1 /*- 2 * Copyright (c) 2007-2014 QLogic Corporation. All rights reserved. 3 * 4 * Redistribution and use in source and binary forms, with or without 5 * modification, are permitted provided that the following conditions 6 * are met: 7 * 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 14 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS' 15 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 17 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS 18 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 19 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 20 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 21 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 22 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 23 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF 24 * THE POSSIBILITY OF SUCH DAMAGE. 25 */ 26 27 #include <sys/cdefs.h> 28 __FBSDID("$FreeBSD$"); 29 30 #define BXE_DRIVER_VERSION "1.78.89" 31 32 #include "bxe.h" 33 #include "ecore_sp.h" 34 #include "ecore_init.h" 35 #include "ecore_init_ops.h" 36 37 #include "57710_int_offsets.h" 38 #include "57711_int_offsets.h" 39 #include "57712_int_offsets.h" 40 41 /* 42 * CTLTYPE_U64 and sysctl_handle_64 were added in r217616. Define these 43 * explicitly here for older kernels that don't include this changeset. 44 */ 45 #ifndef CTLTYPE_U64 46 #define CTLTYPE_U64 CTLTYPE_QUAD 47 #define sysctl_handle_64 sysctl_handle_quad 48 #endif 49 50 /* 51 * CSUM_TCP_IPV6 and CSUM_UDP_IPV6 were added in r236170. Define these 52 * here as zero(0) for older kernels that don't include this changeset 53 * thereby masking the functionality. 54 */ 55 #ifndef CSUM_TCP_IPV6 56 #define CSUM_TCP_IPV6 0 57 #define CSUM_UDP_IPV6 0 58 #endif 59 60 /* 61 * pci_find_cap was added in r219865. Re-define this at pci_find_extcap 62 * for older kernels that don't include this changeset. 63 */ 64 #if __FreeBSD_version < 900035 65 #define pci_find_cap pci_find_extcap 66 #endif 67 68 #define BXE_DEF_SB_ATT_IDX 0x0001 69 #define BXE_DEF_SB_IDX 0x0002 70 71 /* 72 * FLR Support - bxe_pf_flr_clnup() is called during nic_load in the per 73 * function HW initialization. 74 */ 75 #define FLR_WAIT_USEC 10000 /* 10 msecs */ 76 #define FLR_WAIT_INTERVAL 50 /* usecs */ 77 #define FLR_POLL_CNT (FLR_WAIT_USEC / FLR_WAIT_INTERVAL) /* 200 */ 78 79 struct pbf_pN_buf_regs { 80 int pN; 81 uint32_t init_crd; 82 uint32_t crd; 83 uint32_t crd_freed; 84 }; 85 86 struct pbf_pN_cmd_regs { 87 int pN; 88 uint32_t lines_occup; 89 uint32_t lines_freed; 90 }; 91 92 /* 93 * PCI Device ID Table used by bxe_probe(). 94 */ 95 #define BXE_DEVDESC_MAX 64 96 static struct bxe_device_type bxe_devs[] = { 97 { 98 BRCM_VENDORID, 99 CHIP_NUM_57710, 100 PCI_ANY_ID, PCI_ANY_ID, 101 "QLogic NetXtreme II BCM57710 10GbE" 102 }, 103 { 104 BRCM_VENDORID, 105 CHIP_NUM_57711, 106 PCI_ANY_ID, PCI_ANY_ID, 107 "QLogic NetXtreme II BCM57711 10GbE" 108 }, 109 { 110 BRCM_VENDORID, 111 CHIP_NUM_57711E, 112 PCI_ANY_ID, PCI_ANY_ID, 113 "QLogic NetXtreme II BCM57711E 10GbE" 114 }, 115 { 116 BRCM_VENDORID, 117 CHIP_NUM_57712, 118 PCI_ANY_ID, PCI_ANY_ID, 119 "QLogic NetXtreme II BCM57712 10GbE" 120 }, 121 { 122 BRCM_VENDORID, 123 CHIP_NUM_57712_MF, 124 PCI_ANY_ID, PCI_ANY_ID, 125 "QLogic NetXtreme II BCM57712 MF 10GbE" 126 }, 127 { 128 BRCM_VENDORID, 129 CHIP_NUM_57800, 130 PCI_ANY_ID, PCI_ANY_ID, 131 "QLogic NetXtreme II BCM57800 10GbE" 132 }, 133 { 134 BRCM_VENDORID, 135 CHIP_NUM_57800_MF, 136 PCI_ANY_ID, PCI_ANY_ID, 137 "QLogic NetXtreme II BCM57800 MF 10GbE" 138 }, 139 { 140 BRCM_VENDORID, 141 CHIP_NUM_57810, 142 PCI_ANY_ID, PCI_ANY_ID, 143 "QLogic NetXtreme II BCM57810 10GbE" 144 }, 145 { 146 BRCM_VENDORID, 147 CHIP_NUM_57810_MF, 148 PCI_ANY_ID, PCI_ANY_ID, 149 "QLogic NetXtreme II BCM57810 MF 10GbE" 150 }, 151 { 152 BRCM_VENDORID, 153 CHIP_NUM_57811, 154 PCI_ANY_ID, PCI_ANY_ID, 155 "QLogic NetXtreme II BCM57811 10GbE" 156 }, 157 { 158 BRCM_VENDORID, 159 CHIP_NUM_57811_MF, 160 PCI_ANY_ID, PCI_ANY_ID, 161 "QLogic NetXtreme II BCM57811 MF 10GbE" 162 }, 163 { 164 BRCM_VENDORID, 165 CHIP_NUM_57840_4_10, 166 PCI_ANY_ID, PCI_ANY_ID, 167 "QLogic NetXtreme II BCM57840 4x10GbE" 168 }, 169 { 170 BRCM_VENDORID, 171 CHIP_NUM_57840_MF, 172 PCI_ANY_ID, PCI_ANY_ID, 173 "QLogic NetXtreme II BCM57840 MF 10GbE" 174 }, 175 { 176 0, 0, 0, 0, NULL 177 } 178 }; 179 180 MALLOC_DECLARE(M_BXE_ILT); 181 MALLOC_DEFINE(M_BXE_ILT, "bxe_ilt", "bxe ILT pointer"); 182 183 /* 184 * FreeBSD device entry points. 185 */ 186 static int bxe_probe(device_t); 187 static int bxe_attach(device_t); 188 static int bxe_detach(device_t); 189 static int bxe_shutdown(device_t); 190 191 /* 192 * FreeBSD KLD module/device interface event handler method. 193 */ 194 static device_method_t bxe_methods[] = { 195 /* Device interface (device_if.h) */ 196 DEVMETHOD(device_probe, bxe_probe), 197 DEVMETHOD(device_attach, bxe_attach), 198 DEVMETHOD(device_detach, bxe_detach), 199 DEVMETHOD(device_shutdown, bxe_shutdown), 200 /* Bus interface (bus_if.h) */ 201 DEVMETHOD(bus_print_child, bus_generic_print_child), 202 DEVMETHOD(bus_driver_added, bus_generic_driver_added), 203 KOBJMETHOD_END 204 }; 205 206 /* 207 * FreeBSD KLD Module data declaration 208 */ 209 static driver_t bxe_driver = { 210 "bxe", /* module name */ 211 bxe_methods, /* event handler */ 212 sizeof(struct bxe_softc) /* extra data */ 213 }; 214 215 /* 216 * FreeBSD dev class is needed to manage dev instances and 217 * to associate with a bus type 218 */ 219 static devclass_t bxe_devclass; 220 221 MODULE_DEPEND(bxe, pci, 1, 1, 1); 222 MODULE_DEPEND(bxe, ether, 1, 1, 1); 223 DRIVER_MODULE(bxe, pci, bxe_driver, bxe_devclass, 0, 0); 224 225 /* resources needed for unloading a previously loaded device */ 226 227 #define BXE_PREV_WAIT_NEEDED 1 228 struct mtx bxe_prev_mtx; 229 MTX_SYSINIT(bxe_prev_mtx, &bxe_prev_mtx, "bxe_prev_lock", MTX_DEF); 230 struct bxe_prev_list_node { 231 LIST_ENTRY(bxe_prev_list_node) node; 232 uint8_t bus; 233 uint8_t slot; 234 uint8_t path; 235 uint8_t aer; /* XXX automatic error recovery */ 236 uint8_t undi; 237 }; 238 static LIST_HEAD(, bxe_prev_list_node) bxe_prev_list = LIST_HEAD_INITIALIZER(bxe_prev_list); 239 240 static int load_count[2][3] = { {0} }; /* per-path: 0-common, 1-port0, 2-port1 */ 241 242 /* Tunable device values... */ 243 244 SYSCTL_NODE(_hw, OID_AUTO, bxe, CTLFLAG_RD, 0, "bxe driver parameters"); 245 246 /* Debug */ 247 unsigned long bxe_debug = 0; 248 SYSCTL_ULONG(_hw_bxe, OID_AUTO, debug, CTLFLAG_RDTUN, 249 &bxe_debug, 0, "Debug logging mode"); 250 251 /* Interrupt Mode: 0 (IRQ), 1 (MSI/IRQ), and 2 (MSI-X/MSI/IRQ) */ 252 static int bxe_interrupt_mode = INTR_MODE_MSIX; 253 SYSCTL_INT(_hw_bxe, OID_AUTO, interrupt_mode, CTLFLAG_RDTUN, 254 &bxe_interrupt_mode, 0, "Interrupt (MSI-X/MSI/INTx) mode"); 255 256 /* Number of Queues: 0 (Auto) or 1 to 16 (fixed queue number) */ 257 static int bxe_queue_count = 4; 258 SYSCTL_INT(_hw_bxe, OID_AUTO, queue_count, CTLFLAG_RDTUN, 259 &bxe_queue_count, 0, "Multi-Queue queue count"); 260 261 /* max number of buffers per queue (default RX_BD_USABLE) */ 262 static int bxe_max_rx_bufs = 0; 263 SYSCTL_INT(_hw_bxe, OID_AUTO, max_rx_bufs, CTLFLAG_RDTUN, 264 &bxe_max_rx_bufs, 0, "Maximum Number of Rx Buffers Per Queue"); 265 266 /* Host interrupt coalescing RX tick timer (usecs) */ 267 static int bxe_hc_rx_ticks = 25; 268 SYSCTL_INT(_hw_bxe, OID_AUTO, hc_rx_ticks, CTLFLAG_RDTUN, 269 &bxe_hc_rx_ticks, 0, "Host Coalescing Rx ticks"); 270 271 /* Host interrupt coalescing TX tick timer (usecs) */ 272 static int bxe_hc_tx_ticks = 50; 273 SYSCTL_INT(_hw_bxe, OID_AUTO, hc_tx_ticks, CTLFLAG_RDTUN, 274 &bxe_hc_tx_ticks, 0, "Host Coalescing Tx ticks"); 275 276 /* Maximum number of Rx packets to process at a time */ 277 static int bxe_rx_budget = 0xffffffff; 278 SYSCTL_INT(_hw_bxe, OID_AUTO, rx_budget, CTLFLAG_TUN, 279 &bxe_rx_budget, 0, "Rx processing budget"); 280 281 /* Maximum LRO aggregation size */ 282 static int bxe_max_aggregation_size = 0; 283 SYSCTL_INT(_hw_bxe, OID_AUTO, max_aggregation_size, CTLFLAG_TUN, 284 &bxe_max_aggregation_size, 0, "max aggregation size"); 285 286 /* PCI MRRS: -1 (Auto), 0 (128B), 1 (256B), 2 (512B), 3 (1KB) */ 287 static int bxe_mrrs = -1; 288 SYSCTL_INT(_hw_bxe, OID_AUTO, mrrs, CTLFLAG_RDTUN, 289 &bxe_mrrs, 0, "PCIe maximum read request size"); 290 291 /* AutoGrEEEn: 0 (hardware default), 1 (force on), 2 (force off) */ 292 static int bxe_autogreeen = 0; 293 SYSCTL_INT(_hw_bxe, OID_AUTO, autogreeen, CTLFLAG_RDTUN, 294 &bxe_autogreeen, 0, "AutoGrEEEn support"); 295 296 /* 4-tuple RSS support for UDP: 0 (disabled), 1 (enabled) */ 297 static int bxe_udp_rss = 0; 298 SYSCTL_INT(_hw_bxe, OID_AUTO, udp_rss, CTLFLAG_RDTUN, 299 &bxe_udp_rss, 0, "UDP RSS support"); 300 301 302 #define STAT_NAME_LEN 32 /* no stat names below can be longer than this */ 303 304 #define STATS_OFFSET32(stat_name) \ 305 (offsetof(struct bxe_eth_stats, stat_name) / 4) 306 307 #define Q_STATS_OFFSET32(stat_name) \ 308 (offsetof(struct bxe_eth_q_stats, stat_name) / 4) 309 310 static const struct { 311 uint32_t offset; 312 uint32_t size; 313 uint32_t flags; 314 #define STATS_FLAGS_PORT 1 315 #define STATS_FLAGS_FUNC 2 /* MF only cares about function stats */ 316 #define STATS_FLAGS_BOTH (STATS_FLAGS_FUNC | STATS_FLAGS_PORT) 317 char string[STAT_NAME_LEN]; 318 } bxe_eth_stats_arr[] = { 319 { STATS_OFFSET32(total_bytes_received_hi), 320 8, STATS_FLAGS_BOTH, "rx_bytes" }, 321 { STATS_OFFSET32(error_bytes_received_hi), 322 8, STATS_FLAGS_BOTH, "rx_error_bytes" }, 323 { STATS_OFFSET32(total_unicast_packets_received_hi), 324 8, STATS_FLAGS_BOTH, "rx_ucast_packets" }, 325 { STATS_OFFSET32(total_multicast_packets_received_hi), 326 8, STATS_FLAGS_BOTH, "rx_mcast_packets" }, 327 { STATS_OFFSET32(total_broadcast_packets_received_hi), 328 8, STATS_FLAGS_BOTH, "rx_bcast_packets" }, 329 { STATS_OFFSET32(rx_stat_dot3statsfcserrors_hi), 330 8, STATS_FLAGS_PORT, "rx_crc_errors" }, 331 { STATS_OFFSET32(rx_stat_dot3statsalignmenterrors_hi), 332 8, STATS_FLAGS_PORT, "rx_align_errors" }, 333 { STATS_OFFSET32(rx_stat_etherstatsundersizepkts_hi), 334 8, STATS_FLAGS_PORT, "rx_undersize_packets" }, 335 { STATS_OFFSET32(etherstatsoverrsizepkts_hi), 336 8, STATS_FLAGS_PORT, "rx_oversize_packets" }, 337 { STATS_OFFSET32(rx_stat_etherstatsfragments_hi), 338 8, STATS_FLAGS_PORT, "rx_fragments" }, 339 { STATS_OFFSET32(rx_stat_etherstatsjabbers_hi), 340 8, STATS_FLAGS_PORT, "rx_jabbers" }, 341 { STATS_OFFSET32(no_buff_discard_hi), 342 8, STATS_FLAGS_BOTH, "rx_discards" }, 343 { STATS_OFFSET32(mac_filter_discard), 344 4, STATS_FLAGS_PORT, "rx_filtered_packets" }, 345 { STATS_OFFSET32(mf_tag_discard), 346 4, STATS_FLAGS_PORT, "rx_mf_tag_discard" }, 347 { STATS_OFFSET32(pfc_frames_received_hi), 348 8, STATS_FLAGS_PORT, "pfc_frames_received" }, 349 { STATS_OFFSET32(pfc_frames_sent_hi), 350 8, STATS_FLAGS_PORT, "pfc_frames_sent" }, 351 { STATS_OFFSET32(brb_drop_hi), 352 8, STATS_FLAGS_PORT, "rx_brb_discard" }, 353 { STATS_OFFSET32(brb_truncate_hi), 354 8, STATS_FLAGS_PORT, "rx_brb_truncate" }, 355 { STATS_OFFSET32(pause_frames_received_hi), 356 8, STATS_FLAGS_PORT, "rx_pause_frames" }, 357 { STATS_OFFSET32(rx_stat_maccontrolframesreceived_hi), 358 8, STATS_FLAGS_PORT, "rx_mac_ctrl_frames" }, 359 { STATS_OFFSET32(nig_timer_max), 360 4, STATS_FLAGS_PORT, "rx_constant_pause_events" }, 361 { STATS_OFFSET32(total_bytes_transmitted_hi), 362 8, STATS_FLAGS_BOTH, "tx_bytes" }, 363 { STATS_OFFSET32(tx_stat_ifhcoutbadoctets_hi), 364 8, STATS_FLAGS_PORT, "tx_error_bytes" }, 365 { STATS_OFFSET32(total_unicast_packets_transmitted_hi), 366 8, STATS_FLAGS_BOTH, "tx_ucast_packets" }, 367 { STATS_OFFSET32(total_multicast_packets_transmitted_hi), 368 8, STATS_FLAGS_BOTH, "tx_mcast_packets" }, 369 { STATS_OFFSET32(total_broadcast_packets_transmitted_hi), 370 8, STATS_FLAGS_BOTH, "tx_bcast_packets" }, 371 { STATS_OFFSET32(tx_stat_dot3statsinternalmactransmiterrors_hi), 372 8, STATS_FLAGS_PORT, "tx_mac_errors" }, 373 { STATS_OFFSET32(rx_stat_dot3statscarriersenseerrors_hi), 374 8, STATS_FLAGS_PORT, "tx_carrier_errors" }, 375 { STATS_OFFSET32(tx_stat_dot3statssinglecollisionframes_hi), 376 8, STATS_FLAGS_PORT, "tx_single_collisions" }, 377 { STATS_OFFSET32(tx_stat_dot3statsmultiplecollisionframes_hi), 378 8, STATS_FLAGS_PORT, "tx_multi_collisions" }, 379 { STATS_OFFSET32(tx_stat_dot3statsdeferredtransmissions_hi), 380 8, STATS_FLAGS_PORT, "tx_deferred" }, 381 { STATS_OFFSET32(tx_stat_dot3statsexcessivecollisions_hi), 382 8, STATS_FLAGS_PORT, "tx_excess_collisions" }, 383 { STATS_OFFSET32(tx_stat_dot3statslatecollisions_hi), 384 8, STATS_FLAGS_PORT, "tx_late_collisions" }, 385 { STATS_OFFSET32(tx_stat_etherstatscollisions_hi), 386 8, STATS_FLAGS_PORT, "tx_total_collisions" }, 387 { STATS_OFFSET32(tx_stat_etherstatspkts64octets_hi), 388 8, STATS_FLAGS_PORT, "tx_64_byte_packets" }, 389 { STATS_OFFSET32(tx_stat_etherstatspkts65octetsto127octets_hi), 390 8, STATS_FLAGS_PORT, "tx_65_to_127_byte_packets" }, 391 { STATS_OFFSET32(tx_stat_etherstatspkts128octetsto255octets_hi), 392 8, STATS_FLAGS_PORT, "tx_128_to_255_byte_packets" }, 393 { STATS_OFFSET32(tx_stat_etherstatspkts256octetsto511octets_hi), 394 8, STATS_FLAGS_PORT, "tx_256_to_511_byte_packets" }, 395 { STATS_OFFSET32(tx_stat_etherstatspkts512octetsto1023octets_hi), 396 8, STATS_FLAGS_PORT, "tx_512_to_1023_byte_packets" }, 397 { STATS_OFFSET32(etherstatspkts1024octetsto1522octets_hi), 398 8, STATS_FLAGS_PORT, "tx_1024_to_1522_byte_packets" }, 399 { STATS_OFFSET32(etherstatspktsover1522octets_hi), 400 8, STATS_FLAGS_PORT, "tx_1523_to_9022_byte_packets" }, 401 { STATS_OFFSET32(pause_frames_sent_hi), 402 8, STATS_FLAGS_PORT, "tx_pause_frames" }, 403 { STATS_OFFSET32(total_tpa_aggregations_hi), 404 8, STATS_FLAGS_FUNC, "tpa_aggregations" }, 405 { STATS_OFFSET32(total_tpa_aggregated_frames_hi), 406 8, STATS_FLAGS_FUNC, "tpa_aggregated_frames"}, 407 { STATS_OFFSET32(total_tpa_bytes_hi), 408 8, STATS_FLAGS_FUNC, "tpa_bytes"}, 409 { STATS_OFFSET32(eee_tx_lpi), 410 4, STATS_FLAGS_PORT, "eee_tx_lpi"}, 411 { STATS_OFFSET32(rx_calls), 412 4, STATS_FLAGS_FUNC, "rx_calls"}, 413 { STATS_OFFSET32(rx_pkts), 414 4, STATS_FLAGS_FUNC, "rx_pkts"}, 415 { STATS_OFFSET32(rx_tpa_pkts), 416 4, STATS_FLAGS_FUNC, "rx_tpa_pkts"}, 417 { STATS_OFFSET32(rx_erroneous_jumbo_sge_pkts), 418 4, STATS_FLAGS_FUNC, "rx_erroneous_jumbo_sge_pkts"}, 419 { STATS_OFFSET32(rx_bxe_service_rxsgl), 420 4, STATS_FLAGS_FUNC, "rx_bxe_service_rxsgl"}, 421 { STATS_OFFSET32(rx_jumbo_sge_pkts), 422 4, STATS_FLAGS_FUNC, "rx_jumbo_sge_pkts"}, 423 { STATS_OFFSET32(rx_soft_errors), 424 4, STATS_FLAGS_FUNC, "rx_soft_errors"}, 425 { STATS_OFFSET32(rx_hw_csum_errors), 426 4, STATS_FLAGS_FUNC, "rx_hw_csum_errors"}, 427 { STATS_OFFSET32(rx_ofld_frames_csum_ip), 428 4, STATS_FLAGS_FUNC, "rx_ofld_frames_csum_ip"}, 429 { STATS_OFFSET32(rx_ofld_frames_csum_tcp_udp), 430 4, STATS_FLAGS_FUNC, "rx_ofld_frames_csum_tcp_udp"}, 431 { STATS_OFFSET32(rx_budget_reached), 432 4, STATS_FLAGS_FUNC, "rx_budget_reached"}, 433 { STATS_OFFSET32(tx_pkts), 434 4, STATS_FLAGS_FUNC, "tx_pkts"}, 435 { STATS_OFFSET32(tx_soft_errors), 436 4, STATS_FLAGS_FUNC, "tx_soft_errors"}, 437 { STATS_OFFSET32(tx_ofld_frames_csum_ip), 438 4, STATS_FLAGS_FUNC, "tx_ofld_frames_csum_ip"}, 439 { STATS_OFFSET32(tx_ofld_frames_csum_tcp), 440 4, STATS_FLAGS_FUNC, "tx_ofld_frames_csum_tcp"}, 441 { STATS_OFFSET32(tx_ofld_frames_csum_udp), 442 4, STATS_FLAGS_FUNC, "tx_ofld_frames_csum_udp"}, 443 { STATS_OFFSET32(tx_ofld_frames_lso), 444 4, STATS_FLAGS_FUNC, "tx_ofld_frames_lso"}, 445 { STATS_OFFSET32(tx_ofld_frames_lso_hdr_splits), 446 4, STATS_FLAGS_FUNC, "tx_ofld_frames_lso_hdr_splits"}, 447 { STATS_OFFSET32(tx_encap_failures), 448 4, STATS_FLAGS_FUNC, "tx_encap_failures"}, 449 { STATS_OFFSET32(tx_hw_queue_full), 450 4, STATS_FLAGS_FUNC, "tx_hw_queue_full"}, 451 { STATS_OFFSET32(tx_hw_max_queue_depth), 452 4, STATS_FLAGS_FUNC, "tx_hw_max_queue_depth"}, 453 { STATS_OFFSET32(tx_dma_mapping_failure), 454 4, STATS_FLAGS_FUNC, "tx_dma_mapping_failure"}, 455 { STATS_OFFSET32(tx_max_drbr_queue_depth), 456 4, STATS_FLAGS_FUNC, "tx_max_drbr_queue_depth"}, 457 { STATS_OFFSET32(tx_window_violation_std), 458 4, STATS_FLAGS_FUNC, "tx_window_violation_std"}, 459 { STATS_OFFSET32(tx_window_violation_tso), 460 4, STATS_FLAGS_FUNC, "tx_window_violation_tso"}, 461 { STATS_OFFSET32(tx_chain_lost_mbuf), 462 4, STATS_FLAGS_FUNC, "tx_chain_lost_mbuf"}, 463 { STATS_OFFSET32(tx_frames_deferred), 464 4, STATS_FLAGS_FUNC, "tx_frames_deferred"}, 465 { STATS_OFFSET32(tx_queue_xoff), 466 4, STATS_FLAGS_FUNC, "tx_queue_xoff"}, 467 { STATS_OFFSET32(mbuf_defrag_attempts), 468 4, STATS_FLAGS_FUNC, "mbuf_defrag_attempts"}, 469 { STATS_OFFSET32(mbuf_defrag_failures), 470 4, STATS_FLAGS_FUNC, "mbuf_defrag_failures"}, 471 { STATS_OFFSET32(mbuf_rx_bd_alloc_failed), 472 4, STATS_FLAGS_FUNC, "mbuf_rx_bd_alloc_failed"}, 473 { STATS_OFFSET32(mbuf_rx_bd_mapping_failed), 474 4, STATS_FLAGS_FUNC, "mbuf_rx_bd_mapping_failed"}, 475 { STATS_OFFSET32(mbuf_rx_tpa_alloc_failed), 476 4, STATS_FLAGS_FUNC, "mbuf_rx_tpa_alloc_failed"}, 477 { STATS_OFFSET32(mbuf_rx_tpa_mapping_failed), 478 4, STATS_FLAGS_FUNC, "mbuf_rx_tpa_mapping_failed"}, 479 { STATS_OFFSET32(mbuf_rx_sge_alloc_failed), 480 4, STATS_FLAGS_FUNC, "mbuf_rx_sge_alloc_failed"}, 481 { STATS_OFFSET32(mbuf_rx_sge_mapping_failed), 482 4, STATS_FLAGS_FUNC, "mbuf_rx_sge_mapping_failed"}, 483 { STATS_OFFSET32(mbuf_alloc_tx), 484 4, STATS_FLAGS_FUNC, "mbuf_alloc_tx"}, 485 { STATS_OFFSET32(mbuf_alloc_rx), 486 4, STATS_FLAGS_FUNC, "mbuf_alloc_rx"}, 487 { STATS_OFFSET32(mbuf_alloc_sge), 488 4, STATS_FLAGS_FUNC, "mbuf_alloc_sge"}, 489 { STATS_OFFSET32(mbuf_alloc_tpa), 490 4, STATS_FLAGS_FUNC, "mbuf_alloc_tpa"}, 491 { STATS_OFFSET32(tx_queue_full_return), 492 4, STATS_FLAGS_FUNC, "tx_queue_full_return"}, 493 { STATS_OFFSET32(bxe_tx_mq_start_lock_failures), 494 4, STATS_FLAGS_FUNC, "bxe_tx_mq_start_lock_failures"}, 495 { STATS_OFFSET32(tx_request_link_down_failures), 496 4, STATS_FLAGS_FUNC, "tx_request_link_down_failures"}, 497 { STATS_OFFSET32(bd_avail_too_less_failures), 498 4, STATS_FLAGS_FUNC, "bd_avail_too_less_failures"}, 499 { STATS_OFFSET32(tx_mq_not_empty), 500 4, STATS_FLAGS_FUNC, "tx_mq_not_empty"} 501 502 }; 503 504 static const struct { 505 uint32_t offset; 506 uint32_t size; 507 char string[STAT_NAME_LEN]; 508 } bxe_eth_q_stats_arr[] = { 509 { Q_STATS_OFFSET32(total_bytes_received_hi), 510 8, "rx_bytes" }, 511 { Q_STATS_OFFSET32(total_unicast_packets_received_hi), 512 8, "rx_ucast_packets" }, 513 { Q_STATS_OFFSET32(total_multicast_packets_received_hi), 514 8, "rx_mcast_packets" }, 515 { Q_STATS_OFFSET32(total_broadcast_packets_received_hi), 516 8, "rx_bcast_packets" }, 517 { Q_STATS_OFFSET32(no_buff_discard_hi), 518 8, "rx_discards" }, 519 { Q_STATS_OFFSET32(total_bytes_transmitted_hi), 520 8, "tx_bytes" }, 521 { Q_STATS_OFFSET32(total_unicast_packets_transmitted_hi), 522 8, "tx_ucast_packets" }, 523 { Q_STATS_OFFSET32(total_multicast_packets_transmitted_hi), 524 8, "tx_mcast_packets" }, 525 { Q_STATS_OFFSET32(total_broadcast_packets_transmitted_hi), 526 8, "tx_bcast_packets" }, 527 { Q_STATS_OFFSET32(total_tpa_aggregations_hi), 528 8, "tpa_aggregations" }, 529 { Q_STATS_OFFSET32(total_tpa_aggregated_frames_hi), 530 8, "tpa_aggregated_frames"}, 531 { Q_STATS_OFFSET32(total_tpa_bytes_hi), 532 8, "tpa_bytes"}, 533 { Q_STATS_OFFSET32(rx_calls), 534 4, "rx_calls"}, 535 { Q_STATS_OFFSET32(rx_pkts), 536 4, "rx_pkts"}, 537 { Q_STATS_OFFSET32(rx_tpa_pkts), 538 4, "rx_tpa_pkts"}, 539 { Q_STATS_OFFSET32(rx_erroneous_jumbo_sge_pkts), 540 4, "rx_erroneous_jumbo_sge_pkts"}, 541 { Q_STATS_OFFSET32(rx_bxe_service_rxsgl), 542 4, "rx_bxe_service_rxsgl"}, 543 { Q_STATS_OFFSET32(rx_jumbo_sge_pkts), 544 4, "rx_jumbo_sge_pkts"}, 545 { Q_STATS_OFFSET32(rx_soft_errors), 546 4, "rx_soft_errors"}, 547 { Q_STATS_OFFSET32(rx_hw_csum_errors), 548 4, "rx_hw_csum_errors"}, 549 { Q_STATS_OFFSET32(rx_ofld_frames_csum_ip), 550 4, "rx_ofld_frames_csum_ip"}, 551 { Q_STATS_OFFSET32(rx_ofld_frames_csum_tcp_udp), 552 4, "rx_ofld_frames_csum_tcp_udp"}, 553 { Q_STATS_OFFSET32(rx_budget_reached), 554 4, "rx_budget_reached"}, 555 { Q_STATS_OFFSET32(tx_pkts), 556 4, "tx_pkts"}, 557 { Q_STATS_OFFSET32(tx_soft_errors), 558 4, "tx_soft_errors"}, 559 { Q_STATS_OFFSET32(tx_ofld_frames_csum_ip), 560 4, "tx_ofld_frames_csum_ip"}, 561 { Q_STATS_OFFSET32(tx_ofld_frames_csum_tcp), 562 4, "tx_ofld_frames_csum_tcp"}, 563 { Q_STATS_OFFSET32(tx_ofld_frames_csum_udp), 564 4, "tx_ofld_frames_csum_udp"}, 565 { Q_STATS_OFFSET32(tx_ofld_frames_lso), 566 4, "tx_ofld_frames_lso"}, 567 { Q_STATS_OFFSET32(tx_ofld_frames_lso_hdr_splits), 568 4, "tx_ofld_frames_lso_hdr_splits"}, 569 { Q_STATS_OFFSET32(tx_encap_failures), 570 4, "tx_encap_failures"}, 571 { Q_STATS_OFFSET32(tx_hw_queue_full), 572 4, "tx_hw_queue_full"}, 573 { Q_STATS_OFFSET32(tx_hw_max_queue_depth), 574 4, "tx_hw_max_queue_depth"}, 575 { Q_STATS_OFFSET32(tx_dma_mapping_failure), 576 4, "tx_dma_mapping_failure"}, 577 { Q_STATS_OFFSET32(tx_max_drbr_queue_depth), 578 4, "tx_max_drbr_queue_depth"}, 579 { Q_STATS_OFFSET32(tx_window_violation_std), 580 4, "tx_window_violation_std"}, 581 { Q_STATS_OFFSET32(tx_window_violation_tso), 582 4, "tx_window_violation_tso"}, 583 { Q_STATS_OFFSET32(tx_chain_lost_mbuf), 584 4, "tx_chain_lost_mbuf"}, 585 { Q_STATS_OFFSET32(tx_frames_deferred), 586 4, "tx_frames_deferred"}, 587 { Q_STATS_OFFSET32(tx_queue_xoff), 588 4, "tx_queue_xoff"}, 589 { Q_STATS_OFFSET32(mbuf_defrag_attempts), 590 4, "mbuf_defrag_attempts"}, 591 { Q_STATS_OFFSET32(mbuf_defrag_failures), 592 4, "mbuf_defrag_failures"}, 593 { Q_STATS_OFFSET32(mbuf_rx_bd_alloc_failed), 594 4, "mbuf_rx_bd_alloc_failed"}, 595 { Q_STATS_OFFSET32(mbuf_rx_bd_mapping_failed), 596 4, "mbuf_rx_bd_mapping_failed"}, 597 { Q_STATS_OFFSET32(mbuf_rx_tpa_alloc_failed), 598 4, "mbuf_rx_tpa_alloc_failed"}, 599 { Q_STATS_OFFSET32(mbuf_rx_tpa_mapping_failed), 600 4, "mbuf_rx_tpa_mapping_failed"}, 601 { Q_STATS_OFFSET32(mbuf_rx_sge_alloc_failed), 602 4, "mbuf_rx_sge_alloc_failed"}, 603 { Q_STATS_OFFSET32(mbuf_rx_sge_mapping_failed), 604 4, "mbuf_rx_sge_mapping_failed"}, 605 { Q_STATS_OFFSET32(mbuf_alloc_tx), 606 4, "mbuf_alloc_tx"}, 607 { Q_STATS_OFFSET32(mbuf_alloc_rx), 608 4, "mbuf_alloc_rx"}, 609 { Q_STATS_OFFSET32(mbuf_alloc_sge), 610 4, "mbuf_alloc_sge"}, 611 { Q_STATS_OFFSET32(mbuf_alloc_tpa), 612 4, "mbuf_alloc_tpa"}, 613 { Q_STATS_OFFSET32(tx_queue_full_return), 614 4, "tx_queue_full_return"}, 615 { Q_STATS_OFFSET32(bxe_tx_mq_start_lock_failures), 616 4, "bxe_tx_mq_start_lock_failures"}, 617 { Q_STATS_OFFSET32(tx_request_link_down_failures), 618 4, "tx_request_link_down_failures"}, 619 { Q_STATS_OFFSET32(bd_avail_too_less_failures), 620 4, "bd_avail_too_less_failures"}, 621 { Q_STATS_OFFSET32(tx_mq_not_empty), 622 4, "tx_mq_not_empty"} 623 }; 624 625 #define BXE_NUM_ETH_STATS ARRAY_SIZE(bxe_eth_stats_arr) 626 #define BXE_NUM_ETH_Q_STATS ARRAY_SIZE(bxe_eth_q_stats_arr) 627 628 629 static void bxe_cmng_fns_init(struct bxe_softc *sc, 630 uint8_t read_cfg, 631 uint8_t cmng_type); 632 static int bxe_get_cmng_fns_mode(struct bxe_softc *sc); 633 static void storm_memset_cmng(struct bxe_softc *sc, 634 struct cmng_init *cmng, 635 uint8_t port); 636 static void bxe_set_reset_global(struct bxe_softc *sc); 637 static void bxe_set_reset_in_progress(struct bxe_softc *sc); 638 static uint8_t bxe_reset_is_done(struct bxe_softc *sc, 639 int engine); 640 static uint8_t bxe_clear_pf_load(struct bxe_softc *sc); 641 static uint8_t bxe_chk_parity_attn(struct bxe_softc *sc, 642 uint8_t *global, 643 uint8_t print); 644 static void bxe_int_disable(struct bxe_softc *sc); 645 static int bxe_release_leader_lock(struct bxe_softc *sc); 646 static void bxe_pf_disable(struct bxe_softc *sc); 647 static void bxe_free_fp_buffers(struct bxe_softc *sc); 648 static inline void bxe_update_rx_prod(struct bxe_softc *sc, 649 struct bxe_fastpath *fp, 650 uint16_t rx_bd_prod, 651 uint16_t rx_cq_prod, 652 uint16_t rx_sge_prod); 653 static void bxe_link_report_locked(struct bxe_softc *sc); 654 static void bxe_link_report(struct bxe_softc *sc); 655 static void bxe_link_status_update(struct bxe_softc *sc); 656 static void bxe_periodic_callout_func(void *xsc); 657 static void bxe_periodic_start(struct bxe_softc *sc); 658 static void bxe_periodic_stop(struct bxe_softc *sc); 659 static int bxe_alloc_rx_bd_mbuf(struct bxe_fastpath *fp, 660 uint16_t prev_index, 661 uint16_t index); 662 static int bxe_alloc_rx_tpa_mbuf(struct bxe_fastpath *fp, 663 int queue); 664 static int bxe_alloc_rx_sge_mbuf(struct bxe_fastpath *fp, 665 uint16_t index); 666 static uint8_t bxe_txeof(struct bxe_softc *sc, 667 struct bxe_fastpath *fp); 668 static void bxe_task_fp(struct bxe_fastpath *fp); 669 static __noinline void bxe_dump_mbuf(struct bxe_softc *sc, 670 struct mbuf *m, 671 uint8_t contents); 672 static int bxe_alloc_mem(struct bxe_softc *sc); 673 static void bxe_free_mem(struct bxe_softc *sc); 674 static int bxe_alloc_fw_stats_mem(struct bxe_softc *sc); 675 static void bxe_free_fw_stats_mem(struct bxe_softc *sc); 676 static int bxe_interrupt_attach(struct bxe_softc *sc); 677 static void bxe_interrupt_detach(struct bxe_softc *sc); 678 static void bxe_set_rx_mode(struct bxe_softc *sc); 679 static int bxe_init_locked(struct bxe_softc *sc); 680 static int bxe_stop_locked(struct bxe_softc *sc); 681 static __noinline int bxe_nic_load(struct bxe_softc *sc, 682 int load_mode); 683 static __noinline int bxe_nic_unload(struct bxe_softc *sc, 684 uint32_t unload_mode, 685 uint8_t keep_link); 686 687 static void bxe_handle_sp_tq(void *context, int pending); 688 static void bxe_handle_fp_tq(void *context, int pending); 689 690 static int bxe_add_cdev(struct bxe_softc *sc); 691 static void bxe_del_cdev(struct bxe_softc *sc); 692 static int bxe_alloc_buf_rings(struct bxe_softc *sc); 693 static void bxe_free_buf_rings(struct bxe_softc *sc); 694 695 /* calculate crc32 on a buffer (NOTE: crc32_length MUST be aligned to 8) */ 696 uint32_t 697 calc_crc32(uint8_t *crc32_packet, 698 uint32_t crc32_length, 699 uint32_t crc32_seed, 700 uint8_t complement) 701 { 702 uint32_t byte = 0; 703 uint32_t bit = 0; 704 uint8_t msb = 0; 705 uint32_t temp = 0; 706 uint32_t shft = 0; 707 uint8_t current_byte = 0; 708 uint32_t crc32_result = crc32_seed; 709 const uint32_t CRC32_POLY = 0x1edc6f41; 710 711 if ((crc32_packet == NULL) || 712 (crc32_length == 0) || 713 ((crc32_length % 8) != 0)) 714 { 715 return (crc32_result); 716 } 717 718 for (byte = 0; byte < crc32_length; byte = byte + 1) 719 { 720 current_byte = crc32_packet[byte]; 721 for (bit = 0; bit < 8; bit = bit + 1) 722 { 723 /* msb = crc32_result[31]; */ 724 msb = (uint8_t)(crc32_result >> 31); 725 726 crc32_result = crc32_result << 1; 727 728 /* it (msb != current_byte[bit]) */ 729 if (msb != (0x1 & (current_byte >> bit))) 730 { 731 crc32_result = crc32_result ^ CRC32_POLY; 732 /* crc32_result[0] = 1 */ 733 crc32_result |= 1; 734 } 735 } 736 } 737 738 /* Last step is to: 739 * 1. "mirror" every bit 740 * 2. swap the 4 bytes 741 * 3. complement each bit 742 */ 743 744 /* Mirror */ 745 temp = crc32_result; 746 shft = sizeof(crc32_result) * 8 - 1; 747 748 for (crc32_result >>= 1; crc32_result; crc32_result >>= 1) 749 { 750 temp <<= 1; 751 temp |= crc32_result & 1; 752 shft-- ; 753 } 754 755 /* temp[31-bit] = crc32_result[bit] */ 756 temp <<= shft; 757 758 /* Swap */ 759 /* crc32_result = {temp[7:0], temp[15:8], temp[23:16], temp[31:24]} */ 760 { 761 uint32_t t0, t1, t2, t3; 762 t0 = (0x000000ff & (temp >> 24)); 763 t1 = (0x0000ff00 & (temp >> 8)); 764 t2 = (0x00ff0000 & (temp << 8)); 765 t3 = (0xff000000 & (temp << 24)); 766 crc32_result = t0 | t1 | t2 | t3; 767 } 768 769 /* Complement */ 770 if (complement) 771 { 772 crc32_result = ~crc32_result; 773 } 774 775 return (crc32_result); 776 } 777 778 int 779 bxe_test_bit(int nr, 780 volatile unsigned long *addr) 781 { 782 return ((atomic_load_acq_long(addr) & (1 << nr)) != 0); 783 } 784 785 void 786 bxe_set_bit(unsigned int nr, 787 volatile unsigned long *addr) 788 { 789 atomic_set_acq_long(addr, (1 << nr)); 790 } 791 792 void 793 bxe_clear_bit(int nr, 794 volatile unsigned long *addr) 795 { 796 atomic_clear_acq_long(addr, (1 << nr)); 797 } 798 799 int 800 bxe_test_and_set_bit(int nr, 801 volatile unsigned long *addr) 802 { 803 unsigned long x; 804 nr = (1 << nr); 805 do { 806 x = *addr; 807 } while (atomic_cmpset_acq_long(addr, x, x | nr) == 0); 808 // if (x & nr) bit_was_set; else bit_was_not_set; 809 return (x & nr); 810 } 811 812 int 813 bxe_test_and_clear_bit(int nr, 814 volatile unsigned long *addr) 815 { 816 unsigned long x; 817 nr = (1 << nr); 818 do { 819 x = *addr; 820 } while (atomic_cmpset_acq_long(addr, x, x & ~nr) == 0); 821 // if (x & nr) bit_was_set; else bit_was_not_set; 822 return (x & nr); 823 } 824 825 int 826 bxe_cmpxchg(volatile int *addr, 827 int old, 828 int new) 829 { 830 int x; 831 do { 832 x = *addr; 833 } while (atomic_cmpset_acq_int(addr, old, new) == 0); 834 return (x); 835 } 836 837 /* 838 * Get DMA memory from the OS. 839 * 840 * Validates that the OS has provided DMA buffers in response to a 841 * bus_dmamap_load call and saves the physical address of those buffers. 842 * When the callback is used the OS will return 0 for the mapping function 843 * (bus_dmamap_load) so we use the value of map_arg->maxsegs to pass any 844 * failures back to the caller. 845 * 846 * Returns: 847 * Nothing. 848 */ 849 static void 850 bxe_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error) 851 { 852 struct bxe_dma *dma = arg; 853 854 if (error) { 855 dma->paddr = 0; 856 dma->nseg = 0; 857 BLOGE(dma->sc, "Failed DMA alloc '%s' (%d)!\n", dma->msg, error); 858 } else { 859 dma->paddr = segs->ds_addr; 860 dma->nseg = nseg; 861 } 862 } 863 864 /* 865 * Allocate a block of memory and map it for DMA. No partial completions 866 * allowed and release any resources acquired if we can't acquire all 867 * resources. 868 * 869 * Returns: 870 * 0 = Success, !0 = Failure 871 */ 872 int 873 bxe_dma_alloc(struct bxe_softc *sc, 874 bus_size_t size, 875 struct bxe_dma *dma, 876 const char *msg) 877 { 878 int rc; 879 880 if (dma->size > 0) { 881 BLOGE(sc, "dma block '%s' already has size %lu\n", msg, 882 (unsigned long)dma->size); 883 return (1); 884 } 885 886 memset(dma, 0, sizeof(*dma)); /* sanity */ 887 dma->sc = sc; 888 dma->size = size; 889 snprintf(dma->msg, sizeof(dma->msg), "%s", msg); 890 891 rc = bus_dma_tag_create(sc->parent_dma_tag, /* parent tag */ 892 BCM_PAGE_SIZE, /* alignment */ 893 0, /* boundary limit */ 894 BUS_SPACE_MAXADDR, /* restricted low */ 895 BUS_SPACE_MAXADDR, /* restricted hi */ 896 NULL, /* addr filter() */ 897 NULL, /* addr filter() arg */ 898 size, /* max map size */ 899 1, /* num discontinuous */ 900 size, /* max seg size */ 901 BUS_DMA_ALLOCNOW, /* flags */ 902 NULL, /* lock() */ 903 NULL, /* lock() arg */ 904 &dma->tag); /* returned dma tag */ 905 if (rc != 0) { 906 BLOGE(sc, "Failed to create dma tag for '%s' (%d)\n", msg, rc); 907 memset(dma, 0, sizeof(*dma)); 908 return (1); 909 } 910 911 rc = bus_dmamem_alloc(dma->tag, 912 (void **)&dma->vaddr, 913 (BUS_DMA_NOWAIT | BUS_DMA_ZERO), 914 &dma->map); 915 if (rc != 0) { 916 BLOGE(sc, "Failed to alloc dma mem for '%s' (%d)\n", msg, rc); 917 bus_dma_tag_destroy(dma->tag); 918 memset(dma, 0, sizeof(*dma)); 919 return (1); 920 } 921 922 rc = bus_dmamap_load(dma->tag, 923 dma->map, 924 dma->vaddr, 925 size, 926 bxe_dma_map_addr, /* BLOGD in here */ 927 dma, 928 BUS_DMA_NOWAIT); 929 if (rc != 0) { 930 BLOGE(sc, "Failed to load dma map for '%s' (%d)\n", msg, rc); 931 bus_dmamem_free(dma->tag, dma->vaddr, dma->map); 932 bus_dma_tag_destroy(dma->tag); 933 memset(dma, 0, sizeof(*dma)); 934 return (1); 935 } 936 937 return (0); 938 } 939 940 void 941 bxe_dma_free(struct bxe_softc *sc, 942 struct bxe_dma *dma) 943 { 944 if (dma->size > 0) { 945 DBASSERT(sc, (dma->tag != NULL), ("dma tag is NULL")); 946 947 bus_dmamap_sync(dma->tag, dma->map, 948 (BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE)); 949 bus_dmamap_unload(dma->tag, dma->map); 950 bus_dmamem_free(dma->tag, dma->vaddr, dma->map); 951 bus_dma_tag_destroy(dma->tag); 952 } 953 954 memset(dma, 0, sizeof(*dma)); 955 } 956 957 /* 958 * These indirect read and write routines are only during init. 959 * The locking is handled by the MCP. 960 */ 961 962 void 963 bxe_reg_wr_ind(struct bxe_softc *sc, 964 uint32_t addr, 965 uint32_t val) 966 { 967 pci_write_config(sc->dev, PCICFG_GRC_ADDRESS, addr, 4); 968 pci_write_config(sc->dev, PCICFG_GRC_DATA, val, 4); 969 pci_write_config(sc->dev, PCICFG_GRC_ADDRESS, 0, 4); 970 } 971 972 uint32_t 973 bxe_reg_rd_ind(struct bxe_softc *sc, 974 uint32_t addr) 975 { 976 uint32_t val; 977 978 pci_write_config(sc->dev, PCICFG_GRC_ADDRESS, addr, 4); 979 val = pci_read_config(sc->dev, PCICFG_GRC_DATA, 4); 980 pci_write_config(sc->dev, PCICFG_GRC_ADDRESS, 0, 4); 981 982 return (val); 983 } 984 985 static int 986 bxe_acquire_hw_lock(struct bxe_softc *sc, 987 uint32_t resource) 988 { 989 uint32_t lock_status; 990 uint32_t resource_bit = (1 << resource); 991 int func = SC_FUNC(sc); 992 uint32_t hw_lock_control_reg; 993 int cnt; 994 995 /* validate the resource is within range */ 996 if (resource > HW_LOCK_MAX_RESOURCE_VALUE) { 997 BLOGE(sc, "(resource 0x%x > HW_LOCK_MAX_RESOURCE_VALUE)" 998 " resource_bit 0x%x\n", resource, resource_bit); 999 return (-1); 1000 } 1001 1002 if (func <= 5) { 1003 hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + (func * 8)); 1004 } else { 1005 hw_lock_control_reg = 1006 (MISC_REG_DRIVER_CONTROL_7 + ((func - 6) * 8)); 1007 } 1008 1009 /* validate the resource is not already taken */ 1010 lock_status = REG_RD(sc, hw_lock_control_reg); 1011 if (lock_status & resource_bit) { 1012 BLOGE(sc, "resource (0x%x) in use (status 0x%x bit 0x%x)\n", 1013 resource, lock_status, resource_bit); 1014 return (-1); 1015 } 1016 1017 /* try every 5ms for 5 seconds */ 1018 for (cnt = 0; cnt < 1000; cnt++) { 1019 REG_WR(sc, (hw_lock_control_reg + 4), resource_bit); 1020 lock_status = REG_RD(sc, hw_lock_control_reg); 1021 if (lock_status & resource_bit) { 1022 return (0); 1023 } 1024 DELAY(5000); 1025 } 1026 1027 BLOGE(sc, "Resource 0x%x resource_bit 0x%x lock timeout!\n", 1028 resource, resource_bit); 1029 return (-1); 1030 } 1031 1032 static int 1033 bxe_release_hw_lock(struct bxe_softc *sc, 1034 uint32_t resource) 1035 { 1036 uint32_t lock_status; 1037 uint32_t resource_bit = (1 << resource); 1038 int func = SC_FUNC(sc); 1039 uint32_t hw_lock_control_reg; 1040 1041 /* validate the resource is within range */ 1042 if (resource > HW_LOCK_MAX_RESOURCE_VALUE) { 1043 BLOGE(sc, "(resource 0x%x > HW_LOCK_MAX_RESOURCE_VALUE)" 1044 " resource_bit 0x%x\n", resource, resource_bit); 1045 return (-1); 1046 } 1047 1048 if (func <= 5) { 1049 hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + (func * 8)); 1050 } else { 1051 hw_lock_control_reg = 1052 (MISC_REG_DRIVER_CONTROL_7 + ((func - 6) * 8)); 1053 } 1054 1055 /* validate the resource is currently taken */ 1056 lock_status = REG_RD(sc, hw_lock_control_reg); 1057 if (!(lock_status & resource_bit)) { 1058 BLOGE(sc, "resource (0x%x) not in use (status 0x%x bit 0x%x)\n", 1059 resource, lock_status, resource_bit); 1060 return (-1); 1061 } 1062 1063 REG_WR(sc, hw_lock_control_reg, resource_bit); 1064 return (0); 1065 } 1066 static void bxe_acquire_phy_lock(struct bxe_softc *sc) 1067 { 1068 BXE_PHY_LOCK(sc); 1069 bxe_acquire_hw_lock(sc,HW_LOCK_RESOURCE_MDIO); 1070 } 1071 1072 static void bxe_release_phy_lock(struct bxe_softc *sc) 1073 { 1074 bxe_release_hw_lock(sc,HW_LOCK_RESOURCE_MDIO); 1075 BXE_PHY_UNLOCK(sc); 1076 } 1077 /* 1078 * Per pf misc lock must be acquired before the per port mcp lock. Otherwise, 1079 * had we done things the other way around, if two pfs from the same port 1080 * would attempt to access nvram at the same time, we could run into a 1081 * scenario such as: 1082 * pf A takes the port lock. 1083 * pf B succeeds in taking the same lock since they are from the same port. 1084 * pf A takes the per pf misc lock. Performs eeprom access. 1085 * pf A finishes. Unlocks the per pf misc lock. 1086 * Pf B takes the lock and proceeds to perform it's own access. 1087 * pf A unlocks the per port lock, while pf B is still working (!). 1088 * mcp takes the per port lock and corrupts pf B's access (and/or has it's own 1089 * access corrupted by pf B).* 1090 */ 1091 static int 1092 bxe_acquire_nvram_lock(struct bxe_softc *sc) 1093 { 1094 int port = SC_PORT(sc); 1095 int count, i; 1096 uint32_t val = 0; 1097 1098 /* acquire HW lock: protect against other PFs in PF Direct Assignment */ 1099 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_NVRAM); 1100 1101 /* adjust timeout for emulation/FPGA */ 1102 count = NVRAM_TIMEOUT_COUNT; 1103 if (CHIP_REV_IS_SLOW(sc)) { 1104 count *= 100; 1105 } 1106 1107 /* request access to nvram interface */ 1108 REG_WR(sc, MCP_REG_MCPR_NVM_SW_ARB, 1109 (MCPR_NVM_SW_ARB_ARB_REQ_SET1 << port)); 1110 1111 for (i = 0; i < count*10; i++) { 1112 val = REG_RD(sc, MCP_REG_MCPR_NVM_SW_ARB); 1113 if (val & (MCPR_NVM_SW_ARB_ARB_ARB1 << port)) { 1114 break; 1115 } 1116 1117 DELAY(5); 1118 } 1119 1120 if (!(val & (MCPR_NVM_SW_ARB_ARB_ARB1 << port))) { 1121 BLOGE(sc, "Cannot get access to nvram interface " 1122 "port %d val 0x%x (MCPR_NVM_SW_ARB_ARB_ARB1 << port)\n", 1123 port, val); 1124 return (-1); 1125 } 1126 1127 return (0); 1128 } 1129 1130 static int 1131 bxe_release_nvram_lock(struct bxe_softc *sc) 1132 { 1133 int port = SC_PORT(sc); 1134 int count, i; 1135 uint32_t val = 0; 1136 1137 /* adjust timeout for emulation/FPGA */ 1138 count = NVRAM_TIMEOUT_COUNT; 1139 if (CHIP_REV_IS_SLOW(sc)) { 1140 count *= 100; 1141 } 1142 1143 /* relinquish nvram interface */ 1144 REG_WR(sc, MCP_REG_MCPR_NVM_SW_ARB, 1145 (MCPR_NVM_SW_ARB_ARB_REQ_CLR1 << port)); 1146 1147 for (i = 0; i < count*10; i++) { 1148 val = REG_RD(sc, MCP_REG_MCPR_NVM_SW_ARB); 1149 if (!(val & (MCPR_NVM_SW_ARB_ARB_ARB1 << port))) { 1150 break; 1151 } 1152 1153 DELAY(5); 1154 } 1155 1156 if (val & (MCPR_NVM_SW_ARB_ARB_ARB1 << port)) { 1157 BLOGE(sc, "Cannot free access to nvram interface " 1158 "port %d val 0x%x (MCPR_NVM_SW_ARB_ARB_ARB1 << port)\n", 1159 port, val); 1160 return (-1); 1161 } 1162 1163 /* release HW lock: protect against other PFs in PF Direct Assignment */ 1164 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_NVRAM); 1165 1166 return (0); 1167 } 1168 1169 static void 1170 bxe_enable_nvram_access(struct bxe_softc *sc) 1171 { 1172 uint32_t val; 1173 1174 val = REG_RD(sc, MCP_REG_MCPR_NVM_ACCESS_ENABLE); 1175 1176 /* enable both bits, even on read */ 1177 REG_WR(sc, MCP_REG_MCPR_NVM_ACCESS_ENABLE, 1178 (val | MCPR_NVM_ACCESS_ENABLE_EN | MCPR_NVM_ACCESS_ENABLE_WR_EN)); 1179 } 1180 1181 static void 1182 bxe_disable_nvram_access(struct bxe_softc *sc) 1183 { 1184 uint32_t val; 1185 1186 val = REG_RD(sc, MCP_REG_MCPR_NVM_ACCESS_ENABLE); 1187 1188 /* disable both bits, even after read */ 1189 REG_WR(sc, MCP_REG_MCPR_NVM_ACCESS_ENABLE, 1190 (val & ~(MCPR_NVM_ACCESS_ENABLE_EN | 1191 MCPR_NVM_ACCESS_ENABLE_WR_EN))); 1192 } 1193 1194 static int 1195 bxe_nvram_read_dword(struct bxe_softc *sc, 1196 uint32_t offset, 1197 uint32_t *ret_val, 1198 uint32_t cmd_flags) 1199 { 1200 int count, i, rc; 1201 uint32_t val; 1202 1203 /* build the command word */ 1204 cmd_flags |= MCPR_NVM_COMMAND_DOIT; 1205 1206 /* need to clear DONE bit separately */ 1207 REG_WR(sc, MCP_REG_MCPR_NVM_COMMAND, MCPR_NVM_COMMAND_DONE); 1208 1209 /* address of the NVRAM to read from */ 1210 REG_WR(sc, MCP_REG_MCPR_NVM_ADDR, 1211 (offset & MCPR_NVM_ADDR_NVM_ADDR_VALUE)); 1212 1213 /* issue a read command */ 1214 REG_WR(sc, MCP_REG_MCPR_NVM_COMMAND, cmd_flags); 1215 1216 /* adjust timeout for emulation/FPGA */ 1217 count = NVRAM_TIMEOUT_COUNT; 1218 if (CHIP_REV_IS_SLOW(sc)) { 1219 count *= 100; 1220 } 1221 1222 /* wait for completion */ 1223 *ret_val = 0; 1224 rc = -1; 1225 for (i = 0; i < count; i++) { 1226 DELAY(5); 1227 val = REG_RD(sc, MCP_REG_MCPR_NVM_COMMAND); 1228 1229 if (val & MCPR_NVM_COMMAND_DONE) { 1230 val = REG_RD(sc, MCP_REG_MCPR_NVM_READ); 1231 /* we read nvram data in cpu order 1232 * but ethtool sees it as an array of bytes 1233 * converting to big-endian will do the work 1234 */ 1235 *ret_val = htobe32(val); 1236 rc = 0; 1237 break; 1238 } 1239 } 1240 1241 if (rc == -1) { 1242 BLOGE(sc, "nvram read timeout expired " 1243 "(offset 0x%x cmd_flags 0x%x val 0x%x)\n", 1244 offset, cmd_flags, val); 1245 } 1246 1247 return (rc); 1248 } 1249 1250 static int 1251 bxe_nvram_read(struct bxe_softc *sc, 1252 uint32_t offset, 1253 uint8_t *ret_buf, 1254 int buf_size) 1255 { 1256 uint32_t cmd_flags; 1257 uint32_t val; 1258 int rc; 1259 1260 if ((offset & 0x03) || (buf_size & 0x03) || (buf_size == 0)) { 1261 BLOGE(sc, "Invalid parameter, offset 0x%x buf_size 0x%x\n", 1262 offset, buf_size); 1263 return (-1); 1264 } 1265 1266 if ((offset + buf_size) > sc->devinfo.flash_size) { 1267 BLOGE(sc, "Invalid parameter, " 1268 "offset 0x%x + buf_size 0x%x > flash_size 0x%x\n", 1269 offset, buf_size, sc->devinfo.flash_size); 1270 return (-1); 1271 } 1272 1273 /* request access to nvram interface */ 1274 rc = bxe_acquire_nvram_lock(sc); 1275 if (rc) { 1276 return (rc); 1277 } 1278 1279 /* enable access to nvram interface */ 1280 bxe_enable_nvram_access(sc); 1281 1282 /* read the first word(s) */ 1283 cmd_flags = MCPR_NVM_COMMAND_FIRST; 1284 while ((buf_size > sizeof(uint32_t)) && (rc == 0)) { 1285 rc = bxe_nvram_read_dword(sc, offset, &val, cmd_flags); 1286 memcpy(ret_buf, &val, 4); 1287 1288 /* advance to the next dword */ 1289 offset += sizeof(uint32_t); 1290 ret_buf += sizeof(uint32_t); 1291 buf_size -= sizeof(uint32_t); 1292 cmd_flags = 0; 1293 } 1294 1295 if (rc == 0) { 1296 cmd_flags |= MCPR_NVM_COMMAND_LAST; 1297 rc = bxe_nvram_read_dword(sc, offset, &val, cmd_flags); 1298 memcpy(ret_buf, &val, 4); 1299 } 1300 1301 /* disable access to nvram interface */ 1302 bxe_disable_nvram_access(sc); 1303 bxe_release_nvram_lock(sc); 1304 1305 return (rc); 1306 } 1307 1308 static int 1309 bxe_nvram_write_dword(struct bxe_softc *sc, 1310 uint32_t offset, 1311 uint32_t val, 1312 uint32_t cmd_flags) 1313 { 1314 int count, i, rc; 1315 1316 /* build the command word */ 1317 cmd_flags |= (MCPR_NVM_COMMAND_DOIT | MCPR_NVM_COMMAND_WR); 1318 1319 /* need to clear DONE bit separately */ 1320 REG_WR(sc, MCP_REG_MCPR_NVM_COMMAND, MCPR_NVM_COMMAND_DONE); 1321 1322 /* write the data */ 1323 REG_WR(sc, MCP_REG_MCPR_NVM_WRITE, val); 1324 1325 /* address of the NVRAM to write to */ 1326 REG_WR(sc, MCP_REG_MCPR_NVM_ADDR, 1327 (offset & MCPR_NVM_ADDR_NVM_ADDR_VALUE)); 1328 1329 /* issue the write command */ 1330 REG_WR(sc, MCP_REG_MCPR_NVM_COMMAND, cmd_flags); 1331 1332 /* adjust timeout for emulation/FPGA */ 1333 count = NVRAM_TIMEOUT_COUNT; 1334 if (CHIP_REV_IS_SLOW(sc)) { 1335 count *= 100; 1336 } 1337 1338 /* wait for completion */ 1339 rc = -1; 1340 for (i = 0; i < count; i++) { 1341 DELAY(5); 1342 val = REG_RD(sc, MCP_REG_MCPR_NVM_COMMAND); 1343 if (val & MCPR_NVM_COMMAND_DONE) { 1344 rc = 0; 1345 break; 1346 } 1347 } 1348 1349 if (rc == -1) { 1350 BLOGE(sc, "nvram write timeout expired " 1351 "(offset 0x%x cmd_flags 0x%x val 0x%x)\n", 1352 offset, cmd_flags, val); 1353 } 1354 1355 return (rc); 1356 } 1357 1358 #define BYTE_OFFSET(offset) (8 * (offset & 0x03)) 1359 1360 static int 1361 bxe_nvram_write1(struct bxe_softc *sc, 1362 uint32_t offset, 1363 uint8_t *data_buf, 1364 int buf_size) 1365 { 1366 uint32_t cmd_flags; 1367 uint32_t align_offset; 1368 uint32_t val; 1369 int rc; 1370 1371 if ((offset + buf_size) > sc->devinfo.flash_size) { 1372 BLOGE(sc, "Invalid parameter, " 1373 "offset 0x%x + buf_size 0x%x > flash_size 0x%x\n", 1374 offset, buf_size, sc->devinfo.flash_size); 1375 return (-1); 1376 } 1377 1378 /* request access to nvram interface */ 1379 rc = bxe_acquire_nvram_lock(sc); 1380 if (rc) { 1381 return (rc); 1382 } 1383 1384 /* enable access to nvram interface */ 1385 bxe_enable_nvram_access(sc); 1386 1387 cmd_flags = (MCPR_NVM_COMMAND_FIRST | MCPR_NVM_COMMAND_LAST); 1388 align_offset = (offset & ~0x03); 1389 rc = bxe_nvram_read_dword(sc, align_offset, &val, cmd_flags); 1390 1391 if (rc == 0) { 1392 val &= ~(0xff << BYTE_OFFSET(offset)); 1393 val |= (*data_buf << BYTE_OFFSET(offset)); 1394 1395 /* nvram data is returned as an array of bytes 1396 * convert it back to cpu order 1397 */ 1398 val = be32toh(val); 1399 1400 rc = bxe_nvram_write_dword(sc, align_offset, val, cmd_flags); 1401 } 1402 1403 /* disable access to nvram interface */ 1404 bxe_disable_nvram_access(sc); 1405 bxe_release_nvram_lock(sc); 1406 1407 return (rc); 1408 } 1409 1410 static int 1411 bxe_nvram_write(struct bxe_softc *sc, 1412 uint32_t offset, 1413 uint8_t *data_buf, 1414 int buf_size) 1415 { 1416 uint32_t cmd_flags; 1417 uint32_t val; 1418 uint32_t written_so_far; 1419 int rc; 1420 1421 if (buf_size == 1) { 1422 return (bxe_nvram_write1(sc, offset, data_buf, buf_size)); 1423 } 1424 1425 if ((offset & 0x03) || (buf_size & 0x03) /* || (buf_size == 0) */) { 1426 BLOGE(sc, "Invalid parameter, offset 0x%x buf_size 0x%x\n", 1427 offset, buf_size); 1428 return (-1); 1429 } 1430 1431 if (buf_size == 0) { 1432 return (0); /* nothing to do */ 1433 } 1434 1435 if ((offset + buf_size) > sc->devinfo.flash_size) { 1436 BLOGE(sc, "Invalid parameter, " 1437 "offset 0x%x + buf_size 0x%x > flash_size 0x%x\n", 1438 offset, buf_size, sc->devinfo.flash_size); 1439 return (-1); 1440 } 1441 1442 /* request access to nvram interface */ 1443 rc = bxe_acquire_nvram_lock(sc); 1444 if (rc) { 1445 return (rc); 1446 } 1447 1448 /* enable access to nvram interface */ 1449 bxe_enable_nvram_access(sc); 1450 1451 written_so_far = 0; 1452 cmd_flags = MCPR_NVM_COMMAND_FIRST; 1453 while ((written_so_far < buf_size) && (rc == 0)) { 1454 if (written_so_far == (buf_size - sizeof(uint32_t))) { 1455 cmd_flags |= MCPR_NVM_COMMAND_LAST; 1456 } else if (((offset + 4) % NVRAM_PAGE_SIZE) == 0) { 1457 cmd_flags |= MCPR_NVM_COMMAND_LAST; 1458 } else if ((offset % NVRAM_PAGE_SIZE) == 0) { 1459 cmd_flags |= MCPR_NVM_COMMAND_FIRST; 1460 } 1461 1462 memcpy(&val, data_buf, 4); 1463 1464 rc = bxe_nvram_write_dword(sc, offset, val, cmd_flags); 1465 1466 /* advance to the next dword */ 1467 offset += sizeof(uint32_t); 1468 data_buf += sizeof(uint32_t); 1469 written_so_far += sizeof(uint32_t); 1470 cmd_flags = 0; 1471 } 1472 1473 /* disable access to nvram interface */ 1474 bxe_disable_nvram_access(sc); 1475 bxe_release_nvram_lock(sc); 1476 1477 return (rc); 1478 } 1479 1480 /* copy command into DMAE command memory and set DMAE command Go */ 1481 void 1482 bxe_post_dmae(struct bxe_softc *sc, 1483 struct dmae_cmd *dmae, 1484 int idx) 1485 { 1486 uint32_t cmd_offset; 1487 int i; 1488 1489 cmd_offset = (DMAE_REG_CMD_MEM + (sizeof(struct dmae_cmd) * idx)); 1490 for (i = 0; i < ((sizeof(struct dmae_cmd) / 4)); i++) { 1491 REG_WR(sc, (cmd_offset + (i * 4)), *(((uint32_t *)dmae) + i)); 1492 } 1493 1494 REG_WR(sc, dmae_reg_go_c[idx], 1); 1495 } 1496 1497 uint32_t 1498 bxe_dmae_opcode_add_comp(uint32_t opcode, 1499 uint8_t comp_type) 1500 { 1501 return (opcode | ((comp_type << DMAE_CMD_C_DST_SHIFT) | 1502 DMAE_CMD_C_TYPE_ENABLE)); 1503 } 1504 1505 uint32_t 1506 bxe_dmae_opcode_clr_src_reset(uint32_t opcode) 1507 { 1508 return (opcode & ~DMAE_CMD_SRC_RESET); 1509 } 1510 1511 uint32_t 1512 bxe_dmae_opcode(struct bxe_softc *sc, 1513 uint8_t src_type, 1514 uint8_t dst_type, 1515 uint8_t with_comp, 1516 uint8_t comp_type) 1517 { 1518 uint32_t opcode = 0; 1519 1520 opcode |= ((src_type << DMAE_CMD_SRC_SHIFT) | 1521 (dst_type << DMAE_CMD_DST_SHIFT)); 1522 1523 opcode |= (DMAE_CMD_SRC_RESET | DMAE_CMD_DST_RESET); 1524 1525 opcode |= (SC_PORT(sc) ? DMAE_CMD_PORT_1 : DMAE_CMD_PORT_0); 1526 1527 opcode |= ((SC_VN(sc) << DMAE_CMD_E1HVN_SHIFT) | 1528 (SC_VN(sc) << DMAE_CMD_DST_VN_SHIFT)); 1529 1530 opcode |= (DMAE_COM_SET_ERR << DMAE_CMD_ERR_POLICY_SHIFT); 1531 1532 #ifdef __BIG_ENDIAN 1533 opcode |= DMAE_CMD_ENDIANITY_B_DW_SWAP; 1534 #else 1535 opcode |= DMAE_CMD_ENDIANITY_DW_SWAP; 1536 #endif 1537 1538 if (with_comp) { 1539 opcode = bxe_dmae_opcode_add_comp(opcode, comp_type); 1540 } 1541 1542 return (opcode); 1543 } 1544 1545 static void 1546 bxe_prep_dmae_with_comp(struct bxe_softc *sc, 1547 struct dmae_cmd *dmae, 1548 uint8_t src_type, 1549 uint8_t dst_type) 1550 { 1551 memset(dmae, 0, sizeof(struct dmae_cmd)); 1552 1553 /* set the opcode */ 1554 dmae->opcode = bxe_dmae_opcode(sc, src_type, dst_type, 1555 TRUE, DMAE_COMP_PCI); 1556 1557 /* fill in the completion parameters */ 1558 dmae->comp_addr_lo = U64_LO(BXE_SP_MAPPING(sc, wb_comp)); 1559 dmae->comp_addr_hi = U64_HI(BXE_SP_MAPPING(sc, wb_comp)); 1560 dmae->comp_val = DMAE_COMP_VAL; 1561 } 1562 1563 /* issue a DMAE command over the init channel and wait for completion */ 1564 static int 1565 bxe_issue_dmae_with_comp(struct bxe_softc *sc, 1566 struct dmae_cmd *dmae) 1567 { 1568 uint32_t *wb_comp = BXE_SP(sc, wb_comp); 1569 int timeout = CHIP_REV_IS_SLOW(sc) ? 400000 : 4000; 1570 1571 BXE_DMAE_LOCK(sc); 1572 1573 /* reset completion */ 1574 *wb_comp = 0; 1575 1576 /* post the command on the channel used for initializations */ 1577 bxe_post_dmae(sc, dmae, INIT_DMAE_C(sc)); 1578 1579 /* wait for completion */ 1580 DELAY(5); 1581 1582 while ((*wb_comp & ~DMAE_PCI_ERR_FLAG) != DMAE_COMP_VAL) { 1583 if (!timeout || 1584 (sc->recovery_state != BXE_RECOVERY_DONE && 1585 sc->recovery_state != BXE_RECOVERY_NIC_LOADING)) { 1586 BLOGE(sc, "DMAE timeout! *wb_comp 0x%x recovery_state 0x%x\n", 1587 *wb_comp, sc->recovery_state); 1588 BXE_DMAE_UNLOCK(sc); 1589 return (DMAE_TIMEOUT); 1590 } 1591 1592 timeout--; 1593 DELAY(50); 1594 } 1595 1596 if (*wb_comp & DMAE_PCI_ERR_FLAG) { 1597 BLOGE(sc, "DMAE PCI error! *wb_comp 0x%x recovery_state 0x%x\n", 1598 *wb_comp, sc->recovery_state); 1599 BXE_DMAE_UNLOCK(sc); 1600 return (DMAE_PCI_ERROR); 1601 } 1602 1603 BXE_DMAE_UNLOCK(sc); 1604 return (0); 1605 } 1606 1607 void 1608 bxe_read_dmae(struct bxe_softc *sc, 1609 uint32_t src_addr, 1610 uint32_t len32) 1611 { 1612 struct dmae_cmd dmae; 1613 uint32_t *data; 1614 int i, rc; 1615 1616 DBASSERT(sc, (len32 <= 4), ("DMAE read length is %d", len32)); 1617 1618 if (!sc->dmae_ready) { 1619 data = BXE_SP(sc, wb_data[0]); 1620 1621 for (i = 0; i < len32; i++) { 1622 data[i] = (CHIP_IS_E1(sc)) ? 1623 bxe_reg_rd_ind(sc, (src_addr + (i * 4))) : 1624 REG_RD(sc, (src_addr + (i * 4))); 1625 } 1626 1627 return; 1628 } 1629 1630 /* set opcode and fixed command fields */ 1631 bxe_prep_dmae_with_comp(sc, &dmae, DMAE_SRC_GRC, DMAE_DST_PCI); 1632 1633 /* fill in addresses and len */ 1634 dmae.src_addr_lo = (src_addr >> 2); /* GRC addr has dword resolution */ 1635 dmae.src_addr_hi = 0; 1636 dmae.dst_addr_lo = U64_LO(BXE_SP_MAPPING(sc, wb_data)); 1637 dmae.dst_addr_hi = U64_HI(BXE_SP_MAPPING(sc, wb_data)); 1638 dmae.len = len32; 1639 1640 /* issue the command and wait for completion */ 1641 if ((rc = bxe_issue_dmae_with_comp(sc, &dmae)) != 0) { 1642 bxe_panic(sc, ("DMAE failed (%d)\n", rc)); 1643 } 1644 } 1645 1646 void 1647 bxe_write_dmae(struct bxe_softc *sc, 1648 bus_addr_t dma_addr, 1649 uint32_t dst_addr, 1650 uint32_t len32) 1651 { 1652 struct dmae_cmd dmae; 1653 int rc; 1654 1655 if (!sc->dmae_ready) { 1656 DBASSERT(sc, (len32 <= 4), ("DMAE not ready and length is %d", len32)); 1657 1658 if (CHIP_IS_E1(sc)) { 1659 ecore_init_ind_wr(sc, dst_addr, BXE_SP(sc, wb_data[0]), len32); 1660 } else { 1661 ecore_init_str_wr(sc, dst_addr, BXE_SP(sc, wb_data[0]), len32); 1662 } 1663 1664 return; 1665 } 1666 1667 /* set opcode and fixed command fields */ 1668 bxe_prep_dmae_with_comp(sc, &dmae, DMAE_SRC_PCI, DMAE_DST_GRC); 1669 1670 /* fill in addresses and len */ 1671 dmae.src_addr_lo = U64_LO(dma_addr); 1672 dmae.src_addr_hi = U64_HI(dma_addr); 1673 dmae.dst_addr_lo = (dst_addr >> 2); /* GRC addr has dword resolution */ 1674 dmae.dst_addr_hi = 0; 1675 dmae.len = len32; 1676 1677 /* issue the command and wait for completion */ 1678 if ((rc = bxe_issue_dmae_with_comp(sc, &dmae)) != 0) { 1679 bxe_panic(sc, ("DMAE failed (%d)\n", rc)); 1680 } 1681 } 1682 1683 void 1684 bxe_write_dmae_phys_len(struct bxe_softc *sc, 1685 bus_addr_t phys_addr, 1686 uint32_t addr, 1687 uint32_t len) 1688 { 1689 int dmae_wr_max = DMAE_LEN32_WR_MAX(sc); 1690 int offset = 0; 1691 1692 while (len > dmae_wr_max) { 1693 bxe_write_dmae(sc, 1694 (phys_addr + offset), /* src DMA address */ 1695 (addr + offset), /* dst GRC address */ 1696 dmae_wr_max); 1697 offset += (dmae_wr_max * 4); 1698 len -= dmae_wr_max; 1699 } 1700 1701 bxe_write_dmae(sc, 1702 (phys_addr + offset), /* src DMA address */ 1703 (addr + offset), /* dst GRC address */ 1704 len); 1705 } 1706 1707 void 1708 bxe_set_ctx_validation(struct bxe_softc *sc, 1709 struct eth_context *cxt, 1710 uint32_t cid) 1711 { 1712 /* ustorm cxt validation */ 1713 cxt->ustorm_ag_context.cdu_usage = 1714 CDU_RSRVD_VALUE_TYPE_A(HW_CID(sc, cid), 1715 CDU_REGION_NUMBER_UCM_AG, ETH_CONNECTION_TYPE); 1716 /* xcontext validation */ 1717 cxt->xstorm_ag_context.cdu_reserved = 1718 CDU_RSRVD_VALUE_TYPE_A(HW_CID(sc, cid), 1719 CDU_REGION_NUMBER_XCM_AG, ETH_CONNECTION_TYPE); 1720 } 1721 1722 static void 1723 bxe_storm_memset_hc_timeout(struct bxe_softc *sc, 1724 uint8_t port, 1725 uint8_t fw_sb_id, 1726 uint8_t sb_index, 1727 uint8_t ticks) 1728 { 1729 uint32_t addr = 1730 (BAR_CSTRORM_INTMEM + 1731 CSTORM_STATUS_BLOCK_DATA_TIMEOUT_OFFSET(fw_sb_id, sb_index)); 1732 1733 REG_WR8(sc, addr, ticks); 1734 1735 BLOGD(sc, DBG_LOAD, 1736 "port %d fw_sb_id %d sb_index %d ticks %d\n", 1737 port, fw_sb_id, sb_index, ticks); 1738 } 1739 1740 static void 1741 bxe_storm_memset_hc_disable(struct bxe_softc *sc, 1742 uint8_t port, 1743 uint16_t fw_sb_id, 1744 uint8_t sb_index, 1745 uint8_t disable) 1746 { 1747 uint32_t enable_flag = 1748 (disable) ? 0 : (1 << HC_INDEX_DATA_HC_ENABLED_SHIFT); 1749 uint32_t addr = 1750 (BAR_CSTRORM_INTMEM + 1751 CSTORM_STATUS_BLOCK_DATA_FLAGS_OFFSET(fw_sb_id, sb_index)); 1752 uint8_t flags; 1753 1754 /* clear and set */ 1755 flags = REG_RD8(sc, addr); 1756 flags &= ~HC_INDEX_DATA_HC_ENABLED; 1757 flags |= enable_flag; 1758 REG_WR8(sc, addr, flags); 1759 1760 BLOGD(sc, DBG_LOAD, 1761 "port %d fw_sb_id %d sb_index %d disable %d\n", 1762 port, fw_sb_id, sb_index, disable); 1763 } 1764 1765 void 1766 bxe_update_coalesce_sb_index(struct bxe_softc *sc, 1767 uint8_t fw_sb_id, 1768 uint8_t sb_index, 1769 uint8_t disable, 1770 uint16_t usec) 1771 { 1772 int port = SC_PORT(sc); 1773 uint8_t ticks = (usec / 4); /* XXX ??? */ 1774 1775 bxe_storm_memset_hc_timeout(sc, port, fw_sb_id, sb_index, ticks); 1776 1777 disable = (disable) ? 1 : ((usec) ? 0 : 1); 1778 bxe_storm_memset_hc_disable(sc, port, fw_sb_id, sb_index, disable); 1779 } 1780 1781 void 1782 elink_cb_udelay(struct bxe_softc *sc, 1783 uint32_t usecs) 1784 { 1785 DELAY(usecs); 1786 } 1787 1788 uint32_t 1789 elink_cb_reg_read(struct bxe_softc *sc, 1790 uint32_t reg_addr) 1791 { 1792 return (REG_RD(sc, reg_addr)); 1793 } 1794 1795 void 1796 elink_cb_reg_write(struct bxe_softc *sc, 1797 uint32_t reg_addr, 1798 uint32_t val) 1799 { 1800 REG_WR(sc, reg_addr, val); 1801 } 1802 1803 void 1804 elink_cb_reg_wb_write(struct bxe_softc *sc, 1805 uint32_t offset, 1806 uint32_t *wb_write, 1807 uint16_t len) 1808 { 1809 REG_WR_DMAE(sc, offset, wb_write, len); 1810 } 1811 1812 void 1813 elink_cb_reg_wb_read(struct bxe_softc *sc, 1814 uint32_t offset, 1815 uint32_t *wb_write, 1816 uint16_t len) 1817 { 1818 REG_RD_DMAE(sc, offset, wb_write, len); 1819 } 1820 1821 uint8_t 1822 elink_cb_path_id(struct bxe_softc *sc) 1823 { 1824 return (SC_PATH(sc)); 1825 } 1826 1827 void 1828 elink_cb_event_log(struct bxe_softc *sc, 1829 const elink_log_id_t elink_log_id, 1830 ...) 1831 { 1832 /* XXX */ 1833 BLOGI(sc, "ELINK EVENT LOG (%d)\n", elink_log_id); 1834 } 1835 1836 static int 1837 bxe_set_spio(struct bxe_softc *sc, 1838 int spio, 1839 uint32_t mode) 1840 { 1841 uint32_t spio_reg; 1842 1843 /* Only 2 SPIOs are configurable */ 1844 if ((spio != MISC_SPIO_SPIO4) && (spio != MISC_SPIO_SPIO5)) { 1845 BLOGE(sc, "Invalid SPIO 0x%x mode 0x%x\n", spio, mode); 1846 return (-1); 1847 } 1848 1849 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_SPIO); 1850 1851 /* read SPIO and mask except the float bits */ 1852 spio_reg = (REG_RD(sc, MISC_REG_SPIO) & MISC_SPIO_FLOAT); 1853 1854 switch (mode) { 1855 case MISC_SPIO_OUTPUT_LOW: 1856 BLOGD(sc, DBG_LOAD, "Set SPIO 0x%x -> output low\n", spio); 1857 /* clear FLOAT and set CLR */ 1858 spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS); 1859 spio_reg |= (spio << MISC_SPIO_CLR_POS); 1860 break; 1861 1862 case MISC_SPIO_OUTPUT_HIGH: 1863 BLOGD(sc, DBG_LOAD, "Set SPIO 0x%x -> output high\n", spio); 1864 /* clear FLOAT and set SET */ 1865 spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS); 1866 spio_reg |= (spio << MISC_SPIO_SET_POS); 1867 break; 1868 1869 case MISC_SPIO_INPUT_HI_Z: 1870 BLOGD(sc, DBG_LOAD, "Set SPIO 0x%x -> input\n", spio); 1871 /* set FLOAT */ 1872 spio_reg |= (spio << MISC_SPIO_FLOAT_POS); 1873 break; 1874 1875 default: 1876 break; 1877 } 1878 1879 REG_WR(sc, MISC_REG_SPIO, spio_reg); 1880 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_SPIO); 1881 1882 return (0); 1883 } 1884 1885 static int 1886 bxe_gpio_read(struct bxe_softc *sc, 1887 int gpio_num, 1888 uint8_t port) 1889 { 1890 /* The GPIO should be swapped if swap register is set and active */ 1891 int gpio_port = ((REG_RD(sc, NIG_REG_PORT_SWAP) && 1892 REG_RD(sc, NIG_REG_STRAP_OVERRIDE)) ^ port); 1893 int gpio_shift = (gpio_num + 1894 (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0)); 1895 uint32_t gpio_mask = (1 << gpio_shift); 1896 uint32_t gpio_reg; 1897 1898 if (gpio_num > MISC_REGISTERS_GPIO_3) { 1899 BLOGE(sc, "Invalid GPIO %d port 0x%x gpio_port %d gpio_shift %d" 1900 " gpio_mask 0x%x\n", gpio_num, port, gpio_port, gpio_shift, 1901 gpio_mask); 1902 return (-1); 1903 } 1904 1905 /* read GPIO value */ 1906 gpio_reg = REG_RD(sc, MISC_REG_GPIO); 1907 1908 /* get the requested pin value */ 1909 return ((gpio_reg & gpio_mask) == gpio_mask) ? 1 : 0; 1910 } 1911 1912 static int 1913 bxe_gpio_write(struct bxe_softc *sc, 1914 int gpio_num, 1915 uint32_t mode, 1916 uint8_t port) 1917 { 1918 /* The GPIO should be swapped if swap register is set and active */ 1919 int gpio_port = ((REG_RD(sc, NIG_REG_PORT_SWAP) && 1920 REG_RD(sc, NIG_REG_STRAP_OVERRIDE)) ^ port); 1921 int gpio_shift = (gpio_num + 1922 (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0)); 1923 uint32_t gpio_mask = (1 << gpio_shift); 1924 uint32_t gpio_reg; 1925 1926 if (gpio_num > MISC_REGISTERS_GPIO_3) { 1927 BLOGE(sc, "Invalid GPIO %d mode 0x%x port 0x%x gpio_port %d" 1928 " gpio_shift %d gpio_mask 0x%x\n", 1929 gpio_num, mode, port, gpio_port, gpio_shift, gpio_mask); 1930 return (-1); 1931 } 1932 1933 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_GPIO); 1934 1935 /* read GPIO and mask except the float bits */ 1936 gpio_reg = (REG_RD(sc, MISC_REG_GPIO) & MISC_REGISTERS_GPIO_FLOAT); 1937 1938 switch (mode) { 1939 case MISC_REGISTERS_GPIO_OUTPUT_LOW: 1940 BLOGD(sc, DBG_PHY, 1941 "Set GPIO %d (shift %d) -> output low\n", 1942 gpio_num, gpio_shift); 1943 /* clear FLOAT and set CLR */ 1944 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS); 1945 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_CLR_POS); 1946 break; 1947 1948 case MISC_REGISTERS_GPIO_OUTPUT_HIGH: 1949 BLOGD(sc, DBG_PHY, 1950 "Set GPIO %d (shift %d) -> output high\n", 1951 gpio_num, gpio_shift); 1952 /* clear FLOAT and set SET */ 1953 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS); 1954 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_SET_POS); 1955 break; 1956 1957 case MISC_REGISTERS_GPIO_INPUT_HI_Z: 1958 BLOGD(sc, DBG_PHY, 1959 "Set GPIO %d (shift %d) -> input\n", 1960 gpio_num, gpio_shift); 1961 /* set FLOAT */ 1962 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS); 1963 break; 1964 1965 default: 1966 break; 1967 } 1968 1969 REG_WR(sc, MISC_REG_GPIO, gpio_reg); 1970 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_GPIO); 1971 1972 return (0); 1973 } 1974 1975 static int 1976 bxe_gpio_mult_write(struct bxe_softc *sc, 1977 uint8_t pins, 1978 uint32_t mode) 1979 { 1980 uint32_t gpio_reg; 1981 1982 /* any port swapping should be handled by caller */ 1983 1984 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_GPIO); 1985 1986 /* read GPIO and mask except the float bits */ 1987 gpio_reg = REG_RD(sc, MISC_REG_GPIO); 1988 gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_FLOAT_POS); 1989 gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_CLR_POS); 1990 gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_SET_POS); 1991 1992 switch (mode) { 1993 case MISC_REGISTERS_GPIO_OUTPUT_LOW: 1994 BLOGD(sc, DBG_PHY, "Set GPIO 0x%x -> output low\n", pins); 1995 /* set CLR */ 1996 gpio_reg |= (pins << MISC_REGISTERS_GPIO_CLR_POS); 1997 break; 1998 1999 case MISC_REGISTERS_GPIO_OUTPUT_HIGH: 2000 BLOGD(sc, DBG_PHY, "Set GPIO 0x%x -> output high\n", pins); 2001 /* set SET */ 2002 gpio_reg |= (pins << MISC_REGISTERS_GPIO_SET_POS); 2003 break; 2004 2005 case MISC_REGISTERS_GPIO_INPUT_HI_Z: 2006 BLOGD(sc, DBG_PHY, "Set GPIO 0x%x -> input\n", pins); 2007 /* set FLOAT */ 2008 gpio_reg |= (pins << MISC_REGISTERS_GPIO_FLOAT_POS); 2009 break; 2010 2011 default: 2012 BLOGE(sc, "Invalid GPIO mode assignment pins 0x%x mode 0x%x" 2013 " gpio_reg 0x%x\n", pins, mode, gpio_reg); 2014 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_GPIO); 2015 return (-1); 2016 } 2017 2018 REG_WR(sc, MISC_REG_GPIO, gpio_reg); 2019 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_GPIO); 2020 2021 return (0); 2022 } 2023 2024 static int 2025 bxe_gpio_int_write(struct bxe_softc *sc, 2026 int gpio_num, 2027 uint32_t mode, 2028 uint8_t port) 2029 { 2030 /* The GPIO should be swapped if swap register is set and active */ 2031 int gpio_port = ((REG_RD(sc, NIG_REG_PORT_SWAP) && 2032 REG_RD(sc, NIG_REG_STRAP_OVERRIDE)) ^ port); 2033 int gpio_shift = (gpio_num + 2034 (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0)); 2035 uint32_t gpio_mask = (1 << gpio_shift); 2036 uint32_t gpio_reg; 2037 2038 if (gpio_num > MISC_REGISTERS_GPIO_3) { 2039 BLOGE(sc, "Invalid GPIO %d mode 0x%x port 0x%x gpio_port %d" 2040 " gpio_shift %d gpio_mask 0x%x\n", 2041 gpio_num, mode, port, gpio_port, gpio_shift, gpio_mask); 2042 return (-1); 2043 } 2044 2045 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_GPIO); 2046 2047 /* read GPIO int */ 2048 gpio_reg = REG_RD(sc, MISC_REG_GPIO_INT); 2049 2050 switch (mode) { 2051 case MISC_REGISTERS_GPIO_INT_OUTPUT_CLR: 2052 BLOGD(sc, DBG_PHY, 2053 "Clear GPIO INT %d (shift %d) -> output low\n", 2054 gpio_num, gpio_shift); 2055 /* clear SET and set CLR */ 2056 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS); 2057 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS); 2058 break; 2059 2060 case MISC_REGISTERS_GPIO_INT_OUTPUT_SET: 2061 BLOGD(sc, DBG_PHY, 2062 "Set GPIO INT %d (shift %d) -> output high\n", 2063 gpio_num, gpio_shift); 2064 /* clear CLR and set SET */ 2065 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS); 2066 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS); 2067 break; 2068 2069 default: 2070 break; 2071 } 2072 2073 REG_WR(sc, MISC_REG_GPIO_INT, gpio_reg); 2074 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_GPIO); 2075 2076 return (0); 2077 } 2078 2079 uint32_t 2080 elink_cb_gpio_read(struct bxe_softc *sc, 2081 uint16_t gpio_num, 2082 uint8_t port) 2083 { 2084 return (bxe_gpio_read(sc, gpio_num, port)); 2085 } 2086 2087 uint8_t 2088 elink_cb_gpio_write(struct bxe_softc *sc, 2089 uint16_t gpio_num, 2090 uint8_t mode, /* 0=low 1=high */ 2091 uint8_t port) 2092 { 2093 return (bxe_gpio_write(sc, gpio_num, mode, port)); 2094 } 2095 2096 uint8_t 2097 elink_cb_gpio_mult_write(struct bxe_softc *sc, 2098 uint8_t pins, 2099 uint8_t mode) /* 0=low 1=high */ 2100 { 2101 return (bxe_gpio_mult_write(sc, pins, mode)); 2102 } 2103 2104 uint8_t 2105 elink_cb_gpio_int_write(struct bxe_softc *sc, 2106 uint16_t gpio_num, 2107 uint8_t mode, /* 0=low 1=high */ 2108 uint8_t port) 2109 { 2110 return (bxe_gpio_int_write(sc, gpio_num, mode, port)); 2111 } 2112 2113 void 2114 elink_cb_notify_link_changed(struct bxe_softc *sc) 2115 { 2116 REG_WR(sc, (MISC_REG_AEU_GENERAL_ATTN_12 + 2117 (SC_FUNC(sc) * sizeof(uint32_t))), 1); 2118 } 2119 2120 /* send the MCP a request, block until there is a reply */ 2121 uint32_t 2122 elink_cb_fw_command(struct bxe_softc *sc, 2123 uint32_t command, 2124 uint32_t param) 2125 { 2126 int mb_idx = SC_FW_MB_IDX(sc); 2127 uint32_t seq; 2128 uint32_t rc = 0; 2129 uint32_t cnt = 1; 2130 uint8_t delay = CHIP_REV_IS_SLOW(sc) ? 100 : 10; 2131 2132 BXE_FWMB_LOCK(sc); 2133 2134 seq = ++sc->fw_seq; 2135 SHMEM_WR(sc, func_mb[mb_idx].drv_mb_param, param); 2136 SHMEM_WR(sc, func_mb[mb_idx].drv_mb_header, (command | seq)); 2137 2138 BLOGD(sc, DBG_PHY, 2139 "wrote command 0x%08x to FW MB param 0x%08x\n", 2140 (command | seq), param); 2141 2142 /* Let the FW do it's magic. GIve it up to 5 seconds... */ 2143 do { 2144 DELAY(delay * 1000); 2145 rc = SHMEM_RD(sc, func_mb[mb_idx].fw_mb_header); 2146 } while ((seq != (rc & FW_MSG_SEQ_NUMBER_MASK)) && (cnt++ < 500)); 2147 2148 BLOGD(sc, DBG_PHY, 2149 "[after %d ms] read 0x%x seq 0x%x from FW MB\n", 2150 cnt*delay, rc, seq); 2151 2152 /* is this a reply to our command? */ 2153 if (seq == (rc & FW_MSG_SEQ_NUMBER_MASK)) { 2154 rc &= FW_MSG_CODE_MASK; 2155 } else { 2156 /* Ruh-roh! */ 2157 BLOGE(sc, "FW failed to respond!\n"); 2158 // XXX bxe_fw_dump(sc); 2159 rc = 0; 2160 } 2161 2162 BXE_FWMB_UNLOCK(sc); 2163 return (rc); 2164 } 2165 2166 static uint32_t 2167 bxe_fw_command(struct bxe_softc *sc, 2168 uint32_t command, 2169 uint32_t param) 2170 { 2171 return (elink_cb_fw_command(sc, command, param)); 2172 } 2173 2174 static void 2175 __storm_memset_dma_mapping(struct bxe_softc *sc, 2176 uint32_t addr, 2177 bus_addr_t mapping) 2178 { 2179 REG_WR(sc, addr, U64_LO(mapping)); 2180 REG_WR(sc, (addr + 4), U64_HI(mapping)); 2181 } 2182 2183 static void 2184 storm_memset_spq_addr(struct bxe_softc *sc, 2185 bus_addr_t mapping, 2186 uint16_t abs_fid) 2187 { 2188 uint32_t addr = (XSEM_REG_FAST_MEMORY + 2189 XSTORM_SPQ_PAGE_BASE_OFFSET(abs_fid)); 2190 __storm_memset_dma_mapping(sc, addr, mapping); 2191 } 2192 2193 static void 2194 storm_memset_vf_to_pf(struct bxe_softc *sc, 2195 uint16_t abs_fid, 2196 uint16_t pf_id) 2197 { 2198 REG_WR8(sc, (BAR_XSTRORM_INTMEM + XSTORM_VF_TO_PF_OFFSET(abs_fid)), pf_id); 2199 REG_WR8(sc, (BAR_CSTRORM_INTMEM + CSTORM_VF_TO_PF_OFFSET(abs_fid)), pf_id); 2200 REG_WR8(sc, (BAR_TSTRORM_INTMEM + TSTORM_VF_TO_PF_OFFSET(abs_fid)), pf_id); 2201 REG_WR8(sc, (BAR_USTRORM_INTMEM + USTORM_VF_TO_PF_OFFSET(abs_fid)), pf_id); 2202 } 2203 2204 static void 2205 storm_memset_func_en(struct bxe_softc *sc, 2206 uint16_t abs_fid, 2207 uint8_t enable) 2208 { 2209 REG_WR8(sc, (BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(abs_fid)), enable); 2210 REG_WR8(sc, (BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(abs_fid)), enable); 2211 REG_WR8(sc, (BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(abs_fid)), enable); 2212 REG_WR8(sc, (BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(abs_fid)), enable); 2213 } 2214 2215 static void 2216 storm_memset_eq_data(struct bxe_softc *sc, 2217 struct event_ring_data *eq_data, 2218 uint16_t pfid) 2219 { 2220 uint32_t addr; 2221 size_t size; 2222 2223 addr = (BAR_CSTRORM_INTMEM + CSTORM_EVENT_RING_DATA_OFFSET(pfid)); 2224 size = sizeof(struct event_ring_data); 2225 ecore_storm_memset_struct(sc, addr, size, (uint32_t *)eq_data); 2226 } 2227 2228 static void 2229 storm_memset_eq_prod(struct bxe_softc *sc, 2230 uint16_t eq_prod, 2231 uint16_t pfid) 2232 { 2233 uint32_t addr = (BAR_CSTRORM_INTMEM + 2234 CSTORM_EVENT_RING_PROD_OFFSET(pfid)); 2235 REG_WR16(sc, addr, eq_prod); 2236 } 2237 2238 /* 2239 * Post a slowpath command. 2240 * 2241 * A slowpath command is used to propagate a configuration change through 2242 * the controller in a controlled manner, allowing each STORM processor and 2243 * other H/W blocks to phase in the change. The commands sent on the 2244 * slowpath are referred to as ramrods. Depending on the ramrod used the 2245 * completion of the ramrod will occur in different ways. Here's a 2246 * breakdown of ramrods and how they complete: 2247 * 2248 * RAMROD_CMD_ID_ETH_PORT_SETUP 2249 * Used to setup the leading connection on a port. Completes on the 2250 * Receive Completion Queue (RCQ) of that port (typically fp[0]). 2251 * 2252 * RAMROD_CMD_ID_ETH_CLIENT_SETUP 2253 * Used to setup an additional connection on a port. Completes on the 2254 * RCQ of the multi-queue/RSS connection being initialized. 2255 * 2256 * RAMROD_CMD_ID_ETH_STAT_QUERY 2257 * Used to force the storm processors to update the statistics database 2258 * in host memory. This ramrod is send on the leading connection CID and 2259 * completes as an index increment of the CSTORM on the default status 2260 * block. 2261 * 2262 * RAMROD_CMD_ID_ETH_UPDATE 2263 * Used to update the state of the leading connection, usually to udpate 2264 * the RSS indirection table. Completes on the RCQ of the leading 2265 * connection. (Not currently used under FreeBSD until OS support becomes 2266 * available.) 2267 * 2268 * RAMROD_CMD_ID_ETH_HALT 2269 * Used when tearing down a connection prior to driver unload. Completes 2270 * on the RCQ of the multi-queue/RSS connection being torn down. Don't 2271 * use this on the leading connection. 2272 * 2273 * RAMROD_CMD_ID_ETH_SET_MAC 2274 * Sets the Unicast/Broadcast/Multicast used by the port. Completes on 2275 * the RCQ of the leading connection. 2276 * 2277 * RAMROD_CMD_ID_ETH_CFC_DEL 2278 * Used when tearing down a conneciton prior to driver unload. Completes 2279 * on the RCQ of the leading connection (since the current connection 2280 * has been completely removed from controller memory). 2281 * 2282 * RAMROD_CMD_ID_ETH_PORT_DEL 2283 * Used to tear down the leading connection prior to driver unload, 2284 * typically fp[0]. Completes as an index increment of the CSTORM on the 2285 * default status block. 2286 * 2287 * RAMROD_CMD_ID_ETH_FORWARD_SETUP 2288 * Used for connection offload. Completes on the RCQ of the multi-queue 2289 * RSS connection that is being offloaded. (Not currently used under 2290 * FreeBSD.) 2291 * 2292 * There can only be one command pending per function. 2293 * 2294 * Returns: 2295 * 0 = Success, !0 = Failure. 2296 */ 2297 2298 /* must be called under the spq lock */ 2299 static inline 2300 struct eth_spe *bxe_sp_get_next(struct bxe_softc *sc) 2301 { 2302 struct eth_spe *next_spe = sc->spq_prod_bd; 2303 2304 if (sc->spq_prod_bd == sc->spq_last_bd) { 2305 /* wrap back to the first eth_spq */ 2306 sc->spq_prod_bd = sc->spq; 2307 sc->spq_prod_idx = 0; 2308 } else { 2309 sc->spq_prod_bd++; 2310 sc->spq_prod_idx++; 2311 } 2312 2313 return (next_spe); 2314 } 2315 2316 /* must be called under the spq lock */ 2317 static inline 2318 void bxe_sp_prod_update(struct bxe_softc *sc) 2319 { 2320 int func = SC_FUNC(sc); 2321 2322 /* 2323 * Make sure that BD data is updated before writing the producer. 2324 * BD data is written to the memory, the producer is read from the 2325 * memory, thus we need a full memory barrier to ensure the ordering. 