 snprintf(queue_num_buf, sizeof(queue_num_buf), "%d", i); 16192 queue = SYSCTL_ADD_NODE(ctx, queue_top_children, OID_AUTO, 16193 queue_num_buf, CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "single queue"); 16194 queue_children = SYSCTL_CHILDREN(queue); 16195 16196 for (j = 0; j < BXE_NUM_ETH_Q_STATS; j++) { 16197 q_stat = ((i << 16) | j); 16198 SYSCTL_ADD_PROC(ctx, queue_children, OID_AUTO, 16199 bxe_eth_q_stats_arr[j].string, 16200 CTLTYPE_U64 | CTLFLAG_RD | CTLFLAG_NEEDGIANT, sc, q_stat, 16201 bxe_sysctl_eth_q_stat, "LU", bxe_eth_q_stats_arr[j].string); 16202 } 16203 } 16204 } 16205 16206 static int 16207 bxe_alloc_buf_rings(struct bxe_softc *sc) 16208 { 16209 #if __FreeBSD_version >= 901504 16210 16211 int i; 16212 struct bxe_fastpath *fp; 16213 16214 for (i = 0; i < sc->num_queues; i++) { 16215 16216 fp = &sc->fp[i]; 16217 16218 fp->tx_br = buf_ring_alloc(BXE_BR_SIZE, M_DEVBUF, 16219 M_NOWAIT, &fp->tx_mtx); 16220 if (fp->tx_br == NULL) 16221 return (-1); 16222 } 16223 #endif 16224 return (0); 16225 } 16226 16227 static void 16228 bxe_free_buf_rings(struct bxe_softc *sc) 16229 { 16230 #if __FreeBSD_version >= 901504 16231 16232 int i; 16233 struct bxe_fastpath *fp; 16234 16235 for (i = 0; i < sc->num_queues; i++) { 16236 16237 fp = &sc->fp[i]; 16238 16239 if (fp->tx_br) { 16240 buf_ring_free(fp->tx_br, M_DEVBUF); 16241 fp->tx_br = NULL; 16242 } 16243 } 16244 16245 #endif 16246 } 16247 16248 static void 16249 bxe_init_fp_mutexs(struct bxe_softc *sc) 16250 { 16251 int i; 16252 struct bxe_fastpath *fp; 16253 16254 for (i = 0; i < sc->num_queues; i++) { 16255 16256 fp = &sc->fp[i]; 16257 16258 snprintf(fp->tx_mtx_name, sizeof(fp->tx_mtx_name), 16259 "bxe%d_fp%d_tx_lock", sc->unit, i); 16260 mtx_init(&fp->tx_mtx, fp->tx_mtx_name, NULL, MTX_DEF); 16261 16262 snprintf(fp->rx_mtx_name, sizeof(fp->rx_mtx_name), 16263 "bxe%d_fp%d_rx_lock", sc->unit, i); 16264 mtx_init(&fp->rx_mtx, fp->rx_mtx_name, NULL, MTX_DEF); 16265 } 16266 } 16267 16268 static void 16269 bxe_destroy_fp_mutexs(struct bxe_softc *sc) 16270 { 16271 int i; 16272 struct bxe_fastpath *fp; 16273 16274 for (i = 0; i < sc->num_queues; i++) { 16275 16276 fp = &sc->fp[i]; 16277 16278 if (mtx_initialized(&fp->tx_mtx)) { 16279 mtx_destroy(&fp->tx_mtx); 16280 } 16281 16282 if (mtx_initialized(&fp->rx_mtx)) { 16283 mtx_destroy(&fp->rx_mtx); 16284 } 16285 } 16286 } 16287 16288 16289 /* 16290 * Device attach function. 16291 * 16292 * Allocates device resources, performs secondary chip identification, and 16293 * initializes driver instance variables. This function is called from driver 16294 * load after a successful probe. 16295 * 16296 * Returns: 16297 * 0 = Success, >0 = Failure 16298 */ 16299 static int 16300 bxe_attach(device_t dev) 16301 { 16302 struct bxe_softc *sc; 16303 16304 sc = device_get_softc(dev); 16305 16306 BLOGD(sc, DBG_LOAD, "Starting attach...\n"); 16307 16308 sc->state = BXE_STATE_CLOSED; 16309 16310 sc->dev = dev; 16311 sc->unit = device_get_unit(dev); 16312 16313 BLOGD(sc, DBG_LOAD, "softc = %p\n", sc); 16314 16315 sc->pcie_bus = pci_get_bus(dev); 16316 sc->pcie_device = pci_get_slot(dev); 16317 sc->pcie_func = pci_get_function(dev); 16318 16319 /* enable bus master capability */ 16320 pci_enable_busmaster(dev); 16321 16322 /* get the BARs */ 16323 if (bxe_allocate_bars(sc) != 0) { 16324 return (ENXIO); 16325 } 16326 16327 /* initialize the mutexes */ 16328 bxe_init_mutexes(sc); 16329 16330 /* prepare the periodic callout */ 16331 callout_init(&sc->periodic_callout, 0); 16332 16333 /* prepare the chip taskqueue */ 16334 sc->chip_tq_flags = CHIP_TQ_NONE; 16335 snprintf(sc->chip_tq_name, sizeof(sc->chip_tq_name), 16336 "bxe%d_chip_tq", sc->unit); 16337 TASK_INIT(&sc->chip_tq_task, 0, bxe_handle_chip_tq, sc); 16338 sc->chip_tq = taskqueue_create(sc->chip_tq_name, M_NOWAIT, 16339 taskqueue_thread_enqueue, 16340 &sc->chip_tq); 16341 taskqueue_start_threads(&sc->chip_tq, 1, PWAIT, /* lower priority */ 16342 "%s", sc->chip_tq_name); 16343 16344 TIMEOUT_TASK_INIT(taskqueue_thread, 16345 &sc->sp_err_timeout_task, 0, bxe_sp_err_timeout_task, sc); 16346 16347 16348 /* get device info and set params */ 16349 if (bxe_get_device_info(sc) != 0) { 16350 BLOGE(sc, "getting device info\n"); 16351 bxe_deallocate_bars(sc); 16352 pci_disable_busmaster(dev); 16353 return (ENXIO); 16354 } 16355 16356 /* get final misc params */ 16357 bxe_get_params(sc); 16358 16359 /* set the default MTU (changed via ifconfig) */ 16360 sc->mtu = ETHERMTU; 16361 16362 bxe_set_modes_bitmap(sc); 16363 16364 /* XXX 16365 * If in AFEX mode and the function is configured for FCoE 16366 * then bail... no L2 allowed. 16367 */ 16368 16369 /* get phy settings from shmem and 'and' against admin settings */ 16370 bxe_get_phy_info(sc); 16371 16372 /* initialize the FreeBSD ifnet interface */ 16373 if (bxe_init_ifnet(sc) != 0) { 16374 bxe_release_mutexes(sc); 16375 bxe_deallocate_bars(sc); 16376 pci_disable_busmaster(dev); 16377 return (ENXIO); 16378 } 16379 16380 if (bxe_add_cdev(sc) != 0) { 16381 if (sc->ifp != NULL) { 16382 ether_ifdetach(sc->ifp); 16383 } 16384 ifmedia_removeall(&sc->ifmedia); 16385 bxe_release_mutexes(sc); 16386 bxe_deallocate_bars(sc); 16387 pci_disable_busmaster(dev); 16388 return (ENXIO); 16389 } 16390 16391 /* allocate device interrupts */ 16392 if (bxe_interrupt_alloc(sc) != 0) { 16393 bxe_del_cdev(sc); 16394 if (sc->ifp != NULL) { 16395 ether_ifdetach(sc->ifp); 16396 } 16397 ifmedia_removeall(&sc->ifmedia); 16398 bxe_release_mutexes(sc); 16399 bxe_deallocate_bars(sc); 16400 pci_disable_busmaster(dev); 16401 return (ENXIO); 16402 } 16403 16404 bxe_init_fp_mutexs(sc); 16405 16406 if (bxe_alloc_buf_rings(sc) != 0) { 16407 bxe_free_buf_rings(sc); 16408 bxe_interrupt_free(sc); 16409 bxe_del_cdev(sc); 16410 if (sc->ifp != NULL) { 16411 ether_ifdetach(sc->ifp); 16412 } 16413 ifmedia_removeall(&sc->ifmedia); 16414 bxe_release_mutexes(sc); 16415 bxe_deallocate_bars(sc); 16416 pci_disable_busmaster(dev); 16417 return (ENXIO); 16418 } 16419 16420 /* allocate ilt */ 16421 if (bxe_alloc_ilt_mem(sc) != 0) { 16422 bxe_free_buf_rings(sc); 16423 bxe_interrupt_free(sc); 16424 bxe_del_cdev(sc); 16425 if (sc->ifp != NULL) { 16426 ether_ifdetach(sc->ifp); 16427 } 16428 ifmedia_removeall(&sc->ifmedia); 16429 bxe_release_mutexes(sc); 16430 bxe_deallocate_bars(sc); 16431 pci_disable_busmaster(dev); 16432 return (ENXIO); 16433 } 16434 16435 /* allocate the host hardware/software hsi structures */ 16436 if (bxe_alloc_hsi_mem(sc) != 0) { 16437 bxe_free_ilt_mem(sc); 16438 bxe_free_buf_rings(sc); 16439 bxe_interrupt_free(sc); 16440 bxe_del_cdev(sc); 16441 if (sc->ifp != NULL) { 16442 ether_ifdetach(sc->ifp); 16443 } 16444 ifmedia_removeall(&sc->ifmedia); 16445 bxe_release_mutexes(sc); 16446 bxe_deallocate_bars(sc); 16447 pci_disable_busmaster(dev); 16448 return (ENXIO); 16449 } 16450 16451 /* need to reset chip if UNDI was active */ 16452 if (IS_PF(sc) && !BXE_NOMCP(sc)) { 16453 /* init fw_seq */ 16454 sc->fw_seq = 16455 (SHMEM_RD(sc, func_mb[SC_FW_MB_IDX(sc)].drv_mb_header) & 16456 DRV_MSG_SEQ_NUMBER_MASK); 16457 BLOGD(sc, DBG_LOAD, "prev unload fw_seq 0x%04x\n", sc->fw_seq); 16458 bxe_prev_unload(sc); 16459 } 16460 16461 #if 1 16462 /* XXX */ 16463 bxe_dcbx_set_state(sc, FALSE, BXE_DCBX_ENABLED_OFF); 16464 #else 16465 if (SHMEM2_HAS(sc, dcbx_lldp_params_offset) && 16466 SHMEM2_HAS(sc, dcbx_lldp_dcbx_stat_offset) && 16467 SHMEM2_RD(sc, dcbx_lldp_params_offset) && 16468 SHMEM2_RD(sc, dcbx_lldp_dcbx_stat_offset)) { 16469 bxe_dcbx_set_state(sc, TRUE, BXE_DCBX_ENABLED_ON_NEG_ON); 16470 bxe_dcbx_init_params(sc); 16471 } else { 16472 bxe_dcbx_set_state(sc, FALSE, BXE_DCBX_ENABLED_OFF); 16473 } 16474 #endif 16475 16476 /* calculate qm_cid_count */ 16477 sc->qm_cid_count = bxe_set_qm_cid_count(sc); 16478 BLOGD(sc, DBG_LOAD, "qm_cid_count=%d\n", sc->qm_cid_count); 16479 16480 sc->max_cos = 1; 16481 bxe_init_multi_cos(sc); 16482 16483 bxe_add_sysctls(sc); 16484 16485 return (0); 16486 } 16487 16488 /* 16489 * Device detach function. 16490 * 16491 * Stops the controller, resets the controller, and releases resources. 16492 * 16493 * Returns: 16494 * 0 = Success, >0 = Failure 16495 */ 16496 static int 16497 bxe_detach(device_t dev) 16498 { 16499 struct bxe_softc *sc; 16500 if_t ifp; 16501 16502 sc = device_get_softc(dev); 16503 16504 BLOGD(sc, DBG_LOAD, "Starting detach...\n"); 16505 16506 ifp = sc->ifp; 16507 if (ifp != NULL && if_vlantrunkinuse(ifp)) { 16508 BLOGE(sc, "Cannot detach while VLANs are in use.\n"); 16509 return(EBUSY); 16510 } 16511 16512 bxe_del_cdev(sc); 16513 16514 /* stop the periodic callout */ 16515 bxe_periodic_stop(sc); 16516 16517 /* stop the chip taskqueue */ 16518 atomic_store_rel_long(&sc->chip_tq_flags, CHIP_TQ_NONE); 16519 if (sc->chip_tq) { 16520 taskqueue_drain(sc->chip_tq, &sc->chip_tq_task); 16521 taskqueue_free(sc->chip_tq); 16522 sc->chip_tq = NULL; 16523 taskqueue_drain_timeout(taskqueue_thread, 16524 &sc->sp_err_timeout_task); 16525 } 16526 16527 /* stop and reset the controller if it was open */ 16528 if (sc->state != BXE_STATE_CLOSED) { 16529 BXE_CORE_LOCK(sc); 16530 bxe_nic_unload(sc, UNLOAD_CLOSE, TRUE); 16531 sc->state = BXE_STATE_DISABLED; 16532 BXE_CORE_UNLOCK(sc); 16533 } 16534 16535 /* release the network interface */ 16536 if (ifp != NULL) { 16537 ether_ifdetach(ifp); 16538 } 16539 ifmedia_removeall(&sc->ifmedia); 16540 16541 /* XXX do the following based on driver state... */ 16542 16543 /* free the host hardware/software hsi structures */ 16544 bxe_free_hsi_mem(sc); 16545 16546 /* free ilt */ 16547 bxe_free_ilt_mem(sc); 16548 16549 bxe_free_buf_rings(sc); 16550 16551 /* release the interrupts */ 16552 bxe_interrupt_free(sc); 16553 16554 /* Release the mutexes*/ 16555 bxe_destroy_fp_mutexs(sc); 16556 bxe_release_mutexes(sc); 16557 16558 16559 /* Release the PCIe BAR mapped memory */ 16560 bxe_deallocate_bars(sc); 16561 16562 /* Release the FreeBSD interface. */ 16563 if (sc->ifp != NULL) { 16564 if_free(sc->ifp); 16565 } 16566 16567 pci_disable_busmaster(dev); 16568 16569 return (0); 16570 } 16571 16572 /* 16573 * Device shutdown function. 16574 * 16575 * Stops and resets the controller. 16576 * 16577 * Returns: 16578 * Nothing 16579 */ 16580 static int 16581 bxe_shutdown(device_t dev) 16582 { 16583 struct bxe_softc *sc; 16584 16585 sc = device_get_softc(dev); 16586 16587 BLOGD(sc, DBG_LOAD, "Starting shutdown...\n"); 16588 16589 /* stop the periodic callout */ 16590 bxe_periodic_stop(sc); 16591 16592 if (sc->state != BXE_STATE_CLOSED) { 16593 BXE_CORE_LOCK(sc); 16594 bxe_nic_unload(sc, UNLOAD_NORMAL, FALSE); 16595 BXE_CORE_UNLOCK(sc); 16596 } 16597 16598 return (0); 16599 } 16600 16601 void 16602 bxe_igu_ack_sb(struct bxe_softc *sc, 16603 uint8_t igu_sb_id, 16604 uint8_t segment, 16605 uint16_t index, 16606 uint8_t op, 16607 uint8_t update) 16608 { 16609 uint32_t igu_addr = sc->igu_base_addr; 16610 igu_addr += (IGU_CMD_INT_ACK_BASE + igu_sb_id)*8; 16611 bxe_igu_ack_sb_gen(sc, igu_sb_id, segment, index, op, update, igu_addr); 16612 } 16613 16614 static void 16615 bxe_igu_clear_sb_gen(struct bxe_softc *sc, 16616 uint8_t func, 16617 uint8_t idu_sb_id, 16618 uint8_t is_pf) 16619 { 16620 uint32_t data, ctl, cnt = 100; 16621 uint32_t igu_addr_data = IGU_REG_COMMAND_REG_32LSB_DATA; 16622 uint32_t igu_addr_ctl = IGU_REG_COMMAND_REG_CTRL; 16623 uint32_t igu_addr_ack = IGU_REG_CSTORM_TYPE_0_SB_CLEANUP + (idu_sb_id/32)*4; 16624 uint32_t sb_bit = 1 << (idu_sb_id%32); 16625 uint32_t func_encode = func | (is_pf ? 1 : 0) << IGU_FID_ENCODE_IS_PF_SHIFT; 16626 uint32_t addr_encode = IGU_CMD_E2_PROD_UPD_BASE + idu_sb_id; 16627 16628 /* Not supported in BC mode */ 16629 if (CHIP_INT_MODE_IS_BC(sc)) { 16630 return; 16631 } 16632 16633 data = ((IGU_USE_REGISTER_cstorm_type_0_sb_cleanup << 16634 IGU_REGULAR_CLEANUP_TYPE_SHIFT) | 16635 IGU_REGULAR_CLEANUP_SET | 16636 IGU_REGULAR_BCLEANUP); 16637 16638 ctl = ((addr_encode << IGU_CTRL_REG_ADDRESS_SHIFT) | 16639 (func_encode << IGU_CTRL_REG_FID_SHIFT) | 16640 (IGU_CTRL_CMD_TYPE_WR << IGU_CTRL_REG_TYPE_SHIFT)); 16641 16642 BLOGD(sc, DBG_LOAD, "write 0x%08x to IGU(via GRC) addr 0x%x\n", 16643 data, igu_addr_data); 16644 REG_WR(sc, igu_addr_data, data); 16645 16646 bus_space_barrier(sc->bar[BAR0].tag, sc->bar[BAR0].handle, 0, 0, 16647 BUS_SPACE_BARRIER_WRITE); 16648 mb(); 16649 16650 BLOGD(sc, DBG_LOAD, "write 0x%08x to IGU(via GRC) addr 0x%x\n", 16651 ctl, igu_addr_ctl); 16652 REG_WR(sc, igu_addr_ctl, ctl); 16653 16654 bus_space_barrier(sc->bar[BAR0].tag, sc->bar[BAR0].handle, 0, 0, 16655 BUS_SPACE_BARRIER_WRITE); 16656 mb(); 16657 16658 /* wait for clean up to finish */ 16659 while (!(REG_RD(sc, igu_addr_ack) & sb_bit) && --cnt) { 16660 DELAY(20000); 16661 } 16662 16663 if (!