1 /*- 2 * Copyright (c) 2007-2014 QLogic Corporation. All rights reserved. 3 * 4 * Redistribution and use in source and binary forms, with or without 5 * modification, are permitted provided that the following conditions 6 * are met: 7 * 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 14 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS' 15 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 17 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS 18 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 19 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 20 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 21 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 22 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 23 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF 24 * THE POSSIBILITY OF SUCH DAMAGE. 25 */ 26 27 #include <sys/cdefs.h> 28 __FBSDID("$FreeBSD$"); 29 30 #define BXE_DRIVER_VERSION "1.78.81" 31 32 #include "bxe.h" 33 #include "ecore_sp.h" 34 #include "ecore_init.h" 35 #include "ecore_init_ops.h" 36 37 #include "57710_int_offsets.h" 38 #include "57711_int_offsets.h" 39 #include "57712_int_offsets.h" 40 41 /* 42 * CTLTYPE_U64 and sysctl_handle_64 were added in r217616. Define these 43 * explicitly here for older kernels that don't include this changeset. 44 */ 45 #ifndef CTLTYPE_U64 46 #define CTLTYPE_U64 CTLTYPE_QUAD 47 #define sysctl_handle_64 sysctl_handle_quad 48 #endif 49 50 /* 51 * CSUM_TCP_IPV6 and CSUM_UDP_IPV6 were added in r236170. Define these 52 * here as zero(0) for older kernels that don't include this changeset 53 * thereby masking the functionality. 54 */ 55 #ifndef CSUM_TCP_IPV6 56 #define CSUM_TCP_IPV6 0 57 #define CSUM_UDP_IPV6 0 58 #endif 59 60 /* 61 * pci_find_cap was added in r219865. Re-define this at pci_find_extcap 62 * for older kernels that don't include this changeset. 63 */ 64 #if __FreeBSD_version < 900035 65 #define pci_find_cap pci_find_extcap 66 #endif 67 68 #define BXE_DEF_SB_ATT_IDX 0x0001 69 #define BXE_DEF_SB_IDX 0x0002 70 71 /* 72 * FLR Support - bxe_pf_flr_clnup() is called during nic_load in the per 73 * function HW initialization. 74 */ 75 #define FLR_WAIT_USEC 10000 /* 10 msecs */ 76 #define FLR_WAIT_INTERVAL 50 /* usecs */ 77 #define FLR_POLL_CNT (FLR_WAIT_USEC / FLR_WAIT_INTERVAL) /* 200 */ 78 79 struct pbf_pN_buf_regs { 80 int pN; 81 uint32_t init_crd; 82 uint32_t crd; 83 uint32_t crd_freed; 84 }; 85 86 struct pbf_pN_cmd_regs { 87 int pN; 88 uint32_t lines_occup; 89 uint32_t lines_freed; 90 }; 91 92 /* 93 * PCI Device ID Table used by bxe_probe(). 94 */ 95 #define BXE_DEVDESC_MAX 64 96 static struct bxe_device_type bxe_devs[] = { 97 { 98 BRCM_VENDORID, 99 CHIP_NUM_57710, 100 PCI_ANY_ID, PCI_ANY_ID, 101 "QLogic NetXtreme II BCM57710 10GbE" 102 }, 103 { 104 BRCM_VENDORID, 105 CHIP_NUM_57711, 106 PCI_ANY_ID, PCI_ANY_ID, 107 "QLogic NetXtreme II BCM57711 10GbE" 108 }, 109 { 110 BRCM_VENDORID, 111 CHIP_NUM_57711E, 112 PCI_ANY_ID, PCI_ANY_ID, 113 "QLogic NetXtreme II BCM57711E 10GbE" 114 }, 115 { 116 BRCM_VENDORID, 117 CHIP_NUM_57712, 118 PCI_ANY_ID, PCI_ANY_ID, 119 "QLogic NetXtreme II BCM57712 10GbE" 120 }, 121 { 122 BRCM_VENDORID, 123 CHIP_NUM_57712_MF, 124 PCI_ANY_ID, PCI_ANY_ID, 125 "QLogic NetXtreme II BCM57712 MF 10GbE" 126 }, 127 { 128 BRCM_VENDORID, 129 CHIP_NUM_57800, 130 PCI_ANY_ID, PCI_ANY_ID, 131 "QLogic NetXtreme II BCM57800 10GbE" 132 }, 133 { 134 BRCM_VENDORID, 135 CHIP_NUM_57800_MF, 136 PCI_ANY_ID, PCI_ANY_ID, 137 "QLogic NetXtreme II BCM57800 MF 10GbE" 138 }, 139 { 140 BRCM_VENDORID, 141 CHIP_NUM_57810, 142 PCI_ANY_ID, PCI_ANY_ID, 143 "QLogic NetXtreme II BCM57810 10GbE" 144 }, 145 { 146 BRCM_VENDORID, 147 CHIP_NUM_57810_MF, 148 PCI_ANY_ID, PCI_ANY_ID, 149 "QLogic NetXtreme II BCM57810 MF 10GbE" 150 }, 151 { 152 BRCM_VENDORID, 153 CHIP_NUM_57811, 154 PCI_ANY_ID, PCI_ANY_ID, 155 "QLogic NetXtreme II BCM57811 10GbE" 156 }, 157 { 158 BRCM_VENDORID, 159 CHIP_NUM_57811_MF, 160 PCI_ANY_ID, PCI_ANY_ID, 161 "QLogic NetXtreme II BCM57811 MF 10GbE" 162 }, 163 { 164 BRCM_VENDORID, 165 CHIP_NUM_57840_4_10, 166 PCI_ANY_ID, PCI_ANY_ID, 167 "QLogic NetXtreme II BCM57840 4x10GbE" 168 }, 169 { 170 BRCM_VENDORID, 171 CHIP_NUM_57840_MF, 172 PCI_ANY_ID, PCI_ANY_ID, 173 "QLogic NetXtreme II BCM57840 MF 10GbE" 174 }, 175 { 176 0, 0, 0, 0, NULL 177 } 178 }; 179 180 MALLOC_DECLARE(M_BXE_ILT); 181 MALLOC_DEFINE(M_BXE_ILT, "bxe_ilt", "bxe ILT pointer"); 182 183 /* 184 * FreeBSD device entry points. 185 */ 186 static int bxe_probe(device_t); 187 static int bxe_attach(device_t); 188 static int bxe_detach(device_t); 189 static int bxe_shutdown(device_t); 190 191 /* 192 * FreeBSD KLD module/device interface event handler method. 193 */ 194 static device_method_t bxe_methods[] = { 195 /* Device interface (device_if.h) */ 196 DEVMETHOD(device_probe, bxe_probe), 197 DEVMETHOD(device_attach, bxe_attach), 198 DEVMETHOD(device_detach, bxe_detach), 199 DEVMETHOD(device_shutdown, bxe_shutdown), 200 /* Bus interface (bus_if.h) */ 201 DEVMETHOD(bus_print_child, bus_generic_print_child), 202 DEVMETHOD(bus_driver_added, bus_generic_driver_added), 203 KOBJMETHOD_END 204 }; 205 206 /* 207 * FreeBSD KLD Module data declaration 208 */ 209 static driver_t bxe_driver = { 210 "bxe", /* module name */ 211 bxe_methods, /* event handler */ 212 sizeof(struct bxe_softc) /* extra data */ 213 }; 214 215 /* 216 * FreeBSD dev class is needed to manage dev instances and 217 * to associate with a bus type 218 */ 219 static devclass_t bxe_devclass; 220 221 MODULE_DEPEND(bxe, pci, 1, 1, 1); 222 MODULE_DEPEND(bxe, ether, 1, 1, 1); 223 DRIVER_MODULE(bxe, pci, bxe_driver, bxe_devclass, 0, 0); 224 225 /* resources needed for unloading a previously loaded device */ 226 227 #define BXE_PREV_WAIT_NEEDED 1 228 struct mtx bxe_prev_mtx; 229 MTX_SYSINIT(bxe_prev_mtx, &bxe_prev_mtx, "bxe_prev_lock", MTX_DEF); 230 struct bxe_prev_list_node { 231 LIST_ENTRY(bxe_prev_list_node) node; 232 uint8_t bus; 233 uint8_t slot; 234 uint8_t path; 235 uint8_t aer; /* XXX automatic error recovery */ 236 uint8_t undi; 237 }; 238 static LIST_HEAD(, bxe_prev_list_node) bxe_prev_list = LIST_HEAD_INITIALIZER(bxe_prev_list); 239 240 static int load_count[2][3] = { {0} }; /* per-path: 0-common, 1-port0, 2-port1 */ 241 242 /* Tunable device values... */ 243 244 SYSCTL_NODE(_hw, OID_AUTO, bxe, CTLFLAG_RD, 0, "bxe driver parameters"); 245 246 /* Debug */ 247 unsigned long bxe_debug = 0; 248 SYSCTL_ULONG(_hw_bxe, OID_AUTO, debug, CTLFLAG_RDTUN, 249 &bxe_debug, 0, "Debug logging mode"); 250 251 /* Interrupt Mode: 0 (IRQ), 1 (MSI/IRQ), and 2 (MSI-X/MSI/IRQ) */ 252 static int bxe_interrupt_mode = INTR_MODE_MSIX; 253 SYSCTL_INT(_hw_bxe, OID_AUTO, interrupt_mode, CTLFLAG_RDTUN, 254 &bxe_interrupt_mode, 0, "Interrupt (MSI-X/MSI/INTx) mode"); 255 256 /* Number of Queues: 0 (Auto) or 1 to 16 (fixed queue number) */ 257 static int bxe_queue_count = 4; 258 SYSCTL_INT(_hw_bxe, OID_AUTO, queue_count, CTLFLAG_RDTUN, 259 &bxe_queue_count, 0, "Multi-Queue queue count"); 260 261 /* max number of buffers per queue (default RX_BD_USABLE) */ 262 static int bxe_max_rx_bufs = 0; 263 SYSCTL_INT(_hw_bxe, OID_AUTO, max_rx_bufs, CTLFLAG_RDTUN, 264 &bxe_max_rx_bufs, 0, "Maximum Number of Rx Buffers Per Queue"); 265 266 /* Host interrupt coalescing RX tick timer (usecs) */ 267 static int bxe_hc_rx_ticks = 25; 268 SYSCTL_INT(_hw_bxe, OID_AUTO, hc_rx_ticks, CTLFLAG_RDTUN, 269 &bxe_hc_rx_ticks, 0, "Host Coalescing Rx ticks"); 270 271 /* Host interrupt coalescing TX tick timer (usecs) */ 272 static int bxe_hc_tx_ticks = 50; 273 SYSCTL_INT(_hw_bxe, OID_AUTO, hc_tx_ticks, CTLFLAG_RDTUN, 274 &bxe_hc_tx_ticks, 0, "Host Coalescing Tx ticks"); 275 276 /* Maximum number of Rx packets to process at a time */ 277 static int bxe_rx_budget = 0xffffffff; 278 SYSCTL_INT(_hw_bxe, OID_AUTO, rx_budget, CTLFLAG_TUN, 279 &bxe_rx_budget, 0, "Rx processing budget"); 280 281 /* Maximum LRO aggregation size */ 282 static int bxe_max_aggregation_size = 0; 283 SYSCTL_INT(_hw_bxe, OID_AUTO, max_aggregation_size, CTLFLAG_TUN, 284 &bxe_max_aggregation_size, 0, "max aggregation size"); 285 286 /* PCI MRRS: -1 (Auto), 0 (128B), 1 (256B), 2 (512B), 3 (1KB) */ 287 static int bxe_mrrs = -1; 288 SYSCTL_INT(_hw_bxe, OID_AUTO, mrrs, CTLFLAG_RDTUN, 289 &bxe_mrrs, 0, "PCIe maximum read request size"); 290 291 /* AutoGrEEEn: 0 (hardware default), 1 (force on), 2 (force off) */ 292 static int bxe_autogreeen = 0; 293 SYSCTL_INT(_hw_bxe, OID_AUTO, autogreeen, CTLFLAG_RDTUN, 294 &bxe_autogreeen, 0, "AutoGrEEEn support"); 295 296 /* 4-tuple RSS support for UDP: 0 (disabled), 1 (enabled) */ 297 static int bxe_udp_rss = 0; 298 SYSCTL_INT(_hw_bxe, OID_AUTO, udp_rss, CTLFLAG_RDTUN, 299 &bxe_udp_rss, 0, "UDP RSS support"); 300 301 302 #define STAT_NAME_LEN 32 /* no stat names below can be longer than this */ 303 304 #define STATS_OFFSET32(stat_name) \ 305 (offsetof(struct bxe_eth_stats, stat_name) / 4) 306 307 #define Q_STATS_OFFSET32(stat_name) \ 308 (offsetof(struct bxe_eth_q_stats, stat_name) / 4) 309 310 static const struct { 311 uint32_t offset; 312 uint32_t size; 313 uint32_t flags; 314 #define STATS_FLAGS_PORT 1 315 #define STATS_FLAGS_FUNC 2 /* MF only cares about function stats */ 316 #define STATS_FLAGS_BOTH (STATS_FLAGS_FUNC | STATS_FLAGS_PORT) 317 char string[STAT_NAME_LEN]; 318 } bxe_eth_stats_arr[] = { 319 { STATS_OFFSET32(total_bytes_received_hi), 320 8, STATS_FLAGS_BOTH, "rx_bytes" }, 321 { STATS_OFFSET32(error_bytes_received_hi), 322 8, STATS_FLAGS_BOTH, "rx_error_bytes" }, 323 { STATS_OFFSET32(total_unicast_packets_received_hi), 324 8, STATS_FLAGS_BOTH, "rx_ucast_packets" }, 325 { STATS_OFFSET32(total_multicast_packets_received_hi), 326 8, STATS_FLAGS_BOTH, "rx_mcast_packets" }, 327 { STATS_OFFSET32(total_broadcast_packets_received_hi), 328 8, STATS_FLAGS_BOTH, "rx_bcast_packets" }, 329 { STATS_OFFSET32(rx_stat_dot3statsfcserrors_hi), 330 8, STATS_FLAGS_PORT, "rx_crc_errors" }, 331 { STATS_OFFSET32(rx_stat_dot3statsalignmenterrors_hi), 332 8, STATS_FLAGS_PORT, "rx_align_errors" }, 333 { STATS_OFFSET32(rx_stat_etherstatsundersizepkts_hi), 334 8, STATS_FLAGS_PORT, "rx_undersize_packets" }, 335 { STATS_OFFSET32(etherstatsoverrsizepkts_hi), 336 8, STATS_FLAGS_PORT, "rx_oversize_packets" }, 337 { STATS_OFFSET32(rx_stat_etherstatsfragments_hi), 338 8, STATS_FLAGS_PORT, "rx_fragments" }, 339 { STATS_OFFSET32(rx_stat_etherstatsjabbers_hi), 340 8, STATS_FLAGS_PORT, "rx_jabbers" }, 341 { STATS_OFFSET32(no_buff_discard_hi), 342 8, STATS_FLAGS_BOTH, "rx_discards" }, 343 { STATS_OFFSET32(mac_filter_discard), 344 4, STATS_FLAGS_PORT, "rx_filtered_packets" }, 345 { STATS_OFFSET32(mf_tag_discard), 346 4, STATS_FLAGS_PORT, "rx_mf_tag_discard" }, 347 { STATS_OFFSET32(pfc_frames_received_hi), 348 8, STATS_FLAGS_PORT, "pfc_frames_received" }, 349 { STATS_OFFSET32(pfc_frames_sent_hi), 350 8, STATS_FLAGS_PORT, "pfc_frames_sent" }, 351 { STATS_OFFSET32(brb_drop_hi), 352 8, STATS_FLAGS_PORT, "rx_brb_discard" }, 353 { STATS_OFFSET32(brb_truncate_hi), 354 8, STATS_FLAGS_PORT, "rx_brb_truncate" }, 355 { STATS_OFFSET32(pause_frames_received_hi), 356 8, STATS_FLAGS_PORT, "rx_pause_frames" }, 357 { STATS_OFFSET32(rx_stat_maccontrolframesreceived_hi), 358 8, STATS_FLAGS_PORT, "rx_mac_ctrl_frames" }, 359 { STATS_OFFSET32(nig_timer_max), 360 4, STATS_FLAGS_PORT, "rx_constant_pause_events" }, 361 { STATS_OFFSET32(total_bytes_transmitted_hi), 362 8, STATS_FLAGS_BOTH, "tx_bytes" }, 363 { STATS_OFFSET32(tx_stat_ifhcoutbadoctets_hi), 364 8, STATS_FLAGS_PORT, "tx_error_bytes" }, 365 { STATS_OFFSET32(total_unicast_packets_transmitted_hi), 366 8, STATS_FLAGS_BOTH, "tx_ucast_packets" }, 367 { STATS_OFFSET32(total_multicast_packets_transmitted_hi), 368 8, STATS_FLAGS_BOTH, "tx_mcast_packets" }, 369 { STATS_OFFSET32(total_broadcast_packets_transmitted_hi), 370 8, STATS_FLAGS_BOTH, "tx_bcast_packets" }, 371 { STATS_OFFSET32(tx_stat_dot3statsinternalmactransmiterrors_hi), 372 8, STATS_FLAGS_PORT, "tx_mac_errors" }, 373 { STATS_OFFSET32(rx_stat_dot3statscarriersenseerrors_hi), 374 8, STATS_FLAGS_PORT, "tx_carrier_errors" }, 375 { STATS_OFFSET32(tx_stat_dot3statssinglecollisionframes_hi), 376 8, STATS_FLAGS_PORT, "tx_single_collisions" }, 377 { STATS_OFFSET32(tx_stat_dot3statsmultiplecollisionframes_hi), 378 8, STATS_FLAGS_PORT, "tx_multi_collisions" }, 379 { STATS_OFFSET32(tx_stat_dot3statsdeferredtransmissions_hi), 380 8, STATS_FLAGS_PORT, "tx_deferred" }, 381 { STATS_OFFSET32(tx_stat_dot3statsexcessivecollisions_hi), 382 8, STATS_FLAGS_PORT, "tx_excess_collisions" }, 383 { STATS_OFFSET32(tx_stat_dot3statslatecollisions_hi), 384 8, STATS_FLAGS_PORT, "tx_late_collisions" }, 385 { STATS_OFFSET32(tx_stat_etherstatscollisions_hi), 386 8, STATS_FLAGS_PORT, "tx_total_collisions" }, 387 { STATS_OFFSET32(tx_stat_etherstatspkts64octets_hi), 388 8, STATS_FLAGS_PORT, "tx_64_byte_packets" }, 389 { STATS_OFFSET32(tx_stat_etherstatspkts65octetsto127octets_hi), 390 8, STATS_FLAGS_PORT, "tx_65_to_127_byte_packets" }, 391 { STATS_OFFSET32(tx_stat_etherstatspkts128octetsto255octets_hi), 392 8, STATS_FLAGS_PORT, "tx_128_to_255_byte_packets" }, 393 { STATS_OFFSET32(tx_stat_etherstatspkts256octetsto511octets_hi), 394 8, STATS_FLAGS_PORT, "tx_256_to_511_byte_packets" }, 395 { STATS_OFFSET32(tx_stat_etherstatspkts512octetsto1023octets_hi), 396 8, STATS_FLAGS_PORT, "tx_512_to_1023_byte_packets" }, 397 { STATS_OFFSET32(etherstatspkts1024octetsto1522octets_hi), 398 8, STATS_FLAGS_PORT, "tx_1024_to_1522_byte_packets" }, 399 { STATS_OFFSET32(etherstatspktsover1522octets_hi), 400 8, STATS_FLAGS_PORT, "tx_1523_to_9022_byte_packets" }, 401 { STATS_OFFSET32(pause_frames_sent_hi), 402 8, STATS_FLAGS_PORT, "tx_pause_frames" }, 403 { STATS_OFFSET32(total_tpa_aggregations_hi), 404 8, STATS_FLAGS_FUNC, "tpa_aggregations" }, 405 { STATS_OFFSET32(total_tpa_aggregated_frames_hi), 406 8, STATS_FLAGS_FUNC, "tpa_aggregated_frames"}, 407 { STATS_OFFSET32(total_tpa_bytes_hi), 408 8, STATS_FLAGS_FUNC, "tpa_bytes"}, 409 { STATS_OFFSET32(eee_tx_lpi), 410 4, STATS_FLAGS_PORT, "eee_tx_lpi"}, 411 { STATS_OFFSET32(rx_calls), 412 4, STATS_FLAGS_FUNC, "rx_calls"}, 413 { STATS_OFFSET32(rx_pkts), 414 4, STATS_FLAGS_FUNC, "rx_pkts"}, 415 { STATS_OFFSET32(rx_tpa_pkts), 416 4, STATS_FLAGS_FUNC, "rx_tpa_pkts"}, 417 { STATS_OFFSET32(rx_erroneous_jumbo_sge_pkts), 418 4, STATS_FLAGS_FUNC, "rx_erroneous_jumbo_sge_pkts"}, 419 { STATS_OFFSET32(rx_bxe_service_rxsgl), 420 4, STATS_FLAGS_FUNC, "rx_bxe_service_rxsgl"}, 421 { STATS_OFFSET32(rx_jumbo_sge_pkts), 422 4, STATS_FLAGS_FUNC, "rx_jumbo_sge_pkts"}, 423 { STATS_OFFSET32(rx_soft_errors), 424 4, STATS_FLAGS_FUNC, "rx_soft_errors"}, 425 { STATS_OFFSET32(rx_hw_csum_errors), 426 4, STATS_FLAGS_FUNC, "rx_hw_csum_errors"}, 427 { STATS_OFFSET32(rx_ofld_frames_csum_ip), 428 4, STATS_FLAGS_FUNC, "rx_ofld_frames_csum_ip"}, 429 { STATS_OFFSET32(rx_ofld_frames_csum_tcp_udp), 430 4, STATS_FLAGS_FUNC, "rx_ofld_frames_csum_tcp_udp"}, 431 { STATS_OFFSET32(rx_budget_reached), 432 4, STATS_FLAGS_FUNC, "rx_budget_reached"}, 433 { STATS_OFFSET32(tx_pkts), 434 4, STATS_FLAGS_FUNC, "tx_pkts"}, 435 { STATS_OFFSET32(tx_soft_errors), 436 4, STATS_FLAGS_FUNC, "tx_soft_errors"}, 437 { STATS_OFFSET32(tx_ofld_frames_csum_ip), 438 4, STATS_FLAGS_FUNC, "tx_ofld_frames_csum_ip"}, 439 { STATS_OFFSET32(tx_ofld_frames_csum_tcp), 440 4, STATS_FLAGS_FUNC, "tx_ofld_frames_csum_tcp"}, 441 { STATS_OFFSET32(tx_ofld_frames_csum_udp), 442 4, STATS_FLAGS_FUNC, "tx_ofld_frames_csum_udp"}, 443 { STATS_OFFSET32(tx_ofld_frames_lso), 444 4, STATS_FLAGS_FUNC, "tx_ofld_frames_lso"}, 445 { STATS_OFFSET32(tx_ofld_frames_lso_hdr_splits), 446 4, STATS_FLAGS_FUNC, "tx_ofld_frames_lso_hdr_splits"}, 447 { STATS_OFFSET32(tx_encap_failures), 448 4, STATS_FLAGS_FUNC, "tx_encap_failures"}, 449 { STATS_OFFSET32(tx_hw_queue_full), 450 4, STATS_FLAGS_FUNC, "tx_hw_queue_full"}, 451 { STATS_OFFSET32(tx_hw_max_queue_depth), 452 4, STATS_FLAGS_FUNC, "tx_hw_max_queue_depth"}, 453 { STATS_OFFSET32(tx_dma_mapping_failure), 454 4, STATS_FLAGS_FUNC, "tx_dma_mapping_failure"}, 455 { STATS_OFFSET32(tx_max_drbr_queue_depth), 456 4, STATS_FLAGS_FUNC, "tx_max_drbr_queue_depth"}, 457 { STATS_OFFSET32(tx_window_violation_std), 458 4, STATS_FLAGS_FUNC, "tx_window_violation_std"}, 459 { STATS_OFFSET32(tx_window_violation_tso), 460 4, STATS_FLAGS_FUNC, "tx_window_violation_tso"}, 461 { STATS_OFFSET32(tx_chain_lost_mbuf), 462 4, STATS_FLAGS_FUNC, "tx_chain_lost_mbuf"}, 463 { STATS_OFFSET32(tx_frames_deferred), 464 4, STATS_FLAGS_FUNC, "tx_frames_deferred"}, 465 { STATS_OFFSET32(tx_queue_xoff), 466 4, STATS_FLAGS_FUNC, "tx_queue_xoff"}, 467 { STATS_OFFSET32(mbuf_defrag_attempts), 468 4, STATS_FLAGS_FUNC, "mbuf_defrag_attempts"}, 469 { STATS_OFFSET32(mbuf_defrag_failures), 470 4, STATS_FLAGS_FUNC, "mbuf_defrag_failures"}, 471 { STATS_OFFSET32(mbuf_rx_bd_alloc_failed), 472 4, STATS_FLAGS_FUNC, "mbuf_rx_bd_alloc_failed"}, 473 { STATS_OFFSET32(mbuf_rx_bd_mapping_failed), 474 4, STATS_FLAGS_FUNC, "mbuf_rx_bd_mapping_failed"}, 475 { STATS_OFFSET32(mbuf_rx_tpa_alloc_failed), 476 4, STATS_FLAGS_FUNC, "mbuf_rx_tpa_alloc_failed"}, 477 { STATS_OFFSET32(mbuf_rx_tpa_mapping_failed), 478 4, STATS_FLAGS_FUNC, "mbuf_rx_tpa_mapping_failed"}, 479 { STATS_OFFSET32(mbuf_rx_sge_alloc_failed), 480 4, STATS_FLAGS_FUNC, "mbuf_rx_sge_alloc_failed"}, 481 { STATS_OFFSET32(mbuf_rx_sge_mapping_failed), 482 4, STATS_FLAGS_FUNC, "mbuf_rx_sge_mapping_failed"}, 483 { STATS_OFFSET32(mbuf_alloc_tx), 484 4, STATS_FLAGS_FUNC, "mbuf_alloc_tx"}, 485 { STATS_OFFSET32(mbuf_alloc_rx), 486 4, STATS_FLAGS_FUNC, "mbuf_alloc_rx"}, 487 { STATS_OFFSET32(mbuf_alloc_sge), 488 4, STATS_FLAGS_FUNC, "mbuf_alloc_sge"}, 489 { STATS_OFFSET32(mbuf_alloc_tpa), 490 4, STATS_FLAGS_FUNC, "mbuf_alloc_tpa"}, 491 { STATS_OFFSET32(tx_queue_full_return), 492 4, STATS_FLAGS_FUNC, "tx_queue_full_return"} 493 }; 494 495 static const struct { 496 uint32_t offset; 497 uint32_t size; 498 char string[STAT_NAME_LEN]; 499 } bxe_eth_q_stats_arr[] = { 500 { Q_STATS_OFFSET32(total_bytes_received_hi), 501 8, "rx_bytes" }, 502 { Q_STATS_OFFSET32(total_unicast_packets_received_hi), 503 8, "rx_ucast_packets" }, 504 { Q_STATS_OFFSET32(total_multicast_packets_received_hi), 505 8, "rx_mcast_packets" }, 506 { Q_STATS_OFFSET32(total_broadcast_packets_received_hi), 507 8, "rx_bcast_packets" }, 508 { Q_STATS_OFFSET32(no_buff_discard_hi), 509 8, "rx_discards" }, 510 { Q_STATS_OFFSET32(total_bytes_transmitted_hi), 511 8, "tx_bytes" }, 512 { Q_STATS_OFFSET32(total_unicast_packets_transmitted_hi), 513 8, "tx_ucast_packets" }, 514 { Q_STATS_OFFSET32(total_multicast_packets_transmitted_hi), 515 8, "tx_mcast_packets" }, 516 { Q_STATS_OFFSET32(total_broadcast_packets_transmitted_hi), 517 8, "tx_bcast_packets" }, 518 { Q_STATS_OFFSET32(total_tpa_aggregations_hi), 519 8, "tpa_aggregations" }, 520 { Q_STATS_OFFSET32(total_tpa_aggregated_frames_hi), 521 8, "tpa_aggregated_frames"}, 522 { Q_STATS_OFFSET32(total_tpa_bytes_hi), 523 8, "tpa_bytes"}, 524 { Q_STATS_OFFSET32(rx_calls), 525 4, "rx_calls"}, 526 { Q_STATS_OFFSET32(rx_pkts), 527 4, "rx_pkts"}, 528 { Q_STATS_OFFSET32(rx_tpa_pkts), 529 4, "rx_tpa_pkts"}, 530 { Q_STATS_OFFSET32(rx_erroneous_jumbo_sge_pkts), 531 4, "rx_erroneous_jumbo_sge_pkts"}, 532 { Q_STATS_OFFSET32(rx_bxe_service_rxsgl), 533 4, "rx_bxe_service_rxsgl"}, 534 { Q_STATS_OFFSET32(rx_jumbo_sge_pkts), 535 4, "rx_jumbo_sge_pkts"}, 536 { Q_STATS_OFFSET32(rx_soft_errors), 537 4, "rx_soft_errors"}, 538 { Q_STATS_OFFSET32(rx_hw_csum_errors), 539 4, "rx_hw_csum_errors"}, 540 { Q_STATS_OFFSET32(rx_ofld_frames_csum_ip), 541 4, "rx_ofld_frames_csum_ip"}, 542 { Q_STATS_OFFSET32(rx_ofld_frames_csum_tcp_udp), 543 4, "rx_ofld_frames_csum_tcp_udp"}, 544 { Q_STATS_OFFSET32(rx_budget_reached), 545 4, "rx_budget_reached"}, 546 { Q_STATS_OFFSET32(tx_pkts), 547 4, "tx_pkts"}, 548 { Q_STATS_OFFSET32(tx_soft_errors), 549 4, "tx_soft_errors"}, 550 { Q_STATS_OFFSET32(tx_ofld_frames_csum_ip), 551 4, "tx_ofld_frames_csum_ip"}, 552 { Q_STATS_OFFSET32(tx_ofld_frames_csum_tcp), 553 4, "tx_ofld_frames_csum_tcp"}, 554 { Q_STATS_OFFSET32(tx_ofld_frames_csum_udp), 555 4, "tx_ofld_frames_csum_udp"}, 556 { Q_STATS_OFFSET32(tx_ofld_frames_lso), 557 4, "tx_ofld_frames_lso"}, 558 { Q_STATS_OFFSET32(tx_ofld_frames_lso_hdr_splits), 559 4, "tx_ofld_frames_lso_hdr_splits"}, 560 { Q_STATS_OFFSET32(tx_encap_failures), 561 4, "tx_encap_failures"}, 562 { Q_STATS_OFFSET32(tx_hw_queue_full), 563 4, "tx_hw_queue_full"}, 564 { Q_STATS_OFFSET32(tx_hw_max_queue_depth), 565 4, "tx_hw_max_queue_depth"}, 566 { Q_STATS_OFFSET32(tx_dma_mapping_failure), 567 4, "tx_dma_mapping_failure"}, 568 { Q_STATS_OFFSET32(tx_max_drbr_queue_depth), 569 4, "tx_max_drbr_queue_depth"}, 570 { Q_STATS_OFFSET32(tx_window_violation_std), 571 4, "tx_window_violation_std"}, 572 { Q_STATS_OFFSET32(tx_window_violation_tso), 573 4, "tx_window_violation_tso"}, 574 { Q_STATS_OFFSET32(tx_chain_lost_mbuf), 575 4, "tx_chain_lost_mbuf"}, 576 { Q_STATS_OFFSET32(tx_frames_deferred), 577 4, "tx_frames_deferred"}, 578 { Q_STATS_OFFSET32(tx_queue_xoff), 579 4, "tx_queue_xoff"}, 580 { Q_STATS_OFFSET32(mbuf_defrag_attempts), 581 4, "mbuf_defrag_attempts"}, 582 { Q_STATS_OFFSET32(mbuf_defrag_failures), 583 4, "mbuf_defrag_failures"}, 584 { Q_STATS_OFFSET32(mbuf_rx_bd_alloc_failed), 585 4, "mbuf_rx_bd_alloc_failed"}, 586 { Q_STATS_OFFSET32(mbuf_rx_bd_mapping_failed), 587 4, "mbuf_rx_bd_mapping_failed"}, 588 { Q_STATS_OFFSET32(mbuf_rx_tpa_alloc_failed), 589 4, "mbuf_rx_tpa_alloc_failed"}, 590 { Q_STATS_OFFSET32(mbuf_rx_tpa_mapping_failed), 591 4, "mbuf_rx_tpa_mapping_failed"}, 592 { Q_STATS_OFFSET32(mbuf_rx_sge_alloc_failed), 593 4, "mbuf_rx_sge_alloc_failed"}, 594 { Q_STATS_OFFSET32(mbuf_rx_sge_mapping_failed), 595 4, "mbuf_rx_sge_mapping_failed"}, 596 { Q_STATS_OFFSET32(mbuf_alloc_tx), 597 4, "mbuf_alloc_tx"}, 598 { Q_STATS_OFFSET32(mbuf_alloc_rx), 599 4, "mbuf_alloc_rx"}, 600 { Q_STATS_OFFSET32(mbuf_alloc_sge), 601 4, "mbuf_alloc_sge"}, 602 { Q_STATS_OFFSET32(mbuf_alloc_tpa), 603 4, "mbuf_alloc_tpa"}, 604 { Q_STATS_OFFSET32(tx_queue_full_return), 605 4, "tx_queue_full_return"} 606 }; 607 608 #define BXE_NUM_ETH_STATS ARRAY_SIZE(bxe_eth_stats_arr) 609 #define BXE_NUM_ETH_Q_STATS ARRAY_SIZE(bxe_eth_q_stats_arr) 610 611 612 static void bxe_cmng_fns_init(struct bxe_softc *sc, 613 uint8_t read_cfg, 614 uint8_t cmng_type); 615 static int bxe_get_cmng_fns_mode(struct bxe_softc *sc); 616 static void storm_memset_cmng(struct bxe_softc *sc, 617 struct cmng_init *cmng, 618 uint8_t port); 619 static void bxe_set_reset_global(struct bxe_softc *sc); 620 static void bxe_set_reset_in_progress(struct bxe_softc *sc); 621 static uint8_t bxe_reset_is_done(struct bxe_softc *sc, 622 int engine); 623 static uint8_t bxe_clear_pf_load(struct bxe_softc *sc); 624 static uint8_t bxe_chk_parity_attn(struct bxe_softc *sc, 625 uint8_t *global, 626 uint8_t print); 627 static void bxe_int_disable(struct bxe_softc *sc); 628 static int bxe_release_leader_lock(struct bxe_softc *sc); 629 static void bxe_pf_disable(struct bxe_softc *sc); 630 static void bxe_free_fp_buffers(struct bxe_softc *sc); 631 static inline void bxe_update_rx_prod(struct bxe_softc *sc, 632 struct bxe_fastpath *fp, 633 uint16_t rx_bd_prod, 634 uint16_t rx_cq_prod, 635 uint16_t rx_sge_prod); 636 static void bxe_link_report_locked(struct bxe_softc *sc); 637 static void bxe_link_report(struct bxe_softc *sc); 638 static void bxe_link_status_update(struct bxe_softc *sc); 639 static void bxe_periodic_callout_func(void *xsc); 640 static void bxe_periodic_start(struct bxe_softc *sc); 641 static void bxe_periodic_stop(struct bxe_softc *sc); 642 static int bxe_alloc_rx_bd_mbuf(struct bxe_fastpath *fp, 643 uint16_t prev_index, 644 uint16_t index); 645 static int bxe_alloc_rx_tpa_mbuf(struct bxe_fastpath *fp, 646 int queue); 647 static int bxe_alloc_rx_sge_mbuf(struct bxe_fastpath *fp, 648 uint16_t index); 649 static uint8_t bxe_txeof(struct bxe_softc *sc, 650 struct bxe_fastpath *fp); 651 static void bxe_task_fp(struct bxe_fastpath *fp); 652 static __noinline void bxe_dump_mbuf(struct bxe_softc *sc, 653 struct mbuf *m, 654 uint8_t contents); 655 static int bxe_alloc_mem(struct bxe_softc *sc); 656 static void bxe_free_mem(struct bxe_softc *sc); 657 static int bxe_alloc_fw_stats_mem(struct bxe_softc *sc); 658 static void bxe_free_fw_stats_mem(struct bxe_softc *sc); 659 static int bxe_interrupt_attach(struct bxe_softc *sc); 660 static void bxe_interrupt_detach(struct bxe_softc *sc); 661 static void bxe_set_rx_mode(struct bxe_softc *sc); 662 static int bxe_init_locked(struct bxe_softc *sc); 663 static int bxe_stop_locked(struct bxe_softc *sc); 664 static __noinline int bxe_nic_load(struct bxe_softc *sc, 665 int load_mode); 666 static __noinline int bxe_nic_unload(struct bxe_softc *sc, 667 uint32_t unload_mode, 668 uint8_t keep_link); 669 670 static void bxe_handle_sp_tq(void *context, int pending); 671 static void bxe_handle_fp_tq(void *context, int pending); 672 673 static int bxe_add_cdev(struct bxe_softc *sc); 674 static void bxe_del_cdev(struct bxe_softc *sc); 675 static int bxe_alloc_buf_rings(struct bxe_softc *sc); 676 static void bxe_free_buf_rings(struct bxe_softc *sc); 677 678 /* calculate crc32 on a buffer (NOTE: crc32_length MUST be aligned to 8) */ 679 uint32_t 680 calc_crc32(uint8_t *crc32_packet, 681 uint32_t crc32_length, 682 uint32_t crc32_seed, 683 uint8_t complement) 684 { 685 uint32_t byte = 0; 686 uint32_t bit = 0; 687 uint8_t msb = 0; 688 uint32_t temp = 0; 689 uint32_t shft = 0; 690 uint8_t current_byte = 0; 691 uint32_t crc32_result = crc32_seed; 692 const uint32_t CRC32_POLY = 0x1edc6f41; 693 694 if ((crc32_packet == NULL) || 695 (crc32_length == 0) || 696 ((crc32_length % 8) != 0)) 697 { 698 return (crc32_result); 699 } 700 701 for (byte = 0; byte < crc32_length; byte = byte + 1) 702 { 703 current_byte = crc32_packet[byte]; 704 for (bit = 0; bit < 8; bit = bit + 1) 705 { 706 /* msb = crc32_result[31]; */ 707 msb = (uint8_t)(crc32_result >> 31); 708 709 crc32_result = crc32_result << 1; 710 711 /* it (msb != current_byte[bit]) */ 712 if (msb != (0x1 & (current_byte >> bit))) 713 { 714 crc32_result = crc32_result ^ CRC32_POLY; 715 /* crc32_result[0] = 1 */ 716 crc32_result |= 1; 717 } 718 } 719 } 720 721 /* Last step is to: 722 * 1. "mirror" every bit 723 * 2. swap the 4 bytes 724 * 3. complement each bit 725 */ 726 727 /* Mirror */ 728 temp = crc32_result; 729 shft = sizeof(crc32_result) * 8 - 1; 730 731 for (crc32_result >>= 1; crc32_result; crc32_result >>= 1) 732 { 733 temp <<= 1; 734 temp |= crc32_result & 1; 735 shft-- ; 736 } 737 738 /* temp[31-bit] = crc32_result[bit] */ 739 temp <<= shft; 740 741 /* Swap */ 742 /* crc32_result = {temp[7:0], temp[15:8], temp[23:16], temp[31:24]} */ 743 { 744 uint32_t t0, t1, t2, t3; 745 t0 = (0x000000ff & (temp >> 24)); 746 t1 = (0x0000ff00 & (temp >> 8)); 747 t2 = (0x00ff0000 & (temp << 8)); 748 t3 = (0xff000000 & (temp << 24)); 749 crc32_result = t0 | t1 | t2 | t3; 750 } 751 752 /* Complement */ 753 if (complement) 754 { 755 crc32_result = ~crc32_result; 756 } 757 758 return (crc32_result); 759 } 760 761 int 762 bxe_test_bit(int nr, 763 volatile unsigned long *addr) 764 { 765 return ((atomic_load_acq_long(addr) & (1 << nr)) != 0); 766 } 767 768 void 769 bxe_set_bit(unsigned int nr, 770 volatile unsigned long *addr) 771 { 772 atomic_set_acq_long(addr, (1 << nr)); 773 } 774 775 void 776 bxe_clear_bit(int nr, 777 volatile unsigned long *addr) 778 { 779 atomic_clear_acq_long(addr, (1 << nr)); 780 } 781 782 int 783 bxe_test_and_set_bit(int nr, 784 volatile unsigned long *addr) 785 { 786 unsigned long x; 787 nr = (1 << nr); 788 do { 789 x = *addr; 790 } while (atomic_cmpset_acq_long(addr, x, x | nr) == 0); 791 // if (x & nr) bit_was_set; else bit_was_not_set; 792 return (x & nr); 793 } 794 795 int 796 bxe_test_and_clear_bit(int nr, 797 volatile unsigned long *addr) 798 { 799 unsigned long x; 800 nr = (1 << nr); 801 do { 802 x = *addr; 803 } while (atomic_cmpset_acq_long(addr, x, x & ~nr) == 0); 804 // if (x & nr) bit_was_set; else bit_was_not_set; 805 return (x & nr); 806 } 807 808 int 809 bxe_cmpxchg(volatile int *addr, 810 int old, 811 int new) 812 { 813 int x; 814 do { 815 x = *addr; 816 } while (atomic_cmpset_acq_int(addr, old, new) == 0); 817 return (x); 818 } 819 820 /* 821 * Get DMA memory from the OS. 822 * 823 * Validates that the OS has provided DMA buffers in response to a 824 * bus_dmamap_load call and saves the physical address of those buffers. 825 * When the callback is used the OS will return 0 for the mapping function 826 * (bus_dmamap_load) so we use the value of map_arg->maxsegs to pass any 827 * failures back to the caller. 828 * 829 * Returns: 830 * Nothing. 831 */ 832 static void 833 bxe_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error) 834 { 835 struct bxe_dma *dma = arg; 836 837 if (error) { 838 dma->paddr = 0; 839 dma->nseg = 0; 840 BLOGE(dma->sc, "Failed DMA alloc '%s' (%d)!\n", dma->msg, error); 841 } else { 842 dma->paddr = segs->ds_addr; 843 dma->nseg = nseg; 844 } 845 } 846 847 /* 848 * Allocate a block of memory and map it for DMA. No partial completions 849 * allowed and release any resources acquired if we can't acquire all 850 * resources. 851 * 852 * Returns: 853 * 0 = Success, !0 = Failure 854 */ 855 int 856 bxe_dma_alloc(struct bxe_softc *sc, 857 bus_size_t size, 858 struct bxe_dma *dma, 859 const char *msg) 860 { 861 int rc; 862 863 if (dma->size > 0) { 864 BLOGE(sc, "dma block '%s' already has size %lu\n", msg, 865 (unsigned long)dma->size); 866 return (1); 867 } 868 869 memset(dma, 0, sizeof(*dma)); /* sanity */ 870 dma->sc = sc; 871 dma->size = size; 872 snprintf(dma->msg, sizeof(dma->msg), "%s", msg); 873 874 rc = bus_dma_tag_create(sc->parent_dma_tag, /* parent tag */ 875 BCM_PAGE_SIZE, /* alignment */ 876 0, /* boundary limit */ 877 BUS_SPACE_MAXADDR, /* restricted low */ 878 BUS_SPACE_MAXADDR, /* restricted hi */ 879 NULL, /* addr filter() */ 880 NULL, /* addr filter() arg */ 881 size, /* max map size */ 882 1, /* num discontinuous */ 883 size, /* max seg size */ 884 BUS_DMA_ALLOCNOW, /* flags */ 885 NULL, /* lock() */ 886 NULL, /* lock() arg */ 887 &dma->tag); /* returned dma tag */ 888 if (rc != 0) { 889 BLOGE(sc, "Failed to create dma tag for '%s' (%d)\n", msg, rc); 890 memset(dma, 0, sizeof(*dma)); 891 return (1); 892 } 893 894 rc = bus_dmamem_alloc(dma->tag, 895 (void **)&dma->vaddr, 896 (BUS_DMA_NOWAIT | BUS_DMA_ZERO), 897 &dma->map); 898 if (rc != 0) { 899 BLOGE(sc, "Failed to alloc dma mem for '%s' (%d)\n", msg, rc); 900 bus_dma_tag_destroy(dma->tag); 901 memset(dma, 0, sizeof(*dma)); 902 return (1); 903 } 904 905 rc = bus_dmamap_load(dma->tag, 906 dma->map, 907 dma->vaddr, 908 size, 909 bxe_dma_map_addr, /* BLOGD in here */ 910 dma, 911 BUS_DMA_NOWAIT); 912 if (rc != 0) { 913 BLOGE(sc, "Failed to load dma map for '%s' (%d)\n", msg, rc); 914 bus_dmamem_free(dma->tag, dma->vaddr, dma->map); 915 bus_dma_tag_destroy(dma->tag); 916 memset(dma, 0, sizeof(*dma)); 917 return (1); 918 } 919 920 return (0); 921 } 922 923 void 924 bxe_dma_free(struct bxe_softc *sc, 925 struct bxe_dma *dma) 926 { 927 if (dma->size > 0) { 928 DBASSERT(sc, (dma->tag != NULL), ("dma tag is NULL")); 929 930 bus_dmamap_sync(dma->tag, dma->map, 931 (BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE)); 932 bus_dmamap_unload(dma->tag, dma->map); 933 bus_dmamem_free(dma->tag, dma->vaddr, dma->map); 934 bus_dma_tag_destroy(dma->tag); 935 } 936 937 memset(dma, 0, sizeof(*dma)); 938 } 939 940 /* 941 * These indirect read and write routines are only during init. 942 * The locking is handled by the MCP. 943 */ 944 945 void 946 bxe_reg_wr_ind(struct bxe_softc *sc, 947 uint32_t addr, 948 uint32_t val) 949 { 950 pci_write_config(sc->dev, PCICFG_GRC_ADDRESS, addr, 4); 951 pci_write_config(sc->dev, PCICFG_GRC_DATA, val, 4); 952 pci_write_config(sc->dev, PCICFG_GRC_ADDRESS, 0, 4); 953 } 954 955 uint32_t 956 bxe_reg_rd_ind(struct bxe_softc *sc, 957 uint32_t addr) 958 { 959 uint32_t val; 960 961 pci_write_config(sc->dev, PCICFG_GRC_ADDRESS, addr, 4); 962 val = pci_read_config(sc->dev, PCICFG_GRC_DATA, 4); 963 pci_write_config(sc->dev, PCICFG_GRC_ADDRESS, 0, 4); 964 965 return (val); 966 } 967 968 static int 969 bxe_acquire_hw_lock(struct bxe_softc *sc, 970 uint32_t resource) 971 { 972 uint32_t lock_status; 973 uint32_t resource_bit = (1 << resource); 974 int func = SC_FUNC(sc); 975 uint32_t hw_lock_control_reg; 976 int cnt; 977 978 /* validate the resource is within range */ 979 if (resource > HW_LOCK_MAX_RESOURCE_VALUE) { 980 BLOGE(sc, "(resource 0x%x > HW_LOCK_MAX_RESOURCE_VALUE)" 981 " resource_bit 0x%x\n", resource, resource_bit); 982 return (-1); 983 } 984 985 if (func <= 5) { 986 hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + (func * 8)); 987 } else { 988 hw_lock_control_reg = 989 (MISC_REG_DRIVER_CONTROL_7 + ((func - 6) * 8)); 990 } 991 992 /* validate the resource is not already taken */ 993 lock_status = REG_RD(sc, hw_lock_control_reg); 994 if (lock_status & resource_bit) { 995 BLOGE(sc, "resource (0x%x) in use (status 0x%x bit 0x%x)\n", 996 resource, lock_status, resource_bit); 997 return (-1); 998 } 999 1000 /* try every 5ms for 5 seconds */ 1001 for (cnt = 0; cnt < 1000; cnt++) { 1002 REG_WR(sc, (hw_lock_control_reg + 4), resource_bit); 1003 lock_status = REG_RD(sc, hw_lock_control_reg); 1004 if (lock_status & resource_bit) { 1005 return (0); 1006 } 1007 DELAY(5000); 1008 } 1009 1010 BLOGE(sc, "Resource 0x%x resource_bit 0x%x lock timeout!\n", 1011 resource, resource_bit); 1012 return (-1); 1013 } 1014 1015 static int 1016 bxe_release_hw_lock(struct bxe_softc *sc, 1017 uint32_t resource) 1018 { 1019 uint32_t lock_status; 1020 uint32_t resource_bit = (1 << resource); 1021 int func = SC_FUNC(sc); 1022 uint32_t hw_lock_control_reg; 1023 1024 /* validate the resource is within range */ 1025 if (resource > HW_LOCK_MAX_RESOURCE_VALUE) { 1026 BLOGE(sc, "(resource 0x%x > HW_LOCK_MAX_RESOURCE_VALUE)" 1027 " resource_bit 0x%x\n", resource, resource_bit); 1028 return (-1); 1029 } 1030 1031 if (func <= 5) { 1032 hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + (func * 8)); 1033 } else { 1034 hw_lock_control_reg = 1035 (MISC_REG_DRIVER_CONTROL_7 + ((func - 6) * 8)); 1036 } 1037 1038 /* validate the resource is currently taken */ 1039 lock_status = REG_RD(sc, hw_lock_control_reg); 1040 if (!(lock_status & resource_bit)) { 1041 BLOGE(sc, "resource (0x%x) not in use (status 0x%x bit 0x%x)\n", 1042 resource, lock_status, resource_bit); 1043 return (-1); 1044 } 1045 1046 REG_WR(sc, hw_lock_control_reg, resource_bit); 1047 return (0); 1048 } 1049 static void bxe_acquire_phy_lock(struct bxe_softc *sc) 1050 { 1051 BXE_PHY_LOCK(sc); 1052 bxe_acquire_hw_lock(sc,HW_LOCK_RESOURCE_MDIO); 1053 } 1054 1055 static void bxe_release_phy_lock(struct bxe_softc *sc) 1056 { 1057 bxe_release_hw_lock(sc,HW_LOCK_RESOURCE_MDIO); 1058 BXE_PHY_UNLOCK(sc); 1059 } 1060 /* 1061 * Per pf misc lock must be acquired before the per port mcp lock. Otherwise, 1062 * had we done things the other way around, if two pfs from the same port 1063 * would attempt to access nvram at the same time, we could run into a 1064 * scenario such as: 1065 * pf A takes the port lock. 1066 * pf B succeeds in taking the same lock since they are from the same port. 1067 * pf A takes the per pf misc lock. Performs eeprom access. 1068 * pf A finishes. Unlocks the per pf misc lock. 1069 * Pf B takes the lock and proceeds to perform it's own access. 1070 * pf A unlocks the per port lock, while pf B is still working (!). 1071 * mcp takes the per port lock and corrupts pf B's access (and/or has it's own 1072 * access corrupted by pf B).* 1073 */ 1074 static int 1075 bxe_acquire_nvram_lock(struct bxe_softc *sc) 1076 { 1077 int port = SC_PORT(sc); 1078 int count, i; 1079 uint32_t val = 0; 1080 1081 /* acquire HW lock: protect against other PFs in PF Direct Assignment */ 1082 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_NVRAM); 1083 1084 /* adjust timeout for emulation/FPGA */ 1085 count = NVRAM_TIMEOUT_COUNT; 1086 if (CHIP_REV_IS_SLOW(sc)) { 1087 count *= 100; 1088 } 1089 1090 /* request access to nvram interface */ 1091 REG_WR(sc, MCP_REG_MCPR_NVM_SW_ARB, 1092 (MCPR_NVM_SW_ARB_ARB_REQ_SET1 << port)); 1093 1094 for (i = 0; i < count*10; i++) { 1095 val = REG_RD(sc, MCP_REG_MCPR_NVM_SW_ARB); 1096 if (val & (MCPR_NVM_SW_ARB_ARB_ARB1 << port)) { 1097 break; 1098 } 1099 1100 DELAY(5); 1101 } 1102 1103 if (!(val & (MCPR_NVM_SW_ARB_ARB_ARB1 << port))) { 1104 BLOGE(sc, "Cannot get access to nvram interface " 1105 "port %d val 0x%x (MCPR_NVM_SW_ARB_ARB_ARB1 << port)\n", 1106 port, val); 1107 return (-1); 1108 } 1109 1110 return (0); 1111 } 1112 1113 static int 1114 bxe_release_nvram_lock(struct bxe_softc *sc) 1115 { 1116 int port = SC_PORT(sc); 1117 int count, i; 1118 uint32_t val = 0; 1119 1120 /* adjust timeout for emulation/FPGA */ 1121 count = NVRAM_TIMEOUT_COUNT; 1122 if (CHIP_REV_IS_SLOW(sc)) { 1123 count *= 100; 1124 } 1125 1126 /* relinquish nvram interface */ 1127 REG_WR(sc, MCP_REG_MCPR_NVM_SW_ARB, 1128 (MCPR_NVM_SW_ARB_ARB_REQ_CLR1 << port)); 1129 1130 for (i = 0; i < count*10; i++) { 1131 val = REG_RD(sc, MCP_REG_MCPR_NVM_SW_ARB); 1132 if (!(val & (MCPR_NVM_SW_ARB_ARB_ARB1 << port))) { 1133 break; 1134 } 1135 1136 DELAY(5); 1137 } 1138 1139 if (val & (MCPR_NVM_SW_ARB_ARB_ARB1 << port)) { 1140 BLOGE(sc, "Cannot free access to nvram interface " 1141 "port %d val 0x%x (MCPR_NVM_SW_ARB_ARB_ARB1 << port)\n", 1142 port, val); 1143 return (-1); 1144 } 1145 1146 /* release HW lock: protect against other PFs in PF Direct Assignment */ 1147 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_NVRAM); 1148 1149 return (0); 1150 } 1151 1152 static void 1153 bxe_enable_nvram_access(struct bxe_softc *sc) 1154 { 1155 uint32_t val; 1156 1157 val = REG_RD(sc, MCP_REG_MCPR_NVM_ACCESS_ENABLE); 1158 1159 /* enable both bits, even on read */ 1160 REG_WR(sc, MCP_REG_MCPR_NVM_ACCESS_ENABLE, 1161 (val | MCPR_NVM_ACCESS_ENABLE_EN | MCPR_NVM_ACCESS_ENABLE_WR_EN)); 1162 } 1163 1164 static void 1165 bxe_disable_nvram_access(struct bxe_softc *sc) 1166 { 1167 uint32_t val; 1168 1169 val = REG_RD(sc, MCP_REG_MCPR_NVM_ACCESS_ENABLE); 1170 1171 /* disable both bits, even after read */ 1172 REG_WR(sc, MCP_REG_MCPR_NVM_ACCESS_ENABLE, 1173 (val & ~(MCPR_NVM_ACCESS_ENABLE_EN | 1174 MCPR_NVM_ACCESS_ENABLE_WR_EN))); 1175 } 1176 1177 static int 1178 bxe_nvram_read_dword(struct bxe_softc *sc, 1179 uint32_t offset, 1180 uint32_t *ret_val, 1181 uint32_t cmd_flags) 1182 { 1183 int count, i, rc; 1184 uint32_t val; 1185 1186 /* build the command word */ 1187 cmd_flags |= MCPR_NVM_COMMAND_DOIT; 1188 1189 /* need to clear DONE bit separately */ 1190 REG_WR(sc, MCP_REG_MCPR_NVM_COMMAND, MCPR_NVM_COMMAND_DONE); 1191 1192 /* address of the NVRAM to read from */ 1193 REG_WR(sc, MCP_REG_MCPR_NVM_ADDR, 1194 (offset & MCPR_NVM_ADDR_NVM_ADDR_VALUE)); 1195 1196 /* issue a read command */ 1197 REG_WR(sc, MCP_REG_MCPR_NVM_COMMAND, cmd_flags); 1198 1199 /* adjust timeout for emulation/FPGA */ 1200 count = NVRAM_TIMEOUT_COUNT; 1201 if (CHIP_REV_IS_SLOW(sc)) { 1202 count *= 100; 1203 } 1204 1205 /* wait for completion */ 1206 *ret_val = 0; 1207 rc = -1; 1208 for (i = 0; i < count; i++) { 1209 DELAY(5); 1210 val = REG_RD(sc, MCP_REG_MCPR_NVM_COMMAND); 1211 1212 if (val & MCPR_NVM_COMMAND_DONE) { 1213 val = REG_RD(sc, MCP_REG_MCPR_NVM_READ); 1214 /* we read nvram data in cpu order 1215 * but ethtool sees it as an array of bytes 1216 * converting to big-endian will do the work 1217 */ 1218 *ret_val = htobe32(val); 1219 rc = 0; 1220 break; 1221 } 1222 } 1223 1224 if (rc == -1) { 1225 BLOGE(sc, "nvram read timeout expired " 1226 "(offset 0x%x cmd_flags 0x%x val 0x%x)\n", 1227 offset, cmd_flags, val); 1228 } 1229 1230 return (rc); 1231 } 1232 1233 static int 1234 bxe_nvram_read(struct bxe_softc *sc, 1235 uint32_t offset, 1236 uint8_t *ret_buf, 1237 int buf_size) 1238 { 1239 uint32_t cmd_flags; 1240 uint32_t val; 1241 int rc; 1242 1243 if ((offset & 0x03) || (buf_size & 0x03) || (buf_size == 0)) { 1244 BLOGE(sc, "Invalid parameter, offset 0x%x buf_size 0x%x\n", 1245 offset, buf_size); 1246 return (-1); 1247 } 1248 1249 if ((offset + buf_size) > sc->devinfo.flash_size) { 1250 BLOGE(sc, "Invalid parameter, " 1251 "offset 0x%x + buf_size 0x%x > flash_size 0x%x\n", 1252 offset, buf_size, sc->devinfo.flash_size); 1253 return (-1); 1254 } 1255 1256 /* request access to nvram interface */ 1257 rc = bxe_acquire_nvram_lock(sc); 1258 if (rc) { 1259 return (rc); 1260 } 1261 1262 /* enable access to nvram interface */ 1263 bxe_enable_nvram_access(sc); 1264 1265 /* read the first word(s) */ 1266 cmd_flags = MCPR_NVM_COMMAND_FIRST; 1267 while ((buf_size > sizeof(uint32_t)) && (rc == 0)) { 1268 rc = bxe_nvram_read_dword(sc, offset, &val, cmd_flags); 1269 memcpy(ret_buf, &val, 4); 1270 1271 /* advance to the next dword */ 1272 offset += sizeof(uint32_t); 1273 ret_buf += sizeof(uint32_t); 1274 buf_size -= sizeof(uint32_t); 1275 cmd_flags = 0; 1276 } 1277 1278 if (rc == 0) { 1279 cmd_flags |= MCPR_NVM_COMMAND_LAST; 1280 rc = bxe_nvram_read_dword(sc, offset, &val, cmd_flags); 1281 memcpy(ret_buf, &val, 4); 1282 } 1283 1284 /* disable access to nvram interface */ 1285 bxe_disable_nvram_access(sc); 1286 bxe_release_nvram_lock(sc); 1287 1288 return (rc); 1289 } 1290 1291 static int 1292 bxe_nvram_write_dword(struct bxe_softc *sc, 1293 uint32_t offset, 1294 uint32_t val, 1295 uint32_t cmd_flags) 1296 { 1297 int count, i, rc; 1298 1299 /* build the command word */ 1300 cmd_flags |= (MCPR_NVM_COMMAND_DOIT | MCPR_NVM_COMMAND_WR); 1301 1302 /* need to clear DONE bit separately */ 1303 REG_WR(sc, MCP_REG_MCPR_NVM_COMMAND, MCPR_NVM_COMMAND_DONE); 1304 1305 /* write the data */ 1306 REG_WR(sc, MCP_REG_MCPR_NVM_WRITE, val); 1307 1308 /* address of the NVRAM to write to */ 1309 REG_WR(sc, MCP_REG_MCPR_NVM_ADDR, 1310 (offset & MCPR_NVM_ADDR_NVM_ADDR_VALUE)); 1311 1312 /* issue the write command */ 1313 REG_WR(sc, MCP_REG_MCPR_NVM_COMMAND, cmd_flags); 1314 1315 /* adjust timeout for emulation/FPGA */ 1316 count = NVRAM_TIMEOUT_COUNT; 1317 if (CHIP_REV_IS_SLOW(sc)) { 1318 count *= 100; 1319 } 1320 1321 /* wait for completion */ 1322 rc = -1; 1323 for (i = 0; i < count; i++) { 1324 DELAY(5); 1325 val = REG_RD(sc, MCP_REG_MCPR_NVM_COMMAND); 1326 if (val & MCPR_NVM_COMMAND_DONE) { 1327 rc = 0; 1328 break; 1329 } 1330 } 1331 1332 if (rc == -1) { 1333 BLOGE(sc, "nvram write timeout expired " 1334 "(offset 0x%x cmd_flags 0x%x val 0x%x)\n", 1335 offset, cmd_flags, val); 1336 } 1337 1338 return (rc); 1339 } 1340 1341 #define BYTE_OFFSET(offset) (8 * (offset & 0x03)) 1342 1343 static int 1344 bxe_nvram_write1(struct bxe_softc *sc, 1345 uint32_t offset, 1346 uint8_t *data_buf, 1347 int buf_size) 1348 { 1349 uint32_t cmd_flags; 1350 uint32_t align_offset; 1351 uint32_t val; 1352 int rc; 1353 1354 if ((offset + buf_size) > sc->devinfo.flash_size) { 1355 BLOGE(sc, "Invalid parameter, " 1356 "offset 0x%x + buf_size 0x%x > flash_size 0x%x\n", 1357 offset, buf_size, sc->devinfo.flash_size); 1358 return (-1); 1359 } 1360 1361 /* request access to nvram interface */ 1362 rc = bxe_acquire_nvram_lock(sc); 1363 if (rc) { 1364 return (rc); 1365 } 1366 1367 /* enable access to nvram interface */ 1368 bxe_enable_nvram_access(sc); 1369 1370 cmd_flags = (MCPR_NVM_COMMAND_FIRST | MCPR_NVM_COMMAND_LAST); 1371 align_offset = (offset & ~0x03); 1372 rc = bxe_nvram_read_dword(sc, align_offset, &val, cmd_flags); 1373 1374 if (rc == 0) { 1375 val &= ~(0xff << BYTE_OFFSET(offset)); 1376 val |= (*data_buf << BYTE_OFFSET(offset)); 1377 1378 /* nvram data is returned as an array of bytes 1379 * convert it back to cpu order 1380 */ 1381 val = be32toh(val); 1382 1383 rc = bxe_nvram_write_dword(sc, align_offset, val, cmd_flags); 1384 } 1385 1386 /* disable access to nvram interface */ 1387 bxe_disable_nvram_access(sc); 1388 bxe_release_nvram_lock(sc); 1389 1390 return (rc); 1391 } 1392 1393 static int 1394 bxe_nvram_write(struct bxe_softc *sc, 1395 uint32_t offset, 1396 uint8_t *data_buf, 1397 int buf_size) 1398 { 1399 uint32_t cmd_flags; 1400 uint32_t val; 1401 uint32_t written_so_far; 1402 int rc; 1403 1404 if (buf_size == 1) { 1405 return (bxe_nvram_write1(sc, offset, data_buf, buf_size)); 1406 } 1407 1408 if ((offset & 0x03) || (buf_size & 0x03) /* || (buf_size == 0) */) { 1409 BLOGE(sc, "Invalid parameter, offset 0x%x buf_size 0x%x\n", 1410 offset, buf_size); 1411 return (-1); 1412 } 1413 1414 if (buf_size == 0) { 1415 return (0); /* nothing to do */ 1416 } 1417 1418 if ((offset + buf_size) > sc->devinfo.flash_size) { 1419 BLOGE(sc, "Invalid parameter, " 1420 "offset 0x%x + buf_size 0x%x > flash_size 0x%x\n", 1421 offset, buf_size, sc->devinfo.flash_size); 1422 return (-1); 1423 } 1424 1425 /* request access to nvram interface */ 1426 rc = bxe_acquire_nvram_lock(sc); 1427 if (rc) { 1428 return (rc); 1429 } 1430 1431 /* enable access to nvram interface */ 1432 bxe_enable_nvram_access(sc); 1433 1434 written_so_far = 0; 1435 cmd_flags = MCPR_NVM_COMMAND_FIRST; 1436 while ((written_so_far < buf_size) && (rc == 0)) { 1437 if (written_so_far == (buf_size - sizeof(uint32_t))) { 1438 cmd_flags |= MCPR_NVM_COMMAND_LAST; 1439 } else if (((offset + 4) % NVRAM_PAGE_SIZE) == 0) { 1440 cmd_flags |= MCPR_NVM_COMMAND_LAST; 1441 } else if ((offset % NVRAM_PAGE_SIZE) == 0) { 1442 cmd_flags |= MCPR_NVM_COMMAND_FIRST; 1443 } 1444 1445 memcpy(&val, data_buf, 4); 1446 1447 rc = bxe_nvram_write_dword(sc, offset, val, cmd_flags); 1448 1449 /* advance to the next dword */ 1450 offset += sizeof(uint32_t); 1451 data_buf += sizeof(uint32_t); 1452 written_so_far += sizeof(uint32_t); 1453 cmd_flags = 0; 1454 } 1455 1456 /* disable access to nvram interface */ 1457 bxe_disable_nvram_access(sc); 1458 bxe_release_nvram_lock(sc); 1459 1460 return (rc); 1461 } 1462 1463 /* copy command into DMAE command memory and set DMAE command Go */ 1464 void 1465 bxe_post_dmae(struct bxe_softc *sc, 1466 struct dmae_cmd *dmae, 1467 int idx) 1468 { 1469 uint32_t cmd_offset; 1470 int i; 1471 1472 cmd_offset = (DMAE_REG_CMD_MEM + (sizeof(struct dmae_cmd) * idx)); 1473 for (i = 0; i < ((sizeof(struct dmae_cmd) / 4)); i++) { 1474 REG_WR(sc, (cmd_offset + (i * 4)), *(((uint32_t *)dmae) + i)); 1475 } 1476 1477 REG_WR(sc, dmae_reg_go_c[idx], 1); 1478 } 1479 1480 uint32_t 1481 bxe_dmae_opcode_add_comp(uint32_t opcode, 1482 uint8_t comp_type) 1483 { 1484 return (opcode | ((comp_type << DMAE_CMD_C_DST_SHIFT) | 1485 DMAE_CMD_C_TYPE_ENABLE)); 1486 } 1487 1488 uint32_t 1489 bxe_dmae_opcode_clr_src_reset(uint32_t opcode) 1490 { 1491 return (opcode & ~DMAE_CMD_SRC_RESET); 1492 } 1493 1494 uint32_t 1495 bxe_dmae_opcode(struct bxe_softc *sc, 1496 uint8_t src_type, 1497 uint8_t dst_type, 1498 uint8_t with_comp, 1499 uint8_t comp_type) 1500 { 1501 uint32_t opcode = 0; 1502 1503 opcode |= ((src_type << DMAE_CMD_SRC_SHIFT) | 1504 (dst_type << DMAE_CMD_DST_SHIFT)); 1505 1506 opcode |= (DMAE_CMD_SRC_RESET | DMAE_CMD_DST_RESET); 1507 1508 opcode |= (SC_PORT(sc) ? DMAE_CMD_PORT_1 : DMAE_CMD_PORT_0); 1509 1510 opcode |= ((SC_VN(sc) << DMAE_CMD_E1HVN_SHIFT) | 1511 (SC_VN(sc) << DMAE_CMD_DST_VN_SHIFT)); 1512 1513 opcode |= (DMAE_COM_SET_ERR << DMAE_CMD_ERR_POLICY_SHIFT); 1514 1515 #ifdef __BIG_ENDIAN 1516 opcode |= DMAE_CMD_ENDIANITY_B_DW_SWAP; 1517 #else 1518 opcode |= DMAE_CMD_ENDIANITY_DW_SWAP; 1519 #endif 1520 1521 if (with_comp) { 1522 opcode = bxe_dmae_opcode_add_comp(opcode, comp_type); 1523 } 1524 1525 return (opcode); 1526 } 1527 1528 static void 1529 bxe_prep_dmae_with_comp(struct bxe_softc *sc, 1530 struct dmae_cmd *dmae, 1531 uint8_t src_type, 1532 uint8_t dst_type) 1533 { 1534 memset(dmae, 0, sizeof(struct dmae_cmd)); 1535 1536 /* set the opcode */ 1537 dmae->opcode = bxe_dmae_opcode(sc, src_type, dst_type, 1538 TRUE, DMAE_COMP_PCI); 1539 1540 /* fill in the completion parameters */ 1541 dmae->comp_addr_lo = U64_LO(BXE_SP_MAPPING(sc, wb_comp)); 1542 dmae->comp_addr_hi = U64_HI(BXE_SP_MAPPING(sc, wb_comp)); 1543 dmae->comp_val = DMAE_COMP_VAL; 1544 } 1545 1546 /* issue a DMAE command over the init channel and wait for completion */ 1547 static int 1548 bxe_issue_dmae_with_comp(struct bxe_softc *sc, 1549 struct dmae_cmd *dmae) 1550 { 1551 uint32_t *wb_comp = BXE_SP(sc, wb_comp); 1552 int timeout = CHIP_REV_IS_SLOW(sc) ? 400000 : 4000; 1553 1554 BXE_DMAE_LOCK(sc); 1555 1556 /* reset completion */ 1557 *wb_comp = 0; 1558 1559 /* post the command on the channel used for initializations */ 1560 bxe_post_dmae(sc, dmae, INIT_DMAE_C(sc)); 1561 1562 /* wait for completion */ 1563 DELAY(5); 1564 1565 while ((*wb_comp & ~DMAE_PCI_ERR_FLAG) != DMAE_COMP_VAL) { 1566 if (!timeout || 1567 (sc->recovery_state != BXE_RECOVERY_DONE && 1568 sc->recovery_state != BXE_RECOVERY_NIC_LOADING)) { 1569 BLOGE(sc, "DMAE timeout! *wb_comp 0x%x recovery_state 0x%x\n", 1570 *wb_comp, sc->recovery_state); 1571 BXE_DMAE_UNLOCK(sc); 1572 return (DMAE_TIMEOUT); 1573 } 1574 1575 timeout--; 1576 DELAY(50); 1577 } 1578 1579 if (*wb_comp & DMAE_PCI_ERR_FLAG) { 1580 BLOGE(sc, "DMAE PCI error! *wb_comp 0x%x recovery_state 0x%x\n", 1581 *wb_comp, sc->recovery_state); 1582 BXE_DMAE_UNLOCK(sc); 1583 return (DMAE_PCI_ERROR); 1584 } 1585 1586 BXE_DMAE_UNLOCK(sc); 1587 return (0); 1588 } 1589 1590 void 1591 bxe_read_dmae(struct bxe_softc *sc, 1592 uint32_t src_addr, 1593 uint32_t len32) 1594 { 1595 struct dmae_cmd dmae; 1596 uint32_t *data; 1597 int i, rc; 1598 1599 DBASSERT(sc, (len32 <= 4), ("DMAE read length is %d", len32)); 1600 1601 if (!sc->dmae_ready) { 1602 data = BXE_SP(sc, wb_data[0]); 1603 1604 for (i = 0; i < len32; i++) { 1605 data[i] = (CHIP_IS_E1(sc)) ? 1606 bxe_reg_rd_ind(sc, (src_addr + (i * 4))) : 1607 REG_RD(sc, (src_addr + (i * 4))); 1608 } 1609 1610 return; 1611 } 1612 1613 /* set opcode and fixed command fields */ 1614 bxe_prep_dmae_with_comp(sc, &dmae, DMAE_SRC_GRC, DMAE_DST_PCI); 1615 1616 /* fill in addresses and len */ 1617 dmae.src_addr_lo = (src_addr >> 2); /* GRC addr has dword resolution */ 1618 dmae.src_addr_hi = 0; 1619 dmae.dst_addr_lo = U64_LO(BXE_SP_MAPPING(sc, wb_data)); 1620 dmae.dst_addr_hi = U64_HI(BXE_SP_MAPPING(sc, wb_data)); 1621 dmae.len = len32; 1622 1623 /* issue the command and wait for completion */ 1624 if ((rc = bxe_issue_dmae_with_comp(sc, &dmae)) != 0) { 1625 bxe_panic(sc, ("DMAE failed (%d)\n", rc)); 1626 } 1627 } 1628 1629 void 1630 bxe_write_dmae(struct bxe_softc *sc, 1631 bus_addr_t dma_addr, 1632 uint32_t dst_addr, 1633 uint32_t len32) 1634 { 1635 struct dmae_cmd dmae; 1636 int rc; 1637 1638 if (!sc->dmae_ready) { 1639 DBASSERT(sc, (len32 <= 4), ("DMAE not ready and length is %d", len32)); 1640 1641 if (CHIP_IS_E1(sc)) { 1642 ecore_init_ind_wr(sc, dst_addr, BXE_SP(sc, wb_data[0]), len32); 1643 } else { 1644 ecore_init_str_wr(sc, dst_addr, BXE_SP(sc, wb_data[0]), len32); 1645 } 1646 1647 return; 1648 } 1649 1650 /* set opcode and fixed command fields */ 1651 bxe_prep_dmae_with_comp(sc, &dmae, DMAE_SRC_PCI, DMAE_DST_GRC); 1652 1653 /* fill in addresses and len */ 1654 dmae.src_addr_lo = U64_LO(dma_addr); 1655 dmae.src_addr_hi = U64_HI(dma_addr); 1656 dmae.dst_addr_lo = (dst_addr >> 2); /* GRC addr has dword resolution */ 1657 dmae.dst_addr_hi = 0; 1658 dmae.len = len32; 1659 1660 /* issue the command and wait for completion */ 1661 if ((rc = bxe_issue_dmae_with_comp(sc, &dmae)) != 0) { 1662 bxe_panic(sc, ("DMAE failed (%d)\n", rc)); 1663 } 1664 } 1665 1666 void 1667 bxe_write_dmae_phys_len(struct bxe_softc *sc, 1668 bus_addr_t phys_addr, 1669 uint32_t addr, 1670 uint32_t len) 1671 { 1672 int dmae_wr_max = DMAE_LEN32_WR_MAX(sc); 1673 int offset = 0; 1674 1675 while (len > dmae_wr_max) { 1676 bxe_write_dmae(sc, 1677 (phys_addr + offset), /* src DMA address */ 1678 (addr + offset), /* dst GRC address */ 1679 dmae_wr_max); 1680 offset += (dmae_wr_max * 4); 1681 len -= dmae_wr_max; 1682 } 1683 1684 bxe_write_dmae(sc, 1685 (phys_addr + offset), /* src DMA address */ 1686 (addr + offset), /* dst GRC address */ 1687 len); 1688 } 1689 1690 void 1691 bxe_set_ctx_validation(struct bxe_softc *sc, 1692 struct eth_context *cxt, 1693 uint32_t cid) 1694 { 1695 /* ustorm cxt validation */ 1696 cxt->ustorm_ag_context.cdu_usage = 1697 CDU_RSRVD_VALUE_TYPE_A(HW_CID(sc, cid), 1698 CDU_REGION_NUMBER_UCM_AG, ETH_CONNECTION_TYPE); 1699 /* xcontext validation */ 1700 cxt->xstorm_ag_context.cdu_reserved = 1701 CDU_RSRVD_VALUE_TYPE_A(HW_CID(sc, cid), 1702 CDU_REGION_NUMBER_XCM_AG, ETH_CONNECTION_TYPE); 1703 } 1704 1705 static void 1706 bxe_storm_memset_hc_timeout(struct bxe_softc *sc, 1707 uint8_t port, 1708 uint8_t fw_sb_id, 1709 uint8_t sb_index, 1710 uint8_t ticks) 1711 { 1712 uint32_t addr = 1713 (BAR_CSTRORM_INTMEM + 1714 CSTORM_STATUS_BLOCK_DATA_TIMEOUT_OFFSET(fw_sb_id, sb_index)); 1715 1716 REG_WR8(sc, addr, ticks); 1717 1718 BLOGD(sc, DBG_LOAD, 1719 "port %d fw_sb_id %d sb_index %d ticks %d\n", 1720 port, fw_sb_id, sb_index, ticks); 1721 } 1722 1723 static void 1724 bxe_storm_memset_hc_disable(struct bxe_softc *sc, 1725 uint8_t port, 1726 uint16_t fw_sb_id, 1727 uint8_t sb_index, 1728 uint8_t disable) 1729 { 1730 uint32_t enable_flag = 1731 (disable) ? 0 : (1 << HC_INDEX_DATA_HC_ENABLED_SHIFT); 1732 uint32_t addr = 1733 (BAR_CSTRORM_INTMEM + 1734 CSTORM_STATUS_BLOCK_DATA_FLAGS_OFFSET(fw_sb_id, sb_index)); 1735 uint8_t flags; 1736 1737 /* clear and set */ 1738 flags = REG_RD8(sc, addr); 1739 flags &= ~HC_INDEX_DATA_HC_ENABLED; 1740 flags |= enable_flag; 1741 REG_WR8(sc, addr, flags); 1742 1743 BLOGD(sc, DBG_LOAD, 1744 "port %d fw_sb_id %d sb_index %d disable %d\n", 1745 port, fw_sb_id, sb_index, disable); 1746 } 1747 1748 void 1749 bxe_update_coalesce_sb_index(struct bxe_softc *sc, 1750 uint8_t fw_sb_id, 1751 uint8_t sb_index, 1752 uint8_t disable, 1753 uint16_t usec) 1754 { 1755 int port = SC_PORT(sc); 1756 uint8_t ticks = (usec / 4); /* XXX ??? */ 1757 1758 bxe_storm_memset_hc_timeout(sc, port, fw_sb_id, sb_index, ticks); 1759 1760 disable = (disable) ? 1 : ((usec) ? 0 : 1); 1761 bxe_storm_memset_hc_disable(sc, port, fw_sb_id, sb_index, disable); 1762 } 1763 1764 void 1765 elink_cb_udelay(struct bxe_softc *sc, 1766 uint32_t usecs) 1767 { 1768 DELAY(usecs); 1769 } 1770 1771 uint32_t 1772 elink_cb_reg_read(struct bxe_softc *sc, 1773 uint32_t reg_addr) 1774 { 1775 return (REG_RD(sc, reg_addr)); 1776 } 1777 1778 void 1779 elink_cb_reg_write(struct bxe_softc *sc, 1780 uint32_t reg_addr, 1781 uint32_t val) 1782 { 1783 REG_WR(sc, reg_addr, val); 1784 } 1785 1786 void 1787 elink_cb_reg_wb_write(struct bxe_softc *sc, 1788 uint32_t offset, 1789 uint32_t *wb_write, 1790 uint16_t len) 1791 { 1792 REG_WR_DMAE(sc, offset, wb_write, len); 1793 } 1794 1795 void 1796 elink_cb_reg_wb_read(struct bxe_softc *sc, 1797 uint32_t offset, 1798 uint32_t *wb_write, 1799 uint16_t len) 1800 { 1801 REG_RD_DMAE(sc, offset, wb_write, len); 1802 } 1803 1804 uint8_t 1805 elink_cb_path_id(struct bxe_softc *sc) 1806 { 1807 return (SC_PATH(sc)); 1808 } 1809 1810 void 1811 elink_cb_event_log(struct bxe_softc *sc, 1812 const elink_log_id_t elink_log_id, 1813 ...) 1814 { 1815 /* XXX */ 1816 BLOGI(sc, "ELINK EVENT LOG (%d)\n", elink_log_id); 1817 } 1818 1819 static int 1820 bxe_set_spio(struct bxe_softc *sc, 1821 int spio, 1822 uint32_t mode) 1823 { 1824 uint32_t spio_reg; 1825 1826 /* Only 2 SPIOs are configurable */ 1827 if ((spio != MISC_SPIO_SPIO4) && (spio != MISC_SPIO_SPIO5)) { 1828 BLOGE(sc, "Invalid SPIO 0x%x mode 0x%x\n", spio, mode); 1829 return (-1); 1830 } 1831 1832 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_SPIO); 1833 1834 /* read SPIO and mask except the float bits */ 1835 spio_reg = (REG_RD(sc, MISC_REG_SPIO) & MISC_SPIO_FLOAT); 1836 1837 switch (mode) { 1838 case MISC_SPIO_OUTPUT_LOW: 1839 BLOGD(sc, DBG_LOAD, "Set SPIO 0x%x -> output low\n", spio); 1840 /* clear FLOAT and set CLR */ 1841 spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS); 1842 spio_reg |= (spio << MISC_SPIO_CLR_POS); 1843 break; 1844 1845 case MISC_SPIO_OUTPUT_HIGH: 1846 BLOGD(sc, DBG_LOAD, "Set SPIO 0x%x -> output high\n", spio); 1847 /* clear FLOAT and set SET */ 1848 spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS); 1849 spio_reg |= (spio << MISC_SPIO_SET_POS); 1850 break; 1851 1852 case MISC_SPIO_INPUT_HI_Z: 1853 BLOGD(sc, DBG_LOAD, "Set SPIO 0x%x -> input\n", spio); 1854 /* set FLOAT */ 1855 spio_reg |= (spio << MISC_SPIO_FLOAT_POS); 1856 break; 1857 1858 default: 1859 break; 1860 } 1861 1862 REG_WR(sc, MISC_REG_SPIO, spio_reg); 1863 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_SPIO); 1864 1865 return (0); 1866 } 1867 1868 static int 1869 bxe_gpio_read(struct bxe_softc *sc, 1870 int gpio_num, 1871 uint8_t port) 1872 { 1873 /* The GPIO should be swapped if swap register is set and active */ 1874 int gpio_port = ((REG_RD(sc, NIG_REG_PORT_SWAP) && 1875 REG_RD(sc, NIG_REG_STRAP_OVERRIDE)) ^ port); 1876 int gpio_shift = (gpio_num + 1877 (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0)); 1878 uint32_t gpio_mask = (1 << gpio_shift); 1879 uint32_t gpio_reg; 1880 1881 if (gpio_num > MISC_REGISTERS_GPIO_3) { 1882 BLOGE(sc, "Invalid GPIO %d port 0x%x gpio_port %d gpio_shift %d" 1883 " gpio_mask 0x%x\n", gpio_num, port, gpio_port, gpio_shift, 1884 gpio_mask); 1885 return (-1); 1886 } 1887 1888 /* read GPIO value */ 1889 gpio_reg = REG_RD(sc, MISC_REG_GPIO); 1890 1891 /* get the requested pin value */ 1892 return ((gpio_reg & gpio_mask) == gpio_mask) ? 1 : 0; 1893 } 1894 1895 static int 1896 bxe_gpio_write(struct bxe_softc *sc, 1897 int gpio_num, 1898 uint32_t mode, 1899 uint8_t port) 1900 { 1901 /* The GPIO should be swapped if swap register is set and active */ 1902 int gpio_port = ((REG_RD(sc, NIG_REG_PORT_SWAP) && 1903 REG_RD(sc, NIG_REG_STRAP_OVERRIDE)) ^ port); 1904 int gpio_shift = (gpio_num + 1905 (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0)); 1906 uint32_t gpio_mask = (1 << gpio_shift); 1907 uint32_t gpio_reg; 1908 1909 if (gpio_num > MISC_REGISTERS_GPIO_3) { 1910 BLOGE(sc, "Invalid GPIO %d mode 0x%x port 0x%x gpio_port %d" 1911 " gpio_shift %d gpio_mask 0x%x\n", 1912 gpio_num, mode, port, gpio_port, gpio_shift, gpio_mask); 1913 return (-1); 1914 } 1915 1916 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_GPIO); 1917 1918 /* read GPIO and mask except the float bits */ 1919 gpio_reg = (REG_RD(sc, MISC_REG_GPIO) & MISC_REGISTERS_GPIO_FLOAT); 1920 1921 switch (mode) { 1922 case MISC_REGISTERS_GPIO_OUTPUT_LOW: 1923 BLOGD(sc, DBG_PHY, 1924 "Set GPIO %d (shift %d) -> output low\n", 1925 gpio_num, gpio_shift); 1926 /* clear FLOAT and set CLR */ 1927 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS); 1928 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_CLR_POS); 1929 break; 1930 1931 case MISC_REGISTERS_GPIO_OUTPUT_HIGH: 1932 BLOGD(sc, DBG_PHY, 1933 "Set GPIO %d (shift %d) -> output high\n", 1934 gpio_num, gpio_shift); 1935 /* clear FLOAT and set SET */ 1936 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS); 1937 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_SET_POS); 1938 break; 1939 1940 case MISC_REGISTERS_GPIO_INPUT_HI_Z: 1941 BLOGD(sc, DBG_PHY, 1942 "Set GPIO %d (shift %d) -> input\n", 1943 gpio_num, gpio_shift); 1944 /* set FLOAT */ 1945 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS); 1946 break; 1947 1948 default: 1949 break; 1950 } 1951 1952 REG_WR(sc, MISC_REG_GPIO, gpio_reg); 1953 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_GPIO); 1954 1955 return (0); 1956 } 1957 1958 static int 1959 bxe_gpio_mult_write(struct bxe_softc *sc, 1960 uint8_t pins, 1961 uint32_t mode) 1962 { 1963 uint32_t gpio_reg; 1964 1965 /* any port swapping should be handled by caller */ 1966 1967 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_GPIO); 1968 1969 /* read GPIO and mask except the float bits */ 1970 gpio_reg = REG_RD(sc, MISC_REG_GPIO); 1971 gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_FLOAT_POS); 1972 gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_CLR_POS); 1973 gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_SET_POS); 1974 1975 switch (mode) { 1976 case MISC_REGISTERS_GPIO_OUTPUT_LOW: 1977 BLOGD(sc, DBG_PHY, "Set GPIO 0x%x -> output low\n", pins); 1978 /* set CLR */ 1979 gpio_reg |= (pins << MISC_REGISTERS_GPIO_CLR_POS); 1980 break; 1981 1982 case MISC_REGISTERS_GPIO_OUTPUT_HIGH: 1983 BLOGD(sc, DBG_PHY, "Set GPIO 0x%x -> output high\n", pins); 1984 /* set SET */ 1985 gpio_reg |= (pins << MISC_REGISTERS_GPIO_SET_POS); 1986 break; 1987 1988 case MISC_REGISTERS_GPIO_INPUT_HI_Z: 1989 BLOGD(sc, DBG_PHY, "Set GPIO 0x%x -> input\n", pins); 1990 /* set FLOAT */ 1991 gpio_reg |= (pins << MISC_REGISTERS_GPIO_FLOAT_POS); 1992 break; 1993 1994 default: 1995 BLOGE(sc, "Invalid GPIO mode assignment pins 0x%x mode 0x%x" 1996 " gpio_reg 0x%x\n", pins, mode, gpio_reg); 1997 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_GPIO); 1998 return (-1); 1999 } 2000 2001 REG_WR(sc, MISC_REG_GPIO, gpio_reg); 2002 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_GPIO); 2003 2004 return (0); 2005 } 2006 2007 static int 2008 bxe_gpio_int_write(struct bxe_softc *sc, 2009 int gpio_num, 2010 uint32_t mode, 2011 uint8_t port) 2012 { 2013 /* The GPIO should be swapped if swap register is set and active */ 2014 int gpio_port = ((REG_RD(sc, NIG_REG_PORT_SWAP) && 2015 REG_RD(sc, NIG_REG_STRAP_OVERRIDE)) ^ port); 2016 int gpio_shift = (gpio_num + 2017 (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0)); 2018 uint32_t gpio_mask = (1 << gpio_shift); 2019 uint32_t gpio_reg; 2020 2021 if (gpio_num > MISC_REGISTERS_GPIO_3) { 2022 BLOGE(sc, "Invalid GPIO %d mode 0x%x port 0x%x gpio_port %d" 2023 " gpio_shift %d gpio_mask 0x%x\n", 2024 gpio_num, mode, port, gpio_port, gpio_shift, gpio_mask); 2025 return (-1); 2026 } 2027 2028 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_GPIO); 2029 2030 /* read GPIO int */ 2031 gpio_reg = REG_RD(sc, MISC_REG_GPIO_INT); 2032 2033 switch (mode) { 2034 case MISC_REGISTERS_GPIO_INT_OUTPUT_CLR: 2035 BLOGD(sc, DBG_PHY, 2036 "Clear GPIO INT %d (shift %d) -> output low\n", 2037 gpio_num, gpio_shift); 2038 /* clear SET and set CLR */ 2039 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS); 2040 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS); 2041 break; 2042 2043 case MISC_REGISTERS_GPIO_INT_OUTPUT_SET: 2044 BLOGD(sc, DBG_PHY, 2045 "Set GPIO INT %d (shift %d) -> output high\n", 2046 gpio_num, gpio_shift); 2047 /* clear CLR and set SET */ 2048 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS); 2049 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS); 2050 break; 2051 2052 default: 2053 break; 2054 } 2055 2056 REG_WR(sc, MISC_REG_GPIO_INT, gpio_reg); 2057 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_GPIO); 2058 2059 return (0); 2060 } 2061 2062 uint32_t 2063 elink_cb_gpio_read(struct bxe_softc *sc, 2064 uint16_t gpio_num, 2065 uint8_t port) 2066 { 2067 return (bxe_gpio_read(sc, gpio_num, port)); 2068 } 2069 2070 uint8_t 2071 elink_cb_gpio_write(struct bxe_softc *sc, 2072 uint16_t gpio_num, 2073 uint8_t mode, /* 0=low 1=high */ 2074 uint8_t port) 2075 { 2076 return (bxe_gpio_write(sc, gpio_num, mode, port)); 2077 } 2078 2079 uint8_t 2080 elink_cb_gpio_mult_write(struct bxe_softc *sc, 2081 uint8_t pins, 2082 uint8_t mode) /* 0=low 1=high */ 2083 { 2084 return (bxe_gpio_mult_write(sc, pins, mode)); 2085 } 2086 2087 uint8_t 2088 elink_cb_gpio_int_write(struct bxe_softc *sc, 2089 uint16_t gpio_num, 2090 uint8_t mode, /* 0=low 1=high */ 2091 uint8_t port) 2092 { 2093 return (bxe_gpio_int_write(sc, gpio_num, mode, port)); 2094 } 2095 2096 void 2097 elink_cb_notify_link_changed(struct bxe_softc *sc) 2098 { 2099 REG_WR(sc, (MISC_REG_AEU_GENERAL_ATTN_12 + 2100 (SC_FUNC(sc) * sizeof(uint32_t))), 1); 2101 } 2102 2103 /* send the MCP a request, block until there is a reply */ 2104 uint32_t 2105 elink_cb_fw_command(struct bxe_softc *sc, 2106 uint32_t command, 2107 uint32_t param) 2108 { 2109 int mb_idx = SC_FW_MB_IDX(sc); 2110 uint32_t seq; 2111 uint32_t rc = 0; 2112 uint32_t cnt = 1; 2113 uint8_t delay = CHIP_REV_IS_SLOW(sc) ? 100 : 10; 2114 2115 BXE_FWMB_LOCK(sc); 2116 2117 seq = ++sc->fw_seq; 2118 SHMEM_WR(sc, func_mb[mb_idx].drv_mb_param, param); 2119 SHMEM_WR(sc, func_mb[mb_idx].drv_mb_header, (command | seq)); 2120 2121 BLOGD(sc, DBG_PHY, 2122 "wrote command 0x%08x to FW MB param 0x%08x\n", 2123 (command | seq), param); 2124 2125 /* Let the FW do it's magic. GIve it up to 5 seconds... */ 2126 do { 2127 DELAY(delay * 1000); 2128 rc = SHMEM_RD(sc, func_mb[mb_idx].fw_mb_header); 2129 } while ((seq != (rc & FW_MSG_SEQ_NUMBER_MASK)) && (cnt++ < 500)); 2130 2131 BLOGD(sc, DBG_PHY, 2132 "[after %d ms] read 0x%x seq 0x%x from FW MB\n", 2133 cnt*delay, rc, seq); 2134 2135 /* is this a reply to our command? */ 2136 if (seq == (rc & FW_MSG_SEQ_NUMBER_MASK)) { 2137 rc &= FW_MSG_CODE_MASK; 2138 } else { 2139 /* Ruh-roh! */ 2140 BLOGE(sc, "FW failed to respond!\n"); 2141 // XXX bxe_fw_dump(sc); 2142 rc = 0; 2143 } 2144 2145 BXE_FWMB_UNLOCK(sc); 2146 return (rc); 2147 } 2148 2149 static uint32_t 2150 bxe_fw_command(struct bxe_softc *sc, 2151 uint32_t command, 2152 uint32_t param) 2153 { 2154 return (elink_cb_fw_command(sc, command, param)); 2155 } 2156 2157 static void 2158 __storm_memset_dma_mapping(struct bxe_softc *sc, 2159 uint32_t addr, 2160 bus_addr_t mapping) 2161 { 2162 REG_WR(sc, addr, U64_LO(mapping)); 2163 REG_WR(sc, (addr + 4), U64_HI(mapping)); 2164 } 2165 2166 static void 2167 storm_memset_spq_addr(struct bxe_softc *sc, 2168 bus_addr_t mapping, 2169 uint16_t abs_fid) 2170 { 2171 uint32_t addr = (XSEM_REG_FAST_MEMORY + 2172 XSTORM_SPQ_PAGE_BASE_OFFSET(abs_fid)); 2173 __storm_memset_dma_mapping(sc, addr, mapping); 2174 } 2175 2176 static void 2177 storm_memset_vf_to_pf(struct bxe_softc *sc, 2178 uint16_t abs_fid, 2179 uint16_t pf_id) 2180 { 2181 REG_WR8(sc, (BAR_XSTRORM_INTMEM + XSTORM_VF_TO_PF_OFFSET(abs_fid)), pf_id); 2182 REG_WR8(sc, (BAR_CSTRORM_INTMEM + CSTORM_VF_TO_PF_OFFSET(abs_fid)), pf_id); 2183 REG_WR8(sc, (BAR_TSTRORM_INTMEM + TSTORM_VF_TO_PF_OFFSET(abs_fid)), pf_id); 2184 REG_WR8(sc, (BAR_USTRORM_INTMEM + USTORM_VF_TO_PF_OFFSET(abs_fid)), pf_id); 2185 } 2186 2187 static void 2188 storm_memset_func_en(struct bxe_softc *sc, 2189 uint16_t abs_fid, 2190 uint8_t enable) 2191 { 2192 REG_WR8(sc, (BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(abs_fid)), enable); 2193 REG_WR8(sc, (BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(abs_fid)), enable); 2194 REG_WR8(sc, (BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(abs_fid)), enable); 2195 REG_WR8(sc, (BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(abs_fid)), enable); 2196 } 2197 2198 static void 2199 storm_memset_eq_data(struct bxe_softc *sc, 2200 struct event_ring_data *eq_data, 2201 uint16_t pfid) 2202 { 2203 uint32_t addr; 2204 size_t size; 2205 2206 addr = (BAR_CSTRORM_INTMEM + CSTORM_EVENT_RING_DATA_OFFSET(pfid)); 2207 size = sizeof(struct event_ring_data); 2208 ecore_storm_memset_struct(sc, addr, size, (uint32_t *)eq_data); 2209 } 2210 2211 static void 2212 storm_memset_eq_prod(struct bxe_softc *sc, 2213 uint16_t eq_prod, 2214 uint16_t pfid) 2215 { 2216 uint32_t addr = (BAR_CSTRORM_INTMEM + 2217 CSTORM_EVENT_RING_PROD_OFFSET(pfid)); 2218 REG_WR16(sc, addr, eq_prod); 2219 } 2220 2221 /* 2222 * Post a slowpath command. 2223 * 2224 * A slowpath command is used to propogate a configuration change through 2225 * the controller in a controlled manner, allowing each STORM processor and 2226 * other H/W blocks to phase in the change. The commands sent on the 2227 * slowpath are referred to as ramrods. Depending on the ramrod used the 2228 * completion of the ramrod will occur in different ways. Here's a 2229 * breakdown of ramrods and how they complete: 2230 * 2231 * RAMROD_CMD_ID_ETH_PORT_SETUP 2232 * Used to setup the leading connection on a port. Completes on the 2233 * Receive Completion Queue (RCQ) of that port (typically fp[0]). 2234 * 2235 * RAMROD_CMD_ID_ETH_CLIENT_SETUP 2236 * Used to setup an additional connection on a port. Completes on the 2237 * RCQ of the multi-queue/RSS connection being initialized. 2238 * 2239 * RAMROD_CMD_ID_ETH_STAT_QUERY 2240 * Used to force the storm processors to update the statistics database 2241 * in host memory. This ramrod is send on the leading connection CID and 2242 * completes as an index increment of the CSTORM on the default status 2243 * block. 2244 * 2245 * RAMROD_CMD_ID_ETH_UPDATE 2246 * Used to update the state of the leading connection, usually to udpate 2247 * the RSS indirection table. Completes on the RCQ of the leading 2248 * connection. (Not currently used under FreeBSD until OS support becomes 2249 * available.) 2250 * 2251 * RAMROD_CMD_ID_ETH_HALT 2252 * Used when tearing down a connection prior to driver unload. Completes 2253 * on the RCQ of the multi-queue/RSS connection being torn down. Don't 2254 * use this on the leading connection. 2255 * 2256 * RAMROD_CMD_ID_ETH_SET_MAC 2257 * Sets the Unicast/Broadcast/Multicast used by the port. Completes on 2258 * the RCQ of the leading connection. 2259 * 2260 * RAMROD_CMD_ID_ETH_CFC_DEL 2261 * Used when tearing down a conneciton prior to driver unload. Completes 2262 * on the RCQ of the leading connection (since the current connection 2263 * has been completely removed from controller memory). 2264 * 2265 * RAMROD_CMD_ID_ETH_PORT_DEL 2266 * Used to tear down the leading connection prior to driver unload, 2267 * typically fp[0]. Completes as an index increment of the CSTORM on the 2268 * default status block. 2269 * 2270 * RAMROD_CMD_ID_ETH_FORWARD_SETUP 2271 * Used for connection offload. Completes on the RCQ of the multi-queue 2272 * RSS connection that is being offloaded. (Not currently used under 2273 * FreeBSD.) 2274 * 2275 * There can only be one command pending per function. 2276 * 2277 * Returns: 2278 * 0 = Success, !0 = Failure. 2279 */ 2280 2281 /* must be called under the spq lock */ 2282 static inline 2283 struct eth_spe *bxe_sp_get_next(struct bxe_softc *sc) 2284 { 2285 struct eth_spe *next_spe = sc->spq_prod_bd; 2286 2287 if (sc->spq_prod_bd == sc->spq_last_bd) { 2288 /* wrap back to the first eth_spq */ 2289 sc->spq_prod_bd = sc->spq; 2290 sc->spq_prod_idx = 0; 2291 } else { 2292 sc->spq_prod_bd++; 2293 sc->spq_prod_idx++; 2294 } 2295 2296 return (next_spe); 2297 } 2298 2299 /* must be called under the spq lock */ 2300 static inline 2301 void bxe_sp_prod_update(struct bxe_softc *sc) 2302 { 2303 int func = SC_FUNC(sc); 2304 2305 /* 2306 * Make sure that BD data is updated before writing the producer. 2307 * BD data is written to the memory, the producer is read from the 2308 * memory, thus we need a full memory barrier to ensure the ordering. 2309 */ 2310 mb(); 2311 2312 REG_WR16(sc, (BAR_XSTRORM_INTMEM + XSTORM_SPQ_PROD_OFFSET(func)), 2313 sc->spq_prod_idx); 2314 2315 bus_space_barrier(sc->bar[BAR0].tag, sc->bar[BAR0].handle, 0, 0, 2316 BUS_SPACE_BARRIER_WRITE); 2317 } 2318 2319 /** 2320 * bxe_is_contextless_ramrod - check if the current command ends on EQ 2321 * 2322 * @cmd: command to check 2323 * @cmd_type: command type 2324 */ 2325 static inline 2326 int bxe_is_contextless_ramrod(int cmd, 2327 int cmd_type) 2328 { 2329 if ((cmd_type == NONE_CONNECTION_TYPE) || 2330 (cmd == RAMROD_CMD_ID_ETH_FORWARD_SETUP) || 2331 (cmd == RAMROD_CMD_ID_ETH_CLASSIFICATION_RULES) || 2332 (cmd == RAMROD_CMD_ID_ETH_FILTER_RULES) || 2333 (cmd == RAMROD_CMD_ID_ETH_MULTICAST_RULES) || 2334 (cmd == RAMROD_CMD_ID_ETH_SET_MAC) || 2335 (cmd == RAMROD_CMD_ID_ETH_RSS_UPDATE)) { 2336 return (TRUE); 2337 } else { 2338 return (FALSE); 2339 } 2340 } 2341 2342 /** 2343 * bxe_sp_post - place a single command on an SP ring 2344 * 2345 * @sc: driver handle 2346 * @command: command to place (e.g. SETUP, FILTER_RULES, etc.) 2347 * @cid: SW CID the command is related to 2348 * @data_hi: command private data address (high 32 bits) 2349 * @data_lo: command private data address (low 32 bits) 2350 * @cmd_type: command type (e.g. NONE, ETH) 2351 * 2352 * SP data is handled as if it's always an address pair, thus data fields are 2353 * not swapped to little endian in upper functions. Instead this function swaps 2354 * data as if it's two uint32 fields. 2355 */ 2356 int 2357 bxe_sp_post(struct bxe_softc *sc, 2358 int command, 2359 int cid, 2360 uint32_t data_hi, 2361 uint32_t data_lo, 2362 int cmd_type) 2363 { 2364 struct eth_spe *spe; 2365 uint16_t type; 2366 int common; 2367 2368 common = bxe_is_contextless_ramrod(command, cmd_type); 2369 2370 BXE_SP_LOCK(sc); 2371 2372 if (common) { 2373 if (!atomic_load_acq_long(&sc->eq_spq_left)) { 2374 BLOGE(sc, "EQ ring is full!