2326 */ 2327 mb(); 2328 2329 REG_WR16(sc, (BAR_XSTRORM_INTMEM + XSTORM_SPQ_PROD_OFFSET(func)), 2330 sc->spq_prod_idx); 2331 2332 bus_space_barrier(sc->bar[BAR0].tag, sc->bar[BAR0].handle, 0, 0, 2333 BUS_SPACE_BARRIER_WRITE); 2334 } 2335 2336 /** 2337 * bxe_is_contextless_ramrod - check if the current command ends on EQ 2338 * 2339 * @cmd: command to check 2340 * @cmd_type: command type 2341 */ 2342 static inline 2343 int bxe_is_contextless_ramrod(int cmd, 2344 int cmd_type) 2345 { 2346 if ((cmd_type == NONE_CONNECTION_TYPE) || 2347 (cmd == RAMROD_CMD_ID_ETH_FORWARD_SETUP) || 2348 (cmd == RAMROD_CMD_ID_ETH_CLASSIFICATION_RULES) || 2349 (cmd == RAMROD_CMD_ID_ETH_FILTER_RULES) || 2350 (cmd == RAMROD_CMD_ID_ETH_MULTICAST_RULES) || 2351 (cmd == RAMROD_CMD_ID_ETH_SET_MAC) || 2352 (cmd == RAMROD_CMD_ID_ETH_RSS_UPDATE)) { 2353 return (TRUE); 2354 } else { 2355 return (FALSE); 2356 } 2357 } 2358 2359 /** 2360 * bxe_sp_post - place a single command on an SP ring 2361 * 2362 * @sc: driver handle 2363 * @command: command to place (e.g. SETUP, FILTER_RULES, etc.) 2364 * @cid: SW CID the command is related to 2365 * @data_hi: command private data address (high 32 bits) 2366 * @data_lo: command private data address (low 32 bits) 2367 * @cmd_type: command type (e.g. NONE, ETH) 2368 * 2369 * SP data is handled as if it's always an address pair, thus data fields are 2370 * not swapped to little endian in upper functions. Instead this function swaps 2371 * data as if it's two uint32 fields. 2372 */ 2373 int 2374 bxe_sp_post(struct bxe_softc *sc, 2375 int command, 2376 int cid, 2377 uint32_t data_hi, 2378 uint32_t data_lo, 2379 int cmd_type) 2380 { 2381 struct eth_spe *spe; 2382 uint16_t type; 2383 int common; 2384 2385 common = bxe_is_contextless_ramrod(command, cmd_type); 2386 2387 BXE_SP_LOCK(sc); 2388 2389 if (common) { 2390 if (!atomic_load_acq_long(&sc->eq_spq_left)) { 2391 BLOGE(sc, "EQ ring is full!\n"); 2392 BXE_SP_UNLOCK(sc); 2393 return (-1); 2394 } 2395 } else { 2396 if (!atomic_load_acq_long(&sc->cq_spq_left)) { 2397 BLOGE(sc, "SPQ ring is full!\n"); 2398 BXE_SP_UNLOCK(sc); 2399 return (-1); 2400 } 2401 } 2402 2403 spe = bxe_sp_get_next(sc); 2404 2405 /* CID needs port number to be encoded int it */ 2406 spe->hdr.conn_and_cmd_data = 2407 htole32((command << SPE_HDR_T_CMD_ID_SHIFT) | HW_CID(sc, cid)); 2408 2409 type = (cmd_type << SPE_HDR_T_CONN_TYPE_SHIFT) & SPE_HDR_T_CONN_TYPE; 2410 2411 /* TBD: Check if it works for VFs */ 2412 type |= ((SC_FUNC(sc) << SPE_HDR_T_FUNCTION_ID_SHIFT) & 2413 SPE_HDR_T_FUNCTION_ID); 2414 2415 spe->hdr.type = htole16(type); 2416 2417 spe->data.update_data_addr.hi = htole32(data_hi); 2418 spe->data.update_data_addr.lo = htole32(data_lo); 2419 2420 /* 2421 * It's ok if the actual decrement is issued towards the memory 2422 * somewhere between the lock and unlock. Thus no more explict 2423 * memory barrier is needed. 2424 */ 2425 if (common) { 2426 atomic_subtract_acq_long(&sc->eq_spq_left, 1); 2427 } else { 2428 atomic_subtract_acq_long(&sc->cq_spq_left, 1); 2429 } 2430 2431 BLOGD(sc, DBG_SP, "SPQE -> %#jx\n", (uintmax_t)sc->spq_dma.paddr); 2432 BLOGD(sc, DBG_SP, "FUNC_RDATA -> %p / %#jx\n", 2433 BXE_SP(sc, func_rdata), (uintmax_t)BXE_SP_MAPPING(sc, func_rdata)); 2434 BLOGD(sc, DBG_SP, 2435 "SPQE[%x] (%x:%x) (cmd, common?) (%d,%d) hw_cid %x data (%x:%x) type(0x%x) left (CQ, EQ) (%lx,%lx)\n", 2436 sc->spq_prod_idx, 2437 (uint32_t)U64_HI(sc->spq_dma.paddr), 2438 (uint32_t)(U64_LO(sc->spq_dma.paddr) + (uint8_t *)sc->spq_prod_bd - (uint8_t *)sc->spq), 2439 command, 2440 common, 2441 HW_CID(sc, cid), 2442 data_hi, 2443 data_lo, 2444 type, 2445 atomic_load_acq_long(&sc->cq_spq_left), 2446 atomic_load_acq_long(&sc->eq_spq_left)); 2447 2448 bxe_sp_prod_update(sc); 2449 2450 BXE_SP_UNLOCK(sc); 2451 return (0); 2452 } 2453 2454 /** 2455 * bxe_debug_print_ind_table - prints the indirection table configuration. 2456 * 2457 * @sc: driver hanlde 2458 * @p: pointer to rss configuration 2459 */ 2460 2461 /* 2462 * FreeBSD Device probe function. 2463 * 2464 * Compares the device found to the driver's list of supported devices and 2465 * reports back to the bsd loader whether this is the right driver for the device. 2466 * This is the driver entry function called from the "kldload" command. 2467 * 2468 * Returns: 2469 * BUS_PROBE_DEFAULT on success, positive value on failure. 2470 */ 2471 static int 2472 bxe_probe(device_t dev) 2473 { 2474 struct bxe_device_type *t; 2475 char *descbuf; 2476 uint16_t did, sdid, svid, vid; 2477 2478 /* Find our device structure */ 2479 t = bxe_devs; 2480 2481 /* Get the data for the device to be probed. */ 2482 vid = pci_get_vendor(dev); 2483 did = pci_get_device(dev); 2484 svid = pci_get_subvendor(dev); 2485 sdid = pci_get_subdevice(dev); 2486 2487 /* Look through the list of known devices for a match. */ 2488 while (t->bxe_name != NULL) { 2489 if ((vid == t->bxe_vid) && (did == t->bxe_did) && 2490 ((svid == t->bxe_svid) || (t->bxe_svid == PCI_ANY_ID)) && 2491 ((sdid == t->bxe_sdid) || (t->bxe_sdid == PCI_ANY_ID))) { 2492 descbuf = malloc(BXE_DEVDESC_MAX, M_TEMP, M_NOWAIT); 2493 if (descbuf == NULL) 2494 return (ENOMEM); 2495 2496 /* Print out the device identity. */ 2497 snprintf(descbuf, BXE_DEVDESC_MAX, 2498 "%s (%c%d) BXE v:%s\n", t->bxe_name, 2499 (((pci_read_config(dev, PCIR_REVID, 4) & 2500 0xf0) >> 4) + 'A'), 2501 (pci_read_config(dev, PCIR_REVID, 4) & 0xf), 2502 BXE_DRIVER_VERSION); 2503 2504 device_set_desc_copy(dev, descbuf); 2505 free(descbuf, M_TEMP); 2506 return (BUS_PROBE_DEFAULT); 2507 } 2508 t++; 2509 } 2510 2511 return (ENXIO); 2512 } 2513 2514 static void 2515 bxe_init_mutexes(struct bxe_softc *sc) 2516 { 2517 #ifdef BXE_CORE_LOCK_SX 2518 snprintf(sc->core_sx_name, sizeof(sc->core_sx_name), 2519 "bxe%d_core_lock", sc->unit); 2520 sx_init(&sc->core_sx, sc->core_sx_name); 2521 #else 2522 snprintf(sc->core_mtx_name, sizeof(sc->core_mtx_name), 2523 "bxe%d_core_lock", sc->unit); 2524 mtx_init(&sc->core_mtx, sc->core_mtx_name, NULL, MTX_DEF); 2525 #endif 2526 2527 snprintf(sc->sp_mtx_name, sizeof(sc->sp_mtx_name), 2528 "bxe%d_sp_lock", sc->unit); 2529 mtx_init(&sc->sp_mtx, sc->sp_mtx_name, NULL, MTX_DEF); 2530 2531 snprintf(sc->dmae_mtx_name, sizeof(sc->dmae_mtx_name), 2532 "bxe%d_dmae_lock", sc->unit); 2533 mtx_init(&sc->dmae_mtx, sc->dmae_mtx_name, NULL, MTX_DEF); 2534 2535 snprintf(sc->port.phy_mtx_name, sizeof(sc->port.phy_mtx_name), 2536 "bxe%d_phy_lock", sc->unit); 2537 mtx_init(&sc->port.phy_mtx, sc->port.phy_mtx_name, NULL, MTX_DEF); 2538 2539 snprintf(sc->fwmb_mtx_name, sizeof(sc->fwmb_mtx_name), 2540 "bxe%d_fwmb_lock", sc->unit); 2541 mtx_init(&sc->fwmb_mtx, sc->fwmb_mtx_name, NULL, MTX_DEF); 2542 2543 snprintf(sc->print_mtx_name, sizeof(sc->print_mtx_name), 2544 "bxe%d_print_lock", sc->unit); 2545 mtx_init(&(sc->print_mtx), sc->print_mtx_name, NULL, MTX_DEF); 2546 2547 snprintf(sc->stats_mtx_name, sizeof(sc->stats_mtx_name), 2548 "bxe%d_stats_lock", sc->unit); 2549 mtx_init(&(sc->stats_mtx), sc->stats_mtx_name, NULL, MTX_DEF); 2550 2551 snprintf(sc->mcast_mtx_name, sizeof(sc->mcast_mtx_name), 2552 "bxe%d_mcast_lock", sc->unit); 2553 mtx_init(&(sc->mcast_mtx), sc->mcast_mtx_name, NULL, MTX_DEF); 2554 } 2555 2556 static void 2557 bxe_release_mutexes(struct bxe_softc *sc) 2558 { 2559 #ifdef BXE_CORE_LOCK_SX 2560 sx_destroy(&sc->core_sx); 2561 #else 2562 if (mtx_initialized(&sc->core_mtx)) { 2563 mtx_destroy(&sc->core_mtx); 2564 } 2565 #endif 2566 2567 if (mtx_initialized(&sc->sp_mtx)) { 2568 mtx_destroy(&sc->sp_mtx); 2569 } 2570 2571 if (mtx_initialized(&sc->dmae_mtx)) { 2572 mtx_destroy(&sc->dmae_mtx); 2573 } 2574 2575 if (mtx_initialized(&sc->port.phy_mtx)) { 2576 mtx_destroy(&sc->port.phy_mtx); 2577 } 2578 2579 if (mtx_initialized(&sc->fwmb_mtx)) { 2580 mtx_destroy(&sc->fwmb_mtx); 2581 } 2582 2583 if (mtx_initialized(&sc->print_mtx)) { 2584 mtx_destroy(&sc->print_mtx); 2585 } 2586 2587 if (mtx_initialized(&sc->stats_mtx)) { 2588 mtx_destroy(&sc->stats_mtx); 2589 } 2590 2591 if (mtx_initialized(&sc->mcast_mtx)) { 2592 mtx_destroy(&sc->mcast_mtx); 2593 } 2594 } 2595 2596 static void 2597 bxe_tx_disable(struct bxe_softc* sc) 2598 { 2599 if_t ifp = sc->ifp; 2600 2601 /* tell the stack the driver is stopped and TX queue is full */ 2602 if (ifp != NULL) { 2603 if_setdrvflags(ifp, 0); 2604 } 2605 } 2606 2607 static void 2608 bxe_drv_pulse(struct bxe_softc *sc) 2609 { 2610 SHMEM_WR(sc, func_mb[SC_FW_MB_IDX(sc)].drv_pulse_mb, 2611 sc->fw_drv_pulse_wr_seq); 2612 } 2613 2614 static inline uint16_t 2615 bxe_tx_avail(struct bxe_softc *sc, 2616 struct bxe_fastpath *fp) 2617 { 2618 int16_t used; 2619 uint16_t prod; 2620 uint16_t cons; 2621 2622 prod = fp->tx_bd_prod; 2623 cons = fp->tx_bd_cons; 2624 2625 used = SUB_S16(prod, cons); 2626 2627 return (int16_t)(sc->tx_ring_size) - used; 2628 } 2629 2630 static inline int 2631 bxe_tx_queue_has_work(struct bxe_fastpath *fp) 2632 { 2633 uint16_t hw_cons; 2634 2635 mb(); /* status block fields can change */ 2636 hw_cons = le16toh(*fp->tx_cons_sb); 2637 return (hw_cons != fp->tx_pkt_cons); 2638 } 2639 2640 static inline uint8_t 2641 bxe_has_tx_work(struct bxe_fastpath *fp) 2642 { 2643 /* expand this for multi-cos if ever supported */ 2644 return (bxe_tx_queue_has_work(fp)) ? TRUE : FALSE; 2645 } 2646 2647 static inline int 2648 bxe_has_rx_work(struct bxe_fastpath *fp) 2649 { 2650 uint16_t rx_cq_cons_sb; 2651 2652 mb(); /* status block fields can change */ 2653 rx_cq_cons_sb = le16toh(*fp->rx_cq_cons_sb); 2654 if ((rx_cq_cons_sb & RCQ_MAX) == RCQ_MAX) 2655 rx_cq_cons_sb++; 2656 return (fp->rx_cq_cons != rx_cq_cons_sb); 2657 } 2658 2659 static void 2660 bxe_sp_event(struct bxe_softc *sc, 2661 struct bxe_fastpath *fp, 2662 union eth_rx_cqe *rr_cqe) 2663 { 2664 int cid = SW_CID(rr_cqe->ramrod_cqe.conn_and_cmd_data); 2665 int command = CQE_CMD(rr_cqe->ramrod_cqe.conn_and_cmd_data); 2666 enum ecore_queue_cmd drv_cmd = ECORE_Q_CMD_MAX; 2667 struct ecore_queue_sp_obj *q_obj = &BXE_SP_OBJ(sc, fp).q_obj; 2668 2669 BLOGD(sc, DBG_SP, "fp=%d cid=%d got ramrod #%d state is %x type is %d\n", 2670 fp->index, cid, command, sc->state, rr_cqe->ramrod_cqe.ramrod_type); 2671 2672 switch (command) { 2673 case (RAMROD_CMD_ID_ETH_CLIENT_UPDATE): 2674 BLOGD(sc, DBG_SP, "got UPDATE ramrod. CID %d\n", cid); 2675 drv_cmd = ECORE_Q_CMD_UPDATE; 2676 break; 2677 2678 case (RAMROD_CMD_ID_ETH_CLIENT_SETUP): 2679 BLOGD(sc, DBG_SP, "got MULTI[%d] setup ramrod\n", cid); 2680 drv_cmd = ECORE_Q_CMD_SETUP; 2681 break; 2682 2683 case (RAMROD_CMD_ID_ETH_TX_QUEUE_SETUP): 2684 BLOGD(sc, DBG_SP, "got MULTI[%d] tx-only setup ramrod\n", cid); 2685 drv_cmd = ECORE_Q_CMD_SETUP_TX_ONLY; 2686 break; 2687 2688 case (RAMROD_CMD_ID_ETH_HALT): 2689 BLOGD(sc, DBG_SP, "got MULTI[%d] halt ramrod\n", cid); 2690 drv_cmd = ECORE_Q_CMD_HALT; 2691 break; 2692 2693 case (RAMROD_CMD_ID_ETH_TERMINATE): 2694 BLOGD(sc, DBG_SP, "got MULTI[%d] teminate ramrod\n", cid); 2695 drv_cmd = ECORE_Q_CMD_TERMINATE; 2696 break; 2697 2698 case (RAMROD_CMD_ID_ETH_EMPTY): 2699 BLOGD(sc, DBG_SP, "got MULTI[%d] empty ramrod\n", cid); 2700 drv_cmd = ECORE_Q_CMD_EMPTY; 2701 break; 2702 2703 default: 2704 BLOGD(sc, DBG_SP, "ERROR: unexpected MC reply (%d) on fp[%d]\n", 2705 command, fp->index); 2706 return; 2707 } 2708 2709 if ((drv_cmd != ECORE_Q_CMD_MAX) && 2710 q_obj->complete_cmd(sc, q_obj, drv_cmd)) { 2711 /* 2712 * q_obj->complete_cmd() failure means that this was 2713 * an unexpected completion. 2714 * 2715 * In this case we don't want to increase the sc->spq_left 2716 * because apparently we haven't sent this command the first 2717 * place. 2718 */ 2719 // bxe_panic(sc, ("Unexpected SP completion\n")); 2720 return; 2721 } 2722 2723 atomic_add_acq_long(&sc->cq_spq_left, 1); 2724 2725 BLOGD(sc, DBG_SP, "sc->cq_spq_left 0x%lx\n", 2726 atomic_load_acq_long(&sc->cq_spq_left)); 2727 } 2728 2729 /* 2730 * The current mbuf is part of an aggregation. Move the mbuf into the TPA 2731 * aggregation queue, put an empty mbuf back onto the receive chain, and mark 2732 * the current aggregation queue as in-progress. 2733 */ 2734 static void 2735 bxe_tpa_start(struct bxe_softc *sc, 2736 struct bxe_fastpath *fp, 2737 uint16_t queue, 2738 uint16_t cons, 2739 uint16_t prod, 2740 struct eth_fast_path_rx_cqe *cqe) 2741 { 2742 struct bxe_sw_rx_bd tmp_bd; 2743 struct bxe_sw_rx_bd *rx_buf; 2744 struct eth_rx_bd *rx_bd; 2745 int max_agg_queues; 2746 struct bxe_sw_tpa_info *tpa_info = &fp->rx_tpa_info[queue]; 2747 uint16_t index; 2748 2749 BLOGD(sc, DBG_LRO, "fp[%02d].tpa[%02d] TPA START " 2750 "cons=%d prod=%d\n", 2751 fp->index, queue, cons, prod); 2752 2753 max_agg_queues = MAX_AGG_QS(sc); 2754 2755 KASSERT((queue < max_agg_queues), 2756 ("fp[%02d] invalid aggr queue (%d >= %d)!", 2757 fp->index, queue, max_agg_queues)); 2758 2759 KASSERT((tpa_info->state == BXE_TPA_STATE_STOP), 2760 ("fp[%02d].tpa[%02d] starting aggr on queue not stopped!", 2761 fp->index, queue)); 2762 2763 /* copy the existing mbuf and mapping from the TPA pool */ 2764 tmp_bd = tpa_info->bd; 2765 2766 if (tmp_bd.m == NULL) { 2767 uint32_t *tmp; 2768 2769 tmp = (uint32_t *)cqe; 2770 2771 BLOGE(sc, "fp[%02d].tpa[%02d] cons[%d] prod[%d]mbuf not allocated!\n", 2772 fp->index, queue, cons, prod); 2773 BLOGE(sc, "cqe [0x%08x 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x]\n", 2774 *tmp, *(tmp+1), *(tmp+2), *(tmp+3), *(tmp+4), *(tmp+5), *(tmp+6), *(tmp+7)); 2775 2776 /* XXX Error handling? */ 2777 return; 2778 } 2779 2780 /* change the TPA queue to the start state */ 2781 tpa_info->state = BXE_TPA_STATE_START; 2782 tpa_info->placement_offset = cqe->placement_offset; 2783 tpa_info->parsing_flags = le16toh(cqe->pars_flags.flags); 2784 tpa_info->vlan_tag = le16toh(cqe->vlan_tag); 2785 tpa_info->len_on_bd = le16toh(cqe->len_on_bd); 2786 2787 fp->rx_tpa_queue_used |= (1 << queue); 2788 2789 /* 2790 * If all the buffer descriptors are filled with mbufs then fill in 2791 * the current consumer index with a new BD. Else if a maximum Rx 2792 * buffer limit is imposed then fill in the next producer index. 2793 */ 2794 index = (sc->max_rx_bufs != RX_BD_USABLE) ? 2795 prod : cons; 2796 2797 /* move the received mbuf and mapping to TPA pool */ 2798 tpa_info->bd = fp->rx_mbuf_chain[cons]; 2799 2800 /* release any existing RX BD mbuf mappings */ 2801 if (cons != index) { 2802 rx_buf = &fp->rx_mbuf_chain[cons]; 2803 2804 if (rx_buf->m_map != NULL) { 2805 bus_dmamap_sync(fp->rx_mbuf_tag, rx_buf->m_map, 2806 BUS_DMASYNC_POSTREAD); 2807 bus_dmamap_unload(fp->rx_mbuf_tag, rx_buf->m_map); 2808 } 2809 2810 /* 2811 * We get here when the maximum number of rx buffers is less than 2812 * RX_BD_USABLE. The mbuf is already saved above so it's OK to NULL 2813 * it out here without concern of a memory leak. 2814 */ 2815 fp->rx_mbuf_chain[cons].m = NULL; 2816 } 2817 2818 /* update the Rx SW BD with the mbuf info from the TPA pool */ 2819 fp->rx_mbuf_chain[index] = tmp_bd; 2820 2821 /* update the Rx BD with the empty mbuf phys address from the TPA pool */ 2822 rx_bd = &fp->rx_chain[index]; 2823 rx_bd->addr_hi = htole32(U64_HI(tpa_info->seg.ds_addr)); 2824 rx_bd->addr_lo = htole32(U64_LO(tpa_info->seg.ds_addr)); 2825 } 2826 2827 /* 2828 * When a TPA aggregation is completed, loop through the individual mbufs 2829 * of the aggregation, combining them into a single mbuf which will be sent 2830 * up the stack. Refill all freed SGEs with mbufs as we go along. 2831 */ 2832 static int 2833 bxe_fill_frag_mbuf(struct bxe_softc *sc, 2834 struct bxe_fastpath *fp, 2835 struct bxe_sw_tpa_info *tpa_info, 2836 uint16_t queue, 2837 uint16_t pages, 2838 struct mbuf *m, 2839 struct eth_end_agg_rx_cqe *cqe, 2840 uint16_t cqe_idx) 2841 { 2842 struct mbuf *m_frag; 2843 uint32_t frag_len, frag_size, i; 2844 uint16_t sge_idx; 2845 int rc = 0; 2846 int j; 2847 2848 frag_size = le16toh(cqe->pkt_len) - tpa_info->len_on_bd; 2849 2850 BLOGD(sc, DBG_LRO, 2851 "fp[%02d].tpa[%02d] TPA fill len_on_bd=%d frag_size=%d pages=%d\n", 2852 fp->index, queue, tpa_info->len_on_bd, frag_size, pages); 2853 2854 /* make sure the aggregated frame is not too big to handle */ 2855 if (pages > 8 * PAGES_PER_SGE) { 2856 2857 uint32_t *tmp = (uint32_t *)cqe; 2858 2859 BLOGE(sc, "fp[%02d].sge[0x%04x] has too many pages (%d)! " 2860 "pkt_len=%d len_on_bd=%d frag_size=%d\n", 2861 fp->index, cqe_idx, pages, le16toh(cqe->pkt_len), 2862 tpa_info->len_on_bd, frag_size); 2863 2864 BLOGE(sc, "cqe [0x%08x 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x]\n", 2865 *tmp, *(tmp+1), *(tmp+2), *(tmp+3), *(tmp+4), *(tmp+5), *(tmp+6), *(tmp+7)); 2866 2867 bxe_panic(sc, ("sge page count error\n")); 2868 return (EINVAL); 2869 } 2870 2871 /* 2872 * Scan through the scatter gather list pulling individual mbufs into a 2873 * single mbuf for the host stack. 2874 */ 2875 for (i = 0, j = 0; i < pages; i += PAGES_PER_SGE, j++) { 2876 sge_idx = RX_SGE(le16toh(cqe->sgl_or_raw_data.sgl[j])); 2877 2878 /* 2879 * Firmware gives the indices of the SGE as if the ring is an array 2880 * (meaning that the "next" element will consume 2 indices). 2881 */ 2882 frag_len = min(frag_size, (uint32_t)(SGE_PAGES)); 2883 2884 BLOGD(sc, DBG_LRO, "fp[%02d].tpa[%02d] TPA fill i=%d j=%d " 2885 "sge_idx=%d frag_size=%d frag_len=%d\n", 2886 fp->index, queue, i, j, sge_idx, frag_size, frag_len); 2887 2888 m_frag = fp->rx_sge_mbuf_chain[sge_idx].m; 2889 2890 /* allocate a new mbuf for the SGE */ 2891 rc = bxe_alloc_rx_sge_mbuf(fp, sge_idx); 2892 if (rc) { 2893 /* Leave all remaining SGEs in the ring! */ 2894 return (rc); 2895 } 2896 2897 /* update the fragment length */ 2898 m_frag->m_len = frag_len; 2899 2900 /* concatenate the fragment to the head mbuf */ 2901 m_cat(m, m_frag); 2902 fp->eth_q_stats.mbuf_alloc_sge--; 2903 2904 /* update the TPA mbuf size and remaining fragment size */ 2905 m->m_pkthdr.len += frag_len; 2906 frag_size -= frag_len; 2907 } 2908 2909 BLOGD(sc, DBG_LRO, 2910 "fp[%02d].tpa[%02d] TPA fill done frag_size=%d\n", 2911 fp->index, queue, frag_size); 2912 2913 return (rc); 2914 } 2915 2916 static inline void 2917 bxe_clear_sge_mask_next_elems(struct bxe_fastpath *fp) 2918 { 2919 int i, j; 2920 2921 for (i = 1; i <= RX_SGE_NUM_PAGES; i++) { 2922 int idx = RX_SGE_TOTAL_PER_PAGE * i - 1; 2923 2924 for (j = 0; j < 2; j++) { 2925 BIT_VEC64_CLEAR_BIT(fp->sge_mask, idx); 2926 idx--; 2927 } 2928 } 2929 } 2930 2931 static inline void 2932 bxe_init_sge_ring_bit_mask(struct bxe_fastpath *fp) 2933 { 2934 /* set the mask to all 1's, it's faster to compare to 0 than to 0xf's */ 2935 memset(fp->sge_mask, 0xff, sizeof(fp->sge_mask)); 2936 2937 /* 2938 * Clear the two last indices in the page to 1. These are the indices that 2939 * correspond to the "next" element, hence will never be indicated and 2940 * should be removed from the calculations. 2941 */ 2942 bxe_clear_sge_mask_next_elems(fp); 2943 } 2944 2945 static inline void 2946 bxe_update_last_max_sge(struct bxe_fastpath *fp, 2947 uint16_t idx) 2948 { 2949 uint16_t last_max = fp->last_max_sge; 2950 2951 if (SUB_S16(idx, last_max) > 0) { 2952 fp->last_max_sge = idx; 2953 } 2954 } 2955 2956 static inline void 2957 bxe_update_sge_prod(struct bxe_softc *sc, 2958 struct bxe_fastpath *fp, 2959 uint16_t sge_len, 2960 union eth_sgl_or_raw_data *cqe) 2961 { 2962 uint16_t last_max, last_elem, first_elem; 2963 uint16_t delta = 0; 2964 uint16_t i; 2965 2966 if (!sge_len) { 2967 return; 2968 } 2969 2970 /* first mark all used pages */ 2971 for (i = 0; i < sge_len; i++) { 2972 BIT_VEC64_CLEAR_BIT(fp->sge_mask, 2973 RX_SGE(le16toh(cqe->sgl[i]))); 2974 } 2975 2976 BLOGD(sc, DBG_LRO, 2977 "fp[%02d] fp_cqe->sgl[%d] = %d\n", 2978 fp->index, sge_len - 1, 2979 le16toh(cqe->sgl[sge_len - 1])); 2980 2981 /* assume that the last SGE index is the biggest */ 2982 bxe_update_last_max_sge(fp, 2983 le16toh(cqe->sgl[sge_len - 1])); 2984 2985 last_max = RX_SGE(fp->last_max_sge); 2986 last_elem = last_max >> BIT_VEC64_ELEM_SHIFT; 2987 first_elem = RX_SGE(fp->rx_sge_prod) >> BIT_VEC64_ELEM_SHIFT; 2988 2989 /* if ring is not full */ 2990 if (last_elem + 1 != first_elem) { 2991 last_elem++; 2992 } 2993 2994 /* now update the prod */ 2995 for (i = first_elem; i != last_elem; i = RX_SGE_NEXT_MASK_ELEM(i)) { 2996 if (__predict_true(fp->sge_mask[i])) { 2997 break; 2998 } 2999 3000 fp->sge_mask[i] = BIT_VEC64_ELEM_ONE_MASK; 3001 delta += BIT_VEC64_ELEM_SZ; 3002 } 3003 3004 if (delta > 0) { 3005 fp->rx_sge_prod += delta; 3006 /* clear page-end entries */ 3007 bxe_clear_sge_mask_next_elems(fp); 3008 } 3009 3010 BLOGD(sc, DBG_LRO, 3011 "fp[%02d] fp->last_max_sge=%d fp->rx_sge_prod=%d\n", 3012 fp->index, fp->last_max_sge, fp->rx_sge_prod); 3013 } 3014 3015 /* 3016 * The aggregation on the current TPA queue has completed. Pull the individual 3017 * mbuf fragments together into a single mbuf, perform all necessary checksum 3018 * calculations, and send the resuting mbuf to the stack. 3019 */ 3020 static void 3021 bxe_tpa_stop(struct bxe_softc *sc, 3022 struct bxe_fastpath *fp, 3023 struct bxe_sw_tpa_info *tpa_info, 3024 uint16_t queue, 3025 uint16_t pages, 3026 struct eth_end_agg_rx_cqe *cqe, 3027 uint16_t cqe_idx) 3028 { 3029 if_t ifp = sc->ifp; 3030 struct mbuf *m; 3031 int rc = 0; 3032 3033 BLOGD(sc, DBG_LRO, 3034 "fp[%02d].tpa[%02d] pad=%d pkt_len=%d pages=%d vlan=%d\n", 3035 fp->index, queue, tpa_info->placement_offset, 3036 le16toh(cqe->pkt_len), pages, tpa_info->vlan_tag); 3037 3038 m = tpa_info->bd.m; 3039 3040 /* allocate a replacement before modifying existing mbuf */ 3041 rc = bxe_alloc_rx_tpa_mbuf(fp, queue); 3042 if (rc) { 3043 /* drop the frame and log an error */ 3044 fp->eth_q_stats.rx_soft_errors++; 3045 goto bxe_tpa_stop_exit; 3046 } 3047 3048 /* we have a replacement, fixup the current mbuf */ 3049 m_adj(m, tpa_info->placement_offset); 3050 m->m_pkthdr.len = m->m_len = tpa_info->len_on_bd; 3051 3052 /* mark the checksums valid (taken care of by the firmware) */ 3053 fp->eth_q_stats.rx_ofld_frames_csum_ip++; 3054 fp->eth_q_stats.rx_ofld_frames_csum_tcp_udp++; 3055 m->m_pkthdr.csum_data = 0xffff; 3056 m->m_pkthdr.csum_flags |= (CSUM_IP_CHECKED | 3057 CSUM_IP_VALID | 3058 CSUM_DATA_VALID | 3059 CSUM_PSEUDO_HDR); 3060 3061 /* aggregate all of the SGEs into a single mbuf */ 3062 rc = bxe_fill_frag_mbuf(sc, fp, tpa_info, queue, pages, m, cqe, cqe_idx); 3063 if (rc) { 3064 /* drop the packet and log an error */ 3065 fp->eth_q_stats.rx_soft_errors++; 3066 m_freem(m); 3067 } else { 3068 if (tpa_info->parsing_flags & PARSING_FLAGS_INNER_VLAN_EXIST) { 3069 m->m_pkthdr.ether_vtag = tpa_info->vlan_tag; 3070 m->m_flags |= M_VLANTAG; 3071 } 3072 3073 /* assign packet to this interface interface */ 3074 if_setrcvif(m, ifp); 3075 3076 #if __FreeBSD_version >= 800000 3077 /* specify what RSS queue was used for this flow */ 3078 m->m_pkthdr.flowid = fp->index; 3079 BXE_SET_FLOWID(m); 3080 #endif 3081 3082 if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1); 3083 fp->eth_q_stats.rx_tpa_pkts++; 3084 3085 /* pass the frame to the stack */ 3086 if_input(ifp, m); 3087 } 3088 3089 /* we passed an mbuf up the stack or dropped the frame */ 3090 fp->eth_q_stats.mbuf_alloc_tpa--; 3091 3092 bxe_tpa_stop_exit: 3093 3094 fp->rx_tpa_info[queue].state = BXE_TPA_STATE_STOP; 3095 fp->rx_tpa_queue_used &= ~(1 << queue); 3096 } 3097 3098 static uint8_t 3099 bxe_service_rxsgl( 3100 struct bxe_fastpath *fp, 3101 uint16_t len, 3102 uint16_t lenonbd, 3103 struct mbuf *m, 3104 struct eth_fast_path_rx_cqe *cqe_fp) 3105 { 3106 struct mbuf *m_frag; 3107 uint16_t frags, frag_len; 3108 uint16_t sge_idx = 0; 3109 uint16_t j; 3110 uint8_t i, rc = 0; 3111 uint32_t frag_size; 3112 3113 /* adjust the mbuf */ 3114 m->m_len = lenonbd; 3115 3116 frag_size = len - lenonbd; 3117 frags = SGE_PAGE_ALIGN(frag_size) >> SGE_PAGE_SHIFT; 3118 3119 for (i = 0, j = 0; i < frags; i += PAGES_PER_SGE, j++) { 3120 sge_idx = RX_SGE(le16toh(cqe_fp->sgl_or_raw_data.sgl[j])); 3121 3122 m_frag = fp->rx_sge_mbuf_chain[sge_idx].m; 3123 frag_len = min(frag_size, (uint32_t)(SGE_PAGE_SIZE)); 3124 m_frag->m_len = frag_len; 3125 3126 /* allocate a new mbuf for the SGE */ 3127 rc = bxe_alloc_rx_sge_mbuf(fp, sge_idx); 3128 if (rc) { 3129 /* Leave all remaining SGEs in the ring! */ 3130 return (rc); 3131 } 3132 fp->eth_q_stats.mbuf_alloc_sge--; 3133 3134 /* concatenate the fragment to the head mbuf */ 3135 m_cat(m, m_frag); 3136 3137 frag_size -= frag_len; 3138 } 3139 3140 bxe_update_sge_prod(fp->sc, fp, frags, &cqe_fp->sgl_or_raw_data); 3141 3142 return rc; 3143 } 3144 3145 static uint8_t 3146 bxe_rxeof(struct bxe_softc *sc, 3147 struct bxe_fastpath *fp) 3148 { 3149 if_t ifp = sc->ifp; 3150 uint16_t bd_cons, bd_prod, bd_prod_fw, comp_ring_cons; 3151 uint16_t hw_cq_cons, sw_cq_cons, sw_cq_prod; 3152 int rx_pkts = 0; 3153 int rc = 0; 3154 3155 BXE_FP_RX_LOCK(fp); 3156 3157 /* CQ "next element" is of the size of the regular element */ 3158 hw_cq_cons = le16toh(*fp->rx_cq_cons_sb); 3159 if ((hw_cq_cons & RCQ_USABLE_PER_PAGE) == RCQ_USABLE_PER_PAGE) { 3160 hw_cq_cons++; 3161 } 3162 3163 bd_cons = fp->rx_bd_cons; 3164 bd_prod = fp->rx_bd_prod; 3165 bd_prod_fw = bd_prod; 3166 sw_cq_cons = fp->rx_cq_cons; 3167 sw_cq_prod = fp->rx_cq_prod; 3168 3169 /* 3170 * Memory barrier necessary as speculative reads of the rx 3171 * buffer can be ahead of the index in the status block 3172 */ 3173 rmb(); 3174 3175 BLOGD(sc, DBG_RX, 3176 "fp[%02d] Rx START hw_cq_cons=%u sw_cq_cons=%u\n", 3177 fp->index, hw_cq_cons, sw_cq_cons); 3178 3179 while (sw_cq_cons != hw_cq_cons) { 3180 struct bxe_sw_rx_bd *rx_buf = NULL; 3181 union eth_rx_cqe *cqe; 3182 struct eth_fast_path_rx_cqe *cqe_fp; 3183 uint8_t cqe_fp_flags; 3184 enum eth_rx_cqe_type cqe_fp_type; 3185 uint16_t len, lenonbd, pad; 3186 struct mbuf *m = NULL; 3187 3188 comp_ring_cons = RCQ(sw_cq_cons); 3189 bd_prod = RX_BD(bd_prod); 3190 bd_cons = RX_BD(bd_cons); 3191 3192 cqe = &fp->rcq_chain[comp_ring_cons]; 3193 cqe_fp = &cqe->fast_path_cqe; 3194 cqe_fp_flags = cqe_fp->type_error_flags; 3195 cqe_fp_type = cqe_fp_flags & ETH_FAST_PATH_RX_CQE_TYPE; 3196 3197 BLOGD(sc, DBG_RX, 3198 "fp[%02d] Rx hw_cq_cons=%d hw_sw_cons=%d " 3199 "BD prod=%d cons=%d CQE type=0x%x err=0x%x " 3200 "status=0x%x rss_hash=0x%x vlan=0x%x len=%u lenonbd=%u\n", 3201 fp->index, 3202 hw_cq_cons, 3203 sw_cq_cons, 3204 bd_prod, 3205 bd_cons, 3206 CQE_TYPE(cqe_fp_flags), 3207 cqe_fp_flags, 3208 cqe_fp->status_flags, 3209 le32toh(cqe_fp->rss_hash_result), 3210 le16toh(cqe_fp->vlan_tag), 3211 le16toh(cqe_fp->pkt_len_or_gro_seg_len), 3212 le16toh(cqe_fp->len_on_bd)); 3213 3214 /* is this a slowpath msg? */ 3215 if (__predict_false(CQE_TYPE_SLOW(cqe_fp_type))) { 3216 bxe_sp_event(sc, fp, cqe); 3217 goto next_cqe; 3218 } 3219 3220 rx_buf = &fp->rx_mbuf_chain[bd_cons]; 3221 3222 if (!CQE_TYPE_FAST(cqe_fp_type)) { 3223 struct bxe_sw_tpa_info *tpa_info; 3224 uint16_t frag_size, pages; 3225 uint8_t queue; 3226 3227 if (CQE_TYPE_START(cqe_fp_type)) { 3228 bxe_tpa_start(sc, fp, cqe_fp->queue_index, 3229 bd_cons, bd_prod, cqe_fp); 3230 m = NULL; /* packet not ready yet */ 3231 goto next_rx; 3232 } 3233 3234 KASSERT(CQE_TYPE_STOP(cqe_fp_type), 3235 ("CQE type is not STOP! (0x%x)\n", cqe_fp_type)); 3236 3237 queue = cqe->end_agg_cqe.queue_index; 3238 tpa_info = &fp->rx_tpa_info[queue]; 3239 3240 BLOGD(sc, DBG_LRO, "fp[%02d].tpa[%02d] TPA STOP\n", 3241 fp->index, queue); 3242 3243 frag_size = (le16toh(cqe->end_agg_cqe.pkt_len) - 3244 tpa_info->len_on_bd); 3245 pages = SGE_PAGE_ALIGN(frag_size) >> SGE_PAGE_SHIFT; 3246 3247 bxe_tpa_stop(sc, fp, tpa_info, queue, pages, 3248 &cqe->end_agg_cqe, comp_ring_cons); 3249 3250 bxe_update_sge_prod(sc, fp, pages, &cqe->end_agg_cqe.sgl_or_raw_data); 3251 3252 goto next_cqe; 3253 } 3254 3255 /* non TPA */ 3256 3257 /* is this an error packet? */ 3258 if (__predict_false(cqe_fp_flags & 3259 ETH_FAST_PATH_RX_CQE_PHY_DECODE_ERR_FLG)) { 3260 BLOGE(sc, "flags 0x%x rx packet %u\n", cqe_fp_flags, sw_cq_cons); 3261 fp->eth_q_stats.rx_soft_errors++; 3262 goto next_rx; 3263 } 3264 3265 len = le16toh(cqe_fp->pkt_len_or_gro_seg_len); 3266 lenonbd = le16toh(cqe_fp->len_on_bd); 3267 pad = cqe_fp->placement_offset; 3268 3269 m = rx_buf->m; 3270 3271 if (__predict_false(m == NULL)) { 3272 BLOGE(sc, "No mbuf in rx chain descriptor %d for fp[%02d]\n", 3273 bd_cons, fp->index); 3274 goto next_rx; 3275 } 3276 3277 /* XXX double copy if packet length under a threshold */ 3278 3279 /* 3280 * If all the buffer descriptors are filled with mbufs then fill in 3281 * the current consumer index with a new BD. Else if a maximum Rx 3282 * buffer limit is imposed then fill in the next producer index. 3283 */ 3284 rc = bxe_alloc_rx_bd_mbuf(fp, bd_cons, 3285 (sc->max_rx_bufs != RX_BD_USABLE) ? 3286 bd_prod : bd_cons); 3287 if (rc != 0) { 3288 3289 /* we simply reuse the received mbuf and don't post it to the stack */ 3290 m = NULL; 3291 3292 BLOGE(sc, "mbuf alloc fail for fp[%02d] rx chain (%d)\n", 3293 fp->index, rc); 3294 fp->eth_q_stats.rx_soft_errors++; 3295 3296 if (sc->max_rx_bufs != RX_BD_USABLE) { 3297 /* copy this consumer index to the producer index */ 3298 memcpy(&fp->rx_mbuf_chain[bd_prod], rx_buf, 3299 sizeof(struct bxe_sw_rx_bd)); 3300 memset(rx_buf, 0, sizeof(struct bxe_sw_rx_bd)); 3301 } 3302 3303 goto next_rx; 3304 } 3305 3306 /* current mbuf was detached from the bd */ 3307 fp->eth_q_stats.mbuf_alloc_rx--; 3308 3309 /* we allocated a replacement mbuf, fixup the current one */ 3310 m_adj(m, pad); 3311 m->m_pkthdr.len = m->m_len = len; 3312 3313 if ((len > 60) && (len > lenonbd)) { 3314 fp->eth_q_stats.rx_bxe_service_rxsgl++; 3315 rc = bxe_service_rxsgl(fp, len, lenonbd, m, cqe_fp); 3316 if (rc) 3317 break; 3318 fp->eth_q_stats.rx_jumbo_sge_pkts++; 3319 } else if (lenonbd < len) { 3320 fp->eth_q_stats.rx_erroneous_jumbo_sge_pkts++; 3321 } 3322 3323 /* assign packet to this interface interface */ 3324 if_setrcvif(m, ifp); 3325 3326 /* assume no hardware checksum has complated */ 3327 m->m_pkthdr.csum_flags = 0; 3328 3329 /* validate checksum if offload enabled */ 3330 if (if_getcapenable(ifp) & IFCAP_RXCSUM) { 3331 /* check for a valid IP frame */ 3332 if (!(cqe->fast_path_cqe.status_flags & 3333 ETH_FAST_PATH_RX_CQE_IP_XSUM_NO_VALIDATION_FLG)) { 3334 m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED; 3335 if (__predict_false(cqe_fp_flags & 3336 ETH_FAST_PATH_RX_CQE_IP_BAD_XSUM_FLG)) { 3337 fp->eth_q_stats.rx_hw_csum_errors++; 3338 } else { 3339 fp->eth_q_stats.rx_ofld_frames_csum_ip++; 3340 m->m_pkthdr.csum_flags |= CSUM_IP_VALID; 3341 } 3342 } 3343 3344 /* check for a valid TCP/UDP frame */ 3345 if (!(cqe->fast_path_cqe.status_flags & 3346 ETH_FAST_PATH_RX_CQE_L4_XSUM_NO_VALIDATION_FLG)) { 3347 if (__predict_false(cqe_fp_flags & 3348 ETH_FAST_PATH_RX_CQE_L4_BAD_XSUM_FLG)) { 3349 fp->eth_q_stats.rx_hw_csum_errors++; 3350 } else { 3351 fp->eth_q_stats.rx_ofld_frames_csum_tcp_udp++; 3352 m->m_pkthdr.csum_data = 0xFFFF; 3353 m->m_pkthdr.csum_flags |= (CSUM_DATA_VALID | 3354 CSUM_PSEUDO_HDR); 3355 } 3356 } 3357 } 3358 3359 /* if there is a VLAN tag then flag that info */ 3360 if (cqe->fast_path_cqe.pars_flags.flags & PARSING_FLAGS_INNER_VLAN_EXIST) { 3361 m->m_pkthdr.ether_vtag = cqe->fast_path_cqe.vlan_tag; 3362 m->m_flags |= M_VLANTAG; 3363 } 3364 3365 #if __FreeBSD_version >= 800000 3366 /* specify what RSS queue was used for this flow */ 3367 m->m_pkthdr.flowid = fp->index; 3368 BXE_SET_FLOWID(m); 3369 #endif 3370 3371 next_rx: 3372 3373 bd_cons = RX_BD_NEXT(bd_cons); 3374 bd_prod = RX_BD_NEXT(bd_prod); 3375 bd_prod_fw = RX_BD_NEXT(bd_prod_fw); 3376 3377 /* pass the frame to the stack */ 3378 if (__predict_true(m != NULL)) { 3379 if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1); 3380 rx_pkts++; 3381 if_input(ifp, m); 3382 } 3383 3384 next_cqe: 3385 3386 sw_cq_prod = RCQ_NEXT(sw_cq_prod); 3387 sw_cq_cons = RCQ_NEXT(sw_cq_cons); 3388 3389 /* limit spinning on the queue */ 3390 if (rc != 0) 3391 break; 3392 3393 if (rx_pkts == sc->rx_budget) { 3394 fp->eth_q_stats.rx_budget_reached++; 3395 break; 3396 } 3397 } /* while work to do */ 3398 3399 fp->rx_bd_cons = bd_cons; 3400 fp->rx_bd_prod = bd_prod_fw; 3401 fp->rx_cq_cons = sw_cq_cons; 3402 fp->rx_cq_prod = sw_cq_prod; 3403 3404 /* Update producers */ 3405 bxe_update_rx_prod(sc, fp, bd_prod_fw, sw_cq_prod, fp->rx_sge_prod); 3406 3407 fp->eth_q_stats.rx_pkts += rx_pkts; 3408 fp->eth_q_stats.rx_calls++; 3409 3410 BXE_FP_RX_UNLOCK(fp); 3411 3412 return (sw_cq_cons != hw_cq_cons); 3413 } 3414 3415 static uint16_t 3416 bxe_free_tx_pkt(struct bxe_softc *sc, 3417 struct bxe_fastpath *fp, 3418 uint16_t idx) 3419 { 3420 struct bxe_sw_tx_bd *tx_buf = &fp->tx_mbuf_chain[idx]; 3421 struct eth_tx_start_bd *tx_start_bd; 3422 uint16_t bd_idx = TX_BD(tx_buf->first_bd); 3423 uint16_t new_cons; 3424 int nbd; 3425 3426 /* unmap the mbuf from non-paged memory */ 3427 bus_dmamap_unload(fp->tx_mbuf_tag, tx_buf->m_map); 3428 3429 tx_start_bd = &fp->tx_chain[bd_idx].start_bd; 3430 nbd = le16toh(tx_start_bd->nbd) - 1; 3431 3432 new_cons = (tx_buf->first_bd + nbd); 3433 3434 /* free the mbuf */ 3435 if (__predict_true(tx_buf->m != NULL)) { 3436 m_freem(tx_buf->m); 3437 fp->eth_q_stats.mbuf_alloc_tx--; 3438 } else { 3439 fp->eth_q_stats.tx_chain_lost_mbuf++; 3440 } 3441 3442 tx_buf->m = NULL; 3443 tx_buf->first_bd = 0; 3444 3445 return (new_cons); 3446 } 3447 3448 /* transmit timeout watchdog */ 3449 static int 3450 bxe_watchdog(struct bxe_softc *sc, 3451 struct bxe_fastpath *fp) 3452 { 3453 BXE_FP_TX_LOCK(fp); 3454 3455 if ((fp->watchdog_timer == 0) || (--fp->watchdog_timer)) { 3456 BXE_FP_TX_UNLOCK(fp); 3457 return (0); 3458 } 3459 3460 BLOGE(sc, "TX watchdog timeout on fp[%02d], resetting!\n", fp->index); 3461 if(sc->trigger_grcdump) { 3462 /* taking grcdump */ 3463 bxe_grc_dump(sc); 3464 } 3465 3466 BXE_FP_TX_UNLOCK(fp); 3467 3468 atomic_store_rel_long(&sc->chip_tq_flags, CHIP_TQ_REINIT); 3469 taskqueue_enqueue(sc->chip_tq, &sc->chip_tq_task); 3470 3471 return (-1); 3472 } 3473 3474 /* processes transmit completions */ 3475 static uint8_t 3476 bxe_txeof(struct bxe_softc *sc, 3477 struct bxe_fastpath *fp) 3478 { 3479 if_t ifp = sc->ifp; 3480 uint16_t bd_cons, hw_cons, sw_cons, pkt_cons; 3481 uint16_t tx_bd_avail; 3482 3483 BXE_FP_TX_LOCK_ASSERT(fp); 3484 3485 bd_cons = fp->tx_bd_cons; 3486 hw_cons = le16toh(*fp->tx_cons_sb); 3487 sw_cons = fp->tx_pkt_cons; 3488 3489 while (sw_cons != hw_cons) { 3490 pkt_cons = TX_BD(sw_cons); 3491 3492 BLOGD(sc, DBG_TX, 3493 "TX: fp[%d]: hw_cons=%u sw_cons=%u pkt_cons=%u\n", 3494 fp->index, hw_cons, sw_cons, pkt_cons); 3495 3496 bd_cons = bxe_free_tx_pkt(sc, fp, pkt_cons); 3497 3498 sw_cons++; 3499 } 3500 3501 fp->tx_pkt_cons = sw_cons; 3502 fp->tx_bd_cons = bd_cons; 3503 3504 BLOGD(sc, DBG_TX, 3505 "TX done: fp[%d]: hw_cons=%u sw_cons=%u sw_prod=%u\n", 3506 fp->index, hw_cons, fp->tx_pkt_cons, fp->tx_pkt_prod); 3507 3508 mb(); 3509 3510 tx_bd_avail = bxe_tx_avail(sc, fp); 3511 3512 if (tx_bd_avail < BXE_TX_CLEANUP_THRESHOLD) { 3513 if_setdrvflagbits(ifp, IFF_DRV_OACTIVE, 0); 3514 } else { 3515 if_setdrvflagbits(ifp, 0, IFF_DRV_OACTIVE); 3516 } 3517 3518 if (fp->tx_pkt_prod != fp->tx_pkt_cons) { 3519 /* reset the watchdog timer if there are pending transmits */ 3520 fp->watchdog_timer = BXE_TX_TIMEOUT; 3521 return (TRUE); 3522 } else { 3523 /* clear watchdog when there are no pending transmits */ 3524 fp->watchdog_timer = 0; 3525 return (FALSE); 3526 } 3527 } 3528 3529 static void 3530 bxe_drain_tx_queues(struct bxe_softc *sc) 3531 { 3532 struct bxe_fastpath *fp; 3533 int i, count; 3534 3535 /* wait until all TX fastpath tasks have completed */ 3536 for (i = 0; i < sc->num_queues; i++) { 3537 fp = &sc->fp[i]; 3538 3539 count = 1000; 3540 3541 while (bxe_has_tx_work(fp)) { 3542 3543 BXE_FP_TX_LOCK(fp); 3544 bxe_txeof(sc, fp); 3545 BXE_FP_TX_UNLOCK(fp); 3546 3547 if (count == 0) { 3548 BLOGE(sc, "Timeout waiting for fp[%d] " 3549 "transmits to complete!\n", i); 3550 bxe_panic(sc, ("tx drain failure\n")); 3551 return; 3552 } 3553 3554 count--; 3555 DELAY(1000); 3556 rmb(); 3557 } 3558 } 3559 3560 return; 3561 } 3562 3563 static int 3564 bxe_del_all_macs(struct bxe_softc *sc, 3565 struct ecore_vlan_mac_obj *mac_obj, 3566 int mac_type, 3567 uint8_t wait_for_comp) 3568 { 3569 unsigned long ramrod_flags = 0, vlan_mac_flags = 0; 3570 int rc; 3571 3572 /* wait for completion of requested */ 3573 if (wait_for_comp) { 3574 bxe_set_bit(RAMROD_COMP_WAIT, &ramrod_flags); 3575 } 3576 3577 /* Set the mac type of addresses we want to clear */ 3578 bxe_set_bit(mac_type, &vlan_mac_flags); 3579 3580 rc = mac_obj->delete_all(sc, mac_obj, &vlan_mac_flags, &ramrod_flags); 3581 if (rc < 0) { 3582 BLOGE(sc, "Failed to delete MACs (%d) mac_type %d wait_for_comp 0x%x\n", 3583 rc, mac_type, wait_for_comp); 3584 } 3585 3586 return (rc); 3587 } 3588 3589 static int 3590 bxe_fill_accept_flags(struct bxe_softc *sc, 3591 uint32_t rx_mode, 3592 unsigned long *rx_accept_flags, 3593 unsigned long *tx_accept_flags) 3594 { 3595 /* Clear the flags first */ 3596 *rx_accept_flags = 0; 3597 *tx_accept_flags = 0; 3598 3599 switch (rx_mode) { 3600 case BXE_RX_MODE_NONE: 3601 /* 3602 * 'drop all' supersedes any accept flags that may have been 3603 * passed to the function. 3604 */ 3605 break; 3606 3607 case BXE_RX_MODE_NORMAL: 3608 bxe_set_bit(ECORE_ACCEPT_UNICAST, rx_accept_flags); 3609 bxe_set_bit(ECORE_ACCEPT_MULTICAST, rx_accept_flags); 3610 bxe_set_bit(ECORE_ACCEPT_BROADCAST, rx_accept_flags); 3611 3612 /* internal switching mode */ 3613 bxe_set_bit(ECORE_ACCEPT_UNICAST, tx_accept_flags); 3614 bxe_set_bit(ECORE_ACCEPT_MULTICAST, tx_accept_flags); 3615 bxe_set_bit(ECORE_ACCEPT_BROADCAST, tx_accept_flags); 3616 3617 break; 3618 3619 case BXE_RX_MODE_ALLMULTI: 3620 bxe_set_bit(ECORE_ACCEPT_UNICAST, rx_accept_flags); 3621 bxe_set_bit(ECORE_ACCEPT_ALL_MULTICAST, rx_accept_flags); 3622 bxe_set_bit(ECORE_ACCEPT_BROADCAST, rx_accept_flags); 3623 3624 /* internal switching mode */ 3625 bxe_set_bit(ECORE_ACCEPT_UNICAST, tx_accept_flags); 3626 bxe_set_bit(ECORE_ACCEPT_ALL_MULTICAST, tx_accept_flags); 3627 bxe_set_bit(ECORE_ACCEPT_BROADCAST, tx_accept_flags); 3628 3629 break; 3630 3631 case BXE_RX_MODE_PROMISC: 3632 /* 3633 * According to deffinition of SI mode, iface in promisc mode 3634 * should receive matched and unmatched (in resolution of port) 3635 * unicast packets. 3636 */ 3637 bxe_set_bit(ECORE_ACCEPT_UNMATCHED, rx_accept_flags); 3638 bxe_set_bit(ECORE_ACCEPT_UNICAST, rx_accept_flags); 3639 bxe_set_bit(ECORE_ACCEPT_ALL_MULTICAST, rx_accept_flags); 3640 bxe_set_bit(ECORE_ACCEPT_BROADCAST, rx_accept_flags); 3641 3642 /* internal switching mode */ 3643 bxe_set_bit(ECORE_ACCEPT_ALL_MULTICAST, tx_accept_flags); 3644 bxe_set_bit(ECORE_ACCEPT_BROADCAST, tx_accept_flags); 3645 3646 if (IS_MF_SI(sc)) { 3647 bxe_set_bit(ECORE_ACCEPT_ALL_UNICAST, tx_accept_flags); 3648 } else { 3649 bxe_set_bit(ECORE_ACCEPT_UNICAST, tx_accept_flags); 3650 } 3651 3652 break; 3653 3654 default: 3655 BLOGE(sc, "Unknown rx_mode (0x%x)\n", rx_mode); 3656 return (-1); 3657 } 3658 3659 /* Set ACCEPT_ANY_VLAN as we do not enable filtering by VLAN */ 3660 if (rx_mode != BXE_RX_MODE_NONE) { 3661 bxe_set_bit(ECORE_ACCEPT_ANY_VLAN, rx_accept_flags); 3662 bxe_set_bit(ECORE_ACCEPT_ANY_VLAN, tx_accept_flags); 3663 } 3664 3665 return (0); 3666 } 3667 3668 static int 3669 bxe_set_q_rx_mode(struct bxe_softc *sc, 3670 uint8_t cl_id, 3671 unsigned long rx_mode_flags, 3672 unsigned long rx_accept_flags, 3673 unsigned long tx_accept_flags, 3674 unsigned long ramrod_flags) 3675 { 3676 struct ecore_rx_mode_ramrod_params ramrod_param; 3677 int rc; 3678 3679 memset(&ramrod_param, 0, sizeof(ramrod_param)); 3680 3681 /* Prepare ramrod parameters */ 3682 ramrod_param.cid = 0; 3683 ramrod_param.cl_id = cl_id; 3684 ramrod_param.rx_mode_obj = &sc->rx_mode_obj; 3685 ramrod_param.func_id = SC_FUNC(sc); 3686 3687 ramrod_param.pstate = &sc->sp_state; 3688 ramrod_param.state = ECORE_FILTER_RX_MODE_PENDING; 3689 3690 ramrod_param.rdata = BXE_SP(sc, rx_mode_rdata); 3691 ramrod_param.rdata_mapping = BXE_SP_MAPPING(sc, rx_mode_rdata); 3692 3693 bxe_set_bit(ECORE_FILTER_RX_MODE_PENDING, &sc->sp_state); 3694 3695 ramrod_param.ramrod_flags = ramrod_flags; 3696 ramrod_param.rx_mode_flags = rx_mode_flags; 3697 3698 ramrod_param.rx_accept_flags = rx_accept_flags; 3699 ramrod_param.tx_accept_flags = tx_accept_flags; 3700 3701 rc = ecore_config_rx_mode(sc, &ramrod_param); 3702 if (rc < 0) { 3703 BLOGE(sc, "Set rx_mode %d cli_id 0x%x rx_mode_flags 0x%x " 3704 "rx_accept_flags 0x%x tx_accept_flags 0x%x " 3705 "ramrod_flags 0x%x rc %d failed\n", sc->rx_mode, cl_id, 3706 (uint32_t)rx_mode_flags, (uint32_t)rx_accept_flags, 3707 (uint32_t)tx_accept_flags, (uint32_t)ramrod_flags, rc); 3708 return (rc); 3709 } 3710 3711 return (0); 3712 } 3713 3714 static int 3715 bxe_set_storm_rx_mode(struct bxe_softc *sc) 3716 { 3717 unsigned long rx_mode_flags = 0, ramrod_flags = 0; 3718 unsigned long rx_accept_flags = 0, tx_accept_flags = 0; 3719 int rc; 3720 3721 rc = bxe_fill_accept_flags(sc, sc->rx_mode, &rx_accept_flags, 3722 &tx_accept_flags); 3723 if (rc) { 3724 return (rc); 3725 } 3726 3727 bxe_set_bit(RAMROD_RX, &ramrod_flags); 3728 bxe_set_bit(RAMROD_TX, &ramrod_flags); 3729 3730 /* XXX ensure all fastpath have same cl_id and/or move it to bxe_softc */ 3731 return (bxe_set_q_rx_mode(sc, sc->fp[0].cl_id, rx_mode_flags, 3732 rx_accept_flags, tx_accept_flags, 3733 ramrod_flags)); 3734 } 3735 3736 /* returns the "mcp load_code" according to global load_count array */ 3737 static int 3738 bxe_nic_load_no_mcp(struct bxe_softc *sc) 3739 { 3740 int path = SC_PATH(sc); 3741 int port = SC_PORT(sc); 3742 3743 BLOGI(sc, "NO MCP - load counts[%d] %d, %d, %d\n", 3744 path, load_count[path][0], load_count[path][1], 3745 load_count[path][2]); 3746 load_count[path][0]++; 3747 load_count[path][1 + port]++; 3748 BLOGI(sc, "NO MCP - new load counts[%d] %d, %d, %d\n", 3749 path, load_count[path][0], load_count[path][1], 3750 load_count[path][2]); 3751 if (load_count[path][0] == 1) { 3752 return (FW_MSG_CODE_DRV_LOAD_COMMON); 3753 } else if (load_count[path][1 + port] == 1) { 3754 return (FW_MSG_CODE_DRV_LOAD_PORT); 3755 } else { 3756 return (FW_MSG_CODE_DRV_LOAD_FUNCTION); 3757 } 3758 } 3759 3760 /* returns the "mcp load_code" according to global load_count array */ 3761 static int 3762 bxe_nic_unload_no_mcp(struct bxe_softc *sc) 3763 { 3764 int port = SC_PORT(sc); 3765 int path = SC_PATH(sc); 3766 3767 BLOGI(sc, "NO MCP - load counts[%d] %d, %d, %d\n", 3768 path, load_count[path][0], load_count[path][1], 3769 load_count[path][2]); 3770 load_count[path][0]--; 3771 load_count[path][1 + port]--; 3772 BLOGI(sc, "NO MCP - new load counts[%d] %d, %d, %d\n", 3773 path, load_count[path][0], load_count[path][1], 3774 load_count[path][2]); 3775 if (load_count[path][0] == 0) { 3776 return (FW_MSG_CODE_DRV_UNLOAD_COMMON); 3777 } else if (load_count[path][1 + port] == 0) { 3778 return (FW_MSG_CODE_DRV_UNLOAD_PORT); 3779 } else { 3780 return (FW_MSG_CODE_DRV_UNLOAD_FUNCTION); 3781 } 3782 } 3783 3784 /* request unload mode from the MCP: COMMON, PORT or FUNCTION */ 3785 static uint32_t 3786 bxe_send_unload_req(struct bxe_softc *sc, 3787 int unload_mode) 3788 { 3789 uint32_t reset_code = 0; 3790 3791 /* Select the UNLOAD request mode */ 3792 if (unload_mode == UNLOAD_NORMAL) { 3793 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS; 3794 } else { 3795 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS; 3796 } 3797 3798 /* Send the request to the MCP */ 3799 if (!BXE_NOMCP(sc)) { 3800 reset_code = bxe_fw_command(sc, reset_code, 0); 3801 } else { 3802 reset_code = bxe_nic_unload_no_mcp(sc); 3803 } 3804 3805 return (reset_code); 3806 } 3807 3808 /* send UNLOAD_DONE command to the MCP */ 3809 static void 3810 bxe_send_unload_done(struct bxe_softc *sc, 3811 uint8_t keep_link) 3812 { 3813 uint32_t reset_param = 3814 keep_link ? DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET : 0; 3815 3816 /* Report UNLOAD_DONE to MCP */ 3817 if (!BXE_NOMCP(sc)) { 3818 bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_DONE, reset_param); 3819 } 3820 } 3821 3822 static int 3823 bxe_func_wait_started(struct bxe_softc *sc) 3824 { 3825 int tout = 50; 3826 3827 if (!sc->port.pmf) { 3828 return (0); 3829 } 3830 3831 /* 3832 * (assumption: No Attention from MCP at this stage) 3833 * PMF probably in the middle of TX disable/enable transaction 3834 * 1. Sync IRS for default SB 3835 * 2. Sync SP queue - this guarantees us that attention handling started 3836 * 3. Wait, that TX disable/enable transaction completes 3837 * 3838 * 1+2 guarantee that if DCBX attention was scheduled it already changed 3839 * pending bit of transaction from STARTED-->TX_STOPPED, if we already 3840 * received completion for the transaction the state is TX_STOPPED. 3841 * State will return to STARTED after completion of TX_STOPPED-->STARTED 3842 * transaction. 3843 */ 3844 3845 /* XXX make sure default SB ISR is done */ 3846 /* need a way to synchronize an irq (intr_mtx?) */ 3847 3848 /* XXX flush any work queues */ 3849 3850 while (ecore_func_get_state(sc, &sc->func_obj) != 3851 ECORE_F_STATE_STARTED && tout--) { 3852 DELAY(20000); 3853 } 3854 3855 if (ecore_func_get_state(sc, &sc->func_obj) != ECORE_F_STATE_STARTED) { 3856 /* 3857 * Failed to complete the transaction in a "good way" 3858 * Force both transactions with CLR bit. 3859 */ 3860 struct ecore_func_state_params func_params = { NULL }; 3861 3862 BLOGE(sc, "Unexpected function state! " 3863 "Forcing STARTED-->TX_STOPPED-->STARTED\n"); 3864 3865 func_params.f_obj = &sc->func_obj; 3866 bxe_set_bit(RAMROD_DRV_CLR_ONLY, &func_params.ramrod_flags); 3867 3868 /* STARTED-->TX_STOPPED */ 3869 func_params.cmd = ECORE_F_CMD_TX_STOP; 3870 ecore_func_state_change(sc, &func_params); 3871 3872 /* TX_STOPPED-->STARTED */ 3873 func_params.cmd = ECORE_F_CMD_TX_START; 3874 return (ecore_func_state_change(sc, &func_params)); 3875 } 3876 3877 return (0); 3878 } 3879 3880 static int 3881 bxe_stop_queue(struct bxe_softc *sc, 3882 int index) 3883 { 3884 struct bxe_fastpath *fp = &sc->fp[index]; 3885 struct ecore_queue_state_params q_params = { NULL }; 3886 int rc; 3887 3888 BLOGD(sc, DBG_LOAD, "stopping queue %d cid %d\n", index, fp->index); 3889 3890 q_params.q_obj = &sc->sp_objs[fp->index].q_obj; 3891 /* We want to wait for completion in this context */ 3892 bxe_set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags); 3893 3894 /* Stop the primary connection: */ 3895 3896 /* ...halt the connection */ 3897 q_params.cmd = ECORE_Q_CMD_HALT; 3898 rc = ecore_queue_state_change(sc, &q_params); 3899 if (rc) { 3900 return (rc); 3901 } 3902 3903 /* ...terminate the connection */ 3904 q_params.cmd = ECORE_Q_CMD_TERMINATE; 3905 memset(&q_params.params.terminate, 0, sizeof(q_params.params.terminate)); 3906 q_params.params.terminate.cid_index = FIRST_TX_COS_INDEX; 3907 rc = ecore_queue_state_change(sc, &q_params); 3908 if (rc) { 3909 return (rc); 3910 } 3911 3912 /* ...delete cfc entry */ 3913 q_params.cmd = ECORE_Q_CMD_CFC_DEL; 3914 memset(&q_params.params.cfc_del, 0, sizeof(q_params.params.cfc_del)); 3915 q_params.params.cfc_del.cid_index = FIRST_TX_COS_INDEX; 3916 return (ecore_queue_state_change(sc, &q_params)); 3917 } 3918 3919 /* wait for the outstanding SP commands */ 3920 static inline uint8_t 3921 bxe_wait_sp_comp(struct bxe_softc *sc, 3922 unsigned long mask) 3923 { 3924 unsigned long tmp; 3925 int tout = 5000; /* wait for 5 secs tops */ 3926 3927 while (tout--) { 3928 mb(); 3929 if (!(atomic_load_acq_long(&sc->sp_state) & mask)) { 3930 return (TRUE); 3931 } 3932 3933 DELAY(1000); 3934 } 3935 3936 mb(); 3937 3938 tmp = atomic_load_acq_long(&sc->sp_state); 3939 if (tmp & mask) { 3940 BLOGE(sc, "Filtering completion timed out: " 3941 "sp_state 0x%lx, mask 0x%lx\n", 3942 tmp, mask); 3943 return (FALSE); 3944 } 3945 3946 return (FALSE); 3947 } 3948 3949 static int 3950 bxe_func_stop(struct bxe_softc *sc) 3951 { 3952 struct ecore_func_state_params func_params = { NULL }; 3953 int rc; 3954 3955 /* prepare parameters for function state transitions */ 3956 bxe_set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags); 3957 func_params.f_obj = &sc->func_obj; 3958 func_params.cmd = ECORE_F_CMD_STOP; 3959 3960 /* 3961 * Try to stop the function the 'good way'. If it fails (in case 3962 * of a parity error during bxe_chip_cleanup()) and we are 3963 * not in a debug mode, perform a state transaction in order to 3964 * enable further HW_RESET transaction. 3965 */ 3966 rc = ecore_func_state_change(sc, &func_params); 3967 if (rc) { 3968 BLOGE(sc, "FUNC_STOP ramrod failed. " 3969 "Running a dry transaction (%d)\n", rc); 3970 bxe_set_bit(RAMROD_DRV_CLR_ONLY, &func_params.ramrod_flags); 3971 return (ecore_func_state_change(sc, &func_params)); 3972 } 3973 3974 return (0); 3975 } 3976 3977 static int 3978 bxe_reset_hw(struct bxe_softc *sc, 3979 uint32_t load_code) 3980 { 3981 struct ecore_func_state_params func_params = { NULL }; 3982 3983 /* Prepare parameters for function state transitions */ 3984 bxe_set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags); 3985 3986 func_params.f_obj = &sc->func_obj; 3987 func_params.cmd = ECORE_F_CMD_HW_RESET; 3988 3989 func_params.params.hw_init.load_phase = load_code; 3990 3991 return (ecore_func_state_change(sc, &func_params)); 3992 } 3993 3994 static void 3995 bxe_int_disable_sync(struct bxe_softc *sc, 3996 int disable_hw) 3997 { 3998 if (disable_hw) { 3999 /* prevent the HW from sending interrupts */ 4000 bxe_int_disable(sc); 4001 } 4002 4003 /* XXX need a way to synchronize ALL irqs (intr_mtx?) */ 4004 /* make sure all ISRs are done */ 4005 4006 /* XXX make sure sp_task is not running */ 4007 /* cancel and flush work queues */ 4008 } 4009 4010 static void 4011 bxe_chip_cleanup(struct bxe_softc *sc, 4012 uint32_t unload_mode, 4013 uint8_t keep_link) 4014 { 4015 int port = SC_PORT(sc); 4016 struct ecore_mcast_ramrod_params rparam = { NULL }; 4017 uint32_t reset_code; 4018 int i, rc = 0; 4019 4020 bxe_drain_tx_queues(sc); 4021 4022 /* give HW time to discard old tx messages */ 4023 DELAY(1000); 4024 4025 /* Clean all ETH MACs */ 4026 rc = bxe_del_all_macs(sc, &sc->sp_objs[0].mac_obj, ECORE_ETH_MAC, FALSE); 4027 if (rc < 0) { 4028 BLOGE(sc, "Failed to delete all ETH MACs (%d)\n", rc); 4029 } 4030 4031 /* Clean up UC list */ 4032 rc = bxe_del_all_macs(sc, &sc->sp_objs[0].mac_obj, ECORE_UC_LIST_MAC, TRUE); 4033 if (rc < 0) { 4034 BLOGE(sc, "Failed to delete UC MACs list (%d)\n", rc); 4035 } 4036 4037 /* Disable LLH */ 4038 if (!CHIP_IS_E1(sc)) { 4039 REG_WR(sc, NIG_REG_LLH0_FUNC_EN + port*8, 0); 4040 } 4041 4042 /* Set "drop all" to stop Rx */ 4043 4044 /* 4045 * We need to take the BXE_MCAST_LOCK() here in order to prevent 4046 * a race between the completion code and this code. 4047 */ 4048 BXE_MCAST_LOCK(sc); 4049 4050 if (bxe_test_bit(ECORE_FILTER_RX_MODE_PENDING, &sc->sp_state)) { 4051 bxe_set_bit(ECORE_FILTER_RX_MODE_SCHED, &sc->sp_state); 4052 } else { 4053 bxe_set_storm_rx_mode(sc); 4054 } 4055 4056 /* Clean up multicast configuration */ 4057 rparam.mcast_obj = &sc->mcast_obj; 4058 rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_DEL); 4059 if (rc < 0) { 4060 BLOGE(sc, "Failed to send DEL MCAST command (%d)\n", rc); 4061 } 4062 4063 BXE_MCAST_UNLOCK(sc); 4064 4065 // XXX bxe_iov_chip_cleanup(sc); 4066 4067 /* 4068 * Send the UNLOAD_REQUEST to the MCP. This will return if 4069 * this function should perform FUNCTION, PORT, or COMMON HW 4070 * reset. 4071 */ 4072 reset_code = bxe_send_unload_req(sc, unload_mode); 4073 4074 /* 4075 * (assumption: No Attention from MCP at this stage) 4076 * PMF probably in the middle of TX disable/enable transaction 4077 */ 4078 rc = bxe_func_wait_started(sc); 4079 if (rc) { 4080 BLOGE(sc, "bxe_func_wait_started failed (%d)\n", rc); 4081 } 4082 4083 /* 4084 * Close multi and leading connections 4085 * Completions for ramrods are collected in a synchronous way 4086 */ 4087 for (i = 0; i < sc->num_queues; i++) { 4088 if (bxe_stop_queue(sc, i)) { 4089 goto unload_error; 4090 } 4091 } 4092 4093 /* 4094 * If SP settings didn't get completed so far - something 4095 * very wrong has happen. 4096 */ 4097 if (!bxe_wait_sp_comp(sc, ~0x0UL)) { 4098 BLOGE(sc, "Common slow path ramrods got stuck!(%d)\n", rc); 4099 } 4100 4101 unload_error: 4102 4103 rc = bxe_func_stop(sc); 4104 if (rc) { 4105 BLOGE(sc, "Function stop failed!(%d)\n", rc); 4106 } 4107 4108 /* disable HW interrupts */ 4109 bxe_int_disable_sync(sc, TRUE); 4110 4111 /* detach interrupts */ 4112 bxe_interrupt_detach(sc); 4113 4114 /* Reset the chip */ 4115 rc = bxe_reset_hw(sc, reset_code); 4116 if (rc) { 4117 BLOGE(sc, "Hardware reset failed(%d)\n", rc); 4118 } 4119 4120 /* Report UNLOAD_DONE to MCP */ 4121 bxe_send_unload_done(sc, keep_link); 4122 } 4123 4124 static void 4125 bxe_disable_close_the_gate(struct bxe_softc *sc) 4126 { 4127 uint32_t val; 4128 int port = SC_PORT(sc); 4129 4130 BLOGD(sc, DBG_LOAD, 4131 "Disabling 'close the gates'\n"); 4132 4133 if (CHIP_IS_E1(sc)) { 4134 uint32_t addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 : 4135 MISC_REG_AEU_MASK_ATTN_FUNC_0; 4136 val = REG_RD(sc, addr); 4137 val &= ~(0x300); 4138 REG_WR(sc, addr, val); 4139 } else { 4140 val = REG_RD(sc, MISC_REG_AEU_GENERAL_MASK); 4141 val &= ~(MISC_AEU_GENERAL_MASK_REG_AEU_PXP_CLOSE_MASK | 4142 MISC_AEU_GENERAL_MASK_REG_AEU_NIG_CLOSE_MASK); 4143 REG_WR(sc, MISC_REG_AEU_GENERAL_MASK, val); 4144 } 4145 } 4146 4147 /* 4148 * Cleans the object that have internal lists without sending 4149 * ramrods. Should be run when interrutps are disabled. 4150 */ 4151 static void 4152 bxe_squeeze_objects(struct bxe_softc *sc) 4153 { 4154 unsigned long ramrod_flags = 0, vlan_mac_flags = 0; 4155 struct ecore_mcast_ramrod_params rparam = { NULL }; 4156 struct ecore_vlan_mac_obj *mac_obj = &sc->sp_objs->mac_obj; 4157 int rc; 4158 4159 /* Cleanup MACs' object first... */ 4160 4161 /* Wait for completion of requested */ 4162 bxe_set_bit(RAMROD_COMP_WAIT, &ramrod_flags); 4163 /* Perform a dry cleanup */ 4164 bxe_set_bit(RAMROD_DRV_CLR_ONLY, &ramrod_flags); 4165 4166 /* Clean ETH primary MAC */ 4167 bxe_set_bit(ECORE_ETH_MAC, &vlan_mac_flags); 4168 rc = mac_obj->delete_all(sc, &sc->sp_objs->mac_obj, &vlan_mac_flags, 4169 &ramrod_flags); 4170 if (rc != 0) { 4171 BLOGE(sc, "Failed to clean ETH MACs (%d)\n", rc); 4172 } 4173 4174 /* Cleanup UC list */ 4175 vlan_mac_flags = 0; 4176 bxe_set_bit(ECORE_UC_LIST_MAC, &vlan_mac_flags); 4177 rc = mac_obj->delete_all(sc, mac_obj, &vlan_mac_flags, 4178 &ramrod_flags); 4179 if (rc != 0) { 4180 BLOGE(sc, "Failed to clean UC list MACs (%d)\n", rc); 4181 } 4182 4183 /* Now clean mcast object... */ 4184 4185 rparam.mcast_obj = &sc->mcast_obj; 4186 bxe_set_bit(RAMROD_DRV_CLR_ONLY, &rparam.ramrod_flags); 4187 4188 /* Add a DEL command... */ 4189 rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_DEL); 4190 if (rc < 0) { 4191 BLOGE(sc, "Failed to send DEL MCAST command (%d)\n", rc); 4192 } 4193 4194 /* now wait until all pending commands are cleared */ 4195 4196 rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_CONT); 4197 while (rc != 0) { 4198 if (rc < 0) { 4199 BLOGE(sc, "Failed to clean MCAST object (%d)\n", rc); 4200 return; 4201 } 4202 4203 rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_CONT); 4204 } 4205 } 4206 4207 /* stop the controller */ 4208 static __noinline int 4209 bxe_nic_unload(struct bxe_softc *sc, 4210 uint32_t unload_mode, 4211 uint8_t keep_link) 4212 { 4213 uint8_t global = FALSE; 4214 uint32_t val; 4215 int i; 4216 4217 BXE_CORE_LOCK_ASSERT(sc); 4218 4219 if_setdrvflagbits(sc->ifp, 0, IFF_DRV_RUNNING); 4220 4221 for (i = 0; i < sc->num_queues; i++) { 4222 struct bxe_fastpath *fp; 4223 4224 fp = &sc->fp[i]; 4225 BXE_FP_TX_LOCK(fp); 4226 BXE_FP_TX_UNLOCK(fp); 4227 } 4228 4229 BLOGD(sc, DBG_LOAD, "Starting NIC unload...\n"); 4230 4231 /* mark driver as unloaded in shmem2 */ 4232 if (IS_PF(sc) && SHMEM2_HAS(sc, drv_capabilities_flag)) { 4233 val = SHMEM2_RD(sc, drv_capabilities_flag[SC_FW_MB_IDX(sc)]); 4234 SHMEM2_WR(sc, drv_capabilities_flag[SC_FW_MB_IDX(sc)], 4235 val & ~DRV_FLAGS_CAPABILITIES_LOADED_L2); 4236 } 4237 4238 if (IS_PF(sc) && sc->recovery_state != BXE_RECOVERY_DONE && 4239 (sc->state == BXE_STATE_CLOSED || sc->state == BXE_STATE_ERROR)) { 4240 /* 4241 * We can get here if the driver has been unloaded 4242 * during parity error recovery and is either waiting for a 4243 * leader to complete or for other functions to unload and 4244 * then ifconfig down has been issued. In this case we want to 4245 * unload and let other functions to complete a recovery 4246 * process. 4247 */ 4248 sc->recovery_state = BXE_RECOVERY_DONE; 4249 sc->is_leader = 0; 4250 bxe_release_leader_lock(sc); 4251 mb(); 4252 4253 BLOGD(sc, DBG_LOAD, "Releasing a leadership...\n"); 4254 BLOGE(sc, "Can't unload in closed or error state recover_state 0x%x" 4255 " state = 0x%x\n", sc->recovery_state, sc->state); 4256 return (-1); 4257 } 4258 4259 /* 4260 * Nothing to do during unload if previous bxe_nic_load() 4261 * did not completed successfully - all resourses are released. 4262 */ 4263 if ((sc->state == BXE_STATE_CLOSED) || 4264 (sc->state == BXE_STATE_ERROR)) { 4265 return (0); 4266 } 4267 4268 sc->state = BXE_STATE_CLOSING_WAITING_HALT; 4269 mb(); 4270 4271 /* stop tx */ 4272 bxe_tx_disable(sc); 4273 4274 sc->rx_mode = BXE_RX_MODE_NONE; 4275 /* XXX set rx mode ??? */ 4276 4277 if (IS_PF(sc) && !sc->grcdump_done) { 4278 /* set ALWAYS_ALIVE bit in shmem */ 4279 sc->fw_drv_pulse_wr_seq |= DRV_PULSE_ALWAYS_ALIVE; 4280 4281 bxe_drv_pulse(sc); 4282 4283 bxe_stats_handle(sc, STATS_EVENT_STOP); 4284 bxe_save_statistics(sc); 4285 } 4286 4287 /* wait till consumers catch up with producers in all queues */ 4288 bxe_drain_tx_queues(sc); 4289 4290 /* if VF indicate to PF this function is going down (PF will delete sp 4291 * elements and clear initializations 4292 */ 4293 if (IS_VF(sc)) { 4294 ; /* bxe_vfpf_close_vf(sc); */ 4295 } else if (unload_mode != UNLOAD_RECOVERY) { 4296 /* if this is a normal/close unload need to clean up chip */ 4297 if (!sc->grcdump_done) 4298 bxe_chip_cleanup(sc, unload_mode, keep_link); 4299 } else { 4300 /* Send the UNLOAD_REQUEST to the MCP */ 4301 bxe_send_unload_req(sc, unload_mode); 4302 4303 /* 4304 * Prevent transactions to host from the functions on the 4305 * engine that doesn't reset global blocks in case of global 4306 * attention once gloabl blocks are reset and gates are opened 4307 * (the engine which leader will perform the recovery 4308 * last). 4309 */ 4310 if (!CHIP_IS_E1x(sc)) { 4311 bxe_pf_disable(sc); 4312 } 4313 4314 /* disable HW interrupts */ 4315 bxe_int_disable_sync(sc, TRUE); 4316 4317 /* detach interrupts */ 4318 bxe_interrupt_detach(sc); 4319 4320 /* Report UNLOAD_DONE to MCP */ 4321 bxe_send_unload_done(sc, FALSE); 4322 } 4323 4324 /* 4325 * At this stage no more interrupts will arrive so we may safely clean 4326 * the queue'able objects here in case they failed to get cleaned so far. 4327 */ 4328 if (IS_PF(sc)) { 4329 bxe_squeeze_objects(sc); 4330 } 4331 4332 /* There should be no more pending SP commands at this stage */ 4333 sc->sp_state = 0; 4334 4335 sc->port.pmf = 0; 4336 4337 bxe_free_fp_buffers(sc); 4338 4339 if (IS_PF(sc)) { 4340 bxe_free_mem(sc); 4341 } 4342 4343 bxe_free_fw_stats_mem(sc); 4344 4345 sc->state = BXE_STATE_CLOSED; 4346 4347 /* 4348 * Check if there are pending parity attentions. If there are - set 4349 * RECOVERY_IN_PROGRESS. 4350 */ 4351 if (IS_PF(sc) && bxe_chk_parity_attn(sc, &global, FALSE)) { 4352 bxe_set_reset_in_progress(sc); 4353 4354 /* Set RESET_IS_GLOBAL if needed */ 4355 if (global) { 4356 bxe_set_reset_global(sc); 4357 } 4358 } 4359 4360 /* 4361 * The last driver must disable a "close the gate" if there is no 4362 * parity attention or "process kill" pending. 4363 */ 4364 if (IS_PF(sc) && !bxe_clear_pf_load(sc) && 4365 bxe_reset_is_done(sc, SC_PATH(sc))) { 4366 bxe_disable_close_the_gate(sc); 4367 } 4368 4369 BLOGD(sc, DBG_LOAD, "Ended NIC unload\n"); 4370 4371 return (0); 4372 } 4373 4374 /* 4375 * Called by the OS to set various media options (i.e. link, speed, etc.) when 4376 * the user runs "ifconfig bxe media ..." or "ifconfig bxe mediaopt ...". 4377 */ 4378 static int 4379 bxe_ifmedia_update(struct ifnet *ifp) 4380 { 4381 struct bxe_softc *sc = (struct bxe_softc *)if_getsoftc(ifp); 4382 struct ifmedia *ifm; 4383 4384 ifm = &sc->ifmedia; 4385 4386 /* We only support Ethernet media type. */ 4387 if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER) { 4388 return (EINVAL); 4389 } 4390 4391 switch (IFM_SUBTYPE(ifm->ifm_media)) { 4392 case IFM_AUTO: 4393 break; 4394 case IFM_10G_CX4: 4395 case IFM_10G_SR: 4396 case IFM_10G_T: 4397 case IFM_10G_TWINAX: 4398 default: 4399 /* We don't support changing the media type. */ 4400 BLOGD(sc, DBG_LOAD, "Invalid media type (%d)\n", 4401 IFM_SUBTYPE(ifm->ifm_media)); 4402 return (EINVAL); 4403 } 4404 4405 return (0); 4406 } 4407 4408 /* 4409 * Called by the OS to get the current media status (i.e. link, speed, etc.). 4410 */ 4411 static void 4412 bxe_ifmedia_status(struct ifnet *ifp, struct ifmediareq *ifmr) 4413 { 4414 struct bxe_softc *sc = if_getsoftc(ifp); 4415 4416 /* Report link down if the driver isn't running. */ 4417 if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) == 0) { 4418 ifmr->ifm_active |= IFM_NONE; 4419 return; 4420 } 4421 4422 /* Setup the default interface info. */ 4423 ifmr->ifm_status = IFM_AVALID; 4424 ifmr->ifm_active = IFM_ETHER; 4425 4426 if (sc->link_vars.link_up) { 4427 ifmr->ifm_status |= IFM_ACTIVE; 4428 } else { 4429 ifmr->ifm_active |= IFM_NONE; 4430 return; 4431 } 4432 4433 ifmr->ifm_active |= sc->media; 4434 4435 if (sc->link_vars.duplex == DUPLEX_FULL) { 4436 ifmr->ifm_active |= IFM_FDX; 4437 } else { 4438 ifmr->ifm_active |= IFM_HDX; 4439 } 4440 } 4441 4442 static void 4443 bxe_handle_chip_tq(void *context, 4444 int pending) 4445 { 4446 struct bxe_softc *sc = (struct bxe_softc *)context; 4447 long work = atomic_load_acq_long(&sc->chip_tq_flags); 4448 4449 switch (work) 4450 { 4451 4452 case CHIP_TQ_REINIT: 4453 if (if_getdrvflags(sc->ifp) & IFF_DRV_RUNNING) { 4454 /* restart the interface */ 4455 BLOGD(sc, DBG_LOAD, "Restarting the interface...\n"); 4456 bxe_periodic_stop(sc); 4457 BXE_CORE_LOCK(sc); 4458 bxe_stop_locked(sc); 4459 bxe_init_locked(sc); 4460 BXE_CORE_UNLOCK(sc); 4461 } 4462 break; 4463 4464 default: 4465 break; 4466 } 4467 } 4468 4469 /* 4470 * Handles any IOCTL calls from the operating system. 4471 * 4472 * Returns: 4473 * 0 = Success, >0 Failure 4474 */ 4475 static int 4476 bxe_ioctl(if_t ifp, 4477 u_long command, 4478 caddr_t data) 4479 { 4480 struct bxe_softc *sc = if_getsoftc(ifp); 4481 struct ifreq *ifr = (struct ifreq *)data; 4482 int mask = 0; 4483 int reinit = 0; 4484 int error = 0; 4485 4486 int mtu_min = (ETH_MIN_PACKET_SIZE - ETH_HLEN); 4487 int mtu_max = (MJUM9BYTES - ETH_OVERHEAD - IP_HEADER_ALIGNMENT_PADDING); 4488 4489 switch (command) 4490 { 4491 case SIOCSIFMTU: 4492 BLOGD(sc, DBG_IOCTL, "Received SIOCSIFMTU ioctl (mtu=%d)\n", 4493 ifr->ifr_mtu); 4494 4495 if (sc->mtu == ifr->ifr_mtu) { 4496 /* nothing to change */ 4497 break; 4498 } 4499 4500 if ((ifr->ifr_mtu < mtu_min) || (ifr->ifr_mtu > mtu_max)) { 4501 BLOGE(sc, "Unsupported MTU size %d (range is %d-%d)\n", 4502 ifr->ifr_mtu, mtu_min, mtu_max); 4503 error = EINVAL; 4504 break; 4505 } 4506 4507 atomic_store_rel_int((volatile unsigned int *)&sc->mtu, 4508 (unsigned long)ifr->ifr_mtu); 4509 /* 4510 atomic_store_rel_long((volatile unsigned long *)&if_getmtu(ifp), 4511 (unsigned long)ifr->ifr_mtu); 4512 XXX - Not sure why it needs to be atomic 4513 */ 4514 if_setmtu(ifp, ifr->ifr_mtu); 4515 reinit = 1; 4516 break; 4517 4518 case SIOCSIFFLAGS: 4519 /* toggle the interface state up or down */ 4520 BLOGD(sc, DBG_IOCTL, "Received SIOCSIFFLAGS ioctl\n"); 4521 4522 BXE_CORE_LOCK(sc); 4523 /* check if the interface is up */ 4524 if (if_getflags(ifp) & IFF_UP) { 4525 if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) { 4526 /* set the receive mode flags */ 4527 bxe_set_rx_mode(sc); 4528 } else if(sc->state != BXE_STATE_DISABLED) { 4529 bxe_init_locked(sc); 4530 } 4531 } else { 4532 if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) { 4533 bxe_periodic_stop(sc); 4534 bxe_stop_locked(sc); 4535 } 4536 } 4537 BXE_CORE_UNLOCK(sc); 4538 4539 break; 4540 4541 case SIOCADDMULTI: 4542 case SIOCDELMULTI: 4543 /* add/delete multicast addresses */ 4544 BLOGD(sc, DBG_IOCTL, "Received SIOCADDMULTI/SIOCDELMULTI ioctl\n"); 4545 4546 /* check if the interface is up */ 4547 if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) { 4548 /* set the receive mode flags */ 4549 BXE_CORE_LOCK(sc); 4550 bxe_set_rx_mode(sc); 4551 BXE_CORE_UNLOCK(sc); 4552 } 4553 4554 break; 4555 4556 case SIOCSIFCAP: 4557 /* find out which capabilities have changed */ 4558 mask = (ifr->ifr_reqcap ^ if_getcapenable(ifp)); 4559 4560 BLOGD(sc, DBG_IOCTL, "Received SIOCSIFCAP ioctl (mask=0x%08x)\n", 4561 mask); 4562 4563 /* toggle the LRO capabilites enable flag */ 4564 if (mask & IFCAP_LRO) { 4565 if_togglecapenable(ifp, IFCAP_LRO); 4566 BLOGD(sc, DBG_IOCTL, "Turning LRO %s\n", 4567 (if_getcapenable(ifp) & IFCAP_LRO) ? "ON" : "OFF"); 4568 reinit = 1; 4569 } 4570 4571 /* toggle the TXCSUM checksum capabilites enable flag */ 4572 if (mask & IFCAP_TXCSUM) { 4573 if_togglecapenable(ifp, IFCAP_TXCSUM); 4574 BLOGD(sc, DBG_IOCTL, "Turning TXCSUM %s\n", 4575 (if_getcapenable(ifp) & IFCAP_TXCSUM) ? "ON" : "OFF"); 4576 if (if_getcapenable(ifp) & IFCAP_TXCSUM) { 4577 if_sethwassistbits(ifp, (CSUM_IP | 4578 CSUM_TCP | 4579 CSUM_UDP | 4580 CSUM_TSO | 4581 CSUM_TCP_IPV6 | 4582 CSUM_UDP_IPV6), 0); 4583 } else { 4584 if_clearhwassist(ifp); /* XXX */ 4585 } 4586 } 4587 4588 /* toggle the RXCSUM checksum capabilities enable flag */ 4589 if (mask & IFCAP_RXCSUM) { 4590 if_togglecapenable(ifp, IFCAP_RXCSUM); 4591 BLOGD(sc, DBG_IOCTL, "Turning RXCSUM %s\n", 4592 (if_getcapenable(ifp) & IFCAP_RXCSUM) ? "ON" : "OFF"); 4593 if (if_getcapenable(ifp) & IFCAP_RXCSUM) { 4594 if_sethwassistbits(ifp, (CSUM_IP | 4595 CSUM_TCP | 4596 CSUM_UDP | 4597 CSUM_TSO | 4598 CSUM_TCP_IPV6 | 4599 CSUM_UDP_IPV6), 0); 4600 } else { 4601 if_clearhwassist(ifp); /* XXX */ 4602 } 4603 } 4604 4605 /* toggle TSO4 capabilities enabled flag */ 4606 if (mask & IFCAP_TSO4) { 4607 if_togglecapenable(ifp, IFCAP_TSO4); 4608 BLOGD(sc, DBG_IOCTL, "Turning TSO4 %s\n", 4609 (if_getcapenable(ifp) & IFCAP_TSO4) ? "ON" : "OFF"); 4610 } 4611 4612 /* toggle TSO6 capabilities enabled flag */ 4613 if (mask & IFCAP_TSO6) { 4614 if_togglecapenable(ifp, IFCAP_TSO6); 4615 BLOGD(sc, DBG_IOCTL, "Turning TSO6 %s\n", 4616 (if_getcapenable(ifp) & IFCAP_TSO6) ? "ON" : "OFF"); 4617 } 4618 4619 /* toggle VLAN_HWTSO capabilities enabled flag */ 4620 if (mask & IFCAP_VLAN_HWTSO) { 4621 4622 if_togglecapenable(ifp, IFCAP_VLAN_HWTSO); 4623 BLOGD(sc, DBG_IOCTL, "Turning VLAN_HWTSO %s\n", 4624 (if_getcapenable(ifp) & IFCAP_VLAN_HWTSO) ? "ON" : "OFF"); 4625 } 4626 4627 /* toggle VLAN_HWCSUM capabilities enabled flag */ 4628 if (mask & IFCAP_VLAN_HWCSUM) { 4629 /* XXX investigate this... */ 4630 BLOGE(sc, "Changing VLAN_HWCSUM is not supported!\n"); 4631 error = EINVAL; 4632 } 4633 4634 /* toggle VLAN_MTU capabilities enable flag */ 4635 if (mask & IFCAP_VLAN_MTU) { 4636 /* XXX investigate this... */ 4637 BLOGE(sc, "Changing VLAN_MTU is not supported!\n"); 4638 error = EINVAL; 4639 } 4640 4641 /* toggle VLAN_HWTAGGING capabilities enabled flag */ 4642 if (mask & IFCAP_VLAN_HWTAGGING) { 4643 /* XXX investigate this... */ 4644 BLOGE(sc, "Changing VLAN_HWTAGGING is not supported!\n"); 4645 error = EINVAL; 4646 } 4647 4648 /* toggle VLAN_HWFILTER capabilities enabled flag */ 4649 if (mask & IFCAP_VLAN_HWFILTER) { 4650 /* XXX investigate this... */ 4651 BLOGE(sc, "Changing VLAN_HWFILTER is not supported!\n"); 4652 error = EINVAL; 4653 } 4654 4655 /* XXX not yet... 4656 * IFCAP_WOL_MAGIC 4657 */ 4658 4659 break; 4660 4661 case SIOCSIFMEDIA: 4662 case SIOCGIFMEDIA: 4663 /* set/get interface media */ 4664 BLOGD(sc, DBG_IOCTL, 4665 "Received SIOCSIFMEDIA/SIOCGIFMEDIA ioctl (cmd=%lu)\n", 4666 (command & 0xff)); 4667 error = ifmedia_ioctl(ifp, ifr, &sc->ifmedia, command); 4668 break; 4669 4670 default: 4671 BLOGD(sc, DBG_IOCTL, "Received Unknown Ioctl (cmd=%lu)\n", 4672 (command & 0xff)); 4673 error = ether_ioctl(ifp, command, data); 4674 break; 4675 } 4676 4677 if (reinit && (if_getdrvflags(sc->ifp) & IFF_DRV_RUNNING)) { 4678 BLOGD(sc, DBG_LOAD | DBG_IOCTL, 4679 "Re-initializing hardware from IOCTL change\n"); 4680 bxe_periodic_stop(sc); 4681 BXE_CORE_LOCK(sc); 4682 bxe_stop_locked(sc); 4683 bxe_init_locked(sc); 4684 BXE_CORE_UNLOCK(sc); 4685 } 4686 4687 return (error); 4688 } 4689 4690 static __noinline void 4691 bxe_dump_mbuf(struct bxe_softc *sc, 4692 struct mbuf *m, 4693 uint8_t contents) 4694 { 4695 char * type; 4696 int i = 0; 4697 4698 if (!(sc->debug & DBG_MBUF)) { 4699 return; 4700 } 4701 4702 if (m == NULL) { 4703 BLOGD(sc, DBG_MBUF, "mbuf: null pointer\n"); 4704 return; 4705 } 4706 4707 while (m) { 4708 4709 #if __FreeBSD_version >= 1000000 4710 BLOGD(sc, DBG_MBUF, 4711 "%02d: mbuf=%p m_len=%d m_flags=0x%b m_data=%p\n", 4712 i, m, m->m_len, m->m_flags, M_FLAG_BITS, m->m_data); 4713 4714 if (m->m_flags & M_PKTHDR) { 4715 BLOGD(sc, DBG_MBUF, 4716 "%02d: - m_pkthdr: tot_len=%d flags=0x%b csum_flags=%b\n", 4717 i, m->m_pkthdr.len, m->m_flags, M_FLAG_BITS, 4718 (int)m->m_pkthdr.csum_flags, CSUM_BITS); 4719 } 4720 #else 4721 BLOGD(sc, DBG_MBUF, 4722 "%02d: mbuf=%p m_len=%d m_flags=0x%b m_data=%p\n", 4723 i, m, m->m_len, m->m_flags, 4724 "\20\1M_EXT\2M_PKTHDR\3M_EOR\4M_RDONLY", m->m_data); 4725 4726 if (m->m_flags & M_PKTHDR) { 4727 BLOGD(sc, DBG_MBUF, 4728 "%02d: - m_pkthdr: tot_len=%d flags=0x%b csum_flags=%b\n", 4729 i, m->m_pkthdr.len, m->m_flags, 4730 "\20\12M_BCAST\13M_MCAST\14M_FRAG" 4731 "\15M_FIRSTFRAG\16M_LASTFRAG\21M_VLANTAG" 4732 "\22M_PROMISC\23M_NOFREE", 4733 (int)m->m_pkthdr.csum_flags, 4734 "\20\1CSUM_IP\2CSUM_TCP\3CSUM_UDP\4CSUM_IP_FRAGS" 4735 "\5CSUM_FRAGMENT\6CSUM_TSO\11CSUM_IP_CHECKED" 4736 "\12CSUM_IP_VALID\13CSUM_DATA_VALID" 4737 "\14CSUM_PSEUDO_HDR"); 4738 } 4739 #endif /* #if __FreeBSD_version >= 1000000 */ 4740 4741 if (m->m_flags & M_EXT) { 4742 switch (m->m_ext.ext_type) { 4743 case EXT_CLUSTER: type = "EXT_CLUSTER"; break; 4744 case EXT_SFBUF: type = "EXT_SFBUF"; break; 4745 case EXT_JUMBOP: type = "EXT_JUMBOP"; break; 4746 case EXT_JUMBO9: type = "EXT_JUMBO9"; break; 4747 case EXT_JUMBO16: type = "EXT_JUMBO16"; break; 4748 case EXT_PACKET: type = "EXT_PACKET"; break; 4749 case EXT_MBUF: type = "EXT_MBUF"; break; 4750 case EXT_NET_DRV: type = "EXT_NET_DRV"; break; 4751 case EXT_MOD_TYPE: type = "EXT_MOD_TYPE"; break; 4752 case EXT_DISPOSABLE: type = "EXT_DISPOSABLE"; break; 4753 case EXT_EXTREF: type = "EXT_EXTREF"; break; 4754 default: type = "UNKNOWN"; break; 4755 } 4756 4757 BLOGD(sc, DBG_MBUF, 4758 "%02d: - m_ext: %p ext_size=%d type=%s\n", 4759 i, m->m_ext.ext_buf, m->m_ext.ext_size, type); 4760 } 4761 4762 if (contents) { 4763 bxe_dump_mbuf_data(sc, "mbuf data", m, TRUE); 4764 } 4765 4766 m = m->m_next; 4767 i++; 4768 } 4769 } 4770 4771 /* 4772 * Checks to ensure the 13 bd sliding window is >= MSS for TSO. 4773 * Check that (13 total bds - 3 bds) = 10 bd window >= MSS. 4774 * The window: 3 bds are = 1 for headers BD + 2 for parse BD and last BD 4775 * The headers comes in a separate bd in FreeBSD so 13-3=10. 4776 * Returns: 0 if OK to send, 1 if packet needs further defragmentation 4777 */ 4778 static int 4779 bxe_chktso_window(struct bxe_softc *sc, 4780 int nsegs, 4781 bus_dma_segment_t *segs, 4782 struct mbuf *m) 4783 { 4784 uint32_t num_wnds, wnd_size, wnd_sum; 4785 int32_t frag_idx, wnd_idx; 4786 unsigned short lso_mss; 4787 int defrag; 4788 4789 defrag = 0; 4790 wnd_sum = 0; 4791 wnd_size = 10; 4792 num_wnds = nsegs - wnd_size; 4793 lso_mss = htole16(m->m_pkthdr.tso_segsz); 4794 4795 /* 4796 * Total header lengths Eth+IP+TCP in first FreeBSD mbuf so calculate the 4797 * first window sum of data while skipping the first assuming it is the 4798 * header in FreeBSD. 