xref: /freebsd/sys/dev/bxe/bxe.c (revision 984a2ea91fbc21063e931d117aed354cfe0c02f5)
1 /*-
2  * Copyright (c) 2007-2014 QLogic Corporation. All rights reserved.
3  *
4  * Redistribution and use in source and binary forms, with or without
5  * modification, are permitted provided that the following conditions
6  * are met:
7  *
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS'
15  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS
18  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
19  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
20  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
21  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
22  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
23  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
24  * THE POSSIBILITY OF SUCH DAMAGE.
25  */
26 
27 #include <sys/cdefs.h>
28 __FBSDID("$FreeBSD$");
29 
30 #define BXE_DRIVER_VERSION "1.78.78"
31 
32 #include "bxe.h"
33 #include "ecore_sp.h"
34 #include "ecore_init.h"
35 #include "ecore_init_ops.h"
36 
37 #include "57710_int_offsets.h"
38 #include "57711_int_offsets.h"
39 #include "57712_int_offsets.h"
40 
41 /*
42  * CTLTYPE_U64 and sysctl_handle_64 were added in r217616. Define these
43  * explicitly here for older kernels that don't include this changeset.
44  */
45 #ifndef CTLTYPE_U64
46 #define CTLTYPE_U64      CTLTYPE_QUAD
47 #define sysctl_handle_64 sysctl_handle_quad
48 #endif
49 
50 /*
51  * CSUM_TCP_IPV6 and CSUM_UDP_IPV6 were added in r236170. Define these
52  * here as zero(0) for older kernels that don't include this changeset
53  * thereby masking the functionality.
54  */
55 #ifndef CSUM_TCP_IPV6
56 #define CSUM_TCP_IPV6 0
57 #define CSUM_UDP_IPV6 0
58 #endif
59 
60 /*
61  * pci_find_cap was added in r219865. Re-define this at pci_find_extcap
62  * for older kernels that don't include this changeset.
63  */
64 #if __FreeBSD_version < 900035
65 #define pci_find_cap pci_find_extcap
66 #endif
67 
68 #define BXE_DEF_SB_ATT_IDX 0x0001
69 #define BXE_DEF_SB_IDX     0x0002
70 
71 /*
72  * FLR Support - bxe_pf_flr_clnup() is called during nic_load in the per
73  * function HW initialization.
74  */
75 #define FLR_WAIT_USEC     10000 /* 10 msecs */
76 #define FLR_WAIT_INTERVAL 50    /* usecs */
77 #define FLR_POLL_CNT      (FLR_WAIT_USEC / FLR_WAIT_INTERVAL) /* 200 */
78 
79 struct pbf_pN_buf_regs {
80     int pN;
81     uint32_t init_crd;
82     uint32_t crd;
83     uint32_t crd_freed;
84 };
85 
86 struct pbf_pN_cmd_regs {
87     int pN;
88     uint32_t lines_occup;
89     uint32_t lines_freed;
90 };
91 
92 /*
93  * PCI Device ID Table used by bxe_probe().
94  */
95 #define BXE_DEVDESC_MAX 64
96 static struct bxe_device_type bxe_devs[] = {
97     {
98         BRCM_VENDORID,
99         CHIP_NUM_57710,
100         PCI_ANY_ID, PCI_ANY_ID,
101         "QLogic NetXtreme II BCM57710 10GbE"
102     },
103     {
104         BRCM_VENDORID,
105         CHIP_NUM_57711,
106         PCI_ANY_ID, PCI_ANY_ID,
107         "QLogic NetXtreme II BCM57711 10GbE"
108     },
109     {
110         BRCM_VENDORID,
111         CHIP_NUM_57711E,
112         PCI_ANY_ID, PCI_ANY_ID,
113         "QLogic NetXtreme II BCM57711E 10GbE"
114     },
115     {
116         BRCM_VENDORID,
117         CHIP_NUM_57712,
118         PCI_ANY_ID, PCI_ANY_ID,
119         "QLogic NetXtreme II BCM57712 10GbE"
120     },
121     {
122         BRCM_VENDORID,
123         CHIP_NUM_57712_MF,
124         PCI_ANY_ID, PCI_ANY_ID,
125         "QLogic NetXtreme II BCM57712 MF 10GbE"
126     },
127 #if 0
128     {
129         BRCM_VENDORID,
130         CHIP_NUM_57712_VF,
131         PCI_ANY_ID, PCI_ANY_ID,
132         "QLogic NetXtreme II BCM57712 VF 10GbE"
133     },
134 #endif
135     {
136         BRCM_VENDORID,
137         CHIP_NUM_57800,
138         PCI_ANY_ID, PCI_ANY_ID,
139         "QLogic NetXtreme II BCM57800 10GbE"
140     },
141     {
142         BRCM_VENDORID,
143         CHIP_NUM_57800_MF,
144         PCI_ANY_ID, PCI_ANY_ID,
145         "QLogic NetXtreme II BCM57800 MF 10GbE"
146     },
147 #if 0
148     {
149         BRCM_VENDORID,
150         CHIP_NUM_57800_VF,
151         PCI_ANY_ID, PCI_ANY_ID,
152         "QLogic NetXtreme II BCM57800 VF 10GbE"
153     },
154 #endif
155     {
156         BRCM_VENDORID,
157         CHIP_NUM_57810,
158         PCI_ANY_ID, PCI_ANY_ID,
159         "QLogic NetXtreme II BCM57810 10GbE"
160     },
161     {
162         BRCM_VENDORID,
163         CHIP_NUM_57810_MF,
164         PCI_ANY_ID, PCI_ANY_ID,
165         "QLogic NetXtreme II BCM57810 MF 10GbE"
166     },
167 #if 0
168     {
169         BRCM_VENDORID,
170         CHIP_NUM_57810_VF,
171         PCI_ANY_ID, PCI_ANY_ID,
172         "QLogic NetXtreme II BCM57810 VF 10GbE"
173     },
174 #endif
175     {
176         BRCM_VENDORID,
177         CHIP_NUM_57811,
178         PCI_ANY_ID, PCI_ANY_ID,
179         "QLogic NetXtreme II BCM57811 10GbE"
180     },
181     {
182         BRCM_VENDORID,
183         CHIP_NUM_57811_MF,
184         PCI_ANY_ID, PCI_ANY_ID,
185         "QLogic NetXtreme II BCM57811 MF 10GbE"
186     },
187 #if 0
188     {
189         BRCM_VENDORID,
190         CHIP_NUM_57811_VF,
191         PCI_ANY_ID, PCI_ANY_ID,
192         "QLogic NetXtreme II BCM57811 VF 10GbE"
193     },
194 #endif
195     {
196         BRCM_VENDORID,
197         CHIP_NUM_57840_4_10,
198         PCI_ANY_ID, PCI_ANY_ID,
199         "QLogic NetXtreme II BCM57840 4x10GbE"
200     },
201 #if 0
202     {
203         BRCM_VENDORID,
204         CHIP_NUM_57840_2_20,
205         PCI_ANY_ID, PCI_ANY_ID,
206         "QLogic NetXtreme II BCM57840 2x20GbE"
207     },
208 #endif
209     {
210         BRCM_VENDORID,
211         CHIP_NUM_57840_MF,
212         PCI_ANY_ID, PCI_ANY_ID,
213         "QLogic NetXtreme II BCM57840 MF 10GbE"
214     },
215 #if 0
216     {
217         BRCM_VENDORID,
218         CHIP_NUM_57840_VF,
219         PCI_ANY_ID, PCI_ANY_ID,
220         "QLogic NetXtreme II BCM57840 VF 10GbE"
221     },
222 #endif
223     {
224         0, 0, 0, 0, NULL
225     }
226 };
227 
228 MALLOC_DECLARE(M_BXE_ILT);
229 MALLOC_DEFINE(M_BXE_ILT, "bxe_ilt", "bxe ILT pointer");
230 
231 /*
232  * FreeBSD device entry points.
233  */
234 static int bxe_probe(device_t);
235 static int bxe_attach(device_t);
236 static int bxe_detach(device_t);
237 static int bxe_shutdown(device_t);
238 
239 /*
240  * FreeBSD KLD module/device interface event handler method.
241  */
242 static device_method_t bxe_methods[] = {
243     /* Device interface (device_if.h) */
244     DEVMETHOD(device_probe,     bxe_probe),
245     DEVMETHOD(device_attach,    bxe_attach),
246     DEVMETHOD(device_detach,    bxe_detach),
247     DEVMETHOD(device_shutdown,  bxe_shutdown),
248 #if 0
249     DEVMETHOD(device_suspend,   bxe_suspend),
250     DEVMETHOD(device_resume,    bxe_resume),
251 #endif
252     /* Bus interface (bus_if.h) */
253     DEVMETHOD(bus_print_child,  bus_generic_print_child),
254     DEVMETHOD(bus_driver_added, bus_generic_driver_added),
255     KOBJMETHOD_END
256 };
257 
258 /*
259  * FreeBSD KLD Module data declaration
260  */
261 static driver_t bxe_driver = {
262     "bxe",                   /* module name */
263     bxe_methods,             /* event handler */
264     sizeof(struct bxe_softc) /* extra data */
265 };
266 
267 /*
268  * FreeBSD dev class is needed to manage dev instances and
269  * to associate with a bus type
270  */
271 static devclass_t bxe_devclass;
272 
273 MODULE_DEPEND(bxe, pci, 1, 1, 1);
274 MODULE_DEPEND(bxe, ether, 1, 1, 1);
275 DRIVER_MODULE(bxe, pci, bxe_driver, bxe_devclass, 0, 0);
276 
277 /* resources needed for unloading a previously loaded device */
278 
279 #define BXE_PREV_WAIT_NEEDED 1
280 struct mtx bxe_prev_mtx;
281 MTX_SYSINIT(bxe_prev_mtx, &bxe_prev_mtx, "bxe_prev_lock", MTX_DEF);
282 struct bxe_prev_list_node {
283     LIST_ENTRY(bxe_prev_list_node) node;
284     uint8_t bus;
285     uint8_t slot;
286     uint8_t path;
287     uint8_t aer; /* XXX automatic error recovery */
288     uint8_t undi;
289 };
290 static LIST_HEAD(, bxe_prev_list_node) bxe_prev_list = LIST_HEAD_INITIALIZER(bxe_prev_list);
291 
292 static int load_count[2][3] = { {0} }; /* per-path: 0-common, 1-port0, 2-port1 */
293 
294 /* Tunable device values... */
295 
296 SYSCTL_NODE(_hw, OID_AUTO, bxe, CTLFLAG_RD, 0, "bxe driver parameters");
297 
298 /* Debug */
299 unsigned long bxe_debug = 0;
300 SYSCTL_ULONG(_hw_bxe, OID_AUTO, debug, CTLFLAG_RDTUN,
301              &bxe_debug, 0, "Debug logging mode");
302 
303 /* Interrupt Mode: 0 (IRQ), 1 (MSI/IRQ), and 2 (MSI-X/MSI/IRQ) */
304 static int bxe_interrupt_mode = INTR_MODE_MSIX;
305 SYSCTL_INT(_hw_bxe, OID_AUTO, interrupt_mode, CTLFLAG_RDTUN,
306            &bxe_interrupt_mode, 0, "Interrupt (MSI-X/MSI/INTx) mode");
307 
308 /* Number of Queues: 0 (Auto) or 1 to 16 (fixed queue number) */
309 static int bxe_queue_count = 4;
310 SYSCTL_INT(_hw_bxe, OID_AUTO, queue_count, CTLFLAG_RDTUN,
311            &bxe_queue_count, 0, "Multi-Queue queue count");
312 
313 /* max number of buffers per queue (default RX_BD_USABLE) */
314 static int bxe_max_rx_bufs = 0;
315 SYSCTL_INT(_hw_bxe, OID_AUTO, max_rx_bufs, CTLFLAG_RDTUN,
316            &bxe_max_rx_bufs, 0, "Maximum Number of Rx Buffers Per Queue");
317 
318 /* Host interrupt coalescing RX tick timer (usecs) */
319 static int bxe_hc_rx_ticks = 25;
320 SYSCTL_INT(_hw_bxe, OID_AUTO, hc_rx_ticks, CTLFLAG_RDTUN,
321            &bxe_hc_rx_ticks, 0, "Host Coalescing Rx ticks");
322 
323 /* Host interrupt coalescing TX tick timer (usecs) */
324 static int bxe_hc_tx_ticks = 50;
325 SYSCTL_INT(_hw_bxe, OID_AUTO, hc_tx_ticks, CTLFLAG_RDTUN,
326            &bxe_hc_tx_ticks, 0, "Host Coalescing Tx ticks");
327 
328 /* Maximum number of Rx packets to process at a time */
329 static int bxe_rx_budget = 0xffffffff;
330 SYSCTL_INT(_hw_bxe, OID_AUTO, rx_budget, CTLFLAG_TUN,
331            &bxe_rx_budget, 0, "Rx processing budget");
332 
333 /* Maximum LRO aggregation size */
334 static int bxe_max_aggregation_size = 0;
335 SYSCTL_INT(_hw_bxe, OID_AUTO, max_aggregation_size, CTLFLAG_TUN,
336            &bxe_max_aggregation_size, 0, "max aggregation size");
337 
338 /* PCI MRRS: -1 (Auto), 0 (128B), 1 (256B), 2 (512B), 3 (1KB) */
339 static int bxe_mrrs = -1;
340 SYSCTL_INT(_hw_bxe, OID_AUTO, mrrs, CTLFLAG_RDTUN,
341            &bxe_mrrs, 0, "PCIe maximum read request size");
342 
343 /* AutoGrEEEn: 0 (hardware default), 1 (force on), 2 (force off) */
344 static int bxe_autogreeen = 0;
345 SYSCTL_INT(_hw_bxe, OID_AUTO, autogreeen, CTLFLAG_RDTUN,
346            &bxe_autogreeen, 0, "AutoGrEEEn support");
347 
348 /* 4-tuple RSS support for UDP: 0 (disabled), 1 (enabled) */
349 static int bxe_udp_rss = 0;
350 SYSCTL_INT(_hw_bxe, OID_AUTO, udp_rss, CTLFLAG_RDTUN,
351            &bxe_udp_rss, 0, "UDP RSS support");
352 
353 
354 #define STAT_NAME_LEN 32 /* no stat names below can be longer than this */
355 
356 #define STATS_OFFSET32(stat_name)                   \
357     (offsetof(struct bxe_eth_stats, stat_name) / 4)
358 
359 #define Q_STATS_OFFSET32(stat_name)                   \
360     (offsetof(struct bxe_eth_q_stats, stat_name) / 4)
361 
362 static const struct {
363     uint32_t offset;
364     uint32_t size;
365     uint32_t flags;
366 #define STATS_FLAGS_PORT  1
367 #define STATS_FLAGS_FUNC  2 /* MF only cares about function stats */
368 #define STATS_FLAGS_BOTH  (STATS_FLAGS_FUNC | STATS_FLAGS_PORT)
369     char string[STAT_NAME_LEN];
370 } bxe_eth_stats_arr[] = {
371     { STATS_OFFSET32(total_bytes_received_hi),
372                 8, STATS_FLAGS_BOTH, "rx_bytes" },
373     { STATS_OFFSET32(error_bytes_received_hi),
374                 8, STATS_FLAGS_BOTH, "rx_error_bytes" },
375     { STATS_OFFSET32(total_unicast_packets_received_hi),
376                 8, STATS_FLAGS_BOTH, "rx_ucast_packets" },
377     { STATS_OFFSET32(total_multicast_packets_received_hi),
378                 8, STATS_FLAGS_BOTH, "rx_mcast_packets" },
379     { STATS_OFFSET32(total_broadcast_packets_received_hi),
380                 8, STATS_FLAGS_BOTH, "rx_bcast_packets" },
381     { STATS_OFFSET32(rx_stat_dot3statsfcserrors_hi),
382                 8, STATS_FLAGS_PORT, "rx_crc_errors" },
383     { STATS_OFFSET32(rx_stat_dot3statsalignmenterrors_hi),
384                 8, STATS_FLAGS_PORT, "rx_align_errors" },
385     { STATS_OFFSET32(rx_stat_etherstatsundersizepkts_hi),
386                 8, STATS_FLAGS_PORT, "rx_undersize_packets" },
387     { STATS_OFFSET32(etherstatsoverrsizepkts_hi),
388                 8, STATS_FLAGS_PORT, "rx_oversize_packets" },
389     { STATS_OFFSET32(rx_stat_etherstatsfragments_hi),
390                 8, STATS_FLAGS_PORT, "rx_fragments" },
391     { STATS_OFFSET32(rx_stat_etherstatsjabbers_hi),
392                 8, STATS_FLAGS_PORT, "rx_jabbers" },
393     { STATS_OFFSET32(no_buff_discard_hi),
394                 8, STATS_FLAGS_BOTH, "rx_discards" },
395     { STATS_OFFSET32(mac_filter_discard),
396                 4, STATS_FLAGS_PORT, "rx_filtered_packets" },
397     { STATS_OFFSET32(mf_tag_discard),
398                 4, STATS_FLAGS_PORT, "rx_mf_tag_discard" },
399     { STATS_OFFSET32(pfc_frames_received_hi),
400                 8, STATS_FLAGS_PORT, "pfc_frames_received" },
401     { STATS_OFFSET32(pfc_frames_sent_hi),
402                 8, STATS_FLAGS_PORT, "pfc_frames_sent" },
403     { STATS_OFFSET32(brb_drop_hi),
404                 8, STATS_FLAGS_PORT, "rx_brb_discard" },
405     { STATS_OFFSET32(brb_truncate_hi),
406                 8, STATS_FLAGS_PORT, "rx_brb_truncate" },
407     { STATS_OFFSET32(pause_frames_received_hi),
408                 8, STATS_FLAGS_PORT, "rx_pause_frames" },
409     { STATS_OFFSET32(rx_stat_maccontrolframesreceived_hi),
410                 8, STATS_FLAGS_PORT, "rx_mac_ctrl_frames" },
411     { STATS_OFFSET32(nig_timer_max),
412                 4, STATS_FLAGS_PORT, "rx_constant_pause_events" },
413     { STATS_OFFSET32(total_bytes_transmitted_hi),
414                 8, STATS_FLAGS_BOTH, "tx_bytes" },
415     { STATS_OFFSET32(tx_stat_ifhcoutbadoctets_hi),
416                 8, STATS_FLAGS_PORT, "tx_error_bytes" },
417     { STATS_OFFSET32(total_unicast_packets_transmitted_hi),
418                 8, STATS_FLAGS_BOTH, "tx_ucast_packets" },
419     { STATS_OFFSET32(total_multicast_packets_transmitted_hi),
420                 8, STATS_FLAGS_BOTH, "tx_mcast_packets" },
421     { STATS_OFFSET32(total_broadcast_packets_transmitted_hi),
422                 8, STATS_FLAGS_BOTH, "tx_bcast_packets" },
423     { STATS_OFFSET32(tx_stat_dot3statsinternalmactransmiterrors_hi),
424                 8, STATS_FLAGS_PORT, "tx_mac_errors" },
425     { STATS_OFFSET32(rx_stat_dot3statscarriersenseerrors_hi),
426                 8, STATS_FLAGS_PORT, "tx_carrier_errors" },
427     { STATS_OFFSET32(tx_stat_dot3statssinglecollisionframes_hi),
428                 8, STATS_FLAGS_PORT, "tx_single_collisions" },
429     { STATS_OFFSET32(tx_stat_dot3statsmultiplecollisionframes_hi),
430                 8, STATS_FLAGS_PORT, "tx_multi_collisions" },
431     { STATS_OFFSET32(tx_stat_dot3statsdeferredtransmissions_hi),
432                 8, STATS_FLAGS_PORT, "tx_deferred" },
433     { STATS_OFFSET32(tx_stat_dot3statsexcessivecollisions_hi),
434                 8, STATS_FLAGS_PORT, "tx_excess_collisions" },
435     { STATS_OFFSET32(tx_stat_dot3statslatecollisions_hi),
436                 8, STATS_FLAGS_PORT, "tx_late_collisions" },
437     { STATS_OFFSET32(tx_stat_etherstatscollisions_hi),
438                 8, STATS_FLAGS_PORT, "tx_total_collisions" },
439     { STATS_OFFSET32(tx_stat_etherstatspkts64octets_hi),
440                 8, STATS_FLAGS_PORT, "tx_64_byte_packets" },
441     { STATS_OFFSET32(tx_stat_etherstatspkts65octetsto127octets_hi),
442                 8, STATS_FLAGS_PORT, "tx_65_to_127_byte_packets" },
443     { STATS_OFFSET32(tx_stat_etherstatspkts128octetsto255octets_hi),
444                 8, STATS_FLAGS_PORT, "tx_128_to_255_byte_packets" },
445     { STATS_OFFSET32(tx_stat_etherstatspkts256octetsto511octets_hi),
446                 8, STATS_FLAGS_PORT, "tx_256_to_511_byte_packets" },
447     { STATS_OFFSET32(tx_stat_etherstatspkts512octetsto1023octets_hi),
448                 8, STATS_FLAGS_PORT, "tx_512_to_1023_byte_packets" },
449     { STATS_OFFSET32(etherstatspkts1024octetsto1522octets_hi),
450                 8, STATS_FLAGS_PORT, "tx_1024_to_1522_byte_packets" },
451     { STATS_OFFSET32(etherstatspktsover1522octets_hi),
452                 8, STATS_FLAGS_PORT, "tx_1523_to_9022_byte_packets" },
453     { STATS_OFFSET32(pause_frames_sent_hi),
454                 8, STATS_FLAGS_PORT, "tx_pause_frames" },
455     { STATS_OFFSET32(total_tpa_aggregations_hi),
456                 8, STATS_FLAGS_FUNC, "tpa_aggregations" },
457     { STATS_OFFSET32(total_tpa_aggregated_frames_hi),
458                 8, STATS_FLAGS_FUNC, "tpa_aggregated_frames"},
459     { STATS_OFFSET32(total_tpa_bytes_hi),
460                 8, STATS_FLAGS_FUNC, "tpa_bytes"},
461 #if 0
462     { STATS_OFFSET32(recoverable_error),
463                 4, STATS_FLAGS_FUNC, "recoverable_errors" },
464     { STATS_OFFSET32(unrecoverable_error),
465                 4, STATS_FLAGS_FUNC, "unrecoverable_errors" },
466 #endif
467     { STATS_OFFSET32(eee_tx_lpi),
468                 4, STATS_FLAGS_PORT, "eee_tx_lpi"},
469     { STATS_OFFSET32(rx_calls),
470                 4, STATS_FLAGS_FUNC, "rx_calls"},
471     { STATS_OFFSET32(rx_pkts),
472                 4, STATS_FLAGS_FUNC, "rx_pkts"},
473     { STATS_OFFSET32(rx_tpa_pkts),
474                 4, STATS_FLAGS_FUNC, "rx_tpa_pkts"},
475     { STATS_OFFSET32(rx_soft_errors),
476                 4, STATS_FLAGS_FUNC, "rx_soft_errors"},
477     { STATS_OFFSET32(rx_hw_csum_errors),
478                 4, STATS_FLAGS_FUNC, "rx_hw_csum_errors"},
479     { STATS_OFFSET32(rx_ofld_frames_csum_ip),
480                 4, STATS_FLAGS_FUNC, "rx_ofld_frames_csum_ip"},
481     { STATS_OFFSET32(rx_ofld_frames_csum_tcp_udp),
482                 4, STATS_FLAGS_FUNC, "rx_ofld_frames_csum_tcp_udp"},
483     { STATS_OFFSET32(rx_budget_reached),
484                 4, STATS_FLAGS_FUNC, "rx_budget_reached"},
485     { STATS_OFFSET32(tx_pkts),
486                 4, STATS_FLAGS_FUNC, "tx_pkts"},
487     { STATS_OFFSET32(tx_soft_errors),
488                 4, STATS_FLAGS_FUNC, "tx_soft_errors"},
489     { STATS_OFFSET32(tx_ofld_frames_csum_ip),
490                 4, STATS_FLAGS_FUNC, "tx_ofld_frames_csum_ip"},
491     { STATS_OFFSET32(tx_ofld_frames_csum_tcp),
492                 4, STATS_FLAGS_FUNC, "tx_ofld_frames_csum_tcp"},
493     { STATS_OFFSET32(tx_ofld_frames_csum_udp),
494                 4, STATS_FLAGS_FUNC, "tx_ofld_frames_csum_udp"},
495     { STATS_OFFSET32(tx_ofld_frames_lso),
496                 4, STATS_FLAGS_FUNC, "tx_ofld_frames_lso"},
497     { STATS_OFFSET32(tx_ofld_frames_lso_hdr_splits),
498                 4, STATS_FLAGS_FUNC, "tx_ofld_frames_lso_hdr_splits"},
499     { STATS_OFFSET32(tx_encap_failures),
500                 4, STATS_FLAGS_FUNC, "tx_encap_failures"},
501     { STATS_OFFSET32(tx_hw_queue_full),
502                 4, STATS_FLAGS_FUNC, "tx_hw_queue_full"},
503     { STATS_OFFSET32(tx_hw_max_queue_depth),
504                 4, STATS_FLAGS_FUNC, "tx_hw_max_queue_depth"},
505     { STATS_OFFSET32(tx_dma_mapping_failure),
506                 4, STATS_FLAGS_FUNC, "tx_dma_mapping_failure"},
507     { STATS_OFFSET32(tx_max_drbr_queue_depth),
508                 4, STATS_FLAGS_FUNC, "tx_max_drbr_queue_depth"},
509     { STATS_OFFSET32(tx_window_violation_std),
510                 4, STATS_FLAGS_FUNC, "tx_window_violation_std"},
511     { STATS_OFFSET32(tx_window_violation_tso),
512                 4, STATS_FLAGS_FUNC, "tx_window_violation_tso"},
513 #if 0
514     { STATS_OFFSET32(tx_unsupported_tso_request_ipv6),
515                 4, STATS_FLAGS_FUNC, "tx_unsupported_tso_request_ipv6"},
516     { STATS_OFFSET32(tx_unsupported_tso_request_not_tcp),
517                 4, STATS_FLAGS_FUNC, "tx_unsupported_tso_request_not_tcp"},
518 #endif
519     { STATS_OFFSET32(tx_chain_lost_mbuf),
520                 4, STATS_FLAGS_FUNC, "tx_chain_lost_mbuf"},
521     { STATS_OFFSET32(tx_frames_deferred),
522                 4, STATS_FLAGS_FUNC, "tx_frames_deferred"},
523     { STATS_OFFSET32(tx_queue_xoff),
524                 4, STATS_FLAGS_FUNC, "tx_queue_xoff"},
525     { STATS_OFFSET32(mbuf_defrag_attempts),
526                 4, STATS_FLAGS_FUNC, "mbuf_defrag_attempts"},
527     { STATS_OFFSET32(mbuf_defrag_failures),
528                 4, STATS_FLAGS_FUNC, "mbuf_defrag_failures"},
529     { STATS_OFFSET32(mbuf_rx_bd_alloc_failed),
530                 4, STATS_FLAGS_FUNC, "mbuf_rx_bd_alloc_failed"},
531     { STATS_OFFSET32(mbuf_rx_bd_mapping_failed),
532                 4, STATS_FLAGS_FUNC, "mbuf_rx_bd_mapping_failed"},
533     { STATS_OFFSET32(mbuf_rx_tpa_alloc_failed),
534                 4, STATS_FLAGS_FUNC, "mbuf_rx_tpa_alloc_failed"},
535     { STATS_OFFSET32(mbuf_rx_tpa_mapping_failed),
536                 4, STATS_FLAGS_FUNC, "mbuf_rx_tpa_mapping_failed"},
537     { STATS_OFFSET32(mbuf_rx_sge_alloc_failed),
538                 4, STATS_FLAGS_FUNC, "mbuf_rx_sge_alloc_failed"},
539     { STATS_OFFSET32(mbuf_rx_sge_mapping_failed),
540                 4, STATS_FLAGS_FUNC, "mbuf_rx_sge_mapping_failed"},
541     { STATS_OFFSET32(mbuf_alloc_tx),
542                 4, STATS_FLAGS_FUNC, "mbuf_alloc_tx"},
543     { STATS_OFFSET32(mbuf_alloc_rx),
544                 4, STATS_FLAGS_FUNC, "mbuf_alloc_rx"},
545     { STATS_OFFSET32(mbuf_alloc_sge),
546                 4, STATS_FLAGS_FUNC, "mbuf_alloc_sge"},
547     { STATS_OFFSET32(mbuf_alloc_tpa),
548                 4, STATS_FLAGS_FUNC, "mbuf_alloc_tpa"}
549 };
550 
551 static const struct {
552     uint32_t offset;
553     uint32_t size;
554     char string[STAT_NAME_LEN];
555 } bxe_eth_q_stats_arr[] = {
556     { Q_STATS_OFFSET32(total_bytes_received_hi),
557                 8, "rx_bytes" },
558     { Q_STATS_OFFSET32(total_unicast_packets_received_hi),
559                 8, "rx_ucast_packets" },
560     { Q_STATS_OFFSET32(total_multicast_packets_received_hi),
561                 8, "rx_mcast_packets" },
562     { Q_STATS_OFFSET32(total_broadcast_packets_received_hi),
563                 8, "rx_bcast_packets" },
564     { Q_STATS_OFFSET32(no_buff_discard_hi),
565                 8, "rx_discards" },
566     { Q_STATS_OFFSET32(total_bytes_transmitted_hi),
567                 8, "tx_bytes" },
568     { Q_STATS_OFFSET32(total_unicast_packets_transmitted_hi),
569                 8, "tx_ucast_packets" },
570     { Q_STATS_OFFSET32(total_multicast_packets_transmitted_hi),
571                 8, "tx_mcast_packets" },
572     { Q_STATS_OFFSET32(total_broadcast_packets_transmitted_hi),
573                 8, "tx_bcast_packets" },
574     { Q_STATS_OFFSET32(total_tpa_aggregations_hi),
575                 8, "tpa_aggregations" },
576     { Q_STATS_OFFSET32(total_tpa_aggregated_frames_hi),
577                 8, "tpa_aggregated_frames"},
578     { Q_STATS_OFFSET32(total_tpa_bytes_hi),
579                 8, "tpa_bytes"},
580     { Q_STATS_OFFSET32(rx_calls),
581                 4, "rx_calls"},
582     { Q_STATS_OFFSET32(rx_pkts),
583                 4, "rx_pkts"},
584     { Q_STATS_OFFSET32(rx_tpa_pkts),
585                 4, "rx_tpa_pkts"},
586     { Q_STATS_OFFSET32(rx_soft_errors),
587                 4, "rx_soft_errors"},
588     { Q_STATS_OFFSET32(rx_hw_csum_errors),
589                 4, "rx_hw_csum_errors"},
590     { Q_STATS_OFFSET32(rx_ofld_frames_csum_ip),
591                 4, "rx_ofld_frames_csum_ip"},
592     { Q_STATS_OFFSET32(rx_ofld_frames_csum_tcp_udp),
593                 4, "rx_ofld_frames_csum_tcp_udp"},
594     { Q_STATS_OFFSET32(rx_budget_reached),
595                 4, "rx_budget_reached"},
596     { Q_STATS_OFFSET32(tx_pkts),
597                 4, "tx_pkts"},
598     { Q_STATS_OFFSET32(tx_soft_errors),
599                 4, "tx_soft_errors"},
600     { Q_STATS_OFFSET32(tx_ofld_frames_csum_ip),
601                 4, "tx_ofld_frames_csum_ip"},
602     { Q_STATS_OFFSET32(tx_ofld_frames_csum_tcp),
603                 4, "tx_ofld_frames_csum_tcp"},
604     { Q_STATS_OFFSET32(tx_ofld_frames_csum_udp),
605                 4, "tx_ofld_frames_csum_udp"},
606     { Q_STATS_OFFSET32(tx_ofld_frames_lso),
607                 4, "tx_ofld_frames_lso"},
608     { Q_STATS_OFFSET32(tx_ofld_frames_lso_hdr_splits),
609                 4, "tx_ofld_frames_lso_hdr_splits"},
610     { Q_STATS_OFFSET32(tx_encap_failures),
611                 4, "tx_encap_failures"},
612     { Q_STATS_OFFSET32(tx_hw_queue_full),
613                 4, "tx_hw_queue_full"},
614     { Q_STATS_OFFSET32(tx_hw_max_queue_depth),
615                 4, "tx_hw_max_queue_depth"},
616     { Q_STATS_OFFSET32(tx_dma_mapping_failure),
617                 4, "tx_dma_mapping_failure"},
618     { Q_STATS_OFFSET32(tx_max_drbr_queue_depth),
619                 4, "tx_max_drbr_queue_depth"},
620     { Q_STATS_OFFSET32(tx_window_violation_std),
621                 4, "tx_window_violation_std"},
622     { Q_STATS_OFFSET32(tx_window_violation_tso),
623                 4, "tx_window_violation_tso"},
624 #if 0
625     { Q_STATS_OFFSET32(tx_unsupported_tso_request_ipv6),
626                 4, "tx_unsupported_tso_request_ipv6"},
627     { Q_STATS_OFFSET32(tx_unsupported_tso_request_not_tcp),
628                 4, "tx_unsupported_tso_request_not_tcp"},
629 #endif
630     { Q_STATS_OFFSET32(tx_chain_lost_mbuf),
631                 4, "tx_chain_lost_mbuf"},
632     { Q_STATS_OFFSET32(tx_frames_deferred),
633                 4, "tx_frames_deferred"},
634     { Q_STATS_OFFSET32(tx_queue_xoff),
635                 4, "tx_queue_xoff"},
636     { Q_STATS_OFFSET32(mbuf_defrag_attempts),
637                 4, "mbuf_defrag_attempts"},
638     { Q_STATS_OFFSET32(mbuf_defrag_failures),
639                 4, "mbuf_defrag_failures"},
640     { Q_STATS_OFFSET32(mbuf_rx_bd_alloc_failed),
641                 4, "mbuf_rx_bd_alloc_failed"},
642     { Q_STATS_OFFSET32(mbuf_rx_bd_mapping_failed),
643                 4, "mbuf_rx_bd_mapping_failed"},
644     { Q_STATS_OFFSET32(mbuf_rx_tpa_alloc_failed),
645                 4, "mbuf_rx_tpa_alloc_failed"},
646     { Q_STATS_OFFSET32(mbuf_rx_tpa_mapping_failed),
647                 4, "mbuf_rx_tpa_mapping_failed"},
648     { Q_STATS_OFFSET32(mbuf_rx_sge_alloc_failed),
649                 4, "mbuf_rx_sge_alloc_failed"},
650     { Q_STATS_OFFSET32(mbuf_rx_sge_mapping_failed),
651                 4, "mbuf_rx_sge_mapping_failed"},
652     { Q_STATS_OFFSET32(mbuf_alloc_tx),
653                 4, "mbuf_alloc_tx"},
654     { Q_STATS_OFFSET32(mbuf_alloc_rx),
655                 4, "mbuf_alloc_rx"},
656     { Q_STATS_OFFSET32(mbuf_alloc_sge),
657                 4, "mbuf_alloc_sge"},
658     { Q_STATS_OFFSET32(mbuf_alloc_tpa),
659                 4, "mbuf_alloc_tpa"}
660 };
661 
662 #define BXE_NUM_ETH_STATS   ARRAY_SIZE(bxe_eth_stats_arr)
663 #define BXE_NUM_ETH_Q_STATS ARRAY_SIZE(bxe_eth_q_stats_arr)
664 
665 
666 static void    bxe_cmng_fns_init(struct bxe_softc *sc,
667                                  uint8_t          read_cfg,
668                                  uint8_t          cmng_type);
669 static int     bxe_get_cmng_fns_mode(struct bxe_softc *sc);
670 static void    storm_memset_cmng(struct bxe_softc *sc,
671                                  struct cmng_init *cmng,
672                                  uint8_t          port);
673 static void    bxe_set_reset_global(struct bxe_softc *sc);
674 static void    bxe_set_reset_in_progress(struct bxe_softc *sc);
675 static uint8_t bxe_reset_is_done(struct bxe_softc *sc,
676                                  int              engine);
677 static uint8_t bxe_clear_pf_load(struct bxe_softc *sc);
678 static uint8_t bxe_chk_parity_attn(struct bxe_softc *sc,
679                                    uint8_t          *global,
680                                    uint8_t          print);
681 static void    bxe_int_disable(struct bxe_softc *sc);
682 static int     bxe_release_leader_lock(struct bxe_softc *sc);
683 static void    bxe_pf_disable(struct bxe_softc *sc);
684 static void    bxe_free_fp_buffers(struct bxe_softc *sc);
685 static inline void bxe_update_rx_prod(struct bxe_softc    *sc,
686                                       struct bxe_fastpath *fp,
687                                       uint16_t            rx_bd_prod,
688                                       uint16_t            rx_cq_prod,
689                                       uint16_t            rx_sge_prod);
690 static void    bxe_link_report_locked(struct bxe_softc *sc);
691 static void    bxe_link_report(struct bxe_softc *sc);
692 static void    bxe_link_status_update(struct bxe_softc *sc);
693 static void    bxe_periodic_callout_func(void *xsc);
694 static void    bxe_periodic_start(struct bxe_softc *sc);
695 static void    bxe_periodic_stop(struct bxe_softc *sc);
696 static int     bxe_alloc_rx_bd_mbuf(struct bxe_fastpath *fp,
697                                     uint16_t prev_index,
698                                     uint16_t index);
699 static int     bxe_alloc_rx_tpa_mbuf(struct bxe_fastpath *fp,
700                                      int                 queue);
701 static int     bxe_alloc_rx_sge_mbuf(struct bxe_fastpath *fp,
702                                      uint16_t            index);
703 static uint8_t bxe_txeof(struct bxe_softc *sc,
704                          struct bxe_fastpath *fp);
705 static void    bxe_task_fp(struct bxe_fastpath *fp);
706 static __noinline void bxe_dump_mbuf(struct bxe_softc *sc,
707                                      struct mbuf      *m,
708                                      uint8_t          contents);
709 static int     bxe_alloc_mem(struct bxe_softc *sc);
710 static void    bxe_free_mem(struct bxe_softc *sc);
711 static int     bxe_alloc_fw_stats_mem(struct bxe_softc *sc);
712 static void    bxe_free_fw_stats_mem(struct bxe_softc *sc);
713 static int     bxe_interrupt_attach(struct bxe_softc *sc);
714 static void    bxe_interrupt_detach(struct bxe_softc *sc);
715 static void    bxe_set_rx_mode(struct bxe_softc *sc);
716 static int     bxe_init_locked(struct bxe_softc *sc);
717 static int     bxe_stop_locked(struct bxe_softc *sc);
718 static __noinline int bxe_nic_load(struct bxe_softc *sc,
719                                    int              load_mode);
720 static __noinline int bxe_nic_unload(struct bxe_softc *sc,
721                                      uint32_t         unload_mode,
722                                      uint8_t          keep_link);
723 
724 static void bxe_handle_sp_tq(void *context, int pending);
725 static void bxe_handle_rx_mode_tq(void *context, int pending);
726 static void bxe_handle_fp_tq(void *context, int pending);
727 
728 
729 /* calculate crc32 on a buffer (NOTE: crc32_length MUST be aligned to 8) */
730 uint32_t
731 calc_crc32(uint8_t  *crc32_packet,
732            uint32_t crc32_length,
733            uint32_t crc32_seed,
734            uint8_t  complement)
735 {
736    uint32_t byte         = 0;
737    uint32_t bit          = 0;
738    uint8_t  msb          = 0;
739    uint32_t temp         = 0;
740    uint32_t shft         = 0;
741    uint8_t  current_byte = 0;
742    uint32_t crc32_result = crc32_seed;
743    const uint32_t CRC32_POLY = 0x1edc6f41;
744 
745    if ((crc32_packet == NULL) ||
746        (crc32_length == 0) ||
747        ((crc32_length % 8) != 0))
748     {
749         return (crc32_result);
750     }
751 
752     for (byte = 0; byte < crc32_length; byte = byte + 1)
753     {
754         current_byte = crc32_packet[byte];
755         for (bit = 0; bit < 8; bit = bit + 1)
756         {
757             /* msb = crc32_result[31]; */
758             msb = (uint8_t)(crc32_result >> 31);
759 
760             crc32_result = crc32_result << 1;
761 
762             /* it (msb != current_byte[bit]) */
763             if (msb != (0x1 & (current_byte >> bit)))
764             {
765                 crc32_result = crc32_result ^ CRC32_POLY;
766                 /* crc32_result[0] = 1 */
767                 crc32_result |= 1;
768             }
769         }
770     }
771 
772     /* Last step is to:
773      * 1. "mirror" every bit
774      * 2. swap the 4 bytes
775      * 3. complement each bit
776      */
777 
778     /* Mirror */
779     temp = crc32_result;
780     shft = sizeof(crc32_result) * 8 - 1;
781 
782     for (crc32_result >>= 1; crc32_result; crc32_result >>= 1)
783     {
784         temp <<= 1;
785         temp |= crc32_result & 1;
786         shft-- ;
787     }
788 
789     /* temp[31-bit] = crc32_result[bit] */
790     temp <<= shft;
791 
792     /* Swap */
793     /* crc32_result = {temp[7:0], temp[15:8], temp[23:16], temp[31:24]} */
794     {
795         uint32_t t0, t1, t2, t3;
796         t0 = (0x000000ff & (temp >> 24));
797         t1 = (0x0000ff00 & (temp >> 8));
798         t2 = (0x00ff0000 & (temp << 8));
799         t3 = (0xff000000 & (temp << 24));
800         crc32_result = t0 | t1 | t2 | t3;
801     }
802 
803     /* Complement */
804     if (complement)
805     {
806         crc32_result = ~crc32_result;
807     }
808 
809     return (crc32_result);
810 }
811 
812 int
813 bxe_test_bit(int                    nr,
814              volatile unsigned long *addr)
815 {
816     return ((atomic_load_acq_long(addr) & (1 << nr)) != 0);
817 }
818 
819 void
820 bxe_set_bit(unsigned int           nr,
821             volatile unsigned long *addr)
822 {
823     atomic_set_acq_long(addr, (1 << nr));
824 }
825 
826 void
827 bxe_clear_bit(int                    nr,
828               volatile unsigned long *addr)
829 {
830     atomic_clear_acq_long(addr, (1 << nr));
831 }
832 
833 int
834 bxe_test_and_set_bit(int                    nr,
835                        volatile unsigned long *addr)
836 {
837     unsigned long x;
838     nr = (1 << nr);
839     do {
840         x = *addr;
841     } while (atomic_cmpset_acq_long(addr, x, x | nr) == 0);
842     // if (x & nr) bit_was_set; else bit_was_not_set;
843     return (x & nr);
844 }
845 
846 int
847 bxe_test_and_clear_bit(int                    nr,
848                        volatile unsigned long *addr)
849 {
850     unsigned long x;
851     nr = (1 << nr);
852     do {
853         x = *addr;
854     } while (atomic_cmpset_acq_long(addr, x, x & ~nr) == 0);
855     // if (x & nr) bit_was_set; else bit_was_not_set;
856     return (x & nr);
857 }
858 
859 int
860 bxe_cmpxchg(volatile int *addr,
861             int          old,
862             int          new)
863 {
864     int x;
865     do {
866         x = *addr;
867     } while (atomic_cmpset_acq_int(addr, old, new) == 0);
868     return (x);
869 }
870 
871 /*
872  * Get DMA memory from the OS.
873  *
874  * Validates that the OS has provided DMA buffers in response to a
875  * bus_dmamap_load call and saves the physical address of those buffers.
876  * When the callback is used the OS will return 0 for the mapping function
877  * (bus_dmamap_load) so we use the value of map_arg->maxsegs to pass any
878  * failures back to the caller.
879  *
880  * Returns:
881  *   Nothing.
882  */
883 static void
884 bxe_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
885 {
886     struct bxe_dma *dma = arg;
887 
888     if (error) {
889         dma->paddr = 0;
890         dma->nseg  = 0;
891         BLOGE(dma->sc, "Failed DMA alloc '%s' (%d)!\n", dma->msg, error);
892     } else {
893         dma->paddr = segs->ds_addr;
894         dma->nseg  = nseg;
895 #if 0
896         BLOGD(dma->sc, DBG_LOAD,
897               "DMA alloc '%s': vaddr=%p paddr=%p nseg=%d size=%lu\n",
898               dma->msg, dma->vaddr, (void *)dma->paddr,
899               dma->nseg, dma->size);
900 #endif
901     }
902 }
903 
904 /*
905  * Allocate a block of memory and map it for DMA. No partial completions
906  * allowed and release any resources acquired if we can't acquire all
907  * resources.
908  *
909  * Returns:
910  *   0 = Success, !0 = Failure
911  */
912 int
913 bxe_dma_alloc(struct bxe_softc *sc,
914               bus_size_t       size,
915               struct bxe_dma   *dma,
916               const char       *msg)
917 {
918     int rc;
919 
920     if (dma->size > 0) {
921         BLOGE(sc, "dma block '%s' already has size %lu\n", msg,
922               (unsigned long)dma->size);
923         return (1);
924     }
925 
926     memset(dma, 0, sizeof(*dma)); /* sanity */
927     dma->sc   = sc;
928     dma->size = size;
929     snprintf(dma->msg, sizeof(dma->msg), "%s", msg);
930 
931     rc = bus_dma_tag_create(sc->parent_dma_tag, /* parent tag */
932                             BCM_PAGE_SIZE,      /* alignment */
933                             0,                  /* boundary limit */
934                             BUS_SPACE_MAXADDR,  /* restricted low */
935                             BUS_SPACE_MAXADDR,  /* restricted hi */
936                             NULL,               /* addr filter() */
937                             NULL,               /* addr filter() arg */
938                             size,               /* max map size */
939                             1,                  /* num discontinuous */
940                             size,               /* max seg size */
941                             BUS_DMA_ALLOCNOW,   /* flags */
942                             NULL,               /* lock() */
943                             NULL,               /* lock() arg */
944                             &dma->tag);         /* returned dma tag */
945     if (rc != 0) {
946         BLOGE(sc, "Failed to create dma tag for '%s' (%d)\n", msg, rc);
947         memset(dma, 0, sizeof(*dma));
948         return (1);
949     }
950 
951     rc = bus_dmamem_alloc(dma->tag,
952                           (void **)&dma->vaddr,
953                           (BUS_DMA_NOWAIT | BUS_DMA_ZERO),
954                           &dma->map);
955     if (rc != 0) {
956         BLOGE(sc, "Failed to alloc dma mem for '%s' (%d)\n", msg, rc);
957         bus_dma_tag_destroy(dma->tag);
958         memset(dma, 0, sizeof(*dma));
959         return (1);
960     }
961 
962     rc = bus_dmamap_load(dma->tag,
963                          dma->map,
964                          dma->vaddr,
965                          size,
966                          bxe_dma_map_addr, /* BLOGD in here */
967                          dma,
968                          BUS_DMA_NOWAIT);
969     if (rc != 0) {
970         BLOGE(sc, "Failed to load dma map for '%s' (%d)\n", msg, rc);
971         bus_dmamem_free(dma->tag, dma->vaddr, dma->map);
972         bus_dma_tag_destroy(dma->tag);
973         memset(dma, 0, sizeof(*dma));
974         return (1);
975     }
976 
977     return (0);
978 }
979 
980 void
981 bxe_dma_free(struct bxe_softc *sc,
982              struct bxe_dma   *dma)
983 {
984     if (dma->size > 0) {
985 #if 0
986         BLOGD(sc, DBG_LOAD,
987               "DMA free '%s': vaddr=%p paddr=%p nseg=%d size=%lu\n",
988               dma->msg, dma->vaddr, (void *)dma->paddr,
989               dma->nseg, dma->size);
990 #endif
991 
992         DBASSERT(sc, (dma->tag != NULL), ("dma tag is NULL"));
993 
994         bus_dmamap_sync(dma->tag, dma->map,
995                         (BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE));
996         bus_dmamap_unload(dma->tag, dma->map);
997         bus_dmamem_free(dma->tag, dma->vaddr, dma->map);
998         bus_dma_tag_destroy(dma->tag);
999     }
1000 
1001     memset(dma, 0, sizeof(*dma));
1002 }
1003 
1004 /*
1005  * These indirect read and write routines are only during init.
1006  * The locking is handled by the MCP.
1007  */
1008 
1009 void
1010 bxe_reg_wr_ind(struct bxe_softc *sc,
1011                uint32_t         addr,
1012                uint32_t         val)
1013 {
1014     pci_write_config(sc->dev, PCICFG_GRC_ADDRESS, addr, 4);
1015     pci_write_config(sc->dev, PCICFG_GRC_DATA, val, 4);
1016     pci_write_config(sc->dev, PCICFG_GRC_ADDRESS, 0, 4);
1017 }
1018 
1019 uint32_t
1020 bxe_reg_rd_ind(struct bxe_softc *sc,
1021                uint32_t         addr)
1022 {
1023     uint32_t val;
1024 
1025     pci_write_config(sc->dev, PCICFG_GRC_ADDRESS, addr, 4);
1026     val = pci_read_config(sc->dev, PCICFG_GRC_DATA, 4);
1027     pci_write_config(sc->dev, PCICFG_GRC_ADDRESS, 0, 4);
1028 
1029     return (val);
1030 }
1031 
1032 #if 0
1033 void bxe_dp_dmae(struct bxe_softc *sc, struct dmae_command *dmae, int msglvl)
1034 {
1035     uint32_t src_type = dmae->opcode & DMAE_COMMAND_SRC;
1036 
1037     switch (dmae->opcode & DMAE_COMMAND_DST) {
1038     case DMAE_CMD_DST_PCI:
1039         if (src_type == DMAE_CMD_SRC_PCI)
1040             DP(msglvl, "DMAE: opcode 0x%08x\n"
1041                "src [%x:%08x], len [%d*4], dst [%x:%08x]\n"
1042                "comp_addr [%x:%08x], comp_val 0x%08x\n",
1043                dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
1044                dmae->len, dmae->dst_addr_hi, dmae->dst_addr_lo,
1045                dmae->comp_addr_hi, dmae->comp_addr_lo,
1046                dmae->comp_val);
1047         else
1048             DP(msglvl, "DMAE: opcode 0x%08x\n"
1049                "src [%08x], len [%d*4], dst [%x:%08x]\n"
1050                "comp_addr [%x:%08x], comp_val 0x%08x\n",
1051                dmae->opcode, dmae->src_addr_lo >> 2,
1052                dmae->len, dmae->dst_addr_hi, dmae->dst_addr_lo,
1053                dmae->comp_addr_hi, dmae->comp_addr_lo,
1054                dmae->comp_val);
1055         break;
1056     case DMAE_CMD_DST_GRC:
1057         if (src_type == DMAE_CMD_SRC_PCI)
1058             DP(msglvl, "DMAE: opcode 0x%08x\n"
1059                "src [%x:%08x], len [%d*4], dst_addr [%08x]\n"
1060                "comp_addr [%x:%08x], comp_val 0x%08x\n",
1061                dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
1062                dmae->len, dmae->dst_addr_lo >> 2,
1063                dmae->comp_addr_hi, dmae->comp_addr_lo,
1064                dmae->comp_val);
1065         else
1066             DP(msglvl, "DMAE: opcode 0x%08x\n"
1067                "src [%08x], len [%d*4], dst [%08x]\n"
1068                "comp_addr [%x:%08x], comp_val 0x%08x\n",
1069                dmae->opcode, dmae->src_addr_lo >> 2,
1070                dmae->len, dmae->dst_addr_lo >> 2,
1071                dmae->comp_addr_hi, dmae->comp_addr_lo,
1072                dmae->comp_val);
1073         break;
1074     default:
1075         if (src_type == DMAE_CMD_SRC_PCI)
1076             DP(msglvl, "DMAE: opcode 0x%08x\n"
1077                "src_addr [%x:%08x]  len [%d * 4]  dst_addr [none]\n"
1078                "comp_addr [%x:%08x]  comp_val 0x%08x\n",
1079                dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
1080                dmae->len, dmae->comp_addr_hi, dmae->comp_addr_lo,
1081                dmae->comp_val);
1082         else
1083             DP(msglvl, "DMAE: opcode 0x%08x\n"
1084                "src_addr [%08x]  len [%d * 4]  dst_addr [none]\n"
1085                "comp_addr [%x:%08x]  comp_val 0x%08x\n",
1086                dmae->opcode, dmae->src_addr_lo >> 2,
1087                dmae->len, dmae->comp_addr_hi, dmae->comp_addr_lo,
1088                dmae->comp_val);
1089         break;
1090     }
1091 
1092 }
1093 #endif
1094 
1095 static int
1096 bxe_acquire_hw_lock(struct bxe_softc *sc,
1097                     uint32_t         resource)
1098 {
1099     uint32_t lock_status;
1100     uint32_t resource_bit = (1 << resource);
1101     int func = SC_FUNC(sc);
1102     uint32_t hw_lock_control_reg;
1103     int cnt;
1104 
1105     /* validate the resource is within range */
1106     if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
1107         BLOGE(sc, "resource 0x%x > HW_LOCK_MAX_RESOURCE_VALUE\n", resource);
1108         return (-1);
1109     }
1110 
1111     if (func <= 5) {
1112         hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + (func * 8));
1113     } else {
1114         hw_lock_control_reg =
1115                 (MISC_REG_DRIVER_CONTROL_7 + ((func - 6) * 8));
1116     }
1117 
1118     /* validate the resource is not already taken */
1119     lock_status = REG_RD(sc, hw_lock_control_reg);
1120     if (lock_status & resource_bit) {
1121         BLOGE(sc, "resource in use (status 0x%x bit 0x%x)\n",
1122               lock_status, resource_bit);
1123         return (-1);
1124     }
1125 
1126     /* try every 5ms for 5 seconds */
1127     for (cnt = 0; cnt < 1000; cnt++) {
1128         REG_WR(sc, (hw_lock_control_reg + 4), resource_bit);
1129         lock_status = REG_RD(sc, hw_lock_control_reg);
1130         if (lock_status & resource_bit) {
1131             return (0);
1132         }
1133         DELAY(5000);
1134     }
1135 
1136     BLOGE(sc, "Resource lock timeout!\n");
1137     return (-1);
1138 }
1139 
1140 static int
1141 bxe_release_hw_lock(struct bxe_softc *sc,
1142                     uint32_t         resource)
1143 {
1144     uint32_t lock_status;
1145     uint32_t resource_bit = (1 << resource);
1146     int func = SC_FUNC(sc);
1147     uint32_t hw_lock_control_reg;
1148 
1149     /* validate the resource is within range */
1150     if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
1151         BLOGE(sc, "resource 0x%x > HW_LOCK_MAX_RESOURCE_VALUE\n", resource);
1152         return (-1);
1153     }
1154 
1155     if (func <= 5) {
1156         hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + (func * 8));
1157     } else {
1158         hw_lock_control_reg =
1159                 (MISC_REG_DRIVER_CONTROL_7 + ((func - 6) * 8));
1160     }
1161 
1162     /* validate the resource is currently taken */
1163     lock_status = REG_RD(sc, hw_lock_control_reg);
1164     if (!(lock_status & resource_bit)) {
1165         BLOGE(sc, "resource not in use (status 0x%x bit 0x%x)\n",
1166               lock_status, resource_bit);
1167         return (-1);
1168     }
1169 
1170     REG_WR(sc, hw_lock_control_reg, resource_bit);
1171     return (0);
1172 }
1173 
1174 /*
1175  * Per pf misc lock must be acquired before the per port mcp lock. Otherwise,
1176  * had we done things the other way around, if two pfs from the same port
1177  * would attempt to access nvram at the same time, we could run into a
1178  * scenario such as:
1179  * pf A takes the port lock.
1180  * pf B succeeds in taking the same lock since they are from the same port.
1181  * pf A takes the per pf misc lock. Performs eeprom access.
1182  * pf A finishes. Unlocks the per pf misc lock.
1183  * Pf B takes the lock and proceeds to perform it's own access.
1184  * pf A unlocks the per port lock, while pf B is still working (!).
1185  * mcp takes the per port lock and corrupts pf B's access (and/or has it's own
1186  * access corrupted by pf B).*
1187  */
1188 static int
1189 bxe_acquire_nvram_lock(struct bxe_softc *sc)
1190 {
1191     int port = SC_PORT(sc);
1192     int count, i;
1193     uint32_t val = 0;
1194 
1195     /* acquire HW lock: protect against other PFs in PF Direct Assignment */
1196     bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_NVRAM);
1197 
1198     /* adjust timeout for emulation/FPGA */
1199     count = NVRAM_TIMEOUT_COUNT;
1200     if (CHIP_REV_IS_SLOW(sc)) {
1201         count *= 100;
1202     }
1203 
1204     /* request access to nvram interface */
1205     REG_WR(sc, MCP_REG_MCPR_NVM_SW_ARB,
1206            (MCPR_NVM_SW_ARB_ARB_REQ_SET1 << port));
1207 
1208     for (i = 0; i < count*10; i++) {
1209         val = REG_RD(sc, MCP_REG_MCPR_NVM_SW_ARB);
1210         if (val & (MCPR_NVM_SW_ARB_ARB_ARB1 << port)) {
1211             break;
1212         }
1213 
1214         DELAY(5);
1215     }
1216 
1217     if (!(val & (MCPR_NVM_SW_ARB_ARB_ARB1 << port))) {
1218         BLOGE(sc, "Cannot get access to nvram interface\n");
1219         return (-1);
1220     }
1221 
1222     return (0);
1223 }
1224 
1225 static int
1226 bxe_release_nvram_lock(struct bxe_softc *sc)
1227 {
1228     int port = SC_PORT(sc);
1229     int count, i;
1230     uint32_t val = 0;
1231 
1232     /* adjust timeout for emulation/FPGA */
1233     count = NVRAM_TIMEOUT_COUNT;
1234     if (CHIP_REV_IS_SLOW(sc)) {
1235         count *= 100;
1236     }
1237 
1238     /* relinquish nvram interface */
1239     REG_WR(sc, MCP_REG_MCPR_NVM_SW_ARB,
1240            (MCPR_NVM_SW_ARB_ARB_REQ_CLR1 << port));
1241 
1242     for (i = 0; i < count*10; i++) {
1243         val = REG_RD(sc, MCP_REG_MCPR_NVM_SW_ARB);
1244         if (!(val & (MCPR_NVM_SW_ARB_ARB_ARB1 << port))) {
1245             break;
1246         }
1247 
1248         DELAY(5);
1249     }
1250 
1251     if (val & (MCPR_NVM_SW_ARB_ARB_ARB1 << port)) {
1252         BLOGE(sc, "Cannot free access to nvram interface\n");
1253         return (-1);
1254     }
1255 
1256     /* release HW lock: protect against other PFs in PF Direct Assignment */
1257     bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_NVRAM);
1258 
1259     return (0);
1260 }
1261 
1262 static void
1263 bxe_enable_nvram_access(struct bxe_softc *sc)
1264 {
1265     uint32_t val;
1266 
1267     val = REG_RD(sc, MCP_REG_MCPR_NVM_ACCESS_ENABLE);
1268 
1269     /* enable both bits, even on read */
1270     REG_WR(sc, MCP_REG_MCPR_NVM_ACCESS_ENABLE,
1271            (val | MCPR_NVM_ACCESS_ENABLE_EN | MCPR_NVM_ACCESS_ENABLE_WR_EN));
1272 }
1273 
1274 static void
1275 bxe_disable_nvram_access(struct bxe_softc *sc)
1276 {
1277     uint32_t val;
1278 
1279     val = REG_RD(sc, MCP_REG_MCPR_NVM_ACCESS_ENABLE);
1280 
1281     /* disable both bits, even after read */
1282     REG_WR(sc, MCP_REG_MCPR_NVM_ACCESS_ENABLE,
1283            (val & ~(MCPR_NVM_ACCESS_ENABLE_EN |
1284                     MCPR_NVM_ACCESS_ENABLE_WR_EN)));
1285 }
1286 
1287 static int
1288 bxe_nvram_read_dword(struct bxe_softc *sc,
1289                      uint32_t         offset,
1290                      uint32_t         *ret_val,
1291                      uint32_t         cmd_flags)
1292 {
1293     int count, i, rc;
1294     uint32_t val;
1295 
1296     /* build the command word */
1297     cmd_flags |= MCPR_NVM_COMMAND_DOIT;
1298 
1299     /* need to clear DONE bit separately */
1300     REG_WR(sc, MCP_REG_MCPR_NVM_COMMAND, MCPR_NVM_COMMAND_DONE);
1301 
1302     /* address of the NVRAM to read from */
1303     REG_WR(sc, MCP_REG_MCPR_NVM_ADDR,
1304            (offset & MCPR_NVM_ADDR_NVM_ADDR_VALUE));
1305 
1306     /* issue a read command */
1307     REG_WR(sc, MCP_REG_MCPR_NVM_COMMAND, cmd_flags);
1308 
1309     /* adjust timeout for emulation/FPGA */
1310     count = NVRAM_TIMEOUT_COUNT;
1311     if (CHIP_REV_IS_SLOW(sc)) {
1312         count *= 100;
1313     }
1314 
1315     /* wait for completion */
1316     *ret_val = 0;
1317     rc = -1;
1318     for (i = 0; i < count; i++) {
1319         DELAY(5);
1320         val = REG_RD(sc, MCP_REG_MCPR_NVM_COMMAND);
1321 
1322         if (val & MCPR_NVM_COMMAND_DONE) {
1323             val = REG_RD(sc, MCP_REG_MCPR_NVM_READ);
1324             /* we read nvram data in cpu order
1325              * but ethtool sees it as an array of bytes
1326              * converting to big-endian will do the work
1327              */
1328             *ret_val = htobe32(val);
1329             rc = 0;
1330             break;
1331         }
1332     }
1333 
1334     if (rc == -1) {
1335         BLOGE(sc, "nvram read timeout expired\n");
1336     }
1337 
1338     return (rc);
1339 }
1340 
1341 static int
1342 bxe_nvram_read(struct bxe_softc *sc,
1343                uint32_t         offset,
1344                uint8_t          *ret_buf,
1345                int              buf_size)
1346 {
1347     uint32_t cmd_flags;
1348     uint32_t val;
1349     int rc;
1350 
1351     if ((offset & 0x03) || (buf_size & 0x03) || (buf_size == 0)) {
1352         BLOGE(sc, "Invalid parameter, offset 0x%x buf_size 0x%x\n",
1353               offset, buf_size);
1354         return (-1);
1355     }
1356 
1357     if ((offset + buf_size) > sc->devinfo.flash_size) {
1358         BLOGE(sc, "Invalid parameter, "
1359                   "offset 0x%x + buf_size 0x%x > flash_size 0x%x\n",
1360               offset, buf_size, sc->devinfo.flash_size);
1361         return (-1);
1362     }
1363 
1364     /* request access to nvram interface */
1365     rc = bxe_acquire_nvram_lock(sc);
1366     if (rc) {
1367         return (rc);
1368     }
1369 
1370     /* enable access to nvram interface */
1371     bxe_enable_nvram_access(sc);
1372 
1373     /* read the first word(s) */
1374     cmd_flags = MCPR_NVM_COMMAND_FIRST;
1375     while ((buf_size > sizeof(uint32_t)) && (rc == 0)) {
1376         rc = bxe_nvram_read_dword(sc, offset, &val, cmd_flags);
1377         memcpy(ret_buf, &val, 4);
1378 
1379         /* advance to the next dword */
1380         offset += sizeof(uint32_t);
1381         ret_buf += sizeof(uint32_t);
1382         buf_size -= sizeof(uint32_t);
1383         cmd_flags = 0;
1384     }
1385 
1386     if (rc == 0) {
1387         cmd_flags |= MCPR_NVM_COMMAND_LAST;
1388         rc = bxe_nvram_read_dword(sc, offset, &val, cmd_flags);
1389         memcpy(ret_buf, &val, 4);
1390     }
1391 
1392     /* disable access to nvram interface */
1393     bxe_disable_nvram_access(sc);
1394     bxe_release_nvram_lock(sc);
1395 
1396     return (rc);
1397 }
1398 
1399 static int
1400 bxe_nvram_write_dword(struct bxe_softc *sc,
1401                       uint32_t         offset,
1402                       uint32_t         val,
1403                       uint32_t         cmd_flags)
1404 {
1405     int count, i, rc;
1406 
1407     /* build the command word */
1408     cmd_flags |= (MCPR_NVM_COMMAND_DOIT | MCPR_NVM_COMMAND_WR);
1409 
1410     /* need to clear DONE bit separately */
1411     REG_WR(sc, MCP_REG_MCPR_NVM_COMMAND, MCPR_NVM_COMMAND_DONE);
1412 
1413     /* write the data */
1414     REG_WR(sc, MCP_REG_MCPR_NVM_WRITE, val);
1415 
1416     /* address of the NVRAM to write to */
1417     REG_WR(sc, MCP_REG_MCPR_NVM_ADDR,
1418            (offset & MCPR_NVM_ADDR_NVM_ADDR_VALUE));
1419 
1420     /* issue the write command */
1421     REG_WR(sc, MCP_REG_MCPR_NVM_COMMAND, cmd_flags);
1422 
1423     /* adjust timeout for emulation/FPGA */
1424     count = NVRAM_TIMEOUT_COUNT;
1425     if (CHIP_REV_IS_SLOW(sc)) {
1426         count *= 100;
1427     }
1428 
1429     /* wait for completion */
1430     rc = -1;
1431     for (i = 0; i < count; i++) {
1432         DELAY(5);
1433         val = REG_RD(sc, MCP_REG_MCPR_NVM_COMMAND);
1434         if (val & MCPR_NVM_COMMAND_DONE) {
1435             rc = 0;
1436             break;
1437         }
1438     }
1439 
1440     if (rc == -1) {
1441         BLOGE(sc, "nvram write timeout expired\n");
1442     }
1443 
1444     return (rc);
1445 }
1446 
1447 #define BYTE_OFFSET(offset) (8 * (offset & 0x03))
1448 
1449 static int
1450 bxe_nvram_write1(struct bxe_softc *sc,
1451                  uint32_t         offset,
1452                  uint8_t          *data_buf,
1453                  int              buf_size)
1454 {
1455     uint32_t cmd_flags;
1456     uint32_t align_offset;
1457     uint32_t val;
1458     int rc;
1459 
1460     if ((offset + buf_size) > sc->devinfo.flash_size) {
1461         BLOGE(sc, "Invalid parameter, "
1462                   "offset 0x%x + buf_size 0x%x > flash_size 0x%x\n",
1463               offset, buf_size, sc->devinfo.flash_size);
1464         return (-1);
1465     }
1466 
1467     /* request access to nvram interface */
1468     rc = bxe_acquire_nvram_lock(sc);
1469     if (rc) {
1470         return (rc);
1471     }
1472 
1473     /* enable access to nvram interface */
1474     bxe_enable_nvram_access(sc);
1475 
1476     cmd_flags = (MCPR_NVM_COMMAND_FIRST | MCPR_NVM_COMMAND_LAST);
1477     align_offset = (offset & ~0x03);
1478     rc = bxe_nvram_read_dword(sc, align_offset, &val, cmd_flags);
1479 
1480     if (rc == 0) {
1481         val &= ~(0xff << BYTE_OFFSET(offset));
1482         val |= (*data_buf << BYTE_OFFSET(offset));
1483 
1484         /* nvram data is returned as an array of bytes
1485          * convert it back to cpu order
1486          */
1487         val = be32toh(val);
1488 
1489         rc = bxe_nvram_write_dword(sc, align_offset, val, cmd_flags);
1490     }
1491 
1492     /* disable access to nvram interface */
1493     bxe_disable_nvram_access(sc);
1494     bxe_release_nvram_lock(sc);
1495 
1496     return (rc);
1497 }
1498 
1499 static int
1500 bxe_nvram_write(struct bxe_softc *sc,
1501                 uint32_t         offset,
1502                 uint8_t          *data_buf,
1503                 int              buf_size)
1504 {
1505     uint32_t cmd_flags;
1506     uint32_t val;
1507     uint32_t written_so_far;
1508     int rc;
1509 
1510     if (buf_size == 1) {
1511         return (bxe_nvram_write1(sc, offset, data_buf, buf_size));
1512     }
1513 
1514     if ((offset & 0x03) || (buf_size & 0x03) /* || (buf_size == 0) */) {
1515         BLOGE(sc, "Invalid parameter, offset 0x%x buf_size 0x%x\n",
1516               offset, buf_size);
1517         return (-1);
1518     }
1519 
1520     if (buf_size == 0) {
1521         return (0); /* nothing to do */
1522     }
1523 
1524     if ((offset + buf_size) > sc->devinfo.flash_size) {
1525         BLOGE(sc, "Invalid parameter, "
1526                   "offset 0x%x + buf_size 0x%x > flash_size 0x%x\n",
1527               offset, buf_size, sc->devinfo.flash_size);
1528         return (-1);
1529     }
1530 
1531     /* request access to nvram interface */
1532     rc = bxe_acquire_nvram_lock(sc);
1533     if (rc) {
1534         return (rc);
1535     }
1536 
1537     /* enable access to nvram interface */
1538     bxe_enable_nvram_access(sc);
1539 
1540     written_so_far = 0;
1541     cmd_flags = MCPR_NVM_COMMAND_FIRST;
1542     while ((written_so_far < buf_size) && (rc == 0)) {
1543         if (written_so_far == (buf_size - sizeof(uint32_t))) {
1544             cmd_flags |= MCPR_NVM_COMMAND_LAST;
1545         } else if (((offset + 4) % NVRAM_PAGE_SIZE) == 0) {
1546             cmd_flags |= MCPR_NVM_COMMAND_LAST;
1547         } else if ((offset % NVRAM_PAGE_SIZE) == 0) {
1548             cmd_flags |= MCPR_NVM_COMMAND_FIRST;
1549         }
1550 
1551         memcpy(&val, data_buf, 4);
1552 
1553         rc = bxe_nvram_write_dword(sc, offset, val, cmd_flags);
1554 
1555         /* advance to the next dword */
1556         offset += sizeof(uint32_t);
1557         data_buf += sizeof(uint32_t);
1558         written_so_far += sizeof(uint32_t);
1559         cmd_flags = 0;
1560     }
1561 
1562     /* disable access to nvram interface */
1563     bxe_disable_nvram_access(sc);
1564     bxe_release_nvram_lock(sc);
1565 
1566     return (rc);
1567 }
1568 
1569 /* copy command into DMAE command memory and set DMAE command Go */
1570 void
1571 bxe_post_dmae(struct bxe_softc    *sc,
1572               struct dmae_command *dmae,
1573               int                 idx)
1574 {
1575     uint32_t cmd_offset;
1576     int i;
1577 
1578     cmd_offset = (DMAE_REG_CMD_MEM + (sizeof(struct dmae_command) * idx));
1579     for (i = 0; i < ((sizeof(struct dmae_command) / 4)); i++) {
1580         REG_WR(sc, (cmd_offset + (i * 4)), *(((uint32_t *)dmae) + i));
1581     }
1582 
1583     REG_WR(sc, dmae_reg_go_c[idx], 1);
1584 }
1585 
1586 uint32_t
1587 bxe_dmae_opcode_add_comp(uint32_t opcode,
1588                          uint8_t  comp_type)
1589 {
1590     return (opcode | ((comp_type << DMAE_COMMAND_C_DST_SHIFT) |
1591                       DMAE_COMMAND_C_TYPE_ENABLE));
1592 }
1593 
1594 uint32_t
1595 bxe_dmae_opcode_clr_src_reset(uint32_t opcode)
1596 {
1597     return (opcode & ~DMAE_COMMAND_SRC_RESET);
1598 }
1599 
1600 uint32_t
1601 bxe_dmae_opcode(struct bxe_softc *sc,
1602                 uint8_t          src_type,
1603                 uint8_t          dst_type,
1604                 uint8_t          with_comp,
1605                 uint8_t          comp_type)
1606 {
1607     uint32_t opcode = 0;
1608 
1609     opcode |= ((src_type << DMAE_COMMAND_SRC_SHIFT) |
1610                (dst_type << DMAE_COMMAND_DST_SHIFT));
1611 
1612     opcode |= (DMAE_COMMAND_SRC_RESET | DMAE_COMMAND_DST_RESET);
1613 
1614     opcode |= (SC_PORT(sc) ? DMAE_CMD_PORT_1 : DMAE_CMD_PORT_0);
1615 
1616     opcode |= ((SC_VN(sc) << DMAE_COMMAND_E1HVN_SHIFT) |
1617                (SC_VN(sc) << DMAE_COMMAND_DST_VN_SHIFT));
1618 
1619     opcode |= (DMAE_COM_SET_ERR << DMAE_COMMAND_ERR_POLICY_SHIFT);
1620 
1621 #ifdef __BIG_ENDIAN
1622     opcode |= DMAE_CMD_ENDIANITY_B_DW_SWAP;
1623 #else
1624     opcode |= DMAE_CMD_ENDIANITY_DW_SWAP;
1625 #endif
1626 
1627     if (with_comp) {
1628         opcode = bxe_dmae_opcode_add_comp(opcode, comp_type);
1629     }
1630 
1631     return (opcode);
1632 }
1633 
1634 static void
1635 bxe_prep_dmae_with_comp(struct bxe_softc    *sc,
1636                         struct dmae_command *dmae,
1637                         uint8_t             src_type,
1638                         uint8_t             dst_type)
1639 {
1640     memset(dmae, 0, sizeof(struct dmae_command));
1641 
1642     /* set the opcode */
1643     dmae->opcode = bxe_dmae_opcode(sc, src_type, dst_type,
1644                                    TRUE, DMAE_COMP_PCI);
1645 
1646     /* fill in the completion parameters */
1647     dmae->comp_addr_lo = U64_LO(BXE_SP_MAPPING(sc, wb_comp));
1648     dmae->comp_addr_hi = U64_HI(BXE_SP_MAPPING(sc, wb_comp));
1649     dmae->comp_val     = DMAE_COMP_VAL;
1650 }
1651 
1652 /* issue a DMAE command over the init channel and wait for completion */
1653 static int
1654 bxe_issue_dmae_with_comp(struct bxe_softc    *sc,
1655                          struct dmae_command *dmae)
1656 {
1657     uint32_t *wb_comp = BXE_SP(sc, wb_comp);
1658     int timeout = CHIP_REV_IS_SLOW(sc) ? 400000 : 4000;
1659 
1660     BXE_DMAE_LOCK(sc);
1661 
1662     /* reset completion */
1663     *wb_comp = 0;
1664 
1665     /* post the command on the channel used for initializations */
1666     bxe_post_dmae(sc, dmae, INIT_DMAE_C(sc));
1667 
1668     /* wait for completion */
1669     DELAY(5);
1670 
1671     while ((*wb_comp & ~DMAE_PCI_ERR_FLAG) != DMAE_COMP_VAL) {
1672         if (!timeout ||
1673             (sc->recovery_state != BXE_RECOVERY_DONE &&
1674              sc->recovery_state != BXE_RECOVERY_NIC_LOADING)) {
1675             BLOGE(sc, "DMAE timeout!\n");
1676             BXE_DMAE_UNLOCK(sc);
1677             return (DMAE_TIMEOUT);
1678         }
1679 
1680         timeout--;
1681         DELAY(50);
1682     }
1683 
1684     if (*wb_comp & DMAE_PCI_ERR_FLAG) {
1685         BLOGE(sc, "DMAE PCI error!\n");
1686         BXE_DMAE_UNLOCK(sc);
1687         return (DMAE_PCI_ERROR);
1688     }
1689 
1690     BXE_DMAE_UNLOCK(sc);
1691     return (0);
1692 }
1693 
1694 void
1695 bxe_read_dmae(struct bxe_softc *sc,
1696               uint32_t         src_addr,
1697               uint32_t         len32)
1698 {
1699     struct dmae_command dmae;
1700     uint32_t *data;
1701     int i, rc;
1702 
1703     DBASSERT(sc, (len32 <= 4), ("DMAE read length is %d", len32));
1704 
1705     if (!sc->dmae_ready) {
1706         data = BXE_SP(sc, wb_data[0]);
1707 
1708         for (i = 0; i < len32; i++) {
1709             data[i] = (CHIP_IS_E1(sc)) ?
1710                           bxe_reg_rd_ind(sc, (src_addr + (i * 4))) :
1711                           REG_RD(sc, (src_addr + (i * 4)));
1712         }
1713 
1714         return;
1715     }
1716 
1717     /* set opcode and fixed command fields */
1718     bxe_prep_dmae_with_comp(sc, &dmae, DMAE_SRC_GRC, DMAE_DST_PCI);
1719 
1720     /* fill in addresses and len */
1721     dmae.src_addr_lo = (src_addr >> 2); /* GRC addr has dword resolution */
1722     dmae.src_addr_hi = 0;
1723     dmae.dst_addr_lo = U64_LO(BXE_SP_MAPPING(sc, wb_data));
1724     dmae.dst_addr_hi = U64_HI(BXE_SP_MAPPING(sc, wb_data));
1725     dmae.len         = len32;
1726 
1727     /* issue the command and wait for completion */
1728     if ((rc = bxe_issue_dmae_with_comp(sc, &dmae)) != 0) {
1729         bxe_panic(sc, ("DMAE failed (%d)\n", rc));
1730     };
1731 }
1732 
1733 void
1734 bxe_write_dmae(struct bxe_softc *sc,
1735                bus_addr_t       dma_addr,
1736                uint32_t         dst_addr,
1737                uint32_t         len32)
1738 {
1739     struct dmae_command dmae;
1740     int rc;
1741 
1742     if (!sc->dmae_ready) {
1743         DBASSERT(sc, (len32 <= 4), ("DMAE not ready and length is %d", len32));
1744 
1745         if (CHIP_IS_E1(sc)) {
1746             ecore_init_ind_wr(sc, dst_addr, BXE_SP(sc, wb_data[0]), len32);
1747         } else {
1748             ecore_init_str_wr(sc, dst_addr, BXE_SP(sc, wb_data[0]), len32);
1749         }
1750 
1751         return;
1752     }
1753 
1754     /* set opcode and fixed command fields */
1755     bxe_prep_dmae_with_comp(sc, &dmae, DMAE_SRC_PCI, DMAE_DST_GRC);
1756 
1757     /* fill in addresses and len */
1758     dmae.src_addr_lo = U64_LO(dma_addr);
1759     dmae.src_addr_hi = U64_HI(dma_addr);
1760     dmae.dst_addr_lo = (dst_addr >> 2); /* GRC addr has dword resolution */
1761     dmae.dst_addr_hi = 0;
1762     dmae.len         = len32;
1763 
1764     /* issue the command and wait for completion */
1765     if ((rc = bxe_issue_dmae_with_comp(sc, &dmae)) != 0) {
1766         bxe_panic(sc, ("DMAE failed (%d)\n", rc));
1767     }
1768 }
1769 
1770 void
1771 bxe_write_dmae_phys_len(struct bxe_softc *sc,
1772                         bus_addr_t       phys_addr,
1773                         uint32_t         addr,
1774                         uint32_t         len)
1775 {
1776     int dmae_wr_max = DMAE_LEN32_WR_MAX(sc);
1777     int offset = 0;
1778 
1779     while (len > dmae_wr_max) {
1780         bxe_write_dmae(sc,
1781                        (phys_addr + offset), /* src DMA address */
1782                        (addr + offset),      /* dst GRC address */
1783                        dmae_wr_max);
1784         offset += (dmae_wr_max * 4);
1785         len -= dmae_wr_max;
1786     }
1787 
1788     bxe_write_dmae(sc,
1789                    (phys_addr + offset), /* src DMA address */
1790                    (addr + offset),      /* dst GRC address */
1791                    len);
1792 }
1793 
1794 void
1795 bxe_set_ctx_validation(struct bxe_softc   *sc,
1796                        struct eth_context *cxt,
1797                        uint32_t           cid)
1798 {
1799     /* ustorm cxt validation */
1800     cxt->ustorm_ag_context.cdu_usage =
1801         CDU_RSRVD_VALUE_TYPE_A(HW_CID(sc, cid),
1802             CDU_REGION_NUMBER_UCM_AG, ETH_CONNECTION_TYPE);
1803     /* xcontext validation */
1804     cxt->xstorm_ag_context.cdu_reserved =
1805         CDU_RSRVD_VALUE_TYPE_A(HW_CID(sc, cid),
1806             CDU_REGION_NUMBER_XCM_AG, ETH_CONNECTION_TYPE);
1807 }
1808 
1809 static void
1810 bxe_storm_memset_hc_timeout(struct bxe_softc *sc,
1811                             uint8_t          port,
1812                             uint8_t          fw_sb_id,
1813                             uint8_t          sb_index,
1814                             uint8_t          ticks)
1815 {
1816     uint32_t addr =
1817         (BAR_CSTRORM_INTMEM +
1818          CSTORM_STATUS_BLOCK_DATA_TIMEOUT_OFFSET(fw_sb_id, sb_index));
1819 
1820     REG_WR8(sc, addr, ticks);
1821 
1822     BLOGD(sc, DBG_LOAD,
1823           "port %d fw_sb_id %d sb_index %d ticks %d\n",
1824           port, fw_sb_id, sb_index, ticks);
1825 }
1826 
1827 static void
1828 bxe_storm_memset_hc_disable(struct bxe_softc *sc,
1829                             uint8_t          port,
1830                             uint16_t         fw_sb_id,
1831                             uint8_t          sb_index,
1832                             uint8_t          disable)
1833 {
1834     uint32_t enable_flag =
1835         (disable) ? 0 : (1 << HC_INDEX_DATA_HC_ENABLED_SHIFT);
1836     uint32_t addr =
1837         (BAR_CSTRORM_INTMEM +
1838          CSTORM_STATUS_BLOCK_DATA_FLAGS_OFFSET(fw_sb_id, sb_index));
1839     uint8_t flags;
1840 
1841     /* clear and set */
1842     flags = REG_RD8(sc, addr);
1843     flags &= ~HC_INDEX_DATA_HC_ENABLED;
1844     flags |= enable_flag;
1845     REG_WR8(sc, addr, flags);
1846 
1847     BLOGD(sc, DBG_LOAD,
1848           "port %d fw_sb_id %d sb_index %d disable %d\n",
1849           port, fw_sb_id, sb_index, disable);
1850 }
1851 
1852 void
1853 bxe_update_coalesce_sb_index(struct bxe_softc *sc,
1854                              uint8_t          fw_sb_id,
1855                              uint8_t          sb_index,
1856                              uint8_t          disable,
1857                              uint16_t         usec)
1858 {
1859     int port = SC_PORT(sc);
1860     uint8_t ticks = (usec / 4); /* XXX ??? */
1861 
1862     bxe_storm_memset_hc_timeout(sc, port, fw_sb_id, sb_index, ticks);
1863 
1864     disable = (disable) ? 1 : ((usec) ? 0 : 1);
1865     bxe_storm_memset_hc_disable(sc, port, fw_sb_id, sb_index, disable);
1866 }
1867 
1868 void
1869 elink_cb_udelay(struct bxe_softc *sc,
1870                 uint32_t         usecs)
1871 {
1872     DELAY(usecs);
1873 }
1874 
1875 uint32_t
1876 elink_cb_reg_read(struct bxe_softc *sc,
1877                   uint32_t         reg_addr)
1878 {
1879     return (REG_RD(sc, reg_addr));
1880 }
1881 
1882 void
1883 elink_cb_reg_write(struct bxe_softc *sc,
1884                    uint32_t         reg_addr,
1885                    uint32_t         val)
1886 {
1887     REG_WR(sc, reg_addr, val);
1888 }
1889 
1890 void
1891 elink_cb_reg_wb_write(struct bxe_softc *sc,
1892                       uint32_t         offset,
1893                       uint32_t         *wb_write,
1894                       uint16_t         len)
1895 {
1896     REG_WR_DMAE(sc, offset, wb_write, len);
1897 }
1898 
1899 void
1900 elink_cb_reg_wb_read(struct bxe_softc *sc,
1901                      uint32_t         offset,
1902                      uint32_t         *wb_write,
1903                      uint16_t         len)
1904 {
1905     REG_RD_DMAE(sc, offset, wb_write, len);
1906 }
1907 
1908 uint8_t
1909 elink_cb_path_id(struct bxe_softc *sc)
1910 {
1911     return (SC_PATH(sc));
1912 }
1913 
1914 void
1915 elink_cb_event_log(struct bxe_softc     *sc,
1916                    const elink_log_id_t elink_log_id,
1917                    ...)
1918 {
1919     /* XXX */
1920 #if 0
1921     //va_list ap;
1922     va_start(ap, elink_log_id);
1923     _XXX_(sc, lm_log_id, ap);
1924     va_end(ap);
1925 #endif
1926     BLOGI(sc, "ELINK EVENT LOG (%d)\n", elink_log_id);
1927 }
1928 
1929 static int
1930 bxe_set_spio(struct bxe_softc *sc,
1931              int              spio,
1932              uint32_t         mode)
1933 {
1934     uint32_t spio_reg;
1935 
1936     /* Only 2 SPIOs are configurable */
1937     if ((spio != MISC_SPIO_SPIO4) && (spio != MISC_SPIO_SPIO5)) {
1938         BLOGE(sc, "Invalid SPIO 0x%x\n", spio);
1939         return (-1);
1940     }
1941 
1942     bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_SPIO);
1943 
1944     /* read SPIO and mask except the float bits */
1945     spio_reg = (REG_RD(sc, MISC_REG_SPIO) & MISC_SPIO_FLOAT);
1946 
1947     switch (mode) {
1948     case MISC_SPIO_OUTPUT_LOW:
1949         BLOGD(sc, DBG_LOAD, "Set SPIO 0x%x -> output low\n", spio);
1950         /* clear FLOAT and set CLR */
1951         spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS);
1952         spio_reg |=  (spio << MISC_SPIO_CLR_POS);
1953         break;
1954 
1955     case MISC_SPIO_OUTPUT_HIGH:
1956         BLOGD(sc, DBG_LOAD, "Set SPIO 0x%x -> output high\n", spio);
1957         /* clear FLOAT and set SET */
1958         spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS);
1959         spio_reg |=  (spio << MISC_SPIO_SET_POS);
1960         break;
1961 
1962     case MISC_SPIO_INPUT_HI_Z:
1963         BLOGD(sc, DBG_LOAD, "Set SPIO 0x%x -> input\n", spio);
1964         /* set FLOAT */
1965         spio_reg |= (spio << MISC_SPIO_FLOAT_POS);
1966         break;
1967 
1968     default:
1969         break;
1970     }
1971 
1972     REG_WR(sc, MISC_REG_SPIO, spio_reg);
1973     bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_SPIO);
1974 
1975     return (0);
1976 }
1977 
1978 static int
1979 bxe_gpio_read(struct bxe_softc *sc,
1980               int              gpio_num,
1981               uint8_t          port)
1982 {
1983     /* The GPIO should be swapped if swap register is set and active */
1984     int gpio_port = ((REG_RD(sc, NIG_REG_PORT_SWAP) &&
1985                       REG_RD(sc, NIG_REG_STRAP_OVERRIDE)) ^ port);
1986     int gpio_shift = (gpio_num +
1987                       (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0));
1988     uint32_t gpio_mask = (1 << gpio_shift);
1989     uint32_t gpio_reg;
1990 
1991     if (gpio_num > MISC_REGISTERS_GPIO_3) {
1992         BLOGE(sc, "Invalid GPIO %d\n", gpio_num);
1993         return (-1);
1994     }
1995 
1996     /* read GPIO value */
1997     gpio_reg = REG_RD(sc, MISC_REG_GPIO);
1998 
1999     /* get the requested pin value */
2000     return ((gpio_reg & gpio_mask) == gpio_mask) ? 1 : 0;
2001 }
2002 
2003 static int
2004 bxe_gpio_write(struct bxe_softc *sc,
2005                int              gpio_num,
2006                uint32_t         mode,
2007                uint8_t          port)
2008 {
2009     /* The GPIO should be swapped if swap register is set and active */
2010     int gpio_port = ((REG_RD(sc, NIG_REG_PORT_SWAP) &&
2011                       REG_RD(sc, NIG_REG_STRAP_OVERRIDE)) ^ port);
2012     int gpio_shift = (gpio_num +
2013                       (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0));
2014     uint32_t gpio_mask = (1 << gpio_shift);
2015     uint32_t gpio_reg;
2016 
2017     if (gpio_num > MISC_REGISTERS_GPIO_3) {
2018         BLOGE(sc, "Invalid GPIO %d\n", gpio_num);
2019         return (-1);
2020     }
2021 
2022     bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
2023 
2024     /* read GPIO and mask except the float bits */
2025     gpio_reg = (REG_RD(sc, MISC_REG_GPIO) & MISC_REGISTERS_GPIO_FLOAT);
2026 
2027     switch (mode) {
2028     case MISC_REGISTERS_GPIO_OUTPUT_LOW:
2029         BLOGD(sc, DBG_PHY,
2030               "Set GPIO %d (shift %d) -> output low\n",
2031               gpio_num, gpio_shift);
2032         /* clear FLOAT and set CLR */
2033         gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
2034         gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_CLR_POS);
2035         break;
2036 
2037     case MISC_REGISTERS_GPIO_OUTPUT_HIGH:
2038         BLOGD(sc, DBG_PHY,
2039               "Set GPIO %d (shift %d) -> output high\n",
2040               gpio_num, gpio_shift);
2041         /* clear FLOAT and set SET */
2042         gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
2043         gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_SET_POS);
2044         break;
2045 
2046     case MISC_REGISTERS_GPIO_INPUT_HI_Z:
2047         BLOGD(sc, DBG_PHY,
2048               "Set GPIO %d (shift %d) -> input\n",
2049               gpio_num, gpio_shift);
2050         /* set FLOAT */
2051         gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
2052         break;
2053 
2054     default:
2055         break;
2056     }
2057 
2058     REG_WR(sc, MISC_REG_GPIO, gpio_reg);
2059     bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
2060 
2061     return (0);
2062 }
2063 
2064 static int
2065 bxe_gpio_mult_write(struct bxe_softc *sc,
2066                     uint8_t          pins,
2067                     uint32_t         mode)
2068 {
2069     uint32_t gpio_reg;
2070 
2071     /* any port swapping should be handled by caller */
2072 
2073     bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
2074 
2075     /* read GPIO and mask except the float bits */
2076     gpio_reg = REG_RD(sc, MISC_REG_GPIO);
2077     gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_FLOAT_POS);
2078     gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_CLR_POS);
2079     gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_SET_POS);
2080 
2081     switch (mode) {
2082     case MISC_REGISTERS_GPIO_OUTPUT_LOW:
2083         BLOGD(sc, DBG_PHY, "Set GPIO 0x%x -> output low\n", pins);
2084         /* set CLR */
2085         gpio_reg |= (pins << MISC_REGISTERS_GPIO_CLR_POS);
2086         break;
2087 
2088     case MISC_REGISTERS_GPIO_OUTPUT_HIGH:
2089         BLOGD(sc, DBG_PHY, "Set GPIO 0x%x -> output high\n", pins);
2090         /* set SET */
2091         gpio_reg |= (pins << MISC_REGISTERS_GPIO_SET_POS);
2092         break;
2093 
2094     case MISC_REGISTERS_GPIO_INPUT_HI_Z:
2095         BLOGD(sc, DBG_PHY, "Set GPIO 0x%x -> input\n", pins);
2096         /* set FLOAT */
2097         gpio_reg |= (pins << MISC_REGISTERS_GPIO_FLOAT_POS);
2098         break;
2099 
2100     default:
2101         BLOGE(sc, "Invalid GPIO mode assignment %d\n", mode);
2102         bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
2103         return (-1);
2104     }
2105 
2106     REG_WR(sc, MISC_REG_GPIO, gpio_reg);
2107     bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
2108 
2109     return (0);
2110 }
2111 
2112 static int
2113 bxe_gpio_int_write(struct bxe_softc *sc,
2114                    int              gpio_num,
2115                    uint32_t         mode,
2116                    uint8_t          port)
2117 {
2118     /* The GPIO should be swapped if swap register is set and active */
2119     int gpio_port = ((REG_RD(sc, NIG_REG_PORT_SWAP) &&
2120                       REG_RD(sc, NIG_REG_STRAP_OVERRIDE)) ^ port);
2121     int gpio_shift = (gpio_num +
2122                       (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0));
2123     uint32_t gpio_mask = (1 << gpio_shift);
2124     uint32_t gpio_reg;
2125 
2126     if (gpio_num > MISC_REGISTERS_GPIO_3) {
2127         BLOGE(sc, "Invalid GPIO %d\n", gpio_num);
2128         return (-1);
2129     }
2130 
2131     bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
2132 
2133     /* read GPIO int */
2134     gpio_reg = REG_RD(sc, MISC_REG_GPIO_INT);
2135 
2136     switch (mode) {
2137     case MISC_REGISTERS_GPIO_INT_OUTPUT_CLR:
2138         BLOGD(sc, DBG_PHY,
2139               "Clear GPIO INT %d (shift %d) -> output low\n",
2140               gpio_num, gpio_shift);
2141         /* clear SET and set CLR */
2142         gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS);
2143         gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS);
2144         break;
2145 
2146     case MISC_REGISTERS_GPIO_INT_OUTPUT_SET:
2147         BLOGD(sc, DBG_PHY,
2148               "Set GPIO INT %d (shift %d) -> output high\n",
2149               gpio_num, gpio_shift);
2150         /* clear CLR and set SET */
2151         gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS);
2152         gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS);
2153         break;
2154 
2155     default:
2156         break;
2157     }
2158 
2159     REG_WR(sc, MISC_REG_GPIO_INT, gpio_reg);
2160     bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
2161 
2162     return (0);
2163 }
2164 
2165 uint32_t
2166 elink_cb_gpio_read(struct bxe_softc *sc,
2167                    uint16_t         gpio_num,
2168                    uint8_t          port)
2169 {
2170     return (bxe_gpio_read(sc, gpio_num, port));
2171 }
2172 
2173 uint8_t
2174 elink_cb_gpio_write(struct bxe_softc *sc,
2175                     uint16_t         gpio_num,
2176                     uint8_t          mode, /* 0=low 1=high */
2177                     uint8_t          port)
2178 {
2179     return (bxe_gpio_write(sc, gpio_num, mode, port));
2180 }
2181 
2182 uint8_t
2183 elink_cb_gpio_mult_write(struct bxe_softc *sc,
2184                          uint8_t          pins,
2185                          uint8_t          mode) /* 0=low 1=high */
2186 {
2187     return (bxe_gpio_mult_write(sc, pins, mode));
2188 }
2189 
2190 uint8_t
2191 elink_cb_gpio_int_write(struct bxe_softc *sc,
2192                         uint16_t         gpio_num,
2193                         uint8_t          mode, /* 0=low 1=high */
2194                         uint8_t          port)
2195 {
2196     return (bxe_gpio_int_write(sc, gpio_num, mode, port));
2197 }
2198 
2199 void
2200 elink_cb_notify_link_changed(struct bxe_softc *sc)
2201 {
2202     REG_WR(sc, (MISC_REG_AEU_GENERAL_ATTN_12 +
2203                 (SC_FUNC(sc) * sizeof(uint32_t))), 1);
2204 }
2205 
2206 /* send the MCP a request, block until there is a reply */
2207 uint32_t
2208 elink_cb_fw_command(struct bxe_softc *sc,
2209                     uint32_t         command,
2210                     uint32_t         param)
2211 {
2212     int mb_idx = SC_FW_MB_IDX(sc);
2213     uint32_t seq;
2214     uint32_t rc = 0;
2215     uint32_t cnt = 1;
2216     uint8_t delay = CHIP_REV_IS_SLOW(sc) ? 100 : 10;
2217 
2218     BXE_FWMB_LOCK(sc);
2219 
2220     seq = ++sc->fw_seq;
2221     SHMEM_WR(sc, func_mb[mb_idx].drv_mb_param, param);
2222     SHMEM_WR(sc, func_mb[mb_idx].drv_mb_header, (command | seq));
2223 
2224     BLOGD(sc, DBG_PHY,
2225           "wrote command 0x%08x to FW MB param 0x%08x\n",
2226           (command | seq), param);
2227 
2228     /* Let the FW do it's magic. GIve it up to 5 seconds... */
2229     do {
2230         DELAY(delay * 1000);
2231         rc = SHMEM_RD(sc, func_mb[mb_idx].fw_mb_header);
2232     } while ((seq != (rc & FW_MSG_SEQ_NUMBER_MASK)) && (cnt++ < 500));
2233 
2234     BLOGD(sc, DBG_PHY,
2235           "[after %d ms] read 0x%x seq 0x%x from FW MB\n",
2236           cnt*delay, rc, seq);
2237 
2238     /* is this a reply to our command? */
2239     if (seq == (rc & FW_MSG_SEQ_NUMBER_MASK)) {
2240         rc &= FW_MSG_CODE_MASK;
2241     } else {
2242         /* Ruh-roh! */
2243         BLOGE(sc, "FW failed to respond!\n");
2244         // XXX bxe_fw_dump(sc);
2245         rc = 0;
2246     }
2247 
2248     BXE_FWMB_UNLOCK(sc);
2249     return (rc);
2250 }
2251 
2252 static uint32_t
2253 bxe_fw_command(struct bxe_softc *sc,
2254                uint32_t         command,
2255                uint32_t         param)
2256 {
2257     return (elink_cb_fw_command(sc, command, param));
2258 }
2259 
2260 static void
2261 __storm_memset_dma_mapping(struct bxe_softc *sc,
2262                            uint32_t         addr,
2263                            bus_addr_t       mapping)
2264 {
2265     REG_WR(sc, addr, U64_LO(mapping));
2266     REG_WR(sc, (addr + 4), U64_HI(mapping));
2267 }
2268 
2269 static void
2270 storm_memset_spq_addr(struct bxe_softc *sc,
2271                       bus_addr_t       mapping,
2272                       uint16_t         abs_fid)
2273 {
2274     uint32_t addr = (XSEM_REG_FAST_MEMORY +
2275                      XSTORM_SPQ_PAGE_BASE_OFFSET(abs_fid));
2276     __storm_memset_dma_mapping(sc, addr, mapping);
2277 }
2278 
2279 static void
2280 storm_memset_vf_to_pf(struct bxe_softc *sc,
2281                       uint16_t         abs_fid,
2282                       uint16_t         pf_id)
2283 {
2284     REG_WR8(sc, (BAR_XSTRORM_INTMEM + XSTORM_VF_TO_PF_OFFSET(abs_fid)), pf_id);
2285     REG_WR8(sc, (BAR_CSTRORM_INTMEM + CSTORM_VF_TO_PF_OFFSET(abs_fid)), pf_id);
2286     REG_WR8(sc, (BAR_TSTRORM_INTMEM + TSTORM_VF_TO_PF_OFFSET(abs_fid)), pf_id);
2287     REG_WR8(sc, (BAR_USTRORM_INTMEM + USTORM_VF_TO_PF_OFFSET(abs_fid)), pf_id);
2288 }
2289 
2290 static void
2291 storm_memset_func_en(struct bxe_softc *sc,
2292                      uint16_t         abs_fid,
2293                      uint8_t          enable)
2294 {
2295     REG_WR8(sc, (BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(abs_fid)), enable);
2296     REG_WR8(sc, (BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(abs_fid)), enable);
2297     REG_WR8(sc, (BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(abs_fid)), enable);
2298     REG_WR8(sc, (BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(abs_fid)), enable);
2299 }
2300 
2301 static void
2302 storm_memset_eq_data(struct bxe_softc       *sc,
2303                      struct event_ring_data *eq_data,
2304                      uint16_t               pfid)
2305 {
2306     uint32_t addr;
2307     size_t size;
2308 
2309     addr = (BAR_CSTRORM_INTMEM + CSTORM_EVENT_RING_DATA_OFFSET(pfid));
2310     size = sizeof(struct event_ring_data);
2311     ecore_storm_memset_struct(sc, addr, size, (uint32_t *)eq_data);
2312 }
2313 
2314 static void
2315 storm_memset_eq_prod(struct bxe_softc *sc,
2316                      uint16_t         eq_prod,
2317                      uint16_t         pfid)
2318 {
2319     uint32_t addr = (BAR_CSTRORM_INTMEM +
2320                      CSTORM_EVENT_RING_PROD_OFFSET(pfid));
2321     REG_WR16(sc, addr, eq_prod);
2322 }
2323 
2324 /*
2325  * Post a slowpath command.