(REG_RD(sc, igu_addr_ack) & sb_bit)) { 16664 BLOGD(sc, DBG_LOAD, 16665 "Unable to finish IGU cleanup: " 16666 "idu_sb_id %d offset %d bit %d (cnt %d)\n", 16667 idu_sb_id, idu_sb_id/32, idu_sb_id%32, cnt); 16668 } 16669 } 16670 16671 static void 16672 bxe_igu_clear_sb(struct bxe_softc *sc, 16673 uint8_t idu_sb_id) 16674 { 16675 bxe_igu_clear_sb_gen(sc, SC_FUNC(sc), idu_sb_id, TRUE /*PF*/); 16676 } 16677 16678 16679 16680 16681 16682 16683 16684 /*******************/ 16685 /* ECORE CALLBACKS */ 16686 /*******************/ 16687 16688 static void 16689 bxe_reset_common(struct bxe_softc *sc) 16690 { 16691 uint32_t val = 0x1400; 16692 16693 /* reset_common */ 16694 REG_WR(sc, (GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR), 0xd3ffff7f); 16695 16696 if (CHIP_IS_E3(sc)) { 16697 val |= MISC_REGISTERS_RESET_REG_2_MSTAT0; 16698 val |= MISC_REGISTERS_RESET_REG_2_MSTAT1; 16699 } 16700 16701 REG_WR(sc, (GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR), val); 16702 } 16703 16704 static void 16705 bxe_common_init_phy(struct bxe_softc *sc) 16706 { 16707 uint32_t shmem_base[2]; 16708 uint32_t shmem2_base[2]; 16709 16710 /* Avoid common init in case MFW supports LFA */ 16711 if (SHMEM2_RD(sc, size) > 16712 (uint32_t)offsetof(struct shmem2_region, 16713 lfa_host_addr[SC_PORT(sc)])) { 16714 return; 16715 } 16716 16717 shmem_base[0] = sc->devinfo.shmem_base; 16718 shmem2_base[0] = sc->devinfo.shmem2_base; 16719 16720 if (!CHIP_IS_E1x(sc)) { 16721 shmem_base[1] = SHMEM2_RD(sc, other_shmem_base_addr); 16722 shmem2_base[1] = SHMEM2_RD(sc, other_shmem2_base_addr); 16723 } 16724 16725 bxe_acquire_phy_lock(sc); 16726 elink_common_init_phy(sc, shmem_base, shmem2_base, 16727 sc->devinfo.chip_id, 0); 16728 bxe_release_phy_lock(sc); 16729 } 16730 16731 static void 16732 bxe_pf_disable(struct bxe_softc *sc) 16733 { 16734 uint32_t val = REG_RD(sc, IGU_REG_PF_CONFIGURATION); 16735 16736 val &= ~IGU_PF_CONF_FUNC_EN; 16737 16738 REG_WR(sc, IGU_REG_PF_CONFIGURATION, val); 16739 REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0); 16740 REG_WR(sc, CFC_REG_WEAK_ENABLE_PF, 0); 16741 } 16742 16743 static void 16744 bxe_init_pxp(struct bxe_softc *sc) 16745 { 16746 uint16_t devctl; 16747 int r_order, w_order; 16748 16749 devctl = bxe_pcie_capability_read(sc, PCIR_EXPRESS_DEVICE_CTL, 2); 16750 16751 BLOGD(sc, DBG_LOAD, "read 0x%08x from devctl\n", devctl); 16752 16753 w_order = ((devctl & PCIM_EXP_CTL_MAX_PAYLOAD) >> 5); 16754 16755 if (sc->mrrs == -1) { 16756 r_order = ((devctl & PCIM_EXP_CTL_MAX_READ_REQUEST) >> 12); 16757 } else { 16758 BLOGD(sc, DBG_LOAD, "forcing read order to %d\n", sc->mrrs); 16759 r_order = sc->mrrs; 16760 } 16761 16762 ecore_init_pxp_arb(sc, r_order, w_order); 16763 } 16764 16765 static uint32_t 16766 bxe_get_pretend_reg(struct bxe_softc *sc) 16767 { 16768 uint32_t base = PXP2_REG_PGL_PRETEND_FUNC_F0; 16769 uint32_t stride = (PXP2_REG_PGL_PRETEND_FUNC_F1 - base); 16770 return (base + (SC_ABS_FUNC(sc)) * stride); 16771 } 16772 16773 /* 16774 * Called only on E1H or E2. 16775 * When pretending to be PF, the pretend value is the function number 0..7. 16776 * When pretending to be VF, the pretend val is the PF-num:VF-valid:ABS-VFID 16777 * combination. 16778 */ 16779 static int 16780 bxe_pretend_func(struct bxe_softc *sc, 16781 uint16_t pretend_func_val) 16782 { 16783 uint32_t pretend_reg; 16784 16785 if (CHIP_IS_E1H(sc) && (pretend_func_val > E1H_FUNC_MAX)) { 16786 return (-1); 16787 } 16788 16789 /* get my own pretend register */ 16790 pretend_reg = bxe_get_pretend_reg(sc); 16791 REG_WR(sc, pretend_reg, pretend_func_val); 16792 REG_RD(sc, pretend_reg); 16793 return (0); 16794 } 16795 16796 static void 16797 bxe_iov_init_dmae(struct bxe_softc *sc) 16798 { 16799 return; 16800 } 16801 16802 static void 16803 bxe_iov_init_dq(struct bxe_softc *sc) 16804 { 16805 return; 16806 } 16807 16808 /* send a NIG loopback debug packet */ 16809 static void 16810 bxe_lb_pckt(struct bxe_softc *sc) 16811 { 16812 uint32_t wb_write[3]; 16813 16814 /* Ethernet source and destination addresses */ 16815 wb_write[0] = 0x55555555; 16816 wb_write[1] = 0x55555555; 16817 wb_write[2] = 0x20; /* SOP */ 16818 REG_WR_DMAE(sc, NIG_REG_DEBUG_PACKET_LB, wb_write, 3); 16819 16820 /* NON-IP protocol */ 16821 wb_write[0] = 0x09000000; 16822 wb_write[1] = 0x55555555; 16823 wb_write[2] = 0x10; /* EOP, eop_bvalid = 0 */ 16824 REG_WR_DMAE(sc, NIG_REG_DEBUG_PACKET_LB, wb_write, 3); 16825 } 16826 16827 /* 16828 * Some of the internal memories are not directly readable from the driver. 16829 * To test them we send debug packets. 16830 */ 16831 static int 16832 bxe_int_mem_test(struct bxe_softc *sc) 16833 { 16834 int factor; 16835 int count, i; 16836 uint32_t val = 0; 16837 16838 if (CHIP_REV_IS_FPGA(sc)) { 16839 factor = 120; 16840 } else if (CHIP_REV_IS_EMUL(sc)) { 16841 factor = 200; 16842 } else { 16843 factor = 1; 16844 } 16845 16846 /* disable inputs of parser neighbor blocks */ 16847 REG_WR(sc, TSDM_REG_ENABLE_IN1, 0x0); 16848 REG_WR(sc, TCM_REG_PRS_IFEN, 0x0); 16849 REG_WR(sc, CFC_REG_DEBUG0, 0x1); 16850 REG_WR(sc, NIG_REG_PRS_REQ_IN_EN, 0x0); 16851 16852 /* write 0 to parser credits for CFC search request */ 16853 REG_WR(sc, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0); 16854 16855 /* send Ethernet packet */ 16856 bxe_lb_pckt(sc); 16857 16858 /* TODO do i reset NIG statistic? */ 16859 /* Wait until NIG register shows 1 packet of size 0x10 */ 16860 count = 1000 * factor; 16861 while (count) { 16862 bxe_read_dmae(sc, NIG_REG_STAT2_BRB_OCTET, 2); 16863 val = *BXE_SP(sc, wb_data[0]); 16864 if (val == 0x10) { 16865 break; 16866 } 16867 16868 DELAY(10000); 16869 count--; 16870 } 16871 16872 if (val != 0x10) { 16873 BLOGE(sc, "NIG timeout val=0x%x\n", val); 16874 return (-1); 16875 } 16876 16877 /* wait until PRS register shows 1 packet */ 16878 count = (1000 * factor); 16879 while (count) { 16880 val = REG_RD(sc, PRS_REG_NUM_OF_PACKETS); 16881 if (val == 1) { 16882 break; 16883 } 16884 16885 DELAY(10000); 16886 count--; 16887 } 16888 16889 if (val != 0x1) { 16890 BLOGE(sc, "PRS timeout val=0x%x\n", val); 16891 return (-2); 16892 } 16893 16894 /* Reset and init BRB, PRS */ 16895 REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03); 16896 DELAY(50000); 16897 REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03); 16898 DELAY(50000); 16899 ecore_init_block(sc, BLOCK_BRB1, PHASE_COMMON); 16900 ecore_init_block(sc, BLOCK_PRS, PHASE_COMMON); 16901 16902 /* Disable inputs of parser neighbor blocks */ 16903 REG_WR(sc, TSDM_REG_ENABLE_IN1, 0x0); 16904 REG_WR(sc, TCM_REG_PRS_IFEN, 0x0); 16905 REG_WR(sc, CFC_REG_DEBUG0, 0x1); 16906 REG_WR(sc, NIG_REG_PRS_REQ_IN_EN, 0x0); 16907 16908 /* Write 0 to parser credits for CFC search request */ 16909 REG_WR(sc, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0); 16910 16911 /* send 10 Ethernet packets */ 16912 for (i = 0; i < 10; i++) { 16913 bxe_lb_pckt(sc); 16914 } 16915 16916 /* Wait until NIG register shows 10+1 packets of size 11*0x10 = 0xb0 */ 16917 count = (1000 * factor); 16918 while (count) { 16919 bxe_read_dmae(sc, NIG_REG_STAT2_BRB_OCTET, 2); 16920 val = *BXE_SP(sc, wb_data[0]); 16921 if (val == 0xb0) { 16922 break; 16923 } 16924 16925 DELAY(10000); 16926 count--; 16927 } 16928 16929 if (val != 0xb0) { 16930 BLOGE(sc, "NIG timeout val=0x%x\n", val); 16931 return (-3); 16932 } 16933 16934 /* Wait until PRS register shows 2 packets */ 16935 val = REG_RD(sc, PRS_REG_NUM_OF_PACKETS); 16936 if (val != 2) { 16937 BLOGE(sc, "PRS timeout val=0x%x\n", val); 16938 } 16939 16940 /* Write 1 to parser credits for CFC search request */ 16941 REG_WR(sc, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x1); 16942 16943 /* Wait until PRS register shows 3 packets */ 16944 DELAY(10000 * factor); 16945 16946 /* Wait until NIG register shows 1 packet of size 0x10 */ 16947 val = REG_RD(sc, PRS_REG_NUM_OF_PACKETS); 16948 if (val != 3) { 16949 BLOGE(sc, "PRS timeout val=0x%x\n", val); 16950 } 16951 16952 /* clear NIG EOP FIFO */ 16953 for (i = 0; i < 11; i++) { 16954 REG_RD(sc, NIG_REG_INGRESS_EOP_LB_FIFO); 16955 } 16956 16957 val = REG_RD(sc, NIG_REG_INGRESS_EOP_LB_EMPTY); 16958 if (val != 1) { 16959 BLOGE(sc, "clear of NIG failed val=0x%x\n", val); 16960 return (-4); 16961 } 16962 16963 /* Reset and init BRB, PRS, NIG */ 16964 REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03); 16965 DELAY(50000); 16966 REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03); 16967 DELAY(50000); 16968 ecore_init_block(sc, BLOCK_BRB1, PHASE_COMMON); 16969 ecore_init_block(sc, BLOCK_PRS, PHASE_COMMON); 16970 if (!CNIC_SUPPORT(sc)) { 16971 /* set NIC mode */ 16972 REG_WR(sc, PRS_REG_NIC_MODE, 1); 16973 } 16974 16975 /* Enable inputs of parser neighbor blocks */ 16976 REG_WR(sc, TSDM_REG_ENABLE_IN1, 0x7fffffff); 16977 REG_WR(sc, TCM_REG_PRS_IFEN, 0x1); 16978 REG_WR(sc, CFC_REG_DEBUG0, 0x0); 16979 REG_WR(sc, NIG_REG_PRS_REQ_IN_EN, 0x1); 16980 16981 return (0); 16982 } 16983 16984 static void 16985 bxe_setup_fan_failure_detection(struct bxe_softc *sc) 16986 { 16987 int is_required; 16988 uint32_t val; 16989 int port; 16990 16991 is_required = 0; 16992 val = (SHMEM_RD(sc, dev_info.shared_hw_config.config2) & 16993 SHARED_HW_CFG_FAN_FAILURE_MASK); 16994 16995 if (val == SHARED_HW_CFG_FAN_FAILURE_ENABLED) { 16996 is_required = 1; 16997 } 16998 /* 16999 * The fan failure mechanism is usually related to the PHY type since 17000 * the power consumption of the board is affected by the PHY. Currently, 17001 * fan is required for most designs with SFX7101, BCM8727 and BCM8481. 17002 */ 17003 else if (val == SHARED_HW_CFG_FAN_FAILURE_PHY_TYPE) { 17004 for (port = PORT_0; port < PORT_MAX; port++) { 17005 is_required |= elink_fan_failure_det_req(sc, 17006 sc->devinfo.shmem_base, 17007 sc->devinfo.shmem2_base, 17008 port); 17009 } 17010 } 17011 17012 BLOGD(sc, DBG_LOAD, "fan detection setting: %d\n", is_required); 17013 17014 if (is_required == 0) { 17015 return; 17016 } 17017 17018 /* Fan failure is indicated by SPIO 5 */ 17019 bxe_set_spio(sc, MISC_SPIO_SPIO5, MISC_SPIO_INPUT_HI_Z); 17020 17021 /* set to active low mode */ 17022 val = REG_RD(sc, MISC_REG_SPIO_INT); 17023 val |= (MISC_SPIO_SPIO5 << MISC_SPIO_INT_OLD_SET_POS); 17024 REG_WR(sc, MISC_REG_SPIO_INT, val); 17025 17026 /* enable interrupt to signal the IGU */ 17027 val = REG_RD(sc, MISC_REG_SPIO_EVENT_EN); 17028 val |= MISC_SPIO_SPIO5; 17029 REG_WR(sc, MISC_REG_SPIO_EVENT_EN, val); 17030 } 17031 17032 static void 17033 bxe_enable_blocks_attention(struct bxe_softc *sc) 17034 { 17035 uint32_t val; 17036 17037 REG_WR(sc, PXP_REG_PXP_INT_MASK_0, 0); 17038 if (!CHIP_IS_E1x(sc)) { 17039 REG_WR(sc, PXP_REG_PXP_INT_MASK_1, 0x40); 17040 } else { 17041 REG_WR(sc, PXP_REG_PXP_INT_MASK_1, 0); 17042 } 17043 REG_WR(sc, DORQ_REG_DORQ_INT_MASK, 0); 17044 REG_WR(sc, CFC_REG_CFC_INT_MASK, 0); 17045 /* 17046 * mask read length error interrupts in brb for parser 17047 * (parsing unit and 'checksum and crc' unit) 17048 * these errors are legal (PU reads fixed length and CAC can cause 17049 * read length error on truncated packets) 17050 */ 17051 REG_WR(sc, BRB1_REG_BRB1_INT_MASK, 0xFC00); 17052 REG_WR(sc, QM_REG_QM_INT_MASK, 0); 17053 REG_WR(sc, TM_REG_TM_INT_MASK, 0); 17054 REG_WR(sc, XSDM_REG_XSDM_INT_MASK_0, 0); 17055 REG_WR(sc, XSDM_REG_XSDM_INT_MASK_1, 0); 17056 REG_WR(sc, XCM_REG_XCM_INT_MASK, 0); 17057 /* REG_WR(sc, XSEM_REG_XSEM_INT_MASK_0, 0); */ 17058 /* REG_WR(sc, XSEM_REG_XSEM_INT_MASK_1, 0); */ 17059 REG_WR(sc, USDM_REG_USDM_INT_MASK_0, 0); 17060 REG_WR(sc, USDM_REG_USDM_INT_MASK_1, 0); 17061 REG_WR(sc, UCM_REG_UCM_INT_MASK, 0); 17062 /* REG_WR(sc, USEM_REG_USEM_INT_MASK_0, 0); */ 17063 /* REG_WR(sc, USEM_REG_USEM_INT_MASK_1, 0); */ 17064 REG_WR(sc, GRCBASE_UPB + PB_REG_PB_INT_MASK, 0); 17065 REG_WR(sc, CSDM_REG_CSDM_INT_MASK_0, 0); 17066 REG_WR(sc, CSDM_REG_CSDM_INT_MASK_1, 0); 17067 REG_WR(sc, CCM_REG_CCM_INT_MASK, 0); 17068 /* REG_WR(sc, CSEM_REG_CSEM_INT_MASK_0, 0); */ 17069 /* REG_WR(sc, CSEM_REG_CSEM_INT_MASK_1, 0); */ 17070 17071 val = (PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_AFT | 17072 PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_OF | 17073 PXP2_PXP2_INT_MASK_0_REG_PGL_PCIE_ATTN); 17074 if (!CHIP_IS_E1x(sc)) { 17075 val |= (PXP2_PXP2_INT_MASK_0_REG_PGL_READ_BLOCKED | 17076 PXP2_PXP2_INT_MASK_0_REG_PGL_WRITE_BLOCKED); 17077 } 17078 REG_WR(sc, PXP2_REG_PXP2_INT_MASK_0, val); 17079 17080 REG_WR(sc, TSDM_REG_TSDM_INT_MASK_0, 0); 17081 REG_WR(sc, TSDM_REG_TSDM_INT_MASK_1, 0); 17082 REG_WR(sc, TCM_REG_TCM_INT_MASK, 0); 17083 /* REG_WR(sc, TSEM_REG_TSEM_INT_MASK_0, 0); */ 17084 17085 if (!CHIP_IS_E1x(sc)) { 17086 /* enable VFC attentions: bits 11 and 12, bits 31:13 reserved */ 17087 REG_WR(sc, TSEM_REG_TSEM_INT_MASK_1, 0x07ff); 17088 } 17089 17090 REG_WR(sc, CDU_REG_CDU_INT_MASK, 0); 17091 REG_WR(sc, DMAE_REG_DMAE_INT_MASK, 0); 17092 /* REG_WR(sc, MISC_REG_MISC_INT_MASK, 0); */ 17093 REG_WR(sc, PBF_REG_PBF_INT_MASK, 0x18); /* bit 3,4 masked */ 17094 } 17095 17096 /** 17097 * bxe_init_hw_common - initialize the HW at the COMMON phase. 