4799 */ 4800 for (frag_idx = 1; (frag_idx <= wnd_size); frag_idx++) { 4801 wnd_sum += htole16(segs[frag_idx].ds_len); 4802 } 4803 4804 /* check the first 10 bd window size */ 4805 if (wnd_sum < lso_mss) { 4806 return (1); 4807 } 4808 4809 /* run through the windows */ 4810 for (wnd_idx = 0; wnd_idx < num_wnds; wnd_idx++, frag_idx++) { 4811 /* subtract the first mbuf->m_len of the last wndw(-header) */ 4812 wnd_sum -= htole16(segs[wnd_idx+1].ds_len); 4813 /* add the next mbuf len to the len of our new window */ 4814 wnd_sum += htole16(segs[frag_idx].ds_len); 4815 if (wnd_sum < lso_mss) { 4816 return (1); 4817 } 4818 } 4819 4820 return (0); 4821 } 4822 4823 static uint8_t 4824 bxe_set_pbd_csum_e2(struct bxe_fastpath *fp, 4825 struct mbuf *m, 4826 uint32_t *parsing_data) 4827 { 4828 struct ether_vlan_header *eh = NULL; 4829 struct ip *ip4 = NULL; 4830 struct ip6_hdr *ip6 = NULL; 4831 caddr_t ip = NULL; 4832 struct tcphdr *th = NULL; 4833 int e_hlen, ip_hlen, l4_off; 4834 uint16_t proto; 4835 4836 if (m->m_pkthdr.csum_flags == CSUM_IP) { 4837 /* no L4 checksum offload needed */ 4838 return (0); 4839 } 4840 4841 /* get the Ethernet header */ 4842 eh = mtod(m, struct ether_vlan_header *); 4843 4844 /* handle VLAN encapsulation if present */ 4845 if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) { 4846 e_hlen = (ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN); 4847 proto = ntohs(eh->evl_proto); 4848 } else { 4849 e_hlen = ETHER_HDR_LEN; 4850 proto = ntohs(eh->evl_encap_proto); 4851 } 4852 4853 switch (proto) { 4854 case ETHERTYPE_IP: 4855 /* get the IP header, if mbuf len < 20 then header in next mbuf */ 4856 ip4 = (m->m_len < sizeof(struct ip)) ? 4857 (struct ip *)m->m_next->m_data : 4858 (struct ip *)(m->m_data + e_hlen); 4859 /* ip_hl is number of 32-bit words */ 4860 ip_hlen = (ip4->ip_hl << 2); 4861 ip = (caddr_t)ip4; 4862 break; 4863 case ETHERTYPE_IPV6: 4864 /* get the IPv6 header, if mbuf len < 40 then header in next mbuf */ 4865 ip6 = (m->m_len < sizeof(struct ip6_hdr)) ? 4866 (struct ip6_hdr *)m->m_next->m_data : 4867 (struct ip6_hdr *)(m->m_data + e_hlen); 4868 /* XXX cannot support offload with IPv6 extensions */ 4869 ip_hlen = sizeof(struct ip6_hdr); 4870 ip = (caddr_t)ip6; 4871 break; 4872 default: 4873 /* We can't offload in this case... */ 4874 /* XXX error stat ??? */ 4875 return (0); 4876 } 4877 4878 /* XXX assuming L4 header is contiguous to IPv4/IPv6 in the same mbuf */ 4879 l4_off = (e_hlen + ip_hlen); 4880 4881 *parsing_data |= 4882 (((l4_off >> 1) << ETH_TX_PARSE_BD_E2_L4_HDR_START_OFFSET_W_SHIFT) & 4883 ETH_TX_PARSE_BD_E2_L4_HDR_START_OFFSET_W); 4884 4885 if (m->m_pkthdr.csum_flags & (CSUM_TCP | 4886 CSUM_TSO | 4887 CSUM_TCP_IPV6)) { 4888 fp->eth_q_stats.tx_ofld_frames_csum_tcp++; 4889 th = (struct tcphdr *)(ip + ip_hlen); 4890 /* th_off is number of 32-bit words */ 4891 *parsing_data |= ((th->th_off << 4892 ETH_TX_PARSE_BD_E2_TCP_HDR_LENGTH_DW_SHIFT) & 4893 ETH_TX_PARSE_BD_E2_TCP_HDR_LENGTH_DW); 4894 return (l4_off + (th->th_off << 2)); /* entire header length */ 4895 } else if (m->m_pkthdr.csum_flags & (CSUM_UDP | 4896 CSUM_UDP_IPV6)) { 4897 fp->eth_q_stats.tx_ofld_frames_csum_udp++; 4898 return (l4_off + sizeof(struct udphdr)); /* entire header length */ 4899 } else { 4900 /* XXX error stat ??? */ 4901 return (0); 4902 } 4903 } 4904 4905 static uint8_t 4906 bxe_set_pbd_csum(struct bxe_fastpath *fp, 4907 struct mbuf *m, 4908 struct eth_tx_parse_bd_e1x *pbd) 4909 { 4910 struct ether_vlan_header *eh = NULL; 4911 struct ip *ip4 = NULL; 4912 struct ip6_hdr *ip6 = NULL; 4913 caddr_t ip = NULL; 4914 struct tcphdr *th = NULL; 4915 struct udphdr *uh = NULL; 4916 int e_hlen, ip_hlen; 4917 uint16_t proto; 4918 uint8_t hlen; 4919 uint16_t tmp_csum; 4920 uint32_t *tmp_uh; 4921 4922 /* get the Ethernet header */ 4923 eh = mtod(m, struct ether_vlan_header *); 4924 4925 /* handle VLAN encapsulation if present */ 4926 if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) { 4927 e_hlen = (ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN); 4928 proto = ntohs(eh->evl_proto); 4929 } else { 4930 e_hlen = ETHER_HDR_LEN; 4931 proto = ntohs(eh->evl_encap_proto); 4932 } 4933 4934 switch (proto) { 4935 case ETHERTYPE_IP: 4936 /* get the IP header, if mbuf len < 20 then header in next mbuf */ 4937 ip4 = (m->m_len < sizeof(struct ip)) ? 4938 (struct ip *)m->m_next->m_data : 4939 (struct ip *)(m->m_data + e_hlen); 4940 /* ip_hl is number of 32-bit words */ 4941 ip_hlen = (ip4->ip_hl << 1); 4942 ip = (caddr_t)ip4; 4943 break; 4944 case ETHERTYPE_IPV6: 4945 /* get the IPv6 header, if mbuf len < 40 then header in next mbuf */ 4946 ip6 = (m->m_len < sizeof(struct ip6_hdr)) ? 4947 (struct ip6_hdr *)m->m_next->m_data : 4948 (struct ip6_hdr *)(m->m_data + e_hlen); 4949 /* XXX cannot support offload with IPv6 extensions */ 4950 ip_hlen = (sizeof(struct ip6_hdr) >> 1); 4951 ip = (caddr_t)ip6; 4952 break; 4953 default: 4954 /* We can't offload in this case... */ 4955 /* XXX error stat ??? */ 4956 return (0); 4957 } 4958 4959 hlen = (e_hlen >> 1); 4960 4961 /* note that rest of global_data is indirectly zeroed here */ 4962 if (m->m_flags & M_VLANTAG) { 4963 pbd->global_data = 4964 htole16(hlen | (1 << ETH_TX_PARSE_BD_E1X_LLC_SNAP_EN_SHIFT)); 4965 } else { 4966 pbd->global_data = htole16(hlen); 4967 } 4968 4969 pbd->ip_hlen_w = ip_hlen; 4970 4971 hlen += pbd->ip_hlen_w; 4972 4973 /* XXX assuming L4 header is contiguous to IPv4/IPv6 in the same mbuf */ 4974 4975 if (m->m_pkthdr.csum_flags & (CSUM_TCP | 4976 CSUM_TSO | 4977 CSUM_TCP_IPV6)) { 4978 th = (struct tcphdr *)(ip + (ip_hlen << 1)); 4979 /* th_off is number of 32-bit words */ 4980 hlen += (uint16_t)(th->th_off << 1); 4981 } else if (m->m_pkthdr.csum_flags & (CSUM_UDP | 4982 CSUM_UDP_IPV6)) { 4983 uh = (struct udphdr *)(ip + (ip_hlen << 1)); 4984 hlen += (sizeof(struct udphdr) / 2); 4985 } else { 4986 /* valid case as only CSUM_IP was set */ 4987 return (0); 4988 } 4989 4990 pbd->total_hlen_w = htole16(hlen); 4991 4992 if (m->m_pkthdr.csum_flags & (CSUM_TCP | 4993 CSUM_TSO | 4994 CSUM_TCP_IPV6)) { 4995 fp->eth_q_stats.tx_ofld_frames_csum_tcp++; 4996 pbd->tcp_pseudo_csum = ntohs(th->th_sum); 4997 } else if (m->m_pkthdr.csum_flags & (CSUM_UDP | 4998 CSUM_UDP_IPV6)) { 4999 fp->eth_q_stats.tx_ofld_frames_csum_udp++; 5000 5001 /* 5002 * Everest1 (i.e. 57710, 57711, 57711E) does not natively support UDP 5003 * checksums and does not know anything about the UDP header and where 5004 * the checksum field is located. It only knows about TCP. Therefore 5005 * we "lie" to the hardware for outgoing UDP packets w/ checksum 5006 * offload. Since the checksum field offset for TCP is 16 bytes and 5007 * for UDP it is 6 bytes we pass a pointer to the hardware that is 10 5008 * bytes less than the start of the UDP header. This allows the 5009 * hardware to write the checksum in the correct spot. But the 5010 * hardware will compute a checksum which includes the last 10 bytes 5011 * of the IP header. To correct this we tweak the stack computed 5012 * pseudo checksum by folding in the calculation of the inverse 5013 * checksum for those final 10 bytes of the IP header. This allows 5014 * the correct checksum to be computed by the hardware. 5015 */ 5016 5017 /* set pointer 10 bytes before UDP header */ 5018 tmp_uh = (uint32_t *)((uint8_t *)uh - 10); 5019 5020 /* calculate a pseudo header checksum over the first 10 bytes */ 5021 tmp_csum = in_pseudo(*tmp_uh, 5022 *(tmp_uh + 1), 5023 *(uint16_t *)(tmp_uh + 2)); 5024 5025 pbd->tcp_pseudo_csum = ntohs(in_addword(uh->uh_sum, ~tmp_csum)); 5026 } 5027 5028 return (hlen * 2); /* entire header length, number of bytes */ 5029 } 5030 5031 static void 5032 bxe_set_pbd_lso_e2(struct mbuf *m, 5033 uint32_t *parsing_data) 5034 { 5035 *parsing_data |= ((m->m_pkthdr.tso_segsz << 5036 ETH_TX_PARSE_BD_E2_LSO_MSS_SHIFT) & 5037 ETH_TX_PARSE_BD_E2_LSO_MSS); 5038 5039 /* XXX test for IPv6 with extension header... */ 5040 } 5041 5042 static void 5043 bxe_set_pbd_lso(struct mbuf *m, 5044 struct eth_tx_parse_bd_e1x *pbd) 5045 { 5046 struct ether_vlan_header *eh = NULL; 5047 struct ip *ip = NULL; 5048 struct tcphdr *th = NULL; 5049 int e_hlen; 5050 5051 /* get the Ethernet header */ 5052 eh = mtod(m, struct ether_vlan_header *); 5053 5054 /* handle VLAN encapsulation if present */ 5055 e_hlen = (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) ? 5056 (ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN) : ETHER_HDR_LEN; 5057 5058 /* get the IP and TCP header, with LSO entire header in first mbuf */ 5059 /* XXX assuming IPv4 */ 5060 ip = (struct ip *)(m->m_data + e_hlen); 5061 th = (struct tcphdr *)((caddr_t)ip + (ip->ip_hl << 2)); 5062 5063 pbd->lso_mss = htole16(m->m_pkthdr.tso_segsz); 5064 pbd->tcp_send_seq = ntohl(th->th_seq); 5065 pbd->tcp_flags = ((ntohl(((uint32_t *)th)[3]) >> 16) & 0xff); 5066 5067 #if 1 5068 /* XXX IPv4 */ 5069 pbd->ip_id = ntohs(ip->ip_id); 5070 pbd->tcp_pseudo_csum = 5071 ntohs(in_pseudo(ip->ip_src.s_addr, 5072 ip->ip_dst.s_addr, 5073 htons(IPPROTO_TCP))); 5074 #else 5075 /* XXX IPv6 */ 5076 pbd->tcp_pseudo_csum = 5077 ntohs(in_pseudo(&ip6->ip6_src, 5078 &ip6->ip6_dst, 5079 htons(IPPROTO_TCP))); 5080 #endif 5081 5082 pbd->global_data |= 5083 htole16(ETH_TX_PARSE_BD_E1X_PSEUDO_CS_WITHOUT_LEN); 5084 } 5085 5086 /* 5087 * Encapsulte an mbuf cluster into the tx bd chain and makes the memory 5088 * visible to the controller. 5089 * 5090 * If an mbuf is submitted to this routine and cannot be given to the 5091 * controller (e.g. it has too many fragments) then the function may free 5092 * the mbuf and return to the caller. 5093 * 5094 * Returns: 5095 * 0 = Success, !0 = Failure 5096 * Note the side effect that an mbuf may be freed if it causes a problem. 5097 */ 5098 static int 5099 bxe_tx_encap(struct bxe_fastpath *fp, struct mbuf **m_head) 5100 { 5101 bus_dma_segment_t segs[32]; 5102 struct mbuf *m0; 5103 struct bxe_sw_tx_bd *tx_buf; 5104 struct eth_tx_parse_bd_e1x *pbd_e1x = NULL; 5105 struct eth_tx_parse_bd_e2 *pbd_e2 = NULL; 5106 /* struct eth_tx_parse_2nd_bd *pbd2 = NULL; */ 5107 struct eth_tx_bd *tx_data_bd; 5108 struct eth_tx_bd *tx_total_pkt_size_bd; 5109 struct eth_tx_start_bd *tx_start_bd; 5110 uint16_t bd_prod, pkt_prod, total_pkt_size; 5111 uint8_t mac_type; 5112 int defragged, error, nsegs, rc, nbds, vlan_off, ovlan; 5113 struct bxe_softc *sc; 5114 uint16_t tx_bd_avail; 5115 struct ether_vlan_header *eh; 5116 uint32_t pbd_e2_parsing_data = 0; 5117 uint8_t hlen = 0; 5118 int tmp_bd; 5119 int i; 5120 5121 sc = fp->sc; 5122 5123 #if __FreeBSD_version >= 800000 5124 M_ASSERTPKTHDR(*m_head); 5125 #endif /* #if __FreeBSD_version >= 800000 */ 5126 5127 m0 = *m_head; 5128 rc = defragged = nbds = ovlan = vlan_off = total_pkt_size = 0; 5129 tx_start_bd = NULL; 5130 tx_data_bd = NULL; 5131 tx_total_pkt_size_bd = NULL; 5132 5133 /* get the H/W pointer for packets and BDs */ 5134 pkt_prod = fp->tx_pkt_prod; 5135 bd_prod = fp->tx_bd_prod; 5136 5137 mac_type = UNICAST_ADDRESS; 5138 5139 /* map the mbuf into the next open DMAable memory */ 5140 tx_buf = &fp->tx_mbuf_chain[TX_BD(pkt_prod)]; 5141 error = bus_dmamap_load_mbuf_sg(fp->tx_mbuf_tag, 5142 tx_buf->m_map, m0, 5143 segs, &nsegs, BUS_DMA_NOWAIT); 5144 5145 /* mapping errors */ 5146 if(__predict_false(error != 0)) { 5147 fp->eth_q_stats.tx_dma_mapping_failure++; 5148 if (error == ENOMEM) { 5149 /* resource issue, try again later */ 5150 rc = ENOMEM; 5151 } else if (error == EFBIG) { 5152 /* possibly recoverable with defragmentation */ 5153 fp->eth_q_stats.mbuf_defrag_attempts++; 5154 m0 = m_defrag(*m_head, M_NOWAIT); 5155 if (m0 == NULL) { 5156 fp->eth_q_stats.mbuf_defrag_failures++; 5157 rc = ENOBUFS; 5158 } else { 5159 /* defrag successful, try mapping again */ 5160 *m_head = m0; 5161 error = bus_dmamap_load_mbuf_sg(fp->tx_mbuf_tag, 5162 tx_buf->m_map, m0, 5163 segs, &nsegs, BUS_DMA_NOWAIT); 5164 if (error) { 5165 fp->eth_q_stats.tx_dma_mapping_failure++; 5166 rc = error; 5167 } 5168 } 5169 } else { 5170 /* unknown, unrecoverable mapping error */ 5171 BLOGE(sc, "Unknown TX mapping error rc=%d\n", error); 5172 bxe_dump_mbuf(sc, m0, FALSE); 5173 rc = error; 5174 } 5175 5176 goto bxe_tx_encap_continue; 5177 } 5178 5179 tx_bd_avail = bxe_tx_avail(sc, fp); 5180 5181 /* make sure there is enough room in the send queue */ 5182 if (__predict_false(tx_bd_avail < (nsegs + 2))) { 5183 /* Recoverable, try again later. */ 5184 fp->eth_q_stats.tx_hw_queue_full++; 5185 bus_dmamap_unload(fp->tx_mbuf_tag, tx_buf->m_map); 5186 rc = ENOMEM; 5187 goto bxe_tx_encap_continue; 5188 } 5189 5190 /* capture the current H/W TX chain high watermark */ 5191 if (__predict_false(fp->eth_q_stats.tx_hw_max_queue_depth < 5192 (TX_BD_USABLE - tx_bd_avail))) { 5193 fp->eth_q_stats.tx_hw_max_queue_depth = (TX_BD_USABLE - tx_bd_avail); 5194 } 5195 5196 /* make sure it fits in the packet window */ 5197 if (__predict_false(nsegs > BXE_MAX_SEGMENTS)) { 5198 /* 5199 * The mbuf may be to big for the controller to handle. If the frame 5200 * is a TSO frame we'll need to do an additional check. 5201 */ 5202 if (m0->m_pkthdr.csum_flags & CSUM_TSO) { 5203 if (bxe_chktso_window(sc, nsegs, segs, m0) == 0) { 5204 goto bxe_tx_encap_continue; /* OK to send */ 5205 } else { 5206 fp->eth_q_stats.tx_window_violation_tso++; 5207 } 5208 } else { 5209 fp->eth_q_stats.tx_window_violation_std++; 5210 } 5211 5212 /* lets try to defragment this mbuf and remap it */ 5213 fp->eth_q_stats.mbuf_defrag_attempts++; 5214 bus_dmamap_unload(fp->tx_mbuf_tag, tx_buf->m_map); 5215 5216 m0 = m_defrag(*m_head, M_NOWAIT); 5217 if (m0 == NULL) { 5218 fp->eth_q_stats.mbuf_defrag_failures++; 5219 /* Ugh, just drop the frame... :( */ 5220 rc = ENOBUFS; 5221 } else { 5222 /* defrag successful, try mapping again */ 5223 *m_head = m0; 5224 error = bus_dmamap_load_mbuf_sg(fp->tx_mbuf_tag, 5225 tx_buf->m_map, m0, 5226 segs, &nsegs, BUS_DMA_NOWAIT); 5227 if (error) { 5228 fp->eth_q_stats.tx_dma_mapping_failure++; 5229 /* No sense in trying to defrag/copy chain, drop it. :( */ 5230 rc = error; 5231 } 5232 else { 5233 /* if the chain is still too long then drop it */ 5234 if (__predict_false(nsegs > BXE_MAX_SEGMENTS)) { 5235 bus_dmamap_unload(fp->tx_mbuf_tag, tx_buf->m_map); 5236 rc = ENODEV; 5237 } 5238 } 5239 } 5240 } 5241 5242 bxe_tx_encap_continue: 5243 5244 /* Check for errors */ 5245 if (rc) { 5246 if (rc == ENOMEM) { 5247 /* recoverable try again later */ 5248 } else { 5249 fp->eth_q_stats.tx_soft_errors++; 5250 fp->eth_q_stats.mbuf_alloc_tx--; 5251 m_freem(*m_head); 5252 *m_head = NULL; 5253 } 5254 5255 return (rc); 5256 } 5257 5258 /* set flag according to packet type (UNICAST_ADDRESS is default) */ 5259 if (m0->m_flags & M_BCAST) { 5260 mac_type = BROADCAST_ADDRESS; 5261 } else if (m0->m_flags & M_MCAST) { 5262 mac_type = MULTICAST_ADDRESS; 5263 } 5264 5265 /* store the mbuf into the mbuf ring */ 5266 tx_buf->m = m0; 5267 tx_buf->first_bd = fp->tx_bd_prod; 5268 tx_buf->flags = 0; 5269 5270 /* prepare the first transmit (start) BD for the mbuf */ 5271 tx_start_bd = &fp->tx_chain[TX_BD(bd_prod)].start_bd; 5272 5273 BLOGD(sc, DBG_TX, 5274 "sending pkt_prod=%u tx_buf=%p next_idx=%u bd=%u tx_start_bd=%p\n", 5275 pkt_prod, tx_buf, fp->tx_pkt_prod, bd_prod, tx_start_bd); 5276 5277 tx_start_bd->addr_lo = htole32(U64_LO(segs[0].ds_addr)); 5278 tx_start_bd->addr_hi = htole32(U64_HI(segs[0].ds_addr)); 5279 tx_start_bd->nbytes = htole16(segs[0].ds_len); 5280 total_pkt_size += tx_start_bd->nbytes; 5281 tx_start_bd->bd_flags.as_bitfield = ETH_TX_BD_FLAGS_START_BD; 5282 5283 tx_start_bd->general_data = (1 << ETH_TX_START_BD_HDR_NBDS_SHIFT); 5284 5285 /* all frames have at least Start BD + Parsing BD */ 5286 nbds = nsegs + 1; 5287 tx_start_bd->nbd = htole16(nbds); 5288 5289 if (m0->m_flags & M_VLANTAG) { 5290 tx_start_bd->vlan_or_ethertype = htole16(m0->m_pkthdr.ether_vtag); 5291 tx_start_bd->bd_flags.as_bitfield |= 5292 (X_ETH_OUTBAND_VLAN << ETH_TX_BD_FLAGS_VLAN_MODE_SHIFT); 5293 } else { 5294 /* vf tx, start bd must hold the ethertype for fw to enforce it */ 5295 if (IS_VF(sc)) { 5296 /* map ethernet header to find type and header length */ 5297 eh = mtod(m0, struct ether_vlan_header *); 5298 tx_start_bd->vlan_or_ethertype = eh->evl_encap_proto; 5299 } else { 5300 /* used by FW for packet accounting */ 5301 tx_start_bd->vlan_or_ethertype = htole16(fp->tx_pkt_prod); 5302 } 5303 } 5304 5305 /* 5306 * add a parsing BD from the chain. The parsing BD is always added 5307 * though it is only used for TSO and chksum 5308 */ 5309 bd_prod = TX_BD_NEXT(bd_prod); 5310 5311 if (m0->m_pkthdr.csum_flags) { 5312 if (m0->m_pkthdr.csum_flags & CSUM_IP) { 5313 fp->eth_q_stats.tx_ofld_frames_csum_ip++; 5314 tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_IP_CSUM; 5315 } 5316 5317 if (m0->m_pkthdr.csum_flags & CSUM_TCP_IPV6) { 5318 tx_start_bd->bd_flags.as_bitfield |= (ETH_TX_BD_FLAGS_IPV6 | 5319 ETH_TX_BD_FLAGS_L4_CSUM); 5320 } else if (m0->m_pkthdr.csum_flags & CSUM_UDP_IPV6) { 5321 tx_start_bd->bd_flags.as_bitfield |= (ETH_TX_BD_FLAGS_IPV6 | 5322 ETH_TX_BD_FLAGS_IS_UDP | 5323 ETH_TX_BD_FLAGS_L4_CSUM); 5324 } else if ((m0->m_pkthdr.csum_flags & CSUM_TCP) || 5325 (m0->m_pkthdr.csum_flags & CSUM_TSO)) { 5326 tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_L4_CSUM; 5327 } else if (m0->m_pkthdr.csum_flags & CSUM_UDP) { 5328 tx_start_bd->bd_flags.as_bitfield |= (ETH_TX_BD_FLAGS_L4_CSUM | 5329 ETH_TX_BD_FLAGS_IS_UDP); 5330 } 5331 } 5332 5333 if (!CHIP_IS_E1x(sc)) { 5334 pbd_e2 = &fp->tx_chain[TX_BD(bd_prod)].parse_bd_e2; 5335 memset(pbd_e2, 0, sizeof(struct eth_tx_parse_bd_e2)); 5336 5337 if (m0->m_pkthdr.csum_flags) { 5338 hlen = bxe_set_pbd_csum_e2(fp, m0, &pbd_e2_parsing_data); 5339 } 5340 5341 SET_FLAG(pbd_e2_parsing_data, ETH_TX_PARSE_BD_E2_ETH_ADDR_TYPE, 5342 mac_type); 5343 } else { 5344 uint16_t global_data = 0; 5345 5346 pbd_e1x = &fp->tx_chain[TX_BD(bd_prod)].parse_bd_e1x; 5347 memset(pbd_e1x, 0, sizeof(struct eth_tx_parse_bd_e1x)); 5348 5349 if (m0->m_pkthdr.csum_flags) { 5350 hlen = bxe_set_pbd_csum(fp, m0, pbd_e1x); 5351 } 5352 5353 SET_FLAG(global_data, 5354 ETH_TX_PARSE_BD_E1X_ETH_ADDR_TYPE, mac_type); 5355 pbd_e1x->global_data |= htole16(global_data); 5356 } 5357 5358 /* setup the parsing BD with TSO specific info */ 5359 if (m0->m_pkthdr.csum_flags & CSUM_TSO) { 5360 fp->eth_q_stats.tx_ofld_frames_lso++; 5361 tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_SW_LSO; 5362 5363 if (__predict_false(tx_start_bd->nbytes > hlen)) { 5364 fp->eth_q_stats.tx_ofld_frames_lso_hdr_splits++; 5365 5366 /* split the first BD into header/data making the fw job easy */ 5367 nbds++; 5368 tx_start_bd->nbd = htole16(nbds); 5369 tx_start_bd->nbytes = htole16(hlen); 5370 5371 bd_prod = TX_BD_NEXT(bd_prod); 5372 5373 /* new transmit BD after the tx_parse_bd */ 5374 tx_data_bd = &fp->tx_chain[TX_BD(bd_prod)].reg_bd; 5375 tx_data_bd->addr_hi = htole32(U64_HI(segs[0].ds_addr + hlen)); 5376 tx_data_bd->addr_lo = htole32(U64_LO(segs[0].ds_addr + hlen)); 5377 tx_data_bd->nbytes = htole16(segs[0].ds_len - hlen); 5378 if (tx_total_pkt_size_bd == NULL) { 5379 tx_total_pkt_size_bd = tx_data_bd; 5380 } 5381 5382 BLOGD(sc, DBG_TX, 5383 "TSO split header size is %d (%x:%x) nbds %d\n", 5384 le16toh(tx_start_bd->nbytes), 5385 le32toh(tx_start_bd->addr_hi), 5386 le32toh(tx_start_bd->addr_lo), 5387 nbds); 5388 } 5389 5390 if (!CHIP_IS_E1x(sc)) { 5391 bxe_set_pbd_lso_e2(m0, &pbd_e2_parsing_data); 5392 } else { 5393 bxe_set_pbd_lso(m0, pbd_e1x); 5394 } 5395 } 5396 5397 if (pbd_e2_parsing_data) { 5398 pbd_e2->parsing_data = htole32(pbd_e2_parsing_data); 5399 } 5400 5401 /* prepare remaining BDs, start tx bd contains first seg/frag */ 5402 for (i = 1; i < nsegs ; i++) { 5403 bd_prod = TX_BD_NEXT(bd_prod); 5404 tx_data_bd = &fp->tx_chain[TX_BD(bd_prod)].reg_bd; 5405 tx_data_bd->addr_lo = htole32(U64_LO(segs[i].ds_addr)); 5406 tx_data_bd->addr_hi = htole32(U64_HI(segs[i].ds_addr)); 5407 tx_data_bd->nbytes = htole16(segs[i].ds_len); 5408 if (tx_total_pkt_size_bd == NULL) { 5409 tx_total_pkt_size_bd = tx_data_bd; 5410 } 5411 total_pkt_size += tx_data_bd->nbytes; 5412 } 5413 5414 BLOGD(sc, DBG_TX, "last bd %p\n", tx_data_bd); 5415 5416 if (tx_total_pkt_size_bd != NULL) { 5417 tx_total_pkt_size_bd->total_pkt_bytes = total_pkt_size; 5418 } 5419 5420 if (__predict_false(sc->debug & DBG_TX)) { 5421 tmp_bd = tx_buf->first_bd; 5422 for (i = 0; i < nbds; i++) 5423 { 5424 if (i == 0) { 5425 BLOGD(sc, DBG_TX, 5426 "TX Strt: %p bd=%d nbd=%d vlan=0x%x " 5427 "bd_flags=0x%x hdr_nbds=%d\n", 5428 tx_start_bd, 5429 tmp_bd, 5430 le16toh(tx_start_bd->nbd), 5431 le16toh(tx_start_bd->vlan_or_ethertype), 5432 tx_start_bd->bd_flags.as_bitfield, 5433 (tx_start_bd->general_data & ETH_TX_START_BD_HDR_NBDS)); 5434 } else if (i == 1) { 5435 if (pbd_e1x) { 5436 BLOGD(sc, DBG_TX, 5437 "-> Prse: %p bd=%d global=0x%x ip_hlen_w=%u " 5438 "ip_id=%u lso_mss=%u tcp_flags=0x%x csum=0x%x " 5439 "tcp_seq=%u total_hlen_w=%u\n", 5440 pbd_e1x, 5441 tmp_bd, 5442 pbd_e1x->global_data, 5443 pbd_e1x->ip_hlen_w, 5444 pbd_e1x->ip_id, 5445 pbd_e1x->lso_mss, 5446 pbd_e1x->tcp_flags, 5447 pbd_e1x->tcp_pseudo_csum, 5448 pbd_e1x->tcp_send_seq, 5449 le16toh(pbd_e1x->total_hlen_w)); 5450 } else { /* if (pbd_e2) */ 5451 BLOGD(sc, DBG_TX, 5452 "-> Parse: %p bd=%d dst=%02x:%02x:%02x " 5453 "src=%02x:%02x:%02x parsing_data=0x%x\n", 5454 pbd_e2, 5455 tmp_bd, 5456 pbd_e2->data.mac_addr.dst_hi, 5457 pbd_e2->data.mac_addr.dst_mid, 5458 pbd_e2->data.mac_addr.dst_lo, 5459 pbd_e2->data.mac_addr.src_hi, 5460 pbd_e2->data.mac_addr.src_mid, 5461 pbd_e2->data.mac_addr.src_lo, 5462 pbd_e2->parsing_data); 5463 } 5464 } 5465 5466 if (i != 1) { /* skip parse db as it doesn't hold data */ 5467 tx_data_bd = &fp->tx_chain[TX_BD(tmp_bd)].reg_bd; 5468 BLOGD(sc, DBG_TX, 5469 "-> Frag: %p bd=%d nbytes=%d hi=0x%x lo: 0x%x\n", 5470 tx_data_bd, 5471 tmp_bd, 5472 le16toh(tx_data_bd->nbytes), 5473 le32toh(tx_data_bd->addr_hi), 5474 le32toh(tx_data_bd->addr_lo)); 5475 } 5476 5477 tmp_bd = TX_BD_NEXT(tmp_bd); 5478 } 5479 } 5480 5481 BLOGD(sc, DBG_TX, "doorbell: nbds=%d bd=%u\n", nbds, bd_prod); 5482 5483 /* update TX BD producer index value for next TX */ 5484 bd_prod = TX_BD_NEXT(bd_prod); 5485 5486 /* 5487 * If the chain of tx_bd's describing this frame is adjacent to or spans 5488 * an eth_tx_next_bd element then we need to increment the nbds value. 5489 */ 5490 if (TX_BD_IDX(bd_prod) < nbds) { 5491 nbds++; 5492 } 5493 5494 /* don't allow reordering of writes for nbd and packets */ 5495 mb(); 5496 5497 fp->tx_db.data.prod += nbds; 5498 5499 /* producer points to the next free tx_bd at this point */ 5500 fp->tx_pkt_prod++; 5501 fp->tx_bd_prod = bd_prod; 5502 5503 DOORBELL(sc, fp->index, fp->tx_db.raw); 5504 5505 fp->eth_q_stats.tx_pkts++; 5506 5507 /* Prevent speculative reads from getting ahead of the status block. */ 5508 bus_space_barrier(sc->bar[BAR0].tag, sc->bar[BAR0].handle, 5509 0, 0, BUS_SPACE_BARRIER_READ); 5510 5511 /* Prevent speculative reads from getting ahead of the doorbell. */ 5512 bus_space_barrier(sc->bar[BAR2].tag, sc->bar[BAR2].handle, 5513 0, 0, BUS_SPACE_BARRIER_READ); 5514 5515 return (0); 5516 } 5517 5518 static void 5519 bxe_tx_start_locked(struct bxe_softc *sc, 5520 if_t ifp, 5521 struct bxe_fastpath *fp) 5522 { 5523 struct mbuf *m = NULL; 5524 int tx_count = 0; 5525 uint16_t tx_bd_avail; 5526 5527 BXE_FP_TX_LOCK_ASSERT(fp); 5528 5529 /* keep adding entries while there are frames to send */ 5530 while (!if_sendq_empty(ifp)) { 5531 5532 /* 5533 * check for any frames to send 5534 * dequeue can still be NULL even if queue is not empty 5535 */ 5536 m = if_dequeue(ifp); 5537 if (__predict_false(m == NULL)) { 5538 break; 5539 } 5540 5541 /* the mbuf now belongs to us */ 5542 fp->eth_q_stats.mbuf_alloc_tx++; 5543 5544 /* 5545 * Put the frame into the transmit ring. If we don't have room, 5546 * place the mbuf back at the head of the TX queue, set the 5547 * OACTIVE flag, and wait for the NIC to drain the chain. 5548 */ 5549 if (__predict_false(bxe_tx_encap(fp, &m))) { 5550 fp->eth_q_stats.tx_encap_failures++; 5551 if (m != NULL) { 5552 /* mark the TX queue as full and return the frame */ 5553 if_setdrvflagbits(ifp, IFF_DRV_OACTIVE, 0); 5554 if_sendq_prepend(ifp, m); 5555 fp->eth_q_stats.mbuf_alloc_tx--; 5556 fp->eth_q_stats.tx_queue_xoff++; 5557 } 5558 5559 /* stop looking for more work */ 5560 break; 5561 } 5562 5563 /* the frame was enqueued successfully */ 5564 tx_count++; 5565 5566 /* send a copy of the frame to any BPF listeners. */ 5567 if_etherbpfmtap(ifp, m); 5568 5569 tx_bd_avail = bxe_tx_avail(sc, fp); 5570 5571 /* handle any completions if we're running low */ 5572 if (tx_bd_avail < BXE_TX_CLEANUP_THRESHOLD) { 5573 /* bxe_txeof will set IFF_DRV_OACTIVE appropriately */ 5574 bxe_txeof(sc, fp); 5575 if (if_getdrvflags(ifp) & IFF_DRV_OACTIVE) { 5576 break; 5577 } 5578 } 5579 } 5580 5581 /* all TX packets were dequeued and/or the tx ring is full */ 5582 if (tx_count > 0) { 5583 /* reset the TX watchdog timeout timer */ 5584 fp->watchdog_timer = BXE_TX_TIMEOUT; 5585 } 5586 } 5587 5588 /* Legacy (non-RSS) dispatch routine */ 5589 static void 5590 bxe_tx_start(if_t ifp) 5591 { 5592 struct bxe_softc *sc; 5593 struct bxe_fastpath *fp; 5594 5595 sc = if_getsoftc(ifp); 5596 5597 if (!(if_getdrvflags(ifp) & IFF_DRV_RUNNING)) { 5598 BLOGW(sc, "Interface not running, ignoring transmit request\n"); 5599 return; 5600 } 5601 5602 if (!sc->link_vars.link_up) { 5603 BLOGW(sc, "Interface link is down, ignoring transmit request\n"); 5604 return; 5605 } 5606 5607 fp = &sc->fp[0]; 5608 5609 if (ifp->if_drv_flags & IFF_DRV_OACTIVE) { 5610 fp->eth_q_stats.tx_queue_full_return++; 5611 return; 5612 } 5613 5614 BXE_FP_TX_LOCK(fp); 5615 bxe_tx_start_locked(sc, ifp, fp); 5616 BXE_FP_TX_UNLOCK(fp); 5617 } 5618 5619 #if __FreeBSD_version >= 800000 5620 5621 static int 5622 bxe_tx_mq_start_locked(struct bxe_softc *sc, 5623 if_t ifp, 5624 struct bxe_fastpath *fp, 5625 struct mbuf *m) 5626 { 5627 struct buf_ring *tx_br = fp->tx_br; 5628 struct mbuf *next; 5629 int depth, rc, tx_count; 5630 uint16_t tx_bd_avail; 5631 5632 rc = tx_count = 0; 5633 5634 BXE_FP_TX_LOCK_ASSERT(fp); 5635 5636 if (!tx_br) { 5637 BLOGE(sc, "Multiqueue TX and no buf_ring!\n"); 5638 return (EINVAL); 5639 } 5640 5641 if (m != NULL) { 5642 rc = drbr_enqueue(ifp, tx_br, m); 5643 if (rc != 0) { 5644 fp->eth_q_stats.tx_soft_errors++; 5645 goto bxe_tx_mq_start_locked_exit; 5646 } 5647 } 5648 5649 if (!sc->link_vars.link_up || 5650 (if_getdrvflags(ifp) & 5651 (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) != IFF_DRV_RUNNING) { 5652 fp->eth_q_stats.tx_request_link_down_failures++; 5653 goto bxe_tx_mq_start_locked_exit; 5654 } 5655 5656 /* fetch the depth of the driver queue */ 5657 depth = drbr_inuse_drv(ifp, tx_br); 5658 if (depth > fp->eth_q_stats.tx_max_drbr_queue_depth) { 5659 fp->eth_q_stats.tx_max_drbr_queue_depth = depth; 5660 } 5661 5662 /* keep adding entries while there are frames to send */ 5663 while ((next = drbr_peek(ifp, tx_br)) != NULL) { 5664 /* handle any completions if we're running low */ 5665 tx_bd_avail = bxe_tx_avail(sc, fp); 5666 if (tx_bd_avail < BXE_TX_CLEANUP_THRESHOLD) { 5667 /* bxe_txeof will set IFF_DRV_OACTIVE appropriately */ 5668 bxe_txeof(sc, fp); 5669 tx_bd_avail = bxe_tx_avail(sc, fp); 5670 if (tx_bd_avail < (BXE_TSO_MAX_SEGMENTS + 1)) { 5671 fp->eth_q_stats.bd_avail_too_less_failures++; 5672 m_freem(next); 5673 drbr_advance(ifp, tx_br); 5674 rc = ENOBUFS; 5675 break; 5676 } 5677 } 5678 5679 /* the mbuf now belongs to us */ 5680 fp->eth_q_stats.mbuf_alloc_tx++; 5681 5682 /* 5683 * Put the frame into the transmit ring. If we don't have room, 5684 * place the mbuf back at the head of the TX queue, set the 5685 * OACTIVE flag, and wait for the NIC to drain the chain. 5686 */ 5687 rc = bxe_tx_encap(fp, &next); 5688 if (__predict_false(rc != 0)) { 5689 fp->eth_q_stats.tx_encap_failures++; 5690 if (next != NULL) { 5691 /* mark the TX queue as full and save the frame */ 5692 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 5693 drbr_putback(ifp, tx_br, next); 5694 fp->eth_q_stats.mbuf_alloc_tx--; 5695 fp->eth_q_stats.tx_frames_deferred++; 5696 } else 5697 drbr_advance(ifp, tx_br); 5698 5699 /* stop looking for more work */ 5700 break; 5701 } 5702 5703 /* the transmit frame was enqueued successfully */ 5704 tx_count++; 5705 5706 /* send a copy of the frame to any BPF listeners */ 5707 BPF_MTAP(ifp, next); 5708 5709 drbr_advance(ifp, tx_br); 5710 } 5711 5712 /* all TX packets were dequeued and/or the tx ring is full */ 5713 if (tx_count > 0) { 5714 /* reset the TX watchdog timeout timer */ 5715 fp->watchdog_timer = BXE_TX_TIMEOUT; 5716 } 5717 5718 bxe_tx_mq_start_locked_exit: 5719 /* If we didn't drain the drbr, enqueue a task in the future to do it. */ 5720 if (!drbr_empty(ifp, tx_br)) { 5721 fp->eth_q_stats.tx_mq_not_empty++; 5722 taskqueue_enqueue_timeout(fp->tq, &fp->tx_timeout_task, 1); 5723 } 5724 5725 return (rc); 5726 } 5727 5728 static void 5729 bxe_tx_mq_start_deferred(void *arg, 5730 int pending) 5731 { 5732 struct bxe_fastpath *fp = (struct bxe_fastpath *)arg; 5733 struct bxe_softc *sc = fp->sc; 5734 #if __FreeBSD_version >= 800000 5735 if_t ifp = sc->ifp; 5736 #else 5737 struct ifnet *ifp = sc->ifnet; 5738 #endif /* #if __FreeBSD_version >= 800000 */ 5739 5740 BXE_FP_TX_LOCK(fp); 5741 bxe_tx_mq_start_locked(sc, ifp, fp, NULL); 5742 BXE_FP_TX_UNLOCK(fp); 5743 } 5744 5745 /* Multiqueue (TSS) dispatch routine. */ 5746 static int 5747 bxe_tx_mq_start(struct ifnet *ifp, 5748 struct mbuf *m) 5749 { 5750 struct bxe_softc *sc = if_getsoftc(ifp); 5751 struct bxe_fastpath *fp; 5752 int fp_index, rc; 5753 5754 fp_index = 0; /* default is the first queue */ 5755 5756 /* check if flowid is set */ 5757 5758 if (BXE_VALID_FLOWID(m)) 5759 fp_index = (m->m_pkthdr.flowid % sc->num_queues); 5760 5761 fp = &sc->fp[fp_index]; 5762 5763 if (BXE_FP_TX_TRYLOCK(fp)) { 5764 rc = bxe_tx_mq_start_locked(sc, ifp, fp, m); 5765 BXE_FP_TX_UNLOCK(fp); 5766 } else { 5767 rc = drbr_enqueue(ifp, fp->tx_br, m); 5768 taskqueue_enqueue(fp->tq, &fp->tx_task); 5769 } 5770 5771 return (rc); 5772 } 5773 5774 static void 5775 bxe_mq_flush(struct ifnet *ifp) 5776 { 5777 struct bxe_softc *sc = if_getsoftc(ifp); 5778 struct bxe_fastpath *fp; 5779 struct mbuf *m; 5780 int i; 5781 5782 for (i = 0; i < sc->num_queues; i++) { 5783 fp = &sc->fp[i]; 5784 5785 if (fp->state != BXE_FP_STATE_OPEN) { 5786 BLOGD(sc, DBG_LOAD, "Not clearing fp[%02d] buf_ring (state=%d)\n", 5787 fp->index, fp->state); 5788 continue; 5789 } 5790 5791 if (fp->tx_br != NULL) { 5792 BLOGD(sc, DBG_LOAD, "Clearing fp[%02d] buf_ring\n", fp->index); 5793 BXE_FP_TX_LOCK(fp); 5794 while ((m = buf_ring_dequeue_sc(fp->tx_br)) != NULL) { 5795 m_freem(m); 5796 } 5797 BXE_FP_TX_UNLOCK(fp); 5798 } 5799 } 5800 5801 if_qflush(ifp); 5802 } 5803 5804 #endif /* FreeBSD_version >= 800000 */ 5805 5806 static uint16_t 5807 bxe_cid_ilt_lines(struct bxe_softc *sc) 5808 { 5809 if (IS_SRIOV(sc)) { 5810 return ((BXE_FIRST_VF_CID + BXE_VF_CIDS) / ILT_PAGE_CIDS); 5811 } 5812 return (L2_ILT_LINES(sc)); 5813 } 5814 5815 static void 5816 bxe_ilt_set_info(struct bxe_softc *sc) 5817 { 5818 struct ilt_client_info *ilt_client; 5819 struct ecore_ilt *ilt = sc->ilt; 5820 uint16_t line = 0; 5821 5822 ilt->start_line = FUNC_ILT_BASE(SC_FUNC(sc)); 5823 BLOGD(sc, DBG_LOAD, "ilt starts at line %d\n", ilt->start_line); 5824 5825 /* CDU */ 5826 ilt_client = &ilt->clients[ILT_CLIENT_CDU]; 5827 ilt_client->client_num = ILT_CLIENT_CDU; 5828 ilt_client->page_size = CDU_ILT_PAGE_SZ; 5829 ilt_client->flags = ILT_CLIENT_SKIP_MEM; 5830 ilt_client->start = line; 5831 line += bxe_cid_ilt_lines(sc); 5832 5833 if (CNIC_SUPPORT(sc)) { 5834 line += CNIC_ILT_LINES; 5835 } 5836 5837 ilt_client->end = (line - 1); 5838 5839 BLOGD(sc, DBG_LOAD, 5840 "ilt client[CDU]: start %d, end %d, " 5841 "psz 0x%x, flags 0x%x, hw psz %d\n", 5842 ilt_client->start, ilt_client->end, 5843 ilt_client->page_size, 5844 ilt_client->flags, 5845 ilog2(ilt_client->page_size >> 12)); 5846 5847 /* QM */ 5848 if (QM_INIT(sc->qm_cid_count)) { 5849 ilt_client = &ilt->clients[ILT_CLIENT_QM]; 5850 ilt_client->client_num = ILT_CLIENT_QM; 5851 ilt_client->page_size = QM_ILT_PAGE_SZ; 5852 ilt_client->flags = 0; 5853 ilt_client->start = line; 5854 5855 /* 4 bytes for each cid */ 5856 line += DIV_ROUND_UP(sc->qm_cid_count * QM_QUEUES_PER_FUNC * 4, 5857 QM_ILT_PAGE_SZ); 5858 5859 ilt_client->end = (line - 1); 5860 5861 BLOGD(sc, DBG_LOAD, 5862 "ilt client[QM]: start %d, end %d, " 5863 "psz 0x%x, flags 0x%x, hw psz %d\n", 5864 ilt_client->start, ilt_client->end, 5865 ilt_client->page_size, ilt_client->flags, 5866 ilog2(ilt_client->page_size >> 12)); 5867 } 5868 5869 if (CNIC_SUPPORT(sc)) { 5870 /* SRC */ 5871 ilt_client = &ilt->clients[ILT_CLIENT_SRC]; 5872 ilt_client->client_num = ILT_CLIENT_SRC; 5873 ilt_client->page_size = SRC_ILT_PAGE_SZ; 5874 ilt_client->flags = 0; 5875 ilt_client->start = line; 5876 line += SRC_ILT_LINES; 5877 ilt_client->end = (line - 1); 5878 5879 BLOGD(sc, DBG_LOAD, 5880 "ilt client[SRC]: start %d, end %d, " 5881 "psz 0x%x, flags 0x%x, hw psz %d\n", 5882 ilt_client->start, ilt_client->end, 5883 ilt_client->page_size, ilt_client->flags, 5884 ilog2(ilt_client->page_size >> 12)); 5885 5886 /* TM */ 5887 ilt_client = &ilt->clients[ILT_CLIENT_TM]; 5888 ilt_client->client_num = ILT_CLIENT_TM; 5889 ilt_client->page_size = TM_ILT_PAGE_SZ; 5890 ilt_client->flags = 0; 5891 ilt_client->start = line; 5892 line += TM_ILT_LINES; 5893 ilt_client->end = (line - 1); 5894 5895 BLOGD(sc, DBG_LOAD, 5896 "ilt client[TM]: start %d, end %d, " 5897 "psz 0x%x, flags 0x%x, hw psz %d\n", 5898 ilt_client->start, ilt_client->end, 5899 ilt_client->page_size, ilt_client->flags, 5900 ilog2(ilt_client->page_size >> 12)); 5901 } 5902 5903 KASSERT((line <= ILT_MAX_LINES), ("Invalid number of ILT lines!")); 5904 } 5905 5906 static void 5907 bxe_set_fp_rx_buf_size(struct bxe_softc *sc) 5908 { 5909 int i; 5910 uint32_t rx_buf_size; 5911 5912 rx_buf_size = (IP_HEADER_ALIGNMENT_PADDING + ETH_OVERHEAD + sc->mtu); 5913 5914 for (i = 0; i < sc->num_queues; i++) { 5915 if(rx_buf_size <= MCLBYTES){ 5916 sc->fp[i].rx_buf_size = rx_buf_size; 5917 sc->fp[i].mbuf_alloc_size = MCLBYTES; 5918 }else if (rx_buf_size <= MJUMPAGESIZE){ 5919 sc->fp[i].rx_buf_size = rx_buf_size; 5920 sc->fp[i].mbuf_alloc_size = MJUMPAGESIZE; 5921 }else if (rx_buf_size <= (MJUMPAGESIZE + MCLBYTES)){ 5922 sc->fp[i].rx_buf_size = MCLBYTES; 5923 sc->fp[i].mbuf_alloc_size = MCLBYTES; 5924 }else if (rx_buf_size <= (2 * MJUMPAGESIZE)){ 5925 sc->fp[i].rx_buf_size = MJUMPAGESIZE; 5926 sc->fp[i].mbuf_alloc_size = MJUMPAGESIZE; 5927 }else { 5928 sc->fp[i].rx_buf_size = MCLBYTES; 5929 sc->fp[i].mbuf_alloc_size = MCLBYTES; 5930 } 5931 } 5932 } 5933 5934 static int 5935 bxe_alloc_ilt_mem(struct bxe_softc *sc) 5936 { 5937 int rc = 0; 5938 5939 if ((sc->ilt = 5940 (struct ecore_ilt *)malloc(sizeof(struct ecore_ilt), 5941 M_BXE_ILT, 5942 (M_NOWAIT | M_ZERO))) == NULL) { 5943 rc = 1; 5944 } 5945 5946 return (rc); 5947 } 5948 5949 static int 5950 bxe_alloc_ilt_lines_mem(struct bxe_softc *sc) 5951 { 5952 int rc = 0; 5953 5954 if ((sc->ilt->lines = 5955 (struct ilt_line *)malloc((sizeof(struct ilt_line) * ILT_MAX_LINES), 5956 M_BXE_ILT, 5957 (M_NOWAIT | M_ZERO))) == NULL) { 5958 rc = 1; 5959 } 5960 5961 return (rc); 5962 } 5963 5964 static void 5965 bxe_free_ilt_mem(struct bxe_softc *sc) 5966 { 5967 if (sc->ilt != NULL) { 5968 free(sc->ilt, M_BXE_ILT); 5969 sc->ilt = NULL; 5970 } 5971 } 5972 5973 static void 5974 bxe_free_ilt_lines_mem(struct bxe_softc *sc) 5975 { 5976 if (sc->ilt->lines != NULL) { 5977 free(sc->ilt->lines, M_BXE_ILT); 5978 sc->ilt->lines = NULL; 5979 } 5980 } 5981 5982 static void 5983 bxe_free_mem(struct bxe_softc *sc) 5984 { 5985 int i; 5986 5987 for (i = 0; i < L2_ILT_LINES(sc); i++) { 5988 bxe_dma_free(sc, &sc->context[i].vcxt_dma); 5989 sc->context[i].vcxt = NULL; 5990 sc->context[i].size = 0; 5991 } 5992 5993 ecore_ilt_mem_op(sc, ILT_MEMOP_FREE); 5994 5995 bxe_free_ilt_lines_mem(sc); 5996 5997 } 5998 5999 static int 6000 bxe_alloc_mem(struct bxe_softc *sc) 6001 { 6002 int context_size; 6003 int allocated; 6004 int i; 6005 6006 /* 6007 * Allocate memory for CDU context: 6008 * This memory is allocated separately and not in the generic ILT 6009 * functions because CDU differs in few aspects: 6010 * 1. There can be multiple entities allocating memory for context - 6011 * regular L2, CNIC, and SRIOV drivers. Each separately controls 6012 * its own ILT lines. 6013 * 2. Since CDU page-size is not a single 4KB page (which is the case 6014 * for the other ILT clients), to be efficient we want to support 6015 * allocation of sub-page-size in the last entry. 6016 * 3. Context pointers are used by the driver to pass to FW / update 6017 * the context (for the other ILT clients the pointers are used just to 6018 * free the memory during unload). 6019 */ 6020 context_size = (sizeof(union cdu_context) * BXE_L2_CID_COUNT(sc)); 6021 for (i = 0, allocated = 0; allocated < context_size; i++) { 6022 sc->context[i].size = min(CDU_ILT_PAGE_SZ, 6023 (context_size - allocated)); 6024 6025 if (bxe_dma_alloc(sc, sc->context[i].size, 6026 &sc->context[i].vcxt_dma, 6027 "cdu context") != 0) { 6028 bxe_free_mem(sc); 6029 return (-1); 6030 } 6031 6032 sc->context[i].vcxt = 6033 (union cdu_context *)sc->context[i].vcxt_dma.vaddr; 6034 6035 allocated += sc->context[i].size; 6036 } 6037 6038 bxe_alloc_ilt_lines_mem(sc); 6039 6040 BLOGD(sc, DBG_LOAD, "ilt=%p start_line=%u lines=%p\n", 6041 sc->ilt, sc->ilt->start_line, sc->ilt->lines); 6042 { 6043 for (i = 0; i < 4; i++) { 6044 BLOGD(sc, DBG_LOAD, 6045 "c%d page_size=%u start=%u end=%u num=%u flags=0x%x\n", 6046 i, 6047 sc->ilt->clients[i].page_size, 6048 sc->ilt->clients[i].start, 6049 sc->ilt->clients[i].end, 6050 sc->ilt->clients[i].client_num, 6051 sc->ilt->clients[i].flags); 6052 } 6053 } 6054 if (ecore_ilt_mem_op(sc, ILT_MEMOP_ALLOC)) { 6055 BLOGE(sc, "ecore_ilt_mem_op ILT_MEMOP_ALLOC failed\n"); 6056 bxe_free_mem(sc); 6057 return (-1); 6058 } 6059 6060 return (0); 6061 } 6062 6063 static void 6064 bxe_free_rx_bd_chain(struct bxe_fastpath *fp) 6065 { 6066 struct bxe_softc *sc; 6067 int i; 6068 6069 sc = fp->sc; 6070 6071 if (fp->rx_mbuf_tag == NULL) { 6072 return; 6073 } 6074 6075 /* free all mbufs and unload all maps */ 6076 for (i = 0; i < RX_BD_TOTAL; i++) { 6077 if (fp->rx_mbuf_chain[i].m_map != NULL) { 6078 bus_dmamap_sync(fp->rx_mbuf_tag, 6079 fp->rx_mbuf_chain[i].m_map, 6080 BUS_DMASYNC_POSTREAD); 6081 bus_dmamap_unload(fp->rx_mbuf_tag, 6082 fp->rx_mbuf_chain[i].m_map); 6083 } 6084 6085 if (fp->rx_mbuf_chain[i].m != NULL) { 6086 m_freem(fp->rx_mbuf_chain[i].m); 6087 fp->rx_mbuf_chain[i].m = NULL; 6088 fp->eth_q_stats.mbuf_alloc_rx--; 6089 } 6090 } 6091 } 6092 6093 static void 6094 bxe_free_tpa_pool(struct bxe_fastpath *fp) 6095 { 6096 struct bxe_softc *sc; 6097 int i, max_agg_queues; 6098 6099 sc = fp->sc; 6100 6101 if (fp->rx_mbuf_tag == NULL) { 6102 return; 6103 } 6104 6105 max_agg_queues = MAX_AGG_QS(sc); 6106 6107 /* release all mbufs and unload all DMA maps in the TPA pool */ 6108 for (i = 0; i < max_agg_queues; i++) { 6109 if (fp->rx_tpa_info[i].bd.m_map != NULL) { 6110 bus_dmamap_sync(fp->rx_mbuf_tag, 6111 fp->rx_tpa_info[i].bd.m_map, 6112 BUS_DMASYNC_POSTREAD); 6113 bus_dmamap_unload(fp->rx_mbuf_tag, 6114 fp->rx_tpa_info[i].bd.m_map); 6115 } 6116 6117 if (fp->rx_tpa_info[i].bd.m != NULL) { 6118 m_freem(fp->rx_tpa_info[i].bd.m); 6119 fp->rx_tpa_info[i].bd.m = NULL; 6120 fp->eth_q_stats.mbuf_alloc_tpa--; 6121 } 6122 } 6123 } 6124 6125 static void 6126 bxe_free_sge_chain(struct bxe_fastpath *fp) 6127 { 6128 struct bxe_softc *sc; 6129 int i; 6130 6131 sc = fp->sc; 6132 6133 if (fp->rx_sge_mbuf_tag == NULL) { 6134 return; 6135 } 6136 6137 /* rree all mbufs and unload all maps */ 6138 for (i = 0; i < RX_SGE_TOTAL; i++) { 6139 if (fp->rx_sge_mbuf_chain[i].m_map != NULL) { 6140 bus_dmamap_sync(fp->rx_sge_mbuf_tag, 6141 fp->rx_sge_mbuf_chain[i].m_map, 6142 BUS_DMASYNC_POSTREAD); 6143 bus_dmamap_unload(fp->rx_sge_mbuf_tag, 6144 fp->rx_sge_mbuf_chain[i].m_map); 6145 } 6146 6147 if (fp->rx_sge_mbuf_chain[i].m != NULL) { 6148 m_freem(fp->rx_sge_mbuf_chain[i].m); 6149 fp->rx_sge_mbuf_chain[i].m = NULL; 6150 fp->eth_q_stats.mbuf_alloc_sge--; 6151 } 6152 } 6153 } 6154 6155 static void 6156 bxe_free_fp_buffers(struct bxe_softc *sc) 6157 { 6158 struct bxe_fastpath *fp; 6159 int i; 6160 6161 for (i = 0; i < sc->num_queues; i++) { 6162 fp = &sc->fp[i]; 6163 6164 #if __FreeBSD_version >= 800000 6165 if (fp->tx_br != NULL) { 6166 /* just in case bxe_mq_flush() wasn't called */ 6167 if (mtx_initialized(&fp->tx_mtx)) { 6168 struct mbuf *m; 6169 6170 BXE_FP_TX_LOCK(fp); 6171 while ((m = buf_ring_dequeue_sc(fp->tx_br)) != NULL) 6172 m_freem(m); 6173 BXE_FP_TX_UNLOCK(fp); 6174 } 6175 } 6176 #endif 6177 6178 /* free all RX buffers */ 6179 bxe_free_rx_bd_chain(fp); 6180 bxe_free_tpa_pool(fp); 6181 bxe_free_sge_chain(fp); 6182 6183 if (fp->eth_q_stats.mbuf_alloc_rx != 0) { 6184 BLOGE(sc, "failed to claim all rx mbufs (%d left)\n", 6185 fp->eth_q_stats.mbuf_alloc_rx); 6186 } 6187 6188 if (fp->eth_q_stats.mbuf_alloc_sge != 0) { 6189 BLOGE(sc, "failed to claim all sge mbufs (%d left)\n", 6190 fp->eth_q_stats.mbuf_alloc_sge); 6191 } 6192 6193 if (fp->eth_q_stats.mbuf_alloc_tpa != 0) { 6194 BLOGE(sc, "failed to claim all sge mbufs (%d left)\n", 6195 fp->eth_q_stats.mbuf_alloc_tpa); 6196 } 6197 6198 if (fp->eth_q_stats.mbuf_alloc_tx != 0) { 6199 BLOGE(sc, "failed to release tx mbufs (%d left)\n", 6200 fp->eth_q_stats.mbuf_alloc_tx); 6201 } 6202 6203 /* XXX verify all mbufs were reclaimed */ 6204 } 6205 } 6206 6207 static int 6208 bxe_alloc_rx_bd_mbuf(struct bxe_fastpath *fp, 6209 uint16_t prev_index, 6210 uint16_t index) 6211 { 6212 struct bxe_sw_rx_bd *rx_buf; 6213 struct eth_rx_bd *rx_bd; 6214 bus_dma_segment_t segs[1]; 6215 bus_dmamap_t map; 6216 struct mbuf *m; 6217 int nsegs, rc; 6218 6219 rc = 0; 6220 6221 /* allocate the new RX BD mbuf */ 6222 m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, fp->mbuf_alloc_size); 6223 if (__predict_false(m == NULL)) { 6224 fp->eth_q_stats.mbuf_rx_bd_alloc_failed++; 6225 return (ENOBUFS); 6226 } 6227 6228 fp->eth_q_stats.mbuf_alloc_rx++; 6229 6230 /* initialize the mbuf buffer length */ 6231 m->m_pkthdr.len = m->m_len = fp->rx_buf_size; 6232 6233 /* map the mbuf into non-paged pool */ 6234 rc = bus_dmamap_load_mbuf_sg(fp->rx_mbuf_tag, 6235 fp->rx_mbuf_spare_map, 6236 m, segs, &nsegs, BUS_DMA_NOWAIT); 6237 if (__predict_false(rc != 0)) { 6238 fp->eth_q_stats.mbuf_rx_bd_mapping_failed++; 6239 m_freem(m); 6240 fp->eth_q_stats.mbuf_alloc_rx--; 6241 return (rc); 6242 } 6243 6244 /* all mbufs must map to a single segment */ 6245 KASSERT((nsegs == 1), ("Too many segments, %d returned!", nsegs)); 6246 6247 /* release any existing RX BD mbuf mappings */ 6248 6249 if (prev_index != index) { 6250 rx_buf = &fp->rx_mbuf_chain[prev_index]; 6251 6252 if (rx_buf->m_map != NULL) { 6253 bus_dmamap_sync(fp->rx_mbuf_tag, rx_buf->m_map, 6254 BUS_DMASYNC_POSTREAD); 6255 bus_dmamap_unload(fp->rx_mbuf_tag, rx_buf->m_map); 6256 } 6257 6258 /* 6259 * We only get here from bxe_rxeof() when the maximum number 6260 * of rx buffers is less than RX_BD_USABLE. bxe_rxeof() already 6261 * holds the mbuf in the prev_index so it's OK to NULL it out 6262 * here without concern of a memory leak. 6263 */ 6264 fp->rx_mbuf_chain[prev_index].m = NULL; 6265 } 6266 6267 rx_buf = &fp->rx_mbuf_chain[index]; 6268 6269 if (rx_buf->m_map != NULL) { 6270 bus_dmamap_sync(fp->rx_mbuf_tag, rx_buf->m_map, 6271 BUS_DMASYNC_POSTREAD); 6272 bus_dmamap_unload(fp->rx_mbuf_tag, rx_buf->m_map); 6273 } 6274 6275 /* save the mbuf and mapping info for a future packet */ 6276 map = (prev_index != index) ? 6277 fp->rx_mbuf_chain[prev_index].m_map : rx_buf->m_map; 6278 rx_buf->m_map = fp->rx_mbuf_spare_map; 6279 fp->rx_mbuf_spare_map = map; 6280 bus_dmamap_sync(fp->rx_mbuf_tag, rx_buf->m_map, 6281 BUS_DMASYNC_PREREAD); 6282 rx_buf->m = m; 6283 6284 rx_bd = &fp->rx_chain[index]; 6285 rx_bd->addr_hi = htole32(U64_HI(segs[0].ds_addr)); 6286 rx_bd->addr_lo = htole32(U64_LO(segs[0].ds_addr)); 6287 6288 return (rc); 6289 } 6290 6291 static int 6292 bxe_alloc_rx_tpa_mbuf(struct bxe_fastpath *fp, 6293 int queue) 6294 { 6295 struct bxe_sw_tpa_info *tpa_info = &fp->rx_tpa_info[queue]; 6296 bus_dma_segment_t segs[1]; 6297 bus_dmamap_t map; 6298 struct mbuf *m; 6299 int nsegs; 6300 int rc = 0; 6301 6302 /* allocate the new TPA mbuf */ 6303 m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, fp->mbuf_alloc_size); 6304 if (__predict_false(m == NULL)) { 6305 fp->eth_q_stats.mbuf_rx_tpa_alloc_failed++; 6306 return (ENOBUFS); 6307 } 6308 6309 fp->eth_q_stats.mbuf_alloc_tpa++; 6310 6311 /* initialize the mbuf buffer length */ 6312 m->m_pkthdr.len = m->m_len = fp->rx_buf_size; 6313 6314 /* map the mbuf into non-paged pool */ 6315 rc = bus_dmamap_load_mbuf_sg(fp->rx_mbuf_tag, 6316 fp->rx_tpa_info_mbuf_spare_map, 6317 m, segs, &nsegs, BUS_DMA_NOWAIT); 6318 if (__predict_false(rc != 0)) { 6319 fp->eth_q_stats.mbuf_rx_tpa_mapping_failed++; 6320 m_free(m); 6321 fp->eth_q_stats.mbuf_alloc_tpa--; 6322 return (rc); 6323 } 6324 6325 /* all mbufs must map to a single segment */ 6326 KASSERT((nsegs == 1), ("Too many segments, %d returned!", nsegs)); 6327 6328 /* release any existing TPA mbuf mapping */ 6329 if (tpa_info->bd.m_map != NULL) { 6330 bus_dmamap_sync(fp->rx_mbuf_tag, tpa_info->bd.m_map, 6331 BUS_DMASYNC_POSTREAD); 6332 bus_dmamap_unload(fp->rx_mbuf_tag, tpa_info->bd.m_map); 6333 } 6334 6335 /* save the mbuf and mapping info for the TPA mbuf */ 6336 map = tpa_info->bd.m_map; 6337 tpa_info->bd.m_map = fp->rx_tpa_info_mbuf_spare_map; 6338 fp->rx_tpa_info_mbuf_spare_map = map; 6339 bus_dmamap_sync(fp->rx_mbuf_tag, tpa_info->bd.m_map, 6340 BUS_DMASYNC_PREREAD); 6341 tpa_info->bd.m = m; 6342 tpa_info->seg = segs[0]; 6343 6344 return (rc); 6345 } 6346 6347 /* 6348 * Allocate an mbuf and assign it to the receive scatter gather chain. The 6349 * caller must take care to save a copy of the existing mbuf in the SG mbuf 6350 * chain. 6351 */ 6352 static int 6353 bxe_alloc_rx_sge_mbuf(struct bxe_fastpath *fp, 6354 uint16_t index) 6355 { 6356 struct bxe_sw_rx_bd *sge_buf; 6357 struct eth_rx_sge *sge; 6358 bus_dma_segment_t segs[1]; 6359 bus_dmamap_t map; 6360 struct mbuf *m; 6361 int nsegs; 6362 int rc = 0; 6363 6364 /* allocate a new SGE mbuf */ 6365 m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, SGE_PAGE_SIZE); 6366 if (__predict_false(m == NULL)) { 6367 fp->eth_q_stats.mbuf_rx_sge_alloc_failed++; 6368 return (ENOMEM); 6369 } 6370 6371 fp->eth_q_stats.mbuf_alloc_sge++; 6372 6373 /* initialize the mbuf buffer length */ 6374 m->m_pkthdr.len = m->m_len = SGE_PAGE_SIZE; 6375 6376 /* map the SGE mbuf into non-paged pool */ 6377 rc = bus_dmamap_load_mbuf_sg(fp->rx_sge_mbuf_tag, 6378 fp->rx_sge_mbuf_spare_map, 6379 m, segs, &nsegs, BUS_DMA_NOWAIT); 6380 if (__predict_false(rc != 0)) { 6381 fp->eth_q_stats.mbuf_rx_sge_mapping_failed++; 6382 m_freem(m); 6383 fp->eth_q_stats.mbuf_alloc_sge--; 6384 return (rc); 6385 } 6386 6387 /* all mbufs must map to a single segment */ 6388 KASSERT((nsegs == 1), ("Too many segments, %d returned!", nsegs)); 6389 6390 sge_buf = &fp->rx_sge_mbuf_chain[index]; 6391 6392 /* release any existing SGE mbuf mapping */ 6393 if (sge_buf->m_map != NULL) { 6394 bus_dmamap_sync(fp->rx_sge_mbuf_tag, sge_buf->m_map, 6395 BUS_DMASYNC_POSTREAD); 6396 bus_dmamap_unload(fp->rx_sge_mbuf_tag, sge_buf->m_map); 6397 } 6398 6399 /* save the mbuf and mapping info for a future packet */ 6400 map = sge_buf->m_map; 6401 sge_buf->m_map = fp->rx_sge_mbuf_spare_map; 6402 fp->rx_sge_mbuf_spare_map = map; 6403 bus_dmamap_sync(fp->rx_sge_mbuf_tag, sge_buf->m_map, 6404 BUS_DMASYNC_PREREAD); 6405 sge_buf->m = m; 6406 6407 sge = &fp->rx_sge_chain[index]; 6408 sge->addr_hi = htole32(U64_HI(segs[0].ds_addr)); 6409 sge->addr_lo = htole32(U64_LO(segs[0].ds_addr)); 6410 6411 return (rc); 6412 } 6413 6414 static __noinline int 6415 bxe_alloc_fp_buffers(struct bxe_softc *sc) 6416 { 6417 struct bxe_fastpath *fp; 6418 int i, j, rc = 0; 6419 int ring_prod, cqe_ring_prod; 6420 int max_agg_queues; 6421 6422 for (i = 0; i < sc->num_queues; i++) { 6423 fp = &sc->fp[i]; 6424 6425 ring_prod = cqe_ring_prod = 0; 6426 fp->rx_bd_cons = 0; 6427 fp->rx_cq_cons = 0; 6428 6429 /* allocate buffers for the RX BDs in RX BD chain */ 6430 for (j = 0; j < sc->max_rx_bufs; j++) { 6431 rc = bxe_alloc_rx_bd_mbuf(fp, ring_prod, ring_prod); 6432 if (rc != 0) { 6433 BLOGE(sc, "mbuf alloc fail for fp[%02d] rx chain (%d)\n", 6434 i, rc); 6435 goto bxe_alloc_fp_buffers_error; 6436 } 6437 6438 ring_prod = RX_BD_NEXT(ring_prod); 6439 cqe_ring_prod = RCQ_NEXT(cqe_ring_prod); 6440 } 6441 6442 fp->rx_bd_prod = ring_prod; 6443 fp->rx_cq_prod = cqe_ring_prod; 6444 fp->eth_q_stats.rx_calls = fp->eth_q_stats.rx_pkts = 0; 6445 6446 max_agg_queues = MAX_AGG_QS(sc); 6447 6448 fp->tpa_enable = TRUE; 6449 6450 /* fill the TPA pool */ 6451 for (j = 0; j < max_agg_queues; j++) { 6452 rc = bxe_alloc_rx_tpa_mbuf(fp, j); 6453 if (rc != 0) { 6454 BLOGE(sc, "mbuf alloc fail for fp[%02d] TPA queue %d\n", 6455 i, j); 6456 fp->tpa_enable = FALSE; 6457 goto bxe_alloc_fp_buffers_error; 6458 } 6459 6460 fp->rx_tpa_info[j].state = BXE_TPA_STATE_STOP; 6461 } 6462 6463 if (fp->tpa_enable) { 6464 /* fill the RX SGE chain */ 6465 ring_prod = 0; 6466 for (j = 0; j < RX_SGE_USABLE; j++) { 6467 rc = bxe_alloc_rx_sge_mbuf(fp, ring_prod); 6468 if (rc != 0) { 6469 BLOGE(sc, "mbuf alloc fail for fp[%02d] SGE %d\n", 6470 i, ring_prod); 6471 fp->tpa_enable = FALSE; 6472 ring_prod = 0; 6473 goto bxe_alloc_fp_buffers_error; 6474 } 6475 6476 ring_prod = RX_SGE_NEXT(ring_prod); 6477 } 6478 6479 fp->rx_sge_prod = ring_prod; 6480 } 6481 } 6482 6483 return (0); 6484 6485 bxe_alloc_fp_buffers_error: 6486 6487 /* unwind what was already allocated */ 6488 bxe_free_rx_bd_chain(fp); 6489 bxe_free_tpa_pool(fp); 6490 bxe_free_sge_chain(fp); 6491 6492 return (ENOBUFS); 6493 } 6494 6495 static void 6496 bxe_free_fw_stats_mem(struct bxe_softc *sc) 6497 { 6498 bxe_dma_free(sc, &sc->fw_stats_dma); 6499 6500 sc->fw_stats_num = 0; 6501 6502 sc->fw_stats_req_size = 0; 6503 sc->fw_stats_req = NULL; 6504 sc->fw_stats_req_mapping = 0; 6505 6506 sc->fw_stats_data_size = 0; 6507 sc->fw_stats_data = NULL; 6508 sc->fw_stats_data_mapping = 0; 6509 } 6510 6511 static int 6512 bxe_alloc_fw_stats_mem(struct bxe_softc *sc) 6513 { 6514 uint8_t num_queue_stats; 6515 int num_groups; 6516 6517 /* number of queues for statistics is number of eth queues */ 6518 num_queue_stats = BXE_NUM_ETH_QUEUES(sc); 6519 6520 /* 6521 * Total number of FW statistics requests = 6522 * 1 for port stats + 1 for PF stats + num of queues 6523 */ 6524 sc->fw_stats_num = (2 + num_queue_stats); 6525 6526 /* 6527 * Request is built from stats_query_header and an array of 6528 * stats_query_cmd_group each of which contains STATS_QUERY_CMD_COUNT 6529 * rules. The real number or requests is configured in the 6530 * stats_query_header. 6531 */ 6532 num_groups = 6533 ((sc->fw_stats_num / STATS_QUERY_CMD_COUNT) + 6534 ((sc->fw_stats_num % STATS_QUERY_CMD_COUNT) ? 1 : 0)); 6535 6536 BLOGD(sc, DBG_LOAD, "stats fw_stats_num %d num_groups %d\n", 6537 sc->fw_stats_num, num_groups); 6538 6539 sc->fw_stats_req_size = 6540 (sizeof(struct stats_query_header) + 6541 (num_groups * sizeof(struct stats_query_cmd_group))); 6542 6543 /* 6544 * Data for statistics requests + stats_counter. 6545 * stats_counter holds per-STORM counters that are incremented when 6546 * STORM has finished with the current request. Memory for FCoE 6547 * offloaded statistics are counted anyway, even if they will not be sent. 6548 * VF stats are not accounted for here as the data of VF stats is stored 6549 * in memory allocated by the VF, not here. 6550 */ 6551 sc->fw_stats_data_size = 6552 (sizeof(struct stats_counter) + 6553 sizeof(struct per_port_stats) + 6554 sizeof(struct per_pf_stats) + 6555 /* sizeof(struct fcoe_statistics_params) + */ 6556 (sizeof(struct per_queue_stats) * num_queue_stats)); 6557 6558 if (bxe_dma_alloc(sc, (sc->fw_stats_req_size + sc->fw_stats_data_size), 6559 &sc->fw_stats_dma, "fw stats") != 0) { 6560 bxe_free_fw_stats_mem(sc); 6561 return (-1); 6562 } 6563 6564 /* set up the shortcuts */ 6565 6566 sc->fw_stats_req = 6567 (struct bxe_fw_stats_req *)sc->fw_stats_dma.vaddr; 6568 sc->fw_stats_req_mapping = sc->fw_stats_dma.paddr; 6569 6570 sc->fw_stats_data = 6571 (struct bxe_fw_stats_data *)((uint8_t *)sc->fw_stats_dma.vaddr + 6572 sc->fw_stats_req_size); 6573 sc->fw_stats_data_mapping = (sc->fw_stats_dma.paddr + 6574 sc->fw_stats_req_size); 6575 6576 BLOGD(sc, DBG_LOAD, "statistics request base address set to %#jx\n", 6577 (uintmax_t)sc->fw_stats_req_mapping); 6578 6579 BLOGD(sc, DBG_LOAD, "statistics data base address set to %#jx\n", 6580 (uintmax_t)sc->fw_stats_data_mapping); 6581 6582 return (0); 6583 } 6584 6585 /* 6586 * Bits map: 6587 * 0-7 - Engine0 load counter. 6588 * 8-15 - Engine1 load counter. 6589 * 16 - Engine0 RESET_IN_PROGRESS bit. 6590 * 17 - Engine1 RESET_IN_PROGRESS bit. 6591 * 18 - Engine0 ONE_IS_LOADED. Set when there is at least one active 6592 * function on the engine 6593 * 19 - Engine1 ONE_IS_LOADED. 6594 * 20 - Chip reset flow bit. When set none-leader must wait for both engines 6595 * leader to complete (check for both RESET_IN_PROGRESS bits and not 6596 * for just the one belonging to its engine). 6597 */ 6598 #define BXE_RECOVERY_GLOB_REG MISC_REG_GENERIC_POR_1 6599 #define BXE_PATH0_LOAD_CNT_MASK 0x000000ff 6600 #define BXE_PATH0_LOAD_CNT_SHIFT 0 6601 #define BXE_PATH1_LOAD_CNT_MASK 0x0000ff00 6602 #define BXE_PATH1_LOAD_CNT_SHIFT 8 6603 #define BXE_PATH0_RST_IN_PROG_BIT 0x00010000 6604 #define BXE_PATH1_RST_IN_PROG_BIT 0x00020000 6605 #define BXE_GLOBAL_RESET_BIT 0x00040000 6606 6607 /* set the GLOBAL_RESET bit, should be run under rtnl lock */ 6608 static void 6609 bxe_set_reset_global(struct bxe_softc *sc) 6610 { 6611 uint32_t val; 6612 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG); 6613 val = REG_RD(sc, BXE_RECOVERY_GLOB_REG); 6614 REG_WR(sc, BXE_RECOVERY_GLOB_REG, val | BXE_GLOBAL_RESET_BIT); 6615 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG); 6616 } 6617 6618 /* clear the GLOBAL_RESET bit, should be run under rtnl lock */ 6619 static void 6620 bxe_clear_reset_global(struct bxe_softc *sc) 6621 { 6622 uint32_t val; 6623 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG); 6624 val = REG_RD(sc, BXE_RECOVERY_GLOB_REG); 6625 REG_WR(sc, BXE_RECOVERY_GLOB_REG, val & (~BXE_GLOBAL_RESET_BIT)); 6626 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG); 6627 } 6628 6629 /* checks the GLOBAL_RESET bit, should be run under rtnl lock */ 6630 static uint8_t 6631 bxe_reset_is_global(struct bxe_softc *sc) 6632 { 6633 uint32_t val = REG_RD(sc, BXE_RECOVERY_GLOB_REG); 6634 BLOGD(sc, DBG_LOAD, "GLOB_REG=0x%08x\n", val); 6635 return (val & BXE_GLOBAL_RESET_BIT) ? TRUE : FALSE; 6636 } 6637 6638 /* clear RESET_IN_PROGRESS bit for the engine, should be run under rtnl lock */ 6639 static void 6640 bxe_set_reset_done(struct bxe_softc *sc) 6641 { 6642 uint32_t val; 6643 uint32_t bit = SC_PATH(sc) ? BXE_PATH1_RST_IN_PROG_BIT : 6644 BXE_PATH0_RST_IN_PROG_BIT; 6645 6646 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG); 6647 6648 val = REG_RD(sc, BXE_RECOVERY_GLOB_REG); 6649 /* Clear the bit */ 6650 val &= ~bit; 6651 REG_WR(sc, BXE_RECOVERY_GLOB_REG, val); 6652 6653 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG); 6654 } 6655 6656 /* set RESET_IN_PROGRESS for the engine, should be run under rtnl lock */ 6657 static void 6658 bxe_set_reset_in_progress(struct bxe_softc *sc) 6659 { 6660 uint32_t val; 6661 uint32_t bit = SC_PATH(sc) ? BXE_PATH1_RST_IN_PROG_BIT : 6662 BXE_PATH0_RST_IN_PROG_BIT; 6663 6664 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG); 6665 6666 val = REG_RD(sc, BXE_RECOVERY_GLOB_REG); 6667 /* Set the bit */ 6668 val |= bit; 6669 REG_WR(sc, BXE_RECOVERY_GLOB_REG, val); 6670 6671 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG); 6672 } 6673 6674 /* check RESET_IN_PROGRESS bit for an engine, should be run under rtnl lock */ 6675 static uint8_t 6676 bxe_reset_is_done(struct bxe_softc *sc, 6677 int engine) 6678 { 6679 uint32_t val = REG_RD(sc, BXE_RECOVERY_GLOB_REG); 6680 uint32_t bit = engine ? BXE_PATH1_RST_IN_PROG_BIT : 6681 BXE_PATH0_RST_IN_PROG_BIT; 6682 6683 /* return false if bit is set */ 6684 return (val & bit) ? FALSE : TRUE; 6685 } 6686 6687 /* get the load status for an engine, should be run under rtnl lock */ 6688 static uint8_t 6689 bxe_get_load_status(struct bxe_softc *sc, 6690 int engine) 6691 { 6692 uint32_t mask = engine ? BXE_PATH1_LOAD_CNT_MASK : 6693 BXE_PATH0_LOAD_CNT_MASK; 6694 uint32_t shift = engine ? BXE_PATH1_LOAD_CNT_SHIFT : 6695 BXE_PATH0_LOAD_CNT_SHIFT; 6696 uint32_t val = REG_RD(sc, BXE_RECOVERY_GLOB_REG); 6697 6698 BLOGD(sc, DBG_LOAD, "Old value for GLOB_REG=0x%08x\n", val); 6699 6700 val = ((val & mask) >> shift); 6701 6702 BLOGD(sc, DBG_LOAD, "Load mask engine %d = 0x%08x\n", engine, val); 6703 6704 return (val != 0); 6705 } 6706 6707 /* set pf load mark */ 6708 /* XXX needs to be under rtnl lock */ 6709 static void 6710 bxe_set_pf_load(struct bxe_softc *sc) 6711 { 6712 uint32_t val; 6713 uint32_t val1; 6714 uint32_t mask = SC_PATH(sc) ? BXE_PATH1_LOAD_CNT_MASK : 6715 BXE_PATH0_LOAD_CNT_MASK; 6716 uint32_t shift = SC_PATH(sc) ? BXE_PATH1_LOAD_CNT_SHIFT : 6717 BXE_PATH0_LOAD_CNT_SHIFT; 6718 6719 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG); 6720 6721 val = REG_RD(sc, BXE_RECOVERY_GLOB_REG); 6722 BLOGD(sc, DBG_LOAD, "Old value for GLOB_REG=0x%08x\n", val); 6723 6724 /* get the current counter value */ 6725 val1 = ((val & mask) >> shift); 6726 6727 /* set bit of this PF */ 6728 val1 |= (1 << SC_ABS_FUNC(sc)); 6729 6730 /* clear the old value */ 6731 val &= ~mask; 6732 6733 /* set the new one */ 6734 val |= ((val1 << shift) & mask); 6735 6736 REG_WR(sc, BXE_RECOVERY_GLOB_REG, val); 6737 6738 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG); 6739 } 6740 6741 /* clear pf load mark */ 6742 /* XXX needs to be under rtnl lock */ 6743 static uint8_t 6744 bxe_clear_pf_load(struct bxe_softc *sc) 6745 { 6746 uint32_t val1, val; 6747 uint32_t mask = SC_PATH(sc) ? BXE_PATH1_LOAD_CNT_MASK : 6748 BXE_PATH0_LOAD_CNT_MASK; 6749 uint32_t shift = SC_PATH(sc) ? BXE_PATH1_LOAD_CNT_SHIFT : 6750 BXE_PATH0_LOAD_CNT_SHIFT; 6751 6752 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG); 6753 val = REG_RD(sc, BXE_RECOVERY_GLOB_REG); 6754 BLOGD(sc, DBG_LOAD, "Old GEN_REG_VAL=0x%08x\n", val); 6755 6756 /* get the current counter value */ 6757 val1 = (val & mask) >> shift; 6758 6759 /* clear bit of that PF */ 6760 val1 &= ~(1 << SC_ABS_FUNC(sc)); 6761 6762 /* clear the old value */ 6763 val &= ~mask; 6764 6765 /* set the new one */ 6766 val |= ((val1 << shift) & mask); 6767 6768 REG_WR(sc, BXE_RECOVERY_GLOB_REG, val); 6769 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG); 6770 return (val1 != 0); 6771 } 6772 6773 /* send load requrest to mcp and analyze response */ 6774 static int 6775 bxe_nic_load_request(struct bxe_softc *sc, 6776 uint32_t *load_code) 6777 { 6778 /* init fw_seq */ 6779 sc->fw_seq = 6780 (SHMEM_RD(sc, func_mb[SC_FW_MB_IDX(sc)].drv_mb_header) & 6781 DRV_MSG_SEQ_NUMBER_MASK); 6782 6783 BLOGD(sc, DBG_LOAD, "initial fw_seq 0x%04x\n", sc->fw_seq); 6784 6785 /* get the current FW pulse sequence */ 6786 sc->fw_drv_pulse_wr_seq = 6787 (SHMEM_RD(sc, func_mb[SC_FW_MB_IDX(sc)].drv_pulse_mb) & 6788 DRV_PULSE_SEQ_MASK); 6789 6790 BLOGD(sc, DBG_LOAD, "initial drv_pulse 0x%04x\n", 6791 sc->fw_drv_pulse_wr_seq); 6792 6793 /* load request */ 6794 (*load_code) = bxe_fw_command(sc, DRV_MSG_CODE_LOAD_REQ, 6795 DRV_MSG_CODE_LOAD_REQ_WITH_LFA); 6796 6797 /* if the MCP fails to respond we must abort */ 6798 if (!(*load_code)) { 6799 BLOGE(sc, "MCP response failure!\n"); 6800 return (-1); 6801 } 6802 6803 /* if MCP refused then must abort */ 6804 if ((*load_code) == FW_MSG_CODE_DRV_LOAD_REFUSED) { 6805 BLOGE(sc, "MCP refused load request\n"); 6806 return (-1); 6807 } 6808 6809 return (0); 6810 } 6811 6812 /* 6813 * Check whether another PF has already loaded FW to chip. In virtualized 6814 * environments a pf from anoth VM may have already initialized the device 6815 * including loading FW. 6816 */ 6817 static int 6818 bxe_nic_load_analyze_req(struct bxe_softc *sc, 6819 uint32_t load_code) 6820 { 6821 uint32_t my_fw, loaded_fw; 6822 6823 /* is another pf loaded on this engine? */ 6824 if ((load_code != FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) && 6825 (load_code != FW_MSG_CODE_DRV_LOAD_COMMON)) { 6826 /* build my FW version dword */ 6827 my_fw = (BCM_5710_FW_MAJOR_VERSION + 6828 (BCM_5710_FW_MINOR_VERSION << 8 ) + 6829 (BCM_5710_FW_REVISION_VERSION << 16) + 6830 (BCM_5710_FW_ENGINEERING_VERSION << 24)); 6831 6832 /* read loaded FW from chip */ 6833 loaded_fw = REG_RD(sc, XSEM_REG_PRAM); 6834 BLOGD(sc, DBG_LOAD, "loaded FW 0x%08x / my FW 0x%08x\n", 6835 loaded_fw, my_fw); 6836 6837 /* abort nic load if version mismatch */ 6838 if (my_fw != loaded_fw) { 6839 BLOGE(sc, "FW 0x%08x already loaded (mine is 0x%08x)", 6840 loaded_fw, my_fw); 6841 return (-1); 6842 } 6843 } 6844 6845 return (0); 6846 } 6847 6848 /* mark PMF if applicable */ 6849 static void 6850 bxe_nic_load_pmf(struct bxe_softc *sc, 6851 uint32_t load_code) 6852 { 6853 uint32_t ncsi_oem_data_addr; 6854 6855 if ((load_code == FW_MSG_CODE_DRV_LOAD_COMMON) || 6856 (load_code == FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) || 6857 (load_code == FW_MSG_CODE_DRV_LOAD_PORT)) { 6858 /* 6859 * Barrier here for ordering between the writing to sc->port.pmf here 6860 * and reading it from the periodic task. 6861 */ 6862 sc->port.pmf = 1; 6863 mb(); 6864 } else { 6865 sc->port.pmf = 0; 6866 } 6867 6868 BLOGD(sc, DBG_LOAD, "pmf %d\n", sc->port.pmf); 6869 6870 /* XXX needed? */ 6871 if (load_code == FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) { 6872 if (SHMEM2_HAS(sc, ncsi_oem_data_addr)) { 6873 ncsi_oem_data_addr = SHMEM2_RD(sc, ncsi_oem_data_addr); 6874 if (ncsi_oem_data_addr) { 6875 REG_WR(sc, 6876 (ncsi_oem_data_addr + 6877 offsetof(struct glob_ncsi_oem_data, driver_version)), 6878 0); 6879 } 6880 } 6881 } 6882 } 6883 6884 static void 6885 bxe_read_mf_cfg(struct bxe_softc *sc) 6886 { 6887 int n = (CHIP_IS_MODE_4_PORT(sc) ? 2 : 1); 6888 int abs_func; 6889 int vn; 6890 6891 if (BXE_NOMCP(sc)) { 6892 return; /* what should be the default bvalue in this case */ 6893 } 6894 6895 /* 6896 * The formula for computing the absolute function number is... 6897 * For 2 port configuration (4 functions per port): 6898 * abs_func = 2 * vn + SC_PORT + SC_PATH 6899 * For 4 port configuration (2 functions per port): 6900 * abs_func = 4 * vn + 2 * SC_PORT + SC_PATH 6901 */ 6902 for (vn = VN_0; vn < SC_MAX_VN_NUM(sc); vn++) { 6903 abs_func = (n * (2 * vn + SC_PORT(sc)) + SC_PATH(sc)); 6904 if (abs_func >= E1H_FUNC_MAX) { 6905 break; 6906 } 6907 sc->devinfo.mf_info.mf_config[vn] = 6908 MFCFG_RD(sc, func_mf_config[abs_func].config); 6909 } 6910 6911 if (sc->devinfo.mf_info.mf_config[SC_VN(sc)] & 6912 FUNC_MF_CFG_FUNC_DISABLED) { 6913 BLOGD(sc, DBG_LOAD, "mf_cfg function disabled\n"); 6914 sc->flags |= BXE_MF_FUNC_DIS; 6915 } else { 6916 BLOGD(sc, DBG_LOAD, "mf_cfg function enabled\n"); 6917 sc->flags &= ~BXE_MF_FUNC_DIS; 6918 } 6919 } 6920 6921 /* acquire split MCP access lock register */ 6922 static int bxe_acquire_alr(struct bxe_softc *sc) 6923 { 6924 uint32_t j, val; 6925 6926 for (j = 0; j < 1000; j++) { 6927 val = (1UL << 31); 6928 REG_WR(sc, GRCBASE_MCP + 0x9c, val); 6929 val = REG_RD(sc, GRCBASE_MCP + 0x9c); 6930 if (val & (1L << 31)) 6931 break; 6932 6933 DELAY(5000); 6934 } 6935 6936 if (!(val & (1L << 31))) { 6937 BLOGE(sc, "Cannot acquire MCP access lock register\n"); 6938 return (-1); 6939 } 6940 6941 return (0); 6942 } 6943 6944 /* release split MCP access lock register */ 6945 static void bxe_release_alr(struct bxe_softc *sc) 6946 { 6947 REG_WR(sc, GRCBASE_MCP + 0x9c, 0); 6948 } 6949 6950 static void 6951 bxe_fan_failure(struct bxe_softc *sc) 6952 { 6953 int port = SC_PORT(sc); 6954 uint32_t ext_phy_config; 6955 6956 /* mark the failure */ 6957 ext_phy_config = 6958 SHMEM_RD(sc, dev_info.port_hw_config[port].external_phy_config); 6959 6960 ext_phy_config &= ~PORT_HW_CFG_XGXS_EXT_PHY_TYPE_MASK; 6961 ext_phy_config |= PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE; 6962 SHMEM_WR(sc, dev_info.port_hw_config[port].external_phy_config, 6963 ext_phy_config); 6964 6965 /* log the failure */ 6966 BLOGW(sc, "Fan Failure has caused the driver to shutdown " 6967 "the card to prevent permanent damage. " 6968 "Please contact OEM Support for assistance\n"); 6969 6970 /* XXX */ 6971 #if 1 6972 bxe_panic(sc, ("Schedule task to handle fan failure\n")); 6973 #else 6974 /* 6975 * Schedule device reset (unload) 6976 * This is due to some boards consuming sufficient power when driver is 6977 * up to overheat if fan fails. 6978 */ 6979 bxe_set_bit(BXE_SP_RTNL_FAN_FAILURE, &sc->sp_rtnl_state); 6980 schedule_delayed_work(&sc->sp_rtnl_task, 0); 6981 #endif 6982 } 6983 6984 /* this function is called upon a link interrupt */ 6985 static void 6986 bxe_link_attn(struct bxe_softc *sc) 6987 { 6988 uint32_t pause_enabled = 0; 6989 struct host_port_stats *pstats; 6990 int cmng_fns; 6991 struct bxe_fastpath *fp; 6992 int i; 6993 6994 /* Make sure that we are synced with the current statistics */ 6995 bxe_stats_handle(sc, STATS_EVENT_STOP); 6996 6997 elink_link_update(&sc->link_params, &sc->link_vars); 6998 6999 if (sc->link_vars.link_up) { 7000 7001 /* dropless flow control */ 7002 if (!CHIP_IS_E1(sc) && sc->dropless_fc) { 7003 pause_enabled = 0; 7004 7005 if (sc->link_vars.flow_ctrl & ELINK_FLOW_CTRL_TX) { 7006 pause_enabled = 1; 7007 } 7008 7009 REG_WR(sc, 7010 (BAR_USTRORM_INTMEM + 7011 USTORM_ETH_PAUSE_ENABLED_OFFSET(SC_PORT(sc))), 7012 pause_enabled); 7013 } 7014 7015 if (sc->link_vars.mac_type != ELINK_MAC_TYPE_EMAC) { 7016 pstats = BXE_SP(sc, port_stats); 7017 /* reset old mac stats */ 7018 memset(&(pstats->mac_stx[0]), 0, sizeof(struct mac_stx)); 7019 } 7020 7021 if (sc->state == BXE_STATE_OPEN) { 7022 bxe_stats_handle(sc, STATS_EVENT_LINK_UP); 7023 } 7024 7025 /* Restart tx when the link comes back. */ 7026 FOR_EACH_ETH_QUEUE(sc, i) { 7027 fp = &sc->fp[i]; 7028 taskqueue_enqueue(fp->tq, &fp->tx_task); 7029 } 7030 } 7031 7032 if (sc->link_vars.link_up && sc->link_vars.line_speed) { 7033 cmng_fns = bxe_get_cmng_fns_mode(sc); 7034 7035 if (cmng_fns != CMNG_FNS_NONE) { 7036 bxe_cmng_fns_init(sc, FALSE, cmng_fns); 7037 storm_memset_cmng(sc, &sc->cmng, SC_PORT(sc)); 7038 } else { 7039 /* rate shaping and fairness are disabled */ 7040 BLOGD(sc, DBG_LOAD, "single function mode without fairness\n"); 7041 } 7042 } 7043 7044 bxe_link_report_locked(sc); 7045 7046 if (IS_MF(sc)) { 7047 ; // XXX bxe_link_sync_notify(sc); 7048 } 7049 } 7050 7051 static void 7052 bxe_attn_int_asserted(struct bxe_softc *sc, 7053 uint32_t asserted) 7054 { 7055 int port = SC_PORT(sc); 7056 uint32_t aeu_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 : 7057 MISC_REG_AEU_MASK_ATTN_FUNC_0; 7058 uint32_t nig_int_mask_addr = port ? NIG_REG_MASK_INTERRUPT_PORT1 : 7059 NIG_REG_MASK_INTERRUPT_PORT0; 7060 uint32_t aeu_mask; 7061 uint32_t nig_mask = 0; 7062 uint32_t reg_addr; 7063 uint32_t igu_acked; 7064 uint32_t cnt; 7065 7066 if (sc->attn_state & asserted) { 7067 BLOGE(sc, "IGU ERROR attn=0x%08x\n", asserted); 7068 } 7069 7070 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port); 7071 7072 aeu_mask = REG_RD(sc, aeu_addr); 7073 7074 BLOGD(sc, DBG_INTR, "aeu_mask 0x%08x newly asserted 0x%08x\n", 7075 aeu_mask, asserted); 7076 7077 aeu_mask &= ~(asserted & 0x3ff); 7078 7079 BLOGD(sc, DBG_INTR, "new mask 0x%08x\n", aeu_mask); 7080 7081 REG_WR(sc, aeu_addr, aeu_mask); 7082 7083 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port); 7084 7085 BLOGD(sc, DBG_INTR, "attn_state 0x%08x\n", sc->attn_state); 7086 sc->attn_state |= asserted; 7087 BLOGD(sc, DBG_INTR, "new state 0x%08x\n", sc->attn_state); 7088 7089 if (asserted & ATTN_HARD_WIRED_MASK) { 7090 if (asserted & ATTN_NIG_FOR_FUNC) { 7091 7092 bxe_acquire_phy_lock(sc); 7093 /* save nig interrupt mask */ 7094 nig_mask = REG_RD(sc, nig_int_mask_addr); 7095 7096 /* If nig_mask is not set, no need to call the update function */ 7097 if (nig_mask) { 7098 REG_WR(sc, nig_int_mask_addr, 0); 7099 7100 bxe_link_attn(sc); 7101 } 7102 7103 /* handle unicore attn? */ 7104 } 7105 7106 if (asserted & ATTN_SW_TIMER_4_FUNC) { 7107 BLOGD(sc, DBG_INTR, "ATTN_SW_TIMER_4_FUNC!\n"); 7108 } 7109 7110 if (asserted & GPIO_2_FUNC) { 7111 BLOGD(sc, DBG_INTR, "GPIO_2_FUNC!\n"); 7112 } 7113 7114 if (asserted & GPIO_3_FUNC) { 7115 BLOGD(sc, DBG_INTR, "GPIO_3_FUNC!\n"); 7116 } 7117 7118 if (asserted & GPIO_4_FUNC) { 7119 BLOGD(sc, DBG_INTR, "GPIO_4_FUNC!\n"); 7120 } 7121 7122 if (port == 0) { 7123 if (asserted & ATTN_GENERAL_ATTN_1) { 7124 BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_1!\n"); 7125 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_1, 0x0); 7126 } 7127 if (asserted & ATTN_GENERAL_ATTN_2) { 7128 BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_2!\n"); 7129 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_2, 0x0); 7130 } 7131 if (asserted & ATTN_GENERAL_ATTN_3) { 7132 BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_3!\n"); 7133 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_3, 0x0); 7134 } 7135 } else { 7136 if (asserted & ATTN_GENERAL_ATTN_4) { 7137 BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_4!\n"); 7138 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_4, 0x0); 7139 } 7140 if (asserted & ATTN_GENERAL_ATTN_5) { 7141 BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_5!\n"); 7142 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_5, 0x0); 7143 } 7144 if (asserted & ATTN_GENERAL_ATTN_6) { 7145 BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_6!\n"); 7146 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_6, 0x0); 7147 } 7148 } 7149 } /* hardwired */ 7150 7151 if (sc->devinfo.int_block == INT_BLOCK_HC) { 7152 reg_addr = (HC_REG_COMMAND_REG + port*32 + COMMAND_REG_ATTN_BITS_SET); 7153 } else { 7154 reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_SET_UPPER*8); 7155 } 7156 7157 BLOGD(sc, DBG_INTR, "about to mask 0x%08x at %s addr 0x%08x\n", 7158 asserted, 7159 (sc->devinfo.