2326  *
2327  * A slowpath command is used to propogate a configuration change through
2328  * the controller in a controlled manner, allowing each STORM processor and
2329  * other H/W blocks to phase in the change.  The commands sent on the
2330  * slowpath are referred to as ramrods.  Depending on the ramrod used the
2331  * completion of the ramrod will occur in different ways.  Here's a
2332  * breakdown of ramrods and how they complete:
2333  *
2334  * RAMROD_CMD_ID_ETH_PORT_SETUP
2335  *   Used to setup the leading connection on a port.  Completes on the
2336  *   Receive Completion Queue (RCQ) of that port (typically fp[0]).
2337  *
2338  * RAMROD_CMD_ID_ETH_CLIENT_SETUP
2339  *   Used to setup an additional connection on a port.  Completes on the
2340  *   RCQ of the multi-queue/RSS connection being initialized.
2341  *
2342  * RAMROD_CMD_ID_ETH_STAT_QUERY
2343  *   Used to force the storm processors to update the statistics database
2344  *   in host memory.  This ramrod is send on the leading connection CID and
2345  *   completes as an index increment of the CSTORM on the default status
2346  *   block.
2347  *
2348  * RAMROD_CMD_ID_ETH_UPDATE
2349  *   Used to update the state of the leading connection, usually to udpate
2350  *   the RSS indirection table.  Completes on the RCQ of the leading
2351  *   connection. (Not currently used under FreeBSD until OS support becomes
2352  *   available.)
2353  *
2354  * RAMROD_CMD_ID_ETH_HALT
2355  *   Used when tearing down a connection prior to driver unload.  Completes
2356  *   on the RCQ of the multi-queue/RSS connection being torn down.  Don't
2357  *   use this on the leading connection.
2358  *
2359  * RAMROD_CMD_ID_ETH_SET_MAC
2360  *   Sets the Unicast/Broadcast/Multicast used by the port.  Completes on
2361  *   the RCQ of the leading connection.
2362  *
2363  * RAMROD_CMD_ID_ETH_CFC_DEL
2364  *   Used when tearing down a conneciton prior to driver unload.  Completes
2365  *   on the RCQ of the leading connection (since the current connection
2366  *   has been completely removed from controller memory).
2367  *
2368  * RAMROD_CMD_ID_ETH_PORT_DEL
2369  *   Used to tear down the leading connection prior to driver unload,
2370  *   typically fp[0].  Completes as an index increment of the CSTORM on the
2371  *   default status block.
2372  *
2373  * RAMROD_CMD_ID_ETH_FORWARD_SETUP
2374  *   Used for connection offload.  Completes on the RCQ of the multi-queue
2375  *   RSS connection that is being offloaded.  (Not currently used under
2376  *   FreeBSD.)
2377  *
2378  * There can only be one command pending per function.
2379  *
2380  * Returns:
2381  *   0 = Success, !0 = Failure.
2382  */
2383 
2384 /* must be called under the spq lock */
2385 static inline
2386 struct eth_spe *bxe_sp_get_next(struct bxe_softc *sc)
2387 {
2388     struct eth_spe *next_spe = sc->spq_prod_bd;
2389 
2390     if (sc->spq_prod_bd == sc->spq_last_bd) {
2391         /* wrap back to the first eth_spq */
2392         sc->spq_prod_bd = sc->spq;
2393         sc->spq_prod_idx = 0;
2394     } else {
2395         sc->spq_prod_bd++;
2396         sc->spq_prod_idx++;
2397     }
2398 
2399     return (next_spe);
2400 }
2401 
2402 /* must be called under the spq lock */
2403 static inline
2404 void bxe_sp_prod_update(struct bxe_softc *sc)
2405 {
2406     int func = SC_FUNC(sc);
2407 
2408     /*
2409      * Make sure that BD data is updated before writing the producer.
2410      * BD data is written to the memory, the producer is read from the
2411      * memory, thus we need a full memory barrier to ensure the ordering.
2412      */
2413     mb();
2414 
2415     REG_WR16(sc, (BAR_XSTRORM_INTMEM + XSTORM_SPQ_PROD_OFFSET(func)),
2416              sc->spq_prod_idx);
2417 
2418     bus_space_barrier(sc->bar[BAR0].tag, sc->bar[BAR0].handle, 0, 0,
2419                       BUS_SPACE_BARRIER_WRITE);
2420 }
2421 
2422 /**
2423  * bxe_is_contextless_ramrod - check if the current command ends on EQ
2424  *
2425  * @cmd:      command to check
2426  * @cmd_type: command type
2427  */
2428 static inline
2429 int bxe_is_contextless_ramrod(int cmd,
2430                               int cmd_type)
2431 {
2432     if ((cmd_type == NONE_CONNECTION_TYPE) ||
2433         (cmd == RAMROD_CMD_ID_ETH_FORWARD_SETUP) ||
2434         (cmd == RAMROD_CMD_ID_ETH_CLASSIFICATION_RULES) ||
2435         (cmd == RAMROD_CMD_ID_ETH_FILTER_RULES) ||
2436         (cmd == RAMROD_CMD_ID_ETH_MULTICAST_RULES) ||
2437         (cmd == RAMROD_CMD_ID_ETH_SET_MAC) ||
2438         (cmd == RAMROD_CMD_ID_ETH_RSS_UPDATE)) {
2439         return (TRUE);
2440     } else {
2441         return (FALSE);
2442     }
2443 }
2444 
2445 /**
2446  * bxe_sp_post - place a single command on an SP ring
2447  *
2448  * @sc:         driver handle
2449  * @command:    command to place (e.g. SETUP, FILTER_RULES, etc.)
2450  * @cid:        SW CID the command is related to
2451  * @data_hi:    command private data address (high 32 bits)
2452  * @data_lo:    command private data address (low 32 bits)
2453  * @cmd_type:   command type (e.g. NONE, ETH)
2454  *
2455  * SP data is handled as if it's always an address pair, thus data fields are
2456  * not swapped to little endian in upper functions. Instead this function swaps
2457  * data as if it's two uint32 fields.
2458  */
2459 int
2460 bxe_sp_post(struct bxe_softc *sc,
2461             int              command,
2462             int              cid,
2463             uint32_t         data_hi,
2464             uint32_t         data_lo,
2465             int              cmd_type)
2466 {
2467     struct eth_spe *spe;
2468     uint16_t type;
2469     int common;
2470 
2471     common = bxe_is_contextless_ramrod(command, cmd_type);
2472 
2473     BXE_SP_LOCK(sc);
2474 
2475     if (common) {
2476         if (!atomic_load_acq_long(&sc->eq_spq_left)) {
2477             BLOGE(sc, "EQ ring is full!\n");
2478             BXE_SP_UNLOCK(sc);
2479             return (-1);
2480         }
2481     } else {
2482         if (!atomic_load_acq_long(&sc->cq_spq_left)) {
2483             BLOGE(sc, "SPQ ring is full!\n");
2484             BXE_SP_UNLOCK(sc);
2485             return (-1);
2486         }
2487     }
2488 
2489     spe = bxe_sp_get_next(sc);
2490 
2491     /* CID needs port number to be encoded int it */
2492     spe->hdr.conn_and_cmd_data =
2493         htole32((command << SPE_HDR_CMD_ID_SHIFT) | HW_CID(sc, cid));
2494 
2495     type = (cmd_type << SPE_HDR_CONN_TYPE_SHIFT) & SPE_HDR_CONN_TYPE;
2496 
2497     /* TBD: Check if it works for VFs */
2498     type |= ((SC_FUNC(sc) << SPE_HDR_FUNCTION_ID_SHIFT) &
2499              SPE_HDR_FUNCTION_ID);
2500 
2501     spe->hdr.type = htole16(type);
2502 
2503     spe->data.update_data_addr.hi = htole32(data_hi);
2504     spe->data.update_data_addr.lo = htole32(data_lo);
2505 
2506     /*
2507      * It's ok if the actual decrement is issued towards the memory
2508      * somewhere between the lock and unlock. Thus no more explict
2509      * memory barrier is needed.
2510      */
2511     if (common) {
2512         atomic_subtract_acq_long(&sc->eq_spq_left, 1);
2513     } else {
2514         atomic_subtract_acq_long(&sc->cq_spq_left, 1);
2515     }
2516 
2517     BLOGD(sc, DBG_SP, "SPQE -> %#jx\n", (uintmax_t)sc->spq_dma.paddr);
2518     BLOGD(sc, DBG_SP, "FUNC_RDATA -> %p / %#jx\n",
2519           BXE_SP(sc, func_rdata), (uintmax_t)BXE_SP_MAPPING(sc, func_rdata));
2520     BLOGD(sc, DBG_SP,
2521           "SPQE[%x] (%x:%x) (cmd, common?) (%d,%d) hw_cid %x data (%x:%x) type(0x%x) left (CQ, EQ) (%lx,%lx)\n",
2522           sc->spq_prod_idx,
2523           (uint32_t)U64_HI(sc->spq_dma.paddr),
2524           (uint32_t)(U64_LO(sc->spq_dma.paddr) + (uint8_t *)sc->spq_prod_bd - (uint8_t *)sc->spq),
2525           command,
2526           common,
2527           HW_CID(sc, cid),
2528           data_hi,
2529           data_lo,
2530           type,
2531           atomic_load_acq_long(&sc->cq_spq_left),
2532           atomic_load_acq_long(&sc->eq_spq_left));
2533 
2534     bxe_sp_prod_update(sc);
2535 
2536     BXE_SP_UNLOCK(sc);
2537     return (0);
2538 }
2539 
2540 /**
2541  * bxe_debug_print_ind_table - prints the indirection table configuration.
2542  *
2543  * @sc: driver hanlde
2544  * @p:  pointer to rss configuration
2545  */
2546 #if 0
2547 static void
2548 bxe_debug_print_ind_table(struct bxe_softc               *sc,
2549                           struct ecore_config_rss_params *p)
2550 {
2551     int i;
2552 
2553     BLOGD(sc, DBG_LOAD, "Setting indirection table to:\n");
2554     BLOGD(sc, DBG_LOAD, "    0x0000: ");
2555     for (i = 0; i < T_ETH_INDIRECTION_TABLE_SIZE; i++) {
2556         BLOGD(sc, DBG_LOAD, "0x%02x ", p->ind_table[i]);
2557 
2558         /* Print 4 bytes in a line */
2559         if ((i + 1 < T_ETH_INDIRECTION_TABLE_SIZE) &&
2560             (((i + 1) & 0x3) == 0)) {
2561             BLOGD(sc, DBG_LOAD, "\n");
2562             BLOGD(sc, DBG_LOAD, "0x%04x: ", i + 1);
2563         }
2564     }
2565 
2566     BLOGD(sc, DBG_LOAD, "\n");
2567 }
2568 #endif
2569 
2570 /*
2571  * FreeBSD Device probe function.
2572  *
2573  * Compares the device found to the driver's list of supported devices and
2574  * reports back to the bsd loader whether this is the right driver for the device.
2575  * This is the driver entry function called from the "kldload" command.
2576  *
2577  * Returns:
2578  *   BUS_PROBE_DEFAULT on success, positive value on failure.
2579  */
2580 static int
2581 bxe_probe(device_t dev)
2582 {
2583     struct bxe_softc *sc;
2584     struct bxe_device_type *t;
2585     char *descbuf;
2586     uint16_t did, sdid, svid, vid;
2587 
2588     /* Find our device structure */
2589     sc = device_get_softc(dev);
2590     sc->dev = dev;
2591     t = bxe_devs;
2592 
2593     /* Get the data for the device to be probed. */
2594     vid  = pci_get_vendor(dev);
2595     did  = pci_get_device(dev);
2596     svid = pci_get_subvendor(dev);
2597     sdid = pci_get_subdevice(dev);
2598 
2599     BLOGD(sc, DBG_LOAD,
2600           "%s(); VID = 0x%04X, DID = 0x%04X, SVID = 0x%04X, "
2601           "SDID = 0x%04X\n", __FUNCTION__, vid, did, svid, sdid);
2602 
2603     /* Look through the list of known devices for a match. */
2604     while (t->bxe_name != NULL) {
2605         if ((vid == t->bxe_vid) && (did == t->bxe_did) &&
2606             ((svid == t->bxe_svid) || (t->bxe_svid == PCI_ANY_ID)) &&
2607             ((sdid == t->bxe_sdid) || (t->bxe_sdid == PCI_ANY_ID))) {
2608             descbuf = malloc(BXE_DEVDESC_MAX, M_TEMP, M_NOWAIT);
2609             if (descbuf == NULL)
2610                 return (ENOMEM);
2611 
2612             /* Print out the device identity. */
2613             snprintf(descbuf, BXE_DEVDESC_MAX,
2614                      "%s (%c%d) BXE v:%s\n", t->bxe_name,
2615                      (((pci_read_config(dev, PCIR_REVID, 4) &
2616                         0xf0) >> 4) + 'A'),
2617                      (pci_read_config(dev, PCIR_REVID, 4) & 0xf),
2618                      BXE_DRIVER_VERSION);
2619 
2620             device_set_desc_copy(dev, descbuf);
2621             free(descbuf, M_TEMP);
2622             return (BUS_PROBE_DEFAULT);
2623         }
2624         t++;
2625     }
2626 
2627     return (ENXIO);
2628 }
2629 
2630 static void
2631 bxe_init_mutexes(struct bxe_softc *sc)
2632 {
2633 #ifdef BXE_CORE_LOCK_SX
2634     snprintf(sc->core_sx_name, sizeof(sc->core_sx_name),
2635              "bxe%d_core_lock", sc->unit);
2636     sx_init(&sc->core_sx, sc->core_sx_name);
2637 #else
2638     snprintf(sc->core_mtx_name, sizeof(sc->core_mtx_name),
2639              "bxe%d_core_lock", sc->unit);
2640     mtx_init(&sc->core_mtx, sc->core_mtx_name, NULL, MTX_DEF);
2641 #endif
2642 
2643     snprintf(sc->sp_mtx_name, sizeof(sc->sp_mtx_name),
2644              "bxe%d_sp_lock", sc->unit);
2645     mtx_init(&sc->sp_mtx, sc->sp_mtx_name, NULL, MTX_DEF);
2646 
2647     snprintf(sc->dmae_mtx_name, sizeof(sc->dmae_mtx_name),
2648              "bxe%d_dmae_lock", sc->unit);
2649     mtx_init(&sc->dmae_mtx, sc->dmae_mtx_name, NULL, MTX_DEF);
2650 
2651     snprintf(sc->port.phy_mtx_name, sizeof(sc->port.phy_mtx_name),
2652              "bxe%d_phy_lock", sc->unit);
2653     mtx_init(&sc->port.phy_mtx, sc->port.phy_mtx_name, NULL, MTX_DEF);
2654 
2655     snprintf(sc->fwmb_mtx_name, sizeof(sc->fwmb_mtx_name),
2656              "bxe%d_fwmb_lock", sc->unit);
2657     mtx_init(&sc->fwmb_mtx, sc->fwmb_mtx_name, NULL, MTX_DEF);
2658 
2659     snprintf(sc->print_mtx_name, sizeof(sc->print_mtx_name),
2660              "bxe%d_print_lock", sc->unit);
2661     mtx_init(&(sc->print_mtx), sc->print_mtx_name, NULL, MTX_DEF);
2662 
2663     snprintf(sc->stats_mtx_name, sizeof(sc->stats_mtx_name),
2664              "bxe%d_stats_lock", sc->unit);
2665     mtx_init(&(sc->stats_mtx), sc->stats_mtx_name, NULL, MTX_DEF);
2666 
2667     snprintf(sc->mcast_mtx_name, sizeof(sc->mcast_mtx_name),
2668              "bxe%d_mcast_lock", sc->unit);
2669     mtx_init(&(sc->mcast_mtx), sc->mcast_mtx_name, NULL, MTX_DEF);
2670 }
2671 
2672 static void
2673 bxe_release_mutexes(struct bxe_softc *sc)
2674 {
2675 #ifdef BXE_CORE_LOCK_SX
2676     sx_destroy(&sc->core_sx);
2677 #else
2678     if (mtx_initialized(&sc->core_mtx)) {
2679         mtx_destroy(&sc->core_mtx);
2680     }
2681 #endif
2682 
2683     if (mtx_initialized(&sc->sp_mtx)) {
2684         mtx_destroy(&sc->sp_mtx);
2685     }
2686 
2687     if (mtx_initialized(&sc->dmae_mtx)) {
2688         mtx_destroy(&sc->dmae_mtx);
2689     }
2690 
2691     if (mtx_initialized(&sc->port.phy_mtx)) {
2692         mtx_destroy(&sc->port.phy_mtx);
2693     }
2694 
2695     if (mtx_initialized(&sc->fwmb_mtx)) {
2696         mtx_destroy(&sc->fwmb_mtx);
2697     }
2698 
2699     if (mtx_initialized(&sc->print_mtx)) {
2700         mtx_destroy(&sc->print_mtx);
2701     }
2702 
2703     if (mtx_initialized(&sc->stats_mtx)) {
2704         mtx_destroy(&sc->stats_mtx);
2705     }
2706 
2707     if (mtx_initialized(&sc->mcast_mtx)) {
2708         mtx_destroy(&sc->mcast_mtx);
2709     }
2710 }
2711 
2712 static void
2713 bxe_tx_disable(struct bxe_softc* sc)
2714 {
2715     if_t ifp = sc->ifp;
2716 
2717     /* tell the stack the driver is stopped and TX queue is full */
2718     if (ifp !=  NULL) {
2719         if_setdrvflags(ifp, 0);
2720     }
2721 }
2722 
2723 static void
2724 bxe_drv_pulse(struct bxe_softc *sc)
2725 {
2726     SHMEM_WR(sc, func_mb[SC_FW_MB_IDX(sc)].drv_pulse_mb,
2727              sc->fw_drv_pulse_wr_seq);
2728 }
2729 
2730 static inline uint16_t
2731 bxe_tx_avail(struct bxe_softc *sc,
2732              struct bxe_fastpath *fp)
2733 {
2734     int16_t  used;
2735     uint16_t prod;
2736     uint16_t cons;
2737 
2738     prod = fp->tx_bd_prod;
2739     cons = fp->tx_bd_cons;
2740 
2741     used = SUB_S16(prod, cons);
2742 
2743 #if 0
2744     KASSERT((used < 0), ("used tx bds < 0"));
2745     KASSERT((used > sc->tx_ring_size), ("used tx bds > tx_ring_size"));
2746     KASSERT(((sc->tx_ring_size - used) > MAX_TX_AVAIL),
2747             ("invalid number of tx bds used"));
2748 #endif
2749 
2750     return (int16_t)(sc->tx_ring_size) - used;
2751 }
2752 
2753 static inline int
2754 bxe_tx_queue_has_work(struct bxe_fastpath *fp)
2755 {
2756     uint16_t hw_cons;
2757 
2758     mb(); /* status block fields can change */
2759     hw_cons = le16toh(*fp->tx_cons_sb);
2760     return (hw_cons != fp->tx_pkt_cons);
2761 }
2762 
2763 static inline uint8_t
2764 bxe_has_tx_work(struct bxe_fastpath *fp)
2765 {
2766     /* expand this for multi-cos if ever supported */
2767     return (bxe_tx_queue_has_work(fp)) ? TRUE : FALSE;
2768 }
2769 
2770 static inline int
2771 bxe_has_rx_work(struct bxe_fastpath *fp)
2772 {
2773     uint16_t rx_cq_cons_sb;
2774 
2775     mb(); /* status block fields can change */
2776     rx_cq_cons_sb = le16toh(*fp->rx_cq_cons_sb);
2777     if ((rx_cq_cons_sb & RCQ_MAX) == RCQ_MAX)
2778         rx_cq_cons_sb++;
2779     return (fp->rx_cq_cons != rx_cq_cons_sb);
2780 }
2781 
2782 static void
2783 bxe_sp_event(struct bxe_softc    *sc,
2784              struct bxe_fastpath *fp,
2785              union eth_rx_cqe    *rr_cqe)
2786 {
2787     int cid = SW_CID(rr_cqe->ramrod_cqe.conn_and_cmd_data);
2788     int command = CQE_CMD(rr_cqe->ramrod_cqe.conn_and_cmd_data);
2789     enum ecore_queue_cmd drv_cmd = ECORE_Q_CMD_MAX;
2790     struct ecore_queue_sp_obj *q_obj = &BXE_SP_OBJ(sc, fp).q_obj;
2791 
2792     BLOGD(sc, DBG_SP, "fp=%d cid=%d got ramrod #%d state is %x type is %d\n",
2793           fp->index, cid, command, sc->state, rr_cqe->ramrod_cqe.ramrod_type);
2794 
2795 #if 0
2796     /*
2797      * If cid is within VF range, replace the slowpath object with the
2798      * one corresponding to this VF
2799      */
2800     if ((cid >= BXE_FIRST_VF_CID) && (cid < BXE_FIRST_VF_CID + BXE_VF_CIDS)) {
2801         bxe_iov_set_queue_sp_obj(sc, cid, &q_obj);
2802     }
2803 #endif
2804 
2805     switch (command) {
2806     case (RAMROD_CMD_ID_ETH_CLIENT_UPDATE):
2807         BLOGD(sc, DBG_SP, "got UPDATE ramrod. CID %d\n", cid);
2808         drv_cmd = ECORE_Q_CMD_UPDATE;
2809         break;
2810 
2811     case (RAMROD_CMD_ID_ETH_CLIENT_SETUP):
2812         BLOGD(sc, DBG_SP, "got MULTI[%d] setup ramrod\n", cid);
2813         drv_cmd = ECORE_Q_CMD_SETUP;
2814         break;
2815 
2816     case (RAMROD_CMD_ID_ETH_TX_QUEUE_SETUP):
2817         BLOGD(sc, DBG_SP, "got MULTI[%d] tx-only setup ramrod\n", cid);
2818         drv_cmd = ECORE_Q_CMD_SETUP_TX_ONLY;
2819         break;
2820 
2821     case (RAMROD_CMD_ID_ETH_HALT):
2822         BLOGD(sc, DBG_SP, "got MULTI[%d] halt ramrod\n", cid);
2823         drv_cmd = ECORE_Q_CMD_HALT;
2824         break;
2825 
2826     case (RAMROD_CMD_ID_ETH_TERMINATE):
2827         BLOGD(sc, DBG_SP, "got MULTI[%d] teminate ramrod\n", cid);
2828         drv_cmd = ECORE_Q_CMD_TERMINATE;
2829         break;
2830 
2831     case (RAMROD_CMD_ID_ETH_EMPTY):
2832         BLOGD(sc, DBG_SP, "got MULTI[%d] empty ramrod\n", cid);
2833         drv_cmd = ECORE_Q_CMD_EMPTY;
2834         break;
2835 
2836     default:
2837         BLOGD(sc, DBG_SP, "ERROR: unexpected MC reply (%d) on fp[%d]\n",
2838               command, fp->index);
2839         return;
2840     }
2841 
2842     if ((drv_cmd != ECORE_Q_CMD_MAX) &&
2843         q_obj->complete_cmd(sc, q_obj, drv_cmd)) {
2844         /*
2845          * q_obj->complete_cmd() failure means that this was
2846          * an unexpected completion.
2847          *
2848          * In this case we don't want to increase the sc->spq_left
2849          * because apparently we haven't sent this command the first
2850          * place.
2851          */
2852         // bxe_panic(sc, ("Unexpected SP completion\n"));
2853         return;
2854     }
2855 
2856 #if 0
2857     /* SRIOV: reschedule any 'in_progress' operations */
2858     bxe_iov_sp_event(sc, cid, TRUE);
2859 #endif
2860 
2861     atomic_add_acq_long(&sc->cq_spq_left, 1);
2862 
2863     BLOGD(sc, DBG_SP, "sc->cq_spq_left 0x%lx\n",
2864           atomic_load_acq_long(&sc->cq_spq_left));
2865 
2866 #if 0
2867     if ((drv_cmd == ECORE_Q_CMD_UPDATE) && (IS_FCOE_FP(fp)) &&
2868         (!!bxe_test_bit(ECORE_AFEX_FCOE_Q_UPDATE_PENDING, &sc->sp_state))) {
2869         /*
2870          * If Queue update ramrod is completed for last Queue in AFEX VIF set
2871          * flow, then ACK MCP at the end. Mark pending ACK to MCP bit to
2872          * prevent case that both bits are cleared. At the end of load/unload
2873          * driver checks that sp_state is cleared and this order prevents
2874          * races.
2875          */
2876         bxe_set_bit(ECORE_AFEX_PENDING_VIFSET_MCP_ACK, &sc->sp_state);
2877         wmb();
2878         bxe_clear_bit(ECORE_AFEX_FCOE_Q_UPDATE_PENDING, &sc->sp_state);
2879 
2880         /* schedule the sp task as MCP ack is required */
2881         bxe_schedule_sp_task(sc);
2882     }
2883 #endif
2884 }
2885 
2886 /*
2887  * The current mbuf is part of an aggregation. Move the mbuf into the TPA
2888  * aggregation queue, put an empty mbuf back onto the receive chain, and mark
2889  * the current aggregation queue as in-progress.
2890  */
2891 static void
2892 bxe_tpa_start(struct bxe_softc            *sc,
2893               struct bxe_fastpath         *fp,
2894               uint16_t                    queue,
2895               uint16_t                    cons,
2896               uint16_t                    prod,
2897               struct eth_fast_path_rx_cqe *cqe)
2898 {
2899     struct bxe_sw_rx_bd tmp_bd;
2900     struct bxe_sw_rx_bd *rx_buf;
2901     struct eth_rx_bd *rx_bd;
2902     int max_agg_queues;
2903     struct bxe_sw_tpa_info *tpa_info = &fp->rx_tpa_info[queue];
2904     uint16_t index;
2905 
2906     BLOGD(sc, DBG_LRO, "fp[%02d].tpa[%02d] TPA START "
2907                        "cons=%d prod=%d\n",
2908           fp->index, queue, cons, prod);
2909 
2910     max_agg_queues = MAX_AGG_QS(sc);
2911 
2912     KASSERT((queue < max_agg_queues),
2913             ("fp[%02d] invalid aggr queue (%d >= %d)!",
2914              fp->index, queue, max_agg_queues));
2915 
2916     KASSERT((tpa_info->state == BXE_TPA_STATE_STOP),
2917             ("fp[%02d].tpa[%02d] starting aggr on queue not stopped!",
2918              fp->index, queue));
2919 
2920     /* copy the existing mbuf and mapping from the TPA pool */
2921     tmp_bd = tpa_info->bd;
2922 
2923     if (tmp_bd.m == NULL) {
2924         BLOGE(sc, "fp[%02d].tpa[%02d] mbuf not allocated!\n",
2925               fp->index, queue);
2926         /* XXX Error handling? */
2927         return;
2928     }
2929 
2930     /* change the TPA queue to the start state */
2931     tpa_info->state            = BXE_TPA_STATE_START;
2932     tpa_info->placement_offset = cqe->placement_offset;
2933     tpa_info->parsing_flags    = le16toh(cqe->pars_flags.flags);
2934     tpa_info->vlan_tag         = le16toh(cqe->vlan_tag);
2935     tpa_info->len_on_bd        = le16toh(cqe->len_on_bd);
2936 
2937     fp->rx_tpa_queue_used |= (1 << queue);
2938 
2939     /*
2940      * If all the buffer descriptors are filled with mbufs then fill in
2941      * the current consumer index with a new BD. Else if a maximum Rx
2942      * buffer limit is imposed then fill in the next producer index.
2943      */
2944     index = (sc->max_rx_bufs != RX_BD_USABLE) ?
2945                 prod : cons;
2946 
2947     /* move the received mbuf and mapping to TPA pool */
2948     tpa_info->bd = fp->rx_mbuf_chain[cons];
2949 
2950     /* release any existing RX BD mbuf mappings */
2951     if (cons != index) {
2952         rx_buf = &fp->rx_mbuf_chain[cons];
2953 
2954         if (rx_buf->m_map != NULL) {
2955             bus_dmamap_sync(fp->rx_mbuf_tag, rx_buf->m_map,
2956                             BUS_DMASYNC_POSTREAD);
2957             bus_dmamap_unload(fp->rx_mbuf_tag, rx_buf->m_map);
2958         }
2959 
2960         /*
2961          * We get here when the maximum number of rx buffers is less than
2962          * RX_BD_USABLE. The mbuf is already saved above so it's OK to NULL
2963          * it out here without concern of a memory leak.
2964          */
2965         fp->rx_mbuf_chain[cons].m = NULL;
2966     }
2967 
2968     /* update the Rx SW BD with the mbuf info from the TPA pool */
2969     fp->rx_mbuf_chain[index] = tmp_bd;
2970 
2971     /* update the Rx BD with the empty mbuf phys address from the TPA pool */
2972     rx_bd = &fp->rx_chain[index];
2973     rx_bd->addr_hi = htole32(U64_HI(tpa_info->seg.ds_addr));
2974     rx_bd->addr_lo = htole32(U64_LO(tpa_info->seg.ds_addr));
2975 }
2976 
2977 /*
2978  * When a TPA aggregation is completed, loop through the individual mbufs
2979  * of the aggregation, combining them into a single mbuf which will be sent
2980  * up the stack. Refill all freed SGEs with mbufs as we go along.
2981  */
2982 static int
2983 bxe_fill_frag_mbuf(struct bxe_softc          *sc,
2984                    struct bxe_fastpath       *fp,
2985                    struct bxe_sw_tpa_info    *tpa_info,
2986                    uint16_t                  queue,
2987                    uint16_t                  pages,
2988                    struct mbuf               *m,
2989 			       struct eth_end_agg_rx_cqe *cqe,
2990                    uint16_t                  cqe_idx)
2991 {
2992     struct mbuf *m_frag;
2993     uint32_t frag_len, frag_size, i;
2994     uint16_t sge_idx;
2995     int rc = 0;
2996     int j;
2997 
2998     frag_size = le16toh(cqe->pkt_len) - tpa_info->len_on_bd;
2999 
3000     BLOGD(sc, DBG_LRO,
3001           "fp[%02d].tpa[%02d] TPA fill len_on_bd=%d frag_size=%d pages=%d\n",
3002           fp->index, queue, tpa_info->len_on_bd, frag_size, pages);
3003 
3004     /* make sure the aggregated frame is not too big to handle */
3005     if (pages > 8 * PAGES_PER_SGE) {
3006         BLOGE(sc, "fp[%02d].sge[0x%04x] has too many pages (%d)! "
3007                   "pkt_len=%d len_on_bd=%d frag_size=%d\n",
3008               fp->index, cqe_idx, pages, le16toh(cqe->pkt_len),
3009               tpa_info->len_on_bd, frag_size);
3010         bxe_panic(sc, ("sge page count error\n"));
3011         return (EINVAL);
3012     }
3013 
3014     /*
3015      * Scan through the scatter gather list pulling individual mbufs into a
3016      * single mbuf for the host stack.
3017      */
3018     for (i = 0, j = 0; i < pages; i += PAGES_PER_SGE, j++) {
3019         sge_idx = RX_SGE(le16toh(cqe->sgl_or_raw_data.sgl[j]));
3020 
3021         /*
3022          * Firmware gives the indices of the SGE as if the ring is an array
3023          * (meaning that the "next" element will consume 2 indices).
3024          */
3025         frag_len = min(frag_size, (uint32_t)(SGE_PAGES));
3026 
3027         BLOGD(sc, DBG_LRO, "fp[%02d].tpa[%02d] TPA fill i=%d j=%d "
3028                            "sge_idx=%d frag_size=%d frag_len=%d\n",
3029               fp->index, queue, i, j, sge_idx, frag_size, frag_len);
3030 
3031         m_frag = fp->rx_sge_mbuf_chain[sge_idx].m;
3032 
3033         /* allocate a new mbuf for the SGE */
3034         rc = bxe_alloc_rx_sge_mbuf(fp, sge_idx);
3035         if (rc) {
3036             /* Leave all remaining SGEs in the ring! */
3037             return (rc);
3038         }
3039 
3040         /* update the fragment length */
3041         m_frag->m_len = frag_len;
3042 
3043         /* concatenate the fragment to the head mbuf */
3044         m_cat(m, m_frag);
3045         fp->eth_q_stats.mbuf_alloc_sge--;
3046 
3047         /* update the TPA mbuf size and remaining fragment size */
3048         m->m_pkthdr.len += frag_len;
3049         frag_size -= frag_len;
3050     }
3051 
3052     BLOGD(sc, DBG_LRO,
3053           "fp[%02d].tpa[%02d] TPA fill done frag_size=%d\n",
3054           fp->index, queue, frag_size);
3055 
3056     return (rc);
3057 }
3058 
3059 static inline void
3060 bxe_clear_sge_mask_next_elems(struct bxe_fastpath *fp)
3061 {
3062     int i, j;
3063 
3064     for (i = 1; i <= RX_SGE_NUM_PAGES; i++) {
3065         int idx = RX_SGE_TOTAL_PER_PAGE * i - 1;
3066 
3067         for (j = 0; j < 2; j++) {
3068             BIT_VEC64_CLEAR_BIT(fp->sge_mask, idx);
3069             idx--;
3070         }
3071     }
3072 }
3073 
3074 static inline void
3075 bxe_init_sge_ring_bit_mask(struct bxe_fastpath *fp)
3076 {
3077     /* set the mask to all 1's, it's faster to compare to 0 than to 0xf's */
3078     memset(fp->sge_mask, 0xff, sizeof(fp->sge_mask));
3079 
3080     /*
3081      * Clear the two last indices in the page to 1. These are the indices that
3082      * correspond to the "next" element, hence will never be indicated and
3083      * should be removed from the calculations.
3084      */
3085     bxe_clear_sge_mask_next_elems(fp);
3086 }
3087 
3088 static inline void
3089 bxe_update_last_max_sge(struct bxe_fastpath *fp,
3090                         uint16_t            idx)
3091 {
3092     uint16_t last_max = fp->last_max_sge;
3093 
3094     if (SUB_S16(idx, last_max) > 0) {
3095         fp->last_max_sge = idx;
3096     }
3097 }
3098 
3099 static inline void
3100 bxe_update_sge_prod(struct bxe_softc          *sc,
3101                     struct bxe_fastpath       *fp,
3102                     uint16_t                  sge_len,
3103                     struct eth_end_agg_rx_cqe *cqe)
3104 {
3105     uint16_t last_max, last_elem, first_elem;
3106     uint16_t delta = 0;
3107     uint16_t i;
3108 
3109     if (!sge_len) {
3110         return;
3111     }
3112 
3113     /* first mark all used pages */
3114     for (i = 0; i < sge_len; i++) {
3115         BIT_VEC64_CLEAR_BIT(fp->sge_mask,
3116                             RX_SGE(le16toh(cqe->sgl_or_raw_data.sgl[i])));
3117     }
3118 
3119     BLOGD(sc, DBG_LRO,
3120           "fp[%02d] fp_cqe->sgl[%d] = %d\n",
3121           fp->index, sge_len - 1,
3122           le16toh(cqe->sgl_or_raw_data.sgl[sge_len - 1]));
3123 
3124     /* assume that the last SGE index is the biggest */
3125     bxe_update_last_max_sge(fp,
3126                             le16toh(cqe->sgl_or_raw_data.sgl[sge_len - 1]));
3127 
3128     last_max = RX_SGE(fp->last_max_sge);
3129     last_elem = last_max >> BIT_VEC64_ELEM_SHIFT;
3130     first_elem = RX_SGE(fp->rx_sge_prod) >> BIT_VEC64_ELEM_SHIFT;
3131 
3132     /* if ring is not full */
3133     if (last_elem + 1 != first_elem) {
3134         last_elem++;
3135     }
3136 
3137     /* now update the prod */
3138     for (i = first_elem; i != last_elem; i = RX_SGE_NEXT_MASK_ELEM(i)) {
3139         if (__predict_true(fp->sge_mask[i])) {
3140             break;
3141         }
3142 
3143         fp->sge_mask[i] = BIT_VEC64_ELEM_ONE_MASK;
3144         delta += BIT_VEC64_ELEM_SZ;
3145     }
3146 
3147     if (delta > 0) {
3148         fp->rx_sge_prod += delta;
3149         /* clear page-end entries */
3150         bxe_clear_sge_mask_next_elems(fp);
3151     }
3152 
3153     BLOGD(sc, DBG_LRO,
3154           "fp[%02d] fp->last_max_sge=%d fp->rx_sge_prod=%d\n",
3155           fp->index, fp->last_max_sge, fp->rx_sge_prod);
3156 }
3157 
3158 /*
3159  * The aggregation on the current TPA queue has completed. Pull the individual
3160  * mbuf fragments together into a single mbuf, perform all necessary checksum
3161  * calculations, and send the resuting mbuf to the stack.
3162  */
3163 static void
3164 bxe_tpa_stop(struct bxe_softc          *sc,
3165              struct bxe_fastpath       *fp,
3166              struct bxe_sw_tpa_info    *tpa_info,
3167              uint16_t                  queue,
3168              uint16_t                  pages,
3169 			 struct eth_end_agg_rx_cqe *cqe,
3170              uint16_t                  cqe_idx)
3171 {
3172     if_t ifp = sc->ifp;
3173     struct mbuf *m;
3174     int rc = 0;
3175 
3176     BLOGD(sc, DBG_LRO,
3177           "fp[%02d].tpa[%02d] pad=%d pkt_len=%d pages=%d vlan=%d\n",
3178           fp->index, queue, tpa_info->placement_offset,
3179           le16toh(cqe->pkt_len), pages, tpa_info->vlan_tag);
3180 
3181     m = tpa_info->bd.m;
3182 
3183     /* allocate a replacement before modifying existing mbuf */
3184     rc = bxe_alloc_rx_tpa_mbuf(fp, queue);
3185     if (rc) {
3186         /* drop the frame and log an error */
3187         fp->eth_q_stats.rx_soft_errors++;
3188         goto bxe_tpa_stop_exit;
3189     }
3190 
3191     /* we have a replacement, fixup the current mbuf */
3192     m_adj(m, tpa_info->placement_offset);
3193     m->m_pkthdr.len = m->m_len = tpa_info->len_on_bd;
3194 
3195     /* mark the checksums valid (taken care of by the firmware) */
3196     fp->eth_q_stats.rx_ofld_frames_csum_ip++;
3197     fp->eth_q_stats.rx_ofld_frames_csum_tcp_udp++;
3198     m->m_pkthdr.csum_data = 0xffff;
3199     m->m_pkthdr.csum_flags |= (CSUM_IP_CHECKED |
3200                                CSUM_IP_VALID   |
3201                                CSUM_DATA_VALID |
3202                                CSUM_PSEUDO_HDR);
3203 
3204     /* aggregate all of the SGEs into a single mbuf */
3205     rc = bxe_fill_frag_mbuf(sc, fp, tpa_info, queue, pages, m, cqe, cqe_idx);
3206     if (rc) {
3207         /* drop the packet and log an error */
3208         fp->eth_q_stats.rx_soft_errors++;
3209         m_freem(m);
3210     } else {
3211         if (tpa_info->parsing_flags & PARSING_FLAGS_VLAN) {
3212             m->m_pkthdr.ether_vtag = tpa_info->vlan_tag;
3213             m->m_flags |= M_VLANTAG;
3214         }
3215 
3216         /* assign packet to this interface interface */
3217         if_setrcvif(m, ifp);
3218 
3219 #if __FreeBSD_version >= 800000
3220         /* specify what RSS queue was used for this flow */
3221         m->m_pkthdr.flowid = fp->index;
3222         m->m_flags |= M_FLOWID;
3223 #endif
3224 
3225         if_incipackets(ifp, 1);
3226         fp->eth_q_stats.rx_tpa_pkts++;
3227 
3228         /* pass the frame to the stack */
3229         if_input(ifp, m);
3230     }
3231 
3232     /* we passed an mbuf up the stack or dropped the frame */
3233     fp->eth_q_stats.mbuf_alloc_tpa--;
3234 
3235 bxe_tpa_stop_exit:
3236 
3237     fp->rx_tpa_info[queue].state = BXE_TPA_STATE_STOP;
3238     fp->rx_tpa_queue_used &= ~(1 << queue);
3239 }
3240 
3241 static uint8_t
3242 bxe_rxeof(struct bxe_softc    *sc,
3243           struct bxe_fastpath *fp)
3244 {
3245     if_t ifp = sc->ifp;
3246     uint16_t bd_cons, bd_prod, bd_prod_fw, comp_ring_cons;
3247     uint16_t hw_cq_cons, sw_cq_cons, sw_cq_prod;
3248     int rx_pkts = 0;
3249     int rc;
3250 
3251     BXE_FP_RX_LOCK(fp);
3252 
3253     /* CQ "next element" is of the size of the regular element */
3254     hw_cq_cons = le16toh(*fp->rx_cq_cons_sb);
3255     if ((hw_cq_cons & RCQ_USABLE_PER_PAGE) == RCQ_USABLE_PER_PAGE) {
3256         hw_cq_cons++;
3257     }
3258 
3259     bd_cons = fp->rx_bd_cons;
3260     bd_prod = fp->rx_bd_prod;
3261     bd_prod_fw = bd_prod;
3262     sw_cq_cons = fp->rx_cq_cons;
3263     sw_cq_prod = fp->rx_cq_prod;
3264 
3265     /*
3266      * Memory barrier necessary as speculative reads of the rx
3267      * buffer can be ahead of the index in the status block
3268      */
3269     rmb();
3270 
3271     BLOGD(sc, DBG_RX,
3272           "fp[%02d] Rx START hw_cq_cons=%u sw_cq_cons=%u\n",
3273           fp->index, hw_cq_cons, sw_cq_cons);
3274 
3275     while (sw_cq_cons != hw_cq_cons) {
3276         struct bxe_sw_rx_bd *rx_buf = NULL;
3277         union eth_rx_cqe *cqe;
3278         struct eth_fast_path_rx_cqe *cqe_fp;
3279         uint8_t cqe_fp_flags;
3280         enum eth_rx_cqe_type cqe_fp_type;
3281         uint16_t len, pad;
3282         struct mbuf *m = NULL;
3283 
3284         comp_ring_cons = RCQ(sw_cq_cons);
3285         bd_prod = RX_BD(bd_prod);
3286         bd_cons = RX_BD(bd_cons);
3287 
3288         cqe          = &fp->rcq_chain[comp_ring_cons];
3289         cqe_fp       = &cqe->fast_path_cqe;
3290         cqe_fp_flags = cqe_fp->type_error_flags;
3291         cqe_fp_type  = cqe_fp_flags & ETH_FAST_PATH_RX_CQE_TYPE;
3292 
3293         BLOGD(sc, DBG_RX,
3294               "fp[%02d] Rx hw_cq_cons=%d hw_sw_cons=%d "
3295               "BD prod=%d cons=%d CQE type=0x%x err=0x%x "
3296               "status=0x%x rss_hash=0x%x vlan=0x%x len=%u\n",
3297               fp->index,
3298               hw_cq_cons,
3299               sw_cq_cons,
3300               bd_prod,
3301               bd_cons,
3302               CQE_TYPE(cqe_fp_flags),
3303               cqe_fp_flags,
3304               cqe_fp->status_flags,
3305               le32toh(cqe_fp->rss_hash_result),
3306               le16toh(cqe_fp->vlan_tag),
3307               le16toh(cqe_fp->pkt_len_or_gro_seg_len));
3308 
3309         /* is this a slowpath msg? */
3310         if (__predict_false(CQE_TYPE_SLOW(cqe_fp_type))) {
3311             bxe_sp_event(sc, fp, cqe);
3312             goto next_cqe;
3313         }
3314 
3315         rx_buf = &fp->rx_mbuf_chain[bd_cons];
3316 
3317         if (!CQE_TYPE_FAST(cqe_fp_type)) {
3318             struct bxe_sw_tpa_info *tpa_info;
3319             uint16_t frag_size, pages;
3320             uint8_t queue;
3321 
3322 #if 0
3323             /* sanity check */
3324             if (!fp->tpa_enable &&
3325                 (CQE_TYPE_START(cqe_fp_type) || CQE_TYPE_STOP(cqe_fp_type))) {
3326                 BLOGE(sc, "START/STOP packet while !tpa_enable type (0x%x)\n",
3327                       CQE_TYPE(cqe_fp_type));
3328             }
3329 #endif
3330 
3331             if (CQE_TYPE_START(cqe_fp_type)) {
3332                 bxe_tpa_start(sc, fp, cqe_fp->queue_index,
3333                               bd_cons, bd_prod, cqe_fp);
3334                 m = NULL; /* packet not ready yet */
3335                 goto next_rx;
3336             }
3337 
3338             KASSERT(CQE_TYPE_STOP(cqe_fp_type),
3339                     ("CQE type is not STOP! (0x%x)\n", cqe_fp_type));
3340 
3341             queue = cqe->end_agg_cqe.queue_index;
3342             tpa_info = &fp->rx_tpa_info[queue];
3343 
3344             BLOGD(sc, DBG_LRO, "fp[%02d].tpa[%02d] TPA STOP\n",
3345                   fp->index, queue);
3346 
3347             frag_size = (le16toh(cqe->end_agg_cqe.pkt_len) -
3348                          tpa_info->len_on_bd);
3349             pages = SGE_PAGE_ALIGN(frag_size) >> SGE_PAGE_SHIFT;
3350 
3351             bxe_tpa_stop(sc, fp, tpa_info, queue, pages,
3352                          &cqe->end_agg_cqe, comp_ring_cons);
3353 
3354             bxe_update_sge_prod(sc, fp, pages, &cqe->end_agg_cqe);
3355 
3356             goto next_cqe;
3357         }
3358 
3359         /* non TPA */
3360 
3361         /* is this an error packet? */
3362         if (__predict_false(cqe_fp_flags &
3363                             ETH_FAST_PATH_RX_CQE_PHY_DECODE_ERR_FLG)) {
3364             BLOGE(sc, "flags 0x%x rx packet %u\n", cqe_fp_flags, sw_cq_cons);
3365             fp->eth_q_stats.rx_soft_errors++;
3366             goto next_rx;
3367         }
3368 
3369         len = le16toh(cqe_fp->pkt_len_or_gro_seg_len);
3370         pad = cqe_fp->placement_offset;
3371 
3372         m = rx_buf->m;
3373 
3374         if (__predict_false(m == NULL)) {
3375             BLOGE(sc, "No mbuf in rx chain descriptor %d for fp[%02d]\n",
3376                   bd_cons, fp->index);
3377             goto next_rx;
3378         }
3379 
3380         /* XXX double copy if packet length under a threshold */
3381 
3382         /*
3383          * If all the buffer descriptors are filled with mbufs then fill in
3384          * the current consumer index with a new BD. Else if a maximum Rx
3385          * buffer limit is imposed then fill in the next producer index.
3386          */
3387         rc = bxe_alloc_rx_bd_mbuf(fp, bd_cons,
3388                                   (sc->max_rx_bufs != RX_BD_USABLE) ?
3389                                       bd_prod : bd_cons);
3390         if (rc != 0) {
3391             BLOGE(sc, "mbuf alloc fail for fp[%02d] rx chain (%d)\n",
3392                   fp->index, rc);
3393             fp->eth_q_stats.rx_soft_errors++;
3394 
3395             if (sc->max_rx_bufs != RX_BD_USABLE) {
3396                 /* copy this consumer index to the producer index */
3397                 memcpy(&fp->rx_mbuf_chain[bd_prod], rx_buf,
3398                        sizeof(struct bxe_sw_rx_bd));
3399                 memset(rx_buf, 0, sizeof(struct bxe_sw_rx_bd));
3400             }
3401 
3402             goto next_rx;
3403         }
3404 
3405         /* current mbuf was detached from the bd */
3406         fp->eth_q_stats.mbuf_alloc_rx--;
3407 
3408         /* we allocated a replacement mbuf, fixup the current one */
3409         m_adj(m, pad);
3410         m->m_pkthdr.len = m->m_len = len;
3411 
3412         /* assign packet to this interface interface */
3413 	if_setrcvif(m, ifp);
3414 
3415         /* assume no hardware checksum has complated */
3416         m->m_pkthdr.csum_flags = 0;
3417 
3418         /* validate checksum if offload enabled */
3419         if (if_getcapenable(ifp) & IFCAP_RXCSUM) {
3420             /* check for a valid IP frame */
3421             if (!(cqe->fast_path_cqe.status_flags &
3422                   ETH_FAST_PATH_RX_CQE_IP_XSUM_NO_VALIDATION_FLG)) {
3423                 m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
3424                 if (__predict_false(cqe_fp_flags &
3425                                     ETH_FAST_PATH_RX_CQE_IP_BAD_XSUM_FLG)) {
3426                     fp->eth_q_stats.rx_hw_csum_errors++;
3427                 } else {
3428                     fp->eth_q_stats.rx_ofld_frames_csum_ip++;
3429                     m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
3430                 }
3431             }
3432 
3433             /* check for a valid TCP/UDP frame */
3434             if (!(cqe->fast_path_cqe.status_flags &
3435                   ETH_FAST_PATH_RX_CQE_L4_XSUM_NO_VALIDATION_FLG)) {
3436                 if (__predict_false(cqe_fp_flags &
3437                                     ETH_FAST_PATH_RX_CQE_L4_BAD_XSUM_FLG)) {
3438                     fp->eth_q_stats.rx_hw_csum_errors++;
3439                 } else {
3440                     fp->eth_q_stats.rx_ofld_frames_csum_tcp_udp++;
3441                     m->m_pkthdr.csum_data = 0xFFFF;
3442                     m->m_pkthdr.csum_flags |= (CSUM_DATA_VALID |
3443                                                CSUM_PSEUDO_HDR);
3444                 }
3445             }
3446         }
3447 
3448         /* if there is a VLAN tag then flag that info */
3449         if (cqe->fast_path_cqe.pars_flags.flags & PARSING_FLAGS_VLAN) {
3450             m->m_pkthdr.ether_vtag = cqe->fast_path_cqe.vlan_tag;
3451             m->m_flags |= M_VLANTAG;
3452         }
3453 
3454 #if __FreeBSD_version >= 800000
3455         /* specify what RSS queue was used for this flow */
3456         m->m_pkthdr.flowid = fp->index;
3457         m->m_flags |= M_FLOWID;
3458 #endif
3459 
3460 next_rx:
3461 
3462         bd_cons    = RX_BD_NEXT(bd_cons);
3463         bd_prod    = RX_BD_NEXT(bd_prod);
3464         bd_prod_fw = RX_BD_NEXT(bd_prod_fw);
3465 
3466         /* pass the frame to the stack */
3467         if (__predict_true(m != NULL)) {
3468             if_incipackets(ifp, 1);
3469             rx_pkts++;
3470             if_input(ifp, m);
3471         }
3472 
3473 next_cqe:
3474 
3475         sw_cq_prod = RCQ_NEXT(sw_cq_prod);
3476         sw_cq_cons = RCQ_NEXT(sw_cq_cons);
3477 
3478         /* limit spinning on the queue */
3479         if (rx_pkts == sc->rx_budget) {
3480             fp->eth_q_stats.rx_budget_reached++;
3481             break;
3482         }
3483     } /* while work to do */
3484 
3485     fp->rx_bd_cons = bd_cons;
3486     fp->rx_bd_prod = bd_prod_fw;
3487     fp->rx_cq_cons = sw_cq_cons;
3488     fp->rx_cq_prod = sw_cq_prod;
3489 
3490     /* Update producers */
3491     bxe_update_rx_prod(sc, fp, bd_prod_fw, sw_cq_prod, fp->rx_sge_prod);
3492 
3493     fp->eth_q_stats.rx_pkts += rx_pkts;
3494     fp->eth_q_stats.rx_calls++;
3495 
3496     BXE_FP_RX_UNLOCK(fp);
3497 
3498     return (sw_cq_cons != hw_cq_cons);
3499 }
3500 
3501 static uint16_t
3502 bxe_free_tx_pkt(struct bxe_softc    *sc,
3503                 struct bxe_fastpath *fp,
3504                 uint16_t            idx)
3505 {
3506     struct bxe_sw_tx_bd *tx_buf = &fp->tx_mbuf_chain[idx];
3507     struct eth_tx_start_bd *tx_start_bd;
3508     uint16_t bd_idx = TX_BD(tx_buf->first_bd);
3509     uint16_t new_cons;
3510     int nbd;
3511 
3512     /* unmap the mbuf from non-paged memory */
3513     bus_dmamap_unload(fp->tx_mbuf_tag, tx_buf->m_map);
3514 
3515     tx_start_bd = &fp->tx_chain[bd_idx].start_bd;
3516     nbd = le16toh(tx_start_bd->nbd) - 1;
3517 
3518 #if 0
3519     if ((nbd - 1) > (MAX_MBUF_FRAGS + 2)) {
3520         bxe_panic(sc, ("BAD nbd!\n"));
3521     }
3522 #endif
3523 
3524     new_cons = (tx_buf->first_bd + nbd);
3525 
3526 #if 0
3527     struct eth_tx_bd *tx_data_bd;
3528 
3529     /*
3530      * The following code doesn't do anything but is left here
3531      * for clarity on what the new value of new_cons skipped.
3532      */
3533 
3534     /* get the next bd */
3535     bd_idx = TX_BD(TX_BD_NEXT(bd_idx));
3536 
3537     /* skip the parse bd */
3538     --nbd;
3539     bd_idx = TX_BD(TX_BD_NEXT(bd_idx));
3540 
3541     /* skip the TSO split header bd since they have no mapping */
3542     if (tx_buf->flags & BXE_TSO_SPLIT_BD) {
3543         --nbd;
3544         bd_idx = TX_BD(TX_BD_NEXT(bd_idx));
3545     }
3546 
3547     /* now free frags */
3548     while (nbd > 0) {
3549         tx_data_bd = &fp->tx_chain[bd_idx].reg_bd;
3550         if (--nbd) {
3551             bd_idx = TX_BD(TX_BD_NEXT(bd_idx));
3552         }
3553     }
3554 #endif
3555 
3556     /* free the mbuf */
3557     if (__predict_true(tx_buf->m != NULL)) {
3558         m_freem(tx_buf->m);
3559         fp->eth_q_stats.mbuf_alloc_tx--;
3560     } else {
3561         fp->eth_q_stats.tx_chain_lost_mbuf++;
3562     }
3563 
3564     tx_buf->m = NULL;
3565     tx_buf->first_bd = 0;
3566 
3567     return (new_cons);
3568 }
3569 
3570 /* transmit timeout watchdog */
3571 static int
3572 bxe_watchdog(struct bxe_softc    *sc,
3573              struct bxe_fastpath *fp)
3574 {
3575     BXE_FP_TX_LOCK(fp);
3576 
3577     if ((fp->watchdog_timer == 0) || (--fp->watchdog_timer)) {
3578         BXE_FP_TX_UNLOCK(fp);
3579         return (0);
3580     }
3581 
3582     BLOGE(sc, "TX watchdog timeout on fp[%02d], resetting!\n", fp->index);
3583 
3584     BXE_FP_TX_UNLOCK(fp);
3585 
3586     atomic_store_rel_long(&sc->chip_tq_flags, CHIP_TQ_REINIT);
3587     taskqueue_enqueue(sc->chip_tq, &sc->chip_tq_task);
3588 
3589     return (-1);
3590 }
3591 
3592 /* processes transmit completions */
3593 static uint8_t
3594 bxe_txeof(struct bxe_softc    *sc,
3595           struct bxe_fastpath *fp)
3596 {
3597     if_t ifp = sc->ifp;
3598     uint16_t bd_cons, hw_cons, sw_cons, pkt_cons;
3599     uint16_t tx_bd_avail;
3600 
3601     BXE_FP_TX_LOCK_ASSERT(fp);
3602 
3603     bd_cons = fp->tx_bd_cons;
3604     hw_cons = le16toh(*fp->tx_cons_sb);
3605     sw_cons = fp->tx_pkt_cons;
3606 
3607     while (sw_cons != hw_cons) {
3608         pkt_cons = TX_BD(sw_cons);
3609 
3610         BLOGD(sc, DBG_TX,
3611               "TX: fp[%d]: hw_cons=%u sw_cons=%u pkt_cons=%u\n",
3612               fp->index, hw_cons, sw_cons, pkt_cons);
3613 
3614         bd_cons = bxe_free_tx_pkt(sc, fp, pkt_cons);
3615 
3616         sw_cons++;
3617     }
3618 
3619     fp->tx_pkt_cons = sw_cons;
3620     fp->tx_bd_cons  = bd_cons;
3621 
3622     BLOGD(sc, DBG_TX,
3623           "TX done: fp[%d]: hw_cons=%u sw_cons=%u sw_prod=%u\n",
3624           fp->index, hw_cons, fp->tx_pkt_cons, fp->tx_pkt_prod);
3625 
3626     mb();
3627 
3628     tx_bd_avail = bxe_tx_avail(sc, fp);
3629 
3630     if (tx_bd_avail < BXE_TX_CLEANUP_THRESHOLD) {
3631         if_setdrvflagbits(ifp, IFF_DRV_OACTIVE, 0);
3632     } else {
3633         if_setdrvflagbits(ifp, 0, IFF_DRV_OACTIVE);
3634     }
3635 
3636     if (fp->tx_pkt_prod != fp->tx_pkt_cons) {
3637         /* reset the watchdog timer if there are pending transmits */
3638         fp->watchdog_timer = BXE_TX_TIMEOUT;
3639         return (TRUE);
3640     } else {
3641         /* clear watchdog when there are no pending transmits */
3642         fp->watchdog_timer = 0;
3643         return (FALSE);
3644     }
3645 }
3646 
3647 static void
3648 bxe_drain_tx_queues(struct bxe_softc *sc)
3649 {
3650     struct bxe_fastpath *fp;
3651     int i, count;
3652 
3653     /* wait until all TX fastpath tasks have completed */
3654     for (i = 0; i < sc->num_queues; i++) {
3655         fp = &sc->fp[i];
3656 
3657         count = 1000;
3658 
3659         while (bxe_has_tx_work(fp)) {
3660 
3661             BXE_FP_TX_LOCK(fp);
3662             bxe_txeof(sc, fp);
3663             BXE_FP_TX_UNLOCK(fp);
3664 
3665             if (count == 0) {
3666                 BLOGE(sc, "Timeout waiting for fp[%d] "
3667                           "transmits to complete!\n", i);
3668                 bxe_panic(sc, ("tx drain failure\n"));
3669                 return;
3670             }
3671 
3672             count--;
3673             DELAY(1000);
3674             rmb();
3675         }
3676     }
3677 
3678     return;
3679 }
3680 
3681 static int
3682 bxe_del_all_macs(struct bxe_softc          *sc,
3683                  struct ecore_vlan_mac_obj *mac_obj,
3684                  int                       mac_type,
3685                  uint8_t                   wait_for_comp)
3686 {
3687     unsigned long ramrod_flags = 0, vlan_mac_flags = 0;
3688     int rc;
3689 
3690     /* wait for completion of requested */
3691     if (wait_for_comp) {
3692         bxe_set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
3693     }
3694 
3695     /* Set the mac type of addresses we want to clear */
3696     bxe_set_bit(mac_type, &vlan_mac_flags);
3697 
3698     rc = mac_obj->delete_all(sc, mac_obj, &vlan_mac_flags, &ramrod_flags);
3699     if (rc < 0) {
3700         BLOGE(sc, "Failed to delete MACs (%d)\n", rc);
3701     }
3702 
3703     return (rc);
3704 }
3705 
3706 static int
3707 bxe_fill_accept_flags(struct bxe_softc *sc,
3708                       uint32_t         rx_mode,
3709                       unsigned long    *rx_accept_flags,
3710                       unsigned long    *tx_accept_flags)
3711 {
3712     /* Clear the flags first */
3713     *rx_accept_flags = 0;
3714     *tx_accept_flags = 0;
3715 
3716     switch (rx_mode) {
3717     case BXE_RX_MODE_NONE:
3718         /*
3719          * 'drop all' supersedes any accept flags that may have been
3720          * passed to the function.
3721          */
3722         break;
3723 
3724     case BXE_RX_MODE_NORMAL:
3725         bxe_set_bit(ECORE_ACCEPT_UNICAST, rx_accept_flags);
3726         bxe_set_bit(ECORE_ACCEPT_MULTICAST, rx_accept_flags);
3727         bxe_set_bit(ECORE_ACCEPT_BROADCAST, rx_accept_flags);
3728 
3729         /* internal switching mode */
3730         bxe_set_bit(ECORE_ACCEPT_UNICAST, tx_accept_flags);
3731         bxe_set_bit(ECORE_ACCEPT_MULTICAST, tx_accept_flags);
3732         bxe_set_bit(ECORE_ACCEPT_BROADCAST, tx_accept_flags);
3733 
3734         break;
3735 
3736     case BXE_RX_MODE_ALLMULTI:
3737         bxe_set_bit(ECORE_ACCEPT_UNICAST, rx_accept_flags);
3738         bxe_set_bit(ECORE_ACCEPT_ALL_MULTICAST, rx_accept_flags);
3739         bxe_set_bit(ECORE_ACCEPT_BROADCAST, rx_accept_flags);
3740 
3741         /* internal switching mode */
3742         bxe_set_bit(ECORE_ACCEPT_UNICAST, tx_accept_flags);
3743         bxe_set_bit(ECORE_ACCEPT_ALL_MULTICAST, tx_accept_flags);
3744         bxe_set_bit(ECORE_ACCEPT_BROADCAST, tx_accept_flags);
3745 
3746         break;
3747 
3748     case BXE_RX_MODE_PROMISC:
3749         /*
3750          * According to deffinition of SI mode, iface in promisc mode
3751          * should receive matched and unmatched (in resolution of port)
3752          * unicast packets.
3753          */
3754         bxe_set_bit(ECORE_ACCEPT_UNMATCHED, rx_accept_flags);
3755         bxe_set_bit(ECORE_ACCEPT_UNICAST, rx_accept_flags);
3756         bxe_set_bit(ECORE_ACCEPT_ALL_MULTICAST, rx_accept_flags);
3757         bxe_set_bit(ECORE_ACCEPT_BROADCAST, rx_accept_flags);
3758 
3759         /* internal switching mode */
3760         bxe_set_bit(ECORE_ACCEPT_ALL_MULTICAST, tx_accept_flags);
3761         bxe_set_bit(ECORE_ACCEPT_BROADCAST, tx_accept_flags);
3762 
3763         if (IS_MF_SI(sc)) {
3764             bxe_set_bit(ECORE_ACCEPT_ALL_UNICAST, tx_accept_flags);
3765         } else {
3766             bxe_set_bit(ECORE_ACCEPT_UNICAST, tx_accept_flags);
3767         }
3768 
3769         break;
3770 
3771     default:
3772         BLOGE(sc, "Unknown rx_mode (%d)\n", rx_mode);
3773         return (-1);
3774     }
3775 
3776     /* Set ACCEPT_ANY_VLAN as we do not enable filtering by VLAN */
3777     if (rx_mode != BXE_RX_MODE_NONE) {
3778         bxe_set_bit(ECORE_ACCEPT_ANY_VLAN, rx_accept_flags);
3779         bxe_set_bit(ECORE_ACCEPT_ANY_VLAN, tx_accept_flags);
3780     }
3781 
3782     return (0);
3783 }
3784 
3785 static int
3786 bxe_set_q_rx_mode(struct bxe_softc *sc,
3787                   uint8_t          cl_id,
3788                   unsigned long    rx_mode_flags,
3789                   unsigned long    rx_accept_flags,
3790                   unsigned long    tx_accept_flags,
3791                   unsigned long    ramrod_flags)
3792 {
3793     struct ecore_rx_mode_ramrod_params ramrod_param;
3794     int rc;
3795 
3796     memset(&ramrod_param, 0, sizeof(ramrod_param));
3797 
3798     /* Prepare ramrod parameters */
3799     ramrod_param.cid = 0;
3800     ramrod_param.cl_id = cl_id;
3801     ramrod_param.rx_mode_obj = &sc->rx_mode_obj;
3802     ramrod_param.func_id = SC_FUNC(sc);
3803 
3804     ramrod_param.pstate = &sc->sp_state;
3805     ramrod_param.state = ECORE_FILTER_RX_MODE_PENDING;
3806 
3807     ramrod_param.rdata = BXE_SP(sc, rx_mode_rdata);
3808     ramrod_param.rdata_mapping = BXE_SP_MAPPING(sc, rx_mode_rdata);
3809 
3810     bxe_set_bit(ECORE_FILTER_RX_MODE_PENDING, &sc->sp_state);
3811 
3812     ramrod_param.ramrod_flags = ramrod_flags;
3813     ramrod_param.rx_mode_flags = rx_mode_flags;
3814 
3815     ramrod_param.rx_accept_flags = rx_accept_flags;
3816     ramrod_param.tx_accept_flags = tx_accept_flags;
3817 
3818     rc = ecore_config_rx_mode(sc, &ramrod_param);
3819     if (rc < 0) {
3820         BLOGE(sc, "Set rx_mode %d failed\n", sc->rx_mode);
3821         return (rc);
3822     }
3823 
3824     return (0);
3825 }
3826 
3827 static int
3828 bxe_set_storm_rx_mode(struct bxe_softc *sc)
3829 {
3830     unsigned long rx_mode_flags = 0, ramrod_flags = 0;
3831     unsigned long rx_accept_flags = 0, tx_accept_flags = 0;
3832     int rc;
3833 
3834     rc = bxe_fill_accept_flags(sc, sc->rx_mode, &rx_accept_flags,
3835                                &tx_accept_flags);
3836     if (rc) {
3837         return (rc);
3838     }
3839 
3840     bxe_set_bit(RAMROD_RX, &ramrod_flags);
3841     bxe_set_bit(RAMROD_TX, &ramrod_flags);
3842 
3843     /* XXX ensure all fastpath have same cl_id and/or move it to bxe_softc */
3844     return (bxe_set_q_rx_mode(sc, sc->fp[0].cl_id, rx_mode_flags,
3845                               rx_accept_flags, tx_accept_flags,
3846                               ramrod_flags));
3847 }
3848 
3849 /* returns the "mcp load_code" according to global load_count array */
3850 static int
3851 bxe_nic_load_no_mcp(struct bxe_softc *sc)
3852 {
3853     int path = SC_PATH(sc);
3854     int port = SC_PORT(sc);
3855 
3856     BLOGI(sc, "NO MCP - load counts[%d]      %d, %d, %d\n",
3857           path, load_count[path][0], load_count[path][1],
3858           load_count[path][2]);
3859     load_count[path][0]++;
3860     load_count[path][1 + port]++;
3861     BLOGI(sc, "NO MCP - new load counts[%d]  %d, %d, %d\n",
3862           path, load_count[path][0], load_count[path][1],
3863           load_count[path][2]);
3864     if (load_count[path][0] == 1) {
3865         return (FW_MSG_CODE_DRV_LOAD_COMMON);
3866     } else if (load_count[path][1 + port] == 1) {
3867         return (FW_MSG_CODE_DRV_LOAD_PORT);
3868     } else {
3869         return (FW_MSG_CODE_DRV_LOAD_FUNCTION);
3870     }
3871 }
3872 
3873 /* returns the "mcp load_code" according to global load_count array */
3874 static int
3875 bxe_nic_unload_no_mcp(struct bxe_softc *sc)
3876 {
3877     int port = SC_PORT(sc);
3878     int path = SC_PATH(sc);
3879 
3880     BLOGI(sc, "NO MCP - load counts[%d]      %d, %d, %d\n",
3881           path, load_count[path][0], load_count[path][1],
3882           load_count[path][2]);
3883     load_count[path][0]--;
3884     load_count[path][1 + port]--;
3885     BLOGI(sc, "NO MCP - new load counts[%d]  %d, %d, %d\n",
3886           path, load_count[path][0], load_count[path][1],
3887           load_count[path][2]);
3888     if (load_count[path][0] == 0) {
3889         return (FW_MSG_CODE_DRV_UNLOAD_COMMON);
3890     } else if (load_count[path][1 + port] == 0) {
3891         return (FW_MSG_CODE_DRV_UNLOAD_PORT);
3892     } else {
3893         return (FW_MSG_CODE_DRV_UNLOAD_FUNCTION);
3894     }
3895 }
3896 
3897 /* request unload mode from the MCP: COMMON, PORT or FUNCTION */
3898 static uint32_t
3899 bxe_send_unload_req(struct bxe_softc *sc,
3900                     int              unload_mode)
3901 {
3902     uint32_t reset_code = 0;
3903 #if 0
3904     int port = SC_PORT(sc);
3905     int path = SC_PATH(sc);
3906 #endif
3907 
3908     /* Select the UNLOAD request mode */
3909     if (unload_mode == UNLOAD_NORMAL) {
3910         reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
3911     }
3912 #if 0
3913     else if (sc->flags & BXE_NO_WOL_FLAG) {
3914         reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP;
3915     } else if (sc->wol) {
3916         uint32_t emac_base = port ? GRCBASE_EMAC1 : GRCBASE_EMAC0;
3917         uint8_t *mac_addr = sc->dev->dev_addr;
3918         uint32_t val;
3919         uint16_t pmc;
3920 
3921         /*
3922          * The mac address is written to entries 1-4 to
3923          * preserve entry 0 which is used by the PMF
3924          */
3925         uint8_t entry = (SC_VN(sc) + 1)*8;
3926 
3927         val = (mac_addr[0] << 8) | mac_addr[1];
3928         EMAC_WR(sc, EMAC_REG_EMAC_MAC_MATCH + entry, val);
3929 
3930         val = (mac_addr[2] << 24) | (mac_addr[3] << 16) |
3931               (mac_addr[4] << 8) | mac_addr[5];
3932         EMAC_WR(sc, EMAC_REG_EMAC_MAC_MATCH + entry + 4, val);
3933 
3934         /* Enable the PME and clear the status */
3935         pmc = pci_read_config(sc->dev,
3936                               (sc->devinfo.pcie_pm_cap_reg +
3937                                PCIR_POWER_STATUS),
3938                               2);
3939         pmc |= PCIM_PSTAT_PMEENABLE | PCIM_PSTAT_PME;
3940         pci_write_config(sc->dev,
3941                          (sc->devinfo.pcie_pm_cap_reg +
3942                           PCIR_POWER_STATUS),
3943                          pmc, 4);
3944 
3945         reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_EN;
3946     }
3947 #endif
3948     else {
3949         reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
3950     }
3951 
3952     /* Send the request to the MCP */
3953     if (!BXE_NOMCP(sc)) {
3954         reset_code = bxe_fw_command(sc, reset_code, 0);
3955     } else {
3956         reset_code = bxe_nic_unload_no_mcp(sc);
3957     }
3958 
3959     return (reset_code);
3960 }
3961 
3962 /* send UNLOAD_DONE command to the MCP */
3963 static void
3964 bxe_send_unload_done(struct bxe_softc *sc,
3965                      uint8_t          keep_link)
3966 {
3967     uint32_t reset_param =
3968         keep_link ? DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET : 0;
3969 
3970     /* Report UNLOAD_DONE to MCP */
3971     if (!BXE_NOMCP(sc)) {
3972         bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_DONE, reset_param);
3973     }
3974 }
3975 
3976 static int
3977 bxe_func_wait_started(struct bxe_softc *sc)
3978 {
3979     int tout = 50;
3980 
3981     if (!sc->port.pmf) {
3982         return (0);
3983     }
3984 
3985     /*
3986      * (assumption: No Attention from MCP at this stage)
3987      * PMF probably in the middle of TX disable/enable transaction
3988      * 1. Sync IRS for default SB
3989      * 2. Sync SP queue - this guarantees us that attention handling started
3990      * 3. Wait, that TX disable/enable transaction completes
3991      *
3992      * 1+2 guarantee that if DCBX attention was scheduled it already changed
3993      * pending bit of transaction from STARTED-->TX_STOPPED, if we already
3994      * received completion for the transaction the state is TX_STOPPED.
3995      * State will return to STARTED after completion of TX_STOPPED-->STARTED
3996      * transaction.
3997      */
3998 
3999     /* XXX make sure default SB ISR is done */
4000     /* need a way to synchronize an irq (intr_mtx?) */
4001 
4002     /* XXX flush any work queues */
4003 
4004     while (ecore_func_get_state(sc, &sc->func_obj) !=
4005            ECORE_F_STATE_STARTED && tout--) {
4006         DELAY(20000);
4007     }
4008 
4009     if (ecore_func_get_state(sc, &sc->func_obj) != ECORE_F_STATE_STARTED) {
4010         /*
4011          * Failed to complete the transaction in a "good way"
4012          * Force both transactions with CLR bit.
4013          */
4014         struct ecore_func_state_params func_params = { NULL };
4015 
4016         BLOGE(sc, "Unexpected function state! "
4017                   "Forcing STARTED-->TX_STOPPED-->STARTED\n");
4018 
4019         func_params.f_obj = &sc->func_obj;
4020         bxe_set_bit(RAMROD_DRV_CLR_ONLY, &func_params.ramrod_flags);
4021 
4022         /* STARTED-->TX_STOPPED */
4023         func_params.cmd = ECORE_F_CMD_TX_STOP;
4024         ecore_func_state_change(sc, &func_params);
4025 
4026         /* TX_STOPPED-->STARTED */
4027         func_params.cmd = ECORE_F_CMD_TX_START;
4028         return (ecore_func_state_change(sc, &func_params));
4029     }
4030 
4031     return (0);
4032 }
4033 
4034 static int
4035 bxe_stop_queue(struct bxe_softc *sc,
4036                int              index)
4037 {
4038     struct bxe_fastpath *fp = &sc->fp[index];
4039     struct ecore_queue_state_params q_params = { NULL };
4040     int rc;
4041 
4042     BLOGD(sc, DBG_LOAD, "stopping queue %d cid %d\n", index, fp->index);
4043 
4044     q_params.q_obj = &sc->sp_objs[fp->index].q_obj;
4045     /* We want to wait for completion in this context */
4046     bxe_set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
4047 
4048     /* Stop the primary connection: */
4049 
4050     /* ...halt the connection */
4051     q_params.cmd = ECORE_Q_CMD_HALT;
4052     rc = ecore_queue_state_change(sc, &q_params);
4053     if (rc) {
4054         return (rc);
4055     }
4056 
4057     /* ...terminate the connection */
4058     q_params.cmd = ECORE_Q_CMD_TERMINATE;
4059     memset(&q_params.params.terminate, 0, sizeof(q_params.params.terminate));
4060     q_params.params.terminate.cid_index = FIRST_TX_COS_INDEX;
4061     rc = ecore_queue_state_change(sc, &q_params);
4062     if (rc) {
4063         return (rc);
4064     }
4065 
4066     /* ...delete cfc entry */
4067     q_params.cmd = ECORE_Q_CMD_CFC_DEL;
4068     memset(&q_params.params.cfc_del, 0, sizeof(q_params.params.cfc_del));
4069     q_params.params.cfc_del.cid_index = FIRST_TX_COS_INDEX;
4070     return (ecore_queue_state_change(sc, &q_params));
4071 }
4072 
4073 /* wait for the outstanding SP commands */
4074 static inline uint8_t
4075 bxe_wait_sp_comp(struct bxe_softc *sc,
4076                  unsigned long    mask)
4077 {
4078     unsigned long tmp;
4079     int tout = 5000; /* wait for 5 secs tops */
4080 
4081     while (tout--) {
4082         mb();
4083         if (!(atomic_load_acq_long(&sc->sp_state) & mask)) {
4084             return (TRUE);
4085         }
4086 
4087         DELAY(1000);
4088     }
4089 
4090     mb();
4091 
4092     tmp = atomic_load_acq_long(&sc->sp_state);
4093     if (tmp & mask) {
4094         BLOGE(sc, "Filtering completion timed out: "
4095                   "sp_state 0x%lx, mask 0x%lx\n",
4096               tmp, mask);
4097         return (FALSE);
4098     }
4099 
4100     return (FALSE);
4101 }
4102 
4103 static int
4104 bxe_func_stop(struct bxe_softc *sc)
4105 {
4106     struct ecore_func_state_params func_params = { NULL };
4107     int rc;
4108 
4109     /* prepare parameters for function state transitions */
4110     bxe_set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
4111     func_params.f_obj = &sc->func_obj;
4112     func_params.cmd = ECORE_F_CMD_STOP;
4113 
4114     /*
4115      * Try to stop the function the 'good way'. If it fails (in case
4116      * of a parity error during bxe_chip_cleanup()) and we are
4117      * not in a debug mode, perform a state transaction in order to
4118      * enable further HW_RESET transaction.
4119      */
4120     rc = ecore_func_state_change(sc, &func_params);
4121     if (rc) {
4122         BLOGE(sc, "FUNC_STOP ramrod failed. "
4123                   "Running a dry transaction\n");
4124         bxe_set_bit(RAMROD_DRV_CLR_ONLY, &func_params.ramrod_flags);
4125         return (ecore_func_state_change(sc, &func_params));
4126     }
4127 
4128     return (0);
4129 }
4130 
4131 static int
4132 bxe_reset_hw(struct bxe_softc *sc,
4133              uint32_t         load_code)
4134 {
4135     struct ecore_func_state_params func_params = { NULL };
4136 
4137     /* Prepare parameters for function state transitions */
4138     bxe_set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
4139 
4140     func_params.f_obj = &sc->func_obj;
4141     func_params.cmd = ECORE_F_CMD_HW_RESET;
4142 
4143     func_params.params.hw_init.load_phase = load_code;
4144 
4145     return (ecore_func_state_change(sc, &func_params));
4146 }
4147 
4148 static void
4149 bxe_int_disable_sync(struct bxe_softc *sc,
4150                      int              disable_hw)
4151 {
4152     if (disable_hw) {
4153         /* prevent the HW from sending interrupts */
4154         bxe_int_disable(sc);
4155     }
4156 
4157     /* XXX need a way to synchronize ALL irqs (intr_mtx?) */
4158     /* make sure all ISRs are done */
4159 
4160     /* XXX make sure sp_task is not running */
4161     /* cancel and flush work queues */
4162 }
4163 
4164 static void
4165 bxe_chip_cleanup(struct bxe_softc *sc,
4166                  uint32_t         unload_mode,
4167                  uint8_t          keep_link)
4168 {
4169     int port = SC_PORT(sc);
4170     struct ecore_mcast_ramrod_params rparam = { NULL };
4171     uint32_t reset_code;
4172     int i, rc = 0;
4173 
4174     bxe_drain_tx_queues(sc);
4175 
4176     /* give HW time to discard old tx messages */
4177     DELAY(1000);
4178 
4179     /* Clean all ETH MACs */
4180     rc = bxe_del_all_macs(sc, &sc->sp_objs[0].mac_obj, ECORE_ETH_MAC, FALSE);
4181     if (rc < 0) {
4182         BLOGE(sc, "Failed to delete all ETH MACs (%d)\n", rc);
4183     }
4184 
4185     /* Clean up UC list  */
4186     rc = bxe_del_all_macs(sc, &sc->sp_objs[0].mac_obj, ECORE_UC_LIST_MAC, TRUE);
4187     if (rc < 0) {
4188         BLOGE(sc, "Failed to delete UC MACs list (%d)\n", rc);
4189     }
4190 
4191     /* Disable LLH */
4192     if (!CHIP_IS_E1(sc)) {
4193         REG_WR(sc, NIG_REG_LLH0_FUNC_EN + port*8, 0);
4194     }
4195 
4196     /* Set "drop all" to stop Rx */
4197 
4198     /*
4199      * We need to take the BXE_MCAST_LOCK() here in order to prevent
4200      * a race between the completion code and this code.
4201      */
4202     BXE_MCAST_LOCK(sc);
4203 
4204     if (bxe_test_bit(ECORE_FILTER_RX_MODE_PENDING, &sc->sp_state)) {
4205         bxe_set_bit(ECORE_FILTER_RX_MODE_SCHED, &sc->sp_state);
4206     } else {
4207         bxe_set_storm_rx_mode(sc);
4208     }
4209 
4210     /* Clean up multicast configuration */
4211     rparam.mcast_obj = &sc->mcast_obj;
4212     rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_DEL);
4213     if (rc < 0) {
4214         BLOGE(sc, "Failed to send DEL MCAST command (%d)\n", rc);
4215     }
4216 
4217     BXE_MCAST_UNLOCK(sc);
4218 
4219     // XXX bxe_iov_chip_cleanup(sc);
4220 
4221     /*
4222      * Send the UNLOAD_REQUEST to the MCP. This will return if
4223      * this function should perform FUNCTION, PORT, or COMMON HW
4224      * reset.
4225      */
4226     reset_code = bxe_send_unload_req(sc, unload_mode);
4227 
4228     /*
4229      * (assumption: No Attention from MCP at this stage)
4230      * PMF probably in the middle of TX disable/enable transaction
4231      */
4232     rc = bxe_func_wait_started(sc);
4233     if (rc) {
4234         BLOGE(sc, "bxe_func_wait_started failed\n");
4235     }
4236 
4237     /*
4238      * Close multi and leading connections
4239      * Completions for ramrods are collected in a synchronous way
4240      */
4241     for (i = 0; i < sc->num_queues; i++) {
4242         if (bxe_stop_queue(sc, i)) {
4243             goto unload_error;
4244         }
4245     }
4246 
4247     /*
4248      * If SP settings didn't get completed so far - something
4249      * very wrong has happen.
4250      */
4251     if (!bxe_wait_sp_comp(sc, ~0x0UL)) {
4252         BLOGE(sc, "Common slow path ramrods got stuck!\n");
4253     }
4254 
4255 unload_error:
4256 
4257     rc = bxe_func_stop(sc);
4258     if (rc) {
4259         BLOGE(sc, "Function stop failed!\n");
4260     }
4261 
4262     /* disable HW interrupts */
4263     bxe_int_disable_sync(sc, TRUE);
4264 
4265     /* detach interrupts */
4266     bxe_interrupt_detach(sc);
4267 
4268     /* Reset the chip */
4269     rc = bxe_reset_hw(sc, reset_code);
4270     if (rc) {
4271         BLOGE(sc, "Hardware reset failed\n");
4272     }
4273 
4274     /* Report UNLOAD_DONE to MCP */
4275     bxe_send_unload_done(sc, keep_link);
4276 }
4277 
4278 static void
4279 bxe_disable_close_the_gate(struct bxe_softc *sc)
4280 {
4281     uint32_t val;
4282     int port = SC_PORT(sc);
4283 
4284     BLOGD(sc, DBG_LOAD,
4285           "Disabling 'close the gates'\n");
4286 
4287     if (CHIP_IS_E1(sc)) {
4288         uint32_t addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
4289                                MISC_REG_AEU_MASK_ATTN_FUNC_0;
4290         val = REG_RD(sc, addr);
4291         val &= ~(0x300);
4292         REG_WR(sc, addr, val);
4293     } else {
4294         val = REG_RD(sc, MISC_REG_AEU_GENERAL_MASK);
4295         val &= ~(MISC_AEU_GENERAL_MASK_REG_AEU_PXP_CLOSE_MASK |
4296                  MISC_AEU_GENERAL_MASK_REG_AEU_NIG_CLOSE_MASK);
4297         REG_WR(sc, MISC_REG_AEU_GENERAL_MASK, val);
4298     }
4299 }
4300 
4301 /*
4302  * Cleans the object that have internal lists without sending
4303  * ramrods. Should be run when interrutps are disabled.
4304  */
4305 static void
4306 bxe_squeeze_objects(struct bxe_softc *sc)
4307 {
4308     unsigned long ramrod_flags = 0, vlan_mac_flags = 0;
4309     struct ecore_mcast_ramrod_params rparam = { NULL };
4310     struct ecore_vlan_mac_obj *mac_obj = &sc->sp_objs->mac_obj;
4311     int rc;
4312 
4313     /* Cleanup MACs' object first... */
4314 
4315     /* Wait for completion of requested */
4316     bxe_set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
4317     /* Perform a dry cleanup */
4318     bxe_set_bit(RAMROD_DRV_CLR_ONLY, &ramrod_flags);
4319 
4320     /* Clean ETH primary MAC */
4321     bxe_set_bit(ECORE_ETH_MAC, &vlan_mac_flags);
4322     rc = mac_obj->delete_all(sc, &sc->sp_objs->mac_obj, &vlan_mac_flags,
4323                              &ramrod_flags);
4324     if (rc != 0) {
4325         BLOGE(sc, "Failed to clean ETH MACs (%d)\n", rc);
4326     }
4327 
4328     /* Cleanup UC list */
4329     vlan_mac_flags = 0;
4330     bxe_set_bit(ECORE_UC_LIST_MAC, &vlan_mac_flags);
4331     rc = mac_obj->delete_all(sc, mac_obj, &vlan_mac_flags,
4332                              &ramrod_flags);
4333     if (rc != 0) {
4334         BLOGE(sc, "Failed to clean UC list MACs (%d)\n", rc);
4335     }
4336 
4337     /* Now clean mcast object... */
4338 
4339     rparam.mcast_obj = &sc->mcast_obj;
4340     bxe_set_bit(RAMROD_DRV_CLR_ONLY, &rparam.ramrod_flags);
4341 
4342     /* Add a DEL command... */
4343     rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_DEL);
4344     if (rc < 0) {
4345         BLOGE(sc, "Failed to send DEL MCAST command (%d)\n", rc);
4346     }
4347 
4348     /* now wait until all pending commands are cleared */
4349 
4350     rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_CONT);
4351     while (rc != 0) {
4352         if (rc < 0) {
4353             BLOGE(sc, "Failed to clean MCAST object (%d)\n", rc);
4354             return;
4355         }
4356 
4357         rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_CONT);
4358     }
4359 }
4360 
4361 /* stop the controller */
4362 static __noinline int
4363 bxe_nic_unload(struct bxe_softc *sc,
4364                uint32_t         unload_mode,
4365                uint8_t          keep_link)
4366 {
4367     uint8_t global = FALSE;
4368     uint32_t val;
4369 
4370     BXE_CORE_LOCK_ASSERT(sc);
4371 
4372     BLOGD(sc, DBG_LOAD, "Starting NIC unload...\n");
4373 
4374     /* mark driver as unloaded in shmem2 */
4375     if (IS_PF(sc) && SHMEM2_HAS(sc, drv_capabilities_flag)) {
4376         val = SHMEM2_RD(sc, drv_capabilities_flag[SC_FW_MB_IDX(sc)]);
4377         SHMEM2_WR(sc, drv_capabilities_flag[SC_FW_MB_IDX(sc)],
4378                   val & ~DRV_FLAGS_CAPABILITIES_LOADED_L2);
4379     }
4380 
4381     if (IS_PF(sc) && sc->recovery_state != BXE_RECOVERY_DONE &&
4382         (sc->state == BXE_STATE_CLOSED || sc->state == BXE_STATE_ERROR)) {
4383         /*
4384          * We can get here if the driver has been unloaded
4385          * during parity error recovery and is either waiting for a
4386          * leader to complete or for other functions to unload and
4387          * then ifconfig down has been issued. In this case we want to
4388          * unload and let other functions to complete a recovery
4389          * process.
4390          */
4391         sc->recovery_state = BXE_RECOVERY_DONE;
4392         sc->is_leader = 0;
4393         bxe_release_leader_lock(sc);
4394         mb();
4395 
4396         BLOGD(sc, DBG_LOAD, "Releasing a leadership...\n");
4397         BLOGE(sc, "Can't unload in closed or error state\n");
4398         return (-1);
4399     }
4400 
4401     /*
4402      * Nothing to do during unload if previous bxe_nic_load()
4403      * did not completed succesfully - all resourses are released.
4404      */
4405     if ((sc->state == BXE_STATE_CLOSED) ||
4406         (sc->state == BXE_STATE_ERROR)) {
4407         return (0);
4408     }
4409 
4410     sc->state = BXE_STATE_CLOSING_WAITING_HALT;
4411     mb();
4412 
4413     /* stop tx */
4414     bxe_tx_disable(sc);
4415 
4416     sc->rx_mode = BXE_RX_MODE_NONE;
4417     /* XXX set rx mode ??? */
4418 
4419     if (IS_PF(sc)) {
4420         /* set ALWAYS_ALIVE bit in shmem */
4421         sc->fw_drv_pulse_wr_seq |= DRV_PULSE_ALWAYS_ALIVE;
4422 
4423         bxe_drv_pulse(sc);
4424 
4425         bxe_stats_handle(sc, STATS_EVENT_STOP);
4426         bxe_save_statistics(sc);
4427     }
4428 
4429     /* wait till consumers catch up with producers in all queues */
4430     bxe_drain_tx_queues(sc);
4431 
4432     /* if VF indicate to PF this function is going down (PF will delete sp
4433      * elements and clear initializations
4434      */
4435     if (IS_VF(sc)) {
4436         ; /* bxe_vfpf_close_vf(sc); */
4437     } else if (unload_mode != UNLOAD_RECOVERY) {
4438         /* if this is a normal/close unload need to clean up chip */
4439         bxe_chip_cleanup(sc, unload_mode, keep_link);
4440     } else {
4441         /* Send the UNLOAD_REQUEST to the MCP */
4442         bxe_send_unload_req(sc, unload_mode);
4443 
4444         /*
4445          * Prevent transactions to host from the functions on the
4446          * engine that doesn't reset global blocks in case of global
4447          * attention once gloabl blocks are reset and gates are opened
4448          * (the engine which leader will perform the recovery
4449          * last).
4450          */
4451         if (!CHIP_IS_E1x(sc)) {
4452             bxe_pf_disable(sc);
4453         }
4454 
4455         /* disable HW interrupts */
4456         bxe_int_disable_sync(sc, TRUE);
4457 
4458         /* detach interrupts */
4459         bxe_interrupt_detach(sc);
4460 
4461         /* Report UNLOAD_DONE to MCP */
4462         bxe_send_unload_done(sc, FALSE);
4463     }
4464 
4465     /*
4466      * At this stage no more interrupts will arrive so we may safely clean
4467      * the queue'able objects here in case they failed to get cleaned so far.
4468      */
4469     if (IS_PF(sc)) {
4470         bxe_squeeze_objects(sc);
4471     }
4472 
4473     /* There should be no more pending SP commands at this stage */
4474     sc->sp_state = 0;
4475 
4476     sc->port.pmf = 0;
4477 
4478     bxe_free_fp_buffers(sc);
4479 
4480     if (IS_PF(sc)) {
4481         bxe_free_mem(sc);
4482     }
4483 
4484     bxe_free_fw_stats_mem(sc);
4485 
4486     sc->state = BXE_STATE_CLOSED;
4487 
4488     /*
4489      * Check if there are pending parity attentions. If there are - set
4490      * RECOVERY_IN_PROGRESS.
4491      */
4492     if (IS_PF(sc) && bxe_chk_parity_attn(sc, &global, FALSE)) {
4493         bxe_set_reset_in_progress(sc);
4494 
4495         /* Set RESET_IS_GLOBAL if needed */
4496         if (global) {
4497             bxe_set_reset_global(sc);
4498         }
4499     }
4500 
4501     /*
4502      * The last driver must disable a "close the gate" if there is no
4503      * parity attention or "process kill" pending.
4504      */
4505     if (IS_PF(sc) && !bxe_clear_pf_load(sc) &&
4506         bxe_reset_is_done(sc, SC_PATH(sc))) {
4507         bxe_disable_close_the_gate(sc);
4508     }
4509 
4510     BLOGD(sc, DBG_LOAD, "Ended NIC unload\n");
4511 
4512     return (0);
4513 }
4514 
4515 /*
4516  * Called by the OS to set various media options (i.e. link, speed, etc.) when
4517  * the user runs "ifconfig bxe media ..." or "ifconfig bxe mediaopt ...".
4518  */
4519 static int
4520 bxe_ifmedia_update(struct ifnet  *ifp)
4521 {
4522     struct bxe_softc *sc = (struct bxe_softc *)if_getsoftc(ifp);
4523     struct ifmedia *ifm;
4524 
4525     ifm = &sc->ifmedia;
4526 
4527     /* We only support Ethernet media type. */
4528     if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER) {
4529         return (EINVAL);
4530     }
4531 
4532     switch (IFM_SUBTYPE(ifm->ifm_media)) {
4533     case IFM_AUTO:
4534          break;
4535     case IFM_10G_CX4:
4536     case IFM_10G_SR:
4537     case IFM_10G_T:
4538     case IFM_10G_TWINAX:
4539     default:
4540         /* We don't support changing the media type. */
4541         BLOGD(sc, DBG_LOAD, "Invalid media type (%d)\n",
4542               IFM_SUBTYPE(ifm->ifm_media));
4543         return (EINVAL);
4544     }
4545 
4546     return (0);
4547 }
4548 
4549 /*
4550  * Called by the OS to get the current media status (i.e. link, speed, etc.).
4551  */
4552 static void
4553 bxe_ifmedia_status(struct ifnet *ifp, struct ifmediareq *ifmr)
4554 {
4555     struct bxe_softc *sc = if_getsoftc(ifp);
4556 
4557     /* Report link down if the driver isn't running. */
4558     if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) == 0) {
4559         ifmr->ifm_active |= IFM_NONE;
4560         return;
4561     }
4562 
4563     /* Setup the default interface info. */
4564     ifmr->ifm_status = IFM_AVALID;
4565     ifmr->ifm_active = IFM_ETHER;
4566 
4567     if (sc->link_vars.link_up) {
4568         ifmr->ifm_status |= IFM_ACTIVE;
4569     } else {
4570         ifmr->ifm_active |= IFM_NONE;
4571         return;
4572     }
4573 
4574     ifmr->ifm_active |= sc->media;
4575 
4576     if (sc->link_vars.duplex == DUPLEX_FULL) {
4577         ifmr->ifm_active |= IFM_FDX;
4578     } else {
4579         ifmr->ifm_active |= IFM_HDX;
4580     }
4581 }
4582 
4583 static int
4584 bxe_ioctl_nvram(struct bxe_softc *sc,
4585                 uint32_t         priv_op,
4586                 struct ifreq     *ifr)
4587 {
4588     struct bxe_nvram_data nvdata_base;
4589     struct bxe_nvram_data *nvdata;
4590     int len;
4591     int error = 0;
4592 
4593     copyin(ifr->ifr_data, &nvdata_base, sizeof(nvdata_base));
4594 
4595     len = (sizeof(struct bxe_nvram_data) +
4596            nvdata_base.len -
4597            sizeof(uint32_t));
4598 
4599     if (len > sizeof(struct bxe_nvram_data)) {
4600         if ((nvdata = (struct bxe_nvram_data *)
4601                  malloc(len, M_DEVBUF,
4602                         (M_NOWAIT | M_ZERO))) == NULL) {
4603             BLOGE(sc, "BXE_IOC_RD_NVRAM malloc failed\n");
4604             return (1);
4605         }
4606         memcpy(nvdata, &nvdata_base, sizeof(struct bxe_nvram_data));
4607     } else {
4608         nvdata = &nvdata_base;
4609     }
4610 
4611     if (priv_op == BXE_IOC_RD_NVRAM) {
4612         BLOGD(sc, DBG_IOCTL, "IOC_RD_NVRAM 0x%x %d\n",
4613               nvdata->offset, nvdata->len);
4614         error = bxe_nvram_read(sc,
4615                                nvdata->offset,
4616                                (uint8_t *)nvdata->value,
4617                                nvdata->len);
4618         copyout(nvdata, ifr->ifr_data, len);
4619     } else { /* BXE_IOC_WR_NVRAM */
4620         BLOGD(sc, DBG_IOCTL, "IOC_WR_NVRAM 0x%x %d\n",
4621               nvdata->offset, nvdata->len);
4622         copyin(ifr->ifr_data, nvdata, len);
4623         error = bxe_nvram_write(sc,
4624                                 nvdata->offset,
4625                                 (uint8_t *)nvdata->value,
4626                                 nvdata->len);
4627     }
4628 
4629     if (len > sizeof(struct bxe_nvram_data)) {
4630         free(nvdata, M_DEVBUF);
4631     }
4632 
4633     return (error);
4634 }
4635 
4636 static int
4637 bxe_ioctl_stats_show(struct bxe_softc *sc,
4638                      uint32_t         priv_op,
4639                      struct ifreq     *ifr)
4640 {
4641     const size_t str_size   = (BXE_NUM_ETH_STATS * STAT_NAME_LEN);
4642     const size_t stats_size = (BXE_NUM_ETH_STATS * sizeof(uint64_t));
4643     caddr_t p_tmp;
4644     uint32_t *offset;
4645     int i;
4646 
4647     switch (priv_op)
4648     {
4649     case BXE_IOC_STATS_SHOW_NUM:
4650         memset(ifr->ifr_data, 0, sizeof(union bxe_stats_show_data));
4651         ((union bxe_stats_show_data *)ifr->ifr_data)->desc.num =
4652             BXE_NUM_ETH_STATS;
4653         ((union bxe_stats_show_data *)ifr->ifr_data)->desc.len =
4654             STAT_NAME_LEN;
4655         return (0);
4656 
4657     case BXE_IOC_STATS_SHOW_STR:
4658         memset(ifr->ifr_data, 0, str_size);
4659         p_tmp = ifr->ifr_data;
4660         for (i = 0; i < BXE_NUM_ETH_STATS; i++) {
4661             strcpy(p_tmp, bxe_eth_stats_arr[i].string);
4662             p_tmp += STAT_NAME_LEN;
4663         }
4664         return (0);
4665 
4666     case BXE_IOC_STATS_SHOW_CNT:
4667         memset(ifr->ifr_data, 0, stats_size);
4668         p_tmp = ifr->ifr_data;
4669         for (i = 0; i < BXE_NUM_ETH_STATS; i++) {
4670             offset = ((uint32_t *)&sc->eth_stats +
4671                       bxe_eth_stats_arr[i].offset);
4672             switch (bxe_eth_stats_arr[i].size) {
4673             case 4:
4674                 *((uint64_t *)p_tmp) = (uint64_t)*offset;
4675                 break;
4676             case 8:
4677                 *((uint64_t *)p_tmp) = HILO_U64(*offset, *(offset + 1));
4678                 break;
4679             default:
4680                 *((uint64_t *)p_tmp) = 0;
4681             }
4682             p_tmp += sizeof(uint64_t);
4683         }
4684         return (0);
4685 
4686     default:
4687         return (-1);
4688     }
4689 }
4690 
4691 static void
4692 bxe_handle_chip_tq(void *context,
4693                    int  pending)
4694 {
4695     struct bxe_softc *sc = (struct bxe_softc *)context;
4696     long work = atomic_load_acq_long(&sc->chip_tq_flags);
4697 
4698     switch (work)
4699     {
4700     case CHIP_TQ_START:
4701         if ((if_getflags(sc->ifp) & IFF_UP) &&
4702             !(if_getdrvflags(sc->ifp) & IFF_DRV_RUNNING)) {
4703             /* start the interface */
4704             BLOGD(sc, DBG_LOAD, "Starting the interface...\n");
4705             BXE_CORE_LOCK(sc);
4706             bxe_init_locked(sc);
4707             BXE_CORE_UNLOCK(sc);
4708         }
4709         break;
4710 
4711     case CHIP_TQ_STOP:
4712         if (!(if_getflags(sc->ifp) & IFF_UP) &&
4713             (if_getdrvflags(sc->ifp) & IFF_DRV_RUNNING)) {
4714             /* bring down the interface */
4715             BLOGD(sc, DBG_LOAD, "Stopping the interface...\n");
4716             bxe_periodic_stop(sc);
4717             BXE_CORE_LOCK(sc);
4718             bxe_stop_locked(sc);
4719             BXE_CORE_UNLOCK(sc);
4720         }
4721         break;
4722 
4723     case CHIP_TQ_REINIT:
4724         if (if_getdrvflags(sc->ifp) & IFF_DRV_RUNNING) {
4725             /* restart the interface */
4726             BLOGD(sc, DBG_LOAD, "Restarting the interface...\n");
4727             bxe_periodic_stop(sc);
4728             BXE_CORE_LOCK(sc);
4729             bxe_stop_locked(sc);
4730             bxe_init_locked(sc);
4731             BXE_CORE_UNLOCK(sc);
4732         }
4733         break;
4734 
4735     default:
4736         break;
4737     }
4738 }
4739 
4740 /*
4741  * Handles any IOCTL calls from the operating system.