\n"); 2375 BXE_SP_UNLOCK(sc); 2376 return (-1); 2377 } 2378 } else { 2379 if (!atomic_load_acq_long(&sc->cq_spq_left)) { 2380 BLOGE(sc, "SPQ ring is full!\n"); 2381 BXE_SP_UNLOCK(sc); 2382 return (-1); 2383 } 2384 } 2385 2386 spe = bxe_sp_get_next(sc); 2387 2388 /* CID needs port number to be encoded int it */ 2389 spe->hdr.conn_and_cmd_data = 2390 htole32((command << SPE_HDR_T_CMD_ID_SHIFT) | HW_CID(sc, cid)); 2391 2392 type = (cmd_type << SPE_HDR_T_CONN_TYPE_SHIFT) & SPE_HDR_T_CONN_TYPE; 2393 2394 /* TBD: Check if it works for VFs */ 2395 type |= ((SC_FUNC(sc) << SPE_HDR_T_FUNCTION_ID_SHIFT) & 2396 SPE_HDR_T_FUNCTION_ID); 2397 2398 spe->hdr.type = htole16(type); 2399 2400 spe->data.update_data_addr.hi = htole32(data_hi); 2401 spe->data.update_data_addr.lo = htole32(data_lo); 2402 2403 /* 2404 * It's ok if the actual decrement is issued towards the memory 2405 * somewhere between the lock and unlock. Thus no more explict 2406 * memory barrier is needed. 2407 */ 2408 if (common) { 2409 atomic_subtract_acq_long(&sc->eq_spq_left, 1); 2410 } else { 2411 atomic_subtract_acq_long(&sc->cq_spq_left, 1); 2412 } 2413 2414 BLOGD(sc, DBG_SP, "SPQE -> %#jx\n", (uintmax_t)sc->spq_dma.paddr); 2415 BLOGD(sc, DBG_SP, "FUNC_RDATA -> %p / %#jx\n", 2416 BXE_SP(sc, func_rdata), (uintmax_t)BXE_SP_MAPPING(sc, func_rdata)); 2417 BLOGD(sc, DBG_SP, 2418 "SPQE[%x] (%x:%x) (cmd, common?) (%d,%d) hw_cid %x data (%x:%x) type(0x%x) left (CQ, EQ) (%lx,%lx)\n", 2419 sc->spq_prod_idx, 2420 (uint32_t)U64_HI(sc->spq_dma.paddr), 2421 (uint32_t)(U64_LO(sc->spq_dma.paddr) + (uint8_t *)sc->spq_prod_bd - (uint8_t *)sc->spq), 2422 command, 2423 common, 2424 HW_CID(sc, cid), 2425 data_hi, 2426 data_lo, 2427 type, 2428 atomic_load_acq_long(&sc->cq_spq_left), 2429 atomic_load_acq_long(&sc->eq_spq_left)); 2430 2431 bxe_sp_prod_update(sc); 2432 2433 BXE_SP_UNLOCK(sc); 2434 return (0); 2435 } 2436 2437 /** 2438 * bxe_debug_print_ind_table - prints the indirection table configuration. 2439 * 2440 * @sc: driver hanlde 2441 * @p: pointer to rss configuration 2442 */ 2443 2444 /* 2445 * FreeBSD Device probe function. 2446 * 2447 * Compares the device found to the driver's list of supported devices and 2448 * reports back to the bsd loader whether this is the right driver for the device. 2449 * This is the driver entry function called from the "kldload" command. 2450 * 2451 * Returns: 2452 * BUS_PROBE_DEFAULT on success, positive value on failure. 2453 */ 2454 static int 2455 bxe_probe(device_t dev) 2456 { 2457 struct bxe_softc *sc; 2458 struct bxe_device_type *t; 2459 char *descbuf; 2460 uint16_t did, sdid, svid, vid; 2461 2462 /* Find our device structure */ 2463 sc = device_get_softc(dev); 2464 sc->dev = dev; 2465 t = bxe_devs; 2466 2467 /* Get the data for the device to be probed. */ 2468 vid = pci_get_vendor(dev); 2469 did = pci_get_device(dev); 2470 svid = pci_get_subvendor(dev); 2471 sdid = pci_get_subdevice(dev); 2472 2473 BLOGD(sc, DBG_LOAD, 2474 "%s(); VID = 0x%04X, DID = 0x%04X, SVID = 0x%04X, " 2475 "SDID = 0x%04X\n", __FUNCTION__, vid, did, svid, sdid); 2476 2477 /* Look through the list of known devices for a match. */ 2478 while (t->bxe_name != NULL) { 2479 if ((vid == t->bxe_vid) && (did == t->bxe_did) && 2480 ((svid == t->bxe_svid) || (t->bxe_svid == PCI_ANY_ID)) && 2481 ((sdid == t->bxe_sdid) || (t->bxe_sdid == PCI_ANY_ID))) { 2482 descbuf = malloc(BXE_DEVDESC_MAX, M_TEMP, M_NOWAIT); 2483 if (descbuf == NULL) 2484 return (ENOMEM); 2485 2486 /* Print out the device identity. */ 2487 snprintf(descbuf, BXE_DEVDESC_MAX, 2488 "%s (%c%d) BXE v:%s\n", t->bxe_name, 2489 (((pci_read_config(dev, PCIR_REVID, 4) & 2490 0xf0) >> 4) + 'A'), 2491 (pci_read_config(dev, PCIR_REVID, 4) & 0xf), 2492 BXE_DRIVER_VERSION); 2493 2494 device_set_desc_copy(dev, descbuf); 2495 free(descbuf, M_TEMP); 2496 return (BUS_PROBE_DEFAULT); 2497 } 2498 t++; 2499 } 2500 2501 return (ENXIO); 2502 } 2503 2504 static void 2505 bxe_init_mutexes(struct bxe_softc *sc) 2506 { 2507 #ifdef BXE_CORE_LOCK_SX 2508 snprintf(sc->core_sx_name, sizeof(sc->core_sx_name), 2509 "bxe%d_core_lock", sc->unit); 2510 sx_init(&sc->core_sx, sc->core_sx_name); 2511 #else 2512 snprintf(sc->core_mtx_name, sizeof(sc->core_mtx_name), 2513 "bxe%d_core_lock", sc->unit); 2514 mtx_init(&sc->core_mtx, sc->core_mtx_name, NULL, MTX_DEF); 2515 #endif 2516 2517 snprintf(sc->sp_mtx_name, sizeof(sc->sp_mtx_name), 2518 "bxe%d_sp_lock", sc->unit); 2519 mtx_init(&sc->sp_mtx, sc->sp_mtx_name, NULL, MTX_DEF); 2520 2521 snprintf(sc->dmae_mtx_name, sizeof(sc->dmae_mtx_name), 2522 "bxe%d_dmae_lock", sc->unit); 2523 mtx_init(&sc->dmae_mtx, sc->dmae_mtx_name, NULL, MTX_DEF); 2524 2525 snprintf(sc->port.phy_mtx_name, sizeof(sc->port.phy_mtx_name), 2526 "bxe%d_phy_lock", sc->unit); 2527 mtx_init(&sc->port.phy_mtx, sc->port.phy_mtx_name, NULL, MTX_DEF); 2528 2529 snprintf(sc->fwmb_mtx_name, sizeof(sc->fwmb_mtx_name), 2530 "bxe%d_fwmb_lock", sc->unit); 2531 mtx_init(&sc->fwmb_mtx, sc->fwmb_mtx_name, NULL, MTX_DEF); 2532 2533 snprintf(sc->print_mtx_name, sizeof(sc->print_mtx_name), 2534 "bxe%d_print_lock", sc->unit); 2535 mtx_init(&(sc->print_mtx), sc->print_mtx_name, NULL, MTX_DEF); 2536 2537 snprintf(sc->stats_mtx_name, sizeof(sc->stats_mtx_name), 2538 "bxe%d_stats_lock", sc->unit); 2539 mtx_init(&(sc->stats_mtx), sc->stats_mtx_name, NULL, MTX_DEF); 2540 2541 snprintf(sc->mcast_mtx_name, sizeof(sc->mcast_mtx_name), 2542 "bxe%d_mcast_lock", sc->unit); 2543 mtx_init(&(sc->mcast_mtx), sc->mcast_mtx_name, NULL, MTX_DEF); 2544 } 2545 2546 static void 2547 bxe_release_mutexes(struct bxe_softc *sc) 2548 { 2549 #ifdef BXE_CORE_LOCK_SX 2550 sx_destroy(&sc->core_sx); 2551 #else 2552 if (mtx_initialized(&sc->core_mtx)) { 2553 mtx_destroy(&sc->core_mtx); 2554 } 2555 #endif 2556 2557 if (mtx_initialized(&sc->sp_mtx)) { 2558 mtx_destroy(&sc->sp_mtx); 2559 } 2560 2561 if (mtx_initialized(&sc->dmae_mtx)) { 2562 mtx_destroy(&sc->dmae_mtx); 2563 } 2564 2565 if (mtx_initialized(&sc->port.phy_mtx)) { 2566 mtx_destroy(&sc->port.phy_mtx); 2567 } 2568 2569 if (mtx_initialized(&sc->fwmb_mtx)) { 2570 mtx_destroy(&sc->fwmb_mtx); 2571 } 2572 2573 if (mtx_initialized(&sc->print_mtx)) { 2574 mtx_destroy(&sc->print_mtx); 2575 } 2576 2577 if (mtx_initialized(&sc->stats_mtx)) { 2578 mtx_destroy(&sc->stats_mtx); 2579 } 2580 2581 if (mtx_initialized(&sc->mcast_mtx)) { 2582 mtx_destroy(&sc->mcast_mtx); 2583 } 2584 } 2585 2586 static void 2587 bxe_tx_disable(struct bxe_softc* sc) 2588 { 2589 if_t ifp = sc->ifp; 2590 2591 /* tell the stack the driver is stopped and TX queue is full */ 2592 if (ifp != NULL) { 2593 if_setdrvflags(ifp, 0); 2594 } 2595 } 2596 2597 static void 2598 bxe_drv_pulse(struct bxe_softc *sc) 2599 { 2600 SHMEM_WR(sc, func_mb[SC_FW_MB_IDX(sc)].drv_pulse_mb, 2601 sc->fw_drv_pulse_wr_seq); 2602 } 2603 2604 static inline uint16_t 2605 bxe_tx_avail(struct bxe_softc *sc, 2606 struct bxe_fastpath *fp) 2607 { 2608 int16_t used; 2609 uint16_t prod; 2610 uint16_t cons; 2611 2612 prod = fp->tx_bd_prod; 2613 cons = fp->tx_bd_cons; 2614 2615 used = SUB_S16(prod, cons); 2616 2617 return (int16_t)(sc->tx_ring_size) - used; 2618 } 2619 2620 static inline int 2621 bxe_tx_queue_has_work(struct bxe_fastpath *fp) 2622 { 2623 uint16_t hw_cons; 2624 2625 mb(); /* status block fields can change */ 2626 hw_cons = le16toh(*fp->tx_cons_sb); 2627 return (hw_cons != fp->tx_pkt_cons); 2628 } 2629 2630 static inline uint8_t 2631 bxe_has_tx_work(struct bxe_fastpath *fp) 2632 { 2633 /* expand this for multi-cos if ever supported */ 2634 return (bxe_tx_queue_has_work(fp)) ? TRUE : FALSE; 2635 } 2636 2637 static inline int 2638 bxe_has_rx_work(struct bxe_fastpath *fp) 2639 { 2640 uint16_t rx_cq_cons_sb; 2641 2642 mb(); /* status block fields can change */ 2643 rx_cq_cons_sb = le16toh(*fp->rx_cq_cons_sb); 2644 if ((rx_cq_cons_sb & RCQ_MAX) == RCQ_MAX) 2645 rx_cq_cons_sb++; 2646 return (fp->rx_cq_cons != rx_cq_cons_sb); 2647 } 2648 2649 static void 2650 bxe_sp_event(struct bxe_softc *sc, 2651 struct bxe_fastpath *fp, 2652 union eth_rx_cqe *rr_cqe) 2653 { 2654 int cid = SW_CID(rr_cqe->ramrod_cqe.conn_and_cmd_data); 2655 int command = CQE_CMD(rr_cqe->ramrod_cqe.conn_and_cmd_data); 2656 enum ecore_queue_cmd drv_cmd = ECORE_Q_CMD_MAX; 2657 struct ecore_queue_sp_obj *q_obj = &BXE_SP_OBJ(sc, fp).q_obj; 2658 2659 BLOGD(sc, DBG_SP, "fp=%d cid=%d got ramrod #%d state is %x type is %d\n", 2660 fp->index, cid, command, sc->state, rr_cqe->ramrod_cqe.ramrod_type); 2661 2662 switch (command) { 2663 case (RAMROD_CMD_ID_ETH_CLIENT_UPDATE): 2664 BLOGD(sc, DBG_SP, "got UPDATE ramrod. CID %d\n", cid); 2665 drv_cmd = ECORE_Q_CMD_UPDATE; 2666 break; 2667 2668 case (RAMROD_CMD_ID_ETH_CLIENT_SETUP): 2669 BLOGD(sc, DBG_SP, "got MULTI[%d] setup ramrod\n", cid); 2670 drv_cmd = ECORE_Q_CMD_SETUP; 2671 break; 2672 2673 case (RAMROD_CMD_ID_ETH_TX_QUEUE_SETUP): 2674 BLOGD(sc, DBG_SP, "got MULTI[%d] tx-only setup ramrod\n", cid); 2675 drv_cmd = ECORE_Q_CMD_SETUP_TX_ONLY; 2676 break; 2677 2678 case (RAMROD_CMD_ID_ETH_HALT): 2679 BLOGD(sc, DBG_SP, "got MULTI[%d] halt ramrod\n", cid); 2680 drv_cmd = ECORE_Q_CMD_HALT; 2681 break; 2682 2683 case (RAMROD_CMD_ID_ETH_TERMINATE): 2684 BLOGD(sc, DBG_SP, "got MULTI[%d] teminate ramrod\n", cid); 2685 drv_cmd = ECORE_Q_CMD_TERMINATE; 2686 break; 2687 2688 case (RAMROD_CMD_ID_ETH_EMPTY): 2689 BLOGD(sc, DBG_SP, "got MULTI[%d] empty ramrod\n", cid); 2690 drv_cmd = ECORE_Q_CMD_EMPTY; 2691 break; 2692 2693 default: 2694 BLOGD(sc, DBG_SP, "ERROR: unexpected MC reply (%d) on fp[%d]\n", 2695 command, fp->index); 2696 return; 2697 } 2698 2699 if ((drv_cmd != ECORE_Q_CMD_MAX) && 2700 q_obj->complete_cmd(sc, q_obj, drv_cmd)) { 2701 /* 2702 * q_obj->complete_cmd() failure means that this was 2703 * an unexpected completion. 2704 * 2705 * In this case we don't want to increase the sc->spq_left 2706 * because apparently we haven't sent this command the first 2707 * place. 2708 */ 2709 // bxe_panic(sc, ("Unexpected SP completion\n")); 2710 return; 2711 } 2712 2713 atomic_add_acq_long(&sc->cq_spq_left, 1); 2714 2715 BLOGD(sc, DBG_SP, "sc->cq_spq_left 0x%lx\n", 2716 atomic_load_acq_long(&sc->cq_spq_left)); 2717 } 2718 2719 /* 2720 * The current mbuf is part of an aggregation. Move the mbuf into the TPA 2721 * aggregation queue, put an empty mbuf back onto the receive chain, and mark 2722 * the current aggregation queue as in-progress. 2723 */ 2724 static void 2725 bxe_tpa_start(struct bxe_softc *sc, 2726 struct bxe_fastpath *fp, 2727 uint16_t queue, 2728 uint16_t cons, 2729 uint16_t prod, 2730 struct eth_fast_path_rx_cqe *cqe) 2731 { 2732 struct bxe_sw_rx_bd tmp_bd; 2733 struct bxe_sw_rx_bd *rx_buf; 2734 struct eth_rx_bd *rx_bd; 2735 int max_agg_queues; 2736 struct bxe_sw_tpa_info *tpa_info = &fp->rx_tpa_info[queue]; 2737 uint16_t index; 2738 2739 BLOGD(sc, DBG_LRO, "fp[%02d].tpa[%02d] TPA START " 2740 "cons=%d prod=%d\n", 2741 fp->index, queue, cons, prod); 2742 2743 max_agg_queues = MAX_AGG_QS(sc); 2744 2745 KASSERT((queue < max_agg_queues), 2746 ("fp[%02d] invalid aggr queue (%d >= %d)!", 2747 fp->index, queue, max_agg_queues)); 2748 2749 KASSERT((tpa_info->state == BXE_TPA_STATE_STOP), 2750 ("fp[%02d].tpa[%02d] starting aggr on queue not stopped!", 2751 fp->index, queue)); 2752 2753 /* copy the existing mbuf and mapping from the TPA pool */ 2754 tmp_bd = tpa_info->bd; 2755 2756 if (tmp_bd.m == NULL) { 2757 uint32_t *tmp; 2758 2759 tmp = (uint32_t *)cqe; 2760 2761 BLOGE(sc, "fp[%02d].tpa[%02d] cons[%d] prod[%d]mbuf not allocated!\n", 2762 fp->index, queue, cons, prod); 2763 BLOGE(sc, "cqe [0x%08x 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x]\n", 2764 *tmp, *(tmp+1), *(tmp+2), *(tmp+3), *(tmp+4), *(tmp+5), *(tmp+6), *(tmp+7)); 2765 2766 /* XXX Error handling? */ 2767 return; 2768 } 2769 2770 /* change the TPA queue to the start state */ 2771 tpa_info->state = BXE_TPA_STATE_START; 2772 tpa_info->placement_offset = cqe->placement_offset; 2773 tpa_info->parsing_flags = le16toh(cqe->pars_flags.flags); 2774 tpa_info->vlan_tag = le16toh(cqe->vlan_tag); 2775 tpa_info->len_on_bd = le16toh(cqe->len_on_bd); 2776 2777 fp->rx_tpa_queue_used |= (1 << queue); 2778 2779 /* 2780 * If all the buffer descriptors are filled with mbufs then fill in 2781 * the current consumer index with a new BD. Else if a maximum Rx 2782 * buffer limit is imposed then fill in the next producer index. 2783 */ 2784 index = (sc->max_rx_bufs != RX_BD_USABLE) ? 2785 prod : cons; 2786 2787 /* move the received mbuf and mapping to TPA pool */ 2788 tpa_info->bd = fp->rx_mbuf_chain[cons]; 2789 2790 /* release any existing RX BD mbuf mappings */ 2791 if (cons != index) { 2792 rx_buf = &fp->rx_mbuf_chain[cons]; 2793 2794 if (rx_buf->m_map != NULL) { 2795 bus_dmamap_sync(fp->rx_mbuf_tag, rx_buf->m_map, 2796 BUS_DMASYNC_POSTREAD); 2797 bus_dmamap_unload(fp->rx_mbuf_tag, rx_buf->m_map); 2798 } 2799 2800 /* 2801 * We get here when the maximum number of rx buffers is less than 2802 * RX_BD_USABLE. The mbuf is already saved above so it's OK to NULL 2803 * it out here without concern of a memory leak. 2804 */ 2805 fp->rx_mbuf_chain[cons].m = NULL; 2806 } 2807 2808 /* update the Rx SW BD with the mbuf info from the TPA pool */ 2809 fp->rx_mbuf_chain[index] = tmp_bd; 2810 2811 /* update the Rx BD with the empty mbuf phys address from the TPA pool */ 2812 rx_bd = &fp->rx_chain[index]; 2813 rx_bd->addr_hi = htole32(U64_HI(tpa_info->seg.ds_addr)); 2814 rx_bd->addr_lo = htole32(U64_LO(tpa_info->seg.ds_addr)); 2815 } 2816 2817 /* 2818 * When a TPA aggregation is completed, loop through the individual mbufs 2819 * of the aggregation, combining them into a single mbuf which will be sent 2820 * up the stack. Refill all freed SGEs with mbufs as we go along. 2821 */ 2822 static int 2823 bxe_fill_frag_mbuf(struct bxe_softc *sc, 2824 struct bxe_fastpath *fp, 2825 struct bxe_sw_tpa_info *tpa_info, 2826 uint16_t queue, 2827 uint16_t pages, 2828 struct mbuf *m, 2829 struct eth_end_agg_rx_cqe *cqe, 2830 uint16_t cqe_idx) 2831 { 2832 struct mbuf *m_frag; 2833 uint32_t frag_len, frag_size, i; 2834 uint16_t sge_idx; 2835 int rc = 0; 2836 int j; 2837 2838 frag_size = le16toh(cqe->pkt_len) - tpa_info->len_on_bd; 2839 2840 BLOGD(sc, DBG_LRO, 2841 "fp[%02d].tpa[%02d] TPA fill len_on_bd=%d frag_size=%d pages=%d\n", 2842 fp->index, queue, tpa_info->len_on_bd, frag_size, pages); 2843 2844 /* make sure the aggregated frame is not too big to handle */ 2845 if (pages > 8 * PAGES_PER_SGE) { 2846 2847 uint32_t *tmp = (uint32_t *)cqe; 2848 2849 BLOGE(sc, "fp[%02d].sge[0x%04x] has too many pages (%d)! " 2850 "pkt_len=%d len_on_bd=%d frag_size=%d\n", 2851 fp->index, cqe_idx, pages, le16toh(cqe->pkt_len), 2852 tpa_info->len_on_bd, frag_size); 2853 2854 BLOGE(sc, "cqe [0x%08x 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x]\n", 2855 *tmp, *(tmp+1), *(tmp+2), *(tmp+3), *(tmp+4), *(tmp+5), *(tmp+6), *(tmp+7)); 2856 2857 bxe_panic(sc, ("sge page count error\n")); 2858 return (EINVAL); 2859 } 2860 2861 /* 2862 * Scan through the scatter gather list pulling individual mbufs into a 2863 * single mbuf for the host stack. 2864 */ 2865 for (i = 0, j = 0; i < pages; i += PAGES_PER_SGE, j++) { 2866 sge_idx = RX_SGE(le16toh(cqe->sgl_or_raw_data.sgl[j])); 2867 2868 /* 2869 * Firmware gives the indices of the SGE as if the ring is an array 2870 * (meaning that the "next" element will consume 2 indices). 2871 */ 2872 frag_len = min(frag_size, (uint32_t)(SGE_PAGES)); 2873 2874 BLOGD(sc, DBG_LRO, "fp[%02d].tpa[%02d] TPA fill i=%d j=%d " 2875 "sge_idx=%d frag_size=%d frag_len=%d\n", 2876 fp->index, queue, i, j, sge_idx, frag_size, frag_len); 2877 2878 m_frag = fp->rx_sge_mbuf_chain[sge_idx].m; 2879 2880 /* allocate a new mbuf for the SGE */ 2881 rc = bxe_alloc_rx_sge_mbuf(fp, sge_idx); 2882 if (rc) { 2883 /* Leave all remaining SGEs in the ring! */ 2884 return (rc); 2885 } 2886 2887 /* update the fragment length */ 2888 m_frag->m_len = frag_len; 2889 2890 /* concatenate the fragment to the head mbuf */ 2891 m_cat(m, m_frag); 2892 fp->eth_q_stats.mbuf_alloc_sge--; 2893 2894 /* update the TPA mbuf size and remaining fragment size */ 2895 m->m_pkthdr.len += frag_len; 2896 frag_size -= frag_len; 2897 } 2898 2899 BLOGD(sc, DBG_LRO, 2900 "fp[%02d].tpa[%02d] TPA fill done frag_size=%d\n", 2901 fp->index, queue, frag_size); 2902 2903 return (rc); 2904 } 2905 2906 static inline void 2907 bxe_clear_sge_mask_next_elems(struct bxe_fastpath *fp) 2908 { 2909 int i, j; 2910 2911 for (i = 1; i <= RX_SGE_NUM_PAGES; i++) { 2912 int idx = RX_SGE_TOTAL_PER_PAGE * i - 1; 2913 2914 for (j = 0; j < 2; j++) { 2915 BIT_VEC64_CLEAR_BIT(fp->sge_mask, idx); 2916 idx--; 2917 } 2918 } 2919 } 2920 2921 static inline void 2922 bxe_init_sge_ring_bit_mask(struct bxe_fastpath *fp) 2923 { 2924 /* set the mask to all 1's, it's faster to compare to 0 than to 0xf's */ 2925 memset(fp->sge_mask, 0xff, sizeof(fp->sge_mask)); 2926 2927 /* 2928 * Clear the two last indices in the page to 1. These are the indices that 2929 * correspond to the "next" element, hence will never be indicated and 2930 * should be removed from the calculations. 2931 */ 2932 bxe_clear_sge_mask_next_elems(fp); 2933 } 2934 2935 static inline void 2936 bxe_update_last_max_sge(struct bxe_fastpath *fp, 2937 uint16_t idx) 2938 { 2939 uint16_t last_max = fp->last_max_sge; 2940 2941 if (SUB_S16(idx, last_max) > 0) { 2942 fp->last_max_sge = idx; 2943 } 2944 } 2945 2946 static inline void 2947 bxe_update_sge_prod(struct bxe_softc *sc, 2948 struct bxe_fastpath *fp, 2949 uint16_t sge_len, 2950 union eth_sgl_or_raw_data *cqe) 2951 { 2952 uint16_t last_max, last_elem, first_elem; 2953 uint16_t delta = 0; 2954 uint16_t i; 2955 2956 if (!sge_len) { 2957 return; 2958 } 2959 2960 /* first mark all used pages */ 2961 for (i = 0; i < sge_len; i++) { 2962 BIT_VEC64_CLEAR_BIT(fp->sge_mask, 2963 RX_SGE(le16toh(cqe->sgl[i]))); 2964 } 2965 2966 BLOGD(sc, DBG_LRO, 2967 "fp[%02d] fp_cqe->sgl[%d] = %d\n", 2968 fp->index, sge_len - 1, 2969 le16toh(cqe->sgl[sge_len - 1])); 2970 2971 /* assume that the last SGE index is the biggest */ 2972 bxe_update_last_max_sge(fp, 2973 le16toh(cqe->sgl[sge_len - 1])); 2974 2975 last_max = RX_SGE(fp->last_max_sge); 2976 last_elem = last_max >> BIT_VEC64_ELEM_SHIFT; 2977 first_elem = RX_SGE(fp->rx_sge_prod) >> BIT_VEC64_ELEM_SHIFT; 2978 2979 /* if ring is not full */ 2980 if (last_elem + 1 != first_elem) { 2981 last_elem++; 2982 } 2983 2984 /* now update the prod */ 2985 for (i = first_elem; i != last_elem; i = RX_SGE_NEXT_MASK_ELEM(i)) { 2986 if (__predict_true(fp->sge_mask[i])) { 2987 break; 2988 } 2989 2990 fp->sge_mask[i] = BIT_VEC64_ELEM_ONE_MASK; 2991 delta += BIT_VEC64_ELEM_SZ; 2992 } 2993 2994 if (delta > 0) { 2995 fp->rx_sge_prod += delta; 2996 /* clear page-end entries */ 2997 bxe_clear_sge_mask_next_elems(fp); 2998 } 2999 3000 BLOGD(sc, DBG_LRO, 3001 "fp[%02d] fp->last_max_sge=%d fp->rx_sge_prod=%d\n", 3002 fp->index, fp->last_max_sge, fp->rx_sge_prod); 3003 } 3004 3005 /* 3006 * The aggregation on the current TPA queue has completed. Pull the individual 3007 * mbuf fragments together into a single mbuf, perform all necessary checksum 3008 * calculations, and send the resuting mbuf to the stack. 3009 */ 3010 static void 3011 bxe_tpa_stop(struct bxe_softc *sc, 3012 struct bxe_fastpath *fp, 3013 struct bxe_sw_tpa_info *tpa_info, 3014 uint16_t queue, 3015 uint16_t pages, 3016 struct eth_end_agg_rx_cqe *cqe, 3017 uint16_t cqe_idx) 3018 { 3019 if_t ifp = sc->ifp; 3020 struct mbuf *m; 3021 int rc = 0; 3022 3023 BLOGD(sc, DBG_LRO, 3024 "fp[%02d].tpa[%02d] pad=%d pkt_len=%d pages=%d vlan=%d\n", 3025 fp->index, queue, tpa_info->placement_offset, 3026 le16toh(cqe->pkt_len), pages, tpa_info->vlan_tag); 3027 3028 m = tpa_info->bd.m; 3029 3030 /* allocate a replacement before modifying existing mbuf */ 3031 rc = bxe_alloc_rx_tpa_mbuf(fp, queue); 3032 if (rc) { 3033 /* drop the frame and log an error */ 3034 fp->eth_q_stats.rx_soft_errors++; 3035 goto bxe_tpa_stop_exit; 3036 } 3037 3038 /* we have a replacement, fixup the current mbuf */ 3039 m_adj(m, tpa_info->placement_offset); 3040 m->m_pkthdr.len = m->m_len = tpa_info->len_on_bd; 3041 3042 /* mark the checksums valid (taken care of by the firmware) */ 3043 fp->eth_q_stats.rx_ofld_frames_csum_ip++; 3044 fp->eth_q_stats.rx_ofld_frames_csum_tcp_udp++; 3045 m->m_pkthdr.csum_data = 0xffff; 3046 m->m_pkthdr.csum_flags |= (CSUM_IP_CHECKED | 3047 CSUM_IP_VALID | 3048 CSUM_DATA_VALID | 3049 CSUM_PSEUDO_HDR); 3050 3051 /* aggregate all of the SGEs into a single mbuf */ 3052 rc = bxe_fill_frag_mbuf(sc, fp, tpa_info, queue, pages, m, cqe, cqe_idx); 3053 if (rc) { 3054 /* drop the packet and log an error */ 3055 fp->eth_q_stats.rx_soft_errors++; 3056 m_freem(m); 3057 } else { 3058 if (tpa_info->parsing_flags & PARSING_FLAGS_INNER_VLAN_EXIST) { 3059 m->m_pkthdr.ether_vtag = tpa_info->vlan_tag; 3060 m->m_flags |= M_VLANTAG; 3061 } 3062 3063 /* assign packet to this interface interface */ 3064 if_setrcvif(m, ifp); 3065 3066 #if __FreeBSD_version >= 800000 3067 /* specify what RSS queue was used for this flow */ 3068 m->m_pkthdr.flowid = fp->index; 3069 BXE_SET_FLOWID(m); 3070 #endif 3071 3072 if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1); 3073 fp->eth_q_stats.rx_tpa_pkts++; 3074 3075 /* pass the frame to the stack */ 3076 if_input(ifp, m); 3077 } 3078 3079 /* we passed an mbuf up the stack or dropped the frame */ 3080 fp->eth_q_stats.mbuf_alloc_tpa--; 3081 3082 bxe_tpa_stop_exit: 3083 3084 fp->rx_tpa_info[queue].state = BXE_TPA_STATE_STOP; 3085 fp->rx_tpa_queue_used &= ~(1 << queue); 3086 } 3087 3088 static uint8_t 3089 bxe_service_rxsgl( 3090 struct bxe_fastpath *fp, 3091 uint16_t len, 3092 uint16_t lenonbd, 3093 struct mbuf *m, 3094 struct eth_fast_path_rx_cqe *cqe_fp) 3095 { 3096 struct mbuf *m_frag; 3097 uint16_t frags, frag_len; 3098 uint16_t sge_idx = 0; 3099 uint16_t j; 3100 uint8_t i, rc = 0; 3101 uint32_t frag_size; 3102 3103 /* adjust the mbuf */ 3104 m->m_len = lenonbd; 3105 3106 frag_size = len - lenonbd; 3107 frags = SGE_PAGE_ALIGN(frag_size) >> SGE_PAGE_SHIFT; 3108 3109 for (i = 0, j = 0; i < frags; i += PAGES_PER_SGE, j++) { 3110 sge_idx = RX_SGE(le16toh(cqe_fp->sgl_or_raw_data.sgl[j])); 3111 3112 m_frag = fp->rx_sge_mbuf_chain[sge_idx].m; 3113 frag_len = min(frag_size, (uint32_t)(SGE_PAGE_SIZE)); 3114 m_frag->m_len = frag_len; 3115 3116 /* allocate a new mbuf for the SGE */ 3117 rc = bxe_alloc_rx_sge_mbuf(fp, sge_idx); 3118 if (rc) { 3119 /* Leave all remaining SGEs in the ring! */ 3120 return (rc); 3121 } 3122 fp->eth_q_stats.mbuf_alloc_sge--; 3123 3124 /* concatenate the fragment to the head mbuf */ 3125 m_cat(m, m_frag); 3126 3127 frag_size -= frag_len; 3128 } 3129 3130 bxe_update_sge_prod(fp->sc, fp, frags, &cqe_fp->sgl_or_raw_data); 3131 3132 return rc; 3133 } 3134 3135 static uint8_t 3136 bxe_rxeof(struct bxe_softc *sc, 3137 struct bxe_fastpath *fp) 3138 { 3139 if_t ifp = sc->ifp; 3140 uint16_t bd_cons, bd_prod, bd_prod_fw, comp_ring_cons; 3141 uint16_t hw_cq_cons, sw_cq_cons, sw_cq_prod; 3142 int rx_pkts = 0; 3143 int rc = 0; 3144 3145 BXE_FP_RX_LOCK(fp); 3146 3147 /* CQ "next element" is of the size of the regular element */ 3148 hw_cq_cons = le16toh(*fp->rx_cq_cons_sb); 3149 if ((hw_cq_cons & RCQ_USABLE_PER_PAGE) == RCQ_USABLE_PER_PAGE) { 3150 hw_cq_cons++; 3151 } 3152 3153 bd_cons = fp->rx_bd_cons; 3154 bd_prod = fp->rx_bd_prod; 3155 bd_prod_fw = bd_prod; 3156 sw_cq_cons = fp->rx_cq_cons; 3157 sw_cq_prod = fp->rx_cq_prod; 3158 3159 /* 3160 * Memory barrier necessary as speculative reads of the rx 3161 * buffer can be ahead of the index in the status block 3162 */ 3163 rmb(); 3164 3165 BLOGD(sc, DBG_RX, 3166 "fp[%02d] Rx START hw_cq_cons=%u sw_cq_cons=%u\n", 3167 fp->index, hw_cq_cons, sw_cq_cons); 3168 3169 while (sw_cq_cons != hw_cq_cons) { 3170 struct bxe_sw_rx_bd *rx_buf = NULL; 3171 union eth_rx_cqe *cqe; 3172 struct eth_fast_path_rx_cqe *cqe_fp; 3173 uint8_t cqe_fp_flags; 3174 enum eth_rx_cqe_type cqe_fp_type; 3175 uint16_t len, lenonbd, pad; 3176 struct mbuf *m = NULL; 3177 3178 comp_ring_cons = RCQ(sw_cq_cons); 3179 bd_prod = RX_BD(bd_prod); 3180 bd_cons = RX_BD(bd_cons); 3181 3182 cqe = &fp->rcq_chain[comp_ring_cons]; 3183 cqe_fp = &cqe->fast_path_cqe; 3184 cqe_fp_flags = cqe_fp->type_error_flags; 3185 cqe_fp_type = cqe_fp_flags & ETH_FAST_PATH_RX_CQE_TYPE; 3186 3187 BLOGD(sc, DBG_RX, 3188 "fp[%02d] Rx hw_cq_cons=%d hw_sw_cons=%d " 3189 "BD prod=%d cons=%d CQE type=0x%x err=0x%x " 3190 "status=0x%x rss_hash=0x%x vlan=0x%x len=%u lenonbd=%u\n", 3191 fp->index, 3192 hw_cq_cons, 3193 sw_cq_cons, 3194 bd_prod, 3195 bd_cons, 3196 CQE_TYPE(cqe_fp_flags), 3197 cqe_fp_flags, 3198 cqe_fp->status_flags, 3199 le32toh(cqe_fp->rss_hash_result), 3200 le16toh(cqe_fp->vlan_tag), 3201 le16toh(cqe_fp->pkt_len_or_gro_seg_len), 3202 le16toh(cqe_fp->len_on_bd)); 3203 3204 /* is this a slowpath msg? */ 3205 if (__predict_false(CQE_TYPE_SLOW(cqe_fp_type))) { 3206 bxe_sp_event(sc, fp, cqe); 3207 goto next_cqe; 3208 } 3209 3210 rx_buf = &fp->rx_mbuf_chain[bd_cons]; 3211 3212 if (!CQE_TYPE_FAST(cqe_fp_type)) { 3213 struct bxe_sw_tpa_info *tpa_info; 3214 uint16_t frag_size, pages; 3215 uint8_t queue; 3216 3217 if (CQE_TYPE_START(cqe_fp_type)) { 3218 bxe_tpa_start(sc, fp, cqe_fp->queue_index, 3219 bd_cons, bd_prod, cqe_fp); 3220 m = NULL; /* packet not ready yet */ 3221 goto next_rx; 3222 } 3223 3224 KASSERT(CQE_TYPE_STOP(cqe_fp_type), 3225 ("CQE type is not STOP! (0x%x)\n", cqe_fp_type)); 3226 3227 queue = cqe->end_agg_cqe.queue_index; 3228 tpa_info = &fp->rx_tpa_info[queue]; 3229 3230 BLOGD(sc, DBG_LRO, "fp[%02d].tpa[%02d] TPA STOP\n", 3231 fp->index, queue); 3232 3233 frag_size = (le16toh(cqe->end_agg_cqe.pkt_len) - 3234 tpa_info->len_on_bd); 3235 pages = SGE_PAGE_ALIGN(frag_size) >> SGE_PAGE_SHIFT; 3236 3237 bxe_tpa_stop(sc, fp, tpa_info, queue, pages, 3238 &cqe->end_agg_cqe, comp_ring_cons); 3239 3240 bxe_update_sge_prod(sc, fp, pages, &cqe->end_agg_cqe.sgl_or_raw_data); 3241 3242 goto next_cqe; 3243 } 3244 3245 /* non TPA */ 3246 3247 /* is this an error packet? */ 3248 if (__predict_false(cqe_fp_flags & 3249 ETH_FAST_PATH_RX_CQE_PHY_DECODE_ERR_FLG)) { 3250 BLOGE(sc, "flags 0x%x rx packet %u\n", cqe_fp_flags, sw_cq_cons); 3251 fp->eth_q_stats.rx_soft_errors++; 3252 goto next_rx; 3253 } 3254 3255 len = le16toh(cqe_fp->pkt_len_or_gro_seg_len); 3256 lenonbd = le16toh(cqe_fp->len_on_bd); 3257 pad = cqe_fp->placement_offset; 3258 3259 m = rx_buf->m; 3260 3261 if (__predict_false(m == NULL)) { 3262 BLOGE(sc, "No mbuf in rx chain descriptor %d for fp[%02d]\n", 3263 bd_cons, fp->index); 3264 goto next_rx; 3265 } 3266 3267 /* XXX double copy if packet length under a threshold */ 3268 3269 /* 3270 * If all the buffer descriptors are filled with mbufs then fill in 3271 * the current consumer index with a new BD. Else if a maximum Rx 3272 * buffer limit is imposed then fill in the next producer index. 3273 */ 3274 rc = bxe_alloc_rx_bd_mbuf(fp, bd_cons, 3275 (sc->max_rx_bufs != RX_BD_USABLE) ? 3276 bd_prod : bd_cons); 3277 if (rc != 0) { 3278 3279 /* we simply reuse the received mbuf and don't post it to the stack */ 3280 m = NULL; 3281 3282 BLOGE(sc, "mbuf alloc fail for fp[%02d] rx chain (%d)\n", 3283 fp->index, rc); 3284 fp->eth_q_stats.rx_soft_errors++; 3285 3286 if (sc->max_rx_bufs != RX_BD_USABLE) { 3287 /* copy this consumer index to the producer index */ 3288 memcpy(&fp->rx_mbuf_chain[bd_prod], rx_buf, 3289 sizeof(struct bxe_sw_rx_bd)); 3290 memset(rx_buf, 0, sizeof(struct bxe_sw_rx_bd)); 3291 } 3292 3293 goto next_rx; 3294 } 3295 3296 /* current mbuf was detached from the bd */ 3297 fp->eth_q_stats.mbuf_alloc_rx--; 3298 3299 /* we allocated a replacement mbuf, fixup the current one */ 3300 m_adj(m, pad); 3301 m->m_pkthdr.len = m->m_len = len; 3302 3303 if ((len > 60) && (len > lenonbd)) { 3304 fp->eth_q_stats.rx_bxe_service_rxsgl++; 3305 rc = bxe_service_rxsgl(fp, len, lenonbd, m, cqe_fp); 3306 if (rc) 3307 break; 3308 fp->eth_q_stats.rx_jumbo_sge_pkts++; 3309 } else if (lenonbd < len) { 3310 fp->eth_q_stats.rx_erroneous_jumbo_sge_pkts++; 3311 } 3312 3313 /* assign packet to this interface interface */ 3314 if_setrcvif(m, ifp); 3315 3316 /* assume no hardware checksum has complated */ 3317 m->m_pkthdr.csum_flags = 0; 3318 3319 /* validate checksum if offload enabled */ 3320 if (if_getcapenable(ifp) & IFCAP_RXCSUM) { 3321 /* check for a valid IP frame */ 3322 if (!(cqe->fast_path_cqe.status_flags & 3323 ETH_FAST_PATH_RX_CQE_IP_XSUM_NO_VALIDATION_FLG)) { 3324 m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED; 3325 if (__predict_false(cqe_fp_flags & 3326 ETH_FAST_PATH_RX_CQE_IP_BAD_XSUM_FLG)) { 3327 fp->eth_q_stats.rx_hw_csum_errors++; 3328 } else { 3329 fp->eth_q_stats.rx_ofld_frames_csum_ip++; 3330 m->m_pkthdr.csum_flags |= CSUM_IP_VALID; 3331 } 3332 } 3333 3334 /* check for a valid TCP/UDP frame */ 3335 if (!(cqe->fast_path_cqe.status_flags & 3336 ETH_FAST_PATH_RX_CQE_L4_XSUM_NO_VALIDATION_FLG)) { 3337 if (__predict_false(cqe_fp_flags & 3338 ETH_FAST_PATH_RX_CQE_L4_BAD_XSUM_FLG)) { 3339 fp->eth_q_stats.rx_hw_csum_errors++; 3340 } else { 3341 fp->eth_q_stats.rx_ofld_frames_csum_tcp_udp++; 3342 m->m_pkthdr.csum_data = 0xFFFF; 3343 m->m_pkthdr.csum_flags |= (CSUM_DATA_VALID | 3344 CSUM_PSEUDO_HDR); 3345 } 3346 } 3347 } 3348 3349 /* if there is a VLAN tag then flag that info */ 3350 if (cqe->fast_path_cqe.pars_flags.flags & PARSING_FLAGS_INNER_VLAN_EXIST) { 3351 m->m_pkthdr.ether_vtag = cqe->fast_path_cqe.vlan_tag; 3352 m->m_flags |= M_VLANTAG; 3353 } 3354 3355 #if __FreeBSD_version >= 800000 3356 /* specify what RSS queue was used for this flow */ 3357 m->m_pkthdr.flowid = fp->index; 3358 BXE_SET_FLOWID(m); 3359 #endif 3360 3361 next_rx: 3362 3363 bd_cons = RX_BD_NEXT(bd_cons); 3364 bd_prod = RX_BD_NEXT(bd_prod); 3365 bd_prod_fw = RX_BD_NEXT(bd_prod_fw); 3366 3367 /* pass the frame to the stack */ 3368 if (__predict_true(m != NULL)) { 3369 if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1); 3370 rx_pkts++; 3371 if_input(ifp, m); 3372 } 3373 3374 next_cqe: 3375 3376 sw_cq_prod = RCQ_NEXT(sw_cq_prod); 3377 sw_cq_cons = RCQ_NEXT(sw_cq_cons); 3378 3379 /* limit spinning on the queue */ 3380 if (rc != 0) 3381 break; 3382 3383 if (rx_pkts == sc->rx_budget) { 3384 fp->eth_q_stats.rx_budget_reached++; 3385 break; 3386 } 3387 } /* while work to do */ 3388 3389 fp->rx_bd_cons = bd_cons; 3390 fp->rx_bd_prod = bd_prod_fw; 3391 fp->rx_cq_cons = sw_cq_cons; 3392 fp->rx_cq_prod = sw_cq_prod; 3393 3394 /* Update producers */ 3395 bxe_update_rx_prod(sc, fp, bd_prod_fw, sw_cq_prod, fp->rx_sge_prod); 3396 3397 fp->eth_q_stats.rx_pkts += rx_pkts; 3398 fp->eth_q_stats.rx_calls++; 3399 3400 BXE_FP_RX_UNLOCK(fp); 3401 3402 return (sw_cq_cons != hw_cq_cons); 3403 } 3404 3405 static uint16_t 3406 bxe_free_tx_pkt(struct bxe_softc *sc, 3407 struct bxe_fastpath *fp, 3408 uint16_t idx) 3409 { 3410 struct bxe_sw_tx_bd *tx_buf = &fp->tx_mbuf_chain[idx]; 3411 struct eth_tx_start_bd *tx_start_bd; 3412 uint16_t bd_idx = TX_BD(tx_buf->first_bd); 3413 uint16_t new_cons; 3414 int nbd; 3415 3416 /* unmap the mbuf from non-paged memory */ 3417 bus_dmamap_unload(fp->tx_mbuf_tag, tx_buf->m_map); 3418 3419 tx_start_bd = &fp->tx_chain[bd_idx].start_bd; 3420 nbd = le16toh(tx_start_bd->nbd) - 1; 3421 3422 new_cons = (tx_buf->first_bd + nbd); 3423 3424 /* free the mbuf */ 3425 if (__predict_true(tx_buf->m != NULL)) { 3426 m_freem(tx_buf->m); 3427 fp->eth_q_stats.mbuf_alloc_tx--; 3428 } else { 3429 fp->eth_q_stats.tx_chain_lost_mbuf++; 3430 } 3431 3432 tx_buf->m = NULL; 3433 tx_buf->first_bd = 0; 3434 3435 return (new_cons); 3436 } 3437 3438 /* transmit timeout watchdog */ 3439 static int 3440 bxe_watchdog(struct bxe_softc *sc, 3441 struct bxe_fastpath *fp) 3442 { 3443 BXE_FP_TX_LOCK(fp); 3444 3445 if ((fp->watchdog_timer == 0) || (--fp->watchdog_timer)) { 3446 BXE_FP_TX_UNLOCK(fp); 3447 return (0); 3448 } 3449 3450 BLOGE(sc, "TX watchdog timeout on fp[%02d], resetting!\n", fp->index); 3451 if(sc->trigger_grcdump) { 3452 /* taking grcdump */ 3453 bxe_grc_dump(sc); 3454 } 3455 3456 BXE_FP_TX_UNLOCK(fp); 3457 3458 atomic_store_rel_long(&sc->chip_tq_flags, CHIP_TQ_REINIT); 3459 taskqueue_enqueue(sc->chip_tq, &sc->chip_tq_task); 3460 3461 return (-1); 3462 } 3463 3464 /* processes transmit completions */ 3465 static uint8_t 3466 bxe_txeof(struct bxe_softc *sc, 3467 struct bxe_fastpath *fp) 3468 { 3469 if_t ifp = sc->ifp; 3470 uint16_t bd_cons, hw_cons, sw_cons, pkt_cons; 3471 uint16_t tx_bd_avail; 3472 3473 BXE_FP_TX_LOCK_ASSERT(fp); 3474 3475 bd_cons = fp->tx_bd_cons; 3476 hw_cons = le16toh(*fp->tx_cons_sb); 3477 sw_cons = fp->tx_pkt_cons; 3478 3479 while (sw_cons != hw_cons) { 3480 pkt_cons = TX_BD(sw_cons); 3481 3482 BLOGD(sc, DBG_TX, 3483 "TX: fp[%d]: hw_cons=%u sw_cons=%u pkt_cons=%u\n", 3484 fp->index, hw_cons, sw_cons, pkt_cons); 3485 3486 bd_cons = bxe_free_tx_pkt(sc, fp, pkt_cons); 3487 3488 sw_cons++; 3489 } 3490 3491 fp->tx_pkt_cons = sw_cons; 3492 fp->tx_bd_cons = bd_cons; 3493 3494 BLOGD(sc, DBG_TX, 3495 "TX done: fp[%d]: hw_cons=%u sw_cons=%u sw_prod=%u\n", 3496 fp->index, hw_cons, fp->tx_pkt_cons, fp->tx_pkt_prod); 3497 3498 mb(); 3499 3500 tx_bd_avail = bxe_tx_avail(sc, fp); 3501 3502 if (tx_bd_avail < BXE_TX_CLEANUP_THRESHOLD) { 3503 if_setdrvflagbits(ifp, IFF_DRV_OACTIVE, 0); 3504 } else { 3505 if_setdrvflagbits(ifp, 0, IFF_DRV_OACTIVE); 3506 } 3507 3508 if (fp->tx_pkt_prod != fp->tx_pkt_cons) { 3509 /* reset the watchdog timer if there are pending transmits */ 3510 fp->watchdog_timer = BXE_TX_TIMEOUT; 3511 return (TRUE); 3512 } else { 3513 /* clear watchdog when there are no pending transmits */ 3514 fp->watchdog_timer = 0; 3515 return (FALSE); 3516 } 3517 } 3518 3519 static void 3520 bxe_drain_tx_queues(struct bxe_softc *sc) 3521 { 3522 struct bxe_fastpath *fp; 3523 int i, count; 3524 3525 /* wait until all TX fastpath tasks have completed */ 3526 for (i = 0; i < sc->num_queues; i++) { 3527 fp = &sc->fp[i]; 3528 3529 count = 1000; 3530 3531 while (bxe_has_tx_work(fp)) { 3532 3533 BXE_FP_TX_LOCK(fp); 3534 bxe_txeof(sc, fp); 3535 BXE_FP_TX_UNLOCK(fp); 3536 3537 if (count == 0) { 3538 BLOGE(sc, "Timeout waiting for fp[%d] " 3539 "transmits to complete!\n", i); 3540 bxe_panic(sc, ("tx drain failure\n")); 3541 return; 3542 } 3543 3544 count--; 3545 DELAY(1000); 3546 rmb(); 3547 } 3548 } 3549 3550 return; 3551 } 3552 3553 static int 3554 bxe_del_all_macs(struct bxe_softc *sc, 3555 struct ecore_vlan_mac_obj *mac_obj, 3556 int mac_type, 3557 uint8_t wait_for_comp) 3558 { 3559 unsigned long ramrod_flags = 0, vlan_mac_flags = 0; 3560 int rc; 3561 3562 /* wait for completion of requested */ 3563 if (wait_for_comp) { 3564 bxe_set_bit(RAMROD_COMP_WAIT, &ramrod_flags); 3565 } 3566 3567 /* Set the mac type of addresses we want to clear */ 3568 bxe_set_bit(mac_type, &vlan_mac_flags); 3569 3570 rc = mac_obj->delete_all(sc, mac_obj, &vlan_mac_flags, &ramrod_flags); 3571 if (rc < 0) { 3572 BLOGE(sc, "Failed to delete MACs (%d) mac_type %d wait_for_comp 0x%x\n", 3573 rc, mac_type, wait_for_comp); 3574 } 3575 3576 return (rc); 3577 } 3578 3579 static int 3580 bxe_fill_accept_flags(struct bxe_softc *sc, 3581 uint32_t rx_mode, 3582 unsigned long *rx_accept_flags, 3583 unsigned long *tx_accept_flags) 3584 { 3585 /* Clear the flags first */ 3586 *rx_accept_flags = 0; 3587 *tx_accept_flags = 0; 3588 3589 switch (rx_mode) { 3590 case BXE_RX_MODE_NONE: 3591 /* 3592 * 'drop all' supersedes any accept flags that may have been 3593 * passed to the function. 3594 */ 3595 break; 3596 3597 case BXE_RX_MODE_NORMAL: 3598 bxe_set_bit(ECORE_ACCEPT_UNICAST, rx_accept_flags); 3599 bxe_set_bit(ECORE_ACCEPT_MULTICAST, rx_accept_flags); 3600 bxe_set_bit(ECORE_ACCEPT_BROADCAST, rx_accept_flags); 3601 3602 /* internal switching mode */ 3603 bxe_set_bit(ECORE_ACCEPT_UNICAST, tx_accept_flags); 3604 bxe_set_bit(ECORE_ACCEPT_MULTICAST, tx_accept_flags); 3605 bxe_set_bit(ECORE_ACCEPT_BROADCAST, tx_accept_flags); 3606 3607 break; 3608 3609 case BXE_RX_MODE_ALLMULTI: 3610 bxe_set_bit(ECORE_ACCEPT_UNICAST, rx_accept_flags); 3611 bxe_set_bit(ECORE_ACCEPT_ALL_MULTICAST, rx_accept_flags); 3612 bxe_set_bit(ECORE_ACCEPT_BROADCAST, rx_accept_flags); 3613 3614 /* internal switching mode */ 3615 bxe_set_bit(ECORE_ACCEPT_UNICAST, tx_accept_flags); 3616 bxe_set_bit(ECORE_ACCEPT_ALL_MULTICAST, tx_accept_flags); 3617 bxe_set_bit(ECORE_ACCEPT_BROADCAST, tx_accept_flags); 3618 3619 break; 3620 3621 case BXE_RX_MODE_PROMISC: 3622 /* 3623 * According to deffinition of SI mode, iface in promisc mode 3624 * should receive matched and unmatched (in resolution of port) 3625 * unicast packets. 3626 */ 3627 bxe_set_bit(ECORE_ACCEPT_UNMATCHED, rx_accept_flags); 3628 bxe_set_bit(ECORE_ACCEPT_UNICAST, rx_accept_flags); 3629 bxe_set_bit(ECORE_ACCEPT_ALL_MULTICAST, rx_accept_flags); 3630 bxe_set_bit(ECORE_ACCEPT_BROADCAST, rx_accept_flags); 3631 3632 /* internal switching mode */ 3633 bxe_set_bit(ECORE_ACCEPT_ALL_MULTICAST, tx_accept_flags); 3634 bxe_set_bit(ECORE_ACCEPT_BROADCAST, tx_accept_flags); 3635 3636 if (IS_MF_SI(sc)) { 3637 bxe_set_bit(ECORE_ACCEPT_ALL_UNICAST, tx_accept_flags); 3638 } else { 3639 bxe_set_bit(ECORE_ACCEPT_UNICAST, tx_accept_flags); 3640 } 3641 3642 break; 3643 3644 default: 3645 BLOGE(sc, "Unknown rx_mode (0x%x)\n", rx_mode); 3646 return (-1); 3647 } 3648 3649 /* Set ACCEPT_ANY_VLAN as we do not enable filtering by VLAN */ 3650 if (rx_mode != BXE_RX_MODE_NONE) { 3651 bxe_set_bit(ECORE_ACCEPT_ANY_VLAN, rx_accept_flags); 3652 bxe_set_bit(ECORE_ACCEPT_ANY_VLAN, tx_accept_flags); 3653 } 3654 3655 return (0); 3656 } 3657 3658 static int 3659 bxe_set_q_rx_mode(struct bxe_softc *sc, 3660 uint8_t cl_id, 3661 unsigned long rx_mode_flags, 3662 unsigned long rx_accept_flags, 3663 unsigned long tx_accept_flags, 3664 unsigned long ramrod_flags) 3665 { 3666 struct ecore_rx_mode_ramrod_params ramrod_param; 3667 int rc; 3668 3669 memset(&ramrod_param, 0, sizeof(ramrod_param)); 3670 3671 /* Prepare ramrod parameters */ 3672 ramrod_param.cid = 0; 3673 ramrod_param.cl_id = cl_id; 3674 ramrod_param.rx_mode_obj = &sc->rx_mode_obj; 3675 ramrod_param.func_id = SC_FUNC(sc); 3676 3677 ramrod_param.pstate = &sc->sp_state; 3678 ramrod_param.state = ECORE_FILTER_RX_MODE_PENDING; 3679 3680 ramrod_param.rdata = BXE_SP(sc, rx_mode_rdata); 3681 ramrod_param.rdata_mapping = BXE_SP_MAPPING(sc, rx_mode_rdata); 3682 3683 bxe_set_bit(ECORE_FILTER_RX_MODE_PENDING, &sc->sp_state); 3684 3685 ramrod_param.ramrod_flags = ramrod_flags; 3686 ramrod_param.rx_mode_flags = rx_mode_flags; 3687 3688 ramrod_param.rx_accept_flags = rx_accept_flags; 3689 ramrod_param.tx_accept_flags = tx_accept_flags; 3690 3691 rc = ecore_config_rx_mode(sc, &ramrod_param); 3692 if (rc < 0) { 3693 BLOGE(sc, "Set rx_mode %d cli_id 0x%x rx_mode_flags 0x%x " 3694 "rx_accept_flags 0x%x tx_accept_flags 0x%x " 3695 "ramrod_flags 0x%x rc %d failed\n", sc->rx_mode, cl_id, 3696 (uint32_t)rx_mode_flags, (uint32_t)rx_accept_flags, 3697 (uint32_t)tx_accept_flags, (uint32_t)ramrod_flags, rc); 3698 return (rc); 3699 } 3700 3701 return (0); 3702 } 3703 3704 static int 3705 bxe_set_storm_rx_mode(struct bxe_softc *sc) 3706 { 3707 unsigned long rx_mode_flags = 0, ramrod_flags = 0; 3708 unsigned long rx_accept_flags = 0, tx_accept_flags = 0; 3709 int rc; 3710 3711 rc = bxe_fill_accept_flags(sc, sc->rx_mode, &rx_accept_flags, 3712 &tx_accept_flags); 3713 if (rc) { 3714 return (rc); 3715 } 3716 3717 bxe_set_bit(RAMROD_RX, &ramrod_flags); 3718 bxe_set_bit(RAMROD_TX, &ramrod_flags); 3719 3720 /* XXX ensure all fastpath have same cl_id and/or move it to bxe_softc */ 3721 return (bxe_set_q_rx_mode(sc, sc->fp[0].cl_id, rx_mode_flags, 3722 rx_accept_flags, tx_accept_flags, 3723 ramrod_flags)); 3724 } 3725 3726 /* returns the "mcp load_code" according to global load_count array */ 3727 static int 3728 bxe_nic_load_no_mcp(struct bxe_softc *sc) 3729 { 3730 int path = SC_PATH(sc); 3731 int port = SC_PORT(sc); 3732 3733 BLOGI(sc, "NO MCP - load counts[%d] %d, %d, %d\n", 3734 path, load_count[path][0], load_count[path][1], 3735 load_count[path][2]); 3736 load_count[path][0]++; 3737 load_count[path][1 + port]++; 3738 BLOGI(sc, "NO MCP - new load counts[%d] %d, %d, %d\n", 3739 path, load_count[path][0], load_count[path][1], 3740 load_count[path][2]); 3741 if (load_count[path][0] == 1) { 3742 return (FW_MSG_CODE_DRV_LOAD_COMMON); 3743 } else if (load_count[path][1 + port] == 1) { 3744 return (FW_MSG_CODE_DRV_LOAD_PORT); 3745 } else { 3746 return (FW_MSG_CODE_DRV_LOAD_FUNCTION); 3747 } 3748 } 3749 3750 /* returns the "mcp load_code" according to global load_count array */ 3751 static int 3752 bxe_nic_unload_no_mcp(struct bxe_softc *sc) 3753 { 3754 int port = SC_PORT(sc); 3755 int path = SC_PATH(sc); 3756 3757 BLOGI(sc, "NO MCP - load counts[%d] %d, %d, %d\n", 3758 path, load_count[path][0], load_count[path][1], 3759 load_count[path][2]); 3760 load_count[path][0]--; 3761 load_count[path][1 + port]--; 3762 BLOGI(sc, "NO MCP - new load counts[%d] %d, %d, %d\n", 3763 path, load_count[path][0], load_count[path][1], 3764 load_count[path][2]); 3765 if (load_count[path][0] == 0) { 3766 return (FW_MSG_CODE_DRV_UNLOAD_COMMON); 3767 } else if (load_count[path][1 + port] == 0) { 3768 return (FW_MSG_CODE_DRV_UNLOAD_PORT); 3769 } else { 3770 return (FW_MSG_CODE_DRV_UNLOAD_FUNCTION); 3771 } 3772 } 3773 3774 /* request unload mode from the MCP: COMMON, PORT or FUNCTION */ 3775 static uint32_t 3776 bxe_send_unload_req(struct bxe_softc *sc, 3777 int unload_mode) 3778 { 3779 uint32_t reset_code = 0; 3780 3781 /* Select the UNLOAD request mode */ 3782 if (unload_mode == UNLOAD_NORMAL) { 3783 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS; 3784 } else { 3785 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS; 3786 } 3787 3788 /* Send the request to the MCP */ 3789 if (!BXE_NOMCP(sc)) { 3790 reset_code = bxe_fw_command(sc, reset_code, 0); 3791 } else { 3792 reset_code = bxe_nic_unload_no_mcp(sc); 3793 } 3794 3795 return (reset_code); 3796 } 3797 3798 /* send UNLOAD_DONE command to the MCP */ 3799 static void 3800 bxe_send_unload_done(struct bxe_softc *sc, 3801 uint8_t keep_link) 3802 { 3803 uint32_t reset_param = 3804 keep_link ? DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET : 0; 3805 3806 /* Report UNLOAD_DONE to MCP */ 3807 if (!BXE_NOMCP(sc)) { 3808 bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_DONE, reset_param); 3809 } 3810 } 3811 3812 static int 3813 bxe_func_wait_started(struct bxe_softc *sc) 3814 { 3815 int tout = 50; 3816 3817 if (!sc->port.pmf) { 3818 return (0); 3819 } 3820 3821 /* 3822 * (assumption: No Attention from MCP at this stage) 3823 * PMF probably in the middle of TX disable/enable transaction 3824 * 1. Sync IRS for default SB 3825 * 2. Sync SP queue - this guarantees us that attention handling started 3826 * 3. Wait, that TX disable/enable transaction completes 3827 * 3828 * 1+2 guarantee that if DCBX attention was scheduled it already changed 3829 * pending bit of transaction from STARTED-->TX_STOPPED, if we already 3830 * received completion for the transaction the state is TX_STOPPED. 3831 * State will return to STARTED after completion of TX_STOPPED-->STARTED 3832 * transaction. 3833 */ 3834 3835 /* XXX make sure default SB ISR is done */ 3836 /* need a way to synchronize an irq (intr_mtx?) */ 3837 3838 /* XXX flush any work queues */ 3839 3840 while (ecore_func_get_state(sc, &sc->func_obj) != 3841 ECORE_F_STATE_STARTED && tout--) { 3842 DELAY(20000); 3843 } 3844 3845 if (ecore_func_get_state(sc, &sc->func_obj) != ECORE_F_STATE_STARTED) { 3846 /* 3847 * Failed to complete the transaction in a "good way" 3848 * Force both transactions with CLR bit. 3849 */ 3850 struct ecore_func_state_params func_params = { NULL }; 3851 3852 BLOGE(sc, "Unexpected function state! " 3853 "Forcing STARTED-->TX_STOPPED-->STARTED\n"); 3854 3855 func_params.f_obj = &sc->func_obj; 3856 bxe_set_bit(RAMROD_DRV_CLR_ONLY, &func_params.ramrod_flags); 3857 3858 /* STARTED-->TX_STOPPED */ 3859 func_params.cmd = ECORE_F_CMD_TX_STOP; 3860 ecore_func_state_change(sc, &func_params); 3861 3862 /* TX_STOPPED-->STARTED */ 3863 func_params.cmd = ECORE_F_CMD_TX_START; 3864 return (ecore_func_state_change(sc, &func_params)); 3865 } 3866 3867 return (0); 3868 } 3869 3870 static int 3871 bxe_stop_queue(struct bxe_softc *sc, 3872 int index) 3873 { 3874 struct bxe_fastpath *fp = &sc->fp[index]; 3875 struct ecore_queue_state_params q_params = { NULL }; 3876 int rc; 3877 3878 BLOGD(sc, DBG_LOAD, "stopping queue %d cid %d\n", index, fp->index); 3879 3880 q_params.q_obj = &sc->sp_objs[fp->index].q_obj; 3881 /* We want to wait for completion in this context */ 3882 bxe_set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags); 3883 3884 /* Stop the primary connection: */ 3885 3886 /* ...halt the connection */ 3887 q_params.cmd = ECORE_Q_CMD_HALT; 3888 rc = ecore_queue_state_change(sc, &q_params); 3889 if (rc) { 3890 return (rc); 3891 } 3892 3893 /* ...terminate the connection */ 3894 q_params.cmd = ECORE_Q_CMD_TERMINATE; 3895 memset(&q_params.params.terminate, 0, sizeof(q_params.params.terminate)); 3896 q_params.params.terminate.cid_index = FIRST_TX_COS_INDEX; 3897 rc = ecore_queue_state_change(sc, &q_params); 3898 if (rc) { 3899 return (rc); 3900 } 3901 3902 /* ...delete cfc entry */ 3903 q_params.cmd = ECORE_Q_CMD_CFC_DEL; 3904 memset(&q_params.params.cfc_del, 0, sizeof(q_params.params.cfc_del)); 3905 q_params.params.cfc_del.cid_index = FIRST_TX_COS_INDEX; 3906 return (ecore_queue_state_change(sc, &q_params)); 3907 } 3908 3909 /* wait for the outstanding SP commands */ 3910 static inline uint8_t 3911 bxe_wait_sp_comp(struct bxe_softc *sc, 3912 unsigned long mask) 3913 { 3914 unsigned long tmp; 3915 int tout = 5000; /* wait for 5 secs tops */ 3916 3917 while (tout--) { 3918 mb(); 3919 if (!(atomic_load_acq_long(&sc->sp_state) & mask)) { 3920 return (TRUE); 3921 } 3922 3923 DELAY(1000); 3924 } 3925 3926 mb(); 3927 3928 tmp = atomic_load_acq_long(&sc->sp_state); 3929 if (tmp & mask) { 3930 BLOGE(sc, "Filtering completion timed out: " 3931 "sp_state 0x%lx, mask 0x%lx\n", 3932 tmp, mask); 3933 return (FALSE); 3934 } 3935 3936 return (FALSE); 3937 } 3938 3939 static int 3940 bxe_func_stop(struct bxe_softc *sc) 3941 { 3942 struct ecore_func_state_params func_params = { NULL }; 3943 int rc; 3944 3945 /* prepare parameters for function state transitions */ 3946 bxe_set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags); 3947 func_params.f_obj = &sc->func_obj; 3948 func_params.cmd = ECORE_F_CMD_STOP; 3949 3950 /* 3951 * Try to stop the function the 'good way'. If it fails (in case 3952 * of a parity error during bxe_chip_cleanup()) and we are 3953 * not in a debug mode, perform a state transaction in order to 3954 * enable further HW_RESET transaction. 3955 */ 3956 rc = ecore_func_state_change(sc, &func_params); 3957 if (rc) { 3958 BLOGE(sc, "FUNC_STOP ramrod failed. " 3959 "Running a dry transaction (%d)\n", rc); 3960 bxe_set_bit(RAMROD_DRV_CLR_ONLY, &func_params.ramrod_flags); 3961 return (ecore_func_state_change(sc, &func_params)); 3962 } 3963 3964 return (0); 3965 } 3966 3967 static int 3968 bxe_reset_hw(struct bxe_softc *sc, 3969 uint32_t load_code) 3970 { 3971 struct ecore_func_state_params func_params = { NULL }; 3972 3973 /* Prepare parameters for function state transitions */ 3974 bxe_set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags); 3975 3976 func_params.f_obj = &sc->func_obj; 3977 func_params.cmd = ECORE_F_CMD_HW_RESET; 3978 3979 func_params.params.hw_init.load_phase = load_code; 3980 3981 return (ecore_func_state_change(sc, &func_params)); 3982 } 3983 3984 static void 3985 bxe_int_disable_sync(struct bxe_softc *sc, 3986 int disable_hw) 3987 { 3988 if (disable_hw) { 3989 /* prevent the HW from sending interrupts */ 3990 bxe_int_disable(sc); 3991 } 3992 3993 /* XXX need a way to synchronize ALL irqs (intr_mtx?) */ 3994 /* make sure all ISRs are done */ 3995 3996 /* XXX make sure sp_task is not running */ 3997 /* cancel and flush work queues */ 3998 } 3999 4000 static void 4001 bxe_chip_cleanup(struct bxe_softc *sc, 4002 uint32_t unload_mode, 4003 uint8_t keep_link) 4004 { 4005 int port = SC_PORT(sc); 4006 struct ecore_mcast_ramrod_params rparam = { NULL }; 4007 uint32_t reset_code; 4008 int i, rc = 0; 4009 4010 bxe_drain_tx_queues(sc); 4011 4012 /* give HW time to discard old tx messages */ 4013 DELAY(1000); 4014 4015 /* Clean all ETH MACs */ 4016 rc = bxe_del_all_macs(sc, &sc->sp_objs[0].mac_obj, ECORE_ETH_MAC, FALSE); 4017 if (rc < 0) { 4018 BLOGE(sc, "Failed to delete all ETH MACs (%d)\n", rc); 4019 } 4020 4021 /* Clean up UC list */ 4022 rc = bxe_del_all_macs(sc, &sc->sp_objs[0].mac_obj, ECORE_UC_LIST_MAC, TRUE); 4023 if (rc < 0) { 4024 BLOGE(sc, "Failed to delete UC MACs list (%d)\n", rc); 4025 } 4026 4027 /* Disable LLH */ 4028 if (!CHIP_IS_E1(sc)) { 4029 REG_WR(sc, NIG_REG_LLH0_FUNC_EN + port*8, 0); 4030 } 4031 4032 /* Set "drop all" to stop Rx */ 4033 4034 /* 4035 * We need to take the BXE_MCAST_LOCK() here in order to prevent 4036 * a race between the completion code and this code. 4037 */ 4038 BXE_MCAST_LOCK(sc); 4039 4040 if (bxe_test_bit(ECORE_FILTER_RX_MODE_PENDING, &sc->sp_state)) { 4041 bxe_set_bit(ECORE_FILTER_RX_MODE_SCHED, &sc->sp_state); 4042 } else { 4043 bxe_set_storm_rx_mode(sc); 4044 } 4045 4046 /* Clean up multicast configuration */ 4047 rparam.mcast_obj = &sc->mcast_obj; 4048 rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_DEL); 4049 if (rc < 0) { 4050 BLOGE(sc, "Failed to send DEL MCAST command (%d)\n", rc); 4051 } 4052 4053 BXE_MCAST_UNLOCK(sc); 4054 4055 // XXX bxe_iov_chip_cleanup(sc); 4056 4057 /* 4058 * Send the UNLOAD_REQUEST to the MCP. This will return if 4059 * this function should perform FUNCTION, PORT, or COMMON HW 4060 * reset. 4061 */ 4062 reset_code = bxe_send_unload_req(sc, unload_mode); 4063 4064 /* 4065 * (assumption: No Attention from MCP at this stage) 4066 * PMF probably in the middle of TX disable/enable transaction 4067 */ 4068 rc = bxe_func_wait_started(sc); 4069 if (rc) { 4070 BLOGE(sc, "bxe_func_wait_started failed (%d)\n", rc); 4071 } 4072 4073 /* 4074 * Close multi and leading connections 4075 * Completions for ramrods are collected in a synchronous way 4076 */ 4077 for (i = 0; i < sc->num_queues; i++) { 4078 if (bxe_stop_queue(sc, i)) { 4079 goto unload_error; 4080 } 4081 } 4082 4083 /* 4084 * If SP settings didn't get completed so far - something 4085 * very wrong has happen. 4086 */ 4087 if (!bxe_wait_sp_comp(sc, ~0x0UL)) { 4088 BLOGE(sc, "Common slow path ramrods got stuck!(%d)\n", rc); 4089 } 4090 4091 unload_error: 4092 4093 rc = bxe_func_stop(sc); 4094 if (rc) { 4095 BLOGE(sc, "Function stop failed!(%d)\n", rc); 4096 } 4097 4098 /* disable HW interrupts */ 4099 bxe_int_disable_sync(sc, TRUE); 4100 4101 /* detach interrupts */ 4102 bxe_interrupt_detach(sc); 4103 4104 /* Reset the chip */ 4105 rc = bxe_reset_hw(sc, reset_code); 4106 if (rc) { 4107 BLOGE(sc, "Hardware reset failed(%d)\n", rc); 4108 } 4109 4110 /* Report UNLOAD_DONE to MCP */ 4111 bxe_send_unload_done(sc, keep_link); 4112 } 4113 4114 static void 4115 bxe_disable_close_the_gate(struct bxe_softc *sc) 4116 { 4117 uint32_t val; 4118 int port = SC_PORT(sc); 4119 4120 BLOGD(sc, DBG_LOAD, 4121 "Disabling 'close the gates'\n"); 4122 4123 if (CHIP_IS_E1(sc)) { 4124 uint32_t addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 : 4125 MISC_REG_AEU_MASK_ATTN_FUNC_0; 4126 val = REG_RD(sc, addr); 4127 val &= ~(0x300); 4128 REG_WR(sc, addr, val); 4129 } else { 4130 val = REG_RD(sc, MISC_REG_AEU_GENERAL_MASK); 4131 val &= ~(MISC_AEU_GENERAL_MASK_REG_AEU_PXP_CLOSE_MASK | 4132 MISC_AEU_GENERAL_MASK_REG_AEU_NIG_CLOSE_MASK); 4133 REG_WR(sc, MISC_REG_AEU_GENERAL_MASK, val); 4134 } 4135 } 4136 4137 /* 4138 * Cleans the object that have internal lists without sending 4139 * ramrods. Should be run when interrutps are disabled. 4140 */ 4141 static void 4142 bxe_squeeze_objects(struct bxe_softc *sc) 4143 { 4144 unsigned long ramrod_flags = 0, vlan_mac_flags = 0; 4145 struct ecore_mcast_ramrod_params rparam = { NULL }; 4146 struct ecore_vlan_mac_obj *mac_obj = &sc->sp_objs->mac_obj; 4147 int rc; 4148 4149 /* Cleanup MACs' object first... */ 4150 4151 /* Wait for completion of requested */ 4152 bxe_set_bit(RAMROD_COMP_WAIT, &ramrod_flags); 4153 /* Perform a dry cleanup */ 4154 bxe_set_bit(RAMROD_DRV_CLR_ONLY, &ramrod_flags); 4155 4156 /* Clean ETH primary MAC */ 4157 bxe_set_bit(ECORE_ETH_MAC, &vlan_mac_flags); 4158 rc = mac_obj->delete_all(sc, &sc->sp_objs->mac_obj, &vlan_mac_flags, 4159 &ramrod_flags); 4160 if (rc != 0) { 4161 BLOGE(sc, "Failed to clean ETH MACs (%d)\n", rc); 4162 } 4163 4164 /* Cleanup UC list */ 4165 vlan_mac_flags = 0; 4166 bxe_set_bit(ECORE_UC_LIST_MAC, &vlan_mac_flags); 4167 rc = mac_obj->delete_all(sc, mac_obj, &vlan_mac_flags, 4168 &ramrod_flags); 4169 if (rc != 0) { 4170 BLOGE(sc, "Failed to clean UC list MACs (%d)\n", rc); 4171 } 4172 4173 /* Now clean mcast object... */ 4174 4175 rparam.mcast_obj = &sc->mcast_obj; 4176 bxe_set_bit(RAMROD_DRV_CLR_ONLY, &rparam.ramrod_flags); 4177 4178 /* Add a DEL command... */ 4179 rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_DEL); 4180 if (rc < 0) { 4181 BLOGE(sc, "Failed to send DEL MCAST command (%d)\n", rc); 4182 } 4183 4184 /* now wait until all pending commands are cleared */ 4185 4186 rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_CONT); 4187 while (rc != 0) { 4188 if (rc < 0) { 4189 BLOGE(sc, "Failed to clean MCAST object (%d)\n", rc); 4190 return; 4191 } 4192 4193 rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_CONT); 4194 } 4195 } 4196 4197 /* stop the controller */ 4198 static __noinline int 4199 bxe_nic_unload(struct bxe_softc *sc, 4200 uint32_t unload_mode, 4201 uint8_t keep_link) 4202 { 4203 uint8_t global = FALSE; 4204 uint32_t val; 4205 int i; 4206 4207 BXE_CORE_LOCK_ASSERT(sc); 4208 4209 if_setdrvflagbits(sc->ifp, 0, IFF_DRV_RUNNING); 4210 4211 for (i = 0; i < sc->num_queues; i++) { 4212 struct bxe_fastpath *fp; 4213 4214 fp = &sc->fp[i]; 4215 BXE_FP_TX_LOCK(fp); 4216 BXE_FP_TX_UNLOCK(fp); 4217 } 4218 4219 BLOGD(sc, DBG_LOAD, "Starting NIC unload...\n"); 4220 4221 /* mark driver as unloaded in shmem2 */ 4222 if (IS_PF(sc) && SHMEM2_HAS(sc, drv_capabilities_flag)) { 4223 val = SHMEM2_RD(sc, drv_capabilities_flag[SC_FW_MB_IDX(sc)]); 4224 SHMEM2_WR(sc, drv_capabilities_flag[SC_FW_MB_IDX(sc)], 4225 val & ~DRV_FLAGS_CAPABILITIES_LOADED_L2); 4226 } 4227 4228 if (IS_PF(sc) && sc->recovery_state != BXE_RECOVERY_DONE && 4229 (sc->state == BXE_STATE_CLOSED || sc->state == BXE_STATE_ERROR)) { 4230 /* 4231 * We can get here if the driver has been unloaded 4232 * during parity error recovery and is either waiting for a 4233 * leader to complete or for other functions to unload and 4234 * then ifconfig down has been issued. In this case we want to 4235 * unload and let other functions to complete a recovery 4236 * process. 4237 */ 4238 sc->recovery_state = BXE_RECOVERY_DONE; 4239 sc->is_leader = 0; 4240 bxe_release_leader_lock(sc); 4241 mb(); 4242 4243 BLOGD(sc, DBG_LOAD, "Releasing a leadership...\n"); 4244 BLOGE(sc, "Can't unload in closed or error state recover_state 0x%x" 4245 " state = 0x%x\n", sc->recovery_state, sc->state); 4246 return (-1); 4247 } 4248 4249 /* 4250 * Nothing to do during unload if previous bxe_nic_load() 4251 * did not completed succesfully - all resourses are released. 4252 */ 4253 if ((sc->state == BXE_STATE_CLOSED) || 4254 (sc->state == BXE_STATE_ERROR)) { 4255 return (0); 4256 } 4257 4258 sc->state = BXE_STATE_CLOSING_WAITING_HALT; 4259 mb(); 4260 4261 /* stop tx */ 4262 bxe_tx_disable(sc); 4263 4264 sc->rx_mode = BXE_RX_MODE_NONE; 4265 /* XXX set rx mode ??? */ 4266 4267 if (IS_PF(sc) && !sc->grcdump_done) { 4268 /* set ALWAYS_ALIVE bit in shmem */ 4269 sc->fw_drv_pulse_wr_seq |= DRV_PULSE_ALWAYS_ALIVE; 4270 4271 bxe_drv_pulse(sc); 4272 4273 bxe_stats_handle(sc, STATS_EVENT_STOP); 4274 bxe_save_statistics(sc); 4275 } 4276 4277 /* wait till consumers catch up with producers in all queues */ 4278 bxe_drain_tx_queues(sc); 4279 4280 /* if VF indicate to PF this function is going down (PF will delete sp 4281 * elements and clear initializations 4282 */ 4283 if (IS_VF(sc)) { 4284 ; /* bxe_vfpf_close_vf(sc); */ 4285 } else if (unload_mode != UNLOAD_RECOVERY) { 4286 /* if this is a normal/close unload need to clean up chip */ 4287 if (!sc->grcdump_done) 4288 bxe_chip_cleanup(sc, unload_mode, keep_link); 4289 } else { 4290 /* Send the UNLOAD_REQUEST to the MCP */ 4291 bxe_send_unload_req(sc, unload_mode); 4292 4293 /* 4294 * Prevent transactions to host from the functions on the 4295 * engine that doesn't reset global blocks in case of global 4296 * attention once gloabl blocks are reset and gates are opened 4297 * (the engine which leader will perform the recovery 4298 * last). 4299 */ 4300 if (!CHIP_IS_E1x(sc)) { 4301 bxe_pf_disable(sc); 4302 } 4303 4304 /* disable HW interrupts */ 4305 bxe_int_disable_sync(sc, TRUE); 4306 4307 /* detach interrupts */ 4308 bxe_interrupt_detach(sc); 4309 4310 /* Report UNLOAD_DONE to MCP */ 4311 bxe_send_unload_done(sc, FALSE); 4312 } 4313 4314 /* 4315 * At this stage no more interrupts will arrive so we may safely clean 4316 * the queue'able objects here in case they failed to get cleaned so far. 4317 */ 4318 if (IS_PF(sc)) { 4319 bxe_squeeze_objects(sc); 4320 } 4321 4322 /* There should be no more pending SP commands at this stage */ 4323 sc->sp_state = 0; 4324 4325 sc->port.pmf = 0; 4326 4327 bxe_free_fp_buffers(sc); 4328 4329 if (IS_PF(sc)) { 4330 bxe_free_mem(sc); 4331 } 4332 4333 bxe_free_fw_stats_mem(sc); 4334 4335 sc->state = BXE_STATE_CLOSED; 4336 4337 /* 4338 * Check if there are pending parity attentions. If there are - set 4339 * RECOVERY_IN_PROGRESS. 4340 */ 4341 if (IS_PF(sc) && bxe_chk_parity_attn(sc, &global, FALSE)) { 4342 bxe_set_reset_in_progress(sc); 4343 4344 /* Set RESET_IS_GLOBAL if needed */ 4345 if (global) { 4346 bxe_set_reset_global(sc); 4347 } 4348 } 4349 4350 /* 4351 * The last driver must disable a "close the gate" if there is no 4352 * parity attention or "process kill" pending. 4353 */ 4354 if (IS_PF(sc) && !bxe_clear_pf_load(sc) && 4355 bxe_reset_is_done(sc, SC_PATH(sc))) { 4356 bxe_disable_close_the_gate(sc); 4357 } 4358 4359 BLOGD(sc, DBG_LOAD, "Ended NIC unload\n"); 4360 4361 return (0); 4362 } 4363 4364 /* 4365 * Called by the OS to set various media options (i.e. link, speed, etc.) when 4366 * the user runs "ifconfig bxe media ..." or "ifconfig bxe mediaopt ...". 4367 */ 4368 static int 4369 bxe_ifmedia_update(struct ifnet *ifp) 4370 { 4371 struct bxe_softc *sc = (struct bxe_softc *)if_getsoftc(ifp); 4372 struct ifmedia *ifm; 4373 4374 ifm = &sc->ifmedia; 4375 4376 /* We only support Ethernet media type. */ 4377 if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER) { 4378 return (EINVAL); 4379 } 4380 4381 switch (IFM_SUBTYPE(ifm->ifm_media)) { 4382 case IFM_AUTO: 4383 break; 4384 case IFM_10G_CX4: 4385 case IFM_10G_SR: 4386 case IFM_10G_T: 4387 case IFM_10G_TWINAX: 4388 default: 4389 /* We don't support changing the media type. */ 4390 BLOGD(sc, DBG_LOAD, "Invalid media type (%d)\n", 4391 IFM_SUBTYPE(ifm->ifm_media)); 4392 return (EINVAL); 4393 } 4394 4395 return (0); 4396 } 4397 4398 /* 4399 * Called by the OS to get the current media status (i.e. link, speed, etc.). 4400 */ 4401 static void 4402 bxe_ifmedia_status(struct ifnet *ifp, struct ifmediareq *ifmr) 4403 { 4404 struct bxe_softc *sc = if_getsoftc(ifp); 4405 4406 /* Report link down if the driver isn't running. */ 4407 if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) == 0) { 4408 ifmr->ifm_active |= IFM_NONE; 4409 return; 4410 } 4411 4412 /* Setup the default interface info. */ 4413 ifmr->ifm_status = IFM_AVALID; 4414 ifmr->ifm_active = IFM_ETHER; 4415 4416 if (sc->link_vars.link_up) { 4417 ifmr->ifm_status |= IFM_ACTIVE; 4418 } else { 4419 ifmr->ifm_active |= IFM_NONE; 4420 return; 4421 } 4422 4423 ifmr->ifm_active |= sc->media; 4424 4425 if (sc->link_vars.duplex == DUPLEX_FULL) { 4426 ifmr->ifm_active |= IFM_FDX; 4427 } else { 4428 ifmr->ifm_active |= IFM_HDX; 4429 } 4430 } 4431 4432 static int 4433 bxe_ioctl_nvram(struct bxe_softc *sc, 4434 uint32_t priv_op, 4435 struct ifreq *ifr) 4436 { 4437 struct bxe_nvram_data nvdata_base; 4438 struct bxe_nvram_data *nvdata; 4439 int len; 4440 int error = 0; 4441 4442 copyin(ifr->ifr_data, &nvdata_base, sizeof(nvdata_base)); 4443 4444 len = (sizeof(struct bxe_nvram_data) + 4445 nvdata_base.len - 4446 sizeof(uint32_t)); 4447 4448 if (len > sizeof(struct bxe_nvram_data)) { 4449 if ((nvdata = (struct bxe_nvram_data *) 4450 malloc(len, M_DEVBUF, 4451 (M_NOWAIT | M_ZERO))) == NULL) { 4452 BLOGE(sc, "BXE_IOC_RD_NVRAM malloc failed priv_op 0x%x " 4453 " len = 0x%x\n", priv_op, len); 4454 return (1); 4455 } 4456 memcpy(nvdata, &nvdata_base, sizeof(struct bxe_nvram_data)); 4457 } else { 4458 nvdata = &nvdata_base; 4459 } 4460 4461 if (priv_op == BXE_IOC_RD_NVRAM) { 4462 BLOGD(sc, DBG_IOCTL, "IOC_RD_NVRAM 0x%x %d\n", 4463 nvdata->offset, nvdata->len); 4464 error = bxe_nvram_read(sc, 4465 nvdata->offset, 4466 (uint8_t *)nvdata->value, 4467 nvdata->len); 4468 copyout(nvdata, ifr->ifr_data, len); 4469 } else { /* BXE_IOC_WR_NVRAM */ 4470 BLOGD(sc, DBG_IOCTL, "IOC_WR_NVRAM 0x%x %d\n", 4471 nvdata->offset, nvdata->len); 4472 copyin(ifr->ifr_data, nvdata, len); 4473 error = bxe_nvram_write(sc, 4474 nvdata->offset, 4475 (uint8_t *)nvdata->value, 4476 nvdata->len); 4477 } 4478 4479 if (len > sizeof(struct bxe_nvram_data)) { 4480 free(nvdata, M_DEVBUF); 4481 } 4482 4483 return (error); 4484 } 4485 4486 static int 4487 bxe_ioctl_stats_show(struct bxe_softc *sc, 4488 uint32_t priv_op, 4489 struct ifreq *ifr) 4490 { 4491 const size_t str_size = (BXE_NUM_ETH_STATS * STAT_NAME_LEN); 4492 const size_t stats_size = (BXE_NUM_ETH_STATS * sizeof(uint64_t)); 4493 caddr_t p_tmp; 4494 uint32_t *offset; 4495 int i; 4496 4497 switch (priv_op) 4498 { 4499 case BXE_IOC_STATS_SHOW_NUM: 4500 memset(ifr->ifr_data, 0, sizeof(union bxe_stats_show_data)); 4501 ((union bxe_stats_show_data *)ifr->ifr_data)->desc.num = 4502 BXE_NUM_ETH_STATS; 4503 ((union bxe_stats_show_data *)ifr->ifr_data)->desc.len = 4504 STAT_NAME_LEN; 4505 return (0); 4506 4507 case BXE_IOC_STATS_SHOW_STR: 4508 memset(ifr->ifr_data, 0, str_size); 4509 p_tmp = ifr->ifr_data; 4510 for (i = 0; i < BXE_NUM_ETH_STATS; i++) { 4511 strcpy(p_tmp, bxe_eth_stats_arr[i].string); 4512 p_tmp += STAT_NAME_LEN; 4513 } 4514 return (0); 4515 4516 case BXE_IOC_STATS_SHOW_CNT: 4517 memset(ifr->ifr_data, 0, stats_size); 4518 p_tmp = ifr->ifr_data; 4519 for (i = 0; i < BXE_NUM_ETH_STATS; i++) { 4520 offset = ((uint32_t *)&sc->eth_stats + 4521 bxe_eth_stats_arr[i].offset); 4522 switch (bxe_eth_stats_arr[i].size) { 4523 case 4: 4524 *((uint64_t *)p_tmp) = (uint64_t)*offset; 4525 break; 4526 case 8: 4527 *((uint64_t *)p_tmp) = HILO_U64(*offset, *(offset + 1)); 4528 break; 4529 default: 4530 *((uint64_t *)p_tmp) = 0; 4531 } 4532 p_tmp += sizeof(uint64_t); 4533 } 4534 return (0); 4535 4536 default: 4537 return (-1); 4538 } 4539 } 4540 4541 static void 4542 bxe_handle_chip_tq(void *context, 4543 int pending) 4544 { 4545 struct bxe_softc *sc = (struct bxe_softc *)context; 4546 long work = atomic_load_acq_long(&sc->chip_tq_flags); 4547 4548 switch (work) 4549 { 4550 4551 case CHIP_TQ_REINIT: 4552 if (if_getdrvflags(sc->ifp) & IFF_DRV_RUNNING) { 4553 /* restart the interface */ 4554 BLOGD(sc, DBG_LOAD, "Restarting the interface...\n"); 4555 bxe_periodic_stop(sc); 4556 BXE_CORE_LOCK(sc); 4557 bxe_stop_locked(sc); 4558 bxe_init_locked(sc); 4559 BXE_CORE_UNLOCK(sc); 4560 } 4561 break; 4562 4563 default: 4564 break; 4565 } 4566 } 4567 4568 /* 4569 * Handles any IOCTL calls from the operating system. 4570 * 4571 * Returns: 4572 * 0 = Success, >0 Failure 4573 */ 4574 static int 4575 bxe_ioctl(if_t ifp, 4576 u_long command, 4577 caddr_t data) 4578 { 4579 struct bxe_softc *sc = if_getsoftc(ifp); 4580 struct ifreq *ifr = (struct ifreq *)data; 4581 struct bxe_nvram_data *nvdata; 4582 uint32_t priv_op; 4583 int mask = 0; 4584 int reinit = 0; 4585 int error = 0; 4586 4587 int mtu_min = (ETH_MIN_PACKET_SIZE - ETH_HLEN); 4588 int mtu_max = (MJUM9BYTES - ETH_OVERHEAD - IP_HEADER_ALIGNMENT_PADDING); 4589 4590 switch (command) 4591 { 4592 case SIOCSIFMTU: 4593 BLOGD(sc, DBG_IOCTL, "Received SIOCSIFMTU ioctl (mtu=%d)\n", 4594 ifr->ifr_mtu); 4595 4596 if (sc->mtu == ifr->ifr_mtu) { 4597 /* nothing to change */ 4598 break; 4599 } 4600 4601 if ((ifr->ifr_mtu < mtu_min) || (ifr->ifr_mtu > mtu_max)) { 4602 BLOGE(sc, "Unsupported MTU size %d (range is %d-%d)\n", 4603 ifr->ifr_mtu, mtu_min, mtu_max); 4604 error = EINVAL; 4605 break; 4606 } 4607 4608 atomic_store_rel_int((volatile unsigned int *)&sc->mtu, 4609 (unsigned long)ifr->ifr_mtu); 4610 /* 4611 atomic_store_rel_long((volatile unsigned long *)&if_getmtu(ifp), 4612 (unsigned long)ifr->ifr_mtu); 4613 XXX - Not sure why it needs to be atomic 4614 */ 4615 if_setmtu(ifp, ifr->ifr_mtu); 4616 reinit = 1; 4617 break; 4618 4619 case SIOCSIFFLAGS: 4620 /* toggle the interface state up or down */ 4621 BLOGD(sc, DBG_IOCTL, "Received SIOCSIFFLAGS ioctl\n"); 4622 4623 BXE_CORE_LOCK(sc); 4624 /* check if the interface is up */ 4625 if (if_getflags(ifp) & IFF_UP) { 4626 if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) { 4627 /* set the receive mode flags */ 4628 bxe_set_rx_mode(sc); 4629 } else if(sc->state != BXE_STATE_DISABLED) { 4630 bxe_init_locked(sc); 4631 } 4632 } else { 4633 if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) { 4634 bxe_periodic_stop(sc); 4635 bxe_stop_locked(sc); 4636 } 4637 } 4638 BXE_CORE_UNLOCK(sc); 4639 4640 break; 4641 4642 case SIOCADDMULTI: 4643 case SIOCDELMULTI: 4644 /* add/delete multicast addresses */ 4645 BLOGD(sc, DBG_IOCTL, "Received SIOCADDMULTI/SIOCDELMULTI ioctl\n"); 4646 4647 /* check if the interface is up */ 4648 if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) { 4649 /* set the receive mode flags */ 4650 BXE_CORE_LOCK(sc); 4651 bxe_set_rx_mode(sc); 4652 BXE_CORE_UNLOCK(sc); 4653 } 4654 4655 break; 4656 4657 case SIOCSIFCAP: 4658 /* find out which capabilities have changed */ 4659 mask = (ifr->ifr_reqcap ^ if_getcapenable(ifp)); 4660 4661 BLOGD(sc, DBG_IOCTL, "Received SIOCSIFCAP ioctl (mask=0x%08x)\n", 4662 mask); 4663 4664 /* toggle the LRO capabilites enable flag */ 4665 if (mask & IFCAP_LRO) { 4666 if_togglecapenable(ifp, IFCAP_LRO); 4667 BLOGD(sc, DBG_IOCTL, "Turning LRO %s\n", 4668 (if_getcapenable(ifp) & IFCAP_LRO) ? "ON" : "OFF"); 4669 reinit = 1; 4670 } 4671 4672 /* toggle the TXCSUM checksum capabilites enable flag */ 4673 if (mask & IFCAP_TXCSUM) { 4674 if_togglecapenable(ifp, IFCAP_TXCSUM); 4675 BLOGD(sc, DBG_IOCTL, "Turning TXCSUM %s\n", 4676 (if_getcapenable(ifp) & IFCAP_TXCSUM) ? "ON" : "OFF"); 4677 if (if_getcapenable(ifp) & IFCAP_TXCSUM) { 4678 if_sethwassistbits(ifp, (CSUM_IP | 4679 CSUM_TCP | 4680 CSUM_UDP | 4681 CSUM_TSO | 4682 CSUM_TCP_IPV6 | 4683 CSUM_UDP_IPV6), 0); 4684 } else { 4685 if_clearhwassist(ifp); /* XXX */ 4686 } 4687 } 4688 4689 /* toggle the RXCSUM checksum capabilities enable flag */ 4690 if (mask & IFCAP_RXCSUM) { 4691 if_togglecapenable(ifp, IFCAP_RXCSUM); 4692 BLOGD(sc, DBG_IOCTL, "Turning RXCSUM %s\n", 4693 (if_getcapenable(ifp) & IFCAP_RXCSUM) ? "ON" : "OFF"); 4694 if (if_getcapenable(ifp) & IFCAP_RXCSUM) { 4695 if_sethwassistbits(ifp, (CSUM_IP | 4696 CSUM_TCP | 4697 CSUM_UDP | 4698 CSUM_TSO | 4699 CSUM_TCP_IPV6 | 4700 CSUM_UDP_IPV6), 0); 4701 } else { 4702 if_clearhwassist(ifp); /* XXX */ 4703 } 4704 } 4705 4706 /* toggle TSO4 capabilities enabled flag */ 4707 if (mask & IFCAP_TSO4) { 4708 if_togglecapenable(ifp, IFCAP_TSO4); 4709 BLOGD(sc, DBG_IOCTL, "Turning TSO4 %s\n", 4710 (if_getcapenable(ifp) & IFCAP_TSO4) ? "ON" : "OFF"); 4711 } 4712 4713 /* toggle TSO6 capabilities enabled flag */ 4714 if (mask & IFCAP_TSO6) { 4715 if_togglecapenable(ifp, IFCAP_TSO6); 4716 BLOGD(sc, DBG_IOCTL, "Turning TSO6 %s\n", 4717 (if_getcapenable(ifp) & IFCAP_TSO6) ? "ON" : "OFF"); 4718 } 4719 4720 /* toggle VLAN_HWTSO capabilities enabled flag */ 4721 if (mask & IFCAP_VLAN_HWTSO) { 4722 4723 if_togglecapenable(ifp, IFCAP_VLAN_HWTSO); 4724 BLOGD(sc, DBG_IOCTL, "Turning VLAN_HWTSO %s\n", 4725 (if_getcapenable(ifp) & IFCAP_VLAN_HWTSO) ? "ON" : "OFF"); 4726 } 4727 4728 /* toggle VLAN_HWCSUM capabilities enabled flag */ 4729 if (mask & IFCAP_VLAN_HWCSUM) { 4730 /* XXX investigate this... */ 4731 BLOGE(sc, "Changing VLAN_HWCSUM is not supported!\n"); 4732 error = EINVAL; 4733 } 4734 4735 /* toggle VLAN_MTU capabilities enable flag */ 4736 if (mask & IFCAP_VLAN_MTU) { 4737 /* XXX investigate this... */ 4738 BLOGE(sc, "Changing VLAN_MTU is not supported!\n"); 4739 error = EINVAL; 4740 } 4741 4742 /* toggle VLAN_HWTAGGING capabilities enabled flag */ 4743 if (mask & IFCAP_VLAN_HWTAGGING) { 4744 /* XXX investigate this... */ 4745 BLOGE(sc, "Changing VLAN_HWTAGGING is not supported!\n"); 4746 error = EINVAL; 4747 } 4748 4749 /* toggle VLAN_HWFILTER capabilities enabled flag */ 4750 if (mask & IFCAP_VLAN_HWFILTER) { 4751 /* XXX investigate this... */ 4752 BLOGE(sc, "Changing VLAN_HWFILTER is not supported!\n"); 4753 error = EINVAL; 4754 } 4755 4756 /* XXX not yet... 4757 * IFCAP_WOL_MAGIC 4758 */ 4759 4760 break; 4761 4762 case SIOCSIFMEDIA: 4763 case SIOCGIFMEDIA: 4764 /* set/get interface media */ 4765 BLOGD(sc, DBG_IOCTL, 4766 "Received SIOCSIFMEDIA/SIOCGIFMEDIA ioctl (cmd=%lu)\n", 4767 (command & 0xff)); 4768 error = ifmedia_ioctl(ifp, ifr, &sc->ifmedia, command); 4769 break; 4770 4771 case SIOCGPRIVATE_0: 4772 copyin(ifr->ifr_data, &priv_op, sizeof(priv_op)); 4773 4774 switch (priv_op) 4775 { 4776 case BXE_IOC_RD_NVRAM: 4777 case BXE_IOC_WR_NVRAM: 4778 nvdata = (struct bxe_nvram_data *)ifr->ifr_data; 4779 BLOGD(sc, DBG_IOCTL, 4780 "Received Private NVRAM ioctl addr=0x%x size=%u\n", 4781 nvdata->offset, nvdata->len); 4782 error = bxe_ioctl_nvram(sc, priv_op, ifr); 4783 break; 4784 4785 case BXE_IOC_STATS_SHOW_NUM: 4786 case BXE_IOC_STATS_SHOW_STR: 4787 case BXE_IOC_STATS_SHOW_CNT: 4788 BLOGD(sc, DBG_IOCTL, "Received Private Stats ioctl (%d)\n", 4789 priv_op); 4790 error = bxe_ioctl_stats_show(sc, priv_op, ifr); 4791 break; 4792 4793 default: 4794 BLOGW(sc, "Received Private Unknown ioctl (%d)\n", priv_op); 4795 error = EINVAL; 4796 break; 4797 } 4798 4799 break; 4800 4801 default: 4802 BLOGD(sc, DBG_IOCTL, "Received Unknown Ioctl (cmd=%lu)\n", 4803 (command & 0xff)); 4804 error = ether_ioctl(ifp, command, data); 4805 break; 4806 } 4807 4808 if (reinit && (if_getdrvflags(sc->ifp) & IFF_DRV_RUNNING)) { 4809 BLOGD(sc, DBG_LOAD | DBG_IOCTL, 4810 "Re-initializing hardware from IOCTL change\n"); 4811 bxe_periodic_stop(sc); 4812 BXE_CORE_LOCK(sc); 4813 bxe_stop_locked(sc); 4814 bxe_init_locked(sc); 4815 BXE_CORE_UNLOCK(sc); 4816 } 4817 4818 return (error); 4819 } 4820 4821 static __noinline void 4822 bxe_dump_mbuf(struct bxe_softc *sc, 4823 struct mbuf *m, 4824 uint8_t contents) 4825 { 4826 char * type; 4827 int i = 0; 4828 4829 if (!(sc->debug & DBG_MBUF)) { 4830 return; 4831 } 4832 4833 if (m == NULL) { 4834 BLOGD(sc, DBG_MBUF, "mbuf: null pointer\n"); 4835 return; 4836 } 4837 4838 while (m) { 4839 4840 #if __FreeBSD_version >= 1000000 4841 BLOGD(sc, DBG_MBUF, 4842 "%02d: mbuf=%p m_len=%d m_flags=0x%b m_data=%p\n", 4843 i, m, m->m_len, m->m_flags, M_FLAG_BITS, m->m_data); 4844 4845 if (m->m_flags & M_PKTHDR) { 4846 BLOGD(sc, DBG_MBUF, 4847 "%02d: - m_pkthdr: tot_len=%d flags=0x%b csum_flags=%b\n", 4848 i, m->m_pkthdr.len, m->m_flags, M_FLAG_BITS, 4849 (int)m->m_pkthdr.csum_flags, CSUM_BITS); 4850 } 4851 #else 4852 BLOGD(sc, DBG_MBUF, 4853 "%02d: mbuf=%p m_len=%d m_flags=0x%b m_data=%p\n", 4854 i, m, m->m_len, m->m_flags, 4855 "\20\1M_EXT\2M_PKTHDR\3M_EOR\4M_RDONLY", m->m_data); 4856 4857 if (m->m_flags & M_PKTHDR) { 4858 BLOGD(sc, DBG_MBUF, 4859 "%02d: - m_pkthdr: tot_len=%d flags=0x%b csum_flags=%b\n", 4860 i, m->m_pkthdr.len, m->m_flags, 4861 "\20\12M_BCAST\13M_MCAST\14M_FRAG" 4862 "\15M_FIRSTFRAG\16M_LASTFRAG\21M_VLANTAG" 4863 "\22M_PROMISC\23M_NOFREE", 4864 (int)m->m_pkthdr.csum_flags, 4865 "\20\1CSUM_IP\2CSUM_TCP\3CSUM_UDP\4CSUM_IP_FRAGS" 4866 "\5CSUM_FRAGMENT\6CSUM_TSO\11CSUM_IP_CHECKED" 4867 "\12CSUM_IP_VALID\13CSUM_DATA_VALID" 4868 "\14CSUM_PSEUDO_HDR"); 4869 } 4870 #endif /* #if __FreeBSD_version >= 1000000 */ 4871 4872 if (m->m_flags & M_EXT) { 4873 switch (m->m_ext.ext_type) { 4874 case EXT_CLUSTER: type = "EXT_CLUSTER"; break; 4875 case EXT_SFBUF: type = "EXT_SFBUF"; break; 4876 case EXT_JUMBOP: type = "EXT_JUMBOP"; break; 4877 case EXT_JUMBO9: type = "EXT_JUMBO9"; break; 4878 case EXT_JUMBO16: type = "EXT_JUMBO16"; break; 4879 case EXT_PACKET: type = "EXT_PACKET"; break; 4880 case EXT_MBUF: type = "EXT_MBUF"; break; 4881 case EXT_NET_DRV: type = "EXT_NET_DRV"; break; 4882 case EXT_MOD_TYPE: type = "EXT_MOD_TYPE"; break; 4883 case EXT_DISPOSABLE: type = "EXT_DISPOSABLE"; break; 4884 case EXT_EXTREF: type = "EXT_EXTREF"; break; 4885 default: type = "UNKNOWN"; break; 4886 } 4887 4888 BLOGD(sc, DBG_MBUF, 4889 "%02d: - m_ext: %p ext_size=%d type=%s\n", 4890 i, m->m_ext.ext_buf, m->m_ext.ext_size, type); 4891 } 4892 4893 if (contents) { 4894 bxe_dump_mbuf_data(sc, "mbuf data", m, TRUE); 4895 } 4896 4897 m = m->m_next; 4898 i++; 4899 } 4900 } 4901 4902 /* 4903 * Checks to ensure the 13 bd sliding window is >= MSS for TSO. 4904 * Check that (13 total bds - 3 bds) = 10 bd window >= MSS. 4905 * The window: 3 bds are = 1 for headers BD + 2 for parse BD and last BD 4906 * The headers comes in a seperate bd in FreeBSD so 13-3=10. 