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr); 7160 REG_WR(sc, reg_addr, asserted); 7161 7162 /* now set back the mask */ 7163 if (asserted & ATTN_NIG_FOR_FUNC) { 7164 /* 7165 * Verify that IGU ack through BAR was written before restoring 7166 * NIG mask. This loop should exit after 2-3 iterations max. 7167 */ 7168 if (sc->devinfo.int_block != INT_BLOCK_HC) { 7169 cnt = 0; 7170 7171 do { 7172 igu_acked = REG_RD(sc, IGU_REG_ATTENTION_ACK_BITS); 7173 } while (((igu_acked & ATTN_NIG_FOR_FUNC) == 0) && 7174 (++cnt < MAX_IGU_ATTN_ACK_TO)); 7175 7176 if (!igu_acked) { 7177 BLOGE(sc, "Failed to verify IGU ack on time\n"); 7178 } 7179 7180 mb(); 7181 } 7182 7183 REG_WR(sc, nig_int_mask_addr, nig_mask); 7184 7185 bxe_release_phy_lock(sc); 7186 } 7187 } 7188 7189 static void 7190 bxe_print_next_block(struct bxe_softc *sc, 7191 int idx, 7192 const char *blk) 7193 { 7194 BLOGI(sc, "%s%s", idx ? ", " : "", blk); 7195 } 7196 7197 static int 7198 bxe_check_blocks_with_parity0(struct bxe_softc *sc, 7199 uint32_t sig, 7200 int par_num, 7201 uint8_t print) 7202 { 7203 uint32_t cur_bit = 0; 7204 int i = 0; 7205 7206 for (i = 0; sig; i++) { 7207 cur_bit = ((uint32_t)0x1 << i); 7208 if (sig & cur_bit) { 7209 switch (cur_bit) { 7210 case AEU_INPUTS_ATTN_BITS_BRB_PARITY_ERROR: 7211 if (print) 7212 bxe_print_next_block(sc, par_num++, "BRB"); 7213 break; 7214 case AEU_INPUTS_ATTN_BITS_PARSER_PARITY_ERROR: 7215 if (print) 7216 bxe_print_next_block(sc, par_num++, "PARSER"); 7217 break; 7218 case AEU_INPUTS_ATTN_BITS_TSDM_PARITY_ERROR: 7219 if (print) 7220 bxe_print_next_block(sc, par_num++, "TSDM"); 7221 break; 7222 case AEU_INPUTS_ATTN_BITS_SEARCHER_PARITY_ERROR: 7223 if (print) 7224 bxe_print_next_block(sc, par_num++, "SEARCHER"); 7225 break; 7226 case AEU_INPUTS_ATTN_BITS_TCM_PARITY_ERROR: 7227 if (print) 7228 bxe_print_next_block(sc, par_num++, "TCM"); 7229 break; 7230 case AEU_INPUTS_ATTN_BITS_TSEMI_PARITY_ERROR: 7231 if (print) 7232 bxe_print_next_block(sc, par_num++, "TSEMI"); 7233 break; 7234 case AEU_INPUTS_ATTN_BITS_PBCLIENT_PARITY_ERROR: 7235 if (print) 7236 bxe_print_next_block(sc, par_num++, "XPB"); 7237 break; 7238 } 7239 7240 /* Clear the bit */ 7241 sig &= ~cur_bit; 7242 } 7243 } 7244 7245 return (par_num); 7246 } 7247 7248 static int 7249 bxe_check_blocks_with_parity1(struct bxe_softc *sc, 7250 uint32_t sig, 7251 int par_num, 7252 uint8_t *global, 7253 uint8_t print) 7254 { 7255 int i = 0; 7256 uint32_t cur_bit = 0; 7257 for (i = 0; sig; i++) { 7258 cur_bit = ((uint32_t)0x1 << i); 7259 if (sig & cur_bit) { 7260 switch (cur_bit) { 7261 case AEU_INPUTS_ATTN_BITS_PBF_PARITY_ERROR: 7262 if (print) 7263 bxe_print_next_block(sc, par_num++, "PBF"); 7264 break; 7265 case AEU_INPUTS_ATTN_BITS_QM_PARITY_ERROR: 7266 if (print) 7267 bxe_print_next_block(sc, par_num++, "QM"); 7268 break; 7269 case AEU_INPUTS_ATTN_BITS_TIMERS_PARITY_ERROR: 7270 if (print) 7271 bxe_print_next_block(sc, par_num++, "TM"); 7272 break; 7273 case AEU_INPUTS_ATTN_BITS_XSDM_PARITY_ERROR: 7274 if (print) 7275 bxe_print_next_block(sc, par_num++, "XSDM"); 7276 break; 7277 case AEU_INPUTS_ATTN_BITS_XCM_PARITY_ERROR: 7278 if (print) 7279 bxe_print_next_block(sc, par_num++, "XCM"); 7280 break; 7281 case AEU_INPUTS_ATTN_BITS_XSEMI_PARITY_ERROR: 7282 if (print) 7283 bxe_print_next_block(sc, par_num++, "XSEMI"); 7284 break; 7285 case AEU_INPUTS_ATTN_BITS_DOORBELLQ_PARITY_ERROR: 7286 if (print) 7287 bxe_print_next_block(sc, par_num++, "DOORBELLQ"); 7288 break; 7289 case AEU_INPUTS_ATTN_BITS_NIG_PARITY_ERROR: 7290 if (print) 7291 bxe_print_next_block(sc, par_num++, "NIG"); 7292 break; 7293 case AEU_INPUTS_ATTN_BITS_VAUX_PCI_CORE_PARITY_ERROR: 7294 if (print) 7295 bxe_print_next_block(sc, par_num++, "VAUX PCI CORE"); 7296 *global = TRUE; 7297 break; 7298 case AEU_INPUTS_ATTN_BITS_DEBUG_PARITY_ERROR: 7299 if (print) 7300 bxe_print_next_block(sc, par_num++, "DEBUG"); 7301 break; 7302 case AEU_INPUTS_ATTN_BITS_USDM_PARITY_ERROR: 7303 if (print) 7304 bxe_print_next_block(sc, par_num++, "USDM"); 7305 break; 7306 case AEU_INPUTS_ATTN_BITS_UCM_PARITY_ERROR: 7307 if (print) 7308 bxe_print_next_block(sc, par_num++, "UCM"); 7309 break; 7310 case AEU_INPUTS_ATTN_BITS_USEMI_PARITY_ERROR: 7311 if (print) 7312 bxe_print_next_block(sc, par_num++, "USEMI"); 7313 break; 7314 case AEU_INPUTS_ATTN_BITS_UPB_PARITY_ERROR: 7315 if (print) 7316 bxe_print_next_block(sc, par_num++, "UPB"); 7317 break; 7318 case AEU_INPUTS_ATTN_BITS_CSDM_PARITY_ERROR: 7319 if (print) 7320 bxe_print_next_block(sc, par_num++, "CSDM"); 7321 break; 7322 case AEU_INPUTS_ATTN_BITS_CCM_PARITY_ERROR: 7323 if (print) 7324 bxe_print_next_block(sc, par_num++, "CCM"); 7325 break; 7326 } 7327 7328 /* Clear the bit */ 7329 sig &= ~cur_bit; 7330 } 7331 } 7332 7333 return (par_num); 7334 } 7335 7336 static int 7337 bxe_check_blocks_with_parity2(struct bxe_softc *sc, 7338 uint32_t sig, 7339 int par_num, 7340 uint8_t print) 7341 { 7342 uint32_t cur_bit = 0; 7343 int i = 0; 7344 7345 for (i = 0; sig; i++) { 7346 cur_bit = ((uint32_t)0x1 << i); 7347 if (sig & cur_bit) { 7348 switch (cur_bit) { 7349 case AEU_INPUTS_ATTN_BITS_CSEMI_PARITY_ERROR: 7350 if (print) 7351 bxe_print_next_block(sc, par_num++, "CSEMI"); 7352 break; 7353 case AEU_INPUTS_ATTN_BITS_PXP_PARITY_ERROR: 7354 if (print) 7355 bxe_print_next_block(sc, par_num++, "PXP"); 7356 break; 7357 case AEU_IN_ATTN_BITS_PXPPCICLOCKCLIENT_PARITY_ERROR: 7358 if (print) 7359 bxe_print_next_block(sc, par_num++, "PXPPCICLOCKCLIENT"); 7360 break; 7361 case AEU_INPUTS_ATTN_BITS_CFC_PARITY_ERROR: 7362 if (print) 7363 bxe_print_next_block(sc, par_num++, "CFC"); 7364 break; 7365 case AEU_INPUTS_ATTN_BITS_CDU_PARITY_ERROR: 7366 if (print) 7367 bxe_print_next_block(sc, par_num++, "CDU"); 7368 break; 7369 case AEU_INPUTS_ATTN_BITS_DMAE_PARITY_ERROR: 7370 if (print) 7371 bxe_print_next_block(sc, par_num++, "DMAE"); 7372 break; 7373 case AEU_INPUTS_ATTN_BITS_IGU_PARITY_ERROR: 7374 if (print) 7375 bxe_print_next_block(sc, par_num++, "IGU"); 7376 break; 7377 case AEU_INPUTS_ATTN_BITS_MISC_PARITY_ERROR: 7378 if (print) 7379 bxe_print_next_block(sc, par_num++, "MISC"); 7380 break; 7381 } 7382 7383 /* Clear the bit */ 7384 sig &= ~cur_bit; 7385 } 7386 } 7387 7388 return (par_num); 7389 } 7390 7391 static int 7392 bxe_check_blocks_with_parity3(struct bxe_softc *sc, 7393 uint32_t sig, 7394 int par_num, 7395 uint8_t *global, 7396 uint8_t print) 7397 { 7398 uint32_t cur_bit = 0; 7399 int i = 0; 7400 7401 for (i = 0; sig; i++) { 7402 cur_bit = ((uint32_t)0x1 << i); 7403 if (sig & cur_bit) { 7404 switch (cur_bit) { 7405 case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_ROM_PARITY: 7406 if (print) 7407 bxe_print_next_block(sc, par_num++, "MCP ROM"); 7408 *global = TRUE; 7409 break; 7410 case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_RX_PARITY: 7411 if (print) 7412 bxe_print_next_block(sc, par_num++, 7413 "MCP UMP RX"); 7414 *global = TRUE; 7415 break; 7416 case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_TX_PARITY: 7417 if (print) 7418 bxe_print_next_block(sc, par_num++, 7419 "MCP UMP TX"); 7420 *global = TRUE; 7421 break; 7422 case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY: 7423 if (print) 7424 bxe_print_next_block(sc, par_num++, 7425 "MCP SCPAD"); 7426 *global = TRUE; 7427 break; 7428 } 7429 7430 /* Clear the bit */ 7431 sig &= ~cur_bit; 7432 } 7433 } 7434 7435 return (par_num); 7436 } 7437 7438 static int 7439 bxe_check_blocks_with_parity4(struct bxe_softc *sc, 7440 uint32_t sig, 7441 int par_num, 7442 uint8_t print) 7443 { 7444 uint32_t cur_bit = 0; 7445 int i = 0; 7446 7447 for (i = 0; sig; i++) { 7448 cur_bit = ((uint32_t)0x1 << i); 7449 if (sig & cur_bit) { 7450 switch (cur_bit) { 7451 case AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR: 7452 if (print) 7453 bxe_print_next_block(sc, par_num++, "PGLUE_B"); 7454 break; 7455 case AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR: 7456 if (print) 7457 bxe_print_next_block(sc, par_num++, "ATC"); 7458 break; 7459 } 7460 7461 /* Clear the bit */ 7462 sig &= ~cur_bit; 7463 } 7464 } 7465 7466 return (par_num); 7467 } 7468 7469 static uint8_t 7470 bxe_parity_attn(struct bxe_softc *sc, 7471 uint8_t *global, 7472 uint8_t print, 7473 uint32_t *sig) 7474 { 7475 int par_num = 0; 7476 7477 if ((sig[0] & HW_PRTY_ASSERT_SET_0) || 7478 (sig[1] & HW_PRTY_ASSERT_SET_1) || 7479 (sig[2] & HW_PRTY_ASSERT_SET_2) || 7480 (sig[3] & HW_PRTY_ASSERT_SET_3) || 7481 (sig[4] & HW_PRTY_ASSERT_SET_4)) { 7482 BLOGE(sc, "Parity error: HW block parity attention:\n" 7483 "[0]:0x%08x [1]:0x%08x [2]:0x%08x [3]:0x%08x [4]:0x%08x\n", 7484 (uint32_t)(sig[0] & HW_PRTY_ASSERT_SET_0), 7485 (uint32_t)(sig[1] & HW_PRTY_ASSERT_SET_1), 7486 (uint32_t)(sig[2] & HW_PRTY_ASSERT_SET_2), 7487 (uint32_t)(sig[3] & HW_PRTY_ASSERT_SET_3), 7488 (uint32_t)(sig[4] & HW_PRTY_ASSERT_SET_4)); 7489 7490 if (print) 7491 BLOGI(sc, "Parity errors detected in blocks: "); 7492 7493 par_num = 7494 bxe_check_blocks_with_parity0(sc, sig[0] & 7495 HW_PRTY_ASSERT_SET_0, 7496 par_num, print); 7497 par_num = 7498 bxe_check_blocks_with_parity1(sc, sig[1] & 7499 HW_PRTY_ASSERT_SET_1, 7500 par_num, global, print); 7501 par_num = 7502 bxe_check_blocks_with_parity2(sc, sig[2] & 7503 HW_PRTY_ASSERT_SET_2, 7504 par_num, print); 7505 par_num = 7506 bxe_check_blocks_with_parity3(sc, sig[3] & 7507 HW_PRTY_ASSERT_SET_3, 7508 par_num, global, print); 7509 par_num = 7510 bxe_check_blocks_with_parity4(sc, sig[4] & 7511 HW_PRTY_ASSERT_SET_4, 7512 par_num, print); 7513 7514 if (print) 7515 BLOGI(sc, "\n"); 7516 7517 return (TRUE); 7518 } 7519 7520 return (FALSE); 7521 } 7522 7523 static uint8_t 7524 bxe_chk_parity_attn(struct bxe_softc *sc, 7525 uint8_t *global, 7526 uint8_t print) 7527 { 7528 struct attn_route attn = { {0} }; 7529 int port = SC_PORT(sc); 7530 7531 attn.sig[0] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + port*4); 7532 attn.sig[1] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 + port*4); 7533 attn.sig[2] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 + port*4); 7534 attn.sig[3] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 + port*4); 7535 7536 /* 7537 * Since MCP attentions can't be disabled inside the block, we need to 7538 * read AEU registers to see whether they're currently disabled 7539 */ 7540 attn.sig[3] &= ((REG_RD(sc, (!port ? MISC_REG_AEU_ENABLE4_FUNC_0_OUT_0 7541 : MISC_REG_AEU_ENABLE4_FUNC_1_OUT_0)) & 7542 MISC_AEU_ENABLE_MCP_PRTY_BITS) | 7543 ~MISC_AEU_ENABLE_MCP_PRTY_BITS); 7544 7545 7546 if (!CHIP_IS_E1x(sc)) 7547 attn.sig[4] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 + port*4); 7548 7549 return (bxe_parity_attn(sc, global, print, attn.sig)); 7550 } 7551 7552 static void 7553 bxe_attn_int_deasserted4(struct bxe_softc *sc, 7554 uint32_t attn) 7555 { 7556 uint32_t val; 7557 7558 if (attn & AEU_INPUTS_ATTN_BITS_PGLUE_HW_INTERRUPT) { 7559 val = REG_RD(sc, PGLUE_B_REG_PGLUE_B_INT_STS_CLR); 7560 BLOGE(sc, "PGLUE hw attention 0x%08x\n", val); 7561 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR) 7562 BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR\n"); 7563 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR) 7564 BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR\n"); 7565 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN) 7566 BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN\n"); 7567 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN) 7568 BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN\n"); 7569 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN) 7570 BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN\n"); 7571 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN) 7572 BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN\n"); 7573 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN) 7574 BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN\n"); 7575 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN) 7576 BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN\n"); 7577 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW) 7578 BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW\n"); 7579 } 7580 7581 if (attn & AEU_INPUTS_ATTN_BITS_ATC_HW_INTERRUPT) { 7582 val = REG_RD(sc, ATC_REG_ATC_INT_STS_CLR); 7583 BLOGE(sc, "ATC hw attention 0x%08x\n", val); 7584 if (val & ATC_ATC_INT_STS_REG_ADDRESS_ERROR) 7585 BLOGE(sc, "ATC_ATC_INT_STS_REG_ADDRESS_ERROR\n"); 7586 if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND) 7587 BLOGE(sc, "ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND\n"); 7588 if (val & ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS) 7589 BLOGE(sc, "ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS\n"); 7590 if (val & ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT) 7591 BLOGE(sc, "ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT\n"); 7592 if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR) 7593 BLOGE(sc, "ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR\n"); 7594 if (val & ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU) 7595 BLOGE(sc, "ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU\n"); 7596 } 7597 7598 if (attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR | 7599 AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)) { 7600 BLOGE(sc, "FATAL parity attention set4 0x%08x\n", 7601 (uint32_t)(attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR | 7602 AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR))); 7603 } 7604 } 7605 7606 static void 7607 bxe_e1h_disable(struct bxe_softc *sc) 7608 { 7609 int port = SC_PORT(sc); 7610 7611 bxe_tx_disable(sc); 7612 7613 REG_WR(sc, NIG_REG_LLH0_FUNC_EN + port*8, 0); 7614 } 7615 7616 static void 7617 bxe_e1h_enable(struct bxe_softc *sc) 7618 { 7619 int port = SC_PORT(sc); 7620 7621 REG_WR(sc, NIG_REG_LLH0_FUNC_EN + port*8, 1); 7622 7623 // XXX bxe_tx_enable(sc); 7624 } 7625 7626 /* 7627 * called due to MCP event (on pmf): 7628 * reread new bandwidth configuration 7629 * configure FW 7630 * notify others function about the change 7631 */ 7632 static void 7633 bxe_config_mf_bw(struct bxe_softc *sc) 7634 { 7635 if (sc->link_vars.link_up) { 7636 bxe_cmng_fns_init(sc, TRUE, CMNG_FNS_MINMAX); 7637 // XXX bxe_link_sync_notify(sc); 7638 } 7639 7640 storm_memset_cmng(sc, &sc->cmng, SC_PORT(sc)); 7641 } 7642 7643 static void 7644 bxe_set_mf_bw(struct bxe_softc *sc) 7645 { 7646 bxe_config_mf_bw(sc); 7647 bxe_fw_command(sc, DRV_MSG_CODE_SET_MF_BW_ACK, 0); 7648 } 7649 7650 static void 7651 bxe_handle_eee_event(struct bxe_softc *sc) 7652 { 7653 BLOGD(sc, DBG_INTR, "EEE - LLDP event\n"); 7654 bxe_fw_command(sc, DRV_MSG_CODE_EEE_RESULTS_ACK, 0); 7655 } 7656 7657 #define DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED 3 7658 7659 static void 7660 bxe_drv_info_ether_stat(struct bxe_softc *sc) 7661 { 7662 struct eth_stats_info *ether_stat = 7663 &sc->sp->drv_info_to_mcp.ether_stat; 7664 7665 strlcpy(ether_stat->version, BXE_DRIVER_VERSION, 7666 ETH_STAT_INFO_VERSION_LEN); 7667 7668 /* XXX (+ MAC_PAD) taken from other driver... verify this is right */ 7669 sc->sp_objs[0].mac_obj.get_n_elements(sc, &sc->sp_objs[0].mac_obj, 7670 DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED, 7671 ether_stat->mac_local + MAC_PAD, 7672 MAC_PAD, ETH_ALEN); 7673 7674 ether_stat->mtu_size = sc->mtu; 7675 7676 ether_stat->feature_flags |= FEATURE_ETH_CHKSUM_OFFLOAD_MASK; 7677 if (if_getcapenable(sc->ifp) & (IFCAP_TSO4 | IFCAP_TSO6)) { 7678 ether_stat->feature_flags |= FEATURE_ETH_LSO_MASK; 7679 } 7680 7681 // XXX ether_stat->feature_flags |= ???; 7682 7683 ether_stat->promiscuous_mode = 0; // (flags & PROMISC) ? 1 : 0; 7684 7685 ether_stat->txq_size = sc->tx_ring_size; 7686 ether_stat->rxq_size = sc->rx_ring_size; 7687 } 7688 7689 static void 7690 bxe_handle_drv_info_req(struct bxe_softc *sc) 7691 { 7692 enum drv_info_opcode op_code; 7693 uint32_t drv_info_ctl = SHMEM2_RD(sc, drv_info_control); 7694 7695 /* if drv_info version supported by MFW doesn't match - send NACK */ 7696 if ((drv_info_ctl & DRV_INFO_CONTROL_VER_MASK) != DRV_INFO_CUR_VER) { 7697 bxe_fw_command(sc, DRV_MSG_CODE_DRV_INFO_NACK, 0); 7698 return; 7699 } 7700 7701 op_code = ((drv_info_ctl & DRV_INFO_CONTROL_OP_CODE_MASK) >> 7702 DRV_INFO_CONTROL_OP_CODE_SHIFT); 7703 7704 memset(&sc->sp->drv_info_to_mcp, 0, sizeof(union drv_info_to_mcp)); 7705 7706 switch (op_code) { 7707 case ETH_STATS_OPCODE: 7708 bxe_drv_info_ether_stat(sc); 7709 break; 7710 case FCOE_STATS_OPCODE: 7711 case ISCSI_STATS_OPCODE: 7712 default: 7713 /* if op code isn't supported - send NACK */ 7714 bxe_fw_command(sc, DRV_MSG_CODE_DRV_INFO_NACK, 0); 7715 return; 7716 } 7717 7718 /* 7719 * If we got drv_info attn from MFW then these fields are defined in 7720 * shmem2 for sure 7721 */ 7722 SHMEM2_WR(sc, drv_info_host_addr_lo, 7723 U64_LO(BXE_SP_MAPPING(sc, drv_info_to_mcp))); 7724 SHMEM2_WR(sc, drv_info_host_addr_hi, 7725 U64_HI(BXE_SP_MAPPING(sc, drv_info_to_mcp))); 7726 7727 bxe_fw_command(sc, DRV_MSG_CODE_DRV_INFO_ACK, 0); 7728 } 7729 7730 static void 7731 bxe_dcc_event(struct bxe_softc *sc, 7732 uint32_t dcc_event) 7733 { 7734 BLOGD(sc, DBG_INTR, "dcc_event 0x%08x\n", dcc_event); 7735 7736 if (dcc_event & DRV_STATUS_DCC_DISABLE_ENABLE_PF) { 7737 /* 7738 * This is the only place besides the function initialization 7739 * where the sc->flags can change so it is done without any 7740 * locks 7741 */ 7742 if (sc->devinfo.mf_info.mf_config[SC_VN(sc)] & FUNC_MF_CFG_FUNC_DISABLED) { 7743 BLOGD(sc, DBG_INTR, "mf_cfg function disabled\n"); 7744 sc->flags |= BXE_MF_FUNC_DIS; 7745 bxe_e1h_disable(sc); 7746 } else { 7747 BLOGD(sc, DBG_INTR, "mf_cfg function enabled\n"); 7748 sc->flags &= ~BXE_MF_FUNC_DIS; 7749 bxe_e1h_enable(sc); 7750 } 7751 dcc_event &= ~DRV_STATUS_DCC_DISABLE_ENABLE_PF; 7752 } 7753 7754 if (dcc_event & DRV_STATUS_DCC_BANDWIDTH_ALLOCATION) { 7755 bxe_config_mf_bw(sc); 7756 dcc_event &= ~DRV_STATUS_DCC_BANDWIDTH_ALLOCATION; 7757 } 7758 7759 /* Report results to MCP */ 7760 if (dcc_event) 7761 bxe_fw_command(sc, DRV_MSG_CODE_DCC_FAILURE, 0); 7762 else 7763 bxe_fw_command(sc, DRV_MSG_CODE_DCC_OK, 0); 7764 } 7765 7766 static void 7767 bxe_pmf_update(struct bxe_softc *sc) 7768 { 7769 int port = SC_PORT(sc); 7770 uint32_t val; 7771 7772 sc->port.pmf = 1; 7773 BLOGD(sc, DBG_INTR, "pmf %d\n", sc->port.pmf); 7774 7775 /* 7776 * We need the mb() to ensure the ordering between the writing to 7777 * sc->port.pmf here and reading it from the bxe_periodic_task(). 7778 */ 7779 mb(); 7780 7781 /* queue a periodic task */ 7782 // XXX schedule task... 7783 7784 // XXX bxe_dcbx_pmf_update(sc); 7785 7786 /* enable nig attention */ 7787 val = (0xff0f | (1 << (SC_VN(sc) + 4))); 7788 if (sc->devinfo.int_block == INT_BLOCK_HC) { 7789 REG_WR(sc, HC_REG_TRAILING_EDGE_0 + port*8, val); 7790 REG_WR(sc, HC_REG_LEADING_EDGE_0 + port*8, val); 7791 } else if (!CHIP_IS_E1x(sc)) { 7792 REG_WR(sc, IGU_REG_TRAILING_EDGE_LATCH, val); 7793 REG_WR(sc, IGU_REG_LEADING_EDGE_LATCH, val); 7794 } 7795 7796 bxe_stats_handle(sc, STATS_EVENT_PMF); 7797 } 7798 7799 static int 7800 bxe_mc_assert(struct bxe_softc *sc) 7801 { 7802 char last_idx; 7803 int i, rc = 0; 7804 uint32_t row0, row1, row2, row3; 7805 7806 /* XSTORM */ 7807 last_idx = REG_RD8(sc, BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_INDEX_OFFSET); 7808 if (last_idx) 7809 BLOGE(sc, "XSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx); 7810 7811 /* print the asserts */ 7812 for (i = 0; i < STORM_ASSERT_ARRAY_SIZE; i++) { 7813 7814 row0 = REG_RD(sc, BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_OFFSET(i)); 7815 row1 = REG_RD(sc, BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_OFFSET(i) + 4); 7816 row2 = REG_RD(sc, BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_OFFSET(i) + 8); 7817 row3 = REG_RD(sc, BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_OFFSET(i) + 12); 7818 7819 if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) { 7820 BLOGE(sc, "XSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n", 7821 i, row3, row2, row1, row0); 7822 rc++; 7823 } else { 7824 break; 7825 } 7826 } 7827 7828 /* TSTORM */ 7829 last_idx = REG_RD8(sc, BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_INDEX_OFFSET); 7830 if (last_idx) { 7831 BLOGE(sc, "TSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx); 7832 } 7833 7834 /* print the asserts */ 7835 for (i = 0; i < STORM_ASSERT_ARRAY_SIZE; i++) { 7836 7837 row0 = REG_RD(sc, BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_OFFSET(i)); 7838 row1 = REG_RD(sc, BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_OFFSET(i) + 4); 7839 row2 = REG_RD(sc, BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_OFFSET(i) + 8); 7840 row3 = REG_RD(sc, BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_OFFSET(i) + 12); 7841 7842 if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) { 7843 BLOGE(sc, "TSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n", 7844 i, row3, row2, row1, row0); 7845 rc++; 7846 } else { 7847 break; 7848 } 7849 } 7850 7851 /* CSTORM */ 7852 last_idx = REG_RD8(sc, BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_INDEX_OFFSET); 7853 if (last_idx) { 7854 BLOGE(sc, "CSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx); 7855 } 7856 7857 /* print the asserts */ 7858 for (i = 0; i < STORM_ASSERT_ARRAY_SIZE; i++) { 7859 7860 row0 = REG_RD(sc, BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_OFFSET(i)); 7861 row1 = REG_RD(sc, BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_OFFSET(i) + 4); 7862 row2 = REG_RD(sc, BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_OFFSET(i) + 8); 7863 row3 = REG_RD(sc, BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_OFFSET(i) + 12); 7864 7865 if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) { 7866 BLOGE(sc, "CSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n", 7867 i, row3, row2, row1, row0); 7868 rc++; 7869 } else { 7870 break; 7871 } 7872 } 7873 7874 /* USTORM */ 7875 last_idx = REG_RD8(sc, BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_INDEX_OFFSET); 7876 if (last_idx) { 7877 BLOGE(sc, "USTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx); 7878 } 7879 7880 /* print the asserts */ 7881 for (i = 0; i < STORM_ASSERT_ARRAY_SIZE; i++) { 7882 7883 row0 = REG_RD(sc, BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_OFFSET(i)); 7884 row1 = REG_RD(sc, BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_OFFSET(i) + 4); 7885 row2 = REG_RD(sc, BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_OFFSET(i) + 8); 7886 row3 = REG_RD(sc, BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_OFFSET(i) + 12); 7887 7888 if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) { 7889 BLOGE(sc, "USTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n", 7890 i, row3, row2, row1, row0); 7891 rc++; 7892 } else { 7893 break; 7894 } 7895 } 7896 7897 return (rc); 7898 } 7899 7900 static void 7901 bxe_attn_int_deasserted3(struct bxe_softc *sc, 7902 uint32_t attn) 7903 { 7904 int func = SC_FUNC(sc); 7905 uint32_t val; 7906 7907 if (attn & EVEREST_GEN_ATTN_IN_USE_MASK) { 7908 7909 if (attn & BXE_PMF_LINK_ASSERT(sc)) { 7910 7911 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0); 7912 bxe_read_mf_cfg(sc); 7913 sc->devinfo.mf_info.mf_config[SC_VN(sc)] = 7914 MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].config); 7915 val = SHMEM_RD(sc, func_mb[SC_FW_MB_IDX(sc)].drv_status); 7916 7917 if (val & DRV_STATUS_DCC_EVENT_MASK) 7918 bxe_dcc_event(sc, (val & DRV_STATUS_DCC_EVENT_MASK)); 7919 7920 if (val & DRV_STATUS_SET_MF_BW) 7921 bxe_set_mf_bw(sc); 7922 7923 if (val & DRV_STATUS_DRV_INFO_REQ) 7924 bxe_handle_drv_info_req(sc); 7925 7926 if ((sc->port.pmf == 0) && (val & DRV_STATUS_PMF)) 7927 bxe_pmf_update(sc); 7928 7929 if (val & DRV_STATUS_EEE_NEGOTIATION_RESULTS) 7930 bxe_handle_eee_event(sc); 7931 7932 if (sc->link_vars.periodic_flags & 7933 ELINK_PERIODIC_FLAGS_LINK_EVENT) { 7934 /* sync with link */ 7935 bxe_acquire_phy_lock(sc); 7936 sc->link_vars.periodic_flags &= 7937 ~ELINK_PERIODIC_FLAGS_LINK_EVENT; 7938 bxe_release_phy_lock(sc); 7939 if (IS_MF(sc)) 7940 ; // XXX bxe_link_sync_notify(sc); 7941 bxe_link_report(sc); 7942 } 7943 7944 /* 7945 * Always call it here: bxe_link_report() will 7946 * prevent the link indication duplication. 7947 */ 7948 bxe_link_status_update(sc); 7949 7950 } else if (attn & BXE_MC_ASSERT_BITS) { 7951 7952 BLOGE(sc, "MC assert!\n"); 7953 bxe_mc_assert(sc); 7954 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_10, 0); 7955 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_9, 0); 7956 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_8, 0); 7957 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_7, 0); 7958 bxe_panic(sc, ("MC assert!\n")); 7959 7960 } else if (attn & BXE_MCP_ASSERT) { 7961 7962 BLOGE(sc, "MCP assert!\n"); 7963 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_11, 0); 7964 // XXX bxe_fw_dump(sc); 7965 7966 } else { 7967 BLOGE(sc, "Unknown HW assert! (attn 0x%08x)\n", attn); 7968 } 7969 } 7970 7971 if (attn & EVEREST_LATCHED_ATTN_IN_USE_MASK) { 7972 BLOGE(sc, "LATCHED attention 0x%08x (masked)\n", attn); 7973 if (attn & BXE_GRC_TIMEOUT) { 7974 val = CHIP_IS_E1(sc) ? 0 : REG_RD(sc, MISC_REG_GRC_TIMEOUT_ATTN); 7975 BLOGE(sc, "GRC time-out 0x%08x\n", val); 7976 } 7977 if (attn & BXE_GRC_RSV) { 7978 val = CHIP_IS_E1(sc) ? 0 : REG_RD(sc, MISC_REG_GRC_RSV_ATTN); 7979 BLOGE(sc, "GRC reserved 0x%08x\n", val); 7980 } 7981 REG_WR(sc, MISC_REG_AEU_CLR_LATCH_SIGNAL, 0x7ff); 7982 } 7983 } 7984 7985 static void 7986 bxe_attn_int_deasserted2(struct bxe_softc *sc, 7987 uint32_t attn) 7988 { 7989 int port = SC_PORT(sc); 7990 int reg_offset; 7991 uint32_t val0, mask0, val1, mask1; 7992 uint32_t val; 7993 7994 if (attn & AEU_INPUTS_ATTN_BITS_CFC_HW_INTERRUPT) { 7995 val = REG_RD(sc, CFC_REG_CFC_INT_STS_CLR); 7996 BLOGE(sc, "CFC hw attention 0x%08x\n", val); 7997 /* CFC error attention */ 7998 if (val & 0x2) { 7999 BLOGE(sc, "FATAL error from CFC\n"); 8000 } 8001 } 8002 8003 if (attn & AEU_INPUTS_ATTN_BITS_PXP_HW_INTERRUPT) { 8004 val = REG_RD(sc, PXP_REG_PXP_INT_STS_CLR_0); 8005 BLOGE(sc, "PXP hw attention-0 0x%08x\n", val); 8006 /* RQ_USDMDP_FIFO_OVERFLOW */ 8007 if (val & 0x18000) { 8008 BLOGE(sc, "FATAL error from PXP\n"); 8009 } 8010 8011 if (!CHIP_IS_E1x(sc)) { 8012 val = REG_RD(sc, PXP_REG_PXP_INT_STS_CLR_1); 8013 BLOGE(sc, "PXP hw attention-1 0x%08x\n", val); 8014 } 8015 } 8016 8017 #define PXP2_EOP_ERROR_BIT PXP2_PXP2_INT_STS_CLR_0_REG_WR_PGLUE_EOP_ERROR 8018 #define AEU_PXP2_HW_INT_BIT AEU_INPUTS_ATTN_BITS_PXPPCICLOCKCLIENT_HW_INTERRUPT 8019 8020 if (attn & AEU_PXP2_HW_INT_BIT) { 8021 /* CQ47854 workaround do not panic on 8022 * PXP2_PXP2_INT_STS_0_REG_WR_PGLUE_EOP_ERROR 8023 */ 8024 if (!CHIP_IS_E1x(sc)) { 8025 mask0 = REG_RD(sc, PXP2_REG_PXP2_INT_MASK_0); 8026 val1 = REG_RD(sc, PXP2_REG_PXP2_INT_STS_1); 8027 mask1 = REG_RD(sc, PXP2_REG_PXP2_INT_MASK_1); 8028 val0 = REG_RD(sc, PXP2_REG_PXP2_INT_STS_0); 8029 /* 8030 * If the only PXP2_EOP_ERROR_BIT is set in 8031 * STS0 and STS1 - clear it 8032 * 8033 * probably we lose additional attentions between 8034 * STS0 and STS_CLR0, in this case user will not 8035 * be notified about them 8036 */ 8037 if (val0 & mask0 & PXP2_EOP_ERROR_BIT && 8038 !(val1 & mask1)) 8039 val0 = REG_RD(sc, PXP2_REG_PXP2_INT_STS_CLR_0); 8040 8041 /* print the register, since no one can restore it */ 8042 BLOGE(sc, "PXP2_REG_PXP2_INT_STS_CLR_0 0x%08x\n", val0); 8043 8044 /* 8045 * if PXP2_PXP2_INT_STS_0_REG_WR_PGLUE_EOP_ERROR 8046 * then notify 8047 */ 8048 if (val0 & PXP2_EOP_ERROR_BIT) { 8049 BLOGE(sc, "PXP2_WR_PGLUE_EOP_ERROR\n"); 8050 8051 /* 8052 * if only PXP2_PXP2_INT_STS_0_REG_WR_PGLUE_EOP_ERROR is 8053 * set then clear attention from PXP2 block without panic 8054 */ 8055 if (((val0 & mask0) == PXP2_EOP_ERROR_BIT) && 8056 ((val1 & mask1) == 0)) 8057 attn &= ~AEU_PXP2_HW_INT_BIT; 8058 } 8059 } 8060 } 8061 8062 if (attn & HW_INTERRUT_ASSERT_SET_2) { 8063 reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_2 : 8064 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_2); 8065 8066 val = REG_RD(sc, reg_offset); 8067 val &= ~(attn & HW_INTERRUT_ASSERT_SET_2); 8068 REG_WR(sc, reg_offset, val); 8069 8070 BLOGE(sc, "FATAL HW block attention set2 0x%x\n", 8071 (uint32_t)(attn & HW_INTERRUT_ASSERT_SET_2)); 8072 bxe_panic(sc, ("HW block attention set2\n")); 8073 } 8074 } 8075 8076 static void 8077 bxe_attn_int_deasserted1(struct bxe_softc *sc, 8078 uint32_t attn) 8079 { 8080 int port = SC_PORT(sc); 8081 int reg_offset; 8082 uint32_t val; 8083 8084 if (attn & AEU_INPUTS_ATTN_BITS_DOORBELLQ_HW_INTERRUPT) { 8085 val = REG_RD(sc, DORQ_REG_DORQ_INT_STS_CLR); 8086 BLOGE(sc, "DB hw attention 0x%08x\n", val); 8087 /* DORQ discard attention */ 8088 if (val & 0x2) { 8089 BLOGE(sc, "FATAL error from DORQ\n"); 8090 } 8091 } 8092 8093 if (attn & HW_INTERRUT_ASSERT_SET_1) { 8094 reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_1 : 8095 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_1); 8096 8097 val = REG_RD(sc, reg_offset); 8098 val &= ~(attn & HW_INTERRUT_ASSERT_SET_1); 8099 REG_WR(sc, reg_offset, val); 8100 8101 BLOGE(sc, "FATAL HW block attention set1 0x%08x\n", 8102 (uint32_t)(attn & HW_INTERRUT_ASSERT_SET_1)); 8103 bxe_panic(sc, ("HW block attention set1\n")); 8104 } 8105 } 8106 8107 static void 8108 bxe_attn_int_deasserted0(struct bxe_softc *sc, 8109 uint32_t attn) 8110 { 8111 int port = SC_PORT(sc); 8112 int reg_offset; 8113 uint32_t val; 8114 8115 reg_offset = (port) ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 : 8116 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0; 8117 8118 if (attn & AEU_INPUTS_ATTN_BITS_SPIO5) { 8119 val = REG_RD(sc, reg_offset); 8120 val &= ~AEU_INPUTS_ATTN_BITS_SPIO5; 8121 REG_WR(sc, reg_offset, val); 8122 8123 BLOGW(sc, "SPIO5 hw attention\n"); 8124 8125 /* Fan failure attention */ 8126 elink_hw_reset_phy(&sc->link_params); 8127 bxe_fan_failure(sc); 8128 } 8129 8130 if ((attn & sc->link_vars.aeu_int_mask) && sc->port.pmf) { 8131 bxe_acquire_phy_lock(sc); 8132 elink_handle_module_detect_int(&sc->link_params); 8133 bxe_release_phy_lock(sc); 8134 } 8135 8136 if (attn & HW_INTERRUT_ASSERT_SET_0) { 8137 val = REG_RD(sc, reg_offset); 8138 val &= ~(attn & HW_INTERRUT_ASSERT_SET_0); 8139 REG_WR(sc, reg_offset, val); 8140 8141 bxe_panic(sc, ("FATAL HW block attention set0 0x%lx\n", 8142 (attn & HW_INTERRUT_ASSERT_SET_0))); 8143 } 8144 } 8145 8146 static void 8147 bxe_attn_int_deasserted(struct bxe_softc *sc, 8148 uint32_t deasserted) 8149 { 8150 struct attn_route attn; 8151 struct attn_route *group_mask; 8152 int port = SC_PORT(sc); 8153 int index; 8154 uint32_t reg_addr; 8155 uint32_t val; 8156 uint32_t aeu_mask; 8157 uint8_t global = FALSE; 8158 8159 /* 8160 * Need to take HW lock because MCP or other port might also 8161 * try to handle this event. 8162 */ 8163 bxe_acquire_alr(sc); 8164 8165 if (bxe_chk_parity_attn(sc, &global, TRUE)) { 8166 /* XXX 8167 * In case of parity errors don't handle attentions so that 8168 * other function would "see" parity errors. 8169 */ 8170 sc->recovery_state = BXE_RECOVERY_INIT; 8171 // XXX schedule a recovery task... 8172 /* disable HW interrupts */ 8173 bxe_int_disable(sc); 8174 bxe_release_alr(sc); 8175 return; 8176 } 8177 8178 attn.sig[0] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + port*4); 8179 attn.sig[1] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 + port*4); 8180 attn.sig[2] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 + port*4); 8181 attn.sig[3] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 + port*4); 8182 if (!CHIP_IS_E1x(sc)) { 8183 attn.sig[4] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 + port*4); 8184 } else { 8185 attn.sig[4] = 0; 8186 } 8187 8188 BLOGD(sc, DBG_INTR, "attn: 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x\n", 8189 attn.sig[0], attn.sig[1], attn.sig[2], attn.sig[3], attn.sig[4]); 8190 8191 for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) { 8192 if (deasserted & (1 << index)) { 8193 group_mask = &sc->attn_group[index]; 8194 8195 BLOGD(sc, DBG_INTR, 8196 "group[%d]: 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x\n", index, 8197 group_mask->sig[0], group_mask->sig[1], 8198 group_mask->sig[2], group_mask->sig[3], 8199 group_mask->sig[4]); 8200 8201 bxe_attn_int_deasserted4(sc, attn.sig[4] & group_mask->sig[4]); 8202 bxe_attn_int_deasserted3(sc, attn.sig[3] & group_mask->sig[3]); 8203 bxe_attn_int_deasserted1(sc, attn.sig[1] & group_mask->sig[1]); 8204 bxe_attn_int_deasserted2(sc, attn.sig[2] & group_mask->sig[2]); 8205 bxe_attn_int_deasserted0(sc, attn.sig[0] & group_mask->sig[0]); 8206 } 8207 } 8208 8209 bxe_release_alr(sc); 8210 8211 if (sc->devinfo.int_block == INT_BLOCK_HC) { 8212 reg_addr = (HC_REG_COMMAND_REG + port*32 + 8213 COMMAND_REG_ATTN_BITS_CLR); 8214 } else { 8215 reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_CLR_UPPER*8); 8216 } 8217 8218 val = ~deasserted; 8219 BLOGD(sc, DBG_INTR, 8220 "about to mask 0x%08x at %s addr 0x%08x\n", val, 8221 (sc->devinfo.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr); 8222 REG_WR(sc, reg_addr, val); 8223 8224 if (~sc->attn_state & deasserted) { 8225 BLOGE(sc, "IGU error\n"); 8226 } 8227 8228 reg_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 : 8229 MISC_REG_AEU_MASK_ATTN_FUNC_0; 8230 8231 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port); 8232 8233 aeu_mask = REG_RD(sc, reg_addr); 8234 8235 BLOGD(sc, DBG_INTR, "aeu_mask 0x%08x newly deasserted 0x%08x\n", 8236 aeu_mask, deasserted); 8237 aeu_mask |= (deasserted & 0x3ff); 8238 BLOGD(sc, DBG_INTR, "new mask 0x%08x\n", aeu_mask); 8239 8240 REG_WR(sc, reg_addr, aeu_mask); 8241 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port); 8242 8243 BLOGD(sc, DBG_INTR, "attn_state 0x%08x\n", sc->attn_state); 8244 sc->attn_state &= ~deasserted; 8245 BLOGD(sc, DBG_INTR, "new state 0x%08x\n", sc->attn_state); 8246 } 8247 8248 static void 8249 bxe_attn_int(struct bxe_softc *sc) 8250 { 8251 /* read local copy of bits */ 8252 uint32_t attn_bits = le32toh(sc->def_sb->atten_status_block.attn_bits); 8253 uint32_t attn_ack = le32toh(sc->def_sb->atten_status_block.attn_bits_ack); 8254 uint32_t attn_state = sc->attn_state; 8255 8256 /* look for changed bits */ 8257 uint32_t asserted = attn_bits & ~attn_ack & ~attn_state; 8258 uint32_t deasserted = ~attn_bits & attn_ack & attn_state; 8259 8260 BLOGD(sc, DBG_INTR, 8261 "attn_bits 0x%08x attn_ack 0x%08x asserted 0x%08x deasserted 0x%08x\n", 8262 attn_bits, attn_ack, asserted, deasserted); 8263 8264 if (~(attn_bits ^ attn_ack) & (attn_bits ^ attn_state)) { 8265 BLOGE(sc, "BAD attention state\n"); 8266 } 8267 8268 /* handle bits that were raised */ 8269 if (asserted) { 8270 bxe_attn_int_asserted(sc, asserted); 8271 } 8272 8273 if (deasserted) { 8274 bxe_attn_int_deasserted(sc, deasserted); 8275 } 8276 } 8277 8278 static uint16_t 8279 bxe_update_dsb_idx(struct bxe_softc *sc) 8280 { 8281 struct host_sp_status_block *def_sb = sc->def_sb; 8282 uint16_t rc = 0; 8283 8284 mb(); /* status block is written to by the chip */ 8285 8286 if (sc->def_att_idx != def_sb->atten_status_block.attn_bits_index) { 8287 sc->def_att_idx = def_sb->atten_status_block.attn_bits_index; 8288 rc |= BXE_DEF_SB_ATT_IDX; 8289 } 8290 8291 if (sc->def_idx != def_sb->sp_sb.running_index) { 8292 sc->def_idx = def_sb->sp_sb.running_index; 8293 rc |= BXE_DEF_SB_IDX; 8294 } 8295 8296 mb(); 8297 8298 return (rc); 8299 } 8300 8301 static inline struct ecore_queue_sp_obj * 8302 bxe_cid_to_q_obj(struct bxe_softc *sc, 8303 uint32_t cid) 8304 { 8305 BLOGD(sc, DBG_SP, "retrieving fp from cid %d\n", cid); 8306 return (&sc->sp_objs[CID_TO_FP(cid, sc)].q_obj); 8307 } 8308 8309 static void 8310 bxe_handle_mcast_eqe(struct bxe_softc *sc) 8311 { 8312 struct ecore_mcast_ramrod_params rparam; 8313 int rc; 8314 8315 memset(&rparam, 0, sizeof(rparam)); 8316 8317 rparam.mcast_obj = &sc->mcast_obj; 8318 8319 BXE_MCAST_LOCK(sc); 8320 8321 /* clear pending state for the last command */ 8322 sc->mcast_obj.raw.clear_pending(&sc->mcast_obj.raw); 8323 8324 /* if there are pending mcast commands - send them */ 8325 if (sc->mcast_obj.check_pending(&sc->mcast_obj)) { 8326 rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_CONT); 8327 if (rc < 0) { 8328 BLOGD(sc, DBG_SP, 8329 "ERROR: Failed to send pending mcast commands (%d)\n", rc); 8330 } 8331 } 8332 8333 BXE_MCAST_UNLOCK(sc); 8334 } 8335 8336 static void 8337 bxe_handle_classification_eqe(struct bxe_softc *sc, 8338 union event_ring_elem *elem) 8339 { 8340 unsigned long ramrod_flags = 0; 8341 int rc = 0; 8342 uint32_t cid = elem->message.data.eth_event.echo & BXE_SWCID_MASK; 8343 struct ecore_vlan_mac_obj *vlan_mac_obj; 8344 8345 /* always push next commands out, don't wait here */ 8346 bit_set(&ramrod_flags, RAMROD_CONT); 8347 8348 switch (le32toh(elem->message.data.eth_event.echo) >> BXE_SWCID_SHIFT) { 8349 case ECORE_FILTER_MAC_PENDING: 8350 BLOGD(sc, DBG_SP, "Got SETUP_MAC completions\n"); 8351 vlan_mac_obj = &sc->sp_objs[cid].mac_obj; 8352 break; 8353 8354 case ECORE_FILTER_MCAST_PENDING: 8355 BLOGD(sc, DBG_SP, "Got SETUP_MCAST completions\n"); 8356 /* 8357 * This is only relevant for 57710 where multicast MACs are 8358 * configured as unicast MACs using the same ramrod. 8359 */ 8360 bxe_handle_mcast_eqe(sc); 8361 return; 8362 8363 default: 8364 BLOGE(sc, "Unsupported classification command: %d\n", 8365 elem->message.data.eth_event.echo); 8366 return; 8367 } 8368 8369 rc = vlan_mac_obj->complete(sc, vlan_mac_obj, elem, &ramrod_flags); 8370 8371 if (rc < 0) { 8372 BLOGE(sc, "Failed to schedule new commands (%d)\n", rc); 8373 } else if (rc > 0) { 8374 BLOGD(sc, DBG_SP, "Scheduled next pending commands...\n"); 8375 } 8376 } 8377 8378 static void 8379 bxe_handle_rx_mode_eqe(struct bxe_softc *sc, 8380 union event_ring_elem *elem) 8381 { 8382 bxe_clear_bit(ECORE_FILTER_RX_MODE_PENDING, &sc->sp_state); 8383 8384 /* send rx_mode command again if was requested */ 8385 if (bxe_test_and_clear_bit(ECORE_FILTER_RX_MODE_SCHED, 8386 &sc->sp_state)) { 8387 bxe_set_storm_rx_mode(sc); 8388 } 8389 } 8390 8391 static void 8392 bxe_update_eq_prod(struct bxe_softc *sc, 8393 uint16_t prod) 8394 { 8395 storm_memset_eq_prod(sc, prod, SC_FUNC(sc)); 8396 wmb(); /* keep prod updates ordered */ 8397 } 8398 8399 static void 8400 bxe_eq_int(struct bxe_softc *sc) 8401 { 8402 uint16_t hw_cons, sw_cons, sw_prod; 8403 union event_ring_elem *elem; 8404 uint8_t echo; 8405 uint32_t cid; 8406 uint8_t opcode; 8407 int spqe_cnt = 0; 8408 struct ecore_queue_sp_obj *q_obj; 8409 struct ecore_func_sp_obj *f_obj = &sc->func_obj; 8410 struct ecore_raw_obj *rss_raw = &sc->rss_conf_obj.raw; 8411 8412 hw_cons = le16toh(*sc->eq_cons_sb); 8413 8414 /* 8415 * The hw_cons range is 1-255, 257 - the sw_cons range is 0-254, 256. 8416 * when we get to the next-page we need to adjust so the loop 8417 * condition below will be met. The next element is the size of a 8418 * regular element and hence incrementing by 1 8419 */ 8420 if ((hw_cons & EQ_DESC_MAX_PAGE) == EQ_DESC_MAX_PAGE) { 8421 hw_cons++; 8422 } 8423 8424 /* 8425 * This function may never run in parallel with itself for a 8426 * specific sc and no need for a read memory barrier here. 8427 */ 8428 sw_cons = sc->eq_cons; 8429 sw_prod = sc->eq_prod; 8430 8431 BLOGD(sc, DBG_SP,"EQ: hw_cons=%u sw_cons=%u eq_spq_left=0x%lx\n", 8432 hw_cons, sw_cons, atomic_load_acq_long(&sc->eq_spq_left)); 8433 8434 for (; 8435 sw_cons != hw_cons; 8436 sw_prod = NEXT_EQ_IDX(sw_prod), sw_cons = NEXT_EQ_IDX(sw_cons)) { 8437 8438 elem = &sc->eq[EQ_DESC(sw_cons)]; 8439 8440 /* elem CID originates from FW, actually LE */ 8441 cid = SW_CID(elem->message.data.cfc_del_event.cid); 8442 opcode = elem->message.opcode; 8443 8444 /* handle eq element */ 8445 switch (opcode) { 8446 8447 case EVENT_RING_OPCODE_STAT_QUERY: 8448 BLOGD(sc, DBG_SP, "got statistics completion event %d\n", 8449 sc->stats_comp++); 8450 /* nothing to do with stats comp */ 8451 goto next_spqe; 8452 8453 case EVENT_RING_OPCODE_CFC_DEL: 8454 /* handle according to cid range */ 8455 /* we may want to verify here that the sc state is HALTING */ 8456 BLOGD(sc, DBG_SP, "got delete ramrod for MULTI[%d]\n", cid); 8457 q_obj = bxe_cid_to_q_obj(sc, cid); 8458 if (q_obj->complete_cmd(sc, q_obj, ECORE_Q_CMD_CFC_DEL)) { 8459 break; 8460 } 8461 goto next_spqe; 8462 8463 case EVENT_RING_OPCODE_STOP_TRAFFIC: 8464 BLOGD(sc, DBG_SP, "got STOP TRAFFIC\n"); 8465 if (f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_TX_STOP)) { 8466 break; 8467 } 8468 // XXX bxe_dcbx_set_params(sc, BXE_DCBX_STATE_TX_PAUSED); 8469 goto next_spqe; 8470 8471 case EVENT_RING_OPCODE_START_TRAFFIC: 8472 BLOGD(sc, DBG_SP, "got START TRAFFIC\n"); 8473 if (f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_TX_START)) { 8474 break; 8475 } 8476 // XXX bxe_dcbx_set_params(sc, BXE_DCBX_STATE_TX_RELEASED); 8477 goto next_spqe; 8478 8479 case EVENT_RING_OPCODE_FUNCTION_UPDATE: 8480 echo = elem->message.data.function_update_event.echo; 8481 if (echo == SWITCH_UPDATE) { 8482 BLOGD(sc, DBG_SP, "got FUNC_SWITCH_UPDATE ramrod\n"); 8483 if (f_obj->complete_cmd(sc, f_obj, 8484 ECORE_F_CMD_SWITCH_UPDATE)) { 8485 break; 8486 } 8487 } 8488 else { 8489 BLOGD(sc, DBG_SP, 8490 "AFEX: ramrod completed FUNCTION_UPDATE\n"); 8491 } 8492 goto next_spqe; 8493 8494 case EVENT_RING_OPCODE_FORWARD_SETUP: 8495 q_obj = &bxe_fwd_sp_obj(sc, q_obj); 8496 if (q_obj->complete_cmd(sc, q_obj, 8497 ECORE_Q_CMD_SETUP_TX_ONLY)) { 8498 break; 8499 } 8500 goto next_spqe; 8501 8502 case EVENT_RING_OPCODE_FUNCTION_START: 8503 BLOGD(sc, DBG_SP, "got FUNC_START ramrod\n"); 8504 if (f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_START)) { 8505 break; 8506 } 8507 goto next_spqe; 8508 8509 case EVENT_RING_OPCODE_FUNCTION_STOP: 8510 BLOGD(sc, DBG_SP, "got FUNC_STOP ramrod\n"); 8511 if (f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_STOP)) { 8512 break; 8513 } 8514 goto next_spqe; 8515 } 8516 8517 switch (opcode | sc->state) { 8518 case (EVENT_RING_OPCODE_RSS_UPDATE_RULES | BXE_STATE_OPEN): 8519 case (EVENT_RING_OPCODE_RSS_UPDATE_RULES | BXE_STATE_OPENING_WAITING_PORT): 8520 cid = elem->message.data.eth_event.echo & BXE_SWCID_MASK; 8521 BLOGD(sc, DBG_SP, "got RSS_UPDATE ramrod. CID %d\n", cid); 8522 rss_raw->clear_pending(rss_raw); 8523 break; 8524 8525 case (EVENT_RING_OPCODE_SET_MAC | BXE_STATE_OPEN): 8526 case (EVENT_RING_OPCODE_SET_MAC | BXE_STATE_DIAG): 8527 case (EVENT_RING_OPCODE_SET_MAC | BXE_STATE_CLOSING_WAITING_HALT): 8528 case (EVENT_RING_OPCODE_CLASSIFICATION_RULES | BXE_STATE_OPEN): 8529 case (EVENT_RING_OPCODE_CLASSIFICATION_RULES | BXE_STATE_DIAG): 8530 case (EVENT_RING_OPCODE_CLASSIFICATION_RULES | BXE_STATE_CLOSING_WAITING_HALT): 8531 BLOGD(sc, DBG_SP, "got (un)set mac ramrod\n"); 8532 bxe_handle_classification_eqe(sc, elem); 8533 break; 8534 8535 case (EVENT_RING_OPCODE_MULTICAST_RULES | BXE_STATE_OPEN): 8536 case (EVENT_RING_OPCODE_MULTICAST_RULES | BXE_STATE_DIAG): 8537 case (EVENT_RING_OPCODE_MULTICAST_RULES | BXE_STATE_CLOSING_WAITING_HALT): 8538 BLOGD(sc, DBG_SP, "got mcast ramrod\n"); 8539 bxe_handle_mcast_eqe(sc); 8540 break; 8541 8542 case (EVENT_RING_OPCODE_FILTERS_RULES | BXE_STATE_OPEN): 8543 case (EVENT_RING_OPCODE_FILTERS_RULES | BXE_STATE_DIAG): 8544 case (EVENT_RING_OPCODE_FILTERS_RULES | BXE_STATE_CLOSING_WAITING_HALT): 8545 BLOGD(sc, DBG_SP, "got rx_mode ramrod\n"); 8546 bxe_handle_rx_mode_eqe(sc, elem); 8547 break; 8548 8549 default: 8550 /* unknown event log error and continue */ 8551 BLOGE(sc, "Unknown EQ event %d, sc->state 0x%x\n", 8552 elem->message.opcode, sc->state); 8553 } 8554 8555 next_spqe: 8556 spqe_cnt++; 8557 } /* for */ 8558 8559 mb(); 8560 atomic_add_acq_long(&sc->eq_spq_left, spqe_cnt); 8561 8562 sc->eq_cons = sw_cons; 8563 sc->eq_prod = sw_prod; 8564 8565 /* make sure that above mem writes were issued towards the memory */ 8566 wmb(); 8567 8568 /* update producer */ 8569 bxe_update_eq_prod(sc, sc->eq_prod); 8570 } 8571 8572 static void 8573 bxe_handle_sp_tq(void *context, 8574 int pending) 8575 { 8576 struct bxe_softc *sc = (struct bxe_softc *)context; 8577 uint16_t status; 8578 8579 BLOGD(sc, DBG_SP, "---> SP TASK <---\n"); 8580 8581 /* what work needs to be performed? */ 8582 status = bxe_update_dsb_idx(sc); 8583 8584 BLOGD(sc, DBG_SP, "dsb status 0x%04x\n", status); 8585 8586 /* HW attentions */ 8587 if (status & BXE_DEF_SB_ATT_IDX) { 8588 BLOGD(sc, DBG_SP, "---> ATTN INTR <---\n"); 8589 bxe_attn_int(sc); 8590 status &= ~BXE_DEF_SB_ATT_IDX; 8591 } 8592 8593 /* SP events: STAT_QUERY and others */ 8594 if (status & BXE_DEF_SB_IDX) { 8595 /* handle EQ completions */ 8596 BLOGD(sc, DBG_SP, "---> EQ INTR <---\n"); 8597 bxe_eq_int(sc); 8598 bxe_ack_sb(sc, sc->igu_dsb_id, USTORM_ID, 8599 le16toh(sc->def_idx), IGU_INT_NOP, 1); 8600 status &= ~BXE_DEF_SB_IDX; 8601 } 8602 8603 /* if status is non zero then something went wrong */ 8604 if (__predict_false(status)) { 8605 BLOGE(sc, "Got an unknown SP interrupt! (0x%04x)\n", status); 8606 } 8607 8608 /* ack status block only if something was actually handled */ 8609 bxe_ack_sb(sc, sc->igu_dsb_id, ATTENTION_ID, 8610 le16toh(sc->def_att_idx), IGU_INT_ENABLE, 1); 8611 8612 /* 8613 * Must be called after the EQ processing (since eq leads to sriov 8614 * ramrod completion flows). 8615 * This flow may have been scheduled by the arrival of a ramrod 8616 * completion, or by the sriov code rescheduling itself. 8617 */ 8618 // XXX bxe_iov_sp_task(sc); 8619 8620 } 8621 8622 static void 8623 bxe_handle_fp_tq(void *context, 8624 int pending) 8625 { 8626 struct bxe_fastpath *fp = (struct bxe_fastpath *)context; 8627 struct bxe_softc *sc = fp->sc; 8628 uint8_t more_tx = FALSE; 8629 uint8_t more_rx = FALSE; 8630 8631 BLOGD(sc, DBG_INTR, "---> FP TASK QUEUE (%d) <---\n", fp->index); 8632 8633 /* XXX 8634 * IFF_DRV_RUNNING state can't be checked here since we process 8635 * slowpath events on a client queue during setup. Instead 8636 * we need to add a "process/continue" flag here that the driver 8637 * can use to tell the task here not to do anything. 8638 */ 8639 8640 /* update the fastpath index */ 8641 bxe_update_fp_sb_idx(fp); 8642 8643 /* XXX add loop here if ever support multiple tx CoS */ 8644 /* fp->txdata[cos] */ 8645 if (bxe_has_tx_work(fp)) { 8646 BXE_FP_TX_LOCK(fp); 8647 more_tx = bxe_txeof(sc, fp); 8648 BXE_FP_TX_UNLOCK(fp); 8649 } 8650 8651 if (bxe_has_rx_work(fp)) { 8652 more_rx = bxe_rxeof(sc, fp); 8653 } 8654 8655 if (more_rx /*|| more_tx*/) { 8656 /* still more work to do */ 8657 taskqueue_enqueue(fp->tq, &fp->tq_task); 8658 return; 8659 } 8660 8661 bxe_ack_sb(sc, fp->igu_sb_id, USTORM_ID, 8662 le16toh(fp->fp_hc_idx), IGU_INT_ENABLE, 1); 8663 } 8664 8665 static void 8666 bxe_task_fp(struct bxe_fastpath *fp) 8667 { 8668 struct bxe_softc *sc = fp->sc; 8669 uint8_t more_tx = FALSE; 8670 uint8_t more_rx = FALSE; 8671 8672 BLOGD(sc, DBG_INTR, "---> FP TASK ISR (%d) <---\n", fp->index); 8673 8674 /* update the fastpath index */ 8675 bxe_update_fp_sb_idx(fp); 8676 8677 /* XXX add loop here if ever support multiple tx CoS */ 8678 /* fp->txdata[cos] */ 8679 if (bxe_has_tx_work(fp)) { 8680 BXE_FP_TX_LOCK(fp); 8681 more_tx = bxe_txeof(sc, fp); 8682 BXE_FP_TX_UNLOCK(fp); 8683 } 8684 8685 if (bxe_has_rx_work(fp)) { 8686 more_rx = bxe_rxeof(sc, fp); 8687 } 8688 8689 if (more_rx /*|| more_tx*/) { 8690 /* still more work to do, bail out if this ISR and process later */ 8691 taskqueue_enqueue(fp->tq, &fp->tq_task); 8692 return; 8693 } 8694 8695 /* 8696 * Here we write the fastpath index taken before doing any tx or rx work. 8697 * It is very well possible other hw events occurred up to this point and 8698 * they were actually processed accordingly above. Since we're going to 8699 * write an older fastpath index, an interrupt is coming which we might 8700 * not do any work in. 8701 */ 8702 bxe_ack_sb(sc, fp->igu_sb_id, USTORM_ID, 8703 le16toh(fp->fp_hc_idx), IGU_INT_ENABLE, 1); 8704 } 8705 8706 /* 8707 * Legacy interrupt entry point. 8708 * 8709 * Verifies that the controller generated the interrupt and 8710 * then calls a separate routine to handle the various 8711 * interrupt causes: link, RX, and TX. 8712 */ 8713 static void 8714 bxe_intr_legacy(void *xsc) 8715 { 8716 struct bxe_softc *sc = (struct bxe_softc *)xsc; 8717 struct bxe_fastpath *fp; 8718 uint16_t status, mask; 8719 int i; 8720 8721 BLOGD(sc, DBG_INTR, "---> BXE INTx <---\n"); 8722 8723 /* 8724 * 0 for ustorm, 1 for cstorm 8725 * the bits returned from ack_int() are 0-15 8726 * bit 0 = attention status block 8727 * bit 1 = fast path status block 8728 * a mask of 0x2 or more = tx/rx event 8729 * a mask of 1 = slow path event 8730 */ 8731 8732 status = bxe_ack_int(sc); 8733 8734 /* the interrupt is not for us */ 8735 if (__predict_false(status == 0)) { 8736 BLOGD(sc, DBG_INTR, "Not our interrupt!\n"); 8737 return; 8738 } 8739 8740 BLOGD(sc, DBG_INTR, "Interrupt status 0x%04x\n", status); 8741 8742 FOR_EACH_ETH_QUEUE(sc, i) { 8743 fp = &sc->fp[i]; 8744 mask = (0x2 << (fp->index + CNIC_SUPPORT(sc))); 8745 if (status & mask) { 8746 /* acknowledge and disable further fastpath interrupts */ 8747 bxe_ack_sb(sc, fp->igu_sb_id, USTORM_ID, 0, IGU_INT_DISABLE, 0); 8748 bxe_task_fp(fp); 8749 status &= ~mask; 8750 } 8751 } 8752 8753 if (__predict_false(status & 0x1)) { 8754 /* acknowledge and disable further slowpath interrupts */ 8755 bxe_ack_sb(sc, sc->igu_dsb_id, USTORM_ID, 0, IGU_INT_DISABLE, 0); 8756 8757 /* schedule slowpath handler */ 8758 taskqueue_enqueue(sc->sp_tq, &sc->sp_tq_task); 8759 8760 status &= ~0x1; 8761 } 8762 8763 if (__predict_false(status)) { 8764 BLOGW(sc, "Unexpected fastpath status (0x%08x)!\n", status); 8765 } 8766 } 8767 8768 /* slowpath interrupt entry point */ 8769 static void 8770 bxe_intr_sp(void *xsc) 8771 { 8772 struct bxe_softc *sc = (struct bxe_softc *)xsc; 8773 8774 BLOGD(sc, (DBG_INTR | DBG_SP), "---> SP INTR <---\n"); 8775 8776 /* acknowledge and disable further slowpath interrupts */ 8777 bxe_ack_sb(sc, sc->igu_dsb_id, USTORM_ID, 0, IGU_INT_DISABLE, 0); 8778 8779 /* schedule slowpath handler */ 8780 taskqueue_enqueue(sc->sp_tq, &sc->sp_tq_task); 8781 } 8782 8783 /* fastpath interrupt entry point */ 8784 static void 8785 bxe_intr_fp(void *xfp) 8786 { 8787 struct bxe_fastpath *fp = (struct bxe_fastpath *)xfp; 8788 struct bxe_softc *sc = fp->sc; 8789 8790 BLOGD(sc, DBG_INTR, "---> FP INTR %d <---\n", fp->index); 8791 8792 BLOGD(sc, DBG_INTR, 8793 "(cpu=%d) MSI-X fp=%d fw_sb=%d igu_sb=%d\n", 8794 curcpu, fp->index, fp->fw_sb_id, fp->igu_sb_id); 8795 8796 /* acknowledge and disable further fastpath interrupts */ 8797 bxe_ack_sb(sc, fp->igu_sb_id, USTORM_ID, 0, IGU_INT_DISABLE, 0); 8798 8799 bxe_task_fp(fp); 8800 } 8801 8802 /* Release all interrupts allocated by the driver. */ 8803 static void 8804 bxe_interrupt_free(struct bxe_softc *sc) 8805 { 8806 int i; 8807 8808 switch (sc->interrupt_mode) { 8809 case INTR_MODE_INTX: 8810 BLOGD(sc, DBG_LOAD, "Releasing legacy INTx vector\n"); 8811 if (sc->intr[0].resource != NULL) { 8812 bus_release_resource(sc->dev, 8813 SYS_RES_IRQ, 8814 sc->intr[0].rid, 8815 sc->intr[0].resource); 8816 } 8817 break; 8818 case INTR_MODE_MSI: 8819 for (i = 0; i < sc->intr_count; i++) { 8820 BLOGD(sc, DBG_LOAD, "Releasing MSI vector %d\n", i); 8821 if (sc->intr[i].resource && sc->intr[i].rid) { 8822 bus_release_resource(sc->dev, 8823 SYS_RES_IRQ, 8824 sc->intr[i].rid, 8825 sc->intr[i].resource); 8826 } 8827 } 8828 pci_release_msi(sc->dev); 8829 break; 8830 case INTR_MODE_MSIX: 8831 for (i = 0; i < sc->intr_count; i++) { 8832 BLOGD(sc, DBG_LOAD, "Releasing MSI-X vector %d\n", i); 8833 if (sc->intr[i].resource && sc->intr[i].rid) { 8834 bus_release_resource(sc->dev, 8835 SYS_RES_IRQ, 8836 sc->intr[i].rid, 8837 sc->intr[i].resource); 8838 } 8839 } 8840 pci_release_msi(sc->dev); 8841 break; 8842 default: 8843 /* nothing to do as initial allocation failed */ 8844 break; 8845 } 8846 } 8847 8848 /* 8849 * This function determines and allocates the appropriate 8850 * interrupt based on system capabilites and user request. 8851 * 8852 * The user may force a particular interrupt mode, specify 8853 * the number of receive queues, specify the method for 8854 * distribuitng received frames to receive queues, or use 8855 * the default settings which will automatically select the 8856 * best supported combination. In addition, the OS may or 8857 * may not support certain combinations of these settings. 8858 * This routine attempts to reconcile the settings requested 8859 * by the user with the capabilites available from the system 8860 * to select the optimal combination of features. 8861 * 8862 * Returns: 8863 * 0 = Success, !0 = Failure. 8864 */ 8865 static int 8866 bxe_interrupt_alloc(struct bxe_softc *sc) 8867 { 8868 int msix_count = 0; 8869 int msi_count = 0; 8870 int num_requested = 0; 8871 int num_allocated = 0; 8872 int rid, i, j; 8873 int rc; 8874 8875 /* get the number of available MSI/MSI-X interrupts from the OS */ 8876 if (sc->interrupt_mode > 0) { 8877 if (sc->devinfo.pcie_cap_flags & BXE_MSIX_CAPABLE_FLAG) { 8878 msix_count = pci_msix_count(sc->dev); 8879 } 8880 8881 if (sc->devinfo.pcie_cap_flags & BXE_MSI_CAPABLE_FLAG) { 8882 msi_count = pci_msi_count(sc->dev); 8883 } 8884 8885 BLOGD(sc, DBG_LOAD, "%d MSI and %d MSI-X vectors available\n", 8886 msi_count, msix_count); 8887 } 8888 8889 do { /* try allocating MSI-X interrupt resources (at least 2) */ 8890 if (sc->interrupt_mode != INTR_MODE_MSIX) { 8891 break; 8892 } 8893 8894 if (((sc->devinfo.pcie_cap_flags & BXE_MSIX_CAPABLE_FLAG) == 0) || 8895 (msix_count < 2)) { 8896 sc->interrupt_mode = INTR_MODE_MSI; /* try MSI next */ 8897 break; 8898 } 8899 8900 /* ask for the necessary number of MSI-X vectors */ 8901 num_requested = min((sc->num_queues + 1), msix_count); 8902 8903 BLOGD(sc, DBG_LOAD, "Requesting %d MSI-X vectors\n", num_requested); 8904 8905 num_allocated = num_requested; 8906 if ((rc = pci_alloc_msix(sc->dev, &num_allocated)) != 0) { 8907 BLOGE(sc, "MSI-X alloc failed! (%d)\n", rc); 8908 sc->interrupt_mode = INTR_MODE_MSI; /* try MSI next */ 8909 break; 8910 } 8911 8912 if (num_allocated < 2) { /* possible? */ 8913 BLOGE(sc, "MSI-X allocation less than 2!\n"); 8914 sc->interrupt_mode = INTR_MODE_MSI; /* try MSI next */ 8915 pci_release_msi(sc->dev); 8916 break; 8917 } 8918 8919 BLOGI(sc, "MSI-X vectors Requested %d and Allocated %d\n", 8920 num_requested, num_allocated); 8921 8922 /* best effort so use the number of vectors allocated to us */ 8923 sc->intr_count = num_allocated; 8924 sc->num_queues = num_allocated - 1; 8925 8926 rid = 1; /* initial resource identifier */ 8927 8928 /* allocate the MSI-X vectors */ 8929 for (i = 0; i < num_allocated; i++) { 8930 sc->intr[i].rid = (rid + i); 8931 8932 if ((sc->intr[i].resource = 8933 bus_alloc_resource_any(sc->dev, 8934 SYS_RES_IRQ, 8935 &sc->intr[i].rid, 8936 RF_ACTIVE)) == NULL) { 8937 BLOGE(sc, "Failed to map MSI-X[%d] (rid=%d)!\n", 8938 i, (rid + i)); 8939 8940 for (j = (i - 1); j >= 0; j--) { 8941 bus_release_resource(sc->dev, 8942 SYS_RES_IRQ, 8943 sc->intr[j].rid, 8944 sc->intr[j].resource); 8945 } 8946 8947 sc->intr_count = 0; 8948 sc->num_queues = 0; 8949 sc->interrupt_mode = INTR_MODE_MSI; /* try MSI next */ 8950 pci_release_msi(sc->dev); 8951 break; 8952 } 8953 8954 BLOGD(sc, DBG_LOAD, "Mapped MSI-X[%d] (rid=%d)\n", i, (rid + i)); 8955 } 8956 } while (0); 8957 8958 do { /* try allocating MSI vector resources (at least 2) */ 8959 if (sc->interrupt_mode != INTR_MODE_MSI) { 8960 break; 8961 } 8962 8963 if (((sc->devinfo.pcie_cap_flags & BXE_MSI_CAPABLE_FLAG) == 0) || 8964 (msi_count < 1)) { 8965 sc->interrupt_mode = INTR_MODE_INTX; /* try INTx next */ 8966 break; 8967 } 8968 8969 /* ask for a single MSI vector */ 8970 num_requested = 1; 8971 8972 BLOGD(sc, DBG_LOAD, "Requesting %d MSI vectors\n", num_requested); 8973 8974 num_allocated = num_requested; 8975 if ((rc = pci_alloc_msi(sc->dev, &num_allocated)) != 0) { 8976 BLOGE(sc, "MSI alloc failed (%d)!\n", rc); 8977 sc->interrupt_mode = INTR_MODE_INTX; /* try INTx next */ 8978 break; 8979 } 8980 8981 if (num_allocated != 1) { /* possible? */ 8982 BLOGE(sc, "MSI allocation is not 1!\n"); 8983 sc->interrupt_mode = INTR_MODE_INTX; /* try INTx next */ 8984 pci_release_msi(sc->dev); 8985 break; 8986 } 8987 8988 BLOGI(sc, "MSI vectors Requested %d and Allocated %d\n", 8989 num_requested, num_allocated); 8990 8991 /* best effort so use the number of vectors allocated to us */ 8992 sc->intr_count = num_allocated; 8993 sc->num_queues = num_allocated; 8994 8995 rid = 1; /* initial resource identifier */ 8996 8997 sc->intr[0].rid = rid; 8998 8999 if ((sc->intr[0].resource = 9000 bus_alloc_resource_any(sc->dev, 9001 SYS_RES_IRQ, 9002 &sc->intr[0].rid, 9003 RF_ACTIVE)) == NULL) { 9004 BLOGE(sc, "Failed to map MSI[0] (rid=%d)!\n", rid); 9005 sc->intr_count = 0; 9006 sc->num_queues = 0; 9007 sc->interrupt_mode = INTR_MODE_INTX; /* try INTx next */ 9008 pci_release_msi(sc->dev); 9009 break; 9010 } 9011 9012 BLOGD(sc, DBG_LOAD, "Mapped MSI[0] (rid=%d)\n", rid); 9013 } while (0); 9014 9015 do { /* try allocating INTx vector resources */ 9016 if (sc->interrupt_mode != INTR_MODE_INTX) { 9017 break; 9018 } 9019 9020 BLOGD(sc, DBG_LOAD, "Requesting legacy INTx interrupt\n"); 9021 9022 /* only one vector for INTx */ 9023 sc->intr_count = 1; 9024 sc->num_queues = 1; 9025 9026 rid = 0; /* initial resource identifier */ 9027 9028 sc->intr[0].rid = rid; 9029 9030 if ((sc->intr[0].resource = 9031 bus_alloc_resource_any(sc->dev, 9032 SYS_RES_IRQ, 9033 &sc->intr[0].rid, 9034 (RF_ACTIVE | RF_SHAREABLE))) == NULL) { 9035 BLOGE(sc, "Failed to map INTx (rid=%d)!\n", rid); 9036 sc->intr_count = 0; 9037 sc->num_queues = 0; 9038 sc->interrupt_mode = -1; /* Failed! */ 9039 break; 9040 } 9041 9042 BLOGD(sc, DBG_LOAD, "Mapped INTx (rid=%d)\n", rid); 9043 } while (0); 9044 9045 if (sc->interrupt_mode == -1) { 9046 BLOGE(sc, "Interrupt Allocation: FAILED!!!\n"); 9047 rc = 1; 9048 } else { 9049 BLOGD(sc, DBG_LOAD, 9050 "Interrupt Allocation: interrupt_mode=%d, num_queues=%d\n", 9051 sc->interrupt_mode, sc->num_queues); 9052 rc = 0; 9053 } 9054 9055 return (rc); 9056 } 9057 9058 static void 9059 bxe_interrupt_detach(struct bxe_softc *sc) 9060 { 9061 struct bxe_fastpath *fp; 9062 int i; 9063 9064 /* release interrupt resources */ 9065 for (i = 0; i < sc->intr_count; i++) { 9066 if (sc->intr[i].resource && sc->intr[i].tag) { 9067 BLOGD(sc, DBG_LOAD, "Disabling interrupt vector %d\n", i); 9068 bus_teardown_intr(sc->dev, sc->intr[i].resource, sc->intr[i].tag); 9069 } 9070 } 9071 9072 for (i = 0; i < sc->num_queues; i++) { 9073 fp = &sc->fp[i]; 9074 if (fp->tq) { 9075 taskqueue_drain(fp->tq, &fp->tq_task); 9076 taskqueue_drain(fp->tq, &fp->tx_task); 9077 while (taskqueue_cancel_timeout(fp->tq, &fp->tx_timeout_task, 9078 NULL)) 9079 taskqueue_drain_timeout(fp->tq, &fp->tx_timeout_task); 9080 taskqueue_free(fp->tq); 9081 fp->tq = NULL; 9082 } 9083 } 9084 9085 9086 if (sc->sp_tq) { 9087 taskqueue_drain(sc->sp_tq, &sc->sp_tq_task); 9088 taskqueue_free(sc->sp_tq); 9089 sc->sp_tq = NULL; 9090 } 9091 } 9092 9093 /* 9094 * Enables interrupts and attach to the ISR. 9095 * 9096 * When using multiple MSI/MSI-X vectors the first vector 9097 * is used for slowpath operations while all remaining 9098 * vectors are used for fastpath operations. If only a 9099 * single MSI/MSI-X vector is used (SINGLE_ISR) then the 9100 * ISR must look for both slowpath and fastpath completions. 9101 */ 9102 static int 9103 bxe_interrupt_attach(struct bxe_softc *sc) 9104 { 9105 struct bxe_fastpath *fp; 9106 int rc = 0; 9107 int i; 9108 9109 snprintf(sc->sp_tq_name, sizeof(sc->sp_tq_name), 9110 "bxe%d_sp_tq", sc->unit); 9111 TASK_INIT(&sc->sp_tq_task, 0, bxe_handle_sp_tq, sc); 9112 sc->sp_tq = taskqueue_create_fast(sc->sp_tq_name, M_NOWAIT, 9113 taskqueue_thread_enqueue, 9114 &sc->sp_tq); 9115 taskqueue_start_threads(&sc->sp_tq, 1, PWAIT, /* lower priority */ 9116 "%s", sc->sp_tq_name); 9117 9118 9119 for (i = 0; i < sc->num_queues; i++) { 9120 fp = &sc->fp[i]; 9121 snprintf(fp->tq_name, sizeof(fp->tq_name), 9122 "bxe%d_fp%d_tq", sc->unit, i); 9123 TASK_INIT(&fp->tq_task, 0, bxe_handle_fp_tq, fp); 9124 TASK_INIT(&fp->tx_task, 0, bxe_tx_mq_start_deferred, fp); 9125 fp->tq = taskqueue_create_fast(fp->tq_name, M_NOWAIT, 9126 taskqueue_thread_enqueue, 9127 &fp->tq); 9128 TIMEOUT_TASK_INIT(fp->tq, &fp->tx_timeout_task, 0, 9129 bxe_tx_mq_start_deferred, fp); 9130 taskqueue_start_threads(&fp->tq, 1, PI_NET, /* higher priority */ 9131 "%s", fp->tq_name); 9132 } 9133 9134 /* setup interrupt handlers */ 9135 if (sc->interrupt_mode == INTR_MODE_MSIX) { 9136 BLOGD(sc, DBG_LOAD, "Enabling slowpath MSI-X[0] vector\n"); 9137 9138 /* 9139 * Setup the interrupt handler. Note that we pass the driver instance 9140 * to the interrupt handler for the slowpath. 9141 */ 9142 if ((rc = bus_setup_intr(sc->dev, sc->intr[0].resource, 9143 (INTR_TYPE_NET | INTR_MPSAFE), 9144 NULL, bxe_intr_sp, sc, 9145 &sc->intr[0].tag)) != 0) { 9146 BLOGE(sc, "Failed to allocate MSI-X[0] vector (%d)\n", rc); 9147 goto bxe_interrupt_attach_exit; 9148 } 9149 9150 bus_describe_intr(sc->dev, sc->intr[0].resource, 9151 sc->intr[0].tag, "sp"); 9152 9153 /* bus_bind_intr(sc->dev, sc->intr[0].resource, 0); */ 9154 9155 /* initialize the fastpath vectors (note the first was used for sp) */ 9156 for (i = 0; i < sc->num_queues; i++) { 9157 fp = &sc->fp[i]; 9158 BLOGD(sc, DBG_LOAD, "Enabling MSI-X[%d] vector\n", (i + 1)); 9159 9160 /* 9161 * Setup the interrupt handler. Note that we pass the 9162 * fastpath context to the interrupt handler in this 9163 * case. 9164 */ 9165 if ((rc = bus_setup_intr(sc->dev, sc->intr[i + 1].resource, 9166 (INTR_TYPE_NET | INTR_MPSAFE), 9167 NULL, bxe_intr_fp, fp, 9168 &sc->intr[i + 1].tag)) != 0) { 9169 BLOGE(sc, "Failed to allocate MSI-X[%d] vector (%d)\n", 9170 (i + 1), rc); 9171 goto bxe_interrupt_attach_exit; 9172 } 9173 9174 bus_describe_intr(sc->dev, sc->intr[i + 1].resource, 9175 sc->intr[i + 1].tag, "fp%02d", i); 9176 9177 /* bind the fastpath instance to a cpu */ 9178 if (sc->num_queues > 1) { 9179 bus_bind_intr(sc->dev, sc->intr[i + 1].resource, i); 9180 } 9181 9182 fp->state = BXE_FP_STATE_IRQ; 9183 } 9184 } else if (sc->interrupt_mode == INTR_MODE_MSI) { 9185 BLOGD(sc, DBG_LOAD, "Enabling MSI[0] vector\n"); 9186 9187 /* 9188 * Setup the interrupt handler. Note that we pass the 9189 * driver instance to the interrupt handler which 9190 * will handle both the slowpath and fastpath. 9191 */ 9192 if ((rc = bus_setup_intr(sc->dev, sc->intr[0].resource, 9193 (INTR_TYPE_NET | INTR_MPSAFE), 9194 NULL, bxe_intr_legacy, sc, 9195 &sc->intr[0].tag)) != 0) { 9196 BLOGE(sc, "Failed to allocate MSI[0] vector (%d)\n", rc); 9197 goto bxe_interrupt_attach_exit; 9198 } 9199 9200 } else { /* (sc->interrupt_mode == INTR_MODE_INTX) */ 9201 BLOGD(sc, DBG_LOAD, "Enabling INTx interrupts\n"); 9202 9203 /* 9204 * Setup the interrupt handler. Note that we pass the 9205 * driver instance to the interrupt handler which 9206 * will handle both the slowpath and fastpath. 9207 */ 9208 if ((rc = bus_setup_intr(sc->dev, sc->intr[0].resource, 9209 (INTR_TYPE_NET | INTR_MPSAFE), 9210 NULL, bxe_intr_legacy, sc, 9211 &sc->intr[0].tag)) != 0) { 9212 BLOGE(sc, "Failed to allocate INTx interrupt (%d)\n", rc); 9213 goto bxe_interrupt_attach_exit; 9214 } 9215 } 9216 9217 bxe_interrupt_attach_exit: 9218 9219 return (rc); 9220 } 9221 9222 static int bxe_init_hw_common_chip(struct bxe_softc *sc); 9223 static int bxe_init_hw_common(struct bxe_softc *sc); 9224 static int bxe_init_hw_port(struct bxe_softc *sc); 9225 static int bxe_init_hw_func(struct bxe_softc *sc); 9226 static void bxe_reset_common(struct bxe_softc *sc); 9227 static void bxe_reset_port(struct bxe_softc *sc); 9228 static void bxe_reset_func(struct bxe_softc *sc); 9229 static int bxe_gunzip_init(struct bxe_softc *sc); 9230 static void bxe_gunzip_end(struct bxe_softc *sc); 9231 static int bxe_init_firmware(struct bxe_softc *sc); 9232 static void bxe_release_firmware(struct bxe_softc *sc); 9233 9234 static struct 9235 ecore_func_sp_drv_ops bxe_func_sp_drv = { 9236 .init_hw_cmn_chip = bxe_init_hw_common_chip, 9237 .init_hw_cmn = bxe_init_hw_common, 9238 .init_hw_port = bxe_init_hw_port, 9239 .init_hw_func = bxe_init_hw_func, 9240 9241 .reset_hw_cmn = bxe_reset_common, 9242 .reset_hw_port = bxe_reset_port, 9243 .reset_hw_func = bxe_reset_func, 9244 9245 .gunzip_init = bxe_gunzip_init, 9246 .gunzip_end = bxe_gunzip_end, 9247 9248 .init_fw = bxe_init_firmware, 9249 .release_fw = bxe_release_firmware, 9250 }; 9251 9252 static void 9253 bxe_init_func_obj(struct bxe_softc *sc) 9254 { 9255 sc->dmae_ready = 0; 9256 9257 ecore_init_func_obj(sc, 9258 &sc->func_obj, 9259 BXE_SP(sc, func_rdata), 9260 BXE_SP_MAPPING(sc, func_rdata), 9261 BXE_SP(sc, func_afex_rdata), 9262 BXE_SP_MAPPING(sc, func_afex_rdata), 9263 &bxe_func_sp_drv); 9264 } 9265 9266 static int 9267 bxe_init_hw(struct bxe_softc *sc, 9268 uint32_t load_code) 9269 { 9270 struct ecore_func_state_params func_params = { NULL }; 9271 int rc; 9272 9273 /* prepare the parameters for function state transitions */ 9274 bit_set(&func_params.ramrod_flags, RAMROD_COMP_WAIT); 9275 9276 func_params.f_obj = &sc->func_obj; 9277 func_params.cmd = ECORE_F_CMD_HW_INIT; 9278 9279 func_params.params.hw_init.load_phase = load_code; 9280 9281 /* 9282 * Via a plethora of function pointers, we will eventually reach 9283 * bxe_init_hw_common(), bxe_init_hw_port(), or bxe_init_hw_func(). 9284 */ 9285 rc = ecore_func_state_change(sc, &func_params); 9286 9287 return (rc); 9288 } 9289 9290 static void 9291 bxe_fill(struct bxe_softc *sc, 9292 uint32_t addr, 9293 int fill, 9294 uint32_t len) 9295 { 9296 uint32_t i; 9297 9298 if (!(len % 4) && !(addr % 4)) { 9299 for (i = 0; i < len; i += 4) { 9300 REG_WR(sc, (addr + i), fill); 9301 } 9302 } else { 9303 for (i = 0; i < len; i++) { 9304 REG_WR8(sc, (addr + i), fill); 9305 } 9306 } 9307 } 9308 9309 /* writes FP SP data to FW - data_size in dwords */ 9310 static void 9311 bxe_wr_fp_sb_data(struct bxe_softc *sc, 9312 int fw_sb_id, 9313 uint32_t *sb_data_p, 9314 uint32_t data_size) 9315 { 9316 int index; 9317 9318 for (index = 0; index < data_size; index++) { 9319 REG_WR(sc, 9320 (BAR_CSTRORM_INTMEM + 9321 CSTORM_STATUS_BLOCK_DATA_OFFSET(fw_sb_id) + 9322 (sizeof(uint32_t) * index)), 9323 *(sb_data_p + index)); 9324 } 9325 } 9326 9327 static void 9328 bxe_zero_fp_sb(struct bxe_softc *sc, 9329 int fw_sb_id) 9330 { 9331 struct hc_status_block_data_e2 sb_data_e2; 9332 struct hc_status_block_data_e1x sb_data_e1x; 9333 uint32_t *sb_data_p; 9334 uint32_t data_size = 0; 9335 9336 if (!CHIP_IS_E1x(sc)) { 9337 memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2)); 9338 sb_data_e2.common.state = SB_DISABLED; 9339 sb_data_e2.common.p_func.vf_valid = FALSE; 9340 sb_data_p = (uint32_t *)&sb_data_e2; 9341 data_size = (sizeof(struct hc_status_block_data_e2) / 9342 sizeof(uint32_t)); 9343 } else { 9344 memset(&sb_data_e1x, 0, sizeof(struct hc_status_block_data_e1x)); 9345 sb_data_e1x.common.state = SB_DISABLED; 9346 sb_data_e1x.common.p_func.vf_valid = FALSE; 9347 sb_data_p = (uint32_t *)&sb_data_e1x; 9348 data_size = (sizeof(struct hc_status_block_data_e1x) / 9349 sizeof(uint32_t)); 9350 } 9351 9352 bxe_wr_fp_sb_data(sc, fw_sb_id, sb_data_p, data_size); 9353 9354 bxe_fill(sc, (BAR_CSTRORM_INTMEM + CSTORM_STATUS_BLOCK_OFFSET(fw_sb_id)), 9355 0, CSTORM_STATUS_BLOCK_SIZE); 9356 bxe_fill(sc, (BAR_CSTRORM_INTMEM + CSTORM_SYNC_BLOCK_OFFSET(fw_sb_id)), 9357 0, CSTORM_SYNC_BLOCK_SIZE); 9358 } 9359 9360 static void 9361 bxe_wr_sp_sb_data(struct bxe_softc *sc, 9362 struct hc_sp_status_block_data *sp_sb_data) 9363 { 9364 int i; 9365 9366 for (i = 0; 9367 i < (sizeof(struct hc_sp_status_block_data) / sizeof(uint32_t)); 9368 i++) { 9369 REG_WR(sc, 9370 (BAR_CSTRORM_INTMEM + 9371 CSTORM_SP_STATUS_BLOCK_DATA_OFFSET(SC_FUNC(sc)) + 9372 (i * sizeof(uint32_t))), 9373 *((uint32_t *)sp_sb_data + i)); 9374 } 9375 } 9376 9377 static void 9378 bxe_zero_sp_sb(struct bxe_softc *sc) 9379 { 9380 struct hc_sp_status_block_data sp_sb_data; 9381 9382 memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data)); 9383 9384 sp_sb_data.state = SB_DISABLED; 9385 sp_sb_data.p_func.vf_valid = FALSE; 9386 9387 bxe_wr_sp_sb_data(sc, &sp_sb_data); 9388 9389 bxe_fill(sc, 9390 (BAR_CSTRORM_INTMEM + 9391 CSTORM_SP_STATUS_BLOCK_OFFSET(SC_FUNC(sc))), 9392 0, CSTORM_SP_STATUS_BLOCK_SIZE); 9393 bxe_fill(sc, 9394 (BAR_CSTRORM_INTMEM + 9395 CSTORM_SP_SYNC_BLOCK_OFFSET(SC_FUNC(sc))), 9396 0, CSTORM_SP_SYNC_BLOCK_SIZE); 9397 } 9398 9399 static void 9400 bxe_setup_ndsb_state_machine(struct hc_status_block_sm *hc_sm, 9401 int igu_sb_id, 9402 int igu_seg_id) 9403 { 9404 hc_sm->igu_sb_id = igu_sb_id; 9405 hc_sm->igu_seg_id = igu_seg_id; 9406 hc_sm->timer_value = 0xFF; 9407 hc_sm->time_to_expire = 0xFFFFFFFF; 9408 } 9409 9410 static void 9411 bxe_map_sb_state_machines(struct hc_index_data *index_data) 9412 { 9413 /* zero out state machine indices */ 9414 9415 /* rx indices */ 9416 index_data[HC_INDEX_ETH_RX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID; 9417 9418 /* tx indices */ 9419 index_data[HC_INDEX_OOO_TX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID; 9420 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags &= ~HC_INDEX_DATA_SM_ID; 9421 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags &= ~HC_INDEX_DATA_SM_ID; 9422 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags &= ~HC_INDEX_DATA_SM_ID; 9423 9424 /* map indices */ 9425 9426 /* rx indices */ 9427 index_data[HC_INDEX_ETH_RX_CQ_CONS].flags |= 9428 (SM_RX_ID << HC_INDEX_DATA_SM_ID_SHIFT); 9429 9430 /* tx indices */ 9431 index_data[HC_INDEX_OOO_TX_CQ_CONS].flags |= 9432 (SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT); 9433 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags |= 9434 (SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT); 9435 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags |= 9436 (SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT); 9437 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags |= 9438 (SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT); 9439 } 9440 9441 static void 9442 bxe_init_sb(struct bxe_softc *sc, 9443 bus_addr_t busaddr, 9444 int vfid, 9445 uint8_t vf_valid, 9446 int fw_sb_id, 9447 int igu_sb_id) 9448 { 9449 struct hc_status_block_data_e2 sb_data_e2; 9450 struct hc_status_block_data_e1x sb_data_e1x; 9451 struct hc_status_block_sm *hc_sm_p; 9452 uint32_t *sb_data_p; 9453 int igu_seg_id; 9454 int data_size; 9455 9456 if (CHIP_INT_MODE_IS_BC(sc)) { 9457 igu_seg_id = HC_SEG_ACCESS_NORM; 9458 } else { 9459 igu_seg_id = IGU_SEG_ACCESS_NORM; 9460 } 9461 9462 bxe_zero_fp_sb(sc, fw_sb_id); 9463 9464 if (!CHIP_IS_E1x(sc)) { 9465 memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2)); 9466 sb_data_e2.common.state = SB_ENABLED; 9467 sb_data_e2.common.p_func.pf_id = SC_FUNC(sc); 9468 sb_data_e2.common.p_func.vf_id = vfid; 9469 sb_data_e2.common.p_func.vf_valid = vf_valid; 9470 sb_data_e2.common.p_func.vnic_id = SC_VN(sc); 9471 sb_data_e2.common.same_igu_sb_1b = TRUE; 9472 sb_data_e2.common.host_sb_addr.hi = U64_HI(busaddr); 9473 sb_data_e2.common.host_sb_addr.lo = U64_LO(busaddr); 9474 hc_sm_p = sb_data_e2.common.state_machine; 9475 sb_data_p = (uint32_t *)&sb_data_e2; 9476 data_size = (sizeof(struct hc_status_block_data_e2) / 9477 sizeof(uint32_t)); 9478 bxe_map_sb_state_machines(sb_data_e2.index_data); 9479 } else { 9480 memset(&sb_data_e1x, 0, sizeof(struct hc_status_block_data_e1x)); 9481 sb_data_e1x.common.state = SB_ENABLED; 9482 sb_data_e1x.common.p_func.pf_id = SC_FUNC(sc); 9483 sb_data_e1x.common.p_func.vf_id = 0xff; 9484 sb_data_e1x.common.p_func.vf_valid = FALSE; 9485 sb_data_e1x.common.p_func.vnic_id = SC_VN(sc); 9486 sb_data_e1x.common.same_igu_sb_1b = TRUE; 9487 sb_data_e1x.common.host_sb_addr.hi = U64_HI(busaddr); 9488 sb_data_e1x.common.host_sb_addr.lo = U64_LO(busaddr); 9489 hc_sm_p = sb_data_e1x.common.state_machine; 9490 sb_data_p = (uint32_t *)&sb_data_e1x; 9491 data_size = (sizeof(struct hc_status_block_data_e1x) / 9492 sizeof(uint32_t)); 9493 bxe_map_sb_state_machines(sb_data_e1x.index_data); 9494 } 9495 9496 bxe_setup_ndsb_state_machine(&hc_sm_p[SM_RX_ID], igu_sb_id, igu_seg_id); 9497 bxe_setup_ndsb_state_machine(&hc_sm_p[SM_TX_ID], igu_sb_id, igu_seg_id); 9498 9499 BLOGD(sc, DBG_LOAD, "Init FW SB %d\n", fw_sb_id); 9500 9501 /* write indices to HW - PCI guarantees endianity of regpairs */ 9502 bxe_wr_fp_sb_data(sc, fw_sb_id, sb_data_p, data_size); 9503 } 9504 9505 static inline uint8_t 9506 bxe_fp_qzone_id(struct bxe_fastpath *fp) 9507 { 9508 if (CHIP_IS_E1x(fp->sc)) { 9509 return (fp->cl_id + SC_PORT(fp->sc) * ETH_MAX_RX_CLIENTS_E1H); 9510 } else { 9511 return (fp->cl_id); 9512 } 9513 } 9514 9515 static inline uint32_t 9516 bxe_rx_ustorm_prods_offset(struct bxe_softc *sc, 9517 struct bxe_fastpath *fp) 9518 { 9519 uint32_t offset = BAR_USTRORM_INTMEM; 9520 9521 if (!CHIP_IS_E1x(sc)) { 9522 offset += USTORM_RX_PRODS_E2_OFFSET(fp->cl_qzone_id); 9523 } else { 9524 offset += USTORM_RX_PRODS_E1X_OFFSET(SC_PORT(sc), fp->cl_id); 9525 } 9526 9527 return (offset); 9528 } 9529 9530 static void 9531 bxe_init_eth_fp(struct bxe_softc *sc, 9532 int idx) 9533 { 9534 struct bxe_fastpath *fp = &sc->fp[idx]; 9535 uint32_t cids[ECORE_MULTI_TX_COS] = { 0 }; 9536 unsigned long q_type = 0; 9537 int cos; 9538 9539 fp->sc = sc; 9540 fp->index = idx; 9541 9542 fp->igu_sb_id = (sc->igu_base_sb + idx + CNIC_SUPPORT(sc)); 9543 fp->fw_sb_id = (sc->base_fw_ndsb + idx + CNIC_SUPPORT(sc)); 9544 9545 fp->cl_id = (CHIP_IS_E1x(sc)) ? 