1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause 3 * 4 * Copyright (c) 2007-2014 QLogic Corporation. All rights reserved. 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions 8 * are met: 9 * 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS' 17 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 19 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS 20 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 21 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 22 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 23 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 24 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 25 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF 26 * THE POSSIBILITY OF SUCH DAMAGE. 27 */ 28 29 #include <sys/cdefs.h> 30 #define BXE_DRIVER_VERSION "1.78.91" 31 32 #include "bxe.h" 33 #include "ecore_sp.h" 34 #include "ecore_init.h" 35 #include "ecore_init_ops.h" 36 37 #include "57710_int_offsets.h" 38 #include "57711_int_offsets.h" 39 #include "57712_int_offsets.h" 40 41 /* 42 * CTLTYPE_U64 and sysctl_handle_64 were added in r217616. Define these 43 * explicitly here for older kernels that don't include this changeset. 44 */ 45 #ifndef CTLTYPE_U64 46 #define CTLTYPE_U64 CTLTYPE_QUAD 47 #define sysctl_handle_64 sysctl_handle_quad 48 #endif 49 50 /* 51 * CSUM_TCP_IPV6 and CSUM_UDP_IPV6 were added in r236170. Define these 52 * here as zero(0) for older kernels that don't include this changeset 53 * thereby masking the functionality. 54 */ 55 #ifndef CSUM_TCP_IPV6 56 #define CSUM_TCP_IPV6 0 57 #define CSUM_UDP_IPV6 0 58 #endif 59 60 #define BXE_DEF_SB_ATT_IDX 0x0001 61 #define BXE_DEF_SB_IDX 0x0002 62 63 /* 64 * FLR Support - bxe_pf_flr_clnup() is called during nic_load in the per 65 * function HW initialization. 66 */ 67 #define FLR_WAIT_USEC 10000 /* 10 msecs */ 68 #define FLR_WAIT_INTERVAL 50 /* usecs */ 69 #define FLR_POLL_CNT (FLR_WAIT_USEC / FLR_WAIT_INTERVAL) /* 200 */ 70 71 struct pbf_pN_buf_regs { 72 int pN; 73 uint32_t init_crd; 74 uint32_t crd; 75 uint32_t crd_freed; 76 }; 77 78 struct pbf_pN_cmd_regs { 79 int pN; 80 uint32_t lines_occup; 81 uint32_t lines_freed; 82 }; 83 84 /* 85 * PCI Device ID Table used by bxe_probe(). 86 */ 87 #define BXE_DEVDESC_MAX 64 88 static struct bxe_device_type bxe_devs[] = { 89 { 90 BRCM_VENDORID, 91 CHIP_NUM_57710, 92 PCI_ANY_ID, PCI_ANY_ID, 93 "QLogic NetXtreme II BCM57710 10GbE" 94 }, 95 { 96 BRCM_VENDORID, 97 CHIP_NUM_57711, 98 PCI_ANY_ID, PCI_ANY_ID, 99 "QLogic NetXtreme II BCM57711 10GbE" 100 }, 101 { 102 BRCM_VENDORID, 103 CHIP_NUM_57711E, 104 PCI_ANY_ID, PCI_ANY_ID, 105 "QLogic NetXtreme II BCM57711E 10GbE" 106 }, 107 { 108 BRCM_VENDORID, 109 CHIP_NUM_57712, 110 PCI_ANY_ID, PCI_ANY_ID, 111 "QLogic NetXtreme II BCM57712 10GbE" 112 }, 113 { 114 BRCM_VENDORID, 115 CHIP_NUM_57712_MF, 116 PCI_ANY_ID, PCI_ANY_ID, 117 "QLogic NetXtreme II BCM57712 MF 10GbE" 118 }, 119 { 120 BRCM_VENDORID, 121 CHIP_NUM_57800, 122 PCI_ANY_ID, PCI_ANY_ID, 123 "QLogic NetXtreme II BCM57800 10GbE" 124 }, 125 { 126 BRCM_VENDORID, 127 CHIP_NUM_57800_MF, 128 PCI_ANY_ID, PCI_ANY_ID, 129 "QLogic NetXtreme II BCM57800 MF 10GbE" 130 }, 131 { 132 BRCM_VENDORID, 133 CHIP_NUM_57810, 134 PCI_ANY_ID, PCI_ANY_ID, 135 "QLogic NetXtreme II BCM57810 10GbE" 136 }, 137 { 138 BRCM_VENDORID, 139 CHIP_NUM_57810_MF, 140 PCI_ANY_ID, PCI_ANY_ID, 141 "QLogic NetXtreme II BCM57810 MF 10GbE" 142 }, 143 { 144 BRCM_VENDORID, 145 CHIP_NUM_57811, 146 PCI_ANY_ID, PCI_ANY_ID, 147 "QLogic NetXtreme II BCM57811 10GbE" 148 }, 149 { 150 BRCM_VENDORID, 151 CHIP_NUM_57811_MF, 152 PCI_ANY_ID, PCI_ANY_ID, 153 "QLogic NetXtreme II BCM57811 MF 10GbE" 154 }, 155 { 156 BRCM_VENDORID, 157 CHIP_NUM_57840_4_10, 158 PCI_ANY_ID, PCI_ANY_ID, 159 "QLogic NetXtreme II BCM57840 4x10GbE" 160 }, 161 { 162 QLOGIC_VENDORID, 163 CHIP_NUM_57840_4_10, 164 PCI_ANY_ID, PCI_ANY_ID, 165 "QLogic NetXtreme II BCM57840 4x10GbE" 166 }, 167 { 168 BRCM_VENDORID, 169 CHIP_NUM_57840_2_20, 170 PCI_ANY_ID, PCI_ANY_ID, 171 "QLogic NetXtreme II BCM57840 2x20GbE" 172 }, 173 { 174 BRCM_VENDORID, 175 CHIP_NUM_57840_MF, 176 PCI_ANY_ID, PCI_ANY_ID, 177 "QLogic NetXtreme II BCM57840 MF 10GbE" 178 }, 179 { 180 0, 0, 0, 0, NULL 181 } 182 }; 183 184 MALLOC_DECLARE(M_BXE_ILT); 185 MALLOC_DEFINE(M_BXE_ILT, "bxe_ilt", "bxe ILT pointer"); 186 187 /* 188 * FreeBSD device entry points. 189 */ 190 static int bxe_probe(device_t); 191 static int bxe_attach(device_t); 192 static int bxe_detach(device_t); 193 static int bxe_shutdown(device_t); 194 195 196 /* 197 * FreeBSD KLD module/device interface event handler method. 198 */ 199 static device_method_t bxe_methods[] = { 200 /* Device interface (device_if.h) */ 201 DEVMETHOD(device_probe, bxe_probe), 202 DEVMETHOD(device_attach, bxe_attach), 203 DEVMETHOD(device_detach, bxe_detach), 204 DEVMETHOD(device_shutdown, bxe_shutdown), 205 /* Bus interface (bus_if.h) */ 206 DEVMETHOD(bus_print_child, bus_generic_print_child), 207 DEVMETHOD(bus_driver_added, bus_generic_driver_added), 208 KOBJMETHOD_END 209 }; 210 211 /* 212 * FreeBSD KLD Module data declaration 213 */ 214 static driver_t bxe_driver = { 215 "bxe", /* module name */ 216 bxe_methods, /* event handler */ 217 sizeof(struct bxe_softc) /* extra data */ 218 }; 219 220 MODULE_DEPEND(bxe, pci, 1, 1, 1); 221 MODULE_DEPEND(bxe, ether, 1, 1, 1); 222 DRIVER_MODULE(bxe, pci, bxe_driver, 0, 0); 223 224 DEBUGNET_DEFINE(bxe); 225 226 /* resources needed for unloading a previously loaded device */ 227 228 #define BXE_PREV_WAIT_NEEDED 1 229 struct mtx bxe_prev_mtx; 230 MTX_SYSINIT(bxe_prev_mtx, &bxe_prev_mtx, "bxe_prev_lock", MTX_DEF); 231 struct bxe_prev_list_node { 232 LIST_ENTRY(bxe_prev_list_node) node; 233 uint8_t bus; 234 uint8_t slot; 235 uint8_t path; 236 uint8_t aer; /* XXX automatic error recovery */ 237 uint8_t undi; 238 }; 239 static LIST_HEAD(, bxe_prev_list_node) bxe_prev_list = LIST_HEAD_INITIALIZER(bxe_prev_list); 240 241 static int load_count[2][3] = { {0} }; /* per-path: 0-common, 1-port0, 2-port1 */ 242 243 /* Tunable device values... */ 244 245 SYSCTL_NODE(_hw, OID_AUTO, bxe, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 246 "bxe driver parameters"); 247 248 /* Debug */ 249 unsigned long bxe_debug = 0; 250 SYSCTL_ULONG(_hw_bxe, OID_AUTO, debug, CTLFLAG_RDTUN, 251 &bxe_debug, 0, "Debug logging mode"); 252 253 /* Interrupt Mode: 0 (IRQ), 1 (MSI/IRQ), and 2 (MSI-X/MSI/IRQ) */ 254 static int bxe_interrupt_mode = INTR_MODE_MSIX; 255 SYSCTL_INT(_hw_bxe, OID_AUTO, interrupt_mode, CTLFLAG_RDTUN, 256 &bxe_interrupt_mode, 0, "Interrupt (MSI-X/MSI/INTx) mode"); 257 258 /* Number of Queues: 0 (Auto) or 1 to 16 (fixed queue number) */ 259 static int bxe_queue_count = 4; 260 SYSCTL_INT(_hw_bxe, OID_AUTO, queue_count, CTLFLAG_RDTUN, 261 &bxe_queue_count, 0, "Multi-Queue queue count"); 262 263 /* max number of buffers per queue (default RX_BD_USABLE) */ 264 static int bxe_max_rx_bufs = 0; 265 SYSCTL_INT(_hw_bxe, OID_AUTO, max_rx_bufs, CTLFLAG_RDTUN, 266 &bxe_max_rx_bufs, 0, "Maximum Number of Rx Buffers Per Queue"); 267 268 /* Host interrupt coalescing RX tick timer (usecs) */ 269 static int bxe_hc_rx_ticks = 25; 270 SYSCTL_INT(_hw_bxe, OID_AUTO, hc_rx_ticks, CTLFLAG_RDTUN, 271 &bxe_hc_rx_ticks, 0, "Host Coalescing Rx ticks"); 272 273 /* Host interrupt coalescing TX tick timer (usecs) */ 274 static int bxe_hc_tx_ticks = 50; 275 SYSCTL_INT(_hw_bxe, OID_AUTO, hc_tx_ticks, CTLFLAG_RDTUN, 276 &bxe_hc_tx_ticks, 0, "Host Coalescing Tx ticks"); 277 278 /* Maximum number of Rx packets to process at a time */ 279 static int bxe_rx_budget = 0xffffffff; 280 SYSCTL_INT(_hw_bxe, OID_AUTO, rx_budget, CTLFLAG_RDTUN, 281 &bxe_rx_budget, 0, "Rx processing budget"); 282 283 /* Maximum LRO aggregation size */ 284 static int bxe_max_aggregation_size = 0; 285 SYSCTL_INT(_hw_bxe, OID_AUTO, max_aggregation_size, CTLFLAG_RDTUN, 286 &bxe_max_aggregation_size, 0, "max aggregation size"); 287 288 /* PCI MRRS: -1 (Auto), 0 (128B), 1 (256B), 2 (512B), 3 (1KB) */ 289 static int bxe_mrrs = -1; 290 SYSCTL_INT(_hw_bxe, OID_AUTO, mrrs, CTLFLAG_RDTUN, 291 &bxe_mrrs, 0, "PCIe maximum read request size"); 292 293 /* AutoGrEEEn: 0 (hardware default), 1 (force on), 2 (force off) */ 294 static int bxe_autogreeen = 0; 295 SYSCTL_INT(_hw_bxe, OID_AUTO, autogreeen, CTLFLAG_RDTUN, 296 &bxe_autogreeen, 0, "AutoGrEEEn support"); 297 298 /* 4-tuple RSS support for UDP: 0 (disabled), 1 (enabled) */ 299 static int bxe_udp_rss = 0; 300 SYSCTL_INT(_hw_bxe, OID_AUTO, udp_rss, CTLFLAG_RDTUN, 301 &bxe_udp_rss, 0, "UDP RSS support"); 302 303 304 #define STAT_NAME_LEN 32 /* no stat names below can be longer than this */ 305 306 #define STATS_OFFSET32(stat_name) \ 307 (offsetof(struct bxe_eth_stats, stat_name) / 4) 308 309 #define Q_STATS_OFFSET32(stat_name) \ 310 (offsetof(struct bxe_eth_q_stats, stat_name) / 4) 311 312 static const struct { 313 uint32_t offset; 314 uint32_t size; 315 uint32_t flags; 316 #define STATS_FLAGS_PORT 1 317 #define STATS_FLAGS_FUNC 2 /* MF only cares about function stats */ 318 #define STATS_FLAGS_BOTH (STATS_FLAGS_FUNC | STATS_FLAGS_PORT) 319 char string[STAT_NAME_LEN]; 320 } bxe_eth_stats_arr[] = { 321 { STATS_OFFSET32(total_bytes_received_hi), 322 8, STATS_FLAGS_BOTH, "rx_bytes" }, 323 { STATS_OFFSET32(error_bytes_received_hi), 324 8, STATS_FLAGS_BOTH, "rx_error_bytes" }, 325 { STATS_OFFSET32(total_unicast_packets_received_hi), 326 8, STATS_FLAGS_BOTH, "rx_ucast_packets" }, 327 { STATS_OFFSET32(total_multicast_packets_received_hi), 328 8, STATS_FLAGS_BOTH, "rx_mcast_packets" }, 329 { STATS_OFFSET32(total_broadcast_packets_received_hi), 330 8, STATS_FLAGS_BOTH, "rx_bcast_packets" }, 331 { STATS_OFFSET32(rx_stat_dot3statsfcserrors_hi), 332 8, STATS_FLAGS_PORT, "rx_crc_errors" }, 333 { STATS_OFFSET32(rx_stat_dot3statsalignmenterrors_hi), 334 8, STATS_FLAGS_PORT, "rx_align_errors" }, 335 { STATS_OFFSET32(rx_stat_etherstatsundersizepkts_hi), 336 8, STATS_FLAGS_PORT, "rx_undersize_packets" }, 337 { STATS_OFFSET32(etherstatsoverrsizepkts_hi), 338 8, STATS_FLAGS_PORT, "rx_oversize_packets" }, 339 { STATS_OFFSET32(rx_stat_etherstatsfragments_hi), 340 8, STATS_FLAGS_PORT, "rx_fragments" }, 341 { STATS_OFFSET32(rx_stat_etherstatsjabbers_hi), 342 8, STATS_FLAGS_PORT, "rx_jabbers" }, 343 { STATS_OFFSET32(no_buff_discard_hi), 344 8, STATS_FLAGS_BOTH, "rx_discards" }, 345 { STATS_OFFSET32(mac_filter_discard), 346 4, STATS_FLAGS_PORT, "rx_filtered_packets" }, 347 { STATS_OFFSET32(mf_tag_discard), 348 4, STATS_FLAGS_PORT, "rx_mf_tag_discard" }, 349 { STATS_OFFSET32(pfc_frames_received_hi), 350 8, STATS_FLAGS_PORT, "pfc_frames_received" }, 351 { STATS_OFFSET32(pfc_frames_sent_hi), 352 8, STATS_FLAGS_PORT, "pfc_frames_sent" }, 353 { STATS_OFFSET32(brb_drop_hi), 354 8, STATS_FLAGS_PORT, "rx_brb_discard" }, 355 { STATS_OFFSET32(brb_truncate_hi), 356 8, STATS_FLAGS_PORT, "rx_brb_truncate" }, 357 { STATS_OFFSET32(pause_frames_received_hi), 358 8, STATS_FLAGS_PORT, "rx_pause_frames" }, 359 { STATS_OFFSET32(rx_stat_maccontrolframesreceived_hi), 360 8, STATS_FLAGS_PORT, "rx_mac_ctrl_frames" }, 361 { STATS_OFFSET32(nig_timer_max), 362 4, STATS_FLAGS_PORT, "rx_constant_pause_events" }, 363 { STATS_OFFSET32(total_bytes_transmitted_hi), 364 8, STATS_FLAGS_BOTH, "tx_bytes" }, 365 { STATS_OFFSET32(tx_stat_ifhcoutbadoctets_hi), 366 8, STATS_FLAGS_PORT, "tx_error_bytes" }, 367 { STATS_OFFSET32(total_unicast_packets_transmitted_hi), 368 8, STATS_FLAGS_BOTH, "tx_ucast_packets" }, 369 { STATS_OFFSET32(total_multicast_packets_transmitted_hi), 370 8, STATS_FLAGS_BOTH, "tx_mcast_packets" }, 371 { STATS_OFFSET32(total_broadcast_packets_transmitted_hi), 372 8, STATS_FLAGS_BOTH, "tx_bcast_packets" }, 373 { STATS_OFFSET32(tx_stat_dot3statsinternalmactransmiterrors_hi), 374 8, STATS_FLAGS_PORT, "tx_mac_errors" }, 375 { STATS_OFFSET32(rx_stat_dot3statscarriersenseerrors_hi), 376 8, STATS_FLAGS_PORT, "tx_carrier_errors" }, 377 { STATS_OFFSET32(tx_stat_dot3statssinglecollisionframes_hi), 378 8, STATS_FLAGS_PORT, "tx_single_collisions" }, 379 { STATS_OFFSET32(tx_stat_dot3statsmultiplecollisionframes_hi), 380 8, STATS_FLAGS_PORT, "tx_multi_collisions" }, 381 { STATS_OFFSET32(tx_stat_dot3statsdeferredtransmissions_hi), 382 8, STATS_FLAGS_PORT, "tx_deferred" }, 383 { STATS_OFFSET32(tx_stat_dot3statsexcessivecollisions_hi), 384 8, STATS_FLAGS_PORT, "tx_excess_collisions" }, 385 { STATS_OFFSET32(tx_stat_dot3statslatecollisions_hi), 386 8, STATS_FLAGS_PORT, "tx_late_collisions" }, 387 { STATS_OFFSET32(tx_stat_etherstatscollisions_hi), 388 8, STATS_FLAGS_PORT, "tx_total_collisions" }, 389 { STATS_OFFSET32(tx_stat_etherstatspkts64octets_hi), 390 8, STATS_FLAGS_PORT, "tx_64_byte_packets" }, 391 { STATS_OFFSET32(tx_stat_etherstatspkts65octetsto127octets_hi), 392 8, STATS_FLAGS_PORT, "tx_65_to_127_byte_packets" }, 393 { STATS_OFFSET32(tx_stat_etherstatspkts128octetsto255octets_hi), 394 8, STATS_FLAGS_PORT, "tx_128_to_255_byte_packets" }, 395 { STATS_OFFSET32(tx_stat_etherstatspkts256octetsto511octets_hi), 396 8, STATS_FLAGS_PORT, "tx_256_to_511_byte_packets" }, 397 { STATS_OFFSET32(tx_stat_etherstatspkts512octetsto1023octets_hi), 398 8, STATS_FLAGS_PORT, "tx_512_to_1023_byte_packets" }, 399 { STATS_OFFSET32(etherstatspkts1024octetsto1522octets_hi), 400 8, STATS_FLAGS_PORT, "tx_1024_to_1522_byte_packets" }, 401 { STATS_OFFSET32(etherstatspktsover1522octets_hi), 402 8, STATS_FLAGS_PORT, "tx_1523_to_9022_byte_packets" }, 403 { STATS_OFFSET32(pause_frames_sent_hi), 404 8, STATS_FLAGS_PORT, "tx_pause_frames" }, 405 { STATS_OFFSET32(total_tpa_aggregations_hi), 406 8, STATS_FLAGS_FUNC, "tpa_aggregations" }, 407 { STATS_OFFSET32(total_tpa_aggregated_frames_hi), 408 8, STATS_FLAGS_FUNC, "tpa_aggregated_frames"}, 409 { STATS_OFFSET32(total_tpa_bytes_hi), 410 8, STATS_FLAGS_FUNC, "tpa_bytes"}, 411 { STATS_OFFSET32(eee_tx_lpi), 412 4, STATS_FLAGS_PORT, "eee_tx_lpi"}, 413 { STATS_OFFSET32(rx_calls), 414 4, STATS_FLAGS_FUNC, "rx_calls"}, 415 { STATS_OFFSET32(rx_pkts), 416 4, STATS_FLAGS_FUNC, "rx_pkts"}, 417 { STATS_OFFSET32(rx_tpa_pkts), 418 4, STATS_FLAGS_FUNC, "rx_tpa_pkts"}, 419 { STATS_OFFSET32(rx_erroneous_jumbo_sge_pkts), 420 4, STATS_FLAGS_FUNC, "rx_erroneous_jumbo_sge_pkts"}, 421 { STATS_OFFSET32(rx_bxe_service_rxsgl), 422 4, STATS_FLAGS_FUNC, "rx_bxe_service_rxsgl"}, 423 { STATS_OFFSET32(rx_jumbo_sge_pkts), 424 4, STATS_FLAGS_FUNC, "rx_jumbo_sge_pkts"}, 425 { STATS_OFFSET32(rx_soft_errors), 426 4, STATS_FLAGS_FUNC, "rx_soft_errors"}, 427 { STATS_OFFSET32(rx_hw_csum_errors), 428 4, STATS_FLAGS_FUNC, "rx_hw_csum_errors"}, 429 { STATS_OFFSET32(rx_ofld_frames_csum_ip), 430 4, STATS_FLAGS_FUNC, "rx_ofld_frames_csum_ip"}, 431 { STATS_OFFSET32(rx_ofld_frames_csum_tcp_udp), 432 4, STATS_FLAGS_FUNC, "rx_ofld_frames_csum_tcp_udp"}, 433 { STATS_OFFSET32(rx_budget_reached), 434 4, STATS_FLAGS_FUNC, "rx_budget_reached"}, 435 { STATS_OFFSET32(tx_pkts), 436 4, STATS_FLAGS_FUNC, "tx_pkts"}, 437 { STATS_OFFSET32(tx_soft_errors), 438 4, STATS_FLAGS_FUNC, "tx_soft_errors"}, 439 { STATS_OFFSET32(tx_ofld_frames_csum_ip), 440 4, STATS_FLAGS_FUNC, "tx_ofld_frames_csum_ip"}, 441 { STATS_OFFSET32(tx_ofld_frames_csum_tcp), 442 4, STATS_FLAGS_FUNC, "tx_ofld_frames_csum_tcp"}, 443 { STATS_OFFSET32(tx_ofld_frames_csum_udp), 444 4, STATS_FLAGS_FUNC, "tx_ofld_frames_csum_udp"}, 445 { STATS_OFFSET32(tx_ofld_frames_lso), 446 4, STATS_FLAGS_FUNC, "tx_ofld_frames_lso"}, 447 { STATS_OFFSET32(tx_ofld_frames_lso_hdr_splits), 448 4, STATS_FLAGS_FUNC, "tx_ofld_frames_lso_hdr_splits"}, 449 { STATS_OFFSET32(tx_encap_failures), 450 4, STATS_FLAGS_FUNC, "tx_encap_failures"}, 451 { STATS_OFFSET32(tx_hw_queue_full), 452 4, STATS_FLAGS_FUNC, "tx_hw_queue_full"}, 453 { STATS_OFFSET32(tx_hw_max_queue_depth), 454 4, STATS_FLAGS_FUNC, "tx_hw_max_queue_depth"}, 455 { STATS_OFFSET32(tx_dma_mapping_failure), 456 4, STATS_FLAGS_FUNC, "tx_dma_mapping_failure"}, 457 { STATS_OFFSET32(tx_max_drbr_queue_depth), 458 4, STATS_FLAGS_FUNC, "tx_max_drbr_queue_depth"}, 459 { STATS_OFFSET32(tx_window_violation_std), 460 4, STATS_FLAGS_FUNC, "tx_window_violation_std"}, 461 { STATS_OFFSET32(tx_window_violation_tso), 462 4, STATS_FLAGS_FUNC, "tx_window_violation_tso"}, 463 { STATS_OFFSET32(tx_chain_lost_mbuf), 464 4, STATS_FLAGS_FUNC, "tx_chain_lost_mbuf"}, 465 { STATS_OFFSET32(tx_frames_deferred), 466 4, STATS_FLAGS_FUNC, "tx_frames_deferred"}, 467 { STATS_OFFSET32(tx_queue_xoff), 468 4, STATS_FLAGS_FUNC, "tx_queue_xoff"}, 469 { STATS_OFFSET32(mbuf_defrag_attempts), 470 4, STATS_FLAGS_FUNC, "mbuf_defrag_attempts"}, 471 { STATS_OFFSET32(mbuf_defrag_failures), 472 4, STATS_FLAGS_FUNC, "mbuf_defrag_failures"}, 473 { STATS_OFFSET32(mbuf_rx_bd_alloc_failed), 474 4, STATS_FLAGS_FUNC, "mbuf_rx_bd_alloc_failed"}, 475 { STATS_OFFSET32(mbuf_rx_bd_mapping_failed), 476 4, STATS_FLAGS_FUNC, "mbuf_rx_bd_mapping_failed"}, 477 { STATS_OFFSET32(mbuf_rx_tpa_alloc_failed), 478 4, STATS_FLAGS_FUNC, "mbuf_rx_tpa_alloc_failed"}, 479 { STATS_OFFSET32(mbuf_rx_tpa_mapping_failed), 480 4, STATS_FLAGS_FUNC, "mbuf_rx_tpa_mapping_failed"}, 481 { STATS_OFFSET32(mbuf_rx_sge_alloc_failed), 482 4, STATS_FLAGS_FUNC, "mbuf_rx_sge_alloc_failed"}, 483 { STATS_OFFSET32(mbuf_rx_sge_mapping_failed), 484 4, STATS_FLAGS_FUNC, "mbuf_rx_sge_mapping_failed"}, 485 { STATS_OFFSET32(mbuf_alloc_tx), 486 4, STATS_FLAGS_FUNC, "mbuf_alloc_tx"}, 487 { STATS_OFFSET32(mbuf_alloc_rx), 488 4, STATS_FLAGS_FUNC, "mbuf_alloc_rx"}, 489 { STATS_OFFSET32(mbuf_alloc_sge), 490 4, STATS_FLAGS_FUNC, "mbuf_alloc_sge"}, 491 { STATS_OFFSET32(mbuf_alloc_tpa), 492 4, STATS_FLAGS_FUNC, "mbuf_alloc_tpa"}, 493 { STATS_OFFSET32(tx_queue_full_return), 494 4, STATS_FLAGS_FUNC, "tx_queue_full_return"}, 495 { STATS_OFFSET32(bxe_tx_mq_sc_state_failures), 496 4, STATS_FLAGS_FUNC, "bxe_tx_mq_sc_state_failures"}, 497 { STATS_OFFSET32(tx_request_link_down_failures), 498 4, STATS_FLAGS_FUNC, "tx_request_link_down_failures"}, 499 { STATS_OFFSET32(bd_avail_too_less_failures), 500 4, STATS_FLAGS_FUNC, "bd_avail_too_less_failures"}, 501 { STATS_OFFSET32(tx_mq_not_empty), 502 4, STATS_FLAGS_FUNC, "tx_mq_not_empty"}, 503 { STATS_OFFSET32(nsegs_path1_errors), 504 4, STATS_FLAGS_FUNC, "nsegs_path1_errors"}, 505 { STATS_OFFSET32(nsegs_path2_errors), 506 4, STATS_FLAGS_FUNC, "nsegs_path2_errors"} 507 508 509 }; 510 511 static const struct { 512 uint32_t offset; 513 uint32_t size; 514 char string[STAT_NAME_LEN]; 515 } bxe_eth_q_stats_arr[] = { 516 { Q_STATS_OFFSET32(total_bytes_received_hi), 517 8, "rx_bytes" }, 518 { Q_STATS_OFFSET32(total_unicast_packets_received_hi), 519 8, "rx_ucast_packets" }, 520 { Q_STATS_OFFSET32(total_multicast_packets_received_hi), 521 8, "rx_mcast_packets" }, 522 { Q_STATS_OFFSET32(total_broadcast_packets_received_hi), 523 8, "rx_bcast_packets" }, 524 { Q_STATS_OFFSET32(no_buff_discard_hi), 525 8, "rx_discards" }, 526 { Q_STATS_OFFSET32(total_bytes_transmitted_hi), 527 8, "tx_bytes" }, 528 { Q_STATS_OFFSET32(total_unicast_packets_transmitted_hi), 529 8, "tx_ucast_packets" }, 530 { Q_STATS_OFFSET32(total_multicast_packets_transmitted_hi), 531 8, "tx_mcast_packets" }, 532 { Q_STATS_OFFSET32(total_broadcast_packets_transmitted_hi), 533 8, "tx_bcast_packets" }, 534 { Q_STATS_OFFSET32(total_tpa_aggregations_hi), 535 8, "tpa_aggregations" }, 536 { Q_STATS_OFFSET32(total_tpa_aggregated_frames_hi), 537 8, "tpa_aggregated_frames"}, 538 { Q_STATS_OFFSET32(total_tpa_bytes_hi), 539 8, "tpa_bytes"}, 540 { Q_STATS_OFFSET32(rx_calls), 541 4, "rx_calls"}, 542 { Q_STATS_OFFSET32(rx_pkts), 543 4, "rx_pkts"}, 544 { Q_STATS_OFFSET32(rx_tpa_pkts), 545 4, "rx_tpa_pkts"}, 546 { Q_STATS_OFFSET32(rx_erroneous_jumbo_sge_pkts), 547 4, "rx_erroneous_jumbo_sge_pkts"}, 548 { Q_STATS_OFFSET32(rx_bxe_service_rxsgl), 549 4, "rx_bxe_service_rxsgl"}, 550 { Q_STATS_OFFSET32(rx_jumbo_sge_pkts), 551 4, "rx_jumbo_sge_pkts"}, 552 { Q_STATS_OFFSET32(rx_soft_errors), 553 4, "rx_soft_errors"}, 554 { Q_STATS_OFFSET32(rx_hw_csum_errors), 555 4, "rx_hw_csum_errors"}, 556 { Q_STATS_OFFSET32(rx_ofld_frames_csum_ip), 557 4, "rx_ofld_frames_csum_ip"}, 558 { Q_STATS_OFFSET32(rx_ofld_frames_csum_tcp_udp), 559 4, "rx_ofld_frames_csum_tcp_udp"}, 560 { Q_STATS_OFFSET32(rx_budget_reached), 561 4, "rx_budget_reached"}, 562 { Q_STATS_OFFSET32(tx_pkts), 563 4, "tx_pkts"}, 564 { Q_STATS_OFFSET32(tx_soft_errors), 565 4, "tx_soft_errors"}, 566 { Q_STATS_OFFSET32(tx_ofld_frames_csum_ip), 567 4, "tx_ofld_frames_csum_ip"}, 568 { Q_STATS_OFFSET32(tx_ofld_frames_csum_tcp), 569 4, "tx_ofld_frames_csum_tcp"}, 570 { Q_STATS_OFFSET32(tx_ofld_frames_csum_udp), 571 4, "tx_ofld_frames_csum_udp"}, 572 { Q_STATS_OFFSET32(tx_ofld_frames_lso), 573 4, "tx_ofld_frames_lso"}, 574 { Q_STATS_OFFSET32(tx_ofld_frames_lso_hdr_splits), 575 4, "tx_ofld_frames_lso_hdr_splits"}, 576 { Q_STATS_OFFSET32(tx_encap_failures), 577 4, "tx_encap_failures"}, 578 { Q_STATS_OFFSET32(tx_hw_queue_full), 579 4, "tx_hw_queue_full"}, 580 { Q_STATS_OFFSET32(tx_hw_max_queue_depth), 581 4, "tx_hw_max_queue_depth"}, 582 { Q_STATS_OFFSET32(tx_dma_mapping_failure), 583 4, "tx_dma_mapping_failure"}, 584 { Q_STATS_OFFSET32(tx_max_drbr_queue_depth), 585 4, "tx_max_drbr_queue_depth"}, 586 { Q_STATS_OFFSET32(tx_window_violation_std), 587 4, "tx_window_violation_std"}, 588 { Q_STATS_OFFSET32(tx_window_violation_tso), 589 4, "tx_window_violation_tso"}, 590 { Q_STATS_OFFSET32(tx_chain_lost_mbuf), 591 4, "tx_chain_lost_mbuf"}, 592 { Q_STATS_OFFSET32(tx_frames_deferred), 593 4, "tx_frames_deferred"}, 594 { Q_STATS_OFFSET32(tx_queue_xoff), 595 4, "tx_queue_xoff"}, 596 { Q_STATS_OFFSET32(mbuf_defrag_attempts), 597 4, "mbuf_defrag_attempts"}, 598 { Q_STATS_OFFSET32(mbuf_defrag_failures), 599 4, "mbuf_defrag_failures"}, 600 { Q_STATS_OFFSET32(mbuf_rx_bd_alloc_failed), 601 4, "mbuf_rx_bd_alloc_failed"}, 602 { Q_STATS_OFFSET32(mbuf_rx_bd_mapping_failed), 603 4, "mbuf_rx_bd_mapping_failed"}, 604 { Q_STATS_OFFSET32(mbuf_rx_tpa_alloc_failed), 605 4, "mbuf_rx_tpa_alloc_failed"}, 606 { Q_STATS_OFFSET32(mbuf_rx_tpa_mapping_failed), 607 4, "mbuf_rx_tpa_mapping_failed"}, 608 { Q_STATS_OFFSET32(mbuf_rx_sge_alloc_failed), 609 4, "mbuf_rx_sge_alloc_failed"}, 610 { Q_STATS_OFFSET32(mbuf_rx_sge_mapping_failed), 611 4, "mbuf_rx_sge_mapping_failed"}, 612 { Q_STATS_OFFSET32(mbuf_alloc_tx), 613 4, "mbuf_alloc_tx"}, 614 { Q_STATS_OFFSET32(mbuf_alloc_rx), 615 4, "mbuf_alloc_rx"}, 616 { Q_STATS_OFFSET32(mbuf_alloc_sge), 617 4, "mbuf_alloc_sge"}, 618 { Q_STATS_OFFSET32(mbuf_alloc_tpa), 619 4, "mbuf_alloc_tpa"}, 620 { Q_STATS_OFFSET32(tx_queue_full_return), 621 4, "tx_queue_full_return"}, 622 { Q_STATS_OFFSET32(bxe_tx_mq_sc_state_failures), 623 4, "bxe_tx_mq_sc_state_failures"}, 624 { Q_STATS_OFFSET32(tx_request_link_down_failures), 625 4, "tx_request_link_down_failures"}, 626 { Q_STATS_OFFSET32(bd_avail_too_less_failures), 627 4, "bd_avail_too_less_failures"}, 628 { Q_STATS_OFFSET32(tx_mq_not_empty), 629 4, "tx_mq_not_empty"}, 630 { Q_STATS_OFFSET32(nsegs_path1_errors), 631 4, "nsegs_path1_errors"}, 632 { Q_STATS_OFFSET32(nsegs_path2_errors), 633 4, "nsegs_path2_errors"} 634 635 636 }; 637 638 #define BXE_NUM_ETH_STATS ARRAY_SIZE(bxe_eth_stats_arr) 639 #define BXE_NUM_ETH_Q_STATS ARRAY_SIZE(bxe_eth_q_stats_arr) 640 641 642 static void bxe_cmng_fns_init(struct bxe_softc *sc, 643 uint8_t read_cfg, 644 uint8_t cmng_type); 645 static int bxe_get_cmng_fns_mode(struct bxe_softc *sc); 646 static void storm_memset_cmng(struct bxe_softc *sc, 647 struct cmng_init *cmng, 648 uint8_t port); 649 static void bxe_set_reset_global(struct bxe_softc *sc); 650 static void bxe_set_reset_in_progress(struct bxe_softc *sc); 651 static uint8_t bxe_reset_is_done(struct bxe_softc *sc, 652 int engine); 653 static uint8_t bxe_clear_pf_load(struct bxe_softc *sc); 654 static uint8_t bxe_chk_parity_attn(struct bxe_softc *sc, 655 uint8_t *global, 656 uint8_t print); 657 static void bxe_int_disable(struct bxe_softc *sc); 658 static int bxe_release_leader_lock(struct bxe_softc *sc); 659 static void bxe_pf_disable(struct bxe_softc *sc); 660 static void bxe_free_fp_buffers(struct bxe_softc *sc); 661 static inline void bxe_update_rx_prod(struct bxe_softc *sc, 662 struct bxe_fastpath *fp, 663 uint16_t rx_bd_prod, 664 uint16_t rx_cq_prod, 665 uint16_t rx_sge_prod); 666 static void bxe_link_report_locked(struct bxe_softc *sc); 667 static void bxe_link_report(struct bxe_softc *sc); 668 static void bxe_link_status_update(struct bxe_softc *sc); 669 static void bxe_periodic_callout_func(void *xsc); 670 static void bxe_periodic_start(struct bxe_softc *sc); 671 static void bxe_periodic_stop(struct bxe_softc *sc); 672 static int bxe_alloc_rx_bd_mbuf(struct bxe_fastpath *fp, 673 uint16_t prev_index, 674 uint16_t index); 675 static int bxe_alloc_rx_tpa_mbuf(struct bxe_fastpath *fp, 676 int queue); 677 static int bxe_alloc_rx_sge_mbuf(struct bxe_fastpath *fp, 678 uint16_t index); 679 static uint8_t bxe_txeof(struct bxe_softc *sc, 680 struct bxe_fastpath *fp); 681 static void bxe_task_fp(struct bxe_fastpath *fp); 682 static __noinline void bxe_dump_mbuf(struct bxe_softc *sc, 683 struct mbuf *m, 684 uint8_t contents); 685 static int bxe_alloc_mem(struct bxe_softc *sc); 686 static void bxe_free_mem(struct bxe_softc *sc); 687 static int bxe_alloc_fw_stats_mem(struct bxe_softc *sc); 688 static void bxe_free_fw_stats_mem(struct bxe_softc *sc); 689 static int bxe_interrupt_attach(struct bxe_softc *sc); 690 static void bxe_interrupt_detach(struct bxe_softc *sc); 691 static void bxe_set_rx_mode(struct bxe_softc *sc); 692 static int bxe_init_locked(struct bxe_softc *sc); 693 static int bxe_stop_locked(struct bxe_softc *sc); 694 static void bxe_sp_err_timeout_task(void *arg, int pending); 695 void bxe_parity_recover(struct bxe_softc *sc); 696 void bxe_handle_error(struct bxe_softc *sc); 697 static __noinline int bxe_nic_load(struct bxe_softc *sc, 698 int load_mode); 699 static __noinline int bxe_nic_unload(struct bxe_softc *sc, 700 uint32_t unload_mode, 701 uint8_t keep_link); 702 703 static void bxe_handle_sp_tq(void *context, int pending); 704 static void bxe_handle_fp_tq(void *context, int pending); 705 706 static int bxe_add_cdev(struct bxe_softc *sc); 707 static void bxe_del_cdev(struct bxe_softc *sc); 708 int bxe_grc_dump(struct bxe_softc *sc); 709 static int bxe_alloc_buf_rings(struct bxe_softc *sc); 710 static void bxe_free_buf_rings(struct bxe_softc *sc); 711 712 /* calculate crc32 on a buffer (NOTE: crc32_length MUST be aligned to 8) */ 713 uint32_t 714 calc_crc32(uint8_t *crc32_packet, 715 uint32_t crc32_length, 716 uint32_t crc32_seed, 717 uint8_t complement) 718 { 719 uint32_t byte = 0; 720 uint32_t bit = 0; 721 uint8_t msb = 0; 722 uint32_t temp = 0; 723 uint32_t shft = 0; 724 uint8_t current_byte = 0; 725 uint32_t crc32_result = crc32_seed; 726 const uint32_t CRC32_POLY = 0x1edc6f41; 727 728 if ((crc32_packet == NULL) || 729 (crc32_length == 0) || 730 ((crc32_length % 8) != 0)) 731 { 732 return (crc32_result); 733 } 734 735 for (byte = 0; byte < crc32_length; byte = byte + 1) 736 { 737 current_byte = crc32_packet[byte]; 738 for (bit = 0; bit < 8; bit = bit + 1) 739 { 740 /* msb = crc32_result[31]; */ 741 msb = (uint8_t)(crc32_result >> 31); 742 743 crc32_result = crc32_result << 1; 744 745 /* it (msb != current_byte[bit]) */ 746 if (msb != (0x1 & (current_byte >> bit))) 747 { 748 crc32_result = crc32_result ^ CRC32_POLY; 749 /* crc32_result[0] = 1 */ 750 crc32_result |= 1; 751 } 752 } 753 } 754 755 /* Last step is to: 756 * 1. "mirror" every bit 757 * 2. swap the 4 bytes 758 * 3. complement each bit 759 */ 760 761 /* Mirror */ 762 temp = crc32_result; 763 shft = sizeof(crc32_result) * 8 - 1; 764 765 for (crc32_result >>= 1; crc32_result; crc32_result >>= 1) 766 { 767 temp <<= 1; 768 temp |= crc32_result & 1; 769 shft-- ; 770 } 771 772 /* temp[31-bit] = crc32_result[bit] */ 773 temp <<= shft; 774 775 /* Swap */ 776 /* crc32_result = {temp[7:0], temp[15:8], temp[23:16], temp[31:24]} */ 777 { 778 uint32_t t0, t1, t2, t3; 779 t0 = (0x000000ff & (temp >> 24)); 780 t1 = (0x0000ff00 & (temp >> 8)); 781 t2 = (0x00ff0000 & (temp << 8)); 782 t3 = (0xff000000 & (temp << 24)); 783 crc32_result = t0 | t1 | t2 | t3; 784 } 785 786 /* Complement */ 787 if (complement) 788 { 789 crc32_result = ~crc32_result; 790 } 791 792 return (crc32_result); 793 } 794 795 int 796 bxe_test_bit(int nr, 797 volatile unsigned long *addr) 798 { 799 return ((atomic_load_acq_long(addr) & (1 << nr)) != 0); 800 } 801 802 void 803 bxe_set_bit(unsigned int nr, 804 volatile unsigned long *addr) 805 { 806 atomic_set_acq_long(addr, (1 << nr)); 807 } 808 809 void 810 bxe_clear_bit(int nr, 811 volatile unsigned long *addr) 812 { 813 atomic_clear_acq_long(addr, (1 << nr)); 814 } 815 816 int 817 bxe_test_and_set_bit(int nr, 818 volatile unsigned long *addr) 819 { 820 unsigned long x; 821 nr = (1 << nr); 822 do { 823 x = *addr; 824 } while (atomic_cmpset_acq_long(addr, x, x | nr) == 0); 825 // if (x & nr) bit_was_set; else bit_was_not_set; 826 return (x & nr); 827 } 828 829 int 830 bxe_test_and_clear_bit(int nr, 831 volatile unsigned long *addr) 832 { 833 unsigned long x; 834 nr = (1 << nr); 835 do { 836 x = *addr; 837 } while (atomic_cmpset_acq_long(addr, x, x & ~nr) == 0); 838 // if (x & nr) bit_was_set; else bit_was_not_set; 839 return (x & nr); 840 } 841 842 int 843 bxe_cmpxchg(volatile int *addr, 844 int old, 845 int new) 846 { 847 int x; 848 do { 849 x = *addr; 850 } while (atomic_cmpset_acq_int(addr, old, new) == 0); 851 return (x); 852 } 853 854 /* 855 * Get DMA memory from the OS. 856 * 857 * Validates that the OS has provided DMA buffers in response to a 858 * bus_dmamap_load call and saves the physical address of those buffers. 859 * When the callback is used the OS will return 0 for the mapping function 860 * (bus_dmamap_load) so we use the value of map_arg->maxsegs to pass any 861 * failures back to the caller. 862 * 863 * Returns: 864 * Nothing. 865 */ 866 static void 867 bxe_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error) 868 { 869 struct bxe_dma *dma = arg; 870 871 if (error) { 872 dma->paddr = 0; 873 dma->nseg = 0; 874 BLOGE(dma->sc, "Failed DMA alloc '%s' (%d)!\n", dma->msg, error); 875 } else { 876 dma->paddr = segs->ds_addr; 877 dma->nseg = nseg; 878 } 879 } 880 881 /* 882 * Allocate a block of memory and map it for DMA. No partial completions 883 * allowed and release any resources acquired if we can't acquire all 884 * resources. 885 * 886 * Returns: 887 * 0 = Success, !0 = Failure 888 */ 889 int 890 bxe_dma_alloc(struct bxe_softc *sc, 891 bus_size_t size, 892 struct bxe_dma *dma, 893 const char *msg) 894 { 895 int rc; 896 897 if (dma->size > 0) { 898 BLOGE(sc, "dma block '%s' already has size %lu\n", msg, 899 (unsigned long)dma->size); 900 return (1); 901 } 902 903 memset(dma, 0, sizeof(*dma)); /* sanity */ 904 dma->sc = sc; 905 dma->size = size; 906 snprintf(dma->msg, sizeof(dma->msg), "%s", msg); 907 908 rc = bus_dma_tag_create(sc->parent_dma_tag, /* parent tag */ 909 BCM_PAGE_SIZE, /* alignment */ 910 0, /* boundary limit */ 911 BUS_SPACE_MAXADDR, /* restricted low */ 912 BUS_SPACE_MAXADDR, /* restricted hi */ 913 NULL, /* addr filter() */ 914 NULL, /* addr filter() arg */ 915 size, /* max map size */ 916 1, /* num discontinuous */ 917 size, /* max seg size */ 918 BUS_DMA_ALLOCNOW, /* flags */ 919 NULL, /* lock() */ 920 NULL, /* lock() arg */ 921 &dma->tag); /* returned dma tag */ 922 if (rc != 0) { 923 BLOGE(sc, "Failed to create dma tag for '%s' (%d)\n", msg, rc); 924 memset(dma, 0, sizeof(*dma)); 925 return (1); 926 } 927 928 rc = bus_dmamem_alloc(dma->tag, 929 (void **)&dma->vaddr, 930 (BUS_DMA_NOWAIT | BUS_DMA_ZERO), 931 &dma->map); 932 if (rc != 0) { 933 BLOGE(sc, "Failed to alloc dma mem for '%s' (%d)\n", msg, rc); 934 bus_dma_tag_destroy(dma->tag); 935 memset(dma, 0, sizeof(*dma)); 936 return (1); 937 } 938 939 rc = bus_dmamap_load(dma->tag, 940 dma->map, 941 dma->vaddr, 942 size, 943 bxe_dma_map_addr, /* BLOGD in here */ 944 dma, 945 BUS_DMA_NOWAIT); 946 if (rc != 0) { 947 BLOGE(sc, "Failed to load dma map for '%s' (%d)\n", msg, rc); 948 bus_dmamem_free(dma->tag, dma->vaddr, dma->map); 949 bus_dma_tag_destroy(dma->tag); 950 memset(dma, 0, sizeof(*dma)); 951 return (1); 952 } 953 954 return (0); 955 } 956 957 void 958 bxe_dma_free(struct bxe_softc *sc, 959 struct bxe_dma *dma) 960 { 961 if (dma->size > 0) { 962 DBASSERT(sc, (dma->tag != NULL), ("dma tag is NULL")); 963 964 bus_dmamap_sync(dma->tag, dma->map, 965 (BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE)); 966 bus_dmamap_unload(dma->tag, dma->map); 967 bus_dmamem_free(dma->tag, dma->vaddr, dma->map); 968 bus_dma_tag_destroy(dma->tag); 969 } 970 971 memset(dma, 0, sizeof(*dma)); 972 } 973 974 /* 975 * These indirect read and write routines are only during init. 976 * The locking is handled by the MCP. 977 */ 978 979 void 980 bxe_reg_wr_ind(struct bxe_softc *sc, 981 uint32_t addr, 982 uint32_t val) 983 { 984 pci_write_config(sc->dev, PCICFG_GRC_ADDRESS, addr, 4); 985 pci_write_config(sc->dev, PCICFG_GRC_DATA, val, 4); 986 pci_write_config(sc->dev, PCICFG_GRC_ADDRESS, 0, 4); 987 } 988 989 uint32_t 990 bxe_reg_rd_ind(struct bxe_softc *sc, 991 uint32_t addr) 992 { 993 uint32_t val; 994 995 pci_write_config(sc->dev, PCICFG_GRC_ADDRESS, addr, 4); 996 val = pci_read_config(sc->dev, PCICFG_GRC_DATA, 4); 997 pci_write_config(sc->dev, PCICFG_GRC_ADDRESS, 0, 4); 998 999 return (val); 1000 } 1001 1002 static int 1003 bxe_acquire_hw_lock(struct bxe_softc *sc, 1004 uint32_t resource) 1005 { 1006 uint32_t lock_status; 1007 uint32_t resource_bit = (1 << resource); 1008 int func = SC_FUNC(sc); 1009 uint32_t hw_lock_control_reg; 1010 int cnt; 1011 1012 /* validate the resource is within range */ 1013 if (resource > HW_LOCK_MAX_RESOURCE_VALUE) { 1014 BLOGE(sc, "(resource 0x%x > HW_LOCK_MAX_RESOURCE_VALUE)" 1015 " resource_bit 0x%x\n", resource, resource_bit); 1016 return (-1); 1017 } 1018 1019 if (func <= 5) { 1020 hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + (func * 8)); 1021 } else { 1022 hw_lock_control_reg = 1023 (MISC_REG_DRIVER_CONTROL_7 + ((func - 6) * 8)); 1024 } 1025 1026 /* validate the resource is not already taken */ 1027 lock_status = REG_RD(sc, hw_lock_control_reg); 1028 if (lock_status & resource_bit) { 1029 BLOGE(sc, "resource (0x%x) in use (status 0x%x bit 0x%x)\n", 1030 resource, lock_status, resource_bit); 1031 return (-1); 1032 } 1033 1034 /* try every 5ms for 5 seconds */ 1035 for (cnt = 0; cnt < 1000; cnt++) { 1036 REG_WR(sc, (hw_lock_control_reg + 4), resource_bit); 1037 lock_status = REG_RD(sc, hw_lock_control_reg); 1038 if (lock_status & resource_bit) { 1039 return (0); 1040 } 1041 DELAY(5000); 1042 } 1043 1044 BLOGE(sc, "Resource 0x%x resource_bit 0x%x lock timeout!\n", 1045 resource, resource_bit); 1046 return (-1); 1047 } 1048 1049 static int 1050 bxe_release_hw_lock(struct bxe_softc *sc, 1051 uint32_t resource) 1052 { 1053 uint32_t lock_status; 1054 uint32_t resource_bit = (1 << resource); 1055 int func = SC_FUNC(sc); 1056 uint32_t hw_lock_control_reg; 1057 1058 /* validate the resource is within range */ 1059 if (resource > HW_LOCK_MAX_RESOURCE_VALUE) { 1060 BLOGE(sc, "(resource 0x%x > HW_LOCK_MAX_RESOURCE_VALUE)" 1061 " resource_bit 0x%x\n", resource, resource_bit); 1062 return (-1); 1063 } 1064 1065 if (func <= 5) { 1066 hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + (func * 8)); 1067 } else { 1068 hw_lock_control_reg = 1069 (MISC_REG_DRIVER_CONTROL_7 + ((func - 6) * 8)); 1070 } 1071 1072 /* validate the resource is currently taken */ 1073 lock_status = REG_RD(sc, hw_lock_control_reg); 1074 if (!(lock_status & resource_bit)) { 1075 BLOGE(sc, "resource (0x%x) not in use (status 0x%x bit 0x%x)\n", 1076 resource, lock_status, resource_bit); 1077 return (-1); 1078 } 1079 1080 REG_WR(sc, hw_lock_control_reg, resource_bit); 1081 return (0); 1082 } 1083 static void bxe_acquire_phy_lock(struct bxe_softc *sc) 1084 { 1085 BXE_PHY_LOCK(sc); 1086 bxe_acquire_hw_lock(sc,HW_LOCK_RESOURCE_MDIO); 1087 } 1088 1089 static void bxe_release_phy_lock(struct bxe_softc *sc) 1090 { 1091 bxe_release_hw_lock(sc,HW_LOCK_RESOURCE_MDIO); 1092 BXE_PHY_UNLOCK(sc); 1093 } 1094 /* 1095 * Per pf misc lock must be acquired before the per port mcp lock. Otherwise, 1096 * had we done things the other way around, if two pfs from the same port 1097 * would attempt to access nvram at the same time, we could run into a 1098 * scenario such as: 1099 * pf A takes the port lock. 1100 * pf B succeeds in taking the same lock since they are from the same port. 1101 * pf A takes the per pf misc lock. Performs eeprom access. 1102 * pf A finishes. Unlocks the per pf misc lock. 1103 * Pf B takes the lock and proceeds to perform it's own access. 1104 * pf A unlocks the per port lock, while pf B is still working (!). 1105 * mcp takes the per port lock and corrupts pf B's access (and/or has it's own 1106 * access corrupted by pf B).* 1107 */ 1108 static int 1109 bxe_acquire_nvram_lock(struct bxe_softc *sc) 1110 { 1111 int port = SC_PORT(sc); 1112 int count, i; 1113 uint32_t val = 0; 1114 1115 /* acquire HW lock: protect against other PFs in PF Direct Assignment */ 1116 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_NVRAM); 1117 1118 /* adjust timeout for emulation/FPGA */ 1119 count = NVRAM_TIMEOUT_COUNT; 1120 if (CHIP_REV_IS_SLOW(sc)) { 1121 count *= 100; 1122 } 1123 1124 /* request access to nvram interface */ 1125 REG_WR(sc, MCP_REG_MCPR_NVM_SW_ARB, 1126 (MCPR_NVM_SW_ARB_ARB_REQ_SET1 << port)); 1127 1128 for (i = 0; i < count*10; i++) { 1129 val = REG_RD(sc, MCP_REG_MCPR_NVM_SW_ARB); 1130 if (val & (MCPR_NVM_SW_ARB_ARB_ARB1 << port)) { 1131 break; 1132 } 1133 1134 DELAY(5); 1135 } 1136 1137 if (!(val & (MCPR_NVM_SW_ARB_ARB_ARB1 << port))) { 1138 BLOGE(sc, "Cannot get access to nvram interface " 1139 "port %d val 0x%x (MCPR_NVM_SW_ARB_ARB_ARB1 << port)\n", 1140 port, val); 1141 return (-1); 1142 } 1143 1144 return (0); 1145 } 1146 1147 static int 1148 bxe_release_nvram_lock(struct bxe_softc *sc) 1149 { 1150 int port = SC_PORT(sc); 1151 int count, i; 1152 uint32_t val = 0; 1153 1154 /* adjust timeout for emulation/FPGA */ 1155 count = NVRAM_TIMEOUT_COUNT; 1156 if (CHIP_REV_IS_SLOW(sc)) { 1157 count *= 100; 1158 } 1159 1160 /* relinquish nvram interface */ 1161 REG_WR(sc, MCP_REG_MCPR_NVM_SW_ARB, 1162 (MCPR_NVM_SW_ARB_ARB_REQ_CLR1 << port)); 1163 1164 for (i = 0; i < count*10; i++) { 1165 val = REG_RD(sc, MCP_REG_MCPR_NVM_SW_ARB); 1166 if (!(val & (MCPR_NVM_SW_ARB_ARB_ARB1 << port))) { 1167 break; 1168 } 1169 1170 DELAY(5); 1171 } 1172 1173 if (val & (MCPR_NVM_SW_ARB_ARB_ARB1 << port)) { 1174 BLOGE(sc, "Cannot free access to nvram interface " 1175 "port %d val 0x%x (MCPR_NVM_SW_ARB_ARB_ARB1 << port)\n", 1176 port, val); 1177 return (-1); 1178 } 1179 1180 /* release HW lock: protect against other PFs in PF Direct Assignment */ 1181 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_NVRAM); 1182 1183 return (0); 1184 } 1185 1186 static void 1187 bxe_enable_nvram_access(struct bxe_softc *sc) 1188 { 1189 uint32_t val; 1190 1191 val = REG_RD(sc, MCP_REG_MCPR_NVM_ACCESS_ENABLE); 1192 1193 /* enable both bits, even on read */ 1194 REG_WR(sc, MCP_REG_MCPR_NVM_ACCESS_ENABLE, 1195 (val | MCPR_NVM_ACCESS_ENABLE_EN | MCPR_NVM_ACCESS_ENABLE_WR_EN)); 1196 } 1197 1198 static void 1199 bxe_disable_nvram_access(struct bxe_softc *sc) 1200 { 1201 uint32_t val; 1202 1203 val = REG_RD(sc, MCP_REG_MCPR_NVM_ACCESS_ENABLE); 1204 1205 /* disable both bits, even after read */ 1206 REG_WR(sc, MCP_REG_MCPR_NVM_ACCESS_ENABLE, 1207 (val & ~(MCPR_NVM_ACCESS_ENABLE_EN | 1208 MCPR_NVM_ACCESS_ENABLE_WR_EN))); 1209 } 1210 1211 static int 1212 bxe_nvram_read_dword(struct bxe_softc *sc, 1213 uint32_t offset, 1214 uint32_t *ret_val, 1215 uint32_t cmd_flags) 1216 { 1217 int count, i, rc; 1218 uint32_t val; 1219 1220 /* build the command word */ 1221 cmd_flags |= MCPR_NVM_COMMAND_DOIT; 1222 1223 /* need to clear DONE bit separately */ 1224 REG_WR(sc, MCP_REG_MCPR_NVM_COMMAND, MCPR_NVM_COMMAND_DONE); 1225 1226 /* address of the NVRAM to read from */ 1227 REG_WR(sc, MCP_REG_MCPR_NVM_ADDR, 1228 (offset & MCPR_NVM_ADDR_NVM_ADDR_VALUE)); 1229 1230 /* issue a read command */ 1231 REG_WR(sc, MCP_REG_MCPR_NVM_COMMAND, cmd_flags); 1232 1233 /* adjust timeout for emulation/FPGA */ 1234 count = NVRAM_TIMEOUT_COUNT; 1235 if (CHIP_REV_IS_SLOW(sc)) { 1236 count *= 100; 1237 } 1238 1239 /* wait for completion */ 1240 *ret_val = 0; 1241 rc = -1; 1242 for (i = 0; i < count; i++) { 1243 DELAY(5); 1244 val = REG_RD(sc, MCP_REG_MCPR_NVM_COMMAND); 1245 1246 if (val & MCPR_NVM_COMMAND_DONE) { 1247 val = REG_RD(sc, MCP_REG_MCPR_NVM_READ); 1248 /* we read nvram data in cpu order 1249 * but ethtool sees it as an array of bytes 1250 * converting to big-endian will do the work 1251 */ 1252 *ret_val = htobe32(val); 1253 rc = 0; 1254 break; 1255 } 1256 } 1257 1258 if (rc == -1) { 1259 BLOGE(sc, "nvram read timeout expired " 1260 "(offset 0x%x cmd_flags 0x%x val 0x%x)\n", 1261 offset, cmd_flags, val); 1262 } 1263 1264 return (rc); 1265 } 1266 1267 static int 1268 bxe_nvram_read(struct bxe_softc *sc, 1269 uint32_t offset, 1270 uint8_t *ret_buf, 1271 int buf_size) 1272 { 1273 uint32_t cmd_flags; 1274 uint32_t val; 1275 int rc; 1276 1277 if ((offset & 0x03) || (buf_size & 0x03) || (buf_size == 0)) { 1278 BLOGE(sc, "Invalid parameter, offset 0x%x buf_size 0x%x\n", 1279 offset, buf_size); 1280 return (-1); 1281 } 1282 1283 if ((offset + buf_size) > sc->devinfo.flash_size) { 1284 BLOGE(sc, "Invalid parameter, " 1285 "offset 0x%x + buf_size 0x%x > flash_size 0x%x\n", 1286 offset, buf_size, sc->devinfo.flash_size); 1287 return (-1); 1288 } 1289 1290 /* request access to nvram interface */ 1291 rc = bxe_acquire_nvram_lock(sc); 1292 if (rc) { 1293 return (rc); 1294 } 1295 1296 /* enable access to nvram interface */ 1297 bxe_enable_nvram_access(sc); 1298 1299 /* read the first word(s) */ 1300 cmd_flags = MCPR_NVM_COMMAND_FIRST; 1301 while ((buf_size > sizeof(uint32_t)) && (rc == 0)) { 1302 rc = bxe_nvram_read_dword(sc, offset, &val, cmd_flags); 1303 memcpy(ret_buf, &val, 4); 1304 1305 /* advance to the next dword */ 1306 offset += sizeof(uint32_t); 1307 ret_buf += sizeof(uint32_t); 1308 buf_size -= sizeof(uint32_t); 1309 cmd_flags = 0; 1310 } 1311 1312 if (rc == 0) { 1313 cmd_flags |= MCPR_NVM_COMMAND_LAST; 1314 rc = bxe_nvram_read_dword(sc, offset, &val, cmd_flags); 1315 memcpy(ret_buf, &val, 4); 1316 } 1317 1318 /* disable access to nvram interface */ 1319 bxe_disable_nvram_access(sc); 1320 bxe_release_nvram_lock(sc); 1321 1322 return (rc); 1323 } 1324 1325 static int 1326 bxe_nvram_write_dword(struct bxe_softc *sc, 1327 uint32_t offset, 1328 uint32_t val, 1329 uint32_t cmd_flags) 1330 { 1331 int count, i, rc; 1332 1333 /* build the command word */ 1334 cmd_flags |= (MCPR_NVM_COMMAND_DOIT | MCPR_NVM_COMMAND_WR); 1335 1336 /* need to clear DONE bit separately */ 1337 REG_WR(sc, MCP_REG_MCPR_NVM_COMMAND, MCPR_NVM_COMMAND_DONE); 1338 1339 /* write the data */ 1340 REG_WR(sc, MCP_REG_MCPR_NVM_WRITE, val); 1341 1342 /* address of the NVRAM to write to */ 1343 REG_WR(sc, MCP_REG_MCPR_NVM_ADDR, 1344 (offset & MCPR_NVM_ADDR_NVM_ADDR_VALUE)); 1345 1346 /* issue the write command */ 1347 REG_WR(sc, MCP_REG_MCPR_NVM_COMMAND, cmd_flags); 1348 1349 /* adjust timeout for emulation/FPGA */ 1350 count = NVRAM_TIMEOUT_COUNT; 1351 if (CHIP_REV_IS_SLOW(sc)) { 1352 count *= 100; 1353 } 1354 1355 /* wait for completion */ 1356 rc = -1; 1357 for (i = 0; i < count; i++) { 1358 DELAY(5); 1359 val = REG_RD(sc, MCP_REG_MCPR_NVM_COMMAND); 1360 if (val & MCPR_NVM_COMMAND_DONE) { 1361 rc = 0; 1362 break; 1363 } 1364 } 1365 1366 if (rc == -1) { 1367 BLOGE(sc, "nvram write timeout expired " 1368 "(offset 0x%x cmd_flags 0x%x val 0x%x)\n", 1369 offset, cmd_flags, val); 1370 } 1371 1372 return (rc); 1373 } 1374 1375 #define BYTE_OFFSET(offset) (8 * (offset & 0x03)) 1376 1377 static int 1378 bxe_nvram_write1(struct bxe_softc *sc, 1379 uint32_t offset, 1380 uint8_t *data_buf, 1381 int buf_size) 1382 { 1383 uint32_t cmd_flags; 1384 uint32_t align_offset; 1385 uint32_t val; 1386 int rc; 1387 1388 if ((offset + buf_size) > sc->devinfo.flash_size) { 1389 BLOGE(sc, "Invalid parameter, " 1390 "offset 0x%x + buf_size 0x%x > flash_size 0x%x\n", 1391 offset, buf_size, sc->devinfo.flash_size); 1392 return (-1); 1393 } 1394 1395 /* request access to nvram interface */ 1396 rc = bxe_acquire_nvram_lock(sc); 1397 if (rc) { 1398 return (rc); 1399 } 1400 1401 /* enable access to nvram interface */ 1402 bxe_enable_nvram_access(sc); 1403 1404 cmd_flags = (MCPR_NVM_COMMAND_FIRST | MCPR_NVM_COMMAND_LAST); 1405 align_offset = (offset & ~0x03); 1406 rc = bxe_nvram_read_dword(sc, align_offset, &val, cmd_flags); 1407 1408 if (rc == 0) { 1409 val &= ~(0xff << BYTE_OFFSET(offset)); 1410 val |= (*data_buf << BYTE_OFFSET(offset)); 1411 1412 /* nvram data is returned as an array of bytes 1413 * convert it back to cpu order 1414 */ 1415 val = be32toh(val); 1416 1417 rc = bxe_nvram_write_dword(sc, align_offset, val, cmd_flags); 1418 } 1419 1420 /* disable access to nvram interface */ 1421 bxe_disable_nvram_access(sc); 1422 bxe_release_nvram_lock(sc); 1423 1424 return (rc); 1425 } 1426 1427 static int 1428 bxe_nvram_write(struct bxe_softc *sc, 1429 uint32_t offset, 1430 uint8_t *data_buf, 1431 int buf_size) 1432 { 1433 uint32_t cmd_flags; 1434 uint32_t val; 1435 uint32_t written_so_far; 1436 int rc; 1437 1438 if (buf_size == 1) { 1439 return (bxe_nvram_write1(sc, offset, data_buf, buf_size)); 1440 } 1441 1442 if ((offset & 0x03) || (buf_size & 0x03) /* || (buf_size == 0) */) { 1443 BLOGE(sc, "Invalid parameter, offset 0x%x buf_size 0x%x\n", 1444 offset, buf_size); 1445 return (-1); 1446 } 1447 1448 if (buf_size == 0) { 1449 return (0); /* nothing to do */ 1450 } 1451 1452 if ((offset + buf_size) > sc->devinfo.flash_size) { 1453 BLOGE(sc, "Invalid parameter, " 1454 "offset 0x%x + buf_size 0x%x > flash_size 0x%x\n", 1455 offset, buf_size, sc->devinfo.flash_size); 1456 return (-1); 1457 } 1458 1459 /* request access to nvram interface */ 1460 rc = bxe_acquire_nvram_lock(sc); 1461 if (rc) { 1462 return (rc); 1463 } 1464 1465 /* enable access to nvram interface */ 1466 bxe_enable_nvram_access(sc); 1467 1468 written_so_far = 0; 1469 cmd_flags = MCPR_NVM_COMMAND_FIRST; 1470 while ((written_so_far < buf_size) && (rc == 0)) { 1471 if (written_so_far == (buf_size - sizeof(uint32_t))) { 1472 cmd_flags |= MCPR_NVM_COMMAND_LAST; 1473 } else if (((offset + 4) % NVRAM_PAGE_SIZE) == 0) { 1474 cmd_flags |= MCPR_NVM_COMMAND_LAST; 1475 } else if ((offset % NVRAM_PAGE_SIZE) == 0) { 1476 cmd_flags |= MCPR_NVM_COMMAND_FIRST; 1477 } 1478 1479 memcpy(&val, data_buf, 4); 1480 1481 rc = bxe_nvram_write_dword(sc, offset, val, cmd_flags); 1482 1483 /* advance to the next dword */ 1484 offset += sizeof(uint32_t); 1485 data_buf += sizeof(uint32_t); 1486 written_so_far += sizeof(uint32_t); 1487 cmd_flags = 0; 1488 } 1489 1490 /* disable access to nvram interface */ 1491 bxe_disable_nvram_access(sc); 1492 bxe_release_nvram_lock(sc); 1493 1494 return (rc); 1495 } 1496 1497 /* copy command into DMAE command memory and set DMAE command Go */ 1498 void 1499 bxe_post_dmae(struct bxe_softc *sc, 1500 struct dmae_cmd *dmae, 1501 int idx) 1502 { 1503 uint32_t cmd_offset; 1504 int i; 1505 1506 cmd_offset = (DMAE_REG_CMD_MEM + (sizeof(struct dmae_cmd) * idx)); 1507 for (i = 0; i < ((sizeof(struct dmae_cmd) / 4)); i++) { 1508 REG_WR(sc, (cmd_offset + (i * 4)), *(((uint32_t *)dmae) + i)); 1509 } 1510 1511 REG_WR(sc, dmae_reg_go_c[idx], 1); 1512 } 1513 1514 uint32_t 1515 bxe_dmae_opcode_add_comp(uint32_t opcode, 1516 uint8_t comp_type) 1517 { 1518 return (opcode | ((comp_type << DMAE_CMD_C_DST_SHIFT) | 1519 DMAE_CMD_C_TYPE_ENABLE)); 1520 } 1521 1522 uint32_t 1523 bxe_dmae_opcode_clr_src_reset(uint32_t opcode) 1524 { 1525 return (opcode & ~DMAE_CMD_SRC_RESET); 1526 } 1527 1528 uint32_t 1529 bxe_dmae_opcode(struct bxe_softc *sc, 1530 uint8_t src_type, 1531 uint8_t dst_type, 1532 uint8_t with_comp, 1533 uint8_t comp_type) 1534 { 1535 uint32_t opcode = 0; 1536 1537 opcode |= ((src_type << DMAE_CMD_SRC_SHIFT) | 1538 (dst_type << DMAE_CMD_DST_SHIFT)); 1539 1540 opcode |= (DMAE_CMD_SRC_RESET | DMAE_CMD_DST_RESET); 1541 1542 opcode |= (SC_PORT(sc) ? DMAE_CMD_PORT_1 : DMAE_CMD_PORT_0); 1543 1544 opcode |= ((SC_VN(sc) << DMAE_CMD_E1HVN_SHIFT) | 1545 (SC_VN(sc) << DMAE_CMD_DST_VN_SHIFT)); 1546 1547 opcode |= (DMAE_COM_SET_ERR << DMAE_CMD_ERR_POLICY_SHIFT); 1548 1549 #ifdef __BIG_ENDIAN 1550 opcode |= DMAE_CMD_ENDIANITY_B_DW_SWAP; 1551 #else 1552 opcode |= DMAE_CMD_ENDIANITY_DW_SWAP; 1553 #endif 1554 1555 if (with_comp) { 1556 opcode = bxe_dmae_opcode_add_comp(opcode, comp_type); 1557 } 1558 1559 return (opcode); 1560 } 1561 1562 static void 1563 bxe_prep_dmae_with_comp(struct bxe_softc *sc, 1564 struct dmae_cmd *dmae, 1565 uint8_t src_type, 1566 uint8_t dst_type) 1567 { 1568 memset(dmae, 0, sizeof(struct dmae_cmd)); 1569 1570 /* set the opcode */ 1571 dmae->opcode = bxe_dmae_opcode(sc, src_type, dst_type, 1572 TRUE, DMAE_COMP_PCI); 1573 1574 /* fill in the completion parameters */ 1575 dmae->comp_addr_lo = U64_LO(BXE_SP_MAPPING(sc, wb_comp)); 1576 dmae->comp_addr_hi = U64_HI(BXE_SP_MAPPING(sc, wb_comp)); 1577 dmae->comp_val = DMAE_COMP_VAL; 1578 } 1579 1580 /* issue a DMAE command over the init channel and wait for completion */ 1581 static int 1582 bxe_issue_dmae_with_comp(struct bxe_softc *sc, 1583 struct dmae_cmd *dmae) 1584 { 1585 uint32_t *wb_comp = BXE_SP(sc, wb_comp); 1586 int timeout = CHIP_REV_IS_SLOW(sc) ? 400000 : 4000; 1587 1588 BXE_DMAE_LOCK(sc); 1589 1590 /* reset completion */ 1591 *wb_comp = 0; 1592 1593 /* post the command on the channel used for initializations */ 1594 bxe_post_dmae(sc, dmae, INIT_DMAE_C(sc)); 1595 1596 /* wait for completion */ 1597 DELAY(5); 1598 1599 while ((*wb_comp & ~DMAE_PCI_ERR_FLAG) != DMAE_COMP_VAL) { 1600 if (!timeout || 1601 (sc->recovery_state != BXE_RECOVERY_DONE && 1602 sc->recovery_state != BXE_RECOVERY_NIC_LOADING)) { 1603 BLOGE(sc, "DMAE timeout! *wb_comp 0x%x recovery_state 0x%x\n", 1604 *wb_comp, sc->recovery_state); 1605 BXE_DMAE_UNLOCK(sc); 1606 return (DMAE_TIMEOUT); 1607 } 1608 1609 timeout--; 1610 DELAY(50); 1611 } 1612 1613 if (*wb_comp & DMAE_PCI_ERR_FLAG) { 1614 BLOGE(sc, "DMAE PCI error! *wb_comp 0x%x recovery_state 0x%x\n", 1615 *wb_comp, sc->recovery_state); 1616 BXE_DMAE_UNLOCK(sc); 1617 return (DMAE_PCI_ERROR); 1618 } 1619 1620 BXE_DMAE_UNLOCK(sc); 1621 return (0); 1622 } 1623 1624 void 1625 bxe_read_dmae(struct bxe_softc *sc, 1626 uint32_t src_addr, 1627 uint32_t len32) 1628 { 1629 struct dmae_cmd dmae; 1630 uint32_t *data; 1631 int i, rc; 1632 1633 DBASSERT(sc, (len32 <= 4), ("DMAE read length is %d", len32)); 1634 1635 if (!sc->dmae_ready) { 1636 data = BXE_SP(sc, wb_data[0]); 1637 1638 for (i = 0; i < len32; i++) { 1639 data[i] = (CHIP_IS_E1(sc)) ? 1640 bxe_reg_rd_ind(sc, (src_addr + (i * 4))) : 1641 REG_RD(sc, (src_addr + (i * 4))); 1642 } 1643 1644 return; 1645 } 1646 1647 /* set opcode and fixed command fields */ 1648 bxe_prep_dmae_with_comp(sc, &dmae, DMAE_SRC_GRC, DMAE_DST_PCI); 1649 1650 /* fill in addresses and len */ 1651 dmae.src_addr_lo = (src_addr >> 2); /* GRC addr has dword resolution */ 1652 dmae.src_addr_hi = 0; 1653 dmae.dst_addr_lo = U64_LO(BXE_SP_MAPPING(sc, wb_data)); 1654 dmae.dst_addr_hi = U64_HI(BXE_SP_MAPPING(sc, wb_data)); 1655 dmae.len = len32; 1656 1657 /* issue the command and wait for completion */ 1658 if ((rc = bxe_issue_dmae_with_comp(sc, &dmae)) != 0) { 1659 bxe_panic(sc, ("DMAE failed (%d)\n", rc)); 1660 } 1661 } 1662 1663 void 1664 bxe_write_dmae(struct bxe_softc *sc, 1665 bus_addr_t dma_addr, 1666 uint32_t dst_addr, 1667 uint32_t len32) 1668 { 1669 struct dmae_cmd dmae; 1670 int rc; 1671 1672 if (!sc->dmae_ready) { 1673 DBASSERT(sc, (len32 <= 4), ("DMAE not ready and length is %d", len32)); 1674 1675 if (CHIP_IS_E1(sc)) { 1676 ecore_init_ind_wr(sc, dst_addr, BXE_SP(sc, wb_data[0]), len32); 1677 } else { 1678 ecore_init_str_wr(sc, dst_addr, BXE_SP(sc, wb_data[0]), len32); 1679 } 1680 1681 return; 1682 } 1683 1684 /* set opcode and fixed command fields */ 1685 bxe_prep_dmae_with_comp(sc, &dmae, DMAE_SRC_PCI, DMAE_DST_GRC); 1686 1687 /* fill in addresses and len */ 1688 dmae.src_addr_lo = U64_LO(dma_addr); 1689 dmae.src_addr_hi = U64_HI(dma_addr); 1690 dmae.dst_addr_lo = (dst_addr >> 2); /* GRC addr has dword resolution */ 1691 dmae.dst_addr_hi = 0; 1692 dmae.len = len32; 1693 1694 /* issue the command and wait for completion */ 1695 if ((rc = bxe_issue_dmae_with_comp(sc, &dmae)) != 0) { 1696 bxe_panic(sc, ("DMAE failed (%d)\n", rc)); 1697 } 1698 } 1699 1700 void 1701 bxe_write_dmae_phys_len(struct bxe_softc *sc, 1702 bus_addr_t phys_addr, 1703 uint32_t addr, 1704 uint32_t len) 1705 { 1706 int dmae_wr_max = DMAE_LEN32_WR_MAX(sc); 1707 int offset = 0; 1708 1709 while (len > dmae_wr_max) { 1710 bxe_write_dmae(sc, 1711 (phys_addr + offset), /* src DMA address */ 1712 (addr + offset), /* dst GRC address */ 1713 dmae_wr_max); 1714 offset += (dmae_wr_max * 4); 1715 len -= dmae_wr_max; 1716 } 1717 1718 bxe_write_dmae(sc, 1719 (phys_addr + offset), /* src DMA address */ 1720 (addr + offset), /* dst GRC address */ 1721 len); 1722 } 1723 1724 void 1725 bxe_set_ctx_validation(struct bxe_softc *sc, 1726 struct eth_context *cxt, 1727 uint32_t cid) 1728 { 1729 /* ustorm cxt validation */ 1730 cxt->ustorm_ag_context.cdu_usage = 1731 CDU_RSRVD_VALUE_TYPE_A(HW_CID(sc, cid), 1732 CDU_REGION_NUMBER_UCM_AG, ETH_CONNECTION_TYPE); 1733 /* xcontext validation */ 1734 cxt->xstorm_ag_context.cdu_reserved = 1735 CDU_RSRVD_VALUE_TYPE_A(HW_CID(sc, cid), 1736 CDU_REGION_NUMBER_XCM_AG, ETH_CONNECTION_TYPE); 1737 } 1738 1739 static void 1740 bxe_storm_memset_hc_timeout(struct bxe_softc *sc, 1741 uint8_t port, 1742 uint8_t fw_sb_id, 1743 uint8_t sb_index, 1744 uint8_t ticks) 1745 { 1746 uint32_t addr = 1747 (BAR_CSTRORM_INTMEM + 1748 CSTORM_STATUS_BLOCK_DATA_TIMEOUT_OFFSET(fw_sb_id, sb_index)); 1749 1750 REG_WR8(sc, addr, ticks); 1751 1752 BLOGD(sc, DBG_LOAD, 1753 "port %d fw_sb_id %d sb_index %d ticks %d\n", 1754 port, fw_sb_id, sb_index, ticks); 1755 } 1756 1757 static void 1758 bxe_storm_memset_hc_disable(struct bxe_softc *sc, 1759 uint8_t port, 1760 uint16_t fw_sb_id, 1761 uint8_t sb_index, 1762 uint8_t disable) 1763 { 1764 uint32_t enable_flag = 1765 (disable) ? 0 : (1 << HC_INDEX_DATA_HC_ENABLED_SHIFT); 1766 uint32_t addr = 1767 (BAR_CSTRORM_INTMEM + 1768 CSTORM_STATUS_BLOCK_DATA_FLAGS_OFFSET(fw_sb_id, sb_index)); 1769 uint8_t flags; 1770 1771 /* clear and set */ 1772 flags = REG_RD8(sc, addr); 1773 flags &= ~HC_INDEX_DATA_HC_ENABLED; 1774 flags |= enable_flag; 1775 REG_WR8(sc, addr, flags); 1776 1777 BLOGD(sc, DBG_LOAD, 1778 "port %d fw_sb_id %d sb_index %d disable %d\n", 1779 port, fw_sb_id, sb_index, disable); 1780 } 1781 1782 void 1783 bxe_update_coalesce_sb_index(struct bxe_softc *sc, 1784 uint8_t fw_sb_id, 1785 uint8_t sb_index, 1786 uint8_t disable, 1787 uint16_t usec) 1788 { 1789 int port = SC_PORT(sc); 1790 uint8_t ticks = (usec / 4); /* XXX ??? */ 1791 1792 bxe_storm_memset_hc_timeout(sc, port, fw_sb_id, sb_index, ticks); 1793 1794 disable = (disable) ? 1 : ((usec) ? 0 : 1); 1795 bxe_storm_memset_hc_disable(sc, port, fw_sb_id, sb_index, disable); 1796 } 1797 1798 void 1799 elink_cb_udelay(struct bxe_softc *sc, 1800 uint32_t usecs) 1801 { 1802 DELAY(usecs); 1803 } 1804 1805 uint32_t 1806 elink_cb_reg_read(struct bxe_softc *sc, 1807 uint32_t reg_addr) 1808 { 1809 return (REG_RD(sc, reg_addr)); 1810 } 1811 1812 void 1813 elink_cb_reg_write(struct bxe_softc *sc, 1814 uint32_t reg_addr, 1815 uint32_t val) 1816 { 1817 REG_WR(sc, reg_addr, val); 1818 } 1819 1820 void 1821 elink_cb_reg_wb_write(struct bxe_softc *sc, 1822 uint32_t offset, 1823 uint32_t *wb_write, 1824 uint16_t len) 1825 { 1826 REG_WR_DMAE(sc, offset, wb_write, len); 1827 } 1828 1829 void 1830 elink_cb_reg_wb_read(struct bxe_softc *sc, 1831 uint32_t offset, 1832 uint32_t *wb_write, 1833 uint16_t len) 1834 { 1835 REG_RD_DMAE(sc, offset, wb_write, len); 1836 } 1837 1838 uint8_t 1839 elink_cb_path_id(struct bxe_softc *sc) 1840 { 1841 return (SC_PATH(sc)); 1842 } 1843 1844 void 1845 elink_cb_event_log(struct bxe_softc *sc, 1846 const elink_log_id_t elink_log_id, 1847 ...) 1848 { 1849 /* XXX */ 1850 BLOGI(sc, "ELINK EVENT LOG (%d)\n", elink_log_id); 1851 } 1852 1853 static int 1854 bxe_set_spio(struct bxe_softc *sc, 1855 int spio, 1856 uint32_t mode) 1857 { 1858 uint32_t spio_reg; 1859 1860 /* Only 2 SPIOs are configurable */ 1861 if ((spio != MISC_SPIO_SPIO4) && (spio != MISC_SPIO_SPIO5)) { 1862 BLOGE(sc, "Invalid SPIO 0x%x mode 0x%x\n", spio, mode); 1863 return (-1); 1864 } 1865 1866 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_SPIO); 1867 1868 /* read SPIO and mask except the float bits */ 1869 spio_reg = (REG_RD(sc, MISC_REG_SPIO) & MISC_SPIO_FLOAT); 1870 1871 switch (mode) { 1872 case MISC_SPIO_OUTPUT_LOW: 1873 BLOGD(sc, DBG_LOAD, "Set SPIO 0x%x -> output low\n", spio); 1874 /* clear FLOAT and set CLR */ 1875 spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS); 1876 spio_reg |= (spio << MISC_SPIO_CLR_POS); 1877 break; 1878 1879 case MISC_SPIO_OUTPUT_HIGH: 1880 BLOGD(sc, DBG_LOAD, "Set SPIO 0x%x -> output high\n", spio); 1881 /* clear FLOAT and set SET */ 1882 spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS); 1883 spio_reg |= (spio << MISC_SPIO_SET_POS); 1884 break; 1885 1886 case MISC_SPIO_INPUT_HI_Z: 1887 BLOGD(sc, DBG_LOAD, "Set SPIO 0x%x -> input\n", spio); 1888 /* set FLOAT */ 1889 spio_reg |= (spio << MISC_SPIO_FLOAT_POS); 1890 break; 1891 1892 default: 1893 break; 1894 } 1895 1896 REG_WR(sc, MISC_REG_SPIO, spio_reg); 1897 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_SPIO); 1898 1899 return (0); 1900 } 1901 1902 static int 1903 bxe_gpio_read(struct bxe_softc *sc, 1904 int gpio_num, 1905 uint8_t port) 1906 { 1907 /* The GPIO should be swapped if swap register is set and active */ 1908 int gpio_port = ((REG_RD(sc, NIG_REG_PORT_SWAP) && 1909 REG_RD(sc, NIG_REG_STRAP_OVERRIDE)) ^ port); 1910 int gpio_shift = (gpio_num + 1911 (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0)); 1912 uint32_t gpio_mask = (1 << gpio_shift); 1913 uint32_t gpio_reg; 1914 1915 if (gpio_num > MISC_REGISTERS_GPIO_3) { 1916 BLOGE(sc, "Invalid GPIO %d port 0x%x gpio_port %d gpio_shift %d" 1917 " gpio_mask 0x%x\n", gpio_num, port, gpio_port, gpio_shift, 1918 gpio_mask); 1919 return (-1); 1920 } 1921 1922 /* read GPIO value */ 1923 gpio_reg = REG_RD(sc, MISC_REG_GPIO); 1924 1925 /* get the requested pin value */ 1926 return ((gpio_reg & gpio_mask) == gpio_mask) ? 1 : 0; 1927 } 1928 1929 static int 1930 bxe_gpio_write(struct bxe_softc *sc, 1931 int gpio_num, 1932 uint32_t mode, 1933 uint8_t port) 1934 { 1935 /* The GPIO should be swapped if swap register is set and active */ 1936 int gpio_port = ((REG_RD(sc, NIG_REG_PORT_SWAP) && 1937 REG_RD(sc, NIG_REG_STRAP_OVERRIDE)) ^ port); 1938 int gpio_shift = (gpio_num + 1939 (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0)); 1940 uint32_t gpio_mask = (1 << gpio_shift); 1941 uint32_t gpio_reg; 1942 1943 if (gpio_num > MISC_REGISTERS_GPIO_3) { 1944 BLOGE(sc, "Invalid GPIO %d mode 0x%x port 0x%x gpio_port %d" 1945 " gpio_shift %d gpio_mask 0x%x\n", 1946 gpio_num, mode, port, gpio_port, gpio_shift, gpio_mask); 1947 return (-1); 1948 } 1949 1950 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_GPIO); 1951 1952 /* read GPIO and mask except the float bits */ 1953 gpio_reg = (REG_RD(sc, MISC_REG_GPIO) & MISC_REGISTERS_GPIO_FLOAT); 1954 1955 switch (mode) { 1956 case MISC_REGISTERS_GPIO_OUTPUT_LOW: 1957 BLOGD(sc, DBG_PHY, 1958 "Set GPIO %d (shift %d) -> output low\n", 1959 gpio_num, gpio_shift); 1960 /* clear FLOAT and set CLR */ 1961 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS); 1962 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_CLR_POS); 1963 break; 1964 1965 case MISC_REGISTERS_GPIO_OUTPUT_HIGH: 1966 BLOGD(sc, DBG_PHY, 1967 "Set GPIO %d (shift %d) -> output high\n", 1968 gpio_num, gpio_shift); 1969 /* clear FLOAT and set SET */ 1970 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS); 1971 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_SET_POS); 1972 break; 1973 1974 case MISC_REGISTERS_GPIO_INPUT_HI_Z: 1975 BLOGD(sc, DBG_PHY, 1976 "Set GPIO %d (shift %d) -> input\n", 1977 gpio_num, gpio_shift); 1978 /* set FLOAT */ 1979 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS); 1980 break; 1981 1982 default: 1983 break; 1984 } 1985 1986 REG_WR(sc, MISC_REG_GPIO, gpio_reg); 1987 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_GPIO); 1988 1989 return (0); 1990 } 1991 1992 static int 1993 bxe_gpio_mult_write(struct bxe_softc *sc, 1994 uint8_t pins, 1995 uint32_t mode) 1996 { 1997 uint32_t gpio_reg; 1998 1999 /* any port swapping should be handled by caller */ 2000 2001 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_GPIO); 2002 2003 /* read GPIO and mask except the float bits */ 2004 gpio_reg = REG_RD(sc, MISC_REG_GPIO); 2005 gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_FLOAT_POS); 2006 gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_CLR_POS); 2007 gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_SET_POS); 2008 2009 switch (mode) { 2010 case MISC_REGISTERS_GPIO_OUTPUT_LOW: 2011 BLOGD(sc, DBG_PHY, "Set GPIO 0x%x -> output low\n", pins); 2012 /* set CLR */ 2013 gpio_reg |= (pins << MISC_REGISTERS_GPIO_CLR_POS); 2014 break; 2015 2016 case MISC_REGISTERS_GPIO_OUTPUT_HIGH: 2017 BLOGD(sc, DBG_PHY, "Set GPIO 0x%x -> output high\n", pins); 2018 /* set SET */ 2019 gpio_reg |= (pins << MISC_REGISTERS_GPIO_SET_POS); 2020 break; 2021 2022 case MISC_REGISTERS_GPIO_INPUT_HI_Z: 2023 BLOGD(sc, DBG_PHY, "Set GPIO 0x%x -> input\n", pins); 2024 /* set FLOAT */ 2025 gpio_reg |= (pins << MISC_REGISTERS_GPIO_FLOAT_POS); 2026 break; 2027 2028 default: 2029 BLOGE(sc, "Invalid GPIO mode assignment pins 0x%x mode 0x%x" 2030 " gpio_reg 0x%x\n", pins, mode, gpio_reg); 2031 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_GPIO); 2032 return (-1); 2033 } 2034 2035 REG_WR(sc, MISC_REG_GPIO, gpio_reg); 2036 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_GPIO); 2037 2038 return (0); 2039 } 2040 2041 static int 2042 bxe_gpio_int_write(struct bxe_softc *sc, 2043 int gpio_num, 2044 uint32_t mode, 2045 uint8_t port) 2046 { 2047 /* The GPIO should be swapped if swap register is set and active */ 2048 int gpio_port = ((REG_RD(sc, NIG_REG_PORT_SWAP) && 2049 REG_RD(sc, NIG_REG_STRAP_OVERRIDE)) ^ port); 2050 int gpio_shift = (gpio_num + 2051 (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0)); 2052 uint32_t gpio_mask = (1 << gpio_shift); 2053 uint32_t gpio_reg; 2054 2055 if (gpio_num > MISC_REGISTERS_GPIO_3) { 2056 BLOGE(sc, "Invalid GPIO %d mode 0x%x port 0x%x gpio_port %d" 2057 " gpio_shift %d gpio_mask 0x%x\n", 2058 gpio_num, mode, port, gpio_port, gpio_shift, gpio_mask); 2059 return (-1); 2060 } 2061 2062 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_GPIO); 2063 2064 /* read GPIO int */ 2065 gpio_reg = REG_RD(sc, MISC_REG_GPIO_INT); 2066 2067 switch (mode) { 2068 case MISC_REGISTERS_GPIO_INT_OUTPUT_CLR: 2069 BLOGD(sc, DBG_PHY, 2070 "Clear GPIO INT %d (shift %d) -> output low\n", 2071 gpio_num, gpio_shift); 2072 /* clear SET and set CLR */ 2073 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS); 2074 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS); 2075 break; 2076 2077 case MISC_REGISTERS_GPIO_INT_OUTPUT_SET: 2078 BLOGD(sc, DBG_PHY, 2079 "Set GPIO INT %d (shift %d) -> output high\n", 2080 gpio_num, gpio_shift); 2081 /* clear CLR and set SET */ 2082 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS); 2083 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS); 2084 break; 2085 2086 default: 2087 break; 2088 } 2089 2090 REG_WR(sc, MISC_REG_GPIO_INT, gpio_reg); 2091 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_GPIO); 2092 2093 return (0); 2094 } 2095 2096 uint32_t 2097 elink_cb_gpio_read(struct bxe_softc *sc, 2098 uint16_t gpio_num, 2099 uint8_t port) 2100 { 2101 return (bxe_gpio_read(sc, gpio_num, port)); 2102 } 2103 2104 uint8_t 2105 elink_cb_gpio_write(struct bxe_softc *sc, 2106 uint16_t gpio_num, 2107 uint8_t mode, /* 0=low 1=high */ 2108 uint8_t port) 2109 { 2110 return (bxe_gpio_write(sc, gpio_num, mode, port)); 2111 } 2112 2113 uint8_t 2114 elink_cb_gpio_mult_write(struct bxe_softc *sc, 2115 uint8_t pins, 2116 uint8_t mode) /* 0=low 1=high */ 2117 { 2118 return (bxe_gpio_mult_write(sc, pins, mode)); 2119 } 2120 2121 uint8_t 2122 elink_cb_gpio_int_write(struct bxe_softc *sc, 2123 uint16_t gpio_num, 2124 uint8_t mode, /* 0=low 1=high */ 2125 uint8_t port) 2126 { 2127 return (bxe_gpio_int_write(sc, gpio_num, mode, port)); 2128 } 2129 2130 void 2131 elink_cb_notify_link_changed(struct bxe_softc *sc) 2132 { 2133 REG_WR(sc, (MISC_REG_AEU_GENERAL_ATTN_12 + 2134 (SC_FUNC(sc) * sizeof(uint32_t))), 1); 2135 } 2136 2137 /* send the MCP a request, block until there is a reply */ 2138 uint32_t 2139 elink_cb_fw_command(struct bxe_softc *sc, 2140 uint32_t command, 2141 uint32_t param) 2142 { 2143 int mb_idx = SC_FW_MB_IDX(sc); 2144 uint32_t seq; 2145 uint32_t rc = 0; 2146 uint32_t cnt = 1; 2147 uint8_t delay = CHIP_REV_IS_SLOW(sc) ? 100 : 10; 2148 2149 BXE_FWMB_LOCK(sc); 2150 2151 seq = ++sc->fw_seq; 2152 SHMEM_WR(sc, func_mb[mb_idx].drv_mb_param, param); 2153 SHMEM_WR(sc, func_mb[mb_idx].drv_mb_header, (command | seq)); 2154 2155 BLOGD(sc, DBG_PHY, 2156 "wrote command 0x%08x to FW MB param 0x%08x\n", 2157 (command | seq), param); 2158 2159 /* Let the FW do it's magic. GIve it up to 5 seconds... */ 2160 do { 2161 DELAY(delay * 1000); 2162 rc = SHMEM_RD(sc, func_mb[mb_idx].fw_mb_header); 2163 } while ((seq != (rc & FW_MSG_SEQ_NUMBER_MASK)) && (cnt++ < 500)); 2164 2165 BLOGD(sc, DBG_PHY, 2166 "[after %d ms] read 0x%x seq 0x%x from FW MB\n", 2167 cnt*delay, rc, seq); 2168 2169 /* is this a reply to our command? */ 2170 if (seq == (rc & FW_MSG_SEQ_NUMBER_MASK)) { 2171 rc &= FW_MSG_CODE_MASK; 2172 } else { 2173 /* Ruh-roh! */ 2174 BLOGE(sc, "FW failed to respond!\n"); 2175 // XXX bxe_fw_dump(sc); 2176 rc = 0; 2177 } 2178 2179 BXE_FWMB_UNLOCK(sc); 2180 return (rc); 2181 } 2182 2183 static uint32_t 2184 bxe_fw_command(struct bxe_softc *sc, 2185 uint32_t command, 2186 uint32_t param) 2187 { 2188 return (elink_cb_fw_command(sc, command, param)); 2189 } 2190 2191 static void 2192 __storm_memset_dma_mapping(struct bxe_softc *sc, 2193 uint32_t addr, 2194 bus_addr_t mapping) 2195 { 2196 REG_WR(sc, addr, U64_LO(mapping)); 2197 REG_WR(sc, (addr + 4), U64_HI(mapping)); 2198 } 2199 2200 static void 2201 storm_memset_spq_addr(struct bxe_softc *sc, 2202 bus_addr_t mapping, 2203 uint16_t abs_fid) 2204 { 2205 uint32_t addr = (XSEM_REG_FAST_MEMORY + 2206 XSTORM_SPQ_PAGE_BASE_OFFSET(abs_fid)); 2207 __storm_memset_dma_mapping(sc, addr, mapping); 2208 } 2209 2210 static void 2211 storm_memset_vf_to_pf(struct bxe_softc *sc, 2212 uint16_t abs_fid, 2213 uint16_t pf_id) 2214 { 2215 REG_WR8(sc, (BAR_XSTRORM_INTMEM + XSTORM_VF_TO_PF_OFFSET(abs_fid)), pf_id); 2216 REG_WR8(sc, (BAR_CSTRORM_INTMEM + CSTORM_VF_TO_PF_OFFSET(abs_fid)), pf_id); 2217 REG_WR8(sc, (BAR_TSTRORM_INTMEM + TSTORM_VF_TO_PF_OFFSET(abs_fid)), pf_id); 2218 REG_WR8(sc, (BAR_USTRORM_INTMEM + USTORM_VF_TO_PF_OFFSET(abs_fid)), pf_id); 2219 } 2220 2221 static void 2222 storm_memset_func_en(struct bxe_softc *sc, 2223 uint16_t abs_fid, 2224 uint8_t enable) 2225 { 2226 REG_WR8(sc, (BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(abs_fid)), enable); 2227 REG_WR8(sc, (BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(abs_fid)), enable); 2228 REG_WR8(sc, (BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(abs_fid)), enable); 2229 REG_WR8(sc, (BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(abs_fid)), enable); 2230 } 2231 2232 static void 2233 storm_memset_eq_data(struct bxe_softc *sc, 2234 struct event_ring_data *eq_data, 2235 uint16_t pfid) 2236 { 2237 uint32_t addr; 2238 size_t size; 2239 2240 addr = (BAR_CSTRORM_INTMEM + CSTORM_EVENT_RING_DATA_OFFSET(pfid)); 2241 size = sizeof(struct event_ring_data); 2242 ecore_storm_memset_struct(sc, addr, size, (uint32_t *)eq_data); 2243 } 2244 2245 static void 2246 storm_memset_eq_prod(struct bxe_softc *sc, 2247 uint16_t eq_prod, 2248 uint16_t pfid) 2249 { 2250 uint32_t addr = (BAR_CSTRORM_INTMEM + 2251 CSTORM_EVENT_RING_PROD_OFFSET(pfid)); 2252 REG_WR16(sc, addr, eq_prod); 2253 } 2254 2255 /* 2256 * Post a slowpath command. 2257 * 2258 * A slowpath command is used to propagate a configuration change through 2259 * the controller in a controlled manner, allowing each STORM processor and 2260 * other H/W blocks to phase in the change. The commands sent on the 2261 * slowpath are referred to as ramrods. Depending on the ramrod used the 2262 * completion of the ramrod will occur in different ways. Here's a 2263 * breakdown of ramrods and how they complete: 2264 * 2265 * RAMROD_CMD_ID_ETH_PORT_SETUP 2266 * Used to setup the leading connection on a port. Completes on the 2267 * Receive Completion Queue (RCQ) of that port (typically fp[0]). 2268 * 2269 * RAMROD_CMD_ID_ETH_CLIENT_SETUP 2270 * Used to setup an additional connection on a port. Completes on the 2271 * RCQ of the multi-queue/RSS connection being initialized. 2272 * 2273 * RAMROD_CMD_ID_ETH_STAT_QUERY 2274 * Used to force the storm processors to update the statistics database 2275 * in host memory. This ramrod is send on the leading connection CID and 2276 * completes as an index increment of the CSTORM on the default status 2277 * block. 2278 * 2279 * RAMROD_CMD_ID_ETH_UPDATE 2280 * Used to update the state of the leading connection, usually to udpate 2281 * the RSS indirection table. Completes on the RCQ of the leading 2282 * connection. (Not currently used under FreeBSD until OS support becomes 2283 * available.) 2284 * 2285 * RAMROD_CMD_ID_ETH_HALT 2286 * Used when tearing down a connection prior to driver unload. Completes 2287 * on the RCQ of the multi-queue/RSS connection being torn down. Don't 2288 * use this on the leading connection. 2289 * 2290 * RAMROD_CMD_ID_ETH_SET_MAC 2291 * Sets the Unicast/Broadcast/Multicast used by the port. Completes on 2292 * the RCQ of the leading connection. 2293 * 2294 * RAMROD_CMD_ID_ETH_CFC_DEL 2295 * Used when tearing down a conneciton prior to driver unload. Completes 2296 * on the RCQ of the leading connection (since the current connection 2297 * has been completely removed from controller memory). 2298 * 2299 * RAMROD_CMD_ID_ETH_PORT_DEL 2300 * Used to tear down the leading connection prior to driver unload, 2301 * typically fp[0]. Completes as an index increment of the CSTORM on the 2302 * default status block. 2303 * 2304 * RAMROD_CMD_ID_ETH_FORWARD_SETUP 2305 * Used for connection offload. Completes on the RCQ of the multi-queue 2306 * RSS connection that is being offloaded. (Not currently used under 2307 * FreeBSD.) 2308 * 2309 * There can only be one command pending per function. 2310 * 2311 * Returns: 2312 * 0 = Success, !0 = Failure. 2313 */ 2314 2315 /* must be called under the spq lock */ 2316 static inline 2317 struct eth_spe *bxe_sp_get_next(struct bxe_softc *sc) 2318 { 2319 struct eth_spe *next_spe = sc->spq_prod_bd; 2320 2321 if (sc->spq_prod_bd == sc->spq_last_bd) { 2322 /* wrap back to the first eth_spq */ 2323 sc->spq_prod_bd = sc->spq; 2324 sc->spq_prod_idx = 0; 2325 } else { 2326 sc->spq_prod_bd++; 2327 sc->spq_prod_idx++; 2328 } 2329 2330 return (next_spe); 2331 } 2332 2333 /* must be called under the spq lock */ 2334 static inline 2335 void bxe_sp_prod_update(struct bxe_softc *sc) 2336 { 2337 int func = SC_FUNC(sc); 2338 2339 /* 2340 * Make sure that BD data is updated before writing the producer. 2341 * BD data is written to the memory, the producer is read from the 2342 * memory, thus we need a full memory barrier to ensure the ordering. 2343 */ 2344 mb(); 2345 2346 REG_WR16(sc, (BAR_XSTRORM_INTMEM + XSTORM_SPQ_PROD_OFFSET(func)), 2347 sc->spq_prod_idx); 2348 2349 bus_space_barrier(sc->bar[BAR0].tag, sc->bar[BAR0].handle, 0, 0, 2350 BUS_SPACE_BARRIER_WRITE); 2351 } 2352 2353 /** 2354 * bxe_is_contextless_ramrod - check if the current command ends on EQ 2355 * 2356 * @cmd: command to check 2357 * @cmd_type: command type 2358 */ 2359 static inline 2360 int bxe_is_contextless_ramrod(int cmd, 2361 int cmd_type) 2362 { 2363 if ((cmd_type == NONE_CONNECTION_TYPE) || 2364 (cmd == RAMROD_CMD_ID_ETH_FORWARD_SETUP) || 2365 (cmd == RAMROD_CMD_ID_ETH_CLASSIFICATION_RULES) || 2366 (cmd == RAMROD_CMD_ID_ETH_FILTER_RULES) || 2367 (cmd == RAMROD_CMD_ID_ETH_MULTICAST_RULES) || 2368 (cmd == RAMROD_CMD_ID_ETH_SET_MAC) || 2369 (cmd == RAMROD_CMD_ID_ETH_RSS_UPDATE)) { 2370 return (TRUE); 2371 } else { 2372 return (FALSE); 2373 } 2374 } 2375 2376 /** 2377 * bxe_sp_post - place a single command on an SP ring 2378 * 2379 * @sc: driver handle 2380 * @command: command to place (e.g. SETUP, FILTER_RULES, etc.) 2381 * @cid: SW CID the command is related to 2382 * @data_hi: command private data address (high 32 bits) 2383 * @data_lo: command private data address (low 32 bits) 2384 * @cmd_type: command type (e.g. NONE, ETH) 2385 * 2386 * SP data is handled as if it's always an address pair, thus data fields are 2387 * not swapped to little endian in upper functions. Instead this function swaps 2388 * data as if it's two uint32 fields. 2389 */ 2390 int 2391 bxe_sp_post(struct bxe_softc *sc, 2392 int command, 2393 int cid, 2394 uint32_t data_hi, 2395 uint32_t data_lo, 2396 int cmd_type) 2397 { 2398 struct eth_spe *spe; 2399 uint16_t type; 2400 int common; 2401 2402 common = bxe_is_contextless_ramrod(command, cmd_type); 2403 2404 BXE_SP_LOCK(sc); 2405 2406 if (common) { 2407 if (!atomic_load_acq_long(&sc->eq_spq_left)) { 2408 BLOGE(sc, "EQ ring is full!