4907 * Returns: 0 if OK to send, 1 if packet needs further defragmentation 4908 */ 4909 static int 4910 bxe_chktso_window(struct bxe_softc *sc, 4911 int nsegs, 4912 bus_dma_segment_t *segs, 4913 struct mbuf *m) 4914 { 4915 uint32_t num_wnds, wnd_size, wnd_sum; 4916 int32_t frag_idx, wnd_idx; 4917 unsigned short lso_mss; 4918 int defrag; 4919 4920 defrag = 0; 4921 wnd_sum = 0; 4922 wnd_size = 10; 4923 num_wnds = nsegs - wnd_size; 4924 lso_mss = htole16(m->m_pkthdr.tso_segsz); 4925 4926 /* 4927 * Total header lengths Eth+IP+TCP in first FreeBSD mbuf so calculate the 4928 * first window sum of data while skipping the first assuming it is the 4929 * header in FreeBSD. 4930 */ 4931 for (frag_idx = 1; (frag_idx <= wnd_size); frag_idx++) { 4932 wnd_sum += htole16(segs[frag_idx].ds_len); 4933 } 4934 4935 /* check the first 10 bd window size */ 4936 if (wnd_sum < lso_mss) { 4937 return (1); 4938 } 4939 4940 /* run through the windows */ 4941 for (wnd_idx = 0; wnd_idx < num_wnds; wnd_idx++, frag_idx++) { 4942 /* subtract the first mbuf->m_len of the last wndw(-header) */ 4943 wnd_sum -= htole16(segs[wnd_idx+1].ds_len); 4944 /* add the next mbuf len to the len of our new window */ 4945 wnd_sum += htole16(segs[frag_idx].ds_len); 4946 if (wnd_sum < lso_mss) { 4947 return (1); 4948 } 4949 } 4950 4951 return (0); 4952 } 4953 4954 static uint8_t 4955 bxe_set_pbd_csum_e2(struct bxe_fastpath *fp, 4956 struct mbuf *m, 4957 uint32_t *parsing_data) 4958 { 4959 struct ether_vlan_header *eh = NULL; 4960 struct ip *ip4 = NULL; 4961 struct ip6_hdr *ip6 = NULL; 4962 caddr_t ip = NULL; 4963 struct tcphdr *th = NULL; 4964 int e_hlen, ip_hlen, l4_off; 4965 uint16_t proto; 4966 4967 if (m->m_pkthdr.csum_flags == CSUM_IP) { 4968 /* no L4 checksum offload needed */ 4969 return (0); 4970 } 4971 4972 /* get the Ethernet header */ 4973 eh = mtod(m, struct ether_vlan_header *); 4974 4975 /* handle VLAN encapsulation if present */ 4976 if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) { 4977 e_hlen = (ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN); 4978 proto = ntohs(eh->evl_proto); 4979 } else { 4980 e_hlen = ETHER_HDR_LEN; 4981 proto = ntohs(eh->evl_encap_proto); 4982 } 4983 4984 switch (proto) { 4985 case ETHERTYPE_IP: 4986 /* get the IP header, if mbuf len < 20 then header in next mbuf */ 4987 ip4 = (m->m_len < sizeof(struct ip)) ? 4988 (struct ip *)m->m_next->m_data : 4989 (struct ip *)(m->m_data + e_hlen); 4990 /* ip_hl is number of 32-bit words */ 4991 ip_hlen = (ip4->ip_hl << 2); 4992 ip = (caddr_t)ip4; 4993 break; 4994 case ETHERTYPE_IPV6: 4995 /* get the IPv6 header, if mbuf len < 40 then header in next mbuf */ 4996 ip6 = (m->m_len < sizeof(struct ip6_hdr)) ? 4997 (struct ip6_hdr *)m->m_next->m_data : 4998 (struct ip6_hdr *)(m->m_data + e_hlen); 4999 /* XXX cannot support offload with IPv6 extensions */ 5000 ip_hlen = sizeof(struct ip6_hdr); 5001 ip = (caddr_t)ip6; 5002 break; 5003 default: 5004 /* We can't offload in this case... */ 5005 /* XXX error stat ??? */ 5006 return (0); 5007 } 5008 5009 /* XXX assuming L4 header is contiguous to IPv4/IPv6 in the same mbuf */ 5010 l4_off = (e_hlen + ip_hlen); 5011 5012 *parsing_data |= 5013 (((l4_off >> 1) << ETH_TX_PARSE_BD_E2_L4_HDR_START_OFFSET_W_SHIFT) & 5014 ETH_TX_PARSE_BD_E2_L4_HDR_START_OFFSET_W); 5015 5016 if (m->m_pkthdr.csum_flags & (CSUM_TCP | 5017 CSUM_TSO | 5018 CSUM_TCP_IPV6)) { 5019 fp->eth_q_stats.tx_ofld_frames_csum_tcp++; 5020 th = (struct tcphdr *)(ip + ip_hlen); 5021 /* th_off is number of 32-bit words */ 5022 *parsing_data |= ((th->th_off << 5023 ETH_TX_PARSE_BD_E2_TCP_HDR_LENGTH_DW_SHIFT) & 5024 ETH_TX_PARSE_BD_E2_TCP_HDR_LENGTH_DW); 5025 return (l4_off + (th->th_off << 2)); /* entire header length */ 5026 } else if (m->m_pkthdr.csum_flags & (CSUM_UDP | 5027 CSUM_UDP_IPV6)) { 5028 fp->eth_q_stats.tx_ofld_frames_csum_udp++; 5029 return (l4_off + sizeof(struct udphdr)); /* entire header length */ 5030 } else { 5031 /* XXX error stat ??? */ 5032 return (0); 5033 } 5034 } 5035 5036 static uint8_t 5037 bxe_set_pbd_csum(struct bxe_fastpath *fp, 5038 struct mbuf *m, 5039 struct eth_tx_parse_bd_e1x *pbd) 5040 { 5041 struct ether_vlan_header *eh = NULL; 5042 struct ip *ip4 = NULL; 5043 struct ip6_hdr *ip6 = NULL; 5044 caddr_t ip = NULL; 5045 struct tcphdr *th = NULL; 5046 struct udphdr *uh = NULL; 5047 int e_hlen, ip_hlen; 5048 uint16_t proto; 5049 uint8_t hlen; 5050 uint16_t tmp_csum; 5051 uint32_t *tmp_uh; 5052 5053 /* get the Ethernet header */ 5054 eh = mtod(m, struct ether_vlan_header *); 5055 5056 /* handle VLAN encapsulation if present */ 5057 if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) { 5058 e_hlen = (ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN); 5059 proto = ntohs(eh->evl_proto); 5060 } else { 5061 e_hlen = ETHER_HDR_LEN; 5062 proto = ntohs(eh->evl_encap_proto); 5063 } 5064 5065 switch (proto) { 5066 case ETHERTYPE_IP: 5067 /* get the IP header, if mbuf len < 20 then header in next mbuf */ 5068 ip4 = (m->m_len < sizeof(struct ip)) ? 5069 (struct ip *)m->m_next->m_data : 5070 (struct ip *)(m->m_data + e_hlen); 5071 /* ip_hl is number of 32-bit words */ 5072 ip_hlen = (ip4->ip_hl << 1); 5073 ip = (caddr_t)ip4; 5074 break; 5075 case ETHERTYPE_IPV6: 5076 /* get the IPv6 header, if mbuf len < 40 then header in next mbuf */ 5077 ip6 = (m->m_len < sizeof(struct ip6_hdr)) ? 5078 (struct ip6_hdr *)m->m_next->m_data : 5079 (struct ip6_hdr *)(m->m_data + e_hlen); 5080 /* XXX cannot support offload with IPv6 extensions */ 5081 ip_hlen = (sizeof(struct ip6_hdr) >> 1); 5082 ip = (caddr_t)ip6; 5083 break; 5084 default: 5085 /* We can't offload in this case... */ 5086 /* XXX error stat ??? */ 5087 return (0); 5088 } 5089 5090 hlen = (e_hlen >> 1); 5091 5092 /* note that rest of global_data is indirectly zeroed here */ 5093 if (m->m_flags & M_VLANTAG) { 5094 pbd->global_data = 5095 htole16(hlen | (1 << ETH_TX_PARSE_BD_E1X_LLC_SNAP_EN_SHIFT)); 5096 } else { 5097 pbd->global_data = htole16(hlen); 5098 } 5099 5100 pbd->ip_hlen_w = ip_hlen; 5101 5102 hlen += pbd->ip_hlen_w; 5103 5104 /* XXX assuming L4 header is contiguous to IPv4/IPv6 in the same mbuf */ 5105 5106 if (m->m_pkthdr.csum_flags & (CSUM_TCP | 5107 CSUM_TSO | 5108 CSUM_TCP_IPV6)) { 5109 th = (struct tcphdr *)(ip + (ip_hlen << 1)); 5110 /* th_off is number of 32-bit words */ 5111 hlen += (uint16_t)(th->th_off << 1); 5112 } else if (m->m_pkthdr.csum_flags & (CSUM_UDP | 5113 CSUM_UDP_IPV6)) { 5114 uh = (struct udphdr *)(ip + (ip_hlen << 1)); 5115 hlen += (sizeof(struct udphdr) / 2); 5116 } else { 5117 /* valid case as only CSUM_IP was set */ 5118 return (0); 5119 } 5120 5121 pbd->total_hlen_w = htole16(hlen); 5122 5123 if (m->m_pkthdr.csum_flags & (CSUM_TCP | 5124 CSUM_TSO | 5125 CSUM_TCP_IPV6)) { 5126 fp->eth_q_stats.tx_ofld_frames_csum_tcp++; 5127 pbd->tcp_pseudo_csum = ntohs(th->th_sum); 5128 } else if (m->m_pkthdr.csum_flags & (CSUM_UDP | 5129 CSUM_UDP_IPV6)) { 5130 fp->eth_q_stats.tx_ofld_frames_csum_udp++; 5131 5132 /* 5133 * Everest1 (i.e. 57710, 57711, 57711E) does not natively support UDP 5134 * checksums and does not know anything about the UDP header and where 5135 * the checksum field is located. It only knows about TCP. Therefore 5136 * we "lie" to the hardware for outgoing UDP packets w/ checksum 5137 * offload. Since the checksum field offset for TCP is 16 bytes and 5138 * for UDP it is 6 bytes we pass a pointer to the hardware that is 10 5139 * bytes less than the start of the UDP header. This allows the 5140 * hardware to write the checksum in the correct spot. But the 5141 * hardware will compute a checksum which includes the last 10 bytes 5142 * of the IP header. To correct this we tweak the stack computed 5143 * pseudo checksum by folding in the calculation of the inverse 5144 * checksum for those final 10 bytes of the IP header. This allows 5145 * the correct checksum to be computed by the hardware. 5146 */ 5147 5148 /* set pointer 10 bytes before UDP header */ 5149 tmp_uh = (uint32_t *)((uint8_t *)uh - 10); 5150 5151 /* calculate a pseudo header checksum over the first 10 bytes */ 5152 tmp_csum = in_pseudo(*tmp_uh, 5153 *(tmp_uh + 1), 5154 *(uint16_t *)(tmp_uh + 2)); 5155 5156 pbd->tcp_pseudo_csum = ntohs(in_addword(uh->uh_sum, ~tmp_csum)); 5157 } 5158 5159 return (hlen * 2); /* entire header length, number of bytes */ 5160 } 5161 5162 static void 5163 bxe_set_pbd_lso_e2(struct mbuf *m, 5164 uint32_t *parsing_data) 5165 { 5166 *parsing_data |= ((m->m_pkthdr.tso_segsz << 5167 ETH_TX_PARSE_BD_E2_LSO_MSS_SHIFT) & 5168 ETH_TX_PARSE_BD_E2_LSO_MSS); 5169 5170 /* XXX test for IPv6 with extension header... */ 5171 } 5172 5173 static void 5174 bxe_set_pbd_lso(struct mbuf *m, 5175 struct eth_tx_parse_bd_e1x *pbd) 5176 { 5177 struct ether_vlan_header *eh = NULL; 5178 struct ip *ip = NULL; 5179 struct tcphdr *th = NULL; 5180 int e_hlen; 5181 5182 /* get the Ethernet header */ 5183 eh = mtod(m, struct ether_vlan_header *); 5184 5185 /* handle VLAN encapsulation if present */ 5186 e_hlen = (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) ? 5187 (ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN) : ETHER_HDR_LEN; 5188 5189 /* get the IP and TCP header, with LSO entire header in first mbuf */ 5190 /* XXX assuming IPv4 */ 5191 ip = (struct ip *)(m->m_data + e_hlen); 5192 th = (struct tcphdr *)((caddr_t)ip + (ip->ip_hl << 2)); 5193 5194 pbd->lso_mss = htole16(m->m_pkthdr.tso_segsz); 5195 pbd->tcp_send_seq = ntohl(th->th_seq); 5196 pbd->tcp_flags = ((ntohl(((uint32_t *)th)[3]) >> 16) & 0xff); 5197 5198 #if 1 5199 /* XXX IPv4 */ 5200 pbd->ip_id = ntohs(ip->ip_id); 5201 pbd->tcp_pseudo_csum = 5202 ntohs(in_pseudo(ip->ip_src.s_addr, 5203 ip->ip_dst.s_addr, 5204 htons(IPPROTO_TCP))); 5205 #else 5206 /* XXX IPv6 */ 5207 pbd->tcp_pseudo_csum = 5208 ntohs(in_pseudo(&ip6->ip6_src, 5209 &ip6->ip6_dst, 5210 htons(IPPROTO_TCP))); 5211 #endif 5212 5213 pbd->global_data |= 5214 htole16(ETH_TX_PARSE_BD_E1X_PSEUDO_CS_WITHOUT_LEN); 5215 } 5216 5217 /* 5218 * Encapsulte an mbuf cluster into the tx bd chain and makes the memory 5219 * visible to the controller. 5220 * 5221 * If an mbuf is submitted to this routine and cannot be given to the 5222 * controller (e.g. it has too many fragments) then the function may free 5223 * the mbuf and return to the caller. 5224 * 5225 * Returns: 5226 * 0 = Success, !0 = Failure 5227 * Note the side effect that an mbuf may be freed if it causes a problem. 5228 */ 5229 static int 5230 bxe_tx_encap(struct bxe_fastpath *fp, struct mbuf **m_head) 5231 { 5232 bus_dma_segment_t segs[32]; 5233 struct mbuf *m0; 5234 struct bxe_sw_tx_bd *tx_buf; 5235 struct eth_tx_parse_bd_e1x *pbd_e1x = NULL; 5236 struct eth_tx_parse_bd_e2 *pbd_e2 = NULL; 5237 /* struct eth_tx_parse_2nd_bd *pbd2 = NULL; */ 5238 struct eth_tx_bd *tx_data_bd; 5239 struct eth_tx_bd *tx_total_pkt_size_bd; 5240 struct eth_tx_start_bd *tx_start_bd; 5241 uint16_t bd_prod, pkt_prod, total_pkt_size; 5242 uint8_t mac_type; 5243 int defragged, error, nsegs, rc, nbds, vlan_off, ovlan; 5244 struct bxe_softc *sc; 5245 uint16_t tx_bd_avail; 5246 struct ether_vlan_header *eh; 5247 uint32_t pbd_e2_parsing_data = 0; 5248 uint8_t hlen = 0; 5249 int tmp_bd; 5250 int i; 5251 5252 sc = fp->sc; 5253 5254 #if __FreeBSD_version >= 800000 5255 M_ASSERTPKTHDR(*m_head); 5256 #endif /* #if __FreeBSD_version >= 800000 */ 5257 5258 m0 = *m_head; 5259 rc = defragged = nbds = ovlan = vlan_off = total_pkt_size = 0; 5260 tx_start_bd = NULL; 5261 tx_data_bd = NULL; 5262 tx_total_pkt_size_bd = NULL; 5263 5264 /* get the H/W pointer for packets and BDs */ 5265 pkt_prod = fp->tx_pkt_prod; 5266 bd_prod = fp->tx_bd_prod; 5267 5268 mac_type = UNICAST_ADDRESS; 5269 5270 /* map the mbuf into the next open DMAable memory */ 5271 tx_buf = &fp->tx_mbuf_chain[TX_BD(pkt_prod)]; 5272 error = bus_dmamap_load_mbuf_sg(fp->tx_mbuf_tag, 5273 tx_buf->m_map, m0, 5274 segs, &nsegs, BUS_DMA_NOWAIT); 5275 5276 /* mapping errors */ 5277 if(__predict_false(error != 0)) { 5278 fp->eth_q_stats.tx_dma_mapping_failure++; 5279 if (error == ENOMEM) { 5280 /* resource issue, try again later */ 5281 rc = ENOMEM; 5282 } else if (error == EFBIG) { 5283 /* possibly recoverable with defragmentation */ 5284 fp->eth_q_stats.mbuf_defrag_attempts++; 5285 m0 = m_defrag(*m_head, M_NOWAIT); 5286 if (m0 == NULL) { 5287 fp->eth_q_stats.mbuf_defrag_failures++; 5288 rc = ENOBUFS; 5289 } else { 5290 /* defrag successful, try mapping again */ 5291 *m_head = m0; 5292 error = bus_dmamap_load_mbuf_sg(fp->tx_mbuf_tag, 5293 tx_buf->m_map, m0, 5294 segs, &nsegs, BUS_DMA_NOWAIT); 5295 if (error) { 5296 fp->eth_q_stats.tx_dma_mapping_failure++; 5297 rc = error; 5298 } 5299 } 5300 } else { 5301 /* unknown, unrecoverable mapping error */ 5302 BLOGE(sc, "Unknown TX mapping error rc=%d\n", error); 5303 bxe_dump_mbuf(sc, m0, FALSE); 5304 rc = error; 5305 } 5306 5307 goto bxe_tx_encap_continue; 5308 } 5309 5310 tx_bd_avail = bxe_tx_avail(sc, fp); 5311 5312 /* make sure there is enough room in the send queue */ 5313 if (__predict_false(tx_bd_avail < (nsegs + 2))) { 5314 /* Recoverable, try again later. */ 5315 fp->eth_q_stats.tx_hw_queue_full++; 5316 bus_dmamap_unload(fp->tx_mbuf_tag, tx_buf->m_map); 5317 rc = ENOMEM; 5318 goto bxe_tx_encap_continue; 5319 } 5320 5321 /* capture the current H/W TX chain high watermark */ 5322 if (__predict_false(fp->eth_q_stats.tx_hw_max_queue_depth < 5323 (TX_BD_USABLE - tx_bd_avail))) { 5324 fp->eth_q_stats.tx_hw_max_queue_depth = (TX_BD_USABLE - tx_bd_avail); 5325 } 5326 5327 /* make sure it fits in the packet window */ 5328 if (__predict_false(nsegs > BXE_MAX_SEGMENTS)) { 5329 /* 5330 * The mbuf may be to big for the controller to handle. If the frame 5331 * is a TSO frame we'll need to do an additional check. 5332 */ 5333 if (m0->m_pkthdr.csum_flags & CSUM_TSO) { 5334 if (bxe_chktso_window(sc, nsegs, segs, m0) == 0) { 5335 goto bxe_tx_encap_continue; /* OK to send */ 5336 } else { 5337 fp->eth_q_stats.tx_window_violation_tso++; 5338 } 5339 } else { 5340 fp->eth_q_stats.tx_window_violation_std++; 5341 } 5342 5343 /* lets try to defragment this mbuf and remap it */ 5344 fp->eth_q_stats.mbuf_defrag_attempts++; 5345 bus_dmamap_unload(fp->tx_mbuf_tag, tx_buf->m_map); 5346 5347 m0 = m_defrag(*m_head, M_NOWAIT); 5348 if (m0 == NULL) { 5349 fp->eth_q_stats.mbuf_defrag_failures++; 5350 /* Ugh, just drop the frame... :( */ 5351 rc = ENOBUFS; 5352 } else { 5353 /* defrag successful, try mapping again */ 5354 *m_head = m0; 5355 error = bus_dmamap_load_mbuf_sg(fp->tx_mbuf_tag, 5356 tx_buf->m_map, m0, 5357 segs, &nsegs, BUS_DMA_NOWAIT); 5358 if (error) { 5359 fp->eth_q_stats.tx_dma_mapping_failure++; 5360 /* No sense in trying to defrag/copy chain, drop it. :( */ 5361 rc = error; 5362 } 5363 else { 5364 /* if the chain is still too long then drop it */ 5365 if (__predict_false(nsegs > BXE_MAX_SEGMENTS)) { 5366 bus_dmamap_unload(fp->tx_mbuf_tag, tx_buf->m_map); 5367 rc = ENODEV; 5368 } 5369 } 5370 } 5371 } 5372 5373 bxe_tx_encap_continue: 5374 5375 /* Check for errors */ 5376 if (rc) { 5377 if (rc == ENOMEM) { 5378 /* recoverable try again later */ 5379 } else { 5380 fp->eth_q_stats.tx_soft_errors++; 5381 fp->eth_q_stats.mbuf_alloc_tx--; 5382 m_freem(*m_head); 5383 *m_head = NULL; 5384 } 5385 5386 return (rc); 5387 } 5388 5389 /* set flag according to packet type (UNICAST_ADDRESS is default) */ 5390 if (m0->m_flags & M_BCAST) { 5391 mac_type = BROADCAST_ADDRESS; 5392 } else if (m0->m_flags & M_MCAST) { 5393 mac_type = MULTICAST_ADDRESS; 5394 } 5395 5396 /* store the mbuf into the mbuf ring */ 5397 tx_buf->m = m0; 5398 tx_buf->first_bd = fp->tx_bd_prod; 5399 tx_buf->flags = 0; 5400 5401 /* prepare the first transmit (start) BD for the mbuf */ 5402 tx_start_bd = &fp->tx_chain[TX_BD(bd_prod)].start_bd; 5403 5404 BLOGD(sc, DBG_TX, 5405 "sending pkt_prod=%u tx_buf=%p next_idx=%u bd=%u tx_start_bd=%p\n", 5406 pkt_prod, tx_buf, fp->tx_pkt_prod, bd_prod, tx_start_bd); 5407 5408 tx_start_bd->addr_lo = htole32(U64_LO(segs[0].ds_addr)); 5409 tx_start_bd->addr_hi = htole32(U64_HI(segs[0].ds_addr)); 5410 tx_start_bd->nbytes = htole16(segs[0].ds_len); 5411 total_pkt_size += tx_start_bd->nbytes; 5412 tx_start_bd->bd_flags.as_bitfield = ETH_TX_BD_FLAGS_START_BD; 5413 5414 tx_start_bd->general_data = (1 << ETH_TX_START_BD_HDR_NBDS_SHIFT); 5415 5416 /* all frames have at least Start BD + Parsing BD */ 5417 nbds = nsegs + 1; 5418 tx_start_bd->nbd = htole16(nbds); 5419 5420 if (m0->m_flags & M_VLANTAG) { 5421 tx_start_bd->vlan_or_ethertype = htole16(m0->m_pkthdr.ether_vtag); 5422 tx_start_bd->bd_flags.as_bitfield |= 5423 (X_ETH_OUTBAND_VLAN << ETH_TX_BD_FLAGS_VLAN_MODE_SHIFT); 5424 } else { 5425 /* vf tx, start bd must hold the ethertype for fw to enforce it */ 5426 if (IS_VF(sc)) { 5427 /* map ethernet header to find type and header length */ 5428 eh = mtod(m0, struct ether_vlan_header *); 5429 tx_start_bd->vlan_or_ethertype = eh->evl_encap_proto; 5430 } else { 5431 /* used by FW for packet accounting */ 5432 tx_start_bd->vlan_or_ethertype = htole16(fp->tx_pkt_prod); 5433 } 5434 } 5435 5436 /* 5437 * add a parsing BD from the chain. The parsing BD is always added 5438 * though it is only used for TSO and chksum 5439 */ 5440 bd_prod = TX_BD_NEXT(bd_prod); 5441 5442 if (m0->m_pkthdr.csum_flags) { 5443 if (m0->m_pkthdr.csum_flags & CSUM_IP) { 5444 fp->eth_q_stats.tx_ofld_frames_csum_ip++; 5445 tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_IP_CSUM; 5446 } 5447 5448 if (m0->m_pkthdr.csum_flags & CSUM_TCP_IPV6) { 5449 tx_start_bd->bd_flags.as_bitfield |= (ETH_TX_BD_FLAGS_IPV6 | 5450 ETH_TX_BD_FLAGS_L4_CSUM); 5451 } else if (m0->m_pkthdr.csum_flags & CSUM_UDP_IPV6) { 5452 tx_start_bd->bd_flags.as_bitfield |= (ETH_TX_BD_FLAGS_IPV6 | 5453 ETH_TX_BD_FLAGS_IS_UDP | 5454 ETH_TX_BD_FLAGS_L4_CSUM); 5455 } else if ((m0->m_pkthdr.csum_flags & CSUM_TCP) || 5456 (m0->m_pkthdr.csum_flags & CSUM_TSO)) { 5457 tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_L4_CSUM; 5458 } else if (m0->m_pkthdr.csum_flags & CSUM_UDP) { 5459 tx_start_bd->bd_flags.as_bitfield |= (ETH_TX_BD_FLAGS_L4_CSUM | 5460 ETH_TX_BD_FLAGS_IS_UDP); 5461 } 5462 } 5463 5464 if (!CHIP_IS_E1x(sc)) { 5465 pbd_e2 = &fp->tx_chain[TX_BD(bd_prod)].parse_bd_e2; 5466 memset(pbd_e2, 0, sizeof(struct eth_tx_parse_bd_e2)); 5467 5468 if (m0->m_pkthdr.csum_flags) { 5469 hlen = bxe_set_pbd_csum_e2(fp, m0, &pbd_e2_parsing_data); 5470 } 5471 5472 SET_FLAG(pbd_e2_parsing_data, ETH_TX_PARSE_BD_E2_ETH_ADDR_TYPE, 5473 mac_type); 5474 } else { 5475 uint16_t global_data = 0; 5476 5477 pbd_e1x = &fp->tx_chain[TX_BD(bd_prod)].parse_bd_e1x; 5478 memset(pbd_e1x, 0, sizeof(struct eth_tx_parse_bd_e1x)); 5479 5480 if (m0->m_pkthdr.csum_flags) { 5481 hlen = bxe_set_pbd_csum(fp, m0, pbd_e1x); 5482 } 5483 5484 SET_FLAG(global_data, 5485 ETH_TX_PARSE_BD_E1X_ETH_ADDR_TYPE, mac_type); 5486 pbd_e1x->global_data |= htole16(global_data); 5487 } 5488 5489 /* setup the parsing BD with TSO specific info */ 5490 if (m0->m_pkthdr.csum_flags & CSUM_TSO) { 5491 fp->eth_q_stats.tx_ofld_frames_lso++; 5492 tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_SW_LSO; 5493 5494 if (__predict_false(tx_start_bd->nbytes > hlen)) { 5495 fp->eth_q_stats.tx_ofld_frames_lso_hdr_splits++; 5496 5497 /* split the first BD into header/data making the fw job easy */ 5498 nbds++; 5499 tx_start_bd->nbd = htole16(nbds); 5500 tx_start_bd->nbytes = htole16(hlen); 5501 5502 bd_prod = TX_BD_NEXT(bd_prod); 5503 5504 /* new transmit BD after the tx_parse_bd */ 5505 tx_data_bd = &fp->tx_chain[TX_BD(bd_prod)].reg_bd; 5506 tx_data_bd->addr_hi = htole32(U64_HI(segs[0].ds_addr + hlen)); 5507 tx_data_bd->addr_lo = htole32(U64_LO(segs[0].ds_addr + hlen)); 5508 tx_data_bd->nbytes = htole16(segs[0].ds_len - hlen); 5509 if (tx_total_pkt_size_bd == NULL) { 5510 tx_total_pkt_size_bd = tx_data_bd; 5511 } 5512 5513 BLOGD(sc, DBG_TX, 5514 "TSO split header size is %d (%x:%x) nbds %d\n", 5515 le16toh(tx_start_bd->nbytes), 5516 le32toh(tx_start_bd->addr_hi), 5517 le32toh(tx_start_bd->addr_lo), 5518 nbds); 5519 } 5520 5521 if (!CHIP_IS_E1x(sc)) { 5522 bxe_set_pbd_lso_e2(m0, &pbd_e2_parsing_data); 5523 } else { 5524 bxe_set_pbd_lso(m0, pbd_e1x); 5525 } 5526 } 5527 5528 if (pbd_e2_parsing_data) { 5529 pbd_e2->parsing_data = htole32(pbd_e2_parsing_data); 5530 } 5531 5532 /* prepare remaining BDs, start tx bd contains first seg/frag */ 5533 for (i = 1; i < nsegs ; i++) { 5534 bd_prod = TX_BD_NEXT(bd_prod); 5535 tx_data_bd = &fp->tx_chain[TX_BD(bd_prod)].reg_bd; 5536 tx_data_bd->addr_lo = htole32(U64_LO(segs[i].ds_addr)); 5537 tx_data_bd->addr_hi = htole32(U64_HI(segs[i].ds_addr)); 5538 tx_data_bd->nbytes = htole16(segs[i].ds_len); 5539 if (tx_total_pkt_size_bd == NULL) { 5540 tx_total_pkt_size_bd = tx_data_bd; 5541 } 5542 total_pkt_size += tx_data_bd->nbytes; 5543 } 5544 5545 BLOGD(sc, DBG_TX, "last bd %p\n", tx_data_bd); 5546 5547 if (tx_total_pkt_size_bd != NULL) { 5548 tx_total_pkt_size_bd->total_pkt_bytes = total_pkt_size; 5549 } 5550 5551 if (__predict_false(sc->debug & DBG_TX)) { 5552 tmp_bd = tx_buf->first_bd; 5553 for (i = 0; i < nbds; i++) 5554 { 5555 if (i == 0) { 5556 BLOGD(sc, DBG_TX, 5557 "TX Strt: %p bd=%d nbd=%d vlan=0x%x " 5558 "bd_flags=0x%x hdr_nbds=%d\n", 5559 tx_start_bd, 5560 tmp_bd, 5561 le16toh(tx_start_bd->nbd), 5562 le16toh(tx_start_bd->vlan_or_ethertype), 5563 tx_start_bd->bd_flags.as_bitfield, 5564 (tx_start_bd->general_data & ETH_TX_START_BD_HDR_NBDS)); 5565 } else if (i == 1) { 5566 if (pbd_e1x) { 5567 BLOGD(sc, DBG_TX, 5568 "-> Prse: %p bd=%d global=0x%x ip_hlen_w=%u " 5569 "ip_id=%u lso_mss=%u tcp_flags=0x%x csum=0x%x " 5570 "tcp_seq=%u total_hlen_w=%u\n", 5571 pbd_e1x, 5572 tmp_bd, 5573 pbd_e1x->global_data, 5574 pbd_e1x->ip_hlen_w, 5575 pbd_e1x->ip_id, 5576 pbd_e1x->lso_mss, 5577 pbd_e1x->tcp_flags, 5578 pbd_e1x->tcp_pseudo_csum, 5579 pbd_e1x->tcp_send_seq, 5580 le16toh(pbd_e1x->total_hlen_w)); 5581 } else { /* if (pbd_e2) */ 5582 BLOGD(sc, DBG_TX, 5583 "-> Parse: %p bd=%d dst=%02x:%02x:%02x " 5584 "src=%02x:%02x:%02x parsing_data=0x%x\n", 5585 pbd_e2, 5586 tmp_bd, 5587 pbd_e2->data.mac_addr.dst_hi, 5588 pbd_e2->data.mac_addr.dst_mid, 5589 pbd_e2->data.mac_addr.dst_lo, 5590 pbd_e2->data.mac_addr.src_hi, 5591 pbd_e2->data.mac_addr.src_mid, 5592 pbd_e2->data.mac_addr.src_lo, 5593 pbd_e2->parsing_data); 5594 } 5595 } 5596 5597 if (i != 1) { /* skip parse db as it doesn't hold data */ 5598 tx_data_bd = &fp->tx_chain[TX_BD(tmp_bd)].reg_bd; 5599 BLOGD(sc, DBG_TX, 5600 "-> Frag: %p bd=%d nbytes=%d hi=0x%x lo: 0x%x\n", 5601 tx_data_bd, 5602 tmp_bd, 5603 le16toh(tx_data_bd->nbytes), 5604 le32toh(tx_data_bd->addr_hi), 5605 le32toh(tx_data_bd->addr_lo)); 5606 } 5607 5608 tmp_bd = TX_BD_NEXT(tmp_bd); 5609 } 5610 } 5611 5612 BLOGD(sc, DBG_TX, "doorbell: nbds=%d bd=%u\n", nbds, bd_prod); 5613 5614 /* update TX BD producer index value for next TX */ 5615 bd_prod = TX_BD_NEXT(bd_prod); 5616 5617 /* 5618 * If the chain of tx_bd's describing this frame is adjacent to or spans 5619 * an eth_tx_next_bd element then we need to increment the nbds value. 5620 */ 5621 if (TX_BD_IDX(bd_prod) < nbds) { 5622 nbds++; 5623 } 5624 5625 /* don't allow reordering of writes for nbd and packets */ 5626 mb(); 5627 5628 fp->tx_db.data.prod += nbds; 5629 5630 /* producer points to the next free tx_bd at this point */ 5631 fp->tx_pkt_prod++; 5632 fp->tx_bd_prod = bd_prod; 5633 5634 DOORBELL(sc, fp->index, fp->tx_db.raw); 5635 5636 fp->eth_q_stats.tx_pkts++; 5637 5638 /* Prevent speculative reads from getting ahead of the status block. */ 5639 bus_space_barrier(sc->bar[BAR0].tag, sc->bar[BAR0].handle, 5640 0, 0, BUS_SPACE_BARRIER_READ); 5641 5642 /* Prevent speculative reads from getting ahead of the doorbell. */ 5643 bus_space_barrier(sc->bar[BAR2].tag, sc->bar[BAR2].handle, 5644 0, 0, BUS_SPACE_BARRIER_READ); 5645 5646 return (0); 5647 } 5648 5649 static void 5650 bxe_tx_start_locked(struct bxe_softc *sc, 5651 if_t ifp, 5652 struct bxe_fastpath *fp) 5653 { 5654 struct mbuf *m = NULL; 5655 int tx_count = 0; 5656 uint16_t tx_bd_avail; 5657 5658 BXE_FP_TX_LOCK_ASSERT(fp); 5659 5660 /* keep adding entries while there are frames to send */ 5661 while (!if_sendq_empty(ifp)) { 5662 5663 /* 5664 * check for any frames to send 5665 * dequeue can still be NULL even if queue is not empty 5666 */ 5667 m = if_dequeue(ifp); 5668 if (__predict_false(m == NULL)) { 5669 break; 5670 } 5671 5672 /* the mbuf now belongs to us */ 5673 fp->eth_q_stats.mbuf_alloc_tx++; 5674 5675 /* 5676 * Put the frame into the transmit ring. If we don't have room, 5677 * place the mbuf back at the head of the TX queue, set the 5678 * OACTIVE flag, and wait for the NIC to drain the chain. 5679 */ 5680 if (__predict_false(bxe_tx_encap(fp, &m))) { 5681 fp->eth_q_stats.tx_encap_failures++; 5682 if (m != NULL) { 5683 /* mark the TX queue as full and return the frame */ 5684 if_setdrvflagbits(ifp, IFF_DRV_OACTIVE, 0); 5685 if_sendq_prepend(ifp, m); 5686 fp->eth_q_stats.mbuf_alloc_tx--; 5687 fp->eth_q_stats.tx_queue_xoff++; 5688 } 5689 5690 /* stop looking for more work */ 5691 break; 5692 } 5693 5694 /* the frame was enqueued successfully */ 5695 tx_count++; 5696 5697 /* send a copy of the frame to any BPF listeners. */ 5698 if_etherbpfmtap(ifp, m); 5699 5700 tx_bd_avail = bxe_tx_avail(sc, fp); 5701 5702 /* handle any completions if we're running low */ 5703 if (tx_bd_avail < BXE_TX_CLEANUP_THRESHOLD) { 5704 /* bxe_txeof will set IFF_DRV_OACTIVE appropriately */ 5705 bxe_txeof(sc, fp); 5706 if (if_getdrvflags(ifp) & IFF_DRV_OACTIVE) { 5707 break; 5708 } 5709 } 5710 } 5711 5712 /* all TX packets were dequeued and/or the tx ring is full */ 5713 if (tx_count > 0) { 5714 /* reset the TX watchdog timeout timer */ 5715 fp->watchdog_timer = BXE_TX_TIMEOUT; 5716 } 5717 } 5718 5719 /* Legacy (non-RSS) dispatch routine */ 5720 static void 5721 bxe_tx_start(if_t ifp) 5722 { 5723 struct bxe_softc *sc; 5724 struct bxe_fastpath *fp; 5725 5726 sc = if_getsoftc(ifp); 5727 5728 if (!(if_getdrvflags(ifp) & IFF_DRV_RUNNING)) { 5729 BLOGW(sc, "Interface not running, ignoring transmit request\n"); 5730 return; 5731 } 5732 5733 if (!sc->link_vars.link_up) { 5734 BLOGW(sc, "Interface link is down, ignoring transmit request\n"); 5735 return; 5736 } 5737 5738 fp = &sc->fp[0]; 5739 5740 if (ifp->if_drv_flags & IFF_DRV_OACTIVE) { 5741 fp->eth_q_stats.tx_queue_full_return++; 5742 return; 5743 } 5744 5745 BXE_FP_TX_LOCK(fp); 5746 bxe_tx_start_locked(sc, ifp, fp); 5747 BXE_FP_TX_UNLOCK(fp); 5748 } 5749 5750 #if __FreeBSD_version >= 800000 5751 5752 static int 5753 bxe_tx_mq_start_locked(struct bxe_softc *sc, 5754 if_t ifp, 5755 struct bxe_fastpath *fp, 5756 struct mbuf *m) 5757 { 5758 struct buf_ring *tx_br = fp->tx_br; 5759 struct mbuf *next; 5760 int depth, rc, tx_count; 5761 uint16_t tx_bd_avail; 5762 5763 rc = tx_count = 0; 5764 5765 BXE_FP_TX_LOCK_ASSERT(fp); 5766 5767 if (!tx_br) { 5768 BLOGE(sc, "Multiqueue TX and no buf_ring!\n"); 5769 return (EINVAL); 5770 } 5771 5772 if (!sc->link_vars.link_up || 5773 (if_getdrvflags(ifp) & 5774 (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) != IFF_DRV_RUNNING) { 5775 rc = drbr_enqueue(ifp, tx_br, m); 5776 goto bxe_tx_mq_start_locked_exit; 5777 } 5778 5779 /* fetch the depth of the driver queue */ 5780 depth = drbr_inuse_drv(ifp, tx_br); 5781 if (depth > fp->eth_q_stats.tx_max_drbr_queue_depth) { 5782 fp->eth_q_stats.tx_max_drbr_queue_depth = depth; 5783 } 5784 5785 if (m == NULL) { 5786 /* no new work, check for pending frames */ 5787 next = drbr_dequeue_drv(ifp, tx_br); 5788 } else if (drbr_needs_enqueue_drv(ifp, tx_br)) { 5789 /* have both new and pending work, maintain packet order */ 5790 rc = drbr_enqueue(ifp, tx_br, m); 5791 if (rc != 0) { 5792 fp->eth_q_stats.tx_soft_errors++; 5793 goto bxe_tx_mq_start_locked_exit; 5794 } 5795 next = drbr_dequeue_drv(ifp, tx_br); 5796 } else { 5797 /* new work only and nothing pending */ 5798 next = m; 5799 } 5800 5801 /* keep adding entries while there are frames to send */ 5802 while (next != NULL) { 5803 5804 /* the mbuf now belongs to us */ 5805 fp->eth_q_stats.mbuf_alloc_tx++; 5806 5807 /* 5808 * Put the frame into the transmit ring. If we don't have room, 5809 * place the mbuf back at the head of the TX queue, set the 5810 * OACTIVE flag, and wait for the NIC to drain the chain. 5811 */ 5812 rc = bxe_tx_encap(fp, &next); 5813 if (__predict_false(rc != 0)) { 5814 fp->eth_q_stats.tx_encap_failures++; 5815 if (next != NULL) { 5816 /* mark the TX queue as full and save the frame */ 5817 if_setdrvflagbits(ifp, IFF_DRV_OACTIVE, 0); 5818 /* XXX this may reorder the frame */ 5819 rc = drbr_enqueue(ifp, tx_br, next); 5820 fp->eth_q_stats.mbuf_alloc_tx--; 5821 fp->eth_q_stats.tx_frames_deferred++; 5822 } 5823 5824 /* stop looking for more work */ 5825 break; 5826 } 5827 5828 /* the transmit frame was enqueued successfully */ 5829 tx_count++; 5830 5831 /* send a copy of the frame to any BPF listeners */ 5832 if_etherbpfmtap(ifp, next); 5833 5834 tx_bd_avail = bxe_tx_avail(sc, fp); 5835 5836 /* handle any completions if we're running low */ 5837 if (tx_bd_avail < BXE_TX_CLEANUP_THRESHOLD) { 5838 /* bxe_txeof will set IFF_DRV_OACTIVE appropriately */ 5839 bxe_txeof(sc, fp); 5840 if (if_getdrvflags(ifp) & IFF_DRV_OACTIVE) { 5841 break; 5842 } 5843 } 5844 5845 next = drbr_dequeue_drv(ifp, tx_br); 5846 } 5847 5848 /* all TX packets were dequeued and/or the tx ring is full */ 5849 if (tx_count > 0) { 5850 /* reset the TX watchdog timeout timer */ 5851 fp->watchdog_timer = BXE_TX_TIMEOUT; 5852 } 5853 5854 bxe_tx_mq_start_locked_exit: 5855 5856 return (rc); 5857 } 5858 5859 /* Multiqueue (TSS) dispatch routine. */ 5860 static int 5861 bxe_tx_mq_start(struct ifnet *ifp, 5862 struct mbuf *m) 5863 { 5864 struct bxe_softc *sc = if_getsoftc(ifp); 5865 struct bxe_fastpath *fp; 5866 int fp_index, rc; 5867 5868 fp_index = 0; /* default is the first queue */ 5869 5870 /* check if flowid is set */ 5871 5872 if (BXE_VALID_FLOWID(m)) 5873 fp_index = (m->m_pkthdr.flowid % sc->num_queues); 5874 5875 fp = &sc->fp[fp_index]; 5876 5877 if (BXE_FP_TX_TRYLOCK(fp)) { 5878 rc = bxe_tx_mq_start_locked(sc, ifp, fp, m); 5879 BXE_FP_TX_UNLOCK(fp); 5880 } else 5881 rc = drbr_enqueue(ifp, fp->tx_br, m); 5882 5883 return (rc); 5884 } 5885 5886 static void 5887 bxe_mq_flush(struct ifnet *ifp) 5888 { 5889 struct bxe_softc *sc = if_getsoftc(ifp); 5890 struct bxe_fastpath *fp; 5891 struct mbuf *m; 5892 int i; 5893 5894 for (i = 0; i < sc->num_queues; i++) { 5895 fp = &sc->fp[i]; 5896 5897 if (fp->state != BXE_FP_STATE_OPEN) { 5898 BLOGD(sc, DBG_LOAD, "Not clearing fp[%02d] buf_ring (state=%d)\n", 5899 fp->index, fp->state); 5900 continue; 5901 } 5902 5903 if (fp->tx_br != NULL) { 5904 BLOGD(sc, DBG_LOAD, "Clearing fp[%02d] buf_ring\n", fp->index); 5905 BXE_FP_TX_LOCK(fp); 5906 while ((m = buf_ring_dequeue_sc(fp->tx_br)) != NULL) { 5907 m_freem(m); 5908 } 5909 BXE_FP_TX_UNLOCK(fp); 5910 } 5911 } 5912 5913 if_qflush(ifp); 5914 } 5915 5916 #endif /* FreeBSD_version >= 800000 */ 5917 5918 static uint16_t 5919 bxe_cid_ilt_lines(struct bxe_softc *sc) 5920 { 5921 if (IS_SRIOV(sc)) { 5922 return ((BXE_FIRST_VF_CID + BXE_VF_CIDS) / ILT_PAGE_CIDS); 5923 } 5924 return (L2_ILT_LINES(sc)); 5925 } 5926 5927 static void 5928 bxe_ilt_set_info(struct bxe_softc *sc) 5929 { 5930 struct ilt_client_info *ilt_client; 5931 struct ecore_ilt *ilt = sc->ilt; 5932 uint16_t line = 0; 5933 5934 ilt->start_line = FUNC_ILT_BASE(SC_FUNC(sc)); 5935 BLOGD(sc, DBG_LOAD, "ilt starts at line %d\n", ilt->start_line); 5936 5937 /* CDU */ 5938 ilt_client = &ilt->clients[ILT_CLIENT_CDU]; 5939 ilt_client->client_num = ILT_CLIENT_CDU; 5940 ilt_client->page_size = CDU_ILT_PAGE_SZ; 5941 ilt_client->flags = ILT_CLIENT_SKIP_MEM; 5942 ilt_client->start = line; 5943 line += bxe_cid_ilt_lines(sc); 5944 5945 if (CNIC_SUPPORT(sc)) { 5946 line += CNIC_ILT_LINES; 5947 } 5948 5949 ilt_client->end = (line - 1); 5950 5951 BLOGD(sc, DBG_LOAD, 5952 "ilt client[CDU]: start %d, end %d, " 5953 "psz 0x%x, flags 0x%x, hw psz %d\n", 5954 ilt_client->start, ilt_client->end, 5955 ilt_client->page_size, 5956 ilt_client->flags, 5957 ilog2(ilt_client->page_size >> 12)); 5958 5959 /* QM */ 5960 if (QM_INIT(sc->qm_cid_count)) { 5961 ilt_client = &ilt->clients[ILT_CLIENT_QM]; 5962 ilt_client->client_num = ILT_CLIENT_QM; 5963 ilt_client->page_size = QM_ILT_PAGE_SZ; 5964 ilt_client->flags = 0; 5965 ilt_client->start = line; 5966 5967 /* 4 bytes for each cid */ 5968 line += DIV_ROUND_UP(sc->qm_cid_count * QM_QUEUES_PER_FUNC * 4, 5969 QM_ILT_PAGE_SZ); 5970 5971 ilt_client->end = (line - 1); 5972 5973 BLOGD(sc, DBG_LOAD, 5974 "ilt client[QM]: start %d, end %d, " 5975 "psz 0x%x, flags 0x%x, hw psz %d\n", 5976 ilt_client->start, ilt_client->end, 5977 ilt_client->page_size, ilt_client->flags, 5978 ilog2(ilt_client->page_size >> 12)); 5979 } 5980 5981 if (CNIC_SUPPORT(sc)) { 5982 /* SRC */ 5983 ilt_client = &ilt->clients[ILT_CLIENT_SRC]; 5984 ilt_client->client_num = ILT_CLIENT_SRC; 5985 ilt_client->page_size = SRC_ILT_PAGE_SZ; 5986 ilt_client->flags = 0; 5987 ilt_client->start = line; 5988 line += SRC_ILT_LINES; 5989 ilt_client->end = (line - 1); 5990 5991 BLOGD(sc, DBG_LOAD, 5992 "ilt client[SRC]: start %d, end %d, " 5993 "psz 0x%x, flags 0x%x, hw psz %d\n", 5994 ilt_client->start, ilt_client->end, 5995 ilt_client->page_size, ilt_client->flags, 5996 ilog2(ilt_client->page_size >> 12)); 5997 5998 /* TM */ 5999 ilt_client = &ilt->clients[ILT_CLIENT_TM]; 6000 ilt_client->client_num = ILT_CLIENT_TM; 6001 ilt_client->page_size = TM_ILT_PAGE_SZ; 6002 ilt_client->flags = 0; 6003 ilt_client->start = line; 6004 line += TM_ILT_LINES; 6005 ilt_client->end = (line - 1); 6006 6007 BLOGD(sc, DBG_LOAD, 6008 "ilt client[TM]: start %d, end %d, " 6009 "psz 0x%x, flags 0x%x, hw psz %d\n", 6010 ilt_client->start, ilt_client->end, 6011 ilt_client->page_size, ilt_client->flags, 6012 ilog2(ilt_client->page_size >> 12)); 6013 } 6014 6015 KASSERT((line <= ILT_MAX_LINES), ("Invalid number of ILT lines!")); 6016 } 6017 6018 static void 6019 bxe_set_fp_rx_buf_size(struct bxe_softc *sc) 6020 { 6021 int i; 6022 uint32_t rx_buf_size; 6023 6024 rx_buf_size = (IP_HEADER_ALIGNMENT_PADDING + ETH_OVERHEAD + sc->mtu); 6025 6026 for (i = 0; i < sc->num_queues; i++) { 6027 if(rx_buf_size <= MCLBYTES){ 6028 sc->fp[i].rx_buf_size = rx_buf_size; 6029 sc->fp[i].mbuf_alloc_size = MCLBYTES; 6030 }else if (rx_buf_size <= MJUMPAGESIZE){ 6031 sc->fp[i].rx_buf_size = rx_buf_size; 6032 sc->fp[i].mbuf_alloc_size = MJUMPAGESIZE; 6033 }else if (rx_buf_size <= (MJUMPAGESIZE + MCLBYTES)){ 6034 sc->fp[i].rx_buf_size = MCLBYTES; 6035 sc->fp[i].mbuf_alloc_size = MCLBYTES; 6036 }else if (rx_buf_size <= (2 * MJUMPAGESIZE)){ 6037 sc->fp[i].rx_buf_size = MJUMPAGESIZE; 6038 sc->fp[i].mbuf_alloc_size = MJUMPAGESIZE; 6039 }else { 6040 sc->fp[i].rx_buf_size = MCLBYTES; 6041 sc->fp[i].mbuf_alloc_size = MCLBYTES; 6042 } 6043 } 6044 } 6045 6046 static int 6047 bxe_alloc_ilt_mem(struct bxe_softc *sc) 6048 { 6049 int rc = 0; 6050 6051 if ((sc->ilt = 6052 (struct ecore_ilt *)malloc(sizeof(struct ecore_ilt), 6053 M_BXE_ILT, 6054 (M_NOWAIT | M_ZERO))) == NULL) { 6055 rc = 1; 6056 } 6057 6058 return (rc); 6059 } 6060 6061 static int 6062 bxe_alloc_ilt_lines_mem(struct bxe_softc *sc) 6063 { 6064 int rc = 0; 6065 6066 if ((sc->ilt->lines = 6067 (struct ilt_line *)malloc((sizeof(struct ilt_line) * ILT_MAX_LINES), 6068 M_BXE_ILT, 6069 (M_NOWAIT | M_ZERO))) == NULL) { 6070 rc = 1; 6071 } 6072 6073 return (rc); 6074 } 6075 6076 static void 6077 bxe_free_ilt_mem(struct bxe_softc *sc) 6078 { 6079 if (sc->ilt != NULL) { 6080 free(sc->ilt, M_BXE_ILT); 6081 sc->ilt = NULL; 6082 } 6083 } 6084 6085 static void 6086 bxe_free_ilt_lines_mem(struct bxe_softc *sc) 6087 { 6088 if (sc->ilt->lines != NULL) { 6089 free(sc->ilt->lines, M_BXE_ILT); 6090 sc->ilt->lines = NULL; 6091 } 6092 } 6093 6094 static void 6095 bxe_free_mem(struct bxe_softc *sc) 6096 { 6097 int i; 6098 6099 for (i = 0; i < L2_ILT_LINES(sc); i++) { 6100 bxe_dma_free(sc, &sc->context[i].vcxt_dma); 6101 sc->context[i].vcxt = NULL; 6102 sc->context[i].size = 0; 6103 } 6104 6105 ecore_ilt_mem_op(sc, ILT_MEMOP_FREE); 6106 6107 bxe_free_ilt_lines_mem(sc); 6108 6109 } 6110 6111 static int 6112 bxe_alloc_mem(struct bxe_softc *sc) 6113 { 6114 int context_size; 6115 int allocated; 6116 int i; 6117 6118 /* 6119 * Allocate memory for CDU context: 6120 * This memory is allocated separately and not in the generic ILT 6121 * functions because CDU differs in few aspects: 6122 * 1. There can be multiple entities allocating memory for context - 6123 * regular L2, CNIC, and SRIOV drivers. Each separately controls 6124 * its own ILT lines. 6125 * 2. Since CDU page-size is not a single 4KB page (which is the case 6126 * for the other ILT clients), to be efficient we want to support 6127 * allocation of sub-page-size in the last entry. 6128 * 3. Context pointers are used by the driver to pass to FW / update 6129 * the context (for the other ILT clients the pointers are used just to 6130 * free the memory during unload). 6131 */ 6132 context_size = (sizeof(union cdu_context) * BXE_L2_CID_COUNT(sc)); 6133 for (i = 0, allocated = 0; allocated < context_size; i++) { 6134 sc->context[i].size = min(CDU_ILT_PAGE_SZ, 6135 (context_size - allocated)); 6136 6137 if (bxe_dma_alloc(sc, sc->context[i].size, 6138 &sc->context[i].vcxt_dma, 6139 "cdu context") != 0) { 6140 bxe_free_mem(sc); 6141 return (-1); 6142 } 6143 6144 sc->context[i].vcxt = 6145 (union cdu_context *)sc->context[i].vcxt_dma.vaddr; 6146 6147 allocated += sc->context[i].size; 6148 } 6149 6150 bxe_alloc_ilt_lines_mem(sc); 6151 6152 BLOGD(sc, DBG_LOAD, "ilt=%p start_line=%u lines=%p\n", 6153 sc->ilt, sc->ilt->start_line, sc->ilt->lines); 6154 { 6155 for (i = 0; i < 4; i++) { 6156 BLOGD(sc, DBG_LOAD, 6157 "c%d page_size=%u start=%u end=%u num=%u flags=0x%x\n", 6158 i, 6159 sc->ilt->clients[i].page_size, 6160 sc->ilt->clients[i].start, 6161 sc->ilt->clients[i].end, 6162 sc->ilt->clients[i].client_num, 6163 sc->ilt->clients[i].flags); 6164 } 6165 } 6166 if (ecore_ilt_mem_op(sc, ILT_MEMOP_ALLOC)) { 6167 BLOGE(sc, "ecore_ilt_mem_op ILT_MEMOP_ALLOC failed\n"); 6168 bxe_free_mem(sc); 6169 return (-1); 6170 } 6171 6172 return (0); 6173 } 6174 6175 static void 6176 bxe_free_rx_bd_chain(struct bxe_fastpath *fp) 6177 { 6178 struct bxe_softc *sc; 6179 int i; 6180 6181 sc = fp->sc; 6182 6183 if (fp->rx_mbuf_tag == NULL) { 6184 return; 6185 } 6186 6187 /* free all mbufs and unload all maps */ 6188 for (i = 0; i < RX_BD_TOTAL; i++) { 6189 if (fp->rx_mbuf_chain[i].m_map != NULL) { 6190 bus_dmamap_sync(fp->rx_mbuf_tag, 6191 fp->rx_mbuf_chain[i].m_map, 6192 BUS_DMASYNC_POSTREAD); 6193 bus_dmamap_unload(fp->rx_mbuf_tag, 6194 fp->rx_mbuf_chain[i].m_map); 6195 } 6196 6197 if (fp->rx_mbuf_chain[i].m != NULL) { 6198 m_freem(fp->rx_mbuf_chain[i].m); 6199 fp->rx_mbuf_chain[i].m = NULL; 6200 fp->eth_q_stats.mbuf_alloc_rx--; 6201 } 6202 } 6203 } 6204 6205 static void 6206 bxe_free_tpa_pool(struct bxe_fastpath *fp) 6207 { 6208 struct bxe_softc *sc; 6209 int i, max_agg_queues; 6210 6211 sc = fp->sc; 6212 6213 if (fp->rx_mbuf_tag == NULL) { 6214 return; 6215 } 6216 6217 max_agg_queues = MAX_AGG_QS(sc); 6218 6219 /* release all mbufs and unload all DMA maps in the TPA pool */ 6220 for (i = 0; i < max_agg_queues; i++) { 6221 if (fp->rx_tpa_info[i].bd.m_map != NULL) { 6222 bus_dmamap_sync(fp->rx_mbuf_tag, 6223 fp->rx_tpa_info[i].bd.m_map, 6224 BUS_DMASYNC_POSTREAD); 6225 bus_dmamap_unload(fp->rx_mbuf_tag, 6226 fp->rx_tpa_info[i].bd.m_map); 6227 } 6228 6229 if (fp->rx_tpa_info[i].bd.m != NULL) { 6230 m_freem(fp->rx_tpa_info[i].bd.m); 6231 fp->rx_tpa_info[i].bd.m = NULL; 6232 fp->eth_q_stats.mbuf_alloc_tpa--; 6233 } 6234 } 6235 } 6236 6237 static void 6238 bxe_free_sge_chain(struct bxe_fastpath *fp) 6239 { 6240 struct bxe_softc *sc; 6241 int i; 6242 6243 sc = fp->sc; 6244 6245 if (fp->rx_sge_mbuf_tag == NULL) { 6246 return; 6247 } 6248 6249 /* rree all mbufs and unload all maps */ 6250 for (i = 0; i < RX_SGE_TOTAL; i++) { 6251 if (fp->rx_sge_mbuf_chain[i].m_map != NULL) { 6252 bus_dmamap_sync(fp->rx_sge_mbuf_tag, 6253 fp->rx_sge_mbuf_chain[i].m_map, 6254 BUS_DMASYNC_POSTREAD); 6255 bus_dmamap_unload(fp->rx_sge_mbuf_tag, 6256 fp->rx_sge_mbuf_chain[i].m_map); 6257 } 6258 6259 if (fp->rx_sge_mbuf_chain[i].m != NULL) { 6260 m_freem(fp->rx_sge_mbuf_chain[i].m); 6261 fp->rx_sge_mbuf_chain[i].m = NULL; 6262 fp->eth_q_stats.mbuf_alloc_sge--; 6263 } 6264 } 6265 } 6266 6267 static void 6268 bxe_free_fp_buffers(struct bxe_softc *sc) 6269 { 6270 struct bxe_fastpath *fp; 6271 int i; 6272 6273 for (i = 0; i < sc->num_queues; i++) { 6274 fp = &sc->fp[i]; 6275 6276 #if __FreeBSD_version >= 800000 6277 if (fp->tx_br != NULL) { 6278 /* just in case bxe_mq_flush() wasn't called */ 6279 if (mtx_initialized(&fp->tx_mtx)) { 6280 struct mbuf *m; 6281 6282 BXE_FP_TX_LOCK(fp); 6283 while ((m = buf_ring_dequeue_sc(fp->tx_br)) != NULL) 6284 m_freem(m); 6285 BXE_FP_TX_UNLOCK(fp); 6286 } 6287 } 6288 #endif 6289 6290 /* free all RX buffers */ 6291 bxe_free_rx_bd_chain(fp); 6292 bxe_free_tpa_pool(fp); 6293 bxe_free_sge_chain(fp); 6294 6295 if (fp->eth_q_stats.mbuf_alloc_rx != 0) { 6296 BLOGE(sc, "failed to claim all rx mbufs (%d left)\n", 6297 fp->eth_q_stats.mbuf_alloc_rx); 6298 } 6299 6300 if (fp->eth_q_stats.mbuf_alloc_sge != 0) { 6301 BLOGE(sc, "failed to claim all sge mbufs (%d left)\n", 6302 fp->eth_q_stats.mbuf_alloc_sge); 6303 } 6304 6305 if (fp->eth_q_stats.mbuf_alloc_tpa != 0) { 6306 BLOGE(sc, "failed to claim all sge mbufs (%d left)\n", 6307 fp->eth_q_stats.mbuf_alloc_tpa); 6308 } 6309 6310 if (fp->eth_q_stats.mbuf_alloc_tx != 0) { 6311 BLOGE(sc, "failed to release tx mbufs (%d left)\n", 6312 fp->eth_q_stats.mbuf_alloc_tx); 6313 } 6314 6315 /* XXX verify all mbufs were reclaimed */ 6316 } 6317 } 6318 6319 static int 6320 bxe_alloc_rx_bd_mbuf(struct bxe_fastpath *fp, 6321 uint16_t prev_index, 6322 uint16_t index) 6323 { 6324 struct bxe_sw_rx_bd *rx_buf; 6325 struct eth_rx_bd *rx_bd; 6326 bus_dma_segment_t segs[1]; 6327 bus_dmamap_t map; 6328 struct mbuf *m; 6329 int nsegs, rc; 6330 6331 rc = 0; 6332 6333 /* allocate the new RX BD mbuf */ 6334 m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, fp->mbuf_alloc_size); 6335 if (__predict_false(m == NULL)) { 6336 fp->eth_q_stats.mbuf_rx_bd_alloc_failed++; 6337 return (ENOBUFS); 6338 } 6339 6340 fp->eth_q_stats.mbuf_alloc_rx++; 6341 6342 /* initialize the mbuf buffer length */ 6343 m->m_pkthdr.len = m->m_len = fp->rx_buf_size; 6344 6345 /* map the mbuf into non-paged pool */ 6346 rc = bus_dmamap_load_mbuf_sg(fp->rx_mbuf_tag, 6347 fp->rx_mbuf_spare_map, 6348 m, segs, &nsegs, BUS_DMA_NOWAIT); 6349 if (__predict_false(rc != 0)) { 6350 fp->eth_q_stats.mbuf_rx_bd_mapping_failed++; 6351 m_freem(m); 6352 fp->eth_q_stats.mbuf_alloc_rx--; 6353 return (rc); 6354 } 6355 6356 /* all mbufs must map to a single segment */ 6357 KASSERT((nsegs == 1), ("Too many segments, %d returned!", nsegs)); 6358 6359 /* release any existing RX BD mbuf mappings */ 6360 6361 if (prev_index != index) { 6362 rx_buf = &fp->rx_mbuf_chain[prev_index]; 6363 6364 if (rx_buf->m_map != NULL) { 6365 bus_dmamap_sync(fp->rx_mbuf_tag, rx_buf->m_map, 6366 BUS_DMASYNC_POSTREAD); 6367 bus_dmamap_unload(fp->rx_mbuf_tag, rx_buf->m_map); 6368 } 6369 6370 /* 6371 * We only get here from bxe_rxeof() when the maximum number 6372 * of rx buffers is less than RX_BD_USABLE. bxe_rxeof() already 6373 * holds the mbuf in the prev_index so it's OK to NULL it out 6374 * here without concern of a memory leak. 6375 */ 6376 fp->rx_mbuf_chain[prev_index].m = NULL; 6377 } 6378 6379 rx_buf = &fp->rx_mbuf_chain[index]; 6380 6381 if (rx_buf->m_map != NULL) { 6382 bus_dmamap_sync(fp->rx_mbuf_tag, rx_buf->m_map, 6383 BUS_DMASYNC_POSTREAD); 6384 bus_dmamap_unload(fp->rx_mbuf_tag, rx_buf->m_map); 6385 } 6386 6387 /* save the mbuf and mapping info for a future packet */ 6388 map = (prev_index != index) ? 6389 fp->rx_mbuf_chain[prev_index].m_map : rx_buf->m_map; 6390 rx_buf->m_map = fp->rx_mbuf_spare_map; 6391 fp->rx_mbuf_spare_map = map; 6392 bus_dmamap_sync(fp->rx_mbuf_tag, rx_buf->m_map, 6393 BUS_DMASYNC_PREREAD); 6394 rx_buf->m = m; 6395 6396 rx_bd = &fp->rx_chain[index]; 6397 rx_bd->addr_hi = htole32(U64_HI(segs[0].ds_addr)); 6398 rx_bd->addr_lo = htole32(U64_LO(segs[0].ds_addr)); 6399 6400 return (rc); 6401 } 6402 6403 static int 6404 bxe_alloc_rx_tpa_mbuf(struct bxe_fastpath *fp, 6405 int queue) 6406 { 6407 struct bxe_sw_tpa_info *tpa_info = &fp->rx_tpa_info[queue]; 6408 bus_dma_segment_t segs[1]; 6409 bus_dmamap_t map; 6410 struct mbuf *m; 6411 int nsegs; 6412 int rc = 0; 6413 6414 /* allocate the new TPA mbuf */ 6415 m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, fp->mbuf_alloc_size); 6416 if (__predict_false(m == NULL)) { 6417 fp->eth_q_stats.mbuf_rx_tpa_alloc_failed++; 6418 return (ENOBUFS); 6419 } 6420 6421 fp->eth_q_stats.mbuf_alloc_tpa++; 6422 6423 /* initialize the mbuf buffer length */ 6424 m->m_pkthdr.len = m->m_len = fp->rx_buf_size; 6425 6426 /* map the mbuf into non-paged pool */ 6427 rc = bus_dmamap_load_mbuf_sg(fp->rx_mbuf_tag, 6428 fp->rx_tpa_info_mbuf_spare_map, 6429 m, segs, &nsegs, BUS_DMA_NOWAIT); 6430 if (__predict_false(rc != 0)) { 6431 fp->eth_q_stats.mbuf_rx_tpa_mapping_failed++; 6432 m_free(m); 6433 fp->eth_q_stats.mbuf_alloc_tpa--; 6434 return (rc); 6435 } 6436 6437 /* all mbufs must map to a single segment */ 6438 KASSERT((nsegs == 1), ("Too many segments, %d returned!", nsegs)); 6439 6440 /* release any existing TPA mbuf mapping */ 6441 if (tpa_info->bd.m_map != NULL) { 6442 bus_dmamap_sync(fp->rx_mbuf_tag, tpa_info->bd.m_map, 6443 BUS_DMASYNC_POSTREAD); 6444 bus_dmamap_unload(fp->rx_mbuf_tag, tpa_info->bd.m_map); 6445 } 6446 6447 /* save the mbuf and mapping info for the TPA mbuf */ 6448 map = tpa_info->bd.m_map; 6449 tpa_info->bd.m_map = fp->rx_tpa_info_mbuf_spare_map; 6450 fp->rx_tpa_info_mbuf_spare_map = map; 6451 bus_dmamap_sync(fp->rx_mbuf_tag, tpa_info->bd.m_map, 6452 BUS_DMASYNC_PREREAD); 6453 tpa_info->bd.m = m; 6454 tpa_info->seg = segs[0]; 6455 6456 return (rc); 6457 } 6458 6459 /* 6460 * Allocate an mbuf and assign it to the receive scatter gather chain. The 6461 * caller must take care to save a copy of the existing mbuf in the SG mbuf 6462 * chain. 6463 */ 6464 static int 6465 bxe_alloc_rx_sge_mbuf(struct bxe_fastpath *fp, 6466 uint16_t index) 6467 { 6468 struct bxe_sw_rx_bd *sge_buf; 6469 struct eth_rx_sge *sge; 6470 bus_dma_segment_t segs[1]; 6471 bus_dmamap_t map; 6472 struct mbuf *m; 6473 int nsegs; 6474 int rc = 0; 6475 6476 /* allocate a new SGE mbuf */ 6477 m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, SGE_PAGE_SIZE); 6478 if (__predict_false(m == NULL)) { 6479 fp->eth_q_stats.mbuf_rx_sge_alloc_failed++; 6480 return (ENOMEM); 6481 } 6482 6483 fp->eth_q_stats.mbuf_alloc_sge++; 6484 6485 /* initialize the mbuf buffer length */ 6486 m->m_pkthdr.len = m->m_len = SGE_PAGE_SIZE; 6487 6488 /* map the SGE mbuf into non-paged pool */ 6489 rc = bus_dmamap_load_mbuf_sg(fp->rx_sge_mbuf_tag, 6490 fp->rx_sge_mbuf_spare_map, 6491 m, segs, &nsegs, BUS_DMA_NOWAIT); 6492 if (__predict_false(rc != 0)) { 6493 fp->eth_q_stats.mbuf_rx_sge_mapping_failed++; 6494 m_freem(m); 6495 fp->eth_q_stats.mbuf_alloc_sge--; 6496 return (rc); 6497 } 6498 6499 /* all mbufs must map to a single segment */ 6500 KASSERT((nsegs == 1), ("Too many segments, %d returned!", nsegs)); 6501 6502 sge_buf = &fp->rx_sge_mbuf_chain[index]; 6503 6504 /* release any existing SGE mbuf mapping */ 6505 if (sge_buf->m_map != NULL) { 6506 bus_dmamap_sync(fp->rx_sge_mbuf_tag, sge_buf->m_map, 6507 BUS_DMASYNC_POSTREAD); 6508 bus_dmamap_unload(fp->rx_sge_mbuf_tag, sge_buf->m_map); 6509 } 6510 6511 /* save the mbuf and mapping info for a future packet */ 6512 map = sge_buf->m_map; 6513 sge_buf->m_map = fp->rx_sge_mbuf_spare_map; 6514 fp->rx_sge_mbuf_spare_map = map; 6515 bus_dmamap_sync(fp->rx_sge_mbuf_tag, sge_buf->m_map, 6516 BUS_DMASYNC_PREREAD); 6517 sge_buf->m = m; 6518 6519 sge = &fp->rx_sge_chain[index]; 6520 sge->addr_hi = htole32(U64_HI(segs[0].ds_addr)); 6521 sge->addr_lo = htole32(U64_LO(segs[0].ds_addr)); 6522 6523 return (rc); 6524 } 6525 6526 static __noinline int 6527 bxe_alloc_fp_buffers(struct bxe_softc *sc) 6528 { 6529 struct bxe_fastpath *fp; 6530 int i, j, rc = 0; 6531 int ring_prod, cqe_ring_prod; 6532 int max_agg_queues; 6533 6534 for (i = 0; i < sc->num_queues; i++) { 6535 fp = &sc->fp[i]; 6536 6537 ring_prod = cqe_ring_prod = 0; 6538 fp->rx_bd_cons = 0; 6539 fp->rx_cq_cons = 0; 6540 6541 /* allocate buffers for the RX BDs in RX BD chain */ 6542 for (j = 0; j < sc->max_rx_bufs; j++) { 6543 rc = bxe_alloc_rx_bd_mbuf(fp, ring_prod, ring_prod); 6544 if (rc != 0) { 6545 BLOGE(sc, "mbuf alloc fail for fp[%02d] rx chain (%d)\n", 6546 i, rc); 6547 goto bxe_alloc_fp_buffers_error; 6548 } 6549 6550 ring_prod = RX_BD_NEXT(ring_prod); 6551 cqe_ring_prod = RCQ_NEXT(cqe_ring_prod); 6552 } 6553 6554 fp->rx_bd_prod = ring_prod; 6555 fp->rx_cq_prod = cqe_ring_prod; 6556 fp->eth_q_stats.rx_calls = fp->eth_q_stats.rx_pkts = 0; 6557 6558 max_agg_queues = MAX_AGG_QS(sc); 6559 6560 fp->tpa_enable = TRUE; 6561 6562 /* fill the TPA pool */ 6563 for (j = 0; j < max_agg_queues; j++) { 6564 rc = bxe_alloc_rx_tpa_mbuf(fp, j); 6565 if (rc != 0) { 6566 BLOGE(sc, "mbuf alloc fail for fp[%02d] TPA queue %d\n", 6567 i, j); 6568 fp->tpa_enable = FALSE; 6569 goto bxe_alloc_fp_buffers_error; 6570 } 6571 6572 fp->rx_tpa_info[j].state = BXE_TPA_STATE_STOP; 6573 } 6574 6575 if (fp->tpa_enable) { 6576 /* fill the RX SGE chain */ 6577 ring_prod = 0; 6578 for (j = 0; j < RX_SGE_USABLE; j++) { 6579 rc = bxe_alloc_rx_sge_mbuf(fp, ring_prod); 6580 if (rc != 0) { 6581 BLOGE(sc, "mbuf alloc fail for fp[%02d] SGE %d\n", 6582 i, ring_prod); 6583 fp->tpa_enable = FALSE; 6584 ring_prod = 0; 6585 goto bxe_alloc_fp_buffers_error; 6586 } 6587 6588 ring_prod = RX_SGE_NEXT(ring_prod); 6589 } 6590 6591 fp->rx_sge_prod = ring_prod; 6592 } 6593 } 6594 6595 return (0); 6596 6597 bxe_alloc_fp_buffers_error: 6598 6599 /* unwind what was already allocated */ 6600 bxe_free_rx_bd_chain(fp); 6601 bxe_free_tpa_pool(fp); 6602 bxe_free_sge_chain(fp); 6603 6604 return (ENOBUFS); 6605 } 6606 6607 static void 6608 bxe_free_fw_stats_mem(struct bxe_softc *sc) 6609 { 6610 bxe_dma_free(sc, &sc->fw_stats_dma); 6611 6612 sc->fw_stats_num = 0; 6613 6614 sc->fw_stats_req_size = 0; 6615 sc->fw_stats_req = NULL; 6616 sc->fw_stats_req_mapping = 0; 6617 6618 sc->fw_stats_data_size = 0; 6619 sc->fw_stats_data = NULL; 6620 sc->fw_stats_data_mapping = 0; 6621 } 6622 6623 static int 6624 bxe_alloc_fw_stats_mem(struct bxe_softc *sc) 6625 { 6626 uint8_t num_queue_stats; 6627 int num_groups; 6628 6629 /* number of queues for statistics is number of eth queues */ 6630 num_queue_stats = BXE_NUM_ETH_QUEUES(sc); 6631 6632 /* 6633 * Total number of FW statistics requests = 6634 * 1 for port stats + 1 for PF stats + num of queues 6635 */ 6636 sc->fw_stats_num = (2 + num_queue_stats); 6637 6638 /* 6639 * Request is built from stats_query_header and an array of 6640 * stats_query_cmd_group each of which contains STATS_QUERY_CMD_COUNT 6641 * rules. The real number or requests is configured in the 6642 * stats_query_header. 6643 */ 6644 num_groups = 6645 ((sc->fw_stats_num / STATS_QUERY_CMD_COUNT) + 6646 ((sc->fw_stats_num % STATS_QUERY_CMD_COUNT) ? 1 : 0)); 6647 6648 BLOGD(sc, DBG_LOAD, "stats fw_stats_num %d num_groups %d\n", 6649 sc->fw_stats_num, num_groups); 6650 6651 sc->fw_stats_req_size = 6652 (sizeof(struct stats_query_header) + 6653 (num_groups * sizeof(struct stats_query_cmd_group))); 6654 6655 /* 6656 * Data for statistics requests + stats_counter. 6657 * stats_counter holds per-STORM counters that are incremented when 6658 * STORM has finished with the current request. Memory for FCoE 6659 * offloaded statistics are counted anyway, even if they will not be sent. 6660 * VF stats are not accounted for here as the data of VF stats is stored 6661 * in memory allocated by the VF, not here. 6662 */ 6663 sc->fw_stats_data_size = 6664 (sizeof(struct stats_counter) + 6665 sizeof(struct per_port_stats) + 6666 sizeof(struct per_pf_stats) + 6667 /* sizeof(struct fcoe_statistics_params) + */ 6668 (sizeof(struct per_queue_stats) * num_queue_stats)); 6669 6670 if (bxe_dma_alloc(sc, (sc->fw_stats_req_size + sc->fw_stats_data_size), 6671 &sc->fw_stats_dma, "fw stats") != 0) { 6672 bxe_free_fw_stats_mem(sc); 6673 return (-1); 6674 } 6675 6676 /* set up the shortcuts */ 6677 6678 sc->fw_stats_req = 6679 (struct bxe_fw_stats_req *)sc->fw_stats_dma.vaddr; 6680 sc->fw_stats_req_mapping = sc->fw_stats_dma.paddr; 6681 6682 sc->fw_stats_data = 6683 (struct bxe_fw_stats_data *)((uint8_t *)sc->fw_stats_dma.vaddr + 6684 sc->fw_stats_req_size); 6685 sc->fw_stats_data_mapping = (sc->fw_stats_dma.paddr + 6686 sc->fw_stats_req_size); 6687 6688 BLOGD(sc, DBG_LOAD, "statistics request base address set to %#jx\n", 6689 (uintmax_t)sc->fw_stats_req_mapping); 6690 6691 BLOGD(sc, DBG_LOAD, "statistics data base address set to %#jx\n", 6692 (uintmax_t)sc->fw_stats_data_mapping); 6693 6694 return (0); 6695 } 6696 6697 /* 6698 * Bits map: 6699 * 0-7 - Engine0 load counter. 6700 * 8-15 - Engine1 load counter. 6701 * 16 - Engine0 RESET_IN_PROGRESS bit. 6702 * 17 - Engine1 RESET_IN_PROGRESS bit. 6703 * 18 - Engine0 ONE_IS_LOADED. Set when there is at least one active 6704 * function on the engine 6705 * 19 - Engine1 ONE_IS_LOADED. 6706 * 20 - Chip reset flow bit. When set none-leader must wait for both engines 6707 * leader to complete (check for both RESET_IN_PROGRESS bits and not 6708 * for just the one belonging to its engine). 6709 */ 6710 #define BXE_RECOVERY_GLOB_REG MISC_REG_GENERIC_POR_1 6711 #define BXE_PATH0_LOAD_CNT_MASK 0x000000ff 6712 #define BXE_PATH0_LOAD_CNT_SHIFT 0 6713 #define BXE_PATH1_LOAD_CNT_MASK 0x0000ff00 6714 #define BXE_PATH1_LOAD_CNT_SHIFT 8 6715 #define BXE_PATH0_RST_IN_PROG_BIT 0x00010000 6716 #define BXE_PATH1_RST_IN_PROG_BIT 0x00020000 6717 #define BXE_GLOBAL_RESET_BIT 0x00040000 6718 6719 /* set the GLOBAL_RESET bit, should be run under rtnl lock */ 6720 static void 6721 bxe_set_reset_global(struct bxe_softc *sc) 6722 { 6723 uint32_t val; 6724 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG); 6725 val = REG_RD(sc, BXE_RECOVERY_GLOB_REG); 6726 REG_WR(sc, BXE_RECOVERY_GLOB_REG, val | BXE_GLOBAL_RESET_BIT); 6727 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG); 6728 } 6729 6730 /* clear the GLOBAL_RESET bit, should be run under rtnl lock */ 6731 static void 6732 bxe_clear_reset_global(struct bxe_softc *sc) 6733 { 6734 uint32_t val; 6735 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG); 6736 val = REG_RD(sc, BXE_RECOVERY_GLOB_REG); 6737 REG_WR(sc, BXE_RECOVERY_GLOB_REG, val & (~BXE_GLOBAL_RESET_BIT)); 6738 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG); 6739 } 6740 6741 /* checks the GLOBAL_RESET bit, should be run under rtnl lock */ 6742 static uint8_t 6743 bxe_reset_is_global(struct bxe_softc *sc) 6744 { 6745 uint32_t val = REG_RD(sc, BXE_RECOVERY_GLOB_REG); 6746 BLOGD(sc, DBG_LOAD, "GLOB_REG=0x%08x\n", val); 6747 return (val & BXE_GLOBAL_RESET_BIT) ? TRUE : FALSE; 6748 } 6749 6750 /* clear RESET_IN_PROGRESS bit for the engine, should be run under rtnl lock */ 6751 static void 6752 bxe_set_reset_done(struct bxe_softc *sc) 6753 { 6754 uint32_t val; 6755 uint32_t bit = SC_PATH(sc) ? BXE_PATH1_RST_IN_PROG_BIT : 6756 BXE_PATH0_RST_IN_PROG_BIT; 6757 6758 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG); 6759 6760 val = REG_RD(sc, BXE_RECOVERY_GLOB_REG); 6761 /* Clear the bit */ 6762 val &= ~bit; 6763 REG_WR(sc, BXE_RECOVERY_GLOB_REG, val); 6764 6765 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG); 6766 } 6767 6768 /* set RESET_IN_PROGRESS for the engine, should be run under rtnl lock */ 6769 static void 6770 bxe_set_reset_in_progress(struct bxe_softc *sc) 6771 { 6772 uint32_t val; 6773 uint32_t bit = SC_PATH(sc) ? BXE_PATH1_RST_IN_PROG_BIT : 6774 BXE_PATH0_RST_IN_PROG_BIT; 6775 6776 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG); 6777 6778 val = REG_RD(sc, BXE_RECOVERY_GLOB_REG); 6779 /* Set the bit */ 6780 val |= bit; 6781 REG_WR(sc, BXE_RECOVERY_GLOB_REG, val); 6782 6783 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG); 6784 } 6785 6786 /* check RESET_IN_PROGRESS bit for an engine, should be run under rtnl lock */ 6787 static uint8_t 6788 bxe_reset_is_done(struct bxe_softc *sc, 6789 int engine) 6790 { 6791 uint32_t val = REG_RD(sc, BXE_RECOVERY_GLOB_REG); 6792 uint32_t bit = engine ? BXE_PATH1_RST_IN_PROG_BIT : 6793 BXE_PATH0_RST_IN_PROG_BIT; 6794 6795 /* return false if bit is set */ 6796 return (val & bit) ? FALSE : TRUE; 6797 } 6798 6799 /* get the load status for an engine, should be run under rtnl lock */ 6800 static uint8_t 6801 bxe_get_load_status(struct bxe_softc *sc, 6802 int engine) 6803 { 6804 uint32_t mask = engine ? BXE_PATH1_LOAD_CNT_MASK : 6805 BXE_PATH0_LOAD_CNT_MASK; 6806 uint32_t shift = engine ? BXE_PATH1_LOAD_CNT_SHIFT : 6807 BXE_PATH0_LOAD_CNT_SHIFT; 6808 uint32_t val = REG_RD(sc, BXE_RECOVERY_GLOB_REG); 6809 6810 BLOGD(sc, DBG_LOAD, "Old value for GLOB_REG=0x%08x\n", val); 6811 6812 val = ((val & mask) >> shift); 6813 6814 BLOGD(sc, DBG_LOAD, "Load mask engine %d = 0x%08x\n", engine, val); 6815 6816 return (val != 0); 6817 } 6818 6819 /* set pf load mark */ 6820 /* XXX needs to be under rtnl lock */ 6821 static void 6822 bxe_set_pf_load(struct bxe_softc *sc) 6823 { 6824 uint32_t val; 6825 uint32_t val1; 6826 uint32_t mask = SC_PATH(sc) ? BXE_PATH1_LOAD_CNT_MASK : 6827 BXE_PATH0_LOAD_CNT_MASK; 6828 uint32_t shift = SC_PATH(sc) ? BXE_PATH1_LOAD_CNT_SHIFT : 6829 BXE_PATH0_LOAD_CNT_SHIFT; 6830 6831 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG); 6832 6833 val = REG_RD(sc, BXE_RECOVERY_GLOB_REG); 6834 BLOGD(sc, DBG_LOAD, "Old value for GLOB_REG=0x%08x\n", val); 6835 6836 /* get the current counter value */ 6837 val1 = ((val & mask) >> shift); 6838 6839 /* set bit of this PF */ 6840 val1 |= (1 << SC_ABS_FUNC(sc)); 6841 6842 /* clear the old value */ 6843 val &= ~mask; 6844 6845 /* set the new one */ 6846 val |= ((val1 << shift) & mask); 6847 6848 REG_WR(sc, BXE_RECOVERY_GLOB_REG, val); 6849 6850 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG); 6851 } 6852 6853 /* clear pf load mark */ 6854 /* XXX needs to be under rtnl lock */ 6855 static uint8_t 6856 bxe_clear_pf_load(struct bxe_softc *sc) 6857 { 6858 uint32_t val1, val; 6859 uint32_t mask = SC_PATH(sc) ? BXE_PATH1_LOAD_CNT_MASK : 6860 BXE_PATH0_LOAD_CNT_MASK; 6861 uint32_t shift = SC_PATH(sc) ? BXE_PATH1_LOAD_CNT_SHIFT : 6862 BXE_PATH0_LOAD_CNT_SHIFT; 6863 6864 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG); 6865 val = REG_RD(sc, BXE_RECOVERY_GLOB_REG); 6866 BLOGD(sc, DBG_LOAD, "Old GEN_REG_VAL=0x%08x\n", val); 6867 6868 /* get the current counter value */ 6869 val1 = (val & mask) >> shift; 6870 6871 /* clear bit of that PF */ 6872 val1 &= ~(1 << SC_ABS_FUNC(sc)); 6873 6874 /* clear the old value */ 6875 val &= ~mask; 6876 6877 /* set the new one */ 6878 val |= ((val1 << shift) & mask); 6879 6880 REG_WR(sc, BXE_RECOVERY_GLOB_REG, val); 6881 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG); 6882 return (val1 != 0); 6883 } 6884 6885 /* send load requrest to mcp and analyze response */ 6886 static int 6887 bxe_nic_load_request(struct bxe_softc *sc, 6888 uint32_t *load_code) 6889 { 6890 /* init fw_seq */ 6891 sc->fw_seq = 6892 (SHMEM_RD(sc, func_mb[SC_FW_MB_IDX(sc)].drv_mb_header) & 6893 DRV_MSG_SEQ_NUMBER_MASK); 6894 6895 BLOGD(sc, DBG_LOAD, "initial fw_seq 0x%04x\n", sc->fw_seq); 6896 6897 /* get the current FW pulse sequence */ 6898 sc->fw_drv_pulse_wr_seq = 6899 (SHMEM_RD(sc, func_mb[SC_FW_MB_IDX(sc)].drv_pulse_mb) & 6900 DRV_PULSE_SEQ_MASK); 6901 6902 BLOGD(sc, DBG_LOAD, "initial drv_pulse 0x%04x\n", 6903 sc->fw_drv_pulse_wr_seq); 6904 6905 /* load request */ 6906 (*load_code) = bxe_fw_command(sc, DRV_MSG_CODE_LOAD_REQ, 6907 DRV_MSG_CODE_LOAD_REQ_WITH_LFA); 6908 6909 /* if the MCP fails to respond we must abort */ 6910 if (!(*load_code)) { 6911 BLOGE(sc, "MCP response failure!\n"); 6912 return (-1); 6913 } 6914 6915 /* if MCP refused then must abort */ 6916 if ((*load_code) == FW_MSG_CODE_DRV_LOAD_REFUSED) { 6917 BLOGE(sc, "MCP refused load request\n"); 6918 return (-1); 6919 } 6920 6921 return (0); 6922 } 6923 6924 /* 6925 * Check whether another PF has already loaded FW to chip. In virtualized 6926 * environments a pf from anoth VM may have already initialized the device 6927 * including loading FW. 6928 */ 6929 static int 6930 bxe_nic_load_analyze_req(struct bxe_softc *sc, 6931 uint32_t load_code) 6932 { 6933 uint32_t my_fw, loaded_fw; 6934 6935 /* is another pf loaded on this engine? */ 6936 if ((load_code != FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) && 6937 (load_code != FW_MSG_CODE_DRV_LOAD_COMMON)) { 6938 /* build my FW version dword */ 6939 my_fw = (BCM_5710_FW_MAJOR_VERSION + 6940 (BCM_5710_FW_MINOR_VERSION << 8 ) + 6941 (BCM_5710_FW_REVISION_VERSION << 16) + 6942 (BCM_5710_FW_ENGINEERING_VERSION << 24)); 6943 6944 /* read loaded FW from chip */ 6945 loaded_fw = REG_RD(sc, XSEM_REG_PRAM); 6946 BLOGD(sc, DBG_LOAD, "loaded FW 0x%08x / my FW 0x%08x\n", 6947 loaded_fw, my_fw); 6948 6949 /* abort nic load if version mismatch */ 6950 if (my_fw != loaded_fw) { 6951 BLOGE(sc, "FW 0x%08x already loaded (mine is 0x%08x)", 6952 loaded_fw, my_fw); 6953 return (-1); 6954 } 6955 } 6956 6957 return (0); 6958 } 6959 6960 /* mark PMF if applicable */ 6961 static void 6962 bxe_nic_load_pmf(struct bxe_softc *sc, 6963 uint32_t load_code) 6964 { 6965 uint32_t ncsi_oem_data_addr; 6966 6967 if ((load_code == FW_MSG_CODE_DRV_LOAD_COMMON) || 6968 (load_code == FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) || 6969 (load_code == FW_MSG_CODE_DRV_LOAD_PORT)) { 6970 /* 6971 * Barrier here for ordering between the writing to sc->port.pmf here 6972 * and reading it from the periodic task. 6973 */ 6974 sc->port.pmf = 1; 6975 mb(); 6976 } else { 6977 sc->port.pmf = 0; 6978 } 6979 6980 BLOGD(sc, DBG_LOAD, "pmf %d\n", sc->port.pmf); 6981 6982 /* XXX needed? */ 6983 if (load_code == FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) { 6984 if (SHMEM2_HAS(sc, ncsi_oem_data_addr)) { 6985 ncsi_oem_data_addr = SHMEM2_RD(sc, ncsi_oem_data_addr); 6986 if (ncsi_oem_data_addr) { 6987 REG_WR(sc, 6988 (ncsi_oem_data_addr + 6989 offsetof(struct glob_ncsi_oem_data, driver_version)), 6990 0); 6991 } 6992 } 6993 } 6994 } 6995 6996 static void 6997 bxe_read_mf_cfg(struct bxe_softc *sc) 6998 { 6999 int n = (CHIP_IS_MODE_4_PORT(sc) ? 2 : 1); 7000 int abs_func; 7001 int vn; 7002 7003 if (BXE_NOMCP(sc)) { 7004 return; /* what should be the default bvalue in this case */ 7005 } 7006 7007 /* 7008 * The formula for computing the absolute function number is... 7009 * For 2 port configuration (4 functions per port): 7010 * abs_func = 2 * vn + SC_PORT + SC_PATH 7011 * For 4 port configuration (2 functions per port): 7012 * abs_func = 4 * vn + 2 * SC_PORT + SC_PATH 7013 */ 7014 for (vn = VN_0; vn < SC_MAX_VN_NUM(sc); vn++) { 7015 abs_func = (n * (2 * vn + SC_PORT(sc)) + SC_PATH(sc)); 7016 if (abs_func >= E1H_FUNC_MAX) { 7017 break; 7018 } 7019 sc->devinfo.mf_info.mf_config[vn] = 7020 MFCFG_RD(sc, func_mf_config[abs_func].config); 7021 } 7022 7023 if (sc->devinfo.mf_info.mf_config[SC_VN(sc)] & 7024 FUNC_MF_CFG_FUNC_DISABLED) { 7025 BLOGD(sc, DBG_LOAD, "mf_cfg function disabled\n"); 7026 sc->flags |= BXE_MF_FUNC_DIS; 7027 } else { 7028 BLOGD(sc, DBG_LOAD, "mf_cfg function enabled\n"); 7029 sc->flags &= ~BXE_MF_FUNC_DIS; 7030 } 7031 } 7032 7033 /* acquire split MCP access lock register */ 7034 static int bxe_acquire_alr(struct bxe_softc *sc) 7035 { 7036 uint32_t j, val; 7037 7038 for (j = 0; j < 1000; j++) { 7039 val = (1UL << 31); 7040 REG_WR(sc, GRCBASE_MCP + 0x9c, val); 7041 val = REG_RD(sc, GRCBASE_MCP + 0x9c); 7042 if (val & (1L << 31)) 7043 break; 7044 7045 DELAY(5000); 7046 } 7047 7048 if (!(val & (1L << 31))) { 7049 BLOGE(sc, "Cannot acquire MCP access lock register\n"); 7050 return (-1); 7051 } 7052 7053 return (0); 7054 } 7055 7056 /* release split MCP access lock register */ 7057 static void bxe_release_alr(struct bxe_softc *sc) 7058 { 7059 REG_WR(sc, GRCBASE_MCP + 0x9c, 0); 7060 } 7061 7062 static void 7063 bxe_fan_failure(struct bxe_softc *sc) 7064 { 7065 int port = SC_PORT(sc); 7066 uint32_t ext_phy_config; 7067 7068 /* mark the failure */ 7069 ext_phy_config = 7070 SHMEM_RD(sc, dev_info.port_hw_config[port].external_phy_config); 7071 7072 ext_phy_config &= ~PORT_HW_CFG_XGXS_EXT_PHY_TYPE_MASK; 7073 ext_phy_config |= PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE; 7074 SHMEM_WR(sc, dev_info.port_hw_config[port].external_phy_config, 7075 ext_phy_config); 7076 7077 /* log the failure */ 7078 BLOGW(sc, "Fan Failure has caused the driver to shutdown " 7079 "the card to prevent permanent damage. " 7080 "Please contact OEM Support for assistance\n"); 7081 7082 /* XXX */ 7083 #if 1 7084 bxe_panic(sc, ("Schedule task to handle fan failure\n")); 7085 #else 7086 /* 7087 * Schedule device reset (unload) 7088 * This is due to some boards consuming sufficient power when driver is 7089 * up to overheat if fan fails. 7090 */ 7091 bxe_set_bit(BXE_SP_RTNL_FAN_FAILURE, &sc->sp_rtnl_state); 7092 schedule_delayed_work(&sc->sp_rtnl_task, 0); 7093 #endif 7094 } 7095 7096 /* this function is called upon a link interrupt */ 7097 static void 7098 bxe_link_attn(struct bxe_softc *sc) 7099 { 7100 uint32_t pause_enabled = 0; 7101 struct host_port_stats *pstats; 7102 int cmng_fns; 7103 7104 /* Make sure that we are synced with the current statistics */ 7105 bxe_stats_handle(sc, STATS_EVENT_STOP); 7106 7107 elink_link_update(&sc->link_params, &sc->link_vars); 7108 7109 if (sc->link_vars.link_up) { 7110 7111 /* dropless flow control */ 7112 if (!CHIP_IS_E1(sc) && sc->dropless_fc) { 7113 pause_enabled = 0; 7114 7115 if (sc->link_vars.flow_ctrl & ELINK_FLOW_CTRL_TX) { 7116 pause_enabled = 1; 7117 } 7118 7119 REG_WR(sc, 7120 (BAR_USTRORM_INTMEM + 7121 USTORM_ETH_PAUSE_ENABLED_OFFSET(SC_PORT(sc))), 7122 pause_enabled); 7123 } 7124 7125 if (sc->link_vars.mac_type != ELINK_MAC_TYPE_EMAC) { 7126 pstats = BXE_SP(sc, port_stats); 7127 /* reset old mac stats */ 7128 memset(&(pstats->mac_stx[0]), 0, sizeof(struct mac_stx)); 7129 } 7130 7131 if (sc->state == BXE_STATE_OPEN) { 7132 bxe_stats_handle(sc, STATS_EVENT_LINK_UP); 7133 } 7134 } 7135 7136 if (sc->link_vars.link_up && sc->link_vars.line_speed) { 7137 cmng_fns = bxe_get_cmng_fns_mode(sc); 7138 7139 if (cmng_fns != CMNG_FNS_NONE) { 7140 bxe_cmng_fns_init(sc, FALSE, cmng_fns); 7141 storm_memset_cmng(sc, &sc->cmng, SC_PORT(sc)); 7142 } else { 7143 /* rate shaping and fairness are disabled */ 7144 BLOGD(sc, DBG_LOAD, "single function mode without fairness\n"); 7145 } 7146 } 7147 7148 bxe_link_report_locked(sc); 7149 7150 if (IS_MF(sc)) { 7151 ; // XXX bxe_link_sync_notify(sc); 7152 } 7153 } 7154 7155 static void 7156 bxe_attn_int_asserted(struct bxe_softc *sc, 7157 uint32_t asserted) 7158 { 7159 int port = SC_PORT(sc); 7160 uint32_t aeu_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 : 7161 MISC_REG_AEU_MASK_ATTN_FUNC_0; 7162 uint32_t nig_int_mask_addr = port ? NIG_REG_MASK_INTERRUPT_PORT1 : 7163 NIG_REG_MASK_INTERRUPT_PORT0; 7164 uint32_t aeu_mask; 7165 uint32_t nig_mask = 0; 7166 uint32_t reg_addr; 7167 uint32_t igu_acked; 7168 uint32_t cnt; 7169 7170 if (sc->attn_state & asserted) { 7171 BLOGE(sc, "IGU ERROR attn=0x%08x\n", asserted); 7172 } 7173 7174 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port); 7175 7176 aeu_mask = REG_RD(sc, aeu_addr); 7177 7178 BLOGD(sc, DBG_INTR, "aeu_mask 0x%08x newly asserted 0x%08x\n", 7179 aeu_mask, asserted); 7180 7181 aeu_mask &= ~(asserted & 0x3ff); 7182 7183 BLOGD(sc, DBG_INTR, "new mask 0x%08x\n", aeu_mask); 7184 7185 REG_WR(sc, aeu_addr, aeu_mask); 7186 7187 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port); 7188 7189 BLOGD(sc, DBG_INTR, "attn_state 0x%08x\n", sc->attn_state); 7190 sc->attn_state |= asserted; 7191 BLOGD(sc, DBG_INTR, "new state 0x%08x\n", sc->attn_state); 7192 7193 if (asserted & ATTN_HARD_WIRED_MASK) { 7194 if (asserted & ATTN_NIG_FOR_FUNC) { 7195 7196 bxe_acquire_phy_lock(sc); 7197 /* save nig interrupt mask */ 7198 nig_mask = REG_RD(sc, nig_int_mask_addr); 7199 7200 /* If nig_mask is not set, no need to call the update function */ 7201 if (nig_mask) { 7202 REG_WR(sc, nig_int_mask_addr, 0); 7203 7204 bxe_link_attn(sc); 7205 } 7206 7207 /* handle unicore attn? */ 7208 } 7209 7210 if (asserted & ATTN_SW_TIMER_4_FUNC) { 7211 BLOGD(sc, DBG_INTR, "ATTN_SW_TIMER_4_FUNC!\n"); 7212 } 7213 7214 if (asserted & GPIO_2_FUNC) { 7215 BLOGD(sc, DBG_INTR, "GPIO_2_FUNC!\n"); 7216 } 7217 7218 if (asserted & GPIO_3_FUNC) { 7219 BLOGD(sc, DBG_INTR, "GPIO_3_FUNC!\n"); 7220 } 7221 7222 if (asserted & GPIO_4_FUNC) { 7223 BLOGD(sc, DBG_INTR, "GPIO_4_FUNC!\n"); 7224 } 7225 7226 if (port == 0) { 7227 if (asserted & ATTN_GENERAL_ATTN_1) { 7228 BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_1!\n"); 7229 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_1, 0x0); 7230 } 7231 if (asserted & ATTN_GENERAL_ATTN_2) { 7232 BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_2!\n"); 7233 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_2, 0x0); 7234 } 7235 if (asserted & ATTN_GENERAL_ATTN_3) { 7236 BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_3!\n"); 7237 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_3, 0x0); 7238 } 7239 } else { 7240 if (asserted & ATTN_GENERAL_ATTN_4) { 7241 BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_4!\n"); 7242 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_4, 0x0); 7243 } 7244 if (asserted & ATTN_GENERAL_ATTN_5) { 7245 BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_5!\n"); 7246 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_5, 0x0); 7247 } 7248 if (asserted & ATTN_GENERAL_ATTN_6) { 7249 BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_6!\n"); 7250 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_6, 0x0); 7251 } 7252 } 7253 } /* hardwired */ 7254 7255 if (sc->devinfo.int_block == INT_BLOCK_HC) { 7256 reg_addr = (HC_REG_COMMAND_REG + port*32 + COMMAND_REG_ATTN_BITS_SET); 7257 } else { 7258 reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_SET_UPPER*8); 7259 } 7260 7261 BLOGD(sc, DBG_INTR, "about to mask 0x%08x at %s addr 0x%08x\n", 7262 asserted, 7263 (sc->devinfo.