9546 (SC_L_ID(sc) + idx) : 9547 /* want client ID same as IGU SB ID for non-E1 */ 9548 fp->igu_sb_id; 9549 fp->cl_qzone_id = bxe_fp_qzone_id(fp); 9550 9551 /* setup sb indices */ 9552 if (!CHIP_IS_E1x(sc)) { 9553 fp->sb_index_values = fp->status_block.e2_sb->sb.index_values; 9554 fp->sb_running_index = fp->status_block.e2_sb->sb.running_index; 9555 } else { 9556 fp->sb_index_values = fp->status_block.e1x_sb->sb.index_values; 9557 fp->sb_running_index = fp->status_block.e1x_sb->sb.running_index; 9558 } 9559 9560 /* init shortcut */ 9561 fp->ustorm_rx_prods_offset = bxe_rx_ustorm_prods_offset(sc, fp); 9562 9563 fp->rx_cq_cons_sb = &fp->sb_index_values[HC_INDEX_ETH_RX_CQ_CONS]; 9564 9565 /* 9566 * XXX If multiple CoS is ever supported then each fastpath structure 9567 * will need to maintain tx producer/consumer/dma/etc values *per* CoS. 9568 */ 9569 for (cos = 0; cos < sc->max_cos; cos++) { 9570 cids[cos] = idx; 9571 } 9572 fp->tx_cons_sb = &fp->sb_index_values[HC_INDEX_ETH_TX_CQ_CONS_COS0]; 9573 9574 /* nothing more for a VF to do */ 9575 if (IS_VF(sc)) { 9576 return; 9577 } 9578 9579 bxe_init_sb(sc, fp->sb_dma.paddr, BXE_VF_ID_INVALID, FALSE, 9580 fp->fw_sb_id, fp->igu_sb_id); 9581 9582 bxe_update_fp_sb_idx(fp); 9583 9584 /* Configure Queue State object */ 9585 bit_set(&q_type, ECORE_Q_TYPE_HAS_RX); 9586 bit_set(&q_type, ECORE_Q_TYPE_HAS_TX); 9587 9588 ecore_init_queue_obj(sc, 9589 &sc->sp_objs[idx].q_obj, 9590 fp->cl_id, 9591 cids, 9592 sc->max_cos, 9593 SC_FUNC(sc), 9594 BXE_SP(sc, q_rdata), 9595 BXE_SP_MAPPING(sc, q_rdata), 9596 q_type); 9597 9598 /* configure classification DBs */ 9599 ecore_init_mac_obj(sc, 9600 &sc->sp_objs[idx].mac_obj, 9601 fp->cl_id, 9602 idx, 9603 SC_FUNC(sc), 9604 BXE_SP(sc, mac_rdata), 9605 BXE_SP_MAPPING(sc, mac_rdata), 9606 ECORE_FILTER_MAC_PENDING, 9607 &sc->sp_state, 9608 ECORE_OBJ_TYPE_RX_TX, 9609 &sc->macs_pool); 9610 9611 BLOGD(sc, DBG_LOAD, "fp[%d]: sb=%p cl_id=%d fw_sb=%d igu_sb=%d\n", 9612 idx, fp->status_block.e2_sb, fp->cl_id, fp->fw_sb_id, fp->igu_sb_id); 9613 } 9614 9615 static inline void 9616 bxe_update_rx_prod(struct bxe_softc *sc, 9617 struct bxe_fastpath *fp, 9618 uint16_t rx_bd_prod, 9619 uint16_t rx_cq_prod, 9620 uint16_t rx_sge_prod) 9621 { 9622 struct ustorm_eth_rx_producers rx_prods = { 0 }; 9623 uint32_t i; 9624 9625 /* update producers */ 9626 rx_prods.bd_prod = rx_bd_prod; 9627 rx_prods.cqe_prod = rx_cq_prod; 9628 rx_prods.sge_prod = rx_sge_prod; 9629 9630 /* 9631 * Make sure that the BD and SGE data is updated before updating the 9632 * producers since FW might read the BD/SGE right after the producer 9633 * is updated. 9634 * This is only applicable for weak-ordered memory model archs such 9635 * as IA-64. The following barrier is also mandatory since FW will 9636 * assumes BDs must have buffers. 9637 */ 9638 wmb(); 9639 9640 for (i = 0; i < (sizeof(rx_prods) / 4); i++) { 9641 REG_WR(sc, 9642 (fp->ustorm_rx_prods_offset + (i * 4)), 9643 ((uint32_t *)&rx_prods)[i]); 9644 } 9645 9646 wmb(); /* keep prod updates ordered */ 9647 9648 BLOGD(sc, DBG_RX, 9649 "RX fp[%d]: wrote prods bd_prod=%u cqe_prod=%u sge_prod=%u\n", 9650 fp->index, rx_bd_prod, rx_cq_prod, rx_sge_prod); 9651 } 9652 9653 static void 9654 bxe_init_rx_rings(struct bxe_softc *sc) 9655 { 9656 struct bxe_fastpath *fp; 9657 int i; 9658 9659 for (i = 0; i < sc->num_queues; i++) { 9660 fp = &sc->fp[i]; 9661 9662 fp->rx_bd_cons = 0; 9663 9664 /* 9665 * Activate the BD ring... 9666 * Warning, this will generate an interrupt (to the TSTORM) 9667 * so this can only be done after the chip is initialized 9668 */ 9669 bxe_update_rx_prod(sc, fp, 9670 fp->rx_bd_prod, 9671 fp->rx_cq_prod, 9672 fp->rx_sge_prod); 9673 9674 if (i != 0) { 9675 continue; 9676 } 9677 9678 if (CHIP_IS_E1(sc)) { 9679 REG_WR(sc, 9680 (BAR_USTRORM_INTMEM + 9681 USTORM_MEM_WORKAROUND_ADDRESS_OFFSET(SC_FUNC(sc))), 9682 U64_LO(fp->rcq_dma.paddr)); 9683 REG_WR(sc, 9684 (BAR_USTRORM_INTMEM + 9685 USTORM_MEM_WORKAROUND_ADDRESS_OFFSET(SC_FUNC(sc)) + 4), 9686 U64_HI(fp->rcq_dma.paddr)); 9687 } 9688 } 9689 } 9690 9691 static void 9692 bxe_init_tx_ring_one(struct bxe_fastpath *fp) 9693 { 9694 SET_FLAG(fp->tx_db.data.header.data, DOORBELL_HDR_T_DB_TYPE, 1); 9695 fp->tx_db.data.zero_fill1 = 0; 9696 fp->tx_db.data.prod = 0; 9697 9698 fp->tx_pkt_prod = 0; 9699 fp->tx_pkt_cons = 0; 9700 fp->tx_bd_prod = 0; 9701 fp->tx_bd_cons = 0; 9702 fp->eth_q_stats.tx_pkts = 0; 9703 } 9704 9705 static inline void 9706 bxe_init_tx_rings(struct bxe_softc *sc) 9707 { 9708 int i; 9709 9710 for (i = 0; i < sc->num_queues; i++) { 9711 bxe_init_tx_ring_one(&sc->fp[i]); 9712 } 9713 } 9714 9715 static void 9716 bxe_init_def_sb(struct bxe_softc *sc) 9717 { 9718 struct host_sp_status_block *def_sb = sc->def_sb; 9719 bus_addr_t mapping = sc->def_sb_dma.paddr; 9720 int igu_sp_sb_index; 9721 int igu_seg_id; 9722 int port = SC_PORT(sc); 9723 int func = SC_FUNC(sc); 9724 int reg_offset, reg_offset_en5; 9725 uint64_t section; 9726 int index, sindex; 9727 struct hc_sp_status_block_data sp_sb_data; 9728 9729 memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data)); 9730 9731 if (CHIP_INT_MODE_IS_BC(sc)) { 9732 igu_sp_sb_index = DEF_SB_IGU_ID; 9733 igu_seg_id = HC_SEG_ACCESS_DEF; 9734 } else { 9735 igu_sp_sb_index = sc->igu_dsb_id; 9736 igu_seg_id = IGU_SEG_ACCESS_DEF; 9737 } 9738 9739 /* attentions */ 9740 section = ((uint64_t)mapping + 9741 offsetof(struct host_sp_status_block, atten_status_block)); 9742 def_sb->atten_status_block.status_block_id = igu_sp_sb_index; 9743 sc->attn_state = 0; 9744 9745 reg_offset = (port) ? 9746 MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 : 9747 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0; 9748 reg_offset_en5 = (port) ? 9749 MISC_REG_AEU_ENABLE5_FUNC_1_OUT_0 : 9750 MISC_REG_AEU_ENABLE5_FUNC_0_OUT_0; 9751 9752 for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) { 9753 /* take care of sig[0]..sig[4] */ 9754 for (sindex = 0; sindex < 4; sindex++) { 9755 sc->attn_group[index].sig[sindex] = 9756 REG_RD(sc, (reg_offset + (sindex * 0x4) + (0x10 * index))); 9757 } 9758 9759 if (!CHIP_IS_E1x(sc)) { 9760 /* 9761 * enable5 is separate from the rest of the registers, 9762 * and the address skip is 4 and not 16 between the 9763 * different groups 9764 */ 9765 sc->attn_group[index].sig[4] = 9766 REG_RD(sc, (reg_offset_en5 + (0x4 * index))); 9767 } else { 9768 sc->attn_group[index].sig[4] = 0; 9769 } 9770 } 9771 9772 if (sc->devinfo.int_block == INT_BLOCK_HC) { 9773 reg_offset = (port) ? 9774 HC_REG_ATTN_MSG1_ADDR_L : 9775 HC_REG_ATTN_MSG0_ADDR_L; 9776 REG_WR(sc, reg_offset, U64_LO(section)); 9777 REG_WR(sc, (reg_offset + 4), U64_HI(section)); 9778 } else if (!CHIP_IS_E1x(sc)) { 9779 REG_WR(sc, IGU_REG_ATTN_MSG_ADDR_L, U64_LO(section)); 9780 REG_WR(sc, IGU_REG_ATTN_MSG_ADDR_H, U64_HI(section)); 9781 } 9782 9783 section = ((uint64_t)mapping + 9784 offsetof(struct host_sp_status_block, sp_sb)); 9785 9786 bxe_zero_sp_sb(sc); 9787 9788 /* PCI guarantees endianity of regpair */ 9789 sp_sb_data.state = SB_ENABLED; 9790 sp_sb_data.host_sb_addr.lo = U64_LO(section); 9791 sp_sb_data.host_sb_addr.hi = U64_HI(section); 9792 sp_sb_data.igu_sb_id = igu_sp_sb_index; 9793 sp_sb_data.igu_seg_id = igu_seg_id; 9794 sp_sb_data.p_func.pf_id = func; 9795 sp_sb_data.p_func.vnic_id = SC_VN(sc); 9796 sp_sb_data.p_func.vf_id = 0xff; 9797 9798 bxe_wr_sp_sb_data(sc, &sp_sb_data); 9799 9800 bxe_ack_sb(sc, sc->igu_dsb_id, USTORM_ID, 0, IGU_INT_ENABLE, 0); 9801 } 9802 9803 static void 9804 bxe_init_sp_ring(struct bxe_softc *sc) 9805 { 9806 atomic_store_rel_long(&sc->cq_spq_left, MAX_SPQ_PENDING); 9807 sc->spq_prod_idx = 0; 9808 sc->dsb_sp_prod = &sc->def_sb->sp_sb.index_values[HC_SP_INDEX_ETH_DEF_CONS]; 9809 sc->spq_prod_bd = sc->spq; 9810 sc->spq_last_bd = (sc->spq_prod_bd + MAX_SP_DESC_CNT); 9811 } 9812 9813 static void 9814 bxe_init_eq_ring(struct bxe_softc *sc) 9815 { 9816 union event_ring_elem *elem; 9817 int i; 9818 9819 for (i = 1; i <= NUM_EQ_PAGES; i++) { 9820 elem = &sc->eq[EQ_DESC_CNT_PAGE * i - 1]; 9821 9822 elem->next_page.addr.hi = htole32(U64_HI(sc->eq_dma.paddr + 9823 BCM_PAGE_SIZE * 9824 (i % NUM_EQ_PAGES))); 9825 elem->next_page.addr.lo = htole32(U64_LO(sc->eq_dma.paddr + 9826 BCM_PAGE_SIZE * 9827 (i % NUM_EQ_PAGES))); 9828 } 9829 9830 sc->eq_cons = 0; 9831 sc->eq_prod = NUM_EQ_DESC; 9832 sc->eq_cons_sb = &sc->def_sb->sp_sb.index_values[HC_SP_INDEX_EQ_CONS]; 9833 9834 atomic_store_rel_long(&sc->eq_spq_left, 9835 (min((MAX_SP_DESC_CNT - MAX_SPQ_PENDING), 9836 NUM_EQ_DESC) - 1)); 9837 } 9838 9839 static void 9840 bxe_init_internal_common(struct bxe_softc *sc) 9841 { 9842 int i; 9843 9844 /* 9845 * Zero this manually as its initialization is currently missing 9846 * in the initTool. 9847 */ 9848 for (i = 0; i < (USTORM_AGG_DATA_SIZE >> 2); i++) { 9849 REG_WR(sc, 9850 (BAR_USTRORM_INTMEM + USTORM_AGG_DATA_OFFSET + (i * 4)), 9851 0); 9852 } 9853 9854 if (!CHIP_IS_E1x(sc)) { 9855 REG_WR8(sc, (BAR_CSTRORM_INTMEM + CSTORM_IGU_MODE_OFFSET), 9856 CHIP_INT_MODE_IS_BC(sc) ? HC_IGU_BC_MODE : HC_IGU_NBC_MODE); 9857 } 9858 } 9859 9860 static void 9861 bxe_init_internal(struct bxe_softc *sc, 9862 uint32_t load_code) 9863 { 9864 switch (load_code) { 9865 case FW_MSG_CODE_DRV_LOAD_COMMON: 9866 case FW_MSG_CODE_DRV_LOAD_COMMON_CHIP: 9867 bxe_init_internal_common(sc); 9868 /* no break */ 9869 9870 case FW_MSG_CODE_DRV_LOAD_PORT: 9871 /* nothing to do */ 9872 /* no break */ 9873 9874 case FW_MSG_CODE_DRV_LOAD_FUNCTION: 9875 /* internal memory per function is initialized inside bxe_pf_init */ 9876 break; 9877 9878 default: 9879 BLOGE(sc, "Unknown load_code (0x%x) from MCP\n", load_code); 9880 break; 9881 } 9882 } 9883 9884 static void 9885 storm_memset_func_cfg(struct bxe_softc *sc, 9886 struct tstorm_eth_function_common_config *tcfg, 9887 uint16_t abs_fid) 9888 { 9889 uint32_t addr; 9890 size_t size; 9891 9892 addr = (BAR_TSTRORM_INTMEM + 9893 TSTORM_FUNCTION_COMMON_CONFIG_OFFSET(abs_fid)); 9894 size = sizeof(struct tstorm_eth_function_common_config); 9895 ecore_storm_memset_struct(sc, addr, size, (uint32_t *)tcfg); 9896 } 9897 9898 static void 9899 bxe_func_init(struct bxe_softc *sc, 9900 struct bxe_func_init_params *p) 9901 { 9902 struct tstorm_eth_function_common_config tcfg = { 0 }; 9903 9904 if (CHIP_IS_E1x(sc)) { 9905 storm_memset_func_cfg(sc, &tcfg, p->func_id); 9906 } 9907 9908 /* Enable the function in the FW */ 9909 storm_memset_vf_to_pf(sc, p->func_id, p->pf_id); 9910 storm_memset_func_en(sc, p->func_id, 1); 9911 9912 /* spq */ 9913 if (p->func_flgs & FUNC_FLG_SPQ) { 9914 storm_memset_spq_addr(sc, p->spq_map, p->func_id); 9915 REG_WR(sc, 9916 (XSEM_REG_FAST_MEMORY + XSTORM_SPQ_PROD_OFFSET(p->func_id)), 9917 p->spq_prod); 9918 } 9919 } 9920 9921 /* 9922 * Calculates the sum of vn_min_rates. 9923 * It's needed for further normalizing of the min_rates. 9924 * Returns: 9925 * sum of vn_min_rates. 9926 * or 9927 * 0 - if all the min_rates are 0. 9928 * In the later case fainess algorithm should be deactivated. 9929 * If all min rates are not zero then those that are zeroes will be set to 1. 9930 */ 9931 static void 9932 bxe_calc_vn_min(struct bxe_softc *sc, 9933 struct cmng_init_input *input) 9934 { 9935 uint32_t vn_cfg; 9936 uint32_t vn_min_rate; 9937 int all_zero = 1; 9938 int vn; 9939 9940 for (vn = VN_0; vn < SC_MAX_VN_NUM(sc); vn++) { 9941 vn_cfg = sc->devinfo.mf_info.mf_config[vn]; 9942 vn_min_rate = (((vn_cfg & FUNC_MF_CFG_MIN_BW_MASK) >> 9943 FUNC_MF_CFG_MIN_BW_SHIFT) * 100); 9944 9945 if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE) { 9946 /* skip hidden VNs */ 9947 vn_min_rate = 0; 9948 } else if (!vn_min_rate) { 9949 /* If min rate is zero - set it to 100 */ 9950 vn_min_rate = DEF_MIN_RATE; 9951 } else { 9952 all_zero = 0; 9953 } 9954 9955 input->vnic_min_rate[vn] = vn_min_rate; 9956 } 9957 9958 /* if ETS or all min rates are zeros - disable fairness */ 9959 if (BXE_IS_ETS_ENABLED(sc)) { 9960 input->flags.cmng_enables &= ~CMNG_FLAGS_PER_PORT_FAIRNESS_VN; 9961 BLOGD(sc, DBG_LOAD, "Fairness disabled (ETS)\n"); 9962 } else if (all_zero) { 9963 input->flags.cmng_enables &= ~CMNG_FLAGS_PER_PORT_FAIRNESS_VN; 9964 BLOGD(sc, DBG_LOAD, 9965 "Fariness disabled (all MIN values are zeroes)\n"); 9966 } else { 9967 input->flags.cmng_enables |= CMNG_FLAGS_PER_PORT_FAIRNESS_VN; 9968 } 9969 } 9970 9971 static inline uint16_t 9972 bxe_extract_max_cfg(struct bxe_softc *sc, 9973 uint32_t mf_cfg) 9974 { 9975 uint16_t max_cfg = ((mf_cfg & FUNC_MF_CFG_MAX_BW_MASK) >> 9976 FUNC_MF_CFG_MAX_BW_SHIFT); 9977 9978 if (!max_cfg) { 9979 BLOGD(sc, DBG_LOAD, "Max BW configured to 0 - using 100 instead\n"); 9980 max_cfg = 100; 9981 } 9982 9983 return (max_cfg); 9984 } 9985 9986 static void 9987 bxe_calc_vn_max(struct bxe_softc *sc, 9988 int vn, 9989 struct cmng_init_input *input) 9990 { 9991 uint16_t vn_max_rate; 9992 uint32_t vn_cfg = sc->devinfo.mf_info.mf_config[vn]; 9993 uint32_t max_cfg; 9994 9995 if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE) { 9996 vn_max_rate = 0; 9997 } else { 9998 max_cfg = bxe_extract_max_cfg(sc, vn_cfg); 9999 10000 if (IS_MF_SI(sc)) { 10001 /* max_cfg in percents of linkspeed */ 10002 vn_max_rate = ((sc->link_vars.line_speed * max_cfg) / 100); 10003 } else { /* SD modes */ 10004 /* max_cfg is absolute in 100Mb units */ 10005 vn_max_rate = (max_cfg * 100); 10006 } 10007 } 10008 10009 BLOGD(sc, DBG_LOAD, "vn %d: vn_max_rate %d\n", vn, vn_max_rate); 10010 10011 input->vnic_max_rate[vn] = vn_max_rate; 10012 } 10013 10014 static void 10015 bxe_cmng_fns_init(struct bxe_softc *sc, 10016 uint8_t read_cfg, 10017 uint8_t cmng_type) 10018 { 10019 struct cmng_init_input input; 10020 int vn; 10021 10022 memset(&input, 0, sizeof(struct cmng_init_input)); 10023 10024 input.port_rate = sc->link_vars.line_speed; 10025 10026 if (cmng_type == CMNG_FNS_MINMAX) { 10027 /* read mf conf from shmem */ 10028 if (read_cfg) { 10029 bxe_read_mf_cfg(sc); 10030 } 10031 10032 /* get VN min rate and enable fairness if not 0 */ 10033 bxe_calc_vn_min(sc, &input); 10034 10035 /* get VN max rate */ 10036 if (sc->port.pmf) { 10037 for (vn = VN_0; vn < SC_MAX_VN_NUM(sc); vn++) { 10038 bxe_calc_vn_max(sc, vn, &input); 10039 } 10040 } 10041 10042 /* always enable rate shaping and fairness */ 10043 input.flags.cmng_enables |= CMNG_FLAGS_PER_PORT_RATE_SHAPING_VN; 10044 10045 ecore_init_cmng(&input, &sc->cmng); 10046 return; 10047 } 10048 10049 /* rate shaping and fairness are disabled */ 10050 BLOGD(sc, DBG_LOAD, "rate shaping and fairness have been disabled\n"); 10051 } 10052 10053 static int 10054 bxe_get_cmng_fns_mode(struct bxe_softc *sc) 10055 { 10056 if (CHIP_REV_IS_SLOW(sc)) { 10057 return (CMNG_FNS_NONE); 10058 } 10059 10060 if (IS_MF(sc)) { 10061 return (CMNG_FNS_MINMAX); 10062 } 10063 10064 return (CMNG_FNS_NONE); 10065 } 10066 10067 static void 10068 storm_memset_cmng(struct bxe_softc *sc, 10069 struct cmng_init *cmng, 10070 uint8_t port) 10071 { 10072 int vn; 10073 int func; 10074 uint32_t addr; 10075 size_t size; 10076 10077 addr = (BAR_XSTRORM_INTMEM + 10078 XSTORM_CMNG_PER_PORT_VARS_OFFSET(port)); 10079 size = sizeof(struct cmng_struct_per_port); 10080 ecore_storm_memset_struct(sc, addr, size, (uint32_t *)&cmng->port); 10081 10082 for (vn = VN_0; vn < SC_MAX_VN_NUM(sc); vn++) { 10083 func = func_by_vn(sc, vn); 10084 10085 addr = (BAR_XSTRORM_INTMEM + 10086 XSTORM_RATE_SHAPING_PER_VN_VARS_OFFSET(func)); 10087 size = sizeof(struct rate_shaping_vars_per_vn); 10088 ecore_storm_memset_struct(sc, addr, size, 10089 (uint32_t *)&cmng->vnic.vnic_max_rate[vn]); 10090 10091 addr = (BAR_XSTRORM_INTMEM + 10092 XSTORM_FAIRNESS_PER_VN_VARS_OFFSET(func)); 10093 size = sizeof(struct fairness_vars_per_vn); 10094 ecore_storm_memset_struct(sc, addr, size, 10095 (uint32_t *)&cmng->vnic.vnic_min_rate[vn]); 10096 } 10097 } 10098 10099 static void 10100 bxe_pf_init(struct bxe_softc *sc) 10101 { 10102 struct bxe_func_init_params func_init = { 0 }; 10103 struct event_ring_data eq_data = { { 0 } }; 10104 uint16_t flags; 10105 10106 if (!CHIP_IS_E1x(sc)) { 10107 /* reset IGU PF statistics: MSIX + ATTN */ 10108 /* PF */ 10109 REG_WR(sc, 10110 (IGU_REG_STATISTIC_NUM_MESSAGE_SENT + 10111 (BXE_IGU_STAS_MSG_VF_CNT * 4) + 10112 ((CHIP_IS_MODE_4_PORT(sc) ? SC_FUNC(sc) : SC_VN(sc)) * 4)), 10113 0); 10114 /* ATTN */ 10115 REG_WR(sc, 10116 (IGU_REG_STATISTIC_NUM_MESSAGE_SENT + 10117 (BXE_IGU_STAS_MSG_VF_CNT * 4) + 10118 (BXE_IGU_STAS_MSG_PF_CNT * 4) + 10119 ((CHIP_IS_MODE_4_PORT(sc) ? SC_FUNC(sc) : SC_VN(sc)) * 4)), 10120 0); 10121 } 10122 10123 /* function setup flags */ 10124 flags = (FUNC_FLG_STATS | FUNC_FLG_LEADING | FUNC_FLG_SPQ); 10125 10126 /* 10127 * This flag is relevant for E1x only. 10128 * E2 doesn't have a TPA configuration in a function level. 10129 */ 10130 flags |= (if_getcapenable(sc->ifp) & IFCAP_LRO) ? FUNC_FLG_TPA : 0; 10131 10132 func_init.func_flgs = flags; 10133 func_init.pf_id = SC_FUNC(sc); 10134 func_init.func_id = SC_FUNC(sc); 10135 func_init.spq_map = sc->spq_dma.paddr; 10136 func_init.spq_prod = sc->spq_prod_idx; 10137 10138 bxe_func_init(sc, &func_init); 10139 10140 memset(&sc->cmng, 0, sizeof(struct cmng_struct_per_port)); 10141 10142 /* 10143 * Congestion management values depend on the link rate. 10144 * There is no active link so initial link rate is set to 10Gbps. 10145 * When the link comes up the congestion management values are 10146 * re-calculated according to the actual link rate. 10147 */ 10148 sc->link_vars.line_speed = SPEED_10000; 10149 bxe_cmng_fns_init(sc, TRUE, bxe_get_cmng_fns_mode(sc)); 10150 10151 /* Only the PMF sets the HW */ 10152 if (sc->port.pmf) { 10153 storm_memset_cmng(sc, &sc->cmng, SC_PORT(sc)); 10154 } 10155 10156 /* init Event Queue - PCI bus guarantees correct endainity */ 10157 eq_data.base_addr.hi = U64_HI(sc->eq_dma.paddr); 10158 eq_data.base_addr.lo = U64_LO(sc->eq_dma.paddr); 10159 eq_data.producer = sc->eq_prod; 10160 eq_data.index_id = HC_SP_INDEX_EQ_CONS; 10161 eq_data.sb_id = DEF_SB_ID; 10162 storm_memset_eq_data(sc, &eq_data, SC_FUNC(sc)); 10163 } 10164 10165 static void 10166 bxe_hc_int_enable(struct bxe_softc *sc) 10167 { 10168 int port = SC_PORT(sc); 10169 uint32_t addr = (port) ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0; 10170 uint32_t val = REG_RD(sc, addr); 10171 uint8_t msix = (sc->interrupt_mode == INTR_MODE_MSIX) ? TRUE : FALSE; 10172 uint8_t single_msix = ((sc->interrupt_mode == INTR_MODE_MSIX) && 10173 (sc->intr_count == 1)) ? TRUE : FALSE; 10174 uint8_t msi = (sc->interrupt_mode == INTR_MODE_MSI) ? TRUE : FALSE; 10175 10176 if (msix) { 10177 val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 | 10178 HC_CONFIG_0_REG_INT_LINE_EN_0); 10179 val |= (HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 | 10180 HC_CONFIG_0_REG_ATTN_BIT_EN_0); 10181 if (single_msix) { 10182 val |= HC_CONFIG_0_REG_SINGLE_ISR_EN_0; 10183 } 10184 } else if (msi) { 10185 val &= ~HC_CONFIG_0_REG_INT_LINE_EN_0; 10186 val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 | 10187 HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 | 10188 HC_CONFIG_0_REG_ATTN_BIT_EN_0); 10189 } else { 10190 val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 | 10191 HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 | 10192 HC_CONFIG_0_REG_INT_LINE_EN_0 | 10193 HC_CONFIG_0_REG_ATTN_BIT_EN_0); 10194 10195 if (!CHIP_IS_E1(sc)) { 10196 BLOGD(sc, DBG_INTR, "write %x to HC %d (addr 0x%x)\n", 10197 val, port, addr); 10198 10199 REG_WR(sc, addr, val); 10200 10201 val &= ~HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0; 10202 } 10203 } 10204 10205 if (CHIP_IS_E1(sc)) { 10206 REG_WR(sc, (HC_REG_INT_MASK + port*4), 0x1FFFF); 10207 } 10208 10209 BLOGD(sc, DBG_INTR, "write %x to HC %d (addr 0x%x) mode %s\n", 10210 val, port, addr, ((msix) ? "MSI-X" : ((msi) ? "MSI" : "INTx"))); 10211 10212 REG_WR(sc, addr, val); 10213 10214 /* ensure that HC_CONFIG is written before leading/trailing edge config */ 10215 mb(); 10216 10217 if (!CHIP_IS_E1(sc)) { 10218 /* init leading/trailing edge */ 10219 if (IS_MF(sc)) { 10220 val = (0xee0f | (1 << (SC_VN(sc) + 4))); 10221 if (sc->port.pmf) { 10222 /* enable nig and gpio3 attention */ 10223 val |= 0x1100; 10224 } 10225 } else { 10226 val = 0xffff; 10227 } 10228 10229 REG_WR(sc, (HC_REG_TRAILING_EDGE_0 + port*8), val); 10230 REG_WR(sc, (HC_REG_LEADING_EDGE_0 + port*8), val); 10231 } 10232 10233 /* make sure that interrupts are indeed enabled from here on */ 10234 mb(); 10235 } 10236 10237 static void 10238 bxe_igu_int_enable(struct bxe_softc *sc) 10239 { 10240 uint32_t val; 10241 uint8_t msix = (sc->interrupt_mode == INTR_MODE_MSIX) ? TRUE : FALSE; 10242 uint8_t single_msix = ((sc->interrupt_mode == INTR_MODE_MSIX) && 10243 (sc->intr_count == 1)) ? TRUE : FALSE; 10244 uint8_t msi = (sc->interrupt_mode == INTR_MODE_MSI) ? TRUE : FALSE; 10245 10246 val = REG_RD(sc, IGU_REG_PF_CONFIGURATION); 10247 10248 if (msix) { 10249 val &= ~(IGU_PF_CONF_INT_LINE_EN | 10250 IGU_PF_CONF_SINGLE_ISR_EN); 10251 val |= (IGU_PF_CONF_MSI_MSIX_EN | 10252 IGU_PF_CONF_ATTN_BIT_EN); 10253 if (single_msix) { 10254 val |= IGU_PF_CONF_SINGLE_ISR_EN; 10255 } 10256 } else if (msi) { 10257 val &= ~IGU_PF_CONF_INT_LINE_EN; 10258 val |= (IGU_PF_CONF_MSI_MSIX_EN | 10259 IGU_PF_CONF_ATTN_BIT_EN | 10260 IGU_PF_CONF_SINGLE_ISR_EN); 10261 } else { 10262 val &= ~IGU_PF_CONF_MSI_MSIX_EN; 10263 val |= (IGU_PF_CONF_INT_LINE_EN | 10264 IGU_PF_CONF_ATTN_BIT_EN | 10265 IGU_PF_CONF_SINGLE_ISR_EN); 10266 } 10267 10268 /* clean previous status - need to configure igu prior to ack*/ 10269 if ((!msix) || single_msix) { 10270 REG_WR(sc, IGU_REG_PF_CONFIGURATION, val); 10271 bxe_ack_int(sc); 10272 } 10273 10274 val |= IGU_PF_CONF_FUNC_EN; 10275 10276 BLOGD(sc, DBG_INTR, "write 0x%x to IGU mode %s\n", 10277 val, ((msix) ? "MSI-X" : ((msi) ? "MSI" : "INTx"))); 10278 10279 REG_WR(sc, IGU_REG_PF_CONFIGURATION, val); 10280 10281 mb(); 10282 10283 /* init leading/trailing edge */ 10284 if (IS_MF(sc)) { 10285 val = (0xee0f | (1 << (SC_VN(sc) + 4))); 10286 if (sc->port.pmf) { 10287 /* enable nig and gpio3 attention */ 10288 val |= 0x1100; 10289 } 10290 } else { 10291 val = 0xffff; 10292 } 10293 10294 REG_WR(sc, IGU_REG_TRAILING_EDGE_LATCH, val); 10295 REG_WR(sc, IGU_REG_LEADING_EDGE_LATCH, val); 10296 10297 /* make sure that interrupts are indeed enabled from here on */ 10298 mb(); 10299 } 10300 10301 static void 10302 bxe_int_enable(struct bxe_softc *sc) 10303 { 10304 if (sc->devinfo.int_block == INT_BLOCK_HC) { 10305 bxe_hc_int_enable(sc); 10306 } else { 10307 bxe_igu_int_enable(sc); 10308 } 10309 } 10310 10311 static void 10312 bxe_hc_int_disable(struct bxe_softc *sc) 10313 { 10314 int port = SC_PORT(sc); 10315 uint32_t addr = (port) ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0; 10316 uint32_t val = REG_RD(sc, addr); 10317 10318 /* 10319 * In E1 we must use only PCI configuration space to disable MSI/MSIX 10320 * capablility. It's forbidden to disable IGU_PF_CONF_MSI_MSIX_EN in HC 10321 * block 10322 */ 10323 if (CHIP_IS_E1(sc)) { 10324 /* 10325 * Since IGU_PF_CONF_MSI_MSIX_EN still always on use mask register 10326 * to prevent from HC sending interrupts after we exit the function 10327 */ 10328 REG_WR(sc, (HC_REG_INT_MASK + port*4), 0); 10329 10330 val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 | 10331 HC_CONFIG_0_REG_INT_LINE_EN_0 | 10332 HC_CONFIG_0_REG_ATTN_BIT_EN_0); 10333 } else { 10334 val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 | 10335 HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 | 10336 HC_CONFIG_0_REG_INT_LINE_EN_0 | 10337 HC_CONFIG_0_REG_ATTN_BIT_EN_0); 10338 } 10339 10340 BLOGD(sc, DBG_INTR, "write %x to HC %d (addr 0x%x)\n", val, port, addr); 10341 10342 /* flush all outstanding writes */ 10343 mb(); 10344 10345 REG_WR(sc, addr, val); 10346 if (REG_RD(sc, addr) != val) { 10347 BLOGE(sc, "proper val not read from HC IGU!\n"); 10348 } 10349 } 10350 10351 static void 10352 bxe_igu_int_disable(struct bxe_softc *sc) 10353 { 10354 uint32_t val = REG_RD(sc, IGU_REG_PF_CONFIGURATION); 10355 10356 val &= ~(IGU_PF_CONF_MSI_MSIX_EN | 10357 IGU_PF_CONF_INT_LINE_EN | 10358 IGU_PF_CONF_ATTN_BIT_EN); 10359 10360 BLOGD(sc, DBG_INTR, "write %x to IGU\n", val); 10361 10362 /* flush all outstanding writes */ 10363 mb(); 10364 10365 REG_WR(sc, IGU_REG_PF_CONFIGURATION, val); 10366 if (REG_RD(sc, IGU_REG_PF_CONFIGURATION) != val) { 10367 BLOGE(sc, "proper val not read from IGU!\n"); 10368 } 10369 } 10370 10371 static void 10372 bxe_int_disable(struct bxe_softc *sc) 10373 { 10374 if (sc->devinfo.int_block == INT_BLOCK_HC) { 10375 bxe_hc_int_disable(sc); 10376 } else { 10377 bxe_igu_int_disable(sc); 10378 } 10379 } 10380 10381 static void 10382 bxe_nic_init(struct bxe_softc *sc, 10383 int load_code) 10384 { 10385 int i; 10386 10387 for (i = 0; i < sc->num_queues; i++) { 10388 bxe_init_eth_fp(sc, i); 10389 } 10390 10391 rmb(); /* ensure status block indices were read */ 10392 10393 bxe_init_rx_rings(sc); 10394 bxe_init_tx_rings(sc); 10395 10396 if (IS_VF(sc)) { 10397 return; 10398 } 10399 10400 /* initialize MOD_ABS interrupts */ 10401 elink_init_mod_abs_int(sc, &sc->link_vars, 10402 sc->devinfo.chip_id, 10403 sc->devinfo.shmem_base, 10404 sc->devinfo.shmem2_base, 10405 SC_PORT(sc)); 10406 10407 bxe_init_def_sb(sc); 10408 bxe_update_dsb_idx(sc); 10409 bxe_init_sp_ring(sc); 10410 bxe_init_eq_ring(sc); 10411 bxe_init_internal(sc, load_code); 10412 bxe_pf_init(sc); 10413 bxe_stats_init(sc); 10414 10415 /* flush all before enabling interrupts */ 10416 mb(); 10417 10418 bxe_int_enable(sc); 10419 10420 /* check for SPIO5 */ 10421 bxe_attn_int_deasserted0(sc, 10422 REG_RD(sc, 10423 (MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + 10424 SC_PORT(sc)*4)) & 10425 AEU_INPUTS_ATTN_BITS_SPIO5); 10426 } 10427 10428 static inline void 10429 bxe_init_objs(struct bxe_softc *sc) 10430 { 10431 /* mcast rules must be added to tx if tx switching is enabled */ 10432 ecore_obj_type o_type = 10433 (sc->flags & BXE_TX_SWITCHING) ? ECORE_OBJ_TYPE_RX_TX : 10434 ECORE_OBJ_TYPE_RX; 10435 10436 /* RX_MODE controlling object */ 10437 ecore_init_rx_mode_obj(sc, &sc->rx_mode_obj); 10438 10439 /* multicast configuration controlling object */ 10440 ecore_init_mcast_obj(sc, 10441 &sc->mcast_obj, 10442 sc->fp[0].cl_id, 10443 sc->fp[0].index, 10444 SC_FUNC(sc), 10445 SC_FUNC(sc), 10446 BXE_SP(sc, mcast_rdata), 10447 BXE_SP_MAPPING(sc, mcast_rdata), 10448 ECORE_FILTER_MCAST_PENDING, 10449 &sc->sp_state, 10450 o_type); 10451 10452 /* Setup CAM credit pools */ 10453 ecore_init_mac_credit_pool(sc, 10454 &sc->macs_pool, 10455 SC_FUNC(sc), 10456 CHIP_IS_E1x(sc) ? VNICS_PER_PORT(sc) : 10457 VNICS_PER_PATH(sc)); 10458 10459 ecore_init_vlan_credit_pool(sc, 10460 &sc->vlans_pool, 10461 SC_ABS_FUNC(sc) >> 1, 10462 CHIP_IS_E1x(sc) ? VNICS_PER_PORT(sc) : 10463 VNICS_PER_PATH(sc)); 10464 10465 /* RSS configuration object */ 10466 ecore_init_rss_config_obj(sc, 10467 &sc->rss_conf_obj, 10468 sc->fp[0].cl_id, 10469 sc->fp[0].index, 10470 SC_FUNC(sc), 10471 SC_FUNC(sc), 10472 BXE_SP(sc, rss_rdata), 10473 BXE_SP_MAPPING(sc, rss_rdata), 10474 ECORE_FILTER_RSS_CONF_PENDING, 10475 &sc->sp_state, ECORE_OBJ_TYPE_RX); 10476 } 10477 10478 /* 10479 * Initialize the function. This must be called before sending CLIENT_SETUP 10480 * for the first client. 10481 */ 10482 static inline int 10483 bxe_func_start(struct bxe_softc *sc) 10484 { 10485 struct ecore_func_state_params func_params = { NULL }; 10486 struct ecore_func_start_params *start_params = &func_params.params.start; 10487 10488 /* Prepare parameters for function state transitions */ 10489 bit_set(&func_params.ramrod_flags, RAMROD_COMP_WAIT); 10490 10491 func_params.f_obj = &sc->func_obj; 10492 func_params.cmd = ECORE_F_CMD_START; 10493 10494 /* Function parameters */ 10495 start_params->mf_mode = sc->devinfo.mf_info.mf_mode; 10496 start_params->sd_vlan_tag = OVLAN(sc); 10497 10498 if (CHIP_IS_E2(sc) || CHIP_IS_E3(sc)) { 10499 start_params->network_cos_mode = STATIC_COS; 10500 } else { /* CHIP_IS_E1X */ 10501 start_params->network_cos_mode = FW_WRR; 10502 } 10503 10504 //start_params->gre_tunnel_mode = 0; 10505 //start_params->gre_tunnel_rss = 0; 10506 10507 return (ecore_func_state_change(sc, &func_params)); 10508 } 10509 10510 static int 10511 bxe_set_power_state(struct bxe_softc *sc, 10512 uint8_t state) 10513 { 10514 uint16_t pmcsr; 10515 10516 /* If there is no power capability, silently succeed */ 10517 if (!(sc->devinfo.pcie_cap_flags & BXE_PM_CAPABLE_FLAG)) { 10518 BLOGW(sc, "No power capability\n"); 10519 return (0); 10520 } 10521 10522 pmcsr = pci_read_config(sc->dev, 10523 (sc->devinfo.pcie_pm_cap_reg + PCIR_POWER_STATUS), 10524 2); 10525 10526 switch (state) { 10527 case PCI_PM_D0: 10528 pci_write_config(sc->dev, 10529 (sc->devinfo.pcie_pm_cap_reg + PCIR_POWER_STATUS), 10530 ((pmcsr & ~PCIM_PSTAT_DMASK) | PCIM_PSTAT_PME), 2); 10531 10532 if (pmcsr & PCIM_PSTAT_DMASK) { 10533 /* delay required during transition out of D3hot */ 10534 DELAY(20000); 10535 } 10536 10537 break; 10538 10539 case PCI_PM_D3hot: 10540 /* XXX if there are other clients above don't shut down the power */ 10541 10542 /* don't shut down the power for emulation and FPGA */ 10543 if (CHIP_REV_IS_SLOW(sc)) { 10544 return (0); 10545 } 10546 10547 pmcsr &= ~PCIM_PSTAT_DMASK; 10548 pmcsr |= PCIM_PSTAT_D3; 10549 10550 if (sc->wol) { 10551 pmcsr |= PCIM_PSTAT_PMEENABLE; 10552 } 10553 10554 pci_write_config(sc->dev, 10555 (sc->devinfo.pcie_pm_cap_reg + PCIR_POWER_STATUS), 10556 pmcsr, 4); 10557 10558 /* 10559 * No more memory access after this point until device is brought back 10560 * to D0 state. 10561 */ 10562 break; 10563 10564 default: 10565 BLOGE(sc, "Can't support PCI power state = 0x%x pmcsr 0x%x\n", 10566 state, pmcsr); 10567 return (-1); 10568 } 10569 10570 return (0); 10571 } 10572 10573 10574 /* return true if succeeded to acquire the lock */ 10575 static uint8_t 10576 bxe_trylock_hw_lock(struct bxe_softc *sc, 10577 uint32_t resource) 10578 { 10579 uint32_t lock_status; 10580 uint32_t resource_bit = (1 << resource); 10581 int func = SC_FUNC(sc); 10582 uint32_t hw_lock_control_reg; 10583 10584 BLOGD(sc, DBG_LOAD, "Trying to take a resource lock 0x%x\n", resource); 10585 10586 /* Validating that the resource is within range */ 10587 if (resource > HW_LOCK_MAX_RESOURCE_VALUE) { 10588 BLOGD(sc, DBG_LOAD, 10589 "resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n", 10590 resource, HW_LOCK_MAX_RESOURCE_VALUE); 10591 return (FALSE); 10592 } 10593 10594 if (func <= 5) { 10595 hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8); 10596 } else { 10597 hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8); 10598 } 10599 10600 /* try to acquire the lock */ 10601 REG_WR(sc, hw_lock_control_reg + 4, resource_bit); 10602 lock_status = REG_RD(sc, hw_lock_control_reg); 10603 if (lock_status & resource_bit) { 10604 return (TRUE); 10605 } 10606 10607 BLOGE(sc, "Failed to get a resource lock 0x%x func %d " 10608 "lock_status 0x%x resource_bit 0x%x\n", resource, func, 10609 lock_status, resource_bit); 10610 10611 return (FALSE); 10612 } 10613 10614 /* 10615 * Get the recovery leader resource id according to the engine this function 10616 * belongs to. Currently only only 2 engines is supported. 10617 */ 10618 static int 10619 bxe_get_leader_lock_resource(struct bxe_softc *sc) 10620 { 10621 if (SC_PATH(sc)) { 10622 return (HW_LOCK_RESOURCE_RECOVERY_LEADER_1); 10623 } else { 10624 return (HW_LOCK_RESOURCE_RECOVERY_LEADER_0); 10625 } 10626 } 10627 10628 /* try to acquire a leader lock for current engine */ 10629 static uint8_t 10630 bxe_trylock_leader_lock(struct bxe_softc *sc) 10631 { 10632 return (bxe_trylock_hw_lock(sc, bxe_get_leader_lock_resource(sc))); 10633 } 10634 10635 static int 10636 bxe_release_leader_lock(struct bxe_softc *sc) 10637 { 10638 return (bxe_release_hw_lock(sc, bxe_get_leader_lock_resource(sc))); 10639 } 10640 10641 /* close gates #2, #3 and #4 */ 10642 static void 10643 bxe_set_234_gates(struct bxe_softc *sc, 10644 uint8_t close) 10645 { 10646 uint32_t val; 10647 10648 /* gates #2 and #4a are closed/opened for "not E1" only */ 10649 if (!CHIP_IS_E1(sc)) { 10650 /* #4 */ 10651 REG_WR(sc, PXP_REG_HST_DISCARD_DOORBELLS, !!close); 10652 /* #2 */ 10653 REG_WR(sc, PXP_REG_HST_DISCARD_INTERNAL_WRITES, !!close); 10654 } 10655 10656 /* #3 */ 10657 if (CHIP_IS_E1x(sc)) { 10658 /* prevent interrupts from HC on both ports */ 10659 val = REG_RD(sc, HC_REG_CONFIG_1); 10660 REG_WR(sc, HC_REG_CONFIG_1, 10661 (!close) ? (val | HC_CONFIG_1_REG_BLOCK_DISABLE_1) : 10662 (val & ~(uint32_t)HC_CONFIG_1_REG_BLOCK_DISABLE_1)); 10663 10664 val = REG_RD(sc, HC_REG_CONFIG_0); 10665 REG_WR(sc, HC_REG_CONFIG_0, 10666 (!close) ? (val | HC_CONFIG_0_REG_BLOCK_DISABLE_0) : 10667 (val & ~(uint32_t)HC_CONFIG_0_REG_BLOCK_DISABLE_0)); 10668 } else { 10669 /* Prevent incoming interrupts in IGU */ 10670 val = REG_RD(sc, IGU_REG_BLOCK_CONFIGURATION); 10671 10672 REG_WR(sc, IGU_REG_BLOCK_CONFIGURATION, 10673 (!close) ? 10674 (val | IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE) : 10675 (val & ~(uint32_t)IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE)); 10676 } 10677 10678 BLOGD(sc, DBG_LOAD, "%s gates #2, #3 and #4\n", 10679 close ? "closing" : "opening"); 10680 10681 wmb(); 10682 } 10683 10684 /* poll for pending writes bit, it should get cleared in no more than 1s */ 10685 static int 10686 bxe_er_poll_igu_vq(struct bxe_softc *sc) 10687 { 10688 uint32_t cnt = 1000; 10689 uint32_t pend_bits = 0; 10690 10691 do { 10692 pend_bits = REG_RD(sc, IGU_REG_PENDING_BITS_STATUS); 10693 10694 if (pend_bits == 0) { 10695 break; 10696 } 10697 10698 DELAY(1000); 10699 } while (--cnt > 0); 10700 10701 if (cnt == 0) { 10702 BLOGE(sc, "Still pending IGU requests bits=0x%08x!\n", pend_bits); 10703 return (-1); 10704 } 10705 10706 return (0); 10707 } 10708 10709 #define SHARED_MF_CLP_MAGIC 0x80000000 /* 'magic' bit */ 10710 10711 static void 10712 bxe_clp_reset_prep(struct bxe_softc *sc, 10713 uint32_t *magic_val) 10714 { 10715 /* Do some magic... */ 10716 uint32_t val = MFCFG_RD(sc, shared_mf_config.clp_mb); 10717 *magic_val = val & SHARED_MF_CLP_MAGIC; 10718 MFCFG_WR(sc, shared_mf_config.clp_mb, val | SHARED_MF_CLP_MAGIC); 10719 } 10720 10721 /* restore the value of the 'magic' bit */ 10722 static void 10723 bxe_clp_reset_done(struct bxe_softc *sc, 10724 uint32_t magic_val) 10725 { 10726 /* Restore the 'magic' bit value... */ 10727 uint32_t val = MFCFG_RD(sc, shared_mf_config.clp_mb); 10728 MFCFG_WR(sc, shared_mf_config.clp_mb, 10729 (val & (~SHARED_MF_CLP_MAGIC)) | magic_val); 10730 } 10731 10732 /* prepare for MCP reset, takes care of CLP configurations */ 10733 static void 10734 bxe_reset_mcp_prep(struct bxe_softc *sc, 10735 uint32_t *magic_val) 10736 { 10737 uint32_t shmem; 10738 uint32_t validity_offset; 10739 10740 /* set `magic' bit in order to save MF config */ 10741 if (!CHIP_IS_E1(sc)) { 10742 bxe_clp_reset_prep(sc, magic_val); 10743 } 10744 10745 /* get shmem offset */ 10746 shmem = REG_RD(sc, MISC_REG_SHARED_MEM_ADDR); 10747 validity_offset = 10748 offsetof(struct shmem_region, validity_map[SC_PORT(sc)]); 10749 10750 /* Clear validity map flags */ 10751 if (shmem > 0) { 10752 REG_WR(sc, shmem + validity_offset, 0); 10753 } 10754 } 10755 10756 #define MCP_TIMEOUT 5000 /* 5 seconds (in ms) */ 10757 #define MCP_ONE_TIMEOUT 100 /* 100 ms */ 10758 10759 static void 10760 bxe_mcp_wait_one(struct bxe_softc *sc) 10761 { 10762 /* special handling for emulation and FPGA (10 times longer) */ 10763 if (CHIP_REV_IS_SLOW(sc)) { 10764 DELAY((MCP_ONE_TIMEOUT*10) * 1000); 10765 } else { 10766 DELAY((MCP_ONE_TIMEOUT) * 1000); 10767 } 10768 } 10769 10770 /* initialize shmem_base and waits for validity signature to appear */ 10771 static int 10772 bxe_init_shmem(struct bxe_softc *sc) 10773 { 10774 int cnt = 0; 10775 uint32_t val = 0; 10776 10777 do { 10778 sc->devinfo.shmem_base = 10779 sc->link_params.shmem_base = 10780 REG_RD(sc, MISC_REG_SHARED_MEM_ADDR); 10781 10782 if (sc->devinfo.shmem_base) { 10783 val = SHMEM_RD(sc, validity_map[SC_PORT(sc)]); 10784 if (val & SHR_MEM_VALIDITY_MB) 10785 return (0); 10786 } 10787 10788 bxe_mcp_wait_one(sc); 10789 10790 } while (cnt++ < (MCP_TIMEOUT / MCP_ONE_TIMEOUT)); 10791 10792 BLOGE(sc, "BAD MCP validity signature\n"); 10793 10794 return (-1); 10795 } 10796 10797 static int 10798 bxe_reset_mcp_comp(struct bxe_softc *sc, 10799 uint32_t magic_val) 10800 { 10801 int rc = bxe_init_shmem(sc); 10802 10803 /* Restore the `magic' bit value */ 10804 if (!CHIP_IS_E1(sc)) { 10805 bxe_clp_reset_done(sc, magic_val); 10806 } 10807 10808 return (rc); 10809 } 10810 10811 static void 10812 bxe_pxp_prep(struct bxe_softc *sc) 10813 { 10814 if (!CHIP_IS_E1(sc)) { 10815 REG_WR(sc, PXP2_REG_RD_START_INIT, 0); 10816 REG_WR(sc, PXP2_REG_RQ_RBC_DONE, 0); 10817 wmb(); 10818 } 10819 } 10820 10821 /* 10822 * Reset the whole chip except for: 10823 * - PCIE core 10824 * - PCI Glue, PSWHST, PXP/PXP2 RF (all controlled by one reset bit) 10825 * - IGU 10826 * - MISC (including AEU) 10827 * - GRC 10828 * - RBCN, RBCP 10829 */ 10830 static void 10831 bxe_process_kill_chip_reset(struct bxe_softc *sc, 10832 uint8_t global) 10833 { 10834 uint32_t not_reset_mask1, reset_mask1, not_reset_mask2, reset_mask2; 10835 uint32_t global_bits2, stay_reset2; 10836 10837 /* 10838 * Bits that have to be set in reset_mask2 if we want to reset 'global' 10839 * (per chip) blocks. 10840 */ 10841 global_bits2 = 10842 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CPU | 10843 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CORE; 10844 10845 /* 10846 * Don't reset the following blocks. 10847 * Important: per port blocks (such as EMAC, BMAC, UMAC) can't be 10848 * reset, as in 4 port device they might still be owned 10849 * by the MCP (there is only one leader per path). 10850 */ 10851 not_reset_mask1 = 10852 MISC_REGISTERS_RESET_REG_1_RST_HC | 10853 MISC_REGISTERS_RESET_REG_1_RST_PXPV | 10854 MISC_REGISTERS_RESET_REG_1_RST_PXP; 10855 10856 not_reset_mask2 = 10857 MISC_REGISTERS_RESET_REG_2_RST_PCI_MDIO | 10858 MISC_REGISTERS_RESET_REG_2_RST_EMAC0_HARD_CORE | 10859 MISC_REGISTERS_RESET_REG_2_RST_EMAC1_HARD_CORE | 10860 MISC_REGISTERS_RESET_REG_2_RST_MISC_CORE | 10861 MISC_REGISTERS_RESET_REG_2_RST_RBCN | 10862 MISC_REGISTERS_RESET_REG_2_RST_GRC | 10863 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_REG_HARD_CORE | 10864 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_HARD_CORE_RST_B | 10865 MISC_REGISTERS_RESET_REG_2_RST_ATC | 10866 MISC_REGISTERS_RESET_REG_2_PGLC | 10867 MISC_REGISTERS_RESET_REG_2_RST_BMAC0 | 10868 MISC_REGISTERS_RESET_REG_2_RST_BMAC1 | 10869 MISC_REGISTERS_RESET_REG_2_RST_EMAC0 | 10870 MISC_REGISTERS_RESET_REG_2_RST_EMAC1 | 10871 MISC_REGISTERS_RESET_REG_2_UMAC0 | 10872 MISC_REGISTERS_RESET_REG_2_UMAC1; 10873 10874 /* 10875 * Keep the following blocks in reset: 10876 * - all xxMACs are handled by the elink code. 10877 */ 10878 stay_reset2 = 10879 MISC_REGISTERS_RESET_REG_2_XMAC | 10880 MISC_REGISTERS_RESET_REG_2_XMAC_SOFT; 10881 10882 /* Full reset masks according to the chip */ 10883 reset_mask1 = 0xffffffff; 10884 10885 if (CHIP_IS_E1(sc)) 10886 reset_mask2 = 0xffff; 10887 else if (CHIP_IS_E1H(sc)) 10888 reset_mask2 = 0x1ffff; 10889 else if (CHIP_IS_E2(sc)) 10890 reset_mask2 = 0xfffff; 10891 else /* CHIP_IS_E3 */ 10892 reset_mask2 = 0x3ffffff; 10893 10894 /* Don't reset global blocks unless we need to */ 10895 if (!global) 10896 reset_mask2 &= ~global_bits2; 10897 10898 /* 10899 * In case of attention in the QM, we need to reset PXP 10900 * (MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR) before QM 10901 * because otherwise QM reset would release 'close the gates' shortly 10902 * before resetting the PXP, then the PSWRQ would send a write 10903 * request to PGLUE. Then when PXP is reset, PGLUE would try to 10904 * read the payload data from PSWWR, but PSWWR would not 10905 * respond. The write queue in PGLUE would stuck, dmae commands 10906 * would not return. Therefore it's important to reset the second 10907 * reset register (containing the 10908 * MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR bit) before the 10909 * first one (containing the MISC_REGISTERS_RESET_REG_1_RST_QM 10910 * bit). 10911 */ 10912 REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR, 10913 reset_mask2 & (~not_reset_mask2)); 10914 10915 REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 10916 reset_mask1 & (~not_reset_mask1)); 10917 10918 mb(); 10919 wmb(); 10920 10921 REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET, 10922 reset_mask2 & (~stay_reset2)); 10923 10924 mb(); 10925 wmb(); 10926 10927 REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, reset_mask1); 10928 wmb(); 10929 } 10930 10931 static int 10932 bxe_process_kill(struct bxe_softc *sc, 10933 uint8_t global) 10934 { 10935 int cnt = 1000; 10936 uint32_t val = 0; 10937 uint32_t sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1, pgl_exp_rom2; 10938 uint32_t tags_63_32 = 0; 10939 10940 /* Empty the Tetris buffer, wait for 1s */ 10941 do { 10942 sr_cnt = REG_RD(sc, PXP2_REG_RD_SR_CNT); 10943 blk_cnt = REG_RD(sc, PXP2_REG_RD_BLK_CNT); 10944 port_is_idle_0 = REG_RD(sc, PXP2_REG_RD_PORT_IS_IDLE_0); 10945 port_is_idle_1 = REG_RD(sc, PXP2_REG_RD_PORT_IS_IDLE_1); 10946 pgl_exp_rom2 = REG_RD(sc, PXP2_REG_PGL_EXP_ROM2); 10947 if (CHIP_IS_E3(sc)) { 10948 tags_63_32 = REG_RD(sc, PGLUE_B_REG_TAGS_63_32); 10949 } 10950 10951 if ((sr_cnt == 0x7e) && (blk_cnt == 0xa0) && 10952 ((port_is_idle_0 & 0x1) == 0x1) && 10953 ((port_is_idle_1 & 0x1) == 0x1) && 10954 (pgl_exp_rom2 == 0xffffffff) && 10955 (!CHIP_IS_E3(sc) || (tags_63_32 == 0xffffffff))) 10956 break; 10957 DELAY(1000); 10958 } while (cnt-- > 0); 10959 10960 if (cnt <= 0) { 10961 BLOGE(sc, "ERROR: Tetris buffer didn't get empty or there " 10962 "are still outstanding read requests after 1s! " 10963 "sr_cnt=0x%08x, blk_cnt=0x%08x, port_is_idle_0=0x%08x, " 10964 "port_is_idle_1=0x%08x, pgl_exp_rom2=0x%08x\n", 10965 sr_cnt, blk_cnt, port_is_idle_0, 10966 port_is_idle_1, pgl_exp_rom2); 10967 return (-1); 10968 } 10969 10970 mb(); 10971 10972 /* Close gates #2, #3 and #4 */ 10973 bxe_set_234_gates(sc, TRUE); 10974 10975 /* Poll for IGU VQs for 57712 and newer chips */ 10976 if (!CHIP_IS_E1x(sc) && bxe_er_poll_igu_vq(sc)) { 10977 return (-1); 10978 } 10979 10980 /* XXX indicate that "process kill" is in progress to MCP */ 10981 10982 /* clear "unprepared" bit */ 10983 REG_WR(sc, MISC_REG_UNPREPARED, 0); 10984 mb(); 10985 10986 /* Make sure all is written to the chip before the reset */ 10987 wmb(); 10988 10989 /* 10990 * Wait for 1ms to empty GLUE and PCI-E core queues, 10991 * PSWHST, GRC and PSWRD Tetris buffer. 10992 */ 10993 DELAY(1000); 10994 10995 /* Prepare to chip reset: */ 10996 /* MCP */ 10997 if (global) { 10998 bxe_reset_mcp_prep(sc, &val); 10999 } 11000 11001 /* PXP */ 11002 bxe_pxp_prep(sc); 11003 mb(); 11004 11005 /* reset the chip */ 11006 bxe_process_kill_chip_reset(sc, global); 11007 mb(); 11008 11009 /* clear errors in PGB */ 11010 if (!CHIP_IS_E1(sc)) 11011 REG_WR(sc, PGLUE_B_REG_LATCHED_ERRORS_CLR, 0x7f); 11012 11013 /* Recover after reset: */ 11014 /* MCP */ 11015 if (global && bxe_reset_mcp_comp(sc, val)) { 11016 return (-1); 11017 } 11018 11019 /* XXX add resetting the NO_MCP mode DB here */ 11020 11021 /* Open the gates #2, #3 and #4 */ 11022 bxe_set_234_gates(sc, FALSE); 11023 11024 /* XXX 11025 * IGU/AEU preparation bring back the AEU/IGU to a reset state 11026 * re-enable attentions 11027 */ 11028 11029 return (0); 11030 } 11031 11032 static int 11033 bxe_leader_reset(struct bxe_softc *sc) 11034 { 11035 int rc = 0; 11036 uint8_t global = bxe_reset_is_global(sc); 11037 uint32_t load_code; 11038 11039 /* 11040 * If not going to reset MCP, load "fake" driver to reset HW while 11041 * driver is owner of the HW. 11042 */ 11043 if (!global && !BXE_NOMCP(sc)) { 11044 load_code = bxe_fw_command(sc, DRV_MSG_CODE_LOAD_REQ, 11045 DRV_MSG_CODE_LOAD_REQ_WITH_LFA); 11046 if (!load_code) { 11047 BLOGE(sc, "MCP response failure, aborting\n"); 11048 rc = -1; 11049 goto exit_leader_reset; 11050 } 11051 11052 if ((load_code != FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) && 11053 (load_code != FW_MSG_CODE_DRV_LOAD_COMMON)) { 11054 BLOGE(sc, "MCP unexpected response, aborting\n"); 11055 rc = -1; 11056 goto exit_leader_reset2; 11057 } 11058 11059 load_code = bxe_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0); 11060 if (!load_code) { 11061 BLOGE(sc, "MCP response failure, aborting\n"); 11062 rc = -1; 11063 goto exit_leader_reset2; 11064 } 11065 } 11066 11067 /* try to recover after the failure */ 11068 if (bxe_process_kill(sc, global)) { 11069 BLOGE(sc, "Something bad occurred on engine %d!\n", SC_PATH(sc)); 11070 rc = -1; 11071 goto exit_leader_reset2; 11072 } 11073 11074 /* 11075 * Clear the RESET_IN_PROGRESS and RESET_GLOBAL bits and update the driver 11076 * state. 11077 */ 11078 bxe_set_reset_done(sc); 11079 if (global) { 11080 bxe_clear_reset_global(sc); 11081 } 11082 11083 exit_leader_reset2: 11084 11085 /* unload "fake driver" if it was loaded */ 11086 if (!global && !BXE_NOMCP(sc)) { 11087 bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP, 0); 11088 bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_DONE, 0); 11089 } 11090 11091 exit_leader_reset: 11092 11093 sc->is_leader = 0; 11094 bxe_release_leader_lock(sc); 11095 11096 mb(); 11097 return (rc); 11098 } 11099 11100 /* 11101 * prepare INIT transition, parameters configured: 11102 * - HC configuration 11103 * - Queue's CDU context 11104 */ 11105 static void 11106 bxe_pf_q_prep_init(struct bxe_softc *sc, 11107 struct bxe_fastpath *fp, 11108 struct ecore_queue_init_params *init_params) 11109 { 11110 uint8_t cos; 11111 int cxt_index, cxt_offset; 11112 11113 bxe_set_bit(ECORE_Q_FLG_HC, &init_params->rx.flags); 11114 bxe_set_bit(ECORE_Q_FLG_HC, &init_params->tx.flags); 11115 11116 bxe_set_bit(ECORE_Q_FLG_HC_EN, &init_params->rx.flags); 11117 bxe_set_bit(ECORE_Q_FLG_HC_EN, &init_params->tx.flags); 11118 11119 /* HC rate */ 11120 init_params->rx.hc_rate = 11121 sc->hc_rx_ticks ? (1000000 / sc->hc_rx_ticks) : 0; 11122 init_params->tx.hc_rate = 11123 sc->hc_tx_ticks ? (1000000 / sc->hc_tx_ticks) : 0; 11124 11125 /* FW SB ID */ 11126 init_params->rx.fw_sb_id = init_params->tx.fw_sb_id = fp->fw_sb_id; 11127 11128 /* CQ index among the SB indices */ 11129 init_params->rx.sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS; 11130 init_params->tx.sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS; 11131 11132 /* set maximum number of COSs supported by this queue */ 11133 init_params->max_cos = sc->max_cos; 11134 11135 BLOGD(sc, DBG_LOAD, "fp %d setting queue params max cos to %d\n", 11136 fp->index, init_params->max_cos); 11137 11138 /* set the context pointers queue object */ 11139 for (cos = FIRST_TX_COS_INDEX; cos < init_params->max_cos; cos++) { 11140 /* XXX change index/cid here if ever support multiple tx CoS */ 11141 /* fp->txdata[cos]->cid */ 11142 cxt_index = fp->index / ILT_PAGE_CIDS; 11143 cxt_offset = fp->index - (cxt_index * ILT_PAGE_CIDS); 11144 init_params->cxts[cos] = &sc->context[cxt_index].vcxt[cxt_offset].eth; 11145 } 11146 } 11147 11148 /* set flags that are common for the Tx-only and not normal connections */ 11149 static unsigned long 11150 bxe_get_common_flags(struct bxe_softc *sc, 11151 struct bxe_fastpath *fp, 11152 uint8_t zero_stats) 11153 { 11154 unsigned long flags = 0; 11155 11156 /* PF driver will always initialize the Queue to an ACTIVE state */ 11157 bxe_set_bit(ECORE_Q_FLG_ACTIVE, &flags); 11158 11159 /* 11160 * tx only connections collect statistics (on the same index as the 11161 * parent connection). The statistics are zeroed when the parent 11162 * connection is initialized. 11163 */ 11164 11165 bxe_set_bit(ECORE_Q_FLG_STATS, &flags); 11166 if (zero_stats) { 11167 bxe_set_bit(ECORE_Q_FLG_ZERO_STATS, &flags); 11168 } 11169 11170 /* 11171 * tx only connections can support tx-switching, though their 11172 * CoS-ness doesn't survive the loopback 11173 */ 11174 if (sc->flags & BXE_TX_SWITCHING) { 11175 bxe_set_bit(ECORE_Q_FLG_TX_SWITCH, &flags); 11176 } 11177 11178 bxe_set_bit(ECORE_Q_FLG_PCSUM_ON_PKT, &flags); 11179 11180 return (flags); 11181 } 11182 11183 static unsigned long 11184 bxe_get_q_flags(struct bxe_softc *sc, 11185 struct bxe_fastpath *fp, 11186 uint8_t leading) 11187 { 11188 unsigned long flags = 0; 11189 11190 if (IS_MF_SD(sc)) { 11191 bxe_set_bit(ECORE_Q_FLG_OV, &flags); 11192 } 11193 11194 if (if_getcapenable(sc->ifp) & IFCAP_LRO) { 11195 bxe_set_bit(ECORE_Q_FLG_TPA, &flags); 11196 bxe_set_bit(ECORE_Q_FLG_TPA_IPV6, &flags); 11197 } 11198 11199 if (leading) { 11200 bxe_set_bit(ECORE_Q_FLG_LEADING_RSS, &flags); 11201 bxe_set_bit(ECORE_Q_FLG_MCAST, &flags); 11202 } 11203 11204 bxe_set_bit(ECORE_Q_FLG_VLAN, &flags); 11205 11206 /* merge with common flags */ 11207 return (flags | bxe_get_common_flags(sc, fp, TRUE)); 11208 } 11209 11210 static void 11211 bxe_pf_q_prep_general(struct bxe_softc *sc, 11212 struct bxe_fastpath *fp, 11213 struct ecore_general_setup_params *gen_init, 11214 uint8_t cos) 11215 { 11216 gen_init->stat_id = bxe_stats_id(fp); 11217 gen_init->spcl_id = fp->cl_id; 11218 gen_init->mtu = sc->mtu; 11219 gen_init->cos = cos; 11220 } 11221 11222 static void 11223 bxe_pf_rx_q_prep(struct bxe_softc *sc, 11224 struct bxe_fastpath *fp, 11225 struct rxq_pause_params *pause, 11226 struct ecore_rxq_setup_params *rxq_init) 11227 { 11228 uint8_t max_sge = 0; 11229 uint16_t sge_sz = 0; 11230 uint16_t tpa_agg_size = 0; 11231 11232 pause->sge_th_lo = SGE_TH_LO(sc); 11233 pause->sge_th_hi = SGE_TH_HI(sc); 11234 11235 /* validate SGE ring has enough to cross high threshold */ 11236 if (sc->dropless_fc && 11237 (pause->sge_th_hi + FW_PREFETCH_CNT) > 11238 (RX_SGE_USABLE_PER_PAGE * RX_SGE_NUM_PAGES)) { 11239 BLOGW(sc, "sge ring threshold limit\n"); 11240 } 11241 11242 /* minimum max_aggregation_size is 2*MTU (two full buffers) */ 11243 tpa_agg_size = (2 * sc->mtu); 11244 if (tpa_agg_size < sc->max_aggregation_size) { 11245 tpa_agg_size = sc->max_aggregation_size; 11246 } 11247 11248 max_sge = SGE_PAGE_ALIGN(sc->mtu) >> SGE_PAGE_SHIFT; 11249 max_sge = ((max_sge + PAGES_PER_SGE - 1) & 11250 (~(PAGES_PER_SGE - 1))) >> PAGES_PER_SGE_SHIFT; 11251 sge_sz = (uint16_t)min(SGE_PAGES, 0xffff); 11252 11253 /* pause - not for e1 */ 11254 if (!CHIP_IS_E1(sc)) { 11255 pause->bd_th_lo = BD_TH_LO(sc); 11256 pause->bd_th_hi = BD_TH_HI(sc); 11257 11258 pause->rcq_th_lo = RCQ_TH_LO(sc); 11259 pause->rcq_th_hi = RCQ_TH_HI(sc); 11260 11261 /* validate rings have enough entries to cross high thresholds */ 11262 if (sc->dropless_fc && 11263 pause->bd_th_hi + FW_PREFETCH_CNT > 11264 sc->rx_ring_size) { 11265 BLOGW(sc, "rx bd ring threshold limit\n"); 11266 } 11267 11268 if (sc->dropless_fc && 11269 pause->rcq_th_hi + FW_PREFETCH_CNT > 11270 RCQ_NUM_PAGES * RCQ_USABLE_PER_PAGE) { 11271 BLOGW(sc, "rcq ring threshold limit\n"); 11272 } 11273 11274 pause->pri_map = 1; 11275 } 11276 11277 /* rxq setup */ 11278 rxq_init->dscr_map = fp->rx_dma.paddr; 11279 rxq_init->sge_map = fp->rx_sge_dma.paddr; 11280 rxq_init->rcq_map = fp->rcq_dma.paddr; 11281 rxq_init->rcq_np_map = (fp->rcq_dma.paddr + BCM_PAGE_SIZE); 11282 11283 /* 11284 * This should be a maximum number of data bytes that may be 11285 * placed on the BD (not including paddings). 11286 */ 11287 rxq_init->buf_sz = (fp->rx_buf_size - 11288 IP_HEADER_ALIGNMENT_PADDING); 11289 11290 rxq_init->cl_qzone_id = fp->cl_qzone_id; 11291 rxq_init->tpa_agg_sz = tpa_agg_size; 11292 rxq_init->sge_buf_sz = sge_sz; 11293 rxq_init->max_sges_pkt = max_sge; 11294 rxq_init->rss_engine_id = SC_FUNC(sc); 11295 rxq_init->mcast_engine_id = SC_FUNC(sc); 11296 11297 /* 11298 * Maximum number or simultaneous TPA aggregation for this Queue. 11299 * For PF Clients it should be the maximum available number. 11300 * VF driver(s) may want to define it to a smaller value. 11301 */ 11302 rxq_init->max_tpa_queues = MAX_AGG_QS(sc); 11303 11304 rxq_init->cache_line_log = BXE_RX_ALIGN_SHIFT; 11305 rxq_init->fw_sb_id = fp->fw_sb_id; 11306 11307 rxq_init->sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS; 11308 11309 /* 11310 * configure silent vlan removal 11311 * if multi function mode is afex, then mask default vlan 11312 */ 11313 if (IS_MF_AFEX(sc)) { 11314 rxq_init->silent_removal_value = 11315 sc->devinfo.mf_info.afex_def_vlan_tag; 11316 rxq_init->silent_removal_mask = EVL_VLID_MASK; 11317 } 11318 } 11319 11320 static void 11321 bxe_pf_tx_q_prep(struct bxe_softc *sc, 11322 struct bxe_fastpath *fp, 11323 struct ecore_txq_setup_params *txq_init, 11324 uint8_t cos) 11325 { 11326 /* 11327 * XXX If multiple CoS is ever supported then each fastpath structure 11328 * will need to maintain tx producer/consumer/dma/etc values *per* CoS. 11329 * fp->txdata[cos]->tx_dma.paddr; 11330 */ 11331 txq_init->dscr_map = fp->tx_dma.paddr; 11332 txq_init->sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS + cos; 11333 txq_init->traffic_type = LLFC_TRAFFIC_TYPE_NW; 11334 txq_init->fw_sb_id = fp->fw_sb_id; 11335 11336 /* 11337 * set the TSS leading client id for TX classfication to the 11338 * leading RSS client id 11339 */ 11340 txq_init->tss_leading_cl_id = BXE_FP(sc, 0, cl_id); 11341 } 11342 11343 /* 11344 * This function performs 2 steps in a queue state machine: 11345 * 1) RESET->INIT 11346 * 2) INIT->SETUP 11347 */ 11348 static int 11349 bxe_setup_queue(struct bxe_softc *sc, 11350 struct bxe_fastpath *fp, 11351 uint8_t leading) 11352 { 11353 struct ecore_queue_state_params q_params = { NULL }; 11354 struct ecore_queue_setup_params *setup_params = 11355 &q_params.params.setup; 11356 int rc; 11357 11358 BLOGD(sc, DBG_LOAD, "setting up queue %d\n", fp->index); 11359 11360 bxe_ack_sb(sc, fp->igu_sb_id, USTORM_ID, 0, IGU_INT_ENABLE, 0); 11361 11362 q_params.q_obj = &BXE_SP_OBJ(sc, fp).q_obj; 11363 11364 /* we want to wait for completion in this context */ 11365 bxe_set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags); 11366 11367 /* prepare the INIT parameters */ 11368 bxe_pf_q_prep_init(sc, fp, &q_params.params.init); 11369 11370 /* Set the command */ 11371 q_params.cmd = ECORE_Q_CMD_INIT; 11372 11373 /* Change the state to INIT */ 11374 rc = ecore_queue_state_change(sc, &q_params); 11375 if (rc) { 11376 BLOGE(sc, "Queue(%d) INIT failed rc = %d\n", fp->index, rc); 11377 return (rc); 11378 } 11379 11380 BLOGD(sc, DBG_LOAD, "init complete\n"); 11381 11382 /* now move the Queue to the SETUP state */ 11383 memset(setup_params, 0, sizeof(*setup_params)); 11384 11385 /* set Queue flags */ 11386 setup_params->flags = bxe_get_q_flags(sc, fp, leading); 11387 11388 /* set general SETUP parameters */ 11389 bxe_pf_q_prep_general(sc, fp, &setup_params->gen_params, 11390 FIRST_TX_COS_INDEX); 11391 11392 bxe_pf_rx_q_prep(sc, fp, 11393 &setup_params->pause_params, 11394 &setup_params->rxq_params); 11395 11396 bxe_pf_tx_q_prep(sc, fp, 11397 &setup_params->txq_params, 11398 FIRST_TX_COS_INDEX); 11399 11400 /* Set the command */ 11401 q_params.cmd = ECORE_Q_CMD_SETUP; 11402 11403 /* change the state to SETUP */ 11404 rc = ecore_queue_state_change(sc, &q_params); 11405 if (rc) { 11406 BLOGE(sc, "Queue(%d) SETUP failed (rc = %d)\n", fp->index, rc); 11407 return (rc); 11408 } 11409 11410 return (rc); 11411 } 11412 11413 static int 11414 bxe_setup_leading(struct bxe_softc *sc) 11415 { 11416 return (bxe_setup_queue(sc, &sc->fp[0], TRUE)); 11417 } 11418 11419 static int 11420 bxe_config_rss_pf(struct bxe_softc *sc, 11421 struct ecore_rss_config_obj *rss_obj, 11422 uint8_t config_hash) 11423 { 11424 struct ecore_config_rss_params params = { NULL }; 11425 int i; 11426 11427 /* 11428 * Although RSS is meaningless when there is a single HW queue we 11429 * still need it enabled in order to have HW Rx hash generated. 11430 */ 11431 11432 params.rss_obj = rss_obj; 11433 11434 bxe_set_bit(RAMROD_COMP_WAIT, ¶ms.ramrod_flags); 11435 11436 bxe_set_bit(ECORE_RSS_MODE_REGULAR, ¶ms.rss_flags); 11437 11438 /* RSS configuration */ 11439 bxe_set_bit(ECORE_RSS_IPV4, ¶ms.rss_flags); 11440 bxe_set_bit(ECORE_RSS_IPV4_TCP, ¶ms.rss_flags); 11441 bxe_set_bit(ECORE_RSS_IPV6, ¶ms.rss_flags); 11442 bxe_set_bit(ECORE_RSS_IPV6_TCP, ¶ms.rss_flags); 11443 if (rss_obj->udp_rss_v4) { 11444 bxe_set_bit(ECORE_RSS_IPV4_UDP, ¶ms.rss_flags); 11445 } 11446 if (rss_obj->udp_rss_v6) { 11447 bxe_set_bit(ECORE_RSS_IPV6_UDP, ¶ms.rss_flags); 11448 } 11449 11450 /* Hash bits */ 11451 params.rss_result_mask = MULTI_MASK; 11452 11453 memcpy(params.ind_table, rss_obj->ind_table, sizeof(params.ind_table)); 11454 11455 if (config_hash) { 11456 /* RSS keys */ 11457 for (i = 0; i < sizeof(params.rss_key) / 4; i++) { 11458 params.rss_key[i] = arc4random(); 11459 } 11460 11461 bxe_set_bit(ECORE_RSS_SET_SRCH, ¶ms.rss_flags); 11462 } 11463 11464 return (ecore_config_rss(sc, ¶ms)); 11465 } 11466 11467 static int 11468 bxe_config_rss_eth(struct bxe_softc *sc, 11469 uint8_t config_hash) 11470 { 11471 return (bxe_config_rss_pf(sc, &sc->rss_conf_obj, config_hash)); 11472 } 11473 11474 static int 11475 bxe_init_rss_pf(struct bxe_softc *sc) 11476 { 11477 uint8_t num_eth_queues = BXE_NUM_ETH_QUEUES(sc); 11478 int i; 11479 11480 /* 11481 * Prepare the initial contents of the indirection table if 11482 * RSS is enabled 11483 */ 11484 for (i = 0; i < sizeof(sc->rss_conf_obj.ind_table); i++) { 11485 sc->rss_conf_obj.ind_table[i] = 11486 (sc->fp->cl_id + (i % num_eth_queues)); 11487 } 11488 11489 if (sc->udp_rss) { 11490 sc->rss_conf_obj.udp_rss_v4 = sc->rss_conf_obj.udp_rss_v6 = 1; 11491 } 11492 11493 /* 11494 * For 57710 and 57711 SEARCHER configuration (rss_keys) is 11495 * per-port, so if explicit configuration is needed, do it only 11496 * for a PMF. 11497 * 11498 * For 57712 and newer it's a per-function configuration. 11499 */ 11500 return (bxe_config_rss_eth(sc, sc->port.pmf || !CHIP_IS_E1x(sc))); 11501 } 11502 11503 static int 11504 bxe_set_mac_one(struct bxe_softc *sc, 11505 uint8_t *mac, 11506 struct ecore_vlan_mac_obj *obj, 11507 uint8_t set, 11508 int mac_type, 11509 unsigned long *ramrod_flags) 11510 { 11511 struct ecore_vlan_mac_ramrod_params ramrod_param; 11512 int rc; 11513 11514 memset(&ramrod_param, 0, sizeof(ramrod_param)); 11515 11516 /* fill in general parameters */ 11517 ramrod_param.vlan_mac_obj = obj; 11518 ramrod_param.ramrod_flags = *ramrod_flags; 11519 11520 /* fill a user request section if needed */ 11521 if (!bxe_test_bit(RAMROD_CONT, ramrod_flags)) { 11522 memcpy(ramrod_param.user_req.u.mac.mac, mac, ETH_ALEN); 11523 11524 bxe_set_bit(mac_type, &ramrod_param.user_req.vlan_mac_flags); 11525 11526 /* Set the command: ADD or DEL */ 11527 ramrod_param.user_req.cmd = (set) ? ECORE_VLAN_MAC_ADD : 11528 ECORE_VLAN_MAC_DEL; 11529 } 11530 11531 rc = ecore_config_vlan_mac(sc, &ramrod_param); 11532 11533 if (rc == ECORE_EXISTS) { 11534 BLOGD(sc, DBG_SP, "Failed to schedule ADD operations (EEXIST)\n"); 11535 /* do not treat adding same MAC as error */ 11536 rc = 0; 11537 } else if (rc < 0) { 11538 BLOGE(sc, "%s MAC failed (%d)\n", (set ? "Set" : "Delete"), rc); 11539 } 11540 11541 return (rc); 11542 } 11543 11544 static int 11545 bxe_set_eth_mac(struct bxe_softc *sc, 11546 uint8_t set) 11547 { 11548 unsigned long ramrod_flags = 0; 11549 11550 BLOGD(sc, DBG_LOAD, "Adding Ethernet MAC\n"); 11551 11552 bxe_set_bit(RAMROD_COMP_WAIT, &ramrod_flags); 11553 11554 /* Eth MAC is set on RSS leading client (fp[0]) */ 11555 return (bxe_set_mac_one(sc, sc->link_params.mac_addr, 11556 &sc->sp_objs->mac_obj, 11557 set, ECORE_ETH_MAC, &ramrod_flags)); 11558 } 11559 11560 static int 11561 bxe_get_cur_phy_idx(struct bxe_softc *sc) 11562 { 11563 uint32_t sel_phy_idx = 0; 11564 11565 if (sc->link_params.num_phys <= 1) { 11566 return (ELINK_INT_PHY); 11567 } 11568 11569 if (sc->link_vars.link_up) { 11570 sel_phy_idx = ELINK_EXT_PHY1; 11571 /* In case link is SERDES, check if the ELINK_EXT_PHY2 is the one */ 11572 if ((sc->link_vars.link_status & LINK_STATUS_SERDES_LINK) && 11573 (sc->link_params.phy[ELINK_EXT_PHY2].supported & 11574 ELINK_SUPPORTED_FIBRE)) 11575 sel_phy_idx = ELINK_EXT_PHY2; 11576 } else { 11577 switch (elink_phy_selection(&sc->link_params)) { 11578 case PORT_HW_CFG_PHY_SELECTION_HARDWARE_DEFAULT: 11579 case PORT_HW_CFG_PHY_SELECTION_FIRST_PHY: 11580 case PORT_HW_CFG_PHY_SELECTION_FIRST_PHY_PRIORITY: 11581 sel_phy_idx = ELINK_EXT_PHY1; 11582 break; 11583 case PORT_HW_CFG_PHY_SELECTION_SECOND_PHY: 11584 case PORT_HW_CFG_PHY_SELECTION_SECOND_PHY_PRIORITY: 11585 sel_phy_idx = ELINK_EXT_PHY2; 11586 break; 11587 } 11588 } 11589 11590 return (sel_phy_idx); 11591 } 11592 11593 static int 11594 bxe_get_link_cfg_idx(struct bxe_softc *sc) 11595 { 11596 uint32_t sel_phy_idx = bxe_get_cur_phy_idx(sc); 11597 11598 /* 11599 * The selected activated PHY is always after swapping (in case PHY 11600 * swapping is enabled). So when swapping is enabled, we need to reverse 11601 * the configuration 11602 */ 11603 11604 if (sc->link_params.multi_phy_config & PORT_HW_CFG_PHY_SWAPPED_ENABLED) { 11605 if (sel_phy_idx == ELINK_EXT_PHY1) 11606 sel_phy_idx = ELINK_EXT_PHY2; 11607 else if (sel_phy_idx == ELINK_EXT_PHY2) 11608 sel_phy_idx = ELINK_EXT_PHY1; 11609 } 11610 11611 return (ELINK_LINK_CONFIG_IDX(sel_phy_idx)); 11612 } 11613 11614 static void 11615 bxe_set_requested_fc(struct bxe_softc *sc) 11616 { 11617 /* 11618 * Initialize link parameters structure variables 11619 * It is recommended to turn off RX FC for jumbo frames 11620 * for better performance 11621 */ 11622 if (CHIP_IS_E1x(sc) && (sc->mtu > 5000)) { 11623 sc->link_params.req_fc_auto_adv = ELINK_FLOW_CTRL_TX; 11624 } else { 11625 sc->link_params.req_fc_auto_adv = ELINK_FLOW_CTRL_BOTH; 11626 } 11627 } 11628 11629 static void 11630 bxe_calc_fc_adv(struct bxe_softc *sc) 11631 { 11632 uint8_t cfg_idx = bxe_get_link_cfg_idx(sc); 11633 switch (sc->link_vars.ieee_fc & 11634 MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_MASK) { 11635 case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_NONE: 11636 default: 11637 sc->port.advertising[cfg_idx] &= ~(ADVERTISED_Asym_Pause | 11638 ADVERTISED_Pause); 11639 break; 11640 11641 case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_BOTH: 11642 sc->port.advertising[cfg_idx] |= (ADVERTISED_Asym_Pause | 11643 ADVERTISED_Pause); 11644 break; 11645 11646 case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_ASYMMETRIC: 11647 sc->port.advertising[cfg_idx] |= ADVERTISED_Asym_Pause; 11648 break; 11649 } 11650 } 11651 11652 static uint16_t 11653 bxe_get_mf_speed(struct bxe_softc *sc) 11654 { 11655 uint16_t line_speed = sc->link_vars.line_speed; 11656 if (IS_MF(sc)) { 11657 uint16_t maxCfg = 11658 bxe_extract_max_cfg(sc, sc->devinfo.mf_info.mf_config[SC_VN(sc)]); 11659 11660 /* calculate the current MAX line speed limit for the MF devices */ 11661 if (IS_MF_SI(sc)) { 11662 line_speed = (line_speed * maxCfg) / 100; 11663 } else { /* SD mode */ 11664 uint16_t vn_max_rate = maxCfg * 100; 11665 11666 if (vn_max_rate < line_speed) { 11667 line_speed = vn_max_rate; 11668 } 11669 } 11670 } 11671 11672 return (line_speed); 11673 } 11674 11675 static void 11676 bxe_fill_report_data(struct bxe_softc *sc, 11677 struct bxe_link_report_data *data) 11678 { 11679 uint16_t line_speed = bxe_get_mf_speed(sc); 11680 11681 memset(data, 0, sizeof(*data)); 11682 11683 /* fill the report data with the effective line speed */ 11684 data->line_speed = line_speed; 11685 11686 /* Link is down */ 11687 if (!sc->link_vars.link_up || (sc->flags & BXE_MF_FUNC_DIS)) { 11688 bxe_set_bit(BXE_LINK_REPORT_LINK_DOWN, &data->link_report_flags); 11689 } 11690 11691 /* Full DUPLEX */ 11692 if (sc->link_vars.duplex == DUPLEX_FULL) { 11693 bxe_set_bit(BXE_LINK_REPORT_FULL_DUPLEX, &data->link_report_flags); 11694 } 11695 11696 /* Rx Flow Control is ON */ 11697 if (sc->link_vars.flow_ctrl & ELINK_FLOW_CTRL_RX) { 11698 bxe_set_bit(BXE_LINK_REPORT_RX_FC_ON, &data->link_report_flags); 11699 } 11700 11701 /* Tx Flow Control is ON */ 11702 if (sc->link_vars.flow_ctrl & ELINK_FLOW_CTRL_TX) { 11703 bxe_set_bit(BXE_LINK_REPORT_TX_FC_ON, &data->link_report_flags); 11704 } 11705 } 11706 11707 /* report link status to OS, should be called under phy_lock */ 11708 static void 11709 bxe_link_report_locked(struct bxe_softc *sc) 11710 { 11711 struct bxe_link_report_data cur_data; 11712 11713 /* reread mf_cfg */ 11714 if (IS_PF(sc) && !CHIP_IS_E1(sc)) { 11715 bxe_read_mf_cfg(sc); 11716 } 11717 11718 /* Read the current link report info */ 11719 bxe_fill_report_data(sc, &cur_data); 11720 11721 /* Don't report link down or exactly the same link status twice */ 11722 if (!memcmp(&cur_data, &sc->last_reported_link, sizeof(cur_data)) || 11723 (bxe_test_bit(BXE_LINK_REPORT_LINK_DOWN, 11724 &sc->last_reported_link.link_report_flags) && 11725 bxe_test_bit(BXE_LINK_REPORT_LINK_DOWN, 11726 &cur_data.link_report_flags))) { 11727 return; 11728 } 11729 11730 sc->link_cnt++; 11731 11732 /* report new link params and remember the state for the next time */ 11733 memcpy(&sc->last_reported_link, &cur_data, sizeof(cur_data)); 11734 11735 if (bxe_test_bit(BXE_LINK_REPORT_LINK_DOWN, 11736 &cur_data.link_report_flags)) { 11737 if_link_state_change(sc->ifp, LINK_STATE_DOWN); 11738 BLOGI(sc, "NIC Link is Down\n"); 11739 } else { 11740 const char *duplex; 11741 const char *flow; 11742 11743 if (bxe_test_and_clear_bit(BXE_LINK_REPORT_FULL_DUPLEX, 11744 &cur_data.link_report_flags)) { 11745 duplex = "full"; 11746 } else { 11747 duplex = "half"; 11748 } 11749 11750 /* 11751 * Handle the FC at the end so that only these flags would be 11752 * possibly set. This way we may easily check if there is no FC 11753 * enabled. 11754 */ 11755 if (cur_data.link_report_flags) { 11756 if (bxe_test_bit(BXE_LINK_REPORT_RX_FC_ON, 11757 &cur_data.link_report_flags) && 11758 bxe_test_bit(BXE_LINK_REPORT_TX_FC_ON, 11759 &cur_data.link_report_flags)) { 11760 flow = "ON - receive & transmit"; 11761 } else if (bxe_test_bit(BXE_LINK_REPORT_RX_FC_ON, 11762 &cur_data.link_report_flags) && 11763 !bxe_test_bit(BXE_LINK_REPORT_TX_FC_ON, 11764 &cur_data.link_report_flags)) { 11765 flow = "ON - receive"; 11766 } else if (!bxe_test_bit(BXE_LINK_REPORT_RX_FC_ON, 11767 &cur_data.link_report_flags) && 11768 bxe_test_bit(BXE_LINK_REPORT_TX_FC_ON, 11769 &cur_data.link_report_flags)) { 11770 flow = "ON - transmit"; 11771 } else { 11772 flow = "none"; /* possible? */ 11773 } 11774 } else { 11775 flow = "none"; 11776 } 11777 11778 if_link_state_change(sc->ifp, LINK_STATE_UP); 11779 BLOGI(sc, "NIC Link is Up, %d Mbps %s duplex, Flow control: %s\n", 11780 cur_data.line_speed, duplex, flow); 11781 } 11782 } 11783 11784 static void 11785 bxe_link_report(struct bxe_softc *sc) 11786 { 11787 bxe_acquire_phy_lock(sc); 11788 bxe_link_report_locked(sc); 11789 bxe_release_phy_lock(sc); 11790 } 11791 11792 static void 11793 bxe_link_status_update(struct bxe_softc *sc) 11794 { 11795 if (sc->state != BXE_STATE_OPEN) { 11796 return; 11797 } 11798 11799 if (IS_PF(sc) && !CHIP_REV_IS_SLOW(sc)) { 11800 elink_link_status_update(&sc->link_params, &sc->link_vars); 11801 } else { 11802 sc->port.supported[0] |= (ELINK_SUPPORTED_10baseT_Half | 11803 ELINK_SUPPORTED_10baseT_Full | 11804 ELINK_SUPPORTED_100baseT_Half | 11805 ELINK_SUPPORTED_100baseT_Full | 11806 ELINK_SUPPORTED_1000baseT_Full | 11807 ELINK_SUPPORTED_2500baseX_Full | 11808 ELINK_SUPPORTED_10000baseT_Full | 11809 ELINK_SUPPORTED_TP | 11810 ELINK_SUPPORTED_FIBRE | 11811 ELINK_SUPPORTED_Autoneg | 11812 ELINK_SUPPORTED_Pause | 11813 ELINK_SUPPORTED_Asym_Pause); 11814 sc->port.advertising[0] = sc->port.supported[0]; 11815 11816 sc->link_params.sc = sc; 11817 sc->link_params.port = SC_PORT(sc); 11818 sc->link_params.req_duplex[0] = DUPLEX_FULL; 11819 sc->link_params.req_flow_ctrl[0] = ELINK_FLOW_CTRL_NONE; 11820 sc->link_params.req_line_speed[0] = SPEED_10000; 11821 sc->link_params.speed_cap_mask[0] = 0x7f0000; 11822 sc->link_params.switch_cfg = ELINK_SWITCH_CFG_10G; 11823 11824 if (CHIP_REV_IS_FPGA(sc)) { 11825 sc->link_vars.mac_type = ELINK_MAC_TYPE_EMAC; 11826 sc->link_vars.line_speed = ELINK_SPEED_1000; 11827 sc->link_vars.link_status = (LINK_STATUS_LINK_UP | 11828 LINK_STATUS_SPEED_AND_DUPLEX_1000TFD); 11829 } else { 11830 sc->link_vars.mac_type = ELINK_MAC_TYPE_BMAC; 11831 sc->link_vars.line_speed = ELINK_SPEED_10000; 11832 sc->link_vars.link_status = (LINK_STATUS_LINK_UP | 11833 LINK_STATUS_SPEED_AND_DUPLEX_10GTFD); 11834 } 11835 11836 sc->link_vars.link_up = 1; 11837 11838 sc->link_vars.duplex = DUPLEX_FULL; 11839 sc->link_vars.flow_ctrl = ELINK_FLOW_CTRL_NONE; 11840 11841 if (IS_PF(sc)) { 11842 REG_WR(sc, NIG_REG_EGRESS_DRAIN0_MODE + sc->link_params.port*4, 0); 11843 bxe_stats_handle(sc, STATS_EVENT_LINK_UP); 11844 bxe_link_report(sc); 11845 } 11846 } 11847 11848 if (IS_PF(sc)) { 11849 if (sc->link_vars.link_up) { 11850 bxe_stats_handle(sc, STATS_EVENT_LINK_UP); 11851 } else { 11852 bxe_stats_handle(sc, STATS_EVENT_STOP); 11853 } 11854 bxe_link_report(sc); 11855 } else { 11856 bxe_link_report(sc); 11857 bxe_stats_handle(sc, STATS_EVENT_LINK_UP); 11858 } 11859 } 11860 11861 static int 11862 bxe_initial_phy_init(struct bxe_softc *sc, 11863 int load_mode) 11864 { 11865 int rc, cfg_idx = bxe_get_link_cfg_idx(sc); 11866 uint16_t req_line_speed = sc->link_params.req_line_speed[cfg_idx]; 11867 struct elink_params *lp = &sc->link_params; 11868 11869 bxe_set_requested_fc(sc); 11870 11871 if (CHIP_REV_IS_SLOW(sc)) { 11872 uint32_t bond = CHIP_BOND_ID(sc); 11873 uint32_t feat = 0; 11874 11875 if (CHIP_IS_E2(sc) && CHIP_IS_MODE_4_PORT(sc)) { 11876 feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_BMAC; 11877 } else if (bond & 0x4) { 11878 if (CHIP_IS_E3(sc)) { 11879 feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_XMAC; 11880 } else { 11881 feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_BMAC; 11882 } 11883 } else if (bond & 0x8) { 11884 if (CHIP_IS_E3(sc)) { 11885 feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_UMAC; 11886 } else { 11887 feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_EMAC; 11888 } 11889 } 11890 11891 /* disable EMAC for E3 and above */ 11892 if (bond & 0x2) { 11893 feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_EMAC; 11894 } 11895 11896 sc->link_params.feature_config_flags |= feat; 11897 } 11898 11899 bxe_acquire_phy_lock(sc); 11900 11901 if (load_mode == LOAD_DIAG) { 11902 lp->loopback_mode = ELINK_LOOPBACK_XGXS; 11903 /* Prefer doing PHY loopback at 10G speed, if possible */ 11904 if (lp->req_line_speed[cfg_idx] < ELINK_SPEED_10000) { 11905 if (lp->speed_cap_mask[cfg_idx] & 11906 PORT_HW_CFG_SPEED_CAPABILITY_D0_10G) { 11907 lp->req_line_speed[cfg_idx] = ELINK_SPEED_10000; 11908 } else { 11909 lp->req_line_speed[cfg_idx] = ELINK_SPEED_1000; 11910 } 11911 } 11912 } 11913 11914 if (load_mode == LOAD_LOOPBACK_EXT) { 11915 lp->loopback_mode = ELINK_LOOPBACK_EXT; 11916 } 11917 11918 rc = elink_phy_init(&sc->link_params, &sc->link_vars); 11919 11920 bxe_release_phy_lock(sc); 11921 11922 bxe_calc_fc_adv(sc); 11923 11924 if (sc->link_vars.link_up) { 11925 bxe_stats_handle(sc, STATS_EVENT_LINK_UP); 11926 bxe_link_report(sc); 11927 } 11928 11929 if (!CHIP_REV_IS_SLOW(sc)) { 11930 bxe_periodic_start(sc); 11931 } 11932 11933 sc->link_params.req_line_speed[cfg_idx] = req_line_speed; 11934 return (rc); 11935 } 11936 11937 /* must be called under IF_ADDR_LOCK */ 11938 11939 static int 11940 bxe_set_mc_list(struct bxe_softc *sc) 11941 { 11942 struct ecore_mcast_ramrod_params rparam = { NULL }; 11943 int rc = 0; 11944 int mc_count = 0; 11945 int mcnt, i; 11946 struct ecore_mcast_list_elem *mc_mac, *mc_mac_start; 11947 unsigned char *mta; 11948 if_t ifp = sc->ifp; 11949 11950 mc_count = if_multiaddr_count(ifp, -1);/* XXX they don't have a limit */ 11951 if (!mc_count) 11952 return (0); 11953 11954 mta = malloc(sizeof(unsigned char) * ETHER_ADDR_LEN * 11955 mc_count, M_DEVBUF, M_NOWAIT); 11956 11957 if(mta == NULL) { 11958 BLOGE(sc, "Failed to allocate temp mcast list\n"); 11959 return (-1); 11960 } 11961 bzero(mta, (sizeof(unsigned char) * ETHER_ADDR_LEN * mc_count)); 11962 11963 mc_mac = malloc(sizeof(*mc_mac) * mc_count, M_DEVBUF, (M_NOWAIT | M_ZERO)); 11964 mc_mac_start = mc_mac; 11965 11966 if (!mc_mac) { 11967 free(mta, M_DEVBUF); 11968 BLOGE(sc, "Failed to allocate temp mcast list\n"); 11969 return (-1); 11970 } 11971 bzero(mc_mac, (sizeof(*mc_mac) * mc_count)); 11972 11973 /* mta and mcnt not expected to be different */ 11974 if_multiaddr_array(ifp, mta, &mcnt, mc_count); 11975 11976 11977 rparam.mcast_obj = &sc->mcast_obj; 11978 ECORE_LIST_INIT(&rparam.mcast_list); 11979 11980 for(i=0; i< mcnt; i++) { 11981 11982 mc_mac->mac = (uint8_t *)(mta + (i * ETHER_ADDR_LEN)); 11983 ECORE_LIST_PUSH_TAIL(&mc_mac->link, &rparam.mcast_list); 11984 11985 BLOGD(sc, DBG_LOAD, 11986 "Setting MCAST %02X:%02X:%02X:%02X:%02X:%02X\n", 11987 mc_mac->mac[0], mc_mac->mac[1], mc_mac->mac[2], 11988 mc_mac->mac[3], mc_mac->mac[4], mc_mac->mac[5]); 11989 11990 mc_mac++; 11991 } 11992 rparam.mcast_list_len = mc_count; 11993 11994 BXE_MCAST_LOCK(sc); 11995 11996 /* first, clear all configured multicast MACs */ 11997 rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_DEL); 11998 if (rc < 0) { 11999 BLOGE(sc, "Failed to clear multicast configuration: %d\n", rc); 12000 BXE_MCAST_UNLOCK(sc); 12001 free(mc_mac_start, M_DEVBUF); 12002 free(mta, M_DEVBUF); 12003 return (rc); 12004 } 12005 12006 /* Now add the new MACs */ 12007 rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_ADD); 12008 if (rc < 0) { 12009 BLOGE(sc, "Failed to set new mcast config (%d)\n", rc); 12010 } 12011 12012 BXE_MCAST_UNLOCK(sc); 12013 12014 free(mc_mac_start, M_DEVBUF); 12015 free(mta, M_DEVBUF); 12016 12017 return (rc); 12018 } 12019 12020 static int 12021 bxe_set_uc_list(struct bxe_softc *sc) 12022 { 12023 if_t ifp = sc->ifp; 12024 struct ecore_vlan_mac_obj *mac_obj = &sc->sp_objs->mac_obj; 12025 struct ifaddr *ifa; 12026 unsigned long ramrod_flags = 0; 12027 int rc; 12028 12029 #if __FreeBSD_version < 800000 12030 IF_ADDR_LOCK(ifp); 12031 #else 12032 if_addr_rlock(ifp); 12033 #endif 12034 12035 /* first schedule a cleanup up of old configuration */ 12036 rc = bxe_del_all_macs(sc, mac_obj, ECORE_UC_LIST_MAC, FALSE); 12037 if (rc < 0) { 12038 BLOGE(sc, "Failed to schedule delete of all ETH MACs (%d)\n", rc); 12039 #if __FreeBSD_version < 800000 12040 IF_ADDR_UNLOCK(ifp); 12041 #else 12042 if_addr_runlock(ifp); 12043 #endif 12044 return (rc); 12045 } 12046 12047 ifa = if_getifaddr(ifp); /* XXX Is this structure */ 12048 while (ifa) { 12049 if (ifa->ifa_addr->sa_family != AF_LINK) { 12050 ifa = TAILQ_NEXT(ifa, ifa_link); 12051 continue; 12052 } 12053 12054 rc = bxe_set_mac_one(sc, (uint8_t *)LLADDR((struct sockaddr_dl *)ifa->ifa_addr), 12055 mac_obj, TRUE, ECORE_UC_LIST_MAC, &ramrod_flags); 12056 if (rc == -EEXIST) { 12057 BLOGD(sc, DBG_SP, "Failed to schedule ADD operations (EEXIST)\n"); 12058 /* do not treat adding same MAC as an error */ 12059 rc = 0; 12060 } else if (rc < 0) { 12061 BLOGE(sc, "Failed to schedule ADD operations (%d)\n", rc); 12062 #if __FreeBSD_version < 800000 12063 IF_ADDR_UNLOCK(ifp); 12064 #else 12065 if_addr_runlock(ifp); 12066 #endif 12067 return (rc); 12068 } 12069 12070 ifa = TAILQ_NEXT(ifa, ifa_link); 12071 } 12072 12073 #if __FreeBSD_version < 800000 12074 IF_ADDR_UNLOCK(ifp); 12075 #else 12076 if_addr_runlock(ifp); 12077 #endif 12078 12079 /* Execute the pending commands */ 12080 bit_set(&ramrod_flags, RAMROD_CONT); 12081 return (bxe_set_mac_one(sc, NULL, mac_obj, FALSE /* don't care */, 12082 ECORE_UC_LIST_MAC, &ramrod_flags)); 12083 } 12084 12085 static void 12086 bxe_set_rx_mode(struct bxe_softc *sc) 12087 { 12088 if_t ifp = sc->ifp; 12089 uint32_t rx_mode = BXE_RX_MODE_NORMAL; 12090 12091 if (sc->state != BXE_STATE_OPEN) { 12092 BLOGD(sc, DBG_SP, "state is %x, returning\n", sc->state); 12093 return; 12094 } 12095 12096 BLOGD(sc, DBG_SP, "if_flags(ifp)=0x%x\n", if_getflags(sc->ifp)); 12097 12098 if (if_getflags(ifp) & IFF_PROMISC) { 12099 rx_mode = BXE_RX_MODE_PROMISC; 12100 } else if ((if_getflags(ifp) & IFF_ALLMULTI) || 12101 ((if_getamcount(ifp) > BXE_MAX_MULTICAST) && 12102 CHIP_IS_E1(sc))) { 12103 rx_mode = BXE_RX_MODE_ALLMULTI; 12104 } else { 12105 if (IS_PF(sc)) { 12106 /* some multicasts */ 12107 if (bxe_set_mc_list(sc) < 0) { 12108 rx_mode = BXE_RX_MODE_ALLMULTI; 12109 } 12110 if (bxe_set_uc_list(sc) < 0) { 12111 rx_mode = BXE_RX_MODE_PROMISC; 12112 } 12113 } 12114 } 12115 12116 sc->rx_mode = rx_mode; 12117 12118 /* schedule the rx_mode command */ 12119 if (bxe_test_bit(ECORE_FILTER_RX_MODE_PENDING, &sc->sp_state)) { 12120 BLOGD(sc, DBG_LOAD, "Scheduled setting rx_mode with ECORE...