\n"); 2409 BXE_SP_UNLOCK(sc); 2410 return (-1); 2411 } 2412 } else { 2413 if (!atomic_load_acq_long(&sc->cq_spq_left)) { 2414 BLOGE(sc, "SPQ ring is full!\n"); 2415 BXE_SP_UNLOCK(sc); 2416 return (-1); 2417 } 2418 } 2419 2420 spe = bxe_sp_get_next(sc); 2421 2422 /* CID needs port number to be encoded int it */ 2423 spe->hdr.conn_and_cmd_data = 2424 htole32((command << SPE_HDR_T_CMD_ID_SHIFT) | HW_CID(sc, cid)); 2425 2426 type = (cmd_type << SPE_HDR_T_CONN_TYPE_SHIFT) & SPE_HDR_T_CONN_TYPE; 2427 2428 /* TBD: Check if it works for VFs */ 2429 type |= ((SC_FUNC(sc) << SPE_HDR_T_FUNCTION_ID_SHIFT) & 2430 SPE_HDR_T_FUNCTION_ID); 2431 2432 spe->hdr.type = htole16(type); 2433 2434 spe->data.update_data_addr.hi = htole32(data_hi); 2435 spe->data.update_data_addr.lo = htole32(data_lo); 2436 2437 /* 2438 * It's ok if the actual decrement is issued towards the memory 2439 * somewhere between the lock and unlock. Thus no more explict 2440 * memory barrier is needed. 2441 */ 2442 if (common) { 2443 atomic_subtract_acq_long(&sc->eq_spq_left, 1); 2444 } else { 2445 atomic_subtract_acq_long(&sc->cq_spq_left, 1); 2446 } 2447 2448 BLOGD(sc, DBG_SP, "SPQE -> %#jx\n", (uintmax_t)sc->spq_dma.paddr); 2449 BLOGD(sc, DBG_SP, "FUNC_RDATA -> %p / %#jx\n", 2450 BXE_SP(sc, func_rdata), (uintmax_t)BXE_SP_MAPPING(sc, func_rdata)); 2451 BLOGD(sc, DBG_SP, 2452 "SPQE[%x] (%x:%x) (cmd, common?) (%d,%d) hw_cid %x data (%x:%x) type(0x%x) left (CQ, EQ) (%lx,%lx)\n", 2453 sc->spq_prod_idx, 2454 (uint32_t)U64_HI(sc->spq_dma.paddr), 2455 (uint32_t)(U64_LO(sc->spq_dma.paddr) + (uint8_t *)sc->spq_prod_bd - (uint8_t *)sc->spq), 2456 command, 2457 common, 2458 HW_CID(sc, cid), 2459 data_hi, 2460 data_lo, 2461 type, 2462 atomic_load_acq_long(&sc->cq_spq_left), 2463 atomic_load_acq_long(&sc->eq_spq_left)); 2464 2465 bxe_sp_prod_update(sc); 2466 2467 BXE_SP_UNLOCK(sc); 2468 return (0); 2469 } 2470 2471 /** 2472 * bxe_debug_print_ind_table - prints the indirection table configuration. 2473 * 2474 * @sc: driver hanlde 2475 * @p: pointer to rss configuration 2476 */ 2477 2478 /* 2479 * FreeBSD Device probe function. 2480 * 2481 * Compares the device found to the driver's list of supported devices and 2482 * reports back to the bsd loader whether this is the right driver for the device. 2483 * This is the driver entry function called from the "kldload" command. 2484 * 2485 * Returns: 2486 * BUS_PROBE_DEFAULT on success, positive value on failure. 2487 */ 2488 static int 2489 bxe_probe(device_t dev) 2490 { 2491 struct bxe_device_type *t; 2492 uint16_t did, sdid, svid, vid; 2493 2494 /* Find our device structure */ 2495 t = bxe_devs; 2496 2497 /* Get the data for the device to be probed. */ 2498 vid = pci_get_vendor(dev); 2499 did = pci_get_device(dev); 2500 svid = pci_get_subvendor(dev); 2501 sdid = pci_get_subdevice(dev); 2502 2503 /* Look through the list of known devices for a match. */ 2504 while (t->bxe_name != NULL) { 2505 if ((vid == t->bxe_vid) && (did == t->bxe_did) && 2506 ((svid == t->bxe_svid) || (t->bxe_svid == PCI_ANY_ID)) && 2507 ((sdid == t->bxe_sdid) || (t->bxe_sdid == PCI_ANY_ID))) { 2508 device_set_descf(dev, 2509 "%s (%c%d) BXE v:%s", t->bxe_name, 2510 (((pci_read_config(dev, PCIR_REVID, 4) & 2511 0xf0) >> 4) + 'A'), 2512 (pci_read_config(dev, PCIR_REVID, 4) & 0xf), 2513 BXE_DRIVER_VERSION); 2514 return (BUS_PROBE_DEFAULT); 2515 } 2516 t++; 2517 } 2518 2519 return (ENXIO); 2520 } 2521 2522 static void 2523 bxe_init_mutexes(struct bxe_softc *sc) 2524 { 2525 #ifdef BXE_CORE_LOCK_SX 2526 snprintf(sc->core_sx_name, sizeof(sc->core_sx_name), 2527 "bxe%d_core_lock", sc->unit); 2528 sx_init(&sc->core_sx, sc->core_sx_name); 2529 #else 2530 snprintf(sc->core_mtx_name, sizeof(sc->core_mtx_name), 2531 "bxe%d_core_lock", sc->unit); 2532 mtx_init(&sc->core_mtx, sc->core_mtx_name, NULL, MTX_DEF); 2533 #endif 2534 2535 snprintf(sc->sp_mtx_name, sizeof(sc->sp_mtx_name), 2536 "bxe%d_sp_lock", sc->unit); 2537 mtx_init(&sc->sp_mtx, sc->sp_mtx_name, NULL, MTX_DEF); 2538 2539 snprintf(sc->dmae_mtx_name, sizeof(sc->dmae_mtx_name), 2540 "bxe%d_dmae_lock", sc->unit); 2541 mtx_init(&sc->dmae_mtx, sc->dmae_mtx_name, NULL, MTX_DEF); 2542 2543 snprintf(sc->port.phy_mtx_name, sizeof(sc->port.phy_mtx_name), 2544 "bxe%d_phy_lock", sc->unit); 2545 mtx_init(&sc->port.phy_mtx, sc->port.phy_mtx_name, NULL, MTX_DEF); 2546 2547 snprintf(sc->fwmb_mtx_name, sizeof(sc->fwmb_mtx_name), 2548 "bxe%d_fwmb_lock", sc->unit); 2549 mtx_init(&sc->fwmb_mtx, sc->fwmb_mtx_name, NULL, MTX_DEF); 2550 2551 snprintf(sc->print_mtx_name, sizeof(sc->print_mtx_name), 2552 "bxe%d_print_lock", sc->unit); 2553 mtx_init(&(sc->print_mtx), sc->print_mtx_name, NULL, MTX_DEF); 2554 2555 snprintf(sc->stats_mtx_name, sizeof(sc->stats_mtx_name), 2556 "bxe%d_stats_lock", sc->unit); 2557 mtx_init(&(sc->stats_mtx), sc->stats_mtx_name, NULL, MTX_DEF); 2558 2559 snprintf(sc->mcast_mtx_name, sizeof(sc->mcast_mtx_name), 2560 "bxe%d_mcast_lock", sc->unit); 2561 mtx_init(&(sc->mcast_mtx), sc->mcast_mtx_name, NULL, MTX_DEF); 2562 } 2563 2564 static void 2565 bxe_release_mutexes(struct bxe_softc *sc) 2566 { 2567 #ifdef BXE_CORE_LOCK_SX 2568 sx_destroy(&sc->core_sx); 2569 #else 2570 if (mtx_initialized(&sc->core_mtx)) { 2571 mtx_destroy(&sc->core_mtx); 2572 } 2573 #endif 2574 2575 if (mtx_initialized(&sc->sp_mtx)) { 2576 mtx_destroy(&sc->sp_mtx); 2577 } 2578 2579 if (mtx_initialized(&sc->dmae_mtx)) { 2580 mtx_destroy(&sc->dmae_mtx); 2581 } 2582 2583 if (mtx_initialized(&sc->port.phy_mtx)) { 2584 mtx_destroy(&sc->port.phy_mtx); 2585 } 2586 2587 if (mtx_initialized(&sc->fwmb_mtx)) { 2588 mtx_destroy(&sc->fwmb_mtx); 2589 } 2590 2591 if (mtx_initialized(&sc->print_mtx)) { 2592 mtx_destroy(&sc->print_mtx); 2593 } 2594 2595 if (mtx_initialized(&sc->stats_mtx)) { 2596 mtx_destroy(&sc->stats_mtx); 2597 } 2598 2599 if (mtx_initialized(&sc->mcast_mtx)) { 2600 mtx_destroy(&sc->mcast_mtx); 2601 } 2602 } 2603 2604 static void 2605 bxe_tx_disable(struct bxe_softc* sc) 2606 { 2607 if_t ifp = sc->ifp; 2608 2609 /* tell the stack the driver is stopped and TX queue is full */ 2610 if (ifp != NULL) { 2611 if_setdrvflags(ifp, 0); 2612 } 2613 } 2614 2615 static void 2616 bxe_drv_pulse(struct bxe_softc *sc) 2617 { 2618 SHMEM_WR(sc, func_mb[SC_FW_MB_IDX(sc)].drv_pulse_mb, 2619 sc->fw_drv_pulse_wr_seq); 2620 } 2621 2622 static inline uint16_t 2623 bxe_tx_avail(struct bxe_softc *sc, 2624 struct bxe_fastpath *fp) 2625 { 2626 int16_t used; 2627 uint16_t prod; 2628 uint16_t cons; 2629 2630 prod = fp->tx_bd_prod; 2631 cons = fp->tx_bd_cons; 2632 2633 used = SUB_S16(prod, cons); 2634 2635 return (int16_t)(sc->tx_ring_size) - used; 2636 } 2637 2638 static inline int 2639 bxe_tx_queue_has_work(struct bxe_fastpath *fp) 2640 { 2641 uint16_t hw_cons; 2642 2643 mb(); /* status block fields can change */ 2644 hw_cons = le16toh(*fp->tx_cons_sb); 2645 return (hw_cons != fp->tx_pkt_cons); 2646 } 2647 2648 static inline uint8_t 2649 bxe_has_tx_work(struct bxe_fastpath *fp) 2650 { 2651 /* expand this for multi-cos if ever supported */ 2652 return (bxe_tx_queue_has_work(fp)) ? TRUE : FALSE; 2653 } 2654 2655 static inline int 2656 bxe_has_rx_work(struct bxe_fastpath *fp) 2657 { 2658 uint16_t rx_cq_cons_sb; 2659 2660 mb(); /* status block fields can change */ 2661 rx_cq_cons_sb = le16toh(*fp->rx_cq_cons_sb); 2662 if ((rx_cq_cons_sb & RCQ_MAX) == RCQ_MAX) 2663 rx_cq_cons_sb++; 2664 return (fp->rx_cq_cons != rx_cq_cons_sb); 2665 } 2666 2667 static void 2668 bxe_sp_event(struct bxe_softc *sc, 2669 struct bxe_fastpath *fp, 2670 union eth_rx_cqe *rr_cqe) 2671 { 2672 int cid = SW_CID(rr_cqe->ramrod_cqe.conn_and_cmd_data); 2673 int command = CQE_CMD(rr_cqe->ramrod_cqe.conn_and_cmd_data); 2674 enum ecore_queue_cmd drv_cmd = ECORE_Q_CMD_MAX; 2675 struct ecore_queue_sp_obj *q_obj = &BXE_SP_OBJ(sc, fp).q_obj; 2676 2677 BLOGD(sc, DBG_SP, "fp=%d cid=%d got ramrod #%d state is %x type is %d\n", 2678 fp->index, cid, command, sc->state, rr_cqe->ramrod_cqe.ramrod_type); 2679 2680 switch (command) { 2681 case (RAMROD_CMD_ID_ETH_CLIENT_UPDATE): 2682 BLOGD(sc, DBG_SP, "got UPDATE ramrod. CID %d\n", cid); 2683 drv_cmd = ECORE_Q_CMD_UPDATE; 2684 break; 2685 2686 case (RAMROD_CMD_ID_ETH_CLIENT_SETUP): 2687 BLOGD(sc, DBG_SP, "got MULTI[%d] setup ramrod\n", cid); 2688 drv_cmd = ECORE_Q_CMD_SETUP; 2689 break; 2690 2691 case (RAMROD_CMD_ID_ETH_TX_QUEUE_SETUP): 2692 BLOGD(sc, DBG_SP, "got MULTI[%d] tx-only setup ramrod\n", cid); 2693 drv_cmd = ECORE_Q_CMD_SETUP_TX_ONLY; 2694 break; 2695 2696 case (RAMROD_CMD_ID_ETH_HALT): 2697 BLOGD(sc, DBG_SP, "got MULTI[%d] halt ramrod\n", cid); 2698 drv_cmd = ECORE_Q_CMD_HALT; 2699 break; 2700 2701 case (RAMROD_CMD_ID_ETH_TERMINATE): 2702 BLOGD(sc, DBG_SP, "got MULTI[%d] teminate ramrod\n", cid); 2703 drv_cmd = ECORE_Q_CMD_TERMINATE; 2704 break; 2705 2706 case (RAMROD_CMD_ID_ETH_EMPTY): 2707 BLOGD(sc, DBG_SP, "got MULTI[%d] empty ramrod\n", cid); 2708 drv_cmd = ECORE_Q_CMD_EMPTY; 2709 break; 2710 2711 default: 2712 BLOGD(sc, DBG_SP, "ERROR: unexpected MC reply (%d) on fp[%d]\n", 2713 command, fp->index); 2714 return; 2715 } 2716 2717 if ((drv_cmd != ECORE_Q_CMD_MAX) && 2718 q_obj->complete_cmd(sc, q_obj, drv_cmd)) { 2719 /* 2720 * q_obj->complete_cmd() failure means that this was 2721 * an unexpected completion. 2722 * 2723 * In this case we don't want to increase the sc->spq_left 2724 * because apparently we haven't sent this command the first 2725 * place. 2726 */ 2727 // bxe_panic(sc, ("Unexpected SP completion\n")); 2728 return; 2729 } 2730 2731 atomic_add_acq_long(&sc->cq_spq_left, 1); 2732 2733 BLOGD(sc, DBG_SP, "sc->cq_spq_left 0x%lx\n", 2734 atomic_load_acq_long(&sc->cq_spq_left)); 2735 } 2736 2737 /* 2738 * The current mbuf is part of an aggregation. Move the mbuf into the TPA 2739 * aggregation queue, put an empty mbuf back onto the receive chain, and mark 2740 * the current aggregation queue as in-progress. 2741 */ 2742 static void 2743 bxe_tpa_start(struct bxe_softc *sc, 2744 struct bxe_fastpath *fp, 2745 uint16_t queue, 2746 uint16_t cons, 2747 uint16_t prod, 2748 struct eth_fast_path_rx_cqe *cqe) 2749 { 2750 struct bxe_sw_rx_bd tmp_bd; 2751 struct bxe_sw_rx_bd *rx_buf; 2752 struct eth_rx_bd *rx_bd; 2753 int max_agg_queues __diagused; 2754 struct bxe_sw_tpa_info *tpa_info = &fp->rx_tpa_info[queue]; 2755 uint16_t index; 2756 2757 BLOGD(sc, DBG_LRO, "fp[%02d].tpa[%02d] TPA START " 2758 "cons=%d prod=%d\n", 2759 fp->index, queue, cons, prod); 2760 2761 max_agg_queues = MAX_AGG_QS(sc); 2762 2763 KASSERT((queue < max_agg_queues), 2764 ("fp[%02d] invalid aggr queue (%d >= %d)!", 2765 fp->index, queue, max_agg_queues)); 2766 2767 KASSERT((tpa_info->state == BXE_TPA_STATE_STOP), 2768 ("fp[%02d].tpa[%02d] starting aggr on queue not stopped!", 2769 fp->index, queue)); 2770 2771 /* copy the existing mbuf and mapping from the TPA pool */ 2772 tmp_bd = tpa_info->bd; 2773 2774 if (tmp_bd.m == NULL) { 2775 uint32_t *tmp; 2776 2777 tmp = (uint32_t *)cqe; 2778 2779 BLOGE(sc, "fp[%02d].tpa[%02d] cons[%d] prod[%d]mbuf not allocated!\n", 2780 fp->index, queue, cons, prod); 2781 BLOGE(sc, "cqe [0x%08x 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x]\n", 2782 *tmp, *(tmp+1), *(tmp+2), *(tmp+3), *(tmp+4), *(tmp+5), *(tmp+6), *(tmp+7)); 2783 2784 /* XXX Error handling? */ 2785 return; 2786 } 2787 2788 /* change the TPA queue to the start state */ 2789 tpa_info->state = BXE_TPA_STATE_START; 2790 tpa_info->placement_offset = cqe->placement_offset; 2791 tpa_info->parsing_flags = le16toh(cqe->pars_flags.flags); 2792 tpa_info->vlan_tag = le16toh(cqe->vlan_tag); 2793 tpa_info->len_on_bd = le16toh(cqe->len_on_bd); 2794 2795 fp->rx_tpa_queue_used |= (1 << queue); 2796 2797 /* 2798 * If all the buffer descriptors are filled with mbufs then fill in 2799 * the current consumer index with a new BD. Else if a maximum Rx 2800 * buffer limit is imposed then fill in the next producer index. 2801 */ 2802 index = (sc->max_rx_bufs != RX_BD_USABLE) ? 2803 prod : cons; 2804 2805 /* move the received mbuf and mapping to TPA pool */ 2806 tpa_info->bd = fp->rx_mbuf_chain[cons]; 2807 2808 /* release any existing RX BD mbuf mappings */ 2809 if (cons != index) { 2810 rx_buf = &fp->rx_mbuf_chain[cons]; 2811 2812 if (rx_buf->m_map != NULL) { 2813 bus_dmamap_sync(fp->rx_mbuf_tag, rx_buf->m_map, 2814 BUS_DMASYNC_POSTREAD); 2815 bus_dmamap_unload(fp->rx_mbuf_tag, rx_buf->m_map); 2816 } 2817 2818 /* 2819 * We get here when the maximum number of rx buffers is less than 2820 * RX_BD_USABLE. The mbuf is already saved above so it's OK to NULL 2821 * it out here without concern of a memory leak. 2822 */ 2823 fp->rx_mbuf_chain[cons].m = NULL; 2824 } 2825 2826 /* update the Rx SW BD with the mbuf info from the TPA pool */ 2827 fp->rx_mbuf_chain[index] = tmp_bd; 2828 2829 /* update the Rx BD with the empty mbuf phys address from the TPA pool */ 2830 rx_bd = &fp->rx_chain[index]; 2831 rx_bd->addr_hi = htole32(U64_HI(tpa_info->seg.ds_addr)); 2832 rx_bd->addr_lo = htole32(U64_LO(tpa_info->seg.ds_addr)); 2833 } 2834 2835 /* 2836 * When a TPA aggregation is completed, loop through the individual mbufs 2837 * of the aggregation, combining them into a single mbuf which will be sent 2838 * up the stack. Refill all freed SGEs with mbufs as we go along. 2839 */ 2840 static int 2841 bxe_fill_frag_mbuf(struct bxe_softc *sc, 2842 struct bxe_fastpath *fp, 2843 struct bxe_sw_tpa_info *tpa_info, 2844 uint16_t queue, 2845 uint16_t pages, 2846 struct mbuf *m, 2847 struct eth_end_agg_rx_cqe *cqe, 2848 uint16_t cqe_idx) 2849 { 2850 struct mbuf *m_frag; 2851 uint32_t frag_len, frag_size, i; 2852 uint16_t sge_idx; 2853 int rc = 0; 2854 int j; 2855 2856 frag_size = le16toh(cqe->pkt_len) - tpa_info->len_on_bd; 2857 2858 BLOGD(sc, DBG_LRO, 2859 "fp[%02d].tpa[%02d] TPA fill len_on_bd=%d frag_size=%d pages=%d\n", 2860 fp->index, queue, tpa_info->len_on_bd, frag_size, pages); 2861 2862 /* make sure the aggregated frame is not too big to handle */ 2863 if (pages > 8 * PAGES_PER_SGE) { 2864 2865 uint32_t *tmp = (uint32_t *)cqe; 2866 2867 BLOGE(sc, "fp[%02d].sge[0x%04x] has too many pages (%d)! " 2868 "pkt_len=%d len_on_bd=%d frag_size=%d\n", 2869 fp->index, cqe_idx, pages, le16toh(cqe->pkt_len), 2870 tpa_info->len_on_bd, frag_size); 2871 2872 BLOGE(sc, "cqe [0x%08x 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x]\n", 2873 *tmp, *(tmp+1), *(tmp+2), *(tmp+3), *(tmp+4), *(tmp+5), *(tmp+6), *(tmp+7)); 2874 2875 bxe_panic(sc, ("sge page count error\n")); 2876 return (EINVAL); 2877 } 2878 2879 /* 2880 * Scan through the scatter gather list pulling individual mbufs into a 2881 * single mbuf for the host stack. 2882 */ 2883 for (i = 0, j = 0; i < pages; i += PAGES_PER_SGE, j++) { 2884 sge_idx = RX_SGE(le16toh(cqe->sgl_or_raw_data.sgl[j])); 2885 2886 /* 2887 * Firmware gives the indices of the SGE as if the ring is an array 2888 * (meaning that the "next" element will consume 2 indices). 2889 */ 2890 frag_len = min(frag_size, (uint32_t)(SGE_PAGES)); 2891 2892 BLOGD(sc, DBG_LRO, "fp[%02d].tpa[%02d] TPA fill i=%d j=%d " 2893 "sge_idx=%d frag_size=%d frag_len=%d\n", 2894 fp->index, queue, i, j, sge_idx, frag_size, frag_len); 2895 2896 m_frag = fp->rx_sge_mbuf_chain[sge_idx].m; 2897 2898 /* allocate a new mbuf for the SGE */ 2899 rc = bxe_alloc_rx_sge_mbuf(fp, sge_idx); 2900 if (rc) { 2901 /* Leave all remaining SGEs in the ring! */ 2902 return (rc); 2903 } 2904 2905 /* update the fragment length */ 2906 m_frag->m_len = frag_len; 2907 2908 /* concatenate the fragment to the head mbuf */ 2909 m_cat(m, m_frag); 2910 fp->eth_q_stats.mbuf_alloc_sge--; 2911 2912 /* update the TPA mbuf size and remaining fragment size */ 2913 m->m_pkthdr.len += frag_len; 2914 frag_size -= frag_len; 2915 } 2916 2917 BLOGD(sc, DBG_LRO, 2918 "fp[%02d].tpa[%02d] TPA fill done frag_size=%d\n", 2919 fp->index, queue, frag_size); 2920 2921 return (rc); 2922 } 2923 2924 static inline void 2925 bxe_clear_sge_mask_next_elems(struct bxe_fastpath *fp) 2926 { 2927 int i, j; 2928 2929 for (i = 1; i <= RX_SGE_NUM_PAGES; i++) { 2930 int idx = RX_SGE_TOTAL_PER_PAGE * i - 1; 2931 2932 for (j = 0; j < 2; j++) { 2933 BIT_VEC64_CLEAR_BIT(fp->sge_mask, idx); 2934 idx--; 2935 } 2936 } 2937 } 2938 2939 static inline void 2940 bxe_init_sge_ring_bit_mask(struct bxe_fastpath *fp) 2941 { 2942 /* set the mask to all 1's, it's faster to compare to 0 than to 0xf's */ 2943 memset(fp->sge_mask, 0xff, sizeof(fp->sge_mask)); 2944 2945 /* 2946 * Clear the two last indices in the page to 1. These are the indices that 2947 * correspond to the "next" element, hence will never be indicated and 2948 * should be removed from the calculations. 2949 */ 2950 bxe_clear_sge_mask_next_elems(fp); 2951 } 2952 2953 static inline void 2954 bxe_update_last_max_sge(struct bxe_fastpath *fp, 2955 uint16_t idx) 2956 { 2957 uint16_t last_max = fp->last_max_sge; 2958 2959 if (SUB_S16(idx, last_max) > 0) { 2960 fp->last_max_sge = idx; 2961 } 2962 } 2963 2964 static inline void 2965 bxe_update_sge_prod(struct bxe_softc *sc, 2966 struct bxe_fastpath *fp, 2967 uint16_t sge_len, 2968 union eth_sgl_or_raw_data *cqe) 2969 { 2970 uint16_t last_max, last_elem, first_elem; 2971 uint16_t delta = 0; 2972 uint16_t i; 2973 2974 if (!sge_len) { 2975 return; 2976 } 2977 2978 /* first mark all used pages */ 2979 for (i = 0; i < sge_len; i++) { 2980 BIT_VEC64_CLEAR_BIT(fp->sge_mask, 2981 RX_SGE(le16toh(cqe->sgl[i]))); 2982 } 2983 2984 BLOGD(sc, DBG_LRO, 2985 "fp[%02d] fp_cqe->sgl[%d] = %d\n", 2986 fp->index, sge_len - 1, 2987 le16toh(cqe->sgl[sge_len - 1])); 2988 2989 /* assume that the last SGE index is the biggest */ 2990 bxe_update_last_max_sge(fp, 2991 le16toh(cqe->sgl[sge_len - 1])); 2992 2993 last_max = RX_SGE(fp->last_max_sge); 2994 last_elem = last_max >> BIT_VEC64_ELEM_SHIFT; 2995 first_elem = RX_SGE(fp->rx_sge_prod) >> BIT_VEC64_ELEM_SHIFT; 2996 2997 /* if ring is not full */ 2998 if (last_elem + 1 != first_elem) { 2999 last_elem++; 3000 } 3001 3002 /* now update the prod */ 3003 for (i = first_elem; i != last_elem; i = RX_SGE_NEXT_MASK_ELEM(i)) { 3004 if (__predict_true(fp->sge_mask[i])) { 3005 break; 3006 } 3007 3008 fp->sge_mask[i] = BIT_VEC64_ELEM_ONE_MASK; 3009 delta += BIT_VEC64_ELEM_SZ; 3010 } 3011 3012 if (delta > 0) { 3013 fp->rx_sge_prod += delta; 3014 /* clear page-end entries */ 3015 bxe_clear_sge_mask_next_elems(fp); 3016 } 3017 3018 BLOGD(sc, DBG_LRO, 3019 "fp[%02d] fp->last_max_sge=%d fp->rx_sge_prod=%d\n", 3020 fp->index, fp->last_max_sge, fp->rx_sge_prod); 3021 } 3022 3023 /* 3024 * The aggregation on the current TPA queue has completed. Pull the individual 3025 * mbuf fragments together into a single mbuf, perform all necessary checksum 3026 * calculations, and send the resuting mbuf to the stack. 3027 */ 3028 static void 3029 bxe_tpa_stop(struct bxe_softc *sc, 3030 struct bxe_fastpath *fp, 3031 struct bxe_sw_tpa_info *tpa_info, 3032 uint16_t queue, 3033 uint16_t pages, 3034 struct eth_end_agg_rx_cqe *cqe, 3035 uint16_t cqe_idx) 3036 { 3037 if_t ifp = sc->ifp; 3038 struct mbuf *m; 3039 int rc = 0; 3040 3041 BLOGD(sc, DBG_LRO, 3042 "fp[%02d].tpa[%02d] pad=%d pkt_len=%d pages=%d vlan=%d\n", 3043 fp->index, queue, tpa_info->placement_offset, 3044 le16toh(cqe->pkt_len), pages, tpa_info->vlan_tag); 3045 3046 m = tpa_info->bd.m; 3047 3048 /* allocate a replacement before modifying existing mbuf */ 3049 rc = bxe_alloc_rx_tpa_mbuf(fp, queue); 3050 if (rc) { 3051 /* drop the frame and log an error */ 3052 fp->eth_q_stats.rx_soft_errors++; 3053 goto bxe_tpa_stop_exit; 3054 } 3055 3056 /* we have a replacement, fixup the current mbuf */ 3057 m_adj(m, tpa_info->placement_offset); 3058 m->m_pkthdr.len = m->m_len = tpa_info->len_on_bd; 3059 3060 /* mark the checksums valid (taken care of by the firmware) */ 3061 fp->eth_q_stats.rx_ofld_frames_csum_ip++; 3062 fp->eth_q_stats.rx_ofld_frames_csum_tcp_udp++; 3063 m->m_pkthdr.csum_data = 0xffff; 3064 m->m_pkthdr.csum_flags |= (CSUM_IP_CHECKED | 3065 CSUM_IP_VALID | 3066 CSUM_DATA_VALID | 3067 CSUM_PSEUDO_HDR); 3068 3069 /* aggregate all of the SGEs into a single mbuf */ 3070 rc = bxe_fill_frag_mbuf(sc, fp, tpa_info, queue, pages, m, cqe, cqe_idx); 3071 if (rc) { 3072 /* drop the packet and log an error */ 3073 fp->eth_q_stats.rx_soft_errors++; 3074 m_freem(m); 3075 } else { 3076 if (tpa_info->parsing_flags & PARSING_FLAGS_INNER_VLAN_EXIST) { 3077 m->m_pkthdr.ether_vtag = tpa_info->vlan_tag; 3078 m->m_flags |= M_VLANTAG; 3079 } 3080 3081 /* assign packet to this interface interface */ 3082 if_setrcvif(m, ifp); 3083 3084 /* specify what RSS queue was used for this flow */ 3085 m->m_pkthdr.flowid = fp->index; 3086 BXE_SET_FLOWID(m); 3087 3088 if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1); 3089 fp->eth_q_stats.rx_tpa_pkts++; 3090 3091 /* pass the frame to the stack */ 3092 if_input(ifp, m); 3093 } 3094 3095 /* we passed an mbuf up the stack or dropped the frame */ 3096 fp->eth_q_stats.mbuf_alloc_tpa--; 3097 3098 bxe_tpa_stop_exit: 3099 3100 fp->rx_tpa_info[queue].state = BXE_TPA_STATE_STOP; 3101 fp->rx_tpa_queue_used &= ~(1 << queue); 3102 } 3103 3104 static uint8_t 3105 bxe_service_rxsgl( 3106 struct bxe_fastpath *fp, 3107 uint16_t len, 3108 uint16_t lenonbd, 3109 struct mbuf *m, 3110 struct eth_fast_path_rx_cqe *cqe_fp) 3111 { 3112 struct mbuf *m_frag; 3113 uint16_t frags, frag_len; 3114 uint16_t sge_idx = 0; 3115 uint16_t j; 3116 uint8_t i, rc = 0; 3117 uint32_t frag_size; 3118 3119 /* adjust the mbuf */ 3120 m->m_len = lenonbd; 3121 3122 frag_size = len - lenonbd; 3123 frags = SGE_PAGE_ALIGN(frag_size) >> SGE_PAGE_SHIFT; 3124 3125 for (i = 0, j = 0; i < frags; i += PAGES_PER_SGE, j++) { 3126 sge_idx = RX_SGE(le16toh(cqe_fp->sgl_or_raw_data.sgl[j])); 3127 3128 m_frag = fp->rx_sge_mbuf_chain[sge_idx].m; 3129 frag_len = min(frag_size, (uint32_t)(SGE_PAGE_SIZE)); 3130 m_frag->m_len = frag_len; 3131 3132 /* allocate a new mbuf for the SGE */ 3133 rc = bxe_alloc_rx_sge_mbuf(fp, sge_idx); 3134 if (rc) { 3135 /* Leave all remaining SGEs in the ring! */ 3136 return (rc); 3137 } 3138 fp->eth_q_stats.mbuf_alloc_sge--; 3139 3140 /* concatenate the fragment to the head mbuf */ 3141 m_cat(m, m_frag); 3142 3143 frag_size -= frag_len; 3144 } 3145 3146 bxe_update_sge_prod(fp->sc, fp, frags, &cqe_fp->sgl_or_raw_data); 3147 3148 return rc; 3149 } 3150 3151 static uint8_t 3152 bxe_rxeof(struct bxe_softc *sc, 3153 struct bxe_fastpath *fp) 3154 { 3155 if_t ifp = sc->ifp; 3156 uint16_t bd_cons, bd_prod, bd_prod_fw, comp_ring_cons; 3157 uint16_t hw_cq_cons, sw_cq_cons, sw_cq_prod; 3158 int rx_pkts = 0; 3159 int rc = 0; 3160 3161 BXE_FP_RX_LOCK(fp); 3162 3163 /* CQ "next element" is of the size of the regular element */ 3164 hw_cq_cons = le16toh(*fp->rx_cq_cons_sb); 3165 if ((hw_cq_cons & RCQ_USABLE_PER_PAGE) == RCQ_USABLE_PER_PAGE) { 3166 hw_cq_cons++; 3167 } 3168 3169 bd_cons = fp->rx_bd_cons; 3170 bd_prod = fp->rx_bd_prod; 3171 bd_prod_fw = bd_prod; 3172 sw_cq_cons = fp->rx_cq_cons; 3173 sw_cq_prod = fp->rx_cq_prod; 3174 3175 /* 3176 * Memory barrier necessary as speculative reads of the rx 3177 * buffer can be ahead of the index in the status block 3178 */ 3179 rmb(); 3180 3181 BLOGD(sc, DBG_RX, 3182 "fp[%02d] Rx START hw_cq_cons=%u sw_cq_cons=%u\n", 3183 fp->index, hw_cq_cons, sw_cq_cons); 3184 3185 while (sw_cq_cons != hw_cq_cons) { 3186 struct bxe_sw_rx_bd *rx_buf = NULL; 3187 union eth_rx_cqe *cqe; 3188 struct eth_fast_path_rx_cqe *cqe_fp; 3189 uint8_t cqe_fp_flags; 3190 enum eth_rx_cqe_type cqe_fp_type; 3191 uint16_t len, lenonbd, pad; 3192 struct mbuf *m = NULL; 3193 3194 comp_ring_cons = RCQ(sw_cq_cons); 3195 bd_prod = RX_BD(bd_prod); 3196 bd_cons = RX_BD(bd_cons); 3197 3198 cqe = &fp->rcq_chain[comp_ring_cons]; 3199 cqe_fp = &cqe->fast_path_cqe; 3200 cqe_fp_flags = cqe_fp->type_error_flags; 3201 cqe_fp_type = cqe_fp_flags & ETH_FAST_PATH_RX_CQE_TYPE; 3202 3203 BLOGD(sc, DBG_RX, 3204 "fp[%02d] Rx hw_cq_cons=%d hw_sw_cons=%d " 3205 "BD prod=%d cons=%d CQE type=0x%x err=0x%x " 3206 "status=0x%x rss_hash=0x%x vlan=0x%x len=%u lenonbd=%u\n", 3207 fp->index, 3208 hw_cq_cons, 3209 sw_cq_cons, 3210 bd_prod, 3211 bd_cons, 3212 CQE_TYPE(cqe_fp_flags), 3213 cqe_fp_flags, 3214 cqe_fp->status_flags, 3215 le32toh(cqe_fp->rss_hash_result), 3216 le16toh(cqe_fp->vlan_tag), 3217 le16toh(cqe_fp->pkt_len_or_gro_seg_len), 3218 le16toh(cqe_fp->len_on_bd)); 3219 3220 /* is this a slowpath msg? */ 3221 if (__predict_false(CQE_TYPE_SLOW(cqe_fp_type))) { 3222 bxe_sp_event(sc, fp, cqe); 3223 goto next_cqe; 3224 } 3225 3226 rx_buf = &fp->rx_mbuf_chain[bd_cons]; 3227 3228 if (!CQE_TYPE_FAST(cqe_fp_type)) { 3229 struct bxe_sw_tpa_info *tpa_info; 3230 uint16_t frag_size, pages; 3231 uint8_t queue; 3232 3233 if (CQE_TYPE_START(cqe_fp_type)) { 3234 bxe_tpa_start(sc, fp, cqe_fp->queue_index, 3235 bd_cons, bd_prod, cqe_fp); 3236 m = NULL; /* packet not ready yet */ 3237 goto next_rx; 3238 } 3239 3240 KASSERT(CQE_TYPE_STOP(cqe_fp_type), 3241 ("CQE type is not STOP! (0x%x)\n", cqe_fp_type)); 3242 3243 queue = cqe->end_agg_cqe.queue_index; 3244 tpa_info = &fp->rx_tpa_info[queue]; 3245 3246 BLOGD(sc, DBG_LRO, "fp[%02d].tpa[%02d] TPA STOP\n", 3247 fp->index, queue); 3248 3249 frag_size = (le16toh(cqe->end_agg_cqe.pkt_len) - 3250 tpa_info->len_on_bd); 3251 pages = SGE_PAGE_ALIGN(frag_size) >> SGE_PAGE_SHIFT; 3252 3253 bxe_tpa_stop(sc, fp, tpa_info, queue, pages, 3254 &cqe->end_agg_cqe, comp_ring_cons); 3255 3256 bxe_update_sge_prod(sc, fp, pages, &cqe->end_agg_cqe.sgl_or_raw_data); 3257 3258 goto next_cqe; 3259 } 3260 3261 /* non TPA */ 3262 3263 /* is this an error packet? */ 3264 if (__predict_false(cqe_fp_flags & 3265 ETH_FAST_PATH_RX_CQE_PHY_DECODE_ERR_FLG)) { 3266 BLOGE(sc, "flags 0x%x rx packet %u\n", cqe_fp_flags, sw_cq_cons); 3267 fp->eth_q_stats.rx_soft_errors++; 3268 goto next_rx; 3269 } 3270 3271 len = le16toh(cqe_fp->pkt_len_or_gro_seg_len); 3272 lenonbd = le16toh(cqe_fp->len_on_bd); 3273 pad = cqe_fp->placement_offset; 3274 3275 m = rx_buf->m; 3276 3277 if (__predict_false(m == NULL)) { 3278 BLOGE(sc, "No mbuf in rx chain descriptor %d for fp[%02d]\n", 3279 bd_cons, fp->index); 3280 goto next_rx; 3281 } 3282 3283 /* XXX double copy if packet length under a threshold */ 3284 3285 /* 3286 * If all the buffer descriptors are filled with mbufs then fill in 3287 * the current consumer index with a new BD. Else if a maximum Rx 3288 * buffer limit is imposed then fill in the next producer index. 3289 */ 3290 rc = bxe_alloc_rx_bd_mbuf(fp, bd_cons, 3291 (sc->max_rx_bufs != RX_BD_USABLE) ? 3292 bd_prod : bd_cons); 3293 if (rc != 0) { 3294 3295 /* we simply reuse the received mbuf and don't post it to the stack */ 3296 m = NULL; 3297 3298 BLOGE(sc, "mbuf alloc fail for fp[%02d] rx chain (%d)\n", 3299 fp->index, rc); 3300 fp->eth_q_stats.rx_soft_errors++; 3301 3302 if (sc->max_rx_bufs != RX_BD_USABLE) { 3303 /* copy this consumer index to the producer index */ 3304 memcpy(&fp->rx_mbuf_chain[bd_prod], rx_buf, 3305 sizeof(struct bxe_sw_rx_bd)); 3306 memset(rx_buf, 0, sizeof(struct bxe_sw_rx_bd)); 3307 } 3308 3309 goto next_rx; 3310 } 3311 3312 /* current mbuf was detached from the bd */ 3313 fp->eth_q_stats.mbuf_alloc_rx--; 3314 3315 /* we allocated a replacement mbuf, fixup the current one */ 3316 m_adj(m, pad); 3317 m->m_pkthdr.len = m->m_len = len; 3318 3319 if ((len > 60) && (len > lenonbd)) { 3320 fp->eth_q_stats.rx_bxe_service_rxsgl++; 3321 rc = bxe_service_rxsgl(fp, len, lenonbd, m, cqe_fp); 3322 if (rc) 3323 break; 3324 fp->eth_q_stats.rx_jumbo_sge_pkts++; 3325 } else if (lenonbd < len) { 3326 fp->eth_q_stats.rx_erroneous_jumbo_sge_pkts++; 3327 } 3328 3329 /* assign packet to this interface interface */ 3330 if_setrcvif(m, ifp); 3331 3332 /* assume no hardware checksum has complated */ 3333 m->m_pkthdr.csum_flags = 0; 3334 3335 /* validate checksum if offload enabled */ 3336 if (if_getcapenable(ifp) & IFCAP_RXCSUM) { 3337 /* check for a valid IP frame */ 3338 if (!(cqe->fast_path_cqe.status_flags & 3339 ETH_FAST_PATH_RX_CQE_IP_XSUM_NO_VALIDATION_FLG)) { 3340 m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED; 3341 if (__predict_false(cqe_fp_flags & 3342 ETH_FAST_PATH_RX_CQE_IP_BAD_XSUM_FLG)) { 3343 fp->eth_q_stats.rx_hw_csum_errors++; 3344 } else { 3345 fp->eth_q_stats.rx_ofld_frames_csum_ip++; 3346 m->m_pkthdr.csum_flags |= CSUM_IP_VALID; 3347 } 3348 } 3349 3350 /* check for a valid TCP/UDP frame */ 3351 if (!(cqe->fast_path_cqe.status_flags & 3352 ETH_FAST_PATH_RX_CQE_L4_XSUM_NO_VALIDATION_FLG)) { 3353 if (__predict_false(cqe_fp_flags & 3354 ETH_FAST_PATH_RX_CQE_L4_BAD_XSUM_FLG)) { 3355 fp->eth_q_stats.rx_hw_csum_errors++; 3356 } else { 3357 fp->eth_q_stats.rx_ofld_frames_csum_tcp_udp++; 3358 m->m_pkthdr.csum_data = 0xFFFF; 3359 m->m_pkthdr.csum_flags |= (CSUM_DATA_VALID | 3360 CSUM_PSEUDO_HDR); 3361 } 3362 } 3363 } 3364 3365 /* if there is a VLAN tag then flag that info */ 3366 if (cqe->fast_path_cqe.pars_flags.flags & PARSING_FLAGS_INNER_VLAN_EXIST) { 3367 m->m_pkthdr.ether_vtag = cqe->fast_path_cqe.vlan_tag; 3368 m->m_flags |= M_VLANTAG; 3369 } 3370 3371 /* specify what RSS queue was used for this flow */ 3372 m->m_pkthdr.flowid = fp->index; 3373 BXE_SET_FLOWID(m); 3374 3375 next_rx: 3376 3377 bd_cons = RX_BD_NEXT(bd_cons); 3378 bd_prod = RX_BD_NEXT(bd_prod); 3379 bd_prod_fw = RX_BD_NEXT(bd_prod_fw); 3380 3381 /* pass the frame to the stack */ 3382 if (__predict_true(m != NULL)) { 3383 if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1); 3384 rx_pkts++; 3385 if_input(ifp, m); 3386 } 3387 3388 next_cqe: 3389 3390 sw_cq_prod = RCQ_NEXT(sw_cq_prod); 3391 sw_cq_cons = RCQ_NEXT(sw_cq_cons); 3392 3393 /* limit spinning on the queue */ 3394 if (rc != 0) 3395 break; 3396 3397 if (rx_pkts == sc->rx_budget) { 3398 fp->eth_q_stats.rx_budget_reached++; 3399 break; 3400 } 3401 } /* while work to do */ 3402 3403 fp->rx_bd_cons = bd_cons; 3404 fp->rx_bd_prod = bd_prod_fw; 3405 fp->rx_cq_cons = sw_cq_cons; 3406 fp->rx_cq_prod = sw_cq_prod; 3407 3408 /* Update producers */ 3409 bxe_update_rx_prod(sc, fp, bd_prod_fw, sw_cq_prod, fp->rx_sge_prod); 3410 3411 fp->eth_q_stats.rx_pkts += rx_pkts; 3412 fp->eth_q_stats.rx_calls++; 3413 3414 BXE_FP_RX_UNLOCK(fp); 3415 3416 return (sw_cq_cons != hw_cq_cons); 3417 } 3418 3419 static uint16_t 3420 bxe_free_tx_pkt(struct bxe_softc *sc, 3421 struct bxe_fastpath *fp, 3422 uint16_t idx) 3423 { 3424 struct bxe_sw_tx_bd *tx_buf = &fp->tx_mbuf_chain[idx]; 3425 struct eth_tx_start_bd *tx_start_bd; 3426 uint16_t bd_idx = TX_BD(tx_buf->first_bd); 3427 uint16_t new_cons; 3428 int nbd; 3429 3430 /* unmap the mbuf from non-paged memory */ 3431 bus_dmamap_unload(fp->tx_mbuf_tag, tx_buf->m_map); 3432 3433 tx_start_bd = &fp->tx_chain[bd_idx].start_bd; 3434 nbd = le16toh(tx_start_bd->nbd) - 1; 3435 3436 new_cons = (tx_buf->first_bd + nbd); 3437 3438 /* free the mbuf */ 3439 if (__predict_true(tx_buf->m != NULL)) { 3440 m_freem(tx_buf->m); 3441 fp->eth_q_stats.mbuf_alloc_tx--; 3442 } else { 3443 fp->eth_q_stats.tx_chain_lost_mbuf++; 3444 } 3445 3446 tx_buf->m = NULL; 3447 tx_buf->first_bd = 0; 3448 3449 return (new_cons); 3450 } 3451 3452 /* transmit timeout watchdog */ 3453 static int 3454 bxe_watchdog(struct bxe_softc *sc, 3455 struct bxe_fastpath *fp) 3456 { 3457 BXE_FP_TX_LOCK(fp); 3458 3459 if ((fp->watchdog_timer == 0) || (--fp->watchdog_timer)) { 3460 BXE_FP_TX_UNLOCK(fp); 3461 return (0); 3462 } 3463 3464 BLOGE(sc, "TX watchdog timeout on fp[%02d], resetting!\n", fp->index); 3465 3466 BXE_FP_TX_UNLOCK(fp); 3467 BXE_SET_ERROR_BIT(sc, BXE_ERR_TXQ_STUCK); 3468 taskqueue_enqueue_timeout(taskqueue_thread, 3469 &sc->sp_err_timeout_task, hz/10); 3470 3471 return (-1); 3472 } 3473 3474 /* processes transmit completions */ 3475 static uint8_t 3476 bxe_txeof(struct bxe_softc *sc, 3477 struct bxe_fastpath *fp) 3478 { 3479 if_t ifp = sc->ifp; 3480 uint16_t bd_cons, hw_cons, sw_cons, pkt_cons; 3481 uint16_t tx_bd_avail; 3482 3483 BXE_FP_TX_LOCK_ASSERT(fp); 3484 3485 bd_cons = fp->tx_bd_cons; 3486 hw_cons = le16toh(*fp->tx_cons_sb); 3487 sw_cons = fp->tx_pkt_cons; 3488 3489 while (sw_cons != hw_cons) { 3490 pkt_cons = TX_BD(sw_cons); 3491 3492 BLOGD(sc, DBG_TX, 3493 "TX: fp[%d]: hw_cons=%u sw_cons=%u pkt_cons=%u\n", 3494 fp->index, hw_cons, sw_cons, pkt_cons); 3495 3496 bd_cons = bxe_free_tx_pkt(sc, fp, pkt_cons); 3497 3498 sw_cons++; 3499 } 3500 3501 fp->tx_pkt_cons = sw_cons; 3502 fp->tx_bd_cons = bd_cons; 3503 3504 BLOGD(sc, DBG_TX, 3505 "TX done: fp[%d]: hw_cons=%u sw_cons=%u sw_prod=%u\n", 3506 fp->index, hw_cons, fp->tx_pkt_cons, fp->tx_pkt_prod); 3507 3508 mb(); 3509 3510 tx_bd_avail = bxe_tx_avail(sc, fp); 3511 3512 if (tx_bd_avail < BXE_TX_CLEANUP_THRESHOLD) { 3513 if_setdrvflagbits(ifp, IFF_DRV_OACTIVE, 0); 3514 } else { 3515 if_setdrvflagbits(ifp, 0, IFF_DRV_OACTIVE); 3516 } 3517 3518 if (fp->tx_pkt_prod != fp->tx_pkt_cons) { 3519 /* reset the watchdog timer if there are pending transmits */ 3520 fp->watchdog_timer = BXE_TX_TIMEOUT; 3521 return (TRUE); 3522 } else { 3523 /* clear watchdog when there are no pending transmits */ 3524 fp->watchdog_timer = 0; 3525 return (FALSE); 3526 } 3527 } 3528 3529 static void 3530 bxe_drain_tx_queues(struct bxe_softc *sc) 3531 { 3532 struct bxe_fastpath *fp; 3533 int i, count; 3534 3535 /* wait until all TX fastpath tasks have completed */ 3536 for (i = 0; i < sc->num_queues; i++) { 3537 fp = &sc->fp[i]; 3538 3539 count = 1000; 3540 3541 while (bxe_has_tx_work(fp)) { 3542 3543 BXE_FP_TX_LOCK(fp); 3544 bxe_txeof(sc, fp); 3545 BXE_FP_TX_UNLOCK(fp); 3546 3547 if (count == 0) { 3548 BLOGE(sc, "Timeout waiting for fp[%d] " 3549 "transmits to complete!\n", i); 3550 bxe_panic(sc, ("tx drain failure\n")); 3551 return; 3552 } 3553 3554 count--; 3555 DELAY(1000); 3556 rmb(); 3557 } 3558 } 3559 3560 return; 3561 } 3562 3563 static int 3564 bxe_del_all_macs(struct bxe_softc *sc, 3565 struct ecore_vlan_mac_obj *mac_obj, 3566 int mac_type, 3567 uint8_t wait_for_comp) 3568 { 3569 unsigned long ramrod_flags = 0, vlan_mac_flags = 0; 3570 int rc; 3571 3572 /* wait for completion of requested */ 3573 if (wait_for_comp) { 3574 bxe_set_bit(RAMROD_COMP_WAIT, &ramrod_flags); 3575 } 3576 3577 /* Set the mac type of addresses we want to clear */ 3578 bxe_set_bit(mac_type, &vlan_mac_flags); 3579 3580 rc = mac_obj->delete_all(sc, mac_obj, &vlan_mac_flags, &ramrod_flags); 3581 if (rc < 0) { 3582 BLOGE(sc, "Failed to delete MACs (%d) mac_type %d wait_for_comp 0x%x\n", 3583 rc, mac_type, wait_for_comp); 3584 } 3585 3586 return (rc); 3587 } 3588 3589 static int 3590 bxe_fill_accept_flags(struct bxe_softc *sc, 3591 uint32_t rx_mode, 3592 unsigned long *rx_accept_flags, 3593 unsigned long *tx_accept_flags) 3594 { 3595 /* Clear the flags first */ 3596 *rx_accept_flags = 0; 3597 *tx_accept_flags = 0; 3598 3599 switch (rx_mode) { 3600 case BXE_RX_MODE_NONE: 3601 /* 3602 * 'drop all' supersedes any accept flags that may have been 3603 * passed to the function. 3604 */ 3605 break; 3606 3607 case BXE_RX_MODE_NORMAL: 3608 bxe_set_bit(ECORE_ACCEPT_UNICAST, rx_accept_flags); 3609 bxe_set_bit(ECORE_ACCEPT_MULTICAST, rx_accept_flags); 3610 bxe_set_bit(ECORE_ACCEPT_BROADCAST, rx_accept_flags); 3611 3612 /* internal switching mode */ 3613 bxe_set_bit(ECORE_ACCEPT_UNICAST, tx_accept_flags); 3614 bxe_set_bit(ECORE_ACCEPT_MULTICAST, tx_accept_flags); 3615 bxe_set_bit(ECORE_ACCEPT_BROADCAST, tx_accept_flags); 3616 3617 break; 3618 3619 case BXE_RX_MODE_ALLMULTI: 3620 bxe_set_bit(ECORE_ACCEPT_UNICAST, rx_accept_flags); 3621 bxe_set_bit(ECORE_ACCEPT_ALL_MULTICAST, rx_accept_flags); 3622 bxe_set_bit(ECORE_ACCEPT_BROADCAST, rx_accept_flags); 3623 3624 /* internal switching mode */ 3625 bxe_set_bit(ECORE_ACCEPT_UNICAST, tx_accept_flags); 3626 bxe_set_bit(ECORE_ACCEPT_ALL_MULTICAST, tx_accept_flags); 3627 bxe_set_bit(ECORE_ACCEPT_BROADCAST, tx_accept_flags); 3628 3629 break; 3630 3631 case BXE_RX_MODE_PROMISC: 3632 /* 3633 * According to deffinition of SI mode, iface in promisc mode 3634 * should receive matched and unmatched (in resolution of port) 3635 * unicast packets. 3636 */ 3637 bxe_set_bit(ECORE_ACCEPT_UNMATCHED, rx_accept_flags); 3638 bxe_set_bit(ECORE_ACCEPT_UNICAST, rx_accept_flags); 3639 bxe_set_bit(ECORE_ACCEPT_ALL_MULTICAST, rx_accept_flags); 3640 bxe_set_bit(ECORE_ACCEPT_BROADCAST, rx_accept_flags); 3641 3642 /* internal switching mode */ 3643 bxe_set_bit(ECORE_ACCEPT_ALL_MULTICAST, tx_accept_flags); 3644 bxe_set_bit(ECORE_ACCEPT_BROADCAST, tx_accept_flags); 3645 3646 if (IS_MF_SI(sc)) { 3647 bxe_set_bit(ECORE_ACCEPT_ALL_UNICAST, tx_accept_flags); 3648 } else { 3649 bxe_set_bit(ECORE_ACCEPT_UNICAST, tx_accept_flags); 3650 } 3651 3652 break; 3653 3654 default: 3655 BLOGE(sc, "Unknown rx_mode (0x%x)\n", rx_mode); 3656 return (-1); 3657 } 3658 3659 /* Set ACCEPT_ANY_VLAN as we do not enable filtering by VLAN */ 3660 if (rx_mode != BXE_RX_MODE_NONE) { 3661 bxe_set_bit(ECORE_ACCEPT_ANY_VLAN, rx_accept_flags); 3662 bxe_set_bit(ECORE_ACCEPT_ANY_VLAN, tx_accept_flags); 3663 } 3664 3665 return (0); 3666 } 3667 3668 static int 3669 bxe_set_q_rx_mode(struct bxe_softc *sc, 3670 uint8_t cl_id, 3671 unsigned long rx_mode_flags, 3672 unsigned long rx_accept_flags, 3673 unsigned long tx_accept_flags, 3674 unsigned long ramrod_flags) 3675 { 3676 struct ecore_rx_mode_ramrod_params ramrod_param; 3677 int rc; 3678 3679 memset(&ramrod_param, 0, sizeof(ramrod_param)); 3680 3681 /* Prepare ramrod parameters */ 3682 ramrod_param.cid = 0; 3683 ramrod_param.cl_id = cl_id; 3684 ramrod_param.rx_mode_obj = &sc->rx_mode_obj; 3685 ramrod_param.func_id = SC_FUNC(sc); 3686 3687 ramrod_param.pstate = &sc->sp_state; 3688 ramrod_param.state = ECORE_FILTER_RX_MODE_PENDING; 3689 3690 ramrod_param.rdata = BXE_SP(sc, rx_mode_rdata); 3691 ramrod_param.rdata_mapping = BXE_SP_MAPPING(sc, rx_mode_rdata); 3692 3693 bxe_set_bit(ECORE_FILTER_RX_MODE_PENDING, &sc->sp_state); 3694 3695 ramrod_param.ramrod_flags = ramrod_flags; 3696 ramrod_param.rx_mode_flags = rx_mode_flags; 3697 3698 ramrod_param.rx_accept_flags = rx_accept_flags; 3699 ramrod_param.tx_accept_flags = tx_accept_flags; 3700 3701 rc = ecore_config_rx_mode(sc, &ramrod_param); 3702 if (rc < 0) { 3703 BLOGE(sc, "Set rx_mode %d cli_id 0x%x rx_mode_flags 0x%x " 3704 "rx_accept_flags 0x%x tx_accept_flags 0x%x " 3705 "ramrod_flags 0x%x rc %d failed\n", sc->rx_mode, cl_id, 3706 (uint32_t)rx_mode_flags, (uint32_t)rx_accept_flags, 3707 (uint32_t)tx_accept_flags, (uint32_t)ramrod_flags, rc); 3708 return (rc); 3709 } 3710 3711 return (0); 3712 } 3713 3714 static int 3715 bxe_set_storm_rx_mode(struct bxe_softc *sc) 3716 { 3717 unsigned long rx_mode_flags = 0, ramrod_flags = 0; 3718 unsigned long rx_accept_flags = 0, tx_accept_flags = 0; 3719 int rc; 3720 3721 rc = bxe_fill_accept_flags(sc, sc->rx_mode, &rx_accept_flags, 3722 &tx_accept_flags); 3723 if (rc) { 3724 return (rc); 3725 } 3726 3727 bxe_set_bit(RAMROD_RX, &ramrod_flags); 3728 bxe_set_bit(RAMROD_TX, &ramrod_flags); 3729 3730 /* XXX ensure all fastpath have same cl_id and/or move it to bxe_softc */ 3731 return (bxe_set_q_rx_mode(sc, sc->fp[0].cl_id, rx_mode_flags, 3732 rx_accept_flags, tx_accept_flags, 3733 ramrod_flags)); 3734 } 3735 3736 /* returns the "mcp load_code" according to global load_count array */ 3737 static int 3738 bxe_nic_load_no_mcp(struct bxe_softc *sc) 3739 { 3740 int path = SC_PATH(sc); 3741 int port = SC_PORT(sc); 3742 3743 BLOGI(sc, "NO MCP - load counts[%d] %d, %d, %d\n", 3744 path, load_count[path][0], load_count[path][1], 3745 load_count[path][2]); 3746 load_count[path][0]++; 3747 load_count[path][1 + port]++; 3748 BLOGI(sc, "NO MCP - new load counts[%d] %d, %d, %d\n", 3749 path, load_count[path][0], load_count[path][1], 3750 load_count[path][2]); 3751 if (load_count[path][0] == 1) { 3752 return (FW_MSG_CODE_DRV_LOAD_COMMON); 3753 } else if (load_count[path][1 + port] == 1) { 3754 return (FW_MSG_CODE_DRV_LOAD_PORT); 3755 } else { 3756 return (FW_MSG_CODE_DRV_LOAD_FUNCTION); 3757 } 3758 } 3759 3760 /* returns the "mcp load_code" according to global load_count array */ 3761 static int 3762 bxe_nic_unload_no_mcp(struct bxe_softc *sc) 3763 { 3764 int port = SC_PORT(sc); 3765 int path = SC_PATH(sc); 3766 3767 BLOGI(sc, "NO MCP - load counts[%d] %d, %d, %d\n", 3768 path, load_count[path][0], load_count[path][1], 3769 load_count[path][2]); 3770 load_count[path][0]--; 3771 load_count[path][1 + port]--; 3772 BLOGI(sc, "NO MCP - new load counts[%d] %d, %d, %d\n", 3773 path, load_count[path][0], load_count[path][1], 3774 load_count[path][2]); 3775 if (load_count[path][0] == 0) { 3776 return (FW_MSG_CODE_DRV_UNLOAD_COMMON); 3777 } else if (load_count[path][1 + port] == 0) { 3778 return (FW_MSG_CODE_DRV_UNLOAD_PORT); 3779 } else { 3780 return (FW_MSG_CODE_DRV_UNLOAD_FUNCTION); 3781 } 3782 } 3783 3784 /* request unload mode from the MCP: COMMON, PORT or FUNCTION */ 3785 static uint32_t 3786 bxe_send_unload_req(struct bxe_softc *sc, 3787 int unload_mode) 3788 { 3789 uint32_t reset_code = 0; 3790 3791 /* Select the UNLOAD request mode */ 3792 if (unload_mode == UNLOAD_NORMAL) { 3793 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS; 3794 } else { 3795 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS; 3796 } 3797 3798 /* Send the request to the MCP */ 3799 if (!BXE_NOMCP(sc)) { 3800 reset_code = bxe_fw_command(sc, reset_code, 0); 3801 } else { 3802 reset_code = bxe_nic_unload_no_mcp(sc); 3803 } 3804 3805 return (reset_code); 3806 } 3807 3808 /* send UNLOAD_DONE command to the MCP */ 3809 static void 3810 bxe_send_unload_done(struct bxe_softc *sc, 3811 uint8_t keep_link) 3812 { 3813 uint32_t reset_param = 3814 keep_link ? DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET : 0; 3815 3816 /* Report UNLOAD_DONE to MCP */ 3817 if (!BXE_NOMCP(sc)) { 3818 bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_DONE, reset_param); 3819 } 3820 } 3821 3822 static int 3823 bxe_func_wait_started(struct bxe_softc *sc) 3824 { 3825 int tout = 50; 3826 3827 if (!sc->port.pmf) { 3828 return (0); 3829 } 3830 3831 /* 3832 * (assumption: No Attention from MCP at this stage) 3833 * PMF probably in the middle of TX disable/enable transaction 3834 * 1. Sync IRS for default SB 3835 * 2. Sync SP queue - this guarantees us that attention handling started 3836 * 3. Wait, that TX disable/enable transaction completes 3837 * 3838 * 1+2 guarantee that if DCBX attention was scheduled it already changed 3839 * pending bit of transaction from STARTED-->TX_STOPPED, if we already 3840 * received completion for the transaction the state is TX_STOPPED. 3841 * State will return to STARTED after completion of TX_STOPPED-->STARTED 3842 * transaction. 3843 */ 3844 3845 /* XXX make sure default SB ISR is done */ 3846 /* need a way to synchronize an irq (intr_mtx?) */ 3847 3848 /* XXX flush any work queues */ 3849 3850 while (ecore_func_get_state(sc, &sc->func_obj) != 3851 ECORE_F_STATE_STARTED && tout--) { 3852 DELAY(20000); 3853 } 3854 3855 if (ecore_func_get_state(sc, &sc->func_obj) != ECORE_F_STATE_STARTED) { 3856 /* 3857 * Failed to complete the transaction in a "good way" 3858 * Force both transactions with CLR bit. 3859 */ 3860 struct ecore_func_state_params func_params = { NULL }; 3861 3862 BLOGE(sc, "Unexpected function state! " 3863 "Forcing STARTED-->TX_STOPPED-->STARTED\n"); 3864 3865 func_params.f_obj = &sc->func_obj; 3866 bxe_set_bit(RAMROD_DRV_CLR_ONLY, &func_params.ramrod_flags); 3867 3868 /* STARTED-->TX_STOPPED */ 3869 func_params.cmd = ECORE_F_CMD_TX_STOP; 3870 ecore_func_state_change(sc, &func_params); 3871 3872 /* TX_STOPPED-->STARTED */ 3873 func_params.cmd = ECORE_F_CMD_TX_START; 3874 return (ecore_func_state_change(sc, &func_params)); 3875 } 3876 3877 return (0); 3878 } 3879 3880 static int 3881 bxe_stop_queue(struct bxe_softc *sc, 3882 int index) 3883 { 3884 struct bxe_fastpath *fp = &sc->fp[index]; 3885 struct ecore_queue_state_params q_params = { NULL }; 3886 int rc; 3887 3888 BLOGD(sc, DBG_LOAD, "stopping queue %d cid %d\n", index, fp->index); 3889 3890 q_params.q_obj = &sc->sp_objs[fp->index].q_obj; 3891 /* We want to wait for completion in this context */ 3892 bxe_set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags); 3893 3894 /* Stop the primary connection: */ 3895 3896 /* ...halt the connection */ 3897 q_params.cmd = ECORE_Q_CMD_HALT; 3898 rc = ecore_queue_state_change(sc, &q_params); 3899 if (rc) { 3900 return (rc); 3901 } 3902 3903 /* ...terminate the connection */ 3904 q_params.cmd = ECORE_Q_CMD_TERMINATE; 3905 memset(&q_params.params.terminate, 0, sizeof(q_params.params.terminate)); 3906 q_params.params.terminate.cid_index = FIRST_TX_COS_INDEX; 3907 rc = ecore_queue_state_change(sc, &q_params); 3908 if (rc) { 3909 return (rc); 3910 } 3911 3912 /* ...delete cfc entry */ 3913 q_params.cmd = ECORE_Q_CMD_CFC_DEL; 3914 memset(&q_params.params.cfc_del, 0, sizeof(q_params.params.cfc_del)); 3915 q_params.params.cfc_del.cid_index = FIRST_TX_COS_INDEX; 3916 return (ecore_queue_state_change(sc, &q_params)); 3917 } 3918 3919 /* wait for the outstanding SP commands */ 3920 static inline uint8_t 3921 bxe_wait_sp_comp(struct bxe_softc *sc, 3922 unsigned long mask) 3923 { 3924 unsigned long tmp; 3925 int tout = 5000; /* wait for 5 secs tops */ 3926 3927 while (tout--) { 3928 mb(); 3929 if (!(atomic_load_acq_long(&sc->sp_state) & mask)) { 3930 return (TRUE); 3931 } 3932 3933 DELAY(1000); 3934 } 3935 3936 mb(); 3937 3938 tmp = atomic_load_acq_long(&sc->sp_state); 3939 if (tmp & mask) { 3940 BLOGE(sc, "Filtering completion timed out: " 3941 "sp_state 0x%lx, mask 0x%lx\n", 3942 tmp, mask); 3943 return (FALSE); 3944 } 3945 3946 return (FALSE); 3947 } 3948 3949 static int 3950 bxe_func_stop(struct bxe_softc *sc) 3951 { 3952 struct ecore_func_state_params func_params = { NULL }; 3953 int rc; 3954 3955 /* prepare parameters for function state transitions */ 3956 bxe_set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags); 3957 func_params.f_obj = &sc->func_obj; 3958 func_params.cmd = ECORE_F_CMD_STOP; 3959 3960 /* 3961 * Try to stop the function the 'good way'. If it fails (in case 3962 * of a parity error during bxe_chip_cleanup()) and we are 3963 * not in a debug mode, perform a state transaction in order to 3964 * enable further HW_RESET transaction. 3965 */ 3966 rc = ecore_func_state_change(sc, &func_params); 3967 if (rc) { 3968 BLOGE(sc, "FUNC_STOP ramrod failed. " 3969 "Running a dry transaction (%d)\n", rc); 3970 bxe_set_bit(RAMROD_DRV_CLR_ONLY, &func_params.ramrod_flags); 3971 return (ecore_func_state_change(sc, &func_params)); 3972 } 3973 3974 return (0); 3975 } 3976 3977 static int 3978 bxe_reset_hw(struct bxe_softc *sc, 3979 uint32_t load_code) 3980 { 3981 struct ecore_func_state_params func_params = { NULL }; 3982 3983 /* Prepare parameters for function state transitions */ 3984 bxe_set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags); 3985 3986 func_params.f_obj = &sc->func_obj; 3987 func_params.cmd = ECORE_F_CMD_HW_RESET; 3988 3989 func_params.params.hw_init.load_phase = load_code; 3990 3991 return (ecore_func_state_change(sc, &func_params)); 3992 } 3993 3994 static void 3995 bxe_int_disable_sync(struct bxe_softc *sc, 3996 int disable_hw) 3997 { 3998 if (disable_hw) { 3999 /* prevent the HW from sending interrupts */ 4000 bxe_int_disable(sc); 4001 } 4002 4003 /* XXX need a way to synchronize ALL irqs (intr_mtx?) */ 4004 /* make sure all ISRs are done */ 4005 4006 /* XXX make sure sp_task is not running */ 4007 /* cancel and flush work queues */ 4008 } 4009 4010 static void 4011 bxe_chip_cleanup(struct bxe_softc *sc, 4012 uint32_t unload_mode, 4013 uint8_t keep_link) 4014 { 4015 int port = SC_PORT(sc); 4016 struct ecore_mcast_ramrod_params rparam = { NULL }; 4017 uint32_t reset_code; 4018 int i, rc = 0; 4019 4020 bxe_drain_tx_queues(sc); 4021 4022 /* give HW time to discard old tx messages */ 4023 DELAY(1000); 4024 4025 /* Clean all ETH MACs */ 4026 rc = bxe_del_all_macs(sc, &sc->sp_objs[0].mac_obj, ECORE_ETH_MAC, FALSE); 4027 if (rc < 0) { 4028 BLOGE(sc, "Failed to delete all ETH MACs (%d)\n", rc); 4029 } 4030 4031 /* Clean up UC list */ 4032 rc = bxe_del_all_macs(sc, &sc->sp_objs[0].mac_obj, ECORE_UC_LIST_MAC, TRUE); 4033 if (rc < 0) { 4034 BLOGE(sc, "Failed to delete UC MACs list (%d)\n", rc); 4035 } 4036 4037 /* Disable LLH */ 4038 if (!CHIP_IS_E1(sc)) { 4039 REG_WR(sc, NIG_REG_LLH0_FUNC_EN + port*8, 0); 4040 } 4041 4042 /* Set "drop all" to stop Rx */ 4043 4044 /* 4045 * We need to take the BXE_MCAST_LOCK() here in order to prevent 4046 * a race between the completion code and this code. 4047 */ 4048 BXE_MCAST_LOCK(sc); 4049 4050 if (bxe_test_bit(ECORE_FILTER_RX_MODE_PENDING, &sc->sp_state)) { 4051 bxe_set_bit(ECORE_FILTER_RX_MODE_SCHED, &sc->sp_state); 4052 } else { 4053 bxe_set_storm_rx_mode(sc); 4054 } 4055 4056 /* Clean up multicast configuration */ 4057 rparam.mcast_obj = &sc->mcast_obj; 4058 rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_DEL); 4059 if (rc < 0) { 4060 BLOGE(sc, "Failed to send DEL MCAST command (%d)\n", rc); 4061 } 4062 4063 BXE_MCAST_UNLOCK(sc); 4064 4065 // XXX bxe_iov_chip_cleanup(sc); 4066 4067 /* 4068 * Send the UNLOAD_REQUEST to the MCP. This will return if 4069 * this function should perform FUNCTION, PORT, or COMMON HW 4070 * reset. 4071 */ 4072 reset_code = bxe_send_unload_req(sc, unload_mode); 4073 4074 /* 4075 * (assumption: No Attention from MCP at this stage) 4076 * PMF probably in the middle of TX disable/enable transaction 4077 */ 4078 rc = bxe_func_wait_started(sc); 4079 if (rc) { 4080 BLOGE(sc, "bxe_func_wait_started failed (%d)\n", rc); 4081 } 4082 4083 /* 4084 * Close multi and leading connections 4085 * Completions for ramrods are collected in a synchronous way 4086 */ 4087 for (i = 0; i < sc->num_queues; i++) { 4088 if (bxe_stop_queue(sc, i)) { 4089 goto unload_error; 4090 } 4091 } 4092 4093 /* 4094 * If SP settings didn't get completed so far - something 4095 * very wrong has happen. 4096 */ 4097 if (!bxe_wait_sp_comp(sc, ~0x0UL)) { 4098 BLOGE(sc, "Common slow path ramrods got stuck!(%d)\n", rc); 4099 } 4100 4101 unload_error: 4102 4103 rc = bxe_func_stop(sc); 4104 if (rc) { 4105 BLOGE(sc, "Function stop failed!(%d)\n", rc); 4106 } 4107 4108 /* disable HW interrupts */ 4109 bxe_int_disable_sync(sc, TRUE); 4110 4111 /* detach interrupts */ 4112 bxe_interrupt_detach(sc); 4113 4114 /* Reset the chip */ 4115 rc = bxe_reset_hw(sc, reset_code); 4116 if (rc) { 4117 BLOGE(sc, "Hardware reset failed(%d)\n", rc); 4118 } 4119 4120 /* Report UNLOAD_DONE to MCP */ 4121 bxe_send_unload_done(sc, keep_link); 4122 } 4123 4124 static void 4125 bxe_disable_close_the_gate(struct bxe_softc *sc) 4126 { 4127 uint32_t val; 4128 int port = SC_PORT(sc); 4129 4130 BLOGD(sc, DBG_LOAD, 4131 "Disabling 'close the gates'\n"); 4132 4133 if (CHIP_IS_E1(sc)) { 4134 uint32_t addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 : 4135 MISC_REG_AEU_MASK_ATTN_FUNC_0; 4136 val = REG_RD(sc, addr); 4137 val &= ~(0x300); 4138 REG_WR(sc, addr, val); 4139 } else { 4140 val = REG_RD(sc, MISC_REG_AEU_GENERAL_MASK); 4141 val &= ~(MISC_AEU_GENERAL_MASK_REG_AEU_PXP_CLOSE_MASK | 4142 MISC_AEU_GENERAL_MASK_REG_AEU_NIG_CLOSE_MASK); 4143 REG_WR(sc, MISC_REG_AEU_GENERAL_MASK, val); 4144 } 4145 } 4146 4147 /* 4148 * Cleans the object that have internal lists without sending 4149 * ramrods. Should be run when interrupts are disabled. 4150 */ 4151 static void 4152 bxe_squeeze_objects(struct bxe_softc *sc) 4153 { 4154 unsigned long ramrod_flags = 0, vlan_mac_flags = 0; 4155 struct ecore_mcast_ramrod_params rparam = { NULL }; 4156 struct ecore_vlan_mac_obj *mac_obj = &sc->sp_objs->mac_obj; 4157 int rc; 4158 4159 /* Cleanup MACs' object first... */ 4160 4161 /* Wait for completion of requested */ 4162 bxe_set_bit(RAMROD_COMP_WAIT, &ramrod_flags); 4163 /* Perform a dry cleanup */ 4164 bxe_set_bit(RAMROD_DRV_CLR_ONLY, &ramrod_flags); 4165 4166 /* Clean ETH primary MAC */ 4167 bxe_set_bit(ECORE_ETH_MAC, &vlan_mac_flags); 4168 rc = mac_obj->delete_all(sc, &sc->sp_objs->mac_obj, &vlan_mac_flags, 4169 &ramrod_flags); 4170 if (rc != 0) { 4171 BLOGE(sc, "Failed to clean ETH MACs (%d)\n", rc); 4172 } 4173 4174 /* Cleanup UC list */ 4175 vlan_mac_flags = 0; 4176 bxe_set_bit(ECORE_UC_LIST_MAC, &vlan_mac_flags); 4177 rc = mac_obj->delete_all(sc, mac_obj, &vlan_mac_flags, 4178 &ramrod_flags); 4179 if (rc != 0) { 4180 BLOGE(sc, "Failed to clean UC list MACs (%d)\n", rc); 4181 } 4182 4183 /* Now clean mcast object... */ 4184 4185 rparam.mcast_obj = &sc->mcast_obj; 4186 bxe_set_bit(RAMROD_DRV_CLR_ONLY, &rparam.ramrod_flags); 4187 4188 /* Add a DEL command... */ 4189 rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_DEL); 4190 if (rc < 0) { 4191 BLOGE(sc, "Failed to send DEL MCAST command (%d)\n", rc); 4192 } 4193 4194 /* now wait until all pending commands are cleared */ 4195 4196 rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_CONT); 4197 while (rc != 0) { 4198 if (rc < 0) { 4199 BLOGE(sc, "Failed to clean MCAST object (%d)\n", rc); 4200 return; 4201 } 4202 4203 rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_CONT); 4204 } 4205 } 4206 4207 /* stop the controller */ 4208 static __noinline int 4209 bxe_nic_unload(struct bxe_softc *sc, 4210 uint32_t unload_mode, 4211 uint8_t keep_link) 4212 { 4213 uint8_t global = FALSE; 4214 uint32_t val; 4215 int i; 4216 4217 BXE_CORE_LOCK_ASSERT(sc); 4218 4219 if_setdrvflagbits(sc->ifp, 0, IFF_DRV_RUNNING); 4220 4221 for (i = 0; i < sc->num_queues; i++) { 4222 struct bxe_fastpath *fp; 4223 4224 fp = &sc->fp[i]; 4225 fp->watchdog_timer = 0; 4226 BXE_FP_TX_LOCK(fp); 4227 BXE_FP_TX_UNLOCK(fp); 4228 } 4229 4230 BLOGD(sc, DBG_LOAD, "Starting NIC unload...\n"); 4231 4232 /* mark driver as unloaded in shmem2 */ 4233 if (IS_PF(sc) && SHMEM2_HAS(sc, drv_capabilities_flag)) { 4234 val = SHMEM2_RD(sc, drv_capabilities_flag[SC_FW_MB_IDX(sc)]); 4235 SHMEM2_WR(sc, drv_capabilities_flag[SC_FW_MB_IDX(sc)], 4236 val & ~DRV_FLAGS_CAPABILITIES_LOADED_L2); 4237 } 4238 4239 if (IS_PF(sc) && sc->recovery_state != BXE_RECOVERY_DONE && 4240 (sc->state == BXE_STATE_CLOSED || sc->state == BXE_STATE_ERROR)) { 4241 4242 if(CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) { 4243 /* 4244 * We can get here if the driver has been unloaded 4245 * during parity error recovery and is either waiting for a 4246 * leader to complete or for other functions to unload and 4247 * then ifconfig down has been issued. In this case we want to 4248 * unload and let other functions to complete a recovery 4249 * process. 4250 */ 4251 sc->recovery_state = BXE_RECOVERY_DONE; 4252 sc->is_leader = 0; 4253 bxe_release_leader_lock(sc); 4254 mb(); 4255 BLOGD(sc, DBG_LOAD, "Releasing a leadership...\n"); 4256 } 4257 BLOGE(sc, "Can't unload in closed or error state recover_state 0x%x" 4258 " state = 0x%x\n", sc->recovery_state, sc->state); 4259 return (-1); 4260 } 4261 4262 /* 4263 * Nothing to do during unload if previous bxe_nic_load() 4264 * did not completed successfully - all resourses are released. 4265 */ 4266 if ((sc->state == BXE_STATE_CLOSED) || 4267 (sc->state == BXE_STATE_ERROR)) { 4268 return (0); 4269 } 4270 4271 sc->state = BXE_STATE_CLOSING_WAITING_HALT; 4272 mb(); 4273 4274 /* stop tx */ 4275 bxe_tx_disable(sc); 4276 4277 sc->rx_mode = BXE_RX_MODE_NONE; 4278 /* XXX set rx mode ??? */ 4279 4280 if (IS_PF(sc) && !sc->grcdump_done) { 4281 /* set ALWAYS_ALIVE bit in shmem */ 4282 sc->fw_drv_pulse_wr_seq |= DRV_PULSE_ALWAYS_ALIVE; 4283 4284 bxe_drv_pulse(sc); 4285 4286 bxe_stats_handle(sc, STATS_EVENT_STOP); 4287 bxe_save_statistics(sc); 4288 } 4289 4290 /* wait till consumers catch up with producers in all queues */ 4291 bxe_drain_tx_queues(sc); 4292 4293 /* if VF indicate to PF this function is going down (PF will delete sp 4294 * elements and clear initializations 4295 */ 4296 if (IS_VF(sc)) { 4297 ; /* bxe_vfpf_close_vf(sc); */ 4298 } else if (unload_mode != UNLOAD_RECOVERY) { 4299 /* if this is a normal/close unload need to clean up chip */ 4300 if (!sc->grcdump_done) 4301 bxe_chip_cleanup(sc, unload_mode, keep_link); 4302 } else { 4303 /* Send the UNLOAD_REQUEST to the MCP */ 4304 bxe_send_unload_req(sc, unload_mode); 4305 4306 /* 4307 * Prevent transactions to host from the functions on the 4308 * engine that doesn't reset global blocks in case of global 4309 * attention once gloabl blocks are reset and gates are opened 4310 * (the engine which leader will perform the recovery 4311 * last). 4312 */ 4313 if (!CHIP_IS_E1x(sc)) { 4314 bxe_pf_disable(sc); 4315 } 4316 4317 /* disable HW interrupts */ 4318 bxe_int_disable_sync(sc, TRUE); 4319 4320 /* detach interrupts */ 4321 bxe_interrupt_detach(sc); 4322 4323 /* Report UNLOAD_DONE to MCP */ 4324 bxe_send_unload_done(sc, FALSE); 4325 } 4326 4327 /* 4328 * At this stage no more interrupts will arrive so we may safely clean 4329 * the queue'able objects here in case they failed to get cleaned so far. 4330 */ 4331 if (IS_PF(sc)) { 4332 bxe_squeeze_objects(sc); 4333 } 4334 4335 /* There should be no more pending SP commands at this stage */ 4336 sc->sp_state = 0; 4337 4338 sc->port.pmf = 0; 4339 4340 bxe_free_fp_buffers(sc); 4341 4342 if (IS_PF(sc)) { 4343 bxe_free_mem(sc); 4344 } 4345 4346 bxe_free_fw_stats_mem(sc); 4347 4348 sc->state = BXE_STATE_CLOSED; 4349 4350 /* 4351 * Check if there are pending parity attentions. If there are - set 4352 * RECOVERY_IN_PROGRESS. 4353 */ 4354 if (IS_PF(sc) && bxe_chk_parity_attn(sc, &global, FALSE)) { 4355 bxe_set_reset_in_progress(sc); 4356 4357 /* Set RESET_IS_GLOBAL if needed */ 4358 if (global) { 4359 bxe_set_reset_global(sc); 4360 } 4361 } 4362 4363 /* 4364 * The last driver must disable a "close the gate" if there is no 4365 * parity attention or "process kill" pending. 4366 */ 4367 if (IS_PF(sc) && !bxe_clear_pf_load(sc) && 4368 bxe_reset_is_done(sc, SC_PATH(sc))) { 4369 bxe_disable_close_the_gate(sc); 4370 } 4371 4372 BLOGD(sc, DBG_LOAD, "Ended NIC unload\n"); 4373 4374 bxe_link_report(sc); 4375 4376 return (0); 4377 } 4378 4379 /* 4380 * Called by the OS to set various media options (i.e. link, speed, etc.) when 4381 * the user runs "ifconfig bxe media ..." or "ifconfig bxe mediaopt ...". 4382 */ 4383 static int 4384 bxe_ifmedia_update(if_t ifp) 4385 { 4386 struct bxe_softc *sc = (struct bxe_softc *)if_getsoftc(ifp); 4387 struct ifmedia *ifm; 4388 4389 ifm = &sc->ifmedia; 4390 4391 /* We only support Ethernet media type. */ 4392 if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER) { 4393 return (EINVAL); 4394 } 4395 4396 switch (IFM_SUBTYPE(ifm->ifm_media)) { 4397 case IFM_AUTO: 4398 break; 4399 case IFM_10G_CX4: 4400 case IFM_10G_SR: 4401 case IFM_10G_T: 4402 case IFM_10G_TWINAX: 4403 default: 4404 /* We don't support changing the media type. */ 4405 BLOGD(sc, DBG_LOAD, "Invalid media type (%d)\n", 4406 IFM_SUBTYPE(ifm->ifm_media)); 4407 return (EINVAL); 4408 } 4409 4410 return (0); 4411 } 4412 4413 /* 4414 * Called by the OS to get the current media status (i.e. link, speed, etc.). 4415 */ 4416 static void 4417 bxe_ifmedia_status(if_t ifp, struct ifmediareq *ifmr) 4418 { 4419 struct bxe_softc *sc = if_getsoftc(ifp); 4420 4421 /* Bug 165447: the 'ifconfig' tool skips printing of the "status: ..." 4422 line if the IFM_AVALID flag is *NOT* set. So we need to set this 4423 flag unconditionally (irrespective of the admininistrative 4424 'up/down' state of the interface) to ensure that the line is always 4425 displayed. 4426 */ 4427 ifmr->ifm_status = IFM_AVALID; 4428 4429 /* Setup the default interface info. */ 4430 ifmr->ifm_active = IFM_ETHER; 4431 4432 /* Report link down if the driver isn't running. */ 4433 if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) == 0) { 4434 ifmr->ifm_active |= IFM_NONE; 4435 BLOGD(sc, DBG_PHY, "in %s : nic still not loaded fully\n", __func__); 4436 BLOGD(sc, DBG_PHY, "in %s : link_up (1) : %d\n", 4437 __func__, sc->link_vars.link_up); 4438 return; 4439 } 4440 4441 4442 if (sc->link_vars.link_up) { 4443 ifmr->ifm_status |= IFM_ACTIVE; 4444 ifmr->ifm_active |= IFM_FDX; 4445 } else { 4446 ifmr->ifm_active |= IFM_NONE; 4447 BLOGD(sc, DBG_PHY, "in %s : setting IFM_NONE\n", 4448 __func__); 4449 return; 4450 } 4451 4452 ifmr->ifm_active |= sc->media; 4453 return; 4454 } 4455 4456 static void 4457 bxe_handle_chip_tq(void *context, 4458 int pending) 4459 { 4460 struct bxe_softc *sc = (struct bxe_softc *)context; 4461 long work = atomic_load_acq_long(&sc->chip_tq_flags); 4462 4463 switch (work) 4464 { 4465 4466 case CHIP_TQ_REINIT: 4467 if (if_getdrvflags(sc->ifp) & IFF_DRV_RUNNING) { 4468 /* restart the interface */ 4469 BLOGD(sc, DBG_LOAD, "Restarting the interface...\n"); 4470 bxe_periodic_stop(sc); 4471 BXE_CORE_LOCK(sc); 4472 bxe_stop_locked(sc); 4473 bxe_init_locked(sc); 4474 BXE_CORE_UNLOCK(sc); 4475 } 4476 break; 4477 4478 default: 4479 break; 4480 } 4481 } 4482 4483 /* 4484 * Handles any IOCTL calls from the operating system. 4485 * 4486 * Returns: 4487 * 0 = Success, >0 Failure 4488 */ 4489 static int 4490 bxe_ioctl(if_t ifp, 4491 u_long command, 4492 caddr_t data) 4493 { 4494 struct bxe_softc *sc = if_getsoftc(ifp); 4495 struct ifreq *ifr = (struct ifreq *)data; 4496 int mask = 0; 4497 int reinit = 0; 4498 int error = 0; 4499 4500 int mtu_min = (ETH_MIN_PACKET_SIZE - ETH_HLEN); 4501 int mtu_max = (MJUM9BYTES - ETH_OVERHEAD - IP_HEADER_ALIGNMENT_PADDING); 4502 4503 switch (command) 4504 { 4505 case SIOCSIFMTU: 4506 BLOGD(sc, DBG_IOCTL, "Received SIOCSIFMTU ioctl (mtu=%d)\n", 4507 ifr->ifr_mtu); 4508 4509 if (sc->mtu == ifr->ifr_mtu) { 4510 /* nothing to change */ 4511 break; 4512 } 4513 4514 if ((ifr->ifr_mtu < mtu_min) || (ifr->ifr_mtu > mtu_max)) { 4515 BLOGE(sc, "Unsupported MTU size %d (range is %d-%d)\n", 4516 ifr->ifr_mtu, mtu_min, mtu_max); 4517 error = EINVAL; 4518 break; 4519 } 4520 4521 atomic_store_rel_int((volatile unsigned int *)&sc->mtu, 4522 (unsigned long)ifr->ifr_mtu); 4523 /* 4524 atomic_store_rel_long((volatile unsigned long *)&if_getmtu(ifp), 4525 (unsigned long)ifr->ifr_mtu); 4526 XXX - Not sure why it needs to be atomic 4527 */ 4528 if_setmtu(ifp, ifr->ifr_mtu); 4529 reinit = 1; 4530 break; 4531 4532 case SIOCSIFFLAGS: 4533 /* toggle the interface state up or down */ 4534 BLOGD(sc, DBG_IOCTL, "Received SIOCSIFFLAGS ioctl\n"); 4535 4536 BXE_CORE_LOCK(sc); 4537 /* check if the interface is up */ 4538 if (if_getflags(ifp) & IFF_UP) { 4539 if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) { 4540 /* set the receive mode flags */ 4541 bxe_set_rx_mode(sc); 4542 } else if(sc->state != BXE_STATE_DISABLED) { 4543 bxe_init_locked(sc); 4544 } 4545 } else { 4546 if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) { 4547 bxe_periodic_stop(sc); 4548 bxe_stop_locked(sc); 4549 } 4550 } 4551 BXE_CORE_UNLOCK(sc); 4552 4553 break; 4554 4555 case SIOCADDMULTI: 4556 case SIOCDELMULTI: 4557 /* add/delete multicast addresses */ 4558 BLOGD(sc, DBG_IOCTL, "Received SIOCADDMULTI/SIOCDELMULTI ioctl\n"); 4559 4560 /* check if the interface is up */ 4561 if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) { 4562 /* set the receive mode flags */ 4563 BXE_CORE_LOCK(sc); 4564 bxe_set_rx_mode(sc); 4565 BXE_CORE_UNLOCK(sc); 4566 } 4567 4568 break; 4569 4570 case SIOCSIFCAP: 4571 /* find out which capabilities have changed */ 4572 mask = (ifr->ifr_reqcap ^ if_getcapenable(ifp)); 4573 4574 BLOGD(sc, DBG_IOCTL, "Received SIOCSIFCAP ioctl (mask=0x%08x)\n", 4575 mask); 4576 4577 /* toggle the LRO capabilites enable flag */ 4578 if (mask & IFCAP_LRO) { 4579 if_togglecapenable(ifp, IFCAP_LRO); 4580 BLOGD(sc, DBG_IOCTL, "Turning LRO %s\n", 4581 (if_getcapenable(ifp) & IFCAP_LRO) ? "ON" : "OFF"); 4582 reinit = 1; 4583 } 4584 4585 /* toggle the TXCSUM checksum capabilites enable flag */ 4586 if (mask & IFCAP_TXCSUM) { 4587 if_togglecapenable(ifp, IFCAP_TXCSUM); 4588 BLOGD(sc, DBG_IOCTL, "Turning TXCSUM %s\n", 4589 (if_getcapenable(ifp) & IFCAP_TXCSUM) ? "ON" : "OFF"); 4590 if (if_getcapenable(ifp) & IFCAP_TXCSUM) { 4591 if_sethwassistbits(ifp, (CSUM_IP | 4592 CSUM_TCP | 4593 CSUM_UDP | 4594 CSUM_TSO | 4595 CSUM_TCP_IPV6 | 4596 CSUM_UDP_IPV6), 0); 4597 } else { 4598 if_clearhwassist(ifp); /* XXX */ 4599 } 4600 } 4601 4602 /* toggle the RXCSUM checksum capabilities enable flag */ 4603 if (mask & IFCAP_RXCSUM) { 4604 if_togglecapenable(ifp, IFCAP_RXCSUM); 4605 BLOGD(sc, DBG_IOCTL, "Turning RXCSUM %s\n", 4606 (if_getcapenable(ifp) & IFCAP_RXCSUM) ? "ON" : "OFF"); 4607 if (if_getcapenable(ifp) & IFCAP_RXCSUM) { 4608 if_sethwassistbits(ifp, (CSUM_IP | 4609 CSUM_TCP | 4610 CSUM_UDP | 4611 CSUM_TSO | 4612 CSUM_TCP_IPV6 | 4613 CSUM_UDP_IPV6), 0); 4614 } else { 4615 if_clearhwassist(ifp); /* XXX */ 4616 } 4617 } 4618 4619 /* toggle TSO4 capabilities enabled flag */ 4620 if (mask & IFCAP_TSO4) { 4621 if_togglecapenable(ifp, IFCAP_TSO4); 4622 BLOGD(sc, DBG_IOCTL, "Turning TSO4 %s\n", 4623 (if_getcapenable(ifp) & IFCAP_TSO4) ? "ON" : "OFF"); 4624 } 4625 4626 /* toggle TSO6 capabilities enabled flag */ 4627 if (mask & IFCAP_TSO6) { 4628 if_togglecapenable(ifp, IFCAP_TSO6); 4629 BLOGD(sc, DBG_IOCTL, "Turning TSO6 %s\n", 4630 (if_getcapenable(ifp) & IFCAP_TSO6) ? "ON" : "OFF"); 4631 } 4632 4633 /* toggle VLAN_HWTSO capabilities enabled flag */ 4634 if (mask & IFCAP_VLAN_HWTSO) { 4635 4636 if_togglecapenable(ifp, IFCAP_VLAN_HWTSO); 4637 BLOGD(sc, DBG_IOCTL, "Turning VLAN_HWTSO %s\n", 4638 (if_getcapenable(ifp) & IFCAP_VLAN_HWTSO) ? "ON" : "OFF"); 4639 } 4640 4641 /* toggle VLAN_HWCSUM capabilities enabled flag */ 4642 if (mask & IFCAP_VLAN_HWCSUM) { 4643 /* XXX investigate this... */ 4644 BLOGE(sc, "Changing VLAN_HWCSUM is not supported!\n"); 4645 error = EINVAL; 4646 } 4647 4648 /* toggle VLAN_MTU capabilities enable flag */ 4649 if (mask & IFCAP_VLAN_MTU) { 4650 /* XXX investigate this... */ 4651 BLOGE(sc, "Changing VLAN_MTU is not supported!\n"); 4652 error = EINVAL; 4653 } 4654 4655 /* toggle VLAN_HWTAGGING capabilities enabled flag */ 4656 if (mask & IFCAP_VLAN_HWTAGGING) { 4657 /* XXX investigate this... */ 4658 BLOGE(sc, "Changing VLAN_HWTAGGING is not supported!\n"); 4659 error = EINVAL; 4660 } 4661 4662 /* toggle VLAN_HWFILTER capabilities enabled flag */ 4663 if (mask & IFCAP_VLAN_HWFILTER) { 4664 /* XXX investigate this... */ 4665 BLOGE(sc, "Changing VLAN_HWFILTER is not supported!\n"); 4666 error = EINVAL; 4667 } 4668 4669 /* XXX not yet... 4670 * IFCAP_WOL_MAGIC 4671 */ 4672 4673 break; 4674 4675 case SIOCSIFMEDIA: 4676 case SIOCGIFMEDIA: 4677 /* set/get interface media */ 4678 BLOGD(sc, DBG_IOCTL, 4679 "Received SIOCSIFMEDIA/SIOCGIFMEDIA ioctl (cmd=%lu)\n", 4680 (command & 0xff)); 4681 error = ifmedia_ioctl(ifp, ifr, &sc->ifmedia, command); 4682 break; 4683 4684 default: 4685 BLOGD(sc, DBG_IOCTL, "Received Unknown Ioctl (cmd=%lu)\n", 4686 (command & 0xff)); 4687 error = ether_ioctl(ifp, command, data); 4688 break; 4689 } 4690 4691 if (reinit && (if_getdrvflags(sc->ifp) & IFF_DRV_RUNNING)) { 4692 BLOGD(sc, DBG_LOAD | DBG_IOCTL, 4693 "Re-initializing hardware from IOCTL change\n"); 4694 bxe_periodic_stop(sc); 4695 BXE_CORE_LOCK(sc); 4696 bxe_stop_locked(sc); 4697 bxe_init_locked(sc); 4698 BXE_CORE_UNLOCK(sc); 4699 } 4700 4701 return (error); 4702 } 4703 4704 static __noinline void 4705 bxe_dump_mbuf(struct bxe_softc *sc, 4706 struct mbuf *m, 4707 uint8_t contents) 4708 { 4709 char * type; 4710 int i = 0; 4711 4712 if (!(sc->debug & DBG_MBUF)) { 4713 return; 4714 } 4715 4716 if (m == NULL) { 4717 BLOGD(sc, DBG_MBUF, "mbuf: null pointer\n"); 4718 return; 4719 } 4720 4721 while (m) { 4722 4723 BLOGD(sc, DBG_MBUF, 4724 "%02d: mbuf=%p m_len=%d m_flags=0x%b m_data=%p\n", 4725 i, m, m->m_len, m->m_flags, M_FLAG_BITS, m->m_data); 4726 4727 if (m->m_flags & M_PKTHDR) { 4728 BLOGD(sc, DBG_MBUF, 4729 "%02d: - m_pkthdr: tot_len=%d flags=0x%b csum_flags=%b\n", 4730 i, m->m_pkthdr.len, m->m_flags, M_FLAG_BITS, 4731 (int)m->m_pkthdr.csum_flags, CSUM_BITS); 4732 } 4733 4734 if (m->m_flags & M_EXT) { 4735 switch (m->m_ext.ext_type) { 4736 case EXT_CLUSTER: type = "EXT_CLUSTER"; break; 4737 case EXT_SFBUF: type = "EXT_SFBUF"; break; 4738 case EXT_JUMBOP: type = "EXT_JUMBOP"; break; 4739 case EXT_JUMBO9: type = "EXT_JUMBO9"; break; 4740 case EXT_JUMBO16: type = "EXT_JUMBO16"; break; 4741 case EXT_PACKET: type = "EXT_PACKET"; break; 4742 case EXT_MBUF: type = "EXT_MBUF"; break; 4743 case EXT_NET_DRV: type = "EXT_NET_DRV"; break; 4744 case EXT_MOD_TYPE: type = "EXT_MOD_TYPE"; break; 4745 case EXT_DISPOSABLE: type = "EXT_DISPOSABLE"; break; 4746 case EXT_EXTREF: type = "EXT_EXTREF"; break; 4747 default: type = "UNKNOWN"; break; 4748 } 4749 4750 BLOGD(sc, DBG_MBUF, 4751 "%02d: - m_ext: %p ext_size=%d type=%s\n", 4752 i, m->m_ext.ext_buf, m->m_ext.ext_size, type); 4753 } 4754 4755 if (contents) { 4756 bxe_dump_mbuf_data(sc, "mbuf data", m, TRUE); 4757 } 4758 4759 m = m->m_next; 4760 i++; 4761 } 4762 } 4763 4764 /* 4765 * Checks to ensure the 13 bd sliding window is >= MSS for TSO. 4766 * Check that (13 total bds - 3 bds) = 10 bd window >= MSS. 4767 * The window: 3 bds are = 1 for headers BD + 2 for parse BD and last BD 4768 * The headers comes in a separate bd in FreeBSD so 13-3=10. 4769 * Returns: 0 if OK to send, 1 if packet needs further defragmentation 4770 */ 4771 static int 4772 bxe_chktso_window(struct bxe_softc *sc, 4773 int nsegs, 4774 bus_dma_segment_t *segs, 4775 struct mbuf *m) 4776 { 4777 uint32_t num_wnds, wnd_size, wnd_sum; 4778 int32_t frag_idx, wnd_idx; 4779 unsigned short lso_mss; 4780 4781 wnd_sum = 0; 4782 wnd_size = 10; 4783 num_wnds = nsegs - wnd_size; 4784 lso_mss = htole16(m->m_pkthdr.tso_segsz); 4785 4786 /* 4787 * Total header lengths Eth+IP+TCP in first FreeBSD mbuf so calculate the 4788 * first window sum of data while skipping the first assuming it is the 4789 * header in FreeBSD. 4790 */ 4791 for (frag_idx = 1; (frag_idx <= wnd_size); frag_idx++) { 4792 wnd_sum += htole16(segs[frag_idx].ds_len); 4793 } 4794 4795 /* check the first 10 bd window size */ 4796 if (wnd_sum < lso_mss) { 4797 return (1); 4798 } 4799 4800 /* run through the windows */ 4801 for (wnd_idx = 0; wnd_idx < num_wnds; wnd_idx++, frag_idx++) { 4802 /* subtract the first mbuf->m_len of the last wndw(-header) */ 4803 wnd_sum -= htole16(segs[wnd_idx+1].ds_len); 4804 /* add the next mbuf len to the len of our new window */ 4805 wnd_sum += htole16(segs[frag_idx].ds_len); 4806 if (wnd_sum < lso_mss) { 4807 return (1); 4808 } 4809 } 4810 4811 return (0); 4812 } 4813 4814 static uint8_t 4815 bxe_set_pbd_csum_e2(struct bxe_fastpath *fp, 4816 struct mbuf *m, 4817 uint32_t *parsing_data) 4818 { 4819 struct ether_vlan_header *eh = NULL; 4820 struct ip *ip4 = NULL; 4821 struct ip6_hdr *ip6 = NULL; 4822 caddr_t ip = NULL; 4823 struct tcphdr *th = NULL; 4824 int e_hlen, ip_hlen, l4_off; 4825 uint16_t proto; 4826 4827 if (m->m_pkthdr.csum_flags == CSUM_IP) { 4828 /* no L4 checksum offload needed */ 4829 return (0); 4830 } 4831 4832 /* get the Ethernet header */ 4833 eh = mtod(m, struct ether_vlan_header *); 4834 4835 /* handle VLAN encapsulation if present */ 4836 if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) { 4837 e_hlen = (ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN); 4838 proto = ntohs(eh->evl_proto); 4839 } else { 4840 e_hlen = ETHER_HDR_LEN; 4841 proto = ntohs(eh->evl_encap_proto); 4842 } 4843 4844 switch (proto) { 4845 case ETHERTYPE_IP: 4846 /* get the IP header, if mbuf len < 20 then header in next mbuf */ 4847 ip4 = (m->m_len < sizeof(struct ip)) ? 4848 (struct ip *)m->m_next->m_data : 4849 (struct ip *)(m->m_data + e_hlen); 4850 /* ip_hl is number of 32-bit words */ 4851 ip_hlen = (ip4->ip_hl << 2); 4852 ip = (caddr_t)ip4; 4853 break; 4854 case ETHERTYPE_IPV6: 4855 /* get the IPv6 header, if mbuf len < 40 then header in next mbuf */ 4856 ip6 = (m->m_len < sizeof(struct ip6_hdr)) ? 4857 (struct ip6_hdr *)m->m_next->m_data : 4858 (struct ip6_hdr *)(m->m_data + e_hlen); 4859 /* XXX cannot support offload with IPv6 extensions */ 4860 ip_hlen = sizeof(struct ip6_hdr); 4861 ip = (caddr_t)ip6; 4862 break; 4863 default: 4864 /* We can't offload in this case... */ 4865 /* XXX error stat ??? */ 4866 return (0); 4867 } 4868 4869 /* XXX assuming L4 header is contiguous to IPv4/IPv6 in the same mbuf */ 4870 l4_off = (e_hlen + ip_hlen); 4871 4872 *parsing_data |= 4873 (((l4_off >> 1) << ETH_TX_PARSE_BD_E2_L4_HDR_START_OFFSET_W_SHIFT) & 4874 ETH_TX_PARSE_BD_E2_L4_HDR_START_OFFSET_W); 4875 4876 if (m->m_pkthdr.csum_flags & (CSUM_TCP | 4877 CSUM_TSO | 4878 CSUM_TCP_IPV6)) { 4879 fp->eth_q_stats.tx_ofld_frames_csum_tcp++; 4880 th = (struct tcphdr *)(ip + ip_hlen); 4881 /* th_off is number of 32-bit words */ 4882 *parsing_data |= ((th->th_off << 4883 ETH_TX_PARSE_BD_E2_TCP_HDR_LENGTH_DW_SHIFT) & 4884 ETH_TX_PARSE_BD_E2_TCP_HDR_LENGTH_DW); 4885 return (l4_off + (th->th_off << 2)); /* entire header length */ 4886 } else if (m->m_pkthdr.csum_flags & (CSUM_UDP | 4887 CSUM_UDP_IPV6)) { 4888 fp->eth_q_stats.tx_ofld_frames_csum_udp++; 4889 return (l4_off + sizeof(struct udphdr)); /* entire header length */ 4890 } else { 4891 /* XXX error stat ??? */ 4892 return (0); 4893 } 4894 } 4895 4896 static uint8_t 4897 bxe_set_pbd_csum(struct bxe_fastpath *fp, 4898 struct mbuf *m, 4899 struct eth_tx_parse_bd_e1x *pbd) 4900 { 4901 struct ether_vlan_header *eh = NULL; 4902 struct ip *ip4 = NULL; 4903 struct ip6_hdr *ip6 = NULL; 4904 caddr_t ip = NULL; 4905 struct tcphdr *th = NULL; 4906 struct udphdr *uh = NULL; 4907 int e_hlen, ip_hlen; 4908 uint16_t proto; 4909 uint8_t hlen; 4910 uint16_t tmp_csum; 4911 uint32_t *tmp_uh; 4912 4913 /* get the Ethernet header */ 4914 eh = mtod(m, struct ether_vlan_header *); 4915 4916 /* handle VLAN encapsulation if present */ 4917 if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) { 4918 e_hlen = (ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN); 4919 proto = ntohs(eh->evl_proto); 4920 } else { 4921 e_hlen = ETHER_HDR_LEN; 4922 proto = ntohs(eh->evl_encap_proto); 4923 } 4924 4925 switch (proto) { 4926 case ETHERTYPE_IP: 4927 /* get the IP header, if mbuf len < 20 then header in next mbuf */ 4928 ip4 = (m->m_len < sizeof(struct ip)) ? 