17098 * 17099 * @sc: driver handle 17100 */ 17101 static int 17102 bxe_init_hw_common(struct bxe_softc *sc) 17103 { 17104 uint8_t abs_func_id; 17105 uint32_t val; 17106 17107 BLOGD(sc, DBG_LOAD, "starting common init for func %d\n", 17108 SC_ABS_FUNC(sc)); 17109 17110 /* 17111 * take the RESET lock to protect undi_unload flow from accessing 17112 * registers while we are resetting the chip 17113 */ 17114 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RESET); 17115 17116 bxe_reset_common(sc); 17117 17118 REG_WR(sc, (GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET), 0xffffffff); 17119 17120 val = 0xfffc; 17121 if (CHIP_IS_E3(sc)) { 17122 val |= MISC_REGISTERS_RESET_REG_2_MSTAT0; 17123 val |= MISC_REGISTERS_RESET_REG_2_MSTAT1; 17124 } 17125 17126 REG_WR(sc, (GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET), val); 17127 17128 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RESET); 17129 17130 ecore_init_block(sc, BLOCK_MISC, PHASE_COMMON); 17131 BLOGD(sc, DBG_LOAD, "after misc block init\n"); 17132 17133 if (!CHIP_IS_E1x(sc)) { 17134 /* 17135 * 4-port mode or 2-port mode we need to turn off master-enable for 17136 * everyone. After that we turn it back on for self. So, we disregard 17137 * multi-function, and always disable all functions on the given path, 17138 * this means 0,2,4,6 for path 0 and 1,3,5,7 for path 1 17139 */ 17140 for (abs_func_id = SC_PATH(sc); 17141 abs_func_id < (E2_FUNC_MAX * 2); 17142 abs_func_id += 2) { 17143 if (abs_func_id == SC_ABS_FUNC(sc)) { 17144 REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1); 17145 continue; 17146 } 17147 17148 bxe_pretend_func(sc, abs_func_id); 17149 17150 /* clear pf enable */ 17151 bxe_pf_disable(sc); 17152 17153 bxe_pretend_func(sc, SC_ABS_FUNC(sc)); 17154 } 17155 } 17156 17157 BLOGD(sc, DBG_LOAD, "after pf disable\n"); 17158 17159 ecore_init_block(sc, BLOCK_PXP, PHASE_COMMON); 17160 17161 if (CHIP_IS_E1(sc)) { 17162 /* 17163 * enable HW interrupt from PXP on USDM overflow 17164 * bit 16 on INT_MASK_0 17165 */ 17166 REG_WR(sc, PXP_REG_PXP_INT_MASK_0, 0); 17167 } 17168 17169 ecore_init_block(sc, BLOCK_PXP2, PHASE_COMMON); 17170 bxe_init_pxp(sc); 17171 17172 #ifdef __BIG_ENDIAN 17173 REG_WR(sc, PXP2_REG_RQ_QM_ENDIAN_M, 1); 17174 REG_WR(sc, PXP2_REG_RQ_TM_ENDIAN_M, 1); 17175 REG_WR(sc, PXP2_REG_RQ_SRC_ENDIAN_M, 1); 17176 REG_WR(sc, PXP2_REG_RQ_CDU_ENDIAN_M, 1); 17177 REG_WR(sc, PXP2_REG_RQ_DBG_ENDIAN_M, 1); 17178 /* make sure this value is 0 */ 17179 REG_WR(sc, PXP2_REG_RQ_HC_ENDIAN_M, 0); 17180 17181 //REG_WR(sc, PXP2_REG_RD_PBF_SWAP_MODE, 1); 17182 REG_WR(sc, PXP2_REG_RD_QM_SWAP_MODE, 1); 17183 REG_WR(sc, PXP2_REG_RD_TM_SWAP_MODE, 1); 17184 REG_WR(sc, PXP2_REG_RD_SRC_SWAP_MODE, 1); 17185 REG_WR(sc, PXP2_REG_RD_CDURD_SWAP_MODE, 1); 17186 #endif 17187 17188 ecore_ilt_init_page_size(sc, INITOP_SET); 17189 17190 if (CHIP_REV_IS_FPGA(sc) && CHIP_IS_E1H(sc)) { 17191 REG_WR(sc, PXP2_REG_PGL_TAGS_LIMIT, 0x1); 17192 } 17193 17194 /* let the HW do it's magic... */ 17195 DELAY(100000); 17196 17197 /* finish PXP init */ 17198 val = REG_RD(sc, PXP2_REG_RQ_CFG_DONE); 17199 if (val != 1) { 17200 BLOGE(sc, "PXP2 CFG failed PXP2_REG_RQ_CFG_DONE val = 0x%x\n", 17201 val); 17202 return (-1); 17203 } 17204 val = REG_RD(sc, PXP2_REG_RD_INIT_DONE); 17205 if (val != 1) { 17206 BLOGE(sc, "PXP2 RD_INIT failed val = 0x%x\n", val); 17207 return (-1); 17208 } 17209 17210 BLOGD(sc, DBG_LOAD, "after pxp init\n"); 17211 17212 /* 17213 * Timer bug workaround for E2 only. We need to set the entire ILT to have 17214 * entries with value "0" and valid bit on. This needs to be done by the 17215 * first PF that is loaded in a path (i.e. common phase) 17216 */ 17217 if (!CHIP_IS_E1x(sc)) { 17218 /* 17219 * In E2 there is a bug in the timers block that can cause function 6 / 7 17220 * (i.e. vnic3) to start even if it is marked as "scan-off". 17221 * This occurs when a different function (func2,3) is being marked 17222 * as "scan-off". Real-life scenario for example: if a driver is being 17223 * load-unloaded while func6,7 are down. This will cause the timer to access 17224 * the ilt, translate to a logical address and send a request to read/write. 17225 * Since the ilt for the function that is down is not valid, this will cause 17226 * a translation error which is unrecoverable. 17227 * The Workaround is intended to make sure that when this happens nothing 17228 * fatal will occur. The workaround: 17229 * 1. First PF driver which loads on a path will: 17230 * a. After taking the chip out of reset, by using pretend, 17231 * it will write "0" to the following registers of 17232 * the other vnics. 17233 * REG_WR(pdev, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0); 17234 * REG_WR(pdev, CFC_REG_WEAK_ENABLE_PF,0); 17235 * REG_WR(pdev, CFC_REG_STRONG_ENABLE_PF,0); 17236 * And for itself it will write '1' to 17237 * PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER to enable 17238 * dmae-operations (writing to pram for example.) 17239 * note: can be done for only function 6,7 but cleaner this 17240 * way. 17241 * b. Write zero+valid to the entire ILT. 17242 * c. Init the first_timers_ilt_entry, last_timers_ilt_entry of 17243 * VNIC3 (of that port). The range allocated will be the 17244 * entire ILT. This is needed to prevent ILT range error. 17245 * 2. Any PF driver load flow: 17246 * a. ILT update with the physical addresses of the allocated 17247 * logical pages. 17248 * b. Wait 20msec. - note that this timeout is needed to make 17249 * sure there are no requests in one of the PXP internal 17250 * queues with "old" ILT addresses. 17251 * c. PF enable in the PGLC. 17252 * d. Clear the was_error of the PF in the PGLC. (could have 17253 * occurred while driver was down) 17254 * e. PF enable in the CFC (WEAK + STRONG) 17255 * f. Timers scan enable 17256 * 3. PF driver unload flow: 17257 * a. Clear the Timers scan_en. 17258 * b. Polling for scan_on=0 for that PF. 17259 * c. Clear the PF enable bit in the PXP. 17260 * d. Clear the PF enable in the CFC (WEAK + STRONG) 17261 * e. Write zero+valid to all ILT entries (The valid bit must 17262 * stay set) 17263 * f. If this is VNIC 3 of a port then also init 17264 * first_timers_ilt_entry to zero and last_timers_ilt_entry 17265 * to the last enrty in the ILT. 17266 * 17267 * Notes: 17268 * Currently the PF error in the PGLC is non recoverable. 17269 * In the future the there will be a recovery routine for this error. 17270 * Currently attention is masked. 17271 * Having an MCP lock on the load/unload process does not guarantee that 17272 * there is no Timer disable during Func6/7 enable. This is because the 17273 * Timers scan is currently being cleared by the MCP on FLR. 17274 * Step 2.d can be done only for PF6/7 and the driver can also check if 17275 * there is error before clearing it. But the flow above is simpler and 17276 * more general. 17277 * All ILT entries are written by zero+valid and not just PF6/7 17278 * ILT entries since in the future the ILT entries allocation for 17279 * PF-s might be dynamic. 17280 */ 17281 struct ilt_client_info ilt_cli; 17282 struct ecore_ilt ilt; 17283 17284 memset(&ilt_cli, 0, sizeof(struct ilt_client_info)); 17285 memset(&ilt, 0, sizeof(struct ecore_ilt)); 17286 17287 /* initialize dummy TM client */ 17288 ilt_cli.start = 0; 17289 ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1; 17290 ilt_cli.client_num = ILT_CLIENT_TM; 17291 17292 /* 17293 * Step 1: set zeroes to all ilt page entries with valid bit on 17294 * Step 2: set the timers first/last ilt entry to point 17295 * to the entire range to prevent ILT range error for 3rd/4th 17296 * vnic (this code assumes existence of the vnic) 17297 * 17298 * both steps performed by call to ecore_ilt_client_init_op() 17299 * with dummy TM client 17300 * 17301 * we must use pretend since PXP2_REG_RQ_##blk##_FIRST_ILT 17302 * and his brother are split registers 17303 */ 17304 17305 bxe_pretend_func(sc, (SC_PATH(sc) + 6)); 17306 ecore_ilt_client_init_op_ilt(sc, &ilt, &ilt_cli, INITOP_CLEAR); 17307 bxe_pretend_func(sc, SC_ABS_FUNC(sc)); 17308 17309 REG_WR(sc, PXP2_REG_RQ_DRAM_ALIGN, BXE_PXP_DRAM_ALIGN); 17310 REG_WR(sc, PXP2_REG_RQ_DRAM_ALIGN_RD, BXE_PXP_DRAM_ALIGN); 17311 REG_WR(sc, PXP2_REG_RQ_DRAM_ALIGN_SEL, 1); 17312 } 17313 17314 REG_WR(sc, PXP2_REG_RQ_DISABLE_INPUTS, 0); 17315 REG_WR(sc, PXP2_REG_RD_DISABLE_INPUTS, 0); 17316 17317 if (!CHIP_IS_E1x(sc)) { 17318 int factor = CHIP_REV_IS_EMUL(sc) ? 1000 : 17319 (CHIP_REV_IS_FPGA(sc) ? 400 : 0); 17320 17321 ecore_init_block(sc, BLOCK_PGLUE_B, PHASE_COMMON); 17322 ecore_init_block(sc, BLOCK_ATC, PHASE_COMMON); 17323 17324 /* let the HW do it's magic... */ 17325 do { 17326 DELAY(200000); 17327 val = REG_RD(sc, ATC_REG_ATC_INIT_DONE); 17328 } while (factor-- && (val != 1)); 17329 17330 if (val != 1) { 17331 BLOGE(sc, "ATC_INIT failed val = 0x%x\n", val); 17332 return (-1); 17333 } 17334 } 17335 17336 BLOGD(sc, DBG_LOAD, "after pglue and atc init\n"); 17337 17338 ecore_init_block(sc, BLOCK_DMAE, PHASE_COMMON); 17339 17340 bxe_iov_init_dmae(sc); 17341 17342 /* clean the DMAE memory */ 17343 sc->dmae_ready = 1; 17344 ecore_init_fill(sc, TSEM_REG_PRAM, 0, 8, 1); 17345 17346 ecore_init_block(sc, BLOCK_TCM, PHASE_COMMON); 17347 17348 ecore_init_block(sc, BLOCK_UCM, PHASE_COMMON); 17349 17350 ecore_init_block(sc, BLOCK_CCM, PHASE_COMMON); 17351 17352 ecore_init_block(sc, BLOCK_XCM, PHASE_COMMON); 17353 17354 bxe_read_dmae(sc, XSEM_REG_PASSIVE_BUFFER, 3); 17355 bxe_read_dmae(sc, CSEM_REG_PASSIVE_BUFFER, 3); 17356 bxe_read_dmae(sc, TSEM_REG_PASSIVE_BUFFER, 3); 17357 bxe_read_dmae(sc, USEM_REG_PASSIVE_BUFFER, 3); 17358 17359 ecore_init_block(sc, BLOCK_QM, PHASE_COMMON); 17360 17361 /* QM queues pointers table */ 17362 ecore_qm_init_ptr_table(sc, sc->qm_cid_count, INITOP_SET); 17363 17364 /* soft reset pulse */ 17365 REG_WR(sc, QM_REG_SOFT_RESET, 1); 17366 REG_WR(sc, QM_REG_SOFT_RESET, 0); 17367 17368 if (CNIC_SUPPORT(sc)) 17369 ecore_init_block(sc, BLOCK_TM, PHASE_COMMON); 17370 17371 ecore_init_block(sc, BLOCK_DORQ, PHASE_COMMON); 17372 REG_WR(sc, DORQ_REG_DPM_CID_OFST, BXE_DB_SHIFT); 17373 if (!CHIP_REV_IS_SLOW(sc)) { 17374 /* enable hw interrupt from doorbell Q */ 17375 REG_WR(sc, DORQ_REG_DORQ_INT_MASK, 0); 17376 } 17377 17378 ecore_init_block(sc, BLOCK_BRB1, PHASE_COMMON); 17379 17380 ecore_init_block(sc, BLOCK_PRS, PHASE_COMMON); 17381 REG_WR(sc, PRS_REG_A_PRSU_20, 0xf); 17382 17383 if (!CHIP_IS_E1(sc)) { 17384 REG_WR(sc, PRS_REG_E1HOV_MODE, sc->devinfo.mf_info.path_has_ovlan); 17385 } 17386 17387 if (!CHIP_IS_E1x(sc) && !CHIP_IS_E3B0(sc)) { 17388 if (IS_MF_AFEX(sc)) { 17389 /* 17390 * configure that AFEX and VLAN headers must be 17391 * received in AFEX mode 17392 */ 17393 REG_WR(sc, PRS_REG_HDRS_AFTER_BASIC, 0xE); 17394 REG_WR(sc, PRS_REG_MUST_HAVE_HDRS, 0xA); 17395 REG_WR(sc, PRS_REG_HDRS_AFTER_TAG_0, 0x6); 17396 REG_WR(sc, PRS_REG_TAG_ETHERTYPE_0, 0x8926); 17397 REG_WR(sc, PRS_REG_TAG_LEN_0, 0x4); 17398 } else { 17399 /* 17400 * Bit-map indicating which L2 hdrs may appear 17401 * after the basic Ethernet header 17402 */ 17403 REG_WR(sc, PRS_REG_HDRS_AFTER_BASIC, 17404 sc->devinfo.mf_info.path_has_ovlan ? 7 : 6); 17405 } 17406 } 17407 17408 ecore_init_block(sc, BLOCK_TSDM, PHASE_COMMON); 17409 ecore_init_block(sc, BLOCK_CSDM, PHASE_COMMON); 17410 ecore_init_block(sc, BLOCK_USDM, PHASE_COMMON); 17411 ecore_init_block(sc, BLOCK_XSDM, PHASE_COMMON); 17412 17413 if (!CHIP_IS_E1x(sc)) { 17414 /* reset VFC memories */ 17415 REG_WR(sc, TSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST, 17416 VFC_MEMORIES_RST_REG_CAM_RST | 17417 VFC_MEMORIES_RST_REG_RAM_RST); 17418 REG_WR(sc, XSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST, 17419 VFC_MEMORIES_RST_REG_CAM_RST | 17420 VFC_MEMORIES_RST_REG_RAM_RST); 17421 17422 DELAY(20000); 17423 } 17424 17425 ecore_init_block(sc, BLOCK_TSEM, PHASE_COMMON); 17426 ecore_init_block(sc, BLOCK_USEM, PHASE_COMMON); 17427 ecore_init_block(sc, BLOCK_CSEM, PHASE_COMMON); 17428 ecore_init_block(sc, BLOCK_XSEM, PHASE_COMMON); 17429 17430 /* sync semi rtc */ 17431 REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 17432 0x80000000); 17433 REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 17434 0x80000000); 17435 17436 ecore_init_block(sc, BLOCK_UPB, PHASE_COMMON); 17437 ecore_init_block(sc, BLOCK_XPB, PHASE_COMMON); 17438 ecore_init_block(sc, BLOCK_PBF, PHASE_COMMON); 17439 17440 if (!CHIP_IS_E1x(sc)) { 17441 if (IS_MF_AFEX(sc)) { 17442 /* 17443 * configure that AFEX and VLAN headers must be 17444 * sent in AFEX mode 17445 */ 17446 REG_WR(sc, PBF_REG_HDRS_AFTER_BASIC, 0xE); 17447 REG_WR(sc, PBF_REG_MUST_HAVE_HDRS, 0xA); 17448 REG_WR(sc, PBF_REG_HDRS_AFTER_TAG_0, 0x6); 17449 REG_WR(sc, PBF_REG_TAG_ETHERTYPE_0, 0x8926); 17450 REG_WR(sc, PBF_REG_TAG_LEN_0, 0x4); 17451 } else { 17452 REG_WR(sc, PBF_REG_HDRS_AFTER_BASIC, 17453 sc->devinfo.mf_info.path_has_ovlan ? 