\n"); 12121 bxe_set_bit(ECORE_FILTER_RX_MODE_SCHED, &sc->sp_state); 12122 return; 12123 } 12124 12125 if (IS_PF(sc)) { 12126 bxe_set_storm_rx_mode(sc); 12127 } 12128 } 12129 12130 12131 /* update flags in shmem */ 12132 static void 12133 bxe_update_drv_flags(struct bxe_softc *sc, 12134 uint32_t flags, 12135 uint32_t set) 12136 { 12137 uint32_t drv_flags; 12138 12139 if (SHMEM2_HAS(sc, drv_flags)) { 12140 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_DRV_FLAGS); 12141 drv_flags = SHMEM2_RD(sc, drv_flags); 12142 12143 if (set) { 12144 SET_FLAGS(drv_flags, flags); 12145 } else { 12146 RESET_FLAGS(drv_flags, flags); 12147 } 12148 12149 SHMEM2_WR(sc, drv_flags, drv_flags); 12150 BLOGD(sc, DBG_LOAD, "drv_flags 0x%08x\n", drv_flags); 12151 12152 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_DRV_FLAGS); 12153 } 12154 } 12155 12156 /* periodic timer callout routine, only runs when the interface is up */ 12157 12158 static void 12159 bxe_periodic_callout_func(void *xsc) 12160 { 12161 struct bxe_softc *sc = (struct bxe_softc *)xsc; 12162 int i; 12163 12164 #if __FreeBSD_version < 800000 12165 struct bxe_fastpath *fp; 12166 uint16_t tx_bd_avail; 12167 #endif 12168 12169 if (!BXE_CORE_TRYLOCK(sc)) { 12170 /* just bail and try again next time */ 12171 12172 if ((sc->state == BXE_STATE_OPEN) && 12173 (atomic_load_acq_long(&sc->periodic_flags) == PERIODIC_GO)) { 12174 /* schedule the next periodic callout */ 12175 callout_reset(&sc->periodic_callout, hz, 12176 bxe_periodic_callout_func, sc); 12177 } 12178 12179 return; 12180 } 12181 12182 if ((sc->state != BXE_STATE_OPEN) || 12183 (atomic_load_acq_long(&sc->periodic_flags) == PERIODIC_STOP)) { 12184 BLOGW(sc, "periodic callout exit (state=0x%x)\n", sc->state); 12185 BXE_CORE_UNLOCK(sc); 12186 return; 12187 } 12188 12189 #if __FreeBSD_version < 800000 12190 12191 fp = &sc->fp[0]; 12192 if (BXE_FP_TX_TRYLOCK(fp)) { 12193 struct ifnet *ifp = sc->ifnet; 12194 /* 12195 * If interface was stopped due to unavailable 12196 * bds, try to process some tx completions 12197 */ 12198 (void) bxe_txeof(sc, fp); 12199 12200 tx_bd_avail = bxe_tx_avail(sc, fp); 12201 if (tx_bd_avail >= BXE_TX_CLEANUP_THRESHOLD) { 12202 bxe_tx_start_locked(sc, ifp, fp); 12203 } 12204 12205 BXE_FP_TX_UNLOCK(fp); 12206 } 12207 12208 #endif /* #if __FreeBSD_version >= 800000 */ 12209 12210 /* Check for TX timeouts on any fastpath. */ 12211 FOR_EACH_QUEUE(sc, i) { 12212 if (bxe_watchdog(sc, &sc->fp[i]) != 0) { 12213 /* Ruh-Roh, chip was reset! */ 12214 break; 12215 } 12216 } 12217 12218 if (!CHIP_REV_IS_SLOW(sc)) { 12219 /* 12220 * This barrier is needed to ensure the ordering between the writing 12221 * to the sc->port.pmf in the bxe_nic_load() or bxe_pmf_update() and 12222 * the reading here. 12223 */ 12224 mb(); 12225 if (sc->port.pmf) { 12226 bxe_acquire_phy_lock(sc); 12227 elink_period_func(&sc->link_params, &sc->link_vars); 12228 bxe_release_phy_lock(sc); 12229 } 12230 } 12231 12232 if (IS_PF(sc) && !(sc->flags & BXE_NO_PULSE)) { 12233 int mb_idx = SC_FW_MB_IDX(sc); 12234 uint32_t drv_pulse; 12235 uint32_t mcp_pulse; 12236 12237 ++sc->fw_drv_pulse_wr_seq; 12238 sc->fw_drv_pulse_wr_seq &= DRV_PULSE_SEQ_MASK; 12239 12240 drv_pulse = sc->fw_drv_pulse_wr_seq; 12241 bxe_drv_pulse(sc); 12242 12243 mcp_pulse = (SHMEM_RD(sc, func_mb[mb_idx].mcp_pulse_mb) & 12244 MCP_PULSE_SEQ_MASK); 12245 12246 /* 12247 * The delta between driver pulse and mcp response should 12248 * be 1 (before mcp response) or 0 (after mcp response). 12249 */ 12250 if ((drv_pulse != mcp_pulse) && 12251 (drv_pulse != ((mcp_pulse + 1) & MCP_PULSE_SEQ_MASK))) { 12252 /* someone lost a heartbeat... */ 12253 BLOGE(sc, "drv_pulse (0x%x) != mcp_pulse (0x%x)\n", 12254 drv_pulse, mcp_pulse); 12255 } 12256 } 12257 12258 /* state is BXE_STATE_OPEN */ 12259 bxe_stats_handle(sc, STATS_EVENT_UPDATE); 12260 12261 BXE_CORE_UNLOCK(sc); 12262 12263 if ((sc->state == BXE_STATE_OPEN) && 12264 (atomic_load_acq_long(&sc->periodic_flags) == PERIODIC_GO)) { 12265 /* schedule the next periodic callout */ 12266 callout_reset(&sc->periodic_callout, hz, 12267 bxe_periodic_callout_func, sc); 12268 } 12269 } 12270 12271 static void 12272 bxe_periodic_start(struct bxe_softc *sc) 12273 { 12274 atomic_store_rel_long(&sc->periodic_flags, PERIODIC_GO); 12275 callout_reset(&sc->periodic_callout, hz, bxe_periodic_callout_func, sc); 12276 } 12277 12278 static void 12279 bxe_periodic_stop(struct bxe_softc *sc) 12280 { 12281 atomic_store_rel_long(&sc->periodic_flags, PERIODIC_STOP); 12282 callout_drain(&sc->periodic_callout); 12283 } 12284 12285 /* start the controller */ 12286 static __noinline int 12287 bxe_nic_load(struct bxe_softc *sc, 12288 int load_mode) 12289 { 12290 uint32_t val; 12291 int load_code = 0; 12292 int i, rc = 0; 12293 12294 BXE_CORE_LOCK_ASSERT(sc); 12295 12296 BLOGD(sc, DBG_LOAD, "Starting NIC load...\n"); 12297 12298 sc->state = BXE_STATE_OPENING_WAITING_LOAD; 12299 12300 if (IS_PF(sc)) { 12301 /* must be called before memory allocation and HW init */ 12302 bxe_ilt_set_info(sc); 12303 } 12304 12305 sc->last_reported_link_state = LINK_STATE_UNKNOWN; 12306 12307 bxe_set_fp_rx_buf_size(sc); 12308 12309 if (bxe_alloc_fp_buffers(sc) != 0) { 12310 BLOGE(sc, "Failed to allocate fastpath memory\n"); 12311 sc->state = BXE_STATE_CLOSED; 12312 rc = ENOMEM; 12313 goto bxe_nic_load_error0; 12314 } 12315 12316 if (bxe_alloc_mem(sc) != 0) { 12317 sc->state = BXE_STATE_CLOSED; 12318 rc = ENOMEM; 12319 goto bxe_nic_load_error0; 12320 } 12321 12322 if (bxe_alloc_fw_stats_mem(sc) != 0) { 12323 sc->state = BXE_STATE_CLOSED; 12324 rc = ENOMEM; 12325 goto bxe_nic_load_error0; 12326 } 12327 12328 if (IS_PF(sc)) { 12329 /* set pf load just before approaching the MCP */ 12330 bxe_set_pf_load(sc); 12331 12332 /* if MCP exists send load request and analyze response */ 12333 if (!BXE_NOMCP(sc)) { 12334 /* attempt to load pf */ 12335 if (bxe_nic_load_request(sc, &load_code) != 0) { 12336 sc->state = BXE_STATE_CLOSED; 12337 rc = ENXIO; 12338 goto bxe_nic_load_error1; 12339 } 12340 12341 /* what did the MCP say? */ 12342 if (bxe_nic_load_analyze_req(sc, load_code) != 0) { 12343 bxe_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0); 12344 sc->state = BXE_STATE_CLOSED; 12345 rc = ENXIO; 12346 goto bxe_nic_load_error2; 12347 } 12348 } else { 12349 BLOGI(sc, "Device has no MCP!\n"); 12350 load_code = bxe_nic_load_no_mcp(sc); 12351 } 12352 12353 /* mark PMF if applicable */ 12354 bxe_nic_load_pmf(sc, load_code); 12355 12356 /* Init Function state controlling object */ 12357 bxe_init_func_obj(sc); 12358 12359 /* Initialize HW */ 12360 if (bxe_init_hw(sc, load_code) != 0) { 12361 BLOGE(sc, "HW init failed\n"); 12362 bxe_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0); 12363 sc->state = BXE_STATE_CLOSED; 12364 rc = ENXIO; 12365 goto bxe_nic_load_error2; 12366 } 12367 } 12368 12369 /* set ALWAYS_ALIVE bit in shmem */ 12370 sc->fw_drv_pulse_wr_seq |= DRV_PULSE_ALWAYS_ALIVE; 12371 bxe_drv_pulse(sc); 12372 sc->flags |= BXE_NO_PULSE; 12373 12374 /* attach interrupts */ 12375 if (bxe_interrupt_attach(sc) != 0) { 12376 sc->state = BXE_STATE_CLOSED; 12377 rc = ENXIO; 12378 goto bxe_nic_load_error2; 12379 } 12380 12381 bxe_nic_init(sc, load_code); 12382 12383 /* Init per-function objects */ 12384 if (IS_PF(sc)) { 12385 bxe_init_objs(sc); 12386 // XXX bxe_iov_nic_init(sc); 12387 12388 /* set AFEX default VLAN tag to an invalid value */ 12389 sc->devinfo.mf_info.afex_def_vlan_tag = -1; 12390 // XXX bxe_nic_load_afex_dcc(sc, load_code); 12391 12392 sc->state = BXE_STATE_OPENING_WAITING_PORT; 12393 rc = bxe_func_start(sc); 12394 if (rc) { 12395 BLOGE(sc, "Function start failed! rc = %d\n", rc); 12396 bxe_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0); 12397 sc->state = BXE_STATE_ERROR; 12398 goto bxe_nic_load_error3; 12399 } 12400 12401 /* send LOAD_DONE command to MCP */ 12402 if (!BXE_NOMCP(sc)) { 12403 load_code = bxe_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0); 12404 if (!load_code) { 12405 BLOGE(sc, "MCP response failure, aborting\n"); 12406 sc->state = BXE_STATE_ERROR; 12407 rc = ENXIO; 12408 goto bxe_nic_load_error3; 12409 } 12410 } 12411 12412 rc = bxe_setup_leading(sc); 12413 if (rc) { 12414 BLOGE(sc, "Setup leading failed! rc = %d\n", rc); 12415 sc->state = BXE_STATE_ERROR; 12416 goto bxe_nic_load_error3; 12417 } 12418 12419 FOR_EACH_NONDEFAULT_ETH_QUEUE(sc, i) { 12420 rc = bxe_setup_queue(sc, &sc->fp[i], FALSE); 12421 if (rc) { 12422 BLOGE(sc, "Queue(%d) setup failed rc = %d\n", i, rc); 12423 sc->state = BXE_STATE_ERROR; 12424 goto bxe_nic_load_error3; 12425 } 12426 } 12427 12428 rc = bxe_init_rss_pf(sc); 12429 if (rc) { 12430 BLOGE(sc, "PF RSS init failed\n"); 12431 sc->state = BXE_STATE_ERROR; 12432 goto bxe_nic_load_error3; 12433 } 12434 } 12435 /* XXX VF */ 12436 12437 /* now when Clients are configured we are ready to work */ 12438 sc->state = BXE_STATE_OPEN; 12439 12440 /* Configure a ucast MAC */ 12441 if (IS_PF(sc)) { 12442 rc = bxe_set_eth_mac(sc, TRUE); 12443 } 12444 if (rc) { 12445 BLOGE(sc, "Setting Ethernet MAC failed rc = %d\n", rc); 12446 sc->state = BXE_STATE_ERROR; 12447 goto bxe_nic_load_error3; 12448 } 12449 12450 if (sc->port.pmf) { 12451 rc = bxe_initial_phy_init(sc, /* XXX load_mode */LOAD_OPEN); 12452 if (rc) { 12453 sc->state = BXE_STATE_ERROR; 12454 goto bxe_nic_load_error3; 12455 } 12456 } 12457 12458 sc->link_params.feature_config_flags &= 12459 ~ELINK_FEATURE_CONFIG_BOOT_FROM_SAN; 12460 12461 /* start fast path */ 12462 12463 /* Initialize Rx filter */ 12464 bxe_set_rx_mode(sc); 12465 12466 /* start the Tx */ 12467 switch (/* XXX load_mode */LOAD_OPEN) { 12468 case LOAD_NORMAL: 12469 case LOAD_OPEN: 12470 break; 12471 12472 case LOAD_DIAG: 12473 case LOAD_LOOPBACK_EXT: 12474 sc->state = BXE_STATE_DIAG; 12475 break; 12476 12477 default: 12478 break; 12479 } 12480 12481 if (sc->port.pmf) { 12482 bxe_update_drv_flags(sc, 1 << DRV_FLAGS_PORT_MASK, 0); 12483 } else { 12484 bxe_link_status_update(sc); 12485 } 12486 12487 /* start the periodic timer callout */ 12488 bxe_periodic_start(sc); 12489 12490 if (IS_PF(sc) && SHMEM2_HAS(sc, drv_capabilities_flag)) { 12491 /* mark driver is loaded in shmem2 */ 12492 val = SHMEM2_RD(sc, drv_capabilities_flag[SC_FW_MB_IDX(sc)]); 12493 SHMEM2_WR(sc, drv_capabilities_flag[SC_FW_MB_IDX(sc)], 12494 (val | 12495 DRV_FLAGS_CAPABILITIES_LOADED_SUPPORTED | 12496 DRV_FLAGS_CAPABILITIES_LOADED_L2)); 12497 } 12498 12499 /* wait for all pending SP commands to complete */ 12500 if (IS_PF(sc) && !bxe_wait_sp_comp(sc, ~0x0UL)) { 12501 BLOGE(sc, "Timeout waiting for all SPs to complete!\n"); 12502 bxe_periodic_stop(sc); 12503 bxe_nic_unload(sc, UNLOAD_CLOSE, FALSE); 12504 return (ENXIO); 12505 } 12506 12507 /* Tell the stack the driver is running! */ 12508 if_setdrvflags(sc->ifp, IFF_DRV_RUNNING); 12509 12510 BLOGD(sc, DBG_LOAD, "NIC successfully loaded\n"); 12511 12512 return (0); 12513 12514 bxe_nic_load_error3: 12515 12516 if (IS_PF(sc)) { 12517 bxe_int_disable_sync(sc, 1); 12518 12519 /* clean out queued objects */ 12520 bxe_squeeze_objects(sc); 12521 } 12522 12523 bxe_interrupt_detach(sc); 12524 12525 bxe_nic_load_error2: 12526 12527 if (IS_PF(sc) && !BXE_NOMCP(sc)) { 12528 bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP, 0); 12529 bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_DONE, 0); 12530 } 12531 12532 sc->port.pmf = 0; 12533 12534 bxe_nic_load_error1: 12535 12536 /* clear pf_load status, as it was already set */ 12537 if (IS_PF(sc)) { 12538 bxe_clear_pf_load(sc); 12539 } 12540 12541 bxe_nic_load_error0: 12542 12543 bxe_free_fw_stats_mem(sc); 12544 bxe_free_fp_buffers(sc); 12545 bxe_free_mem(sc); 12546 12547 return (rc); 12548 } 12549 12550 static int 12551 bxe_init_locked(struct bxe_softc *sc) 12552 { 12553 int other_engine = SC_PATH(sc) ? 0 : 1; 12554 uint8_t other_load_status, load_status; 12555 uint8_t global = FALSE; 12556 int rc; 12557 12558 BXE_CORE_LOCK_ASSERT(sc); 12559 12560 /* check if the driver is already running */ 12561 if (if_getdrvflags(sc->ifp) & IFF_DRV_RUNNING) { 12562 BLOGD(sc, DBG_LOAD, "Init called while driver is running!\n"); 12563 return (0); 12564 } 12565 12566 bxe_set_power_state(sc, PCI_PM_D0); 12567 12568 /* 12569 * If parity occurred during the unload, then attentions and/or 12570 * RECOVERY_IN_PROGRES may still be set. If so we want the first function 12571 * loaded on the current engine to complete the recovery. Parity recovery 12572 * is only relevant for PF driver. 12573 */ 12574 if (IS_PF(sc)) { 12575 other_load_status = bxe_get_load_status(sc, other_engine); 12576 load_status = bxe_get_load_status(sc, SC_PATH(sc)); 12577 12578 if (!bxe_reset_is_done(sc, SC_PATH(sc)) || 12579 bxe_chk_parity_attn(sc, &global, TRUE)) { 12580 do { 12581 /* 12582 * If there are attentions and they are in global blocks, set 12583 * the GLOBAL_RESET bit regardless whether it will be this 12584 * function that will complete the recovery or not. 12585 */ 12586 if (global) { 12587 bxe_set_reset_global(sc); 12588 } 12589 12590 /* 12591 * Only the first function on the current engine should try 12592 * to recover in open. In case of attentions in global blocks 12593 * only the first in the chip should try to recover. 12594 */ 12595 if ((!load_status && (!global || !other_load_status)) && 12596 bxe_trylock_leader_lock(sc) && !bxe_leader_reset(sc)) { 12597 BLOGI(sc, "Recovered during init\n"); 12598 break; 12599 } 12600 12601 /* recovery has failed... */ 12602 bxe_set_power_state(sc, PCI_PM_D3hot); 12603 sc->recovery_state = BXE_RECOVERY_FAILED; 12604 12605 BLOGE(sc, "Recovery flow hasn't properly " 12606 "completed yet, try again later. " 12607 "If you still see this message after a " 12608 "few retries then power cycle is required.\n"); 12609 12610 rc = ENXIO; 12611 goto bxe_init_locked_done; 12612 } while (0); 12613 } 12614 } 12615 12616 sc->recovery_state = BXE_RECOVERY_DONE; 12617 12618 rc = bxe_nic_load(sc, LOAD_OPEN); 12619 12620 bxe_init_locked_done: 12621 12622 if (rc) { 12623 /* Tell the stack the driver is NOT running! */ 12624 BLOGE(sc, "Initialization failed, " 12625 "stack notified driver is NOT running!\n"); 12626 if_setdrvflagbits(sc->ifp, 0, IFF_DRV_RUNNING); 12627 } 12628 12629 return (rc); 12630 } 12631 12632 static int 12633 bxe_stop_locked(struct bxe_softc *sc) 12634 { 12635 BXE_CORE_LOCK_ASSERT(sc); 12636 return (bxe_nic_unload(sc, UNLOAD_NORMAL, TRUE)); 12637 } 12638 12639 /* 12640 * Handles controller initialization when called from an unlocked routine. 12641 * ifconfig calls this function. 12642 * 12643 * Returns: 12644 * void 12645 */ 12646 static void 12647 bxe_init(void *xsc) 12648 { 12649 struct bxe_softc *sc = (struct bxe_softc *)xsc; 12650 12651 BXE_CORE_LOCK(sc); 12652 bxe_init_locked(sc); 12653 BXE_CORE_UNLOCK(sc); 12654 } 12655 12656 static int 12657 bxe_init_ifnet(struct bxe_softc *sc) 12658 { 12659 if_t ifp; 12660 int capabilities; 12661 12662 /* ifconfig entrypoint for media type/status reporting */ 12663 ifmedia_init(&sc->ifmedia, IFM_IMASK, 12664 bxe_ifmedia_update, 12665 bxe_ifmedia_status); 12666 12667 /* set the default interface values */ 12668 ifmedia_add(&sc->ifmedia, (IFM_ETHER | IFM_FDX | sc->media), 0, NULL); 12669 ifmedia_add(&sc->ifmedia, (IFM_ETHER | IFM_AUTO), 0, NULL); 12670 ifmedia_set(&sc->ifmedia, (IFM_ETHER | IFM_AUTO)); 12671 12672 sc->ifmedia.ifm_media = sc->ifmedia.ifm_cur->ifm_media; /* XXX ? */ 12673 12674 /* allocate the ifnet structure */ 12675 if ((ifp = if_gethandle(IFT_ETHER)) == NULL) { 12676 BLOGE(sc, "Interface allocation failed!\n"); 12677 return (ENXIO); 12678 } 12679 12680 if_setsoftc(ifp, sc); 12681 if_initname(ifp, device_get_name(sc->dev), device_get_unit(sc->dev)); 12682 if_setflags(ifp, (IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST)); 12683 if_setioctlfn(ifp, bxe_ioctl); 12684 if_setstartfn(ifp, bxe_tx_start); 12685 if_setgetcounterfn(ifp, bxe_get_counter); 12686 #if __FreeBSD_version >= 800000 12687 if_settransmitfn(ifp, bxe_tx_mq_start); 12688 if_setqflushfn(ifp, bxe_mq_flush); 12689 #endif 12690 #ifdef FreeBSD8_0 12691 if_settimer(ifp, 0); 12692 #endif 12693 if_setinitfn(ifp, bxe_init); 12694 if_setmtu(ifp, sc->mtu); 12695 if_sethwassist(ifp, (CSUM_IP | 12696 CSUM_TCP | 12697 CSUM_UDP | 12698 CSUM_TSO | 12699 CSUM_TCP_IPV6 | 12700 CSUM_UDP_IPV6)); 12701 12702 capabilities = 12703 #if __FreeBSD_version < 700000 12704 (IFCAP_VLAN_MTU | 12705 IFCAP_VLAN_HWTAGGING | 12706 IFCAP_HWCSUM | 12707 IFCAP_JUMBO_MTU | 12708 IFCAP_LRO); 12709 #else 12710 (IFCAP_VLAN_MTU | 12711 IFCAP_VLAN_HWTAGGING | 12712 IFCAP_VLAN_HWTSO | 12713 IFCAP_VLAN_HWFILTER | 12714 IFCAP_VLAN_HWCSUM | 12715 IFCAP_HWCSUM | 12716 IFCAP_JUMBO_MTU | 12717 IFCAP_LRO | 12718 IFCAP_TSO4 | 12719 IFCAP_TSO6 | 12720 IFCAP_WOL_MAGIC); 12721 #endif 12722 if_setcapabilitiesbit(ifp, capabilities, 0); /* XXX */ 12723 if_setbaudrate(ifp, IF_Gbps(10)); 12724 /* XXX */ 12725 if_setsendqlen(ifp, sc->tx_ring_size); 12726 if_setsendqready(ifp); 12727 /* XXX */ 12728 12729 sc->ifp = ifp; 12730 12731 /* attach to the Ethernet interface list */ 12732 ether_ifattach(ifp, sc->link_params.mac_addr); 12733 12734 return (0); 12735 } 12736 12737 static void 12738 bxe_deallocate_bars(struct bxe_softc *sc) 12739 { 12740 int i; 12741 12742 for (i = 0; i < MAX_BARS; i++) { 12743 if (sc->bar[i].resource != NULL) { 12744 bus_release_resource(sc->dev, 12745 SYS_RES_MEMORY, 12746 sc->bar[i].rid, 12747 sc->bar[i].resource); 12748 BLOGD(sc, DBG_LOAD, "Released PCI BAR%d [%02x] memory\n", 12749 i, PCIR_BAR(i)); 12750 } 12751 } 12752 } 12753 12754 static int 12755 bxe_allocate_bars(struct bxe_softc *sc) 12756 { 12757 u_int flags; 12758 int i; 12759 12760 memset(sc->bar, 0, sizeof(sc->bar)); 12761 12762 for (i = 0; i < MAX_BARS; i++) { 12763 12764 /* memory resources reside at BARs 0, 2, 4 */ 12765 /* Run `pciconf -lb` to see mappings */ 12766 if ((i != 0) && (i != 2) && (i != 4)) { 12767 continue; 12768 } 12769 12770 sc->bar[i].rid = PCIR_BAR(i); 12771 12772 flags = RF_ACTIVE; 12773 if (i == 0) { 12774 flags |= RF_SHAREABLE; 12775 } 12776 12777 if ((sc->bar[i].resource = 12778 bus_alloc_resource_any(sc->dev, 12779 SYS_RES_MEMORY, 12780 &sc->bar[i].rid, 12781 flags)) == NULL) { 12782 return (0); 12783 } 12784 12785 sc->bar[i].tag = rman_get_bustag(sc->bar[i].resource); 12786 sc->bar[i].handle = rman_get_bushandle(sc->bar[i].resource); 12787 sc->bar[i].kva = (vm_offset_t)rman_get_virtual(sc->bar[i].resource); 12788 12789 BLOGI(sc, "PCI BAR%d [%02x] memory allocated: %p-%p (%jd) -> %p\n", 12790 i, PCIR_BAR(i), 12791 (void *)rman_get_start(sc->bar[i].resource), 12792 (void *)rman_get_end(sc->bar[i].resource), 12793 rman_get_size(sc->bar[i].resource), 12794 (void *)sc->bar[i].kva); 12795 } 12796 12797 return (0); 12798 } 12799 12800 static void 12801 bxe_get_function_num(struct bxe_softc *sc) 12802 { 12803 uint32_t val = 0; 12804 12805 /* 12806 * Read the ME register to get the function number. The ME register 12807 * holds the relative-function number and absolute-function number. The 12808 * absolute-function number appears only in E2 and above. Before that 12809 * these bits always contained zero, therefore we cannot blindly use them. 12810 */ 12811 12812 val = REG_RD(sc, BAR_ME_REGISTER); 12813 12814 sc->pfunc_rel = 12815 (uint8_t)((val & ME_REG_PF_NUM) >> ME_REG_PF_NUM_SHIFT); 12816 sc->path_id = 12817 (uint8_t)((val & ME_REG_ABS_PF_NUM) >> ME_REG_ABS_PF_NUM_SHIFT) & 1; 12818 12819 if (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) { 12820 sc->pfunc_abs = ((sc->pfunc_rel << 1) | sc->path_id); 12821 } else { 12822 sc->pfunc_abs = (sc->pfunc_rel | sc->path_id); 12823 } 12824 12825 BLOGD(sc, DBG_LOAD, 12826 "Relative function %d, Absolute function %d, Path %d\n", 12827 sc->pfunc_rel, sc->pfunc_abs, sc->path_id); 12828 } 12829 12830 static uint32_t 12831 bxe_get_shmem_mf_cfg_base(struct bxe_softc *sc) 12832 { 12833 uint32_t shmem2_size; 12834 uint32_t offset; 12835 uint32_t mf_cfg_offset_value; 12836 12837 /* Non 57712 */ 12838 offset = (SHMEM_RD(sc, func_mb) + 12839 (MAX_FUNC_NUM * sizeof(struct drv_func_mb))); 12840 12841 /* 57712 plus */ 12842 if (sc->devinfo.shmem2_base != 0) { 12843 shmem2_size = SHMEM2_RD(sc, size); 12844 if (shmem2_size > offsetof(struct shmem2_region, mf_cfg_addr)) { 12845 mf_cfg_offset_value = SHMEM2_RD(sc, mf_cfg_addr); 12846 if (SHMEM_MF_CFG_ADDR_NONE != mf_cfg_offset_value) { 12847 offset = mf_cfg_offset_value; 12848 } 12849 } 12850 } 12851 12852 return (offset); 12853 } 12854 12855 static uint32_t 12856 bxe_pcie_capability_read(struct bxe_softc *sc, 12857 int reg, 12858 int width) 12859 { 12860 int pcie_reg; 12861 12862 /* ensure PCIe capability is enabled */ 12863 if (pci_find_cap(sc->dev, PCIY_EXPRESS, &pcie_reg) == 0) { 12864 if (pcie_reg != 0) { 12865 BLOGD(sc, DBG_LOAD, "PCIe capability at 0x%04x\n", pcie_reg); 12866 return (pci_read_config(sc->dev, (pcie_reg + reg), width)); 12867 } 12868 } 12869 12870 BLOGE(sc, "PCIe capability NOT FOUND!!!\n"); 12871 12872 return (0); 12873 } 12874 12875 static uint8_t 12876 bxe_is_pcie_pending(struct bxe_softc *sc) 12877 { 12878 return (bxe_pcie_capability_read(sc, PCIR_EXPRESS_DEVICE_STA, 2) & 12879 PCIM_EXP_STA_TRANSACTION_PND); 12880 } 12881 12882 /* 12883 * Walk the PCI capabiites list for the device to find what features are 12884 * supported. These capabilites may be enabled/disabled by firmware so it's 12885 * best to walk the list rather than make assumptions. 12886 */ 12887 static void 12888 bxe_probe_pci_caps(struct bxe_softc *sc) 12889 { 12890 uint16_t link_status; 12891 int reg; 12892 12893 /* check if PCI Power Management is enabled */ 12894 if (pci_find_cap(sc->dev, PCIY_PMG, ®) == 0) { 12895 if (reg != 0) { 12896 BLOGD(sc, DBG_LOAD, "Found PM capability at 0x%04x\n", reg); 12897 12898 sc->devinfo.pcie_cap_flags |= BXE_PM_CAPABLE_FLAG; 12899 sc->devinfo.pcie_pm_cap_reg = (uint16_t)reg; 12900 } 12901 } 12902 12903 link_status = bxe_pcie_capability_read(sc, PCIR_EXPRESS_LINK_STA, 2); 12904 12905 /* handle PCIe 2.0 workarounds for 57710 */ 12906 if (CHIP_IS_E1(sc)) { 12907 /* workaround for 57710 errata E4_57710_27462 */ 12908 sc->devinfo.pcie_link_speed = 12909 (REG_RD(sc, 0x3d04) & (1 << 24)) ? 2 : 1; 12910 12911 /* workaround for 57710 errata E4_57710_27488 */ 12912 sc->devinfo.pcie_link_width = 12913 ((link_status & PCIM_LINK_STA_WIDTH) >> 4); 12914 if (sc->devinfo.pcie_link_speed > 1) { 12915 sc->devinfo.pcie_link_width = 12916 ((link_status & PCIM_LINK_STA_WIDTH) >> 4) >> 1; 12917 } 12918 } else { 12919 sc->devinfo.pcie_link_speed = 12920 (link_status & PCIM_LINK_STA_SPEED); 12921 sc->devinfo.pcie_link_width = 12922 ((link_status & PCIM_LINK_STA_WIDTH) >> 4); 12923 } 12924 12925 BLOGD(sc, DBG_LOAD, "PCIe link speed=%d width=%d\n", 12926 sc->devinfo.pcie_link_speed, sc->devinfo.pcie_link_width); 12927 12928 sc->devinfo.pcie_cap_flags |= BXE_PCIE_CAPABLE_FLAG; 12929 sc->devinfo.pcie_pcie_cap_reg = (uint16_t)reg; 12930 12931 /* check if MSI capability is enabled */ 12932 if (pci_find_cap(sc->dev, PCIY_MSI, ®) == 0) { 12933 if (reg != 0) { 12934 BLOGD(sc, DBG_LOAD, "Found MSI capability at 0x%04x\n", reg); 12935 12936 sc->devinfo.pcie_cap_flags |= BXE_MSI_CAPABLE_FLAG; 12937 sc->devinfo.pcie_msi_cap_reg = (uint16_t)reg; 12938 } 12939 } 12940 12941 /* check if MSI-X capability is enabled */ 12942 if (pci_find_cap(sc->dev, PCIY_MSIX, ®) == 0) { 12943 if (reg != 0) { 12944 BLOGD(sc, DBG_LOAD, "Found MSI-X capability at 0x%04x\n", reg); 12945 12946 sc->devinfo.pcie_cap_flags |= BXE_MSIX_CAPABLE_FLAG; 12947 sc->devinfo.pcie_msix_cap_reg = (uint16_t)reg; 12948 } 12949 } 12950 } 12951 12952 static int 12953 bxe_get_shmem_mf_cfg_info_sd(struct bxe_softc *sc) 12954 { 12955 struct bxe_mf_info *mf_info = &sc->devinfo.mf_info; 12956 uint32_t val; 12957 12958 /* get the outer vlan if we're in switch-dependent mode */ 12959 12960 val = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].e1hov_tag); 12961 mf_info->ext_id = (uint16_t)val; 12962 12963 mf_info->multi_vnics_mode = 1; 12964 12965 if (!VALID_OVLAN(mf_info->ext_id)) { 12966 BLOGE(sc, "Invalid VLAN (%d)\n", mf_info->ext_id); 12967 return (1); 12968 } 12969 12970 /* get the capabilities */ 12971 if ((mf_info->mf_config[SC_VN(sc)] & FUNC_MF_CFG_PROTOCOL_MASK) == 12972 FUNC_MF_CFG_PROTOCOL_ISCSI) { 12973 mf_info->mf_protos_supported |= MF_PROTO_SUPPORT_ISCSI; 12974 } else if ((mf_info->mf_config[SC_VN(sc)] & FUNC_MF_CFG_PROTOCOL_MASK) == 12975 FUNC_MF_CFG_PROTOCOL_FCOE) { 12976 mf_info->mf_protos_supported |= MF_PROTO_SUPPORT_FCOE; 12977 } else { 12978 mf_info->mf_protos_supported |= MF_PROTO_SUPPORT_ETHERNET; 12979 } 12980 12981 mf_info->vnics_per_port = 12982 (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) ? 2 : 4; 12983 12984 return (0); 12985 } 12986 12987 static uint32_t 12988 bxe_get_shmem_ext_proto_support_flags(struct bxe_softc *sc) 12989 { 12990 uint32_t retval = 0; 12991 uint32_t val; 12992 12993 val = MFCFG_RD(sc, func_ext_config[SC_ABS_FUNC(sc)].func_cfg); 12994 12995 if (val & MACP_FUNC_CFG_FLAGS_ENABLED) { 12996 if (val & MACP_FUNC_CFG_FLAGS_ETHERNET) { 12997 retval |= MF_PROTO_SUPPORT_ETHERNET; 12998 } 12999 if (val & MACP_FUNC_CFG_FLAGS_ISCSI_OFFLOAD) { 13000 retval |= MF_PROTO_SUPPORT_ISCSI; 13001 } 13002 if (val & MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD) { 13003 retval |= MF_PROTO_SUPPORT_FCOE; 13004 } 13005 } 13006 13007 return (retval); 13008 } 13009 13010 static int 13011 bxe_get_shmem_mf_cfg_info_si(struct bxe_softc *sc) 13012 { 13013 struct bxe_mf_info *mf_info = &sc->devinfo.mf_info; 13014 uint32_t val; 13015 13016 /* 13017 * There is no outer vlan if we're in switch-independent mode. 13018 * If the mac is valid then assume multi-function. 13019 */ 13020 13021 val = MFCFG_RD(sc, func_ext_config[SC_ABS_FUNC(sc)].func_cfg); 13022 13023 mf_info->multi_vnics_mode = ((val & MACP_FUNC_CFG_FLAGS_MASK) != 0); 13024 13025 mf_info->mf_protos_supported = bxe_get_shmem_ext_proto_support_flags(sc); 13026 13027 mf_info->vnics_per_port = 13028 (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) ? 2 : 4; 13029 13030 return (0); 13031 } 13032 13033 static int 13034 bxe_get_shmem_mf_cfg_info_niv(struct bxe_softc *sc) 13035 { 13036 struct bxe_mf_info *mf_info = &sc->devinfo.mf_info; 13037 uint32_t e1hov_tag; 13038 uint32_t func_config; 13039 uint32_t niv_config; 13040 13041 mf_info->multi_vnics_mode = 1; 13042 13043 e1hov_tag = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].e1hov_tag); 13044 func_config = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].config); 13045 niv_config = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].afex_config); 13046 13047 mf_info->ext_id = 13048 (uint16_t)((e1hov_tag & FUNC_MF_CFG_E1HOV_TAG_MASK) >> 13049 FUNC_MF_CFG_E1HOV_TAG_SHIFT); 13050 13051 mf_info->default_vlan = 13052 (uint16_t)((e1hov_tag & FUNC_MF_CFG_AFEX_VLAN_MASK) >> 13053 FUNC_MF_CFG_AFEX_VLAN_SHIFT); 13054 13055 mf_info->niv_allowed_priorities = 13056 (uint8_t)((niv_config & FUNC_MF_CFG_AFEX_COS_FILTER_MASK) >> 13057 FUNC_MF_CFG_AFEX_COS_FILTER_SHIFT); 13058 13059 mf_info->niv_default_cos = 13060 (uint8_t)((func_config & FUNC_MF_CFG_TRANSMIT_PRIORITY_MASK) >> 13061 FUNC_MF_CFG_TRANSMIT_PRIORITY_SHIFT); 13062 13063 mf_info->afex_vlan_mode = 13064 ((niv_config & FUNC_MF_CFG_AFEX_VLAN_MODE_MASK) >> 13065 FUNC_MF_CFG_AFEX_VLAN_MODE_SHIFT); 13066 13067 mf_info->niv_mba_enabled = 13068 ((niv_config & FUNC_MF_CFG_AFEX_MBA_ENABLED_MASK) >> 13069 FUNC_MF_CFG_AFEX_MBA_ENABLED_SHIFT); 13070 13071 mf_info->mf_protos_supported = bxe_get_shmem_ext_proto_support_flags(sc); 13072 13073 mf_info->vnics_per_port = 13074 (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) ? 2 : 4; 13075 13076 return (0); 13077 } 13078 13079 static int 13080 bxe_check_valid_mf_cfg(struct bxe_softc *sc) 13081 { 13082 struct bxe_mf_info *mf_info = &sc->devinfo.mf_info; 13083 uint32_t mf_cfg1; 13084 uint32_t mf_cfg2; 13085 uint32_t ovlan1; 13086 uint32_t ovlan2; 13087 uint8_t i, j; 13088 13089 BLOGD(sc, DBG_LOAD, "MF config parameters for function %d\n", 13090 SC_PORT(sc)); 13091 BLOGD(sc, DBG_LOAD, "\tmf_config=0x%x\n", 13092 mf_info->mf_config[SC_VN(sc)]); 13093 BLOGD(sc, DBG_LOAD, "\tmulti_vnics_mode=%d\n", 13094 mf_info->multi_vnics_mode); 13095 BLOGD(sc, DBG_LOAD, "\tvnics_per_port=%d\n", 13096 mf_info->vnics_per_port); 13097 BLOGD(sc, DBG_LOAD, "\tovlan/vifid=%d\n", 13098 mf_info->ext_id); 13099 BLOGD(sc, DBG_LOAD, "\tmin_bw=%d/%d/%d/%d\n", 13100 mf_info->min_bw[0], mf_info->min_bw[1], 13101 mf_info->min_bw[2], mf_info->min_bw[3]); 13102 BLOGD(sc, DBG_LOAD, "\tmax_bw=%d/%d/%d/%d\n", 13103 mf_info->max_bw[0], mf_info->max_bw[1], 13104 mf_info->max_bw[2], mf_info->max_bw[3]); 13105 BLOGD(sc, DBG_LOAD, "\tmac_addr: %s\n", 13106 sc->mac_addr_str); 13107 13108 /* various MF mode sanity checks... */ 13109 13110 if (mf_info->mf_config[SC_VN(sc)] & FUNC_MF_CFG_FUNC_HIDE) { 13111 BLOGE(sc, "Enumerated function %d is marked as hidden\n", 13112 SC_PORT(sc)); 13113 return (1); 13114 } 13115 13116 if ((mf_info->vnics_per_port > 1) && !mf_info->multi_vnics_mode) { 13117 BLOGE(sc, "vnics_per_port=%d multi_vnics_mode=%d\n", 13118 mf_info->vnics_per_port, mf_info->multi_vnics_mode); 13119 return (1); 13120 } 13121 13122 if (mf_info->mf_mode == MULTI_FUNCTION_SD) { 13123 /* vnic id > 0 must have valid ovlan in switch-dependent mode */ 13124 if ((SC_VN(sc) > 0) && !VALID_OVLAN(OVLAN(sc))) { 13125 BLOGE(sc, "mf_mode=SD vnic_id=%d ovlan=%d\n", 13126 SC_VN(sc), OVLAN(sc)); 13127 return (1); 13128 } 13129 13130 if (!VALID_OVLAN(OVLAN(sc)) && mf_info->multi_vnics_mode) { 13131 BLOGE(sc, "mf_mode=SD multi_vnics_mode=%d ovlan=%d\n", 13132 mf_info->multi_vnics_mode, OVLAN(sc)); 13133 return (1); 13134 } 13135 13136 /* 13137 * Verify all functions are either MF or SF mode. If MF, make sure 13138 * sure that all non-hidden functions have a valid ovlan. If SF, 13139 * make sure that all non-hidden functions have an invalid ovlan. 13140 */ 13141 FOREACH_ABS_FUNC_IN_PORT(sc, i) { 13142 mf_cfg1 = MFCFG_RD(sc, func_mf_config[i].config); 13143 ovlan1 = MFCFG_RD(sc, func_mf_config[i].e1hov_tag); 13144 if (!(mf_cfg1 & FUNC_MF_CFG_FUNC_HIDE) && 13145 (((mf_info->multi_vnics_mode) && !VALID_OVLAN(ovlan1)) || 13146 ((!mf_info->multi_vnics_mode) && VALID_OVLAN(ovlan1)))) { 13147 BLOGE(sc, "mf_mode=SD function %d MF config " 13148 "mismatch, multi_vnics_mode=%d ovlan=%d\n", 13149 i, mf_info->multi_vnics_mode, ovlan1); 13150 return (1); 13151 } 13152 } 13153 13154 /* Verify all funcs on the same port each have a different ovlan. */ 13155 FOREACH_ABS_FUNC_IN_PORT(sc, i) { 13156 mf_cfg1 = MFCFG_RD(sc, func_mf_config[i].config); 13157 ovlan1 = MFCFG_RD(sc, func_mf_config[i].e1hov_tag); 13158 /* iterate from the next function on the port to the max func */ 13159 for (j = i + 2; j < MAX_FUNC_NUM; j += 2) { 13160 mf_cfg2 = MFCFG_RD(sc, func_mf_config[j].config); 13161 ovlan2 = MFCFG_RD(sc, func_mf_config[j].e1hov_tag); 13162 if (!(mf_cfg1 & FUNC_MF_CFG_FUNC_HIDE) && 13163 VALID_OVLAN(ovlan1) && 13164 !(mf_cfg2 & FUNC_MF_CFG_FUNC_HIDE) && 13165 VALID_OVLAN(ovlan2) && 13166 (ovlan1 == ovlan2)) { 13167 BLOGE(sc, "mf_mode=SD functions %d and %d " 13168 "have the same ovlan (%d)\n", 13169 i, j, ovlan1); 13170 return (1); 13171 } 13172 } 13173 } 13174 } /* MULTI_FUNCTION_SD */ 13175 13176 return (0); 13177 } 13178 13179 static int 13180 bxe_get_mf_cfg_info(struct bxe_softc *sc) 13181 { 13182 struct bxe_mf_info *mf_info = &sc->devinfo.mf_info; 13183 uint32_t val, mac_upper; 13184 uint8_t i, vnic; 13185 13186 /* initialize mf_info defaults */ 13187 mf_info->vnics_per_port = 1; 13188 mf_info->multi_vnics_mode = FALSE; 13189 mf_info->path_has_ovlan = FALSE; 13190 mf_info->mf_mode = SINGLE_FUNCTION; 13191 13192 if (!CHIP_IS_MF_CAP(sc)) { 13193 return (0); 13194 } 13195 13196 if (sc->devinfo.mf_cfg_base == SHMEM_MF_CFG_ADDR_NONE) { 13197 BLOGE(sc, "Invalid mf_cfg_base!\n"); 13198 return (1); 13199 } 13200 13201 /* get the MF mode (switch dependent / independent / single-function) */ 13202 13203 val = SHMEM_RD(sc, dev_info.shared_feature_config.config); 13204 13205 switch (val & SHARED_FEAT_CFG_FORCE_SF_MODE_MASK) 13206 { 13207 case SHARED_FEAT_CFG_FORCE_SF_MODE_SWITCH_INDEPT: 13208 13209 mac_upper = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].mac_upper); 13210 13211 /* check for legal upper mac bytes */ 13212 if (mac_upper != FUNC_MF_CFG_UPPERMAC_DEFAULT) { 13213 mf_info->mf_mode = MULTI_FUNCTION_SI; 13214 } else { 13215 BLOGE(sc, "Invalid config for Switch Independent mode\n"); 13216 } 13217 13218 break; 13219 13220 case SHARED_FEAT_CFG_FORCE_SF_MODE_MF_ALLOWED: 13221 case SHARED_FEAT_CFG_FORCE_SF_MODE_SPIO4: 13222 13223 /* get outer vlan configuration */ 13224 val = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].e1hov_tag); 13225 13226 if ((val & FUNC_MF_CFG_E1HOV_TAG_MASK) != 13227 FUNC_MF_CFG_E1HOV_TAG_DEFAULT) { 13228 mf_info->mf_mode = MULTI_FUNCTION_SD; 13229 } else { 13230 BLOGE(sc, "Invalid config for Switch Dependent mode\n"); 13231 } 13232 13233 break; 13234 13235 case SHARED_FEAT_CFG_FORCE_SF_MODE_FORCED_SF: 13236 13237 /* not in MF mode, vnics_per_port=1 and multi_vnics_mode=FALSE */ 13238 return (0); 13239 13240 case SHARED_FEAT_CFG_FORCE_SF_MODE_AFEX_MODE: 13241 13242 /* 13243 * Mark MF mode as NIV if MCP version includes NPAR-SD support 13244 * and the MAC address is valid. 13245 */ 13246 mac_upper = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].mac_upper); 13247 13248 if ((SHMEM2_HAS(sc, afex_driver_support)) && 13249 (mac_upper != FUNC_MF_CFG_UPPERMAC_DEFAULT)) { 13250 mf_info->mf_mode = MULTI_FUNCTION_AFEX; 13251 } else { 13252 BLOGE(sc, "Invalid config for AFEX mode\n"); 13253 } 13254 13255 break; 13256 13257 default: 13258 13259 BLOGE(sc, "Unknown MF mode (0x%08x)\n", 13260 (val & SHARED_FEAT_CFG_FORCE_SF_MODE_MASK)); 13261 13262 return (1); 13263 } 13264 13265 /* set path mf_mode (which could be different than function mf_mode) */ 13266 if (mf_info->mf_mode == MULTI_FUNCTION_SD) { 13267 mf_info->path_has_ovlan = TRUE; 13268 } else if (mf_info->mf_mode == SINGLE_FUNCTION) { 13269 /* 13270 * Decide on path multi vnics mode. If we're not in MF mode and in 13271 * 4-port mode, this is good enough to check vnic-0 of the other port 13272 * on the same path 13273 */ 13274 if (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) { 13275 uint8_t other_port = !(PORT_ID(sc) & 1); 13276 uint8_t abs_func_other_port = (SC_PATH(sc) + (2 * other_port)); 13277 13278 val = MFCFG_RD(sc, func_mf_config[abs_func_other_port].e1hov_tag); 13279 13280 mf_info->path_has_ovlan = VALID_OVLAN((uint16_t)val) ? 1 : 0; 13281 } 13282 } 13283 13284 if (mf_info->mf_mode == SINGLE_FUNCTION) { 13285 /* invalid MF config */ 13286 if (SC_VN(sc) >= 1) { 13287 BLOGE(sc, "VNIC ID >= 1 in SF mode\n"); 13288 return (1); 13289 } 13290 13291 return (0); 13292 } 13293 13294 /* get the MF configuration */ 13295 mf_info->mf_config[SC_VN(sc)] = 13296 MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].config); 13297 13298 switch(mf_info->mf_mode) 13299 { 13300 case MULTI_FUNCTION_SD: 13301 13302 bxe_get_shmem_mf_cfg_info_sd(sc); 13303 break; 13304 13305 case MULTI_FUNCTION_SI: 13306 13307 bxe_get_shmem_mf_cfg_info_si(sc); 13308 break; 13309 13310 case MULTI_FUNCTION_AFEX: 13311 13312 bxe_get_shmem_mf_cfg_info_niv(sc); 13313 break; 13314 13315 default: 13316 13317 BLOGE(sc, "Get MF config failed (mf_mode=0x%08x)\n", 13318 mf_info->mf_mode); 13319 return (1); 13320 } 13321 13322 /* get the congestion management parameters */ 13323 13324 vnic = 0; 13325 FOREACH_ABS_FUNC_IN_PORT(sc, i) { 13326 /* get min/max bw */ 13327 val = MFCFG_RD(sc, func_mf_config[i].config); 13328 mf_info->min_bw[vnic] = 13329 ((val & FUNC_MF_CFG_MIN_BW_MASK) >> FUNC_MF_CFG_MIN_BW_SHIFT); 13330 mf_info->max_bw[vnic] = 13331 ((val & FUNC_MF_CFG_MAX_BW_MASK) >> FUNC_MF_CFG_MAX_BW_SHIFT); 13332 vnic++; 13333 } 13334 13335 return (bxe_check_valid_mf_cfg(sc)); 13336 } 13337 13338 static int 13339 bxe_get_shmem_info(struct bxe_softc *sc) 13340 { 13341 int port; 13342 uint32_t mac_hi, mac_lo, val; 13343 13344 port = SC_PORT(sc); 13345 mac_hi = mac_lo = 0; 13346 13347 sc->link_params.sc = sc; 13348 sc->link_params.port = port; 13349 13350 /* get the hardware config info */ 13351 sc->devinfo.hw_config = 13352 SHMEM_RD(sc, dev_info.shared_hw_config.config); 13353 sc->devinfo.hw_config2 = 13354 SHMEM_RD(sc, dev_info.shared_hw_config.config2); 13355 13356 sc->link_params.hw_led_mode = 13357 ((sc->devinfo.hw_config & SHARED_HW_CFG_LED_MODE_MASK) >> 13358 SHARED_HW_CFG_LED_MODE_SHIFT); 13359 13360 /* get the port feature config */ 13361 sc->port.config = 13362 SHMEM_RD(sc, dev_info.port_feature_config[port].config); 13363 13364 /* get the link params */ 13365 sc->link_params.speed_cap_mask[0] = 13366 SHMEM_RD(sc, dev_info.port_hw_config[port].speed_capability_mask); 13367 sc->link_params.speed_cap_mask[1] = 13368 SHMEM_RD(sc, dev_info.port_hw_config[port].speed_capability_mask2); 13369 13370 /* get the lane config */ 13371 sc->link_params.lane_config = 13372 SHMEM_RD(sc, dev_info.port_hw_config[port].lane_config); 13373 13374 /* get the link config */ 13375 val = SHMEM_RD(sc, dev_info.port_feature_config[port].link_config); 13376 sc->port.link_config[ELINK_INT_PHY] = val; 13377 sc->link_params.switch_cfg = (val & PORT_FEATURE_CONNECTED_SWITCH_MASK); 13378 sc->port.link_config[ELINK_EXT_PHY1] = 13379 SHMEM_RD(sc, dev_info.port_feature_config[port].link_config2); 13380 13381 /* get the override preemphasis flag and enable it or turn it off */ 13382 val = SHMEM_RD(sc, dev_info.shared_feature_config.config); 13383 if (val & SHARED_FEAT_CFG_OVERRIDE_PREEMPHASIS_CFG_ENABLED) { 13384 sc->link_params.feature_config_flags |= 13385 ELINK_FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED; 13386 } else { 13387 sc->link_params.feature_config_flags &= 13388 ~ELINK_FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED; 13389 } 13390 13391 /* get the initial value of the link params */ 13392 sc->link_params.multi_phy_config = 13393 SHMEM_RD(sc, dev_info.port_hw_config[port].multi_phy_config); 13394 13395 /* get external phy info */ 13396 sc->port.ext_phy_config = 13397 SHMEM_RD(sc, dev_info.port_hw_config[port].external_phy_config); 13398 13399 /* get the multifunction configuration */ 13400 bxe_get_mf_cfg_info(sc); 13401 13402 /* get the mac address */ 13403 if (IS_MF(sc)) { 13404 mac_hi = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].mac_upper); 13405 mac_lo = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].mac_lower); 13406 } else { 13407 mac_hi = SHMEM_RD(sc, dev_info.port_hw_config[port].mac_upper); 13408 mac_lo = SHMEM_RD(sc, dev_info.port_hw_config[port].mac_lower); 13409 } 13410 13411 if ((mac_lo == 0) && (mac_hi == 0)) { 13412 *sc->mac_addr_str = 0; 13413 BLOGE(sc, "No Ethernet address programmed!\n"); 13414 } else { 13415 sc->link_params.mac_addr[0] = (uint8_t)(mac_hi >> 8); 13416 sc->link_params.mac_addr[1] = (uint8_t)(mac_hi); 13417 sc->link_params.mac_addr[2] = (uint8_t)(mac_lo >> 24); 13418 sc->link_params.mac_addr[3] = (uint8_t)(mac_lo >> 16); 13419 sc->link_params.mac_addr[4] = (uint8_t)(mac_lo >> 8); 13420 sc->link_params.mac_addr[5] = (uint8_t)(mac_lo); 13421 snprintf(sc->mac_addr_str, sizeof(sc->mac_addr_str), 13422 "%02x:%02x:%02x:%02x:%02x:%02x", 13423 sc->link_params.mac_addr[0], sc->link_params.mac_addr[1], 13424 sc->link_params.mac_addr[2], sc->link_params.mac_addr[3], 13425 sc->link_params.mac_addr[4], sc->link_params.mac_addr[5]); 13426 BLOGD(sc, DBG_LOAD, "Ethernet address: %s\n", sc->mac_addr_str); 13427 } 13428 13429 return (0); 13430 } 13431 13432 static void 13433 bxe_get_tunable_params(struct bxe_softc *sc) 13434 { 13435 /* sanity checks */ 13436 13437 if ((bxe_interrupt_mode != INTR_MODE_INTX) && 13438 (bxe_interrupt_mode != INTR_MODE_MSI) && 13439 (bxe_interrupt_mode != INTR_MODE_MSIX)) { 13440 BLOGW(sc, "invalid interrupt_mode value (%d)\n", bxe_interrupt_mode); 13441 bxe_interrupt_mode = INTR_MODE_MSIX; 13442 } 13443 13444 if ((bxe_queue_count < 0) || (bxe_queue_count > MAX_RSS_CHAINS)) { 13445 BLOGW(sc, "invalid queue_count value (%d)\n", bxe_queue_count); 13446 bxe_queue_count = 0; 13447 } 13448 13449 if ((bxe_max_rx_bufs < 1) || (bxe_max_rx_bufs > RX_BD_USABLE)) { 13450 if (bxe_max_rx_bufs == 0) { 13451 bxe_max_rx_bufs = RX_BD_USABLE; 13452 } else { 13453 BLOGW(sc, "invalid max_rx_bufs (%d)\n", bxe_max_rx_bufs); 13454 bxe_max_rx_bufs = 2048; 13455 } 13456 } 13457 13458 if ((bxe_hc_rx_ticks < 1) || (bxe_hc_rx_ticks > 100)) { 13459 BLOGW(sc, "invalid hc_rx_ticks (%d)\n", bxe_hc_rx_ticks); 13460 bxe_hc_rx_ticks = 25; 13461 } 13462 13463 if ((bxe_hc_tx_ticks < 1) || (bxe_hc_tx_ticks > 100)) { 13464 BLOGW(sc, "invalid hc_tx_ticks (%d)\n", bxe_hc_tx_ticks); 13465 bxe_hc_tx_ticks = 50; 13466 } 13467 13468 if (bxe_max_aggregation_size == 0) { 13469 bxe_max_aggregation_size = TPA_AGG_SIZE; 13470 } 13471 13472 if (bxe_max_aggregation_size > 0xffff) { 13473 BLOGW(sc, "invalid max_aggregation_size (%d)\n", 13474 bxe_max_aggregation_size); 13475 bxe_max_aggregation_size = TPA_AGG_SIZE; 13476 } 13477 13478 if ((bxe_mrrs < -1) || (bxe_mrrs > 3)) { 13479 BLOGW(sc, "invalid mrrs (%d)\n", bxe_mrrs); 13480 bxe_mrrs = -1; 13481 } 13482 13483 if ((bxe_autogreeen < 0) || (bxe_autogreeen > 2)) { 13484 BLOGW(sc, "invalid autogreeen (%d)\n", bxe_autogreeen); 13485 bxe_autogreeen = 0; 13486 } 13487 13488 if ((bxe_udp_rss < 0) || (bxe_udp_rss > 1)) { 13489 BLOGW(sc, "invalid udp_rss (%d)\n", bxe_udp_rss); 13490 bxe_udp_rss = 0; 13491 } 13492 13493 /* pull in user settings */ 13494 13495 sc->interrupt_mode = bxe_interrupt_mode; 13496 sc->max_rx_bufs = bxe_max_rx_bufs; 13497 sc->hc_rx_ticks = bxe_hc_rx_ticks; 13498 sc->hc_tx_ticks = bxe_hc_tx_ticks; 13499 sc->max_aggregation_size = bxe_max_aggregation_size; 13500 sc->mrrs = bxe_mrrs; 13501 sc->autogreeen = bxe_autogreeen; 13502 sc->udp_rss = bxe_udp_rss; 13503 13504 if (bxe_interrupt_mode == INTR_MODE_INTX) { 13505 sc->num_queues = 1; 13506 } else { /* INTR_MODE_MSI or INTR_MODE_MSIX */ 13507 sc->num_queues = 13508 min((bxe_queue_count ? bxe_queue_count : mp_ncpus), 13509 MAX_RSS_CHAINS); 13510 if (sc->num_queues > mp_ncpus) { 13511 sc->num_queues = mp_ncpus; 13512 } 13513 } 13514 13515 BLOGD(sc, DBG_LOAD, 13516 "User Config: " 13517 "debug=0x%lx " 13518 "interrupt_mode=%d " 13519 "queue_count=%d " 13520 "hc_rx_ticks=%d " 13521 "hc_tx_ticks=%d " 13522 "rx_budget=%d " 13523 "max_aggregation_size=%d " 13524 "mrrs=%d " 13525 "autogreeen=%d " 13526 "udp_rss=%d\n", 13527 bxe_debug, 13528 sc->interrupt_mode, 13529 sc->num_queues, 13530 sc->hc_rx_ticks, 13531 sc->hc_tx_ticks, 13532 bxe_rx_budget, 13533 sc->max_aggregation_size, 13534 sc->mrrs, 13535 sc->autogreeen, 13536 sc->udp_rss); 13537 } 13538 13539 static int 13540 bxe_media_detect(struct bxe_softc *sc) 13541 { 13542 int port_type; 13543 uint32_t phy_idx = bxe_get_cur_phy_idx(sc); 13544 13545 switch (sc->link_params.phy[phy_idx].media_type) { 13546 case ELINK_ETH_PHY_SFPP_10G_FIBER: 13547 case ELINK_ETH_PHY_XFP_FIBER: 13548 BLOGI(sc, "Found 10Gb Fiber media.\n"); 13549 sc->media = IFM_10G_SR; 13550 port_type = PORT_FIBRE; 13551 break; 13552 case ELINK_ETH_PHY_SFP_1G_FIBER: 13553 BLOGI(sc, "Found 1Gb Fiber media.\n"); 13554 sc->media = IFM_1000_SX; 13555 port_type = PORT_FIBRE; 13556 break; 13557 case ELINK_ETH_PHY_KR: 13558 case ELINK_ETH_PHY_CX4: 13559 BLOGI(sc, "Found 10GBase-CX4 media.\n"); 13560 sc->media = IFM_10G_CX4; 13561 port_type = PORT_FIBRE; 13562 break; 13563 case ELINK_ETH_PHY_DA_TWINAX: 13564 BLOGI(sc, "Found 10Gb Twinax media.\n"); 13565 sc->media = IFM_10G_TWINAX; 13566 port_type = PORT_DA; 13567 break; 13568 case ELINK_ETH_PHY_BASE_T: 13569 if (sc->link_params.speed_cap_mask[0] & 13570 PORT_HW_CFG_SPEED_CAPABILITY_D0_10G) { 13571 BLOGI(sc, "Found 10GBase-T media.\n"); 13572 sc->media = IFM_10G_T; 13573 port_type = PORT_TP; 13574 } else { 13575 BLOGI(sc, "Found 1000Base-T media.\n"); 13576 sc->media = IFM_1000_T; 13577 port_type = PORT_TP; 13578 } 13579 break; 13580 case ELINK_ETH_PHY_NOT_PRESENT: 13581 BLOGI(sc, "Media not present.\n"); 13582 sc->media = 0; 13583 port_type = PORT_OTHER; 13584 break; 13585 case ELINK_ETH_PHY_UNSPECIFIED: 13586 default: 13587 BLOGI(sc, "Unknown media!\n"); 13588 sc->media = 0; 13589 port_type = PORT_OTHER; 13590 break; 13591 } 13592 return port_type; 13593 } 13594 13595 #define GET_FIELD(value, fname) \ 13596 (((value) & (fname##_MASK)) >> (fname##_SHIFT)) 13597 #define IGU_FID(val) GET_FIELD((val), IGU_REG_MAPPING_MEMORY_FID) 13598 #define IGU_VEC(val) GET_FIELD((val), IGU_REG_MAPPING_MEMORY_VECTOR) 13599 13600 static int 13601 bxe_get_igu_cam_info(struct bxe_softc *sc) 13602 { 13603 int pfid = SC_FUNC(sc); 13604 int igu_sb_id; 13605 uint32_t val; 13606 uint8_t fid, igu_sb_cnt = 0; 13607 13608 sc->igu_base_sb = 0xff; 13609 13610 if (CHIP_INT_MODE_IS_BC(sc)) { 13611 int vn = SC_VN(sc); 13612 igu_sb_cnt = sc->igu_sb_cnt; 13613 sc->igu_base_sb = ((CHIP_IS_MODE_4_PORT(sc) ? pfid : vn) * 13614 FP_SB_MAX_E1x); 13615 sc->igu_dsb_id = (E1HVN_MAX * FP_SB_MAX_E1x + 13616 (CHIP_IS_MODE_4_PORT(sc) ? pfid : vn)); 13617 return (0); 13618 } 13619 13620 /* IGU in normal mode - read CAM */ 13621 for (igu_sb_id = 0; 13622 igu_sb_id < IGU_REG_MAPPING_MEMORY_SIZE; 13623 igu_sb_id++) { 13624 val = REG_RD(sc, IGU_REG_MAPPING_MEMORY + igu_sb_id * 4); 13625 if (!(val & IGU_REG_MAPPING_MEMORY_VALID)) { 13626 continue; 13627 } 13628 fid = IGU_FID(val); 13629 if ((fid & IGU_FID_ENCODE_IS_PF)) { 13630 if ((fid & IGU_FID_PF_NUM_MASK) != pfid) { 13631 continue; 13632 } 13633 if (IGU_VEC(val) == 0) { 13634 /* default status block */ 13635 sc->igu_dsb_id = igu_sb_id; 13636 } else { 13637 if (sc->igu_base_sb == 0xff) { 13638 sc->igu_base_sb = igu_sb_id; 13639 } 13640 igu_sb_cnt++; 13641 } 13642 } 13643 } 13644 13645 /* 13646 * Due to new PF resource allocation by MFW T7.4 and above, it's optional 13647 * that number of CAM entries will not be equal to the value advertised in 13648 * PCI. Driver should use the minimal value of both as the actual status 13649 * block count 13650 */ 13651 sc->igu_sb_cnt = min(sc->igu_sb_cnt, igu_sb_cnt); 13652 13653 if (igu_sb_cnt == 0) { 13654 BLOGE(sc, "CAM configuration error\n"); 13655 return (-1); 13656 } 13657 13658 return (0); 13659 } 13660 13661 /* 13662 * Gather various information from the device config space, the device itself, 13663 * shmem, and the user input. 13664 */ 13665 static int 13666 bxe_get_device_info(struct bxe_softc *sc) 13667 { 13668 uint32_t val; 13669 int rc; 13670 13671 /* Get the data for the device */ 13672 sc->devinfo.vendor_id = pci_get_vendor(sc->dev); 13673 sc->devinfo.device_id = pci_get_device(sc->dev); 13674 sc->devinfo.subvendor_id = pci_get_subvendor(sc->dev); 13675 sc->devinfo.subdevice_id = pci_get_subdevice(sc->dev); 13676 13677 /* get the chip revision (chip metal comes from pci config space) */ 13678 sc->devinfo.chip_id = 13679 sc->link_params.chip_id = 13680 (((REG_RD(sc, MISC_REG_CHIP_NUM) & 0xffff) << 16) | 13681 ((REG_RD(sc, MISC_REG_CHIP_REV) & 0xf) << 12) | 13682 (((REG_RD(sc, PCICFG_OFFSET + PCI_ID_VAL3) >> 24) & 0xf) << 4) | 13683 ((REG_RD(sc, MISC_REG_BOND_ID) & 0xf) << 0)); 13684 13685 /* force 57811 according to MISC register */ 13686 if (REG_RD(sc, MISC_REG_CHIP_TYPE) & MISC_REG_CHIP_TYPE_57811_MASK) { 13687 if (CHIP_IS_57810(sc)) { 13688 sc->devinfo.chip_id = ((CHIP_NUM_57811 << 16) | 13689 (sc->devinfo.chip_id & 0x0000ffff)); 13690 } else if (CHIP_IS_57810_MF(sc)) { 13691 sc->devinfo.chip_id = ((CHIP_NUM_57811_MF << 16) | 13692 (sc->devinfo.chip_id & 0x0000ffff)); 13693 } 13694 sc->devinfo.chip_id |= 0x1; 13695 } 13696 13697 BLOGD(sc, DBG_LOAD, 13698 "chip_id=0x%08x (num=0x%04x rev=0x%01x metal=0x%02x bond=0x%01x)\n", 13699 sc->devinfo.chip_id, 13700 ((sc->devinfo.chip_id >> 16) & 0xffff), 13701 ((sc->devinfo.chip_id >> 12) & 0xf), 13702 ((sc->devinfo.chip_id >> 4) & 0xff), 13703 ((sc->devinfo.chip_id >> 0) & 0xf)); 13704 13705 val = (REG_RD(sc, 0x2874) & 0x55); 13706 if ((sc->devinfo.chip_id & 0x1) || 13707 (CHIP_IS_E1(sc) && val) || 13708 (CHIP_IS_E1H(sc) && (val == 0x55))) { 13709 sc->flags |= BXE_ONE_PORT_FLAG; 13710 BLOGD(sc, DBG_LOAD, "single port device\n"); 13711 } 13712 13713 /* set the doorbell size */ 13714 sc->doorbell_size = (1 << BXE_DB_SHIFT); 13715 13716 /* determine whether the device is in 2 port or 4 port mode */ 13717 sc->devinfo.chip_port_mode = CHIP_PORT_MODE_NONE; /* E1 & E1h*/ 13718 if (CHIP_IS_E2E3(sc)) { 13719 /* 13720 * Read port4mode_en_ovwr[0]: 13721 * If 1, four port mode is in port4mode_en_ovwr[1]. 13722 * If 0, four port mode is in port4mode_en[0]. 13723 */ 13724 val = REG_RD(sc, MISC_REG_PORT4MODE_EN_OVWR); 13725 if (val & 1) { 13726 val = ((val >> 1) & 1); 13727 } else { 13728 val = REG_RD(sc, MISC_REG_PORT4MODE_EN); 13729 } 13730 13731 sc->devinfo.chip_port_mode = 13732 (val) ? CHIP_4_PORT_MODE : CHIP_2_PORT_MODE; 13733 13734 BLOGD(sc, DBG_LOAD, "Port mode = %s\n", (val) ? "4" : "2"); 13735 } 13736 13737 /* get the function and path info for the device */ 13738 bxe_get_function_num(sc); 13739 13740 /* get the shared memory base address */ 13741 sc->devinfo.shmem_base = 13742 sc->link_params.shmem_base = 13743 REG_RD(sc, MISC_REG_SHARED_MEM_ADDR); 13744 sc->devinfo.shmem2_base = 13745 REG_RD(sc, (SC_PATH(sc) ? MISC_REG_GENERIC_CR_1 : 13746 MISC_REG_GENERIC_CR_0)); 13747 13748 BLOGD(sc, DBG_LOAD, "shmem_base=0x%08x, shmem2_base=0x%08x\n", 13749 sc->devinfo.shmem_base, sc->devinfo.shmem2_base); 13750 13751 if (!sc->devinfo.shmem_base) { 13752 /* this should ONLY prevent upcoming shmem reads */ 13753 BLOGI(sc, "MCP not active\n"); 13754 sc->flags |= BXE_NO_MCP_FLAG; 13755 return (0); 13756 } 13757 13758 /* make sure the shared memory contents are valid */ 13759 val = SHMEM_RD(sc, validity_map[SC_PORT(sc)]); 13760 if ((val & (SHR_MEM_VALIDITY_DEV_INFO | SHR_MEM_VALIDITY_MB)) != 13761 (SHR_MEM_VALIDITY_DEV_INFO | SHR_MEM_VALIDITY_MB)) { 13762 BLOGE(sc, "Invalid SHMEM validity signature: 0x%08x\n", val); 13763 return (0); 13764 } 13765 BLOGD(sc, DBG_LOAD, "Valid SHMEM validity signature: 0x%08x\n", val); 13766 13767 /* get the bootcode version */ 13768 sc->devinfo.bc_ver = SHMEM_RD(sc, dev_info.bc_rev); 13769 snprintf(sc->devinfo.bc_ver_str, 13770 sizeof(sc->devinfo.bc_ver_str), 13771 "%d.%d.%d", 13772 ((sc->devinfo.bc_ver >> 24) & 0xff), 13773 ((sc->devinfo.bc_ver >> 16) & 0xff), 13774 ((sc->devinfo.bc_ver >> 8) & 0xff)); 13775 BLOGD(sc, DBG_LOAD, "Bootcode version: %s\n", sc->devinfo.bc_ver_str); 13776 13777 /* get the bootcode shmem address */ 13778 sc->devinfo.mf_cfg_base = bxe_get_shmem_mf_cfg_base(sc); 13779 BLOGD(sc, DBG_LOAD, "mf_cfg_base=0x08%x \n", sc->devinfo.mf_cfg_base); 13780 13781 /* clean indirect addresses as they're not used */ 13782 pci_write_config(sc->dev, PCICFG_GRC_ADDRESS, 0, 4); 13783 if (IS_PF(sc)) { 13784 REG_WR(sc, PXP2_REG_PGL_ADDR_88_F0, 0); 13785 REG_WR(sc, PXP2_REG_PGL_ADDR_8C_F0, 0); 13786 REG_WR(sc, PXP2_REG_PGL_ADDR_90_F0, 0); 13787 REG_WR(sc, PXP2_REG_PGL_ADDR_94_F0, 0); 13788 if (CHIP_IS_E1x(sc)) { 13789 REG_WR(sc, PXP2_REG_PGL_ADDR_88_F1, 0); 13790 REG_WR(sc, PXP2_REG_PGL_ADDR_8C_F1, 0); 13791 REG_WR(sc, PXP2_REG_PGL_ADDR_90_F1, 0); 13792 REG_WR(sc, PXP2_REG_PGL_ADDR_94_F1, 0); 13793 } 13794 13795 /* 13796 * Enable internal target-read (in case we are probed after PF 13797 * FLR). Must be done prior to any BAR read access. Only for 13798 * 57712 and up 13799 */ 13800 if (!CHIP_IS_E1x(sc)) { 13801 REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1); 13802 } 13803 } 13804 13805 /* get the nvram size */ 13806 val = REG_RD(sc, MCP_REG_MCPR_NVM_CFG4); 13807 sc->devinfo.flash_size = 13808 (NVRAM_1MB_SIZE << (val & MCPR_NVM_CFG4_FLASH_SIZE)); 13809 BLOGD(sc, DBG_LOAD, "nvram flash size: %d\n", sc->devinfo.flash_size); 13810 13811 /* get PCI capabilites */ 13812 bxe_probe_pci_caps(sc); 13813 13814 bxe_set_power_state(sc, PCI_PM_D0); 13815 13816 /* get various configuration parameters from shmem */ 13817 bxe_get_shmem_info(sc); 13818 13819 if (sc->devinfo.pcie_msix_cap_reg != 0) { 13820 val = pci_read_config(sc->dev, 13821 (sc->devinfo.pcie_msix_cap_reg + 13822 PCIR_MSIX_CTRL), 13823 2); 13824 sc->igu_sb_cnt = (val & PCIM_MSIXCTRL_TABLE_SIZE); 13825 } else { 13826 sc->igu_sb_cnt = 1; 13827 } 13828 13829 sc->igu_base_addr = BAR_IGU_INTMEM; 13830 13831 /* initialize IGU parameters */ 13832 if (CHIP_IS_E1x(sc)) { 13833 sc->devinfo.int_block = INT_BLOCK_HC; 13834 sc->igu_dsb_id = DEF_SB_IGU_ID; 13835 sc->igu_base_sb = 0; 13836 } else { 13837 sc->devinfo.int_block = INT_BLOCK_IGU; 13838 13839 /* do not allow device reset during IGU info preocessing */ 13840 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RESET); 13841 13842 val = REG_RD(sc, IGU_REG_BLOCK_CONFIGURATION); 13843 13844 if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) { 13845 int tout = 5000; 13846 13847 BLOGD(sc, DBG_LOAD, "FORCING IGU Normal Mode\n"); 13848 13849 val &= ~(IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN); 13850 REG_WR(sc, IGU_REG_BLOCK_CONFIGURATION, val); 13851 REG_WR(sc, IGU_REG_RESET_MEMORIES, 0x7f); 13852 13853 while (tout && REG_RD(sc, IGU_REG_RESET_MEMORIES)) { 13854 tout--; 13855 DELAY(1000); 13856 } 13857 13858 if (REG_RD(sc, IGU_REG_RESET_MEMORIES)) { 13859 BLOGD(sc, DBG_LOAD, "FORCING IGU Normal Mode failed!!!\n"); 13860 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RESET); 13861 return (-1); 13862 } 13863 } 13864 13865 if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) { 13866 BLOGD(sc, DBG_LOAD, "IGU Backward Compatible Mode\n"); 13867 sc->devinfo.int_block |= INT_BLOCK_MODE_BW_COMP; 13868 } else { 13869 BLOGD(sc, DBG_LOAD, "IGU Normal Mode\n"); 13870 } 13871 13872 rc = bxe_get_igu_cam_info(sc); 13873 13874 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RESET); 13875 13876 if (rc) { 13877 return (rc); 13878 } 13879 } 13880 13881 /* 13882 * Get base FW non-default (fast path) status block ID. This value is 13883 * used to initialize the fw_sb_id saved on the fp/queue structure to 13884 * determine the id used by the FW. 13885 */ 13886 if (CHIP_IS_E1x(sc)) { 13887 sc->base_fw_ndsb = ((SC_PORT(sc) * FP_SB_MAX_E1x) + SC_L_ID(sc)); 13888 } else { 13889 /* 13890 * 57712+ - We currently use one FW SB per IGU SB (Rx and Tx of 13891 * the same queue are indicated on the same IGU SB). So we prefer 13892 * FW and IGU SBs to be the same value. 13893 */ 13894 sc->base_fw_ndsb = sc->igu_base_sb; 13895 } 13896 13897 BLOGD(sc, DBG_LOAD, 13898 "igu_dsb_id=%d igu_base_sb=%d igu_sb_cnt=%d base_fw_ndsb=%d\n", 13899 sc->igu_dsb_id, sc->igu_base_sb, 13900 sc->igu_sb_cnt, sc->base_fw_ndsb); 13901 13902 elink_phy_probe(&sc->link_params); 13903 13904 return (0); 13905 } 13906 13907 static void 13908 bxe_link_settings_supported(struct bxe_softc *sc, 13909 uint32_t switch_cfg) 13910 { 13911 uint32_t cfg_size = 0; 13912 uint32_t idx; 13913 uint8_t port = SC_PORT(sc); 13914 13915 /* aggregation of supported attributes of all external phys */ 13916 sc->port.supported[0] = 0; 13917 sc->port.supported[1] = 0; 13918 13919 switch (sc->link_params.num_phys) { 13920 case 1: 13921 sc->port.supported[0] = sc->link_params.phy[ELINK_INT_PHY].supported; 13922 cfg_size = 1; 13923 break; 13924 case 2: 13925 sc->port.supported[0] = sc->link_params.phy[ELINK_EXT_PHY1].supported; 13926 cfg_size = 1; 13927 break; 13928 case 3: 13929 if (sc->link_params.multi_phy_config & 13930 PORT_HW_CFG_PHY_SWAPPED_ENABLED) { 13931 sc->port.supported[1] = 13932 sc->link_params.phy[ELINK_EXT_PHY1].supported; 13933 sc->port.supported[0] = 13934 sc->link_params.phy[ELINK_EXT_PHY2].supported; 13935 } else { 13936 sc->port.supported[0] = 13937 sc->link_params.phy[ELINK_EXT_PHY1].supported; 13938 sc->port.supported[1] = 13939 sc->link_params.phy[ELINK_EXT_PHY2].supported; 13940 } 13941 cfg_size = 2; 13942 break; 13943 } 13944 13945 if (!(sc->port.supported[0] || sc->port.supported[1])) { 13946 BLOGE(sc, "Invalid phy config in NVRAM (PHY1=0x%08x PHY2=0x%08x)\n", 13947 SHMEM_RD(sc, 13948 dev_info.port_hw_config[port].external_phy_config), 13949 SHMEM_RD(sc, 13950 dev_info.port_hw_config[port].external_phy_config2)); 13951 return; 13952 } 13953 13954 if (CHIP_IS_E3(sc)) 13955 sc->port.phy_addr = REG_RD(sc, MISC_REG_WC0_CTRL_PHY_ADDR); 13956 else { 13957 switch (switch_cfg) { 13958 case ELINK_SWITCH_CFG_1G: 13959 sc->port.phy_addr = 13960 REG_RD(sc, NIG_REG_SERDES0_CTRL_PHY_ADDR + port*0x10); 13961 break; 13962 case ELINK_SWITCH_CFG_10G: 13963 sc->port.phy_addr = 13964 REG_RD(sc, NIG_REG_XGXS0_CTRL_PHY_ADDR + port*0x18); 13965 break; 13966 default: 13967 BLOGE(sc, "Invalid switch config in link_config=0x%08x\n", 13968 sc->port.link_config[0]); 13969 return; 13970 } 13971 } 13972 13973 BLOGD(sc, DBG_LOAD, "PHY addr 0x%08x\n", sc->port.phy_addr); 13974 13975 /* mask what we support according to speed_cap_mask per configuration */ 13976 for (idx = 0; idx < cfg_size; idx++) { 13977 if (!(sc->link_params.speed_cap_mask[idx] & 13978 PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_HALF)) { 13979 sc->port.supported[idx] &= ~ELINK_SUPPORTED_10baseT_Half; 13980 } 13981 13982 if (!(sc->link_params.speed_cap_mask[idx] & 13983 PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_FULL)) { 13984 sc->port.supported[idx] &= ~ELINK_SUPPORTED_10baseT_Full; 13985 } 13986 13987 if (!(sc->link_params.speed_cap_mask[idx] & 13988 PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_HALF)) { 13989 sc->port.supported[idx] &= ~ELINK_SUPPORTED_100baseT_Half; 13990 } 13991 13992 if (!(sc->link_params.speed_cap_mask[idx] & 13993 PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_FULL)) { 13994 sc->port.supported[idx] &= ~ELINK_SUPPORTED_100baseT_Full; 13995 } 13996 13997 if (!(sc->link_params.speed_cap_mask[idx] & 13998 PORT_HW_CFG_SPEED_CAPABILITY_D0_1G)) { 13999 sc->port.supported[idx] &= ~ELINK_SUPPORTED_1000baseT_Full; 14000 } 14001 14002 if (!(sc->link_params.speed_cap_mask[idx] & 14003 PORT_HW_CFG_SPEED_CAPABILITY_D0_2_5G)) { 14004 sc->port.supported[idx] &= ~ELINK_SUPPORTED_2500baseX_Full; 14005 } 14006 14007 if (!(sc->link_params.speed_cap_mask[idx] & 14008 PORT_HW_CFG_SPEED_CAPABILITY_D0_10G)) { 14009 sc->port.supported[idx] &= ~ELINK_SUPPORTED_10000baseT_Full; 14010 } 14011 14012 if (!(sc->link_params.speed_cap_mask[idx] & 14013 PORT_HW_CFG_SPEED_CAPABILITY_D0_20G)) { 14014 sc->port.supported[idx] &= ~ELINK_SUPPORTED_20000baseKR2_Full; 14015 } 14016 } 14017 14018 BLOGD(sc, DBG_LOAD, "PHY supported 0=0x%08x 1=0x%08x\n", 14019 sc->port.supported[0], sc->port.supported[1]); 14020 } 14021 14022 static void 14023 bxe_link_settings_requested(struct bxe_softc *sc) 14024 { 14025 uint32_t link_config; 14026 uint32_t idx; 14027 uint32_t cfg_size = 0; 14028 14029 sc->port.advertising[0] = 0; 14030 sc->port.advertising[1] = 0; 14031 14032 switch (sc->link_params.num_phys) { 14033 case 1: 14034 case 2: 14035 cfg_size = 1; 14036 break; 14037 case 3: 14038 cfg_size = 2; 14039 break; 14040 } 14041 14042 for (idx = 0; idx < cfg_size; idx++) { 14043 sc->link_params.req_duplex[idx] = DUPLEX_FULL; 14044 link_config = sc->port.link_config[idx]; 14045 14046 switch (link_config & PORT_FEATURE_LINK_SPEED_MASK) { 14047 case PORT_FEATURE_LINK_SPEED_AUTO: 14048 if (sc->port.supported[idx] & ELINK_SUPPORTED_Autoneg) { 14049 sc->link_params.req_line_speed[idx] = ELINK_SPEED_AUTO_NEG; 14050 sc->port.advertising[idx] |= sc->port.supported[idx]; 14051 if (sc->link_params.phy[ELINK_EXT_PHY1].type == 14052 PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM84833) 14053 sc->port.advertising[idx] |= 14054 (ELINK_SUPPORTED_100baseT_Half | 14055 ELINK_SUPPORTED_100baseT_Full); 14056 } else { 14057 /* force 10G, no AN */ 14058 sc->link_params.req_line_speed[idx] = ELINK_SPEED_10000; 14059 sc->port.advertising[idx] |= 14060 (ADVERTISED_10000baseT_Full | ADVERTISED_FIBRE); 14061 continue; 14062 } 14063 break; 14064 14065 case PORT_FEATURE_LINK_SPEED_10M_FULL: 14066 if (sc->port.supported[idx] & ELINK_SUPPORTED_10baseT_Full) { 14067 sc->link_params.req_line_speed[idx] = ELINK_SPEED_10; 14068 sc->port.advertising[idx] |= (ADVERTISED_10baseT_Full | 14069 ADVERTISED_TP); 14070 } else { 14071 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x " 14072 "speed_cap_mask=0x%08x\n", 14073 link_config, sc->link_params.speed_cap_mask[idx]); 14074 return; 14075 } 14076 break; 14077 14078 case PORT_FEATURE_LINK_SPEED_10M_HALF: 14079 if (sc->port.supported[idx] & ELINK_SUPPORTED_10baseT_Half) { 14080 sc->link_params.req_line_speed[idx] = ELINK_SPEED_10; 14081 sc->link_params.req_duplex[idx] = DUPLEX_HALF; 14082 sc->port.advertising[idx] |= (ADVERTISED_10baseT_Half | 14083 ADVERTISED_TP); 14084 } else { 14085 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x " 14086 "speed_cap_mask=0x%08x\n", 14087 link_config, sc->link_params.speed_cap_mask[idx]); 14088 return; 14089 } 14090 break; 14091 14092 case PORT_FEATURE_LINK_SPEED_100M_FULL: 14093 if (sc->port.supported[idx] & ELINK_SUPPORTED_100baseT_Full) { 14094 sc->link_params.req_line_speed[idx] = ELINK_SPEED_100; 14095 sc->port.advertising[idx] |= (ADVERTISED_100baseT_Full | 14096 ADVERTISED_TP); 14097 } else { 14098 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x " 14099 "speed_cap_mask=0x%08x\n", 14100 link_config, sc->link_params.speed_cap_mask[idx]); 14101 return; 14102 } 14103 break; 14104 14105 case PORT_FEATURE_LINK_SPEED_100M_HALF: 14106 if (sc->port.supported[idx] & ELINK_SUPPORTED_100baseT_Half) { 14107 sc->link_params.req_line_speed[idx] = ELINK_SPEED_100; 14108 sc->link_params.req_duplex[idx] = DUPLEX_HALF; 14109 sc->port.advertising[idx] |= (ADVERTISED_100baseT_Half | 14110 ADVERTISED_TP); 14111 } else { 14112 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x " 14113 "speed_cap_mask=0x%08x\n", 14114 link_config, sc->link_params.speed_cap_mask[idx]); 14115 return; 14116 } 14117 break; 14118 14119 case PORT_FEATURE_LINK_SPEED_1G: 14120 if (sc->port.supported[idx] & ELINK_SUPPORTED_1000baseT_Full) { 14121 sc->link_params.req_line_speed[idx] = ELINK_SPEED_1000; 14122 sc->port.advertising[idx] |= (ADVERTISED_1000baseT_Full | 14123 ADVERTISED_TP); 14124 } else { 14125 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x " 14126 "speed_cap_mask=0x%08x\n", 14127 link_config, sc->link_params.speed_cap_mask[idx]); 14128 return; 14129 } 14130 break; 14131 14132 case PORT_FEATURE_LINK_SPEED_2_5G: 14133 if (sc->port.supported[idx] & ELINK_SUPPORTED_2500baseX_Full) { 14134 sc->link_params.req_line_speed[idx] = ELINK_SPEED_2500; 14135 sc->port.advertising[idx] |= (ADVERTISED_2500baseX_Full | 14136 ADVERTISED_TP); 14137 } else { 14138 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x " 14139 "speed_cap_mask=0x%08x\n", 14140 link_config, sc->link_params.speed_cap_mask[idx]); 14141 return; 14142 } 14143 break; 14144 14145 case PORT_FEATURE_LINK_SPEED_10G_CX4: 14146 if (sc->port.supported[idx] & ELINK_SUPPORTED_10000baseT_Full) { 14147 sc->link_params.req_line_speed[idx] = ELINK_SPEED_10000; 14148 sc->port.advertising[idx] |= (ADVERTISED_10000baseT_Full | 14149 ADVERTISED_FIBRE); 14150 } else { 14151 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x " 14152 "speed_cap_mask=0x%08x\n", 14153 link_config, sc->link_params.speed_cap_mask[idx]); 14154 return; 14155 } 14156 break; 14157 14158 case PORT_FEATURE_LINK_SPEED_20G: 14159 sc->link_params.req_line_speed[idx] = ELINK_SPEED_20000; 14160 break; 14161 14162 default: 14163 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x " 14164 "speed_cap_mask=0x%08x\n", 14165 link_config, sc->link_params.speed_cap_mask[idx]); 14166 sc->link_params.req_line_speed[idx] = ELINK_SPEED_AUTO_NEG; 14167 sc->port.advertising[idx] = sc->port.supported[idx]; 14168 break; 14169 } 14170 14171 sc->link_params.req_flow_ctrl[idx] = 14172 (link_config & PORT_FEATURE_FLOW_CONTROL_MASK); 14173 14174 if (sc->link_params.req_flow_ctrl[idx] == ELINK_FLOW_CTRL_AUTO) { 14175 if (!(sc->port.supported[idx] & ELINK_SUPPORTED_Autoneg)) { 14176 sc->link_params.req_flow_ctrl[idx] = ELINK_FLOW_CTRL_NONE; 14177 } else { 14178 bxe_set_requested_fc(sc); 14179 } 14180 } 14181 14182 BLOGD(sc, DBG_LOAD, "req_line_speed=%d req_duplex=%d " 14183 "req_flow_ctrl=0x%x advertising=0x%x\n", 14184 sc->link_params.req_line_speed[idx], 14185 sc->link_params.req_duplex[idx], 14186 sc->link_params.req_flow_ctrl[idx], 14187 sc->port.advertising[idx]); 14188 } 14189 } 14190 14191 static void 14192 bxe_get_phy_info(struct bxe_softc *sc) 14193 { 14194 uint8_t port = SC_PORT(sc); 14195 uint32_t config = sc->port.config; 14196 uint32_t eee_mode; 14197 14198 /* shmem data already read in bxe_get_shmem_info() */ 14199 14200 BLOGD(sc, DBG_LOAD, "lane_config=0x%08x speed_cap_mask0=0x%08x " 14201 "link_config0=0x%08x\n", 14202 sc->link_params.lane_config, 14203 sc->link_params.speed_cap_mask[0], 14204 sc->port.link_config[0]); 14205 14206 bxe_link_settings_supported(sc, sc->link_params.switch_cfg); 14207 bxe_link_settings_requested(sc); 14208 14209 if (sc->autogreeen == AUTO_GREEN_FORCE_ON) { 14210 sc->link_params.feature_config_flags |= 14211 ELINK_FEATURE_CONFIG_AUTOGREEEN_ENABLED; 14212 } else if (sc->autogreeen == AUTO_GREEN_FORCE_OFF) { 14213 sc->link_params.feature_config_flags &= 14214 ~ELINK_FEATURE_CONFIG_AUTOGREEEN_ENABLED; 14215 } else if (config & PORT_FEAT_CFG_AUTOGREEEN_ENABLED) { 14216 sc->link_params.feature_config_flags |= 14217 ELINK_FEATURE_CONFIG_AUTOGREEEN_ENABLED; 14218 } 14219 14220 /* configure link feature according to nvram value */ 14221 eee_mode = 14222 (((SHMEM_RD(sc, dev_info.port_feature_config[port].eee_power_mode)) & 14223 PORT_FEAT_CFG_EEE_POWER_MODE_MASK) >> 14224 PORT_FEAT_CFG_EEE_POWER_MODE_SHIFT); 14225 if (eee_mode != PORT_FEAT_CFG_EEE_POWER_MODE_DISABLED) { 14226 sc->link_params.eee_mode = (ELINK_EEE_MODE_ADV_LPI | 14227 ELINK_EEE_MODE_ENABLE_LPI | 14228 ELINK_EEE_MODE_OUTPUT_TIME); 14229 } else { 14230 sc->link_params.eee_mode = 0; 14231 } 14232 14233 /* get the media type */ 14234 bxe_media_detect(sc); 14235 } 14236 14237 static void 14238 bxe_get_params(struct bxe_softc *sc) 14239 { 14240 /* get user tunable params */ 14241 bxe_get_tunable_params(sc); 14242 14243 /* select the RX and TX ring sizes */ 14244 sc->tx_ring_size = TX_BD_USABLE; 14245 sc->rx_ring_size = RX_BD_USABLE; 14246 14247 /* XXX disable WoL */ 14248 sc->wol = 0; 14249 } 14250 14251 static void 14252 bxe_set_modes_bitmap(struct bxe_softc *sc) 14253 { 14254 uint32_t flags = 0; 14255 14256 if (CHIP_REV_IS_FPGA(sc)) { 14257 SET_FLAGS(flags, MODE_FPGA); 14258 } else if (CHIP_REV_IS_EMUL(sc)) { 14259 SET_FLAGS(flags, MODE_EMUL); 14260 } else { 14261 SET_FLAGS(flags, MODE_ASIC); 14262 } 14263 14264 if (CHIP_IS_MODE_4_PORT(sc)) { 14265 SET_FLAGS(flags, MODE_PORT4); 14266 } else { 14267 SET_FLAGS(flags, MODE_PORT2); 14268 } 14269 14270 if (CHIP_IS_E2(sc)) { 14271 SET_FLAGS(flags, MODE_E2); 14272 } else if (CHIP_IS_E3(sc)) { 14273 SET_FLAGS(flags, MODE_E3); 14274 if (CHIP_REV(sc) == CHIP_REV_Ax) { 14275 SET_FLAGS(flags, MODE_E3_A0); 14276 } else /*if (CHIP_REV(sc) == CHIP_REV_Bx)*/ { 14277 SET_FLAGS(flags, MODE_E3_B0 | MODE_COS3); 14278 } 14279 } 14280 14281 if (IS_MF(sc)) { 14282 SET_FLAGS(flags, MODE_MF); 14283 switch (sc->devinfo.mf_info.mf_mode) { 14284 case MULTI_FUNCTION_SD: 14285 SET_FLAGS(flags, MODE_MF_SD); 14286 break; 14287 case MULTI_FUNCTION_SI: 14288 SET_FLAGS(flags, MODE_MF_SI); 14289 break; 14290 case MULTI_FUNCTION_AFEX: 14291 SET_FLAGS(flags, MODE_MF_AFEX); 14292 break; 14293 } 14294 } else { 14295 SET_FLAGS(flags, MODE_SF); 14296 } 14297 14298 #if defined(__LITTLE_ENDIAN) 14299 SET_FLAGS(flags, MODE_LITTLE_ENDIAN); 14300 #else /* __BIG_ENDIAN */ 14301 SET_FLAGS(flags, MODE_BIG_ENDIAN); 14302 #endif 14303 14304 INIT_MODE_FLAGS(sc) = flags; 14305 } 14306 14307 static int 14308 bxe_alloc_hsi_mem(struct bxe_softc *sc) 14309 { 14310 struct bxe_fastpath *fp; 14311 bus_addr_t busaddr; 14312 int max_agg_queues; 14313 int max_segments; 14314 bus_size_t max_size; 14315 bus_size_t max_seg_size; 14316 char buf[32]; 14317 int rc; 14318 int i, j; 14319 14320 /* XXX zero out all vars here and call bxe_alloc_hsi_mem on error */ 14321 14322 /* allocate the parent bus DMA tag */ 14323 rc = bus_dma_tag_create(bus_get_dma_tag(sc->dev), /* parent tag */ 14324 1, /* alignment */ 14325 0, /* boundary limit */ 14326 BUS_SPACE_MAXADDR, /* restricted low */ 14327 BUS_SPACE_MAXADDR, /* restricted hi */ 14328 NULL, /* addr filter() */ 14329 NULL, /* addr filter() arg */ 14330 BUS_SPACE_MAXSIZE_32BIT, /* max map size */ 14331 BUS_SPACE_UNRESTRICTED, /* num discontinuous */ 14332 BUS_SPACE_MAXSIZE_32BIT, /* max seg size */ 14333 0, /* flags */ 14334 NULL, /* lock() */ 14335 NULL, /* lock() arg */ 14336 &sc->parent_dma_tag); /* returned dma tag */ 14337 if (rc != 0) { 14338 BLOGE(sc, "Failed to alloc parent DMA tag (%d)!