4929 (struct ip *)m->m_next->m_data : 4930 (struct ip *)(m->m_data + e_hlen); 4931 /* ip_hl is number of 32-bit words */ 4932 ip_hlen = (ip4->ip_hl << 1); 4933 ip = (caddr_t)ip4; 4934 break; 4935 case ETHERTYPE_IPV6: 4936 /* get the IPv6 header, if mbuf len < 40 then header in next mbuf */ 4937 ip6 = (m->m_len < sizeof(struct ip6_hdr)) ? 4938 (struct ip6_hdr *)m->m_next->m_data : 4939 (struct ip6_hdr *)(m->m_data + e_hlen); 4940 /* XXX cannot support offload with IPv6 extensions */ 4941 ip_hlen = (sizeof(struct ip6_hdr) >> 1); 4942 ip = (caddr_t)ip6; 4943 break; 4944 default: 4945 /* We can't offload in this case... */ 4946 /* XXX error stat ??? */ 4947 return (0); 4948 } 4949 4950 hlen = (e_hlen >> 1); 4951 4952 /* note that rest of global_data is indirectly zeroed here */ 4953 if (m->m_flags & M_VLANTAG) { 4954 pbd->global_data = 4955 htole16(hlen | (1 << ETH_TX_PARSE_BD_E1X_LLC_SNAP_EN_SHIFT)); 4956 } else { 4957 pbd->global_data = htole16(hlen); 4958 } 4959 4960 pbd->ip_hlen_w = ip_hlen; 4961 4962 hlen += pbd->ip_hlen_w; 4963 4964 /* XXX assuming L4 header is contiguous to IPv4/IPv6 in the same mbuf */ 4965 4966 if (m->m_pkthdr.csum_flags & (CSUM_TCP | 4967 CSUM_TSO | 4968 CSUM_TCP_IPV6)) { 4969 th = (struct tcphdr *)(ip + (ip_hlen << 1)); 4970 /* th_off is number of 32-bit words */ 4971 hlen += (uint16_t)(th->th_off << 1); 4972 } else if (m->m_pkthdr.csum_flags & (CSUM_UDP | 4973 CSUM_UDP_IPV6)) { 4974 uh = (struct udphdr *)(ip + (ip_hlen << 1)); 4975 hlen += (sizeof(struct udphdr) / 2); 4976 } else { 4977 /* valid case as only CSUM_IP was set */ 4978 return (0); 4979 } 4980 4981 pbd->total_hlen_w = htole16(hlen); 4982 4983 if (m->m_pkthdr.csum_flags & (CSUM_TCP | 4984 CSUM_TSO | 4985 CSUM_TCP_IPV6)) { 4986 fp->eth_q_stats.tx_ofld_frames_csum_tcp++; 4987 pbd->tcp_pseudo_csum = ntohs(th->th_sum); 4988 } else if (m->m_pkthdr.csum_flags & (CSUM_UDP | 4989 CSUM_UDP_IPV6)) { 4990 fp->eth_q_stats.tx_ofld_frames_csum_udp++; 4991 4992 /* 4993 * Everest1 (i.e. 57710, 57711, 57711E) does not natively support UDP 4994 * checksums and does not know anything about the UDP header and where 4995 * the checksum field is located. It only knows about TCP. Therefore 4996 * we "lie" to the hardware for outgoing UDP packets w/ checksum 4997 * offload. Since the checksum field offset for TCP is 16 bytes and 4998 * for UDP it is 6 bytes we pass a pointer to the hardware that is 10 4999 * bytes less than the start of the UDP header. This allows the 5000 * hardware to write the checksum in the correct spot. But the 5001 * hardware will compute a checksum which includes the last 10 bytes 5002 * of the IP header. To correct this we tweak the stack computed 5003 * pseudo checksum by folding in the calculation of the inverse 5004 * checksum for those final 10 bytes of the IP header. This allows 5005 * the correct checksum to be computed by the hardware. 5006 */ 5007 5008 /* set pointer 10 bytes before UDP header */ 5009 tmp_uh = (uint32_t *)((uint8_t *)uh - 10); 5010 5011 /* calculate a pseudo header checksum over the first 10 bytes */ 5012 tmp_csum = in_pseudo(*tmp_uh, 5013 *(tmp_uh + 1), 5014 *(uint16_t *)(tmp_uh + 2)); 5015 5016 pbd->tcp_pseudo_csum = ntohs(in_addword(uh->uh_sum, ~tmp_csum)); 5017 } 5018 5019 return (hlen * 2); /* entire header length, number of bytes */ 5020 } 5021 5022 static void 5023 bxe_set_pbd_lso_e2(struct mbuf *m, 5024 uint32_t *parsing_data) 5025 { 5026 *parsing_data |= ((m->m_pkthdr.tso_segsz << 5027 ETH_TX_PARSE_BD_E2_LSO_MSS_SHIFT) & 5028 ETH_TX_PARSE_BD_E2_LSO_MSS); 5029 5030 /* XXX test for IPv6 with extension header... */ 5031 } 5032 5033 static void 5034 bxe_set_pbd_lso(struct mbuf *m, 5035 struct eth_tx_parse_bd_e1x *pbd) 5036 { 5037 struct ether_vlan_header *eh = NULL; 5038 struct ip *ip = NULL; 5039 struct tcphdr *th = NULL; 5040 int e_hlen; 5041 5042 /* get the Ethernet header */ 5043 eh = mtod(m, struct ether_vlan_header *); 5044 5045 /* handle VLAN encapsulation if present */ 5046 e_hlen = (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) ? 5047 (ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN) : ETHER_HDR_LEN; 5048 5049 /* get the IP and TCP header, with LSO entire header in first mbuf */ 5050 /* XXX assuming IPv4 */ 5051 ip = (struct ip *)(m->m_data + e_hlen); 5052 th = (struct tcphdr *)((caddr_t)ip + (ip->ip_hl << 2)); 5053 5054 pbd->lso_mss = htole16(m->m_pkthdr.tso_segsz); 5055 pbd->tcp_send_seq = ntohl(th->th_seq); 5056 pbd->tcp_flags = ((ntohl(((uint32_t *)th)[3]) >> 16) & 0xff); 5057 5058 #if 1 5059 /* XXX IPv4 */ 5060 pbd->ip_id = ntohs(ip->ip_id); 5061 pbd->tcp_pseudo_csum = 5062 ntohs(in_pseudo(ip->ip_src.s_addr, 5063 ip->ip_dst.s_addr, 5064 htons(IPPROTO_TCP))); 5065 #else 5066 /* XXX IPv6 */ 5067 pbd->tcp_pseudo_csum = 5068 ntohs(in_pseudo(&ip6->ip6_src, 5069 &ip6->ip6_dst, 5070 htons(IPPROTO_TCP))); 5071 #endif 5072 5073 pbd->global_data |= 5074 htole16(ETH_TX_PARSE_BD_E1X_PSEUDO_CS_WITHOUT_LEN); 5075 } 5076 5077 /* 5078 * Encapsulte an mbuf cluster into the tx bd chain and makes the memory 5079 * visible to the controller. 5080 * 5081 * If an mbuf is submitted to this routine and cannot be given to the 5082 * controller (e.g. it has too many fragments) then the function may free 5083 * the mbuf and return to the caller. 5084 * 5085 * Returns: 5086 * 0 = Success, !0 = Failure 5087 * Note the side effect that an mbuf may be freed if it causes a problem. 5088 */ 5089 static int 5090 bxe_tx_encap(struct bxe_fastpath *fp, struct mbuf **m_head) 5091 { 5092 bus_dma_segment_t segs[32]; 5093 struct mbuf *m0; 5094 struct bxe_sw_tx_bd *tx_buf; 5095 struct eth_tx_parse_bd_e1x *pbd_e1x = NULL; 5096 struct eth_tx_parse_bd_e2 *pbd_e2 = NULL; 5097 /* struct eth_tx_parse_2nd_bd *pbd2 = NULL; */ 5098 struct eth_tx_bd *tx_data_bd; 5099 struct eth_tx_bd *tx_total_pkt_size_bd; 5100 struct eth_tx_start_bd *tx_start_bd; 5101 uint16_t bd_prod, pkt_prod, total_pkt_size; 5102 uint8_t mac_type; 5103 int defragged, error, nsegs, rc, nbds, vlan_off, ovlan; 5104 struct bxe_softc *sc; 5105 uint16_t tx_bd_avail; 5106 struct ether_vlan_header *eh; 5107 uint32_t pbd_e2_parsing_data = 0; 5108 uint8_t hlen = 0; 5109 int tmp_bd; 5110 int i; 5111 5112 sc = fp->sc; 5113 5114 M_ASSERTPKTHDR(*m_head); 5115 5116 m0 = *m_head; 5117 rc = defragged = nbds = ovlan = vlan_off = total_pkt_size = 0; 5118 tx_start_bd = NULL; 5119 tx_data_bd = NULL; 5120 tx_total_pkt_size_bd = NULL; 5121 5122 /* get the H/W pointer for packets and BDs */ 5123 pkt_prod = fp->tx_pkt_prod; 5124 bd_prod = fp->tx_bd_prod; 5125 5126 mac_type = UNICAST_ADDRESS; 5127 5128 /* map the mbuf into the next open DMAable memory */ 5129 tx_buf = &fp->tx_mbuf_chain[TX_BD(pkt_prod)]; 5130 error = bus_dmamap_load_mbuf_sg(fp->tx_mbuf_tag, 5131 tx_buf->m_map, m0, 5132 segs, &nsegs, BUS_DMA_NOWAIT); 5133 5134 /* mapping errors */ 5135 if(__predict_false(error != 0)) { 5136 fp->eth_q_stats.tx_dma_mapping_failure++; 5137 if (error == ENOMEM) { 5138 /* resource issue, try again later */ 5139 rc = ENOMEM; 5140 } else if (error == EFBIG) { 5141 /* possibly recoverable with defragmentation */ 5142 fp->eth_q_stats.mbuf_defrag_attempts++; 5143 m0 = m_defrag(*m_head, M_NOWAIT); 5144 if (m0 == NULL) { 5145 fp->eth_q_stats.mbuf_defrag_failures++; 5146 rc = ENOBUFS; 5147 } else { 5148 /* defrag successful, try mapping again */ 5149 *m_head = m0; 5150 error = bus_dmamap_load_mbuf_sg(fp->tx_mbuf_tag, 5151 tx_buf->m_map, m0, 5152 segs, &nsegs, BUS_DMA_NOWAIT); 5153 if (error) { 5154 fp->eth_q_stats.tx_dma_mapping_failure++; 5155 rc = error; 5156 } 5157 } 5158 } else { 5159 /* unknown, unrecoverable mapping error */ 5160 BLOGE(sc, "Unknown TX mapping error rc=%d\n", error); 5161 bxe_dump_mbuf(sc, m0, FALSE); 5162 rc = error; 5163 } 5164 5165 goto bxe_tx_encap_continue; 5166 } 5167 5168 tx_bd_avail = bxe_tx_avail(sc, fp); 5169 5170 /* make sure there is enough room in the send queue */ 5171 if (__predict_false(tx_bd_avail < (nsegs + 2))) { 5172 /* Recoverable, try again later. */ 5173 fp->eth_q_stats.tx_hw_queue_full++; 5174 bus_dmamap_unload(fp->tx_mbuf_tag, tx_buf->m_map); 5175 rc = ENOMEM; 5176 goto bxe_tx_encap_continue; 5177 } 5178 5179 /* capture the current H/W TX chain high watermark */ 5180 if (__predict_false(fp->eth_q_stats.tx_hw_max_queue_depth < 5181 (TX_BD_USABLE - tx_bd_avail))) { 5182 fp->eth_q_stats.tx_hw_max_queue_depth = (TX_BD_USABLE - tx_bd_avail); 5183 } 5184 5185 /* make sure it fits in the packet window */ 5186 if (__predict_false(nsegs > BXE_MAX_SEGMENTS)) { 5187 /* 5188 * The mbuf may be to big for the controller to handle. If the frame 5189 * is a TSO frame we'll need to do an additional check. 5190 */ 5191 if (m0->m_pkthdr.csum_flags & CSUM_TSO) { 5192 if (bxe_chktso_window(sc, nsegs, segs, m0) == 0) { 5193 goto bxe_tx_encap_continue; /* OK to send */ 5194 } else { 5195 fp->eth_q_stats.tx_window_violation_tso++; 5196 } 5197 } else { 5198 fp->eth_q_stats.tx_window_violation_std++; 5199 } 5200 5201 /* lets try to defragment this mbuf and remap it */ 5202 fp->eth_q_stats.mbuf_defrag_attempts++; 5203 bus_dmamap_unload(fp->tx_mbuf_tag, tx_buf->m_map); 5204 5205 m0 = m_defrag(*m_head, M_NOWAIT); 5206 if (m0 == NULL) { 5207 fp->eth_q_stats.mbuf_defrag_failures++; 5208 /* Ugh, just drop the frame... :( */ 5209 rc = ENOBUFS; 5210 } else { 5211 /* defrag successful, try mapping again */ 5212 *m_head = m0; 5213 error = bus_dmamap_load_mbuf_sg(fp->tx_mbuf_tag, 5214 tx_buf->m_map, m0, 5215 segs, &nsegs, BUS_DMA_NOWAIT); 5216 if (error) { 5217 fp->eth_q_stats.tx_dma_mapping_failure++; 5218 /* No sense in trying to defrag/copy chain, drop it. :( */ 5219 rc = error; 5220 } else { 5221 /* if the chain is still too long then drop it */ 5222 if(m0->m_pkthdr.csum_flags & CSUM_TSO) { 5223 /* 5224 * in case TSO is enabled nsegs should be checked against 5225 * BXE_TSO_MAX_SEGMENTS 5226 */ 5227 if (__predict_false(nsegs > BXE_TSO_MAX_SEGMENTS)) { 5228 bus_dmamap_unload(fp->tx_mbuf_tag, tx_buf->m_map); 5229 fp->eth_q_stats.nsegs_path1_errors++; 5230 rc = ENODEV; 5231 } 5232 } else { 5233 if (__predict_false(nsegs > BXE_MAX_SEGMENTS)) { 5234 bus_dmamap_unload(fp->tx_mbuf_tag, tx_buf->m_map); 5235 fp->eth_q_stats.nsegs_path2_errors++; 5236 rc = ENODEV; 5237 } 5238 } 5239 } 5240 } 5241 } 5242 5243 bxe_tx_encap_continue: 5244 5245 /* Check for errors */ 5246 if (rc) { 5247 if (rc == ENOMEM) { 5248 /* recoverable try again later */ 5249 } else { 5250 fp->eth_q_stats.tx_soft_errors++; 5251 fp->eth_q_stats.mbuf_alloc_tx--; 5252 m_freem(*m_head); 5253 *m_head = NULL; 5254 } 5255 5256 return (rc); 5257 } 5258 5259 /* set flag according to packet type (UNICAST_ADDRESS is default) */ 5260 if (m0->m_flags & M_BCAST) { 5261 mac_type = BROADCAST_ADDRESS; 5262 } else if (m0->m_flags & M_MCAST) { 5263 mac_type = MULTICAST_ADDRESS; 5264 } 5265 5266 /* store the mbuf into the mbuf ring */ 5267 tx_buf->m = m0; 5268 tx_buf->first_bd = fp->tx_bd_prod; 5269 tx_buf->flags = 0; 5270 5271 /* prepare the first transmit (start) BD for the mbuf */ 5272 tx_start_bd = &fp->tx_chain[TX_BD(bd_prod)].start_bd; 5273 5274 BLOGD(sc, DBG_TX, 5275 "sending pkt_prod=%u tx_buf=%p next_idx=%u bd=%u tx_start_bd=%p\n", 5276 pkt_prod, tx_buf, fp->tx_pkt_prod, bd_prod, tx_start_bd); 5277 5278 tx_start_bd->addr_lo = htole32(U64_LO(segs[0].ds_addr)); 5279 tx_start_bd->addr_hi = htole32(U64_HI(segs[0].ds_addr)); 5280 tx_start_bd->nbytes = htole16(segs[0].ds_len); 5281 total_pkt_size += tx_start_bd->nbytes; 5282 tx_start_bd->bd_flags.as_bitfield = ETH_TX_BD_FLAGS_START_BD; 5283 5284 tx_start_bd->general_data = (1 << ETH_TX_START_BD_HDR_NBDS_SHIFT); 5285 5286 /* all frames have at least Start BD + Parsing BD */ 5287 nbds = nsegs + 1; 5288 tx_start_bd->nbd = htole16(nbds); 5289 5290 if (m0->m_flags & M_VLANTAG) { 5291 tx_start_bd->vlan_or_ethertype = htole16(m0->m_pkthdr.ether_vtag); 5292 tx_start_bd->bd_flags.as_bitfield |= 5293 (X_ETH_OUTBAND_VLAN << ETH_TX_BD_FLAGS_VLAN_MODE_SHIFT); 5294 } else { 5295 /* vf tx, start bd must hold the ethertype for fw to enforce it */ 5296 if (IS_VF(sc)) { 5297 /* map ethernet header to find type and header length */ 5298 eh = mtod(m0, struct ether_vlan_header *); 5299 tx_start_bd->vlan_or_ethertype = eh->evl_encap_proto; 5300 } else { 5301 /* used by FW for packet accounting */ 5302 tx_start_bd->vlan_or_ethertype = htole16(fp->tx_pkt_prod); 5303 } 5304 } 5305 5306 /* 5307 * add a parsing BD from the chain. The parsing BD is always added 5308 * though it is only used for TSO and chksum 5309 */ 5310 bd_prod = TX_BD_NEXT(bd_prod); 5311 5312 if (m0->m_pkthdr.csum_flags) { 5313 if (m0->m_pkthdr.csum_flags & CSUM_IP) { 5314 fp->eth_q_stats.tx_ofld_frames_csum_ip++; 5315 tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_IP_CSUM; 5316 } 5317 5318 if (m0->m_pkthdr.csum_flags & CSUM_TCP_IPV6) { 5319 tx_start_bd->bd_flags.as_bitfield |= (ETH_TX_BD_FLAGS_IPV6 | 5320 ETH_TX_BD_FLAGS_L4_CSUM); 5321 } else if (m0->m_pkthdr.csum_flags & CSUM_UDP_IPV6) { 5322 tx_start_bd->bd_flags.as_bitfield |= (ETH_TX_BD_FLAGS_IPV6 | 5323 ETH_TX_BD_FLAGS_IS_UDP | 5324 ETH_TX_BD_FLAGS_L4_CSUM); 5325 } else if ((m0->m_pkthdr.csum_flags & CSUM_TCP) || 5326 (m0->m_pkthdr.csum_flags & CSUM_TSO)) { 5327 tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_L4_CSUM; 5328 } else if (m0->m_pkthdr.csum_flags & CSUM_UDP) { 5329 tx_start_bd->bd_flags.as_bitfield |= (ETH_TX_BD_FLAGS_L4_CSUM | 5330 ETH_TX_BD_FLAGS_IS_UDP); 5331 } 5332 } 5333 5334 if (!CHIP_IS_E1x(sc)) { 5335 pbd_e2 = &fp->tx_chain[TX_BD(bd_prod)].parse_bd_e2; 5336 memset(pbd_e2, 0, sizeof(struct eth_tx_parse_bd_e2)); 5337 5338 if (m0->m_pkthdr.csum_flags) { 5339 hlen = bxe_set_pbd_csum_e2(fp, m0, &pbd_e2_parsing_data); 5340 } 5341 5342 SET_FLAG(pbd_e2_parsing_data, ETH_TX_PARSE_BD_E2_ETH_ADDR_TYPE, 5343 mac_type); 5344 } else { 5345 uint16_t global_data = 0; 5346 5347 pbd_e1x = &fp->tx_chain[TX_BD(bd_prod)].parse_bd_e1x; 5348 memset(pbd_e1x, 0, sizeof(struct eth_tx_parse_bd_e1x)); 5349 5350 if (m0->m_pkthdr.csum_flags) { 5351 hlen = bxe_set_pbd_csum(fp, m0, pbd_e1x); 5352 } 5353 5354 SET_FLAG(global_data, 5355 ETH_TX_PARSE_BD_E1X_ETH_ADDR_TYPE, mac_type); 5356 pbd_e1x->global_data |= htole16(global_data); 5357 } 5358 5359 /* setup the parsing BD with TSO specific info */ 5360 if (m0->m_pkthdr.csum_flags & CSUM_TSO) { 5361 fp->eth_q_stats.tx_ofld_frames_lso++; 5362 tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_SW_LSO; 5363 5364 if (__predict_false(tx_start_bd->nbytes > hlen)) { 5365 fp->eth_q_stats.tx_ofld_frames_lso_hdr_splits++; 5366 5367 /* split the first BD into header/data making the fw job easy */ 5368 nbds++; 5369 tx_start_bd->nbd = htole16(nbds); 5370 tx_start_bd->nbytes = htole16(hlen); 5371 5372 bd_prod = TX_BD_NEXT(bd_prod); 5373 5374 /* new transmit BD after the tx_parse_bd */ 5375 tx_data_bd = &fp->tx_chain[TX_BD(bd_prod)].reg_bd; 5376 tx_data_bd->addr_hi = htole32(U64_HI(segs[0].ds_addr + hlen)); 5377 tx_data_bd->addr_lo = htole32(U64_LO(segs[0].ds_addr + hlen)); 5378 tx_data_bd->nbytes = htole16(segs[0].ds_len - hlen); 5379 if (tx_total_pkt_size_bd == NULL) { 5380 tx_total_pkt_size_bd = tx_data_bd; 5381 } 5382 5383 BLOGD(sc, DBG_TX, 5384 "TSO split header size is %d (%x:%x) nbds %d\n", 5385 le16toh(tx_start_bd->nbytes), 5386 le32toh(tx_start_bd->addr_hi), 5387 le32toh(tx_start_bd->addr_lo), 5388 nbds); 5389 } 5390 5391 if (!CHIP_IS_E1x(sc)) { 5392 bxe_set_pbd_lso_e2(m0, &pbd_e2_parsing_data); 5393 } else { 5394 bxe_set_pbd_lso(m0, pbd_e1x); 5395 } 5396 } 5397 5398 if (pbd_e2_parsing_data) { 5399 pbd_e2->parsing_data = htole32(pbd_e2_parsing_data); 5400 } 5401 5402 /* prepare remaining BDs, start tx bd contains first seg/frag */ 5403 for (i = 1; i < nsegs ; i++) { 5404 bd_prod = TX_BD_NEXT(bd_prod); 5405 tx_data_bd = &fp->tx_chain[TX_BD(bd_prod)].reg_bd; 5406 tx_data_bd->addr_lo = htole32(U64_LO(segs[i].ds_addr)); 5407 tx_data_bd->addr_hi = htole32(U64_HI(segs[i].ds_addr)); 5408 tx_data_bd->nbytes = htole16(segs[i].ds_len); 5409 if (tx_total_pkt_size_bd == NULL) { 5410 tx_total_pkt_size_bd = tx_data_bd; 5411 } 5412 total_pkt_size += tx_data_bd->nbytes; 5413 } 5414 5415 BLOGD(sc, DBG_TX, "last bd %p\n", tx_data_bd); 5416 5417 if (tx_total_pkt_size_bd != NULL) { 5418 tx_total_pkt_size_bd->total_pkt_bytes = total_pkt_size; 5419 } 5420 5421 if (__predict_false(sc->debug & DBG_TX)) { 5422 tmp_bd = tx_buf->first_bd; 5423 for (i = 0; i < nbds; i++) 5424 { 5425 if (i == 0) { 5426 BLOGD(sc, DBG_TX, 5427 "TX Strt: %p bd=%d nbd=%d vlan=0x%x " 5428 "bd_flags=0x%x hdr_nbds=%d\n", 5429 tx_start_bd, 5430 tmp_bd, 5431 le16toh(tx_start_bd->nbd), 5432 le16toh(tx_start_bd->vlan_or_ethertype), 5433 tx_start_bd->bd_flags.as_bitfield, 5434 (tx_start_bd->general_data & ETH_TX_START_BD_HDR_NBDS)); 5435 } else if (i == 1) { 5436 if (pbd_e1x) { 5437 BLOGD(sc, DBG_TX, 5438 "-> Prse: %p bd=%d global=0x%x ip_hlen_w=%u " 5439 "ip_id=%u lso_mss=%u tcp_flags=0x%x csum=0x%x " 5440 "tcp_seq=%u total_hlen_w=%u\n", 5441 pbd_e1x, 5442 tmp_bd, 5443 pbd_e1x->global_data, 5444 pbd_e1x->ip_hlen_w, 5445 pbd_e1x->ip_id, 5446 pbd_e1x->lso_mss, 5447 pbd_e1x->tcp_flags, 5448 pbd_e1x->tcp_pseudo_csum, 5449 pbd_e1x->tcp_send_seq, 5450 le16toh(pbd_e1x->total_hlen_w)); 5451 } else { /* if (pbd_e2) */ 5452 BLOGD(sc, DBG_TX, 5453 "-> Parse: %p bd=%d dst=%02x:%02x:%02x " 5454 "src=%02x:%02x:%02x parsing_data=0x%x\n", 5455 pbd_e2, 5456 tmp_bd, 5457 pbd_e2->data.mac_addr.dst_hi, 5458 pbd_e2->data.mac_addr.dst_mid, 5459 pbd_e2->data.mac_addr.dst_lo, 5460 pbd_e2->data.mac_addr.src_hi, 5461 pbd_e2->data.mac_addr.src_mid, 5462 pbd_e2->data.mac_addr.src_lo, 5463 pbd_e2->parsing_data); 5464 } 5465 } 5466 5467 if (i != 1) { /* skip parse db as it doesn't hold data */ 5468 tx_data_bd = &fp->tx_chain[TX_BD(tmp_bd)].reg_bd; 5469 BLOGD(sc, DBG_TX, 5470 "-> Frag: %p bd=%d nbytes=%d hi=0x%x lo: 0x%x\n", 5471 tx_data_bd, 5472 tmp_bd, 5473 le16toh(tx_data_bd->nbytes), 5474 le32toh(tx_data_bd->addr_hi), 5475 le32toh(tx_data_bd->addr_lo)); 5476 } 5477 5478 tmp_bd = TX_BD_NEXT(tmp_bd); 5479 } 5480 } 5481 5482 BLOGD(sc, DBG_TX, "doorbell: nbds=%d bd=%u\n", nbds, bd_prod); 5483 5484 /* update TX BD producer index value for next TX */ 5485 bd_prod = TX_BD_NEXT(bd_prod); 5486 5487 /* 5488 * If the chain of tx_bd's describing this frame is adjacent to or spans 5489 * an eth_tx_next_bd element then we need to increment the nbds value. 5490 */ 5491 if (TX_BD_IDX(bd_prod) < nbds) { 5492 nbds++; 5493 } 5494 5495 /* don't allow reordering of writes for nbd and packets */ 5496 mb(); 5497 5498 fp->tx_db.data.prod += nbds; 5499 5500 /* producer points to the next free tx_bd at this point */ 5501 fp->tx_pkt_prod++; 5502 fp->tx_bd_prod = bd_prod; 5503 5504 DOORBELL(sc, fp->index, fp->tx_db.raw); 5505 5506 fp->eth_q_stats.tx_pkts++; 5507 5508 /* Prevent speculative reads from getting ahead of the status block. */ 5509 bus_space_barrier(sc->bar[BAR0].tag, sc->bar[BAR0].handle, 5510 0, 0, BUS_SPACE_BARRIER_READ); 5511 5512 /* Prevent speculative reads from getting ahead of the doorbell. */ 5513 bus_space_barrier(sc->bar[BAR2].tag, sc->bar[BAR2].handle, 5514 0, 0, BUS_SPACE_BARRIER_READ); 5515 5516 return (0); 5517 } 5518 5519 static void 5520 bxe_tx_start_locked(struct bxe_softc *sc, 5521 if_t ifp, 5522 struct bxe_fastpath *fp) 5523 { 5524 struct mbuf *m = NULL; 5525 int tx_count = 0; 5526 uint16_t tx_bd_avail; 5527 5528 BXE_FP_TX_LOCK_ASSERT(fp); 5529 5530 /* keep adding entries while there are frames to send */ 5531 while (!if_sendq_empty(ifp)) { 5532 5533 /* 5534 * check for any frames to send 5535 * dequeue can still be NULL even if queue is not empty 5536 */ 5537 m = if_dequeue(ifp); 5538 if (__predict_false(m == NULL)) { 5539 break; 5540 } 5541 5542 /* the mbuf now belongs to us */ 5543 fp->eth_q_stats.mbuf_alloc_tx++; 5544 5545 /* 5546 * Put the frame into the transmit ring. If we don't have room, 5547 * place the mbuf back at the head of the TX queue, set the 5548 * OACTIVE flag, and wait for the NIC to drain the chain. 5549 */ 5550 if (__predict_false(bxe_tx_encap(fp, &m))) { 5551 fp->eth_q_stats.tx_encap_failures++; 5552 if (m != NULL) { 5553 /* mark the TX queue as full and return the frame */ 5554 if_setdrvflagbits(ifp, IFF_DRV_OACTIVE, 0); 5555 if_sendq_prepend(ifp, m); 5556 fp->eth_q_stats.mbuf_alloc_tx--; 5557 fp->eth_q_stats.tx_queue_xoff++; 5558 } 5559 5560 /* stop looking for more work */ 5561 break; 5562 } 5563 5564 /* the frame was enqueued successfully */ 5565 tx_count++; 5566 5567 /* send a copy of the frame to any BPF listeners. */ 5568 ether_bpf_mtap_if(ifp, m); 5569 5570 tx_bd_avail = bxe_tx_avail(sc, fp); 5571 5572 /* handle any completions if we're running low */ 5573 if (tx_bd_avail < BXE_TX_CLEANUP_THRESHOLD) { 5574 /* bxe_txeof will set IFF_DRV_OACTIVE appropriately */ 5575 bxe_txeof(sc, fp); 5576 if (if_getdrvflags(ifp) & IFF_DRV_OACTIVE) { 5577 break; 5578 } 5579 } 5580 } 5581 5582 /* all TX packets were dequeued and/or the tx ring is full */ 5583 if (tx_count > 0) { 5584 /* reset the TX watchdog timeout timer */ 5585 fp->watchdog_timer = BXE_TX_TIMEOUT; 5586 } 5587 } 5588 5589 /* Legacy (non-RSS) dispatch routine */ 5590 static void 5591 bxe_tx_start(if_t ifp) 5592 { 5593 struct bxe_softc *sc; 5594 struct bxe_fastpath *fp; 5595 5596 sc = if_getsoftc(ifp); 5597 5598 if (!(if_getdrvflags(ifp) & IFF_DRV_RUNNING)) { 5599 BLOGW(sc, "Interface not running, ignoring transmit request\n"); 5600 return; 5601 } 5602 5603 if (!sc->link_vars.link_up) { 5604 BLOGW(sc, "Interface link is down, ignoring transmit request\n"); 5605 return; 5606 } 5607 5608 fp = &sc->fp[0]; 5609 5610 if (if_getdrvflags(ifp) & IFF_DRV_OACTIVE) { 5611 fp->eth_q_stats.tx_queue_full_return++; 5612 return; 5613 } 5614 5615 BXE_FP_TX_LOCK(fp); 5616 bxe_tx_start_locked(sc, ifp, fp); 5617 BXE_FP_TX_UNLOCK(fp); 5618 } 5619 5620 static int 5621 bxe_tx_mq_start_locked(struct bxe_softc *sc, 5622 if_t ifp, 5623 struct bxe_fastpath *fp, 5624 struct mbuf *m) 5625 { 5626 struct buf_ring *tx_br = fp->tx_br; 5627 struct mbuf *next; 5628 int depth, rc, tx_count; 5629 uint16_t tx_bd_avail; 5630 5631 rc = tx_count = 0; 5632 5633 BXE_FP_TX_LOCK_ASSERT(fp); 5634 5635 if (sc->state != BXE_STATE_OPEN) { 5636 fp->eth_q_stats.bxe_tx_mq_sc_state_failures++; 5637 return ENETDOWN; 5638 } 5639 5640 if (!tx_br) { 5641 BLOGE(sc, "Multiqueue TX and no buf_ring!\n"); 5642 return (EINVAL); 5643 } 5644 5645 if (m != NULL) { 5646 rc = drbr_enqueue(ifp, tx_br, m); 5647 if (rc != 0) { 5648 fp->eth_q_stats.tx_soft_errors++; 5649 goto bxe_tx_mq_start_locked_exit; 5650 } 5651 } 5652 5653 if (!sc->link_vars.link_up || !(if_getdrvflags(ifp) & IFF_DRV_RUNNING)) { 5654 fp->eth_q_stats.tx_request_link_down_failures++; 5655 goto bxe_tx_mq_start_locked_exit; 5656 } 5657 5658 /* fetch the depth of the driver queue */ 5659 depth = drbr_inuse(ifp, tx_br); 5660 if (depth > fp->eth_q_stats.tx_max_drbr_queue_depth) { 5661 fp->eth_q_stats.tx_max_drbr_queue_depth = depth; 5662 } 5663 5664 /* keep adding entries while there are frames to send */ 5665 while ((next = drbr_peek(ifp, tx_br)) != NULL) { 5666 /* handle any completions if we're running low */ 5667 tx_bd_avail = bxe_tx_avail(sc, fp); 5668 if (tx_bd_avail < BXE_TX_CLEANUP_THRESHOLD) { 5669 /* bxe_txeof will set IFF_DRV_OACTIVE appropriately */ 5670 bxe_txeof(sc, fp); 5671 tx_bd_avail = bxe_tx_avail(sc, fp); 5672 if (tx_bd_avail < (BXE_TSO_MAX_SEGMENTS + 1)) { 5673 fp->eth_q_stats.bd_avail_too_less_failures++; 5674 m_freem(next); 5675 drbr_advance(ifp, tx_br); 5676 rc = ENOBUFS; 5677 break; 5678 } 5679 } 5680 5681 /* the mbuf now belongs to us */ 5682 fp->eth_q_stats.mbuf_alloc_tx++; 5683 5684 /* 5685 * Put the frame into the transmit ring. If we don't have room, 5686 * place the mbuf back at the head of the TX queue, set the 5687 * OACTIVE flag, and wait for the NIC to drain the chain. 5688 */ 5689 rc = bxe_tx_encap(fp, &next); 5690 if (__predict_false(rc != 0)) { 5691 fp->eth_q_stats.tx_encap_failures++; 5692 if (next != NULL) { 5693 /* mark the TX queue as full and save the frame */ 5694 if_setdrvflagbits(ifp, IFF_DRV_OACTIVE, 0); 5695 drbr_putback(ifp, tx_br, next); 5696 fp->eth_q_stats.mbuf_alloc_tx--; 5697 fp->eth_q_stats.tx_frames_deferred++; 5698 } else 5699 drbr_advance(ifp, tx_br); 5700 5701 /* stop looking for more work */ 5702 break; 5703 } 5704 5705 /* the transmit frame was enqueued successfully */ 5706 tx_count++; 5707 5708 /* send a copy of the frame to any BPF listeners */ 5709 ether_bpf_mtap_if(ifp, next); 5710 5711 drbr_advance(ifp, tx_br); 5712 } 5713 5714 /* all TX packets were dequeued and/or the tx ring is full */ 5715 if (tx_count > 0) { 5716 /* reset the TX watchdog timeout timer */ 5717 fp->watchdog_timer = BXE_TX_TIMEOUT; 5718 } 5719 5720 bxe_tx_mq_start_locked_exit: 5721 /* If we didn't drain the drbr, enqueue a task in the future to do it. */ 5722 if (!drbr_empty(ifp, tx_br)) { 5723 fp->eth_q_stats.tx_mq_not_empty++; 5724 taskqueue_enqueue_timeout(fp->tq, &fp->tx_timeout_task, 1); 5725 } 5726 5727 return (rc); 5728 } 5729 5730 static void 5731 bxe_tx_mq_start_deferred(void *arg, 5732 int pending) 5733 { 5734 struct bxe_fastpath *fp = (struct bxe_fastpath *)arg; 5735 struct bxe_softc *sc = fp->sc; 5736 if_t ifp = sc->ifp; 5737 5738 BXE_FP_TX_LOCK(fp); 5739 bxe_tx_mq_start_locked(sc, ifp, fp, NULL); 5740 BXE_FP_TX_UNLOCK(fp); 5741 } 5742 5743 /* Multiqueue (TSS) dispatch routine. */ 5744 static int 5745 bxe_tx_mq_start(if_t ifp, 5746 struct mbuf *m) 5747 { 5748 struct bxe_softc *sc = if_getsoftc(ifp); 5749 struct bxe_fastpath *fp; 5750 int fp_index, rc; 5751 5752 fp_index = 0; /* default is the first queue */ 5753 5754 /* check if flowid is set */ 5755 5756 if (BXE_VALID_FLOWID(m)) 5757 fp_index = (m->m_pkthdr.flowid % sc->num_queues); 5758 5759 fp = &sc->fp[fp_index]; 5760 5761 if (sc->state != BXE_STATE_OPEN) { 5762 fp->eth_q_stats.bxe_tx_mq_sc_state_failures++; 5763 return ENETDOWN; 5764 } 5765 5766 if (BXE_FP_TX_TRYLOCK(fp)) { 5767 rc = bxe_tx_mq_start_locked(sc, ifp, fp, m); 5768 BXE_FP_TX_UNLOCK(fp); 5769 } else { 5770 rc = drbr_enqueue(ifp, fp->tx_br, m); 5771 taskqueue_enqueue(fp->tq, &fp->tx_task); 5772 } 5773 5774 return (rc); 5775 } 5776 5777 static void 5778 bxe_mq_flush(if_t ifp) 5779 { 5780 struct bxe_softc *sc = if_getsoftc(ifp); 5781 struct bxe_fastpath *fp; 5782 struct mbuf *m; 5783 int i; 5784 5785 for (i = 0; i < sc->num_queues; i++) { 5786 fp = &sc->fp[i]; 5787 5788 if (fp->state != BXE_FP_STATE_IRQ) { 5789 BLOGD(sc, DBG_LOAD, "Not clearing fp[%02d] buf_ring (state=%d)\n", 5790 fp->index, fp->state); 5791 continue; 5792 } 5793 5794 if (fp->tx_br != NULL) { 5795 BLOGD(sc, DBG_LOAD, "Clearing fp[%02d] buf_ring\n", fp->index); 5796 BXE_FP_TX_LOCK(fp); 5797 while ((m = buf_ring_dequeue_sc(fp->tx_br)) != NULL) { 5798 m_freem(m); 5799 } 5800 BXE_FP_TX_UNLOCK(fp); 5801 } 5802 } 5803 5804 if_qflush(ifp); 5805 } 5806 5807 static uint16_t 5808 bxe_cid_ilt_lines(struct bxe_softc *sc) 5809 { 5810 if (IS_SRIOV(sc)) { 5811 return ((BXE_FIRST_VF_CID + BXE_VF_CIDS) / ILT_PAGE_CIDS); 5812 } 5813 return (L2_ILT_LINES(sc)); 5814 } 5815 5816 static void 5817 bxe_ilt_set_info(struct bxe_softc *sc) 5818 { 5819 struct ilt_client_info *ilt_client; 5820 struct ecore_ilt *ilt = sc->ilt; 5821 uint16_t line = 0; 5822 5823 ilt->start_line = FUNC_ILT_BASE(SC_FUNC(sc)); 5824 BLOGD(sc, DBG_LOAD, "ilt starts at line %d\n", ilt->start_line); 5825 5826 /* CDU */ 5827 ilt_client = &ilt->clients[ILT_CLIENT_CDU]; 5828 ilt_client->client_num = ILT_CLIENT_CDU; 5829 ilt_client->page_size = CDU_ILT_PAGE_SZ; 5830 ilt_client->flags = ILT_CLIENT_SKIP_MEM; 5831 ilt_client->start = line; 5832 line += bxe_cid_ilt_lines(sc); 5833 5834 if (CNIC_SUPPORT(sc)) { 5835 line += CNIC_ILT_LINES; 5836 } 5837 5838 ilt_client->end = (line - 1); 5839 5840 BLOGD(sc, DBG_LOAD, 5841 "ilt client[CDU]: start %d, end %d, " 5842 "psz 0x%x, flags 0x%x, hw psz %d\n", 5843 ilt_client->start, ilt_client->end, 5844 ilt_client->page_size, 5845 ilt_client->flags, 5846 ilog2(ilt_client->page_size >> 12)); 5847 5848 /* QM */ 5849 if (QM_INIT(sc->qm_cid_count)) { 5850 ilt_client = &ilt->clients[ILT_CLIENT_QM]; 5851 ilt_client->client_num = ILT_CLIENT_QM; 5852 ilt_client->page_size = QM_ILT_PAGE_SZ; 5853 ilt_client->flags = 0; 5854 ilt_client->start = line; 5855 5856 /* 4 bytes for each cid */ 5857 line += DIV_ROUND_UP(sc->qm_cid_count * QM_QUEUES_PER_FUNC * 4, 5858 QM_ILT_PAGE_SZ); 5859 5860 ilt_client->end = (line - 1); 5861 5862 BLOGD(sc, DBG_LOAD, 5863 "ilt client[QM]: start %d, end %d, " 5864 "psz 0x%x, flags 0x%x, hw psz %d\n", 5865 ilt_client->start, ilt_client->end, 5866 ilt_client->page_size, ilt_client->flags, 5867 ilog2(ilt_client->page_size >> 12)); 5868 } 5869 5870 if (CNIC_SUPPORT(sc)) { 5871 /* SRC */ 5872 ilt_client = &ilt->clients[ILT_CLIENT_SRC]; 5873 ilt_client->client_num = ILT_CLIENT_SRC; 5874 ilt_client->page_size = SRC_ILT_PAGE_SZ; 5875 ilt_client->flags = 0; 5876 ilt_client->start = line; 5877 line += SRC_ILT_LINES; 5878 ilt_client->end = (line - 1); 5879 5880 BLOGD(sc, DBG_LOAD, 5881 "ilt client[SRC]: start %d, end %d, " 5882 "psz 0x%x, flags 0x%x, hw psz %d\n", 5883 ilt_client->start, ilt_client->end, 5884 ilt_client->page_size, ilt_client->flags, 5885 ilog2(ilt_client->page_size >> 12)); 5886 5887 /* TM */ 5888 ilt_client = &ilt->clients[ILT_CLIENT_TM]; 5889 ilt_client->client_num = ILT_CLIENT_TM; 5890 ilt_client->page_size = TM_ILT_PAGE_SZ; 5891 ilt_client->flags = 0; 5892 ilt_client->start = line; 5893 line += TM_ILT_LINES; 5894 ilt_client->end = (line - 1); 5895 5896 BLOGD(sc, DBG_LOAD, 5897 "ilt client[TM]: start %d, end %d, " 5898 "psz 0x%x, flags 0x%x, hw psz %d\n", 5899 ilt_client->start, ilt_client->end, 5900 ilt_client->page_size, ilt_client->flags, 5901 ilog2(ilt_client->page_size >> 12)); 5902 } 5903 5904 KASSERT((line <= ILT_MAX_LINES), ("Invalid number of ILT lines!")); 5905 } 5906 5907 static void 5908 bxe_set_fp_rx_buf_size(struct bxe_softc *sc) 5909 { 5910 int i; 5911 uint32_t rx_buf_size; 5912 5913 rx_buf_size = (IP_HEADER_ALIGNMENT_PADDING + ETH_OVERHEAD + sc->mtu); 5914 5915 for (i = 0; i < sc->num_queues; i++) { 5916 if(rx_buf_size <= MCLBYTES){ 5917 sc->fp[i].rx_buf_size = rx_buf_size; 5918 sc->fp[i].mbuf_alloc_size = MCLBYTES; 5919 }else if (rx_buf_size <= MJUMPAGESIZE){ 5920 sc->fp[i].rx_buf_size = rx_buf_size; 5921 sc->fp[i].mbuf_alloc_size = MJUMPAGESIZE; 5922 }else if (rx_buf_size <= (MJUMPAGESIZE + MCLBYTES)){ 5923 sc->fp[i].rx_buf_size = MCLBYTES; 5924 sc->fp[i].mbuf_alloc_size = MCLBYTES; 5925 }else if (rx_buf_size <= (2 * MJUMPAGESIZE)){ 5926 sc->fp[i].rx_buf_size = MJUMPAGESIZE; 5927 sc->fp[i].mbuf_alloc_size = MJUMPAGESIZE; 5928 }else { 5929 sc->fp[i].rx_buf_size = MCLBYTES; 5930 sc->fp[i].mbuf_alloc_size = MCLBYTES; 5931 } 5932 } 5933 } 5934 5935 static int 5936 bxe_alloc_ilt_mem(struct bxe_softc *sc) 5937 { 5938 int rc = 0; 5939 5940 if ((sc->ilt = 5941 (struct ecore_ilt *)malloc(sizeof(struct ecore_ilt), 5942 M_BXE_ILT, 5943 (M_NOWAIT | M_ZERO))) == NULL) { 5944 rc = 1; 5945 } 5946 5947 return (rc); 5948 } 5949 5950 static int 5951 bxe_alloc_ilt_lines_mem(struct bxe_softc *sc) 5952 { 5953 int rc = 0; 5954 5955 if ((sc->ilt->lines = 5956 (struct ilt_line *)malloc((sizeof(struct ilt_line) * ILT_MAX_LINES), 5957 M_BXE_ILT, 5958 (M_NOWAIT | M_ZERO))) == NULL) { 5959 rc = 1; 5960 } 5961 5962 return (rc); 5963 } 5964 5965 static void 5966 bxe_free_ilt_mem(struct bxe_softc *sc) 5967 { 5968 if (sc->ilt != NULL) { 5969 free(sc->ilt, M_BXE_ILT); 5970 sc->ilt = NULL; 5971 } 5972 } 5973 5974 static void 5975 bxe_free_ilt_lines_mem(struct bxe_softc *sc) 5976 { 5977 if (sc->ilt->lines != NULL) { 5978 free(sc->ilt->lines, M_BXE_ILT); 5979 sc->ilt->lines = NULL; 5980 } 5981 } 5982 5983 static void 5984 bxe_free_mem(struct bxe_softc *sc) 5985 { 5986 int i; 5987 5988 for (i = 0; i < L2_ILT_LINES(sc); i++) { 5989 bxe_dma_free(sc, &sc->context[i].vcxt_dma); 5990 sc->context[i].vcxt = NULL; 5991 sc->context[i].size = 0; 5992 } 5993 5994 ecore_ilt_mem_op(sc, ILT_MEMOP_FREE); 5995 5996 bxe_free_ilt_lines_mem(sc); 5997 5998 } 5999 6000 static int 6001 bxe_alloc_mem(struct bxe_softc *sc) 6002 { 6003 6004 int context_size; 6005 int allocated; 6006 int i; 6007 6008 /* 6009 * Allocate memory for CDU context: 6010 * This memory is allocated separately and not in the generic ILT 6011 * functions because CDU differs in few aspects: 6012 * 1. There can be multiple entities allocating memory for context - 6013 * regular L2, CNIC, and SRIOV drivers. Each separately controls 6014 * its own ILT lines. 6015 * 2. Since CDU page-size is not a single 4KB page (which is the case 6016 * for the other ILT clients), to be efficient we want to support 6017 * allocation of sub-page-size in the last entry. 6018 * 3. Context pointers are used by the driver to pass to FW / update 6019 * the context (for the other ILT clients the pointers are used just to 6020 * free the memory during unload). 6021 */ 6022 context_size = (sizeof(union cdu_context) * BXE_L2_CID_COUNT(sc)); 6023 for (i = 0, allocated = 0; allocated < context_size; i++) { 6024 sc->context[i].size = min(CDU_ILT_PAGE_SZ, 6025 (context_size - allocated)); 6026 6027 if (bxe_dma_alloc(sc, sc->context[i].size, 6028 &sc->context[i].vcxt_dma, 6029 "cdu context") != 0) { 6030 bxe_free_mem(sc); 6031 return (-1); 6032 } 6033 6034 sc->context[i].vcxt = 6035 (union cdu_context *)sc->context[i].vcxt_dma.vaddr; 6036 6037 allocated += sc->context[i].size; 6038 } 6039 6040 bxe_alloc_ilt_lines_mem(sc); 6041 6042 BLOGD(sc, DBG_LOAD, "ilt=%p start_line=%u lines=%p\n", 6043 sc->ilt, sc->ilt->start_line, sc->ilt->lines); 6044 { 6045 for (i = 0; i < 4; i++) { 6046 BLOGD(sc, DBG_LOAD, 6047 "c%d page_size=%u start=%u end=%u num=%u flags=0x%x\n", 6048 i, 6049 sc->ilt->clients[i].page_size, 6050 sc->ilt->clients[i].start, 6051 sc->ilt->clients[i].end, 6052 sc->ilt->clients[i].client_num, 6053 sc->ilt->clients[i].flags); 6054 } 6055 } 6056 if (ecore_ilt_mem_op(sc, ILT_MEMOP_ALLOC)) { 6057 BLOGE(sc, "ecore_ilt_mem_op ILT_MEMOP_ALLOC failed\n"); 6058 bxe_free_mem(sc); 6059 return (-1); 6060 } 6061 6062 return (0); 6063 } 6064 6065 static void 6066 bxe_free_rx_bd_chain(struct bxe_fastpath *fp) 6067 { 6068 int i; 6069 6070 if (fp->rx_mbuf_tag == NULL) { 6071 return; 6072 } 6073 6074 /* free all mbufs and unload all maps */ 6075 for (i = 0; i < RX_BD_TOTAL; i++) { 6076 if (fp->rx_mbuf_chain[i].m_map != NULL) { 6077 bus_dmamap_sync(fp->rx_mbuf_tag, 6078 fp->rx_mbuf_chain[i].m_map, 6079 BUS_DMASYNC_POSTREAD); 6080 bus_dmamap_unload(fp->rx_mbuf_tag, 6081 fp->rx_mbuf_chain[i].m_map); 6082 } 6083 6084 if (fp->rx_mbuf_chain[i].m != NULL) { 6085 m_freem(fp->rx_mbuf_chain[i].m); 6086 fp->rx_mbuf_chain[i].m = NULL; 6087 fp->eth_q_stats.mbuf_alloc_rx--; 6088 } 6089 } 6090 } 6091 6092 static void 6093 bxe_free_tpa_pool(struct bxe_fastpath *fp) 6094 { 6095 struct bxe_softc *sc; 6096 int i, max_agg_queues; 6097 6098 sc = fp->sc; 6099 6100 if (fp->rx_mbuf_tag == NULL) { 6101 return; 6102 } 6103 6104 max_agg_queues = MAX_AGG_QS(sc); 6105 6106 /* release all mbufs and unload all DMA maps in the TPA pool */ 6107 for (i = 0; i < max_agg_queues; i++) { 6108 if (fp->rx_tpa_info[i].bd.m_map != NULL) { 6109 bus_dmamap_sync(fp->rx_mbuf_tag, 6110 fp->rx_tpa_info[i].bd.m_map, 6111 BUS_DMASYNC_POSTREAD); 6112 bus_dmamap_unload(fp->rx_mbuf_tag, 6113 fp->rx_tpa_info[i].bd.m_map); 6114 } 6115 6116 if (fp->rx_tpa_info[i].bd.m != NULL) { 6117 m_freem(fp->rx_tpa_info[i].bd.m); 6118 fp->rx_tpa_info[i].bd.m = NULL; 6119 fp->eth_q_stats.mbuf_alloc_tpa--; 6120 } 6121 } 6122 } 6123 6124 static void 6125 bxe_free_sge_chain(struct bxe_fastpath *fp) 6126 { 6127 int i; 6128 6129 if (fp->rx_sge_mbuf_tag == NULL) { 6130 return; 6131 } 6132 6133 /* rree all mbufs and unload all maps */ 6134 for (i = 0; i < RX_SGE_TOTAL; i++) { 6135 if (fp->rx_sge_mbuf_chain[i].m_map != NULL) { 6136 bus_dmamap_sync(fp->rx_sge_mbuf_tag, 6137 fp->rx_sge_mbuf_chain[i].m_map, 6138 BUS_DMASYNC_POSTREAD); 6139 bus_dmamap_unload(fp->rx_sge_mbuf_tag, 6140 fp->rx_sge_mbuf_chain[i].m_map); 6141 } 6142 6143 if (fp->rx_sge_mbuf_chain[i].m != NULL) { 6144 m_freem(fp->rx_sge_mbuf_chain[i].m); 6145 fp->rx_sge_mbuf_chain[i].m = NULL; 6146 fp->eth_q_stats.mbuf_alloc_sge--; 6147 } 6148 } 6149 } 6150 6151 static void 6152 bxe_free_fp_buffers(struct bxe_softc *sc) 6153 { 6154 struct bxe_fastpath *fp; 6155 int i; 6156 6157 for (i = 0; i < sc->num_queues; i++) { 6158 fp = &sc->fp[i]; 6159 6160 if (fp->tx_br != NULL) { 6161 /* just in case bxe_mq_flush() wasn't called */ 6162 if (mtx_initialized(&fp->tx_mtx)) { 6163 struct mbuf *m; 6164 6165 BXE_FP_TX_LOCK(fp); 6166 while ((m = buf_ring_dequeue_sc(fp->tx_br)) != NULL) 6167 m_freem(m); 6168 BXE_FP_TX_UNLOCK(fp); 6169 } 6170 } 6171 6172 /* free all RX buffers */ 6173 bxe_free_rx_bd_chain(fp); 6174 bxe_free_tpa_pool(fp); 6175 bxe_free_sge_chain(fp); 6176 6177 if (fp->eth_q_stats.mbuf_alloc_rx != 0) { 6178 BLOGE(sc, "failed to claim all rx mbufs (%d left)\n", 6179 fp->eth_q_stats.mbuf_alloc_rx); 6180 } 6181 6182 if (fp->eth_q_stats.mbuf_alloc_sge != 0) { 6183 BLOGE(sc, "failed to claim all sge mbufs (%d left)\n", 6184 fp->eth_q_stats.mbuf_alloc_sge); 6185 } 6186 6187 if (fp->eth_q_stats.mbuf_alloc_tpa != 0) { 6188 BLOGE(sc, "failed to claim all sge mbufs (%d left)\n", 6189 fp->eth_q_stats.mbuf_alloc_tpa); 6190 } 6191 6192 if (fp->eth_q_stats.mbuf_alloc_tx != 0) { 6193 BLOGE(sc, "failed to release tx mbufs (%d left)\n", 6194 fp->eth_q_stats.mbuf_alloc_tx); 6195 } 6196 6197 /* XXX verify all mbufs were reclaimed */ 6198 } 6199 } 6200 6201 static int 6202 bxe_alloc_rx_bd_mbuf(struct bxe_fastpath *fp, 6203 uint16_t prev_index, 6204 uint16_t index) 6205 { 6206 struct bxe_sw_rx_bd *rx_buf; 6207 struct eth_rx_bd *rx_bd; 6208 bus_dma_segment_t segs[1]; 6209 bus_dmamap_t map; 6210 struct mbuf *m; 6211 int nsegs, rc; 6212 6213 rc = 0; 6214 6215 /* allocate the new RX BD mbuf */ 6216 m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, fp->mbuf_alloc_size); 6217 if (__predict_false(m == NULL)) { 6218 fp->eth_q_stats.mbuf_rx_bd_alloc_failed++; 6219 return (ENOBUFS); 6220 } 6221 6222 fp->eth_q_stats.mbuf_alloc_rx++; 6223 6224 /* initialize the mbuf buffer length */ 6225 m->m_pkthdr.len = m->m_len = fp->rx_buf_size; 6226 6227 /* map the mbuf into non-paged pool */ 6228 rc = bus_dmamap_load_mbuf_sg(fp->rx_mbuf_tag, 6229 fp->rx_mbuf_spare_map, 6230 m, segs, &nsegs, BUS_DMA_NOWAIT); 6231 if (__predict_false(rc != 0)) { 6232 fp->eth_q_stats.mbuf_rx_bd_mapping_failed++; 6233 m_freem(m); 6234 fp->eth_q_stats.mbuf_alloc_rx--; 6235 return (rc); 6236 } 6237 6238 /* all mbufs must map to a single segment */ 6239 KASSERT((nsegs == 1), ("Too many segments, %d returned!", nsegs)); 6240 6241 /* release any existing RX BD mbuf mappings */ 6242 6243 if (prev_index != index) { 6244 rx_buf = &fp->rx_mbuf_chain[prev_index]; 6245 6246 if (rx_buf->m_map != NULL) { 6247 bus_dmamap_sync(fp->rx_mbuf_tag, rx_buf->m_map, 6248 BUS_DMASYNC_POSTREAD); 6249 bus_dmamap_unload(fp->rx_mbuf_tag, rx_buf->m_map); 6250 } 6251 6252 /* 6253 * We only get here from bxe_rxeof() when the maximum number 6254 * of rx buffers is less than RX_BD_USABLE. bxe_rxeof() already 6255 * holds the mbuf in the prev_index so it's OK to NULL it out 6256 * here without concern of a memory leak. 6257 */ 6258 fp->rx_mbuf_chain[prev_index].m = NULL; 6259 } 6260 6261 rx_buf = &fp->rx_mbuf_chain[index]; 6262 6263 if (rx_buf->m_map != NULL) { 6264 bus_dmamap_sync(fp->rx_mbuf_tag, rx_buf->m_map, 6265 BUS_DMASYNC_POSTREAD); 6266 bus_dmamap_unload(fp->rx_mbuf_tag, rx_buf->m_map); 6267 } 6268 6269 /* save the mbuf and mapping info for a future packet */ 6270 map = (prev_index != index) ? 6271 fp->rx_mbuf_chain[prev_index].m_map : rx_buf->m_map; 6272 rx_buf->m_map = fp->rx_mbuf_spare_map; 6273 fp->rx_mbuf_spare_map = map; 6274 bus_dmamap_sync(fp->rx_mbuf_tag, rx_buf->m_map, 6275 BUS_DMASYNC_PREREAD); 6276 rx_buf->m = m; 6277 6278 rx_bd = &fp->rx_chain[index]; 6279 rx_bd->addr_hi = htole32(U64_HI(segs[0].ds_addr)); 6280 rx_bd->addr_lo = htole32(U64_LO(segs[0].ds_addr)); 6281 6282 return (rc); 6283 } 6284 6285 static int 6286 bxe_alloc_rx_tpa_mbuf(struct bxe_fastpath *fp, 6287 int queue) 6288 { 6289 struct bxe_sw_tpa_info *tpa_info = &fp->rx_tpa_info[queue]; 6290 bus_dma_segment_t segs[1]; 6291 bus_dmamap_t map; 6292 struct mbuf *m; 6293 int nsegs; 6294 int rc = 0; 6295 6296 /* allocate the new TPA mbuf */ 6297 m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, fp->mbuf_alloc_size); 6298 if (__predict_false(m == NULL)) { 6299 fp->eth_q_stats.mbuf_rx_tpa_alloc_failed++; 6300 return (ENOBUFS); 6301 } 6302 6303 fp->eth_q_stats.mbuf_alloc_tpa++; 6304 6305 /* initialize the mbuf buffer length */ 6306 m->m_pkthdr.len = m->m_len = fp->rx_buf_size; 6307 6308 /* map the mbuf into non-paged pool */ 6309 rc = bus_dmamap_load_mbuf_sg(fp->rx_mbuf_tag, 6310 fp->rx_tpa_info_mbuf_spare_map, 6311 m, segs, &nsegs, BUS_DMA_NOWAIT); 6312 if (__predict_false(rc != 0)) { 6313 fp->eth_q_stats.mbuf_rx_tpa_mapping_failed++; 6314 m_free(m); 6315 fp->eth_q_stats.mbuf_alloc_tpa--; 6316 return (rc); 6317 } 6318 6319 /* all mbufs must map to a single segment */ 6320 KASSERT((nsegs == 1), ("Too many segments, %d returned!", nsegs)); 6321 6322 /* release any existing TPA mbuf mapping */ 6323 if (tpa_info->bd.m_map != NULL) { 6324 bus_dmamap_sync(fp->rx_mbuf_tag, tpa_info->bd.m_map, 6325 BUS_DMASYNC_POSTREAD); 6326 bus_dmamap_unload(fp->rx_mbuf_tag, tpa_info->bd.m_map); 6327 } 6328 6329 /* save the mbuf and mapping info for the TPA mbuf */ 6330 map = tpa_info->bd.m_map; 6331 tpa_info->bd.m_map = fp->rx_tpa_info_mbuf_spare_map; 6332 fp->rx_tpa_info_mbuf_spare_map = map; 6333 bus_dmamap_sync(fp->rx_mbuf_tag, tpa_info->bd.m_map, 6334 BUS_DMASYNC_PREREAD); 6335 tpa_info->bd.m = m; 6336 tpa_info->seg = segs[0]; 6337 6338 return (rc); 6339 } 6340 6341 /* 6342 * Allocate an mbuf and assign it to the receive scatter gather chain. The 6343 * caller must take care to save a copy of the existing mbuf in the SG mbuf 6344 * chain. 6345 */ 6346 static int 6347 bxe_alloc_rx_sge_mbuf(struct bxe_fastpath *fp, 6348 uint16_t index) 6349 { 6350 struct bxe_sw_rx_bd *sge_buf; 6351 struct eth_rx_sge *sge; 6352 bus_dma_segment_t segs[1]; 6353 bus_dmamap_t map; 6354 struct mbuf *m; 6355 int nsegs; 6356 int rc = 0; 6357 6358 /* allocate a new SGE mbuf */ 6359 m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, SGE_PAGE_SIZE); 6360 if (__predict_false(m == NULL)) { 6361 fp->eth_q_stats.mbuf_rx_sge_alloc_failed++; 6362 return (ENOMEM); 6363 } 6364 6365 fp->eth_q_stats.mbuf_alloc_sge++; 6366 6367 /* initialize the mbuf buffer length */ 6368 m->m_pkthdr.len = m->m_len = SGE_PAGE_SIZE; 6369 6370 /* map the SGE mbuf into non-paged pool */ 6371 rc = bus_dmamap_load_mbuf_sg(fp->rx_sge_mbuf_tag, 6372 fp->rx_sge_mbuf_spare_map, 6373 m, segs, &nsegs, BUS_DMA_NOWAIT); 6374 if (__predict_false(rc != 0)) { 6375 fp->eth_q_stats.mbuf_rx_sge_mapping_failed++; 6376 m_freem(m); 6377 fp->eth_q_stats.mbuf_alloc_sge--; 6378 return (rc); 6379 } 6380 6381 /* all mbufs must map to a single segment */ 6382 KASSERT((nsegs == 1), ("Too many segments, %d returned!", nsegs)); 6383 6384 sge_buf = &fp->rx_sge_mbuf_chain[index]; 6385 6386 /* release any existing SGE mbuf mapping */ 6387 if (sge_buf->m_map != NULL) { 6388 bus_dmamap_sync(fp->rx_sge_mbuf_tag, sge_buf->m_map, 6389 BUS_DMASYNC_POSTREAD); 6390 bus_dmamap_unload(fp->rx_sge_mbuf_tag, sge_buf->m_map); 6391 } 6392 6393 /* save the mbuf and mapping info for a future packet */ 6394 map = sge_buf->m_map; 6395 sge_buf->m_map = fp->rx_sge_mbuf_spare_map; 6396 fp->rx_sge_mbuf_spare_map = map; 6397 bus_dmamap_sync(fp->rx_sge_mbuf_tag, sge_buf->m_map, 6398 BUS_DMASYNC_PREREAD); 6399 sge_buf->m = m; 6400 6401 sge = &fp->rx_sge_chain[index]; 6402 sge->addr_hi = htole32(U64_HI(segs[0].ds_addr)); 6403 sge->addr_lo = htole32(U64_LO(segs[0].ds_addr)); 6404 6405 return (rc); 6406 } 6407 6408 static __noinline int 6409 bxe_alloc_fp_buffers(struct bxe_softc *sc) 6410 { 6411 struct bxe_fastpath *fp; 6412 int i, j, rc = 0; 6413 int ring_prod, cqe_ring_prod; 6414 int max_agg_queues; 6415 6416 for (i = 0; i < sc->num_queues; i++) { 6417 fp = &sc->fp[i]; 6418 6419 ring_prod = cqe_ring_prod = 0; 6420 fp->rx_bd_cons = 0; 6421 fp->rx_cq_cons = 0; 6422 6423 /* allocate buffers for the RX BDs in RX BD chain */ 6424 for (j = 0; j < sc->max_rx_bufs; j++) { 6425 rc = bxe_alloc_rx_bd_mbuf(fp, ring_prod, ring_prod); 6426 if (rc != 0) { 6427 BLOGE(sc, "mbuf alloc fail for fp[%02d] rx chain (%d)\n", 6428 i, rc); 6429 goto bxe_alloc_fp_buffers_error; 6430 } 6431 6432 ring_prod = RX_BD_NEXT(ring_prod); 6433 cqe_ring_prod = RCQ_NEXT(cqe_ring_prod); 6434 } 6435 6436 fp->rx_bd_prod = ring_prod; 6437 fp->rx_cq_prod = cqe_ring_prod; 6438 fp->eth_q_stats.rx_calls = fp->eth_q_stats.rx_pkts = 0; 6439 6440 max_agg_queues = MAX_AGG_QS(sc); 6441 6442 fp->tpa_enable = TRUE; 6443 6444 /* fill the TPA pool */ 6445 for (j = 0; j < max_agg_queues; j++) { 6446 rc = bxe_alloc_rx_tpa_mbuf(fp, j); 6447 if (rc != 0) { 6448 BLOGE(sc, "mbuf alloc fail for fp[%02d] TPA queue %d\n", 6449 i, j); 6450 fp->tpa_enable = FALSE; 6451 goto bxe_alloc_fp_buffers_error; 6452 } 6453 6454 fp->rx_tpa_info[j].state = BXE_TPA_STATE_STOP; 6455 } 6456 6457 if (fp->tpa_enable) { 6458 /* fill the RX SGE chain */ 6459 ring_prod = 0; 6460 for (j = 0; j < RX_SGE_USABLE; j++) { 6461 rc = bxe_alloc_rx_sge_mbuf(fp, ring_prod); 6462 if (rc != 0) { 6463 BLOGE(sc, "mbuf alloc fail for fp[%02d] SGE %d\n", 6464 i, ring_prod); 6465 fp->tpa_enable = FALSE; 6466 ring_prod = 0; 6467 goto bxe_alloc_fp_buffers_error; 6468 } 6469 6470 ring_prod = RX_SGE_NEXT(ring_prod); 6471 } 6472 6473 fp->rx_sge_prod = ring_prod; 6474 } 6475 } 6476 6477 return (0); 6478 6479 bxe_alloc_fp_buffers_error: 6480 6481 /* unwind what was already allocated */ 6482 bxe_free_rx_bd_chain(fp); 6483 bxe_free_tpa_pool(fp); 6484 bxe_free_sge_chain(fp); 6485 6486 return (ENOBUFS); 6487 } 6488 6489 static void 6490 bxe_free_fw_stats_mem(struct bxe_softc *sc) 6491 { 6492 bxe_dma_free(sc, &sc->fw_stats_dma); 6493 6494 sc->fw_stats_num = 0; 6495 6496 sc->fw_stats_req_size = 0; 6497 sc->fw_stats_req = NULL; 6498 sc->fw_stats_req_mapping = 0; 6499 6500 sc->fw_stats_data_size = 0; 6501 sc->fw_stats_data = NULL; 6502 sc->fw_stats_data_mapping = 0; 6503 } 6504 6505 static int 6506 bxe_alloc_fw_stats_mem(struct bxe_softc *sc) 6507 { 6508 uint8_t num_queue_stats; 6509 int num_groups; 6510 6511 /* number of queues for statistics is number of eth queues */ 6512 num_queue_stats = BXE_NUM_ETH_QUEUES(sc); 6513 6514 /* 6515 * Total number of FW statistics requests = 6516 * 1 for port stats + 1 for PF stats + num of queues 6517 */ 6518 sc->fw_stats_num = (2 + num_queue_stats); 6519 6520 /* 6521 * Request is built from stats_query_header and an array of 6522 * stats_query_cmd_group each of which contains STATS_QUERY_CMD_COUNT 6523 * rules. The real number or requests is configured in the 6524 * stats_query_header. 6525 */ 6526 num_groups = 6527 ((sc->fw_stats_num / STATS_QUERY_CMD_COUNT) + 6528 ((sc->fw_stats_num % STATS_QUERY_CMD_COUNT) ? 1 : 0)); 6529 6530 BLOGD(sc, DBG_LOAD, "stats fw_stats_num %d num_groups %d\n", 6531 sc->fw_stats_num, num_groups); 6532 6533 sc->fw_stats_req_size = 6534 (sizeof(struct stats_query_header) + 6535 (num_groups * sizeof(struct stats_query_cmd_group))); 6536 6537 /* 6538 * Data for statistics requests + stats_counter. 6539 * stats_counter holds per-STORM counters that are incremented when 6540 * STORM has finished with the current request. Memory for FCoE 6541 * offloaded statistics are counted anyway, even if they will not be sent. 6542 * VF stats are not accounted for here as the data of VF stats is stored 6543 * in memory allocated by the VF, not here. 6544 */ 6545 sc->fw_stats_data_size = 6546 (sizeof(struct stats_counter) + 6547 sizeof(struct per_port_stats) + 6548 sizeof(struct per_pf_stats) + 6549 /* sizeof(struct fcoe_statistics_params) + */ 6550 (sizeof(struct per_queue_stats) * num_queue_stats)); 6551 6552 if (bxe_dma_alloc(sc, (sc->fw_stats_req_size + sc->fw_stats_data_size), 6553 &sc->fw_stats_dma, "fw stats") != 0) { 6554 bxe_free_fw_stats_mem(sc); 6555 return (-1); 6556 } 6557 6558 /* set up the shortcuts */ 6559 6560 sc->fw_stats_req = 6561 (struct bxe_fw_stats_req *)sc->fw_stats_dma.vaddr; 6562 sc->fw_stats_req_mapping = sc->fw_stats_dma.paddr; 6563 6564 sc->fw_stats_data = 6565 (struct bxe_fw_stats_data *)((uint8_t *)sc->fw_stats_dma.vaddr + 6566 sc->fw_stats_req_size); 6567 sc->fw_stats_data_mapping = (sc->fw_stats_dma.paddr + 6568 sc->fw_stats_req_size); 6569 6570 BLOGD(sc, DBG_LOAD, "statistics request base address set to %#jx\n", 6571 (uintmax_t)sc->fw_stats_req_mapping); 6572 6573 BLOGD(sc, DBG_LOAD, "statistics data base address set to %#jx\n", 6574 (uintmax_t)sc->fw_stats_data_mapping); 6575 6576 return (0); 6577 } 6578 6579 /* 6580 * Bits map: 6581 * 0-7 - Engine0 load counter. 6582 * 8-15 - Engine1 load counter. 6583 * 16 - Engine0 RESET_IN_PROGRESS bit. 6584 * 17 - Engine1 RESET_IN_PROGRESS bit. 6585 * 18 - Engine0 ONE_IS_LOADED. Set when there is at least one active 6586 * function on the engine 6587 * 19 - Engine1 ONE_IS_LOADED. 6588 * 20 - Chip reset flow bit. When set none-leader must wait for both engines 6589 * leader to complete (check for both RESET_IN_PROGRESS bits and not 6590 * for just the one belonging to its engine). 6591 */ 6592 #define BXE_RECOVERY_GLOB_REG MISC_REG_GENERIC_POR_1 6593 #define BXE_PATH0_LOAD_CNT_MASK 0x000000ff 6594 #define BXE_PATH0_LOAD_CNT_SHIFT 0 6595 #define BXE_PATH1_LOAD_CNT_MASK 0x0000ff00 6596 #define BXE_PATH1_LOAD_CNT_SHIFT 8 6597 #define BXE_PATH0_RST_IN_PROG_BIT 0x00010000 6598 #define BXE_PATH1_RST_IN_PROG_BIT 0x00020000 6599 #define BXE_GLOBAL_RESET_BIT 0x00040000 6600 6601 /* set the GLOBAL_RESET bit, should be run under rtnl lock */ 6602 static void 6603 bxe_set_reset_global(struct bxe_softc *sc) 6604 { 6605 uint32_t val; 6606 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG); 6607 val = REG_RD(sc, BXE_RECOVERY_GLOB_REG); 6608 REG_WR(sc, BXE_RECOVERY_GLOB_REG, val | BXE_GLOBAL_RESET_BIT); 6609 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG); 6610 } 6611 6612 /* clear the GLOBAL_RESET bit, should be run under rtnl lock */ 6613 static void 6614 bxe_clear_reset_global(struct bxe_softc *sc) 6615 { 6616 uint32_t val; 6617 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG); 6618 val = REG_RD(sc, BXE_RECOVERY_GLOB_REG); 6619 REG_WR(sc, BXE_RECOVERY_GLOB_REG, val & (~BXE_GLOBAL_RESET_BIT)); 6620 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG); 6621 } 6622 6623 /* checks the GLOBAL_RESET bit, should be run under rtnl lock */ 6624 static uint8_t 6625 bxe_reset_is_global(struct bxe_softc *sc) 6626 { 6627 uint32_t val = REG_RD(sc, BXE_RECOVERY_GLOB_REG); 6628 BLOGD(sc, DBG_LOAD, "GLOB_REG=0x%08x\n", val); 6629 return (val & BXE_GLOBAL_RESET_BIT) ? TRUE : FALSE; 6630 } 6631 6632 /* clear RESET_IN_PROGRESS bit for the engine, should be run under rtnl lock */ 6633 static void 6634 bxe_set_reset_done(struct bxe_softc *sc) 6635 { 6636 uint32_t val; 6637 uint32_t bit = SC_PATH(sc) ? BXE_PATH1_RST_IN_PROG_BIT : 6638 BXE_PATH0_RST_IN_PROG_BIT; 6639 6640 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG); 6641 6642 val = REG_RD(sc, BXE_RECOVERY_GLOB_REG); 6643 /* Clear the bit */ 6644 val &= ~bit; 6645 REG_WR(sc, BXE_RECOVERY_GLOB_REG, val); 6646 6647 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG); 6648 } 6649 6650 /* set RESET_IN_PROGRESS for the engine, should be run under rtnl lock */ 6651 static void 6652 bxe_set_reset_in_progress(struct bxe_softc *sc) 6653 { 6654 uint32_t val; 6655 uint32_t bit = SC_PATH(sc) ? BXE_PATH1_RST_IN_PROG_BIT : 6656 BXE_PATH0_RST_IN_PROG_BIT; 6657 6658 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG); 6659 6660 val = REG_RD(sc, BXE_RECOVERY_GLOB_REG); 6661 /* Set the bit */ 6662 val |= bit; 6663 REG_WR(sc, BXE_RECOVERY_GLOB_REG, val); 6664 6665 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG); 6666 } 6667 6668 /* check RESET_IN_PROGRESS bit for an engine, should be run under rtnl lock */ 6669 static uint8_t 6670 bxe_reset_is_done(struct bxe_softc *sc, 6671 int engine) 6672 { 6673 uint32_t val = REG_RD(sc, BXE_RECOVERY_GLOB_REG); 6674 uint32_t bit = engine ? BXE_PATH1_RST_IN_PROG_BIT : 6675 BXE_PATH0_RST_IN_PROG_BIT; 6676 6677 /* return false if bit is set */ 6678 return (val & bit) ? FALSE : TRUE; 6679 } 6680 6681 /* get the load status for an engine, should be run under rtnl lock */ 6682 static uint8_t 6683 bxe_get_load_status(struct bxe_softc *sc, 6684 int engine) 6685 { 6686 uint32_t mask = engine ? BXE_PATH1_LOAD_CNT_MASK : 6687 BXE_PATH0_LOAD_CNT_MASK; 6688 uint32_t shift = engine ? BXE_PATH1_LOAD_CNT_SHIFT : 6689 BXE_PATH0_LOAD_CNT_SHIFT; 6690 uint32_t val = REG_RD(sc, BXE_RECOVERY_GLOB_REG); 6691 6692 BLOGD(sc, DBG_LOAD, "Old value for GLOB_REG=0x%08x\n", val); 6693 6694 val = ((val & mask) >> shift); 6695 6696 BLOGD(sc, DBG_LOAD, "Load mask engine %d = 0x%08x\n", engine, val); 6697 6698 return (val != 0); 6699 } 6700 6701 /* set pf load mark */ 6702 /* XXX needs to be under rtnl lock */ 6703 static void 6704 bxe_set_pf_load(struct bxe_softc *sc) 6705 { 6706 uint32_t val; 6707 uint32_t val1; 6708 uint32_t mask = SC_PATH(sc) ? BXE_PATH1_LOAD_CNT_MASK : 6709 BXE_PATH0_LOAD_CNT_MASK; 6710 uint32_t shift = SC_PATH(sc) ? BXE_PATH1_LOAD_CNT_SHIFT : 6711 BXE_PATH0_LOAD_CNT_SHIFT; 6712 6713 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG); 6714 6715 val = REG_RD(sc, BXE_RECOVERY_GLOB_REG); 6716 BLOGD(sc, DBG_LOAD, "Old value for GLOB_REG=0x%08x\n", val); 6717 6718 /* get the current counter value */ 6719 val1 = ((val & mask) >> shift); 6720 6721 /* set bit of this PF */ 6722 val1 |= (1 << SC_ABS_FUNC(sc)); 6723 6724 /* clear the old value */ 6725 val &= ~mask; 6726 6727 /* set the new one */ 6728 val |= ((val1 << shift) & mask); 6729 6730 REG_WR(sc, BXE_RECOVERY_GLOB_REG, val); 6731 6732 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG); 6733 } 6734 6735 /* clear pf load mark */ 6736 /* XXX needs to be under rtnl lock */ 6737 static uint8_t 6738 bxe_clear_pf_load(struct bxe_softc *sc) 6739 { 6740 uint32_t val1, val; 6741 uint32_t mask = SC_PATH(sc) ? BXE_PATH1_LOAD_CNT_MASK : 6742 BXE_PATH0_LOAD_CNT_MASK; 6743 uint32_t shift = SC_PATH(sc) ? BXE_PATH1_LOAD_CNT_SHIFT : 6744 BXE_PATH0_LOAD_CNT_SHIFT; 6745 6746 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG); 6747 val = REG_RD(sc, BXE_RECOVERY_GLOB_REG); 6748 BLOGD(sc, DBG_LOAD, "Old GEN_REG_VAL=0x%08x\n", val); 6749 6750 /* get the current counter value */ 6751 val1 = (val & mask) >> shift; 6752 6753 /* clear bit of that PF */ 6754 val1 &= ~(1 << SC_ABS_FUNC(sc)); 6755 6756 /* clear the old value */ 6757 val &= ~mask; 6758 6759 /* set the new one */ 6760 val |= ((val1 << shift) & mask); 6761 6762 REG_WR(sc, BXE_RECOVERY_GLOB_REG, val); 6763 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG); 6764 return (val1 != 0); 6765 } 6766 6767 /* send load requrest to mcp and analyze response */ 6768 static int 6769 bxe_nic_load_request(struct bxe_softc *sc, 6770 uint32_t *load_code) 6771 { 6772 /* init fw_seq */ 6773 sc->fw_seq = 6774 (SHMEM_RD(sc, func_mb[SC_FW_MB_IDX(sc)].drv_mb_header) & 6775 DRV_MSG_SEQ_NUMBER_MASK); 6776 6777 BLOGD(sc, DBG_LOAD, "initial fw_seq 0x%04x\n", sc->fw_seq); 6778 6779 /* get the current FW pulse sequence */ 6780 sc->fw_drv_pulse_wr_seq = 6781 (SHMEM_RD(sc, func_mb[SC_FW_MB_IDX(sc)].drv_pulse_mb) & 6782 DRV_PULSE_SEQ_MASK); 6783 6784 BLOGD(sc, DBG_LOAD, "initial drv_pulse 0x%04x\n", 6785 sc->fw_drv_pulse_wr_seq); 6786 6787 /* load request */ 6788 (*load_code) = bxe_fw_command(sc, DRV_MSG_CODE_LOAD_REQ, 6789 DRV_MSG_CODE_LOAD_REQ_WITH_LFA); 6790 6791 /* if the MCP fails to respond we must abort */ 6792 if (!(*load_code)) { 6793 BLOGE(sc, "MCP response failure!\n"); 6794 return (-1); 6795 } 6796 6797 /* if MCP refused then must abort */ 6798 if ((*load_code) == FW_MSG_CODE_DRV_LOAD_REFUSED) { 6799 BLOGE(sc, "MCP refused load request\n"); 6800 return (-1); 6801 } 6802 6803 return (0); 6804 } 6805 6806 /* 6807 * Check whether another PF has already loaded FW to chip. In virtualized 6808 * environments a pf from anoth VM may have already initialized the device 6809 * including loading FW. 6810 */ 6811 static int 6812 bxe_nic_load_analyze_req(struct bxe_softc *sc, 6813 uint32_t load_code) 6814 { 6815 uint32_t my_fw, loaded_fw; 6816 6817 /* is another pf loaded on this engine? */ 6818 if ((load_code != FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) && 6819 (load_code != FW_MSG_CODE_DRV_LOAD_COMMON)) { 6820 /* build my FW version dword */ 6821 my_fw = (BCM_5710_FW_MAJOR_VERSION + 6822 (BCM_5710_FW_MINOR_VERSION << 8 ) + 6823 (BCM_5710_FW_REVISION_VERSION << 16) + 6824 (BCM_5710_FW_ENGINEERING_VERSION << 24)); 6825 6826 /* read loaded FW from chip */ 6827 loaded_fw = REG_RD(sc, XSEM_REG_PRAM); 6828 BLOGD(sc, DBG_LOAD, "loaded FW 0x%08x / my FW 0x%08x\n", 6829 loaded_fw, my_fw); 6830 6831 /* abort nic load if version mismatch */ 6832 if (my_fw != loaded_fw) { 6833 BLOGE(sc, "FW 0x%08x already loaded (mine is 0x%08x)", 6834 loaded_fw, my_fw); 6835 return (-1); 6836 } 6837 } 6838 6839 return (0); 6840 } 6841 6842 /* mark PMF if applicable */ 6843 static void 6844 bxe_nic_load_pmf(struct bxe_softc *sc, 6845 uint32_t load_code) 6846 { 6847 uint32_t ncsi_oem_data_addr; 6848 6849 if ((load_code == FW_MSG_CODE_DRV_LOAD_COMMON) || 6850 (load_code == FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) || 6851 (load_code == FW_MSG_CODE_DRV_LOAD_PORT)) { 6852 /* 6853 * Barrier here for ordering between the writing to sc->port.pmf here 6854 * and reading it from the periodic task. 6855 */ 6856 sc->port.pmf = 1; 6857 mb(); 6858 } else { 6859 sc->port.pmf = 0; 6860 } 6861 6862 BLOGD(sc, DBG_LOAD, "pmf %d\n", sc->port.pmf); 6863 6864 /* XXX needed? */ 6865 if (load_code == FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) { 6866 if (SHMEM2_HAS(sc, ncsi_oem_data_addr)) { 6867 ncsi_oem_data_addr = SHMEM2_RD(sc, ncsi_oem_data_addr); 6868 if (ncsi_oem_data_addr) { 6869 REG_WR(sc, 6870 (ncsi_oem_data_addr + 6871 offsetof(struct glob_ncsi_oem_data, driver_version)), 6872 0); 6873 } 6874 } 6875 } 6876 } 6877 6878 static void 6879 bxe_read_mf_cfg(struct bxe_softc *sc) 6880 { 6881 int n = (CHIP_IS_MODE_4_PORT(sc) ? 2 : 1); 6882 int abs_func; 6883 int vn; 6884 6885 if (BXE_NOMCP(sc)) { 6886 return; /* what should be the default bvalue in this case */ 6887 } 6888 6889 /* 6890 * The formula for computing the absolute function number is... 6891 * For 2 port configuration (4 functions per port): 6892 * abs_func = 2 * vn + SC_PORT + SC_PATH 6893 * For 4 port configuration (2 functions per port): 6894 * abs_func = 4 * vn + 2 * SC_PORT + SC_PATH 6895 */ 6896 for (vn = VN_0; vn < SC_MAX_VN_NUM(sc); vn++) { 6897 abs_func = (n * (2 * vn + SC_PORT(sc)) + SC_PATH(sc)); 6898 if (abs_func >= E1H_FUNC_MAX) { 6899 break; 6900 } 6901 sc->devinfo.mf_info.mf_config[vn] = 6902 MFCFG_RD(sc, func_mf_config[abs_func].config); 6903 } 6904 6905 if (sc->devinfo.mf_info.mf_config[SC_VN(sc)] & 6906 FUNC_MF_CFG_FUNC_DISABLED) { 6907 BLOGD(sc, DBG_LOAD, "mf_cfg function disabled\n"); 6908 sc->flags |= BXE_MF_FUNC_DIS; 6909 } else { 6910 BLOGD(sc, DBG_LOAD, "mf_cfg function enabled\n"); 6911 sc->flags &= ~BXE_MF_FUNC_DIS; 6912 } 6913 } 6914 6915 /* acquire split MCP access lock register */ 6916 static int bxe_acquire_alr(struct bxe_softc *sc) 6917 { 6918 uint32_t j, val; 6919 6920 for (j = 0; j < 1000; j++) { 6921 val = (1UL << 31); 6922 REG_WR(sc, GRCBASE_MCP + 0x9c, val); 6923 val = REG_RD(sc, GRCBASE_MCP + 0x9c); 6924 if (val & (1L << 31)) 6925 break; 6926 6927 DELAY(5000); 6928 } 6929 6930 if (!(val & (1L << 31))) { 6931 BLOGE(sc, "Cannot acquire MCP access lock register\n"); 6932 return (-1); 6933 } 6934 6935 return (0); 6936 } 6937 6938 /* release split MCP access lock register */ 6939 static void bxe_release_alr(struct bxe_softc *sc) 6940 { 6941 REG_WR(sc, GRCBASE_MCP + 0x9c, 0); 6942 } 6943 6944 static void 6945 bxe_fan_failure(struct bxe_softc *sc) 6946 { 6947 int port = SC_PORT(sc); 6948 uint32_t ext_phy_config; 6949 6950 /* mark the failure */ 6951 ext_phy_config = 6952 SHMEM_RD(sc, dev_info.port_hw_config[port].external_phy_config); 6953 6954 ext_phy_config &= ~PORT_HW_CFG_XGXS_EXT_PHY_TYPE_MASK; 6955 ext_phy_config |= PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE; 6956 SHMEM_WR(sc, dev_info.port_hw_config[port].external_phy_config, 6957 ext_phy_config); 6958 6959 /* log the failure */ 6960 BLOGW(sc, "Fan Failure has caused the driver to shutdown " 6961 "the card to prevent permanent damage. " 6962 "Please contact OEM Support for assistance\n"); 6963 6964 /* XXX */ 6965 #if 1 6966 bxe_panic(sc, ("Schedule task to handle fan failure\n")); 6967 #else 6968 /* 6969 * Schedule device reset (unload) 6970 * This is due to some boards consuming sufficient power when driver is 6971 * up to overheat if fan fails. 6972 */ 6973 bxe_set_bit(BXE_SP_RTNL_FAN_FAILURE, &sc->sp_rtnl_state); 6974 schedule_delayed_work(&sc->sp_rtnl_task, 0); 6975 #endif 6976 } 6977 6978 /* this function is called upon a link interrupt */ 6979 static void 6980 bxe_link_attn(struct bxe_softc *sc) 6981 { 6982 uint32_t pause_enabled = 0; 6983 struct host_port_stats *pstats; 6984 int cmng_fns; 6985 struct bxe_fastpath *fp; 6986 int i; 6987 6988 /* Make sure that we are synced with the current statistics */ 6989 bxe_stats_handle(sc, STATS_EVENT_STOP); 6990 BLOGD(sc, DBG_LOAD, "link_vars phy_flags : %x\n", sc->link_vars.phy_flags); 6991 elink_link_update(&sc->link_params, &sc->link_vars); 6992 6993 if (sc->link_vars.link_up) { 6994 6995 /* dropless flow control */ 6996 if (!CHIP_IS_E1(sc) && sc->dropless_fc) { 6997 pause_enabled = 0; 6998 6999 if (sc->link_vars.flow_ctrl & ELINK_FLOW_CTRL_TX) { 7000 pause_enabled = 1; 7001 } 7002 7003 REG_WR(sc, 7004 (BAR_USTRORM_INTMEM + 7005 USTORM_ETH_PAUSE_ENABLED_OFFSET(SC_PORT(sc))), 7006 pause_enabled); 7007 } 7008 7009 if (sc->link_vars.mac_type != ELINK_MAC_TYPE_EMAC) { 7010 pstats = BXE_SP(sc, port_stats); 7011 /* reset old mac stats */ 7012 memset(&(pstats->mac_stx[0]), 0, sizeof(struct mac_stx)); 7013 } 7014 7015 if (sc->state == BXE_STATE_OPEN) { 7016 bxe_stats_handle(sc, STATS_EVENT_LINK_UP); 7017 /* Restart tx when the link comes back. */ 7018 FOR_EACH_ETH_QUEUE(sc, i) { 7019 fp = &sc->fp[i]; 7020 taskqueue_enqueue(fp->tq, &fp->tx_task); 7021 } 7022 } 7023 7024 } 7025 7026 if (sc->link_vars.link_up && sc->link_vars.line_speed) { 7027 cmng_fns = bxe_get_cmng_fns_mode(sc); 7028 7029 if (cmng_fns != CMNG_FNS_NONE) { 7030 bxe_cmng_fns_init(sc, FALSE, cmng_fns); 7031 storm_memset_cmng(sc, &sc->cmng, SC_PORT(sc)); 7032 } else { 7033 /* rate shaping and fairness are disabled */ 7034 BLOGD(sc, DBG_LOAD, "single function mode without fairness\n"); 7035 } 7036 } 7037 7038 bxe_link_report_locked(sc); 7039 7040 if (IS_MF(sc)) { 7041 ; // XXX bxe_link_sync_notify(sc); 7042 } 7043 } 7044 7045 static void 7046 bxe_attn_int_asserted(struct bxe_softc *sc, 7047 uint32_t asserted) 7048 { 7049 int port = SC_PORT(sc); 7050 uint32_t aeu_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 : 7051 MISC_REG_AEU_MASK_ATTN_FUNC_0; 7052 uint32_t nig_int_mask_addr = port ? NIG_REG_MASK_INTERRUPT_PORT1 : 7053 NIG_REG_MASK_INTERRUPT_PORT0; 7054 uint32_t aeu_mask; 7055 uint32_t nig_mask = 0; 7056 uint32_t reg_addr; 7057 uint32_t igu_acked; 7058 uint32_t cnt; 7059 7060 if (sc->attn_state & asserted) { 7061 BLOGE(sc, "IGU ERROR attn=0x%08x\n", asserted); 7062 } 7063 7064 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port); 7065 7066 aeu_mask = REG_RD(sc, aeu_addr); 7067 7068 BLOGD(sc, DBG_INTR, "aeu_mask 0x%08x newly asserted 0x%08x\n", 7069 aeu_mask, asserted); 7070 7071 aeu_mask &= ~(asserted & 0x3ff); 7072 7073 BLOGD(sc, DBG_INTR, "new mask 0x%08x\n", aeu_mask); 7074 7075 REG_WR(sc, aeu_addr, aeu_mask); 7076 7077 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port); 7078 7079 BLOGD(sc, DBG_INTR, "attn_state 0x%08x\n", sc->attn_state); 7080 sc->attn_state |= asserted; 7081 BLOGD(sc, DBG_INTR, "new state 0x%08x\n", sc->attn_state); 7082 7083 if (asserted & ATTN_HARD_WIRED_MASK) { 7084 if (asserted & ATTN_NIG_FOR_FUNC) { 7085 7086 bxe_acquire_phy_lock(sc); 7087 /* save nig interrupt mask */ 7088 nig_mask = REG_RD(sc, nig_int_mask_addr); 7089 7090 /* If nig_mask is not set, no need to call the update function */ 7091 if (nig_mask) { 7092 REG_WR(sc, nig_int_mask_addr, 0); 7093 7094 bxe_link_attn(sc); 7095 } 7096 7097 /* handle unicore attn? */ 7098 } 7099 7100 if (asserted & ATTN_SW_TIMER_4_FUNC) { 7101 BLOGD(sc, DBG_INTR, "ATTN_SW_TIMER_4_FUNC!\n"); 7102 } 7103 7104 if (asserted & GPIO_2_FUNC) { 7105 BLOGD(sc, DBG_INTR, "GPIO_2_FUNC!\n"); 7106 } 7107 7108 if (asserted & GPIO_3_FUNC) { 7109 BLOGD(sc, DBG_INTR, "GPIO_3_FUNC!\n"); 7110 } 7111 7112 if (asserted & GPIO_4_FUNC) { 7113 BLOGD(sc, DBG_INTR, "GPIO_4_FUNC!\n"); 7114 } 7115 7116 if (port == 0) { 7117 if (asserted & ATTN_GENERAL_ATTN_1) { 7118 BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_1!\n"); 7119 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_1, 0x0); 7120 } 7121 if (asserted & ATTN_GENERAL_ATTN_2) { 7122 BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_2!\n"); 7123 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_2, 0x0); 7124 } 7125 if (asserted & ATTN_GENERAL_ATTN_3) { 7126 BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_3!\n"); 7127 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_3, 0x0); 7128 } 7129 } else { 7130 if (asserted & ATTN_GENERAL_ATTN_4) { 7131 BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_4!\n"); 7132 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_4, 0x0); 7133 } 7134 if (asserted & ATTN_GENERAL_ATTN_5) { 7135 BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_5!\n"); 7136 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_5, 0x0); 7137 } 7138 if (asserted & ATTN_GENERAL_ATTN_6) { 7139 BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_6!\n"); 7140 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_6, 0x0); 7141 } 7142 } 7143 } /* hardwired */ 7144 7145 if (sc->devinfo.int_block == INT_BLOCK_HC) { 7146 reg_addr = (HC_REG_COMMAND_REG + port*32 + COMMAND_REG_ATTN_BITS_SET); 7147 } else { 7148 reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_SET_UPPER*8); 7149 } 7150 7151 BLOGD(sc, DBG_INTR, "about to mask 0x%08x at %s addr 0x%08x\n", 7152 asserted, 7153 (sc->devinfo.