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr); 7264 REG_WR(sc, reg_addr, asserted); 7265 7266 /* now set back the mask */ 7267 if (asserted & ATTN_NIG_FOR_FUNC) { 7268 /* 7269 * Verify that IGU ack through BAR was written before restoring 7270 * NIG mask. This loop should exit after 2-3 iterations max. 7271 */ 7272 if (sc->devinfo.int_block != INT_BLOCK_HC) { 7273 cnt = 0; 7274 7275 do { 7276 igu_acked = REG_RD(sc, IGU_REG_ATTENTION_ACK_BITS); 7277 } while (((igu_acked & ATTN_NIG_FOR_FUNC) == 0) && 7278 (++cnt < MAX_IGU_ATTN_ACK_TO)); 7279 7280 if (!igu_acked) { 7281 BLOGE(sc, "Failed to verify IGU ack on time\n"); 7282 } 7283 7284 mb(); 7285 } 7286 7287 REG_WR(sc, nig_int_mask_addr, nig_mask); 7288 7289 bxe_release_phy_lock(sc); 7290 } 7291 } 7292 7293 static void 7294 bxe_print_next_block(struct bxe_softc *sc, 7295 int idx, 7296 const char *blk) 7297 { 7298 BLOGI(sc, "%s%s", idx ? ", " : "", blk); 7299 } 7300 7301 static int 7302 bxe_check_blocks_with_parity0(struct bxe_softc *sc, 7303 uint32_t sig, 7304 int par_num, 7305 uint8_t print) 7306 { 7307 uint32_t cur_bit = 0; 7308 int i = 0; 7309 7310 for (i = 0; sig; i++) { 7311 cur_bit = ((uint32_t)0x1 << i); 7312 if (sig & cur_bit) { 7313 switch (cur_bit) { 7314 case AEU_INPUTS_ATTN_BITS_BRB_PARITY_ERROR: 7315 if (print) 7316 bxe_print_next_block(sc, par_num++, "BRB"); 7317 break; 7318 case AEU_INPUTS_ATTN_BITS_PARSER_PARITY_ERROR: 7319 if (print) 7320 bxe_print_next_block(sc, par_num++, "PARSER"); 7321 break; 7322 case AEU_INPUTS_ATTN_BITS_TSDM_PARITY_ERROR: 7323 if (print) 7324 bxe_print_next_block(sc, par_num++, "TSDM"); 7325 break; 7326 case AEU_INPUTS_ATTN_BITS_SEARCHER_PARITY_ERROR: 7327 if (print) 7328 bxe_print_next_block(sc, par_num++, "SEARCHER"); 7329 break; 7330 case AEU_INPUTS_ATTN_BITS_TCM_PARITY_ERROR: 7331 if (print) 7332 bxe_print_next_block(sc, par_num++, "TCM"); 7333 break; 7334 case AEU_INPUTS_ATTN_BITS_TSEMI_PARITY_ERROR: 7335 if (print) 7336 bxe_print_next_block(sc, par_num++, "TSEMI"); 7337 break; 7338 case AEU_INPUTS_ATTN_BITS_PBCLIENT_PARITY_ERROR: 7339 if (print) 7340 bxe_print_next_block(sc, par_num++, "XPB"); 7341 break; 7342 } 7343 7344 /* Clear the bit */ 7345 sig &= ~cur_bit; 7346 } 7347 } 7348 7349 return (par_num); 7350 } 7351 7352 static int 7353 bxe_check_blocks_with_parity1(struct bxe_softc *sc, 7354 uint32_t sig, 7355 int par_num, 7356 uint8_t *global, 7357 uint8_t print) 7358 { 7359 int i = 0; 7360 uint32_t cur_bit = 0; 7361 for (i = 0; sig; i++) { 7362 cur_bit = ((uint32_t)0x1 << i); 7363 if (sig & cur_bit) { 7364 switch (cur_bit) { 7365 case AEU_INPUTS_ATTN_BITS_PBF_PARITY_ERROR: 7366 if (print) 7367 bxe_print_next_block(sc, par_num++, "PBF"); 7368 break; 7369 case AEU_INPUTS_ATTN_BITS_QM_PARITY_ERROR: 7370 if (print) 7371 bxe_print_next_block(sc, par_num++, "QM"); 7372 break; 7373 case AEU_INPUTS_ATTN_BITS_TIMERS_PARITY_ERROR: 7374 if (print) 7375 bxe_print_next_block(sc, par_num++, "TM"); 7376 break; 7377 case AEU_INPUTS_ATTN_BITS_XSDM_PARITY_ERROR: 7378 if (print) 7379 bxe_print_next_block(sc, par_num++, "XSDM"); 7380 break; 7381 case AEU_INPUTS_ATTN_BITS_XCM_PARITY_ERROR: 7382 if (print) 7383 bxe_print_next_block(sc, par_num++, "XCM"); 7384 break; 7385 case AEU_INPUTS_ATTN_BITS_XSEMI_PARITY_ERROR: 7386 if (print) 7387 bxe_print_next_block(sc, par_num++, "XSEMI"); 7388 break; 7389 case AEU_INPUTS_ATTN_BITS_DOORBELLQ_PARITY_ERROR: 7390 if (print) 7391 bxe_print_next_block(sc, par_num++, "DOORBELLQ"); 7392 break; 7393 case AEU_INPUTS_ATTN_BITS_NIG_PARITY_ERROR: 7394 if (print) 7395 bxe_print_next_block(sc, par_num++, "NIG"); 7396 break; 7397 case AEU_INPUTS_ATTN_BITS_VAUX_PCI_CORE_PARITY_ERROR: 7398 if (print) 7399 bxe_print_next_block(sc, par_num++, "VAUX PCI CORE"); 7400 *global = TRUE; 7401 break; 7402 case AEU_INPUTS_ATTN_BITS_DEBUG_PARITY_ERROR: 7403 if (print) 7404 bxe_print_next_block(sc, par_num++, "DEBUG"); 7405 break; 7406 case AEU_INPUTS_ATTN_BITS_USDM_PARITY_ERROR: 7407 if (print) 7408 bxe_print_next_block(sc, par_num++, "USDM"); 7409 break; 7410 case AEU_INPUTS_ATTN_BITS_UCM_PARITY_ERROR: 7411 if (print) 7412 bxe_print_next_block(sc, par_num++, "UCM"); 7413 break; 7414 case AEU_INPUTS_ATTN_BITS_USEMI_PARITY_ERROR: 7415 if (print) 7416 bxe_print_next_block(sc, par_num++, "USEMI"); 7417 break; 7418 case AEU_INPUTS_ATTN_BITS_UPB_PARITY_ERROR: 7419 if (print) 7420 bxe_print_next_block(sc, par_num++, "UPB"); 7421 break; 7422 case AEU_INPUTS_ATTN_BITS_CSDM_PARITY_ERROR: 7423 if (print) 7424 bxe_print_next_block(sc, par_num++, "CSDM"); 7425 break; 7426 case AEU_INPUTS_ATTN_BITS_CCM_PARITY_ERROR: 7427 if (print) 7428 bxe_print_next_block(sc, par_num++, "CCM"); 7429 break; 7430 } 7431 7432 /* Clear the bit */ 7433 sig &= ~cur_bit; 7434 } 7435 } 7436 7437 return (par_num); 7438 } 7439 7440 static int 7441 bxe_check_blocks_with_parity2(struct bxe_softc *sc, 7442 uint32_t sig, 7443 int par_num, 7444 uint8_t print) 7445 { 7446 uint32_t cur_bit = 0; 7447 int i = 0; 7448 7449 for (i = 0; sig; i++) { 7450 cur_bit = ((uint32_t)0x1 << i); 7451 if (sig & cur_bit) { 7452 switch (cur_bit) { 7453 case AEU_INPUTS_ATTN_BITS_CSEMI_PARITY_ERROR: 7454 if (print) 7455 bxe_print_next_block(sc, par_num++, "CSEMI"); 7456 break; 7457 case AEU_INPUTS_ATTN_BITS_PXP_PARITY_ERROR: 7458 if (print) 7459 bxe_print_next_block(sc, par_num++, "PXP"); 7460 break; 7461 case AEU_IN_ATTN_BITS_PXPPCICLOCKCLIENT_PARITY_ERROR: 7462 if (print) 7463 bxe_print_next_block(sc, par_num++, "PXPPCICLOCKCLIENT"); 7464 break; 7465 case AEU_INPUTS_ATTN_BITS_CFC_PARITY_ERROR: 7466 if (print) 7467 bxe_print_next_block(sc, par_num++, "CFC"); 7468 break; 7469 case AEU_INPUTS_ATTN_BITS_CDU_PARITY_ERROR: 7470 if (print) 7471 bxe_print_next_block(sc, par_num++, "CDU"); 7472 break; 7473 case AEU_INPUTS_ATTN_BITS_DMAE_PARITY_ERROR: 7474 if (print) 7475 bxe_print_next_block(sc, par_num++, "DMAE"); 7476 break; 7477 case AEU_INPUTS_ATTN_BITS_IGU_PARITY_ERROR: 7478 if (print) 7479 bxe_print_next_block(sc, par_num++, "IGU"); 7480 break; 7481 case AEU_INPUTS_ATTN_BITS_MISC_PARITY_ERROR: 7482 if (print) 7483 bxe_print_next_block(sc, par_num++, "MISC"); 7484 break; 7485 } 7486 7487 /* Clear the bit */ 7488 sig &= ~cur_bit; 7489 } 7490 } 7491 7492 return (par_num); 7493 } 7494 7495 static int 7496 bxe_check_blocks_with_parity3(struct bxe_softc *sc, 7497 uint32_t sig, 7498 int par_num, 7499 uint8_t *global, 7500 uint8_t print) 7501 { 7502 uint32_t cur_bit = 0; 7503 int i = 0; 7504 7505 for (i = 0; sig; i++) { 7506 cur_bit = ((uint32_t)0x1 << i); 7507 if (sig & cur_bit) { 7508 switch (cur_bit) { 7509 case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_ROM_PARITY: 7510 if (print) 7511 bxe_print_next_block(sc, par_num++, "MCP ROM"); 7512 *global = TRUE; 7513 break; 7514 case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_RX_PARITY: 7515 if (print) 7516 bxe_print_next_block(sc, par_num++, 7517 "MCP UMP RX"); 7518 *global = TRUE; 7519 break; 7520 case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_TX_PARITY: 7521 if (print) 7522 bxe_print_next_block(sc, par_num++, 7523 "MCP UMP TX"); 7524 *global = TRUE; 7525 break; 7526 case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY: 7527 if (print) 7528 bxe_print_next_block(sc, par_num++, 7529 "MCP SCPAD"); 7530 *global = TRUE; 7531 break; 7532 } 7533 7534 /* Clear the bit */ 7535 sig &= ~cur_bit; 7536 } 7537 } 7538 7539 return (par_num); 7540 } 7541 7542 static int 7543 bxe_check_blocks_with_parity4(struct bxe_softc *sc, 7544 uint32_t sig, 7545 int par_num, 7546 uint8_t print) 7547 { 7548 uint32_t cur_bit = 0; 7549 int i = 0; 7550 7551 for (i = 0; sig; i++) { 7552 cur_bit = ((uint32_t)0x1 << i); 7553 if (sig & cur_bit) { 7554 switch (cur_bit) { 7555 case AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR: 7556 if (print) 7557 bxe_print_next_block(sc, par_num++, "PGLUE_B"); 7558 break; 7559 case AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR: 7560 if (print) 7561 bxe_print_next_block(sc, par_num++, "ATC"); 7562 break; 7563 } 7564 7565 /* Clear the bit */ 7566 sig &= ~cur_bit; 7567 } 7568 } 7569 7570 return (par_num); 7571 } 7572 7573 static uint8_t 7574 bxe_parity_attn(struct bxe_softc *sc, 7575 uint8_t *global, 7576 uint8_t print, 7577 uint32_t *sig) 7578 { 7579 int par_num = 0; 7580 7581 if ((sig[0] & HW_PRTY_ASSERT_SET_0) || 7582 (sig[1] & HW_PRTY_ASSERT_SET_1) || 7583 (sig[2] & HW_PRTY_ASSERT_SET_2) || 7584 (sig[3] & HW_PRTY_ASSERT_SET_3) || 7585 (sig[4] & HW_PRTY_ASSERT_SET_4)) { 7586 BLOGE(sc, "Parity error: HW block parity attention:\n" 7587 "[0]:0x%08x [1]:0x%08x [2]:0x%08x [3]:0x%08x [4]:0x%08x\n", 7588 (uint32_t)(sig[0] & HW_PRTY_ASSERT_SET_0), 7589 (uint32_t)(sig[1] & HW_PRTY_ASSERT_SET_1), 7590 (uint32_t)(sig[2] & HW_PRTY_ASSERT_SET_2), 7591 (uint32_t)(sig[3] & HW_PRTY_ASSERT_SET_3), 7592 (uint32_t)(sig[4] & HW_PRTY_ASSERT_SET_4)); 7593 7594 if (print) 7595 BLOGI(sc, "Parity errors detected in blocks: "); 7596 7597 par_num = 7598 bxe_check_blocks_with_parity0(sc, sig[0] & 7599 HW_PRTY_ASSERT_SET_0, 7600 par_num, print); 7601 par_num = 7602 bxe_check_blocks_with_parity1(sc, sig[1] & 7603 HW_PRTY_ASSERT_SET_1, 7604 par_num, global, print); 7605 par_num = 7606 bxe_check_blocks_with_parity2(sc, sig[2] & 7607 HW_PRTY_ASSERT_SET_2, 7608 par_num, print); 7609 par_num = 7610 bxe_check_blocks_with_parity3(sc, sig[3] & 7611 HW_PRTY_ASSERT_SET_3, 7612 par_num, global, print); 7613 par_num = 7614 bxe_check_blocks_with_parity4(sc, sig[4] & 7615 HW_PRTY_ASSERT_SET_4, 7616 par_num, print); 7617 7618 if (print) 7619 BLOGI(sc, "\n"); 7620 7621 return (TRUE); 7622 } 7623 7624 return (FALSE); 7625 } 7626 7627 static uint8_t 7628 bxe_chk_parity_attn(struct bxe_softc *sc, 7629 uint8_t *global, 7630 uint8_t print) 7631 { 7632 struct attn_route attn = { {0} }; 7633 int port = SC_PORT(sc); 7634 7635 attn.sig[0] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + port*4); 7636 attn.sig[1] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 + port*4); 7637 attn.sig[2] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 + port*4); 7638 attn.sig[3] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 + port*4); 7639 7640 /* 7641 * Since MCP attentions can't be disabled inside the block, we need to 7642 * read AEU registers to see whether they're currently disabled 7643 */ 7644 attn.sig[3] &= ((REG_RD(sc, (!port ? MISC_REG_AEU_ENABLE4_FUNC_0_OUT_0 7645 : MISC_REG_AEU_ENABLE4_FUNC_1_OUT_0)) & 7646 MISC_AEU_ENABLE_MCP_PRTY_BITS) | 7647 ~MISC_AEU_ENABLE_MCP_PRTY_BITS); 7648 7649 7650 if (!CHIP_IS_E1x(sc)) 7651 attn.sig[4] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 + port*4); 7652 7653 return (bxe_parity_attn(sc, global, print, attn.sig)); 7654 } 7655 7656 static void 7657 bxe_attn_int_deasserted4(struct bxe_softc *sc, 7658 uint32_t attn) 7659 { 7660 uint32_t val; 7661 7662 if (attn & AEU_INPUTS_ATTN_BITS_PGLUE_HW_INTERRUPT) { 7663 val = REG_RD(sc, PGLUE_B_REG_PGLUE_B_INT_STS_CLR); 7664 BLOGE(sc, "PGLUE hw attention 0x%08x\n", val); 7665 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR) 7666 BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR\n"); 7667 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR) 7668 BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR\n"); 7669 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN) 7670 BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN\n"); 7671 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN) 7672 BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN\n"); 7673 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN) 7674 BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN\n"); 7675 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN) 7676 BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN\n"); 7677 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN) 7678 BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN\n"); 7679 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN) 7680 BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN\n"); 7681 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW) 7682 BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW\n"); 7683 } 7684 7685 if (attn & AEU_INPUTS_ATTN_BITS_ATC_HW_INTERRUPT) { 7686 val = REG_RD(sc, ATC_REG_ATC_INT_STS_CLR); 7687 BLOGE(sc, "ATC hw attention 0x%08x\n", val); 7688 if (val & ATC_ATC_INT_STS_REG_ADDRESS_ERROR) 7689 BLOGE(sc, "ATC_ATC_INT_STS_REG_ADDRESS_ERROR\n"); 7690 if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND) 7691 BLOGE(sc, "ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND\n"); 7692 if (val & ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS) 7693 BLOGE(sc, "ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS\n"); 7694 if (val & ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT) 7695 BLOGE(sc, "ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT\n"); 7696 if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR) 7697 BLOGE(sc, "ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR\n"); 7698 if (val & ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU) 7699 BLOGE(sc, "ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU\n"); 7700 } 7701 7702 if (attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR | 7703 AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)) { 7704 BLOGE(sc, "FATAL parity attention set4 0x%08x\n", 7705 (uint32_t)(attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR | 7706 AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR))); 7707 } 7708 } 7709 7710 static void 7711 bxe_e1h_disable(struct bxe_softc *sc) 7712 { 7713 int port = SC_PORT(sc); 7714 7715 bxe_tx_disable(sc); 7716 7717 REG_WR(sc, NIG_REG_LLH0_FUNC_EN + port*8, 0); 7718 } 7719 7720 static void 7721 bxe_e1h_enable(struct bxe_softc *sc) 7722 { 7723 int port = SC_PORT(sc); 7724 7725 REG_WR(sc, NIG_REG_LLH0_FUNC_EN + port*8, 1); 7726 7727 // XXX bxe_tx_enable(sc); 7728 } 7729 7730 /* 7731 * called due to MCP event (on pmf): 7732 * reread new bandwidth configuration 7733 * configure FW 7734 * notify others function about the change 7735 */ 7736 static void 7737 bxe_config_mf_bw(struct bxe_softc *sc) 7738 { 7739 if (sc->link_vars.link_up) { 7740 bxe_cmng_fns_init(sc, TRUE, CMNG_FNS_MINMAX); 7741 // XXX bxe_link_sync_notify(sc); 7742 } 7743 7744 storm_memset_cmng(sc, &sc->cmng, SC_PORT(sc)); 7745 } 7746 7747 static void 7748 bxe_set_mf_bw(struct bxe_softc *sc) 7749 { 7750 bxe_config_mf_bw(sc); 7751 bxe_fw_command(sc, DRV_MSG_CODE_SET_MF_BW_ACK, 0); 7752 } 7753 7754 static void 7755 bxe_handle_eee_event(struct bxe_softc *sc) 7756 { 7757 BLOGD(sc, DBG_INTR, "EEE - LLDP event\n"); 7758 bxe_fw_command(sc, DRV_MSG_CODE_EEE_RESULTS_ACK, 0); 7759 } 7760 7761 #define DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED 3 7762 7763 static void 7764 bxe_drv_info_ether_stat(struct bxe_softc *sc) 7765 { 7766 struct eth_stats_info *ether_stat = 7767 &sc->sp->drv_info_to_mcp.ether_stat; 7768 7769 strlcpy(ether_stat->version, BXE_DRIVER_VERSION, 7770 ETH_STAT_INFO_VERSION_LEN); 7771 7772 /* XXX (+ MAC_PAD) taken from other driver... verify this is right */ 7773 sc->sp_objs[0].mac_obj.get_n_elements(sc, &sc->sp_objs[0].mac_obj, 7774 DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED, 7775 ether_stat->mac_local + MAC_PAD, 7776 MAC_PAD, ETH_ALEN); 7777 7778 ether_stat->mtu_size = sc->mtu; 7779 7780 ether_stat->feature_flags |= FEATURE_ETH_CHKSUM_OFFLOAD_MASK; 7781 if (if_getcapenable(sc->ifp) & (IFCAP_TSO4 | IFCAP_TSO6)) { 7782 ether_stat->feature_flags |= FEATURE_ETH_LSO_MASK; 7783 } 7784 7785 // XXX ether_stat->feature_flags |= ???; 7786 7787 ether_stat->promiscuous_mode = 0; // (flags & PROMISC) ? 1 : 0; 7788 7789 ether_stat->txq_size = sc->tx_ring_size; 7790 ether_stat->rxq_size = sc->rx_ring_size; 7791 } 7792 7793 static void 7794 bxe_handle_drv_info_req(struct bxe_softc *sc) 7795 { 7796 enum drv_info_opcode op_code; 7797 uint32_t drv_info_ctl = SHMEM2_RD(sc, drv_info_control); 7798 7799 /* if drv_info version supported by MFW doesn't match - send NACK */ 7800 if ((drv_info_ctl & DRV_INFO_CONTROL_VER_MASK) != DRV_INFO_CUR_VER) { 7801 bxe_fw_command(sc, DRV_MSG_CODE_DRV_INFO_NACK, 0); 7802 return; 7803 } 7804 7805 op_code = ((drv_info_ctl & DRV_INFO_CONTROL_OP_CODE_MASK) >> 7806 DRV_INFO_CONTROL_OP_CODE_SHIFT); 7807 7808 memset(&sc->sp->drv_info_to_mcp, 0, sizeof(union drv_info_to_mcp)); 7809 7810 switch (op_code) { 7811 case ETH_STATS_OPCODE: 7812 bxe_drv_info_ether_stat(sc); 7813 break; 7814 case FCOE_STATS_OPCODE: 7815 case ISCSI_STATS_OPCODE: 7816 default: 7817 /* if op code isn't supported - send NACK */ 7818 bxe_fw_command(sc, DRV_MSG_CODE_DRV_INFO_NACK, 0); 7819 return; 7820 } 7821 7822 /* 7823 * If we got drv_info attn from MFW then these fields are defined in 7824 * shmem2 for sure 7825 */ 7826 SHMEM2_WR(sc, drv_info_host_addr_lo, 7827 U64_LO(BXE_SP_MAPPING(sc, drv_info_to_mcp))); 7828 SHMEM2_WR(sc, drv_info_host_addr_hi, 7829 U64_HI(BXE_SP_MAPPING(sc, drv_info_to_mcp))); 7830 7831 bxe_fw_command(sc, DRV_MSG_CODE_DRV_INFO_ACK, 0); 7832 } 7833 7834 static void 7835 bxe_dcc_event(struct bxe_softc *sc, 7836 uint32_t dcc_event) 7837 { 7838 BLOGD(sc, DBG_INTR, "dcc_event 0x%08x\n", dcc_event); 7839 7840 if (dcc_event & DRV_STATUS_DCC_DISABLE_ENABLE_PF) { 7841 /* 7842 * This is the only place besides the function initialization 7843 * where the sc->flags can change so it is done without any 7844 * locks 7845 */ 7846 if (sc->devinfo.mf_info.mf_config[SC_VN(sc)] & FUNC_MF_CFG_FUNC_DISABLED) { 7847 BLOGD(sc, DBG_INTR, "mf_cfg function disabled\n"); 7848 sc->flags |= BXE_MF_FUNC_DIS; 7849 bxe_e1h_disable(sc); 7850 } else { 7851 BLOGD(sc, DBG_INTR, "mf_cfg function enabled\n"); 7852 sc->flags &= ~BXE_MF_FUNC_DIS; 7853 bxe_e1h_enable(sc); 7854 } 7855 dcc_event &= ~DRV_STATUS_DCC_DISABLE_ENABLE_PF; 7856 } 7857 7858 if (dcc_event & DRV_STATUS_DCC_BANDWIDTH_ALLOCATION) { 7859 bxe_config_mf_bw(sc); 7860 dcc_event &= ~DRV_STATUS_DCC_BANDWIDTH_ALLOCATION; 7861 } 7862 7863 /* Report results to MCP */ 7864 if (dcc_event) 7865 bxe_fw_command(sc, DRV_MSG_CODE_DCC_FAILURE, 0); 7866 else 7867 bxe_fw_command(sc, DRV_MSG_CODE_DCC_OK, 0); 7868 } 7869 7870 static void 7871 bxe_pmf_update(struct bxe_softc *sc) 7872 { 7873 int port = SC_PORT(sc); 7874 uint32_t val; 7875 7876 sc->port.pmf = 1; 7877 BLOGD(sc, DBG_INTR, "pmf %d\n", sc->port.pmf); 7878 7879 /* 7880 * We need the mb() to ensure the ordering between the writing to 7881 * sc->port.pmf here and reading it from the bxe_periodic_task(). 7882 */ 7883 mb(); 7884 7885 /* queue a periodic task */ 7886 // XXX schedule task... 7887 7888 // XXX bxe_dcbx_pmf_update(sc); 7889 7890 /* enable nig attention */ 7891 val = (0xff0f | (1 << (SC_VN(sc) + 4))); 7892 if (sc->devinfo.int_block == INT_BLOCK_HC) { 7893 REG_WR(sc, HC_REG_TRAILING_EDGE_0 + port*8, val); 7894 REG_WR(sc, HC_REG_LEADING_EDGE_0 + port*8, val); 7895 } else if (!CHIP_IS_E1x(sc)) { 7896 REG_WR(sc, IGU_REG_TRAILING_EDGE_LATCH, val); 7897 REG_WR(sc, IGU_REG_LEADING_EDGE_LATCH, val); 7898 } 7899 7900 bxe_stats_handle(sc, STATS_EVENT_PMF); 7901 } 7902 7903 static int 7904 bxe_mc_assert(struct bxe_softc *sc) 7905 { 7906 char last_idx; 7907 int i, rc = 0; 7908 uint32_t row0, row1, row2, row3; 7909 7910 /* XSTORM */ 7911 last_idx = REG_RD8(sc, BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_INDEX_OFFSET); 7912 if (last_idx) 7913 BLOGE(sc, "XSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx); 7914 7915 /* print the asserts */ 7916 for (i = 0; i < STORM_ASSERT_ARRAY_SIZE; i++) { 7917 7918 row0 = REG_RD(sc, BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_OFFSET(i)); 7919 row1 = REG_RD(sc, BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_OFFSET(i) + 4); 7920 row2 = REG_RD(sc, BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_OFFSET(i) + 8); 7921 row3 = REG_RD(sc, BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_OFFSET(i) + 12); 7922 7923 if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) { 7924 BLOGE(sc, "XSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n", 7925 i, row3, row2, row1, row0); 7926 rc++; 7927 } else { 7928 break; 7929 } 7930 } 7931 7932 /* TSTORM */ 7933 last_idx = REG_RD8(sc, BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_INDEX_OFFSET); 7934 if (last_idx) { 7935 BLOGE(sc, "TSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx); 7936 } 7937 7938 /* print the asserts */ 7939 for (i = 0; i < STORM_ASSERT_ARRAY_SIZE; i++) { 7940 7941 row0 = REG_RD(sc, BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_OFFSET(i)); 7942 row1 = REG_RD(sc, BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_OFFSET(i) + 4); 7943 row2 = REG_RD(sc, BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_OFFSET(i) + 8); 7944 row3 = REG_RD(sc, BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_OFFSET(i) + 12); 7945 7946 if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) { 7947 BLOGE(sc, "TSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n", 7948 i, row3, row2, row1, row0); 7949 rc++; 7950 } else { 7951 break; 7952 } 7953 } 7954 7955 /* CSTORM */ 7956 last_idx = REG_RD8(sc, BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_INDEX_OFFSET); 7957 if (last_idx) { 7958 BLOGE(sc, "CSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx); 7959 } 7960 7961 /* print the asserts */ 7962 for (i = 0; i < STORM_ASSERT_ARRAY_SIZE; i++) { 7963 7964 row0 = REG_RD(sc, BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_OFFSET(i)); 7965 row1 = REG_RD(sc, BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_OFFSET(i) + 4); 7966 row2 = REG_RD(sc, BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_OFFSET(i) + 8); 7967 row3 = REG_RD(sc, BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_OFFSET(i) + 12); 7968 7969 if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) { 7970 BLOGE(sc, "CSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n", 7971 i, row3, row2, row1, row0); 7972 rc++; 7973 } else { 7974 break; 7975 } 7976 } 7977 7978 /* USTORM */ 7979 last_idx = REG_RD8(sc, BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_INDEX_OFFSET); 7980 if (last_idx) { 7981 BLOGE(sc, "USTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx); 7982 } 7983 7984 /* print the asserts */ 7985 for (i = 0; i < STORM_ASSERT_ARRAY_SIZE; i++) { 7986 7987 row0 = REG_RD(sc, BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_OFFSET(i)); 7988 row1 = REG_RD(sc, BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_OFFSET(i) + 4); 7989 row2 = REG_RD(sc, BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_OFFSET(i) + 8); 7990 row3 = REG_RD(sc, BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_OFFSET(i) + 12); 7991 7992 if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) { 7993 BLOGE(sc, "USTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n", 7994 i, row3, row2, row1, row0); 7995 rc++; 7996 } else { 7997 break; 7998 } 7999 } 8000 8001 return (rc); 8002 } 8003 8004 static void 8005 bxe_attn_int_deasserted3(struct bxe_softc *sc, 8006 uint32_t attn) 8007 { 8008 int func = SC_FUNC(sc); 8009 uint32_t val; 8010 8011 if (attn & EVEREST_GEN_ATTN_IN_USE_MASK) { 8012 8013 if (attn & BXE_PMF_LINK_ASSERT(sc)) { 8014 8015 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0); 8016 bxe_read_mf_cfg(sc); 8017 sc->devinfo.mf_info.mf_config[SC_VN(sc)] = 8018 MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].config); 8019 val = SHMEM_RD(sc, func_mb[SC_FW_MB_IDX(sc)].drv_status); 8020 8021 if (val & DRV_STATUS_DCC_EVENT_MASK) 8022 bxe_dcc_event(sc, (val & DRV_STATUS_DCC_EVENT_MASK)); 8023 8024 if (val & DRV_STATUS_SET_MF_BW) 8025 bxe_set_mf_bw(sc); 8026 8027 if (val & DRV_STATUS_DRV_INFO_REQ) 8028 bxe_handle_drv_info_req(sc); 8029 8030 if ((sc->port.pmf == 0) && (val & DRV_STATUS_PMF)) 8031 bxe_pmf_update(sc); 8032 8033 if (val & DRV_STATUS_EEE_NEGOTIATION_RESULTS) 8034 bxe_handle_eee_event(sc); 8035 8036 if (sc->link_vars.periodic_flags & 8037 ELINK_PERIODIC_FLAGS_LINK_EVENT) { 8038 /* sync with link */ 8039 bxe_acquire_phy_lock(sc); 8040 sc->link_vars.periodic_flags &= 8041 ~ELINK_PERIODIC_FLAGS_LINK_EVENT; 8042 bxe_release_phy_lock(sc); 8043 if (IS_MF(sc)) 8044 ; // XXX bxe_link_sync_notify(sc); 8045 bxe_link_report(sc); 8046 } 8047 8048 /* 8049 * Always call it here: bxe_link_report() will 8050 * prevent the link indication duplication. 8051 */ 8052 bxe_link_status_update(sc); 8053 8054 } else if (attn & BXE_MC_ASSERT_BITS) { 8055 8056 BLOGE(sc, "MC assert!\n"); 8057 bxe_mc_assert(sc); 8058 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_10, 0); 8059 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_9, 0); 8060 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_8, 0); 8061 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_7, 0); 8062 bxe_panic(sc, ("MC assert!\n")); 8063 8064 } else if (attn & BXE_MCP_ASSERT) { 8065 8066 BLOGE(sc, "MCP assert!\n"); 8067 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_11, 0); 8068 // XXX bxe_fw_dump(sc); 8069 8070 } else { 8071 BLOGE(sc, "Unknown HW assert! (attn 0x%08x)\n", attn); 8072 } 8073 } 8074 8075 if (attn & EVEREST_LATCHED_ATTN_IN_USE_MASK) { 8076 BLOGE(sc, "LATCHED attention 0x%08x (masked)\n", attn); 8077 if (attn & BXE_GRC_TIMEOUT) { 8078 val = CHIP_IS_E1(sc) ? 0 : REG_RD(sc, MISC_REG_GRC_TIMEOUT_ATTN); 8079 BLOGE(sc, "GRC time-out 0x%08x\n", val); 8080 } 8081 if (attn & BXE_GRC_RSV) { 8082 val = CHIP_IS_E1(sc) ? 0 : REG_RD(sc, MISC_REG_GRC_RSV_ATTN); 8083 BLOGE(sc, "GRC reserved 0x%08x\n", val); 8084 } 8085 REG_WR(sc, MISC_REG_AEU_CLR_LATCH_SIGNAL, 0x7ff); 8086 } 8087 } 8088 8089 static void 8090 bxe_attn_int_deasserted2(struct bxe_softc *sc, 8091 uint32_t attn) 8092 { 8093 int port = SC_PORT(sc); 8094 int reg_offset; 8095 uint32_t val0, mask0, val1, mask1; 8096 uint32_t val; 8097 8098 if (attn & AEU_INPUTS_ATTN_BITS_CFC_HW_INTERRUPT) { 8099 val = REG_RD(sc, CFC_REG_CFC_INT_STS_CLR); 8100 BLOGE(sc, "CFC hw attention 0x%08x\n", val); 8101 /* CFC error attention */ 8102 if (val & 0x2) { 8103 BLOGE(sc, "FATAL error from CFC\n"); 8104 } 8105 } 8106 8107 if (attn & AEU_INPUTS_ATTN_BITS_PXP_HW_INTERRUPT) { 8108 val = REG_RD(sc, PXP_REG_PXP_INT_STS_CLR_0); 8109 BLOGE(sc, "PXP hw attention-0 0x%08x\n", val); 8110 /* RQ_USDMDP_FIFO_OVERFLOW */ 8111 if (val & 0x18000) { 8112 BLOGE(sc, "FATAL error from PXP\n"); 8113 } 8114 8115 if (!CHIP_IS_E1x(sc)) { 8116 val = REG_RD(sc, PXP_REG_PXP_INT_STS_CLR_1); 8117 BLOGE(sc, "PXP hw attention-1 0x%08x\n", val); 8118 } 8119 } 8120 8121 #define PXP2_EOP_ERROR_BIT PXP2_PXP2_INT_STS_CLR_0_REG_WR_PGLUE_EOP_ERROR 8122 #define AEU_PXP2_HW_INT_BIT AEU_INPUTS_ATTN_BITS_PXPPCICLOCKCLIENT_HW_INTERRUPT 8123 8124 if (attn & AEU_PXP2_HW_INT_BIT) { 8125 /* CQ47854 workaround do not panic on 8126 * PXP2_PXP2_INT_STS_0_REG_WR_PGLUE_EOP_ERROR 8127 */ 8128 if (!CHIP_IS_E1x(sc)) { 8129 mask0 = REG_RD(sc, PXP2_REG_PXP2_INT_MASK_0); 8130 val1 = REG_RD(sc, PXP2_REG_PXP2_INT_STS_1); 8131 mask1 = REG_RD(sc, PXP2_REG_PXP2_INT_MASK_1); 8132 val0 = REG_RD(sc, PXP2_REG_PXP2_INT_STS_0); 8133 /* 8134 * If the olny PXP2_EOP_ERROR_BIT is set in 8135 * STS0 and STS1 - clear it 8136 * 8137 * probably we lose additional attentions between 8138 * STS0 and STS_CLR0, in this case user will not 8139 * be notified about them 8140 */ 8141 if (val0 & mask0 & PXP2_EOP_ERROR_BIT && 8142 !(val1 & mask1)) 8143 val0 = REG_RD(sc, PXP2_REG_PXP2_INT_STS_CLR_0); 8144 8145 /* print the register, since no one can restore it */ 8146 BLOGE(sc, "PXP2_REG_PXP2_INT_STS_CLR_0 0x%08x\n", val0); 8147 8148 /* 8149 * if PXP2_PXP2_INT_STS_0_REG_WR_PGLUE_EOP_ERROR 8150 * then notify 8151 */ 8152 if (val0 & PXP2_EOP_ERROR_BIT) { 8153 BLOGE(sc, "PXP2_WR_PGLUE_EOP_ERROR\n"); 8154 8155 /* 8156 * if only PXP2_PXP2_INT_STS_0_REG_WR_PGLUE_EOP_ERROR is 8157 * set then clear attention from PXP2 block without panic 8158 */ 8159 if (((val0 & mask0) == PXP2_EOP_ERROR_BIT) && 8160 ((val1 & mask1) == 0)) 8161 attn &= ~AEU_PXP2_HW_INT_BIT; 8162 } 8163 } 8164 } 8165 8166 if (attn & HW_INTERRUT_ASSERT_SET_2) { 8167 reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_2 : 8168 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_2); 8169 8170 val = REG_RD(sc, reg_offset); 8171 val &= ~(attn & HW_INTERRUT_ASSERT_SET_2); 8172 REG_WR(sc, reg_offset, val); 8173 8174 BLOGE(sc, "FATAL HW block attention set2 0x%x\n", 8175 (uint32_t)(attn & HW_INTERRUT_ASSERT_SET_2)); 8176 bxe_panic(sc, ("HW block attention set2\n")); 8177 } 8178 } 8179 8180 static void 8181 bxe_attn_int_deasserted1(struct bxe_softc *sc, 8182 uint32_t attn) 8183 { 8184 int port = SC_PORT(sc); 8185 int reg_offset; 8186 uint32_t val; 8187 8188 if (attn & AEU_INPUTS_ATTN_BITS_DOORBELLQ_HW_INTERRUPT) { 8189 val = REG_RD(sc, DORQ_REG_DORQ_INT_STS_CLR); 8190 BLOGE(sc, "DB hw attention 0x%08x\n", val); 8191 /* DORQ discard attention */ 8192 if (val & 0x2) { 8193 BLOGE(sc, "FATAL error from DORQ\n"); 8194 } 8195 } 8196 8197 if (attn & HW_INTERRUT_ASSERT_SET_1) { 8198 reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_1 : 8199 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_1); 8200 8201 val = REG_RD(sc, reg_offset); 8202 val &= ~(attn & HW_INTERRUT_ASSERT_SET_1); 8203 REG_WR(sc, reg_offset, val); 8204 8205 BLOGE(sc, "FATAL HW block attention set1 0x%08x\n", 8206 (uint32_t)(attn & HW_INTERRUT_ASSERT_SET_1)); 8207 bxe_panic(sc, ("HW block attention set1\n")); 8208 } 8209 } 8210 8211 static void 8212 bxe_attn_int_deasserted0(struct bxe_softc *sc, 8213 uint32_t attn) 8214 { 8215 int port = SC_PORT(sc); 8216 int reg_offset; 8217 uint32_t val; 8218 8219 reg_offset = (port) ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 : 8220 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0; 8221 8222 if (attn & AEU_INPUTS_ATTN_BITS_SPIO5) { 8223 val = REG_RD(sc, reg_offset); 8224 val &= ~AEU_INPUTS_ATTN_BITS_SPIO5; 8225 REG_WR(sc, reg_offset, val); 8226 8227 BLOGW(sc, "SPIO5 hw attention\n"); 8228 8229 /* Fan failure attention */ 8230 elink_hw_reset_phy(&sc->link_params); 8231 bxe_fan_failure(sc); 8232 } 8233 8234 if ((attn & sc->link_vars.aeu_int_mask) && sc->port.pmf) { 8235 bxe_acquire_phy_lock(sc); 8236 elink_handle_module_detect_int(&sc->link_params); 8237 bxe_release_phy_lock(sc); 8238 } 8239 8240 if (attn & HW_INTERRUT_ASSERT_SET_0) { 8241 val = REG_RD(sc, reg_offset); 8242 val &= ~(attn & HW_INTERRUT_ASSERT_SET_0); 8243 REG_WR(sc, reg_offset, val); 8244 8245 bxe_panic(sc, ("FATAL HW block attention set0 0x%lx\n", 8246 (attn & HW_INTERRUT_ASSERT_SET_0))); 8247 } 8248 } 8249 8250 static void 8251 bxe_attn_int_deasserted(struct bxe_softc *sc, 8252 uint32_t deasserted) 8253 { 8254 struct attn_route attn; 8255 struct attn_route *group_mask; 8256 int port = SC_PORT(sc); 8257 int index; 8258 uint32_t reg_addr; 8259 uint32_t val; 8260 uint32_t aeu_mask; 8261 uint8_t global = FALSE; 8262 8263 /* 8264 * Need to take HW lock because MCP or other port might also 8265 * try to handle this event. 8266 */ 8267 bxe_acquire_alr(sc); 8268 8269 if (bxe_chk_parity_attn(sc, &global, TRUE)) { 8270 /* XXX 8271 * In case of parity errors don't handle attentions so that 8272 * other function would "see" parity errors. 8273 */ 8274 sc->recovery_state = BXE_RECOVERY_INIT; 8275 // XXX schedule a recovery task... 8276 /* disable HW interrupts */ 8277 bxe_int_disable(sc); 8278 bxe_release_alr(sc); 8279 return; 8280 } 8281 8282 attn.sig[0] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + port*4); 8283 attn.sig[1] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 + port*4); 8284 attn.sig[2] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 + port*4); 8285 attn.sig[3] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 + port*4); 8286 if (!CHIP_IS_E1x(sc)) { 8287 attn.sig[4] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 + port*4); 8288 } else { 8289 attn.sig[4] = 0; 8290 } 8291 8292 BLOGD(sc, DBG_INTR, "attn: 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x\n", 8293 attn.sig[0], attn.sig[1], attn.sig[2], attn.sig[3], attn.sig[4]); 8294 8295 for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) { 8296 if (deasserted & (1 << index)) { 8297 group_mask = &sc->attn_group[index]; 8298 8299 BLOGD(sc, DBG_INTR, 8300 "group[%d]: 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x\n", index, 8301 group_mask->sig[0], group_mask->sig[1], 8302 group_mask->sig[2], group_mask->sig[3], 8303 group_mask->sig[4]); 8304 8305 bxe_attn_int_deasserted4(sc, attn.sig[4] & group_mask->sig[4]); 8306 bxe_attn_int_deasserted3(sc, attn.sig[3] & group_mask->sig[3]); 8307 bxe_attn_int_deasserted1(sc, attn.sig[1] & group_mask->sig[1]); 8308 bxe_attn_int_deasserted2(sc, attn.sig[2] & group_mask->sig[2]); 8309 bxe_attn_int_deasserted0(sc, attn.sig[0] & group_mask->sig[0]); 8310 } 8311 } 8312 8313 bxe_release_alr(sc); 8314 8315 if (sc->devinfo.int_block == INT_BLOCK_HC) { 8316 reg_addr = (HC_REG_COMMAND_REG + port*32 + 8317 COMMAND_REG_ATTN_BITS_CLR); 8318 } else { 8319 reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_CLR_UPPER*8); 8320 } 8321 8322 val = ~deasserted; 8323 BLOGD(sc, DBG_INTR, 8324 "about to mask 0x%08x at %s addr 0x%08x\n", val, 8325 (sc->devinfo.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr); 8326 REG_WR(sc, reg_addr, val); 8327 8328 if (~sc->attn_state & deasserted) { 8329 BLOGE(sc, "IGU error\n"); 8330 } 8331 8332 reg_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 : 8333 MISC_REG_AEU_MASK_ATTN_FUNC_0; 8334 8335 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port); 8336 8337 aeu_mask = REG_RD(sc, reg_addr); 8338 8339 BLOGD(sc, DBG_INTR, "aeu_mask 0x%08x newly deasserted 0x%08x\n", 8340 aeu_mask, deasserted); 8341 aeu_mask |= (deasserted & 0x3ff); 8342 BLOGD(sc, DBG_INTR, "new mask 0x%08x\n", aeu_mask); 8343 8344 REG_WR(sc, reg_addr, aeu_mask); 8345 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port); 8346 8347 BLOGD(sc, DBG_INTR, "attn_state 0x%08x\n", sc->attn_state); 8348 sc->attn_state &= ~deasserted; 8349 BLOGD(sc, DBG_INTR, "new state 0x%08x\n", sc->attn_state); 8350 } 8351 8352 static void 8353 bxe_attn_int(struct bxe_softc *sc) 8354 { 8355 /* read local copy of bits */ 8356 uint32_t attn_bits = le32toh(sc->def_sb->atten_status_block.attn_bits); 8357 uint32_t attn_ack = le32toh(sc->def_sb->atten_status_block.attn_bits_ack); 8358 uint32_t attn_state = sc->attn_state; 8359 8360 /* look for changed bits */ 8361 uint32_t asserted = attn_bits & ~attn_ack & ~attn_state; 8362 uint32_t deasserted = ~attn_bits & attn_ack & attn_state; 8363 8364 BLOGD(sc, DBG_INTR, 8365 "attn_bits 0x%08x attn_ack 0x%08x asserted 0x%08x deasserted 0x%08x\n", 8366 attn_bits, attn_ack, asserted, deasserted); 8367 8368 if (~(attn_bits ^ attn_ack) & (attn_bits ^ attn_state)) { 8369 BLOGE(sc, "BAD attention state\n"); 8370 } 8371 8372 /* handle bits that were raised */ 8373 if (asserted) { 8374 bxe_attn_int_asserted(sc, asserted); 8375 } 8376 8377 if (deasserted) { 8378 bxe_attn_int_deasserted(sc, deasserted); 8379 } 8380 } 8381 8382 static uint16_t 8383 bxe_update_dsb_idx(struct bxe_softc *sc) 8384 { 8385 struct host_sp_status_block *def_sb = sc->def_sb; 8386 uint16_t rc = 0; 8387 8388 mb(); /* status block is written to by the chip */ 8389 8390 if (sc->def_att_idx != def_sb->atten_status_block.attn_bits_index) { 8391 sc->def_att_idx = def_sb->atten_status_block.attn_bits_index; 8392 rc |= BXE_DEF_SB_ATT_IDX; 8393 } 8394 8395 if (sc->def_idx != def_sb->sp_sb.running_index) { 8396 sc->def_idx = def_sb->sp_sb.running_index; 8397 rc |= BXE_DEF_SB_IDX; 8398 } 8399 8400 mb(); 8401 8402 return (rc); 8403 } 8404 8405 static inline struct ecore_queue_sp_obj * 8406 bxe_cid_to_q_obj(struct bxe_softc *sc, 8407 uint32_t cid) 8408 { 8409 BLOGD(sc, DBG_SP, "retrieving fp from cid %d\n", cid); 8410 return (&sc->sp_objs[CID_TO_FP(cid, sc)].q_obj); 8411 } 8412 8413 static void 8414 bxe_handle_mcast_eqe(struct bxe_softc *sc) 8415 { 8416 struct ecore_mcast_ramrod_params rparam; 8417 int rc; 8418 8419 memset(&rparam, 0, sizeof(rparam)); 8420 8421 rparam.mcast_obj = &sc->mcast_obj; 8422 8423 BXE_MCAST_LOCK(sc); 8424 8425 /* clear pending state for the last command */ 8426 sc->mcast_obj.raw.clear_pending(&sc->mcast_obj.raw); 8427 8428 /* if there are pending mcast commands - send them */ 8429 if (sc->mcast_obj.check_pending(&sc->mcast_obj)) { 8430 rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_CONT); 8431 if (rc < 0) { 8432 BLOGD(sc, DBG_SP, 8433 "ERROR: Failed to send pending mcast commands (%d)\n", rc); 8434 } 8435 } 8436 8437 BXE_MCAST_UNLOCK(sc); 8438 } 8439 8440 static void 8441 bxe_handle_classification_eqe(struct bxe_softc *sc, 8442 union event_ring_elem *elem) 8443 { 8444 unsigned long ramrod_flags = 0; 8445 int rc = 0; 8446 uint32_t cid = elem->message.data.eth_event.echo & BXE_SWCID_MASK; 8447 struct ecore_vlan_mac_obj *vlan_mac_obj; 8448 8449 /* always push next commands out, don't wait here */ 8450 bit_set(&ramrod_flags, RAMROD_CONT); 8451 8452 switch (le32toh(elem->message.data.eth_event.echo) >> BXE_SWCID_SHIFT) { 8453 case ECORE_FILTER_MAC_PENDING: 8454 BLOGD(sc, DBG_SP, "Got SETUP_MAC completions\n"); 8455 vlan_mac_obj = &sc->sp_objs[cid].mac_obj; 8456 break; 8457 8458 case ECORE_FILTER_MCAST_PENDING: 8459 BLOGD(sc, DBG_SP, "Got SETUP_MCAST completions\n"); 8460 /* 8461 * This is only relevant for 57710 where multicast MACs are 8462 * configured as unicast MACs using the same ramrod. 8463 */ 8464 bxe_handle_mcast_eqe(sc); 8465 return; 8466 8467 default: 8468 BLOGE(sc, "Unsupported classification command: %d\n", 8469 elem->message.data.eth_event.echo); 8470 return; 8471 } 8472 8473 rc = vlan_mac_obj->complete(sc, vlan_mac_obj, elem, &ramrod_flags); 8474 8475 if (rc < 0) { 8476 BLOGE(sc, "Failed to schedule new commands (%d)\n", rc); 8477 } else if (rc > 0) { 8478 BLOGD(sc, DBG_SP, "Scheduled next pending commands...\n"); 8479 } 8480 } 8481 8482 static void 8483 bxe_handle_rx_mode_eqe(struct bxe_softc *sc, 8484 union event_ring_elem *elem) 8485 { 8486 bxe_clear_bit(ECORE_FILTER_RX_MODE_PENDING, &sc->sp_state); 8487 8488 /* send rx_mode command again if was requested */ 8489 if (bxe_test_and_clear_bit(ECORE_FILTER_RX_MODE_SCHED, 8490 &sc->sp_state)) { 8491 bxe_set_storm_rx_mode(sc); 8492 } 8493 } 8494 8495 static void 8496 bxe_update_eq_prod(struct bxe_softc *sc, 8497 uint16_t prod) 8498 { 8499 storm_memset_eq_prod(sc, prod, SC_FUNC(sc)); 8500 wmb(); /* keep prod updates ordered */ 8501 } 8502 8503 static void 8504 bxe_eq_int(struct bxe_softc *sc) 8505 { 8506 uint16_t hw_cons, sw_cons, sw_prod; 8507 union event_ring_elem *elem; 8508 uint8_t echo; 8509 uint32_t cid; 8510 uint8_t opcode; 8511 int spqe_cnt = 0; 8512 struct ecore_queue_sp_obj *q_obj; 8513 struct ecore_func_sp_obj *f_obj = &sc->func_obj; 8514 struct ecore_raw_obj *rss_raw = &sc->rss_conf_obj.raw; 8515 8516 hw_cons = le16toh(*sc->eq_cons_sb); 8517 8518 /* 8519 * The hw_cons range is 1-255, 257 - the sw_cons range is 0-254, 256. 8520 * when we get to the next-page we need to adjust so the loop 8521 * condition below will be met. The next element is the size of a 8522 * regular element and hence incrementing by 1 8523 */ 8524 if ((hw_cons & EQ_DESC_MAX_PAGE) == EQ_DESC_MAX_PAGE) { 8525 hw_cons++; 8526 } 8527 8528 /* 8529 * This function may never run in parallel with itself for a 8530 * specific sc and no need for a read memory barrier here. 8531 */ 8532 sw_cons = sc->eq_cons; 8533 sw_prod = sc->eq_prod; 8534 8535 BLOGD(sc, DBG_SP,"EQ: hw_cons=%u sw_cons=%u eq_spq_left=0x%lx\n", 8536 hw_cons, sw_cons, atomic_load_acq_long(&sc->eq_spq_left)); 8537 8538 for (; 8539 sw_cons != hw_cons; 8540 sw_prod = NEXT_EQ_IDX(sw_prod), sw_cons = NEXT_EQ_IDX(sw_cons)) { 8541 8542 elem = &sc->eq[EQ_DESC(sw_cons)]; 8543 8544 /* elem CID originates from FW, actually LE */ 8545 cid = SW_CID(elem->message.data.cfc_del_event.cid); 8546 opcode = elem->message.opcode; 8547 8548 /* handle eq element */ 8549 switch (opcode) { 8550 8551 case EVENT_RING_OPCODE_STAT_QUERY: 8552 BLOGD(sc, DBG_SP, "got statistics completion event %d\n", 8553 sc->stats_comp++); 8554 /* nothing to do with stats comp */ 8555 goto next_spqe; 8556 8557 case EVENT_RING_OPCODE_CFC_DEL: 8558 /* handle according to cid range */ 8559 /* we may want to verify here that the sc state is HALTING */ 8560 BLOGD(sc, DBG_SP, "got delete ramrod for MULTI[%d]\n", cid); 8561 q_obj = bxe_cid_to_q_obj(sc, cid); 8562 if (q_obj->complete_cmd(sc, q_obj, ECORE_Q_CMD_CFC_DEL)) { 8563 break; 8564 } 8565 goto next_spqe; 8566 8567 case EVENT_RING_OPCODE_STOP_TRAFFIC: 8568 BLOGD(sc, DBG_SP, "got STOP TRAFFIC\n"); 8569 if (f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_TX_STOP)) { 8570 break; 8571 } 8572 // XXX bxe_dcbx_set_params(sc, BXE_DCBX_STATE_TX_PAUSED); 8573 goto next_spqe; 8574 8575 case EVENT_RING_OPCODE_START_TRAFFIC: 8576 BLOGD(sc, DBG_SP, "got START TRAFFIC\n"); 8577 if (f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_TX_START)) { 8578 break; 8579 } 8580 // XXX bxe_dcbx_set_params(sc, BXE_DCBX_STATE_TX_RELEASED); 8581 goto next_spqe; 8582 8583 case EVENT_RING_OPCODE_FUNCTION_UPDATE: 8584 echo = elem->message.data.function_update_event.echo; 8585 if (echo == SWITCH_UPDATE) { 8586 BLOGD(sc, DBG_SP, "got FUNC_SWITCH_UPDATE ramrod\n"); 8587 if (f_obj->complete_cmd(sc, f_obj, 8588 ECORE_F_CMD_SWITCH_UPDATE)) { 8589 break; 8590 } 8591 } 8592 else { 8593 BLOGD(sc, DBG_SP, 8594 "AFEX: ramrod completed FUNCTION_UPDATE\n"); 8595 } 8596 goto next_spqe; 8597 8598 case EVENT_RING_OPCODE_FORWARD_SETUP: 8599 q_obj = &bxe_fwd_sp_obj(sc, q_obj); 8600 if (q_obj->complete_cmd(sc, q_obj, 8601 ECORE_Q_CMD_SETUP_TX_ONLY)) { 8602 break; 8603 } 8604 goto next_spqe; 8605 8606 case EVENT_RING_OPCODE_FUNCTION_START: 8607 BLOGD(sc, DBG_SP, "got FUNC_START ramrod\n"); 8608 if (f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_START)) { 8609 break; 8610 } 8611 goto next_spqe; 8612 8613 case EVENT_RING_OPCODE_FUNCTION_STOP: 8614 BLOGD(sc, DBG_SP, "got FUNC_STOP ramrod\n"); 8615 if (f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_STOP)) { 8616 break; 8617 } 8618 goto next_spqe; 8619 } 8620 8621 switch (opcode | sc->state) { 8622 case (EVENT_RING_OPCODE_RSS_UPDATE_RULES | BXE_STATE_OPEN): 8623 case (EVENT_RING_OPCODE_RSS_UPDATE_RULES | BXE_STATE_OPENING_WAITING_PORT): 8624 cid = elem->message.data.eth_event.echo & BXE_SWCID_MASK; 8625 BLOGD(sc, DBG_SP, "got RSS_UPDATE ramrod. CID %d\n", cid); 8626 rss_raw->clear_pending(rss_raw); 8627 break; 8628 8629 case (EVENT_RING_OPCODE_SET_MAC | BXE_STATE_OPEN): 8630 case (EVENT_RING_OPCODE_SET_MAC | BXE_STATE_DIAG): 8631 case (EVENT_RING_OPCODE_SET_MAC | BXE_STATE_CLOSING_WAITING_HALT): 8632 case (EVENT_RING_OPCODE_CLASSIFICATION_RULES | BXE_STATE_OPEN): 8633 case (EVENT_RING_OPCODE_CLASSIFICATION_RULES | BXE_STATE_DIAG): 8634 case (EVENT_RING_OPCODE_CLASSIFICATION_RULES | BXE_STATE_CLOSING_WAITING_HALT): 8635 BLOGD(sc, DBG_SP, "got (un)set mac ramrod\n"); 8636 bxe_handle_classification_eqe(sc, elem); 8637 break; 8638 8639 case (EVENT_RING_OPCODE_MULTICAST_RULES | BXE_STATE_OPEN): 8640 case (EVENT_RING_OPCODE_MULTICAST_RULES | BXE_STATE_DIAG): 8641 case (EVENT_RING_OPCODE_MULTICAST_RULES | BXE_STATE_CLOSING_WAITING_HALT): 8642 BLOGD(sc, DBG_SP, "got mcast ramrod\n"); 8643 bxe_handle_mcast_eqe(sc); 8644 break; 8645 8646 case (EVENT_RING_OPCODE_FILTERS_RULES | BXE_STATE_OPEN): 8647 case (EVENT_RING_OPCODE_FILTERS_RULES | BXE_STATE_DIAG): 8648 case (EVENT_RING_OPCODE_FILTERS_RULES | BXE_STATE_CLOSING_WAITING_HALT): 8649 BLOGD(sc, DBG_SP, "got rx_mode ramrod\n"); 8650 bxe_handle_rx_mode_eqe(sc, elem); 8651 break; 8652 8653 default: 8654 /* unknown event log error and continue */ 8655 BLOGE(sc, "Unknown EQ event %d, sc->state 0x%x\n", 8656 elem->message.opcode, sc->state); 8657 } 8658 8659 next_spqe: 8660 spqe_cnt++; 8661 } /* for */ 8662 8663 mb(); 8664 atomic_add_acq_long(&sc->eq_spq_left, spqe_cnt); 8665 8666 sc->eq_cons = sw_cons; 8667 sc->eq_prod = sw_prod; 8668 8669 /* make sure that above mem writes were issued towards the memory */ 8670 wmb(); 8671 8672 /* update producer */ 8673 bxe_update_eq_prod(sc, sc->eq_prod); 8674 } 8675 8676 static void 8677 bxe_handle_sp_tq(void *context, 8678 int pending) 8679 { 8680 struct bxe_softc *sc = (struct bxe_softc *)context; 8681 uint16_t status; 8682 8683 BLOGD(sc, DBG_SP, "---> SP TASK <---\n"); 8684 8685 /* what work needs to be performed? */ 8686 status = bxe_update_dsb_idx(sc); 8687 8688 BLOGD(sc, DBG_SP, "dsb status 0x%04x\n", status); 8689 8690 /* HW attentions */ 8691 if (status & BXE_DEF_SB_ATT_IDX) { 8692 BLOGD(sc, DBG_SP, "---> ATTN INTR <---\n"); 8693 bxe_attn_int(sc); 8694 status &= ~BXE_DEF_SB_ATT_IDX; 8695 } 8696 8697 /* SP events: STAT_QUERY and others */ 8698 if (status & BXE_DEF_SB_IDX) { 8699 /* handle EQ completions */ 8700 BLOGD(sc, DBG_SP, "---> EQ INTR <---\n"); 8701 bxe_eq_int(sc); 8702 bxe_ack_sb(sc, sc->igu_dsb_id, USTORM_ID, 8703 le16toh(sc->def_idx), IGU_INT_NOP, 1); 8704 status &= ~BXE_DEF_SB_IDX; 8705 } 8706 8707 /* if status is non zero then something went wrong */ 8708 if (__predict_false(status)) { 8709 BLOGE(sc, "Got an unknown SP interrupt! (0x%04x)\n", status); 8710 } 8711 8712 /* ack status block only if something was actually handled */ 8713 bxe_ack_sb(sc, sc->igu_dsb_id, ATTENTION_ID, 8714 le16toh(sc->def_att_idx), IGU_INT_ENABLE, 1); 8715 8716 /* 8717 * Must be called after the EQ processing (since eq leads to sriov 8718 * ramrod completion flows). 8719 * This flow may have been scheduled by the arrival of a ramrod 8720 * completion, or by the sriov code rescheduling itself. 8721 */ 8722 // XXX bxe_iov_sp_task(sc); 8723 8724 } 8725 8726 static void 8727 bxe_handle_fp_tq(void *context, 8728 int pending) 8729 { 8730 struct bxe_fastpath *fp = (struct bxe_fastpath *)context; 8731 struct bxe_softc *sc = fp->sc; 8732 uint8_t more_tx = FALSE; 8733 uint8_t more_rx = FALSE; 8734 8735 BLOGD(sc, DBG_INTR, "---> FP TASK QUEUE (%d) <---\n", fp->index); 8736 8737 /* XXX 8738 * IFF_DRV_RUNNING state can't be checked here since we process 8739 * slowpath events on a client queue during setup. Instead 8740 * we need to add a "process/continue" flag here that the driver 8741 * can use to tell the task here not to do anything. 8742 */ 8743 #if 0 8744 if (!(if_getdrvflags(sc->ifp) & IFF_DRV_RUNNING)) { 8745 return; 8746 } 8747 #endif 8748 8749 /* update the fastpath index */ 8750 bxe_update_fp_sb_idx(fp); 8751 8752 /* XXX add loop here if ever support multiple tx CoS */ 8753 /* fp->txdata[cos] */ 8754 if (bxe_has_tx_work(fp)) { 8755 BXE_FP_TX_LOCK(fp); 8756 more_tx = bxe_txeof(sc, fp); 8757 BXE_FP_TX_UNLOCK(fp); 8758 } 8759 8760 if (bxe_has_rx_work(fp)) { 8761 more_rx = bxe_rxeof(sc, fp); 8762 } 8763 8764 if (more_rx /*|| more_tx*/) { 8765 /* still more work to do */ 8766 taskqueue_enqueue(fp->tq, &fp->tq_task); 8767 return; 8768 } 8769 8770 bxe_ack_sb(sc, fp->igu_sb_id, USTORM_ID, 8771 le16toh(fp->fp_hc_idx), IGU_INT_ENABLE, 1); 8772 } 8773 8774 static void 8775 bxe_task_fp(struct bxe_fastpath *fp) 8776 { 8777 struct bxe_softc *sc = fp->sc; 8778 uint8_t more_tx = FALSE; 8779 uint8_t more_rx = FALSE; 8780 8781 BLOGD(sc, DBG_INTR, "---> FP TASK ISR (%d) <---\n", fp->index); 8782 8783 /* update the fastpath index */ 8784 bxe_update_fp_sb_idx(fp); 8785 8786 /* XXX add loop here if ever support multiple tx CoS */ 8787 /* fp->txdata[cos] */ 8788 if (bxe_has_tx_work(fp)) { 8789 BXE_FP_TX_LOCK(fp); 8790 more_tx = bxe_txeof(sc, fp); 8791 BXE_FP_TX_UNLOCK(fp); 8792 } 8793 8794 if (bxe_has_rx_work(fp)) { 8795 more_rx = bxe_rxeof(sc, fp); 8796 } 8797 8798 if (more_rx /*|| more_tx*/) { 8799 /* still more work to do, bail out if this ISR and process later */ 8800 taskqueue_enqueue(fp->tq, &fp->tq_task); 8801 return; 8802 } 8803 8804 /* 8805 * Here we write the fastpath index taken before doing any tx or rx work. 8806 * It is very well possible other hw events occurred up to this point and 8807 * they were actually processed accordingly above. Since we're going to 8808 * write an older fastpath index, an interrupt is coming which we might 8809 * not do any work in. 8810 */ 8811 bxe_ack_sb(sc, fp->igu_sb_id, USTORM_ID, 8812 le16toh(fp->fp_hc_idx), IGU_INT_ENABLE, 1); 8813 } 8814 8815 /* 8816 * Legacy interrupt entry point. 8817 * 8818 * Verifies that the controller generated the interrupt and 8819 * then calls a separate routine to handle the various 8820 * interrupt causes: link, RX, and TX. 8821 */ 8822 static void 8823 bxe_intr_legacy(void *xsc) 8824 { 8825 struct bxe_softc *sc = (struct bxe_softc *)xsc; 8826 struct bxe_fastpath *fp; 8827 uint16_t status, mask; 8828 int i; 8829 8830 BLOGD(sc, DBG_INTR, "---> BXE INTx <---\n"); 8831 8832 /* 8833 * 0 for ustorm, 1 for cstorm 8834 * the bits returned from ack_int() are 0-15 8835 * bit 0 = attention status block 8836 * bit 1 = fast path status block 8837 * a mask of 0x2 or more = tx/rx event 8838 * a mask of 1 = slow path event 8839 */ 8840 8841 status = bxe_ack_int(sc); 8842 8843 /* the interrupt is not for us */ 8844 if (__predict_false(status == 0)) { 8845 BLOGD(sc, DBG_INTR, "Not our interrupt!\n"); 8846 return; 8847 } 8848 8849 BLOGD(sc, DBG_INTR, "Interrupt status 0x%04x\n", status); 8850 8851 FOR_EACH_ETH_QUEUE(sc, i) { 8852 fp = &sc->fp[i]; 8853 mask = (0x2 << (fp->index + CNIC_SUPPORT(sc))); 8854 if (status & mask) { 8855 /* acknowledge and disable further fastpath interrupts */ 8856 bxe_ack_sb(sc, fp->igu_sb_id, USTORM_ID, 0, IGU_INT_DISABLE, 0); 8857 bxe_task_fp(fp); 8858 status &= ~mask; 8859 } 8860 } 8861 8862 if (__predict_false(status & 0x1)) { 8863 /* acknowledge and disable further slowpath interrupts */ 8864 bxe_ack_sb(sc, sc->igu_dsb_id, USTORM_ID, 0, IGU_INT_DISABLE, 0); 8865 8866 /* schedule slowpath handler */ 8867 taskqueue_enqueue(sc->sp_tq, &sc->sp_tq_task); 8868 8869 status &= ~0x1; 8870 } 8871 8872 if (__predict_false(status)) { 8873 BLOGW(sc, "Unexpected fastpath status (0x%08x)!\n", status); 8874 } 8875 } 8876 8877 /* slowpath interrupt entry point */ 8878 static void 8879 bxe_intr_sp(void *xsc) 8880 { 8881 struct bxe_softc *sc = (struct bxe_softc *)xsc; 8882 8883 BLOGD(sc, (DBG_INTR | DBG_SP), "---> SP INTR <---\n"); 8884 8885 /* acknowledge and disable further slowpath interrupts */ 8886 bxe_ack_sb(sc, sc->igu_dsb_id, USTORM_ID, 0, IGU_INT_DISABLE, 0); 8887 8888 /* schedule slowpath handler */ 8889 taskqueue_enqueue(sc->sp_tq, &sc->sp_tq_task); 8890 } 8891 8892 /* fastpath interrupt entry point */ 8893 static void 8894 bxe_intr_fp(void *xfp) 8895 { 8896 struct bxe_fastpath *fp = (struct bxe_fastpath *)xfp; 8897 struct bxe_softc *sc = fp->sc; 8898 8899 BLOGD(sc, DBG_INTR, "---> FP INTR %d <---\n", fp->index); 8900 8901 BLOGD(sc, DBG_INTR, 8902 "(cpu=%d) MSI-X fp=%d fw_sb=%d igu_sb=%d\n", 8903 curcpu, fp->index, fp->fw_sb_id, fp->igu_sb_id); 8904 8905 /* acknowledge and disable further fastpath interrupts */ 8906 bxe_ack_sb(sc, fp->igu_sb_id, USTORM_ID, 0, IGU_INT_DISABLE, 0); 8907 8908 bxe_task_fp(fp); 8909 } 8910 8911 /* Release all interrupts allocated by the driver. */ 8912 static void 8913 bxe_interrupt_free(struct bxe_softc *sc) 8914 { 8915 int i; 8916 8917 switch (sc->interrupt_mode) { 8918 case INTR_MODE_INTX: 8919 BLOGD(sc, DBG_LOAD, "Releasing legacy INTx vector\n"); 8920 if (sc->intr[0].resource != NULL) { 8921 bus_release_resource(sc->dev, 8922 SYS_RES_IRQ, 8923 sc->intr[0].rid, 8924 sc->intr[0].resource); 8925 } 8926 break; 8927 case INTR_MODE_MSI: 8928 for (i = 0; i < sc->intr_count; i++) { 8929 BLOGD(sc, DBG_LOAD, "Releasing MSI vector %d\n", i); 8930 if (sc->intr[i].resource && sc->intr[i].rid) { 8931 bus_release_resource(sc->dev, 8932 SYS_RES_IRQ, 8933 sc->intr[i].rid, 8934 sc->intr[i].resource); 8935 } 8936 } 8937 pci_release_msi(sc->dev); 8938 break; 8939 case INTR_MODE_MSIX: 8940 for (i = 0; i < sc->intr_count; i++) { 8941 BLOGD(sc, DBG_LOAD, "Releasing MSI-X vector %d\n", i); 8942 if (sc->intr[i].resource && sc->intr[i].rid) { 8943 bus_release_resource(sc->dev, 8944 SYS_RES_IRQ, 8945 sc->intr[i].rid, 8946 sc->intr[i].resource); 8947 } 8948 } 8949 pci_release_msi(sc->dev); 8950 break; 8951 default: 8952 /* nothing to do as initial allocation failed */ 8953 break; 8954 } 8955 } 8956 8957 /* 8958 * This function determines and allocates the appropriate 8959 * interrupt based on system capabilites and user request. 8960 * 8961 * The user may force a particular interrupt mode, specify 8962 * the number of receive queues, specify the method for 8963 * distribuitng received frames to receive queues, or use 8964 * the default settings which will automatically select the 8965 * best supported combination. In addition, the OS may or 8966 * may not support certain combinations of these settings. 8967 * This routine attempts to reconcile the settings requested 8968 * by the user with the capabilites available from the system 8969 * to select the optimal combination of features. 8970 * 8971 * Returns: 8972 * 0 = Success, !0 = Failure. 8973 */ 8974 static int 8975 bxe_interrupt_alloc(struct bxe_softc *sc) 8976 { 8977 int msix_count = 0; 8978 int msi_count = 0; 8979 int num_requested = 0; 8980 int num_allocated = 0; 8981 int rid, i, j; 8982 int rc; 8983 8984 /* get the number of available MSI/MSI-X interrupts from the OS */ 8985 if (sc->interrupt_mode > 0) { 8986 if (sc->devinfo.pcie_cap_flags & BXE_MSIX_CAPABLE_FLAG) { 8987 msix_count = pci_msix_count(sc->dev); 8988 } 8989 8990 if (sc->devinfo.pcie_cap_flags & BXE_MSI_CAPABLE_FLAG) { 8991 msi_count = pci_msi_count(sc->dev); 8992 } 8993 8994 BLOGD(sc, DBG_LOAD, "%d MSI and %d MSI-X vectors available\n", 8995 msi_count, msix_count); 8996 } 8997 8998 do { /* try allocating MSI-X interrupt resources (at least 2) */ 8999 if (sc->interrupt_mode != INTR_MODE_MSIX) { 9000 break; 9001 } 9002 9003 if (((sc->devinfo.pcie_cap_flags & BXE_MSIX_CAPABLE_FLAG) == 0) || 9004 (msix_count < 2)) { 9005 sc->interrupt_mode = INTR_MODE_MSI; /* try MSI next */ 9006 break; 9007 } 9008 9009 /* ask for the necessary number of MSI-X vectors */ 9010 num_requested = min((sc->num_queues + 1), msix_count); 9011 9012 BLOGD(sc, DBG_LOAD, "Requesting %d MSI-X vectors\n", num_requested); 9013 9014 num_allocated = num_requested; 9015 if ((rc = pci_alloc_msix(sc->dev, &num_allocated)) != 0) { 9016 BLOGE(sc, "MSI-X alloc failed! (%d)\n", rc); 9017 sc->interrupt_mode = INTR_MODE_MSI; /* try MSI next */ 9018 break; 9019 } 9020 9021 if (num_allocated < 2) { /* possible? */ 9022 BLOGE(sc, "MSI-X allocation less than 2!\n"); 9023 sc->interrupt_mode = INTR_MODE_MSI; /* try MSI next */ 9024 pci_release_msi(sc->dev); 9025 break; 9026 } 9027 9028 BLOGI(sc, "MSI-X vectors Requested %d and Allocated %d\n", 9029 num_requested, num_allocated); 9030 9031 /* best effort so use the number of vectors allocated to us */ 9032 sc->intr_count = num_allocated; 9033 sc->num_queues = num_allocated - 1; 9034 9035 rid = 1; /* initial resource identifier */ 9036 9037 /* allocate the MSI-X vectors */ 9038 for (i = 0; i < num_allocated; i++) { 9039 sc->intr[i].rid = (rid + i); 9040 9041 if ((sc->intr[i].resource = 9042 bus_alloc_resource_any(sc->dev, 9043 SYS_RES_IRQ, 9044 &sc->intr[i].rid, 9045 RF_ACTIVE)) == NULL) { 9046 BLOGE(sc, "Failed to map MSI-X[%d] (rid=%d)!\n", 9047 i, (rid + i)); 9048 9049 for (j = (i - 1); j >= 0; j--) { 9050 bus_release_resource(sc->dev, 9051 SYS_RES_IRQ, 9052 sc->intr[j].rid, 9053 sc->intr[j].resource); 9054 } 9055 9056 sc->intr_count = 0; 9057 sc->num_queues = 0; 9058 sc->interrupt_mode = INTR_MODE_MSI; /* try MSI next */ 9059 pci_release_msi(sc->dev); 9060 break; 9061 } 9062 9063 BLOGD(sc, DBG_LOAD, "Mapped MSI-X[%d] (rid=%d)\n", i, (rid + i)); 9064 } 9065 } while (0); 9066 9067 do { /* try allocating MSI vector resources (at least 2) */ 9068 if (sc->interrupt_mode != INTR_MODE_MSI) { 9069 break; 9070 } 9071 9072 if (((sc->devinfo.pcie_cap_flags & BXE_MSI_CAPABLE_FLAG) == 0) || 9073 (msi_count < 1)) { 9074 sc->interrupt_mode = INTR_MODE_INTX; /* try INTx next */ 9075 break; 9076 } 9077 9078 /* ask for a single MSI vector */ 9079 num_requested = 1; 9080 9081 BLOGD(sc, DBG_LOAD, "Requesting %d MSI vectors\n", num_requested); 9082 9083 num_allocated = num_requested; 9084 if ((rc = pci_alloc_msi(sc->dev, &num_allocated)) != 0) { 9085 BLOGE(sc, "MSI alloc failed (%d)!\n", rc); 9086 sc->interrupt_mode = INTR_MODE_INTX; /* try INTx next */ 9087 break; 9088 } 9089 9090 if (num_allocated != 1) { /* possible? */ 9091 BLOGE(sc, "MSI allocation is not 1!\n"); 9092 sc->interrupt_mode = INTR_MODE_INTX; /* try INTx next */ 9093 pci_release_msi(sc->dev); 9094 break; 9095 } 9096 9097 BLOGI(sc, "MSI vectors Requested %d and Allocated %d\n", 9098 num_requested, num_allocated); 9099 9100 /* best effort so use the number of vectors allocated to us */ 9101 sc->intr_count = num_allocated; 9102 sc->num_queues = num_allocated; 9103 9104 rid = 1; /* initial resource identifier */ 9105 9106 sc->intr[0].rid = rid; 9107 9108 if ((sc->intr[0].resource = 9109 bus_alloc_resource_any(sc->dev, 9110 SYS_RES_IRQ, 9111 &sc->intr[0].rid, 9112 RF_ACTIVE)) == NULL) { 9113 BLOGE(sc, "Failed to map MSI[0] (rid=%d)!\n", rid); 9114 sc->intr_count = 0; 9115 sc->num_queues = 0; 9116 sc->interrupt_mode = INTR_MODE_INTX; /* try INTx next */ 9117 pci_release_msi(sc->dev); 9118 break; 9119 } 9120 9121 BLOGD(sc, DBG_LOAD, "Mapped MSI[0] (rid=%d)\n", rid); 9122 } while (0); 9123 9124 do { /* try allocating INTx vector resources */ 9125 if (sc->interrupt_mode != INTR_MODE_INTX) { 9126 break; 9127 } 9128 9129 BLOGD(sc, DBG_LOAD, "Requesting legacy INTx interrupt\n"); 9130 9131 /* only one vector for INTx */ 9132 sc->intr_count = 1; 9133 sc->num_queues = 1; 9134 9135 rid = 0; /* initial resource identifier */ 9136 9137 sc->intr[0].rid = rid; 9138 9139 if ((sc->intr[0].resource = 9140 bus_alloc_resource_any(sc->dev, 9141 SYS_RES_IRQ, 9142 &sc->intr[0].rid, 9143 (RF_ACTIVE | RF_SHAREABLE))) == NULL) { 9144 BLOGE(sc, "Failed to map INTx (rid=%d)!\n", rid); 9145 sc->intr_count = 0; 9146 sc->num_queues = 0; 9147 sc->interrupt_mode = -1; /* Failed! */ 9148 break; 9149 } 9150 9151 BLOGD(sc, DBG_LOAD, "Mapped INTx (rid=%d)\n", rid); 9152 } while (0); 9153 9154 if (sc->interrupt_mode == -1) { 9155 BLOGE(sc, "Interrupt Allocation: FAILED!!!\n"); 9156 rc = 1; 9157 } else { 9158 BLOGD(sc, DBG_LOAD, 9159 "Interrupt Allocation: interrupt_mode=%d, num_queues=%d\n", 9160 sc->interrupt_mode, sc->num_queues); 9161 rc = 0; 9162 } 9163 9164 return (rc); 9165 } 9166 9167 static void 9168 bxe_interrupt_detach(struct bxe_softc *sc) 9169 { 9170 struct bxe_fastpath *fp; 9171 int i; 9172 9173 /* release interrupt resources */ 9174 for (i = 0; i < sc->intr_count; i++) { 9175 if (sc->intr[i].resource && sc->intr[i].tag) { 9176 BLOGD(sc, DBG_LOAD, "Disabling interrupt vector %d\n", i); 9177 bus_teardown_intr(sc->dev, sc->intr[i].resource, sc->intr[i].tag); 9178 } 9179 } 9180 9181 for (i = 0; i < sc->num_queues; i++) { 9182 fp = &sc->fp[i]; 9183 if (fp->tq) { 9184 taskqueue_drain(fp->tq, &fp->tq_task); 9185 taskqueue_free(fp->tq); 9186 fp->tq = NULL; 9187 } 9188 } 9189 9190 9191 if (sc->sp_tq) { 9192 taskqueue_drain(sc->sp_tq, &sc->sp_tq_task); 9193 taskqueue_free(sc->sp_tq); 9194 sc->sp_tq = NULL; 9195 } 9196 } 9197 9198 /* 9199 * Enables interrupts and attach to the ISR. 9200 * 9201 * When using multiple MSI/MSI-X vectors the first vector 9202 * is used for slowpath operations while all remaining 9203 * vectors are used for fastpath operations. If only a 9204 * single MSI/MSI-X vector is used (SINGLE_ISR) then the 9205 * ISR must look for both slowpath and fastpath completions. 9206 */ 9207 static int 9208 bxe_interrupt_attach(struct bxe_softc *sc) 9209 { 9210 struct bxe_fastpath *fp; 9211 int rc = 0; 9212 int i; 9213 9214 snprintf(sc->sp_tq_name, sizeof(sc->sp_tq_name), 9215 "bxe%d_sp_tq", sc->unit); 9216 TASK_INIT(&sc->sp_tq_task, 0, bxe_handle_sp_tq, sc); 9217 sc->sp_tq = taskqueue_create_fast(sc->sp_tq_name, M_NOWAIT, 9218 taskqueue_thread_enqueue, 9219 &sc->sp_tq); 9220 taskqueue_start_threads(&sc->sp_tq, 1, PWAIT, /* lower priority */ 9221 "%s", sc->sp_tq_name); 9222 9223 9224 for (i = 0; i < sc->num_queues; i++) { 9225 fp = &sc->fp[i]; 9226 snprintf(fp->tq_name, sizeof(fp->tq_name), 9227 "bxe%d_fp%d_tq", sc->unit, i); 9228 TASK_INIT(&fp->tq_task, 0, bxe_handle_fp_tq, fp); 9229 fp->tq = taskqueue_create_fast(fp->tq_name, M_NOWAIT, 9230 taskqueue_thread_enqueue, 9231 &fp->tq); 9232 taskqueue_start_threads(&fp->tq, 1, PI_NET, /* higher priority */ 9233 "%s", fp->tq_name); 9234 } 9235 9236 /* setup interrupt handlers */ 9237 if (sc->interrupt_mode == INTR_MODE_MSIX) { 9238 BLOGD(sc, DBG_LOAD, "Enabling slowpath MSI-X[0] vector\n"); 9239 9240 /* 9241 * Setup the interrupt handler. Note that we pass the driver instance 9242 * to the interrupt handler for the slowpath. 9243 */ 9244 if ((rc = bus_setup_intr(sc->dev, sc->intr[0].resource, 9245 (INTR_TYPE_NET | INTR_MPSAFE), 9246 NULL, bxe_intr_sp, sc, 9247 &sc->intr[0].tag)) != 0) { 9248 BLOGE(sc, "Failed to allocate MSI-X[0] vector (%d)\n", rc); 9249 goto bxe_interrupt_attach_exit; 9250 } 9251 9252 bus_describe_intr(sc->dev, sc->intr[0].resource, 9253 sc->intr[0].tag, "sp"); 9254 9255 /* bus_bind_intr(sc->dev, sc->intr[0].resource, 0); */ 9256 9257 /* initialize the fastpath vectors (note the first was used for sp) */ 9258 for (i = 0; i < sc->num_queues; i++) { 9259 fp = &sc->fp[i]; 9260 BLOGD(sc, DBG_LOAD, "Enabling MSI-X[%d] vector\n", (i + 1)); 9261 9262 /* 9263 * Setup the interrupt handler. Note that we pass the 9264 * fastpath context to the interrupt handler in this 9265 * case. 9266 */ 9267 if ((rc = bus_setup_intr(sc->dev, sc->intr[i + 1].resource, 9268 (INTR_TYPE_NET | INTR_MPSAFE), 9269 NULL, bxe_intr_fp, fp, 9270 &sc->intr[i + 1].tag)) != 0) { 9271 BLOGE(sc, "Failed to allocate MSI-X[%d] vector (%d)\n", 9272 (i + 1), rc); 9273 goto bxe_interrupt_attach_exit; 9274 } 9275 9276 bus_describe_intr(sc->dev, sc->intr[i + 1].resource, 9277 sc->intr[i + 1].tag, "fp%02d", i); 9278 9279 /* bind the fastpath instance to a cpu */ 9280 if (sc->num_queues > 1) { 9281 bus_bind_intr(sc->dev, sc->intr[i + 1].resource, i); 9282 } 9283 9284 fp->state = BXE_FP_STATE_IRQ; 9285 } 9286 } else if (sc->interrupt_mode == INTR_MODE_MSI) { 9287 BLOGD(sc, DBG_LOAD, "Enabling MSI[0] vector\n"); 9288 9289 /* 9290 * Setup the interrupt handler. Note that we pass the 9291 * driver instance to the interrupt handler which 9292 * will handle both the slowpath and fastpath. 9293 */ 9294 if ((rc = bus_setup_intr(sc->dev, sc->intr[0].resource, 9295 (INTR_TYPE_NET | INTR_MPSAFE), 9296 NULL, bxe_intr_legacy, sc, 9297 &sc->intr[0].tag)) != 0) { 9298 BLOGE(sc, "Failed to allocate MSI[0] vector (%d)\n", rc); 9299 goto bxe_interrupt_attach_exit; 9300 } 9301 9302 } else { /* (sc->interrupt_mode == INTR_MODE_INTX) */ 9303 BLOGD(sc, DBG_LOAD, "Enabling INTx interrupts\n"); 9304 9305 /* 9306 * Setup the interrupt handler. Note that we pass the 9307 * driver instance to the interrupt handler which 9308 * will handle both the slowpath and fastpath. 9309 */ 9310 if ((rc = bus_setup_intr(sc->dev, sc->intr[0].resource, 9311 (INTR_TYPE_NET | INTR_MPSAFE), 9312 NULL, bxe_intr_legacy, sc, 9313 &sc->intr[0].tag)) != 0) { 9314 BLOGE(sc, "Failed to allocate INTx interrupt (%d)\n", rc); 9315 goto bxe_interrupt_attach_exit; 9316 } 9317 } 9318 9319 bxe_interrupt_attach_exit: 9320 9321 return (rc); 9322 } 9323 9324 static int bxe_init_hw_common_chip(struct bxe_softc *sc); 9325 static int bxe_init_hw_common(struct bxe_softc *sc); 9326 static int bxe_init_hw_port(struct bxe_softc *sc); 9327 static int bxe_init_hw_func(struct bxe_softc *sc); 9328 static void bxe_reset_common(struct bxe_softc *sc); 9329 static void bxe_reset_port(struct bxe_softc *sc); 9330 static void bxe_reset_func(struct bxe_softc *sc); 9331 static int bxe_gunzip_init(struct bxe_softc *sc); 9332 static void bxe_gunzip_end(struct bxe_softc *sc); 9333 static int bxe_init_firmware(struct bxe_softc *sc); 9334 static void bxe_release_firmware(struct bxe_softc *sc); 9335 9336 static struct 9337 ecore_func_sp_drv_ops bxe_func_sp_drv = { 9338 .init_hw_cmn_chip = bxe_init_hw_common_chip, 9339 .init_hw_cmn = bxe_init_hw_common, 9340 .init_hw_port = bxe_init_hw_port, 9341 .init_hw_func = bxe_init_hw_func, 9342 9343 .reset_hw_cmn = bxe_reset_common, 9344 .reset_hw_port = bxe_reset_port, 9345 .reset_hw_func = bxe_reset_func, 9346 9347 .gunzip_init = bxe_gunzip_init, 9348 .gunzip_end = bxe_gunzip_end, 9349 9350 .init_fw = bxe_init_firmware, 9351 .release_fw = bxe_release_firmware, 9352 }; 9353 9354 static void 9355 bxe_init_func_obj(struct bxe_softc *sc) 9356 { 9357 sc->dmae_ready = 0; 9358 9359 ecore_init_func_obj(sc, 9360 &sc->func_obj, 9361 BXE_SP(sc, func_rdata), 9362 BXE_SP_MAPPING(sc, func_rdata), 9363 BXE_SP(sc, func_afex_rdata), 9364 BXE_SP_MAPPING(sc, func_afex_rdata), 9365 &bxe_func_sp_drv); 9366 } 9367 9368 static int 9369 bxe_init_hw(struct bxe_softc *sc, 9370 uint32_t load_code) 9371 { 9372 struct ecore_func_state_params func_params = { NULL }; 9373 int rc; 9374 9375 /* prepare the parameters for function state transitions */ 9376 bit_set(&func_params.ramrod_flags, RAMROD_COMP_WAIT); 9377 9378 func_params.f_obj = &sc->func_obj; 9379 func_params.cmd = ECORE_F_CMD_HW_INIT; 9380 9381 func_params.params.hw_init.load_phase = load_code; 9382 9383 /* 9384 * Via a plethora of function pointers, we will eventually reach 9385 * bxe_init_hw_common(), bxe_init_hw_port(), or bxe_init_hw_func(). 9386 */ 9387 rc = ecore_func_state_change(sc, &func_params); 9388 9389 return (rc); 9390 } 9391 9392 static void 9393 bxe_fill(struct bxe_softc *sc, 9394 uint32_t addr, 9395 int fill, 9396 uint32_t len) 9397 { 9398 uint32_t i; 9399 9400 if (!(len % 4) && !(addr % 4)) { 9401 for (i = 0; i < len; i += 4) { 9402 REG_WR(sc, (addr + i), fill); 9403 } 9404 } else { 9405 for (i = 0; i < len; i++) { 9406 REG_WR8(sc, (addr + i), fill); 9407 } 9408 } 9409 } 9410 9411 /* writes FP SP data to FW - data_size in dwords */ 9412 static void 9413 bxe_wr_fp_sb_data(struct bxe_softc *sc, 9414 int fw_sb_id, 9415 uint32_t *sb_data_p, 9416 uint32_t data_size) 9417 { 9418 int index; 9419 9420 for (index = 0; index < data_size; index++) { 9421 REG_WR(sc, 9422 (BAR_CSTRORM_INTMEM + 9423 CSTORM_STATUS_BLOCK_DATA_OFFSET(fw_sb_id) + 9424 (sizeof(uint32_t) * index)), 9425 *(sb_data_p + index)); 9426 } 9427 } 9428 9429 static void 9430 bxe_zero_fp_sb(struct bxe_softc *sc, 9431 int fw_sb_id) 9432 { 9433 struct hc_status_block_data_e2 sb_data_e2; 9434 struct hc_status_block_data_e1x sb_data_e1x; 9435 uint32_t *sb_data_p; 9436 uint32_t data_size = 0; 9437 9438 if (!CHIP_IS_E1x(sc)) { 9439 memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2)); 9440 sb_data_e2.common.state = SB_DISABLED; 9441 sb_data_e2.common.p_func.vf_valid = FALSE; 9442 sb_data_p = (uint32_t *)&sb_data_e2; 9443 data_size = (sizeof(struct hc_status_block_data_e2) / 9444 sizeof(uint32_t)); 9445 } else { 9446 memset(&sb_data_e1x, 0, sizeof(struct hc_status_block_data_e1x)); 9447 sb_data_e1x.common.state = SB_DISABLED; 9448 sb_data_e1x.common.p_func.vf_valid = FALSE; 9449 sb_data_p = (uint32_t *)&sb_data_e1x; 9450 data_size = (sizeof(struct hc_status_block_data_e1x) / 9451 sizeof(uint32_t)); 9452 } 9453 9454 bxe_wr_fp_sb_data(sc, fw_sb_id, sb_data_p, data_size); 9455 9456 bxe_fill(sc, (BAR_CSTRORM_INTMEM + CSTORM_STATUS_BLOCK_OFFSET(fw_sb_id)), 9457 0, CSTORM_STATUS_BLOCK_SIZE); 9458 bxe_fill(sc, (BAR_CSTRORM_INTMEM + CSTORM_SYNC_BLOCK_OFFSET(fw_sb_id)), 9459 0, CSTORM_SYNC_BLOCK_SIZE); 9460 } 9461 9462 static void 9463 bxe_wr_sp_sb_data(struct bxe_softc *sc, 9464 struct hc_sp_status_block_data *sp_sb_data) 9465 { 9466 int i; 9467 9468 for (i = 0; 9469 i < (sizeof(struct hc_sp_status_block_data) / sizeof(uint32_t)); 9470 i++) { 9471 REG_WR(sc, 9472 (BAR_CSTRORM_INTMEM + 9473 CSTORM_SP_STATUS_BLOCK_DATA_OFFSET(SC_FUNC(sc)) + 9474 (i * sizeof(uint32_t))), 9475 *((uint32_t *)sp_sb_data + i)); 9476 } 9477 } 9478 9479 static void 9480 bxe_zero_sp_sb(struct bxe_softc *sc) 9481 { 9482 struct hc_sp_status_block_data sp_sb_data; 9483 9484 memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data)); 9485 9486 sp_sb_data.state = SB_DISABLED; 9487 sp_sb_data.p_func.vf_valid = FALSE; 9488 9489 bxe_wr_sp_sb_data(sc, &sp_sb_data); 9490 9491 bxe_fill(sc, 9492 (BAR_CSTRORM_INTMEM + 9493 CSTORM_SP_STATUS_BLOCK_OFFSET(SC_FUNC(sc))), 9494 0, CSTORM_SP_STATUS_BLOCK_SIZE); 9495 bxe_fill(sc, 9496 (BAR_CSTRORM_INTMEM + 9497 CSTORM_SP_SYNC_BLOCK_OFFSET(SC_FUNC(sc))), 9498 0, CSTORM_SP_SYNC_BLOCK_SIZE); 9499 } 9500 9501 static void 9502 bxe_setup_ndsb_state_machine(struct hc_status_block_sm *hc_sm, 9503 int igu_sb_id, 9504 int igu_seg_id) 9505 { 9506 hc_sm->igu_sb_id = igu_sb_id; 9507 hc_sm->igu_seg_id = igu_seg_id; 9508 hc_sm->timer_value = 0xFF; 9509 hc_sm->time_to_expire = 0xFFFFFFFF; 9510 } 9511 9512 static void 9513 bxe_map_sb_state_machines(struct hc_index_data *index_data) 9514 { 9515 /* zero out state machine indices */ 9516 9517 /* rx indices */ 9518 index_data[HC_INDEX_ETH_RX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID; 9519 9520 /* tx indices */ 9521 index_data[HC_INDEX_OOO_TX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID; 9522 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags &= ~HC_INDEX_DATA_SM_ID; 9523 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags &= ~HC_INDEX_DATA_SM_ID; 9524 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags &= ~HC_INDEX_DATA_SM_ID; 9525 9526 /* map indices */ 9527 9528 /* rx indices */ 9529 index_data[HC_INDEX_ETH_RX_CQ_CONS].flags |= 9530 (SM_RX_ID << HC_INDEX_DATA_SM_ID_SHIFT); 9531 9532 /* tx indices */ 9533 index_data[HC_INDEX_OOO_TX_CQ_CONS].flags |= 9534 (SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT); 9535 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags |= 9536 (SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT); 9537 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags |= 9538 (SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT); 9539 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags |= 9540 (SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT); 9541 } 9542 9543 static void 9544 bxe_init_sb(struct bxe_softc *sc, 9545 bus_addr_t busaddr, 9546 int vfid, 9547 uint8_t vf_valid, 9548 int fw_sb_id, 9549 int igu_sb_id) 9550 { 9551 struct hc_status_block_data_e2 sb_data_e2; 9552 struct hc_status_block_data_e1x sb_data_e1x; 9553 struct hc_status_block_sm *hc_sm_p; 9554 uint32_t *sb_data_p; 9555 int igu_seg_id; 9556 int data_size; 9557 9558 if (CHIP_INT_MODE_IS_BC(sc)) { 9559 igu_seg_id = HC_SEG_ACCESS_NORM; 9560 } else { 9561 igu_seg_id = IGU_SEG_ACCESS_NORM; 9562 } 9563 9564 bxe_zero_fp_sb(sc, fw_sb_id); 9565 9566 if (!CHIP_IS_E1x(sc)) { 9567 memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2)); 9568 sb_data_e2.common.state = SB_ENABLED; 9569 sb_data_e2.common.p_func.pf_id = SC_FUNC(sc); 9570 sb_data_e2.common.p_func.vf_id = vfid; 9571 sb_data_e2.common.p_func.vf_valid = vf_valid; 9572 sb_data_e2.common.p_func.vnic_id = SC_VN(sc); 9573 sb_data_e2.common.same_igu_sb_1b = TRUE; 9574 sb_data_e2.common.host_sb_addr.hi = U64_HI(busaddr); 9575 sb_data_e2.common.host_sb_addr.lo = U64_LO(busaddr); 9576 hc_sm_p = sb_data_e2.common.state_machine; 9577 sb_data_p = (uint32_t *)&sb_data_e2; 9578 data_size = (sizeof(struct hc_status_block_data_e2) / 9579 sizeof(uint32_t)); 9580 bxe_map_sb_state_machines(sb_data_e2.index_data); 9581 } else { 9582 memset(&sb_data_e1x, 0, sizeof(struct hc_status_block_data_e1x)); 9583 sb_data_e1x.common.state = SB_ENABLED; 9584 sb_data_e1x.common.p_func.pf_id = SC_FUNC(sc); 9585 sb_data_e1x.common.p_func.vf_id = 0xff; 9586 sb_data_e1x.common.p_func.vf_valid = FALSE; 9587 sb_data_e1x.common.p_func.vnic_id = SC_VN(sc); 9588 sb_data_e1x.common.same_igu_sb_1b = TRUE; 9589 sb_data_e1x.common.host_sb_addr.hi = U64_HI(busaddr); 9590 sb_data_e1x.common.host_sb_addr.lo = U64_LO(busaddr); 9591 hc_sm_p = sb_data_e1x.common.state_machine; 9592 sb_data_p = (uint32_t *)&sb_data_e1x; 9593 data_size = (sizeof(struct hc_status_block_data_e1x) / 9594 sizeof(uint32_t)); 9595 bxe_map_sb_state_machines(sb_data_e1x.index_data); 9596 } 9597 9598 bxe_setup_ndsb_state_machine(&hc_sm_p[SM_RX_ID], igu_sb_id, igu_seg_id); 9599 bxe_setup_ndsb_state_machine(&hc_sm_p[SM_TX_ID], igu_sb_id, igu_seg_id); 9600 9601 BLOGD(sc, DBG_LOAD, "Init FW SB %d\n", fw_sb_id); 9602 9603 /* write indices to HW - PCI guarantees endianity of regpairs */ 9604 bxe_wr_fp_sb_data(sc, fw_sb_id, sb_data_p, data_size); 9605 } 9606 9607 static inline uint8_t 9608 bxe_fp_qzone_id(struct bxe_fastpath *fp) 9609 { 9610 if (CHIP_IS_E1x(fp->sc)) { 9611 return (fp->cl_id + SC_PORT(fp->sc) * ETH_MAX_RX_CLIENTS_E1H); 9612 } else { 9613 return (fp->cl_id); 9614 } 9615 } 9616 9617 static inline uint32_t 9618 bxe_rx_ustorm_prods_offset(struct bxe_softc *sc, 9619 struct bxe_fastpath *fp) 9620 { 9621 uint32_t offset = BAR_USTRORM_INTMEM; 9622 9623 if (!CHIP_IS_E1x(sc)) { 9624 offset += USTORM_RX_PRODS_E2_OFFSET(fp->cl_qzone_id); 9625 } else { 9626 offset += USTORM_RX_PRODS_E1X_OFFSET(SC_PORT(sc), fp->cl_id); 9627 } 9628 9629 return (offset); 9630 } 9631 9632 static void 9633 bxe_init_eth_fp(struct bxe_softc *sc, 9634 int idx) 9635 { 9636 struct bxe_fastpath *fp = &sc->fp[idx]; 9637 uint32_t cids[ECORE_MULTI_TX_COS] = { 0 }; 9638 unsigned long q_type = 0; 9639 int cos; 9640 9641 fp->sc = sc; 9642 fp->index = idx; 9643 9644 fp->igu_sb_id = (sc->igu_base_sb + idx + CNIC_SUPPORT(sc)); 9645 fp->fw_sb_id = (sc->base_fw_ndsb + idx + CNIC_SUPPORT(sc)); 9646 9647 fp->cl_id = (CHIP_IS_E1x(sc)) ? 