\n", rc); 14339 return (1); 14340 } 14341 14342 /************************/ 14343 /* DEFAULT STATUS BLOCK */ 14344 /************************/ 14345 14346 if (bxe_dma_alloc(sc, sizeof(struct host_sp_status_block), 14347 &sc->def_sb_dma, "default status block") != 0) { 14348 /* XXX */ 14349 bus_dma_tag_destroy(sc->parent_dma_tag); 14350 return (1); 14351 } 14352 14353 sc->def_sb = (struct host_sp_status_block *)sc->def_sb_dma.vaddr; 14354 14355 /***************/ 14356 /* EVENT QUEUE */ 14357 /***************/ 14358 14359 if (bxe_dma_alloc(sc, BCM_PAGE_SIZE, 14360 &sc->eq_dma, "event queue") != 0) { 14361 /* XXX */ 14362 bxe_dma_free(sc, &sc->def_sb_dma); 14363 sc->def_sb = NULL; 14364 bus_dma_tag_destroy(sc->parent_dma_tag); 14365 return (1); 14366 } 14367 14368 sc->eq = (union event_ring_elem * )sc->eq_dma.vaddr; 14369 14370 /*************/ 14371 /* SLOW PATH */ 14372 /*************/ 14373 14374 if (bxe_dma_alloc(sc, sizeof(struct bxe_slowpath), 14375 &sc->sp_dma, "slow path") != 0) { 14376 /* XXX */ 14377 bxe_dma_free(sc, &sc->eq_dma); 14378 sc->eq = NULL; 14379 bxe_dma_free(sc, &sc->def_sb_dma); 14380 sc->def_sb = NULL; 14381 bus_dma_tag_destroy(sc->parent_dma_tag); 14382 return (1); 14383 } 14384 14385 sc->sp = (struct bxe_slowpath *)sc->sp_dma.vaddr; 14386 14387 /*******************/ 14388 /* SLOW PATH QUEUE */ 14389 /*******************/ 14390 14391 if (bxe_dma_alloc(sc, BCM_PAGE_SIZE, 14392 &sc->spq_dma, "slow path queue") != 0) { 14393 /* XXX */ 14394 bxe_dma_free(sc, &sc->sp_dma); 14395 sc->sp = NULL; 14396 bxe_dma_free(sc, &sc->eq_dma); 14397 sc->eq = NULL; 14398 bxe_dma_free(sc, &sc->def_sb_dma); 14399 sc->def_sb = NULL; 14400 bus_dma_tag_destroy(sc->parent_dma_tag); 14401 return (1); 14402 } 14403 14404 sc->spq = (struct eth_spe *)sc->spq_dma.vaddr; 14405 14406 /***************************/ 14407 /* FW DECOMPRESSION BUFFER */ 14408 /***************************/ 14409 14410 if (bxe_dma_alloc(sc, FW_BUF_SIZE, &sc->gz_buf_dma, 14411 "fw decompression buffer") != 0) { 14412 /* XXX */ 14413 bxe_dma_free(sc, &sc->spq_dma); 14414 sc->spq = NULL; 14415 bxe_dma_free(sc, &sc->sp_dma); 14416 sc->sp = NULL; 14417 bxe_dma_free(sc, &sc->eq_dma); 14418 sc->eq = NULL; 14419 bxe_dma_free(sc, &sc->def_sb_dma); 14420 sc->def_sb = NULL; 14421 bus_dma_tag_destroy(sc->parent_dma_tag); 14422 return (1); 14423 } 14424 14425 sc->gz_buf = (void *)sc->gz_buf_dma.vaddr; 14426 14427 if ((sc->gz_strm = 14428 malloc(sizeof(*sc->gz_strm), M_DEVBUF, M_NOWAIT)) == NULL) { 14429 /* XXX */ 14430 bxe_dma_free(sc, &sc->gz_buf_dma); 14431 sc->gz_buf = NULL; 14432 bxe_dma_free(sc, &sc->spq_dma); 14433 sc->spq = NULL; 14434 bxe_dma_free(sc, &sc->sp_dma); 14435 sc->sp = NULL; 14436 bxe_dma_free(sc, &sc->eq_dma); 14437 sc->eq = NULL; 14438 bxe_dma_free(sc, &sc->def_sb_dma); 14439 sc->def_sb = NULL; 14440 bus_dma_tag_destroy(sc->parent_dma_tag); 14441 return (1); 14442 } 14443 14444 /*************/ 14445 /* FASTPATHS */ 14446 /*************/ 14447 14448 /* allocate DMA memory for each fastpath structure */ 14449 for (i = 0; i < sc->num_queues; i++) { 14450 fp = &sc->fp[i]; 14451 fp->sc = sc; 14452 fp->index = i; 14453 14454 /*******************/ 14455 /* FP STATUS BLOCK */ 14456 /*******************/ 14457 14458 snprintf(buf, sizeof(buf), "fp %d status block", i); 14459 if (bxe_dma_alloc(sc, sizeof(union bxe_host_hc_status_block), 14460 &fp->sb_dma, buf) != 0) { 14461 /* XXX unwind and free previous fastpath allocations */ 14462 BLOGE(sc, "Failed to alloc %s\n", buf); 14463 return (1); 14464 } else { 14465 if (CHIP_IS_E2E3(sc)) { 14466 fp->status_block.e2_sb = 14467 (struct host_hc_status_block_e2 *)fp->sb_dma.vaddr; 14468 } else { 14469 fp->status_block.e1x_sb = 14470 (struct host_hc_status_block_e1x *)fp->sb_dma.vaddr; 14471 } 14472 } 14473 14474 /******************/ 14475 /* FP TX BD CHAIN */ 14476 /******************/ 14477 14478 snprintf(buf, sizeof(buf), "fp %d tx bd chain", i); 14479 if (bxe_dma_alloc(sc, (BCM_PAGE_SIZE * TX_BD_NUM_PAGES), 14480 &fp->tx_dma, buf) != 0) { 14481 /* XXX unwind and free previous fastpath allocations */ 14482 BLOGE(sc, "Failed to alloc %s\n", buf); 14483 return (1); 14484 } else { 14485 fp->tx_chain = (union eth_tx_bd_types *)fp->tx_dma.vaddr; 14486 } 14487 14488 /* link together the tx bd chain pages */ 14489 for (j = 1; j <= TX_BD_NUM_PAGES; j++) { 14490 /* index into the tx bd chain array to last entry per page */ 14491 struct eth_tx_next_bd *tx_next_bd = 14492 &fp->tx_chain[TX_BD_TOTAL_PER_PAGE * j - 1].next_bd; 14493 /* point to the next page and wrap from last page */ 14494 busaddr = (fp->tx_dma.paddr + 14495 (BCM_PAGE_SIZE * (j % TX_BD_NUM_PAGES))); 14496 tx_next_bd->addr_hi = htole32(U64_HI(busaddr)); 14497 tx_next_bd->addr_lo = htole32(U64_LO(busaddr)); 14498 } 14499 14500 /******************/ 14501 /* FP RX BD CHAIN */ 14502 /******************/ 14503 14504 snprintf(buf, sizeof(buf), "fp %d rx bd chain", i); 14505 if (bxe_dma_alloc(sc, (BCM_PAGE_SIZE * RX_BD_NUM_PAGES), 14506 &fp->rx_dma, buf) != 0) { 14507 /* XXX unwind and free previous fastpath allocations */ 14508 BLOGE(sc, "Failed to alloc %s\n", buf); 14509 return (1); 14510 } else { 14511 fp->rx_chain = (struct eth_rx_bd *)fp->rx_dma.vaddr; 14512 } 14513 14514 /* link together the rx bd chain pages */ 14515 for (j = 1; j <= RX_BD_NUM_PAGES; j++) { 14516 /* index into the rx bd chain array to last entry per page */ 14517 struct eth_rx_bd *rx_bd = 14518 &fp->rx_chain[RX_BD_TOTAL_PER_PAGE * j - 2]; 14519 /* point to the next page and wrap from last page */ 14520 busaddr = (fp->rx_dma.paddr + 14521 (BCM_PAGE_SIZE * (j % RX_BD_NUM_PAGES))); 14522 rx_bd->addr_hi = htole32(U64_HI(busaddr)); 14523 rx_bd->addr_lo = htole32(U64_LO(busaddr)); 14524 } 14525 14526 /*******************/ 14527 /* FP RX RCQ CHAIN */ 14528 /*******************/ 14529 14530 snprintf(buf, sizeof(buf), "fp %d rcq chain", i); 14531 if (bxe_dma_alloc(sc, (BCM_PAGE_SIZE * RCQ_NUM_PAGES), 14532 &fp->rcq_dma, buf) != 0) { 14533 /* XXX unwind and free previous fastpath allocations */ 14534 BLOGE(sc, "Failed to alloc %s\n", buf); 14535 return (1); 14536 } else { 14537 fp->rcq_chain = (union eth_rx_cqe *)fp->rcq_dma.vaddr; 14538 } 14539 14540 /* link together the rcq chain pages */ 14541 for (j = 1; j <= RCQ_NUM_PAGES; j++) { 14542 /* index into the rcq chain array to last entry per page */ 14543 struct eth_rx_cqe_next_page *rx_cqe_next = 14544 (struct eth_rx_cqe_next_page *) 14545 &fp->rcq_chain[RCQ_TOTAL_PER_PAGE * j - 1]; 14546 /* point to the next page and wrap from last page */ 14547 busaddr = (fp->rcq_dma.paddr + 14548 (BCM_PAGE_SIZE * (j % RCQ_NUM_PAGES))); 14549 rx_cqe_next->addr_hi = htole32(U64_HI(busaddr)); 14550 rx_cqe_next->addr_lo = htole32(U64_LO(busaddr)); 14551 } 14552 14553 /*******************/ 14554 /* FP RX SGE CHAIN */ 14555 /*******************/ 14556 14557 snprintf(buf, sizeof(buf), "fp %d sge chain", i); 14558 if (bxe_dma_alloc(sc, (BCM_PAGE_SIZE * RX_SGE_NUM_PAGES), 14559 &fp->rx_sge_dma, buf) != 0) { 14560 /* XXX unwind and free previous fastpath allocations */ 14561 BLOGE(sc, "Failed to alloc %s\n", buf); 14562 return (1); 14563 } else { 14564 fp->rx_sge_chain = (struct eth_rx_sge *)fp->rx_sge_dma.vaddr; 14565 } 14566 14567 /* link together the sge chain pages */ 14568 for (j = 1; j <= RX_SGE_NUM_PAGES; j++) { 14569 /* index into the rcq chain array to last entry per page */ 14570 struct eth_rx_sge *rx_sge = 14571 &fp->rx_sge_chain[RX_SGE_TOTAL_PER_PAGE * j - 2]; 14572 /* point to the next page and wrap from last page */ 14573 busaddr = (fp->rx_sge_dma.paddr + 14574 (BCM_PAGE_SIZE * (j % RX_SGE_NUM_PAGES))); 14575 rx_sge->addr_hi = htole32(U64_HI(busaddr)); 14576 rx_sge->addr_lo = htole32(U64_LO(busaddr)); 14577 } 14578 14579 /***********************/ 14580 /* FP TX MBUF DMA MAPS */ 14581 /***********************/ 14582 14583 /* set required sizes before mapping to conserve resources */ 14584 if (if_getcapenable(sc->ifp) & (IFCAP_TSO4 | IFCAP_TSO6)) { 14585 max_size = BXE_TSO_MAX_SIZE; 14586 max_segments = BXE_TSO_MAX_SEGMENTS; 14587 max_seg_size = BXE_TSO_MAX_SEG_SIZE; 14588 } else { 14589 max_size = (MCLBYTES * BXE_MAX_SEGMENTS); 14590 max_segments = BXE_MAX_SEGMENTS; 14591 max_seg_size = MCLBYTES; 14592 } 14593 14594 /* create a dma tag for the tx mbufs */ 14595 rc = bus_dma_tag_create(sc->parent_dma_tag, /* parent tag */ 14596 1, /* alignment */ 14597 0, /* boundary limit */ 14598 BUS_SPACE_MAXADDR, /* restricted low */ 14599 BUS_SPACE_MAXADDR, /* restricted hi */ 14600 NULL, /* addr filter() */ 14601 NULL, /* addr filter() arg */ 14602 max_size, /* max map size */ 14603 max_segments, /* num discontinuous */ 14604 max_seg_size, /* max seg size */ 14605 0, /* flags */ 14606 NULL, /* lock() */ 14607 NULL, /* lock() arg */ 14608 &fp->tx_mbuf_tag); /* returned dma tag */ 14609 if (rc != 0) { 14610 /* XXX unwind and free previous fastpath allocations */ 14611 BLOGE(sc, "Failed to create dma tag for " 14612 "'fp %d tx mbufs' (%d)\n", i, rc); 14613 return (1); 14614 } 14615 14616 /* create dma maps for each of the tx mbuf clusters */ 14617 for (j = 0; j < TX_BD_TOTAL; j++) { 14618 if (bus_dmamap_create(fp->tx_mbuf_tag, 14619 BUS_DMA_NOWAIT, 14620 &fp->tx_mbuf_chain[j].m_map)) { 14621 /* XXX unwind and free previous fastpath allocations */ 14622 BLOGE(sc, "Failed to create dma map for " 14623 "'fp %d tx mbuf %d' (%d)\n", i, j, rc); 14624 return (1); 14625 } 14626 } 14627 14628 /***********************/ 14629 /* FP RX MBUF DMA MAPS */ 14630 /***********************/ 14631 14632 /* create a dma tag for the rx mbufs */ 14633 rc = bus_dma_tag_create(sc->parent_dma_tag, /* parent tag */ 14634 1, /* alignment */ 14635 0, /* boundary limit */ 14636 BUS_SPACE_MAXADDR, /* restricted low */ 14637 BUS_SPACE_MAXADDR, /* restricted hi */ 14638 NULL, /* addr filter() */ 14639 NULL, /* addr filter() arg */ 14640 MJUM9BYTES, /* max map size */ 14641 1, /* num discontinuous */ 14642 MJUM9BYTES, /* max seg size */ 14643 0, /* flags */ 14644 NULL, /* lock() */ 14645 NULL, /* lock() arg */ 14646 &fp->rx_mbuf_tag); /* returned dma tag */ 14647 if (rc != 0) { 14648 /* XXX unwind and free previous fastpath allocations */ 14649 BLOGE(sc, "Failed to create dma tag for " 14650 "'fp %d rx mbufs' (%d)\n", i, rc); 14651 return (1); 14652 } 14653 14654 /* create dma maps for each of the rx mbuf clusters */ 14655 for (j = 0; j < RX_BD_TOTAL; j++) { 14656 if (bus_dmamap_create(fp->rx_mbuf_tag, 14657 BUS_DMA_NOWAIT, 14658 &fp->rx_mbuf_chain[j].m_map)) { 14659 /* XXX unwind and free previous fastpath allocations */ 14660 BLOGE(sc, "Failed to create dma map for " 14661 "'fp %d rx mbuf %d' (%d)\n", i, j, rc); 14662 return (1); 14663 } 14664 } 14665 14666 /* create dma map for the spare rx mbuf cluster */ 14667 if (bus_dmamap_create(fp->rx_mbuf_tag, 14668 BUS_DMA_NOWAIT, 14669 &fp->rx_mbuf_spare_map)) { 14670 /* XXX unwind and free previous fastpath allocations */ 14671 BLOGE(sc, "Failed to create dma map for " 14672 "'fp %d spare rx mbuf' (%d)\n", i, rc); 14673 return (1); 14674 } 14675 14676 /***************************/ 14677 /* FP RX SGE MBUF DMA MAPS */ 14678 /***************************/ 14679 14680 /* create a dma tag for the rx sge mbufs */ 14681 rc = bus_dma_tag_create(sc->parent_dma_tag, /* parent tag */ 14682 1, /* alignment */ 14683 0, /* boundary limit */ 14684 BUS_SPACE_MAXADDR, /* restricted low */ 14685 BUS_SPACE_MAXADDR, /* restricted hi */ 14686 NULL, /* addr filter() */ 14687 NULL, /* addr filter() arg */ 14688 BCM_PAGE_SIZE, /* max map size */ 14689 1, /* num discontinuous */ 14690 BCM_PAGE_SIZE, /* max seg size */ 14691 0, /* flags */ 14692 NULL, /* lock() */ 14693 NULL, /* lock() arg */ 14694 &fp->rx_sge_mbuf_tag); /* returned dma tag */ 14695 if (rc != 0) { 14696 /* XXX unwind and free previous fastpath allocations */ 14697 BLOGE(sc, "Failed to create dma tag for " 14698 "'fp %d rx sge mbufs' (%d)\n", i, rc); 14699 return (1); 14700 } 14701 14702 /* create dma maps for the rx sge mbuf clusters */ 14703 for (j = 0; j < RX_SGE_TOTAL; j++) { 14704 if (bus_dmamap_create(fp->rx_sge_mbuf_tag, 14705 BUS_DMA_NOWAIT, 14706 &fp->rx_sge_mbuf_chain[j].m_map)) { 14707 /* XXX unwind and free previous fastpath allocations */ 14708 BLOGE(sc, "Failed to create dma map for " 14709 "'fp %d rx sge mbuf %d' (%d)\n", i, j, rc); 14710 return (1); 14711 } 14712 } 14713 14714 /* create dma map for the spare rx sge mbuf cluster */ 14715 if (bus_dmamap_create(fp->rx_sge_mbuf_tag, 14716 BUS_DMA_NOWAIT, 14717 &fp->rx_sge_mbuf_spare_map)) { 14718 /* XXX unwind and free previous fastpath allocations */ 14719 BLOGE(sc, "Failed to create dma map for " 14720 "'fp %d spare rx sge mbuf' (%d)\n", i, rc); 14721 return (1); 14722 } 14723 14724 /***************************/ 14725 /* FP RX TPA MBUF DMA MAPS */ 14726 /***************************/ 14727 14728 /* create dma maps for the rx tpa mbuf clusters */ 14729 max_agg_queues = MAX_AGG_QS(sc); 14730 14731 for (j = 0; j < max_agg_queues; j++) { 14732 if (bus_dmamap_create(fp->rx_mbuf_tag, 14733 BUS_DMA_NOWAIT, 14734 &fp->rx_tpa_info[j].bd.m_map)) { 14735 /* XXX unwind and free previous fastpath allocations */ 14736 BLOGE(sc, "Failed to create dma map for " 14737 "'fp %d rx tpa mbuf %d' (%d)\n", i, j, rc); 14738 return (1); 14739 } 14740 } 14741 14742 /* create dma map for the spare rx tpa mbuf cluster */ 14743 if (bus_dmamap_create(fp->rx_mbuf_tag, 14744 BUS_DMA_NOWAIT, 14745 &fp->rx_tpa_info_mbuf_spare_map)) { 14746 /* XXX unwind and free previous fastpath allocations */ 14747 BLOGE(sc, "Failed to create dma map for " 14748 "'fp %d spare rx tpa mbuf' (%d)\n", i, rc); 14749 return (1); 14750 } 14751 14752 bxe_init_sge_ring_bit_mask(fp); 14753 } 14754 14755 return (0); 14756 } 14757 14758 static void 14759 bxe_free_hsi_mem(struct bxe_softc *sc) 14760 { 14761 struct bxe_fastpath *fp; 14762 int max_agg_queues; 14763 int i, j; 14764 14765 if (sc->parent_dma_tag == NULL) { 14766 return; /* assume nothing was allocated */ 14767 } 14768 14769 for (i = 0; i < sc->num_queues; i++) { 14770 fp = &sc->fp[i]; 14771 14772 /*******************/ 14773 /* FP STATUS BLOCK */ 14774 /*******************/ 14775 14776 bxe_dma_free(sc, &fp->sb_dma); 14777 memset(&fp->status_block, 0, sizeof(fp->status_block)); 14778 14779 /******************/ 14780 /* FP TX BD CHAIN */ 14781 /******************/ 14782 14783 bxe_dma_free(sc, &fp->tx_dma); 14784 fp->tx_chain = NULL; 14785 14786 /******************/ 14787 /* FP RX BD CHAIN */ 14788 /******************/ 14789 14790 bxe_dma_free(sc, &fp->rx_dma); 14791 fp->rx_chain = NULL; 14792 14793 /*******************/ 14794 /* FP RX RCQ CHAIN */ 14795 /*******************/ 14796 14797 bxe_dma_free(sc, &fp->rcq_dma); 14798 fp->rcq_chain = NULL; 14799 14800 /*******************/ 14801 /* FP RX SGE CHAIN */ 14802 /*******************/ 14803 14804 bxe_dma_free(sc, &fp->rx_sge_dma); 14805 fp->rx_sge_chain = NULL; 14806 14807 /***********************/ 14808 /* FP TX MBUF DMA MAPS */ 14809 /***********************/ 14810 14811 if (fp->tx_mbuf_tag != NULL) { 14812 for (j = 0; j < TX_BD_TOTAL; j++) { 14813 if (fp->tx_mbuf_chain[j].m_map != NULL) { 14814 bus_dmamap_unload(fp->tx_mbuf_tag, 14815 fp->tx_mbuf_chain[j].m_map); 14816 bus_dmamap_destroy(fp->tx_mbuf_tag, 14817 fp->tx_mbuf_chain[j].m_map); 14818 } 14819 } 14820 14821 bus_dma_tag_destroy(fp->tx_mbuf_tag); 14822 fp->tx_mbuf_tag = NULL; 14823 } 14824 14825 /***********************/ 14826 /* FP RX MBUF DMA MAPS */ 14827 /***********************/ 14828 14829 if (fp->rx_mbuf_tag != NULL) { 14830 for (j = 0; j < RX_BD_TOTAL; j++) { 14831 if (fp->rx_mbuf_chain[j].m_map != NULL) { 14832 bus_dmamap_unload(fp->rx_mbuf_tag, 14833 fp->rx_mbuf_chain[j].m_map); 14834 bus_dmamap_destroy(fp->rx_mbuf_tag, 14835 fp->rx_mbuf_chain[j].m_map); 14836 } 14837 } 14838 14839 if (fp->rx_mbuf_spare_map != NULL) { 14840 bus_dmamap_unload(fp->rx_mbuf_tag, fp->rx_mbuf_spare_map); 14841 bus_dmamap_destroy(fp->rx_mbuf_tag, fp->rx_mbuf_spare_map); 14842 } 14843 14844 /***************************/ 14845 /* FP RX TPA MBUF DMA MAPS */ 14846 /***************************/ 14847 14848 max_agg_queues = MAX_AGG_QS(sc); 14849 14850 for (j = 0; j < max_agg_queues; j++) { 14851 if (fp->rx_tpa_info[j].bd.m_map != NULL) { 14852 bus_dmamap_unload(fp->rx_mbuf_tag, 14853 fp->rx_tpa_info[j].bd.m_map); 14854 bus_dmamap_destroy(fp->rx_mbuf_tag, 14855 fp->rx_tpa_info[j].bd.m_map); 14856 } 14857 } 14858 14859 if (fp->rx_tpa_info_mbuf_spare_map != NULL) { 14860 bus_dmamap_unload(fp->rx_mbuf_tag, 14861 fp->rx_tpa_info_mbuf_spare_map); 14862 bus_dmamap_destroy(fp->rx_mbuf_tag, 14863 fp->rx_tpa_info_mbuf_spare_map); 14864 } 14865 14866 bus_dma_tag_destroy(fp->rx_mbuf_tag); 14867 fp->rx_mbuf_tag = NULL; 14868 } 14869 14870 /***************************/ 14871 /* FP RX SGE MBUF DMA MAPS */ 14872 /***************************/ 14873 14874 if (fp->rx_sge_mbuf_tag != NULL) { 14875 for (j = 0; j < RX_SGE_TOTAL; j++) { 14876 if (fp->rx_sge_mbuf_chain[j].m_map != NULL) { 14877 bus_dmamap_unload(fp->rx_sge_mbuf_tag, 14878 fp->rx_sge_mbuf_chain[j].m_map); 14879 bus_dmamap_destroy(fp->rx_sge_mbuf_tag, 14880 fp->rx_sge_mbuf_chain[j].m_map); 14881 } 14882 } 14883 14884 if (fp->rx_sge_mbuf_spare_map != NULL) { 14885 bus_dmamap_unload(fp->rx_sge_mbuf_tag, 14886 fp->rx_sge_mbuf_spare_map); 14887 bus_dmamap_destroy(fp->rx_sge_mbuf_tag, 14888 fp->rx_sge_mbuf_spare_map); 14889 } 14890 14891 bus_dma_tag_destroy(fp->rx_sge_mbuf_tag); 14892 fp->rx_sge_mbuf_tag = NULL; 14893 } 14894 } 14895 14896 /***************************/ 14897 /* FW DECOMPRESSION BUFFER */ 14898 /***************************/ 14899 14900 bxe_dma_free(sc, &sc->gz_buf_dma); 14901 sc->gz_buf = NULL; 14902 free(sc->gz_strm, M_DEVBUF); 14903 sc->gz_strm = NULL; 14904 14905 /*******************/ 14906 /* SLOW PATH QUEUE */ 14907 /*******************/ 14908 14909 bxe_dma_free(sc, &sc->spq_dma); 14910 sc->spq = NULL; 14911 14912 /*************/ 14913 /* SLOW PATH */ 14914 /*************/ 14915 14916 bxe_dma_free(sc, &sc->sp_dma); 14917 sc->sp = NULL; 14918 14919 /***************/ 14920 /* EVENT QUEUE */ 14921 /***************/ 14922 14923 bxe_dma_free(sc, &sc->eq_dma); 14924 sc->eq = NULL; 14925 14926 /************************/ 14927 /* DEFAULT STATUS BLOCK */ 14928 /************************/ 14929 14930 bxe_dma_free(sc, &sc->def_sb_dma); 14931 sc->def_sb = NULL; 14932 14933 bus_dma_tag_destroy(sc->parent_dma_tag); 14934 sc->parent_dma_tag = NULL; 14935 } 14936 14937 /* 14938 * Previous driver DMAE transaction may have occurred when pre-boot stage 14939 * ended and boot began. This would invalidate the addresses of the 14940 * transaction, resulting in was-error bit set in the PCI causing all 14941 * hw-to-host PCIe transactions to timeout. If this happened we want to clear 14942 * the interrupt which detected this from the pglueb and the was-done bit 14943 */ 14944 static void 14945 bxe_prev_interrupted_dmae(struct bxe_softc *sc) 14946 { 14947 uint32_t val; 14948 14949 if (!CHIP_IS_E1x(sc)) { 14950 val = REG_RD(sc, PGLUE_B_REG_PGLUE_B_INT_STS); 14951 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN) { 14952 BLOGD(sc, DBG_LOAD, 14953 "Clearing 'was-error' bit that was set in pglueb"); 14954 REG_WR(sc, PGLUE_B_REG_WAS_ERROR_PF_7_0_CLR, 1 << SC_FUNC(sc)); 14955 } 14956 } 14957 } 14958 14959 static int 14960 bxe_prev_mcp_done(struct bxe_softc *sc) 14961 { 14962 uint32_t rc = bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_DONE, 14963 DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET); 14964 if (!rc) { 14965 BLOGE(sc, "MCP response failure, aborting\n"); 14966 return (-1); 14967 } 14968 14969 return (0); 14970 } 14971 14972 static struct bxe_prev_list_node * 14973 bxe_prev_path_get_entry(struct bxe_softc *sc) 14974 { 14975 struct bxe_prev_list_node *tmp; 14976 14977 LIST_FOREACH(tmp, &bxe_prev_list, node) { 14978 if ((sc->pcie_bus == tmp->bus) && 14979 (sc->pcie_device == tmp->slot) && 14980 (SC_PATH(sc) == tmp->path)) { 14981 return (tmp); 14982 } 14983 } 14984 14985 return (NULL); 14986 } 14987 14988 static uint8_t 14989 bxe_prev_is_path_marked(struct bxe_softc *sc) 14990 { 14991 struct bxe_prev_list_node *tmp; 14992 int rc = FALSE; 14993 14994 mtx_lock(&bxe_prev_mtx); 14995 14996 tmp = bxe_prev_path_get_entry(sc); 14997 if (tmp) { 14998 if (tmp->aer) { 14999 BLOGD(sc, DBG_LOAD, 15000 "Path %d/%d/%d was marked by AER\n", 15001 sc->pcie_bus, sc->pcie_device, SC_PATH(sc)); 15002 } else { 15003 rc = TRUE; 15004 BLOGD(sc, DBG_LOAD, 15005 "Path %d/%d/%d was already cleaned from previous drivers\n", 15006 sc->pcie_bus, sc->pcie_device, SC_PATH(sc)); 15007 } 15008 } 15009 15010 mtx_unlock(&bxe_prev_mtx); 15011 15012 return (rc); 15013 } 15014 15015 static int 15016 bxe_prev_mark_path(struct bxe_softc *sc, 15017 uint8_t after_undi) 15018 { 15019 struct bxe_prev_list_node *tmp; 15020 15021 mtx_lock(&bxe_prev_mtx); 15022 15023 /* Check whether the entry for this path already exists */ 15024 tmp = bxe_prev_path_get_entry(sc); 15025 if (tmp) { 15026 if (!tmp->aer) { 15027 BLOGD(sc, DBG_LOAD, 15028 "Re-marking AER in path %d/%d/%d\n", 15029 sc->pcie_bus, sc->pcie_device, SC_PATH(sc)); 15030 } else { 15031 BLOGD(sc, DBG_LOAD, 15032 "Removing AER indication from path %d/%d/%d\n", 15033 sc->pcie_bus, sc->pcie_device, SC_PATH(sc)); 15034 tmp->aer = 0; 15035 } 15036 15037 mtx_unlock(&bxe_prev_mtx); 15038 return (0); 15039 } 15040 15041 mtx_unlock(&bxe_prev_mtx); 15042 15043 /* Create an entry for this path and add it */ 15044 tmp = malloc(sizeof(struct bxe_prev_list_node), M_DEVBUF, 15045 (M_NOWAIT | M_ZERO)); 15046 if (!tmp) { 15047 BLOGE(sc, "Failed to allocate 'bxe_prev_list_node'\n"); 15048 return (-1); 15049 } 15050 15051 tmp->bus = sc->pcie_bus; 15052 tmp->slot = sc->pcie_device; 15053 tmp->path = SC_PATH(sc); 15054 tmp->aer = 0; 15055 tmp->undi = after_undi ? (1 << SC_PORT(sc)) : 0; 15056 15057 mtx_lock(&bxe_prev_mtx); 15058 15059 BLOGD(sc, DBG_LOAD, 15060 "Marked path %d/%d/%d - finished previous unload\n", 15061 sc->pcie_bus, sc->pcie_device, SC_PATH(sc)); 15062 LIST_INSERT_HEAD(&bxe_prev_list, tmp, node); 15063 15064 mtx_unlock(&bxe_prev_mtx); 15065 15066 return (0); 15067 } 15068 15069 static int 15070 bxe_do_flr(struct bxe_softc *sc) 15071 { 15072 int i; 15073 15074 /* only E2 and onwards support FLR */ 15075 if (CHIP_IS_E1x(sc)) { 15076 BLOGD(sc, DBG_LOAD, "FLR not supported in E1/E1H\n"); 15077 return (-1); 15078 } 15079 15080 /* only bootcode REQ_BC_VER_4_INITIATE_FLR and onwards support flr */ 15081 if (sc->devinfo.bc_ver < REQ_BC_VER_4_INITIATE_FLR) { 15082 BLOGD(sc, DBG_LOAD, "FLR not supported by BC_VER: 0x%08x\n", 15083 sc->devinfo.bc_ver); 15084 return (-1); 15085 } 15086 15087 /* Wait for Transaction Pending bit clean */ 15088 for (i = 0; i < 4; i++) { 15089 if (i) { 15090 DELAY(((1 << (i - 1)) * 100) * 1000); 15091 } 15092 15093 if (!bxe_is_pcie_pending(sc)) { 15094 goto clear; 15095 } 15096 } 15097 15098 BLOGE(sc, "PCIE transaction is not cleared, " 15099 "proceeding with reset anyway\n"); 15100 15101 clear: 15102 15103 BLOGD(sc, DBG_LOAD, "Initiating FLR\n"); 15104 bxe_fw_command(sc, DRV_MSG_CODE_INITIATE_FLR, 0); 15105 15106 return (0); 15107 } 15108 15109 struct bxe_mac_vals { 15110 uint32_t xmac_addr; 15111 uint32_t xmac_val; 15112 uint32_t emac_addr; 15113 uint32_t emac_val; 15114 uint32_t umac_addr; 15115 uint32_t umac_val; 15116 uint32_t bmac_addr; 15117 uint32_t bmac_val[2]; 15118 }; 15119 15120 static void 15121 bxe_prev_unload_close_mac(struct bxe_softc *sc, 15122 struct bxe_mac_vals *vals) 15123 { 15124 uint32_t val, base_addr, offset, mask, reset_reg; 15125 uint8_t mac_stopped = FALSE; 15126 uint8_t port = SC_PORT(sc); 15127 uint32_t wb_data[2]; 15128 15129 /* reset addresses as they also mark which values were changed */ 15130 vals->bmac_addr = 0; 15131 vals->umac_addr = 0; 15132 vals->xmac_addr = 0; 15133 vals->emac_addr = 0; 15134 15135 reset_reg = REG_RD(sc, MISC_REG_RESET_REG_2); 15136 15137 if (!CHIP_IS_E3(sc)) { 15138 val = REG_RD(sc, NIG_REG_BMAC0_REGS_OUT_EN + port * 4); 15139 mask = MISC_REGISTERS_RESET_REG_2_RST_BMAC0 << port; 15140 if ((mask & reset_reg) && val) { 15141 BLOGD(sc, DBG_LOAD, "Disable BMAC Rx\n"); 15142 base_addr = SC_PORT(sc) ? NIG_REG_INGRESS_BMAC1_MEM 15143 : NIG_REG_INGRESS_BMAC0_MEM; 15144 offset = CHIP_IS_E2(sc) ? BIGMAC2_REGISTER_BMAC_CONTROL 15145 : BIGMAC_REGISTER_BMAC_CONTROL; 15146 15147 /* 15148 * use rd/wr since we cannot use dmae. This is safe 15149 * since MCP won't access the bus due to the request 15150 * to unload, and no function on the path can be 15151 * loaded at this time. 15152 */ 15153 wb_data[0] = REG_RD(sc, base_addr + offset); 15154 wb_data[1] = REG_RD(sc, base_addr + offset + 0x4); 15155 vals->bmac_addr = base_addr + offset; 15156 vals->bmac_val[0] = wb_data[0]; 15157 vals->bmac_val[1] = wb_data[1]; 15158 wb_data[0] &= ~ELINK_BMAC_CONTROL_RX_ENABLE; 15159 REG_WR(sc, vals->bmac_addr, wb_data[0]); 15160 REG_WR(sc, vals->bmac_addr + 0x4, wb_data[1]); 15161 } 15162 15163 BLOGD(sc, DBG_LOAD, "Disable EMAC Rx\n"); 15164 vals->emac_addr = NIG_REG_NIG_EMAC0_EN + SC_PORT(sc)*4; 15165 vals->emac_val = REG_RD(sc, vals->emac_addr); 15166 REG_WR(sc, vals->emac_addr, 0); 15167 mac_stopped = TRUE; 15168 } else { 15169 if (reset_reg & MISC_REGISTERS_RESET_REG_2_XMAC) { 15170 BLOGD(sc, DBG_LOAD, "Disable XMAC Rx\n"); 15171 base_addr = SC_PORT(sc) ? GRCBASE_XMAC1 : GRCBASE_XMAC0; 15172 val = REG_RD(sc, base_addr + XMAC_REG_PFC_CTRL_HI); 15173 REG_WR(sc, base_addr + XMAC_REG_PFC_CTRL_HI, val & ~(1 << 1)); 15174 REG_WR(sc, base_addr + XMAC_REG_PFC_CTRL_HI, val | (1 << 1)); 15175 vals->xmac_addr = base_addr + XMAC_REG_CTRL; 15176 vals->xmac_val = REG_RD(sc, vals->xmac_addr); 15177 REG_WR(sc, vals->xmac_addr, 0); 15178 mac_stopped = TRUE; 15179 } 15180 15181 mask = MISC_REGISTERS_RESET_REG_2_UMAC0 << port; 15182 if (mask & reset_reg) { 15183 BLOGD(sc, DBG_LOAD, "Disable UMAC Rx\n"); 15184 base_addr = SC_PORT(sc) ? GRCBASE_UMAC1 : GRCBASE_UMAC0; 15185 vals->umac_addr = base_addr + UMAC_REG_COMMAND_CONFIG; 15186 vals->umac_val = REG_RD(sc, vals->umac_addr); 15187 REG_WR(sc, vals->umac_addr, 0); 15188 mac_stopped = TRUE; 15189 } 15190 } 15191 15192 if (mac_stopped) { 15193 DELAY(20000); 15194 } 15195 } 15196 15197 #define BXE_PREV_UNDI_PROD_ADDR(p) (BAR_TSTRORM_INTMEM + 0x1508 + ((p) << 4)) 15198 #define BXE_PREV_UNDI_RCQ(val) ((val) & 0xffff) 15199 #define BXE_PREV_UNDI_BD(val) ((val) >> 16 & 0xffff) 15200 #define BXE_PREV_UNDI_PROD(rcq, bd) ((bd) << 16 | (rcq)) 15201 15202 static void 15203 bxe_prev_unload_undi_inc(struct bxe_softc *sc, 15204 uint8_t port, 15205 uint8_t inc) 15206 { 15207 uint16_t rcq, bd; 15208 uint32_t tmp_reg = REG_RD(sc, BXE_PREV_UNDI_PROD_ADDR(port)); 15209 15210 rcq = BXE_PREV_UNDI_RCQ(tmp_reg) + inc; 15211 bd = BXE_PREV_UNDI_BD(tmp_reg) + inc; 15212 15213 tmp_reg = BXE_PREV_UNDI_PROD(rcq, bd); 15214 REG_WR(sc, BXE_PREV_UNDI_PROD_ADDR(port), tmp_reg); 15215 15216 BLOGD(sc, DBG_LOAD, 15217 "UNDI producer [%d] rings bd -> 0x%04x, rcq -> 0x%04x\n", 15218 port, bd, rcq); 15219 } 15220 15221 static int 15222 bxe_prev_unload_common(struct bxe_softc *sc) 15223 { 15224 uint32_t reset_reg, tmp_reg = 0, rc; 15225 uint8_t prev_undi = FALSE; 15226 struct bxe_mac_vals mac_vals; 15227 uint32_t timer_count = 1000; 15228 uint32_t prev_brb; 15229 15230 /* 15231 * It is possible a previous function received 'common' answer, 15232 * but hasn't loaded yet, therefore creating a scenario of 15233 * multiple functions receiving 'common' on the same path. 15234 */ 15235 BLOGD(sc, DBG_LOAD, "Common unload Flow\n"); 15236 15237 memset(&mac_vals, 0, sizeof(mac_vals)); 15238 15239 if (bxe_prev_is_path_marked(sc)) { 15240 return (bxe_prev_mcp_done(sc)); 15241 } 15242 15243 reset_reg = REG_RD(sc, MISC_REG_RESET_REG_1); 15244 15245 /* Reset should be performed after BRB is emptied */ 15246 if (reset_reg & MISC_REGISTERS_RESET_REG_1_RST_BRB1) { 15247 /* Close the MAC Rx to prevent BRB from filling up */ 15248 bxe_prev_unload_close_mac(sc, &mac_vals); 15249 15250 /* close LLH filters towards the BRB */ 15251 elink_set_rx_filter(&sc->link_params, 0); 15252 15253 /* 15254 * Check if the UNDI driver was previously loaded. 15255 * UNDI driver initializes CID offset for normal bell to 0x7 15256 */ 15257 if (reset_reg & MISC_REGISTERS_RESET_REG_1_RST_DORQ) { 15258 tmp_reg = REG_RD(sc, DORQ_REG_NORM_CID_OFST); 15259 if (tmp_reg == 0x7) { 15260 BLOGD(sc, DBG_LOAD, "UNDI previously loaded\n"); 15261 prev_undi = TRUE; 15262 /* clear the UNDI indication */ 15263 REG_WR(sc, DORQ_REG_NORM_CID_OFST, 0); 15264 /* clear possible idle check errors */ 15265 REG_RD(sc, NIG_REG_NIG_INT_STS_CLR_0); 15266 } 15267 } 15268 15269 /* wait until BRB is empty */ 15270 tmp_reg = REG_RD(sc, BRB1_REG_NUM_OF_FULL_BLOCKS); 15271 while (timer_count) { 15272 prev_brb = tmp_reg; 15273 15274 tmp_reg = REG_RD(sc, BRB1_REG_NUM_OF_FULL_BLOCKS); 15275 if (!tmp_reg) { 15276 break; 15277 } 15278 15279 BLOGD(sc, DBG_LOAD, "BRB still has 0x%08x\n", tmp_reg); 15280 15281 /* reset timer as long as BRB actually gets emptied */ 15282 if (prev_brb > tmp_reg) { 15283 timer_count = 1000; 15284 } else { 15285 timer_count--; 15286 } 15287 15288 /* If UNDI resides in memory, manually increment it */ 15289 if (prev_undi) { 15290 bxe_prev_unload_undi_inc(sc, SC_PORT(sc), 1); 15291 } 15292 15293 DELAY(10); 15294 } 15295 15296 if (!timer_count) { 15297 BLOGE(sc, "Failed to empty BRB\n"); 15298 } 15299 } 15300 15301 /* No packets are in the pipeline, path is ready for reset */ 15302 bxe_reset_common(sc); 15303 15304 if (mac_vals.xmac_addr) { 15305 REG_WR(sc, mac_vals.xmac_addr, mac_vals.xmac_val); 15306 } 15307 if (mac_vals.umac_addr) { 15308 REG_WR(sc, mac_vals.umac_addr, mac_vals.umac_val); 15309 } 15310 if (mac_vals.emac_addr) { 15311 REG_WR(sc, mac_vals.emac_addr, mac_vals.emac_val); 15312 } 15313 if (mac_vals.bmac_addr) { 15314 REG_WR(sc, mac_vals.bmac_addr, mac_vals.bmac_val[0]); 15315 REG_WR(sc, mac_vals.bmac_addr + 4, mac_vals.bmac_val[1]); 15316 } 15317 15318 rc = bxe_prev_mark_path(sc, prev_undi); 15319 if (rc) { 15320 bxe_prev_mcp_done(sc); 15321 return (rc); 15322 } 15323 15324 return (bxe_prev_mcp_done(sc)); 15325 } 15326 15327 static int 15328 bxe_prev_unload_uncommon(struct bxe_softc *sc) 15329 { 15330 int rc; 15331 15332 BLOGD(sc, DBG_LOAD, "Uncommon unload Flow\n"); 15333 15334 /* Test if previous unload process was already finished for this path */ 15335 if (bxe_prev_is_path_marked(sc)) { 15336 return (bxe_prev_mcp_done(sc)); 15337 } 15338 15339 BLOGD(sc, DBG_LOAD, "Path is unmarked\n"); 15340 15341 /* 15342 * If function has FLR capabilities, and existing FW version matches 15343 * the one required, then FLR will be sufficient to clean any residue 15344 * left by previous driver 15345 */ 15346 rc = bxe_nic_load_analyze_req(sc, FW_MSG_CODE_DRV_LOAD_FUNCTION); 15347 if (!rc) { 15348 /* fw version is good */ 15349 BLOGD(sc, DBG_LOAD, "FW version matches our own, attempting FLR\n"); 15350 rc = bxe_do_flr(sc); 15351 } 15352 15353 if (!rc) { 15354 /* FLR was performed */ 15355 BLOGD(sc, DBG_LOAD, "FLR successful\n"); 15356 return (0); 15357 } 15358 15359 BLOGD(sc, DBG_LOAD, "Could not FLR\n"); 15360 15361 /* Close the MCP request, return failure*/ 15362 rc = bxe_prev_mcp_done(sc); 15363 if (!rc) { 15364 rc = BXE_PREV_WAIT_NEEDED; 15365 } 15366 15367 return (rc); 15368 } 15369 15370 static int 15371 bxe_prev_unload(struct bxe_softc *sc) 15372 { 15373 int time_counter = 10; 15374 uint32_t fw, hw_lock_reg, hw_lock_val; 15375 uint32_t rc = 0; 15376 15377 /* 15378 * Clear HW from errors which may have resulted from an interrupted 15379 * DMAE transaction. 15380 */ 15381 bxe_prev_interrupted_dmae(sc); 15382 15383 /* Release previously held locks */ 15384 hw_lock_reg = 15385 (SC_FUNC(sc) <= 5) ? 15386 (MISC_REG_DRIVER_CONTROL_1 + SC_FUNC(sc) * 8) : 15387 (MISC_REG_DRIVER_CONTROL_7 + (SC_FUNC(sc) - 6) * 8); 15388 15389 hw_lock_val = (REG_RD(sc, hw_lock_reg)); 15390 if (hw_lock_val) { 15391 if (hw_lock_val & HW_LOCK_RESOURCE_NVRAM) { 15392 BLOGD(sc, DBG_LOAD, "Releasing previously held NVRAM lock\n"); 15393 REG_WR(sc, MCP_REG_MCPR_NVM_SW_ARB, 15394 (MCPR_NVM_SW_ARB_ARB_REQ_CLR1 << SC_PORT(sc))); 15395 } 15396 BLOGD(sc, DBG_LOAD, "Releasing previously held HW lock\n"); 15397 REG_WR(sc, hw_lock_reg, 0xffffffff); 15398 } else { 15399 BLOGD(sc, DBG_LOAD, "No need to release HW/NVRAM locks\n"); 15400 } 15401 15402 if (MCPR_ACCESS_LOCK_LOCK & REG_RD(sc, MCP_REG_MCPR_ACCESS_LOCK)) { 15403 BLOGD(sc, DBG_LOAD, "Releasing previously held ALR\n"); 15404 REG_WR(sc, MCP_REG_MCPR_ACCESS_LOCK, 0); 15405 } 15406 15407 do { 15408 /* Lock MCP using an unload request */ 15409 fw = bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS, 0); 15410 if (!fw) { 15411 BLOGE(sc, "MCP response failure, aborting\n"); 15412 rc = -1; 15413 break; 15414 } 15415 15416 if (fw == FW_MSG_CODE_DRV_UNLOAD_COMMON) { 15417 rc = bxe_prev_unload_common(sc); 15418 break; 15419 } 15420 15421 /* non-common reply from MCP night require looping */ 15422 rc = bxe_prev_unload_uncommon(sc); 15423 if (rc != BXE_PREV_WAIT_NEEDED) { 15424 break; 15425 } 15426 15427 DELAY(20000); 15428 } while (--time_counter); 15429 15430 if (!time_counter || rc) { 15431 BLOGE(sc, "Failed to unload previous driver!" 15432 " time_counter %d rc %d\n", time_counter, rc); 15433 rc = -1; 15434 } 15435 15436 return (rc); 15437 } 15438 15439 void 15440 bxe_dcbx_set_state(struct bxe_softc *sc, 15441 uint8_t dcb_on, 15442 uint32_t dcbx_enabled) 15443 { 15444 if (!CHIP_IS_E1x(sc)) { 15445 sc->dcb_state = dcb_on; 15446 sc->dcbx_enabled = dcbx_enabled; 15447 } else { 15448 sc->dcb_state = FALSE; 15449 sc->dcbx_enabled = BXE_DCBX_ENABLED_INVALID; 15450 } 15451 BLOGD(sc, DBG_LOAD, 15452 "DCB state [%s:%s]\n", 15453 dcb_on ? "ON" : "OFF", 15454 (dcbx_enabled == BXE_DCBX_ENABLED_OFF) ? "user-mode" : 15455 (dcbx_enabled == BXE_DCBX_ENABLED_ON_NEG_OFF) ? "on-chip static" : 15456 (dcbx_enabled == BXE_DCBX_ENABLED_ON_NEG_ON) ? 15457 "on-chip with negotiation" : "invalid"); 15458 } 15459 15460 /* must be called after sriov-enable */ 15461 static int 15462 bxe_set_qm_cid_count(struct bxe_softc *sc) 15463 { 15464 int cid_count = BXE_L2_MAX_CID(sc); 15465 15466 if (IS_SRIOV(sc)) { 15467 cid_count += BXE_VF_CIDS; 15468 } 15469 15470 if (CNIC_SUPPORT(sc)) { 15471 cid_count += CNIC_CID_MAX; 15472 } 15473 15474 return (roundup(cid_count, QM_CID_ROUND)); 15475 } 15476 15477 static void 15478 bxe_init_multi_cos(struct bxe_softc *sc) 15479 { 15480 int pri, cos; 15481 15482 uint32_t pri_map = 0; /* XXX change to user config */ 15483 15484 for (pri = 0; pri < BXE_MAX_PRIORITY; pri++) { 15485 cos = ((pri_map & (0xf << (pri * 4))) >> (pri * 4)); 15486 if (cos < sc->max_cos) { 15487 sc->prio_to_cos[pri] = cos; 15488 } else { 15489 BLOGW(sc, "Invalid COS %d for priority %d " 15490 "(max COS is %d), setting to 0\n", 15491 cos, pri, (sc->max_cos - 1)); 15492 sc->prio_to_cos[pri] = 0; 15493 } 15494 } 15495 } 15496 15497 static int 15498 bxe_sysctl_state(SYSCTL_HANDLER_ARGS) 15499 { 15500 struct bxe_softc *sc; 15501 int error, result; 15502 15503 result = 0; 15504 error = sysctl_handle_int(oidp, &result, 0, req); 15505 15506 if (error || !req->newptr) { 15507 return (error); 15508 } 15509 15510 if (result == 1) { 15511 uint32_t temp; 15512 sc = (struct bxe_softc *)arg1; 15513 15514 BLOGI(sc, "... dumping driver state ...\n"); 15515 temp = SHMEM2_RD(sc, temperature_in_half_celsius); 15516 BLOGI(sc, "\t Device Temperature = %d Celsius\n", (temp/2)); 15517 } 15518 15519 return (error); 15520 } 15521 15522 static int 15523 bxe_sysctl_eth_stat(SYSCTL_HANDLER_ARGS) 15524 { 15525 struct bxe_softc *sc = (struct bxe_softc *)arg1; 15526 uint32_t *eth_stats = (uint32_t *)&sc->eth_stats; 15527 uint32_t *offset; 15528 uint64_t value = 0; 15529 int index = (int)arg2; 15530 15531 if (index >= BXE_NUM_ETH_STATS) { 15532 BLOGE(sc, "bxe_eth_stats index out of range (%d)\n", index); 15533 return (-1); 15534 } 15535 15536 offset = (eth_stats + bxe_eth_stats_arr[index].offset); 15537 15538 switch (bxe_eth_stats_arr[index].size) { 15539 case 4: 15540 value = (uint64_t)*offset; 15541 break; 15542 case 8: 15543 value = HILO_U64(*offset, *(offset + 1)); 15544 break; 15545 default: 15546 BLOGE(sc, "Invalid bxe_eth_stats size (index=%d size=%d)\n", 15547 index, bxe_eth_stats_arr[index].size); 15548 return (-1); 15549 } 15550 15551 return (sysctl_handle_64(oidp, &value, 0, req)); 15552 } 15553 15554 static int 15555 bxe_sysctl_eth_q_stat(SYSCTL_HANDLER_ARGS) 15556 { 15557 struct bxe_softc *sc = (struct bxe_softc *)arg1; 15558 uint32_t *eth_stats; 15559 uint32_t *offset; 15560 uint64_t value = 0; 15561 uint32_t q_stat = (uint32_t)arg2; 15562 uint32_t fp_index = ((q_stat >> 16) & 0xffff); 15563 uint32_t index = (q_stat & 0xffff); 15564 15565 eth_stats = (uint32_t *)&sc->fp[fp_index].eth_q_stats; 15566 15567 if (index >= BXE_NUM_ETH_Q_STATS) { 15568 BLOGE(sc, "bxe_eth_q_stats index out of range (%d)\n", index); 15569 return (-1); 15570 } 15571 15572 offset = (eth_stats + bxe_eth_q_stats_arr[index].offset); 15573 15574 switch (bxe_eth_q_stats_arr[index].size) { 15575 case 4: 15576 value = (uint64_t)*offset; 15577 break; 15578 case 8: 15579 value = HILO_U64(*offset, *(offset + 1)); 15580 break; 15581 default: 15582 BLOGE(sc, "Invalid bxe_eth_q_stats size (index=%d size=%d)\n", 15583 index, bxe_eth_q_stats_arr[index].size); 15584 return (-1); 15585 } 15586 15587 return (sysctl_handle_64(oidp, &value, 0, req)); 15588 } 15589 15590 static void 15591 bxe_add_sysctls(struct bxe_softc *sc) 15592 { 15593 struct sysctl_ctx_list *ctx; 15594 struct sysctl_oid_list *children; 15595 struct sysctl_oid *queue_top, *queue; 15596 struct sysctl_oid_list *queue_top_children, *queue_children; 15597 char queue_num_buf[32]; 15598 uint32_t q_stat; 15599 int i, j; 15600 15601 ctx = device_get_sysctl_ctx(sc->dev); 15602 children = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev)); 15603 15604 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "version", 15605 CTLFLAG_RD, BXE_DRIVER_VERSION, 0, 15606 "version"); 15607 15608 snprintf(sc->fw_ver_str, sizeof(sc->fw_ver_str), "%d.%d.%d.%d", 15609 BCM_5710_FW_MAJOR_VERSION, 15610 BCM_5710_FW_MINOR_VERSION, 15611 BCM_5710_FW_REVISION_VERSION, 15612 BCM_5710_FW_ENGINEERING_VERSION); 15613 15614 snprintf(sc->mf_mode_str, sizeof(sc->mf_mode_str), "%s", 15615 ((sc->devinfo.mf_info.mf_mode == SINGLE_FUNCTION) ? "Single" : 15616 (sc->devinfo.mf_info.mf_mode == MULTI_FUNCTION_SD) ? "MF-SD" : 15617 (sc->devinfo.mf_info.mf_mode == MULTI_FUNCTION_SI) ? "MF-SI" : 15618 (sc->devinfo.mf_info.mf_mode == MULTI_FUNCTION_AFEX) ? "MF-AFEX" : 15619 "Unknown")); 15620 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "mf_vnics", 15621 CTLFLAG_RD, &sc->devinfo.mf_info.vnics_per_port, 0, 15622 "multifunction vnics per port"); 15623 15624 snprintf(sc->pci_link_str, sizeof(sc->pci_link_str), "%s x%d", 15625 ((sc->devinfo.pcie_link_speed == 1) ? "2.5GT/s" : 15626 (sc->devinfo.pcie_link_speed == 2) ? "5.0GT/s" : 15627 (sc->devinfo.pcie_link_speed == 4) ? "8.0GT/s" : 15628 "???GT/s"), 15629 sc->devinfo.pcie_link_width); 15630 15631 sc->debug = bxe_debug; 15632 15633 #if __FreeBSD_version >= 900000 15634 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "bc_version", 15635 CTLFLAG_RD, sc->devinfo.bc_ver_str, 0, 15636 "bootcode version"); 15637 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "fw_version", 15638 CTLFLAG_RD, sc->fw_ver_str, 0, 15639 "firmware version"); 15640 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "mf_mode", 15641 CTLFLAG_RD, sc->mf_mode_str, 0, 15642 "multifunction mode"); 15643 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "mac_addr", 15644 CTLFLAG_RD, sc->mac_addr_str, 0, 15645 "mac address"); 15646 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "pci_link", 15647 CTLFLAG_RD, sc->pci_link_str, 0, 15648 "pci link status"); 15649 SYSCTL_ADD_ULONG(ctx, children, OID_AUTO, "debug", 15650 CTLFLAG_RW, &sc->debug, 15651 "debug logging mode"); 15652 #else 15653 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "bc_version", 15654 CTLFLAG_RD, &sc->devinfo.bc_ver_str, 0, 15655 "bootcode version"); 15656 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "fw_version", 15657 CTLFLAG_RD, &sc->fw_ver_str, 0, 15658 "firmware version"); 15659 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "mf_mode", 15660 CTLFLAG_RD, &sc->mf_mode_str, 0, 15661 "multifunction mode"); 15662 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "mac_addr", 15663 CTLFLAG_RD, &sc->mac_addr_str, 0, 15664 "mac address"); 15665 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "pci_link", 15666 CTLFLAG_RD, &sc->pci_link_str, 0, 15667 "pci link status"); 15668 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "debug", 15669 CTLFLAG_RW, &sc->debug, 0, 15670 "debug logging mode"); 15671 #endif /* #if __FreeBSD_version >= 900000 */ 15672 15673 sc->trigger_grcdump = 0; 15674 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "trigger_grcdump", 15675 CTLFLAG_RW, &sc->trigger_grcdump, 0, 15676 "trigger grcdump should be invoked" 15677 " before collecting grcdump"); 15678 15679 sc->grcdump_started = 0; 15680 sc->grcdump_done = 0; 15681 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "grcdump_done", 15682 CTLFLAG_RD, &sc->grcdump_done, 0, 15683 "set by driver when grcdump is done"); 15684 15685 sc->rx_budget = bxe_rx_budget; 15686 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "rx_budget", 15687 CTLFLAG_RW, &sc->rx_budget, 0, 15688 "rx processing budget"); 15689 15690 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "state", 15691 CTLTYPE_UINT | CTLFLAG_RW, sc, 0, 15692 bxe_sysctl_state, "IU", "dump driver state"); 15693 15694 for (i = 0; i < BXE_NUM_ETH_STATS; i++) { 15695 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, 15696 bxe_eth_stats_arr[i].string, 15697 CTLTYPE_U64 | CTLFLAG_RD, sc, i, 15698 bxe_sysctl_eth_stat, "LU", 15699 bxe_eth_stats_arr[i].string); 15700 } 15701 15702 /* add a new parent node for all queues "dev.bxe.#.queue" */ 15703 queue_top = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "queue", 15704 CTLFLAG_RD, NULL, "queue"); 15705 queue_top_children = SYSCTL_CHILDREN(queue_top); 15706 15707 for (i = 0; i < sc->num_queues; i++) { 15708 /* add a new parent node for a single queue "dev.bxe.#.queue.#" */ 15709 snprintf(queue_num_buf, sizeof(queue_num_buf), "%d", i); 15710 queue = SYSCTL_ADD_NODE(ctx, queue_top_children, OID_AUTO, 15711 queue_num_buf, CTLFLAG_RD, NULL, 15712 "single queue"); 15713 queue_children = SYSCTL_CHILDREN(queue); 15714 15715 for (j = 0; j < BXE_NUM_ETH_Q_STATS; j++) { 15716 q_stat = ((i << 16) | j); 15717 SYSCTL_ADD_PROC(ctx, queue_children, OID_AUTO, 15718 bxe_eth_q_stats_arr[j].string, 15719 CTLTYPE_U64 | CTLFLAG_RD, sc, q_stat, 15720 bxe_sysctl_eth_q_stat, "LU", 15721 bxe_eth_q_stats_arr[j].string); 15722 } 15723 } 15724 } 15725 15726 static int 15727 bxe_alloc_buf_rings(struct bxe_softc *sc) 15728 { 15729 #if __FreeBSD_version >= 800000 15730 15731 int i; 15732 struct bxe_fastpath *fp; 15733 15734 for (i = 0; i < sc->num_queues; i++) { 15735 15736 fp = &sc->fp[i]; 15737 15738 fp->tx_br = buf_ring_alloc(BXE_BR_SIZE, M_DEVBUF, 15739 M_NOWAIT, &fp->tx_mtx); 15740 if (fp->tx_br == NULL) 15741 return (-1); 15742 } 15743 #endif 15744 return (0); 15745 } 15746 15747 static void 15748 bxe_free_buf_rings(struct bxe_softc *sc) 15749 { 15750 #if __FreeBSD_version >= 800000 15751 15752 int i; 15753 struct bxe_fastpath *fp; 15754 15755 for (i = 0; i < sc->num_queues; i++) { 15756 15757 fp = &sc->fp[i]; 15758 15759 if (fp->tx_br) { 15760 buf_ring_free(fp->tx_br, M_DEVBUF); 15761 fp->tx_br = NULL; 15762 } 15763 } 15764 15765 #endif 15766 } 15767 15768 static void 15769 bxe_init_fp_mutexs(struct bxe_softc *sc) 15770 { 15771 int i; 15772 struct bxe_fastpath *fp; 15773 15774 for (i = 0; i < sc->num_queues; i++) { 15775 15776 fp = &sc->fp[i]; 15777 15778 snprintf(fp->tx_mtx_name, sizeof(fp->tx_mtx_name), 15779 "bxe%d_fp%d_tx_lock", sc->unit, i); 15780 mtx_init(&fp->tx_mtx, fp->tx_mtx_name, NULL, MTX_DEF); 15781 15782 snprintf(fp->rx_mtx_name, sizeof(fp->rx_mtx_name), 15783 "bxe%d_fp%d_rx_lock", sc->unit, i); 15784 mtx_init(&fp->rx_mtx, fp->rx_mtx_name, NULL, MTX_DEF); 15785 } 15786 } 15787 15788 static void 15789 bxe_destroy_fp_mutexs(struct bxe_softc *sc) 15790 { 15791 int i; 15792 struct bxe_fastpath *fp; 15793 15794 for (i = 0; i < sc->num_queues; i++) { 15795 15796 fp = &sc->fp[i]; 15797 15798 if (mtx_initialized(&fp->tx_mtx)) { 15799 mtx_destroy(&fp->tx_mtx); 15800 } 15801 15802 if (mtx_initialized(&fp->rx_mtx)) { 15803 mtx_destroy(&fp->rx_mtx); 15804 } 15805 } 15806 } 15807 15808 15809 /* 15810 * Device attach function. 15811 * 15812 * Allocates device resources, performs secondary chip identification, and 15813 * initializes driver instance variables. This function is called from driver 15814 * load after a successful probe. 15815 * 15816 * Returns: 15817 * 0 = Success, >0 = Failure 15818 */ 15819 static int 15820 bxe_attach(device_t dev) 15821 { 15822 struct bxe_softc *sc; 15823 15824 sc = device_get_softc(dev); 15825 15826 BLOGD(sc, DBG_LOAD, "Starting attach...\n"); 15827 15828 sc->state = BXE_STATE_CLOSED; 15829 15830 sc->dev = dev; 15831 sc->unit = device_get_unit(dev); 15832 15833 BLOGD(sc, DBG_LOAD, "softc = %p\n", sc); 15834 15835 sc->pcie_bus = pci_get_bus(dev); 15836 sc->pcie_device = pci_get_slot(dev); 15837 sc->pcie_func = pci_get_function(dev); 15838 15839 /* enable bus master capability */ 15840 pci_enable_busmaster(dev); 15841 15842 /* get the BARs */ 15843 if (bxe_allocate_bars(sc) != 0) { 15844 return (ENXIO); 15845 } 15846 15847 /* initialize the mutexes */ 15848 bxe_init_mutexes(sc); 15849 15850 /* prepare the periodic callout */ 15851 callout_init(&sc->periodic_callout, 0); 15852 15853 /* prepare the chip taskqueue */ 15854 sc->chip_tq_flags = CHIP_TQ_NONE; 15855 snprintf(sc->chip_tq_name, sizeof(sc->chip_tq_name), 15856 "bxe%d_chip_tq", sc->unit); 15857 TASK_INIT(&sc->chip_tq_task, 0, bxe_handle_chip_tq, sc); 15858 sc->chip_tq = taskqueue_create(sc->chip_tq_name, M_NOWAIT, 15859 taskqueue_thread_enqueue, 15860 &sc->chip_tq); 15861 taskqueue_start_threads(&sc->chip_tq, 1, PWAIT, /* lower priority */ 15862 "%s", sc->chip_tq_name); 15863 15864 /* get device info and set params */ 15865 if (bxe_get_device_info(sc) != 0) { 15866 BLOGE(sc, "getting device info\n"); 15867 bxe_deallocate_bars(sc); 15868 pci_disable_busmaster(dev); 15869 return (ENXIO); 15870 } 15871 15872 /* get final misc params */ 15873 bxe_get_params(sc); 15874 15875 /* set the default MTU (changed via ifconfig) */ 15876 sc->mtu = ETHERMTU; 15877 15878 bxe_set_modes_bitmap(sc); 15879 15880 /* XXX 15881 * If in AFEX mode and the function is configured for FCoE 15882 * then bail... no L2 allowed. 15883 */ 15884 15885 /* get phy settings from shmem and 'and' against admin settings */ 15886 bxe_get_phy_info(sc); 15887 15888 /* initialize the FreeBSD ifnet interface */ 15889 if (bxe_init_ifnet(sc) != 0) { 15890 bxe_release_mutexes(sc); 15891 bxe_deallocate_bars(sc); 15892 pci_disable_busmaster(dev); 15893 return (ENXIO); 15894 } 15895 15896 if (bxe_add_cdev(sc) != 0) { 15897 if (sc->ifp != NULL) { 15898 ether_ifdetach(sc->ifp); 15899 } 15900 ifmedia_removeall(&sc->ifmedia); 15901 bxe_release_mutexes(sc); 15902 bxe_deallocate_bars(sc); 15903 pci_disable_busmaster(dev); 15904 return (ENXIO); 15905 } 15906 15907 /* allocate device interrupts */ 15908 if (bxe_interrupt_alloc(sc) != 0) { 15909 bxe_del_cdev(sc); 15910 if (sc->ifp != NULL) { 15911 ether_ifdetach(sc->ifp); 15912 } 15913 ifmedia_removeall(&sc->ifmedia); 15914 bxe_release_mutexes(sc); 15915 bxe_deallocate_bars(sc); 15916 pci_disable_busmaster(dev); 15917 return (ENXIO); 15918 } 15919 15920 bxe_init_fp_mutexs(sc); 15921 15922 if (bxe_alloc_buf_rings(sc) != 0) { 15923 bxe_free_buf_rings(sc); 15924 bxe_interrupt_free(sc); 15925 bxe_del_cdev(sc); 15926 if (sc->ifp != NULL) { 15927 ether_ifdetach(sc->ifp); 15928 } 15929 ifmedia_removeall(&sc->ifmedia); 15930 bxe_release_mutexes(sc); 15931 bxe_deallocate_bars(sc); 15932 pci_disable_busmaster(dev); 15933 return (ENXIO); 15934 } 15935 15936 /* allocate ilt */ 15937 if (bxe_alloc_ilt_mem(sc) != 0) { 15938 bxe_free_buf_rings(sc); 15939 bxe_interrupt_free(sc); 15940 bxe_del_cdev(sc); 15941 if (sc->ifp != NULL) { 15942 ether_ifdetach(sc->ifp); 15943 } 15944 ifmedia_removeall(&sc->ifmedia); 15945 bxe_release_mutexes(sc); 15946 bxe_deallocate_bars(sc); 15947 pci_disable_busmaster(dev); 15948 return (ENXIO); 15949 } 15950 15951 /* allocate the host hardware/software hsi structures */ 15952 if (bxe_alloc_hsi_mem(sc) != 0) { 15953 bxe_free_ilt_mem(sc); 15954 bxe_free_buf_rings(sc); 15955 bxe_interrupt_free(sc); 15956 bxe_del_cdev(sc); 15957 if (sc->ifp != NULL) { 15958 ether_ifdetach(sc->ifp); 15959 } 15960 ifmedia_removeall(&sc->ifmedia); 15961 bxe_release_mutexes(sc); 15962 bxe_deallocate_bars(sc); 15963 pci_disable_busmaster(dev); 15964 return (ENXIO); 15965 } 15966 15967 /* need to reset chip if UNDI was active */ 15968 if (IS_PF(sc) && !BXE_NOMCP(sc)) { 15969 /* init fw_seq */ 15970 sc->fw_seq = 15971 (SHMEM_RD(sc, func_mb[SC_FW_MB_IDX(sc)].drv_mb_header) & 15972 DRV_MSG_SEQ_NUMBER_MASK); 15973 BLOGD(sc, DBG_LOAD, "prev unload fw_seq 0x%04x\n", sc->fw_seq); 15974 bxe_prev_unload(sc); 15975 } 15976 15977 #if 1 15978 /* XXX */ 15979 bxe_dcbx_set_state(sc, FALSE, BXE_DCBX_ENABLED_OFF); 15980 #else 15981 if (SHMEM2_HAS(sc, dcbx_lldp_params_offset) && 15982 SHMEM2_HAS(sc, dcbx_lldp_dcbx_stat_offset) && 15983 SHMEM2_RD(sc, dcbx_lldp_params_offset) && 15984 SHMEM2_RD(sc, dcbx_lldp_dcbx_stat_offset)) { 15985 bxe_dcbx_set_state(sc, TRUE, BXE_DCBX_ENABLED_ON_NEG_ON); 15986 bxe_dcbx_init_params(sc); 15987 } else { 15988 bxe_dcbx_set_state(sc, FALSE, BXE_DCBX_ENABLED_OFF); 15989 } 15990 #endif 15991 15992 /* calculate qm_cid_count */ 15993 sc->qm_cid_count = bxe_set_qm_cid_count(sc); 15994 BLOGD(sc, DBG_LOAD, "qm_cid_count=%d\n", sc->qm_cid_count); 15995 15996 sc->max_cos = 1; 15997 bxe_init_multi_cos(sc); 15998 15999 bxe_add_sysctls(sc); 16000 16001 return (0); 16002 } 16003 16004 /* 16005 * Device detach function. 16006 * 16007 * Stops the controller, resets the controller, and releases resources. 16008 * 16009 * Returns: 16010 * 0 = Success, >0 = Failure 16011 */ 16012 static int 16013 bxe_detach(device_t dev) 16014 { 16015 struct bxe_softc *sc; 16016 if_t ifp; 16017 16018 sc = device_get_softc(dev); 16019 16020 BLOGD(sc, DBG_LOAD, "Starting detach...\n"); 16021 16022 ifp = sc->ifp; 16023 if (ifp != NULL && if_vlantrunkinuse(ifp)) { 16024 BLOGE(sc, "Cannot detach while VLANs are in use.\n"); 16025 return(EBUSY); 16026 } 16027 16028 bxe_del_cdev(sc); 16029 16030 /* stop the periodic callout */ 16031 bxe_periodic_stop(sc); 16032 16033 /* stop the chip taskqueue */ 16034 atomic_store_rel_long(&sc->chip_tq_flags, CHIP_TQ_NONE); 16035 if (sc->chip_tq) { 16036 taskqueue_drain(sc->chip_tq, &sc->chip_tq_task); 16037 taskqueue_free(sc->chip_tq); 16038 sc->chip_tq = NULL; 16039 } 16040 16041 /* stop and reset the controller if it was open */ 16042 if (sc->state != BXE_STATE_CLOSED) { 16043 BXE_CORE_LOCK(sc); 16044 bxe_nic_unload(sc, UNLOAD_CLOSE, TRUE); 16045 sc->state = BXE_STATE_DISABLED; 16046 BXE_CORE_UNLOCK(sc); 16047 } 16048 16049 /* release the network interface */ 16050 if (ifp != NULL) { 16051 ether_ifdetach(ifp); 16052 } 16053 ifmedia_removeall(&sc->ifmedia); 16054 16055 /* XXX do the following based on driver state... */ 16056 16057 /* free the host hardware/software hsi structures */ 16058 bxe_free_hsi_mem(sc); 16059 16060 /* free ilt */ 16061 bxe_free_ilt_mem(sc); 16062 16063 bxe_free_buf_rings(sc); 16064 16065 /* release the interrupts */ 16066 bxe_interrupt_free(sc); 16067 16068 /* Release the mutexes*/ 16069 bxe_destroy_fp_mutexs(sc); 16070 bxe_release_mutexes(sc); 16071 16072 16073 /* Release the PCIe BAR mapped memory */ 16074 bxe_deallocate_bars(sc); 16075 16076 /* Release the FreeBSD interface. */ 16077 if (sc->ifp != NULL) { 16078 if_free(sc->ifp); 16079 } 16080 16081 pci_disable_busmaster(dev); 16082 16083 return (0); 16084 } 16085 16086 /* 16087 * Device shutdown function. 16088 * 16089 * Stops and resets the controller. 16090 * 16091 * Returns: 16092 * Nothing 16093 */ 16094 static int 16095 bxe_shutdown(device_t dev) 16096 { 16097 struct bxe_softc *sc; 16098 16099 sc = device_get_softc(dev); 16100 16101 BLOGD(sc, DBG_LOAD, "Starting shutdown...\n"); 16102 16103 /* stop the periodic callout */ 16104 bxe_periodic_stop(sc); 16105 16106 BXE_CORE_LOCK(sc); 16107 bxe_nic_unload(sc, UNLOAD_NORMAL, FALSE); 16108 BXE_CORE_UNLOCK(sc); 16109 16110 return (0); 16111 } 16112 16113 void 16114 bxe_igu_ack_sb(struct bxe_softc *sc, 16115 uint8_t igu_sb_id, 16116 uint8_t segment, 16117 uint16_t index, 16118 uint8_t op, 16119 uint8_t update) 16120 { 16121 uint32_t igu_addr = sc->igu_base_addr; 16122 igu_addr += (IGU_CMD_INT_ACK_BASE + igu_sb_id)*8; 16123 bxe_igu_ack_sb_gen(sc, igu_sb_id, segment, index, op, update, igu_addr); 16124 } 16125 16126 static void 16127 bxe_igu_clear_sb_gen(struct bxe_softc *sc, 16128 uint8_t func, 16129 uint8_t idu_sb_id, 16130 uint8_t is_pf) 16131 { 16132 uint32_t data, ctl, cnt = 100; 16133 uint32_t igu_addr_data = IGU_REG_COMMAND_REG_32LSB_DATA; 16134 uint32_t igu_addr_ctl = IGU_REG_COMMAND_REG_CTRL; 16135 uint32_t igu_addr_ack = IGU_REG_CSTORM_TYPE_0_SB_CLEANUP + (idu_sb_id/32)*4; 16136 uint32_t sb_bit = 1 << (idu_sb_id%32); 16137 uint32_t func_encode = func | (is_pf ? 1 : 0) << IGU_FID_ENCODE_IS_PF_SHIFT; 16138 uint32_t addr_encode = IGU_CMD_E2_PROD_UPD_BASE + idu_sb_id; 16139 16140 /* Not supported in BC mode */ 16141 if (CHIP_INT_MODE_IS_BC(sc)) { 16142 return; 16143 } 16144 16145 data = ((IGU_USE_REGISTER_cstorm_type_0_sb_cleanup << 16146 IGU_REGULAR_CLEANUP_TYPE_SHIFT) | 16147 IGU_REGULAR_CLEANUP_SET | 16148 IGU_REGULAR_BCLEANUP); 16149 16150 ctl = ((addr_encode << IGU_CTRL_REG_ADDRESS_SHIFT) | 16151 (func_encode << IGU_CTRL_REG_FID_SHIFT) | 16152 (IGU_CTRL_CMD_TYPE_WR << IGU_CTRL_REG_TYPE_SHIFT)); 16153 16154 BLOGD(sc, DBG_LOAD, "write 0x%08x to IGU(via GRC) addr 0x%x\n", 16155 data, igu_addr_data); 16156 REG_WR(sc, igu_addr_data, data); 16157 16158 bus_space_barrier(sc->bar[BAR0].tag, sc->bar[BAR0].handle, 0, 0, 16159 BUS_SPACE_BARRIER_WRITE); 16160 mb(); 16161 16162 BLOGD(sc, DBG_LOAD, "write 0x%08x to IGU(via GRC) addr 0x%x\n", 16163 ctl, igu_addr_ctl); 16164 REG_WR(sc, igu_addr_ctl, ctl); 16165 16166 bus_space_barrier(sc->bar[BAR0].tag, sc->bar[BAR0].handle, 0, 0, 16167 BUS_SPACE_BARRIER_WRITE); 16168 mb(); 16169 16170 /* wait for clean up to finish */ 16171 while (!(REG_RD(sc, igu_addr_ack) & sb_bit) && --cnt) { 16172 DELAY(20000); 16173 } 16174 16175 if (!(REG_RD(sc, igu_addr_ack) & sb_bit)) { 16176 BLOGD(sc, DBG_LOAD, 16177 "Unable to finish IGU cleanup: " 16178 "idu_sb_id %d offset %d bit %d (cnt %d)\n", 16179 idu_sb_id, idu_sb_id/32, idu_sb_id%32, cnt); 16180 } 16181 } 16182 16183 static void 16184 bxe_igu_clear_sb(struct bxe_softc *sc, 16185 uint8_t idu_sb_id) 16186 { 16187 bxe_igu_clear_sb_gen(sc, SC_FUNC(sc), idu_sb_id, TRUE /*PF*/); 16188 } 16189 16190 16191 16192 16193 16194 16195 16196 /*******************/ 16197 /* ECORE CALLBACKS */ 16198 /*******************/ 16199 16200 static void 16201 bxe_reset_common(struct bxe_softc *sc) 16202 { 16203 uint32_t val = 0x1400; 16204 16205 /* reset_common */ 16206 REG_WR(sc, (GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR), 0xd3ffff7f); 16207 16208 if (CHIP_IS_E3(sc)) { 16209 val |= MISC_REGISTERS_RESET_REG_2_MSTAT0; 16210 val |= MISC_REGISTERS_RESET_REG_2_MSTAT1; 16211 } 16212 16213 REG_WR(sc, (GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR), val); 16214 } 16215 16216 static void 16217 bxe_common_init_phy(struct bxe_softc *sc) 16218 { 16219 uint32_t shmem_base[2]; 16220 uint32_t shmem2_base[2]; 16221 16222 /* Avoid common init in case MFW supports LFA */ 16223 if (SHMEM2_RD(sc, size) > 16224 (uint32_t)offsetof(struct shmem2_region, 16225 lfa_host_addr[SC_PORT(sc)])) { 16226 return; 16227 } 16228 16229 shmem_base[0] = sc->devinfo.shmem_base; 16230 shmem2_base[0] = sc->devinfo.shmem2_base; 16231 16232 if (!CHIP_IS_E1x(sc)) { 16233 shmem_base[1] = SHMEM2_RD(sc, other_shmem_base_addr); 16234 shmem2_base[1] = SHMEM2_RD(sc, other_shmem2_base_addr); 16235 } 16236 16237 bxe_acquire_phy_lock(sc); 16238 elink_common_init_phy(sc, shmem_base, shmem2_base, 16239 sc->devinfo.chip_id, 0); 16240 bxe_release_phy_lock(sc); 16241 } 16242 16243 static void 16244 bxe_pf_disable(struct bxe_softc *sc) 16245 { 16246 uint32_t val = REG_RD(sc, IGU_REG_PF_CONFIGURATION); 16247 16248 val &= ~IGU_PF_CONF_FUNC_EN; 16249 16250 REG_WR(sc, IGU_REG_PF_CONFIGURATION, val); 16251 REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0); 16252 REG_WR(sc, CFC_REG_WEAK_ENABLE_PF, 0); 16253 } 16254 16255 static void 16256 bxe_init_pxp(struct bxe_softc *sc) 16257 { 16258 uint16_t devctl; 16259 int r_order, w_order; 16260 16261 devctl = bxe_pcie_capability_read(sc, PCIR_EXPRESS_DEVICE_CTL, 2); 16262 16263 BLOGD(sc, DBG_LOAD, "read 0x%08x from devctl\n", devctl); 16264 16265 w_order = ((devctl & PCIM_EXP_CTL_MAX_PAYLOAD) >> 5); 16266 16267 if (sc->mrrs == -1) { 16268 r_order = ((devctl & PCIM_EXP_CTL_MAX_READ_REQUEST) >> 12); 16269 } else { 16270 BLOGD(sc, DBG_LOAD, "forcing read order to %d\n", sc->mrrs); 16271 r_order = sc->mrrs; 16272 } 16273 16274 ecore_init_pxp_arb(sc, r_order, w_order); 16275 } 16276 16277 static uint32_t 16278 bxe_get_pretend_reg(struct bxe_softc *sc) 16279 { 16280 uint32_t base = PXP2_REG_PGL_PRETEND_FUNC_F0; 16281 uint32_t stride = (PXP2_REG_PGL_PRETEND_FUNC_F1 - base); 16282 return (base + (SC_ABS_FUNC(sc)) * stride); 16283 } 16284 16285 /* 16286 * Called only on E1H or E2. 16287 * When pretending to be PF, the pretend value is the function number 0..7. 16288 * When pretending to be VF, the pretend val is the PF-num:VF-valid:ABS-VFID 16289 * combination. 16290 */ 16291 static int 16292 bxe_pretend_func(struct bxe_softc *sc, 16293 uint16_t pretend_func_val) 16294 { 16295 uint32_t pretend_reg; 16296 16297 if (CHIP_IS_E1H(sc) && (pretend_func_val > E1H_FUNC_MAX)) { 16298 return (-1); 16299 } 16300 16301 /* get my own pretend register */ 16302 pretend_reg = bxe_get_pretend_reg(sc); 16303 REG_WR(sc, pretend_reg, pretend_func_val); 16304 REG_RD(sc, pretend_reg); 16305 return (0); 16306 } 16307 16308 static void 16309 bxe_iov_init_dmae(struct bxe_softc *sc) 16310 { 16311 return; 16312 } 16313 16314 static void 16315 bxe_iov_init_dq(struct bxe_softc *sc) 16316 { 16317 return; 16318 } 16319 16320 /* send a NIG loopback debug packet */ 16321 static void 16322 bxe_lb_pckt(struct bxe_softc *sc) 16323 { 16324 uint32_t wb_write[3]; 16325 16326 /* Ethernet source and destination addresses */ 16327 wb_write[0] = 0x55555555; 16328 wb_write[1] = 0x55555555; 16329 wb_write[2] = 0x20; /* SOP */ 16330 REG_WR_DMAE(sc, NIG_REG_DEBUG_PACKET_LB, wb_write, 3); 16331 16332 /* NON-IP protocol */ 16333 wb_write[0] = 0x09000000; 16334 wb_write[1] = 0x55555555; 16335 wb_write[2] = 0x10; /* EOP, eop_bvalid = 0 */ 16336 REG_WR_DMAE(sc, NIG_REG_DEBUG_PACKET_LB, wb_write, 3); 16337 } 16338 16339 /* 16340 * Some of the internal memories are not directly readable from the driver. 16341 * To test them we send debug packets. 16342 */ 16343 static int 16344 bxe_int_mem_test(struct bxe_softc *sc) 16345 { 16346 int factor; 16347 int count, i; 16348 uint32_t val = 0; 16349 16350 if (CHIP_REV_IS_FPGA(sc)) { 16351 factor = 120; 16352 } else if (CHIP_REV_IS_EMUL(sc)) { 16353 factor = 200; 16354 } else { 16355 factor = 1; 16356 } 16357 16358 /* disable inputs of parser neighbor blocks */ 16359 REG_WR(sc, TSDM_REG_ENABLE_IN1, 0x0); 16360 REG_WR(sc, TCM_REG_PRS_IFEN, 0x0); 16361 REG_WR(sc, CFC_REG_DEBUG0, 0x1); 16362 REG_WR(sc, NIG_REG_PRS_REQ_IN_EN, 0x0); 16363 16364 /* write 0 to parser credits for CFC search request */ 16365 REG_WR(sc, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0); 16366 16367 /* send Ethernet packet */ 16368 bxe_lb_pckt(sc); 16369 16370 /* TODO do i reset NIG statistic? */ 16371 /* Wait until NIG register shows 1 packet of size 0x10 */ 16372 count = 1000 * factor; 16373 while (count) { 16374 bxe_read_dmae(sc, NIG_REG_STAT2_BRB_OCTET, 2); 16375 val = *BXE_SP(sc, wb_data[0]); 16376 if (val == 0x10) { 16377 break; 16378 } 16379 16380 DELAY(10000); 16381 count--; 16382 } 16383 16384 if (val != 0x10) { 16385 BLOGE(sc, "NIG timeout val=0x%x\n", val); 16386 return (-1); 16387 } 16388 16389 /* wait until PRS register shows 1 packet */ 16390 count = (1000 * factor); 16391 while (count) { 16392 val = REG_RD(sc, PRS_REG_NUM_OF_PACKETS); 16393 if (val == 1) { 16394 break; 16395 } 16396 16397 DELAY(10000); 16398 count--; 16399 } 16400 16401 if (val != 0x1) { 16402 BLOGE(sc, "PRS timeout val=0x%x\n", val); 16403 return (-2); 16404 } 16405 16406 /* Reset and init BRB, PRS */ 16407 REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03); 16408 DELAY(50000); 16409 REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03); 16410 DELAY(50000); 16411 ecore_init_block(sc, BLOCK_BRB1, PHASE_COMMON); 16412 ecore_init_block(sc, BLOCK_PRS, PHASE_COMMON); 16413 16414 /* Disable inputs of parser neighbor blocks */ 16415 REG_WR(sc, TSDM_REG_ENABLE_IN1, 0x0); 16416 REG_WR(sc, TCM_REG_PRS_IFEN, 0x0); 16417 REG_WR(sc, CFC_REG_DEBUG0, 0x1); 16418 REG_WR(sc, NIG_REG_PRS_REQ_IN_EN, 0x0); 16419 16420 /* Write 0 to parser credits for CFC search request */ 16421 REG_WR(sc, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0); 16422 16423 /* send 10 Ethernet packets */ 16424 for (i = 0; i < 10; i++) { 16425 bxe_lb_pckt(sc); 16426 } 16427 16428 /* Wait until NIG register shows 10+1 packets of size 11*0x10 = 0xb0 */ 16429 count = (1000 * factor); 16430 while (count) { 16431 bxe_read_dmae(sc, NIG_REG_STAT2_BRB_OCTET, 2); 16432 val = *BXE_SP(sc, wb_data[0]); 16433 if (val == 0xb0) { 16434 break; 16435 } 16436 16437 DELAY(10000); 16438 count--; 16439 } 16440 16441 if (val != 0xb0) { 16442 BLOGE(sc, "NIG timeout val=0x%x\n", val); 16443 return (-3); 16444 } 16445 16446 /* Wait until PRS register shows 2 packets */ 16447 val = REG_RD(sc, PRS_REG_NUM_OF_PACKETS); 16448 if (val != 2) { 16449 BLOGE(sc, "PRS timeout val=0x%x\n", val); 16450 } 16451 16452 /* Write 1 to parser credits for CFC search request */ 16453 REG_WR(sc, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x1); 16454 16455 /* Wait until PRS register shows 3 packets */ 16456 DELAY(10000 * factor); 16457 16458 /* Wait until NIG register shows 1 packet of size 0x10 */ 16459 val = REG_RD(sc, PRS_REG_NUM_OF_PACKETS); 16460 if (val != 3) { 16461 BLOGE(sc, "PRS timeout val=0x%x\n", val); 16462 } 16463 16464 /* clear NIG EOP FIFO */ 16465 for (i = 0; i < 11; i++) { 16466 REG_RD(sc, NIG_REG_INGRESS_EOP_LB_FIFO); 16467 } 16468 16469 val = REG_RD(sc, NIG_REG_INGRESS_EOP_LB_EMPTY); 16470 if (val != 1) { 16471 BLOGE(sc, "clear of NIG failed val=0x%x\n", val); 16472 return (-4); 16473 } 16474 16475 /* Reset and init BRB, PRS, NIG */ 16476 REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03); 16477 DELAY(50000); 16478 REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03); 16479 DELAY(50000); 16480 ecore_init_block(sc, BLOCK_BRB1, PHASE_COMMON); 16481 ecore_init_block(sc, BLOCK_PRS, PHASE_COMMON); 16482 if (!CNIC_SUPPORT(sc)) { 16483 /* set NIC mode */ 16484 REG_WR(sc, PRS_REG_NIC_MODE, 1); 16485 } 16486 16487 /* Enable inputs of parser neighbor blocks */ 16488 REG_WR(sc, TSDM_REG_ENABLE_IN1, 0x7fffffff); 16489 REG_WR(sc, TCM_REG_PRS_IFEN, 0x1); 16490 REG_WR(sc, CFC_REG_DEBUG0, 0x0); 16491 REG_WR(sc, NIG_REG_PRS_REQ_IN_EN, 0x1); 16492 16493 return (0); 16494 } 16495 16496 static void 16497 bxe_setup_fan_failure_detection(struct bxe_softc *sc) 16498 { 16499 int is_required; 16500 uint32_t val; 16501 int port; 16502 16503 is_required = 0; 16504 val = (SHMEM_RD(sc, dev_info.shared_hw_config.config2) & 16505 SHARED_HW_CFG_FAN_FAILURE_MASK); 16506 16507 if (val == SHARED_HW_CFG_FAN_FAILURE_ENABLED) { 16508 is_required = 1; 16509 } 16510 /* 16511 * The fan failure mechanism is usually related to the PHY type since 16512 * the power consumption of the board is affected by the PHY. Currently, 16513 * fan is required for most designs with SFX7101, BCM8727 and BCM8481. 16514 */ 16515 else if (val == SHARED_HW_CFG_FAN_FAILURE_PHY_TYPE) { 16516 for (port = PORT_0; port < PORT_MAX; port++) { 16517 is_required |= elink_fan_failure_det_req(sc, 16518 sc->devinfo.shmem_base, 16519 sc->devinfo.shmem2_base, 16520 port); 16521 } 16522 } 16523 16524 BLOGD(sc, DBG_LOAD, "fan detection setting: %d\n", is_required); 16525 16526 if (is_required == 0) { 16527 return; 16528 } 16529 16530 /* Fan failure is indicated by SPIO 5 */ 16531 bxe_set_spio(sc, MISC_SPIO_SPIO5, MISC_SPIO_INPUT_HI_Z); 16532 16533 /* set to active low mode */ 16534 val = REG_RD(sc, MISC_REG_SPIO_INT); 16535 val |= (MISC_SPIO_SPIO5 << MISC_SPIO_INT_OLD_SET_POS); 16536 REG_WR(sc, MISC_REG_SPIO_INT, val); 16537 16538 /* enable interrupt to signal the IGU */ 16539 val = REG_RD(sc, MISC_REG_SPIO_EVENT_EN); 16540 val |= MISC_SPIO_SPIO5; 16541 REG_WR(sc, MISC_REG_SPIO_EVENT_EN, val); 16542 } 16543 16544 static void 16545 bxe_enable_blocks_attention(struct bxe_softc *sc) 16546 { 16547 uint32_t val; 16548 16549 REG_WR(sc, PXP_REG_PXP_INT_MASK_0, 0); 16550 if (!CHIP_IS_E1x(sc)) { 16551 REG_WR(sc, PXP_REG_PXP_INT_MASK_1, 0x40); 16552 } else { 16553 REG_WR(sc, PXP_REG_PXP_INT_MASK_1, 0); 16554 } 16555 REG_WR(sc, DORQ_REG_DORQ_INT_MASK, 0); 16556 REG_WR(sc, CFC_REG_CFC_INT_MASK, 0); 16557 /* 16558 * mask read length error interrupts in brb for parser 16559 * (parsing unit and 'checksum and crc' unit) 16560 * these errors are legal (PU reads fixed length and CAC can cause 16561 * read length error on truncated packets) 16562 */ 16563 REG_WR(sc, BRB1_REG_BRB1_INT_MASK, 0xFC00); 16564 REG_WR(sc, QM_REG_QM_INT_MASK, 0); 16565 REG_WR(sc, TM_REG_TM_INT_MASK, 0); 16566 REG_WR(sc, XSDM_REG_XSDM_INT_MASK_0, 0); 16567 REG_WR(sc, XSDM_REG_XSDM_INT_MASK_1, 0); 16568 REG_WR(sc, XCM_REG_XCM_INT_MASK, 0); 16569 /* REG_WR(sc, XSEM_REG_XSEM_INT_MASK_0, 0); */ 16570 /* REG_WR(sc, XSEM_REG_XSEM_INT_MASK_1, 0); */ 16571 REG_WR(sc, USDM_REG_USDM_INT_MASK_0, 0); 16572 REG_WR(sc, USDM_REG_USDM_INT_MASK_1, 0); 16573 REG_WR(sc, UCM_REG_UCM_INT_MASK, 0); 16574 /* REG_WR(sc, USEM_REG_USEM_INT_MASK_0, 0); */ 16575 /* REG_WR(sc, USEM_REG_USEM_INT_MASK_1, 0); */ 16576 REG_WR(sc, GRCBASE_UPB + PB_REG_PB_INT_MASK, 0); 16577 REG_WR(sc, CSDM_REG_CSDM_INT_MASK_0, 0); 16578 REG_WR(sc, CSDM_REG_CSDM_INT_MASK_1, 0); 16579 REG_WR(sc, CCM_REG_CCM_INT_MASK, 0); 16580 /* REG_WR(sc, CSEM_REG_CSEM_INT_MASK_0, 0); */ 16581 /* REG_WR(sc, CSEM_REG_CSEM_INT_MASK_1, 0); */ 16582 16583 val = (PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_AFT | 16584 PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_OF | 16585 PXP2_PXP2_INT_MASK_0_REG_PGL_PCIE_ATTN); 16586 if (!CHIP_IS_E1x(sc)) { 16587 val |= (PXP2_PXP2_INT_MASK_0_REG_PGL_READ_BLOCKED | 16588 PXP2_PXP2_INT_MASK_0_REG_PGL_WRITE_BLOCKED); 16589 } 16590 REG_WR(sc, PXP2_REG_PXP2_INT_MASK_0, val); 16591 16592 REG_WR(sc, TSDM_REG_TSDM_INT_MASK_0, 0); 16593 REG_WR(sc, TSDM_REG_TSDM_INT_MASK_1, 0); 16594 REG_WR(sc, TCM_REG_TCM_INT_MASK, 0); 16595 /* REG_WR(sc, TSEM_REG_TSEM_INT_MASK_0, 0); */ 16596 16597 if (!CHIP_IS_E1x(sc)) { 16598 /* enable VFC attentions: bits 11 and 12, bits 31:13 reserved */ 16599 REG_WR(sc, TSEM_REG_TSEM_INT_MASK_1, 0x07ff); 16600 } 16601 16602 REG_WR(sc, CDU_REG_CDU_INT_MASK, 0); 16603 REG_WR(sc, DMAE_REG_DMAE_INT_MASK, 0); 16604 /* REG_WR(sc, MISC_REG_MISC_INT_MASK, 0); */ 16605 REG_WR(sc, PBF_REG_PBF_INT_MASK, 0x18); /* bit 3,4 masked */ 16606 } 16607 16608 /** 16609 * bxe_init_hw_common - initialize the HW at the COMMON phase. 16610 * 16611 * @sc: driver handle 16612 */ 16613 static int 16614 bxe_init_hw_common(struct bxe_softc *sc) 16615 { 16616 uint8_t abs_func_id; 16617 uint32_t val; 16618 16619 BLOGD(sc, DBG_LOAD, "starting common init for func %d\n", 16620 SC_ABS_FUNC(sc)); 16621 16622 /* 16623 * take the RESET lock to protect undi_unload flow from accessing 16624 * registers while we are resetting the chip 16625 */ 16626 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RESET); 16627 16628 bxe_reset_common(sc); 16629 16630 REG_WR(sc, (GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET), 0xffffffff); 16631 16632 val = 0xfffc; 16633 if (CHIP_IS_E3(sc)) { 16634 val |= MISC_REGISTERS_RESET_REG_2_MSTAT0; 16635 val |= MISC_REGISTERS_RESET_REG_2_MSTAT1; 16636 } 16637 16638 REG_WR(sc, (GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET), val); 16639 16640 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RESET); 16641 16642 ecore_init_block(sc, BLOCK_MISC, PHASE_COMMON); 16643 BLOGD(sc, DBG_LOAD, "after misc block init\n"); 16644 16645 if (!CHIP_IS_E1x(sc)) { 16646 /* 16647 * 4-port mode or 2-port mode we need to turn off master-enable for 16648 * everyone. After that we turn it back on for self. So, we disregard 16649 * multi-function, and always disable all functions on the given path, 16650 * this means 0,2,4,6 for path 0 and 1,3,5,7 for path 1 16651 */ 16652 for (abs_func_id = SC_PATH(sc); 16653 abs_func_id < (E2_FUNC_MAX * 2); 16654 abs_func_id += 2) { 16655 if (abs_func_id == SC_ABS_FUNC(sc)) { 16656 REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1); 16657 continue; 16658 } 16659 16660 bxe_pretend_func(sc, abs_func_id); 16661 16662 /* clear pf enable */ 16663 bxe_pf_disable(sc); 16664 16665 bxe_pretend_func(sc, SC_ABS_FUNC(sc)); 16666 } 16667 } 16668 16669 BLOGD(sc, DBG_LOAD, "after pf disable\n"); 16670 16671 ecore_init_block(sc, BLOCK_PXP, PHASE_COMMON); 16672 16673 if (CHIP_IS_E1(sc)) { 16674 /* 16675 * enable HW interrupt from PXP on USDM overflow 16676 * bit 16 on INT_MASK_0 16677 */ 16678 REG_WR(sc, PXP_REG_PXP_INT_MASK_0, 0); 16679 } 16680 16681 ecore_init_block(sc, BLOCK_PXP2, PHASE_COMMON); 16682 bxe_init_pxp(sc); 16683 16684 #ifdef __BIG_ENDIAN 16685 REG_WR(sc, PXP2_REG_RQ_QM_ENDIAN_M, 1); 16686 REG_WR(sc, PXP2_REG_RQ_TM_ENDIAN_M, 1); 16687 REG_WR(sc, PXP2_REG_RQ_SRC_ENDIAN_M, 1); 16688 REG_WR(sc, PXP2_REG_RQ_CDU_ENDIAN_M, 1); 16689 REG_WR(sc, PXP2_REG_RQ_DBG_ENDIAN_M, 1); 16690 /* make sure this value is 0 */ 16691 REG_WR(sc, PXP2_REG_RQ_HC_ENDIAN_M, 0); 16692 16693 //REG_WR(sc, PXP2_REG_RD_PBF_SWAP_MODE, 1); 16694 REG_WR(sc, PXP2_REG_RD_QM_SWAP_MODE, 1); 16695 REG_WR(sc, PXP2_REG_RD_TM_SWAP_MODE, 1); 16696 REG_WR(sc, PXP2_REG_RD_SRC_SWAP_MODE, 1); 16697 REG_WR(sc, PXP2_REG_RD_CDURD_SWAP_MODE, 1); 16698 #endif 16699 16700 ecore_ilt_init_page_size(sc, INITOP_SET); 16701 16702 if (CHIP_REV_IS_FPGA(sc) && CHIP_IS_E1H(sc)) { 16703 REG_WR(sc, PXP2_REG_PGL_TAGS_LIMIT, 0x1); 16704 } 16705 16706 /* let the HW do it's magic... */ 16707 DELAY(100000); 16708 16709 /* finish PXP init */ 16710 val = REG_RD(sc, PXP2_REG_RQ_CFG_DONE); 16711 if (val != 1) { 16712 BLOGE(sc, "PXP2 CFG failed PXP2_REG_RQ_CFG_DONE val = 0x%x\n", 16713 val); 16714 return (-1); 16715 } 16716 val = REG_RD(sc, PXP2_REG_RD_INIT_DONE); 16717 if (val != 1) { 16718 BLOGE(sc, "PXP2 RD_INIT failed val = 0x%x\n", val); 16719 return (-1); 16720 } 16721 16722 BLOGD(sc, DBG_LOAD, "after pxp init\n"); 16723 16724 /* 16725 * Timer bug workaround for E2 only. We need to set the entire ILT to have 16726 * entries with value "0" and valid bit on. This needs to be done by the 16727 * first PF that is loaded in a path (i.e. common phase) 16728 */ 16729 if (!CHIP_IS_E1x(sc)) { 16730 /* 16731 * In E2 there is a bug in the timers block that can cause function 6 / 7 16732 * (i.e. vnic3) to start even if it is marked as "scan-off". 