4742  *
4743  * Returns:
4744  *   0 = Success, >0 Failure
4745  */
4746 static int
4747 bxe_ioctl(if_t ifp,
4748           u_long       command,
4749           caddr_t      data)
4750 {
4751     struct bxe_softc *sc = if_getsoftc(ifp);
4752     struct ifreq *ifr = (struct ifreq *)data;
4753     struct bxe_nvram_data *nvdata;
4754     uint32_t priv_op;
4755     int mask = 0;
4756     int reinit = 0;
4757     int error = 0;
4758 
4759     int mtu_min = (ETH_MIN_PACKET_SIZE - ETH_HLEN);
4760     int mtu_max = (MJUM9BYTES - ETH_OVERHEAD - IP_HEADER_ALIGNMENT_PADDING);
4761 
4762     switch (command)
4763     {
4764     case SIOCSIFMTU:
4765         BLOGD(sc, DBG_IOCTL, "Received SIOCSIFMTU ioctl (mtu=%d)\n",
4766               ifr->ifr_mtu);
4767 
4768         if (sc->mtu == ifr->ifr_mtu) {
4769             /* nothing to change */
4770             break;
4771         }
4772 
4773         if ((ifr->ifr_mtu < mtu_min) || (ifr->ifr_mtu > mtu_max)) {
4774             BLOGE(sc, "Unsupported MTU size %d (range is %d-%d)\n",
4775                   ifr->ifr_mtu, mtu_min, mtu_max);
4776             error = EINVAL;
4777             break;
4778         }
4779 
4780         atomic_store_rel_int((volatile unsigned int *)&sc->mtu,
4781                              (unsigned long)ifr->ifr_mtu);
4782 	/*
4783         atomic_store_rel_long((volatile unsigned long *)&if_getmtu(ifp),
4784                               (unsigned long)ifr->ifr_mtu);
4785 	XXX - Not sure why it needs to be atomic
4786 	*/
4787 	if_setmtu(ifp, ifr->ifr_mtu);
4788         reinit = 1;
4789         break;
4790 
4791     case SIOCSIFFLAGS:
4792         /* toggle the interface state up or down */
4793         BLOGD(sc, DBG_IOCTL, "Received SIOCSIFFLAGS ioctl\n");
4794 
4795         /* check if the interface is up */
4796         if (if_getflags(ifp) & IFF_UP) {
4797             if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
4798                 /* set the receive mode flags */
4799                 bxe_set_rx_mode(sc);
4800             } else {
4801                 atomic_store_rel_long(&sc->chip_tq_flags, CHIP_TQ_START);
4802                 taskqueue_enqueue(sc->chip_tq, &sc->chip_tq_task);
4803             }
4804         } else {
4805             if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
4806                 atomic_store_rel_long(&sc->chip_tq_flags, CHIP_TQ_STOP);
4807                 taskqueue_enqueue(sc->chip_tq, &sc->chip_tq_task);
4808             }
4809         }
4810 
4811         break;
4812 
4813     case SIOCADDMULTI:
4814     case SIOCDELMULTI:
4815         /* add/delete multicast addresses */
4816         BLOGD(sc, DBG_IOCTL, "Received SIOCADDMULTI/SIOCDELMULTI ioctl\n");
4817 
4818         /* check if the interface is up */
4819         if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
4820             /* set the receive mode flags */
4821             bxe_set_rx_mode(sc);
4822         }
4823 
4824         break;
4825 
4826     case SIOCSIFCAP:
4827         /* find out which capabilities have changed */
4828         mask = (ifr->ifr_reqcap ^ if_getcapenable(ifp));
4829 
4830         BLOGD(sc, DBG_IOCTL, "Received SIOCSIFCAP ioctl (mask=0x%08x)\n",
4831               mask);
4832 
4833         /* toggle the LRO capabilites enable flag */
4834         if (mask & IFCAP_LRO) {
4835 	    if_togglecapenable(ifp, IFCAP_LRO);
4836             BLOGD(sc, DBG_IOCTL, "Turning LRO %s\n",
4837                   (if_getcapenable(ifp) & IFCAP_LRO) ? "ON" : "OFF");
4838             reinit = 1;
4839         }
4840 
4841         /* toggle the TXCSUM checksum capabilites enable flag */
4842         if (mask & IFCAP_TXCSUM) {
4843 	    if_togglecapenable(ifp, IFCAP_TXCSUM);
4844             BLOGD(sc, DBG_IOCTL, "Turning TXCSUM %s\n",
4845                   (if_getcapenable(ifp) & IFCAP_TXCSUM) ? "ON" : "OFF");
4846             if (if_getcapenable(ifp) & IFCAP_TXCSUM) {
4847                 if_sethwassistbits(ifp, (CSUM_IP      |
4848                                     CSUM_TCP      |
4849                                     CSUM_UDP      |
4850                                     CSUM_TSO      |
4851                                     CSUM_TCP_IPV6 |
4852                                     CSUM_UDP_IPV6), 0);
4853             } else {
4854 		if_clearhwassist(ifp); /* XXX */
4855             }
4856         }
4857 
4858         /* toggle the RXCSUM checksum capabilities enable flag */
4859         if (mask & IFCAP_RXCSUM) {
4860 	    if_togglecapenable(ifp, IFCAP_RXCSUM);
4861             BLOGD(sc, DBG_IOCTL, "Turning RXCSUM %s\n",
4862                   (if_getcapenable(ifp) & IFCAP_RXCSUM) ? "ON" : "OFF");
4863             if (if_getcapenable(ifp) & IFCAP_RXCSUM) {
4864                 if_sethwassistbits(ifp, (CSUM_IP      |
4865                                     CSUM_TCP      |
4866                                     CSUM_UDP      |
4867                                     CSUM_TSO      |
4868                                     CSUM_TCP_IPV6 |
4869                                     CSUM_UDP_IPV6), 0);
4870             } else {
4871 		if_clearhwassist(ifp); /* XXX */
4872             }
4873         }
4874 
4875         /* toggle TSO4 capabilities enabled flag */
4876         if (mask & IFCAP_TSO4) {
4877             if_togglecapenable(ifp, IFCAP_TSO4);
4878             BLOGD(sc, DBG_IOCTL, "Turning TSO4 %s\n",
4879                   (if_getcapenable(ifp) & IFCAP_TSO4) ? "ON" : "OFF");
4880         }
4881 
4882         /* toggle TSO6 capabilities enabled flag */
4883         if (mask & IFCAP_TSO6) {
4884 	    if_togglecapenable(ifp, IFCAP_TSO6);
4885             BLOGD(sc, DBG_IOCTL, "Turning TSO6 %s\n",
4886                   (if_getcapenable(ifp) & IFCAP_TSO6) ? "ON" : "OFF");
4887         }
4888 
4889         /* toggle VLAN_HWTSO capabilities enabled flag */
4890         if (mask & IFCAP_VLAN_HWTSO) {
4891 
4892 	    if_togglecapenable(ifp, IFCAP_VLAN_HWTSO);
4893             BLOGD(sc, DBG_IOCTL, "Turning VLAN_HWTSO %s\n",
4894                   (if_getcapenable(ifp) & IFCAP_VLAN_HWTSO) ? "ON" : "OFF");
4895         }
4896 
4897         /* toggle VLAN_HWCSUM capabilities enabled flag */
4898         if (mask & IFCAP_VLAN_HWCSUM) {
4899             /* XXX investigate this... */
4900             BLOGE(sc, "Changing VLAN_HWCSUM is not supported!\n");
4901             error = EINVAL;
4902         }
4903 
4904         /* toggle VLAN_MTU capabilities enable flag */
4905         if (mask & IFCAP_VLAN_MTU) {
4906             /* XXX investigate this... */
4907             BLOGE(sc, "Changing VLAN_MTU is not supported!\n");
4908             error = EINVAL;
4909         }
4910 
4911         /* toggle VLAN_HWTAGGING capabilities enabled flag */
4912         if (mask & IFCAP_VLAN_HWTAGGING) {
4913             /* XXX investigate this... */
4914             BLOGE(sc, "Changing VLAN_HWTAGGING is not supported!\n");
4915             error = EINVAL;
4916         }
4917 
4918         /* toggle VLAN_HWFILTER capabilities enabled flag */
4919         if (mask & IFCAP_VLAN_HWFILTER) {
4920             /* XXX investigate this... */
4921             BLOGE(sc, "Changing VLAN_HWFILTER is not supported!\n");
4922             error = EINVAL;
4923         }
4924 
4925         /* XXX not yet...
4926          * IFCAP_WOL_MAGIC
4927          */
4928 
4929         break;
4930 
4931     case SIOCSIFMEDIA:
4932     case SIOCGIFMEDIA:
4933         /* set/get interface media */
4934         BLOGD(sc, DBG_IOCTL,
4935               "Received SIOCSIFMEDIA/SIOCGIFMEDIA ioctl (cmd=%lu)\n",
4936               (command & 0xff));
4937         error = ifmedia_ioctl_drv(ifp, ifr, &sc->ifmedia, command);
4938         break;
4939 
4940     case SIOCGPRIVATE_0:
4941         copyin(ifr->ifr_data, &priv_op, sizeof(priv_op));
4942 
4943         switch (priv_op)
4944         {
4945         case BXE_IOC_RD_NVRAM:
4946         case BXE_IOC_WR_NVRAM:
4947             nvdata = (struct bxe_nvram_data *)ifr->ifr_data;
4948             BLOGD(sc, DBG_IOCTL,
4949                   "Received Private NVRAM ioctl addr=0x%x size=%u\n",
4950                   nvdata->offset, nvdata->len);
4951             error = bxe_ioctl_nvram(sc, priv_op, ifr);
4952             break;
4953 
4954         case BXE_IOC_STATS_SHOW_NUM:
4955         case BXE_IOC_STATS_SHOW_STR:
4956         case BXE_IOC_STATS_SHOW_CNT:
4957             BLOGD(sc, DBG_IOCTL, "Received Private Stats ioctl (%d)\n",
4958                   priv_op);
4959             error = bxe_ioctl_stats_show(sc, priv_op, ifr);
4960             break;
4961 
4962         default:
4963             BLOGW(sc, "Received Private Unknown ioctl (%d)\n", priv_op);
4964             error = EINVAL;
4965             break;
4966         }
4967 
4968         break;
4969 
4970     default:
4971         BLOGD(sc, DBG_IOCTL, "Received Unknown Ioctl (cmd=%lu)\n",
4972               (command & 0xff));
4973         error = ether_ioctl_drv(ifp, command, data);
4974         break;
4975     }
4976 
4977     if (reinit && (if_getdrvflags(sc->ifp) & IFF_DRV_RUNNING)) {
4978         BLOGD(sc, DBG_LOAD | DBG_IOCTL,
4979               "Re-initializing hardware from IOCTL change\n");
4980         atomic_store_rel_long(&sc->chip_tq_flags, CHIP_TQ_REINIT);
4981         taskqueue_enqueue(sc->chip_tq, &sc->chip_tq_task);
4982     }
4983 
4984     return (error);
4985 }
4986 
4987 static __noinline void
4988 bxe_dump_mbuf(struct bxe_softc *sc,
4989               struct mbuf      *m,
4990               uint8_t          contents)
4991 {
4992     char * type;
4993     int i = 0;
4994 
4995     if (!(sc->debug & DBG_MBUF)) {
4996         return;
4997     }
4998 
4999     if (m == NULL) {
5000         BLOGD(sc, DBG_MBUF, "mbuf: null pointer\n");
5001         return;
5002     }
5003 
5004     while (m) {
5005         BLOGD(sc, DBG_MBUF,
5006               "%02d: mbuf=%p m_len=%d m_flags=0x%b m_data=%p\n",
5007               i, m, m->m_len, m->m_flags, M_FLAG_BITS, m->m_data);
5008 
5009         if (m->m_flags & M_PKTHDR) {
5010              BLOGD(sc, DBG_MBUF,
5011                    "%02d: - m_pkthdr: tot_len=%d flags=0x%b csum_flags=%b\n",
5012                    i, m->m_pkthdr.len, m->m_flags, M_FLAG_BITS,
5013                    (int)m->m_pkthdr.csum_flags, CSUM_BITS);
5014         }
5015 
5016         if (m->m_flags & M_EXT) {
5017             switch (m->m_ext.ext_type) {
5018             case EXT_CLUSTER:    type = "EXT_CLUSTER";    break;
5019             case EXT_SFBUF:      type = "EXT_SFBUF";      break;
5020             case EXT_JUMBOP:     type = "EXT_JUMBOP";     break;
5021             case EXT_JUMBO9:     type = "EXT_JUMBO9";     break;
5022             case EXT_JUMBO16:    type = "EXT_JUMBO16";    break;
5023             case EXT_PACKET:     type = "EXT_PACKET";     break;
5024             case EXT_MBUF:       type = "EXT_MBUF";       break;
5025             case EXT_NET_DRV:    type = "EXT_NET_DRV";    break;
5026             case EXT_MOD_TYPE:   type = "EXT_MOD_TYPE";   break;
5027             case EXT_DISPOSABLE: type = "EXT_DISPOSABLE"; break;
5028             case EXT_EXTREF:     type = "EXT_EXTREF";     break;
5029             default:             type = "UNKNOWN";        break;
5030             }
5031 
5032             BLOGD(sc, DBG_MBUF,
5033                   "%02d: - m_ext: %p ext_size=%d type=%s\n",
5034                   i, m->m_ext.ext_buf, m->m_ext.ext_size, type);
5035         }
5036 
5037         if (contents) {
5038             bxe_dump_mbuf_data(sc, "mbuf data", m, TRUE);
5039         }
5040 
5041         m = m->m_next;
5042         i++;
5043     }
5044 }
5045 
5046 /*
5047  * Checks to ensure the 13 bd sliding window is >= MSS for TSO.
5048  * Check that (13 total bds - 3 bds) = 10 bd window >= MSS.
5049  * The window: 3 bds are = 1 for headers BD + 2 for parse BD and last BD
5050  * The headers comes in a seperate bd in FreeBSD so 13-3=10.
5051  * Returns: 0 if OK to send, 1 if packet needs further defragmentation
5052  */
5053 static int
5054 bxe_chktso_window(struct bxe_softc  *sc,
5055                   int               nsegs,
5056                   bus_dma_segment_t *segs,
5057                   struct mbuf       *m)
5058 {
5059     uint32_t num_wnds, wnd_size, wnd_sum;
5060     int32_t frag_idx, wnd_idx;
5061     unsigned short lso_mss;
5062     int defrag;
5063 
5064     defrag = 0;
5065     wnd_sum = 0;
5066     wnd_size = 10;
5067     num_wnds = nsegs - wnd_size;
5068     lso_mss = htole16(m->m_pkthdr.tso_segsz);
5069 
5070     /*
5071      * Total header lengths Eth+IP+TCP in first FreeBSD mbuf so calculate the
5072      * first window sum of data while skipping the first assuming it is the
5073      * header in FreeBSD.
5074      */
5075     for (frag_idx = 1; (frag_idx <= wnd_size); frag_idx++) {
5076         wnd_sum += htole16(segs[frag_idx].ds_len);
5077     }
5078 
5079     /* check the first 10 bd window size */
5080     if (wnd_sum < lso_mss) {
5081         return (1);
5082     }
5083 
5084     /* run through the windows */
5085     for (wnd_idx = 0; wnd_idx < num_wnds; wnd_idx++, frag_idx++) {
5086         /* subtract the first mbuf->m_len of the last wndw(-header) */
5087         wnd_sum -= htole16(segs[wnd_idx+1].ds_len);
5088         /* add the next mbuf len to the len of our new window */
5089         wnd_sum += htole16(segs[frag_idx].ds_len);
5090         if (wnd_sum < lso_mss) {
5091             return (1);
5092         }
5093     }
5094 
5095     return (0);
5096 }
5097 
5098 static uint8_t
5099 bxe_set_pbd_csum_e2(struct bxe_fastpath *fp,
5100                     struct mbuf         *m,
5101                     uint32_t            *parsing_data)
5102 {
5103     struct ether_vlan_header *eh = NULL;
5104     struct ip *ip4 = NULL;
5105     struct ip6_hdr *ip6 = NULL;
5106     caddr_t ip = NULL;
5107     struct tcphdr *th = NULL;
5108     int e_hlen, ip_hlen, l4_off;
5109     uint16_t proto;
5110 
5111     if (m->m_pkthdr.csum_flags == CSUM_IP) {
5112         /* no L4 checksum offload needed */
5113         return (0);
5114     }
5115 
5116     /* get the Ethernet header */
5117     eh = mtod(m, struct ether_vlan_header *);
5118 
5119     /* handle VLAN encapsulation if present */
5120     if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) {
5121         e_hlen = (ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN);
5122         proto  = ntohs(eh->evl_proto);
5123     } else {
5124         e_hlen = ETHER_HDR_LEN;
5125         proto  = ntohs(eh->evl_encap_proto);
5126     }
5127 
5128     switch (proto) {
5129     case ETHERTYPE_IP:
5130         /* get the IP header, if mbuf len < 20 then header in next mbuf */
5131         ip4 = (m->m_len < sizeof(struct ip)) ?
5132                   (struct ip *)m->m_next->m_data :
5133                   (struct ip *)(m->m_data + e_hlen);
5134         /* ip_hl is number of 32-bit words */
5135         ip_hlen = (ip4->ip_hl << 2);
5136         ip = (caddr_t)ip4;
5137         break;
5138     case ETHERTYPE_IPV6:
5139         /* get the IPv6 header, if mbuf len < 40 then header in next mbuf */
5140         ip6 = (m->m_len < sizeof(struct ip6_hdr)) ?
5141                   (struct ip6_hdr *)m->m_next->m_data :
5142                   (struct ip6_hdr *)(m->m_data + e_hlen);
5143         /* XXX cannot support offload with IPv6 extensions */
5144         ip_hlen = sizeof(struct ip6_hdr);
5145         ip = (caddr_t)ip6;
5146         break;
5147     default:
5148         /* We can't offload in this case... */
5149         /* XXX error stat ??? */
5150         return (0);
5151     }
5152 
5153     /* XXX assuming L4 header is contiguous to IPv4/IPv6 in the same mbuf */
5154     l4_off = (e_hlen + ip_hlen);
5155 
5156     *parsing_data |=
5157         (((l4_off >> 1) << ETH_TX_PARSE_BD_E2_L4_HDR_START_OFFSET_W_SHIFT) &
5158          ETH_TX_PARSE_BD_E2_L4_HDR_START_OFFSET_W);
5159 
5160     if (m->m_pkthdr.csum_flags & (CSUM_TCP |
5161                                   CSUM_TSO |
5162                                   CSUM_TCP_IPV6)) {
5163         fp->eth_q_stats.tx_ofld_frames_csum_tcp++;
5164         th = (struct tcphdr *)(ip + ip_hlen);
5165         /* th_off is number of 32-bit words */
5166         *parsing_data |= ((th->th_off <<
5167                            ETH_TX_PARSE_BD_E2_TCP_HDR_LENGTH_DW_SHIFT) &
5168                           ETH_TX_PARSE_BD_E2_TCP_HDR_LENGTH_DW);
5169         return (l4_off + (th->th_off << 2)); /* entire header length */
5170     } else if (m->m_pkthdr.csum_flags & (CSUM_UDP |
5171                                          CSUM_UDP_IPV6)) {
5172         fp->eth_q_stats.tx_ofld_frames_csum_udp++;
5173         return (l4_off + sizeof(struct udphdr)); /* entire header length */
5174     } else {
5175         /* XXX error stat ??? */
5176         return (0);
5177     }
5178 }
5179 
5180 static uint8_t
5181 bxe_set_pbd_csum(struct bxe_fastpath        *fp,
5182                  struct mbuf                *m,
5183                  struct eth_tx_parse_bd_e1x *pbd)
5184 {
5185     struct ether_vlan_header *eh = NULL;
5186     struct ip *ip4 = NULL;
5187     struct ip6_hdr *ip6 = NULL;
5188     caddr_t ip = NULL;
5189     struct tcphdr *th = NULL;
5190     struct udphdr *uh = NULL;
5191     int e_hlen, ip_hlen;
5192     uint16_t proto;
5193     uint8_t hlen;
5194     uint16_t tmp_csum;
5195     uint32_t *tmp_uh;
5196 
5197     /* get the Ethernet header */
5198     eh = mtod(m, struct ether_vlan_header *);
5199 
5200     /* handle VLAN encapsulation if present */
5201     if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) {
5202         e_hlen = (ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN);
5203         proto  = ntohs(eh->evl_proto);
5204     } else {
5205         e_hlen = ETHER_HDR_LEN;
5206         proto  = ntohs(eh->evl_encap_proto);
5207     }
5208 
5209     switch (proto) {
5210     case ETHERTYPE_IP:
5211         /* get the IP header, if mbuf len < 20 then header in next mbuf */
5212         ip4 = (m->m_len < sizeof(struct ip)) ?
5213                   (struct ip *)m->m_next->m_data :
5214                   (struct ip *)(m->m_data + e_hlen);
5215         /* ip_hl is number of 32-bit words */
5216         ip_hlen = (ip4->ip_hl << 1);
5217         ip = (caddr_t)ip4;
5218         break;
5219     case ETHERTYPE_IPV6:
5220         /* get the IPv6 header, if mbuf len < 40 then header in next mbuf */
5221         ip6 = (m->m_len < sizeof(struct ip6_hdr)) ?
5222                   (struct ip6_hdr *)m->m_next->m_data :
5223                   (struct ip6_hdr *)(m->m_data + e_hlen);
5224         /* XXX cannot support offload with IPv6 extensions */
5225         ip_hlen = (sizeof(struct ip6_hdr) >> 1);
5226         ip = (caddr_t)ip6;
5227         break;
5228     default:
5229         /* We can't offload in this case... */
5230         /* XXX error stat ??? */
5231         return (0);
5232     }
5233 
5234     hlen = (e_hlen >> 1);
5235 
5236     /* note that rest of global_data is indirectly zeroed here */
5237     if (m->m_flags & M_VLANTAG) {
5238         pbd->global_data =
5239             htole16(hlen | (1 << ETH_TX_PARSE_BD_E1X_LLC_SNAP_EN_SHIFT));
5240     } else {
5241         pbd->global_data = htole16(hlen);
5242     }
5243 
5244     pbd->ip_hlen_w = ip_hlen;
5245 
5246     hlen += pbd->ip_hlen_w;
5247 
5248     /* XXX assuming L4 header is contiguous to IPv4/IPv6 in the same mbuf */
5249 
5250     if (m->m_pkthdr.csum_flags & (CSUM_TCP |
5251                                   CSUM_TSO |
5252                                   CSUM_TCP_IPV6)) {
5253         th = (struct tcphdr *)(ip + (ip_hlen << 1));
5254         /* th_off is number of 32-bit words */
5255         hlen += (uint16_t)(th->th_off << 1);
5256     } else if (m->m_pkthdr.csum_flags & (CSUM_UDP |
5257                                          CSUM_UDP_IPV6)) {
5258         uh = (struct udphdr *)(ip + (ip_hlen << 1));
5259         hlen += (sizeof(struct udphdr) / 2);
5260     } else {
5261         /* valid case as only CSUM_IP was set */
5262         return (0);
5263     }
5264 
5265     pbd->total_hlen_w = htole16(hlen);
5266 
5267     if (m->m_pkthdr.csum_flags & (CSUM_TCP |
5268                                   CSUM_TSO |
5269                                   CSUM_TCP_IPV6)) {
5270         fp->eth_q_stats.tx_ofld_frames_csum_tcp++;
5271         pbd->tcp_pseudo_csum = ntohs(th->th_sum);
5272     } else if (m->m_pkthdr.csum_flags & (CSUM_UDP |
5273                                          CSUM_UDP_IPV6)) {
5274         fp->eth_q_stats.tx_ofld_frames_csum_udp++;
5275 
5276         /*
5277          * Everest1 (i.e. 57710, 57711, 57711E) does not natively support UDP
5278          * checksums and does not know anything about the UDP header and where
5279          * the checksum field is located. It only knows about TCP. Therefore
5280          * we "lie" to the hardware for outgoing UDP packets w/ checksum
5281          * offload. Since the checksum field offset for TCP is 16 bytes and
5282          * for UDP it is 6 bytes we pass a pointer to the hardware that is 10
5283          * bytes less than the start of the UDP header. This allows the
5284          * hardware to write the checksum in the correct spot. But the
5285          * hardware will compute a checksum which includes the last 10 bytes
5286          * of the IP header. To correct this we tweak the stack computed
5287          * pseudo checksum by folding in the calculation of the inverse
5288          * checksum for those final 10 bytes of the IP header. This allows
5289          * the correct checksum to be computed by the hardware.
5290          */
5291 
5292         /* set pointer 10 bytes before UDP header */
5293         tmp_uh = (uint32_t *)((uint8_t *)uh - 10);
5294 
5295         /* calculate a pseudo header checksum over the first 10 bytes */
5296         tmp_csum = in_pseudo(*tmp_uh,
5297                              *(tmp_uh + 1),
5298                              *(uint16_t *)(tmp_uh + 2));
5299 
5300         pbd->tcp_pseudo_csum = ntohs(in_addword(uh->uh_sum, ~tmp_csum));
5301     }
5302 
5303     return (hlen * 2); /* entire header length, number of bytes */
5304 }
5305 
5306 static void
5307 bxe_set_pbd_lso_e2(struct mbuf *m,
5308                    uint32_t    *parsing_data)
5309 {
5310     *parsing_data |= ((m->m_pkthdr.tso_segsz <<
5311                        ETH_TX_PARSE_BD_E2_LSO_MSS_SHIFT) &
5312                       ETH_TX_PARSE_BD_E2_LSO_MSS);
5313 
5314     /* XXX test for IPv6 with extension header... */
5315 #if 0
5316     struct ip6_hdr *ip6;
5317     if (ip6 && ip6->ip6_nxt == 'some ipv6 extension header')
5318         *parsing_data |= ETH_TX_PARSE_BD_E2_IPV6_WITH_EXT_HDR;
5319 #endif
5320 }
5321 
5322 static void
5323 bxe_set_pbd_lso(struct mbuf                *m,
5324                 struct eth_tx_parse_bd_e1x *pbd)
5325 {
5326     struct ether_vlan_header *eh = NULL;
5327     struct ip *ip = NULL;
5328     struct tcphdr *th = NULL;
5329     int e_hlen;
5330 
5331     /* get the Ethernet header */
5332     eh = mtod(m, struct ether_vlan_header *);
5333 
5334     /* handle VLAN encapsulation if present */
5335     e_hlen = (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) ?
5336                  (ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN) : ETHER_HDR_LEN;
5337 
5338     /* get the IP and TCP header, with LSO entire header in first mbuf */
5339     /* XXX assuming IPv4 */
5340     ip = (struct ip *)(m->m_data + e_hlen);
5341     th = (struct tcphdr *)((caddr_t)ip + (ip->ip_hl << 2));
5342 
5343     pbd->lso_mss = htole16(m->m_pkthdr.tso_segsz);
5344     pbd->tcp_send_seq = ntohl(th->th_seq);
5345     pbd->tcp_flags = ((ntohl(((uint32_t *)th)[3]) >> 16) & 0xff);
5346 
5347 #if 1
5348         /* XXX IPv4 */
5349         pbd->ip_id = ntohs(ip->ip_id);
5350         pbd->tcp_pseudo_csum =
5351             ntohs(in_pseudo(ip->ip_src.s_addr,
5352                             ip->ip_dst.s_addr,
5353                             htons(IPPROTO_TCP)));
5354 #else
5355         /* XXX IPv6 */
5356         pbd->tcp_pseudo_csum =
5357             ntohs(in_pseudo(&ip6->ip6_src,
5358                             &ip6->ip6_dst,
5359                             htons(IPPROTO_TCP)));
5360 #endif
5361 
5362     pbd->global_data |=
5363         htole16(ETH_TX_PARSE_BD_E1X_PSEUDO_CS_WITHOUT_LEN);
5364 }
5365 
5366 /*
5367  * Encapsulte an mbuf cluster into the tx bd chain and makes the memory
5368  * visible to the controller.
5369  *
5370  * If an mbuf is submitted to this routine and cannot be given to the
5371  * controller (e.g. it has too many fragments) then the function may free
5372  * the mbuf and return to the caller.
5373  *
5374  * Returns:
5375  *   0 = Success, !0 = Failure
5376  *   Note the side effect that an mbuf may be freed if it causes a problem.
5377  */
5378 static int
5379 bxe_tx_encap(struct bxe_fastpath *fp, struct mbuf **m_head)
5380 {
5381     bus_dma_segment_t segs[32];
5382     struct mbuf *m0;
5383     struct bxe_sw_tx_bd *tx_buf;
5384     struct eth_tx_parse_bd_e1x *pbd_e1x = NULL;
5385     struct eth_tx_parse_bd_e2 *pbd_e2 = NULL;
5386     /* struct eth_tx_parse_2nd_bd *pbd2 = NULL; */
5387     struct eth_tx_bd *tx_data_bd;
5388     struct eth_tx_bd *tx_total_pkt_size_bd;
5389     struct eth_tx_start_bd *tx_start_bd;
5390     uint16_t bd_prod, pkt_prod, total_pkt_size;
5391     uint8_t mac_type;
5392     int defragged, error, nsegs, rc, nbds, vlan_off, ovlan;
5393     struct bxe_softc *sc;
5394     uint16_t tx_bd_avail;
5395     struct ether_vlan_header *eh;
5396     uint32_t pbd_e2_parsing_data = 0;
5397     uint8_t hlen = 0;
5398     int tmp_bd;
5399     int i;
5400 
5401     sc = fp->sc;
5402 
5403     M_ASSERTPKTHDR(*m_head);
5404 
5405     m0 = *m_head;
5406     rc = defragged = nbds = ovlan = vlan_off = total_pkt_size = 0;
5407     tx_start_bd = NULL;
5408     tx_data_bd = NULL;
5409     tx_total_pkt_size_bd = NULL;
5410 
5411     /* get the H/W pointer for packets and BDs */
5412     pkt_prod = fp->tx_pkt_prod;
5413     bd_prod = fp->tx_bd_prod;
5414 
5415     mac_type = UNICAST_ADDRESS;
5416 
5417     /* map the mbuf into the next open DMAable memory */
5418     tx_buf = &fp->tx_mbuf_chain[TX_BD(pkt_prod)];
5419     error = bus_dmamap_load_mbuf_sg(fp->tx_mbuf_tag,
5420                                     tx_buf->m_map, m0,
5421                                     segs, &nsegs, BUS_DMA_NOWAIT);
5422 
5423     /* mapping errors */
5424     if(__predict_false(error != 0)) {
5425         fp->eth_q_stats.tx_dma_mapping_failure++;
5426         if (error == ENOMEM) {
5427             /* resource issue, try again later */
5428             rc = ENOMEM;
5429         } else if (error == EFBIG) {
5430             /* possibly recoverable with defragmentation */
5431             fp->eth_q_stats.mbuf_defrag_attempts++;
5432             m0 = m_defrag(*m_head, M_NOWAIT);
5433             if (m0 == NULL) {
5434                 fp->eth_q_stats.mbuf_defrag_failures++;
5435                 rc = ENOBUFS;
5436             } else {
5437                 /* defrag successful, try mapping again */
5438                 *m_head = m0;
5439                 error = bus_dmamap_load_mbuf_sg(fp->tx_mbuf_tag,
5440                                                 tx_buf->m_map, m0,
5441                                                 segs, &nsegs, BUS_DMA_NOWAIT);
5442                 if (error) {
5443                     fp->eth_q_stats.tx_dma_mapping_failure++;
5444                     rc = error;
5445                 }
5446             }
5447         } else {
5448             /* unknown, unrecoverable mapping error */
5449             BLOGE(sc, "Unknown TX mapping error rc=%d\n", error);
5450             bxe_dump_mbuf(sc, m0, FALSE);
5451             rc = error;
5452         }
5453 
5454         goto bxe_tx_encap_continue;
5455     }
5456 
5457     tx_bd_avail = bxe_tx_avail(sc, fp);
5458 
5459     /* make sure there is enough room in the send queue */
5460     if (__predict_false(tx_bd_avail < (nsegs + 2))) {
5461         /* Recoverable, try again later. */
5462         fp->eth_q_stats.tx_hw_queue_full++;
5463         bus_dmamap_unload(fp->tx_mbuf_tag, tx_buf->m_map);
5464         rc = ENOMEM;
5465         goto bxe_tx_encap_continue;
5466     }
5467 
5468     /* capture the current H/W TX chain high watermark */
5469     if (__predict_false(fp->eth_q_stats.tx_hw_max_queue_depth <
5470                         (TX_BD_USABLE - tx_bd_avail))) {
5471         fp->eth_q_stats.tx_hw_max_queue_depth = (TX_BD_USABLE - tx_bd_avail);
5472     }
5473 
5474     /* make sure it fits in the packet window */
5475     if (__predict_false(nsegs > BXE_MAX_SEGMENTS)) {
5476         /*
5477          * The mbuf may be to big for the controller to handle. If the frame
5478          * is a TSO frame we'll need to do an additional check.
5479          */
5480         if (m0->m_pkthdr.csum_flags & CSUM_TSO) {
5481             if (bxe_chktso_window(sc, nsegs, segs, m0) == 0) {
5482                 goto bxe_tx_encap_continue; /* OK to send */
5483             } else {
5484                 fp->eth_q_stats.tx_window_violation_tso++;
5485             }
5486         } else {
5487             fp->eth_q_stats.tx_window_violation_std++;
5488         }
5489 
5490         /* lets try to defragment this mbuf and remap it */
5491         fp->eth_q_stats.mbuf_defrag_attempts++;
5492         bus_dmamap_unload(fp->tx_mbuf_tag, tx_buf->m_map);
5493 
5494         m0 = m_defrag(*m_head, M_NOWAIT);
5495         if (m0 == NULL) {
5496             fp->eth_q_stats.mbuf_defrag_failures++;
5497             /* Ugh, just drop the frame... :( */
5498             rc = ENOBUFS;
5499         } else {
5500             /* defrag successful, try mapping again */
5501             *m_head = m0;
5502             error = bus_dmamap_load_mbuf_sg(fp->tx_mbuf_tag,
5503                                             tx_buf->m_map, m0,
5504                                             segs, &nsegs, BUS_DMA_NOWAIT);
5505             if (error) {
5506                 fp->eth_q_stats.tx_dma_mapping_failure++;
5507                 /* No sense in trying to defrag/copy chain, drop it. :( */
5508                 rc = error;
5509             }
5510             else {
5511                 /* if the chain is still too long then drop it */
5512                 if (__predict_false(nsegs > BXE_MAX_SEGMENTS)) {
5513                     bus_dmamap_unload(fp->tx_mbuf_tag, tx_buf->m_map);
5514                     rc = ENODEV;
5515                 }
5516             }
5517         }
5518     }
5519 
5520 bxe_tx_encap_continue:
5521 
5522     /* Check for errors */
5523     if (rc) {
5524         if (rc == ENOMEM) {
5525             /* recoverable try again later  */
5526         } else {
5527             fp->eth_q_stats.tx_soft_errors++;
5528             fp->eth_q_stats.mbuf_alloc_tx--;
5529             m_freem(*m_head);
5530             *m_head = NULL;
5531         }
5532 
5533         return (rc);
5534     }
5535 
5536     /* set flag according to packet type (UNICAST_ADDRESS is default) */
5537     if (m0->m_flags & M_BCAST) {
5538         mac_type = BROADCAST_ADDRESS;
5539     } else if (m0->m_flags & M_MCAST) {
5540         mac_type = MULTICAST_ADDRESS;
5541     }
5542 
5543     /* store the mbuf into the mbuf ring */
5544     tx_buf->m        = m0;
5545     tx_buf->first_bd = fp->tx_bd_prod;
5546     tx_buf->flags    = 0;
5547 
5548     /* prepare the first transmit (start) BD for the mbuf */
5549     tx_start_bd = &fp->tx_chain[TX_BD(bd_prod)].start_bd;
5550 
5551     BLOGD(sc, DBG_TX,
5552           "sending pkt_prod=%u tx_buf=%p next_idx=%u bd=%u tx_start_bd=%p\n",
5553           pkt_prod, tx_buf, fp->tx_pkt_prod, bd_prod, tx_start_bd);
5554 
5555     tx_start_bd->addr_lo = htole32(U64_LO(segs[0].ds_addr));
5556     tx_start_bd->addr_hi = htole32(U64_HI(segs[0].ds_addr));
5557     tx_start_bd->nbytes  = htole16(segs[0].ds_len);
5558     total_pkt_size += tx_start_bd->nbytes;
5559     tx_start_bd->bd_flags.as_bitfield = ETH_TX_BD_FLAGS_START_BD;
5560 
5561     tx_start_bd->general_data = (1 << ETH_TX_START_BD_HDR_NBDS_SHIFT);
5562 
5563     /* all frames have at least Start BD + Parsing BD */
5564     nbds = nsegs + 1;
5565     tx_start_bd->nbd = htole16(nbds);
5566 
5567     if (m0->m_flags & M_VLANTAG) {
5568         tx_start_bd->vlan_or_ethertype = htole16(m0->m_pkthdr.ether_vtag);
5569         tx_start_bd->bd_flags.as_bitfield |=
5570             (X_ETH_OUTBAND_VLAN << ETH_TX_BD_FLAGS_VLAN_MODE_SHIFT);
5571     } else {
5572         /* vf tx, start bd must hold the ethertype for fw to enforce it */
5573         if (IS_VF(sc)) {
5574             /* map ethernet header to find type and header length */
5575             eh = mtod(m0, struct ether_vlan_header *);
5576             tx_start_bd->vlan_or_ethertype = eh->evl_encap_proto;
5577         } else {
5578             /* used by FW for packet accounting */
5579             tx_start_bd->vlan_or_ethertype = htole16(fp->tx_pkt_prod);
5580 #if 0
5581             /*
5582              * If NPAR-SD is active then FW should do the tagging regardless
5583              * of value of priority. Otherwise, if priority indicates this is
5584              * a control packet we need to indicate to FW to avoid tagging.
5585              */
5586             if (!IS_MF_AFEX(sc) && (mbuf priority == PRIO_CONTROL)) {
5587                 SET_FLAG(tx_start_bd->general_data,
5588                          ETH_TX_START_BD_FORCE_VLAN_MODE, 1);
5589             }
5590 #endif
5591         }
5592     }
5593 
5594     /*
5595      * add a parsing BD from the chain. The parsing BD is always added
5596      * though it is only used for TSO and chksum
5597      */
5598     bd_prod = TX_BD_NEXT(bd_prod);
5599 
5600     if (m0->m_pkthdr.csum_flags) {
5601         if (m0->m_pkthdr.csum_flags & CSUM_IP) {
5602             fp->eth_q_stats.tx_ofld_frames_csum_ip++;
5603             tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_IP_CSUM;
5604         }
5605 
5606         if (m0->m_pkthdr.csum_flags & CSUM_TCP_IPV6) {
5607             tx_start_bd->bd_flags.as_bitfield |= (ETH_TX_BD_FLAGS_IPV6 |
5608                                                   ETH_TX_BD_FLAGS_L4_CSUM);
5609         } else if (m0->m_pkthdr.csum_flags & CSUM_UDP_IPV6) {
5610             tx_start_bd->bd_flags.as_bitfield |= (ETH_TX_BD_FLAGS_IPV6   |
5611                                                   ETH_TX_BD_FLAGS_IS_UDP |
5612                                                   ETH_TX_BD_FLAGS_L4_CSUM);
5613         } else if ((m0->m_pkthdr.csum_flags & CSUM_TCP) ||
5614                    (m0->m_pkthdr.csum_flags & CSUM_TSO)) {
5615             tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_L4_CSUM;
5616         } else if (m0->m_pkthdr.csum_flags & CSUM_UDP) {
5617             tx_start_bd->bd_flags.as_bitfield |= (ETH_TX_BD_FLAGS_L4_CSUM |
5618                                                   ETH_TX_BD_FLAGS_IS_UDP);
5619         }
5620     }
5621 
5622     if (!CHIP_IS_E1x(sc)) {
5623         pbd_e2 = &fp->tx_chain[TX_BD(bd_prod)].parse_bd_e2;
5624         memset(pbd_e2, 0, sizeof(struct eth_tx_parse_bd_e2));
5625 
5626         if (m0->m_pkthdr.csum_flags) {
5627             hlen = bxe_set_pbd_csum_e2(fp, m0, &pbd_e2_parsing_data);
5628         }
5629 
5630 #if 0
5631         /*
5632          * Add the MACs to the parsing BD if the module param was
5633          * explicitly set, if this is a vf, or in switch independent
5634          * mode.
5635          */
5636         if (sc->flags & BXE_TX_SWITCHING || IS_VF(sc) || IS_MF_SI(sc)) {
5637             eh = mtod(m0, struct ether_vlan_header *);
5638             bxe_set_fw_mac_addr(&pbd_e2->data.mac_addr.src_hi,
5639                                 &pbd_e2->data.mac_addr.src_mid,
5640                                 &pbd_e2->data.mac_addr.src_lo,
5641                                 eh->evl_shost);
5642             bxe_set_fw_mac_addr(&pbd_e2->data.mac_addr.dst_hi,
5643                                 &pbd_e2->data.mac_addr.dst_mid,
5644                                 &pbd_e2->data.mac_addr.dst_lo,
5645                                 eh->evl_dhost);
5646         }
5647 #endif
5648 
5649         SET_FLAG(pbd_e2_parsing_data, ETH_TX_PARSE_BD_E2_ETH_ADDR_TYPE,
5650                  mac_type);
5651     } else {
5652         uint16_t global_data = 0;
5653 
5654         pbd_e1x = &fp->tx_chain[TX_BD(bd_prod)].parse_bd_e1x;
5655         memset(pbd_e1x, 0, sizeof(struct eth_tx_parse_bd_e1x));
5656 
5657         if (m0->m_pkthdr.csum_flags) {
5658             hlen = bxe_set_pbd_csum(fp, m0, pbd_e1x);
5659         }
5660 
5661         SET_FLAG(global_data,
5662                  ETH_TX_PARSE_BD_E1X_ETH_ADDR_TYPE, mac_type);
5663         pbd_e1x->global_data |= htole16(global_data);
5664     }
5665 
5666     /* setup the parsing BD with TSO specific info */
5667     if (m0->m_pkthdr.csum_flags & CSUM_TSO) {
5668         fp->eth_q_stats.tx_ofld_frames_lso++;
5669         tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_SW_LSO;
5670 
5671         if (__predict_false(tx_start_bd->nbytes > hlen)) {
5672             fp->eth_q_stats.tx_ofld_frames_lso_hdr_splits++;
5673 
5674             /* split the first BD into header/data making the fw job easy */
5675             nbds++;
5676             tx_start_bd->nbd = htole16(nbds);
5677             tx_start_bd->nbytes = htole16(hlen);
5678 
5679             bd_prod = TX_BD_NEXT(bd_prod);
5680 
5681             /* new transmit BD after the tx_parse_bd */
5682             tx_data_bd = &fp->tx_chain[TX_BD(bd_prod)].reg_bd;
5683             tx_data_bd->addr_hi = htole32(U64_HI(segs[0].ds_addr + hlen));
5684             tx_data_bd->addr_lo = htole32(U64_LO(segs[0].ds_addr + hlen));
5685             tx_data_bd->nbytes  = htole16(segs[0].ds_len - hlen);
5686             if (tx_total_pkt_size_bd == NULL) {
5687                 tx_total_pkt_size_bd = tx_data_bd;
5688             }
5689 
5690             BLOGD(sc, DBG_TX,
5691                   "TSO split header size is %d (%x:%x) nbds %d\n",
5692                   le16toh(tx_start_bd->nbytes),
5693                   le32toh(tx_start_bd->addr_hi),
5694                   le32toh(tx_start_bd->addr_lo),
5695                   nbds);
5696         }
5697 
5698         if (!CHIP_IS_E1x(sc)) {
5699             bxe_set_pbd_lso_e2(m0, &pbd_e2_parsing_data);
5700         } else {
5701             bxe_set_pbd_lso(m0, pbd_e1x);
5702         }
5703     }
5704 
5705     if (pbd_e2_parsing_data) {
5706         pbd_e2->parsing_data = htole32(pbd_e2_parsing_data);
5707     }
5708 
5709     /* prepare remaining BDs, start tx bd contains first seg/frag */
5710     for (i = 1; i < nsegs ; i++) {
5711         bd_prod = TX_BD_NEXT(bd_prod);
5712         tx_data_bd = &fp->tx_chain[TX_BD(bd_prod)].reg_bd;
5713         tx_data_bd->addr_lo = htole32(U64_LO(segs[i].ds_addr));
5714         tx_data_bd->addr_hi = htole32(U64_HI(segs[i].ds_addr));
5715         tx_data_bd->nbytes  = htole16(segs[i].ds_len);
5716         if (tx_total_pkt_size_bd == NULL) {
5717             tx_total_pkt_size_bd = tx_data_bd;
5718         }
5719         total_pkt_size += tx_data_bd->nbytes;
5720     }
5721 
5722     BLOGD(sc, DBG_TX, "last bd %p\n", tx_data_bd);
5723 
5724     if (tx_total_pkt_size_bd != NULL) {
5725         tx_total_pkt_size_bd->total_pkt_bytes = total_pkt_size;
5726     }
5727 
5728     if (__predict_false(sc->debug & DBG_TX)) {
5729         tmp_bd = tx_buf->first_bd;
5730         for (i = 0; i < nbds; i++)
5731         {
5732             if (i == 0) {
5733                 BLOGD(sc, DBG_TX,
5734                       "TX Strt: %p bd=%d nbd=%d vlan=0x%x "
5735                       "bd_flags=0x%x hdr_nbds=%d\n",
5736                       tx_start_bd,
5737                       tmp_bd,
5738                       le16toh(tx_start_bd->nbd),
5739                       le16toh(tx_start_bd->vlan_or_ethertype),
5740                       tx_start_bd->bd_flags.as_bitfield,
5741                       (tx_start_bd->general_data & ETH_TX_START_BD_HDR_NBDS));
5742             } else if (i == 1) {
5743                 if (pbd_e1x) {
5744                     BLOGD(sc, DBG_TX,
5745                           "-> Prse: %p bd=%d global=0x%x ip_hlen_w=%u "
5746                           "ip_id=%u lso_mss=%u tcp_flags=0x%x csum=0x%x "
5747                           "tcp_seq=%u total_hlen_w=%u\n",
5748                           pbd_e1x,
5749                           tmp_bd,
5750                           pbd_e1x->global_data,
5751                           pbd_e1x->ip_hlen_w,
5752                           pbd_e1x->ip_id,
5753                           pbd_e1x->lso_mss,
5754                           pbd_e1x->tcp_flags,
5755                           pbd_e1x->tcp_pseudo_csum,
5756                           pbd_e1x->tcp_send_seq,
5757                           le16toh(pbd_e1x->total_hlen_w));
5758                 } else { /* if (pbd_e2) */
5759                     BLOGD(sc, DBG_TX,
5760                           "-> Parse: %p bd=%d dst=%02x:%02x:%02x "
5761                           "src=%02x:%02x:%02x parsing_data=0x%x\n",
5762                           pbd_e2,
5763                           tmp_bd,
5764                           pbd_e2->data.mac_addr.dst_hi,
5765                           pbd_e2->data.mac_addr.dst_mid,
5766                           pbd_e2->data.mac_addr.dst_lo,
5767                           pbd_e2->data.mac_addr.src_hi,
5768                           pbd_e2->data.mac_addr.src_mid,
5769                           pbd_e2->data.mac_addr.src_lo,
5770                           pbd_e2->parsing_data);
5771                 }
5772             }
5773 
5774             if (i != 1) { /* skip parse db as it doesn't hold data */
5775                 tx_data_bd = &fp->tx_chain[TX_BD(tmp_bd)].reg_bd;
5776                 BLOGD(sc, DBG_TX,
5777                       "-> Frag: %p bd=%d nbytes=%d hi=0x%x lo: 0x%x\n",
5778                       tx_data_bd,
5779                       tmp_bd,
5780                       le16toh(tx_data_bd->nbytes),
5781                       le32toh(tx_data_bd->addr_hi),
5782                       le32toh(tx_data_bd->addr_lo));
5783             }
5784 
5785             tmp_bd = TX_BD_NEXT(tmp_bd);
5786         }
5787     }
5788 
5789     BLOGD(sc, DBG_TX, "doorbell: nbds=%d bd=%u\n", nbds, bd_prod);
5790 
5791     /* update TX BD producer index value for next TX */
5792     bd_prod = TX_BD_NEXT(bd_prod);
5793 
5794     /*
5795      * If the chain of tx_bd's describing this frame is adjacent to or spans
5796      * an eth_tx_next_bd element then we need to increment the nbds value.
5797      */
5798     if (TX_BD_IDX(bd_prod) < nbds) {
5799         nbds++;
5800     }
5801 
5802     /* don't allow reordering of writes for nbd and packets */
5803     mb();
5804 
5805     fp->tx_db.data.prod += nbds;
5806 
5807     /* producer points to the next free tx_bd at this point */
5808     fp->tx_pkt_prod++;
5809     fp->tx_bd_prod = bd_prod;
5810 
5811     DOORBELL(sc, fp->index, fp->tx_db.raw);
5812 
5813     fp->eth_q_stats.tx_pkts++;
5814 
5815     /* Prevent speculative reads from getting ahead of the status block. */
5816     bus_space_barrier(sc->bar[BAR0].tag, sc->bar[BAR0].handle,
5817                       0, 0, BUS_SPACE_BARRIER_READ);
5818 
5819     /* Prevent speculative reads from getting ahead of the doorbell. */
5820     bus_space_barrier(sc->bar[BAR2].tag, sc->bar[BAR2].handle,
5821                       0, 0, BUS_SPACE_BARRIER_READ);
5822 
5823     return (0);
5824 }
5825 
5826 static void
5827 bxe_tx_start_locked(struct bxe_softc *sc,
5828                     if_t ifp,
5829                     struct bxe_fastpath *fp)
5830 {
5831     struct mbuf *m = NULL;
5832     int tx_count = 0;
5833     uint16_t tx_bd_avail;
5834 
5835     BXE_FP_TX_LOCK_ASSERT(fp);
5836 
5837     /* keep adding entries while there are frames to send */
5838     while (!if_sendq_empty(ifp)) {
5839 
5840         /*
5841          * check for any frames to send
5842          * dequeue can still be NULL even if queue is not empty
5843          */
5844         m = if_dequeue(ifp);
5845         if (__predict_false(m == NULL)) {
5846             break;
5847         }
5848 
5849         /* the mbuf now belongs to us */
5850         fp->eth_q_stats.mbuf_alloc_tx++;
5851 
5852         /*
5853          * Put the frame into the transmit ring. If we don't have room,
5854          * place the mbuf back at the head of the TX queue, set the
5855          * OACTIVE flag, and wait for the NIC to drain the chain.
5856          */
5857         if (__predict_false(bxe_tx_encap(fp, &m))) {
5858             fp->eth_q_stats.tx_encap_failures++;
5859             if (m != NULL) {
5860                 /* mark the TX queue as full and return the frame */
5861                 if_setdrvflagbits(ifp, IFF_DRV_OACTIVE, 0);
5862 		if_sendq_prepend(ifp, m);
5863                 fp->eth_q_stats.mbuf_alloc_tx--;
5864                 fp->eth_q_stats.tx_queue_xoff++;
5865             }
5866 
5867             /* stop looking for more work */
5868             break;
5869         }
5870 
5871         /* the frame was enqueued successfully */
5872         tx_count++;
5873 
5874         /* send a copy of the frame to any BPF listeners. */
5875         if_etherbpfmtap(ifp, m);
5876 
5877         tx_bd_avail = bxe_tx_avail(sc, fp);
5878 
5879         /* handle any completions if we're running low */
5880         if (tx_bd_avail < BXE_TX_CLEANUP_THRESHOLD) {
5881             /* bxe_txeof will set IFF_DRV_OACTIVE appropriately */
5882             bxe_txeof(sc, fp);
5883             if (if_getdrvflags(ifp) & IFF_DRV_OACTIVE) {
5884                 break;
5885             }
5886         }
5887     }
5888 
5889     /* all TX packets were dequeued and/or the tx ring is full */
5890     if (tx_count > 0) {
5891         /* reset the TX watchdog timeout timer */
5892         fp->watchdog_timer = BXE_TX_TIMEOUT;
5893     }
5894 }
5895 
5896 /* Legacy (non-RSS) dispatch routine */
5897 static void
5898 bxe_tx_start(if_t ifp)
5899 {
5900     struct bxe_softc *sc;
5901     struct bxe_fastpath *fp;
5902 
5903     sc = if_getsoftc(ifp);
5904 
5905     if (!(if_getdrvflags(ifp) & IFF_DRV_RUNNING)) {
5906         BLOGW(sc, "Interface not running, ignoring transmit request\n");
5907         return;
5908     }
5909 
5910     if (if_getdrvflags(ifp) & IFF_DRV_OACTIVE) {
5911         BLOGW(sc, "Interface TX queue is full, ignoring transmit request\n");
5912         return;
5913     }
5914 
5915     if (!sc->link_vars.link_up) {
5916         BLOGW(sc, "Interface link is down, ignoring transmit request\n");
5917         return;
5918     }
5919 
5920     fp = &sc->fp[0];
5921 
5922     BXE_FP_TX_LOCK(fp);
5923     bxe_tx_start_locked(sc, ifp, fp);
5924     BXE_FP_TX_UNLOCK(fp);
5925 }
5926 
5927 #if __FreeBSD_version >= 800000
5928 
5929 static int
5930 bxe_tx_mq_start_locked(struct bxe_softc    *sc,
5931                        if_t                ifp,
5932                        struct bxe_fastpath *fp,
5933                        struct mbuf         *m)
5934 {
5935     struct buf_ring *tx_br = fp->tx_br;
5936     struct mbuf *next;
5937     int depth, rc, tx_count;
5938     uint16_t tx_bd_avail;
5939 
5940     rc = tx_count = 0;
5941 
5942     if (!tx_br) {
5943         BLOGE(sc, "Multiqueue TX and no buf_ring!\n");
5944         return (EINVAL);
5945     }
5946 
5947     /* fetch the depth of the driver queue */
5948     depth = drbr_inuse_drv(ifp, tx_br);
5949     if (depth > fp->eth_q_stats.tx_max_drbr_queue_depth) {
5950         fp->eth_q_stats.tx_max_drbr_queue_depth = depth;
5951     }
5952 
5953     BXE_FP_TX_LOCK_ASSERT(fp);
5954 
5955     if (m == NULL) {
5956         /* no new work, check for pending frames */
5957         next = drbr_dequeue_drv(ifp, tx_br);
5958     } else if (drbr_needs_enqueue_drv(ifp, tx_br)) {
5959         /* have both new and pending work, maintain packet order */
5960         rc = drbr_enqueue_drv(ifp, tx_br, m);
5961         if (rc != 0) {
5962             fp->eth_q_stats.tx_soft_errors++;
5963             goto bxe_tx_mq_start_locked_exit;
5964         }
5965         next = drbr_dequeue_drv(ifp, tx_br);
5966     } else {
5967         /* new work only and nothing pending */
5968         next = m;
5969     }
5970 
5971     /* keep adding entries while there are frames to send */
5972     while (next != NULL) {
5973 
5974         /* the mbuf now belongs to us */
5975         fp->eth_q_stats.mbuf_alloc_tx++;
5976 
5977         /*
5978          * Put the frame into the transmit ring. If we don't have room,
5979          * place the mbuf back at the head of the TX queue, set the
5980          * OACTIVE flag, and wait for the NIC to drain the chain.
5981          */
5982         rc = bxe_tx_encap(fp, &next);
5983         if (__predict_false(rc != 0)) {
5984             fp->eth_q_stats.tx_encap_failures++;
5985             if (next != NULL) {
5986                 /* mark the TX queue as full and save the frame */
5987                 if_setdrvflagbits(ifp, IFF_DRV_OACTIVE, 0);
5988                 /* XXX this may reorder the frame */
5989                 rc = drbr_enqueue_drv(ifp, tx_br, next);
5990                 fp->eth_q_stats.mbuf_alloc_tx--;
5991                 fp->eth_q_stats.tx_frames_deferred++;
5992             }
5993 
5994             /* stop looking for more work */
5995             break;
5996         }
5997 
5998         /* the transmit frame was enqueued successfully */
5999         tx_count++;
6000 
6001         /* send a copy of the frame to any BPF listeners */
6002 	if_etherbpfmtap(ifp, next);
6003 
6004         tx_bd_avail = bxe_tx_avail(sc, fp);
6005 
6006         /* handle any completions if we're running low */
6007         if (tx_bd_avail < BXE_TX_CLEANUP_THRESHOLD) {
6008             /* bxe_txeof will set IFF_DRV_OACTIVE appropriately */
6009             bxe_txeof(sc, fp);
6010             if (if_getdrvflags(ifp) & IFF_DRV_OACTIVE) {
6011                 break;
6012             }
6013         }
6014 
6015         next = drbr_dequeue_drv(ifp, tx_br);
6016     }
6017 
6018     /* all TX packets were dequeued and/or the tx ring is full */
6019     if (tx_count > 0) {
6020         /* reset the TX watchdog timeout timer */
6021         fp->watchdog_timer = BXE_TX_TIMEOUT;
6022     }
6023 
6024 bxe_tx_mq_start_locked_exit:
6025 
6026     return (rc);
6027 }
6028 
6029 /* Multiqueue (TSS) dispatch routine. */
6030 static int
6031 bxe_tx_mq_start(struct ifnet *ifp,
6032                 struct mbuf  *m)
6033 {
6034     struct bxe_softc *sc = if_getsoftc(ifp);
6035     struct bxe_fastpath *fp;
6036     int fp_index, rc;
6037 
6038     fp_index = 0; /* default is the first queue */
6039 
6040     /* change the queue if using flow ID */
6041     if ((m->m_flags & M_FLOWID) != 0) {
6042         fp_index = (m->m_pkthdr.flowid % sc->num_queues);
6043     }
6044 
6045     fp = &sc->fp[fp_index];
6046 
6047     if (!(if_getdrvflags(ifp) & IFF_DRV_RUNNING)) {
6048         BLOGW(sc, "Interface not running, ignoring transmit request\n");
6049         return (ENETDOWN);
6050     }
6051 
6052     if (if_getdrvflags(ifp) & IFF_DRV_OACTIVE) {
6053         BLOGW(sc, "Interface TX queue is full, ignoring transmit request\n");
6054         return (EBUSY);
6055     }
6056 
6057     if (!sc->link_vars.link_up) {
6058         BLOGW(sc, "Interface link is down, ignoring transmit request\n");
6059         return (ENETDOWN);
6060     }
6061 
6062     /* XXX change to TRYLOCK here and if failed then schedule taskqueue */
6063 
6064     BXE_FP_TX_LOCK(fp);
6065     rc = bxe_tx_mq_start_locked(sc, ifp, fp, m);
6066     BXE_FP_TX_UNLOCK(fp);
6067 
6068     return (rc);
6069 }
6070 
6071 static void
6072 bxe_mq_flush(struct ifnet *ifp)
6073 {
6074     struct bxe_softc *sc = if_getsoftc(ifp);
6075     struct bxe_fastpath *fp;
6076     struct mbuf *m;
6077     int i;
6078 
6079     for (i = 0; i < sc->num_queues; i++) {
6080         fp = &sc->fp[i];
6081 
6082         if (fp->state != BXE_FP_STATE_OPEN) {
6083             BLOGD(sc, DBG_LOAD, "Not clearing fp[%02d] buf_ring (state=%d)\n",
6084                   fp->index, fp->state);
6085             continue;
6086         }
6087 
6088         if (fp->tx_br != NULL) {
6089             BLOGD(sc, DBG_LOAD, "Clearing fp[%02d] buf_ring\n", fp->index);
6090             BXE_FP_TX_LOCK(fp);
6091             while ((m = buf_ring_dequeue_sc(fp->tx_br)) != NULL) {
6092                 m_freem(m);
6093             }
6094             BXE_FP_TX_UNLOCK(fp);
6095         }
6096     }
6097 
6098     if_qflush_drv(ifp);
6099 }
6100 
6101 #endif /* FreeBSD_version >= 800000 */
6102 
6103 static uint16_t
6104 bxe_cid_ilt_lines(struct bxe_softc *sc)
6105 {
6106     if (IS_SRIOV(sc)) {
6107         return ((BXE_FIRST_VF_CID + BXE_VF_CIDS) / ILT_PAGE_CIDS);
6108     }
6109     return (L2_ILT_LINES(sc));
6110 }
6111 
6112 static void
6113 bxe_ilt_set_info(struct bxe_softc *sc)
6114 {
6115     struct ilt_client_info *ilt_client;
6116     struct ecore_ilt *ilt = sc->ilt;
6117     uint16_t line = 0;
6118 
6119     ilt->start_line = FUNC_ILT_BASE(SC_FUNC(sc));
6120     BLOGD(sc, DBG_LOAD, "ilt starts at line %d\n", ilt->start_line);
6121 
6122     /* CDU */
6123     ilt_client = &ilt->clients[ILT_CLIENT_CDU];
6124     ilt_client->client_num = ILT_CLIENT_CDU;
6125     ilt_client->page_size = CDU_ILT_PAGE_SZ;
6126     ilt_client->flags = ILT_CLIENT_SKIP_MEM;
6127     ilt_client->start = line;
6128     line += bxe_cid_ilt_lines(sc);
6129 
6130     if (CNIC_SUPPORT(sc)) {
6131         line += CNIC_ILT_LINES;
6132     }
6133 
6134     ilt_client->end = (line - 1);
6135 
6136     BLOGD(sc, DBG_LOAD,
6137           "ilt client[CDU]: start %d, end %d, "
6138           "psz 0x%x, flags 0x%x, hw psz %d\n",
6139           ilt_client->start, ilt_client->end,
6140           ilt_client->page_size,
6141           ilt_client->flags,
6142           ilog2(ilt_client->page_size >> 12));
6143 
6144     /* QM */
6145     if (QM_INIT(sc->qm_cid_count)) {
6146         ilt_client = &ilt->clients[ILT_CLIENT_QM];
6147         ilt_client->client_num = ILT_CLIENT_QM;
6148         ilt_client->page_size = QM_ILT_PAGE_SZ;
6149         ilt_client->flags = 0;
6150         ilt_client->start = line;
6151 
6152         /* 4 bytes for each cid */
6153         line += DIV_ROUND_UP(sc->qm_cid_count * QM_QUEUES_PER_FUNC * 4,
6154                              QM_ILT_PAGE_SZ);
6155 
6156         ilt_client->end = (line - 1);
6157 
6158         BLOGD(sc, DBG_LOAD,
6159               "ilt client[QM]: start %d, end %d, "
6160               "psz 0x%x, flags 0x%x, hw psz %d\n",
6161               ilt_client->start, ilt_client->end,
6162               ilt_client->page_size, ilt_client->flags,
6163               ilog2(ilt_client->page_size >> 12));
6164     }
6165 
6166     if (CNIC_SUPPORT(sc)) {
6167         /* SRC */
6168         ilt_client = &ilt->clients[ILT_CLIENT_SRC];
6169         ilt_client->client_num = ILT_CLIENT_SRC;
6170         ilt_client->page_size = SRC_ILT_PAGE_SZ;
6171         ilt_client->flags = 0;
6172         ilt_client->start = line;
6173         line += SRC_ILT_LINES;
6174         ilt_client->end = (line - 1);
6175 
6176         BLOGD(sc, DBG_LOAD,
6177               "ilt client[SRC]: start %d, end %d, "
6178               "psz 0x%x, flags 0x%x, hw psz %d\n",
6179               ilt_client->start, ilt_client->end,
6180               ilt_client->page_size, ilt_client->flags,
6181               ilog2(ilt_client->page_size >> 12));
6182 
6183         /* TM */
6184         ilt_client = &ilt->clients[ILT_CLIENT_TM];
6185         ilt_client->client_num = ILT_CLIENT_TM;
6186         ilt_client->page_size = TM_ILT_PAGE_SZ;
6187         ilt_client->flags = 0;
6188         ilt_client->start = line;
6189         line += TM_ILT_LINES;
6190         ilt_client->end = (line - 1);
6191 
6192         BLOGD(sc, DBG_LOAD,
6193               "ilt client[TM]: start %d, end %d, "
6194               "psz 0x%x, flags 0x%x, hw psz %d\n",
6195               ilt_client->start, ilt_client->end,
6196               ilt_client->page_size, ilt_client->flags,
6197               ilog2(ilt_client->page_size >> 12));
6198     }
6199 
6200     KASSERT((line <= ILT_MAX_LINES), ("Invalid number of ILT lines!"));
6201 }
6202 
6203 static void
6204 bxe_set_fp_rx_buf_size(struct bxe_softc *sc)
6205 {
6206     int i;
6207 
6208     BLOGD(sc, DBG_LOAD, "mtu = %d\n", sc->mtu);
6209 
6210     for (i = 0; i < sc->num_queues; i++) {
6211         /* get the Rx buffer size for RX frames */
6212         sc->fp[i].rx_buf_size =
6213             (IP_HEADER_ALIGNMENT_PADDING +
6214              ETH_OVERHEAD +
6215              sc->mtu);
6216 
6217         BLOGD(sc, DBG_LOAD, "rx_buf_size for fp[%02d] = %d\n",
6218               i, sc->fp[i].rx_buf_size);
6219 
6220         /* get the mbuf allocation size for RX frames */
6221         if (sc->fp[i].rx_buf_size <= MCLBYTES) {
6222             sc->fp[i].mbuf_alloc_size = MCLBYTES;
6223         } else if (sc->fp[i].rx_buf_size <= BCM_PAGE_SIZE) {
6224             sc->fp[i].mbuf_alloc_size = PAGE_SIZE;
6225         } else {
6226             sc->fp[i].mbuf_alloc_size = MJUM9BYTES;
6227         }
6228 
6229         BLOGD(sc, DBG_LOAD, "mbuf_alloc_size for fp[%02d] = %d\n",
6230               i, sc->fp[i].mbuf_alloc_size);
6231     }
6232 }
6233 
6234 static int
6235 bxe_alloc_ilt_mem(struct bxe_softc *sc)
6236 {
6237     int rc = 0;
6238 
6239     if ((sc->ilt =
6240          (struct ecore_ilt *)malloc(sizeof(struct ecore_ilt),
6241                                     M_BXE_ILT,
6242                                     (M_NOWAIT | M_ZERO))) == NULL) {
6243         rc = 1;
6244     }
6245 
6246     return (rc);
6247 }
6248 
6249 static int
6250 bxe_alloc_ilt_lines_mem(struct bxe_softc *sc)
6251 {
6252     int rc = 0;
6253 
6254     if ((sc->ilt->lines =
6255          (struct ilt_line *)malloc((sizeof(struct ilt_line) * ILT_MAX_LINES),
6256                                     M_BXE_ILT,
6257                                     (M_NOWAIT | M_ZERO))) == NULL) {
6258         rc = 1;
6259     }
6260 
6261     return (rc);
6262 }
6263 
6264 static void
6265 bxe_free_ilt_mem(struct bxe_softc *sc)
6266 {
6267     if (sc->ilt != NULL) {
6268         free(sc->ilt, M_BXE_ILT);
6269         sc->ilt = NULL;
6270     }
6271 }
6272 
6273 static void
6274 bxe_free_ilt_lines_mem(struct bxe_softc *sc)
6275 {
6276     if (sc->ilt->lines != NULL) {
6277         free(sc->ilt->lines, M_BXE_ILT);
6278         sc->ilt->lines = NULL;
6279     }
6280 }
6281 
6282 static void
6283 bxe_free_mem(struct bxe_softc *sc)
6284 {
6285     int i;
6286 
6287 #if 0
6288     if (!CONFIGURE_NIC_MODE(sc)) {
6289         /* free searcher T2 table */
6290         bxe_dma_free(sc, &sc->t2);
6291     }
6292 #endif
6293 
6294     for (i = 0; i < L2_ILT_LINES(sc); i++) {
6295         bxe_dma_free(sc, &sc->context[i].vcxt_dma);
6296         sc->context[i].vcxt = NULL;
6297         sc->context[i].size = 0;
6298     }
6299 
6300     ecore_ilt_mem_op(sc, ILT_MEMOP_FREE);
6301 
6302     bxe_free_ilt_lines_mem(sc);
6303 
6304 #if 0
6305     bxe_iov_free_mem(sc);
6306 #endif
6307 }
6308 
6309 static int
6310 bxe_alloc_mem(struct bxe_softc *sc)
6311 {
6312     int context_size;
6313     int allocated;
6314     int i;
6315 
6316 #if 0
6317     if (!CONFIGURE_NIC_MODE(sc)) {
6318         /* allocate searcher T2 table */
6319         if (bxe_dma_alloc(sc, SRC_T2_SZ,
6320                           &sc->t2, "searcher t2 table") != 0) {
6321             return (-1);
6322         }
6323     }
6324 #endif
6325 
6326     /*
6327      * Allocate memory for CDU context:
6328      * This memory is allocated separately and not in the generic ILT
6329      * functions because CDU differs in few aspects:
6330      * 1. There can be multiple entities allocating memory for context -
6331      * regular L2, CNIC, and SRIOV drivers. Each separately controls
6332      * its own ILT lines.
6333      * 2. Since CDU page-size is not a single 4KB page (which is the case
6334      * for the other ILT clients), to be efficient we want to support
6335      * allocation of sub-page-size in the last entry.
6336      * 3. Context pointers are used by the driver to pass to FW / update
6337      * the context (for the other ILT clients the pointers are used just to
6338      * free the memory during unload).
6339      */
6340     context_size = (sizeof(union cdu_context) * BXE_L2_CID_COUNT(sc));
6341     for (i = 0, allocated = 0; allocated < context_size; i++) {
6342         sc->context[i].size = min(CDU_ILT_PAGE_SZ,
6343                                   (context_size - allocated));
6344 
6345         if (bxe_dma_alloc(sc, sc->context[i].size,
6346                           &sc->context[i].vcxt_dma,
6347                           "cdu context") != 0) {
6348             bxe_free_mem(sc);
6349             return (-1);
6350         }
6351 
6352         sc->context[i].vcxt =
6353             (union cdu_context *)sc->context[i].vcxt_dma.vaddr;
6354 
6355         allocated += sc->context[i].size;
6356     }
6357 
6358     bxe_alloc_ilt_lines_mem(sc);
6359 
6360     BLOGD(sc, DBG_LOAD, "ilt=%p start_line=%u lines=%p\n",
6361           sc->ilt, sc->ilt->start_line, sc->ilt->lines);
6362     {
6363         for (i = 0; i < 4; i++) {
6364             BLOGD(sc, DBG_LOAD,
6365                   "c%d page_size=%u start=%u end=%u num=%u flags=0x%x\n",
6366                   i,
6367                   sc->ilt->clients[i].page_size,
6368                   sc->ilt->clients[i].start,
6369                   sc->ilt->clients[i].end,
6370                   sc->ilt->clients[i].client_num,
6371                   sc->ilt->clients[i].flags);
6372         }
6373     }
6374     if (ecore_ilt_mem_op(sc, ILT_MEMOP_ALLOC)) {
6375         BLOGE(sc, "ecore_ilt_mem_op ILT_MEMOP_ALLOC failed\n");
6376         bxe_free_mem(sc);
6377         return (-1);
6378     }
6379 
6380 #if 0
6381     if (bxe_iov_alloc_mem(sc)) {
6382         BLOGE(sc, "Failed to allocate memory for SRIOV\n");
6383         bxe_free_mem(sc);
6384         return (-1);
6385     }
6386 #endif
6387 
6388     return (0);
6389 }
6390 
6391 static void
6392 bxe_free_rx_bd_chain(struct bxe_fastpath *fp)
6393 {
6394     struct bxe_softc *sc;
6395     int i;
6396 
6397     sc = fp->sc;
6398 
6399     if (fp->rx_mbuf_tag == NULL) {
6400         return;
6401     }
6402 
6403     /* free all mbufs and unload all maps */
6404     for (i = 0; i < RX_BD_TOTAL; i++) {
6405         if (fp->rx_mbuf_chain[i].m_map != NULL) {
6406             bus_dmamap_sync(fp->rx_mbuf_tag,
6407                             fp->rx_mbuf_chain[i].m_map,
6408                             BUS_DMASYNC_POSTREAD);
6409             bus_dmamap_unload(fp->rx_mbuf_tag,
6410                               fp->rx_mbuf_chain[i].m_map);
6411         }
6412 
6413         if (fp->rx_mbuf_chain[i].m != NULL) {
6414             m_freem(fp->rx_mbuf_chain[i].m);
6415             fp->rx_mbuf_chain[i].m = NULL;
6416             fp->eth_q_stats.mbuf_alloc_rx--;
6417         }
6418     }
6419 }
6420 
6421 static void
6422 bxe_free_tpa_pool(struct bxe_fastpath *fp)
6423 {
6424     struct bxe_softc *sc;
6425     int i, max_agg_queues;
6426 
6427     sc = fp->sc;
6428 
6429     if (fp->rx_mbuf_tag == NULL) {
6430         return;
6431     }
6432 
6433     max_agg_queues = MAX_AGG_QS(sc);
6434 
6435     /* release all mbufs and unload all DMA maps in the TPA pool */
6436     for (i = 0; i < max_agg_queues; i++) {
6437         if (fp->rx_tpa_info[i].bd.m_map != NULL) {
6438             bus_dmamap_sync(fp->rx_mbuf_tag,
6439                             fp->rx_tpa_info[i].bd.m_map,
6440                             BUS_DMASYNC_POSTREAD);
6441             bus_dmamap_unload(fp->rx_mbuf_tag,
6442                               fp->rx_tpa_info[i].bd.m_map);
6443         }
6444 
6445         if (fp->rx_tpa_info[i].bd.m != NULL) {
6446             m_freem(fp->rx_tpa_info[i].bd.m);
6447             fp->rx_tpa_info[i].bd.m = NULL;
6448             fp->eth_q_stats.mbuf_alloc_tpa--;
6449         }
6450     }
6451 }
6452 
6453 static void
6454 bxe_free_sge_chain(struct bxe_fastpath *fp)
6455 {
6456     struct bxe_softc *sc;
6457     int i;
6458 
6459     sc = fp->sc;
6460 
6461     if (fp->rx_sge_mbuf_tag == NULL) {
6462         return;
6463     }
6464 
6465     /* rree all mbufs and unload all maps */
6466     for (i = 0; i < RX_SGE_TOTAL; i++) {
6467         if (fp->rx_sge_mbuf_chain[i].m_map != NULL) {
6468             bus_dmamap_sync(fp->rx_sge_mbuf_tag,
6469                             fp->rx_sge_mbuf_chain[i].m_map,
6470                             BUS_DMASYNC_POSTREAD);
6471             bus_dmamap_unload(fp->rx_sge_mbuf_tag,
6472                               fp->rx_sge_mbuf_chain[i].m_map);
6473         }
6474 
6475         if (fp->rx_sge_mbuf_chain[i].m != NULL) {
6476             m_freem(fp->rx_sge_mbuf_chain[i].m);
6477             fp->rx_sge_mbuf_chain[i].m = NULL;
6478             fp->eth_q_stats.mbuf_alloc_sge--;
6479         }
6480     }
6481 }
6482 
6483 static void
6484 bxe_free_fp_buffers(struct bxe_softc *sc)
6485 {
6486     struct bxe_fastpath *fp;
6487     int i;
6488 
6489     for (i = 0; i < sc->num_queues; i++) {
6490         fp = &sc->fp[i];
6491 
6492 #if __FreeBSD_version >= 800000
6493         if (fp->tx_br != NULL) {
6494             struct mbuf *m;
6495             /* just in case bxe_mq_flush() wasn't called */
6496             while ((m = buf_ring_dequeue_sc(fp->tx_br)) != NULL) {
6497                 m_freem(m);
6498             }
6499             buf_ring_free(fp->tx_br, M_DEVBUF);
6500             fp->tx_br = NULL;
6501         }
6502 #endif
6503 
6504         /* free all RX buffers */
6505         bxe_free_rx_bd_chain(fp);
6506         bxe_free_tpa_pool(fp);
6507         bxe_free_sge_chain(fp);
6508 
6509         if (fp->eth_q_stats.mbuf_alloc_rx != 0) {
6510             BLOGE(sc, "failed to claim all rx mbufs (%d left)\n",
6511                   fp->eth_q_stats.mbuf_alloc_rx);
6512         }
6513 
6514         if (fp->eth_q_stats.mbuf_alloc_sge != 0) {
6515             BLOGE(sc, "failed to claim all sge mbufs (%d left)\n",
6516                   fp->eth_q_stats.mbuf_alloc_sge);
6517         }
6518 
6519         if (fp->eth_q_stats.mbuf_alloc_tpa != 0) {
6520             BLOGE(sc, "failed to claim all sge mbufs (%d left)\n",
6521                   fp->eth_q_stats.mbuf_alloc_tpa);
6522         }
6523 
6524         if (fp->eth_q_stats.mbuf_alloc_tx != 0) {
6525             BLOGE(sc, "failed to release tx mbufs (%d left)\n",
6526                   fp->eth_q_stats.mbuf_alloc_tx);
6527         }
6528 
6529         /* XXX verify all mbufs were reclaimed */
6530 
6531         if (mtx_initialized(&fp->tx_mtx)) {
6532             mtx_destroy(&fp->tx_mtx);
6533         }
6534 
6535         if (mtx_initialized(&fp->rx_mtx)) {
6536             mtx_destroy(&fp->rx_mtx);
6537         }
6538     }
6539 }
6540 
6541 static int
6542 bxe_alloc_rx_bd_mbuf(struct bxe_fastpath *fp,
6543                      uint16_t            prev_index,
6544                      uint16_t            index)
6545 {
6546     struct bxe_sw_rx_bd *rx_buf;
6547     struct eth_rx_bd *rx_bd;
6548     bus_dma_segment_t segs[1];
6549     bus_dmamap_t map;
6550     struct mbuf *m;
6551     int nsegs, rc;
6552 
6553     rc = 0;
6554 
6555     /* allocate the new RX BD mbuf */
6556     m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, fp->mbuf_alloc_size);
6557     if (__predict_false(m == NULL)) {
6558         fp->eth_q_stats.mbuf_rx_bd_alloc_failed++;
6559         return (ENOBUFS);
6560     }
6561 
6562     fp->eth_q_stats.mbuf_alloc_rx++;
6563 
6564     /* initialize the mbuf buffer length */
6565     m->m_pkthdr.len = m->m_len = fp->rx_buf_size;
6566 
6567     /* map the mbuf into non-paged pool */
6568     rc = bus_dmamap_load_mbuf_sg(fp->rx_mbuf_tag,
6569                                  fp->rx_mbuf_spare_map,
6570                                  m, segs, &nsegs, BUS_DMA_NOWAIT);
6571     if (__predict_false(rc != 0)) {
6572         fp->eth_q_stats.mbuf_rx_bd_mapping_failed++;
6573         m_freem(m);
6574         fp->eth_q_stats.mbuf_alloc_rx--;
6575         return (rc);
6576     }
6577 
6578     /* all mbufs must map to a single segment */
6579     KASSERT((nsegs == 1), ("Too many segments, %d returned!", nsegs));
6580 
6581     /* release any existing RX BD mbuf mappings */
6582 
6583     if (prev_index != index) {
6584         rx_buf = &fp->rx_mbuf_chain[prev_index];
6585 
6586         if (rx_buf->m_map != NULL) {
6587             bus_dmamap_sync(fp->rx_mbuf_tag, rx_buf->m_map,
6588                             BUS_DMASYNC_POSTREAD);
6589             bus_dmamap_unload(fp->rx_mbuf_tag, rx_buf->m_map);
6590         }
6591 
6592         /*
6593          * We only get here from bxe_rxeof() when the maximum number
6594          * of rx buffers is less than RX_BD_USABLE. bxe_rxeof() already
6595          * holds the mbuf in the prev_index so it's OK to NULL it out
6596          * here without concern of a memory leak.
6597          */
6598         fp->rx_mbuf_chain[prev_index].m = NULL;
6599     }
6600 
6601     rx_buf = &fp->rx_mbuf_chain[index];
6602 
6603     if (rx_buf->m_map != NULL) {
6604         bus_dmamap_sync(fp->rx_mbuf_tag, rx_buf->m_map,
6605                         BUS_DMASYNC_POSTREAD);
6606         bus_dmamap_unload(fp->rx_mbuf_tag, rx_buf->m_map);
6607     }
6608 
6609     /* save the mbuf and mapping info for a future packet */
6610     map = (prev_index != index) ?
6611               fp->rx_mbuf_chain[prev_index].m_map : rx_buf->m_map;
6612     rx_buf->m_map = fp->rx_mbuf_spare_map;
6613     fp->rx_mbuf_spare_map = map;
6614     bus_dmamap_sync(fp->rx_mbuf_tag, rx_buf->m_map,
6615                     BUS_DMASYNC_PREREAD);
6616     rx_buf->m = m;
6617 
6618     rx_bd = &fp->rx_chain[index];
6619     rx_bd->addr_hi = htole32(U64_HI(segs[0].ds_addr));
6620     rx_bd->addr_lo = htole32(U64_LO(segs[0].ds_addr));
6621 
6622     return (rc);
6623 }
6624 
6625 static int
6626 bxe_alloc_rx_tpa_mbuf(struct bxe_fastpath *fp,
6627                       int                 queue)
6628 {
6629     struct bxe_sw_tpa_info *tpa_info = &fp->rx_tpa_info[queue];
6630     bus_dma_segment_t segs[1];
6631     bus_dmamap_t map;
6632     struct mbuf *m;
6633     int nsegs;
6634     int rc = 0;
6635 
6636     /* allocate the new TPA mbuf */
6637     m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, fp->mbuf_alloc_size);
6638     if (__predict_false(m == NULL)) {
6639         fp->eth_q_stats.mbuf_rx_tpa_alloc_failed++;
6640         return (ENOBUFS);
6641     }
6642 
6643     fp->eth_q_stats.mbuf_alloc_tpa++;
6644 
6645     /* initialize the mbuf buffer length */
6646     m->m_pkthdr.len = m->m_len = fp->rx_buf_size;
6647 
6648     /* map the mbuf into non-paged pool */
6649     rc = bus_dmamap_load_mbuf_sg(fp->rx_mbuf_tag,
6650                                  fp->rx_tpa_info_mbuf_spare_map,
6651                                  m, segs, &nsegs, BUS_DMA_NOWAIT);
6652     if (__predict_false(rc != 0)) {
6653         fp->eth_q_stats.mbuf_rx_tpa_mapping_failed++;
6654         m_free(m);
6655         fp->eth_q_stats.mbuf_alloc_tpa--;
6656         return (rc);
6657     }
6658 
6659     /* all mbufs must map to a single segment */
6660     KASSERT((nsegs == 1), ("Too many segments, %d returned!", nsegs));
6661 
6662     /* release any existing TPA mbuf mapping */
6663     if (tpa_info->bd.m_map != NULL) {
6664         bus_dmamap_sync(fp->rx_mbuf_tag, tpa_info->bd.m_map,
6665                         BUS_DMASYNC_POSTREAD);
6666         bus_dmamap_unload(fp->rx_mbuf_tag, tpa_info->bd.m_map);
6667     }
6668 
6669     /* save the mbuf and mapping info for the TPA mbuf */
6670     map = tpa_info->bd.m_map;
6671     tpa_info->bd.m_map = fp->rx_tpa_info_mbuf_spare_map;
6672     fp->rx_tpa_info_mbuf_spare_map = map;
6673     bus_dmamap_sync(fp->rx_mbuf_tag, tpa_info->bd.m_map,
6674                     BUS_DMASYNC_PREREAD);
6675     tpa_info->bd.m = m;
6676     tpa_info->seg = segs[0];
6677 
6678     return (rc);
6679 }
6680 
6681 /*
6682  * Allocate an mbuf and assign it to the receive scatter gather chain. The
6683  * caller must take care to save a copy of the existing mbuf in the SG mbuf
6684  * chain.
6685  */
6686 static int
6687 bxe_alloc_rx_sge_mbuf(struct bxe_fastpath *fp,
6688                       uint16_t            index)
6689 {
6690     struct bxe_sw_rx_bd *sge_buf;
6691     struct eth_rx_sge *sge;
6692     bus_dma_segment_t segs[1];
6693     bus_dmamap_t map;
6694     struct mbuf *m;
6695     int nsegs;
6696     int rc = 0;
6697 
6698     /* allocate a new SGE mbuf */
6699     m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, SGE_PAGE_SIZE);
6700     if (__predict_false(m == NULL)) {
6701         fp->eth_q_stats.mbuf_rx_sge_alloc_failed++;
6702         return (ENOMEM);
6703     }
6704 
6705     fp->eth_q_stats.mbuf_alloc_sge++;
6706 
6707     /* initialize the mbuf buffer length */
6708     m->m_pkthdr.len = m->m_len = SGE_PAGE_SIZE;
6709 
6710     /* map the SGE mbuf into non-paged pool */
6711     rc = bus_dmamap_load_mbuf_sg(fp->rx_sge_mbuf_tag,
6712                                  fp->rx_sge_mbuf_spare_map,
6713                                  m, segs, &nsegs, BUS_DMA_NOWAIT);
6714     if (__predict_false(rc != 0)) {
6715         fp->eth_q_stats.mbuf_rx_sge_mapping_failed++;
6716         m_freem(m);
6717         fp->eth_q_stats.mbuf_alloc_sge--;
6718         return (rc);
6719     }
6720 
6721     /* all mbufs must map to a single segment */
6722     KASSERT((nsegs == 1), ("Too many segments, %d returned!", nsegs));
6723 
6724     sge_buf = &fp->rx_sge_mbuf_chain[index];
6725 
6726     /* release any existing SGE mbuf mapping */
6727     if (sge_buf->m_map != NULL) {
6728         bus_dmamap_sync(fp->rx_sge_mbuf_tag, sge_buf->m_map,
6729                         BUS_DMASYNC_POSTREAD);
6730         bus_dmamap_unload(fp->rx_sge_mbuf_tag, sge_buf->m_map);
6731     }
6732 
6733     /* save the mbuf and mapping info for a future packet */
6734     map = sge_buf->m_map;
6735     sge_buf->m_map = fp->rx_sge_mbuf_spare_map;
6736     fp->rx_sge_mbuf_spare_map = map;
6737     bus_dmamap_sync(fp->rx_sge_mbuf_tag, sge_buf->m_map,
6738                     BUS_DMASYNC_PREREAD);
6739     sge_buf->m = m;
6740 
6741     sge = &fp->rx_sge_chain[index];
6742     sge->addr_hi = htole32(U64_HI(segs[0].ds_addr));
6743     sge->addr_lo = htole32(U64_LO(segs[0].ds_addr));
6744 
6745     return (rc);
6746 }
6747 
6748 static __noinline int
6749 bxe_alloc_fp_buffers(struct bxe_softc *sc)
6750 {
6751     struct bxe_fastpath *fp;
6752     int i, j, rc = 0;
6753     int ring_prod, cqe_ring_prod;
6754     int max_agg_queues;
6755 
6756     for (i = 0; i < sc->num_queues; i++) {
6757         fp = &sc->fp[i];
6758 
6759 #if __FreeBSD_version >= 800000
6760         fp->tx_br = buf_ring_alloc(BXE_BR_SIZE, M_DEVBUF,
6761                                    M_NOWAIT, &fp->tx_mtx);
6762         if (fp->tx_br == NULL) {
6763             BLOGE(sc, "buf_ring alloc fail for fp[%02d]\n", i);
6764             goto bxe_alloc_fp_buffers_error;
6765         }
6766 #endif
6767 
6768         ring_prod = cqe_ring_prod = 0;
6769         fp->rx_bd_cons = 0;
6770         fp->rx_cq_cons = 0;
6771 
6772         /* allocate buffers for the RX BDs in RX BD chain */
6773         for (j = 0; j < sc->max_rx_bufs; j++) {
6774             rc = bxe_alloc_rx_bd_mbuf(fp, ring_prod, ring_prod);
6775             if (rc != 0) {
6776                 BLOGE(sc, "mbuf alloc fail for fp[%02d] rx chain (%d)\n",
6777                       i, rc);
6778                 goto bxe_alloc_fp_buffers_error;
6779             }
6780 
6781             ring_prod     = RX_BD_NEXT(ring_prod);
6782             cqe_ring_prod = RCQ_NEXT(cqe_ring_prod);
6783         }
6784 
6785         fp->rx_bd_prod = ring_prod;
6786         fp->rx_cq_prod = cqe_ring_prod;
6787         fp->eth_q_stats.rx_calls = fp->eth_q_stats.rx_pkts = 0;
6788 
6789         if (if_getcapenable(sc->ifp) & IFCAP_LRO) {
6790             max_agg_queues = MAX_AGG_QS(sc);
6791 
6792             fp->tpa_enable = TRUE;
6793 
6794             /* fill the TPA pool */
6795             for (j = 0; j < max_agg_queues; j++) {
6796                 rc = bxe_alloc_rx_tpa_mbuf(fp, j);
6797                 if (rc != 0) {
6798                     BLOGE(sc, "mbuf alloc fail for fp[%02d] TPA queue %d\n",
6799                           i, j);
6800                     fp->tpa_enable = FALSE;
6801                     goto bxe_alloc_fp_buffers_error;
6802                 }
6803 
6804                 fp->rx_tpa_info[j].state = BXE_TPA_STATE_STOP;
6805             }
6806 
6807             if (fp->tpa_enable) {
6808                 /* fill the RX SGE chain */
6809                 ring_prod = 0;
6810                 for (j = 0; j < RX_SGE_USABLE; j++) {
6811                     rc = bxe_alloc_rx_sge_mbuf(fp, ring_prod);
6812                     if (rc != 0) {
6813                         BLOGE(sc, "mbuf alloc fail for fp[%02d] SGE %d\n",
6814                               i, ring_prod);
6815                         fp->tpa_enable = FALSE;
6816                         ring_prod = 0;
6817                         goto bxe_alloc_fp_buffers_error;
6818                     }
6819 
6820                     ring_prod = RX_SGE_NEXT(ring_prod);
6821                 }
6822 
6823                 fp->rx_sge_prod = ring_prod;
6824             }
6825         }
6826     }
6827 
6828     return (0);
6829 
6830 bxe_alloc_fp_buffers_error:
6831 
6832     /* unwind what was already allocated */
6833     bxe_free_rx_bd_chain(fp);
6834     bxe_free_tpa_pool(fp);
6835     bxe_free_sge_chain(fp);
6836 
6837     return (ENOBUFS);
6838 }
6839 
6840 static void
6841 bxe_free_fw_stats_mem(struct bxe_softc *sc)
6842 {
6843     bxe_dma_free(sc, &sc->fw_stats_dma);
6844 
6845     sc->fw_stats_num = 0;
6846 
6847     sc->fw_stats_req_size = 0;
6848     sc->fw_stats_req = NULL;
6849     sc->fw_stats_req_mapping = 0;
6850 
6851     sc->fw_stats_data_size = 0;
6852     sc->fw_stats_data = NULL;
6853     sc->fw_stats_data_mapping = 0;
6854 }
6855 
6856 static int
6857 bxe_alloc_fw_stats_mem(struct bxe_softc *sc)
6858 {
6859     uint8_t num_queue_stats;
6860     int num_groups;
6861 
6862     /* number of queues for statistics is number of eth queues */
6863     num_queue_stats = BXE_NUM_ETH_QUEUES(sc);
6864 
6865     /*
6866      * Total number of FW statistics requests =
6867      *   1 for port stats + 1 for PF stats + num of queues
6868      */
6869     sc->fw_stats_num = (2 + num_queue_stats);
6870 
6871     /*
6872      * Request is built from stats_query_header and an array of
6873      * stats_query_cmd_group each of which contains STATS_QUERY_CMD_COUNT
6874      * rules. The real number or requests is configured in the
6875      * stats_query_header.
6876      */
6877     num_groups =
6878         ((sc->fw_stats_num / STATS_QUERY_CMD_COUNT) +
6879          ((sc->fw_stats_num % STATS_QUERY_CMD_COUNT) ? 1 : 0));
6880 
6881     BLOGD(sc, DBG_LOAD, "stats fw_stats_num %d num_groups %d\n",
6882           sc->fw_stats_num, num_groups);
6883 
6884     sc->fw_stats_req_size =
6885         (sizeof(struct stats_query_header) +
6886          (num_groups * sizeof(struct stats_query_cmd_group)));
6887 
6888     /*
6889      * Data for statistics requests + stats_counter.
6890      * stats_counter holds per-STORM counters that are incremented when
6891      * STORM has finished with the current request. Memory for FCoE
6892      * offloaded statistics are counted anyway, even if they will not be sent.
6893      * VF stats are not accounted for here as the data of VF stats is stored
6894      * in memory allocated by the VF, not here.
6895      */
6896     sc->fw_stats_data_size =
6897         (sizeof(struct stats_counter) +
6898          sizeof(struct per_port_stats) +
6899          sizeof(struct per_pf_stats) +
6900          /* sizeof(struct fcoe_statistics_params) + */
6901          (sizeof(struct per_queue_stats) * num_queue_stats));
6902 
6903     if (bxe_dma_alloc(sc, (sc->fw_stats_req_size + sc->fw_stats_data_size),
6904                       &sc->fw_stats_dma, "fw stats") != 0) {
6905         bxe_free_fw_stats_mem(sc);
6906         return (-1);
6907     }
6908 
6909     /* set up the shortcuts */
6910 
6911     sc->fw_stats_req =
6912         (struct bxe_fw_stats_req *)sc->fw_stats_dma.vaddr;
6913     sc->fw_stats_req_mapping = sc->fw_stats_dma.paddr;
6914 
6915     sc->fw_stats_data =
6916         (struct bxe_fw_stats_data *)((uint8_t *)sc->fw_stats_dma.vaddr +
6917                                      sc->fw_stats_req_size);
6918     sc->fw_stats_data_mapping = (sc->fw_stats_dma.paddr +
6919                                  sc->fw_stats_req_size);
6920 
6921     BLOGD(sc, DBG_LOAD, "statistics request base address set to %#jx\n",
6922           (uintmax_t)sc->fw_stats_req_mapping);
6923 
6924     BLOGD(sc, DBG_LOAD, "statistics data base address set to %#jx\n",
6925           (uintmax_t)sc->fw_stats_data_mapping);
6926 
6927     return (0);
6928 }
6929 
6930 /*
6931  * Bits map:
6932  * 0-7  - Engine0 load counter.
6933  * 8-15 - Engine1 load counter.
6934  * 16   - Engine0 RESET_IN_PROGRESS bit.
6935  * 17   - Engine1 RESET_IN_PROGRESS bit.
6936  * 18   - Engine0 ONE_IS_LOADED. Set when there is at least one active
6937  *        function on the engine
6938  * 19   - Engine1 ONE_IS_LOADED.
6939  * 20   - Chip reset flow bit. When set none-leader must wait for both engines
6940  *        leader to complete (check for both RESET_IN_PROGRESS bits and not
6941  *        for just the one belonging to its engine).
6942  */
6943 #define BXE_RECOVERY_GLOB_REG     MISC_REG_GENERIC_POR_1
6944 #define BXE_PATH0_LOAD_CNT_MASK   0x000000ff
6945 #define BXE_PATH0_LOAD_CNT_SHIFT  0
6946 #define BXE_PATH1_LOAD_CNT_MASK   0x0000ff00
6947 #define BXE_PATH1_LOAD_CNT_SHIFT  8
6948 #define BXE_PATH0_RST_IN_PROG_BIT 0x00010000
6949 #define BXE_PATH1_RST_IN_PROG_BIT 0x00020000
6950 #define BXE_GLOBAL_RESET_BIT      0x00040000
6951 
6952 /* set the GLOBAL_RESET bit, should be run under rtnl lock */
6953 static void
6954 bxe_set_reset_global(struct bxe_softc *sc)
6955 {
6956     uint32_t val;
6957     bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
6958     val = REG_RD(sc, BXE_RECOVERY_GLOB_REG);
6959     REG_WR(sc, BXE_RECOVERY_GLOB_REG, val | BXE_GLOBAL_RESET_BIT);
6960     bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
6961 }
6962 
6963 /* clear the GLOBAL_RESET bit, should be run under rtnl lock */
6964 static void
6965 bxe_clear_reset_global(struct bxe_softc *sc)
6966 {
6967     uint32_t val;
6968     bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
6969     val = REG_RD(sc, BXE_RECOVERY_GLOB_REG);
6970     REG_WR(sc, BXE_RECOVERY_GLOB_REG, val & (~BXE_GLOBAL_RESET_BIT));
6971     bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
6972 }
6973 
6974 /* checks the GLOBAL_RESET bit, should be run under rtnl lock */
6975 static uint8_t
6976 bxe_reset_is_global(struct bxe_softc *sc)
6977 {
6978     uint32_t val = REG_RD(sc, BXE_RECOVERY_GLOB_REG);
6979     BLOGD(sc, DBG_LOAD, "GLOB_REG=0x%08x\n", val);
6980     return (val & BXE_GLOBAL_RESET_BIT) ? TRUE : FALSE;
6981 }
6982 
6983 /* clear RESET_IN_PROGRESS bit for the engine, should be run under rtnl lock */
6984 static void
6985 bxe_set_reset_done(struct bxe_softc *sc)
6986 {
6987     uint32_t val;
6988     uint32_t bit = SC_PATH(sc) ? BXE_PATH1_RST_IN_PROG_BIT :
6989                                  BXE_PATH0_RST_IN_PROG_BIT;
6990 
6991     bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
6992 
6993     val = REG_RD(sc, BXE_RECOVERY_GLOB_REG);
6994     /* Clear the bit */
6995     val &= ~bit;
6996     REG_WR(sc, BXE_RECOVERY_GLOB_REG, val);
6997 
6998     bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
6999 }
7000 
7001 /* set RESET_IN_PROGRESS for the engine, should be run under rtnl lock */
7002 static void
7003 bxe_set_reset_in_progress(struct bxe_softc *sc)
7004 {
7005     uint32_t val;
7006     uint32_t bit = SC_PATH(sc) ? BXE_PATH1_RST_IN_PROG_BIT :
7007                                  BXE_PATH0_RST_IN_PROG_BIT;
7008 
7009     bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
7010 
7011     val = REG_RD(sc, BXE_RECOVERY_GLOB_REG);
7012     /* Set the bit */
7013     val |= bit;
7014     REG_WR(sc, BXE_RECOVERY_GLOB_REG, val);
7015 
7016     bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
7017 }
7018 
7019 /* check RESET_IN_PROGRESS bit for an engine, should be run under rtnl lock */
7020 static uint8_t
7021 bxe_reset_is_done(struct bxe_softc *sc,
7022                   int              engine)
7023 {
7024     uint32_t val = REG_RD(sc, BXE_RECOVERY_GLOB_REG);
7025     uint32_t bit = engine ? BXE_PATH1_RST_IN_PROG_BIT :
7026                             BXE_PATH0_RST_IN_PROG_BIT;
7027 
7028     /* return false if bit is set */
7029     return (val & bit) ? FALSE : TRUE;
7030 }
7031 
7032 /* get the load status for an engine, should be run under rtnl lock */
7033 static uint8_t
7034 bxe_get_load_status(struct bxe_softc *sc,
7035                     int              engine)
7036 {
7037     uint32_t mask = engine ? BXE_PATH1_LOAD_CNT_MASK :
7038                              BXE_PATH0_LOAD_CNT_MASK;
7039     uint32_t shift = engine ? BXE_PATH1_LOAD_CNT_SHIFT :
7040                               BXE_PATH0_LOAD_CNT_SHIFT;
7041     uint32_t val = REG_RD(sc, BXE_RECOVERY_GLOB_REG);
7042 
7043     BLOGD(sc, DBG_LOAD, "Old value for GLOB_REG=0x%08x\n", val);
7044 
7045     val = ((val & mask) >> shift);
7046 
7047     BLOGD(sc, DBG_LOAD, "Load mask engine %d = 0x%08x\n", engine, val);
7048 
7049     return (val != 0);
7050 }
7051 
7052 /* set pf load mark */
7053 /* XXX needs to be under rtnl lock */
7054 static void
7055 bxe_set_pf_load(struct bxe_softc *sc)
7056 {
7057     uint32_t val;
7058     uint32_t val1;
7059     uint32_t mask = SC_PATH(sc) ? BXE_PATH1_LOAD_CNT_MASK :
7060                                   BXE_PATH0_LOAD_CNT_MASK;
7061     uint32_t shift = SC_PATH(sc) ? BXE_PATH1_LOAD_CNT_SHIFT :
7062                                    BXE_PATH0_LOAD_CNT_SHIFT;
7063 
7064     bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
7065 
7066     val = REG_RD(sc, BXE_RECOVERY_GLOB_REG);
7067     BLOGD(sc, DBG_LOAD, "Old value for GLOB_REG=0x%08x\n", val);
7068 
7069     /* get the current counter value */
7070     val1 = ((val & mask) >> shift);
7071 
7072     /* set bit of this PF */
7073     val1 |= (1 << SC_ABS_FUNC(sc));
7074 
7075     /* clear the old value */
7076     val &= ~mask;
7077 
7078     /* set the new one */
7079     val |= ((val1 << shift) & mask);
7080 
7081     REG_WR(sc, BXE_RECOVERY_GLOB_REG, val);
7082 
7083     bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
7084 }
7085 
7086 /* clear pf load mark */
7087 /* XXX needs to be under rtnl lock */
7088 static uint8_t
7089 bxe_clear_pf_load(struct bxe_softc *sc)
7090 {
7091     uint32_t val1, val;
7092     uint32_t mask = SC_PATH(sc) ? BXE_PATH1_LOAD_CNT_MASK :
7093                                   BXE_PATH0_LOAD_CNT_MASK;
7094     uint32_t shift = SC_PATH(sc) ? BXE_PATH1_LOAD_CNT_SHIFT :
7095                                    BXE_PATH0_LOAD_CNT_SHIFT;
7096 
7097     bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
7098     val = REG_RD(sc, BXE_RECOVERY_GLOB_REG);
7099     BLOGD(sc, DBG_LOAD, "Old GEN_REG_VAL=0x%08x\n", val);
7100 
7101     /* get the current counter value */
7102     val1 = (val & mask) >> shift;
7103 
7104     /* clear bit of that PF */
7105     val1 &= ~(1 << SC_ABS_FUNC(sc));
7106 
7107     /* clear the old value */
7108     val &= ~mask;
7109 
7110     /* set the new one */
7111     val |= ((val1 << shift) & mask);
7112 
7113     REG_WR(sc, BXE_RECOVERY_GLOB_REG, val);
7114     bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
7115     return (val1 != 0);
7116 }
7117 
7118 /* send load requrest to mcp and analyze response */
7119 static int
7120 bxe_nic_load_request(struct bxe_softc *sc,
7121                      uint32_t         *load_code)
7122 {
7123     /* init fw_seq */
7124     sc->fw_seq =
7125         (SHMEM_RD(sc, func_mb[SC_FW_MB_IDX(sc)].drv_mb_header) &
7126          DRV_MSG_SEQ_NUMBER_MASK);
7127 
7128     BLOGD(sc, DBG_LOAD, "initial fw_seq 0x%04x\n", sc->fw_seq);
7129 
7130     /* get the current FW pulse sequence */
7131     sc->fw_drv_pulse_wr_seq =
7132         (SHMEM_RD(sc, func_mb[SC_FW_MB_IDX(sc)].drv_pulse_mb) &
7133          DRV_PULSE_SEQ_MASK);
7134 
7135     BLOGD(sc, DBG_LOAD, "initial drv_pulse 0x%04x\n",
7136           sc->fw_drv_pulse_wr_seq);
7137 
7138     /* load request */
7139     (*load_code) = bxe_fw_command(sc, DRV_MSG_CODE_LOAD_REQ,
7140                                   DRV_MSG_CODE_LOAD_REQ_WITH_LFA);
7141 
7142     /* if the MCP fails to respond we must abort */
7143     if (!(*load_code)) {
7144         BLOGE(sc, "MCP response failure!\n");
7145         return (-1);
7146     }
7147 
7148     /* if MCP refused then must abort */
7149     if ((*load_code) == FW_MSG_CODE_DRV_LOAD_REFUSED) {
7150         BLOGE(sc, "MCP refused load request\n");
7151         return (-1);
7152     }
7153 
7154     return (0);
7155 }
7156 
7157 /*
7158  * Check whether another PF has already loaded FW to chip. In virtualized
7159  * environments a pf from anoth VM may have already initialized the device
7160  * including loading FW.