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr); 7154 REG_WR(sc, reg_addr, asserted); 7155 7156 /* now set back the mask */ 7157 if (asserted & ATTN_NIG_FOR_FUNC) { 7158 /* 7159 * Verify that IGU ack through BAR was written before restoring 7160 * NIG mask. This loop should exit after 2-3 iterations max. 7161 */ 7162 if (sc->devinfo.int_block != INT_BLOCK_HC) { 7163 cnt = 0; 7164 7165 do { 7166 igu_acked = REG_RD(sc, IGU_REG_ATTENTION_ACK_BITS); 7167 } while (((igu_acked & ATTN_NIG_FOR_FUNC) == 0) && 7168 (++cnt < MAX_IGU_ATTN_ACK_TO)); 7169 7170 if (!igu_acked) { 7171 BLOGE(sc, "Failed to verify IGU ack on time\n"); 7172 } 7173 7174 mb(); 7175 } 7176 7177 REG_WR(sc, nig_int_mask_addr, nig_mask); 7178 7179 bxe_release_phy_lock(sc); 7180 } 7181 } 7182 7183 static void 7184 bxe_print_next_block(struct bxe_softc *sc, 7185 int idx, 7186 const char *blk) 7187 { 7188 BLOGI(sc, "%s%s", idx ? ", " : "", blk); 7189 } 7190 7191 static int 7192 bxe_check_blocks_with_parity0(struct bxe_softc *sc, 7193 uint32_t sig, 7194 int par_num, 7195 uint8_t print) 7196 { 7197 uint32_t cur_bit = 0; 7198 int i = 0; 7199 7200 for (i = 0; sig; i++) { 7201 cur_bit = ((uint32_t)0x1 << i); 7202 if (sig & cur_bit) { 7203 switch (cur_bit) { 7204 case AEU_INPUTS_ATTN_BITS_BRB_PARITY_ERROR: 7205 if (print) 7206 bxe_print_next_block(sc, par_num++, "BRB"); 7207 break; 7208 case AEU_INPUTS_ATTN_BITS_PARSER_PARITY_ERROR: 7209 if (print) 7210 bxe_print_next_block(sc, par_num++, "PARSER"); 7211 break; 7212 case AEU_INPUTS_ATTN_BITS_TSDM_PARITY_ERROR: 7213 if (print) 7214 bxe_print_next_block(sc, par_num++, "TSDM"); 7215 break; 7216 case AEU_INPUTS_ATTN_BITS_SEARCHER_PARITY_ERROR: 7217 if (print) 7218 bxe_print_next_block(sc, par_num++, "SEARCHER"); 7219 break; 7220 case AEU_INPUTS_ATTN_BITS_TCM_PARITY_ERROR: 7221 if (print) 7222 bxe_print_next_block(sc, par_num++, "TCM"); 7223 break; 7224 case AEU_INPUTS_ATTN_BITS_TSEMI_PARITY_ERROR: 7225 if (print) 7226 bxe_print_next_block(sc, par_num++, "TSEMI"); 7227 break; 7228 case AEU_INPUTS_ATTN_BITS_PBCLIENT_PARITY_ERROR: 7229 if (print) 7230 bxe_print_next_block(sc, par_num++, "XPB"); 7231 break; 7232 } 7233 7234 /* Clear the bit */ 7235 sig &= ~cur_bit; 7236 } 7237 } 7238 7239 return (par_num); 7240 } 7241 7242 static int 7243 bxe_check_blocks_with_parity1(struct bxe_softc *sc, 7244 uint32_t sig, 7245 int par_num, 7246 uint8_t *global, 7247 uint8_t print) 7248 { 7249 int i = 0; 7250 uint32_t cur_bit = 0; 7251 for (i = 0; sig; i++) { 7252 cur_bit = ((uint32_t)0x1 << i); 7253 if (sig & cur_bit) { 7254 switch (cur_bit) { 7255 case AEU_INPUTS_ATTN_BITS_PBF_PARITY_ERROR: 7256 if (print) 7257 bxe_print_next_block(sc, par_num++, "PBF"); 7258 break; 7259 case AEU_INPUTS_ATTN_BITS_QM_PARITY_ERROR: 7260 if (print) 7261 bxe_print_next_block(sc, par_num++, "QM"); 7262 break; 7263 case AEU_INPUTS_ATTN_BITS_TIMERS_PARITY_ERROR: 7264 if (print) 7265 bxe_print_next_block(sc, par_num++, "TM"); 7266 break; 7267 case AEU_INPUTS_ATTN_BITS_XSDM_PARITY_ERROR: 7268 if (print) 7269 bxe_print_next_block(sc, par_num++, "XSDM"); 7270 break; 7271 case AEU_INPUTS_ATTN_BITS_XCM_PARITY_ERROR: 7272 if (print) 7273 bxe_print_next_block(sc, par_num++, "XCM"); 7274 break; 7275 case AEU_INPUTS_ATTN_BITS_XSEMI_PARITY_ERROR: 7276 if (print) 7277 bxe_print_next_block(sc, par_num++, "XSEMI"); 7278 break; 7279 case AEU_INPUTS_ATTN_BITS_DOORBELLQ_PARITY_ERROR: 7280 if (print) 7281 bxe_print_next_block(sc, par_num++, "DOORBELLQ"); 7282 break; 7283 case AEU_INPUTS_ATTN_BITS_NIG_PARITY_ERROR: 7284 if (print) 7285 bxe_print_next_block(sc, par_num++, "NIG"); 7286 break; 7287 case AEU_INPUTS_ATTN_BITS_VAUX_PCI_CORE_PARITY_ERROR: 7288 if (print) 7289 bxe_print_next_block(sc, par_num++, "VAUX PCI CORE"); 7290 *global = TRUE; 7291 break; 7292 case AEU_INPUTS_ATTN_BITS_DEBUG_PARITY_ERROR: 7293 if (print) 7294 bxe_print_next_block(sc, par_num++, "DEBUG"); 7295 break; 7296 case AEU_INPUTS_ATTN_BITS_USDM_PARITY_ERROR: 7297 if (print) 7298 bxe_print_next_block(sc, par_num++, "USDM"); 7299 break; 7300 case AEU_INPUTS_ATTN_BITS_UCM_PARITY_ERROR: 7301 if (print) 7302 bxe_print_next_block(sc, par_num++, "UCM"); 7303 break; 7304 case AEU_INPUTS_ATTN_BITS_USEMI_PARITY_ERROR: 7305 if (print) 7306 bxe_print_next_block(sc, par_num++, "USEMI"); 7307 break; 7308 case AEU_INPUTS_ATTN_BITS_UPB_PARITY_ERROR: 7309 if (print) 7310 bxe_print_next_block(sc, par_num++, "UPB"); 7311 break; 7312 case AEU_INPUTS_ATTN_BITS_CSDM_PARITY_ERROR: 7313 if (print) 7314 bxe_print_next_block(sc, par_num++, "CSDM"); 7315 break; 7316 case AEU_INPUTS_ATTN_BITS_CCM_PARITY_ERROR: 7317 if (print) 7318 bxe_print_next_block(sc, par_num++, "CCM"); 7319 break; 7320 } 7321 7322 /* Clear the bit */ 7323 sig &= ~cur_bit; 7324 } 7325 } 7326 7327 return (par_num); 7328 } 7329 7330 static int 7331 bxe_check_blocks_with_parity2(struct bxe_softc *sc, 7332 uint32_t sig, 7333 int par_num, 7334 uint8_t print) 7335 { 7336 uint32_t cur_bit = 0; 7337 int i = 0; 7338 7339 for (i = 0; sig; i++) { 7340 cur_bit = ((uint32_t)0x1 << i); 7341 if (sig & cur_bit) { 7342 switch (cur_bit) { 7343 case AEU_INPUTS_ATTN_BITS_CSEMI_PARITY_ERROR: 7344 if (print) 7345 bxe_print_next_block(sc, par_num++, "CSEMI"); 7346 break; 7347 case AEU_INPUTS_ATTN_BITS_PXP_PARITY_ERROR: 7348 if (print) 7349 bxe_print_next_block(sc, par_num++, "PXP"); 7350 break; 7351 case AEU_IN_ATTN_BITS_PXPPCICLOCKCLIENT_PARITY_ERROR: 7352 if (print) 7353 bxe_print_next_block(sc, par_num++, "PXPPCICLOCKCLIENT"); 7354 break; 7355 case AEU_INPUTS_ATTN_BITS_CFC_PARITY_ERROR: 7356 if (print) 7357 bxe_print_next_block(sc, par_num++, "CFC"); 7358 break; 7359 case AEU_INPUTS_ATTN_BITS_CDU_PARITY_ERROR: 7360 if (print) 7361 bxe_print_next_block(sc, par_num++, "CDU"); 7362 break; 7363 case AEU_INPUTS_ATTN_BITS_DMAE_PARITY_ERROR: 7364 if (print) 7365 bxe_print_next_block(sc, par_num++, "DMAE"); 7366 break; 7367 case AEU_INPUTS_ATTN_BITS_IGU_PARITY_ERROR: 7368 if (print) 7369 bxe_print_next_block(sc, par_num++, "IGU"); 7370 break; 7371 case AEU_INPUTS_ATTN_BITS_MISC_PARITY_ERROR: 7372 if (print) 7373 bxe_print_next_block(sc, par_num++, "MISC"); 7374 break; 7375 } 7376 7377 /* Clear the bit */ 7378 sig &= ~cur_bit; 7379 } 7380 } 7381 7382 return (par_num); 7383 } 7384 7385 static int 7386 bxe_check_blocks_with_parity3(struct bxe_softc *sc, 7387 uint32_t sig, 7388 int par_num, 7389 uint8_t *global, 7390 uint8_t print) 7391 { 7392 uint32_t cur_bit = 0; 7393 int i = 0; 7394 7395 for (i = 0; sig; i++) { 7396 cur_bit = ((uint32_t)0x1 << i); 7397 if (sig & cur_bit) { 7398 switch (cur_bit) { 7399 case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_ROM_PARITY: 7400 if (print) 7401 bxe_print_next_block(sc, par_num++, "MCP ROM"); 7402 *global = TRUE; 7403 break; 7404 case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_RX_PARITY: 7405 if (print) 7406 bxe_print_next_block(sc, par_num++, 7407 "MCP UMP RX"); 7408 *global = TRUE; 7409 break; 7410 case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_TX_PARITY: 7411 if (print) 7412 bxe_print_next_block(sc, par_num++, 7413 "MCP UMP TX"); 7414 *global = TRUE; 7415 break; 7416 case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY: 7417 if (print) 7418 bxe_print_next_block(sc, par_num++, 7419 "MCP SCPAD"); 7420 *global = TRUE; 7421 break; 7422 } 7423 7424 /* Clear the bit */ 7425 sig &= ~cur_bit; 7426 } 7427 } 7428 7429 return (par_num); 7430 } 7431 7432 static int 7433 bxe_check_blocks_with_parity4(struct bxe_softc *sc, 7434 uint32_t sig, 7435 int par_num, 7436 uint8_t print) 7437 { 7438 uint32_t cur_bit = 0; 7439 int i = 0; 7440 7441 for (i = 0; sig; i++) { 7442 cur_bit = ((uint32_t)0x1 << i); 7443 if (sig & cur_bit) { 7444 switch (cur_bit) { 7445 case AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR: 7446 if (print) 7447 bxe_print_next_block(sc, par_num++, "PGLUE_B"); 7448 break; 7449 case AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR: 7450 if (print) 7451 bxe_print_next_block(sc, par_num++, "ATC"); 7452 break; 7453 } 7454 7455 /* Clear the bit */ 7456 sig &= ~cur_bit; 7457 } 7458 } 7459 7460 return (par_num); 7461 } 7462 7463 static uint8_t 7464 bxe_parity_attn(struct bxe_softc *sc, 7465 uint8_t *global, 7466 uint8_t print, 7467 uint32_t *sig) 7468 { 7469 int par_num = 0; 7470 7471 if ((sig[0] & HW_PRTY_ASSERT_SET_0) || 7472 (sig[1] & HW_PRTY_ASSERT_SET_1) || 7473 (sig[2] & HW_PRTY_ASSERT_SET_2) || 7474 (sig[3] & HW_PRTY_ASSERT_SET_3) || 7475 (sig[4] & HW_PRTY_ASSERT_SET_4)) { 7476 BLOGE(sc, "Parity error: HW block parity attention:\n" 7477 "[0]:0x%08x [1]:0x%08x [2]:0x%08x [3]:0x%08x [4]:0x%08x\n", 7478 (uint32_t)(sig[0] & HW_PRTY_ASSERT_SET_0), 7479 (uint32_t)(sig[1] & HW_PRTY_ASSERT_SET_1), 7480 (uint32_t)(sig[2] & HW_PRTY_ASSERT_SET_2), 7481 (uint32_t)(sig[3] & HW_PRTY_ASSERT_SET_3), 7482 (uint32_t)(sig[4] & HW_PRTY_ASSERT_SET_4)); 7483 7484 if (print) 7485 BLOGI(sc, "Parity errors detected in blocks: "); 7486 7487 par_num = 7488 bxe_check_blocks_with_parity0(sc, sig[0] & 7489 HW_PRTY_ASSERT_SET_0, 7490 par_num, print); 7491 par_num = 7492 bxe_check_blocks_with_parity1(sc, sig[1] & 7493 HW_PRTY_ASSERT_SET_1, 7494 par_num, global, print); 7495 par_num = 7496 bxe_check_blocks_with_parity2(sc, sig[2] & 7497 HW_PRTY_ASSERT_SET_2, 7498 par_num, print); 7499 par_num = 7500 bxe_check_blocks_with_parity3(sc, sig[3] & 7501 HW_PRTY_ASSERT_SET_3, 7502 par_num, global, print); 7503 par_num = 7504 bxe_check_blocks_with_parity4(sc, sig[4] & 7505 HW_PRTY_ASSERT_SET_4, 7506 par_num, print); 7507 7508 if (print) 7509 BLOGI(sc, "\n"); 7510 7511 if( *global == TRUE ) { 7512 BXE_SET_ERROR_BIT(sc, BXE_ERR_GLOBAL); 7513 } 7514 7515 return (TRUE); 7516 } 7517 7518 return (FALSE); 7519 } 7520 7521 static uint8_t 7522 bxe_chk_parity_attn(struct bxe_softc *sc, 7523 uint8_t *global, 7524 uint8_t print) 7525 { 7526 struct attn_route attn = { {0} }; 7527 int port = SC_PORT(sc); 7528 7529 if(sc->state != BXE_STATE_OPEN) 7530 return FALSE; 7531 7532 attn.sig[0] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + port*4); 7533 attn.sig[1] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 + port*4); 7534 attn.sig[2] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 + port*4); 7535 attn.sig[3] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 + port*4); 7536 7537 /* 7538 * Since MCP attentions can't be disabled inside the block, we need to 7539 * read AEU registers to see whether they're currently disabled 7540 */ 7541 attn.sig[3] &= ((REG_RD(sc, (!port ? MISC_REG_AEU_ENABLE4_FUNC_0_OUT_0 7542 : MISC_REG_AEU_ENABLE4_FUNC_1_OUT_0)) & 7543 MISC_AEU_ENABLE_MCP_PRTY_BITS) | 7544 ~MISC_AEU_ENABLE_MCP_PRTY_BITS); 7545 7546 7547 if (!CHIP_IS_E1x(sc)) 7548 attn.sig[4] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 + port*4); 7549 7550 return (bxe_parity_attn(sc, global, print, attn.sig)); 7551 } 7552 7553 static void 7554 bxe_attn_int_deasserted4(struct bxe_softc *sc, 7555 uint32_t attn) 7556 { 7557 uint32_t val; 7558 bool err_flg = false; 7559 7560 if (attn & AEU_INPUTS_ATTN_BITS_PGLUE_HW_INTERRUPT) { 7561 val = REG_RD(sc, PGLUE_B_REG_PGLUE_B_INT_STS_CLR); 7562 BLOGE(sc, "PGLUE hw attention 0x%08x\n", val); 7563 err_flg = true; 7564 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR) 7565 BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR\n"); 7566 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR) 7567 BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR\n"); 7568 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN) 7569 BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN\n"); 7570 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN) 7571 BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN\n"); 7572 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN) 7573 BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN\n"); 7574 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN) 7575 BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN\n"); 7576 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN) 7577 BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN\n"); 7578 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN) 7579 BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN\n"); 7580 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW) 7581 BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW\n"); 7582 } 7583 7584 if (attn & AEU_INPUTS_ATTN_BITS_ATC_HW_INTERRUPT) { 7585 val = REG_RD(sc, ATC_REG_ATC_INT_STS_CLR); 7586 BLOGE(sc, "ATC hw attention 0x%08x\n", val); 7587 err_flg = true; 7588 if (val & ATC_ATC_INT_STS_REG_ADDRESS_ERROR) 7589 BLOGE(sc, "ATC_ATC_INT_STS_REG_ADDRESS_ERROR\n"); 7590 if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND) 7591 BLOGE(sc, "ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND\n"); 7592 if (val & ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS) 7593 BLOGE(sc, "ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS\n"); 7594 if (val & ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT) 7595 BLOGE(sc, "ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT\n"); 7596 if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR) 7597 BLOGE(sc, "ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR\n"); 7598 if (val & ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU) 7599 BLOGE(sc, "ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU\n"); 7600 } 7601 7602 if (attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR | 7603 AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)) { 7604 BLOGE(sc, "FATAL parity attention set4 0x%08x\n", 7605 (uint32_t)(attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR | 7606 AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR))); 7607 err_flg = true; 7608 } 7609 if (err_flg) { 7610 BXE_SET_ERROR_BIT(sc, BXE_ERR_MISC); 7611 taskqueue_enqueue_timeout(taskqueue_thread, 7612 &sc->sp_err_timeout_task, hz/10); 7613 } 7614 7615 } 7616 7617 static void 7618 bxe_e1h_disable(struct bxe_softc *sc) 7619 { 7620 int port = SC_PORT(sc); 7621 7622 bxe_tx_disable(sc); 7623 7624 REG_WR(sc, NIG_REG_LLH0_FUNC_EN + port*8, 0); 7625 } 7626 7627 static void 7628 bxe_e1h_enable(struct bxe_softc *sc) 7629 { 7630 int port = SC_PORT(sc); 7631 7632 REG_WR(sc, NIG_REG_LLH0_FUNC_EN + port*8, 1); 7633 7634 // XXX bxe_tx_enable(sc); 7635 } 7636 7637 /* 7638 * called due to MCP event (on pmf): 7639 * reread new bandwidth configuration 7640 * configure FW 7641 * notify others function about the change 7642 */ 7643 static void 7644 bxe_config_mf_bw(struct bxe_softc *sc) 7645 { 7646 if (sc->link_vars.link_up) { 7647 bxe_cmng_fns_init(sc, TRUE, CMNG_FNS_MINMAX); 7648 // XXX bxe_link_sync_notify(sc); 7649 } 7650 7651 storm_memset_cmng(sc, &sc->cmng, SC_PORT(sc)); 7652 } 7653 7654 static void 7655 bxe_set_mf_bw(struct bxe_softc *sc) 7656 { 7657 bxe_config_mf_bw(sc); 7658 bxe_fw_command(sc, DRV_MSG_CODE_SET_MF_BW_ACK, 0); 7659 } 7660 7661 static void 7662 bxe_handle_eee_event(struct bxe_softc *sc) 7663 { 7664 BLOGD(sc, DBG_INTR, "EEE - LLDP event\n"); 7665 bxe_fw_command(sc, DRV_MSG_CODE_EEE_RESULTS_ACK, 0); 7666 } 7667 7668 #define DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED 3 7669 7670 static void 7671 bxe_drv_info_ether_stat(struct bxe_softc *sc) 7672 { 7673 struct eth_stats_info *ether_stat = 7674 &sc->sp->drv_info_to_mcp.ether_stat; 7675 7676 strlcpy(ether_stat->version, BXE_DRIVER_VERSION, 7677 ETH_STAT_INFO_VERSION_LEN); 7678 7679 /* XXX (+ MAC_PAD) taken from other driver... verify this is right */ 7680 sc->sp_objs[0].mac_obj.get_n_elements(sc, &sc->sp_objs[0].mac_obj, 7681 DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED, 7682 ether_stat->mac_local + MAC_PAD, 7683 MAC_PAD, ETH_ALEN); 7684 7685 ether_stat->mtu_size = sc->mtu; 7686 7687 ether_stat->feature_flags |= FEATURE_ETH_CHKSUM_OFFLOAD_MASK; 7688 if (if_getcapenable(sc->ifp) & (IFCAP_TSO4 | IFCAP_TSO6)) { 7689 ether_stat->feature_flags |= FEATURE_ETH_LSO_MASK; 7690 } 7691 7692 // XXX ether_stat->feature_flags |= ???; 7693 7694 ether_stat->promiscuous_mode = 0; // (flags & PROMISC) ? 1 : 0; 7695 7696 ether_stat->txq_size = sc->tx_ring_size; 7697 ether_stat->rxq_size = sc->rx_ring_size; 7698 } 7699 7700 static void 7701 bxe_handle_drv_info_req(struct bxe_softc *sc) 7702 { 7703 enum drv_info_opcode op_code; 7704 uint32_t drv_info_ctl = SHMEM2_RD(sc, drv_info_control); 7705 7706 /* if drv_info version supported by MFW doesn't match - send NACK */ 7707 if ((drv_info_ctl & DRV_INFO_CONTROL_VER_MASK) != DRV_INFO_CUR_VER) { 7708 bxe_fw_command(sc, DRV_MSG_CODE_DRV_INFO_NACK, 0); 7709 return; 7710 } 7711 7712 op_code = ((drv_info_ctl & DRV_INFO_CONTROL_OP_CODE_MASK) >> 7713 DRV_INFO_CONTROL_OP_CODE_SHIFT); 7714 7715 memset(&sc->sp->drv_info_to_mcp, 0, sizeof(union drv_info_to_mcp)); 7716 7717 switch (op_code) { 7718 case ETH_STATS_OPCODE: 7719 bxe_drv_info_ether_stat(sc); 7720 break; 7721 case FCOE_STATS_OPCODE: 7722 case ISCSI_STATS_OPCODE: 7723 default: 7724 /* if op code isn't supported - send NACK */ 7725 bxe_fw_command(sc, DRV_MSG_CODE_DRV_INFO_NACK, 0); 7726 return; 7727 } 7728 7729 /* 7730 * If we got drv_info attn from MFW then these fields are defined in 7731 * shmem2 for sure 7732 */ 7733 SHMEM2_WR(sc, drv_info_host_addr_lo, 7734 U64_LO(BXE_SP_MAPPING(sc, drv_info_to_mcp))); 7735 SHMEM2_WR(sc, drv_info_host_addr_hi, 7736 U64_HI(BXE_SP_MAPPING(sc, drv_info_to_mcp))); 7737 7738 bxe_fw_command(sc, DRV_MSG_CODE_DRV_INFO_ACK, 0); 7739 } 7740 7741 static void 7742 bxe_dcc_event(struct bxe_softc *sc, 7743 uint32_t dcc_event) 7744 { 7745 BLOGD(sc, DBG_INTR, "dcc_event 0x%08x\n", dcc_event); 7746 7747 if (dcc_event & DRV_STATUS_DCC_DISABLE_ENABLE_PF) { 7748 /* 7749 * This is the only place besides the function initialization 7750 * where the sc->flags can change so it is done without any 7751 * locks 7752 */ 7753 if (sc->devinfo.mf_info.mf_config[SC_VN(sc)] & FUNC_MF_CFG_FUNC_DISABLED) { 7754 BLOGD(sc, DBG_INTR, "mf_cfg function disabled\n"); 7755 sc->flags |= BXE_MF_FUNC_DIS; 7756 bxe_e1h_disable(sc); 7757 } else { 7758 BLOGD(sc, DBG_INTR, "mf_cfg function enabled\n"); 7759 sc->flags &= ~BXE_MF_FUNC_DIS; 7760 bxe_e1h_enable(sc); 7761 } 7762 dcc_event &= ~DRV_STATUS_DCC_DISABLE_ENABLE_PF; 7763 } 7764 7765 if (dcc_event & DRV_STATUS_DCC_BANDWIDTH_ALLOCATION) { 7766 bxe_config_mf_bw(sc); 7767 dcc_event &= ~DRV_STATUS_DCC_BANDWIDTH_ALLOCATION; 7768 } 7769 7770 /* Report results to MCP */ 7771 if (dcc_event) 7772 bxe_fw_command(sc, DRV_MSG_CODE_DCC_FAILURE, 0); 7773 else 7774 bxe_fw_command(sc, DRV_MSG_CODE_DCC_OK, 0); 7775 } 7776 7777 static void 7778 bxe_pmf_update(struct bxe_softc *sc) 7779 { 7780 int port = SC_PORT(sc); 7781 uint32_t val; 7782 7783 sc->port.pmf = 1; 7784 BLOGD(sc, DBG_INTR, "pmf %d\n", sc->port.pmf); 7785 7786 /* 7787 * We need the mb() to ensure the ordering between the writing to 7788 * sc->port.pmf here and reading it from the bxe_periodic_task(). 7789 */ 7790 mb(); 7791 7792 /* queue a periodic task */ 7793 // XXX schedule task... 7794 7795 // XXX bxe_dcbx_pmf_update(sc); 7796 7797 /* enable nig attention */ 7798 val = (0xff0f | (1 << (SC_VN(sc) + 4))); 7799 if (sc->devinfo.int_block == INT_BLOCK_HC) { 7800 REG_WR(sc, HC_REG_TRAILING_EDGE_0 + port*8, val); 7801 REG_WR(sc, HC_REG_LEADING_EDGE_0 + port*8, val); 7802 } else if (!CHIP_IS_E1x(sc)) { 7803 REG_WR(sc, IGU_REG_TRAILING_EDGE_LATCH, val); 7804 REG_WR(sc, IGU_REG_LEADING_EDGE_LATCH, val); 7805 } 7806 7807 bxe_stats_handle(sc, STATS_EVENT_PMF); 7808 } 7809 7810 static int 7811 bxe_mc_assert(struct bxe_softc *sc) 7812 { 7813 char last_idx; 7814 int i, rc = 0; 7815 uint32_t row0, row1, row2, row3; 7816 7817 /* XSTORM */ 7818 last_idx = REG_RD8(sc, BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_INDEX_OFFSET); 7819 if (last_idx) 7820 BLOGE(sc, "XSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx); 7821 7822 /* print the asserts */ 7823 for (i = 0; i < STORM_ASSERT_ARRAY_SIZE; i++) { 7824 7825 row0 = REG_RD(sc, BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_OFFSET(i)); 7826 row1 = REG_RD(sc, BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_OFFSET(i) + 4); 7827 row2 = REG_RD(sc, BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_OFFSET(i) + 8); 7828 row3 = REG_RD(sc, BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_OFFSET(i) + 12); 7829 7830 if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) { 7831 BLOGE(sc, "XSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n", 7832 i, row3, row2, row1, row0); 7833 rc++; 7834 } else { 7835 break; 7836 } 7837 } 7838 7839 /* TSTORM */ 7840 last_idx = REG_RD8(sc, BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_INDEX_OFFSET); 7841 if (last_idx) { 7842 BLOGE(sc, "TSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx); 7843 } 7844 7845 /* print the asserts */ 7846 for (i = 0; i < STORM_ASSERT_ARRAY_SIZE; i++) { 7847 7848 row0 = REG_RD(sc, BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_OFFSET(i)); 7849 row1 = REG_RD(sc, BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_OFFSET(i) + 4); 7850 row2 = REG_RD(sc, BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_OFFSET(i) + 8); 7851 row3 = REG_RD(sc, BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_OFFSET(i) + 12); 7852 7853 if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) { 7854 BLOGE(sc, "TSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n", 7855 i, row3, row2, row1, row0); 7856 rc++; 7857 } else { 7858 break; 7859 } 7860 } 7861 7862 /* CSTORM */ 7863 last_idx = REG_RD8(sc, BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_INDEX_OFFSET); 7864 if (last_idx) { 7865 BLOGE(sc, "CSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx); 7866 } 7867 7868 /* print the asserts */ 7869 for (i = 0; i < STORM_ASSERT_ARRAY_SIZE; i++) { 7870 7871 row0 = REG_RD(sc, BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_OFFSET(i)); 7872 row1 = REG_RD(sc, BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_OFFSET(i) + 4); 7873 row2 = REG_RD(sc, BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_OFFSET(i) + 8); 7874 row3 = REG_RD(sc, BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_OFFSET(i) + 12); 7875 7876 if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) { 7877 BLOGE(sc, "CSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n", 7878 i, row3, row2, row1, row0); 7879 rc++; 7880 } else { 7881 break; 7882 } 7883 } 7884 7885 /* USTORM */ 7886 last_idx = REG_RD8(sc, BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_INDEX_OFFSET); 7887 if (last_idx) { 7888 BLOGE(sc, "USTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx); 7889 } 7890 7891 /* print the asserts */ 7892 for (i = 0; i < STORM_ASSERT_ARRAY_SIZE; i++) { 7893 7894 row0 = REG_RD(sc, BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_OFFSET(i)); 7895 row1 = REG_RD(sc, BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_OFFSET(i) + 4); 7896 row2 = REG_RD(sc, BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_OFFSET(i) + 8); 7897 row3 = REG_RD(sc, BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_OFFSET(i) + 12); 7898 7899 if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) { 7900 BLOGE(sc, "USTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n", 7901 i, row3, row2, row1, row0); 7902 rc++; 7903 } else { 7904 break; 7905 } 7906 } 7907 7908 return (rc); 7909 } 7910 7911 static void 7912 bxe_attn_int_deasserted3(struct bxe_softc *sc, 7913 uint32_t attn) 7914 { 7915 int func = SC_FUNC(sc); 7916 uint32_t val; 7917 7918 if (attn & EVEREST_GEN_ATTN_IN_USE_MASK) { 7919 7920 if (attn & BXE_PMF_LINK_ASSERT(sc)) { 7921 7922 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0); 7923 bxe_read_mf_cfg(sc); 7924 sc->devinfo.mf_info.mf_config[SC_VN(sc)] = 7925 MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].config); 7926 val = SHMEM_RD(sc, func_mb[SC_FW_MB_IDX(sc)].drv_status); 7927 7928 if (val & DRV_STATUS_DCC_EVENT_MASK) 7929 bxe_dcc_event(sc, (val & DRV_STATUS_DCC_EVENT_MASK)); 7930 7931 if (val & DRV_STATUS_SET_MF_BW) 7932 bxe_set_mf_bw(sc); 7933 7934 if (val & DRV_STATUS_DRV_INFO_REQ) 7935 bxe_handle_drv_info_req(sc); 7936 7937 if ((sc->port.pmf == 0) && (val & DRV_STATUS_PMF)) 7938 bxe_pmf_update(sc); 7939 7940 if (val & DRV_STATUS_EEE_NEGOTIATION_RESULTS) 7941 bxe_handle_eee_event(sc); 7942 7943 if (sc->link_vars.periodic_flags & 7944 ELINK_PERIODIC_FLAGS_LINK_EVENT) { 7945 /* sync with link */ 7946 bxe_acquire_phy_lock(sc); 7947 sc->link_vars.periodic_flags &= 7948 ~ELINK_PERIODIC_FLAGS_LINK_EVENT; 7949 bxe_release_phy_lock(sc); 7950 if (IS_MF(sc)) 7951 ; // XXX bxe_link_sync_notify(sc); 7952 bxe_link_report(sc); 7953 } 7954 7955 /* 7956 * Always call it here: bxe_link_report() will 7957 * prevent the link indication duplication. 7958 */ 7959 bxe_link_status_update(sc); 7960 7961 } else if (attn & BXE_MC_ASSERT_BITS) { 7962 7963 BLOGE(sc, "MC assert!\n"); 7964 bxe_mc_assert(sc); 7965 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_10, 0); 7966 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_9, 0); 7967 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_8, 0); 7968 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_7, 0); 7969 bxe_int_disable(sc); 7970 BXE_SET_ERROR_BIT(sc, BXE_ERR_MC_ASSERT); 7971 taskqueue_enqueue_timeout(taskqueue_thread, 7972 &sc->sp_err_timeout_task, hz/10); 7973 7974 } else if (attn & BXE_MCP_ASSERT) { 7975 7976 BLOGE(sc, "MCP assert!\n"); 7977 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_11, 0); 7978 BXE_SET_ERROR_BIT(sc, BXE_ERR_MCP_ASSERT); 7979 taskqueue_enqueue_timeout(taskqueue_thread, 7980 &sc->sp_err_timeout_task, hz/10); 7981 bxe_int_disable(sc); /*avoid repetive assert alert */ 7982 7983 7984 } else { 7985 BLOGE(sc, "Unknown HW assert! (attn 0x%08x)\n", attn); 7986 } 7987 } 7988 7989 if (attn & EVEREST_LATCHED_ATTN_IN_USE_MASK) { 7990 BLOGE(sc, "LATCHED attention 0x%08x (masked)\n", attn); 7991 if (attn & BXE_GRC_TIMEOUT) { 7992 val = CHIP_IS_E1(sc) ? 0 : REG_RD(sc, MISC_REG_GRC_TIMEOUT_ATTN); 7993 BLOGE(sc, "GRC time-out 0x%08x\n", val); 7994 } 7995 if (attn & BXE_GRC_RSV) { 7996 val = CHIP_IS_E1(sc) ? 0 : REG_RD(sc, MISC_REG_GRC_RSV_ATTN); 7997 BLOGE(sc, "GRC reserved 0x%08x\n", val); 7998 } 7999 REG_WR(sc, MISC_REG_AEU_CLR_LATCH_SIGNAL, 0x7ff); 8000 } 8001 } 8002 8003 static void 8004 bxe_attn_int_deasserted2(struct bxe_softc *sc, 8005 uint32_t attn) 8006 { 8007 int port = SC_PORT(sc); 8008 int reg_offset; 8009 uint32_t val0, mask0, val1, mask1; 8010 uint32_t val; 8011 bool err_flg = false; 8012 8013 if (attn & AEU_INPUTS_ATTN_BITS_CFC_HW_INTERRUPT) { 8014 val = REG_RD(sc, CFC_REG_CFC_INT_STS_CLR); 8015 BLOGE(sc, "CFC hw attention 0x%08x\n", val); 8016 /* CFC error attention */ 8017 if (val & 0x2) { 8018 BLOGE(sc, "FATAL error from CFC\n"); 8019 err_flg = true; 8020 } 8021 } 8022 8023 if (attn & AEU_INPUTS_ATTN_BITS_PXP_HW_INTERRUPT) { 8024 val = REG_RD(sc, PXP_REG_PXP_INT_STS_CLR_0); 8025 BLOGE(sc, "PXP hw attention-0 0x%08x\n", val); 8026 /* RQ_USDMDP_FIFO_OVERFLOW */ 8027 if (val & 0x18000) { 8028 BLOGE(sc, "FATAL error from PXP\n"); 8029 err_flg = true; 8030 } 8031 8032 if (!CHIP_IS_E1x(sc)) { 8033 val = REG_RD(sc, PXP_REG_PXP_INT_STS_CLR_1); 8034 BLOGE(sc, "PXP hw attention-1 0x%08x\n", val); 8035 err_flg = true; 8036 } 8037 } 8038 8039 #define PXP2_EOP_ERROR_BIT PXP2_PXP2_INT_STS_CLR_0_REG_WR_PGLUE_EOP_ERROR 8040 #define AEU_PXP2_HW_INT_BIT AEU_INPUTS_ATTN_BITS_PXPPCICLOCKCLIENT_HW_INTERRUPT 8041 8042 if (attn & AEU_PXP2_HW_INT_BIT) { 8043 /* CQ47854 workaround do not panic on 8044 * PXP2_PXP2_INT_STS_0_REG_WR_PGLUE_EOP_ERROR 8045 */ 8046 if (!CHIP_IS_E1x(sc)) { 8047 mask0 = REG_RD(sc, PXP2_REG_PXP2_INT_MASK_0); 8048 val1 = REG_RD(sc, PXP2_REG_PXP2_INT_STS_1); 8049 mask1 = REG_RD(sc, PXP2_REG_PXP2_INT_MASK_1); 8050 val0 = REG_RD(sc, PXP2_REG_PXP2_INT_STS_0); 8051 /* 8052 * If the only PXP2_EOP_ERROR_BIT is set in 8053 * STS0 and STS1 - clear it 8054 * 8055 * probably we lose additional attentions between 8056 * STS0 and STS_CLR0, in this case user will not 8057 * be notified about them 8058 */ 8059 if (val0 & mask0 & PXP2_EOP_ERROR_BIT && 8060 !(val1 & mask1)) 8061 val0 = REG_RD(sc, PXP2_REG_PXP2_INT_STS_CLR_0); 8062 8063 /* print the register, since no one can restore it */ 8064 BLOGE(sc, "PXP2_REG_PXP2_INT_STS_CLR_0 0x%08x\n", val0); 8065 8066 /* 8067 * if PXP2_PXP2_INT_STS_0_REG_WR_PGLUE_EOP_ERROR 8068 * then notify 8069 */ 8070 if (val0 & PXP2_EOP_ERROR_BIT) { 8071 BLOGE(sc, "PXP2_WR_PGLUE_EOP_ERROR\n"); 8072 err_flg = true; 8073 8074 /* 8075 * if only PXP2_PXP2_INT_STS_0_REG_WR_PGLUE_EOP_ERROR is 8076 * set then clear attention from PXP2 block without panic 8077 */ 8078 if (((val0 & mask0) == PXP2_EOP_ERROR_BIT) && 8079 ((val1 & mask1) == 0)) 8080 attn &= ~AEU_PXP2_HW_INT_BIT; 8081 } 8082 } 8083 } 8084 8085 if (attn & HW_INTERRUT_ASSERT_SET_2) { 8086 reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_2 : 8087 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_2); 8088 8089 val = REG_RD(sc, reg_offset); 8090 val &= ~(attn & HW_INTERRUT_ASSERT_SET_2); 8091 REG_WR(sc, reg_offset, val); 8092 8093 BLOGE(sc, "FATAL HW block attention set2 0x%x\n", 8094 (uint32_t)(attn & HW_INTERRUT_ASSERT_SET_2)); 8095 err_flg = true; 8096 bxe_panic(sc, ("HW block attention set2\n")); 8097 } 8098 if(err_flg) { 8099 BXE_SET_ERROR_BIT(sc, BXE_ERR_GLOBAL); 8100 taskqueue_enqueue_timeout(taskqueue_thread, 8101 &sc->sp_err_timeout_task, hz/10); 8102 } 8103 8104 } 8105 8106 static void 8107 bxe_attn_int_deasserted1(struct bxe_softc *sc, 8108 uint32_t attn) 8109 { 8110 int port = SC_PORT(sc); 8111 int reg_offset; 8112 uint32_t val; 8113 bool err_flg = false; 8114 8115 if (attn & AEU_INPUTS_ATTN_BITS_DOORBELLQ_HW_INTERRUPT) { 8116 val = REG_RD(sc, DORQ_REG_DORQ_INT_STS_CLR); 8117 BLOGE(sc, "DB hw attention 0x%08x\n", val); 8118 /* DORQ discard attention */ 8119 if (val & 0x2) { 8120 BLOGE(sc, "FATAL error from DORQ\n"); 8121 err_flg = true; 8122 } 8123 } 8124 8125 if (attn & HW_INTERRUT_ASSERT_SET_1) { 8126 reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_1 : 8127 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_1); 8128 8129 val = REG_RD(sc, reg_offset); 8130 val &= ~(attn & HW_INTERRUT_ASSERT_SET_1); 8131 REG_WR(sc, reg_offset, val); 8132 8133 BLOGE(sc, "FATAL HW block attention set1 0x%08x\n", 8134 (uint32_t)(attn & HW_INTERRUT_ASSERT_SET_1)); 8135 err_flg = true; 8136 bxe_panic(sc, ("HW block attention set1\n")); 8137 } 8138 if(err_flg) { 8139 BXE_SET_ERROR_BIT(sc, BXE_ERR_MISC); 8140 taskqueue_enqueue_timeout(taskqueue_thread, 8141 &sc->sp_err_timeout_task, hz/10); 8142 } 8143 8144 } 8145 8146 static void 8147 bxe_attn_int_deasserted0(struct bxe_softc *sc, 8148 uint32_t attn) 8149 { 8150 int port = SC_PORT(sc); 8151 int reg_offset; 8152 uint32_t val; 8153 8154 reg_offset = (port) ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 : 8155 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0; 8156 8157 if (attn & AEU_INPUTS_ATTN_BITS_SPIO5) { 8158 val = REG_RD(sc, reg_offset); 8159 val &= ~AEU_INPUTS_ATTN_BITS_SPIO5; 8160 REG_WR(sc, reg_offset, val); 8161 8162 BLOGW(sc, "SPIO5 hw attention\n"); 8163 8164 /* Fan failure attention */ 8165 elink_hw_reset_phy(&sc->link_params); 8166 bxe_fan_failure(sc); 8167 } 8168 8169 if ((attn & sc->link_vars.aeu_int_mask) && sc->port.pmf) { 8170 bxe_acquire_phy_lock(sc); 8171 elink_handle_module_detect_int(&sc->link_params); 8172 bxe_release_phy_lock(sc); 8173 } 8174 8175 if (attn & HW_INTERRUT_ASSERT_SET_0) { 8176 val = REG_RD(sc, reg_offset); 8177 val &= ~(attn & HW_INTERRUT_ASSERT_SET_0); 8178 REG_WR(sc, reg_offset, val); 8179 8180 8181 BXE_SET_ERROR_BIT(sc, BXE_ERR_MISC); 8182 taskqueue_enqueue_timeout(taskqueue_thread, 8183 &sc->sp_err_timeout_task, hz/10); 8184 8185 bxe_panic(sc, ("FATAL HW block attention set0 0x%lx\n", 8186 (attn & HW_INTERRUT_ASSERT_SET_0))); 8187 } 8188 } 8189 8190 static void 8191 bxe_attn_int_deasserted(struct bxe_softc *sc, 8192 uint32_t deasserted) 8193 { 8194 struct attn_route attn; 8195 struct attn_route *group_mask; 8196 int port = SC_PORT(sc); 8197 int index; 8198 uint32_t reg_addr; 8199 uint32_t val; 8200 uint32_t aeu_mask; 8201 uint8_t global = FALSE; 8202 8203 /* 8204 * Need to take HW lock because MCP or other port might also 8205 * try to handle this event. 8206 */ 8207 bxe_acquire_alr(sc); 8208 8209 if (bxe_chk_parity_attn(sc, &global, TRUE)) { 8210 /* XXX 8211 * In case of parity errors don't handle attentions so that 8212 * other function would "see" parity errors. 8213 */ 8214 // XXX schedule a recovery task... 8215 /* disable HW interrupts */ 8216 bxe_int_disable(sc); 8217 BXE_SET_ERROR_BIT(sc, BXE_ERR_PARITY); 8218 taskqueue_enqueue_timeout(taskqueue_thread, 8219 &sc->sp_err_timeout_task, hz/10); 8220 bxe_release_alr(sc); 8221 return; 8222 } 8223 8224 attn.sig[0] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + port*4); 8225 attn.sig[1] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 + port*4); 8226 attn.sig[2] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 + port*4); 8227 attn.sig[3] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 + port*4); 8228 if (!CHIP_IS_E1x(sc)) { 8229 attn.sig[4] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 + port*4); 8230 } else { 8231 attn.sig[4] = 0; 8232 } 8233 8234 BLOGD(sc, DBG_INTR, "attn: 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x\n", 8235 attn.sig[0], attn.sig[1], attn.sig[2], attn.sig[3], attn.sig[4]); 8236 8237 for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) { 8238 if (deasserted & (1 << index)) { 8239 group_mask = &sc->attn_group[index]; 8240 8241 BLOGD(sc, DBG_INTR, 8242 "group[%d]: 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x\n", index, 8243 group_mask->sig[0], group_mask->sig[1], 8244 group_mask->sig[2], group_mask->sig[3], 8245 group_mask->sig[4]); 8246 8247 bxe_attn_int_deasserted4(sc, attn.sig[4] & group_mask->sig[4]); 8248 bxe_attn_int_deasserted3(sc, attn.sig[3] & group_mask->sig[3]); 8249 bxe_attn_int_deasserted1(sc, attn.sig[1] & group_mask->sig[1]); 8250 bxe_attn_int_deasserted2(sc, attn.sig[2] & group_mask->sig[2]); 8251 bxe_attn_int_deasserted0(sc, attn.sig[0] & group_mask->sig[0]); 8252 } 8253 } 8254 8255 bxe_release_alr(sc); 8256 8257 if (sc->devinfo.int_block == INT_BLOCK_HC) { 8258 reg_addr = (HC_REG_COMMAND_REG + port*32 + 8259 COMMAND_REG_ATTN_BITS_CLR); 8260 } else { 8261 reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_CLR_UPPER*8); 8262 } 8263 8264 val = ~deasserted; 8265 BLOGD(sc, DBG_INTR, 8266 "about to mask 0x%08x at %s addr 0x%08x\n", val, 8267 (sc->devinfo.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr); 8268 REG_WR(sc, reg_addr, val); 8269 8270 if (~sc->attn_state & deasserted) { 8271 BLOGE(sc, "IGU error\n"); 8272 } 8273 8274 reg_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 : 8275 MISC_REG_AEU_MASK_ATTN_FUNC_0; 8276 8277 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port); 8278 8279 aeu_mask = REG_RD(sc, reg_addr); 8280 8281 BLOGD(sc, DBG_INTR, "aeu_mask 0x%08x newly deasserted 0x%08x\n", 8282 aeu_mask, deasserted); 8283 aeu_mask |= (deasserted & 0x3ff); 8284 BLOGD(sc, DBG_INTR, "new mask 0x%08x\n", aeu_mask); 8285 8286 REG_WR(sc, reg_addr, aeu_mask); 8287 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port); 8288 8289 BLOGD(sc, DBG_INTR, "attn_state 0x%08x\n", sc->attn_state); 8290 sc->attn_state &= ~deasserted; 8291 BLOGD(sc, DBG_INTR, "new state 0x%08x\n", sc->attn_state); 8292 } 8293 8294 static void 8295 bxe_attn_int(struct bxe_softc *sc) 8296 { 8297 /* read local copy of bits */ 8298 uint32_t attn_bits = le32toh(sc->def_sb->atten_status_block.attn_bits); 8299 uint32_t attn_ack = le32toh(sc->def_sb->atten_status_block.attn_bits_ack); 8300 uint32_t attn_state = sc->attn_state; 8301 8302 /* look for changed bits */ 8303 uint32_t asserted = attn_bits & ~attn_ack & ~attn_state; 8304 uint32_t deasserted = ~attn_bits & attn_ack & attn_state; 8305 8306 BLOGD(sc, DBG_INTR, 8307 "attn_bits 0x%08x attn_ack 0x%08x asserted 0x%08x deasserted 0x%08x\n", 8308 attn_bits, attn_ack, asserted, deasserted); 8309 8310 if (~(attn_bits ^ attn_ack) & (attn_bits ^ attn_state)) { 8311 BLOGE(sc, "BAD attention state\n"); 8312 } 8313 8314 /* handle bits that were raised */ 8315 if (asserted) { 8316 bxe_attn_int_asserted(sc, asserted); 8317 } 8318 8319 if (deasserted) { 8320 bxe_attn_int_deasserted(sc, deasserted); 8321 } 8322 } 8323 8324 static uint16_t 8325 bxe_update_dsb_idx(struct bxe_softc *sc) 8326 { 8327 struct host_sp_status_block *def_sb = sc->def_sb; 8328 uint16_t rc = 0; 8329 8330 mb(); /* status block is written to by the chip */ 8331 8332 if (sc->def_att_idx != def_sb->atten_status_block.attn_bits_index) { 8333 sc->def_att_idx = def_sb->atten_status_block.attn_bits_index; 8334 rc |= BXE_DEF_SB_ATT_IDX; 8335 } 8336 8337 if (sc->def_idx != def_sb->sp_sb.running_index) { 8338 sc->def_idx = def_sb->sp_sb.running_index; 8339 rc |= BXE_DEF_SB_IDX; 8340 } 8341 8342 mb(); 8343 8344 return (rc); 8345 } 8346 8347 static inline struct ecore_queue_sp_obj * 8348 bxe_cid_to_q_obj(struct bxe_softc *sc, 8349 uint32_t cid) 8350 { 8351 BLOGD(sc, DBG_SP, "retrieving fp from cid %d\n", cid); 8352 return (&sc->sp_objs[CID_TO_FP(cid, sc)].q_obj); 8353 } 8354 8355 static void 8356 bxe_handle_mcast_eqe(struct bxe_softc *sc) 8357 { 8358 struct ecore_mcast_ramrod_params rparam; 8359 int rc; 8360 8361 memset(&rparam, 0, sizeof(rparam)); 8362 8363 rparam.mcast_obj = &sc->mcast_obj; 8364 8365 BXE_MCAST_LOCK(sc); 8366 8367 /* clear pending state for the last command */ 8368 sc->mcast_obj.raw.clear_pending(&sc->mcast_obj.raw); 8369 8370 /* if there are pending mcast commands - send them */ 8371 if (sc->mcast_obj.check_pending(&sc->mcast_obj)) { 8372 rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_CONT); 8373 if (rc < 0) { 8374 BLOGD(sc, DBG_SP, 8375 "ERROR: Failed to send pending mcast commands (%d)\n", rc); 8376 } 8377 } 8378 8379 BXE_MCAST_UNLOCK(sc); 8380 } 8381 8382 static void 8383 bxe_handle_classification_eqe(struct bxe_softc *sc, 8384 union event_ring_elem *elem) 8385 { 8386 unsigned long ramrod_flags = 0; 8387 int rc = 0; 8388 uint32_t cid = elem->message.data.eth_event.echo & BXE_SWCID_MASK; 8389 struct ecore_vlan_mac_obj *vlan_mac_obj; 8390 8391 /* always push next commands out, don't wait here */ 8392 bit_set(&ramrod_flags, RAMROD_CONT); 8393 8394 switch (le32toh(elem->message.data.eth_event.echo) >> BXE_SWCID_SHIFT) { 8395 case ECORE_FILTER_MAC_PENDING: 8396 BLOGD(sc, DBG_SP, "Got SETUP_MAC completions\n"); 8397 vlan_mac_obj = &sc->sp_objs[cid].mac_obj; 8398 break; 8399 8400 case ECORE_FILTER_MCAST_PENDING: 8401 BLOGD(sc, DBG_SP, "Got SETUP_MCAST completions\n"); 8402 /* 8403 * This is only relevant for 57710 where multicast MACs are 8404 * configured as unicast MACs using the same ramrod. 8405 */ 8406 bxe_handle_mcast_eqe(sc); 8407 return; 8408 8409 default: 8410 BLOGE(sc, "Unsupported classification command: %d\n", 8411 elem->message.data.eth_event.echo); 8412 return; 8413 } 8414 8415 rc = vlan_mac_obj->complete(sc, vlan_mac_obj, elem, &ramrod_flags); 8416 8417 if (rc < 0) { 8418 BLOGE(sc, "Failed to schedule new commands (%d)\n", rc); 8419 } else if (rc > 0) { 8420 BLOGD(sc, DBG_SP, "Scheduled next pending commands...\n"); 8421 } 8422 } 8423 8424 static void 8425 bxe_handle_rx_mode_eqe(struct bxe_softc *sc, 8426 union event_ring_elem *elem) 8427 { 8428 bxe_clear_bit(ECORE_FILTER_RX_MODE_PENDING, &sc->sp_state); 8429 8430 /* send rx_mode command again if was requested */ 8431 if (bxe_test_and_clear_bit(ECORE_FILTER_RX_MODE_SCHED, 8432 &sc->sp_state)) { 8433 bxe_set_storm_rx_mode(sc); 8434 } 8435 } 8436 8437 static void 8438 bxe_update_eq_prod(struct bxe_softc *sc, 8439 uint16_t prod) 8440 { 8441 storm_memset_eq_prod(sc, prod, SC_FUNC(sc)); 8442 wmb(); /* keep prod updates ordered */ 8443 } 8444 8445 static void 8446 bxe_eq_int(struct bxe_softc *sc) 8447 { 8448 uint16_t hw_cons, sw_cons, sw_prod; 8449 union event_ring_elem *elem; 8450 uint8_t echo; 8451 uint32_t cid; 8452 uint8_t opcode; 8453 int spqe_cnt = 0; 8454 struct ecore_queue_sp_obj *q_obj; 8455 struct ecore_func_sp_obj *f_obj = &sc->func_obj; 8456 struct ecore_raw_obj *rss_raw = &sc->rss_conf_obj.raw; 8457 8458 hw_cons = le16toh(*sc->eq_cons_sb); 8459 8460 /* 8461 * The hw_cons range is 1-255, 257 - the sw_cons range is 0-254, 256. 8462 * when we get to the next-page we need to adjust so the loop 8463 * condition below will be met. The next element is the size of a 8464 * regular element and hence incrementing by 1 8465 */ 8466 if ((hw_cons & EQ_DESC_MAX_PAGE) == EQ_DESC_MAX_PAGE) { 8467 hw_cons++; 8468 } 8469 8470 /* 8471 * This function may never run in parallel with itself for a 8472 * specific sc and no need for a read memory barrier here. 8473 */ 8474 sw_cons = sc->eq_cons; 8475 sw_prod = sc->eq_prod; 8476 8477 BLOGD(sc, DBG_SP,"EQ: hw_cons=%u sw_cons=%u eq_spq_left=0x%lx\n", 8478 hw_cons, sw_cons, atomic_load_acq_long(&sc->eq_spq_left)); 8479 8480 for (; 8481 sw_cons != hw_cons; 8482 sw_prod = NEXT_EQ_IDX(sw_prod), sw_cons = NEXT_EQ_IDX(sw_cons)) { 8483 8484 elem = &sc->eq[EQ_DESC(sw_cons)]; 8485 8486 /* elem CID originates from FW, actually LE */ 8487 cid = SW_CID(elem->message.data.cfc_del_event.cid); 8488 opcode = elem->message.opcode; 8489 8490 /* handle eq element */ 8491 switch (opcode) { 8492 8493 case EVENT_RING_OPCODE_STAT_QUERY: 8494 BLOGD(sc, DBG_SP, "got statistics completion event %d\n", 8495 sc->stats_comp++); 8496 /* nothing to do with stats comp */ 8497 goto next_spqe; 8498 8499 case EVENT_RING_OPCODE_CFC_DEL: 8500 /* handle according to cid range */ 8501 /* we may want to verify here that the sc state is HALTING */ 8502 BLOGD(sc, DBG_SP, "got delete ramrod for MULTI[%d]\n", cid); 8503 q_obj = bxe_cid_to_q_obj(sc, cid); 8504 if (q_obj->complete_cmd(sc, q_obj, ECORE_Q_CMD_CFC_DEL)) { 8505 break; 8506 } 8507 goto next_spqe; 8508 8509 case EVENT_RING_OPCODE_STOP_TRAFFIC: 8510 BLOGD(sc, DBG_SP, "got STOP TRAFFIC\n"); 8511 if (f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_TX_STOP)) { 8512 break; 8513 } 8514 // XXX bxe_dcbx_set_params(sc, BXE_DCBX_STATE_TX_PAUSED); 8515 goto next_spqe; 8516 8517 case EVENT_RING_OPCODE_START_TRAFFIC: 8518 BLOGD(sc, DBG_SP, "got START TRAFFIC\n"); 8519 if (f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_TX_START)) { 8520 break; 8521 } 8522 // XXX bxe_dcbx_set_params(sc, BXE_DCBX_STATE_TX_RELEASED); 8523 goto next_spqe; 8524 8525 case EVENT_RING_OPCODE_FUNCTION_UPDATE: 8526 echo = elem->message.data.function_update_event.echo; 8527 if (echo == SWITCH_UPDATE) { 8528 BLOGD(sc, DBG_SP, "got FUNC_SWITCH_UPDATE ramrod\n"); 8529 if (f_obj->complete_cmd(sc, f_obj, 8530 ECORE_F_CMD_SWITCH_UPDATE)) { 8531 break; 8532 } 8533 } 8534 else { 8535 BLOGD(sc, DBG_SP, 8536 "AFEX: ramrod completed FUNCTION_UPDATE\n"); 8537 } 8538 goto next_spqe; 8539 8540 case EVENT_RING_OPCODE_FORWARD_SETUP: 8541 q_obj = &bxe_fwd_sp_obj(sc, q_obj); 8542 if (q_obj->complete_cmd(sc, q_obj, 8543 ECORE_Q_CMD_SETUP_TX_ONLY)) { 8544 break; 8545 } 8546 goto next_spqe; 8547 8548 case EVENT_RING_OPCODE_FUNCTION_START: 8549 BLOGD(sc, DBG_SP, "got FUNC_START ramrod\n"); 8550 if (f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_START)) { 8551 break; 8552 } 8553 goto next_spqe; 8554 8555 case EVENT_RING_OPCODE_FUNCTION_STOP: 8556 BLOGD(sc, DBG_SP, "got FUNC_STOP ramrod\n"); 8557 if (f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_STOP)) { 8558 break; 8559 } 8560 goto next_spqe; 8561 } 8562 8563 switch (opcode | sc->state) { 8564 case (EVENT_RING_OPCODE_RSS_UPDATE_RULES | BXE_STATE_OPEN): 8565 case (EVENT_RING_OPCODE_RSS_UPDATE_RULES | BXE_STATE_OPENING_WAITING_PORT): 8566 cid = elem->message.data.eth_event.echo & BXE_SWCID_MASK; 8567 BLOGD(sc, DBG_SP, "got RSS_UPDATE ramrod. CID %d\n", cid); 8568 rss_raw->clear_pending(rss_raw); 8569 break; 8570 8571 case (EVENT_RING_OPCODE_SET_MAC | BXE_STATE_OPEN): 8572 case (EVENT_RING_OPCODE_SET_MAC | BXE_STATE_DIAG): 8573 case (EVENT_RING_OPCODE_SET_MAC | BXE_STATE_CLOSING_WAITING_HALT): 8574 case (EVENT_RING_OPCODE_CLASSIFICATION_RULES | BXE_STATE_OPEN): 8575 case (EVENT_RING_OPCODE_CLASSIFICATION_RULES | BXE_STATE_DIAG): 8576 case (EVENT_RING_OPCODE_CLASSIFICATION_RULES | BXE_STATE_CLOSING_WAITING_HALT): 8577 BLOGD(sc, DBG_SP, "got (un)set mac ramrod\n"); 8578 bxe_handle_classification_eqe(sc, elem); 8579 break; 8580 8581 case (EVENT_RING_OPCODE_MULTICAST_RULES | BXE_STATE_OPEN): 8582 case (EVENT_RING_OPCODE_MULTICAST_RULES | BXE_STATE_DIAG): 8583 case (EVENT_RING_OPCODE_MULTICAST_RULES | BXE_STATE_CLOSING_WAITING_HALT): 8584 BLOGD(sc, DBG_SP, "got mcast ramrod\n"); 8585 bxe_handle_mcast_eqe(sc); 8586 break; 8587 8588 case (EVENT_RING_OPCODE_FILTERS_RULES | BXE_STATE_OPEN): 8589 case (EVENT_RING_OPCODE_FILTERS_RULES | BXE_STATE_DIAG): 8590 case (EVENT_RING_OPCODE_FILTERS_RULES | BXE_STATE_CLOSING_WAITING_HALT): 8591 BLOGD(sc, DBG_SP, "got rx_mode ramrod\n"); 8592 bxe_handle_rx_mode_eqe(sc, elem); 8593 break; 8594 8595 default: 8596 /* unknown event log error and continue */ 8597 BLOGE(sc, "Unknown EQ event %d, sc->state 0x%x\n", 8598 elem->message.opcode, sc->state); 8599 } 8600 8601 next_spqe: 8602 spqe_cnt++; 8603 } /* for */ 8604 8605 mb(); 8606 atomic_add_acq_long(&sc->eq_spq_left, spqe_cnt); 8607 8608 sc->eq_cons = sw_cons; 8609 sc->eq_prod = sw_prod; 8610 8611 /* make sure that above mem writes were issued towards the memory */ 8612 wmb(); 8613 8614 /* update producer */ 8615 bxe_update_eq_prod(sc, sc->eq_prod); 8616 } 8617 8618 static void 8619 bxe_handle_sp_tq(void *context, 8620 int pending) 8621 { 8622 struct bxe_softc *sc = (struct bxe_softc *)context; 8623 uint16_t status; 8624 8625 BLOGD(sc, DBG_SP, "---> SP TASK <---\n"); 8626 8627 /* what work needs to be performed? */ 8628 status = bxe_update_dsb_idx(sc); 8629 8630 BLOGD(sc, DBG_SP, "dsb status 0x%04x\n", status); 8631 8632 /* HW attentions */ 8633 if (status & BXE_DEF_SB_ATT_IDX) { 8634 BLOGD(sc, DBG_SP, "---> ATTN INTR <---\n"); 8635 bxe_attn_int(sc); 8636 status &= ~BXE_DEF_SB_ATT_IDX; 8637 } 8638 8639 /* SP events: STAT_QUERY and others */ 8640 if (status & BXE_DEF_SB_IDX) { 8641 /* handle EQ completions */ 8642 BLOGD(sc, DBG_SP, "---> EQ INTR <---\n"); 8643 bxe_eq_int(sc); 8644 bxe_ack_sb(sc, sc->igu_dsb_id, USTORM_ID, 8645 le16toh(sc->def_idx), IGU_INT_NOP, 1); 8646 status &= ~BXE_DEF_SB_IDX; 8647 } 8648 8649 /* if status is non zero then something went wrong */ 8650 if (__predict_false(status)) { 8651 BLOGE(sc, "Got an unknown SP interrupt! (0x%04x)\n", status); 8652 } 8653 8654 /* ack status block only if something was actually handled */ 8655 bxe_ack_sb(sc, sc->igu_dsb_id, ATTENTION_ID, 8656 le16toh(sc->def_att_idx), IGU_INT_ENABLE, 1); 8657 8658 /* 8659 * Must be called after the EQ processing (since eq leads to sriov 8660 * ramrod completion flows). 8661 * This flow may have been scheduled by the arrival of a ramrod 8662 * completion, or by the sriov code rescheduling itself. 8663 */ 8664 // XXX bxe_iov_sp_task(sc); 8665 8666 } 8667 8668 static void 8669 bxe_handle_fp_tq(void *context, 8670 int pending) 8671 { 8672 struct bxe_fastpath *fp = (struct bxe_fastpath *)context; 8673 struct bxe_softc *sc = fp->sc; 8674 /* uint8_t more_tx = FALSE; */ 8675 uint8_t more_rx = FALSE; 8676 8677 BLOGD(sc, DBG_INTR, "---> FP TASK QUEUE (%d) <---\n", fp->index); 8678 8679 /* XXX 8680 * IFF_DRV_RUNNING state can't be checked here since we process 8681 * slowpath events on a client queue during setup. Instead 8682 * we need to add a "process/continue" flag here that the driver 8683 * can use to tell the task here not to do anything. 8684 */ 8685 #if 0 8686 if (!(if_getdrvflags(sc->ifp) & IFF_DRV_RUNNING)) { 8687 return; 8688 } 8689 #endif 8690 8691 /* update the fastpath index */ 8692 bxe_update_fp_sb_idx(fp); 8693 8694 /* XXX add loop here if ever support multiple tx CoS */ 8695 /* fp->txdata[cos] */ 8696 if (bxe_has_tx_work(fp)) { 8697 BXE_FP_TX_LOCK(fp); 8698 /* more_tx = */ bxe_txeof(sc, fp); 8699 BXE_FP_TX_UNLOCK(fp); 8700 } 8701 8702 if (bxe_has_rx_work(fp)) { 8703 more_rx = bxe_rxeof(sc, fp); 8704 } 8705 8706 if (more_rx /*|| more_tx*/) { 8707 /* still more work to do */ 8708 taskqueue_enqueue(fp->tq, &fp->tq_task); 8709 return; 8710 } 8711 8712 bxe_ack_sb(sc, fp->igu_sb_id, USTORM_ID, 8713 le16toh(fp->fp_hc_idx), IGU_INT_ENABLE, 1); 8714 } 8715 8716 static void 8717 bxe_task_fp(struct bxe_fastpath *fp) 8718 { 8719 struct bxe_softc *sc = fp->sc; 8720 /* uint8_t more_tx = FALSE; */ 8721 uint8_t more_rx = FALSE; 8722 8723 BLOGD(sc, DBG_INTR, "---> FP TASK ISR (%d) <---\n", fp->index); 8724 8725 /* update the fastpath index */ 8726 bxe_update_fp_sb_idx(fp); 8727 8728 /* XXX add loop here if ever support multiple tx CoS */ 8729 /* fp->txdata[cos] */ 8730 if (bxe_has_tx_work(fp)) { 8731 BXE_FP_TX_LOCK(fp); 8732 /* more_tx = */ bxe_txeof(sc, fp); 8733 BXE_FP_TX_UNLOCK(fp); 8734 } 8735 8736 if (bxe_has_rx_work(fp)) { 8737 more_rx = bxe_rxeof(sc, fp); 8738 } 8739 8740 if (more_rx /*|| more_tx*/) { 8741 /* still more work to do, bail out if this ISR and process later */ 8742 taskqueue_enqueue(fp->tq, &fp->tq_task); 8743 return; 8744 } 8745 8746 /* 8747 * Here we write the fastpath index taken before doing any tx or rx work. 8748 * It is very well possible other hw events occurred up to this point and 8749 * they were actually processed accordingly above. Since we're going to 8750 * write an older fastpath index, an interrupt is coming which we might 8751 * not do any work in. 8752 */ 8753 bxe_ack_sb(sc, fp->igu_sb_id, USTORM_ID, 8754 le16toh(fp->fp_hc_idx), IGU_INT_ENABLE, 1); 8755 } 8756 8757 /* 8758 * Legacy interrupt entry point. 8759 * 8760 * Verifies that the controller generated the interrupt and 8761 * then calls a separate routine to handle the various 8762 * interrupt causes: link, RX, and TX. 8763 */ 8764 static void 8765 bxe_intr_legacy(void *xsc) 8766 { 8767 struct bxe_softc *sc = (struct bxe_softc *)xsc; 8768 struct bxe_fastpath *fp; 8769 uint16_t status, mask; 8770 int i; 8771 8772 BLOGD(sc, DBG_INTR, "---> BXE INTx <---\n"); 8773 8774 /* 8775 * 0 for ustorm, 1 for cstorm 8776 * the bits returned from ack_int() are 0-15 8777 * bit 0 = attention status block 8778 * bit 1 = fast path status block 8779 * a mask of 0x2 or more = tx/rx event 8780 * a mask of 1 = slow path event 8781 */ 8782 8783 status = bxe_ack_int(sc); 8784 8785 /* the interrupt is not for us */ 8786 if (__predict_false(status == 0)) { 8787 BLOGD(sc, DBG_INTR, "Not our interrupt!\n"); 8788 return; 8789 } 8790 8791 BLOGD(sc, DBG_INTR, "Interrupt status 0x%04x\n", status); 8792 8793 FOR_EACH_ETH_QUEUE(sc, i) { 8794 fp = &sc->fp[i]; 8795 mask = (0x2 << (fp->index + CNIC_SUPPORT(sc))); 8796 if (status & mask) { 8797 /* acknowledge and disable further fastpath interrupts */ 8798 bxe_ack_sb(sc, fp->igu_sb_id, USTORM_ID, 0, IGU_INT_DISABLE, 0); 8799 bxe_task_fp(fp); 8800 status &= ~mask; 8801 } 8802 } 8803 8804 if (__predict_false(status & 0x1)) { 8805 /* acknowledge and disable further slowpath interrupts */ 8806 bxe_ack_sb(sc, sc->igu_dsb_id, USTORM_ID, 0, IGU_INT_DISABLE, 0); 8807 8808 /* schedule slowpath handler */ 8809 taskqueue_enqueue(sc->sp_tq, &sc->sp_tq_task); 8810 8811 status &= ~0x1; 8812 } 8813 8814 if (__predict_false(status)) { 8815 BLOGW(sc, "Unexpected fastpath status (0x%08x)!\n", status); 8816 } 8817 } 8818 8819 /* slowpath interrupt entry point */ 8820 static void 8821 bxe_intr_sp(void *xsc) 8822 { 8823 struct bxe_softc *sc = (struct bxe_softc *)xsc; 8824 8825 BLOGD(sc, (DBG_INTR | DBG_SP), "---> SP INTR <---\n"); 8826 8827 /* acknowledge and disable further slowpath interrupts */ 8828 bxe_ack_sb(sc, sc->igu_dsb_id, USTORM_ID, 0, IGU_INT_DISABLE, 0); 8829 8830 /* schedule slowpath handler */ 8831 taskqueue_enqueue(sc->sp_tq, &sc->sp_tq_task); 8832 } 8833 8834 /* fastpath interrupt entry point */ 8835 static void 8836 bxe_intr_fp(void *xfp) 8837 { 8838 struct bxe_fastpath *fp = (struct bxe_fastpath *)xfp; 8839 struct bxe_softc *sc = fp->sc; 8840 8841 BLOGD(sc, DBG_INTR, "---> FP INTR %d <---\n", fp->index); 8842 8843 BLOGD(sc, DBG_INTR, 8844 "(cpu=%d) MSI-X fp=%d fw_sb=%d igu_sb=%d\n", 8845 curcpu, fp->index, fp->fw_sb_id, fp->igu_sb_id); 8846 8847 /* acknowledge and disable further fastpath interrupts */ 8848 bxe_ack_sb(sc, fp->igu_sb_id, USTORM_ID, 0, IGU_INT_DISABLE, 0); 8849 8850 bxe_task_fp(fp); 8851 } 8852 8853 /* Release all interrupts allocated by the driver. */ 8854 static void 8855 bxe_interrupt_free(struct bxe_softc *sc) 8856 { 8857 int i; 8858 8859 switch (sc->interrupt_mode) { 8860 case INTR_MODE_INTX: 8861 BLOGD(sc, DBG_LOAD, "Releasing legacy INTx vector\n"); 8862 if (sc->intr[0].resource != NULL) { 8863 bus_release_resource(sc->dev, 8864 SYS_RES_IRQ, 8865 sc->intr[0].rid, 8866 sc->intr[0].resource); 8867 } 8868 break; 8869 case INTR_MODE_MSI: 8870 for (i = 0; i < sc->intr_count; i++) { 8871 BLOGD(sc, DBG_LOAD, "Releasing MSI vector %d\n", i); 8872 if (sc->intr[i].resource && sc->intr[i].rid) { 8873 bus_release_resource(sc->dev, 8874 SYS_RES_IRQ, 8875 sc->intr[i].rid, 8876 sc->intr[i].resource); 8877 } 8878 } 8879 pci_release_msi(sc->dev); 8880 break; 8881 case INTR_MODE_MSIX: 8882 for (i = 0; i < sc->intr_count; i++) { 8883 BLOGD(sc, DBG_LOAD, "Releasing MSI-X vector %d\n", i); 8884 if (sc->intr[i].resource && sc->intr[i].rid) { 8885 bus_release_resource(sc->dev, 8886 SYS_RES_IRQ, 8887 sc->intr[i].rid, 8888 sc->intr[i].resource); 8889 } 8890 } 8891 pci_release_msi(sc->dev); 8892 break; 8893 default: 8894 /* nothing to do as initial allocation failed */ 8895 break; 8896 } 8897 } 8898 8899 /* 8900 * This function determines and allocates the appropriate 8901 * interrupt based on system capabilites and user request. 8902 * 8903 * The user may force a particular interrupt mode, specify 8904 * the number of receive queues, specify the method for 8905 * distribuitng received frames to receive queues, or use 8906 * the default settings which will automatically select the 8907 * best supported combination. In addition, the OS may or 8908 * may not support certain combinations of these settings. 8909 * This routine attempts to reconcile the settings requested 8910 * by the user with the capabilites available from the system 8911 * to select the optimal combination of features. 8912 * 8913 * Returns: 8914 * 0 = Success, !0 = Failure. 8915 */ 8916 static int 8917 bxe_interrupt_alloc(struct bxe_softc *sc) 8918 { 8919 int msix_count = 0; 8920 int msi_count = 0; 8921 int num_requested = 0; 8922 int num_allocated = 0; 8923 int rid, i, j; 8924 int rc; 8925 8926 /* get the number of available MSI/MSI-X interrupts from the OS */ 8927 if (sc->interrupt_mode > 0) { 8928 if (sc->devinfo.pcie_cap_flags & BXE_MSIX_CAPABLE_FLAG) { 8929 msix_count = pci_msix_count(sc->dev); 8930 } 8931 8932 if (sc->devinfo.pcie_cap_flags & BXE_MSI_CAPABLE_FLAG) { 8933 msi_count = pci_msi_count(sc->dev); 8934 } 8935 8936 BLOGD(sc, DBG_LOAD, "%d MSI and %d MSI-X vectors available\n", 8937 msi_count, msix_count); 8938 } 8939 8940 do { /* try allocating MSI-X interrupt resources (at least 2) */ 8941 if (sc->interrupt_mode != INTR_MODE_MSIX) { 8942 break; 8943 } 8944 8945 if (((sc->devinfo.pcie_cap_flags & BXE_MSIX_CAPABLE_FLAG) == 0) || 8946 (msix_count < 2)) { 8947 sc->interrupt_mode = INTR_MODE_MSI; /* try MSI next */ 8948 break; 8949 } 8950 8951 /* ask for the necessary number of MSI-X vectors */ 8952 num_requested = min((sc->num_queues + 1), msix_count); 8953 8954 BLOGD(sc, DBG_LOAD, "Requesting %d MSI-X vectors\n", num_requested); 8955 8956 num_allocated = num_requested; 8957 if ((rc = pci_alloc_msix(sc->dev, &num_allocated)) != 0) { 8958 BLOGE(sc, "MSI-X alloc failed! (%d)\n", rc); 8959 sc->interrupt_mode = INTR_MODE_MSI; /* try MSI next */ 8960 break; 8961 } 8962 8963 if (num_allocated < 2) { /* possible? */ 8964 BLOGE(sc, "MSI-X allocation less than 2!\n"); 8965 sc->interrupt_mode = INTR_MODE_MSI; /* try MSI next */ 8966 pci_release_msi(sc->dev); 8967 break; 8968 } 8969 8970 BLOGI(sc, "MSI-X vectors Requested %d and Allocated %d\n", 8971 num_requested, num_allocated); 8972 8973 /* best effort so use the number of vectors allocated to us */ 8974 sc->intr_count = num_allocated; 8975 sc->num_queues = num_allocated - 1; 8976 8977 rid = 1; /* initial resource identifier */ 8978 8979 /* allocate the MSI-X vectors */ 8980 for (i = 0; i < num_allocated; i++) { 8981 sc->intr[i].rid = (rid + i); 8982 8983 if ((sc->intr[i].resource = 8984 bus_alloc_resource_any(sc->dev, 8985 SYS_RES_IRQ, 8986 &sc->intr[i].rid, 8987 RF_ACTIVE)) == NULL) { 8988 BLOGE(sc, "Failed to map MSI-X[%d] (rid=%d)!\n", 8989 i, (rid + i)); 8990 8991 for (j = (i - 1); j >= 0; j--) { 8992 bus_release_resource(sc->dev, 8993 SYS_RES_IRQ, 8994 sc->intr[j].rid, 8995 sc->intr[j].resource); 8996 } 8997 8998 sc->intr_count = 0; 8999 sc->num_queues = 0; 9000 sc->interrupt_mode = INTR_MODE_MSI; /* try MSI next */ 9001 pci_release_msi(sc->dev); 9002 break; 9003 } 9004 9005 BLOGD(sc, DBG_LOAD, "Mapped MSI-X[%d] (rid=%d)\n", i, (rid + i)); 9006 } 9007 } while (0); 9008 9009 do { /* try allocating MSI vector resources (at least 2) */ 9010 if (sc->interrupt_mode != INTR_MODE_MSI) { 9011 break; 9012 } 9013 9014 if (((sc->devinfo.pcie_cap_flags & BXE_MSI_CAPABLE_FLAG) == 0) || 9015 (msi_count < 1)) { 9016 sc->interrupt_mode = INTR_MODE_INTX; /* try INTx next */ 9017 break; 9018 } 9019 9020 /* ask for a single MSI vector */ 9021 num_requested = 1; 9022 9023 BLOGD(sc, DBG_LOAD, "Requesting %d MSI vectors\n", num_requested); 9024 9025 num_allocated = num_requested; 9026 if ((rc = pci_alloc_msi(sc->dev, &num_allocated)) != 0) { 9027 BLOGE(sc, "MSI alloc failed (%d)!\n", rc); 9028 sc->interrupt_mode = INTR_MODE_INTX; /* try INTx next */ 9029 break; 9030 } 9031 9032 if (num_allocated != 1) { /* possible? */ 9033 BLOGE(sc, "MSI allocation is not 1!\n"); 9034 sc->interrupt_mode = INTR_MODE_INTX; /* try INTx next */ 9035 pci_release_msi(sc->dev); 9036 break; 9037 } 9038 9039 BLOGI(sc, "MSI vectors Requested %d and Allocated %d\n", 9040 num_requested, num_allocated); 9041 9042 /* best effort so use the number of vectors allocated to us */ 9043 sc->intr_count = num_allocated; 9044 sc->num_queues = num_allocated; 9045 9046 rid = 1; /* initial resource identifier */ 9047 9048 sc->intr[0].rid = rid; 9049 9050 if ((sc->intr[0].resource = 9051 bus_alloc_resource_any(sc->dev, 9052 SYS_RES_IRQ, 9053 &sc->intr[0].rid, 9054 RF_ACTIVE)) == NULL) { 9055 BLOGE(sc, "Failed to map MSI[0] (rid=%d)!\n", rid); 9056 sc->intr_count = 0; 9057 sc->num_queues = 0; 9058 sc->interrupt_mode = INTR_MODE_INTX; /* try INTx next */ 9059 pci_release_msi(sc->dev); 9060 break; 9061 } 9062 9063 BLOGD(sc, DBG_LOAD, "Mapped MSI[0] (rid=%d)\n", rid); 9064 } while (0); 9065 9066 do { /* try allocating INTx vector resources */ 9067 if (sc->interrupt_mode != INTR_MODE_INTX) { 9068 break; 9069 } 9070 9071 BLOGD(sc, DBG_LOAD, "Requesting legacy INTx interrupt\n"); 9072 9073 /* only one vector for INTx */ 9074 sc->intr_count = 1; 9075 sc->num_queues = 1; 9076 9077 rid = 0; /* initial resource identifier */ 9078 9079 sc->intr[0].rid = rid; 9080 9081 if ((sc->intr[0].resource = 9082 bus_alloc_resource_any(sc->dev, 9083 SYS_RES_IRQ, 9084 &sc->intr[0].rid, 9085 (RF_ACTIVE | RF_SHAREABLE))) == NULL) { 9086 BLOGE(sc, "Failed to map INTx (rid=%d)!\n", rid); 9087 sc->intr_count = 0; 9088 sc->num_queues = 0; 9089 sc->interrupt_mode = -1; /* Failed! */ 9090 break; 9091 } 9092 9093 BLOGD(sc, DBG_LOAD, "Mapped INTx (rid=%d)\n", rid); 9094 } while (0); 9095 9096 if (sc->interrupt_mode == -1) { 9097 BLOGE(sc, "Interrupt Allocation: FAILED!!!\n"); 9098 rc = 1; 9099 } else { 9100 BLOGD(sc, DBG_LOAD, 9101 "Interrupt Allocation: interrupt_mode=%d, num_queues=%d\n", 9102 sc->interrupt_mode, sc->num_queues); 9103 rc = 0; 9104 } 9105 9106 return (rc); 9107 } 9108 9109 static void 9110 bxe_interrupt_detach(struct bxe_softc *sc) 9111 { 9112 struct bxe_fastpath *fp; 9113 int i; 9114 9115 /* release interrupt resources */ 9116 for (i = 0; i < sc->intr_count; i++) { 9117 if (sc->intr[i].resource && sc->intr[i].tag) { 9118 BLOGD(sc, DBG_LOAD, "Disabling interrupt vector %d\n", i); 9119 bus_teardown_intr(sc->dev, sc->intr[i].resource, sc->intr[i].tag); 9120 } 9121 } 9122 9123 for (i = 0; i < sc->num_queues; i++) { 9124 fp = &sc->fp[i]; 9125 if (fp->tq) { 9126 taskqueue_drain(fp->tq, &fp->tq_task); 9127 taskqueue_drain(fp->tq, &fp->tx_task); 9128 while (taskqueue_cancel_timeout(fp->tq, &fp->tx_timeout_task, 9129 NULL)) 9130 taskqueue_drain_timeout(fp->tq, &fp->tx_timeout_task); 9131 } 9132 9133 for (i = 0; i < sc->num_queues; i++) { 9134 fp = &sc->fp[i]; 9135 if (fp->tq != NULL) { 9136 taskqueue_free(fp->tq); 9137 fp->tq = NULL; 9138 } 9139 } 9140 } 9141 9142 if (sc->sp_tq) { 9143 taskqueue_drain(sc->sp_tq, &sc->sp_tq_task); 9144 taskqueue_free(sc->sp_tq); 9145 sc->sp_tq = NULL; 9146 } 9147 } 9148 9149 /* 9150 * Enables interrupts and attach to the ISR. 9151 * 9152 * When using multiple MSI/MSI-X vectors the first vector 9153 * is used for slowpath operations while all remaining 9154 * vectors are used for fastpath operations. If only a 9155 * single MSI/MSI-X vector is used (SINGLE_ISR) then the 9156 * ISR must look for both slowpath and fastpath completions. 9157 */ 9158 static int 9159 bxe_interrupt_attach(struct bxe_softc *sc) 9160 { 9161 struct bxe_fastpath *fp; 9162 int rc = 0; 9163 int i; 9164 9165 snprintf(sc->sp_tq_name, sizeof(sc->sp_tq_name), 9166 "bxe%d_sp_tq", sc->unit); 9167 TASK_INIT(&sc->sp_tq_task, 0, bxe_handle_sp_tq, sc); 9168 sc->sp_tq = taskqueue_create(sc->sp_tq_name, M_NOWAIT, 9169 taskqueue_thread_enqueue, 9170 &sc->sp_tq); 9171 taskqueue_start_threads(&sc->sp_tq, 1, PWAIT, /* lower priority */ 9172 "%s", sc->sp_tq_name); 9173 9174 9175 for (i = 0; i < sc->num_queues; i++) { 9176 fp = &sc->fp[i]; 9177 snprintf(fp->tq_name, sizeof(fp->tq_name), 9178 "bxe%d_fp%d_tq", sc->unit, i); 9179 NET_TASK_INIT(&fp->tq_task, 0, bxe_handle_fp_tq, fp); 9180 TASK_INIT(&fp->tx_task, 0, bxe_tx_mq_start_deferred, fp); 9181 fp->tq = taskqueue_create(fp->tq_name, M_NOWAIT, 9182 taskqueue_thread_enqueue, 9183 &fp->tq); 9184 TIMEOUT_TASK_INIT(fp->tq, &fp->tx_timeout_task, 0, 9185 bxe_tx_mq_start_deferred, fp); 9186 taskqueue_start_threads(&fp->tq, 1, PI_NET, /* higher priority */ 9187 "%s", fp->tq_name); 9188 } 9189 9190 /* setup interrupt handlers */ 9191 if (sc->interrupt_mode == INTR_MODE_MSIX) { 9192 BLOGD(sc, DBG_LOAD, "Enabling slowpath MSI-X[0] vector\n"); 9193 9194 /* 9195 * Setup the interrupt handler. Note that we pass the driver instance 9196 * to the interrupt handler for the slowpath. 9197 */ 9198 if ((rc = bus_setup_intr(sc->dev, sc->intr[0].resource, 9199 (INTR_TYPE_NET | INTR_MPSAFE), 9200 NULL, bxe_intr_sp, sc, 9201 &sc->intr[0].tag)) != 0) { 9202 BLOGE(sc, "Failed to allocate MSI-X[0] vector (%d)\n", rc); 9203 goto bxe_interrupt_attach_exit; 9204 } 9205 9206 bus_describe_intr(sc->dev, sc->intr[0].resource, 9207 sc->intr[0].tag, "sp"); 9208 9209 /* bus_bind_intr(sc->dev, sc->intr[0].resource, 0); */ 9210 9211 /* initialize the fastpath vectors (note the first was used for sp) */ 9212 for (i = 0; i < sc->num_queues; i++) { 9213 fp = &sc->fp[i]; 9214 BLOGD(sc, DBG_LOAD, "Enabling MSI-X[%d] vector\n", (i + 1)); 9215 9216 /* 9217 * Setup the interrupt handler. Note that we pass the 9218 * fastpath context to the interrupt handler in this 9219 * case. 9220 */ 9221 if ((rc = bus_setup_intr(sc->dev, sc->intr[i + 1].resource, 9222 (INTR_TYPE_NET | INTR_MPSAFE), 9223 NULL, bxe_intr_fp, fp, 9224 &sc->intr[i + 1].tag)) != 0) { 9225 BLOGE(sc, "Failed to allocate MSI-X[%d] vector (%d)\n", 9226 (i + 1), rc); 9227 goto bxe_interrupt_attach_exit; 9228 } 9229 9230 bus_describe_intr(sc->dev, sc->intr[i + 1].resource, 9231 sc->intr[i + 1].tag, "fp%02d", i); 9232 9233 /* bind the fastpath instance to a cpu */ 9234 if (sc->num_queues > 1) { 9235 bus_bind_intr(sc->dev, sc->intr[i + 1].resource, i); 9236 } 9237 9238 fp->state = BXE_FP_STATE_IRQ; 9239 } 9240 } else if (sc->interrupt_mode == INTR_MODE_MSI) { 9241 BLOGD(sc, DBG_LOAD, "Enabling MSI[0] vector\n"); 9242 9243 /* 9244 * Setup the interrupt handler. Note that we pass the 9245 * driver instance to the interrupt handler which 9246 * will handle both the slowpath and fastpath. 9247 */ 9248 if ((rc = bus_setup_intr(sc->dev, sc->intr[0].resource, 9249 (INTR_TYPE_NET | INTR_MPSAFE), 9250 NULL, bxe_intr_legacy, sc, 9251 &sc->intr[0].tag)) != 0) { 9252 BLOGE(sc, "Failed to allocate MSI[0] vector (%d)\n", rc); 9253 goto bxe_interrupt_attach_exit; 9254 } 9255 9256 } else { /* (sc->interrupt_mode == INTR_MODE_INTX) */ 9257 BLOGD(sc, DBG_LOAD, "Enabling INTx interrupts\n"); 9258 9259 /* 9260 * Setup the interrupt handler. Note that we pass the 9261 * driver instance to the interrupt handler which 9262 * will handle both the slowpath and fastpath. 9263 */ 9264 if ((rc = bus_setup_intr(sc->dev, sc->intr[0].resource, 9265 (INTR_TYPE_NET | INTR_MPSAFE), 9266 NULL, bxe_intr_legacy, sc, 9267 &sc->intr[0].tag)) != 0) { 9268 BLOGE(sc, "Failed to allocate INTx interrupt (%d)\n", rc); 9269 goto bxe_interrupt_attach_exit; 9270 } 9271 } 9272 9273 bxe_interrupt_attach_exit: 9274 9275 return (rc); 9276 } 9277 9278 static int bxe_init_hw_common_chip(struct bxe_softc *sc); 9279 static int bxe_init_hw_common(struct bxe_softc *sc); 9280 static int bxe_init_hw_port(struct bxe_softc *sc); 9281 static int bxe_init_hw_func(struct bxe_softc *sc); 9282 static void bxe_reset_common(struct bxe_softc *sc); 9283 static void bxe_reset_port(struct bxe_softc *sc); 9284 static void bxe_reset_func(struct bxe_softc *sc); 9285 static int bxe_gunzip_init(struct bxe_softc *sc); 9286 static void bxe_gunzip_end(struct bxe_softc *sc); 9287 static int bxe_init_firmware(struct bxe_softc *sc); 9288 static void bxe_release_firmware(struct bxe_softc *sc); 9289 9290 static struct 9291 ecore_func_sp_drv_ops bxe_func_sp_drv = { 9292 .init_hw_cmn_chip = bxe_init_hw_common_chip, 9293 .init_hw_cmn = bxe_init_hw_common, 9294 .init_hw_port = bxe_init_hw_port, 9295 .init_hw_func = bxe_init_hw_func, 9296 9297 .reset_hw_cmn = bxe_reset_common, 9298 .reset_hw_port = bxe_reset_port, 9299 .reset_hw_func = bxe_reset_func, 9300 9301 .gunzip_init = bxe_gunzip_init, 9302 .gunzip_end = bxe_gunzip_end, 9303 9304 .init_fw = bxe_init_firmware, 9305 .release_fw = bxe_release_firmware, 9306 }; 9307 9308 static void 9309 bxe_init_func_obj(struct bxe_softc *sc) 9310 { 9311 sc->dmae_ready = 0; 9312 9313 ecore_init_func_obj(sc, 9314 &sc->func_obj, 9315 BXE_SP(sc, func_rdata), 9316 BXE_SP_MAPPING(sc, func_rdata), 9317 BXE_SP(sc, func_afex_rdata), 9318 BXE_SP_MAPPING(sc, func_afex_rdata), 9319 &bxe_func_sp_drv); 9320 } 9321 9322 static int 9323 bxe_init_hw(struct bxe_softc *sc, 9324 uint32_t load_code) 9325 { 9326 struct ecore_func_state_params func_params = { NULL }; 9327 int rc; 9328 9329 /* prepare the parameters for function state transitions */ 9330 bit_set(&func_params.ramrod_flags, RAMROD_COMP_WAIT); 9331 9332 func_params.f_obj = &sc->func_obj; 9333 func_params.cmd = ECORE_F_CMD_HW_INIT; 9334 9335 func_params.params.hw_init.load_phase = load_code; 9336 9337 /* 9338 * Via a plethora of function pointers, we will eventually reach 9339 * bxe_init_hw_common(), bxe_init_hw_port(), or bxe_init_hw_func(). 9340 */ 9341 rc = ecore_func_state_change(sc, &func_params); 9342 9343 return (rc); 9344 } 9345 9346 static void 9347 bxe_fill(struct bxe_softc *sc, 9348 uint32_t addr, 9349 int fill, 9350 uint32_t len) 9351 { 9352 uint32_t i; 9353 9354 if (!(len % 4) && !(addr % 4)) { 9355 for (i = 0; i < len; i += 4) { 9356 REG_WR(sc, (addr + i), fill); 9357 } 9358 } else { 9359 for (i = 0; i < len; i++) { 9360 REG_WR8(sc, (addr + i), fill); 9361 } 9362 } 9363 } 9364 9365 /* writes FP SP data to FW - data_size in dwords */ 9366 static void 9367 bxe_wr_fp_sb_data(struct bxe_softc *sc, 9368 int fw_sb_id, 9369 uint32_t *sb_data_p, 9370 uint32_t data_size) 9371 { 9372 int index; 9373 9374 for (index = 0; index < data_size; index++) { 9375 REG_WR(sc, 9376 (BAR_CSTRORM_INTMEM + 9377 CSTORM_STATUS_BLOCK_DATA_OFFSET(fw_sb_id) + 9378 (sizeof(uint32_t) * index)), 9379 *(sb_data_p + index)); 9380 } 9381 } 9382 9383 static void 9384 bxe_zero_fp_sb(struct bxe_softc *sc, 9385 int fw_sb_id) 9386 { 9387 struct hc_status_block_data_e2 sb_data_e2; 9388 struct hc_status_block_data_e1x sb_data_e1x; 9389 uint32_t *sb_data_p; 9390 uint32_t data_size = 0; 9391 9392 if (!CHIP_IS_E1x(sc)) { 9393 memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2)); 9394 sb_data_e2.common.state = SB_DISABLED; 9395 sb_data_e2.common.p_func.vf_valid = FALSE; 9396 sb_data_p = (uint32_t *)&sb_data_e2; 9397 data_size = (sizeof(struct hc_status_block_data_e2) / 9398 sizeof(uint32_t)); 9399 } else { 9400 memset(&sb_data_e1x, 0, sizeof(struct hc_status_block_data_e1x)); 9401 sb_data_e1x.common.state = SB_DISABLED; 9402 sb_data_e1x.common.p_func.vf_valid = FALSE; 9403 sb_data_p = (uint32_t *)&sb_data_e1x; 9404 data_size = (sizeof(struct hc_status_block_data_e1x) / 9405 sizeof(uint32_t)); 9406 } 9407 9408 bxe_wr_fp_sb_data(sc, fw_sb_id, sb_data_p, data_size); 9409 9410 bxe_fill(sc, (BAR_CSTRORM_INTMEM + CSTORM_STATUS_BLOCK_OFFSET(fw_sb_id)), 9411 0, CSTORM_STATUS_BLOCK_SIZE); 9412 bxe_fill(sc, (BAR_CSTRORM_INTMEM + CSTORM_SYNC_BLOCK_OFFSET(fw_sb_id)), 9413 0, CSTORM_SYNC_BLOCK_SIZE); 9414 } 9415 9416 static void 9417 bxe_wr_sp_sb_data(struct bxe_softc *sc, 9418 struct hc_sp_status_block_data *sp_sb_data) 9419 { 9420 int i; 9421 9422 for (i = 0; 9423 i < (sizeof(struct hc_sp_status_block_data) / sizeof(uint32_t)); 9424 i++) { 9425 REG_WR(sc, 9426 (BAR_CSTRORM_INTMEM + 9427 CSTORM_SP_STATUS_BLOCK_DATA_OFFSET(SC_FUNC(sc)) + 9428 (i * sizeof(uint32_t))), 9429 *((uint32_t *)sp_sb_data + i)); 9430 } 9431 } 9432 9433 static void 9434 bxe_zero_sp_sb(struct bxe_softc *sc) 9435 { 9436 struct hc_sp_status_block_data sp_sb_data; 9437 9438 memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data)); 9439 9440 sp_sb_data.state = SB_DISABLED; 9441 sp_sb_data.p_func.vf_valid = FALSE; 9442 9443 bxe_wr_sp_sb_data(sc, &sp_sb_data); 9444 9445 bxe_fill(sc, 9446 (BAR_CSTRORM_INTMEM + 9447 CSTORM_SP_STATUS_BLOCK_OFFSET(SC_FUNC(sc))), 9448 0, CSTORM_SP_STATUS_BLOCK_SIZE); 9449 bxe_fill(sc, 9450 (BAR_CSTRORM_INTMEM + 9451 CSTORM_SP_SYNC_BLOCK_OFFSET(SC_FUNC(sc))), 9452 0, CSTORM_SP_SYNC_BLOCK_SIZE); 9453 } 9454 9455 static void 9456 bxe_setup_ndsb_state_machine(struct hc_status_block_sm *hc_sm, 9457 int igu_sb_id, 9458 int igu_seg_id) 9459 { 9460 hc_sm->igu_sb_id = igu_sb_id; 9461 hc_sm->igu_seg_id = igu_seg_id; 9462 hc_sm->timer_value = 0xFF; 9463 hc_sm->time_to_expire = 0xFFFFFFFF; 9464 } 9465 9466 static void 9467 bxe_map_sb_state_machines(struct hc_index_data *index_data) 9468 { 9469 /* zero out state machine indices */ 9470 9471 /* rx indices */ 9472 index_data[HC_INDEX_ETH_RX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID; 9473 9474 /* tx indices */ 9475 index_data[HC_INDEX_OOO_TX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID; 9476 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags &= ~HC_INDEX_DATA_SM_ID; 9477 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags &= ~HC_INDEX_DATA_SM_ID; 9478 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags &= ~HC_INDEX_DATA_SM_ID; 9479 9480 /* map indices */ 9481 9482 /* rx indices */ 9483 index_data[HC_INDEX_ETH_RX_CQ_CONS].flags |= 9484 (SM_RX_ID << HC_INDEX_DATA_SM_ID_SHIFT); 9485 9486 /* tx indices */ 9487 index_data[HC_INDEX_OOO_TX_CQ_CONS].flags |= 9488 (SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT); 9489 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags |= 9490 (SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT); 9491 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags |= 9492 (SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT); 9493 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags |= 9494 (SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT); 9495 } 9496 9497 static void 9498 bxe_init_sb(struct bxe_softc *sc, 9499 bus_addr_t busaddr, 9500 int vfid, 9501 uint8_t vf_valid, 9502 int fw_sb_id, 9503 int igu_sb_id) 9504 { 9505 struct hc_status_block_data_e2 sb_data_e2; 9506 struct hc_status_block_data_e1x sb_data_e1x; 9507 struct hc_status_block_sm *hc_sm_p; 9508 uint32_t *sb_data_p; 9509 int igu_seg_id; 9510 int data_size; 9511 9512 if (CHIP_INT_MODE_IS_BC(sc)) { 9513 igu_seg_id = HC_SEG_ACCESS_NORM; 9514 } else { 9515 igu_seg_id = IGU_SEG_ACCESS_NORM; 9516 } 9517 9518 bxe_zero_fp_sb(sc, fw_sb_id); 9519 9520 if (!CHIP_IS_E1x(sc)) { 9521 memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2)); 9522 sb_data_e2.common.state = SB_ENABLED; 9523 sb_data_e2.common.p_func.pf_id = SC_FUNC(sc); 9524 sb_data_e2.common.p_func.vf_id = vfid; 9525 sb_data_e2.common.p_func.vf_valid = vf_valid; 9526 sb_data_e2.common.p_func.vnic_id = SC_VN(sc); 9527 sb_data_e2.common.same_igu_sb_1b = TRUE; 9528 sb_data_e2.common.host_sb_addr.hi = U64_HI(busaddr); 9529 sb_data_e2.common.host_sb_addr.lo = U64_LO(busaddr); 9530 hc_sm_p = sb_data_e2.common.state_machine; 9531 sb_data_p = (uint32_t *)&sb_data_e2; 9532 data_size = (sizeof(struct hc_status_block_data_e2) / 9533 sizeof(uint32_t)); 9534 bxe_map_sb_state_machines(sb_data_e2.index_data); 9535 } else { 9536 memset(&sb_data_e1x, 0, sizeof(struct hc_status_block_data_e1x)); 9537 sb_data_e1x.common.state = SB_ENABLED; 9538 sb_data_e1x.common.p_func.pf_id = SC_FUNC(sc); 9539 sb_data_e1x.common.p_func.vf_id = 0xff; 9540 sb_data_e1x.common.p_func.vf_valid = FALSE; 9541 sb_data_e1x.common.p_func.vnic_id = SC_VN(sc); 9542 sb_data_e1x.common.same_igu_sb_1b = TRUE; 9543 sb_data_e1x.common.host_sb_addr.hi = U64_HI(busaddr); 9544 sb_data_e1x.common.host_sb_addr.lo = U64_LO(busaddr); 9545 hc_sm_p = sb_data_e1x.common.state_machine; 9546 sb_data_p = (uint32_t *)&sb_data_e1x; 9547 data_size = (sizeof(struct hc_status_block_data_e1x) / 9548 sizeof(uint32_t)); 9549 bxe_map_sb_state_machines(sb_data_e1x.index_data); 9550 } 9551 9552 bxe_setup_ndsb_state_machine(&hc_sm_p[SM_RX_ID], igu_sb_id, igu_seg_id); 9553 bxe_setup_ndsb_state_machine(&hc_sm_p[SM_TX_ID], igu_sb_id, igu_seg_id); 9554 9555 BLOGD(sc, DBG_LOAD, "Init FW SB %d\n", fw_sb_id); 9556 9557 /* write indices to HW - PCI guarantees endianity of regpairs */ 9558 bxe_wr_fp_sb_data(sc, fw_sb_id, sb_data_p, data_size); 9559 } 9560 9561 static inline uint8_t 9562 bxe_fp_qzone_id(struct bxe_fastpath *fp) 9563 { 9564 if (CHIP_IS_E1x(fp->sc)) { 9565 return (fp->cl_id + SC_PORT(fp->sc) * ETH_MAX_RX_CLIENTS_E1H); 9566 } else { 9567 return (fp->cl_id); 9568 } 9569 } 9570 9571 static inline uint32_t 9572 bxe_rx_ustorm_prods_offset(struct bxe_softc *sc, 9573 struct bxe_fastpath *fp) 9574 { 9575 uint32_t offset = BAR_USTRORM_INTMEM; 9576 9577 if (!CHIP_IS_E1x(sc)) { 9578 offset += USTORM_RX_PRODS_E2_OFFSET(fp->cl_qzone_id); 9579 } else { 9580 offset += USTORM_RX_PRODS_E1X_OFFSET(SC_PORT(sc), fp->cl_id); 9581 } 9582 9583 return (offset); 9584 } 9585 9586 static void 9587 bxe_init_eth_fp(struct bxe_softc *sc, 9588 int idx) 9589 { 9590 struct bxe_fastpath *fp = &sc->fp[idx]; 9591 uint32_t cids[ECORE_MULTI_TX_COS] = { 0 }; 9592 unsigned long q_type = 0; 9593 int cos; 9594 9595 fp->sc = sc; 9596 fp->index = idx; 9597 9598 fp->igu_sb_id = (sc->igu_base_sb + idx + CNIC_SUPPORT(sc)); 9599 fp->fw_sb_id = (sc->base_fw_ndsb + idx + CNIC_SUPPORT(sc)); 9600 9601 fp->cl_id = (CHIP_IS_E1x(sc)) ? 9602 (SC_L_ID(sc) + idx) : 9603 /* want client ID same as IGU SB ID for non-E1 */ 9604 fp->igu_sb_id; 9605 fp->cl_qzone_id = bxe_fp_qzone_id(fp); 9606 9607 /* setup sb indices */ 9608 if (!CHIP_IS_E1x(sc)) { 9609 fp->sb_index_values = fp->status_block.e2_sb->sb.index_values; 9610 fp->sb_running_index = fp->status_block.e2_sb->sb.running_index; 9611 } else { 9612 fp->sb_index_values = fp->status_block.e1x_sb->sb.index_values; 9613 fp->sb_running_index = fp->status_block.e1x_sb->sb.running_index; 9614 } 9615 9616 /* init shortcut */ 9617 fp->ustorm_rx_prods_offset = bxe_rx_ustorm_prods_offset(sc, fp); 9618 9619 fp->rx_cq_cons_sb = &fp->sb_index_values[HC_INDEX_ETH_RX_CQ_CONS]; 9620 9621 /* 9622 * XXX If multiple CoS is ever supported then each fastpath structure 9623 * will need to maintain tx producer/consumer/dma/etc values *per* CoS. 9624 */ 9625 for (cos = 0; cos < sc->max_cos; cos++) { 9626 cids[cos] = idx; 9627 } 9628 fp->tx_cons_sb = &fp->sb_index_values[HC_INDEX_ETH_TX_CQ_CONS_COS0]; 9629 9630 /* nothing more for a VF to do */ 9631 if (IS_VF(sc)) { 9632 return; 9633 } 9634 9635 bxe_init_sb(sc, fp->sb_dma.paddr, BXE_VF_ID_INVALID, FALSE, 9636 fp->fw_sb_id, fp->igu_sb_id); 9637 9638 bxe_update_fp_sb_idx(fp); 9639 9640 /* Configure Queue State object */ 9641 bit_set(&q_type, ECORE_Q_TYPE_HAS_RX); 9642 bit_set(&q_type, ECORE_Q_TYPE_HAS_TX); 9643 9644 ecore_init_queue_obj(sc, 9645 &sc->sp_objs[idx].q_obj, 9646 fp->cl_id, 9647 cids, 9648 sc->max_cos, 9649 SC_FUNC(sc), 9650 BXE_SP(sc, q_rdata), 9651 BXE_SP_MAPPING(sc, q_rdata), 9652 q_type); 9653 9654 /* configure classification DBs */ 9655 ecore_init_mac_obj(sc, 9656 &sc->sp_objs[idx].mac_obj, 9657 fp->cl_id, 9658 idx, 9659 SC_FUNC(sc), 9660 BXE_SP(sc, mac_rdata), 9661 BXE_SP_MAPPING(sc, mac_rdata), 9662 ECORE_FILTER_MAC_PENDING, 9663 &sc->sp_state, 9664 ECORE_OBJ_TYPE_RX_TX, 9665 &sc->macs_pool); 9666 9667 BLOGD(sc, DBG_LOAD, "fp[%d]: sb=%p cl_id=%d fw_sb=%d igu_sb=%d\n", 9668 idx, fp->status_block.e2_sb, fp->cl_id, fp->fw_sb_id, fp->igu_sb_id); 9669 } 9670 9671 static inline void 9672 bxe_update_rx_prod(struct bxe_softc *sc, 9673 struct bxe_fastpath *fp, 9674 uint16_t rx_bd_prod, 9675 uint16_t rx_cq_prod, 9676 uint16_t rx_sge_prod) 9677 { 9678 struct ustorm_eth_rx_producers rx_prods = { 0 }; 9679 uint32_t i; 9680 9681 /* update producers */ 9682 rx_prods.bd_prod = rx_bd_prod; 9683 rx_prods.cqe_prod = rx_cq_prod; 9684 rx_prods.sge_prod = rx_sge_prod; 9685 9686 /* 9687 * Make sure that the BD and SGE data is updated before updating the 9688 * producers since FW might read the BD/SGE right after the producer 9689 * is updated. 9690 * This is only applicable for weak-ordered memory model archs such 9691 * as IA-64. The following barrier is also mandatory since FW will 9692 * assumes BDs must have buffers. 9693 */ 9694 wmb(); 9695 9696 for (i = 0; i < (sizeof(rx_prods) / 4); i++) { 9697 REG_WR(sc, 9698 (fp->ustorm_rx_prods_offset + (i * 4)), 9699 ((uint32_t *)&rx_prods)[i]); 9700 } 9701 9702 wmb(); /* keep prod updates ordered */ 9703 9704 BLOGD(sc, DBG_RX, 9705 "RX fp[%d]: wrote prods bd_prod=%u cqe_prod=%u sge_prod=%u\n", 9706 fp->index, rx_bd_prod, rx_cq_prod, rx_sge_prod); 9707 } 9708 9709 static void 9710 bxe_init_rx_rings(struct bxe_softc *sc) 9711 { 9712 struct bxe_fastpath *fp; 9713 int i; 9714 9715 for (i = 0; i < sc->num_queues; i++) { 9716 fp = &sc->fp[i]; 9717 9718 fp->rx_bd_cons = 0; 9719 9720 /* 9721 * Activate the BD ring... 9722 * Warning, this will generate an interrupt (to the TSTORM) 9723 * so this can only be done after the chip is initialized 9724 */ 9725 bxe_update_rx_prod(sc, fp, 9726 fp->rx_bd_prod, 9727 fp->rx_cq_prod, 9728 fp->rx_sge_prod); 9729 9730 if (i != 0) { 9731 continue; 9732 } 9733 9734 if (CHIP_IS_E1(sc)) { 9735 REG_WR(sc, 9736 (BAR_USTRORM_INTMEM + 9737 USTORM_MEM_WORKAROUND_ADDRESS_OFFSET(SC_FUNC(sc))), 9738 U64_LO(fp->rcq_dma.paddr)); 9739 REG_WR(sc, 9740 (BAR_USTRORM_INTMEM + 9741 USTORM_MEM_WORKAROUND_ADDRESS_OFFSET(SC_FUNC(sc)) + 4), 9742 U64_HI(fp->rcq_dma.paddr)); 9743 } 9744 } 9745 } 9746 9747 static void 9748 bxe_init_tx_ring_one(struct bxe_fastpath *fp) 9749 { 9750 SET_FLAG(fp->tx_db.data.header.data, DOORBELL_HDR_T_DB_TYPE, 1); 9751 fp->tx_db.data.zero_fill1 = 0; 9752 fp->tx_db.data.prod = 0; 9753 9754 fp->tx_pkt_prod = 0; 9755 fp->tx_pkt_cons = 0; 9756 fp->tx_bd_prod = 0; 9757 fp->tx_bd_cons = 0; 9758 fp->eth_q_stats.tx_pkts = 0; 9759 } 9760 9761 static inline void 9762 bxe_init_tx_rings(struct bxe_softc *sc) 9763 { 9764 int i; 9765 9766 for (i = 0; i < sc->num_queues; i++) { 9767 bxe_init_tx_ring_one(&sc->fp[i]); 9768 } 9769 } 9770 9771 static void 9772 bxe_init_def_sb(struct bxe_softc *sc) 9773 { 9774 struct host_sp_status_block *def_sb = sc->def_sb; 9775 bus_addr_t mapping = sc->def_sb_dma.paddr; 9776 int igu_sp_sb_index; 9777 int igu_seg_id; 9778 int port = SC_PORT(sc); 9779 int func = SC_FUNC(sc); 9780 int reg_offset, reg_offset_en5; 9781 uint64_t section; 9782 int index, sindex; 9783 struct hc_sp_status_block_data sp_sb_data; 9784 9785 memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data)); 9786 9787 if (CHIP_INT_MODE_IS_BC(sc)) { 9788 igu_sp_sb_index = DEF_SB_IGU_ID; 9789 igu_seg_id = HC_SEG_ACCESS_DEF; 9790 } else { 9791 igu_sp_sb_index = sc->igu_dsb_id; 9792 igu_seg_id = IGU_SEG_ACCESS_DEF; 9793 } 9794 9795 /* attentions */ 9796 section = ((uint64_t)mapping + 9797 offsetof(struct host_sp_status_block, atten_status_block)); 9798 def_sb->atten_status_block.status_block_id = igu_sp_sb_index; 9799 sc->attn_state = 0; 9800 9801 reg_offset = (port) ? 9802 MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 : 9803 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0; 9804 reg_offset_en5 = (port) ? 