9648 (SC_L_ID(sc) + idx) : 9649 /* want client ID same as IGU SB ID for non-E1 */ 9650 fp->igu_sb_id; 9651 fp->cl_qzone_id = bxe_fp_qzone_id(fp); 9652 9653 /* setup sb indices */ 9654 if (!CHIP_IS_E1x(sc)) { 9655 fp->sb_index_values = fp->status_block.e2_sb->sb.index_values; 9656 fp->sb_running_index = fp->status_block.e2_sb->sb.running_index; 9657 } else { 9658 fp->sb_index_values = fp->status_block.e1x_sb->sb.index_values; 9659 fp->sb_running_index = fp->status_block.e1x_sb->sb.running_index; 9660 } 9661 9662 /* init shortcut */ 9663 fp->ustorm_rx_prods_offset = bxe_rx_ustorm_prods_offset(sc, fp); 9664 9665 fp->rx_cq_cons_sb = &fp->sb_index_values[HC_INDEX_ETH_RX_CQ_CONS]; 9666 9667 /* 9668 * XXX If multiple CoS is ever supported then each fastpath structure 9669 * will need to maintain tx producer/consumer/dma/etc values *per* CoS. 9670 */ 9671 for (cos = 0; cos < sc->max_cos; cos++) { 9672 cids[cos] = idx; 9673 } 9674 fp->tx_cons_sb = &fp->sb_index_values[HC_INDEX_ETH_TX_CQ_CONS_COS0]; 9675 9676 /* nothing more for a VF to do */ 9677 if (IS_VF(sc)) { 9678 return; 9679 } 9680 9681 bxe_init_sb(sc, fp->sb_dma.paddr, BXE_VF_ID_INVALID, FALSE, 9682 fp->fw_sb_id, fp->igu_sb_id); 9683 9684 bxe_update_fp_sb_idx(fp); 9685 9686 /* Configure Queue State object */ 9687 bit_set(&q_type, ECORE_Q_TYPE_HAS_RX); 9688 bit_set(&q_type, ECORE_Q_TYPE_HAS_TX); 9689 9690 ecore_init_queue_obj(sc, 9691 &sc->sp_objs[idx].q_obj, 9692 fp->cl_id, 9693 cids, 9694 sc->max_cos, 9695 SC_FUNC(sc), 9696 BXE_SP(sc, q_rdata), 9697 BXE_SP_MAPPING(sc, q_rdata), 9698 q_type); 9699 9700 /* configure classification DBs */ 9701 ecore_init_mac_obj(sc, 9702 &sc->sp_objs[idx].mac_obj, 9703 fp->cl_id, 9704 idx, 9705 SC_FUNC(sc), 9706 BXE_SP(sc, mac_rdata), 9707 BXE_SP_MAPPING(sc, mac_rdata), 9708 ECORE_FILTER_MAC_PENDING, 9709 &sc->sp_state, 9710 ECORE_OBJ_TYPE_RX_TX, 9711 &sc->macs_pool); 9712 9713 BLOGD(sc, DBG_LOAD, "fp[%d]: sb=%p cl_id=%d fw_sb=%d igu_sb=%d\n", 9714 idx, fp->status_block.e2_sb, fp->cl_id, fp->fw_sb_id, fp->igu_sb_id); 9715 } 9716 9717 static inline void 9718 bxe_update_rx_prod(struct bxe_softc *sc, 9719 struct bxe_fastpath *fp, 9720 uint16_t rx_bd_prod, 9721 uint16_t rx_cq_prod, 9722 uint16_t rx_sge_prod) 9723 { 9724 struct ustorm_eth_rx_producers rx_prods = { 0 }; 9725 uint32_t i; 9726 9727 /* update producers */ 9728 rx_prods.bd_prod = rx_bd_prod; 9729 rx_prods.cqe_prod = rx_cq_prod; 9730 rx_prods.sge_prod = rx_sge_prod; 9731 9732 /* 9733 * Make sure that the BD and SGE data is updated before updating the 9734 * producers since FW might read the BD/SGE right after the producer 9735 * is updated. 9736 * This is only applicable for weak-ordered memory model archs such 9737 * as IA-64. The following barrier is also mandatory since FW will 9738 * assumes BDs must have buffers. 9739 */ 9740 wmb(); 9741 9742 for (i = 0; i < (sizeof(rx_prods) / 4); i++) { 9743 REG_WR(sc, 9744 (fp->ustorm_rx_prods_offset + (i * 4)), 9745 ((uint32_t *)&rx_prods)[i]); 9746 } 9747 9748 wmb(); /* keep prod updates ordered */ 9749 9750 BLOGD(sc, DBG_RX, 9751 "RX fp[%d]: wrote prods bd_prod=%u cqe_prod=%u sge_prod=%u\n", 9752 fp->index, rx_bd_prod, rx_cq_prod, rx_sge_prod); 9753 } 9754 9755 static void 9756 bxe_init_rx_rings(struct bxe_softc *sc) 9757 { 9758 struct bxe_fastpath *fp; 9759 int i; 9760 9761 for (i = 0; i < sc->num_queues; i++) { 9762 fp = &sc->fp[i]; 9763 9764 fp->rx_bd_cons = 0; 9765 9766 /* 9767 * Activate the BD ring... 9768 * Warning, this will generate an interrupt (to the TSTORM) 9769 * so this can only be done after the chip is initialized 9770 */ 9771 bxe_update_rx_prod(sc, fp, 9772 fp->rx_bd_prod, 9773 fp->rx_cq_prod, 9774 fp->rx_sge_prod); 9775 9776 if (i != 0) { 9777 continue; 9778 } 9779 9780 if (CHIP_IS_E1(sc)) { 9781 REG_WR(sc, 9782 (BAR_USTRORM_INTMEM + 9783 USTORM_MEM_WORKAROUND_ADDRESS_OFFSET(SC_FUNC(sc))), 9784 U64_LO(fp->rcq_dma.paddr)); 9785 REG_WR(sc, 9786 (BAR_USTRORM_INTMEM + 9787 USTORM_MEM_WORKAROUND_ADDRESS_OFFSET(SC_FUNC(sc)) + 4), 9788 U64_HI(fp->rcq_dma.paddr)); 9789 } 9790 } 9791 } 9792 9793 static void 9794 bxe_init_tx_ring_one(struct bxe_fastpath *fp) 9795 { 9796 SET_FLAG(fp->tx_db.data.header.data, DOORBELL_HDR_T_DB_TYPE, 1); 9797 fp->tx_db.data.zero_fill1 = 0; 9798 fp->tx_db.data.prod = 0; 9799 9800 fp->tx_pkt_prod = 0; 9801 fp->tx_pkt_cons = 0; 9802 fp->tx_bd_prod = 0; 9803 fp->tx_bd_cons = 0; 9804 fp->eth_q_stats.tx_pkts = 0; 9805 } 9806 9807 static inline void 9808 bxe_init_tx_rings(struct bxe_softc *sc) 9809 { 9810 int i; 9811 9812 for (i = 0; i < sc->num_queues; i++) { 9813 bxe_init_tx_ring_one(&sc->fp[i]); 9814 } 9815 } 9816 9817 static void 9818 bxe_init_def_sb(struct bxe_softc *sc) 9819 { 9820 struct host_sp_status_block *def_sb = sc->def_sb; 9821 bus_addr_t mapping = sc->def_sb_dma.paddr; 9822 int igu_sp_sb_index; 9823 int igu_seg_id; 9824 int port = SC_PORT(sc); 9825 int func = SC_FUNC(sc); 9826 int reg_offset, reg_offset_en5; 9827 uint64_t section; 9828 int index, sindex; 9829 struct hc_sp_status_block_data sp_sb_data; 9830 9831 memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data)); 9832 9833 if (CHIP_INT_MODE_IS_BC(sc)) { 9834 igu_sp_sb_index = DEF_SB_IGU_ID; 9835 igu_seg_id = HC_SEG_ACCESS_DEF; 9836 } else { 9837 igu_sp_sb_index = sc->igu_dsb_id; 9838 igu_seg_id = IGU_SEG_ACCESS_DEF; 9839 } 9840 9841 /* attentions */ 9842 section = ((uint64_t)mapping + 9843 offsetof(struct host_sp_status_block, atten_status_block)); 9844 def_sb->atten_status_block.status_block_id = igu_sp_sb_index; 9845 sc->attn_state = 0; 9846 9847 reg_offset = (port) ? 9848 MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 : 9849 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0; 9850 reg_offset_en5 = (port) ? 9851 MISC_REG_AEU_ENABLE5_FUNC_1_OUT_0 : 9852 MISC_REG_AEU_ENABLE5_FUNC_0_OUT_0; 9853 9854 for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) { 9855 /* take care of sig[0]..sig[4] */ 9856 for (sindex = 0; sindex < 4; sindex++) { 9857 sc->attn_group[index].sig[sindex] = 9858 REG_RD(sc, (reg_offset + (sindex * 0x4) + (0x10 * index))); 9859 } 9860 9861 if (!CHIP_IS_E1x(sc)) { 9862 /* 9863 * enable5 is separate from the rest of the registers, 9864 * and the address skip is 4 and not 16 between the 9865 * different groups 9866 */ 9867 sc->attn_group[index].sig[4] = 9868 REG_RD(sc, (reg_offset_en5 + (0x4 * index))); 9869 } else { 9870 sc->attn_group[index].sig[4] = 0; 9871 } 9872 } 9873 9874 if (sc->devinfo.int_block == INT_BLOCK_HC) { 9875 reg_offset = (port) ? 9876 HC_REG_ATTN_MSG1_ADDR_L : 9877 HC_REG_ATTN_MSG0_ADDR_L; 9878 REG_WR(sc, reg_offset, U64_LO(section)); 9879 REG_WR(sc, (reg_offset + 4), U64_HI(section)); 9880 } else if (!CHIP_IS_E1x(sc)) { 9881 REG_WR(sc, IGU_REG_ATTN_MSG_ADDR_L, U64_LO(section)); 9882 REG_WR(sc, IGU_REG_ATTN_MSG_ADDR_H, U64_HI(section)); 9883 } 9884 9885 section = ((uint64_t)mapping + 9886 offsetof(struct host_sp_status_block, sp_sb)); 9887 9888 bxe_zero_sp_sb(sc); 9889 9890 /* PCI guarantees endianity of regpair */ 9891 sp_sb_data.state = SB_ENABLED; 9892 sp_sb_data.host_sb_addr.lo = U64_LO(section); 9893 sp_sb_data.host_sb_addr.hi = U64_HI(section); 9894 sp_sb_data.igu_sb_id = igu_sp_sb_index; 9895 sp_sb_data.igu_seg_id = igu_seg_id; 9896 sp_sb_data.p_func.pf_id = func; 9897 sp_sb_data.p_func.vnic_id = SC_VN(sc); 9898 sp_sb_data.p_func.vf_id = 0xff; 9899 9900 bxe_wr_sp_sb_data(sc, &sp_sb_data); 9901 9902 bxe_ack_sb(sc, sc->igu_dsb_id, USTORM_ID, 0, IGU_INT_ENABLE, 0); 9903 } 9904 9905 static void 9906 bxe_init_sp_ring(struct bxe_softc *sc) 9907 { 9908 atomic_store_rel_long(&sc->cq_spq_left, MAX_SPQ_PENDING); 9909 sc->spq_prod_idx = 0; 9910 sc->dsb_sp_prod = &sc->def_sb->sp_sb.index_values[HC_SP_INDEX_ETH_DEF_CONS]; 9911 sc->spq_prod_bd = sc->spq; 9912 sc->spq_last_bd = (sc->spq_prod_bd + MAX_SP_DESC_CNT); 9913 } 9914 9915 static void 9916 bxe_init_eq_ring(struct bxe_softc *sc) 9917 { 9918 union event_ring_elem *elem; 9919 int i; 9920 9921 for (i = 1; i <= NUM_EQ_PAGES; i++) { 9922 elem = &sc->eq[EQ_DESC_CNT_PAGE * i - 1]; 9923 9924 elem->next_page.addr.hi = htole32(U64_HI(sc->eq_dma.paddr + 9925 BCM_PAGE_SIZE * 9926 (i % NUM_EQ_PAGES))); 9927 elem->next_page.addr.lo = htole32(U64_LO(sc->eq_dma.paddr + 9928 BCM_PAGE_SIZE * 9929 (i % NUM_EQ_PAGES))); 9930 } 9931 9932 sc->eq_cons = 0; 9933 sc->eq_prod = NUM_EQ_DESC; 9934 sc->eq_cons_sb = &sc->def_sb->sp_sb.index_values[HC_SP_INDEX_EQ_CONS]; 9935 9936 atomic_store_rel_long(&sc->eq_spq_left, 9937 (min((MAX_SP_DESC_CNT - MAX_SPQ_PENDING), 9938 NUM_EQ_DESC) - 1)); 9939 } 9940 9941 static void 9942 bxe_init_internal_common(struct bxe_softc *sc) 9943 { 9944 int i; 9945 9946 /* 9947 * Zero this manually as its initialization is currently missing 9948 * in the initTool. 9949 */ 9950 for (i = 0; i < (USTORM_AGG_DATA_SIZE >> 2); i++) { 9951 REG_WR(sc, 9952 (BAR_USTRORM_INTMEM + USTORM_AGG_DATA_OFFSET + (i * 4)), 9953 0); 9954 } 9955 9956 if (!CHIP_IS_E1x(sc)) { 9957 REG_WR8(sc, (BAR_CSTRORM_INTMEM + CSTORM_IGU_MODE_OFFSET), 9958 CHIP_INT_MODE_IS_BC(sc) ? HC_IGU_BC_MODE : HC_IGU_NBC_MODE); 9959 } 9960 } 9961 9962 static void 9963 bxe_init_internal(struct bxe_softc *sc, 9964 uint32_t load_code) 9965 { 9966 switch (load_code) { 9967 case FW_MSG_CODE_DRV_LOAD_COMMON: 9968 case FW_MSG_CODE_DRV_LOAD_COMMON_CHIP: 9969 bxe_init_internal_common(sc); 9970 /* no break */ 9971 9972 case FW_MSG_CODE_DRV_LOAD_PORT: 9973 /* nothing to do */ 9974 /* no break */ 9975 9976 case FW_MSG_CODE_DRV_LOAD_FUNCTION: 9977 /* internal memory per function is initialized inside bxe_pf_init */ 9978 break; 9979 9980 default: 9981 BLOGE(sc, "Unknown load_code (0x%x) from MCP\n", load_code); 9982 break; 9983 } 9984 } 9985 9986 static void 9987 storm_memset_func_cfg(struct bxe_softc *sc, 9988 struct tstorm_eth_function_common_config *tcfg, 9989 uint16_t abs_fid) 9990 { 9991 uint32_t addr; 9992 size_t size; 9993 9994 addr = (BAR_TSTRORM_INTMEM + 9995 TSTORM_FUNCTION_COMMON_CONFIG_OFFSET(abs_fid)); 9996 size = sizeof(struct tstorm_eth_function_common_config); 9997 ecore_storm_memset_struct(sc, addr, size, (uint32_t *)tcfg); 9998 } 9999 10000 static void 10001 bxe_func_init(struct bxe_softc *sc, 10002 struct bxe_func_init_params *p) 10003 { 10004 struct tstorm_eth_function_common_config tcfg = { 0 }; 10005 10006 if (CHIP_IS_E1x(sc)) { 10007 storm_memset_func_cfg(sc, &tcfg, p->func_id); 10008 } 10009 10010 /* Enable the function in the FW */ 10011 storm_memset_vf_to_pf(sc, p->func_id, p->pf_id); 10012 storm_memset_func_en(sc, p->func_id, 1); 10013 10014 /* spq */ 10015 if (p->func_flgs & FUNC_FLG_SPQ) { 10016 storm_memset_spq_addr(sc, p->spq_map, p->func_id); 10017 REG_WR(sc, 10018 (XSEM_REG_FAST_MEMORY + XSTORM_SPQ_PROD_OFFSET(p->func_id)), 10019 p->spq_prod); 10020 } 10021 } 10022 10023 /* 10024 * Calculates the sum of vn_min_rates. 10025 * It's needed for further normalizing of the min_rates. 10026 * Returns: 10027 * sum of vn_min_rates. 10028 * or 10029 * 0 - if all the min_rates are 0. 10030 * In the later case fainess algorithm should be deactivated. 10031 * If all min rates are not zero then those that are zeroes will be set to 1. 10032 */ 10033 static void 10034 bxe_calc_vn_min(struct bxe_softc *sc, 10035 struct cmng_init_input *input) 10036 { 10037 uint32_t vn_cfg; 10038 uint32_t vn_min_rate; 10039 int all_zero = 1; 10040 int vn; 10041 10042 for (vn = VN_0; vn < SC_MAX_VN_NUM(sc); vn++) { 10043 vn_cfg = sc->devinfo.mf_info.mf_config[vn]; 10044 vn_min_rate = (((vn_cfg & FUNC_MF_CFG_MIN_BW_MASK) >> 10045 FUNC_MF_CFG_MIN_BW_SHIFT) * 100); 10046 10047 if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE) { 10048 /* skip hidden VNs */ 10049 vn_min_rate = 0; 10050 } else if (!vn_min_rate) { 10051 /* If min rate is zero - set it to 100 */ 10052 vn_min_rate = DEF_MIN_RATE; 10053 } else { 10054 all_zero = 0; 10055 } 10056 10057 input->vnic_min_rate[vn] = vn_min_rate; 10058 } 10059 10060 /* if ETS or all min rates are zeros - disable fairness */ 10061 if (BXE_IS_ETS_ENABLED(sc)) { 10062 input->flags.cmng_enables &= ~CMNG_FLAGS_PER_PORT_FAIRNESS_VN; 10063 BLOGD(sc, DBG_LOAD, "Fairness disabled (ETS)\n"); 10064 } else if (all_zero) { 10065 input->flags.cmng_enables &= ~CMNG_FLAGS_PER_PORT_FAIRNESS_VN; 10066 BLOGD(sc, DBG_LOAD, 10067 "Fariness disabled (all MIN values are zeroes)\n"); 10068 } else { 10069 input->flags.cmng_enables |= CMNG_FLAGS_PER_PORT_FAIRNESS_VN; 10070 } 10071 } 10072 10073 static inline uint16_t 10074 bxe_extract_max_cfg(struct bxe_softc *sc, 10075 uint32_t mf_cfg) 10076 { 10077 uint16_t max_cfg = ((mf_cfg & FUNC_MF_CFG_MAX_BW_MASK) >> 10078 FUNC_MF_CFG_MAX_BW_SHIFT); 10079 10080 if (!max_cfg) { 10081 BLOGD(sc, DBG_LOAD, "Max BW configured to 0 - using 100 instead\n"); 10082 max_cfg = 100; 10083 } 10084 10085 return (max_cfg); 10086 } 10087 10088 static void 10089 bxe_calc_vn_max(struct bxe_softc *sc, 10090 int vn, 10091 struct cmng_init_input *input) 10092 { 10093 uint16_t vn_max_rate; 10094 uint32_t vn_cfg = sc->devinfo.mf_info.mf_config[vn]; 10095 uint32_t max_cfg; 10096 10097 if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE) { 10098 vn_max_rate = 0; 10099 } else { 10100 max_cfg = bxe_extract_max_cfg(sc, vn_cfg); 10101 10102 if (IS_MF_SI(sc)) { 10103 /* max_cfg in percents of linkspeed */ 10104 vn_max_rate = ((sc->link_vars.line_speed * max_cfg) / 100); 10105 } else { /* SD modes */ 10106 /* max_cfg is absolute in 100Mb units */ 10107 vn_max_rate = (max_cfg * 100); 10108 } 10109 } 10110 10111 BLOGD(sc, DBG_LOAD, "vn %d: vn_max_rate %d\n", vn, vn_max_rate); 10112 10113 input->vnic_max_rate[vn] = vn_max_rate; 10114 } 10115 10116 static void 10117 bxe_cmng_fns_init(struct bxe_softc *sc, 10118 uint8_t read_cfg, 10119 uint8_t cmng_type) 10120 { 10121 struct cmng_init_input input; 10122 int vn; 10123 10124 memset(&input, 0, sizeof(struct cmng_init_input)); 10125 10126 input.port_rate = sc->link_vars.line_speed; 10127 10128 if (cmng_type == CMNG_FNS_MINMAX) { 10129 /* read mf conf from shmem */ 10130 if (read_cfg) { 10131 bxe_read_mf_cfg(sc); 10132 } 10133 10134 /* get VN min rate and enable fairness if not 0 */ 10135 bxe_calc_vn_min(sc, &input); 10136 10137 /* get VN max rate */ 10138 if (sc->port.pmf) { 10139 for (vn = VN_0; vn < SC_MAX_VN_NUM(sc); vn++) { 10140 bxe_calc_vn_max(sc, vn, &input); 10141 } 10142 } 10143 10144 /* always enable rate shaping and fairness */ 10145 input.flags.cmng_enables |= CMNG_FLAGS_PER_PORT_RATE_SHAPING_VN; 10146 10147 ecore_init_cmng(&input, &sc->cmng); 10148 return; 10149 } 10150 10151 /* rate shaping and fairness are disabled */ 10152 BLOGD(sc, DBG_LOAD, "rate shaping and fairness have been disabled\n"); 10153 } 10154 10155 static int 10156 bxe_get_cmng_fns_mode(struct bxe_softc *sc) 10157 { 10158 if (CHIP_REV_IS_SLOW(sc)) { 10159 return (CMNG_FNS_NONE); 10160 } 10161 10162 if (IS_MF(sc)) { 10163 return (CMNG_FNS_MINMAX); 10164 } 10165 10166 return (CMNG_FNS_NONE); 10167 } 10168 10169 static void 10170 storm_memset_cmng(struct bxe_softc *sc, 10171 struct cmng_init *cmng, 10172 uint8_t port) 10173 { 10174 int vn; 10175 int func; 10176 uint32_t addr; 10177 size_t size; 10178 10179 addr = (BAR_XSTRORM_INTMEM + 10180 XSTORM_CMNG_PER_PORT_VARS_OFFSET(port)); 10181 size = sizeof(struct cmng_struct_per_port); 10182 ecore_storm_memset_struct(sc, addr, size, (uint32_t *)&cmng->port); 10183 10184 for (vn = VN_0; vn < SC_MAX_VN_NUM(sc); vn++) { 10185 func = func_by_vn(sc, vn); 10186 10187 addr = (BAR_XSTRORM_INTMEM + 10188 XSTORM_RATE_SHAPING_PER_VN_VARS_OFFSET(func)); 10189 size = sizeof(struct rate_shaping_vars_per_vn); 10190 ecore_storm_memset_struct(sc, addr, size, 10191 (uint32_t *)&cmng->vnic.vnic_max_rate[vn]); 10192 10193 addr = (BAR_XSTRORM_INTMEM + 10194 XSTORM_FAIRNESS_PER_VN_VARS_OFFSET(func)); 10195 size = sizeof(struct fairness_vars_per_vn); 10196 ecore_storm_memset_struct(sc, addr, size, 10197 (uint32_t *)&cmng->vnic.vnic_min_rate[vn]); 10198 } 10199 } 10200 10201 static void 10202 bxe_pf_init(struct bxe_softc *sc) 10203 { 10204 struct bxe_func_init_params func_init = { 0 }; 10205 struct event_ring_data eq_data = { { 0 } }; 10206 uint16_t flags; 10207 10208 if (!CHIP_IS_E1x(sc)) { 10209 /* reset IGU PF statistics: MSIX + ATTN */ 10210 /* PF */ 10211 REG_WR(sc, 10212 (IGU_REG_STATISTIC_NUM_MESSAGE_SENT + 10213 (BXE_IGU_STAS_MSG_VF_CNT * 4) + 10214 ((CHIP_IS_MODE_4_PORT(sc) ? SC_FUNC(sc) : SC_VN(sc)) * 4)), 10215 0); 10216 /* ATTN */ 10217 REG_WR(sc, 10218 (IGU_REG_STATISTIC_NUM_MESSAGE_SENT + 10219 (BXE_IGU_STAS_MSG_VF_CNT * 4) + 10220 (BXE_IGU_STAS_MSG_PF_CNT * 4) + 10221 ((CHIP_IS_MODE_4_PORT(sc) ? SC_FUNC(sc) : SC_VN(sc)) * 4)), 10222 0); 10223 } 10224 10225 /* function setup flags */ 10226 flags = (FUNC_FLG_STATS | FUNC_FLG_LEADING | FUNC_FLG_SPQ); 10227 10228 /* 10229 * This flag is relevant for E1x only. 10230 * E2 doesn't have a TPA configuration in a function level. 10231 */ 10232 flags |= (if_getcapenable(sc->ifp) & IFCAP_LRO) ? FUNC_FLG_TPA : 0; 10233 10234 func_init.func_flgs = flags; 10235 func_init.pf_id = SC_FUNC(sc); 10236 func_init.func_id = SC_FUNC(sc); 10237 func_init.spq_map = sc->spq_dma.paddr; 10238 func_init.spq_prod = sc->spq_prod_idx; 10239 10240 bxe_func_init(sc, &func_init); 10241 10242 memset(&sc->cmng, 0, sizeof(struct cmng_struct_per_port)); 10243 10244 /* 10245 * Congestion management values depend on the link rate. 10246 * There is no active link so initial link rate is set to 10Gbps. 10247 * When the link comes up the congestion management values are 10248 * re-calculated according to the actual link rate. 10249 */ 10250 sc->link_vars.line_speed = SPEED_10000; 10251 bxe_cmng_fns_init(sc, TRUE, bxe_get_cmng_fns_mode(sc)); 10252 10253 /* Only the PMF sets the HW */ 10254 if (sc->port.pmf) { 10255 storm_memset_cmng(sc, &sc->cmng, SC_PORT(sc)); 10256 } 10257 10258 /* init Event Queue - PCI bus guarantees correct endainity */ 10259 eq_data.base_addr.hi = U64_HI(sc->eq_dma.paddr); 10260 eq_data.base_addr.lo = U64_LO(sc->eq_dma.paddr); 10261 eq_data.producer = sc->eq_prod; 10262 eq_data.index_id = HC_SP_INDEX_EQ_CONS; 10263 eq_data.sb_id = DEF_SB_ID; 10264 storm_memset_eq_data(sc, &eq_data, SC_FUNC(sc)); 10265 } 10266 10267 static void 10268 bxe_hc_int_enable(struct bxe_softc *sc) 10269 { 10270 int port = SC_PORT(sc); 10271 uint32_t addr = (port) ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0; 10272 uint32_t val = REG_RD(sc, addr); 10273 uint8_t msix = (sc->interrupt_mode == INTR_MODE_MSIX) ? TRUE : FALSE; 10274 uint8_t single_msix = ((sc->interrupt_mode == INTR_MODE_MSIX) && 10275 (sc->intr_count == 1)) ? TRUE : FALSE; 10276 uint8_t msi = (sc->interrupt_mode == INTR_MODE_MSI) ? TRUE : FALSE; 10277 10278 if (msix) { 10279 val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 | 10280 HC_CONFIG_0_REG_INT_LINE_EN_0); 10281 val |= (HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 | 10282 HC_CONFIG_0_REG_ATTN_BIT_EN_0); 10283 if (single_msix) { 10284 val |= HC_CONFIG_0_REG_SINGLE_ISR_EN_0; 10285 } 10286 } else if (msi) { 10287 val &= ~HC_CONFIG_0_REG_INT_LINE_EN_0; 10288 val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 | 10289 HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 | 10290 HC_CONFIG_0_REG_ATTN_BIT_EN_0); 10291 } else { 10292 val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 | 10293 HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 | 10294 HC_CONFIG_0_REG_INT_LINE_EN_0 | 10295 HC_CONFIG_0_REG_ATTN_BIT_EN_0); 10296 10297 if (!CHIP_IS_E1(sc)) { 10298 BLOGD(sc, DBG_INTR, "write %x to HC %d (addr 0x%x)\n", 10299 val, port, addr); 10300 10301 REG_WR(sc, addr, val); 10302 10303 val &= ~HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0; 10304 } 10305 } 10306 10307 if (CHIP_IS_E1(sc)) { 10308 REG_WR(sc, (HC_REG_INT_MASK + port*4), 0x1FFFF); 10309 } 10310 10311 BLOGD(sc, DBG_INTR, "write %x to HC %d (addr 0x%x) mode %s\n", 10312 val, port, addr, ((msix) ? "MSI-X" : ((msi) ? "MSI" : "INTx"))); 10313 10314 REG_WR(sc, addr, val); 10315 10316 /* ensure that HC_CONFIG is written before leading/trailing edge config */ 10317 mb(); 10318 10319 if (!CHIP_IS_E1(sc)) { 10320 /* init leading/trailing edge */ 10321 if (IS_MF(sc)) { 10322 val = (0xee0f | (1 << (SC_VN(sc) + 4))); 10323 if (sc->port.pmf) { 10324 /* enable nig and gpio3 attention */ 10325 val |= 0x1100; 10326 } 10327 } else { 10328 val = 0xffff; 10329 } 10330 10331 REG_WR(sc, (HC_REG_TRAILING_EDGE_0 + port*8), val); 10332 REG_WR(sc, (HC_REG_LEADING_EDGE_0 + port*8), val); 10333 } 10334 10335 /* make sure that interrupts are indeed enabled from here on */ 10336 mb(); 10337 } 10338 10339 static void 10340 bxe_igu_int_enable(struct bxe_softc *sc) 10341 { 10342 uint32_t val; 10343 uint8_t msix = (sc->interrupt_mode == INTR_MODE_MSIX) ? TRUE : FALSE; 10344 uint8_t single_msix = ((sc->interrupt_mode == INTR_MODE_MSIX) && 10345 (sc->intr_count == 1)) ? TRUE : FALSE; 10346 uint8_t msi = (sc->interrupt_mode == INTR_MODE_MSI) ? TRUE : FALSE; 10347 10348 val = REG_RD(sc, IGU_REG_PF_CONFIGURATION); 10349 10350 if (msix) { 10351 val &= ~(IGU_PF_CONF_INT_LINE_EN | 10352 IGU_PF_CONF_SINGLE_ISR_EN); 10353 val |= (IGU_PF_CONF_MSI_MSIX_EN | 10354 IGU_PF_CONF_ATTN_BIT_EN); 10355 if (single_msix) { 10356 val |= IGU_PF_CONF_SINGLE_ISR_EN; 10357 } 10358 } else if (msi) { 10359 val &= ~IGU_PF_CONF_INT_LINE_EN; 10360 val |= (IGU_PF_CONF_MSI_MSIX_EN | 10361 IGU_PF_CONF_ATTN_BIT_EN | 10362 IGU_PF_CONF_SINGLE_ISR_EN); 10363 } else { 10364 val &= ~IGU_PF_CONF_MSI_MSIX_EN; 10365 val |= (IGU_PF_CONF_INT_LINE_EN | 10366 IGU_PF_CONF_ATTN_BIT_EN | 10367 IGU_PF_CONF_SINGLE_ISR_EN); 10368 } 10369 10370 /* clean previous status - need to configure igu prior to ack*/ 10371 if ((!msix) || single_msix) { 10372 REG_WR(sc, IGU_REG_PF_CONFIGURATION, val); 10373 bxe_ack_int(sc); 10374 } 10375 10376 val |= IGU_PF_CONF_FUNC_EN; 10377 10378 BLOGD(sc, DBG_INTR, "write 0x%x to IGU mode %s\n", 10379 val, ((msix) ? "MSI-X" : ((msi) ? "MSI" : "INTx"))); 10380 10381 REG_WR(sc, IGU_REG_PF_CONFIGURATION, val); 10382 10383 mb(); 10384 10385 /* init leading/trailing edge */ 10386 if (IS_MF(sc)) { 10387 val = (0xee0f | (1 << (SC_VN(sc) + 4))); 10388 if (sc->port.pmf) { 10389 /* enable nig and gpio3 attention */ 10390 val |= 0x1100; 10391 } 10392 } else { 10393 val = 0xffff; 10394 } 10395 10396 REG_WR(sc, IGU_REG_TRAILING_EDGE_LATCH, val); 10397 REG_WR(sc, IGU_REG_LEADING_EDGE_LATCH, val); 10398 10399 /* make sure that interrupts are indeed enabled from here on */ 10400 mb(); 10401 } 10402 10403 static void 10404 bxe_int_enable(struct bxe_softc *sc) 10405 { 10406 if (sc->devinfo.int_block == INT_BLOCK_HC) { 10407 bxe_hc_int_enable(sc); 10408 } else { 10409 bxe_igu_int_enable(sc); 10410 } 10411 } 10412 10413 static void 10414 bxe_hc_int_disable(struct bxe_softc *sc) 10415 { 10416 int port = SC_PORT(sc); 10417 uint32_t addr = (port) ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0; 10418 uint32_t val = REG_RD(sc, addr); 10419 10420 /* 10421 * In E1 we must use only PCI configuration space to disable MSI/MSIX 10422 * capablility. It's forbidden to disable IGU_PF_CONF_MSI_MSIX_EN in HC 10423 * block 10424 */ 10425 if (CHIP_IS_E1(sc)) { 10426 /* 10427 * Since IGU_PF_CONF_MSI_MSIX_EN still always on use mask register 10428 * to prevent from HC sending interrupts after we exit the function 10429 */ 10430 REG_WR(sc, (HC_REG_INT_MASK + port*4), 0); 10431 10432 val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 | 10433 HC_CONFIG_0_REG_INT_LINE_EN_0 | 10434 HC_CONFIG_0_REG_ATTN_BIT_EN_0); 10435 } else { 10436 val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 | 10437 HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 | 10438 HC_CONFIG_0_REG_INT_LINE_EN_0 | 10439 HC_CONFIG_0_REG_ATTN_BIT_EN_0); 10440 } 10441 10442 BLOGD(sc, DBG_INTR, "write %x to HC %d (addr 0x%x)\n", val, port, addr); 10443 10444 /* flush all outstanding writes */ 10445 mb(); 10446 10447 REG_WR(sc, addr, val); 10448 if (REG_RD(sc, addr) != val) { 10449 BLOGE(sc, "proper val not read from HC IGU!\n"); 10450 } 10451 } 10452 10453 static void 10454 bxe_igu_int_disable(struct bxe_softc *sc) 10455 { 10456 uint32_t val = REG_RD(sc, IGU_REG_PF_CONFIGURATION); 10457 10458 val &= ~(IGU_PF_CONF_MSI_MSIX_EN | 10459 IGU_PF_CONF_INT_LINE_EN | 10460 IGU_PF_CONF_ATTN_BIT_EN); 10461 10462 BLOGD(sc, DBG_INTR, "write %x to IGU\n", val); 10463 10464 /* flush all outstanding writes */ 10465 mb(); 10466 10467 REG_WR(sc, IGU_REG_PF_CONFIGURATION, val); 10468 if (REG_RD(sc, IGU_REG_PF_CONFIGURATION) != val) { 10469 BLOGE(sc, "proper val not read from IGU!\n"); 10470 } 10471 } 10472 10473 static void 10474 bxe_int_disable(struct bxe_softc *sc) 10475 { 10476 if (sc->devinfo.int_block == INT_BLOCK_HC) { 10477 bxe_hc_int_disable(sc); 10478 } else { 10479 bxe_igu_int_disable(sc); 10480 } 10481 } 10482 10483 static void 10484 bxe_nic_init(struct bxe_softc *sc, 10485 int load_code) 10486 { 10487 int i; 10488 10489 for (i = 0; i < sc->num_queues; i++) { 10490 bxe_init_eth_fp(sc, i); 10491 } 10492 10493 rmb(); /* ensure status block indices were read */ 10494 10495 bxe_init_rx_rings(sc); 10496 bxe_init_tx_rings(sc); 10497 10498 if (IS_VF(sc)) { 10499 return; 10500 } 10501 10502 /* initialize MOD_ABS interrupts */ 10503 elink_init_mod_abs_int(sc, &sc->link_vars, 10504 sc->devinfo.chip_id, 10505 sc->devinfo.shmem_base, 10506 sc->devinfo.shmem2_base, 10507 SC_PORT(sc)); 10508 10509 bxe_init_def_sb(sc); 10510 bxe_update_dsb_idx(sc); 10511 bxe_init_sp_ring(sc); 10512 bxe_init_eq_ring(sc); 10513 bxe_init_internal(sc, load_code); 10514 bxe_pf_init(sc); 10515 bxe_stats_init(sc); 10516 10517 /* flush all before enabling interrupts */ 10518 mb(); 10519 10520 bxe_int_enable(sc); 10521 10522 /* check for SPIO5 */ 10523 bxe_attn_int_deasserted0(sc, 10524 REG_RD(sc, 10525 (MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + 10526 SC_PORT(sc)*4)) & 10527 AEU_INPUTS_ATTN_BITS_SPIO5); 10528 } 10529 10530 static inline void 10531 bxe_init_objs(struct bxe_softc *sc) 10532 { 10533 /* mcast rules must be added to tx if tx switching is enabled */ 10534 ecore_obj_type o_type = 10535 (sc->flags & BXE_TX_SWITCHING) ? ECORE_OBJ_TYPE_RX_TX : 10536 ECORE_OBJ_TYPE_RX; 10537 10538 /* RX_MODE controlling object */ 10539 ecore_init_rx_mode_obj(sc, &sc->rx_mode_obj); 10540 10541 /* multicast configuration controlling object */ 10542 ecore_init_mcast_obj(sc, 10543 &sc->mcast_obj, 10544 sc->fp[0].cl_id, 10545 sc->fp[0].index, 10546 SC_FUNC(sc), 10547 SC_FUNC(sc), 10548 BXE_SP(sc, mcast_rdata), 10549 BXE_SP_MAPPING(sc, mcast_rdata), 10550 ECORE_FILTER_MCAST_PENDING, 10551 &sc->sp_state, 10552 o_type); 10553 10554 /* Setup CAM credit pools */ 10555 ecore_init_mac_credit_pool(sc, 10556 &sc->macs_pool, 10557 SC_FUNC(sc), 10558 CHIP_IS_E1x(sc) ? VNICS_PER_PORT(sc) : 10559 VNICS_PER_PATH(sc)); 10560 10561 ecore_init_vlan_credit_pool(sc, 10562 &sc->vlans_pool, 10563 SC_ABS_FUNC(sc) >> 1, 10564 CHIP_IS_E1x(sc) ? VNICS_PER_PORT(sc) : 10565 VNICS_PER_PATH(sc)); 10566 10567 /* RSS configuration object */ 10568 ecore_init_rss_config_obj(sc, 10569 &sc->rss_conf_obj, 10570 sc->fp[0].cl_id, 10571 sc->fp[0].index, 10572 SC_FUNC(sc), 10573 SC_FUNC(sc), 10574 BXE_SP(sc, rss_rdata), 10575 BXE_SP_MAPPING(sc, rss_rdata), 10576 ECORE_FILTER_RSS_CONF_PENDING, 10577 &sc->sp_state, ECORE_OBJ_TYPE_RX); 10578 } 10579 10580 /* 10581 * Initialize the function. This must be called before sending CLIENT_SETUP 10582 * for the first client. 10583 */ 10584 static inline int 10585 bxe_func_start(struct bxe_softc *sc) 10586 { 10587 struct ecore_func_state_params func_params = { NULL }; 10588 struct ecore_func_start_params *start_params = &func_params.params.start; 10589 10590 /* Prepare parameters for function state transitions */ 10591 bit_set(&func_params.ramrod_flags, RAMROD_COMP_WAIT); 10592 10593 func_params.f_obj = &sc->func_obj; 10594 func_params.cmd = ECORE_F_CMD_START; 10595 10596 /* Function parameters */ 10597 start_params->mf_mode = sc->devinfo.mf_info.mf_mode; 10598 start_params->sd_vlan_tag = OVLAN(sc); 10599 10600 if (CHIP_IS_E2(sc) || CHIP_IS_E3(sc)) { 10601 start_params->network_cos_mode = STATIC_COS; 10602 } else { /* CHIP_IS_E1X */ 10603 start_params->network_cos_mode = FW_WRR; 10604 } 10605 10606 //start_params->gre_tunnel_mode = 0; 10607 //start_params->gre_tunnel_rss = 0; 10608 10609 return (ecore_func_state_change(sc, &func_params)); 10610 } 10611 10612 static int 10613 bxe_set_power_state(struct bxe_softc *sc, 10614 uint8_t state) 10615 { 10616 uint16_t pmcsr; 10617 10618 /* If there is no power capability, silently succeed */ 10619 if (!(sc->devinfo.pcie_cap_flags & BXE_PM_CAPABLE_FLAG)) { 10620 BLOGW(sc, "No power capability\n"); 10621 return (0); 10622 } 10623 10624 pmcsr = pci_read_config(sc->dev, 10625 (sc->devinfo.pcie_pm_cap_reg + PCIR_POWER_STATUS), 10626 2); 10627 10628 switch (state) { 10629 case PCI_PM_D0: 10630 pci_write_config(sc->dev, 10631 (sc->devinfo.pcie_pm_cap_reg + PCIR_POWER_STATUS), 10632 ((pmcsr & ~PCIM_PSTAT_DMASK) | PCIM_PSTAT_PME), 2); 10633 10634 if (pmcsr & PCIM_PSTAT_DMASK) { 10635 /* delay required during transition out of D3hot */ 10636 DELAY(20000); 10637 } 10638 10639 break; 10640 10641 case PCI_PM_D3hot: 10642 /* XXX if there are other clients above don't shut down the power */ 10643 10644 /* don't shut down the power for emulation and FPGA */ 10645 if (CHIP_REV_IS_SLOW(sc)) { 10646 return (0); 10647 } 10648 10649 pmcsr &= ~PCIM_PSTAT_DMASK; 10650 pmcsr |= PCIM_PSTAT_D3; 10651 10652 if (sc->wol) { 10653 pmcsr |= PCIM_PSTAT_PMEENABLE; 10654 } 10655 10656 pci_write_config(sc->dev, 10657 (sc->devinfo.pcie_pm_cap_reg + PCIR_POWER_STATUS), 10658 pmcsr, 4); 10659 10660 /* 10661 * No more memory access after this point until device is brought back 10662 * to D0 state. 10663 */ 10664 break; 10665 10666 default: 10667 BLOGE(sc, "Can't support PCI power state = 0x%x pmcsr 0x%x\n", 10668 state, pmcsr); 10669 return (-1); 10670 } 10671 10672 return (0); 10673 } 10674 10675 10676 /* return true if succeeded to acquire the lock */ 10677 static uint8_t 10678 bxe_trylock_hw_lock(struct bxe_softc *sc, 10679 uint32_t resource) 10680 { 10681 uint32_t lock_status; 10682 uint32_t resource_bit = (1 << resource); 10683 int func = SC_FUNC(sc); 10684 uint32_t hw_lock_control_reg; 10685 10686 BLOGD(sc, DBG_LOAD, "Trying to take a resource lock 0x%x\n", resource); 10687 10688 /* Validating that the resource is within range */ 10689 if (resource > HW_LOCK_MAX_RESOURCE_VALUE) { 10690 BLOGD(sc, DBG_LOAD, 10691 "resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n", 10692 resource, HW_LOCK_MAX_RESOURCE_VALUE); 10693 return (FALSE); 10694 } 10695 10696 if (func <= 5) { 10697 hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8); 10698 } else { 10699 hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8); 10700 } 10701 10702 /* try to acquire the lock */ 10703 REG_WR(sc, hw_lock_control_reg + 4, resource_bit); 10704 lock_status = REG_RD(sc, hw_lock_control_reg); 10705 if (lock_status & resource_bit) { 10706 return (TRUE); 10707 } 10708 10709 BLOGE(sc, "Failed to get a resource lock 0x%x func %d " 10710 "lock_status 0x%x resource_bit 0x%x\n", resource, func, 10711 lock_status, resource_bit); 10712 10713 return (FALSE); 10714 } 10715 10716 /* 10717 * Get the recovery leader resource id according to the engine this function 10718 * belongs to. Currently only only 2 engines is supported. 10719 */ 10720 static int 10721 bxe_get_leader_lock_resource(struct bxe_softc *sc) 10722 { 10723 if (SC_PATH(sc)) { 10724 return (HW_LOCK_RESOURCE_RECOVERY_LEADER_1); 10725 } else { 10726 return (HW_LOCK_RESOURCE_RECOVERY_LEADER_0); 10727 } 10728 } 10729 10730 /* try to acquire a leader lock for current engine */ 10731 static uint8_t 10732 bxe_trylock_leader_lock(struct bxe_softc *sc) 10733 { 10734 return (bxe_trylock_hw_lock(sc, bxe_get_leader_lock_resource(sc))); 10735 } 10736 10737 static int 10738 bxe_release_leader_lock(struct bxe_softc *sc) 10739 { 10740 return (bxe_release_hw_lock(sc, bxe_get_leader_lock_resource(sc))); 10741 } 10742 10743 /* close gates #2, #3 and #4 */ 10744 static void 10745 bxe_set_234_gates(struct bxe_softc *sc, 10746 uint8_t close) 10747 { 10748 uint32_t val; 10749 10750 /* gates #2 and #4a are closed/opened for "not E1" only */ 10751 if (!CHIP_IS_E1(sc)) { 10752 /* #4 */ 10753 REG_WR(sc, PXP_REG_HST_DISCARD_DOORBELLS, !!close); 10754 /* #2 */ 10755 REG_WR(sc, PXP_REG_HST_DISCARD_INTERNAL_WRITES, !!close); 10756 } 10757 10758 /* #3 */ 10759 if (CHIP_IS_E1x(sc)) { 10760 /* prevent interrupts from HC on both ports */ 10761 val = REG_RD(sc, HC_REG_CONFIG_1); 10762 REG_WR(sc, HC_REG_CONFIG_1, 10763 (!close) ? (val | HC_CONFIG_1_REG_BLOCK_DISABLE_1) : 10764 (val & ~(uint32_t)HC_CONFIG_1_REG_BLOCK_DISABLE_1)); 10765 10766 val = REG_RD(sc, HC_REG_CONFIG_0); 10767 REG_WR(sc, HC_REG_CONFIG_0, 10768 (!close) ? (val | HC_CONFIG_0_REG_BLOCK_DISABLE_0) : 10769 (val & ~(uint32_t)HC_CONFIG_0_REG_BLOCK_DISABLE_0)); 10770 } else { 10771 /* Prevent incomming interrupts in IGU */ 10772 val = REG_RD(sc, IGU_REG_BLOCK_CONFIGURATION); 10773 10774 REG_WR(sc, IGU_REG_BLOCK_CONFIGURATION, 10775 (!close) ? 10776 (val | IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE) : 10777 (val & ~(uint32_t)IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE)); 10778 } 10779 10780 BLOGD(sc, DBG_LOAD, "%s gates #2, #3 and #4\n", 10781 close ? "closing" : "opening"); 10782 10783 wmb(); 10784 } 10785 10786 /* poll for pending writes bit, it should get cleared in no more than 1s */ 10787 static int 10788 bxe_er_poll_igu_vq(struct bxe_softc *sc) 10789 { 10790 uint32_t cnt = 1000; 10791 uint32_t pend_bits = 0; 10792 10793 do { 10794 pend_bits = REG_RD(sc, IGU_REG_PENDING_BITS_STATUS); 10795 10796 if (pend_bits == 0) { 10797 break; 10798 } 10799 10800 DELAY(1000); 10801 } while (--cnt > 0); 10802 10803 if (cnt == 0) { 10804 BLOGE(sc, "Still pending IGU requests bits=0x%08x!\n", pend_bits); 10805 return (-1); 10806 } 10807 10808 return (0); 10809 } 10810 10811 #define SHARED_MF_CLP_MAGIC 0x80000000 /* 'magic' bit */ 10812 10813 static void 10814 bxe_clp_reset_prep(struct bxe_softc *sc, 10815 uint32_t *magic_val) 10816 { 10817 /* Do some magic... */ 10818 uint32_t val = MFCFG_RD(sc, shared_mf_config.clp_mb); 10819 *magic_val = val & SHARED_MF_CLP_MAGIC; 10820 MFCFG_WR(sc, shared_mf_config.clp_mb, val | SHARED_MF_CLP_MAGIC); 10821 } 10822 10823 /* restore the value of the 'magic' bit */ 10824 static void 10825 bxe_clp_reset_done(struct bxe_softc *sc, 10826 uint32_t magic_val) 10827 { 10828 /* Restore the 'magic' bit value... */ 10829 uint32_t val = MFCFG_RD(sc, shared_mf_config.clp_mb); 10830 MFCFG_WR(sc, shared_mf_config.clp_mb, 10831 (val & (~SHARED_MF_CLP_MAGIC)) | magic_val); 10832 } 10833 10834 /* prepare for MCP reset, takes care of CLP configurations */ 10835 static void 10836 bxe_reset_mcp_prep(struct bxe_softc *sc, 10837 uint32_t *magic_val) 10838 { 10839 uint32_t shmem; 10840 uint32_t validity_offset; 10841 10842 /* set `magic' bit in order to save MF config */ 10843 if (!CHIP_IS_E1(sc)) { 10844 bxe_clp_reset_prep(sc, magic_val); 10845 } 10846 10847 /* get shmem offset */ 10848 shmem = REG_RD(sc, MISC_REG_SHARED_MEM_ADDR); 10849 validity_offset = 10850 offsetof(struct shmem_region, validity_map[SC_PORT(sc)]); 10851 10852 /* Clear validity map flags */ 10853 if (shmem > 0) { 10854 REG_WR(sc, shmem + validity_offset, 0); 10855 } 10856 } 10857 10858 #define MCP_TIMEOUT 5000 /* 5 seconds (in ms) */ 10859 #define MCP_ONE_TIMEOUT 100 /* 100 ms */ 10860 10861 static void 10862 bxe_mcp_wait_one(struct bxe_softc *sc) 10863 { 10864 /* special handling for emulation and FPGA (10 times longer) */ 10865 if (CHIP_REV_IS_SLOW(sc)) { 10866 DELAY((MCP_ONE_TIMEOUT*10) * 1000); 10867 } else { 10868 DELAY((MCP_ONE_TIMEOUT) * 1000); 10869 } 10870 } 10871 10872 /* initialize shmem_base and waits for validity signature to appear */ 10873 static int 10874 bxe_init_shmem(struct bxe_softc *sc) 10875 { 10876 int cnt = 0; 10877 uint32_t val = 0; 10878 10879 do { 10880 sc->devinfo.shmem_base = 10881 sc->link_params.shmem_base = 10882 REG_RD(sc, MISC_REG_SHARED_MEM_ADDR); 10883 10884 if (sc->devinfo.shmem_base) { 10885 val = SHMEM_RD(sc, validity_map[SC_PORT(sc)]); 10886 if (val & SHR_MEM_VALIDITY_MB) 10887 return (0); 10888 } 10889 10890 bxe_mcp_wait_one(sc); 10891 10892 } while (cnt++ < (MCP_TIMEOUT / MCP_ONE_TIMEOUT)); 10893 10894 BLOGE(sc, "BAD MCP validity signature\n"); 10895 10896 return (-1); 10897 } 10898 10899 static int 10900 bxe_reset_mcp_comp(struct bxe_softc *sc, 10901 uint32_t magic_val) 10902 { 10903 int rc = bxe_init_shmem(sc); 10904 10905 /* Restore the `magic' bit value */ 10906 if (!CHIP_IS_E1(sc)) { 10907 bxe_clp_reset_done(sc, magic_val); 10908 } 10909 10910 return (rc); 10911 } 10912 10913 static void 10914 bxe_pxp_prep(struct bxe_softc *sc) 10915 { 10916 if (!CHIP_IS_E1(sc)) { 10917 REG_WR(sc, PXP2_REG_RD_START_INIT, 0); 10918 REG_WR(sc, PXP2_REG_RQ_RBC_DONE, 0); 10919 wmb(); 10920 } 10921 } 10922 10923 /* 10924 * Reset the whole chip except for: 10925 * - PCIE core 10926 * - PCI Glue, PSWHST, PXP/PXP2 RF (all controlled by one reset bit) 10927 * - IGU 10928 * - MISC (including AEU) 10929 * - GRC 10930 * - RBCN, RBCP 10931 */ 10932 static void 10933 bxe_process_kill_chip_reset(struct bxe_softc *sc, 10934 uint8_t global) 10935 { 10936 uint32_t not_reset_mask1, reset_mask1, not_reset_mask2, reset_mask2; 10937 uint32_t global_bits2, stay_reset2; 10938 10939 /* 10940 * Bits that have to be set in reset_mask2 if we want to reset 'global' 10941 * (per chip) blocks. 10942 */ 10943 global_bits2 = 10944 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CPU | 10945 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CORE; 10946 10947 /* 10948 * Don't reset the following blocks. 10949 * Important: per port blocks (such as EMAC, BMAC, UMAC) can't be 10950 * reset, as in 4 port device they might still be owned 10951 * by the MCP (there is only one leader per path). 10952 */ 10953 not_reset_mask1 = 10954 MISC_REGISTERS_RESET_REG_1_RST_HC | 10955 MISC_REGISTERS_RESET_REG_1_RST_PXPV | 10956 MISC_REGISTERS_RESET_REG_1_RST_PXP; 10957 10958 not_reset_mask2 = 10959 MISC_REGISTERS_RESET_REG_2_RST_PCI_MDIO | 10960 MISC_REGISTERS_RESET_REG_2_RST_EMAC0_HARD_CORE | 10961 MISC_REGISTERS_RESET_REG_2_RST_EMAC1_HARD_CORE | 10962 MISC_REGISTERS_RESET_REG_2_RST_MISC_CORE | 10963 MISC_REGISTERS_RESET_REG_2_RST_RBCN | 10964 MISC_REGISTERS_RESET_REG_2_RST_GRC | 10965 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_REG_HARD_CORE | 10966 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_HARD_CORE_RST_B | 10967 MISC_REGISTERS_RESET_REG_2_RST_ATC | 10968 MISC_REGISTERS_RESET_REG_2_PGLC | 10969 MISC_REGISTERS_RESET_REG_2_RST_BMAC0 | 10970 MISC_REGISTERS_RESET_REG_2_RST_BMAC1 | 10971 MISC_REGISTERS_RESET_REG_2_RST_EMAC0 | 10972 MISC_REGISTERS_RESET_REG_2_RST_EMAC1 | 10973 MISC_REGISTERS_RESET_REG_2_UMAC0 | 10974 MISC_REGISTERS_RESET_REG_2_UMAC1; 10975 10976 /* 10977 * Keep the following blocks in reset: 10978 * - all xxMACs are handled by the elink code. 10979 */ 10980 stay_reset2 = 10981 MISC_REGISTERS_RESET_REG_2_XMAC | 10982 MISC_REGISTERS_RESET_REG_2_XMAC_SOFT; 10983 10984 /* Full reset masks according to the chip */ 10985 reset_mask1 = 0xffffffff; 10986 10987 if (CHIP_IS_E1(sc)) 10988 reset_mask2 = 0xffff; 10989 else if (CHIP_IS_E1H(sc)) 10990 reset_mask2 = 0x1ffff; 10991 else if (CHIP_IS_E2(sc)) 10992 reset_mask2 = 0xfffff; 10993 else /* CHIP_IS_E3 */ 10994 reset_mask2 = 0x3ffffff; 10995 10996 /* Don't reset global blocks unless we need to */ 10997 if (!global) 10998 reset_mask2 &= ~global_bits2; 10999 11000 /* 11001 * In case of attention in the QM, we need to reset PXP 11002 * (MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR) before QM 11003 * because otherwise QM reset would release 'close the gates' shortly 11004 * before resetting the PXP, then the PSWRQ would send a write 11005 * request to PGLUE. Then when PXP is reset, PGLUE would try to 11006 * read the payload data from PSWWR, but PSWWR would not 11007 * respond. The write queue in PGLUE would stuck, dmae commands 11008 * would not return. Therefore it's important to reset the second 11009 * reset register (containing the 11010 * MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR bit) before the 11011 * first one (containing the MISC_REGISTERS_RESET_REG_1_RST_QM 11012 * bit). 11013 */ 11014 REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR, 11015 reset_mask2 & (~not_reset_mask2)); 11016 11017 REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 11018 reset_mask1 & (~not_reset_mask1)); 11019 11020 mb(); 11021 wmb(); 11022 11023 REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET, 11024 reset_mask2 & (~stay_reset2)); 11025 11026 mb(); 11027 wmb(); 11028 11029 REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, reset_mask1); 11030 wmb(); 11031 } 11032 11033 static int 11034 bxe_process_kill(struct bxe_softc *sc, 11035 uint8_t global) 11036 { 11037 int cnt = 1000; 11038 uint32_t val = 0; 11039 uint32_t sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1, pgl_exp_rom2; 11040 uint32_t tags_63_32 = 0; 11041 11042 /* Empty the Tetris buffer, wait for 1s */ 11043 do { 11044 sr_cnt = REG_RD(sc, PXP2_REG_RD_SR_CNT); 11045 blk_cnt = REG_RD(sc, PXP2_REG_RD_BLK_CNT); 11046 port_is_idle_0 = REG_RD(sc, PXP2_REG_RD_PORT_IS_IDLE_0); 11047 port_is_idle_1 = REG_RD(sc, PXP2_REG_RD_PORT_IS_IDLE_1); 11048 pgl_exp_rom2 = REG_RD(sc, PXP2_REG_PGL_EXP_ROM2); 11049 if (CHIP_IS_E3(sc)) { 11050 tags_63_32 = REG_RD(sc, PGLUE_B_REG_TAGS_63_32); 11051 } 11052 11053 if ((sr_cnt == 0x7e) && (blk_cnt == 0xa0) && 11054 ((port_is_idle_0 & 0x1) == 0x1) && 11055 ((port_is_idle_1 & 0x1) == 0x1) && 11056 (pgl_exp_rom2 == 0xffffffff) && 11057 (!CHIP_IS_E3(sc) || (tags_63_32 == 0xffffffff))) 11058 break; 11059 DELAY(1000); 11060 } while (cnt-- > 0); 11061 11062 if (cnt <= 0) { 11063 BLOGE(sc, "ERROR: Tetris buffer didn't get empty or there " 11064 "are still outstanding read requests after 1s! " 11065 "sr_cnt=0x%08x, blk_cnt=0x%08x, port_is_idle_0=0x%08x, " 11066 "port_is_idle_1=0x%08x, pgl_exp_rom2=0x%08x\n", 11067 sr_cnt, blk_cnt, port_is_idle_0, 11068 port_is_idle_1, pgl_exp_rom2); 11069 return (-1); 11070 } 11071 11072 mb(); 11073 11074 /* Close gates #2, #3 and #4 */ 11075 bxe_set_234_gates(sc, TRUE); 11076 11077 /* Poll for IGU VQs for 57712 and newer chips */ 11078 if (!CHIP_IS_E1x(sc) && bxe_er_poll_igu_vq(sc)) { 11079 return (-1); 11080 } 11081 11082 /* XXX indicate that "process kill" is in progress to MCP */ 11083 11084 /* clear "unprepared" bit */ 11085 REG_WR(sc, MISC_REG_UNPREPARED, 0); 11086 mb(); 11087 11088 /* Make sure all is written to the chip before the reset */ 11089 wmb(); 11090 11091 /* 11092 * Wait for 1ms to empty GLUE and PCI-E core queues, 11093 * PSWHST, GRC and PSWRD Tetris buffer. 11094 */ 11095 DELAY(1000); 11096 11097 /* Prepare to chip reset: */ 11098 /* MCP */ 11099 if (global) { 11100 bxe_reset_mcp_prep(sc, &val); 11101 } 11102 11103 /* PXP */ 11104 bxe_pxp_prep(sc); 11105 mb(); 11106 11107 /* reset the chip */ 11108 bxe_process_kill_chip_reset(sc, global); 11109 mb(); 11110 11111 /* clear errors in PGB */ 11112 if (!CHIP_IS_E1(sc)) 11113 REG_WR(sc, PGLUE_B_REG_LATCHED_ERRORS_CLR, 0x7f); 11114 11115 /* Recover after reset: */ 11116 /* MCP */ 11117 if (global && bxe_reset_mcp_comp(sc, val)) { 11118 return (-1); 11119 } 11120 11121 /* XXX add resetting the NO_MCP mode DB here */ 11122 11123 /* Open the gates #2, #3 and #4 */ 11124 bxe_set_234_gates(sc, FALSE); 11125 11126 /* XXX 11127 * IGU/AEU preparation bring back the AEU/IGU to a reset state 11128 * re-enable attentions 11129 */ 11130 11131 return (0); 11132 } 11133 11134 static int 11135 bxe_leader_reset(struct bxe_softc *sc) 11136 { 11137 int rc = 0; 11138 uint8_t global = bxe_reset_is_global(sc); 11139 uint32_t load_code; 11140 11141 /* 11142 * If not going to reset MCP, load "fake" driver to reset HW while 11143 * driver is owner of the HW. 11144 */ 11145 if (!global && !BXE_NOMCP(sc)) { 11146 load_code = bxe_fw_command(sc, DRV_MSG_CODE_LOAD_REQ, 11147 DRV_MSG_CODE_LOAD_REQ_WITH_LFA); 11148 if (!load_code) { 11149 BLOGE(sc, "MCP response failure, aborting\n"); 11150 rc = -1; 11151 goto exit_leader_reset; 11152 } 11153 11154 if ((load_code != FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) && 11155 (load_code != FW_MSG_CODE_DRV_LOAD_COMMON)) { 11156 BLOGE(sc, "MCP unexpected response, aborting\n"); 11157 rc = -1; 11158 goto exit_leader_reset2; 11159 } 11160 11161 load_code = bxe_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0); 11162 if (!load_code) { 11163 BLOGE(sc, "MCP response failure, aborting\n"); 11164 rc = -1; 11165 goto exit_leader_reset2; 11166 } 11167 } 11168 11169 /* try to recover after the failure */ 11170 if (bxe_process_kill(sc, global)) { 11171 BLOGE(sc, "Something bad occurred on engine %d!\n", SC_PATH(sc)); 11172 rc = -1; 11173 goto exit_leader_reset2; 11174 } 11175 11176 /* 11177 * Clear the RESET_IN_PROGRESS and RESET_GLOBAL bits and update the driver 11178 * state. 11179 */ 11180 bxe_set_reset_done(sc); 11181 if (global) { 11182 bxe_clear_reset_global(sc); 11183 } 11184 11185 exit_leader_reset2: 11186 11187 /* unload "fake driver" if it was loaded */ 11188 if (!global && !BXE_NOMCP(sc)) { 11189 bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP, 0); 11190 bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_DONE, 0); 11191 } 11192 11193 exit_leader_reset: 11194 11195 sc->is_leader = 0; 11196 bxe_release_leader_lock(sc); 11197 11198 mb(); 11199 return (rc); 11200 } 11201 11202 /* 11203 * prepare INIT transition, parameters configured: 11204 * - HC configuration 11205 * - Queue's CDU context 11206 */ 11207 static void 11208 bxe_pf_q_prep_init(struct bxe_softc *sc, 11209 struct bxe_fastpath *fp, 11210 struct ecore_queue_init_params *init_params) 11211 { 11212 uint8_t cos; 11213 int cxt_index, cxt_offset; 11214 11215 bxe_set_bit(ECORE_Q_FLG_HC, &init_params->rx.flags); 11216 bxe_set_bit(ECORE_Q_FLG_HC, &init_params->tx.flags); 11217 11218 bxe_set_bit(ECORE_Q_FLG_HC_EN, &init_params->rx.flags); 11219 bxe_set_bit(ECORE_Q_FLG_HC_EN, &init_params->tx.flags); 11220 11221 /* HC rate */ 11222 init_params->rx.hc_rate = 11223 sc->hc_rx_ticks ? (1000000 / sc->hc_rx_ticks) : 0; 11224 init_params->tx.hc_rate = 11225 sc->hc_tx_ticks ? (1000000 / sc->hc_tx_ticks) : 0; 11226 11227 /* FW SB ID */ 11228 init_params->rx.fw_sb_id = init_params->tx.fw_sb_id = fp->fw_sb_id; 11229 11230 /* CQ index among the SB indices */ 11231 init_params->rx.sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS; 11232 init_params->tx.sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS; 11233 11234 /* set maximum number of COSs supported by this queue */ 11235 init_params->max_cos = sc->max_cos; 11236 11237 BLOGD(sc, DBG_LOAD, "fp %d setting queue params max cos to %d\n", 11238 fp->index, init_params->max_cos); 11239 11240 /* set the context pointers queue object */ 11241 for (cos = FIRST_TX_COS_INDEX; cos < init_params->max_cos; cos++) { 11242 /* XXX change index/cid here if ever support multiple tx CoS */ 11243 /* fp->txdata[cos]->cid */ 11244 cxt_index = fp->index / ILT_PAGE_CIDS; 11245 cxt_offset = fp->index - (cxt_index * ILT_PAGE_CIDS); 11246 init_params->cxts[cos] = &sc->context[cxt_index].vcxt[cxt_offset].eth; 11247 } 11248 } 11249 11250 /* set flags that are common for the Tx-only and not normal connections */ 11251 static unsigned long 11252 bxe_get_common_flags(struct bxe_softc *sc, 11253 struct bxe_fastpath *fp, 11254 uint8_t zero_stats) 11255 { 11256 unsigned long flags = 0; 11257 11258 /* PF driver will always initialize the Queue to an ACTIVE state */ 11259 bxe_set_bit(ECORE_Q_FLG_ACTIVE, &flags); 11260 11261 /* 11262 * tx only connections collect statistics (on the same index as the 11263 * parent connection). The statistics are zeroed when the parent 11264 * connection is initialized. 11265 */ 11266 11267 bxe_set_bit(ECORE_Q_FLG_STATS, &flags); 11268 if (zero_stats) { 11269 bxe_set_bit(ECORE_Q_FLG_ZERO_STATS, &flags); 11270 } 11271 11272 /* 11273 * tx only connections can support tx-switching, though their 11274 * CoS-ness doesn't survive the loopback 11275 */ 11276 if (sc->flags & BXE_TX_SWITCHING) { 11277 bxe_set_bit(ECORE_Q_FLG_TX_SWITCH, &flags); 11278 } 11279 11280 bxe_set_bit(ECORE_Q_FLG_PCSUM_ON_PKT, &flags); 11281 11282 return (flags); 11283 } 11284 11285 static unsigned long 11286 bxe_get_q_flags(struct bxe_softc *sc, 11287 struct bxe_fastpath *fp, 11288 uint8_t leading) 11289 { 11290 unsigned long flags = 0; 11291 11292 if (IS_MF_SD(sc)) { 11293 bxe_set_bit(ECORE_Q_FLG_OV, &flags); 11294 } 11295 11296 if (if_getcapenable(sc->ifp) & IFCAP_LRO) { 11297 bxe_set_bit(ECORE_Q_FLG_TPA, &flags); 11298 bxe_set_bit(ECORE_Q_FLG_TPA_IPV6, &flags); 11299 } 11300 11301 if (leading) { 11302 bxe_set_bit(ECORE_Q_FLG_LEADING_RSS, &flags); 11303 bxe_set_bit(ECORE_Q_FLG_MCAST, &flags); 11304 } 11305 11306 bxe_set_bit(ECORE_Q_FLG_VLAN, &flags); 11307 11308 /* merge with common flags */ 11309 return (flags | bxe_get_common_flags(sc, fp, TRUE)); 11310 } 11311 11312 static void 11313 bxe_pf_q_prep_general(struct bxe_softc *sc, 11314 struct bxe_fastpath *fp, 11315 struct ecore_general_setup_params *gen_init, 11316 uint8_t cos) 11317 { 11318 gen_init->stat_id = bxe_stats_id(fp); 11319 gen_init->spcl_id = fp->cl_id; 11320 gen_init->mtu = sc->mtu; 11321 gen_init->cos = cos; 11322 } 11323 11324 static void 11325 bxe_pf_rx_q_prep(struct bxe_softc *sc, 11326 struct bxe_fastpath *fp, 11327 struct rxq_pause_params *pause, 11328 struct ecore_rxq_setup_params *rxq_init) 11329 { 11330 uint8_t max_sge = 0; 11331 uint16_t sge_sz = 0; 11332 uint16_t tpa_agg_size = 0; 11333 11334 pause->sge_th_lo = SGE_TH_LO(sc); 11335 pause->sge_th_hi = SGE_TH_HI(sc); 11336 11337 /* validate SGE ring has enough to cross high threshold */ 11338 if (sc->dropless_fc && 11339 (pause->sge_th_hi + FW_PREFETCH_CNT) > 11340 (RX_SGE_USABLE_PER_PAGE * RX_SGE_NUM_PAGES)) { 11341 BLOGW(sc, "sge ring threshold limit\n"); 11342 } 11343 11344 /* minimum max_aggregation_size is 2*MTU (two full buffers) */ 11345 tpa_agg_size = (2 * sc->mtu); 11346 if (tpa_agg_size < sc->max_aggregation_size) { 11347 tpa_agg_size = sc->max_aggregation_size; 11348 } 11349 11350 max_sge = SGE_PAGE_ALIGN(sc->mtu) >> SGE_PAGE_SHIFT; 11351 max_sge = ((max_sge + PAGES_PER_SGE - 1) & 11352 (~(PAGES_PER_SGE - 1))) >> PAGES_PER_SGE_SHIFT; 11353 sge_sz = (uint16_t)min(SGE_PAGES, 0xffff); 11354 11355 /* pause - not for e1 */ 11356 if (!CHIP_IS_E1(sc)) { 11357 pause->bd_th_lo = BD_TH_LO(sc); 11358 pause->bd_th_hi = BD_TH_HI(sc); 11359 11360 pause->rcq_th_lo = RCQ_TH_LO(sc); 11361 pause->rcq_th_hi = RCQ_TH_HI(sc); 11362 11363 /* validate rings have enough entries to cross high thresholds */ 11364 if (sc->dropless_fc && 11365 pause->bd_th_hi + FW_PREFETCH_CNT > 11366 sc->rx_ring_size) { 11367 BLOGW(sc, "rx bd ring threshold limit\n"); 11368 } 11369 11370 if (sc->dropless_fc && 11371 pause->rcq_th_hi + FW_PREFETCH_CNT > 11372 RCQ_NUM_PAGES * RCQ_USABLE_PER_PAGE) { 11373 BLOGW(sc, "rcq ring threshold limit\n"); 11374 } 11375 11376 pause->pri_map = 1; 11377 } 11378 11379 /* rxq setup */ 11380 rxq_init->dscr_map = fp->rx_dma.paddr; 11381 rxq_init->sge_map = fp->rx_sge_dma.paddr; 11382 rxq_init->rcq_map = fp->rcq_dma.paddr; 11383 rxq_init->rcq_np_map = (fp->rcq_dma.paddr + BCM_PAGE_SIZE); 11384 11385 /* 11386 * This should be a maximum number of data bytes that may be 11387 * placed on the BD (not including paddings). 11388 */ 11389 rxq_init->buf_sz = (fp->rx_buf_size - 11390 IP_HEADER_ALIGNMENT_PADDING); 11391 11392 rxq_init->cl_qzone_id = fp->cl_qzone_id; 11393 rxq_init->tpa_agg_sz = tpa_agg_size; 11394 rxq_init->sge_buf_sz = sge_sz; 11395 rxq_init->max_sges_pkt = max_sge; 11396 rxq_init->rss_engine_id = SC_FUNC(sc); 11397 rxq_init->mcast_engine_id = SC_FUNC(sc); 11398 11399 /* 11400 * Maximum number or simultaneous TPA aggregation for this Queue. 11401 * For PF Clients it should be the maximum available number. 11402 * VF driver(s) may want to define it to a smaller value. 11403 */ 11404 rxq_init->max_tpa_queues = MAX_AGG_QS(sc); 11405 11406 rxq_init->cache_line_log = BXE_RX_ALIGN_SHIFT; 11407 rxq_init->fw_sb_id = fp->fw_sb_id; 11408 11409 rxq_init->sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS; 11410 11411 /* 11412 * configure silent vlan removal 11413 * if multi function mode is afex, then mask default vlan 11414 */ 11415 if (IS_MF_AFEX(sc)) { 11416 rxq_init->silent_removal_value = 11417 sc->devinfo.mf_info.afex_def_vlan_tag; 11418 rxq_init->silent_removal_mask = EVL_VLID_MASK; 11419 } 11420 } 11421 11422 static void 11423 bxe_pf_tx_q_prep(struct bxe_softc *sc, 11424 struct bxe_fastpath *fp, 11425 struct ecore_txq_setup_params *txq_init, 11426 uint8_t cos) 11427 { 11428 /* 11429 * XXX If multiple CoS is ever supported then each fastpath structure 11430 * will need to maintain tx producer/consumer/dma/etc values *per* CoS. 11431 * fp->txdata[cos]->tx_dma.paddr; 11432 */ 11433 txq_init->dscr_map = fp->tx_dma.paddr; 11434 txq_init->sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS + cos; 11435 txq_init->traffic_type = LLFC_TRAFFIC_TYPE_NW; 11436 txq_init->fw_sb_id = fp->fw_sb_id; 11437 11438 /* 11439 * set the TSS leading client id for TX classfication to the 11440 * leading RSS client id 11441 */ 11442 txq_init->tss_leading_cl_id = BXE_FP(sc, 0, cl_id); 11443 } 11444 11445 /* 11446 * This function performs 2 steps in a queue state machine: 11447 * 1) RESET->INIT 11448 * 2) INIT->SETUP 11449 */ 11450 static int 11451 bxe_setup_queue(struct bxe_softc *sc, 11452 struct bxe_fastpath *fp, 11453 uint8_t leading) 11454 { 11455 struct ecore_queue_state_params q_params = { NULL }; 11456 struct ecore_queue_setup_params *setup_params = 11457 &q_params.params.setup; 11458 int rc; 11459 11460 BLOGD(sc, DBG_LOAD, "setting up queue %d\n", fp->index); 11461 11462 bxe_ack_sb(sc, fp->igu_sb_id, USTORM_ID, 0, IGU_INT_ENABLE, 0); 11463 11464 q_params.q_obj = &BXE_SP_OBJ(sc, fp).q_obj; 11465 11466 /* we want to wait for completion in this context */ 11467 bxe_set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags); 11468 11469 /* prepare the INIT parameters */ 11470 bxe_pf_q_prep_init(sc, fp, &q_params.params.init); 11471 11472 /* Set the command */ 11473 q_params.cmd = ECORE_Q_CMD_INIT; 11474 11475 /* Change the state to INIT */ 11476 rc = ecore_queue_state_change(sc, &q_params); 11477 if (rc) { 11478 BLOGE(sc, "Queue(%d) INIT failed rc = %d\n", fp->index, rc); 11479 return (rc); 11480 } 11481 11482 BLOGD(sc, DBG_LOAD, "init complete\n"); 11483 11484 /* now move the Queue to the SETUP state */ 11485 memset(setup_params, 0, sizeof(*setup_params)); 11486 11487 /* set Queue flags */ 11488 setup_params->flags = bxe_get_q_flags(sc, fp, leading); 11489 11490 /* set general SETUP parameters */ 11491 bxe_pf_q_prep_general(sc, fp, &setup_params->gen_params, 11492 FIRST_TX_COS_INDEX); 11493 11494 bxe_pf_rx_q_prep(sc, fp, 11495 &setup_params->pause_params, 11496 &setup_params->rxq_params); 11497 11498 bxe_pf_tx_q_prep(sc, fp, 11499 &setup_params->txq_params, 11500 FIRST_TX_COS_INDEX); 11501 11502 /* Set the command */ 11503 q_params.cmd = ECORE_Q_CMD_SETUP; 11504 11505 /* change the state to SETUP */ 11506 rc = ecore_queue_state_change(sc, &q_params); 11507 if (rc) { 11508 BLOGE(sc, "Queue(%d) SETUP failed (rc = %d)\n", fp->index, rc); 11509 return (rc); 11510 } 11511 11512 return (rc); 11513 } 11514 11515 static int 11516 bxe_setup_leading(struct bxe_softc *sc) 11517 { 11518 return (bxe_setup_queue(sc, &sc->fp[0], TRUE)); 11519 } 11520 11521 static int 11522 bxe_config_rss_pf(struct bxe_softc *sc, 11523 struct ecore_rss_config_obj *rss_obj, 11524 uint8_t config_hash) 11525 { 11526 struct ecore_config_rss_params params = { NULL }; 11527 int i; 11528 11529 /* 11530 * Although RSS is meaningless when there is a single HW queue we 11531 * still need it enabled in order to have HW Rx hash generated. 11532 */ 11533 11534 params.rss_obj = rss_obj; 11535 11536 bxe_set_bit(RAMROD_COMP_WAIT, ¶ms.ramrod_flags); 11537 11538 bxe_set_bit(ECORE_RSS_MODE_REGULAR, ¶ms.rss_flags); 11539 11540 /* RSS configuration */ 11541 bxe_set_bit(ECORE_RSS_IPV4, ¶ms.rss_flags); 11542 bxe_set_bit(ECORE_RSS_IPV4_TCP, ¶ms.rss_flags); 11543 bxe_set_bit(ECORE_RSS_IPV6, ¶ms.rss_flags); 11544 bxe_set_bit(ECORE_RSS_IPV6_TCP, ¶ms.rss_flags); 11545 if (rss_obj->udp_rss_v4) { 11546 bxe_set_bit(ECORE_RSS_IPV4_UDP, ¶ms.rss_flags); 11547 } 11548 if (rss_obj->udp_rss_v6) { 11549 bxe_set_bit(ECORE_RSS_IPV6_UDP, ¶ms.rss_flags); 11550 } 11551 11552 /* Hash bits */ 11553 params.rss_result_mask = MULTI_MASK; 11554 11555 memcpy(params.ind_table, rss_obj->ind_table, sizeof(params.ind_table)); 11556 11557 if (config_hash) { 11558 /* RSS keys */ 11559 for (i = 0; i < sizeof(params.rss_key) / 4; i++) { 11560 params.rss_key[i] = arc4random(); 11561 } 11562 11563 bxe_set_bit(ECORE_RSS_SET_SRCH, ¶ms.rss_flags); 11564 } 11565 11566 return (ecore_config_rss(sc, ¶ms)); 11567 } 11568 11569 static int 11570 bxe_config_rss_eth(struct bxe_softc *sc, 11571 uint8_t config_hash) 11572 { 11573 return (bxe_config_rss_pf(sc, &sc->rss_conf_obj, config_hash)); 11574 } 11575 11576 static int 11577 bxe_init_rss_pf(struct bxe_softc *sc) 11578 { 11579 uint8_t num_eth_queues = BXE_NUM_ETH_QUEUES(sc); 11580 int i; 11581 11582 /* 11583 * Prepare the initial contents of the indirection table if 11584 * RSS is enabled 11585 */ 11586 for (i = 0; i < sizeof(sc->rss_conf_obj.ind_table); i++) { 11587 sc->rss_conf_obj.ind_table[i] = 11588 (sc->fp->cl_id + (i % num_eth_queues)); 11589 } 11590 11591 if (sc->udp_rss) { 11592 sc->rss_conf_obj.udp_rss_v4 = sc->rss_conf_obj.udp_rss_v6 = 1; 11593 } 11594 11595 /* 11596 * For 57710 and 57711 SEARCHER configuration (rss_keys) is 11597 * per-port, so if explicit configuration is needed, do it only 11598 * for a PMF. 11599 * 11600 * For 57712 and newer it's a per-function configuration. 11601 */ 11602 return (bxe_config_rss_eth(sc, sc->port.pmf || !CHIP_IS_E1x(sc))); 11603 } 11604 11605 static int 11606 bxe_set_mac_one(struct bxe_softc *sc, 11607 uint8_t *mac, 11608 struct ecore_vlan_mac_obj *obj, 11609 uint8_t set, 11610 int mac_type, 11611 unsigned long *ramrod_flags) 11612 { 11613 struct ecore_vlan_mac_ramrod_params ramrod_param; 11614 int rc; 11615 11616 memset(&ramrod_param, 0, sizeof(ramrod_param)); 11617 11618 /* fill in general parameters */ 11619 ramrod_param.vlan_mac_obj = obj; 11620 ramrod_param.ramrod_flags = *ramrod_flags; 11621 11622 /* fill a user request section if needed */ 11623 if (!bxe_test_bit(RAMROD_CONT, ramrod_flags)) { 11624 memcpy(ramrod_param.user_req.u.mac.mac, mac, ETH_ALEN); 11625 11626 bxe_set_bit(mac_type, &ramrod_param.user_req.vlan_mac_flags); 11627 11628 /* Set the command: ADD or DEL */ 11629 ramrod_param.user_req.cmd = (set) ? ECORE_VLAN_MAC_ADD : 11630 ECORE_VLAN_MAC_DEL; 11631 } 11632 11633 rc = ecore_config_vlan_mac(sc, &ramrod_param); 11634 11635 if (rc == ECORE_EXISTS) { 11636 BLOGD(sc, DBG_SP, "Failed to schedule ADD operations (EEXIST)\n"); 11637 /* do not treat adding same MAC as error */ 11638 rc = 0; 11639 } else if (rc < 0) { 11640 BLOGE(sc, "%s MAC failed (%d)\n", (set ? "Set" : "Delete"), rc); 11641 } 11642 11643 return (rc); 11644 } 11645 11646 static int 11647 bxe_set_eth_mac(struct bxe_softc *sc, 11648 uint8_t set) 11649 { 11650 unsigned long ramrod_flags = 0; 11651 11652 BLOGD(sc, DBG_LOAD, "Adding Ethernet MAC\n"); 11653 11654 bxe_set_bit(RAMROD_COMP_WAIT, &ramrod_flags); 11655 11656 /* Eth MAC is set on RSS leading client (fp[0]) */ 11657 return (bxe_set_mac_one(sc, sc->link_params.mac_addr, 11658 &sc->sp_objs->mac_obj, 11659 set, ECORE_ETH_MAC, &ramrod_flags)); 11660 } 11661 11662 static int 11663 bxe_get_cur_phy_idx(struct bxe_softc *sc) 11664 { 11665 uint32_t sel_phy_idx = 0; 11666 11667 if (sc->link_params.num_phys <= 1) { 11668 return (ELINK_INT_PHY); 11669 } 11670 11671 if (sc->link_vars.link_up) { 11672 sel_phy_idx = ELINK_EXT_PHY1; 11673 /* In case link is SERDES, check if the ELINK_EXT_PHY2 is the one */ 11674 if ((sc->link_vars.link_status & LINK_STATUS_SERDES_LINK) && 11675 (sc->link_params.phy[ELINK_EXT_PHY2].supported & 11676 ELINK_SUPPORTED_FIBRE)) 11677 sel_phy_idx = ELINK_EXT_PHY2; 11678 } else { 11679 switch (elink_phy_selection(&sc->link_params)) { 11680 case PORT_HW_CFG_PHY_SELECTION_HARDWARE_DEFAULT: 11681 case PORT_HW_CFG_PHY_SELECTION_FIRST_PHY: 11682 case PORT_HW_CFG_PHY_SELECTION_FIRST_PHY_PRIORITY: 11683 sel_phy_idx = ELINK_EXT_PHY1; 11684 break; 11685 case PORT_HW_CFG_PHY_SELECTION_SECOND_PHY: 11686 case PORT_HW_CFG_PHY_SELECTION_SECOND_PHY_PRIORITY: 11687 sel_phy_idx = ELINK_EXT_PHY2; 11688 break; 11689 } 11690 } 11691 11692 return (sel_phy_idx); 11693 } 11694 11695 static int 11696 bxe_get_link_cfg_idx(struct bxe_softc *sc) 11697 { 11698 uint32_t sel_phy_idx = bxe_get_cur_phy_idx(sc); 11699 11700 /* 11701 * The selected activated PHY is always after swapping (in case PHY 11702 * swapping is enabled). So when swapping is enabled, we need to reverse 11703 * the configuration 11704 */ 11705 11706 if (sc->link_params.multi_phy_config & PORT_HW_CFG_PHY_SWAPPED_ENABLED) { 11707 if (sel_phy_idx == ELINK_EXT_PHY1) 11708 sel_phy_idx = ELINK_EXT_PHY2; 11709 else if (sel_phy_idx == ELINK_EXT_PHY2) 11710 sel_phy_idx = ELINK_EXT_PHY1; 11711 } 11712 11713 return (ELINK_LINK_CONFIG_IDX(sel_phy_idx)); 11714 } 11715 11716 static void 11717 bxe_set_requested_fc(struct bxe_softc *sc) 11718 { 11719 /* 11720 * Initialize link parameters structure variables 11721 * It is recommended to turn off RX FC for jumbo frames 11722 * for better performance 11723 */ 11724 if (CHIP_IS_E1x(sc) && (sc->mtu > 5000)) { 11725 sc->link_params.req_fc_auto_adv = ELINK_FLOW_CTRL_TX; 11726 } else { 11727 sc->link_params.req_fc_auto_adv = ELINK_FLOW_CTRL_BOTH; 11728 } 11729 } 11730 11731 static void 11732 bxe_calc_fc_adv(struct bxe_softc *sc) 11733 { 11734 uint8_t cfg_idx = bxe_get_link_cfg_idx(sc); 11735 switch (sc->link_vars.ieee_fc & 11736 MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_MASK) { 11737 case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_NONE: 11738 default: 11739 sc->port.advertising[cfg_idx] &= ~(ADVERTISED_Asym_Pause | 11740 ADVERTISED_Pause); 11741 break; 11742 11743 case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_BOTH: 11744 sc->port.advertising[cfg_idx] |= (ADVERTISED_Asym_Pause | 11745 ADVERTISED_Pause); 11746 break; 11747 11748 case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_ASYMMETRIC: 11749 sc->port.advertising[cfg_idx] |= ADVERTISED_Asym_Pause; 11750 break; 11751 } 11752 } 11753 11754 static uint16_t 11755 bxe_get_mf_speed(struct bxe_softc *sc) 11756 { 11757 uint16_t line_speed = sc->link_vars.line_speed; 11758 if (IS_MF(sc)) { 11759 uint16_t maxCfg = 11760 bxe_extract_max_cfg(sc, sc->devinfo.mf_info.mf_config[SC_VN(sc)]); 11761 11762 /* calculate the current MAX line speed limit for the MF devices */ 11763 if (IS_MF_SI(sc)) { 11764 line_speed = (line_speed * maxCfg) / 100; 11765 } else { /* SD mode */ 11766 uint16_t vn_max_rate = maxCfg * 100; 11767 11768 if (vn_max_rate < line_speed) { 11769 line_speed = vn_max_rate; 11770 } 11771 } 11772 } 11773 11774 return (line_speed); 11775 } 11776 11777 static void 11778 bxe_fill_report_data(struct bxe_softc *sc, 11779 struct bxe_link_report_data *data) 11780 { 11781 uint16_t line_speed = bxe_get_mf_speed(sc); 11782 11783 memset(data, 0, sizeof(*data)); 11784 11785 /* fill the report data with the effective line speed */ 11786 data->line_speed = line_speed; 11787 11788 /* Link is down */ 11789 if (!sc->link_vars.link_up || (sc->flags & BXE_MF_FUNC_DIS)) { 11790 bxe_set_bit(BXE_LINK_REPORT_LINK_DOWN, &data->link_report_flags); 11791 } 11792 11793 /* Full DUPLEX */ 11794 if (sc->link_vars.duplex == DUPLEX_FULL) { 11795 bxe_set_bit(BXE_LINK_REPORT_FULL_DUPLEX, &data->link_report_flags); 11796 } 11797 11798 /* Rx Flow Control is ON */ 11799 if (sc->link_vars.flow_ctrl & ELINK_FLOW_CTRL_RX) { 11800 bxe_set_bit(BXE_LINK_REPORT_RX_FC_ON, &data->link_report_flags); 11801 } 11802 11803 /* Tx Flow Control is ON */ 11804 if (sc->link_vars.flow_ctrl & ELINK_FLOW_CTRL_TX) { 11805 bxe_set_bit(BXE_LINK_REPORT_TX_FC_ON, &data->link_report_flags); 11806 } 11807 } 11808 11809 /* report link status to OS, should be called under phy_lock */ 11810 static void 11811 bxe_link_report_locked(struct bxe_softc *sc) 11812 { 11813 struct bxe_link_report_data cur_data; 11814 11815 /* reread mf_cfg */ 11816 if (IS_PF(sc) && !CHIP_IS_E1(sc)) { 11817 bxe_read_mf_cfg(sc); 11818 } 11819 11820 /* Read the current link report info */ 11821 bxe_fill_report_data(sc, &cur_data); 11822 11823 /* Don't report link down or exactly the same link status twice */ 11824 if (!memcmp(&cur_data, &sc->last_reported_link, sizeof(cur_data)) || 11825 (bxe_test_bit(BXE_LINK_REPORT_LINK_DOWN, 11826 &sc->last_reported_link.link_report_flags) && 11827 bxe_test_bit(BXE_LINK_REPORT_LINK_DOWN, 11828 &cur_data.link_report_flags))) { 11829 return; 11830 } 11831 11832 sc->link_cnt++; 11833 11834 /* report new link params and remember the state for the next time */ 11835 memcpy(&sc->last_reported_link, &cur_data, sizeof(cur_data)); 11836 11837 if (bxe_test_bit(BXE_LINK_REPORT_LINK_DOWN, 11838 &cur_data.link_report_flags)) { 11839 if_link_state_change(sc->ifp, LINK_STATE_DOWN); 11840 BLOGI(sc, "NIC Link is Down\n"); 11841 } else { 11842 const char *duplex; 11843 const char *flow; 11844 11845 if (bxe_test_and_clear_bit(BXE_LINK_REPORT_FULL_DUPLEX, 11846 &cur_data.link_report_flags)) { 11847 duplex = "full"; 11848 } else { 11849 duplex = "half"; 11850 } 11851 11852 /* 11853 * Handle the FC at the end so that only these flags would be 11854 * possibly set. This way we may easily check if there is no FC 11855 * enabled. 11856 */ 11857 if (cur_data.link_report_flags) { 11858 if (bxe_test_bit(BXE_LINK_REPORT_RX_FC_ON, 11859 &cur_data.link_report_flags) && 11860 bxe_test_bit(BXE_LINK_REPORT_TX_FC_ON, 11861 &cur_data.link_report_flags)) { 11862 flow = "ON - receive & transmit"; 11863 } else if (bxe_test_bit(BXE_LINK_REPORT_RX_FC_ON, 11864 &cur_data.link_report_flags) && 11865 !bxe_test_bit(BXE_LINK_REPORT_TX_FC_ON, 11866 &cur_data.link_report_flags)) { 11867 flow = "ON - receive"; 11868 } else if (!bxe_test_bit(BXE_LINK_REPORT_RX_FC_ON, 11869 &cur_data.link_report_flags) && 11870 bxe_test_bit(BXE_LINK_REPORT_TX_FC_ON, 11871 &cur_data.link_report_flags)) { 11872 flow = "ON - transmit"; 11873 } else { 11874 flow = "none"; /* possible? */ 11875 } 11876 } else { 11877 flow = "none"; 11878 } 11879 11880 if_link_state_change(sc->ifp, LINK_STATE_UP); 11881 BLOGI(sc, "NIC Link is Up, %d Mbps %s duplex, Flow control: %s\n", 11882 cur_data.line_speed, duplex, flow); 11883 } 11884 } 11885 11886 static void 11887 bxe_link_report(struct bxe_softc *sc) 11888 { 11889 bxe_acquire_phy_lock(sc); 11890 bxe_link_report_locked(sc); 11891 bxe_release_phy_lock(sc); 11892 } 11893 11894 static void 11895 bxe_link_status_update(struct bxe_softc *sc) 11896 { 11897 if (sc->state != BXE_STATE_OPEN) { 11898 return; 11899 } 11900 11901 if (IS_PF(sc) && !CHIP_REV_IS_SLOW(sc)) { 11902 elink_link_status_update(&sc->link_params, &sc->link_vars); 11903 } else { 11904 sc->port.supported[0] |= (ELINK_SUPPORTED_10baseT_Half | 11905 ELINK_SUPPORTED_10baseT_Full | 11906 ELINK_SUPPORTED_100baseT_Half | 11907 ELINK_SUPPORTED_100baseT_Full | 11908 ELINK_SUPPORTED_1000baseT_Full | 11909 ELINK_SUPPORTED_2500baseX_Full | 11910 ELINK_SUPPORTED_10000baseT_Full | 11911 ELINK_SUPPORTED_TP | 11912 ELINK_SUPPORTED_FIBRE | 11913 ELINK_SUPPORTED_Autoneg | 11914 ELINK_SUPPORTED_Pause | 11915 ELINK_SUPPORTED_Asym_Pause); 11916 sc->port.advertising[0] = sc->port.supported[0]; 11917 11918 sc->link_params.sc = sc; 11919 sc->link_params.port = SC_PORT(sc); 11920 sc->link_params.req_duplex[0] = DUPLEX_FULL; 11921 sc->link_params.req_flow_ctrl[0] = ELINK_FLOW_CTRL_NONE; 11922 sc->link_params.req_line_speed[0] = SPEED_10000; 11923 sc->link_params.speed_cap_mask[0] = 0x7f0000; 11924 sc->link_params.switch_cfg = ELINK_SWITCH_CFG_10G; 11925 11926 if (CHIP_REV_IS_FPGA(sc)) { 11927 sc->link_vars.mac_type = ELINK_MAC_TYPE_EMAC; 11928 sc->link_vars.line_speed = ELINK_SPEED_1000; 11929 sc->link_vars.link_status = (LINK_STATUS_LINK_UP | 11930 LINK_STATUS_SPEED_AND_DUPLEX_1000TFD); 11931 } else { 11932 sc->link_vars.mac_type = ELINK_MAC_TYPE_BMAC; 11933 sc->link_vars.line_speed = ELINK_SPEED_10000; 11934 sc->link_vars.link_status = (LINK_STATUS_LINK_UP | 11935 LINK_STATUS_SPEED_AND_DUPLEX_10GTFD); 11936 } 11937 11938 sc->link_vars.link_up = 1; 11939 11940 sc->link_vars.duplex = DUPLEX_FULL; 11941 sc->link_vars.flow_ctrl = ELINK_FLOW_CTRL_NONE; 11942 11943 if (IS_PF(sc)) { 11944 REG_WR(sc, NIG_REG_EGRESS_DRAIN0_MODE + sc->link_params.port*4, 0); 11945 bxe_stats_handle(sc, STATS_EVENT_LINK_UP); 11946 bxe_link_report(sc); 11947 } 11948 } 11949 11950 if (IS_PF(sc)) { 11951 if (sc->link_vars.link_up) { 11952 bxe_stats_handle(sc, STATS_EVENT_LINK_UP); 11953 } else { 11954 bxe_stats_handle(sc, STATS_EVENT_STOP); 11955 } 11956 bxe_link_report(sc); 11957 } else { 11958 bxe_link_report(sc); 11959 bxe_stats_handle(sc, STATS_EVENT_LINK_UP); 11960 } 11961 } 11962 11963 static int 11964 bxe_initial_phy_init(struct bxe_softc *sc, 11965 int load_mode) 11966 { 11967 int rc, cfg_idx = bxe_get_link_cfg_idx(sc); 11968 uint16_t req_line_speed = sc->link_params.req_line_speed[cfg_idx]; 11969 struct elink_params *lp = &sc->link_params; 11970 11971 bxe_set_requested_fc(sc); 11972 11973 if (CHIP_REV_IS_SLOW(sc)) { 11974 uint32_t bond = CHIP_BOND_ID(sc); 11975 uint32_t feat = 0; 11976 11977 if (CHIP_IS_E2(sc) && CHIP_IS_MODE_4_PORT(sc)) { 11978 feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_BMAC; 11979 } else if (bond & 0x4) { 11980 if (CHIP_IS_E3(sc)) { 11981 feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_XMAC; 11982 } else { 11983 feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_BMAC; 11984 } 11985 } else if (bond & 0x8) { 11986 if (CHIP_IS_E3(sc)) { 11987 feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_UMAC; 11988 } else { 11989 feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_EMAC; 11990 } 11991 } 11992 11993 /* disable EMAC for E3 and above */ 11994 if (bond & 0x2) { 11995 feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_EMAC; 11996 } 11997 11998 sc->link_params.feature_config_flags |= feat; 11999 } 12000 12001 bxe_acquire_phy_lock(sc); 12002 12003 if (load_mode == LOAD_DIAG) { 12004 lp->loopback_mode = ELINK_LOOPBACK_XGXS; 12005 /* Prefer doing PHY loopback at 10G speed, if possible */ 12006 if (lp->req_line_speed[cfg_idx] < ELINK_SPEED_10000) { 12007 if (lp->speed_cap_mask[cfg_idx] & 12008 PORT_HW_CFG_SPEED_CAPABILITY_D0_10G) { 12009 lp->req_line_speed[cfg_idx] = ELINK_SPEED_10000; 12010 } else { 12011 lp->req_line_speed[cfg_idx] = ELINK_SPEED_1000; 12012 } 12013 } 12014 } 12015 12016 if (load_mode == LOAD_LOOPBACK_EXT) { 12017 lp->loopback_mode = ELINK_LOOPBACK_EXT; 12018 } 12019 12020 rc = elink_phy_init(&sc->link_params, &sc->link_vars); 12021 12022 bxe_release_phy_lock(sc); 12023 12024 bxe_calc_fc_adv(sc); 12025 12026 if (sc->link_vars.link_up) { 12027 bxe_stats_handle(sc, STATS_EVENT_LINK_UP); 12028 bxe_link_report(sc); 12029 } 12030 12031 if (!CHIP_REV_IS_SLOW(sc)) { 12032 bxe_periodic_start(sc); 12033 } 12034 12035 sc->link_params.req_line_speed[cfg_idx] = req_line_speed; 12036 return (rc); 12037 } 12038 12039 /* must be called under IF_ADDR_LOCK */ 12040 12041 static int 12042 bxe_set_mc_list(struct bxe_softc *sc) 12043 { 12044 struct ecore_mcast_ramrod_params rparam = { NULL }; 12045 int rc = 0; 12046 int mc_count = 0; 12047 int mcnt, i; 12048 struct ecore_mcast_list_elem *mc_mac, *mc_mac_start; 12049 unsigned char *mta; 12050 if_t ifp = sc->ifp; 12051 12052 mc_count = if_multiaddr_count(ifp, -1);/* XXX they don't have a limit */ 12053 if (!mc_count) 12054 return (0); 12055 12056 mta = malloc(sizeof(unsigned char) * ETHER_ADDR_LEN * 12057 mc_count, M_DEVBUF, M_NOWAIT); 12058 12059 if(mta == NULL) { 12060 BLOGE(sc, "Failed to allocate temp mcast list\n"); 12061 return (-1); 12062 } 12063 bzero(mta, (sizeof(unsigned char) * ETHER_ADDR_LEN * mc_count)); 12064 12065 mc_mac = malloc(sizeof(*mc_mac) * mc_count, M_DEVBUF, (M_NOWAIT | M_ZERO)); 12066 mc_mac_start = mc_mac; 12067 12068 if (!mc_mac) { 12069 free(mta, M_DEVBUF); 12070 BLOGE(sc, "Failed to allocate temp mcast list\n"); 12071 return (-1); 12072 } 12073 bzero(mc_mac, (sizeof(*mc_mac) * mc_count)); 12074 12075 /* mta and mcnt not expected to be different */ 12076 if_multiaddr_array(ifp, mta, &mcnt, mc_count); 12077 12078 12079 rparam.mcast_obj = &sc->mcast_obj; 12080 ECORE_LIST_INIT(&rparam.mcast_list); 12081 12082 for(i=0; i< mcnt; i++) { 12083 12084 mc_mac->mac = (uint8_t *)(mta + (i * ETHER_ADDR_LEN)); 12085 ECORE_LIST_PUSH_TAIL(&mc_mac->link, &rparam.mcast_list); 12086 12087 BLOGD(sc, DBG_LOAD, 12088 "Setting MCAST %02X:%02X:%02X:%02X:%02X:%02X\n", 12089 mc_mac->mac[0], mc_mac->mac[1], mc_mac->mac[2], 12090 mc_mac->mac[3], mc_mac->mac[4], mc_mac->mac[5]); 12091 12092 mc_mac++; 12093 } 12094 rparam.mcast_list_len = mc_count; 12095 12096 BXE_MCAST_LOCK(sc); 12097 12098 /* first, clear all configured multicast MACs */ 12099 rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_DEL); 12100 if (rc < 0) { 12101 BLOGE(sc, "Failed to clear multicast configuration: %d\n", rc); 12102 BXE_MCAST_UNLOCK(sc); 12103 free(mc_mac_start, M_DEVBUF); 12104 free(mta, M_DEVBUF); 12105 return (rc); 12106 } 12107 12108 /* Now add the new MACs */ 12109 rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_ADD); 12110 if (rc < 0) { 12111 BLOGE(sc, "Failed to set new mcast config (%d)\n", rc); 12112 } 12113 12114 BXE_MCAST_UNLOCK(sc); 12115 12116 free(mc_mac_start, M_DEVBUF); 12117 free(mta, M_DEVBUF); 12118 12119 return (rc); 12120 } 12121 12122 static int 12123 bxe_set_uc_list(struct bxe_softc *sc) 12124 { 12125 if_t ifp = sc->ifp; 12126 struct ecore_vlan_mac_obj *mac_obj = &sc->sp_objs->mac_obj; 12127 struct ifaddr *ifa; 12128 unsigned long ramrod_flags = 0; 12129 int rc; 12130 12131 #if __FreeBSD_version < 800000 12132 IF_ADDR_LOCK(ifp); 12133 #else 12134 if_addr_rlock(ifp); 12135 #endif 12136 12137 /* first schedule a cleanup up of old configuration */ 12138 rc = bxe_del_all_macs(sc, mac_obj, ECORE_UC_LIST_MAC, FALSE); 12139 if (rc < 0) { 12140 BLOGE(sc, "Failed to schedule delete of all ETH MACs (%d)\n", rc); 12141 #if __FreeBSD_version < 800000 12142 IF_ADDR_UNLOCK(ifp); 12143 #else 12144 if_addr_runlock(ifp); 12145 #endif 12146 return (rc); 12147 } 12148 12149 ifa = if_getifaddr(ifp); /* XXX Is this structure */ 12150 while (ifa) { 12151 if (ifa->ifa_addr->sa_family != AF_LINK) { 12152 ifa = TAILQ_NEXT(ifa, ifa_link); 12153 continue; 12154 } 12155 12156 rc = bxe_set_mac_one(sc, (uint8_t *)LLADDR((struct sockaddr_dl *)ifa->ifa_addr), 12157 mac_obj, TRUE, ECORE_UC_LIST_MAC, &ramrod_flags); 12158 if (rc == -EEXIST) { 12159 BLOGD(sc, DBG_SP, "Failed to schedule ADD operations (EEXIST)\n"); 12160 /* do not treat adding same MAC as an error */ 12161 rc = 0; 12162 } else if (rc < 0) { 12163 BLOGE(sc, "Failed to schedule ADD operations (%d)\n", rc); 12164 #if __FreeBSD_version < 800000 12165 IF_ADDR_UNLOCK(ifp); 12166 #else 12167 if_addr_runlock(ifp); 12168 #endif 12169 return (rc); 12170 } 12171 12172 ifa = TAILQ_NEXT(ifa, ifa_link); 12173 } 12174 12175 #if __FreeBSD_version < 800000 12176 IF_ADDR_UNLOCK(ifp); 12177 #else 12178 if_addr_runlock(ifp); 12179 #endif 12180 12181 /* Execute the pending commands */ 12182 bit_set(&ramrod_flags, RAMROD_CONT); 12183 return (bxe_set_mac_one(sc, NULL, mac_obj, FALSE /* don't care */, 12184 ECORE_UC_LIST_MAC, &ramrod_flags)); 12185 } 12186 12187 static void 12188 bxe_set_rx_mode(struct bxe_softc *sc) 12189 { 12190 if_t ifp = sc->ifp; 12191 uint32_t rx_mode = BXE_RX_MODE_NORMAL; 12192 12193 if (sc->state != BXE_STATE_OPEN) { 12194 BLOGD(sc, DBG_SP, "state is %x, returning\n", sc->state); 12195 return; 12196 } 12197 12198 BLOGD(sc, DBG_SP, "if_flags(ifp)=0x%x\n", if_getflags(sc->ifp)); 12199 12200 if (if_getflags(ifp) & IFF_PROMISC) { 12201 rx_mode = BXE_RX_MODE_PROMISC; 12202 } else if ((if_getflags(ifp) & IFF_ALLMULTI) || 12203 ((if_getamcount(ifp) > BXE_MAX_MULTICAST) && 12204 CHIP_IS_E1(sc))) { 12205 rx_mode = BXE_RX_MODE_ALLMULTI; 12206 } else { 12207 if (IS_PF(sc)) { 12208 /* some multicasts */ 12209 if (bxe_set_mc_list(sc) < 0) { 12210 rx_mode = BXE_RX_MODE_ALLMULTI; 12211 } 12212 if (bxe_set_uc_list(sc) < 0) { 12213 rx_mode = BXE_RX_MODE_PROMISC; 12214 } 12215 } 12216 } 12217 12218 sc->rx_mode = rx_mode; 12219 12220 /* schedule the rx_mode command */ 12221 if (bxe_test_bit(ECORE_FILTER_RX_MODE_PENDING, &sc->sp_state)) { 12222 BLOGD(sc, DBG_LOAD, "Scheduled setting rx_mode with ECORE...