7161  */
7162 static int
7163 bxe_nic_load_analyze_req(struct bxe_softc *sc,
7164                          uint32_t         load_code)
7165 {
7166     uint32_t my_fw, loaded_fw;
7167 
7168     /* is another pf loaded on this engine? */
7169     if ((load_code != FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) &&
7170         (load_code != FW_MSG_CODE_DRV_LOAD_COMMON)) {
7171         /* build my FW version dword */
7172         my_fw = (BCM_5710_FW_MAJOR_VERSION +
7173                  (BCM_5710_FW_MINOR_VERSION << 8 ) +
7174                  (BCM_5710_FW_REVISION_VERSION << 16) +
7175                  (BCM_5710_FW_ENGINEERING_VERSION << 24));
7176 
7177         /* read loaded FW from chip */
7178         loaded_fw = REG_RD(sc, XSEM_REG_PRAM);
7179         BLOGD(sc, DBG_LOAD, "loaded FW 0x%08x / my FW 0x%08x\n",
7180               loaded_fw, my_fw);
7181 
7182         /* abort nic load if version mismatch */
7183         if (my_fw != loaded_fw) {
7184             BLOGE(sc, "FW 0x%08x already loaded (mine is 0x%08x)",
7185                   loaded_fw, my_fw);
7186             return (-1);
7187         }
7188     }
7189 
7190     return (0);
7191 }
7192 
7193 /* mark PMF if applicable */
7194 static void
7195 bxe_nic_load_pmf(struct bxe_softc *sc,
7196                  uint32_t         load_code)
7197 {
7198     uint32_t ncsi_oem_data_addr;
7199 
7200     if ((load_code == FW_MSG_CODE_DRV_LOAD_COMMON) ||
7201         (load_code == FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) ||
7202         (load_code == FW_MSG_CODE_DRV_LOAD_PORT)) {
7203         /*
7204          * Barrier here for ordering between the writing to sc->port.pmf here
7205          * and reading it from the periodic task.
7206          */
7207         sc->port.pmf = 1;
7208         mb();
7209     } else {
7210         sc->port.pmf = 0;
7211     }
7212 
7213     BLOGD(sc, DBG_LOAD, "pmf %d\n", sc->port.pmf);
7214 
7215     /* XXX needed? */
7216     if (load_code == FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) {
7217         if (SHMEM2_HAS(sc, ncsi_oem_data_addr)) {
7218             ncsi_oem_data_addr = SHMEM2_RD(sc, ncsi_oem_data_addr);
7219             if (ncsi_oem_data_addr) {
7220                 REG_WR(sc,
7221                        (ncsi_oem_data_addr +
7222                         offsetof(struct glob_ncsi_oem_data, driver_version)),
7223                        0);
7224             }
7225         }
7226     }
7227 }
7228 
7229 static void
7230 bxe_read_mf_cfg(struct bxe_softc *sc)
7231 {
7232     int n = (CHIP_IS_MODE_4_PORT(sc) ? 2 : 1);
7233     int abs_func;
7234     int vn;
7235 
7236     if (BXE_NOMCP(sc)) {
7237         return; /* what should be the default bvalue in this case */
7238     }
7239 
7240     /*
7241      * The formula for computing the absolute function number is...
7242      * For 2 port configuration (4 functions per port):
7243      *   abs_func = 2 * vn + SC_PORT + SC_PATH
7244      * For 4 port configuration (2 functions per port):
7245      *   abs_func = 4 * vn + 2 * SC_PORT + SC_PATH
7246      */
7247     for (vn = VN_0; vn < SC_MAX_VN_NUM(sc); vn++) {
7248         abs_func = (n * (2 * vn + SC_PORT(sc)) + SC_PATH(sc));
7249         if (abs_func >= E1H_FUNC_MAX) {
7250             break;
7251         }
7252         sc->devinfo.mf_info.mf_config[vn] =
7253             MFCFG_RD(sc, func_mf_config[abs_func].config);
7254     }
7255 
7256     if (sc->devinfo.mf_info.mf_config[SC_VN(sc)] &
7257         FUNC_MF_CFG_FUNC_DISABLED) {
7258         BLOGD(sc, DBG_LOAD, "mf_cfg function disabled\n");
7259         sc->flags |= BXE_MF_FUNC_DIS;
7260     } else {
7261         BLOGD(sc, DBG_LOAD, "mf_cfg function enabled\n");
7262         sc->flags &= ~BXE_MF_FUNC_DIS;
7263     }
7264 }
7265 
7266 /* acquire split MCP access lock register */
7267 static int bxe_acquire_alr(struct bxe_softc *sc)
7268 {
7269     uint32_t j, val;
7270 
7271     for (j = 0; j < 1000; j++) {
7272         val = (1UL << 31);
7273         REG_WR(sc, GRCBASE_MCP + 0x9c, val);
7274         val = REG_RD(sc, GRCBASE_MCP + 0x9c);
7275         if (val & (1L << 31))
7276             break;
7277 
7278         DELAY(5000);
7279     }
7280 
7281     if (!(val & (1L << 31))) {
7282         BLOGE(sc, "Cannot acquire MCP access lock register\n");
7283         return (-1);
7284     }
7285 
7286     return (0);
7287 }
7288 
7289 /* release split MCP access lock register */
7290 static void bxe_release_alr(struct bxe_softc *sc)
7291 {
7292     REG_WR(sc, GRCBASE_MCP + 0x9c, 0);
7293 }
7294 
7295 static void
7296 bxe_fan_failure(struct bxe_softc *sc)
7297 {
7298     int port = SC_PORT(sc);
7299     uint32_t ext_phy_config;
7300 
7301     /* mark the failure */
7302     ext_phy_config =
7303         SHMEM_RD(sc, dev_info.port_hw_config[port].external_phy_config);
7304 
7305     ext_phy_config &= ~PORT_HW_CFG_XGXS_EXT_PHY_TYPE_MASK;
7306     ext_phy_config |= PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE;
7307     SHMEM_WR(sc, dev_info.port_hw_config[port].external_phy_config,
7308              ext_phy_config);
7309 
7310     /* log the failure */
7311     BLOGW(sc, "Fan Failure has caused the driver to shutdown "
7312               "the card to prevent permanent damage. "
7313               "Please contact OEM Support for assistance\n");
7314 
7315     /* XXX */
7316 #if 1
7317     bxe_panic(sc, ("Schedule task to handle fan failure\n"));
7318 #else
7319     /*
7320      * Schedule device reset (unload)
7321      * This is due to some boards consuming sufficient power when driver is
7322      * up to overheat if fan fails.
7323      */
7324     bxe_set_bit(BXE_SP_RTNL_FAN_FAILURE, &sc->sp_rtnl_state);
7325     schedule_delayed_work(&sc->sp_rtnl_task, 0);
7326 #endif
7327 }
7328 
7329 /* this function is called upon a link interrupt */
7330 static void
7331 bxe_link_attn(struct bxe_softc *sc)
7332 {
7333     uint32_t pause_enabled = 0;
7334     struct host_port_stats *pstats;
7335     int cmng_fns;
7336 
7337     /* Make sure that we are synced with the current statistics */
7338     bxe_stats_handle(sc, STATS_EVENT_STOP);
7339 
7340     elink_link_update(&sc->link_params, &sc->link_vars);
7341 
7342     if (sc->link_vars.link_up) {
7343 
7344         /* dropless flow control */
7345         if (!CHIP_IS_E1(sc) && sc->dropless_fc) {
7346             pause_enabled = 0;
7347 
7348             if (sc->link_vars.flow_ctrl & ELINK_FLOW_CTRL_TX) {
7349                 pause_enabled = 1;
7350             }
7351 
7352             REG_WR(sc,
7353                    (BAR_USTRORM_INTMEM +
7354                     USTORM_ETH_PAUSE_ENABLED_OFFSET(SC_PORT(sc))),
7355                    pause_enabled);
7356         }
7357 
7358         if (sc->link_vars.mac_type != ELINK_MAC_TYPE_EMAC) {
7359             pstats = BXE_SP(sc, port_stats);
7360             /* reset old mac stats */
7361             memset(&(pstats->mac_stx[0]), 0, sizeof(struct mac_stx));
7362         }
7363 
7364         if (sc->state == BXE_STATE_OPEN) {
7365             bxe_stats_handle(sc, STATS_EVENT_LINK_UP);
7366         }
7367     }
7368 
7369     if (sc->link_vars.link_up && sc->link_vars.line_speed) {
7370         cmng_fns = bxe_get_cmng_fns_mode(sc);
7371 
7372         if (cmng_fns != CMNG_FNS_NONE) {
7373             bxe_cmng_fns_init(sc, FALSE, cmng_fns);
7374             storm_memset_cmng(sc, &sc->cmng, SC_PORT(sc));
7375         } else {
7376             /* rate shaping and fairness are disabled */
7377             BLOGD(sc, DBG_LOAD, "single function mode without fairness\n");
7378         }
7379     }
7380 
7381     bxe_link_report_locked(sc);
7382 
7383     if (IS_MF(sc)) {
7384         ; // XXX bxe_link_sync_notify(sc);
7385     }
7386 }
7387 
7388 static void
7389 bxe_attn_int_asserted(struct bxe_softc *sc,
7390                       uint32_t         asserted)
7391 {
7392     int port = SC_PORT(sc);
7393     uint32_t aeu_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
7394                                MISC_REG_AEU_MASK_ATTN_FUNC_0;
7395     uint32_t nig_int_mask_addr = port ? NIG_REG_MASK_INTERRUPT_PORT1 :
7396                                         NIG_REG_MASK_INTERRUPT_PORT0;
7397     uint32_t aeu_mask;
7398     uint32_t nig_mask = 0;
7399     uint32_t reg_addr;
7400     uint32_t igu_acked;
7401     uint32_t cnt;
7402 
7403     if (sc->attn_state & asserted) {
7404         BLOGE(sc, "IGU ERROR attn=0x%08x\n", asserted);
7405     }
7406 
7407     bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
7408 
7409     aeu_mask = REG_RD(sc, aeu_addr);
7410 
7411     BLOGD(sc, DBG_INTR, "aeu_mask 0x%08x newly asserted 0x%08x\n",
7412           aeu_mask, asserted);
7413 
7414     aeu_mask &= ~(asserted & 0x3ff);
7415 
7416     BLOGD(sc, DBG_INTR, "new mask 0x%08x\n", aeu_mask);
7417 
7418     REG_WR(sc, aeu_addr, aeu_mask);
7419 
7420     bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
7421 
7422     BLOGD(sc, DBG_INTR, "attn_state 0x%08x\n", sc->attn_state);
7423     sc->attn_state |= asserted;
7424     BLOGD(sc, DBG_INTR, "new state 0x%08x\n", sc->attn_state);
7425 
7426     if (asserted & ATTN_HARD_WIRED_MASK) {
7427         if (asserted & ATTN_NIG_FOR_FUNC) {
7428 
7429             BXE_PHY_LOCK(sc);
7430 
7431             /* save nig interrupt mask */
7432             nig_mask = REG_RD(sc, nig_int_mask_addr);
7433 
7434             /* If nig_mask is not set, no need to call the update function */
7435             if (nig_mask) {
7436                 REG_WR(sc, nig_int_mask_addr, 0);
7437 
7438                 bxe_link_attn(sc);
7439             }
7440 
7441             /* handle unicore attn? */
7442         }
7443 
7444         if (asserted & ATTN_SW_TIMER_4_FUNC) {
7445             BLOGD(sc, DBG_INTR, "ATTN_SW_TIMER_4_FUNC!\n");
7446         }
7447 
7448         if (asserted & GPIO_2_FUNC) {
7449             BLOGD(sc, DBG_INTR, "GPIO_2_FUNC!\n");
7450         }
7451 
7452         if (asserted & GPIO_3_FUNC) {
7453             BLOGD(sc, DBG_INTR, "GPIO_3_FUNC!\n");
7454         }
7455 
7456         if (asserted & GPIO_4_FUNC) {
7457             BLOGD(sc, DBG_INTR, "GPIO_4_FUNC!\n");
7458         }
7459 
7460         if (port == 0) {
7461             if (asserted & ATTN_GENERAL_ATTN_1) {
7462                 BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_1!\n");
7463                 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_1, 0x0);
7464             }
7465             if (asserted & ATTN_GENERAL_ATTN_2) {
7466                 BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_2!\n");
7467                 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_2, 0x0);
7468             }
7469             if (asserted & ATTN_GENERAL_ATTN_3) {
7470                 BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_3!\n");
7471                 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_3, 0x0);
7472             }
7473         } else {
7474             if (asserted & ATTN_GENERAL_ATTN_4) {
7475                 BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_4!\n");
7476                 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_4, 0x0);
7477             }
7478             if (asserted & ATTN_GENERAL_ATTN_5) {
7479                 BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_5!\n");
7480                 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_5, 0x0);
7481             }
7482             if (asserted & ATTN_GENERAL_ATTN_6) {
7483                 BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_6!\n");
7484                 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_6, 0x0);
7485             }
7486         }
7487     } /* hardwired */
7488 
7489     if (sc->devinfo.int_block == INT_BLOCK_HC) {
7490         reg_addr = (HC_REG_COMMAND_REG + port*32 + COMMAND_REG_ATTN_BITS_SET);
7491     } else {
7492         reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_SET_UPPER*8);
7493     }
7494 
7495     BLOGD(sc, DBG_INTR, "about to mask 0x%08x at %s addr 0x%08x\n",
7496           asserted,
7497           (sc->devinfo.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr);
7498     REG_WR(sc, reg_addr, asserted);
7499 
7500     /* now set back the mask */
7501     if (asserted & ATTN_NIG_FOR_FUNC) {
7502         /*
7503          * Verify that IGU ack through BAR was written before restoring
7504          * NIG mask. This loop should exit after 2-3 iterations max.
7505          */
7506         if (sc->devinfo.int_block != INT_BLOCK_HC) {
7507             cnt = 0;
7508 
7509             do {
7510                 igu_acked = REG_RD(sc, IGU_REG_ATTENTION_ACK_BITS);
7511             } while (((igu_acked & ATTN_NIG_FOR_FUNC) == 0) &&
7512                      (++cnt < MAX_IGU_ATTN_ACK_TO));
7513 
7514             if (!igu_acked) {
7515                 BLOGE(sc, "Failed to verify IGU ack on time\n");
7516             }
7517 
7518             mb();
7519         }
7520 
7521         REG_WR(sc, nig_int_mask_addr, nig_mask);
7522 
7523         BXE_PHY_UNLOCK(sc);
7524     }
7525 }
7526 
7527 static void
7528 bxe_print_next_block(struct bxe_softc *sc,
7529                      int              idx,
7530                      const char       *blk)
7531 {
7532     BLOGI(sc, "%s%s", idx ? ", " : "", blk);
7533 }
7534 
7535 static int
7536 bxe_check_blocks_with_parity0(struct bxe_softc *sc,
7537                               uint32_t         sig,
7538                               int              par_num,
7539                               uint8_t          print)
7540 {
7541     uint32_t cur_bit = 0;
7542     int i = 0;
7543 
7544     for (i = 0; sig; i++) {
7545         cur_bit = ((uint32_t)0x1 << i);
7546         if (sig & cur_bit) {
7547             switch (cur_bit) {
7548             case AEU_INPUTS_ATTN_BITS_BRB_PARITY_ERROR:
7549                 if (print)
7550                     bxe_print_next_block(sc, par_num++, "BRB");
7551                 break;
7552             case AEU_INPUTS_ATTN_BITS_PARSER_PARITY_ERROR:
7553                 if (print)
7554                     bxe_print_next_block(sc, par_num++, "PARSER");
7555                 break;
7556             case AEU_INPUTS_ATTN_BITS_TSDM_PARITY_ERROR:
7557                 if (print)
7558                     bxe_print_next_block(sc, par_num++, "TSDM");
7559                 break;
7560             case AEU_INPUTS_ATTN_BITS_SEARCHER_PARITY_ERROR:
7561                 if (print)
7562                     bxe_print_next_block(sc, par_num++, "SEARCHER");
7563                 break;
7564             case AEU_INPUTS_ATTN_BITS_TCM_PARITY_ERROR:
7565                 if (print)
7566                     bxe_print_next_block(sc, par_num++, "TCM");
7567                 break;
7568             case AEU_INPUTS_ATTN_BITS_TSEMI_PARITY_ERROR:
7569                 if (print)
7570                     bxe_print_next_block(sc, par_num++, "TSEMI");
7571                 break;
7572             case AEU_INPUTS_ATTN_BITS_PBCLIENT_PARITY_ERROR:
7573                 if (print)
7574                     bxe_print_next_block(sc, par_num++, "XPB");
7575                 break;
7576             }
7577 
7578             /* Clear the bit */
7579             sig &= ~cur_bit;
7580         }
7581     }
7582 
7583     return (par_num);
7584 }
7585 
7586 static int
7587 bxe_check_blocks_with_parity1(struct bxe_softc *sc,
7588                               uint32_t         sig,
7589                               int              par_num,
7590                               uint8_t          *global,
7591                               uint8_t          print)
7592 {
7593     int i = 0;
7594     uint32_t cur_bit = 0;
7595     for (i = 0; sig; i++) {
7596         cur_bit = ((uint32_t)0x1 << i);
7597         if (sig & cur_bit) {
7598             switch (cur_bit) {
7599             case AEU_INPUTS_ATTN_BITS_PBF_PARITY_ERROR:
7600                 if (print)
7601                     bxe_print_next_block(sc, par_num++, "PBF");
7602                 break;
7603             case AEU_INPUTS_ATTN_BITS_QM_PARITY_ERROR:
7604                 if (print)
7605                     bxe_print_next_block(sc, par_num++, "QM");
7606                 break;
7607             case AEU_INPUTS_ATTN_BITS_TIMERS_PARITY_ERROR:
7608                 if (print)
7609                     bxe_print_next_block(sc, par_num++, "TM");
7610                 break;
7611             case AEU_INPUTS_ATTN_BITS_XSDM_PARITY_ERROR:
7612                 if (print)
7613                     bxe_print_next_block(sc, par_num++, "XSDM");
7614                 break;
7615             case AEU_INPUTS_ATTN_BITS_XCM_PARITY_ERROR:
7616                 if (print)
7617                     bxe_print_next_block(sc, par_num++, "XCM");
7618                 break;
7619             case AEU_INPUTS_ATTN_BITS_XSEMI_PARITY_ERROR:
7620                 if (print)
7621                     bxe_print_next_block(sc, par_num++, "XSEMI");
7622                 break;
7623             case AEU_INPUTS_ATTN_BITS_DOORBELLQ_PARITY_ERROR:
7624                 if (print)
7625                     bxe_print_next_block(sc, par_num++, "DOORBELLQ");
7626                 break;
7627             case AEU_INPUTS_ATTN_BITS_NIG_PARITY_ERROR:
7628                 if (print)
7629                     bxe_print_next_block(sc, par_num++, "NIG");
7630                 break;
7631             case AEU_INPUTS_ATTN_BITS_VAUX_PCI_CORE_PARITY_ERROR:
7632                 if (print)
7633                     bxe_print_next_block(sc, par_num++, "VAUX PCI CORE");
7634                 *global = TRUE;
7635                 break;
7636             case AEU_INPUTS_ATTN_BITS_DEBUG_PARITY_ERROR:
7637                 if (print)
7638                     bxe_print_next_block(sc, par_num++, "DEBUG");
7639                 break;
7640             case AEU_INPUTS_ATTN_BITS_USDM_PARITY_ERROR:
7641                 if (print)
7642                     bxe_print_next_block(sc, par_num++, "USDM");
7643                 break;
7644             case AEU_INPUTS_ATTN_BITS_UCM_PARITY_ERROR:
7645                 if (print)
7646                     bxe_print_next_block(sc, par_num++, "UCM");
7647                 break;
7648             case AEU_INPUTS_ATTN_BITS_USEMI_PARITY_ERROR:
7649                 if (print)
7650                     bxe_print_next_block(sc, par_num++, "USEMI");
7651                 break;
7652             case AEU_INPUTS_ATTN_BITS_UPB_PARITY_ERROR:
7653                 if (print)
7654                     bxe_print_next_block(sc, par_num++, "UPB");
7655                 break;
7656             case AEU_INPUTS_ATTN_BITS_CSDM_PARITY_ERROR:
7657                 if (print)
7658                     bxe_print_next_block(sc, par_num++, "CSDM");
7659                 break;
7660             case AEU_INPUTS_ATTN_BITS_CCM_PARITY_ERROR:
7661                 if (print)
7662                     bxe_print_next_block(sc, par_num++, "CCM");
7663                 break;
7664             }
7665 
7666             /* Clear the bit */
7667             sig &= ~cur_bit;
7668         }
7669     }
7670 
7671     return (par_num);
7672 }
7673 
7674 static int
7675 bxe_check_blocks_with_parity2(struct bxe_softc *sc,
7676                               uint32_t         sig,
7677                               int              par_num,
7678                               uint8_t          print)
7679 {
7680     uint32_t cur_bit = 0;
7681     int i = 0;
7682 
7683     for (i = 0; sig; i++) {
7684         cur_bit = ((uint32_t)0x1 << i);
7685         if (sig & cur_bit) {
7686             switch (cur_bit) {
7687             case AEU_INPUTS_ATTN_BITS_CSEMI_PARITY_ERROR:
7688                 if (print)
7689                     bxe_print_next_block(sc, par_num++, "CSEMI");
7690                 break;
7691             case AEU_INPUTS_ATTN_BITS_PXP_PARITY_ERROR:
7692                 if (print)
7693                     bxe_print_next_block(sc, par_num++, "PXP");
7694                 break;
7695             case AEU_IN_ATTN_BITS_PXPPCICLOCKCLIENT_PARITY_ERROR:
7696                 if (print)
7697                     bxe_print_next_block(sc, par_num++, "PXPPCICLOCKCLIENT");
7698                 break;
7699             case AEU_INPUTS_ATTN_BITS_CFC_PARITY_ERROR:
7700                 if (print)
7701                     bxe_print_next_block(sc, par_num++, "CFC");
7702                 break;
7703             case AEU_INPUTS_ATTN_BITS_CDU_PARITY_ERROR:
7704                 if (print)
7705                     bxe_print_next_block(sc, par_num++, "CDU");
7706                 break;
7707             case AEU_INPUTS_ATTN_BITS_DMAE_PARITY_ERROR:
7708                 if (print)
7709                     bxe_print_next_block(sc, par_num++, "DMAE");
7710                 break;
7711             case AEU_INPUTS_ATTN_BITS_IGU_PARITY_ERROR:
7712                 if (print)
7713                     bxe_print_next_block(sc, par_num++, "IGU");
7714                 break;
7715             case AEU_INPUTS_ATTN_BITS_MISC_PARITY_ERROR:
7716                 if (print)
7717                     bxe_print_next_block(sc, par_num++, "MISC");
7718                 break;
7719             }
7720 
7721             /* Clear the bit */
7722             sig &= ~cur_bit;
7723         }
7724     }
7725 
7726     return (par_num);
7727 }
7728 
7729 static int
7730 bxe_check_blocks_with_parity3(struct bxe_softc *sc,
7731                               uint32_t         sig,
7732                               int              par_num,
7733                               uint8_t          *global,
7734                               uint8_t          print)
7735 {
7736     uint32_t cur_bit = 0;
7737     int i = 0;
7738 
7739     for (i = 0; sig; i++) {
7740         cur_bit = ((uint32_t)0x1 << i);
7741         if (sig & cur_bit) {
7742             switch (cur_bit) {
7743             case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_ROM_PARITY:
7744                 if (print)
7745                     bxe_print_next_block(sc, par_num++, "MCP ROM");
7746                 *global = TRUE;
7747                 break;
7748             case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_RX_PARITY:
7749                 if (print)
7750                     bxe_print_next_block(sc, par_num++,
7751                               "MCP UMP RX");
7752                 *global = TRUE;
7753                 break;
7754             case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_TX_PARITY:
7755                 if (print)
7756                     bxe_print_next_block(sc, par_num++,
7757                               "MCP UMP TX");
7758                 *global = TRUE;
7759                 break;
7760             case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY:
7761                 if (print)
7762                     bxe_print_next_block(sc, par_num++,
7763                               "MCP SCPAD");
7764                 *global = TRUE;
7765                 break;
7766             }
7767 
7768             /* Clear the bit */
7769             sig &= ~cur_bit;
7770         }
7771     }
7772 
7773     return (par_num);
7774 }
7775 
7776 static int
7777 bxe_check_blocks_with_parity4(struct bxe_softc *sc,
7778                               uint32_t         sig,
7779                               int              par_num,
7780                               uint8_t          print)
7781 {
7782     uint32_t cur_bit = 0;
7783     int i = 0;
7784 
7785     for (i = 0; sig; i++) {
7786         cur_bit = ((uint32_t)0x1 << i);
7787         if (sig & cur_bit) {
7788             switch (cur_bit) {
7789             case AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR:
7790                 if (print)
7791                     bxe_print_next_block(sc, par_num++, "PGLUE_B");
7792                 break;
7793             case AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR:
7794                 if (print)
7795                     bxe_print_next_block(sc, par_num++, "ATC");
7796                 break;
7797             }
7798 
7799             /* Clear the bit */
7800             sig &= ~cur_bit;
7801         }
7802     }
7803 
7804     return (par_num);
7805 }
7806 
7807 static uint8_t
7808 bxe_parity_attn(struct bxe_softc *sc,
7809                 uint8_t          *global,
7810                 uint8_t          print,
7811                 uint32_t         *sig)
7812 {
7813     int par_num = 0;
7814 
7815     if ((sig[0] & HW_PRTY_ASSERT_SET_0) ||
7816         (sig[1] & HW_PRTY_ASSERT_SET_1) ||
7817         (sig[2] & HW_PRTY_ASSERT_SET_2) ||
7818         (sig[3] & HW_PRTY_ASSERT_SET_3) ||
7819         (sig[4] & HW_PRTY_ASSERT_SET_4)) {
7820         BLOGE(sc, "Parity error: HW block parity attention:\n"
7821                   "[0]:0x%08x [1]:0x%08x [2]:0x%08x [3]:0x%08x [4]:0x%08x\n",
7822               (uint32_t)(sig[0] & HW_PRTY_ASSERT_SET_0),
7823               (uint32_t)(sig[1] & HW_PRTY_ASSERT_SET_1),
7824               (uint32_t)(sig[2] & HW_PRTY_ASSERT_SET_2),
7825               (uint32_t)(sig[3] & HW_PRTY_ASSERT_SET_3),
7826               (uint32_t)(sig[4] & HW_PRTY_ASSERT_SET_4));
7827 
7828         if (print)
7829             BLOGI(sc, "Parity errors detected in blocks: ");
7830 
7831         par_num =
7832             bxe_check_blocks_with_parity0(sc, sig[0] &
7833                                           HW_PRTY_ASSERT_SET_0,
7834                                           par_num, print);
7835         par_num =
7836             bxe_check_blocks_with_parity1(sc, sig[1] &
7837                                           HW_PRTY_ASSERT_SET_1,
7838                                           par_num, global, print);
7839         par_num =
7840             bxe_check_blocks_with_parity2(sc, sig[2] &
7841                                           HW_PRTY_ASSERT_SET_2,
7842                                           par_num, print);
7843         par_num =
7844             bxe_check_blocks_with_parity3(sc, sig[3] &
7845                                           HW_PRTY_ASSERT_SET_3,
7846                                           par_num, global, print);
7847         par_num =
7848             bxe_check_blocks_with_parity4(sc, sig[4] &
7849                                           HW_PRTY_ASSERT_SET_4,
7850                                           par_num, print);
7851 
7852         if (print)
7853             BLOGI(sc, "\n");
7854 
7855         return (TRUE);
7856     }
7857 
7858     return (FALSE);
7859 }
7860 
7861 static uint8_t
7862 bxe_chk_parity_attn(struct bxe_softc *sc,
7863                     uint8_t          *global,
7864                     uint8_t          print)
7865 {
7866     struct attn_route attn = { {0} };
7867     int port = SC_PORT(sc);
7868 
7869     attn.sig[0] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + port*4);
7870     attn.sig[1] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 + port*4);
7871     attn.sig[2] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 + port*4);
7872     attn.sig[3] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 + port*4);
7873 
7874     if (!CHIP_IS_E1x(sc))
7875         attn.sig[4] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 + port*4);
7876 
7877     return (bxe_parity_attn(sc, global, print, attn.sig));
7878 }
7879 
7880 static void
7881 bxe_attn_int_deasserted4(struct bxe_softc *sc,
7882                          uint32_t         attn)
7883 {
7884     uint32_t val;
7885 
7886     if (attn & AEU_INPUTS_ATTN_BITS_PGLUE_HW_INTERRUPT) {
7887         val = REG_RD(sc, PGLUE_B_REG_PGLUE_B_INT_STS_CLR);
7888         BLOGE(sc, "PGLUE hw attention 0x%08x\n", val);
7889         if (val & PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR)
7890             BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR\n");
7891         if (val & PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR)
7892             BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR\n");
7893         if (val & PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN)
7894             BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN\n");
7895         if (val & PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN)
7896             BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN\n");
7897         if (val & PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN)
7898             BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN\n");
7899         if (val & PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN)
7900             BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN\n");
7901         if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN)
7902             BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN\n");
7903         if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN)
7904             BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN\n");
7905         if (val & PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW)
7906             BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW\n");
7907     }
7908 
7909     if (attn & AEU_INPUTS_ATTN_BITS_ATC_HW_INTERRUPT) {
7910         val = REG_RD(sc, ATC_REG_ATC_INT_STS_CLR);
7911         BLOGE(sc, "ATC hw attention 0x%08x\n", val);
7912         if (val & ATC_ATC_INT_STS_REG_ADDRESS_ERROR)
7913             BLOGE(sc, "ATC_ATC_INT_STS_REG_ADDRESS_ERROR\n");
7914         if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND)
7915             BLOGE(sc, "ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND\n");
7916         if (val & ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS)
7917             BLOGE(sc, "ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS\n");
7918         if (val & ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT)
7919             BLOGE(sc, "ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT\n");
7920         if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR)
7921             BLOGE(sc, "ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR\n");
7922         if (val & ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU)
7923             BLOGE(sc, "ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU\n");
7924     }
7925 
7926     if (attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR |
7927                 AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)) {
7928         BLOGE(sc, "FATAL parity attention set4 0x%08x\n",
7929               (uint32_t)(attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR |
7930                                  AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)));
7931     }
7932 }
7933 
7934 static void
7935 bxe_e1h_disable(struct bxe_softc *sc)
7936 {
7937     int port = SC_PORT(sc);
7938 
7939     bxe_tx_disable(sc);
7940 
7941     REG_WR(sc, NIG_REG_LLH0_FUNC_EN + port*8, 0);
7942 }
7943 
7944 static void
7945 bxe_e1h_enable(struct bxe_softc *sc)
7946 {
7947     int port = SC_PORT(sc);
7948 
7949     REG_WR(sc, NIG_REG_LLH0_FUNC_EN + port*8, 1);
7950 
7951     // XXX bxe_tx_enable(sc);
7952 }
7953 
7954 /*
7955  * called due to MCP event (on pmf):
7956  *   reread new bandwidth configuration
7957  *   configure FW
7958  *   notify others function about the change
7959  */
7960 static void
7961 bxe_config_mf_bw(struct bxe_softc *sc)
7962 {
7963     if (sc->link_vars.link_up) {
7964         bxe_cmng_fns_init(sc, TRUE, CMNG_FNS_MINMAX);
7965         // XXX bxe_link_sync_notify(sc);
7966     }
7967 
7968     storm_memset_cmng(sc, &sc->cmng, SC_PORT(sc));
7969 }
7970 
7971 static void
7972 bxe_set_mf_bw(struct bxe_softc *sc)
7973 {
7974     bxe_config_mf_bw(sc);
7975     bxe_fw_command(sc, DRV_MSG_CODE_SET_MF_BW_ACK, 0);
7976 }
7977 
7978 static void
7979 bxe_handle_eee_event(struct bxe_softc *sc)
7980 {
7981     BLOGD(sc, DBG_INTR, "EEE - LLDP event\n");
7982     bxe_fw_command(sc, DRV_MSG_CODE_EEE_RESULTS_ACK, 0);
7983 }
7984 
7985 #define DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED 3
7986 
7987 static void
7988 bxe_drv_info_ether_stat(struct bxe_softc *sc)
7989 {
7990     struct eth_stats_info *ether_stat =
7991         &sc->sp->drv_info_to_mcp.ether_stat;
7992 
7993     strlcpy(ether_stat->version, BXE_DRIVER_VERSION,
7994             ETH_STAT_INFO_VERSION_LEN);
7995 
7996     /* XXX (+ MAC_PAD) taken from other driver... verify this is right */
7997     sc->sp_objs[0].mac_obj.get_n_elements(sc, &sc->sp_objs[0].mac_obj,
7998                                           DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED,
7999                                           ether_stat->mac_local + MAC_PAD,
8000                                           MAC_PAD, ETH_ALEN);
8001 
8002     ether_stat->mtu_size = sc->mtu;
8003 
8004     ether_stat->feature_flags |= FEATURE_ETH_CHKSUM_OFFLOAD_MASK;
8005     if (if_getcapenable(sc->ifp) & (IFCAP_TSO4 | IFCAP_TSO6)) {
8006         ether_stat->feature_flags |= FEATURE_ETH_LSO_MASK;
8007     }
8008 
8009     // XXX ether_stat->feature_flags |= ???;
8010 
8011     ether_stat->promiscuous_mode = 0; // (flags & PROMISC) ? 1 : 0;
8012 
8013     ether_stat->txq_size = sc->tx_ring_size;
8014     ether_stat->rxq_size = sc->rx_ring_size;
8015 }
8016 
8017 static void
8018 bxe_handle_drv_info_req(struct bxe_softc *sc)
8019 {
8020     enum drv_info_opcode op_code;
8021     uint32_t drv_info_ctl = SHMEM2_RD(sc, drv_info_control);
8022 
8023     /* if drv_info version supported by MFW doesn't match - send NACK */
8024     if ((drv_info_ctl & DRV_INFO_CONTROL_VER_MASK) != DRV_INFO_CUR_VER) {
8025         bxe_fw_command(sc, DRV_MSG_CODE_DRV_INFO_NACK, 0);
8026         return;
8027     }
8028 
8029     op_code = ((drv_info_ctl & DRV_INFO_CONTROL_OP_CODE_MASK) >>
8030                DRV_INFO_CONTROL_OP_CODE_SHIFT);
8031 
8032     memset(&sc->sp->drv_info_to_mcp, 0, sizeof(union drv_info_to_mcp));
8033 
8034     switch (op_code) {
8035     case ETH_STATS_OPCODE:
8036         bxe_drv_info_ether_stat(sc);
8037         break;
8038     case FCOE_STATS_OPCODE:
8039     case ISCSI_STATS_OPCODE:
8040     default:
8041         /* if op code isn't supported - send NACK */
8042         bxe_fw_command(sc, DRV_MSG_CODE_DRV_INFO_NACK, 0);
8043         return;
8044     }
8045 
8046     /*
8047      * If we got drv_info attn from MFW then these fields are defined in
8048      * shmem2 for sure
8049      */
8050     SHMEM2_WR(sc, drv_info_host_addr_lo,
8051               U64_LO(BXE_SP_MAPPING(sc, drv_info_to_mcp)));
8052     SHMEM2_WR(sc, drv_info_host_addr_hi,
8053               U64_HI(BXE_SP_MAPPING(sc, drv_info_to_mcp)));
8054 
8055     bxe_fw_command(sc, DRV_MSG_CODE_DRV_INFO_ACK, 0);
8056 }
8057 
8058 static void
8059 bxe_dcc_event(struct bxe_softc *sc,
8060               uint32_t         dcc_event)
8061 {
8062     BLOGD(sc, DBG_INTR, "dcc_event 0x%08x\n", dcc_event);
8063 
8064     if (dcc_event & DRV_STATUS_DCC_DISABLE_ENABLE_PF) {
8065         /*
8066          * This is the only place besides the function initialization
8067          * where the sc->flags can change so it is done without any
8068          * locks
8069          */
8070         if (sc->devinfo.mf_info.mf_config[SC_VN(sc)] & FUNC_MF_CFG_FUNC_DISABLED) {
8071             BLOGD(sc, DBG_INTR, "mf_cfg function disabled\n");
8072             sc->flags |= BXE_MF_FUNC_DIS;
8073             bxe_e1h_disable(sc);
8074         } else {
8075             BLOGD(sc, DBG_INTR, "mf_cfg function enabled\n");
8076             sc->flags &= ~BXE_MF_FUNC_DIS;
8077             bxe_e1h_enable(sc);
8078         }
8079         dcc_event &= ~DRV_STATUS_DCC_DISABLE_ENABLE_PF;
8080     }
8081 
8082     if (dcc_event & DRV_STATUS_DCC_BANDWIDTH_ALLOCATION) {
8083         bxe_config_mf_bw(sc);
8084         dcc_event &= ~DRV_STATUS_DCC_BANDWIDTH_ALLOCATION;
8085     }
8086 
8087     /* Report results to MCP */
8088     if (dcc_event)
8089         bxe_fw_command(sc, DRV_MSG_CODE_DCC_FAILURE, 0);
8090     else
8091         bxe_fw_command(sc, DRV_MSG_CODE_DCC_OK, 0);
8092 }
8093 
8094 static void
8095 bxe_pmf_update(struct bxe_softc *sc)
8096 {
8097     int port = SC_PORT(sc);
8098     uint32_t val;
8099 
8100     sc->port.pmf = 1;
8101     BLOGD(sc, DBG_INTR, "pmf %d\n", sc->port.pmf);
8102 
8103     /*
8104      * We need the mb() to ensure the ordering between the writing to
8105      * sc->port.pmf here and reading it from the bxe_periodic_task().
8106      */
8107     mb();
8108 
8109     /* queue a periodic task */
8110     // XXX schedule task...
8111 
8112     // XXX bxe_dcbx_pmf_update(sc);
8113 
8114     /* enable nig attention */
8115     val = (0xff0f | (1 << (SC_VN(sc) + 4)));
8116     if (sc->devinfo.int_block == INT_BLOCK_HC) {
8117         REG_WR(sc, HC_REG_TRAILING_EDGE_0 + port*8, val);
8118         REG_WR(sc, HC_REG_LEADING_EDGE_0 + port*8, val);
8119     } else if (!CHIP_IS_E1x(sc)) {
8120         REG_WR(sc, IGU_REG_TRAILING_EDGE_LATCH, val);
8121         REG_WR(sc, IGU_REG_LEADING_EDGE_LATCH, val);
8122     }
8123 
8124     bxe_stats_handle(sc, STATS_EVENT_PMF);
8125 }
8126 
8127 static int
8128 bxe_mc_assert(struct bxe_softc *sc)
8129 {
8130     char last_idx;
8131     int i, rc = 0;
8132     uint32_t row0, row1, row2, row3;
8133 
8134     /* XSTORM */
8135     last_idx = REG_RD8(sc, BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_INDEX_OFFSET);
8136     if (last_idx)
8137         BLOGE(sc, "XSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
8138 
8139     /* print the asserts */
8140     for (i = 0; i < STORM_ASSERT_ARRAY_SIZE; i++) {
8141 
8142         row0 = REG_RD(sc, BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_OFFSET(i));
8143         row1 = REG_RD(sc, BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_OFFSET(i) + 4);
8144         row2 = REG_RD(sc, BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_OFFSET(i) + 8);
8145         row3 = REG_RD(sc, BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_OFFSET(i) + 12);
8146 
8147         if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
8148             BLOGE(sc, "XSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
8149                   i, row3, row2, row1, row0);
8150             rc++;
8151         } else {
8152             break;
8153         }
8154     }
8155 
8156     /* TSTORM */
8157     last_idx = REG_RD8(sc, BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_INDEX_OFFSET);
8158     if (last_idx) {
8159         BLOGE(sc, "TSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
8160     }
8161 
8162     /* print the asserts */
8163     for (i = 0; i < STORM_ASSERT_ARRAY_SIZE; i++) {
8164 
8165         row0 = REG_RD(sc, BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_OFFSET(i));
8166         row1 = REG_RD(sc, BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_OFFSET(i) + 4);
8167         row2 = REG_RD(sc, BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_OFFSET(i) + 8);
8168         row3 = REG_RD(sc, BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_OFFSET(i) + 12);
8169 
8170         if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
8171             BLOGE(sc, "TSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
8172                   i, row3, row2, row1, row0);
8173             rc++;
8174         } else {
8175             break;
8176         }
8177     }
8178 
8179     /* CSTORM */
8180     last_idx = REG_RD8(sc, BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_INDEX_OFFSET);
8181     if (last_idx) {
8182         BLOGE(sc, "CSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
8183     }
8184 
8185     /* print the asserts */
8186     for (i = 0; i < STORM_ASSERT_ARRAY_SIZE; i++) {
8187 
8188         row0 = REG_RD(sc, BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_OFFSET(i));
8189         row1 = REG_RD(sc, BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_OFFSET(i) + 4);
8190         row2 = REG_RD(sc, BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_OFFSET(i) + 8);
8191         row3 = REG_RD(sc, BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_OFFSET(i) + 12);
8192 
8193         if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
8194             BLOGE(sc, "CSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
8195                   i, row3, row2, row1, row0);
8196             rc++;
8197         } else {
8198             break;
8199         }
8200     }
8201 
8202     /* USTORM */
8203     last_idx = REG_RD8(sc, BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_INDEX_OFFSET);
8204     if (last_idx) {
8205         BLOGE(sc, "USTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
8206     }
8207 
8208     /* print the asserts */
8209     for (i = 0; i < STORM_ASSERT_ARRAY_SIZE; i++) {
8210 
8211         row0 = REG_RD(sc, BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_OFFSET(i));
8212         row1 = REG_RD(sc, BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_OFFSET(i) + 4);
8213         row2 = REG_RD(sc, BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_OFFSET(i) + 8);
8214         row3 = REG_RD(sc, BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_OFFSET(i) + 12);
8215 
8216         if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
8217             BLOGE(sc, "USTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
8218                   i, row3, row2, row1, row0);
8219             rc++;
8220         } else {
8221             break;
8222         }
8223     }
8224 
8225     return (rc);
8226 }
8227 
8228 static void
8229 bxe_attn_int_deasserted3(struct bxe_softc *sc,
8230                          uint32_t         attn)
8231 {
8232     int func = SC_FUNC(sc);
8233     uint32_t val;
8234 
8235     if (attn & EVEREST_GEN_ATTN_IN_USE_MASK) {
8236 
8237         if (attn & BXE_PMF_LINK_ASSERT(sc)) {
8238 
8239             REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
8240             bxe_read_mf_cfg(sc);
8241             sc->devinfo.mf_info.mf_config[SC_VN(sc)] =
8242                 MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].config);
8243             val = SHMEM_RD(sc, func_mb[SC_FW_MB_IDX(sc)].drv_status);
8244 
8245             if (val & DRV_STATUS_DCC_EVENT_MASK)
8246                 bxe_dcc_event(sc, (val & DRV_STATUS_DCC_EVENT_MASK));
8247 
8248             if (val & DRV_STATUS_SET_MF_BW)
8249                 bxe_set_mf_bw(sc);
8250 
8251             if (val & DRV_STATUS_DRV_INFO_REQ)
8252                 bxe_handle_drv_info_req(sc);
8253 
8254 #if 0
8255             if (val & DRV_STATUS_VF_DISABLED)
8256                 bxe_vf_handle_flr_event(sc);
8257 #endif
8258 
8259             if ((sc->port.pmf == 0) && (val & DRV_STATUS_PMF))
8260                 bxe_pmf_update(sc);
8261 
8262 #if 0
8263             if (sc->port.pmf &&
8264                 (val & DRV_STATUS_DCBX_NEGOTIATION_RESULTS) &&
8265                 (sc->dcbx_enabled > 0))
8266                 /* start dcbx state machine */
8267                 bxe_dcbx_set_params(sc, BXE_DCBX_STATE_NEG_RECEIVED);
8268 #endif
8269 
8270 #if 0
8271             if (val & DRV_STATUS_AFEX_EVENT_MASK)
8272                 bxe_handle_afex_cmd(sc, val & DRV_STATUS_AFEX_EVENT_MASK);
8273 #endif
8274 
8275             if (val & DRV_STATUS_EEE_NEGOTIATION_RESULTS)
8276                 bxe_handle_eee_event(sc);
8277 
8278             if (sc->link_vars.periodic_flags &
8279                 ELINK_PERIODIC_FLAGS_LINK_EVENT) {
8280                 /* sync with link */
8281                 BXE_PHY_LOCK(sc);
8282                 sc->link_vars.periodic_flags &=
8283                     ~ELINK_PERIODIC_FLAGS_LINK_EVENT;
8284                 BXE_PHY_UNLOCK(sc);
8285                 if (IS_MF(sc))
8286                     ; // XXX bxe_link_sync_notify(sc);
8287                 bxe_link_report(sc);
8288             }
8289 
8290             /*
8291              * Always call it here: bxe_link_report() will
8292              * prevent the link indication duplication.
8293              */
8294             bxe_link_status_update(sc);
8295 
8296         } else if (attn & BXE_MC_ASSERT_BITS) {
8297 
8298             BLOGE(sc, "MC assert!\n");
8299             bxe_mc_assert(sc);
8300             REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_10, 0);
8301             REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_9, 0);
8302             REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_8, 0);
8303             REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_7, 0);
8304             bxe_panic(sc, ("MC assert!\n"));
8305 
8306         } else if (attn & BXE_MCP_ASSERT) {
8307 
8308             BLOGE(sc, "MCP assert!\n");
8309             REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_11, 0);
8310             // XXX bxe_fw_dump(sc);
8311 
8312         } else {
8313             BLOGE(sc, "Unknown HW assert! (attn 0x%08x)\n", attn);
8314         }
8315     }
8316 
8317     if (attn & EVEREST_LATCHED_ATTN_IN_USE_MASK) {
8318         BLOGE(sc, "LATCHED attention 0x%08x (masked)\n", attn);
8319         if (attn & BXE_GRC_TIMEOUT) {
8320             val = CHIP_IS_E1(sc) ? 0 : REG_RD(sc, MISC_REG_GRC_TIMEOUT_ATTN);
8321             BLOGE(sc, "GRC time-out 0x%08x\n", val);
8322         }
8323         if (attn & BXE_GRC_RSV) {
8324             val = CHIP_IS_E1(sc) ? 0 : REG_RD(sc, MISC_REG_GRC_RSV_ATTN);
8325             BLOGE(sc, "GRC reserved 0x%08x\n", val);
8326         }
8327         REG_WR(sc, MISC_REG_AEU_CLR_LATCH_SIGNAL, 0x7ff);
8328     }
8329 }
8330 
8331 static void
8332 bxe_attn_int_deasserted2(struct bxe_softc *sc,
8333                          uint32_t         attn)
8334 {
8335     int port = SC_PORT(sc);
8336     int reg_offset;
8337     uint32_t val0, mask0, val1, mask1;
8338     uint32_t val;
8339 
8340     if (attn & AEU_INPUTS_ATTN_BITS_CFC_HW_INTERRUPT) {
8341         val = REG_RD(sc, CFC_REG_CFC_INT_STS_CLR);
8342         BLOGE(sc, "CFC hw attention 0x%08x\n", val);
8343         /* CFC error attention */
8344         if (val & 0x2) {
8345             BLOGE(sc, "FATAL error from CFC\n");
8346         }
8347     }
8348 
8349     if (attn & AEU_INPUTS_ATTN_BITS_PXP_HW_INTERRUPT) {
8350         val = REG_RD(sc, PXP_REG_PXP_INT_STS_CLR_0);
8351         BLOGE(sc, "PXP hw attention-0 0x%08x\n", val);
8352         /* RQ_USDMDP_FIFO_OVERFLOW */
8353         if (val & 0x18000) {
8354             BLOGE(sc, "FATAL error from PXP\n");
8355         }
8356 
8357         if (!CHIP_IS_E1x(sc)) {
8358             val = REG_RD(sc, PXP_REG_PXP_INT_STS_CLR_1);
8359             BLOGE(sc, "PXP hw attention-1 0x%08x\n", val);
8360         }
8361     }
8362 
8363 #define PXP2_EOP_ERROR_BIT  PXP2_PXP2_INT_STS_CLR_0_REG_WR_PGLUE_EOP_ERROR
8364 #define AEU_PXP2_HW_INT_BIT AEU_INPUTS_ATTN_BITS_PXPPCICLOCKCLIENT_HW_INTERRUPT
8365 
8366     if (attn & AEU_PXP2_HW_INT_BIT) {
8367         /*  CQ47854 workaround do not panic on
8368          *  PXP2_PXP2_INT_STS_0_REG_WR_PGLUE_EOP_ERROR
8369          */
8370         if (!CHIP_IS_E1x(sc)) {
8371             mask0 = REG_RD(sc, PXP2_REG_PXP2_INT_MASK_0);
8372             val1 = REG_RD(sc, PXP2_REG_PXP2_INT_STS_1);
8373             mask1 = REG_RD(sc, PXP2_REG_PXP2_INT_MASK_1);
8374             val0 = REG_RD(sc, PXP2_REG_PXP2_INT_STS_0);
8375             /*
8376              * If the olny PXP2_EOP_ERROR_BIT is set in
8377              * STS0 and STS1 - clear it
8378              *
8379              * probably we lose additional attentions between
8380              * STS0 and STS_CLR0, in this case user will not
8381              * be notified about them
8382              */
8383             if (val0 & mask0 & PXP2_EOP_ERROR_BIT &&
8384                 !(val1 & mask1))
8385                 val0 = REG_RD(sc, PXP2_REG_PXP2_INT_STS_CLR_0);
8386 
8387             /* print the register, since no one can restore it */
8388             BLOGE(sc, "PXP2_REG_PXP2_INT_STS_CLR_0 0x%08x\n", val0);
8389 
8390             /*
8391              * if PXP2_PXP2_INT_STS_0_REG_WR_PGLUE_EOP_ERROR
8392              * then notify
8393              */
8394             if (val0 & PXP2_EOP_ERROR_BIT) {
8395                 BLOGE(sc, "PXP2_WR_PGLUE_EOP_ERROR\n");
8396 
8397                 /*
8398                  * if only PXP2_PXP2_INT_STS_0_REG_WR_PGLUE_EOP_ERROR is
8399                  * set then clear attention from PXP2 block without panic
8400                  */
8401                 if (((val0 & mask0) == PXP2_EOP_ERROR_BIT) &&
8402                     ((val1 & mask1) == 0))
8403                     attn &= ~AEU_PXP2_HW_INT_BIT;
8404             }
8405         }
8406     }
8407 
8408     if (attn & HW_INTERRUT_ASSERT_SET_2) {
8409         reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_2 :
8410                              MISC_REG_AEU_ENABLE1_FUNC_0_OUT_2);
8411 
8412         val = REG_RD(sc, reg_offset);
8413         val &= ~(attn & HW_INTERRUT_ASSERT_SET_2);
8414         REG_WR(sc, reg_offset, val);
8415 
8416         BLOGE(sc, "FATAL HW block attention set2 0x%x\n",
8417               (uint32_t)(attn & HW_INTERRUT_ASSERT_SET_2));
8418         bxe_panic(sc, ("HW block attention set2\n"));
8419     }
8420 }
8421 
8422 static void
8423 bxe_attn_int_deasserted1(struct bxe_softc *sc,
8424                          uint32_t         attn)
8425 {
8426     int port = SC_PORT(sc);
8427     int reg_offset;
8428     uint32_t val;
8429 
8430     if (attn & AEU_INPUTS_ATTN_BITS_DOORBELLQ_HW_INTERRUPT) {
8431         val = REG_RD(sc, DORQ_REG_DORQ_INT_STS_CLR);
8432         BLOGE(sc, "DB hw attention 0x%08x\n", val);
8433         /* DORQ discard attention */
8434         if (val & 0x2) {
8435             BLOGE(sc, "FATAL error from DORQ\n");
8436         }
8437     }
8438 
8439     if (attn & HW_INTERRUT_ASSERT_SET_1) {
8440         reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_1 :
8441                              MISC_REG_AEU_ENABLE1_FUNC_0_OUT_1);
8442 
8443         val = REG_RD(sc, reg_offset);
8444         val &= ~(attn & HW_INTERRUT_ASSERT_SET_1);
8445         REG_WR(sc, reg_offset, val);
8446 
8447         BLOGE(sc, "FATAL HW block attention set1 0x%08x\n",
8448               (uint32_t)(attn & HW_INTERRUT_ASSERT_SET_1));
8449         bxe_panic(sc, ("HW block attention set1\n"));
8450     }
8451 }
8452 
8453 static void
8454 bxe_attn_int_deasserted0(struct bxe_softc *sc,
8455                          uint32_t         attn)
8456 {
8457     int port = SC_PORT(sc);
8458     int reg_offset;
8459     uint32_t val;
8460 
8461     reg_offset = (port) ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
8462                           MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0;
8463 
8464     if (attn & AEU_INPUTS_ATTN_BITS_SPIO5) {
8465         val = REG_RD(sc, reg_offset);
8466         val &= ~AEU_INPUTS_ATTN_BITS_SPIO5;
8467         REG_WR(sc, reg_offset, val);
8468 
8469         BLOGW(sc, "SPIO5 hw attention\n");
8470 
8471         /* Fan failure attention */
8472         elink_hw_reset_phy(&sc->link_params);
8473         bxe_fan_failure(sc);
8474     }
8475 
8476     if ((attn & sc->link_vars.aeu_int_mask) && sc->port.pmf) {
8477         BXE_PHY_LOCK(sc);
8478         elink_handle_module_detect_int(&sc->link_params);
8479         BXE_PHY_UNLOCK(sc);
8480     }
8481 
8482     if (attn & HW_INTERRUT_ASSERT_SET_0) {
8483         val = REG_RD(sc, reg_offset);
8484         val &= ~(attn & HW_INTERRUT_ASSERT_SET_0);
8485         REG_WR(sc, reg_offset, val);
8486 
8487         bxe_panic(sc, ("FATAL HW block attention set0 0x%lx\n",
8488                        (attn & HW_INTERRUT_ASSERT_SET_0)));
8489     }
8490 }
8491 
8492 static void
8493 bxe_attn_int_deasserted(struct bxe_softc *sc,
8494                         uint32_t         deasserted)
8495 {
8496     struct attn_route attn;
8497     struct attn_route *group_mask;
8498     int port = SC_PORT(sc);
8499     int index;
8500     uint32_t reg_addr;
8501     uint32_t val;
8502     uint32_t aeu_mask;
8503     uint8_t global = FALSE;
8504 
8505     /*
8506      * Need to take HW lock because MCP or other port might also
8507      * try to handle this event.
8508      */
8509     bxe_acquire_alr(sc);
8510 
8511     if (bxe_chk_parity_attn(sc, &global, TRUE)) {
8512         /* XXX
8513          * In case of parity errors don't handle attentions so that
8514          * other function would "see" parity errors.
8515          */
8516         sc->recovery_state = BXE_RECOVERY_INIT;
8517         // XXX schedule a recovery task...
8518         /* disable HW interrupts */
8519         bxe_int_disable(sc);
8520         bxe_release_alr(sc);
8521         return;
8522     }
8523 
8524     attn.sig[0] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + port*4);
8525     attn.sig[1] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 + port*4);
8526     attn.sig[2] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 + port*4);
8527     attn.sig[3] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 + port*4);
8528     if (!CHIP_IS_E1x(sc)) {
8529         attn.sig[4] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 + port*4);
8530     } else {
8531         attn.sig[4] = 0;
8532     }
8533 
8534     BLOGD(sc, DBG_INTR, "attn: 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x\n",
8535           attn.sig[0], attn.sig[1], attn.sig[2], attn.sig[3], attn.sig[4]);
8536 
8537     for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) {
8538         if (deasserted & (1 << index)) {
8539             group_mask = &sc->attn_group[index];
8540 
8541             BLOGD(sc, DBG_INTR,
8542                   "group[%d]: 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x\n", index,
8543                   group_mask->sig[0], group_mask->sig[1],
8544                   group_mask->sig[2], group_mask->sig[3],
8545                   group_mask->sig[4]);
8546 
8547             bxe_attn_int_deasserted4(sc, attn.sig[4] & group_mask->sig[4]);
8548             bxe_attn_int_deasserted3(sc, attn.sig[3] & group_mask->sig[3]);
8549             bxe_attn_int_deasserted1(sc, attn.sig[1] & group_mask->sig[1]);
8550             bxe_attn_int_deasserted2(sc, attn.sig[2] & group_mask->sig[2]);
8551             bxe_attn_int_deasserted0(sc, attn.sig[0] & group_mask->sig[0]);
8552         }
8553     }
8554 
8555     bxe_release_alr(sc);
8556 
8557     if (sc->devinfo.int_block == INT_BLOCK_HC) {
8558         reg_addr = (HC_REG_COMMAND_REG + port*32 +
8559                     COMMAND_REG_ATTN_BITS_CLR);
8560     } else {
8561         reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_CLR_UPPER*8);
8562     }
8563 
8564     val = ~deasserted;
8565     BLOGD(sc, DBG_INTR,
8566           "about to mask 0x%08x at %s addr 0x%08x\n", val,
8567           (sc->devinfo.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr);
8568     REG_WR(sc, reg_addr, val);
8569 
8570     if (~sc->attn_state & deasserted) {
8571         BLOGE(sc, "IGU error\n");
8572     }
8573 
8574     reg_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
8575                       MISC_REG_AEU_MASK_ATTN_FUNC_0;
8576 
8577     bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
8578 
8579     aeu_mask = REG_RD(sc, reg_addr);
8580 
8581     BLOGD(sc, DBG_INTR, "aeu_mask 0x%08x newly deasserted 0x%08x\n",
8582           aeu_mask, deasserted);
8583     aeu_mask |= (deasserted & 0x3ff);
8584     BLOGD(sc, DBG_INTR, "new mask 0x%08x\n", aeu_mask);
8585 
8586     REG_WR(sc, reg_addr, aeu_mask);
8587     bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
8588 
8589     BLOGD(sc, DBG_INTR, "attn_state 0x%08x\n", sc->attn_state);
8590     sc->attn_state &= ~deasserted;
8591     BLOGD(sc, DBG_INTR, "new state 0x%08x\n", sc->attn_state);
8592 }
8593 
8594 static void
8595 bxe_attn_int(struct bxe_softc *sc)
8596 {
8597     /* read local copy of bits */
8598     uint32_t attn_bits = le32toh(sc->def_sb->atten_status_block.attn_bits);
8599     uint32_t attn_ack = le32toh(sc->def_sb->atten_status_block.attn_bits_ack);
8600     uint32_t attn_state = sc->attn_state;
8601 
8602     /* look for changed bits */
8603     uint32_t asserted   =  attn_bits & ~attn_ack & ~attn_state;
8604     uint32_t deasserted = ~attn_bits &  attn_ack &  attn_state;
8605 
8606     BLOGD(sc, DBG_INTR,
8607           "attn_bits 0x%08x attn_ack 0x%08x asserted 0x%08x deasserted 0x%08x\n",
8608           attn_bits, attn_ack, asserted, deasserted);
8609 
8610     if (~(attn_bits ^ attn_ack) & (attn_bits ^ attn_state)) {
8611         BLOGE(sc, "BAD attention state\n");
8612     }
8613 
8614     /* handle bits that were raised */
8615     if (asserted) {
8616         bxe_attn_int_asserted(sc, asserted);
8617     }
8618 
8619     if (deasserted) {
8620         bxe_attn_int_deasserted(sc, deasserted);
8621     }
8622 }
8623 
8624 static uint16_t
8625 bxe_update_dsb_idx(struct bxe_softc *sc)
8626 {
8627     struct host_sp_status_block *def_sb = sc->def_sb;
8628     uint16_t rc = 0;
8629 
8630     mb(); /* status block is written to by the chip */
8631 
8632     if (sc->def_att_idx != def_sb->atten_status_block.attn_bits_index) {
8633         sc->def_att_idx = def_sb->atten_status_block.attn_bits_index;
8634         rc |= BXE_DEF_SB_ATT_IDX;
8635     }
8636 
8637     if (sc->def_idx != def_sb->sp_sb.running_index) {
8638         sc->def_idx = def_sb->sp_sb.running_index;
8639         rc |= BXE_DEF_SB_IDX;
8640     }
8641 
8642     mb();
8643 
8644     return (rc);
8645 }
8646 
8647 static inline struct ecore_queue_sp_obj *
8648 bxe_cid_to_q_obj(struct bxe_softc *sc,
8649                  uint32_t         cid)
8650 {
8651     BLOGD(sc, DBG_SP, "retrieving fp from cid %d\n", cid);
8652     return (&sc->sp_objs[CID_TO_FP(cid, sc)].q_obj);
8653 }
8654 
8655 static void
8656 bxe_handle_mcast_eqe(struct bxe_softc *sc)
8657 {
8658     struct ecore_mcast_ramrod_params rparam;
8659     int rc;
8660 
8661     memset(&rparam, 0, sizeof(rparam));
8662 
8663     rparam.mcast_obj = &sc->mcast_obj;
8664 
8665     BXE_MCAST_LOCK(sc);
8666 
8667     /* clear pending state for the last command */
8668     sc->mcast_obj.raw.clear_pending(&sc->mcast_obj.raw);
8669 
8670     /* if there are pending mcast commands - send them */
8671     if (sc->mcast_obj.check_pending(&sc->mcast_obj)) {
8672         rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_CONT);
8673         if (rc < 0) {
8674             BLOGD(sc, DBG_SP,
8675                   "ERROR: Failed to send pending mcast commands (%d)\n",
8676                   rc);
8677         }
8678     }
8679 
8680     BXE_MCAST_UNLOCK(sc);
8681 }
8682 
8683 static void
8684 bxe_handle_classification_eqe(struct bxe_softc      *sc,
8685                               union event_ring_elem *elem)
8686 {
8687     unsigned long ramrod_flags = 0;
8688     int rc = 0;
8689     uint32_t cid = elem->message.data.eth_event.echo & BXE_SWCID_MASK;
8690     struct ecore_vlan_mac_obj *vlan_mac_obj;
8691 
8692     /* always push next commands out, don't wait here */
8693     bit_set(&ramrod_flags, RAMROD_CONT);
8694 
8695     switch (le32toh(elem->message.data.eth_event.echo) >> BXE_SWCID_SHIFT) {
8696     case ECORE_FILTER_MAC_PENDING:
8697         BLOGD(sc, DBG_SP, "Got SETUP_MAC completions\n");
8698         vlan_mac_obj = &sc->sp_objs[cid].mac_obj;
8699         break;
8700 
8701     case ECORE_FILTER_MCAST_PENDING:
8702         BLOGD(sc, DBG_SP, "Got SETUP_MCAST completions\n");
8703         /*
8704          * This is only relevant for 57710 where multicast MACs are
8705          * configured as unicast MACs using the same ramrod.
8706          */
8707         bxe_handle_mcast_eqe(sc);
8708         return;
8709 
8710     default:
8711         BLOGE(sc, "Unsupported classification command: %d\n",
8712               elem->message.data.eth_event.echo);
8713         return;
8714     }
8715 
8716     rc = vlan_mac_obj->complete(sc, vlan_mac_obj, elem, &ramrod_flags);
8717 
8718     if (rc < 0) {
8719         BLOGE(sc, "Failed to schedule new commands (%d)\n", rc);
8720     } else if (rc > 0) {
8721         BLOGD(sc, DBG_SP, "Scheduled next pending commands...\n");
8722     }
8723 }
8724 
8725 static void
8726 bxe_handle_rx_mode_eqe(struct bxe_softc      *sc,
8727                        union event_ring_elem *elem)
8728 {
8729     bxe_clear_bit(ECORE_FILTER_RX_MODE_PENDING, &sc->sp_state);
8730 
8731     /* send rx_mode command again if was requested */
8732     if (bxe_test_and_clear_bit(ECORE_FILTER_RX_MODE_SCHED,
8733                                &sc->sp_state)) {
8734         bxe_set_storm_rx_mode(sc);
8735     }
8736 #if 0
8737     else if (bxe_test_and_clear_bit(ECORE_FILTER_ISCSI_ETH_START_SCHED,
8738                                     &sc->sp_state)) {
8739         bxe_set_iscsi_eth_rx_mode(sc, TRUE);
8740     }
8741     else if (bxe_test_and_clear_bit(ECORE_FILTER_ISCSI_ETH_STOP_SCHED,
8742                                     &sc->sp_state)) {
8743         bxe_set_iscsi_eth_rx_mode(sc, FALSE);
8744     }
8745 #endif
8746 }
8747 
8748 static void
8749 bxe_update_eq_prod(struct bxe_softc *sc,
8750                    uint16_t         prod)
8751 {
8752     storm_memset_eq_prod(sc, prod, SC_FUNC(sc));
8753     wmb(); /* keep prod updates ordered */
8754 }
8755 
8756 static void
8757 bxe_eq_int(struct bxe_softc *sc)
8758 {
8759     uint16_t hw_cons, sw_cons, sw_prod;
8760     union event_ring_elem *elem;
8761     uint8_t echo;
8762     uint32_t cid;
8763     uint8_t opcode;
8764     int spqe_cnt = 0;
8765     struct ecore_queue_sp_obj *q_obj;
8766     struct ecore_func_sp_obj *f_obj = &sc->func_obj;
8767     struct ecore_raw_obj *rss_raw = &sc->rss_conf_obj.raw;
8768 
8769     hw_cons = le16toh(*sc->eq_cons_sb);
8770 
8771     /*
8772      * The hw_cons range is 1-255, 257 - the sw_cons range is 0-254, 256.
8773      * when we get to the next-page we need to adjust so the loop
8774      * condition below will be met. The next element is the size of a
8775      * regular element and hence incrementing by 1
8776      */
8777     if ((hw_cons & EQ_DESC_MAX_PAGE) == EQ_DESC_MAX_PAGE) {
8778         hw_cons++;
8779     }
8780 
8781     /*
8782      * This function may never run in parallel with itself for a
8783      * specific sc and no need for a read memory barrier here.
8784      */
8785     sw_cons = sc->eq_cons;
8786     sw_prod = sc->eq_prod;
8787 
8788     BLOGD(sc, DBG_SP,"EQ: hw_cons=%u sw_cons=%u eq_spq_left=0x%lx\n",
8789           hw_cons, sw_cons, atomic_load_acq_long(&sc->eq_spq_left));
8790 
8791     for (;
8792          sw_cons != hw_cons;
8793          sw_prod = NEXT_EQ_IDX(sw_prod), sw_cons = NEXT_EQ_IDX(sw_cons)) {
8794 
8795         elem = &sc->eq[EQ_DESC(sw_cons)];
8796 
8797 #if 0
8798         int rc;
8799         rc = bxe_iov_eq_sp_event(sc, elem);
8800         if (!rc) {
8801             BLOGE(sc, "bxe_iov_eq_sp_event returned %d\n", rc);
8802             goto next_spqe;
8803         }
8804 #endif
8805 
8806         /* elem CID originates from FW, actually LE */
8807         cid = SW_CID(elem->message.data.cfc_del_event.cid);
8808         opcode = elem->message.opcode;
8809 
8810         /* handle eq element */
8811         switch (opcode) {
8812 #if 0
8813         case EVENT_RING_OPCODE_VF_PF_CHANNEL:
8814             BLOGD(sc, DBG_SP, "vf/pf channel element on eq\n");
8815             bxe_vf_mbx(sc, &elem->message.data.vf_pf_event);
8816             continue;
8817 #endif
8818 
8819         case EVENT_RING_OPCODE_STAT_QUERY:
8820             BLOGD(sc, DBG_SP, "got statistics completion event %d\n",
8821                   sc->stats_comp++);
8822             /* nothing to do with stats comp */
8823             goto next_spqe;
8824 
8825         case EVENT_RING_OPCODE_CFC_DEL:
8826             /* handle according to cid range */
8827             /* we may want to verify here that the sc state is HALTING */
8828             BLOGD(sc, DBG_SP, "got delete ramrod for MULTI[%d]\n", cid);
8829             q_obj = bxe_cid_to_q_obj(sc, cid);
8830             if (q_obj->complete_cmd(sc, q_obj, ECORE_Q_CMD_CFC_DEL)) {
8831                 break;
8832             }
8833             goto next_spqe;
8834 
8835         case EVENT_RING_OPCODE_STOP_TRAFFIC:
8836             BLOGD(sc, DBG_SP, "got STOP TRAFFIC\n");
8837             if (f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_TX_STOP)) {
8838                 break;
8839             }
8840             // XXX bxe_dcbx_set_params(sc, BXE_DCBX_STATE_TX_PAUSED);
8841             goto next_spqe;
8842 
8843         case EVENT_RING_OPCODE_START_TRAFFIC:
8844             BLOGD(sc, DBG_SP, "got START TRAFFIC\n");
8845             if (f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_TX_START)) {
8846                 break;
8847             }
8848             // XXX bxe_dcbx_set_params(sc, BXE_DCBX_STATE_TX_RELEASED);
8849             goto next_spqe;
8850 
8851         case EVENT_RING_OPCODE_FUNCTION_UPDATE:
8852             echo = elem->message.data.function_update_event.echo;
8853             if (echo == SWITCH_UPDATE) {
8854                 BLOGD(sc, DBG_SP, "got FUNC_SWITCH_UPDATE ramrod\n");
8855                 if (f_obj->complete_cmd(sc, f_obj,
8856                                         ECORE_F_CMD_SWITCH_UPDATE)) {
8857                     break;
8858                 }
8859             }
8860             else {
8861                 BLOGD(sc, DBG_SP,
8862                       "AFEX: ramrod completed FUNCTION_UPDATE\n");
8863 #if 0
8864                 f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_AFEX_UPDATE);
8865                 /*
8866                  * We will perform the queues update from the sp_core_task as
8867                  * all queue SP operations should run with CORE_LOCK.
8868                  */
8869                 bxe_set_bit(BXE_SP_CORE_AFEX_F_UPDATE, &sc->sp_core_state);
8870                 taskqueue_enqueue(sc->sp_tq, &sc->sp_tq_task);
8871 #endif
8872             }
8873             goto next_spqe;
8874 
8875 #if 0
8876         case EVENT_RING_OPCODE_AFEX_VIF_LISTS:
8877             f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_AFEX_VIFLISTS);
8878             bxe_after_afex_vif_lists(sc, elem);
8879             goto next_spqe;
8880 #endif
8881 
8882         case EVENT_RING_OPCODE_FORWARD_SETUP:
8883             q_obj = &bxe_fwd_sp_obj(sc, q_obj);
8884             if (q_obj->complete_cmd(sc, q_obj,
8885                                     ECORE_Q_CMD_SETUP_TX_ONLY)) {
8886                 break;
8887             }
8888             goto next_spqe;
8889 
8890         case EVENT_RING_OPCODE_FUNCTION_START:
8891             BLOGD(sc, DBG_SP, "got FUNC_START ramrod\n");
8892             if (f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_START)) {
8893                 break;
8894             }
8895             goto next_spqe;
8896 
8897         case EVENT_RING_OPCODE_FUNCTION_STOP:
8898             BLOGD(sc, DBG_SP, "got FUNC_STOP ramrod\n");
8899             if (f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_STOP)) {
8900                 break;
8901             }
8902             goto next_spqe;
8903         }
8904 
8905         switch (opcode | sc->state) {
8906         case (EVENT_RING_OPCODE_RSS_UPDATE_RULES | BXE_STATE_OPEN):
8907         case (EVENT_RING_OPCODE_RSS_UPDATE_RULES | BXE_STATE_OPENING_WAITING_PORT):
8908             cid = elem->message.data.eth_event.echo & BXE_SWCID_MASK;
8909             BLOGD(sc, DBG_SP, "got RSS_UPDATE ramrod. CID %d\n", cid);
8910             rss_raw->clear_pending(rss_raw);
8911             break;
8912 
8913         case (EVENT_RING_OPCODE_SET_MAC | BXE_STATE_OPEN):
8914         case (EVENT_RING_OPCODE_SET_MAC | BXE_STATE_DIAG):
8915         case (EVENT_RING_OPCODE_SET_MAC | BXE_STATE_CLOSING_WAITING_HALT):
8916         case (EVENT_RING_OPCODE_CLASSIFICATION_RULES | BXE_STATE_OPEN):
8917         case (EVENT_RING_OPCODE_CLASSIFICATION_RULES | BXE_STATE_DIAG):
8918         case (EVENT_RING_OPCODE_CLASSIFICATION_RULES | BXE_STATE_CLOSING_WAITING_HALT):
8919             BLOGD(sc, DBG_SP, "got (un)set mac ramrod\n");
8920             bxe_handle_classification_eqe(sc, elem);
8921             break;
8922 
8923         case (EVENT_RING_OPCODE_MULTICAST_RULES | BXE_STATE_OPEN):
8924         case (EVENT_RING_OPCODE_MULTICAST_RULES | BXE_STATE_DIAG):
8925         case (EVENT_RING_OPCODE_MULTICAST_RULES | BXE_STATE_CLOSING_WAITING_HALT):
8926             BLOGD(sc, DBG_SP, "got mcast ramrod\n");
8927             bxe_handle_mcast_eqe(sc);
8928             break;
8929 
8930         case (EVENT_RING_OPCODE_FILTERS_RULES | BXE_STATE_OPEN):
8931         case (EVENT_RING_OPCODE_FILTERS_RULES | BXE_STATE_DIAG):
8932         case (EVENT_RING_OPCODE_FILTERS_RULES | BXE_STATE_CLOSING_WAITING_HALT):
8933             BLOGD(sc, DBG_SP, "got rx_mode ramrod\n");
8934             bxe_handle_rx_mode_eqe(sc, elem);
8935             break;
8936 
8937         default:
8938             /* unknown event log error and continue */
8939             BLOGE(sc, "Unknown EQ event %d, sc->state 0x%x\n",
8940                   elem->message.opcode, sc->state);
8941         }
8942 
8943 next_spqe:
8944         spqe_cnt++;
8945     } /* for */
8946 
8947     mb();
8948     atomic_add_acq_long(&sc->eq_spq_left, spqe_cnt);
8949 
8950     sc->eq_cons = sw_cons;
8951     sc->eq_prod = sw_prod;
8952 
8953     /* make sure that above mem writes were issued towards the memory */
8954     wmb();
8955 
8956     /* update producer */
8957     bxe_update_eq_prod(sc, sc->eq_prod);
8958 }
8959 
8960 static void
8961 bxe_handle_sp_tq(void *context,
8962                  int  pending)
8963 {
8964     struct bxe_softc *sc = (struct bxe_softc *)context;
8965     uint16_t status;
8966 
8967     BLOGD(sc, DBG_SP, "---> SP TASK <---\n");
8968 
8969     /* what work needs to be performed? */
8970     status = bxe_update_dsb_idx(sc);
8971 
8972     BLOGD(sc, DBG_SP, "dsb status 0x%04x\n", status);
8973 
8974     /* HW attentions */
8975     if (status & BXE_DEF_SB_ATT_IDX) {
8976         BLOGD(sc, DBG_SP, "---> ATTN INTR <---\n");
8977         bxe_attn_int(sc);
8978         status &= ~BXE_DEF_SB_ATT_IDX;
8979     }
8980 
8981     /* SP events: STAT_QUERY and others */
8982     if (status & BXE_DEF_SB_IDX) {
8983         /* handle EQ completions */
8984         BLOGD(sc, DBG_SP, "---> EQ INTR <---\n");
8985         bxe_eq_int(sc);
8986         bxe_ack_sb(sc, sc->igu_dsb_id, USTORM_ID,
8987                    le16toh(sc->def_idx), IGU_INT_NOP, 1);
8988         status &= ~BXE_DEF_SB_IDX;
8989     }
8990 
8991     /* if status is non zero then something went wrong */
8992     if (__predict_false(status)) {
8993         BLOGE(sc, "Got an unknown SP interrupt! (0x%04x)\n", status);
8994     }
8995 
8996     /* ack status block only if something was actually handled */
8997     bxe_ack_sb(sc, sc->igu_dsb_id, ATTENTION_ID,
8998                le16toh(sc->def_att_idx), IGU_INT_ENABLE, 1);
8999 
9000     /*
9001      * Must be called after the EQ processing (since eq leads to sriov
9002      * ramrod completion flows).
9003      * This flow may have been scheduled by the arrival of a ramrod
9004      * completion, or by the sriov code rescheduling itself.
9005      */
9006     // XXX bxe_iov_sp_task(sc);
9007 
9008 #if 0
9009     /* AFEX - poll to check if VIFSET_ACK should be sent to MFW */
9010     if (bxe_test_and_clear_bit(ECORE_AFEX_PENDING_VIFSET_MCP_ACK,
9011                                &sc->sp_state)) {
9012         bxe_link_report(sc);
9013         bxe_fw_command(sc, DRV_MSG_CODE_AFEX_VIFSET_ACK, 0);
9014     }
9015 #endif
9016 }
9017 
9018 static void
9019 bxe_handle_fp_tq(void *context,
9020                  int  pending)
9021 {
9022     struct bxe_fastpath *fp = (struct bxe_fastpath *)context;
9023     struct bxe_softc *sc = fp->sc;
9024     uint8_t more_tx = FALSE;
9025     uint8_t more_rx = FALSE;
9026 
9027     BLOGD(sc, DBG_INTR, "---> FP TASK QUEUE (%d) <---\n", fp->index);
9028 
9029     /* XXX
9030      * IFF_DRV_RUNNING state can't be checked here since we process
9031      * slowpath events on a client queue during setup. Instead
9032      * we need to add a "process/continue" flag here that the driver
9033      * can use to tell the task here not to do anything.
9034      */
9035 #if 0
9036     if (!(if_getdrvflags(sc->ifp) & IFF_DRV_RUNNING)) {
9037         return;
9038     }
9039 #endif
9040 
9041     /* update the fastpath index */
9042     bxe_update_fp_sb_idx(fp);
9043 
9044     /* XXX add loop here if ever support multiple tx CoS */
9045     /* fp->txdata[cos] */
9046     if (bxe_has_tx_work(fp)) {
9047         BXE_FP_TX_LOCK(fp);
9048         more_tx = bxe_txeof(sc, fp);
9049         BXE_FP_TX_UNLOCK(fp);
9050     }
9051 
9052     if (bxe_has_rx_work(fp)) {
9053         more_rx = bxe_rxeof(sc, fp);
9054     }
9055 
9056     if (more_rx /*|| more_tx*/) {
9057         /* still more work to do */
9058         taskqueue_enqueue_fast(fp->tq, &fp->tq_task);
9059         return;
9060     }
9061 
9062     bxe_ack_sb(sc, fp->igu_sb_id, USTORM_ID,
9063                le16toh(fp->fp_hc_idx), IGU_INT_ENABLE, 1);
9064 }
9065 
9066 static void
9067 bxe_task_fp(struct bxe_fastpath *fp)
9068 {
9069     struct bxe_softc *sc = fp->sc;
9070     uint8_t more_tx = FALSE;
9071     uint8_t more_rx = FALSE;
9072 
9073     BLOGD(sc, DBG_INTR, "---> FP TASK ISR (%d) <---\n", fp->index);
9074 
9075     /* update the fastpath index */
9076     bxe_update_fp_sb_idx(fp);
9077 
9078     /* XXX add loop here if ever support multiple tx CoS */
9079     /* fp->txdata[cos] */
9080     if (bxe_has_tx_work(fp)) {
9081         BXE_FP_TX_LOCK(fp);
9082         more_tx = bxe_txeof(sc, fp);
9083         BXE_FP_TX_UNLOCK(fp);
9084     }
9085 
9086     if (bxe_has_rx_work(fp)) {
9087         more_rx = bxe_rxeof(sc, fp);
9088     }
9089 
9090     if (more_rx /*|| more_tx*/) {
9091         /* still more work to do, bail out if this ISR and process later */
9092         taskqueue_enqueue_fast(fp->tq, &fp->tq_task);
9093         return;
9094     }
9095 
9096     /*
9097      * Here we write the fastpath index taken before doing any tx or rx work.
9098      * It is very well possible other hw events occurred up to this point and
9099      * they were actually processed accordingly above. Since we're going to
9100      * write an older fastpath index, an interrupt is coming which we might
9101      * not do any work in.
9102      */
9103     bxe_ack_sb(sc, fp->igu_sb_id, USTORM_ID,
9104                le16toh(fp->fp_hc_idx), IGU_INT_ENABLE, 1);
9105 }
9106 
9107 /*
9108  * Legacy interrupt entry point.
9109  *
9110  * Verifies that the controller generated the interrupt and
9111  * then calls a separate routine to handle the various
9112  * interrupt causes: link, RX, and TX.
9113  */
9114 static void
9115 bxe_intr_legacy(void *xsc)
9116 {
9117     struct bxe_softc *sc = (struct bxe_softc *)xsc;
9118     struct bxe_fastpath *fp;
9119     uint16_t status, mask;
9120     int i;
9121 
9122     BLOGD(sc, DBG_INTR, "---> BXE INTx <---\n");
9123 
9124 #if 0
9125     /* Don't handle any interrupts if we're not ready. */
9126     if (__predict_false(sc->intr_sem != 0)) {
9127         return;
9128     }
9129 #endif
9130 
9131     /*
9132      * 0 for ustorm, 1 for cstorm
9133      * the bits returned from ack_int() are 0-15
9134      * bit 0 = attention status block
9135      * bit 1 = fast path status block
9136      * a mask of 0x2 or more = tx/rx event
9137      * a mask of 1 = slow path event
9138      */
9139 
9140     status = bxe_ack_int(sc);
9141 
9142     /* the interrupt is not for us */
9143     if (__predict_false(status == 0)) {
9144         BLOGD(sc, DBG_INTR, "Not our interrupt!\n");
9145         return;
9146     }
9147 
9148     BLOGD(sc, DBG_INTR, "Interrupt status 0x%04x\n", status);
9149 
9150     FOR_EACH_ETH_QUEUE(sc, i) {
9151         fp = &sc->fp[i];
9152         mask = (0x2 << (fp->index + CNIC_SUPPORT(sc)));
9153         if (status & mask) {
9154             /* acknowledge and disable further fastpath interrupts */
9155             bxe_ack_sb(sc, fp->igu_sb_id, USTORM_ID, 0, IGU_INT_DISABLE, 0);
9156             bxe_task_fp(fp);
9157             status &= ~mask;
9158         }
9159     }
9160 
9161 #if 0
9162     if (CNIC_SUPPORT(sc)) {
9163         mask = 0x2;
9164         if (status & (mask | 0x1)) {
9165             ...
9166             status &= ~mask;
9167         }
9168     }
9169 #endif
9170 
9171     if (__predict_false(status & 0x1)) {
9172         /* acknowledge and disable further slowpath interrupts */
9173         bxe_ack_sb(sc, sc->igu_dsb_id, USTORM_ID, 0, IGU_INT_DISABLE, 0);
9174 
9175         /* schedule slowpath handler */
9176         taskqueue_enqueue_fast(sc->sp_tq, &sc->sp_tq_task);
9177 
9178         status &= ~0x1;
9179     }
9180 
9181     if (__predict_false(status)) {
9182         BLOGW(sc, "Unexpected fastpath status (0x%08x)!\n", status);
9183     }
9184 }
9185 
9186 /* slowpath interrupt entry point */
9187 static void
9188 bxe_intr_sp(void *xsc)
9189 {
9190     struct bxe_softc *sc = (struct bxe_softc *)xsc;
9191 
9192     BLOGD(sc, (DBG_INTR | DBG_SP), "---> SP INTR <---\n");
9193 
9194     /* acknowledge and disable further slowpath interrupts */
9195     bxe_ack_sb(sc, sc->igu_dsb_id, USTORM_ID, 0, IGU_INT_DISABLE, 0);
9196 
9197     /* schedule slowpath handler */
9198     taskqueue_enqueue_fast(sc->sp_tq, &sc->sp_tq_task);
9199 }
9200 
9201 /* fastpath interrupt entry point */
9202 static void
9203 bxe_intr_fp(void *xfp)
9204 {
9205     struct bxe_fastpath *fp = (struct bxe_fastpath *)xfp;
9206     struct bxe_softc *sc = fp->sc;
9207 
9208     BLOGD(sc, DBG_INTR, "---> FP INTR %d <---\n", fp->index);
9209 
9210     BLOGD(sc, DBG_INTR,
9211           "(cpu=%d) MSI-X fp=%d fw_sb=%d igu_sb=%d\n",
9212           curcpu, fp->index, fp->fw_sb_id, fp->igu_sb_id);
9213 
9214 #if 0
9215     /* Don't handle any interrupts if we're not ready. */
9216     if (__predict_false(sc->intr_sem != 0)) {
9217         return;
9218     }
9219 #endif
9220 
9221     /* acknowledge and disable further fastpath interrupts */
9222     bxe_ack_sb(sc, fp->igu_sb_id, USTORM_ID, 0, IGU_INT_DISABLE, 0);
9223 
9224     bxe_task_fp(fp);
9225 }
9226 
9227 /* Release all interrupts allocated by the driver. */
9228 static void
9229 bxe_interrupt_free(struct bxe_softc *sc)
9230 {
9231     int i;
9232 
9233     switch (sc->interrupt_mode) {
9234     case INTR_MODE_INTX:
9235         BLOGD(sc, DBG_LOAD, "Releasing legacy INTx vector\n");
9236         if (sc->intr[0].resource != NULL) {
9237             bus_release_resource(sc->dev,
9238                                  SYS_RES_IRQ,
9239                                  sc->intr[0].rid,
9240                                  sc->intr[0].resource);
9241         }
9242         break;
9243     case INTR_MODE_MSI:
9244         for (i = 0; i < sc->intr_count; i++) {
9245             BLOGD(sc, DBG_LOAD, "Releasing MSI vector %d\n", i);
9246             if (sc->intr[i].resource && sc->intr[i].rid) {
9247                 bus_release_resource(sc->dev,
9248                                      SYS_RES_IRQ,
9249                                      sc->intr[i].rid,
9250                                      sc->intr[i].resource);
9251             }
9252         }
9253         pci_release_msi(sc->dev);
9254         break;
9255     case INTR_MODE_MSIX:
9256         for (i = 0; i < sc->intr_count; i++) {
9257             BLOGD(sc, DBG_LOAD, "Releasing MSI-X vector %d\n", i);
9258             if (sc->intr[i].resource && sc->intr[i].rid) {
9259                 bus_release_resource(sc->dev,
9260                                      SYS_RES_IRQ,
9261                                      sc->intr[i].rid,
9262                                      sc->intr[i].resource);
9263             }
9264         }
9265         pci_release_msi(sc->dev);
9266         break;
9267     default:
9268         /* nothing to do as initial allocation failed */
9269         break;
9270     }
9271 }
9272 
9273 /*
9274  * This function determines and allocates the appropriate
9275  * interrupt based on system capabilites and user request.
9276  *
9277  * The user may force a particular interrupt mode, specify
9278  * the number of receive queues, specify the method for
9279  * distribuitng received frames to receive queues, or use
9280  * the default settings which will automatically select the
9281  * best supported combination.  In addition, the OS may or
9282  * may not support certain combinations of these settings.
9283  * This routine attempts to reconcile the settings requested
9284  * by the user with the capabilites available from the system
9285  * to select the optimal combination of features.
9286  *
9287  * Returns:
9288  *   0 = Success, !0 = Failure.
9289  */
9290 static int
9291 bxe_interrupt_alloc(struct bxe_softc *sc)
9292 {
9293     int msix_count = 0;
9294     int msi_count = 0;
9295     int num_requested = 0;
9296     int num_allocated = 0;
9297     int rid, i, j;
9298     int rc;
9299 
9300     /* get the number of available MSI/MSI-X interrupts from the OS */
9301     if (sc->interrupt_mode > 0) {
9302         if (sc->devinfo.pcie_cap_flags & BXE_MSIX_CAPABLE_FLAG) {
9303             msix_count = pci_msix_count(sc->dev);
9304         }
9305 
9306         if (sc->devinfo.pcie_cap_flags & BXE_MSI_CAPABLE_FLAG) {
9307             msi_count = pci_msi_count(sc->dev);
9308         }
9309 
9310         BLOGD(sc, DBG_LOAD, "%d MSI and %d MSI-X vectors available\n",
9311               msi_count, msix_count);
9312     }
9313 
9314     do { /* try allocating MSI-X interrupt resources (at least 2) */
9315         if (sc->interrupt_mode != INTR_MODE_MSIX) {
9316             break;
9317         }
9318 
9319         if (((sc->devinfo.pcie_cap_flags & BXE_MSIX_CAPABLE_FLAG) == 0) ||
9320             (msix_count < 2)) {
9321             sc->interrupt_mode = INTR_MODE_MSI; /* try MSI next */
9322             break;
9323         }
9324 
9325         /* ask for the necessary number of MSI-X vectors */
9326         num_requested = min((sc->num_queues + 1), msix_count);
9327 
9328         BLOGD(sc, DBG_LOAD, "Requesting %d MSI-X vectors\n", num_requested);
9329 
9330         num_allocated = num_requested;
9331         if ((rc = pci_alloc_msix(sc->dev, &num_allocated)) != 0) {
9332             BLOGE(sc, "MSI-X alloc failed! (%d)\n", rc);
9333             sc->interrupt_mode = INTR_MODE_MSI; /* try MSI next */
9334             break;
9335         }
9336 
9337         if (num_allocated < 2) { /* possible? */
9338             BLOGE(sc, "MSI-X allocation less than 2!\n");
9339             sc->interrupt_mode = INTR_MODE_MSI; /* try MSI next */
9340             pci_release_msi(sc->dev);
9341             break;
9342         }
9343 
9344         BLOGI(sc, "MSI-X vectors Requested %d and Allocated %d\n",
9345               num_requested, num_allocated);
9346 
9347         /* best effort so use the number of vectors allocated to us */
9348         sc->intr_count = num_allocated;
9349         sc->num_queues = num_allocated - 1;
9350 
9351         rid = 1; /* initial resource identifier */
9352 
9353         /* allocate the MSI-X vectors */
9354         for (i = 0; i < num_allocated; i++) {
9355             sc->intr[i].rid = (rid + i);
9356 
9357             if ((sc->intr[i].resource =
9358                  bus_alloc_resource_any(sc->dev,
9359                                         SYS_RES_IRQ,
9360                                         &sc->intr[i].rid,
9361                                         RF_ACTIVE)) == NULL) {
9362                 BLOGE(sc, "Failed to map MSI-X[%d] (rid=%d)!\n",
9363                       i, (rid + i));
9364 
9365                 for (j = (i - 1); j >= 0; j--) {
9366                     bus_release_resource(sc->dev,
9367                                          SYS_RES_IRQ,
9368                                          sc->intr[j].rid,
9369                                          sc->intr[j].resource);
9370                 }
9371 
9372                 sc->intr_count = 0;
9373                 sc->num_queues = 0;
9374                 sc->interrupt_mode = INTR_MODE_MSI; /* try MSI next */
9375                 pci_release_msi(sc->dev);
9376                 break;
9377             }
9378 
9379             BLOGD(sc, DBG_LOAD, "Mapped MSI-X[%d] (rid=%d)\n", i, (rid + i));
9380         }
9381     } while (0);
9382 
9383     do { /* try allocating MSI vector resources (at least 2) */
9384         if (sc->interrupt_mode != INTR_MODE_MSI) {
9385             break;
9386         }
9387 
9388         if (((sc->devinfo.pcie_cap_flags & BXE_MSI_CAPABLE_FLAG) == 0) ||
9389             (msi_count < 1)) {
9390             sc->interrupt_mode = INTR_MODE_INTX; /* try INTx next */
9391             break;
9392         }
9393 
9394         /* ask for a single MSI vector */
9395         num_requested = 1;
9396 
9397         BLOGD(sc, DBG_LOAD, "Requesting %d MSI vectors\n", num_requested);
9398 
9399         num_allocated = num_requested;
9400         if ((rc = pci_alloc_msi(sc->dev, &num_allocated)) != 0) {
9401             BLOGE(sc, "MSI alloc failed (%d)!\n", rc);
9402             sc->interrupt_mode = INTR_MODE_INTX; /* try INTx next */
9403             break;
9404         }
9405 
9406         if (num_allocated != 1) { /* possible? */
9407             BLOGE(sc, "MSI allocation is not 1!\n");
9408             sc->interrupt_mode = INTR_MODE_INTX; /* try INTx next */
9409             pci_release_msi(sc->dev);
9410             break;
9411         }
9412 
9413         BLOGI(sc, "MSI vectors Requested %d and Allocated %d\n",
9414               num_requested, num_allocated);
9415 
9416         /* best effort so use the number of vectors allocated to us */
9417         sc->intr_count = num_allocated;
9418         sc->num_queues = num_allocated;
9419 
9420         rid = 1; /* initial resource identifier */
9421 
9422         sc->intr[0].rid = rid;
9423 
9424         if ((sc->intr[0].resource =
9425              bus_alloc_resource_any(sc->dev,
9426                                     SYS_RES_IRQ,
9427                                     &sc->intr[0].rid,
9428                                     RF_ACTIVE)) == NULL) {
9429             BLOGE(sc, "Failed to map MSI[0] (rid=%d)!\n", rid);
9430             sc->intr_count = 0;
9431             sc->num_queues = 0;
9432             sc->interrupt_mode = INTR_MODE_INTX; /* try INTx next */
9433             pci_release_msi(sc->dev);
9434             break;
9435         }
9436 
9437         BLOGD(sc, DBG_LOAD, "Mapped MSI[0] (rid=%d)\n", rid);
9438     } while (0);
9439 
9440     do { /* try allocating INTx vector resources */
9441         if (sc->interrupt_mode != INTR_MODE_INTX) {
9442             break;
9443         }
9444 
9445         BLOGD(sc, DBG_LOAD, "Requesting legacy INTx interrupt\n");
9446 
9447         /* only one vector for INTx */
9448         sc->intr_count = 1;
9449         sc->num_queues = 1;
9450 
9451         rid = 0; /* initial resource identifier */
9452 
9453         sc->intr[0].rid = rid;
9454 
9455         if ((sc->intr[0].resource =
9456              bus_alloc_resource_any(sc->dev,
9457                                     SYS_RES_IRQ,
9458                                     &sc->intr[0].rid,
9459                                     (RF_ACTIVE | RF_SHAREABLE))) == NULL) {
9460             BLOGE(sc, "Failed to map INTx (rid=%d)!\n", rid);
9461             sc->intr_count = 0;
9462             sc->num_queues = 0;
9463             sc->interrupt_mode = -1; /* Failed! */
9464             break;
9465         }
9466 
9467         BLOGD(sc, DBG_LOAD, "Mapped INTx (rid=%d)\n", rid);
9468     } while (0);
9469 
9470     if (sc->interrupt_mode == -1) {
9471         BLOGE(sc, "Interrupt Allocation: FAILED!!!\n");
9472         rc = 1;
9473     } else {
9474         BLOGD(sc, DBG_LOAD,
9475               "Interrupt Allocation: interrupt_mode=%d, num_queues=%d\n",
9476               sc->interrupt_mode, sc->num_queues);
9477         rc = 0;
9478     }
9479 
9480     return (rc);
9481 }
9482 
9483 static void
9484 bxe_interrupt_detach(struct bxe_softc *sc)
9485 {
9486     struct bxe_fastpath *fp;
9487     int i;
9488 
9489     /* release interrupt resources */
9490     for (i = 0; i < sc->intr_count; i++) {
9491         if (sc->intr[i].resource && sc->intr[i].tag) {
9492             BLOGD(sc, DBG_LOAD, "Disabling interrupt vector %d\n", i);
9493             bus_teardown_intr(sc->dev, sc->intr[i].resource, sc->intr[i].tag);
9494         }
9495     }
9496 
9497     for (i = 0; i < sc->num_queues; i++) {
9498         fp = &sc->fp[i];
9499         if (fp->tq) {
9500             taskqueue_drain(fp->tq, &fp->tq_task);
9501             taskqueue_free(fp->tq);
9502             fp->tq = NULL;
9503         }
9504     }
9505 
9506     if (sc->rx_mode_tq) {
9507         taskqueue_drain(sc->rx_mode_tq, &sc->rx_mode_tq_task);
9508         taskqueue_free(sc->rx_mode_tq);
9509         sc->rx_mode_tq = NULL;
9510     }
9511 
9512     if (sc->sp_tq) {
9513         taskqueue_drain(sc->sp_tq, &sc->sp_tq_task);
9514         taskqueue_free(sc->sp_tq);
9515         sc->sp_tq = NULL;
9516     }
9517 }
9518 
9519 /*
9520  * Enables interrupts and attach to the ISR.
9521  *
9522  * When using multiple MSI/MSI-X vectors the first vector
9523  * is used for slowpath operations while all remaining
9524  * vectors are used for fastpath operations.  If only a
9525  * single MSI/MSI-X vector is used (SINGLE_ISR) then the
9526  * ISR must look for both slowpath and fastpath completions.