7 : 6); 17454 } 17455 } 17456 17457 REG_WR(sc, SRC_REG_SOFT_RST, 1); 17458 17459 ecore_init_block(sc, BLOCK_SRC, PHASE_COMMON); 17460 17461 if (CNIC_SUPPORT(sc)) { 17462 REG_WR(sc, SRC_REG_KEYSEARCH_0, 0x63285672); 17463 REG_WR(sc, SRC_REG_KEYSEARCH_1, 0x24b8f2cc); 17464 REG_WR(sc, SRC_REG_KEYSEARCH_2, 0x223aef9b); 17465 REG_WR(sc, SRC_REG_KEYSEARCH_3, 0x26001e3a); 17466 REG_WR(sc, SRC_REG_KEYSEARCH_4, 0x7ae91116); 17467 REG_WR(sc, SRC_REG_KEYSEARCH_5, 0x5ce5230b); 17468 REG_WR(sc, SRC_REG_KEYSEARCH_6, 0x298d8adf); 17469 REG_WR(sc, SRC_REG_KEYSEARCH_7, 0x6eb0ff09); 17470 REG_WR(sc, SRC_REG_KEYSEARCH_8, 0x1830f82f); 17471 REG_WR(sc, SRC_REG_KEYSEARCH_9, 0x01e46be7); 17472 } 17473 REG_WR(sc, SRC_REG_SOFT_RST, 0); 17474 17475 if (sizeof(union cdu_context) != 1024) { 17476 /* we currently assume that a context is 1024 bytes */ 17477 BLOGE(sc, "please adjust the size of cdu_context(%ld)\n", 17478 (long)sizeof(union cdu_context)); 17479 } 17480 17481 ecore_init_block(sc, BLOCK_CDU, PHASE_COMMON); 17482 val = (4 << 24) + (0 << 12) + 1024; 17483 REG_WR(sc, CDU_REG_CDU_GLOBAL_PARAMS, val); 17484 17485 ecore_init_block(sc, BLOCK_CFC, PHASE_COMMON); 17486 17487 REG_WR(sc, CFC_REG_INIT_REG, 0x7FF); 17488 /* enable context validation interrupt from CFC */ 17489 REG_WR(sc, CFC_REG_CFC_INT_MASK, 0); 17490 17491 /* set the thresholds to prevent CFC/CDU race */ 17492 REG_WR(sc, CFC_REG_DEBUG0, 0x20020000); 17493 ecore_init_block(sc, BLOCK_HC, PHASE_COMMON); 17494 17495 if (!CHIP_IS_E1x(sc) && BXE_NOMCP(sc)) { 17496 REG_WR(sc, IGU_REG_RESET_MEMORIES, 0x36); 17497 } 17498 17499 ecore_init_block(sc, BLOCK_IGU, PHASE_COMMON); 17500 ecore_init_block(sc, BLOCK_MISC_AEU, PHASE_COMMON); 17501 17502 /* Reset PCIE errors for debug */ 17503 REG_WR(sc, 0x2814, 0xffffffff); 17504 REG_WR(sc, 0x3820, 0xffffffff); 17505 17506 if (!CHIP_IS_E1x(sc)) { 17507 REG_WR(sc, PCICFG_OFFSET + PXPCS_TL_CONTROL_5, 17508 (PXPCS_TL_CONTROL_5_ERR_UNSPPORT1 | 17509 PXPCS_TL_CONTROL_5_ERR_UNSPPORT)); 17510 REG_WR(sc, PCICFG_OFFSET + PXPCS_TL_FUNC345_STAT, 17511 (PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT4 | 17512 PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT3 | 17513 PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT2)); 17514 REG_WR(sc, PCICFG_OFFSET + PXPCS_TL_FUNC678_STAT, 17515 (PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT7 | 17516 PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT6 | 17517 PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT5)); 17518 } 17519 17520 ecore_init_block(sc, BLOCK_NIG, PHASE_COMMON); 17521 17522 if (!CHIP_IS_E1(sc)) { 17523 /* in E3 this done in per-port section */ 17524 if (!CHIP_IS_E3(sc)) 17525 REG_WR(sc, NIG_REG_LLH_MF_MODE, IS_MF(sc)); 17526 } 17527 17528 if (CHIP_IS_E1H(sc)) { 17529 /* not applicable for E2 (and above ...) */ 17530 REG_WR(sc, NIG_REG_LLH_E1HOV_MODE, IS_MF_SD(sc)); 17531 } 17532 17533 if (CHIP_REV_IS_SLOW(sc)) { 17534 DELAY(200000); 17535 } 17536 17537 /* finish CFC init */ 17538 val = reg_poll(sc, CFC_REG_LL_INIT_DONE, 1, 100, 10); 17539 if (val != 1) { 17540 BLOGE(sc, "CFC LL_INIT failed val=0x%x\n", val); 17541 return (-1); 17542 } 17543 val = reg_poll(sc, CFC_REG_AC_INIT_DONE, 1, 100, 10); 17544 if (val != 1) { 17545 BLOGE(sc, "CFC AC_INIT failed val=0x%x\n", val); 17546 return (-1); 17547 } 17548 val = reg_poll(sc, CFC_REG_CAM_INIT_DONE, 1, 100, 10); 17549 if (val != 1) { 17550 BLOGE(sc, "CFC CAM_INIT failed val=0x%x\n", val); 17551 return (-1); 17552 } 17553 REG_WR(sc, CFC_REG_DEBUG0, 0); 17554 17555 if (CHIP_IS_E1(sc)) { 17556 /* read NIG statistic to see if this is our first up since powerup */ 17557 bxe_read_dmae(sc, NIG_REG_STAT2_BRB_OCTET, 2); 17558 val = *BXE_SP(sc, wb_data[0]); 17559 17560 /* do internal memory self test */ 17561 if ((val == 0) && bxe_int_mem_test(sc)) { 17562 BLOGE(sc, "internal mem self test failed val=0x%x\n", val); 17563 return (-1); 17564 } 17565 } 17566 17567 bxe_setup_fan_failure_detection(sc); 17568 17569 /* clear PXP2 attentions */ 17570 REG_RD(sc, PXP2_REG_PXP2_INT_STS_CLR_0); 17571 17572 bxe_enable_blocks_attention(sc); 17573 17574 if (!CHIP_REV_IS_SLOW(sc)) { 17575 ecore_enable_blocks_parity(sc); 17576 } 17577 17578 if (!BXE_NOMCP(sc)) { 17579 if (CHIP_IS_E1x(sc)) { 17580 bxe_common_init_phy(sc); 17581 } 17582 } 17583 17584 return (0); 17585 } 17586 17587 /** 17588 * bxe_init_hw_common_chip - init HW at the COMMON_CHIP phase. 17589 * 17590 * @sc: driver handle 17591 */ 17592 static int 17593 bxe_init_hw_common_chip(struct bxe_softc *sc) 17594 { 17595 int rc = bxe_init_hw_common(sc); 17596 17597 if (rc) { 17598 BLOGE(sc, "bxe_init_hw_common failed rc=%d\n", rc); 17599 return (rc); 17600 } 17601 17602 /* In E2 2-PORT mode, same ext phy is used for the two paths */ 17603 if (!BXE_NOMCP(sc)) { 17604 bxe_common_init_phy(sc); 17605 } 17606 17607 return (0); 17608 } 17609 17610 static int 17611 bxe_init_hw_port(struct bxe_softc *sc) 17612 { 17613 int port = SC_PORT(sc); 17614 int init_phase = port ? PHASE_PORT1 : PHASE_PORT0; 17615 uint32_t low, high; 17616 uint32_t val; 17617 17618 BLOGD(sc, DBG_LOAD, "starting port init for port %d\n", port); 17619 17620 REG_WR(sc, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0); 17621 17622 ecore_init_block(sc, BLOCK_MISC, init_phase); 17623 ecore_init_block(sc, BLOCK_PXP, init_phase); 17624 ecore_init_block(sc, BLOCK_PXP2, init_phase); 17625 17626 /* 17627 * Timers bug workaround: disables the pf_master bit in pglue at 17628 * common phase, we need to enable it here before any dmae access are 17629 * attempted. Therefore we manually added the enable-master to the 17630 * port phase (it also happens in the function phase) 17631 */ 17632 if (!CHIP_IS_E1x(sc)) { 17633 REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1); 17634 } 17635 17636 ecore_init_block(sc, BLOCK_ATC, init_phase); 17637 ecore_init_block(sc, BLOCK_DMAE, init_phase); 17638 ecore_init_block(sc, BLOCK_PGLUE_B, init_phase); 17639 ecore_init_block(sc, BLOCK_QM, init_phase); 17640 17641 ecore_init_block(sc, BLOCK_TCM, init_phase); 17642 ecore_init_block(sc, BLOCK_UCM, init_phase); 17643 ecore_init_block(sc, BLOCK_CCM, init_phase); 17644 ecore_init_block(sc, BLOCK_XCM, init_phase); 17645 17646 /* QM cid (connection) count */ 17647 ecore_qm_init_cid_count(sc, sc->qm_cid_count, INITOP_SET); 17648 17649 if (CNIC_SUPPORT(sc)) { 17650 ecore_init_block(sc, BLOCK_TM, init_phase); 17651 REG_WR(sc, TM_REG_LIN0_SCAN_TIME + port*4, 20); 17652 REG_WR(sc, TM_REG_LIN0_MAX_ACTIVE_CID + port*4, 31); 17653 } 17654 17655 ecore_init_block(sc, BLOCK_DORQ, init_phase); 17656 17657 ecore_init_block(sc, BLOCK_BRB1, init_phase); 17658 17659 if (CHIP_IS_E1(sc) || CHIP_IS_E1H(sc)) { 17660 if (IS_MF(sc)) { 17661 low = (BXE_ONE_PORT(sc) ? 160 : 246); 17662 } else if (sc->mtu > 4096) { 17663 if (BXE_ONE_PORT(sc)) { 17664 low = 160; 17665 } else { 17666 val = sc->mtu; 17667 /* (24*1024 + val*4)/256 */ 17668 low = (96 + (val / 64) + ((val % 64) ? 1 : 0)); 17669 } 17670 } else { 17671 low = (BXE_ONE_PORT(sc) ? 80 : 160); 17672 } 17673 high = (low + 56); /* 14*1024/256 */ 17674 REG_WR(sc, BRB1_REG_PAUSE_LOW_THRESHOLD_0 + port*4, low); 17675 REG_WR(sc, BRB1_REG_PAUSE_HIGH_THRESHOLD_0 + port*4, high); 17676 } 17677 17678 if (CHIP_IS_MODE_4_PORT(sc)) { 17679 REG_WR(sc, SC_PORT(sc) ? 17680 BRB1_REG_MAC_GUARANTIED_1 : 17681 BRB1_REG_MAC_GUARANTIED_0, 40); 17682 } 17683 17684 ecore_init_block(sc, BLOCK_PRS, init_phase); 17685 if (CHIP_IS_E3B0(sc)) { 17686 if (IS_MF_AFEX(sc)) { 17687 /* configure headers for AFEX mode */ 17688 REG_WR(sc, SC_PORT(sc) ? 17689 PRS_REG_HDRS_AFTER_BASIC_PORT_1 : 17690 PRS_REG_HDRS_AFTER_BASIC_PORT_0, 0xE); 17691 REG_WR(sc, SC_PORT(sc) ? 17692 PRS_REG_HDRS_AFTER_TAG_0_PORT_1 : 17693 PRS_REG_HDRS_AFTER_TAG_0_PORT_0, 0x6); 17694 REG_WR(sc, SC_PORT(sc) ? 17695 PRS_REG_MUST_HAVE_HDRS_PORT_1 : 17696 PRS_REG_MUST_HAVE_HDRS_PORT_0, 0xA); 17697 } else { 17698 /* Ovlan exists only if we are in multi-function + 17699 * switch-dependent mode, in switch-independent there 17700 * is no ovlan headers 17701 */ 17702 REG_WR(sc, SC_PORT(sc) ? 17703 PRS_REG_HDRS_AFTER_BASIC_PORT_1 : 17704 PRS_REG_HDRS_AFTER_BASIC_PORT_0, 17705 (sc->devinfo.mf_info.path_has_ovlan ? 7 : 6)); 17706 } 17707 } 17708 17709 ecore_init_block(sc, BLOCK_TSDM, init_phase); 17710 ecore_init_block(sc, BLOCK_CSDM, init_phase); 17711 ecore_init_block(sc, BLOCK_USDM, init_phase); 17712 ecore_init_block(sc, BLOCK_XSDM, init_phase); 17713 17714 ecore_init_block(sc, BLOCK_TSEM, init_phase); 17715 ecore_init_block(sc, BLOCK_USEM, init_phase); 17716 ecore_init_block(sc, BLOCK_CSEM, init_phase); 17717 ecore_init_block(sc, BLOCK_XSEM, init_phase); 17718 17719 ecore_init_block(sc, BLOCK_UPB, init_phase); 17720 ecore_init_block(sc, BLOCK_XPB, init_phase); 17721 17722 ecore_init_block(sc, BLOCK_PBF, init_phase); 17723 17724 if (CHIP_IS_E1x(sc)) { 17725 /* configure PBF to work without PAUSE mtu 9000 */ 17726 REG_WR(sc, PBF_REG_P0_PAUSE_ENABLE + port*4, 0); 17727 17728 /* update threshold */ 17729 REG_WR(sc, PBF_REG_P0_ARB_THRSH + port*4, (9040/16)); 17730 /* update init credit */ 17731 REG_WR(sc, PBF_REG_P0_INIT_CRD + port*4, (9040/16) + 553 - 22); 17732 17733 /* probe changes */ 17734 REG_WR(sc, PBF_REG_INIT_P0 + port*4, 1); 17735 DELAY(50); 17736 REG_WR(sc, PBF_REG_INIT_P0 + port*4, 0); 17737 } 17738 17739 if (CNIC_SUPPORT(sc)) { 17740 ecore_init_block(sc, BLOCK_SRC, init_phase); 17741 } 17742 17743 ecore_init_block(sc, BLOCK_CDU, init_phase); 17744 ecore_init_block(sc, BLOCK_CFC, init_phase); 17745 17746 if (CHIP_IS_E1(sc)) { 17747 REG_WR(sc, HC_REG_LEADING_EDGE_0 + port*8, 0); 17748 REG_WR(sc, HC_REG_TRAILING_EDGE_0 + port*8, 0); 17749 } 17750 ecore_init_block(sc, BLOCK_HC, init_phase); 17751 17752 ecore_init_block(sc, BLOCK_IGU, init_phase); 17753 17754 ecore_init_block(sc, BLOCK_MISC_AEU, init_phase); 17755 /* init aeu_mask_attn_func_0/1: 17756 * - SF mode: bits 3-7 are masked. only bits 0-2 are in use 17757 * - MF mode: bit 3 is masked. bits 0-2 are in use as in SF 17758 * bits 4-7 are used for "per vn group attention" */ 17759 val = IS_MF(sc) ? 0xF7 : 0x7; 17760 /* Enable DCBX attention for all but E1 */ 17761 val |= CHIP_IS_E1(sc) ? 0 : 0x10; 17762 REG_WR(sc, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, val); 17763 17764 ecore_init_block(sc, BLOCK_NIG, init_phase); 17765 17766 if (!CHIP_IS_E1x(sc)) { 17767 /* Bit-map indicating which L2 hdrs may appear after the 17768 * basic Ethernet header 17769 */ 17770 if (IS_MF_AFEX(sc)) { 17771 REG_WR(sc, SC_PORT(sc) ? 17772 NIG_REG_P1_HDRS_AFTER_BASIC : 17773 NIG_REG_P0_HDRS_AFTER_BASIC, 0xE); 17774 } else { 17775 REG_WR(sc, SC_PORT(sc) ? 17776 NIG_REG_P1_HDRS_AFTER_BASIC : 17777 NIG_REG_P0_HDRS_AFTER_BASIC, 17778 IS_MF_SD(sc) ? 7 : 6); 17779 } 17780 17781 if (CHIP_IS_E3(sc)) { 17782 REG_WR(sc, SC_PORT(sc) ? 17783 NIG_REG_LLH1_MF_MODE : 17784 NIG_REG_LLH_MF_MODE, IS_MF(sc)); 17785 } 17786 } 17787 if (!CHIP_IS_E3(sc)) { 17788 REG_WR(sc, NIG_REG_XGXS_SERDES0_MODE_SEL + port*4, 1); 17789 } 17790 17791 if (!CHIP_IS_E1(sc)) { 17792 /* 0x2 disable mf_ov, 0x1 enable */ 17793 REG_WR(sc, NIG_REG_LLH0_BRB1_DRV_MASK_MF + port*4, 17794 (IS_MF_SD(sc) ? 0x1 : 0x2)); 17795 17796 if (!CHIP_IS_E1x(sc)) { 17797 val = 0; 17798 switch (sc->devinfo.mf_info.mf_mode) { 17799 case MULTI_FUNCTION_SD: 17800 val = 1; 17801 break; 17802 case MULTI_FUNCTION_SI: 17803 case MULTI_FUNCTION_AFEX: 17804 val = 2; 17805 break; 17806 } 17807 17808 REG_WR(sc, (SC_PORT(sc) ? NIG_REG_LLH1_CLS_TYPE : 17809 NIG_REG_LLH0_CLS_TYPE), val); 17810 } 17811 REG_WR(sc, NIG_REG_LLFC_ENABLE_0 + port*4, 0); 17812 REG_WR(sc, NIG_REG_LLFC_OUT_EN_0 + port*4, 0); 17813 REG_WR(sc, NIG_REG_PAUSE_ENABLE_0 + port*4, 1); 17814 } 17815 17816 /* If SPIO5 is set to generate interrupts, enable it for this port */ 17817 val = REG_RD(sc, MISC_REG_SPIO_EVENT_EN); 17818 if (val & MISC_SPIO_SPIO5) { 17819 uint32_t reg_addr = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 : 17820 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0); 17821 val = REG_RD(sc, reg_addr); 17822 val |= AEU_INPUTS_ATTN_BITS_SPIO5; 17823 REG_WR(sc, reg_addr, val); 17824 } 17825 17826 return (0); 17827 } 17828 17829 static uint32_t 17830 bxe_flr_clnup_reg_poll(struct bxe_softc *sc, 17831 uint32_t reg, 17832 uint32_t expected, 17833 uint32_t poll_count) 17834 { 17835 uint32_t cur_cnt = poll_count; 17836 uint32_t val; 17837 17838 while ((val = REG_RD(sc, reg)) != expected && cur_cnt--) { 17839 DELAY(FLR_WAIT_INTERVAL); 17840 } 17841 17842 return (val); 17843 } 17844 17845 static int 17846 bxe_flr_clnup_poll_hw_counter(struct bxe_softc *sc, 17847 uint32_t reg, 17848 char *msg, 17849 uint32_t poll_cnt) 17850 { 17851 uint32_t val = bxe_flr_clnup_reg_poll(sc, reg, 0, poll_cnt); 17852 17853 if (val != 0) { 17854 BLOGE(sc, "%s usage count=%d\n", msg, val); 17855 return (1); 17856 } 17857 17858 return (0); 17859 } 17860 17861 /* Common routines with VF FLR cleanup */ 17862 static uint32_t 17863 bxe_flr_clnup_poll_count(struct bxe_softc *sc) 17864 { 17865 /* adjust polling timeout */ 17866 if (CHIP_REV_IS_EMUL(sc)) { 17867 return (FLR_POLL_CNT * 2000); 17868 } 17869 17870 if (CHIP_REV_IS_FPGA(sc)) { 17871 return (FLR_POLL_CNT * 120); 17872 } 17873 17874 return (FLR_POLL_CNT); 17875 } 17876 17877 static int 17878 bxe_poll_hw_usage_counters(struct bxe_softc *sc, 