\n"); 12223 bxe_set_bit(ECORE_FILTER_RX_MODE_SCHED, &sc->sp_state); 12224 return; 12225 } 12226 12227 if (IS_PF(sc)) { 12228 bxe_set_storm_rx_mode(sc); 12229 } 12230 } 12231 12232 12233 /* update flags in shmem */ 12234 static void 12235 bxe_update_drv_flags(struct bxe_softc *sc, 12236 uint32_t flags, 12237 uint32_t set) 12238 { 12239 uint32_t drv_flags; 12240 12241 if (SHMEM2_HAS(sc, drv_flags)) { 12242 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_DRV_FLAGS); 12243 drv_flags = SHMEM2_RD(sc, drv_flags); 12244 12245 if (set) { 12246 SET_FLAGS(drv_flags, flags); 12247 } else { 12248 RESET_FLAGS(drv_flags, flags); 12249 } 12250 12251 SHMEM2_WR(sc, drv_flags, drv_flags); 12252 BLOGD(sc, DBG_LOAD, "drv_flags 0x%08x\n", drv_flags); 12253 12254 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_DRV_FLAGS); 12255 } 12256 } 12257 12258 /* periodic timer callout routine, only runs when the interface is up */ 12259 12260 static void 12261 bxe_periodic_callout_func(void *xsc) 12262 { 12263 struct bxe_softc *sc = (struct bxe_softc *)xsc; 12264 struct bxe_fastpath *fp; 12265 uint16_t tx_bd_avail; 12266 int i; 12267 12268 if (!BXE_CORE_TRYLOCK(sc)) { 12269 /* just bail and try again next time */ 12270 12271 if ((sc->state == BXE_STATE_OPEN) && 12272 (atomic_load_acq_long(&sc->periodic_flags) == PERIODIC_GO)) { 12273 /* schedule the next periodic callout */ 12274 callout_reset(&sc->periodic_callout, hz, 12275 bxe_periodic_callout_func, sc); 12276 } 12277 12278 return; 12279 } 12280 12281 if ((sc->state != BXE_STATE_OPEN) || 12282 (atomic_load_acq_long(&sc->periodic_flags) == PERIODIC_STOP)) { 12283 BLOGW(sc, "periodic callout exit (state=0x%x)\n", sc->state); 12284 BXE_CORE_UNLOCK(sc); 12285 return; 12286 } 12287 12288 #if __FreeBSD_version >= 800000 12289 12290 FOR_EACH_QUEUE(sc, i) { 12291 fp = &sc->fp[i]; 12292 12293 if (BXE_FP_TX_TRYLOCK(fp)) { 12294 if_t ifp = sc->ifp; 12295 /* 12296 * If interface was stopped due to unavailable 12297 * bds, try to process some tx completions 12298 */ 12299 (void) bxe_txeof(sc, fp); 12300 12301 tx_bd_avail = bxe_tx_avail(sc, fp); 12302 if (tx_bd_avail >= BXE_TX_CLEANUP_THRESHOLD) { 12303 bxe_tx_mq_start_locked(sc, ifp, fp, NULL); 12304 } 12305 BXE_FP_TX_UNLOCK(fp); 12306 } 12307 } 12308 12309 #else 12310 12311 fp = &sc->fp[0]; 12312 if (BXE_FP_TX_TRYLOCK(fp)) { 12313 struct ifnet *ifp = sc->ifnet; 12314 /* 12315 * If interface was stopped due to unavailable 12316 * bds, try to process some tx completions 12317 */ 12318 (void) bxe_txeof(sc, fp); 12319 12320 tx_bd_avail = bxe_tx_avail(sc, fp); 12321 if (tx_bd_avail >= BXE_TX_CLEANUP_THRESHOLD) { 12322 bxe_tx_start_locked(sc, ifp, fp); 12323 } 12324 12325 BXE_FP_TX_UNLOCK(fp); 12326 } 12327 12328 #endif /* #if __FreeBSD_version >= 800000 */ 12329 12330 /* Check for TX timeouts on any fastpath. */ 12331 FOR_EACH_QUEUE(sc, i) { 12332 if (bxe_watchdog(sc, &sc->fp[i]) != 0) { 12333 /* Ruh-Roh, chip was reset! */ 12334 break; 12335 } 12336 } 12337 12338 if (!CHIP_REV_IS_SLOW(sc)) { 12339 /* 12340 * This barrier is needed to ensure the ordering between the writing 12341 * to the sc->port.pmf in the bxe_nic_load() or bxe_pmf_update() and 12342 * the reading here. 12343 */ 12344 mb(); 12345 if (sc->port.pmf) { 12346 bxe_acquire_phy_lock(sc); 12347 elink_period_func(&sc->link_params, &sc->link_vars); 12348 bxe_release_phy_lock(sc); 12349 } 12350 } 12351 12352 if (IS_PF(sc) && !(sc->flags & BXE_NO_PULSE)) { 12353 int mb_idx = SC_FW_MB_IDX(sc); 12354 uint32_t drv_pulse; 12355 uint32_t mcp_pulse; 12356 12357 ++sc->fw_drv_pulse_wr_seq; 12358 sc->fw_drv_pulse_wr_seq &= DRV_PULSE_SEQ_MASK; 12359 12360 drv_pulse = sc->fw_drv_pulse_wr_seq; 12361 bxe_drv_pulse(sc); 12362 12363 mcp_pulse = (SHMEM_RD(sc, func_mb[mb_idx].mcp_pulse_mb) & 12364 MCP_PULSE_SEQ_MASK); 12365 12366 /* 12367 * The delta between driver pulse and mcp response should 12368 * be 1 (before mcp response) or 0 (after mcp response). 12369 */ 12370 if ((drv_pulse != mcp_pulse) && 12371 (drv_pulse != ((mcp_pulse + 1) & MCP_PULSE_SEQ_MASK))) { 12372 /* someone lost a heartbeat... */ 12373 BLOGE(sc, "drv_pulse (0x%x) != mcp_pulse (0x%x)\n", 12374 drv_pulse, mcp_pulse); 12375 } 12376 } 12377 12378 /* state is BXE_STATE_OPEN */ 12379 bxe_stats_handle(sc, STATS_EVENT_UPDATE); 12380 12381 BXE_CORE_UNLOCK(sc); 12382 12383 if ((sc->state == BXE_STATE_OPEN) && 12384 (atomic_load_acq_long(&sc->periodic_flags) == PERIODIC_GO)) { 12385 /* schedule the next periodic callout */ 12386 callout_reset(&sc->periodic_callout, hz, 12387 bxe_periodic_callout_func, sc); 12388 } 12389 } 12390 12391 static void 12392 bxe_periodic_start(struct bxe_softc *sc) 12393 { 12394 atomic_store_rel_long(&sc->periodic_flags, PERIODIC_GO); 12395 callout_reset(&sc->periodic_callout, hz, bxe_periodic_callout_func, sc); 12396 } 12397 12398 static void 12399 bxe_periodic_stop(struct bxe_softc *sc) 12400 { 12401 atomic_store_rel_long(&sc->periodic_flags, PERIODIC_STOP); 12402 callout_drain(&sc->periodic_callout); 12403 } 12404 12405 /* start the controller */ 12406 static __noinline int 12407 bxe_nic_load(struct bxe_softc *sc, 12408 int load_mode) 12409 { 12410 uint32_t val; 12411 int load_code = 0; 12412 int i, rc = 0; 12413 12414 BXE_CORE_LOCK_ASSERT(sc); 12415 12416 BLOGD(sc, DBG_LOAD, "Starting NIC load...\n"); 12417 12418 sc->state = BXE_STATE_OPENING_WAITING_LOAD; 12419 12420 if (IS_PF(sc)) { 12421 /* must be called before memory allocation and HW init */ 12422 bxe_ilt_set_info(sc); 12423 } 12424 12425 sc->last_reported_link_state = LINK_STATE_UNKNOWN; 12426 12427 bxe_set_fp_rx_buf_size(sc); 12428 12429 if (bxe_alloc_fp_buffers(sc) != 0) { 12430 BLOGE(sc, "Failed to allocate fastpath memory\n"); 12431 sc->state = BXE_STATE_CLOSED; 12432 rc = ENOMEM; 12433 goto bxe_nic_load_error0; 12434 } 12435 12436 if (bxe_alloc_mem(sc) != 0) { 12437 sc->state = BXE_STATE_CLOSED; 12438 rc = ENOMEM; 12439 goto bxe_nic_load_error0; 12440 } 12441 12442 if (bxe_alloc_fw_stats_mem(sc) != 0) { 12443 sc->state = BXE_STATE_CLOSED; 12444 rc = ENOMEM; 12445 goto bxe_nic_load_error0; 12446 } 12447 12448 if (IS_PF(sc)) { 12449 /* set pf load just before approaching the MCP */ 12450 bxe_set_pf_load(sc); 12451 12452 /* if MCP exists send load request and analyze response */ 12453 if (!BXE_NOMCP(sc)) { 12454 /* attempt to load pf */ 12455 if (bxe_nic_load_request(sc, &load_code) != 0) { 12456 sc->state = BXE_STATE_CLOSED; 12457 rc = ENXIO; 12458 goto bxe_nic_load_error1; 12459 } 12460 12461 /* what did the MCP say? */ 12462 if (bxe_nic_load_analyze_req(sc, load_code) != 0) { 12463 bxe_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0); 12464 sc->state = BXE_STATE_CLOSED; 12465 rc = ENXIO; 12466 goto bxe_nic_load_error2; 12467 } 12468 } else { 12469 BLOGI(sc, "Device has no MCP!\n"); 12470 load_code = bxe_nic_load_no_mcp(sc); 12471 } 12472 12473 /* mark PMF if applicable */ 12474 bxe_nic_load_pmf(sc, load_code); 12475 12476 /* Init Function state controlling object */ 12477 bxe_init_func_obj(sc); 12478 12479 /* Initialize HW */ 12480 if (bxe_init_hw(sc, load_code) != 0) { 12481 BLOGE(sc, "HW init failed\n"); 12482 bxe_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0); 12483 sc->state = BXE_STATE_CLOSED; 12484 rc = ENXIO; 12485 goto bxe_nic_load_error2; 12486 } 12487 } 12488 12489 /* set ALWAYS_ALIVE bit in shmem */ 12490 sc->fw_drv_pulse_wr_seq |= DRV_PULSE_ALWAYS_ALIVE; 12491 bxe_drv_pulse(sc); 12492 sc->flags |= BXE_NO_PULSE; 12493 12494 /* attach interrupts */ 12495 if (bxe_interrupt_attach(sc) != 0) { 12496 sc->state = BXE_STATE_CLOSED; 12497 rc = ENXIO; 12498 goto bxe_nic_load_error2; 12499 } 12500 12501 bxe_nic_init(sc, load_code); 12502 12503 /* Init per-function objects */ 12504 if (IS_PF(sc)) { 12505 bxe_init_objs(sc); 12506 // XXX bxe_iov_nic_init(sc); 12507 12508 /* set AFEX default VLAN tag to an invalid value */ 12509 sc->devinfo.mf_info.afex_def_vlan_tag = -1; 12510 // XXX bxe_nic_load_afex_dcc(sc, load_code); 12511 12512 sc->state = BXE_STATE_OPENING_WAITING_PORT; 12513 rc = bxe_func_start(sc); 12514 if (rc) { 12515 BLOGE(sc, "Function start failed! rc = %d\n", rc); 12516 bxe_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0); 12517 sc->state = BXE_STATE_ERROR; 12518 goto bxe_nic_load_error3; 12519 } 12520 12521 /* send LOAD_DONE command to MCP */ 12522 if (!BXE_NOMCP(sc)) { 12523 load_code = bxe_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0); 12524 if (!load_code) { 12525 BLOGE(sc, "MCP response failure, aborting\n"); 12526 sc->state = BXE_STATE_ERROR; 12527 rc = ENXIO; 12528 goto bxe_nic_load_error3; 12529 } 12530 } 12531 12532 rc = bxe_setup_leading(sc); 12533 if (rc) { 12534 BLOGE(sc, "Setup leading failed! rc = %d\n", rc); 12535 sc->state = BXE_STATE_ERROR; 12536 goto bxe_nic_load_error3; 12537 } 12538 12539 FOR_EACH_NONDEFAULT_ETH_QUEUE(sc, i) { 12540 rc = bxe_setup_queue(sc, &sc->fp[i], FALSE); 12541 if (rc) { 12542 BLOGE(sc, "Queue(%d) setup failed rc = %d\n", i, rc); 12543 sc->state = BXE_STATE_ERROR; 12544 goto bxe_nic_load_error3; 12545 } 12546 } 12547 12548 rc = bxe_init_rss_pf(sc); 12549 if (rc) { 12550 BLOGE(sc, "PF RSS init failed\n"); 12551 sc->state = BXE_STATE_ERROR; 12552 goto bxe_nic_load_error3; 12553 } 12554 } 12555 /* XXX VF */ 12556 12557 /* now when Clients are configured we are ready to work */ 12558 sc->state = BXE_STATE_OPEN; 12559 12560 /* Configure a ucast MAC */ 12561 if (IS_PF(sc)) { 12562 rc = bxe_set_eth_mac(sc, TRUE); 12563 } 12564 if (rc) { 12565 BLOGE(sc, "Setting Ethernet MAC failed rc = %d\n", rc); 12566 sc->state = BXE_STATE_ERROR; 12567 goto bxe_nic_load_error3; 12568 } 12569 12570 if (sc->port.pmf) { 12571 rc = bxe_initial_phy_init(sc, /* XXX load_mode */LOAD_OPEN); 12572 if (rc) { 12573 sc->state = BXE_STATE_ERROR; 12574 goto bxe_nic_load_error3; 12575 } 12576 } 12577 12578 sc->link_params.feature_config_flags &= 12579 ~ELINK_FEATURE_CONFIG_BOOT_FROM_SAN; 12580 12581 /* start fast path */ 12582 12583 /* Initialize Rx filter */ 12584 bxe_set_rx_mode(sc); 12585 12586 /* start the Tx */ 12587 switch (/* XXX load_mode */LOAD_OPEN) { 12588 case LOAD_NORMAL: 12589 case LOAD_OPEN: 12590 break; 12591 12592 case LOAD_DIAG: 12593 case LOAD_LOOPBACK_EXT: 12594 sc->state = BXE_STATE_DIAG; 12595 break; 12596 12597 default: 12598 break; 12599 } 12600 12601 if (sc->port.pmf) { 12602 bxe_update_drv_flags(sc, 1 << DRV_FLAGS_PORT_MASK, 0); 12603 } else { 12604 bxe_link_status_update(sc); 12605 } 12606 12607 /* start the periodic timer callout */ 12608 bxe_periodic_start(sc); 12609 12610 if (IS_PF(sc) && SHMEM2_HAS(sc, drv_capabilities_flag)) { 12611 /* mark driver is loaded in shmem2 */ 12612 val = SHMEM2_RD(sc, drv_capabilities_flag[SC_FW_MB_IDX(sc)]); 12613 SHMEM2_WR(sc, drv_capabilities_flag[SC_FW_MB_IDX(sc)], 12614 (val | 12615 DRV_FLAGS_CAPABILITIES_LOADED_SUPPORTED | 12616 DRV_FLAGS_CAPABILITIES_LOADED_L2)); 12617 } 12618 12619 /* wait for all pending SP commands to complete */ 12620 if (IS_PF(sc) && !bxe_wait_sp_comp(sc, ~0x0UL)) { 12621 BLOGE(sc, "Timeout waiting for all SPs to complete!\n"); 12622 bxe_periodic_stop(sc); 12623 bxe_nic_unload(sc, UNLOAD_CLOSE, FALSE); 12624 return (ENXIO); 12625 } 12626 12627 /* Tell the stack the driver is running! */ 12628 if_setdrvflags(sc->ifp, IFF_DRV_RUNNING); 12629 12630 BLOGD(sc, DBG_LOAD, "NIC successfully loaded\n"); 12631 12632 return (0); 12633 12634 bxe_nic_load_error3: 12635 12636 if (IS_PF(sc)) { 12637 bxe_int_disable_sync(sc, 1); 12638 12639 /* clean out queued objects */ 12640 bxe_squeeze_objects(sc); 12641 } 12642 12643 bxe_interrupt_detach(sc); 12644 12645 bxe_nic_load_error2: 12646 12647 if (IS_PF(sc) && !BXE_NOMCP(sc)) { 12648 bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP, 0); 12649 bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_DONE, 0); 12650 } 12651 12652 sc->port.pmf = 0; 12653 12654 bxe_nic_load_error1: 12655 12656 /* clear pf_load status, as it was already set */ 12657 if (IS_PF(sc)) { 12658 bxe_clear_pf_load(sc); 12659 } 12660 12661 bxe_nic_load_error0: 12662 12663 bxe_free_fw_stats_mem(sc); 12664 bxe_free_fp_buffers(sc); 12665 bxe_free_mem(sc); 12666 12667 return (rc); 12668 } 12669 12670 static int 12671 bxe_init_locked(struct bxe_softc *sc) 12672 { 12673 int other_engine = SC_PATH(sc) ? 0 : 1; 12674 uint8_t other_load_status, load_status; 12675 uint8_t global = FALSE; 12676 int rc; 12677 12678 BXE_CORE_LOCK_ASSERT(sc); 12679 12680 /* check if the driver is already running */ 12681 if (if_getdrvflags(sc->ifp) & IFF_DRV_RUNNING) { 12682 BLOGD(sc, DBG_LOAD, "Init called while driver is running!\n"); 12683 return (0); 12684 } 12685 12686 bxe_set_power_state(sc, PCI_PM_D0); 12687 12688 /* 12689 * If parity occurred during the unload, then attentions and/or 12690 * RECOVERY_IN_PROGRES may still be set. If so we want the first function 12691 * loaded on the current engine to complete the recovery. Parity recovery 12692 * is only relevant for PF driver. 12693 */ 12694 if (IS_PF(sc)) { 12695 other_load_status = bxe_get_load_status(sc, other_engine); 12696 load_status = bxe_get_load_status(sc, SC_PATH(sc)); 12697 12698 if (!bxe_reset_is_done(sc, SC_PATH(sc)) || 12699 bxe_chk_parity_attn(sc, &global, TRUE)) { 12700 do { 12701 /* 12702 * If there are attentions and they are in global blocks, set 12703 * the GLOBAL_RESET bit regardless whether it will be this 12704 * function that will complete the recovery or not. 12705 */ 12706 if (global) { 12707 bxe_set_reset_global(sc); 12708 } 12709 12710 /* 12711 * Only the first function on the current engine should try 12712 * to recover in open. In case of attentions in global blocks 12713 * only the first in the chip should try to recover. 12714 */ 12715 if ((!load_status && (!global || !other_load_status)) && 12716 bxe_trylock_leader_lock(sc) && !bxe_leader_reset(sc)) { 12717 BLOGI(sc, "Recovered during init\n"); 12718 break; 12719 } 12720 12721 /* recovery has failed... */ 12722 bxe_set_power_state(sc, PCI_PM_D3hot); 12723 sc->recovery_state = BXE_RECOVERY_FAILED; 12724 12725 BLOGE(sc, "Recovery flow hasn't properly " 12726 "completed yet, try again later. " 12727 "If you still see this message after a " 12728 "few retries then power cycle is required.\n"); 12729 12730 rc = ENXIO; 12731 goto bxe_init_locked_done; 12732 } while (0); 12733 } 12734 } 12735 12736 sc->recovery_state = BXE_RECOVERY_DONE; 12737 12738 rc = bxe_nic_load(sc, LOAD_OPEN); 12739 12740 bxe_init_locked_done: 12741 12742 if (rc) { 12743 /* Tell the stack the driver is NOT running! */ 12744 BLOGE(sc, "Initialization failed, " 12745 "stack notified driver is NOT running!\n"); 12746 if_setdrvflagbits(sc->ifp, 0, IFF_DRV_RUNNING); 12747 } 12748 12749 return (rc); 12750 } 12751 12752 static int 12753 bxe_stop_locked(struct bxe_softc *sc) 12754 { 12755 BXE_CORE_LOCK_ASSERT(sc); 12756 return (bxe_nic_unload(sc, UNLOAD_NORMAL, TRUE)); 12757 } 12758 12759 /* 12760 * Handles controller initialization when called from an unlocked routine. 12761 * ifconfig calls this function. 12762 * 12763 * Returns: 12764 * void 12765 */ 12766 static void 12767 bxe_init(void *xsc) 12768 { 12769 struct bxe_softc *sc = (struct bxe_softc *)xsc; 12770 12771 BXE_CORE_LOCK(sc); 12772 bxe_init_locked(sc); 12773 BXE_CORE_UNLOCK(sc); 12774 } 12775 12776 static int 12777 bxe_init_ifnet(struct bxe_softc *sc) 12778 { 12779 if_t ifp; 12780 int capabilities; 12781 12782 /* ifconfig entrypoint for media type/status reporting */ 12783 ifmedia_init(&sc->ifmedia, IFM_IMASK, 12784 bxe_ifmedia_update, 12785 bxe_ifmedia_status); 12786 12787 /* set the default interface values */ 12788 ifmedia_add(&sc->ifmedia, (IFM_ETHER | IFM_FDX | sc->media), 0, NULL); 12789 ifmedia_add(&sc->ifmedia, (IFM_ETHER | IFM_AUTO), 0, NULL); 12790 ifmedia_set(&sc->ifmedia, (IFM_ETHER | IFM_AUTO)); 12791 12792 sc->ifmedia.ifm_media = sc->ifmedia.ifm_cur->ifm_media; /* XXX ? */ 12793 12794 /* allocate the ifnet structure */ 12795 if ((ifp = if_gethandle(IFT_ETHER)) == NULL) { 12796 BLOGE(sc, "Interface allocation failed!\n"); 12797 return (ENXIO); 12798 } 12799 12800 if_setsoftc(ifp, sc); 12801 if_initname(ifp, device_get_name(sc->dev), device_get_unit(sc->dev)); 12802 if_setflags(ifp, (IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST)); 12803 if_setioctlfn(ifp, bxe_ioctl); 12804 if_setstartfn(ifp, bxe_tx_start); 12805 if_setgetcounterfn(ifp, bxe_get_counter); 12806 #if __FreeBSD_version >= 800000 12807 if_settransmitfn(ifp, bxe_tx_mq_start); 12808 if_setqflushfn(ifp, bxe_mq_flush); 12809 #endif 12810 #ifdef FreeBSD8_0 12811 if_settimer(ifp, 0); 12812 #endif 12813 if_setinitfn(ifp, bxe_init); 12814 if_setmtu(ifp, sc->mtu); 12815 if_sethwassist(ifp, (CSUM_IP | 12816 CSUM_TCP | 12817 CSUM_UDP | 12818 CSUM_TSO | 12819 CSUM_TCP_IPV6 | 12820 CSUM_UDP_IPV6)); 12821 12822 capabilities = 12823 #if __FreeBSD_version < 700000 12824 (IFCAP_VLAN_MTU | 12825 IFCAP_VLAN_HWTAGGING | 12826 IFCAP_HWCSUM | 12827 IFCAP_JUMBO_MTU | 12828 IFCAP_LRO); 12829 #else 12830 (IFCAP_VLAN_MTU | 12831 IFCAP_VLAN_HWTAGGING | 12832 IFCAP_VLAN_HWTSO | 12833 IFCAP_VLAN_HWFILTER | 12834 IFCAP_VLAN_HWCSUM | 12835 IFCAP_HWCSUM | 12836 IFCAP_JUMBO_MTU | 12837 IFCAP_LRO | 12838 IFCAP_TSO4 | 12839 IFCAP_TSO6 | 12840 IFCAP_WOL_MAGIC); 12841 #endif 12842 if_setcapabilitiesbit(ifp, capabilities, 0); /* XXX */ 12843 if_setbaudrate(ifp, IF_Gbps(10)); 12844 /* XXX */ 12845 if_setsendqlen(ifp, sc->tx_ring_size); 12846 if_setsendqready(ifp); 12847 /* XXX */ 12848 12849 sc->ifp = ifp; 12850 12851 /* attach to the Ethernet interface list */ 12852 ether_ifattach(ifp, sc->link_params.mac_addr); 12853 12854 return (0); 12855 } 12856 12857 static void 12858 bxe_deallocate_bars(struct bxe_softc *sc) 12859 { 12860 int i; 12861 12862 for (i = 0; i < MAX_BARS; i++) { 12863 if (sc->bar[i].resource != NULL) { 12864 bus_release_resource(sc->dev, 12865 SYS_RES_MEMORY, 12866 sc->bar[i].rid, 12867 sc->bar[i].resource); 12868 BLOGD(sc, DBG_LOAD, "Released PCI BAR%d [%02x] memory\n", 12869 i, PCIR_BAR(i)); 12870 } 12871 } 12872 } 12873 12874 static int 12875 bxe_allocate_bars(struct bxe_softc *sc) 12876 { 12877 u_int flags; 12878 int i; 12879 12880 memset(sc->bar, 0, sizeof(sc->bar)); 12881 12882 for (i = 0; i < MAX_BARS; i++) { 12883 12884 /* memory resources reside at BARs 0, 2, 4 */ 12885 /* Run `pciconf -lb` to see mappings */ 12886 if ((i != 0) && (i != 2) && (i != 4)) { 12887 continue; 12888 } 12889 12890 sc->bar[i].rid = PCIR_BAR(i); 12891 12892 flags = RF_ACTIVE; 12893 if (i == 0) { 12894 flags |= RF_SHAREABLE; 12895 } 12896 12897 if ((sc->bar[i].resource = 12898 bus_alloc_resource_any(sc->dev, 12899 SYS_RES_MEMORY, 12900 &sc->bar[i].rid, 12901 flags)) == NULL) { 12902 return (0); 12903 } 12904 12905 sc->bar[i].tag = rman_get_bustag(sc->bar[i].resource); 12906 sc->bar[i].handle = rman_get_bushandle(sc->bar[i].resource); 12907 sc->bar[i].kva = (vm_offset_t)rman_get_virtual(sc->bar[i].resource); 12908 12909 BLOGI(sc, "PCI BAR%d [%02x] memory allocated: %p-%p (%jd) -> %p\n", 12910 i, PCIR_BAR(i), 12911 (void *)rman_get_start(sc->bar[i].resource), 12912 (void *)rman_get_end(sc->bar[i].resource), 12913 rman_get_size(sc->bar[i].resource), 12914 (void *)sc->bar[i].kva); 12915 } 12916 12917 return (0); 12918 } 12919 12920 static void 12921 bxe_get_function_num(struct bxe_softc *sc) 12922 { 12923 uint32_t val = 0; 12924 12925 /* 12926 * Read the ME register to get the function number. The ME register 12927 * holds the relative-function number and absolute-function number. The 12928 * absolute-function number appears only in E2 and above. Before that 12929 * these bits always contained zero, therefore we cannot blindly use them. 12930 */ 12931 12932 val = REG_RD(sc, BAR_ME_REGISTER); 12933 12934 sc->pfunc_rel = 12935 (uint8_t)((val & ME_REG_PF_NUM) >> ME_REG_PF_NUM_SHIFT); 12936 sc->path_id = 12937 (uint8_t)((val & ME_REG_ABS_PF_NUM) >> ME_REG_ABS_PF_NUM_SHIFT) & 1; 12938 12939 if (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) { 12940 sc->pfunc_abs = ((sc->pfunc_rel << 1) | sc->path_id); 12941 } else { 12942 sc->pfunc_abs = (sc->pfunc_rel | sc->path_id); 12943 } 12944 12945 BLOGD(sc, DBG_LOAD, 12946 "Relative function %d, Absolute function %d, Path %d\n", 12947 sc->pfunc_rel, sc->pfunc_abs, sc->path_id); 12948 } 12949 12950 static uint32_t 12951 bxe_get_shmem_mf_cfg_base(struct bxe_softc *sc) 12952 { 12953 uint32_t shmem2_size; 12954 uint32_t offset; 12955 uint32_t mf_cfg_offset_value; 12956 12957 /* Non 57712 */ 12958 offset = (SHMEM_RD(sc, func_mb) + 12959 (MAX_FUNC_NUM * sizeof(struct drv_func_mb))); 12960 12961 /* 57712 plus */ 12962 if (sc->devinfo.shmem2_base != 0) { 12963 shmem2_size = SHMEM2_RD(sc, size); 12964 if (shmem2_size > offsetof(struct shmem2_region, mf_cfg_addr)) { 12965 mf_cfg_offset_value = SHMEM2_RD(sc, mf_cfg_addr); 12966 if (SHMEM_MF_CFG_ADDR_NONE != mf_cfg_offset_value) { 12967 offset = mf_cfg_offset_value; 12968 } 12969 } 12970 } 12971 12972 return (offset); 12973 } 12974 12975 static uint32_t 12976 bxe_pcie_capability_read(struct bxe_softc *sc, 12977 int reg, 12978 int width) 12979 { 12980 int pcie_reg; 12981 12982 /* ensure PCIe capability is enabled */ 12983 if (pci_find_cap(sc->dev, PCIY_EXPRESS, &pcie_reg) == 0) { 12984 if (pcie_reg != 0) { 12985 BLOGD(sc, DBG_LOAD, "PCIe capability at 0x%04x\n", pcie_reg); 12986 return (pci_read_config(sc->dev, (pcie_reg + reg), width)); 12987 } 12988 } 12989 12990 BLOGE(sc, "PCIe capability NOT FOUND!!!\n"); 12991 12992 return (0); 12993 } 12994 12995 static uint8_t 12996 bxe_is_pcie_pending(struct bxe_softc *sc) 12997 { 12998 return (bxe_pcie_capability_read(sc, PCIR_EXPRESS_DEVICE_STA, 2) & 12999 PCIM_EXP_STA_TRANSACTION_PND); 13000 } 13001 13002 /* 13003 * Walk the PCI capabiites list for the device to find what features are 13004 * supported. These capabilites may be enabled/disabled by firmware so it's 13005 * best to walk the list rather than make assumptions. 13006 */ 13007 static void 13008 bxe_probe_pci_caps(struct bxe_softc *sc) 13009 { 13010 uint16_t link_status; 13011 int reg; 13012 13013 /* check if PCI Power Management is enabled */ 13014 if (pci_find_cap(sc->dev, PCIY_PMG, ®) == 0) { 13015 if (reg != 0) { 13016 BLOGD(sc, DBG_LOAD, "Found PM capability at 0x%04x\n", reg); 13017 13018 sc->devinfo.pcie_cap_flags |= BXE_PM_CAPABLE_FLAG; 13019 sc->devinfo.pcie_pm_cap_reg = (uint16_t)reg; 13020 } 13021 } 13022 13023 link_status = bxe_pcie_capability_read(sc, PCIR_EXPRESS_LINK_STA, 2); 13024 13025 /* handle PCIe 2.0 workarounds for 57710 */ 13026 if (CHIP_IS_E1(sc)) { 13027 /* workaround for 57710 errata E4_57710_27462 */ 13028 sc->devinfo.pcie_link_speed = 13029 (REG_RD(sc, 0x3d04) & (1 << 24)) ? 2 : 1; 13030 13031 /* workaround for 57710 errata E4_57710_27488 */ 13032 sc->devinfo.pcie_link_width = 13033 ((link_status & PCIM_LINK_STA_WIDTH) >> 4); 13034 if (sc->devinfo.pcie_link_speed > 1) { 13035 sc->devinfo.pcie_link_width = 13036 ((link_status & PCIM_LINK_STA_WIDTH) >> 4) >> 1; 13037 } 13038 } else { 13039 sc->devinfo.pcie_link_speed = 13040 (link_status & PCIM_LINK_STA_SPEED); 13041 sc->devinfo.pcie_link_width = 13042 ((link_status & PCIM_LINK_STA_WIDTH) >> 4); 13043 } 13044 13045 BLOGD(sc, DBG_LOAD, "PCIe link speed=%d width=%d\n", 13046 sc->devinfo.pcie_link_speed, sc->devinfo.pcie_link_width); 13047 13048 sc->devinfo.pcie_cap_flags |= BXE_PCIE_CAPABLE_FLAG; 13049 sc->devinfo.pcie_pcie_cap_reg = (uint16_t)reg; 13050 13051 /* check if MSI capability is enabled */ 13052 if (pci_find_cap(sc->dev, PCIY_MSI, ®) == 0) { 13053 if (reg != 0) { 13054 BLOGD(sc, DBG_LOAD, "Found MSI capability at 0x%04x\n", reg); 13055 13056 sc->devinfo.pcie_cap_flags |= BXE_MSI_CAPABLE_FLAG; 13057 sc->devinfo.pcie_msi_cap_reg = (uint16_t)reg; 13058 } 13059 } 13060 13061 /* check if MSI-X capability is enabled */ 13062 if (pci_find_cap(sc->dev, PCIY_MSIX, ®) == 0) { 13063 if (reg != 0) { 13064 BLOGD(sc, DBG_LOAD, "Found MSI-X capability at 0x%04x\n", reg); 13065 13066 sc->devinfo.pcie_cap_flags |= BXE_MSIX_CAPABLE_FLAG; 13067 sc->devinfo.pcie_msix_cap_reg = (uint16_t)reg; 13068 } 13069 } 13070 } 13071 13072 static int 13073 bxe_get_shmem_mf_cfg_info_sd(struct bxe_softc *sc) 13074 { 13075 struct bxe_mf_info *mf_info = &sc->devinfo.mf_info; 13076 uint32_t val; 13077 13078 /* get the outer vlan if we're in switch-dependent mode */ 13079 13080 val = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].e1hov_tag); 13081 mf_info->ext_id = (uint16_t)val; 13082 13083 mf_info->multi_vnics_mode = 1; 13084 13085 if (!VALID_OVLAN(mf_info->ext_id)) { 13086 BLOGE(sc, "Invalid VLAN (%d)\n", mf_info->ext_id); 13087 return (1); 13088 } 13089 13090 /* get the capabilities */ 13091 if ((mf_info->mf_config[SC_VN(sc)] & FUNC_MF_CFG_PROTOCOL_MASK) == 13092 FUNC_MF_CFG_PROTOCOL_ISCSI) { 13093 mf_info->mf_protos_supported |= MF_PROTO_SUPPORT_ISCSI; 13094 } else if ((mf_info->mf_config[SC_VN(sc)] & FUNC_MF_CFG_PROTOCOL_MASK) == 13095 FUNC_MF_CFG_PROTOCOL_FCOE) { 13096 mf_info->mf_protos_supported |= MF_PROTO_SUPPORT_FCOE; 13097 } else { 13098 mf_info->mf_protos_supported |= MF_PROTO_SUPPORT_ETHERNET; 13099 } 13100 13101 mf_info->vnics_per_port = 13102 (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) ? 2 : 4; 13103 13104 return (0); 13105 } 13106 13107 static uint32_t 13108 bxe_get_shmem_ext_proto_support_flags(struct bxe_softc *sc) 13109 { 13110 uint32_t retval = 0; 13111 uint32_t val; 13112 13113 val = MFCFG_RD(sc, func_ext_config[SC_ABS_FUNC(sc)].func_cfg); 13114 13115 if (val & MACP_FUNC_CFG_FLAGS_ENABLED) { 13116 if (val & MACP_FUNC_CFG_FLAGS_ETHERNET) { 13117 retval |= MF_PROTO_SUPPORT_ETHERNET; 13118 } 13119 if (val & MACP_FUNC_CFG_FLAGS_ISCSI_OFFLOAD) { 13120 retval |= MF_PROTO_SUPPORT_ISCSI; 13121 } 13122 if (val & MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD) { 13123 retval |= MF_PROTO_SUPPORT_FCOE; 13124 } 13125 } 13126 13127 return (retval); 13128 } 13129 13130 static int 13131 bxe_get_shmem_mf_cfg_info_si(struct bxe_softc *sc) 13132 { 13133 struct bxe_mf_info *mf_info = &sc->devinfo.mf_info; 13134 uint32_t val; 13135 13136 /* 13137 * There is no outer vlan if we're in switch-independent mode. 13138 * If the mac is valid then assume multi-function. 13139 */ 13140 13141 val = MFCFG_RD(sc, func_ext_config[SC_ABS_FUNC(sc)].func_cfg); 13142 13143 mf_info->multi_vnics_mode = ((val & MACP_FUNC_CFG_FLAGS_MASK) != 0); 13144 13145 mf_info->mf_protos_supported = bxe_get_shmem_ext_proto_support_flags(sc); 13146 13147 mf_info->vnics_per_port = 13148 (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) ? 2 : 4; 13149 13150 return (0); 13151 } 13152 13153 static int 13154 bxe_get_shmem_mf_cfg_info_niv(struct bxe_softc *sc) 13155 { 13156 struct bxe_mf_info *mf_info = &sc->devinfo.mf_info; 13157 uint32_t e1hov_tag; 13158 uint32_t func_config; 13159 uint32_t niv_config; 13160 13161 mf_info->multi_vnics_mode = 1; 13162 13163 e1hov_tag = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].e1hov_tag); 13164 func_config = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].config); 13165 niv_config = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].afex_config); 13166 13167 mf_info->ext_id = 13168 (uint16_t)((e1hov_tag & FUNC_MF_CFG_E1HOV_TAG_MASK) >> 13169 FUNC_MF_CFG_E1HOV_TAG_SHIFT); 13170 13171 mf_info->default_vlan = 13172 (uint16_t)((e1hov_tag & FUNC_MF_CFG_AFEX_VLAN_MASK) >> 13173 FUNC_MF_CFG_AFEX_VLAN_SHIFT); 13174 13175 mf_info->niv_allowed_priorities = 13176 (uint8_t)((niv_config & FUNC_MF_CFG_AFEX_COS_FILTER_MASK) >> 13177 FUNC_MF_CFG_AFEX_COS_FILTER_SHIFT); 13178 13179 mf_info->niv_default_cos = 13180 (uint8_t)((func_config & FUNC_MF_CFG_TRANSMIT_PRIORITY_MASK) >> 13181 FUNC_MF_CFG_TRANSMIT_PRIORITY_SHIFT); 13182 13183 mf_info->afex_vlan_mode = 13184 ((niv_config & FUNC_MF_CFG_AFEX_VLAN_MODE_MASK) >> 13185 FUNC_MF_CFG_AFEX_VLAN_MODE_SHIFT); 13186 13187 mf_info->niv_mba_enabled = 13188 ((niv_config & FUNC_MF_CFG_AFEX_MBA_ENABLED_MASK) >> 13189 FUNC_MF_CFG_AFEX_MBA_ENABLED_SHIFT); 13190 13191 mf_info->mf_protos_supported = bxe_get_shmem_ext_proto_support_flags(sc); 13192 13193 mf_info->vnics_per_port = 13194 (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) ? 2 : 4; 13195 13196 return (0); 13197 } 13198 13199 static int 13200 bxe_check_valid_mf_cfg(struct bxe_softc *sc) 13201 { 13202 struct bxe_mf_info *mf_info = &sc->devinfo.mf_info; 13203 uint32_t mf_cfg1; 13204 uint32_t mf_cfg2; 13205 uint32_t ovlan1; 13206 uint32_t ovlan2; 13207 uint8_t i, j; 13208 13209 BLOGD(sc, DBG_LOAD, "MF config parameters for function %d\n", 13210 SC_PORT(sc)); 13211 BLOGD(sc, DBG_LOAD, "\tmf_config=0x%x\n", 13212 mf_info->mf_config[SC_VN(sc)]); 13213 BLOGD(sc, DBG_LOAD, "\tmulti_vnics_mode=%d\n", 13214 mf_info->multi_vnics_mode); 13215 BLOGD(sc, DBG_LOAD, "\tvnics_per_port=%d\n", 13216 mf_info->vnics_per_port); 13217 BLOGD(sc, DBG_LOAD, "\tovlan/vifid=%d\n", 13218 mf_info->ext_id); 13219 BLOGD(sc, DBG_LOAD, "\tmin_bw=%d/%d/%d/%d\n", 13220 mf_info->min_bw[0], mf_info->min_bw[1], 13221 mf_info->min_bw[2], mf_info->min_bw[3]); 13222 BLOGD(sc, DBG_LOAD, "\tmax_bw=%d/%d/%d/%d\n", 13223 mf_info->max_bw[0], mf_info->max_bw[1], 13224 mf_info->max_bw[2], mf_info->max_bw[3]); 13225 BLOGD(sc, DBG_LOAD, "\tmac_addr: %s\n", 13226 sc->mac_addr_str); 13227 13228 /* various MF mode sanity checks... */ 13229 13230 if (mf_info->mf_config[SC_VN(sc)] & FUNC_MF_CFG_FUNC_HIDE) { 13231 BLOGE(sc, "Enumerated function %d is marked as hidden\n", 13232 SC_PORT(sc)); 13233 return (1); 13234 } 13235 13236 if ((mf_info->vnics_per_port > 1) && !mf_info->multi_vnics_mode) { 13237 BLOGE(sc, "vnics_per_port=%d multi_vnics_mode=%d\n", 13238 mf_info->vnics_per_port, mf_info->multi_vnics_mode); 13239 return (1); 13240 } 13241 13242 if (mf_info->mf_mode == MULTI_FUNCTION_SD) { 13243 /* vnic id > 0 must have valid ovlan in switch-dependent mode */ 13244 if ((SC_VN(sc) > 0) && !VALID_OVLAN(OVLAN(sc))) { 13245 BLOGE(sc, "mf_mode=SD vnic_id=%d ovlan=%d\n", 13246 SC_VN(sc), OVLAN(sc)); 13247 return (1); 13248 } 13249 13250 if (!VALID_OVLAN(OVLAN(sc)) && mf_info->multi_vnics_mode) { 13251 BLOGE(sc, "mf_mode=SD multi_vnics_mode=%d ovlan=%d\n", 13252 mf_info->multi_vnics_mode, OVLAN(sc)); 13253 return (1); 13254 } 13255 13256 /* 13257 * Verify all functions are either MF or SF mode. If MF, make sure 13258 * sure that all non-hidden functions have a valid ovlan. If SF, 13259 * make sure that all non-hidden functions have an invalid ovlan. 13260 */ 13261 FOREACH_ABS_FUNC_IN_PORT(sc, i) { 13262 mf_cfg1 = MFCFG_RD(sc, func_mf_config[i].config); 13263 ovlan1 = MFCFG_RD(sc, func_mf_config[i].e1hov_tag); 13264 if (!(mf_cfg1 & FUNC_MF_CFG_FUNC_HIDE) && 13265 (((mf_info->multi_vnics_mode) && !VALID_OVLAN(ovlan1)) || 13266 ((!mf_info->multi_vnics_mode) && VALID_OVLAN(ovlan1)))) { 13267 BLOGE(sc, "mf_mode=SD function %d MF config " 13268 "mismatch, multi_vnics_mode=%d ovlan=%d\n", 13269 i, mf_info->multi_vnics_mode, ovlan1); 13270 return (1); 13271 } 13272 } 13273 13274 /* Verify all funcs on the same port each have a different ovlan. */ 13275 FOREACH_ABS_FUNC_IN_PORT(sc, i) { 13276 mf_cfg1 = MFCFG_RD(sc, func_mf_config[i].config); 13277 ovlan1 = MFCFG_RD(sc, func_mf_config[i].e1hov_tag); 13278 /* iterate from the next function on the port to the max func */ 13279 for (j = i + 2; j < MAX_FUNC_NUM; j += 2) { 13280 mf_cfg2 = MFCFG_RD(sc, func_mf_config[j].config); 13281 ovlan2 = MFCFG_RD(sc, func_mf_config[j].e1hov_tag); 13282 if (!(mf_cfg1 & FUNC_MF_CFG_FUNC_HIDE) && 13283 VALID_OVLAN(ovlan1) && 13284 !(mf_cfg2 & FUNC_MF_CFG_FUNC_HIDE) && 13285 VALID_OVLAN(ovlan2) && 13286 (ovlan1 == ovlan2)) { 13287 BLOGE(sc, "mf_mode=SD functions %d and %d " 13288 "have the same ovlan (%d)\n", 13289 i, j, ovlan1); 13290 return (1); 13291 } 13292 } 13293 } 13294 } /* MULTI_FUNCTION_SD */ 13295 13296 return (0); 13297 } 13298 13299 static int 13300 bxe_get_mf_cfg_info(struct bxe_softc *sc) 13301 { 13302 struct bxe_mf_info *mf_info = &sc->devinfo.mf_info; 13303 uint32_t val, mac_upper; 13304 uint8_t i, vnic; 13305 13306 /* initialize mf_info defaults */ 13307 mf_info->vnics_per_port = 1; 13308 mf_info->multi_vnics_mode = FALSE; 13309 mf_info->path_has_ovlan = FALSE; 13310 mf_info->mf_mode = SINGLE_FUNCTION; 13311 13312 if (!CHIP_IS_MF_CAP(sc)) { 13313 return (0); 13314 } 13315 13316 if (sc->devinfo.mf_cfg_base == SHMEM_MF_CFG_ADDR_NONE) { 13317 BLOGE(sc, "Invalid mf_cfg_base!\n"); 13318 return (1); 13319 } 13320 13321 /* get the MF mode (switch dependent / independent / single-function) */ 13322 13323 val = SHMEM_RD(sc, dev_info.shared_feature_config.config); 13324 13325 switch (val & SHARED_FEAT_CFG_FORCE_SF_MODE_MASK) 13326 { 13327 case SHARED_FEAT_CFG_FORCE_SF_MODE_SWITCH_INDEPT: 13328 13329 mac_upper = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].mac_upper); 13330 13331 /* check for legal upper mac bytes */ 13332 if (mac_upper != FUNC_MF_CFG_UPPERMAC_DEFAULT) { 13333 mf_info->mf_mode = MULTI_FUNCTION_SI; 13334 } else { 13335 BLOGE(sc, "Invalid config for Switch Independent mode\n"); 13336 } 13337 13338 break; 13339 13340 case SHARED_FEAT_CFG_FORCE_SF_MODE_MF_ALLOWED: 13341 case SHARED_FEAT_CFG_FORCE_SF_MODE_SPIO4: 13342 13343 /* get outer vlan configuration */ 13344 val = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].e1hov_tag); 13345 13346 if ((val & FUNC_MF_CFG_E1HOV_TAG_MASK) != 13347 FUNC_MF_CFG_E1HOV_TAG_DEFAULT) { 13348 mf_info->mf_mode = MULTI_FUNCTION_SD; 13349 } else { 13350 BLOGE(sc, "Invalid config for Switch Dependent mode\n"); 13351 } 13352 13353 break; 13354 13355 case SHARED_FEAT_CFG_FORCE_SF_MODE_FORCED_SF: 13356 13357 /* not in MF mode, vnics_per_port=1 and multi_vnics_mode=FALSE */ 13358 return (0); 13359 13360 case SHARED_FEAT_CFG_FORCE_SF_MODE_AFEX_MODE: 13361 13362 /* 13363 * Mark MF mode as NIV if MCP version includes NPAR-SD support 13364 * and the MAC address is valid. 13365 */ 13366 mac_upper = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].mac_upper); 13367 13368 if ((SHMEM2_HAS(sc, afex_driver_support)) && 13369 (mac_upper != FUNC_MF_CFG_UPPERMAC_DEFAULT)) { 13370 mf_info->mf_mode = MULTI_FUNCTION_AFEX; 13371 } else { 13372 BLOGE(sc, "Invalid config for AFEX mode\n"); 13373 } 13374 13375 break; 13376 13377 default: 13378 13379 BLOGE(sc, "Unknown MF mode (0x%08x)\n", 13380 (val & SHARED_FEAT_CFG_FORCE_SF_MODE_MASK)); 13381 13382 return (1); 13383 } 13384 13385 /* set path mf_mode (which could be different than function mf_mode) */ 13386 if (mf_info->mf_mode == MULTI_FUNCTION_SD) { 13387 mf_info->path_has_ovlan = TRUE; 13388 } else if (mf_info->mf_mode == SINGLE_FUNCTION) { 13389 /* 13390 * Decide on path multi vnics mode. If we're not in MF mode and in 13391 * 4-port mode, this is good enough to check vnic-0 of the other port 13392 * on the same path 13393 */ 13394 if (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) { 13395 uint8_t other_port = !(PORT_ID(sc) & 1); 13396 uint8_t abs_func_other_port = (SC_PATH(sc) + (2 * other_port)); 13397 13398 val = MFCFG_RD(sc, func_mf_config[abs_func_other_port].e1hov_tag); 13399 13400 mf_info->path_has_ovlan = VALID_OVLAN((uint16_t)val) ? 1 : 0; 13401 } 13402 } 13403 13404 if (mf_info->mf_mode == SINGLE_FUNCTION) { 13405 /* invalid MF config */ 13406 if (SC_VN(sc) >= 1) { 13407 BLOGE(sc, "VNIC ID >= 1 in SF mode\n"); 13408 return (1); 13409 } 13410 13411 return (0); 13412 } 13413 13414 /* get the MF configuration */ 13415 mf_info->mf_config[SC_VN(sc)] = 13416 MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].config); 13417 13418 switch(mf_info->mf_mode) 13419 { 13420 case MULTI_FUNCTION_SD: 13421 13422 bxe_get_shmem_mf_cfg_info_sd(sc); 13423 break; 13424 13425 case MULTI_FUNCTION_SI: 13426 13427 bxe_get_shmem_mf_cfg_info_si(sc); 13428 break; 13429 13430 case MULTI_FUNCTION_AFEX: 13431 13432 bxe_get_shmem_mf_cfg_info_niv(sc); 13433 break; 13434 13435 default: 13436 13437 BLOGE(sc, "Get MF config failed (mf_mode=0x%08x)\n", 13438 mf_info->mf_mode); 13439 return (1); 13440 } 13441 13442 /* get the congestion management parameters */ 13443 13444 vnic = 0; 13445 FOREACH_ABS_FUNC_IN_PORT(sc, i) { 13446 /* get min/max bw */ 13447 val = MFCFG_RD(sc, func_mf_config[i].config); 13448 mf_info->min_bw[vnic] = 13449 ((val & FUNC_MF_CFG_MIN_BW_MASK) >> FUNC_MF_CFG_MIN_BW_SHIFT); 13450 mf_info->max_bw[vnic] = 13451 ((val & FUNC_MF_CFG_MAX_BW_MASK) >> FUNC_MF_CFG_MAX_BW_SHIFT); 13452 vnic++; 13453 } 13454 13455 return (bxe_check_valid_mf_cfg(sc)); 13456 } 13457 13458 static int 13459 bxe_get_shmem_info(struct bxe_softc *sc) 13460 { 13461 int port; 13462 uint32_t mac_hi, mac_lo, val; 13463 13464 port = SC_PORT(sc); 13465 mac_hi = mac_lo = 0; 13466 13467 sc->link_params.sc = sc; 13468 sc->link_params.port = port; 13469 13470 /* get the hardware config info */ 13471 sc->devinfo.hw_config = 13472 SHMEM_RD(sc, dev_info.shared_hw_config.config); 13473 sc->devinfo.hw_config2 = 13474 SHMEM_RD(sc, dev_info.shared_hw_config.config2); 13475 13476 sc->link_params.hw_led_mode = 13477 ((sc->devinfo.hw_config & SHARED_HW_CFG_LED_MODE_MASK) >> 13478 SHARED_HW_CFG_LED_MODE_SHIFT); 13479 13480 /* get the port feature config */ 13481 sc->port.config = 13482 SHMEM_RD(sc, dev_info.port_feature_config[port].config), 13483 13484 /* get the link params */ 13485 sc->link_params.speed_cap_mask[0] = 13486 SHMEM_RD(sc, dev_info.port_hw_config[port].speed_capability_mask); 13487 sc->link_params.speed_cap_mask[1] = 13488 SHMEM_RD(sc, dev_info.port_hw_config[port].speed_capability_mask2); 13489 13490 /* get the lane config */ 13491 sc->link_params.lane_config = 13492 SHMEM_RD(sc, dev_info.port_hw_config[port].lane_config); 13493 13494 /* get the link config */ 13495 val = SHMEM_RD(sc, dev_info.port_feature_config[port].link_config); 13496 sc->port.link_config[ELINK_INT_PHY] = val; 13497 sc->link_params.switch_cfg = (val & PORT_FEATURE_CONNECTED_SWITCH_MASK); 13498 sc->port.link_config[ELINK_EXT_PHY1] = 13499 SHMEM_RD(sc, dev_info.port_feature_config[port].link_config2); 13500 13501 /* get the override preemphasis flag and enable it or turn it off */ 13502 val = SHMEM_RD(sc, dev_info.shared_feature_config.config); 13503 if (val & SHARED_FEAT_CFG_OVERRIDE_PREEMPHASIS_CFG_ENABLED) { 13504 sc->link_params.feature_config_flags |= 13505 ELINK_FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED; 13506 } else { 13507 sc->link_params.feature_config_flags &= 13508 ~ELINK_FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED; 13509 } 13510 13511 /* get the initial value of the link params */ 13512 sc->link_params.multi_phy_config = 13513 SHMEM_RD(sc, dev_info.port_hw_config[port].multi_phy_config); 13514 13515 /* get external phy info */ 13516 sc->port.ext_phy_config = 13517 SHMEM_RD(sc, dev_info.port_hw_config[port].external_phy_config); 13518 13519 /* get the multifunction configuration */ 13520 bxe_get_mf_cfg_info(sc); 13521 13522 /* get the mac address */ 13523 if (IS_MF(sc)) { 13524 mac_hi = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].mac_upper); 13525 mac_lo = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].mac_lower); 13526 } else { 13527 mac_hi = SHMEM_RD(sc, dev_info.port_hw_config[port].mac_upper); 13528 mac_lo = SHMEM_RD(sc, dev_info.port_hw_config[port].mac_lower); 13529 } 13530 13531 if ((mac_lo == 0) && (mac_hi == 0)) { 13532 *sc->mac_addr_str = 0; 13533 BLOGE(sc, "No Ethernet address programmed!\n"); 13534 } else { 13535 sc->link_params.mac_addr[0] = (uint8_t)(mac_hi >> 8); 13536 sc->link_params.mac_addr[1] = (uint8_t)(mac_hi); 13537 sc->link_params.mac_addr[2] = (uint8_t)(mac_lo >> 24); 13538 sc->link_params.mac_addr[3] = (uint8_t)(mac_lo >> 16); 13539 sc->link_params.mac_addr[4] = (uint8_t)(mac_lo >> 8); 13540 sc->link_params.mac_addr[5] = (uint8_t)(mac_lo); 13541 snprintf(sc->mac_addr_str, sizeof(sc->mac_addr_str), 13542 "%02x:%02x:%02x:%02x:%02x:%02x", 13543 sc->link_params.mac_addr[0], sc->link_params.mac_addr[1], 13544 sc->link_params.mac_addr[2], sc->link_params.mac_addr[3], 13545 sc->link_params.mac_addr[4], sc->link_params.mac_addr[5]); 13546 BLOGD(sc, DBG_LOAD, "Ethernet address: %s\n", sc->mac_addr_str); 13547 } 13548 13549 return (0); 13550 } 13551 13552 static void 13553 bxe_get_tunable_params(struct bxe_softc *sc) 13554 { 13555 /* sanity checks */ 13556 13557 if ((bxe_interrupt_mode != INTR_MODE_INTX) && 13558 (bxe_interrupt_mode != INTR_MODE_MSI) && 13559 (bxe_interrupt_mode != INTR_MODE_MSIX)) { 13560 BLOGW(sc, "invalid interrupt_mode value (%d)\n", bxe_interrupt_mode); 13561 bxe_interrupt_mode = INTR_MODE_MSIX; 13562 } 13563 13564 if ((bxe_queue_count < 0) || (bxe_queue_count > MAX_RSS_CHAINS)) { 13565 BLOGW(sc, "invalid queue_count value (%d)\n", bxe_queue_count); 13566 bxe_queue_count = 0; 13567 } 13568 13569 if ((bxe_max_rx_bufs < 1) || (bxe_max_rx_bufs > RX_BD_USABLE)) { 13570 if (bxe_max_rx_bufs == 0) { 13571 bxe_max_rx_bufs = RX_BD_USABLE; 13572 } else { 13573 BLOGW(sc, "invalid max_rx_bufs (%d)\n", bxe_max_rx_bufs); 13574 bxe_max_rx_bufs = 2048; 13575 } 13576 } 13577 13578 if ((bxe_hc_rx_ticks < 1) || (bxe_hc_rx_ticks > 100)) { 13579 BLOGW(sc, "invalid hc_rx_ticks (%d)\n", bxe_hc_rx_ticks); 13580 bxe_hc_rx_ticks = 25; 13581 } 13582 13583 if ((bxe_hc_tx_ticks < 1) || (bxe_hc_tx_ticks > 100)) { 13584 BLOGW(sc, "invalid hc_tx_ticks (%d)\n", bxe_hc_tx_ticks); 13585 bxe_hc_tx_ticks = 50; 13586 } 13587 13588 if (bxe_max_aggregation_size == 0) { 13589 bxe_max_aggregation_size = TPA_AGG_SIZE; 13590 } 13591 13592 if (bxe_max_aggregation_size > 0xffff) { 13593 BLOGW(sc, "invalid max_aggregation_size (%d)\n", 13594 bxe_max_aggregation_size); 13595 bxe_max_aggregation_size = TPA_AGG_SIZE; 13596 } 13597 13598 if ((bxe_mrrs < -1) || (bxe_mrrs > 3)) { 13599 BLOGW(sc, "invalid mrrs (%d)\n", bxe_mrrs); 13600 bxe_mrrs = -1; 13601 } 13602 13603 if ((bxe_autogreeen < 0) || (bxe_autogreeen > 2)) { 13604 BLOGW(sc, "invalid autogreeen (%d)\n", bxe_autogreeen); 13605 bxe_autogreeen = 0; 13606 } 13607 13608 if ((bxe_udp_rss < 0) || (bxe_udp_rss > 1)) { 13609 BLOGW(sc, "invalid udp_rss (%d)\n", bxe_udp_rss); 13610 bxe_udp_rss = 0; 13611 } 13612 13613 /* pull in user settings */ 13614 13615 sc->interrupt_mode = bxe_interrupt_mode; 13616 sc->max_rx_bufs = bxe_max_rx_bufs; 13617 sc->hc_rx_ticks = bxe_hc_rx_ticks; 13618 sc->hc_tx_ticks = bxe_hc_tx_ticks; 13619 sc->max_aggregation_size = bxe_max_aggregation_size; 13620 sc->mrrs = bxe_mrrs; 13621 sc->autogreeen = bxe_autogreeen; 13622 sc->udp_rss = bxe_udp_rss; 13623 13624 if (bxe_interrupt_mode == INTR_MODE_INTX) { 13625 sc->num_queues = 1; 13626 } else { /* INTR_MODE_MSI or INTR_MODE_MSIX */ 13627 sc->num_queues = 13628 min((bxe_queue_count ? bxe_queue_count : mp_ncpus), 13629 MAX_RSS_CHAINS); 13630 if (sc->num_queues > mp_ncpus) { 13631 sc->num_queues = mp_ncpus; 13632 } 13633 } 13634 13635 BLOGD(sc, DBG_LOAD, 13636 "User Config: " 13637 "debug=0x%lx " 13638 "interrupt_mode=%d " 13639 "queue_count=%d " 13640 "hc_rx_ticks=%d " 13641 "hc_tx_ticks=%d " 13642 "rx_budget=%d " 13643 "max_aggregation_size=%d " 13644 "mrrs=%d " 13645 "autogreeen=%d " 13646 "udp_rss=%d\n", 13647 bxe_debug, 13648 sc->interrupt_mode, 13649 sc->num_queues, 13650 sc->hc_rx_ticks, 13651 sc->hc_tx_ticks, 13652 bxe_rx_budget, 13653 sc->max_aggregation_size, 13654 sc->mrrs, 13655 sc->autogreeen, 13656 sc->udp_rss); 13657 } 13658 13659 static int 13660 bxe_media_detect(struct bxe_softc *sc) 13661 { 13662 int port_type; 13663 uint32_t phy_idx = bxe_get_cur_phy_idx(sc); 13664 13665 switch (sc->link_params.phy[phy_idx].media_type) { 13666 case ELINK_ETH_PHY_SFPP_10G_FIBER: 13667 case ELINK_ETH_PHY_XFP_FIBER: 13668 BLOGI(sc, "Found 10Gb Fiber media.\n"); 13669 sc->media = IFM_10G_SR; 13670 port_type = PORT_FIBRE; 13671 break; 13672 case ELINK_ETH_PHY_SFP_1G_FIBER: 13673 BLOGI(sc, "Found 1Gb Fiber media.\n"); 13674 sc->media = IFM_1000_SX; 13675 port_type = PORT_FIBRE; 13676 break; 13677 case ELINK_ETH_PHY_KR: 13678 case ELINK_ETH_PHY_CX4: 13679 BLOGI(sc, "Found 10GBase-CX4 media.\n"); 13680 sc->media = IFM_10G_CX4; 13681 port_type = PORT_FIBRE; 13682 break; 13683 case ELINK_ETH_PHY_DA_TWINAX: 13684 BLOGI(sc, "Found 10Gb Twinax media.\n"); 13685 sc->media = IFM_10G_TWINAX; 13686 port_type = PORT_DA; 13687 break; 13688 case ELINK_ETH_PHY_BASE_T: 13689 if (sc->link_params.speed_cap_mask[0] & 13690 PORT_HW_CFG_SPEED_CAPABILITY_D0_10G) { 13691 BLOGI(sc, "Found 10GBase-T media.\n"); 13692 sc->media = IFM_10G_T; 13693 port_type = PORT_TP; 13694 } else { 13695 BLOGI(sc, "Found 1000Base-T media.\n"); 13696 sc->media = IFM_1000_T; 13697 port_type = PORT_TP; 13698 } 13699 break; 13700 case ELINK_ETH_PHY_NOT_PRESENT: 13701 BLOGI(sc, "Media not present.\n"); 13702 sc->media = 0; 13703 port_type = PORT_OTHER; 13704 break; 13705 case ELINK_ETH_PHY_UNSPECIFIED: 13706 default: 13707 BLOGI(sc, "Unknown media!\n"); 13708 sc->media = 0; 13709 port_type = PORT_OTHER; 13710 break; 13711 } 13712 return port_type; 13713 } 13714 13715 #define GET_FIELD(value, fname) \ 13716 (((value) & (fname##_MASK)) >> (fname##_SHIFT)) 13717 #define IGU_FID(val) GET_FIELD((val), IGU_REG_MAPPING_MEMORY_FID) 13718 #define IGU_VEC(val) GET_FIELD((val), IGU_REG_MAPPING_MEMORY_VECTOR) 13719 13720 static int 13721 bxe_get_igu_cam_info(struct bxe_softc *sc) 13722 { 13723 int pfid = SC_FUNC(sc); 13724 int igu_sb_id; 13725 uint32_t val; 13726 uint8_t fid, igu_sb_cnt = 0; 13727 13728 sc->igu_base_sb = 0xff; 13729 13730 if (CHIP_INT_MODE_IS_BC(sc)) { 13731 int vn = SC_VN(sc); 13732 igu_sb_cnt = sc->igu_sb_cnt; 13733 sc->igu_base_sb = ((CHIP_IS_MODE_4_PORT(sc) ? pfid : vn) * 13734 FP_SB_MAX_E1x); 13735 sc->igu_dsb_id = (E1HVN_MAX * FP_SB_MAX_E1x + 13736 (CHIP_IS_MODE_4_PORT(sc) ? pfid : vn)); 13737 return (0); 13738 } 13739 13740 /* IGU in normal mode - read CAM */ 13741 for (igu_sb_id = 0; 13742 igu_sb_id < IGU_REG_MAPPING_MEMORY_SIZE; 13743 igu_sb_id++) { 13744 val = REG_RD(sc, IGU_REG_MAPPING_MEMORY + igu_sb_id * 4); 13745 if (!(val & IGU_REG_MAPPING_MEMORY_VALID)) { 13746 continue; 13747 } 13748 fid = IGU_FID(val); 13749 if ((fid & IGU_FID_ENCODE_IS_PF)) { 13750 if ((fid & IGU_FID_PF_NUM_MASK) != pfid) { 13751 continue; 13752 } 13753 if (IGU_VEC(val) == 0) { 13754 /* default status block */ 13755 sc->igu_dsb_id = igu_sb_id; 13756 } else { 13757 if (sc->igu_base_sb == 0xff) { 13758 sc->igu_base_sb = igu_sb_id; 13759 } 13760 igu_sb_cnt++; 13761 } 13762 } 13763 } 13764 13765 /* 13766 * Due to new PF resource allocation by MFW T7.4 and above, it's optional 13767 * that number of CAM entries will not be equal to the value advertised in 13768 * PCI. Driver should use the minimal value of both as the actual status 13769 * block count 13770 */ 13771 sc->igu_sb_cnt = min(sc->igu_sb_cnt, igu_sb_cnt); 13772 13773 if (igu_sb_cnt == 0) { 13774 BLOGE(sc, "CAM configuration error\n"); 13775 return (-1); 13776 } 13777 13778 return (0); 13779 } 13780 13781 /* 13782 * Gather various information from the device config space, the device itself, 13783 * shmem, and the user input. 13784 */ 13785 static int 13786 bxe_get_device_info(struct bxe_softc *sc) 13787 { 13788 uint32_t val; 13789 int rc; 13790 13791 /* Get the data for the device */ 13792 sc->devinfo.vendor_id = pci_get_vendor(sc->dev); 13793 sc->devinfo.device_id = pci_get_device(sc->dev); 13794 sc->devinfo.subvendor_id = pci_get_subvendor(sc->dev); 13795 sc->devinfo.subdevice_id = pci_get_subdevice(sc->dev); 13796 13797 /* get the chip revision (chip metal comes from pci config space) */ 13798 sc->devinfo.chip_id = 13799 sc->link_params.chip_id = 13800 (((REG_RD(sc, MISC_REG_CHIP_NUM) & 0xffff) << 16) | 13801 ((REG_RD(sc, MISC_REG_CHIP_REV) & 0xf) << 12) | 13802 (((REG_RD(sc, PCICFG_OFFSET + PCI_ID_VAL3) >> 24) & 0xf) << 4) | 13803 ((REG_RD(sc, MISC_REG_BOND_ID) & 0xf) << 0)); 13804 13805 /* force 57811 according to MISC register */ 13806 if (REG_RD(sc, MISC_REG_CHIP_TYPE) & MISC_REG_CHIP_TYPE_57811_MASK) { 13807 if (CHIP_IS_57810(sc)) { 13808 sc->devinfo.chip_id = ((CHIP_NUM_57811 << 16) | 13809 (sc->devinfo.chip_id & 0x0000ffff)); 13810 } else if (CHIP_IS_57810_MF(sc)) { 13811 sc->devinfo.chip_id = ((CHIP_NUM_57811_MF << 16) | 13812 (sc->devinfo.chip_id & 0x0000ffff)); 13813 } 13814 sc->devinfo.chip_id |= 0x1; 13815 } 13816 13817 BLOGD(sc, DBG_LOAD, 13818 "chip_id=0x%08x (num=0x%04x rev=0x%01x metal=0x%02x bond=0x%01x)\n", 13819 sc->devinfo.chip_id, 13820 ((sc->devinfo.chip_id >> 16) & 0xffff), 13821 ((sc->devinfo.chip_id >> 12) & 0xf), 13822 ((sc->devinfo.chip_id >> 4) & 0xff), 13823 ((sc->devinfo.chip_id >> 0) & 0xf)); 13824 13825 val = (REG_RD(sc, 0x2874) & 0x55); 13826 if ((sc->devinfo.chip_id & 0x1) || 13827 (CHIP_IS_E1(sc) && val) || 13828 (CHIP_IS_E1H(sc) && (val == 0x55))) { 13829 sc->flags |= BXE_ONE_PORT_FLAG; 13830 BLOGD(sc, DBG_LOAD, "single port device\n"); 13831 } 13832 13833 /* set the doorbell size */ 13834 sc->doorbell_size = (1 << BXE_DB_SHIFT); 13835 13836 /* determine whether the device is in 2 port or 4 port mode */ 13837 sc->devinfo.chip_port_mode = CHIP_PORT_MODE_NONE; /* E1 & E1h*/ 13838 if (CHIP_IS_E2E3(sc)) { 13839 /* 13840 * Read port4mode_en_ovwr[0]: 13841 * If 1, four port mode is in port4mode_en_ovwr[1]. 13842 * If 0, four port mode is in port4mode_en[0]. 13843 */ 13844 val = REG_RD(sc, MISC_REG_PORT4MODE_EN_OVWR); 13845 if (val & 1) { 13846 val = ((val >> 1) & 1); 13847 } else { 13848 val = REG_RD(sc, MISC_REG_PORT4MODE_EN); 13849 } 13850 13851 sc->devinfo.chip_port_mode = 13852 (val) ? CHIP_4_PORT_MODE : CHIP_2_PORT_MODE; 13853 13854 BLOGD(sc, DBG_LOAD, "Port mode = %s\n", (val) ? "4" : "2"); 13855 } 13856 13857 /* get the function and path info for the device */ 13858 bxe_get_function_num(sc); 13859 13860 /* get the shared memory base address */ 13861 sc->devinfo.shmem_base = 13862 sc->link_params.shmem_base = 13863 REG_RD(sc, MISC_REG_SHARED_MEM_ADDR); 13864 sc->devinfo.shmem2_base = 13865 REG_RD(sc, (SC_PATH(sc) ? MISC_REG_GENERIC_CR_1 : 13866 MISC_REG_GENERIC_CR_0)); 13867 13868 BLOGD(sc, DBG_LOAD, "shmem_base=0x%08x, shmem2_base=0x%08x\n", 13869 sc->devinfo.shmem_base, sc->devinfo.shmem2_base); 13870 13871 if (!sc->devinfo.shmem_base) { 13872 /* this should ONLY prevent upcoming shmem reads */ 13873 BLOGI(sc, "MCP not active\n"); 13874 sc->flags |= BXE_NO_MCP_FLAG; 13875 return (0); 13876 } 13877 13878 /* make sure the shared memory contents are valid */ 13879 val = SHMEM_RD(sc, validity_map[SC_PORT(sc)]); 13880 if ((val & (SHR_MEM_VALIDITY_DEV_INFO | SHR_MEM_VALIDITY_MB)) != 13881 (SHR_MEM_VALIDITY_DEV_INFO | SHR_MEM_VALIDITY_MB)) { 13882 BLOGE(sc, "Invalid SHMEM validity signature: 0x%08x\n", val); 13883 return (0); 13884 } 13885 BLOGD(sc, DBG_LOAD, "Valid SHMEM validity signature: 0x%08x\n", val); 13886 13887 /* get the bootcode version */ 13888 sc->devinfo.bc_ver = SHMEM_RD(sc, dev_info.bc_rev); 13889 snprintf(sc->devinfo.bc_ver_str, 13890 sizeof(sc->devinfo.bc_ver_str), 13891 "%d.%d.%d", 13892 ((sc->devinfo.bc_ver >> 24) & 0xff), 13893 ((sc->devinfo.bc_ver >> 16) & 0xff), 13894 ((sc->devinfo.bc_ver >> 8) & 0xff)); 13895 BLOGD(sc, DBG_LOAD, "Bootcode version: %s\n", sc->devinfo.bc_ver_str); 13896 13897 /* get the bootcode shmem address */ 13898 sc->devinfo.mf_cfg_base = bxe_get_shmem_mf_cfg_base(sc); 13899 BLOGD(sc, DBG_LOAD, "mf_cfg_base=0x08%x \n", sc->devinfo.mf_cfg_base); 13900 13901 /* clean indirect addresses as they're not used */ 13902 pci_write_config(sc->dev, PCICFG_GRC_ADDRESS, 0, 4); 13903 if (IS_PF(sc)) { 13904 REG_WR(sc, PXP2_REG_PGL_ADDR_88_F0, 0); 13905 REG_WR(sc, PXP2_REG_PGL_ADDR_8C_F0, 0); 13906 REG_WR(sc, PXP2_REG_PGL_ADDR_90_F0, 0); 13907 REG_WR(sc, PXP2_REG_PGL_ADDR_94_F0, 0); 13908 if (CHIP_IS_E1x(sc)) { 13909 REG_WR(sc, PXP2_REG_PGL_ADDR_88_F1, 0); 13910 REG_WR(sc, PXP2_REG_PGL_ADDR_8C_F1, 0); 13911 REG_WR(sc, PXP2_REG_PGL_ADDR_90_F1, 0); 13912 REG_WR(sc, PXP2_REG_PGL_ADDR_94_F1, 0); 13913 } 13914 13915 /* 13916 * Enable internal target-read (in case we are probed after PF 13917 * FLR). Must be done prior to any BAR read access. Only for 13918 * 57712 and up 13919 */ 13920 if (!CHIP_IS_E1x(sc)) { 13921 REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1); 13922 } 13923 } 13924 13925 /* get the nvram size */ 13926 val = REG_RD(sc, MCP_REG_MCPR_NVM_CFG4); 13927 sc->devinfo.flash_size = 13928 (NVRAM_1MB_SIZE << (val & MCPR_NVM_CFG4_FLASH_SIZE)); 13929 BLOGD(sc, DBG_LOAD, "nvram flash size: %d\n", sc->devinfo.flash_size); 13930 13931 /* get PCI capabilites */ 13932 bxe_probe_pci_caps(sc); 13933 13934 bxe_set_power_state(sc, PCI_PM_D0); 13935 13936 /* get various configuration parameters from shmem */ 13937 bxe_get_shmem_info(sc); 13938 13939 if (sc->devinfo.pcie_msix_cap_reg != 0) { 13940 val = pci_read_config(sc->dev, 13941 (sc->devinfo.pcie_msix_cap_reg + 13942 PCIR_MSIX_CTRL), 13943 2); 13944 sc->igu_sb_cnt = (val & PCIM_MSIXCTRL_TABLE_SIZE); 13945 } else { 13946 sc->igu_sb_cnt = 1; 13947 } 13948 13949 sc->igu_base_addr = BAR_IGU_INTMEM; 13950 13951 /* initialize IGU parameters */ 13952 if (CHIP_IS_E1x(sc)) { 13953 sc->devinfo.int_block = INT_BLOCK_HC; 13954 sc->igu_dsb_id = DEF_SB_IGU_ID; 13955 sc->igu_base_sb = 0; 13956 } else { 13957 sc->devinfo.int_block = INT_BLOCK_IGU; 13958 13959 /* do not allow device reset during IGU info preocessing */ 13960 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RESET); 13961 13962 val = REG_RD(sc, IGU_REG_BLOCK_CONFIGURATION); 13963 13964 if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) { 13965 int tout = 5000; 13966 13967 BLOGD(sc, DBG_LOAD, "FORCING IGU Normal Mode\n"); 13968 13969 val &= ~(IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN); 13970 REG_WR(sc, IGU_REG_BLOCK_CONFIGURATION, val); 13971 REG_WR(sc, IGU_REG_RESET_MEMORIES, 0x7f); 13972 13973 while (tout && REG_RD(sc, IGU_REG_RESET_MEMORIES)) { 13974 tout--; 13975 DELAY(1000); 13976 } 13977 13978 if (REG_RD(sc, IGU_REG_RESET_MEMORIES)) { 13979 BLOGD(sc, DBG_LOAD, "FORCING IGU Normal Mode failed!!!\n"); 13980 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RESET); 13981 return (-1); 13982 } 13983 } 13984 13985 if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) { 13986 BLOGD(sc, DBG_LOAD, "IGU Backward Compatible Mode\n"); 13987 sc->devinfo.int_block |= INT_BLOCK_MODE_BW_COMP; 13988 } else { 13989 BLOGD(sc, DBG_LOAD, "IGU Normal Mode\n"); 13990 } 13991 13992 rc = bxe_get_igu_cam_info(sc); 13993 13994 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RESET); 13995 13996 if (rc) { 13997 return (rc); 13998 } 13999 } 14000 14001 /* 14002 * Get base FW non-default (fast path) status block ID. This value is 14003 * used to initialize the fw_sb_id saved on the fp/queue structure to 14004 * determine the id used by the FW. 14005 */ 14006 if (CHIP_IS_E1x(sc)) { 14007 sc->base_fw_ndsb = ((SC_PORT(sc) * FP_SB_MAX_E1x) + SC_L_ID(sc)); 14008 } else { 14009 /* 14010 * 57712+ - We currently use one FW SB per IGU SB (Rx and Tx of 14011 * the same queue are indicated on the same IGU SB). So we prefer 14012 * FW and IGU SBs to be the same value. 14013 */ 14014 sc->base_fw_ndsb = sc->igu_base_sb; 14015 } 14016 14017 BLOGD(sc, DBG_LOAD, 14018 "igu_dsb_id=%d igu_base_sb=%d igu_sb_cnt=%d base_fw_ndsb=%d\n", 14019 sc->igu_dsb_id, sc->igu_base_sb, 14020 sc->igu_sb_cnt, sc->base_fw_ndsb); 14021 14022 elink_phy_probe(&sc->link_params); 14023 14024 return (0); 14025 } 14026 14027 static void 14028 bxe_link_settings_supported(struct bxe_softc *sc, 14029 uint32_t switch_cfg) 14030 { 14031 uint32_t cfg_size = 0; 14032 uint32_t idx; 14033 uint8_t port = SC_PORT(sc); 14034 14035 /* aggregation of supported attributes of all external phys */ 14036 sc->port.supported[0] = 0; 14037 sc->port.supported[1] = 0; 14038 14039 switch (sc->link_params.num_phys) { 14040 case 1: 14041 sc->port.supported[0] = sc->link_params.phy[ELINK_INT_PHY].supported; 14042 cfg_size = 1; 14043 break; 14044 case 2: 14045 sc->port.supported[0] = sc->link_params.phy[ELINK_EXT_PHY1].supported; 14046 cfg_size = 1; 14047 break; 14048 case 3: 14049 if (sc->link_params.multi_phy_config & 14050 PORT_HW_CFG_PHY_SWAPPED_ENABLED) { 14051 sc->port.supported[1] = 14052 sc->link_params.phy[ELINK_EXT_PHY1].supported; 14053 sc->port.supported[0] = 14054 sc->link_params.phy[ELINK_EXT_PHY2].supported; 14055 } else { 14056 sc->port.supported[0] = 14057 sc->link_params.phy[ELINK_EXT_PHY1].supported; 14058 sc->port.supported[1] = 14059 sc->link_params.phy[ELINK_EXT_PHY2].supported; 14060 } 14061 cfg_size = 2; 14062 break; 14063 } 14064 14065 if (!(sc->port.supported[0] || sc->port.supported[1])) { 14066 BLOGE(sc, "Invalid phy config in NVRAM (PHY1=0x%08x PHY2=0x%08x)\n", 14067 SHMEM_RD(sc, 14068 dev_info.port_hw_config[port].external_phy_config), 14069 SHMEM_RD(sc, 14070 dev_info.port_hw_config[port].external_phy_config2)); 14071 return; 14072 } 14073 14074 if (CHIP_IS_E3(sc)) 14075 sc->port.phy_addr = REG_RD(sc, MISC_REG_WC0_CTRL_PHY_ADDR); 14076 else { 14077 switch (switch_cfg) { 14078 case ELINK_SWITCH_CFG_1G: 14079 sc->port.phy_addr = 14080 REG_RD(sc, NIG_REG_SERDES0_CTRL_PHY_ADDR + port*0x10); 14081 break; 14082 case ELINK_SWITCH_CFG_10G: 14083 sc->port.phy_addr = 14084 REG_RD(sc, NIG_REG_XGXS0_CTRL_PHY_ADDR + port*0x18); 14085 break; 14086 default: 14087 BLOGE(sc, "Invalid switch config in link_config=0x%08x\n", 14088 sc->port.link_config[0]); 14089 return; 14090 } 14091 } 14092 14093 BLOGD(sc, DBG_LOAD, "PHY addr 0x%08x\n", sc->port.phy_addr); 14094 14095 /* mask what we support according to speed_cap_mask per configuration */ 14096 for (idx = 0; idx < cfg_size; idx++) { 14097 if (!(sc->link_params.speed_cap_mask[idx] & 14098 PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_HALF)) { 14099 sc->port.supported[idx] &= ~ELINK_SUPPORTED_10baseT_Half; 14100 } 14101 14102 if (!(sc->link_params.speed_cap_mask[idx] & 14103 PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_FULL)) { 14104 sc->port.supported[idx] &= ~ELINK_SUPPORTED_10baseT_Full; 14105 } 14106 14107 if (!(sc->link_params.speed_cap_mask[idx] & 14108 PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_HALF)) { 14109 sc->port.supported[idx] &= ~ELINK_SUPPORTED_100baseT_Half; 14110 } 14111 14112 if (!(sc->link_params.speed_cap_mask[idx] & 14113 PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_FULL)) { 14114 sc->port.supported[idx] &= ~ELINK_SUPPORTED_100baseT_Full; 14115 } 14116 14117 if (!(sc->link_params.speed_cap_mask[idx] & 14118 PORT_HW_CFG_SPEED_CAPABILITY_D0_1G)) { 14119 sc->port.supported[idx] &= ~ELINK_SUPPORTED_1000baseT_Full; 14120 } 14121 14122 if (!(sc->link_params.speed_cap_mask[idx] & 14123 PORT_HW_CFG_SPEED_CAPABILITY_D0_2_5G)) { 14124 sc->port.supported[idx] &= ~ELINK_SUPPORTED_2500baseX_Full; 14125 } 14126 14127 if (!(sc->link_params.speed_cap_mask[idx] & 14128 PORT_HW_CFG_SPEED_CAPABILITY_D0_10G)) { 14129 sc->port.supported[idx] &= ~ELINK_SUPPORTED_10000baseT_Full; 14130 } 14131 14132 if (!(sc->link_params.speed_cap_mask[idx] & 14133 PORT_HW_CFG_SPEED_CAPABILITY_D0_20G)) { 14134 sc->port.supported[idx] &= ~ELINK_SUPPORTED_20000baseKR2_Full; 14135 } 14136 } 14137 14138 BLOGD(sc, DBG_LOAD, "PHY supported 0=0x%08x 1=0x%08x\n", 14139 sc->port.supported[0], sc->port.supported[1]); 14140 } 14141 14142 static void 14143 bxe_link_settings_requested(struct bxe_softc *sc) 14144 { 14145 uint32_t link_config; 14146 uint32_t idx; 14147 uint32_t cfg_size = 0; 14148 14149 sc->port.advertising[0] = 0; 14150 sc->port.advertising[1] = 0; 14151 14152 switch (sc->link_params.num_phys) { 14153 case 1: 14154 case 2: 14155 cfg_size = 1; 14156 break; 14157 case 3: 14158 cfg_size = 2; 14159 break; 14160 } 14161 14162 for (idx = 0; idx < cfg_size; idx++) { 14163 sc->link_params.req_duplex[idx] = DUPLEX_FULL; 14164 link_config = sc->port.link_config[idx]; 14165 14166 switch (link_config & PORT_FEATURE_LINK_SPEED_MASK) { 14167 case PORT_FEATURE_LINK_SPEED_AUTO: 14168 if (sc->port.supported[idx] & ELINK_SUPPORTED_Autoneg) { 14169 sc->link_params.req_line_speed[idx] = ELINK_SPEED_AUTO_NEG; 14170 sc->port.advertising[idx] |= sc->port.supported[idx]; 14171 if (sc->link_params.phy[ELINK_EXT_PHY1].type == 14172 PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM84833) 14173 sc->port.advertising[idx] |= 14174 (ELINK_SUPPORTED_100baseT_Half | 14175 ELINK_SUPPORTED_100baseT_Full); 14176 } else { 14177 /* force 10G, no AN */ 14178 sc->link_params.req_line_speed[idx] = ELINK_SPEED_10000; 14179 sc->port.advertising[idx] |= 14180 (ADVERTISED_10000baseT_Full | ADVERTISED_FIBRE); 14181 continue; 14182 } 14183 break; 14184 14185 case PORT_FEATURE_LINK_SPEED_10M_FULL: 14186 if (sc->port.supported[idx] & ELINK_SUPPORTED_10baseT_Full) { 14187 sc->link_params.req_line_speed[idx] = ELINK_SPEED_10; 14188 sc->port.advertising[idx] |= (ADVERTISED_10baseT_Full | 14189 ADVERTISED_TP); 14190 } else { 14191 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x " 14192 "speed_cap_mask=0x%08x\n", 14193 link_config, sc->link_params.speed_cap_mask[idx]); 14194 return; 14195 } 14196 break; 14197 14198 case PORT_FEATURE_LINK_SPEED_10M_HALF: 14199 if (sc->port.supported[idx] & ELINK_SUPPORTED_10baseT_Half) { 14200 sc->link_params.req_line_speed[idx] = ELINK_SPEED_10; 14201 sc->link_params.req_duplex[idx] = DUPLEX_HALF; 14202 sc->port.advertising[idx] |= (ADVERTISED_10baseT_Half | 14203 ADVERTISED_TP); 14204 } else { 14205 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x " 14206 "speed_cap_mask=0x%08x\n", 14207 link_config, sc->link_params.speed_cap_mask[idx]); 14208 return; 14209 } 14210 break; 14211 14212 case PORT_FEATURE_LINK_SPEED_100M_FULL: 14213 if (sc->port.supported[idx] & ELINK_SUPPORTED_100baseT_Full) { 14214 sc->link_params.req_line_speed[idx] = ELINK_SPEED_100; 14215 sc->port.advertising[idx] |= (ADVERTISED_100baseT_Full | 14216 ADVERTISED_TP); 14217 } else { 14218 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x " 14219 "speed_cap_mask=0x%08x\n", 14220 link_config, sc->link_params.speed_cap_mask[idx]); 14221 return; 14222 } 14223 break; 14224 14225 case PORT_FEATURE_LINK_SPEED_100M_HALF: 14226 if (sc->port.supported[idx] & ELINK_SUPPORTED_100baseT_Half) { 14227 sc->link_params.req_line_speed[idx] = ELINK_SPEED_100; 14228 sc->link_params.req_duplex[idx] = DUPLEX_HALF; 14229 sc->port.advertising[idx] |= (ADVERTISED_100baseT_Half | 14230 ADVERTISED_TP); 14231 } else { 14232 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x " 14233 "speed_cap_mask=0x%08x\n", 14234 link_config, sc->link_params.speed_cap_mask[idx]); 14235 return; 14236 } 14237 break; 14238 14239 case PORT_FEATURE_LINK_SPEED_1G: 14240 if (sc->port.supported[idx] & ELINK_SUPPORTED_1000baseT_Full) { 14241 sc->link_params.req_line_speed[idx] = ELINK_SPEED_1000; 14242 sc->port.advertising[idx] |= (ADVERTISED_1000baseT_Full | 14243 ADVERTISED_TP); 14244 } else { 14245 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x " 14246 "speed_cap_mask=0x%08x\n", 14247 link_config, sc->link_params.speed_cap_mask[idx]); 14248 return; 14249 } 14250 break; 14251 14252 case PORT_FEATURE_LINK_SPEED_2_5G: 14253 if (sc->port.supported[idx] & ELINK_SUPPORTED_2500baseX_Full) { 14254 sc->link_params.req_line_speed[idx] = ELINK_SPEED_2500; 14255 sc->port.advertising[idx] |= (ADVERTISED_2500baseX_Full | 14256 ADVERTISED_TP); 14257 } else { 14258 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x " 14259 "speed_cap_mask=0x%08x\n", 14260 link_config, sc->link_params.speed_cap_mask[idx]); 14261 return; 14262 } 14263 break; 14264 14265 case PORT_FEATURE_LINK_SPEED_10G_CX4: 14266 if (sc->port.supported[idx] & ELINK_SUPPORTED_10000baseT_Full) { 14267 sc->link_params.req_line_speed[idx] = ELINK_SPEED_10000; 14268 sc->port.advertising[idx] |= (ADVERTISED_10000baseT_Full | 14269 ADVERTISED_FIBRE); 14270 } else { 14271 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x " 14272 "speed_cap_mask=0x%08x\n", 14273 link_config, sc->link_params.speed_cap_mask[idx]); 14274 return; 14275 } 14276 break; 14277 14278 case PORT_FEATURE_LINK_SPEED_20G: 14279 sc->link_params.req_line_speed[idx] = ELINK_SPEED_20000; 14280 break; 14281 14282 default: 14283 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x " 14284 "speed_cap_mask=0x%08x\n", 14285 link_config, sc->link_params.speed_cap_mask[idx]); 14286 sc->link_params.req_line_speed[idx] = ELINK_SPEED_AUTO_NEG; 14287 sc->port.advertising[idx] = sc->port.supported[idx]; 14288 break; 14289 } 14290 14291 sc->link_params.req_flow_ctrl[idx] = 14292 (link_config & PORT_FEATURE_FLOW_CONTROL_MASK); 14293 14294 if (sc->link_params.req_flow_ctrl[idx] == ELINK_FLOW_CTRL_AUTO) { 14295 if (!(sc->port.supported[idx] & ELINK_SUPPORTED_Autoneg)) { 14296 sc->link_params.req_flow_ctrl[idx] = ELINK_FLOW_CTRL_NONE; 14297 } else { 14298 bxe_set_requested_fc(sc); 14299 } 14300 } 14301 14302 BLOGD(sc, DBG_LOAD, "req_line_speed=%d req_duplex=%d " 14303 "req_flow_ctrl=0x%x advertising=0x%x\n", 14304 sc->link_params.req_line_speed[idx], 14305 sc->link_params.req_duplex[idx], 14306 sc->link_params.req_flow_ctrl[idx], 14307 sc->port.advertising[idx]); 14308 } 14309 } 14310 14311 static void 14312 bxe_get_phy_info(struct bxe_softc *sc) 14313 { 14314 uint8_t port = SC_PORT(sc); 14315 uint32_t config = sc->port.config; 14316 uint32_t eee_mode; 14317 14318 /* shmem data already read in bxe_get_shmem_info() */ 14319 14320 BLOGD(sc, DBG_LOAD, "lane_config=0x%08x speed_cap_mask0=0x%08x " 14321 "link_config0=0x%08x\n", 14322 sc->link_params.lane_config, 14323 sc->link_params.speed_cap_mask[0], 14324 sc->port.link_config[0]); 14325 14326 bxe_link_settings_supported(sc, sc->link_params.switch_cfg); 14327 bxe_link_settings_requested(sc); 14328 14329 if (sc->autogreeen == AUTO_GREEN_FORCE_ON) { 14330 sc->link_params.feature_config_flags |= 14331 ELINK_FEATURE_CONFIG_AUTOGREEEN_ENABLED; 14332 } else if (sc->autogreeen == AUTO_GREEN_FORCE_OFF) { 14333 sc->link_params.feature_config_flags &= 14334 ~ELINK_FEATURE_CONFIG_AUTOGREEEN_ENABLED; 14335 } else if (config & PORT_FEAT_CFG_AUTOGREEEN_ENABLED) { 14336 sc->link_params.feature_config_flags |= 14337 ELINK_FEATURE_CONFIG_AUTOGREEEN_ENABLED; 14338 } 14339 14340 /* configure link feature according to nvram value */ 14341 eee_mode = 14342 (((SHMEM_RD(sc, dev_info.port_feature_config[port].eee_power_mode)) & 14343 PORT_FEAT_CFG_EEE_POWER_MODE_MASK) >> 14344 PORT_FEAT_CFG_EEE_POWER_MODE_SHIFT); 14345 if (eee_mode != PORT_FEAT_CFG_EEE_POWER_MODE_DISABLED) { 14346 sc->link_params.eee_mode = (ELINK_EEE_MODE_ADV_LPI | 14347 ELINK_EEE_MODE_ENABLE_LPI | 14348 ELINK_EEE_MODE_OUTPUT_TIME); 14349 } else { 14350 sc->link_params.eee_mode = 0; 14351 } 14352 14353 /* get the media type */ 14354 bxe_media_detect(sc); 14355 } 14356 14357 static void 14358 bxe_get_params(struct bxe_softc *sc) 14359 { 14360 /* get user tunable params */ 14361 bxe_get_tunable_params(sc); 14362 14363 /* select the RX and TX ring sizes */ 14364 sc->tx_ring_size = TX_BD_USABLE; 14365 sc->rx_ring_size = RX_BD_USABLE; 14366 14367 /* XXX disable WoL */ 14368 sc->wol = 0; 14369 } 14370 14371 static void 14372 bxe_set_modes_bitmap(struct bxe_softc *sc) 14373 { 14374 uint32_t flags = 0; 14375 14376 if (CHIP_REV_IS_FPGA(sc)) { 14377 SET_FLAGS(flags, MODE_FPGA); 14378 } else if (CHIP_REV_IS_EMUL(sc)) { 14379 SET_FLAGS(flags, MODE_EMUL); 14380 } else { 14381 SET_FLAGS(flags, MODE_ASIC); 14382 } 14383 14384 if (CHIP_IS_MODE_4_PORT(sc)) { 14385 SET_FLAGS(flags, MODE_PORT4); 14386 } else { 14387 SET_FLAGS(flags, MODE_PORT2); 14388 } 14389 14390 if (CHIP_IS_E2(sc)) { 14391 SET_FLAGS(flags, MODE_E2); 14392 } else if (CHIP_IS_E3(sc)) { 14393 SET_FLAGS(flags, MODE_E3); 14394 if (CHIP_REV(sc) == CHIP_REV_Ax) { 14395 SET_FLAGS(flags, MODE_E3_A0); 14396 } else /*if (CHIP_REV(sc) == CHIP_REV_Bx)*/ { 14397 SET_FLAGS(flags, MODE_E3_B0 | MODE_COS3); 14398 } 14399 } 14400 14401 if (IS_MF(sc)) { 14402 SET_FLAGS(flags, MODE_MF); 14403 switch (sc->devinfo.mf_info.mf_mode) { 14404 case MULTI_FUNCTION_SD: 14405 SET_FLAGS(flags, MODE_MF_SD); 14406 break; 14407 case MULTI_FUNCTION_SI: 14408 SET_FLAGS(flags, MODE_MF_SI); 14409 break; 14410 case MULTI_FUNCTION_AFEX: 14411 SET_FLAGS(flags, MODE_MF_AFEX); 14412 break; 14413 } 14414 } else { 14415 SET_FLAGS(flags, MODE_SF); 14416 } 14417 14418 #if defined(__LITTLE_ENDIAN) 14419 SET_FLAGS(flags, MODE_LITTLE_ENDIAN); 14420 #else /* __BIG_ENDIAN */ 14421 SET_FLAGS(flags, MODE_BIG_ENDIAN); 14422 #endif 14423 14424 INIT_MODE_FLAGS(sc) = flags; 14425 } 14426 14427 static int 14428 bxe_alloc_hsi_mem(struct bxe_softc *sc) 14429 { 14430 struct bxe_fastpath *fp; 14431 bus_addr_t busaddr; 14432 int max_agg_queues; 14433 int max_segments; 14434 bus_size_t max_size; 14435 bus_size_t max_seg_size; 14436 char buf[32]; 14437 int rc; 14438 int i, j; 14439 14440 /* XXX zero out all vars here and call bxe_alloc_hsi_mem on error */ 14441 14442 /* allocate the parent bus DMA tag */ 14443 rc = bus_dma_tag_create(bus_get_dma_tag(sc->dev), /* parent tag */ 14444 1, /* alignment */ 14445 0, /* boundary limit */ 14446 BUS_SPACE_MAXADDR, /* restricted low */ 14447 BUS_SPACE_MAXADDR, /* restricted hi */ 14448 NULL, /* addr filter() */ 14449 NULL, /* addr filter() arg */ 14450 BUS_SPACE_MAXSIZE_32BIT, /* max map size */ 14451 BUS_SPACE_UNRESTRICTED, /* num discontinuous */ 14452 BUS_SPACE_MAXSIZE_32BIT, /* max seg size */ 14453 0, /* flags */ 14454 NULL, /* lock() */ 14455 NULL, /* lock() arg */ 14456 &sc->parent_dma_tag); /* returned dma tag */ 14457 if (rc != 0) { 14458 BLOGE(sc, "Failed to alloc parent DMA tag (%d)!