9527  */
9528 static int
9529 bxe_interrupt_attach(struct bxe_softc *sc)
9530 {
9531     struct bxe_fastpath *fp;
9532     int rc = 0;
9533     int i;
9534 
9535     snprintf(sc->sp_tq_name, sizeof(sc->sp_tq_name),
9536              "bxe%d_sp_tq", sc->unit);
9537     TASK_INIT(&sc->sp_tq_task, 0, bxe_handle_sp_tq, sc);
9538     sc->sp_tq = taskqueue_create_fast(sc->sp_tq_name, M_NOWAIT,
9539                                       taskqueue_thread_enqueue,
9540                                       &sc->sp_tq);
9541     taskqueue_start_threads(&sc->sp_tq, 1, PWAIT, /* lower priority */
9542                             "%s", sc->sp_tq_name);
9543 
9544     snprintf(sc->rx_mode_tq_name, sizeof(sc->rx_mode_tq_name),
9545              "bxe%d_rx_mode_tq", sc->unit);
9546     TASK_INIT(&sc->rx_mode_tq_task, 0, bxe_handle_rx_mode_tq, sc);
9547     sc->rx_mode_tq = taskqueue_create_fast(sc->rx_mode_tq_name, M_NOWAIT,
9548                                            taskqueue_thread_enqueue,
9549                                            &sc->rx_mode_tq);
9550     taskqueue_start_threads(&sc->rx_mode_tq, 1, PWAIT, /* lower priority */
9551                             "%s", sc->rx_mode_tq_name);
9552 
9553     for (i = 0; i < sc->num_queues; i++) {
9554         fp = &sc->fp[i];
9555         snprintf(fp->tq_name, sizeof(fp->tq_name),
9556                  "bxe%d_fp%d_tq", sc->unit, i);
9557         TASK_INIT(&fp->tq_task, 0, bxe_handle_fp_tq, fp);
9558         fp->tq = taskqueue_create_fast(fp->tq_name, M_NOWAIT,
9559                                        taskqueue_thread_enqueue,
9560                                        &fp->tq);
9561         taskqueue_start_threads(&fp->tq, 1, PI_NET, /* higher priority */
9562                                 "%s", fp->tq_name);
9563     }
9564 
9565     /* setup interrupt handlers */
9566     if (sc->interrupt_mode == INTR_MODE_MSIX) {
9567         BLOGD(sc, DBG_LOAD, "Enabling slowpath MSI-X[0] vector\n");
9568 
9569         /*
9570          * Setup the interrupt handler. Note that we pass the driver instance
9571          * to the interrupt handler for the slowpath.
9572          */
9573         if ((rc = bus_setup_intr(sc->dev, sc->intr[0].resource,
9574                                  (INTR_TYPE_NET | INTR_MPSAFE),
9575                                  NULL, bxe_intr_sp, sc,
9576                                  &sc->intr[0].tag)) != 0) {
9577             BLOGE(sc, "Failed to allocate MSI-X[0] vector (%d)\n", rc);
9578             goto bxe_interrupt_attach_exit;
9579         }
9580 
9581         bus_describe_intr(sc->dev, sc->intr[0].resource,
9582                           sc->intr[0].tag, "sp");
9583 
9584         /* bus_bind_intr(sc->dev, sc->intr[0].resource, 0); */
9585 
9586         /* initialize the fastpath vectors (note the first was used for sp) */
9587         for (i = 0; i < sc->num_queues; i++) {
9588             fp = &sc->fp[i];
9589             BLOGD(sc, DBG_LOAD, "Enabling MSI-X[%d] vector\n", (i + 1));
9590 
9591             /*
9592              * Setup the interrupt handler. Note that we pass the
9593              * fastpath context to the interrupt handler in this
9594              * case.
9595              */
9596             if ((rc = bus_setup_intr(sc->dev, sc->intr[i + 1].resource,
9597                                      (INTR_TYPE_NET | INTR_MPSAFE),
9598                                      NULL, bxe_intr_fp, fp,
9599                                      &sc->intr[i + 1].tag)) != 0) {
9600                 BLOGE(sc, "Failed to allocate MSI-X[%d] vector (%d)\n",
9601                       (i + 1), rc);
9602                 goto bxe_interrupt_attach_exit;
9603             }
9604 
9605             bus_describe_intr(sc->dev, sc->intr[i + 1].resource,
9606                               sc->intr[i + 1].tag, "fp%02d", i);
9607 
9608             /* bind the fastpath instance to a cpu */
9609             if (sc->num_queues > 1) {
9610                 bus_bind_intr(sc->dev, sc->intr[i + 1].resource, i);
9611             }
9612 
9613             fp->state = BXE_FP_STATE_IRQ;
9614         }
9615     } else if (sc->interrupt_mode == INTR_MODE_MSI) {
9616         BLOGD(sc, DBG_LOAD, "Enabling MSI[0] vector\n");
9617 
9618         /*
9619          * Setup the interrupt handler. Note that we pass the
9620          * driver instance to the interrupt handler which
9621          * will handle both the slowpath and fastpath.
9622          */
9623         if ((rc = bus_setup_intr(sc->dev, sc->intr[0].resource,
9624                                  (INTR_TYPE_NET | INTR_MPSAFE),
9625                                  NULL, bxe_intr_legacy, sc,
9626                                  &sc->intr[0].tag)) != 0) {
9627             BLOGE(sc, "Failed to allocate MSI[0] vector (%d)\n", rc);
9628             goto bxe_interrupt_attach_exit;
9629         }
9630 
9631     } else { /* (sc->interrupt_mode == INTR_MODE_INTX) */
9632         BLOGD(sc, DBG_LOAD, "Enabling INTx interrupts\n");
9633 
9634         /*
9635          * Setup the interrupt handler. Note that we pass the
9636          * driver instance to the interrupt handler which
9637          * will handle both the slowpath and fastpath.
9638          */
9639         if ((rc = bus_setup_intr(sc->dev, sc->intr[0].resource,
9640                                  (INTR_TYPE_NET | INTR_MPSAFE),
9641                                  NULL, bxe_intr_legacy, sc,
9642                                  &sc->intr[0].tag)) != 0) {
9643             BLOGE(sc, "Failed to allocate INTx interrupt (%d)\n", rc);
9644             goto bxe_interrupt_attach_exit;
9645         }
9646     }
9647 
9648 bxe_interrupt_attach_exit:
9649 
9650     return (rc);
9651 }
9652 
9653 static int  bxe_init_hw_common_chip(struct bxe_softc *sc);
9654 static int  bxe_init_hw_common(struct bxe_softc *sc);
9655 static int  bxe_init_hw_port(struct bxe_softc *sc);
9656 static int  bxe_init_hw_func(struct bxe_softc *sc);
9657 static void bxe_reset_common(struct bxe_softc *sc);
9658 static void bxe_reset_port(struct bxe_softc *sc);
9659 static void bxe_reset_func(struct bxe_softc *sc);
9660 static int  bxe_gunzip_init(struct bxe_softc *sc);
9661 static void bxe_gunzip_end(struct bxe_softc *sc);
9662 static int  bxe_init_firmware(struct bxe_softc *sc);
9663 static void bxe_release_firmware(struct bxe_softc *sc);
9664 
9665 static struct
9666 ecore_func_sp_drv_ops bxe_func_sp_drv = {
9667     .init_hw_cmn_chip = bxe_init_hw_common_chip,
9668     .init_hw_cmn      = bxe_init_hw_common,
9669     .init_hw_port     = bxe_init_hw_port,
9670     .init_hw_func     = bxe_init_hw_func,
9671 
9672     .reset_hw_cmn     = bxe_reset_common,
9673     .reset_hw_port    = bxe_reset_port,
9674     .reset_hw_func    = bxe_reset_func,
9675 
9676     .gunzip_init      = bxe_gunzip_init,
9677     .gunzip_end       = bxe_gunzip_end,
9678 
9679     .init_fw          = bxe_init_firmware,
9680     .release_fw       = bxe_release_firmware,
9681 };
9682 
9683 static void
9684 bxe_init_func_obj(struct bxe_softc *sc)
9685 {
9686     sc->dmae_ready = 0;
9687 
9688     ecore_init_func_obj(sc,
9689                         &sc->func_obj,
9690                         BXE_SP(sc, func_rdata),
9691                         BXE_SP_MAPPING(sc, func_rdata),
9692                         BXE_SP(sc, func_afex_rdata),
9693                         BXE_SP_MAPPING(sc, func_afex_rdata),
9694                         &bxe_func_sp_drv);
9695 }
9696 
9697 static int
9698 bxe_init_hw(struct bxe_softc *sc,
9699             uint32_t         load_code)
9700 {
9701     struct ecore_func_state_params func_params = { NULL };
9702     int rc;
9703 
9704     /* prepare the parameters for function state transitions */
9705     bit_set(&func_params.ramrod_flags, RAMROD_COMP_WAIT);
9706 
9707     func_params.f_obj = &sc->func_obj;
9708     func_params.cmd = ECORE_F_CMD_HW_INIT;
9709 
9710     func_params.params.hw_init.load_phase = load_code;
9711 
9712     /*
9713      * Via a plethora of function pointers, we will eventually reach
9714      * bxe_init_hw_common(), bxe_init_hw_port(), or bxe_init_hw_func().
9715      */
9716     rc = ecore_func_state_change(sc, &func_params);
9717 
9718     return (rc);
9719 }
9720 
9721 static void
9722 bxe_fill(struct bxe_softc *sc,
9723          uint32_t         addr,
9724          int              fill,
9725          uint32_t         len)
9726 {
9727     uint32_t i;
9728 
9729     if (!(len % 4) && !(addr % 4)) {
9730         for (i = 0; i < len; i += 4) {
9731             REG_WR(sc, (addr + i), fill);
9732         }
9733     } else {
9734         for (i = 0; i < len; i++) {
9735             REG_WR8(sc, (addr + i), fill);
9736         }
9737     }
9738 }
9739 
9740 /* writes FP SP data to FW - data_size in dwords */
9741 static void
9742 bxe_wr_fp_sb_data(struct bxe_softc *sc,
9743                   int              fw_sb_id,
9744                   uint32_t         *sb_data_p,
9745                   uint32_t         data_size)
9746 {
9747     int index;
9748 
9749     for (index = 0; index < data_size; index++) {
9750         REG_WR(sc,
9751                (BAR_CSTRORM_INTMEM +
9752                 CSTORM_STATUS_BLOCK_DATA_OFFSET(fw_sb_id) +
9753                 (sizeof(uint32_t) * index)),
9754                *(sb_data_p + index));
9755     }
9756 }
9757 
9758 static void
9759 bxe_zero_fp_sb(struct bxe_softc *sc,
9760                int              fw_sb_id)
9761 {
9762     struct hc_status_block_data_e2 sb_data_e2;
9763     struct hc_status_block_data_e1x sb_data_e1x;
9764     uint32_t *sb_data_p;
9765     uint32_t data_size = 0;
9766 
9767     if (!CHIP_IS_E1x(sc)) {
9768         memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2));
9769         sb_data_e2.common.state = SB_DISABLED;
9770         sb_data_e2.common.p_func.vf_valid = FALSE;
9771         sb_data_p = (uint32_t *)&sb_data_e2;
9772         data_size = (sizeof(struct hc_status_block_data_e2) /
9773                      sizeof(uint32_t));
9774     } else {
9775         memset(&sb_data_e1x, 0, sizeof(struct hc_status_block_data_e1x));
9776         sb_data_e1x.common.state = SB_DISABLED;
9777         sb_data_e1x.common.p_func.vf_valid = FALSE;
9778         sb_data_p = (uint32_t *)&sb_data_e1x;
9779         data_size = (sizeof(struct hc_status_block_data_e1x) /
9780                      sizeof(uint32_t));
9781     }
9782 
9783     bxe_wr_fp_sb_data(sc, fw_sb_id, sb_data_p, data_size);
9784 
9785     bxe_fill(sc, (BAR_CSTRORM_INTMEM + CSTORM_STATUS_BLOCK_OFFSET(fw_sb_id)),
9786              0, CSTORM_STATUS_BLOCK_SIZE);
9787     bxe_fill(sc, (BAR_CSTRORM_INTMEM + CSTORM_SYNC_BLOCK_OFFSET(fw_sb_id)),
9788              0, CSTORM_SYNC_BLOCK_SIZE);
9789 }
9790 
9791 static void
9792 bxe_wr_sp_sb_data(struct bxe_softc               *sc,
9793                   struct hc_sp_status_block_data *sp_sb_data)
9794 {
9795     int i;
9796 
9797     for (i = 0;
9798          i < (sizeof(struct hc_sp_status_block_data) / sizeof(uint32_t));
9799          i++) {
9800         REG_WR(sc,
9801                (BAR_CSTRORM_INTMEM +
9802                 CSTORM_SP_STATUS_BLOCK_DATA_OFFSET(SC_FUNC(sc)) +
9803                 (i * sizeof(uint32_t))),
9804                *((uint32_t *)sp_sb_data + i));
9805     }
9806 }
9807 
9808 static void
9809 bxe_zero_sp_sb(struct bxe_softc *sc)
9810 {
9811     struct hc_sp_status_block_data sp_sb_data;
9812 
9813     memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data));
9814 
9815     sp_sb_data.state           = SB_DISABLED;
9816     sp_sb_data.p_func.vf_valid = FALSE;
9817 
9818     bxe_wr_sp_sb_data(sc, &sp_sb_data);
9819 
9820     bxe_fill(sc,
9821              (BAR_CSTRORM_INTMEM +
9822               CSTORM_SP_STATUS_BLOCK_OFFSET(SC_FUNC(sc))),
9823               0, CSTORM_SP_STATUS_BLOCK_SIZE);
9824     bxe_fill(sc,
9825              (BAR_CSTRORM_INTMEM +
9826               CSTORM_SP_SYNC_BLOCK_OFFSET(SC_FUNC(sc))),
9827               0, CSTORM_SP_SYNC_BLOCK_SIZE);
9828 }
9829 
9830 static void
9831 bxe_setup_ndsb_state_machine(struct hc_status_block_sm *hc_sm,
9832                              int                       igu_sb_id,
9833                              int                       igu_seg_id)
9834 {
9835     hc_sm->igu_sb_id      = igu_sb_id;
9836     hc_sm->igu_seg_id     = igu_seg_id;
9837     hc_sm->timer_value    = 0xFF;
9838     hc_sm->time_to_expire = 0xFFFFFFFF;
9839 }
9840 
9841 static void
9842 bxe_map_sb_state_machines(struct hc_index_data *index_data)
9843 {
9844     /* zero out state machine indices */
9845 
9846     /* rx indices */
9847     index_data[HC_INDEX_ETH_RX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID;
9848 
9849     /* tx indices */
9850     index_data[HC_INDEX_OOO_TX_CQ_CONS].flags      &= ~HC_INDEX_DATA_SM_ID;
9851     index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags &= ~HC_INDEX_DATA_SM_ID;
9852     index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags &= ~HC_INDEX_DATA_SM_ID;
9853     index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags &= ~HC_INDEX_DATA_SM_ID;
9854 
9855     /* map indices */
9856 
9857     /* rx indices */
9858     index_data[HC_INDEX_ETH_RX_CQ_CONS].flags |=
9859         (SM_RX_ID << HC_INDEX_DATA_SM_ID_SHIFT);
9860 
9861     /* tx indices */
9862     index_data[HC_INDEX_OOO_TX_CQ_CONS].flags |=
9863         (SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT);
9864     index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags |=
9865         (SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT);
9866     index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags |=
9867         (SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT);
9868     index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags |=
9869         (SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT);
9870 }
9871 
9872 static void
9873 bxe_init_sb(struct bxe_softc *sc,
9874             bus_addr_t       busaddr,
9875             int              vfid,
9876             uint8_t          vf_valid,
9877             int              fw_sb_id,
9878             int              igu_sb_id)
9879 {
9880     struct hc_status_block_data_e2  sb_data_e2;
9881     struct hc_status_block_data_e1x sb_data_e1x;
9882     struct hc_status_block_sm       *hc_sm_p;
9883     uint32_t *sb_data_p;
9884     int igu_seg_id;
9885     int data_size;
9886 
9887     if (CHIP_INT_MODE_IS_BC(sc)) {
9888         igu_seg_id = HC_SEG_ACCESS_NORM;
9889     } else {
9890         igu_seg_id = IGU_SEG_ACCESS_NORM;
9891     }
9892 
9893     bxe_zero_fp_sb(sc, fw_sb_id);
9894 
9895     if (!CHIP_IS_E1x(sc)) {
9896         memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2));
9897         sb_data_e2.common.state = SB_ENABLED;
9898         sb_data_e2.common.p_func.pf_id = SC_FUNC(sc);
9899         sb_data_e2.common.p_func.vf_id = vfid;
9900         sb_data_e2.common.p_func.vf_valid = vf_valid;
9901         sb_data_e2.common.p_func.vnic_id = SC_VN(sc);
9902         sb_data_e2.common.same_igu_sb_1b = TRUE;
9903         sb_data_e2.common.host_sb_addr.hi = U64_HI(busaddr);
9904         sb_data_e2.common.host_sb_addr.lo = U64_LO(busaddr);
9905         hc_sm_p = sb_data_e2.common.state_machine;
9906         sb_data_p = (uint32_t *)&sb_data_e2;
9907         data_size = (sizeof(struct hc_status_block_data_e2) /
9908                      sizeof(uint32_t));
9909         bxe_map_sb_state_machines(sb_data_e2.index_data);
9910     } else {
9911         memset(&sb_data_e1x, 0, sizeof(struct hc_status_block_data_e1x));
9912         sb_data_e1x.common.state = SB_ENABLED;
9913         sb_data_e1x.common.p_func.pf_id = SC_FUNC(sc);
9914         sb_data_e1x.common.p_func.vf_id = 0xff;
9915         sb_data_e1x.common.p_func.vf_valid = FALSE;
9916         sb_data_e1x.common.p_func.vnic_id = SC_VN(sc);
9917         sb_data_e1x.common.same_igu_sb_1b = TRUE;
9918         sb_data_e1x.common.host_sb_addr.hi = U64_HI(busaddr);
9919         sb_data_e1x.common.host_sb_addr.lo = U64_LO(busaddr);
9920         hc_sm_p = sb_data_e1x.common.state_machine;
9921         sb_data_p = (uint32_t *)&sb_data_e1x;
9922         data_size = (sizeof(struct hc_status_block_data_e1x) /
9923                      sizeof(uint32_t));
9924         bxe_map_sb_state_machines(sb_data_e1x.index_data);
9925     }
9926 
9927     bxe_setup_ndsb_state_machine(&hc_sm_p[SM_RX_ID], igu_sb_id, igu_seg_id);
9928     bxe_setup_ndsb_state_machine(&hc_sm_p[SM_TX_ID], igu_sb_id, igu_seg_id);
9929 
9930     BLOGD(sc, DBG_LOAD, "Init FW SB %d\n", fw_sb_id);
9931 
9932     /* write indices to HW - PCI guarantees endianity of regpairs */
9933     bxe_wr_fp_sb_data(sc, fw_sb_id, sb_data_p, data_size);
9934 }
9935 
9936 static inline uint8_t
9937 bxe_fp_qzone_id(struct bxe_fastpath *fp)
9938 {
9939     if (CHIP_IS_E1x(fp->sc)) {
9940         return (fp->cl_id + SC_PORT(fp->sc) * ETH_MAX_RX_CLIENTS_E1H);
9941     } else {
9942         return (fp->cl_id);
9943     }
9944 }
9945 
9946 static inline uint32_t
9947 bxe_rx_ustorm_prods_offset(struct bxe_softc    *sc,
9948                            struct bxe_fastpath *fp)
9949 {
9950     uint32_t offset = BAR_USTRORM_INTMEM;
9951 
9952 #if 0
9953     if (IS_VF(sc)) {
9954         return (PXP_VF_ADDR_USDM_QUEUES_START +
9955                 (sc->acquire_resp.resc.hw_qid[fp->index] *
9956                  sizeof(struct ustorm_queue_zone_data)));
9957     } else
9958 #endif
9959     if (!CHIP_IS_E1x(sc)) {
9960         offset += USTORM_RX_PRODS_E2_OFFSET(fp->cl_qzone_id);
9961     } else {
9962         offset += USTORM_RX_PRODS_E1X_OFFSET(SC_PORT(sc), fp->cl_id);
9963     }
9964 
9965     return (offset);
9966 }
9967 
9968 static void
9969 bxe_init_eth_fp(struct bxe_softc *sc,
9970                 int              idx)
9971 {
9972     struct bxe_fastpath *fp = &sc->fp[idx];
9973     uint32_t cids[ECORE_MULTI_TX_COS] = { 0 };
9974     unsigned long q_type = 0;
9975     int cos;
9976 
9977     fp->sc    = sc;
9978     fp->index = idx;
9979 
9980     snprintf(fp->tx_mtx_name, sizeof(fp->tx_mtx_name),
9981              "bxe%d_fp%d_tx_lock", sc->unit, idx);
9982     mtx_init(&fp->tx_mtx, fp->tx_mtx_name, NULL, MTX_DEF);
9983 
9984     snprintf(fp->rx_mtx_name, sizeof(fp->rx_mtx_name),
9985              "bxe%d_fp%d_rx_lock", sc->unit, idx);
9986     mtx_init(&fp->rx_mtx, fp->rx_mtx_name, NULL, MTX_DEF);
9987 
9988     fp->igu_sb_id = (sc->igu_base_sb + idx + CNIC_SUPPORT(sc));
9989     fp->fw_sb_id = (sc->base_fw_ndsb + idx + CNIC_SUPPORT(sc));
9990 
9991     fp->cl_id = (CHIP_IS_E1x(sc)) ?
9992                     (SC_L_ID(sc) + idx) :
9993                     /* want client ID same as IGU SB ID for non-E1 */
9994                     fp->igu_sb_id;
9995     fp->cl_qzone_id = bxe_fp_qzone_id(fp);
9996 
9997     /* setup sb indices */
9998     if (!CHIP_IS_E1x(sc)) {
9999         fp->sb_index_values  = fp->status_block.e2_sb->sb.index_values;
10000         fp->sb_running_index = fp->status_block.e2_sb->sb.running_index;
10001     } else {
10002         fp->sb_index_values  = fp->status_block.e1x_sb->sb.index_values;
10003         fp->sb_running_index = fp->status_block.e1x_sb->sb.running_index;
10004     }
10005 
10006     /* init shortcut */
10007     fp->ustorm_rx_prods_offset = bxe_rx_ustorm_prods_offset(sc, fp);
10008 
10009     fp->rx_cq_cons_sb = &fp->sb_index_values[HC_INDEX_ETH_RX_CQ_CONS];
10010 
10011     /*
10012      * XXX If multiple CoS is ever supported then each fastpath structure
10013      * will need to maintain tx producer/consumer/dma/etc values *per* CoS.
10014      */
10015     for (cos = 0; cos < sc->max_cos; cos++) {
10016         cids[cos] = idx;
10017     }
10018     fp->tx_cons_sb = &fp->sb_index_values[HC_INDEX_ETH_TX_CQ_CONS_COS0];
10019 
10020     /* nothing more for a VF to do */
10021     if (IS_VF(sc)) {
10022         return;
10023     }
10024 
10025     bxe_init_sb(sc, fp->sb_dma.paddr, BXE_VF_ID_INVALID, FALSE,
10026                 fp->fw_sb_id, fp->igu_sb_id);
10027 
10028     bxe_update_fp_sb_idx(fp);
10029 
10030     /* Configure Queue State object */
10031     bit_set(&q_type, ECORE_Q_TYPE_HAS_RX);
10032     bit_set(&q_type, ECORE_Q_TYPE_HAS_TX);
10033 
10034     ecore_init_queue_obj(sc,
10035                          &sc->sp_objs[idx].q_obj,
10036                          fp->cl_id,
10037                          cids,
10038                          sc->max_cos,
10039                          SC_FUNC(sc),
10040                          BXE_SP(sc, q_rdata),
10041                          BXE_SP_MAPPING(sc, q_rdata),
10042                          q_type);
10043 
10044     /* configure classification DBs */
10045     ecore_init_mac_obj(sc,
10046                        &sc->sp_objs[idx].mac_obj,
10047                        fp->cl_id,
10048                        idx,
10049                        SC_FUNC(sc),
10050                        BXE_SP(sc, mac_rdata),
10051                        BXE_SP_MAPPING(sc, mac_rdata),
10052                        ECORE_FILTER_MAC_PENDING,
10053                        &sc->sp_state,
10054                        ECORE_OBJ_TYPE_RX_TX,
10055                        &sc->macs_pool);
10056 
10057     BLOGD(sc, DBG_LOAD, "fp[%d]: sb=%p cl_id=%d fw_sb=%d igu_sb=%d\n",
10058           idx, fp->status_block.e2_sb, fp->cl_id, fp->fw_sb_id, fp->igu_sb_id);
10059 }
10060 
10061 static inline void
10062 bxe_update_rx_prod(struct bxe_softc    *sc,
10063                    struct bxe_fastpath *fp,
10064                    uint16_t            rx_bd_prod,
10065                    uint16_t            rx_cq_prod,
10066                    uint16_t            rx_sge_prod)
10067 {
10068     struct ustorm_eth_rx_producers rx_prods = { 0 };
10069     uint32_t i;
10070 
10071     /* update producers */
10072     rx_prods.bd_prod  = rx_bd_prod;
10073     rx_prods.cqe_prod = rx_cq_prod;
10074     rx_prods.sge_prod = rx_sge_prod;
10075 
10076     /*
10077      * Make sure that the BD and SGE data is updated before updating the
10078      * producers since FW might read the BD/SGE right after the producer
10079      * is updated.
10080      * This is only applicable for weak-ordered memory model archs such
10081      * as IA-64. The following barrier is also mandatory since FW will
10082      * assumes BDs must have buffers.
10083      */
10084     wmb();
10085 
10086     for (i = 0; i < (sizeof(rx_prods) / 4); i++) {
10087         REG_WR(sc,
10088                (fp->ustorm_rx_prods_offset + (i * 4)),
10089                ((uint32_t *)&rx_prods)[i]);
10090     }
10091 
10092     wmb(); /* keep prod updates ordered */
10093 
10094     BLOGD(sc, DBG_RX,
10095           "RX fp[%d]: wrote prods bd_prod=%u cqe_prod=%u sge_prod=%u\n",
10096           fp->index, rx_bd_prod, rx_cq_prod, rx_sge_prod);
10097 }
10098 
10099 static void
10100 bxe_init_rx_rings(struct bxe_softc *sc)
10101 {
10102     struct bxe_fastpath *fp;
10103     int i;
10104 
10105     for (i = 0; i < sc->num_queues; i++) {
10106         fp = &sc->fp[i];
10107 
10108         fp->rx_bd_cons = 0;
10109 
10110         /*
10111          * Activate the BD ring...
10112          * Warning, this will generate an interrupt (to the TSTORM)
10113          * so this can only be done after the chip is initialized
10114          */
10115         bxe_update_rx_prod(sc, fp,
10116                            fp->rx_bd_prod,
10117                            fp->rx_cq_prod,
10118                            fp->rx_sge_prod);
10119 
10120         if (i != 0) {
10121             continue;
10122         }
10123 
10124         if (CHIP_IS_E1(sc)) {
10125             REG_WR(sc,
10126                    (BAR_USTRORM_INTMEM +
10127                     USTORM_MEM_WORKAROUND_ADDRESS_OFFSET(SC_FUNC(sc))),
10128                    U64_LO(fp->rcq_dma.paddr));
10129             REG_WR(sc,
10130                    (BAR_USTRORM_INTMEM +
10131                     USTORM_MEM_WORKAROUND_ADDRESS_OFFSET(SC_FUNC(sc)) + 4),
10132                    U64_HI(fp->rcq_dma.paddr));
10133         }
10134     }
10135 }
10136 
10137 static void
10138 bxe_init_tx_ring_one(struct bxe_fastpath *fp)
10139 {
10140     SET_FLAG(fp->tx_db.data.header.header, DOORBELL_HDR_DB_TYPE, 1);
10141     fp->tx_db.data.zero_fill1 = 0;
10142     fp->tx_db.data.prod = 0;
10143 
10144     fp->tx_pkt_prod = 0;
10145     fp->tx_pkt_cons = 0;
10146     fp->tx_bd_prod = 0;
10147     fp->tx_bd_cons = 0;
10148     fp->eth_q_stats.tx_pkts = 0;
10149 }
10150 
10151 static inline void
10152 bxe_init_tx_rings(struct bxe_softc *sc)
10153 {
10154     int i;
10155 
10156     for (i = 0; i < sc->num_queues; i++) {
10157 #if 0
10158         uint8_t cos;
10159         for (cos = 0; cos < sc->max_cos; cos++) {
10160             bxe_init_tx_ring_one(&sc->fp[i].txdata[cos]);
10161         }
10162 #else
10163         bxe_init_tx_ring_one(&sc->fp[i]);
10164 #endif
10165     }
10166 }
10167 
10168 static void
10169 bxe_init_def_sb(struct bxe_softc *sc)
10170 {
10171     struct host_sp_status_block *def_sb = sc->def_sb;
10172     bus_addr_t mapping = sc->def_sb_dma.paddr;
10173     int igu_sp_sb_index;
10174     int igu_seg_id;
10175     int port = SC_PORT(sc);
10176     int func = SC_FUNC(sc);
10177     int reg_offset, reg_offset_en5;
10178     uint64_t section;
10179     int index, sindex;
10180     struct hc_sp_status_block_data sp_sb_data;
10181 
10182     memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data));
10183 
10184     if (CHIP_INT_MODE_IS_BC(sc)) {
10185         igu_sp_sb_index = DEF_SB_IGU_ID;
10186         igu_seg_id = HC_SEG_ACCESS_DEF;
10187     } else {
10188         igu_sp_sb_index = sc->igu_dsb_id;
10189         igu_seg_id = IGU_SEG_ACCESS_DEF;
10190     }
10191 
10192     /* attentions */
10193     section = ((uint64_t)mapping +
10194                offsetof(struct host_sp_status_block, atten_status_block));
10195     def_sb->atten_status_block.status_block_id = igu_sp_sb_index;
10196     sc->attn_state = 0;
10197 
10198     reg_offset = (port) ?
10199                      MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
10200                      MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0;
10201     reg_offset_en5 = (port) ?
10202                          MISC_REG_AEU_ENABLE5_FUNC_1_OUT_0 :
10203                          MISC_REG_AEU_ENABLE5_FUNC_0_OUT_0;
10204 
10205     for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) {
10206         /* take care of sig[0]..sig[4] */
10207         for (sindex = 0; sindex < 4; sindex++) {
10208             sc->attn_group[index].sig[sindex] =
10209                 REG_RD(sc, (reg_offset + (sindex * 0x4) + (0x10 * index)));
10210         }
10211 
10212         if (!CHIP_IS_E1x(sc)) {
10213             /*
10214              * enable5 is separate from the rest of the registers,
10215              * and the address skip is 4 and not 16 between the
10216              * different groups
10217              */
10218             sc->attn_group[index].sig[4] =
10219                 REG_RD(sc, (reg_offset_en5 + (0x4 * index)));
10220         } else {
10221             sc->attn_group[index].sig[4] = 0;
10222         }
10223     }
10224 
10225     if (sc->devinfo.int_block == INT_BLOCK_HC) {
10226         reg_offset = (port) ?
10227                          HC_REG_ATTN_MSG1_ADDR_L :
10228                          HC_REG_ATTN_MSG0_ADDR_L;
10229         REG_WR(sc, reg_offset, U64_LO(section));
10230         REG_WR(sc, (reg_offset + 4), U64_HI(section));
10231     } else if (!CHIP_IS_E1x(sc)) {
10232         REG_WR(sc, IGU_REG_ATTN_MSG_ADDR_L, U64_LO(section));
10233         REG_WR(sc, IGU_REG_ATTN_MSG_ADDR_H, U64_HI(section));
10234     }
10235 
10236     section = ((uint64_t)mapping +
10237                offsetof(struct host_sp_status_block, sp_sb));
10238 
10239     bxe_zero_sp_sb(sc);
10240 
10241     /* PCI guarantees endianity of regpair */
10242     sp_sb_data.state           = SB_ENABLED;
10243     sp_sb_data.host_sb_addr.lo = U64_LO(section);
10244     sp_sb_data.host_sb_addr.hi = U64_HI(section);
10245     sp_sb_data.igu_sb_id       = igu_sp_sb_index;
10246     sp_sb_data.igu_seg_id      = igu_seg_id;
10247     sp_sb_data.p_func.pf_id    = func;
10248     sp_sb_data.p_func.vnic_id  = SC_VN(sc);
10249     sp_sb_data.p_func.vf_id    = 0xff;
10250 
10251     bxe_wr_sp_sb_data(sc, &sp_sb_data);
10252 
10253     bxe_ack_sb(sc, sc->igu_dsb_id, USTORM_ID, 0, IGU_INT_ENABLE, 0);
10254 }
10255 
10256 static void
10257 bxe_init_sp_ring(struct bxe_softc *sc)
10258 {
10259     atomic_store_rel_long(&sc->cq_spq_left, MAX_SPQ_PENDING);
10260     sc->spq_prod_idx = 0;
10261     sc->dsb_sp_prod = &sc->def_sb->sp_sb.index_values[HC_SP_INDEX_ETH_DEF_CONS];
10262     sc->spq_prod_bd = sc->spq;
10263     sc->spq_last_bd = (sc->spq_prod_bd + MAX_SP_DESC_CNT);
10264 }
10265 
10266 static void
10267 bxe_init_eq_ring(struct bxe_softc *sc)
10268 {
10269     union event_ring_elem *elem;
10270     int i;
10271 
10272     for (i = 1; i <= NUM_EQ_PAGES; i++) {
10273         elem = &sc->eq[EQ_DESC_CNT_PAGE * i - 1];
10274 
10275         elem->next_page.addr.hi = htole32(U64_HI(sc->eq_dma.paddr +
10276                                                  BCM_PAGE_SIZE *
10277                                                  (i % NUM_EQ_PAGES)));
10278         elem->next_page.addr.lo = htole32(U64_LO(sc->eq_dma.paddr +
10279                                                  BCM_PAGE_SIZE *
10280                                                  (i % NUM_EQ_PAGES)));
10281     }
10282 
10283     sc->eq_cons    = 0;
10284     sc->eq_prod    = NUM_EQ_DESC;
10285     sc->eq_cons_sb = &sc->def_sb->sp_sb.index_values[HC_SP_INDEX_EQ_CONS];
10286 
10287     atomic_store_rel_long(&sc->eq_spq_left,
10288                           (min((MAX_SP_DESC_CNT - MAX_SPQ_PENDING),
10289                                NUM_EQ_DESC) - 1));
10290 }
10291 
10292 static void
10293 bxe_init_internal_common(struct bxe_softc *sc)
10294 {
10295     int i;
10296 
10297     if (IS_MF_SI(sc)) {
10298         /*
10299          * In switch independent mode, the TSTORM needs to accept
10300          * packets that failed classification, since approximate match
10301          * mac addresses aren't written to NIG LLH.
10302          */
10303         REG_WR8(sc,
10304                 (BAR_TSTRORM_INTMEM + TSTORM_ACCEPT_CLASSIFY_FAILED_OFFSET),
10305                 2);
10306     } else if (!CHIP_IS_E1(sc)) { /* 57710 doesn't support MF */
10307         REG_WR8(sc,
10308                 (BAR_TSTRORM_INTMEM + TSTORM_ACCEPT_CLASSIFY_FAILED_OFFSET),
10309                 0);
10310     }
10311 
10312     /*
10313      * Zero this manually as its initialization is currently missing
10314      * in the initTool.
10315      */
10316     for (i = 0; i < (USTORM_AGG_DATA_SIZE >> 2); i++) {
10317         REG_WR(sc,
10318                (BAR_USTRORM_INTMEM + USTORM_AGG_DATA_OFFSET + (i * 4)),
10319                0);
10320     }
10321 
10322     if (!CHIP_IS_E1x(sc)) {
10323         REG_WR8(sc, (BAR_CSTRORM_INTMEM + CSTORM_IGU_MODE_OFFSET),
10324                 CHIP_INT_MODE_IS_BC(sc) ? HC_IGU_BC_MODE : HC_IGU_NBC_MODE);
10325     }
10326 }
10327 
10328 static void
10329 bxe_init_internal(struct bxe_softc *sc,
10330                   uint32_t         load_code)
10331 {
10332     switch (load_code) {
10333     case FW_MSG_CODE_DRV_LOAD_COMMON:
10334     case FW_MSG_CODE_DRV_LOAD_COMMON_CHIP:
10335         bxe_init_internal_common(sc);
10336         /* no break */
10337 
10338     case FW_MSG_CODE_DRV_LOAD_PORT:
10339         /* nothing to do */
10340         /* no break */
10341 
10342     case FW_MSG_CODE_DRV_LOAD_FUNCTION:
10343         /* internal memory per function is initialized inside bxe_pf_init */
10344         break;
10345 
10346     default:
10347         BLOGE(sc, "Unknown load_code (0x%x) from MCP\n", load_code);
10348         break;
10349     }
10350 }
10351 
10352 static void
10353 storm_memset_func_cfg(struct bxe_softc                         *sc,
10354                       struct tstorm_eth_function_common_config *tcfg,
10355                       uint16_t                                  abs_fid)
10356 {
10357     uint32_t addr;
10358     size_t size;
10359 
10360     addr = (BAR_TSTRORM_INTMEM +
10361             TSTORM_FUNCTION_COMMON_CONFIG_OFFSET(abs_fid));
10362     size = sizeof(struct tstorm_eth_function_common_config);
10363     ecore_storm_memset_struct(sc, addr, size, (uint32_t *)tcfg);
10364 }
10365 
10366 static void
10367 bxe_func_init(struct bxe_softc            *sc,
10368               struct bxe_func_init_params *p)
10369 {
10370     struct tstorm_eth_function_common_config tcfg = { 0 };
10371 
10372     if (CHIP_IS_E1x(sc)) {
10373         storm_memset_func_cfg(sc, &tcfg, p->func_id);
10374     }
10375 
10376     /* Enable the function in the FW */
10377     storm_memset_vf_to_pf(sc, p->func_id, p->pf_id);
10378     storm_memset_func_en(sc, p->func_id, 1);
10379 
10380     /* spq */
10381     if (p->func_flgs & FUNC_FLG_SPQ) {
10382         storm_memset_spq_addr(sc, p->spq_map, p->func_id);
10383         REG_WR(sc,
10384                (XSEM_REG_FAST_MEMORY + XSTORM_SPQ_PROD_OFFSET(p->func_id)),
10385                p->spq_prod);
10386     }
10387 }
10388 
10389 /*
10390  * Calculates the sum of vn_min_rates.
10391  * It's needed for further normalizing of the min_rates.
10392  * Returns:
10393  *   sum of vn_min_rates.
10394  *     or
10395  *   0 - if all the min_rates are 0.
10396  * In the later case fainess algorithm should be deactivated.
10397  * If all min rates are not zero then those that are zeroes will be set to 1.
10398  */
10399 static void
10400 bxe_calc_vn_min(struct bxe_softc       *sc,
10401                 struct cmng_init_input *input)
10402 {
10403     uint32_t vn_cfg;
10404     uint32_t vn_min_rate;
10405     int all_zero = 1;
10406     int vn;
10407 
10408     for (vn = VN_0; vn < SC_MAX_VN_NUM(sc); vn++) {
10409         vn_cfg = sc->devinfo.mf_info.mf_config[vn];
10410         vn_min_rate = (((vn_cfg & FUNC_MF_CFG_MIN_BW_MASK) >>
10411                         FUNC_MF_CFG_MIN_BW_SHIFT) * 100);
10412 
10413         if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE) {
10414             /* skip hidden VNs */
10415             vn_min_rate = 0;
10416         } else if (!vn_min_rate) {
10417             /* If min rate is zero - set it to 100 */
10418             vn_min_rate = DEF_MIN_RATE;
10419         } else {
10420             all_zero = 0;
10421         }
10422 
10423         input->vnic_min_rate[vn] = vn_min_rate;
10424     }
10425 
10426     /* if ETS or all min rates are zeros - disable fairness */
10427     if (BXE_IS_ETS_ENABLED(sc)) {
10428         input->flags.cmng_enables &= ~CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
10429         BLOGD(sc, DBG_LOAD, "Fairness disabled (ETS)\n");
10430     } else if (all_zero) {
10431         input->flags.cmng_enables &= ~CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
10432         BLOGD(sc, DBG_LOAD,
10433               "Fariness disabled (all MIN values are zeroes)\n");
10434     } else {
10435         input->flags.cmng_enables |= CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
10436     }
10437 }
10438 
10439 static inline uint16_t
10440 bxe_extract_max_cfg(struct bxe_softc *sc,
10441                     uint32_t         mf_cfg)
10442 {
10443     uint16_t max_cfg = ((mf_cfg & FUNC_MF_CFG_MAX_BW_MASK) >>
10444                         FUNC_MF_CFG_MAX_BW_SHIFT);
10445 
10446     if (!max_cfg) {
10447         BLOGD(sc, DBG_LOAD, "Max BW configured to 0 - using 100 instead\n");
10448         max_cfg = 100;
10449     }
10450 
10451     return (max_cfg);
10452 }
10453 
10454 static void
10455 bxe_calc_vn_max(struct bxe_softc       *sc,
10456                 int                    vn,
10457                 struct cmng_init_input *input)
10458 {
10459     uint16_t vn_max_rate;
10460     uint32_t vn_cfg = sc->devinfo.mf_info.mf_config[vn];
10461     uint32_t max_cfg;
10462 
10463     if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE) {
10464         vn_max_rate = 0;
10465     } else {
10466         max_cfg = bxe_extract_max_cfg(sc, vn_cfg);
10467 
10468         if (IS_MF_SI(sc)) {
10469             /* max_cfg in percents of linkspeed */
10470             vn_max_rate = ((sc->link_vars.line_speed * max_cfg) / 100);
10471         } else { /* SD modes */
10472             /* max_cfg is absolute in 100Mb units */
10473             vn_max_rate = (max_cfg * 100);
10474         }
10475     }
10476 
10477     BLOGD(sc, DBG_LOAD, "vn %d: vn_max_rate %d\n", vn, vn_max_rate);
10478 
10479     input->vnic_max_rate[vn] = vn_max_rate;
10480 }
10481 
10482 static void
10483 bxe_cmng_fns_init(struct bxe_softc *sc,
10484                   uint8_t          read_cfg,
10485                   uint8_t          cmng_type)
10486 {
10487     struct cmng_init_input input;
10488     int vn;
10489 
10490     memset(&input, 0, sizeof(struct cmng_init_input));
10491 
10492     input.port_rate = sc->link_vars.line_speed;
10493 
10494     if (cmng_type == CMNG_FNS_MINMAX) {
10495         /* read mf conf from shmem */
10496         if (read_cfg) {
10497             bxe_read_mf_cfg(sc);
10498         }
10499 
10500         /* get VN min rate and enable fairness if not 0 */
10501         bxe_calc_vn_min(sc, &input);
10502 
10503         /* get VN max rate */
10504         if (sc->port.pmf) {
10505             for (vn = VN_0; vn < SC_MAX_VN_NUM(sc); vn++) {
10506                 bxe_calc_vn_max(sc, vn, &input);
10507             }
10508         }
10509 
10510         /* always enable rate shaping and fairness */
10511         input.flags.cmng_enables |= CMNG_FLAGS_PER_PORT_RATE_SHAPING_VN;
10512 
10513         ecore_init_cmng(&input, &sc->cmng);
10514         return;
10515     }
10516 
10517     /* rate shaping and fairness are disabled */
10518     BLOGD(sc, DBG_LOAD, "rate shaping and fairness have been disabled\n");
10519 }
10520 
10521 static int
10522 bxe_get_cmng_fns_mode(struct bxe_softc *sc)
10523 {
10524     if (CHIP_REV_IS_SLOW(sc)) {
10525         return (CMNG_FNS_NONE);
10526     }
10527 
10528     if (IS_MF(sc)) {
10529         return (CMNG_FNS_MINMAX);
10530     }
10531 
10532     return (CMNG_FNS_NONE);
10533 }
10534 
10535 static void
10536 storm_memset_cmng(struct bxe_softc *sc,
10537                   struct cmng_init *cmng,
10538                   uint8_t          port)
10539 {
10540     int vn;
10541     int func;
10542     uint32_t addr;
10543     size_t size;
10544 
10545     addr = (BAR_XSTRORM_INTMEM +
10546             XSTORM_CMNG_PER_PORT_VARS_OFFSET(port));
10547     size = sizeof(struct cmng_struct_per_port);
10548     ecore_storm_memset_struct(sc, addr, size, (uint32_t *)&cmng->port);
10549 
10550     for (vn = VN_0; vn < SC_MAX_VN_NUM(sc); vn++) {
10551         func = func_by_vn(sc, vn);
10552 
10553         addr = (BAR_XSTRORM_INTMEM +
10554                 XSTORM_RATE_SHAPING_PER_VN_VARS_OFFSET(func));
10555         size = sizeof(struct rate_shaping_vars_per_vn);
10556         ecore_storm_memset_struct(sc, addr, size,
10557                                   (uint32_t *)&cmng->vnic.vnic_max_rate[vn]);
10558 
10559         addr = (BAR_XSTRORM_INTMEM +
10560                 XSTORM_FAIRNESS_PER_VN_VARS_OFFSET(func));
10561         size = sizeof(struct fairness_vars_per_vn);
10562         ecore_storm_memset_struct(sc, addr, size,
10563                                   (uint32_t *)&cmng->vnic.vnic_min_rate[vn]);
10564     }
10565 }
10566 
10567 static void
10568 bxe_pf_init(struct bxe_softc *sc)
10569 {
10570     struct bxe_func_init_params func_init = { 0 };
10571     struct event_ring_data eq_data = { { 0 } };
10572     uint16_t flags;
10573 
10574     if (!CHIP_IS_E1x(sc)) {
10575         /* reset IGU PF statistics: MSIX + ATTN */
10576         /* PF */
10577         REG_WR(sc,
10578                (IGU_REG_STATISTIC_NUM_MESSAGE_SENT +
10579                 (BXE_IGU_STAS_MSG_VF_CNT * 4) +
10580                 ((CHIP_IS_MODE_4_PORT(sc) ? SC_FUNC(sc) : SC_VN(sc)) * 4)),
10581                0);
10582         /* ATTN */
10583         REG_WR(sc,
10584                (IGU_REG_STATISTIC_NUM_MESSAGE_SENT +
10585                 (BXE_IGU_STAS_MSG_VF_CNT * 4) +
10586                 (BXE_IGU_STAS_MSG_PF_CNT * 4) +
10587                 ((CHIP_IS_MODE_4_PORT(sc) ? SC_FUNC(sc) : SC_VN(sc)) * 4)),
10588                0);
10589     }
10590 
10591     /* function setup flags */
10592     flags = (FUNC_FLG_STATS | FUNC_FLG_LEADING | FUNC_FLG_SPQ);
10593 
10594     /*
10595      * This flag is relevant for E1x only.
10596      * E2 doesn't have a TPA configuration in a function level.
10597      */
10598     flags |= (if_getcapenable(sc->ifp) & IFCAP_LRO) ? FUNC_FLG_TPA : 0;
10599 
10600     func_init.func_flgs = flags;
10601     func_init.pf_id     = SC_FUNC(sc);
10602     func_init.func_id   = SC_FUNC(sc);
10603     func_init.spq_map   = sc->spq_dma.paddr;
10604     func_init.spq_prod  = sc->spq_prod_idx;
10605 
10606     bxe_func_init(sc, &func_init);
10607 
10608     memset(&sc->cmng, 0, sizeof(struct cmng_struct_per_port));
10609 
10610     /*
10611      * Congestion management values depend on the link rate.
10612      * There is no active link so initial link rate is set to 10Gbps.
10613      * When the link comes up the congestion management values are
10614      * re-calculated according to the actual link rate.
10615      */
10616     sc->link_vars.line_speed = SPEED_10000;
10617     bxe_cmng_fns_init(sc, TRUE, bxe_get_cmng_fns_mode(sc));
10618 
10619     /* Only the PMF sets the HW */
10620     if (sc->port.pmf) {
10621         storm_memset_cmng(sc, &sc->cmng, SC_PORT(sc));
10622     }
10623 
10624     /* init Event Queue - PCI bus guarantees correct endainity */
10625     eq_data.base_addr.hi = U64_HI(sc->eq_dma.paddr);
10626     eq_data.base_addr.lo = U64_LO(sc->eq_dma.paddr);
10627     eq_data.producer     = sc->eq_prod;
10628     eq_data.index_id     = HC_SP_INDEX_EQ_CONS;
10629     eq_data.sb_id        = DEF_SB_ID;
10630     storm_memset_eq_data(sc, &eq_data, SC_FUNC(sc));
10631 }
10632 
10633 static void
10634 bxe_hc_int_enable(struct bxe_softc *sc)
10635 {
10636     int port = SC_PORT(sc);
10637     uint32_t addr = (port) ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0;
10638     uint32_t val = REG_RD(sc, addr);
10639     uint8_t msix = (sc->interrupt_mode == INTR_MODE_MSIX) ? TRUE : FALSE;
10640     uint8_t single_msix = ((sc->interrupt_mode == INTR_MODE_MSIX) &&
10641                            (sc->intr_count == 1)) ? TRUE : FALSE;
10642     uint8_t msi = (sc->interrupt_mode == INTR_MODE_MSI) ? TRUE : FALSE;
10643 
10644     if (msix) {
10645         val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
10646                  HC_CONFIG_0_REG_INT_LINE_EN_0);
10647         val |= (HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
10648                 HC_CONFIG_0_REG_ATTN_BIT_EN_0);
10649         if (single_msix) {
10650             val |= HC_CONFIG_0_REG_SINGLE_ISR_EN_0;
10651         }
10652     } else if (msi) {
10653         val &= ~HC_CONFIG_0_REG_INT_LINE_EN_0;
10654         val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
10655                 HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
10656                 HC_CONFIG_0_REG_ATTN_BIT_EN_0);
10657     } else {
10658         val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
10659                 HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
10660                 HC_CONFIG_0_REG_INT_LINE_EN_0 |
10661                 HC_CONFIG_0_REG_ATTN_BIT_EN_0);
10662 
10663         if (!CHIP_IS_E1(sc)) {
10664             BLOGD(sc, DBG_INTR, "write %x to HC %d (addr 0x%x)\n",
10665                   val, port, addr);
10666 
10667             REG_WR(sc, addr, val);
10668 
10669             val &= ~HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0;
10670         }
10671     }
10672 
10673     if (CHIP_IS_E1(sc)) {
10674         REG_WR(sc, (HC_REG_INT_MASK + port*4), 0x1FFFF);
10675     }
10676 
10677     BLOGD(sc, DBG_INTR, "write %x to HC %d (addr 0x%x) mode %s\n",
10678           val, port, addr, ((msix) ? "MSI-X" : ((msi) ? "MSI" : "INTx")));
10679 
10680     REG_WR(sc, addr, val);
10681 
10682     /* ensure that HC_CONFIG is written before leading/trailing edge config */
10683     mb();
10684 
10685     if (!CHIP_IS_E1(sc)) {
10686         /* init leading/trailing edge */
10687         if (IS_MF(sc)) {
10688             val = (0xee0f | (1 << (SC_VN(sc) + 4)));
10689             if (sc->port.pmf) {
10690                 /* enable nig and gpio3 attention */
10691                 val |= 0x1100;
10692             }
10693         } else {
10694             val = 0xffff;
10695         }
10696 
10697         REG_WR(sc, (HC_REG_TRAILING_EDGE_0 + port*8), val);
10698         REG_WR(sc, (HC_REG_LEADING_EDGE_0 + port*8), val);
10699     }
10700 
10701     /* make sure that interrupts are indeed enabled from here on */
10702     mb();
10703 }
10704 
10705 static void
10706 bxe_igu_int_enable(struct bxe_softc *sc)
10707 {
10708     uint32_t val;
10709     uint8_t msix = (sc->interrupt_mode == INTR_MODE_MSIX) ? TRUE : FALSE;
10710     uint8_t single_msix = ((sc->interrupt_mode == INTR_MODE_MSIX) &&
10711                            (sc->intr_count == 1)) ? TRUE : FALSE;
10712     uint8_t msi = (sc->interrupt_mode == INTR_MODE_MSI) ? TRUE : FALSE;
10713 
10714     val = REG_RD(sc, IGU_REG_PF_CONFIGURATION);
10715 
10716     if (msix) {
10717         val &= ~(IGU_PF_CONF_INT_LINE_EN |
10718                  IGU_PF_CONF_SINGLE_ISR_EN);
10719         val |= (IGU_PF_CONF_MSI_MSIX_EN |
10720                 IGU_PF_CONF_ATTN_BIT_EN);
10721         if (single_msix) {
10722             val |= IGU_PF_CONF_SINGLE_ISR_EN;
10723         }
10724     } else if (msi) {
10725         val &= ~IGU_PF_CONF_INT_LINE_EN;
10726         val |= (IGU_PF_CONF_MSI_MSIX_EN |
10727                 IGU_PF_CONF_ATTN_BIT_EN |
10728                 IGU_PF_CONF_SINGLE_ISR_EN);
10729     } else {
10730         val &= ~IGU_PF_CONF_MSI_MSIX_EN;
10731         val |= (IGU_PF_CONF_INT_LINE_EN |
10732                 IGU_PF_CONF_ATTN_BIT_EN |
10733                 IGU_PF_CONF_SINGLE_ISR_EN);
10734     }
10735 
10736     /* clean previous status - need to configure igu prior to ack*/
10737     if ((!msix) || single_msix) {
10738         REG_WR(sc, IGU_REG_PF_CONFIGURATION, val);
10739         bxe_ack_int(sc);
10740     }
10741 
10742     val |= IGU_PF_CONF_FUNC_EN;
10743 
10744     BLOGD(sc, DBG_INTR, "write 0x%x to IGU mode %s\n",
10745           val, ((msix) ? "MSI-X" : ((msi) ? "MSI" : "INTx")));
10746 
10747     REG_WR(sc, IGU_REG_PF_CONFIGURATION, val);
10748 
10749     mb();
10750 
10751     /* init leading/trailing edge */
10752     if (IS_MF(sc)) {
10753         val = (0xee0f | (1 << (SC_VN(sc) + 4)));
10754         if (sc->port.pmf) {
10755             /* enable nig and gpio3 attention */
10756             val |= 0x1100;
10757         }
10758     } else {
10759         val = 0xffff;
10760     }
10761 
10762     REG_WR(sc, IGU_REG_TRAILING_EDGE_LATCH, val);
10763     REG_WR(sc, IGU_REG_LEADING_EDGE_LATCH, val);
10764 
10765     /* make sure that interrupts are indeed enabled from here on */
10766     mb();
10767 }
10768 
10769 static void
10770 bxe_int_enable(struct bxe_softc *sc)
10771 {
10772     if (sc->devinfo.int_block == INT_BLOCK_HC) {
10773         bxe_hc_int_enable(sc);
10774     } else {
10775         bxe_igu_int_enable(sc);
10776     }
10777 }
10778 
10779 static void
10780 bxe_hc_int_disable(struct bxe_softc *sc)
10781 {
10782     int port = SC_PORT(sc);
10783     uint32_t addr = (port) ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0;
10784     uint32_t val = REG_RD(sc, addr);
10785 
10786     /*
10787      * In E1 we must use only PCI configuration space to disable MSI/MSIX
10788      * capablility. It's forbidden to disable IGU_PF_CONF_MSI_MSIX_EN in HC
10789      * block
10790      */
10791     if (CHIP_IS_E1(sc)) {
10792         /*
10793          * Since IGU_PF_CONF_MSI_MSIX_EN still always on use mask register
10794          * to prevent from HC sending interrupts after we exit the function
10795          */
10796         REG_WR(sc, (HC_REG_INT_MASK + port*4), 0);
10797 
10798         val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
10799                  HC_CONFIG_0_REG_INT_LINE_EN_0 |
10800                  HC_CONFIG_0_REG_ATTN_BIT_EN_0);
10801     } else {
10802         val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
10803                  HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
10804                  HC_CONFIG_0_REG_INT_LINE_EN_0 |
10805                  HC_CONFIG_0_REG_ATTN_BIT_EN_0);
10806     }
10807 
10808     BLOGD(sc, DBG_INTR, "write %x to HC %d (addr 0x%x)\n", val, port, addr);
10809 
10810     /* flush all outstanding writes */
10811     mb();
10812 
10813     REG_WR(sc, addr, val);
10814     if (REG_RD(sc, addr) != val) {
10815         BLOGE(sc, "proper val not read from HC IGU!\n");
10816     }
10817 }
10818 
10819 static void
10820 bxe_igu_int_disable(struct bxe_softc *sc)
10821 {
10822     uint32_t val = REG_RD(sc, IGU_REG_PF_CONFIGURATION);
10823 
10824     val &= ~(IGU_PF_CONF_MSI_MSIX_EN |
10825              IGU_PF_CONF_INT_LINE_EN |
10826              IGU_PF_CONF_ATTN_BIT_EN);
10827 
10828     BLOGD(sc, DBG_INTR, "write %x to IGU\n", val);
10829 
10830     /* flush all outstanding writes */
10831     mb();
10832 
10833     REG_WR(sc, IGU_REG_PF_CONFIGURATION, val);
10834     if (REG_RD(sc, IGU_REG_PF_CONFIGURATION) != val) {
10835         BLOGE(sc, "proper val not read from IGU!\n");
10836     }
10837 }
10838 
10839 static void
10840 bxe_int_disable(struct bxe_softc *sc)
10841 {
10842     if (sc->devinfo.int_block == INT_BLOCK_HC) {
10843         bxe_hc_int_disable(sc);
10844     } else {
10845         bxe_igu_int_disable(sc);
10846     }
10847 }
10848 
10849 static void
10850 bxe_nic_init(struct bxe_softc *sc,
10851              int              load_code)
10852 {
10853     int i;
10854 
10855     for (i = 0; i < sc->num_queues; i++) {
10856         bxe_init_eth_fp(sc, i);
10857     }
10858 
10859     rmb(); /* ensure status block indices were read */
10860 
10861     bxe_init_rx_rings(sc);
10862     bxe_init_tx_rings(sc);
10863 
10864     if (IS_VF(sc)) {
10865         return;
10866     }
10867 
10868     /* initialize MOD_ABS interrupts */
10869     elink_init_mod_abs_int(sc, &sc->link_vars,
10870                            sc->devinfo.chip_id,
10871                            sc->devinfo.shmem_base,
10872                            sc->devinfo.shmem2_base,
10873                            SC_PORT(sc));
10874 
10875     bxe_init_def_sb(sc);
10876     bxe_update_dsb_idx(sc);
10877     bxe_init_sp_ring(sc);
10878     bxe_init_eq_ring(sc);
10879     bxe_init_internal(sc, load_code);
10880     bxe_pf_init(sc);
10881     bxe_stats_init(sc);
10882 
10883     /* flush all before enabling interrupts */
10884     mb();
10885 
10886     bxe_int_enable(sc);
10887 
10888     /* check for SPIO5 */
10889     bxe_attn_int_deasserted0(sc,
10890                              REG_RD(sc,
10891                                     (MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 +
10892                                      SC_PORT(sc)*4)) &
10893                              AEU_INPUTS_ATTN_BITS_SPIO5);
10894 }
10895 
10896 static inline void
10897 bxe_init_objs(struct bxe_softc *sc)
10898 {
10899     /* mcast rules must be added to tx if tx switching is enabled */
10900     ecore_obj_type o_type =
10901         (sc->flags & BXE_TX_SWITCHING) ? ECORE_OBJ_TYPE_RX_TX :
10902                                          ECORE_OBJ_TYPE_RX;
10903 
10904     /* RX_MODE controlling object */
10905     ecore_init_rx_mode_obj(sc, &sc->rx_mode_obj);
10906 
10907     /* multicast configuration controlling object */
10908     ecore_init_mcast_obj(sc,
10909                          &sc->mcast_obj,
10910                          sc->fp[0].cl_id,
10911                          sc->fp[0].index,
10912                          SC_FUNC(sc),
10913                          SC_FUNC(sc),
10914                          BXE_SP(sc, mcast_rdata),
10915                          BXE_SP_MAPPING(sc, mcast_rdata),
10916                          ECORE_FILTER_MCAST_PENDING,
10917                          &sc->sp_state,
10918                          o_type);
10919 
10920     /* Setup CAM credit pools */
10921     ecore_init_mac_credit_pool(sc,
10922                                &sc->macs_pool,
10923                                SC_FUNC(sc),
10924                                CHIP_IS_E1x(sc) ? VNICS_PER_PORT(sc) :
10925                                                  VNICS_PER_PATH(sc));
10926 
10927     ecore_init_vlan_credit_pool(sc,
10928                                 &sc->vlans_pool,
10929                                 SC_ABS_FUNC(sc) >> 1,
10930                                 CHIP_IS_E1x(sc) ? VNICS_PER_PORT(sc) :
10931                                                   VNICS_PER_PATH(sc));
10932 
10933     /* RSS configuration object */
10934     ecore_init_rss_config_obj(sc,
10935                               &sc->rss_conf_obj,
10936                               sc->fp[0].cl_id,
10937                               sc->fp[0].index,
10938                               SC_FUNC(sc),
10939                               SC_FUNC(sc),
10940                               BXE_SP(sc, rss_rdata),
10941                               BXE_SP_MAPPING(sc, rss_rdata),
10942                               ECORE_FILTER_RSS_CONF_PENDING,
10943                               &sc->sp_state, ECORE_OBJ_TYPE_RX);
10944 }
10945 
10946 /*
10947  * Initialize the function. This must be called before sending CLIENT_SETUP
10948  * for the first client.
10949  */
10950 static inline int
10951 bxe_func_start(struct bxe_softc *sc)
10952 {
10953     struct ecore_func_state_params func_params = { NULL };
10954     struct ecore_func_start_params *start_params = &func_params.params.start;
10955 
10956     /* Prepare parameters for function state transitions */
10957     bit_set(&func_params.ramrod_flags, RAMROD_COMP_WAIT);
10958 
10959     func_params.f_obj = &sc->func_obj;
10960     func_params.cmd = ECORE_F_CMD_START;
10961 
10962     /* Function parameters */
10963     start_params->mf_mode     = sc->devinfo.mf_info.mf_mode;
10964     start_params->sd_vlan_tag = OVLAN(sc);
10965 
10966     if (CHIP_IS_E2(sc) || CHIP_IS_E3(sc)) {
10967         start_params->network_cos_mode = STATIC_COS;
10968     } else { /* CHIP_IS_E1X */
10969         start_params->network_cos_mode = FW_WRR;
10970     }
10971 
10972     start_params->gre_tunnel_mode = 0;
10973     start_params->gre_tunnel_rss  = 0;
10974 
10975     return (ecore_func_state_change(sc, &func_params));
10976 }
10977 
10978 static int
10979 bxe_set_power_state(struct bxe_softc *sc,
10980                     uint8_t          state)
10981 {
10982     uint16_t pmcsr;
10983 
10984     /* If there is no power capability, silently succeed */
10985     if (!(sc->devinfo.pcie_cap_flags & BXE_PM_CAPABLE_FLAG)) {
10986         BLOGW(sc, "No power capability\n");
10987         return (0);
10988     }
10989 
10990     pmcsr = pci_read_config(sc->dev,
10991                             (sc->devinfo.pcie_pm_cap_reg + PCIR_POWER_STATUS),
10992                             2);
10993 
10994     switch (state) {
10995     case PCI_PM_D0:
10996         pci_write_config(sc->dev,
10997                          (sc->devinfo.pcie_pm_cap_reg + PCIR_POWER_STATUS),
10998                          ((pmcsr & ~PCIM_PSTAT_DMASK) | PCIM_PSTAT_PME), 2);
10999 
11000         if (pmcsr & PCIM_PSTAT_DMASK) {
11001             /* delay required during transition out of D3hot */
11002             DELAY(20000);
11003         }
11004 
11005         break;
11006 
11007     case PCI_PM_D3hot:
11008         /* XXX if there are other clients above don't shut down the power */
11009 
11010         /* don't shut down the power for emulation and FPGA */
11011         if (CHIP_REV_IS_SLOW(sc)) {
11012             return (0);
11013         }
11014 
11015         pmcsr &= ~PCIM_PSTAT_DMASK;
11016         pmcsr |= PCIM_PSTAT_D3;
11017 
11018         if (sc->wol) {
11019             pmcsr |= PCIM_PSTAT_PMEENABLE;
11020         }
11021 
11022         pci_write_config(sc->dev,
11023                          (sc->devinfo.pcie_pm_cap_reg + PCIR_POWER_STATUS),
11024                          pmcsr, 4);
11025 
11026         /*
11027          * No more memory access after this point until device is brought back
11028          * to D0 state.
11029          */
11030         break;
11031 
11032     default:
11033         BLOGE(sc, "Can't support PCI power state = %d\n", state);
11034         return (-1);
11035     }
11036 
11037     return (0);
11038 }
11039 
11040 
11041 /* return true if succeeded to acquire the lock */
11042 static uint8_t
11043 bxe_trylock_hw_lock(struct bxe_softc *sc,
11044                     uint32_t         resource)
11045 {
11046     uint32_t lock_status;
11047     uint32_t resource_bit = (1 << resource);
11048     int func = SC_FUNC(sc);
11049     uint32_t hw_lock_control_reg;
11050 
11051     BLOGD(sc, DBG_LOAD, "Trying to take a resource lock 0x%x\n", resource);
11052 
11053     /* Validating that the resource is within range */
11054     if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
11055         BLOGD(sc, DBG_LOAD,
11056               "resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
11057               resource, HW_LOCK_MAX_RESOURCE_VALUE);
11058         return (FALSE);
11059     }
11060 
11061     if (func <= 5) {
11062         hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
11063     } else {
11064         hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
11065     }
11066 
11067     /* try to acquire the lock */
11068     REG_WR(sc, hw_lock_control_reg + 4, resource_bit);
11069     lock_status = REG_RD(sc, hw_lock_control_reg);
11070     if (lock_status & resource_bit) {
11071         return (TRUE);
11072     }
11073 
11074     BLOGE(sc, "Failed to get a resource lock 0x%x\n", resource);
11075 
11076     return (FALSE);
11077 }
11078 
11079 /*
11080  * Get the recovery leader resource id according to the engine this function
11081  * belongs to. Currently only only 2 engines is supported.
11082  */
11083 static int
11084 bxe_get_leader_lock_resource(struct bxe_softc *sc)
11085 {
11086     if (SC_PATH(sc)) {
11087         return (HW_LOCK_RESOURCE_RECOVERY_LEADER_1);
11088     } else {
11089         return (HW_LOCK_RESOURCE_RECOVERY_LEADER_0);
11090     }
11091 }
11092 
11093 /* try to acquire a leader lock for current engine */
11094 static uint8_t
11095 bxe_trylock_leader_lock(struct bxe_softc *sc)
11096 {
11097     return (bxe_trylock_hw_lock(sc, bxe_get_leader_lock_resource(sc)));
11098 }
11099 
11100 static int
11101 bxe_release_leader_lock(struct bxe_softc *sc)
11102 {
11103     return (bxe_release_hw_lock(sc, bxe_get_leader_lock_resource(sc)));
11104 }
11105 
11106 /* close gates #2, #3 and #4 */
11107 static void
11108 bxe_set_234_gates(struct bxe_softc *sc,
11109                   uint8_t          close)
11110 {
11111     uint32_t val;
11112 
11113     /* gates #2 and #4a are closed/opened for "not E1" only */
11114     if (!CHIP_IS_E1(sc)) {
11115         /* #4 */
11116         REG_WR(sc, PXP_REG_HST_DISCARD_DOORBELLS, !!close);
11117         /* #2 */
11118         REG_WR(sc, PXP_REG_HST_DISCARD_INTERNAL_WRITES, !!close);
11119     }
11120 
11121     /* #3 */
11122     if (CHIP_IS_E1x(sc)) {
11123         /* prevent interrupts from HC on both ports */
11124         val = REG_RD(sc, HC_REG_CONFIG_1);
11125         REG_WR(sc, HC_REG_CONFIG_1,
11126                (!close) ? (val | HC_CONFIG_1_REG_BLOCK_DISABLE_1) :
11127                (val & ~(uint32_t)HC_CONFIG_1_REG_BLOCK_DISABLE_1));
11128 
11129         val = REG_RD(sc, HC_REG_CONFIG_0);
11130         REG_WR(sc, HC_REG_CONFIG_0,
11131                (!close) ? (val | HC_CONFIG_0_REG_BLOCK_DISABLE_0) :
11132                (val & ~(uint32_t)HC_CONFIG_0_REG_BLOCK_DISABLE_0));
11133     } else {
11134         /* Prevent incomming interrupts in IGU */
11135         val = REG_RD(sc, IGU_REG_BLOCK_CONFIGURATION);
11136 
11137         REG_WR(sc, IGU_REG_BLOCK_CONFIGURATION,
11138                (!close) ?
11139                (val | IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE) :
11140                (val & ~(uint32_t)IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE));
11141     }
11142 
11143     BLOGD(sc, DBG_LOAD, "%s gates #2, #3 and #4\n",
11144           close ? "closing" : "opening");
11145 
11146     wmb();
11147 }
11148 
11149 /* poll for pending writes bit, it should get cleared in no more than 1s */
11150 static int
11151 bxe_er_poll_igu_vq(struct bxe_softc *sc)
11152 {
11153     uint32_t cnt = 1000;
11154     uint32_t pend_bits = 0;
11155 
11156     do {
11157         pend_bits = REG_RD(sc, IGU_REG_PENDING_BITS_STATUS);
11158 
11159         if (pend_bits == 0) {
11160             break;
11161         }
11162 
11163         DELAY(1000);
11164     } while (--cnt > 0);
11165 
11166     if (cnt == 0) {
11167         BLOGE(sc, "Still pending IGU requests bits=0x%08x!\n", pend_bits);
11168         return (-1);
11169     }
11170 
11171     return (0);
11172 }
11173 
11174 #define SHARED_MF_CLP_MAGIC  0x80000000 /* 'magic' bit */
11175 
11176 static void
11177 bxe_clp_reset_prep(struct bxe_softc *sc,
11178                    uint32_t         *magic_val)
11179 {
11180     /* Do some magic... */
11181     uint32_t val = MFCFG_RD(sc, shared_mf_config.clp_mb);
11182     *magic_val = val & SHARED_MF_CLP_MAGIC;
11183     MFCFG_WR(sc, shared_mf_config.clp_mb, val | SHARED_MF_CLP_MAGIC);
11184 }
11185 
11186 /* restore the value of the 'magic' bit */
11187 static void
11188 bxe_clp_reset_done(struct bxe_softc *sc,
11189                    uint32_t         magic_val)
11190 {
11191     /* Restore the 'magic' bit value... */
11192     uint32_t val = MFCFG_RD(sc, shared_mf_config.clp_mb);
11193     MFCFG_WR(sc, shared_mf_config.clp_mb,
11194               (val & (~SHARED_MF_CLP_MAGIC)) | magic_val);
11195 }
11196 
11197 /* prepare for MCP reset, takes care of CLP configurations */
11198 static void
11199 bxe_reset_mcp_prep(struct bxe_softc *sc,
11200                    uint32_t         *magic_val)
11201 {
11202     uint32_t shmem;
11203     uint32_t validity_offset;
11204 
11205     /* set `magic' bit in order to save MF config */
11206     if (!CHIP_IS_E1(sc)) {
11207         bxe_clp_reset_prep(sc, magic_val);
11208     }
11209 
11210     /* get shmem offset */
11211     shmem = REG_RD(sc, MISC_REG_SHARED_MEM_ADDR);
11212     validity_offset =
11213         offsetof(struct shmem_region, validity_map[SC_PORT(sc)]);
11214 
11215     /* Clear validity map flags */
11216     if (shmem > 0) {
11217         REG_WR(sc, shmem + validity_offset, 0);
11218     }
11219 }
11220 
11221 #define MCP_TIMEOUT      5000   /* 5 seconds (in ms) */
11222 #define MCP_ONE_TIMEOUT  100    /* 100 ms */
11223 
11224 static void
11225 bxe_mcp_wait_one(struct bxe_softc *sc)
11226 {
11227     /* special handling for emulation and FPGA (10 times longer) */
11228     if (CHIP_REV_IS_SLOW(sc)) {
11229         DELAY((MCP_ONE_TIMEOUT*10) * 1000);
11230     } else {
11231         DELAY((MCP_ONE_TIMEOUT) * 1000);
11232     }
11233 }
11234 
11235 /* initialize shmem_base and waits for validity signature to appear */
11236 static int
11237 bxe_init_shmem(struct bxe_softc *sc)
11238 {
11239     int cnt = 0;
11240     uint32_t val = 0;
11241 
11242     do {
11243         sc->devinfo.shmem_base     =
11244         sc->link_params.shmem_base =
11245             REG_RD(sc, MISC_REG_SHARED_MEM_ADDR);
11246 
11247         if (sc->devinfo.shmem_base) {
11248             val = SHMEM_RD(sc, validity_map[SC_PORT(sc)]);
11249             if (val & SHR_MEM_VALIDITY_MB)
11250                 return (0);
11251         }
11252 
11253         bxe_mcp_wait_one(sc);
11254 
11255     } while (cnt++ < (MCP_TIMEOUT / MCP_ONE_TIMEOUT));
11256 
11257     BLOGE(sc, "BAD MCP validity signature\n");
11258 
11259     return (-1);
11260 }
11261 
11262 static int
11263 bxe_reset_mcp_comp(struct bxe_softc *sc,
11264                    uint32_t         magic_val)
11265 {
11266     int rc = bxe_init_shmem(sc);
11267 
11268     /* Restore the `magic' bit value */
11269     if (!CHIP_IS_E1(sc)) {
11270         bxe_clp_reset_done(sc, magic_val);
11271     }
11272 
11273     return (rc);
11274 }
11275 
11276 static void
11277 bxe_pxp_prep(struct bxe_softc *sc)
11278 {
11279     if (!CHIP_IS_E1(sc)) {
11280         REG_WR(sc, PXP2_REG_RD_START_INIT, 0);
11281         REG_WR(sc, PXP2_REG_RQ_RBC_DONE, 0);
11282         wmb();
11283     }
11284 }
11285 
11286 /*
11287  * Reset the whole chip except for:
11288  *      - PCIE core
11289  *      - PCI Glue, PSWHST, PXP/PXP2 RF (all controlled by one reset bit)
11290  *      - IGU
11291  *      - MISC (including AEU)
11292  *      - GRC
11293  *      - RBCN, RBCP
11294  */
11295 static void
11296 bxe_process_kill_chip_reset(struct bxe_softc *sc,
11297                             uint8_t          global)
11298 {
11299     uint32_t not_reset_mask1, reset_mask1, not_reset_mask2, reset_mask2;
11300     uint32_t global_bits2, stay_reset2;
11301 
11302     /*
11303      * Bits that have to be set in reset_mask2 if we want to reset 'global'
11304      * (per chip) blocks.
11305      */
11306     global_bits2 =
11307         MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CPU |
11308         MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CORE;
11309 
11310     /*
11311      * Don't reset the following blocks.
11312      * Important: per port blocks (such as EMAC, BMAC, UMAC) can't be
11313      *            reset, as in 4 port device they might still be owned
11314      *            by the MCP (there is only one leader per path).
11315      */
11316     not_reset_mask1 =
11317         MISC_REGISTERS_RESET_REG_1_RST_HC |
11318         MISC_REGISTERS_RESET_REG_1_RST_PXPV |
11319         MISC_REGISTERS_RESET_REG_1_RST_PXP;
11320 
11321     not_reset_mask2 =
11322         MISC_REGISTERS_RESET_REG_2_RST_PCI_MDIO |
11323         MISC_REGISTERS_RESET_REG_2_RST_EMAC0_HARD_CORE |
11324         MISC_REGISTERS_RESET_REG_2_RST_EMAC1_HARD_CORE |
11325         MISC_REGISTERS_RESET_REG_2_RST_MISC_CORE |
11326         MISC_REGISTERS_RESET_REG_2_RST_RBCN |
11327         MISC_REGISTERS_RESET_REG_2_RST_GRC  |
11328         MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_REG_HARD_CORE |
11329         MISC_REGISTERS_RESET_REG_2_RST_MCP_N_HARD_CORE_RST_B |
11330         MISC_REGISTERS_RESET_REG_2_RST_ATC |
11331         MISC_REGISTERS_RESET_REG_2_PGLC |
11332         MISC_REGISTERS_RESET_REG_2_RST_BMAC0 |
11333         MISC_REGISTERS_RESET_REG_2_RST_BMAC1 |
11334         MISC_REGISTERS_RESET_REG_2_RST_EMAC0 |
11335         MISC_REGISTERS_RESET_REG_2_RST_EMAC1 |
11336         MISC_REGISTERS_RESET_REG_2_UMAC0 |
11337         MISC_REGISTERS_RESET_REG_2_UMAC1;
11338 
11339     /*
11340      * Keep the following blocks in reset:
11341      *  - all xxMACs are handled by the elink code.
11342      */
11343     stay_reset2 =
11344         MISC_REGISTERS_RESET_REG_2_XMAC |
11345         MISC_REGISTERS_RESET_REG_2_XMAC_SOFT;
11346 
11347     /* Full reset masks according to the chip */
11348     reset_mask1 = 0xffffffff;
11349 
11350     if (CHIP_IS_E1(sc))
11351         reset_mask2 = 0xffff;
11352     else if (CHIP_IS_E1H(sc))
11353         reset_mask2 = 0x1ffff;
11354     else if (CHIP_IS_E2(sc))
11355         reset_mask2 = 0xfffff;
11356     else /* CHIP_IS_E3 */
11357         reset_mask2 = 0x3ffffff;
11358 
11359     /* Don't reset global blocks unless we need to */
11360     if (!global)
11361         reset_mask2 &= ~global_bits2;
11362 
11363     /*
11364      * In case of attention in the QM, we need to reset PXP
11365      * (MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR) before QM
11366      * because otherwise QM reset would release 'close the gates' shortly
11367      * before resetting the PXP, then the PSWRQ would send a write
11368      * request to PGLUE. Then when PXP is reset, PGLUE would try to
11369      * read the payload data from PSWWR, but PSWWR would not
11370      * respond. The write queue in PGLUE would stuck, dmae commands
11371      * would not return. Therefore it's important to reset the second
11372      * reset register (containing the
11373      * MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR bit) before the
11374      * first one (containing the MISC_REGISTERS_RESET_REG_1_RST_QM
11375      * bit).
11376      */
11377     REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR,
11378            reset_mask2 & (~not_reset_mask2));
11379 
11380     REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
11381            reset_mask1 & (~not_reset_mask1));
11382 
11383     mb();
11384     wmb();
11385 
11386     REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET,
11387            reset_mask2 & (~stay_reset2));
11388 
11389     mb();
11390     wmb();
11391 
11392     REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, reset_mask1);
11393     wmb();
11394 }
11395 
11396 static int
11397 bxe_process_kill(struct bxe_softc *sc,
11398                  uint8_t          global)
11399 {
11400     int cnt = 1000;
11401     uint32_t val = 0;
11402     uint32_t sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1, pgl_exp_rom2;
11403     uint32_t tags_63_32 = 0;
11404 
11405     /* Empty the Tetris buffer, wait for 1s */
11406     do {
11407         sr_cnt  = REG_RD(sc, PXP2_REG_RD_SR_CNT);
11408         blk_cnt = REG_RD(sc, PXP2_REG_RD_BLK_CNT);
11409         port_is_idle_0 = REG_RD(sc, PXP2_REG_RD_PORT_IS_IDLE_0);
11410         port_is_idle_1 = REG_RD(sc, PXP2_REG_RD_PORT_IS_IDLE_1);
11411         pgl_exp_rom2 = REG_RD(sc, PXP2_REG_PGL_EXP_ROM2);
11412         if (CHIP_IS_E3(sc)) {
11413             tags_63_32 = REG_RD(sc, PGLUE_B_REG_TAGS_63_32);
11414         }
11415 
11416         if ((sr_cnt == 0x7e) && (blk_cnt == 0xa0) &&
11417             ((port_is_idle_0 & 0x1) == 0x1) &&
11418             ((port_is_idle_1 & 0x1) == 0x1) &&
11419             (pgl_exp_rom2 == 0xffffffff) &&
11420             (!CHIP_IS_E3(sc) || (tags_63_32 == 0xffffffff)))
11421             break;
11422         DELAY(1000);
11423     } while (cnt-- > 0);
11424 
11425     if (cnt <= 0) {
11426         BLOGE(sc, "ERROR: Tetris buffer didn't get empty or there "
11427                   "are still outstanding read requests after 1s! "
11428                   "sr_cnt=0x%08x, blk_cnt=0x%08x, port_is_idle_0=0x%08x, "
11429                   "port_is_idle_1=0x%08x, pgl_exp_rom2=0x%08x\n",
11430               sr_cnt, blk_cnt, port_is_idle_0,
11431               port_is_idle_1, pgl_exp_rom2);
11432         return (-1);
11433     }
11434 
11435     mb();
11436 
11437     /* Close gates #2, #3 and #4 */
11438     bxe_set_234_gates(sc, TRUE);
11439 
11440     /* Poll for IGU VQs for 57712 and newer chips */
11441     if (!CHIP_IS_E1x(sc) && bxe_er_poll_igu_vq(sc)) {
11442         return (-1);
11443     }
11444 
11445     /* XXX indicate that "process kill" is in progress to MCP */
11446 
11447     /* clear "unprepared" bit */
11448     REG_WR(sc, MISC_REG_UNPREPARED, 0);
11449     mb();
11450 
11451     /* Make sure all is written to the chip before the reset */
11452     wmb();
11453 
11454     /*
11455      * Wait for 1ms to empty GLUE and PCI-E core queues,
11456      * PSWHST, GRC and PSWRD Tetris buffer.
11457      */
11458     DELAY(1000);
11459 
11460     /* Prepare to chip reset: */
11461     /* MCP */
11462     if (global) {
11463         bxe_reset_mcp_prep(sc, &val);
11464     }
11465 
11466     /* PXP */
11467     bxe_pxp_prep(sc);
11468     mb();
11469 
11470     /* reset the chip */
11471     bxe_process_kill_chip_reset(sc, global);
11472     mb();
11473 
11474     /* Recover after reset: */
11475     /* MCP */
11476     if (global && bxe_reset_mcp_comp(sc, val)) {
11477         return (-1);
11478     }
11479 
11480     /* XXX add resetting the NO_MCP mode DB here */
11481 
11482     /* Open the gates #2, #3 and #4 */
11483     bxe_set_234_gates(sc, FALSE);
11484 
11485     /* XXX
11486      * IGU/AEU preparation bring back the AEU/IGU to a reset state
11487      * re-enable attentions
11488      */
11489 
11490     return (0);
11491 }
11492 
11493 static int
11494 bxe_leader_reset(struct bxe_softc *sc)
11495 {
11496     int rc = 0;
11497     uint8_t global = bxe_reset_is_global(sc);
11498     uint32_t load_code;
11499 
11500     /*
11501      * If not going to reset MCP, load "fake" driver to reset HW while
11502      * driver is owner of the HW.
11503      */
11504     if (!global && !BXE_NOMCP(sc)) {
11505         load_code = bxe_fw_command(sc, DRV_MSG_CODE_LOAD_REQ,
11506                                    DRV_MSG_CODE_LOAD_REQ_WITH_LFA);
11507         if (!load_code) {
11508             BLOGE(sc, "MCP response failure, aborting\n");
11509             rc = -1;
11510             goto exit_leader_reset;
11511         }
11512 
11513         if ((load_code != FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) &&
11514             (load_code != FW_MSG_CODE_DRV_LOAD_COMMON)) {
11515             BLOGE(sc, "MCP unexpected response, aborting\n");
11516             rc = -1;
11517             goto exit_leader_reset2;
11518         }
11519 
11520         load_code = bxe_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0);
11521         if (!load_code) {
11522             BLOGE(sc, "MCP response failure, aborting\n");
11523             rc = -1;
11524             goto exit_leader_reset2;
11525         }
11526     }
11527 
11528     /* try to recover after the failure */
11529     if (bxe_process_kill(sc, global)) {
11530         BLOGE(sc, "Something bad occurred on engine %d!\n", SC_PATH(sc));
11531         rc = -1;
11532         goto exit_leader_reset2;
11533     }
11534 
11535     /*
11536      * Clear the RESET_IN_PROGRESS and RESET_GLOBAL bits and update the driver
11537      * state.
11538      */
11539     bxe_set_reset_done(sc);
11540     if (global) {
11541         bxe_clear_reset_global(sc);
11542     }
11543 
11544 exit_leader_reset2:
11545 
11546     /* unload "fake driver" if it was loaded */
11547     if (!global && !BXE_NOMCP(sc)) {
11548         bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP, 0);
11549         bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_DONE, 0);
11550     }
11551 
11552 exit_leader_reset:
11553 
11554     sc->is_leader = 0;
11555     bxe_release_leader_lock(sc);
11556 
11557     mb();
11558     return (rc);
11559 }
11560 
11561 /*
11562  * prepare INIT transition, parameters configured:
11563  *   - HC configuration
11564  *   - Queue's CDU context
11565  */
11566 static void
11567 bxe_pf_q_prep_init(struct bxe_softc               *sc,
11568                    struct bxe_fastpath            *fp,
11569                    struct ecore_queue_init_params *init_params)
11570 {
11571     uint8_t cos;
11572     int cxt_index, cxt_offset;
11573 
11574     bxe_set_bit(ECORE_Q_FLG_HC, &init_params->rx.flags);
11575     bxe_set_bit(ECORE_Q_FLG_HC, &init_params->tx.flags);
11576 
11577     bxe_set_bit(ECORE_Q_FLG_HC_EN, &init_params->rx.flags);
11578     bxe_set_bit(ECORE_Q_FLG_HC_EN, &init_params->tx.flags);
11579 
11580     /* HC rate */
11581     init_params->rx.hc_rate =
11582         sc->hc_rx_ticks ? (1000000 / sc->hc_rx_ticks) : 0;
11583     init_params->tx.hc_rate =
11584         sc->hc_tx_ticks ? (1000000 / sc->hc_tx_ticks) : 0;
11585 
11586     /* FW SB ID */
11587     init_params->rx.fw_sb_id = init_params->tx.fw_sb_id = fp->fw_sb_id;
11588 
11589     /* CQ index among the SB indices */
11590     init_params->rx.sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS;
11591     init_params->tx.sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS;
11592 
11593     /* set maximum number of COSs supported by this queue */
11594     init_params->max_cos = sc->max_cos;
11595 
11596     BLOGD(sc, DBG_LOAD, "fp %d setting queue params max cos to %d\n",
11597           fp->index, init_params->max_cos);
11598 
11599     /* set the context pointers queue object */
11600     for (cos = FIRST_TX_COS_INDEX; cos < init_params->max_cos; cos++) {
11601         /* XXX change index/cid here if ever support multiple tx CoS */
11602         /* fp->txdata[cos]->cid */
11603         cxt_index = fp->index / ILT_PAGE_CIDS;
11604         cxt_offset = fp->index - (cxt_index * ILT_PAGE_CIDS);
11605         init_params->cxts[cos] = &sc->context[cxt_index].vcxt[cxt_offset].eth;
11606     }
11607 }
11608 
11609 /* set flags that are common for the Tx-only and not normal connections */
11610 static unsigned long
11611 bxe_get_common_flags(struct bxe_softc    *sc,
11612                      struct bxe_fastpath *fp,
11613                      uint8_t             zero_stats)
11614 {
11615     unsigned long flags = 0;
11616 
11617     /* PF driver will always initialize the Queue to an ACTIVE state */
11618     bxe_set_bit(ECORE_Q_FLG_ACTIVE, &flags);
11619 
11620     /*
11621      * tx only connections collect statistics (on the same index as the
11622      * parent connection). The statistics are zeroed when the parent
11623      * connection is initialized.
11624      */
11625 
11626     bxe_set_bit(ECORE_Q_FLG_STATS, &flags);
11627     if (zero_stats) {
11628         bxe_set_bit(ECORE_Q_FLG_ZERO_STATS, &flags);
11629     }
11630 
11631     /*
11632      * tx only connections can support tx-switching, though their
11633      * CoS-ness doesn't survive the loopback
11634      */
11635     if (sc->flags & BXE_TX_SWITCHING) {
11636         bxe_set_bit(ECORE_Q_FLG_TX_SWITCH, &flags);
11637     }
11638 
11639     bxe_set_bit(ECORE_Q_FLG_PCSUM_ON_PKT, &flags);
11640 
11641     return (flags);
11642 }
11643 
11644 static unsigned long
11645 bxe_get_q_flags(struct bxe_softc    *sc,
11646                 struct bxe_fastpath *fp,
11647                 uint8_t             leading)
11648 {
11649     unsigned long flags = 0;
11650 
11651     if (IS_MF_SD(sc)) {
11652         bxe_set_bit(ECORE_Q_FLG_OV, &flags);
11653     }
11654 
11655     if (if_getcapenable(sc->ifp) & IFCAP_LRO) {
11656         bxe_set_bit(ECORE_Q_FLG_TPA, &flags);
11657         bxe_set_bit(ECORE_Q_FLG_TPA_IPV6, &flags);
11658 #if 0
11659         if (fp->mode == TPA_MODE_GRO)
11660             __set_bit(ECORE_Q_FLG_TPA_GRO, &flags);
11661 #endif
11662     }
11663 
11664     if (leading) {
11665         bxe_set_bit(ECORE_Q_FLG_LEADING_RSS, &flags);
11666         bxe_set_bit(ECORE_Q_FLG_MCAST, &flags);
11667     }
11668 
11669     bxe_set_bit(ECORE_Q_FLG_VLAN, &flags);
11670 
11671 #if 0
11672     /* configure silent vlan removal */
11673     if (IS_MF_AFEX(sc)) {
11674         bxe_set_bit(ECORE_Q_FLG_SILENT_VLAN_REM, &flags);
11675     }
11676 #endif
11677 
11678     /* merge with common flags */
11679     return (flags | bxe_get_common_flags(sc, fp, TRUE));
11680 }
11681 
11682 static void
11683 bxe_pf_q_prep_general(struct bxe_softc                  *sc,
11684                       struct bxe_fastpath               *fp,
11685                       struct ecore_general_setup_params *gen_init,
11686                       uint8_t                           cos)
11687 {
11688     gen_init->stat_id = bxe_stats_id(fp);
11689     gen_init->spcl_id = fp->cl_id;
11690     gen_init->mtu = sc->mtu;
11691     gen_init->cos = cos;
11692 }
11693 
11694 static void
11695 bxe_pf_rx_q_prep(struct bxe_softc              *sc,
11696                  struct bxe_fastpath           *fp,
11697                  struct rxq_pause_params       *pause,
11698                  struct ecore_rxq_setup_params *rxq_init)
11699 {
11700     uint8_t max_sge = 0;
11701     uint16_t sge_sz = 0;
11702     uint16_t tpa_agg_size = 0;
11703 
11704     if (if_getcapenable(sc->ifp)  & IFCAP_LRO) {
11705         pause->sge_th_lo = SGE_TH_LO(sc);
11706         pause->sge_th_hi = SGE_TH_HI(sc);
11707 
11708         /* validate SGE ring has enough to cross high threshold */
11709         if (sc->dropless_fc &&
11710             (pause->sge_th_hi + FW_PREFETCH_CNT) >
11711             (RX_SGE_USABLE_PER_PAGE * RX_SGE_NUM_PAGES)) {
11712             BLOGW(sc, "sge ring threshold limit\n");
11713         }
11714 
11715         /* minimum max_aggregation_size is 2*MTU (two full buffers) */
11716         tpa_agg_size = (2 * sc->mtu);
11717         if (tpa_agg_size < sc->max_aggregation_size) {
11718             tpa_agg_size = sc->max_aggregation_size;
11719         }
11720 
11721         max_sge = SGE_PAGE_ALIGN(sc->mtu) >> SGE_PAGE_SHIFT;
11722         max_sge = ((max_sge + PAGES_PER_SGE - 1) &
11723                    (~(PAGES_PER_SGE - 1))) >> PAGES_PER_SGE_SHIFT;
11724         sge_sz = (uint16_t)min(SGE_PAGES, 0xffff);
11725     }
11726 
11727     /* pause - not for e1 */
11728     if (!CHIP_IS_E1(sc)) {
11729         pause->bd_th_lo = BD_TH_LO(sc);
11730         pause->bd_th_hi = BD_TH_HI(sc);
11731 
11732         pause->rcq_th_lo = RCQ_TH_LO(sc);
11733         pause->rcq_th_hi = RCQ_TH_HI(sc);
11734 
11735         /* validate rings have enough entries to cross high thresholds */
11736         if (sc->dropless_fc &&
11737             pause->bd_th_hi + FW_PREFETCH_CNT >
11738             sc->rx_ring_size) {
11739             BLOGW(sc, "rx bd ring threshold limit\n");
11740         }
11741 
11742         if (sc->dropless_fc &&
11743             pause->rcq_th_hi + FW_PREFETCH_CNT >
11744             RCQ_NUM_PAGES * RCQ_USABLE_PER_PAGE) {
11745             BLOGW(sc, "rcq ring threshold limit\n");
11746         }
11747 
11748         pause->pri_map = 1;
11749     }
11750 
11751     /* rxq setup */
11752     rxq_init->dscr_map   = fp->rx_dma.paddr;
11753     rxq_init->sge_map    = fp->rx_sge_dma.paddr;
11754     rxq_init->rcq_map    = fp->rcq_dma.paddr;
11755     rxq_init->rcq_np_map = (fp->rcq_dma.paddr + BCM_PAGE_SIZE);
11756 
11757     /*
11758      * This should be a maximum number of data bytes that may be
11759      * placed on the BD (not including paddings).
11760      */
11761     rxq_init->buf_sz = (fp->rx_buf_size -
11762                         IP_HEADER_ALIGNMENT_PADDING);
11763 
11764     rxq_init->cl_qzone_id     = fp->cl_qzone_id;
11765     rxq_init->tpa_agg_sz      = tpa_agg_size;
11766     rxq_init->sge_buf_sz      = sge_sz;
11767     rxq_init->max_sges_pkt    = max_sge;
11768     rxq_init->rss_engine_id   = SC_FUNC(sc);
11769     rxq_init->mcast_engine_id = SC_FUNC(sc);
11770 
11771     /*
11772      * Maximum number or simultaneous TPA aggregation for this Queue.
11773      * For PF Clients it should be the maximum available number.
11774      * VF driver(s) may want to define it to a smaller value.
11775      */
11776     rxq_init->max_tpa_queues = MAX_AGG_QS(sc);
11777 
11778     rxq_init->cache_line_log = BXE_RX_ALIGN_SHIFT;
11779     rxq_init->fw_sb_id = fp->fw_sb_id;
11780 
11781     rxq_init->sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS;
11782 
11783     /*
11784      * configure silent vlan removal
11785      * if multi function mode is afex, then mask default vlan
11786      */
11787     if (IS_MF_AFEX(sc)) {
11788         rxq_init->silent_removal_value =
11789             sc->devinfo.mf_info.afex_def_vlan_tag;
11790         rxq_init->silent_removal_mask = EVL_VLID_MASK;
11791     }
11792 }
11793 
11794 static void
11795 bxe_pf_tx_q_prep(struct bxe_softc              *sc,
11796                  struct bxe_fastpath           *fp,
11797                  struct ecore_txq_setup_params *txq_init,
11798                  uint8_t                       cos)
11799 {
11800     /*
11801      * XXX If multiple CoS is ever supported then each fastpath structure
11802      * will need to maintain tx producer/consumer/dma/etc values *per* CoS.
11803      * fp->txdata[cos]->tx_dma.paddr;
11804      */
11805     txq_init->dscr_map     = fp->tx_dma.paddr;
11806     txq_init->sb_cq_index  = HC_INDEX_ETH_FIRST_TX_CQ_CONS + cos;
11807     txq_init->traffic_type = LLFC_TRAFFIC_TYPE_NW;
11808     txq_init->fw_sb_id     = fp->fw_sb_id;
11809 
11810     /*
11811      * set the TSS leading client id for TX classfication to the
11812      * leading RSS client id
11813      */
11814     txq_init->tss_leading_cl_id = BXE_FP(sc, 0, cl_id);
11815 }
11816 
11817 /*
11818  * This function performs 2 steps in a queue state machine:
11819  *   1) RESET->INIT
11820  *   2) INIT->SETUP
11821  */
11822 static int
11823 bxe_setup_queue(struct bxe_softc    *sc,
11824                 struct bxe_fastpath *fp,
11825                 uint8_t             leading)
11826 {
11827     struct ecore_queue_state_params q_params = { NULL };
11828     struct ecore_queue_setup_params *setup_params =
11829                         &q_params.params.setup;
11830 #if 0
11831     struct ecore_queue_setup_tx_only_params *tx_only_params =
11832                         &q_params.params.tx_only;
11833     uint8_t tx_index;
11834 #endif
11835     int rc;
11836 
11837     BLOGD(sc, DBG_LOAD, "setting up queue %d\n", fp->index);
11838 
11839     bxe_ack_sb(sc, fp->igu_sb_id, USTORM_ID, 0, IGU_INT_ENABLE, 0);
11840 
11841     q_params.q_obj = &BXE_SP_OBJ(sc, fp).q_obj;
11842 
11843     /* we want to wait for completion in this context */
11844     bxe_set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
11845 
11846     /* prepare the INIT parameters */
11847     bxe_pf_q_prep_init(sc, fp, &q_params.params.init);
11848 
11849     /* Set the command */
11850     q_params.cmd = ECORE_Q_CMD_INIT;
11851 
11852     /* Change the state to INIT */
11853     rc = ecore_queue_state_change(sc, &q_params);
11854     if (rc) {
11855         BLOGE(sc, "Queue(%d) INIT failed\n", fp->index);
11856         return (rc);
11857     }
11858 
11859     BLOGD(sc, DBG_LOAD, "init complete\n");
11860 
11861     /* now move the Queue to the SETUP state */
11862     memset(setup_params, 0, sizeof(*setup_params));
11863 
11864     /* set Queue flags */
11865     setup_params->flags = bxe_get_q_flags(sc, fp, leading);
11866 
11867     /* set general SETUP parameters */
11868     bxe_pf_q_prep_general(sc, fp, &setup_params->gen_params,
11869                           FIRST_TX_COS_INDEX);
11870 
11871     bxe_pf_rx_q_prep(sc, fp,
11872                      &setup_params->pause_params,
11873                      &setup_params->rxq_params);
11874 
11875     bxe_pf_tx_q_prep(sc, fp,
11876                      &setup_params->txq_params,
11877                      FIRST_TX_COS_INDEX);
11878 
11879     /* Set the command */
11880     q_params.cmd = ECORE_Q_CMD_SETUP;
11881 
11882     /* change the state to SETUP */
11883     rc = ecore_queue_state_change(sc, &q_params);
11884     if (rc) {
11885         BLOGE(sc, "Queue(%d) SETUP failed\n", fp->index);
11886         return (rc);
11887     }
11888 
11889 #if 0
11890     /* loop through the relevant tx-only indices */
11891     for (tx_index = FIRST_TX_ONLY_COS_INDEX;
11892          tx_index < sc->max_cos;
11893          tx_index++) {
11894         /* prepare and send tx-only ramrod*/
11895         rc = bxe_setup_tx_only(sc, fp, &q_params,
11896                                tx_only_params, tx_index, leading);
11897         if (rc) {
11898             BLOGE(sc, "Queue(%d.%d) TX_ONLY_SETUP failed\n",
11899                   fp->index, tx_index);
11900             return (rc);
11901         }
11902     }
11903 #endif
11904 
11905     return (rc);
11906 }
11907 
11908 static int
11909 bxe_setup_leading(struct bxe_softc *sc)
11910 {
11911     return (bxe_setup_queue(sc, &sc->fp[0], TRUE));
11912 }
11913 
11914 static int
11915 bxe_config_rss_pf(struct bxe_softc            *sc,
11916                   struct ecore_rss_config_obj *rss_obj,
11917                   uint8_t                     config_hash)
11918 {
11919     struct ecore_config_rss_params params = { NULL };
11920     int i;
11921 
11922     /*
11923      * Although RSS is meaningless when there is a single HW queue we
11924      * still need it enabled in order to have HW Rx hash generated.