17879 uint32_t poll_cnt) 17880 { 17881 /* wait for CFC PF usage-counter to zero (includes all the VFs) */ 17882 if (bxe_flr_clnup_poll_hw_counter(sc, 17883 CFC_REG_NUM_LCIDS_INSIDE_PF, 17884 "CFC PF usage counter timed out", 17885 poll_cnt)) { 17886 return (1); 17887 } 17888 17889 /* Wait for DQ PF usage-counter to zero (until DQ cleanup) */ 17890 if (bxe_flr_clnup_poll_hw_counter(sc, 17891 DORQ_REG_PF_USAGE_CNT, 17892 "DQ PF usage counter timed out", 17893 poll_cnt)) { 17894 return (1); 17895 } 17896 17897 /* Wait for QM PF usage-counter to zero (until DQ cleanup) */ 17898 if (bxe_flr_clnup_poll_hw_counter(sc, 17899 QM_REG_PF_USG_CNT_0 + 4*SC_FUNC(sc), 17900 "QM PF usage counter timed out", 17901 poll_cnt)) { 17902 return (1); 17903 } 17904 17905 /* Wait for Timer PF usage-counters to zero (until DQ cleanup) */ 17906 if (bxe_flr_clnup_poll_hw_counter(sc, 17907 TM_REG_LIN0_VNIC_UC + 4*SC_PORT(sc), 17908 "Timers VNIC usage counter timed out", 17909 poll_cnt)) { 17910 return (1); 17911 } 17912 17913 if (bxe_flr_clnup_poll_hw_counter(sc, 17914 TM_REG_LIN0_NUM_SCANS + 4*SC_PORT(sc), 17915 "Timers NUM_SCANS usage counter timed out", 17916 poll_cnt)) { 17917 return (1); 17918 } 17919 17920 /* Wait DMAE PF usage counter to zero */ 17921 if (bxe_flr_clnup_poll_hw_counter(sc, 17922 dmae_reg_go_c[INIT_DMAE_C(sc)], 17923 "DMAE dommand register timed out", 17924 poll_cnt)) { 17925 return (1); 17926 } 17927 17928 return (0); 17929 } 17930 17931 #define OP_GEN_PARAM(param) \ 17932 (((param) << SDM_OP_GEN_COMP_PARAM_SHIFT) & SDM_OP_GEN_COMP_PARAM) 17933 #define OP_GEN_TYPE(type) \ 17934 (((type) << SDM_OP_GEN_COMP_TYPE_SHIFT) & SDM_OP_GEN_COMP_TYPE) 17935 #define OP_GEN_AGG_VECT(index) \ 17936 (((index) << SDM_OP_GEN_AGG_VECT_IDX_SHIFT) & SDM_OP_GEN_AGG_VECT_IDX) 17937 17938 static int 17939 bxe_send_final_clnup(struct bxe_softc *sc, 17940 uint8_t clnup_func, 17941 uint32_t poll_cnt) 17942 { 17943 uint32_t op_gen_command = 0; 17944 uint32_t comp_addr = (BAR_CSTRORM_INTMEM + 17945 CSTORM_FINAL_CLEANUP_COMPLETE_OFFSET(clnup_func)); 17946 int ret = 0; 17947 17948 if (REG_RD(sc, comp_addr)) { 17949 BLOGE(sc, "Cleanup complete was not 0 before sending\n"); 17950 return (1); 17951 } 17952 17953 op_gen_command |= OP_GEN_PARAM(XSTORM_AGG_INT_FINAL_CLEANUP_INDEX); 17954 op_gen_command |= OP_GEN_TYPE(XSTORM_AGG_INT_FINAL_CLEANUP_COMP_TYPE); 17955 op_gen_command |= OP_GEN_AGG_VECT(clnup_func); 17956 op_gen_command |= 1 << SDM_OP_GEN_AGG_VECT_IDX_VALID_SHIFT; 17957 17958 BLOGD(sc, DBG_LOAD, "sending FW Final cleanup\n"); 17959 REG_WR(sc, XSDM_REG_OPERATION_GEN, op_gen_command); 17960 17961 if (bxe_flr_clnup_reg_poll(sc, comp_addr, 1, poll_cnt) != 1) { 17962 BLOGE(sc, "FW final cleanup did not succeed\n"); 17963 BLOGD(sc, DBG_LOAD, "At timeout completion address contained %x\n", 17964 (REG_RD(sc, comp_addr))); 17965 bxe_panic(sc, ("FLR cleanup failed\n")); 17966 return (1); 17967 } 17968 17969 /* Zero completion for nxt FLR */ 17970 REG_WR(sc, comp_addr, 0); 17971 17972 return (ret); 17973 } 17974 17975 static void 17976 bxe_pbf_pN_buf_flushed(struct bxe_softc *sc, 17977 struct pbf_pN_buf_regs *regs, 17978 uint32_t poll_count) 17979 { 17980 uint32_t init_crd, crd, crd_start, crd_freed, crd_freed_start; 17981 uint32_t cur_cnt = poll_count; 17982 17983 crd_freed = crd_freed_start = REG_RD(sc, regs->crd_freed); 17984 crd = crd_start = REG_RD(sc, regs->crd); 17985 init_crd = REG_RD(sc, regs->init_crd); 17986 17987 BLOGD(sc, DBG_LOAD, "INIT CREDIT[%d] : %x\n", regs->pN, init_crd); 17988 BLOGD(sc, DBG_LOAD, "CREDIT[%d] : s:%x\n", regs->pN, crd); 17989 BLOGD(sc, DBG_LOAD, "CREDIT_FREED[%d]: s:%x\n", regs->pN, crd_freed); 17990 17991 while ((crd != init_crd) && 17992 ((uint32_t)((int32_t)crd_freed - (int32_t)crd_freed_start) < 17993 (init_crd - crd_start))) { 17994 if (cur_cnt--) { 17995 DELAY(FLR_WAIT_INTERVAL); 17996 crd = REG_RD(sc, regs->crd); 17997 crd_freed = REG_RD(sc, regs->crd_freed); 17998 } else { 17999 BLOGD(sc, DBG_LOAD, "PBF tx buffer[%d] timed out\n", regs->pN); 18000 BLOGD(sc, DBG_LOAD, "CREDIT[%d] : c:%x\n", regs->pN, crd); 18001 BLOGD(sc, DBG_LOAD, "CREDIT_FREED[%d]: c:%x\n", regs->pN, crd_freed); 18002 break; 18003 } 18004 } 18005 18006 BLOGD(sc, DBG_LOAD, "Waited %d*%d usec for PBF tx buffer[%d]\n", 18007 poll_count-cur_cnt, FLR_WAIT_INTERVAL, regs->pN); 18008 } 18009 18010 static void 18011 bxe_pbf_pN_cmd_flushed(struct bxe_softc *sc, 18012 struct pbf_pN_cmd_regs *regs, 18013 uint32_t poll_count) 18014 { 18015 uint32_t occup, to_free, freed, freed_start; 18016 uint32_t cur_cnt = poll_count; 18017 18018 occup = to_free = REG_RD(sc, regs->lines_occup); 18019 freed = freed_start = REG_RD(sc, regs->lines_freed); 18020 18021 BLOGD(sc, DBG_LOAD, "OCCUPANCY[%d] : s:%x\n", regs->pN, occup); 18022 BLOGD(sc, DBG_LOAD, "LINES_FREED[%d] : s:%x\n", regs->pN, freed); 18023 18024 while (occup && 18025 ((uint32_t)((int32_t)freed - (int32_t)freed_start) < to_free)) { 18026 if (cur_cnt--) { 18027 DELAY(FLR_WAIT_INTERVAL); 18028 occup = REG_RD(sc, regs->lines_occup); 18029 freed = REG_RD(sc, regs->lines_freed); 18030 } else { 18031 BLOGD(sc, DBG_LOAD, "PBF cmd queue[%d] timed out\n", regs->pN); 18032 BLOGD(sc, DBG_LOAD, "OCCUPANCY[%d] : s:%x\n", regs->pN, occup); 18033 BLOGD(sc, DBG_LOAD, "LINES_FREED[%d] : s:%x\n", regs->pN, freed); 18034 break; 18035 } 18036 } 18037 18038 BLOGD(sc, DBG_LOAD, "Waited %d*%d usec for PBF cmd queue[%d]\n", 18039 poll_count - cur_cnt, FLR_WAIT_INTERVAL, regs->pN); 18040 } 18041 18042 static void 18043 bxe_tx_hw_flushed(struct bxe_softc *sc, uint32_t poll_count) 18044 { 18045 struct pbf_pN_cmd_regs cmd_regs[] = { 18046 {0, (CHIP_IS_E3B0(sc)) ? 18047 PBF_REG_TQ_OCCUPANCY_Q0 : 18048 PBF_REG_P0_TQ_OCCUPANCY, 18049 (CHIP_IS_E3B0(sc)) ? 18050 PBF_REG_TQ_LINES_FREED_CNT_Q0 : 18051 PBF_REG_P0_TQ_LINES_FREED_CNT}, 18052 {1, (CHIP_IS_E3B0(sc)) ? 18053 PBF_REG_TQ_OCCUPANCY_Q1 : 18054 PBF_REG_P1_TQ_OCCUPANCY, 18055 (CHIP_IS_E3B0(sc)) ? 18056 PBF_REG_TQ_LINES_FREED_CNT_Q1 : 18057 PBF_REG_P1_TQ_LINES_FREED_CNT}, 18058 {4, (CHIP_IS_E3B0(sc)) ? 18059 PBF_REG_TQ_OCCUPANCY_LB_Q : 18060 PBF_REG_P4_TQ_OCCUPANCY, 18061 (CHIP_IS_E3B0(sc)) ? 18062 PBF_REG_TQ_LINES_FREED_CNT_LB_Q : 18063 PBF_REG_P4_TQ_LINES_FREED_CNT} 18064 }; 18065 18066 struct pbf_pN_buf_regs buf_regs[] = { 18067 {0, (CHIP_IS_E3B0(sc)) ? 18068 PBF_REG_INIT_CRD_Q0 : 18069 PBF_REG_P0_INIT_CRD , 18070 (CHIP_IS_E3B0(sc)) ? 18071 PBF_REG_CREDIT_Q0 : 18072 PBF_REG_P0_CREDIT, 18073 (CHIP_IS_E3B0(sc)) ? 18074 PBF_REG_INTERNAL_CRD_FREED_CNT_Q0 : 18075 PBF_REG_P0_INTERNAL_CRD_FREED_CNT}, 18076 {1, (CHIP_IS_E3B0(sc)) ? 18077 PBF_REG_INIT_CRD_Q1 : 18078 PBF_REG_P1_INIT_CRD, 18079 (CHIP_IS_E3B0(sc)) ? 18080 PBF_REG_CREDIT_Q1 : 18081 PBF_REG_P1_CREDIT, 18082 (CHIP_IS_E3B0(sc)) ? 18083 PBF_REG_INTERNAL_CRD_FREED_CNT_Q1 : 18084 PBF_REG_P1_INTERNAL_CRD_FREED_CNT}, 18085 {4, (CHIP_IS_E3B0(sc)) ? 18086 PBF_REG_INIT_CRD_LB_Q : 18087 PBF_REG_P4_INIT_CRD, 18088 (CHIP_IS_E3B0(sc)) ? 18089 PBF_REG_CREDIT_LB_Q : 18090 PBF_REG_P4_CREDIT, 18091 (CHIP_IS_E3B0(sc)) ? 18092 PBF_REG_INTERNAL_CRD_FREED_CNT_LB_Q : 18093 PBF_REG_P4_INTERNAL_CRD_FREED_CNT}, 18094 }; 18095 18096 int i; 18097 18098 /* Verify the command queues are flushed P0, P1, P4 */ 18099 for (i = 0; i < ARRAY_SIZE(cmd_regs); i++) { 18100 bxe_pbf_pN_cmd_flushed(sc, &cmd_regs[i], poll_count); 18101 } 18102 18103 /* Verify the transmission buffers are flushed P0, P1, P4 */ 18104 for (i = 0; i < ARRAY_SIZE(buf_regs); i++) { 18105 bxe_pbf_pN_buf_flushed(sc, &buf_regs[i], poll_count); 18106 } 18107 } 18108 18109 static void 18110 bxe_hw_enable_status(struct bxe_softc *sc) 18111 { 18112 uint32_t val; 18113 18114 val = REG_RD(sc, CFC_REG_WEAK_ENABLE_PF); 18115 BLOGD(sc, DBG_LOAD, "CFC_REG_WEAK_ENABLE_PF is 0x%x\n", val); 18116 18117 val = REG_RD(sc, PBF_REG_DISABLE_PF); 18118 BLOGD(sc, DBG_LOAD, "PBF_REG_DISABLE_PF is 0x%x\n", val); 18119 18120 val = REG_RD(sc, IGU_REG_PCI_PF_MSI_EN); 18121 BLOGD(sc, DBG_LOAD, "IGU_REG_PCI_PF_MSI_EN is 0x%x\n", val); 18122 18123 val = REG_RD(sc, IGU_REG_PCI_PF_MSIX_EN); 18124 BLOGD(sc, DBG_LOAD, "IGU_REG_PCI_PF_MSIX_EN is 0x%x\n", val); 18125 18126 val = REG_RD(sc, IGU_REG_PCI_PF_MSIX_FUNC_MASK); 18127 BLOGD(sc, DBG_LOAD, "IGU_REG_PCI_PF_MSIX_FUNC_MASK is 0x%x\n", val); 18128 18129 val = REG_RD(sc, PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR); 18130 BLOGD(sc, DBG_LOAD, "PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR is 0x%x\n", val); 18131 18132 val = REG_RD(sc, PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR); 18133 BLOGD(sc, DBG_LOAD, "PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR is 0x%x\n", val); 18134 18135 val = REG_RD(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER); 18136 BLOGD(sc, DBG_LOAD, "PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER is 0x%x\n", val); 18137 } 18138 18139 static int 18140 bxe_pf_flr_clnup(struct bxe_softc *sc) 18141 { 18142 uint32_t poll_cnt = bxe_flr_clnup_poll_count(sc); 18143 18144 BLOGD(sc, DBG_LOAD, "Cleanup after FLR PF[%d]\n", SC_ABS_FUNC(sc)); 18145 18146 /* Re-enable PF target read access */ 18147 REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1); 18148 18149 /* Poll HW usage counters */ 18150 BLOGD(sc, DBG_LOAD, "Polling usage counters\n"); 18151 if (bxe_poll_hw_usage_counters(sc, poll_cnt)) { 18152 return (-1); 18153 } 18154 18155 /* Zero the igu 'trailing edge' and 'leading edge' */ 18156 18157 /* Send the FW cleanup command */ 18158 if (bxe_send_final_clnup(sc, (uint8_t)SC_FUNC(sc), poll_cnt)) { 18159 return (-1); 18160 } 18161 18162 /* ATC cleanup */ 18163 18164 /* Verify TX hw is flushed */ 18165 bxe_tx_hw_flushed(sc, poll_cnt); 18166 18167 /* Wait 100ms (not adjusted according to platform) */ 18168 DELAY(100000); 18169 18170 /* Verify no pending pci transactions */ 18171 if (bxe_is_pcie_pending(sc)) { 18172 BLOGE(sc, "PCIE Transactions still pending\n"); 18173 } 18174 18175 /* Debug */ 18176 bxe_hw_enable_status(sc); 18177 18178 /* 18179 * Master enable - Due to WB DMAE writes performed before this 18180 * register is re-initialized as part of the regular function init 18181 */ 18182 REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1); 18183 18184 return (0); 18185 } 18186 18187 static int 18188 bxe_init_hw_func(struct bxe_softc *sc) 18189 { 18190 int port = SC_PORT(sc); 18191 int func = SC_FUNC(sc); 18192 int init_phase = PHASE_PF0 + func; 18193 struct ecore_ilt *ilt = sc->ilt; 18194 uint16_t cdu_ilt_start; 18195 uint32_t addr, val; 18196 uint32_t main_mem_base, main_mem_size, main_mem_prty_clr; 18197 int i, main_mem_width, rc; 18198 18199 BLOGD(sc, DBG_LOAD, "starting func init for func %d\n", func); 18200 18201 /* FLR cleanup */ 18202 if (!CHIP_IS_E1x(sc)) { 18203 rc = bxe_pf_flr_clnup(sc); 18204 if (rc) { 18205 BLOGE(sc, "FLR cleanup failed!\n"); 18206 // XXX bxe_fw_dump(sc); 18207 // XXX bxe_idle_chk(sc); 18208 return (rc); 18209 } 18210 } 18211 18212 /* set MSI reconfigure capability */ 18213 if (sc->devinfo.int_block == INT_BLOCK_HC) { 18214 addr = (port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0); 18215 val = REG_RD(sc, addr); 18216 val |= HC_CONFIG_0_REG_MSI_ATTN_EN_0; 18217 REG_WR(sc, addr, val); 18218 } 18219 18220 ecore_init_block(sc, BLOCK_PXP, init_phase); 18221 ecore_init_block(sc, BLOCK_PXP2, init_phase); 18222 18223 ilt = sc->ilt; 18224 cdu_ilt_start = ilt->clients[ILT_CLIENT_CDU].start; 18225 18226 for (i = 0; i < L2_ILT_LINES(sc); i++) { 18227 ilt->lines[cdu_ilt_start + i].page = sc->context[i].vcxt; 18228 ilt->lines[cdu_ilt_start + i].page_mapping = 18229 sc->context[i].vcxt_dma.paddr; 18230 ilt->lines[cdu_ilt_start + i].size = sc->context[i].size; 18231 } 18232 ecore_ilt_init_op(sc, INITOP_SET); 18233 18234 /* Set NIC mode */ 18235 REG_WR(sc, PRS_REG_NIC_MODE, 1); 18236 BLOGD(sc, DBG_LOAD, "NIC MODE configured\n"); 18237 18238 if (!CHIP_IS_E1x(sc)) { 18239 uint32_t pf_conf = IGU_PF_CONF_FUNC_EN; 18240 18241 /* Turn on a single ISR mode in IGU if driver is going to use 18242 * INT#x or MSI 18243 */ 18244 if (sc->interrupt_mode != INTR_MODE_MSIX) { 18245 pf_conf |= IGU_PF_CONF_SINGLE_ISR_EN; 18246 } 18247 18248 /* 18249 * Timers workaround bug: function init part. 18250 * Need to wait 20msec after initializing ILT, 18251 * needed to make sure there are no requests in 18252 * one of the PXP internal queues with "old" ILT addresses 18253 */ 18254 DELAY(20000); 18255 18256 /* 18257 * Master enable - Due to WB DMAE writes performed before this 18258 * register is re-initialized as part of the regular function 18259 * init 18260 */ 18261 REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1); 18262 /* Enable the function in IGU */ 18263 REG_WR(sc, IGU_REG_PF_CONFIGURATION, pf_conf); 18264 } 18265 18266 sc->dmae_ready = 1; 18267 18268 ecore_init_block(sc, BLOCK_PGLUE_B, init_phase); 18269 18270 if (!CHIP_IS_E1x(sc)) 18271 REG_WR(sc, PGLUE_B_REG_WAS_ERROR_PF_7_0_CLR, func); 18272 18273 ecore_init_block(sc, BLOCK_ATC, init_phase); 18274 ecore_init_block(sc, BLOCK_DMAE, init_phase); 18275 