9805 MISC_REG_AEU_ENABLE5_FUNC_1_OUT_0 : 9806 MISC_REG_AEU_ENABLE5_FUNC_0_OUT_0; 9807 9808 for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) { 9809 /* take care of sig[0]..sig[4] */ 9810 for (sindex = 0; sindex < 4; sindex++) { 9811 sc->attn_group[index].sig[sindex] = 9812 REG_RD(sc, (reg_offset + (sindex * 0x4) + (0x10 * index))); 9813 } 9814 9815 if (!CHIP_IS_E1x(sc)) { 9816 /* 9817 * enable5 is separate from the rest of the registers, 9818 * and the address skip is 4 and not 16 between the 9819 * different groups 9820 */ 9821 sc->attn_group[index].sig[4] = 9822 REG_RD(sc, (reg_offset_en5 + (0x4 * index))); 9823 } else { 9824 sc->attn_group[index].sig[4] = 0; 9825 } 9826 } 9827 9828 if (sc->devinfo.int_block == INT_BLOCK_HC) { 9829 reg_offset = (port) ? 9830 HC_REG_ATTN_MSG1_ADDR_L : 9831 HC_REG_ATTN_MSG0_ADDR_L; 9832 REG_WR(sc, reg_offset, U64_LO(section)); 9833 REG_WR(sc, (reg_offset + 4), U64_HI(section)); 9834 } else if (!CHIP_IS_E1x(sc)) { 9835 REG_WR(sc, IGU_REG_ATTN_MSG_ADDR_L, U64_LO(section)); 9836 REG_WR(sc, IGU_REG_ATTN_MSG_ADDR_H, U64_HI(section)); 9837 } 9838 9839 section = ((uint64_t)mapping + 9840 offsetof(struct host_sp_status_block, sp_sb)); 9841 9842 bxe_zero_sp_sb(sc); 9843 9844 /* PCI guarantees endianity of regpair */ 9845 sp_sb_data.state = SB_ENABLED; 9846 sp_sb_data.host_sb_addr.lo = U64_LO(section); 9847 sp_sb_data.host_sb_addr.hi = U64_HI(section); 9848 sp_sb_data.igu_sb_id = igu_sp_sb_index; 9849 sp_sb_data.igu_seg_id = igu_seg_id; 9850 sp_sb_data.p_func.pf_id = func; 9851 sp_sb_data.p_func.vnic_id = SC_VN(sc); 9852 sp_sb_data.p_func.vf_id = 0xff; 9853 9854 bxe_wr_sp_sb_data(sc, &sp_sb_data); 9855 9856 bxe_ack_sb(sc, sc->igu_dsb_id, USTORM_ID, 0, IGU_INT_ENABLE, 0); 9857 } 9858 9859 static void 9860 bxe_init_sp_ring(struct bxe_softc *sc) 9861 { 9862 atomic_store_rel_long(&sc->cq_spq_left, MAX_SPQ_PENDING); 9863 sc->spq_prod_idx = 0; 9864 sc->dsb_sp_prod = &sc->def_sb->sp_sb.index_values[HC_SP_INDEX_ETH_DEF_CONS]; 9865 sc->spq_prod_bd = sc->spq; 9866 sc->spq_last_bd = (sc->spq_prod_bd + MAX_SP_DESC_CNT); 9867 } 9868 9869 static void 9870 bxe_init_eq_ring(struct bxe_softc *sc) 9871 { 9872 union event_ring_elem *elem; 9873 int i; 9874 9875 for (i = 1; i <= NUM_EQ_PAGES; i++) { 9876 elem = &sc->eq[EQ_DESC_CNT_PAGE * i - 1]; 9877 9878 elem->next_page.addr.hi = htole32(U64_HI(sc->eq_dma.paddr + 9879 BCM_PAGE_SIZE * 9880 (i % NUM_EQ_PAGES))); 9881 elem->next_page.addr.lo = htole32(U64_LO(sc->eq_dma.paddr + 9882 BCM_PAGE_SIZE * 9883 (i % NUM_EQ_PAGES))); 9884 } 9885 9886 sc->eq_cons = 0; 9887 sc->eq_prod = NUM_EQ_DESC; 9888 sc->eq_cons_sb = &sc->def_sb->sp_sb.index_values[HC_SP_INDEX_EQ_CONS]; 9889 9890 atomic_store_rel_long(&sc->eq_spq_left, 9891 (min((MAX_SP_DESC_CNT - MAX_SPQ_PENDING), 9892 NUM_EQ_DESC) - 1)); 9893 } 9894 9895 static void 9896 bxe_init_internal_common(struct bxe_softc *sc) 9897 { 9898 int i; 9899 9900 /* 9901 * Zero this manually as its initialization is currently missing 9902 * in the initTool. 9903 */ 9904 for (i = 0; i < (USTORM_AGG_DATA_SIZE >> 2); i++) { 9905 REG_WR(sc, 9906 (BAR_USTRORM_INTMEM + USTORM_AGG_DATA_OFFSET + (i * 4)), 9907 0); 9908 } 9909 9910 if (!CHIP_IS_E1x(sc)) { 9911 REG_WR8(sc, (BAR_CSTRORM_INTMEM + CSTORM_IGU_MODE_OFFSET), 9912 CHIP_INT_MODE_IS_BC(sc) ? HC_IGU_BC_MODE : HC_IGU_NBC_MODE); 9913 } 9914 } 9915 9916 static void 9917 bxe_init_internal(struct bxe_softc *sc, 9918 uint32_t load_code) 9919 { 9920 switch (load_code) { 9921 case FW_MSG_CODE_DRV_LOAD_COMMON: 9922 case FW_MSG_CODE_DRV_LOAD_COMMON_CHIP: 9923 bxe_init_internal_common(sc); 9924 /* no break */ 9925 9926 case FW_MSG_CODE_DRV_LOAD_PORT: 9927 /* nothing to do */ 9928 /* no break */ 9929 9930 case FW_MSG_CODE_DRV_LOAD_FUNCTION: 9931 /* internal memory per function is initialized inside bxe_pf_init */ 9932 break; 9933 9934 default: 9935 BLOGE(sc, "Unknown load_code (0x%x) from MCP\n", load_code); 9936 break; 9937 } 9938 } 9939 9940 static void 9941 storm_memset_func_cfg(struct bxe_softc *sc, 9942 struct tstorm_eth_function_common_config *tcfg, 9943 uint16_t abs_fid) 9944 { 9945 uint32_t addr; 9946 size_t size; 9947 9948 addr = (BAR_TSTRORM_INTMEM + 9949 TSTORM_FUNCTION_COMMON_CONFIG_OFFSET(abs_fid)); 9950 size = sizeof(struct tstorm_eth_function_common_config); 9951 ecore_storm_memset_struct(sc, addr, size, (uint32_t *)tcfg); 9952 } 9953 9954 static void 9955 bxe_func_init(struct bxe_softc *sc, 9956 struct bxe_func_init_params *p) 9957 { 9958 struct tstorm_eth_function_common_config tcfg = { 0 }; 9959 9960 if (CHIP_IS_E1x(sc)) { 9961 storm_memset_func_cfg(sc, &tcfg, p->func_id); 9962 } 9963 9964 /* Enable the function in the FW */ 9965 storm_memset_vf_to_pf(sc, p->func_id, p->pf_id); 9966 storm_memset_func_en(sc, p->func_id, 1); 9967 9968 /* spq */ 9969 if (p->func_flgs & FUNC_FLG_SPQ) { 9970 storm_memset_spq_addr(sc, p->spq_map, p->func_id); 9971 REG_WR(sc, 9972 (XSEM_REG_FAST_MEMORY + XSTORM_SPQ_PROD_OFFSET(p->func_id)), 9973 p->spq_prod); 9974 } 9975 } 9976 9977 /* 9978 * Calculates the sum of vn_min_rates. 9979 * It's needed for further normalizing of the min_rates. 9980 * Returns: 9981 * sum of vn_min_rates. 9982 * or 9983 * 0 - if all the min_rates are 0. 9984 * In the later case fainess algorithm should be deactivated. 9985 * If all min rates are not zero then those that are zeroes will be set to 1. 9986 */ 9987 static void 9988 bxe_calc_vn_min(struct bxe_softc *sc, 9989 struct cmng_init_input *input) 9990 { 9991 uint32_t vn_cfg; 9992 uint32_t vn_min_rate; 9993 int all_zero = 1; 9994 int vn; 9995 9996 for (vn = VN_0; vn < SC_MAX_VN_NUM(sc); vn++) { 9997 vn_cfg = sc->devinfo.mf_info.mf_config[vn]; 9998 vn_min_rate = (((vn_cfg & FUNC_MF_CFG_MIN_BW_MASK) >> 9999 FUNC_MF_CFG_MIN_BW_SHIFT) * 100); 10000 10001 if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE) { 10002 /* skip hidden VNs */ 10003 vn_min_rate = 0; 10004 } else if (!vn_min_rate) { 10005 /* If min rate is zero - set it to 100 */ 10006 vn_min_rate = DEF_MIN_RATE; 10007 } else { 10008 all_zero = 0; 10009 } 10010 10011 input->vnic_min_rate[vn] = vn_min_rate; 10012 } 10013 10014 /* if ETS or all min rates are zeros - disable fairness */ 10015 if (BXE_IS_ETS_ENABLED(sc)) { 10016 input->flags.cmng_enables &= ~CMNG_FLAGS_PER_PORT_FAIRNESS_VN; 10017 BLOGD(sc, DBG_LOAD, "Fairness disabled (ETS)\n"); 10018 } else if (all_zero) { 10019 input->flags.cmng_enables &= ~CMNG_FLAGS_PER_PORT_FAIRNESS_VN; 10020 BLOGD(sc, DBG_LOAD, 10021 "Fariness disabled (all MIN values are zeroes)\n"); 10022 } else { 10023 input->flags.cmng_enables |= CMNG_FLAGS_PER_PORT_FAIRNESS_VN; 10024 } 10025 } 10026 10027 static inline uint16_t 10028 bxe_extract_max_cfg(struct bxe_softc *sc, 10029 uint32_t mf_cfg) 10030 { 10031 uint16_t max_cfg = ((mf_cfg & FUNC_MF_CFG_MAX_BW_MASK) >> 10032 FUNC_MF_CFG_MAX_BW_SHIFT); 10033 10034 if (!max_cfg) { 10035 BLOGD(sc, DBG_LOAD, "Max BW configured to 0 - using 100 instead\n"); 10036 max_cfg = 100; 10037 } 10038 10039 return (max_cfg); 10040 } 10041 10042 static void 10043 bxe_calc_vn_max(struct bxe_softc *sc, 10044 int vn, 10045 struct cmng_init_input *input) 10046 { 10047 uint16_t vn_max_rate; 10048 uint32_t vn_cfg = sc->devinfo.mf_info.mf_config[vn]; 10049 uint32_t max_cfg; 10050 10051 if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE) { 10052 vn_max_rate = 0; 10053 } else { 10054 max_cfg = bxe_extract_max_cfg(sc, vn_cfg); 10055 10056 if (IS_MF_SI(sc)) { 10057 /* max_cfg in percents of linkspeed */ 10058 vn_max_rate = ((sc->link_vars.line_speed * max_cfg) / 100); 10059 } else { /* SD modes */ 10060 /* max_cfg is absolute in 100Mb units */ 10061 vn_max_rate = (max_cfg * 100); 10062 } 10063 } 10064 10065 BLOGD(sc, DBG_LOAD, "vn %d: vn_max_rate %d\n", vn, vn_max_rate); 10066 10067 input->vnic_max_rate[vn] = vn_max_rate; 10068 } 10069 10070 static void 10071 bxe_cmng_fns_init(struct bxe_softc *sc, 10072 uint8_t read_cfg, 10073 uint8_t cmng_type) 10074 { 10075 struct cmng_init_input input; 10076 int vn; 10077 10078 memset(&input, 0, sizeof(struct cmng_init_input)); 10079 10080 input.port_rate = sc->link_vars.line_speed; 10081 10082 if (cmng_type == CMNG_FNS_MINMAX) { 10083 /* read mf conf from shmem */ 10084 if (read_cfg) { 10085 bxe_read_mf_cfg(sc); 10086 } 10087 10088 /* get VN min rate and enable fairness if not 0 */ 10089 bxe_calc_vn_min(sc, &input); 10090 10091 /* get VN max rate */ 10092 if (sc->port.pmf) { 10093 for (vn = VN_0; vn < SC_MAX_VN_NUM(sc); vn++) { 10094 bxe_calc_vn_max(sc, vn, &input); 10095 } 10096 } 10097 10098 /* always enable rate shaping and fairness */ 10099 input.flags.cmng_enables |= CMNG_FLAGS_PER_PORT_RATE_SHAPING_VN; 10100 10101 ecore_init_cmng(&input, &sc->cmng); 10102 return; 10103 } 10104 10105 /* rate shaping and fairness are disabled */ 10106 BLOGD(sc, DBG_LOAD, "rate shaping and fairness have been disabled\n"); 10107 } 10108 10109 static int 10110 bxe_get_cmng_fns_mode(struct bxe_softc *sc) 10111 { 10112 if (CHIP_REV_IS_SLOW(sc)) { 10113 return (CMNG_FNS_NONE); 10114 } 10115 10116 if (IS_MF(sc)) { 10117 return (CMNG_FNS_MINMAX); 10118 } 10119 10120 return (CMNG_FNS_NONE); 10121 } 10122 10123 static void 10124 storm_memset_cmng(struct bxe_softc *sc, 10125 struct cmng_init *cmng, 10126 uint8_t port) 10127 { 10128 int vn; 10129 int func; 10130 uint32_t addr; 10131 size_t size; 10132 10133 addr = (BAR_XSTRORM_INTMEM + 10134 XSTORM_CMNG_PER_PORT_VARS_OFFSET(port)); 10135 size = sizeof(struct cmng_struct_per_port); 10136 ecore_storm_memset_struct(sc, addr, size, (uint32_t *)&cmng->port); 10137 10138 for (vn = VN_0; vn < SC_MAX_VN_NUM(sc); vn++) { 10139 func = func_by_vn(sc, vn); 10140 10141 addr = (BAR_XSTRORM_INTMEM + 10142 XSTORM_RATE_SHAPING_PER_VN_VARS_OFFSET(func)); 10143 size = sizeof(struct rate_shaping_vars_per_vn); 10144 ecore_storm_memset_struct(sc, addr, size, 10145 (uint32_t *)&cmng->vnic.vnic_max_rate[vn]); 10146 10147 addr = (BAR_XSTRORM_INTMEM + 10148 XSTORM_FAIRNESS_PER_VN_VARS_OFFSET(func)); 10149 size = sizeof(struct fairness_vars_per_vn); 10150 ecore_storm_memset_struct(sc, addr, size, 10151 (uint32_t *)&cmng->vnic.vnic_min_rate[vn]); 10152 } 10153 } 10154 10155 static void 10156 bxe_pf_init(struct bxe_softc *sc) 10157 { 10158 struct bxe_func_init_params func_init = { 0 }; 10159 struct event_ring_data eq_data = { { 0 } }; 10160 uint16_t flags; 10161 10162 if (!CHIP_IS_E1x(sc)) { 10163 /* reset IGU PF statistics: MSIX + ATTN */ 10164 /* PF */ 10165 REG_WR(sc, 10166 (IGU_REG_STATISTIC_NUM_MESSAGE_SENT + 10167 (BXE_IGU_STAS_MSG_VF_CNT * 4) + 10168 ((CHIP_IS_MODE_4_PORT(sc) ? SC_FUNC(sc) : SC_VN(sc)) * 4)), 10169 0); 10170 /* ATTN */ 10171 REG_WR(sc, 10172 (IGU_REG_STATISTIC_NUM_MESSAGE_SENT + 10173 (BXE_IGU_STAS_MSG_VF_CNT * 4) + 10174 (BXE_IGU_STAS_MSG_PF_CNT * 4) + 10175 ((CHIP_IS_MODE_4_PORT(sc) ? SC_FUNC(sc) : SC_VN(sc)) * 4)), 10176 0); 10177 } 10178 10179 /* function setup flags */ 10180 flags = (FUNC_FLG_STATS | FUNC_FLG_LEADING | FUNC_FLG_SPQ); 10181 10182 /* 10183 * This flag is relevant for E1x only. 10184 * E2 doesn't have a TPA configuration in a function level. 10185 */ 10186 flags |= (if_getcapenable(sc->ifp) & IFCAP_LRO) ? FUNC_FLG_TPA : 0; 10187 10188 func_init.func_flgs = flags; 10189 func_init.pf_id = SC_FUNC(sc); 10190 func_init.func_id = SC_FUNC(sc); 10191 func_init.spq_map = sc->spq_dma.paddr; 10192 func_init.spq_prod = sc->spq_prod_idx; 10193 10194 bxe_func_init(sc, &func_init); 10195 10196 memset(&sc->cmng, 0, sizeof(struct cmng_struct_per_port)); 10197 10198 /* 10199 * Congestion management values depend on the link rate. 10200 * There is no active link so initial link rate is set to 10Gbps. 10201 * When the link comes up the congestion management values are 10202 * re-calculated according to the actual link rate. 10203 */ 10204 sc->link_vars.line_speed = SPEED_10000; 10205 bxe_cmng_fns_init(sc, TRUE, bxe_get_cmng_fns_mode(sc)); 10206 10207 /* Only the PMF sets the HW */ 10208 if (sc->port.pmf) { 10209 storm_memset_cmng(sc, &sc->cmng, SC_PORT(sc)); 10210 } 10211 10212 /* init Event Queue - PCI bus guarantees correct endainity */ 10213 eq_data.base_addr.hi = U64_HI(sc->eq_dma.paddr); 10214 eq_data.base_addr.lo = U64_LO(sc->eq_dma.paddr); 10215 eq_data.producer = sc->eq_prod; 10216 eq_data.index_id = HC_SP_INDEX_EQ_CONS; 10217 eq_data.sb_id = DEF_SB_ID; 10218 storm_memset_eq_data(sc, &eq_data, SC_FUNC(sc)); 10219 } 10220 10221 static void 10222 bxe_hc_int_enable(struct bxe_softc *sc) 10223 { 10224 int port = SC_PORT(sc); 10225 uint32_t addr = (port) ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0; 10226 uint32_t val = REG_RD(sc, addr); 10227 uint8_t msix = (sc->interrupt_mode == INTR_MODE_MSIX) ? TRUE : FALSE; 10228 uint8_t single_msix = ((sc->interrupt_mode == INTR_MODE_MSIX) && 10229 (sc->intr_count == 1)) ? TRUE : FALSE; 10230 uint8_t msi = (sc->interrupt_mode == INTR_MODE_MSI) ? TRUE : FALSE; 10231 10232 if (msix) { 10233 val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 | 10234 HC_CONFIG_0_REG_INT_LINE_EN_0); 10235 val |= (HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 | 10236 HC_CONFIG_0_REG_ATTN_BIT_EN_0); 10237 if (single_msix) { 10238 val |= HC_CONFIG_0_REG_SINGLE_ISR_EN_0; 10239 } 10240 } else if (msi) { 10241 val &= ~HC_CONFIG_0_REG_INT_LINE_EN_0; 10242 val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 | 10243 HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 | 10244 HC_CONFIG_0_REG_ATTN_BIT_EN_0); 10245 } else { 10246 val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 | 10247 HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 | 10248 HC_CONFIG_0_REG_INT_LINE_EN_0 | 10249 HC_CONFIG_0_REG_ATTN_BIT_EN_0); 10250 10251 if (!CHIP_IS_E1(sc)) { 10252 BLOGD(sc, DBG_INTR, "write %x to HC %d (addr 0x%x)\n", 10253 val, port, addr); 10254 10255 REG_WR(sc, addr, val); 10256 10257 val &= ~HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0; 10258 } 10259 } 10260 10261 if (CHIP_IS_E1(sc)) { 10262 REG_WR(sc, (HC_REG_INT_MASK + port*4), 0x1FFFF); 10263 } 10264 10265 BLOGD(sc, DBG_INTR, "write %x to HC %d (addr 0x%x) mode %s\n", 10266 val, port, addr, ((msix) ? "MSI-X" : ((msi) ? "MSI" : "INTx"))); 10267 10268 REG_WR(sc, addr, val); 10269 10270 /* ensure that HC_CONFIG is written before leading/trailing edge config */ 10271 mb(); 10272 10273 if (!CHIP_IS_E1(sc)) { 10274 /* init leading/trailing edge */ 10275 if (IS_MF(sc)) { 10276 val = (0xee0f | (1 << (SC_VN(sc) + 4))); 10277 if (sc->port.pmf) { 10278 /* enable nig and gpio3 attention */ 10279 val |= 0x1100; 10280 } 10281 } else { 10282 val = 0xffff; 10283 } 10284 10285 REG_WR(sc, (HC_REG_TRAILING_EDGE_0 + port*8), val); 10286 REG_WR(sc, (HC_REG_LEADING_EDGE_0 + port*8), val); 10287 } 10288 10289 /* make sure that interrupts are indeed enabled from here on */ 10290 mb(); 10291 } 10292 10293 static void 10294 bxe_igu_int_enable(struct bxe_softc *sc) 10295 { 10296 uint32_t val; 10297 uint8_t msix = (sc->interrupt_mode == INTR_MODE_MSIX) ? TRUE : FALSE; 10298 uint8_t single_msix = ((sc->interrupt_mode == INTR_MODE_MSIX) && 10299 (sc->intr_count == 1)) ? TRUE : FALSE; 10300 uint8_t msi = (sc->interrupt_mode == INTR_MODE_MSI) ? TRUE : FALSE; 10301 10302 val = REG_RD(sc, IGU_REG_PF_CONFIGURATION); 10303 10304 if (msix) { 10305 val &= ~(IGU_PF_CONF_INT_LINE_EN | 10306 IGU_PF_CONF_SINGLE_ISR_EN); 10307 val |= (IGU_PF_CONF_MSI_MSIX_EN | 10308 IGU_PF_CONF_ATTN_BIT_EN); 10309 if (single_msix) { 10310 val |= IGU_PF_CONF_SINGLE_ISR_EN; 10311 } 10312 } else if (msi) { 10313 val &= ~IGU_PF_CONF_INT_LINE_EN; 10314 val |= (IGU_PF_CONF_MSI_MSIX_EN | 10315 IGU_PF_CONF_ATTN_BIT_EN | 10316 IGU_PF_CONF_SINGLE_ISR_EN); 10317 } else { 10318 val &= ~IGU_PF_CONF_MSI_MSIX_EN; 10319 val |= (IGU_PF_CONF_INT_LINE_EN | 10320 IGU_PF_CONF_ATTN_BIT_EN | 10321 IGU_PF_CONF_SINGLE_ISR_EN); 10322 } 10323 10324 /* clean previous status - need to configure igu prior to ack*/ 10325 if ((!msix) || single_msix) { 10326 REG_WR(sc, IGU_REG_PF_CONFIGURATION, val); 10327 bxe_ack_int(sc); 10328 } 10329 10330 val |= IGU_PF_CONF_FUNC_EN; 10331 10332 BLOGD(sc, DBG_INTR, "write 0x%x to IGU mode %s\n", 10333 val, ((msix) ? "MSI-X" : ((msi) ? "MSI" : "INTx"))); 10334 10335 REG_WR(sc, IGU_REG_PF_CONFIGURATION, val); 10336 10337 mb(); 10338 10339 /* init leading/trailing edge */ 10340 if (IS_MF(sc)) { 10341 val = (0xee0f | (1 << (SC_VN(sc) + 4))); 10342 if (sc->port.pmf) { 10343 /* enable nig and gpio3 attention */ 10344 val |= 0x1100; 10345 } 10346 } else { 10347 val = 0xffff; 10348 } 10349 10350 REG_WR(sc, IGU_REG_TRAILING_EDGE_LATCH, val); 10351 REG_WR(sc, IGU_REG_LEADING_EDGE_LATCH, val); 10352 10353 /* make sure that interrupts are indeed enabled from here on */ 10354 mb(); 10355 } 10356 10357 static void 10358 bxe_int_enable(struct bxe_softc *sc) 10359 { 10360 if (sc->devinfo.int_block == INT_BLOCK_HC) { 10361 bxe_hc_int_enable(sc); 10362 } else { 10363 bxe_igu_int_enable(sc); 10364 } 10365 } 10366 10367 static void 10368 bxe_hc_int_disable(struct bxe_softc *sc) 10369 { 10370 int port = SC_PORT(sc); 10371 uint32_t addr = (port) ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0; 10372 uint32_t val = REG_RD(sc, addr); 10373 10374 /* 10375 * In E1 we must use only PCI configuration space to disable MSI/MSIX 10376 * capablility. It's forbidden to disable IGU_PF_CONF_MSI_MSIX_EN in HC 10377 * block 10378 */ 10379 if (CHIP_IS_E1(sc)) { 10380 /* 10381 * Since IGU_PF_CONF_MSI_MSIX_EN still always on use mask register 10382 * to prevent from HC sending interrupts after we exit the function 10383 */ 10384 REG_WR(sc, (HC_REG_INT_MASK + port*4), 0); 10385 10386 val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 | 10387 HC_CONFIG_0_REG_INT_LINE_EN_0 | 10388 HC_CONFIG_0_REG_ATTN_BIT_EN_0); 10389 } else { 10390 val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 | 10391 HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 | 10392 HC_CONFIG_0_REG_INT_LINE_EN_0 | 10393 HC_CONFIG_0_REG_ATTN_BIT_EN_0); 10394 } 10395 10396 BLOGD(sc, DBG_INTR, "write %x to HC %d (addr 0x%x)\n", val, port, addr); 10397 10398 /* flush all outstanding writes */ 10399 mb(); 10400 10401 REG_WR(sc, addr, val); 10402 if (REG_RD(sc, addr) != val) { 10403 BLOGE(sc, "proper val not read from HC IGU!\n"); 10404 } 10405 } 10406 10407 static void 10408 bxe_igu_int_disable(struct bxe_softc *sc) 10409 { 10410 uint32_t val = REG_RD(sc, IGU_REG_PF_CONFIGURATION); 10411 10412 val &= ~(IGU_PF_CONF_MSI_MSIX_EN | 10413 IGU_PF_CONF_INT_LINE_EN | 10414 IGU_PF_CONF_ATTN_BIT_EN); 10415 10416 BLOGD(sc, DBG_INTR, "write %x to IGU\n", val); 10417 10418 /* flush all outstanding writes */ 10419 mb(); 10420 10421 REG_WR(sc, IGU_REG_PF_CONFIGURATION, val); 10422 if (REG_RD(sc, IGU_REG_PF_CONFIGURATION) != val) { 10423 BLOGE(sc, "proper val not read from IGU!\n"); 10424 } 10425 } 10426 10427 static void 10428 bxe_int_disable(struct bxe_softc *sc) 10429 { 10430 if (sc->devinfo.int_block == INT_BLOCK_HC) { 10431 bxe_hc_int_disable(sc); 10432 } else { 10433 bxe_igu_int_disable(sc); 10434 } 10435 } 10436 10437 static void 10438 bxe_nic_init(struct bxe_softc *sc, 10439 int load_code) 10440 { 10441 int i; 10442 10443 for (i = 0; i < sc->num_queues; i++) { 10444 bxe_init_eth_fp(sc, i); 10445 } 10446 10447 rmb(); /* ensure status block indices were read */ 10448 10449 bxe_init_rx_rings(sc); 10450 bxe_init_tx_rings(sc); 10451 10452 if (IS_VF(sc)) { 10453 return; 10454 } 10455 10456 /* initialize MOD_ABS interrupts */ 10457 elink_init_mod_abs_int(sc, &sc->link_vars, 10458 sc->devinfo.chip_id, 10459 sc->devinfo.shmem_base, 10460 sc->devinfo.shmem2_base, 10461 SC_PORT(sc)); 10462 10463 bxe_init_def_sb(sc); 10464 bxe_update_dsb_idx(sc); 10465 bxe_init_sp_ring(sc); 10466 bxe_init_eq_ring(sc); 10467 bxe_init_internal(sc, load_code); 10468 bxe_pf_init(sc); 10469 bxe_stats_init(sc); 10470 10471 /* flush all before enabling interrupts */ 10472 mb(); 10473 10474 bxe_int_enable(sc); 10475 10476 /* check for SPIO5 */ 10477 bxe_attn_int_deasserted0(sc, 10478 REG_RD(sc, 10479 (MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + 10480 SC_PORT(sc)*4)) & 10481 AEU_INPUTS_ATTN_BITS_SPIO5); 10482 } 10483 10484 static inline void 10485 bxe_init_objs(struct bxe_softc *sc) 10486 { 10487 /* mcast rules must be added to tx if tx switching is enabled */ 10488 ecore_obj_type o_type = 10489 (sc->flags & BXE_TX_SWITCHING) ? ECORE_OBJ_TYPE_RX_TX : 10490 ECORE_OBJ_TYPE_RX; 10491 10492 /* RX_MODE controlling object */ 10493 ecore_init_rx_mode_obj(sc, &sc->rx_mode_obj); 10494 10495 /* multicast configuration controlling object */ 10496 ecore_init_mcast_obj(sc, 10497 &sc->mcast_obj, 10498 sc->fp[0].cl_id, 10499 sc->fp[0].index, 10500 SC_FUNC(sc), 10501 SC_FUNC(sc), 10502 BXE_SP(sc, mcast_rdata), 10503 BXE_SP_MAPPING(sc, mcast_rdata), 10504 ECORE_FILTER_MCAST_PENDING, 10505 &sc->sp_state, 10506 o_type); 10507 10508 /* Setup CAM credit pools */ 10509 ecore_init_mac_credit_pool(sc, 10510 &sc->macs_pool, 10511 SC_FUNC(sc), 10512 CHIP_IS_E1x(sc) ? VNICS_PER_PORT(sc) : 10513 VNICS_PER_PATH(sc)); 10514 10515 ecore_init_vlan_credit_pool(sc, 10516 &sc->vlans_pool, 10517 SC_ABS_FUNC(sc) >> 1, 10518 CHIP_IS_E1x(sc) ? VNICS_PER_PORT(sc) : 10519 VNICS_PER_PATH(sc)); 10520 10521 /* RSS configuration object */ 10522 ecore_init_rss_config_obj(sc, 10523 &sc->rss_conf_obj, 10524 sc->fp[0].cl_id, 10525 sc->fp[0].index, 10526 SC_FUNC(sc), 10527 SC_FUNC(sc), 10528 BXE_SP(sc, rss_rdata), 10529 BXE_SP_MAPPING(sc, rss_rdata), 10530 ECORE_FILTER_RSS_CONF_PENDING, 10531 &sc->sp_state, ECORE_OBJ_TYPE_RX); 10532 } 10533 10534 /* 10535 * Initialize the function. This must be called before sending CLIENT_SETUP 10536 * for the first client. 10537 */ 10538 static inline int 10539 bxe_func_start(struct bxe_softc *sc) 10540 { 10541 struct ecore_func_state_params func_params = { NULL }; 10542 struct ecore_func_start_params *start_params = &func_params.params.start; 10543 10544 /* Prepare parameters for function state transitions */ 10545 bit_set(&func_params.ramrod_flags, RAMROD_COMP_WAIT); 10546 10547 func_params.f_obj = &sc->func_obj; 10548 func_params.cmd = ECORE_F_CMD_START; 10549 10550 /* Function parameters */ 10551 start_params->mf_mode = sc->devinfo.mf_info.mf_mode; 10552 start_params->sd_vlan_tag = OVLAN(sc); 10553 10554 if (CHIP_IS_E2(sc) || CHIP_IS_E3(sc)) { 10555 start_params->network_cos_mode = STATIC_COS; 10556 } else { /* CHIP_IS_E1X */ 10557 start_params->network_cos_mode = FW_WRR; 10558 } 10559 10560 //start_params->gre_tunnel_mode = 0; 10561 //start_params->gre_tunnel_rss = 0; 10562 10563 return (ecore_func_state_change(sc, &func_params)); 10564 } 10565 10566 static int 10567 bxe_set_power_state(struct bxe_softc *sc, 10568 uint8_t state) 10569 { 10570 uint16_t pmcsr; 10571 10572 /* If there is no power capability, silently succeed */ 10573 if (!(sc->devinfo.pcie_cap_flags & BXE_PM_CAPABLE_FLAG)) { 10574 BLOGW(sc, "No power capability\n"); 10575 return (0); 10576 } 10577 10578 pmcsr = pci_read_config(sc->dev, 10579 (sc->devinfo.pcie_pm_cap_reg + PCIR_POWER_STATUS), 10580 2); 10581 10582 switch (state) { 10583 case PCI_PM_D0: 10584 pci_write_config(sc->dev, 10585 (sc->devinfo.pcie_pm_cap_reg + PCIR_POWER_STATUS), 10586 ((pmcsr & ~PCIM_PSTAT_DMASK) | PCIM_PSTAT_PME), 2); 10587 10588 if (pmcsr & PCIM_PSTAT_DMASK) { 10589 /* delay required during transition out of D3hot */ 10590 DELAY(20000); 10591 } 10592 10593 break; 10594 10595 case PCI_PM_D3hot: 10596 /* XXX if there are other clients above don't shut down the power */ 10597 10598 /* don't shut down the power for emulation and FPGA */ 10599 if (CHIP_REV_IS_SLOW(sc)) { 10600 return (0); 10601 } 10602 10603 pmcsr &= ~PCIM_PSTAT_DMASK; 10604 pmcsr |= PCIM_PSTAT_D3; 10605 10606 if (sc->wol) { 10607 pmcsr |= PCIM_PSTAT_PMEENABLE; 10608 } 10609 10610 pci_write_config(sc->dev, 10611 (sc->devinfo.pcie_pm_cap_reg + PCIR_POWER_STATUS), 10612 pmcsr, 4); 10613 10614 /* 10615 * No more memory access after this point until device is brought back 10616 * to D0 state. 10617 */ 10618 break; 10619 10620 default: 10621 BLOGE(sc, "Can't support PCI power state = 0x%x pmcsr 0x%x\n", 10622 state, pmcsr); 10623 return (-1); 10624 } 10625 10626 return (0); 10627 } 10628 10629 10630 /* return true if succeeded to acquire the lock */ 10631 static uint8_t 10632 bxe_trylock_hw_lock(struct bxe_softc *sc, 10633 uint32_t resource) 10634 { 10635 uint32_t lock_status; 10636 uint32_t resource_bit = (1 << resource); 10637 int func = SC_FUNC(sc); 10638 uint32_t hw_lock_control_reg; 10639 10640 BLOGD(sc, DBG_LOAD, "Trying to take a resource lock 0x%x\n", resource); 10641 10642 /* Validating that the resource is within range */ 10643 if (resource > HW_LOCK_MAX_RESOURCE_VALUE) { 10644 BLOGD(sc, DBG_LOAD, 10645 "resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n", 10646 resource, HW_LOCK_MAX_RESOURCE_VALUE); 10647 return (FALSE); 10648 } 10649 10650 if (func <= 5) { 10651 hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8); 10652 } else { 10653 hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8); 10654 } 10655 10656 /* try to acquire the lock */ 10657 REG_WR(sc, hw_lock_control_reg + 4, resource_bit); 10658 lock_status = REG_RD(sc, hw_lock_control_reg); 10659 if (lock_status & resource_bit) { 10660 return (TRUE); 10661 } 10662 10663 BLOGE(sc, "Failed to get a resource lock 0x%x func %d " 10664 "lock_status 0x%x resource_bit 0x%x\n", resource, func, 10665 lock_status, resource_bit); 10666 10667 return (FALSE); 10668 } 10669 10670 /* 10671 * Get the recovery leader resource id according to the engine this function 10672 * belongs to. Currently only only 2 engines is supported. 10673 */ 10674 static int 10675 bxe_get_leader_lock_resource(struct bxe_softc *sc) 10676 { 10677 if (SC_PATH(sc)) { 10678 return (HW_LOCK_RESOURCE_RECOVERY_LEADER_1); 10679 } else { 10680 return (HW_LOCK_RESOURCE_RECOVERY_LEADER_0); 10681 } 10682 } 10683 10684 /* try to acquire a leader lock for current engine */ 10685 static uint8_t 10686 bxe_trylock_leader_lock(struct bxe_softc *sc) 10687 { 10688 return (bxe_trylock_hw_lock(sc, bxe_get_leader_lock_resource(sc))); 10689 } 10690 10691 static int 10692 bxe_release_leader_lock(struct bxe_softc *sc) 10693 { 10694 return (bxe_release_hw_lock(sc, bxe_get_leader_lock_resource(sc))); 10695 } 10696 10697 /* close gates #2, #3 and #4 */ 10698 static void 10699 bxe_set_234_gates(struct bxe_softc *sc, 10700 uint8_t close) 10701 { 10702 uint32_t val; 10703 10704 /* gates #2 and #4a are closed/opened for "not E1" only */ 10705 if (!CHIP_IS_E1(sc)) { 10706 /* #4 */ 10707 REG_WR(sc, PXP_REG_HST_DISCARD_DOORBELLS, !!close); 10708 /* #2 */ 10709 REG_WR(sc, PXP_REG_HST_DISCARD_INTERNAL_WRITES, !!close); 10710 } 10711 10712 /* #3 */ 10713 if (CHIP_IS_E1x(sc)) { 10714 /* prevent interrupts from HC on both ports */ 10715 val = REG_RD(sc, HC_REG_CONFIG_1); 10716 REG_WR(sc, HC_REG_CONFIG_1, 10717 (!close) ? (val | HC_CONFIG_1_REG_BLOCK_DISABLE_1) : 10718 (val & ~(uint32_t)HC_CONFIG_1_REG_BLOCK_DISABLE_1)); 10719 10720 val = REG_RD(sc, HC_REG_CONFIG_0); 10721 REG_WR(sc, HC_REG_CONFIG_0, 10722 (!close) ? (val | HC_CONFIG_0_REG_BLOCK_DISABLE_0) : 10723 (val & ~(uint32_t)HC_CONFIG_0_REG_BLOCK_DISABLE_0)); 10724 } else { 10725 /* Prevent incoming interrupts in IGU */ 10726 val = REG_RD(sc, IGU_REG_BLOCK_CONFIGURATION); 10727 10728 REG_WR(sc, IGU_REG_BLOCK_CONFIGURATION, 10729 (!close) ? 10730 (val | IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE) : 10731 (val & ~(uint32_t)IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE)); 10732 } 10733 10734 BLOGD(sc, DBG_LOAD, "%s gates #2, #3 and #4\n", 10735 close ? "closing" : "opening"); 10736 10737 wmb(); 10738 } 10739 10740 /* poll for pending writes bit, it should get cleared in no more than 1s */ 10741 static int 10742 bxe_er_poll_igu_vq(struct bxe_softc *sc) 10743 { 10744 uint32_t cnt = 1000; 10745 uint32_t pend_bits = 0; 10746 10747 do { 10748 pend_bits = REG_RD(sc, IGU_REG_PENDING_BITS_STATUS); 10749 10750 if (pend_bits == 0) { 10751 break; 10752 } 10753 10754 DELAY(1000); 10755 } while (--cnt > 0); 10756 10757 if (cnt == 0) { 10758 BLOGE(sc, "Still pending IGU requests bits=0x%08x!\n", pend_bits); 10759 return (-1); 10760 } 10761 10762 return (0); 10763 } 10764 10765 #define SHARED_MF_CLP_MAGIC 0x80000000 /* 'magic' bit */ 10766 10767 static void 10768 bxe_clp_reset_prep(struct bxe_softc *sc, 10769 uint32_t *magic_val) 10770 { 10771 /* Do some magic... */ 10772 uint32_t val = MFCFG_RD(sc, shared_mf_config.clp_mb); 10773 *magic_val = val & SHARED_MF_CLP_MAGIC; 10774 MFCFG_WR(sc, shared_mf_config.clp_mb, val | SHARED_MF_CLP_MAGIC); 10775 } 10776 10777 /* restore the value of the 'magic' bit */ 10778 static void 10779 bxe_clp_reset_done(struct bxe_softc *sc, 10780 uint32_t magic_val) 10781 { 10782 /* Restore the 'magic' bit value... */ 10783 uint32_t val = MFCFG_RD(sc, shared_mf_config.clp_mb); 10784 MFCFG_WR(sc, shared_mf_config.clp_mb, 10785 (val & (~SHARED_MF_CLP_MAGIC)) | magic_val); 10786 } 10787 10788 /* prepare for MCP reset, takes care of CLP configurations */ 10789 static void 10790 bxe_reset_mcp_prep(struct bxe_softc *sc, 10791 uint32_t *magic_val) 10792 { 10793 uint32_t shmem; 10794 uint32_t validity_offset; 10795 10796 /* set `magic' bit in order to save MF config */ 10797 if (!CHIP_IS_E1(sc)) { 10798 bxe_clp_reset_prep(sc, magic_val); 10799 } 10800 10801 /* get shmem offset */ 10802 shmem = REG_RD(sc, MISC_REG_SHARED_MEM_ADDR); 10803 validity_offset = 10804 offsetof(struct shmem_region, validity_map[SC_PORT(sc)]); 10805 10806 /* Clear validity map flags */ 10807 if (shmem > 0) { 10808 REG_WR(sc, shmem + validity_offset, 0); 10809 } 10810 } 10811 10812 #define MCP_TIMEOUT 5000 /* 5 seconds (in ms) */ 10813 #define MCP_ONE_TIMEOUT 100 /* 100 ms */ 10814 10815 static void 10816 bxe_mcp_wait_one(struct bxe_softc *sc) 10817 { 10818 /* special handling for emulation and FPGA (10 times longer) */ 10819 if (CHIP_REV_IS_SLOW(sc)) { 10820 DELAY((MCP_ONE_TIMEOUT*10) * 1000); 10821 } else { 10822 DELAY((MCP_ONE_TIMEOUT) * 1000); 10823 } 10824 } 10825 10826 /* initialize shmem_base and waits for validity signature to appear */ 10827 static int 10828 bxe_init_shmem(struct bxe_softc *sc) 10829 { 10830 int cnt = 0; 10831 uint32_t val = 0; 10832 10833 do { 10834 sc->devinfo.shmem_base = 10835 sc->link_params.shmem_base = 10836 REG_RD(sc, MISC_REG_SHARED_MEM_ADDR); 10837 10838 if (sc->devinfo.shmem_base) { 10839 val = SHMEM_RD(sc, validity_map[SC_PORT(sc)]); 10840 if (val & SHR_MEM_VALIDITY_MB) 10841 return (0); 10842 } 10843 10844 bxe_mcp_wait_one(sc); 10845 10846 } while (cnt++ < (MCP_TIMEOUT / MCP_ONE_TIMEOUT)); 10847 10848 BLOGE(sc, "BAD MCP validity signature\n"); 10849 10850 return (-1); 10851 } 10852 10853 static int 10854 bxe_reset_mcp_comp(struct bxe_softc *sc, 10855 uint32_t magic_val) 10856 { 10857 int rc = bxe_init_shmem(sc); 10858 10859 /* Restore the `magic' bit value */ 10860 if (!CHIP_IS_E1(sc)) { 10861 bxe_clp_reset_done(sc, magic_val); 10862 } 10863 10864 return (rc); 10865 } 10866 10867 static void 10868 bxe_pxp_prep(struct bxe_softc *sc) 10869 { 10870 if (!CHIP_IS_E1(sc)) { 10871 REG_WR(sc, PXP2_REG_RD_START_INIT, 0); 10872 REG_WR(sc, PXP2_REG_RQ_RBC_DONE, 0); 10873 wmb(); 10874 } 10875 } 10876 10877 /* 10878 * Reset the whole chip except for: 10879 * - PCIE core 10880 * - PCI Glue, PSWHST, PXP/PXP2 RF (all controlled by one reset bit) 10881 * - IGU 10882 * - MISC (including AEU) 10883 * - GRC 10884 * - RBCN, RBCP 10885 */ 10886 static void 10887 bxe_process_kill_chip_reset(struct bxe_softc *sc, 10888 uint8_t global) 10889 { 10890 uint32_t not_reset_mask1, reset_mask1, not_reset_mask2, reset_mask2; 10891 uint32_t global_bits2, stay_reset2; 10892 10893 /* 10894 * Bits that have to be set in reset_mask2 if we want to reset 'global' 10895 * (per chip) blocks. 10896 */ 10897 global_bits2 = 10898 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CPU | 10899 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CORE; 10900 10901 /* 10902 * Don't reset the following blocks. 10903 * Important: per port blocks (such as EMAC, BMAC, UMAC) can't be 10904 * reset, as in 4 port device they might still be owned 10905 * by the MCP (there is only one leader per path). 10906 */ 10907 not_reset_mask1 = 10908 MISC_REGISTERS_RESET_REG_1_RST_HC | 10909 MISC_REGISTERS_RESET_REG_1_RST_PXPV | 10910 MISC_REGISTERS_RESET_REG_1_RST_PXP; 10911 10912 not_reset_mask2 = 10913 MISC_REGISTERS_RESET_REG_2_RST_PCI_MDIO | 10914 MISC_REGISTERS_RESET_REG_2_RST_EMAC0_HARD_CORE | 10915 MISC_REGISTERS_RESET_REG_2_RST_EMAC1_HARD_CORE | 10916 MISC_REGISTERS_RESET_REG_2_RST_MISC_CORE | 10917 MISC_REGISTERS_RESET_REG_2_RST_RBCN | 10918 MISC_REGISTERS_RESET_REG_2_RST_GRC | 10919 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_REG_HARD_CORE | 10920 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_HARD_CORE_RST_B | 10921 MISC_REGISTERS_RESET_REG_2_RST_ATC | 10922 MISC_REGISTERS_RESET_REG_2_PGLC | 10923 MISC_REGISTERS_RESET_REG_2_RST_BMAC0 | 10924 MISC_REGISTERS_RESET_REG_2_RST_BMAC1 | 10925 MISC_REGISTERS_RESET_REG_2_RST_EMAC0 | 10926 MISC_REGISTERS_RESET_REG_2_RST_EMAC1 | 10927 MISC_REGISTERS_RESET_REG_2_UMAC0 | 10928 MISC_REGISTERS_RESET_REG_2_UMAC1; 10929 10930 /* 10931 * Keep the following blocks in reset: 10932 * - all xxMACs are handled by the elink code. 10933 */ 10934 stay_reset2 = 10935 MISC_REGISTERS_RESET_REG_2_XMAC | 10936 MISC_REGISTERS_RESET_REG_2_XMAC_SOFT; 10937 10938 /* Full reset masks according to the chip */ 10939 reset_mask1 = 0xffffffff; 10940 10941 if (CHIP_IS_E1(sc)) 10942 reset_mask2 = 0xffff; 10943 else if (CHIP_IS_E1H(sc)) 10944 reset_mask2 = 0x1ffff; 10945 else if (CHIP_IS_E2(sc)) 10946 reset_mask2 = 0xfffff; 10947 else /* CHIP_IS_E3 */ 10948 reset_mask2 = 0x3ffffff; 10949 10950 /* Don't reset global blocks unless we need to */ 10951 if (!global) 10952 reset_mask2 &= ~global_bits2; 10953 10954 /* 10955 * In case of attention in the QM, we need to reset PXP 10956 * (MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR) before QM 10957 * because otherwise QM reset would release 'close the gates' shortly 10958 * before resetting the PXP, then the PSWRQ would send a write 10959 * request to PGLUE. Then when PXP is reset, PGLUE would try to 10960 * read the payload data from PSWWR, but PSWWR would not 10961 * respond. The write queue in PGLUE would stuck, dmae commands 10962 * would not return. Therefore it's important to reset the second 10963 * reset register (containing the 10964 * MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR bit) before the 10965 * first one (containing the MISC_REGISTERS_RESET_REG_1_RST_QM 10966 * bit). 10967 */ 10968 REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR, 10969 reset_mask2 & (~not_reset_mask2)); 10970 10971 REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 10972 reset_mask1 & (~not_reset_mask1)); 10973 10974 mb(); 10975 wmb(); 10976 10977 REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET, 10978 reset_mask2 & (~stay_reset2)); 10979 10980 mb(); 10981 wmb(); 10982 10983 REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, reset_mask1); 10984 wmb(); 10985 } 10986 10987 static int 10988 bxe_process_kill(struct bxe_softc *sc, 10989 uint8_t global) 10990 { 10991 int cnt = 1000; 10992 uint32_t val = 0; 10993 uint32_t sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1, pgl_exp_rom2; 10994 uint32_t tags_63_32 = 0; 10995 10996 /* Empty the Tetris buffer, wait for 1s */ 10997 do { 10998 sr_cnt = REG_RD(sc, PXP2_REG_RD_SR_CNT); 10999 blk_cnt = REG_RD(sc, PXP2_REG_RD_BLK_CNT); 11000 port_is_idle_0 = REG_RD(sc, PXP2_REG_RD_PORT_IS_IDLE_0); 11001 port_is_idle_1 = REG_RD(sc, PXP2_REG_RD_PORT_IS_IDLE_1); 11002 pgl_exp_rom2 = REG_RD(sc, PXP2_REG_PGL_EXP_ROM2); 11003 if (CHIP_IS_E3(sc)) { 11004 tags_63_32 = REG_RD(sc, PGLUE_B_REG_TAGS_63_32); 11005 } 11006 11007 if ((sr_cnt == 0x7e) && (blk_cnt == 0xa0) && 11008 ((port_is_idle_0 & 0x1) == 0x1) && 11009 ((port_is_idle_1 & 0x1) == 0x1) && 11010 (pgl_exp_rom2 == 0xffffffff) && 11011 (!CHIP_IS_E3(sc) || (tags_63_32 == 0xffffffff))) 11012 break; 11013 DELAY(1000); 11014 } while (cnt-- > 0); 11015 11016 if (cnt <= 0) { 11017 BLOGE(sc, "ERROR: Tetris buffer didn't get empty or there " 11018 "are still outstanding read requests after 1s! " 11019 "sr_cnt=0x%08x, blk_cnt=0x%08x, port_is_idle_0=0x%08x, " 11020 "port_is_idle_1=0x%08x, pgl_exp_rom2=0x%08x\n", 11021 sr_cnt, blk_cnt, port_is_idle_0, 11022 port_is_idle_1, pgl_exp_rom2); 11023 return (-1); 11024 } 11025 11026 mb(); 11027 11028 /* Close gates #2, #3 and #4 */ 11029 bxe_set_234_gates(sc, TRUE); 11030 11031 /* Poll for IGU VQs for 57712 and newer chips */ 11032 if (!CHIP_IS_E1x(sc) && bxe_er_poll_igu_vq(sc)) { 11033 return (-1); 11034 } 11035 11036 /* XXX indicate that "process kill" is in progress to MCP */ 11037 11038 /* clear "unprepared" bit */ 11039 REG_WR(sc, MISC_REG_UNPREPARED, 0); 11040 mb(); 11041 11042 /* Make sure all is written to the chip before the reset */ 11043 wmb(); 11044 11045 /* 11046 * Wait for 1ms to empty GLUE and PCI-E core queues, 11047 * PSWHST, GRC and PSWRD Tetris buffer. 11048 */ 11049 DELAY(1000); 11050 11051 /* Prepare to chip reset: */ 11052 /* MCP */ 11053 if (global) { 11054 bxe_reset_mcp_prep(sc, &val); 11055 } 11056 11057 /* PXP */ 11058 bxe_pxp_prep(sc); 11059 mb(); 11060 11061 /* reset the chip */ 11062 bxe_process_kill_chip_reset(sc, global); 11063 mb(); 11064 11065 /* clear errors in PGB */ 11066 if (!CHIP_IS_E1(sc)) 11067 REG_WR(sc, PGLUE_B_REG_LATCHED_ERRORS_CLR, 0x7f); 11068 11069 /* Recover after reset: */ 11070 /* MCP */ 11071 if (global && bxe_reset_mcp_comp(sc, val)) { 11072 return (-1); 11073 } 11074 11075 /* XXX add resetting the NO_MCP mode DB here */ 11076 11077 /* Open the gates #2, #3 and #4 */ 11078 bxe_set_234_gates(sc, FALSE); 11079 11080 /* XXX 11081 * IGU/AEU preparation bring back the AEU/IGU to a reset state 11082 * re-enable attentions 11083 */ 11084 11085 return (0); 11086 } 11087 11088 static int 11089 bxe_leader_reset(struct bxe_softc *sc) 11090 { 11091 int rc = 0; 11092 uint8_t global = bxe_reset_is_global(sc); 11093 uint32_t load_code; 11094 11095 /* 11096 * If not going to reset MCP, load "fake" driver to reset HW while 11097 * driver is owner of the HW. 11098 */ 11099 if (!global && !BXE_NOMCP(sc)) { 11100 load_code = bxe_fw_command(sc, DRV_MSG_CODE_LOAD_REQ, 11101 DRV_MSG_CODE_LOAD_REQ_WITH_LFA); 11102 if (!load_code) { 11103 BLOGE(sc, "MCP response failure, aborting\n"); 11104 rc = -1; 11105 goto exit_leader_reset; 11106 } 11107 11108 if ((load_code != FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) && 11109 (load_code != FW_MSG_CODE_DRV_LOAD_COMMON)) { 11110 BLOGE(sc, "MCP unexpected response, aborting\n"); 11111 rc = -1; 11112 goto exit_leader_reset2; 11113 } 11114 11115 load_code = bxe_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0); 11116 if (!load_code) { 11117 BLOGE(sc, "MCP response failure, aborting\n"); 11118 rc = -1; 11119 goto exit_leader_reset2; 11120 } 11121 } 11122 11123 /* try to recover after the failure */ 11124 if (bxe_process_kill(sc, global)) { 11125 BLOGE(sc, "Something bad occurred on engine %d!\n", SC_PATH(sc)); 11126 rc = -1; 11127 goto exit_leader_reset2; 11128 } 11129 11130 /* 11131 * Clear the RESET_IN_PROGRESS and RESET_GLOBAL bits and update the driver 11132 * state. 11133 */ 11134 bxe_set_reset_done(sc); 11135 if (global) { 11136 bxe_clear_reset_global(sc); 11137 } 11138 11139 exit_leader_reset2: 11140 11141 /* unload "fake driver" if it was loaded */ 11142 if (!global && !BXE_NOMCP(sc)) { 11143 bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP, 0); 11144 bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_DONE, 0); 11145 } 11146 11147 exit_leader_reset: 11148 11149 sc->is_leader = 0; 11150 bxe_release_leader_lock(sc); 11151 11152 mb(); 11153 return (rc); 11154 } 11155 11156 /* 11157 * prepare INIT transition, parameters configured: 11158 * - HC configuration 11159 * - Queue's CDU context 11160 */ 11161 static void 11162 bxe_pf_q_prep_init(struct bxe_softc *sc, 11163 struct bxe_fastpath *fp, 11164 struct ecore_queue_init_params *init_params) 11165 { 11166 uint8_t cos; 11167 int cxt_index, cxt_offset; 11168 11169 bxe_set_bit(ECORE_Q_FLG_HC, &init_params->rx.flags); 11170 bxe_set_bit(ECORE_Q_FLG_HC, &init_params->tx.flags); 11171 11172 bxe_set_bit(ECORE_Q_FLG_HC_EN, &init_params->rx.flags); 11173 bxe_set_bit(ECORE_Q_FLG_HC_EN, &init_params->tx.flags); 11174 11175 /* HC rate */ 11176 init_params->rx.hc_rate = 11177 sc->hc_rx_ticks ? (1000000 / sc->hc_rx_ticks) : 0; 11178 init_params->tx.hc_rate = 11179 sc->hc_tx_ticks ? (1000000 / sc->hc_tx_ticks) : 0; 11180 11181 /* FW SB ID */ 11182 init_params->rx.fw_sb_id = init_params->tx.fw_sb_id = fp->fw_sb_id; 11183 11184 /* CQ index among the SB indices */ 11185 init_params->rx.sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS; 11186 init_params->tx.sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS; 11187 11188 /* set maximum number of COSs supported by this queue */ 11189 init_params->max_cos = sc->max_cos; 11190 11191 BLOGD(sc, DBG_LOAD, "fp %d setting queue params max cos to %d\n", 11192 fp->index, init_params->max_cos); 11193 11194 /* set the context pointers queue object */ 11195 for (cos = FIRST_TX_COS_INDEX; cos < init_params->max_cos; cos++) { 11196 /* XXX change index/cid here if ever support multiple tx CoS */ 11197 /* fp->txdata[cos]->cid */ 11198 cxt_index = fp->index / ILT_PAGE_CIDS; 11199 cxt_offset = fp->index - (cxt_index * ILT_PAGE_CIDS); 11200 init_params->cxts[cos] = &sc->context[cxt_index].vcxt[cxt_offset].eth; 11201 } 11202 } 11203 11204 /* set flags that are common for the Tx-only and not normal connections */ 11205 static unsigned long 11206 bxe_get_common_flags(struct bxe_softc *sc, 11207 struct bxe_fastpath *fp, 11208 uint8_t zero_stats) 11209 { 11210 unsigned long flags = 0; 11211 11212 /* PF driver will always initialize the Queue to an ACTIVE state */ 11213 bxe_set_bit(ECORE_Q_FLG_ACTIVE, &flags); 11214 11215 /* 11216 * tx only connections collect statistics (on the same index as the 11217 * parent connection). The statistics are zeroed when the parent 11218 * connection is initialized. 11219 */ 11220 11221 bxe_set_bit(ECORE_Q_FLG_STATS, &flags); 11222 if (zero_stats) { 11223 bxe_set_bit(ECORE_Q_FLG_ZERO_STATS, &flags); 11224 } 11225 11226 /* 11227 * tx only connections can support tx-switching, though their 11228 * CoS-ness doesn't survive the loopback 11229 */ 11230 if (sc->flags & BXE_TX_SWITCHING) { 11231 bxe_set_bit(ECORE_Q_FLG_TX_SWITCH, &flags); 11232 } 11233 11234 bxe_set_bit(ECORE_Q_FLG_PCSUM_ON_PKT, &flags); 11235 11236 return (flags); 11237 } 11238 11239 static unsigned long 11240 bxe_get_q_flags(struct bxe_softc *sc, 11241 struct bxe_fastpath *fp, 11242 uint8_t leading) 11243 { 11244 unsigned long flags = 0; 11245 11246 if (IS_MF_SD(sc)) { 11247 bxe_set_bit(ECORE_Q_FLG_OV, &flags); 11248 } 11249 11250 if (if_getcapenable(sc->ifp) & IFCAP_LRO) { 11251 bxe_set_bit(ECORE_Q_FLG_TPA, &flags); 11252 bxe_set_bit(ECORE_Q_FLG_TPA_IPV6, &flags); 11253 } 11254 11255 if (leading) { 11256 bxe_set_bit(ECORE_Q_FLG_LEADING_RSS, &flags); 11257 bxe_set_bit(ECORE_Q_FLG_MCAST, &flags); 11258 } 11259 11260 bxe_set_bit(ECORE_Q_FLG_VLAN, &flags); 11261 11262 /* merge with common flags */ 11263 return (flags | bxe_get_common_flags(sc, fp, TRUE)); 11264 } 11265 11266 static void 11267 bxe_pf_q_prep_general(struct bxe_softc *sc, 11268 struct bxe_fastpath *fp, 11269 struct ecore_general_setup_params *gen_init, 11270 uint8_t cos) 11271 { 11272 gen_init->stat_id = bxe_stats_id(fp); 11273 gen_init->spcl_id = fp->cl_id; 11274 gen_init->mtu = sc->mtu; 11275 gen_init->cos = cos; 11276 } 11277 11278 static void 11279 bxe_pf_rx_q_prep(struct bxe_softc *sc, 11280 struct bxe_fastpath *fp, 11281 struct rxq_pause_params *pause, 11282 struct ecore_rxq_setup_params *rxq_init) 11283 { 11284 uint8_t max_sge = 0; 11285 uint16_t sge_sz = 0; 11286 uint16_t tpa_agg_size = 0; 11287 11288 pause->sge_th_lo = SGE_TH_LO(sc); 11289 pause->sge_th_hi = SGE_TH_HI(sc); 11290 11291 /* validate SGE ring has enough to cross high threshold */ 11292 if (sc->dropless_fc && 11293 (pause->sge_th_hi + FW_PREFETCH_CNT) > 11294 (RX_SGE_USABLE_PER_PAGE * RX_SGE_NUM_PAGES)) { 11295 BLOGW(sc, "sge ring threshold limit\n"); 11296 } 11297 11298 /* minimum max_aggregation_size is 2*MTU (two full buffers) */ 11299 tpa_agg_size = (2 * sc->mtu); 11300 if (tpa_agg_size < sc->max_aggregation_size) { 11301 tpa_agg_size = sc->max_aggregation_size; 11302 } 11303 11304 max_sge = SGE_PAGE_ALIGN(sc->mtu) >> SGE_PAGE_SHIFT; 11305 max_sge = ((max_sge + PAGES_PER_SGE - 1) & 11306 (~(PAGES_PER_SGE - 1))) >> PAGES_PER_SGE_SHIFT; 11307 sge_sz = (uint16_t)min(SGE_PAGES, 0xffff); 11308 11309 /* pause - not for e1 */ 11310 if (!CHIP_IS_E1(sc)) { 11311 pause->bd_th_lo = BD_TH_LO(sc); 11312 pause->bd_th_hi = BD_TH_HI(sc); 11313 11314 pause->rcq_th_lo = RCQ_TH_LO(sc); 11315 pause->rcq_th_hi = RCQ_TH_HI(sc); 11316 11317 /* validate rings have enough entries to cross high thresholds */ 11318 if (sc->dropless_fc && 11319 pause->bd_th_hi + FW_PREFETCH_CNT > 11320 sc->rx_ring_size) { 11321 BLOGW(sc, "rx bd ring threshold limit\n"); 11322 } 11323 11324 if (sc->dropless_fc && 11325 pause->rcq_th_hi + FW_PREFETCH_CNT > 11326 RCQ_NUM_PAGES * RCQ_USABLE_PER_PAGE) { 11327 BLOGW(sc, "rcq ring threshold limit\n"); 11328 } 11329 11330 pause->pri_map = 1; 11331 } 11332 11333 /* rxq setup */ 11334 rxq_init->dscr_map = fp->rx_dma.paddr; 11335 rxq_init->sge_map = fp->rx_sge_dma.paddr; 11336 rxq_init->rcq_map = fp->rcq_dma.paddr; 11337 rxq_init->rcq_np_map = (fp->rcq_dma.paddr + BCM_PAGE_SIZE); 11338 11339 /* 11340 * This should be a maximum number of data bytes that may be 11341 * placed on the BD (not including paddings). 11342 */ 11343 rxq_init->buf_sz = (fp->rx_buf_size - 11344 IP_HEADER_ALIGNMENT_PADDING); 11345 11346 rxq_init->cl_qzone_id = fp->cl_qzone_id; 11347 rxq_init->tpa_agg_sz = tpa_agg_size; 11348 rxq_init->sge_buf_sz = sge_sz; 11349 rxq_init->max_sges_pkt = max_sge; 11350 rxq_init->rss_engine_id = SC_FUNC(sc); 11351 rxq_init->mcast_engine_id = SC_FUNC(sc); 11352 11353 /* 11354 * Maximum number or simultaneous TPA aggregation for this Queue. 11355 * For PF Clients it should be the maximum available number. 11356 * VF driver(s) may want to define it to a smaller value. 11357 */ 11358 rxq_init->max_tpa_queues = MAX_AGG_QS(sc); 11359 11360 rxq_init->cache_line_log = BXE_RX_ALIGN_SHIFT; 11361 rxq_init->fw_sb_id = fp->fw_sb_id; 11362 11363 rxq_init->sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS; 11364 11365 /* 11366 * configure silent vlan removal 11367 * if multi function mode is afex, then mask default vlan 11368 */ 11369 if (IS_MF_AFEX(sc)) { 11370 rxq_init->silent_removal_value = 11371 sc->devinfo.mf_info.afex_def_vlan_tag; 11372 rxq_init->silent_removal_mask = EVL_VLID_MASK; 11373 } 11374 } 11375 11376 static void 11377 bxe_pf_tx_q_prep(struct bxe_softc *sc, 11378 struct bxe_fastpath *fp, 11379 struct ecore_txq_setup_params *txq_init, 11380 uint8_t cos) 11381 { 11382 /* 11383 * XXX If multiple CoS is ever supported then each fastpath structure 11384 * will need to maintain tx producer/consumer/dma/etc values *per* CoS. 11385 * fp->txdata[cos]->tx_dma.paddr; 11386 */ 11387 txq_init->dscr_map = fp->tx_dma.paddr; 11388 txq_init->sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS + cos; 11389 txq_init->traffic_type = LLFC_TRAFFIC_TYPE_NW; 11390 txq_init->fw_sb_id = fp->fw_sb_id; 11391 11392 /* 11393 * set the TSS leading client id for TX classfication to the 11394 * leading RSS client id 11395 */ 11396 txq_init->tss_leading_cl_id = BXE_FP(sc, 0, cl_id); 11397 } 11398 11399 /* 11400 * This function performs 2 steps in a queue state machine: 11401 * 1) RESET->INIT 11402 * 2) INIT->SETUP 11403 */ 11404 static int 11405 bxe_setup_queue(struct bxe_softc *sc, 11406 struct bxe_fastpath *fp, 11407 uint8_t leading) 11408 { 11409 struct ecore_queue_state_params q_params = { NULL }; 11410 struct ecore_queue_setup_params *setup_params = 11411 &q_params.params.setup; 11412 int rc; 11413 11414 BLOGD(sc, DBG_LOAD, "setting up queue %d\n", fp->index); 11415 11416 bxe_ack_sb(sc, fp->igu_sb_id, USTORM_ID, 0, IGU_INT_ENABLE, 0); 11417 11418 q_params.q_obj = &BXE_SP_OBJ(sc, fp).q_obj; 11419 11420 /* we want to wait for completion in this context */ 11421 bxe_set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags); 11422 11423 /* prepare the INIT parameters */ 11424 bxe_pf_q_prep_init(sc, fp, &q_params.params.init); 11425 11426 /* Set the command */ 11427 q_params.cmd = ECORE_Q_CMD_INIT; 11428 11429 /* Change the state to INIT */ 11430 rc = ecore_queue_state_change(sc, &q_params); 11431 if (rc) { 11432 BLOGE(sc, "Queue(%d) INIT failed rc = %d\n", fp->index, rc); 11433 return (rc); 11434 } 11435 11436 BLOGD(sc, DBG_LOAD, "init complete\n"); 11437 11438 /* now move the Queue to the SETUP state */ 11439 memset(setup_params, 0, sizeof(*setup_params)); 11440 11441 /* set Queue flags */ 11442 setup_params->flags = bxe_get_q_flags(sc, fp, leading); 11443 11444 /* set general SETUP parameters */ 11445 bxe_pf_q_prep_general(sc, fp, &setup_params->gen_params, 11446 FIRST_TX_COS_INDEX); 11447 11448 bxe_pf_rx_q_prep(sc, fp, 11449 &setup_params->pause_params, 11450 &setup_params->rxq_params); 11451 11452 bxe_pf_tx_q_prep(sc, fp, 11453 &setup_params->txq_params, 11454 FIRST_TX_COS_INDEX); 11455 11456 /* Set the command */ 11457 q_params.cmd = ECORE_Q_CMD_SETUP; 11458 11459 /* change the state to SETUP */ 11460 rc = ecore_queue_state_change(sc, &q_params); 11461 if (rc) { 11462 BLOGE(sc, "Queue(%d) SETUP failed (rc = %d)\n", fp->index, rc); 11463 return (rc); 11464 } 11465 11466 return (rc); 11467 } 11468 11469 static int 11470 bxe_setup_leading(struct bxe_softc *sc) 11471 { 11472 return (bxe_setup_queue(sc, &sc->fp[0], TRUE)); 11473 } 11474 11475 static int 11476 bxe_config_rss_pf(struct bxe_softc *sc, 11477 struct ecore_rss_config_obj *rss_obj, 11478 uint8_t config_hash) 11479 { 11480 struct ecore_config_rss_params params = { NULL }; 11481 int i; 11482 11483 /* 11484 * Although RSS is meaningless when there is a single HW queue we 11485 * still need it enabled in order to have HW Rx hash generated. 11486 */ 11487 11488 params.rss_obj = rss_obj; 11489 11490 bxe_set_bit(RAMROD_COMP_WAIT, ¶ms.ramrod_flags); 11491 11492 bxe_set_bit(ECORE_RSS_MODE_REGULAR, ¶ms.rss_flags); 11493 11494 /* RSS configuration */ 11495 bxe_set_bit(ECORE_RSS_IPV4, ¶ms.rss_flags); 11496 bxe_set_bit(ECORE_RSS_IPV4_TCP, ¶ms.rss_flags); 11497 bxe_set_bit(ECORE_RSS_IPV6, ¶ms.rss_flags); 11498 bxe_set_bit(ECORE_RSS_IPV6_TCP, ¶ms.rss_flags); 11499 if (rss_obj->udp_rss_v4) { 11500 bxe_set_bit(ECORE_RSS_IPV4_UDP, ¶ms.rss_flags); 11501 } 11502 if (rss_obj->udp_rss_v6) { 11503 bxe_set_bit(ECORE_RSS_IPV6_UDP, ¶ms.rss_flags); 11504 } 11505 11506 /* Hash bits */ 11507 params.rss_result_mask = MULTI_MASK; 11508 11509 memcpy(params.ind_table, rss_obj->ind_table, sizeof(params.ind_table)); 11510 11511 if (config_hash) { 11512 /* RSS keys */ 11513 for (i = 0; i < sizeof(params.rss_key) / 4; i++) { 11514 params.rss_key[i] = arc4random(); 11515 } 11516 11517 bxe_set_bit(ECORE_RSS_SET_SRCH, ¶ms.rss_flags); 11518 } 11519 11520 return (ecore_config_rss(sc, ¶ms)); 11521 } 11522 11523 static int 11524 bxe_config_rss_eth(struct bxe_softc *sc, 11525 uint8_t config_hash) 11526 { 11527 return (bxe_config_rss_pf(sc, &sc->rss_conf_obj, config_hash)); 11528 } 11529 11530 static int 11531 bxe_init_rss_pf(struct bxe_softc *sc) 11532 { 11533 uint8_t num_eth_queues = BXE_NUM_ETH_QUEUES(sc); 11534 int i; 11535 11536 /* 11537 * Prepare the initial contents of the indirection table if 11538 * RSS is enabled 11539 */ 11540 for (i = 0; i < sizeof(sc->rss_conf_obj.ind_table); i++) { 11541 sc->rss_conf_obj.ind_table[i] = 11542 (sc->fp->cl_id + (i % num_eth_queues)); 11543 } 11544 11545 if (sc->udp_rss) { 11546 sc->rss_conf_obj.udp_rss_v4 = sc->rss_conf_obj.udp_rss_v6 = 1; 11547 } 11548 11549 /* 11550 * For 57710 and 57711 SEARCHER configuration (rss_keys) is 11551 * per-port, so if explicit configuration is needed, do it only 11552 * for a PMF. 11553 * 11554 * For 57712 and newer it's a per-function configuration. 11555 */ 11556 return (bxe_config_rss_eth(sc, sc->port.pmf || !CHIP_IS_E1x(sc))); 11557 } 11558 11559 static int 11560 bxe_set_mac_one(struct bxe_softc *sc, 11561 uint8_t *mac, 11562 struct ecore_vlan_mac_obj *obj, 11563 uint8_t set, 11564 int mac_type, 11565 unsigned long *ramrod_flags) 11566 { 11567 struct ecore_vlan_mac_ramrod_params ramrod_param; 11568 int rc; 11569 11570 memset(&ramrod_param, 0, sizeof(ramrod_param)); 11571 11572 /* fill in general parameters */ 11573 ramrod_param.vlan_mac_obj = obj; 11574 ramrod_param.ramrod_flags = *ramrod_flags; 11575 11576 /* fill a user request section if needed */ 11577 if (!bxe_test_bit(RAMROD_CONT, ramrod_flags)) { 11578 memcpy(ramrod_param.user_req.u.mac.mac, mac, ETH_ALEN); 11579 11580 bxe_set_bit(mac_type, &ramrod_param.user_req.vlan_mac_flags); 11581 11582 /* Set the command: ADD or DEL */ 11583 ramrod_param.user_req.cmd = (set) ? ECORE_VLAN_MAC_ADD : 11584 ECORE_VLAN_MAC_DEL; 11585 } 11586 11587 rc = ecore_config_vlan_mac(sc, &ramrod_param); 11588 11589 if (rc == ECORE_EXISTS) { 11590 BLOGD(sc, DBG_SP, "Failed to schedule ADD operations (EEXIST)\n"); 11591 /* do not treat adding same MAC as error */ 11592 rc = 0; 11593 } else if (rc < 0) { 11594 BLOGE(sc, "%s MAC failed (%d)\n", (set ? "Set" : "Delete"), rc); 11595 } 11596 11597 return (rc); 11598 } 11599 11600 static int 11601 bxe_set_eth_mac(struct bxe_softc *sc, 11602 uint8_t set) 11603 { 11604 unsigned long ramrod_flags = 0; 11605 11606 BLOGD(sc, DBG_LOAD, "Adding Ethernet MAC\n"); 11607 11608 bxe_set_bit(RAMROD_COMP_WAIT, &ramrod_flags); 11609 11610 /* Eth MAC is set on RSS leading client (fp[0]) */ 11611 return (bxe_set_mac_one(sc, sc->link_params.mac_addr, 11612 &sc->sp_objs->mac_obj, 11613 set, ECORE_ETH_MAC, &ramrod_flags)); 11614 } 11615 11616 static int 11617 bxe_get_cur_phy_idx(struct bxe_softc *sc) 11618 { 11619 uint32_t sel_phy_idx = 0; 11620 11621 if (sc->link_params.num_phys <= 1) { 11622 return (ELINK_INT_PHY); 11623 } 11624 11625 if (sc->link_vars.link_up) { 11626 sel_phy_idx = ELINK_EXT_PHY1; 11627 /* In case link is SERDES, check if the ELINK_EXT_PHY2 is the one */ 11628 if ((sc->link_vars.link_status & LINK_STATUS_SERDES_LINK) && 11629 (sc->link_params.phy[ELINK_EXT_PHY2].supported & 11630 ELINK_SUPPORTED_FIBRE)) 11631 sel_phy_idx = ELINK_EXT_PHY2; 11632 } else { 11633 switch (elink_phy_selection(&sc->link_params)) { 11634 case PORT_HW_CFG_PHY_SELECTION_HARDWARE_DEFAULT: 11635 case PORT_HW_CFG_PHY_SELECTION_FIRST_PHY: 11636 case PORT_HW_CFG_PHY_SELECTION_FIRST_PHY_PRIORITY: 11637 sel_phy_idx = ELINK_EXT_PHY1; 11638 break; 11639 case PORT_HW_CFG_PHY_SELECTION_SECOND_PHY: 11640 case PORT_HW_CFG_PHY_SELECTION_SECOND_PHY_PRIORITY: 11641 sel_phy_idx = ELINK_EXT_PHY2; 11642 break; 11643 } 11644 } 11645 11646 return (sel_phy_idx); 11647 } 11648 11649 static int 11650 bxe_get_link_cfg_idx(struct bxe_softc *sc) 11651 { 11652 uint32_t sel_phy_idx = bxe_get_cur_phy_idx(sc); 11653 11654 /* 11655 * The selected activated PHY is always after swapping (in case PHY 11656 * swapping is enabled). So when swapping is enabled, we need to reverse 11657 * the configuration 11658 */ 11659 11660 if (sc->link_params.multi_phy_config & PORT_HW_CFG_PHY_SWAPPED_ENABLED) { 11661 if (sel_phy_idx == ELINK_EXT_PHY1) 11662 sel_phy_idx = ELINK_EXT_PHY2; 11663 else if (sel_phy_idx == ELINK_EXT_PHY2) 11664 sel_phy_idx = ELINK_EXT_PHY1; 11665 } 11666 11667 return (ELINK_LINK_CONFIG_IDX(sel_phy_idx)); 11668 } 11669 11670 static void 11671 bxe_set_requested_fc(struct bxe_softc *sc) 11672 { 11673 /* 11674 * Initialize link parameters structure variables 11675 * It is recommended to turn off RX FC for jumbo frames 11676 * for better performance 11677 */ 11678 if (CHIP_IS_E1x(sc) && (sc->mtu > 5000)) { 11679 sc->link_params.req_fc_auto_adv = ELINK_FLOW_CTRL_TX; 11680 } else { 11681 sc->link_params.req_fc_auto_adv = ELINK_FLOW_CTRL_BOTH; 11682 } 11683 } 11684 11685 static void 11686 bxe_calc_fc_adv(struct bxe_softc *sc) 11687 { 11688 uint8_t cfg_idx = bxe_get_link_cfg_idx(sc); 11689 11690 11691 sc->port.advertising[cfg_idx] &= ~(ADVERTISED_Asym_Pause | 11692 ADVERTISED_Pause); 11693 11694 switch (sc->link_vars.ieee_fc & 11695 MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_MASK) { 11696 11697 case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_BOTH: 11698 sc->port.advertising[cfg_idx] |= (ADVERTISED_Asym_Pause | 11699 ADVERTISED_Pause); 11700 break; 11701 11702 case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_ASYMMETRIC: 11703 sc->port.advertising[cfg_idx] |= ADVERTISED_Asym_Pause; 11704 break; 11705 11706 default: 11707 break; 11708 11709 } 11710 } 11711 11712 static uint16_t 11713 bxe_get_mf_speed(struct bxe_softc *sc) 11714 { 11715 uint16_t line_speed = sc->link_vars.line_speed; 11716 if (IS_MF(sc)) { 11717 uint16_t maxCfg = 11718 bxe_extract_max_cfg(sc, sc->devinfo.mf_info.mf_config[SC_VN(sc)]); 11719 11720 /* calculate the current MAX line speed limit for the MF devices */ 11721 if (IS_MF_SI(sc)) { 11722 line_speed = (line_speed * maxCfg) / 100; 11723 } else { /* SD mode */ 11724 uint16_t vn_max_rate = maxCfg * 100; 11725 11726 if (vn_max_rate < line_speed) { 11727 line_speed = vn_max_rate; 11728 } 11729 } 11730 } 11731 11732 return (line_speed); 11733 } 11734 11735 static void 11736 bxe_fill_report_data(struct bxe_softc *sc, 11737 struct bxe_link_report_data *data) 11738 { 11739 uint16_t line_speed = bxe_get_mf_speed(sc); 11740 11741 memset(data, 0, sizeof(*data)); 11742 11743 /* fill the report data with the effective line speed */ 11744 data->line_speed = line_speed; 11745 11746 /* Link is down */ 11747 if (!sc->link_vars.link_up || (sc->flags & BXE_MF_FUNC_DIS)) { 11748 bxe_set_bit(BXE_LINK_REPORT_LINK_DOWN, &data->link_report_flags); 11749 } 11750 11751 /* Full DUPLEX */ 11752 if (sc->link_vars.duplex == DUPLEX_FULL) { 11753 bxe_set_bit(BXE_LINK_REPORT_FULL_DUPLEX, &data->link_report_flags); 11754 } 11755 11756 /* Rx Flow Control is ON */ 11757 if (sc->link_vars.flow_ctrl & ELINK_FLOW_CTRL_RX) { 11758 bxe_set_bit(BXE_LINK_REPORT_RX_FC_ON, &data->link_report_flags); 11759 } 11760 11761 /* Tx Flow Control is ON */ 11762 if (sc->link_vars.flow_ctrl & ELINK_FLOW_CTRL_TX) { 11763 bxe_set_bit(BXE_LINK_REPORT_TX_FC_ON, &data->link_report_flags); 11764 } 11765 } 11766 11767 /* report link status to OS, should be called under phy_lock */ 11768 static void 11769 bxe_link_report_locked(struct bxe_softc *sc) 11770 { 11771 struct bxe_link_report_data cur_data; 11772 11773 /* reread mf_cfg */ 11774 if (IS_PF(sc) && !CHIP_IS_E1(sc)) { 11775 bxe_read_mf_cfg(sc); 11776 } 11777 11778 /* Read the current link report info */ 11779 bxe_fill_report_data(sc, &cur_data); 11780 11781 /* Don't report link down or exactly the same link status twice */ 11782 if (!memcmp(&cur_data, &sc->last_reported_link, sizeof(cur_data)) || 11783 (bxe_test_bit(BXE_LINK_REPORT_LINK_DOWN, 11784 &sc->last_reported_link.link_report_flags) && 11785 bxe_test_bit(BXE_LINK_REPORT_LINK_DOWN, 11786 &cur_data.link_report_flags))) { 11787 return; 11788 } 11789 11790 ELINK_DEBUG_P2(sc, "Change in link status : cur_data = %x, last_reported_link = %x\n", 11791 cur_data.link_report_flags, sc->last_reported_link.link_report_flags); 11792 sc->link_cnt++; 11793 11794 ELINK_DEBUG_P1(sc, "link status change count = %x\n", sc->link_cnt); 11795 /* report new link params and remember the state for the next time */ 11796 memcpy(&sc->last_reported_link, &cur_data, sizeof(cur_data)); 11797 11798 if (bxe_test_bit(BXE_LINK_REPORT_LINK_DOWN, 11799 &cur_data.link_report_flags)) { 11800 if_link_state_change(sc->ifp, LINK_STATE_DOWN); 11801 } else { 11802 const char *duplex; 11803 const char *flow; 11804 11805 if (bxe_test_and_clear_bit(BXE_LINK_REPORT_FULL_DUPLEX, 11806 &cur_data.link_report_flags)) { 11807 duplex = "full"; 11808 ELINK_DEBUG_P0(sc, "link set to full duplex\n"); 11809 } else { 11810 duplex = "half"; 11811 ELINK_DEBUG_P0(sc, "link set to half duplex\n"); 11812 } 11813 11814 /* 11815 * Handle the FC at the end so that only these flags would be 11816 * possibly set. This way we may easily check if there is no FC 11817 * enabled. 11818 */ 11819 if (cur_data.link_report_flags) { 11820 if (bxe_test_bit(BXE_LINK_REPORT_RX_FC_ON, 11821 &cur_data.link_report_flags) && 11822 bxe_test_bit(BXE_LINK_REPORT_TX_FC_ON, 11823 &cur_data.link_report_flags)) { 11824 flow = "ON - receive & transmit"; 11825 } else if (bxe_test_bit(BXE_LINK_REPORT_RX_FC_ON, 11826 &cur_data.link_report_flags) && 11827 !bxe_test_bit(BXE_LINK_REPORT_TX_FC_ON, 11828 &cur_data.link_report_flags)) { 11829 flow = "ON - receive"; 11830 } else if (!bxe_test_bit(BXE_LINK_REPORT_RX_FC_ON, 11831 &cur_data.link_report_flags) && 11832 bxe_test_bit(BXE_LINK_REPORT_TX_FC_ON, 11833 &cur_data.link_report_flags)) { 11834 flow = "ON - transmit"; 11835 } else { 11836 flow = "none"; /* possible? */ 11837 } 11838 } else { 11839 flow = "none"; 11840 } 11841 11842 if_link_state_change(sc->ifp, LINK_STATE_UP); 11843 BLOGI(sc, "NIC Link is Up, %d Mbps %s duplex, Flow control: %s\n", 11844 cur_data.line_speed, duplex, flow); 11845 } 11846 } 11847 11848 static void 11849 bxe_link_report(struct bxe_softc *sc) 11850 { 11851 bxe_acquire_phy_lock(sc); 11852 bxe_link_report_locked(sc); 11853 bxe_release_phy_lock(sc); 11854 } 11855 11856 static void 11857 bxe_link_status_update(struct bxe_softc *sc) 11858 { 11859 if (sc->state != BXE_STATE_OPEN) { 11860 return; 11861 } 11862 11863 if (IS_PF(sc) && !CHIP_REV_IS_SLOW(sc)) { 11864 elink_link_status_update(&sc->link_params, &sc->link_vars); 11865 } else { 11866 sc->port.supported[0] |= (ELINK_SUPPORTED_10baseT_Half | 11867 ELINK_SUPPORTED_10baseT_Full | 11868 ELINK_SUPPORTED_100baseT_Half | 11869 ELINK_SUPPORTED_100baseT_Full | 11870 ELINK_SUPPORTED_1000baseT_Full | 11871 ELINK_SUPPORTED_2500baseX_Full | 11872 ELINK_SUPPORTED_10000baseT_Full | 11873 ELINK_SUPPORTED_TP | 11874 ELINK_SUPPORTED_FIBRE | 11875 ELINK_SUPPORTED_Autoneg | 11876 ELINK_SUPPORTED_Pause | 11877 ELINK_SUPPORTED_Asym_Pause); 11878 sc->port.advertising[0] = sc->port.supported[0]; 11879 11880 sc->link_params.sc = sc; 11881 sc->link_params.port = SC_PORT(sc); 11882 sc->link_params.req_duplex[0] = DUPLEX_FULL; 11883 sc->link_params.req_flow_ctrl[0] = ELINK_FLOW_CTRL_NONE; 11884 sc->link_params.req_line_speed[0] = SPEED_10000; 11885 sc->link_params.speed_cap_mask[0] = 0x7f0000; 11886 sc->link_params.switch_cfg = ELINK_SWITCH_CFG_10G; 11887 11888 if (CHIP_REV_IS_FPGA(sc)) { 11889 sc->link_vars.mac_type = ELINK_MAC_TYPE_EMAC; 11890 sc->link_vars.line_speed = ELINK_SPEED_1000; 11891 sc->link_vars.link_status = (LINK_STATUS_LINK_UP | 11892 LINK_STATUS_SPEED_AND_DUPLEX_1000TFD); 11893 } else { 11894 sc->link_vars.mac_type = ELINK_MAC_TYPE_BMAC; 11895 sc->link_vars.line_speed = ELINK_SPEED_10000; 11896 sc->link_vars.link_status = (LINK_STATUS_LINK_UP | 11897 LINK_STATUS_SPEED_AND_DUPLEX_10GTFD); 11898 } 11899 11900 sc->link_vars.link_up = 1; 11901 11902 sc->link_vars.duplex = DUPLEX_FULL; 11903 sc->link_vars.flow_ctrl = ELINK_FLOW_CTRL_NONE; 11904 11905 if (IS_PF(sc)) { 11906 REG_WR(sc, NIG_REG_EGRESS_DRAIN0_MODE + sc->link_params.port*4, 0); 11907 bxe_stats_handle(sc, STATS_EVENT_LINK_UP); 11908 bxe_link_report(sc); 11909 } 11910 } 11911 11912 if (IS_PF(sc)) { 11913 if (sc->link_vars.link_up) { 11914 bxe_stats_handle(sc, STATS_EVENT_LINK_UP); 11915 } else { 11916 bxe_stats_handle(sc, STATS_EVENT_STOP); 11917 } 11918 bxe_link_report(sc); 11919 } else { 11920 bxe_link_report(sc); 11921 bxe_stats_handle(sc, STATS_EVENT_LINK_UP); 11922 } 11923 } 11924 11925 static int 11926 bxe_initial_phy_init(struct bxe_softc *sc, 11927 int load_mode) 11928 { 11929 int rc, cfg_idx = bxe_get_link_cfg_idx(sc); 11930 uint16_t req_line_speed = sc->link_params.req_line_speed[cfg_idx]; 11931 struct elink_params *lp = &sc->link_params; 11932 11933 bxe_set_requested_fc(sc); 11934 11935 if (CHIP_REV_IS_SLOW(sc)) { 11936 uint32_t bond = CHIP_BOND_ID(sc); 11937 uint32_t feat = 0; 11938 11939 if (CHIP_IS_E2(sc) && CHIP_IS_MODE_4_PORT(sc)) { 11940 feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_BMAC; 11941 } else if (bond & 0x4) { 11942 if (CHIP_IS_E3(sc)) { 11943 feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_XMAC; 11944 } else { 11945 feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_BMAC; 11946 } 11947 } else if (bond & 0x8) { 11948 if (CHIP_IS_E3(sc)) { 11949 feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_UMAC; 11950 } else { 11951 feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_EMAC; 11952 } 11953 } 11954 11955 /* disable EMAC for E3 and above */ 11956 if (bond & 0x2) { 11957 feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_EMAC; 11958 } 11959 11960 sc->link_params.feature_config_flags |= feat; 11961 } 11962 11963 bxe_acquire_phy_lock(sc); 11964 11965 if (load_mode == LOAD_DIAG) { 11966 lp->loopback_mode = ELINK_LOOPBACK_XGXS; 11967 /* Prefer doing PHY loopback at 10G speed, if possible */ 11968 if (lp->req_line_speed[cfg_idx] < ELINK_SPEED_10000) { 11969 if (lp->speed_cap_mask[cfg_idx] & 11970 PORT_HW_CFG_SPEED_CAPABILITY_D0_10G) { 11971 lp->req_line_speed[cfg_idx] = ELINK_SPEED_10000; 11972 } else { 11973 lp->req_line_speed[cfg_idx] = ELINK_SPEED_1000; 11974 } 11975 } 11976 } 11977 11978 if (load_mode == LOAD_LOOPBACK_EXT) { 11979 lp->loopback_mode = ELINK_LOOPBACK_EXT; 11980 } 11981 11982 rc = elink_phy_init(&sc->link_params, &sc->link_vars); 11983 11984 bxe_release_phy_lock(sc); 11985 11986 bxe_calc_fc_adv(sc); 11987 11988 if (sc->link_vars.link_up) { 11989 bxe_stats_handle(sc, STATS_EVENT_LINK_UP); 11990 bxe_link_report(sc); 11991 } 11992 11993 if (!CHIP_REV_IS_SLOW(sc)) { 11994 bxe_periodic_start(sc); 11995 } 11996 11997 sc->link_params.req_line_speed[cfg_idx] = req_line_speed; 11998 return (rc); 11999 } 12000 12001 static u_int 12002 bxe_push_maddr(void *arg, struct sockaddr_dl *sdl, u_int cnt) 12003 { 12004 struct ecore_mcast_list_elem *mc_mac = arg; 12005 12006 mc_mac += cnt; 12007 mc_mac->mac = (uint8_t *)LLADDR(sdl); 12008 12009 return (1); 12010 } 12011 12012 static int 12013 bxe_init_mcast_macs_list(struct bxe_softc *sc, 12014 struct ecore_mcast_ramrod_params *p) 12015 { 12016 if_t ifp = sc->ifp; 12017 int mc_count; 12018 struct ecore_mcast_list_elem *mc_mac; 12019 12020 ECORE_LIST_INIT(&p->mcast_list); 12021 p->mcast_list_len = 0; 12022 12023 /* XXXGL: multicast count may change later */ 12024 mc_count = if_llmaddr_count(ifp); 12025 12026 if (!mc_count) { 12027 return (0); 12028 } 12029 12030 mc_mac = malloc(sizeof(*mc_mac) * mc_count, M_DEVBUF, 12031 (M_NOWAIT | M_ZERO)); 12032 if (!mc_mac) { 12033 BLOGE(sc, "Failed to allocate temp mcast list\n"); 12034 return (-1); 12035 } 12036 bzero(mc_mac, (sizeof(*mc_mac) * mc_count)); 12037 if_foreach_llmaddr(ifp, bxe_push_maddr, mc_mac); 12038 12039 for (int i = 0; i < mc_count; i ++) { 12040 ECORE_LIST_PUSH_TAIL(&mc_mac[i].link, &p->mcast_list); 12041 BLOGD(sc, DBG_LOAD, 12042 "Setting MCAST %02X:%02X:%02X:%02X:%02X:%02X and mc_count %d\n", 12043 mc_mac[i].mac[0], mc_mac[i].mac[1], mc_mac[i].mac[2], 12044 mc_mac[i].mac[3], mc_mac[i].mac[4], mc_mac[i].mac[5], 12045 mc_count); 12046 } 12047 12048 p->mcast_list_len = mc_count; 12049 12050 return (0); 12051 } 12052 12053 static void 12054 bxe_free_mcast_macs_list(struct ecore_mcast_ramrod_params *p) 12055 { 12056 struct ecore_mcast_list_elem *mc_mac = 12057 ECORE_LIST_FIRST_ENTRY(&p->mcast_list, 12058 struct ecore_mcast_list_elem, 12059 link); 12060 12061 if (mc_mac) { 12062 /* only a single free as all mc_macs are in the same heap array */ 12063 free(mc_mac, M_DEVBUF); 12064 } 12065 } 12066 static int 12067 bxe_set_mc_list(struct bxe_softc *sc) 12068 { 12069 struct ecore_mcast_ramrod_params rparam = { NULL }; 12070 int rc = 0; 12071 12072 rparam.mcast_obj = &sc->mcast_obj; 12073 12074 BXE_MCAST_LOCK(sc); 12075 12076 /* first, clear all configured multicast MACs */ 12077 rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_DEL); 12078 if (rc < 0) { 12079 BLOGE(sc, "Failed to clear multicast configuration: %d\n", rc); 12080 /* Manual backport parts of FreeBSD upstream r284470. */ 12081 BXE_MCAST_UNLOCK(sc); 12082 return (rc); 12083 } 12084 12085 /* configure a new MACs list */ 12086 rc = bxe_init_mcast_macs_list(sc, &rparam); 12087 if (rc) { 12088 BLOGE(sc, "Failed to create mcast MACs list (%d)\n", rc); 12089 BXE_MCAST_UNLOCK(sc); 12090 return (rc); 12091 } 12092 12093 /* Now add the new MACs */ 12094 rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_ADD); 12095 if (rc < 0) { 12096 BLOGE(sc, "Failed to set new mcast config (%d)\n", rc); 12097 } 12098 12099 bxe_free_mcast_macs_list(&rparam); 12100 12101 BXE_MCAST_UNLOCK(sc); 12102 12103 return (rc); 12104 } 12105 12106 struct bxe_set_addr_ctx { 12107 struct bxe_softc *sc; 12108 unsigned long ramrod_flags; 12109 int rc; 12110 }; 12111 12112 static u_int 12113 bxe_set_addr(void *arg, struct sockaddr_dl *sdl, u_int cnt) 12114 { 12115 struct bxe_set_addr_ctx *ctx = arg; 12116 struct ecore_vlan_mac_obj *mac_obj = &ctx->sc->sp_objs->mac_obj; 12117 int rc; 12118 12119 if (ctx->rc < 0) 12120 return (0); 12121 12122 rc = bxe_set_mac_one(ctx->sc, (uint8_t *)LLADDR(sdl), mac_obj, TRUE, 12123 ECORE_UC_LIST_MAC, &ctx->ramrod_flags); 12124 12125 /* do not treat adding same MAC as an error */ 12126 if (rc == -EEXIST) 12127 BLOGD(ctx->sc, DBG_SP, "Failed to schedule ADD operations (EEXIST)\n"); 12128 else if (rc < 0) { 12129 BLOGE(ctx->sc, "Failed to schedule ADD operations (%d)\n", rc); 12130 ctx->rc = rc; 12131 } 12132 12133 return (1); 12134 } 12135 12136 static int 12137 bxe_set_uc_list(struct bxe_softc *sc) 12138 { 12139 if_t ifp = sc->ifp; 12140 struct ecore_vlan_mac_obj *mac_obj = &sc->sp_objs->mac_obj; 12141 struct bxe_set_addr_ctx ctx = { sc, 0, 0 }; 12142 int rc; 12143 12144 /* first schedule a cleanup up of old configuration */ 12145 rc = bxe_del_all_macs(sc, mac_obj, ECORE_UC_LIST_MAC, FALSE); 12146 if (rc < 0) { 12147 BLOGE(sc, "Failed to schedule delete of all ETH MACs (%d)\n", rc); 12148 return (rc); 12149 } 12150 12151 if_foreach_lladdr(ifp, bxe_set_addr, &ctx); 12152 if (ctx.rc < 0) 12153 return (ctx.rc); 12154 12155 /* Execute the pending commands */ 12156 bit_set(&ctx.ramrod_flags, RAMROD_CONT); 12157 return (bxe_set_mac_one(sc, NULL, mac_obj, FALSE /* don't care */, 12158 ECORE_UC_LIST_MAC, &ctx.ramrod_flags)); 12159 } 12160 12161 static void 12162 bxe_set_rx_mode(struct bxe_softc *sc) 12163 { 12164 if_t ifp = sc->ifp; 12165 uint32_t rx_mode = BXE_RX_MODE_NORMAL; 12166 12167 if (sc->state != BXE_STATE_OPEN) { 12168 BLOGD(sc, DBG_SP, "state is %x, returning\n", sc->state); 12169 return; 12170 } 12171 12172 BLOGD(sc, DBG_SP, "if_flags(ifp)=0x%x\n", if_getflags(sc->ifp)); 12173 12174 if (if_getflags(ifp) & IFF_PROMISC) { 12175 rx_mode = BXE_RX_MODE_PROMISC; 12176 } else if ((if_getflags(ifp) & IFF_ALLMULTI) || 12177 (if_llmaddr_count(ifp) > BXE_MAX_MULTICAST && 12178 CHIP_IS_E1(sc))) { 12179 rx_mode = BXE_RX_MODE_ALLMULTI; 12180 } else { 12181 if (IS_PF(sc)) { 12182 /* some multicasts */ 12183 if (bxe_set_mc_list(sc) < 0) { 12184 rx_mode = BXE_RX_MODE_ALLMULTI; 12185 } 12186 if (bxe_set_uc_list(sc) < 0) { 12187 rx_mode = BXE_RX_MODE_PROMISC; 12188 } 12189 } 12190 } 12191 12192 sc->rx_mode = rx_mode; 12193 12194 /* schedule the rx_mode command */ 12195 if (bxe_test_bit(ECORE_FILTER_RX_MODE_PENDING, &sc->sp_state)) { 12196 BLOGD(sc, DBG_LOAD, "Scheduled setting rx_mode with ECORE...\n"); 12197 bxe_set_bit(ECORE_FILTER_RX_MODE_SCHED, &sc->sp_state); 12198 return; 12199 } 12200 12201 if (IS_PF(sc)) { 12202 bxe_set_storm_rx_mode(sc); 12203 } 12204 } 12205 12206 12207 /* update flags in shmem */ 12208 static void 12209 bxe_update_drv_flags(struct bxe_softc *sc, 12210 uint32_t flags, 12211 uint32_t set) 12212 { 12213 uint32_t drv_flags; 12214 12215 if (SHMEM2_HAS(sc, drv_flags)) { 12216 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_DRV_FLAGS); 12217 drv_flags = SHMEM2_RD(sc, drv_flags); 12218 12219 if (set) { 12220 SET_FLAGS(drv_flags, flags); 12221 } else { 12222 RESET_FLAGS(drv_flags, flags); 12223 } 12224 12225 SHMEM2_WR(sc, drv_flags, drv_flags); 12226 BLOGD(sc, DBG_LOAD, "drv_flags 0x%08x\n", drv_flags); 12227 12228 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_DRV_FLAGS); 12229 } 12230 } 12231 12232 /* periodic timer callout routine, only runs when the interface is up */ 12233 12234 static void 12235 bxe_periodic_callout_func(void *xsc) 12236 { 12237 struct bxe_softc *sc = (struct bxe_softc *)xsc; 12238 int i; 12239 12240 if (!BXE_CORE_TRYLOCK(sc)) { 12241 /* just bail and try again next time */ 12242 12243 if ((sc->state == BXE_STATE_OPEN) && 12244 (atomic_load_acq_long(&sc->periodic_flags) == PERIODIC_GO)) { 12245 /* schedule the next periodic callout */ 12246 callout_reset(&sc->periodic_callout, hz, 12247 bxe_periodic_callout_func, sc); 12248 } 12249 12250 return; 12251 } 12252 12253 if ((sc->state != BXE_STATE_OPEN) || 12254 (atomic_load_acq_long(&sc->periodic_flags) == PERIODIC_STOP)) { 12255 BLOGW(sc, "periodic callout exit (state=0x%x)\n", sc->state); 12256 BXE_CORE_UNLOCK(sc); 12257 return; 12258 } 12259 12260 12261 /* Check for TX timeouts on any fastpath. */ 12262 FOR_EACH_QUEUE(sc, i) { 12263 if (bxe_watchdog(sc, &sc->fp[i]) != 0) { 12264 /* Ruh-Roh, chip was reset! */ 12265 break; 12266 } 12267 } 12268 12269 if (!CHIP_REV_IS_SLOW(sc)) { 12270 /* 12271 * This barrier is needed to ensure the ordering between the writing 12272 * to the sc->port.pmf in the bxe_nic_load() or bxe_pmf_update() and 12273 * the reading here. 12274 */ 12275 mb(); 12276 if (sc->port.pmf) { 12277 bxe_acquire_phy_lock(sc); 12278 elink_period_func(&sc->link_params, &sc->link_vars); 12279 bxe_release_phy_lock(sc); 12280 } 12281 } 12282 12283 if (IS_PF(sc) && !