11925      */
11926 
11927     params.rss_obj = rss_obj;
11928 
11929     bxe_set_bit(RAMROD_COMP_WAIT, &params.ramrod_flags);
11930 
11931     bxe_set_bit(ECORE_RSS_MODE_REGULAR, &params.rss_flags);
11932 
11933     /* RSS configuration */
11934     bxe_set_bit(ECORE_RSS_IPV4, &params.rss_flags);
11935     bxe_set_bit(ECORE_RSS_IPV4_TCP, &params.rss_flags);
11936     bxe_set_bit(ECORE_RSS_IPV6, &params.rss_flags);
11937     bxe_set_bit(ECORE_RSS_IPV6_TCP, &params.rss_flags);
11938     if (rss_obj->udp_rss_v4) {
11939         bxe_set_bit(ECORE_RSS_IPV4_UDP, &params.rss_flags);
11940     }
11941     if (rss_obj->udp_rss_v6) {
11942         bxe_set_bit(ECORE_RSS_IPV6_UDP, &params.rss_flags);
11943     }
11944 
11945     /* Hash bits */
11946     params.rss_result_mask = MULTI_MASK;
11947 
11948     memcpy(params.ind_table, rss_obj->ind_table, sizeof(params.ind_table));
11949 
11950     if (config_hash) {
11951         /* RSS keys */
11952         for (i = 0; i < sizeof(params.rss_key) / 4; i++) {
11953             params.rss_key[i] = arc4random();
11954         }
11955 
11956         bxe_set_bit(ECORE_RSS_SET_SRCH, &params.rss_flags);
11957     }
11958 
11959     return (ecore_config_rss(sc, &params));
11960 }
11961 
11962 static int
11963 bxe_config_rss_eth(struct bxe_softc *sc,
11964                    uint8_t          config_hash)
11965 {
11966     return (bxe_config_rss_pf(sc, &sc->rss_conf_obj, config_hash));
11967 }
11968 
11969 static int
11970 bxe_init_rss_pf(struct bxe_softc *sc)
11971 {
11972     uint8_t num_eth_queues = BXE_NUM_ETH_QUEUES(sc);
11973     int i;
11974 
11975     /*
11976      * Prepare the initial contents of the indirection table if
11977      * RSS is enabled
11978      */
11979     for (i = 0; i < sizeof(sc->rss_conf_obj.ind_table); i++) {
11980         sc->rss_conf_obj.ind_table[i] =
11981             (sc->fp->cl_id + (i % num_eth_queues));
11982     }
11983 
11984     if (sc->udp_rss) {
11985         sc->rss_conf_obj.udp_rss_v4 = sc->rss_conf_obj.udp_rss_v6 = 1;
11986     }
11987 
11988     /*
11989      * For 57710 and 57711 SEARCHER configuration (rss_keys) is
11990      * per-port, so if explicit configuration is needed, do it only
11991      * for a PMF.
11992      *
11993      * For 57712 and newer it's a per-function configuration.
11994      */
11995     return (bxe_config_rss_eth(sc, sc->port.pmf || !CHIP_IS_E1x(sc)));
11996 }
11997 
11998 static int
11999 bxe_set_mac_one(struct bxe_softc          *sc,
12000                 uint8_t                   *mac,
12001                 struct ecore_vlan_mac_obj *obj,
12002                 uint8_t                   set,
12003                 int                       mac_type,
12004                 unsigned long             *ramrod_flags)
12005 {
12006     struct ecore_vlan_mac_ramrod_params ramrod_param;
12007     int rc;
12008 
12009     memset(&ramrod_param, 0, sizeof(ramrod_param));
12010 
12011     /* fill in general parameters */
12012     ramrod_param.vlan_mac_obj = obj;
12013     ramrod_param.ramrod_flags = *ramrod_flags;
12014 
12015     /* fill a user request section if needed */
12016     if (!bxe_test_bit(RAMROD_CONT, ramrod_flags)) {
12017         memcpy(ramrod_param.user_req.u.mac.mac, mac, ETH_ALEN);
12018 
12019         bxe_set_bit(mac_type, &ramrod_param.user_req.vlan_mac_flags);
12020 
12021         /* Set the command: ADD or DEL */
12022         ramrod_param.user_req.cmd = (set) ? ECORE_VLAN_MAC_ADD :
12023                                             ECORE_VLAN_MAC_DEL;
12024     }
12025 
12026     rc = ecore_config_vlan_mac(sc, &ramrod_param);
12027 
12028     if (rc == ECORE_EXISTS) {
12029         BLOGD(sc, DBG_SP, "Failed to schedule ADD operations (EEXIST)\n");
12030         /* do not treat adding same MAC as error */
12031         rc = 0;
12032     } else if (rc < 0) {
12033         BLOGE(sc, "%s MAC failed (%d)\n", (set ? "Set" : "Delete"), rc);
12034     }
12035 
12036     return (rc);
12037 }
12038 
12039 static int
12040 bxe_set_eth_mac(struct bxe_softc *sc,
12041                 uint8_t          set)
12042 {
12043     unsigned long ramrod_flags = 0;
12044 
12045     BLOGD(sc, DBG_LOAD, "Adding Ethernet MAC\n");
12046 
12047     bxe_set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
12048 
12049     /* Eth MAC is set on RSS leading client (fp[0]) */
12050     return (bxe_set_mac_one(sc, sc->link_params.mac_addr,
12051                             &sc->sp_objs->mac_obj,
12052                             set, ECORE_ETH_MAC, &ramrod_flags));
12053 }
12054 
12055 #if 0
12056 static void
12057 bxe_update_max_mf_config(struct bxe_softc *sc,
12058                          uint32_t         value)
12059 {
12060     /* load old values */
12061     uint32_t mf_cfg = sc->devinfo.mf_info.mf_config[SC_VN(sc)];
12062 
12063     if (value != bxe_extract_max_cfg(sc, mf_cfg)) {
12064         /* leave all but MAX value */
12065         mf_cfg &= ~FUNC_MF_CFG_MAX_BW_MASK;
12066 
12067         /* set new MAX value */
12068         mf_cfg |= ((value << FUNC_MF_CFG_MAX_BW_SHIFT) &
12069                    FUNC_MF_CFG_MAX_BW_MASK);
12070 
12071         bxe_fw_command(sc, DRV_MSG_CODE_SET_MF_BW, mf_cfg);
12072     }
12073 }
12074 #endif
12075 
12076 static int
12077 bxe_get_cur_phy_idx(struct bxe_softc *sc)
12078 {
12079     uint32_t sel_phy_idx = 0;
12080 
12081     if (sc->link_params.num_phys <= 1) {
12082         return (ELINK_INT_PHY);
12083     }
12084 
12085     if (sc->link_vars.link_up) {
12086         sel_phy_idx = ELINK_EXT_PHY1;
12087         /* In case link is SERDES, check if the ELINK_EXT_PHY2 is the one */
12088         if ((sc->link_vars.link_status & LINK_STATUS_SERDES_LINK) &&
12089             (sc->link_params.phy[ELINK_EXT_PHY2].supported &
12090              ELINK_SUPPORTED_FIBRE))
12091             sel_phy_idx = ELINK_EXT_PHY2;
12092     } else {
12093         switch (elink_phy_selection(&sc->link_params)) {
12094         case PORT_HW_CFG_PHY_SELECTION_HARDWARE_DEFAULT:
12095         case PORT_HW_CFG_PHY_SELECTION_FIRST_PHY:
12096         case PORT_HW_CFG_PHY_SELECTION_FIRST_PHY_PRIORITY:
12097                sel_phy_idx = ELINK_EXT_PHY1;
12098                break;
12099         case PORT_HW_CFG_PHY_SELECTION_SECOND_PHY:
12100         case PORT_HW_CFG_PHY_SELECTION_SECOND_PHY_PRIORITY:
12101                sel_phy_idx = ELINK_EXT_PHY2;
12102                break;
12103         }
12104     }
12105 
12106     return (sel_phy_idx);
12107 }
12108 
12109 static int
12110 bxe_get_link_cfg_idx(struct bxe_softc *sc)
12111 {
12112     uint32_t sel_phy_idx = bxe_get_cur_phy_idx(sc);
12113 
12114     /*
12115      * The selected activated PHY is always after swapping (in case PHY
12116      * swapping is enabled). So when swapping is enabled, we need to reverse
12117      * the configuration
12118      */
12119 
12120     if (sc->link_params.multi_phy_config & PORT_HW_CFG_PHY_SWAPPED_ENABLED) {
12121         if (sel_phy_idx == ELINK_EXT_PHY1)
12122             sel_phy_idx = ELINK_EXT_PHY2;
12123         else if (sel_phy_idx == ELINK_EXT_PHY2)
12124             sel_phy_idx = ELINK_EXT_PHY1;
12125     }
12126 
12127     return (ELINK_LINK_CONFIG_IDX(sel_phy_idx));
12128 }
12129 
12130 static void
12131 bxe_set_requested_fc(struct bxe_softc *sc)
12132 {
12133     /*
12134      * Initialize link parameters structure variables
12135      * It is recommended to turn off RX FC for jumbo frames
12136      * for better performance
12137      */
12138     if (CHIP_IS_E1x(sc) && (sc->mtu > 5000)) {
12139         sc->link_params.req_fc_auto_adv = ELINK_FLOW_CTRL_TX;
12140     } else {
12141         sc->link_params.req_fc_auto_adv = ELINK_FLOW_CTRL_BOTH;
12142     }
12143 }
12144 
12145 static void
12146 bxe_calc_fc_adv(struct bxe_softc *sc)
12147 {
12148     uint8_t cfg_idx = bxe_get_link_cfg_idx(sc);
12149     switch (sc->link_vars.ieee_fc &
12150             MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_MASK) {
12151     case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_NONE:
12152     default:
12153         sc->port.advertising[cfg_idx] &= ~(ADVERTISED_Asym_Pause |
12154                                            ADVERTISED_Pause);
12155         break;
12156 
12157     case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_BOTH:
12158         sc->port.advertising[cfg_idx] |= (ADVERTISED_Asym_Pause |
12159                                           ADVERTISED_Pause);
12160         break;
12161 
12162     case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_ASYMMETRIC:
12163         sc->port.advertising[cfg_idx] |= ADVERTISED_Asym_Pause;
12164         break;
12165     }
12166 }
12167 
12168 static uint16_t
12169 bxe_get_mf_speed(struct bxe_softc *sc)
12170 {
12171     uint16_t line_speed = sc->link_vars.line_speed;
12172     if (IS_MF(sc)) {
12173         uint16_t maxCfg =
12174             bxe_extract_max_cfg(sc, sc->devinfo.mf_info.mf_config[SC_VN(sc)]);
12175 
12176         /* calculate the current MAX line speed limit for the MF devices */
12177         if (IS_MF_SI(sc)) {
12178             line_speed = (line_speed * maxCfg) / 100;
12179         } else { /* SD mode */
12180             uint16_t vn_max_rate = maxCfg * 100;
12181 
12182             if (vn_max_rate < line_speed) {
12183                 line_speed = vn_max_rate;
12184             }
12185         }
12186     }
12187 
12188     return (line_speed);
12189 }
12190 
12191 static void
12192 bxe_fill_report_data(struct bxe_softc            *sc,
12193                      struct bxe_link_report_data *data)
12194 {
12195     uint16_t line_speed = bxe_get_mf_speed(sc);
12196 
12197     memset(data, 0, sizeof(*data));
12198 
12199     /* fill the report data with the effective line speed */
12200     data->line_speed = line_speed;
12201 
12202     /* Link is down */
12203     if (!sc->link_vars.link_up || (sc->flags & BXE_MF_FUNC_DIS)) {
12204         bxe_set_bit(BXE_LINK_REPORT_LINK_DOWN, &data->link_report_flags);
12205     }
12206 
12207     /* Full DUPLEX */
12208     if (sc->link_vars.duplex == DUPLEX_FULL) {
12209         bxe_set_bit(BXE_LINK_REPORT_FULL_DUPLEX, &data->link_report_flags);
12210     }
12211 
12212     /* Rx Flow Control is ON */
12213     if (sc->link_vars.flow_ctrl & ELINK_FLOW_CTRL_RX) {
12214         bxe_set_bit(BXE_LINK_REPORT_RX_FC_ON, &data->link_report_flags);
12215     }
12216 
12217     /* Tx Flow Control is ON */
12218     if (sc->link_vars.flow_ctrl & ELINK_FLOW_CTRL_TX) {
12219         bxe_set_bit(BXE_LINK_REPORT_TX_FC_ON, &data->link_report_flags);
12220     }
12221 }
12222 
12223 /* report link status to OS, should be called under phy_lock */
12224 static void
12225 bxe_link_report_locked(struct bxe_softc *sc)
12226 {
12227     struct bxe_link_report_data cur_data;
12228 
12229     /* reread mf_cfg */
12230     if (IS_PF(sc) && !CHIP_IS_E1(sc)) {
12231         bxe_read_mf_cfg(sc);
12232     }
12233 
12234     /* Read the current link report info */
12235     bxe_fill_report_data(sc, &cur_data);
12236 
12237     /* Don't report link down or exactly the same link status twice */
12238     if (!memcmp(&cur_data, &sc->last_reported_link, sizeof(cur_data)) ||
12239         (bxe_test_bit(BXE_LINK_REPORT_LINK_DOWN,
12240                       &sc->last_reported_link.link_report_flags) &&
12241          bxe_test_bit(BXE_LINK_REPORT_LINK_DOWN,
12242                       &cur_data.link_report_flags))) {
12243         return;
12244     }
12245 
12246     sc->link_cnt++;
12247 
12248     /* report new link params and remember the state for the next time */
12249     memcpy(&sc->last_reported_link, &cur_data, sizeof(cur_data));
12250 
12251     if (bxe_test_bit(BXE_LINK_REPORT_LINK_DOWN,
12252                      &cur_data.link_report_flags)) {
12253         if_linkstate_change_drv(sc->ifp, LINK_STATE_DOWN);
12254         BLOGI(sc, "NIC Link is Down\n");
12255     } else {
12256         const char *duplex;
12257         const char *flow;
12258 
12259         if (bxe_test_and_clear_bit(BXE_LINK_REPORT_FULL_DUPLEX,
12260                                    &cur_data.link_report_flags)) {
12261             duplex = "full";
12262         } else {
12263             duplex = "half";
12264         }
12265 
12266         /*
12267          * Handle the FC at the end so that only these flags would be
12268          * possibly set. This way we may easily check if there is no FC
12269          * enabled.
12270          */
12271         if (cur_data.link_report_flags) {
12272             if (bxe_test_bit(BXE_LINK_REPORT_RX_FC_ON,
12273                              &cur_data.link_report_flags) &&
12274                 bxe_test_bit(BXE_LINK_REPORT_TX_FC_ON,
12275                              &cur_data.link_report_flags)) {
12276                 flow = "ON - receive & transmit";
12277             } else if (bxe_test_bit(BXE_LINK_REPORT_RX_FC_ON,
12278                                     &cur_data.link_report_flags) &&
12279                        !bxe_test_bit(BXE_LINK_REPORT_TX_FC_ON,
12280                                      &cur_data.link_report_flags)) {
12281                 flow = "ON - receive";
12282             } else if (!bxe_test_bit(BXE_LINK_REPORT_RX_FC_ON,
12283                                      &cur_data.link_report_flags) &&
12284                        bxe_test_bit(BXE_LINK_REPORT_TX_FC_ON,
12285                                     &cur_data.link_report_flags)) {
12286                 flow = "ON - transmit";
12287             } else {
12288                 flow = "none"; /* possible? */
12289             }
12290         } else {
12291             flow = "none";
12292         }
12293 
12294         if_linkstate_change_drv(sc->ifp, LINK_STATE_UP);
12295         BLOGI(sc, "NIC Link is Up, %d Mbps %s duplex, Flow control: %s\n",
12296               cur_data.line_speed, duplex, flow);
12297     }
12298 }
12299 
12300 static void
12301 bxe_link_report(struct bxe_softc *sc)
12302 {
12303     BXE_PHY_LOCK(sc);
12304     bxe_link_report_locked(sc);
12305     BXE_PHY_UNLOCK(sc);
12306 }
12307 
12308 static void
12309 bxe_link_status_update(struct bxe_softc *sc)
12310 {
12311     if (sc->state != BXE_STATE_OPEN) {
12312         return;
12313     }
12314 
12315 #if 0
12316     /* read updated dcb configuration */
12317     if (IS_PF(sc))
12318         bxe_dcbx_pmf_update(sc);
12319 #endif
12320 
12321     if (IS_PF(sc) && !CHIP_REV_IS_SLOW(sc)) {
12322         elink_link_status_update(&sc->link_params, &sc->link_vars);
12323     } else {
12324         sc->port.supported[0] |= (ELINK_SUPPORTED_10baseT_Half |
12325                                   ELINK_SUPPORTED_10baseT_Full |
12326                                   ELINK_SUPPORTED_100baseT_Half |
12327                                   ELINK_SUPPORTED_100baseT_Full |
12328                                   ELINK_SUPPORTED_1000baseT_Full |
12329                                   ELINK_SUPPORTED_2500baseX_Full |
12330                                   ELINK_SUPPORTED_10000baseT_Full |
12331                                   ELINK_SUPPORTED_TP |
12332                                   ELINK_SUPPORTED_FIBRE |
12333                                   ELINK_SUPPORTED_Autoneg |
12334                                   ELINK_SUPPORTED_Pause |
12335                                   ELINK_SUPPORTED_Asym_Pause);
12336         sc->port.advertising[0] = sc->port.supported[0];
12337 
12338         sc->link_params.sc                = sc;
12339         sc->link_params.port              = SC_PORT(sc);
12340         sc->link_params.req_duplex[0]     = DUPLEX_FULL;
12341         sc->link_params.req_flow_ctrl[0]  = ELINK_FLOW_CTRL_NONE;
12342         sc->link_params.req_line_speed[0] = SPEED_10000;
12343         sc->link_params.speed_cap_mask[0] = 0x7f0000;
12344         sc->link_params.switch_cfg        = ELINK_SWITCH_CFG_10G;
12345 
12346         if (CHIP_REV_IS_FPGA(sc)) {
12347             sc->link_vars.mac_type    = ELINK_MAC_TYPE_EMAC;
12348             sc->link_vars.line_speed  = ELINK_SPEED_1000;
12349             sc->link_vars.link_status = (LINK_STATUS_LINK_UP |
12350                                          LINK_STATUS_SPEED_AND_DUPLEX_1000TFD);
12351         } else {
12352             sc->link_vars.mac_type    = ELINK_MAC_TYPE_BMAC;
12353             sc->link_vars.line_speed  = ELINK_SPEED_10000;
12354             sc->link_vars.link_status = (LINK_STATUS_LINK_UP |
12355                                          LINK_STATUS_SPEED_AND_DUPLEX_10GTFD);
12356         }
12357 
12358         sc->link_vars.link_up = 1;
12359 
12360         sc->link_vars.duplex    = DUPLEX_FULL;
12361         sc->link_vars.flow_ctrl = ELINK_FLOW_CTRL_NONE;
12362 
12363         if (IS_PF(sc)) {
12364             REG_WR(sc, NIG_REG_EGRESS_DRAIN0_MODE + sc->link_params.port*4, 0);
12365             bxe_stats_handle(sc, STATS_EVENT_LINK_UP);
12366             bxe_link_report(sc);
12367         }
12368     }
12369 
12370     if (IS_PF(sc)) {
12371         if (sc->link_vars.link_up) {
12372             bxe_stats_handle(sc, STATS_EVENT_LINK_UP);
12373         } else {
12374             bxe_stats_handle(sc, STATS_EVENT_STOP);
12375         }
12376         bxe_link_report(sc);
12377     } else {
12378         bxe_link_report(sc);
12379         bxe_stats_handle(sc, STATS_EVENT_LINK_UP);
12380     }
12381 }
12382 
12383 static int
12384 bxe_initial_phy_init(struct bxe_softc *sc,
12385                      int              load_mode)
12386 {
12387     int rc, cfg_idx = bxe_get_link_cfg_idx(sc);
12388     uint16_t req_line_speed = sc->link_params.req_line_speed[cfg_idx];
12389     struct elink_params *lp = &sc->link_params;
12390 
12391     bxe_set_requested_fc(sc);
12392 
12393     if (CHIP_REV_IS_SLOW(sc)) {
12394         uint32_t bond = CHIP_BOND_ID(sc);
12395         uint32_t feat = 0;
12396 
12397         if (CHIP_IS_E2(sc) && CHIP_IS_MODE_4_PORT(sc)) {
12398             feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_BMAC;
12399         } else if (bond & 0x4) {
12400             if (CHIP_IS_E3(sc)) {
12401                 feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_XMAC;
12402             } else {
12403                 feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_BMAC;
12404             }
12405         } else if (bond & 0x8) {
12406             if (CHIP_IS_E3(sc)) {
12407                 feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_UMAC;
12408             } else {
12409                 feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_EMAC;
12410             }
12411         }
12412 
12413         /* disable EMAC for E3 and above */
12414         if (bond & 0x2) {
12415             feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_EMAC;
12416         }
12417 
12418         sc->link_params.feature_config_flags |= feat;
12419     }
12420 
12421     BXE_PHY_LOCK(sc);
12422 
12423     if (load_mode == LOAD_DIAG) {
12424         lp->loopback_mode = ELINK_LOOPBACK_XGXS;
12425         /* Prefer doing PHY loopback at 10G speed, if possible */
12426         if (lp->req_line_speed[cfg_idx] < ELINK_SPEED_10000) {
12427             if (lp->speed_cap_mask[cfg_idx] &
12428                 PORT_HW_CFG_SPEED_CAPABILITY_D0_10G) {
12429                 lp->req_line_speed[cfg_idx] = ELINK_SPEED_10000;
12430             } else {
12431                 lp->req_line_speed[cfg_idx] = ELINK_SPEED_1000;
12432             }
12433         }
12434     }
12435 
12436     if (load_mode == LOAD_LOOPBACK_EXT) {
12437         lp->loopback_mode = ELINK_LOOPBACK_EXT;
12438     }
12439 
12440     rc = elink_phy_init(&sc->link_params, &sc->link_vars);
12441 
12442     BXE_PHY_UNLOCK(sc);
12443 
12444     bxe_calc_fc_adv(sc);
12445 
12446     if (sc->link_vars.link_up) {
12447         bxe_stats_handle(sc, STATS_EVENT_LINK_UP);
12448         bxe_link_report(sc);
12449     }
12450 
12451     if (!CHIP_REV_IS_SLOW(sc)) {
12452         bxe_periodic_start(sc);
12453     }
12454 
12455     sc->link_params.req_line_speed[cfg_idx] = req_line_speed;
12456     return (rc);
12457 }
12458 
12459 /* must be called under IF_ADDR_LOCK */
12460 static int
12461 bxe_init_mcast_macs_list(struct bxe_softc                 *sc,
12462                          struct ecore_mcast_ramrod_params *p)
12463 {
12464     if_t ifp = sc->ifp;
12465     int mc_count = 0;
12466     int mcnt, i;
12467     struct ecore_mcast_list_elem *mc_mac;
12468     unsigned char *mta;
12469 
12470     mc_count = if_multiaddr_count(ifp, -1);/* XXX they don't have a limit */
12471                                            /* should we enforce one? */
12472     ECORE_LIST_INIT(&p->mcast_list);
12473     p->mcast_list_len = 0;
12474 
12475     if (!mc_count) {
12476         return (0);
12477     }
12478 
12479     mta = malloc(sizeof(unsigned char) * ETHER_ADDR_LEN *
12480             mc_count, M_DEVBUF, M_NOWAIT);
12481 
12482     if(mta == NULL) {
12483         BLOGE(sc, "Failed to allocate temp mcast list\n");
12484         return (-1);
12485     }
12486 
12487     mc_mac = malloc(sizeof(*mc_mac) * mc_count, M_DEVBUF,
12488                     (M_NOWAIT | M_ZERO));
12489     if (!mc_mac) {
12490         free(mta, M_DEVBUF);
12491         BLOGE(sc, "Failed to allocate temp mcast list\n");
12492         return (-1);
12493     }
12494 
12495     if_multiaddr_array(ifp, mta, &mcnt, mc_count); /* mta and mcnt not expected
12496                                                       to be  different */
12497     for(i=0; i< mcnt; i++) {
12498 
12499         bcopy((mta + (i * ETHER_ADDR_LEN)), mc_mac->mac, ETHER_ADDR_LEN);
12500         ECORE_LIST_PUSH_TAIL(&mc_mac->link, &p->mcast_list);
12501 
12502         BLOGD(sc, DBG_LOAD,
12503               "Setting MCAST %02X:%02X:%02X:%02X:%02X:%02X\n",
12504               mc_mac->mac[0], mc_mac->mac[1], mc_mac->mac[2],
12505               mc_mac->mac[3], mc_mac->mac[4], mc_mac->mac[5]);
12506 
12507         mc_mac++;
12508     }
12509 
12510     p->mcast_list_len = mc_count;
12511     free(mta, M_DEVBUF);
12512 
12513     return (0);
12514 }
12515 
12516 static void
12517 bxe_free_mcast_macs_list(struct ecore_mcast_ramrod_params *p)
12518 {
12519     struct ecore_mcast_list_elem *mc_mac =
12520         ECORE_LIST_FIRST_ENTRY(&p->mcast_list,
12521                                struct ecore_mcast_list_elem,
12522                                link);
12523 
12524     if (mc_mac) {
12525         /* only a single free as all mc_macs are in the same heap array */
12526         free(mc_mac, M_DEVBUF);
12527     }
12528 }
12529 
12530 static int
12531 bxe_set_mc_list(struct bxe_softc *sc)
12532 {
12533     struct ecore_mcast_ramrod_params rparam = { NULL };
12534     int rc = 0;
12535 
12536     rparam.mcast_obj = &sc->mcast_obj;
12537 
12538     BXE_MCAST_LOCK(sc);
12539 
12540     /* first, clear all configured multicast MACs */
12541     rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_DEL);
12542     if (rc < 0) {
12543         BLOGE(sc, "Failed to clear multicast configuration: %d\n", rc);
12544         return (rc);
12545     }
12546 
12547     /* configure a new MACs list */
12548     rc = bxe_init_mcast_macs_list(sc, &rparam);
12549     if (rc) {
12550         BLOGE(sc, "Failed to create mcast MACs list (%d)\n", rc);
12551         BXE_MCAST_UNLOCK(sc);
12552         return (rc);
12553     }
12554 
12555     /* Now add the new MACs */
12556     rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_ADD);
12557     if (rc < 0) {
12558         BLOGE(sc, "Failed to set new mcast config (%d)\n", rc);
12559     }
12560 
12561     bxe_free_mcast_macs_list(&rparam);
12562 
12563     BXE_MCAST_UNLOCK(sc);
12564 
12565     return (rc);
12566 }
12567 
12568 static int
12569 bxe_set_uc_list(struct bxe_softc *sc)
12570 {
12571     if_t ifp = sc->ifp;
12572     struct ecore_vlan_mac_obj *mac_obj = &sc->sp_objs->mac_obj;
12573     struct ifaddr *ifa;
12574     unsigned long ramrod_flags = 0;
12575     int rc;
12576 
12577 #if __FreeBSD_version < 800000
12578     IF_ADDR_LOCK(ifp);
12579 #else
12580     if_addr_rlock_drv(ifp);
12581 #endif
12582 
12583     /* first schedule a cleanup up of old configuration */
12584     rc = bxe_del_all_macs(sc, mac_obj, ECORE_UC_LIST_MAC, FALSE);
12585     if (rc < 0) {
12586         BLOGE(sc, "Failed to schedule delete of all ETH MACs (%d)\n", rc);
12587 #if __FreeBSD_version < 800000
12588         IF_ADDR_UNLOCK(ifp);
12589 #else
12590         if_addr_runlock_drv(ifp);
12591 #endif
12592         return (rc);
12593     }
12594 
12595     ifa = if_getifaddr(ifp); /* XXX Is this structure */
12596     while (ifa) {
12597         if (ifa->ifa_addr->sa_family != AF_LINK) {
12598             ifa = TAILQ_NEXT(ifa, ifa_link);
12599             continue;
12600         }
12601 
12602         rc = bxe_set_mac_one(sc, (uint8_t *)LLADDR((struct sockaddr_dl *)ifa->ifa_addr),
12603                              mac_obj, TRUE, ECORE_UC_LIST_MAC, &ramrod_flags);
12604         if (rc == -EEXIST) {
12605             BLOGD(sc, DBG_SP, "Failed to schedule ADD operations (EEXIST)\n");
12606             /* do not treat adding same MAC as an error */
12607             rc = 0;
12608         } else if (rc < 0) {
12609             BLOGE(sc, "Failed to schedule ADD operations (%d)\n", rc);
12610 #if __FreeBSD_version < 800000
12611             IF_ADDR_UNLOCK(ifp);
12612 #else
12613             if_addr_runlock_drv(ifp);
12614 #endif
12615             return (rc);
12616         }
12617 
12618         ifa = TAILQ_NEXT(ifa, ifa_link);
12619     }
12620 
12621 #if __FreeBSD_version < 800000
12622     IF_ADDR_UNLOCK(ifp);
12623 #else
12624     if_addr_runlock_drv(ifp);
12625 #endif
12626 
12627     /* Execute the pending commands */
12628     bit_set(&ramrod_flags, RAMROD_CONT);
12629     return (bxe_set_mac_one(sc, NULL, mac_obj, FALSE /* don't care */,
12630                             ECORE_UC_LIST_MAC, &ramrod_flags));
12631 }
12632 
12633 static void
12634 bxe_handle_rx_mode_tq(void *context,
12635                       int  pending)
12636 {
12637     struct bxe_softc *sc = (struct bxe_softc *)context;
12638     if_t ifp = sc->ifp;
12639     uint32_t rx_mode = BXE_RX_MODE_NORMAL;
12640 
12641     BXE_CORE_LOCK(sc);
12642 
12643     if (sc->state != BXE_STATE_OPEN) {
12644         BLOGD(sc, DBG_SP, "state is %x, returning\n", sc->state);
12645         BXE_CORE_UNLOCK(sc);
12646         return;
12647     }
12648 
12649     BLOGD(sc, DBG_SP, "if_flags(ifp)=0x%x\n", if_getflags(sc->ifp));
12650 
12651     if (if_getflags(ifp) & IFF_PROMISC) {
12652         rx_mode = BXE_RX_MODE_PROMISC;
12653     } else if ((if_getflags(ifp) & IFF_ALLMULTI) ||
12654                ((if_getamcount(ifp) > BXE_MAX_MULTICAST) &&
12655                 CHIP_IS_E1(sc))) {
12656         rx_mode = BXE_RX_MODE_ALLMULTI;
12657     } else {
12658         if (IS_PF(sc)) {
12659             /* some multicasts */
12660             if (bxe_set_mc_list(sc) < 0) {
12661                 rx_mode = BXE_RX_MODE_ALLMULTI;
12662             }
12663             if (bxe_set_uc_list(sc) < 0) {
12664                 rx_mode = BXE_RX_MODE_PROMISC;
12665             }
12666         }
12667 #if 0
12668         else {
12669             /*
12670              * Configuring mcast to a VF involves sleeping (when we
12671              * wait for the PF's response). Since this function is
12672              * called from a non sleepable context we must schedule
12673              * a work item for this purpose
12674              */
12675             bxe_set_bit(BXE_SP_RTNL_VFPF_MCAST, &sc->sp_rtnl_state);
12676             schedule_delayed_work(&sc->sp_rtnl_task, 0);
12677         }
12678 #endif
12679     }
12680 
12681     sc->rx_mode = rx_mode;
12682 
12683     /* schedule the rx_mode command */
12684     if (bxe_test_bit(ECORE_FILTER_RX_MODE_PENDING, &sc->sp_state)) {
12685         BLOGD(sc, DBG_LOAD, "Scheduled setting rx_mode with ECORE...\n");
12686         bxe_set_bit(ECORE_FILTER_RX_MODE_SCHED, &sc->sp_state);
12687         BXE_CORE_UNLOCK(sc);
12688         return;
12689     }
12690 
12691     if (IS_PF(sc)) {
12692         bxe_set_storm_rx_mode(sc);
12693     }
12694 #if 0
12695     else {
12696         /*
12697          * Configuring mcast to a VF involves sleeping (when we
12698          * wait for the PF's response). Since this function is
12699          * called from a non sleepable context we must schedule
12700          * a work item for this purpose
12701          */
12702         bxe_set_bit(BXE_SP_RTNL_VFPF_STORM_RX_MODE, &sc->sp_rtnl_state);
12703         schedule_delayed_work(&sc->sp_rtnl_task, 0);
12704     }
12705 #endif
12706 
12707     BXE_CORE_UNLOCK(sc);
12708 }
12709 
12710 static void
12711 bxe_set_rx_mode(struct bxe_softc *sc)
12712 {
12713     taskqueue_enqueue(sc->rx_mode_tq, &sc->rx_mode_tq_task);
12714 }
12715 
12716 /* update flags in shmem */
12717 static void
12718 bxe_update_drv_flags(struct bxe_softc *sc,
12719                      uint32_t         flags,
12720                      uint32_t         set)
12721 {
12722     uint32_t drv_flags;
12723 
12724     if (SHMEM2_HAS(sc, drv_flags)) {
12725         bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_DRV_FLAGS);
12726         drv_flags = SHMEM2_RD(sc, drv_flags);
12727 
12728         if (set) {
12729             SET_FLAGS(drv_flags, flags);
12730         } else {
12731             RESET_FLAGS(drv_flags, flags);
12732         }
12733 
12734         SHMEM2_WR(sc, drv_flags, drv_flags);
12735         BLOGD(sc, DBG_LOAD, "drv_flags 0x%08x\n", drv_flags);
12736 
12737         bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_DRV_FLAGS);
12738     }
12739 }
12740 
12741 /* periodic timer callout routine, only runs when the interface is up */
12742 
12743 static void
12744 bxe_periodic_callout_func(void *xsc)
12745 {
12746     struct bxe_softc *sc = (struct bxe_softc *)xsc;
12747     int i;
12748 
12749     if (!BXE_CORE_TRYLOCK(sc)) {
12750         /* just bail and try again next time */
12751 
12752         if ((sc->state == BXE_STATE_OPEN) &&
12753             (atomic_load_acq_long(&sc->periodic_flags) == PERIODIC_GO)) {
12754             /* schedule the next periodic callout */
12755             callout_reset(&sc->periodic_callout, hz,
12756                           bxe_periodic_callout_func, sc);
12757         }
12758 
12759         return;
12760     }
12761 
12762     if ((sc->state != BXE_STATE_OPEN) ||
12763         (atomic_load_acq_long(&sc->periodic_flags) == PERIODIC_STOP)) {
12764         BLOGW(sc, "periodic callout exit (state=0x%x)\n", sc->state);
12765         BXE_CORE_UNLOCK(sc);
12766         return;
12767     }
12768 
12769     /* Check for TX timeouts on any fastpath. */
12770     FOR_EACH_QUEUE(sc, i) {
12771         if (bxe_watchdog(sc, &sc->fp[i]) != 0) {
12772             /* Ruh-Roh, chip was reset! */
12773             break;
12774         }
12775     }
12776 
12777     if (!CHIP_REV_IS_SLOW(sc)) {
12778         /*
12779          * This barrier is needed to ensure the ordering between the writing
12780          * to the sc->port.pmf in the bxe_nic_load() or bxe_pmf_update() and
12781          * the reading here.
12782          */
12783         mb();
12784         if (sc->port.pmf) {
12785             BXE_PHY_LOCK(sc);
12786             elink_period_func(&sc->link_params, &sc->link_vars);
12787             BXE_PHY_UNLOCK(sc);
12788         }
12789     }
12790 
12791     if (IS_PF(sc) && !BXE_NOMCP(sc)) {
12792         int mb_idx = SC_FW_MB_IDX(sc);
12793         uint32_t drv_pulse;
12794         uint32_t mcp_pulse;
12795 
12796         ++sc->fw_drv_pulse_wr_seq;
12797         sc->fw_drv_pulse_wr_seq &= DRV_PULSE_SEQ_MASK;
12798 
12799         drv_pulse = sc->fw_drv_pulse_wr_seq;
12800         bxe_drv_pulse(sc);
12801 
12802         mcp_pulse = (SHMEM_RD(sc, func_mb[mb_idx].mcp_pulse_mb) &
12803                      MCP_PULSE_SEQ_MASK);
12804 
12805         /*
12806          * The delta between driver pulse and mcp response should
12807          * be 1 (before mcp response) or 0 (after mcp response).
12808          */
12809         if ((drv_pulse != mcp_pulse) &&
12810             (drv_pulse != ((mcp_pulse + 1) & MCP_PULSE_SEQ_MASK))) {
12811             /* someone lost a heartbeat... */
12812             BLOGE(sc, "drv_pulse (0x%x) != mcp_pulse (0x%x)\n",
12813                   drv_pulse, mcp_pulse);
12814         }
12815     }
12816 
12817     /* state is BXE_STATE_OPEN */
12818     bxe_stats_handle(sc, STATS_EVENT_UPDATE);
12819 
12820 #if 0
12821     /* sample VF bulletin board for new posts from PF */
12822     if (IS_VF(sc)) {
12823         bxe_sample_bulletin(sc);
12824     }
12825 #endif
12826 
12827     BXE_CORE_UNLOCK(sc);
12828 
12829     if ((sc->state == BXE_STATE_OPEN) &&
12830         (atomic_load_acq_long(&sc->periodic_flags) == PERIODIC_GO)) {
12831         /* schedule the next periodic callout */
12832         callout_reset(&sc->periodic_callout, hz,
12833                       bxe_periodic_callout_func, sc);
12834     }
12835 }
12836 
12837 static void
12838 bxe_periodic_start(struct bxe_softc *sc)
12839 {
12840     atomic_store_rel_long(&sc->periodic_flags, PERIODIC_GO);
12841     callout_reset(&sc->periodic_callout, hz, bxe_periodic_callout_func, sc);
12842 }
12843 
12844 static void
12845 bxe_periodic_stop(struct bxe_softc *sc)
12846 {
12847     atomic_store_rel_long(&sc->periodic_flags, PERIODIC_STOP);
12848     callout_drain(&sc->periodic_callout);
12849 }
12850 
12851 /* start the controller */
12852 static __noinline int
12853 bxe_nic_load(struct bxe_softc *sc,
12854              int              load_mode)
12855 {
12856     uint32_t val;
12857     int load_code = 0;
12858     int i, rc = 0;
12859 
12860     BXE_CORE_LOCK_ASSERT(sc);
12861 
12862     BLOGD(sc, DBG_LOAD, "Starting NIC load...\n");
12863 
12864     sc->state = BXE_STATE_OPENING_WAITING_LOAD;
12865 
12866     if (IS_PF(sc)) {
12867         /* must be called before memory allocation and HW init */
12868         bxe_ilt_set_info(sc);
12869     }
12870 
12871     sc->last_reported_link_state = LINK_STATE_UNKNOWN;
12872 
12873     bxe_set_fp_rx_buf_size(sc);
12874 
12875     if (bxe_alloc_fp_buffers(sc) != 0) {
12876         BLOGE(sc, "Failed to allocate fastpath memory\n");
12877         sc->state = BXE_STATE_CLOSED;
12878         rc = ENOMEM;
12879         goto bxe_nic_load_error0;
12880     }
12881 
12882     if (bxe_alloc_mem(sc) != 0) {
12883         sc->state = BXE_STATE_CLOSED;
12884         rc = ENOMEM;
12885         goto bxe_nic_load_error0;
12886     }
12887 
12888     if (bxe_alloc_fw_stats_mem(sc) != 0) {
12889         sc->state = BXE_STATE_CLOSED;
12890         rc = ENOMEM;
12891         goto bxe_nic_load_error0;
12892     }
12893 
12894     if (IS_PF(sc)) {
12895         /* set pf load just before approaching the MCP */
12896         bxe_set_pf_load(sc);
12897 
12898         /* if MCP exists send load request and analyze response */
12899         if (!BXE_NOMCP(sc)) {
12900             /* attempt to load pf */
12901             if (bxe_nic_load_request(sc, &load_code) != 0) {
12902                 sc->state = BXE_STATE_CLOSED;
12903                 rc = ENXIO;
12904                 goto bxe_nic_load_error1;
12905             }
12906 
12907             /* what did the MCP say? */
12908             if (bxe_nic_load_analyze_req(sc, load_code) != 0) {
12909                 bxe_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0);
12910                 sc->state = BXE_STATE_CLOSED;
12911                 rc = ENXIO;
12912                 goto bxe_nic_load_error2;
12913             }
12914         } else {
12915             BLOGI(sc, "Device has no MCP!\n");
12916             load_code = bxe_nic_load_no_mcp(sc);
12917         }
12918 
12919         /* mark PMF if applicable */
12920         bxe_nic_load_pmf(sc, load_code);
12921 
12922         /* Init Function state controlling object */
12923         bxe_init_func_obj(sc);
12924 
12925         /* Initialize HW */
12926         if (bxe_init_hw(sc, load_code) != 0) {
12927             BLOGE(sc, "HW init failed\n");
12928             bxe_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0);
12929             sc->state = BXE_STATE_CLOSED;
12930             rc = ENXIO;
12931             goto bxe_nic_load_error2;
12932         }
12933     }
12934 
12935     /* attach interrupts */
12936     if (bxe_interrupt_attach(sc) != 0) {
12937         sc->state = BXE_STATE_CLOSED;
12938         rc = ENXIO;
12939         goto bxe_nic_load_error2;
12940     }
12941 
12942     bxe_nic_init(sc, load_code);
12943 
12944     /* Init per-function objects */
12945     if (IS_PF(sc)) {
12946         bxe_init_objs(sc);
12947         // XXX bxe_iov_nic_init(sc);
12948 
12949         /* set AFEX default VLAN tag to an invalid value */
12950         sc->devinfo.mf_info.afex_def_vlan_tag = -1;
12951         // XXX bxe_nic_load_afex_dcc(sc, load_code);
12952 
12953         sc->state = BXE_STATE_OPENING_WAITING_PORT;
12954         rc = bxe_func_start(sc);
12955         if (rc) {
12956             BLOGE(sc, "Function start failed!\n");
12957             bxe_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0);
12958             sc->state = BXE_STATE_ERROR;
12959             goto bxe_nic_load_error3;
12960         }
12961 
12962         /* send LOAD_DONE command to MCP */
12963         if (!BXE_NOMCP(sc)) {
12964             load_code = bxe_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0);
12965             if (!load_code) {
12966                 BLOGE(sc, "MCP response failure, aborting\n");
12967                 sc->state = BXE_STATE_ERROR;
12968                 rc = ENXIO;
12969                 goto bxe_nic_load_error3;
12970             }
12971         }
12972 
12973         rc = bxe_setup_leading(sc);
12974         if (rc) {
12975             BLOGE(sc, "Setup leading failed!\n");
12976             sc->state = BXE_STATE_ERROR;
12977             goto bxe_nic_load_error3;
12978         }
12979 
12980         FOR_EACH_NONDEFAULT_ETH_QUEUE(sc, i) {
12981             rc = bxe_setup_queue(sc, &sc->fp[i], FALSE);
12982             if (rc) {
12983                 BLOGE(sc, "Queue(%d) setup failed\n", i);
12984                 sc->state = BXE_STATE_ERROR;
12985                 goto bxe_nic_load_error3;
12986             }
12987         }
12988 
12989         rc = bxe_init_rss_pf(sc);
12990         if (rc) {
12991             BLOGE(sc, "PF RSS init failed\n");
12992             sc->state = BXE_STATE_ERROR;
12993             goto bxe_nic_load_error3;
12994         }
12995     }
12996     /* XXX VF */
12997 #if 0
12998     else { /* VF */
12999         FOR_EACH_ETH_QUEUE(sc, i) {
13000             rc = bxe_vfpf_setup_q(sc, i);
13001             if (rc) {
13002                 BLOGE(sc, "Queue(%d) setup failed\n", i);
13003                 sc->state = BXE_STATE_ERROR;
13004                 goto bxe_nic_load_error3;
13005             }
13006         }
13007     }
13008 #endif
13009 
13010     /* now when Clients are configured we are ready to work */
13011     sc->state = BXE_STATE_OPEN;
13012 
13013     /* Configure a ucast MAC */
13014     if (IS_PF(sc)) {
13015         rc = bxe_set_eth_mac(sc, TRUE);
13016     }
13017 #if 0
13018     else { /* IS_VF(sc) */
13019         rc = bxe_vfpf_set_mac(sc);
13020     }
13021 #endif
13022     if (rc) {
13023         BLOGE(sc, "Setting Ethernet MAC failed\n");
13024         sc->state = BXE_STATE_ERROR;
13025         goto bxe_nic_load_error3;
13026     }
13027 
13028 #if 0
13029     if (IS_PF(sc) && sc->pending_max) {
13030         /* for AFEX */
13031         bxe_update_max_mf_config(sc, sc->pending_max);
13032         sc->pending_max = 0;
13033     }
13034 #endif
13035 
13036     if (sc->port.pmf) {
13037         rc = bxe_initial_phy_init(sc, /* XXX load_mode */LOAD_OPEN);
13038         if (rc) {
13039             sc->state = BXE_STATE_ERROR;
13040             goto bxe_nic_load_error3;
13041         }
13042     }
13043 
13044     sc->link_params.feature_config_flags &=
13045         ~ELINK_FEATURE_CONFIG_BOOT_FROM_SAN;
13046 
13047     /* start fast path */
13048 
13049     /* Initialize Rx filter */
13050     bxe_set_rx_mode(sc);
13051 
13052     /* start the Tx */
13053     switch (/* XXX load_mode */LOAD_OPEN) {
13054     case LOAD_NORMAL:
13055     case LOAD_OPEN:
13056         break;
13057 
13058     case LOAD_DIAG:
13059     case LOAD_LOOPBACK_EXT:
13060         sc->state = BXE_STATE_DIAG;
13061         break;
13062 
13063     default:
13064         break;
13065     }
13066 
13067     if (sc->port.pmf) {
13068         bxe_update_drv_flags(sc, 1 << DRV_FLAGS_PORT_MASK, 0);
13069     } else {
13070         bxe_link_status_update(sc);
13071     }
13072 
13073     /* start the periodic timer callout */
13074     bxe_periodic_start(sc);
13075 
13076     if (IS_PF(sc) && SHMEM2_HAS(sc, drv_capabilities_flag)) {
13077         /* mark driver is loaded in shmem2 */
13078         val = SHMEM2_RD(sc, drv_capabilities_flag[SC_FW_MB_IDX(sc)]);
13079         SHMEM2_WR(sc, drv_capabilities_flag[SC_FW_MB_IDX(sc)],
13080                   (val |
13081                    DRV_FLAGS_CAPABILITIES_LOADED_SUPPORTED |
13082                    DRV_FLAGS_CAPABILITIES_LOADED_L2));
13083     }
13084 
13085     /* wait for all pending SP commands to complete */
13086     if (IS_PF(sc) && !bxe_wait_sp_comp(sc, ~0x0UL)) {
13087         BLOGE(sc, "Timeout waiting for all SPs to complete!\n");
13088         bxe_periodic_stop(sc);
13089         bxe_nic_unload(sc, UNLOAD_CLOSE, FALSE);
13090         return (ENXIO);
13091     }
13092 
13093 #if 0
13094     /* If PMF - send ADMIN DCBX msg to MFW to initiate DCBX FSM */
13095     if (sc->port.pmf && (sc->state != BXE_STATE_DIAG)) {
13096         bxe_dcbx_init(sc, FALSE);
13097     }
13098 #endif
13099 
13100     /* Tell the stack the driver is running! */
13101     if_setdrvflags(sc->ifp, IFF_DRV_RUNNING);
13102 
13103     BLOGD(sc, DBG_LOAD, "NIC successfully loaded\n");
13104 
13105     return (0);
13106 
13107 bxe_nic_load_error3:
13108 
13109     if (IS_PF(sc)) {
13110         bxe_int_disable_sync(sc, 1);
13111 
13112         /* clean out queued objects */
13113         bxe_squeeze_objects(sc);
13114     }
13115 
13116     bxe_interrupt_detach(sc);
13117 
13118 bxe_nic_load_error2:
13119 
13120     if (IS_PF(sc) && !BXE_NOMCP(sc)) {
13121         bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP, 0);
13122         bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_DONE, 0);
13123     }
13124 
13125     sc->port.pmf = 0;
13126 
13127 bxe_nic_load_error1:
13128 
13129     /* clear pf_load status, as it was already set */
13130     if (IS_PF(sc)) {
13131         bxe_clear_pf_load(sc);
13132     }
13133 
13134 bxe_nic_load_error0:
13135 
13136     bxe_free_fw_stats_mem(sc);
13137     bxe_free_fp_buffers(sc);
13138     bxe_free_mem(sc);
13139 
13140     return (rc);
13141 }
13142 
13143 static int
13144 bxe_init_locked(struct bxe_softc *sc)
13145 {
13146     int other_engine = SC_PATH(sc) ? 0 : 1;
13147     uint8_t other_load_status, load_status;
13148     uint8_t global = FALSE;
13149     int rc;
13150 
13151     BXE_CORE_LOCK_ASSERT(sc);
13152 
13153     /* check if the driver is already running */
13154     if (if_getdrvflags(sc->ifp) & IFF_DRV_RUNNING) {
13155         BLOGD(sc, DBG_LOAD, "Init called while driver is running!\n");
13156         return (0);
13157     }
13158 
13159     bxe_set_power_state(sc, PCI_PM_D0);
13160 
13161     /*
13162      * If parity occurred during the unload, then attentions and/or
13163      * RECOVERY_IN_PROGRES may still be set. If so we want the first function
13164      * loaded on the current engine to complete the recovery. Parity recovery
13165      * is only relevant for PF driver.
13166      */
13167     if (IS_PF(sc)) {
13168         other_load_status = bxe_get_load_status(sc, other_engine);
13169         load_status = bxe_get_load_status(sc, SC_PATH(sc));
13170 
13171         if (!bxe_reset_is_done(sc, SC_PATH(sc)) ||
13172             bxe_chk_parity_attn(sc, &global, TRUE)) {
13173             do {
13174                 /*
13175                  * If there are attentions and they are in global blocks, set
13176                  * the GLOBAL_RESET bit regardless whether it will be this
13177                  * function that will complete the recovery or not.
13178                  */
13179                 if (global) {
13180                     bxe_set_reset_global(sc);
13181                 }
13182 
13183                 /*
13184                  * Only the first function on the current engine should try
13185                  * to recover in open. In case of attentions in global blocks
13186                  * only the first in the chip should try to recover.
13187                  */
13188                 if ((!load_status && (!global || !other_load_status)) &&
13189                     bxe_trylock_leader_lock(sc) && !bxe_leader_reset(sc)) {
13190                     BLOGI(sc, "Recovered during init\n");
13191                     break;
13192                 }
13193 
13194                 /* recovery has failed... */
13195                 bxe_set_power_state(sc, PCI_PM_D3hot);
13196                 sc->recovery_state = BXE_RECOVERY_FAILED;
13197 
13198                 BLOGE(sc, "Recovery flow hasn't properly "
13199                           "completed yet, try again later. "
13200                           "If you still see this message after a "
13201                           "few retries then power cycle is required.\n");
13202 
13203                 rc = ENXIO;
13204                 goto bxe_init_locked_done;
13205             } while (0);
13206         }
13207     }
13208 
13209     sc->recovery_state = BXE_RECOVERY_DONE;
13210 
13211     rc = bxe_nic_load(sc, LOAD_OPEN);
13212 
13213 bxe_init_locked_done:
13214 
13215     if (rc) {
13216         /* Tell the stack the driver is NOT running! */
13217         BLOGE(sc, "Initialization failed, "
13218                   "stack notified driver is NOT running!\n");
13219 	if_setdrvflagbits(sc->ifp, 0, IFF_DRV_RUNNING);
13220     }
13221 
13222     return (rc);
13223 }
13224 
13225 static int
13226 bxe_stop_locked(struct bxe_softc *sc)
13227 {
13228     BXE_CORE_LOCK_ASSERT(sc);
13229     return (bxe_nic_unload(sc, UNLOAD_NORMAL, TRUE));
13230 }
13231 
13232 /*
13233  * Handles controller initialization when called from an unlocked routine.
13234  * ifconfig calls this function.
13235  *
13236  * Returns:
13237  *   void
13238  */
13239 static void
13240 bxe_init(void *xsc)
13241 {
13242     struct bxe_softc *sc = (struct bxe_softc *)xsc;
13243 
13244     BXE_CORE_LOCK(sc);
13245     bxe_init_locked(sc);
13246     BXE_CORE_UNLOCK(sc);
13247 }
13248 
13249 static int
13250 bxe_init_ifnet(struct bxe_softc *sc)
13251 {
13252     if_t ifp;
13253     int capabilities;
13254 
13255     /* ifconfig entrypoint for media type/status reporting */
13256     ifmedia_init(&sc->ifmedia, IFM_IMASK,
13257                  bxe_ifmedia_update,
13258                  bxe_ifmedia_status);
13259 
13260     /* set the default interface values */
13261     ifmedia_add(&sc->ifmedia, (IFM_ETHER | IFM_FDX | sc->media), 0, NULL);
13262     ifmedia_add(&sc->ifmedia, (IFM_ETHER | IFM_AUTO), 0, NULL);
13263     ifmedia_set(&sc->ifmedia, (IFM_ETHER | IFM_AUTO));
13264 
13265     sc->ifmedia.ifm_media = sc->ifmedia.ifm_cur->ifm_media; /* XXX ? */
13266 
13267     /* allocate the ifnet structure */
13268     if ((ifp = if_gethandle(IFT_ETHER)) == NULL) {
13269         BLOGE(sc, "Interface allocation failed!\n");
13270         return (ENXIO);
13271     }
13272 
13273     if_setsoftc(ifp, sc);
13274     if_initname_drv(ifp, device_get_name(sc->dev), device_get_unit(sc->dev));
13275     if_setflags(ifp, (IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST));
13276     if_setioctlfn(ifp, bxe_ioctl);
13277     if_setstartfn(ifp, bxe_tx_start);
13278 #if __FreeBSD_version >= 800000
13279     if_settransmitfn(ifp, bxe_tx_mq_start);
13280     if_setqflushfn(ifp, bxe_mq_flush);
13281 #endif
13282 #ifdef FreeBSD8_0
13283     if_settimer(ifp, 0);
13284 #endif
13285     if_setinitfn(ifp, bxe_init);
13286     if_setmtu(ifp, sc->mtu);
13287     if_sethwassist(ifp, (CSUM_IP      |
13288                         CSUM_TCP      |
13289                         CSUM_UDP      |
13290                         CSUM_TSO      |
13291                         CSUM_TCP_IPV6 |
13292                         CSUM_UDP_IPV6));
13293 
13294     capabilities =
13295 #if __FreeBSD_version < 700000
13296         (IFCAP_VLAN_MTU       |
13297          IFCAP_VLAN_HWTAGGING |
13298          IFCAP_HWCSUM         |
13299          IFCAP_JUMBO_MTU      |
13300          IFCAP_LRO);
13301 #else
13302         (IFCAP_VLAN_MTU       |
13303          IFCAP_VLAN_HWTAGGING |
13304          IFCAP_VLAN_HWTSO     |
13305          IFCAP_VLAN_HWFILTER  |
13306          IFCAP_VLAN_HWCSUM    |
13307          IFCAP_HWCSUM         |
13308          IFCAP_JUMBO_MTU      |
13309          IFCAP_LRO            |
13310          IFCAP_TSO4           |
13311          IFCAP_TSO6           |
13312          IFCAP_WOL_MAGIC);
13313 #endif
13314     if_setcapabilitiesbit(ifp, capabilities, 0); /* XXX */
13315     if_setbaudrate(ifp, IF_Gbps(10));
13316 /* XXX */
13317     if_setsendqlen(ifp, sc->tx_ring_size);
13318     if_setsendqready(ifp);
13319 /* XXX */
13320 
13321     sc->ifp = ifp;
13322 
13323     /* attach to the Ethernet interface list */
13324     ether_ifattach_drv(ifp, sc->link_params.mac_addr);
13325 
13326     return (0);
13327 }
13328 
13329 static void
13330 bxe_deallocate_bars(struct bxe_softc *sc)
13331 {
13332     int i;
13333 
13334     for (i = 0; i < MAX_BARS; i++) {
13335         if (sc->bar[i].resource != NULL) {
13336             bus_release_resource(sc->dev,
13337                                  SYS_RES_MEMORY,
13338                                  sc->bar[i].rid,
13339                                  sc->bar[i].resource);
13340             BLOGD(sc, DBG_LOAD, "Released PCI BAR%d [%02x] memory\n",
13341                   i, PCIR_BAR(i));
13342         }
13343     }
13344 }
13345 
13346 static int
13347 bxe_allocate_bars(struct bxe_softc *sc)
13348 {
13349     u_int flags;
13350     int i;
13351 
13352     memset(sc->bar, 0, sizeof(sc->bar));
13353 
13354     for (i = 0; i < MAX_BARS; i++) {
13355 
13356         /* memory resources reside at BARs 0, 2, 4 */
13357         /* Run `pciconf -lb` to see mappings */
13358         if ((i != 0) && (i != 2) && (i != 4)) {
13359             continue;
13360         }
13361 
13362         sc->bar[i].rid = PCIR_BAR(i);
13363 
13364         flags = RF_ACTIVE;
13365         if (i == 0) {
13366             flags |= RF_SHAREABLE;
13367         }
13368 
13369         if ((sc->bar[i].resource =
13370              bus_alloc_resource_any(sc->dev,
13371                                     SYS_RES_MEMORY,
13372                                     &sc->bar[i].rid,
13373                                     flags)) == NULL) {
13374 #if 0
13375             /* BAR4 doesn't exist for E1 */
13376             BLOGE(sc, "PCI BAR%d [%02x] memory allocation failed\n",
13377                   i, PCIR_BAR(i));
13378 #endif
13379             return (0);
13380         }
13381 
13382         sc->bar[i].tag    = rman_get_bustag(sc->bar[i].resource);
13383         sc->bar[i].handle = rman_get_bushandle(sc->bar[i].resource);
13384         sc->bar[i].kva    = (vm_offset_t)rman_get_virtual(sc->bar[i].resource);
13385 
13386         BLOGI(sc, "PCI BAR%d [%02x] memory allocated: %p-%p (%ld) -> %p\n",
13387               i, PCIR_BAR(i),
13388               (void *)rman_get_start(sc->bar[i].resource),
13389               (void *)rman_get_end(sc->bar[i].resource),
13390               rman_get_size(sc->bar[i].resource),
13391               (void *)sc->bar[i].kva);
13392     }
13393 
13394     return (0);
13395 }
13396 
13397 static void
13398 bxe_get_function_num(struct bxe_softc *sc)
13399 {
13400     uint32_t val = 0;
13401 
13402     /*
13403      * Read the ME register to get the function number. The ME register
13404      * holds the relative-function number and absolute-function number. The
13405      * absolute-function number appears only in E2 and above. Before that
13406      * these bits always contained zero, therefore we cannot blindly use them.
13407      */
13408 
13409     val = REG_RD(sc, BAR_ME_REGISTER);
13410 
13411     sc->pfunc_rel =
13412         (uint8_t)((val & ME_REG_PF_NUM) >> ME_REG_PF_NUM_SHIFT);
13413     sc->path_id =
13414         (uint8_t)((val & ME_REG_ABS_PF_NUM) >> ME_REG_ABS_PF_NUM_SHIFT) & 1;
13415 
13416     if (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) {
13417         sc->pfunc_abs = ((sc->pfunc_rel << 1) | sc->path_id);
13418     } else {
13419         sc->pfunc_abs = (sc->pfunc_rel | sc->path_id);
13420     }
13421 
13422     BLOGD(sc, DBG_LOAD,
13423           "Relative function %d, Absolute function %d, Path %d\n",
13424           sc->pfunc_rel, sc->pfunc_abs, sc->path_id);
13425 }
13426 
13427 static uint32_t
13428 bxe_get_shmem_mf_cfg_base(struct bxe_softc *sc)
13429 {
13430     uint32_t shmem2_size;
13431     uint32_t offset;
13432     uint32_t mf_cfg_offset_value;
13433 
13434     /* Non 57712 */
13435     offset = (SHMEM_RD(sc, func_mb) +
13436               (MAX_FUNC_NUM * sizeof(struct drv_func_mb)));
13437 
13438     /* 57712 plus */
13439     if (sc->devinfo.shmem2_base != 0) {
13440         shmem2_size = SHMEM2_RD(sc, size);
13441         if (shmem2_size > offsetof(struct shmem2_region, mf_cfg_addr)) {
13442             mf_cfg_offset_value = SHMEM2_RD(sc, mf_cfg_addr);
13443             if (SHMEM_MF_CFG_ADDR_NONE != mf_cfg_offset_value) {
13444                 offset = mf_cfg_offset_value;
13445             }
13446         }
13447     }
13448 
13449     return (offset);
13450 }
13451 
13452 static uint32_t
13453 bxe_pcie_capability_read(struct bxe_softc *sc,
13454                          int    reg,
13455                          int    width)
13456 {
13457     int pcie_reg;
13458 
13459     /* ensure PCIe capability is enabled */
13460     if (pci_find_cap(sc->dev, PCIY_EXPRESS, &pcie_reg) == 0) {
13461         if (pcie_reg != 0) {
13462             BLOGD(sc, DBG_LOAD, "PCIe capability at 0x%04x\n", pcie_reg);
13463             return (pci_read_config(sc->dev, (pcie_reg + reg), width));
13464         }
13465     }
13466 
13467     BLOGE(sc, "PCIe capability NOT FOUND!!!\n");
13468 
13469     return (0);
13470 }
13471 
13472 static uint8_t
13473 bxe_is_pcie_pending(struct bxe_softc *sc)
13474 {
13475     return (bxe_pcie_capability_read(sc, PCIR_EXPRESS_DEVICE_STA, 2) &
13476             PCIM_EXP_STA_TRANSACTION_PND);
13477 }
13478 
13479 /*
13480  * Walk the PCI capabiites list for the device to find what features are
13481  * supported. These capabilites may be enabled/disabled by firmware so it's
13482  * best to walk the list rather than make assumptions.
13483  */
13484 static void
13485 bxe_probe_pci_caps(struct bxe_softc *sc)
13486 {
13487     uint16_t link_status;
13488     int reg;
13489 
13490     /* check if PCI Power Management is enabled */
13491     if (pci_find_cap(sc->dev, PCIY_PMG, &reg) == 0) {
13492         if (reg != 0) {
13493             BLOGD(sc, DBG_LOAD, "Found PM capability at 0x%04x\n", reg);
13494 
13495             sc->devinfo.pcie_cap_flags |= BXE_PM_CAPABLE_FLAG;
13496             sc->devinfo.pcie_pm_cap_reg = (uint16_t)reg;
13497         }
13498     }
13499 
13500     link_status = bxe_pcie_capability_read(sc, PCIR_EXPRESS_LINK_STA, 2);
13501 
13502     /* handle PCIe 2.0 workarounds for 57710 */
13503     if (CHIP_IS_E1(sc)) {
13504         /* workaround for 57710 errata E4_57710_27462 */
13505         sc->devinfo.pcie_link_speed =
13506             (REG_RD(sc, 0x3d04) & (1 << 24)) ? 2 : 1;
13507 
13508         /* workaround for 57710 errata E4_57710_27488 */
13509         sc->devinfo.pcie_link_width =
13510             ((link_status & PCIM_LINK_STA_WIDTH) >> 4);
13511         if (sc->devinfo.pcie_link_speed > 1) {
13512             sc->devinfo.pcie_link_width =
13513                 ((link_status & PCIM_LINK_STA_WIDTH) >> 4) >> 1;
13514         }
13515     } else {
13516         sc->devinfo.pcie_link_speed =
13517             (link_status & PCIM_LINK_STA_SPEED);
13518         sc->devinfo.pcie_link_width =
13519             ((link_status & PCIM_LINK_STA_WIDTH) >> 4);
13520     }
13521 
13522     BLOGD(sc, DBG_LOAD, "PCIe link speed=%d width=%d\n",
13523           sc->devinfo.pcie_link_speed, sc->devinfo.pcie_link_width);
13524 
13525     sc->devinfo.pcie_cap_flags |= BXE_PCIE_CAPABLE_FLAG;
13526     sc->devinfo.pcie_pcie_cap_reg = (uint16_t)reg;
13527 
13528     /* check if MSI capability is enabled */
13529     if (pci_find_cap(sc->dev, PCIY_MSI, &reg) == 0) {
13530         if (reg != 0) {
13531             BLOGD(sc, DBG_LOAD, "Found MSI capability at 0x%04x\n", reg);
13532 
13533             sc->devinfo.pcie_cap_flags |= BXE_MSI_CAPABLE_FLAG;
13534             sc->devinfo.pcie_msi_cap_reg = (uint16_t)reg;
13535         }
13536     }
13537 
13538     /* check if MSI-X capability is enabled */
13539     if (pci_find_cap(sc->dev, PCIY_MSIX, &reg) == 0) {
13540         if (reg != 0) {
13541             BLOGD(sc, DBG_LOAD, "Found MSI-X capability at 0x%04x\n", reg);
13542 
13543             sc->devinfo.pcie_cap_flags |= BXE_MSIX_CAPABLE_FLAG;
13544             sc->devinfo.pcie_msix_cap_reg = (uint16_t)reg;
13545         }
13546     }
13547 }
13548 
13549 static int
13550 bxe_get_shmem_mf_cfg_info_sd(struct bxe_softc *sc)
13551 {
13552     struct bxe_mf_info *mf_info = &sc->devinfo.mf_info;
13553     uint32_t val;
13554 
13555     /* get the outer vlan if we're in switch-dependent mode */
13556 
13557     val = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].e1hov_tag);
13558     mf_info->ext_id = (uint16_t)val;
13559 
13560     mf_info->multi_vnics_mode = 1;
13561 
13562     if (!VALID_OVLAN(mf_info->ext_id)) {
13563         BLOGE(sc, "Invalid VLAN (%d)\n", mf_info->ext_id);
13564         return (1);
13565     }
13566 
13567     /* get the capabilities */
13568     if ((mf_info->mf_config[SC_VN(sc)] & FUNC_MF_CFG_PROTOCOL_MASK) ==
13569         FUNC_MF_CFG_PROTOCOL_ISCSI) {
13570         mf_info->mf_protos_supported |= MF_PROTO_SUPPORT_ISCSI;
13571     } else if ((mf_info->mf_config[SC_VN(sc)] & FUNC_MF_CFG_PROTOCOL_MASK) ==
13572                FUNC_MF_CFG_PROTOCOL_FCOE) {
13573         mf_info->mf_protos_supported |= MF_PROTO_SUPPORT_FCOE;
13574     } else {
13575         mf_info->mf_protos_supported |= MF_PROTO_SUPPORT_ETHERNET;
13576     }
13577 
13578     mf_info->vnics_per_port =
13579         (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) ? 2 : 4;
13580 
13581     return (0);
13582 }
13583 
13584 static uint32_t
13585 bxe_get_shmem_ext_proto_support_flags(struct bxe_softc *sc)
13586 {
13587     uint32_t retval = 0;
13588     uint32_t val;
13589 
13590     val = MFCFG_RD(sc, func_ext_config[SC_ABS_FUNC(sc)].func_cfg);
13591 
13592     if (val & MACP_FUNC_CFG_FLAGS_ENABLED) {
13593         if (val & MACP_FUNC_CFG_FLAGS_ETHERNET) {
13594             retval |= MF_PROTO_SUPPORT_ETHERNET;
13595         }
13596         if (val & MACP_FUNC_CFG_FLAGS_ISCSI_OFFLOAD) {
13597             retval |= MF_PROTO_SUPPORT_ISCSI;
13598         }
13599         if (val & MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD) {
13600             retval |= MF_PROTO_SUPPORT_FCOE;
13601         }
13602     }
13603 
13604     return (retval);
13605 }
13606 
13607 static int
13608 bxe_get_shmem_mf_cfg_info_si(struct bxe_softc *sc)
13609 {
13610     struct bxe_mf_info *mf_info = &sc->devinfo.mf_info;
13611     uint32_t val;
13612 
13613     /*
13614      * There is no outer vlan if we're in switch-independent mode.
13615      * If the mac is valid then assume multi-function.
13616      */
13617 
13618     val = MFCFG_RD(sc, func_ext_config[SC_ABS_FUNC(sc)].func_cfg);
13619 
13620     mf_info->multi_vnics_mode = ((val & MACP_FUNC_CFG_FLAGS_MASK) != 0);
13621 
13622     mf_info->mf_protos_supported = bxe_get_shmem_ext_proto_support_flags(sc);
13623 
13624     mf_info->vnics_per_port =
13625         (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) ? 2 : 4;
13626 
13627     return (0);
13628 }
13629 
13630 static int
13631 bxe_get_shmem_mf_cfg_info_niv(struct bxe_softc *sc)
13632 {
13633     struct bxe_mf_info *mf_info = &sc->devinfo.mf_info;
13634     uint32_t e1hov_tag;
13635     uint32_t func_config;
13636     uint32_t niv_config;
13637 
13638     mf_info->multi_vnics_mode = 1;
13639 
13640     e1hov_tag   = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].e1hov_tag);
13641     func_config = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].config);
13642     niv_config  = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].afex_config);
13643 
13644     mf_info->ext_id =
13645         (uint16_t)((e1hov_tag & FUNC_MF_CFG_E1HOV_TAG_MASK) >>
13646                    FUNC_MF_CFG_E1HOV_TAG_SHIFT);
13647 
13648     mf_info->default_vlan =
13649         (uint16_t)((e1hov_tag & FUNC_MF_CFG_AFEX_VLAN_MASK) >>
13650                    FUNC_MF_CFG_AFEX_VLAN_SHIFT);
13651 
13652     mf_info->niv_allowed_priorities =
13653         (uint8_t)((niv_config & FUNC_MF_CFG_AFEX_COS_FILTER_MASK) >>
13654                   FUNC_MF_CFG_AFEX_COS_FILTER_SHIFT);
13655 
13656     mf_info->niv_default_cos =
13657         (uint8_t)((func_config & FUNC_MF_CFG_TRANSMIT_PRIORITY_MASK) >>
13658                   FUNC_MF_CFG_TRANSMIT_PRIORITY_SHIFT);
13659 
13660     mf_info->afex_vlan_mode =
13661         ((niv_config & FUNC_MF_CFG_AFEX_VLAN_MODE_MASK) >>
13662          FUNC_MF_CFG_AFEX_VLAN_MODE_SHIFT);
13663 
13664     mf_info->niv_mba_enabled =
13665         ((niv_config & FUNC_MF_CFG_AFEX_MBA_ENABLED_MASK) >>
13666          FUNC_MF_CFG_AFEX_MBA_ENABLED_SHIFT);
13667 
13668     mf_info->mf_protos_supported = bxe_get_shmem_ext_proto_support_flags(sc);
13669 
13670     mf_info->vnics_per_port =
13671         (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) ? 2 : 4;
13672 
13673     return (0);
13674 }
13675 
13676 static int
13677 bxe_check_valid_mf_cfg(struct bxe_softc *sc)
13678 {
13679     struct bxe_mf_info *mf_info = &sc->devinfo.mf_info;
13680     uint32_t mf_cfg1;
13681     uint32_t mf_cfg2;
13682     uint32_t ovlan1;
13683     uint32_t ovlan2;
13684     uint8_t i, j;
13685 
13686     BLOGD(sc, DBG_LOAD, "MF config parameters for function %d\n",
13687           SC_PORT(sc));
13688     BLOGD(sc, DBG_LOAD, "\tmf_config=0x%x\n",
13689           mf_info->mf_config[SC_VN(sc)]);
13690     BLOGD(sc, DBG_LOAD, "\tmulti_vnics_mode=%d\n",
13691           mf_info->multi_vnics_mode);
13692     BLOGD(sc, DBG_LOAD, "\tvnics_per_port=%d\n",
13693           mf_info->vnics_per_port);
13694     BLOGD(sc, DBG_LOAD, "\tovlan/vifid=%d\n",
13695           mf_info->ext_id);
13696     BLOGD(sc, DBG_LOAD, "\tmin_bw=%d/%d/%d/%d\n",
13697           mf_info->min_bw[0], mf_info->min_bw[1],
13698           mf_info->min_bw[2], mf_info->min_bw[3]);
13699     BLOGD(sc, DBG_LOAD, "\tmax_bw=%d/%d/%d/%d\n",
13700           mf_info->max_bw[0], mf_info->max_bw[1],
13701           mf_info->max_bw[2], mf_info->max_bw[3]);
13702     BLOGD(sc, DBG_LOAD, "\tmac_addr: %s\n",
13703           sc->mac_addr_str);
13704 
13705     /* various MF mode sanity checks... */
13706 
13707     if (mf_info->mf_config[SC_VN(sc)] & FUNC_MF_CFG_FUNC_HIDE) {
13708         BLOGE(sc, "Enumerated function %d is marked as hidden\n",
13709               SC_PORT(sc));
13710         return (1);
13711     }
13712 
13713     if ((mf_info->vnics_per_port > 1) && !mf_info->multi_vnics_mode) {
13714         BLOGE(sc, "vnics_per_port=%d multi_vnics_mode=%d\n",
13715               mf_info->vnics_per_port, mf_info->multi_vnics_mode);
13716         return (1);
13717     }
13718 
13719     if (mf_info->mf_mode == MULTI_FUNCTION_SD) {
13720         /* vnic id > 0 must have valid ovlan in switch-dependent mode */
13721         if ((SC_VN(sc) > 0) && !VALID_OVLAN(OVLAN(sc))) {
13722             BLOGE(sc, "mf_mode=SD vnic_id=%d ovlan=%d\n",
13723                   SC_VN(sc), OVLAN(sc));
13724             return (1);
13725         }
13726 
13727         if (!VALID_OVLAN(OVLAN(sc)) && mf_info->multi_vnics_mode) {
13728             BLOGE(sc, "mf_mode=SD multi_vnics_mode=%d ovlan=%d\n",
13729                   mf_info->multi_vnics_mode, OVLAN(sc));
13730             return (1);
13731         }
13732 
13733         /*
13734          * Verify all functions are either MF or SF mode. If MF, make sure
13735          * sure that all non-hidden functions have a valid ovlan. If SF,
13736          * make sure that all non-hidden functions have an invalid ovlan.
13737          */
13738         FOREACH_ABS_FUNC_IN_PORT(sc, i) {
13739             mf_cfg1 = MFCFG_RD(sc, func_mf_config[i].config);
13740             ovlan1  = MFCFG_RD(sc, func_mf_config[i].e1hov_tag);
13741             if (!(mf_cfg1 & FUNC_MF_CFG_FUNC_HIDE) &&
13742                 (((mf_info->multi_vnics_mode) && !VALID_OVLAN(ovlan1)) ||
13743                  ((!mf_info->multi_vnics_mode) && VALID_OVLAN(ovlan1)))) {
13744                 BLOGE(sc, "mf_mode=SD function %d MF config "
13745                           "mismatch, multi_vnics_mode=%d ovlan=%d\n",
13746                       i, mf_info->multi_vnics_mode, ovlan1);
13747                 return (1);
13748             }
13749         }
13750 
13751         /* Verify all funcs on the same port each have a different ovlan. */
13752         FOREACH_ABS_FUNC_IN_PORT(sc, i) {
13753             mf_cfg1 = MFCFG_RD(sc, func_mf_config[i].config);
13754             ovlan1  = MFCFG_RD(sc, func_mf_config[i].e1hov_tag);
13755             /* iterate from the next function on the port to the max func */
13756             for (j = i + 2; j < MAX_FUNC_NUM; j += 2) {
13757                 mf_cfg2 = MFCFG_RD(sc, func_mf_config[j].config);
13758                 ovlan2  = MFCFG_RD(sc, func_mf_config[j].e1hov_tag);
13759                 if (!(mf_cfg1 & FUNC_MF_CFG_FUNC_HIDE) &&
13760                     VALID_OVLAN(ovlan1) &&
13761                     !(mf_cfg2 & FUNC_MF_CFG_FUNC_HIDE) &&
13762                     VALID_OVLAN(ovlan2) &&
13763                     (ovlan1 == ovlan2)) {
13764                     BLOGE(sc, "mf_mode=SD functions %d and %d "
13765                               "have the same ovlan (%d)\n",
13766                           i, j, ovlan1);
13767                     return (1);
13768                 }
13769             }
13770         }
13771     } /* MULTI_FUNCTION_SD */
13772 
13773     return (0);
13774 }
13775 
13776 static int
13777 bxe_get_mf_cfg_info(struct bxe_softc *sc)
13778 {
13779     struct bxe_mf_info *mf_info = &sc->devinfo.mf_info;
13780     uint32_t val, mac_upper;
13781     uint8_t i, vnic;
13782 
13783     /* initialize mf_info defaults */
13784     mf_info->vnics_per_port   = 1;
13785     mf_info->multi_vnics_mode = FALSE;
13786     mf_info->path_has_ovlan   = FALSE;
13787     mf_info->mf_mode          = SINGLE_FUNCTION;
13788 
13789     if (!CHIP_IS_MF_CAP(sc)) {
13790         return (0);
13791     }
13792 
13793     if (sc->devinfo.mf_cfg_base == SHMEM_MF_CFG_ADDR_NONE) {
13794         BLOGE(sc, "Invalid mf_cfg_base!\n");
13795         return (1);
13796     }
13797 
13798     /* get the MF mode (switch dependent / independent / single-function) */
13799 
13800     val = SHMEM_RD(sc, dev_info.shared_feature_config.config);
13801 
13802     switch (val & SHARED_FEAT_CFG_FORCE_SF_MODE_MASK)
13803     {
13804     case SHARED_FEAT_CFG_FORCE_SF_MODE_SWITCH_INDEPT:
13805 
13806         mac_upper = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].mac_upper);
13807 
13808         /* check for legal upper mac bytes */
13809         if (mac_upper != FUNC_MF_CFG_UPPERMAC_DEFAULT) {
13810             mf_info->mf_mode = MULTI_FUNCTION_SI;
13811         } else {
13812             BLOGE(sc, "Invalid config for Switch Independent mode\n");
13813         }
13814 
13815         break;
13816 
13817     case SHARED_FEAT_CFG_FORCE_SF_MODE_MF_ALLOWED:
13818     case SHARED_FEAT_CFG_FORCE_SF_MODE_SPIO4:
13819 
13820         /* get outer vlan configuration */
13821         val = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].e1hov_tag);
13822 
13823         if ((val & FUNC_MF_CFG_E1HOV_TAG_MASK) !=
13824             FUNC_MF_CFG_E1HOV_TAG_DEFAULT) {
13825             mf_info->mf_mode = MULTI_FUNCTION_SD;
13826         } else {
13827             BLOGE(sc, "Invalid config for Switch Dependent mode\n");
13828         }
13829 
13830         break;
13831 
13832     case SHARED_FEAT_CFG_FORCE_SF_MODE_FORCED_SF:
13833 
13834         /* not in MF mode, vnics_per_port=1 and multi_vnics_mode=FALSE */
13835         return (0);
13836 
13837     case SHARED_FEAT_CFG_FORCE_SF_MODE_AFEX_MODE:
13838 
13839         /*
13840          * Mark MF mode as NIV if MCP version includes NPAR-SD support
13841          * and the MAC address is valid.
13842          */
13843         mac_upper = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].mac_upper);
13844 
13845         if ((SHMEM2_HAS(sc, afex_driver_support)) &&
13846             (mac_upper != FUNC_MF_CFG_UPPERMAC_DEFAULT)) {
13847             mf_info->mf_mode = MULTI_FUNCTION_AFEX;
13848         } else {
13849             BLOGE(sc, "Invalid config for AFEX mode\n");
13850         }
13851 
13852         break;
13853 
13854     default:
13855 
13856         BLOGE(sc, "Unknown MF mode (0x%08x)\n",
13857               (val & SHARED_FEAT_CFG_FORCE_SF_MODE_MASK));
13858 
13859         return (1);
13860     }
13861 
13862     /* set path mf_mode (which could be different than function mf_mode) */
13863     if (mf_info->mf_mode == MULTI_FUNCTION_SD) {
13864         mf_info->path_has_ovlan = TRUE;
13865     } else if (mf_info->mf_mode == SINGLE_FUNCTION) {
13866         /*
13867          * Decide on path multi vnics mode. If we're not in MF mode and in
13868          * 4-port mode, this is good enough to check vnic-0 of the other port
13869          * on the same path
13870          */
13871         if (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) {
13872             uint8_t other_port = !(PORT_ID(sc) & 1);
13873             uint8_t abs_func_other_port = (SC_PATH(sc) + (2 * other_port));
13874 
13875             val = MFCFG_RD(sc, func_mf_config[abs_func_other_port].e1hov_tag);
13876 
13877             mf_info->path_has_ovlan = VALID_OVLAN((uint16_t)val) ? 1 : 0;
13878         }
13879     }
13880 
13881     if (mf_info->mf_mode == SINGLE_FUNCTION) {
13882         /* invalid MF config */
13883         if (SC_VN(sc) >= 1) {
13884             BLOGE(sc, "VNIC ID >= 1 in SF mode\n");
13885             return (1);
13886         }
13887 
13888         return (0);
13889     }
13890 
13891     /* get the MF configuration */
13892     mf_info->mf_config[SC_VN(sc)] =
13893         MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].config);
13894 
13895     switch(mf_info->mf_mode)
13896     {
13897     case MULTI_FUNCTION_SD:
13898 
13899         bxe_get_shmem_mf_cfg_info_sd(sc);
13900         break;
13901 
13902     case MULTI_FUNCTION_SI:
13903 
13904         bxe_get_shmem_mf_cfg_info_si(sc);
13905         break;
13906 
13907     case MULTI_FUNCTION_AFEX:
13908 
13909         bxe_get_shmem_mf_cfg_info_niv(sc);
13910         break;
13911 
13912     default:
13913 
13914         BLOGE(sc, "Get MF config failed (mf_mode=0x%08x)\n",
13915               mf_info->mf_mode);
13916         return (1);
13917     }
13918 
13919     /* get the congestion management parameters */
13920 
13921     vnic = 0;
13922     FOREACH_ABS_FUNC_IN_PORT(sc, i) {
13923         /* get min/max bw */
13924         val = MFCFG_RD(sc, func_mf_config[i].config);
13925         mf_info->min_bw[vnic] =
13926             ((val & FUNC_MF_CFG_MIN_BW_MASK) >> FUNC_MF_CFG_MIN_BW_SHIFT);
13927         mf_info->max_bw[vnic] =
13928             ((val & FUNC_MF_CFG_MAX_BW_MASK) >> FUNC_MF_CFG_MAX_BW_SHIFT);
13929         vnic++;
13930     }
13931 
13932     return (bxe_check_valid_mf_cfg(sc));
13933 }
13934 
13935 static int
13936 bxe_get_shmem_info(struct bxe_softc *sc)
13937 {
13938     int port;
13939     uint32_t mac_hi, mac_lo, val;
13940 
13941     port = SC_PORT(sc);
13942     mac_hi = mac_lo = 0;
13943 
13944     sc->link_params.sc   = sc;
13945     sc->link_params.port = port;
13946 
13947     /* get the hardware config info */
13948     sc->devinfo.hw_config =
13949         SHMEM_RD(sc, dev_info.shared_hw_config.config);
13950     sc->devinfo.hw_config2 =
13951         SHMEM_RD(sc, dev_info.shared_hw_config.config2);
13952 
13953     sc->link_params.hw_led_mode =
13954         ((sc->devinfo.hw_config & SHARED_HW_CFG_LED_MODE_MASK) >>
13955          SHARED_HW_CFG_LED_MODE_SHIFT);
13956 
13957     /* get the port feature config */
13958     sc->port.config =
13959         SHMEM_RD(sc, dev_info.port_feature_config[port].config),
13960 
13961     /* get the link params */
13962     sc->link_params.speed_cap_mask[0] =
13963         SHMEM_RD(sc, dev_info.port_hw_config[port].speed_capability_mask);
13964     sc->link_params.speed_cap_mask[1] =
13965         SHMEM_RD(sc, dev_info.port_hw_config[port].speed_capability_mask2);
13966 
13967     /* get the lane config */
13968     sc->link_params.lane_config =
13969         SHMEM_RD(sc, dev_info.port_hw_config[port].lane_config);
13970 
13971     /* get the link config */
13972     val = SHMEM_RD(sc, dev_info.port_feature_config[port].link_config);
13973     sc->port.link_config[ELINK_INT_PHY] = val;
13974     sc->link_params.switch_cfg = (val & PORT_FEATURE_CONNECTED_SWITCH_MASK);
13975     sc->port.link_config[ELINK_EXT_PHY1] =
13976         SHMEM_RD(sc, dev_info.port_feature_config[port].link_config2);
13977 
13978     /* get the override preemphasis flag and enable it or turn it off */
13979     val = SHMEM_RD(sc, dev_info.shared_feature_config.config);
13980     if (val & SHARED_FEAT_CFG_OVERRIDE_PREEMPHASIS_CFG_ENABLED) {
13981         sc->link_params.feature_config_flags |=
13982             ELINK_FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED;
13983     } else {
13984         sc->link_params.feature_config_flags &=
13985             ~ELINK_FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED;
13986     }
13987 
13988     /* get the initial value of the link params */
13989     sc->link_params.multi_phy_config =
13990         SHMEM_RD(sc, dev_info.port_hw_config[port].multi_phy_config);
13991 
13992     /* get external phy info */
13993     sc->port.ext_phy_config =
13994         SHMEM_RD(sc, dev_info.port_hw_config[port].external_phy_config);
13995 
13996     /* get the multifunction configuration */
13997     bxe_get_mf_cfg_info(sc);
13998 
13999     /* get the mac address */
14000     if (IS_MF(sc)) {
14001         mac_hi = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].mac_upper);
14002         mac_lo = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].mac_lower);
14003     } else {
14004         mac_hi = SHMEM_RD(sc, dev_info.port_hw_config[port].mac_upper);
14005         mac_lo = SHMEM_RD(sc, dev_info.port_hw_config[port].mac_lower);
14006     }
14007 
14008     if ((mac_lo == 0) && (mac_hi == 0)) {
14009         *sc->mac_addr_str = 0;
14010         BLOGE(sc, "No Ethernet address programmed!\n");
14011     } else {
14012         sc->link_params.mac_addr[0] = (uint8_t)(mac_hi >> 8);
14013         sc->link_params.mac_addr[1] = (uint8_t)(mac_hi);
14014         sc->link_params.mac_addr[2] = (uint8_t)(mac_lo >> 24);
14015         sc->link_params.mac_addr[3] = (uint8_t)(mac_lo >> 16);
14016         sc->link_params.mac_addr[4] = (uint8_t)(mac_lo >> 8);
14017         sc->link_params.mac_addr[5] = (uint8_t)(mac_lo);
14018         snprintf(sc->mac_addr_str, sizeof(sc->mac_addr_str),
14019                  "%02x:%02x:%02x:%02x:%02x:%02x",
14020                  sc->link_params.mac_addr[0], sc->link_params.mac_addr[1],
14021                  sc->link_params.mac_addr[2], sc->link_params.mac_addr[3],
14022                  sc->link_params.mac_addr[4], sc->link_params.mac_addr[5]);
14023         BLOGD(sc, DBG_LOAD, "Ethernet address: %s\n", sc->mac_addr_str);
14024     }
14025 
14026 #if 0
14027     if (!IS_MF(sc) &&
14028         ((sc->port.config & PORT_FEAT_CFG_STORAGE_PERSONALITY_MASK) ==
14029          PORT_FEAT_CFG_STORAGE_PERSONALITY_FCOE)) {
14030         sc->flags |= BXE_NO_ISCSI;
14031     }
14032     if (!IS_MF(sc) &&
14033         ((sc->port.config & PORT_FEAT_CFG_STORAGE_PERSONALITY_MASK) ==
14034          PORT_FEAT_CFG_STORAGE_PERSONALITY_ISCSI)) {
14035         sc->flags |= BXE_NO_FCOE_FLAG;
14036     }
14037 #endif
14038 
14039     return (0);
14040 }
14041 
14042 static void
14043 bxe_get_tunable_params(struct bxe_softc *sc)
14044 {
14045     /* sanity checks */
14046 
14047     if ((bxe_interrupt_mode != INTR_MODE_INTX) &&
14048         (bxe_interrupt_mode != INTR_MODE_MSI)  &&
14049         (bxe_interrupt_mode != INTR_MODE_MSIX)) {
14050         BLOGW(sc, "invalid interrupt_mode value (%d)\n", bxe_interrupt_mode);
14051         bxe_interrupt_mode = INTR_MODE_MSIX;
14052     }
14053 
14054     if ((bxe_queue_count < 0) || (bxe_queue_count > MAX_RSS_CHAINS)) {
14055         BLOGW(sc, "invalid queue_count value (%d)\n", bxe_queue_count);
14056         bxe_queue_count = 0;
14057     }
14058 
14059     if ((bxe_max_rx_bufs < 1) || (bxe_max_rx_bufs > RX_BD_USABLE)) {
14060         if (bxe_max_rx_bufs == 0) {
14061             bxe_max_rx_bufs = RX_BD_USABLE;
14062         } else {
14063             BLOGW(sc, "invalid max_rx_bufs (%d)\n", bxe_max_rx_bufs);
14064             bxe_max_rx_bufs = 2048;
14065         }
14066     }
14067 
14068     if ((bxe_hc_rx_ticks < 1) || (bxe_hc_rx_ticks > 100)) {
14069         BLOGW(sc, "invalid hc_rx_ticks (%d)\n", bxe_hc_rx_ticks);
14070         bxe_hc_rx_ticks = 25;
14071     }
14072 
14073     if ((bxe_hc_tx_ticks < 1) || (bxe_hc_tx_ticks > 100)) {
14074         BLOGW(sc, "invalid hc_tx_ticks (%d)\n", bxe_hc_tx_ticks);
14075         bxe_hc_tx_ticks = 50;
14076     }
14077 
14078     if (bxe_max_aggregation_size == 0) {
14079         bxe_max_aggregation_size = TPA_AGG_SIZE;
14080     }
14081 
14082     if (bxe_max_aggregation_size > 0xffff) {
14083         BLOGW(sc, "invalid max_aggregation_size (%d)\n",
14084               bxe_max_aggregation_size);
14085         bxe_max_aggregation_size = TPA_AGG_SIZE;
14086     }
14087 
14088     if ((bxe_mrrs < -1) || (bxe_mrrs > 3)) {
14089         BLOGW(sc, "invalid mrrs (%d)\n", bxe_mrrs);
14090         bxe_mrrs = -1;
14091     }
14092 
14093     if ((bxe_autogreeen < 0) || (bxe_autogreeen > 2)) {
14094         BLOGW(sc, "invalid autogreeen (%d)\n", bxe_autogreeen);
14095         bxe_autogreeen = 0;
14096     }
14097 
14098     if ((bxe_udp_rss < 0) || (bxe_udp_rss > 1)) {
14099         BLOGW(sc, "invalid udp_rss (%d)\n", bxe_udp_rss);
14100         bxe_udp_rss = 0;
14101     }
14102 
14103     /* pull in user settings */
14104 
14105     sc->interrupt_mode       = bxe_interrupt_mode;
14106     sc->max_rx_bufs          = bxe_max_rx_bufs;
14107     sc->hc_rx_ticks          = bxe_hc_rx_ticks;
14108     sc->hc_tx_ticks          = bxe_hc_tx_ticks;
14109     sc->max_aggregation_size = bxe_max_aggregation_size;
14110     sc->mrrs                 = bxe_mrrs;
14111     sc->autogreeen           = bxe_autogreeen;
14112     sc->udp_rss              = bxe_udp_rss;
14113 
14114     if (bxe_interrupt_mode == INTR_MODE_INTX) {
14115         sc->num_queues = 1;
14116     } else { /* INTR_MODE_MSI or INTR_MODE_MSIX */
14117         sc->num_queues =
14118             min((bxe_queue_count ? bxe_queue_count : mp_ncpus),
14119                 MAX_RSS_CHAINS);
14120         if (sc->num_queues > mp_ncpus) {
14121             sc->num_queues = mp_ncpus;
14122         }
14123     }
14124 
14125     BLOGD(sc, DBG_LOAD,
14126           "User Config: "
14127           "debug=0x%lx "
14128           "interrupt_mode=%d "
14129           "queue_count=%d "
14130           "hc_rx_ticks=%d "
14131           "hc_tx_ticks=%d "
14132           "rx_budget=%d "
14133           "max_aggregation_size=%d "
14134           "mrrs=%d "
14135           "autogreeen=%d "
14136           "udp_rss=%d\n",
14137           bxe_debug,
14138           sc->interrupt_mode,
14139           sc->num_queues,
14140           sc->hc_rx_ticks,
14141           sc->hc_tx_ticks,
14142           bxe_rx_budget,
14143           sc->max_aggregation_size,
14144           sc->mrrs,
14145           sc->autogreeen,
14146           sc->udp_rss);
14147 }
14148 
14149 static void
14150 bxe_media_detect(struct bxe_softc *sc)
14151 {
14152     uint32_t phy_idx = bxe_get_cur_phy_idx(sc);
14153     switch (sc->link_params.phy[phy_idx].media_type) {
14154     case ELINK_ETH_PHY_SFPP_10G_FIBER:
14155     case ELINK_ETH_PHY_XFP_FIBER:
14156         BLOGI(sc, "Found 10Gb Fiber media.\n");
14157         sc->media = IFM_10G_SR;
14158         break;
14159     case ELINK_ETH_PHY_SFP_1G_FIBER:
14160         BLOGI(sc, "Found 1Gb Fiber media.\n");
14161         sc->media = IFM_1000_SX;
14162         break;
14163     case ELINK_ETH_PHY_KR:
14164     case ELINK_ETH_PHY_CX4:
14165         BLOGI(sc, "Found 10GBase-CX4 media.\n");
14166         sc->media = IFM_10G_CX4;
14167         break;
14168     case ELINK_ETH_PHY_DA_TWINAX:
14169         BLOGI(sc, "Found 10Gb Twinax media.\n");
14170         sc->media = IFM_10G_TWINAX;
14171         break;
14172     case ELINK_ETH_PHY_BASE_T:
14173         if (sc->link_params.speed_cap_mask[0] &
14174             PORT_HW_CFG_SPEED_CAPABILITY_D0_10G) {
14175             BLOGI(sc, "Found 10GBase-T media.\n");
14176             sc->media = IFM_10G_T;
14177         } else {
14178             BLOGI(sc, "Found 1000Base-T media.\n");
14179             sc->media = IFM_1000_T;
14180         }
14181         break;
14182     case ELINK_ETH_PHY_NOT_PRESENT:
14183         BLOGI(sc, "Media not present.\n");
14184         sc->media = 0;
14185         break;
14186     case ELINK_ETH_PHY_UNSPECIFIED:
14187     default:
14188         BLOGI(sc, "Unknown media!\n");
14189         sc->media = 0;
14190         break;
14191     }
14192 }
14193 
14194 #define GET_FIELD(value, fname)                     \
14195     (((value) & (fname##_MASK)) >> (fname##_SHIFT))
14196 #define IGU_FID(val) GET_FIELD((val), IGU_REG_MAPPING_MEMORY_FID)
14197 #define IGU_VEC(val) GET_FIELD((val), IGU_REG_MAPPING_MEMORY_VECTOR)
14198 
14199 static int
14200 bxe_get_igu_cam_info(struct bxe_softc *sc)
14201 {
14202     int pfid = SC_FUNC(sc);
14203     int igu_sb_id;
14204     uint32_t val;
14205     uint8_t fid, igu_sb_cnt = 0;
14206 
14207     sc->igu_base_sb = 0xff;
14208 
14209     if (CHIP_INT_MODE_IS_BC(sc)) {
14210         int vn = SC_VN(sc);
14211         igu_sb_cnt = sc->igu_sb_cnt;
14212         sc->igu_base_sb = ((CHIP_IS_MODE_4_PORT(sc) ? pfid : vn) *
14213                            FP_SB_MAX_E1x);
14214         sc->igu_dsb_id = (E1HVN_MAX * FP_SB_MAX_E1x +
14215                           (CHIP_IS_MODE_4_PORT(sc) ? pfid : vn));
14216         return (0);
14217     }
14218 
14219     /* IGU in normal mode - read CAM */
14220     for (igu_sb_id = 0;
14221          igu_sb_id < IGU_REG_MAPPING_MEMORY_SIZE;
14222          igu_sb_id++) {
14223         val = REG_RD(sc, IGU_REG_MAPPING_MEMORY + igu_sb_id * 4);
14224         if (!(val & IGU_REG_MAPPING_MEMORY_VALID)) {
14225             continue;
14226         }
14227         fid = IGU_FID(val);
14228         if ((fid & IGU_FID_ENCODE_IS_PF)) {
14229             if ((fid & IGU_FID_PF_NUM_MASK) != pfid) {
14230                 continue;
14231             }
14232             if (IGU_VEC(val) == 0) {
14233                 /* default status block */
14234                 sc->igu_dsb_id = igu_sb_id;
14235             } else {
14236                 if (sc->igu_base_sb == 0xff) {
14237                     sc->igu_base_sb = igu_sb_id;
14238                 }
14239                 igu_sb_cnt++;
14240             }
14241         }
14242     }
14243 
14244     /*
14245      * Due to new PF resource allocation by MFW T7.4 and above, it's optional
14246      * that number of CAM entries will not be equal to the value advertised in
14247      * PCI. Driver should use the minimal value of both as the actual status
14248      * block count
14249      */
14250     sc->igu_sb_cnt = min(sc->igu_sb_cnt, igu_sb_cnt);
14251 
14252     if (igu_sb_cnt == 0) {
14253         BLOGE(sc, "CAM configuration error\n");
14254         return (-1);
14255     }
14256 
14257     return (0);
14258 }
14259 
14260 /*
14261  * Gather various information from the device config space, the device itself,
14262  * shmem, and the user input.
14263  */
14264 static int
14265 bxe_get_device_info(struct bxe_softc *sc)
14266 {
14267     uint32_t val;
14268     int rc;
14269 
14270     /* Get the data for the device */
14271     sc->devinfo.vendor_id    = pci_get_vendor(sc->dev);
14272     sc->devinfo.device_id    = pci_get_device(sc->dev);
14273     sc->devinfo.subvendor_id = pci_get_subvendor(sc->dev);
14274     sc->devinfo.subdevice_id = pci_get_subdevice(sc->dev);
14275 
14276     /* get the chip revision (chip metal comes from pci config space) */
14277     sc->devinfo.chip_id     =
14278     sc->link_params.chip_id =
14279         (((REG_RD(sc, MISC_REG_CHIP_NUM)                   & 0xffff) << 16) |
14280          ((REG_RD(sc, MISC_REG_CHIP_REV)                   & 0xf)    << 12) |
14281          (((REG_RD(sc, PCICFG_OFFSET + PCI_ID_VAL3) >> 24) & 0xf)    << 4)  |
14282          ((REG_RD(sc, MISC_REG_BOND_ID)                    & 0xf)    << 0));
14283 
14284     /* force 57811 according to MISC register */
14285     if (REG_RD(sc, MISC_REG_CHIP_TYPE) & MISC_REG_CHIP_TYPE_57811_MASK) {
14286         if (CHIP_IS_57810(sc)) {
14287             sc->devinfo.chip_id = ((CHIP_NUM_57811 << 16) |
14288                                    (sc->devinfo.chip_id & 0x0000ffff));
14289         } else if (CHIP_IS_57810_MF(sc)) {
14290             sc->devinfo.chip_id = ((CHIP_NUM_57811_MF << 16) |
14291                                    (sc->devinfo.chip_id & 0x0000ffff));
14292         }
14293         sc->devinfo.chip_id |= 0x1;
14294     }
14295 
14296     BLOGD(sc, DBG_LOAD,
14297           "chip_id=0x%08x (num=0x%04x rev=0x%01x metal=0x%02x bond=0x%01x)\n",
14298           sc->devinfo.chip_id,
14299           ((sc->devinfo.chip_id >> 16) & 0xffff),
14300           ((sc->devinfo.chip_id >> 12) & 0xf),
14301           ((sc->devinfo.chip_id >>  4) & 0xff),
14302           ((sc->devinfo.chip_id >>  0) & 0xf));
14303 
14304     val = (REG_RD(sc, 0x2874) & 0x55);
14305     if ((sc->devinfo.chip_id & 0x1) ||
14306         (CHIP_IS_E1(sc) && val) ||
14307         (CHIP_IS_E1H(sc) && (val == 0x55))) {
14308         sc->flags |= BXE_ONE_PORT_FLAG;
14309         BLOGD(sc, DBG_LOAD, "single port device\n");
14310     }
14311 
14312     /* set the doorbell size */
14313     sc->doorbell_size = (1 << BXE_DB_SHIFT);
14314 
14315     /* determine whether the device is in 2 port or 4 port mode */
14316     sc->devinfo.chip_port_mode = CHIP_PORT_MODE_NONE; /* E1 & E1h*/
14317     if (CHIP_IS_E2E3(sc)) {
14318         /*
14319          * Read port4mode_en_ovwr[0]:
14320          *   If 1, four port mode is in port4mode_en_ovwr[1].