ecore_init_block(sc, BLOCK_NIG, init_phase); 18276 ecore_init_block(sc, BLOCK_SRC, init_phase); 18277 ecore_init_block(sc, BLOCK_MISC, init_phase); 18278 ecore_init_block(sc, BLOCK_TCM, init_phase); 18279 ecore_init_block(sc, BLOCK_UCM, init_phase); 18280 ecore_init_block(sc, BLOCK_CCM, init_phase); 18281 ecore_init_block(sc, BLOCK_XCM, init_phase); 18282 ecore_init_block(sc, BLOCK_TSEM, init_phase); 18283 ecore_init_block(sc, BLOCK_USEM, init_phase); 18284 ecore_init_block(sc, BLOCK_CSEM, init_phase); 18285 ecore_init_block(sc, BLOCK_XSEM, init_phase); 18286 18287 if (!CHIP_IS_E1x(sc)) 18288 REG_WR(sc, QM_REG_PF_EN, 1); 18289 18290 if (!CHIP_IS_E1x(sc)) { 18291 REG_WR(sc, TSEM_REG_VFPF_ERR_NUM, BXE_MAX_NUM_OF_VFS + func); 18292 REG_WR(sc, USEM_REG_VFPF_ERR_NUM, BXE_MAX_NUM_OF_VFS + func); 18293 REG_WR(sc, CSEM_REG_VFPF_ERR_NUM, BXE_MAX_NUM_OF_VFS + func); 18294 REG_WR(sc, XSEM_REG_VFPF_ERR_NUM, BXE_MAX_NUM_OF_VFS + func); 18295 } 18296 ecore_init_block(sc, BLOCK_QM, init_phase); 18297 18298 ecore_init_block(sc, BLOCK_TM, init_phase); 18299 ecore_init_block(sc, BLOCK_DORQ, init_phase); 18300 18301 bxe_iov_init_dq(sc); 18302 18303 ecore_init_block(sc, BLOCK_BRB1, init_phase); 18304 ecore_init_block(sc, BLOCK_PRS, init_phase); 18305 ecore_init_block(sc, BLOCK_TSDM, init_phase); 18306 ecore_init_block(sc, BLOCK_CSDM, init_phase); 18307 ecore_init_block(sc, BLOCK_USDM, init_phase); 18308 ecore_init_block(sc, BLOCK_XSDM, init_phase); 18309 ecore_init_block(sc, BLOCK_UPB, init_phase); 18310 ecore_init_block(sc, BLOCK_XPB, init_phase); 18311 ecore_init_block(sc, BLOCK_PBF, init_phase); 18312 if (!CHIP_IS_E1x(sc)) 18313 REG_WR(sc, PBF_REG_DISABLE_PF, 0); 18314 18315 ecore_init_block(sc, BLOCK_CDU, init_phase); 18316 18317 ecore_init_block(sc, BLOCK_CFC, init_phase); 18318 18319 if (!CHIP_IS_E1x(sc)) 18320 REG_WR(sc, CFC_REG_WEAK_ENABLE_PF, 1); 18321 18322 if (IS_MF(sc)) { 18323 REG_WR(sc, NIG_REG_LLH0_FUNC_EN + port*8, 1); 18324 REG_WR(sc, NIG_REG_LLH0_FUNC_VLAN_ID + port*8, OVLAN(sc)); 18325 } 18326 18327 ecore_init_block(sc, BLOCK_MISC_AEU, init_phase); 18328 18329 /* HC init per function */ 18330 if (sc->devinfo.int_block == INT_BLOCK_HC) { 18331 if (CHIP_IS_E1H(sc)) { 18332 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0); 18333 18334 REG_WR(sc, HC_REG_LEADING_EDGE_0 + port*8, 0); 18335 REG_WR(sc, HC_REG_TRAILING_EDGE_0 + port*8, 0); 18336 } 18337 ecore_init_block(sc, BLOCK_HC, init_phase); 18338 18339 } else { 18340 int num_segs, sb_idx, prod_offset; 18341 18342 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0); 18343 18344 if (!CHIP_IS_E1x(sc)) { 18345 REG_WR(sc, IGU_REG_LEADING_EDGE_LATCH, 0); 18346 REG_WR(sc, IGU_REG_TRAILING_EDGE_LATCH, 0); 18347 } 18348 18349 ecore_init_block(sc, BLOCK_IGU, init_phase); 18350 18351 if (!CHIP_IS_E1x(sc)) { 18352 int dsb_idx = 0; 18353 /** 18354 * Producer memory: 18355 * E2 mode: address 0-135 match to the mapping memory; 18356 * 136 - PF0 default prod; 137 - PF1 default prod; 18357 * 138 - PF2 default prod; 139 - PF3 default prod; 18358 * 140 - PF0 attn prod; 141 - PF1 attn prod; 18359 * 142 - PF2 attn prod; 143 - PF3 attn prod; 18360 * 144-147 reserved. 18361 * 18362 * E1.5 mode - In backward compatible mode; 18363 * for non default SB; each even line in the memory 18364 * holds the U producer and each odd line hold 18365 * the C producer. The first 128 producers are for 18366 * NDSB (PF0 - 0-31; PF1 - 32-63 and so on). The last 20 18367 * producers are for the DSB for each PF. 18368 * Each PF has five segments: (the order inside each 18369 * segment is PF0; PF1; PF2; PF3) - 128-131 U prods; 18370 * 132-135 C prods; 136-139 X prods; 140-143 T prods; 18371 * 144-147 attn prods; 18372 */ 18373 /* non-default-status-blocks */ 18374 num_segs = CHIP_INT_MODE_IS_BC(sc) ? 18375 IGU_BC_NDSB_NUM_SEGS : IGU_NORM_NDSB_NUM_SEGS; 18376 for (sb_idx = 0; sb_idx < sc->igu_sb_cnt; sb_idx++) { 18377 prod_offset = (sc->igu_base_sb + sb_idx) * 18378 num_segs; 18379 18380 for (i = 0; i < num_segs; i++) { 18381 addr = IGU_REG_PROD_CONS_MEMORY + 18382 (prod_offset + i) * 4; 18383 REG_WR(sc, addr, 0); 18384 } 18385 /* send consumer update with value 0 */ 18386 bxe_ack_sb(sc, sc->igu_base_sb + sb_idx, 18387 USTORM_ID, 0, IGU_INT_NOP, 1); 18388 bxe_igu_clear_sb(sc, sc->igu_base_sb + sb_idx); 18389 } 18390 18391 /* default-status-blocks */ 18392 num_segs = CHIP_INT_MODE_IS_BC(sc) ? 18393 IGU_BC_DSB_NUM_SEGS : IGU_NORM_DSB_NUM_SEGS; 18394 18395 if (CHIP_IS_MODE_4_PORT(sc)) 18396 dsb_idx = SC_FUNC(sc); 18397 else 18398 dsb_idx = SC_VN(sc); 18399 18400 prod_offset = (CHIP_INT_MODE_IS_BC(sc) ? 18401 IGU_BC_BASE_DSB_PROD + dsb_idx : 18402 IGU_NORM_BASE_DSB_PROD + dsb_idx); 18403 18404 /* 18405 * igu prods come in chunks of E1HVN_MAX (4) - 18406 * does not matters what is the current chip mode 18407 */ 18408 for (i = 0; i < (num_segs * E1HVN_MAX); 18409 i += E1HVN_MAX) { 18410 addr = IGU_REG_PROD_CONS_MEMORY + 18411 (prod_offset + i)*4; 18412 REG_WR(sc, addr, 0); 18413 } 18414 /* send consumer update with 0 */ 18415 if (CHIP_INT_MODE_IS_BC(sc)) { 18416 bxe_ack_sb(sc, sc->igu_dsb_id, 18417 USTORM_ID, 0, IGU_INT_NOP, 1); 18418 bxe_ack_sb(sc, sc->igu_dsb_id, 18419 CSTORM_ID, 0, IGU_INT_NOP, 1); 18420 bxe_ack_sb(sc, sc->igu_dsb_id, 18421 XSTORM_ID, 0, IGU_INT_NOP, 1); 18422 bxe_ack_sb(sc, sc->igu_dsb_id, 18423 TSTORM_ID, 0, IGU_INT_NOP, 1); 18424 bxe_ack_sb(sc, sc->igu_dsb_id, 18425 ATTENTION_ID, 0, IGU_INT_NOP, 1); 18426 } else { 18427 bxe_ack_sb(sc, sc->igu_dsb_id, 18428 USTORM_ID, 0, IGU_INT_NOP, 1); 18429 bxe_ack_sb(sc, sc->igu_dsb_id, 18430 ATTENTION_ID, 0, IGU_INT_NOP, 1); 18431 } 18432 bxe_igu_clear_sb(sc, sc->igu_dsb_id); 18433 18434 /* !!! these should become driver const once 18435 rf-tool supports split-68 const */ 18436 REG_WR(sc, IGU_REG_SB_INT_BEFORE_MASK_LSB, 0); 18437 REG_WR(sc, IGU_REG_SB_INT_BEFORE_MASK_MSB, 0); 18438 REG_WR(sc, IGU_REG_SB_MASK_LSB, 0); 18439 REG_WR(sc, IGU_REG_SB_MASK_MSB, 0); 18440 REG_WR(sc, IGU_REG_PBA_STATUS_LSB, 0); 18441 REG_WR(sc, IGU_REG_PBA_STATUS_MSB, 0); 18442 } 18443 } 18444 18445 /* Reset PCIE errors for debug */ 18446 REG_WR(sc, 0x2114, 0xffffffff); 18447 REG_WR(sc, 0x2120, 0xffffffff); 18448 18449 if (CHIP_IS_E1x(sc)) { 18450 main_mem_size = HC_REG_MAIN_MEMORY_SIZE / 2; /*dwords*/ 18451 main_mem_base = HC_REG_MAIN_MEMORY + 18452 SC_PORT(sc) * (main_mem_size * 4); 18453 main_mem_prty_clr = HC_REG_HC_PRTY_STS_CLR; 18454 main_mem_width = 8; 18455 18456 val = REG_RD(sc, main_mem_prty_clr); 18457 if (val) { 18458 BLOGD(sc, DBG_LOAD, 18459 "Parity errors in HC block during function init (0x%x)!\n", 18460 val); 18461 } 18462 18463 /* Clear "false" parity errors in MSI-X table */ 18464 for (i = main_mem_base; 18465 i < main_mem_base + main_mem_size * 4; 18466 i += main_mem_width) { 18467 bxe_read_dmae(sc, i, main_mem_width / 4); 18468 bxe_write_dmae(sc, BXE_SP_MAPPING(sc, wb_data), 18469 i, main_mem_width / 4); 18470 } 18471 /* Clear HC parity attention */ 18472 REG_RD(sc, main_mem_prty_clr); 18473 } 18474 18475 #if 1 18476 /* Enable STORMs SP logging */ 18477 REG_WR8(sc, BAR_USTRORM_INTMEM + 18478 USTORM_RECORD_SLOW_PATH_OFFSET(SC_FUNC(sc)), 1); 18479 REG_WR8(sc, BAR_TSTRORM_INTMEM + 18480 TSTORM_RECORD_SLOW_PATH_OFFSET(SC_FUNC(sc)), 1); 18481 REG_WR8(sc, BAR_CSTRORM_INTMEM + 18482 CSTORM_RECORD_SLOW_PATH_OFFSET(SC_FUNC(sc)), 1); 18483 REG_WR8(sc, BAR_XSTRORM_INTMEM + 18484 XSTORM_RECORD_SLOW_PATH_OFFSET(SC_FUNC(sc)), 1); 18485 #endif 18486 18487 elink_phy_probe(&sc->link_params); 18488 18489 return (0); 18490 } 18491 18492 static void 18493 bxe_link_reset(struct bxe_softc *sc) 18494 { 18495 if (!BXE_NOMCP(sc)) { 18496 bxe_acquire_phy_lock(sc); 18497 elink_lfa_reset(&sc->link_params, &sc->link_vars); 18498 bxe_release_phy_lock(sc); 18499 } else { 18500 if (!CHIP_REV_IS_SLOW(sc)) { 18501 BLOGW(sc, "Bootcode is missing - cannot reset link\n"); 18502 } 18503 } 18504 } 18505 18506 static void 18507 bxe_reset_port(struct bxe_softc *sc) 18508 { 18509 int port = SC_PORT(sc); 18510 uint32_t val; 18511 18512 ELINK_DEBUG_P0(sc, "bxe_reset_port called\n"); 18513 /* reset physical Link */ 18514 bxe_link_reset(sc); 18515 18516 REG_WR(sc, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0); 18517 18518 /* Do not rcv packets to BRB */ 18519 REG_WR(sc, NIG_REG_LLH0_BRB1_DRV_MASK + port*4, 0x0); 18520 /* Do not direct rcv packets that are not for MCP to the BRB */ 18521 REG_WR(sc, (port ? NIG_REG_LLH1_BRB1_NOT_MCP : 18522 NIG_REG_LLH0_BRB1_NOT_MCP), 0x0); 18523 18524 /* Configure AEU */ 18525 REG_WR(sc, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, 0); 18526 18527 DELAY(100000); 18528 18529 /* Check for BRB port occupancy */ 18530 val = REG_RD(sc, BRB1_REG_PORT_NUM_OCC_BLOCKS_0 + port*4); 18531 if (val) { 18532 BLOGD(sc, DBG_LOAD, 18533 "BRB1 is not empty, %d blocks are occupied\n", val); 18534 } 18535 18536 /* TODO: Close Doorbell port? */ 18537 } 18538 18539 static void 18540 bxe_ilt_wr(struct bxe_softc *sc, 18541 uint32_t index, 18542 bus_addr_t addr) 18543 { 18544 int reg; 18545 uint32_t wb_write[2]; 18546 18547 if (CHIP_IS_E1(sc)) { 18548 reg = PXP2_REG_RQ_ONCHIP_AT + index*8; 18549 } else { 18550 reg = PXP2_REG_RQ_ONCHIP_AT_B0 + index*8; 18551 } 18552 18553 wb_write[0] = ONCHIP_ADDR1(addr); 18554 wb_write[1] = ONCHIP_ADDR2(addr); 18555 REG_WR_DMAE(sc, reg, wb_write, 2); 18556 } 18557 18558 static void 18559 bxe_clear_func_ilt(struct bxe_softc *sc, 18560 uint32_t func) 18561 { 18562 uint32_t i, base = FUNC_ILT_BASE(func); 18563 for (i = base; i < base + ILT_PER_FUNC; i++) { 18564 bxe_ilt_wr(sc, i, 0); 18565 } 18566 } 18567 18568 static void 18569 bxe_reset_func(struct bxe_softc *sc) 18570 { 18571 struct bxe_fastpath *fp; 18572 int port = SC_PORT(sc); 18573 int func = SC_FUNC(sc); 18574 int i; 18575 18576 /* Disable the function in the FW */ 18577 REG_WR8(sc, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(func), 0); 18578 REG_WR8(sc, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(func), 0); 18579 REG_WR8(sc, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(func), 0); 18580 REG_WR8(sc, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(func), 0); 18581 18582 /* FP SBs */ 18583 FOR_EACH_ETH_QUEUE(sc, i) { 18584 fp = &sc->fp[i]; 18585 REG_WR8(sc, BAR_CSTRORM_INTMEM + 18586 CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET(fp->fw_sb_id), 18587 SB_DISABLED); 18588 } 18589 18590 /* SP SB */ 18591 REG_WR8(sc, BAR_CSTRORM_INTMEM + 18592 CSTORM_SP_STATUS_BLOCK_DATA_STATE_OFFSET(func), 18593 SB_DISABLED); 18594 18595 for (i = 0; i < XSTORM_SPQ_DATA_SIZE / 4; i++) { 18596 REG_WR(sc, BAR_XSTRORM_INTMEM + XSTORM_SPQ_DATA_OFFSET(func), 0); 18597 } 18598 18599 /* Configure IGU */ 18600 if (sc->devinfo.int_block == INT_BLOCK_HC) { 18601 REG_WR(sc, HC_REG_LEADING_EDGE_0 + port*8, 0); 18602 REG_WR(sc, HC_REG_TRAILING_EDGE_0 + port*8, 0); 18603 } else { 18604 REG_WR(sc, IGU_REG_LEADING_EDGE_LATCH, 0); 18605 REG_WR(sc, IGU_REG_TRAILING_EDGE_LATCH, 0); 18606 } 18607 18608 if (CNIC_LOADED(sc)) { 18609 /* Disable Timer scan */ 18610 REG_WR(sc, TM_REG_EN_LINEAR0_TIMER + port*4, 0); 18611 /* 18612 * Wait for at least 10ms and up to 2 second for the timers 18613 * scan to complete 18614 */ 18615 for (i = 0; i < 200; i++) { 18616 DELAY(10000); 18617 if (!REG_RD(sc, TM_REG_LIN0_SCAN_ON + port*4)) 18618 break; 18619 } 18620 } 18621 18622 /* Clear ILT */ 18623 bxe_clear_func_ilt(sc, func); 18624 18625 /* 18626 * Timers workaround bug for E2: if this is vnic-3, 18627 * we need to set the entire ilt range for this timers. 18628 */ 18629 if (!CHIP_IS_E1x(sc) && SC_VN(sc) == 3) { 18630 struct ilt_client_info ilt_cli; 18631 /* use dummy TM client */ 18632 memset(&ilt_cli, 0, sizeof(struct ilt_client_info)); 18633 ilt_cli.start = 0; 18634 ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1; 18635 ilt_cli.client_num = ILT_CLIENT_TM; 18636 18637 ecore_ilt_boundry_init_op(sc, &ilt_cli, 0, INITOP_CLEAR); 18638 } 18639 18640 /* this assumes that reset_port() called before reset_func()*/ 18641 if (!CHIP_IS_E1x(sc)) { 18642 bxe_pf_disable(sc); 18643 } 18644 18645 sc->dmae_ready = 0; 18646 } 18647 18648 static int 18649 bxe_gunzip_init(struct bxe_softc *sc) 18650 { 18651 return (0); 18652 } 18653 18654 static void 18655 bxe_gunzip_end(struct bxe_softc *sc) 18656 { 18657 return; 18658 } 18659 18660 static int 18661 bxe_init_firmware(struct bxe_softc *sc) 18662 { 18663 if (CHIP_IS_E1(sc)) { 18664 ecore_init_e1_firmware(sc); 18665 sc->iro_array = e1_iro_arr; 18666 } else if (CHIP_IS_E1H(sc)) { 18667 ecore_init_e1h_firmware(sc); 18668 sc->iro_array = e1h_iro_arr; 18669 } else if (!CHIP_IS_E1x(sc)) { 18670 ecore_init_e2_firmware(sc); 18671 sc->iro_array = e2_iro_arr; 18672 } else { 18673 BLOGE(sc, "Unsupported chip revision\n"); 18674 return (-1); 18675 } 18676 18677 return (0); 18678 } 18679 18680 static void 18681 bxe_release_firmware(struct bxe_softc *sc) 18682 { 18683 /* Do nothing */ 18684 return; 18685 } 18686 18687 static int 18688 ecore_gunzip(struct bxe_softc *sc, 18689 const uint8_t *zbuf, 18690 int len) 18691 { 18692 /* XXX : Implement... */ 18693 BLOGD(sc, DBG_LOAD, "ECORE_GUNZIP NOT IMPLEMENTED\n"); 18694 return (FALSE); 18695 } 18696 18697 static void 18698 ecore_reg_wr_ind(struct bxe_softc *sc, 18699 uint32_t addr, 18700 uint32_t val) 18701 { 18702 bxe_reg_wr_ind(sc, addr, val); 18703 } 18704 18705 static void 18706 ecore_write_dmae_phys_len(struct bxe_softc *sc, 18707 bus_addr_t phys_addr, 18708 uint32_t addr, 18709 uint32_t len) 18710 { 18711 bxe_write_dmae_phys_len(sc, phys_addr, addr, len); 18712 } 18713 18714 void 18715 ecore_storm_memset_struct(struct bxe_softc *sc, 18716 uint32_t addr, 18717 size_t size, 18718 uint32_t *data) 18719 { 18720 uint8_t i; 18721 for (i = 0; i < size/4; i++) { 18722 REG_WR(sc, addr + (i * 4), data[i]); 18723 } 18724 } 18725 18726 18727 /* 18728 * character device - ioctl interface definitions 18729 */ 18730 18731 18732 #include "bxe_dump.h" 18733 #include "bxe_ioctl.h" 18734 #include <sys/conf.h> 18735 18736 static int bxe_eioctl(struct cdev *dev, u_long cmd, caddr_t data, int fflag, 18737 struct thread *td); 18738 18739 static struct cdevsw bxe_cdevsw = { 18740 .d_version = D_VERSION, 18741 .d_ioctl = bxe_eioctl, 18742 .d_name = "bxecnic", 18743 }; 18744 18745 #define BXE_PATH(sc) (CHIP_IS_E1x(sc) ? 