(sc->flags & BXE_NO_PULSE)) { 12284 int mb_idx = SC_FW_MB_IDX(sc); 12285 uint32_t drv_pulse; 12286 uint32_t mcp_pulse; 12287 12288 ++sc->fw_drv_pulse_wr_seq; 12289 sc->fw_drv_pulse_wr_seq &= DRV_PULSE_SEQ_MASK; 12290 12291 drv_pulse = sc->fw_drv_pulse_wr_seq; 12292 bxe_drv_pulse(sc); 12293 12294 mcp_pulse = (SHMEM_RD(sc, func_mb[mb_idx].mcp_pulse_mb) & 12295 MCP_PULSE_SEQ_MASK); 12296 12297 /* 12298 * The delta between driver pulse and mcp response should 12299 * be 1 (before mcp response) or 0 (after mcp response). 12300 */ 12301 if ((drv_pulse != mcp_pulse) && 12302 (drv_pulse != ((mcp_pulse + 1) & MCP_PULSE_SEQ_MASK))) { 12303 /* someone lost a heartbeat... */ 12304 BLOGE(sc, "drv_pulse (0x%x) != mcp_pulse (0x%x)\n", 12305 drv_pulse, mcp_pulse); 12306 } 12307 } 12308 12309 /* state is BXE_STATE_OPEN */ 12310 bxe_stats_handle(sc, STATS_EVENT_UPDATE); 12311 12312 BXE_CORE_UNLOCK(sc); 12313 12314 if ((sc->state == BXE_STATE_OPEN) && 12315 (atomic_load_acq_long(&sc->periodic_flags) == PERIODIC_GO)) { 12316 /* schedule the next periodic callout */ 12317 callout_reset(&sc->periodic_callout, hz, 12318 bxe_periodic_callout_func, sc); 12319 } 12320 } 12321 12322 static void 12323 bxe_periodic_start(struct bxe_softc *sc) 12324 { 12325 atomic_store_rel_long(&sc->periodic_flags, PERIODIC_GO); 12326 callout_reset(&sc->periodic_callout, hz, bxe_periodic_callout_func, sc); 12327 } 12328 12329 static void 12330 bxe_periodic_stop(struct bxe_softc *sc) 12331 { 12332 atomic_store_rel_long(&sc->periodic_flags, PERIODIC_STOP); 12333 callout_drain(&sc->periodic_callout); 12334 } 12335 12336 void 12337 bxe_parity_recover(struct bxe_softc *sc) 12338 { 12339 uint8_t global = FALSE; 12340 uint32_t error_recovered, error_unrecovered; 12341 12342 12343 if ((sc->recovery_state == BXE_RECOVERY_FAILED) && 12344 (sc->state == BXE_STATE_ERROR)) { 12345 BLOGE(sc, "RECOVERY failed, " 12346 "stack notified driver is NOT running! " 12347 "Please reboot/power cycle the system.\n"); 12348 return; 12349 } 12350 12351 while (1) { 12352 BLOGD(sc, DBG_SP, 12353 "%s sc=%p state=0x%x rec_state=0x%x error_status=%x\n", 12354 __func__, sc, sc->state, sc->recovery_state, sc->error_status); 12355 12356 switch(sc->recovery_state) { 12357 12358 case BXE_RECOVERY_INIT: 12359 bxe_chk_parity_attn(sc, &global, FALSE); 12360 12361 if ((CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) || 12362 (sc->error_status & BXE_ERR_MCP_ASSERT) || 12363 (sc->error_status & BXE_ERR_GLOBAL)) { 12364 12365 BXE_CORE_LOCK(sc); 12366 if (if_getdrvflags(sc->ifp) & IFF_DRV_RUNNING) { 12367 bxe_periodic_stop(sc); 12368 } 12369 bxe_nic_unload(sc, UNLOAD_RECOVERY, false); 12370 sc->state = BXE_STATE_ERROR; 12371 sc->recovery_state = BXE_RECOVERY_FAILED; 12372 BLOGE(sc, " No Recovery tried for error 0x%x" 12373 " stack notified driver is NOT running!" 12374 " Please reboot/power cycle the system.\n", 12375 sc->error_status); 12376 BXE_CORE_UNLOCK(sc); 12377 return; 12378 } 12379 12380 12381 /* Try to get a LEADER_LOCK HW lock */ 12382 if (bxe_trylock_leader_lock(sc)) { 12383 12384 bxe_set_reset_in_progress(sc); 12385 /* 12386 * Check if there is a global attention and if 12387 * there was a global attention, set the global 12388 * reset bit. 12389 */ 12390 if (global) { 12391 bxe_set_reset_global(sc); 12392 } 12393 sc->is_leader = 1; 12394 } 12395 12396 /* If interface has been removed - break */ 12397 12398 if (if_getdrvflags(sc->ifp) & IFF_DRV_RUNNING) { 12399 bxe_periodic_stop(sc); 12400 } 12401 12402 BXE_CORE_LOCK(sc); 12403 bxe_nic_unload(sc,UNLOAD_RECOVERY, false); 12404 sc->recovery_state = BXE_RECOVERY_WAIT; 12405 BXE_CORE_UNLOCK(sc); 12406 12407 /* 12408 * Ensure "is_leader", MCP command sequence and 12409 * "recovery_state" update values are seen on other 12410 * CPUs. 12411 */ 12412 mb(); 12413 break; 12414 case BXE_RECOVERY_WAIT: 12415 12416 if (sc->is_leader) { 12417 int other_engine = SC_PATH(sc) ? 0 : 1; 12418 bool other_load_status = 12419 bxe_get_load_status(sc, other_engine); 12420 bool load_status = 12421 bxe_get_load_status(sc, SC_PATH(sc)); 12422 global = bxe_reset_is_global(sc); 12423 12424 /* 12425 * In case of a parity in a global block, let 12426 * the first leader that performs a 12427 * leader_reset() reset the global blocks in 12428 * order to clear global attentions. Otherwise 12429 * the gates will remain closed for that 12430 * engine. 12431 */ 12432 if (load_status || 12433 (global && other_load_status)) { 12434 /* 12435 * Wait until all other functions get 12436 * down. 12437 */ 12438 taskqueue_enqueue_timeout(taskqueue_thread, 12439 &sc->sp_err_timeout_task, hz/10); 12440 return; 12441 } else { 12442 /* 12443 * If all other functions got down 12444 * try to bring the chip back to 12445 * normal. In any case it's an exit 12446 * point for a leader. 12447 */ 12448 if (bxe_leader_reset(sc)) { 12449 BLOGE(sc, "RECOVERY failed, " 12450 "stack notified driver is NOT running!\n"); 12451 sc->recovery_state = BXE_RECOVERY_FAILED; 12452 sc->state = BXE_STATE_ERROR; 12453 mb(); 12454 return; 12455 } 12456 12457 /* 12458 * If we are here, means that the 12459 * leader has succeeded and doesn't 12460 * want to be a leader any more. Try 12461 * to continue as a none-leader. 12462 */ 12463 break; 12464 } 12465 12466 } else { /* non-leader */ 12467 if (!bxe_reset_is_done(sc, SC_PATH(sc))) { 12468 /* 12469 * Try to get a LEADER_LOCK HW lock as 12470 * long as a former leader may have 12471 * been unloaded by the user or 12472 * released a leadership by another 12473 * reason. 12474 */ 12475 if (bxe_trylock_leader_lock(sc)) { 12476 /* 12477 * I'm a leader now! Restart a 12478 * switch case. 12479 */ 12480 sc->is_leader = 1; 12481 break; 12482 } 12483 12484 taskqueue_enqueue_timeout(taskqueue_thread, 12485 &sc->sp_err_timeout_task, hz/10); 12486 return; 12487 12488 } else { 12489 /* 12490 * If there was a global attention, wait 12491 * for it to be cleared. 12492 */ 12493 if (bxe_reset_is_global(sc)) { 12494 taskqueue_enqueue_timeout(taskqueue_thread, 12495 &sc->sp_err_timeout_task, hz/10); 12496 return; 12497 } 12498 12499 error_recovered = 12500 sc->eth_stats.recoverable_error; 12501 error_unrecovered = 12502 sc->eth_stats.unrecoverable_error; 12503 BXE_CORE_LOCK(sc); 12504 sc->recovery_state = 12505 BXE_RECOVERY_NIC_LOADING; 12506 if (bxe_nic_load(sc, LOAD_NORMAL)) { 12507 error_unrecovered++; 12508 sc->recovery_state = BXE_RECOVERY_FAILED; 12509 sc->state = BXE_STATE_ERROR; 12510 BLOGE(sc, "Recovery is NOT successful, " 12511 " state=0x%x recovery_state=0x%x error=%x\n", 12512 sc->state, sc->recovery_state, sc->error_status); 12513 sc->error_status = 0; 12514 } else { 12515 sc->recovery_state = 12516 BXE_RECOVERY_DONE; 12517 error_recovered++; 12518 BLOGI(sc, "Recovery is successful from errors %x," 12519 " state=0x%x" 12520 " recovery_state=0x%x \n", sc->error_status, 12521 sc->state, sc->recovery_state); 12522 mb(); 12523 } 12524 sc->error_status = 0; 12525 BXE_CORE_UNLOCK(sc); 12526 sc->eth_stats.recoverable_error = 12527 error_recovered; 12528 sc->eth_stats.unrecoverable_error = 12529 error_unrecovered; 12530 12531 return; 12532 } 12533 } 12534 default: 12535 return; 12536 } 12537 } 12538 } 12539 void 12540 bxe_handle_error(struct bxe_softc * sc) 12541 { 12542 12543 if(sc->recovery_state == BXE_RECOVERY_WAIT) { 12544 return; 12545 } 12546 if(sc->error_status) { 12547 if (sc->state == BXE_STATE_OPEN) { 12548 bxe_int_disable(sc); 12549 } 12550 if (sc->link_vars.link_up) { 12551 if_link_state_change(sc->ifp, LINK_STATE_DOWN); 12552 } 12553 sc->recovery_state = BXE_RECOVERY_INIT; 12554 BLOGI(sc, "bxe%d: Recovery started errors 0x%x recovery state 0x%x\n", 12555 sc->unit, sc->error_status, sc->recovery_state); 12556 bxe_parity_recover(sc); 12557 } 12558 } 12559 12560 static void 12561 bxe_sp_err_timeout_task(void *arg, int pending) 12562 { 12563 12564 struct bxe_softc *sc = (struct bxe_softc *)arg; 12565 12566 BLOGD(sc, DBG_SP, 12567 "%s state = 0x%x rec state=0x%x error_status=%x\n", 12568 __func__, sc->state, sc->recovery_state, sc->error_status); 12569 12570 if((sc->recovery_state == BXE_RECOVERY_FAILED) && 12571 (sc->state == BXE_STATE_ERROR)) { 12572 return; 12573 } 12574 /* if can be taken */ 12575 if ((sc->error_status) && (sc->trigger_grcdump)) { 12576 bxe_grc_dump(sc); 12577 } 12578 if (sc->recovery_state != BXE_RECOVERY_DONE) { 12579 bxe_handle_error(sc); 12580 bxe_parity_recover(sc); 12581 } else if (sc->error_status) { 12582 bxe_handle_error(sc); 12583 } 12584 12585 return; 12586 } 12587 12588 /* start the controller */ 12589 static __noinline int 12590 bxe_nic_load(struct bxe_softc *sc, 12591 int load_mode) 12592 { 12593 uint32_t val; 12594 int load_code = 0; 12595 int i, rc = 0; 12596 12597 BXE_CORE_LOCK_ASSERT(sc); 12598 12599 BLOGD(sc, DBG_LOAD, "Starting NIC load...\n"); 12600 12601 sc->state = BXE_STATE_OPENING_WAITING_LOAD; 12602 12603 if (IS_PF(sc)) { 12604 /* must be called before memory allocation and HW init */ 12605 bxe_ilt_set_info(sc); 12606 } 12607 12608 sc->last_reported_link_state = LINK_STATE_UNKNOWN; 12609 12610 bxe_set_fp_rx_buf_size(sc); 12611 12612 if (bxe_alloc_fp_buffers(sc) != 0) { 12613 BLOGE(sc, "Failed to allocate fastpath memory\n"); 12614 sc->state = BXE_STATE_CLOSED; 12615 rc = ENOMEM; 12616 goto bxe_nic_load_error0; 12617 } 12618 12619 if (bxe_alloc_mem(sc) != 0) { 12620 sc->state = BXE_STATE_CLOSED; 12621 rc = ENOMEM; 12622 goto bxe_nic_load_error0; 12623 } 12624 12625 if (bxe_alloc_fw_stats_mem(sc) != 0) { 12626 sc->state = BXE_STATE_CLOSED; 12627 rc = ENOMEM; 12628 goto bxe_nic_load_error0; 12629 } 12630 12631 if (IS_PF(sc)) { 12632 /* set pf load just before approaching the MCP */ 12633 bxe_set_pf_load(sc); 12634 12635 /* if MCP exists send load request and analyze response */ 12636 if (!BXE_NOMCP(sc)) { 12637 /* attempt to load pf */ 12638 if (bxe_nic_load_request(sc, &load_code) != 0) { 12639 sc->state = BXE_STATE_CLOSED; 12640 rc = ENXIO; 12641 goto bxe_nic_load_error1; 12642 } 12643 12644 /* what did the MCP say? */ 12645 if (bxe_nic_load_analyze_req(sc, load_code) != 0) { 12646 bxe_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0); 12647 sc->state = BXE_STATE_CLOSED; 12648 rc = ENXIO; 12649 goto bxe_nic_load_error2; 12650 } 12651 } else { 12652 BLOGI(sc, "Device has no MCP!\n"); 12653 load_code = bxe_nic_load_no_mcp(sc); 12654 } 12655 12656 /* mark PMF if applicable */ 12657 bxe_nic_load_pmf(sc, load_code); 12658 12659 /* Init Function state controlling object */ 12660 bxe_init_func_obj(sc); 12661 12662 /* Initialize HW */ 12663 if (bxe_init_hw(sc, load_code) != 0) { 12664 BLOGE(sc, "HW init failed\n"); 12665 bxe_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0); 12666 sc->state = BXE_STATE_CLOSED; 12667 rc = ENXIO; 12668 goto bxe_nic_load_error2; 12669 } 12670 } 12671 12672 /* set ALWAYS_ALIVE bit in shmem */ 12673 sc->fw_drv_pulse_wr_seq |= DRV_PULSE_ALWAYS_ALIVE; 12674 bxe_drv_pulse(sc); 12675 sc->flags |= BXE_NO_PULSE; 12676 12677 /* attach interrupts */ 12678 if (bxe_interrupt_attach(sc) != 0) { 12679 sc->state = BXE_STATE_CLOSED; 12680 rc = ENXIO; 12681 goto bxe_nic_load_error2; 12682 } 12683 12684 bxe_nic_init(sc, load_code); 12685 12686 /* Init per-function objects */ 12687 if (IS_PF(sc)) { 12688 bxe_init_objs(sc); 12689 // XXX bxe_iov_nic_init(sc); 12690 12691 /* set AFEX default VLAN tag to an invalid value */ 12692 sc->devinfo.mf_info.afex_def_vlan_tag = -1; 12693 // XXX bxe_nic_load_afex_dcc(sc, load_code); 12694 12695 sc->state = BXE_STATE_OPENING_WAITING_PORT; 12696 rc = bxe_func_start(sc); 12697 if (rc) { 12698 BLOGE(sc, "Function start failed! rc = %d\n", rc); 12699 bxe_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0); 12700 sc->state = BXE_STATE_ERROR; 12701 goto bxe_nic_load_error3; 12702 } 12703 12704 /* send LOAD_DONE command to MCP */ 12705 if (!BXE_NOMCP(sc)) { 12706 load_code = bxe_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0); 12707 if (!load_code) { 12708 BLOGE(sc, "MCP response failure, aborting\n"); 12709 sc->state = BXE_STATE_ERROR; 12710 rc = ENXIO; 12711 goto bxe_nic_load_error3; 12712 } 12713 } 12714 12715 rc = bxe_setup_leading(sc); 12716 if (rc) { 12717 BLOGE(sc, "Setup leading failed! rc = %d\n", rc); 12718 sc->state = BXE_STATE_ERROR; 12719 goto bxe_nic_load_error3; 12720 } 12721 12722 FOR_EACH_NONDEFAULT_ETH_QUEUE(sc, i) { 12723 rc = bxe_setup_queue(sc, &sc->fp[i], FALSE); 12724 if (rc) { 12725 BLOGE(sc, "Queue(%d) setup failed rc = %d\n", i, rc); 12726 sc->state = BXE_STATE_ERROR; 12727 goto bxe_nic_load_error3; 12728 } 12729 } 12730 12731 rc = bxe_init_rss_pf(sc); 12732 if (rc) { 12733 BLOGE(sc, "PF RSS init failed\n"); 12734 sc->state = BXE_STATE_ERROR; 12735 goto bxe_nic_load_error3; 12736 } 12737 } 12738 /* XXX VF */ 12739 12740 /* now when Clients are configured we are ready to work */ 12741 sc->state = BXE_STATE_OPEN; 12742 12743 /* Configure a ucast MAC */ 12744 if (IS_PF(sc)) { 12745 rc = bxe_set_eth_mac(sc, TRUE); 12746 } 12747 if (rc) { 12748 BLOGE(sc, "Setting Ethernet MAC failed rc = %d\n", rc); 12749 sc->state = BXE_STATE_ERROR; 12750 goto bxe_nic_load_error3; 12751 } 12752 12753 if (sc->port.pmf) { 12754 rc = bxe_initial_phy_init(sc, /* XXX load_mode */LOAD_OPEN); 12755 if (rc) { 12756 sc->state = BXE_STATE_ERROR; 12757 goto bxe_nic_load_error3; 12758 } 12759 } 12760 12761 sc->link_params.feature_config_flags &= 12762 ~ELINK_FEATURE_CONFIG_BOOT_FROM_SAN; 12763 12764 /* start fast path */ 12765 12766 /* Initialize Rx filter */ 12767 bxe_set_rx_mode(sc); 12768 12769 /* start the Tx */ 12770 switch (/* XXX load_mode */LOAD_OPEN) { 12771 case LOAD_NORMAL: 12772 case LOAD_OPEN: 12773 break; 12774 12775 case LOAD_DIAG: 12776 case LOAD_LOOPBACK_EXT: 12777 sc->state = BXE_STATE_DIAG; 12778 break; 12779 12780 default: 12781 break; 12782 } 12783 12784 if (sc->port.pmf) { 12785 bxe_update_drv_flags(sc, 1 << DRV_FLAGS_PORT_MASK, 0); 12786 } else { 12787 bxe_link_status_update(sc); 12788 } 12789 12790 /* start the periodic timer callout */ 12791 bxe_periodic_start(sc); 12792 12793 if (IS_PF(sc) && SHMEM2_HAS(sc, drv_capabilities_flag)) { 12794 /* mark driver is loaded in shmem2 */ 12795 val = SHMEM2_RD(sc, drv_capabilities_flag[SC_FW_MB_IDX(sc)]); 12796 SHMEM2_WR(sc, drv_capabilities_flag[SC_FW_MB_IDX(sc)], 12797 (val | 12798 DRV_FLAGS_CAPABILITIES_LOADED_SUPPORTED | 12799 DRV_FLAGS_CAPABILITIES_LOADED_L2)); 12800 } 12801 12802 /* wait for all pending SP commands to complete */ 12803 if (IS_PF(sc) && !bxe_wait_sp_comp(sc, ~0x0UL)) { 12804 BLOGE(sc, "Timeout waiting for all SPs to complete!\n"); 12805 bxe_periodic_stop(sc); 12806 bxe_nic_unload(sc, UNLOAD_CLOSE, FALSE); 12807 return (ENXIO); 12808 } 12809 12810 /* Tell the stack the driver is running! */ 12811 if_setdrvflags(sc->ifp, IFF_DRV_RUNNING); 12812 12813 BLOGD(sc, DBG_LOAD, "NIC successfully loaded\n"); 12814 12815 return (0); 12816 12817 bxe_nic_load_error3: 12818 12819 if (IS_PF(sc)) { 12820 bxe_int_disable_sync(sc, 1); 12821 12822 /* clean out queued objects */ 12823 bxe_squeeze_objects(sc); 12824 } 12825 12826 bxe_interrupt_detach(sc); 12827 12828 bxe_nic_load_error2: 12829 12830 if (IS_PF(sc) && !BXE_NOMCP(sc)) { 12831 bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP, 0); 12832 bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_DONE, 0); 12833 } 12834 12835 sc->port.pmf = 0; 12836 12837 bxe_nic_load_error1: 12838 12839 /* clear pf_load status, as it was already set */ 12840 if (IS_PF(sc)) { 12841 bxe_clear_pf_load(sc); 12842 } 12843 12844 bxe_nic_load_error0: 12845 12846 bxe_free_fw_stats_mem(sc); 12847 bxe_free_fp_buffers(sc); 12848 bxe_free_mem(sc); 12849 12850 return (rc); 12851 } 12852 12853 static int 12854 bxe_init_locked(struct bxe_softc *sc) 12855 { 12856 int other_engine = SC_PATH(sc) ? 0 : 1; 12857 uint8_t other_load_status, load_status; 12858 uint8_t global = FALSE; 12859 int rc; 12860 12861 BXE_CORE_LOCK_ASSERT(sc); 12862 12863 /* check if the driver is already running */ 12864 if (if_getdrvflags(sc->ifp) & IFF_DRV_RUNNING) { 12865 BLOGD(sc, DBG_LOAD, "Init called while driver is running!\n"); 12866 return (0); 12867 } 12868 12869 if((sc->state == BXE_STATE_ERROR) && 12870 (sc->recovery_state == BXE_RECOVERY_FAILED)) { 12871 BLOGE(sc, "Initialization not done, " 12872 "as previous recovery failed." 12873 "Reboot/Power-cycle the system\n" ); 12874 return (ENXIO); 12875 } 12876 12877 12878 bxe_set_power_state(sc, PCI_PM_D0); 12879 12880 /* 12881 * If parity occurred during the unload, then attentions and/or 12882 * RECOVERY_IN_PROGRES may still be set. If so we want the first function 12883 * loaded on the current engine to complete the recovery. Parity recovery 12884 * is only relevant for PF driver. 12885 */ 12886 if (IS_PF(sc)) { 12887 other_load_status = bxe_get_load_status(sc, other_engine); 12888 load_status = bxe_get_load_status(sc, SC_PATH(sc)); 12889 12890 if (!bxe_reset_is_done(sc, SC_PATH(sc)) || 12891 bxe_chk_parity_attn(sc, &global, TRUE)) { 12892 do { 12893 /* 12894 * If there are attentions and they are in global blocks, set 12895 * the GLOBAL_RESET bit regardless whether it will be this 12896 * function that will complete the recovery or not. 12897 */ 12898 if (global) { 12899 bxe_set_reset_global(sc); 12900 } 12901 12902 /* 12903 * Only the first function on the current engine should try 12904 * to recover in open. In case of attentions in global blocks 12905 * only the first in the chip should try to recover. 12906 */ 12907 if ((!load_status && (!global || !other_load_status)) && 12908 bxe_trylock_leader_lock(sc) && !bxe_leader_reset(sc)) { 12909 BLOGI(sc, "Recovered during init\n"); 12910 break; 12911 } 12912 12913 /* recovery has failed... */ 12914 bxe_set_power_state(sc, PCI_PM_D3hot); 12915 sc->recovery_state = BXE_RECOVERY_FAILED; 12916 12917 BLOGE(sc, "Recovery flow hasn't properly " 12918 "completed yet, try again later. " 12919 "If you still see this message after a " 12920 "few retries then power cycle is required.\n"); 12921 12922 rc = ENXIO; 12923 goto bxe_init_locked_done; 12924 } while (0); 12925 } 12926 } 12927 12928 sc->recovery_state = BXE_RECOVERY_DONE; 12929 12930 rc = bxe_nic_load(sc, LOAD_OPEN); 12931 12932 bxe_init_locked_done: 12933 12934 if (rc) { 12935 /* Tell the stack the driver is NOT running! */ 12936 BLOGE(sc, "Initialization failed, " 12937 "stack notified driver is NOT running!\n"); 12938 if_setdrvflagbits(sc->ifp, 0, IFF_DRV_RUNNING); 12939 } 12940 12941 return (rc); 12942 } 12943 12944 static int 12945 bxe_stop_locked(struct bxe_softc *sc) 12946 { 12947 BXE_CORE_LOCK_ASSERT(sc); 12948 return (bxe_nic_unload(sc, UNLOAD_NORMAL, TRUE)); 12949 } 12950 12951 /* 12952 * Handles controller initialization when called from an unlocked routine. 12953 * ifconfig calls this function. 12954 * 12955 * Returns: 12956 * void 12957 */ 12958 static void 12959 bxe_init(void *xsc) 12960 { 12961 struct bxe_softc *sc = (struct bxe_softc *)xsc; 12962 12963 BXE_CORE_LOCK(sc); 12964 bxe_init_locked(sc); 12965 BXE_CORE_UNLOCK(sc); 12966 } 12967 12968 static void 12969 bxe_init_ifnet(struct bxe_softc *sc) 12970 { 12971 if_t ifp; 12972 int capabilities; 12973 12974 /* ifconfig entrypoint for media type/status reporting */ 12975 ifmedia_init(&sc->ifmedia, IFM_IMASK, 12976 bxe_ifmedia_update, 12977 bxe_ifmedia_status); 12978 12979 /* set the default interface values */ 12980 ifmedia_add(&sc->ifmedia, (IFM_ETHER | IFM_FDX | sc->media), 0, NULL); 12981 ifmedia_add(&sc->ifmedia, (IFM_ETHER | IFM_AUTO), 0, NULL); 12982 ifmedia_set(&sc->ifmedia, (IFM_ETHER | IFM_AUTO)); 12983 12984 sc->ifmedia.ifm_media = sc->ifmedia.ifm_cur->ifm_media; /* XXX ? */ 12985 BLOGI(sc, "IFMEDIA flags : %x\n", sc->ifmedia.ifm_media); 12986 12987 /* allocate the ifnet structure */ 12988 ifp = if_gethandle(IFT_ETHER); 12989 12990 if_setsoftc(ifp, sc); 12991 if_initname(ifp, device_get_name(sc->dev), device_get_unit(sc->dev)); 12992 if_setflags(ifp, (IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST)); 12993 if_setioctlfn(ifp, bxe_ioctl); 12994 if_setstartfn(ifp, bxe_tx_start); 12995 if_setgetcounterfn(ifp, bxe_get_counter); 12996 if_settransmitfn(ifp, bxe_tx_mq_start); 12997 if_setqflushfn(ifp, bxe_mq_flush); 12998 if_setinitfn(ifp, bxe_init); 12999 if_setmtu(ifp, sc->mtu); 13000 if_sethwassist(ifp, (CSUM_IP | 13001 CSUM_TCP | 13002 CSUM_UDP | 13003 CSUM_TSO | 13004 CSUM_TCP_IPV6 | 13005 CSUM_UDP_IPV6)); 13006 13007 capabilities = 13008 (IFCAP_VLAN_MTU | 13009 IFCAP_VLAN_HWTAGGING | 13010 IFCAP_VLAN_HWTSO | 13011 IFCAP_VLAN_HWFILTER | 13012 IFCAP_VLAN_HWCSUM | 13013 IFCAP_HWCSUM | 13014 IFCAP_JUMBO_MTU | 13015 IFCAP_LRO | 13016 IFCAP_TSO4 | 13017 IFCAP_TSO6 | 13018 IFCAP_WOL_MAGIC); 13019 if_setcapabilitiesbit(ifp, capabilities, 0); /* XXX */ 13020 if_setcapenable(ifp, if_getcapabilities(ifp)); 13021 if_setbaudrate(ifp, IF_Gbps(10)); 13022 /* XXX */ 13023 if_setsendqlen(ifp, sc->tx_ring_size); 13024 if_setsendqready(ifp); 13025 /* XXX */ 13026 13027 sc->ifp = ifp; 13028 13029 /* attach to the Ethernet interface list */ 13030 ether_ifattach(ifp, sc->link_params.mac_addr); 13031 13032 /* Attach driver debugnet methods. */ 13033 DEBUGNET_SET(ifp, bxe); 13034 } 13035 13036 static void 13037 bxe_deallocate_bars(struct bxe_softc *sc) 13038 { 13039 int i; 13040 13041 for (i = 0; i < MAX_BARS; i++) { 13042 if (sc->bar[i].resource != NULL) { 13043 bus_release_resource(sc->dev, 13044 SYS_RES_MEMORY, 13045 sc->bar[i].rid, 13046 sc->bar[i].resource); 13047 BLOGD(sc, DBG_LOAD, "Released PCI BAR%d [%02x] memory\n", 13048 i, PCIR_BAR(i)); 13049 } 13050 } 13051 } 13052 13053 static int 13054 bxe_allocate_bars(struct bxe_softc *sc) 13055 { 13056 u_int flags; 13057 int i; 13058 13059 memset(sc->bar, 0, sizeof(sc->bar)); 13060 13061 for (i = 0; i < MAX_BARS; i++) { 13062 13063 /* memory resources reside at BARs 0, 2, 4 */ 13064 /* Run `pciconf -lb` to see mappings */ 13065 if ((i != 0) && (i != 2) && (i != 4)) { 13066 continue; 13067 } 13068 13069 sc->bar[i].rid = PCIR_BAR(i); 13070 13071 flags = RF_ACTIVE; 13072 if (i == 0) { 13073 flags |= RF_SHAREABLE; 13074 } 13075 13076 if ((sc->bar[i].resource = 13077 bus_alloc_resource_any(sc->dev, 13078 SYS_RES_MEMORY, 13079 &sc->bar[i].rid, 13080 flags)) == NULL) { 13081 return (0); 13082 } 13083 13084 sc->bar[i].tag = rman_get_bustag(sc->bar[i].resource); 13085 sc->bar[i].handle = rman_get_bushandle(sc->bar[i].resource); 13086 sc->bar[i].kva = (vm_offset_t)rman_get_virtual(sc->bar[i].resource); 13087 13088 BLOGI(sc, "PCI BAR%d [%02x] memory allocated: %#jx-%#jx (%jd) -> %#jx\n", 13089 i, PCIR_BAR(i), 13090 rman_get_start(sc->bar[i].resource), 13091 rman_get_end(sc->bar[i].resource), 13092 rman_get_size(sc->bar[i].resource), 13093 (uintmax_t)sc->bar[i].kva); 13094 } 13095 13096 return (0); 13097 } 13098 13099 static void 13100 bxe_get_function_num(struct bxe_softc *sc) 13101 { 13102 uint32_t val = 0; 13103 13104 /* 13105 * Read the ME register to get the function number. The ME register 13106 * holds the relative-function number and absolute-function number. The 13107 * absolute-function number appears only in E2 and above. Before that 13108 * these bits always contained zero, therefore we cannot blindly use them. 13109 */ 13110 13111 val = REG_RD(sc, BAR_ME_REGISTER); 13112 13113 sc->pfunc_rel = 13114 (uint8_t)((val & ME_REG_PF_NUM) >> ME_REG_PF_NUM_SHIFT); 13115 sc->path_id = 13116 (uint8_t)((val & ME_REG_ABS_PF_NUM) >> ME_REG_ABS_PF_NUM_SHIFT) & 1; 13117 13118 if (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) { 13119 sc->pfunc_abs = ((sc->pfunc_rel << 1) | sc->path_id); 13120 } else { 13121 sc->pfunc_abs = (sc->pfunc_rel | sc->path_id); 13122 } 13123 13124 BLOGD(sc, DBG_LOAD, 13125 "Relative function %d, Absolute function %d, Path %d\n", 13126 sc->pfunc_rel, sc->pfunc_abs, sc->path_id); 13127 } 13128 13129 static uint32_t 13130 bxe_get_shmem_mf_cfg_base(struct bxe_softc *sc) 13131 { 13132 uint32_t shmem2_size; 13133 uint32_t offset; 13134 uint32_t mf_cfg_offset_value; 13135 13136 /* Non 57712 */ 13137 offset = (SHMEM_RD(sc, func_mb) + 13138 (MAX_FUNC_NUM * sizeof(struct drv_func_mb))); 13139 13140 /* 57712 plus */ 13141 if (sc->devinfo.shmem2_base != 0) { 13142 shmem2_size = SHMEM2_RD(sc, size); 13143 if (shmem2_size > offsetof(struct shmem2_region, mf_cfg_addr)) { 13144 mf_cfg_offset_value = SHMEM2_RD(sc, mf_cfg_addr); 13145 if (SHMEM_MF_CFG_ADDR_NONE != mf_cfg_offset_value) { 13146 offset = mf_cfg_offset_value; 13147 } 13148 } 13149 } 13150 13151 return (offset); 13152 } 13153 13154 static uint32_t 13155 bxe_pcie_capability_read(struct bxe_softc *sc, 13156 int reg, 13157 int width) 13158 { 13159 int pcie_reg; 13160 13161 /* ensure PCIe capability is enabled */ 13162 if (pci_find_cap(sc->dev, PCIY_EXPRESS, &pcie_reg) == 0) { 13163 if (pcie_reg != 0) { 13164 BLOGD(sc, DBG_LOAD, "PCIe capability at 0x%04x\n", pcie_reg); 13165 return (pci_read_config(sc->dev, (pcie_reg + reg), width)); 13166 } 13167 } 13168 13169 BLOGE(sc, "PCIe capability NOT FOUND!!!\n"); 13170 13171 return (0); 13172 } 13173 13174 static uint8_t 13175 bxe_is_pcie_pending(struct bxe_softc *sc) 13176 { 13177 return (bxe_pcie_capability_read(sc, PCIER_DEVICE_STA, 2) & 13178 PCIEM_STA_TRANSACTION_PND); 13179 } 13180 13181 /* 13182 * Walk the PCI capabiites list for the device to find what features are 13183 * supported. These capabilites may be enabled/disabled by firmware so it's 13184 * best to walk the list rather than make assumptions. 13185 */ 13186 static void 13187 bxe_probe_pci_caps(struct bxe_softc *sc) 13188 { 13189 uint16_t link_status; 13190 int reg; 13191 13192 /* check if PCI Power Management is enabled */ 13193 if (pci_find_cap(sc->dev, PCIY_PMG, ®) == 0) { 13194 if (reg != 0) { 13195 BLOGD(sc, DBG_LOAD, "Found PM capability at 0x%04x\n", reg); 13196 13197 sc->devinfo.pcie_cap_flags |= BXE_PM_CAPABLE_FLAG; 13198 sc->devinfo.pcie_pm_cap_reg = (uint16_t)reg; 13199 } 13200 } 13201 13202 link_status = bxe_pcie_capability_read(sc, PCIER_LINK_STA, 2); 13203 13204 /* handle PCIe 2.0 workarounds for 57710 */ 13205 if (CHIP_IS_E1(sc)) { 13206 /* workaround for 57710 errata E4_57710_27462 */ 13207 sc->devinfo.pcie_link_speed = 13208 (REG_RD(sc, 0x3d04) & (1 << 24)) ? 2 : 1; 13209 13210 /* workaround for 57710 errata E4_57710_27488 */ 13211 sc->devinfo.pcie_link_width = 13212 ((link_status & PCIEM_LINK_STA_WIDTH) >> 4); 13213 if (sc->devinfo.pcie_link_speed > 1) { 13214 sc->devinfo.pcie_link_width = 13215 ((link_status & PCIEM_LINK_STA_WIDTH) >> 4) >> 1; 13216 } 13217 } else { 13218 sc->devinfo.pcie_link_speed = 13219 (link_status & PCIEM_LINK_STA_SPEED); 13220 sc->devinfo.pcie_link_width = 13221 ((link_status & PCIEM_LINK_STA_WIDTH) >> 4); 13222 } 13223 13224 BLOGD(sc, DBG_LOAD, "PCIe link speed=%d width=%d\n", 13225 sc->devinfo.pcie_link_speed, sc->devinfo.pcie_link_width); 13226 13227 sc->devinfo.pcie_cap_flags |= BXE_PCIE_CAPABLE_FLAG; 13228 sc->devinfo.pcie_pcie_cap_reg = (uint16_t)reg; 13229 13230 /* check if MSI capability is enabled */ 13231 if (pci_find_cap(sc->dev, PCIY_MSI, ®) == 0) { 13232 if (reg != 0) { 13233 BLOGD(sc, DBG_LOAD, "Found MSI capability at 0x%04x\n", reg); 13234 13235 sc->devinfo.pcie_cap_flags |= BXE_MSI_CAPABLE_FLAG; 13236 sc->devinfo.pcie_msi_cap_reg = (uint16_t)reg; 13237 } 13238 } 13239 13240 /* check if MSI-X capability is enabled */ 13241 if (pci_find_cap(sc->dev, PCIY_MSIX, ®) == 0) { 13242 if (reg != 0) { 13243 BLOGD(sc, DBG_LOAD, "Found MSI-X capability at 0x%04x\n", reg); 13244 13245 sc->devinfo.pcie_cap_flags |= BXE_MSIX_CAPABLE_FLAG; 13246 sc->devinfo.pcie_msix_cap_reg = (uint16_t)reg; 13247 } 13248 } 13249 } 13250 13251 static int 13252 bxe_get_shmem_mf_cfg_info_sd(struct bxe_softc *sc) 13253 { 13254 struct bxe_mf_info *mf_info = &sc->devinfo.mf_info; 13255 uint32_t val; 13256 13257 /* get the outer vlan if we're in switch-dependent mode */ 13258 13259 val = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].e1hov_tag); 13260 mf_info->ext_id = (uint16_t)val; 13261 13262 mf_info->multi_vnics_mode = 1; 13263 13264 if (!VALID_OVLAN(mf_info->ext_id)) { 13265 BLOGE(sc, "Invalid VLAN (%d)\n", mf_info->ext_id); 13266 return (1); 13267 } 13268 13269 /* get the capabilities */ 13270 if ((mf_info->mf_config[SC_VN(sc)] & FUNC_MF_CFG_PROTOCOL_MASK) == 13271 FUNC_MF_CFG_PROTOCOL_ISCSI) { 13272 mf_info->mf_protos_supported |= MF_PROTO_SUPPORT_ISCSI; 13273 } else if ((mf_info->mf_config[SC_VN(sc)] & FUNC_MF_CFG_PROTOCOL_MASK) == 13274 FUNC_MF_CFG_PROTOCOL_FCOE) { 13275 mf_info->mf_protos_supported |= MF_PROTO_SUPPORT_FCOE; 13276 } else { 13277 mf_info->mf_protos_supported |= MF_PROTO_SUPPORT_ETHERNET; 13278 } 13279 13280 mf_info->vnics_per_port = 13281 (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) ? 2 : 4; 13282 13283 return (0); 13284 } 13285 13286 static uint32_t 13287 bxe_get_shmem_ext_proto_support_flags(struct bxe_softc *sc) 13288 { 13289 uint32_t retval = 0; 13290 uint32_t val; 13291 13292 val = MFCFG_RD(sc, func_ext_config[SC_ABS_FUNC(sc)].func_cfg); 13293 13294 if (val & MACP_FUNC_CFG_FLAGS_ENABLED) { 13295 if (val & MACP_FUNC_CFG_FLAGS_ETHERNET) { 13296 retval |= MF_PROTO_SUPPORT_ETHERNET; 13297 } 13298 if (val & MACP_FUNC_CFG_FLAGS_ISCSI_OFFLOAD) { 13299 retval |= MF_PROTO_SUPPORT_ISCSI; 13300 } 13301 if (val & MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD) { 13302 retval |= MF_PROTO_SUPPORT_FCOE; 13303 } 13304 } 13305 13306 return (retval); 13307 } 13308 13309 static int 13310 bxe_get_shmem_mf_cfg_info_si(struct bxe_softc *sc) 13311 { 13312 struct bxe_mf_info *mf_info = &sc->devinfo.mf_info; 13313 uint32_t val; 13314 13315 /* 13316 * There is no outer vlan if we're in switch-independent mode. 13317 * If the mac is valid then assume multi-function. 13318 */ 13319 13320 val = MFCFG_RD(sc, func_ext_config[SC_ABS_FUNC(sc)].func_cfg); 13321 13322 mf_info->multi_vnics_mode = ((val & MACP_FUNC_CFG_FLAGS_MASK) != 0); 13323 13324 mf_info->mf_protos_supported = bxe_get_shmem_ext_proto_support_flags(sc); 13325 13326 mf_info->vnics_per_port = 13327 (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) ? 2 : 4; 13328 13329 return (0); 13330 } 13331 13332 static int 13333 bxe_get_shmem_mf_cfg_info_niv(struct bxe_softc *sc) 13334 { 13335 struct bxe_mf_info *mf_info = &sc->devinfo.mf_info; 13336 uint32_t e1hov_tag; 13337 uint32_t func_config; 13338 uint32_t niv_config; 13339 13340 mf_info->multi_vnics_mode = 1; 13341 13342 e1hov_tag = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].e1hov_tag); 13343 func_config = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].config); 13344 niv_config = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].afex_config); 13345 13346 mf_info->ext_id = 13347 (uint16_t)((e1hov_tag & FUNC_MF_CFG_E1HOV_TAG_MASK) >> 13348 FUNC_MF_CFG_E1HOV_TAG_SHIFT); 13349 13350 mf_info->default_vlan = 13351 (uint16_t)((e1hov_tag & FUNC_MF_CFG_AFEX_VLAN_MASK) >> 13352 FUNC_MF_CFG_AFEX_VLAN_SHIFT); 13353 13354 mf_info->niv_allowed_priorities = 13355 (uint8_t)((niv_config & FUNC_MF_CFG_AFEX_COS_FILTER_MASK) >> 13356 FUNC_MF_CFG_AFEX_COS_FILTER_SHIFT); 13357 13358 mf_info->niv_default_cos = 13359 (uint8_t)((func_config & FUNC_MF_CFG_TRANSMIT_PRIORITY_MASK) >> 13360 FUNC_MF_CFG_TRANSMIT_PRIORITY_SHIFT); 13361 13362 mf_info->afex_vlan_mode = 13363 ((niv_config & FUNC_MF_CFG_AFEX_VLAN_MODE_MASK) >> 13364 FUNC_MF_CFG_AFEX_VLAN_MODE_SHIFT); 13365 13366 mf_info->niv_mba_enabled = 13367 ((niv_config & FUNC_MF_CFG_AFEX_MBA_ENABLED_MASK) >> 13368 FUNC_MF_CFG_AFEX_MBA_ENABLED_SHIFT); 13369 13370 mf_info->mf_protos_supported = bxe_get_shmem_ext_proto_support_flags(sc); 13371 13372 mf_info->vnics_per_port = 13373 (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) ? 2 : 4; 13374 13375 return (0); 13376 } 13377 13378 static int 13379 bxe_check_valid_mf_cfg(struct bxe_softc *sc) 13380 { 13381 struct bxe_mf_info *mf_info = &sc->devinfo.mf_info; 13382 uint32_t mf_cfg1; 13383 uint32_t mf_cfg2; 13384 uint32_t ovlan1; 13385 uint32_t ovlan2; 13386 uint8_t i, j; 13387 13388 BLOGD(sc, DBG_LOAD, "MF config parameters for function %d\n", 13389 SC_PORT(sc)); 13390 BLOGD(sc, DBG_LOAD, "\tmf_config=0x%x\n", 13391 mf_info->mf_config[SC_VN(sc)]); 13392 BLOGD(sc, DBG_LOAD, "\tmulti_vnics_mode=%d\n", 13393 mf_info->multi_vnics_mode); 13394 BLOGD(sc, DBG_LOAD, "\tvnics_per_port=%d\n", 13395 mf_info->vnics_per_port); 13396 BLOGD(sc, DBG_LOAD, "\tovlan/vifid=%d\n", 13397 mf_info->ext_id); 13398 BLOGD(sc, DBG_LOAD, "\tmin_bw=%d/%d/%d/%d\n", 13399 mf_info->min_bw[0], mf_info->min_bw[1], 13400 mf_info->min_bw[2], mf_info->min_bw[3]); 13401 BLOGD(sc, DBG_LOAD, "\tmax_bw=%d/%d/%d/%d\n", 13402 mf_info->max_bw[0], mf_info->max_bw[1], 13403 mf_info->max_bw[2], mf_info->max_bw[3]); 13404 BLOGD(sc, DBG_LOAD, "\tmac_addr: %s\n", 13405 sc->mac_addr_str); 13406 13407 /* various MF mode sanity checks... */ 13408 13409 if (mf_info->mf_config[SC_VN(sc)] & FUNC_MF_CFG_FUNC_HIDE) { 13410 BLOGE(sc, "Enumerated function %d is marked as hidden\n", 13411 SC_PORT(sc)); 13412 return (1); 13413 } 13414 13415 if ((mf_info->vnics_per_port > 1) && !mf_info->multi_vnics_mode) { 13416 BLOGE(sc, "vnics_per_port=%d multi_vnics_mode=%d\n", 13417 mf_info->vnics_per_port, mf_info->multi_vnics_mode); 13418 return (1); 13419 } 13420 13421 if (mf_info->mf_mode == MULTI_FUNCTION_SD) { 13422 /* vnic id > 0 must have valid ovlan in switch-dependent mode */ 13423 if ((SC_VN(sc) > 0) && !VALID_OVLAN(OVLAN(sc))) { 13424 BLOGE(sc, "mf_mode=SD vnic_id=%d ovlan=%d\n", 13425 SC_VN(sc), OVLAN(sc)); 13426 return (1); 13427 } 13428 13429 if (!VALID_OVLAN(OVLAN(sc)) && mf_info->multi_vnics_mode) { 13430 BLOGE(sc, "mf_mode=SD multi_vnics_mode=%d ovlan=%d\n", 13431 mf_info->multi_vnics_mode, OVLAN(sc)); 13432 return (1); 13433 } 13434 13435 /* 13436 * Verify all functions are either MF or SF mode. If MF, make sure 13437 * sure that all non-hidden functions have a valid ovlan. If SF, 13438 * make sure that all non-hidden functions have an invalid ovlan. 13439 */ 13440 FOREACH_ABS_FUNC_IN_PORT(sc, i) { 13441 mf_cfg1 = MFCFG_RD(sc, func_mf_config[i].config); 13442 ovlan1 = MFCFG_RD(sc, func_mf_config[i].e1hov_tag); 13443 if (!(mf_cfg1 & FUNC_MF_CFG_FUNC_HIDE) && 13444 (((mf_info->multi_vnics_mode) && !VALID_OVLAN(ovlan1)) || 13445 ((!mf_info->multi_vnics_mode) && VALID_OVLAN(ovlan1)))) { 13446 BLOGE(sc, "mf_mode=SD function %d MF config " 13447 "mismatch, multi_vnics_mode=%d ovlan=%d\n", 13448 i, mf_info->multi_vnics_mode, ovlan1); 13449 return (1); 13450 } 13451 } 13452 13453 /* Verify all funcs on the same port each have a different ovlan. */ 13454 FOREACH_ABS_FUNC_IN_PORT(sc, i) { 13455 mf_cfg1 = MFCFG_RD(sc, func_mf_config[i].config); 13456 ovlan1 = MFCFG_RD(sc, func_mf_config[i].e1hov_tag); 13457 /* iterate from the next function on the port to the max func */ 13458 for (j = i + 2; j < MAX_FUNC_NUM; j += 2) { 13459 mf_cfg2 = MFCFG_RD(sc, func_mf_config[j].config); 13460 ovlan2 = MFCFG_RD(sc, func_mf_config[j].e1hov_tag); 13461 if (!(mf_cfg1 & FUNC_MF_CFG_FUNC_HIDE) && 13462 VALID_OVLAN(ovlan1) && 13463 !(mf_cfg2 & FUNC_MF_CFG_FUNC_HIDE) && 13464 VALID_OVLAN(ovlan2) && 13465 (ovlan1 == ovlan2)) { 13466 BLOGE(sc, "mf_mode=SD functions %d and %d " 13467 "have the same ovlan (%d)\n", 13468 i, j, ovlan1); 13469 return (1); 13470 } 13471 } 13472 } 13473 } /* MULTI_FUNCTION_SD */ 13474 13475 return (0); 13476 } 13477 13478 static int 13479 bxe_get_mf_cfg_info(struct bxe_softc *sc) 13480 { 13481 struct bxe_mf_info *mf_info = &sc->devinfo.mf_info; 13482 uint32_t val, mac_upper; 13483 uint8_t i, vnic; 13484 13485 /* initialize mf_info defaults */ 13486 mf_info->vnics_per_port = 1; 13487 mf_info->multi_vnics_mode = FALSE; 13488 mf_info->path_has_ovlan = FALSE; 13489 mf_info->mf_mode = SINGLE_FUNCTION; 13490 13491 if (!CHIP_IS_MF_CAP(sc)) { 13492 return (0); 13493 } 13494 13495 if (sc->devinfo.mf_cfg_base == SHMEM_MF_CFG_ADDR_NONE) { 13496 BLOGE(sc, "Invalid mf_cfg_base!\n"); 13497 return (1); 13498 } 13499 13500 /* get the MF mode (switch dependent / independent / single-function) */ 13501 13502 val = SHMEM_RD(sc, dev_info.shared_feature_config.config); 13503 13504 switch (val & SHARED_FEAT_CFG_FORCE_SF_MODE_MASK) 13505 { 13506 case SHARED_FEAT_CFG_FORCE_SF_MODE_SWITCH_INDEPT: 13507 13508 mac_upper = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].mac_upper); 13509 13510 /* check for legal upper mac bytes */ 13511 if (mac_upper != FUNC_MF_CFG_UPPERMAC_DEFAULT) { 13512 mf_info->mf_mode = MULTI_FUNCTION_SI; 13513 } else { 13514 BLOGE(sc, "Invalid config for Switch Independent mode\n"); 13515 } 13516 13517 break; 13518 13519 case SHARED_FEAT_CFG_FORCE_SF_MODE_MF_ALLOWED: 13520 case SHARED_FEAT_CFG_FORCE_SF_MODE_SPIO4: 13521 13522 /* get outer vlan configuration */ 13523 val = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].e1hov_tag); 13524 13525 if ((val & FUNC_MF_CFG_E1HOV_TAG_MASK) != 13526 FUNC_MF_CFG_E1HOV_TAG_DEFAULT) { 13527 mf_info->mf_mode = MULTI_FUNCTION_SD; 13528 } else { 13529 BLOGE(sc, "Invalid config for Switch Dependent mode\n"); 13530 } 13531 13532 break; 13533 13534 case SHARED_FEAT_CFG_FORCE_SF_MODE_FORCED_SF: 13535 13536 /* not in MF mode, vnics_per_port=1 and multi_vnics_mode=FALSE */ 13537 return (0); 13538 13539 case SHARED_FEAT_CFG_FORCE_SF_MODE_AFEX_MODE: 13540 13541 /* 13542 * Mark MF mode as NIV if MCP version includes NPAR-SD support 13543 * and the MAC address is valid. 13544 */ 13545 mac_upper = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].mac_upper); 13546 13547 if ((SHMEM2_HAS(sc, afex_driver_support)) && 13548 (mac_upper != FUNC_MF_CFG_UPPERMAC_DEFAULT)) { 13549 mf_info->mf_mode = MULTI_FUNCTION_AFEX; 13550 } else { 13551 BLOGE(sc, "Invalid config for AFEX mode\n"); 13552 } 13553 13554 break; 13555 13556 default: 13557 13558 BLOGE(sc, "Unknown MF mode (0x%08x)\n", 13559 (val & SHARED_FEAT_CFG_FORCE_SF_MODE_MASK)); 13560 13561 return (1); 13562 } 13563 13564 /* set path mf_mode (which could be different than function mf_mode) */ 13565 if (mf_info->mf_mode == MULTI_FUNCTION_SD) { 13566 mf_info->path_has_ovlan = TRUE; 13567 } else if (mf_info->mf_mode == SINGLE_FUNCTION) { 13568 /* 13569 * Decide on path multi vnics mode. If we're not in MF mode and in 13570 * 4-port mode, this is good enough to check vnic-0 of the other port 13571 * on the same path 13572 */ 13573 if (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) { 13574 uint8_t other_port = !(PORT_ID(sc) & 1); 13575 uint8_t abs_func_other_port = (SC_PATH(sc) + (2 * other_port)); 13576 13577 val = MFCFG_RD(sc, func_mf_config[abs_func_other_port].e1hov_tag); 13578 13579 mf_info->path_has_ovlan = VALID_OVLAN((uint16_t)val) ? 1 : 0; 13580 } 13581 } 13582 13583 if (mf_info->mf_mode == SINGLE_FUNCTION) { 13584 /* invalid MF config */ 13585 if (SC_VN(sc) >= 1) { 13586 BLOGE(sc, "VNIC ID >= 1 in SF mode\n"); 13587 return (1); 13588 } 13589 13590 return (0); 13591 } 13592 13593 /* get the MF configuration */ 13594 mf_info->mf_config[SC_VN(sc)] = 13595 MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].config); 13596 13597 switch(mf_info->mf_mode) 13598 { 13599 case MULTI_FUNCTION_SD: 13600 13601 bxe_get_shmem_mf_cfg_info_sd(sc); 13602 break; 13603 13604 case MULTI_FUNCTION_SI: 13605 13606 bxe_get_shmem_mf_cfg_info_si(sc); 13607 break; 13608 13609 case MULTI_FUNCTION_AFEX: 13610 13611 bxe_get_shmem_mf_cfg_info_niv(sc); 13612 break; 13613 13614 default: 13615 13616 BLOGE(sc, "Get MF config failed (mf_mode=0x%08x)\n", 13617 mf_info->mf_mode); 13618 return (1); 13619 } 13620 13621 /* get the congestion management parameters */ 13622 13623 vnic = 0; 13624 FOREACH_ABS_FUNC_IN_PORT(sc, i) { 13625 /* get min/max bw */ 13626 val = MFCFG_RD(sc, func_mf_config[i].config); 13627 mf_info->min_bw[vnic] = 13628 ((val & FUNC_MF_CFG_MIN_BW_MASK) >> FUNC_MF_CFG_MIN_BW_SHIFT); 13629 mf_info->max_bw[vnic] = 13630 ((val & FUNC_MF_CFG_MAX_BW_MASK) >> FUNC_MF_CFG_MAX_BW_SHIFT); 13631 vnic++; 13632 } 13633 13634 return (bxe_check_valid_mf_cfg(sc)); 13635 } 13636 13637 static int 13638 bxe_get_shmem_info(struct bxe_softc *sc) 13639 { 13640 int port; 13641 uint32_t mac_hi, mac_lo, val; 13642 13643 port = SC_PORT(sc); 13644 mac_hi = mac_lo = 0; 13645 13646 sc->link_params.sc = sc; 13647 sc->link_params.port = port; 13648 13649 /* get the hardware config info */ 13650 sc->devinfo.hw_config = 13651 SHMEM_RD(sc, dev_info.shared_hw_config.config); 13652 sc->devinfo.hw_config2 = 13653 SHMEM_RD(sc, dev_info.shared_hw_config.config2); 13654 13655 sc->link_params.hw_led_mode = 13656 ((sc->devinfo.hw_config & SHARED_HW_CFG_LED_MODE_MASK) >> 13657 SHARED_HW_CFG_LED_MODE_SHIFT); 13658 13659 /* get the port feature config */ 13660 sc->port.config = 13661 SHMEM_RD(sc, dev_info.port_feature_config[port].config); 13662 13663 /* get the link params */ 13664 sc->link_params.speed_cap_mask[0] = 13665 SHMEM_RD(sc, dev_info.port_hw_config[port].speed_capability_mask); 13666 sc->link_params.speed_cap_mask[1] = 13667 SHMEM_RD(sc, dev_info.port_hw_config[port].speed_capability_mask2); 13668 13669 /* get the lane config */ 13670 sc->link_params.lane_config = 13671 SHMEM_RD(sc, dev_info.port_hw_config[port].lane_config); 13672 13673 /* get the link config */ 13674 val = SHMEM_RD(sc, dev_info.port_feature_config[port].link_config); 13675 sc->port.link_config[ELINK_INT_PHY] = val; 13676 sc->link_params.switch_cfg = (val & PORT_FEATURE_CONNECTED_SWITCH_MASK); 13677 sc->port.link_config[ELINK_EXT_PHY1] = 13678 SHMEM_RD(sc, dev_info.port_feature_config[port].link_config2); 13679 13680 /* get the override preemphasis flag and enable it or turn it off */ 13681 val = SHMEM_RD(sc, dev_info.shared_feature_config.config); 13682 if (val & SHARED_FEAT_CFG_OVERRIDE_PREEMPHASIS_CFG_ENABLED) { 13683 sc->link_params.feature_config_flags |= 13684 ELINK_FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED; 13685 } else { 13686 sc->link_params.feature_config_flags &= 13687 ~ELINK_FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED; 13688 } 13689 13690 /* get the initial value of the link params */ 13691 sc->link_params.multi_phy_config = 13692 SHMEM_RD(sc, dev_info.port_hw_config[port].multi_phy_config); 13693 13694 /* get external phy info */ 13695 sc->port.ext_phy_config = 13696 SHMEM_RD(sc, dev_info.port_hw_config[port].external_phy_config); 13697 13698 /* get the multifunction configuration */ 13699 bxe_get_mf_cfg_info(sc); 13700 13701 /* get the mac address */ 13702 if (IS_MF(sc)) { 13703 mac_hi = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].mac_upper); 13704 mac_lo = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].mac_lower); 13705 } else { 13706 mac_hi = SHMEM_RD(sc, dev_info.port_hw_config[port].mac_upper); 13707 mac_lo = SHMEM_RD(sc, dev_info.port_hw_config[port].mac_lower); 13708 } 13709 13710 if ((mac_lo == 0) && (mac_hi == 0)) { 13711 *sc->mac_addr_str = 0; 13712 BLOGE(sc, "No Ethernet address programmed!\n"); 13713 } else { 13714 sc->link_params.mac_addr[0] = (uint8_t)(mac_hi >> 8); 13715 sc->link_params.mac_addr[1] = (uint8_t)(mac_hi); 13716 sc->link_params.mac_addr[2] = (uint8_t)(mac_lo >> 24); 13717 sc->link_params.mac_addr[3] = (uint8_t)(mac_lo >> 16); 13718 sc->link_params.mac_addr[4] = (uint8_t)(mac_lo >> 8); 13719 sc->link_params.mac_addr[5] = (uint8_t)(mac_lo); 13720 snprintf(sc->mac_addr_str, sizeof(sc->mac_addr_str), 13721 "%02x:%02x:%02x:%02x:%02x:%02x", 13722 sc->link_params.mac_addr[0], sc->link_params.mac_addr[1], 13723 sc->link_params.mac_addr[2], sc->link_params.mac_addr[3], 13724 sc->link_params.mac_addr[4], sc->link_params.mac_addr[5]); 13725 BLOGD(sc, DBG_LOAD, "Ethernet address: %s\n", sc->mac_addr_str); 13726 } 13727 13728 return (0); 13729 } 13730 13731 static void 13732 bxe_get_tunable_params(struct bxe_softc *sc) 13733 { 13734 /* sanity checks */ 13735 13736 if ((bxe_interrupt_mode != INTR_MODE_INTX) && 13737 (bxe_interrupt_mode != INTR_MODE_MSI) && 13738 (bxe_interrupt_mode != INTR_MODE_MSIX)) { 13739 BLOGW(sc, "invalid interrupt_mode value (%d)\n", bxe_interrupt_mode); 13740 bxe_interrupt_mode = INTR_MODE_MSIX; 13741 } 13742 13743 if ((bxe_queue_count < 0) || (bxe_queue_count > MAX_RSS_CHAINS)) { 13744 BLOGW(sc, "invalid queue_count value (%d)\n", bxe_queue_count); 13745 bxe_queue_count = 0; 13746 } 13747 13748 if ((bxe_max_rx_bufs < 1) || (bxe_max_rx_bufs > RX_BD_USABLE)) { 13749 if (bxe_max_rx_bufs == 0) { 13750 bxe_max_rx_bufs = RX_BD_USABLE; 13751 } else { 13752 BLOGW(sc, "invalid max_rx_bufs (%d)\n", bxe_max_rx_bufs); 13753 bxe_max_rx_bufs = 2048; 13754 } 13755 } 13756 13757 if ((bxe_hc_rx_ticks < 1) || (bxe_hc_rx_ticks > 100)) { 13758 BLOGW(sc, "invalid hc_rx_ticks (%d)\n", bxe_hc_rx_ticks); 13759 bxe_hc_rx_ticks = 25; 13760 } 13761 13762 if ((bxe_hc_tx_ticks < 1) || (bxe_hc_tx_ticks > 100)) { 13763 BLOGW(sc, "invalid hc_tx_ticks (%d)\n", bxe_hc_tx_ticks); 13764 bxe_hc_tx_ticks = 50; 13765 } 13766 13767 if (bxe_max_aggregation_size == 0) { 13768 bxe_max_aggregation_size = TPA_AGG_SIZE; 13769 } 13770 13771 if (bxe_max_aggregation_size > 0xffff) { 13772 BLOGW(sc, "invalid max_aggregation_size (%d)\n", 13773 bxe_max_aggregation_size); 13774 bxe_max_aggregation_size = TPA_AGG_SIZE; 13775 } 13776 13777 if ((bxe_mrrs < -1) || (bxe_mrrs > 3)) { 13778 BLOGW(sc, "invalid mrrs (%d)\n", bxe_mrrs); 13779 bxe_mrrs = -1; 13780 } 13781 13782 if ((bxe_autogreeen < 0) || (bxe_autogreeen > 2)) { 13783 BLOGW(sc, "invalid autogreeen (%d)\n", bxe_autogreeen); 13784 bxe_autogreeen = 0; 13785 } 13786 13787 if ((bxe_udp_rss < 0) || (bxe_udp_rss > 1)) { 13788 BLOGW(sc, "invalid udp_rss (%d)\n", bxe_udp_rss); 13789 bxe_udp_rss = 0; 13790 } 13791 13792 /* pull in user settings */ 13793 13794 sc->interrupt_mode = bxe_interrupt_mode; 13795 sc->max_rx_bufs = bxe_max_rx_bufs; 13796 sc->hc_rx_ticks = bxe_hc_rx_ticks; 13797 sc->hc_tx_ticks = bxe_hc_tx_ticks; 13798 sc->max_aggregation_size = bxe_max_aggregation_size; 13799 sc->mrrs = bxe_mrrs; 13800 sc->autogreeen = bxe_autogreeen; 13801 sc->udp_rss = bxe_udp_rss; 13802 13803 if (bxe_interrupt_mode == INTR_MODE_INTX) { 13804 sc->num_queues = 1; 13805 } else { /* INTR_MODE_MSI or INTR_MODE_MSIX */ 13806 sc->num_queues = 13807 min((bxe_queue_count ? bxe_queue_count : mp_ncpus), 13808 MAX_RSS_CHAINS); 13809 if (sc->num_queues > mp_ncpus) { 13810 sc->num_queues = mp_ncpus; 13811 } 13812 } 13813 13814 BLOGD(sc, DBG_LOAD, 13815 "User Config: " 13816 "debug=0x%lx " 13817 "interrupt_mode=%d " 13818 "queue_count=%d " 13819 "hc_rx_ticks=%d " 13820 "hc_tx_ticks=%d " 13821 "rx_budget=%d " 13822 "max_aggregation_size=%d " 13823 "mrrs=%d " 13824 "autogreeen=%d " 13825 "udp_rss=%d\n", 13826 bxe_debug, 13827 sc->interrupt_mode, 13828 sc->num_queues, 13829 sc->hc_rx_ticks, 13830 sc->hc_tx_ticks, 13831 bxe_rx_budget, 13832 sc->max_aggregation_size, 13833 sc->mrrs, 13834 sc->autogreeen, 13835 sc->udp_rss); 13836 } 13837 13838 static int 13839 bxe_media_detect(struct bxe_softc *sc) 13840 { 13841 int port_type; 13842 uint32_t phy_idx = bxe_get_cur_phy_idx(sc); 13843 13844 switch (sc->link_params.phy[phy_idx].media_type) { 13845 case ELINK_ETH_PHY_SFPP_10G_FIBER: 13846 case ELINK_ETH_PHY_XFP_FIBER: 13847 BLOGI(sc, "Found 10Gb Fiber media.\n"); 13848 sc->media = IFM_10G_SR; 13849 port_type = PORT_FIBRE; 13850 break; 13851 case ELINK_ETH_PHY_SFP_1G_FIBER: 13852 BLOGI(sc, "Found 1Gb Fiber media.\n"); 13853 sc->media = IFM_1000_SX; 13854 port_type = PORT_FIBRE; 13855 break; 13856 case ELINK_ETH_PHY_KR: 13857 case ELINK_ETH_PHY_CX4: 13858 BLOGI(sc, "Found 10GBase-CX4 media.\n"); 13859 sc->media = IFM_10G_CX4; 13860 port_type = PORT_FIBRE; 13861 break; 13862 case ELINK_ETH_PHY_DA_TWINAX: 13863 BLOGI(sc, "Found 10Gb Twinax media.\n"); 13864 sc->media = IFM_10G_TWINAX; 13865 port_type = PORT_DA; 13866 break; 13867 case ELINK_ETH_PHY_BASE_T: 13868 if (sc->link_params.speed_cap_mask[0] & 13869 PORT_HW_CFG_SPEED_CAPABILITY_D0_10G) { 13870 BLOGI(sc, "Found 10GBase-T media.\n"); 13871 sc->media = IFM_10G_T; 13872 port_type = PORT_TP; 13873 } else { 13874 BLOGI(sc, "Found 1000Base-T media.\n"); 13875 sc->media = IFM_1000_T; 13876 port_type = PORT_TP; 13877 } 13878 break; 13879 case ELINK_ETH_PHY_NOT_PRESENT: 13880 BLOGI(sc, "Media not present.\n"); 13881 sc->media = 0; 13882 port_type = PORT_OTHER; 13883 break; 13884 case ELINK_ETH_PHY_UNSPECIFIED: 13885 default: 13886 BLOGI(sc, "Unknown media!\n"); 13887 sc->media = 0; 13888 port_type = PORT_OTHER; 13889 break; 13890 } 13891 return port_type; 13892 } 13893 13894 #define GET_FIELD(value, fname) \ 13895 (((value) & (fname##_MASK)) >> (fname##_SHIFT)) 13896 #define IGU_FID(val) GET_FIELD((val), IGU_REG_MAPPING_MEMORY_FID) 13897 #define IGU_VEC(val) GET_FIELD((val), IGU_REG_MAPPING_MEMORY_VECTOR) 13898 13899 static int 13900 bxe_get_igu_cam_info(struct bxe_softc *sc) 13901 { 13902 int pfid = SC_FUNC(sc); 13903 int igu_sb_id; 13904 uint32_t val; 13905 uint8_t fid, igu_sb_cnt = 0; 13906 13907 sc->igu_base_sb = 0xff; 13908 13909 if (CHIP_INT_MODE_IS_BC(sc)) { 13910 int vn = SC_VN(sc); 13911 igu_sb_cnt = sc->igu_sb_cnt; 13912 sc->igu_base_sb = ((CHIP_IS_MODE_4_PORT(sc) ? pfid : vn) * 13913 FP_SB_MAX_E1x); 13914 sc->igu_dsb_id = (E1HVN_MAX * FP_SB_MAX_E1x + 13915 (CHIP_IS_MODE_4_PORT(sc) ? pfid : vn)); 13916 return (0); 13917 } 13918 13919 /* IGU in normal mode - read CAM */ 13920 for (igu_sb_id = 0; 13921 igu_sb_id < IGU_REG_MAPPING_MEMORY_SIZE; 13922 igu_sb_id++) { 13923 val = REG_RD(sc, IGU_REG_MAPPING_MEMORY + igu_sb_id * 4); 13924 if (!(val & IGU_REG_MAPPING_MEMORY_VALID)) { 13925 continue; 13926 } 13927 fid = IGU_FID(val); 13928 if ((fid & IGU_FID_ENCODE_IS_PF)) { 13929 if ((fid & IGU_FID_PF_NUM_MASK) != pfid) { 13930 continue; 13931 } 13932 if (IGU_VEC(val) == 0) { 13933 /* default status block */ 13934 sc->igu_dsb_id = igu_sb_id; 13935 } else { 13936 if (sc->igu_base_sb == 0xff) { 13937 sc->igu_base_sb = igu_sb_id; 13938 } 13939 igu_sb_cnt++; 13940 } 13941 } 13942 } 13943 13944 /* 13945 * Due to new PF resource allocation by MFW T7.4 and above, it's optional 13946 * that number of CAM entries will not be equal to the value advertised in 13947 * PCI. Driver should use the minimal value of both as the actual status 13948 * block count 13949 */ 13950 sc->igu_sb_cnt = min(sc->igu_sb_cnt, igu_sb_cnt); 13951 13952 if (igu_sb_cnt == 0) { 13953 BLOGE(sc, "CAM configuration error\n"); 13954 return (-1); 13955 } 13956 13957 return (0); 13958 } 13959 13960 /* 13961 * Gather various information from the device config space, the device itself, 13962 * shmem, and the user input. 13963 */ 13964 static int 13965 bxe_get_device_info(struct bxe_softc *sc) 13966 { 13967 uint32_t val; 13968 int rc; 13969 13970 /* Get the data for the device */ 13971 sc->devinfo.vendor_id = pci_get_vendor(sc->dev); 13972 sc->devinfo.device_id = pci_get_device(sc->dev); 13973 sc->devinfo.subvendor_id = pci_get_subvendor(sc->dev); 13974 sc->devinfo.subdevice_id = pci_get_subdevice(sc->dev); 13975 13976 /* get the chip revision (chip metal comes from pci config space) */ 13977 sc->devinfo.chip_id = 13978 sc->link_params.chip_id = 13979 (((REG_RD(sc, MISC_REG_CHIP_NUM) & 0xffff) << 16) | 13980 ((REG_RD(sc, MISC_REG_CHIP_REV) & 0xf) << 12) | 13981 (((REG_RD(sc, PCICFG_OFFSET + PCI_ID_VAL3) >> 24) & 0xf) << 4) | 13982 ((REG_RD(sc, MISC_REG_BOND_ID) & 0xf) << 0)); 13983 13984 /* force 57811 according to MISC register */ 13985 if (REG_RD(sc, MISC_REG_CHIP_TYPE) & MISC_REG_CHIP_TYPE_57811_MASK) { 13986 if (CHIP_IS_57810(sc)) { 13987 sc->devinfo.chip_id = ((CHIP_NUM_57811 << 16) | 13988 (sc->devinfo.chip_id & 0x0000ffff)); 13989 } else if (CHIP_IS_57810_MF(sc)) { 13990 sc->devinfo.chip_id = ((CHIP_NUM_57811_MF << 16) | 13991 (sc->devinfo.chip_id & 0x0000ffff)); 13992 } 13993 sc->devinfo.chip_id |= 0x1; 13994 } 13995 13996 BLOGD(sc, DBG_LOAD, 13997 "chip_id=0x%08x (num=0x%04x rev=0x%01x metal=0x%02x bond=0x%01x)\n", 13998 sc->devinfo.chip_id, 13999 ((sc->devinfo.chip_id >> 16) & 0xffff), 14000 ((sc->devinfo.chip_id >> 12) & 0xf), 14001 ((sc->devinfo.chip_id >> 4) & 0xff), 14002 ((sc->devinfo.chip_id >> 0) & 0xf)); 14003 14004 val = (REG_RD(sc, 0x2874) & 0x55); 14005 if ((sc->devinfo.chip_id & 0x1) || 14006 (CHIP_IS_E1(sc) && val) || 14007 (CHIP_IS_E1H(sc) && (val == 0x55))) { 14008 sc->flags |= BXE_ONE_PORT_FLAG; 14009 BLOGD(sc, DBG_LOAD, "single port device\n"); 14010 } 14011 14012 /* set the doorbell size */ 14013 sc->doorbell_size = (1 << BXE_DB_SHIFT); 14014 14015 /* determine whether the device is in 2 port or 4 port mode */ 14016 sc->devinfo.chip_port_mode = CHIP_PORT_MODE_NONE; /* E1 & E1h*/ 14017 if (CHIP_IS_E2E3(sc)) { 14018 /* 14019 * Read port4mode_en_ovwr[0]: 14020 * If 1, four port mode is in port4mode_en_ovwr[1]. 14021 * If 0, four port mode is in port4mode_en[0]. 14022 */ 14023 val = REG_RD(sc, MISC_REG_PORT4MODE_EN_OVWR); 14024 if (val & 1) { 14025 val = ((val >> 1) & 1); 14026 } else { 14027 val = REG_RD(sc, MISC_REG_PORT4MODE_EN); 14028 } 14029 14030 sc->devinfo.chip_port_mode = 14031 (val) ? CHIP_4_PORT_MODE : CHIP_2_PORT_MODE; 14032 14033 BLOGD(sc, DBG_LOAD, "Port mode = %s\n", (val) ? "4" : "2"); 14034 } 14035 14036 /* get the function and path info for the device */ 14037 bxe_get_function_num(sc); 14038 14039 /* get the shared memory base address */ 14040 sc->devinfo.shmem_base = 14041 sc->link_params.shmem_base = 14042 REG_RD(sc, MISC_REG_SHARED_MEM_ADDR); 14043 sc->devinfo.shmem2_base = 14044 REG_RD(sc, (SC_PATH(sc) ? MISC_REG_GENERIC_CR_1 : 14045 MISC_REG_GENERIC_CR_0)); 14046 14047 BLOGD(sc, DBG_LOAD, "shmem_base=0x%08x, shmem2_base=0x%08x\n", 14048 sc->devinfo.shmem_base, sc->devinfo.shmem2_base); 14049 14050 if (!sc->devinfo.shmem_base) { 14051 /* this should ONLY prevent upcoming shmem reads */ 14052 BLOGI(sc, "MCP not active\n"); 14053 sc->flags |= BXE_NO_MCP_FLAG; 14054 return (0); 14055 } 14056 14057 /* make sure the shared memory contents are valid */ 14058 val = SHMEM_RD(sc, validity_map[SC_PORT(sc)]); 14059 if ((val & (SHR_MEM_VALIDITY_DEV_INFO | SHR_MEM_VALIDITY_MB)) != 14060 (SHR_MEM_VALIDITY_DEV_INFO | SHR_MEM_VALIDITY_MB)) { 14061 BLOGE(sc, "Invalid SHMEM validity signature: 0x%08x\n", val); 14062 return (0); 14063 } 14064 BLOGD(sc, DBG_LOAD, "Valid SHMEM validity signature: 0x%08x\n", val); 14065 14066 /* get the bootcode version */ 14067 sc->devinfo.bc_ver = SHMEM_RD(sc, dev_info.bc_rev); 14068 snprintf(sc->devinfo.bc_ver_str, 14069 sizeof(sc->devinfo.bc_ver_str), 14070 "%d.%d.%d", 14071 ((sc->devinfo.bc_ver >> 24) & 0xff), 14072 ((sc->devinfo.bc_ver >> 16) & 0xff), 14073 ((sc->devinfo.bc_ver >> 8) & 0xff)); 14074 BLOGD(sc, DBG_LOAD, "Bootcode version: %s\n", sc->devinfo.bc_ver_str); 14075 14076 /* get the bootcode shmem address */ 14077 sc->devinfo.mf_cfg_base = bxe_get_shmem_mf_cfg_base(sc); 14078 BLOGD(sc, DBG_LOAD, "mf_cfg_base=0x08%x \n", sc->devinfo.mf_cfg_base); 14079 14080 /* clean indirect addresses as they're not used */ 14081 pci_write_config(sc->dev, PCICFG_GRC_ADDRESS, 0, 4); 14082 if (IS_PF(sc)) { 14083 REG_WR(sc, PXP2_REG_PGL_ADDR_88_F0, 0); 14084 REG_WR(sc, PXP2_REG_PGL_ADDR_8C_F0, 0); 14085 REG_WR(sc, PXP2_REG_PGL_ADDR_90_F0, 0); 14086 REG_WR(sc, PXP2_REG_PGL_ADDR_94_F0, 0); 14087 if (CHIP_IS_E1x(sc)) { 14088 REG_WR(sc, PXP2_REG_PGL_ADDR_88_F1, 0); 14089 REG_WR(sc, PXP2_REG_PGL_ADDR_8C_F1, 0); 14090 REG_WR(sc, PXP2_REG_PGL_ADDR_90_F1, 0); 14091 REG_WR(sc, PXP2_REG_PGL_ADDR_94_F1, 0); 14092 } 14093 14094 /* 14095 * Enable internal target-read (in case we are probed after PF 14096 * FLR). Must be done prior to any BAR read access. Only for 14097 * 57712 and up 14098 */ 14099 if (!CHIP_IS_E1x(sc)) { 14100 REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1); 14101 } 14102 } 14103 14104 /* get the nvram size */ 14105 val = REG_RD(sc, MCP_REG_MCPR_NVM_CFG4); 14106 sc->devinfo.flash_size = 14107 (NVRAM_1MB_SIZE << (val & MCPR_NVM_CFG4_FLASH_SIZE)); 14108 BLOGD(sc, DBG_LOAD, "nvram flash size: %d\n", sc->devinfo.flash_size); 14109 14110 /* get PCI capabilites */ 14111 bxe_probe_pci_caps(sc); 14112 14113 bxe_set_power_state(sc, PCI_PM_D0); 14114 14115 /* get various configuration parameters from shmem */ 14116 bxe_get_shmem_info(sc); 14117 14118 if (sc->devinfo.pcie_msix_cap_reg != 0) { 14119 val = pci_read_config(sc->dev, 14120 (sc->devinfo.pcie_msix_cap_reg + 14121 PCIR_MSIX_CTRL), 14122 2); 14123 sc->igu_sb_cnt = (val & PCIM_MSIXCTRL_TABLE_SIZE); 14124 } else { 14125 sc->igu_sb_cnt = 1; 14126 } 14127 14128 sc->igu_base_addr = BAR_IGU_INTMEM; 14129 14130 /* initialize IGU parameters */ 14131 if (CHIP_IS_E1x(sc)) { 14132 sc->devinfo.int_block = INT_BLOCK_HC; 14133 sc->igu_dsb_id = DEF_SB_IGU_ID; 14134 sc->igu_base_sb = 0; 14135 } else { 14136 sc->devinfo.int_block = INT_BLOCK_IGU; 14137 14138 /* do not allow device reset during IGU info preocessing */ 14139 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RESET); 14140 14141 val = REG_RD(sc, IGU_REG_BLOCK_CONFIGURATION); 14142 14143 if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) { 14144 int tout = 5000; 14145 14146 BLOGD(sc, DBG_LOAD, "FORCING IGU Normal Mode\n"); 14147 14148 val &= ~(IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN); 14149 REG_WR(sc, IGU_REG_BLOCK_CONFIGURATION, val); 14150 REG_WR(sc, IGU_REG_RESET_MEMORIES, 0x7f); 14151 14152 while (tout && REG_RD(sc, IGU_REG_RESET_MEMORIES)) { 14153 tout--; 14154 DELAY(1000); 14155 } 14156 14157 if (REG_RD(sc, IGU_REG_RESET_MEMORIES)) { 14158 BLOGD(sc, DBG_LOAD, "FORCING IGU Normal Mode failed!!!\n"); 14159 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RESET); 14160 return (-1); 14161 } 14162 } 14163 14164 if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) { 14165 BLOGD(sc, DBG_LOAD, "IGU Backward Compatible Mode\n"); 14166 sc->devinfo.int_block |= INT_BLOCK_MODE_BW_COMP; 14167 } else { 14168 BLOGD(sc, DBG_LOAD, "IGU Normal Mode\n"); 14169 } 14170 14171 rc = bxe_get_igu_cam_info(sc); 14172 14173 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RESET); 14174 14175 if (rc) { 14176 return (rc); 14177 } 14178 } 14179 14180 /* 14181 * Get base FW non-default (fast path) status block ID. This value is 14182 * used to initialize the fw_sb_id saved on the fp/queue structure to 14183 * determine the id used by the FW. 14184 */ 14185 if (CHIP_IS_E1x(sc)) { 14186 sc->base_fw_ndsb = ((SC_PORT(sc) * FP_SB_MAX_E1x) + SC_L_ID(sc)); 14187 } else { 14188 /* 14189 * 57712+ - We currently use one FW SB per IGU SB (Rx and Tx of 14190 * the same queue are indicated on the same IGU SB). So we prefer 14191 * FW and IGU SBs to be the same value. 14192 */ 14193 sc->base_fw_ndsb = sc->igu_base_sb; 14194 } 14195 14196 BLOGD(sc, DBG_LOAD, 14197 "igu_dsb_id=%d igu_base_sb=%d igu_sb_cnt=%d base_fw_ndsb=%d\n", 14198 sc->igu_dsb_id, sc->igu_base_sb, 14199 sc->igu_sb_cnt, sc->base_fw_ndsb); 14200 14201 elink_phy_probe(&sc->link_params); 14202 14203 return (0); 14204 } 14205 14206 static void 14207 bxe_link_settings_supported(struct bxe_softc *sc, 14208 uint32_t switch_cfg) 14209 { 14210 uint32_t cfg_size = 0; 14211 uint32_t idx; 14212 uint8_t port = SC_PORT(sc); 14213 14214 /* aggregation of supported attributes of all external phys */ 14215 sc->port.supported[0] = 0; 14216 sc->port.supported[1] = 0; 14217 14218 switch (sc->link_params.num_phys) { 14219 case 1: 14220 sc->port.supported[0] = sc->link_params.phy[ELINK_INT_PHY].supported; 14221 cfg_size = 1; 14222 break; 14223 case 2: 14224 sc->port.supported[0] = sc->link_params.phy[ELINK_EXT_PHY1].supported; 14225 cfg_size = 1; 14226 break; 14227 case 3: 14228 if (sc->link_params.multi_phy_config & 14229 PORT_HW_CFG_PHY_SWAPPED_ENABLED) { 14230 sc->port.supported[1] = 14231 sc->link_params.phy[ELINK_EXT_PHY1].supported; 14232 sc->port.supported[0] = 14233 sc->link_params.phy[ELINK_EXT_PHY2].supported; 14234 } else { 14235 sc->port.supported[0] = 14236 sc->link_params.phy[ELINK_EXT_PHY1].supported; 14237 sc->port.supported[1] = 14238 sc->link_params.phy[ELINK_EXT_PHY2].supported; 14239 } 14240 cfg_size = 2; 14241 break; 14242 } 14243 14244 if (!(sc->port.supported[0] || sc->port.supported[1])) { 14245 BLOGE(sc, "Invalid phy config in NVRAM (PHY1=0x%08x PHY2=0x%08x)\n", 14246 SHMEM_RD(sc, 14247 dev_info.port_hw_config[port].external_phy_config), 14248 SHMEM_RD(sc, 14249 dev_info.port_hw_config[port].external_phy_config2)); 14250 return; 14251 } 14252 14253 if (CHIP_IS_E3(sc)) 14254 sc->port.phy_addr = REG_RD(sc, MISC_REG_WC0_CTRL_PHY_ADDR); 14255 else { 14256 switch (switch_cfg) { 14257 case ELINK_SWITCH_CFG_1G: 14258 sc->port.phy_addr = 14259 REG_RD(sc, NIG_REG_SERDES0_CTRL_PHY_ADDR + port*0x10); 14260 break; 14261 case ELINK_SWITCH_CFG_10G: 14262 sc->port.phy_addr = 14263 REG_RD(sc, NIG_REG_XGXS0_CTRL_PHY_ADDR + port*0x18); 14264 break; 14265 default: 14266 BLOGE(sc, "Invalid switch config in link_config=0x%08x\n", 14267 sc->port.link_config[0]); 14268 return; 14269 } 14270 } 14271 14272 BLOGD(sc, DBG_LOAD, "PHY addr 0x%08x\n", sc->port.phy_addr); 14273 14274 /* mask what we support according to speed_cap_mask per configuration */ 14275 for (idx = 0; idx < cfg_size; idx++) { 14276 if (!(sc->link_params.speed_cap_mask[idx] & 14277 PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_HALF)) { 14278 sc->port.supported[idx] &= ~ELINK_SUPPORTED_10baseT_Half; 14279 } 14280 14281 if (!(sc->link_params.speed_cap_mask[idx] & 14282 PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_FULL)) { 14283 sc->port.supported[idx] &= ~ELINK_SUPPORTED_10baseT_Full; 14284 } 14285 14286 if (!(sc->link_params.speed_cap_mask[idx] & 14287 PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_HALF)) { 14288 sc->port.supported[idx] &= ~ELINK_SUPPORTED_100baseT_Half; 14289 } 14290 14291 if (!(sc->link_params.speed_cap_mask[idx] & 14292 PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_FULL)) { 14293 sc->port.supported[idx] &= ~ELINK_SUPPORTED_100baseT_Full; 14294 } 14295 14296 if (!(sc->link_params.speed_cap_mask[idx] & 14297 PORT_HW_CFG_SPEED_CAPABILITY_D0_1G)) { 14298 sc->port.supported[idx] &= ~ELINK_SUPPORTED_1000baseT_Full; 14299 } 14300 14301 if (!(sc->link_params.speed_cap_mask[idx] & 14302 PORT_HW_CFG_SPEED_CAPABILITY_D0_2_5G)) { 14303 sc->port.supported[idx] &= ~ELINK_SUPPORTED_2500baseX_Full; 14304 } 14305 14306 if (!(sc->link_params.speed_cap_mask[idx] & 14307 PORT_HW_CFG_SPEED_CAPABILITY_D0_10G)) { 14308 sc->port.supported[idx] &= ~ELINK_SUPPORTED_10000baseT_Full; 14309 } 14310 14311 if (!(sc->link_params.speed_cap_mask[idx] & 14312 PORT_HW_CFG_SPEED_CAPABILITY_D0_20G)) { 14313 sc->port.supported[idx] &= ~ELINK_SUPPORTED_20000baseKR2_Full; 14314 } 14315 } 14316 14317 BLOGD(sc, DBG_LOAD, "PHY supported 0=0x%08x 1=0x%08x\n", 14318 sc->port.supported[0], sc->port.supported[1]); 14319 ELINK_DEBUG_P2(sc, "PHY supported 0=0x%08x 1=0x%08x\n", 14320 sc->port.supported[0], sc->port.supported[1]); 14321 } 14322 14323 static void 14324 bxe_link_settings_requested(struct bxe_softc *sc) 14325 { 14326 uint32_t link_config; 14327 uint32_t idx; 14328 uint32_t cfg_size = 0; 14329 14330 sc->port.advertising[0] = 0; 14331 sc->port.advertising[1] = 0; 14332 14333 switch (sc->link_params.num_phys) { 14334 case 1: 14335 case 2: 14336 cfg_size = 1; 14337 break; 14338 case 3: 14339 cfg_size = 2; 14340 break; 14341 } 14342 14343 for (idx = 0; idx < cfg_size; idx++) { 14344 sc->link_params.req_duplex[idx] = DUPLEX_FULL; 14345 link_config = sc->port.link_config[idx]; 14346 14347 switch (link_config & PORT_FEATURE_LINK_SPEED_MASK) { 14348 case PORT_FEATURE_LINK_SPEED_AUTO: 14349 if (sc->port.supported[idx] & ELINK_SUPPORTED_Autoneg) { 14350 sc->link_params.req_line_speed[idx] = ELINK_SPEED_AUTO_NEG; 14351 sc->port.advertising[idx] |= sc->port.supported[idx]; 14352 if (sc->link_params.phy[ELINK_EXT_PHY1].type == 14353 PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM84833) 14354 sc->port.advertising[idx] |= 14355 (ELINK_SUPPORTED_100baseT_Half | 14356 ELINK_SUPPORTED_100baseT_Full); 14357 } else { 14358 /* force 10G, no AN */ 14359 sc->link_params.req_line_speed[idx] = ELINK_SPEED_10000; 14360 sc->port.advertising[idx] |= 14361 (ADVERTISED_10000baseT_Full | ADVERTISED_FIBRE); 14362 continue; 14363 } 14364 break; 14365 14366 case PORT_FEATURE_LINK_SPEED_10M_FULL: 14367 if (sc->port.supported[idx] & ELINK_SUPPORTED_10baseT_Full) { 14368 sc->link_params.req_line_speed[idx] = ELINK_SPEED_10; 14369 sc->port.advertising[idx] |= (ADVERTISED_10baseT_Full | 14370 ADVERTISED_TP); 14371 } else { 14372 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x " 14373 "speed_cap_mask=0x%08x\n", 14374 link_config, sc->link_params.speed_cap_mask[idx]); 14375 return; 14376 } 14377 break; 14378 14379 case PORT_FEATURE_LINK_SPEED_10M_HALF: 14380 if (sc->port.supported[idx] & ELINK_SUPPORTED_10baseT_Half) { 14381 sc->link_params.req_line_speed[idx] = ELINK_SPEED_10; 14382 sc->link_params.req_duplex[idx] = DUPLEX_HALF; 14383 sc->port.advertising[idx] |= (ADVERTISED_10baseT_Half | 14384 ADVERTISED_TP); 14385 ELINK_DEBUG_P1(sc, "driver requesting DUPLEX_HALF req_duplex = %x!\n", 14386 sc->link_params.req_duplex[idx]); 14387 } else { 14388 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x " 14389 "speed_cap_mask=0x%08x\n", 14390 link_config, sc->link_params.speed_cap_mask[idx]); 14391 return; 14392 } 14393 break; 14394 14395 case PORT_FEATURE_LINK_SPEED_100M_FULL: 14396 if (sc->port.supported[idx] & ELINK_SUPPORTED_100baseT_Full) { 14397 sc->link_params.req_line_speed[idx] = ELINK_SPEED_100; 14398 sc->port.advertising[idx] |= (ADVERTISED_100baseT_Full | 14399 ADVERTISED_TP); 14400 } else { 14401 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x " 14402 "speed_cap_mask=0x%08x\n", 14403 link_config, sc->link_params.speed_cap_mask[idx]); 14404 return; 14405 } 14406 break; 14407 14408 case PORT_FEATURE_LINK_SPEED_100M_HALF: 14409 if (sc->port.supported[idx] & ELINK_SUPPORTED_100baseT_Half) { 14410 sc->link_params.req_line_speed[idx] = ELINK_SPEED_100; 14411 sc->link_params.req_duplex[idx] = DUPLEX_HALF; 14412 sc->port.advertising[idx] |= (ADVERTISED_100baseT_Half | 14413 ADVERTISED_TP); 14414 } else { 14415 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x " 14416 "speed_cap_mask=0x%08x\n", 14417 link_config, sc->link_params.speed_cap_mask[idx]); 14418 return; 14419 } 14420 break; 14421 14422 case PORT_FEATURE_LINK_SPEED_1G: 14423 if (sc->port.supported[idx] & ELINK_SUPPORTED_1000baseT_Full) { 14424 sc->link_params.req_line_speed[idx] = ELINK_SPEED_1000; 14425 sc->port.advertising[idx] |= (ADVERTISED_1000baseT_Full | 14426 ADVERTISED_TP); 14427 } else { 14428 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x " 14429 "speed_cap_mask=0x%08x\n", 14430 link_config, sc->link_params.speed_cap_mask[idx]); 14431 return; 14432 } 14433 break; 14434 14435 case PORT_FEATURE_LINK_SPEED_2_5G: 14436 if (sc->port.supported[idx] & ELINK_SUPPORTED_2500baseX_Full) { 14437 sc->link_params.req_line_speed[idx] = ELINK_SPEED_2500; 14438 sc->port.advertising[idx] |= (ADVERTISED_2500baseX_Full | 14439 ADVERTISED_TP); 14440 } else { 14441 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x " 14442 "speed_cap_mask=0x%08x\n", 14443 link_config, sc->link_params.speed_cap_mask[idx]); 14444 return; 14445 } 14446 break; 14447 14448 case PORT_FEATURE_LINK_SPEED_10G_CX4: 14449 if (sc->port.supported[idx] & ELINK_SUPPORTED_10000baseT_Full) { 14450 sc->link_params.req_line_speed[idx] = ELINK_SPEED_10000; 14451 sc->port.advertising[idx] |= (ADVERTISED_10000baseT_Full | 14452 ADVERTISED_FIBRE); 14453 } else { 14454 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x " 14455 "speed_cap_mask=0x%08x\n", 14456 link_config, sc->link_params.speed_cap_mask[idx]); 14457 return; 14458 } 14459 break; 14460 14461 case PORT_FEATURE_LINK_SPEED_20G: 14462 sc->link_params.req_line_speed[idx] = ELINK_SPEED_20000; 14463 break; 14464 14465 default: 14466 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x " 14467 "speed_cap_mask=0x%08x\n", 14468 link_config, sc->link_params.speed_cap_mask[idx]); 14469 sc->link_params.req_line_speed[idx] = ELINK_SPEED_AUTO_NEG; 14470 sc->port.advertising[idx] = sc->port.supported[idx]; 14471 break; 14472 } 14473 14474 sc->link_params.req_flow_ctrl[idx] = 14475 (link_config & PORT_FEATURE_FLOW_CONTROL_MASK); 14476 14477 if (sc->link_params.req_flow_ctrl[idx] == ELINK_FLOW_CTRL_AUTO) { 14478 if (!(sc->port.supported[idx] & ELINK_SUPPORTED_Autoneg)) { 14479 sc->link_params.req_flow_ctrl[idx] = ELINK_FLOW_CTRL_NONE; 14480 } else { 14481 bxe_set_requested_fc(sc); 14482 } 14483 } 14484 14485 BLOGD(sc, DBG_LOAD, "req_line_speed=%d req_duplex=%d " 14486 "req_flow_ctrl=0x%x advertising=0x%x\n", 14487 sc->link_params.req_line_speed[idx], 14488 sc->link_params.req_duplex[idx], 14489 sc->link_params.req_flow_ctrl[idx], 14490 sc->port.advertising[idx]); 14491 ELINK_DEBUG_P3(sc, "req_line_speed=%d req_duplex=%d " 14492 "advertising=0x%x\n", 14493 sc->link_params.req_line_speed[idx], 14494 sc->link_params.req_duplex[idx], 14495 sc->port.advertising[idx]); 14496 } 14497 } 14498 14499 static void 14500 bxe_get_phy_info(struct bxe_softc *sc) 14501 { 14502 uint8_t port = SC_PORT(sc); 14503 uint32_t config = sc->port.config; 14504 uint32_t eee_mode; 14505 14506 /* shmem data already read in bxe_get_shmem_info() */ 14507 14508 ELINK_DEBUG_P3(sc, "lane_config=0x%08x speed_cap_mask0=0x%08x " 14509 "link_config0=0x%08x\n", 14510 sc->link_params.lane_config, 14511 sc->link_params.speed_cap_mask[0], 14512 sc->port.link_config[0]); 14513 14514 14515 bxe_link_settings_supported(sc, sc->link_params.switch_cfg); 14516 bxe_link_settings_requested(sc); 14517 14518 if (sc->autogreeen == AUTO_GREEN_FORCE_ON) { 14519 sc->link_params.feature_config_flags |= 14520 ELINK_FEATURE_CONFIG_AUTOGREEEN_ENABLED; 14521 } else if (sc->autogreeen == AUTO_GREEN_FORCE_OFF) { 14522 sc->link_params.feature_config_flags &= 14523 ~ELINK_FEATURE_CONFIG_AUTOGREEEN_ENABLED; 14524 } else if (config & PORT_FEAT_CFG_AUTOGREEEN_ENABLED) { 14525 sc->link_params.feature_config_flags |= 14526 ELINK_FEATURE_CONFIG_AUTOGREEEN_ENABLED; 14527 } 14528 14529 /* configure link feature according to nvram value */ 14530 eee_mode = 14531 (((SHMEM_RD(sc, dev_info.port_feature_config[port].eee_power_mode)) & 14532 PORT_FEAT_CFG_EEE_POWER_MODE_MASK) >> 14533 PORT_FEAT_CFG_EEE_POWER_MODE_SHIFT); 14534 if (eee_mode != PORT_FEAT_CFG_EEE_POWER_MODE_DISABLED) { 14535 sc->link_params.eee_mode = (ELINK_EEE_MODE_ADV_LPI | 14536 ELINK_EEE_MODE_ENABLE_LPI | 14537 ELINK_EEE_MODE_OUTPUT_TIME); 14538 } else { 14539 sc->link_params.eee_mode = 0; 14540 } 14541 14542 /* get the media type */ 14543 bxe_media_detect(sc); 14544 ELINK_DEBUG_P1(sc, "detected media type\n", sc->media); 14545 } 14546 14547 static void 14548 bxe_get_params(struct bxe_softc *sc) 14549 { 14550 /* get user tunable params */ 14551 bxe_get_tunable_params(sc); 14552 14553 /* select the RX and TX ring sizes */ 14554 sc->tx_ring_size = TX_BD_USABLE; 14555 sc->rx_ring_size = RX_BD_USABLE; 14556 14557 /* XXX disable WoL */ 14558 sc->wol = 0; 14559 } 14560 14561 static void 14562 bxe_set_modes_bitmap(struct bxe_softc *sc) 14563 { 14564 uint32_t flags = 0; 14565 14566 if (CHIP_REV_IS_FPGA(sc)) { 14567 SET_FLAGS(flags, MODE_FPGA); 14568 } else if (CHIP_REV_IS_EMUL(sc)) { 14569 SET_FLAGS(flags, MODE_EMUL); 14570 } else { 14571 SET_FLAGS(flags, MODE_ASIC); 14572 } 14573 14574 if (CHIP_IS_MODE_4_PORT(sc)) { 14575 SET_FLAGS(flags, MODE_PORT4); 14576 } else { 14577 SET_FLAGS(flags, MODE_PORT2); 14578 } 14579 14580 if (CHIP_IS_E2(sc)) { 14581 SET_FLAGS(flags, MODE_E2); 14582 } else if (CHIP_IS_E3(sc)) { 14583 SET_FLAGS(flags, MODE_E3); 14584 if (CHIP_REV(sc) == CHIP_REV_Ax) { 14585 SET_FLAGS(flags, MODE_E3_A0); 14586 } else /*if (CHIP_REV(sc) == CHIP_REV_Bx)*/ { 14587 SET_FLAGS(flags, MODE_E3_B0 | MODE_COS3); 14588 } 14589 } 14590 14591 if (IS_MF(sc)) { 14592 SET_FLAGS(flags, MODE_MF); 14593 switch (sc->devinfo.mf_info.mf_mode) { 14594 case MULTI_FUNCTION_SD: 14595 SET_FLAGS(flags, MODE_MF_SD); 14596 break; 14597 case MULTI_FUNCTION_SI: 14598 SET_FLAGS(flags, MODE_MF_SI); 14599 break; 14600 case MULTI_FUNCTION_AFEX: 14601 SET_FLAGS(flags, MODE_MF_AFEX); 14602 break; 14603 } 14604 } else { 14605 SET_FLAGS(flags, MODE_SF); 14606 } 14607 14608 #if defined(__LITTLE_ENDIAN) 14609 SET_FLAGS(flags, MODE_LITTLE_ENDIAN); 14610 #else /* __BIG_ENDIAN */ 14611 SET_FLAGS(flags, MODE_BIG_ENDIAN); 14612 #endif 14613 14614 INIT_MODE_FLAGS(sc) = flags; 14615 } 14616 14617 static int 14618 bxe_alloc_hsi_mem(struct bxe_softc *sc) 14619 { 14620 struct bxe_fastpath *fp; 14621 bus_addr_t busaddr; 14622 int max_agg_queues; 14623 int max_segments; 14624 bus_size_t max_size; 14625 bus_size_t max_seg_size; 14626 char buf[32]; 14627 int rc; 14628 int i, j; 14629 14630 /* XXX zero out all vars here and call bxe_alloc_hsi_mem on error */ 14631 14632 /* allocate the parent bus DMA tag */ 14633 rc = bus_dma_tag_create(bus_get_dma_tag(sc->dev), /* parent tag */ 14634 1, /* alignment */ 14635 0, /* boundary limit */ 14636 BUS_SPACE_MAXADDR, /* restricted low */ 14637 BUS_SPACE_MAXADDR, /* restricted hi */ 14638 NULL, /* addr filter() */ 14639 NULL, /* addr filter() arg */ 14640 BUS_SPACE_MAXSIZE_32BIT, /* max map size */ 14641 BUS_SPACE_UNRESTRICTED, /* num discontinuous */ 14642 BUS_SPACE_MAXSIZE_32BIT, /* max seg size */ 14643 0, /* flags */ 14644 NULL, /* lock() */ 14645 NULL, /* lock() arg */ 14646 &sc->parent_dma_tag); /* returned dma tag */ 14647 if (rc != 0) { 14648 BLOGE(sc, "Failed to alloc parent DMA tag (%d)!