14321          *   If 0, four port mode is in port4mode_en[0].
14322          */
14323         val = REG_RD(sc, MISC_REG_PORT4MODE_EN_OVWR);
14324         if (val & 1) {
14325             val = ((val >> 1) & 1);
14326         } else {
14327             val = REG_RD(sc, MISC_REG_PORT4MODE_EN);
14328         }
14329 
14330         sc->devinfo.chip_port_mode =
14331             (val) ? CHIP_4_PORT_MODE : CHIP_2_PORT_MODE;
14332 
14333         BLOGD(sc, DBG_LOAD, "Port mode = %s\n", (val) ? "4" : "2");
14334     }
14335 
14336     /* get the function and path info for the device */
14337     bxe_get_function_num(sc);
14338 
14339     /* get the shared memory base address */
14340     sc->devinfo.shmem_base     =
14341     sc->link_params.shmem_base =
14342         REG_RD(sc, MISC_REG_SHARED_MEM_ADDR);
14343     sc->devinfo.shmem2_base =
14344         REG_RD(sc, (SC_PATH(sc) ? MISC_REG_GENERIC_CR_1 :
14345                                   MISC_REG_GENERIC_CR_0));
14346 
14347     BLOGD(sc, DBG_LOAD, "shmem_base=0x%08x, shmem2_base=0x%08x\n",
14348           sc->devinfo.shmem_base, sc->devinfo.shmem2_base);
14349 
14350     if (!sc->devinfo.shmem_base) {
14351         /* this should ONLY prevent upcoming shmem reads */
14352         BLOGI(sc, "MCP not active\n");
14353         sc->flags |= BXE_NO_MCP_FLAG;
14354         return (0);
14355     }
14356 
14357     /* make sure the shared memory contents are valid */
14358     val = SHMEM_RD(sc, validity_map[SC_PORT(sc)]);
14359     if ((val & (SHR_MEM_VALIDITY_DEV_INFO | SHR_MEM_VALIDITY_MB)) !=
14360         (SHR_MEM_VALIDITY_DEV_INFO | SHR_MEM_VALIDITY_MB)) {
14361         BLOGE(sc, "Invalid SHMEM validity signature: 0x%08x\n", val);
14362         return (0);
14363     }
14364     BLOGD(sc, DBG_LOAD, "Valid SHMEM validity signature: 0x%08x\n", val);
14365 
14366     /* get the bootcode version */
14367     sc->devinfo.bc_ver = SHMEM_RD(sc, dev_info.bc_rev);
14368     snprintf(sc->devinfo.bc_ver_str,
14369              sizeof(sc->devinfo.bc_ver_str),
14370              "%d.%d.%d",
14371              ((sc->devinfo.bc_ver >> 24) & 0xff),
14372              ((sc->devinfo.bc_ver >> 16) & 0xff),
14373              ((sc->devinfo.bc_ver >>  8) & 0xff));
14374     BLOGD(sc, DBG_LOAD, "Bootcode version: %s\n", sc->devinfo.bc_ver_str);
14375 
14376     /* get the bootcode shmem address */
14377     sc->devinfo.mf_cfg_base = bxe_get_shmem_mf_cfg_base(sc);
14378     BLOGD(sc, DBG_LOAD, "mf_cfg_base=0x08%x \n", sc->devinfo.mf_cfg_base);
14379 
14380     /* clean indirect addresses as they're not used */
14381     pci_write_config(sc->dev, PCICFG_GRC_ADDRESS, 0, 4);
14382     if (IS_PF(sc)) {
14383         REG_WR(sc, PXP2_REG_PGL_ADDR_88_F0, 0);
14384         REG_WR(sc, PXP2_REG_PGL_ADDR_8C_F0, 0);
14385         REG_WR(sc, PXP2_REG_PGL_ADDR_90_F0, 0);
14386         REG_WR(sc, PXP2_REG_PGL_ADDR_94_F0, 0);
14387         if (CHIP_IS_E1x(sc)) {
14388             REG_WR(sc, PXP2_REG_PGL_ADDR_88_F1, 0);
14389             REG_WR(sc, PXP2_REG_PGL_ADDR_8C_F1, 0);
14390             REG_WR(sc, PXP2_REG_PGL_ADDR_90_F1, 0);
14391             REG_WR(sc, PXP2_REG_PGL_ADDR_94_F1, 0);
14392         }
14393 
14394         /*
14395          * Enable internal target-read (in case we are probed after PF
14396          * FLR). Must be done prior to any BAR read access. Only for
14397          * 57712 and up
14398          */
14399         if (!CHIP_IS_E1x(sc)) {
14400             REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
14401         }
14402     }
14403 
14404     /* get the nvram size */
14405     val = REG_RD(sc, MCP_REG_MCPR_NVM_CFG4);
14406     sc->devinfo.flash_size =
14407         (NVRAM_1MB_SIZE << (val & MCPR_NVM_CFG4_FLASH_SIZE));
14408     BLOGD(sc, DBG_LOAD, "nvram flash size: %d\n", sc->devinfo.flash_size);
14409 
14410     /* get PCI capabilites */
14411     bxe_probe_pci_caps(sc);
14412 
14413     bxe_set_power_state(sc, PCI_PM_D0);
14414 
14415     /* get various configuration parameters from shmem */
14416     bxe_get_shmem_info(sc);
14417 
14418     if (sc->devinfo.pcie_msix_cap_reg != 0) {
14419         val = pci_read_config(sc->dev,
14420                               (sc->devinfo.pcie_msix_cap_reg +
14421                                PCIR_MSIX_CTRL),
14422                               2);
14423         sc->igu_sb_cnt = (val & PCIM_MSIXCTRL_TABLE_SIZE);
14424     } else {
14425         sc->igu_sb_cnt = 1;
14426     }
14427 
14428     sc->igu_base_addr = BAR_IGU_INTMEM;
14429 
14430     /* initialize IGU parameters */
14431     if (CHIP_IS_E1x(sc)) {
14432         sc->devinfo.int_block = INT_BLOCK_HC;
14433         sc->igu_dsb_id = DEF_SB_IGU_ID;
14434         sc->igu_base_sb = 0;
14435     } else {
14436         sc->devinfo.int_block = INT_BLOCK_IGU;
14437 
14438         /* do not allow device reset during IGU info preocessing */
14439         bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RESET);
14440 
14441         val = REG_RD(sc, IGU_REG_BLOCK_CONFIGURATION);
14442 
14443         if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) {
14444             int tout = 5000;
14445 
14446             BLOGD(sc, DBG_LOAD, "FORCING IGU Normal Mode\n");
14447 
14448             val &= ~(IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN);
14449             REG_WR(sc, IGU_REG_BLOCK_CONFIGURATION, val);
14450             REG_WR(sc, IGU_REG_RESET_MEMORIES, 0x7f);
14451 
14452             while (tout && REG_RD(sc, IGU_REG_RESET_MEMORIES)) {
14453                 tout--;
14454                 DELAY(1000);
14455             }
14456 
14457             if (REG_RD(sc, IGU_REG_RESET_MEMORIES)) {
14458                 BLOGD(sc, DBG_LOAD, "FORCING IGU Normal Mode failed!!!\n");
14459                 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RESET);
14460                 return (-1);
14461             }
14462         }
14463 
14464         if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) {
14465             BLOGD(sc, DBG_LOAD, "IGU Backward Compatible Mode\n");
14466             sc->devinfo.int_block |= INT_BLOCK_MODE_BW_COMP;
14467         } else {
14468             BLOGD(sc, DBG_LOAD, "IGU Normal Mode\n");
14469         }
14470 
14471         rc = bxe_get_igu_cam_info(sc);
14472 
14473         bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RESET);
14474 
14475         if (rc) {
14476             return (rc);
14477         }
14478     }
14479 
14480     /*
14481      * Get base FW non-default (fast path) status block ID. This value is
14482      * used to initialize the fw_sb_id saved on the fp/queue structure to
14483      * determine the id used by the FW.
14484      */
14485     if (CHIP_IS_E1x(sc)) {
14486         sc->base_fw_ndsb = ((SC_PORT(sc) * FP_SB_MAX_E1x) + SC_L_ID(sc));
14487     } else {
14488         /*
14489          * 57712+ - We currently use one FW SB per IGU SB (Rx and Tx of
14490          * the same queue are indicated on the same IGU SB). So we prefer
14491          * FW and IGU SBs to be the same value.
14492          */
14493         sc->base_fw_ndsb = sc->igu_base_sb;
14494     }
14495 
14496     BLOGD(sc, DBG_LOAD,
14497           "igu_dsb_id=%d igu_base_sb=%d igu_sb_cnt=%d base_fw_ndsb=%d\n",
14498           sc->igu_dsb_id, sc->igu_base_sb,
14499           sc->igu_sb_cnt, sc->base_fw_ndsb);
14500 
14501     elink_phy_probe(&sc->link_params);
14502 
14503     return (0);
14504 }
14505 
14506 static void
14507 bxe_link_settings_supported(struct bxe_softc *sc,
14508                             uint32_t         switch_cfg)
14509 {
14510     uint32_t cfg_size = 0;
14511     uint32_t idx;
14512     uint8_t port = SC_PORT(sc);
14513 
14514     /* aggregation of supported attributes of all external phys */
14515     sc->port.supported[0] = 0;
14516     sc->port.supported[1] = 0;
14517 
14518     switch (sc->link_params.num_phys) {
14519     case 1:
14520         sc->port.supported[0] = sc->link_params.phy[ELINK_INT_PHY].supported;
14521         cfg_size = 1;
14522         break;
14523     case 2:
14524         sc->port.supported[0] = sc->link_params.phy[ELINK_EXT_PHY1].supported;
14525         cfg_size = 1;
14526         break;
14527     case 3:
14528         if (sc->link_params.multi_phy_config &
14529             PORT_HW_CFG_PHY_SWAPPED_ENABLED) {
14530             sc->port.supported[1] =
14531                 sc->link_params.phy[ELINK_EXT_PHY1].supported;
14532             sc->port.supported[0] =
14533                 sc->link_params.phy[ELINK_EXT_PHY2].supported;
14534         } else {
14535             sc->port.supported[0] =
14536                 sc->link_params.phy[ELINK_EXT_PHY1].supported;
14537             sc->port.supported[1] =
14538                 sc->link_params.phy[ELINK_EXT_PHY2].supported;
14539         }
14540         cfg_size = 2;
14541         break;
14542     }
14543 
14544     if (!(sc->port.supported[0] || sc->port.supported[1])) {
14545         BLOGE(sc, "Invalid phy config in NVRAM (PHY1=0x%08x PHY2=0x%08x)\n",
14546               SHMEM_RD(sc,
14547                        dev_info.port_hw_config[port].external_phy_config),
14548               SHMEM_RD(sc,
14549                        dev_info.port_hw_config[port].external_phy_config2));
14550         return;
14551     }
14552 
14553     if (CHIP_IS_E3(sc))
14554         sc->port.phy_addr = REG_RD(sc, MISC_REG_WC0_CTRL_PHY_ADDR);
14555     else {
14556         switch (switch_cfg) {
14557         case ELINK_SWITCH_CFG_1G:
14558             sc->port.phy_addr =
14559                 REG_RD(sc, NIG_REG_SERDES0_CTRL_PHY_ADDR + port*0x10);
14560             break;
14561         case ELINK_SWITCH_CFG_10G:
14562             sc->port.phy_addr =
14563                 REG_RD(sc, NIG_REG_XGXS0_CTRL_PHY_ADDR + port*0x18);
14564             break;
14565         default:
14566             BLOGE(sc, "Invalid switch config in link_config=0x%08x\n",
14567                   sc->port.link_config[0]);
14568             return;
14569         }
14570     }
14571 
14572     BLOGD(sc, DBG_LOAD, "PHY addr 0x%08x\n", sc->port.phy_addr);
14573 
14574     /* mask what we support according to speed_cap_mask per configuration */
14575     for (idx = 0; idx < cfg_size; idx++) {
14576         if (!(sc->link_params.speed_cap_mask[idx] &
14577               PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_HALF)) {
14578             sc->port.supported[idx] &= ~ELINK_SUPPORTED_10baseT_Half;
14579         }
14580 
14581         if (!(sc->link_params.speed_cap_mask[idx] &
14582               PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_FULL)) {
14583             sc->port.supported[idx] &= ~ELINK_SUPPORTED_10baseT_Full;
14584         }
14585 
14586         if (!(sc->link_params.speed_cap_mask[idx] &
14587               PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_HALF)) {
14588             sc->port.supported[idx] &= ~ELINK_SUPPORTED_100baseT_Half;
14589         }
14590 
14591         if (!(sc->link_params.speed_cap_mask[idx] &
14592               PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_FULL)) {
14593             sc->port.supported[idx] &= ~ELINK_SUPPORTED_100baseT_Full;
14594         }
14595 
14596         if (!(sc->link_params.speed_cap_mask[idx] &
14597               PORT_HW_CFG_SPEED_CAPABILITY_D0_1G)) {
14598             sc->port.supported[idx] &= ~ELINK_SUPPORTED_1000baseT_Full;
14599         }
14600 
14601         if (!(sc->link_params.speed_cap_mask[idx] &
14602               PORT_HW_CFG_SPEED_CAPABILITY_D0_2_5G)) {
14603             sc->port.supported[idx] &= ~ELINK_SUPPORTED_2500baseX_Full;
14604         }
14605 
14606         if (!(sc->link_params.speed_cap_mask[idx] &
14607               PORT_HW_CFG_SPEED_CAPABILITY_D0_10G)) {
14608             sc->port.supported[idx] &= ~ELINK_SUPPORTED_10000baseT_Full;
14609         }
14610 
14611         if (!(sc->link_params.speed_cap_mask[idx] &
14612               PORT_HW_CFG_SPEED_CAPABILITY_D0_20G)) {
14613             sc->port.supported[idx] &= ~ELINK_SUPPORTED_20000baseKR2_Full;
14614         }
14615     }
14616 
14617     BLOGD(sc, DBG_LOAD, "PHY supported 0=0x%08x 1=0x%08x\n",
14618           sc->port.supported[0], sc->port.supported[1]);
14619 }
14620 
14621 static void
14622 bxe_link_settings_requested(struct bxe_softc *sc)
14623 {
14624     uint32_t link_config;
14625     uint32_t idx;
14626     uint32_t cfg_size = 0;
14627 
14628     sc->port.advertising[0] = 0;
14629     sc->port.advertising[1] = 0;
14630 
14631     switch (sc->link_params.num_phys) {
14632     case 1:
14633     case 2:
14634         cfg_size = 1;
14635         break;
14636     case 3:
14637         cfg_size = 2;
14638         break;
14639     }
14640 
14641     for (idx = 0; idx < cfg_size; idx++) {
14642         sc->link_params.req_duplex[idx] = DUPLEX_FULL;
14643         link_config = sc->port.link_config[idx];
14644 
14645         switch (link_config & PORT_FEATURE_LINK_SPEED_MASK) {
14646         case PORT_FEATURE_LINK_SPEED_AUTO:
14647             if (sc->port.supported[idx] & ELINK_SUPPORTED_Autoneg) {
14648                 sc->link_params.req_line_speed[idx] = ELINK_SPEED_AUTO_NEG;
14649                 sc->port.advertising[idx] |= sc->port.supported[idx];
14650                 if (sc->link_params.phy[ELINK_EXT_PHY1].type ==
14651                     PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM84833)
14652                     sc->port.advertising[idx] |=
14653                         (ELINK_SUPPORTED_100baseT_Half |
14654                          ELINK_SUPPORTED_100baseT_Full);
14655             } else {
14656                 /* force 10G, no AN */
14657                 sc->link_params.req_line_speed[idx] = ELINK_SPEED_10000;
14658                 sc->port.advertising[idx] |=
14659                     (ADVERTISED_10000baseT_Full | ADVERTISED_FIBRE);
14660                 continue;
14661             }
14662             break;
14663 
14664         case PORT_FEATURE_LINK_SPEED_10M_FULL:
14665             if (sc->port.supported[idx] & ELINK_SUPPORTED_10baseT_Full) {
14666                 sc->link_params.req_line_speed[idx] = ELINK_SPEED_10;
14667                 sc->port.advertising[idx] |= (ADVERTISED_10baseT_Full |
14668                                               ADVERTISED_TP);
14669             } else {
14670                 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x "
14671                           "speed_cap_mask=0x%08x\n",
14672                       link_config, sc->link_params.speed_cap_mask[idx]);
14673                 return;
14674             }
14675             break;
14676 
14677         case PORT_FEATURE_LINK_SPEED_10M_HALF:
14678             if (sc->port.supported[idx] & ELINK_SUPPORTED_10baseT_Half) {
14679                 sc->link_params.req_line_speed[idx] = ELINK_SPEED_10;
14680                 sc->link_params.req_duplex[idx] = DUPLEX_HALF;
14681                 sc->port.advertising[idx] |= (ADVERTISED_10baseT_Half |
14682                                               ADVERTISED_TP);
14683             } else {
14684                 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x "
14685                           "speed_cap_mask=0x%08x\n",
14686                       link_config, sc->link_params.speed_cap_mask[idx]);
14687                 return;
14688             }
14689             break;
14690 
14691         case PORT_FEATURE_LINK_SPEED_100M_FULL:
14692             if (sc->port.supported[idx] & ELINK_SUPPORTED_100baseT_Full) {
14693                 sc->link_params.req_line_speed[idx] = ELINK_SPEED_100;
14694                 sc->port.advertising[idx] |= (ADVERTISED_100baseT_Full |
14695                                               ADVERTISED_TP);
14696             } else {
14697                 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x "
14698                           "speed_cap_mask=0x%08x\n",
14699                       link_config, sc->link_params.speed_cap_mask[idx]);
14700                 return;
14701             }
14702             break;
14703 
14704         case PORT_FEATURE_LINK_SPEED_100M_HALF:
14705             if (sc->port.supported[idx] & ELINK_SUPPORTED_100baseT_Half) {
14706                 sc->link_params.req_line_speed[idx] = ELINK_SPEED_100;
14707                 sc->link_params.req_duplex[idx] = DUPLEX_HALF;
14708                 sc->port.advertising[idx] |= (ADVERTISED_100baseT_Half |
14709                                               ADVERTISED_TP);
14710             } else {
14711                 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x "
14712                           "speed_cap_mask=0x%08x\n",
14713                       link_config, sc->link_params.speed_cap_mask[idx]);
14714                 return;
14715             }
14716             break;
14717 
14718         case PORT_FEATURE_LINK_SPEED_1G:
14719             if (sc->port.supported[idx] & ELINK_SUPPORTED_1000baseT_Full) {
14720                 sc->link_params.req_line_speed[idx] = ELINK_SPEED_1000;
14721                 sc->port.advertising[idx] |= (ADVERTISED_1000baseT_Full |
14722                                               ADVERTISED_TP);
14723             } else {
14724                 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x "
14725                           "speed_cap_mask=0x%08x\n",
14726                       link_config, sc->link_params.speed_cap_mask[idx]);
14727                 return;
14728             }
14729             break;
14730 
14731         case PORT_FEATURE_LINK_SPEED_2_5G:
14732             if (sc->port.supported[idx] & ELINK_SUPPORTED_2500baseX_Full) {
14733                 sc->link_params.req_line_speed[idx] = ELINK_SPEED_2500;
14734                 sc->port.advertising[idx] |= (ADVERTISED_2500baseX_Full |
14735                                               ADVERTISED_TP);
14736             } else {
14737                 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x "
14738                           "speed_cap_mask=0x%08x\n",
14739                       link_config, sc->link_params.speed_cap_mask[idx]);
14740                 return;
14741             }
14742             break;
14743 
14744         case PORT_FEATURE_LINK_SPEED_10G_CX4:
14745             if (sc->port.supported[idx] & ELINK_SUPPORTED_10000baseT_Full) {
14746                 sc->link_params.req_line_speed[idx] = ELINK_SPEED_10000;
14747                 sc->port.advertising[idx] |= (ADVERTISED_10000baseT_Full |
14748                                               ADVERTISED_FIBRE);
14749             } else {
14750                 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x "
14751                           "speed_cap_mask=0x%08x\n",
14752                       link_config, sc->link_params.speed_cap_mask[idx]);
14753                 return;
14754             }
14755             break;
14756 
14757         case PORT_FEATURE_LINK_SPEED_20G:
14758             sc->link_params.req_line_speed[idx] = ELINK_SPEED_20000;
14759             break;
14760 
14761         default:
14762             BLOGE(sc, "Invalid NVRAM config link_config=0x%08x "
14763                       "speed_cap_mask=0x%08x\n",
14764                   link_config, sc->link_params.speed_cap_mask[idx]);
14765             sc->link_params.req_line_speed[idx] = ELINK_SPEED_AUTO_NEG;
14766             sc->port.advertising[idx] = sc->port.supported[idx];
14767             break;
14768         }
14769 
14770         sc->link_params.req_flow_ctrl[idx] =
14771             (link_config & PORT_FEATURE_FLOW_CONTROL_MASK);
14772 
14773         if (sc->link_params.req_flow_ctrl[idx] == ELINK_FLOW_CTRL_AUTO) {
14774             if (!(sc->port.supported[idx] & ELINK_SUPPORTED_Autoneg)) {
14775                 sc->link_params.req_flow_ctrl[idx] = ELINK_FLOW_CTRL_NONE;
14776             } else {
14777                 bxe_set_requested_fc(sc);
14778             }
14779         }
14780 
14781         BLOGD(sc, DBG_LOAD, "req_line_speed=%d req_duplex=%d "
14782                             "req_flow_ctrl=0x%x advertising=0x%x\n",
14783               sc->link_params.req_line_speed[idx],
14784               sc->link_params.req_duplex[idx],
14785               sc->link_params.req_flow_ctrl[idx],
14786               sc->port.advertising[idx]);
14787     }
14788 }
14789 
14790 static void
14791 bxe_get_phy_info(struct bxe_softc *sc)
14792 {
14793     uint8_t port = SC_PORT(sc);
14794     uint32_t config = sc->port.config;
14795     uint32_t eee_mode;
14796 
14797     /* shmem data already read in bxe_get_shmem_info() */
14798 
14799     BLOGD(sc, DBG_LOAD, "lane_config=0x%08x speed_cap_mask0=0x%08x "
14800                         "link_config0=0x%08x\n",
14801                sc->link_params.lane_config,
14802                sc->link_params.speed_cap_mask[0],
14803                sc->port.link_config[0]);
14804 
14805     bxe_link_settings_supported(sc, sc->link_params.switch_cfg);
14806     bxe_link_settings_requested(sc);
14807 
14808     if (sc->autogreeen == AUTO_GREEN_FORCE_ON) {
14809         sc->link_params.feature_config_flags |=
14810             ELINK_FEATURE_CONFIG_AUTOGREEEN_ENABLED;
14811     } else if (sc->autogreeen == AUTO_GREEN_FORCE_OFF) {
14812         sc->link_params.feature_config_flags &=
14813             ~ELINK_FEATURE_CONFIG_AUTOGREEEN_ENABLED;
14814     } else if (config & PORT_FEAT_CFG_AUTOGREEEN_ENABLED) {
14815         sc->link_params.feature_config_flags |=
14816             ELINK_FEATURE_CONFIG_AUTOGREEEN_ENABLED;
14817     }
14818 
14819     /* configure link feature according to nvram value */
14820     eee_mode =
14821         (((SHMEM_RD(sc, dev_info.port_feature_config[port].eee_power_mode)) &
14822           PORT_FEAT_CFG_EEE_POWER_MODE_MASK) >>
14823          PORT_FEAT_CFG_EEE_POWER_MODE_SHIFT);
14824     if (eee_mode != PORT_FEAT_CFG_EEE_POWER_MODE_DISABLED) {
14825         sc->link_params.eee_mode = (ELINK_EEE_MODE_ADV_LPI |
14826                                     ELINK_EEE_MODE_ENABLE_LPI |
14827                                     ELINK_EEE_MODE_OUTPUT_TIME);
14828     } else {
14829         sc->link_params.eee_mode = 0;
14830     }
14831 
14832     /* get the media type */
14833     bxe_media_detect(sc);
14834 }
14835 
14836 static void
14837 bxe_get_params(struct bxe_softc *sc)
14838 {
14839     /* get user tunable params */
14840     bxe_get_tunable_params(sc);
14841 
14842     /* select the RX and TX ring sizes */
14843     sc->tx_ring_size = TX_BD_USABLE;
14844     sc->rx_ring_size = RX_BD_USABLE;
14845 
14846     /* XXX disable WoL */
14847     sc->wol = 0;
14848 }
14849 
14850 static void
14851 bxe_set_modes_bitmap(struct bxe_softc *sc)
14852 {
14853     uint32_t flags = 0;
14854 
14855     if (CHIP_REV_IS_FPGA(sc)) {
14856         SET_FLAGS(flags, MODE_FPGA);
14857     } else if (CHIP_REV_IS_EMUL(sc)) {
14858         SET_FLAGS(flags, MODE_EMUL);
14859     } else {
14860         SET_FLAGS(flags, MODE_ASIC);
14861     }
14862 
14863     if (CHIP_IS_MODE_4_PORT(sc)) {
14864         SET_FLAGS(flags, MODE_PORT4);
14865     } else {
14866         SET_FLAGS(flags, MODE_PORT2);
14867     }
14868 
14869     if (CHIP_IS_E2(sc)) {
14870         SET_FLAGS(flags, MODE_E2);
14871     } else if (CHIP_IS_E3(sc)) {
14872         SET_FLAGS(flags, MODE_E3);
14873         if (CHIP_REV(sc) == CHIP_REV_Ax) {
14874             SET_FLAGS(flags, MODE_E3_A0);
14875         } else /*if (CHIP_REV(sc) == CHIP_REV_Bx)*/ {
14876             SET_FLAGS(flags, MODE_E3_B0 | MODE_COS3);
14877         }
14878     }
14879 
14880     if (IS_MF(sc)) {
14881         SET_FLAGS(flags, MODE_MF);
14882         switch (sc->devinfo.mf_info.mf_mode) {
14883         case MULTI_FUNCTION_SD:
14884             SET_FLAGS(flags, MODE_MF_SD);
14885             break;
14886         case MULTI_FUNCTION_SI:
14887             SET_FLAGS(flags, MODE_MF_SI);
14888             break;
14889         case MULTI_FUNCTION_AFEX:
14890             SET_FLAGS(flags, MODE_MF_AFEX);
14891             break;
14892         }
14893     } else {
14894         SET_FLAGS(flags, MODE_SF);
14895     }
14896 
14897 #if defined(__LITTLE_ENDIAN)
14898     SET_FLAGS(flags, MODE_LITTLE_ENDIAN);
14899 #else /* __BIG_ENDIAN */
14900     SET_FLAGS(flags, MODE_BIG_ENDIAN);
14901 #endif
14902 
14903     INIT_MODE_FLAGS(sc) = flags;
14904 }
14905 
14906 static int
14907 bxe_alloc_hsi_mem(struct bxe_softc *sc)
14908 {
14909     struct bxe_fastpath *fp;
14910     bus_addr_t busaddr;
14911     int max_agg_queues;
14912     int max_segments;
14913     bus_size_t max_size;
14914     bus_size_t max_seg_size;
14915     char buf[32];
14916     int rc;
14917     int i, j;
14918 
14919     /* XXX zero out all vars here and call bxe_alloc_hsi_mem on error */
14920 
14921     /* allocate the parent bus DMA tag */
14922     rc = bus_dma_tag_create(bus_get_dma_tag(sc->dev), /* parent tag */
14923                             1,                        /* alignment */
14924                             0,                        /* boundary limit */
14925                             BUS_SPACE_MAXADDR,        /* restricted low */
14926                             BUS_SPACE_MAXADDR,        /* restricted hi */
14927                             NULL,                     /* addr filter() */
14928                             NULL,                     /* addr filter() arg */
14929                             BUS_SPACE_MAXSIZE_32BIT,  /* max map size */
14930                             BUS_SPACE_UNRESTRICTED,   /* num discontinuous */
14931                             BUS_SPACE_MAXSIZE_32BIT,  /* max seg size */
14932                             0,                        /* flags */
14933                             NULL,                     /* lock() */
14934                             NULL,                     /* lock() arg */
14935                             &sc->parent_dma_tag);     /* returned dma tag */
14936     if (rc != 0) {
14937         BLOGE(sc, "Failed to alloc parent DMA tag (%d)!\n", rc);
14938         return (1);
14939     }
14940 
14941     /************************/
14942     /* DEFAULT STATUS BLOCK */
14943     /************************/
14944 
14945     if (bxe_dma_alloc(sc, sizeof(struct host_sp_status_block),
14946                       &sc->def_sb_dma, "default status block") != 0) {
14947         /* XXX */
14948         bus_dma_tag_destroy(sc->parent_dma_tag);
14949         return (1);
14950     }
14951 
14952     sc->def_sb = (struct host_sp_status_block *)sc->def_sb_dma.vaddr;
14953 
14954     /***************/
14955     /* EVENT QUEUE */
14956     /***************/
14957 
14958     if (bxe_dma_alloc(sc, BCM_PAGE_SIZE,
14959                       &sc->eq_dma, "event queue") != 0) {
14960         /* XXX */
14961         bxe_dma_free(sc, &sc->def_sb_dma);
14962         sc->def_sb = NULL;
14963         bus_dma_tag_destroy(sc->parent_dma_tag);
14964         return (1);
14965     }
14966 
14967     sc->eq = (union event_ring_elem * )sc->eq_dma.vaddr;
14968 
14969     /*************/
14970     /* SLOW PATH */
14971     /*************/
14972 
14973     if (bxe_dma_alloc(sc, sizeof(struct bxe_slowpath),
14974                       &sc->sp_dma, "slow path") != 0) {
14975         /* XXX */
14976         bxe_dma_free(sc, &sc->eq_dma);
14977         sc->eq = NULL;
14978         bxe_dma_free(sc, &sc->def_sb_dma);
14979         sc->def_sb = NULL;
14980         bus_dma_tag_destroy(sc->parent_dma_tag);
14981         return (1);
14982     }
14983 
14984     sc->sp = (struct bxe_slowpath *)sc->sp_dma.vaddr;
14985 
14986     /*******************/
14987     /* SLOW PATH QUEUE */
14988     /*******************/
14989 
14990     if (bxe_dma_alloc(sc, BCM_PAGE_SIZE,
14991                       &sc->spq_dma, "slow path queue") != 0) {
14992         /* XXX */
14993         bxe_dma_free(sc, &sc->sp_dma);
14994         sc->sp = NULL;
14995         bxe_dma_free(sc, &sc->eq_dma);
14996         sc->eq = NULL;
14997         bxe_dma_free(sc, &sc->def_sb_dma);
14998         sc->def_sb = NULL;
14999         bus_dma_tag_destroy(sc->parent_dma_tag);
15000         return (1);
15001     }
15002 
15003     sc->spq = (struct eth_spe *)sc->spq_dma.vaddr;
15004 
15005     /***************************/
15006     /* FW DECOMPRESSION BUFFER */
15007     /***************************/
15008 
15009     if (bxe_dma_alloc(sc, FW_BUF_SIZE, &sc->gz_buf_dma,
15010                       "fw decompression buffer") != 0) {
15011         /* XXX */
15012         bxe_dma_free(sc, &sc->spq_dma);
15013         sc->spq = NULL;
15014         bxe_dma_free(sc, &sc->sp_dma);
15015         sc->sp = NULL;
15016         bxe_dma_free(sc, &sc->eq_dma);
15017         sc->eq = NULL;
15018         bxe_dma_free(sc, &sc->def_sb_dma);
15019         sc->def_sb = NULL;
15020         bus_dma_tag_destroy(sc->parent_dma_tag);
15021         return (1);
15022     }
15023 
15024     sc->gz_buf = (void *)sc->gz_buf_dma.vaddr;
15025 
15026     if ((sc->gz_strm =
15027          malloc(sizeof(*sc->gz_strm), M_DEVBUF, M_NOWAIT)) == NULL) {
15028         /* XXX */
15029         bxe_dma_free(sc, &sc->gz_buf_dma);
15030         sc->gz_buf = NULL;
15031         bxe_dma_free(sc, &sc->spq_dma);
15032         sc->spq = NULL;
15033         bxe_dma_free(sc, &sc->sp_dma);
15034         sc->sp = NULL;
15035         bxe_dma_free(sc, &sc->eq_dma);
15036         sc->eq = NULL;
15037         bxe_dma_free(sc, &sc->def_sb_dma);
15038         sc->def_sb = NULL;
15039         bus_dma_tag_destroy(sc->parent_dma_tag);
15040         return (1);
15041     }
15042 
15043     /*************/
15044     /* FASTPATHS */
15045     /*************/
15046 
15047     /* allocate DMA memory for each fastpath structure */
15048     for (i = 0; i < sc->num_queues; i++) {
15049         fp = &sc->fp[i];
15050         fp->sc    = sc;
15051         fp->index = i;
15052 
15053         /*******************/
15054         /* FP STATUS BLOCK */
15055         /*******************/
15056 
15057         snprintf(buf, sizeof(buf), "fp %d status block", i);
15058         if (bxe_dma_alloc(sc, sizeof(union bxe_host_hc_status_block),
15059                           &fp->sb_dma, buf) != 0) {
15060             /* XXX unwind and free previous fastpath allocations */
15061             BLOGE(sc, "Failed to alloc %s\n", buf);
15062             return (1);
15063         } else {
15064             if (CHIP_IS_E2E3(sc)) {
15065                 fp->status_block.e2_sb =
15066                     (struct host_hc_status_block_e2 *)fp->sb_dma.vaddr;
15067             } else {
15068                 fp->status_block.e1x_sb =
15069                     (struct host_hc_status_block_e1x *)fp->sb_dma.vaddr;
15070             }
15071         }
15072 
15073         /******************/
15074         /* FP TX BD CHAIN */
15075         /******************/
15076 
15077         snprintf(buf, sizeof(buf), "fp %d tx bd chain", i);
15078         if (bxe_dma_alloc(sc, (BCM_PAGE_SIZE * TX_BD_NUM_PAGES),
15079                           &fp->tx_dma, buf) != 0) {
15080             /* XXX unwind and free previous fastpath allocations */
15081             BLOGE(sc, "Failed to alloc %s\n", buf);
15082             return (1);
15083         } else {
15084             fp->tx_chain = (union eth_tx_bd_types *)fp->tx_dma.vaddr;
15085         }
15086 
15087         /* link together the tx bd chain pages */
15088         for (j = 1; j <= TX_BD_NUM_PAGES; j++) {
15089             /* index into the tx bd chain array to last entry per page */
15090             struct eth_tx_next_bd *tx_next_bd =
15091                 &fp->tx_chain[TX_BD_TOTAL_PER_PAGE * j - 1].next_bd;
15092             /* point to the next page and wrap from last page */
15093             busaddr = (fp->tx_dma.paddr +
15094                        (BCM_PAGE_SIZE * (j % TX_BD_NUM_PAGES)));
15095             tx_next_bd->addr_hi = htole32(U64_HI(busaddr));
15096             tx_next_bd->addr_lo = htole32(U64_LO(busaddr));
15097         }
15098 
15099         /******************/
15100         /* FP RX BD CHAIN */
15101         /******************/
15102 
15103         snprintf(buf, sizeof(buf), "fp %d rx bd chain", i);
15104         if (bxe_dma_alloc(sc, (BCM_PAGE_SIZE * RX_BD_NUM_PAGES),
15105                           &fp->rx_dma, buf) != 0) {
15106             /* XXX unwind and free previous fastpath allocations */
15107             BLOGE(sc, "Failed to alloc %s\n", buf);
15108             return (1);
15109         } else {
15110             fp->rx_chain = (struct eth_rx_bd *)fp->rx_dma.vaddr;
15111         }
15112 
15113         /* link together the rx bd chain pages */
15114         for (j = 1; j <= RX_BD_NUM_PAGES; j++) {
15115             /* index into the rx bd chain array to last entry per page */
15116             struct eth_rx_bd *rx_bd =
15117                 &fp->rx_chain[RX_BD_TOTAL_PER_PAGE * j - 2];
15118             /* point to the next page and wrap from last page */
15119             busaddr = (fp->rx_dma.paddr +
15120                        (BCM_PAGE_SIZE * (j % RX_BD_NUM_PAGES)));
15121             rx_bd->addr_hi = htole32(U64_HI(busaddr));
15122             rx_bd->addr_lo = htole32(U64_LO(busaddr));
15123         }
15124 
15125         /*******************/
15126         /* FP RX RCQ CHAIN */
15127         /*******************/
15128 
15129         snprintf(buf, sizeof(buf), "fp %d rcq chain", i);
15130         if (bxe_dma_alloc(sc, (BCM_PAGE_SIZE * RCQ_NUM_PAGES),
15131                           &fp->rcq_dma, buf) != 0) {
15132             /* XXX unwind and free previous fastpath allocations */
15133             BLOGE(sc, "Failed to alloc %s\n", buf);
15134             return (1);
15135         } else {
15136             fp->rcq_chain = (union eth_rx_cqe *)fp->rcq_dma.vaddr;
15137         }
15138 
15139         /* link together the rcq chain pages */
15140         for (j = 1; j <= RCQ_NUM_PAGES; j++) {
15141             /* index into the rcq chain array to last entry per page */
15142             struct eth_rx_cqe_next_page *rx_cqe_next =
15143                 (struct eth_rx_cqe_next_page *)
15144                 &fp->rcq_chain[RCQ_TOTAL_PER_PAGE * j - 1];
15145             /* point to the next page and wrap from last page */
15146             busaddr = (fp->rcq_dma.paddr +
15147                        (BCM_PAGE_SIZE * (j % RCQ_NUM_PAGES)));
15148             rx_cqe_next->addr_hi = htole32(U64_HI(busaddr));
15149             rx_cqe_next->addr_lo = htole32(U64_LO(busaddr));
15150         }
15151 
15152         /*******************/
15153         /* FP RX SGE CHAIN */
15154         /*******************/
15155 
15156         snprintf(buf, sizeof(buf), "fp %d sge chain", i);
15157         if (bxe_dma_alloc(sc, (BCM_PAGE_SIZE * RX_SGE_NUM_PAGES),
15158                           &fp->rx_sge_dma, buf) != 0) {
15159             /* XXX unwind and free previous fastpath allocations */
15160             BLOGE(sc, "Failed to alloc %s\n", buf);
15161             return (1);
15162         } else {
15163             fp->rx_sge_chain = (struct eth_rx_sge *)fp->rx_sge_dma.vaddr;
15164         }
15165 
15166         /* link together the sge chain pages */
15167         for (j = 1; j <= RX_SGE_NUM_PAGES; j++) {
15168             /* index into the rcq chain array to last entry per page */
15169             struct eth_rx_sge *rx_sge =
15170                 &fp->rx_sge_chain[RX_SGE_TOTAL_PER_PAGE * j - 2];
15171             /* point to the next page and wrap from last page */
15172             busaddr = (fp->rx_sge_dma.paddr +
15173                        (BCM_PAGE_SIZE * (j % RX_SGE_NUM_PAGES)));
15174             rx_sge->addr_hi = htole32(U64_HI(busaddr));
15175             rx_sge->addr_lo = htole32(U64_LO(busaddr));
15176         }
15177 
15178         /***********************/
15179         /* FP TX MBUF DMA MAPS */
15180         /***********************/
15181 
15182         /* set required sizes before mapping to conserve resources */
15183         if (if_getcapenable(sc->ifp) & (IFCAP_TSO4 | IFCAP_TSO6)) {
15184             max_size     = BXE_TSO_MAX_SIZE;
15185             max_segments = BXE_TSO_MAX_SEGMENTS;
15186             max_seg_size = BXE_TSO_MAX_SEG_SIZE;
15187         } else {
15188             max_size     = (MCLBYTES * BXE_MAX_SEGMENTS);
15189             max_segments = BXE_MAX_SEGMENTS;
15190             max_seg_size = MCLBYTES;
15191         }
15192 
15193         /* create a dma tag for the tx mbufs */
15194         rc = bus_dma_tag_create(sc->parent_dma_tag, /* parent tag */
15195                                 1,                  /* alignment */
15196                                 0,                  /* boundary limit */
15197                                 BUS_SPACE_MAXADDR,  /* restricted low */
15198                                 BUS_SPACE_MAXADDR,  /* restricted hi */
15199                                 NULL,               /* addr filter() */
15200                                 NULL,               /* addr filter() arg */
15201                                 max_size,           /* max map size */
15202                                 max_segments,       /* num discontinuous */
15203                                 max_seg_size,       /* max seg size */
15204                                 0,                  /* flags */
15205                                 NULL,               /* lock() */
15206                                 NULL,               /* lock() arg */
15207                                 &fp->tx_mbuf_tag);  /* returned dma tag */
15208         if (rc != 0) {
15209             /* XXX unwind and free previous fastpath allocations */
15210             BLOGE(sc, "Failed to create dma tag for "
15211                       "'fp %d tx mbufs' (%d)\n",
15212                   i, rc);
15213             return (1);
15214         }
15215 
15216         /* create dma maps for each of the tx mbuf clusters */
15217         for (j = 0; j < TX_BD_TOTAL; j++) {
15218             if (bus_dmamap_create(fp->tx_mbuf_tag,
15219                                   BUS_DMA_NOWAIT,
15220                                   &fp->tx_mbuf_chain[j].m_map)) {
15221                 /* XXX unwind and free previous fastpath allocations */
15222                 BLOGE(sc, "Failed to create dma map for "
15223                           "'fp %d tx mbuf %d' (%d)\n",
15224                       i, j, rc);
15225                 return (1);
15226             }
15227         }
15228 
15229         /***********************/
15230         /* FP RX MBUF DMA MAPS */
15231         /***********************/
15232 
15233         /* create a dma tag for the rx mbufs */
15234         rc = bus_dma_tag_create(sc->parent_dma_tag, /* parent tag */
15235                                 1,                  /* alignment */
15236                                 0,                  /* boundary limit */
15237                                 BUS_SPACE_MAXADDR,  /* restricted low */
15238                                 BUS_SPACE_MAXADDR,  /* restricted hi */
15239                                 NULL,               /* addr filter() */
15240                                 NULL,               /* addr filter() arg */
15241                                 MJUM9BYTES,         /* max map size */
15242                                 1,                  /* num discontinuous */
15243                                 MJUM9BYTES,         /* max seg size */
15244                                 0,                  /* flags */
15245                                 NULL,               /* lock() */
15246                                 NULL,               /* lock() arg */
15247                                 &fp->rx_mbuf_tag);  /* returned dma tag */
15248         if (rc != 0) {
15249             /* XXX unwind and free previous fastpath allocations */
15250             BLOGE(sc, "Failed to create dma tag for "
15251                       "'fp %d rx mbufs' (%d)\n",
15252                   i, rc);
15253             return (1);
15254         }
15255 
15256         /* create dma maps for each of the rx mbuf clusters */
15257         for (j = 0; j < RX_BD_TOTAL; j++) {
15258             if (bus_dmamap_create(fp->rx_mbuf_tag,
15259                                   BUS_DMA_NOWAIT,
15260                                   &fp->rx_mbuf_chain[j].m_map)) {
15261                 /* XXX unwind and free previous fastpath allocations */
15262                 BLOGE(sc, "Failed to create dma map for "
15263                           "'fp %d rx mbuf %d' (%d)\n",
15264                       i, j, rc);
15265                 return (1);
15266             }
15267         }
15268 
15269         /* create dma map for the spare rx mbuf cluster */
15270         if (bus_dmamap_create(fp->rx_mbuf_tag,
15271                               BUS_DMA_NOWAIT,
15272                               &fp->rx_mbuf_spare_map)) {
15273             /* XXX unwind and free previous fastpath allocations */
15274             BLOGE(sc, "Failed to create dma map for "
15275                       "'fp %d spare rx mbuf' (%d)\n",
15276                   i, rc);
15277             return (1);
15278         }
15279 
15280         /***************************/
15281         /* FP RX SGE MBUF DMA MAPS */
15282         /***************************/
15283 
15284         /* create a dma tag for the rx sge mbufs */
15285         rc = bus_dma_tag_create(sc->parent_dma_tag, /* parent tag */
15286                                 1,                  /* alignment */
15287                                 0,                  /* boundary limit */
15288                                 BUS_SPACE_MAXADDR,  /* restricted low */
15289                                 BUS_SPACE_MAXADDR,  /* restricted hi */
15290                                 NULL,               /* addr filter() */
15291                                 NULL,               /* addr filter() arg */
15292                                 BCM_PAGE_SIZE,      /* max map size */
15293                                 1,                  /* num discontinuous */
15294                                 BCM_PAGE_SIZE,      /* max seg size */
15295                                 0,                  /* flags */
15296                                 NULL,               /* lock() */
15297                                 NULL,               /* lock() arg */
15298                                 &fp->rx_sge_mbuf_tag); /* returned dma tag */
15299         if (rc != 0) {
15300             /* XXX unwind and free previous fastpath allocations */
15301             BLOGE(sc, "Failed to create dma tag for "
15302                       "'fp %d rx sge mbufs' (%d)\n",
15303                   i, rc);
15304             return (1);
15305         }
15306 
15307         /* create dma maps for the rx sge mbuf clusters */
15308         for (j = 0; j < RX_SGE_TOTAL; j++) {
15309             if (bus_dmamap_create(fp->rx_sge_mbuf_tag,
15310                                   BUS_DMA_NOWAIT,
15311                                   &fp->rx_sge_mbuf_chain[j].m_map)) {
15312                 /* XXX unwind and free previous fastpath allocations */
15313                 BLOGE(sc, "Failed to create dma map for "
15314                           "'fp %d rx sge mbuf %d' (%d)\n",
15315                       i, j, rc);
15316                 return (1);
15317             }
15318         }
15319 
15320         /* create dma map for the spare rx sge mbuf cluster */
15321         if (bus_dmamap_create(fp->rx_sge_mbuf_tag,
15322                               BUS_DMA_NOWAIT,
15323                               &fp->rx_sge_mbuf_spare_map)) {
15324             /* XXX unwind and free previous fastpath allocations */
15325             BLOGE(sc, "Failed to create dma map for "
15326                       "'fp %d spare rx sge mbuf' (%d)\n",
15327                   i, rc);
15328             return (1);
15329         }
15330 
15331         /***************************/
15332         /* FP RX TPA MBUF DMA MAPS */
15333         /***************************/
15334 
15335         /* create dma maps for the rx tpa mbuf clusters */
15336         max_agg_queues = MAX_AGG_QS(sc);
15337 
15338         for (j = 0; j < max_agg_queues; j++) {
15339             if (bus_dmamap_create(fp->rx_mbuf_tag,
15340                                   BUS_DMA_NOWAIT,
15341                                   &fp->rx_tpa_info[j].bd.m_map)) {
15342                 /* XXX unwind and free previous fastpath allocations */
15343                 BLOGE(sc, "Failed to create dma map for "
15344                           "'fp %d rx tpa mbuf %d' (%d)\n",
15345                       i, j, rc);
15346                 return (1);
15347             }
15348         }
15349 
15350         /* create dma map for the spare rx tpa mbuf cluster */
15351         if (bus_dmamap_create(fp->rx_mbuf_tag,
15352                               BUS_DMA_NOWAIT,
15353                               &fp->rx_tpa_info_mbuf_spare_map)) {
15354             /* XXX unwind and free previous fastpath allocations */
15355             BLOGE(sc, "Failed to create dma map for "
15356                       "'fp %d spare rx tpa mbuf' (%d)\n",
15357                   i, rc);
15358             return (1);
15359         }
15360 
15361         bxe_init_sge_ring_bit_mask(fp);
15362     }
15363 
15364     return (0);
15365 }
15366 
15367 static void
15368 bxe_free_hsi_mem(struct bxe_softc *sc)
15369 {
15370     struct bxe_fastpath *fp;
15371     int max_agg_queues;
15372     int i, j;
15373 
15374     if (sc->parent_dma_tag == NULL) {
15375         return; /* assume nothing was allocated */
15376     }
15377 
15378     for (i = 0; i < sc->num_queues; i++) {
15379         fp = &sc->fp[i];
15380 
15381         /*******************/
15382         /* FP STATUS BLOCK */
15383         /*******************/
15384 
15385         bxe_dma_free(sc, &fp->sb_dma);
15386         memset(&fp->status_block, 0, sizeof(fp->status_block));
15387 
15388         /******************/
15389         /* FP TX BD CHAIN */
15390         /******************/
15391 
15392         bxe_dma_free(sc, &fp->tx_dma);
15393         fp->tx_chain = NULL;
15394 
15395         /******************/
15396         /* FP RX BD CHAIN */
15397         /******************/
15398 
15399         bxe_dma_free(sc, &fp->rx_dma);
15400         fp->rx_chain = NULL;
15401 
15402         /*******************/
15403         /* FP RX RCQ CHAIN */
15404         /*******************/
15405 
15406         bxe_dma_free(sc, &fp->rcq_dma);
15407         fp->rcq_chain = NULL;
15408 
15409         /*******************/
15410         /* FP RX SGE CHAIN */
15411         /*******************/
15412 
15413         bxe_dma_free(sc, &fp->rx_sge_dma);
15414         fp->rx_sge_chain = NULL;
15415 
15416         /***********************/
15417         /* FP TX MBUF DMA MAPS */
15418         /***********************/
15419 
15420         if (fp->tx_mbuf_tag != NULL) {
15421             for (j = 0; j < TX_BD_TOTAL; j++) {
15422                 if (fp->tx_mbuf_chain[j].m_map != NULL) {
15423                     bus_dmamap_unload(fp->tx_mbuf_tag,
15424                                       fp->tx_mbuf_chain[j].m_map);
15425                     bus_dmamap_destroy(fp->tx_mbuf_tag,
15426                                        fp->tx_mbuf_chain[j].m_map);
15427                 }
15428             }
15429 
15430             bus_dma_tag_destroy(fp->tx_mbuf_tag);
15431             fp->tx_mbuf_tag = NULL;
15432         }
15433 
15434         /***********************/
15435         /* FP RX MBUF DMA MAPS */
15436         /***********************/
15437 
15438         if (fp->rx_mbuf_tag != NULL) {
15439             for (j = 0; j < RX_BD_TOTAL; j++) {
15440                 if (fp->rx_mbuf_chain[j].m_map != NULL) {
15441                     bus_dmamap_unload(fp->rx_mbuf_tag,
15442                                       fp->rx_mbuf_chain[j].m_map);
15443                     bus_dmamap_destroy(fp->rx_mbuf_tag,
15444                                        fp->rx_mbuf_chain[j].m_map);
15445                 }
15446             }
15447 
15448             if (fp->rx_mbuf_spare_map != NULL) {
15449                 bus_dmamap_unload(fp->rx_mbuf_tag, fp->rx_mbuf_spare_map);
15450                 bus_dmamap_destroy(fp->rx_mbuf_tag, fp->rx_mbuf_spare_map);
15451             }
15452 
15453             /***************************/
15454             /* FP RX TPA MBUF DMA MAPS */
15455             /***************************/
15456 
15457             max_agg_queues = MAX_AGG_QS(sc);
15458 
15459             for (j = 0; j < max_agg_queues; j++) {
15460                 if (fp->rx_tpa_info[j].bd.m_map != NULL) {
15461                     bus_dmamap_unload(fp->rx_mbuf_tag,
15462                                       fp->rx_tpa_info[j].bd.m_map);
15463                     bus_dmamap_destroy(fp->rx_mbuf_tag,
15464                                        fp->rx_tpa_info[j].bd.m_map);
15465                 }
15466             }
15467 
15468             if (fp->rx_tpa_info_mbuf_spare_map != NULL) {
15469                 bus_dmamap_unload(fp->rx_mbuf_tag,
15470                                   fp->rx_tpa_info_mbuf_spare_map);
15471                 bus_dmamap_destroy(fp->rx_mbuf_tag,
15472                                    fp->rx_tpa_info_mbuf_spare_map);
15473             }
15474 
15475             bus_dma_tag_destroy(fp->rx_mbuf_tag);
15476             fp->rx_mbuf_tag = NULL;
15477         }
15478 
15479         /***************************/
15480         /* FP RX SGE MBUF DMA MAPS */
15481         /***************************/
15482 
15483         if (fp->rx_sge_mbuf_tag != NULL) {
15484             for (j = 0; j < RX_SGE_TOTAL; j++) {
15485                 if (fp->rx_sge_mbuf_chain[j].m_map != NULL) {
15486                     bus_dmamap_unload(fp->rx_sge_mbuf_tag,
15487                                       fp->rx_sge_mbuf_chain[j].m_map);
15488                     bus_dmamap_destroy(fp->rx_sge_mbuf_tag,
15489                                        fp->rx_sge_mbuf_chain[j].m_map);
15490                 }
15491             }
15492 
15493             if (fp->rx_sge_mbuf_spare_map != NULL) {
15494                 bus_dmamap_unload(fp->rx_sge_mbuf_tag,
15495                                   fp->rx_sge_mbuf_spare_map);
15496                 bus_dmamap_destroy(fp->rx_sge_mbuf_tag,
15497                                    fp->rx_sge_mbuf_spare_map);
15498             }
15499 
15500             bus_dma_tag_destroy(fp->rx_sge_mbuf_tag);
15501             fp->rx_sge_mbuf_tag = NULL;
15502         }
15503     }
15504 
15505     /***************************/
15506     /* FW DECOMPRESSION BUFFER */
15507     /***************************/
15508 
15509     bxe_dma_free(sc, &sc->gz_buf_dma);
15510     sc->gz_buf = NULL;
15511     free(sc->gz_strm, M_DEVBUF);
15512     sc->gz_strm = NULL;
15513 
15514     /*******************/
15515     /* SLOW PATH QUEUE */
15516     /*******************/
15517 
15518     bxe_dma_free(sc, &sc->spq_dma);
15519     sc->spq = NULL;
15520 
15521     /*************/
15522     /* SLOW PATH */
15523     /*************/
15524 
15525     bxe_dma_free(sc, &sc->sp_dma);
15526     sc->sp = NULL;
15527 
15528     /***************/
15529     /* EVENT QUEUE */
15530     /***************/
15531 
15532     bxe_dma_free(sc, &sc->eq_dma);
15533     sc->eq = NULL;
15534 
15535     /************************/
15536     /* DEFAULT STATUS BLOCK */
15537     /************************/
15538 
15539     bxe_dma_free(sc, &sc->def_sb_dma);
15540     sc->def_sb = NULL;
15541 
15542     bus_dma_tag_destroy(sc->parent_dma_tag);
15543     sc->parent_dma_tag = NULL;
15544 }
15545 
15546 /*
15547  * Previous driver DMAE transaction may have occurred when pre-boot stage
15548  * ended and boot began. This would invalidate the addresses of the
15549  * transaction, resulting in was-error bit set in the PCI causing all
15550  * hw-to-host PCIe transactions to timeout. If this happened we want to clear
15551  * the interrupt which detected this from the pglueb and the was-done bit
15552  */
15553 static void
15554 bxe_prev_interrupted_dmae(struct bxe_softc *sc)
15555 {
15556     uint32_t val;
15557 
15558     if (!CHIP_IS_E1x(sc)) {
15559         val = REG_RD(sc, PGLUE_B_REG_PGLUE_B_INT_STS);
15560         if (val & PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN) {
15561             BLOGD(sc, DBG_LOAD,
15562                   "Clearing 'was-error' bit that was set in pglueb");
15563             REG_WR(sc, PGLUE_B_REG_WAS_ERROR_PF_7_0_CLR, 1 << SC_FUNC(sc));
15564         }
15565     }
15566 }
15567 
15568 static int
15569 bxe_prev_mcp_done(struct bxe_softc *sc)
15570 {
15571     uint32_t rc = bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_DONE,
15572                                  DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET);
15573     if (!rc) {
15574         BLOGE(sc, "MCP response failure, aborting\n");
15575         return (-1);
15576     }
15577 
15578     return (0);
15579 }
15580 
15581 static struct bxe_prev_list_node *
15582 bxe_prev_path_get_entry(struct bxe_softc *sc)
15583 {
15584     struct bxe_prev_list_node *tmp;
15585 
15586     LIST_FOREACH(tmp, &bxe_prev_list, node) {
15587         if ((sc->pcie_bus == tmp->bus) &&
15588             (sc->pcie_device == tmp->slot) &&
15589             (SC_PATH(sc) == tmp->path)) {
15590             return (tmp);
15591         }
15592     }
15593 
15594     return (NULL);
15595 }
15596 
15597 static uint8_t
15598 bxe_prev_is_path_marked(struct bxe_softc *sc)
15599 {
15600     struct bxe_prev_list_node *tmp;
15601     int rc = FALSE;
15602 
15603     mtx_lock(&bxe_prev_mtx);
15604 
15605     tmp = bxe_prev_path_get_entry(sc);
15606     if (tmp) {
15607         if (tmp->aer) {
15608             BLOGD(sc, DBG_LOAD,
15609                   "Path %d/%d/%d was marked by AER\n",
15610                   sc->pcie_bus, sc->pcie_device, SC_PATH(sc));
15611         } else {
15612             rc = TRUE;
15613             BLOGD(sc, DBG_LOAD,
15614                   "Path %d/%d/%d was already cleaned from previous drivers\n",
15615                   sc->pcie_bus, sc->pcie_device, SC_PATH(sc));
15616         }
15617     }
15618 
15619     mtx_unlock(&bxe_prev_mtx);
15620 
15621     return (rc);
15622 }
15623 
15624 static int
15625 bxe_prev_mark_path(struct bxe_softc *sc,
15626                    uint8_t          after_undi)
15627 {
15628     struct bxe_prev_list_node *tmp;
15629 
15630     mtx_lock(&bxe_prev_mtx);
15631 
15632     /* Check whether the entry for this path already exists */
15633     tmp = bxe_prev_path_get_entry(sc);
15634     if (tmp) {
15635         if (!tmp->aer) {
15636             BLOGD(sc, DBG_LOAD,
15637                   "Re-marking AER in path %d/%d/%d\n",
15638                   sc->pcie_bus, sc->pcie_device, SC_PATH(sc));
15639         } else {
15640             BLOGD(sc, DBG_LOAD,
15641                   "Removing AER indication from path %d/%d/%d\n",
15642                   sc->pcie_bus, sc->pcie_device, SC_PATH(sc));
15643             tmp->aer = 0;
15644         }
15645 
15646         mtx_unlock(&bxe_prev_mtx);
15647         return (0);
15648     }
15649 
15650     mtx_unlock(&bxe_prev_mtx);
15651 
15652     /* Create an entry for this path and add it */
15653     tmp = malloc(sizeof(struct bxe_prev_list_node), M_DEVBUF,
15654                  (M_NOWAIT | M_ZERO));
15655     if (!tmp) {
15656         BLOGE(sc, "Failed to allocate 'bxe_prev_list_node'\n");
15657         return (-1);
15658     }
15659 
15660     tmp->bus  = sc->pcie_bus;
15661     tmp->slot = sc->pcie_device;
15662     tmp->path = SC_PATH(sc);
15663     tmp->aer  = 0;
15664     tmp->undi = after_undi ? (1 << SC_PORT(sc)) : 0;
15665 
15666     mtx_lock(&bxe_prev_mtx);
15667 
15668     BLOGD(sc, DBG_LOAD,
15669           "Marked path %d/%d/%d - finished previous unload\n",
15670           sc->pcie_bus, sc->pcie_device, SC_PATH(sc));
15671     LIST_INSERT_HEAD(&bxe_prev_list, tmp, node);
15672 
15673     mtx_unlock(&bxe_prev_mtx);
15674 
15675     return (0);
15676 }
15677 
15678 static int
15679 bxe_do_flr(struct bxe_softc *sc)
15680 {
15681     int i;
15682 
15683     /* only E2 and onwards support FLR */
15684     if (CHIP_IS_E1x(sc)) {
15685         BLOGD(sc, DBG_LOAD, "FLR not supported in E1/E1H\n");
15686         return (-1);
15687     }
15688 
15689     /* only bootcode REQ_BC_VER_4_INITIATE_FLR and onwards support flr */
15690     if (sc->devinfo.bc_ver < REQ_BC_VER_4_INITIATE_FLR) {
15691         BLOGD(sc, DBG_LOAD, "FLR not supported by BC_VER: 0x%08x\n",
15692               sc->devinfo.bc_ver);
15693         return (-1);
15694     }
15695 
15696     /* Wait for Transaction Pending bit clean */
15697     for (i = 0; i < 4; i++) {
15698         if (i) {
15699             DELAY(((1 << (i - 1)) * 100) * 1000);
15700         }
15701 
15702         if (!bxe_is_pcie_pending(sc)) {
15703             goto clear;
15704         }
15705     }
15706 
15707     BLOGE(sc, "PCIE transaction is not cleared, "
15708               "proceeding with reset anyway\n");
15709 
15710 clear:
15711 
15712     BLOGD(sc, DBG_LOAD, "Initiating FLR\n");
15713     bxe_fw_command(sc, DRV_MSG_CODE_INITIATE_FLR, 0);
15714 
15715     return (0);
15716 }
15717 
15718 struct bxe_mac_vals {
15719     uint32_t xmac_addr;
15720     uint32_t xmac_val;
15721     uint32_t emac_addr;
15722     uint32_t emac_val;
15723     uint32_t umac_addr;
15724     uint32_t umac_val;
15725     uint32_t bmac_addr;
15726     uint32_t bmac_val[2];
15727 };
15728 
15729 static void
15730 bxe_prev_unload_close_mac(struct bxe_softc *sc,
15731                           struct bxe_mac_vals *vals)
15732 {
15733     uint32_t val, base_addr, offset, mask, reset_reg;
15734     uint8_t mac_stopped = FALSE;
15735     uint8_t port = SC_PORT(sc);
15736     uint32_t wb_data[2];
15737 
15738     /* reset addresses as they also mark which values were changed */
15739     vals->bmac_addr = 0;
15740     vals->umac_addr = 0;
15741     vals->xmac_addr = 0;
15742     vals->emac_addr = 0;
15743 
15744     reset_reg = REG_RD(sc, MISC_REG_RESET_REG_2);
15745 
15746     if (!CHIP_IS_E3(sc)) {
15747         val = REG_RD(sc, NIG_REG_BMAC0_REGS_OUT_EN + port * 4);
15748         mask = MISC_REGISTERS_RESET_REG_2_RST_BMAC0 << port;
15749         if ((mask & reset_reg) && val) {
15750             BLOGD(sc, DBG_LOAD, "Disable BMAC Rx\n");
15751             base_addr = SC_PORT(sc) ? NIG_REG_INGRESS_BMAC1_MEM
15752                                     : NIG_REG_INGRESS_BMAC0_MEM;
15753             offset = CHIP_IS_E2(sc) ? BIGMAC2_REGISTER_BMAC_CONTROL
15754                                     : BIGMAC_REGISTER_BMAC_CONTROL;
15755 
15756             /*
15757              * use rd/wr since we cannot use dmae. This is safe
15758              * since MCP won't access the bus due to the request
15759              * to unload, and no function on the path can be
15760              * loaded at this time.
15761              */
15762             wb_data[0] = REG_RD(sc, base_addr + offset);
15763             wb_data[1] = REG_RD(sc, base_addr + offset + 0x4);
15764             vals->bmac_addr = base_addr + offset;
15765             vals->bmac_val[0] = wb_data[0];
15766             vals->bmac_val[1] = wb_data[1];
15767             wb_data[0] &= ~ELINK_BMAC_CONTROL_RX_ENABLE;
15768             REG_WR(sc, vals->bmac_addr, wb_data[0]);
15769             REG_WR(sc, vals->bmac_addr + 0x4, wb_data[1]);
15770         }
15771 
15772         BLOGD(sc, DBG_LOAD, "Disable EMAC Rx\n");
15773         vals->emac_addr = NIG_REG_NIG_EMAC0_EN + SC_PORT(sc)*4;
15774         vals->emac_val = REG_RD(sc, vals->emac_addr);
15775         REG_WR(sc, vals->emac_addr, 0);
15776         mac_stopped = TRUE;
15777     } else {
15778         if (reset_reg & MISC_REGISTERS_RESET_REG_2_XMAC) {
15779             BLOGD(sc, DBG_LOAD, "Disable XMAC Rx\n");
15780             base_addr = SC_PORT(sc) ? GRCBASE_XMAC1 : GRCBASE_XMAC0;
15781             val = REG_RD(sc, base_addr + XMAC_REG_PFC_CTRL_HI);
15782             REG_WR(sc, base_addr + XMAC_REG_PFC_CTRL_HI, val & ~(1 << 1));
15783             REG_WR(sc, base_addr + XMAC_REG_PFC_CTRL_HI, val | (1 << 1));
15784             vals->xmac_addr = base_addr + XMAC_REG_CTRL;
15785             vals->xmac_val = REG_RD(sc, vals->xmac_addr);
15786             REG_WR(sc, vals->xmac_addr, 0);
15787             mac_stopped = TRUE;
15788         }
15789 
15790         mask = MISC_REGISTERS_RESET_REG_2_UMAC0 << port;
15791         if (mask & reset_reg) {
15792             BLOGD(sc, DBG_LOAD, "Disable UMAC Rx\n");
15793             base_addr = SC_PORT(sc) ? GRCBASE_UMAC1 : GRCBASE_UMAC0;
15794             vals->umac_addr = base_addr + UMAC_REG_COMMAND_CONFIG;
15795             vals->umac_val = REG_RD(sc, vals->umac_addr);
15796             REG_WR(sc, vals->umac_addr, 0);
15797             mac_stopped = TRUE;
15798         }
15799     }
15800 
15801     if (mac_stopped) {
15802         DELAY(20000);
15803     }
15804 }
15805 
15806 #define BXE_PREV_UNDI_PROD_ADDR(p)  (BAR_TSTRORM_INTMEM + 0x1508 + ((p) << 4))
15807 #define BXE_PREV_UNDI_RCQ(val)      ((val) & 0xffff)
15808 #define BXE_PREV_UNDI_BD(val)       ((val) >> 16 & 0xffff)
15809 #define BXE_PREV_UNDI_PROD(rcq, bd) ((bd) << 16 | (rcq))
15810 
15811 static void
15812 bxe_prev_unload_undi_inc(struct bxe_softc *sc,
15813                          uint8_t          port,
15814                          uint8_t          inc)
15815 {
15816     uint16_t rcq, bd;
15817     uint32_t tmp_reg = REG_RD(sc, BXE_PREV_UNDI_PROD_ADDR(port));
15818 
15819     rcq = BXE_PREV_UNDI_RCQ(tmp_reg) + inc;
15820     bd = BXE_PREV_UNDI_BD(tmp_reg) + inc;
15821 
15822     tmp_reg = BXE_PREV_UNDI_PROD(rcq, bd);
15823     REG_WR(sc, BXE_PREV_UNDI_PROD_ADDR(port), tmp_reg);
15824 
15825     BLOGD(sc, DBG_LOAD,
15826           "UNDI producer [%d] rings bd -> 0x%04x, rcq -> 0x%04x\n",
15827           port, bd, rcq);
15828 }
15829 
15830 static int
15831 bxe_prev_unload_common(struct bxe_softc *sc)
15832 {
15833     uint32_t reset_reg, tmp_reg = 0, rc;
15834     uint8_t prev_undi = FALSE;
15835     struct bxe_mac_vals mac_vals;
15836     uint32_t timer_count = 1000;
15837     uint32_t prev_brb;
15838 
15839     /*
15840      * It is possible a previous function received 'common' answer,
15841      * but hasn't loaded yet, therefore creating a scenario of
15842      * multiple functions receiving 'common' on the same path.
15843      */
15844     BLOGD(sc, DBG_LOAD, "Common unload Flow\n");
15845 
15846     memset(&mac_vals, 0, sizeof(mac_vals));
15847 
15848     if (bxe_prev_is_path_marked(sc)) {
15849         return (bxe_prev_mcp_done(sc));
15850     }
15851 
15852     reset_reg = REG_RD(sc, MISC_REG_RESET_REG_1);
15853 
15854     /* Reset should be performed after BRB is emptied */
15855     if (reset_reg & MISC_REGISTERS_RESET_REG_1_RST_BRB1) {
15856         /* Close the MAC Rx to prevent BRB from filling up */
15857         bxe_prev_unload_close_mac(sc, &mac_vals);
15858 
15859         /* close LLH filters towards the BRB */
15860         elink_set_rx_filter(&sc->link_params, 0);
15861 
15862         /*
15863          * Check if the UNDI driver was previously loaded.
15864          * UNDI driver initializes CID offset for normal bell to 0x7
15865          */
15866         if (reset_reg & MISC_REGISTERS_RESET_REG_1_RST_DORQ) {
15867             tmp_reg = REG_RD(sc, DORQ_REG_NORM_CID_OFST);
15868             if (tmp_reg == 0x7) {
15869                 BLOGD(sc, DBG_LOAD, "UNDI previously loaded\n");
15870                 prev_undi = TRUE;
15871                 /* clear the UNDI indication */
15872                 REG_WR(sc, DORQ_REG_NORM_CID_OFST, 0);
15873                 /* clear possible idle check errors */
15874                 REG_RD(sc, NIG_REG_NIG_INT_STS_CLR_0);
15875             }
15876         }
15877 
15878         /* wait until BRB is empty */
15879         tmp_reg = REG_RD(sc, BRB1_REG_NUM_OF_FULL_BLOCKS);
15880         while (timer_count) {
15881             prev_brb = tmp_reg;
15882 
15883             tmp_reg = REG_RD(sc, BRB1_REG_NUM_OF_FULL_BLOCKS);
15884             if (!tmp_reg) {
15885                 break;
15886             }
15887 
15888             BLOGD(sc, DBG_LOAD, "BRB still has 0x%08x\n", tmp_reg);
15889 
15890             /* reset timer as long as BRB actually gets emptied */
15891             if (prev_brb > tmp_reg) {
15892                 timer_count = 1000;
15893             } else {
15894                 timer_count--;
15895             }
15896 
15897             /* If UNDI resides in memory, manually increment it */
15898             if (prev_undi) {
15899                 bxe_prev_unload_undi_inc(sc, SC_PORT(sc), 1);
15900             }
15901 
15902             DELAY(10);
15903         }
15904 
15905         if (!timer_count) {
15906             BLOGE(sc, "Failed to empty BRB\n");
15907         }
15908     }
15909 
15910     /* No packets are in the pipeline, path is ready for reset */
15911     bxe_reset_common(sc);
15912 
15913     if (mac_vals.xmac_addr) {
15914         REG_WR(sc, mac_vals.xmac_addr, mac_vals.xmac_val);
15915     }
15916     if (mac_vals.umac_addr) {
15917         REG_WR(sc, mac_vals.umac_addr, mac_vals.umac_val);
15918     }
15919     if (mac_vals.emac_addr) {
15920         REG_WR(sc, mac_vals.emac_addr, mac_vals.emac_val);
15921     }
15922     if (mac_vals.bmac_addr) {
15923         REG_WR(sc, mac_vals.bmac_addr, mac_vals.bmac_val[0]);
15924         REG_WR(sc, mac_vals.bmac_addr + 4, mac_vals.bmac_val[1]);
15925     }
15926 
15927     rc = bxe_prev_mark_path(sc, prev_undi);
15928     if (rc) {
15929         bxe_prev_mcp_done(sc);
15930         return (rc);
15931     }
15932 
15933     return (bxe_prev_mcp_done(sc));
15934 }
15935 
15936 static int
15937 bxe_prev_unload_uncommon(struct bxe_softc *sc)
15938 {
15939     int rc;
15940 
15941     BLOGD(sc, DBG_LOAD, "Uncommon unload Flow\n");
15942 
15943     /* Test if previous unload process was already finished for this path */
15944     if (bxe_prev_is_path_marked(sc)) {
15945         return (bxe_prev_mcp_done(sc));
15946     }
15947 
15948     BLOGD(sc, DBG_LOAD, "Path is unmarked\n");
15949 
15950     /*
15951      * If function has FLR capabilities, and existing FW version matches
15952      * the one required, then FLR will be sufficient to clean any residue
15953      * left by previous driver
15954      */
15955     rc = bxe_nic_load_analyze_req(sc, FW_MSG_CODE_DRV_LOAD_FUNCTION);
15956     if (!rc) {
15957         /* fw version is good */
15958         BLOGD(sc, DBG_LOAD, "FW version matches our own, attempting FLR\n");
15959         rc = bxe_do_flr(sc);
15960     }
15961 
15962     if (!rc) {
15963         /* FLR was performed */
15964         BLOGD(sc, DBG_LOAD, "FLR successful\n");
15965         return (0);
15966     }
15967 
15968     BLOGD(sc, DBG_LOAD, "Could not FLR\n");
15969 
15970     /* Close the MCP request, return failure*/
15971     rc = bxe_prev_mcp_done(sc);
15972     if (!rc) {
15973         rc = BXE_PREV_WAIT_NEEDED;
15974     }
15975 
15976     return (rc);
15977 }
15978 
15979 static int
15980 bxe_prev_unload(struct bxe_softc *sc)
15981 {
15982     int time_counter = 10;
15983     uint32_t fw, hw_lock_reg, hw_lock_val;
15984     uint32_t rc = 0;
15985 
15986     /*
15987      * Clear HW from errors which may have resulted from an interrupted
15988      * DMAE transaction.
15989      */
15990     bxe_prev_interrupted_dmae(sc);
15991 
15992     /* Release previously held locks */
15993     hw_lock_reg =
15994         (SC_FUNC(sc) <= 5) ?
15995             (MISC_REG_DRIVER_CONTROL_1 + SC_FUNC(sc) * 8) :
15996             (MISC_REG_DRIVER_CONTROL_7 + (SC_FUNC(sc) - 6) * 8);
15997 
15998     hw_lock_val = (REG_RD(sc, hw_lock_reg));
15999     if (hw_lock_val) {
16000         if (hw_lock_val & HW_LOCK_RESOURCE_NVRAM) {
16001             BLOGD(sc, DBG_LOAD, "Releasing previously held NVRAM lock\n");
16002             REG_WR(sc, MCP_REG_MCPR_NVM_SW_ARB,
16003                    (MCPR_NVM_SW_ARB_ARB_REQ_CLR1 << SC_PORT(sc)));
16004         }
16005         BLOGD(sc, DBG_LOAD, "Releasing previously held HW lock\n");
16006         REG_WR(sc, hw_lock_reg, 0xffffffff);
16007     } else {
16008         BLOGD(sc, DBG_LOAD, "No need to release HW/NVRAM locks\n");
16009     }
16010 
16011     if (MCPR_ACCESS_LOCK_LOCK & REG_RD(sc, MCP_REG_MCPR_ACCESS_LOCK)) {
16012         BLOGD(sc, DBG_LOAD, "Releasing previously held ALR\n");
16013         REG_WR(sc, MCP_REG_MCPR_ACCESS_LOCK, 0);
16014     }
16015 
16016     do {
16017         /* Lock MCP using an unload request */
16018         fw = bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS, 0);
16019         if (!fw) {
16020             BLOGE(sc, "MCP response failure, aborting\n");
16021             rc = -1;
16022             break;
16023         }
16024 
16025         if (fw == FW_MSG_CODE_DRV_UNLOAD_COMMON) {
16026             rc = bxe_prev_unload_common(sc);
16027             break;
16028         }
16029 
16030         /* non-common reply from MCP night require looping */
16031         rc = bxe_prev_unload_uncommon(sc);
16032         if (rc != BXE_PREV_WAIT_NEEDED) {
16033             break;
16034         }
16035 
16036         DELAY(20000);
16037     } while (--time_counter);
16038 
16039     if (!time_counter || rc) {
16040         BLOGE(sc, "Failed to unload previous driver!\n");
16041         rc = -1;
16042     }
16043 
16044     return (rc);
16045 }
16046 
16047 void
16048 bxe_dcbx_set_state(struct bxe_softc *sc,
16049                    uint8_t          dcb_on,
16050                    uint32_t         dcbx_enabled)
16051 {
16052     if (!CHIP_IS_E1x(sc)) {
16053         sc->dcb_state = dcb_on;
16054         sc->dcbx_enabled = dcbx_enabled;
16055     } else {
16056         sc->dcb_state = FALSE;
16057         sc->dcbx_enabled = BXE_DCBX_ENABLED_INVALID;
16058     }
16059     BLOGD(sc, DBG_LOAD,
16060           "DCB state [%s:%s]\n",
16061           dcb_on ? "ON" : "OFF",
16062           (dcbx_enabled == BXE_DCBX_ENABLED_OFF) ? "user-mode" :
16063           (dcbx_enabled == BXE_DCBX_ENABLED_ON_NEG_OFF) ? "on-chip static" :
16064           (dcbx_enabled == BXE_DCBX_ENABLED_ON_NEG_ON) ?
16065           "on-chip with negotiation" : "invalid");
16066 }
16067 
16068 /* must be called after sriov-enable */
16069 static int
16070 bxe_set_qm_cid_count(struct bxe_softc *sc)
16071 {
16072     int cid_count = BXE_L2_MAX_CID(sc);
16073 
16074     if (IS_SRIOV(sc)) {
16075         cid_count += BXE_VF_CIDS;
16076     }
16077 
16078     if (CNIC_SUPPORT(sc)) {
16079         cid_count += CNIC_CID_MAX;
16080     }
16081 
16082     return (roundup(cid_count, QM_CID_ROUND));
16083 }
16084 
16085 static void
16086 bxe_init_multi_cos(struct bxe_softc *sc)
16087 {
16088     int pri, cos;
16089 
16090     uint32_t pri_map = 0; /* XXX change to user config */
16091 
16092     for (pri = 0; pri < BXE_MAX_PRIORITY; pri++) {
16093         cos = ((pri_map & (0xf << (pri * 4))) >> (pri * 4));
16094         if (cos < sc->max_cos) {
16095             sc->prio_to_cos[pri] = cos;
16096         } else {
16097             BLOGW(sc, "Invalid COS %d for priority %d "
16098                       "(max COS is %d), setting to 0\n",
16099                   cos, pri, (sc->max_cos - 1));
16100             sc->prio_to_cos[pri] = 0;
16101         }
16102     }
16103 }
16104 
16105 static int
16106 bxe_sysctl_state(SYSCTL_HANDLER_ARGS)
16107 {
16108     struct bxe_softc *sc;
16109     int error, result;
16110 
16111     result = 0;
16112     error = sysctl_handle_int(oidp, &result, 0, req);
16113 
16114     if (error || !req->newptr) {
16115         return (error);
16116     }
16117 
16118     if (result == 1) {
16119         sc = (struct bxe_softc *)arg1;
16120         BLOGI(sc, "... dumping driver state ...\n");
16121         /* XXX */
16122     }
16123 
16124     return (error);
16125 }
16126 
16127 static int
16128 bxe_sysctl_eth_stat(SYSCTL_HANDLER_ARGS)
16129 {
16130     struct bxe_softc *sc = (struct bxe_softc *)arg1;
16131     uint32_t *eth_stats = (uint32_t *)&sc->eth_stats;
16132     uint32_t *offset;
16133     uint64_t value = 0;
16134     int index = (int)arg2;
16135 
16136     if (index >= BXE_NUM_ETH_STATS) {
16137         BLOGE(sc, "bxe_eth_stats index out of range (%d)\n", index);
16138         return (-1);
16139     }
16140 
16141     offset = (eth_stats + bxe_eth_stats_arr[index].offset);
16142 
16143     switch (bxe_eth_stats_arr[index].size) {
16144     case 4:
16145         value = (uint64_t)*offset;
16146         break;
16147     case 8:
16148         value = HILO_U64(*offset, *(offset + 1));
16149         break;
16150     default:
16151         BLOGE(sc, "Invalid bxe_eth_stats size (index=%d size=%d)\n",
16152               index, bxe_eth_stats_arr[index].size);
16153         return (-1);
16154     }
16155 
16156     return (sysctl_handle_64(oidp, &value, 0, req));
16157 }
16158 
16159 static int
16160 bxe_sysctl_eth_q_stat(SYSCTL_HANDLER_ARGS)
16161 {
16162     struct bxe_softc *sc = (struct bxe_softc *)arg1;
16163     uint32_t *eth_stats;
16164     uint32_t *offset;
16165     uint64_t value = 0;
16166     uint32_t q_stat = (uint32_t)arg2;
16167     uint32_t fp_index = ((q_stat >> 16) & 0xffff);
16168     uint32_t index = (q_stat & 0xffff);
16169 
16170     eth_stats = (uint32_t *)&sc->fp[fp_index].eth_q_stats;
16171 
16172     if (index >= BXE_NUM_ETH_Q_STATS) {
16173         BLOGE(sc, "bxe_eth_q_stats index out of range (%d)\n", index);
16174         return (-1);
16175     }
16176 
16177     offset = (eth_stats + bxe_eth_q_stats_arr[index].offset);
16178 
16179     switch (bxe_eth_q_stats_arr[index].size) {
16180     case 4:
16181         value = (uint64_t)*offset;
16182         break;
16183     case 8:
16184         value = HILO_U64(*offset, *(offset + 1));
16185         break;
16186     default:
16187         BLOGE(sc, "Invalid bxe_eth_q_stats size (index=%d size=%d)\n",
16188               index, bxe_eth_q_stats_arr[index].size);
16189         return (-1);
16190     }
16191 
16192     return (sysctl_handle_64(oidp, &value, 0, req));
16193 }
16194 
16195 static void
16196 bxe_add_sysctls(struct bxe_softc *sc)
16197 {
16198     struct sysctl_ctx_list *ctx;
16199     struct sysctl_oid_list *children;
16200     struct sysctl_oid *queue_top, *queue;
16201     struct sysctl_oid_list *queue_top_children, *queue_children;
16202     char queue_num_buf[32];
16203     uint32_t q_stat;
16204     int i, j;
16205 
16206     ctx = device_get_sysctl_ctx(sc->dev);
16207     children = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev));
16208 
16209     SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "version",
16210                       CTLFLAG_RD, BXE_DRIVER_VERSION, 0,
16211                       "version");
16212 
16213     SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "bc_version",
16214                       CTLFLAG_RD, &sc->devinfo.bc_ver_str, 0,
16215                       "bootcode version");
16216 
16217     snprintf(sc->fw_ver_str, sizeof(sc->fw_ver_str), "%d.%d.%d.%d",
16218              BCM_5710_FW_MAJOR_VERSION,
16219              BCM_5710_FW_MINOR_VERSION,
16220              BCM_5710_FW_REVISION_VERSION,
16221              BCM_5710_FW_ENGINEERING_VERSION);
16222     SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "fw_version",
16223                       CTLFLAG_RD, &sc->fw_ver_str, 0,
16224                       "firmware version");
16225 
16226     snprintf(sc->mf_mode_str, sizeof(sc->mf_mode_str), "%s",
16227         ((sc->devinfo.mf_info.mf_mode == SINGLE_FUNCTION)     ? "Single"  :
16228          (sc->devinfo.mf_info.mf_mode == MULTI_FUNCTION_SD)   ? "MF-SD"   :
16229          (sc->devinfo.mf_info.mf_mode == MULTI_FUNCTION_SI)   ? "MF-SI"   :
16230          (sc->devinfo.mf_info.mf_mode == MULTI_FUNCTION_AFEX) ? "MF-AFEX" :
16231                                                                 "Unknown"));
16232     SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "mf_mode",
16233                       CTLFLAG_RD, &sc->mf_mode_str, 0,
16234                       "multifunction mode");
16235 
16236     SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "mf_vnics",
16237                     CTLFLAG_RD, &sc->devinfo.mf_info.vnics_per_port, 0,
16238                     "multifunction vnics per port");
16239 
16240     SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "mac_addr",
16241                       CTLFLAG_RD, &sc->mac_addr_str, 0,
16242                       "mac address");
16243 
16244     snprintf(sc->pci_link_str, sizeof(sc->pci_link_str), "%s x%d",
16245         ((sc->devinfo.pcie_link_speed == 1) ? "2.5GT/s" :
16246          (sc->devinfo.pcie_link_speed == 2) ? "5.0GT/s" :
16247          (sc->devinfo.pcie_link_speed == 4) ? "8.0GT/s" :
16248                                               "???GT/s"),
16249         sc->devinfo.pcie_link_width);
16250     SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "pci_link",
16251                       CTLFLAG_RD, &sc->pci_link_str, 0,
16252                       "pci link status");
16253 
16254     sc->debug = bxe_debug;
16255     SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "debug",
16256                     CTLFLAG_RW, &sc->debug, 0,
16257                     "debug logging mode");
16258 
16259     sc->rx_budget = bxe_rx_budget;
16260     SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "rx_budget",
16261                     CTLFLAG_RW, &sc->rx_budget, 0,
16262                     "rx processing budget");
16263 
16264     SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "state",
16265                     CTLTYPE_UINT | CTLFLAG_RW, sc, 0,
16266                     bxe_sysctl_state, "IU", "dump driver state");
16267 
16268     for (i = 0; i < BXE_NUM_ETH_STATS; i++) {
16269         SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
16270                         bxe_eth_stats_arr[i].string,
16271                         CTLTYPE_U64 | CTLFLAG_RD, sc, i,
16272                         bxe_sysctl_eth_stat, "LU",
16273                         bxe_eth_stats_arr[i].string);
16274     }
16275 
16276     /* add a new parent node for all queues "dev.bxe.#.queue" */
16277     queue_top = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "queue",
16278                                 CTLFLAG_RD, NULL, "queue");
16279     queue_top_children = SYSCTL_CHILDREN(queue_top);
16280 
16281     for (i = 0; i < sc->num_queues; i++) {
16282         /* add a new parent node for a single queue "dev.bxe.#.queue.#" */
16283         snprintf(queue_num_buf, sizeof(queue_num_buf), "%d", i);
16284         queue = SYSCTL_ADD_NODE(ctx, queue_top_children, OID_AUTO,
16285                                 queue_num_buf, CTLFLAG_RD, NULL,
16286                                 "single queue");
16287         queue_children = SYSCTL_CHILDREN(queue);
16288 
16289         for (j = 0; j < BXE_NUM_ETH_Q_STATS; j++) {
16290             q_stat = ((i << 16) | j);
16291             SYSCTL_ADD_PROC(ctx, queue_children, OID_AUTO,
16292                             bxe_eth_q_stats_arr[j].string,
16293                             CTLTYPE_U64 | CTLFLAG_RD, sc, q_stat,
16294                             bxe_sysctl_eth_q_stat, "LU",
16295                             bxe_eth_q_stats_arr[j].string);
16296         }
16297     }
16298 }
16299 
16300 /*
16301  * Device attach function.
16302  *
16303  * Allocates device resources, performs secondary chip identification, and
16304  * initializes driver instance variables. This function is called from driver
16305  * load after a successful probe.
16306  *
16307  * Returns:
16308  *   0 = Success, >0 = Failure
16309  */
16310 static int
16311 bxe_attach(device_t dev)
16312 {
16313     struct bxe_softc *sc;
16314 
16315     sc = device_get_softc(dev);
16316 
16317     BLOGD(sc, DBG_LOAD, "Starting attach...\n");
16318 
16319     sc->state = BXE_STATE_CLOSED;
16320 
16321     sc->dev  = dev;
16322     sc->unit = device_get_unit(dev);
16323 
16324     BLOGD(sc, DBG_LOAD, "softc = %p\n", sc);
16325 
16326     sc->pcie_bus    = pci_get_bus(dev);
16327     sc->pcie_device = pci_get_slot(dev);
16328     sc->pcie_func   = pci_get_function(dev);
16329 
16330     /* enable bus master capability */
16331     pci_enable_busmaster(dev);
16332 
16333     /* get the BARs */
16334     if (bxe_allocate_bars(sc) != 0) {
16335         return (ENXIO);
16336     }
16337 
16338     /* initialize the mutexes */
16339     bxe_init_mutexes(sc);
16340 
16341     /* prepare the periodic callout */
16342     callout_init(&sc->periodic_callout, 0);
16343 
16344     /* prepare the chip taskqueue */
16345     sc->chip_tq_flags = CHIP_TQ_NONE;
16346     snprintf(sc->chip_tq_name, sizeof(sc->chip_tq_name),
16347              "bxe%d_chip_tq", sc->unit);
16348     TASK_INIT(&sc->chip_tq_task, 0, bxe_handle_chip_tq, sc);
16349     sc->chip_tq = taskqueue_create(sc->chip_tq_name, M_NOWAIT,
16350                                    taskqueue_thread_enqueue,
16351                                    &sc->chip_tq);
16352     taskqueue_start_threads(&sc->chip_tq, 1, PWAIT, /* lower priority */
16353                             "%s", sc->chip_tq_name);
16354 
16355     /* get device info and set params */
16356     if (bxe_get_device_info(sc) != 0) {
16357         BLOGE(sc, "getting device info\n");
16358         bxe_deallocate_bars(sc);
16359         pci_disable_busmaster(dev);
16360         return (ENXIO);
16361     }
16362 
16363     /* get final misc params */
16364     bxe_get_params(sc);
16365 
16366     /* set the default MTU (changed via ifconfig) */
16367     sc->mtu = ETHERMTU;
16368 
16369     bxe_set_modes_bitmap(sc);
16370 
16371     /* XXX
16372      * If in AFEX mode and the function is configured for FCoE
16373      * then bail... no L2 allowed.
16374      */
16375 
16376     /* get phy settings from shmem and 'and' against admin settings */
16377     bxe_get_phy_info(sc);
16378 
16379     /* initialize the FreeBSD ifnet interface */
16380     if (bxe_init_ifnet(sc) != 0) {
16381         bxe_release_mutexes(sc);
16382         bxe_deallocate_bars(sc);
16383         pci_disable_busmaster(dev);
16384         return (ENXIO);
16385     }
16386 
16387     /* allocate device interrupts */
16388     if (bxe_interrupt_alloc(sc) != 0) {
16389         if (sc->ifp != NULL) {
16390             ether_ifdetach_drv(sc->ifp);
16391         }
16392         ifmedia_removeall(&sc->ifmedia);
16393         bxe_release_mutexes(sc);
16394         bxe_deallocate_bars(sc);
16395         pci_disable_busmaster(dev);
16396         return (ENXIO);
16397     }
16398 
16399     /* allocate ilt */
16400     if (bxe_alloc_ilt_mem(sc) != 0) {
16401         bxe_interrupt_free(sc);
16402         if (sc->ifp != NULL) {
16403             ether_ifdetach_drv(sc->ifp);
16404         }
16405         ifmedia_removeall(&sc->ifmedia);
16406         bxe_release_mutexes(sc);
16407         bxe_deallocate_bars(sc);
16408         pci_disable_busmaster(dev);
16409         return (ENXIO);
16410     }
16411 
16412     /* allocate the host hardware/software hsi structures */
16413     if (bxe_alloc_hsi_mem(sc) != 0) {
16414         bxe_free_ilt_mem(sc);
16415         bxe_interrupt_free(sc);
16416         if (sc->ifp != NULL) {
16417             ether_ifdetach_drv(sc->ifp);
16418         }
16419         ifmedia_removeall(&sc->ifmedia);
16420         bxe_release_mutexes(sc);
16421         bxe_deallocate_bars(sc);
16422         pci_disable_busmaster(dev);
16423         return (ENXIO);
16424     }
16425 
16426     /* need to reset chip if UNDI was active */
16427     if (IS_PF(sc) && !BXE_NOMCP(sc)) {
16428         /* init fw_seq */
16429         sc->fw_seq =
16430             (SHMEM_RD(sc, func_mb[SC_FW_MB_IDX(sc)].drv_mb_header) &
16431              DRV_MSG_SEQ_NUMBER_MASK);
16432         BLOGD(sc, DBG_LOAD, "prev unload fw_seq 0x%04x\n", sc->fw_seq);
16433         bxe_prev_unload(sc);
16434     }
16435 
16436 #if 1
16437     /* XXX */
16438     bxe_dcbx_set_state(sc, FALSE, BXE_DCBX_ENABLED_OFF);
16439 #else
16440     if (SHMEM2_HAS(sc, dcbx_lldp_params_offset) &&
16441         SHMEM2_HAS(sc, dcbx_lldp_dcbx_stat_offset) &&
16442         SHMEM2_RD(sc, dcbx_lldp_params_offset) &&
16443         SHMEM2_RD(sc, dcbx_lldp_dcbx_stat_offset)) {
16444         bxe_dcbx_set_state(sc, TRUE, BXE_DCBX_ENABLED_ON_NEG_ON);
16445         bxe_dcbx_init_params(sc);
16446     } else {
16447         bxe_dcbx_set_state(sc, FALSE, BXE_DCBX_ENABLED_OFF);
16448     }
16449 #endif
16450 
16451     /* calculate qm_cid_count */
16452     sc->qm_cid_count = bxe_set_qm_cid_count(sc);
16453     BLOGD(sc, DBG_LOAD, "qm_cid_count=%d\n", sc->qm_cid_count);
16454 
16455     sc->max_cos = 1;
16456     bxe_init_multi_cos(sc);
16457 
16458     bxe_add_sysctls(sc);
16459 
16460     return (0);
16461 }
16462 
16463 /*
16464  * Device detach function.
16465  *
16466  * Stops the controller, resets the controller, and releases resources.
16467  *
16468  * Returns:
16469  *   0 = Success, >0 = Failure
16470  */
16471 static int
16472 bxe_detach(device_t dev)
16473 {
16474     struct bxe_softc *sc;
16475     if_t ifp;
16476 
16477     sc = device_get_softc(dev);
16478 
16479     BLOGD(sc, DBG_LOAD, "Starting detach...\n");
16480 
16481     ifp = sc->ifp;
16482     if (ifp != NULL && if_vlantrunkinuse(ifp)) {
16483         BLOGE(sc, "Cannot detach while VLANs are in use.\n");
16484         return(EBUSY);
16485     }
16486 
16487     /* stop the periodic callout */
16488     bxe_periodic_stop(sc);
16489 
16490     /* stop the chip taskqueue */
16491     atomic_store_rel_long(&sc->chip_tq_flags, CHIP_TQ_NONE);
16492     if (sc->chip_tq) {
16493         taskqueue_drain(sc->chip_tq, &sc->chip_tq_task);
16494         taskqueue_free(sc->chip_tq);
16495         sc->chip_tq = NULL;
16496     }
16497 
16498     /* stop and reset the controller if it was open */
16499     if (sc->state != BXE_STATE_CLOSED) {
16500         BXE_CORE_LOCK(sc);
16501         bxe_nic_unload(sc, UNLOAD_CLOSE, TRUE);
16502         BXE_CORE_UNLOCK(sc);
16503     }
16504 
16505     /* release the network interface */
16506     if (ifp != NULL) {
16507         ether_ifdetach_drv(ifp);
16508     }
16509     ifmedia_removeall(&sc->ifmedia);
16510 
16511     /* XXX do the following based on driver state... */
16512 
16513     /* free the host hardware/software hsi structures */
16514     bxe_free_hsi_mem(sc);
16515 
16516     /* free ilt */
16517     bxe_free_ilt_mem(sc);
16518 
16519     /* release the interrupts */
16520     bxe_interrupt_free(sc);
16521 
16522     /* Release the mutexes*/
16523     bxe_release_mutexes(sc);
16524 
16525     /* Release the PCIe BAR mapped memory */
16526     bxe_deallocate_bars(sc);
16527 
16528     /* Release the FreeBSD interface. */
16529     if (sc->ifp != NULL) {
16530         if_free_drv(sc->ifp);
16531     }
16532 
16533     pci_disable_busmaster(dev);
16534 
16535     return (0);
16536 }
16537 
16538 /*
16539  * Device shutdown function.
16540  *
16541  * Stops and resets the controller.