0 : (sc->pcie_func & 1)) 18746 18747 18748 #define DUMP_ALL_PRESETS 0x1FFF 18749 #define DUMP_MAX_PRESETS 13 18750 #define IS_E1_REG(chips) ((chips & DUMP_CHIP_E1) == DUMP_CHIP_E1) 18751 #define IS_E1H_REG(chips) ((chips & DUMP_CHIP_E1H) == DUMP_CHIP_E1H) 18752 #define IS_E2_REG(chips) ((chips & DUMP_CHIP_E2) == DUMP_CHIP_E2) 18753 #define IS_E3A0_REG(chips) ((chips & DUMP_CHIP_E3A0) == DUMP_CHIP_E3A0) 18754 #define IS_E3B0_REG(chips) ((chips & DUMP_CHIP_E3B0) == DUMP_CHIP_E3B0) 18755 18756 #define IS_REG_IN_PRESET(presets, idx) \ 18757 ((presets & (1 << (idx-1))) == (1 << (idx-1))) 18758 18759 18760 static int 18761 bxe_get_preset_regs_len(struct bxe_softc *sc, uint32_t preset) 18762 { 18763 if (CHIP_IS_E1(sc)) 18764 return dump_num_registers[0][preset-1]; 18765 else if (CHIP_IS_E1H(sc)) 18766 return dump_num_registers[1][preset-1]; 18767 else if (CHIP_IS_E2(sc)) 18768 return dump_num_registers[2][preset-1]; 18769 else if (CHIP_IS_E3A0(sc)) 18770 return dump_num_registers[3][preset-1]; 18771 else if (CHIP_IS_E3B0(sc)) 18772 return dump_num_registers[4][preset-1]; 18773 else 18774 return 0; 18775 } 18776 18777 static int 18778 bxe_get_total_regs_len32(struct bxe_softc *sc) 18779 { 18780 uint32_t preset_idx; 18781 int regdump_len32 = 0; 18782 18783 18784 /* Calculate the total preset regs length */ 18785 for (preset_idx = 1; preset_idx <= DUMP_MAX_PRESETS; preset_idx++) { 18786 regdump_len32 += bxe_get_preset_regs_len(sc, preset_idx); 18787 } 18788 18789 return regdump_len32; 18790 } 18791 18792 static const uint32_t * 18793 __bxe_get_page_addr_ar(struct bxe_softc *sc) 18794 { 18795 if (CHIP_IS_E2(sc)) 18796 return page_vals_e2; 18797 else if (CHIP_IS_E3(sc)) 18798 return page_vals_e3; 18799 else 18800 return NULL; 18801 } 18802 18803 static uint32_t 18804 __bxe_get_page_reg_num(struct bxe_softc *sc) 18805 { 18806 if (CHIP_IS_E2(sc)) 18807 return PAGE_MODE_VALUES_E2; 18808 else if (CHIP_IS_E3(sc)) 18809 return PAGE_MODE_VALUES_E3; 18810 else 18811 return 0; 18812 } 18813 18814 static const uint32_t * 18815 __bxe_get_page_write_ar(struct bxe_softc *sc) 18816 { 18817 if (CHIP_IS_E2(sc)) 18818 return page_write_regs_e2; 18819 else if (CHIP_IS_E3(sc)) 18820 return page_write_regs_e3; 18821 else 18822 return NULL; 18823 } 18824 18825 static uint32_t 18826 __bxe_get_page_write_num(struct bxe_softc *sc) 18827 { 18828 if (CHIP_IS_E2(sc)) 18829 return PAGE_WRITE_REGS_E2; 18830 else if (CHIP_IS_E3(sc)) 18831 return PAGE_WRITE_REGS_E3; 18832 else 18833 return 0; 18834 } 18835 18836 static const struct reg_addr * 18837 __bxe_get_page_read_ar(struct bxe_softc *sc) 18838 { 18839 if (CHIP_IS_E2(sc)) 18840 return page_read_regs_e2; 18841 else if (CHIP_IS_E3(sc)) 18842 return page_read_regs_e3; 18843 else 18844 return NULL; 18845 } 18846 18847 static uint32_t 18848 __bxe_get_page_read_num(struct bxe_softc *sc) 18849 { 18850 if (CHIP_IS_E2(sc)) 18851 return PAGE_READ_REGS_E2; 18852 else if (CHIP_IS_E3(sc)) 18853 return PAGE_READ_REGS_E3; 18854 else 18855 return 0; 18856 } 18857 18858 static bool 18859 bxe_is_reg_in_chip(struct bxe_softc *sc, const struct reg_addr *reg_info) 18860 { 18861 if (CHIP_IS_E1(sc)) 18862 return IS_E1_REG(reg_info->chips); 18863 else if (CHIP_IS_E1H(sc)) 18864 return IS_E1H_REG(reg_info->chips); 18865 else if (CHIP_IS_E2(sc)) 18866 return IS_E2_REG(reg_info->chips); 18867 else if (CHIP_IS_E3A0(sc)) 18868 return IS_E3A0_REG(reg_info->chips); 18869 else if (CHIP_IS_E3B0(sc)) 18870 return IS_E3B0_REG(reg_info->chips); 18871 else 18872 return 0; 18873 } 18874 18875 static bool 18876 bxe_is_wreg_in_chip(struct bxe_softc *sc, const struct wreg_addr *wreg_info) 18877 { 18878 if (CHIP_IS_E1(sc)) 18879 return IS_E1_REG(wreg_info->chips); 18880 else if (CHIP_IS_E1H(sc)) 18881 return IS_E1H_REG(wreg_info->chips); 18882 else if (CHIP_IS_E2(sc)) 18883 return IS_E2_REG(wreg_info->chips); 18884 else if (CHIP_IS_E3A0(sc)) 18885 return IS_E3A0_REG(wreg_info->chips); 18886 else if (CHIP_IS_E3B0(sc)) 18887 return IS_E3B0_REG(wreg_info->chips); 18888 else 18889 return 0; 18890 } 18891 18892 /** 18893 * bxe_read_pages_regs - read "paged" registers 18894 * 18895 * @bp device handle 18896 * @p output buffer 18897 * 18898 * Reads "paged" memories: memories that may only be read by first writing to a 18899 * specific address ("write address") and then reading from a specific address 18900 * ("read address"). There may be more than one write address per "page" and 18901 * more than one read address per write address. 18902 */ 18903 static void 18904 bxe_read_pages_regs(struct bxe_softc *sc, uint32_t *p, uint32_t preset) 18905 { 18906 uint32_t i, j, k, n; 18907 18908 /* addresses of the paged registers */ 18909 const uint32_t *page_addr = __bxe_get_page_addr_ar(sc); 18910 /* number of paged registers */ 18911 int num_pages = __bxe_get_page_reg_num(sc); 18912 /* write addresses */ 18913 const uint32_t *write_addr = __bxe_get_page_write_ar(sc); 18914 /* number of write addresses */ 18915 int write_num = __bxe_get_page_write_num(sc); 18916 /* read addresses info */ 18917 const struct reg_addr *read_addr = __bxe_get_page_read_ar(sc); 18918 /* number of read addresses */ 18919 int read_num = __bxe_get_page_read_num(sc); 18920 uint32_t addr, size; 18921 18922 for (i = 0; i < num_pages; i++) { 18923 for (j = 0; j < write_num; j++) { 18924 REG_WR(sc, write_addr[j], page_addr[i]); 18925 18926 for (k = 0; k < read_num; k++) { 18927 if (IS_REG_IN_PRESET(read_addr[k].presets, preset)) { 18928 size = read_addr[k].size; 18929 for (n = 0; n < size; n++) { 18930 addr = read_addr[k].addr + n*4; 18931 *p++ = REG_RD(sc, addr); 18932 } 18933 } 18934 } 18935 } 18936 } 18937 return; 18938 } 18939 18940 18941 static int 18942 bxe_get_preset_regs(struct bxe_softc *sc, uint32_t *p, uint32_t preset) 18943 { 18944 uint32_t i, j, addr; 18945 const struct wreg_addr *wreg_addr_p = NULL; 18946 18947 if (CHIP_IS_E1(sc)) 18948 wreg_addr_p = &wreg_addr_e1; 18949 else if (CHIP_IS_E1H(sc)) 18950 wreg_addr_p = &wreg_addr_e1h; 18951 else if (CHIP_IS_E2(sc)) 18952 wreg_addr_p = &wreg_addr_e2; 18953 else if (CHIP_IS_E3A0(sc)) 18954 wreg_addr_p = &wreg_addr_e3; 18955 else if (CHIP_IS_E3B0(sc)) 18956 wreg_addr_p = &wreg_addr_e3b0; 18957 else 18958 return (-1); 18959 18960 /* Read the idle_chk registers */ 18961 for (i = 0; i < IDLE_REGS_COUNT; i++) { 18962 if (bxe_is_reg_in_chip(sc, &idle_reg_addrs[i]) && 18963 IS_REG_IN_PRESET(idle_reg_addrs[i].presets, preset)) { 18964 for (j = 0; j < idle_reg_addrs[i].size; j++) 18965 *p++ = REG_RD(sc, idle_reg_addrs[i].addr + j*4); 18966 } 18967 } 18968 18969 /* Read the regular registers */ 18970 for (i = 0; i < REGS_COUNT; i++) { 18971 if (bxe_is_reg_in_chip(sc, ®_addrs[i]) && 18972 IS_REG_IN_PRESET(reg_addrs[i].presets, preset)) { 18973 for (j = 0; j < reg_addrs[i].size; j++) 18974 *p++ = REG_RD(sc, reg_addrs[i].addr + j*4); 18975 } 18976 } 18977 18978 /* Read the CAM registers */ 18979 if (bxe_is_wreg_in_chip(sc, wreg_addr_p) && 18980 IS_REG_IN_PRESET(wreg_addr_p->presets, preset)) { 18981 for (i = 0; i < wreg_addr_p->size; i++) { 18982 *p++ = REG_RD(sc, wreg_addr_p->addr + i*4); 18983 18984 /* In case of wreg_addr register, read additional 18985 registers from read_regs array 18986 */ 18987 for (j = 0; j < wreg_addr_p->read_regs_count; j++) { 18988 addr = *(wreg_addr_p->read_regs); 18989 *p++ = REG_RD(sc, addr + j*4); 18990 } 18991 } 18992 } 18993 18994 /* Paged registers are supported in E2 & E3 only */ 18995 if (CHIP_IS_E2(sc) || CHIP_IS_E3(sc)) { 18996 /* Read "paged" registers */ 18997 bxe_read_pages_regs(sc, p, preset); 18998 } 18999 19000 return 0; 19001 } 19002 19003 int 19004 bxe_grc_dump(struct bxe_softc *sc) 19005 { 19006 int rval = 0; 19007 uint32_t preset_idx; 19008 uint8_t *buf; 19009 uint32_t size; 19010 struct dump_header *d_hdr; 19011 uint32_t i; 19012 uint32_t reg_val; 19013 uint32_t reg_addr; 19014 uint32_t cmd_offset; 19015 struct ecore_ilt *ilt = SC_ILT(sc); 19016 struct bxe_fastpath *fp; 19017 struct ilt_client_info *ilt_cli; 19018 int grc_dump_size; 19019 19020 19021 if (sc->grcdump_done || sc->grcdump_started) 19022 return (rval); 19023 19024 sc->grcdump_started = 1; 19025 BLOGI(sc, "Started collecting grcdump\n"); 19026 19027 grc_dump_size = (bxe_get_total_regs_len32(sc) * sizeof(uint32_t)) + 19028 sizeof(struct dump_header); 19029 19030 sc->grc_dump = malloc(grc_dump_size, M_DEVBUF, M_NOWAIT); 19031 19032 if (sc->grc_dump == NULL) { 19033 BLOGW(sc, "Unable to allocate memory for grcdump collection\n"); 19034 return(ENOMEM); 19035 } 19036 19037 19038 19039 /* Disable parity attentions as long as following dump may 19040 * cause false alarms by reading never written registers. We 19041 * will re-enable parity attentions right after the dump. 19042 */ 19043 19044 /* Disable parity on path 0 */ 19045 bxe_pretend_func(sc, 0); 19046 19047 ecore_disable_blocks_parity(sc); 19048 19049 /* Disable parity on path 1 */ 19050 bxe_pretend_func(sc, 1); 19051 ecore_disable_blocks_parity(sc); 19052 19053 /* Return to current function */ 19054 bxe_pretend_func(sc, SC_ABS_FUNC(sc)); 19055 19056 buf = sc->grc_dump; 19057 d_hdr = sc->grc_dump; 19058 19059 d_hdr->header_size = (sizeof(struct dump_header) >> 2) - 1; 19060 d_hdr->version = BNX2X_DUMP_VERSION; 19061 d_hdr->preset = DUMP_ALL_PRESETS; 19062 19063 if (CHIP_IS_E1(sc)) { 19064 d_hdr->dump_meta_data = DUMP_CHIP_E1; 19065 } else if (CHIP_IS_E1H(sc)) { 19066 d_hdr->dump_meta_data = DUMP_CHIP_E1H; 19067 } else if (CHIP_IS_E2(sc)) { 19068 d_hdr->dump_meta_data = DUMP_CHIP_E2 | 19069 (BXE_PATH(sc) ? DUMP_PATH_1 : DUMP_PATH_0); 19070 } else if (CHIP_IS_E3A0(sc)) { 19071 d_hdr->dump_meta_data = DUMP_CHIP_E3A0 | 19072 (BXE_PATH(sc) ? DUMP_PATH_1 : DUMP_PATH_0); 19073 } else if (CHIP_IS_E3B0(sc)) { 19074 d_hdr->dump_meta_data = DUMP_CHIP_E3B0 | 19075 (BXE_PATH(sc) ? DUMP_PATH_1 : DUMP_PATH_0); 19076 } 19077 19078 buf += sizeof(struct dump_header); 19079 19080 for (preset_idx = 1; preset_idx <= DUMP_MAX_PRESETS; preset_idx++) { 19081 19082 /* Skip presets with IOR */ 19083 if ((preset_idx == 2) || (preset_idx == 5) || (preset_idx == 8) || 19084 (preset_idx == 11)) 19085 continue; 19086 19087 rval = bxe_get_preset_regs(sc, (uint32_t *)buf, preset_idx); 19088 19089 if (rval) 19090 break; 19091 19092 size = bxe_get_preset_regs_len(sc, preset_idx) * (sizeof (uint32_t)); 19093 19094 buf += size; 19095 } 19096 19097 bxe_pretend_func(sc, 0); 19098 ecore_clear_blocks_parity(sc); 19099 ecore_enable_blocks_parity(sc); 19100 19101 bxe_pretend_func(sc, 1); 19102 ecore_clear_blocks_parity(sc); 19103 ecore_enable_blocks_parity(sc); 19104 19105 /* Return to current function */ 19106 bxe_pretend_func(sc, SC_ABS_FUNC(sc)); 19107 19108 19109 19110 if(sc->state == BXE_STATE_OPEN) { 19111 if(sc->fw_stats_req != NULL) { 19112 BLOGI(sc, "fw stats start_paddr %#jx end_paddr %#jx vaddr %p size 0x%x\n", 19113 (uintmax_t)sc->fw_stats_req_mapping, 19114 (uintmax_t)sc->fw_stats_data_mapping, 19115 sc->fw_stats_req, (sc->fw_stats_req_size + sc->fw_stats_data_size)); 19116 } 19117 if(sc->def_sb != NULL) { 19118 BLOGI(sc, "def_status_block paddr %p vaddr %p size 0x%zx\n", 19119 (void *)sc->def_sb_dma.paddr, sc->def_sb, 19120 sizeof(struct host_sp_status_block)); 19121 } 19122 if(sc->eq_dma.vaddr != NULL) { 19123 BLOGI(sc, "event_queue paddr %#jx vaddr %p size 0x%x\n", 19124 (uintmax_t)sc->eq_dma.paddr, sc->eq_dma.vaddr, BCM_PAGE_SIZE); 19125 } 19126 if(sc->sp_dma.vaddr != NULL) { 19127 BLOGI(sc, "slow path paddr %#jx vaddr %p size 0x%zx\n", 19128 (uintmax_t)sc->sp_dma.paddr, sc->sp_dma.vaddr, 19129 sizeof(struct bxe_slowpath)); 19130 } 19131 if(sc->spq_dma.vaddr != NULL) { 19132 BLOGI(sc, "slow path queue paddr %#jx vaddr %p size 0x%x\n", 19133 (uintmax_t)sc->spq_dma.paddr, sc->spq_dma.vaddr, BCM_PAGE_SIZE); 