\n", rc); 14649 return (1); 14650 } 14651 14652 /************************/ 14653 /* DEFAULT STATUS BLOCK */ 14654 /************************/ 14655 14656 if (bxe_dma_alloc(sc, sizeof(struct host_sp_status_block), 14657 &sc->def_sb_dma, "default status block") != 0) { 14658 /* XXX */ 14659 bus_dma_tag_destroy(sc->parent_dma_tag); 14660 return (1); 14661 } 14662 14663 sc->def_sb = (struct host_sp_status_block *)sc->def_sb_dma.vaddr; 14664 14665 /***************/ 14666 /* EVENT QUEUE */ 14667 /***************/ 14668 14669 if (bxe_dma_alloc(sc, BCM_PAGE_SIZE, 14670 &sc->eq_dma, "event queue") != 0) { 14671 /* XXX */ 14672 bxe_dma_free(sc, &sc->def_sb_dma); 14673 sc->def_sb = NULL; 14674 bus_dma_tag_destroy(sc->parent_dma_tag); 14675 return (1); 14676 } 14677 14678 sc->eq = (union event_ring_elem * )sc->eq_dma.vaddr; 14679 14680 /*************/ 14681 /* SLOW PATH */ 14682 /*************/ 14683 14684 if (bxe_dma_alloc(sc, sizeof(struct bxe_slowpath), 14685 &sc->sp_dma, "slow path") != 0) { 14686 /* XXX */ 14687 bxe_dma_free(sc, &sc->eq_dma); 14688 sc->eq = NULL; 14689 bxe_dma_free(sc, &sc->def_sb_dma); 14690 sc->def_sb = NULL; 14691 bus_dma_tag_destroy(sc->parent_dma_tag); 14692 return (1); 14693 } 14694 14695 sc->sp = (struct bxe_slowpath *)sc->sp_dma.vaddr; 14696 14697 /*******************/ 14698 /* SLOW PATH QUEUE */ 14699 /*******************/ 14700 14701 if (bxe_dma_alloc(sc, BCM_PAGE_SIZE, 14702 &sc->spq_dma, "slow path queue") != 0) { 14703 /* XXX */ 14704 bxe_dma_free(sc, &sc->sp_dma); 14705 sc->sp = NULL; 14706 bxe_dma_free(sc, &sc->eq_dma); 14707 sc->eq = NULL; 14708 bxe_dma_free(sc, &sc->def_sb_dma); 14709 sc->def_sb = NULL; 14710 bus_dma_tag_destroy(sc->parent_dma_tag); 14711 return (1); 14712 } 14713 14714 sc->spq = (struct eth_spe *)sc->spq_dma.vaddr; 14715 14716 /***************************/ 14717 /* FW DECOMPRESSION BUFFER */ 14718 /***************************/ 14719 14720 if (bxe_dma_alloc(sc, FW_BUF_SIZE, &sc->gz_buf_dma, 14721 "fw decompression buffer") != 0) { 14722 /* XXX */ 14723 bxe_dma_free(sc, &sc->spq_dma); 14724 sc->spq = NULL; 14725 bxe_dma_free(sc, &sc->sp_dma); 14726 sc->sp = NULL; 14727 bxe_dma_free(sc, &sc->eq_dma); 14728 sc->eq = NULL; 14729 bxe_dma_free(sc, &sc->def_sb_dma); 14730 sc->def_sb = NULL; 14731 bus_dma_tag_destroy(sc->parent_dma_tag); 14732 return (1); 14733 } 14734 14735 sc->gz_buf = (void *)sc->gz_buf_dma.vaddr; 14736 14737 if ((sc->gz_strm = 14738 malloc(sizeof(*sc->gz_strm), M_DEVBUF, M_NOWAIT)) == NULL) { 14739 /* XXX */ 14740 bxe_dma_free(sc, &sc->gz_buf_dma); 14741 sc->gz_buf = NULL; 14742 bxe_dma_free(sc, &sc->spq_dma); 14743 sc->spq = NULL; 14744 bxe_dma_free(sc, &sc->sp_dma); 14745 sc->sp = NULL; 14746 bxe_dma_free(sc, &sc->eq_dma); 14747 sc->eq = NULL; 14748 bxe_dma_free(sc, &sc->def_sb_dma); 14749 sc->def_sb = NULL; 14750 bus_dma_tag_destroy(sc->parent_dma_tag); 14751 return (1); 14752 } 14753 14754 /*************/ 14755 /* FASTPATHS */ 14756 /*************/ 14757 14758 /* allocate DMA memory for each fastpath structure */ 14759 for (i = 0; i < sc->num_queues; i++) { 14760 fp = &sc->fp[i]; 14761 fp->sc = sc; 14762 fp->index = i; 14763 14764 /*******************/ 14765 /* FP STATUS BLOCK */ 14766 /*******************/ 14767 14768 snprintf(buf, sizeof(buf), "fp %d status block", i); 14769 if (bxe_dma_alloc(sc, sizeof(union bxe_host_hc_status_block), 14770 &fp->sb_dma, buf) != 0) { 14771 /* XXX unwind and free previous fastpath allocations */ 14772 BLOGE(sc, "Failed to alloc %s\n", buf); 14773 return (1); 14774 } else { 14775 if (CHIP_IS_E2E3(sc)) { 14776 fp->status_block.e2_sb = 14777 (struct host_hc_status_block_e2 *)fp->sb_dma.vaddr; 14778 } else { 14779 fp->status_block.e1x_sb = 14780 (struct host_hc_status_block_e1x *)fp->sb_dma.vaddr; 14781 } 14782 } 14783 14784 /******************/ 14785 /* FP TX BD CHAIN */ 14786 /******************/ 14787 14788 snprintf(buf, sizeof(buf), "fp %d tx bd chain", i); 14789 if (bxe_dma_alloc(sc, (BCM_PAGE_SIZE * TX_BD_NUM_PAGES), 14790 &fp->tx_dma, buf) != 0) { 14791 /* XXX unwind and free previous fastpath allocations */ 14792 BLOGE(sc, "Failed to alloc %s\n", buf); 14793 return (1); 14794 } else { 14795 fp->tx_chain = (union eth_tx_bd_types *)fp->tx_dma.vaddr; 14796 } 14797 14798 /* link together the tx bd chain pages */ 14799 for (j = 1; j <= TX_BD_NUM_PAGES; j++) { 14800 /* index into the tx bd chain array to last entry per page */ 14801 struct eth_tx_next_bd *tx_next_bd = 14802 &fp->tx_chain[TX_BD_TOTAL_PER_PAGE * j - 1].next_bd; 14803 /* point to the next page and wrap from last page */ 14804 busaddr = (fp->tx_dma.paddr + 14805 (BCM_PAGE_SIZE * (j % TX_BD_NUM_PAGES))); 14806 tx_next_bd->addr_hi = htole32(U64_HI(busaddr)); 14807 tx_next_bd->addr_lo = htole32(U64_LO(busaddr)); 14808 } 14809 14810 /******************/ 14811 /* FP RX BD CHAIN */ 14812 /******************/ 14813 14814 snprintf(buf, sizeof(buf), "fp %d rx bd chain", i); 14815 if (bxe_dma_alloc(sc, (BCM_PAGE_SIZE * RX_BD_NUM_PAGES), 14816 &fp->rx_dma, buf) != 0) { 14817 /* XXX unwind and free previous fastpath allocations */ 14818 BLOGE(sc, "Failed to alloc %s\n", buf); 14819 return (1); 14820 } else { 14821 fp->rx_chain = (struct eth_rx_bd *)fp->rx_dma.vaddr; 14822 } 14823 14824 /* link together the rx bd chain pages */ 14825 for (j = 1; j <= RX_BD_NUM_PAGES; j++) { 14826 /* index into the rx bd chain array to last entry per page */ 14827 struct eth_rx_bd *rx_bd = 14828 &fp->rx_chain[RX_BD_TOTAL_PER_PAGE * j - 2]; 14829 /* point to the next page and wrap from last page */ 14830 busaddr = (fp->rx_dma.paddr + 14831 (BCM_PAGE_SIZE * (j % RX_BD_NUM_PAGES))); 14832 rx_bd->addr_hi = htole32(U64_HI(busaddr)); 14833 rx_bd->addr_lo = htole32(U64_LO(busaddr)); 14834 } 14835 14836 /*******************/ 14837 /* FP RX RCQ CHAIN */ 14838 /*******************/ 14839 14840 snprintf(buf, sizeof(buf), "fp %d rcq chain", i); 14841 if (bxe_dma_alloc(sc, (BCM_PAGE_SIZE * RCQ_NUM_PAGES), 14842 &fp->rcq_dma, buf) != 0) { 14843 /* XXX unwind and free previous fastpath allocations */ 14844 BLOGE(sc, "Failed to alloc %s\n", buf); 14845 return (1); 14846 } else { 14847 fp->rcq_chain = (union eth_rx_cqe *)fp->rcq_dma.vaddr; 14848 } 14849 14850 /* link together the rcq chain pages */ 14851 for (j = 1; j <= RCQ_NUM_PAGES; j++) { 14852 /* index into the rcq chain array to last entry per page */ 14853 struct eth_rx_cqe_next_page *rx_cqe_next = 14854 (struct eth_rx_cqe_next_page *) 14855 &fp->rcq_chain[RCQ_TOTAL_PER_PAGE * j - 1]; 14856 /* point to the next page and wrap from last page */ 14857 busaddr = (fp->rcq_dma.paddr + 14858 (BCM_PAGE_SIZE * (j % RCQ_NUM_PAGES))); 14859 rx_cqe_next->addr_hi = htole32(U64_HI(busaddr)); 14860 rx_cqe_next->addr_lo = htole32(U64_LO(busaddr)); 14861 } 14862 14863 /*******************/ 14864 /* FP RX SGE CHAIN */ 14865 /*******************/ 14866 14867 snprintf(buf, sizeof(buf), "fp %d sge chain", i); 14868 if (bxe_dma_alloc(sc, (BCM_PAGE_SIZE * RX_SGE_NUM_PAGES), 14869 &fp->rx_sge_dma, buf) != 0) { 14870 /* XXX unwind and free previous fastpath allocations */ 14871 BLOGE(sc, "Failed to alloc %s\n", buf); 14872 return (1); 14873 } else { 14874 fp->rx_sge_chain = (struct eth_rx_sge *)fp->rx_sge_dma.vaddr; 14875 } 14876 14877 /* link together the sge chain pages */ 14878 for (j = 1; j <= RX_SGE_NUM_PAGES; j++) { 14879 /* index into the rcq chain array to last entry per page */ 14880 struct eth_rx_sge *rx_sge = 14881 &fp->rx_sge_chain[RX_SGE_TOTAL_PER_PAGE * j - 2]; 14882 /* point to the next page and wrap from last page */ 14883 busaddr = (fp->rx_sge_dma.paddr + 14884 (BCM_PAGE_SIZE * (j % RX_SGE_NUM_PAGES))); 14885 rx_sge->addr_hi = htole32(U64_HI(busaddr)); 14886 rx_sge->addr_lo = htole32(U64_LO(busaddr)); 14887 } 14888 14889 /***********************/ 14890 /* FP TX MBUF DMA MAPS */ 14891 /***********************/ 14892 14893 /* set required sizes before mapping to conserve resources */ 14894 if (if_getcapenable(sc->ifp) & (IFCAP_TSO4 | IFCAP_TSO6)) { 14895 max_size = BXE_TSO_MAX_SIZE; 14896 max_segments = BXE_TSO_MAX_SEGMENTS; 14897 max_seg_size = BXE_TSO_MAX_SEG_SIZE; 14898 } else { 14899 max_size = (MCLBYTES * BXE_MAX_SEGMENTS); 14900 max_segments = BXE_MAX_SEGMENTS; 14901 max_seg_size = MCLBYTES; 14902 } 14903 14904 /* create a dma tag for the tx mbufs */ 14905 rc = bus_dma_tag_create(sc->parent_dma_tag, /* parent tag */ 14906 1, /* alignment */ 14907 0, /* boundary limit */ 14908 BUS_SPACE_MAXADDR, /* restricted low */ 14909 BUS_SPACE_MAXADDR, /* restricted hi */ 14910 NULL, /* addr filter() */ 14911 NULL, /* addr filter() arg */ 14912 max_size, /* max map size */ 14913 max_segments, /* num discontinuous */ 14914 max_seg_size, /* max seg size */ 14915 0, /* flags */ 14916 NULL, /* lock() */ 14917 NULL, /* lock() arg */ 14918 &fp->tx_mbuf_tag); /* returned dma tag */ 14919 if (rc != 0) { 14920 /* XXX unwind and free previous fastpath allocations */ 14921 BLOGE(sc, "Failed to create dma tag for " 14922 "'fp %d tx mbufs' (%d)\n", i, rc); 14923 return (1); 14924 } 14925 14926 /* create dma maps for each of the tx mbuf clusters */ 14927 for (j = 0; j < TX_BD_TOTAL; j++) { 14928 if (bus_dmamap_create(fp->tx_mbuf_tag, 14929 BUS_DMA_NOWAIT, 14930 &fp->tx_mbuf_chain[j].m_map)) { 14931 /* XXX unwind and free previous fastpath allocations */ 14932 BLOGE(sc, "Failed to create dma map for " 14933 "'fp %d tx mbuf %d' (%d)\n", i, j, rc); 14934 return (1); 14935 } 14936 } 14937 14938 /***********************/ 14939 /* FP RX MBUF DMA MAPS */ 14940 /***********************/ 14941 14942 /* create a dma tag for the rx mbufs */ 14943 rc = bus_dma_tag_create(sc->parent_dma_tag, /* parent tag */ 14944 1, /* alignment */ 14945 0, /* boundary limit */ 14946 BUS_SPACE_MAXADDR, /* restricted low */ 14947 BUS_SPACE_MAXADDR, /* restricted hi */ 14948 NULL, /* addr filter() */ 14949 NULL, /* addr filter() arg */ 14950 MJUM9BYTES, /* max map size */ 14951 1, /* num discontinuous */ 14952 MJUM9BYTES, /* max seg size */ 14953 0, /* flags */ 14954 NULL, /* lock() */ 14955 NULL, /* lock() arg */ 14956 &fp->rx_mbuf_tag); /* returned dma tag */ 14957 if (rc != 0) { 14958 /* XXX unwind and free previous fastpath allocations */ 14959 BLOGE(sc, "Failed to create dma tag for " 14960 "'fp %d rx mbufs' (%d)\n", i, rc); 14961 return (1); 14962 } 14963 14964 /* create dma maps for each of the rx mbuf clusters */ 14965 for (j = 0; j < RX_BD_TOTAL; j++) { 14966 if (bus_dmamap_create(fp->rx_mbuf_tag, 14967 BUS_DMA_NOWAIT, 14968 &fp->rx_mbuf_chain[j].m_map)) { 14969 /* XXX unwind and free previous fastpath allocations */ 14970 BLOGE(sc, "Failed to create dma map for " 14971 "'fp %d rx mbuf %d' (%d)\n", i, j, rc); 14972 return (1); 14973 } 14974 } 14975 14976 /* create dma map for the spare rx mbuf cluster */ 14977 if (bus_dmamap_create(fp->rx_mbuf_tag, 14978 BUS_DMA_NOWAIT, 14979 &fp->rx_mbuf_spare_map)) { 14980 /* XXX unwind and free previous fastpath allocations */ 14981 BLOGE(sc, "Failed to create dma map for " 14982 "'fp %d spare rx mbuf' (%d)\n", i, rc); 14983 return (1); 14984 } 14985 14986 /***************************/ 14987 /* FP RX SGE MBUF DMA MAPS */ 14988 /***************************/ 14989 14990 /* create a dma tag for the rx sge mbufs */ 14991 rc = bus_dma_tag_create(sc->parent_dma_tag, /* parent tag */ 14992 1, /* alignment */ 14993 0, /* boundary limit */ 14994 BUS_SPACE_MAXADDR, /* restricted low */ 14995 BUS_SPACE_MAXADDR, /* restricted hi */ 14996 NULL, /* addr filter() */ 14997 NULL, /* addr filter() arg */ 14998 BCM_PAGE_SIZE, /* max map size */ 14999 1, /* num discontinuous */ 15000 BCM_PAGE_SIZE, /* max seg size */ 15001 0, /* flags */ 15002 NULL, /* lock() */ 15003 NULL, /* lock() arg */ 15004 &fp->rx_sge_mbuf_tag); /* returned dma tag */ 15005 if (rc != 0) { 15006 /* XXX unwind and free previous fastpath allocations */ 15007 BLOGE(sc, "Failed to create dma tag for " 15008 "'fp %d rx sge mbufs' (%d)\n", i, rc); 15009 return (1); 15010 } 15011 15012 /* create dma maps for the rx sge mbuf clusters */ 15013 for (j = 0; j < RX_SGE_TOTAL; j++) { 15014 if (bus_dmamap_create(fp->rx_sge_mbuf_tag, 15015 BUS_DMA_NOWAIT, 15016 &fp->rx_sge_mbuf_chain[j].m_map)) { 15017 /* XXX unwind and free previous fastpath allocations */ 15018 BLOGE(sc, "Failed to create dma map for " 15019 "'fp %d rx sge mbuf %d' (%d)\n", i, j, rc); 15020 return (1); 15021 } 15022 } 15023 15024 /* create dma map for the spare rx sge mbuf cluster */ 15025 if (bus_dmamap_create(fp->rx_sge_mbuf_tag, 15026 BUS_DMA_NOWAIT, 15027 &fp->rx_sge_mbuf_spare_map)) { 15028 /* XXX unwind and free previous fastpath allocations */ 15029 BLOGE(sc, "Failed to create dma map for " 15030 "'fp %d spare rx sge mbuf' (%d)\n", i, rc); 15031 return (1); 15032 } 15033 15034 /***************************/ 15035 /* FP RX TPA MBUF DMA MAPS */ 15036 /***************************/ 15037 15038 /* create dma maps for the rx tpa mbuf clusters */ 15039 max_agg_queues = MAX_AGG_QS(sc); 15040 15041 for (j = 0; j < max_agg_queues; j++) { 15042 if (bus_dmamap_create(fp->rx_mbuf_tag, 15043 BUS_DMA_NOWAIT, 15044 &fp->rx_tpa_info[j].bd.m_map)) { 15045 /* XXX unwind and free previous fastpath allocations */ 15046 BLOGE(sc, "Failed to create dma map for " 15047 "'fp %d rx tpa mbuf %d' (%d)\n", i, j, rc); 15048 return (1); 15049 } 15050 } 15051 15052 /* create dma map for the spare rx tpa mbuf cluster */ 15053 if (bus_dmamap_create(fp->rx_mbuf_tag, 15054 BUS_DMA_NOWAIT, 15055 &fp->rx_tpa_info_mbuf_spare_map)) { 15056 /* XXX unwind and free previous fastpath allocations */ 15057 BLOGE(sc, "Failed to create dma map for " 15058 "'fp %d spare rx tpa mbuf' (%d)\n", i, rc); 15059 return (1); 15060 } 15061 15062 bxe_init_sge_ring_bit_mask(fp); 15063 } 15064 15065 return (0); 15066 } 15067 15068 static void 15069 bxe_free_hsi_mem(struct bxe_softc *sc) 15070 { 15071 struct bxe_fastpath *fp; 15072 int max_agg_queues; 15073 int i, j; 15074 15075 if (sc->parent_dma_tag == NULL) { 15076 return; /* assume nothing was allocated */ 15077 } 15078 15079 for (i = 0; i < sc->num_queues; i++) { 15080 fp = &sc->fp[i]; 15081 15082 /*******************/ 15083 /* FP STATUS BLOCK */ 15084 /*******************/ 15085 15086 bxe_dma_free(sc, &fp->sb_dma); 15087 memset(&fp->status_block, 0, sizeof(fp->status_block)); 15088 15089 /******************/ 15090 /* FP TX BD CHAIN */ 15091 /******************/ 15092 15093 bxe_dma_free(sc, &fp->tx_dma); 15094 fp->tx_chain = NULL; 15095 15096 /******************/ 15097 /* FP RX BD CHAIN */ 15098 /******************/ 15099 15100 bxe_dma_free(sc, &fp->rx_dma); 15101 fp->rx_chain = NULL; 15102 15103 /*******************/ 15104 /* FP RX RCQ CHAIN */ 15105 /*******************/ 15106 15107 bxe_dma_free(sc, &fp->rcq_dma); 15108 fp->rcq_chain = NULL; 15109 15110 /*******************/ 15111 /* FP RX SGE CHAIN */ 15112 /*******************/ 15113 15114 bxe_dma_free(sc, &fp->rx_sge_dma); 15115 fp->rx_sge_chain = NULL; 15116 15117 /***********************/ 15118 /* FP TX MBUF DMA MAPS */ 15119 /***********************/ 15120 15121 if (fp->tx_mbuf_tag != NULL) { 15122 for (j = 0; j < TX_BD_TOTAL; j++) { 15123 if (fp->tx_mbuf_chain[j].m_map != NULL) { 15124 bus_dmamap_unload(fp->tx_mbuf_tag, 15125 fp->tx_mbuf_chain[j].m_map); 15126 bus_dmamap_destroy(fp->tx_mbuf_tag, 15127 fp->tx_mbuf_chain[j].m_map); 15128 } 15129 } 15130 15131 bus_dma_tag_destroy(fp->tx_mbuf_tag); 15132 fp->tx_mbuf_tag = NULL; 15133 } 15134 15135 /***********************/ 15136 /* FP RX MBUF DMA MAPS */ 15137 /***********************/ 15138 15139 if (fp->rx_mbuf_tag != NULL) { 15140 for (j = 0; j < RX_BD_TOTAL; j++) { 15141 if (fp->rx_mbuf_chain[j].m_map != NULL) { 15142 bus_dmamap_unload(fp->rx_mbuf_tag, 15143 fp->rx_mbuf_chain[j].m_map); 15144 bus_dmamap_destroy(fp->rx_mbuf_tag, 15145 fp->rx_mbuf_chain[j].m_map); 15146 } 15147 } 15148 15149 if (fp->rx_mbuf_spare_map != NULL) { 15150 bus_dmamap_unload(fp->rx_mbuf_tag, fp->rx_mbuf_spare_map); 15151 bus_dmamap_destroy(fp->rx_mbuf_tag, fp->rx_mbuf_spare_map); 15152 } 15153 15154 /***************************/ 15155 /* FP RX TPA MBUF DMA MAPS */ 15156 /***************************/ 15157 15158 max_agg_queues = MAX_AGG_QS(sc); 15159 15160 for (j = 0; j < max_agg_queues; j++) { 15161 if (fp->rx_tpa_info[j].bd.m_map != NULL) { 15162 bus_dmamap_unload(fp->rx_mbuf_tag, 15163 fp->rx_tpa_info[j].bd.m_map); 15164 bus_dmamap_destroy(fp->rx_mbuf_tag, 15165 fp->rx_tpa_info[j].bd.m_map); 15166 } 15167 } 15168 15169 if (fp->rx_tpa_info_mbuf_spare_map != NULL) { 15170 bus_dmamap_unload(fp->rx_mbuf_tag, 15171 fp->rx_tpa_info_mbuf_spare_map); 15172 bus_dmamap_destroy(fp->rx_mbuf_tag, 15173 fp->rx_tpa_info_mbuf_spare_map); 15174 } 15175 15176 bus_dma_tag_destroy(fp->rx_mbuf_tag); 15177 fp->rx_mbuf_tag = NULL; 15178 } 15179 15180 /***************************/ 15181 /* FP RX SGE MBUF DMA MAPS */ 15182 /***************************/ 15183 15184 if (fp->rx_sge_mbuf_tag != NULL) { 15185 for (j = 0; j < RX_SGE_TOTAL; j++) { 15186 if (fp->rx_sge_mbuf_chain[j].m_map != NULL) { 15187 bus_dmamap_unload(fp->rx_sge_mbuf_tag, 15188 fp->rx_sge_mbuf_chain[j].m_map); 15189 bus_dmamap_destroy(fp->rx_sge_mbuf_tag, 15190 fp->rx_sge_mbuf_chain[j].m_map); 15191 } 15192 } 15193 15194 if (fp->rx_sge_mbuf_spare_map != NULL) { 15195 bus_dmamap_unload(fp->rx_sge_mbuf_tag, 15196 fp->rx_sge_mbuf_spare_map); 15197 bus_dmamap_destroy(fp->rx_sge_mbuf_tag, 15198 fp->rx_sge_mbuf_spare_map); 15199 } 15200 15201 bus_dma_tag_destroy(fp->rx_sge_mbuf_tag); 15202 fp->rx_sge_mbuf_tag = NULL; 15203 } 15204 } 15205 15206 /***************************/ 15207 /* FW DECOMPRESSION BUFFER */ 15208 /***************************/ 15209 15210 bxe_dma_free(sc, &sc->gz_buf_dma); 15211 sc->gz_buf = NULL; 15212 free(sc->gz_strm, M_DEVBUF); 15213 sc->gz_strm = NULL; 15214 15215 /*******************/ 15216 /* SLOW PATH QUEUE */ 15217 /*******************/ 15218 15219 bxe_dma_free(sc, &sc->spq_dma); 15220 sc->spq = NULL; 15221 15222 /*************/ 15223 /* SLOW PATH */ 15224 /*************/ 15225 15226 bxe_dma_free(sc, &sc->sp_dma); 15227 sc->sp = NULL; 15228 15229 /***************/ 15230 /* EVENT QUEUE */ 15231 /***************/ 15232 15233 bxe_dma_free(sc, &sc->eq_dma); 15234 sc->eq = NULL; 15235 15236 /************************/ 15237 /* DEFAULT STATUS BLOCK */ 15238 /************************/ 15239 15240 bxe_dma_free(sc, &sc->def_sb_dma); 15241 sc->def_sb = NULL; 15242 15243 bus_dma_tag_destroy(sc->parent_dma_tag); 15244 sc->parent_dma_tag = NULL; 15245 } 15246 15247 /* 15248 * Previous driver DMAE transaction may have occurred when pre-boot stage 15249 * ended and boot began. This would invalidate the addresses of the 15250 * transaction, resulting in was-error bit set in the PCI causing all 15251 * hw-to-host PCIe transactions to timeout. If this happened we want to clear 15252 * the interrupt which detected this from the pglueb and the was-done bit 15253 */ 15254 static void 15255 bxe_prev_interrupted_dmae(struct bxe_softc *sc) 15256 { 15257 uint32_t val; 15258 15259 if (!CHIP_IS_E1x(sc)) { 15260 val = REG_RD(sc, PGLUE_B_REG_PGLUE_B_INT_STS); 15261 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN) { 15262 BLOGD(sc, DBG_LOAD, 15263 "Clearing 'was-error' bit that was set in pglueb"); 15264 REG_WR(sc, PGLUE_B_REG_WAS_ERROR_PF_7_0_CLR, 1 << SC_FUNC(sc)); 15265 } 15266 } 15267 } 15268 15269 static int 15270 bxe_prev_mcp_done(struct bxe_softc *sc) 15271 { 15272 uint32_t rc = bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_DONE, 15273 DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET); 15274 if (!rc) { 15275 BLOGE(sc, "MCP response failure, aborting\n"); 15276 return (-1); 15277 } 15278 15279 return (0); 15280 } 15281 15282 static struct bxe_prev_list_node * 15283 bxe_prev_path_get_entry(struct bxe_softc *sc) 15284 { 15285 struct bxe_prev_list_node *tmp; 15286 15287 LIST_FOREACH(tmp, &bxe_prev_list, node) { 15288 if ((sc->pcie_bus == tmp->bus) && 15289 (sc->pcie_device == tmp->slot) && 15290 (SC_PATH(sc) == tmp->path)) { 15291 return (tmp); 15292 } 15293 } 15294 15295 return (NULL); 15296 } 15297 15298 static uint8_t 15299 bxe_prev_is_path_marked(struct bxe_softc *sc) 15300 { 15301 struct bxe_prev_list_node *tmp; 15302 int rc = FALSE; 15303 15304 mtx_lock(&bxe_prev_mtx); 15305 15306 tmp = bxe_prev_path_get_entry(sc); 15307 if (tmp) { 15308 if (tmp->aer) { 15309 BLOGD(sc, DBG_LOAD, 15310 "Path %d/%d/%d was marked by AER\n", 15311 sc->pcie_bus, sc->pcie_device, SC_PATH(sc)); 15312 } else { 15313 rc = TRUE; 15314 BLOGD(sc, DBG_LOAD, 15315 "Path %d/%d/%d was already cleaned from previous drivers\n", 15316 sc->pcie_bus, sc->pcie_device, SC_PATH(sc)); 15317 } 15318 } 15319 15320 mtx_unlock(&bxe_prev_mtx); 15321 15322 return (rc); 15323 } 15324 15325 static int 15326 bxe_prev_mark_path(struct bxe_softc *sc, 15327 uint8_t after_undi) 15328 { 15329 struct bxe_prev_list_node *tmp; 15330 15331 mtx_lock(&bxe_prev_mtx); 15332 15333 /* Check whether the entry for this path already exists */ 15334 tmp = bxe_prev_path_get_entry(sc); 15335 if (tmp) { 15336 if (!tmp->aer) { 15337 BLOGD(sc, DBG_LOAD, 15338 "Re-marking AER in path %d/%d/%d\n", 15339 sc->pcie_bus, sc->pcie_device, SC_PATH(sc)); 15340 } else { 15341 BLOGD(sc, DBG_LOAD, 15342 "Removing AER indication from path %d/%d/%d\n", 15343 sc->pcie_bus, sc->pcie_device, SC_PATH(sc)); 15344 tmp->aer = 0; 15345 } 15346 15347 mtx_unlock(&bxe_prev_mtx); 15348 return (0); 15349 } 15350 15351 mtx_unlock(&bxe_prev_mtx); 15352 15353 /* Create an entry for this path and add it */ 15354 tmp = malloc(sizeof(struct bxe_prev_list_node), M_DEVBUF, 15355 (M_NOWAIT | M_ZERO)); 15356 if (!tmp) { 15357 BLOGE(sc, "Failed to allocate 'bxe_prev_list_node'\n"); 15358 return (-1); 15359 } 15360 15361 tmp->bus = sc->pcie_bus; 15362 tmp->slot = sc->pcie_device; 15363 tmp->path = SC_PATH(sc); 15364 tmp->aer = 0; 15365 tmp->undi = after_undi ? (1 << SC_PORT(sc)) : 0; 15366 15367 mtx_lock(&bxe_prev_mtx); 15368 15369 BLOGD(sc, DBG_LOAD, 15370 "Marked path %d/%d/%d - finished previous unload\n", 15371 sc->pcie_bus, sc->pcie_device, SC_PATH(sc)); 15372 LIST_INSERT_HEAD(&bxe_prev_list, tmp, node); 15373 15374 mtx_unlock(&bxe_prev_mtx); 15375 15376 return (0); 15377 } 15378 15379 static int 15380 bxe_do_flr(struct bxe_softc *sc) 15381 { 15382 int i; 15383 15384 /* only E2 and onwards support FLR */ 15385 if (CHIP_IS_E1x(sc)) { 15386 BLOGD(sc, DBG_LOAD, "FLR not supported in E1/E1H\n"); 15387 return (-1); 15388 } 15389 15390 /* only bootcode REQ_BC_VER_4_INITIATE_FLR and onwards support flr */ 15391 if (sc->devinfo.bc_ver < REQ_BC_VER_4_INITIATE_FLR) { 15392 BLOGD(sc, DBG_LOAD, "FLR not supported by BC_VER: 0x%08x\n", 15393 sc->devinfo.bc_ver); 15394 return (-1); 15395 } 15396 15397 /* Wait for Transaction Pending bit clean */ 15398 for (i = 0; i < 4; i++) { 15399 if (i) { 15400 DELAY(((1 << (i - 1)) * 100) * 1000); 15401 } 15402 15403 if (!bxe_is_pcie_pending(sc)) { 15404 goto clear; 15405 } 15406 } 15407 15408 BLOGE(sc, "PCIE transaction is not cleared, " 15409 "proceeding with reset anyway\n"); 15410 15411 clear: 15412 15413 BLOGD(sc, DBG_LOAD, "Initiating FLR\n"); 15414 bxe_fw_command(sc, DRV_MSG_CODE_INITIATE_FLR, 0); 15415 15416 return (0); 15417 } 15418 15419 struct bxe_mac_vals { 15420 uint32_t xmac_addr; 15421 uint32_t xmac_val; 15422 uint32_t emac_addr; 15423 uint32_t emac_val; 15424 uint32_t umac_addr; 15425 uint32_t umac_val; 15426 uint32_t bmac_addr; 15427 uint32_t bmac_val[2]; 15428 }; 15429 15430 static void 15431 bxe_prev_unload_close_mac(struct bxe_softc *sc, 15432 struct bxe_mac_vals *vals) 15433 { 15434 uint32_t val, base_addr, offset, mask, reset_reg; 15435 uint8_t mac_stopped = FALSE; 15436 uint8_t port = SC_PORT(sc); 15437 uint32_t wb_data[2]; 15438 15439 /* reset addresses as they also mark which values were changed */ 15440 vals->bmac_addr = 0; 15441 vals->umac_addr = 0; 15442 vals->xmac_addr = 0; 15443 vals->emac_addr = 0; 15444 15445 reset_reg = REG_RD(sc, MISC_REG_RESET_REG_2); 15446 15447 if (!CHIP_IS_E3(sc)) { 15448 val = REG_RD(sc, NIG_REG_BMAC0_REGS_OUT_EN + port * 4); 15449 mask = MISC_REGISTERS_RESET_REG_2_RST_BMAC0 << port; 15450 if ((mask & reset_reg) && val) { 15451 BLOGD(sc, DBG_LOAD, "Disable BMAC Rx\n"); 15452 base_addr = SC_PORT(sc) ? NIG_REG_INGRESS_BMAC1_MEM 15453 : NIG_REG_INGRESS_BMAC0_MEM; 15454 offset = CHIP_IS_E2(sc) ? BIGMAC2_REGISTER_BMAC_CONTROL 15455 : BIGMAC_REGISTER_BMAC_CONTROL; 15456 15457 /* 15458 * use rd/wr since we cannot use dmae. This is safe 15459 * since MCP won't access the bus due to the request 15460 * to unload, and no function on the path can be 15461 * loaded at this time. 15462 */ 15463 wb_data[0] = REG_RD(sc, base_addr + offset); 15464 wb_data[1] = REG_RD(sc, base_addr + offset + 0x4); 15465 vals->bmac_addr = base_addr + offset; 15466 vals->bmac_val[0] = wb_data[0]; 15467 vals->bmac_val[1] = wb_data[1]; 15468 wb_data[0] &= ~ELINK_BMAC_CONTROL_RX_ENABLE; 15469 REG_WR(sc, vals->bmac_addr, wb_data[0]); 15470 REG_WR(sc, vals->bmac_addr + 0x4, wb_data[1]); 15471 } 15472 15473 BLOGD(sc, DBG_LOAD, "Disable EMAC Rx\n"); 15474 vals->emac_addr = NIG_REG_NIG_EMAC0_EN + SC_PORT(sc)*4; 15475 vals->emac_val = REG_RD(sc, vals->emac_addr); 15476 REG_WR(sc, vals->emac_addr, 0); 15477 mac_stopped = TRUE; 15478 } else { 15479 if (reset_reg & MISC_REGISTERS_RESET_REG_2_XMAC) { 15480 BLOGD(sc, DBG_LOAD, "Disable XMAC Rx\n"); 15481 base_addr = SC_PORT(sc) ? GRCBASE_XMAC1 : GRCBASE_XMAC0; 15482 val = REG_RD(sc, base_addr + XMAC_REG_PFC_CTRL_HI); 15483 REG_WR(sc, base_addr + XMAC_REG_PFC_CTRL_HI, val & ~(1 << 1)); 15484 REG_WR(sc, base_addr + XMAC_REG_PFC_CTRL_HI, val | (1 << 1)); 15485 vals->xmac_addr = base_addr + XMAC_REG_CTRL; 15486 vals->xmac_val = REG_RD(sc, vals->xmac_addr); 15487 REG_WR(sc, vals->xmac_addr, 0); 15488 mac_stopped = TRUE; 15489 } 15490 15491 mask = MISC_REGISTERS_RESET_REG_2_UMAC0 << port; 15492 if (mask & reset_reg) { 15493 BLOGD(sc, DBG_LOAD, "Disable UMAC Rx\n"); 15494 base_addr = SC_PORT(sc) ? GRCBASE_UMAC1 : GRCBASE_UMAC0; 15495 vals->umac_addr = base_addr + UMAC_REG_COMMAND_CONFIG; 15496 vals->umac_val = REG_RD(sc, vals->umac_addr); 15497 REG_WR(sc, vals->umac_addr, 0); 15498 mac_stopped = TRUE; 15499 } 15500 } 15501 15502 if (mac_stopped) { 15503 DELAY(20000); 15504 } 15505 } 15506 15507 #define BXE_PREV_UNDI_PROD_ADDR(p) (BAR_TSTRORM_INTMEM + 0x1508 + ((p) << 4)) 15508 #define BXE_PREV_UNDI_RCQ(val) ((val) & 0xffff) 15509 #define BXE_PREV_UNDI_BD(val) ((val) >> 16 & 0xffff) 15510 #define BXE_PREV_UNDI_PROD(rcq, bd) ((bd) << 16 | (rcq)) 15511 15512 static void 15513 bxe_prev_unload_undi_inc(struct bxe_softc *sc, 15514 uint8_t port, 15515 uint8_t inc) 15516 { 15517 uint16_t rcq, bd; 15518 uint32_t tmp_reg = REG_RD(sc, BXE_PREV_UNDI_PROD_ADDR(port)); 15519 15520 rcq = BXE_PREV_UNDI_RCQ(tmp_reg) + inc; 15521 bd = BXE_PREV_UNDI_BD(tmp_reg) + inc; 15522 15523 tmp_reg = BXE_PREV_UNDI_PROD(rcq, bd); 15524 REG_WR(sc, BXE_PREV_UNDI_PROD_ADDR(port), tmp_reg); 15525 15526 BLOGD(sc, DBG_LOAD, 15527 "UNDI producer [%d] rings bd -> 0x%04x, rcq -> 0x%04x\n", 15528 port, bd, rcq); 15529 } 15530 15531 static int 15532 bxe_prev_unload_common(struct bxe_softc *sc) 15533 { 15534 uint32_t reset_reg, tmp_reg = 0, rc; 15535 uint8_t prev_undi = FALSE; 15536 struct bxe_mac_vals mac_vals; 15537 uint32_t timer_count = 1000; 15538 uint32_t prev_brb; 15539 15540 /* 15541 * It is possible a previous function received 'common' answer, 15542 * but hasn't loaded yet, therefore creating a scenario of 15543 * multiple functions receiving 'common' on the same path. 15544 */ 15545 BLOGD(sc, DBG_LOAD, "Common unload Flow\n"); 15546 15547 memset(&mac_vals, 0, sizeof(mac_vals)); 15548 15549 if (bxe_prev_is_path_marked(sc)) { 15550 return (bxe_prev_mcp_done(sc)); 15551 } 15552 15553 reset_reg = REG_RD(sc, MISC_REG_RESET_REG_1); 15554 15555 /* Reset should be performed after BRB is emptied */ 15556 if (reset_reg & MISC_REGISTERS_RESET_REG_1_RST_BRB1) { 15557 /* Close the MAC Rx to prevent BRB from filling up */ 15558 bxe_prev_unload_close_mac(sc, &mac_vals); 15559 15560 /* close LLH filters towards the BRB */ 15561 elink_set_rx_filter(&sc->link_params, 0); 15562 15563 /* 15564 * Check if the UNDI driver was previously loaded. 15565 * UNDI driver initializes CID offset for normal bell to 0x7 15566 */ 15567 if (reset_reg & MISC_REGISTERS_RESET_REG_1_RST_DORQ) { 15568 tmp_reg = REG_RD(sc, DORQ_REG_NORM_CID_OFST); 15569 if (tmp_reg == 0x7) { 15570 BLOGD(sc, DBG_LOAD, "UNDI previously loaded\n"); 15571 prev_undi = TRUE; 15572 /* clear the UNDI indication */ 15573 REG_WR(sc, DORQ_REG_NORM_CID_OFST, 0); 15574 /* clear possible idle check errors */ 15575 REG_RD(sc, NIG_REG_NIG_INT_STS_CLR_0); 15576 } 15577 } 15578 15579 /* wait until BRB is empty */ 15580 tmp_reg = REG_RD(sc, BRB1_REG_NUM_OF_FULL_BLOCKS); 15581 while (timer_count) { 15582 prev_brb = tmp_reg; 15583 15584 tmp_reg = REG_RD(sc, BRB1_REG_NUM_OF_FULL_BLOCKS); 15585 if (!tmp_reg) { 15586 break; 15587 } 15588 15589 BLOGD(sc, DBG_LOAD, "BRB still has 0x%08x\n", tmp_reg); 15590 15591 /* reset timer as long as BRB actually gets emptied */ 15592 if (prev_brb > tmp_reg) { 15593 timer_count = 1000; 15594 } else { 15595 timer_count--; 15596 } 15597 15598 /* If UNDI resides in memory, manually increment it */ 15599 if (prev_undi) { 15600 bxe_prev_unload_undi_inc(sc, SC_PORT(sc), 1); 15601 } 15602 15603 DELAY(10); 15604 } 15605 15606 if (!timer_count) { 15607 BLOGE(sc, "Failed to empty BRB\n"); 15608 } 15609 } 15610 15611 /* No packets are in the pipeline, path is ready for reset */ 15612 bxe_reset_common(sc); 15613 15614 if (mac_vals.xmac_addr) { 15615 REG_WR(sc, mac_vals.xmac_addr, mac_vals.xmac_val); 15616 } 15617 if (mac_vals.umac_addr) { 15618 REG_WR(sc, mac_vals.umac_addr, mac_vals.umac_val); 15619 } 15620 if (mac_vals.emac_addr) { 15621 REG_WR(sc, mac_vals.emac_addr, mac_vals.emac_val); 15622 } 15623 if (mac_vals.bmac_addr) { 15624 REG_WR(sc, mac_vals.bmac_addr, mac_vals.bmac_val[0]); 15625 REG_WR(sc, mac_vals.bmac_addr + 4, mac_vals.bmac_val[1]); 15626 } 15627 15628 rc = bxe_prev_mark_path(sc, prev_undi); 15629 if (rc) { 15630 bxe_prev_mcp_done(sc); 15631 return (rc); 15632 } 15633 15634 return (bxe_prev_mcp_done(sc)); 15635 } 15636 15637 static int 15638 bxe_prev_unload_uncommon(struct bxe_softc *sc) 15639 { 15640 int rc; 15641 15642 BLOGD(sc, DBG_LOAD, "Uncommon unload Flow\n"); 15643 15644 /* Test if previous unload process was already finished for this path */ 15645 if (bxe_prev_is_path_marked(sc)) { 15646 return (bxe_prev_mcp_done(sc)); 15647 } 15648 15649 BLOGD(sc, DBG_LOAD, "Path is unmarked\n"); 15650 15651 /* 15652 * If function has FLR capabilities, and existing FW version matches 15653 * the one required, then FLR will be sufficient to clean any residue 15654 * left by previous driver 15655 */ 15656 rc = bxe_nic_load_analyze_req(sc, FW_MSG_CODE_DRV_LOAD_FUNCTION); 15657 if (!rc) { 15658 /* fw version is good */ 15659 BLOGD(sc, DBG_LOAD, "FW version matches our own, attempting FLR\n"); 15660 rc = bxe_do_flr(sc); 15661 } 15662 15663 if (!rc) { 15664 /* FLR was performed */ 15665 BLOGD(sc, DBG_LOAD, "FLR successful\n"); 15666 return (0); 15667 } 15668 15669 BLOGD(sc, DBG_LOAD, "Could not FLR\n"); 15670 15671 /* Close the MCP request, return failure*/ 15672 rc = bxe_prev_mcp_done(sc); 15673 if (!rc) { 15674 rc = BXE_PREV_WAIT_NEEDED; 15675 } 15676 15677 return (rc); 15678 } 15679 15680 static int 15681 bxe_prev_unload(struct bxe_softc *sc) 15682 { 15683 int time_counter = 10; 15684 uint32_t fw, hw_lock_reg, hw_lock_val; 15685 uint32_t rc = 0; 15686 15687 /* 15688 * Clear HW from errors which may have resulted from an interrupted 15689 * DMAE transaction. 15690 */ 15691 bxe_prev_interrupted_dmae(sc); 15692 15693 /* Release previously held locks */ 15694 hw_lock_reg = 15695 (SC_FUNC(sc) <= 5) ? 15696 (MISC_REG_DRIVER_CONTROL_1 + SC_FUNC(sc) * 8) : 15697 (MISC_REG_DRIVER_CONTROL_7 + (SC_FUNC(sc) - 6) * 8); 15698 15699 hw_lock_val = (REG_RD(sc, hw_lock_reg)); 15700 if (hw_lock_val) { 15701 if (hw_lock_val & HW_LOCK_RESOURCE_NVRAM) { 15702 BLOGD(sc, DBG_LOAD, "Releasing previously held NVRAM lock\n"); 15703 REG_WR(sc, MCP_REG_MCPR_NVM_SW_ARB, 15704 (MCPR_NVM_SW_ARB_ARB_REQ_CLR1 << SC_PORT(sc))); 15705 } 15706 BLOGD(sc, DBG_LOAD, "Releasing previously held HW lock\n"); 15707 REG_WR(sc, hw_lock_reg, 0xffffffff); 15708 } else { 15709 BLOGD(sc, DBG_LOAD, "No need to release HW/NVRAM locks\n"); 15710 } 15711 15712 if (MCPR_ACCESS_LOCK_LOCK & REG_RD(sc, MCP_REG_MCPR_ACCESS_LOCK)) { 15713 BLOGD(sc, DBG_LOAD, "Releasing previously held ALR\n"); 15714 REG_WR(sc, MCP_REG_MCPR_ACCESS_LOCK, 0); 15715 } 15716 15717 do { 15718 /* Lock MCP using an unload request */ 15719 fw = bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS, 0); 15720 if (!fw) { 15721 BLOGE(sc, "MCP response failure, aborting\n"); 15722 rc = -1; 15723 break; 15724 } 15725 15726 if (fw == FW_MSG_CODE_DRV_UNLOAD_COMMON) { 15727 rc = bxe_prev_unload_common(sc); 15728 break; 15729 } 15730 15731 /* non-common reply from MCP night require looping */ 15732 rc = bxe_prev_unload_uncommon(sc); 15733 if (rc != BXE_PREV_WAIT_NEEDED) { 15734 break; 15735 } 15736 15737 DELAY(20000); 15738 } while (--time_counter); 15739 15740 if (!time_counter || rc) { 15741 BLOGE(sc, "Failed to unload previous driver!" 15742 " time_counter %d rc %d\n", time_counter, rc); 15743 rc = -1; 15744 } 15745 15746 return (rc); 15747 } 15748 15749 void 15750 bxe_dcbx_set_state(struct bxe_softc *sc, 15751 uint8_t dcb_on, 15752 uint32_t dcbx_enabled) 15753 { 15754 if (!CHIP_IS_E1x(sc)) { 15755 sc->dcb_state = dcb_on; 15756 sc->dcbx_enabled = dcbx_enabled; 15757 } else { 15758 sc->dcb_state = FALSE; 15759 sc->dcbx_enabled = BXE_DCBX_ENABLED_INVALID; 15760 } 15761 BLOGD(sc, DBG_LOAD, 15762 "DCB state [%s:%s]\n", 15763 dcb_on ? "ON" : "OFF", 15764 (dcbx_enabled == BXE_DCBX_ENABLED_OFF) ? "user-mode" : 15765 (dcbx_enabled == BXE_DCBX_ENABLED_ON_NEG_OFF) ? "on-chip static" : 15766 (dcbx_enabled == BXE_DCBX_ENABLED_ON_NEG_ON) ? 15767 "on-chip with negotiation" : "invalid"); 15768 } 15769 15770 /* must be called after sriov-enable */ 15771 static int 15772 bxe_set_qm_cid_count(struct bxe_softc *sc) 15773 { 15774 int cid_count = BXE_L2_MAX_CID(sc); 15775 15776 if (IS_SRIOV(sc)) { 15777 cid_count += BXE_VF_CIDS; 15778 } 15779 15780 if (CNIC_SUPPORT(sc)) { 15781 cid_count += CNIC_CID_MAX; 15782 } 15783 15784 return (roundup(cid_count, QM_CID_ROUND)); 15785 } 15786 15787 static void 15788 bxe_init_multi_cos(struct bxe_softc *sc) 15789 { 15790 int pri, cos; 15791 15792 uint32_t pri_map = 0; /* XXX change to user config */ 15793 15794 for (pri = 0; pri < BXE_MAX_PRIORITY; pri++) { 15795 cos = ((pri_map & (0xf << (pri * 4))) >> (pri * 4)); 15796 if (cos < sc->max_cos) { 15797 sc->prio_to_cos[pri] = cos; 15798 } else { 15799 BLOGW(sc, "Invalid COS %d for priority %d " 15800 "(max COS is %d), setting to 0\n", 15801 cos, pri, (sc->max_cos - 1)); 15802 sc->prio_to_cos[pri] = 0; 15803 } 15804 } 15805 } 15806 15807 static int 15808 bxe_sysctl_state(SYSCTL_HANDLER_ARGS) 15809 { 15810 struct bxe_softc *sc; 15811 int error, result; 15812 15813 result = 0; 15814 error = sysctl_handle_int(oidp, &result, 0, req); 15815 15816 if (error || !req->newptr) { 15817 return (error); 15818 } 15819 15820 if (result == 1) { 15821 uint32_t temp; 15822 sc = (struct bxe_softc *)arg1; 15823 15824 BLOGI(sc, "... dumping driver state ...\n"); 15825 temp = SHMEM2_RD(sc, temperature_in_half_celsius); 15826 BLOGI(sc, "\t Device Temperature = %d Celsius\n", (temp/2)); 15827 } 15828 15829 return (error); 15830 } 15831 15832 static int 15833 bxe_sysctl_eth_stat(SYSCTL_HANDLER_ARGS) 15834 { 15835 struct bxe_softc *sc = (struct bxe_softc *)arg1; 15836 uint32_t *eth_stats = (uint32_t *)&sc->eth_stats; 15837 uint32_t *offset; 15838 uint64_t value = 0; 15839 int index = (int)arg2; 15840 15841 if (index >= BXE_NUM_ETH_STATS) { 15842 BLOGE(sc, "bxe_eth_stats index out of range (%d)\n", index); 15843 return (-1); 15844 } 15845 15846 offset = (eth_stats + bxe_eth_stats_arr[index].offset); 15847 15848 switch (bxe_eth_stats_arr[index].size) { 15849 case 4: 15850 value = (uint64_t)*offset; 15851 break; 15852 case 8: 15853 value = HILO_U64(*offset, *(offset + 1)); 15854 break; 15855 default: 15856 BLOGE(sc, "Invalid bxe_eth_stats size (index=%d size=%d)\n", 15857 index, bxe_eth_stats_arr[index].size); 15858 return (-1); 15859 } 15860 15861 return (sysctl_handle_64(oidp, &value, 0, req)); 15862 } 15863 15864 static int 15865 bxe_sysctl_eth_q_stat(SYSCTL_HANDLER_ARGS) 15866 { 15867 struct bxe_softc *sc = (struct bxe_softc *)arg1; 15868 uint32_t *eth_stats; 15869 uint32_t *offset; 15870 uint64_t value = 0; 15871 uint32_t q_stat = (uint32_t)arg2; 15872 uint32_t fp_index = ((q_stat >> 16) & 0xffff); 15873 uint32_t index = (q_stat & 0xffff); 15874 15875 eth_stats = (uint32_t *)&sc->fp[fp_index].eth_q_stats; 15876 15877 if (index >= BXE_NUM_ETH_Q_STATS) { 15878 BLOGE(sc, "bxe_eth_q_stats index out of range (%d)\n", index); 15879 return (-1); 15880 } 15881 15882 offset = (eth_stats + bxe_eth_q_stats_arr[index].offset); 15883 15884 switch (bxe_eth_q_stats_arr[index].size) { 15885 case 4: 15886 value = (uint64_t)*offset; 15887 break; 15888 case 8: 15889 value = HILO_U64(*offset, *(offset + 1)); 15890 break; 15891 default: 15892 BLOGE(sc, "Invalid bxe_eth_q_stats size (index=%d size=%d)\n", 15893 index, bxe_eth_q_stats_arr[index].size); 15894 return (-1); 15895 } 15896 15897 return (sysctl_handle_64(oidp, &value, 0, req)); 15898 } 15899 15900 static void bxe_force_link_reset(struct bxe_softc *sc) 15901 { 15902 15903 bxe_acquire_phy_lock(sc); 15904 elink_link_reset(&sc->link_params, &sc->link_vars, 1); 15905 bxe_release_phy_lock(sc); 15906 } 15907 15908 static int 15909 bxe_sysctl_pauseparam(SYSCTL_HANDLER_ARGS) 15910 { 15911 struct bxe_softc *sc = (struct bxe_softc *)arg1; 15912 uint32_t cfg_idx = bxe_get_link_cfg_idx(sc); 15913 int rc = 0; 15914 int error; 15915 int result; 15916 15917 15918 error = sysctl_handle_int(oidp, &sc->bxe_pause_param, 0, req); 15919 15920 if (error || !req->newptr) { 15921 return (error); 15922 } 15923 if ((sc->bxe_pause_param < 0) || (sc->bxe_pause_param > 8)) { 15924 BLOGW(sc, "invalid pause param (%d) - use integers between 1 & 8\n",sc->bxe_pause_param); 15925 sc->bxe_pause_param = 8; 15926 } 15927 15928 result = (sc->bxe_pause_param << PORT_FEATURE_FLOW_CONTROL_SHIFT); 15929 15930 15931 if((result & 0x400) && !(sc->port.supported[cfg_idx] & ELINK_SUPPORTED_Autoneg)) { 15932 BLOGW(sc, "Does not support Autoneg pause_param %d\n", sc->bxe_pause_param); 15933 return -EINVAL; 15934 } 15935 15936 if(IS_MF(sc)) 15937 return 0; 15938 sc->link_params.req_flow_ctrl[cfg_idx] = ELINK_FLOW_CTRL_AUTO; 15939 if(result & ELINK_FLOW_CTRL_RX) 15940 sc->link_params.req_flow_ctrl[cfg_idx] |= ELINK_FLOW_CTRL_RX; 15941 15942 if(result & ELINK_FLOW_CTRL_TX) 15943 sc->link_params.req_flow_ctrl[cfg_idx] |= ELINK_FLOW_CTRL_TX; 15944 if(sc->link_params.req_flow_ctrl[cfg_idx] == ELINK_FLOW_CTRL_AUTO) 15945 sc->link_params.req_flow_ctrl[cfg_idx] = ELINK_FLOW_CTRL_NONE; 15946 15947 if(result & 0x400) { 15948 if (sc->link_params.req_line_speed[cfg_idx] == ELINK_SPEED_AUTO_NEG) { 15949 sc->link_params.req_flow_ctrl[cfg_idx] = 15950 ELINK_FLOW_CTRL_AUTO; 15951 } 15952 sc->link_params.req_fc_auto_adv = 0; 15953 if (result & ELINK_FLOW_CTRL_RX) 15954 sc->link_params.req_fc_auto_adv |= ELINK_FLOW_CTRL_RX; 15955 15956 if (result & ELINK_FLOW_CTRL_TX) 15957 sc->link_params.req_fc_auto_adv |= ELINK_FLOW_CTRL_TX; 15958 if (!sc->link_params.req_fc_auto_adv) 15959 sc->link_params.req_fc_auto_adv |= ELINK_FLOW_CTRL_NONE; 15960 } 15961 if (IS_PF(sc)) { 15962 if (sc->link_vars.link_up) { 15963 bxe_stats_handle(sc, STATS_EVENT_STOP); 15964 } 15965 if (if_getdrvflags(sc->ifp) & IFF_DRV_RUNNING) { 15966 bxe_force_link_reset(sc); 15967 bxe_acquire_phy_lock(sc); 15968 15969 rc = elink_phy_init(&sc->link_params, &sc->link_vars); 15970 15971 bxe_release_phy_lock(sc); 15972 15973 bxe_calc_fc_adv(sc); 15974 } 15975 } 15976 return rc; 15977 } 15978 15979 15980 static void 15981 bxe_add_sysctls(struct bxe_softc *sc) 15982 { 15983 struct sysctl_ctx_list *ctx; 15984 struct sysctl_oid_list *children; 15985 struct sysctl_oid *queue_top, *queue; 15986 struct sysctl_oid_list *queue_top_children, *queue_children; 15987 char queue_num_buf[32]; 15988 uint32_t q_stat; 15989 int i, j; 15990 15991 ctx = device_get_sysctl_ctx(sc->dev); 15992 children = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev)); 15993 15994 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "version", 15995 CTLFLAG_RD, BXE_DRIVER_VERSION, 0, 15996 "version"); 15997 15998 snprintf(sc->fw_ver_str, sizeof(sc->fw_ver_str), "%d.%d.%d.%d", 15999 BCM_5710_FW_MAJOR_VERSION, 16000 BCM_5710_FW_MINOR_VERSION, 16001 BCM_5710_FW_REVISION_VERSION, 16002 BCM_5710_FW_ENGINEERING_VERSION); 16003 16004 snprintf(sc->mf_mode_str, sizeof(sc->mf_mode_str), "%s", 16005 ((sc->devinfo.mf_info.mf_mode == SINGLE_FUNCTION) ? "Single" : 16006 (sc->devinfo.mf_info.mf_mode == MULTI_FUNCTION_SD) ? "MF-SD" : 16007 (sc->devinfo.mf_info.mf_mode == MULTI_FUNCTION_SI) ? "MF-SI" : 16008 (sc->devinfo.mf_info.mf_mode == MULTI_FUNCTION_AFEX) ? "MF-AFEX" : 16009 "Unknown")); 16010 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "mf_vnics", 16011 CTLFLAG_RD, &sc->devinfo.mf_info.vnics_per_port, 0, 16012 "multifunction vnics per port"); 16013 16014 snprintf(sc->pci_link_str, sizeof(sc->pci_link_str), "%s x%d", 16015 ((sc->devinfo.pcie_link_speed == 1) ? "2.5GT/s" : 16016 (sc->devinfo.pcie_link_speed == 2) ? "5.0GT/s" : 16017 (sc->devinfo.pcie_link_speed == 4) ? "8.0GT/s" : 16018 "???GT/s"), 16019 sc->devinfo.pcie_link_width); 16020 16021 sc->debug = bxe_debug; 16022 16023 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "bc_version", 16024 CTLFLAG_RD, sc->devinfo.bc_ver_str, 0, 16025 "bootcode version"); 16026 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "fw_version", 16027 CTLFLAG_RD, sc->fw_ver_str, 0, 16028 "firmware version"); 16029 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "mf_mode", 16030 CTLFLAG_RD, sc->mf_mode_str, 0, 16031 "multifunction mode"); 16032 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "mac_addr", 16033 CTLFLAG_RD, sc->mac_addr_str, 0, 16034 "mac address"); 16035 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "pci_link", 16036 CTLFLAG_RD, sc->pci_link_str, 0, 16037 "pci link status"); 16038 SYSCTL_ADD_ULONG(ctx, children, OID_AUTO, "debug", 16039 CTLFLAG_RW, &sc->debug, 16040 "debug logging mode"); 16041 16042 sc->trigger_grcdump = 0; 16043 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "trigger_grcdump", 16044 CTLFLAG_RW, &sc->trigger_grcdump, 0, 16045 "trigger grcdump should be invoked" 16046 " before collecting grcdump"); 16047 16048 sc->grcdump_started = 0; 16049 sc->grcdump_done = 0; 16050 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "grcdump_done", 16051 CTLFLAG_RD, &sc->grcdump_done, 0, 16052 "set by driver when grcdump is done"); 16053 16054 sc->rx_budget = bxe_rx_budget; 16055 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "rx_budget", 16056 CTLFLAG_RW, &sc->rx_budget, 0, 16057 "rx processing budget"); 16058 16059 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "pause_param", 16060 CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_MPSAFE, sc, 0, 16061 bxe_sysctl_pauseparam, "IU", 16062 "need pause frames- DEF:0/TX:1/RX:2/BOTH:3/AUTO:4/AUTOTX:5/AUTORX:6/AUTORXTX:7/NONE:8"); 16063 16064 16065 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "state", 16066 CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_MPSAFE, sc, 0, 16067 bxe_sysctl_state, "IU", "dump driver state"); 16068 16069 for (i = 0; i < BXE_NUM_ETH_STATS; i++) { 16070 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, 16071 bxe_eth_stats_arr[i].string, 16072 CTLTYPE_U64 | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, i, 16073 bxe_sysctl_eth_stat, "LU", bxe_eth_stats_arr[i].string); 16074 } 16075 16076 /* add a new parent node for all queues "dev.bxe.#.queue" */ 16077 queue_top = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "queue", 16078 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "queue"); 16079 queue_top_children = SYSCTL_CHILDREN(queue_top); 16080 16081 for (i = 0; i < sc->num_queues; i++) { 16082 /* add a new parent node for a single queue "dev.bxe.#.queue.#" */ 16083 snprintf(queue_num_buf, sizeof(queue_num_buf), "%d", i); 16084 queue = SYSCTL_ADD_NODE(ctx, queue_top_children, OID_AUTO, 16085 queue_num_buf, CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "single queue"); 16086 queue_children = SYSCTL_CHILDREN(queue); 16087 16088 for (j = 0; j < BXE_NUM_ETH_Q_STATS; j++) { 16089 q_stat = ((i << 16) | j); 16090 SYSCTL_ADD_PROC(ctx, queue_children, OID_AUTO, 16091 bxe_eth_q_stats_arr[j].string, 16092 CTLTYPE_U64 | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, q_stat, 16093 bxe_sysctl_eth_q_stat, "LU", bxe_eth_q_stats_arr[j].string); 16094 } 16095 } 16096 } 16097 16098 static int 16099 bxe_alloc_buf_rings(struct bxe_softc *sc) 16100 { 16101 int i; 16102 struct bxe_fastpath *fp; 16103 16104 for (i = 0; i < sc->num_queues; i++) { 16105 16106 fp = &sc->fp[i]; 16107 16108 fp->tx_br = buf_ring_alloc(BXE_BR_SIZE, M_DEVBUF, 16109 M_NOWAIT, &fp->tx_mtx); 16110 if (fp->tx_br == NULL) 16111 return (-1); 16112 } 16113 16114 return (0); 16115 } 16116 16117 static void 16118 bxe_free_buf_rings(struct bxe_softc *sc) 16119 { 16120 int i; 16121 struct bxe_fastpath *fp; 16122 16123 for (i = 0; i < sc->num_queues; i++) { 16124 16125 fp = &sc->fp[i]; 16126 16127 if (fp->tx_br) { 16128 buf_ring_free(fp->tx_br, M_DEVBUF); 16129 fp->tx_br = NULL; 16130 } 16131 } 16132 } 16133 16134 static void 16135 bxe_init_fp_mutexs(struct bxe_softc *sc) 16136 { 16137 int i; 16138 struct bxe_fastpath *fp; 16139 16140 for (i = 0; i < sc->num_queues; i++) { 16141 16142 fp = &sc->fp[i]; 16143 16144 snprintf(fp->tx_mtx_name, sizeof(fp->tx_mtx_name), 16145 "bxe%d_fp%d_tx_lock", sc->unit, i); 16146 mtx_init(&fp->tx_mtx, fp->tx_mtx_name, NULL, MTX_DEF); 16147 16148 snprintf(fp->rx_mtx_name, sizeof(fp->rx_mtx_name), 16149 "bxe%d_fp%d_rx_lock", sc->unit, i); 16150 mtx_init(&fp->rx_mtx, fp->rx_mtx_name, NULL, MTX_DEF); 16151 } 16152 } 16153 16154 static void 16155 bxe_destroy_fp_mutexs(struct bxe_softc *sc) 16156 { 16157 int i; 16158 struct bxe_fastpath *fp; 16159 16160 for (i = 0; i < sc->num_queues; i++) { 16161 16162 fp = &sc->fp[i]; 16163 16164 if (mtx_initialized(&fp->tx_mtx)) { 16165 mtx_destroy(&fp->tx_mtx); 16166 } 16167 16168 if (mtx_initialized(&fp->rx_mtx)) { 16169 mtx_destroy(&fp->rx_mtx); 16170 } 16171 } 16172 } 16173 16174 16175 /* 16176 * Device attach function. 16177 * 16178 * Allocates device resources, performs secondary chip identification, and 16179 * initializes driver instance variables. This function is called from driver 16180 * load after a successful probe. 16181 * 16182 * Returns: 16183 * 0 = Success, >0 = Failure 16184 */ 16185 static int 16186 bxe_attach(device_t dev) 16187 { 16188 struct bxe_softc *sc; 16189 16190 sc = device_get_softc(dev); 16191 16192 BLOGD(sc, DBG_LOAD, "Starting attach...\n"); 16193 16194 sc->state = BXE_STATE_CLOSED; 16195 16196 sc->dev = dev; 16197 sc->unit = device_get_unit(dev); 16198 16199 BLOGD(sc, DBG_LOAD, "softc = %p\n", sc); 16200 16201 sc->pcie_bus = pci_get_bus(dev); 16202 sc->pcie_device = pci_get_slot(dev); 16203 sc->pcie_func = pci_get_function(dev); 16204 16205 /* enable bus master capability */ 16206 pci_enable_busmaster(dev); 16207 16208 /* get the BARs */ 16209 if (bxe_allocate_bars(sc) != 0) { 16210 return (ENXIO); 16211 } 16212 16213 /* initialize the mutexes */ 16214 bxe_init_mutexes(sc); 16215 16216 /* prepare the periodic callout */ 16217 callout_init(&sc->periodic_callout, 1); 16218 16219 /* prepare the chip taskqueue */ 16220 sc->chip_tq_flags = CHIP_TQ_NONE; 16221 snprintf(sc->chip_tq_name, sizeof(sc->chip_tq_name), 16222 "bxe%d_chip_tq", sc->unit); 16223 TASK_INIT(&sc->chip_tq_task, 0, bxe_handle_chip_tq, sc); 16224 sc->chip_tq = taskqueue_create(sc->chip_tq_name, M_NOWAIT, 16225 taskqueue_thread_enqueue, 16226 &sc->chip_tq); 16227 taskqueue_start_threads(&sc->chip_tq, 1, PWAIT, /* lower priority */ 16228 "%s", sc->chip_tq_name); 16229 16230 TIMEOUT_TASK_INIT(taskqueue_thread, 16231 &sc->sp_err_timeout_task, 0, bxe_sp_err_timeout_task, sc); 16232 16233 16234 /* get device info and set params */ 16235 if (bxe_get_device_info(sc) != 0) { 16236 BLOGE(sc, "getting device info\n"); 16237 bxe_deallocate_bars(sc); 16238 pci_disable_busmaster(dev); 16239 return (ENXIO); 16240 } 16241 16242 /* get final misc params */ 16243 bxe_get_params(sc); 16244 16245 /* set the default MTU (changed via ifconfig) */ 16246 sc->mtu = ETHERMTU; 16247 16248 bxe_set_modes_bitmap(sc); 16249 16250 /* XXX 16251 * If in AFEX mode and the function is configured for FCoE 16252 * then bail... no L2 allowed. 16253 */ 16254 16255 /* get phy settings from shmem and 'and' against admin settings */ 16256 bxe_get_phy_info(sc); 16257 16258 /* initialize the FreeBSD ifnet interface */ 16259 bxe_init_ifnet(sc); 16260 16261 if (bxe_add_cdev(sc) != 0) { 16262 if (sc->ifp != NULL) { 16263 ether_ifdetach(sc->ifp); 16264 } 16265 ifmedia_removeall(&sc->ifmedia); 16266 bxe_release_mutexes(sc); 16267 bxe_deallocate_bars(sc); 16268 pci_disable_busmaster(dev); 16269 return (ENXIO); 16270 } 16271 16272 /* allocate device interrupts */ 16273 if (bxe_interrupt_alloc(sc) != 0) { 16274 bxe_del_cdev(sc); 16275 if (sc->ifp != NULL) { 16276 ether_ifdetach(sc->ifp); 16277 } 16278 ifmedia_removeall(&sc->ifmedia); 16279 bxe_release_mutexes(sc); 16280 bxe_deallocate_bars(sc); 16281 pci_disable_busmaster(dev); 16282 return (ENXIO); 16283 } 16284 16285 bxe_init_fp_mutexs(sc); 16286 16287 if (bxe_alloc_buf_rings(sc) != 0) { 16288 bxe_free_buf_rings(sc); 16289 bxe_interrupt_free(sc); 16290 bxe_del_cdev(sc); 16291 if (sc->ifp != NULL) { 16292 ether_ifdetach(sc->ifp); 16293 } 16294 ifmedia_removeall(&sc->ifmedia); 16295 bxe_release_mutexes(sc); 16296 bxe_deallocate_bars(sc); 16297 pci_disable_busmaster(dev); 16298 return (ENXIO); 16299 } 16300 16301 /* allocate ilt */ 16302 if (bxe_alloc_ilt_mem(sc) != 0) { 16303 bxe_free_buf_rings(sc); 16304 bxe_interrupt_free(sc); 16305 bxe_del_cdev(sc); 16306 if (sc->ifp != NULL) { 16307 ether_ifdetach(sc->ifp); 16308 } 16309 ifmedia_removeall(&sc->ifmedia); 16310 bxe_release_mutexes(sc); 16311 bxe_deallocate_bars(sc); 16312 pci_disable_busmaster(dev); 16313 return (ENXIO); 16314 } 16315 16316 /* allocate the host hardware/software hsi structures */ 16317 if (bxe_alloc_hsi_mem(sc) != 0) { 16318 bxe_free_ilt_mem(sc); 16319 bxe_free_buf_rings(sc); 16320 bxe_interrupt_free(sc); 16321 bxe_del_cdev(sc); 16322 if (sc->ifp != NULL) { 16323 ether_ifdetach(sc->ifp); 16324 } 16325 ifmedia_removeall(&sc->ifmedia); 16326 bxe_release_mutexes(sc); 16327 bxe_deallocate_bars(sc); 16328 pci_disable_busmaster(dev); 16329 return (ENXIO); 16330 } 16331 16332 /* need to reset chip if UNDI was active */ 16333 if (IS_PF(sc) && !BXE_NOMCP(sc)) { 16334 /* init fw_seq */ 16335 sc->fw_seq = 16336 (SHMEM_RD(sc, func_mb[SC_FW_MB_IDX(sc)].drv_mb_header) & 16337 DRV_MSG_SEQ_NUMBER_MASK); 16338 BLOGD(sc, DBG_LOAD, "prev unload fw_seq 0x%04x\n", sc->fw_seq); 16339 bxe_prev_unload(sc); 16340 } 16341 16342 #if 1 16343 /* XXX */ 16344 bxe_dcbx_set_state(sc, FALSE, BXE_DCBX_ENABLED_OFF); 16345 #else 16346 if (SHMEM2_HAS(sc, dcbx_lldp_params_offset) && 16347 SHMEM2_HAS(sc, dcbx_lldp_dcbx_stat_offset) && 16348 SHMEM2_RD(sc, dcbx_lldp_params_offset) && 16349 SHMEM2_RD(sc, dcbx_lldp_dcbx_stat_offset)) { 16350 bxe_dcbx_set_state(sc, TRUE, BXE_DCBX_ENABLED_ON_NEG_ON); 16351 bxe_dcbx_init_params(sc); 16352 } else { 16353 bxe_dcbx_set_state(sc, FALSE, BXE_DCBX_ENABLED_OFF); 16354 } 16355 #endif 16356 16357 /* calculate qm_cid_count */ 16358 sc->qm_cid_count = bxe_set_qm_cid_count(sc); 16359 BLOGD(sc, DBG_LOAD, "qm_cid_count=%d\n", sc->qm_cid_count); 16360 16361 sc->max_cos = 1; 16362 bxe_init_multi_cos(sc); 16363 16364 bxe_add_sysctls(sc); 16365 16366 return (0); 16367 } 16368 16369 /* 16370 * Device detach function. 16371 * 16372 * Stops the controller, resets the controller, and releases resources. 16373 * 16374 * Returns: 16375 * 0 = Success, >0 = Failure 16376 */ 16377 static int 16378 bxe_detach(device_t dev) 16379 { 16380 struct bxe_softc *sc; 16381 if_t ifp; 16382 16383 sc = device_get_softc(dev); 16384 16385 BLOGD(sc, DBG_LOAD, "Starting detach...\n"); 16386 16387 ifp = sc->ifp; 16388 if (ifp != NULL && if_vlantrunkinuse(ifp)) { 16389 BLOGE(sc, "Cannot detach while VLANs are in use.\n"); 16390 return(EBUSY); 16391 } 16392 16393 bxe_del_cdev(sc); 16394 16395 /* stop the periodic callout */ 16396 bxe_periodic_stop(sc); 16397 16398 /* stop the chip taskqueue */ 16399 atomic_store_rel_long(&sc->chip_tq_flags, CHIP_TQ_NONE); 16400 if (sc->chip_tq) { 16401 taskqueue_drain(sc->chip_tq, &sc->chip_tq_task); 16402 taskqueue_free(sc->chip_tq); 16403 sc->chip_tq = NULL; 16404 taskqueue_drain_timeout(taskqueue_thread, 16405 &sc->sp_err_timeout_task); 16406 } 16407 16408 /* stop and reset the controller if it was open */ 16409 if (sc->state != BXE_STATE_CLOSED) { 16410 BXE_CORE_LOCK(sc); 16411 bxe_nic_unload(sc, UNLOAD_CLOSE, TRUE); 16412 sc->state = BXE_STATE_DISABLED; 16413 BXE_CORE_UNLOCK(sc); 16414 } 16415 16416 /* release the network interface */ 16417 if (ifp != NULL) { 16418 ether_ifdetach(ifp); 16419 } 16420 ifmedia_removeall(&sc->ifmedia); 16421 16422 /* XXX do the following based on driver state... */ 16423 16424 /* free the host hardware/software hsi structures */ 16425 bxe_free_hsi_mem(sc); 16426 16427 /* free ilt */ 16428 bxe_free_ilt_mem(sc); 16429 16430 bxe_free_buf_rings(sc); 16431 16432 /* release the interrupts */ 16433 bxe_interrupt_free(sc); 16434 16435 /* Release the mutexes*/ 16436 bxe_destroy_fp_mutexs(sc); 16437 bxe_release_mutexes(sc); 16438 16439 16440 /* Release the PCIe BAR mapped memory */ 16441 bxe_deallocate_bars(sc); 16442 16443 /* Release the FreeBSD interface. */ 16444 if (sc->ifp != NULL) { 16445 if_free(sc->ifp); 16446 } 16447 16448 pci_disable_busmaster(dev); 16449 16450 return (0); 16451 } 16452 16453 /* 16454 * Device shutdown function. 16455 * 16456 * Stops and resets the controller. 16457 * 16458 * Returns: 16459 * Nothing 16460 */ 16461 static int 16462 bxe_shutdown(device_t dev) 16463 { 16464 struct bxe_softc *sc; 16465 16466 sc = device_get_softc(dev); 16467 16468 BLOGD(sc, DBG_LOAD, "Starting shutdown...\n"); 16469 16470 /* stop the periodic callout */ 16471 bxe_periodic_stop(sc); 16472 16473 if (sc->state != BXE_STATE_CLOSED) { 16474 BXE_CORE_LOCK(sc); 16475 bxe_nic_unload(sc, UNLOAD_NORMAL, FALSE); 16476 BXE_CORE_UNLOCK(sc); 16477 } 16478 16479 return (0); 16480 } 16481 16482 void 16483 bxe_igu_ack_sb(struct bxe_softc *sc, 16484 uint8_t igu_sb_id, 16485 uint8_t segment, 16486 uint16_t index, 16487 uint8_t op, 16488 uint8_t update) 16489 { 16490 uint32_t igu_addr = sc->igu_base_addr; 16491 igu_addr += (IGU_CMD_INT_ACK_BASE + igu_sb_id)*8; 16492 bxe_igu_ack_sb_gen(sc, igu_sb_id, segment, index, op, update, igu_addr); 16493 } 16494 16495 static void 16496 bxe_igu_clear_sb_gen(struct bxe_softc *sc, 16497 uint8_t func, 16498 uint8_t idu_sb_id, 16499 uint8_t is_pf) 16500 { 16501 uint32_t data, ctl, cnt = 100; 16502 uint32_t igu_addr_data = IGU_REG_COMMAND_REG_32LSB_DATA; 16503 uint32_t igu_addr_ctl = IGU_REG_COMMAND_REG_CTRL; 16504 uint32_t igu_addr_ack = IGU_REG_CSTORM_TYPE_0_SB_CLEANUP + (idu_sb_id/32)*4; 16505 uint32_t sb_bit = 1 << (idu_sb_id%32); 16506 uint32_t func_encode = func | (is_pf ? 1 : 0) << IGU_FID_ENCODE_IS_PF_SHIFT; 16507 uint32_t addr_encode = IGU_CMD_E2_PROD_UPD_BASE + idu_sb_id; 16508 16509 /* Not supported in BC mode */ 16510 if (CHIP_INT_MODE_IS_BC(sc)) { 16511 return; 16512 } 16513 16514 data = ((IGU_USE_REGISTER_cstorm_type_0_sb_cleanup << 16515 IGU_REGULAR_CLEANUP_TYPE_SHIFT) | 16516 IGU_REGULAR_CLEANUP_SET | 16517 IGU_REGULAR_BCLEANUP); 16518 16519 ctl = ((addr_encode << IGU_CTRL_REG_ADDRESS_SHIFT) | 16520 (func_encode << IGU_CTRL_REG_FID_SHIFT) | 16521 (IGU_CTRL_CMD_TYPE_WR << IGU_CTRL_REG_TYPE_SHIFT)); 16522 16523 BLOGD(sc, DBG_LOAD, "write 0x%08x to IGU(via GRC) addr 0x%x\n", 16524 data, igu_addr_data); 16525 REG_WR(sc, igu_addr_data, data); 16526 16527 bus_space_barrier(sc->bar[BAR0].tag, sc->bar[BAR0].handle, 0, 0, 16528 BUS_SPACE_BARRIER_WRITE); 16529 mb(); 16530 16531 BLOGD(sc, DBG_LOAD, "write 0x%08x to IGU(via GRC) addr 0x%x\n", 16532 ctl, igu_addr_ctl); 16533 REG_WR(sc, igu_addr_ctl, ctl); 16534 16535 bus_space_barrier(sc->bar[BAR0].tag, sc->bar[BAR0].handle, 0, 0, 16536 BUS_SPACE_BARRIER_WRITE); 16537 mb(); 16538 16539 /* wait for clean up to finish */ 16540 while (!(REG_RD(sc, igu_addr_ack) & sb_bit) && --cnt) { 16541 DELAY(20000); 16542 } 16543 16544 if (!(REG_RD(sc, igu_addr_ack) & sb_bit)) { 16545 BLOGD(sc, DBG_LOAD, 16546 "Unable to finish IGU cleanup: " 16547 "idu_sb_id %d offset %d bit %d (cnt %d)\n", 16548 idu_sb_id, idu_sb_id/32, idu_sb_id%32, cnt); 16549 } 16550 } 16551 16552 static void 16553 bxe_igu_clear_sb(struct bxe_softc *sc, 16554 uint8_t idu_sb_id) 16555 { 16556 bxe_igu_clear_sb_gen(sc, SC_FUNC(sc), idu_sb_id, TRUE /*PF*/); 16557 } 16558 16559 16560 16561 16562 16563 16564 16565 /*******************/ 16566 /* ECORE CALLBACKS */ 16567 /*******************/ 16568 16569 static void 16570 bxe_reset_common(struct bxe_softc *sc) 16571 { 16572 uint32_t val = 0x1400; 16573 16574 /* reset_common */ 16575 REG_WR(sc, (GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR), 0xd3ffff7f); 16576 16577 if (CHIP_IS_E3(sc)) { 16578 val |= MISC_REGISTERS_RESET_REG_2_MSTAT0; 16579 val |= MISC_REGISTERS_RESET_REG_2_MSTAT1; 16580 } 16581 16582 REG_WR(sc, (GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR), val); 16583 } 16584 16585 static void 16586 bxe_common_init_phy(struct bxe_softc *sc) 16587 { 16588 uint32_t shmem_base[2]; 16589 uint32_t shmem2_base[2]; 16590 16591 /* Avoid common init in case MFW supports LFA */ 16592 if (SHMEM2_RD(sc, size) > 16593 (uint32_t)offsetof(struct shmem2_region, 16594 lfa_host_addr[SC_PORT(sc)])) { 16595 return; 16596 } 16597 16598 shmem_base[0] = sc->devinfo.shmem_base; 16599 shmem2_base[0] = sc->devinfo.shmem2_base; 16600 16601 if (!CHIP_IS_E1x(sc)) { 16602 shmem_base[1] = SHMEM2_RD(sc, other_shmem_base_addr); 16603 shmem2_base[1] = SHMEM2_RD(sc, other_shmem2_base_addr); 16604 } 16605 16606 bxe_acquire_phy_lock(sc); 16607 elink_common_init_phy(sc, shmem_base, shmem2_base, 16608 sc->devinfo.chip_id, 0); 16609 bxe_release_phy_lock(sc); 16610 } 16611 16612 static void 16613 bxe_pf_disable(struct bxe_softc *sc) 16614 { 16615 uint32_t val = REG_RD(sc, IGU_REG_PF_CONFIGURATION); 16616 16617 val &= ~IGU_PF_CONF_FUNC_EN; 16618 16619 REG_WR(sc, IGU_REG_PF_CONFIGURATION, val); 16620 REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0); 16621 REG_WR(sc, CFC_REG_WEAK_ENABLE_PF, 0); 16622 } 16623 16624 static void 16625 bxe_init_pxp(struct bxe_softc *sc) 16626 { 16627 uint16_t devctl; 16628 int r_order, w_order; 16629 16630 devctl = bxe_pcie_capability_read(sc, PCIER_DEVICE_CTL, 2); 16631 16632 BLOGD(sc, DBG_LOAD, "read 0x%08x from devctl\n", devctl); 16633 16634 w_order = ((devctl & PCIEM_CTL_MAX_PAYLOAD) >> 5); 16635 16636 if (sc->mrrs == -1) { 16637 r_order = ((devctl & PCIEM_CTL_MAX_READ_REQUEST) >> 12); 16638 } else { 16639 BLOGD(sc, DBG_LOAD, "forcing read order to %d\n", sc->mrrs); 16640 r_order = sc->mrrs; 16641 } 16642 16643 ecore_init_pxp_arb(sc, r_order, w_order); 16644 } 16645 16646 static uint32_t 16647 bxe_get_pretend_reg(struct bxe_softc *sc) 16648 { 16649 uint32_t base = PXP2_REG_PGL_PRETEND_FUNC_F0; 16650 uint32_t stride = (PXP2_REG_PGL_PRETEND_FUNC_F1 - base); 16651 return (base + (SC_ABS_FUNC(sc)) * stride); 16652 } 16653 16654 /* 16655 * Called only on E1H or E2. 16656 * When pretending to be PF, the pretend value is the function number 0..7. 16657 * When pretending to be VF, the pretend val is the PF-num:VF-valid:ABS-VFID 16658 * combination. 16659 */ 16660 static int 16661 bxe_pretend_func(struct bxe_softc *sc, 16662 uint16_t pretend_func_val) 16663 { 16664 uint32_t pretend_reg; 16665 16666 if (CHIP_IS_E1H(sc) && (pretend_func_val > E1H_FUNC_MAX)) { 16667 return (-1); 16668 } 16669 16670 /* get my own pretend register */ 16671 pretend_reg = bxe_get_pretend_reg(sc); 16672 REG_WR(sc, pretend_reg, pretend_func_val); 16673 REG_RD(sc, pretend_reg); 16674 return (0); 16675 } 16676 16677 static void 16678 bxe_iov_init_dmae(struct bxe_softc *sc) 16679 { 16680 return; 16681 } 16682 16683 static void 16684 bxe_iov_init_dq(struct bxe_softc *sc) 16685 { 16686 return; 16687 } 16688 16689 /* send a NIG loopback debug packet */ 16690 static void 16691 bxe_lb_pckt(struct bxe_softc *sc) 16692 { 16693 uint32_t wb_write[3]; 16694 16695 /* Ethernet source and destination addresses */ 16696 wb_write[0] = 0x55555555; 16697 wb_write[1] = 0x55555555; 16698 wb_write[2] = 0x20; /* SOP */ 16699 REG_WR_DMAE(sc, NIG_REG_DEBUG_PACKET_LB, wb_write, 3); 16700 16701 /* NON-IP protocol */ 16702 wb_write[0] = 0x09000000; 16703 wb_write[1] = 0x55555555; 16704 wb_write[2] = 0x10; /* EOP, eop_bvalid = 0 */ 16705 REG_WR_DMAE(sc, NIG_REG_DEBUG_PACKET_LB, wb_write, 3); 16706 } 16707 16708 /* 16709 * Some of the internal memories are not directly readable from the driver. 16710 * To test them we send debug packets. 16711 */ 16712 static int 16713 bxe_int_mem_test(struct bxe_softc *sc) 16714 { 16715 int factor; 16716 int count, i; 16717 uint32_t val = 0; 16718 16719 if (CHIP_REV_IS_FPGA(sc)) { 16720 factor = 120; 16721 } else if (CHIP_REV_IS_EMUL(sc)) { 16722 factor = 200; 16723 } else { 16724 factor = 1; 16725 } 16726 16727 /* disable inputs of parser neighbor blocks */ 16728 REG_WR(sc, TSDM_REG_ENABLE_IN1, 0x0); 16729 REG_WR(sc, TCM_REG_PRS_IFEN, 0x0); 16730 REG_WR(sc, CFC_REG_DEBUG0, 0x1); 16731 REG_WR(sc, NIG_REG_PRS_REQ_IN_EN, 0x0); 16732 16733 /* write 0 to parser credits for CFC search request */ 16734 REG_WR(sc, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0); 16735 16736 /* send Ethernet packet */ 16737 bxe_lb_pckt(sc); 16738 16739 /* TODO do i reset NIG statistic? */ 16740 /* Wait until NIG register shows 1 packet of size 0x10 */ 16741 count = 1000 * factor; 16742 while (count) { 16743 bxe_read_dmae(sc, NIG_REG_STAT2_BRB_OCTET, 2); 16744 val = *BXE_SP(sc, wb_data[0]); 16745 if (val == 0x10) { 16746 break; 16747 } 16748 16749 DELAY(10000); 16750 count--; 16751 } 16752 16753 if (val != 0x10) { 16754 BLOGE(sc, "NIG timeout val=0x%x\n", val); 16755 return (-1); 16756 } 16757 16758 /* wait until PRS register shows 1 packet */ 16759 count = (1000 * factor); 16760 while (count) { 16761 val = REG_RD(sc, PRS_REG_NUM_OF_PACKETS); 16762 if (val == 1) { 16763 break; 16764 } 16765 16766 DELAY(10000); 16767 count--; 16768 } 16769 16770 if (val != 0x1) { 16771 BLOGE(sc, "PRS timeout val=0x%x\n", val); 16772 return (-2); 16773 } 16774 16775 /* Reset and init BRB, PRS */ 16776 REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03); 16777 DELAY(50000); 16778 REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03); 16779 DELAY(50000); 16780 ecore_init_block(sc, BLOCK_BRB1, PHASE_COMMON); 16781 ecore_init_block(sc, BLOCK_PRS, PHASE_COMMON); 16782 16783 /* Disable inputs of parser neighbor blocks */ 16784 REG_WR(sc, TSDM_REG_ENABLE_IN1, 0x0); 16785 REG_WR(sc, TCM_REG_PRS_IFEN, 0x0); 16786 REG_WR(sc, CFC_REG_DEBUG0, 0x1); 16787 REG_WR(sc, NIG_REG_PRS_REQ_IN_EN, 0x0); 16788 16789 /* Write 0 to parser credits for CFC search request */ 16790 REG_WR(sc, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0); 16791 16792 /* send 10 Ethernet packets */ 16793 for (i = 0; i < 10; i++) { 16794 bxe_lb_pckt(sc); 16795 } 16796 16797 /* Wait until NIG register shows 10+1 packets of size 11*0x10 = 0xb0 */ 16798 count = (1000 * factor); 16799 while (count) { 16800 bxe_read_dmae(sc, NIG_REG_STAT2_BRB_OCTET, 2); 16801 val = *BXE_SP(sc, wb_data[0]); 16802 if (val == 0xb0) { 16803 break; 16804 } 16805 16806 DELAY(10000); 16807 count--; 16808 } 16809 16810 if (val != 0xb0) { 16811 BLOGE(sc, "NIG timeout val=0x%x\n", val); 16812 return (-3); 16813 } 16814 16815 /* Wait until PRS register shows 2 packets */ 16816 val = REG_RD(sc, PRS_REG_NUM_OF_PACKETS); 16817 if (val != 2) { 16818 BLOGE(sc, "PRS timeout val=0x%x\n", val); 16819 } 16820 16821 /* Write 1 to parser credits for CFC search request */ 16822 REG_WR(sc, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x1); 16823 16824 /* Wait until PRS register shows 3 packets */ 16825 DELAY(10000 * factor); 16826 16827 /* Wait until NIG register shows 1 packet of size 0x10 */ 16828 val = REG_RD(sc, PRS_REG_NUM_OF_PACKETS); 16829 if (val != 3) { 16830 BLOGE(sc, "PRS timeout val=0x%x\n", val); 16831 } 16832 16833 /* clear NIG EOP FIFO */ 16834 for (i = 0; i < 11; i++) { 16835 REG_RD(sc, NIG_REG_INGRESS_EOP_LB_FIFO); 16836 } 16837 16838 val = REG_RD(sc, NIG_REG_INGRESS_EOP_LB_EMPTY); 16839 if (val != 1) { 16840 BLOGE(sc, "clear of NIG failed val=0x%x\n", val); 16841 return (-4); 16842 } 16843 16844 /* Reset and init BRB, PRS, NIG */ 16845 REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03); 16846 DELAY(50000); 16847 REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03); 16848 DELAY(50000); 16849 ecore_init_block(sc, BLOCK_BRB1, PHASE_COMMON); 16850 ecore_init_block(sc, BLOCK_PRS, PHASE_COMMON); 16851 if (!CNIC_SUPPORT(sc)) { 16852 /* set NIC mode */ 16853 REG_WR(sc, PRS_REG_NIC_MODE, 1); 16854 } 16855 16856 /* Enable inputs of parser neighbor blocks */ 16857 REG_WR(sc, TSDM_REG_ENABLE_IN1, 0x7fffffff); 16858 REG_WR(sc, TCM_REG_PRS_IFEN, 0x1); 16859 REG_WR(sc, CFC_REG_DEBUG0, 0x0); 16860 REG_WR(sc, NIG_REG_PRS_REQ_IN_EN, 0x1); 16861 16862 return (0); 16863 } 16864 16865 static void 16866 bxe_setup_fan_failure_detection(struct bxe_softc *sc) 16867 { 16868 int is_required; 16869 uint32_t val; 16870 int port; 16871 16872 is_required = 0; 16873 val = (SHMEM_RD(sc, dev_info.shared_hw_config.config2) & 16874 SHARED_HW_CFG_FAN_FAILURE_MASK); 16875 16876 if (val == SHARED_HW_CFG_FAN_FAILURE_ENABLED) { 16877 is_required = 1; 16878 } 16879 /* 16880 * The fan failure mechanism is usually related to the PHY type since 16881 * the power consumption of the board is affected by the PHY. Currently, 16882 * fan is required for most designs with SFX7101, BCM8727 and BCM8481. 16883 */ 16884 else if (val == SHARED_HW_CFG_FAN_FAILURE_PHY_TYPE) { 16885 for (port = PORT_0; port < PORT_MAX; port++) { 16886 is_required |= elink_fan_failure_det_req(sc, 16887 sc->devinfo.shmem_base, 16888 sc->devinfo.shmem2_base, 16889 port); 16890 } 16891 } 16892 16893 BLOGD(sc, DBG_LOAD, "fan detection setting: %d\n", is_required); 16894 16895 if (is_required == 0) { 16896 return; 16897 } 16898 16899 /* Fan failure is indicated by SPIO 5 */ 16900 bxe_set_spio(sc, MISC_SPIO_SPIO5, MISC_SPIO_INPUT_HI_Z); 16901 16902 /* set to active low mode */ 16903 val = REG_RD(sc, MISC_REG_SPIO_INT); 16904 val |= (MISC_SPIO_SPIO5 << MISC_SPIO_INT_OLD_SET_POS); 16905 REG_WR(sc, MISC_REG_SPIO_INT, val); 16906 16907 /* enable interrupt to signal the IGU */ 16908 val = REG_RD(sc, MISC_REG_SPIO_EVENT_EN); 16909 val |= MISC_SPIO_SPIO5; 16910 REG_WR(sc, MISC_REG_SPIO_EVENT_EN, val); 16911 } 16912 16913 static void 16914 bxe_enable_blocks_attention(struct bxe_softc *sc) 16915 { 16916 uint32_t val; 16917 16918 REG_WR(sc, PXP_REG_PXP_INT_MASK_0, 0); 16919 if (!CHIP_IS_E1x(sc)) { 16920 REG_WR(sc, PXP_REG_PXP_INT_MASK_1, 0x40); 16921 } else { 16922 REG_WR(sc, PXP_REG_PXP_INT_MASK_1, 0); 16923 } 16924 REG_WR(sc, DORQ_REG_DORQ_INT_MASK, 0); 16925 REG_WR(sc, CFC_REG_CFC_INT_MASK, 0); 16926 /* 16927 * mask read length error interrupts in brb for parser 16928 * (parsing unit and 'checksum and crc' unit) 16929 * these errors are legal (PU reads fixed length and CAC can cause 16930 * read length error on truncated packets) 16931 */ 16932 REG_WR(sc, BRB1_REG_BRB1_INT_MASK, 0xFC00); 16933 REG_WR(sc, QM_REG_QM_INT_MASK, 0); 16934 REG_WR(sc, TM_REG_TM_INT_MASK, 0); 16935 REG_WR(sc, XSDM_REG_XSDM_INT_MASK_0, 0); 16936 REG_WR(sc, XSDM_REG_XSDM_INT_MASK_1, 0); 16937 REG_WR(sc, XCM_REG_XCM_INT_MASK, 0); 16938 /* REG_WR(sc, XSEM_REG_XSEM_INT_MASK_0, 0); */ 16939 /* REG_WR(sc, XSEM_REG_XSEM_INT_MASK_1, 0); */ 16940 REG_WR(sc, USDM_REG_USDM_INT_MASK_0, 0); 16941 REG_WR(sc, USDM_REG_USDM_INT_MASK_1, 0); 16942 REG_WR(sc, UCM_REG_UCM_INT_MASK, 0); 16943 /* REG_WR(sc, USEM_REG_USEM_INT_MASK_0, 0); */ 16944 /* REG_WR(sc, USEM_REG_USEM_INT_MASK_1, 0); */ 16945 REG_WR(sc, GRCBASE_UPB + PB_REG_PB_INT_MASK, 0); 16946 REG_WR(sc, CSDM_REG_CSDM_INT_MASK_0, 0); 16947 REG_WR(sc, CSDM_REG_CSDM_INT_MASK_1, 0); 16948 REG_WR(sc, CCM_REG_CCM_INT_MASK, 0); 16949 /* REG_WR(sc, CSEM_REG_CSEM_INT_MASK_0, 0); */ 16950 /* REG_WR(sc, CSEM_REG_CSEM_INT_MASK_1, 0); */ 16951 16952 val = (PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_AFT | 16953 PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_OF | 16954 PXP2_PXP2_INT_MASK_0_REG_PGL_PCIE_ATTN); 16955 if (!CHIP_IS_E1x(sc)) { 16956 val |= (PXP2_PXP2_INT_MASK_0_REG_PGL_READ_BLOCKED | 16957 PXP2_PXP2_INT_MASK_0_REG_PGL_WRITE_BLOCKED); 16958 } 16959 REG_WR(sc, PXP2_REG_PXP2_INT_MASK_0, val); 16960 16961 REG_WR(sc, TSDM_REG_TSDM_INT_MASK_0, 0); 16962 REG_WR(sc, TSDM_REG_TSDM_INT_MASK_1, 0); 16963 REG_WR(sc, TCM_REG_TCM_INT_MASK, 0); 16964 /* REG_WR(sc, TSEM_REG_TSEM_INT_MASK_0, 0); */ 16965 16966 if (!CHIP_IS_E1x(sc)) { 16967 /* enable VFC attentions: bits 11 and 12, bits 31:13 reserved */ 16968 REG_WR(sc, TSEM_REG_TSEM_INT_MASK_1, 0x07ff); 16969 } 16970 16971 REG_WR(sc, CDU_REG_CDU_INT_MASK, 0); 16972 REG_WR(sc, DMAE_REG_DMAE_INT_MASK, 0); 16973 /* REG_WR(sc, MISC_REG_MISC_INT_MASK, 0); */ 16974 REG_WR(sc, PBF_REG_PBF_INT_MASK, 0x18); /* bit 3,4 masked */ 16975 } 16976 16977 /** 16978 * bxe_init_hw_common - initialize the HW at the COMMON phase. 16979 * 16980 * @sc: driver handle 16981 */ 16982 static int 16983 bxe_init_hw_common(struct bxe_softc *sc) 16984 { 16985 uint8_t abs_func_id; 16986 uint32_t val; 16987 16988 BLOGD(sc, DBG_LOAD, "starting common init for func %d\n", 16989 SC_ABS_FUNC(sc)); 16990 16991 /* 16992 * take the RESET lock to protect undi_unload flow from accessing 16993 * registers while we are resetting the chip 16994 */ 16995 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RESET); 16996 16997 bxe_reset_common(sc); 16998 16999 REG_WR(sc, (GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET), 0xffffffff); 17000 17001 val = 0xfffc; 17002 if (CHIP_IS_E3(sc)) { 17003 val |= MISC_REGISTERS_RESET_REG_2_MSTAT0; 17004 val |= MISC_REGISTERS_RESET_REG_2_MSTAT1; 17005 } 17006 17007 REG_WR(sc, (GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET), val); 17008 17009 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RESET); 17010 17011 ecore_init_block(sc, BLOCK_MISC, PHASE_COMMON); 17012 BLOGD(sc, DBG_LOAD, "after misc block init\n"); 17013 17014 if (!CHIP_IS_E1x(sc)) { 17015 /* 17016 * 4-port mode or 2-port mode we need to turn off master-enable for 17017 * everyone. After that we turn it back on for self. So, we disregard 17018 * multi-function, and always disable all functions on the given path, 17019 * this means 0,2,4,6 for path 0 and 1,3,5,7 for path 1 17020 */ 17021 for (abs_func_id = SC_PATH(sc); 17022 abs_func_id < (E2_FUNC_MAX * 2); 17023 abs_func_id += 2) { 17024 if (abs_func_id == SC_ABS_FUNC(sc)) { 17025 REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1); 17026 continue; 17027 } 17028 17029 bxe_pretend_func(sc, abs_func_id); 17030 17031 /* clear pf enable */ 17032 bxe_pf_disable(sc); 17033 17034 bxe_pretend_func(sc, SC_ABS_FUNC(sc)); 17035 } 17036 } 17037 17038 BLOGD(sc, DBG_LOAD, "after pf disable\n"); 17039 17040 ecore_init_block(sc, BLOCK_PXP, PHASE_COMMON); 17041 17042 if (CHIP_IS_E1(sc)) { 17043 /* 17044 * enable HW interrupt from PXP on USDM overflow 17045 * bit 16 on INT_MASK_0 17046 */ 17047 REG_WR(sc, PXP_REG_PXP_INT_MASK_0, 0); 17048 } 17049 17050 ecore_init_block(sc, BLOCK_PXP2, PHASE_COMMON); 17051 bxe_init_pxp(sc); 17052 17053 #ifdef __BIG_ENDIAN 17054 REG_WR(sc, PXP2_REG_RQ_QM_ENDIAN_M, 1); 17055 REG_WR(sc, PXP2_REG_RQ_TM_ENDIAN_M, 1); 17056 REG_WR(sc, PXP2_REG_RQ_SRC_ENDIAN_M, 1); 17057 REG_WR(sc, PXP2_REG_RQ_CDU_ENDIAN_M, 1); 17058 REG_WR(sc, PXP2_REG_RQ_DBG_ENDIAN_M, 1); 17059 /* make sure this value is 0 */ 17060 REG_WR(sc, PXP2_REG_RQ_HC_ENDIAN_M, 0); 17061 17062 //REG_WR(sc, PXP2_REG_RD_PBF_SWAP_MODE, 1); 17063 REG_WR(sc, PXP2_REG_RD_QM_SWAP_MODE, 1); 17064 REG_WR(sc, PXP2_REG_RD_TM_SWAP_MODE, 1); 17065 REG_WR(sc, PXP2_REG_RD_SRC_SWAP_MODE, 1); 17066 REG_WR(sc, PXP2_REG_RD_CDURD_SWAP_MODE, 1); 17067 #endif 17068 17069 ecore_ilt_init_page_size(sc, INITOP_SET); 17070 17071 if (CHIP_REV_IS_FPGA(sc) && CHIP_IS_E1H(sc)) { 17072 REG_WR(sc, PXP2_REG_PGL_TAGS_LIMIT, 0x1); 17073 } 17074 17075 /* let the HW do it's magic... */ 17076 DELAY(100000); 17077 17078 /* finish PXP init */ 17079 val = REG_RD(sc, PXP2_REG_RQ_CFG_DONE); 17080 if (val != 1) { 17081 BLOGE(sc, "PXP2 CFG failed PXP2_REG_RQ_CFG_DONE val = 0x%x\n", 17082 val); 17083 return (-1); 17084 } 17085 val = REG_RD(sc, PXP2_REG_RD_INIT_DONE); 17086 if (val != 1) { 17087 BLOGE(sc, "PXP2 RD_INIT failed val = 0x%x\n", val); 17088 return (-1); 17089 } 17090 17091 BLOGD(sc, DBG_LOAD, "after pxp init\n"); 17092 17093 /* 17094 * Timer bug workaround for E2 only. We need to set the entire ILT to have 17095 * entries with value "0" and valid bit on. This needs to be done by the 17096 * first PF that is loaded in a path (i.e. common phase) 17097 */ 17098 if (!CHIP_IS_E1x(sc)) { 17099 /* 17100 * In E2 there is a bug in the timers block that can cause function 6 / 7 17101 * (i.e. vnic3) to start even if it is marked as "scan-off". 17102 * This occurs when a different function (func2,3) is being marked 17103 * as "scan-off". Real-life scenario for example: if a driver is being 17104 * load-unloaded while func6,7 are down. This will cause the timer to access 17105 * the ilt, translate to a logical address and send a request to read/write. 17106 * Since the ilt for the function that is down is not valid, this will cause 17107 * a translation error which is unrecoverable. 