16542  *
16543  * Returns:
16544  *   Nothing
16545  */
16546 static int
16547 bxe_shutdown(device_t dev)
16548 {
16549     struct bxe_softc *sc;
16550 
16551     sc = device_get_softc(dev);
16552 
16553     BLOGD(sc, DBG_LOAD, "Starting shutdown...\n");
16554 
16555     /* stop the periodic callout */
16556     bxe_periodic_stop(sc);
16557 
16558     BXE_CORE_LOCK(sc);
16559     bxe_nic_unload(sc, UNLOAD_NORMAL, FALSE);
16560     BXE_CORE_UNLOCK(sc);
16561 
16562     return (0);
16563 }
16564 
16565 void
16566 bxe_igu_ack_sb(struct bxe_softc *sc,
16567                uint8_t          igu_sb_id,
16568                uint8_t          segment,
16569                uint16_t         index,
16570                uint8_t          op,
16571                uint8_t          update)
16572 {
16573     uint32_t igu_addr = sc->igu_base_addr;
16574     igu_addr += (IGU_CMD_INT_ACK_BASE + igu_sb_id)*8;
16575     bxe_igu_ack_sb_gen(sc, igu_sb_id, segment, index, op, update, igu_addr);
16576 }
16577 
16578 static void
16579 bxe_igu_clear_sb_gen(struct bxe_softc *sc,
16580                      uint8_t          func,
16581                      uint8_t          idu_sb_id,
16582                      uint8_t          is_pf)
16583 {
16584     uint32_t data, ctl, cnt = 100;
16585     uint32_t igu_addr_data = IGU_REG_COMMAND_REG_32LSB_DATA;
16586     uint32_t igu_addr_ctl = IGU_REG_COMMAND_REG_CTRL;
16587     uint32_t igu_addr_ack = IGU_REG_CSTORM_TYPE_0_SB_CLEANUP + (idu_sb_id/32)*4;
16588     uint32_t sb_bit =  1 << (idu_sb_id%32);
16589     uint32_t func_encode = func | (is_pf ? 1 : 0) << IGU_FID_ENCODE_IS_PF_SHIFT;
16590     uint32_t addr_encode = IGU_CMD_E2_PROD_UPD_BASE + idu_sb_id;
16591 
16592     /* Not supported in BC mode */
16593     if (CHIP_INT_MODE_IS_BC(sc)) {
16594         return;
16595     }
16596 
16597     data = ((IGU_USE_REGISTER_cstorm_type_0_sb_cleanup <<
16598              IGU_REGULAR_CLEANUP_TYPE_SHIFT) |
16599             IGU_REGULAR_CLEANUP_SET |
16600             IGU_REGULAR_BCLEANUP);
16601 
16602     ctl = ((addr_encode << IGU_CTRL_REG_ADDRESS_SHIFT) |
16603            (func_encode << IGU_CTRL_REG_FID_SHIFT) |
16604            (IGU_CTRL_CMD_TYPE_WR << IGU_CTRL_REG_TYPE_SHIFT));
16605 
16606     BLOGD(sc, DBG_LOAD, "write 0x%08x to IGU(via GRC) addr 0x%x\n",
16607             data, igu_addr_data);
16608     REG_WR(sc, igu_addr_data, data);
16609 
16610     bus_space_barrier(sc->bar[BAR0].tag, sc->bar[BAR0].handle, 0, 0,
16611                       BUS_SPACE_BARRIER_WRITE);
16612     mb();
16613 
16614     BLOGD(sc, DBG_LOAD, "write 0x%08x to IGU(via GRC) addr 0x%x\n",
16615             ctl, igu_addr_ctl);
16616     REG_WR(sc, igu_addr_ctl, ctl);
16617 
16618     bus_space_barrier(sc->bar[BAR0].tag, sc->bar[BAR0].handle, 0, 0,
16619                       BUS_SPACE_BARRIER_WRITE);
16620     mb();
16621 
16622     /* wait for clean up to finish */
16623     while (!(REG_RD(sc, igu_addr_ack) & sb_bit) && --cnt) {
16624         DELAY(20000);
16625     }
16626 
16627     if (!(REG_RD(sc, igu_addr_ack) & sb_bit)) {
16628         BLOGD(sc, DBG_LOAD,
16629               "Unable to finish IGU cleanup: "
16630               "idu_sb_id %d offset %d bit %d (cnt %d)\n",
16631               idu_sb_id, idu_sb_id/32, idu_sb_id%32, cnt);
16632     }
16633 }
16634 
16635 static void
16636 bxe_igu_clear_sb(struct bxe_softc *sc,
16637                  uint8_t          idu_sb_id)
16638 {
16639     bxe_igu_clear_sb_gen(sc, SC_FUNC(sc), idu_sb_id, TRUE /*PF*/);
16640 }
16641 
16642 
16643 
16644 
16645 
16646 
16647 
16648 /*******************/
16649 /* ECORE CALLBACKS */
16650 /*******************/
16651 
16652 static void
16653 bxe_reset_common(struct bxe_softc *sc)
16654 {
16655     uint32_t val = 0x1400;
16656 
16657     /* reset_common */
16658     REG_WR(sc, (GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR), 0xd3ffff7f);
16659 
16660     if (CHIP_IS_E3(sc)) {
16661         val |= MISC_REGISTERS_RESET_REG_2_MSTAT0;
16662         val |= MISC_REGISTERS_RESET_REG_2_MSTAT1;
16663     }
16664 
16665     REG_WR(sc, (GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR), val);
16666 }
16667 
16668 static void
16669 bxe_common_init_phy(struct bxe_softc *sc)
16670 {
16671     uint32_t shmem_base[2];
16672     uint32_t shmem2_base[2];
16673 
16674     /* Avoid common init in case MFW supports LFA */
16675     if (SHMEM2_RD(sc, size) >
16676         (uint32_t)offsetof(struct shmem2_region,
16677                            lfa_host_addr[SC_PORT(sc)])) {
16678         return;
16679     }
16680 
16681     shmem_base[0]  = sc->devinfo.shmem_base;
16682     shmem2_base[0] = sc->devinfo.shmem2_base;
16683 
16684     if (!CHIP_IS_E1x(sc)) {
16685         shmem_base[1]  = SHMEM2_RD(sc, other_shmem_base_addr);
16686         shmem2_base[1] = SHMEM2_RD(sc, other_shmem2_base_addr);
16687     }
16688 
16689     BXE_PHY_LOCK(sc);
16690     elink_common_init_phy(sc, shmem_base, shmem2_base,
16691                           sc->devinfo.chip_id, 0);
16692     BXE_PHY_UNLOCK(sc);
16693 }
16694 
16695 static void
16696 bxe_pf_disable(struct bxe_softc *sc)
16697 {
16698     uint32_t val = REG_RD(sc, IGU_REG_PF_CONFIGURATION);
16699 
16700     val &= ~IGU_PF_CONF_FUNC_EN;
16701 
16702     REG_WR(sc, IGU_REG_PF_CONFIGURATION, val);
16703     REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
16704     REG_WR(sc, CFC_REG_WEAK_ENABLE_PF, 0);
16705 }
16706 
16707 static void
16708 bxe_init_pxp(struct bxe_softc *sc)
16709 {
16710     uint16_t devctl;
16711     int r_order, w_order;
16712 
16713     devctl = bxe_pcie_capability_read(sc, PCIR_EXPRESS_DEVICE_CTL, 2);
16714 
16715     BLOGD(sc, DBG_LOAD, "read 0x%08x from devctl\n", devctl);
16716 
16717     w_order = ((devctl & PCIM_EXP_CTL_MAX_PAYLOAD) >> 5);
16718 
16719     if (sc->mrrs == -1) {
16720         r_order = ((devctl & PCIM_EXP_CTL_MAX_READ_REQUEST) >> 12);
16721     } else {
16722         BLOGD(sc, DBG_LOAD, "forcing read order to %d\n", sc->mrrs);
16723         r_order = sc->mrrs;
16724     }
16725 
16726     ecore_init_pxp_arb(sc, r_order, w_order);
16727 }
16728 
16729 static uint32_t
16730 bxe_get_pretend_reg(struct bxe_softc *sc)
16731 {
16732     uint32_t base = PXP2_REG_PGL_PRETEND_FUNC_F0;
16733     uint32_t stride = (PXP2_REG_PGL_PRETEND_FUNC_F1 - base);
16734     return (base + (SC_ABS_FUNC(sc)) * stride);
16735 }
16736 
16737 /*
16738  * Called only on E1H or E2.
16739  * When pretending to be PF, the pretend value is the function number 0..7.
16740  * When pretending to be VF, the pretend val is the PF-num:VF-valid:ABS-VFID
16741  * combination.
16742  */
16743 static int
16744 bxe_pretend_func(struct bxe_softc *sc,
16745                  uint16_t         pretend_func_val)
16746 {
16747     uint32_t pretend_reg;
16748 
16749     if (CHIP_IS_E1H(sc) && (pretend_func_val > E1H_FUNC_MAX)) {
16750         return (-1);
16751     }
16752 
16753     /* get my own pretend register */
16754     pretend_reg = bxe_get_pretend_reg(sc);
16755     REG_WR(sc, pretend_reg, pretend_func_val);
16756     REG_RD(sc, pretend_reg);
16757     return (0);
16758 }
16759 
16760 static void
16761 bxe_iov_init_dmae(struct bxe_softc *sc)
16762 {
16763     return;
16764 #if 0
16765     BLOGD(sc, DBG_LOAD, "SRIOV is %s\n", IS_SRIOV(sc) ? "ON" : "OFF");
16766 
16767     if (!IS_SRIOV(sc)) {
16768         return;
16769     }
16770 
16771     REG_WR(sc, DMAE_REG_BACKWARD_COMP_EN, 0);
16772 #endif
16773 }
16774 
16775 #if 0
16776 static int
16777 bxe_iov_init_ilt(struct bxe_softc *sc,
16778                  uint16_t         line)
16779 {
16780     return (line);
16781 #if 0
16782     int i;
16783     struct ecore_ilt* ilt = sc->ilt;
16784 
16785     if (!IS_SRIOV(sc)) {
16786         return (line);
16787     }
16788 
16789     /* set vfs ilt lines */
16790     for (i = 0; i < BXE_VF_CIDS/ILT_PAGE_CIDS ; i++) {
16791         struct hw_dma *hw_cxt = SC_VF_CXT_PAGE(sc,i);
16792         ilt->lines[line+i].page = hw_cxt->addr;
16793         ilt->lines[line+i].page_mapping = hw_cxt->mapping;
16794         ilt->lines[line+i].size = hw_cxt->size; /* doesn't matter */
16795     }
16796     return (line+i);
16797 #endif
16798 }
16799 #endif
16800 
16801 static void
16802 bxe_iov_init_dq(struct bxe_softc *sc)
16803 {
16804     return;
16805 #if 0
16806     if (!IS_SRIOV(sc)) {
16807         return;
16808     }
16809 
16810     /* Set the DQ such that the CID reflect the abs_vfid */
16811     REG_WR(sc, DORQ_REG_VF_NORM_VF_BASE, 0);
16812     REG_WR(sc, DORQ_REG_MAX_RVFID_SIZE, ilog2(BNX2X_MAX_NUM_OF_VFS));
16813 
16814     /*
16815      * Set VFs starting CID. If its > 0 the preceding CIDs are belong to
16816      * the PF L2 queues
16817      */
16818     REG_WR(sc, DORQ_REG_VF_NORM_CID_BASE, BNX2X_FIRST_VF_CID);
16819 
16820     /* The VF window size is the log2 of the max number of CIDs per VF */
16821     REG_WR(sc, DORQ_REG_VF_NORM_CID_WND_SIZE, BNX2X_VF_CID_WND);
16822 
16823     /*
16824      * The VF doorbell size  0 - *B, 4 - 128B. We set it here to match
16825      * the Pf doorbell size although the 2 are independent.
16826      */
16827     REG_WR(sc, DORQ_REG_VF_NORM_CID_OFST,
16828            BNX2X_DB_SHIFT - BNX2X_DB_MIN_SHIFT);
16829 
16830     /*
16831      * No security checks for now -
16832      * configure single rule (out of 16) mask = 0x1, value = 0x0,
16833      * CID range 0 - 0x1ffff
16834      */
16835     REG_WR(sc, DORQ_REG_VF_TYPE_MASK_0, 1);
16836     REG_WR(sc, DORQ_REG_VF_TYPE_VALUE_0, 0);
16837     REG_WR(sc, DORQ_REG_VF_TYPE_MIN_MCID_0, 0);
16838     REG_WR(sc, DORQ_REG_VF_TYPE_MAX_MCID_0, 0x1ffff);
16839 
16840     /* set the number of VF alllowed doorbells to the full DQ range */
16841     REG_WR(sc, DORQ_REG_VF_NORM_MAX_CID_COUNT, 0x20000);
16842 
16843     /* set the VF doorbell threshold */
16844     REG_WR(sc, DORQ_REG_VF_USAGE_CT_LIMIT, 4);
16845 #endif
16846 }
16847 
16848 /* send a NIG loopback debug packet */
16849 static void
16850 bxe_lb_pckt(struct bxe_softc *sc)
16851 {
16852     uint32_t wb_write[3];
16853 
16854     /* Ethernet source and destination addresses */
16855     wb_write[0] = 0x55555555;
16856     wb_write[1] = 0x55555555;
16857     wb_write[2] = 0x20;     /* SOP */
16858     REG_WR_DMAE(sc, NIG_REG_DEBUG_PACKET_LB, wb_write, 3);
16859 
16860     /* NON-IP protocol */
16861     wb_write[0] = 0x09000000;
16862     wb_write[1] = 0x55555555;
16863     wb_write[2] = 0x10;     /* EOP, eop_bvalid = 0 */
16864     REG_WR_DMAE(sc, NIG_REG_DEBUG_PACKET_LB, wb_write, 3);
16865 }
16866 
16867 /*
16868  * Some of the internal memories are not directly readable from the driver.
16869  * To test them we send debug packets.
16870  */
16871 static int
16872 bxe_int_mem_test(struct bxe_softc *sc)
16873 {
16874     int factor;
16875     int count, i;
16876     uint32_t val = 0;
16877 
16878     if (CHIP_REV_IS_FPGA(sc)) {
16879         factor = 120;
16880     } else if (CHIP_REV_IS_EMUL(sc)) {
16881         factor = 200;
16882     } else {
16883         factor = 1;
16884     }
16885 
16886     /* disable inputs of parser neighbor blocks */
16887     REG_WR(sc, TSDM_REG_ENABLE_IN1, 0x0);
16888     REG_WR(sc, TCM_REG_PRS_IFEN, 0x0);
16889     REG_WR(sc, CFC_REG_DEBUG0, 0x1);
16890     REG_WR(sc, NIG_REG_PRS_REQ_IN_EN, 0x0);
16891 
16892     /*  write 0 to parser credits for CFC search request */
16893     REG_WR(sc, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0);
16894 
16895     /* send Ethernet packet */
16896     bxe_lb_pckt(sc);
16897 
16898     /* TODO do i reset NIG statistic? */
16899     /* Wait until NIG register shows 1 packet of size 0x10 */
16900     count = 1000 * factor;
16901     while (count) {
16902         bxe_read_dmae(sc, NIG_REG_STAT2_BRB_OCTET, 2);
16903         val = *BXE_SP(sc, wb_data[0]);
16904         if (val == 0x10) {
16905             break;
16906         }
16907 
16908         DELAY(10000);
16909         count--;
16910     }
16911 
16912     if (val != 0x10) {
16913         BLOGE(sc, "NIG timeout val=0x%x\n", val);
16914         return (-1);
16915     }
16916 
16917     /* wait until PRS register shows 1 packet */
16918     count = (1000 * factor);
16919     while (count) {
16920         val = REG_RD(sc, PRS_REG_NUM_OF_PACKETS);
16921         if (val == 1) {
16922             break;
16923         }
16924 
16925         DELAY(10000);
16926         count--;
16927     }
16928 
16929     if (val != 0x1) {
16930         BLOGE(sc, "PRS timeout val=0x%x\n", val);
16931         return (-2);
16932     }
16933 
16934     /* Reset and init BRB, PRS */
16935     REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03);
16936     DELAY(50000);
16937     REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03);
16938     DELAY(50000);
16939     ecore_init_block(sc, BLOCK_BRB1, PHASE_COMMON);
16940     ecore_init_block(sc, BLOCK_PRS, PHASE_COMMON);
16941 
16942     /* Disable inputs of parser neighbor blocks */
16943     REG_WR(sc, TSDM_REG_ENABLE_IN1, 0x0);
16944     REG_WR(sc, TCM_REG_PRS_IFEN, 0x0);
16945     REG_WR(sc, CFC_REG_DEBUG0, 0x1);
16946     REG_WR(sc, NIG_REG_PRS_REQ_IN_EN, 0x0);
16947 
16948     /* Write 0 to parser credits for CFC search request */
16949     REG_WR(sc, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0);
16950 
16951     /* send 10 Ethernet packets */
16952     for (i = 0; i < 10; i++) {
16953         bxe_lb_pckt(sc);
16954     }
16955 
16956     /* Wait until NIG register shows 10+1 packets of size 11*0x10 = 0xb0 */
16957     count = (1000 * factor);
16958     while (count) {
16959         bxe_read_dmae(sc, NIG_REG_STAT2_BRB_OCTET, 2);
16960         val = *BXE_SP(sc, wb_data[0]);
16961         if (val == 0xb0) {
16962             break;
16963         }
16964 
16965         DELAY(10000);
16966         count--;
16967     }
16968 
16969     if (val != 0xb0) {
16970         BLOGE(sc, "NIG timeout val=0x%x\n", val);
16971         return (-3);
16972     }
16973 
16974     /* Wait until PRS register shows 2 packets */
16975     val = REG_RD(sc, PRS_REG_NUM_OF_PACKETS);
16976     if (val != 2) {
16977         BLOGE(sc, "PRS timeout val=0x%x\n", val);
16978     }
16979 
16980     /* Write 1 to parser credits for CFC search request */
16981     REG_WR(sc, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x1);
16982 
16983     /* Wait until PRS register shows 3 packets */
16984     DELAY(10000 * factor);
16985 
16986     /* Wait until NIG register shows 1 packet of size 0x10 */
16987     val = REG_RD(sc, PRS_REG_NUM_OF_PACKETS);
16988     if (val != 3) {
16989         BLOGE(sc, "PRS timeout val=0x%x\n", val);
16990     }
16991 
16992     /* clear NIG EOP FIFO */
16993     for (i = 0; i < 11; i++) {
16994         REG_RD(sc, NIG_REG_INGRESS_EOP_LB_FIFO);
16995     }
16996 
16997     val = REG_RD(sc, NIG_REG_INGRESS_EOP_LB_EMPTY);
16998     if (val != 1) {
16999         BLOGE(sc, "clear of NIG failed\n");
17000         return (-4);
17001     }
17002 
17003     /* Reset and init BRB, PRS, NIG */
17004     REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03);
17005     DELAY(50000);
17006     REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03);
17007     DELAY(50000);
17008     ecore_init_block(sc, BLOCK_BRB1, PHASE_COMMON);
17009     ecore_init_block(sc, BLOCK_PRS, PHASE_COMMON);
17010     if (!CNIC_SUPPORT(sc)) {
17011         /* set NIC mode */
17012         REG_WR(sc, PRS_REG_NIC_MODE, 1);
17013     }
17014 
17015     /* Enable inputs of parser neighbor blocks */
17016     REG_WR(sc, TSDM_REG_ENABLE_IN1, 0x7fffffff);
17017     REG_WR(sc, TCM_REG_PRS_IFEN, 0x1);
17018     REG_WR(sc, CFC_REG_DEBUG0, 0x0);
17019     REG_WR(sc, NIG_REG_PRS_REQ_IN_EN, 0x1);
17020 
17021     return (0);
17022 }
17023 
17024 static void
17025 bxe_setup_fan_failure_detection(struct bxe_softc *sc)
17026 {
17027     int is_required;
17028     uint32_t val;
17029     int port;
17030 
17031     is_required = 0;
17032     val = (SHMEM_RD(sc, dev_info.shared_hw_config.config2) &
17033            SHARED_HW_CFG_FAN_FAILURE_MASK);
17034 
17035     if (val == SHARED_HW_CFG_FAN_FAILURE_ENABLED) {
17036         is_required = 1;
17037     }
17038     /*
17039      * The fan failure mechanism is usually related to the PHY type since
17040      * the power consumption of the board is affected by the PHY. Currently,
17041      * fan is required for most designs with SFX7101, BCM8727 and BCM8481.
17042      */
17043     else if (val == SHARED_HW_CFG_FAN_FAILURE_PHY_TYPE) {
17044         for (port = PORT_0; port < PORT_MAX; port++) {
17045             is_required |= elink_fan_failure_det_req(sc,
17046                                                      sc->devinfo.shmem_base,
17047                                                      sc->devinfo.shmem2_base,
17048                                                      port);
17049         }
17050     }
17051 
17052     BLOGD(sc, DBG_LOAD, "fan detection setting: %d\n", is_required);
17053 
17054     if (is_required == 0) {
17055         return;
17056     }
17057 
17058     /* Fan failure is indicated by SPIO 5 */
17059     bxe_set_spio(sc, MISC_SPIO_SPIO5, MISC_SPIO_INPUT_HI_Z);
17060 
17061     /* set to active low mode */
17062     val = REG_RD(sc, MISC_REG_SPIO_INT);
17063     val |= (MISC_SPIO_SPIO5 << MISC_SPIO_INT_OLD_SET_POS);
17064     REG_WR(sc, MISC_REG_SPIO_INT, val);
17065 
17066     /* enable interrupt to signal the IGU */
17067     val = REG_RD(sc, MISC_REG_SPIO_EVENT_EN);
17068     val |= MISC_SPIO_SPIO5;
17069     REG_WR(sc, MISC_REG_SPIO_EVENT_EN, val);
17070 }
17071 
17072 static void
17073 bxe_enable_blocks_attention(struct bxe_softc *sc)
17074 {
17075     uint32_t val;
17076 
17077     REG_WR(sc, PXP_REG_PXP_INT_MASK_0, 0);
17078     if (!CHIP_IS_E1x(sc)) {
17079         REG_WR(sc, PXP_REG_PXP_INT_MASK_1, 0x40);
17080     } else {
17081         REG_WR(sc, PXP_REG_PXP_INT_MASK_1, 0);
17082     }
17083     REG_WR(sc, DORQ_REG_DORQ_INT_MASK, 0);
17084     REG_WR(sc, CFC_REG_CFC_INT_MASK, 0);
17085     /*
17086      * mask read length error interrupts in brb for parser
17087      * (parsing unit and 'checksum and crc' unit)
17088      * these errors are legal (PU reads fixed length and CAC can cause
17089      * read length error on truncated packets)
17090      */
17091     REG_WR(sc, BRB1_REG_BRB1_INT_MASK, 0xFC00);
17092     REG_WR(sc, QM_REG_QM_INT_MASK, 0);
17093     REG_WR(sc, TM_REG_TM_INT_MASK, 0);
17094     REG_WR(sc, XSDM_REG_XSDM_INT_MASK_0, 0);
17095     REG_WR(sc, XSDM_REG_XSDM_INT_MASK_1, 0);
17096     REG_WR(sc, XCM_REG_XCM_INT_MASK, 0);
17097 /*      REG_WR(sc, XSEM_REG_XSEM_INT_MASK_0, 0); */
17098 /*      REG_WR(sc, XSEM_REG_XSEM_INT_MASK_1, 0); */
17099     REG_WR(sc, USDM_REG_USDM_INT_MASK_0, 0);
17100     REG_WR(sc, USDM_REG_USDM_INT_MASK_1, 0);
17101     REG_WR(sc, UCM_REG_UCM_INT_MASK, 0);
17102 /*      REG_WR(sc, USEM_REG_USEM_INT_MASK_0, 0); */
17103 /*      REG_WR(sc, USEM_REG_USEM_INT_MASK_1, 0); */
17104     REG_WR(sc, GRCBASE_UPB + PB_REG_PB_INT_MASK, 0);
17105     REG_WR(sc, CSDM_REG_CSDM_INT_MASK_0, 0);
17106     REG_WR(sc, CSDM_REG_CSDM_INT_MASK_1, 0);
17107     REG_WR(sc, CCM_REG_CCM_INT_MASK, 0);
17108 /*      REG_WR(sc, CSEM_REG_CSEM_INT_MASK_0, 0); */
17109 /*      REG_WR(sc, CSEM_REG_CSEM_INT_MASK_1, 0); */
17110 
17111     val = (PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_AFT |
17112            PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_OF |
17113            PXP2_PXP2_INT_MASK_0_REG_PGL_PCIE_ATTN);
17114     if (!CHIP_IS_E1x(sc)) {
17115         val |= (PXP2_PXP2_INT_MASK_0_REG_PGL_READ_BLOCKED |
17116                 PXP2_PXP2_INT_MASK_0_REG_PGL_WRITE_BLOCKED);
17117     }
17118     REG_WR(sc, PXP2_REG_PXP2_INT_MASK_0, val);
17119 
17120     REG_WR(sc, TSDM_REG_TSDM_INT_MASK_0, 0);
17121     REG_WR(sc, TSDM_REG_TSDM_INT_MASK_1, 0);
17122     REG_WR(sc, TCM_REG_TCM_INT_MASK, 0);
17123 /*      REG_WR(sc, TSEM_REG_TSEM_INT_MASK_0, 0); */
17124 
17125     if (!CHIP_IS_E1x(sc)) {
17126         /* enable VFC attentions: bits 11 and 12, bits 31:13 reserved */
17127         REG_WR(sc, TSEM_REG_TSEM_INT_MASK_1, 0x07ff);
17128     }
17129 
17130     REG_WR(sc, CDU_REG_CDU_INT_MASK, 0);
17131     REG_WR(sc, DMAE_REG_DMAE_INT_MASK, 0);
17132 /*      REG_WR(sc, MISC_REG_MISC_INT_MASK, 0); */
17133     REG_WR(sc, PBF_REG_PBF_INT_MASK, 0x18);     /* bit 3,4 masked */
17134 }
17135 
17136 /**
17137  * bxe_init_hw_common - initialize the HW at the COMMON phase.
17138  *
17139  * @sc:     driver handle
17140  */
17141 static int
17142 bxe_init_hw_common(struct bxe_softc *sc)
17143 {
17144     uint8_t abs_func_id;
17145     uint32_t val;
17146 
17147     BLOGD(sc, DBG_LOAD, "starting common init for func %d\n",
17148           SC_ABS_FUNC(sc));
17149 
17150     /*
17151      * take the RESET lock to protect undi_unload flow from accessing
17152      * registers while we are resetting the chip
17153      */
17154     bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RESET);
17155 
17156     bxe_reset_common(sc);
17157 
17158     REG_WR(sc, (GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET), 0xffffffff);
17159 
17160     val = 0xfffc;
17161     if (CHIP_IS_E3(sc)) {
17162         val |= MISC_REGISTERS_RESET_REG_2_MSTAT0;
17163         val |= MISC_REGISTERS_RESET_REG_2_MSTAT1;
17164     }
17165 
17166     REG_WR(sc, (GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET), val);
17167 
17168     bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RESET);
17169 
17170     ecore_init_block(sc, BLOCK_MISC, PHASE_COMMON);
17171     BLOGD(sc, DBG_LOAD, "after misc block init\n");
17172 
17173     if (!CHIP_IS_E1x(sc)) {
17174         /*
17175          * 4-port mode or 2-port mode we need to turn off master-enable for
17176          * everyone. After that we turn it back on for self. So, we disregard
17177          * multi-function, and always disable all functions on the given path,
17178          * this means 0,2,4,6 for path 0 and 1,3,5,7 for path 1
17179          */
17180         for (abs_func_id = SC_PATH(sc);
17181              abs_func_id < (E2_FUNC_MAX * 2);
17182              abs_func_id += 2) {
17183             if (abs_func_id == SC_ABS_FUNC(sc)) {
17184                 REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
17185                 continue;
17186             }
17187 
17188             bxe_pretend_func(sc, abs_func_id);
17189 
17190             /* clear pf enable */
17191             bxe_pf_disable(sc);
17192 
17193             bxe_pretend_func(sc, SC_ABS_FUNC(sc));
17194         }
17195     }
17196 
17197     BLOGD(sc, DBG_LOAD, "after pf disable\n");
17198 
17199     ecore_init_block(sc, BLOCK_PXP, PHASE_COMMON);
17200 
17201     if (CHIP_IS_E1(sc)) {
17202         /*
17203          * enable HW interrupt from PXP on USDM overflow
17204          * bit 16 on INT_MASK_0
17205          */
17206         REG_WR(sc, PXP_REG_PXP_INT_MASK_0, 0);
17207     }
17208 
17209     ecore_init_block(sc, BLOCK_PXP2, PHASE_COMMON);
17210     bxe_init_pxp(sc);
17211 
17212 #ifdef __BIG_ENDIAN
17213     REG_WR(sc, PXP2_REG_RQ_QM_ENDIAN_M, 1);
17214     REG_WR(sc, PXP2_REG_RQ_TM_ENDIAN_M, 1);
17215     REG_WR(sc, PXP2_REG_RQ_SRC_ENDIAN_M, 1);
17216     REG_WR(sc, PXP2_REG_RQ_CDU_ENDIAN_M, 1);
17217     REG_WR(sc, PXP2_REG_RQ_DBG_ENDIAN_M, 1);
17218     /* make sure this value is 0 */
17219     REG_WR(sc, PXP2_REG_RQ_HC_ENDIAN_M, 0);
17220 
17221     //REG_WR(sc, PXP2_REG_RD_PBF_SWAP_MODE, 1);
17222     REG_WR(sc, PXP2_REG_RD_QM_SWAP_MODE, 1);
17223     REG_WR(sc, PXP2_REG_RD_TM_SWAP_MODE, 1);
17224     REG_WR(sc, PXP2_REG_RD_SRC_SWAP_MODE, 1);
17225     REG_WR(sc, PXP2_REG_RD_CDURD_SWAP_MODE, 1);
17226 #endif
17227 
17228     ecore_ilt_init_page_size(sc, INITOP_SET);
17229 
17230     if (CHIP_REV_IS_FPGA(sc) && CHIP_IS_E1H(sc)) {
17231         REG_WR(sc, PXP2_REG_PGL_TAGS_LIMIT, 0x1);
17232     }
17233 
17234     /* let the HW do it's magic... */
17235     DELAY(100000);
17236 
17237     /* finish PXP init */
17238     val = REG_RD(sc, PXP2_REG_RQ_CFG_DONE);
17239     if (val != 1) {
17240         BLOGE(sc, "PXP2 CFG failed\n");
17241         return (-1);
17242     }
17243     val = REG_RD(sc, PXP2_REG_RD_INIT_DONE);
17244     if (val != 1) {
17245         BLOGE(sc, "PXP2 RD_INIT failed\n");
17246         return (-1);
17247     }
17248 
17249     BLOGD(sc, DBG_LOAD, "after pxp init\n");
17250 
17251     /*
17252      * Timer bug workaround for E2 only. We need to set the entire ILT to have
17253      * entries with value "0" and valid bit on. This needs to be done by the
17254      * first PF that is loaded in a path (i.e. common phase)
17255      */
17256     if (!CHIP_IS_E1x(sc)) {
17257 /*
17258  * In E2 there is a bug in the timers block that can cause function 6 / 7
17259  * (i.e. vnic3) to start even if it is marked as "scan-off".
17260  * This occurs when a different function (func2,3) is being marked
17261  * as "scan-off". Real-life scenario for example: if a driver is being
17262  * load-unloaded while func6,7 are down. This will cause the timer to access
17263  * the ilt, translate to a logical address and send a request to read/write.
17264  * Since the ilt for the function that is down is not valid, this will cause
17265  * a translation error which is unrecoverable.
17266  * The Workaround is intended to make sure that when this happens nothing
17267  * fatal will occur. The workaround:
17268  *  1.  First PF driver which loads on a path will:
17269  *      a.  After taking the chip out of reset, by using pretend,
17270  *          it will write "0" to the following registers of
17271  *          the other vnics.
17272  *          REG_WR(pdev, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
17273  *          REG_WR(pdev, CFC_REG_WEAK_ENABLE_PF,0);
17274  *          REG_WR(pdev, CFC_REG_STRONG_ENABLE_PF,0);
17275  *          And for itself it will write '1' to
17276  *          PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER to enable
17277  *          dmae-operations (writing to pram for example.)
17278  *          note: can be done for only function 6,7 but cleaner this
17279  *            way.
17280  *      b.  Write zero+valid to the entire ILT.
17281  *      c.  Init the first_timers_ilt_entry, last_timers_ilt_entry of
17282  *          VNIC3 (of that port). The range allocated will be the
17283  *          entire ILT. This is needed to prevent  ILT range error.
17284  *  2.  Any PF driver load flow:
17285  *      a.  ILT update with the physical addresses of the allocated
17286  *          logical pages.
17287  *      b.  Wait 20msec. - note that this timeout is needed to make
17288  *          sure there are no requests in one of the PXP internal
17289  *          queues with "old" ILT addresses.
17290  *      c.  PF enable in the PGLC.
17291  *      d.  Clear the was_error of the PF in the PGLC. (could have
17292  *          occurred while driver was down)
17293  *      e.  PF enable in the CFC (WEAK + STRONG)
17294  *      f.  Timers scan enable
17295  *  3.  PF driver unload flow:
17296  *      a.  Clear the Timers scan_en.
17297  *      b.  Polling for scan_on=0 for that PF.
17298  *      c.  Clear the PF enable bit in the PXP.
17299  *      d.  Clear the PF enable in the CFC (WEAK + STRONG)
17300  *      e.  Write zero+valid to all ILT entries (The valid bit must
17301  *          stay set)
17302  *      f.  If this is VNIC 3 of a port then also init
17303  *          first_timers_ilt_entry to zero and last_timers_ilt_entry
17304  *          to the last enrty in the ILT.
17305  *
17306  *      Notes:
17307  *      Currently the PF error in the PGLC is non recoverable.
17308  *      In the future the there will be a recovery routine for this error.
17309  *      Currently attention is masked.
17310  *      Having an MCP lock on the load/unload process does not guarantee that
17311  *      there is no Timer disable during Func6/7 enable. This is because the
17312  *      Timers scan is currently being cleared by the MCP on FLR.
17313  *      Step 2.d can be done only for PF6/7 and the driver can also check if
17314  *      there is error before clearing it. But the flow above is simpler and
17315  *      more general.
17316  *      All ILT entries are written by zero+valid and not just PF6/7
17317  *      ILT entries since in the future the ILT entries allocation for
17318  *      PF-s might be dynamic.
17319  */
17320         struct ilt_client_info ilt_cli;
17321         struct ecore_ilt ilt;
17322 
17323         memset(&ilt_cli, 0, sizeof(struct ilt_client_info));
17324         memset(&ilt, 0, sizeof(struct ecore_ilt));
17325 
17326         /* initialize dummy TM client */
17327         ilt_cli.start      = 0;
17328         ilt_cli.end        = ILT_NUM_PAGE_ENTRIES - 1;
17329         ilt_cli.client_num = ILT_CLIENT_TM;
17330 
17331         /*
17332          * Step 1: set zeroes to all ilt page entries with valid bit on
17333          * Step 2: set the timers first/last ilt entry to point
17334          * to the entire range to prevent ILT range error for 3rd/4th
17335          * vnic (this code assumes existence of the vnic)
17336          *
17337          * both steps performed by call to ecore_ilt_client_init_op()
17338          * with dummy TM client
17339          *
17340          * we must use pretend since PXP2_REG_RQ_##blk##_FIRST_ILT
17341          * and his brother are split registers
17342          */
17343 
17344         bxe_pretend_func(sc, (SC_PATH(sc) + 6));
17345         ecore_ilt_client_init_op_ilt(sc, &ilt, &ilt_cli, INITOP_CLEAR);
17346         bxe_pretend_func(sc, SC_ABS_FUNC(sc));
17347 
17348         REG_WR(sc, PXP2_REG_RQ_DRAM_ALIGN, BXE_PXP_DRAM_ALIGN);
17349         REG_WR(sc, PXP2_REG_RQ_DRAM_ALIGN_RD, BXE_PXP_DRAM_ALIGN);
17350         REG_WR(sc, PXP2_REG_RQ_DRAM_ALIGN_SEL, 1);
17351     }
17352 
17353     REG_WR(sc, PXP2_REG_RQ_DISABLE_INPUTS, 0);
17354     REG_WR(sc, PXP2_REG_RD_DISABLE_INPUTS, 0);
17355 
17356     if (!CHIP_IS_E1x(sc)) {
17357         int factor = CHIP_REV_IS_EMUL(sc) ? 1000 :
17358                      (CHIP_REV_IS_FPGA(sc) ? 400 : 0);
17359 
17360         ecore_init_block(sc, BLOCK_PGLUE_B, PHASE_COMMON);
17361         ecore_init_block(sc, BLOCK_ATC, PHASE_COMMON);
17362 
17363         /* let the HW do it's magic... */
17364         do {
17365             DELAY(200000);
17366             val = REG_RD(sc, ATC_REG_ATC_INIT_DONE);
17367         } while (factor-- && (val != 1));
17368 
17369         if (val != 1) {
17370             BLOGE(sc, "ATC_INIT failed\n");
17371             return (-1);
17372         }
17373     }
17374 
17375     BLOGD(sc, DBG_LOAD, "after pglue and atc init\n");
17376 
17377     ecore_init_block(sc, BLOCK_DMAE, PHASE_COMMON);
17378 
17379     bxe_iov_init_dmae(sc);
17380 
17381     /* clean the DMAE memory */
17382     sc->dmae_ready = 1;
17383     ecore_init_fill(sc, TSEM_REG_PRAM, 0, 8, 1);
17384 
17385     ecore_init_block(sc, BLOCK_TCM, PHASE_COMMON);
17386 
17387     ecore_init_block(sc, BLOCK_UCM, PHASE_COMMON);
17388 
17389     ecore_init_block(sc, BLOCK_CCM, PHASE_COMMON);
17390 
17391     ecore_init_block(sc, BLOCK_XCM, PHASE_COMMON);
17392 
17393     bxe_read_dmae(sc, XSEM_REG_PASSIVE_BUFFER, 3);
17394     bxe_read_dmae(sc, CSEM_REG_PASSIVE_BUFFER, 3);
17395     bxe_read_dmae(sc, TSEM_REG_PASSIVE_BUFFER, 3);
17396     bxe_read_dmae(sc, USEM_REG_PASSIVE_BUFFER, 3);
17397 
17398     ecore_init_block(sc, BLOCK_QM, PHASE_COMMON);
17399 
17400     /* QM queues pointers table */
17401     ecore_qm_init_ptr_table(sc, sc->qm_cid_count, INITOP_SET);
17402 
17403     /* soft reset pulse */
17404     REG_WR(sc, QM_REG_SOFT_RESET, 1);
17405     REG_WR(sc, QM_REG_SOFT_RESET, 0);
17406 
17407     if (CNIC_SUPPORT(sc))
17408         ecore_init_block(sc, BLOCK_TM, PHASE_COMMON);
17409 
17410     ecore_init_block(sc, BLOCK_DORQ, PHASE_COMMON);
17411     REG_WR(sc, DORQ_REG_DPM_CID_OFST, BXE_DB_SHIFT);
17412     if (!CHIP_REV_IS_SLOW(sc)) {
17413         /* enable hw interrupt from doorbell Q */
17414         REG_WR(sc, DORQ_REG_DORQ_INT_MASK, 0);
17415     }
17416 
17417     ecore_init_block(sc, BLOCK_BRB1, PHASE_COMMON);
17418 
17419     ecore_init_block(sc, BLOCK_PRS, PHASE_COMMON);
17420     REG_WR(sc, PRS_REG_A_PRSU_20, 0xf);
17421 
17422     if (!CHIP_IS_E1(sc)) {
17423         REG_WR(sc, PRS_REG_E1HOV_MODE, sc->devinfo.mf_info.path_has_ovlan);
17424     }
17425 
17426     if (!CHIP_IS_E1x(sc) && !CHIP_IS_E3B0(sc)) {
17427         if (IS_MF_AFEX(sc)) {
17428             /*
17429              * configure that AFEX and VLAN headers must be
17430              * received in AFEX mode
17431              */
17432             REG_WR(sc, PRS_REG_HDRS_AFTER_BASIC, 0xE);
17433             REG_WR(sc, PRS_REG_MUST_HAVE_HDRS, 0xA);
17434             REG_WR(sc, PRS_REG_HDRS_AFTER_TAG_0, 0x6);
17435             REG_WR(sc, PRS_REG_TAG_ETHERTYPE_0, 0x8926);
17436             REG_WR(sc, PRS_REG_TAG_LEN_0, 0x4);
17437         } else {
17438             /*
17439              * Bit-map indicating which L2 hdrs may appear
17440              * after the basic Ethernet header
17441              */
17442             REG_WR(sc, PRS_REG_HDRS_AFTER_BASIC,
17443                    sc->devinfo.mf_info.path_has_ovlan ? 7 : 6);
17444         }
17445     }
17446 
17447     ecore_init_block(sc, BLOCK_TSDM, PHASE_COMMON);
17448     ecore_init_block(sc, BLOCK_CSDM, PHASE_COMMON);
17449     ecore_init_block(sc, BLOCK_USDM, PHASE_COMMON);
17450     ecore_init_block(sc, BLOCK_XSDM, PHASE_COMMON);
17451 
17452     if (!CHIP_IS_E1x(sc)) {
17453         /* reset VFC memories */
17454         REG_WR(sc, TSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST,
17455                VFC_MEMORIES_RST_REG_CAM_RST |
17456                VFC_MEMORIES_RST_REG_RAM_RST);
17457         REG_WR(sc, XSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST,
17458                VFC_MEMORIES_RST_REG_CAM_RST |
17459                VFC_MEMORIES_RST_REG_RAM_RST);
17460 
17461         DELAY(20000);
17462     }
17463 
17464     ecore_init_block(sc, BLOCK_TSEM, PHASE_COMMON);
17465     ecore_init_block(sc, BLOCK_USEM, PHASE_COMMON);
17466     ecore_init_block(sc, BLOCK_CSEM, PHASE_COMMON);
17467     ecore_init_block(sc, BLOCK_XSEM, PHASE_COMMON);
17468 
17469     /* sync semi rtc */
17470     REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
17471            0x80000000);
17472     REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET,
17473            0x80000000);
17474 
17475     ecore_init_block(sc, BLOCK_UPB, PHASE_COMMON);
17476     ecore_init_block(sc, BLOCK_XPB, PHASE_COMMON);
17477     ecore_init_block(sc, BLOCK_PBF, PHASE_COMMON);
17478 
17479     if (!CHIP_IS_E1x(sc)) {
17480         if (IS_MF_AFEX(sc)) {
17481             /*
17482              * configure that AFEX and VLAN headers must be
17483              * sent in AFEX mode
17484              */
17485             REG_WR(sc, PBF_REG_HDRS_AFTER_BASIC, 0xE);
17486             REG_WR(sc, PBF_REG_MUST_HAVE_HDRS, 0xA);
17487             REG_WR(sc, PBF_REG_HDRS_AFTER_TAG_0, 0x6);
17488             REG_WR(sc, PBF_REG_TAG_ETHERTYPE_0, 0x8926);
17489             REG_WR(sc, PBF_REG_TAG_LEN_0, 0x4);
17490         } else {
17491             REG_WR(sc, PBF_REG_HDRS_AFTER_BASIC,
17492                    sc->devinfo.mf_info.path_has_ovlan ? 7 : 6);
17493         }
17494     }
17495 
17496     REG_WR(sc, SRC_REG_SOFT_RST, 1);
17497 
17498     ecore_init_block(sc, BLOCK_SRC, PHASE_COMMON);
17499 
17500     if (CNIC_SUPPORT(sc)) {
17501         REG_WR(sc, SRC_REG_KEYSEARCH_0, 0x63285672);
17502         REG_WR(sc, SRC_REG_KEYSEARCH_1, 0x24b8f2cc);
17503         REG_WR(sc, SRC_REG_KEYSEARCH_2, 0x223aef9b);
17504         REG_WR(sc, SRC_REG_KEYSEARCH_3, 0x26001e3a);
17505         REG_WR(sc, SRC_REG_KEYSEARCH_4, 0x7ae91116);
17506         REG_WR(sc, SRC_REG_KEYSEARCH_5, 0x5ce5230b);
17507         REG_WR(sc, SRC_REG_KEYSEARCH_6, 0x298d8adf);
17508         REG_WR(sc, SRC_REG_KEYSEARCH_7, 0x6eb0ff09);
17509         REG_WR(sc, SRC_REG_KEYSEARCH_8, 0x1830f82f);
17510         REG_WR(sc, SRC_REG_KEYSEARCH_9, 0x01e46be7);
17511     }
17512     REG_WR(sc, SRC_REG_SOFT_RST, 0);
17513 
17514     if (sizeof(union cdu_context) != 1024) {
17515         /* we currently assume that a context is 1024 bytes */
17516         BLOGE(sc, "please adjust the size of cdu_context(%ld)\n",
17517               (long)sizeof(union cdu_context));
17518     }
17519 
17520     ecore_init_block(sc, BLOCK_CDU, PHASE_COMMON);
17521     val = (4 << 24) + (0 << 12) + 1024;
17522     REG_WR(sc, CDU_REG_CDU_GLOBAL_PARAMS, val);
17523 
17524     ecore_init_block(sc, BLOCK_CFC, PHASE_COMMON);
17525 
17526     REG_WR(sc, CFC_REG_INIT_REG, 0x7FF);
17527     /* enable context validation interrupt from CFC */
17528     REG_WR(sc, CFC_REG_CFC_INT_MASK, 0);
17529 
17530     /* set the thresholds to prevent CFC/CDU race */
17531     REG_WR(sc, CFC_REG_DEBUG0, 0x20020000);
17532     ecore_init_block(sc, BLOCK_HC, PHASE_COMMON);
17533 
17534     if (!CHIP_IS_E1x(sc) && BXE_NOMCP(sc)) {
17535         REG_WR(sc, IGU_REG_RESET_MEMORIES, 0x36);
17536     }
17537 
17538     ecore_init_block(sc, BLOCK_IGU, PHASE_COMMON);
17539     ecore_init_block(sc, BLOCK_MISC_AEU, PHASE_COMMON);
17540 
17541     /* Reset PCIE errors for debug */
17542     REG_WR(sc, 0x2814, 0xffffffff);
17543     REG_WR(sc, 0x3820, 0xffffffff);
17544 
17545     if (!CHIP_IS_E1x(sc)) {
17546         REG_WR(sc, PCICFG_OFFSET + PXPCS_TL_CONTROL_5,
17547                (PXPCS_TL_CONTROL_5_ERR_UNSPPORT1 |
17548                 PXPCS_TL_CONTROL_5_ERR_UNSPPORT));
17549         REG_WR(sc, PCICFG_OFFSET + PXPCS_TL_FUNC345_STAT,
17550                (PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT4 |
17551                 PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT3 |
17552                 PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT2));
17553         REG_WR(sc, PCICFG_OFFSET + PXPCS_TL_FUNC678_STAT,
17554                (PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT7 |
17555                 PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT6 |
17556                 PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT5));
17557     }
17558 
17559     ecore_init_block(sc, BLOCK_NIG, PHASE_COMMON);
17560 
17561     if (!CHIP_IS_E1(sc)) {
17562         /* in E3 this done in per-port section */
17563         if (!CHIP_IS_E3(sc))
17564             REG_WR(sc, NIG_REG_LLH_MF_MODE, IS_MF(sc));
17565     }
17566 
17567     if (CHIP_IS_E1H(sc)) {
17568         /* not applicable for E2 (and above ...) */
17569         REG_WR(sc, NIG_REG_LLH_E1HOV_MODE, IS_MF_SD(sc));
17570     }
17571 
17572     if (CHIP_REV_IS_SLOW(sc)) {
17573         DELAY(200000);
17574     }
17575 
17576     /* finish CFC init */
17577     val = reg_poll(sc, CFC_REG_LL_INIT_DONE, 1, 100, 10);
17578     if (val != 1) {
17579         BLOGE(sc, "CFC LL_INIT failed\n");
17580         return (-1);
17581     }
17582     val = reg_poll(sc, CFC_REG_AC_INIT_DONE, 1, 100, 10);
17583     if (val != 1) {
17584         BLOGE(sc, "CFC AC_INIT failed\n");
17585         return (-1);
17586     }
17587     val = reg_poll(sc, CFC_REG_CAM_INIT_DONE, 1, 100, 10);
17588     if (val != 1) {
17589         BLOGE(sc, "CFC CAM_INIT failed\n");
17590         return (-1);
17591     }
17592     REG_WR(sc, CFC_REG_DEBUG0, 0);
17593 
17594     if (CHIP_IS_E1(sc)) {
17595         /* read NIG statistic to see if this is our first up since powerup */
17596         bxe_read_dmae(sc, NIG_REG_STAT2_BRB_OCTET, 2);
17597         val = *BXE_SP(sc, wb_data[0]);
17598 
17599         /* do internal memory self test */
17600         if ((val == 0) && bxe_int_mem_test(sc)) {
17601             BLOGE(sc, "internal mem self test failed\n");
17602             return (-1);
17603         }
17604     }
17605 
17606     bxe_setup_fan_failure_detection(sc);
17607 
17608     /* clear PXP2 attentions */
17609     REG_RD(sc, PXP2_REG_PXP2_INT_STS_CLR_0);
17610 
17611     bxe_enable_blocks_attention(sc);
17612 
17613     if (!CHIP_REV_IS_SLOW(sc)) {
17614         ecore_enable_blocks_parity(sc);
17615     }
17616 
17617     if (!BXE_NOMCP(sc)) {
17618         if (CHIP_IS_E1x(sc)) {
17619             bxe_common_init_phy(sc);
17620         }
17621     }
17622 
17623     return (0);
17624 }
17625 
17626 /**
17627  * bxe_init_hw_common_chip - init HW at the COMMON_CHIP phase.
17628  *
17629  * @sc:     driver handle
17630  */
17631 static int
17632 bxe_init_hw_common_chip(struct bxe_softc *sc)
17633 {
17634     int rc = bxe_init_hw_common(sc);
17635 
17636     if (rc) {
17637         return (rc);
17638     }
17639 
17640     /* In E2 2-PORT mode, same ext phy is used for the two paths */
17641     if (!BXE_NOMCP(sc)) {
17642         bxe_common_init_phy(sc);
17643     }
17644 
17645     return (0);
17646 }
17647 
17648 static int
17649 bxe_init_hw_port(struct bxe_softc *sc)
17650 {
17651     int port = SC_PORT(sc);
17652     int init_phase = port ? PHASE_PORT1 : PHASE_PORT0;
17653     uint32_t low, high;
17654     uint32_t val;
17655 
17656     BLOGD(sc, DBG_LOAD, "starting port init for port %d\n", port);
17657 
17658     REG_WR(sc, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0);
17659 
17660     ecore_init_block(sc, BLOCK_MISC, init_phase);
17661     ecore_init_block(sc, BLOCK_PXP, init_phase);
17662     ecore_init_block(sc, BLOCK_PXP2, init_phase);
17663 
17664     /*
17665      * Timers bug workaround: disables the pf_master bit in pglue at
17666      * common phase, we need to enable it here before any dmae access are
17667      * attempted. Therefore we manually added the enable-master to the
17668      * port phase (it also happens in the function phase)
17669      */
17670     if (!CHIP_IS_E1x(sc)) {
17671         REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
17672     }
17673 
17674     ecore_init_block(sc, BLOCK_ATC, init_phase);
17675     ecore_init_block(sc, BLOCK_DMAE, init_phase);
17676     ecore_init_block(sc, BLOCK_PGLUE_B, init_phase);
17677     ecore_init_block(sc, BLOCK_QM, init_phase);
17678 
17679     ecore_init_block(sc, BLOCK_TCM, init_phase);
17680     ecore_init_block(sc, BLOCK_UCM, init_phase);
17681     ecore_init_block(sc, BLOCK_CCM, init_phase);
17682     ecore_init_block(sc, BLOCK_XCM, init_phase);
17683 
17684     /* QM cid (connection) count */
17685     ecore_qm_init_cid_count(sc, sc->qm_cid_count, INITOP_SET);
17686 
17687     if (CNIC_SUPPORT(sc)) {
17688         ecore_init_block(sc, BLOCK_TM, init_phase);
17689         REG_WR(sc, TM_REG_LIN0_SCAN_TIME + port*4, 20);
17690         REG_WR(sc, TM_REG_LIN0_MAX_ACTIVE_CID + port*4, 31);
17691     }
17692 
17693     ecore_init_block(sc, BLOCK_DORQ, init_phase);
17694 
17695     ecore_init_block(sc, BLOCK_BRB1, init_phase);
17696 
17697     if (CHIP_IS_E1(sc) || CHIP_IS_E1H(sc)) {
17698         if (IS_MF(sc)) {
17699             low = (BXE_ONE_PORT(sc) ? 160 : 246);
17700         } else if (sc->mtu > 4096) {
17701             if (BXE_ONE_PORT(sc)) {
17702                 low = 160;
17703             } else {
17704                 val = sc->mtu;
17705                 /* (24*1024 + val*4)/256 */
17706                 low = (96 + (val / 64) + ((val % 64) ? 1 : 0));
17707             }
17708         } else {
17709             low = (BXE_ONE_PORT(sc) ? 80 : 160);
17710         }
17711         high = (low + 56); /* 14*1024/256 */
17712         REG_WR(sc, BRB1_REG_PAUSE_LOW_THRESHOLD_0 + port*4, low);
17713         REG_WR(sc, BRB1_REG_PAUSE_HIGH_THRESHOLD_0 + port*4, high);
17714     }
17715 
17716     if (CHIP_IS_MODE_4_PORT(sc)) {
17717         REG_WR(sc, SC_PORT(sc) ?
17718                BRB1_REG_MAC_GUARANTIED_1 :
17719                BRB1_REG_MAC_GUARANTIED_0, 40);
17720     }
17721 
17722     ecore_init_block(sc, BLOCK_PRS, init_phase);
17723     if (CHIP_IS_E3B0(sc)) {
17724         if (IS_MF_AFEX(sc)) {
17725             /* configure headers for AFEX mode */
17726             REG_WR(sc, SC_PORT(sc) ?
17727                    PRS_REG_HDRS_AFTER_BASIC_PORT_1 :
17728                    PRS_REG_HDRS_AFTER_BASIC_PORT_0, 0xE);
17729             REG_WR(sc, SC_PORT(sc) ?
17730                    PRS_REG_HDRS_AFTER_TAG_0_PORT_1 :
17731                    PRS_REG_HDRS_AFTER_TAG_0_PORT_0, 0x6);
17732             REG_WR(sc, SC_PORT(sc) ?
17733                    PRS_REG_MUST_HAVE_HDRS_PORT_1 :
17734                    PRS_REG_MUST_HAVE_HDRS_PORT_0, 0xA);
17735         } else {
17736             /* Ovlan exists only if we are in multi-function +
17737              * switch-dependent mode, in switch-independent there
17738              * is no ovlan headers
17739              */
17740             REG_WR(sc, SC_PORT(sc) ?
17741                    PRS_REG_HDRS_AFTER_BASIC_PORT_1 :
17742                    PRS_REG_HDRS_AFTER_BASIC_PORT_0,
17743                    (sc->devinfo.mf_info.path_has_ovlan ? 7 : 6));
17744         }
17745     }
17746 
17747     ecore_init_block(sc, BLOCK_TSDM, init_phase);
17748     ecore_init_block(sc, BLOCK_CSDM, init_phase);
17749     ecore_init_block(sc, BLOCK_USDM, init_phase);
17750     ecore_init_block(sc, BLOCK_XSDM, init_phase);
17751 
17752     ecore_init_block(sc, BLOCK_TSEM, init_phase);
17753     ecore_init_block(sc, BLOCK_USEM, init_phase);
17754     ecore_init_block(sc, BLOCK_CSEM, init_phase);
17755     ecore_init_block(sc, BLOCK_XSEM, init_phase);
17756 
17757     ecore_init_block(sc, BLOCK_UPB, init_phase);
17758     ecore_init_block(sc, BLOCK_XPB, init_phase);
17759 
17760     ecore_init_block(sc, BLOCK_PBF, init_phase);
17761 
17762     if (CHIP_IS_E1x(sc)) {
17763         /* configure PBF to work without PAUSE mtu 9000 */
17764         REG_WR(sc, PBF_REG_P0_PAUSE_ENABLE + port*4, 0);
17765 
17766         /* update threshold */
17767         REG_WR(sc, PBF_REG_P0_ARB_THRSH + port*4, (9040/16));
17768         /* update init credit */
17769         REG_WR(sc, PBF_REG_P0_INIT_CRD + port*4, (9040/16) + 553 - 22);
17770 
17771         /* probe changes */
17772         REG_WR(sc, PBF_REG_INIT_P0 + port*4, 1);
17773         DELAY(50);
17774         REG_WR(sc, PBF_REG_INIT_P0 + port*4, 0);
17775     }
17776 
17777     if (CNIC_SUPPORT(sc)) {
17778         ecore_init_block(sc, BLOCK_SRC, init_phase);
17779     }
17780 
17781     ecore_init_block(sc, BLOCK_CDU, init_phase);
17782     ecore_init_block(sc, BLOCK_CFC, init_phase);
17783 
17784     if (CHIP_IS_E1(sc)) {
17785         REG_WR(sc, HC_REG_LEADING_EDGE_0 + port*8, 0);
17786         REG_WR(sc, HC_REG_TRAILING_EDGE_0 + port*8, 0);
17787     }
17788     ecore_init_block(sc, BLOCK_HC, init_phase);
17789 
17790     ecore_init_block(sc, BLOCK_IGU, init_phase);
17791 
17792     ecore_init_block(sc, BLOCK_MISC_AEU, init_phase);
17793     /* init aeu_mask_attn_func_0/1:
17794      *  - SF mode: bits 3-7 are masked. only bits 0-2 are in use
17795      *  - MF mode: bit 3 is masked. bits 0-2 are in use as in SF
17796      *             bits 4-7 are used for "per vn group attention" */
17797     val = IS_MF(sc) ? 0xF7 : 0x7;
17798     /* Enable DCBX attention for all but E1 */
17799     val |= CHIP_IS_E1(sc) ? 0 : 0x10;
17800     REG_WR(sc, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, val);
17801 
17802     ecore_init_block(sc, BLOCK_NIG, init_phase);
17803 
17804     if (!CHIP_IS_E1x(sc)) {
17805         /* Bit-map indicating which L2 hdrs may appear after the
17806          * basic Ethernet header
17807          */
17808         if (IS_MF_AFEX(sc)) {
17809             REG_WR(sc, SC_PORT(sc) ?
17810                    NIG_REG_P1_HDRS_AFTER_BASIC :
17811                    NIG_REG_P0_HDRS_AFTER_BASIC, 0xE);
17812         } else {
17813             REG_WR(sc, SC_PORT(sc) ?
17814                    NIG_REG_P1_HDRS_AFTER_BASIC :
17815                    NIG_REG_P0_HDRS_AFTER_BASIC,
17816                    IS_MF_SD(sc) ? 7 : 6);
17817         }
17818 
17819         if (CHIP_IS_E3(sc)) {
17820             REG_WR(sc, SC_PORT(sc) ?
17821                    NIG_REG_LLH1_MF_MODE :
17822                    NIG_REG_LLH_MF_MODE, IS_MF(sc));
17823         }
17824     }
17825     if (!CHIP_IS_E3(sc)) {
17826         REG_WR(sc, NIG_REG_XGXS_SERDES0_MODE_SEL + port*4, 1);
17827     }
17828 
17829     if (!CHIP_IS_E1(sc)) {
17830         /* 0x2 disable mf_ov, 0x1 enable */
17831         REG_WR(sc, NIG_REG_LLH0_BRB1_DRV_MASK_MF + port*4,
17832                (IS_MF_SD(sc) ? 0x1 : 0x2));
17833 
17834         if (!CHIP_IS_E1x(sc)) {
17835             val = 0;
17836             switch (sc->devinfo.mf_info.mf_mode) {
17837             case MULTI_FUNCTION_SD:
17838                 val = 1;
17839                 break;
17840             case MULTI_FUNCTION_SI:
17841             case MULTI_FUNCTION_AFEX:
17842                 val = 2;
17843                 break;
17844             }
17845 
17846             REG_WR(sc, (SC_PORT(sc) ? NIG_REG_LLH1_CLS_TYPE :
17847                         NIG_REG_LLH0_CLS_TYPE), val);
17848         }
17849         REG_WR(sc, NIG_REG_LLFC_ENABLE_0 + port*4, 0);
17850         REG_WR(sc, NIG_REG_LLFC_OUT_EN_0 + port*4, 0);
17851         REG_WR(sc, NIG_REG_PAUSE_ENABLE_0 + port*4, 1);
17852     }
17853 
17854     /* If SPIO5 is set to generate interrupts, enable it for this port */
17855     val = REG_RD(sc, MISC_REG_SPIO_EVENT_EN);
17856     if (val & MISC_SPIO_SPIO5) {
17857         uint32_t reg_addr = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
17858                                     MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
17859         val = REG_RD(sc, reg_addr);
17860         val |= AEU_INPUTS_ATTN_BITS_SPIO5;
17861         REG_WR(sc, reg_addr, val);
17862     }
17863 
17864     return (0);
17865 }
17866 
17867 static uint32_t
17868 bxe_flr_clnup_reg_poll(struct bxe_softc *sc,
17869                        uint32_t         reg,
17870                        uint32_t         expected,
17871                        uint32_t         poll_count)
17872 {
17873     uint32_t cur_cnt = poll_count;
17874     uint32_t val;
17875 
17876     while ((val = REG_RD(sc, reg)) != expected && cur_cnt--) {
17877         DELAY(FLR_WAIT_INTERVAL);
17878     }
17879 
17880     return (val);
17881 }
17882 
17883 static int
17884 bxe_flr_clnup_poll_hw_counter(struct bxe_softc *sc,
17885                               uint32_t         reg,
17886                               char             *msg,
17887                               uint32_t         poll_cnt)
17888 {
17889     uint32_t val = bxe_flr_clnup_reg_poll(sc, reg, 0, poll_cnt);
17890 
17891     if (val != 0) {
17892         BLOGE(sc, "%s usage count=%d\n", msg, val);
17893         return (1);
17894     }
17895 
17896     return (0);
17897 }
17898 
17899 /* Common routines with VF FLR cleanup */
17900 static uint32_t
17901 bxe_flr_clnup_poll_count(struct bxe_softc *sc)
17902 {
17903     /* adjust polling timeout */
17904     if (CHIP_REV_IS_EMUL(sc)) {
17905         return (FLR_POLL_CNT * 2000);
17906     }
17907 
17908     if (CHIP_REV_IS_FPGA(sc)) {
17909         return (FLR_POLL_CNT * 120);
17910     }
17911 
17912     return (FLR_POLL_CNT);
17913 }
17914 
17915 static int
17916 bxe_poll_hw_usage_counters(struct bxe_softc *sc,
17917                            uint32_t         poll_cnt)
17918 {
17919     /* wait for CFC PF usage-counter to zero (includes all the VFs) */
17920     if (bxe_flr_clnup_poll_hw_counter(sc,
17921                                       CFC_REG_NUM_LCIDS_INSIDE_PF,
17922                                       "CFC PF usage counter timed out",
17923                                       poll_cnt)) {
17924         return (1);
17925     }
17926 
17927     /* Wait for DQ PF usage-counter to zero (until DQ cleanup) */
17928     if (bxe_flr_clnup_poll_hw_counter(sc,
17929                                       DORQ_REG_PF_USAGE_CNT,
17930                                       "DQ PF usage counter timed out",
17931                                       poll_cnt)) {
17932         return (1);
17933     }
17934 
17935     /* Wait for QM PF usage-counter to zero (until DQ cleanup) */
17936     if (bxe_flr_clnup_poll_hw_counter(sc,
17937                                       QM_REG_PF_USG_CNT_0 + 4*SC_FUNC(sc),
17938                                       "QM PF usage counter timed out",
17939                                       poll_cnt)) {
17940         return (1);
17941     }
17942 
17943     /* Wait for Timer PF usage-counters to zero (until DQ cleanup) */
17944     if (bxe_flr_clnup_poll_hw_counter(sc,
17945                                       TM_REG_LIN0_VNIC_UC + 4*SC_PORT(sc),
17946                                       "Timers VNIC usage counter timed out",
17947                                       poll_cnt)) {
17948         return (1);
17949     }
17950 
17951     if (bxe_flr_clnup_poll_hw_counter(sc,
17952                                       TM_REG_LIN0_NUM_SCANS + 4*SC_PORT(sc),
17953                                       "Timers NUM_SCANS usage counter timed out",
17954                                       poll_cnt)) {
17955         return (1);
17956     }
17957 
17958     /* Wait DMAE PF usage counter to zero */
17959     if (bxe_flr_clnup_poll_hw_counter(sc,
17960                                       dmae_reg_go_c[INIT_DMAE_C(sc)],
17961                                       "DMAE dommand register timed out",
17962                                       poll_cnt)) {
17963         return (1);
17964     }
17965 
17966     return (0);
17967 }
17968 
17969 #define OP_GEN_PARAM(param)                                            \
17970     (((param) << SDM_OP_GEN_COMP_PARAM_SHIFT) & SDM_OP_GEN_COMP_PARAM)
17971 #define OP_GEN_TYPE(type)                                           \
17972     (((type) << SDM_OP_GEN_COMP_TYPE_SHIFT) & SDM_OP_GEN_COMP_TYPE)
17973 #define OP_GEN_AGG_VECT(index)                                             \
17974     (((index) << SDM_OP_GEN_AGG_VECT_IDX_SHIFT) & SDM_OP_GEN_AGG_VECT_IDX)
17975 
17976 static int
17977 bxe_send_final_clnup(struct bxe_softc *sc,
17978                      uint8_t          clnup_func,
17979                      uint32_t         poll_cnt)
17980 {
17981     uint32_t op_gen_command = 0;
17982     uint32_t comp_addr = (BAR_CSTRORM_INTMEM +
17983                           CSTORM_FINAL_CLEANUP_COMPLETE_OFFSET(clnup_func));
17984     int ret = 0;
17985 
17986     if (REG_RD(sc, comp_addr)) {
17987         BLOGE(sc, "Cleanup complete was not 0 before sending\n");
17988         return (1);
17989     }
17990 
17991     op_gen_command |= OP_GEN_PARAM(XSTORM_AGG_INT_FINAL_CLEANUP_INDEX);
17992     op_gen_command |= OP_GEN_TYPE(XSTORM_AGG_INT_FINAL_CLEANUP_COMP_TYPE);
17993     op_gen_command |= OP_GEN_AGG_VECT(clnup_func);
17994     op_gen_command |= 1 << SDM_OP_GEN_AGG_VECT_IDX_VALID_SHIFT;
17995 
17996     BLOGD(sc, DBG_LOAD, "sending FW Final cleanup\n");
17997     REG_WR(sc, XSDM_REG_OPERATION_GEN, op_gen_command);
17998 
17999     if (bxe_flr_clnup_reg_poll(sc, comp_addr, 1, poll_cnt) != 1) {
18000         BLOGE(sc, "FW final cleanup did not succeed\n");
18001         BLOGD(sc, DBG_LOAD, "At timeout completion address contained %x\n",
18002               (REG_RD(sc, comp_addr)));
18003         bxe_panic(sc, ("FLR cleanup failed\n"));
18004         return (1);
18005     }
18006 
18007     /* Zero completion for nxt FLR */
18008     REG_WR(sc, comp_addr, 0);
18009 
18010     return (ret);
18011 }
18012 
18013 static void
18014 bxe_pbf_pN_buf_flushed(struct bxe_softc       *sc,
18015                        struct pbf_pN_buf_regs *regs,
18016                        uint32_t               poll_count)
18017 {
18018     uint32_t init_crd, crd, crd_start, crd_freed, crd_freed_start;
18019     uint32_t cur_cnt = poll_count;
18020 
18021     crd_freed = crd_freed_start = REG_RD(sc, regs->crd_freed);
18022     crd = crd_start = REG_RD(sc, regs->crd);
18023     init_crd = REG_RD(sc, regs->init_crd);
18024 
18025     BLOGD(sc, DBG_LOAD, "INIT CREDIT[%d] : %x\n", regs->pN, init_crd);
18026     BLOGD(sc, DBG_LOAD, "CREDIT[%d]      : s:%x\n", regs->pN, crd);
18027     BLOGD(sc, DBG_LOAD, "CREDIT_FREED[%d]: s:%x\n", regs->pN, crd_freed);
18028 
18029     while ((crd != init_crd) &&
18030            ((uint32_t)((int32_t)crd_freed - (int32_t)crd_freed_start) <
18031             (init_crd - crd_start))) {
18032         if (cur_cnt--) {
18033             DELAY(FLR_WAIT_INTERVAL);
18034             crd = REG_RD(sc, regs->crd);
18035             crd_freed = REG_RD(sc, regs->crd_freed);
18036         } else {
18037             BLOGD(sc, DBG_LOAD, "PBF tx buffer[%d] timed out\n", regs->pN);
18038             BLOGD(sc, DBG_LOAD, "CREDIT[%d]      : c:%x\n", regs->pN, crd);
18039             BLOGD(sc, DBG_LOAD, "CREDIT_FREED[%d]: c:%x\n", regs->pN, crd_freed);
18040             break;
18041         }
18042     }
18043 
18044     BLOGD(sc, DBG_LOAD, "Waited %d*%d usec for PBF tx buffer[%d]\n",
18045           poll_count-cur_cnt, FLR_WAIT_INTERVAL, regs->pN);
18046 }
18047 
18048 static void
18049 bxe_pbf_pN_cmd_flushed(struct bxe_softc       *sc,
18050                        struct pbf_pN_cmd_regs *regs,
18051                        uint32_t               poll_count)
18052 {
18053     uint32_t occup, to_free, freed, freed_start;
18054     uint32_t cur_cnt = poll_count;
18055 
18056     occup = to_free = REG_RD(sc, regs->lines_occup);
18057     freed = freed_start = REG_RD(sc, regs->lines_freed);
18058 
18059     BLOGD(sc, DBG_LOAD, "OCCUPANCY[%d]   : s:%x\n", regs->pN, occup);
18060     BLOGD(sc, DBG_LOAD, "LINES_FREED[%d] : s:%x\n", regs->pN, freed);
18061 
18062     while (occup &&
18063            ((uint32_t)((int32_t)freed - (int32_t)freed_start) < to_free)) {
18064         if (cur_cnt--) {
18065             DELAY(FLR_WAIT_INTERVAL);
18066             occup = REG_RD(sc, regs->lines_occup);
18067             freed = REG_RD(sc, regs->lines_freed);
18068         } else {
18069             BLOGD(sc, DBG_LOAD, "PBF cmd queue[%d] timed out\n", regs->pN);
18070             BLOGD(sc, DBG_LOAD, "OCCUPANCY[%d]   : s:%x\n", regs->pN, occup);
18071             BLOGD(sc, DBG_LOAD, "LINES_FREED[%d] : s:%x\n", regs->pN, freed);
18072             break;
18073         }
18074     }
18075 
18076     BLOGD(sc, DBG_LOAD, "Waited %d*%d usec for PBF cmd queue[%d]\n",
18077           poll_count - cur_cnt, FLR_WAIT_INTERVAL, regs->pN);
18078 }
18079 
18080 static void
18081 bxe_tx_hw_flushed(struct bxe_softc *sc, uint32_t poll_count)
18082 {
18083     struct pbf_pN_cmd_regs cmd_regs[] = {
18084         {0, (CHIP_IS_E3B0(sc)) ?
18085             PBF_REG_TQ_OCCUPANCY_Q0 :
18086             PBF_REG_P0_TQ_OCCUPANCY,
18087             (CHIP_IS_E3B0(sc)) ?
18088             PBF_REG_TQ_LINES_FREED_CNT_Q0 :
18089             PBF_REG_P0_TQ_LINES_FREED_CNT},
18090         {1, (CHIP_IS_E3B0(sc)) ?
18091             PBF_REG_TQ_OCCUPANCY_Q1 :
18092             PBF_REG_P1_TQ_OCCUPANCY,
18093             (CHIP_IS_E3B0(sc)) ?
18094             PBF_REG_TQ_LINES_FREED_CNT_Q1 :
18095             PBF_REG_P1_TQ_LINES_FREED_CNT},
18096         {4, (CHIP_IS_E3B0(sc)) ?
18097             PBF_REG_TQ_OCCUPANCY_LB_Q :
18098             PBF_REG_P4_TQ_OCCUPANCY,
18099             (CHIP_IS_E3B0(sc)) ?
18100             PBF_REG_TQ_LINES_FREED_CNT_LB_Q :
18101             PBF_REG_P4_TQ_LINES_FREED_CNT}
18102     };
18103 
18104     struct pbf_pN_buf_regs buf_regs[] = {
18105         {0, (CHIP_IS_E3B0(sc)) ?
18106             PBF_REG_INIT_CRD_Q0 :
18107             PBF_REG_P0_INIT_CRD ,
18108             (CHIP_IS_E3B0(sc)) ?
18109             PBF_REG_CREDIT_Q0 :
18110             PBF_REG_P0_CREDIT,
18111             (CHIP_IS_E3B0(sc)) ?
18112             PBF_REG_INTERNAL_CRD_FREED_CNT_Q0 :
18113             PBF_REG_P0_INTERNAL_CRD_FREED_CNT},
18114         {1, (CHIP_IS_E3B0(sc)) ?
18115             PBF_REG_INIT_CRD_Q1 :
18116             PBF_REG_P1_INIT_CRD,
18117             (CHIP_IS_E3B0(sc)) ?
18118             PBF_REG_CREDIT_Q1 :
18119             PBF_REG_P1_CREDIT,
18120             (CHIP_IS_E3B0(sc)) ?
18121             PBF_REG_INTERNAL_CRD_FREED_CNT_Q1 :
18122             PBF_REG_P1_INTERNAL_CRD_FREED_CNT},
18123         {4, (CHIP_IS_E3B0(sc)) ?
18124             PBF_REG_INIT_CRD_LB_Q :
18125             PBF_REG_P4_INIT_CRD,
18126             (CHIP_IS_E3B0(sc)) ?
18127             PBF_REG_CREDIT_LB_Q :
18128             PBF_REG_P4_CREDIT,
18129             (CHIP_IS_E3B0(sc)) ?
18130             PBF_REG_INTERNAL_CRD_FREED_CNT_LB_Q :
18131             PBF_REG_P4_INTERNAL_CRD_FREED_CNT},
18132     };
18133 
18134     int i;
18135 
18136     /* Verify the command queues are flushed P0, P1, P4 */
18137     for (i = 0; i < ARRAY_SIZE(cmd_regs); i++) {
18138         bxe_pbf_pN_cmd_flushed(sc, &cmd_regs[i], poll_count);
18139     }
18140 
18141     /* Verify the transmission buffers are flushed P0, P1, P4 */
18142     for (i = 0; i < ARRAY_SIZE(buf_regs); i++) {
18143         bxe_pbf_pN_buf_flushed(sc, &buf_regs[i], poll_count);
18144     }
18145 }
18146 
18147 static void
18148 bxe_hw_enable_status(struct bxe_softc *sc)
18149 {
18150     uint32_t val;
18151 
18152     val = REG_RD(sc, CFC_REG_WEAK_ENABLE_PF);
18153     BLOGD(sc, DBG_LOAD, "CFC_REG_WEAK_ENABLE_PF is 0x%x\n", val);
18154 
18155     val = REG_RD(sc, PBF_REG_DISABLE_PF);
18156     BLOGD(sc, DBG_LOAD, "PBF_REG_DISABLE_PF is 0x%x\n", val);
18157 
18158     val = REG_RD(sc, IGU_REG_PCI_PF_MSI_EN);
18159     BLOGD(sc, DBG_LOAD, "IGU_REG_PCI_PF_MSI_EN is 0x%x\n", val);
18160 
18161     val = REG_RD(sc, IGU_REG_PCI_PF_MSIX_EN);
18162     BLOGD(sc, DBG_LOAD, "IGU_REG_PCI_PF_MSIX_EN is 0x%x\n", val);
18163 
18164     val = REG_RD(sc, IGU_REG_PCI_PF_MSIX_FUNC_MASK);
18165     BLOGD(sc, DBG_LOAD, "IGU_REG_PCI_PF_MSIX_FUNC_MASK is 0x%x\n", val);
18166 
18167     val = REG_RD(sc, PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR);
18168     BLOGD(sc, DBG_LOAD, "PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR is 0x%x\n", val);
18169 
18170     val = REG_RD(sc, PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR);
18171     BLOGD(sc, DBG_LOAD, "PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR is 0x%x\n", val);
18172 
18173     val = REG_RD(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER);
18174     BLOGD(sc, DBG_LOAD, "PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER is 0x%x\n", val);
18175 }
18176 
18177 static int
18178 bxe_pf_flr_clnup(struct bxe_softc *sc)
18179 {
18180     uint32_t poll_cnt = bxe_flr_clnup_poll_count(sc);
18181 
18182     BLOGD(sc, DBG_LOAD, "Cleanup after FLR PF[%d]\n", SC_ABS_FUNC(sc));
18183 
18184     /* Re-enable PF target read access */
18185     REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
18186 
18187     /* Poll HW usage counters */
18188     BLOGD(sc, DBG_LOAD, "Polling usage counters\n");
18189     if (bxe_poll_hw_usage_counters(sc, poll_cnt)) {
18190         return (-1);
18191     }
18192 
18193     /* Zero the igu 'trailing edge' and 'leading edge' */
18194 
18195     /* Send the FW cleanup command */
18196     if (bxe_send_final_clnup(sc, (uint8_t)SC_FUNC(sc), poll_cnt)) {
18197         return (-1);
18198     }
18199 
18200     /* ATC cleanup */
18201 
18202     /* Verify TX hw is flushed */
18203     bxe_tx_hw_flushed(sc, poll_cnt);
18204 
18205     /* Wait 100ms (not adjusted according to platform) */
18206     DELAY(100000);
18207 
18208     /* Verify no pending pci transactions */
18209     if (bxe_is_pcie_pending(sc)) {
18210         BLOGE(sc, "PCIE Transactions still pending\n");
18211     }
18212 
18213     /* Debug */
18214     bxe_hw_enable_status(sc);
18215 
18216     /*
18217      * Master enable - Due to WB DMAE writes performed before this
18218      * register is re-initialized as part of the regular function init
18219      */
18220     REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
18221 
18222     return (0);
18223 }
18224 
18225 #if 0
18226 static void
18227 bxe_init_searcher(struct bxe_softc *sc)
18228 {
18229     int port = SC_PORT(sc);
18230     ecore_src_init_t2(sc, sc->t2, sc->t2_mapping, SRC_CONN_NUM);
18231     /* T1 hash bits value determines the T1 number of entries */
18232     REG_WR(sc, SRC_REG_NUMBER_HASH_BITS0 + port*4, SRC_HASH_BITS);
18233 }
18234 #endif
18235 
18236 static int
18237 bxe_init_hw_func(struct bxe_softc *sc)
18238 {
18239     int port = SC_PORT(sc);
18240     int func = SC_FUNC(sc);
18241     int init_phase = PHASE_PF0 + func;
18242     struct ecore_ilt *ilt = sc->ilt;
18243     uint16_t cdu_ilt_start;
18244     uint32_t addr, val;
18245     uint32_t main_mem_base, main_mem_size, main_mem_prty_clr;
18246     int i, main_mem_width, rc;
18247 
18248     BLOGD(sc, DBG_LOAD, "starting func init for func %d\n", func);
18249 
18250     /* FLR cleanup */
18251     if (!CHIP_IS_E1x(sc)) {
18252         rc = bxe_pf_flr_clnup(sc);
18253         if (rc) {
18254             BLOGE(sc, "FLR cleanup failed!\n");
18255             // XXX bxe_fw_dump(sc);
18256             // XXX bxe_idle_chk(sc);
18257             return (rc);
18258         }
18259     }
18260 
18261     /* set MSI reconfigure capability */
18262     if (sc->devinfo.int_block == INT_BLOCK_HC) {
18263         addr = (port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0);
18264         val = REG_RD(sc, addr);
18265         val |= HC_CONFIG_0_REG_MSI_ATTN_EN_0;
18266         REG_WR(sc, addr, val);
18267     }
18268 
18269     ecore_init_block(sc, BLOCK_PXP, init_phase);
18270     ecore_init_block(sc, BLOCK_PXP2, init_phase);
18271 
18272     ilt = sc->ilt;
18273     cdu_ilt_start = ilt->clients[ILT_CLIENT_CDU].start;
18274 
18275 #if 0
18276     if (IS_SRIOV(sc)) {
18277         cdu_ilt_start += BXE_FIRST_VF_CID/ILT_PAGE_CIDS;
18278     }
18279     cdu_ilt_start = bxe_iov_init_ilt(sc, cdu_ilt_start);
18280 
18281 #if (BXE_FIRST_VF_CID > 0)
18282     /*
18283      * If BXE_FIRST_VF_CID > 0 then the PF L2 cids precedes
18284      * those of the VFs, so start line should be reset
18285      */
18286     cdu_ilt_start = ilt->clients[ILT_CLIENT_CDU].start;
18287 #endif
18288 #endif
18289 
18290     for (i = 0; i < L2_ILT_LINES(sc); i++) {
18291         ilt->lines[cdu_ilt_start + i].page = sc->context[i].vcxt;
18292         ilt->lines[cdu_ilt_start + i].page_mapping =
18293             sc->context[i].vcxt_dma.paddr;
18294         ilt->lines[cdu_ilt_start + i].size = sc->context[i].size;
18295     }
18296     ecore_ilt_init_op(sc, INITOP_SET);
18297 
18298 #if 0
18299     if (!CONFIGURE_NIC_MODE(sc)) {
18300         bxe_init_searcher(sc);
18301         REG_WR(sc, PRS_REG_NIC_MODE, 0);
18302         BLOGD(sc, DBG_LOAD, "NIC MODE disabled\n");
18303     } else
18304 #endif
18305     {
18306         /* Set NIC mode */
18307         REG_WR(sc, PRS_REG_NIC_MODE, 1);
18308         BLOGD(sc, DBG_LOAD, "NIC MODE configured\n");
18309     }
18310 
18311     if (!CHIP_IS_E1x(sc)) {
18312         uint32_t pf_conf = IGU_PF_CONF_FUNC_EN;
18313 
18314         /* Turn on a single ISR mode in IGU if driver is going to use
18315          * INT#x or MSI
18316          */
18317         if (sc->interrupt_mode != INTR_MODE_MSIX) {
18318             pf_conf |= IGU_PF_CONF_SINGLE_ISR_EN;
18319         }
18320 
18321         /*
18322          * Timers workaround bug: function init part.
18323          * Need to wait 20msec after initializing ILT,
18324          * needed to make sure there are no requests in
18325          * one of the PXP internal queues with "old" ILT addresses
18326          */
18327         DELAY(20000);
18328 
18329         /*
18330          * Master enable - Due to WB DMAE writes performed before this
18331          * register is re-initialized as part of the regular function
18332          * init
18333          */
18334         REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
18335         /* Enable the function in IGU */
18336         REG_WR(sc, IGU_REG_PF_CONFIGURATION, pf_conf);
18337     }
18338 
18339     sc->dmae_ready = 1;
18340 
18341     ecore_init_block(sc, BLOCK_PGLUE_B, init_phase);
18342 
18343     if (!CHIP_IS_E1x(sc))
18344         REG_WR(sc, PGLUE_B_REG_WAS_ERROR_PF_7_0_CLR, func);
18345 
18346     ecore_init_block(sc, BLOCK_ATC, init_phase);
18347     ecore_init_block(sc, BLOCK_DMAE, init_phase);
18348     ecore_init_block(sc, BLOCK_NIG, init_phase);
18349     ecore_init_block(sc, BLOCK_SRC, init_phase);
18350     ecore_init_block(sc, BLOCK_MISC, init_phase);
18351     ecore_init_block(sc, BLOCK_TCM, init_phase);
18352     ecore_init_block(sc, BLOCK_UCM, init_phase);
18353     ecore_init_block(sc, BLOCK_CCM, init_phase);
18354     ecore_init_block(sc, BLOCK_XCM, init_phase);
18355     ecore_init_block(sc, BLOCK_TSEM, init_phase);
18356     ecore_init_block(sc, BLOCK_USEM, init_phase);
18357     ecore_init_block(sc, BLOCK_CSEM, init_phase);
18358     ecore_init_block(sc, BLOCK_XSEM, init_phase);
18359 
18360     if (!CHIP_IS_E1x(sc))
18361         REG_WR(sc, QM_REG_PF_EN, 1);
18362 
18363     if (!CHIP_IS_E1x(sc)) {
18364         REG_WR(sc, TSEM_REG_VFPF_ERR_NUM, BXE_MAX_NUM_OF_VFS + func);
18365         REG_WR(sc, USEM_REG_VFPF_ERR_NUM, BXE_MAX_NUM_OF_VFS + func);
18366         REG_WR(sc, CSEM_REG_VFPF_ERR_NUM, BXE_MAX_NUM_OF_VFS + func);
18367         REG_WR(sc, XSEM_REG_VFPF_ERR_NUM, BXE_MAX_NUM_OF_VFS + func);
18368     }
18369     ecore_init_block(sc, BLOCK_QM, init_phase);
18370 
18371     ecore_init_block(sc, BLOCK_TM, init_phase);
18372     ecore_init_block(sc, BLOCK_DORQ, init_phase);
18373 
18374     bxe_iov_init_dq(sc);
18375 
18376     ecore_init_block(sc, BLOCK_BRB1, init_phase);
18377     ecore_init_block(sc, BLOCK_PRS, init_phase);
18378     ecore_init_block(sc, BLOCK_TSDM, init_phase);
18379     ecore_init_block(sc, BLOCK_CSDM, init_phase);
18380     ecore_init_block(sc, BLOCK_USDM, init_phase);
18381     ecore_init_block(sc, BLOCK_XSDM, init_phase);
18382     ecore_init_block(sc, BLOCK_UPB, init_phase);
18383     ecore_init_block(sc, BLOCK_XPB, init_phase);
18384     ecore_init_block(sc, BLOCK_PBF, init_phase);
18385     if (!CHIP_IS_E1x(sc))
18386         REG_WR(sc, PBF_REG_DISABLE_PF, 0);
18387 
18388     ecore_init_block(sc, BLOCK_CDU, init_phase);
18389 
18390     ecore_init_block(sc, BLOCK_CFC, init_phase);
18391 
18392     if (!CHIP_IS_E1x(sc))
18393         REG_WR(sc, CFC_REG_WEAK_ENABLE_PF, 1);
18394 
18395     if (IS_MF(sc)) {
18396         REG_WR(sc, NIG_REG_LLH0_FUNC_EN + port*8, 1);
18397         REG_WR(sc, NIG_REG_LLH0_FUNC_VLAN_ID + port*8, OVLAN(sc));
18398     }
18399 
18400     ecore_init_block(sc, BLOCK_MISC_AEU, init_phase);
18401 
18402     /* HC init per function */
18403     if (sc->devinfo.int_block == INT_BLOCK_HC) {
18404         if (CHIP_IS_E1H(sc)) {
18405             REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
18406 
18407             REG_WR(sc, HC_REG_LEADING_EDGE_0 + port*8, 0);
18408             REG_WR(sc, HC_REG_TRAILING_EDGE_0 + port*8, 0);
18409         }
18410         ecore_init_block(sc, BLOCK_HC, init_phase);
18411 
18412     } else {
18413         int num_segs, sb_idx, prod_offset;
18414 
18415         REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
18416 
18417         if (!CHIP_IS_E1x(sc)) {
18418             REG_WR(sc, IGU_REG_LEADING_EDGE_LATCH, 0);
18419             REG_WR(sc, IGU_REG_TRAILING_EDGE_LATCH, 0);
18420         }
18421 
18422         ecore_init_block(sc, BLOCK_IGU, init_phase);
18423 
18424         if (!CHIP_IS_E1x(sc)) {
18425             int dsb_idx = 0;
18426             /**
18427              * Producer memory:
18428              * E2 mode: address 0-135 match to the mapping memory;
18429              * 136 - PF0 default prod; 137 - PF1 default prod;
18430              * 138 - PF2 default prod; 139 - PF3 default prod;
18431              * 140 - PF0 attn prod;    141 - PF1 attn prod;
18432              * 142 - PF2 attn prod;    143 - PF3 attn prod;
18433              * 144-147 reserved.
18434              *
18435              * E1.5 mode - In backward compatible mode;
18436              * for non default SB; each even line in the memory
18437              * holds the U producer and each odd line hold
18438              * the C producer. The first 128 producers are for
18439              * NDSB (PF0 - 0-31; PF1 - 32-63 and so on). The last 20
18440              * producers are for the DSB for each PF.
18441              * Each PF has five segments: (the order inside each
18442              * segment is PF0; PF1; PF2; PF3) - 128-131 U prods;
18443              * 132-135 C prods; 136-139 X prods; 140-143 T prods;
18444              * 144-147 attn prods;
18445              */
18446             /* non-default-status-blocks */
18447             num_segs = CHIP_INT_MODE_IS_BC(sc) ?
18448                 IGU_BC_NDSB_NUM_SEGS : IGU_NORM_NDSB_NUM_SEGS;
18449             for (sb_idx = 0; sb_idx < sc->igu_sb_cnt; sb_idx++) {
18450                 prod_offset = (sc->igu_base_sb + sb_idx) *
18451                     num_segs;
18452 
18453                 for (i = 0; i < num_segs; i++) {
18454                     addr = IGU_REG_PROD_CONS_MEMORY +
18455                             (prod_offset + i) * 4;
18456                     REG_WR(sc, addr, 0);
18457                 }
18458                 /* send consumer update with value 0 */
18459                 bxe_ack_sb(sc, sc->igu_base_sb + sb_idx,
18460                            USTORM_ID, 0, IGU_INT_NOP, 1);
18461                 bxe_igu_clear_sb(sc, sc->igu_base_sb + sb_idx);
18462             }
18463 
18464             /* default-status-blocks */
18465             num_segs = CHIP_INT_MODE_IS_BC(sc) ?
18466                 IGU_BC_DSB_NUM_SEGS : IGU_NORM_DSB_NUM_SEGS;
18467 
18468             if (CHIP_IS_MODE_4_PORT(sc))
18469                 dsb_idx = SC_FUNC(sc);
18470             else
18471                 dsb_idx = SC_VN(sc);
18472 
18473             prod_offset = (CHIP_INT_MODE_IS_BC(sc) ?
18474                        IGU_BC_BASE_DSB_PROD + dsb_idx :
18475                        IGU_NORM_BASE_DSB_PROD + dsb_idx);
18476 
18477             /*
18478              * igu prods come in chunks of E1HVN_MAX (4) -
18479              * does not matters what is the current chip mode
18480              */
18481             for (i = 0; i < (num_segs * E1HVN_MAX);
18482                  i += E1HVN_MAX) {
18483                 addr = IGU_REG_PROD_CONS_MEMORY +
18484                             (prod_offset + i)*4;
18485                 REG_WR(sc, addr, 0);
18486             }
18487             /* send consumer update with 0 */
18488             if (CHIP_INT_MODE_IS_BC(sc)) {
18489                 bxe_ack_sb(sc, sc->igu_dsb_id,
18490                            USTORM_ID, 0, IGU_INT_NOP, 1);
18491                 bxe_ack_sb(sc, sc->igu_dsb_id,
18492                            CSTORM_ID, 0, IGU_INT_NOP, 1);
18493                 bxe_ack_sb(sc, sc->igu_dsb_id,
18494                            XSTORM_ID, 0, IGU_INT_NOP, 1);
18495                 bxe_ack_sb(sc, sc->igu_dsb_id,
18496                            TSTORM_ID, 0, IGU_INT_NOP, 1);
18497                 bxe_ack_sb(sc, sc->igu_dsb_id,
18498                            ATTENTION_ID, 0, IGU_INT_NOP, 1);
18499             } else {
18500                 bxe_ack_sb(sc, sc->igu_dsb_id,
18501                            USTORM_ID, 0, IGU_INT_NOP, 1);
18502                 bxe_ack_sb(sc, sc->igu_dsb_id,
18503                            ATTENTION_ID, 0, IGU_INT_NOP, 1);
18504             }
18505             bxe_igu_clear_sb(sc, sc->igu_dsb_id);
18506 
18507             /* !!! these should become driver const once
18508                rf-tool supports split-68 const */
18509             REG_WR(sc, IGU_REG_SB_INT_BEFORE_MASK_LSB, 0);
18510             REG_WR(sc, IGU_REG_SB_INT_BEFORE_MASK_MSB, 0);
18511             REG_WR(sc, IGU_REG_SB_MASK_LSB, 0);
18512             REG_WR(sc, IGU_REG_SB_MASK_MSB, 0);
18513             REG_WR(sc, IGU_REG_PBA_STATUS_LSB, 0);
18514             REG_WR(sc, IGU_REG_PBA_STATUS_MSB, 0);
18515         }
18516     }
18517 
18518     /* Reset PCIE errors for debug */
18519     REG_WR(sc, 0x2114, 0xffffffff);
18520     REG_WR(sc, 0x2120, 0xffffffff);
18521 
18522     if (CHIP_IS_E1x(sc)) {
18523         main_mem_size = HC_REG_MAIN_MEMORY_SIZE / 2; /*dwords*/
18524         main_mem_base = HC_REG_MAIN_MEMORY +
18525                 SC_PORT(sc) * (main_mem_size * 4);
18526         main_mem_prty_clr = HC_REG_HC_PRTY_STS_CLR;
18527         main_mem_width = 8;
18528 
18529         val = REG_RD(sc, main_mem_prty_clr);
18530         if (val) {
18531             BLOGD(sc, DBG_LOAD,
18532                   "Parity errors in HC block during function init (0x%x)!\n",
18533                   val);
18534         }
18535 
18536         /* Clear "false" parity errors in MSI-X table */
18537         for (i = main_mem_base;
18538              i < main_mem_base + main_mem_size * 4;
18539              i += main_mem_width) {
18540             bxe_read_dmae(sc, i, main_mem_width / 4);
18541             bxe_write_dmae(sc, BXE_SP_MAPPING(sc, wb_data),
18542                            i, main_mem_width / 4);
18543         }
18544         /* Clear HC parity attention */
18545         REG_RD(sc, main_mem_prty_clr);
18546     }
18547 
18548 #if 1
18549     /* Enable STORMs SP logging */
18550     REG_WR8(sc, BAR_USTRORM_INTMEM +
18551            USTORM_RECORD_SLOW_PATH_OFFSET(SC_FUNC(sc)), 1);
18552     REG_WR8(sc, BAR_TSTRORM_INTMEM +
18553            TSTORM_RECORD_SLOW_PATH_OFFSET(SC_FUNC(sc)), 1);
18554     REG_WR8(sc, BAR_CSTRORM_INTMEM +
18555            CSTORM_RECORD_SLOW_PATH_OFFSET(SC_FUNC(sc)), 1);
18556     REG_WR8(sc, BAR_XSTRORM_INTMEM +
18557            XSTORM_RECORD_SLOW_PATH_OFFSET(SC_FUNC(sc)), 1);
18558 #endif
18559 
18560     elink_phy_probe(&sc->link_params);
18561 
18562     return (0);
18563 }
18564 
18565 static void
18566 bxe_link_reset(struct bxe_softc *sc)
18567 {
18568     if (!BXE_NOMCP(sc)) {
18569         BXE_PHY_LOCK(sc);
18570         elink_lfa_reset(&sc->link_params, &sc->link_vars);
18571         BXE_PHY_UNLOCK(sc);
18572     } else {
18573         if (!CHIP_REV_IS_SLOW(sc)) {
18574             BLOGW(sc, "Bootcode is missing - cannot reset link\n");
18575         }
18576     }
18577 }
18578 
18579 static void
18580 bxe_reset_port(struct bxe_softc *sc)
18581 {
18582     int port = SC_PORT(sc);
18583     uint32_t val;
18584 
18585     /* reset physical Link */
18586     bxe_link_reset(sc);
18587 
18588     REG_WR(sc, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0);
18589 
18590     /* Do not rcv packets to BRB */
18591     REG_WR(sc, NIG_REG_LLH0_BRB1_DRV_MASK + port*4, 0x0);
18592     /* Do not direct rcv packets that are not for MCP to the BRB */
18593     REG_WR(sc, (port ? NIG_REG_LLH1_BRB1_NOT_MCP :
18594                NIG_REG_LLH0_BRB1_NOT_MCP), 0x0);
18595 
18596     /* Configure AEU */
18597     REG_WR(sc, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, 0);
18598 
18599     DELAY(100000);
18600 
18601     /* Check for BRB port occupancy */
18602     val = REG_RD(sc, BRB1_REG_PORT_NUM_OCC_BLOCKS_0 + port*4);
18603     if (val) {
18604         BLOGD(sc, DBG_LOAD,
18605               "BRB1 is not empty, %d blocks are occupied\n", val);
18606     }
18607 
18608     /* TODO: Close Doorbell port? */
18609 }
18610 
18611 static void
18612 bxe_ilt_wr(struct bxe_softc *sc,
18613            uint32_t         index,
18614            bus_addr_t       addr)
18615 {
18616     int reg;
18617     uint32_t wb_write[2];
18618 
18619     if (CHIP_IS_E1(sc)) {
18620         reg = PXP2_REG_RQ_ONCHIP_AT + index*8;
18621     } else {
18622         reg = PXP2_REG_RQ_ONCHIP_AT_B0 + index*8;
18623     }
18624 
18625     wb_write[0] = ONCHIP_ADDR1(addr);
18626     wb_write[1] = ONCHIP_ADDR2(addr);
18627     REG_WR_DMAE(sc, reg, wb_write, 2);
18628 }
18629 
18630 static void
18631 bxe_clear_func_ilt(struct bxe_softc *sc,
18632                    uint32_t         func)
18633 {
18634     uint32_t i, base = FUNC_ILT_BASE(func);
18635     for (i = base; i < base + ILT_PER_FUNC; i++) {
18636         bxe_ilt_wr(sc, i, 0);
18637     }
18638 }
18639 
18640 static void
18641 bxe_reset_func(struct bxe_softc *sc)
18642 {
18643     struct bxe_fastpath *fp;
18644     int port = SC_PORT(sc);
18645     int func = SC_FUNC(sc);
18646     int i;
18647 
18648     /* Disable the function in the FW */
18649     REG_WR8(sc, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(func), 0);
18650     REG_WR8(sc, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(func), 0);
18651     REG_WR8(sc, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(func), 0);
18652     REG_WR8(sc, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(func), 0);
18653 
18654     /* FP SBs */
18655     FOR_EACH_ETH_QUEUE(sc, i) {
18656         fp = &sc->fp[i];
18657         REG_WR8(sc, BAR_CSTRORM_INTMEM +
18658                 CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET(fp->fw_sb_id),
18659                 SB_DISABLED);
18660     }
18661 
18662 #if 0
18663     if (CNIC_LOADED(sc)) {
18664         /* CNIC SB */
18665         REG_WR8(sc, BAR_CSTRORM_INTMEM +
18666                 CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET
18667                 (bxe_cnic_fw_sb_id(sc)), SB_DISABLED);
18668     }
18669 #endif
18670 
18671     /* SP SB */
18672     REG_WR8(sc, BAR_CSTRORM_INTMEM +
18673             CSTORM_SP_STATUS_BLOCK_DATA_STATE_OFFSET(func),
18674             SB_DISABLED);
18675 
18676     for (i = 0; i < XSTORM_SPQ_DATA_SIZE / 4; i++) {
18677         REG_WR(sc, BAR_XSTRORM_INTMEM + XSTORM_SPQ_DATA_OFFSET(func), 0);
18678     }
18679 
18680     /* Configure IGU */
18681     if (sc->devinfo.int_block == INT_BLOCK_HC) {
18682         REG_WR(sc, HC_REG_LEADING_EDGE_0 + port*8, 0);
18683         REG_WR(sc, HC_REG_TRAILING_EDGE_0 + port*8, 0);
18684     } else {
18685         REG_WR(sc, IGU_REG_LEADING_EDGE_LATCH, 0);
18686         REG_WR(sc, IGU_REG_TRAILING_EDGE_LATCH, 0);
18687     }
18688 
18689     if (CNIC_LOADED(sc)) {
18690         /* Disable Timer scan */
18691         REG_WR(sc, TM_REG_EN_LINEAR0_TIMER + port*4, 0);
18692         /*
18693          * Wait for at least 10ms and up to 2 second for the timers
18694          * scan to complete
18695          */
18696         for (i = 0; i < 200; i++) {
18697             DELAY(10000);
18698             if (!REG_RD(sc, TM_REG_LIN0_SCAN_ON + port*4))
18699                 break;
18700         }
18701     }
18702 
18703     /* Clear ILT */
18704     bxe_clear_func_ilt(sc, func);
18705 
18706     /*
18707      * Timers workaround bug for E2: if this is vnic-3,
18708      * we need to set the entire ilt range for this timers.
18709      */
18710     if (!CHIP_IS_E1x(sc) && SC_VN(sc) == 3) {
18711         struct ilt_client_info ilt_cli;
18712         /* use dummy TM client */
18713         memset(&ilt_cli, 0, sizeof(struct ilt_client_info));
18714         ilt_cli.start = 0;
18715         ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1;
18716         ilt_cli.client_num = ILT_CLIENT_TM;
18717 
18718         ecore_ilt_boundry_init_op(sc, &ilt_cli, 0, INITOP_CLEAR);
18719     }
18720 
18721     /* this assumes that reset_port() called before reset_func()*/
18722     if (!CHIP_IS_E1x(sc)) {
18723         bxe_pf_disable(sc);
18724     }
18725 
18726     sc->dmae_ready = 0;
18727 }
18728 
18729 static int
18730 bxe_gunzip_init(struct bxe_softc *sc)
18731 {
18732     return (0);
18733 }
18734 
18735 static void
18736 bxe_gunzip_end(struct bxe_softc *sc)
18737 {
18738     return;
18739 }
18740 
18741 static int
18742 bxe_init_firmware(struct bxe_softc *sc)
18743 {
18744     if (CHIP_IS_E1(sc)) {
18745         ecore_init_e1_firmware(sc);
18746         sc->iro_array = e1_iro_arr;
18747     } else if (CHIP_IS_E1H(sc)) {
18748         ecore_init_e1h_firmware(sc);
18749         sc->iro_array = e1h_iro_arr;
18750     } else if (!CHIP_IS_E1x(sc)) {
18751         ecore_init_e2_firmware(sc);
18752         sc->iro_array = e2_iro_arr;
18753     } else {
18754         BLOGE(sc, "Unsupported chip revision\n");
18755         return (-1);
18756     }
18757 
18758     return (0);
18759 }
18760 
18761 static void
18762 bxe_release_firmware(struct bxe_softc *sc)
18763 {
18764     /* Do nothing */
18765     return;
18766 }
18767 
18768 static int
18769 ecore_gunzip(struct bxe_softc *sc,
18770              const uint8_t    *zbuf,
18771              int              len)
18772 {
18773     /* XXX : Implement... */
18774     BLOGD(sc, DBG_LOAD, "ECORE_GUNZIP NOT IMPLEMENTED\n");
18775     return (FALSE);
18776 }
18777 
18778 static void
18779 ecore_reg_wr_ind(struct bxe_softc *sc,
18780                  uint32_t         addr,
18781                  uint32_t         val)
18782 {
18783     bxe_reg_wr_ind(sc, addr, val);
18784 }
18785 
18786 static void
18787 ecore_write_dmae_phys_len(struct bxe_softc *sc,
18788                           bus_addr_t       phys_addr,
18789                           uint32_t         addr,
18790                           uint32_t         len)
18791 {
18792     bxe_write_dmae_phys_len(sc, phys_addr, addr, len);
18793 }
18794 
18795 void
18796 ecore_storm_memset_struct(struct bxe_softc *sc,
18797                           uint32_t         addr,
18798                           size_t           size,
18799                           uint32_t         *data)
18800 {
18801     uint8_t i;
18802     for (i = 0; i < size/4; i++) {
18803         REG_WR(sc, addr + (i * 4), data[i]);
18804     }
18805 }
18806 
18807