\n", rc); 14459 return (1); 14460 } 14461 14462 /************************/ 14463 /* DEFAULT STATUS BLOCK */ 14464 /************************/ 14465 14466 if (bxe_dma_alloc(sc, sizeof(struct host_sp_status_block), 14467 &sc->def_sb_dma, "default status block") != 0) { 14468 /* XXX */ 14469 bus_dma_tag_destroy(sc->parent_dma_tag); 14470 return (1); 14471 } 14472 14473 sc->def_sb = (struct host_sp_status_block *)sc->def_sb_dma.vaddr; 14474 14475 /***************/ 14476 /* EVENT QUEUE */ 14477 /***************/ 14478 14479 if (bxe_dma_alloc(sc, BCM_PAGE_SIZE, 14480 &sc->eq_dma, "event queue") != 0) { 14481 /* XXX */ 14482 bxe_dma_free(sc, &sc->def_sb_dma); 14483 sc->def_sb = NULL; 14484 bus_dma_tag_destroy(sc->parent_dma_tag); 14485 return (1); 14486 } 14487 14488 sc->eq = (union event_ring_elem * )sc->eq_dma.vaddr; 14489 14490 /*************/ 14491 /* SLOW PATH */ 14492 /*************/ 14493 14494 if (bxe_dma_alloc(sc, sizeof(struct bxe_slowpath), 14495 &sc->sp_dma, "slow path") != 0) { 14496 /* XXX */ 14497 bxe_dma_free(sc, &sc->eq_dma); 14498 sc->eq = NULL; 14499 bxe_dma_free(sc, &sc->def_sb_dma); 14500 sc->def_sb = NULL; 14501 bus_dma_tag_destroy(sc->parent_dma_tag); 14502 return (1); 14503 } 14504 14505 sc->sp = (struct bxe_slowpath *)sc->sp_dma.vaddr; 14506 14507 /*******************/ 14508 /* SLOW PATH QUEUE */ 14509 /*******************/ 14510 14511 if (bxe_dma_alloc(sc, BCM_PAGE_SIZE, 14512 &sc->spq_dma, "slow path queue") != 0) { 14513 /* XXX */ 14514 bxe_dma_free(sc, &sc->sp_dma); 14515 sc->sp = NULL; 14516 bxe_dma_free(sc, &sc->eq_dma); 14517 sc->eq = NULL; 14518 bxe_dma_free(sc, &sc->def_sb_dma); 14519 sc->def_sb = NULL; 14520 bus_dma_tag_destroy(sc->parent_dma_tag); 14521 return (1); 14522 } 14523 14524 sc->spq = (struct eth_spe *)sc->spq_dma.vaddr; 14525 14526 /***************************/ 14527 /* FW DECOMPRESSION BUFFER */ 14528 /***************************/ 14529 14530 if (bxe_dma_alloc(sc, FW_BUF_SIZE, &sc->gz_buf_dma, 14531 "fw decompression buffer") != 0) { 14532 /* XXX */ 14533 bxe_dma_free(sc, &sc->spq_dma); 14534 sc->spq = NULL; 14535 bxe_dma_free(sc, &sc->sp_dma); 14536 sc->sp = NULL; 14537 bxe_dma_free(sc, &sc->eq_dma); 14538 sc->eq = NULL; 14539 bxe_dma_free(sc, &sc->def_sb_dma); 14540 sc->def_sb = NULL; 14541 bus_dma_tag_destroy(sc->parent_dma_tag); 14542 return (1); 14543 } 14544 14545 sc->gz_buf = (void *)sc->gz_buf_dma.vaddr; 14546 14547 if ((sc->gz_strm = 14548 malloc(sizeof(*sc->gz_strm), M_DEVBUF, M_NOWAIT)) == NULL) { 14549 /* XXX */ 14550 bxe_dma_free(sc, &sc->gz_buf_dma); 14551 sc->gz_buf = NULL; 14552 bxe_dma_free(sc, &sc->spq_dma); 14553 sc->spq = NULL; 14554 bxe_dma_free(sc, &sc->sp_dma); 14555 sc->sp = NULL; 14556 bxe_dma_free(sc, &sc->eq_dma); 14557 sc->eq = NULL; 14558 bxe_dma_free(sc, &sc->def_sb_dma); 14559 sc->def_sb = NULL; 14560 bus_dma_tag_destroy(sc->parent_dma_tag); 14561 return (1); 14562 } 14563 14564 /*************/ 14565 /* FASTPATHS */ 14566 /*************/ 14567 14568 /* allocate DMA memory for each fastpath structure */ 14569 for (i = 0; i < sc->num_queues; i++) { 14570 fp = &sc->fp[i]; 14571 fp->sc = sc; 14572 fp->index = i; 14573 14574 /*******************/ 14575 /* FP STATUS BLOCK */ 14576 /*******************/ 14577 14578 snprintf(buf, sizeof(buf), "fp %d status block", i); 14579 if (bxe_dma_alloc(sc, sizeof(union bxe_host_hc_status_block), 14580 &fp->sb_dma, buf) != 0) { 14581 /* XXX unwind and free previous fastpath allocations */ 14582 BLOGE(sc, "Failed to alloc %s\n", buf); 14583 return (1); 14584 } else { 14585 if (CHIP_IS_E2E3(sc)) { 14586 fp->status_block.e2_sb = 14587 (struct host_hc_status_block_e2 *)fp->sb_dma.vaddr; 14588 } else { 14589 fp->status_block.e1x_sb = 14590 (struct host_hc_status_block_e1x *)fp->sb_dma.vaddr; 14591 } 14592 } 14593 14594 /******************/ 14595 /* FP TX BD CHAIN */ 14596 /******************/ 14597 14598 snprintf(buf, sizeof(buf), "fp %d tx bd chain", i); 14599 if (bxe_dma_alloc(sc, (BCM_PAGE_SIZE * TX_BD_NUM_PAGES), 14600 &fp->tx_dma, buf) != 0) { 14601 /* XXX unwind and free previous fastpath allocations */ 14602 BLOGE(sc, "Failed to alloc %s\n", buf); 14603 return (1); 14604 } else { 14605 fp->tx_chain = (union eth_tx_bd_types *)fp->tx_dma.vaddr; 14606 } 14607 14608 /* link together the tx bd chain pages */ 14609 for (j = 1; j <= TX_BD_NUM_PAGES; j++) { 14610 /* index into the tx bd chain array to last entry per page */ 14611 struct eth_tx_next_bd *tx_next_bd = 14612 &fp->tx_chain[TX_BD_TOTAL_PER_PAGE * j - 1].next_bd; 14613 /* point to the next page and wrap from last page */ 14614 busaddr = (fp->tx_dma.paddr + 14615 (BCM_PAGE_SIZE * (j % TX_BD_NUM_PAGES))); 14616 tx_next_bd->addr_hi = htole32(U64_HI(busaddr)); 14617 tx_next_bd->addr_lo = htole32(U64_LO(busaddr)); 14618 } 14619 14620 /******************/ 14621 /* FP RX BD CHAIN */ 14622 /******************/ 14623 14624 snprintf(buf, sizeof(buf), "fp %d rx bd chain", i); 14625 if (bxe_dma_alloc(sc, (BCM_PAGE_SIZE * RX_BD_NUM_PAGES), 14626 &fp->rx_dma, buf) != 0) { 14627 /* XXX unwind and free previous fastpath allocations */ 14628 BLOGE(sc, "Failed to alloc %s\n", buf); 14629 return (1); 14630 } else { 14631 fp->rx_chain = (struct eth_rx_bd *)fp->rx_dma.vaddr; 14632 } 14633 14634 /* link together the rx bd chain pages */ 14635 for (j = 1; j <= RX_BD_NUM_PAGES; j++) { 14636 /* index into the rx bd chain array to last entry per page */ 14637 struct eth_rx_bd *rx_bd = 14638 &fp->rx_chain[RX_BD_TOTAL_PER_PAGE * j - 2]; 14639 /* point to the next page and wrap from last page */ 14640 busaddr = (fp->rx_dma.paddr + 14641 (BCM_PAGE_SIZE * (j % RX_BD_NUM_PAGES))); 14642 rx_bd->addr_hi = htole32(U64_HI(busaddr)); 14643 rx_bd->addr_lo = htole32(U64_LO(busaddr)); 14644 } 14645 14646 /*******************/ 14647 /* FP RX RCQ CHAIN */ 14648 /*******************/ 14649 14650 snprintf(buf, sizeof(buf), "fp %d rcq chain", i); 14651 if (bxe_dma_alloc(sc, (BCM_PAGE_SIZE * RCQ_NUM_PAGES), 14652 &fp->rcq_dma, buf) != 0) { 14653 /* XXX unwind and free previous fastpath allocations */ 14654 BLOGE(sc, "Failed to alloc %s\n", buf); 14655 return (1); 14656 } else { 14657 fp->rcq_chain = (union eth_rx_cqe *)fp->rcq_dma.vaddr; 14658 } 14659 14660 /* link together the rcq chain pages */ 14661 for (j = 1; j <= RCQ_NUM_PAGES; j++) { 14662 /* index into the rcq chain array to last entry per page */ 14663 struct eth_rx_cqe_next_page *rx_cqe_next = 14664 (struct eth_rx_cqe_next_page *) 14665 &fp->rcq_chain[RCQ_TOTAL_PER_PAGE * j - 1]; 14666 /* point to the next page and wrap from last page */ 14667 busaddr = (fp->rcq_dma.paddr + 14668 (BCM_PAGE_SIZE * (j % RCQ_NUM_PAGES))); 14669 rx_cqe_next->addr_hi = htole32(U64_HI(busaddr)); 14670 rx_cqe_next->addr_lo = htole32(U64_LO(busaddr)); 14671 } 14672 14673 /*******************/ 14674 /* FP RX SGE CHAIN */ 14675 /*******************/ 14676 14677 snprintf(buf, sizeof(buf), "fp %d sge chain", i); 14678 if (bxe_dma_alloc(sc, (BCM_PAGE_SIZE * RX_SGE_NUM_PAGES), 14679 &fp->rx_sge_dma, buf) != 0) { 14680 /* XXX unwind and free previous fastpath allocations */ 14681 BLOGE(sc, "Failed to alloc %s\n", buf); 14682 return (1); 14683 } else { 14684 fp->rx_sge_chain = (struct eth_rx_sge *)fp->rx_sge_dma.vaddr; 14685 } 14686 14687 /* link together the sge chain pages */ 14688 for (j = 1; j <= RX_SGE_NUM_PAGES; j++) { 14689 /* index into the rcq chain array to last entry per page */ 14690 struct eth_rx_sge *rx_sge = 14691 &fp->rx_sge_chain[RX_SGE_TOTAL_PER_PAGE * j - 2]; 14692 /* point to the next page and wrap from last page */ 14693 busaddr = (fp->rx_sge_dma.paddr + 14694 (BCM_PAGE_SIZE * (j % RX_SGE_NUM_PAGES))); 14695 rx_sge->addr_hi = htole32(U64_HI(busaddr)); 14696 rx_sge->addr_lo = htole32(U64_LO(busaddr)); 14697 } 14698 14699 /***********************/ 14700 /* FP TX MBUF DMA MAPS */ 14701 /***********************/ 14702 14703 /* set required sizes before mapping to conserve resources */ 14704 if (if_getcapenable(sc->ifp) & (IFCAP_TSO4 | IFCAP_TSO6)) { 14705 max_size = BXE_TSO_MAX_SIZE; 14706 max_segments = BXE_TSO_MAX_SEGMENTS; 14707 max_seg_size = BXE_TSO_MAX_SEG_SIZE; 14708 } else { 14709 max_size = (MCLBYTES * BXE_MAX_SEGMENTS); 14710 max_segments = BXE_MAX_SEGMENTS; 14711 max_seg_size = MCLBYTES; 14712 } 14713 14714 /* create a dma tag for the tx mbufs */ 14715 rc = bus_dma_tag_create(sc->parent_dma_tag, /* parent tag */ 14716 1, /* alignment */ 14717 0, /* boundary limit */ 14718 BUS_SPACE_MAXADDR, /* restricted low */ 14719 BUS_SPACE_MAXADDR, /* restricted hi */ 14720 NULL, /* addr filter() */ 14721 NULL, /* addr filter() arg */ 14722 max_size, /* max map size */ 14723 max_segments, /* num discontinuous */ 14724 max_seg_size, /* max seg size */ 14725 0, /* flags */ 14726 NULL, /* lock() */ 14727 NULL, /* lock() arg */ 14728 &fp->tx_mbuf_tag); /* returned dma tag */ 14729 if (rc != 0) { 14730 /* XXX unwind and free previous fastpath allocations */ 14731 BLOGE(sc, "Failed to create dma tag for " 14732 "'fp %d tx mbufs' (%d)\n", i, rc); 14733 return (1); 14734 } 14735 14736 /* create dma maps for each of the tx mbuf clusters */ 14737 for (j = 0; j < TX_BD_TOTAL; j++) { 14738 if (bus_dmamap_create(fp->tx_mbuf_tag, 14739 BUS_DMA_NOWAIT, 14740 &fp->tx_mbuf_chain[j].m_map)) { 14741 /* XXX unwind and free previous fastpath allocations */ 14742 BLOGE(sc, "Failed to create dma map for " 14743 "'fp %d tx mbuf %d' (%d)\n", i, j, rc); 14744 return (1); 14745 } 14746 } 14747 14748 /***********************/ 14749 /* FP RX MBUF DMA MAPS */ 14750 /***********************/ 14751 14752 /* create a dma tag for the rx mbufs */ 14753 rc = bus_dma_tag_create(sc->parent_dma_tag, /* parent tag */ 14754 1, /* alignment */ 14755 0, /* boundary limit */ 14756 BUS_SPACE_MAXADDR, /* restricted low */ 14757 BUS_SPACE_MAXADDR, /* restricted hi */ 14758 NULL, /* addr filter() */ 14759 NULL, /* addr filter() arg */ 14760 MJUM9BYTES, /* max map size */ 14761 1, /* num discontinuous */ 14762 MJUM9BYTES, /* max seg size */ 14763 0, /* flags */ 14764 NULL, /* lock() */ 14765 NULL, /* lock() arg */ 14766 &fp->rx_mbuf_tag); /* returned dma tag */ 14767 if (rc != 0) { 14768 /* XXX unwind and free previous fastpath allocations */ 14769 BLOGE(sc, "Failed to create dma tag for " 14770 "'fp %d rx mbufs' (%d)\n", i, rc); 14771 return (1); 14772 } 14773 14774 /* create dma maps for each of the rx mbuf clusters */ 14775 for (j = 0; j < RX_BD_TOTAL; j++) { 14776 if (bus_dmamap_create(fp->rx_mbuf_tag, 14777 BUS_DMA_NOWAIT, 14778 &fp->rx_mbuf_chain[j].m_map)) { 14779 /* XXX unwind and free previous fastpath allocations */ 14780 BLOGE(sc, "Failed to create dma map for " 14781 "'fp %d rx mbuf %d' (%d)\n", i, j, rc); 14782 return (1); 14783 } 14784 } 14785 14786 /* create dma map for the spare rx mbuf cluster */ 14787 if (bus_dmamap_create(fp->rx_mbuf_tag, 14788 BUS_DMA_NOWAIT, 14789 &fp->rx_mbuf_spare_map)) { 14790 /* XXX unwind and free previous fastpath allocations */ 14791 BLOGE(sc, "Failed to create dma map for " 14792 "'fp %d spare rx mbuf' (%d)\n", i, rc); 14793 return (1); 14794 } 14795 14796 /***************************/ 14797 /* FP RX SGE MBUF DMA MAPS */ 14798 /***************************/ 14799 14800 /* create a dma tag for the rx sge mbufs */ 14801 rc = bus_dma_tag_create(sc->parent_dma_tag, /* parent tag */ 14802 1, /* alignment */ 14803 0, /* boundary limit */ 14804 BUS_SPACE_MAXADDR, /* restricted low */ 14805 BUS_SPACE_MAXADDR, /* restricted hi */ 14806 NULL, /* addr filter() */ 14807 NULL, /* addr filter() arg */ 14808 BCM_PAGE_SIZE, /* max map size */ 14809 1, /* num discontinuous */ 14810 BCM_PAGE_SIZE, /* max seg size */ 14811 0, /* flags */ 14812 NULL, /* lock() */ 14813 NULL, /* lock() arg */ 14814 &fp->rx_sge_mbuf_tag); /* returned dma tag */ 14815 if (rc != 0) { 14816 /* XXX unwind and free previous fastpath allocations */ 14817 BLOGE(sc, "Failed to create dma tag for " 14818 "'fp %d rx sge mbufs' (%d)\n", i, rc); 14819 return (1); 14820 } 14821 14822 /* create dma maps for the rx sge mbuf clusters */ 14823 for (j = 0; j < RX_SGE_TOTAL; j++) { 14824 if (bus_dmamap_create(fp->rx_sge_mbuf_tag, 14825 BUS_DMA_NOWAIT, 14826 &fp->rx_sge_mbuf_chain[j].m_map)) { 14827 /* XXX unwind and free previous fastpath allocations */ 14828 BLOGE(sc, "Failed to create dma map for " 14829 "'fp %d rx sge mbuf %d' (%d)\n", i, j, rc); 14830 return (1); 14831 } 14832 } 14833 14834 /* create dma map for the spare rx sge mbuf cluster */ 14835 if (bus_dmamap_create(fp->rx_sge_mbuf_tag, 14836 BUS_DMA_NOWAIT, 14837 &fp->rx_sge_mbuf_spare_map)) { 14838 /* XXX unwind and free previous fastpath allocations */ 14839 BLOGE(sc, "Failed to create dma map for " 14840 "'fp %d spare rx sge mbuf' (%d)\n", i, rc); 14841 return (1); 14842 } 14843 14844 /***************************/ 14845 /* FP RX TPA MBUF DMA MAPS */ 14846 /***************************/ 14847 14848 /* create dma maps for the rx tpa mbuf clusters */ 14849 max_agg_queues = MAX_AGG_QS(sc); 14850 14851 for (j = 0; j < max_agg_queues; j++) { 14852 if (bus_dmamap_create(fp->rx_mbuf_tag, 14853 BUS_DMA_NOWAIT, 14854 &fp->rx_tpa_info[j].bd.m_map)) { 14855 /* XXX unwind and free previous fastpath allocations */ 14856 BLOGE(sc, "Failed to create dma map for " 14857 "'fp %d rx tpa mbuf %d' (%d)\n", i, j, rc); 14858 return (1); 14859 } 14860 } 14861 14862 /* create dma map for the spare rx tpa mbuf cluster */ 14863 if (bus_dmamap_create(fp->rx_mbuf_tag, 14864 BUS_DMA_NOWAIT, 14865 &fp->rx_tpa_info_mbuf_spare_map)) { 14866 /* XXX unwind and free previous fastpath allocations */ 14867 BLOGE(sc, "Failed to create dma map for " 14868 "'fp %d spare rx tpa mbuf' (%d)\n", i, rc); 14869 return (1); 14870 } 14871 14872 bxe_init_sge_ring_bit_mask(fp); 14873 } 14874 14875 return (0); 14876 } 14877 14878 static void 14879 bxe_free_hsi_mem(struct bxe_softc *sc) 14880 { 14881 struct bxe_fastpath *fp; 14882 int max_agg_queues; 14883 int i, j; 14884 14885 if (sc->parent_dma_tag == NULL) { 14886 return; /* assume nothing was allocated */ 14887 } 14888 14889 for (i = 0; i < sc->num_queues; i++) { 14890 fp = &sc->fp[i]; 14891 14892 /*******************/ 14893 /* FP STATUS BLOCK */ 14894 /*******************/ 14895 14896 bxe_dma_free(sc, &fp->sb_dma); 14897 memset(&fp->status_block, 0, sizeof(fp->status_block)); 14898 14899 /******************/ 14900 /* FP TX BD CHAIN */ 14901 /******************/ 14902 14903 bxe_dma_free(sc, &fp->tx_dma); 14904 fp->tx_chain = NULL; 14905 14906 /******************/ 14907 /* FP RX BD CHAIN */ 14908 /******************/ 14909 14910 bxe_dma_free(sc, &fp->rx_dma); 14911 fp->rx_chain = NULL; 14912 14913 /*******************/ 14914 /* FP RX RCQ CHAIN */ 14915 /*******************/ 14916 14917 bxe_dma_free(sc, &fp->rcq_dma); 14918 fp->rcq_chain = NULL; 14919 14920 /*******************/ 14921 /* FP RX SGE CHAIN */ 14922 /*******************/ 14923 14924 bxe_dma_free(sc, &fp->rx_sge_dma); 14925 fp->rx_sge_chain = NULL; 14926 14927 /***********************/ 14928 /* FP TX MBUF DMA MAPS */ 14929 /***********************/ 14930 14931 if (fp->tx_mbuf_tag != NULL) { 14932 for (j = 0; j < TX_BD_TOTAL; j++) { 14933 if (fp->tx_mbuf_chain[j].m_map != NULL) { 14934 bus_dmamap_unload(fp->tx_mbuf_tag, 14935 fp->tx_mbuf_chain[j].m_map); 14936 bus_dmamap_destroy(fp->tx_mbuf_tag, 14937 fp->tx_mbuf_chain[j].m_map); 14938 } 14939 } 14940 14941 bus_dma_tag_destroy(fp->tx_mbuf_tag); 14942 fp->tx_mbuf_tag = NULL; 14943 } 14944 14945 /***********************/ 14946 /* FP RX MBUF DMA MAPS */ 14947 /***********************/ 14948 14949 if (fp->rx_mbuf_tag != NULL) { 14950 for (j = 0; j < RX_BD_TOTAL; j++) { 14951 if (fp->rx_mbuf_chain[j].m_map != NULL) { 14952 bus_dmamap_unload(fp->rx_mbuf_tag, 14953 fp->rx_mbuf_chain[j].m_map); 14954 bus_dmamap_destroy(fp->rx_mbuf_tag, 14955 fp->rx_mbuf_chain[j].m_map); 14956 } 14957 } 14958 14959 if (fp->rx_mbuf_spare_map != NULL) { 14960 bus_dmamap_unload(fp->rx_mbuf_tag, fp->rx_mbuf_spare_map); 14961 bus_dmamap_destroy(fp->rx_mbuf_tag, fp->rx_mbuf_spare_map); 14962 } 14963 14964 /***************************/ 14965 /* FP RX TPA MBUF DMA MAPS */ 14966 /***************************/ 14967 14968 max_agg_queues = MAX_AGG_QS(sc); 14969 14970 for (j = 0; j < max_agg_queues; j++) { 14971 if (fp->rx_tpa_info[j].bd.m_map != NULL) { 14972 bus_dmamap_unload(fp->rx_mbuf_tag, 14973 fp->rx_tpa_info[j].bd.m_map); 14974 bus_dmamap_destroy(fp->rx_mbuf_tag, 14975 fp->rx_tpa_info[j].bd.m_map); 14976 } 14977 } 14978 14979 if (fp->rx_tpa_info_mbuf_spare_map != NULL) { 14980 bus_dmamap_unload(fp->rx_mbuf_tag, 14981 fp->rx_tpa_info_mbuf_spare_map); 14982 bus_dmamap_destroy(fp->rx_mbuf_tag, 14983 fp->rx_tpa_info_mbuf_spare_map); 14984 } 14985 14986 bus_dma_tag_destroy(fp->rx_mbuf_tag); 14987 fp->rx_mbuf_tag = NULL; 14988 } 14989 14990 /***************************/ 14991 /* FP RX SGE MBUF DMA MAPS */ 14992 /***************************/ 14993 14994 if (fp->rx_sge_mbuf_tag != NULL) { 14995 for (j = 0; j < RX_SGE_TOTAL; j++) { 14996 if (fp->rx_sge_mbuf_chain[j].m_map != NULL) { 14997 bus_dmamap_unload(fp->rx_sge_mbuf_tag, 14998 fp->rx_sge_mbuf_chain[j].m_map); 14999 bus_dmamap_destroy(fp->rx_sge_mbuf_tag, 15000 fp->rx_sge_mbuf_chain[j].m_map); 15001 } 15002 } 15003 15004 if (fp->rx_sge_mbuf_spare_map != NULL) { 15005 bus_dmamap_unload(fp->rx_sge_mbuf_tag, 15006 fp->rx_sge_mbuf_spare_map); 15007 bus_dmamap_destroy(fp->rx_sge_mbuf_tag, 15008 fp->rx_sge_mbuf_spare_map); 15009 } 15010 15011 bus_dma_tag_destroy(fp->rx_sge_mbuf_tag); 15012 fp->rx_sge_mbuf_tag = NULL; 15013 } 15014 } 15015 15016 /***************************/ 15017 /* FW DECOMPRESSION BUFFER */ 15018 /***************************/ 15019 15020 bxe_dma_free(sc, &sc->gz_buf_dma); 15021 sc->gz_buf = NULL; 15022 free(sc->gz_strm, M_DEVBUF); 15023 sc->gz_strm = NULL; 15024 15025 /*******************/ 15026 /* SLOW PATH QUEUE */ 15027 /*******************/ 15028 15029 bxe_dma_free(sc, &sc->spq_dma); 15030 sc->spq = NULL; 15031 15032 /*************/ 15033 /* SLOW PATH */ 15034 /*************/ 15035 15036 bxe_dma_free(sc, &sc->sp_dma); 15037 sc->sp = NULL; 15038 15039 /***************/ 15040 /* EVENT QUEUE */ 15041 /***************/ 15042 15043 bxe_dma_free(sc, &sc->eq_dma); 15044 sc->eq = NULL; 15045 15046 /************************/ 15047 /* DEFAULT STATUS BLOCK */ 15048 /************************/ 15049 15050 bxe_dma_free(sc, &sc->def_sb_dma); 15051 sc->def_sb = NULL; 15052 15053 bus_dma_tag_destroy(sc->parent_dma_tag); 15054 sc->parent_dma_tag = NULL; 15055 } 15056 15057 /* 15058 * Previous driver DMAE transaction may have occurred when pre-boot stage 15059 * ended and boot began. This would invalidate the addresses of the 15060 * transaction, resulting in was-error bit set in the PCI causing all 15061 * hw-to-host PCIe transactions to timeout. If this happened we want to clear 15062 * the interrupt which detected this from the pglueb and the was-done bit 15063 */ 15064 static void 15065 bxe_prev_interrupted_dmae(struct bxe_softc *sc) 15066 { 15067 uint32_t val; 15068 15069 if (!CHIP_IS_E1x(sc)) { 15070 val = REG_RD(sc, PGLUE_B_REG_PGLUE_B_INT_STS); 15071 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN) { 15072 BLOGD(sc, DBG_LOAD, 15073 "Clearing 'was-error' bit that was set in pglueb"); 15074 REG_WR(sc, PGLUE_B_REG_WAS_ERROR_PF_7_0_CLR, 1 << SC_FUNC(sc)); 15075 } 15076 } 15077 } 15078 15079 static int 15080 bxe_prev_mcp_done(struct bxe_softc *sc) 15081 { 15082 uint32_t rc = bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_DONE, 15083 DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET); 15084 if (!rc) { 15085 BLOGE(sc, "MCP response failure, aborting\n"); 15086 return (-1); 15087 } 15088 15089 return (0); 15090 } 15091 15092 static struct bxe_prev_list_node * 15093 bxe_prev_path_get_entry(struct bxe_softc *sc) 15094 { 15095 struct bxe_prev_list_node *tmp; 15096 15097 LIST_FOREACH(tmp, &bxe_prev_list, node) { 15098 if ((sc->pcie_bus == tmp->bus) && 15099 (sc->pcie_device == tmp->slot) && 15100 (SC_PATH(sc) == tmp->path)) { 15101 return (tmp); 15102 } 15103 } 15104 15105 return (NULL); 15106 } 15107 15108 static uint8_t 15109 bxe_prev_is_path_marked(struct bxe_softc *sc) 15110 { 15111 struct bxe_prev_list_node *tmp; 15112 int rc = FALSE; 15113 15114 mtx_lock(&bxe_prev_mtx); 15115 15116 tmp = bxe_prev_path_get_entry(sc); 15117 if (tmp) { 15118 if (tmp->aer) { 15119 BLOGD(sc, DBG_LOAD, 15120 "Path %d/%d/%d was marked by AER\n", 15121 sc->pcie_bus, sc->pcie_device, SC_PATH(sc)); 15122 } else { 15123 rc = TRUE; 15124 BLOGD(sc, DBG_LOAD, 15125 "Path %d/%d/%d was already cleaned from previous drivers\n", 15126 sc->pcie_bus, sc->pcie_device, SC_PATH(sc)); 15127 } 15128 } 15129 15130 mtx_unlock(&bxe_prev_mtx); 15131 15132 return (rc); 15133 } 15134 15135 static int 15136 bxe_prev_mark_path(struct bxe_softc *sc, 15137 uint8_t after_undi) 15138 { 15139 struct bxe_prev_list_node *tmp; 15140 15141 mtx_lock(&bxe_prev_mtx); 15142 15143 /* Check whether the entry for this path already exists */ 15144 tmp = bxe_prev_path_get_entry(sc); 15145 if (tmp) { 15146 if (!tmp->aer) { 15147 BLOGD(sc, DBG_LOAD, 15148 "Re-marking AER in path %d/%d/%d\n", 15149 sc->pcie_bus, sc->pcie_device, SC_PATH(sc)); 15150 } else { 15151 BLOGD(sc, DBG_LOAD, 15152 "Removing AER indication from path %d/%d/%d\n", 15153 sc->pcie_bus, sc->pcie_device, SC_PATH(sc)); 15154 tmp->aer = 0; 15155 } 15156 15157 mtx_unlock(&bxe_prev_mtx); 15158 return (0); 15159 } 15160 15161 mtx_unlock(&bxe_prev_mtx); 15162 15163 /* Create an entry for this path and add it */ 15164 tmp = malloc(sizeof(struct bxe_prev_list_node), M_DEVBUF, 15165 (M_NOWAIT | M_ZERO)); 15166 if (!tmp) { 15167 BLOGE(sc, "Failed to allocate 'bxe_prev_list_node'\n"); 15168 return (-1); 15169 } 15170 15171 tmp->bus = sc->pcie_bus; 15172 tmp->slot = sc->pcie_device; 15173 tmp->path = SC_PATH(sc); 15174 tmp->aer = 0; 15175 tmp->undi = after_undi ? (1 << SC_PORT(sc)) : 0; 15176 15177 mtx_lock(&bxe_prev_mtx); 15178 15179 BLOGD(sc, DBG_LOAD, 15180 "Marked path %d/%d/%d - finished previous unload\n", 15181 sc->pcie_bus, sc->pcie_device, SC_PATH(sc)); 15182 LIST_INSERT_HEAD(&bxe_prev_list, tmp, node); 15183 15184 mtx_unlock(&bxe_prev_mtx); 15185 15186 return (0); 15187 } 15188 15189 static int 15190 bxe_do_flr(struct bxe_softc *sc) 15191 { 15192 int i; 15193 15194 /* only E2 and onwards support FLR */ 15195 if (CHIP_IS_E1x(sc)) { 15196 BLOGD(sc, DBG_LOAD, "FLR not supported in E1/E1H\n"); 15197 return (-1); 15198 } 15199 15200 /* only bootcode REQ_BC_VER_4_INITIATE_FLR and onwards support flr */ 15201 if (sc->devinfo.bc_ver < REQ_BC_VER_4_INITIATE_FLR) { 15202 BLOGD(sc, DBG_LOAD, "FLR not supported by BC_VER: 0x%08x\n", 15203 sc->devinfo.bc_ver); 15204 return (-1); 15205 } 15206 15207 /* Wait for Transaction Pending bit clean */ 15208 for (i = 0; i < 4; i++) { 15209 if (i) { 15210 DELAY(((1 << (i - 1)) * 100) * 1000); 15211 } 15212 15213 if (!bxe_is_pcie_pending(sc)) { 15214 goto clear; 15215 } 15216 } 15217 15218 BLOGE(sc, "PCIE transaction is not cleared, " 15219 "proceeding with reset anyway\n"); 15220 15221 clear: 15222 15223 BLOGD(sc, DBG_LOAD, "Initiating FLR\n"); 15224 bxe_fw_command(sc, DRV_MSG_CODE_INITIATE_FLR, 0); 15225 15226 return (0); 15227 } 15228 15229 struct bxe_mac_vals { 15230 uint32_t xmac_addr; 15231 uint32_t xmac_val; 15232 uint32_t emac_addr; 15233 uint32_t emac_val; 15234 uint32_t umac_addr; 15235 uint32_t umac_val; 15236 uint32_t bmac_addr; 15237 uint32_t bmac_val[2]; 15238 }; 15239 15240 static void 15241 bxe_prev_unload_close_mac(struct bxe_softc *sc, 15242 struct bxe_mac_vals *vals) 15243 { 15244 uint32_t val, base_addr, offset, mask, reset_reg; 15245 uint8_t mac_stopped = FALSE; 15246 uint8_t port = SC_PORT(sc); 15247 uint32_t wb_data[2]; 15248 15249 /* reset addresses as they also mark which values were changed */ 15250 vals->bmac_addr = 0; 15251 vals->umac_addr = 0; 15252 vals->xmac_addr = 0; 15253 vals->emac_addr = 0; 15254 15255 reset_reg = REG_RD(sc, MISC_REG_RESET_REG_2); 15256 15257 if (!CHIP_IS_E3(sc)) { 15258 val = REG_RD(sc, NIG_REG_BMAC0_REGS_OUT_EN + port * 4); 15259 mask = MISC_REGISTERS_RESET_REG_2_RST_BMAC0 << port; 15260 if ((mask & reset_reg) && val) { 15261 BLOGD(sc, DBG_LOAD, "Disable BMAC Rx\n"); 15262 base_addr = SC_PORT(sc) ? NIG_REG_INGRESS_BMAC1_MEM 15263 : NIG_REG_INGRESS_BMAC0_MEM; 15264 offset = CHIP_IS_E2(sc) ? BIGMAC2_REGISTER_BMAC_CONTROL 15265 : BIGMAC_REGISTER_BMAC_CONTROL; 15266 15267 /* 15268 * use rd/wr since we cannot use dmae. This is safe 15269 * since MCP won't access the bus due to the request 15270 * to unload, and no function on the path can be 15271 * loaded at this time. 15272 */ 15273 wb_data[0] = REG_RD(sc, base_addr + offset); 15274 wb_data[1] = REG_RD(sc, base_addr + offset + 0x4); 15275 vals->bmac_addr = base_addr + offset; 15276 vals->bmac_val[0] = wb_data[0]; 15277 vals->bmac_val[1] = wb_data[1]; 15278 wb_data[0] &= ~ELINK_BMAC_CONTROL_RX_ENABLE; 15279 REG_WR(sc, vals->bmac_addr, wb_data[0]); 15280 REG_WR(sc, vals->bmac_addr + 0x4, wb_data[1]); 15281 } 15282 15283 BLOGD(sc, DBG_LOAD, "Disable EMAC Rx\n"); 15284 vals->emac_addr = NIG_REG_NIG_EMAC0_EN + SC_PORT(sc)*4; 15285 vals->emac_val = REG_RD(sc, vals->emac_addr); 15286 REG_WR(sc, vals->emac_addr, 0); 15287 mac_stopped = TRUE; 15288 } else { 15289 if (reset_reg & MISC_REGISTERS_RESET_REG_2_XMAC) { 15290 BLOGD(sc, DBG_LOAD, "Disable XMAC Rx\n"); 15291 base_addr = SC_PORT(sc) ? GRCBASE_XMAC1 : GRCBASE_XMAC0; 15292 val = REG_RD(sc, base_addr + XMAC_REG_PFC_CTRL_HI); 15293 REG_WR(sc, base_addr + XMAC_REG_PFC_CTRL_HI, val & ~(1 << 1)); 15294 REG_WR(sc, base_addr + XMAC_REG_PFC_CTRL_HI, val | (1 << 1)); 15295 vals->xmac_addr = base_addr + XMAC_REG_CTRL; 15296 vals->xmac_val = REG_RD(sc, vals->xmac_addr); 15297 REG_WR(sc, vals->xmac_addr, 0); 15298 mac_stopped = TRUE; 15299 } 15300 15301 mask = MISC_REGISTERS_RESET_REG_2_UMAC0 << port; 15302 if (mask & reset_reg) { 15303 BLOGD(sc, DBG_LOAD, "Disable UMAC Rx\n"); 15304 base_addr = SC_PORT(sc) ? GRCBASE_UMAC1 : GRCBASE_UMAC0; 15305 vals->umac_addr = base_addr + UMAC_REG_COMMAND_CONFIG; 15306 vals->umac_val = REG_RD(sc, vals->umac_addr); 15307 REG_WR(sc, vals->umac_addr, 0); 15308 mac_stopped = TRUE; 15309 } 15310 } 15311 15312 if (mac_stopped) { 15313 DELAY(20000); 15314 } 15315 } 15316 15317 #define BXE_PREV_UNDI_PROD_ADDR(p) (BAR_TSTRORM_INTMEM + 0x1508 + ((p) << 4)) 15318 #define BXE_PREV_UNDI_RCQ(val) ((val) & 0xffff) 15319 #define BXE_PREV_UNDI_BD(val) ((val) >> 16 & 0xffff) 15320 #define BXE_PREV_UNDI_PROD(rcq, bd) ((bd) << 16 | (rcq)) 15321 15322 static void 15323 bxe_prev_unload_undi_inc(struct bxe_softc *sc, 15324 uint8_t port, 15325 uint8_t inc) 15326 { 15327 uint16_t rcq, bd; 15328 uint32_t tmp_reg = REG_RD(sc, BXE_PREV_UNDI_PROD_ADDR(port)); 15329 15330 rcq = BXE_PREV_UNDI_RCQ(tmp_reg) + inc; 15331 bd = BXE_PREV_UNDI_BD(tmp_reg) + inc; 15332 15333 tmp_reg = BXE_PREV_UNDI_PROD(rcq, bd); 15334 REG_WR(sc, BXE_PREV_UNDI_PROD_ADDR(port), tmp_reg); 15335 15336 BLOGD(sc, DBG_LOAD, 15337 "UNDI producer [%d] rings bd -> 0x%04x, rcq -> 0x%04x\n", 15338 port, bd, rcq); 15339 } 15340 15341 static int 15342 bxe_prev_unload_common(struct bxe_softc *sc) 15343 { 15344 uint32_t reset_reg, tmp_reg = 0, rc; 15345 uint8_t prev_undi = FALSE; 15346 struct bxe_mac_vals mac_vals; 15347 uint32_t timer_count = 1000; 15348 uint32_t prev_brb; 15349 15350 /* 15351 * It is possible a previous function received 'common' answer, 15352 * but hasn't loaded yet, therefore creating a scenario of 15353 * multiple functions receiving 'common' on the same path. 15354 */ 15355 BLOGD(sc, DBG_LOAD, "Common unload Flow\n"); 15356 15357 memset(&mac_vals, 0, sizeof(mac_vals)); 15358 15359 if (bxe_prev_is_path_marked(sc)) { 15360 return (bxe_prev_mcp_done(sc)); 15361 } 15362 15363 reset_reg = REG_RD(sc, MISC_REG_RESET_REG_1); 15364 15365 /* Reset should be performed after BRB is emptied */ 15366 if (reset_reg & MISC_REGISTERS_RESET_REG_1_RST_BRB1) { 15367 /* Close the MAC Rx to prevent BRB from filling up */ 15368 bxe_prev_unload_close_mac(sc, &mac_vals); 15369 15370 /* close LLH filters towards the BRB */ 15371 elink_set_rx_filter(&sc->link_params, 0); 15372 15373 /* 15374 * Check if the UNDI driver was previously loaded. 15375 * UNDI driver initializes CID offset for normal bell to 0x7 15376 */ 15377 if (reset_reg & MISC_REGISTERS_RESET_REG_1_RST_DORQ) { 15378 tmp_reg = REG_RD(sc, DORQ_REG_NORM_CID_OFST); 15379 if (tmp_reg == 0x7) { 15380 BLOGD(sc, DBG_LOAD, "UNDI previously loaded\n"); 15381 prev_undi = TRUE; 15382 /* clear the UNDI indication */ 15383 REG_WR(sc, DORQ_REG_NORM_CID_OFST, 0); 15384 /* clear possible idle check errors */ 15385 REG_RD(sc, NIG_REG_NIG_INT_STS_CLR_0); 15386 } 15387 } 15388 15389 /* wait until BRB is empty */ 15390 tmp_reg = REG_RD(sc, BRB1_REG_NUM_OF_FULL_BLOCKS); 15391 while (timer_count) { 15392 prev_brb = tmp_reg; 15393 15394 tmp_reg = REG_RD(sc, BRB1_REG_NUM_OF_FULL_BLOCKS); 15395 if (!tmp_reg) { 15396 break; 15397 } 15398 15399 BLOGD(sc, DBG_LOAD, "BRB still has 0x%08x\n", tmp_reg); 15400 15401 /* reset timer as long as BRB actually gets emptied */ 15402 if (prev_brb > tmp_reg) { 15403 timer_count = 1000; 15404 } else { 15405 timer_count--; 15406 } 15407 15408 /* If UNDI resides in memory, manually increment it */ 15409 if (prev_undi) { 15410 bxe_prev_unload_undi_inc(sc, SC_PORT(sc), 1); 15411 } 15412 15413 DELAY(10); 15414 } 15415 15416 if (!timer_count) { 15417 BLOGE(sc, "Failed to empty BRB\n"); 15418 } 15419 } 15420 15421 /* No packets are in the pipeline, path is ready for reset */ 15422 bxe_reset_common(sc); 15423 15424 if (mac_vals.xmac_addr) { 15425 REG_WR(sc, mac_vals.xmac_addr, mac_vals.xmac_val); 15426 } 15427 if (mac_vals.umac_addr) { 15428 REG_WR(sc, mac_vals.umac_addr, mac_vals.umac_val); 15429 } 15430 if (mac_vals.emac_addr) { 15431 REG_WR(sc, mac_vals.emac_addr, mac_vals.emac_val); 15432 } 15433 if (mac_vals.bmac_addr) { 15434 REG_WR(sc, mac_vals.bmac_addr, mac_vals.bmac_val[0]); 15435 REG_WR(sc, mac_vals.bmac_addr + 4, mac_vals.bmac_val[1]); 15436 } 15437 15438 rc = bxe_prev_mark_path(sc, prev_undi); 15439 if (rc) { 15440 bxe_prev_mcp_done(sc); 15441 return (rc); 15442 } 15443 15444 return (bxe_prev_mcp_done(sc)); 15445 } 15446 15447 static int 15448 bxe_prev_unload_uncommon(struct bxe_softc *sc) 15449 { 15450 int rc; 15451 15452 BLOGD(sc, DBG_LOAD, "Uncommon unload Flow\n"); 15453 15454 /* Test if previous unload process was already finished for this path */ 15455 if (bxe_prev_is_path_marked(sc)) { 15456 return (bxe_prev_mcp_done(sc)); 15457 } 15458 15459 BLOGD(sc, DBG_LOAD, "Path is unmarked\n"); 15460 15461 /* 15462 * If function has FLR capabilities, and existing FW version matches 15463 * the one required, then FLR will be sufficient to clean any residue 15464 * left by previous driver 15465 */ 15466 rc = bxe_nic_load_analyze_req(sc, FW_MSG_CODE_DRV_LOAD_FUNCTION); 15467 if (!rc) { 15468 /* fw version is good */ 15469 BLOGD(sc, DBG_LOAD, "FW version matches our own, attempting FLR\n"); 15470 rc = bxe_do_flr(sc); 15471 } 15472 15473 if (!rc) { 15474 /* FLR was performed */ 15475 BLOGD(sc, DBG_LOAD, "FLR successful\n"); 15476 return (0); 15477 } 15478 15479 BLOGD(sc, DBG_LOAD, "Could not FLR\n"); 15480 15481 /* Close the MCP request, return failure*/ 15482 rc = bxe_prev_mcp_done(sc); 15483 if (!rc) { 15484 rc = BXE_PREV_WAIT_NEEDED; 15485 } 15486 15487 return (rc); 15488 } 15489 15490 static int 15491 bxe_prev_unload(struct bxe_softc *sc) 15492 { 15493 int time_counter = 10; 15494 uint32_t fw, hw_lock_reg, hw_lock_val; 15495 uint32_t rc = 0; 15496 15497 /* 15498 * Clear HW from errors which may have resulted from an interrupted 15499 * DMAE transaction. 15500 */ 15501 bxe_prev_interrupted_dmae(sc); 15502 15503 /* Release previously held locks */ 15504 hw_lock_reg = 15505 (SC_FUNC(sc) <= 5) ? 15506 (MISC_REG_DRIVER_CONTROL_1 + SC_FUNC(sc) * 8) : 15507 (MISC_REG_DRIVER_CONTROL_7 + (SC_FUNC(sc) - 6) * 8); 15508 15509 hw_lock_val = (REG_RD(sc, hw_lock_reg)); 15510 if (hw_lock_val) { 15511 if (hw_lock_val & HW_LOCK_RESOURCE_NVRAM) { 15512 BLOGD(sc, DBG_LOAD, "Releasing previously held NVRAM lock\n"); 15513 REG_WR(sc, MCP_REG_MCPR_NVM_SW_ARB, 15514 (MCPR_NVM_SW_ARB_ARB_REQ_CLR1 << SC_PORT(sc))); 15515 } 15516 BLOGD(sc, DBG_LOAD, "Releasing previously held HW lock\n"); 15517 REG_WR(sc, hw_lock_reg, 0xffffffff); 15518 } else { 15519 BLOGD(sc, DBG_LOAD, "No need to release HW/NVRAM locks\n"); 15520 } 15521 15522 if (MCPR_ACCESS_LOCK_LOCK & REG_RD(sc, MCP_REG_MCPR_ACCESS_LOCK)) { 15523 BLOGD(sc, DBG_LOAD, "Releasing previously held ALR\n"); 15524 REG_WR(sc, MCP_REG_MCPR_ACCESS_LOCK, 0); 15525 } 15526 15527 do { 15528 /* Lock MCP using an unload request */ 15529 fw = bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS, 0); 15530 if (!fw) { 15531 BLOGE(sc, "MCP response failure, aborting\n"); 15532 rc = -1; 15533 break; 15534 } 15535 15536 if (fw == FW_MSG_CODE_DRV_UNLOAD_COMMON) { 15537 rc = bxe_prev_unload_common(sc); 15538 break; 15539 } 15540 15541 /* non-common reply from MCP night require looping */ 15542 rc = bxe_prev_unload_uncommon(sc); 15543 if (rc != BXE_PREV_WAIT_NEEDED) { 15544 break; 15545 } 15546 15547 DELAY(20000); 15548 } while (--time_counter); 15549 15550 if (!time_counter || rc) { 15551 BLOGE(sc, "Failed to unload previous driver!" 15552 " time_counter %d rc %d\n", time_counter, rc); 15553 rc = -1; 15554 } 15555 15556 return (rc); 15557 } 15558 15559 void 15560 bxe_dcbx_set_state(struct bxe_softc *sc, 15561 uint8_t dcb_on, 15562 uint32_t dcbx_enabled) 15563 { 15564 if (!CHIP_IS_E1x(sc)) { 15565 sc->dcb_state = dcb_on; 15566 sc->dcbx_enabled = dcbx_enabled; 15567 } else { 15568 sc->dcb_state = FALSE; 15569 sc->dcbx_enabled = BXE_DCBX_ENABLED_INVALID; 15570 } 15571 BLOGD(sc, DBG_LOAD, 15572 "DCB state [%s:%s]\n", 15573 dcb_on ? "ON" : "OFF", 15574 (dcbx_enabled == BXE_DCBX_ENABLED_OFF) ? "user-mode" : 15575 (dcbx_enabled == BXE_DCBX_ENABLED_ON_NEG_OFF) ? "on-chip static" : 15576 (dcbx_enabled == BXE_DCBX_ENABLED_ON_NEG_ON) ? 15577 "on-chip with negotiation" : "invalid"); 15578 } 15579 15580 /* must be called after sriov-enable */ 15581 static int 15582 bxe_set_qm_cid_count(struct bxe_softc *sc) 15583 { 15584 int cid_count = BXE_L2_MAX_CID(sc); 15585 15586 if (IS_SRIOV(sc)) { 15587 cid_count += BXE_VF_CIDS; 15588 } 15589 15590 if (CNIC_SUPPORT(sc)) { 15591 cid_count += CNIC_CID_MAX; 15592 } 15593 15594 return (roundup(cid_count, QM_CID_ROUND)); 15595 } 15596 15597 static void 15598 bxe_init_multi_cos(struct bxe_softc *sc) 15599 { 15600 int pri, cos; 15601 15602 uint32_t pri_map = 0; /* XXX change to user config */ 15603 15604 for (pri = 0; pri < BXE_MAX_PRIORITY; pri++) { 15605 cos = ((pri_map & (0xf << (pri * 4))) >> (pri * 4)); 15606 if (cos < sc->max_cos) { 15607 sc->prio_to_cos[pri] = cos; 15608 } else { 15609 BLOGW(sc, "Invalid COS %d for priority %d " 15610 "(max COS is %d), setting to 0\n", 15611 cos, pri, (sc->max_cos - 1)); 15612 sc->prio_to_cos[pri] = 0; 15613 } 15614 } 15615 } 15616 15617 static int 15618 bxe_sysctl_state(SYSCTL_HANDLER_ARGS) 15619 { 15620 struct bxe_softc *sc; 15621 int error, result; 15622 15623 result = 0; 15624 error = sysctl_handle_int(oidp, &result, 0, req); 15625 15626 if (error || !req->newptr) { 15627 return (error); 15628 } 15629 15630 if (result == 1) { 15631 uint32_t temp; 15632 sc = (struct bxe_softc *)arg1; 15633 15634 BLOGI(sc, "... dumping driver state ...\n"); 15635 temp = SHMEM2_RD(sc, temperature_in_half_celsius); 15636 BLOGI(sc, "\t Device Temperature = %d Celsius\n", (temp/2)); 15637 } 15638 15639 return (error); 15640 } 15641 15642 static int 15643 bxe_sysctl_eth_stat(SYSCTL_HANDLER_ARGS) 15644 { 15645 struct bxe_softc *sc = (struct bxe_softc *)arg1; 15646 uint32_t *eth_stats = (uint32_t *)&sc->eth_stats; 15647 uint32_t *offset; 15648 uint64_t value = 0; 15649 int index = (int)arg2; 15650 15651 if (index >= BXE_NUM_ETH_STATS) { 15652 BLOGE(sc, "bxe_eth_stats index out of range (%d)\n", index); 15653 return (-1); 15654 } 15655 15656 offset = (eth_stats + bxe_eth_stats_arr[index].offset); 15657 15658 switch (bxe_eth_stats_arr[index].size) { 15659 case 4: 15660 value = (uint64_t)*offset; 15661 break; 15662 case 8: 15663 value = HILO_U64(*offset, *(offset + 1)); 15664 break; 15665 default: 15666 BLOGE(sc, "Invalid bxe_eth_stats size (index=%d size=%d)\n", 15667 index, bxe_eth_stats_arr[index].size); 15668 return (-1); 15669 } 15670 15671 return (sysctl_handle_64(oidp, &value, 0, req)); 15672 } 15673 15674 static int 15675 bxe_sysctl_eth_q_stat(SYSCTL_HANDLER_ARGS) 15676 { 15677 struct bxe_softc *sc = (struct bxe_softc *)arg1; 15678 uint32_t *eth_stats; 15679 uint32_t *offset; 15680 uint64_t value = 0; 15681 uint32_t q_stat = (uint32_t)arg2; 15682 uint32_t fp_index = ((q_stat >> 16) & 0xffff); 15683 uint32_t index = (q_stat & 0xffff); 15684 15685 eth_stats = (uint32_t *)&sc->fp[fp_index].eth_q_stats; 15686 15687 if (index >= BXE_NUM_ETH_Q_STATS) { 15688 BLOGE(sc, "bxe_eth_q_stats index out of range (%d)\n", index); 15689 return (-1); 15690 } 15691 15692 offset = (eth_stats + bxe_eth_q_stats_arr[index].offset); 15693 15694 switch (bxe_eth_q_stats_arr[index].size) { 15695 case 4: 15696 value = (uint64_t)*offset; 15697 break; 15698 case 8: 15699 value = HILO_U64(*offset, *(offset + 1)); 15700 break; 15701 default: 15702 BLOGE(sc, "Invalid bxe_eth_q_stats size (index=%d size=%d)\n", 15703 index, bxe_eth_q_stats_arr[index].size); 15704 return (-1); 15705 } 15706 15707 return (sysctl_handle_64(oidp, &value, 0, req)); 15708 } 15709 15710 static void 15711 bxe_add_sysctls(struct bxe_softc *sc) 15712 { 15713 struct sysctl_ctx_list *ctx; 15714 struct sysctl_oid_list *children; 15715 struct sysctl_oid *queue_top, *queue; 15716 struct sysctl_oid_list *queue_top_children, *queue_children; 15717 char queue_num_buf[32]; 15718 uint32_t q_stat; 15719 int i, j; 15720 15721 ctx = device_get_sysctl_ctx(sc->dev); 15722 children = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev)); 15723 15724 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "version", 15725 CTLFLAG_RD, BXE_DRIVER_VERSION, 0, 15726 "version"); 15727 15728 snprintf(sc->fw_ver_str, sizeof(sc->fw_ver_str), "%d.%d.%d.%d", 15729 BCM_5710_FW_MAJOR_VERSION, 15730 BCM_5710_FW_MINOR_VERSION, 15731 BCM_5710_FW_REVISION_VERSION, 15732 BCM_5710_FW_ENGINEERING_VERSION); 15733 15734 snprintf(sc->mf_mode_str, sizeof(sc->mf_mode_str), "%s", 15735 ((sc->devinfo.mf_info.mf_mode == SINGLE_FUNCTION) ? "Single" : 15736 (sc->devinfo.mf_info.mf_mode == MULTI_FUNCTION_SD) ? "MF-SD" : 15737 (sc->devinfo.mf_info.mf_mode == MULTI_FUNCTION_SI) ? "MF-SI" : 15738 (sc->devinfo.mf_info.mf_mode == MULTI_FUNCTION_AFEX) ? "MF-AFEX" : 15739 "Unknown")); 15740 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "mf_vnics", 15741 CTLFLAG_RD, &sc->devinfo.mf_info.vnics_per_port, 0, 15742 "multifunction vnics per port"); 15743 15744 snprintf(sc->pci_link_str, sizeof(sc->pci_link_str), "%s x%d", 15745 ((sc->devinfo.pcie_link_speed == 1) ? "2.5GT/s" : 15746 (sc->devinfo.pcie_link_speed == 2) ? "5.0GT/s" : 15747 (sc->devinfo.pcie_link_speed == 4) ? "8.0GT/s" : 15748 "???GT/s"), 15749 sc->devinfo.pcie_link_width); 15750 15751 sc->debug = bxe_debug; 15752 15753 #if __FreeBSD_version >= 900000 15754 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "bc_version", 15755 CTLFLAG_RD, sc->devinfo.bc_ver_str, 0, 15756 "bootcode version"); 15757 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "fw_version", 15758 CTLFLAG_RD, sc->fw_ver_str, 0, 15759 "firmware version"); 15760 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "mf_mode", 15761 CTLFLAG_RD, sc->mf_mode_str, 0, 15762 "multifunction mode"); 15763 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "mac_addr", 15764 CTLFLAG_RD, sc->mac_addr_str, 0, 15765 "mac address"); 15766 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "pci_link", 15767 CTLFLAG_RD, sc->pci_link_str, 0, 15768 "pci link status"); 15769 SYSCTL_ADD_ULONG(ctx, children, OID_AUTO, "debug", 15770 CTLFLAG_RW, &sc->debug, 15771 "debug logging mode"); 15772 #else 15773 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "bc_version", 15774 CTLFLAG_RD, &sc->devinfo.bc_ver_str, 0, 15775 "bootcode version"); 15776 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "fw_version", 15777 CTLFLAG_RD, &sc->fw_ver_str, 0, 15778 "firmware version"); 15779 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "mf_mode", 15780 CTLFLAG_RD, &sc->mf_mode_str, 0, 15781 "multifunction mode"); 15782 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "mac_addr", 15783 CTLFLAG_RD, &sc->mac_addr_str, 0, 15784 "mac address"); 15785 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "pci_link", 15786 CTLFLAG_RD, &sc->pci_link_str, 0, 15787 "pci link status"); 15788 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "debug", 15789 CTLFLAG_RW, &sc->debug, 0, 15790 "debug logging mode"); 15791 #endif /* #if __FreeBSD_version >= 900000 */ 15792 15793 sc->trigger_grcdump = 0; 15794 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "trigger_grcdump", 15795 CTLFLAG_RW, &sc->trigger_grcdump, 0, 15796 "trigger grcdump should be invoked" 15797 " before collecting grcdump"); 15798 15799 sc->grcdump_started = 0; 15800 sc->grcdump_done = 0; 15801 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "grcdump_done", 15802 CTLFLAG_RD, &sc->grcdump_done, 0, 15803 "set by driver when grcdump is done"); 15804 15805 sc->rx_budget = bxe_rx_budget; 15806 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "rx_budget", 15807 CTLFLAG_RW, &sc->rx_budget, 0, 15808 "rx processing budget"); 15809 15810 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "state", 15811 CTLTYPE_UINT | CTLFLAG_RW, sc, 0, 15812 bxe_sysctl_state, "IU", "dump driver state"); 15813 15814 for (i = 0; i < BXE_NUM_ETH_STATS; i++) { 15815 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, 15816 bxe_eth_stats_arr[i].string, 15817 CTLTYPE_U64 | CTLFLAG_RD, sc, i, 15818 bxe_sysctl_eth_stat, "LU", 15819 bxe_eth_stats_arr[i].string); 15820 } 15821 15822 /* add a new parent node for all queues "dev.bxe.#.queue" */ 15823 queue_top = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "queue", 15824 CTLFLAG_RD, NULL, "queue"); 15825 queue_top_children = SYSCTL_CHILDREN(queue_top); 15826 15827 for (i = 0; i < sc->num_queues; i++) { 15828 /* add a new parent node for a single queue "dev.bxe.#.queue.#" */ 15829 snprintf(queue_num_buf, sizeof(queue_num_buf), "%d", i); 15830 queue = SYSCTL_ADD_NODE(ctx, queue_top_children, OID_AUTO, 15831 queue_num_buf, CTLFLAG_RD, NULL, 15832 "single queue"); 15833 queue_children = SYSCTL_CHILDREN(queue); 15834 15835 for (j = 0; j < BXE_NUM_ETH_Q_STATS; j++) { 15836 q_stat = ((i << 16) | j); 15837 SYSCTL_ADD_PROC(ctx, queue_children, OID_AUTO, 15838 bxe_eth_q_stats_arr[j].string, 15839 CTLTYPE_U64 | CTLFLAG_RD, sc, q_stat, 15840 bxe_sysctl_eth_q_stat, "LU", 15841 bxe_eth_q_stats_arr[j].string); 15842 } 15843 } 15844 } 15845 15846 static int 15847 bxe_alloc_buf_rings(struct bxe_softc *sc) 15848 { 15849 #if __FreeBSD_version >= 800000 15850 15851 int i; 15852 struct bxe_fastpath *fp; 15853 15854 for (i = 0; i < sc->num_queues; i++) { 15855 15856 fp = &sc->fp[i]; 15857 15858 fp->tx_br = buf_ring_alloc(BXE_BR_SIZE, M_DEVBUF, 15859 M_NOWAIT, &fp->tx_mtx); 15860 if (fp->tx_br == NULL) 15861 return (-1); 15862 } 15863 #endif 15864 return (0); 15865 } 15866 15867 static void 15868 bxe_free_buf_rings(struct bxe_softc *sc) 15869 { 15870 #if __FreeBSD_version >= 800000 15871 15872 int i; 15873 struct bxe_fastpath *fp; 15874 15875 for (i = 0; i < sc->num_queues; i++) { 15876 15877 fp = &sc->fp[i]; 15878 15879 if (fp->tx_br) { 15880 buf_ring_free(fp->tx_br, M_DEVBUF); 15881 fp->tx_br = NULL; 15882 } 15883 } 15884 15885 #endif 15886 } 15887 15888 static void 15889 bxe_init_fp_mutexs(struct bxe_softc *sc) 15890 { 15891 int i; 15892 struct bxe_fastpath *fp; 15893 15894 for (i = 0; i < sc->num_queues; i++) { 15895 15896 fp = &sc->fp[i]; 15897 15898 snprintf(fp->tx_mtx_name, sizeof(fp->tx_mtx_name), 15899 "bxe%d_fp%d_tx_lock", sc->unit, i); 15900 mtx_init(&fp->tx_mtx, fp->tx_mtx_name, NULL, MTX_DEF); 15901 15902 snprintf(fp->rx_mtx_name, sizeof(fp->rx_mtx_name), 15903 "bxe%d_fp%d_rx_lock", sc->unit, i); 15904 mtx_init(&fp->rx_mtx, fp->rx_mtx_name, NULL, MTX_DEF); 15905 } 15906 } 15907 15908 static void 15909 bxe_destroy_fp_mutexs(struct bxe_softc *sc) 15910 { 15911 int i; 15912 struct bxe_fastpath *fp; 15913 15914 for (i = 0; i < sc->num_queues; i++) { 15915 15916 fp = &sc->fp[i]; 15917 15918 if (mtx_initialized(&fp->tx_mtx)) { 15919 mtx_destroy(&fp->tx_mtx); 15920 } 15921 15922 if (mtx_initialized(&fp->rx_mtx)) { 15923 mtx_destroy(&fp->rx_mtx); 15924 } 15925 } 15926 } 15927 15928 15929 /* 15930 * Device attach function. 15931 * 15932 * Allocates device resources, performs secondary chip identification, and 15933 * initializes driver instance variables. This function is called from driver 15934 * load after a successful probe. 15935 * 15936 * Returns: 15937 * 0 = Success, >0 = Failure 15938 */ 15939 static int 15940 bxe_attach(device_t dev) 15941 { 15942 struct bxe_softc *sc; 15943 15944 sc = device_get_softc(dev); 15945 15946 BLOGD(sc, DBG_LOAD, "Starting attach...\n"); 15947 15948 sc->state = BXE_STATE_CLOSED; 15949 15950 sc->dev = dev; 15951 sc->unit = device_get_unit(dev); 15952 15953 BLOGD(sc, DBG_LOAD, "softc = %p\n", sc); 15954 15955 sc->pcie_bus = pci_get_bus(dev); 15956 sc->pcie_device = pci_get_slot(dev); 15957 sc->pcie_func = pci_get_function(dev); 15958 15959 /* enable bus master capability */ 15960 pci_enable_busmaster(dev); 15961 15962 /* get the BARs */ 15963 if (bxe_allocate_bars(sc) != 0) { 15964 return (ENXIO); 15965 } 15966 15967 /* initialize the mutexes */ 15968 bxe_init_mutexes(sc); 15969 15970 /* prepare the periodic callout */ 15971 callout_init(&sc->periodic_callout, 0); 15972 15973 /* prepare the chip taskqueue */ 15974 sc->chip_tq_flags = CHIP_TQ_NONE; 15975 snprintf(sc->chip_tq_name, sizeof(sc->chip_tq_name), 15976 "bxe%d_chip_tq", sc->unit); 15977 TASK_INIT(&sc->chip_tq_task, 0, bxe_handle_chip_tq, sc); 15978 sc->chip_tq = taskqueue_create(sc->chip_tq_name, M_NOWAIT, 15979 taskqueue_thread_enqueue, 15980 &sc->chip_tq); 15981 taskqueue_start_threads(&sc->chip_tq, 1, PWAIT, /* lower priority */ 15982 "%s", sc->chip_tq_name); 15983 15984 /* get device info and set params */ 15985 if (bxe_get_device_info(sc) != 0) { 15986 BLOGE(sc, "getting device info\n"); 15987 bxe_deallocate_bars(sc); 15988 pci_disable_busmaster(dev); 15989 return (ENXIO); 15990 } 15991 15992 /* get final misc params */ 15993 bxe_get_params(sc); 15994 15995 /* set the default MTU (changed via ifconfig) */ 15996 sc->mtu = ETHERMTU; 15997 15998 bxe_set_modes_bitmap(sc); 15999 16000 /* XXX 16001 * If in AFEX mode and the function is configured for FCoE 16002 * then bail... no L2 allowed. 16003 */ 16004 16005 /* get phy settings from shmem and 'and' against admin settings */ 16006 bxe_get_phy_info(sc); 16007 16008 /* initialize the FreeBSD ifnet interface */ 16009 if (bxe_init_ifnet(sc) != 0) { 16010 bxe_release_mutexes(sc); 16011 bxe_deallocate_bars(sc); 16012 pci_disable_busmaster(dev); 16013 return (ENXIO); 16014 } 16015 16016 if (bxe_add_cdev(sc) != 0) { 16017 if (sc->ifp != NULL) { 16018 ether_ifdetach(sc->ifp); 16019 } 16020 ifmedia_removeall(&sc->ifmedia); 16021 bxe_release_mutexes(sc); 16022 bxe_deallocate_bars(sc); 16023 pci_disable_busmaster(dev); 16024 return (ENXIO); 16025 } 16026 16027 /* allocate device interrupts */ 16028 if (bxe_interrupt_alloc(sc) != 0) { 16029 bxe_del_cdev(sc); 16030 if (sc->ifp != NULL) { 16031 ether_ifdetach(sc->ifp); 16032 } 16033 ifmedia_removeall(&sc->ifmedia); 16034 bxe_release_mutexes(sc); 16035 bxe_deallocate_bars(sc); 16036 pci_disable_busmaster(dev); 16037 return (ENXIO); 16038 } 16039 16040 bxe_init_fp_mutexs(sc); 16041 16042 if (bxe_alloc_buf_rings(sc) != 0) { 16043 bxe_free_buf_rings(sc); 16044 bxe_interrupt_free(sc); 16045 bxe_del_cdev(sc); 16046 if (sc->ifp != NULL) { 16047 ether_ifdetach(sc->ifp); 16048 } 16049 ifmedia_removeall(&sc->ifmedia); 16050 bxe_release_mutexes(sc); 16051 bxe_deallocate_bars(sc); 16052 pci_disable_busmaster(dev); 16053 return (ENXIO); 16054 } 16055 16056 /* allocate ilt */ 16057 if (bxe_alloc_ilt_mem(sc) != 0) { 16058 bxe_free_buf_rings(sc); 16059 bxe_interrupt_free(sc); 16060 bxe_del_cdev(sc); 16061 if (sc->ifp != NULL) { 16062 ether_ifdetach(sc->ifp); 16063 } 16064 ifmedia_removeall(&sc->ifmedia); 16065 bxe_release_mutexes(sc); 16066 bxe_deallocate_bars(sc); 16067 pci_disable_busmaster(dev); 16068 return (ENXIO); 16069 } 16070 16071 /* allocate the host hardware/software hsi structures */ 16072 if (bxe_alloc_hsi_mem(sc) != 0) { 16073 bxe_free_ilt_mem(sc); 16074 bxe_free_buf_rings(sc); 16075 bxe_interrupt_free(sc); 16076 bxe_del_cdev(sc); 16077 if (sc->ifp != NULL) { 16078 ether_ifdetach(sc->ifp); 16079 } 16080 ifmedia_removeall(&sc->ifmedia); 16081 bxe_release_mutexes(sc); 16082 bxe_deallocate_bars(sc); 16083 pci_disable_busmaster(dev); 16084 return (ENXIO); 16085 } 16086 16087 /* need to reset chip if UNDI was active */ 16088 if (IS_PF(sc) && !BXE_NOMCP(sc)) { 16089 /* init fw_seq */ 16090 sc->fw_seq = 16091 (SHMEM_RD(sc, func_mb[SC_FW_MB_IDX(sc)].drv_mb_header) & 16092 DRV_MSG_SEQ_NUMBER_MASK); 16093 BLOGD(sc, DBG_LOAD, "prev unload fw_seq 0x%04x\n", sc->fw_seq); 16094 bxe_prev_unload(sc); 16095 } 16096 16097 #if 1 16098 /* XXX */ 16099 bxe_dcbx_set_state(sc, FALSE, BXE_DCBX_ENABLED_OFF); 16100 #else 16101 if (SHMEM2_HAS(sc, dcbx_lldp_params_offset) && 16102 SHMEM2_HAS(sc, dcbx_lldp_dcbx_stat_offset) && 16103 SHMEM2_RD(sc, dcbx_lldp_params_offset) && 16104 SHMEM2_RD(sc, dcbx_lldp_dcbx_stat_offset)) { 16105 bxe_dcbx_set_state(sc, TRUE, BXE_DCBX_ENABLED_ON_NEG_ON); 16106 bxe_dcbx_init_params(sc); 16107 } else { 16108 bxe_dcbx_set_state(sc, FALSE, BXE_DCBX_ENABLED_OFF); 16109 } 16110 #endif 16111 16112 /* calculate qm_cid_count */ 16113 sc->qm_cid_count = bxe_set_qm_cid_count(sc); 16114 BLOGD(sc, DBG_LOAD, "qm_cid_count=%d\n", sc->qm_cid_count); 16115 16116 sc->max_cos = 1; 16117 bxe_init_multi_cos(sc); 16118 16119 bxe_add_sysctls(sc); 16120 16121 return (0); 16122 } 16123 16124 /* 16125 * Device detach function. 16126 * 16127 * Stops the controller, resets the controller, and releases resources. 16128 * 16129 * Returns: 16130 * 0 = Success, >0 = Failure 16131 */ 16132 static int 16133 bxe_detach(device_t dev) 16134 { 16135 struct bxe_softc *sc; 16136 if_t ifp; 16137 16138 sc = device_get_softc(dev); 16139 16140 BLOGD(sc, DBG_LOAD, "Starting detach...\n"); 16141 16142 ifp = sc->ifp; 16143 if (ifp != NULL && if_vlantrunkinuse(ifp)) { 16144 BLOGE(sc, "Cannot detach while VLANs are in use.\n"); 16145 return(EBUSY); 16146 } 16147 16148 bxe_del_cdev(sc); 16149 16150 /* stop the periodic callout */ 16151 bxe_periodic_stop(sc); 16152 16153 /* stop the chip taskqueue */ 16154 atomic_store_rel_long(&sc->chip_tq_flags, CHIP_TQ_NONE); 16155 if (sc->chip_tq) { 16156 taskqueue_drain(sc->chip_tq, &sc->chip_tq_task); 16157 taskqueue_free(sc->chip_tq); 16158 sc->chip_tq = NULL; 16159 } 16160 16161 /* stop and reset the controller if it was open */ 16162 if (sc->state != BXE_STATE_CLOSED) { 16163 BXE_CORE_LOCK(sc); 16164 bxe_nic_unload(sc, UNLOAD_CLOSE, TRUE); 16165 sc->state = BXE_STATE_DISABLED; 16166 BXE_CORE_UNLOCK(sc); 16167 } 16168 16169 /* release the network interface */ 16170 if (ifp != NULL) { 16171 ether_ifdetach(ifp); 16172 } 16173 ifmedia_removeall(&sc->ifmedia); 16174 16175 /* XXX do the following based on driver state... */ 16176 16177 /* free the host hardware/software hsi structures */ 16178 bxe_free_hsi_mem(sc); 16179 16180 /* free ilt */ 16181 bxe_free_ilt_mem(sc); 16182 16183 bxe_free_buf_rings(sc); 16184 16185 /* release the interrupts */ 16186 bxe_interrupt_free(sc); 16187 16188 /* Release the mutexes*/ 16189 bxe_destroy_fp_mutexs(sc); 16190 bxe_release_mutexes(sc); 16191 16192 16193 /* Release the PCIe BAR mapped memory */ 16194 bxe_deallocate_bars(sc); 16195 16196 /* Release the FreeBSD interface. */ 16197 if (sc->ifp != NULL) { 16198 if_free(sc->ifp); 16199 } 16200 16201 pci_disable_busmaster(dev); 16202 16203 return (0); 16204 } 16205 16206 /* 16207 * Device shutdown function. 16208 * 16209 * Stops and resets the controller. 16210 * 16211 * Returns: 16212 * Nothing 16213 */ 16214 static int 16215 bxe_shutdown(device_t dev) 16216 { 16217 struct bxe_softc *sc; 16218 16219 sc = device_get_softc(dev); 16220 16221 BLOGD(sc, DBG_LOAD, "Starting shutdown...\n"); 16222 16223 /* stop the periodic callout */ 16224 bxe_periodic_stop(sc); 16225 16226 BXE_CORE_LOCK(sc); 16227 bxe_nic_unload(sc, UNLOAD_NORMAL, FALSE); 16228 BXE_CORE_UNLOCK(sc); 16229 16230 return (0); 16231 } 16232 16233 void 16234 bxe_igu_ack_sb(struct bxe_softc *sc, 16235 uint8_t igu_sb_id, 16236 uint8_t segment, 16237 uint16_t index, 16238 uint8_t op, 16239 uint8_t update) 16240 { 16241 uint32_t igu_addr = sc->igu_base_addr; 16242 igu_addr += (IGU_CMD_INT_ACK_BASE + igu_sb_id)*8; 16243 bxe_igu_ack_sb_gen(sc, igu_sb_id, segment, index, op, update, igu_addr); 16244 } 16245 16246 static void 16247 bxe_igu_clear_sb_gen(struct bxe_softc *sc, 16248 uint8_t func, 16249 uint8_t idu_sb_id, 16250 uint8_t is_pf) 16251 { 16252 uint32_t data, ctl, cnt = 100; 16253 uint32_t igu_addr_data = IGU_REG_COMMAND_REG_32LSB_DATA; 16254 uint32_t igu_addr_ctl = IGU_REG_COMMAND_REG_CTRL; 16255 uint32_t igu_addr_ack = IGU_REG_CSTORM_TYPE_0_SB_CLEANUP + (idu_sb_id/32)*4; 16256 uint32_t sb_bit = 1 << (idu_sb_id%32); 16257 uint32_t func_encode = func | (is_pf ? 1 : 0) << IGU_FID_ENCODE_IS_PF_SHIFT; 16258 uint32_t addr_encode = IGU_CMD_E2_PROD_UPD_BASE + idu_sb_id; 16259 16260 /* Not supported in BC mode */ 16261 if (CHIP_INT_MODE_IS_BC(sc)) { 16262 return; 16263 } 16264 16265 data = ((IGU_USE_REGISTER_cstorm_type_0_sb_cleanup << 16266 IGU_REGULAR_CLEANUP_TYPE_SHIFT) | 16267 IGU_REGULAR_CLEANUP_SET | 16268 IGU_REGULAR_BCLEANUP); 16269 16270 ctl = ((addr_encode << IGU_CTRL_REG_ADDRESS_SHIFT) | 16271 (func_encode << IGU_CTRL_REG_FID_SHIFT) | 16272 (IGU_CTRL_CMD_TYPE_WR << IGU_CTRL_REG_TYPE_SHIFT)); 16273 16274 BLOGD(sc, DBG_LOAD, "write 0x%08x to IGU(via GRC) addr 0x%x\n", 16275 data, igu_addr_data); 16276 REG_WR(sc, igu_addr_data, data); 16277 16278 bus_space_barrier(sc->bar[BAR0].tag, sc->bar[BAR0].handle, 0, 0, 16279 BUS_SPACE_BARRIER_WRITE); 16280 mb(); 16281 16282 BLOGD(sc, DBG_LOAD, "write 0x%08x to IGU(via GRC) addr 0x%x\n", 16283 ctl, igu_addr_ctl); 16284 REG_WR(sc, igu_addr_ctl, ctl); 16285 16286 bus_space_barrier(sc->bar[BAR0].tag, sc->bar[BAR0].handle, 0, 0, 16287 BUS_SPACE_BARRIER_WRITE); 16288 mb(); 16289 16290 /* wait for clean up to finish */ 16291 while (!(REG_RD(sc, igu_addr_ack) & sb_bit) && --cnt) { 16292 DELAY(20000); 16293 } 16294 16295 if (!(REG_RD(sc, igu_addr_ack) & sb_bit)) { 16296 BLOGD(sc, DBG_LOAD, 16297 "Unable to finish IGU cleanup: " 16298 "idu_sb_id %d offset %d bit %d (cnt %d)\n", 16299 idu_sb_id, idu_sb_id/32, idu_sb_id%32, cnt); 16300 } 16301 } 16302 16303 static void 16304 bxe_igu_clear_sb(struct bxe_softc *sc, 16305 uint8_t idu_sb_id) 16306 { 16307 bxe_igu_clear_sb_gen(sc, SC_FUNC(sc), idu_sb_id, TRUE /*PF*/); 16308 } 16309 16310 16311 16312 16313 16314 16315 16316 /*******************/ 16317 /* ECORE CALLBACKS */ 16318 /*******************/ 16319 16320 static void 16321 bxe_reset_common(struct bxe_softc *sc) 16322 { 16323 uint32_t val = 0x1400; 16324 16325 /* reset_common */ 16326 REG_WR(sc, (GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR), 0xd3ffff7f); 16327 16328 if (CHIP_IS_E3(sc)) { 16329 val |= MISC_REGISTERS_RESET_REG_2_MSTAT0; 16330 val |= MISC_REGISTERS_RESET_REG_2_MSTAT1; 16331 } 16332 16333 REG_WR(sc, (GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR), val); 16334 } 16335 16336 static void 16337 bxe_common_init_phy(struct bxe_softc *sc) 16338 { 16339 uint32_t shmem_base[2]; 16340 uint32_t shmem2_base[2]; 16341 16342 /* Avoid common init in case MFW supports LFA */ 16343 if (SHMEM2_RD(sc, size) > 16344 (uint32_t)offsetof(struct shmem2_region, 16345 lfa_host_addr[SC_PORT(sc)])) { 16346 return; 16347 } 16348 16349 shmem_base[0] = sc->devinfo.shmem_base; 16350 shmem2_base[0] = sc->devinfo.shmem2_base; 16351 16352 if (!CHIP_IS_E1x(sc)) { 16353 shmem_base[1] = SHMEM2_RD(sc, other_shmem_base_addr); 16354 shmem2_base[1] = SHMEM2_RD(sc, other_shmem2_base_addr); 16355 } 16356 16357 bxe_acquire_phy_lock(sc); 16358 elink_common_init_phy(sc, shmem_base, shmem2_base, 16359 sc->devinfo.chip_id, 0); 16360 bxe_release_phy_lock(sc); 16361 } 16362 16363 static void 16364 bxe_pf_disable(struct bxe_softc *sc) 16365 { 16366 uint32_t val = REG_RD(sc, IGU_REG_PF_CONFIGURATION); 16367 16368 val &= ~IGU_PF_CONF_FUNC_EN; 16369 16370 REG_WR(sc, IGU_REG_PF_CONFIGURATION, val); 16371 REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0); 16372 REG_WR(sc, CFC_REG_WEAK_ENABLE_PF, 0); 16373 } 16374 16375 static void 16376 bxe_init_pxp(struct bxe_softc *sc) 16377 { 16378 uint16_t devctl; 16379 int r_order, w_order; 16380 16381 devctl = bxe_pcie_capability_read(sc, PCIR_EXPRESS_DEVICE_CTL, 2); 16382 16383 BLOGD(sc, DBG_LOAD, "read 0x%08x from devctl\n", devctl); 16384 16385 w_order = ((devctl & PCIM_EXP_CTL_MAX_PAYLOAD) >> 5); 16386 16387 if (sc->mrrs == -1) { 16388 r_order = ((devctl & PCIM_EXP_CTL_MAX_READ_REQUEST) >> 12); 16389 } else { 16390 BLOGD(sc, DBG_LOAD, "forcing read order to %d\n", sc->mrrs); 16391 r_order = sc->mrrs; 16392 } 16393 16394 ecore_init_pxp_arb(sc, r_order, w_order); 16395 } 16396 16397 static uint32_t 16398 bxe_get_pretend_reg(struct bxe_softc *sc) 16399 { 16400 uint32_t base = PXP2_REG_PGL_PRETEND_FUNC_F0; 16401 uint32_t stride = (PXP2_REG_PGL_PRETEND_FUNC_F1 - base); 16402 return (base + (SC_ABS_FUNC(sc)) * stride); 16403 } 16404 16405 /* 16406 * Called only on E1H or E2. 16407 * When pretending to be PF, the pretend value is the function number 0..7. 16408 * When pretending to be VF, the pretend val is the PF-num:VF-valid:ABS-VFID 16409 * combination. 16410 */ 16411 static int 16412 bxe_pretend_func(struct bxe_softc *sc, 16413 uint16_t pretend_func_val) 16414 { 16415 uint32_t pretend_reg; 16416 16417 if (CHIP_IS_E1H(sc) && (pretend_func_val > E1H_FUNC_MAX)) { 16418 return (-1); 16419 } 16420 16421 /* get my own pretend register */ 16422 pretend_reg = bxe_get_pretend_reg(sc); 16423 REG_WR(sc, pretend_reg, pretend_func_val); 16424 REG_RD(sc, pretend_reg); 16425 return (0); 16426 } 16427 16428 static void 16429 bxe_iov_init_dmae(struct bxe_softc *sc) 16430 { 16431 return; 16432 } 16433 16434 static void 16435 bxe_iov_init_dq(struct bxe_softc *sc) 16436 { 16437 return; 16438 } 16439 16440 /* send a NIG loopback debug packet */ 16441 static void 16442 bxe_lb_pckt(struct bxe_softc *sc) 16443 { 16444 uint32_t wb_write[3]; 16445 16446 /* Ethernet source and destination addresses */ 16447 wb_write[0] = 0x55555555; 16448 wb_write[1] = 0x55555555; 16449 wb_write[2] = 0x20; /* SOP */ 16450 REG_WR_DMAE(sc, NIG_REG_DEBUG_PACKET_LB, wb_write, 3); 16451 16452 /* NON-IP protocol */ 16453 wb_write[0] = 0x09000000; 16454 wb_write[1] = 0x55555555; 16455 wb_write[2] = 0x10; /* EOP, eop_bvalid = 0 */ 16456 REG_WR_DMAE(sc, NIG_REG_DEBUG_PACKET_LB, wb_write, 3); 16457 } 16458 16459 /* 16460 * Some of the internal memories are not directly readable from the driver. 16461 * To test them we send debug packets. 16462 */ 16463 static int 16464 bxe_int_mem_test(struct bxe_softc *sc) 16465 { 16466 int factor; 16467 int count, i; 16468 uint32_t val = 0; 16469 16470 if (CHIP_REV_IS_FPGA(sc)) { 16471 factor = 120; 16472 } else if (CHIP_REV_IS_EMUL(sc)) { 16473 factor = 200; 16474 } else { 16475 factor = 1; 16476 } 16477 16478 /* disable inputs of parser neighbor blocks */ 16479 REG_WR(sc, TSDM_REG_ENABLE_IN1, 0x0); 16480 REG_WR(sc, TCM_REG_PRS_IFEN, 0x0); 16481 REG_WR(sc, CFC_REG_DEBUG0, 0x1); 16482 REG_WR(sc, NIG_REG_PRS_REQ_IN_EN, 0x0); 16483 16484 /* write 0 to parser credits for CFC search request */ 16485 REG_WR(sc, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0); 16486 16487 /* send Ethernet packet */ 16488 bxe_lb_pckt(sc); 16489 16490 /* TODO do i reset NIG statistic? */ 16491 /* Wait until NIG register shows 1 packet of size 0x10 */ 16492 count = 1000 * factor; 16493 while (count) { 16494 bxe_read_dmae(sc, NIG_REG_STAT2_BRB_OCTET, 2); 16495 val = *BXE_SP(sc, wb_data[0]); 16496 if (val == 0x10) { 16497 break; 16498 } 16499 16500 DELAY(10000); 16501 count--; 16502 } 16503 16504 if (val != 0x10) { 16505 BLOGE(sc, "NIG timeout val=0x%x\n", val); 16506 return (-1); 16507 } 16508 16509 /* wait until PRS register shows 1 packet */ 16510 count = (1000 * factor); 16511 while (count) { 16512 val = REG_RD(sc, PRS_REG_NUM_OF_PACKETS); 16513 if (val == 1) { 16514 break; 16515 } 16516 16517 DELAY(10000); 16518 count--; 16519 } 16520 16521 if (val != 0x1) { 16522 BLOGE(sc, "PRS timeout val=0x%x\n", val); 16523 return (-2); 16524 } 16525 16526 /* Reset and init BRB, PRS */ 16527 REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03); 16528 DELAY(50000); 16529 REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03); 16530 DELAY(50000); 16531 ecore_init_block(sc, BLOCK_BRB1, PHASE_COMMON); 16532 ecore_init_block(sc, BLOCK_PRS, PHASE_COMMON); 16533 16534 /* Disable inputs of parser neighbor blocks */ 16535 REG_WR(sc, TSDM_REG_ENABLE_IN1, 0x0); 16536 REG_WR(sc, TCM_REG_PRS_IFEN, 0x0); 16537 REG_WR(sc, CFC_REG_DEBUG0, 0x1); 16538 REG_WR(sc, NIG_REG_PRS_REQ_IN_EN, 0x0); 16539 16540 /* Write 0 to parser credits for CFC search request */ 16541 REG_WR(sc, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0); 16542 16543 /* send 10 Ethernet packets */ 16544 for (i = 0; i < 10; i++) { 16545 bxe_lb_pckt(sc); 16546 } 16547 16548 /* Wait until NIG register shows 10+1 packets of size 11*0x10 = 0xb0 */ 16549 count = (1000 * factor); 16550 while (count) { 16551 bxe_read_dmae(sc, NIG_REG_STAT2_BRB_OCTET, 2); 16552 val = *BXE_SP(sc, wb_data[0]); 16553 if (val == 0xb0) { 16554 break; 16555 } 16556 16557 DELAY(10000); 16558 count--; 16559 } 16560 16561 if (val != 0xb0) { 16562 BLOGE(sc, "NIG timeout val=0x%x\n", val); 16563 return (-3); 16564 } 16565 16566 /* Wait until PRS register shows 2 packets */ 16567 val = REG_RD(sc, PRS_REG_NUM_OF_PACKETS); 16568 if (val != 2) { 16569 BLOGE(sc, "PRS timeout val=0x%x\n", val); 16570 } 16571 16572 /* Write 1 to parser credits for CFC search request */ 16573 REG_WR(sc, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x1); 16574 16575 /* Wait until PRS register shows 3 packets */ 16576 DELAY(10000 * factor); 16577 16578 /* Wait until NIG register shows 1 packet of size 0x10 */ 16579 val = REG_RD(sc, PRS_REG_NUM_OF_PACKETS); 16580 if (val != 3) { 16581 BLOGE(sc, "PRS timeout val=0x%x\n", val); 16582 } 16583 16584 /* clear NIG EOP FIFO */ 16585 for (i = 0; i < 11; i++) { 16586 REG_RD(sc, NIG_REG_INGRESS_EOP_LB_FIFO); 16587 } 16588 16589 val = REG_RD(sc, NIG_REG_INGRESS_EOP_LB_EMPTY); 16590 if (val != 1) { 16591 BLOGE(sc, "clear of NIG failed val=0x%x\n", val); 16592 return (-4); 16593 } 16594 16595 /* Reset and init BRB, PRS, NIG */ 16596 REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03); 16597 DELAY(50000); 16598 REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03); 16599 DELAY(50000); 16600 ecore_init_block(sc, BLOCK_BRB1, PHASE_COMMON); 16601 ecore_init_block(sc, BLOCK_PRS, PHASE_COMMON); 16602 if (!CNIC_SUPPORT(sc)) { 16603 /* set NIC mode */ 16604 REG_WR(sc, PRS_REG_NIC_MODE, 1); 16605 } 16606 16607 /* Enable inputs of parser neighbor blocks */ 16608 REG_WR(sc, TSDM_REG_ENABLE_IN1, 0x7fffffff); 16609 REG_WR(sc, TCM_REG_PRS_IFEN, 0x1); 16610 REG_WR(sc, CFC_REG_DEBUG0, 0x0); 16611 REG_WR(sc, NIG_REG_PRS_REQ_IN_EN, 0x1); 16612 16613 return (0); 16614 } 16615 16616 static void 16617 bxe_setup_fan_failure_detection(struct bxe_softc *sc) 16618 { 16619 int is_required; 16620 uint32_t val; 16621 int port; 16622 16623 is_required = 0; 16624 val = (SHMEM_RD(sc, dev_info.shared_hw_config.config2) & 16625 SHARED_HW_CFG_FAN_FAILURE_MASK); 16626 16627 if (val == SHARED_HW_CFG_FAN_FAILURE_ENABLED) { 16628 is_required = 1; 16629 } 16630 /* 16631 * The fan failure mechanism is usually related to the PHY type since 16632 * the power consumption of the board is affected by the PHY. Currently, 16633 * fan is required for most designs with SFX7101, BCM8727 and BCM8481. 16634 */ 16635 else if (val == SHARED_HW_CFG_FAN_FAILURE_PHY_TYPE) { 16636 for (port = PORT_0; port < PORT_MAX; port++) { 16637 is_required |= elink_fan_failure_det_req(sc, 16638 sc->devinfo.shmem_base, 16639 sc->devinfo.shmem2_base, 16640 port); 16641 } 16642 } 16643 16644 BLOGD(sc, DBG_LOAD, "fan detection setting: %d\n", is_required); 16645 16646 if (is_required == 0) { 16647 return; 16648 } 16649 16650 /* Fan failure is indicated by SPIO 5 */ 16651 bxe_set_spio(sc, MISC_SPIO_SPIO5, MISC_SPIO_INPUT_HI_Z); 16652 16653 /* set to active low mode */ 16654 val = REG_RD(sc, MISC_REG_SPIO_INT); 16655 val |= (MISC_SPIO_SPIO5 << MISC_SPIO_INT_OLD_SET_POS); 16656 REG_WR(sc, MISC_REG_SPIO_INT, val); 16657 16658 /* enable interrupt to signal the IGU */ 16659 val = REG_RD(sc, MISC_REG_SPIO_EVENT_EN); 16660 val |= MISC_SPIO_SPIO5; 16661 REG_WR(sc, MISC_REG_SPIO_EVENT_EN, val); 16662 } 16663 16664 static void 16665 bxe_enable_blocks_attention(struct bxe_softc *sc) 16666 { 16667 uint32_t val; 16668 16669 REG_WR(sc, PXP_REG_PXP_INT_MASK_0, 0); 16670 if (!CHIP_IS_E1x(sc)) { 16671 REG_WR(sc, PXP_REG_PXP_INT_MASK_1, 0x40); 16672 } else { 16673 REG_WR(sc, PXP_REG_PXP_INT_MASK_1, 0); 16674 } 16675 REG_WR(sc, DORQ_REG_DORQ_INT_MASK, 0); 16676 REG_WR(sc, CFC_REG_CFC_INT_MASK, 0); 16677 /* 16678 * mask read length error interrupts in brb for parser 16679 * (parsing unit and 'checksum and crc' unit) 16680 * these errors are legal (PU reads fixed length and CAC can cause 16681 * read length error on truncated packets) 16682 */ 16683 REG_WR(sc, BRB1_REG_BRB1_INT_MASK, 0xFC00); 16684 REG_WR(sc, QM_REG_QM_INT_MASK, 0); 16685 REG_WR(sc, TM_REG_TM_INT_MASK, 0); 16686 REG_WR(sc, XSDM_REG_XSDM_INT_MASK_0, 0); 16687 REG_WR(sc, XSDM_REG_XSDM_INT_MASK_1, 0); 16688 REG_WR(sc, XCM_REG_XCM_INT_MASK, 0); 16689 /* REG_WR(sc, XSEM_REG_XSEM_INT_MASK_0, 0); */ 16690 /* REG_WR(sc, XSEM_REG_XSEM_INT_MASK_1, 0); */ 16691 REG_WR(sc, USDM_REG_USDM_INT_MASK_0, 0); 16692 REG_WR(sc, USDM_REG_USDM_INT_MASK_1, 0); 16693 REG_WR(sc, UCM_REG_UCM_INT_MASK, 0); 16694 /* REG_WR(sc, USEM_REG_USEM_INT_MASK_0, 0); */ 16695 /* REG_WR(sc, USEM_REG_USEM_INT_MASK_1, 0); */ 16696 REG_WR(sc, GRCBASE_UPB + PB_REG_PB_INT_MASK, 0); 16697 REG_WR(sc, CSDM_REG_CSDM_INT_MASK_0, 0); 16698 REG_WR(sc, CSDM_REG_CSDM_INT_MASK_1, 0); 16699 REG_WR(sc, CCM_REG_CCM_INT_MASK, 0); 16700 /* REG_WR(sc, CSEM_REG_CSEM_INT_MASK_0, 0); */ 16701 /* REG_WR(sc, CSEM_REG_CSEM_INT_MASK_1, 0); */ 16702 16703 val = (PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_AFT | 16704 PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_OF | 16705 PXP2_PXP2_INT_MASK_0_REG_PGL_PCIE_ATTN); 16706 if (!CHIP_IS_E1x(sc)) { 16707 val |= (PXP2_PXP2_INT_MASK_0_REG_PGL_READ_BLOCKED | 16708 PXP2_PXP2_INT_MASK_0_REG_PGL_WRITE_BLOCKED); 16709 } 16710 REG_WR(sc, PXP2_REG_PXP2_INT_MASK_0, val); 16711 16712 REG_WR(sc, TSDM_REG_TSDM_INT_MASK_0, 0); 16713 REG_WR(sc, TSDM_REG_TSDM_INT_MASK_1, 0); 16714 REG_WR(sc, TCM_REG_TCM_INT_MASK, 0); 16715 /* REG_WR(sc, TSEM_REG_TSEM_INT_MASK_0, 0); */ 16716 16717 if (!CHIP_IS_E1x(sc)) { 16718 /* enable VFC attentions: bits 11 and 12, bits 31:13 reserved */ 16719 REG_WR(sc, TSEM_REG_TSEM_INT_MASK_1, 0x07ff); 16720 } 16721 16722 REG_WR(sc, CDU_REG_CDU_INT_MASK, 0); 16723 REG_WR(sc, DMAE_REG_DMAE_INT_MASK, 0); 16724 /* REG_WR(sc, MISC_REG_MISC_INT_MASK, 0); */ 16725 REG_WR(sc, PBF_REG_PBF_INT_MASK, 0x18); /* bit 3,4 masked */ 16726 } 16727 16728 /** 16729 * bxe_init_hw_common - initialize the HW at the COMMON phase. 16730 * 16731 * @sc: driver handle 16732 */ 16733 static int 16734 bxe_init_hw_common(struct bxe_softc *sc) 16735 { 16736 uint8_t abs_func_id; 16737 uint32_t val; 16738 16739 BLOGD(sc, DBG_LOAD, "starting common init for func %d\n", 16740 SC_ABS_FUNC(sc)); 16741 16742 /* 16743 * take the RESET lock to protect undi_unload flow from accessing 16744 * registers while we are resetting the chip 16745 */ 16746 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RESET); 16747 16748 bxe_reset_common(sc); 16749 16750 REG_WR(sc, (GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET), 0xffffffff); 16751 16752 val = 0xfffc; 16753 if (CHIP_IS_E3(sc)) { 16754 val |= MISC_REGISTERS_RESET_REG_2_MSTAT0; 16755 val |= MISC_REGISTERS_RESET_REG_2_MSTAT1; 16756 } 16757 16758 REG_WR(sc, (GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET), val); 16759 16760 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RESET); 16761 16762 ecore_init_block(sc, BLOCK_MISC, PHASE_COMMON); 16763 BLOGD(sc, DBG_LOAD, "after misc block init\n"); 16764 16765 if (!CHIP_IS_E1x(sc)) { 16766 /* 16767 * 4-port mode or 2-port mode we need to turn off master-enable for 16768 * everyone. After that we turn it back on for self. So, we disregard 16769 * multi-function, and always disable all functions on the given path, 16770 * this means 0,2,4,6 for path 0 and 1,3,5,7 for path 1 16771 */ 16772 for (abs_func_id = SC_PATH(sc); 16773 abs_func_id < (E2_FUNC_MAX * 2); 16774 abs_func_id += 2) { 16775 if (abs_func_id == SC_ABS_FUNC(sc)) { 16776 REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1); 16777 continue; 16778 } 16779 16780 bxe_pretend_func(sc, abs_func_id); 16781 16782 /* clear pf enable */ 16783 bxe_pf_disable(sc); 16784 16785 bxe_pretend_func(sc, SC_ABS_FUNC(sc)); 16786 } 16787 } 16788 16789 BLOGD(sc, DBG_LOAD, "after pf disable\n"); 16790 16791 ecore_init_block(sc, BLOCK_PXP, PHASE_COMMON); 16792 16793 if (CHIP_IS_E1(sc)) { 16794 /* 16795 * enable HW interrupt from PXP on USDM overflow 16796 * bit 16 on INT_MASK_0 16797 */ 16798 REG_WR(sc, PXP_REG_PXP_INT_MASK_0, 0); 16799 } 16800 16801 ecore_init_block(sc, BLOCK_PXP2, PHASE_COMMON); 16802 bxe_init_pxp(sc); 16803 16804 #ifdef __BIG_ENDIAN 16805 REG_WR(sc, PXP2_REG_RQ_QM_ENDIAN_M, 1); 16806 REG_WR(sc, PXP2_REG_RQ_TM_ENDIAN_M, 1); 16807 REG_WR(sc, PXP2_REG_RQ_SRC_ENDIAN_M, 1); 16808 REG_WR(sc, PXP2_REG_RQ_CDU_ENDIAN_M, 1); 16809 REG_WR(sc, PXP2_REG_RQ_DBG_ENDIAN_M, 1); 16810 /* make sure this value is 0 */ 16811 REG_WR(sc, PXP2_REG_RQ_HC_ENDIAN_M, 0); 16812 16813 //REG_WR(sc, PXP2_REG_RD_PBF_SWAP_MODE, 1); 16814 REG_WR(sc, PXP2_REG_RD_QM_SWAP_MODE, 1); 16815 REG_WR(sc, PXP2_REG_RD_TM_SWAP_MODE, 1); 16816 REG_WR(sc, PXP2_REG_RD_SRC_SWAP_MODE, 1); 16817 REG_WR(sc, PXP2_REG_RD_CDURD_SWAP_MODE, 1); 16818 #endif 16819 16820 ecore_ilt_init_page_size(sc, INITOP_SET); 16821 16822 if (CHIP_REV_IS_FPGA(sc) && CHIP_IS_E1H(sc)) { 16823 REG_WR(sc, PXP2_REG_PGL_TAGS_LIMIT, 0x1); 16824 } 16825 16826 /* let the HW do it's magic... */ 16827 DELAY(100000); 16828 16829 /* finish PXP init */ 16830 val = REG_RD(sc, PXP2_REG_RQ_CFG_DONE); 16831 if (val != 1) { 16832 BLOGE(sc, "PXP2 CFG failed PXP2_REG_RQ_CFG_DONE val = 0x%x\n", 16833 val); 16834 return (-1); 16835 } 16836 val = REG_RD(sc, PXP2_REG_RD_INIT_DONE); 16837 if (val != 1) { 16838 BLOGE(sc, "PXP2 RD_INIT failed val = 0x%x\n", val); 16839 return (-1); 16840 } 16841 16842 BLOGD(sc, DBG_LOAD, "after pxp init\n"); 16843 16844 /* 16845 * Timer bug workaround for E2 only. We need to set the entire ILT to have 16846 * entries with value "0" and valid bit on. This needs to be done by the 16847 * first PF that is loaded in a path (i.e. common phase) 16848 */ 16849 if (!CHIP_IS_E1x(sc)) { 16850 /* 16851 * In E2 there is a bug in the timers block that can cause function 6 / 7 16852 * (i.e. vnic3) to start even if it is marked as "scan-off". 