19134 } 19135 if(sc->gz_buf_dma.vaddr != NULL) { 19136 BLOGI(sc, "fw_buf paddr %#jx vaddr %p size 0x%x\n", 19137 (uintmax_t)sc->gz_buf_dma.paddr, sc->gz_buf_dma.vaddr, 19138 FW_BUF_SIZE); 19139 } 19140 for (i = 0; i < sc->num_queues; i++) { 19141 fp = &sc->fp[i]; 19142 if(fp->sb_dma.vaddr != NULL && fp->tx_dma.vaddr != NULL && 19143 fp->rx_dma.vaddr != NULL && fp->rcq_dma.vaddr != NULL && 19144 fp->rx_sge_dma.vaddr != NULL) { 19145 19146 BLOGI(sc, "FP status block fp %d paddr %#jx vaddr %p size 0x%zx\n", i, 19147 (uintmax_t)fp->sb_dma.paddr, fp->sb_dma.vaddr, 19148 sizeof(union bxe_host_hc_status_block)); 19149 BLOGI(sc, "TX BD CHAIN fp %d paddr %#jx vaddr %p size 0x%x\n", i, 19150 (uintmax_t)fp->tx_dma.paddr, fp->tx_dma.vaddr, 19151 (BCM_PAGE_SIZE * TX_BD_NUM_PAGES)); 19152 BLOGI(sc, "RX BD CHAIN fp %d paddr %#jx vaddr %p size 0x%x\n", i, 19153 (uintmax_t)fp->rx_dma.paddr, fp->rx_dma.vaddr, 19154 (BCM_PAGE_SIZE * RX_BD_NUM_PAGES)); 19155 BLOGI(sc, "RX RCQ CHAIN fp %d paddr %#jx vaddr %p size 0x%zx\n", i, 19156 (uintmax_t)fp->rcq_dma.paddr, fp->rcq_dma.vaddr, 19157 (BCM_PAGE_SIZE * RCQ_NUM_PAGES)); 19158 BLOGI(sc, "RX SGE CHAIN fp %d paddr %#jx vaddr %p size 0x%x\n", i, 19159 (uintmax_t)fp->rx_sge_dma.paddr, fp->rx_sge_dma.vaddr, 19160 (BCM_PAGE_SIZE * RX_SGE_NUM_PAGES)); 19161 } 19162 } 19163 if(ilt != NULL ) { 19164 ilt_cli = &ilt->clients[1]; 19165 if(ilt->lines != NULL) { 19166 for (i = ilt_cli->start; i <= ilt_cli->end; i++) { 19167 BLOGI(sc, "ECORE_ILT paddr %#jx vaddr %p size 0x%x\n", 19168 (uintmax_t)(((struct bxe_dma *)((&ilt->lines[i])->page))->paddr), 19169 ((struct bxe_dma *)((&ilt->lines[i])->page))->vaddr, BCM_PAGE_SIZE); 19170 } 19171 } 19172 } 19173 19174 19175 cmd_offset = DMAE_REG_CMD_MEM; 19176 for (i = 0; i < 224; i++) { 19177 reg_addr = (cmd_offset +(i * 4)); 19178 reg_val = REG_RD(sc, reg_addr); 19179 BLOGI(sc, "DMAE_REG_CMD_MEM i=%d reg_addr 0x%x reg_val 0x%08x\n",i, 19180 reg_addr, reg_val); 19181 } 19182 } 19183 19184 BLOGI(sc, "Collection of grcdump done\n"); 19185 sc->grcdump_done = 1; 19186 return(rval); 19187 } 19188 19189 static int 19190 bxe_add_cdev(struct bxe_softc *sc) 19191 { 19192 sc->eeprom = malloc(BXE_EEPROM_MAX_DATA_LEN, M_DEVBUF, M_NOWAIT); 19193 19194 if (sc->eeprom == NULL) { 19195 BLOGW(sc, "Unable to alloc for eeprom size buffer\n"); 19196 return (-1); 19197 } 19198 19199 sc->ioctl_dev = make_dev(&bxe_cdevsw, 19200 sc->ifp->if_dunit, 19201 UID_ROOT, 19202 GID_WHEEL, 19203 0600, 19204 "%s", 19205 if_name(sc->ifp)); 19206 19207 if (sc->ioctl_dev == NULL) { 19208 free(sc->eeprom, M_DEVBUF); 19209 sc->eeprom = NULL; 19210 return (-1); 19211 } 19212 19213 sc->ioctl_dev->si_drv1 = sc; 19214 19215 return (0); 19216 } 19217 19218 static void 19219 bxe_del_cdev(struct bxe_softc *sc) 19220 { 19221 if (sc->ioctl_dev != NULL) 19222 destroy_dev(sc->ioctl_dev); 19223 19224 if (sc->eeprom != NULL) { 19225 free(sc->eeprom, M_DEVBUF); 19226 sc->eeprom = NULL; 19227 } 19228 sc->ioctl_dev = NULL; 19229 19230 return; 19231 } 19232 19233 static bool bxe_is_nvram_accessible(struct bxe_softc *sc) 19234 { 19235 19236 if ((if_getdrvflags(sc->ifp) & IFF_DRV_RUNNING) == 0) 19237 return FALSE; 19238 19239 return TRUE; 19240 } 19241 19242 19243 static int 19244 bxe_wr_eeprom(struct bxe_softc *sc, void *data, uint32_t offset, uint32_t len) 19245 { 19246 int rval = 0; 19247 19248 if(!bxe_is_nvram_accessible(sc)) { 19249 BLOGW(sc, "Cannot access eeprom when interface is down\n"); 19250 return (-EAGAIN); 19251 } 19252 rval = bxe_nvram_write(sc, offset, (uint8_t *)data, len); 19253 19254 19255 return (rval); 19256 } 19257 19258 static int 19259 bxe_rd_eeprom(struct bxe_softc *sc, void *data, uint32_t offset, uint32_t len) 19260 { 19261 int rval = 0; 19262 19263 if(!bxe_is_nvram_accessible(sc)) { 19264 BLOGW(sc, "Cannot access eeprom when interface is down\n"); 19265 return (-EAGAIN); 19266 } 19267 rval = bxe_nvram_read(sc, offset, (uint8_t *)data, len); 19268 19269 return (rval); 19270 } 19271 19272 static int 19273 bxe_eeprom_rd_wr(struct bxe_softc *sc, bxe_eeprom_t *eeprom) 19274 { 19275 int rval = 0; 19276 19277 switch (eeprom->eeprom_cmd) { 19278 19279 case BXE_EEPROM_CMD_SET_EEPROM: 19280 19281 rval = copyin(eeprom->eeprom_data, sc->eeprom, 19282 eeprom->eeprom_data_len); 19283 19284 if (rval) 19285 break; 19286 19287 rval = bxe_wr_eeprom(sc, sc->eeprom, eeprom->eeprom_offset, 19288 eeprom->eeprom_data_len); 19289 break; 19290 19291 case BXE_EEPROM_CMD_GET_EEPROM: 19292 19293 rval = bxe_rd_eeprom(sc, sc->eeprom, eeprom->eeprom_offset, 19294 eeprom->eeprom_data_len); 19295 19296 if (rval) { 19297 break; 19298 } 19299 19300 rval = copyout(sc->eeprom, eeprom->eeprom_data, 19301 eeprom->eeprom_data_len); 19302 break; 19303 19304 default: 19305 rval = EINVAL; 19306 break; 19307 } 19308 19309 if (rval) { 19310 BLOGW(sc, "ioctl cmd %d failed rval %d\n", eeprom->eeprom_cmd, rval); 19311 } 19312 19313 return (rval); 19314 } 19315 19316 static int 19317 bxe_get_settings(struct bxe_softc *sc, bxe_dev_setting_t *dev_p) 19318 { 19319 uint32_t ext_phy_config; 19320 int port = SC_PORT(sc); 19321 int cfg_idx = bxe_get_link_cfg_idx(sc); 19322 19323 dev_p->supported = sc->port.supported[cfg_idx] | 19324 (sc->port.supported[cfg_idx ^ 1] & 19325 (ELINK_SUPPORTED_TP | ELINK_SUPPORTED_FIBRE)); 19326 dev_p->advertising = sc->port.advertising[cfg_idx]; 19327 if(sc->link_params.phy[bxe_get_cur_phy_idx(sc)].media_type == 19328 ELINK_ETH_PHY_SFP_1G_FIBER) { 19329 dev_p->supported = ~(ELINK_SUPPORTED_10000baseT_Full); 19330 dev_p->advertising &= ~(ADVERTISED_10000baseT_Full); 19331 } 19332 if ((sc->state == BXE_STATE_OPEN) && sc->link_vars.link_up && 19333 !(sc->flags & BXE_MF_FUNC_DIS)) { 19334 dev_p->duplex = sc->link_vars.duplex; 19335 if (IS_MF(sc) && !BXE_NOMCP(sc)) 19336 dev_p->speed = bxe_get_mf_speed(sc); 19337 else 19338 dev_p->speed = sc->link_vars.line_speed; 19339 } else { 19340 dev_p->duplex = DUPLEX_UNKNOWN; 19341 dev_p->speed = SPEED_UNKNOWN; 19342 } 19343 19344 dev_p->port = bxe_media_detect(sc); 19345 19346 ext_phy_config = SHMEM_RD(sc, 19347 dev_info.port_hw_config[port].external_phy_config); 19348 if((ext_phy_config & PORT_HW_CFG_XGXS_EXT_PHY_TYPE_MASK) == 19349 PORT_HW_CFG_XGXS_EXT_PHY_TYPE_DIRECT) 19350 dev_p->phy_address = sc->port.phy_addr; 19351 else if(((ext_phy_config & PORT_HW_CFG_XGXS_EXT_PHY_TYPE_MASK) != 19352 PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE) && 19353 ((ext_phy_config & PORT_HW_CFG_XGXS_EXT_PHY_TYPE_MASK) != 19354 PORT_HW_CFG_XGXS_EXT_PHY_TYPE_NOT_CONN)) 19355 dev_p->phy_address = ELINK_XGXS_EXT_PHY_ADDR(ext_phy_config); 19356 else 19357 dev_p->phy_address = 0; 19358 19359 if(sc->link_params.req_line_speed[cfg_idx] == ELINK_SPEED_AUTO_NEG) 19360 dev_p->autoneg = AUTONEG_ENABLE; 19361 else 19362 dev_p->autoneg = AUTONEG_DISABLE; 19363 19364 19365 return 0; 19366 } 19367 19368 static int 19369 bxe_eioctl(struct cdev *dev, u_long cmd, caddr_t data, int fflag, 19370 struct thread *td) 19371 { 19372 struct bxe_softc *sc; 19373 int rval = 0; 19374 device_t pci_dev; 19375 bxe_grcdump_t *dump = NULL; 19376 int grc_dump_size; 19377 bxe_drvinfo_t *drv_infop = NULL; 19378 bxe_dev_setting_t *dev_p; 19379 bxe_dev_setting_t dev_set; 19380 bxe_get_regs_t *reg_p; 19381 bxe_reg_rdw_t *reg_rdw_p; 19382 bxe_pcicfg_rdw_t *cfg_rdw_p; 19383 bxe_perm_mac_addr_t *mac_addr_p; 19384 19385 19386 if ((sc = (struct bxe_softc *)dev->si_drv1) == NULL) 19387 return ENXIO; 19388 19389 pci_dev= sc->dev; 19390 19391 dump = (bxe_grcdump_t *)data; 19392 19393 switch(cmd) { 19394 19395 case BXE_GRC_DUMP_SIZE: 19396 dump->pci_func = sc->pcie_func; 19397 dump->grcdump_size = 19398 (bxe_get_total_regs_len32(sc) * sizeof(uint32_t)) + 19399 sizeof(struct dump_header); 19400 break; 19401 19402 case BXE_GRC_DUMP: 19403 19404 grc_dump_size = (bxe_get_total_regs_len32(sc) * sizeof(uint32_t)) + 19405 sizeof(struct dump_header); 19406 if ((!sc->trigger_grcdump) || (dump->grcdump == NULL) || 19407 (dump->grcdump_size < grc_dump_size)) { 19408 rval = EINVAL; 19409 break; 19410 } 19411 19412 if((sc->trigger_grcdump) && (!sc->grcdump_done) && 19413 (!sc->grcdump_started)) { 19414 rval = bxe_grc_dump(sc); 19415 } 19416 19417 if((!rval) && (sc->grcdump_done) && (sc->grcdump_started) && 19418 (sc->grc_dump != NULL)) { 19419 dump->grcdump_dwords = grc_dump_size >> 2; 19420 rval = copyout(sc->grc_dump, dump->grcdump, grc_dump_size); 19421 free(sc->grc_dump, M_DEVBUF); 19422 sc->grc_dump = NULL; 19423 sc->grcdump_started = 0; 19424 sc->grcdump_done = 0; 19425 } 19426 19427 break; 19428 19429 case BXE_DRV_INFO: 19430 drv_infop = (bxe_drvinfo_t *)data; 19431 snprintf(drv_infop->drv_name, BXE_DRV_NAME_LENGTH, "%s", "bxe"); 19432 snprintf(drv_infop->drv_version, BXE_DRV_VERSION_LENGTH, "v:%s", 19433 BXE_DRIVER_VERSION); 19434 snprintf(drv_infop->mfw_version, BXE_MFW_VERSION_LENGTH, "%s", 19435 sc->devinfo.bc_ver_str); 19436 snprintf(drv_infop->stormfw_version, BXE_STORMFW_VERSION_LENGTH, 19437 "%s", sc->fw_ver_str); 19438 drv_infop->eeprom_dump_len = sc->devinfo.flash_size; 19439 drv_infop->reg_dump_len = 19440 (bxe_get_total_regs_len32(sc) * sizeof(uint32_t)) 19441 + sizeof(struct dump_header); 19442 snprintf(drv_infop->bus_info, BXE_BUS_INFO_LENGTH, "%d:%d:%d", 19443 sc->pcie_bus, sc->pcie_device, sc->pcie_func); 19444 break; 19445 19446 case BXE_DEV_SETTING: 19447 dev_p = (bxe_dev_setting_t *)data; 19448 bxe_get_settings(sc, &dev_set); 19449 dev_p->supported = dev_set.supported; 19450 dev_p->advertising = dev_set.advertising; 19451 dev_p->speed = dev_set.speed; 19452 dev_p->duplex = dev_set.duplex; 19453 dev_p->port = dev_set.port; 19454 dev_p->phy_address = dev_set.phy_address; 19455 dev_p->autoneg = dev_set.autoneg; 19456 19457 break; 19458 19459 case BXE_GET_REGS: 19460 19461 reg_p = (bxe_get_regs_t *)data; 19462 grc_dump_size = reg_p->reg_buf_len; 19463 19464 if((!sc->grcdump_done) && (!sc->grcdump_started)) { 19465 bxe_grc_dump(sc); 19466 } 19467 if((sc->grcdump_done) && (sc->grcdump_started) && 19468 (sc->grc_dump != NULL)) { 19469 rval = copyout(sc->grc_dump, reg_p->reg_buf, grc_dump_size); 19470 free(sc->grc_dump, M_DEVBUF); 19471 sc->grc_dump = NULL; 19472 sc->grcdump_started = 0; 19473 sc->grcdump_done = 0; 19474 } 19475 19476 break; 19477 19478 case BXE_RDW_REG: 19479 reg_rdw_p = (bxe_reg_rdw_t *)data; 19480 if((reg_rdw_p->reg_cmd == BXE_READ_REG_CMD) && 19481 (reg_rdw_p->reg_access_type == BXE_REG_ACCESS_DIRECT)) 19482 reg_rdw_p->reg_val = REG_RD(sc, reg_rdw_p->reg_id); 19483 19484 if((reg_rdw_p->reg_cmd == BXE_WRITE_REG_CMD) && 19485 (reg_rdw_p->reg_access_type == BXE_REG_ACCESS_DIRECT)) 19486 REG_WR(sc, reg_rdw_p->reg_id, reg_rdw_p->reg_val); 19487 19488 break; 19489 19490 case BXE_RDW_PCICFG: 19491 cfg_rdw_p = (bxe_pcicfg_rdw_t *)data; 19492 if(cfg_rdw_p->cfg_cmd == BXE_READ_PCICFG) { 19493 19494 cfg_rdw_p->cfg_val = pci_read_config(sc->dev, cfg_rdw_p->cfg_id, 19495 cfg_rdw_p->cfg_width); 19496 19497 } else if(cfg_rdw_p->cfg_cmd == BXE_WRITE_PCICFG) { 19498 pci_write_config(sc->dev, cfg_rdw_p->cfg_id, cfg_rdw_p->cfg_val, 19499 cfg_rdw_p->cfg_width); 19500 } else { 19501 BLOGW(sc, "BXE_RDW_PCICFG ioctl wrong cmd passed\n"); 19502 } 19503 break; 19504 19505 case BXE_MAC_ADDR: 19506 mac_addr_p = (bxe_perm_mac_addr_t *)data; 19507 snprintf(mac_addr_p->mac_addr_str, sizeof(sc->mac_addr_str), "%s", 19508 sc->mac_addr_str); 19509 break; 19510 19511 case BXE_EEPROM: 19512 rval = bxe_eeprom_rd_wr(sc, (bxe_eeprom_t *)data); 19513 break; 19514 19515 19516 default: 19517 break; 19518 } 19519 19520 return (rval); 19521 } 19522 19523 #ifdef DEBUGNET 19524 static void 19525 bxe_debugnet_init(struct ifnet *ifp, int *nrxr, int *ncl, int *clsize) 19526 { 19527 struct bxe_softc *sc; 19528 19529 sc = if_getsoftc(ifp); 19530 BXE_CORE_LOCK(sc); 19531 *nrxr = sc->num_queues; 19532 *ncl = DEBUGNET_MAX_IN_FLIGHT; 19533 *clsize = sc->fp[0].mbuf_alloc_size; 19534 BXE_CORE_UNLOCK(sc); 19535 } 19536 19537 static void 19538 bxe_debugnet_event(struct ifnet *ifp __unused, enum debugnet_ev event __unused) 19539 { 19540 } 19541 19542 static int 19543 bxe_debugnet_transmit(struct ifnet *ifp, struct mbuf *m) 19544 { 19545 struct bxe_softc *sc; 19546 int error; 19547 19548 sc = if_getsoftc(ifp); 19549 if ((if_getdrvflags(ifp) & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) != 19550 IFF_DRV_RUNNING || !sc->link_vars.link_up) 19551 return (ENOENT); 19552 19553 error = bxe_tx_encap(&sc->fp[0], &m); 19554 if (error != 0 && m != NULL) 19555 m_freem(m); 19556 return (error); 19557 } 19558 19559 static int 19560 bxe_debugnet_poll(struct ifnet *ifp, int count) 19561 { 19562 struct bxe_softc *sc; 19563 int i; 19564 19565 sc = if_getsoftc(ifp); 19566 if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) == 0 || 19567 !sc->link_vars.link_up) 19568 return (ENOENT); 19569 19570 for (i = 0; i < sc->num_queues; i++) 19571 (void)bxe_rxeof(sc, &sc->fp[i]); 19572 (void)bxe_txeof(sc, &sc->fp[0]); 19573 return (0); 19574 } 19575 #endif /* DEBUGNET */ 19576