17108 * The Workaround is intended to make sure that when this happens nothing 17109 * fatal will occur. The workaround: 17110 * 1. First PF driver which loads on a path will: 17111 * a. After taking the chip out of reset, by using pretend, 17112 * it will write "0" to the following registers of 17113 * the other vnics. 17114 * REG_WR(pdev, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0); 17115 * REG_WR(pdev, CFC_REG_WEAK_ENABLE_PF,0); 17116 * REG_WR(pdev, CFC_REG_STRONG_ENABLE_PF,0); 17117 * And for itself it will write '1' to 17118 * PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER to enable 17119 * dmae-operations (writing to pram for example.) 17120 * note: can be done for only function 6,7 but cleaner this 17121 * way. 17122 * b. Write zero+valid to the entire ILT. 17123 * c. Init the first_timers_ilt_entry, last_timers_ilt_entry of 17124 * VNIC3 (of that port). The range allocated will be the 17125 * entire ILT. This is needed to prevent ILT range error. 17126 * 2. Any PF driver load flow: 17127 * a. ILT update with the physical addresses of the allocated 17128 * logical pages. 17129 * b. Wait 20msec. - note that this timeout is needed to make 17130 * sure there are no requests in one of the PXP internal 17131 * queues with "old" ILT addresses. 17132 * c. PF enable in the PGLC. 17133 * d. Clear the was_error of the PF in the PGLC. (could have 17134 * occurred while driver was down) 17135 * e. PF enable in the CFC (WEAK + STRONG) 17136 * f. Timers scan enable 17137 * 3. PF driver unload flow: 17138 * a. Clear the Timers scan_en. 17139 * b. Polling for scan_on=0 for that PF. 17140 * c. Clear the PF enable bit in the PXP. 17141 * d. Clear the PF enable in the CFC (WEAK + STRONG) 17142 * e. Write zero+valid to all ILT entries (The valid bit must 17143 * stay set) 17144 * f. If this is VNIC 3 of a port then also init 17145 * first_timers_ilt_entry to zero and last_timers_ilt_entry 17146 * to the last entry in the ILT. 17147 * 17148 * Notes: 17149 * Currently the PF error in the PGLC is non recoverable. 17150 * In the future the there will be a recovery routine for this error. 17151 * Currently attention is masked. 17152 * Having an MCP lock on the load/unload process does not guarantee that 17153 * there is no Timer disable during Func6/7 enable. This is because the 17154 * Timers scan is currently being cleared by the MCP on FLR. 17155 * Step 2.d can be done only for PF6/7 and the driver can also check if 17156 * there is error before clearing it. But the flow above is simpler and 17157 * more general. 17158 * All ILT entries are written by zero+valid and not just PF6/7 17159 * ILT entries since in the future the ILT entries allocation for 17160 * PF-s might be dynamic. 17161 */ 17162 struct ilt_client_info ilt_cli; 17163 struct ecore_ilt ilt; 17164 17165 memset(&ilt_cli, 0, sizeof(struct ilt_client_info)); 17166 memset(&ilt, 0, sizeof(struct ecore_ilt)); 17167 17168 /* initialize dummy TM client */ 17169 ilt_cli.start = 0; 17170 ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1; 17171 ilt_cli.client_num = ILT_CLIENT_TM; 17172 17173 /* 17174 * Step 1: set zeroes to all ilt page entries with valid bit on 17175 * Step 2: set the timers first/last ilt entry to point 17176 * to the entire range to prevent ILT range error for 3rd/4th 17177 * vnic (this code assumes existence of the vnic) 17178 * 17179 * both steps performed by call to ecore_ilt_client_init_op() 17180 * with dummy TM client 17181 * 17182 * we must use pretend since PXP2_REG_RQ_##blk##_FIRST_ILT 17183 * and his brother are split registers 17184 */ 17185 17186 bxe_pretend_func(sc, (SC_PATH(sc) + 6)); 17187 ecore_ilt_client_init_op_ilt(sc, &ilt, &ilt_cli, INITOP_CLEAR); 17188 bxe_pretend_func(sc, SC_ABS_FUNC(sc)); 17189 17190 REG_WR(sc, PXP2_REG_RQ_DRAM_ALIGN, BXE_PXP_DRAM_ALIGN); 17191 REG_WR(sc, PXP2_REG_RQ_DRAM_ALIGN_RD, BXE_PXP_DRAM_ALIGN); 17192 REG_WR(sc, PXP2_REG_RQ_DRAM_ALIGN_SEL, 1); 17193 } 17194 17195 REG_WR(sc, PXP2_REG_RQ_DISABLE_INPUTS, 0); 17196 REG_WR(sc, PXP2_REG_RD_DISABLE_INPUTS, 0); 17197 17198 if (!CHIP_IS_E1x(sc)) { 17199 int factor = CHIP_REV_IS_EMUL(sc) ? 1000 : 17200 (CHIP_REV_IS_FPGA(sc) ? 400 : 0); 17201 17202 ecore_init_block(sc, BLOCK_PGLUE_B, PHASE_COMMON); 17203 ecore_init_block(sc, BLOCK_ATC, PHASE_COMMON); 17204 17205 /* let the HW do it's magic... */ 17206 do { 17207 DELAY(200000); 17208 val = REG_RD(sc, ATC_REG_ATC_INIT_DONE); 17209 } while (factor-- && (val != 1)); 17210 17211 if (val != 1) { 17212 BLOGE(sc, "ATC_INIT failed val = 0x%x\n", val); 17213 return (-1); 17214 } 17215 } 17216 17217 BLOGD(sc, DBG_LOAD, "after pglue and atc init\n"); 17218 17219 ecore_init_block(sc, BLOCK_DMAE, PHASE_COMMON); 17220 17221 bxe_iov_init_dmae(sc); 17222 17223 /* clean the DMAE memory */ 17224 sc->dmae_ready = 1; 17225 ecore_init_fill(sc, TSEM_REG_PRAM, 0, 8, 1); 17226 17227 ecore_init_block(sc, BLOCK_TCM, PHASE_COMMON); 17228 17229 ecore_init_block(sc, BLOCK_UCM, PHASE_COMMON); 17230 17231 ecore_init_block(sc, BLOCK_CCM, PHASE_COMMON); 17232 17233 ecore_init_block(sc, BLOCK_XCM, PHASE_COMMON); 17234 17235 bxe_read_dmae(sc, XSEM_REG_PASSIVE_BUFFER, 3); 17236 bxe_read_dmae(sc, CSEM_REG_PASSIVE_BUFFER, 3); 17237 bxe_read_dmae(sc, TSEM_REG_PASSIVE_BUFFER, 3); 17238 bxe_read_dmae(sc, USEM_REG_PASSIVE_BUFFER, 3); 17239 17240 ecore_init_block(sc, BLOCK_QM, PHASE_COMMON); 17241 17242 /* QM queues pointers table */ 17243 ecore_qm_init_ptr_table(sc, sc->qm_cid_count, INITOP_SET); 17244 17245 /* soft reset pulse */ 17246 REG_WR(sc, QM_REG_SOFT_RESET, 1); 17247 REG_WR(sc, QM_REG_SOFT_RESET, 0); 17248 17249 if (CNIC_SUPPORT(sc)) 17250 ecore_init_block(sc, BLOCK_TM, PHASE_COMMON); 17251 17252 ecore_init_block(sc, BLOCK_DORQ, PHASE_COMMON); 17253 REG_WR(sc, DORQ_REG_DPM_CID_OFST, BXE_DB_SHIFT); 17254 if (!CHIP_REV_IS_SLOW(sc)) { 17255 /* enable hw interrupt from doorbell Q */ 17256 REG_WR(sc, DORQ_REG_DORQ_INT_MASK, 0); 17257 } 17258 17259 ecore_init_block(sc, BLOCK_BRB1, PHASE_COMMON); 17260 17261 ecore_init_block(sc, BLOCK_PRS, PHASE_COMMON); 17262 REG_WR(sc, PRS_REG_A_PRSU_20, 0xf); 17263 17264 if (!CHIP_IS_E1(sc)) { 17265 REG_WR(sc, PRS_REG_E1HOV_MODE, sc->devinfo.mf_info.path_has_ovlan); 17266 } 17267 17268 if (!CHIP_IS_E1x(sc) && !CHIP_IS_E3B0(sc)) { 17269 if (IS_MF_AFEX(sc)) { 17270 /* 17271 * configure that AFEX and VLAN headers must be 17272 * received in AFEX mode 17273 */ 17274 REG_WR(sc, PRS_REG_HDRS_AFTER_BASIC, 0xE); 17275 REG_WR(sc, PRS_REG_MUST_HAVE_HDRS, 0xA); 17276 REG_WR(sc, PRS_REG_HDRS_AFTER_TAG_0, 0x6); 17277 REG_WR(sc, PRS_REG_TAG_ETHERTYPE_0, 0x8926); 17278 REG_WR(sc, PRS_REG_TAG_LEN_0, 0x4); 17279 } else { 17280 /* 17281 * Bit-map indicating which L2 hdrs may appear 17282 * after the basic Ethernet header 17283 */ 17284 REG_WR(sc, PRS_REG_HDRS_AFTER_BASIC, 17285 sc->devinfo.mf_info.path_has_ovlan ? 7 : 6); 17286 } 17287 } 17288 17289 ecore_init_block(sc, BLOCK_TSDM, PHASE_COMMON); 17290 ecore_init_block(sc, BLOCK_CSDM, PHASE_COMMON); 17291 ecore_init_block(sc, BLOCK_USDM, PHASE_COMMON); 17292 ecore_init_block(sc, BLOCK_XSDM, PHASE_COMMON); 17293 17294 if (!CHIP_IS_E1x(sc)) { 17295 /* reset VFC memories */ 17296 REG_WR(sc, TSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST, 17297 VFC_MEMORIES_RST_REG_CAM_RST | 17298 VFC_MEMORIES_RST_REG_RAM_RST); 17299 REG_WR(sc, XSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST, 17300 VFC_MEMORIES_RST_REG_CAM_RST | 17301 VFC_MEMORIES_RST_REG_RAM_RST); 17302 17303 DELAY(20000); 17304 } 17305 17306 ecore_init_block(sc, BLOCK_TSEM, PHASE_COMMON); 17307 ecore_init_block(sc, BLOCK_USEM, PHASE_COMMON); 17308 ecore_init_block(sc, BLOCK_CSEM, PHASE_COMMON); 17309 ecore_init_block(sc, BLOCK_XSEM, PHASE_COMMON); 17310 17311 /* sync semi rtc */ 17312 REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 17313 0x80000000); 17314 REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 17315 0x80000000); 17316 17317 ecore_init_block(sc, BLOCK_UPB, PHASE_COMMON); 17318 ecore_init_block(sc, BLOCK_XPB, PHASE_COMMON); 17319 ecore_init_block(sc, BLOCK_PBF, PHASE_COMMON); 17320 17321 if (!CHIP_IS_E1x(sc)) { 17322 if (IS_MF_AFEX(sc)) { 17323 /* 17324 * configure that AFEX and VLAN headers must be 17325 * sent in AFEX mode 17326 */ 17327 REG_WR(sc, PBF_REG_HDRS_AFTER_BASIC, 0xE); 17328 REG_WR(sc, PBF_REG_MUST_HAVE_HDRS, 0xA); 17329 REG_WR(sc, PBF_REG_HDRS_AFTER_TAG_0, 0x6); 17330 REG_WR(sc, PBF_REG_TAG_ETHERTYPE_0, 0x8926); 17331 REG_WR(sc, PBF_REG_TAG_LEN_0, 0x4); 17332 } else { 17333 REG_WR(sc, PBF_REG_HDRS_AFTER_BASIC, 17334 sc->devinfo.mf_info.path_has_ovlan ? 7 : 6); 17335 } 17336 } 17337 17338 REG_WR(sc, SRC_REG_SOFT_RST, 1); 17339 17340 ecore_init_block(sc, BLOCK_SRC, PHASE_COMMON); 17341 17342 if (CNIC_SUPPORT(sc)) { 17343 REG_WR(sc, SRC_REG_KEYSEARCH_0, 0x63285672); 17344 REG_WR(sc, SRC_REG_KEYSEARCH_1, 0x24b8f2cc); 17345 REG_WR(sc, SRC_REG_KEYSEARCH_2, 0x223aef9b); 17346 REG_WR(sc, SRC_REG_KEYSEARCH_3, 0x26001e3a); 17347 REG_WR(sc, SRC_REG_KEYSEARCH_4, 0x7ae91116); 17348 REG_WR(sc, SRC_REG_KEYSEARCH_5, 0x5ce5230b); 17349 REG_WR(sc, SRC_REG_KEYSEARCH_6, 0x298d8adf); 17350 REG_WR(sc, SRC_REG_KEYSEARCH_7, 0x6eb0ff09); 17351 REG_WR(sc, SRC_REG_KEYSEARCH_8, 0x1830f82f); 17352 REG_WR(sc, SRC_REG_KEYSEARCH_9, 0x01e46be7); 17353 } 17354 REG_WR(sc, SRC_REG_SOFT_RST, 0); 17355 17356 if (sizeof(union cdu_context) != 1024) { 17357 /* we currently assume that a context is 1024 bytes */ 17358 BLOGE(sc, "please adjust the size of cdu_context(%ld)\n", 17359 (long)sizeof(union cdu_context)); 17360 } 17361 17362 ecore_init_block(sc, BLOCK_CDU, PHASE_COMMON); 17363 val = (4 << 24) + (0 << 12) + 1024; 17364 REG_WR(sc, CDU_REG_CDU_GLOBAL_PARAMS, val); 17365 17366 ecore_init_block(sc, BLOCK_CFC, PHASE_COMMON); 17367 17368 REG_WR(sc, CFC_REG_INIT_REG, 0x7FF); 17369 /* enable context validation interrupt from CFC */ 17370 REG_WR(sc, CFC_REG_CFC_INT_MASK, 0); 17371 17372 /* set the thresholds to prevent CFC/CDU race */ 17373 REG_WR(sc, CFC_REG_DEBUG0, 0x20020000); 17374 ecore_init_block(sc, BLOCK_HC, PHASE_COMMON); 17375 17376 if (!CHIP_IS_E1x(sc) && BXE_NOMCP(sc)) { 17377 REG_WR(sc, IGU_REG_RESET_MEMORIES, 0x36); 17378 } 17379 17380 ecore_init_block(sc, BLOCK_IGU, PHASE_COMMON); 17381 ecore_init_block(sc, BLOCK_MISC_AEU, PHASE_COMMON); 17382 17383 /* Reset PCIE errors for debug */ 17384 REG_WR(sc, 0x2814, 0xffffffff); 17385 REG_WR(sc, 0x3820, 0xffffffff); 17386 17387 if (!CHIP_IS_E1x(sc)) { 17388 REG_WR(sc, PCICFG_OFFSET + PXPCS_TL_CONTROL_5, 17389 (PXPCS_TL_CONTROL_5_ERR_UNSPPORT1 | 17390 PXPCS_TL_CONTROL_5_ERR_UNSPPORT)); 17391 REG_WR(sc, PCICFG_OFFSET + PXPCS_TL_FUNC345_STAT, 17392 (PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT4 | 17393 PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT3 | 17394 PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT2)); 17395 REG_WR(sc, PCICFG_OFFSET + PXPCS_TL_FUNC678_STAT, 17396 (PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT7 | 17397 PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT6 | 17398 PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT5)); 17399 } 17400 17401 ecore_init_block(sc, BLOCK_NIG, PHASE_COMMON); 17402 17403 if (!CHIP_IS_E1(sc)) { 17404 /* in E3 this done in per-port section */ 17405 if (!CHIP_IS_E3(sc)) 17406 REG_WR(sc, NIG_REG_LLH_MF_MODE, IS_MF(sc)); 17407 } 17408 17409 if (CHIP_IS_E1H(sc)) { 17410 /* not applicable for E2 (and above ...) */ 17411 REG_WR(sc, NIG_REG_LLH_E1HOV_MODE, IS_MF_SD(sc)); 17412 } 17413 17414 if (CHIP_REV_IS_SLOW(sc)) { 17415 DELAY(200000); 17416 } 17417 17418 /* finish CFC init */ 17419 val = reg_poll(sc, CFC_REG_LL_INIT_DONE, 1, 100, 10); 17420 if (val != 1) { 17421 BLOGE(sc, "CFC LL_INIT failed val=0x%x\n", val); 17422 return (-1); 17423 } 17424 val = reg_poll(sc, CFC_REG_AC_INIT_DONE, 1, 100, 10); 17425 if (val != 1) { 17426 BLOGE(sc, "CFC AC_INIT failed val=0x%x\n", val); 17427 return (-1); 17428 } 17429 val = reg_poll(sc, CFC_REG_CAM_INIT_DONE, 1, 100, 10); 17430 if (val != 1) { 17431 BLOGE(sc, "CFC CAM_INIT failed val=0x%x\n", val); 17432 return (-1); 17433 } 17434 REG_WR(sc, CFC_REG_DEBUG0, 0); 17435 17436 if (CHIP_IS_E1(sc)) { 17437 /* read NIG statistic to see if this is our first up since powerup */ 17438 bxe_read_dmae(sc, NIG_REG_STAT2_BRB_OCTET, 2); 17439 val = *BXE_SP(sc, wb_data[0]); 17440 17441 /* do internal memory self test */ 17442 if ((val == 0) && bxe_int_mem_test(sc)) { 17443 BLOGE(sc, "internal mem self test failed val=0x%x\n", val); 17444 return (-1); 17445 } 17446 } 17447 17448 bxe_setup_fan_failure_detection(sc); 17449 17450 /* clear PXP2 attentions */ 17451 REG_RD(sc, PXP2_REG_PXP2_INT_STS_CLR_0); 17452 17453 bxe_enable_blocks_attention(sc); 17454 17455 if (!CHIP_REV_IS_SLOW(sc)) { 17456 ecore_enable_blocks_parity(sc); 17457 } 17458 17459 if (!BXE_NOMCP(sc)) { 17460 if (CHIP_IS_E1x(sc)) { 17461 bxe_common_init_phy(sc); 17462 } 17463 } 17464 17465 return (0); 17466 } 17467 17468 /** 17469 * bxe_init_hw_common_chip - init HW at the COMMON_CHIP phase. 17470 * 17471 * @sc: driver handle 17472 */ 17473 static int 17474 bxe_init_hw_common_chip(struct bxe_softc *sc) 17475 { 17476 int rc = bxe_init_hw_common(sc); 17477 17478 if (rc) { 17479 BLOGE(sc, "bxe_init_hw_common failed rc=%d\n", rc); 17480 return (rc); 17481 } 17482 17483 /* In E2 2-PORT mode, same ext phy is used for the two paths */ 17484 if (!BXE_NOMCP(sc)) { 17485 bxe_common_init_phy(sc); 17486 } 17487 17488 return (0); 17489 } 17490 17491 static int 17492 bxe_init_hw_port(struct bxe_softc *sc) 17493 { 17494 int port = SC_PORT(sc); 17495 int init_phase = port ? PHASE_PORT1 : PHASE_PORT0; 17496 uint32_t low, high; 17497 uint32_t val; 17498 17499 BLOGD(sc, DBG_LOAD, "starting port init for port %d\n", port); 17500 17501 REG_WR(sc, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0); 17502 17503 ecore_init_block(sc, BLOCK_MISC, init_phase); 17504 ecore_init_block(sc, BLOCK_PXP, init_phase); 17505 ecore_init_block(sc, BLOCK_PXP2, init_phase); 17506 17507 /* 17508 * Timers bug workaround: disables the pf_master bit in pglue at 17509 * common phase, we need to enable it here before any dmae access are 17510 * attempted. Therefore we manually added the enable-master to the 17511 * port phase (it also happens in the function phase) 17512 */ 17513 if (!CHIP_IS_E1x(sc)) { 17514 REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1); 17515 } 17516 17517 ecore_init_block(sc, BLOCK_ATC, init_phase); 17518 ecore_init_block(sc, BLOCK_DMAE, init_phase); 17519 ecore_init_block(sc, BLOCK_PGLUE_B, init_phase); 17520 ecore_init_block(sc, BLOCK_QM, init_phase); 17521 17522 ecore_init_block(sc, BLOCK_TCM, init_phase); 17523 ecore_init_block(sc, BLOCK_UCM, init_phase); 17524 ecore_init_block(sc, BLOCK_CCM, init_phase); 17525 ecore_init_block(sc, BLOCK_XCM, init_phase); 17526 17527 /* QM cid (connection) count */ 17528 ecore_qm_init_cid_count(sc, sc->qm_cid_count, INITOP_SET); 17529 17530 if (CNIC_SUPPORT(sc)) { 17531 ecore_init_block(sc, BLOCK_TM, init_phase); 17532 REG_WR(sc, TM_REG_LIN0_SCAN_TIME + port*4, 20); 17533 REG_WR(sc, TM_REG_LIN0_MAX_ACTIVE_CID + port*4, 31); 17534 } 17535 17536 ecore_init_block(sc, BLOCK_DORQ, init_phase); 17537 17538 ecore_init_block(sc, BLOCK_BRB1, init_phase); 17539 17540 if (CHIP_IS_E1(sc) || CHIP_IS_E1H(sc)) { 17541 if (IS_MF(sc)) { 17542 low = (BXE_ONE_PORT(sc) ? 160 : 246); 17543 } else if (sc->mtu > 4096) { 17544 if (BXE_ONE_PORT(sc)) { 17545 low = 160; 17546 } else { 17547 val = sc->mtu; 17548 /* (24*1024 + val*4)/256 */ 17549 low = (96 + (val / 64) + ((val % 64) ? 1 : 0)); 17550 } 17551 } else { 17552 low = (BXE_ONE_PORT(sc) ? 80 : 160); 17553 } 17554 high = (low + 56); /* 14*1024/256 */ 17555 REG_WR(sc, BRB1_REG_PAUSE_LOW_THRESHOLD_0 + port*4, low); 17556 REG_WR(sc, BRB1_REG_PAUSE_HIGH_THRESHOLD_0 + port*4, high); 17557 } 17558 17559 if (CHIP_IS_MODE_4_PORT(sc)) { 17560 REG_WR(sc, SC_PORT(sc) ? 17561 BRB1_REG_MAC_GUARANTIED_1 : 17562 BRB1_REG_MAC_GUARANTIED_0, 40); 17563 } 17564 17565 ecore_init_block(sc, BLOCK_PRS, init_phase); 17566 if (CHIP_IS_E3B0(sc)) { 17567 if (IS_MF_AFEX(sc)) { 17568 /* configure headers for AFEX mode */ 17569 REG_WR(sc, SC_PORT(sc) ? 17570 PRS_REG_HDRS_AFTER_BASIC_PORT_1 : 17571 PRS_REG_HDRS_AFTER_BASIC_PORT_0, 0xE); 17572 REG_WR(sc, SC_PORT(sc) ? 17573 PRS_REG_HDRS_AFTER_TAG_0_PORT_1 : 17574 PRS_REG_HDRS_AFTER_TAG_0_PORT_0, 0x6); 17575 REG_WR(sc, SC_PORT(sc) ? 17576 PRS_REG_MUST_HAVE_HDRS_PORT_1 : 17577 PRS_REG_MUST_HAVE_HDRS_PORT_0, 0xA); 17578 } else { 17579 /* Ovlan exists only if we are in multi-function + 17580 * switch-dependent mode, in switch-independent there 17581 * is no ovlan headers 17582 */ 17583 REG_WR(sc, SC_PORT(sc) ? 17584 PRS_REG_HDRS_AFTER_BASIC_PORT_1 : 17585 PRS_REG_HDRS_AFTER_BASIC_PORT_0, 17586 (sc->devinfo.mf_info.path_has_ovlan ? 7 : 6)); 17587 } 17588 } 17589 17590 ecore_init_block(sc, BLOCK_TSDM, init_phase); 17591 ecore_init_block(sc, BLOCK_CSDM, init_phase); 17592 ecore_init_block(sc, BLOCK_USDM, init_phase); 17593 ecore_init_block(sc, BLOCK_XSDM, init_phase); 17594 17595 ecore_init_block(sc, BLOCK_TSEM, init_phase); 17596 ecore_init_block(sc, BLOCK_USEM, init_phase); 17597 ecore_init_block(sc, BLOCK_CSEM, init_phase); 17598 ecore_init_block(sc, BLOCK_XSEM, init_phase); 17599 17600 ecore_init_block(sc, BLOCK_UPB, init_phase); 17601 ecore_init_block(sc, BLOCK_XPB, init_phase); 17602 17603 ecore_init_block(sc, BLOCK_PBF, init_phase); 17604 17605 if (CHIP_IS_E1x(sc)) { 17606 /* configure PBF to work without PAUSE mtu 9000 */ 17607 REG_WR(sc, PBF_REG_P0_PAUSE_ENABLE + port*4, 0); 17608 17609 /* update threshold */ 17610 REG_WR(sc, PBF_REG_P0_ARB_THRSH + port*4, (9040/16)); 17611 /* update init credit */ 17612 REG_WR(sc, PBF_REG_P0_INIT_CRD + port*4, (9040/16) + 553 - 22); 17613 17614 /* probe changes */ 17615 REG_WR(sc, PBF_REG_INIT_P0 + port*4, 1); 17616 DELAY(50); 17617 REG_WR(sc, PBF_REG_INIT_P0 + port*4, 0); 17618 } 17619 17620 if (CNIC_SUPPORT(sc)) { 17621 ecore_init_block(sc, BLOCK_SRC, init_phase); 17622 } 17623 17624 ecore_init_block(sc, BLOCK_CDU, init_phase); 17625 ecore_init_block(sc, BLOCK_CFC, init_phase); 17626 17627 if (CHIP_IS_E1(sc)) { 17628 REG_WR(sc, HC_REG_LEADING_EDGE_0 + port*8, 0); 17629 REG_WR(sc, HC_REG_TRAILING_EDGE_0 + port*8, 0); 17630 } 17631 ecore_init_block(sc, BLOCK_HC, init_phase); 17632 17633 ecore_init_block(sc, BLOCK_IGU, init_phase); 17634 17635 ecore_init_block(sc, BLOCK_MISC_AEU, init_phase); 17636 /* init aeu_mask_attn_func_0/1: 17637 * - SF mode: bits 3-7 are masked. only bits 0-2 are in use 17638 * - MF mode: bit 3 is masked. bits 0-2 are in use as in SF 17639 * bits 4-7 are used for "per vn group attention" */ 17640 val = IS_MF(sc) ? 0xF7 : 0x7; 17641 /* Enable DCBX attention for all but E1 */ 17642 val |= CHIP_IS_E1(sc) ? 0 : 0x10; 17643 REG_WR(sc, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, val); 17644 17645 ecore_init_block(sc, BLOCK_NIG, init_phase); 17646 17647 if (!CHIP_IS_E1x(sc)) { 17648 /* Bit-map indicating which L2 hdrs may appear after the 17649 * basic Ethernet header 17650 */ 17651 if (IS_MF_AFEX(sc)) { 17652 REG_WR(sc, SC_PORT(sc) ? 17653 NIG_REG_P1_HDRS_AFTER_BASIC : 17654 NIG_REG_P0_HDRS_AFTER_BASIC, 0xE); 17655 } else { 17656 REG_WR(sc, SC_PORT(sc) ? 17657 NIG_REG_P1_HDRS_AFTER_BASIC : 17658 NIG_REG_P0_HDRS_AFTER_BASIC, 17659 IS_MF_SD(sc) ? 7 : 6); 17660 } 17661 17662 if (CHIP_IS_E3(sc)) { 17663 REG_WR(sc, SC_PORT(sc) ? 17664 NIG_REG_LLH1_MF_MODE : 17665 NIG_REG_LLH_MF_MODE, IS_MF(sc)); 17666 } 17667 } 17668 if (!CHIP_IS_E3(sc)) { 17669 REG_WR(sc, NIG_REG_XGXS_SERDES0_MODE_SEL + port*4, 1); 17670 } 17671 17672 if (!CHIP_IS_E1(sc)) { 17673 /* 0x2 disable mf_ov, 0x1 enable */ 17674 REG_WR(sc, NIG_REG_LLH0_BRB1_DRV_MASK_MF + port*4, 17675 (IS_MF_SD(sc) ? 0x1 : 0x2)); 17676 17677 if (!CHIP_IS_E1x(sc)) { 17678 val = 0; 17679 switch (sc->devinfo.mf_info.mf_mode) { 17680 case MULTI_FUNCTION_SD: 17681 val = 1; 17682 break; 17683 case MULTI_FUNCTION_SI: 17684 case MULTI_FUNCTION_AFEX: 17685 val = 2; 17686 break; 17687 } 17688 17689 REG_WR(sc, (SC_PORT(sc) ? NIG_REG_LLH1_CLS_TYPE : 17690 NIG_REG_LLH0_CLS_TYPE), val); 17691 } 17692 REG_WR(sc, NIG_REG_LLFC_ENABLE_0 + port*4, 0); 17693 REG_WR(sc, NIG_REG_LLFC_OUT_EN_0 + port*4, 0); 17694 REG_WR(sc, NIG_REG_PAUSE_ENABLE_0 + port*4, 1); 17695 } 17696 17697 /* If SPIO5 is set to generate interrupts, enable it for this port */ 17698 val = REG_RD(sc, MISC_REG_SPIO_EVENT_EN); 17699 if (val & MISC_SPIO_SPIO5) { 17700 uint32_t reg_addr = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 : 17701 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0); 17702 val = REG_RD(sc, reg_addr); 17703 val |= AEU_INPUTS_ATTN_BITS_SPIO5; 17704 REG_WR(sc, reg_addr, val); 17705 } 17706 17707 return (0); 17708 } 17709 17710 static uint32_t 17711 bxe_flr_clnup_reg_poll(struct bxe_softc *sc, 17712 uint32_t reg, 17713 uint32_t expected, 17714 uint32_t poll_count) 17715 { 17716 uint32_t cur_cnt = poll_count; 17717 uint32_t val; 17718 17719 while ((val = REG_RD(sc, reg)) != expected && cur_cnt--) { 17720 DELAY(FLR_WAIT_INTERVAL); 17721 } 17722 17723 return (val); 17724 } 17725 17726 static int 17727 bxe_flr_clnup_poll_hw_counter(struct bxe_softc *sc, 17728 uint32_t reg, 17729 char *msg, 17730 uint32_t poll_cnt) 17731 { 17732 uint32_t val = bxe_flr_clnup_reg_poll(sc, reg, 0, poll_cnt); 17733 17734 if (val != 0) { 17735 BLOGE(sc, "%s usage count=%d\n", msg, val); 17736 return (1); 17737 } 17738 17739 return (0); 17740 } 17741 17742 /* Common routines with VF FLR cleanup */ 17743 static uint32_t 17744 bxe_flr_clnup_poll_count(struct bxe_softc *sc) 17745 { 17746 /* adjust polling timeout */ 17747 if (CHIP_REV_IS_EMUL(sc)) { 17748 return (FLR_POLL_CNT * 2000); 17749 } 17750 17751 if (CHIP_REV_IS_FPGA(sc)) { 17752 return (FLR_POLL_CNT * 120); 17753 } 17754 17755 return (FLR_POLL_CNT); 17756 } 17757 17758 static int 17759 bxe_poll_hw_usage_counters(struct bxe_softc *sc, 17760 uint32_t poll_cnt) 17761 { 17762 /* wait for CFC PF usage-counter to zero (includes all the VFs) */ 17763 if (bxe_flr_clnup_poll_hw_counter(sc, 17764 CFC_REG_NUM_LCIDS_INSIDE_PF, 17765 "CFC PF usage counter timed out", 17766 poll_cnt)) { 17767 return (1); 17768 } 17769 17770 /* Wait for DQ PF usage-counter to zero (until DQ cleanup) */ 17771 if (bxe_flr_clnup_poll_hw_counter(sc, 17772 DORQ_REG_PF_USAGE_CNT, 17773 "DQ PF usage counter timed out", 17774 poll_cnt)) { 17775 return (1); 17776 } 17777 17778 /* Wait for QM PF usage-counter to zero (until DQ cleanup) */ 17779 if (bxe_flr_clnup_poll_hw_counter(sc, 17780 QM_REG_PF_USG_CNT_0 + 4*SC_FUNC(sc), 17781 "QM PF usage counter timed out", 17782 poll_cnt)) { 17783 return (1); 17784 } 17785 17786 /* Wait for Timer PF usage-counters to zero (until DQ cleanup) */ 17787 if (bxe_flr_clnup_poll_hw_counter(sc, 17788 TM_REG_LIN0_VNIC_UC + 4*SC_PORT(sc), 17789 "Timers VNIC usage counter timed out", 17790 poll_cnt)) { 17791 return (1); 17792 } 17793 17794 if (bxe_flr_clnup_poll_hw_counter(sc, 17795 TM_REG_LIN0_NUM_SCANS + 4*SC_PORT(sc), 17796 "Timers NUM_SCANS usage counter timed out", 17797 poll_cnt)) { 17798 return (1); 17799 } 17800 17801 /* Wait DMAE PF usage counter to zero */ 17802 if (bxe_flr_clnup_poll_hw_counter(sc, 17803 dmae_reg_go_c[INIT_DMAE_C(sc)], 17804 "DMAE dommand register timed out", 17805 poll_cnt)) { 17806 return (1); 17807 } 17808 17809 return (0); 17810 } 17811 17812 #define OP_GEN_PARAM(param) \ 17813 (((param) << SDM_OP_GEN_COMP_PARAM_SHIFT) & SDM_OP_GEN_COMP_PARAM) 17814 #define OP_GEN_TYPE(type) \ 17815 (((type) << SDM_OP_GEN_COMP_TYPE_SHIFT) & SDM_OP_GEN_COMP_TYPE) 17816 #define OP_GEN_AGG_VECT(index) \ 17817 (((index) << SDM_OP_GEN_AGG_VECT_IDX_SHIFT) & SDM_OP_GEN_AGG_VECT_IDX) 17818 17819 static int 17820 bxe_send_final_clnup(struct bxe_softc *sc, 17821 uint8_t clnup_func, 17822 uint32_t poll_cnt) 17823 { 17824 uint32_t op_gen_command = 0; 17825 uint32_t comp_addr = (BAR_CSTRORM_INTMEM + 17826 CSTORM_FINAL_CLEANUP_COMPLETE_OFFSET(clnup_func)); 17827 int ret = 0; 17828 17829 if (REG_RD(sc, comp_addr)) { 17830 BLOGE(sc, "Cleanup complete was not 0 before sending\n"); 17831 return (1); 17832 } 17833 17834 op_gen_command |= OP_GEN_PARAM(XSTORM_AGG_INT_FINAL_CLEANUP_INDEX); 17835 op_gen_command |= OP_GEN_TYPE(XSTORM_AGG_INT_FINAL_CLEANUP_COMP_TYPE); 17836 op_gen_command |= OP_GEN_AGG_VECT(clnup_func); 17837 op_gen_command |= 1 << SDM_OP_GEN_AGG_VECT_IDX_VALID_SHIFT; 17838 17839 BLOGD(sc, DBG_LOAD, "sending FW Final cleanup\n"); 17840 REG_WR(sc, XSDM_REG_OPERATION_GEN, op_gen_command); 17841 17842 if (bxe_flr_clnup_reg_poll(sc, comp_addr, 1, poll_cnt) != 1) { 17843 BLOGE(sc, "FW final cleanup did not succeed\n"); 17844 BLOGD(sc, DBG_LOAD, "At timeout completion address contained %x\n", 17845 (REG_RD(sc, comp_addr))); 17846 bxe_panic(sc, ("FLR cleanup failed\n")); 17847 return (1); 17848 } 17849 17850 /* Zero completion for nxt FLR */ 17851 REG_WR(sc, comp_addr, 0); 17852 17853 return (ret); 17854 } 17855 17856 static void 17857 bxe_pbf_pN_buf_flushed(struct bxe_softc *sc, 17858 struct pbf_pN_buf_regs *regs, 17859 uint32_t poll_count) 17860 { 17861 uint32_t init_crd, crd, crd_start, crd_freed, crd_freed_start; 17862 uint32_t cur_cnt = poll_count; 17863 17864 crd_freed = crd_freed_start = REG_RD(sc, regs->crd_freed); 17865 crd = crd_start = REG_RD(sc, regs->crd); 17866 init_crd = REG_RD(sc, regs->init_crd); 17867 17868 BLOGD(sc, DBG_LOAD, "INIT CREDIT[%d] : %x\n", regs->pN, init_crd); 17869 BLOGD(sc, DBG_LOAD, "CREDIT[%d] : s:%x\n", regs->pN, crd); 17870 BLOGD(sc, DBG_LOAD, "CREDIT_FREED[%d]: s:%x\n", regs->pN, crd_freed); 17871 17872 while ((crd != init_crd) && 17873 ((uint32_t)((int32_t)crd_freed - (int32_t)crd_freed_start) < 17874 (init_crd - crd_start))) { 17875 if (cur_cnt--) { 17876 DELAY(FLR_WAIT_INTERVAL); 17877 crd = REG_RD(sc, regs->crd); 17878 crd_freed = REG_RD(sc, regs->crd_freed); 17879 } else { 17880 BLOGD(sc, DBG_LOAD, "PBF tx buffer[%d] timed out\n", regs->pN); 17881 BLOGD(sc, DBG_LOAD, "CREDIT[%d] : c:%x\n", regs->pN, crd); 17882 BLOGD(sc, DBG_LOAD, "CREDIT_FREED[%d]: c:%x\n", regs->pN, crd_freed); 17883 break; 17884 } 17885 } 17886 17887 BLOGD(sc, DBG_LOAD, "Waited %d*%d usec for PBF tx buffer[%d]\n", 17888 poll_count-cur_cnt, FLR_WAIT_INTERVAL, regs->pN); 17889 } 17890 17891 static void 17892 bxe_pbf_pN_cmd_flushed(struct bxe_softc *sc, 17893 struct pbf_pN_cmd_regs *regs, 17894 uint32_t poll_count) 17895 { 17896 uint32_t occup, to_free, freed, freed_start; 17897 uint32_t cur_cnt = poll_count; 17898 17899 occup = to_free = REG_RD(sc, regs->lines_occup); 17900 freed = freed_start = REG_RD(sc, regs->lines_freed); 17901 17902 BLOGD(sc, DBG_LOAD, "OCCUPANCY[%d] : s:%x\n", regs->pN, occup); 17903 BLOGD(sc, DBG_LOAD, "LINES_FREED[%d] : s:%x\n", regs->pN, freed); 17904 17905 while (occup && 17906 ((uint32_t)((int32_t)freed - (int32_t)freed_start) < to_free)) { 17907 if (cur_cnt--) { 17908 DELAY(FLR_WAIT_INTERVAL); 17909 occup = REG_RD(sc, regs->lines_occup); 17910 freed = REG_RD(sc, regs->lines_freed); 17911 } else { 17912 BLOGD(sc, DBG_LOAD, "PBF cmd queue[%d] timed out\n", regs->pN); 17913 BLOGD(sc, DBG_LOAD, "OCCUPANCY[%d] : s:%x\n", regs->pN, occup); 17914 BLOGD(sc, DBG_LOAD, "LINES_FREED[%d] : s:%x\n", regs->pN, freed); 17915 break; 17916 } 17917 } 17918 17919 BLOGD(sc, DBG_LOAD, "Waited %d*%d usec for PBF cmd queue[%d]\n", 17920 poll_count - cur_cnt, FLR_WAIT_INTERVAL, regs->pN); 17921 } 17922 17923 static void 17924 bxe_tx_hw_flushed(struct bxe_softc *sc, uint32_t poll_count) 17925 { 17926 struct pbf_pN_cmd_regs cmd_regs[] = { 17927 {0, (CHIP_IS_E3B0(sc)) ? 17928 PBF_REG_TQ_OCCUPANCY_Q0 : 17929 PBF_REG_P0_TQ_OCCUPANCY, 17930 (CHIP_IS_E3B0(sc)) ? 17931 PBF_REG_TQ_LINES_FREED_CNT_Q0 : 17932 PBF_REG_P0_TQ_LINES_FREED_CNT}, 17933 {1, (CHIP_IS_E3B0(sc)) ? 17934 PBF_REG_TQ_OCCUPANCY_Q1 : 17935 PBF_REG_P1_TQ_OCCUPANCY, 17936 (CHIP_IS_E3B0(sc)) ? 17937 PBF_REG_TQ_LINES_FREED_CNT_Q1 : 17938 PBF_REG_P1_TQ_LINES_FREED_CNT}, 17939 {4, (CHIP_IS_E3B0(sc)) ? 17940 PBF_REG_TQ_OCCUPANCY_LB_Q : 17941 PBF_REG_P4_TQ_OCCUPANCY, 17942 (CHIP_IS_E3B0(sc)) ? 17943 PBF_REG_TQ_LINES_FREED_CNT_LB_Q : 17944 PBF_REG_P4_TQ_LINES_FREED_CNT} 17945 }; 17946 17947 struct pbf_pN_buf_regs buf_regs[] = { 17948 {0, (CHIP_IS_E3B0(sc)) ? 17949 PBF_REG_INIT_CRD_Q0 : 17950 PBF_REG_P0_INIT_CRD , 17951 (CHIP_IS_E3B0(sc)) ? 17952 PBF_REG_CREDIT_Q0 : 17953 PBF_REG_P0_CREDIT, 17954 (CHIP_IS_E3B0(sc)) ? 17955 PBF_REG_INTERNAL_CRD_FREED_CNT_Q0 : 17956 PBF_REG_P0_INTERNAL_CRD_FREED_CNT}, 17957 {1, (CHIP_IS_E3B0(sc)) ? 17958 PBF_REG_INIT_CRD_Q1 : 17959 PBF_REG_P1_INIT_CRD, 17960 (CHIP_IS_E3B0(sc)) ? 17961 PBF_REG_CREDIT_Q1 : 17962 PBF_REG_P1_CREDIT, 17963 (CHIP_IS_E3B0(sc)) ? 17964 PBF_REG_INTERNAL_CRD_FREED_CNT_Q1 : 17965 PBF_REG_P1_INTERNAL_CRD_FREED_CNT}, 17966 {4, (CHIP_IS_E3B0(sc)) ? 17967 PBF_REG_INIT_CRD_LB_Q : 17968 PBF_REG_P4_INIT_CRD, 17969 (CHIP_IS_E3B0(sc)) ? 17970 PBF_REG_CREDIT_LB_Q : 17971 PBF_REG_P4_CREDIT, 17972 (CHIP_IS_E3B0(sc)) ? 17973 PBF_REG_INTERNAL_CRD_FREED_CNT_LB_Q : 17974 PBF_REG_P4_INTERNAL_CRD_FREED_CNT}, 17975 }; 17976 17977 int i; 17978 17979 /* Verify the command queues are flushed P0, P1, P4 */ 17980 for (i = 0; i < ARRAY_SIZE(cmd_regs); i++) { 17981 bxe_pbf_pN_cmd_flushed(sc, &cmd_regs[i], poll_count); 17982 } 17983 17984 /* Verify the transmission buffers are flushed P0, P1, P4 */ 17985 for (i = 0; i < ARRAY_SIZE(buf_regs); i++) { 17986 bxe_pbf_pN_buf_flushed(sc, &buf_regs[i], poll_count); 17987 } 17988 } 17989 17990 static void 17991 bxe_hw_enable_status(struct bxe_softc *sc) 17992 { 17993 uint32_t val; 17994 17995 val = REG_RD(sc, CFC_REG_WEAK_ENABLE_PF); 17996 BLOGD(sc, DBG_LOAD, "CFC_REG_WEAK_ENABLE_PF is 0x%x\n", val); 17997 17998 val = REG_RD(sc, PBF_REG_DISABLE_PF); 17999 BLOGD(sc, DBG_LOAD, "PBF_REG_DISABLE_PF is 0x%x\n", val); 18000 18001 val = REG_RD(sc, IGU_REG_PCI_PF_MSI_EN); 18002 BLOGD(sc, DBG_LOAD, "IGU_REG_PCI_PF_MSI_EN is 0x%x\n", val); 18003 18004 val = REG_RD(sc, IGU_REG_PCI_PF_MSIX_EN); 18005 BLOGD(sc, DBG_LOAD, "IGU_REG_PCI_PF_MSIX_EN is 0x%x\n", val); 18006 18007 val = REG_RD(sc, IGU_REG_PCI_PF_MSIX_FUNC_MASK); 18008 BLOGD(sc, DBG_LOAD, "IGU_REG_PCI_PF_MSIX_FUNC_MASK is 0x%x\n", val); 18009 18010 val = REG_RD(sc, PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR); 18011 BLOGD(sc, DBG_LOAD, "PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR is 0x%x\n", val); 18012 18013 val = REG_RD(sc, PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR); 18014 BLOGD(sc, DBG_LOAD, "PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR is 0x%x\n", val); 18015 18016 val = REG_RD(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER); 18017 BLOGD(sc, DBG_LOAD, "PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER is 0x%x\n", val); 18018 } 18019 18020 static int 18021 bxe_pf_flr_clnup(struct bxe_softc *sc) 18022 { 18023 uint32_t poll_cnt = bxe_flr_clnup_poll_count(sc); 18024 18025 BLOGD(sc, DBG_LOAD, "Cleanup after FLR PF[%d]\n", SC_ABS_FUNC(sc)); 18026 18027 /* Re-enable PF target read access */ 18028 REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1); 18029 18030 /* Poll HW usage counters */ 18031 BLOGD(sc, DBG_LOAD, "Polling usage counters\n"); 18032 if (bxe_poll_hw_usage_counters(sc, poll_cnt)) { 18033 return (-1); 18034 } 18035 18036 /* Zero the igu 'trailing edge' and 'leading edge' */ 18037 18038 /* Send the FW cleanup command */ 18039 if (bxe_send_final_clnup(sc, (uint8_t)SC_FUNC(sc), poll_cnt)) { 18040 return (-1); 18041 } 18042 18043 /* ATC cleanup */ 18044 18045 /* Verify TX hw is flushed */ 18046 bxe_tx_hw_flushed(sc, poll_cnt); 18047 18048 /* Wait 100ms (not adjusted according to platform) */ 18049 DELAY(100000); 18050 18051 /* Verify no pending pci transactions */ 18052 if (bxe_is_pcie_pending(sc)) { 18053 BLOGE(sc, "PCIE Transactions still pending\n"); 18054 } 18055 18056 /* Debug */ 18057 bxe_hw_enable_status(sc); 18058 18059 /* 18060 * Master enable - Due to WB DMAE writes performed before this 18061 * register is re-initialized as part of the regular function init 18062 */ 18063 REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1); 18064 18065 return (0); 18066 } 18067 18068 static int 18069 bxe_init_hw_func(struct bxe_softc *sc) 18070 { 18071 int port = SC_PORT(sc); 18072 int func = SC_FUNC(sc); 18073 int init_phase = PHASE_PF0 + func; 18074 struct ecore_ilt *ilt = sc->ilt; 18075 uint16_t cdu_ilt_start; 18076 uint32_t addr, val; 18077 uint32_t main_mem_base, main_mem_size, main_mem_prty_clr; 18078 int i, main_mem_width, rc; 18079 18080 BLOGD(sc, DBG_LOAD, "starting func init for func %d\n", func); 18081 18082 /* FLR cleanup */ 18083 if (!CHIP_IS_E1x(sc)) { 18084 rc = bxe_pf_flr_clnup(sc); 18085 if (rc) { 18086 BLOGE(sc, "FLR cleanup failed!\n"); 18087 // XXX bxe_fw_dump(sc); 18088 // XXX bxe_idle_chk(sc); 18089 return (rc); 18090 } 18091 } 18092 18093 /* set MSI reconfigure capability */ 18094 if (sc->devinfo.int_block == INT_BLOCK_HC) { 18095 addr = (port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0); 18096 val = REG_RD(sc, addr); 18097 val |= HC_CONFIG_0_REG_MSI_ATTN_EN_0; 18098 REG_WR(sc, addr, val); 18099 } 18100 18101 ecore_init_block(sc, BLOCK_PXP, init_phase); 18102 ecore_init_block(sc, BLOCK_PXP2, init_phase); 18103 18104 ilt = sc->ilt; 18105 cdu_ilt_start = ilt->clients[ILT_CLIENT_CDU].start; 18106 18107 for (i = 0; i < L2_ILT_LINES(sc); i++) { 18108 ilt->lines[cdu_ilt_start + i].page = sc->context[i].vcxt; 18109 ilt->lines[cdu_ilt_start + i].page_mapping = 18110 sc->context[i].vcxt_dma.paddr; 18111 ilt->lines[cdu_ilt_start + i].size = sc->context[i].size; 18112 } 18113 ecore_ilt_init_op(sc, INITOP_SET); 18114 18115 /* Set NIC mode */ 18116 REG_WR(sc, PRS_REG_NIC_MODE, 1); 18117 BLOGD(sc, DBG_LOAD, "NIC MODE configured\n"); 18118 18119 if (!CHIP_IS_E1x(sc)) { 18120 uint32_t pf_conf = IGU_PF_CONF_FUNC_EN; 18121 18122 /* Turn on a single ISR mode in IGU if driver is going to use 18123 * INT#x or MSI 18124 */ 18125 if (sc->interrupt_mode != INTR_MODE_MSIX) { 18126 pf_conf |= IGU_PF_CONF_SINGLE_ISR_EN; 18127 } 18128 18129 /* 18130 * Timers workaround bug: function init part. 18131 * Need to wait 20msec after initializing ILT, 18132 * needed to make sure there are no requests in 18133 * one of the PXP internal queues with "old" ILT addresses 18134 */ 18135 DELAY(20000); 18136 18137 /* 18138 * Master enable - Due to WB DMAE writes performed before this 18139 * register is re-initialized as part of the regular function 18140 * init 18141 */ 18142 REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1); 18143 /* Enable the function in IGU */ 18144 REG_WR(sc, IGU_REG_PF_CONFIGURATION, pf_conf); 18145 } 18146 18147 sc->dmae_ready = 1; 18148 18149 ecore_init_block(sc, BLOCK_PGLUE_B, init_phase); 18150 18151 if (!CHIP_IS_E1x(sc)) 18152 REG_WR(sc, PGLUE_B_REG_WAS_ERROR_PF_7_0_CLR, func); 18153 18154 ecore_init_block(sc, BLOCK_ATC, init_phase); 18155 ecore_init_block(sc, BLOCK_DMAE, init_phase); 18156 ecore_init_block(sc, BLOCK_NIG, init_phase); 18157 ecore_init_block(sc, BLOCK_SRC, init_phase); 18158 ecore_init_block(sc, BLOCK_MISC, init_phase); 18159 ecore_init_block(sc, BLOCK_TCM, init_phase); 18160 ecore_init_block(sc, BLOCK_UCM, init_phase); 18161 ecore_init_block(sc, BLOCK_CCM, init_phase); 18162 ecore_init_block(sc, BLOCK_XCM, init_phase); 18163 ecore_init_block(sc, BLOCK_TSEM, init_phase); 18164 ecore_init_block(sc, BLOCK_USEM, init_phase); 18165 ecore_init_block(sc, BLOCK_CSEM, init_phase); 18166 ecore_init_block(sc, BLOCK_XSEM, init_phase); 18167 18168 if (!CHIP_IS_E1x(sc)) 18169 REG_WR(sc, QM_REG_PF_EN, 1); 18170 18171 if (!CHIP_IS_E1x(sc)) { 18172 REG_WR(sc, TSEM_REG_VFPF_ERR_NUM, BXE_MAX_NUM_OF_VFS + func); 18173 REG_WR(sc, USEM_REG_VFPF_ERR_NUM, BXE_MAX_NUM_OF_VFS + func); 18174 REG_WR(sc, CSEM_REG_VFPF_ERR_NUM, BXE_MAX_NUM_OF_VFS + func); 18175 REG_WR(sc, XSEM_REG_VFPF_ERR_NUM, BXE_MAX_NUM_OF_VFS + func); 18176 } 18177 ecore_init_block(sc, BLOCK_QM, init_phase); 18178 18179 ecore_init_block(sc, BLOCK_TM, init_phase); 18180 ecore_init_block(sc, BLOCK_DORQ, init_phase); 18181 18182 bxe_iov_init_dq(sc); 18183 18184 ecore_init_block(sc, BLOCK_BRB1, init_phase); 18185 ecore_init_block(sc, BLOCK_PRS, init_phase); 18186 ecore_init_block(sc, BLOCK_TSDM, init_phase); 18187 ecore_init_block(sc, BLOCK_CSDM, init_phase); 18188 ecore_init_block(sc, BLOCK_USDM, init_phase); 18189 ecore_init_block(sc, BLOCK_XSDM, init_phase); 18190 ecore_init_block(sc, BLOCK_UPB, init_phase); 18191 ecore_init_block(sc, BLOCK_XPB, init_phase); 18192 ecore_init_block(sc, BLOCK_PBF, init_phase); 18193 if (!CHIP_IS_E1x(sc)) 18194 REG_WR(sc, PBF_REG_DISABLE_PF, 0); 18195 18196 ecore_init_block(sc, BLOCK_CDU, init_phase); 18197 18198 ecore_init_block(sc, BLOCK_CFC, init_phase); 18199 18200 if (!CHIP_IS_E1x(sc)) 18201 REG_WR(sc, CFC_REG_WEAK_ENABLE_PF, 1); 18202 18203 if (IS_MF(sc)) { 18204 REG_WR(sc, NIG_REG_LLH0_FUNC_EN + port*8, 1); 18205 REG_WR(sc, NIG_REG_LLH0_FUNC_VLAN_ID + port*8, OVLAN(sc)); 18206 } 18207 18208 ecore_init_block(sc, BLOCK_MISC_AEU, init_phase); 18209 18210 /* HC init per function */ 18211 if (sc->devinfo.int_block == INT_BLOCK_HC) { 18212 if (CHIP_IS_E1H(sc)) { 18213 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0); 18214 18215 REG_WR(sc, HC_REG_LEADING_EDGE_0 + port*8, 0); 18216 REG_WR(sc, HC_REG_TRAILING_EDGE_0 + port*8, 0); 18217 } 18218 ecore_init_block(sc, BLOCK_HC, init_phase); 18219 18220 } else { 18221 int num_segs, sb_idx, prod_offset; 18222 18223 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0); 18224 18225 if (!CHIP_IS_E1x(sc)) { 18226 REG_WR(sc, IGU_REG_LEADING_EDGE_LATCH, 0); 18227 REG_WR(sc, IGU_REG_TRAILING_EDGE_LATCH, 0); 18228 } 18229 18230 ecore_init_block(sc, BLOCK_IGU, init_phase); 18231 18232 if (!CHIP_IS_E1x(sc)) { 18233 int dsb_idx = 0; 18234 /** 18235 * Producer memory: 18236 * E2 mode: address 0-135 match to the mapping memory; 18237 * 136 - PF0 default prod; 137 - PF1 default prod; 18238 * 138 - PF2 default prod; 139 - PF3 default prod; 18239 * 140 - PF0 attn prod; 141 - PF1 attn prod; 18240 * 142 - PF2 attn prod; 143 - PF3 attn prod; 18241 * 144-147 reserved. 18242 * 18243 * E1.5 mode - In backward compatible mode; 18244 * for non default SB; each even line in the memory 18245 * holds the U producer and each odd line hold 18246 * the C producer. The first 128 producers are for 18247 * NDSB (PF0 - 0-31; PF1 - 32-63 and so on). The last 20 18248 * producers are for the DSB for each PF. 18249 * Each PF has five segments: (the order inside each 18250 * segment is PF0; PF1; PF2; PF3) - 128-131 U prods; 18251 * 132-135 C prods; 136-139 X prods; 140-143 T prods; 18252 * 144-147 attn prods; 18253 */ 18254 /* non-default-status-blocks */ 18255 num_segs = CHIP_INT_MODE_IS_BC(sc) ? 18256 IGU_BC_NDSB_NUM_SEGS : IGU_NORM_NDSB_NUM_SEGS; 18257 for (sb_idx = 0; sb_idx < sc->igu_sb_cnt; sb_idx++) { 18258 prod_offset = (sc->igu_base_sb + sb_idx) * 18259 num_segs; 18260 18261 for (i = 0; i < num_segs; i++) { 18262 addr = IGU_REG_PROD_CONS_MEMORY + 18263 (prod_offset + i) * 4; 18264 REG_WR(sc, addr, 0); 18265 } 18266 /* send consumer update with value 0 */ 18267 bxe_ack_sb(sc, sc->igu_base_sb + sb_idx, 18268 USTORM_ID, 0, IGU_INT_NOP, 1); 18269 bxe_igu_clear_sb(sc, sc->igu_base_sb + sb_idx); 18270 } 18271 18272 /* default-status-blocks */ 18273 num_segs = CHIP_INT_MODE_IS_BC(sc) ? 18274 IGU_BC_DSB_NUM_SEGS : IGU_NORM_DSB_NUM_SEGS; 18275 18276 if (CHIP_IS_MODE_4_PORT(sc)) 18277 dsb_idx = SC_FUNC(sc); 18278 else 18279 dsb_idx = SC_VN(sc); 18280 18281 prod_offset = (CHIP_INT_MODE_IS_BC(sc) ? 18282 IGU_BC_BASE_DSB_PROD + dsb_idx : 18283 IGU_NORM_BASE_DSB_PROD + dsb_idx); 18284 18285 /* 18286 * igu prods come in chunks of E1HVN_MAX (4) - 18287 * does not matters what is the current chip mode 18288 */ 18289 for (i = 0; i < (num_segs * E1HVN_MAX); 18290 i += E1HVN_MAX) { 18291 addr = IGU_REG_PROD_CONS_MEMORY + 18292 (prod_offset + i)*4; 18293 REG_WR(sc, addr, 0); 18294 } 18295 /* send consumer update with 0 */ 18296 if (CHIP_INT_MODE_IS_BC(sc)) { 18297 bxe_ack_sb(sc, sc->igu_dsb_id, 18298 USTORM_ID, 0, IGU_INT_NOP, 1); 18299 bxe_ack_sb(sc, sc->igu_dsb_id, 18300 CSTORM_ID, 0, IGU_INT_NOP, 1); 18301 bxe_ack_sb(sc, sc->igu_dsb_id, 18302 XSTORM_ID, 0, IGU_INT_NOP, 1); 18303 bxe_ack_sb(sc, sc->igu_dsb_id, 18304 TSTORM_ID, 0, IGU_INT_NOP, 1); 18305 bxe_ack_sb(sc, sc->igu_dsb_id, 18306 ATTENTION_ID, 0, IGU_INT_NOP, 1); 18307 } else { 18308 bxe_ack_sb(sc, sc->igu_dsb_id, 18309 USTORM_ID, 0, IGU_INT_NOP, 1); 18310 bxe_ack_sb(sc, sc->igu_dsb_id, 18311 ATTENTION_ID, 0, IGU_INT_NOP, 1); 18312 } 18313 bxe_igu_clear_sb(sc, sc->igu_dsb_id); 18314 18315 /* !!! these should become driver const once 18316 rf-tool supports split-68 const */ 18317 REG_WR(sc, IGU_REG_SB_INT_BEFORE_MASK_LSB, 0); 18318 REG_WR(sc, IGU_REG_SB_INT_BEFORE_MASK_MSB, 0); 18319 REG_WR(sc, IGU_REG_SB_MASK_LSB, 0); 18320 REG_WR(sc, IGU_REG_SB_MASK_MSB, 0); 18321 REG_WR(sc, IGU_REG_PBA_STATUS_LSB, 0); 18322 REG_WR(sc, IGU_REG_PBA_STATUS_MSB, 0); 18323 } 18324 } 18325 18326 /* Reset PCIE errors for debug */ 18327 REG_WR(sc, 0x2114, 0xffffffff); 18328 REG_WR(sc, 0x2120, 0xffffffff); 18329 18330 if (CHIP_IS_E1x(sc)) { 18331 main_mem_size = HC_REG_MAIN_MEMORY_SIZE / 2; /*dwords*/ 18332 main_mem_base = HC_REG_MAIN_MEMORY + 18333 SC_PORT(sc) * (main_mem_size * 4); 18334 main_mem_prty_clr = HC_REG_HC_PRTY_STS_CLR; 18335 main_mem_width = 8; 18336 18337 val = REG_RD(sc, main_mem_prty_clr); 18338 if (val) { 18339 BLOGD(sc, DBG_LOAD, 18340 "Parity errors in HC block during function init (0x%x)!\n", 18341 val); 18342 } 18343 18344 /* Clear "false" parity errors in MSI-X table */ 18345 for (i = main_mem_base; 18346 i < main_mem_base + main_mem_size * 4; 18347 i += main_mem_width) { 18348 bxe_read_dmae(sc, i, main_mem_width / 4); 18349 bxe_write_dmae(sc, BXE_SP_MAPPING(sc, wb_data), 18350 i, main_mem_width / 4); 18351 } 18352 /* Clear HC parity attention */ 18353 REG_RD(sc, main_mem_prty_clr); 18354 } 18355 18356 #if 1 18357 /* Enable STORMs SP logging */ 18358 REG_WR8(sc, BAR_USTRORM_INTMEM + 18359 USTORM_RECORD_SLOW_PATH_OFFSET(SC_FUNC(sc)), 1); 18360 REG_WR8(sc, BAR_TSTRORM_INTMEM + 18361 TSTORM_RECORD_SLOW_PATH_OFFSET(SC_FUNC(sc)), 1); 18362 REG_WR8(sc, BAR_CSTRORM_INTMEM + 18363 CSTORM_RECORD_SLOW_PATH_OFFSET(SC_FUNC(sc)), 1); 18364 REG_WR8(sc, BAR_XSTRORM_INTMEM + 18365 XSTORM_RECORD_SLOW_PATH_OFFSET(SC_FUNC(sc)), 1); 18366 #endif 18367 18368 elink_phy_probe(&sc->link_params); 18369 18370 return (0); 18371 } 18372 18373 static void 18374 bxe_link_reset(struct bxe_softc *sc) 18375 { 18376 if (!BXE_NOMCP(sc)) { 18377 bxe_acquire_phy_lock(sc); 18378 elink_lfa_reset(&sc->link_params, &sc->link_vars); 18379 bxe_release_phy_lock(sc); 18380 } else { 18381 if (!CHIP_REV_IS_SLOW(sc)) { 18382 BLOGW(sc, "Bootcode is missing - cannot reset link\n"); 18383 } 18384 } 18385 } 18386 18387 static void 18388 bxe_reset_port(struct bxe_softc *sc) 18389 { 18390 int port = SC_PORT(sc); 18391 uint32_t val; 18392 18393 ELINK_DEBUG_P0(sc, "bxe_reset_port called\n"); 18394 /* reset physical Link */ 18395 bxe_link_reset(sc); 18396 18397 REG_WR(sc, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0); 18398 18399 /* Do not rcv packets to BRB */ 18400 REG_WR(sc, NIG_REG_LLH0_BRB1_DRV_MASK + port*4, 0x0); 18401 /* Do not direct rcv packets that are not for MCP to the BRB */ 18402 REG_WR(sc, (port ? NIG_REG_LLH1_BRB1_NOT_MCP : 18403 NIG_REG_LLH0_BRB1_NOT_MCP), 0x0); 18404 18405 /* Configure AEU */ 18406 REG_WR(sc, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, 0); 18407 18408 DELAY(100000); 18409 18410 /* Check for BRB port occupancy */ 18411 val = REG_RD(sc, BRB1_REG_PORT_NUM_OCC_BLOCKS_0 + port*4); 18412 if (val) { 18413 BLOGD(sc, DBG_LOAD, 18414 "BRB1 is not empty, %d blocks are occupied\n", val); 18415 } 18416 18417 /* TODO: Close Doorbell port? */ 18418 } 18419 18420 static void 18421 bxe_ilt_wr(struct bxe_softc *sc, 18422 uint32_t index, 18423 bus_addr_t addr) 18424 { 18425 int reg; 18426 uint32_t wb_write[2]; 18427 18428 if (CHIP_IS_E1(sc)) { 18429 reg = PXP2_REG_RQ_ONCHIP_AT + index*8; 18430 } else { 18431 reg = PXP2_REG_RQ_ONCHIP_AT_B0 + index*8; 18432 } 18433 18434 wb_write[0] = ONCHIP_ADDR1(addr); 18435 wb_write[1] = ONCHIP_ADDR2(addr); 18436 REG_WR_DMAE(sc, reg, wb_write, 2); 18437 } 18438 18439 static void 18440 bxe_clear_func_ilt(struct bxe_softc *sc, 18441 uint32_t func) 18442 { 18443 uint32_t i, base = FUNC_ILT_BASE(func); 18444 for (i = base; i < base + ILT_PER_FUNC; i++) { 18445 bxe_ilt_wr(sc, i, 0); 18446 } 18447 } 18448 18449 static void 18450 bxe_reset_func(struct bxe_softc *sc) 18451 { 18452 struct bxe_fastpath *fp; 18453 int port = SC_PORT(sc); 18454 int func = SC_FUNC(sc); 18455 int i; 18456 18457 /* Disable the function in the FW */ 18458 REG_WR8(sc, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(func), 0); 18459 REG_WR8(sc, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(func), 0); 18460 REG_WR8(sc, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(func), 0); 18461 REG_WR8(sc, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(func), 0); 18462 18463 /* FP SBs */ 18464 FOR_EACH_ETH_QUEUE(sc, i) { 18465 fp = &sc->fp[i]; 18466 REG_WR8(sc, BAR_CSTRORM_INTMEM + 18467 CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET(fp->fw_sb_id), 18468 SB_DISABLED); 18469 } 18470 18471 /* SP SB */ 18472 REG_WR8(sc, BAR_CSTRORM_INTMEM + 18473 CSTORM_SP_STATUS_BLOCK_DATA_STATE_OFFSET(func), 18474 SB_DISABLED); 18475 18476 for (i = 0; i < XSTORM_SPQ_DATA_SIZE / 4; i++) { 18477 REG_WR(sc, BAR_XSTRORM_INTMEM + XSTORM_SPQ_DATA_OFFSET(func), 0); 18478 } 18479 18480 /* Configure IGU */ 18481 if (sc->devinfo.int_block == INT_BLOCK_HC) { 18482 REG_WR(sc, HC_REG_LEADING_EDGE_0 + port*8, 0); 18483 REG_WR(sc, HC_REG_TRAILING_EDGE_0 + port*8, 0); 18484 } else { 18485 REG_WR(sc, IGU_REG_LEADING_EDGE_LATCH, 0); 18486 REG_WR(sc, IGU_REG_TRAILING_EDGE_LATCH, 0); 18487 } 18488 18489 if (CNIC_LOADED(sc)) { 18490 /* Disable Timer scan */ 18491 REG_WR(sc, TM_REG_EN_LINEAR0_TIMER + port*4, 0); 18492 /* 18493 * Wait for at least 10ms and up to 2 second for the timers 18494 * scan to complete 18495 */ 18496 for (i = 0; i < 200; i++) { 18497 DELAY(10000); 18498 if (!REG_RD(sc, TM_REG_LIN0_SCAN_ON + port*4)) 18499 break; 18500 } 18501 } 18502 18503 /* Clear ILT */ 18504 bxe_clear_func_ilt(sc, func); 18505 18506 /* 18507 * Timers workaround bug for E2: if this is vnic-3, 18508 * we need to set the entire ilt range for this timers. 18509 */ 18510 if (!CHIP_IS_E1x(sc) && SC_VN(sc) == 3) { 18511 struct ilt_client_info ilt_cli; 18512 /* use dummy TM client */ 18513 memset(&ilt_cli, 0, sizeof(struct ilt_client_info)); 18514 ilt_cli.start = 0; 18515 ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1; 18516 ilt_cli.client_num = ILT_CLIENT_TM; 18517 18518 ecore_ilt_boundry_init_op(sc, &ilt_cli, 0, INITOP_CLEAR); 18519 } 18520 18521 /* this assumes that reset_port() called before reset_func()*/ 18522 if (!CHIP_IS_E1x(sc)) { 18523 bxe_pf_disable(sc); 18524 } 18525 18526 sc->dmae_ready = 0; 18527 } 18528 18529 static int 18530 bxe_gunzip_init(struct bxe_softc *sc) 18531 { 18532 return (0); 18533 } 18534 18535 static void 18536 bxe_gunzip_end(struct bxe_softc *sc) 18537 { 18538 return; 18539 } 18540 18541 static int 18542 bxe_init_firmware(struct bxe_softc *sc) 18543 { 18544 if (CHIP_IS_E1(sc)) { 18545 ecore_init_e1_firmware(sc); 18546 sc->iro_array = e1_iro_arr; 18547 } else if (CHIP_IS_E1H(sc)) { 18548 ecore_init_e1h_firmware(sc); 18549 sc->iro_array = e1h_iro_arr; 18550 } else if (!CHIP_IS_E1x(sc)) { 18551 ecore_init_e2_firmware(sc); 18552 sc->iro_array = e2_iro_arr; 18553 } else { 18554 BLOGE(sc, "Unsupported chip revision\n"); 18555 return (-1); 18556 } 18557 18558 return (0); 18559 } 18560 18561 static void 18562 bxe_release_firmware(struct bxe_softc *sc) 18563 { 18564 /* Do nothing */ 18565 return; 18566 } 18567 18568 static int 18569 ecore_gunzip(struct bxe_softc *sc, 18570 const uint8_t *zbuf, 18571 int len) 18572 { 18573 /* XXX : Implement... */ 18574 BLOGD(sc, DBG_LOAD, "ECORE_GUNZIP NOT IMPLEMENTED\n"); 18575 return (FALSE); 18576 } 18577 18578 static void 18579 ecore_reg_wr_ind(struct bxe_softc *sc, 18580 uint32_t addr, 18581 uint32_t val) 18582 { 18583 bxe_reg_wr_ind(sc, addr, val); 18584 } 18585 18586 static void 18587 ecore_write_dmae_phys_len(struct bxe_softc *sc, 18588 bus_addr_t phys_addr, 18589 uint32_t addr, 18590 uint32_t len) 18591 { 18592 bxe_write_dmae_phys_len(sc, phys_addr, addr, len); 18593 } 18594 18595 void 18596 ecore_storm_memset_struct(struct bxe_softc *sc, 18597 uint32_t addr, 18598 size_t size, 18599 uint32_t *data) 18600 { 18601 uint8_t i; 18602 for (i = 0; i < size/4; i++) { 18603 REG_WR(sc, addr + (i * 4), data[i]); 18604 } 18605 } 18606 18607 18608 /* 18609 * character device - ioctl interface definitions 18610 */ 18611 18612 18613 #include "bxe_dump.h" 18614 #include "bxe_ioctl.h" 18615 #include <sys/conf.h> 18616 18617 static int bxe_eioctl(struct cdev *dev, u_long cmd, caddr_t data, int fflag, 18618 struct thread *td); 18619 18620 static struct cdevsw bxe_cdevsw = { 18621 .d_version = D_VERSION, 18622 .d_ioctl = bxe_eioctl, 18623 .d_name = "bxecnic", 18624 }; 18625 18626 #define BXE_PATH(sc) (CHIP_IS_E1x(sc) ? 0 : (sc->pcie_func & 1)) 18627 18628 18629 #define DUMP_ALL_PRESETS 0x1FFF 18630 #define DUMP_MAX_PRESETS 13 18631 #define IS_E1_REG(chips) ((chips & DUMP_CHIP_E1) == DUMP_CHIP_E1) 18632 #define IS_E1H_REG(chips) ((chips & DUMP_CHIP_E1H) == DUMP_CHIP_E1H) 18633 #define IS_E2_REG(chips) ((chips & DUMP_CHIP_E2) == DUMP_CHIP_E2) 18634 #define IS_E3A0_REG(chips) ((chips & DUMP_CHIP_E3A0) == DUMP_CHIP_E3A0) 18635 #define IS_E3B0_REG(chips) ((chips & DUMP_CHIP_E3B0) == DUMP_CHIP_E3B0) 18636 18637 #define IS_REG_IN_PRESET(presets, idx) \ 18638 ((presets & (1 << (idx-1))) == (1 << (idx-1))) 18639 18640 18641 static int 18642 bxe_get_preset_regs_len(struct bxe_softc *sc, uint32_t preset) 18643 { 18644 if (CHIP_IS_E1(sc)) 18645 return dump_num_registers[0][preset-1]; 18646 else if (CHIP_IS_E1H(sc)) 18647 return dump_num_registers[1][preset-1]; 18648 else if (CHIP_IS_E2(sc)) 18649 return dump_num_registers[2][preset-1]; 18650 else if (CHIP_IS_E3A0(sc)) 18651 return dump_num_registers[3][preset-1]; 18652 else if (CHIP_IS_E3B0(sc)) 18653 return dump_num_registers[4][preset-1]; 18654 else 18655 return 0; 18656 } 18657 18658 static int 18659 bxe_get_total_regs_len32(struct bxe_softc *sc) 18660 { 18661 uint32_t preset_idx; 18662 int regdump_len32 = 0; 18663 18664 18665 /* Calculate the total preset regs length */ 18666 for (preset_idx = 1; preset_idx <= DUMP_MAX_PRESETS; preset_idx++) { 18667 regdump_len32 += bxe_get_preset_regs_len(sc, preset_idx); 18668 } 18669 18670 return regdump_len32; 18671 } 18672 18673 static const uint32_t * 18674 __bxe_get_page_addr_ar(struct bxe_softc *sc) 18675 { 18676 if (CHIP_IS_E2(sc)) 18677 return page_vals_e2; 18678 else if (CHIP_IS_E3(sc)) 18679 return page_vals_e3; 18680 else 18681 return NULL; 18682 } 18683 18684 static uint32_t 18685 __bxe_get_page_reg_num(struct bxe_softc *sc) 18686 { 18687 if (CHIP_IS_E2(sc)) 18688 return PAGE_MODE_VALUES_E2; 18689 else if (CHIP_IS_E3(sc)) 18690 return PAGE_MODE_VALUES_E3; 18691 else 18692 return 0; 18693 } 18694 18695 static const uint32_t * 18696 __bxe_get_page_write_ar(struct bxe_softc *sc) 18697 { 18698 if (CHIP_IS_E2(sc)) 18699 return page_write_regs_e2; 18700 else if (CHIP_IS_E3(sc)) 18701 return page_write_regs_e3; 18702 else 18703 return NULL; 18704 } 18705 18706 static uint32_t 18707 __bxe_get_page_write_num(struct bxe_softc *sc) 18708 { 18709 if (CHIP_IS_E2(sc)) 18710 return PAGE_WRITE_REGS_E2; 18711 else if (CHIP_IS_E3(sc)) 18712 return PAGE_WRITE_REGS_E3; 18713 else 18714 return 0; 18715 } 18716 18717 static const struct reg_addr * 18718 __bxe_get_page_read_ar(struct bxe_softc *sc) 18719 { 18720 if (CHIP_IS_E2(sc)) 18721 return page_read_regs_e2; 18722 else if (CHIP_IS_E3(sc)) 18723 return page_read_regs_e3; 18724 else 18725 return NULL; 18726 } 18727 18728 static uint32_t 18729 __bxe_get_page_read_num(struct bxe_softc *sc) 18730 { 18731 if (CHIP_IS_E2(sc)) 18732 return PAGE_READ_REGS_E2; 18733 else if (CHIP_IS_E3(sc)) 18734 return PAGE_READ_REGS_E3; 18735 else 18736 return 0; 18737 } 18738 18739 static bool 18740 bxe_is_reg_in_chip(struct bxe_softc *sc, const struct reg_addr *reg_info) 18741 { 18742 if (CHIP_IS_E1(sc)) 18743 return IS_E1_REG(reg_info->chips); 18744 else if (CHIP_IS_E1H(sc)) 18745 return IS_E1H_REG(reg_info->chips); 18746 else if (CHIP_IS_E2(sc)) 18747 return IS_E2_REG(reg_info->chips); 18748 else if (CHIP_IS_E3A0(sc)) 18749 return IS_E3A0_REG(reg_info->chips); 18750 else if (CHIP_IS_E3B0(sc)) 18751 return IS_E3B0_REG(reg_info->chips); 18752 else 18753 return 0; 18754 } 18755 18756 static bool 18757 bxe_is_wreg_in_chip(struct bxe_softc *sc, const struct wreg_addr *wreg_info) 18758 { 18759 if (CHIP_IS_E1(sc)) 18760 return IS_E1_REG(wreg_info->chips); 18761 else if (CHIP_IS_E1H(sc)) 18762 return IS_E1H_REG(wreg_info->chips); 18763 else if (CHIP_IS_E2(sc)) 18764 return IS_E2_REG(wreg_info->chips); 18765 else if (CHIP_IS_E3A0(sc)) 18766 return IS_E3A0_REG(wreg_info->chips); 18767 else if (CHIP_IS_E3B0(sc)) 18768 return IS_E3B0_REG(wreg_info->chips); 18769 else 18770 return 0; 18771 } 18772 18773 /** 18774 * bxe_read_pages_regs - read "paged" registers 18775 * 18776 * @bp device handle 18777 * @p output buffer 18778 * 18779 * Reads "paged" memories: memories that may only be read by first writing to a 18780 * specific address ("write address") and then reading from a specific address 18781 * ("read address"). There may be more than one write address per "page" and 18782 * more than one read address per write address. 18783 */ 18784 static void 18785 bxe_read_pages_regs(struct bxe_softc *sc, uint32_t *p, uint32_t preset) 18786 { 18787 uint32_t i, j, k, n; 18788 18789 /* addresses of the paged registers */ 18790 const uint32_t *page_addr = __bxe_get_page_addr_ar(sc); 18791 /* number of paged registers */ 18792 int num_pages = __bxe_get_page_reg_num(sc); 18793 /* write addresses */ 18794 const uint32_t *write_addr = __bxe_get_page_write_ar(sc); 18795 /* number of write addresses */ 18796 int write_num = __bxe_get_page_write_num(sc); 18797 /* read addresses info */ 18798 const struct reg_addr *read_addr = __bxe_get_page_read_ar(sc); 18799 /* number of read addresses */ 18800 int read_num = __bxe_get_page_read_num(sc); 18801 uint32_t addr, size; 18802 18803 for (i = 0; i < num_pages; i++) { 18804 for (j = 0; j < write_num; j++) { 18805 REG_WR(sc, write_addr[j], page_addr[i]); 18806 18807 for (k = 0; k < read_num; k++) { 18808 if (IS_REG_IN_PRESET(read_addr[k].presets, preset)) { 18809 size = read_addr[k].size; 18810 for (n = 0; n < size; n++) { 18811 addr = read_addr[k].addr + n*4; 18812 *p++ = REG_RD(sc, addr); 18813 } 18814 } 18815 } 18816 } 18817 } 18818 return; 18819 } 18820 18821 18822 static int 18823 bxe_get_preset_regs(struct bxe_softc *sc, uint32_t *p, uint32_t preset) 18824 { 18825 uint32_t i, j, addr; 18826 const struct wreg_addr *wreg_addr_p = NULL; 18827 18828 if (CHIP_IS_E1(sc)) 18829 wreg_addr_p = &wreg_addr_e1; 18830 else if (CHIP_IS_E1H(sc)) 18831 wreg_addr_p = &wreg_addr_e1h; 18832 else if (CHIP_IS_E2(sc)) 18833 wreg_addr_p = &wreg_addr_e2; 18834 else if (CHIP_IS_E3A0(sc)) 18835 wreg_addr_p = &wreg_addr_e3; 18836 else if (CHIP_IS_E3B0(sc)) 18837 wreg_addr_p = &wreg_addr_e3b0; 18838 else 18839 return (-1); 18840 18841 /* Read the idle_chk registers */ 18842 for (i = 0; i < IDLE_REGS_COUNT; i++) { 18843 if (bxe_is_reg_in_chip(sc, &idle_reg_addrs[i]) && 18844 IS_REG_IN_PRESET(idle_reg_addrs[i].presets, preset)) { 18845 for (j = 0; j < idle_reg_addrs[i].size; j++) 18846 *p++ = REG_RD(sc, idle_reg_addrs[i].addr + j*4); 18847 } 18848 } 18849 18850 /* Read the regular registers */ 18851 for (i = 0; i < REGS_COUNT; i++) { 18852 if (bxe_is_reg_in_chip(sc, ®_addrs[i]) && 18853 IS_REG_IN_PRESET(reg_addrs[i].presets, preset)) { 18854 for (j = 0; j < reg_addrs[i].size; j++) 18855 *p++ = REG_RD(sc, reg_addrs[i].addr + j*4); 18856 } 18857 } 18858 18859 /* Read the CAM registers */ 18860 if (bxe_is_wreg_in_chip(sc, wreg_addr_p) && 18861 IS_REG_IN_PRESET(wreg_addr_p->presets, preset)) { 18862 for (i = 0; i < wreg_addr_p->size; i++) { 18863 *p++ = REG_RD(sc, wreg_addr_p->addr + i*4); 18864 18865 /* In case of wreg_addr register, read additional 18866 registers from read_regs array 18867 */ 18868 for (j = 0; j < wreg_addr_p->read_regs_count; j++) { 18869 addr = *(wreg_addr_p->read_regs); 18870 *p++ = REG_RD(sc, addr + j*4); 18871 } 18872 } 18873 } 18874 18875 /* Paged registers are supported in E2 & E3 only */ 18876 if (CHIP_IS_E2(sc) || CHIP_IS_E3(sc)) { 18877 /* Read "paged" registers */ 18878 bxe_read_pages_regs(sc, p, preset); 18879 } 18880 18881 return 0; 18882 } 18883 18884 int 18885 bxe_grc_dump(struct bxe_softc *sc) 18886 { 18887 int rval = 0; 18888 uint32_t preset_idx; 18889 uint8_t *buf; 18890 uint32_t size; 18891 struct dump_header *d_hdr; 18892 uint32_t i; 18893 uint32_t reg_val; 18894 uint32_t reg_addr; 18895 uint32_t cmd_offset; 18896 struct ecore_ilt *ilt = SC_ILT(sc); 18897 struct bxe_fastpath *fp; 18898 struct ilt_client_info *ilt_cli; 18899 int grc_dump_size; 18900 18901 18902 if (sc->grcdump_done || sc->grcdump_started) 18903 return (rval); 18904 18905 sc->grcdump_started = 1; 18906 BLOGI(sc, "Started collecting grcdump\n"); 18907 18908 grc_dump_size = (bxe_get_total_regs_len32(sc) * sizeof(uint32_t)) + 18909 sizeof(struct dump_header); 18910 18911 sc->grc_dump = malloc(grc_dump_size, M_DEVBUF, M_NOWAIT); 18912 18913 if (sc->grc_dump == NULL) { 18914 BLOGW(sc, "Unable to allocate memory for grcdump collection\n"); 18915 return(ENOMEM); 18916 } 18917 18918 18919 18920 /* Disable parity attentions as long as following dump may 18921 * cause false alarms by reading never written registers. We 18922 * will re-enable parity attentions right after the dump. 18923 */ 18924 18925 /* Disable parity on path 0 */ 18926 bxe_pretend_func(sc, 0); 18927 18928 ecore_disable_blocks_parity(sc); 18929 18930 /* Disable parity on path 1 */ 18931 bxe_pretend_func(sc, 1); 18932 ecore_disable_blocks_parity(sc); 18933 18934 /* Return to current function */ 18935 bxe_pretend_func(sc, SC_ABS_FUNC(sc)); 18936 18937 buf = sc->grc_dump; 18938 d_hdr = sc->grc_dump; 18939 18940 d_hdr->header_size = (sizeof(struct dump_header) >> 2) - 1; 18941 d_hdr->version = BNX2X_DUMP_VERSION; 18942 d_hdr->preset = DUMP_ALL_PRESETS; 18943 18944 if (CHIP_IS_E1(sc)) { 18945 d_hdr->dump_meta_data = DUMP_CHIP_E1; 18946 } else if (CHIP_IS_E1H(sc)) { 18947 d_hdr->dump_meta_data = DUMP_CHIP_E1H; 18948 } else if (CHIP_IS_E2(sc)) { 18949 d_hdr->dump_meta_data = DUMP_CHIP_E2 | 18950 (BXE_PATH(sc) ? DUMP_PATH_1 : DUMP_PATH_0); 18951 } else if (CHIP_IS_E3A0(sc)) { 18952 d_hdr->dump_meta_data = DUMP_CHIP_E3A0 | 18953 (BXE_PATH(sc) ? DUMP_PATH_1 : DUMP_PATH_0); 18954 } else if (CHIP_IS_E3B0(sc)) { 18955 d_hdr->dump_meta_data = DUMP_CHIP_E3B0 | 18956 (BXE_PATH(sc) ? DUMP_PATH_1 : DUMP_PATH_0); 18957 } 18958 18959 buf += sizeof(struct dump_header); 18960 18961 for (preset_idx = 1; preset_idx <= DUMP_MAX_PRESETS; preset_idx++) { 18962 18963 /* Skip presets with IOR */ 18964 if ((preset_idx == 2) || (preset_idx == 5) || (preset_idx == 8) || 18965 (preset_idx == 11)) 18966 continue; 18967 18968 rval = bxe_get_preset_regs(sc, (uint32_t *)buf, preset_idx); 18969 18970 if (rval) 18971 break; 18972 18973 size = bxe_get_preset_regs_len(sc, preset_idx) * (sizeof (uint32_t)); 18974 18975 buf += size; 18976 } 18977 18978 bxe_pretend_func(sc, 0); 18979 ecore_clear_blocks_parity(sc); 18980 ecore_enable_blocks_parity(sc); 18981 18982 bxe_pretend_func(sc, 1); 18983 ecore_clear_blocks_parity(sc); 18984 ecore_enable_blocks_parity(sc); 18985 18986 /* Return to current function */ 18987 bxe_pretend_func(sc, SC_ABS_FUNC(sc)); 18988 18989 18990 18991 if(sc->state == BXE_STATE_OPEN) { 18992 if(sc->fw_stats_req != NULL) { 18993 BLOGI(sc, "fw stats start_paddr %#jx end_paddr %#jx vaddr %p size 0x%x\n", 18994 (uintmax_t)sc->fw_stats_req_mapping, 18995 (uintmax_t)sc->fw_stats_data_mapping, 18996 sc->fw_stats_req, (sc->fw_stats_req_size + sc->fw_stats_data_size)); 18997 } 18998 if(sc->def_sb != NULL) { 18999 BLOGI(sc, "def_status_block paddr %p vaddr %p size 0x%zx\n", 19000 (void *)sc->def_sb_dma.paddr, sc->def_sb, 19001 sizeof(struct host_sp_status_block)); 19002 } 19003 if(sc->eq_dma.vaddr != NULL) { 19004 BLOGI(sc, "event_queue paddr %#jx vaddr %p size 0x%x\n", 19005 (uintmax_t)sc->eq_dma.paddr, sc->eq_dma.vaddr, BCM_PAGE_SIZE); 19006 } 19007 if(sc->sp_dma.vaddr != NULL) { 19008 BLOGI(sc, "slow path paddr %#jx vaddr %p size 0x%zx\n", 19009 (uintmax_t)sc->sp_dma.paddr, sc->sp_dma.vaddr, 19010 sizeof(struct bxe_slowpath)); 19011 } 19012 if(sc->spq_dma.vaddr != NULL) { 19013 BLOGI(sc, "slow path queue paddr %#jx vaddr %p size 0x%x\n", 19014 (uintmax_t)sc->spq_dma.paddr, sc->spq_dma.vaddr, BCM_PAGE_SIZE); 19015 } 19016 if(sc->gz_buf_dma.vaddr != NULL) { 19017 BLOGI(sc, "fw_buf paddr %#jx vaddr %p size 0x%x\n", 19018 (uintmax_t)sc->gz_buf_dma.paddr, sc->gz_buf_dma.vaddr, 19019 FW_BUF_SIZE); 19020 } 19021 for (i = 0; i < sc->num_queues; i++) { 19022 fp = &sc->fp[i]; 19023 if(fp->sb_dma.vaddr != NULL && fp->tx_dma.vaddr != NULL && 19024 fp->rx_dma.vaddr != NULL && fp->rcq_dma.vaddr != NULL && 19025 fp->rx_sge_dma.vaddr != NULL) { 19026 19027 BLOGI(sc, "FP status block fp %d paddr %#jx vaddr %p size 0x%zx\n", i, 19028 (uintmax_t)fp->sb_dma.paddr, fp->sb_dma.vaddr, 19029 sizeof(union bxe_host_hc_status_block)); 19030 BLOGI(sc, "TX BD CHAIN fp %d paddr %#jx vaddr %p size 0x%x\n", i, 19031 (uintmax_t)fp->tx_dma.paddr, fp->tx_dma.vaddr, 19032 (BCM_PAGE_SIZE * TX_BD_NUM_PAGES)); 19033 BLOGI(sc, "RX BD CHAIN fp %d paddr %#jx vaddr %p size 0x%x\n", i, 19034 (uintmax_t)fp->rx_dma.paddr, fp->rx_dma.vaddr, 19035 (BCM_PAGE_SIZE * RX_BD_NUM_PAGES)); 19036 BLOGI(sc, "RX RCQ CHAIN fp %d paddr %#jx vaddr %p size 0x%zx\n", i, 19037 (uintmax_t)fp->rcq_dma.paddr, fp->rcq_dma.vaddr, 19038 (BCM_PAGE_SIZE * RCQ_NUM_PAGES)); 19039 BLOGI(sc, "RX SGE CHAIN fp %d paddr %#jx vaddr %p size 0x%x\n", i, 19040 (uintmax_t)fp->rx_sge_dma.paddr, fp->rx_sge_dma.vaddr, 19041 (BCM_PAGE_SIZE * RX_SGE_NUM_PAGES)); 19042 } 19043 } 19044 if(ilt != NULL ) { 19045 ilt_cli = &ilt->clients[1]; 19046 if(ilt->lines != NULL) { 19047 for (i = ilt_cli->start; i <= ilt_cli->end; i++) { 19048 BLOGI(sc, "ECORE_ILT paddr %#jx vaddr %p size 0x%x\n", 19049 (uintmax_t)(((struct bxe_dma *)((&ilt->lines[i])->page))->paddr), 19050 ((struct bxe_dma *)((&ilt->lines[i])->page))->vaddr, BCM_PAGE_SIZE); 19051 } 19052 } 19053 } 19054 19055 19056 cmd_offset = DMAE_REG_CMD_MEM; 19057 for (i = 0; i < 224; i++) { 19058 reg_addr = (cmd_offset +(i * 4)); 19059 reg_val = REG_RD(sc, reg_addr); 19060 BLOGI(sc, "DMAE_REG_CMD_MEM i=%d reg_addr 0x%x reg_val 0x%08x\n",i, 19061 reg_addr, reg_val); 19062 } 19063 } 19064 19065 BLOGI(sc, "Collection of grcdump done\n"); 19066 sc->grcdump_done = 1; 19067 return(rval); 19068 } 19069 19070 static int 19071 bxe_add_cdev(struct bxe_softc *sc) 19072 { 19073 sc->eeprom = malloc(BXE_EEPROM_MAX_DATA_LEN, M_DEVBUF, M_NOWAIT); 19074 19075 if (sc->eeprom == NULL) { 19076 BLOGW(sc, "Unable to alloc for eeprom size buffer\n"); 19077 return (-1); 19078 } 19079 19080 sc->ioctl_dev = make_dev(&bxe_cdevsw, 19081 if_getdunit(sc->ifp), 19082 UID_ROOT, 19083 GID_WHEEL, 19084 0600, 19085 "%s", 19086 if_name(sc->ifp)); 19087 19088 if (sc->ioctl_dev == NULL) { 19089 free(sc->eeprom, M_DEVBUF); 19090 sc->eeprom = NULL; 19091 return (-1); 19092 } 19093 19094 sc->ioctl_dev->si_drv1 = sc; 19095 19096 return (0); 19097 } 19098 19099 static void 19100 bxe_del_cdev(struct bxe_softc *sc) 19101 { 19102 if (sc->ioctl_dev != NULL) 19103 destroy_dev(sc->ioctl_dev); 19104 19105 if (sc->eeprom != NULL) { 19106 free(sc->eeprom, M_DEVBUF); 19107 sc->eeprom = NULL; 19108 } 19109 sc->ioctl_dev = NULL; 19110 19111 return; 19112 } 19113 19114 static bool bxe_is_nvram_accessible(struct bxe_softc *sc) 19115 { 19116 19117 if ((if_getdrvflags(sc->ifp) & IFF_DRV_RUNNING) == 0) 19118 return FALSE; 19119 19120 return TRUE; 19121 } 19122 19123 19124 static int 19125 bxe_wr_eeprom(struct bxe_softc *sc, void *data, uint32_t offset, uint32_t len) 19126 { 19127 int rval = 0; 19128 19129 if(!bxe_is_nvram_accessible(sc)) { 19130 BLOGW(sc, "Cannot access eeprom when interface is down\n"); 19131 return (-EAGAIN); 19132 } 19133 rval = bxe_nvram_write(sc, offset, (uint8_t *)data, len); 19134 19135 19136 return (rval); 19137 } 19138 19139 static int 19140 bxe_rd_eeprom(struct bxe_softc *sc, void *data, uint32_t offset, uint32_t len) 19141 { 19142 int rval = 0; 19143 19144 if(!bxe_is_nvram_accessible(sc)) { 19145 BLOGW(sc, "Cannot access eeprom when interface is down\n"); 19146 return (-EAGAIN); 19147 } 19148 rval = bxe_nvram_read(sc, offset, (uint8_t *)data, len); 19149 19150 return (rval); 19151 } 19152 19153 static int 19154 bxe_eeprom_rd_wr(struct bxe_softc *sc, bxe_eeprom_t *eeprom) 19155 { 19156 int rval = 0; 19157 19158 switch (eeprom->eeprom_cmd) { 19159 19160 case BXE_EEPROM_CMD_SET_EEPROM: 19161 19162 rval = copyin(eeprom->eeprom_data, sc->eeprom, 19163 eeprom->eeprom_data_len); 19164 19165 if (rval) 19166 break; 19167 19168 rval = bxe_wr_eeprom(sc, sc->eeprom, eeprom->eeprom_offset, 19169 eeprom->eeprom_data_len); 19170 break; 19171 19172 case BXE_EEPROM_CMD_GET_EEPROM: 19173 19174 rval = bxe_rd_eeprom(sc, sc->eeprom, eeprom->eeprom_offset, 19175 eeprom->eeprom_data_len); 19176 19177 if (rval) { 19178 break; 19179 } 19180 19181 rval = copyout(sc->eeprom, eeprom->eeprom_data, 19182 eeprom->eeprom_data_len); 19183 break; 19184 19185 default: 19186 rval = EINVAL; 19187 break; 19188 } 19189 19190 if (rval) { 19191 BLOGW(sc, "ioctl cmd %d failed rval %d\n", eeprom->eeprom_cmd, rval); 19192 } 19193 19194 return (rval); 19195 } 19196 19197 static int 19198 bxe_get_settings(struct bxe_softc *sc, bxe_dev_setting_t *dev_p) 19199 { 19200 uint32_t ext_phy_config; 19201 int port = SC_PORT(sc); 19202 int cfg_idx = bxe_get_link_cfg_idx(sc); 19203 19204 dev_p->supported = sc->port.supported[cfg_idx] | 19205 (sc->port.supported[cfg_idx ^ 1] & 19206 (ELINK_SUPPORTED_TP | ELINK_SUPPORTED_FIBRE)); 19207 dev_p->advertising = sc->port.advertising[cfg_idx]; 19208 if(sc->link_params.phy[bxe_get_cur_phy_idx(sc)].media_type == 19209 ELINK_ETH_PHY_SFP_1G_FIBER) { 19210 dev_p->supported = ~(ELINK_SUPPORTED_10000baseT_Full); 19211 dev_p->advertising &= ~(ADVERTISED_10000baseT_Full); 19212 } 19213 if ((sc->state == BXE_STATE_OPEN) && sc->link_vars.link_up && 19214 !(sc->flags & BXE_MF_FUNC_DIS)) { 19215 dev_p->duplex = sc->link_vars.duplex; 19216 if (IS_MF(sc) && !BXE_NOMCP(sc)) 19217 dev_p->speed = bxe_get_mf_speed(sc); 19218 else 19219 dev_p->speed = sc->link_vars.line_speed; 19220 } else { 19221 dev_p->duplex = DUPLEX_UNKNOWN; 19222 dev_p->speed = SPEED_UNKNOWN; 19223 } 19224 19225 dev_p->port = bxe_media_detect(sc); 19226 19227 ext_phy_config = SHMEM_RD(sc, 19228 dev_info.port_hw_config[port].external_phy_config); 19229 if((ext_phy_config & PORT_HW_CFG_XGXS_EXT_PHY_TYPE_MASK) == 19230 PORT_HW_CFG_XGXS_EXT_PHY_TYPE_DIRECT) 19231 dev_p->phy_address = sc->port.phy_addr; 19232 else if(((ext_phy_config & PORT_HW_CFG_XGXS_EXT_PHY_TYPE_MASK) != 19233 PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE) && 19234 ((ext_phy_config & PORT_HW_CFG_XGXS_EXT_PHY_TYPE_MASK) != 19235 PORT_HW_CFG_XGXS_EXT_PHY_TYPE_NOT_CONN)) 19236 dev_p->phy_address = ELINK_XGXS_EXT_PHY_ADDR(ext_phy_config); 19237 else 19238 dev_p->phy_address = 0; 19239 19240 if(sc->link_params.req_line_speed[cfg_idx] == ELINK_SPEED_AUTO_NEG) 19241 dev_p->autoneg = AUTONEG_ENABLE; 19242 else 19243 dev_p->autoneg = AUTONEG_DISABLE; 19244 19245 19246 return 0; 19247 } 19248 19249 static int 19250 bxe_eioctl(struct cdev *dev, u_long cmd, caddr_t data, int fflag, 19251 struct thread *td) 19252 { 19253 struct bxe_softc *sc; 19254 int rval = 0; 19255 bxe_grcdump_t *dump = NULL; 19256 int grc_dump_size; 19257 bxe_drvinfo_t *drv_infop = NULL; 19258 bxe_dev_setting_t *dev_p; 19259 bxe_dev_setting_t dev_set; 19260 bxe_get_regs_t *reg_p; 19261 bxe_reg_rdw_t *reg_rdw_p; 19262 bxe_pcicfg_rdw_t *cfg_rdw_p; 19263 bxe_perm_mac_addr_t *mac_addr_p; 19264 19265 19266 if ((sc = (struct bxe_softc *)dev->si_drv1) == NULL) 19267 return ENXIO; 19268 19269 dump = (bxe_grcdump_t *)data; 19270 19271 switch(cmd) { 19272 19273 case BXE_GRC_DUMP_SIZE: 19274 dump->pci_func = sc->pcie_func; 19275 dump->grcdump_size = 19276 (bxe_get_total_regs_len32(sc) * sizeof(uint32_t)) + 19277 sizeof(struct dump_header); 19278 break; 19279 19280 case BXE_GRC_DUMP: 19281 19282 grc_dump_size = (bxe_get_total_regs_len32(sc) * sizeof(uint32_t)) + 19283 sizeof(struct dump_header); 19284 if ((!sc->trigger_grcdump) || (dump->grcdump == NULL) || 19285 (dump->grcdump_size < grc_dump_size)) { 19286 rval = EINVAL; 19287 break; 19288 } 19289 19290 if((sc->trigger_grcdump) && (!sc->grcdump_done) && 19291 (!sc->grcdump_started)) { 19292 rval = bxe_grc_dump(sc); 19293 } 19294 19295 if((!rval) && (sc->grcdump_done) && (sc->grcdump_started) && 19296 (sc->grc_dump != NULL)) { 19297 dump->grcdump_dwords = grc_dump_size >> 2; 19298 rval = copyout(sc->grc_dump, dump->grcdump, grc_dump_size); 19299 free(sc->grc_dump, M_DEVBUF); 19300 sc->grc_dump = NULL; 19301 sc->grcdump_started = 0; 19302 sc->grcdump_done = 0; 19303 } 19304 19305 break; 19306 19307 case BXE_DRV_INFO: 19308 drv_infop = (bxe_drvinfo_t *)data; 19309 snprintf(drv_infop->drv_name, BXE_DRV_NAME_LENGTH, "%s", "bxe"); 19310 snprintf(drv_infop->drv_version, BXE_DRV_VERSION_LENGTH, "v:%s", 19311 BXE_DRIVER_VERSION); 19312 snprintf(drv_infop->mfw_version, BXE_MFW_VERSION_LENGTH, "%s", 19313 sc->devinfo.bc_ver_str); 19314 snprintf(drv_infop->stormfw_version, BXE_STORMFW_VERSION_LENGTH, 19315 "%s", sc->fw_ver_str); 19316 drv_infop->eeprom_dump_len = sc->devinfo.flash_size; 19317 drv_infop->reg_dump_len = 19318 (bxe_get_total_regs_len32(sc) * sizeof(uint32_t)) 19319 + sizeof(struct dump_header); 19320 snprintf(drv_infop->bus_info, BXE_BUS_INFO_LENGTH, "%d:%d:%d", 19321 sc->pcie_bus, sc->pcie_device, sc->pcie_func); 19322 break; 19323 19324 case BXE_DEV_SETTING: 19325 dev_p = (bxe_dev_setting_t *)data; 19326 bxe_get_settings(sc, &dev_set); 19327 dev_p->supported = dev_set.supported; 19328 dev_p->advertising = dev_set.advertising; 19329 dev_p->speed = dev_set.speed; 19330 dev_p->duplex = dev_set.duplex; 19331 dev_p->port = dev_set.port; 19332 dev_p->phy_address = dev_set.phy_address; 19333 dev_p->autoneg = dev_set.autoneg; 19334 19335 break; 19336 19337 case BXE_GET_REGS: 19338 19339 reg_p = (bxe_get_regs_t *)data; 19340 grc_dump_size = reg_p->reg_buf_len; 19341 19342 if((!sc->grcdump_done) && (!sc->grcdump_started)) { 19343 bxe_grc_dump(sc); 19344 } 19345 if((sc->grcdump_done) && (sc->grcdump_started) && 19346 (sc->grc_dump != NULL)) { 19347 rval = copyout(sc->grc_dump, reg_p->reg_buf, grc_dump_size); 19348 free(sc->grc_dump, M_DEVBUF); 19349 sc->grc_dump = NULL; 19350 sc->grcdump_started = 0; 19351 sc->grcdump_done = 0; 19352 } 19353 19354 break; 19355 19356 case BXE_RDW_REG: 19357 reg_rdw_p = (bxe_reg_rdw_t *)data; 19358 if((reg_rdw_p->reg_cmd == BXE_READ_REG_CMD) && 19359 (reg_rdw_p->reg_access_type == BXE_REG_ACCESS_DIRECT)) 19360 reg_rdw_p->reg_val = REG_RD(sc, reg_rdw_p->reg_id); 19361 19362 if((reg_rdw_p->reg_cmd == BXE_WRITE_REG_CMD) && 19363 (reg_rdw_p->reg_access_type == BXE_REG_ACCESS_DIRECT)) 19364 REG_WR(sc, reg_rdw_p->reg_id, reg_rdw_p->reg_val); 19365 19366 break; 19367 19368 case BXE_RDW_PCICFG: 19369 cfg_rdw_p = (bxe_pcicfg_rdw_t *)data; 19370 if(cfg_rdw_p->cfg_cmd == BXE_READ_PCICFG) { 19371 19372 cfg_rdw_p->cfg_val = pci_read_config(sc->dev, cfg_rdw_p->cfg_id, 19373 cfg_rdw_p->cfg_width); 19374 19375 } else if(cfg_rdw_p->cfg_cmd == BXE_WRITE_PCICFG) { 19376 pci_write_config(sc->dev, cfg_rdw_p->cfg_id, cfg_rdw_p->cfg_val, 19377 cfg_rdw_p->cfg_width); 19378 } else { 19379 BLOGW(sc, "BXE_RDW_PCICFG ioctl wrong cmd passed\n"); 19380 } 19381 break; 19382 19383 case BXE_MAC_ADDR: 19384 mac_addr_p = (bxe_perm_mac_addr_t *)data; 19385 snprintf(mac_addr_p->mac_addr_str, sizeof(sc->mac_addr_str), "%s", 19386 sc->mac_addr_str); 19387 break; 19388 19389 case BXE_EEPROM: 19390 rval = bxe_eeprom_rd_wr(sc, (bxe_eeprom_t *)data); 19391 break; 19392 19393 19394 default: 19395 break; 19396 } 19397 19398 return (rval); 19399 } 19400 19401 #ifdef DEBUGNET 19402 static void 19403 bxe_debugnet_init(if_t ifp, int *nrxr, int *ncl, int *clsize) 19404 { 19405 struct bxe_softc *sc; 19406 19407 sc = if_getsoftc(ifp); 19408 BXE_CORE_LOCK(sc); 19409 *nrxr = sc->num_queues; 19410 *ncl = DEBUGNET_MAX_IN_FLIGHT; 19411 *clsize = sc->fp[0].mbuf_alloc_size; 19412 BXE_CORE_UNLOCK(sc); 19413 } 19414 19415 static void 19416 bxe_debugnet_event(if_t ifp __unused, enum debugnet_ev event __unused) 19417 { 19418 } 19419 19420 static int 19421 bxe_debugnet_transmit(if_t ifp, struct mbuf *m) 19422 { 19423 struct bxe_softc *sc; 19424 int error; 19425 19426 sc = if_getsoftc(ifp); 19427 if ((if_getdrvflags(ifp) & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) != 19428 IFF_DRV_RUNNING || !sc->link_vars.link_up) 19429 return (ENOENT); 19430 19431 error = bxe_tx_encap(&sc->fp[0], &m); 19432 if (error != 0 && m != NULL) 19433 m_freem(m); 19434 return (error); 19435 } 19436 19437 static int 19438 bxe_debugnet_poll(if_t ifp, int count) 19439 { 19440 struct bxe_softc *sc; 19441 int i; 19442 19443 sc = if_getsoftc(ifp); 19444 if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) == 0 || 19445 !sc->link_vars.link_up) 19446 return (ENOENT); 19447 19448 for (i = 0; i < sc->num_queues; i++) 19449 (void)bxe_rxeof(sc, &sc->fp[i]); 19450 (void)bxe_txeof(sc, &sc->fp[0]); 19451 return (0); 19452 } 19453 #endif /* DEBUGNET */ 19454