16853 * This occurs when a different function (func2,3) is being marked 16854 * as "scan-off". Real-life scenario for example: if a driver is being 16855 * load-unloaded while func6,7 are down. This will cause the timer to access 16856 * the ilt, translate to a logical address and send a request to read/write. 16857 * Since the ilt for the function that is down is not valid, this will cause 16858 * a translation error which is unrecoverable. 16859 * The Workaround is intended to make sure that when this happens nothing 16860 * fatal will occur. The workaround: 16861 * 1. First PF driver which loads on a path will: 16862 * a. After taking the chip out of reset, by using pretend, 16863 * it will write "0" to the following registers of 16864 * the other vnics. 16865 * REG_WR(pdev, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0); 16866 * REG_WR(pdev, CFC_REG_WEAK_ENABLE_PF,0); 16867 * REG_WR(pdev, CFC_REG_STRONG_ENABLE_PF,0); 16868 * And for itself it will write '1' to 16869 * PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER to enable 16870 * dmae-operations (writing to pram for example.) 16871 * note: can be done for only function 6,7 but cleaner this 16872 * way. 16873 * b. Write zero+valid to the entire ILT. 16874 * c. Init the first_timers_ilt_entry, last_timers_ilt_entry of 16875 * VNIC3 (of that port). The range allocated will be the 16876 * entire ILT. This is needed to prevent ILT range error. 16877 * 2. Any PF driver load flow: 16878 * a. ILT update with the physical addresses of the allocated 16879 * logical pages. 16880 * b. Wait 20msec. - note that this timeout is needed to make 16881 * sure there are no requests in one of the PXP internal 16882 * queues with "old" ILT addresses. 16883 * c. PF enable in the PGLC. 16884 * d. Clear the was_error of the PF in the PGLC. (could have 16885 * occurred while driver was down) 16886 * e. PF enable in the CFC (WEAK + STRONG) 16887 * f. Timers scan enable 16888 * 3. PF driver unload flow: 16889 * a. Clear the Timers scan_en. 16890 * b. Polling for scan_on=0 for that PF. 16891 * c. Clear the PF enable bit in the PXP. 16892 * d. Clear the PF enable in the CFC (WEAK + STRONG) 16893 * e. Write zero+valid to all ILT entries (The valid bit must 16894 * stay set) 16895 * f. If this is VNIC 3 of a port then also init 16896 * first_timers_ilt_entry to zero and last_timers_ilt_entry 16897 * to the last enrty in the ILT. 16898 * 16899 * Notes: 16900 * Currently the PF error in the PGLC is non recoverable. 16901 * In the future the there will be a recovery routine for this error. 16902 * Currently attention is masked. 16903 * Having an MCP lock on the load/unload process does not guarantee that 16904 * there is no Timer disable during Func6/7 enable. This is because the 16905 * Timers scan is currently being cleared by the MCP on FLR. 16906 * Step 2.d can be done only for PF6/7 and the driver can also check if 16907 * there is error before clearing it. But the flow above is simpler and 16908 * more general. 16909 * All ILT entries are written by zero+valid and not just PF6/7 16910 * ILT entries since in the future the ILT entries allocation for 16911 * PF-s might be dynamic. 16912 */ 16913 struct ilt_client_info ilt_cli; 16914 struct ecore_ilt ilt; 16915 16916 memset(&ilt_cli, 0, sizeof(struct ilt_client_info)); 16917 memset(&ilt, 0, sizeof(struct ecore_ilt)); 16918 16919 /* initialize dummy TM client */ 16920 ilt_cli.start = 0; 16921 ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1; 16922 ilt_cli.client_num = ILT_CLIENT_TM; 16923 16924 /* 16925 * Step 1: set zeroes to all ilt page entries with valid bit on 16926 * Step 2: set the timers first/last ilt entry to point 16927 * to the entire range to prevent ILT range error for 3rd/4th 16928 * vnic (this code assumes existence of the vnic) 16929 * 16930 * both steps performed by call to ecore_ilt_client_init_op() 16931 * with dummy TM client 16932 * 16933 * we must use pretend since PXP2_REG_RQ_##blk##_FIRST_ILT 16934 * and his brother are split registers 16935 */ 16936 16937 bxe_pretend_func(sc, (SC_PATH(sc) + 6)); 16938 ecore_ilt_client_init_op_ilt(sc, &ilt, &ilt_cli, INITOP_CLEAR); 16939 bxe_pretend_func(sc, SC_ABS_FUNC(sc)); 16940 16941 REG_WR(sc, PXP2_REG_RQ_DRAM_ALIGN, BXE_PXP_DRAM_ALIGN); 16942 REG_WR(sc, PXP2_REG_RQ_DRAM_ALIGN_RD, BXE_PXP_DRAM_ALIGN); 16943 REG_WR(sc, PXP2_REG_RQ_DRAM_ALIGN_SEL, 1); 16944 } 16945 16946 REG_WR(sc, PXP2_REG_RQ_DISABLE_INPUTS, 0); 16947 REG_WR(sc, PXP2_REG_RD_DISABLE_INPUTS, 0); 16948 16949 if (!CHIP_IS_E1x(sc)) { 16950 int factor = CHIP_REV_IS_EMUL(sc) ? 1000 : 16951 (CHIP_REV_IS_FPGA(sc) ? 400 : 0); 16952 16953 ecore_init_block(sc, BLOCK_PGLUE_B, PHASE_COMMON); 16954 ecore_init_block(sc, BLOCK_ATC, PHASE_COMMON); 16955 16956 /* let the HW do it's magic... */ 16957 do { 16958 DELAY(200000); 16959 val = REG_RD(sc, ATC_REG_ATC_INIT_DONE); 16960 } while (factor-- && (val != 1)); 16961 16962 if (val != 1) { 16963 BLOGE(sc, "ATC_INIT failed val = 0x%x\n", val); 16964 return (-1); 16965 } 16966 } 16967 16968 BLOGD(sc, DBG_LOAD, "after pglue and atc init\n"); 16969 16970 ecore_init_block(sc, BLOCK_DMAE, PHASE_COMMON); 16971 16972 bxe_iov_init_dmae(sc); 16973 16974 /* clean the DMAE memory */ 16975 sc->dmae_ready = 1; 16976 ecore_init_fill(sc, TSEM_REG_PRAM, 0, 8, 1); 16977 16978 ecore_init_block(sc, BLOCK_TCM, PHASE_COMMON); 16979 16980 ecore_init_block(sc, BLOCK_UCM, PHASE_COMMON); 16981 16982 ecore_init_block(sc, BLOCK_CCM, PHASE_COMMON); 16983 16984 ecore_init_block(sc, BLOCK_XCM, PHASE_COMMON); 16985 16986 bxe_read_dmae(sc, XSEM_REG_PASSIVE_BUFFER, 3); 16987 bxe_read_dmae(sc, CSEM_REG_PASSIVE_BUFFER, 3); 16988 bxe_read_dmae(sc, TSEM_REG_PASSIVE_BUFFER, 3); 16989 bxe_read_dmae(sc, USEM_REG_PASSIVE_BUFFER, 3); 16990 16991 ecore_init_block(sc, BLOCK_QM, PHASE_COMMON); 16992 16993 /* QM queues pointers table */ 16994 ecore_qm_init_ptr_table(sc, sc->qm_cid_count, INITOP_SET); 16995 16996 /* soft reset pulse */ 16997 REG_WR(sc, QM_REG_SOFT_RESET, 1); 16998 REG_WR(sc, QM_REG_SOFT_RESET, 0); 16999 17000 if (CNIC_SUPPORT(sc)) 17001 ecore_init_block(sc, BLOCK_TM, PHASE_COMMON); 17002 17003 ecore_init_block(sc, BLOCK_DORQ, PHASE_COMMON); 17004 REG_WR(sc, DORQ_REG_DPM_CID_OFST, BXE_DB_SHIFT); 17005 if (!CHIP_REV_IS_SLOW(sc)) { 17006 /* enable hw interrupt from doorbell Q */ 17007 REG_WR(sc, DORQ_REG_DORQ_INT_MASK, 0); 17008 } 17009 17010 ecore_init_block(sc, BLOCK_BRB1, PHASE_COMMON); 17011 17012 ecore_init_block(sc, BLOCK_PRS, PHASE_COMMON); 17013 REG_WR(sc, PRS_REG_A_PRSU_20, 0xf); 17014 17015 if (!CHIP_IS_E1(sc)) { 17016 REG_WR(sc, PRS_REG_E1HOV_MODE, sc->devinfo.mf_info.path_has_ovlan); 17017 } 17018 17019 if (!CHIP_IS_E1x(sc) && !CHIP_IS_E3B0(sc)) { 17020 if (IS_MF_AFEX(sc)) { 17021 /* 17022 * configure that AFEX and VLAN headers must be 17023 * received in AFEX mode 17024 */ 17025 REG_WR(sc, PRS_REG_HDRS_AFTER_BASIC, 0xE); 17026 REG_WR(sc, PRS_REG_MUST_HAVE_HDRS, 0xA); 17027 REG_WR(sc, PRS_REG_HDRS_AFTER_TAG_0, 0x6); 17028 REG_WR(sc, PRS_REG_TAG_ETHERTYPE_0, 0x8926); 17029 REG_WR(sc, PRS_REG_TAG_LEN_0, 0x4); 17030 } else { 17031 /* 17032 * Bit-map indicating which L2 hdrs may appear 17033 * after the basic Ethernet header 17034 */ 17035 REG_WR(sc, PRS_REG_HDRS_AFTER_BASIC, 17036 sc->devinfo.mf_info.path_has_ovlan ? 7 : 6); 17037 } 17038 } 17039 17040 ecore_init_block(sc, BLOCK_TSDM, PHASE_COMMON); 17041 ecore_init_block(sc, BLOCK_CSDM, PHASE_COMMON); 17042 ecore_init_block(sc, BLOCK_USDM, PHASE_COMMON); 17043 ecore_init_block(sc, BLOCK_XSDM, PHASE_COMMON); 17044 17045 if (!CHIP_IS_E1x(sc)) { 17046 /* reset VFC memories */ 17047 REG_WR(sc, TSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST, 17048 VFC_MEMORIES_RST_REG_CAM_RST | 17049 VFC_MEMORIES_RST_REG_RAM_RST); 17050 REG_WR(sc, XSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST, 17051 VFC_MEMORIES_RST_REG_CAM_RST | 17052 VFC_MEMORIES_RST_REG_RAM_RST); 17053 17054 DELAY(20000); 17055 } 17056 17057 ecore_init_block(sc, BLOCK_TSEM, PHASE_COMMON); 17058 ecore_init_block(sc, BLOCK_USEM, PHASE_COMMON); 17059 ecore_init_block(sc, BLOCK_CSEM, PHASE_COMMON); 17060 ecore_init_block(sc, BLOCK_XSEM, PHASE_COMMON); 17061 17062 /* sync semi rtc */ 17063 REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 17064 0x80000000); 17065 REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 17066 0x80000000); 17067 17068 ecore_init_block(sc, BLOCK_UPB, PHASE_COMMON); 17069 ecore_init_block(sc, BLOCK_XPB, PHASE_COMMON); 17070 ecore_init_block(sc, BLOCK_PBF, PHASE_COMMON); 17071 17072 if (!CHIP_IS_E1x(sc)) { 17073 if (IS_MF_AFEX(sc)) { 17074 /* 17075 * configure that AFEX and VLAN headers must be 17076 * sent in AFEX mode 17077 */ 17078 REG_WR(sc, PBF_REG_HDRS_AFTER_BASIC, 0xE); 17079 REG_WR(sc, PBF_REG_MUST_HAVE_HDRS, 0xA); 17080 REG_WR(sc, PBF_REG_HDRS_AFTER_TAG_0, 0x6); 17081 REG_WR(sc, PBF_REG_TAG_ETHERTYPE_0, 0x8926); 17082 REG_WR(sc, PBF_REG_TAG_LEN_0, 0x4); 17083 } else { 17084 REG_WR(sc, PBF_REG_HDRS_AFTER_BASIC, 17085 sc->devinfo.mf_info.path_has_ovlan ? 7 : 6); 17086 } 17087 } 17088 17089 REG_WR(sc, SRC_REG_SOFT_RST, 1); 17090 17091 ecore_init_block(sc, BLOCK_SRC, PHASE_COMMON); 17092 17093 if (CNIC_SUPPORT(sc)) { 17094 REG_WR(sc, SRC_REG_KEYSEARCH_0, 0x63285672); 17095 REG_WR(sc, SRC_REG_KEYSEARCH_1, 0x24b8f2cc); 17096 REG_WR(sc, SRC_REG_KEYSEARCH_2, 0x223aef9b); 17097 REG_WR(sc, SRC_REG_KEYSEARCH_3, 0x26001e3a); 17098 REG_WR(sc, SRC_REG_KEYSEARCH_4, 0x7ae91116); 17099 REG_WR(sc, SRC_REG_KEYSEARCH_5, 0x5ce5230b); 17100 REG_WR(sc, SRC_REG_KEYSEARCH_6, 0x298d8adf); 17101 REG_WR(sc, SRC_REG_KEYSEARCH_7, 0x6eb0ff09); 17102 REG_WR(sc, SRC_REG_KEYSEARCH_8, 0x1830f82f); 17103 REG_WR(sc, SRC_REG_KEYSEARCH_9, 0x01e46be7); 17104 } 17105 REG_WR(sc, SRC_REG_SOFT_RST, 0); 17106 17107 if (sizeof(union cdu_context) != 1024) { 17108 /* we currently assume that a context is 1024 bytes */ 17109 BLOGE(sc, "please adjust the size of cdu_context(%ld)\n", 17110 (long)sizeof(union cdu_context)); 17111 } 17112 17113 ecore_init_block(sc, BLOCK_CDU, PHASE_COMMON); 17114 val = (4 << 24) + (0 << 12) + 1024; 17115 REG_WR(sc, CDU_REG_CDU_GLOBAL_PARAMS, val); 17116 17117 ecore_init_block(sc, BLOCK_CFC, PHASE_COMMON); 17118 17119 REG_WR(sc, CFC_REG_INIT_REG, 0x7FF); 17120 /* enable context validation interrupt from CFC */ 17121 REG_WR(sc, CFC_REG_CFC_INT_MASK, 0); 17122 17123 /* set the thresholds to prevent CFC/CDU race */ 17124 REG_WR(sc, CFC_REG_DEBUG0, 0x20020000); 17125 ecore_init_block(sc, BLOCK_HC, PHASE_COMMON); 17126 17127 if (!CHIP_IS_E1x(sc) && BXE_NOMCP(sc)) { 17128 REG_WR(sc, IGU_REG_RESET_MEMORIES, 0x36); 17129 } 17130 17131 ecore_init_block(sc, BLOCK_IGU, PHASE_COMMON); 17132 ecore_init_block(sc, BLOCK_MISC_AEU, PHASE_COMMON); 17133 17134 /* Reset PCIE errors for debug */ 17135 REG_WR(sc, 0x2814, 0xffffffff); 17136 REG_WR(sc, 0x3820, 0xffffffff); 17137 17138 if (!CHIP_IS_E1x(sc)) { 17139 REG_WR(sc, PCICFG_OFFSET + PXPCS_TL_CONTROL_5, 17140 (PXPCS_TL_CONTROL_5_ERR_UNSPPORT1 | 17141 PXPCS_TL_CONTROL_5_ERR_UNSPPORT)); 17142 REG_WR(sc, PCICFG_OFFSET + PXPCS_TL_FUNC345_STAT, 17143 (PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT4 | 17144 PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT3 | 17145 PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT2)); 17146 REG_WR(sc, PCICFG_OFFSET + PXPCS_TL_FUNC678_STAT, 17147 (PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT7 | 17148 PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT6 | 17149 PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT5)); 17150 } 17151 17152 ecore_init_block(sc, BLOCK_NIG, PHASE_COMMON); 17153 17154 if (!CHIP_IS_E1(sc)) { 17155 /* in E3 this done in per-port section */ 17156 if (!CHIP_IS_E3(sc)) 17157 REG_WR(sc, NIG_REG_LLH_MF_MODE, IS_MF(sc)); 17158 } 17159 17160 if (CHIP_IS_E1H(sc)) { 17161 /* not applicable for E2 (and above ...) */ 17162 REG_WR(sc, NIG_REG_LLH_E1HOV_MODE, IS_MF_SD(sc)); 17163 } 17164 17165 if (CHIP_REV_IS_SLOW(sc)) { 17166 DELAY(200000); 17167 } 17168 17169 /* finish CFC init */ 17170 val = reg_poll(sc, CFC_REG_LL_INIT_DONE, 1, 100, 10); 17171 if (val != 1) { 17172 BLOGE(sc, "CFC LL_INIT failed val=0x%x\n", val); 17173 return (-1); 17174 } 17175 val = reg_poll(sc, CFC_REG_AC_INIT_DONE, 1, 100, 10); 17176 if (val != 1) { 17177 BLOGE(sc, "CFC AC_INIT failed val=0x%x\n", val); 17178 return (-1); 17179 } 17180 val = reg_poll(sc, CFC_REG_CAM_INIT_DONE, 1, 100, 10); 17181 if (val != 1) { 17182 BLOGE(sc, "CFC CAM_INIT failed val=0x%x\n", val); 17183 return (-1); 17184 } 17185 REG_WR(sc, CFC_REG_DEBUG0, 0); 17186 17187 if (CHIP_IS_E1(sc)) { 17188 /* read NIG statistic to see if this is our first up since powerup */ 17189 bxe_read_dmae(sc, NIG_REG_STAT2_BRB_OCTET, 2); 17190 val = *BXE_SP(sc, wb_data[0]); 17191 17192 /* do internal memory self test */ 17193 if ((val == 0) && bxe_int_mem_test(sc)) { 17194 BLOGE(sc, "internal mem self test failed val=0x%x\n", val); 17195 return (-1); 17196 } 17197 } 17198 17199 bxe_setup_fan_failure_detection(sc); 17200 17201 /* clear PXP2 attentions */ 17202 REG_RD(sc, PXP2_REG_PXP2_INT_STS_CLR_0); 17203 17204 bxe_enable_blocks_attention(sc); 17205 17206 if (!CHIP_REV_IS_SLOW(sc)) { 17207 ecore_enable_blocks_parity(sc); 17208 } 17209 17210 if (!BXE_NOMCP(sc)) { 17211 if (CHIP_IS_E1x(sc)) { 17212 bxe_common_init_phy(sc); 17213 } 17214 } 17215 17216 return (0); 17217 } 17218 17219 /** 17220 * bxe_init_hw_common_chip - init HW at the COMMON_CHIP phase. 17221 * 17222 * @sc: driver handle 17223 */ 17224 static int 17225 bxe_init_hw_common_chip(struct bxe_softc *sc) 17226 { 17227 int rc = bxe_init_hw_common(sc); 17228 17229 if (rc) { 17230 BLOGE(sc, "bxe_init_hw_common failed rc=%d\n", rc); 17231 return (rc); 17232 } 17233 17234 /* In E2 2-PORT mode, same ext phy is used for the two paths */ 17235 if (!BXE_NOMCP(sc)) { 17236 bxe_common_init_phy(sc); 17237 } 17238 17239 return (0); 17240 } 17241 17242 static int 17243 bxe_init_hw_port(struct bxe_softc *sc) 17244 { 17245 int port = SC_PORT(sc); 17246 int init_phase = port ? PHASE_PORT1 : PHASE_PORT0; 17247 uint32_t low, high; 17248 uint32_t val; 17249 17250 BLOGD(sc, DBG_LOAD, "starting port init for port %d\n", port); 17251 17252 REG_WR(sc, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0); 17253 17254 ecore_init_block(sc, BLOCK_MISC, init_phase); 17255 ecore_init_block(sc, BLOCK_PXP, init_phase); 17256 ecore_init_block(sc, BLOCK_PXP2, init_phase); 17257 17258 /* 17259 * Timers bug workaround: disables the pf_master bit in pglue at 17260 * common phase, we need to enable it here before any dmae access are 17261 * attempted. Therefore we manually added the enable-master to the 17262 * port phase (it also happens in the function phase) 17263 */ 17264 if (!CHIP_IS_E1x(sc)) { 17265 REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1); 17266 } 17267 17268 ecore_init_block(sc, BLOCK_ATC, init_phase); 17269 ecore_init_block(sc, BLOCK_DMAE, init_phase); 17270 ecore_init_block(sc, BLOCK_PGLUE_B, init_phase); 17271 ecore_init_block(sc, BLOCK_QM, init_phase); 17272 17273 ecore_init_block(sc, BLOCK_TCM, init_phase); 17274 ecore_init_block(sc, BLOCK_UCM, init_phase); 17275 ecore_init_block(sc, BLOCK_CCM, init_phase); 17276 ecore_init_block(sc, BLOCK_XCM, init_phase); 17277 17278 /* QM cid (connection) count */ 17279 ecore_qm_init_cid_count(sc, sc->qm_cid_count, INITOP_SET); 17280 17281 if (CNIC_SUPPORT(sc)) { 17282 ecore_init_block(sc, BLOCK_TM, init_phase); 17283 REG_WR(sc, TM_REG_LIN0_SCAN_TIME + port*4, 20); 17284 REG_WR(sc, TM_REG_LIN0_MAX_ACTIVE_CID + port*4, 31); 17285 } 17286 17287 ecore_init_block(sc, BLOCK_DORQ, init_phase); 17288 17289 ecore_init_block(sc, BLOCK_BRB1, init_phase); 17290 17291 if (CHIP_IS_E1(sc) || CHIP_IS_E1H(sc)) { 17292 if (IS_MF(sc)) { 17293 low = (BXE_ONE_PORT(sc) ? 160 : 246); 17294 } else if (sc->mtu > 4096) { 17295 if (BXE_ONE_PORT(sc)) { 17296 low = 160; 17297 } else { 17298 val = sc->mtu; 17299 /* (24*1024 + val*4)/256 */ 17300 low = (96 + (val / 64) + ((val % 64) ? 1 : 0)); 17301 } 17302 } else { 17303 low = (BXE_ONE_PORT(sc) ? 80 : 160); 17304 } 17305 high = (low + 56); /* 14*1024/256 */ 17306 REG_WR(sc, BRB1_REG_PAUSE_LOW_THRESHOLD_0 + port*4, low); 17307 REG_WR(sc, BRB1_REG_PAUSE_HIGH_THRESHOLD_0 + port*4, high); 17308 } 17309 17310 if (CHIP_IS_MODE_4_PORT(sc)) { 17311 REG_WR(sc, SC_PORT(sc) ? 17312 BRB1_REG_MAC_GUARANTIED_1 : 17313 BRB1_REG_MAC_GUARANTIED_0, 40); 17314 } 17315 17316 ecore_init_block(sc, BLOCK_PRS, init_phase); 17317 if (CHIP_IS_E3B0(sc)) { 17318 if (IS_MF_AFEX(sc)) { 17319 /* configure headers for AFEX mode */ 17320 REG_WR(sc, SC_PORT(sc) ? 17321 PRS_REG_HDRS_AFTER_BASIC_PORT_1 : 17322 PRS_REG_HDRS_AFTER_BASIC_PORT_0, 0xE); 17323 REG_WR(sc, SC_PORT(sc) ? 17324 PRS_REG_HDRS_AFTER_TAG_0_PORT_1 : 17325 PRS_REG_HDRS_AFTER_TAG_0_PORT_0, 0x6); 17326 REG_WR(sc, SC_PORT(sc) ? 17327 PRS_REG_MUST_HAVE_HDRS_PORT_1 : 17328 PRS_REG_MUST_HAVE_HDRS_PORT_0, 0xA); 17329 } else { 17330 /* Ovlan exists only if we are in multi-function + 17331 * switch-dependent mode, in switch-independent there 17332 * is no ovlan headers 17333 */ 17334 REG_WR(sc, SC_PORT(sc) ? 17335 PRS_REG_HDRS_AFTER_BASIC_PORT_1 : 17336 PRS_REG_HDRS_AFTER_BASIC_PORT_0, 17337 (sc->devinfo.mf_info.path_has_ovlan ? 7 : 6)); 17338 } 17339 } 17340 17341 ecore_init_block(sc, BLOCK_TSDM, init_phase); 17342 ecore_init_block(sc, BLOCK_CSDM, init_phase); 17343 ecore_init_block(sc, BLOCK_USDM, init_phase); 17344 ecore_init_block(sc, BLOCK_XSDM, init_phase); 17345 17346 ecore_init_block(sc, BLOCK_TSEM, init_phase); 17347 ecore_init_block(sc, BLOCK_USEM, init_phase); 17348 ecore_init_block(sc, BLOCK_CSEM, init_phase); 17349 ecore_init_block(sc, BLOCK_XSEM, init_phase); 17350 17351 ecore_init_block(sc, BLOCK_UPB, init_phase); 17352 ecore_init_block(sc, BLOCK_XPB, init_phase); 17353 17354 ecore_init_block(sc, BLOCK_PBF, init_phase); 17355 17356 if (CHIP_IS_E1x(sc)) { 17357 /* configure PBF to work without PAUSE mtu 9000 */ 17358 REG_WR(sc, PBF_REG_P0_PAUSE_ENABLE + port*4, 0); 17359 17360 /* update threshold */ 17361 REG_WR(sc, PBF_REG_P0_ARB_THRSH + port*4, (9040/16)); 17362 /* update init credit */ 17363 REG_WR(sc, PBF_REG_P0_INIT_CRD + port*4, (9040/16) + 553 - 22); 17364 17365 /* probe changes */ 17366 REG_WR(sc, PBF_REG_INIT_P0 + port*4, 1); 17367 DELAY(50); 17368 REG_WR(sc, PBF_REG_INIT_P0 + port*4, 0); 17369 } 17370 17371 if (CNIC_SUPPORT(sc)) { 17372 ecore_init_block(sc, BLOCK_SRC, init_phase); 17373 } 17374 17375 ecore_init_block(sc, BLOCK_CDU, init_phase); 17376 ecore_init_block(sc, BLOCK_CFC, init_phase); 17377 17378 if (CHIP_IS_E1(sc)) { 17379 REG_WR(sc, HC_REG_LEADING_EDGE_0 + port*8, 0); 17380 REG_WR(sc, HC_REG_TRAILING_EDGE_0 + port*8, 0); 17381 } 17382 ecore_init_block(sc, BLOCK_HC, init_phase); 17383 17384 ecore_init_block(sc, BLOCK_IGU, init_phase); 17385 17386 ecore_init_block(sc, BLOCK_MISC_AEU, init_phase); 17387 /* init aeu_mask_attn_func_0/1: 17388 * - SF mode: bits 3-7 are masked. only bits 0-2 are in use 17389 * - MF mode: bit 3 is masked. bits 0-2 are in use as in SF 17390 * bits 4-7 are used for "per vn group attention" */ 17391 val = IS_MF(sc) ? 0xF7 : 0x7; 17392 /* Enable DCBX attention for all but E1 */ 17393 val |= CHIP_IS_E1(sc) ? 0 : 0x10; 17394 REG_WR(sc, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, val); 17395 17396 ecore_init_block(sc, BLOCK_NIG, init_phase); 17397 17398 if (!CHIP_IS_E1x(sc)) { 17399 /* Bit-map indicating which L2 hdrs may appear after the 17400 * basic Ethernet header 17401 */ 17402 if (IS_MF_AFEX(sc)) { 17403 REG_WR(sc, SC_PORT(sc) ? 17404 NIG_REG_P1_HDRS_AFTER_BASIC : 17405 NIG_REG_P0_HDRS_AFTER_BASIC, 0xE); 17406 } else { 17407 REG_WR(sc, SC_PORT(sc) ? 17408 NIG_REG_P1_HDRS_AFTER_BASIC : 17409 NIG_REG_P0_HDRS_AFTER_BASIC, 17410 IS_MF_SD(sc) ? 7 : 6); 17411 } 17412 17413 if (CHIP_IS_E3(sc)) { 17414 REG_WR(sc, SC_PORT(sc) ? 17415 NIG_REG_LLH1_MF_MODE : 17416 NIG_REG_LLH_MF_MODE, IS_MF(sc)); 17417 } 17418 } 17419 if (!CHIP_IS_E3(sc)) { 17420 REG_WR(sc, NIG_REG_XGXS_SERDES0_MODE_SEL + port*4, 1); 17421 } 17422 17423 if (!CHIP_IS_E1(sc)) { 17424 /* 0x2 disable mf_ov, 0x1 enable */ 17425 REG_WR(sc, NIG_REG_LLH0_BRB1_DRV_MASK_MF + port*4, 17426 (IS_MF_SD(sc) ? 0x1 : 0x2)); 17427 17428 if (!CHIP_IS_E1x(sc)) { 17429 val = 0; 17430 switch (sc->devinfo.mf_info.mf_mode) { 17431 case MULTI_FUNCTION_SD: 17432 val = 1; 17433 break; 17434 case MULTI_FUNCTION_SI: 17435 case MULTI_FUNCTION_AFEX: 17436 val = 2; 17437 break; 17438 } 17439 17440 REG_WR(sc, (SC_PORT(sc) ? NIG_REG_LLH1_CLS_TYPE : 17441 NIG_REG_LLH0_CLS_TYPE), val); 17442 } 17443 REG_WR(sc, NIG_REG_LLFC_ENABLE_0 + port*4, 0); 17444 REG_WR(sc, NIG_REG_LLFC_OUT_EN_0 + port*4, 0); 17445 REG_WR(sc, NIG_REG_PAUSE_ENABLE_0 + port*4, 1); 17446 } 17447 17448 /* If SPIO5 is set to generate interrupts, enable it for this port */ 17449 val = REG_RD(sc, MISC_REG_SPIO_EVENT_EN); 17450 if (val & MISC_SPIO_SPIO5) { 17451 uint32_t reg_addr = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 : 17452 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0); 17453 val = REG_RD(sc, reg_addr); 17454 val |= AEU_INPUTS_ATTN_BITS_SPIO5; 17455 REG_WR(sc, reg_addr, val); 17456 } 17457 17458 return (0); 17459 } 17460 17461 static uint32_t 17462 bxe_flr_clnup_reg_poll(struct bxe_softc *sc, 17463 uint32_t reg, 17464 uint32_t expected, 17465 uint32_t poll_count) 17466 { 17467 uint32_t cur_cnt = poll_count; 17468 uint32_t val; 17469 17470 while ((val = REG_RD(sc, reg)) != expected && cur_cnt--) { 17471 DELAY(FLR_WAIT_INTERVAL); 17472 } 17473 17474 return (val); 17475 } 17476 17477 static int 17478 bxe_flr_clnup_poll_hw_counter(struct bxe_softc *sc, 17479 uint32_t reg, 17480 char *msg, 17481 uint32_t poll_cnt) 17482 { 17483 uint32_t val = bxe_flr_clnup_reg_poll(sc, reg, 0, poll_cnt); 17484 17485 if (val != 0) { 17486 BLOGE(sc, "%s usage count=%d\n", msg, val); 17487 return (1); 17488 } 17489 17490 return (0); 17491 } 17492 17493 /* Common routines with VF FLR cleanup */ 17494 static uint32_t 17495 bxe_flr_clnup_poll_count(struct bxe_softc *sc) 17496 { 17497 /* adjust polling timeout */ 17498 if (CHIP_REV_IS_EMUL(sc)) { 17499 return (FLR_POLL_CNT * 2000); 17500 } 17501 17502 if (CHIP_REV_IS_FPGA(sc)) { 17503 return (FLR_POLL_CNT * 120); 17504 } 17505 17506 return (FLR_POLL_CNT); 17507 } 17508 17509 static int 17510 bxe_poll_hw_usage_counters(struct bxe_softc *sc, 17511 uint32_t poll_cnt) 17512 { 17513 /* wait for CFC PF usage-counter to zero (includes all the VFs) */ 17514 if (bxe_flr_clnup_poll_hw_counter(sc, 17515 CFC_REG_NUM_LCIDS_INSIDE_PF, 17516 "CFC PF usage counter timed out", 17517 poll_cnt)) { 17518 return (1); 17519 } 17520 17521 /* Wait for DQ PF usage-counter to zero (until DQ cleanup) */ 17522 if (bxe_flr_clnup_poll_hw_counter(sc, 17523 DORQ_REG_PF_USAGE_CNT, 17524 "DQ PF usage counter timed out", 17525 poll_cnt)) { 17526 return (1); 17527 } 17528 17529 /* Wait for QM PF usage-counter to zero (until DQ cleanup) */ 17530 if (bxe_flr_clnup_poll_hw_counter(sc, 17531 QM_REG_PF_USG_CNT_0 + 4*SC_FUNC(sc), 17532 "QM PF usage counter timed out", 17533 poll_cnt)) { 17534 return (1); 17535 } 17536 17537 /* Wait for Timer PF usage-counters to zero (until DQ cleanup) */ 17538 if (bxe_flr_clnup_poll_hw_counter(sc, 17539 TM_REG_LIN0_VNIC_UC + 4*SC_PORT(sc), 17540 "Timers VNIC usage counter timed out", 17541 poll_cnt)) { 17542 return (1); 17543 } 17544 17545 if (bxe_flr_clnup_poll_hw_counter(sc, 17546 TM_REG_LIN0_NUM_SCANS + 4*SC_PORT(sc), 17547 "Timers NUM_SCANS usage counter timed out", 17548 poll_cnt)) { 17549 return (1); 17550 } 17551 17552 /* Wait DMAE PF usage counter to zero */ 17553 if (bxe_flr_clnup_poll_hw_counter(sc, 17554 dmae_reg_go_c[INIT_DMAE_C(sc)], 17555 "DMAE dommand register timed out", 17556 poll_cnt)) { 17557 return (1); 17558 } 17559 17560 return (0); 17561 } 17562 17563 #define OP_GEN_PARAM(param) \ 17564 (((param) << SDM_OP_GEN_COMP_PARAM_SHIFT) & SDM_OP_GEN_COMP_PARAM) 17565 #define OP_GEN_TYPE(type) \ 17566 (((type) << SDM_OP_GEN_COMP_TYPE_SHIFT) & SDM_OP_GEN_COMP_TYPE) 17567 #define OP_GEN_AGG_VECT(index) \ 17568 (((index) << SDM_OP_GEN_AGG_VECT_IDX_SHIFT) & SDM_OP_GEN_AGG_VECT_IDX) 17569 17570 static int 17571 bxe_send_final_clnup(struct bxe_softc *sc, 17572 uint8_t clnup_func, 17573 uint32_t poll_cnt) 17574 { 17575 uint32_t op_gen_command = 0; 17576 uint32_t comp_addr = (BAR_CSTRORM_INTMEM + 17577 CSTORM_FINAL_CLEANUP_COMPLETE_OFFSET(clnup_func)); 17578 int ret = 0; 17579 17580 if (REG_RD(sc, comp_addr)) { 17581 BLOGE(sc, "Cleanup complete was not 0 before sending\n"); 17582 return (1); 17583 } 17584 17585 op_gen_command |= OP_GEN_PARAM(XSTORM_AGG_INT_FINAL_CLEANUP_INDEX); 17586 op_gen_command |= OP_GEN_TYPE(XSTORM_AGG_INT_FINAL_CLEANUP_COMP_TYPE); 17587 op_gen_command |= OP_GEN_AGG_VECT(clnup_func); 17588 op_gen_command |= 1 << SDM_OP_GEN_AGG_VECT_IDX_VALID_SHIFT; 17589 17590 BLOGD(sc, DBG_LOAD, "sending FW Final cleanup\n"); 17591 REG_WR(sc, XSDM_REG_OPERATION_GEN, op_gen_command); 17592 17593 if (bxe_flr_clnup_reg_poll(sc, comp_addr, 1, poll_cnt) != 1) { 17594 BLOGE(sc, "FW final cleanup did not succeed\n"); 17595 BLOGD(sc, DBG_LOAD, "At timeout completion address contained %x\n", 17596 (REG_RD(sc, comp_addr))); 17597 bxe_panic(sc, ("FLR cleanup failed\n")); 17598 return (1); 17599 } 17600 17601 /* Zero completion for nxt FLR */ 17602 REG_WR(sc, comp_addr, 0); 17603 17604 return (ret); 17605 } 17606 17607 static void 17608 bxe_pbf_pN_buf_flushed(struct bxe_softc *sc, 17609 struct pbf_pN_buf_regs *regs, 17610 uint32_t poll_count) 17611 { 17612 uint32_t init_crd, crd, crd_start, crd_freed, crd_freed_start; 17613 uint32_t cur_cnt = poll_count; 17614 17615 crd_freed = crd_freed_start = REG_RD(sc, regs->crd_freed); 17616 crd = crd_start = REG_RD(sc, regs->crd); 17617 init_crd = REG_RD(sc, regs->init_crd); 17618 17619 BLOGD(sc, DBG_LOAD, "INIT CREDIT[%d] : %x\n", regs->pN, init_crd); 17620 BLOGD(sc, DBG_LOAD, "CREDIT[%d] : s:%x\n", regs->pN, crd); 17621 BLOGD(sc, DBG_LOAD, "CREDIT_FREED[%d]: s:%x\n", regs->pN, crd_freed); 17622 17623 while ((crd != init_crd) && 17624 ((uint32_t)((int32_t)crd_freed - (int32_t)crd_freed_start) < 17625 (init_crd - crd_start))) { 17626 if (cur_cnt--) { 17627 DELAY(FLR_WAIT_INTERVAL); 17628 crd = REG_RD(sc, regs->crd); 17629 crd_freed = REG_RD(sc, regs->crd_freed); 17630 } else { 17631 BLOGD(sc, DBG_LOAD, "PBF tx buffer[%d] timed out\n", regs->pN); 17632 BLOGD(sc, DBG_LOAD, "CREDIT[%d] : c:%x\n", regs->pN, crd); 17633 BLOGD(sc, DBG_LOAD, "CREDIT_FREED[%d]: c:%x\n", regs->pN, crd_freed); 17634 break; 17635 } 17636 } 17637 17638 BLOGD(sc, DBG_LOAD, "Waited %d*%d usec for PBF tx buffer[%d]\n", 17639 poll_count-cur_cnt, FLR_WAIT_INTERVAL, regs->pN); 17640 } 17641 17642 static void 17643 bxe_pbf_pN_cmd_flushed(struct bxe_softc *sc, 17644 struct pbf_pN_cmd_regs *regs, 17645 uint32_t poll_count) 17646 { 17647 uint32_t occup, to_free, freed, freed_start; 17648 uint32_t cur_cnt = poll_count; 17649 17650 occup = to_free = REG_RD(sc, regs->lines_occup); 17651 freed = freed_start = REG_RD(sc, regs->lines_freed); 17652 17653 BLOGD(sc, DBG_LOAD, "OCCUPANCY[%d] : s:%x\n", regs->pN, occup); 17654 BLOGD(sc, DBG_LOAD, "LINES_FREED[%d] : s:%x\n", regs->pN, freed); 17655 17656 while (occup && 17657 ((uint32_t)((int32_t)freed - (int32_t)freed_start) < to_free)) { 17658 if (cur_cnt--) { 17659 DELAY(FLR_WAIT_INTERVAL); 17660 occup = REG_RD(sc, regs->lines_occup); 17661 freed = REG_RD(sc, regs->lines_freed); 17662 } else { 17663 BLOGD(sc, DBG_LOAD, "PBF cmd queue[%d] timed out\n", regs->pN); 17664 BLOGD(sc, DBG_LOAD, "OCCUPANCY[%d] : s:%x\n", regs->pN, occup); 17665 BLOGD(sc, DBG_LOAD, "LINES_FREED[%d] : s:%x\n", regs->pN, freed); 17666 break; 17667 } 17668 } 17669 17670 BLOGD(sc, DBG_LOAD, "Waited %d*%d usec for PBF cmd queue[%d]\n", 17671 poll_count - cur_cnt, FLR_WAIT_INTERVAL, regs->pN); 17672 } 17673 17674 static void 17675 bxe_tx_hw_flushed(struct bxe_softc *sc, uint32_t poll_count) 17676 { 17677 struct pbf_pN_cmd_regs cmd_regs[] = { 17678 {0, (CHIP_IS_E3B0(sc)) ? 17679 PBF_REG_TQ_OCCUPANCY_Q0 : 17680 PBF_REG_P0_TQ_OCCUPANCY, 17681 (CHIP_IS_E3B0(sc)) ? 17682 PBF_REG_TQ_LINES_FREED_CNT_Q0 : 17683 PBF_REG_P0_TQ_LINES_FREED_CNT}, 17684 {1, (CHIP_IS_E3B0(sc)) ? 17685 PBF_REG_TQ_OCCUPANCY_Q1 : 17686 PBF_REG_P1_TQ_OCCUPANCY, 17687 (CHIP_IS_E3B0(sc)) ? 17688 PBF_REG_TQ_LINES_FREED_CNT_Q1 : 17689 PBF_REG_P1_TQ_LINES_FREED_CNT}, 17690 {4, (CHIP_IS_E3B0(sc)) ? 17691 PBF_REG_TQ_OCCUPANCY_LB_Q : 17692 PBF_REG_P4_TQ_OCCUPANCY, 17693 (CHIP_IS_E3B0(sc)) ? 17694 PBF_REG_TQ_LINES_FREED_CNT_LB_Q : 17695 PBF_REG_P4_TQ_LINES_FREED_CNT} 17696 }; 17697 17698 struct pbf_pN_buf_regs buf_regs[] = { 17699 {0, (CHIP_IS_E3B0(sc)) ? 17700 PBF_REG_INIT_CRD_Q0 : 17701 PBF_REG_P0_INIT_CRD , 17702 (CHIP_IS_E3B0(sc)) ? 17703 PBF_REG_CREDIT_Q0 : 17704 PBF_REG_P0_CREDIT, 17705 (CHIP_IS_E3B0(sc)) ? 17706 PBF_REG_INTERNAL_CRD_FREED_CNT_Q0 : 17707 PBF_REG_P0_INTERNAL_CRD_FREED_CNT}, 17708 {1, (CHIP_IS_E3B0(sc)) ? 17709 PBF_REG_INIT_CRD_Q1 : 17710 PBF_REG_P1_INIT_CRD, 17711 (CHIP_IS_E3B0(sc)) ? 17712 PBF_REG_CREDIT_Q1 : 17713 PBF_REG_P1_CREDIT, 17714 (CHIP_IS_E3B0(sc)) ? 17715 PBF_REG_INTERNAL_CRD_FREED_CNT_Q1 : 17716 PBF_REG_P1_INTERNAL_CRD_FREED_CNT}, 17717 {4, (CHIP_IS_E3B0(sc)) ? 17718 PBF_REG_INIT_CRD_LB_Q : 17719 PBF_REG_P4_INIT_CRD, 17720 (CHIP_IS_E3B0(sc)) ? 17721 PBF_REG_CREDIT_LB_Q : 17722 PBF_REG_P4_CREDIT, 17723 (CHIP_IS_E3B0(sc)) ? 17724 PBF_REG_INTERNAL_CRD_FREED_CNT_LB_Q : 17725 PBF_REG_P4_INTERNAL_CRD_FREED_CNT}, 17726 }; 17727 17728 int i; 17729 17730 /* Verify the command queues are flushed P0, P1, P4 */ 17731 for (i = 0; i < ARRAY_SIZE(cmd_regs); i++) { 17732 bxe_pbf_pN_cmd_flushed(sc, &cmd_regs[i], poll_count); 17733 } 17734 17735 /* Verify the transmission buffers are flushed P0, P1, P4 */ 17736 for (i = 0; i < ARRAY_SIZE(buf_regs); i++) { 17737 bxe_pbf_pN_buf_flushed(sc, &buf_regs[i], poll_count); 17738 } 17739 } 17740 17741 static void 17742 bxe_hw_enable_status(struct bxe_softc *sc) 17743 { 17744 uint32_t val; 17745 17746 val = REG_RD(sc, CFC_REG_WEAK_ENABLE_PF); 17747 BLOGD(sc, DBG_LOAD, "CFC_REG_WEAK_ENABLE_PF is 0x%x\n", val); 17748 17749 val = REG_RD(sc, PBF_REG_DISABLE_PF); 17750 BLOGD(sc, DBG_LOAD, "PBF_REG_DISABLE_PF is 0x%x\n", val); 17751 17752 val = REG_RD(sc, IGU_REG_PCI_PF_MSI_EN); 17753 BLOGD(sc, DBG_LOAD, "IGU_REG_PCI_PF_MSI_EN is 0x%x\n", val); 17754 17755 val = REG_RD(sc, IGU_REG_PCI_PF_MSIX_EN); 17756 BLOGD(sc, DBG_LOAD, "IGU_REG_PCI_PF_MSIX_EN is 0x%x\n", val); 17757 17758 val = REG_RD(sc, IGU_REG_PCI_PF_MSIX_FUNC_MASK); 17759 BLOGD(sc, DBG_LOAD, "IGU_REG_PCI_PF_MSIX_FUNC_MASK is 0x%x\n", val); 17760 17761 val = REG_RD(sc, PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR); 17762 BLOGD(sc, DBG_LOAD, "PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR is 0x%x\n", val); 17763 17764 val = REG_RD(sc, PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR); 17765 BLOGD(sc, DBG_LOAD, "PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR is 0x%x\n", val); 17766 17767 val = REG_RD(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER); 17768 BLOGD(sc, DBG_LOAD, "PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER is 0x%x\n", val); 17769 } 17770 17771 static int 17772 bxe_pf_flr_clnup(struct bxe_softc *sc) 17773 { 17774 uint32_t poll_cnt = bxe_flr_clnup_poll_count(sc); 17775 17776 BLOGD(sc, DBG_LOAD, "Cleanup after FLR PF[%d]\n", SC_ABS_FUNC(sc)); 17777 17778 /* Re-enable PF target read access */ 17779 REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1); 17780 17781 /* Poll HW usage counters */ 17782 BLOGD(sc, DBG_LOAD, "Polling usage counters\n"); 17783 if (bxe_poll_hw_usage_counters(sc, poll_cnt)) { 17784 return (-1); 17785 } 17786 17787 /* Zero the igu 'trailing edge' and 'leading edge' */ 17788 17789 /* Send the FW cleanup command */ 17790 if (bxe_send_final_clnup(sc, (uint8_t)SC_FUNC(sc), poll_cnt)) { 17791 return (-1); 17792 } 17793 17794 /* ATC cleanup */ 17795 17796 /* Verify TX hw is flushed */ 17797 bxe_tx_hw_flushed(sc, poll_cnt); 17798 17799 /* Wait 100ms (not adjusted according to platform) */ 17800 DELAY(100000); 17801 17802 /* Verify no pending pci transactions */ 17803 if (bxe_is_pcie_pending(sc)) { 17804 BLOGE(sc, "PCIE Transactions still pending\n"); 17805 } 17806 17807 /* Debug */ 17808 bxe_hw_enable_status(sc); 17809 17810 /* 17811 * Master enable - Due to WB DMAE writes performed before this 17812 * register is re-initialized as part of the regular function init 17813 */ 17814 REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1); 17815 17816 return (0); 17817 } 17818 17819 static int 17820 bxe_init_hw_func(struct bxe_softc *sc) 17821 { 17822 int port = SC_PORT(sc); 17823 int func = SC_FUNC(sc); 17824 int init_phase = PHASE_PF0 + func; 17825 struct ecore_ilt *ilt = sc->ilt; 17826 uint16_t cdu_ilt_start; 17827 uint32_t addr, val; 17828 uint32_t main_mem_base, main_mem_size, main_mem_prty_clr; 17829 int i, main_mem_width, rc; 17830 17831 BLOGD(sc, DBG_LOAD, "starting func init for func %d\n", func); 17832 17833 /* FLR cleanup */ 17834 if (!CHIP_IS_E1x(sc)) { 17835 rc = bxe_pf_flr_clnup(sc); 17836 if (rc) { 17837 BLOGE(sc, "FLR cleanup failed!\n"); 17838 // XXX bxe_fw_dump(sc); 17839 // XXX bxe_idle_chk(sc); 17840 return (rc); 17841 } 17842 } 17843 17844 /* set MSI reconfigure capability */ 17845 if (sc->devinfo.int_block == INT_BLOCK_HC) { 17846 addr = (port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0); 17847 val = REG_RD(sc, addr); 17848 val |= HC_CONFIG_0_REG_MSI_ATTN_EN_0; 17849 REG_WR(sc, addr, val); 17850 } 17851 17852 ecore_init_block(sc, BLOCK_PXP, init_phase); 17853 ecore_init_block(sc, BLOCK_PXP2, init_phase); 17854 17855 ilt = sc->ilt; 17856 cdu_ilt_start = ilt->clients[ILT_CLIENT_CDU].start; 17857 17858 for (i = 0; i < L2_ILT_LINES(sc); i++) { 17859 ilt->lines[cdu_ilt_start + i].page = sc->context[i].vcxt; 17860 ilt->lines[cdu_ilt_start + i].page_mapping = 17861 sc->context[i].vcxt_dma.paddr; 17862 ilt->lines[cdu_ilt_start + i].size = sc->context[i].size; 17863 } 17864 ecore_ilt_init_op(sc, INITOP_SET); 17865 17866 /* Set NIC mode */ 17867 REG_WR(sc, PRS_REG_NIC_MODE, 1); 17868 BLOGD(sc, DBG_LOAD, "NIC MODE configured\n"); 17869 17870 if (!CHIP_IS_E1x(sc)) { 17871 uint32_t pf_conf = IGU_PF_CONF_FUNC_EN; 17872 17873 /* Turn on a single ISR mode in IGU if driver is going to use 17874 * INT#x or MSI 17875 */ 17876 if (sc->interrupt_mode != INTR_MODE_MSIX) { 17877 pf_conf |= IGU_PF_CONF_SINGLE_ISR_EN; 17878 } 17879 17880 /* 17881 * Timers workaround bug: function init part. 17882 * Need to wait 20msec after initializing ILT, 17883 * needed to make sure there are no requests in 17884 * one of the PXP internal queues with "old" ILT addresses 17885 */ 17886 DELAY(20000); 17887 17888 /* 17889 * Master enable - Due to WB DMAE writes performed before this 17890 * register is re-initialized as part of the regular function 17891 * init 17892 */ 17893 REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1); 17894 /* Enable the function in IGU */ 17895 REG_WR(sc, IGU_REG_PF_CONFIGURATION, pf_conf); 17896 } 17897 17898 sc->dmae_ready = 1; 17899 17900 ecore_init_block(sc, BLOCK_PGLUE_B, init_phase); 17901 17902 if (!CHIP_IS_E1x(sc)) 17903 REG_WR(sc, PGLUE_B_REG_WAS_ERROR_PF_7_0_CLR, func); 17904 17905 ecore_init_block(sc, BLOCK_ATC, init_phase); 17906 ecore_init_block(sc, BLOCK_DMAE, init_phase); 17907 ecore_init_block(sc, BLOCK_NIG, init_phase); 17908 ecore_init_block(sc, BLOCK_SRC, init_phase); 17909 ecore_init_block(sc, BLOCK_MISC, init_phase); 17910 ecore_init_block(sc, BLOCK_TCM, init_phase); 17911 ecore_init_block(sc, BLOCK_UCM, init_phase); 17912 ecore_init_block(sc, BLOCK_CCM, init_phase); 17913 ecore_init_block(sc, BLOCK_XCM, init_phase); 17914 ecore_init_block(sc, BLOCK_TSEM, init_phase); 17915 ecore_init_block(sc, BLOCK_USEM, init_phase); 17916 ecore_init_block(sc, BLOCK_CSEM, init_phase); 17917 ecore_init_block(sc, BLOCK_XSEM, init_phase); 17918 17919 if (!CHIP_IS_E1x(sc)) 17920 REG_WR(sc, QM_REG_PF_EN, 1); 17921 17922 if (!CHIP_IS_E1x(sc)) { 17923 REG_WR(sc, TSEM_REG_VFPF_ERR_NUM, BXE_MAX_NUM_OF_VFS + func); 17924 REG_WR(sc, USEM_REG_VFPF_ERR_NUM, BXE_MAX_NUM_OF_VFS + func); 17925 REG_WR(sc, CSEM_REG_VFPF_ERR_NUM, BXE_MAX_NUM_OF_VFS + func); 17926 REG_WR(sc, XSEM_REG_VFPF_ERR_NUM, BXE_MAX_NUM_OF_VFS + func); 17927 } 17928 ecore_init_block(sc, BLOCK_QM, init_phase); 17929 17930 ecore_init_block(sc, BLOCK_TM, init_phase); 17931 ecore_init_block(sc, BLOCK_DORQ, init_phase); 17932 17933 bxe_iov_init_dq(sc); 17934 17935 ecore_init_block(sc, BLOCK_BRB1, init_phase); 17936 ecore_init_block(sc, BLOCK_PRS, init_phase); 17937 ecore_init_block(sc, BLOCK_TSDM, init_phase); 17938 ecore_init_block(sc, BLOCK_CSDM, init_phase); 17939 ecore_init_block(sc, BLOCK_USDM, init_phase); 17940 ecore_init_block(sc, BLOCK_XSDM, init_phase); 17941 ecore_init_block(sc, BLOCK_UPB, init_phase); 17942 ecore_init_block(sc, BLOCK_XPB, init_phase); 17943 ecore_init_block(sc, BLOCK_PBF, init_phase); 17944 if (!CHIP_IS_E1x(sc)) 17945 REG_WR(sc, PBF_REG_DISABLE_PF, 0); 17946 17947 ecore_init_block(sc, BLOCK_CDU, init_phase); 17948 17949 ecore_init_block(sc, BLOCK_CFC, init_phase); 17950 17951 if (!CHIP_IS_E1x(sc)) 17952 REG_WR(sc, CFC_REG_WEAK_ENABLE_PF, 1); 17953 17954 if (IS_MF(sc)) { 17955 REG_WR(sc, NIG_REG_LLH0_FUNC_EN + port*8, 1); 17956 REG_WR(sc, NIG_REG_LLH0_FUNC_VLAN_ID + port*8, OVLAN(sc)); 17957 } 17958 17959 ecore_init_block(sc, BLOCK_MISC_AEU, init_phase); 17960 17961 /* HC init per function */ 17962 if (sc->devinfo.int_block == INT_BLOCK_HC) { 17963 if (CHIP_IS_E1H(sc)) { 17964 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0); 17965 17966 REG_WR(sc, HC_REG_LEADING_EDGE_0 + port*8, 0); 17967 REG_WR(sc, HC_REG_TRAILING_EDGE_0 + port*8, 0); 17968 } 17969 ecore_init_block(sc, BLOCK_HC, init_phase); 17970 17971 } else { 17972 int num_segs, sb_idx, prod_offset; 17973 17974 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0); 17975 17976 if (!CHIP_IS_E1x(sc)) { 17977 REG_WR(sc, IGU_REG_LEADING_EDGE_LATCH, 0); 17978 REG_WR(sc, IGU_REG_TRAILING_EDGE_LATCH, 0); 17979 } 17980 17981 ecore_init_block(sc, BLOCK_IGU, init_phase); 17982 17983 if (!CHIP_IS_E1x(sc)) { 17984 int dsb_idx = 0; 17985 /** 17986 * Producer memory: 17987 * E2 mode: address 0-135 match to the mapping memory; 17988 * 136 - PF0 default prod; 137 - PF1 default prod; 17989 * 138 - PF2 default prod; 139 - PF3 default prod; 17990 * 140 - PF0 attn prod; 141 - PF1 attn prod; 17991 * 142 - PF2 attn prod; 143 - PF3 attn prod; 17992 * 144-147 reserved. 17993 * 17994 * E1.5 mode - In backward compatible mode; 17995 * for non default SB; each even line in the memory 17996 * holds the U producer and each odd line hold 17997 * the C producer. The first 128 producers are for 17998 * NDSB (PF0 - 0-31; PF1 - 32-63 and so on). The last 20 17999 * producers are for the DSB for each PF. 18000 * Each PF has five segments: (the order inside each 18001 * segment is PF0; PF1; PF2; PF3) - 128-131 U prods; 18002 * 132-135 C prods; 136-139 X prods; 140-143 T prods; 18003 * 144-147 attn prods; 18004 */ 18005 /* non-default-status-blocks */ 18006 num_segs = CHIP_INT_MODE_IS_BC(sc) ? 18007 IGU_BC_NDSB_NUM_SEGS : IGU_NORM_NDSB_NUM_SEGS; 18008 for (sb_idx = 0; sb_idx < sc->igu_sb_cnt; sb_idx++) { 18009 prod_offset = (sc->igu_base_sb + sb_idx) * 18010 num_segs; 18011 18012 for (i = 0; i < num_segs; i++) { 18013 addr = IGU_REG_PROD_CONS_MEMORY + 18014 (prod_offset + i) * 4; 18015 REG_WR(sc, addr, 0); 18016 } 18017 /* send consumer update with value 0 */ 18018 bxe_ack_sb(sc, sc->igu_base_sb + sb_idx, 18019 USTORM_ID, 0, IGU_INT_NOP, 1); 18020 bxe_igu_clear_sb(sc, sc->igu_base_sb + sb_idx); 18021 } 18022 18023 /* default-status-blocks */ 18024 num_segs = CHIP_INT_MODE_IS_BC(sc) ? 18025 IGU_BC_DSB_NUM_SEGS : IGU_NORM_DSB_NUM_SEGS; 18026 18027 if (CHIP_IS_MODE_4_PORT(sc)) 18028 dsb_idx = SC_FUNC(sc); 18029 else 18030 dsb_idx = SC_VN(sc); 18031 18032 prod_offset = (CHIP_INT_MODE_IS_BC(sc) ? 18033 IGU_BC_BASE_DSB_PROD + dsb_idx : 18034 IGU_NORM_BASE_DSB_PROD + dsb_idx); 18035 18036 /* 18037 * igu prods come in chunks of E1HVN_MAX (4) - 18038 * does not matters what is the current chip mode 18039 */ 18040 for (i = 0; i < (num_segs * E1HVN_MAX); 18041 i += E1HVN_MAX) { 18042 addr = IGU_REG_PROD_CONS_MEMORY + 18043 (prod_offset + i)*4; 18044 REG_WR(sc, addr, 0); 18045 } 18046 /* send consumer update with 0 */ 18047 if (CHIP_INT_MODE_IS_BC(sc)) { 18048 bxe_ack_sb(sc, sc->igu_dsb_id, 18049 USTORM_ID, 0, IGU_INT_NOP, 1); 18050 bxe_ack_sb(sc, sc->igu_dsb_id, 18051 CSTORM_ID, 0, IGU_INT_NOP, 1); 18052 bxe_ack_sb(sc, sc->igu_dsb_id, 18053 XSTORM_ID, 0, IGU_INT_NOP, 1); 18054 bxe_ack_sb(sc, sc->igu_dsb_id, 18055 TSTORM_ID, 0, IGU_INT_NOP, 1); 18056 bxe_ack_sb(sc, sc->igu_dsb_id, 18057 ATTENTION_ID, 0, IGU_INT_NOP, 1); 18058 } else { 18059 bxe_ack_sb(sc, sc->igu_dsb_id, 18060 USTORM_ID, 0, IGU_INT_NOP, 1); 18061 bxe_ack_sb(sc, sc->igu_dsb_id, 18062 ATTENTION_ID, 0, IGU_INT_NOP, 1); 18063 } 18064 bxe_igu_clear_sb(sc, sc->igu_dsb_id); 18065 18066 /* !!! these should become driver const once 18067 rf-tool supports split-68 const */ 18068 REG_WR(sc, IGU_REG_SB_INT_BEFORE_MASK_LSB, 0); 18069 REG_WR(sc, IGU_REG_SB_INT_BEFORE_MASK_MSB, 0); 18070 REG_WR(sc, IGU_REG_SB_MASK_LSB, 0); 18071 REG_WR(sc, IGU_REG_SB_MASK_MSB, 0); 18072 REG_WR(sc, IGU_REG_PBA_STATUS_LSB, 0); 18073 REG_WR(sc, IGU_REG_PBA_STATUS_MSB, 0); 18074 } 18075 } 18076 18077 /* Reset PCIE errors for debug */ 18078 REG_WR(sc, 0x2114, 0xffffffff); 18079 REG_WR(sc, 0x2120, 0xffffffff); 18080 18081 if (CHIP_IS_E1x(sc)) { 18082 main_mem_size = HC_REG_MAIN_MEMORY_SIZE / 2; /*dwords*/ 18083 main_mem_base = HC_REG_MAIN_MEMORY + 18084 SC_PORT(sc) * (main_mem_size * 4); 18085 main_mem_prty_clr = HC_REG_HC_PRTY_STS_CLR; 18086 main_mem_width = 8; 18087 18088 val = REG_RD(sc, main_mem_prty_clr); 18089 if (val) { 18090 BLOGD(sc, DBG_LOAD, 18091 "Parity errors in HC block during function init (0x%x)!\n", 18092 val); 18093 } 18094 18095 /* Clear "false" parity errors in MSI-X table */ 18096 for (i = main_mem_base; 18097 i < main_mem_base + main_mem_size * 4; 18098 i += main_mem_width) { 18099 bxe_read_dmae(sc, i, main_mem_width / 4); 18100 bxe_write_dmae(sc, BXE_SP_MAPPING(sc, wb_data), 18101 i, main_mem_width / 4); 18102 } 18103 /* Clear HC parity attention */ 18104 REG_RD(sc, main_mem_prty_clr); 18105 } 18106 18107 #if 1 18108 /* Enable STORMs SP logging */ 18109 REG_WR8(sc, BAR_USTRORM_INTMEM + 18110 USTORM_RECORD_SLOW_PATH_OFFSET(SC_FUNC(sc)), 1); 18111 REG_WR8(sc, BAR_TSTRORM_INTMEM + 18112 TSTORM_RECORD_SLOW_PATH_OFFSET(SC_FUNC(sc)), 1); 18113 REG_WR8(sc, BAR_CSTRORM_INTMEM + 18114 CSTORM_RECORD_SLOW_PATH_OFFSET(SC_FUNC(sc)), 1); 18115 REG_WR8(sc, BAR_XSTRORM_INTMEM + 18116 XSTORM_RECORD_SLOW_PATH_OFFSET(SC_FUNC(sc)), 1); 18117 #endif 18118 18119 elink_phy_probe(&sc->link_params); 18120 18121 return (0); 18122 } 18123 18124 static void 18125 bxe_link_reset(struct bxe_softc *sc) 18126 { 18127 if (!BXE_NOMCP(sc)) { 18128 bxe_acquire_phy_lock(sc); 18129 elink_lfa_reset(&sc->link_params, &sc->link_vars); 18130 bxe_release_phy_lock(sc); 18131 } else { 18132 if (!CHIP_REV_IS_SLOW(sc)) { 18133 BLOGW(sc, "Bootcode is missing - cannot reset link\n"); 18134 } 18135 } 18136 } 18137 18138 static void 18139 bxe_reset_port(struct bxe_softc *sc) 18140 { 18141 int port = SC_PORT(sc); 18142 uint32_t val; 18143 18144 /* reset physical Link */ 18145 bxe_link_reset(sc); 18146 18147 REG_WR(sc, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0); 18148 18149 /* Do not rcv packets to BRB */ 18150 REG_WR(sc, NIG_REG_LLH0_BRB1_DRV_MASK + port*4, 0x0); 18151 /* Do not direct rcv packets that are not for MCP to the BRB */ 18152 REG_WR(sc, (port ? NIG_REG_LLH1_BRB1_NOT_MCP : 18153 NIG_REG_LLH0_BRB1_NOT_MCP), 0x0); 18154 18155 /* Configure AEU */ 18156 REG_WR(sc, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, 0); 18157 18158 DELAY(100000); 18159 18160 /* Check for BRB port occupancy */ 18161 val = REG_RD(sc, BRB1_REG_PORT_NUM_OCC_BLOCKS_0 + port*4); 18162 if (val) { 18163 BLOGD(sc, DBG_LOAD, 18164 "BRB1 is not empty, %d blocks are occupied\n", val); 18165 } 18166 18167 /* TODO: Close Doorbell port? */ 18168 } 18169 18170 static void 18171 bxe_ilt_wr(struct bxe_softc *sc, 18172 uint32_t index, 18173 bus_addr_t addr) 18174 { 18175 int reg; 18176 uint32_t wb_write[2]; 18177 18178 if (CHIP_IS_E1(sc)) { 18179 reg = PXP2_REG_RQ_ONCHIP_AT + index*8; 18180 } else { 18181 reg = PXP2_REG_RQ_ONCHIP_AT_B0 + index*8; 18182 } 18183 18184 wb_write[0] = ONCHIP_ADDR1(addr); 18185 wb_write[1] = ONCHIP_ADDR2(addr); 18186 REG_WR_DMAE(sc, reg, wb_write, 2); 18187 } 18188 18189 static void 18190 bxe_clear_func_ilt(struct bxe_softc *sc, 18191 uint32_t func) 18192 { 18193 uint32_t i, base = FUNC_ILT_BASE(func); 18194 for (i = base; i < base + ILT_PER_FUNC; i++) { 18195 bxe_ilt_wr(sc, i, 0); 18196 } 18197 } 18198 18199 static void 18200 bxe_reset_func(struct bxe_softc *sc) 18201 { 18202 struct bxe_fastpath *fp; 18203 int port = SC_PORT(sc); 18204 int func = SC_FUNC(sc); 18205 int i; 18206 18207 /* Disable the function in the FW */ 18208 REG_WR8(sc, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(func), 0); 18209 REG_WR8(sc, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(func), 0); 18210 REG_WR8(sc, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(func), 0); 18211 REG_WR8(sc, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(func), 0); 18212 18213 /* FP SBs */ 18214 FOR_EACH_ETH_QUEUE(sc, i) { 18215 fp = &sc->fp[i]; 18216 REG_WR8(sc, BAR_CSTRORM_INTMEM + 18217 CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET(fp->fw_sb_id), 18218 SB_DISABLED); 18219 } 18220 18221 /* SP SB */ 18222 REG_WR8(sc, BAR_CSTRORM_INTMEM + 18223 CSTORM_SP_STATUS_BLOCK_DATA_STATE_OFFSET(func), 18224 SB_DISABLED); 18225 18226 for (i = 0; i < XSTORM_SPQ_DATA_SIZE / 4; i++) { 18227 REG_WR(sc, BAR_XSTRORM_INTMEM + XSTORM_SPQ_DATA_OFFSET(func), 0); 18228 } 18229 18230 /* Configure IGU */ 18231 if (sc->devinfo.int_block == INT_BLOCK_HC) { 18232 REG_WR(sc, HC_REG_LEADING_EDGE_0 + port*8, 0); 18233 REG_WR(sc, HC_REG_TRAILING_EDGE_0 + port*8, 0); 18234 } else { 18235 REG_WR(sc, IGU_REG_LEADING_EDGE_LATCH, 0); 18236 REG_WR(sc, IGU_REG_TRAILING_EDGE_LATCH, 0); 18237 } 18238 18239 if (CNIC_LOADED(sc)) { 18240 /* Disable Timer scan */ 18241 REG_WR(sc, TM_REG_EN_LINEAR0_TIMER + port*4, 0); 18242 /* 18243 * Wait for at least 10ms and up to 2 second for the timers 18244 * scan to complete 18245 */ 18246 for (i = 0; i < 200; i++) { 18247 DELAY(10000); 18248 if (!REG_RD(sc, TM_REG_LIN0_SCAN_ON + port*4)) 18249 break; 18250 } 18251 } 18252 18253 /* Clear ILT */ 18254 bxe_clear_func_ilt(sc, func); 18255 18256 /* 18257 * Timers workaround bug for E2: if this is vnic-3, 18258 * we need to set the entire ilt range for this timers. 18259 */ 18260 if (!CHIP_IS_E1x(sc) && SC_VN(sc) == 3) { 18261 struct ilt_client_info ilt_cli; 18262 /* use dummy TM client */ 18263 memset(&ilt_cli, 0, sizeof(struct ilt_client_info)); 18264 ilt_cli.start = 0; 18265 ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1; 18266 ilt_cli.client_num = ILT_CLIENT_TM; 18267 18268 ecore_ilt_boundry_init_op(sc, &ilt_cli, 0, INITOP_CLEAR); 18269 } 18270 18271 /* this assumes that reset_port() called before reset_func()*/ 18272 if (!CHIP_IS_E1x(sc)) { 18273 bxe_pf_disable(sc); 18274 } 18275 18276 sc->dmae_ready = 0; 18277 } 18278 18279 static int 18280 bxe_gunzip_init(struct bxe_softc *sc) 18281 { 18282 return (0); 18283 } 18284 18285 static void 18286 bxe_gunzip_end(struct bxe_softc *sc) 18287 { 18288 return; 18289 } 18290 18291 static int 18292 bxe_init_firmware(struct bxe_softc *sc) 18293 { 18294 if (CHIP_IS_E1(sc)) { 18295 ecore_init_e1_firmware(sc); 18296 sc->iro_array = e1_iro_arr; 18297 } else if (CHIP_IS_E1H(sc)) { 18298 ecore_init_e1h_firmware(sc); 18299 sc->iro_array = e1h_iro_arr; 18300 } else if (!CHIP_IS_E1x(sc)) { 18301 ecore_init_e2_firmware(sc); 18302 sc->iro_array = e2_iro_arr; 18303 } else { 18304 BLOGE(sc, "Unsupported chip revision\n"); 18305 return (-1); 18306 } 18307 18308 return (0); 18309 } 18310 18311 static void 18312 bxe_release_firmware(struct bxe_softc *sc) 18313 { 18314 /* Do nothing */ 18315 return; 18316 } 18317 18318 static int 18319 ecore_gunzip(struct bxe_softc *sc, 18320 const uint8_t *zbuf, 18321 int len) 18322 { 18323 /* XXX : Implement... */ 18324 BLOGD(sc, DBG_LOAD, "ECORE_GUNZIP NOT IMPLEMENTED\n"); 18325 return (FALSE); 18326 } 18327 18328 static void 18329 ecore_reg_wr_ind(struct bxe_softc *sc, 18330 uint32_t addr, 18331 uint32_t val) 18332 { 18333 bxe_reg_wr_ind(sc, addr, val); 18334 } 18335 18336 static void 18337 ecore_write_dmae_phys_len(struct bxe_softc *sc, 18338 bus_addr_t phys_addr, 18339 uint32_t addr, 18340 uint32_t len) 18341 { 18342 bxe_write_dmae_phys_len(sc, phys_addr, addr, len); 18343 } 18344 18345 void 18346 ecore_storm_memset_struct(struct bxe_softc *sc, 18347 uint32_t addr, 18348 size_t size, 18349 uint32_t *data) 18350 { 18351 uint8_t i; 18352 for (i = 0; i < size/4; i++) { 18353 REG_WR(sc, addr + (i * 4), data[i]); 18354 } 18355 } 18356 18357 18358 /* 18359 * character device - ioctl interface definitions 18360 */ 18361 18362 18363 #include "bxe_dump.h" 18364 #include "bxe_ioctl.h" 18365 #include <sys/conf.h> 18366 18367 static int bxe_eioctl(struct cdev *dev, u_long cmd, caddr_t data, int fflag, 18368 struct thread *td); 18369 18370 static struct cdevsw bxe_cdevsw = { 18371 .d_version = D_VERSION, 18372 .d_ioctl = bxe_eioctl, 18373 .d_name = "bxecnic", 18374 }; 18375 18376 #define BXE_PATH(sc) (CHIP_IS_E1x(sc) ? 0 : (sc->pcie_func & 1)) 18377 18378 18379 #define DUMP_ALL_PRESETS 0x1FFF 18380 #define DUMP_MAX_PRESETS 13 18381 #define IS_E1_REG(chips) ((chips & DUMP_CHIP_E1) == DUMP_CHIP_E1) 18382 #define IS_E1H_REG(chips) ((chips & DUMP_CHIP_E1H) == DUMP_CHIP_E1H) 18383 #define IS_E2_REG(chips) ((chips & DUMP_CHIP_E2) == DUMP_CHIP_E2) 18384 #define IS_E3A0_REG(chips) ((chips & DUMP_CHIP_E3A0) == DUMP_CHIP_E3A0) 18385 #define IS_E3B0_REG(chips) ((chips & DUMP_CHIP_E3B0) == DUMP_CHIP_E3B0) 18386 18387 #define IS_REG_IN_PRESET(presets, idx) \ 18388 ((presets & (1 << (idx-1))) == (1 << (idx-1))) 18389 18390 18391 static int 18392 bxe_get_preset_regs_len(struct bxe_softc *sc, uint32_t preset) 18393 { 18394 if (CHIP_IS_E1(sc)) 18395 return dump_num_registers[0][preset-1]; 18396 else if (CHIP_IS_E1H(sc)) 18397 return dump_num_registers[1][preset-1]; 18398 else if (CHIP_IS_E2(sc)) 18399 return dump_num_registers[2][preset-1]; 18400 else if (CHIP_IS_E3A0(sc)) 18401 return dump_num_registers[3][preset-1]; 18402 else if (CHIP_IS_E3B0(sc)) 18403 return dump_num_registers[4][preset-1]; 18404 else 18405 return 0; 18406 } 18407 18408 static int 18409 bxe_get_total_regs_len32(struct bxe_softc *sc) 18410 { 18411 uint32_t preset_idx; 18412 int regdump_len32 = 0; 18413 18414 18415 /* Calculate the total preset regs length */ 18416 for (preset_idx = 1; preset_idx <= DUMP_MAX_PRESETS; preset_idx++) { 18417 regdump_len32 += bxe_get_preset_regs_len(sc, preset_idx); 18418 } 18419 18420 return regdump_len32; 18421 } 18422 18423 static const uint32_t * 18424 __bxe_get_page_addr_ar(struct bxe_softc *sc) 18425 { 18426 if (CHIP_IS_E2(sc)) 18427 return page_vals_e2; 18428 else if (CHIP_IS_E3(sc)) 18429 return page_vals_e3; 18430 else 18431 return NULL; 18432 } 18433 18434 static uint32_t 18435 __bxe_get_page_reg_num(struct bxe_softc *sc) 18436 { 18437 if (CHIP_IS_E2(sc)) 18438 return PAGE_MODE_VALUES_E2; 18439 else if (CHIP_IS_E3(sc)) 18440 return PAGE_MODE_VALUES_E3; 18441 else 18442 return 0; 18443 } 18444 18445 static const uint32_t * 18446 __bxe_get_page_write_ar(struct bxe_softc *sc) 18447 { 18448 if (CHIP_IS_E2(sc)) 18449 return page_write_regs_e2; 18450 else if (CHIP_IS_E3(sc)) 18451 return page_write_regs_e3; 18452 else 18453 return NULL; 18454 } 18455 18456 static uint32_t 18457 __bxe_get_page_write_num(struct bxe_softc *sc) 18458 { 18459 if (CHIP_IS_E2(sc)) 18460 return PAGE_WRITE_REGS_E2; 18461 else if (CHIP_IS_E3(sc)) 18462 return PAGE_WRITE_REGS_E3; 18463 else 18464 return 0; 18465 } 18466 18467 static const struct reg_addr * 18468 __bxe_get_page_read_ar(struct bxe_softc *sc) 18469 { 18470 if (CHIP_IS_E2(sc)) 18471 return page_read_regs_e2; 18472 else if (CHIP_IS_E3(sc)) 18473 return page_read_regs_e3; 18474 else 18475 return NULL; 18476 } 18477 18478 static uint32_t 18479 __bxe_get_page_read_num(struct bxe_softc *sc) 18480 { 18481 if (CHIP_IS_E2(sc)) 18482 return PAGE_READ_REGS_E2; 18483 else if (CHIP_IS_E3(sc)) 18484 return PAGE_READ_REGS_E3; 18485 else 18486 return 0; 18487 } 18488 18489 static bool 18490 bxe_is_reg_in_chip(struct bxe_softc *sc, const struct reg_addr *reg_info) 18491 { 18492 if (CHIP_IS_E1(sc)) 18493 return IS_E1_REG(reg_info->chips); 18494 else if (CHIP_IS_E1H(sc)) 18495 return IS_E1H_REG(reg_info->chips); 18496 else if (CHIP_IS_E2(sc)) 18497 return IS_E2_REG(reg_info->chips); 18498 else if (CHIP_IS_E3A0(sc)) 18499 return IS_E3A0_REG(reg_info->chips); 18500 else if (CHIP_IS_E3B0(sc)) 18501 return IS_E3B0_REG(reg_info->chips); 18502 else 18503 return 0; 18504 } 18505 18506 static bool 18507 bxe_is_wreg_in_chip(struct bxe_softc *sc, const struct wreg_addr *wreg_info) 18508 { 18509 if (CHIP_IS_E1(sc)) 18510 return IS_E1_REG(wreg_info->chips); 18511 else if (CHIP_IS_E1H(sc)) 18512 return IS_E1H_REG(wreg_info->chips); 18513 else if (CHIP_IS_E2(sc)) 18514 return IS_E2_REG(wreg_info->chips); 18515 else if (CHIP_IS_E3A0(sc)) 18516 return IS_E3A0_REG(wreg_info->chips); 18517 else if (CHIP_IS_E3B0(sc)) 18518 return IS_E3B0_REG(wreg_info->chips); 18519 else 18520 return 0; 18521 } 18522 18523 /** 18524 * bxe_read_pages_regs - read "paged" registers 18525 * 18526 * @bp device handle 18527 * @p output buffer 18528 * 18529 * Reads "paged" memories: memories that may only be read by first writing to a 18530 * specific address ("write address") and then reading from a specific address 18531 * ("read address"). There may be more than one write address per "page" and 18532 * more than one read address per write address. 18533 */ 18534 static void 18535 bxe_read_pages_regs(struct bxe_softc *sc, uint32_t *p, uint32_t preset) 18536 { 18537 uint32_t i, j, k, n; 18538 18539 /* addresses of the paged registers */ 18540 const uint32_t *page_addr = __bxe_get_page_addr_ar(sc); 18541 /* number of paged registers */ 18542 int num_pages = __bxe_get_page_reg_num(sc); 18543 /* write addresses */ 18544 const uint32_t *write_addr = __bxe_get_page_write_ar(sc); 18545 /* number of write addresses */ 18546 int write_num = __bxe_get_page_write_num(sc); 18547 /* read addresses info */ 18548 const struct reg_addr *read_addr = __bxe_get_page_read_ar(sc); 18549 /* number of read addresses */ 18550 int read_num = __bxe_get_page_read_num(sc); 18551 uint32_t addr, size; 18552 18553 for (i = 0; i < num_pages; i++) { 18554 for (j = 0; j < write_num; j++) { 18555 REG_WR(sc, write_addr[j], page_addr[i]); 18556 18557 for (k = 0; k < read_num; k++) { 18558 if (IS_REG_IN_PRESET(read_addr[k].presets, preset)) { 18559 size = read_addr[k].size; 18560 for (n = 0; n < size; n++) { 18561 addr = read_addr[k].addr + n*4; 18562 *p++ = REG_RD(sc, addr); 18563 } 18564 } 18565 } 18566 } 18567 } 18568 return; 18569 } 18570 18571 18572 static int 18573 bxe_get_preset_regs(struct bxe_softc *sc, uint32_t *p, uint32_t preset) 18574 { 18575 uint32_t i, j, addr; 18576 const struct wreg_addr *wreg_addr_p = NULL; 18577 18578 if (CHIP_IS_E1(sc)) 18579 wreg_addr_p = &wreg_addr_e1; 18580 else if (CHIP_IS_E1H(sc)) 18581 wreg_addr_p = &wreg_addr_e1h; 18582 else if (CHIP_IS_E2(sc)) 18583 wreg_addr_p = &wreg_addr_e2; 18584 else if (CHIP_IS_E3A0(sc)) 18585 wreg_addr_p = &wreg_addr_e3; 18586 else if (CHIP_IS_E3B0(sc)) 18587 wreg_addr_p = &wreg_addr_e3b0; 18588 else 18589 return (-1); 18590 18591 /* Read the idle_chk registers */ 18592 for (i = 0; i < IDLE_REGS_COUNT; i++) { 18593 if (bxe_is_reg_in_chip(sc, &idle_reg_addrs[i]) && 18594 IS_REG_IN_PRESET(idle_reg_addrs[i].presets, preset)) { 18595 for (j = 0; j < idle_reg_addrs[i].size; j++) 18596 *p++ = REG_RD(sc, idle_reg_addrs[i].addr + j*4); 18597 } 18598 } 18599 18600 /* Read the regular registers */ 18601 for (i = 0; i < REGS_COUNT; i++) { 18602 if (bxe_is_reg_in_chip(sc, ®_addrs[i]) && 18603 IS_REG_IN_PRESET(reg_addrs[i].presets, preset)) { 18604 for (j = 0; j < reg_addrs[i].size; j++) 18605 *p++ = REG_RD(sc, reg_addrs[i].addr + j*4); 18606 } 18607 } 18608 18609 /* Read the CAM registers */ 18610 if (bxe_is_wreg_in_chip(sc, wreg_addr_p) && 18611 IS_REG_IN_PRESET(wreg_addr_p->presets, preset)) { 18612 for (i = 0; i < wreg_addr_p->size; i++) { 18613 *p++ = REG_RD(sc, wreg_addr_p->addr + i*4); 18614 18615 /* In case of wreg_addr register, read additional 18616 registers from read_regs array 18617 */ 18618 for (j = 0; j < wreg_addr_p->read_regs_count; j++) { 18619 addr = *(wreg_addr_p->read_regs); 18620 *p++ = REG_RD(sc, addr + j*4); 18621 } 18622 } 18623 } 18624 18625 /* Paged registers are supported in E2 & E3 only */ 18626 if (CHIP_IS_E2(sc) || CHIP_IS_E3(sc)) { 18627 /* Read "paged" registers */ 18628 bxe_read_pages_regs(sc, p, preset); 18629 } 18630 18631 return 0; 18632 } 18633 18634 int 18635 bxe_grc_dump(struct bxe_softc *sc) 18636 { 18637 int rval = 0; 18638 uint32_t preset_idx; 18639 uint8_t *buf; 18640 uint32_t size; 18641 struct dump_header *d_hdr; 18642 uint32_t i; 18643 uint32_t reg_val; 18644 uint32_t reg_addr; 18645 uint32_t cmd_offset; 18646 int context_size; 18647 int allocated; 18648 struct ecore_ilt *ilt = SC_ILT(sc); 18649 struct bxe_fastpath *fp; 18650 struct ilt_client_info *ilt_cli; 18651 int grc_dump_size; 18652 18653 18654 if (sc->grcdump_done || sc->grcdump_started) 18655 return (rval); 18656 18657 sc->grcdump_started = 1; 18658 BLOGI(sc, "Started collecting grcdump\n"); 18659 18660 grc_dump_size = (bxe_get_total_regs_len32(sc) * sizeof(uint32_t)) + 18661 sizeof(struct dump_header); 18662 18663 sc->grc_dump = malloc(grc_dump_size, M_DEVBUF, M_NOWAIT); 18664 18665 if (sc->grc_dump == NULL) { 18666 BLOGW(sc, "Unable to allocate memory for grcdump collection\n"); 18667 return(ENOMEM); 18668 } 18669 18670 18671 18672 /* Disable parity attentions as long as following dump may 18673 * cause false alarms by reading never written registers. We 18674 * will re-enable parity attentions right after the dump. 18675 */ 18676 18677 /* Disable parity on path 0 */ 18678 bxe_pretend_func(sc, 0); 18679 18680 ecore_disable_blocks_parity(sc); 18681 18682 /* Disable parity on path 1 */ 18683 bxe_pretend_func(sc, 1); 18684 ecore_disable_blocks_parity(sc); 18685 18686 /* Return to current function */ 18687 bxe_pretend_func(sc, SC_ABS_FUNC(sc)); 18688 18689 buf = sc->grc_dump; 18690 d_hdr = sc->grc_dump; 18691 18692 d_hdr->header_size = (sizeof(struct dump_header) >> 2) - 1; 18693 d_hdr->version = BNX2X_DUMP_VERSION; 18694 d_hdr->preset = DUMP_ALL_PRESETS; 18695 18696 if (CHIP_IS_E1(sc)) { 18697 d_hdr->dump_meta_data = DUMP_CHIP_E1; 18698 } else if (CHIP_IS_E1H(sc)) { 18699 d_hdr->dump_meta_data = DUMP_CHIP_E1H; 18700 } else if (CHIP_IS_E2(sc)) { 18701 d_hdr->dump_meta_data = DUMP_CHIP_E2 | 18702 (BXE_PATH(sc) ? DUMP_PATH_1 : DUMP_PATH_0); 18703 } else if (CHIP_IS_E3A0(sc)) { 18704 d_hdr->dump_meta_data = DUMP_CHIP_E3A0 | 18705 (BXE_PATH(sc) ? DUMP_PATH_1 : DUMP_PATH_0); 18706 } else if (CHIP_IS_E3B0(sc)) { 18707 d_hdr->dump_meta_data = DUMP_CHIP_E3B0 | 18708 (BXE_PATH(sc) ? DUMP_PATH_1 : DUMP_PATH_0); 18709 } 18710 18711 buf += sizeof(struct dump_header); 18712 18713 for (preset_idx = 1; preset_idx <= DUMP_MAX_PRESETS; preset_idx++) { 18714 18715 /* Skip presets with IOR */ 18716 if ((preset_idx == 2) || (preset_idx == 5) || (preset_idx == 8) || 18717 (preset_idx == 11)) 18718 continue; 18719 18720 rval = bxe_get_preset_regs(sc, (uint32_t *)buf, preset_idx); 18721 18722 if (rval) 18723 break; 18724 18725 size = bxe_get_preset_regs_len(sc, preset_idx) * (sizeof (uint32_t)); 18726 18727 buf += size; 18728 } 18729 18730 bxe_pretend_func(sc, 0); 18731 ecore_clear_blocks_parity(sc); 18732 ecore_enable_blocks_parity(sc); 18733 18734 bxe_pretend_func(sc, 1); 18735 ecore_clear_blocks_parity(sc); 18736 ecore_enable_blocks_parity(sc); 18737 18738 /* Return to current function */ 18739 bxe_pretend_func(sc, SC_ABS_FUNC(sc)); 18740 18741 18742 context_size = (sizeof(union cdu_context) * BXE_L2_CID_COUNT(sc)); 18743 for (i = 0, allocated = 0; allocated < context_size; i++) { 18744 18745 BLOGI(sc, "cdu_context i %d paddr %#jx vaddr %p size 0x%zx\n", i, 18746 (uintmax_t)sc->context[i].vcxt_dma.paddr, 18747 sc->context[i].vcxt_dma.vaddr, 18748 sc->context[i].size); 18749 allocated += sc->context[i].size; 18750 } 18751 BLOGI(sc, "fw stats start_paddr %#jx end_paddr %#jx vaddr %p size 0x%x\n", 18752 (uintmax_t)sc->fw_stats_req_mapping, 18753 (uintmax_t)sc->fw_stats_data_mapping, 18754 sc->fw_stats_req, (sc->fw_stats_req_size + sc->fw_stats_data_size)); 18755 BLOGI(sc, "def_status_block paddr %p vaddr %p size 0x%zx\n", 18756 (void *)sc->def_sb_dma.paddr, sc->def_sb, 18757 sizeof(struct host_sp_status_block)); 18758 BLOGI(sc, "event_queue paddr %#jx vaddr %p size 0x%x\n", 18759 (uintmax_t)sc->eq_dma.paddr, sc->eq_dma.vaddr, BCM_PAGE_SIZE); 18760 BLOGI(sc, "slow path paddr %#jx vaddr %p size 0x%zx\n", 18761 (uintmax_t)sc->sp_dma.paddr, sc->sp_dma.vaddr, 18762 sizeof(struct bxe_slowpath)); 18763 BLOGI(sc, "slow path queue paddr %#jx vaddr %p size 0x%x\n", 18764 (uintmax_t)sc->spq_dma.paddr, sc->spq_dma.vaddr, BCM_PAGE_SIZE); 18765 BLOGI(sc, "fw_buf paddr %#jx vaddr %p size 0x%x\n", 18766 (uintmax_t)sc->gz_buf_dma.paddr, sc->gz_buf_dma.vaddr, 18767 FW_BUF_SIZE); 18768 for (i = 0; i < sc->num_queues; i++) { 18769 fp = &sc->fp[i]; 18770 BLOGI(sc, "FP status block fp %d paddr %#jx vaddr %p size 0x%zx\n", i, 18771 (uintmax_t)fp->sb_dma.paddr, fp->sb_dma.vaddr, 18772 sizeof(union bxe_host_hc_status_block)); 18773 BLOGI(sc, "TX BD CHAIN fp %d paddr %#jx vaddr %p size 0x%x\n", i, 18774 (uintmax_t)fp->tx_dma.paddr, fp->tx_dma.vaddr, 18775 (BCM_PAGE_SIZE * TX_BD_NUM_PAGES)); 18776 BLOGI(sc, "RX BD CHAIN fp %d paddr %#jx vaddr %p size 0x%x\n", i, 18777 (uintmax_t)fp->rx_dma.paddr, fp->rx_dma.vaddr, 18778 (BCM_PAGE_SIZE * RX_BD_NUM_PAGES)); 18779 BLOGI(sc, "RX RCQ CHAIN fp %d paddr %#jx vaddr %p size 0x%zx\n", i, 18780 (uintmax_t)fp->rcq_dma.paddr, fp->rcq_dma.vaddr, 18781 (BCM_PAGE_SIZE * RCQ_NUM_PAGES)); 18782 BLOGI(sc, "RX SGE CHAIN fp %d paddr %#jx vaddr %p size 0x%x\n", i, 18783 (uintmax_t)fp->rx_sge_dma.paddr, fp->rx_sge_dma.vaddr, 18784 (BCM_PAGE_SIZE * RX_SGE_NUM_PAGES)); 18785 } 18786 18787 ilt_cli = &ilt->clients[1]; 18788 for (i = ilt_cli->start; i <= ilt_cli->end; i++) { 18789 BLOGI(sc, "ECORE_ILT paddr %#jx vaddr %p size 0x%x\n", 18790 (uintmax_t)(((struct bxe_dma *)((&ilt->lines[i])->page))->paddr), 18791 ((struct bxe_dma *)((&ilt->lines[i])->page))->vaddr, BCM_PAGE_SIZE); 18792 } 18793 18794 18795 cmd_offset = DMAE_REG_CMD_MEM; 18796 for (i = 0; i < 224; i++) { 18797 reg_addr = (cmd_offset +(i * 4)); 18798 reg_val = REG_RD(sc, reg_addr); 18799 BLOGI(sc, "DMAE_REG_CMD_MEM i=%d reg_addr 0x%x reg_val 0x%08x\n",i, 18800 reg_addr, reg_val); 18801 } 18802 18803 18804 BLOGI(sc, "Collection of grcdump done\n"); 18805 sc->grcdump_done = 1; 18806 return(rval); 18807 } 18808 18809 static int 18810 bxe_add_cdev(struct bxe_softc *sc) 18811 { 18812 sc->eeprom = malloc(BXE_EEPROM_MAX_DATA_LEN, M_DEVBUF, M_NOWAIT); 18813 18814 if (sc->eeprom == NULL) { 18815 BLOGW(sc, "Unable to alloc for eeprom size buffer\n"); 18816 return (-1); 18817 } 18818 18819 sc->ioctl_dev = make_dev(&bxe_cdevsw, 18820 sc->ifp->if_dunit, 18821 UID_ROOT, 18822 GID_WHEEL, 18823 0600, 18824 "%s", 18825 if_name(sc->ifp)); 18826 18827 if (sc->ioctl_dev == NULL) { 18828 free(sc->eeprom, M_DEVBUF); 18829 sc->eeprom = NULL; 18830 return (-1); 18831 } 18832 18833 sc->ioctl_dev->si_drv1 = sc; 18834 18835 return (0); 18836 } 18837 18838 static void 18839 bxe_del_cdev(struct bxe_softc *sc) 18840 { 18841 if (sc->ioctl_dev != NULL) 18842 destroy_dev(sc->ioctl_dev); 18843 18844 if (sc->eeprom != NULL) { 18845 free(sc->eeprom, M_DEVBUF); 18846 sc->eeprom = NULL; 18847 } 18848 sc->ioctl_dev = NULL; 18849 18850 return; 18851 } 18852 18853 static bool bxe_is_nvram_accessible(struct bxe_softc *sc) 18854 { 18855 18856 if ((if_getdrvflags(sc->ifp) & IFF_DRV_RUNNING) == 0) 18857 return FALSE; 18858 18859 return TRUE; 18860 } 18861 18862 18863 static int 18864 bxe_wr_eeprom(struct bxe_softc *sc, void *data, uint32_t offset, uint32_t len) 18865 { 18866 int rval = 0; 18867 18868 if(!bxe_is_nvram_accessible(sc)) { 18869 BLOGW(sc, "Cannot access eeprom when interface is down\n"); 18870 return (-EAGAIN); 18871 } 18872 rval = bxe_nvram_write(sc, offset, (uint8_t *)data, len); 18873 18874 18875 return (rval); 18876 } 18877 18878 static int 18879 bxe_rd_eeprom(struct bxe_softc *sc, void *data, uint32_t offset, uint32_t len) 18880 { 18881 int rval = 0; 18882 18883 if(!bxe_is_nvram_accessible(sc)) { 18884 BLOGW(sc, "Cannot access eeprom when interface is down\n"); 18885 return (-EAGAIN); 18886 } 18887 rval = bxe_nvram_read(sc, offset, (uint8_t *)data, len); 18888 18889 return (rval); 18890 } 18891 18892 static int 18893 bxe_eeprom_rd_wr(struct bxe_softc *sc, bxe_eeprom_t *eeprom) 18894 { 18895 int rval = 0; 18896 18897 switch (eeprom->eeprom_cmd) { 18898 18899 case BXE_EEPROM_CMD_SET_EEPROM: 18900 18901 rval = copyin(eeprom->eeprom_data, sc->eeprom, 18902 eeprom->eeprom_data_len); 18903 18904 if (rval) 18905 break; 18906 18907 rval = bxe_wr_eeprom(sc, sc->eeprom, eeprom->eeprom_offset, 18908 eeprom->eeprom_data_len); 18909 break; 18910 18911 case BXE_EEPROM_CMD_GET_EEPROM: 18912 18913 rval = bxe_rd_eeprom(sc, sc->eeprom, eeprom->eeprom_offset, 18914 eeprom->eeprom_data_len); 18915 18916 if (rval) { 18917 break; 18918 } 18919 18920 rval = copyout(sc->eeprom, eeprom->eeprom_data, 18921 eeprom->eeprom_data_len); 18922 break; 18923 18924 default: 18925 rval = EINVAL; 18926 break; 18927 } 18928 18929 if (rval) { 18930 BLOGW(sc, "ioctl cmd %d failed rval %d\n", eeprom->eeprom_cmd, rval); 18931 } 18932 18933 return (rval); 18934 } 18935 18936 static int 18937 bxe_get_settings(struct bxe_softc *sc, bxe_dev_setting_t *dev_p) 18938 { 18939 uint32_t ext_phy_config; 18940 int port = SC_PORT(sc); 18941 int cfg_idx = bxe_get_link_cfg_idx(sc); 18942 18943 dev_p->supported = sc->port.supported[cfg_idx] | 18944 (sc->port.supported[cfg_idx ^ 1] & 18945 (ELINK_SUPPORTED_TP | ELINK_SUPPORTED_FIBRE)); 18946 dev_p->advertising = sc->port.advertising[cfg_idx]; 18947 if(sc->link_params.phy[bxe_get_cur_phy_idx(sc)].media_type == 18948 ELINK_ETH_PHY_SFP_1G_FIBER) { 18949 dev_p->supported = ~(ELINK_SUPPORTED_10000baseT_Full); 18950 dev_p->advertising &= ~(ADVERTISED_10000baseT_Full); 18951 } 18952 if ((sc->state == BXE_STATE_OPEN) && sc->link_vars.link_up && 18953 !(sc->flags & BXE_MF_FUNC_DIS)) { 18954 dev_p->duplex = sc->link_vars.duplex; 18955 if (IS_MF(sc) && !BXE_NOMCP(sc)) 18956 dev_p->speed = bxe_get_mf_speed(sc); 18957 else 18958 dev_p->speed = sc->link_vars.line_speed; 18959 } else { 18960 dev_p->duplex = DUPLEX_UNKNOWN; 18961 dev_p->speed = SPEED_UNKNOWN; 18962 } 18963 18964 dev_p->port = bxe_media_detect(sc); 18965 18966 ext_phy_config = SHMEM_RD(sc, 18967 dev_info.port_hw_config[port].external_phy_config); 18968 if((ext_phy_config & PORT_HW_CFG_XGXS_EXT_PHY_TYPE_MASK) == 18969 PORT_HW_CFG_XGXS_EXT_PHY_TYPE_DIRECT) 18970 dev_p->phy_address = sc->port.phy_addr; 18971 else if(((ext_phy_config & PORT_HW_CFG_XGXS_EXT_PHY_TYPE_MASK) != 18972 PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE) && 18973 ((ext_phy_config & PORT_HW_CFG_XGXS_EXT_PHY_TYPE_MASK) != 18974 PORT_HW_CFG_XGXS_EXT_PHY_TYPE_NOT_CONN)) 18975 dev_p->phy_address = ELINK_XGXS_EXT_PHY_ADDR(ext_phy_config); 18976 else 18977 dev_p->phy_address = 0; 18978 18979 if(sc->link_params.req_line_speed[cfg_idx] == ELINK_SPEED_AUTO_NEG) 18980 dev_p->autoneg = AUTONEG_ENABLE; 18981 else 18982 dev_p->autoneg = AUTONEG_DISABLE; 18983 18984 18985 return 0; 18986 } 18987 18988 static int 18989 bxe_eioctl(struct cdev *dev, u_long cmd, caddr_t data, int fflag, 18990 struct thread *td) 18991 { 18992 struct bxe_softc *sc; 18993 int rval = 0; 18994 device_t pci_dev; 18995 bxe_grcdump_t *dump = NULL; 18996 int grc_dump_size; 18997 bxe_drvinfo_t *drv_infop = NULL; 18998 bxe_dev_setting_t *dev_p; 18999 bxe_dev_setting_t dev_set; 19000 bxe_get_regs_t *reg_p; 19001 bxe_reg_rdw_t *reg_rdw_p; 19002 bxe_pcicfg_rdw_t *cfg_rdw_p; 19003 bxe_perm_mac_addr_t *mac_addr_p; 19004 19005 19006 if ((sc = (struct bxe_softc *)dev->si_drv1) == NULL) 19007 return ENXIO; 19008 19009 pci_dev= sc->dev; 19010 19011 dump = (bxe_grcdump_t *)data; 19012 19013 switch(cmd) { 19014 19015 case BXE_GRC_DUMP_SIZE: 19016 dump->pci_func = sc->pcie_func; 19017 dump->grcdump_size = 19018 (bxe_get_total_regs_len32(sc) * sizeof(uint32_t)) + 19019 sizeof(struct dump_header); 19020 break; 19021 19022 case BXE_GRC_DUMP: 19023 19024 grc_dump_size = (bxe_get_total_regs_len32(sc) * sizeof(uint32_t)) + 19025 sizeof(struct dump_header); 19026 if ((!sc->trigger_grcdump) || (dump->grcdump == NULL) || 19027 (dump->grcdump_size < grc_dump_size)) { 19028 rval = EINVAL; 19029 break; 19030 } 19031 19032 if((sc->trigger_grcdump) && (!sc->grcdump_done) && 19033 (!sc->grcdump_started)) { 19034 rval = bxe_grc_dump(sc); 19035 } 19036 19037 if((!rval) && (sc->grcdump_done) && (sc->grcdump_started) && 19038 (sc->grc_dump != NULL)) { 19039 dump->grcdump_dwords = grc_dump_size >> 2; 19040 rval = copyout(sc->grc_dump, dump->grcdump, grc_dump_size); 19041 free(sc->grc_dump, M_DEVBUF); 19042 sc->grc_dump = NULL; 19043 sc->grcdump_started = 0; 19044 sc->grcdump_done = 0; 19045 } 19046 19047 break; 19048 19049 case BXE_DRV_INFO: 19050 drv_infop = (bxe_drvinfo_t *)data; 19051 snprintf(drv_infop->drv_name, BXE_DRV_NAME_LENGTH, "%s", "bxe"); 19052 snprintf(drv_infop->drv_version, BXE_DRV_VERSION_LENGTH, "v:%s", 19053 BXE_DRIVER_VERSION); 19054 snprintf(drv_infop->mfw_version, BXE_MFW_VERSION_LENGTH, "%s", 19055 sc->devinfo.bc_ver_str); 19056 snprintf(drv_infop->stormfw_version, BXE_STORMFW_VERSION_LENGTH, 19057 "%s", sc->fw_ver_str); 19058 drv_infop->eeprom_dump_len = sc->devinfo.flash_size; 19059 drv_infop->reg_dump_len = 19060 (bxe_get_total_regs_len32(sc) * sizeof(uint32_t)) 19061 + sizeof(struct dump_header); 19062 snprintf(drv_infop->bus_info, BXE_BUS_INFO_LENGTH, "%d:%d:%d", 19063 sc->pcie_bus, sc->pcie_device, sc->pcie_func); 19064 break; 19065 19066 case BXE_DEV_SETTING: 19067 dev_p = (bxe_dev_setting_t *)data; 19068 bxe_get_settings(sc, &dev_set); 19069 dev_p->supported = dev_set.supported; 19070 dev_p->advertising = dev_set.advertising; 19071 dev_p->speed = dev_set.speed; 19072 dev_p->duplex = dev_set.duplex; 19073 dev_p->port = dev_set.port; 19074 dev_p->phy_address = dev_set.phy_address; 19075 dev_p->autoneg = dev_set.autoneg; 19076 19077 break; 19078 19079 case BXE_GET_REGS: 19080 19081 reg_p = (bxe_get_regs_t *)data; 19082 grc_dump_size = reg_p->reg_buf_len; 19083 19084 if((!sc->grcdump_done) && (!sc->grcdump_started)) { 19085 bxe_grc_dump(sc); 19086 } 19087 if((sc->grcdump_done) && (sc->grcdump_started) && 19088 (sc->grc_dump != NULL)) { 19089 rval = copyout(sc->grc_dump, reg_p->reg_buf, grc_dump_size); 19090 free(sc->grc_dump, M_DEVBUF); 19091 sc->grc_dump = NULL; 19092 sc->grcdump_started = 0; 19093 sc->grcdump_done = 0; 19094 } 19095 19096 break; 19097 19098 case BXE_RDW_REG: 19099 reg_rdw_p = (bxe_reg_rdw_t *)data; 19100 if((reg_rdw_p->reg_cmd == BXE_READ_REG_CMD) && 19101 (reg_rdw_p->reg_access_type == BXE_REG_ACCESS_DIRECT)) 19102 reg_rdw_p->reg_val = REG_RD(sc, reg_rdw_p->reg_id); 19103 19104 if((reg_rdw_p->reg_cmd == BXE_WRITE_REG_CMD) && 19105 (reg_rdw_p->reg_access_type == BXE_REG_ACCESS_DIRECT)) 19106 REG_WR(sc, reg_rdw_p->reg_id, reg_rdw_p->reg_val); 19107 19108 break; 19109 19110 case BXE_RDW_PCICFG: 19111 cfg_rdw_p = (bxe_pcicfg_rdw_t *)data; 19112 if(cfg_rdw_p->cfg_cmd == BXE_READ_PCICFG) { 19113 19114 cfg_rdw_p->cfg_val = pci_read_config(sc->dev, cfg_rdw_p->cfg_id, 19115 cfg_rdw_p->cfg_width); 19116 19117 } else if(cfg_rdw_p->cfg_cmd == BXE_WRITE_PCICFG) { 19118 pci_write_config(sc->dev, cfg_rdw_p->cfg_id, cfg_rdw_p->cfg_val, 19119 cfg_rdw_p->cfg_width); 19120 } else { 19121 BLOGW(sc, "BXE_RDW_PCICFG ioctl wrong cmd passed\n"); 19122 } 19123 break; 19124 19125 case BXE_MAC_ADDR: 19126 mac_addr_p = (bxe_perm_mac_addr_t *)data; 19127 snprintf(mac_addr_p->mac_addr_str, sizeof(sc->mac_addr_str), "%s", 19128 sc->mac_addr_str); 19129 break; 19130 19131 case BXE_EEPROM: 19132 rval = bxe_eeprom_rd_wr(sc, (bxe_eeprom_t *)data); 19133 break; 19134 19135 19136 default: 19137 break; 19138 } 19139 19140 return (rval); 19141 } 19142