16733 * This occurs when a different function (func2,3) is being marked 16734 * as "scan-off". Real-life scenario for example: if a driver is being 16735 * load-unloaded while func6,7 are down. This will cause the timer to access 16736 * the ilt, translate to a logical address and send a request to read/write. 16737 * Since the ilt for the function that is down is not valid, this will cause 16738 * a translation error which is unrecoverable. 16739 * The Workaround is intended to make sure that when this happens nothing 16740 * fatal will occur. The workaround: 16741 * 1. First PF driver which loads on a path will: 16742 * a. After taking the chip out of reset, by using pretend, 16743 * it will write "0" to the following registers of 16744 * the other vnics. 16745 * REG_WR(pdev, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0); 16746 * REG_WR(pdev, CFC_REG_WEAK_ENABLE_PF,0); 16747 * REG_WR(pdev, CFC_REG_STRONG_ENABLE_PF,0); 16748 * And for itself it will write '1' to 16749 * PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER to enable 16750 * dmae-operations (writing to pram for example.) 16751 * note: can be done for only function 6,7 but cleaner this 16752 * way. 16753 * b. Write zero+valid to the entire ILT. 16754 * c. Init the first_timers_ilt_entry, last_timers_ilt_entry of 16755 * VNIC3 (of that port). The range allocated will be the 16756 * entire ILT. This is needed to prevent ILT range error. 16757 * 2. Any PF driver load flow: 16758 * a. ILT update with the physical addresses of the allocated 16759 * logical pages. 16760 * b. Wait 20msec. - note that this timeout is needed to make 16761 * sure there are no requests in one of the PXP internal 16762 * queues with "old" ILT addresses. 16763 * c. PF enable in the PGLC. 16764 * d. Clear the was_error of the PF in the PGLC. (could have 16765 * occurred while driver was down) 16766 * e. PF enable in the CFC (WEAK + STRONG) 16767 * f. Timers scan enable 16768 * 3. PF driver unload flow: 16769 * a. Clear the Timers scan_en. 16770 * b. Polling for scan_on=0 for that PF. 16771 * c. Clear the PF enable bit in the PXP. 16772 * d. Clear the PF enable in the CFC (WEAK + STRONG) 16773 * e. Write zero+valid to all ILT entries (The valid bit must 16774 * stay set) 16775 * f. If this is VNIC 3 of a port then also init 16776 * first_timers_ilt_entry to zero and last_timers_ilt_entry 16777 * to the last enrty in the ILT. 16778 * 16779 * Notes: 16780 * Currently the PF error in the PGLC is non recoverable. 16781 * In the future the there will be a recovery routine for this error. 16782 * Currently attention is masked. 16783 * Having an MCP lock on the load/unload process does not guarantee that 16784 * there is no Timer disable during Func6/7 enable. This is because the 16785 * Timers scan is currently being cleared by the MCP on FLR. 16786 * Step 2.d can be done only for PF6/7 and the driver can also check if 16787 * there is error before clearing it. But the flow above is simpler and 16788 * more general. 16789 * All ILT entries are written by zero+valid and not just PF6/7 16790 * ILT entries since in the future the ILT entries allocation for 16791 * PF-s might be dynamic. 16792 */ 16793 struct ilt_client_info ilt_cli; 16794 struct ecore_ilt ilt; 16795 16796 memset(&ilt_cli, 0, sizeof(struct ilt_client_info)); 16797 memset(&ilt, 0, sizeof(struct ecore_ilt)); 16798 16799 /* initialize dummy TM client */ 16800 ilt_cli.start = 0; 16801 ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1; 16802 ilt_cli.client_num = ILT_CLIENT_TM; 16803 16804 /* 16805 * Step 1: set zeroes to all ilt page entries with valid bit on 16806 * Step 2: set the timers first/last ilt entry to point 16807 * to the entire range to prevent ILT range error for 3rd/4th 16808 * vnic (this code assumes existence of the vnic) 16809 * 16810 * both steps performed by call to ecore_ilt_client_init_op() 16811 * with dummy TM client 16812 * 16813 * we must use pretend since PXP2_REG_RQ_##blk##_FIRST_ILT 16814 * and his brother are split registers 16815 */ 16816 16817 bxe_pretend_func(sc, (SC_PATH(sc) + 6)); 16818 ecore_ilt_client_init_op_ilt(sc, &ilt, &ilt_cli, INITOP_CLEAR); 16819 bxe_pretend_func(sc, SC_ABS_FUNC(sc)); 16820 16821 REG_WR(sc, PXP2_REG_RQ_DRAM_ALIGN, BXE_PXP_DRAM_ALIGN); 16822 REG_WR(sc, PXP2_REG_RQ_DRAM_ALIGN_RD, BXE_PXP_DRAM_ALIGN); 16823 REG_WR(sc, PXP2_REG_RQ_DRAM_ALIGN_SEL, 1); 16824 } 16825 16826 REG_WR(sc, PXP2_REG_RQ_DISABLE_INPUTS, 0); 16827 REG_WR(sc, PXP2_REG_RD_DISABLE_INPUTS, 0); 16828 16829 if (!CHIP_IS_E1x(sc)) { 16830 int factor = CHIP_REV_IS_EMUL(sc) ? 1000 : 16831 (CHIP_REV_IS_FPGA(sc) ? 400 : 0); 16832 16833 ecore_init_block(sc, BLOCK_PGLUE_B, PHASE_COMMON); 16834 ecore_init_block(sc, BLOCK_ATC, PHASE_COMMON); 16835 16836 /* let the HW do it's magic... */ 16837 do { 16838 DELAY(200000); 16839 val = REG_RD(sc, ATC_REG_ATC_INIT_DONE); 16840 } while (factor-- && (val != 1)); 16841 16842 if (val != 1) { 16843 BLOGE(sc, "ATC_INIT failed val = 0x%x\n", val); 16844 return (-1); 16845 } 16846 } 16847 16848 BLOGD(sc, DBG_LOAD, "after pglue and atc init\n"); 16849 16850 ecore_init_block(sc, BLOCK_DMAE, PHASE_COMMON); 16851 16852 bxe_iov_init_dmae(sc); 16853 16854 /* clean the DMAE memory */ 16855 sc->dmae_ready = 1; 16856 ecore_init_fill(sc, TSEM_REG_PRAM, 0, 8, 1); 16857 16858 ecore_init_block(sc, BLOCK_TCM, PHASE_COMMON); 16859 16860 ecore_init_block(sc, BLOCK_UCM, PHASE_COMMON); 16861 16862 ecore_init_block(sc, BLOCK_CCM, PHASE_COMMON); 16863 16864 ecore_init_block(sc, BLOCK_XCM, PHASE_COMMON); 16865 16866 bxe_read_dmae(sc, XSEM_REG_PASSIVE_BUFFER, 3); 16867 bxe_read_dmae(sc, CSEM_REG_PASSIVE_BUFFER, 3); 16868 bxe_read_dmae(sc, TSEM_REG_PASSIVE_BUFFER, 3); 16869 bxe_read_dmae(sc, USEM_REG_PASSIVE_BUFFER, 3); 16870 16871 ecore_init_block(sc, BLOCK_QM, PHASE_COMMON); 16872 16873 /* QM queues pointers table */ 16874 ecore_qm_init_ptr_table(sc, sc->qm_cid_count, INITOP_SET); 16875 16876 /* soft reset pulse */ 16877 REG_WR(sc, QM_REG_SOFT_RESET, 1); 16878 REG_WR(sc, QM_REG_SOFT_RESET, 0); 16879 16880 if (CNIC_SUPPORT(sc)) 16881 ecore_init_block(sc, BLOCK_TM, PHASE_COMMON); 16882 16883 ecore_init_block(sc, BLOCK_DORQ, PHASE_COMMON); 16884 REG_WR(sc, DORQ_REG_DPM_CID_OFST, BXE_DB_SHIFT); 16885 if (!CHIP_REV_IS_SLOW(sc)) { 16886 /* enable hw interrupt from doorbell Q */ 16887 REG_WR(sc, DORQ_REG_DORQ_INT_MASK, 0); 16888 } 16889 16890 ecore_init_block(sc, BLOCK_BRB1, PHASE_COMMON); 16891 16892 ecore_init_block(sc, BLOCK_PRS, PHASE_COMMON); 16893 REG_WR(sc, PRS_REG_A_PRSU_20, 0xf); 16894 16895 if (!CHIP_IS_E1(sc)) { 16896 REG_WR(sc, PRS_REG_E1HOV_MODE, sc->devinfo.mf_info.path_has_ovlan); 16897 } 16898 16899 if (!CHIP_IS_E1x(sc) && !CHIP_IS_E3B0(sc)) { 16900 if (IS_MF_AFEX(sc)) { 16901 /* 16902 * configure that AFEX and VLAN headers must be 16903 * received in AFEX mode 16904 */ 16905 REG_WR(sc, PRS_REG_HDRS_AFTER_BASIC, 0xE); 16906 REG_WR(sc, PRS_REG_MUST_HAVE_HDRS, 0xA); 16907 REG_WR(sc, PRS_REG_HDRS_AFTER_TAG_0, 0x6); 16908 REG_WR(sc, PRS_REG_TAG_ETHERTYPE_0, 0x8926); 16909 REG_WR(sc, PRS_REG_TAG_LEN_0, 0x4); 16910 } else { 16911 /* 16912 * Bit-map indicating which L2 hdrs may appear 16913 * after the basic Ethernet header 16914 */ 16915 REG_WR(sc, PRS_REG_HDRS_AFTER_BASIC, 16916 sc->devinfo.mf_info.path_has_ovlan ? 7 : 6); 16917 } 16918 } 16919 16920 ecore_init_block(sc, BLOCK_TSDM, PHASE_COMMON); 16921 ecore_init_block(sc, BLOCK_CSDM, PHASE_COMMON); 16922 ecore_init_block(sc, BLOCK_USDM, PHASE_COMMON); 16923 ecore_init_block(sc, BLOCK_XSDM, PHASE_COMMON); 16924 16925 if (!CHIP_IS_E1x(sc)) { 16926 /* reset VFC memories */ 16927 REG_WR(sc, TSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST, 16928 VFC_MEMORIES_RST_REG_CAM_RST | 16929 VFC_MEMORIES_RST_REG_RAM_RST); 16930 REG_WR(sc, XSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST, 16931 VFC_MEMORIES_RST_REG_CAM_RST | 16932 VFC_MEMORIES_RST_REG_RAM_RST); 16933 16934 DELAY(20000); 16935 } 16936 16937 ecore_init_block(sc, BLOCK_TSEM, PHASE_COMMON); 16938 ecore_init_block(sc, BLOCK_USEM, PHASE_COMMON); 16939 ecore_init_block(sc, BLOCK_CSEM, PHASE_COMMON); 16940 ecore_init_block(sc, BLOCK_XSEM, PHASE_COMMON); 16941 16942 /* sync semi rtc */ 16943 REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 16944 0x80000000); 16945 REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 16946 0x80000000); 16947 16948 ecore_init_block(sc, BLOCK_UPB, PHASE_COMMON); 16949 ecore_init_block(sc, BLOCK_XPB, PHASE_COMMON); 16950 ecore_init_block(sc, BLOCK_PBF, PHASE_COMMON); 16951 16952 if (!CHIP_IS_E1x(sc)) { 16953 if (IS_MF_AFEX(sc)) { 16954 /* 16955 * configure that AFEX and VLAN headers must be 16956 * sent in AFEX mode 16957 */ 16958 REG_WR(sc, PBF_REG_HDRS_AFTER_BASIC, 0xE); 16959 REG_WR(sc, PBF_REG_MUST_HAVE_HDRS, 0xA); 16960 REG_WR(sc, PBF_REG_HDRS_AFTER_TAG_0, 0x6); 16961 REG_WR(sc, PBF_REG_TAG_ETHERTYPE_0, 0x8926); 16962 REG_WR(sc, PBF_REG_TAG_LEN_0, 0x4); 16963 } else { 16964 REG_WR(sc, PBF_REG_HDRS_AFTER_BASIC, 16965 sc->devinfo.mf_info.path_has_ovlan ? 7 : 6); 16966 } 16967 } 16968 16969 REG_WR(sc, SRC_REG_SOFT_RST, 1); 16970 16971 ecore_init_block(sc, BLOCK_SRC, PHASE_COMMON); 16972 16973 if (CNIC_SUPPORT(sc)) { 16974 REG_WR(sc, SRC_REG_KEYSEARCH_0, 0x63285672); 16975 REG_WR(sc, SRC_REG_KEYSEARCH_1, 0x24b8f2cc); 16976 REG_WR(sc, SRC_REG_KEYSEARCH_2, 0x223aef9b); 16977 REG_WR(sc, SRC_REG_KEYSEARCH_3, 0x26001e3a); 16978 REG_WR(sc, SRC_REG_KEYSEARCH_4, 0x7ae91116); 16979 REG_WR(sc, SRC_REG_KEYSEARCH_5, 0x5ce5230b); 16980 REG_WR(sc, SRC_REG_KEYSEARCH_6, 0x298d8adf); 16981 REG_WR(sc, SRC_REG_KEYSEARCH_7, 0x6eb0ff09); 16982 REG_WR(sc, SRC_REG_KEYSEARCH_8, 0x1830f82f); 16983 REG_WR(sc, SRC_REG_KEYSEARCH_9, 0x01e46be7); 16984 } 16985 REG_WR(sc, SRC_REG_SOFT_RST, 0); 16986 16987 if (sizeof(union cdu_context) != 1024) { 16988 /* we currently assume that a context is 1024 bytes */ 16989 BLOGE(sc, "please adjust the size of cdu_context(%ld)\n", 16990 (long)sizeof(union cdu_context)); 16991 } 16992 16993 ecore_init_block(sc, BLOCK_CDU, PHASE_COMMON); 16994 val = (4 << 24) + (0 << 12) + 1024; 16995 REG_WR(sc, CDU_REG_CDU_GLOBAL_PARAMS, val); 16996 16997 ecore_init_block(sc, BLOCK_CFC, PHASE_COMMON); 16998 16999 REG_WR(sc, CFC_REG_INIT_REG, 0x7FF); 17000 /* enable context validation interrupt from CFC */ 17001 REG_WR(sc, CFC_REG_CFC_INT_MASK, 0); 17002 17003 /* set the thresholds to prevent CFC/CDU race */ 17004 REG_WR(sc, CFC_REG_DEBUG0, 0x20020000); 17005 ecore_init_block(sc, BLOCK_HC, PHASE_COMMON); 17006 17007 if (!CHIP_IS_E1x(sc) && BXE_NOMCP(sc)) { 17008 REG_WR(sc, IGU_REG_RESET_MEMORIES, 0x36); 17009 } 17010 17011 ecore_init_block(sc, BLOCK_IGU, PHASE_COMMON); 17012 ecore_init_block(sc, BLOCK_MISC_AEU, PHASE_COMMON); 17013 17014 /* Reset PCIE errors for debug */ 17015 REG_WR(sc, 0x2814, 0xffffffff); 17016 REG_WR(sc, 0x3820, 0xffffffff); 17017 17018 if (!CHIP_IS_E1x(sc)) { 17019 REG_WR(sc, PCICFG_OFFSET + PXPCS_TL_CONTROL_5, 17020 (PXPCS_TL_CONTROL_5_ERR_UNSPPORT1 | 17021 PXPCS_TL_CONTROL_5_ERR_UNSPPORT)); 17022 REG_WR(sc, PCICFG_OFFSET + PXPCS_TL_FUNC345_STAT, 17023 (PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT4 | 17024 PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT3 | 17025 PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT2)); 17026 REG_WR(sc, PCICFG_OFFSET + PXPCS_TL_FUNC678_STAT, 17027 (PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT7 | 17028 PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT6 | 17029 PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT5)); 17030 } 17031 17032 ecore_init_block(sc, BLOCK_NIG, PHASE_COMMON); 17033 17034 if (!CHIP_IS_E1(sc)) { 17035 /* in E3 this done in per-port section */ 17036 if (!CHIP_IS_E3(sc)) 17037 REG_WR(sc, NIG_REG_LLH_MF_MODE, IS_MF(sc)); 17038 } 17039 17040 if (CHIP_IS_E1H(sc)) { 17041 /* not applicable for E2 (and above ...) */ 17042 REG_WR(sc, NIG_REG_LLH_E1HOV_MODE, IS_MF_SD(sc)); 17043 } 17044 17045 if (CHIP_REV_IS_SLOW(sc)) { 17046 DELAY(200000); 17047 } 17048 17049 /* finish CFC init */ 17050 val = reg_poll(sc, CFC_REG_LL_INIT_DONE, 1, 100, 10); 17051 if (val != 1) { 17052 BLOGE(sc, "CFC LL_INIT failed val=0x%x\n", val); 17053 return (-1); 17054 } 17055 val = reg_poll(sc, CFC_REG_AC_INIT_DONE, 1, 100, 10); 17056 if (val != 1) { 17057 BLOGE(sc, "CFC AC_INIT failed val=0x%x\n", val); 17058 return (-1); 17059 } 17060 val = reg_poll(sc, CFC_REG_CAM_INIT_DONE, 1, 100, 10); 17061 if (val != 1) { 17062 BLOGE(sc, "CFC CAM_INIT failed val=0x%x\n", val); 17063 return (-1); 17064 } 17065 REG_WR(sc, CFC_REG_DEBUG0, 0); 17066 17067 if (CHIP_IS_E1(sc)) { 17068 /* read NIG statistic to see if this is our first up since powerup */ 17069 bxe_read_dmae(sc, NIG_REG_STAT2_BRB_OCTET, 2); 17070 val = *BXE_SP(sc, wb_data[0]); 17071 17072 /* do internal memory self test */ 17073 if ((val == 0) && bxe_int_mem_test(sc)) { 17074 BLOGE(sc, "internal mem self test failed val=0x%x\n", val); 17075 return (-1); 17076 } 17077 } 17078 17079 bxe_setup_fan_failure_detection(sc); 17080 17081 /* clear PXP2 attentions */ 17082 REG_RD(sc, PXP2_REG_PXP2_INT_STS_CLR_0); 17083 17084 bxe_enable_blocks_attention(sc); 17085 17086 if (!CHIP_REV_IS_SLOW(sc)) { 17087 ecore_enable_blocks_parity(sc); 17088 } 17089 17090 if (!BXE_NOMCP(sc)) { 17091 if (CHIP_IS_E1x(sc)) { 17092 bxe_common_init_phy(sc); 17093 } 17094 } 17095 17096 return (0); 17097 } 17098 17099 /** 17100 * bxe_init_hw_common_chip - init HW at the COMMON_CHIP phase. 17101 * 17102 * @sc: driver handle 17103 */ 17104 static int 17105 bxe_init_hw_common_chip(struct bxe_softc *sc) 17106 { 17107 int rc = bxe_init_hw_common(sc); 17108 17109 if (rc) { 17110 BLOGE(sc, "bxe_init_hw_common failed rc=%d\n", rc); 17111 return (rc); 17112 } 17113 17114 /* In E2 2-PORT mode, same ext phy is used for the two paths */ 17115 if (!BXE_NOMCP(sc)) { 17116 bxe_common_init_phy(sc); 17117 } 17118 17119 return (0); 17120 } 17121 17122 static int 17123 bxe_init_hw_port(struct bxe_softc *sc) 17124 { 17125 int port = SC_PORT(sc); 17126 int init_phase = port ? PHASE_PORT1 : PHASE_PORT0; 17127 uint32_t low, high; 17128 uint32_t val; 17129 17130 BLOGD(sc, DBG_LOAD, "starting port init for port %d\n", port); 17131 17132 REG_WR(sc, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0); 17133 17134 ecore_init_block(sc, BLOCK_MISC, init_phase); 17135 ecore_init_block(sc, BLOCK_PXP, init_phase); 17136 ecore_init_block(sc, BLOCK_PXP2, init_phase); 17137 17138 /* 17139 * Timers bug workaround: disables the pf_master bit in pglue at 17140 * common phase, we need to enable it here before any dmae access are 17141 * attempted. Therefore we manually added the enable-master to the 17142 * port phase (it also happens in the function phase) 17143 */ 17144 if (!CHIP_IS_E1x(sc)) { 17145 REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1); 17146 } 17147 17148 ecore_init_block(sc, BLOCK_ATC, init_phase); 17149 ecore_init_block(sc, BLOCK_DMAE, init_phase); 17150 ecore_init_block(sc, BLOCK_PGLUE_B, init_phase); 17151 ecore_init_block(sc, BLOCK_QM, init_phase); 17152 17153 ecore_init_block(sc, BLOCK_TCM, init_phase); 17154 ecore_init_block(sc, BLOCK_UCM, init_phase); 17155 ecore_init_block(sc, BLOCK_CCM, init_phase); 17156 ecore_init_block(sc, BLOCK_XCM, init_phase); 17157 17158 /* QM cid (connection) count */ 17159 ecore_qm_init_cid_count(sc, sc->qm_cid_count, INITOP_SET); 17160 17161 if (CNIC_SUPPORT(sc)) { 17162 ecore_init_block(sc, BLOCK_TM, init_phase); 17163 REG_WR(sc, TM_REG_LIN0_SCAN_TIME + port*4, 20); 17164 REG_WR(sc, TM_REG_LIN0_MAX_ACTIVE_CID + port*4, 31); 17165 } 17166 17167 ecore_init_block(sc, BLOCK_DORQ, init_phase); 17168 17169 ecore_init_block(sc, BLOCK_BRB1, init_phase); 17170 17171 if (CHIP_IS_E1(sc) || CHIP_IS_E1H(sc)) { 17172 if (IS_MF(sc)) { 17173 low = (BXE_ONE_PORT(sc) ? 160 : 246); 17174 } else if (sc->mtu > 4096) { 17175 if (BXE_ONE_PORT(sc)) { 17176 low = 160; 17177 } else { 17178 val = sc->mtu; 17179 /* (24*1024 + val*4)/256 */ 17180 low = (96 + (val / 64) + ((val % 64) ? 1 : 0)); 17181 } 17182 } else { 17183 low = (BXE_ONE_PORT(sc) ? 80 : 160); 17184 } 17185 high = (low + 56); /* 14*1024/256 */ 17186 REG_WR(sc, BRB1_REG_PAUSE_LOW_THRESHOLD_0 + port*4, low); 17187 REG_WR(sc, BRB1_REG_PAUSE_HIGH_THRESHOLD_0 + port*4, high); 17188 } 17189 17190 if (CHIP_IS_MODE_4_PORT(sc)) { 17191 REG_WR(sc, SC_PORT(sc) ? 17192 BRB1_REG_MAC_GUARANTIED_1 : 17193 BRB1_REG_MAC_GUARANTIED_0, 40); 17194 } 17195 17196 ecore_init_block(sc, BLOCK_PRS, init_phase); 17197 if (CHIP_IS_E3B0(sc)) { 17198 if (IS_MF_AFEX(sc)) { 17199 /* configure headers for AFEX mode */ 17200 REG_WR(sc, SC_PORT(sc) ? 17201 PRS_REG_HDRS_AFTER_BASIC_PORT_1 : 17202 PRS_REG_HDRS_AFTER_BASIC_PORT_0, 0xE); 17203 REG_WR(sc, SC_PORT(sc) ? 17204 PRS_REG_HDRS_AFTER_TAG_0_PORT_1 : 17205 PRS_REG_HDRS_AFTER_TAG_0_PORT_0, 0x6); 17206 REG_WR(sc, SC_PORT(sc) ? 17207 PRS_REG_MUST_HAVE_HDRS_PORT_1 : 17208 PRS_REG_MUST_HAVE_HDRS_PORT_0, 0xA); 17209 } else { 17210 /* Ovlan exists only if we are in multi-function + 17211 * switch-dependent mode, in switch-independent there 17212 * is no ovlan headers 17213 */ 17214 REG_WR(sc, SC_PORT(sc) ? 17215 PRS_REG_HDRS_AFTER_BASIC_PORT_1 : 17216 PRS_REG_HDRS_AFTER_BASIC_PORT_0, 17217 (sc->devinfo.mf_info.path_has_ovlan ? 7 : 6)); 17218 } 17219 } 17220 17221 ecore_init_block(sc, BLOCK_TSDM, init_phase); 17222 ecore_init_block(sc, BLOCK_CSDM, init_phase); 17223 ecore_init_block(sc, BLOCK_USDM, init_phase); 17224 ecore_init_block(sc, BLOCK_XSDM, init_phase); 17225 17226 ecore_init_block(sc, BLOCK_TSEM, init_phase); 17227 ecore_init_block(sc, BLOCK_USEM, init_phase); 17228 ecore_init_block(sc, BLOCK_CSEM, init_phase); 17229 ecore_init_block(sc, BLOCK_XSEM, init_phase); 17230 17231 ecore_init_block(sc, BLOCK_UPB, init_phase); 17232 ecore_init_block(sc, BLOCK_XPB, init_phase); 17233 17234 ecore_init_block(sc, BLOCK_PBF, init_phase); 17235 17236 if (CHIP_IS_E1x(sc)) { 17237 /* configure PBF to work without PAUSE mtu 9000 */ 17238 REG_WR(sc, PBF_REG_P0_PAUSE_ENABLE + port*4, 0); 17239 17240 /* update threshold */ 17241 REG_WR(sc, PBF_REG_P0_ARB_THRSH + port*4, (9040/16)); 17242 /* update init credit */ 17243 REG_WR(sc, PBF_REG_P0_INIT_CRD + port*4, (9040/16) + 553 - 22); 17244 17245 /* probe changes */ 17246 REG_WR(sc, PBF_REG_INIT_P0 + port*4, 1); 17247 DELAY(50); 17248 REG_WR(sc, PBF_REG_INIT_P0 + port*4, 0); 17249 } 17250 17251 if (CNIC_SUPPORT(sc)) { 17252 ecore_init_block(sc, BLOCK_SRC, init_phase); 17253 } 17254 17255 ecore_init_block(sc, BLOCK_CDU, init_phase); 17256 ecore_init_block(sc, BLOCK_CFC, init_phase); 17257 17258 if (CHIP_IS_E1(sc)) { 17259 REG_WR(sc, HC_REG_LEADING_EDGE_0 + port*8, 0); 17260 REG_WR(sc, HC_REG_TRAILING_EDGE_0 + port*8, 0); 17261 } 17262 ecore_init_block(sc, BLOCK_HC, init_phase); 17263 17264 ecore_init_block(sc, BLOCK_IGU, init_phase); 17265 17266 ecore_init_block(sc, BLOCK_MISC_AEU, init_phase); 17267 /* init aeu_mask_attn_func_0/1: 17268 * - SF mode: bits 3-7 are masked. only bits 0-2 are in use 17269 * - MF mode: bit 3 is masked. bits 0-2 are in use as in SF 17270 * bits 4-7 are used for "per vn group attention" */ 17271 val = IS_MF(sc) ? 0xF7 : 0x7; 17272 /* Enable DCBX attention for all but E1 */ 17273 val |= CHIP_IS_E1(sc) ? 0 : 0x10; 17274 REG_WR(sc, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, val); 17275 17276 ecore_init_block(sc, BLOCK_NIG, init_phase); 17277 17278 if (!CHIP_IS_E1x(sc)) { 17279 /* Bit-map indicating which L2 hdrs may appear after the 17280 * basic Ethernet header 17281 */ 17282 if (IS_MF_AFEX(sc)) { 17283 REG_WR(sc, SC_PORT(sc) ? 17284 NIG_REG_P1_HDRS_AFTER_BASIC : 17285 NIG_REG_P0_HDRS_AFTER_BASIC, 0xE); 17286 } else { 17287 REG_WR(sc, SC_PORT(sc) ? 17288 NIG_REG_P1_HDRS_AFTER_BASIC : 17289 NIG_REG_P0_HDRS_AFTER_BASIC, 17290 IS_MF_SD(sc) ? 7 : 6); 17291 } 17292 17293 if (CHIP_IS_E3(sc)) { 17294 REG_WR(sc, SC_PORT(sc) ? 17295 NIG_REG_LLH1_MF_MODE : 17296 NIG_REG_LLH_MF_MODE, IS_MF(sc)); 17297 } 17298 } 17299 if (!CHIP_IS_E3(sc)) { 17300 REG_WR(sc, NIG_REG_XGXS_SERDES0_MODE_SEL + port*4, 1); 17301 } 17302 17303 if (!CHIP_IS_E1(sc)) { 17304 /* 0x2 disable mf_ov, 0x1 enable */ 17305 REG_WR(sc, NIG_REG_LLH0_BRB1_DRV_MASK_MF + port*4, 17306 (IS_MF_SD(sc) ? 0x1 : 0x2)); 17307 17308 if (!CHIP_IS_E1x(sc)) { 17309 val = 0; 17310 switch (sc->devinfo.mf_info.mf_mode) { 17311 case MULTI_FUNCTION_SD: 17312 val = 1; 17313 break; 17314 case MULTI_FUNCTION_SI: 17315 case MULTI_FUNCTION_AFEX: 17316 val = 2; 17317 break; 17318 } 17319 17320 REG_WR(sc, (SC_PORT(sc) ? NIG_REG_LLH1_CLS_TYPE : 17321 NIG_REG_LLH0_CLS_TYPE), val); 17322 } 17323 REG_WR(sc, NIG_REG_LLFC_ENABLE_0 + port*4, 0); 17324 REG_WR(sc, NIG_REG_LLFC_OUT_EN_0 + port*4, 0); 17325 REG_WR(sc, NIG_REG_PAUSE_ENABLE_0 + port*4, 1); 17326 } 17327 17328 /* If SPIO5 is set to generate interrupts, enable it for this port */ 17329 val = REG_RD(sc, MISC_REG_SPIO_EVENT_EN); 17330 if (val & MISC_SPIO_SPIO5) { 17331 uint32_t reg_addr = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 : 17332 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0); 17333 val = REG_RD(sc, reg_addr); 17334 val |= AEU_INPUTS_ATTN_BITS_SPIO5; 17335 REG_WR(sc, reg_addr, val); 17336 } 17337 17338 return (0); 17339 } 17340 17341 static uint32_t 17342 bxe_flr_clnup_reg_poll(struct bxe_softc *sc, 17343 uint32_t reg, 17344 uint32_t expected, 17345 uint32_t poll_count) 17346 { 17347 uint32_t cur_cnt = poll_count; 17348 uint32_t val; 17349 17350 while ((val = REG_RD(sc, reg)) != expected && cur_cnt--) { 17351 DELAY(FLR_WAIT_INTERVAL); 17352 } 17353 17354 return (val); 17355 } 17356 17357 static int 17358 bxe_flr_clnup_poll_hw_counter(struct bxe_softc *sc, 17359 uint32_t reg, 17360 char *msg, 17361 uint32_t poll_cnt) 17362 { 17363 uint32_t val = bxe_flr_clnup_reg_poll(sc, reg, 0, poll_cnt); 17364 17365 if (val != 0) { 17366 BLOGE(sc, "%s usage count=%d\n", msg, val); 17367 return (1); 17368 } 17369 17370 return (0); 17371 } 17372 17373 /* Common routines with VF FLR cleanup */ 17374 static uint32_t 17375 bxe_flr_clnup_poll_count(struct bxe_softc *sc) 17376 { 17377 /* adjust polling timeout */ 17378 if (CHIP_REV_IS_EMUL(sc)) { 17379 return (FLR_POLL_CNT * 2000); 17380 } 17381 17382 if (CHIP_REV_IS_FPGA(sc)) { 17383 return (FLR_POLL_CNT * 120); 17384 } 17385 17386 return (FLR_POLL_CNT); 17387 } 17388 17389 static int 17390 bxe_poll_hw_usage_counters(struct bxe_softc *sc, 17391 uint32_t poll_cnt) 17392 { 17393 /* wait for CFC PF usage-counter to zero (includes all the VFs) */ 17394 if (bxe_flr_clnup_poll_hw_counter(sc, 17395 CFC_REG_NUM_LCIDS_INSIDE_PF, 17396 "CFC PF usage counter timed out", 17397 poll_cnt)) { 17398 return (1); 17399 } 17400 17401 /* Wait for DQ PF usage-counter to zero (until DQ cleanup) */ 17402 if (bxe_flr_clnup_poll_hw_counter(sc, 17403 DORQ_REG_PF_USAGE_CNT, 17404 "DQ PF usage counter timed out", 17405 poll_cnt)) { 17406 return (1); 17407 } 17408 17409 /* Wait for QM PF usage-counter to zero (until DQ cleanup) */ 17410 if (bxe_flr_clnup_poll_hw_counter(sc, 17411 QM_REG_PF_USG_CNT_0 + 4*SC_FUNC(sc), 17412 "QM PF usage counter timed out", 17413 poll_cnt)) { 17414 return (1); 17415 } 17416 17417 /* Wait for Timer PF usage-counters to zero (until DQ cleanup) */ 17418 if (bxe_flr_clnup_poll_hw_counter(sc, 17419 TM_REG_LIN0_VNIC_UC + 4*SC_PORT(sc), 17420 "Timers VNIC usage counter timed out", 17421 poll_cnt)) { 17422 return (1); 17423 } 17424 17425 if (bxe_flr_clnup_poll_hw_counter(sc, 17426 TM_REG_LIN0_NUM_SCANS + 4*SC_PORT(sc), 17427 "Timers NUM_SCANS usage counter timed out", 17428 poll_cnt)) { 17429 return (1); 17430 } 17431 17432 /* Wait DMAE PF usage counter to zero */ 17433 if (bxe_flr_clnup_poll_hw_counter(sc, 17434 dmae_reg_go_c[INIT_DMAE_C(sc)], 17435 "DMAE dommand register timed out", 17436 poll_cnt)) { 17437 return (1); 17438 } 17439 17440 return (0); 17441 } 17442 17443 #define OP_GEN_PARAM(param) \ 17444 (((param) << SDM_OP_GEN_COMP_PARAM_SHIFT) & SDM_OP_GEN_COMP_PARAM) 17445 #define OP_GEN_TYPE(type) \ 17446 (((type) << SDM_OP_GEN_COMP_TYPE_SHIFT) & SDM_OP_GEN_COMP_TYPE) 17447 #define OP_GEN_AGG_VECT(index) \ 17448 (((index) << SDM_OP_GEN_AGG_VECT_IDX_SHIFT) & SDM_OP_GEN_AGG_VECT_IDX) 17449 17450 static int 17451 bxe_send_final_clnup(struct bxe_softc *sc, 17452 uint8_t clnup_func, 17453 uint32_t poll_cnt) 17454 { 17455 uint32_t op_gen_command = 0; 17456 uint32_t comp_addr = (BAR_CSTRORM_INTMEM + 17457 CSTORM_FINAL_CLEANUP_COMPLETE_OFFSET(clnup_func)); 17458 int ret = 0; 17459 17460 if (REG_RD(sc, comp_addr)) { 17461 BLOGE(sc, "Cleanup complete was not 0 before sending\n"); 17462 return (1); 17463 } 17464 17465 op_gen_command |= OP_GEN_PARAM(XSTORM_AGG_INT_FINAL_CLEANUP_INDEX); 17466 op_gen_command |= OP_GEN_TYPE(XSTORM_AGG_INT_FINAL_CLEANUP_COMP_TYPE); 17467 op_gen_command |= OP_GEN_AGG_VECT(clnup_func); 17468 op_gen_command |= 1 << SDM_OP_GEN_AGG_VECT_IDX_VALID_SHIFT; 17469 17470 BLOGD(sc, DBG_LOAD, "sending FW Final cleanup\n"); 17471 REG_WR(sc, XSDM_REG_OPERATION_GEN, op_gen_command); 17472 17473 if (bxe_flr_clnup_reg_poll(sc, comp_addr, 1, poll_cnt) != 1) { 17474 BLOGE(sc, "FW final cleanup did not succeed\n"); 17475 BLOGD(sc, DBG_LOAD, "At timeout completion address contained %x\n", 17476 (REG_RD(sc, comp_addr))); 17477 bxe_panic(sc, ("FLR cleanup failed\n")); 17478 return (1); 17479 } 17480 17481 /* Zero completion for nxt FLR */ 17482 REG_WR(sc, comp_addr, 0); 17483 17484 return (ret); 17485 } 17486 17487 static void 17488 bxe_pbf_pN_buf_flushed(struct bxe_softc *sc, 17489 struct pbf_pN_buf_regs *regs, 17490 uint32_t poll_count) 17491 { 17492 uint32_t init_crd, crd, crd_start, crd_freed, crd_freed_start; 17493 uint32_t cur_cnt = poll_count; 17494 17495 crd_freed = crd_freed_start = REG_RD(sc, regs->crd_freed); 17496 crd = crd_start = REG_RD(sc, regs->crd); 17497 init_crd = REG_RD(sc, regs->init_crd); 17498 17499 BLOGD(sc, DBG_LOAD, "INIT CREDIT[%d] : %x\n", regs->pN, init_crd); 17500 BLOGD(sc, DBG_LOAD, "CREDIT[%d] : s:%x\n", regs->pN, crd); 17501 BLOGD(sc, DBG_LOAD, "CREDIT_FREED[%d]: s:%x\n", regs->pN, crd_freed); 17502 17503 while ((crd != init_crd) && 17504 ((uint32_t)((int32_t)crd_freed - (int32_t)crd_freed_start) < 17505 (init_crd - crd_start))) { 17506 if (cur_cnt--) { 17507 DELAY(FLR_WAIT_INTERVAL); 17508 crd = REG_RD(sc, regs->crd); 17509 crd_freed = REG_RD(sc, regs->crd_freed); 17510 } else { 17511 BLOGD(sc, DBG_LOAD, "PBF tx buffer[%d] timed out\n", regs->pN); 17512 BLOGD(sc, DBG_LOAD, "CREDIT[%d] : c:%x\n", regs->pN, crd); 17513 BLOGD(sc, DBG_LOAD, "CREDIT_FREED[%d]: c:%x\n", regs->pN, crd_freed); 17514 break; 17515 } 17516 } 17517 17518 BLOGD(sc, DBG_LOAD, "Waited %d*%d usec for PBF tx buffer[%d]\n", 17519 poll_count-cur_cnt, FLR_WAIT_INTERVAL, regs->pN); 17520 } 17521 17522 static void 17523 bxe_pbf_pN_cmd_flushed(struct bxe_softc *sc, 17524 struct pbf_pN_cmd_regs *regs, 17525 uint32_t poll_count) 17526 { 17527 uint32_t occup, to_free, freed, freed_start; 17528 uint32_t cur_cnt = poll_count; 17529 17530 occup = to_free = REG_RD(sc, regs->lines_occup); 17531 freed = freed_start = REG_RD(sc, regs->lines_freed); 17532 17533 BLOGD(sc, DBG_LOAD, "OCCUPANCY[%d] : s:%x\n", regs->pN, occup); 17534 BLOGD(sc, DBG_LOAD, "LINES_FREED[%d] : s:%x\n", regs->pN, freed); 17535 17536 while (occup && 17537 ((uint32_t)((int32_t)freed - (int32_t)freed_start) < to_free)) { 17538 if (cur_cnt--) { 17539 DELAY(FLR_WAIT_INTERVAL); 17540 occup = REG_RD(sc, regs->lines_occup); 17541 freed = REG_RD(sc, regs->lines_freed); 17542 } else { 17543 BLOGD(sc, DBG_LOAD, "PBF cmd queue[%d] timed out\n", regs->pN); 17544 BLOGD(sc, DBG_LOAD, "OCCUPANCY[%d] : s:%x\n", regs->pN, occup); 17545 BLOGD(sc, DBG_LOAD, "LINES_FREED[%d] : s:%x\n", regs->pN, freed); 17546 break; 17547 } 17548 } 17549 17550 BLOGD(sc, DBG_LOAD, "Waited %d*%d usec for PBF cmd queue[%d]\n", 17551 poll_count - cur_cnt, FLR_WAIT_INTERVAL, regs->pN); 17552 } 17553 17554 static void 17555 bxe_tx_hw_flushed(struct bxe_softc *sc, uint32_t poll_count) 17556 { 17557 struct pbf_pN_cmd_regs cmd_regs[] = { 17558 {0, (CHIP_IS_E3B0(sc)) ? 17559 PBF_REG_TQ_OCCUPANCY_Q0 : 17560 PBF_REG_P0_TQ_OCCUPANCY, 17561 (CHIP_IS_E3B0(sc)) ? 17562 PBF_REG_TQ_LINES_FREED_CNT_Q0 : 17563 PBF_REG_P0_TQ_LINES_FREED_CNT}, 17564 {1, (CHIP_IS_E3B0(sc)) ? 17565 PBF_REG_TQ_OCCUPANCY_Q1 : 17566 PBF_REG_P1_TQ_OCCUPANCY, 17567 (CHIP_IS_E3B0(sc)) ? 17568 PBF_REG_TQ_LINES_FREED_CNT_Q1 : 17569 PBF_REG_P1_TQ_LINES_FREED_CNT}, 17570 {4, (CHIP_IS_E3B0(sc)) ? 17571 PBF_REG_TQ_OCCUPANCY_LB_Q : 17572 PBF_REG_P4_TQ_OCCUPANCY, 17573 (CHIP_IS_E3B0(sc)) ? 17574 PBF_REG_TQ_LINES_FREED_CNT_LB_Q : 17575 PBF_REG_P4_TQ_LINES_FREED_CNT} 17576 }; 17577 17578 struct pbf_pN_buf_regs buf_regs[] = { 17579 {0, (CHIP_IS_E3B0(sc)) ? 17580 PBF_REG_INIT_CRD_Q0 : 17581 PBF_REG_P0_INIT_CRD , 17582 (CHIP_IS_E3B0(sc)) ? 17583 PBF_REG_CREDIT_Q0 : 17584 PBF_REG_P0_CREDIT, 17585 (CHIP_IS_E3B0(sc)) ? 17586 PBF_REG_INTERNAL_CRD_FREED_CNT_Q0 : 17587 PBF_REG_P0_INTERNAL_CRD_FREED_CNT}, 17588 {1, (CHIP_IS_E3B0(sc)) ? 17589 PBF_REG_INIT_CRD_Q1 : 17590 PBF_REG_P1_INIT_CRD, 17591 (CHIP_IS_E3B0(sc)) ? 17592 PBF_REG_CREDIT_Q1 : 17593 PBF_REG_P1_CREDIT, 17594 (CHIP_IS_E3B0(sc)) ? 17595 PBF_REG_INTERNAL_CRD_FREED_CNT_Q1 : 17596 PBF_REG_P1_INTERNAL_CRD_FREED_CNT}, 17597 {4, (CHIP_IS_E3B0(sc)) ? 17598 PBF_REG_INIT_CRD_LB_Q : 17599 PBF_REG_P4_INIT_CRD, 17600 (CHIP_IS_E3B0(sc)) ? 17601 PBF_REG_CREDIT_LB_Q : 17602 PBF_REG_P4_CREDIT, 17603 (CHIP_IS_E3B0(sc)) ? 17604 PBF_REG_INTERNAL_CRD_FREED_CNT_LB_Q : 17605 PBF_REG_P4_INTERNAL_CRD_FREED_CNT}, 17606 }; 17607 17608 int i; 17609 17610 /* Verify the command queues are flushed P0, P1, P4 */ 17611 for (i = 0; i < ARRAY_SIZE(cmd_regs); i++) { 17612 bxe_pbf_pN_cmd_flushed(sc, &cmd_regs[i], poll_count); 17613 } 17614 17615 /* Verify the transmission buffers are flushed P0, P1, P4 */ 17616 for (i = 0; i < ARRAY_SIZE(buf_regs); i++) { 17617 bxe_pbf_pN_buf_flushed(sc, &buf_regs[i], poll_count); 17618 } 17619 } 17620 17621 static void 17622 bxe_hw_enable_status(struct bxe_softc *sc) 17623 { 17624 uint32_t val; 17625 17626 val = REG_RD(sc, CFC_REG_WEAK_ENABLE_PF); 17627 BLOGD(sc, DBG_LOAD, "CFC_REG_WEAK_ENABLE_PF is 0x%x\n", val); 17628 17629 val = REG_RD(sc, PBF_REG_DISABLE_PF); 17630 BLOGD(sc, DBG_LOAD, "PBF_REG_DISABLE_PF is 0x%x\n", val); 17631 17632 val = REG_RD(sc, IGU_REG_PCI_PF_MSI_EN); 17633 BLOGD(sc, DBG_LOAD, "IGU_REG_PCI_PF_MSI_EN is 0x%x\n", val); 17634 17635 val = REG_RD(sc, IGU_REG_PCI_PF_MSIX_EN); 17636 BLOGD(sc, DBG_LOAD, "IGU_REG_PCI_PF_MSIX_EN is 0x%x\n", val); 17637 17638 val = REG_RD(sc, IGU_REG_PCI_PF_MSIX_FUNC_MASK); 17639 BLOGD(sc, DBG_LOAD, "IGU_REG_PCI_PF_MSIX_FUNC_MASK is 0x%x\n", val); 17640 17641 val = REG_RD(sc, PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR); 17642 BLOGD(sc, DBG_LOAD, "PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR is 0x%x\n", val); 17643 17644 val = REG_RD(sc, PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR); 17645 BLOGD(sc, DBG_LOAD, "PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR is 0x%x\n", val); 17646 17647 val = REG_RD(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER); 17648 BLOGD(sc, DBG_LOAD, "PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER is 0x%x\n", val); 17649 } 17650 17651 static int 17652 bxe_pf_flr_clnup(struct bxe_softc *sc) 17653 { 17654 uint32_t poll_cnt = bxe_flr_clnup_poll_count(sc); 17655 17656 BLOGD(sc, DBG_LOAD, "Cleanup after FLR PF[%d]\n", SC_ABS_FUNC(sc)); 17657 17658 /* Re-enable PF target read access */ 17659 REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1); 17660 17661 /* Poll HW usage counters */ 17662 BLOGD(sc, DBG_LOAD, "Polling usage counters\n"); 17663 if (bxe_poll_hw_usage_counters(sc, poll_cnt)) { 17664 return (-1); 17665 } 17666 17667 /* Zero the igu 'trailing edge' and 'leading edge' */ 17668 17669 /* Send the FW cleanup command */ 17670 if (bxe_send_final_clnup(sc, (uint8_t)SC_FUNC(sc), poll_cnt)) { 17671 return (-1); 17672 } 17673 17674 /* ATC cleanup */ 17675 17676 /* Verify TX hw is flushed */ 17677 bxe_tx_hw_flushed(sc, poll_cnt); 17678 17679 /* Wait 100ms (not adjusted according to platform) */ 17680 DELAY(100000); 17681 17682 /* Verify no pending pci transactions */ 17683 if (bxe_is_pcie_pending(sc)) { 17684 BLOGE(sc, "PCIE Transactions still pending\n"); 17685 } 17686 17687 /* Debug */ 17688 bxe_hw_enable_status(sc); 17689 17690 /* 17691 * Master enable - Due to WB DMAE writes performed before this 17692 * register is re-initialized as part of the regular function init 17693 */ 17694 REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1); 17695 17696 return (0); 17697 } 17698 17699 static int 17700 bxe_init_hw_func(struct bxe_softc *sc) 17701 { 17702 int port = SC_PORT(sc); 17703 int func = SC_FUNC(sc); 17704 int init_phase = PHASE_PF0 + func; 17705 struct ecore_ilt *ilt = sc->ilt; 17706 uint16_t cdu_ilt_start; 17707 uint32_t addr, val; 17708 uint32_t main_mem_base, main_mem_size, main_mem_prty_clr; 17709 int i, main_mem_width, rc; 17710 17711 BLOGD(sc, DBG_LOAD, "starting func init for func %d\n", func); 17712 17713 /* FLR cleanup */ 17714 if (!CHIP_IS_E1x(sc)) { 17715 rc = bxe_pf_flr_clnup(sc); 17716 if (rc) { 17717 BLOGE(sc, "FLR cleanup failed!\n"); 17718 // XXX bxe_fw_dump(sc); 17719 // XXX bxe_idle_chk(sc); 17720 return (rc); 17721 } 17722 } 17723 17724 /* set MSI reconfigure capability */ 17725 if (sc->devinfo.int_block == INT_BLOCK_HC) { 17726 addr = (port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0); 17727 val = REG_RD(sc, addr); 17728 val |= HC_CONFIG_0_REG_MSI_ATTN_EN_0; 17729 REG_WR(sc, addr, val); 17730 } 17731 17732 ecore_init_block(sc, BLOCK_PXP, init_phase); 17733 ecore_init_block(sc, BLOCK_PXP2, init_phase); 17734 17735 ilt = sc->ilt; 17736 cdu_ilt_start = ilt->clients[ILT_CLIENT_CDU].start; 17737 17738 for (i = 0; i < L2_ILT_LINES(sc); i++) { 17739 ilt->lines[cdu_ilt_start + i].page = sc->context[i].vcxt; 17740 ilt->lines[cdu_ilt_start + i].page_mapping = 17741 sc->context[i].vcxt_dma.paddr; 17742 ilt->lines[cdu_ilt_start + i].size = sc->context[i].size; 17743 } 17744 ecore_ilt_init_op(sc, INITOP_SET); 17745 17746 /* Set NIC mode */ 17747 REG_WR(sc, PRS_REG_NIC_MODE, 1); 17748 BLOGD(sc, DBG_LOAD, "NIC MODE configured\n"); 17749 17750 if (!CHIP_IS_E1x(sc)) { 17751 uint32_t pf_conf = IGU_PF_CONF_FUNC_EN; 17752 17753 /* Turn on a single ISR mode in IGU if driver is going to use 17754 * INT#x or MSI 17755 */ 17756 if (sc->interrupt_mode != INTR_MODE_MSIX) { 17757 pf_conf |= IGU_PF_CONF_SINGLE_ISR_EN; 17758 } 17759 17760 /* 17761 * Timers workaround bug: function init part. 17762 * Need to wait 20msec after initializing ILT, 17763 * needed to make sure there are no requests in 17764 * one of the PXP internal queues with "old" ILT addresses 17765 */ 17766 DELAY(20000); 17767 17768 /* 17769 * Master enable - Due to WB DMAE writes performed before this 17770 * register is re-initialized as part of the regular function 17771 * init 17772 */ 17773 REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1); 17774 /* Enable the function in IGU */ 17775 REG_WR(sc, IGU_REG_PF_CONFIGURATION, pf_conf); 17776 } 17777 17778 sc->dmae_ready = 1; 17779 17780 ecore_init_block(sc, BLOCK_PGLUE_B, init_phase); 17781 17782 if (!CHIP_IS_E1x(sc)) 17783 REG_WR(sc, PGLUE_B_REG_WAS_ERROR_PF_7_0_CLR, func); 17784 17785 ecore_init_block(sc, BLOCK_ATC, init_phase); 17786 ecore_init_block(sc, BLOCK_DMAE, init_phase); 17787 ecore_init_block(sc, BLOCK_NIG, init_phase); 17788 ecore_init_block(sc, BLOCK_SRC, init_phase); 17789 ecore_init_block(sc, BLOCK_MISC, init_phase); 17790 ecore_init_block(sc, BLOCK_TCM, init_phase); 17791 ecore_init_block(sc, BLOCK_UCM, init_phase); 17792 ecore_init_block(sc, BLOCK_CCM, init_phase); 17793 ecore_init_block(sc, BLOCK_XCM, init_phase); 17794 ecore_init_block(sc, BLOCK_TSEM, init_phase); 17795 ecore_init_block(sc, BLOCK_USEM, init_phase); 17796 ecore_init_block(sc, BLOCK_CSEM, init_phase); 17797 ecore_init_block(sc, BLOCK_XSEM, init_phase); 17798 17799 if (!CHIP_IS_E1x(sc)) 17800 REG_WR(sc, QM_REG_PF_EN, 1); 17801 17802 if (!CHIP_IS_E1x(sc)) { 17803 REG_WR(sc, TSEM_REG_VFPF_ERR_NUM, BXE_MAX_NUM_OF_VFS + func); 17804 REG_WR(sc, USEM_REG_VFPF_ERR_NUM, BXE_MAX_NUM_OF_VFS + func); 17805 REG_WR(sc, CSEM_REG_VFPF_ERR_NUM, BXE_MAX_NUM_OF_VFS + func); 17806 REG_WR(sc, XSEM_REG_VFPF_ERR_NUM, BXE_MAX_NUM_OF_VFS + func); 17807 } 17808 ecore_init_block(sc, BLOCK_QM, init_phase); 17809 17810 ecore_init_block(sc, BLOCK_TM, init_phase); 17811 ecore_init_block(sc, BLOCK_DORQ, init_phase); 17812 17813 bxe_iov_init_dq(sc); 17814 17815 ecore_init_block(sc, BLOCK_BRB1, init_phase); 17816 ecore_init_block(sc, BLOCK_PRS, init_phase); 17817 ecore_init_block(sc, BLOCK_TSDM, init_phase); 17818 ecore_init_block(sc, BLOCK_CSDM, init_phase); 17819 ecore_init_block(sc, BLOCK_USDM, init_phase); 17820 ecore_init_block(sc, BLOCK_XSDM, init_phase); 17821 ecore_init_block(sc, BLOCK_UPB, init_phase); 17822 ecore_init_block(sc, BLOCK_XPB, init_phase); 17823 ecore_init_block(sc, BLOCK_PBF, init_phase); 17824 if (!CHIP_IS_E1x(sc)) 17825 REG_WR(sc, PBF_REG_DISABLE_PF, 0); 17826 17827 ecore_init_block(sc, BLOCK_CDU, init_phase); 17828 17829 ecore_init_block(sc, BLOCK_CFC, init_phase); 17830 17831 if (!CHIP_IS_E1x(sc)) 17832 REG_WR(sc, CFC_REG_WEAK_ENABLE_PF, 1); 17833 17834 if (IS_MF(sc)) { 17835 REG_WR(sc, NIG_REG_LLH0_FUNC_EN + port*8, 1); 17836 REG_WR(sc, NIG_REG_LLH0_FUNC_VLAN_ID + port*8, OVLAN(sc)); 17837 } 17838 17839 ecore_init_block(sc, BLOCK_MISC_AEU, init_phase); 17840 17841 /* HC init per function */ 17842 if (sc->devinfo.int_block == INT_BLOCK_HC) { 17843 if (CHIP_IS_E1H(sc)) { 17844 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0); 17845 17846 REG_WR(sc, HC_REG_LEADING_EDGE_0 + port*8, 0); 17847 REG_WR(sc, HC_REG_TRAILING_EDGE_0 + port*8, 0); 17848 } 17849 ecore_init_block(sc, BLOCK_HC, init_phase); 17850 17851 } else { 17852 int num_segs, sb_idx, prod_offset; 17853 17854 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0); 17855 17856 if (!CHIP_IS_E1x(sc)) { 17857 REG_WR(sc, IGU_REG_LEADING_EDGE_LATCH, 0); 17858 REG_WR(sc, IGU_REG_TRAILING_EDGE_LATCH, 0); 17859 } 17860 17861 ecore_init_block(sc, BLOCK_IGU, init_phase); 17862 17863 if (!CHIP_IS_E1x(sc)) { 17864 int dsb_idx = 0; 17865 /** 17866 * Producer memory: 17867 * E2 mode: address 0-135 match to the mapping memory; 17868 * 136 - PF0 default prod; 137 - PF1 default prod; 17869 * 138 - PF2 default prod; 139 - PF3 default prod; 17870 * 140 - PF0 attn prod; 141 - PF1 attn prod; 17871 * 142 - PF2 attn prod; 143 - PF3 attn prod; 17872 * 144-147 reserved. 17873 * 17874 * E1.5 mode - In backward compatible mode; 17875 * for non default SB; each even line in the memory 17876 * holds the U producer and each odd line hold 17877 * the C producer. The first 128 producers are for 17878 * NDSB (PF0 - 0-31; PF1 - 32-63 and so on). The last 20 17879 * producers are for the DSB for each PF. 17880 * Each PF has five segments: (the order inside each 17881 * segment is PF0; PF1; PF2; PF3) - 128-131 U prods; 17882 * 132-135 C prods; 136-139 X prods; 140-143 T prods; 17883 * 144-147 attn prods; 17884 */ 17885 /* non-default-status-blocks */ 17886 num_segs = CHIP_INT_MODE_IS_BC(sc) ? 17887 IGU_BC_NDSB_NUM_SEGS : IGU_NORM_NDSB_NUM_SEGS; 17888 for (sb_idx = 0; sb_idx < sc->igu_sb_cnt; sb_idx++) { 17889 prod_offset = (sc->igu_base_sb + sb_idx) * 17890 num_segs; 17891 17892 for (i = 0; i < num_segs; i++) { 17893 addr = IGU_REG_PROD_CONS_MEMORY + 17894 (prod_offset + i) * 4; 17895 REG_WR(sc, addr, 0); 17896 } 17897 /* send consumer update with value 0 */ 17898 bxe_ack_sb(sc, sc->igu_base_sb + sb_idx, 17899 USTORM_ID, 0, IGU_INT_NOP, 1); 17900 bxe_igu_clear_sb(sc, sc->igu_base_sb + sb_idx); 17901 } 17902 17903 /* default-status-blocks */ 17904 num_segs = CHIP_INT_MODE_IS_BC(sc) ? 17905 IGU_BC_DSB_NUM_SEGS : IGU_NORM_DSB_NUM_SEGS; 17906 17907 if (CHIP_IS_MODE_4_PORT(sc)) 17908 dsb_idx = SC_FUNC(sc); 17909 else 17910 dsb_idx = SC_VN(sc); 17911 17912 prod_offset = (CHIP_INT_MODE_IS_BC(sc) ? 17913 IGU_BC_BASE_DSB_PROD + dsb_idx : 17914 IGU_NORM_BASE_DSB_PROD + dsb_idx); 17915 17916 /* 17917 * igu prods come in chunks of E1HVN_MAX (4) - 17918 * does not matters what is the current chip mode 17919 */ 17920 for (i = 0; i < (num_segs * E1HVN_MAX); 17921 i += E1HVN_MAX) { 17922 addr = IGU_REG_PROD_CONS_MEMORY + 17923 (prod_offset + i)*4; 17924 REG_WR(sc, addr, 0); 17925 } 17926 /* send consumer update with 0 */ 17927 if (CHIP_INT_MODE_IS_BC(sc)) { 17928 bxe_ack_sb(sc, sc->igu_dsb_id, 17929 USTORM_ID, 0, IGU_INT_NOP, 1); 17930 bxe_ack_sb(sc, sc->igu_dsb_id, 17931 CSTORM_ID, 0, IGU_INT_NOP, 1); 17932 bxe_ack_sb(sc, sc->igu_dsb_id, 17933 XSTORM_ID, 0, IGU_INT_NOP, 1); 17934 bxe_ack_sb(sc, sc->igu_dsb_id, 17935 TSTORM_ID, 0, IGU_INT_NOP, 1); 17936 bxe_ack_sb(sc, sc->igu_dsb_id, 17937 ATTENTION_ID, 0, IGU_INT_NOP, 1); 17938 } else { 17939 bxe_ack_sb(sc, sc->igu_dsb_id, 17940 USTORM_ID, 0, IGU_INT_NOP, 1); 17941 bxe_ack_sb(sc, sc->igu_dsb_id, 17942 ATTENTION_ID, 0, IGU_INT_NOP, 1); 17943 } 17944 bxe_igu_clear_sb(sc, sc->igu_dsb_id); 17945 17946 /* !!! these should become driver const once 17947 rf-tool supports split-68 const */ 17948 REG_WR(sc, IGU_REG_SB_INT_BEFORE_MASK_LSB, 0); 17949 REG_WR(sc, IGU_REG_SB_INT_BEFORE_MASK_MSB, 0); 17950 REG_WR(sc, IGU_REG_SB_MASK_LSB, 0); 17951 REG_WR(sc, IGU_REG_SB_MASK_MSB, 0); 17952 REG_WR(sc, IGU_REG_PBA_STATUS_LSB, 0); 17953 REG_WR(sc, IGU_REG_PBA_STATUS_MSB, 0); 17954 } 17955 } 17956 17957 /* Reset PCIE errors for debug */ 17958 REG_WR(sc, 0x2114, 0xffffffff); 17959 REG_WR(sc, 0x2120, 0xffffffff); 17960 17961 if (CHIP_IS_E1x(sc)) { 17962 main_mem_size = HC_REG_MAIN_MEMORY_SIZE / 2; /*dwords*/ 17963 main_mem_base = HC_REG_MAIN_MEMORY + 17964 SC_PORT(sc) * (main_mem_size * 4); 17965 main_mem_prty_clr = HC_REG_HC_PRTY_STS_CLR; 17966 main_mem_width = 8; 17967 17968 val = REG_RD(sc, main_mem_prty_clr); 17969 if (val) { 17970 BLOGD(sc, DBG_LOAD, 17971 "Parity errors in HC block during function init (0x%x)!\n", 17972 val); 17973 } 17974 17975 /* Clear "false" parity errors in MSI-X table */ 17976 for (i = main_mem_base; 17977 i < main_mem_base + main_mem_size * 4; 17978 i += main_mem_width) { 17979 bxe_read_dmae(sc, i, main_mem_width / 4); 17980 bxe_write_dmae(sc, BXE_SP_MAPPING(sc, wb_data), 17981 i, main_mem_width / 4); 17982 } 17983 /* Clear HC parity attention */ 17984 REG_RD(sc, main_mem_prty_clr); 17985 } 17986 17987 #if 1 17988 /* Enable STORMs SP logging */ 17989 REG_WR8(sc, BAR_USTRORM_INTMEM + 17990 USTORM_RECORD_SLOW_PATH_OFFSET(SC_FUNC(sc)), 1); 17991 REG_WR8(sc, BAR_TSTRORM_INTMEM + 17992 TSTORM_RECORD_SLOW_PATH_OFFSET(SC_FUNC(sc)), 1); 17993 REG_WR8(sc, BAR_CSTRORM_INTMEM + 17994 CSTORM_RECORD_SLOW_PATH_OFFSET(SC_FUNC(sc)), 1); 17995 REG_WR8(sc, BAR_XSTRORM_INTMEM + 17996 XSTORM_RECORD_SLOW_PATH_OFFSET(SC_FUNC(sc)), 1); 17997 #endif 17998 17999 elink_phy_probe(&sc->link_params); 18000 18001 return (0); 18002 } 18003 18004 static void 18005 bxe_link_reset(struct bxe_softc *sc) 18006 { 18007 if (!BXE_NOMCP(sc)) { 18008 bxe_acquire_phy_lock(sc); 18009 elink_lfa_reset(&sc->link_params, &sc->link_vars); 18010 bxe_release_phy_lock(sc); 18011 } else { 18012 if (!CHIP_REV_IS_SLOW(sc)) { 18013 BLOGW(sc, "Bootcode is missing - cannot reset link\n"); 18014 } 18015 } 18016 } 18017 18018 static void 18019 bxe_reset_port(struct bxe_softc *sc) 18020 { 18021 int port = SC_PORT(sc); 18022 uint32_t val; 18023 18024 /* reset physical Link */ 18025 bxe_link_reset(sc); 18026 18027 REG_WR(sc, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0); 18028 18029 /* Do not rcv packets to BRB */ 18030 REG_WR(sc, NIG_REG_LLH0_BRB1_DRV_MASK + port*4, 0x0); 18031 /* Do not direct rcv packets that are not for MCP to the BRB */ 18032 REG_WR(sc, (port ? NIG_REG_LLH1_BRB1_NOT_MCP : 18033 NIG_REG_LLH0_BRB1_NOT_MCP), 0x0); 18034 18035 /* Configure AEU */ 18036 REG_WR(sc, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, 0); 18037 18038 DELAY(100000); 18039 18040 /* Check for BRB port occupancy */ 18041 val = REG_RD(sc, BRB1_REG_PORT_NUM_OCC_BLOCKS_0 + port*4); 18042 if (val) { 18043 BLOGD(sc, DBG_LOAD, 18044 "BRB1 is not empty, %d blocks are occupied\n", val); 18045 } 18046 18047 /* TODO: Close Doorbell port? */ 18048 } 18049 18050 static void 18051 bxe_ilt_wr(struct bxe_softc *sc, 18052 uint32_t index, 18053 bus_addr_t addr) 18054 { 18055 int reg; 18056 uint32_t wb_write[2]; 18057 18058 if (CHIP_IS_E1(sc)) { 18059 reg = PXP2_REG_RQ_ONCHIP_AT + index*8; 18060 } else { 18061 reg = PXP2_REG_RQ_ONCHIP_AT_B0 + index*8; 18062 } 18063 18064 wb_write[0] = ONCHIP_ADDR1(addr); 18065 wb_write[1] = ONCHIP_ADDR2(addr); 18066 REG_WR_DMAE(sc, reg, wb_write, 2); 18067 } 18068 18069 static void 18070 bxe_clear_func_ilt(struct bxe_softc *sc, 18071 uint32_t func) 18072 { 18073 uint32_t i, base = FUNC_ILT_BASE(func); 18074 for (i = base; i < base + ILT_PER_FUNC; i++) { 18075 bxe_ilt_wr(sc, i, 0); 18076 } 18077 } 18078 18079 static void 18080 bxe_reset_func(struct bxe_softc *sc) 18081 { 18082 struct bxe_fastpath *fp; 18083 int port = SC_PORT(sc); 18084 int func = SC_FUNC(sc); 18085 int i; 18086 18087 /* Disable the function in the FW */ 18088 REG_WR8(sc, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(func), 0); 18089 REG_WR8(sc, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(func), 0); 18090 REG_WR8(sc, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(func), 0); 18091 REG_WR8(sc, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(func), 0); 18092 18093 /* FP SBs */ 18094 FOR_EACH_ETH_QUEUE(sc, i) { 18095 fp = &sc->fp[i]; 18096 REG_WR8(sc, BAR_CSTRORM_INTMEM + 18097 CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET(fp->fw_sb_id), 18098 SB_DISABLED); 18099 } 18100 18101 /* SP SB */ 18102 REG_WR8(sc, BAR_CSTRORM_INTMEM + 18103 CSTORM_SP_STATUS_BLOCK_DATA_STATE_OFFSET(func), 18104 SB_DISABLED); 18105 18106 for (i = 0; i < XSTORM_SPQ_DATA_SIZE / 4; i++) { 18107 REG_WR(sc, BAR_XSTRORM_INTMEM + XSTORM_SPQ_DATA_OFFSET(func), 0); 18108 } 18109 18110 /* Configure IGU */ 18111 if (sc->devinfo.int_block == INT_BLOCK_HC) { 18112 REG_WR(sc, HC_REG_LEADING_EDGE_0 + port*8, 0); 18113 REG_WR(sc, HC_REG_TRAILING_EDGE_0 + port*8, 0); 18114 } else { 18115 REG_WR(sc, IGU_REG_LEADING_EDGE_LATCH, 0); 18116 REG_WR(sc, IGU_REG_TRAILING_EDGE_LATCH, 0); 18117 } 18118 18119 if (CNIC_LOADED(sc)) { 18120 /* Disable Timer scan */ 18121 REG_WR(sc, TM_REG_EN_LINEAR0_TIMER + port*4, 0); 18122 /* 18123 * Wait for at least 10ms and up to 2 second for the timers 18124 * scan to complete 18125 */ 18126 for (i = 0; i < 200; i++) { 18127 DELAY(10000); 18128 if (!REG_RD(sc, TM_REG_LIN0_SCAN_ON + port*4)) 18129 break; 18130 } 18131 } 18132 18133 /* Clear ILT */ 18134 bxe_clear_func_ilt(sc, func); 18135 18136 /* 18137 * Timers workaround bug for E2: if this is vnic-3, 18138 * we need to set the entire ilt range for this timers. 18139 */ 18140 if (!CHIP_IS_E1x(sc) && SC_VN(sc) == 3) { 18141 struct ilt_client_info ilt_cli; 18142 /* use dummy TM client */ 18143 memset(&ilt_cli, 0, sizeof(struct ilt_client_info)); 18144 ilt_cli.start = 0; 18145 ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1; 18146 ilt_cli.client_num = ILT_CLIENT_TM; 18147 18148 ecore_ilt_boundry_init_op(sc, &ilt_cli, 0, INITOP_CLEAR); 18149 } 18150 18151 /* this assumes that reset_port() called before reset_func()*/ 18152 if (!CHIP_IS_E1x(sc)) { 18153 bxe_pf_disable(sc); 18154 } 18155 18156 sc->dmae_ready = 0; 18157 } 18158 18159 static int 18160 bxe_gunzip_init(struct bxe_softc *sc) 18161 { 18162 return (0); 18163 } 18164 18165 static void 18166 bxe_gunzip_end(struct bxe_softc *sc) 18167 { 18168 return; 18169 } 18170 18171 static int 18172 bxe_init_firmware(struct bxe_softc *sc) 18173 { 18174 if (CHIP_IS_E1(sc)) { 18175 ecore_init_e1_firmware(sc); 18176 sc->iro_array = e1_iro_arr; 18177 } else if (CHIP_IS_E1H(sc)) { 18178 ecore_init_e1h_firmware(sc); 18179 sc->iro_array = e1h_iro_arr; 18180 } else if (!CHIP_IS_E1x(sc)) { 18181 ecore_init_e2_firmware(sc); 18182 sc->iro_array = e2_iro_arr; 18183 } else { 18184 BLOGE(sc, "Unsupported chip revision\n"); 18185 return (-1); 18186 } 18187 18188 return (0); 18189 } 18190 18191 static void 18192 bxe_release_firmware(struct bxe_softc *sc) 18193 { 18194 /* Do nothing */ 18195 return; 18196 } 18197 18198 static int 18199 ecore_gunzip(struct bxe_softc *sc, 18200 const uint8_t *zbuf, 18201 int len) 18202 { 18203 /* XXX : Implement... */ 18204 BLOGD(sc, DBG_LOAD, "ECORE_GUNZIP NOT IMPLEMENTED\n"); 18205 return (FALSE); 18206 } 18207 18208 static void 18209 ecore_reg_wr_ind(struct bxe_softc *sc, 18210 uint32_t addr, 18211 uint32_t val) 18212 { 18213 bxe_reg_wr_ind(sc, addr, val); 18214 } 18215 18216 static void 18217 ecore_write_dmae_phys_len(struct bxe_softc *sc, 18218 bus_addr_t phys_addr, 18219 uint32_t addr, 18220 uint32_t len) 18221 { 18222 bxe_write_dmae_phys_len(sc, phys_addr, addr, len); 18223 } 18224 18225 void 18226 ecore_storm_memset_struct(struct bxe_softc *sc, 18227 uint32_t addr, 18228 size_t size, 18229 uint32_t *data) 18230 { 18231 uint8_t i; 18232 for (i = 0; i < size/4; i++) { 18233 REG_WR(sc, addr + (i * 4), data[i]); 18234 } 18235 } 18236 18237 18238 /* 18239 * character device - ioctl interface definitions 18240 */ 18241 18242 18243 #include "bxe_dump.h" 18244 #include "bxe_ioctl.h" 18245 #include <sys/conf.h> 18246 18247 static int bxe_eioctl(struct cdev *dev, u_long cmd, caddr_t data, int fflag, 18248 struct thread *td); 18249 18250 static struct cdevsw bxe_cdevsw = { 18251 .d_version = D_VERSION, 18252 .d_ioctl = bxe_eioctl, 18253 .d_name = "bxecnic", 18254 }; 18255 18256 #define BXE_PATH(sc) (CHIP_IS_E1x(sc) ? 0 : (sc->pcie_func & 1)) 18257 18258 18259 #define DUMP_ALL_PRESETS 0x1FFF 18260 #define DUMP_MAX_PRESETS 13 18261 #define IS_E1_REG(chips) ((chips & DUMP_CHIP_E1) == DUMP_CHIP_E1) 18262 #define IS_E1H_REG(chips) ((chips & DUMP_CHIP_E1H) == DUMP_CHIP_E1H) 18263 #define IS_E2_REG(chips) ((chips & DUMP_CHIP_E2) == DUMP_CHIP_E2) 18264 #define IS_E3A0_REG(chips) ((chips & DUMP_CHIP_E3A0) == DUMP_CHIP_E3A0) 18265 #define IS_E3B0_REG(chips) ((chips & DUMP_CHIP_E3B0) == DUMP_CHIP_E3B0) 18266 18267 #define IS_REG_IN_PRESET(presets, idx) \ 18268 ((presets & (1 << (idx-1))) == (1 << (idx-1))) 18269 18270 18271 static int 18272 bxe_get_preset_regs_len(struct bxe_softc *sc, uint32_t preset) 18273 { 18274 if (CHIP_IS_E1(sc)) 18275 return dump_num_registers[0][preset-1]; 18276 else if (CHIP_IS_E1H(sc)) 18277 return dump_num_registers[1][preset-1]; 18278 else if (CHIP_IS_E2(sc)) 18279 return dump_num_registers[2][preset-1]; 18280 else if (CHIP_IS_E3A0(sc)) 18281 return dump_num_registers[3][preset-1]; 18282 else if (CHIP_IS_E3B0(sc)) 18283 return dump_num_registers[4][preset-1]; 18284 else 18285 return 0; 18286 } 18287 18288 static int 18289 bxe_get_total_regs_len32(struct bxe_softc *sc) 18290 { 18291 uint32_t preset_idx; 18292 int regdump_len32 = 0; 18293 18294 18295 /* Calculate the total preset regs length */ 18296 for (preset_idx = 1; preset_idx <= DUMP_MAX_PRESETS; preset_idx++) { 18297 regdump_len32 += bxe_get_preset_regs_len(sc, preset_idx); 18298 } 18299 18300 return regdump_len32; 18301 } 18302 18303 static const uint32_t * 18304 __bxe_get_page_addr_ar(struct bxe_softc *sc) 18305 { 18306 if (CHIP_IS_E2(sc)) 18307 return page_vals_e2; 18308 else if (CHIP_IS_E3(sc)) 18309 return page_vals_e3; 18310 else 18311 return NULL; 18312 } 18313 18314 static uint32_t 18315 __bxe_get_page_reg_num(struct bxe_softc *sc) 18316 { 18317 if (CHIP_IS_E2(sc)) 18318 return PAGE_MODE_VALUES_E2; 18319 else if (CHIP_IS_E3(sc)) 18320 return PAGE_MODE_VALUES_E3; 18321 else 18322 return 0; 18323 } 18324 18325 static const uint32_t * 18326 __bxe_get_page_write_ar(struct bxe_softc *sc) 18327 { 18328 if (CHIP_IS_E2(sc)) 18329 return page_write_regs_e2; 18330 else if (CHIP_IS_E3(sc)) 18331 return page_write_regs_e3; 18332 else 18333 return NULL; 18334 } 18335 18336 static uint32_t 18337 __bxe_get_page_write_num(struct bxe_softc *sc) 18338 { 18339 if (CHIP_IS_E2(sc)) 18340 return PAGE_WRITE_REGS_E2; 18341 else if (CHIP_IS_E3(sc)) 18342 return PAGE_WRITE_REGS_E3; 18343 else 18344 return 0; 18345 } 18346 18347 static const struct reg_addr * 18348 __bxe_get_page_read_ar(struct bxe_softc *sc) 18349 { 18350 if (CHIP_IS_E2(sc)) 18351 return page_read_regs_e2; 18352 else if (CHIP_IS_E3(sc)) 18353 return page_read_regs_e3; 18354 else 18355 return NULL; 18356 } 18357 18358 static uint32_t 18359 __bxe_get_page_read_num(struct bxe_softc *sc) 18360 { 18361 if (CHIP_IS_E2(sc)) 18362 return PAGE_READ_REGS_E2; 18363 else if (CHIP_IS_E3(sc)) 18364 return PAGE_READ_REGS_E3; 18365 else 18366 return 0; 18367 } 18368 18369 static bool 18370 bxe_is_reg_in_chip(struct bxe_softc *sc, const struct reg_addr *reg_info) 18371 { 18372 if (CHIP_IS_E1(sc)) 18373 return IS_E1_REG(reg_info->chips); 18374 else if (CHIP_IS_E1H(sc)) 18375 return IS_E1H_REG(reg_info->chips); 18376 else if (CHIP_IS_E2(sc)) 18377 return IS_E2_REG(reg_info->chips); 18378 else if (CHIP_IS_E3A0(sc)) 18379 return IS_E3A0_REG(reg_info->chips); 18380 else if (CHIP_IS_E3B0(sc)) 18381 return IS_E3B0_REG(reg_info->chips); 18382 else 18383 return 0; 18384 } 18385 18386 static bool 18387 bxe_is_wreg_in_chip(struct bxe_softc *sc, const struct wreg_addr *wreg_info) 18388 { 18389 if (CHIP_IS_E1(sc)) 18390 return IS_E1_REG(wreg_info->chips); 18391 else if (CHIP_IS_E1H(sc)) 18392 return IS_E1H_REG(wreg_info->chips); 18393 else if (CHIP_IS_E2(sc)) 18394 return IS_E2_REG(wreg_info->chips); 18395 else if (CHIP_IS_E3A0(sc)) 18396 return IS_E3A0_REG(wreg_info->chips); 18397 else if (CHIP_IS_E3B0(sc)) 18398 return IS_E3B0_REG(wreg_info->chips); 18399 else 18400 return 0; 18401 } 18402 18403 /** 18404 * bxe_read_pages_regs - read "paged" registers 18405 * 18406 * @bp device handle 18407 * @p output buffer 18408 * 18409 * Reads "paged" memories: memories that may only be read by first writing to a 18410 * specific address ("write address") and then reading from a specific address 18411 * ("read address"). There may be more than one write address per "page" and 18412 * more than one read address per write address. 18413 */ 18414 static void 18415 bxe_read_pages_regs(struct bxe_softc *sc, uint32_t *p, uint32_t preset) 18416 { 18417 uint32_t i, j, k, n; 18418 18419 /* addresses of the paged registers */ 18420 const uint32_t *page_addr = __bxe_get_page_addr_ar(sc); 18421 /* number of paged registers */ 18422 int num_pages = __bxe_get_page_reg_num(sc); 18423 /* write addresses */ 18424 const uint32_t *write_addr = __bxe_get_page_write_ar(sc); 18425 /* number of write addresses */ 18426 int write_num = __bxe_get_page_write_num(sc); 18427 /* read addresses info */ 18428 const struct reg_addr *read_addr = __bxe_get_page_read_ar(sc); 18429 /* number of read addresses */ 18430 int read_num = __bxe_get_page_read_num(sc); 18431 uint32_t addr, size; 18432 18433 for (i = 0; i < num_pages; i++) { 18434 for (j = 0; j < write_num; j++) { 18435 REG_WR(sc, write_addr[j], page_addr[i]); 18436 18437 for (k = 0; k < read_num; k++) { 18438 if (IS_REG_IN_PRESET(read_addr[k].presets, preset)) { 18439 size = read_addr[k].size; 18440 for (n = 0; n < size; n++) { 18441 addr = read_addr[k].addr + n*4; 18442 *p++ = REG_RD(sc, addr); 18443 } 18444 } 18445 } 18446 } 18447 } 18448 return; 18449 } 18450 18451 18452 static int 18453 bxe_get_preset_regs(struct bxe_softc *sc, uint32_t *p, uint32_t preset) 18454 { 18455 uint32_t i, j, addr; 18456 const struct wreg_addr *wreg_addr_p = NULL; 18457 18458 if (CHIP_IS_E1(sc)) 18459 wreg_addr_p = &wreg_addr_e1; 18460 else if (CHIP_IS_E1H(sc)) 18461 wreg_addr_p = &wreg_addr_e1h; 18462 else if (CHIP_IS_E2(sc)) 18463 wreg_addr_p = &wreg_addr_e2; 18464 else if (CHIP_IS_E3A0(sc)) 18465 wreg_addr_p = &wreg_addr_e3; 18466 else if (CHIP_IS_E3B0(sc)) 18467 wreg_addr_p = &wreg_addr_e3b0; 18468 else 18469 return (-1); 18470 18471 /* Read the idle_chk registers */ 18472 for (i = 0; i < IDLE_REGS_COUNT; i++) { 18473 if (bxe_is_reg_in_chip(sc, &idle_reg_addrs[i]) && 18474 IS_REG_IN_PRESET(idle_reg_addrs[i].presets, preset)) { 18475 for (j = 0; j < idle_reg_addrs[i].size; j++) 18476 *p++ = REG_RD(sc, idle_reg_addrs[i].addr + j*4); 18477 } 18478 } 18479 18480 /* Read the regular registers */ 18481 for (i = 0; i < REGS_COUNT; i++) { 18482 if (bxe_is_reg_in_chip(sc, ®_addrs[i]) && 18483 IS_REG_IN_PRESET(reg_addrs[i].presets, preset)) { 18484 for (j = 0; j < reg_addrs[i].size; j++) 18485 *p++ = REG_RD(sc, reg_addrs[i].addr + j*4); 18486 } 18487 } 18488 18489 /* Read the CAM registers */ 18490 if (bxe_is_wreg_in_chip(sc, wreg_addr_p) && 18491 IS_REG_IN_PRESET(wreg_addr_p->presets, preset)) { 18492 for (i = 0; i < wreg_addr_p->size; i++) { 18493 *p++ = REG_RD(sc, wreg_addr_p->addr + i*4); 18494 18495 /* In case of wreg_addr register, read additional 18496 registers from read_regs array 18497 */ 18498 for (j = 0; j < wreg_addr_p->read_regs_count; j++) { 18499 addr = *(wreg_addr_p->read_regs); 18500 *p++ = REG_RD(sc, addr + j*4); 18501 } 18502 } 18503 } 18504 18505 /* Paged registers are supported in E2 & E3 only */ 18506 if (CHIP_IS_E2(sc) || CHIP_IS_E3(sc)) { 18507 /* Read "paged" registers */ 18508 bxe_read_pages_regs(sc, p, preset); 18509 } 18510 18511 return 0; 18512 } 18513 18514 int 18515 bxe_grc_dump(struct bxe_softc *sc) 18516 { 18517 int rval = 0; 18518 uint32_t preset_idx; 18519 uint8_t *buf; 18520 uint32_t size; 18521 struct dump_header *d_hdr; 18522 uint32_t i; 18523 uint32_t reg_val; 18524 uint32_t reg_addr; 18525 uint32_t cmd_offset; 18526 int context_size; 18527 int allocated; 18528 struct ecore_ilt *ilt = SC_ILT(sc); 18529 struct bxe_fastpath *fp; 18530 struct ilt_client_info *ilt_cli; 18531 int grc_dump_size; 18532 18533 18534 if (sc->grcdump_done || sc->grcdump_started) 18535 return (rval); 18536 18537 sc->grcdump_started = 1; 18538 BLOGI(sc, "Started collecting grcdump\n"); 18539 18540 grc_dump_size = (bxe_get_total_regs_len32(sc) * sizeof(uint32_t)) + 18541 sizeof(struct dump_header); 18542 18543 sc->grc_dump = malloc(grc_dump_size, M_DEVBUF, M_NOWAIT); 18544 18545 if (sc->grc_dump == NULL) { 18546 BLOGW(sc, "Unable to allocate memory for grcdump collection\n"); 18547 return(ENOMEM); 18548 } 18549 18550 18551 18552 /* Disable parity attentions as long as following dump may 18553 * cause false alarms by reading never written registers. We 18554 * will re-enable parity attentions right after the dump. 18555 */ 18556 18557 /* Disable parity on path 0 */ 18558 bxe_pretend_func(sc, 0); 18559 18560 ecore_disable_blocks_parity(sc); 18561 18562 /* Disable parity on path 1 */ 18563 bxe_pretend_func(sc, 1); 18564 ecore_disable_blocks_parity(sc); 18565 18566 /* Return to current function */ 18567 bxe_pretend_func(sc, SC_ABS_FUNC(sc)); 18568 18569 buf = sc->grc_dump; 18570 d_hdr = sc->grc_dump; 18571 18572 d_hdr->header_size = (sizeof(struct dump_header) >> 2) - 1; 18573 d_hdr->version = BNX2X_DUMP_VERSION; 18574 d_hdr->preset = DUMP_ALL_PRESETS; 18575 18576 if (CHIP_IS_E1(sc)) { 18577 d_hdr->dump_meta_data = DUMP_CHIP_E1; 18578 } else if (CHIP_IS_E1H(sc)) { 18579 d_hdr->dump_meta_data = DUMP_CHIP_E1H; 18580 } else if (CHIP_IS_E2(sc)) { 18581 d_hdr->dump_meta_data = DUMP_CHIP_E2 | 18582 (BXE_PATH(sc) ? DUMP_PATH_1 : DUMP_PATH_0); 18583 } else if (CHIP_IS_E3A0(sc)) { 18584 d_hdr->dump_meta_data = DUMP_CHIP_E3A0 | 18585 (BXE_PATH(sc) ? DUMP_PATH_1 : DUMP_PATH_0); 18586 } else if (CHIP_IS_E3B0(sc)) { 18587 d_hdr->dump_meta_data = DUMP_CHIP_E3B0 | 18588 (BXE_PATH(sc) ? DUMP_PATH_1 : DUMP_PATH_0); 18589 } 18590 18591 buf += sizeof(struct dump_header); 18592 18593 for (preset_idx = 1; preset_idx <= DUMP_MAX_PRESETS; preset_idx++) { 18594 18595 /* Skip presets with IOR */ 18596 if ((preset_idx == 2) || (preset_idx == 5) || (preset_idx == 8) || 18597 (preset_idx == 11)) 18598 continue; 18599 18600 rval = bxe_get_preset_regs(sc, (uint32_t *)buf, preset_idx); 18601 18602 if (rval) 18603 break; 18604 18605 size = bxe_get_preset_regs_len(sc, preset_idx) * (sizeof (uint32_t)); 18606 18607 buf += size; 18608 } 18609 18610 bxe_pretend_func(sc, 0); 18611 ecore_clear_blocks_parity(sc); 18612 ecore_enable_blocks_parity(sc); 18613 18614 bxe_pretend_func(sc, 1); 18615 ecore_clear_blocks_parity(sc); 18616 ecore_enable_blocks_parity(sc); 18617 18618 /* Return to current function */ 18619 bxe_pretend_func(sc, SC_ABS_FUNC(sc)); 18620 18621 18622 context_size = (sizeof(union cdu_context) * BXE_L2_CID_COUNT(sc)); 18623 for (i = 0, allocated = 0; allocated < context_size; i++) { 18624 18625 BLOGI(sc, "cdu_context i %d paddr %#jx vaddr %p size 0x%zx\n", i, 18626 (uintmax_t)sc->context[i].vcxt_dma.paddr, 18627 sc->context[i].vcxt_dma.vaddr, 18628 sc->context[i].size); 18629 allocated += sc->context[i].size; 18630 } 18631 BLOGI(sc, "fw stats start_paddr %#jx end_paddr %#jx vaddr %p size 0x%x\n", 18632 (uintmax_t)sc->fw_stats_req_mapping, 18633 (uintmax_t)sc->fw_stats_data_mapping, 18634 sc->fw_stats_req, (sc->fw_stats_req_size + sc->fw_stats_data_size)); 18635 BLOGI(sc, "def_status_block paddr %p vaddr %p size 0x%zx\n", 18636 (void *)sc->def_sb_dma.paddr, sc->def_sb, 18637 sizeof(struct host_sp_status_block)); 18638 BLOGI(sc, "event_queue paddr %#jx vaddr %p size 0x%x\n", 18639 (uintmax_t)sc->eq_dma.paddr, sc->eq_dma.vaddr, BCM_PAGE_SIZE); 18640 BLOGI(sc, "slow path paddr %#jx vaddr %p size 0x%zx\n", 18641 (uintmax_t)sc->sp_dma.paddr, sc->sp_dma.vaddr, 18642 sizeof(struct bxe_slowpath)); 18643 BLOGI(sc, "slow path queue paddr %#jx vaddr %p size 0x%x\n", 18644 (uintmax_t)sc->spq_dma.paddr, sc->spq_dma.vaddr, BCM_PAGE_SIZE); 18645 BLOGI(sc, "fw_buf paddr %#jx vaddr %p size 0x%x\n", 18646 (uintmax_t)sc->gz_buf_dma.paddr, sc->gz_buf_dma.vaddr, 18647 FW_BUF_SIZE); 18648 for (i = 0; i < sc->num_queues; i++) { 18649 fp = &sc->fp[i]; 18650 BLOGI(sc, "FP status block fp %d paddr %#jx vaddr %p size 0x%zx\n", i, 18651 (uintmax_t)fp->sb_dma.paddr, fp->sb_dma.vaddr, 18652 sizeof(union bxe_host_hc_status_block)); 18653 BLOGI(sc, "TX BD CHAIN fp %d paddr %#jx vaddr %p size 0x%x\n", i, 18654 (uintmax_t)fp->tx_dma.paddr, fp->tx_dma.vaddr, 18655 (BCM_PAGE_SIZE * TX_BD_NUM_PAGES)); 18656 BLOGI(sc, "RX BD CHAIN fp %d paddr %#jx vaddr %p size 0x%x\n", i, 18657 (uintmax_t)fp->rx_dma.paddr, fp->rx_dma.vaddr, 18658 (BCM_PAGE_SIZE * RX_BD_NUM_PAGES)); 18659 BLOGI(sc, "RX RCQ CHAIN fp %d paddr %#jx vaddr %p size 0x%zx\n", i, 18660 (uintmax_t)fp->rcq_dma.paddr, fp->rcq_dma.vaddr, 18661 (BCM_PAGE_SIZE * RCQ_NUM_PAGES)); 18662 BLOGI(sc, "RX SGE CHAIN fp %d paddr %#jx vaddr %p size 0x%x\n", i, 18663 (uintmax_t)fp->rx_sge_dma.paddr, fp->rx_sge_dma.vaddr, 18664 (BCM_PAGE_SIZE * RX_SGE_NUM_PAGES)); 18665 } 18666 18667 ilt_cli = &ilt->clients[1]; 18668 for (i = ilt_cli->start; i <= ilt_cli->end; i++) { 18669 BLOGI(sc, "ECORE_ILT paddr %#jx vaddr %p size 0x%x\n", 18670 (uintmax_t)(((struct bxe_dma *)((&ilt->lines[i])->page))->paddr), 18671 ((struct bxe_dma *)((&ilt->lines[i])->page))->vaddr, BCM_PAGE_SIZE); 18672 } 18673 18674 18675 cmd_offset = DMAE_REG_CMD_MEM; 18676 for (i = 0; i < 224; i++) { 18677 reg_addr = (cmd_offset +(i * 4)); 18678 reg_val = REG_RD(sc, reg_addr); 18679 BLOGI(sc, "DMAE_REG_CMD_MEM i=%d reg_addr 0x%x reg_val 0x%08x\n",i, 18680 reg_addr, reg_val); 18681 } 18682 18683 18684 BLOGI(sc, "Collection of grcdump done\n"); 18685 sc->grcdump_done = 1; 18686 return(rval); 18687 } 18688 18689 static int 18690 bxe_add_cdev(struct bxe_softc *sc) 18691 { 18692 sc->eeprom = malloc(BXE_EEPROM_MAX_DATA_LEN, M_DEVBUF, M_NOWAIT); 18693 18694 if (sc->eeprom == NULL) { 18695 BLOGW(sc, "Unable to alloc for eeprom size buffer\n"); 18696 return (-1); 18697 } 18698 18699 sc->ioctl_dev = make_dev(&bxe_cdevsw, 18700 sc->ifp->if_dunit, 18701 UID_ROOT, 18702 GID_WHEEL, 18703 0600, 18704 "%s", 18705 if_name(sc->ifp)); 18706 18707 if (sc->ioctl_dev == NULL) { 18708 free(sc->eeprom, M_DEVBUF); 18709 sc->eeprom = NULL; 18710 return (-1); 18711 } 18712 18713 sc->ioctl_dev->si_drv1 = sc; 18714 18715 return (0); 18716 } 18717 18718 static void 18719 bxe_del_cdev(struct bxe_softc *sc) 18720 { 18721 if (sc->ioctl_dev != NULL) 18722 destroy_dev(sc->ioctl_dev); 18723 18724 if (sc->eeprom != NULL) { 18725 free(sc->eeprom, M_DEVBUF); 18726 sc->eeprom = NULL; 18727 } 18728 sc->ioctl_dev = NULL; 18729 18730 return; 18731 } 18732 18733 static bool bxe_is_nvram_accessible(struct bxe_softc *sc) 18734 { 18735 18736 if ((if_getdrvflags(sc->ifp) & IFF_DRV_RUNNING) == 0) 18737 return FALSE; 18738 18739 return TRUE; 18740 } 18741 18742 18743 static int 18744 bxe_wr_eeprom(struct bxe_softc *sc, void *data, uint32_t offset, uint32_t len) 18745 { 18746 int rval = 0; 18747 18748 if(!bxe_is_nvram_accessible(sc)) { 18749 BLOGW(sc, "Cannot access eeprom when interface is down\n"); 18750 return (-EAGAIN); 18751 } 18752 rval = bxe_nvram_write(sc, offset, (uint8_t *)data, len); 18753 18754 18755 return (rval); 18756 } 18757 18758 static int 18759 bxe_rd_eeprom(struct bxe_softc *sc, void *data, uint32_t offset, uint32_t len) 18760 { 18761 int rval = 0; 18762 18763 if(!bxe_is_nvram_accessible(sc)) { 18764 BLOGW(sc, "Cannot access eeprom when interface is down\n"); 18765 return (-EAGAIN); 18766 } 18767 rval = bxe_nvram_read(sc, offset, (uint8_t *)data, len); 18768 18769 return (rval); 18770 } 18771 18772 static int 18773 bxe_eeprom_rd_wr(struct bxe_softc *sc, bxe_eeprom_t *eeprom) 18774 { 18775 int rval = 0; 18776 18777 switch (eeprom->eeprom_cmd) { 18778 18779 case BXE_EEPROM_CMD_SET_EEPROM: 18780 18781 rval = copyin(eeprom->eeprom_data, sc->eeprom, 18782 eeprom->eeprom_data_len); 18783 18784 if (rval) 18785 break; 18786 18787 rval = bxe_wr_eeprom(sc, sc->eeprom, eeprom->eeprom_offset, 18788 eeprom->eeprom_data_len); 18789 break; 18790 18791 case BXE_EEPROM_CMD_GET_EEPROM: 18792 18793 rval = bxe_rd_eeprom(sc, sc->eeprom, eeprom->eeprom_offset, 18794 eeprom->eeprom_data_len); 18795 18796 if (rval) { 18797 break; 18798 } 18799 18800 rval = copyout(sc->eeprom, eeprom->eeprom_data, 18801 eeprom->eeprom_data_len); 18802 break; 18803 18804 default: 18805 rval = EINVAL; 18806 break; 18807 } 18808 18809 if (rval) { 18810 BLOGW(sc, "ioctl cmd %d failed rval %d\n", eeprom->eeprom_cmd, rval); 18811 } 18812 18813 return (rval); 18814 } 18815 18816 static int 18817 bxe_get_settings(struct bxe_softc *sc, bxe_dev_setting_t *dev_p) 18818 { 18819 uint32_t ext_phy_config; 18820 int port = SC_PORT(sc); 18821 int cfg_idx = bxe_get_link_cfg_idx(sc); 18822 18823 dev_p->supported = sc->port.supported[cfg_idx] | 18824 (sc->port.supported[cfg_idx ^ 1] & 18825 (ELINK_SUPPORTED_TP | ELINK_SUPPORTED_FIBRE)); 18826 dev_p->advertising = sc->port.advertising[cfg_idx]; 18827 if(sc->link_params.phy[bxe_get_cur_phy_idx(sc)].media_type == 18828 ELINK_ETH_PHY_SFP_1G_FIBER) { 18829 dev_p->supported = ~(ELINK_SUPPORTED_10000baseT_Full); 18830 dev_p->advertising &= ~(ADVERTISED_10000baseT_Full); 18831 } 18832 if ((sc->state == BXE_STATE_OPEN) && sc->link_vars.link_up && 18833 !(sc->flags & BXE_MF_FUNC_DIS)) { 18834 dev_p->duplex = sc->link_vars.duplex; 18835 if (IS_MF(sc) && !BXE_NOMCP(sc)) 18836 dev_p->speed = bxe_get_mf_speed(sc); 18837 else 18838 dev_p->speed = sc->link_vars.line_speed; 18839 } else { 18840 dev_p->duplex = DUPLEX_UNKNOWN; 18841 dev_p->speed = SPEED_UNKNOWN; 18842 } 18843 18844 dev_p->port = bxe_media_detect(sc); 18845 18846 ext_phy_config = SHMEM_RD(sc, 18847 dev_info.port_hw_config[port].external_phy_config); 18848 if((ext_phy_config & PORT_HW_CFG_XGXS_EXT_PHY_TYPE_MASK) == 18849 PORT_HW_CFG_XGXS_EXT_PHY_TYPE_DIRECT) 18850 dev_p->phy_address = sc->port.phy_addr; 18851 else if(((ext_phy_config & PORT_HW_CFG_XGXS_EXT_PHY_TYPE_MASK) != 18852 PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE) && 18853 ((ext_phy_config & PORT_HW_CFG_XGXS_EXT_PHY_TYPE_MASK) != 18854 PORT_HW_CFG_XGXS_EXT_PHY_TYPE_NOT_CONN)) 18855 dev_p->phy_address = ELINK_XGXS_EXT_PHY_ADDR(ext_phy_config); 18856 else 18857 dev_p->phy_address = 0; 18858 18859 if(sc->link_params.req_line_speed[cfg_idx] == ELINK_SPEED_AUTO_NEG) 18860 dev_p->autoneg = AUTONEG_ENABLE; 18861 else 18862 dev_p->autoneg = AUTONEG_DISABLE; 18863 18864 18865 return 0; 18866 } 18867 18868 static int 18869 bxe_eioctl(struct cdev *dev, u_long cmd, caddr_t data, int fflag, 18870 struct thread *td) 18871 { 18872 struct bxe_softc *sc; 18873 int rval = 0; 18874 device_t pci_dev; 18875 bxe_grcdump_t *dump = NULL; 18876 int grc_dump_size; 18877 bxe_drvinfo_t *drv_infop = NULL; 18878 bxe_dev_setting_t *dev_p; 18879 bxe_dev_setting_t dev_set; 18880 bxe_get_regs_t *reg_p; 18881 bxe_reg_rdw_t *reg_rdw_p; 18882 bxe_pcicfg_rdw_t *cfg_rdw_p; 18883 bxe_perm_mac_addr_t *mac_addr_p; 18884 18885 18886 if ((sc = (struct bxe_softc *)dev->si_drv1) == NULL) 18887 return ENXIO; 18888 18889 pci_dev= sc->dev; 18890 18891 dump = (bxe_grcdump_t *)data; 18892 18893 switch(cmd) { 18894 18895 case BXE_GRC_DUMP_SIZE: 18896 dump->pci_func = sc->pcie_func; 18897 dump->grcdump_size = 18898 (bxe_get_total_regs_len32(sc) * sizeof(uint32_t)) + 18899 sizeof(struct dump_header); 18900 break; 18901 18902 case BXE_GRC_DUMP: 18903 18904 grc_dump_size = (bxe_get_total_regs_len32(sc) * sizeof(uint32_t)) + 18905 sizeof(struct dump_header); 18906 if ((!sc->trigger_grcdump) || (dump->grcdump == NULL) || 18907 (dump->grcdump_size < grc_dump_size)) { 18908 rval = EINVAL; 18909 break; 18910 } 18911 18912 if((sc->trigger_grcdump) && (!sc->grcdump_done) && 18913 (!sc->grcdump_started)) { 18914 rval = bxe_grc_dump(sc); 18915 } 18916 18917 if((!rval) && (sc->grcdump_done) && (sc->grcdump_started) && 18918 (sc->grc_dump != NULL)) { 18919 dump->grcdump_dwords = grc_dump_size >> 2; 18920 rval = copyout(sc->grc_dump, dump->grcdump, grc_dump_size); 18921 free(sc->grc_dump, M_DEVBUF); 18922 sc->grc_dump = NULL; 18923 sc->grcdump_started = 0; 18924 sc->grcdump_done = 0; 18925 } 18926 18927 break; 18928 18929 case BXE_DRV_INFO: 18930 drv_infop = (bxe_drvinfo_t *)data; 18931 snprintf(drv_infop->drv_name, BXE_DRV_NAME_LENGTH, "%s", "bxe"); 18932 snprintf(drv_infop->drv_version, BXE_DRV_VERSION_LENGTH, "v:%s", 18933 BXE_DRIVER_VERSION); 18934 snprintf(drv_infop->mfw_version, BXE_MFW_VERSION_LENGTH, "%s", 18935 sc->devinfo.bc_ver_str); 18936 snprintf(drv_infop->stormfw_version, BXE_STORMFW_VERSION_LENGTH, 18937 "%s", sc->fw_ver_str); 18938 drv_infop->eeprom_dump_len = sc->devinfo.flash_size; 18939 drv_infop->reg_dump_len = 18940 (bxe_get_total_regs_len32(sc) * sizeof(uint32_t)) 18941 + sizeof(struct dump_header); 18942 snprintf(drv_infop->bus_info, BXE_BUS_INFO_LENGTH, "%d:%d:%d", 18943 sc->pcie_bus, sc->pcie_device, sc->pcie_func); 18944 break; 18945 18946 case BXE_DEV_SETTING: 18947 dev_p = (bxe_dev_setting_t *)data; 18948 bxe_get_settings(sc, &dev_set); 18949 dev_p->supported = dev_set.supported; 18950 dev_p->advertising = dev_set.advertising; 18951 dev_p->speed = dev_set.speed; 18952 dev_p->duplex = dev_set.duplex; 18953 dev_p->port = dev_set.port; 18954 dev_p->phy_address = dev_set.phy_address; 18955 dev_p->autoneg = dev_set.autoneg; 18956 18957 break; 18958 18959 case BXE_GET_REGS: 18960 18961 reg_p = (bxe_get_regs_t *)data; 18962 grc_dump_size = reg_p->reg_buf_len; 18963 18964 if((!sc->grcdump_done) && (!sc->grcdump_started)) { 18965 bxe_grc_dump(sc); 18966 } 18967 if((sc->grcdump_done) && (sc->grcdump_started) && 18968 (sc->grc_dump != NULL)) { 18969 rval = copyout(sc->grc_dump, reg_p->reg_buf, grc_dump_size); 18970 free(sc->grc_dump, M_DEVBUF); 18971 sc->grc_dump = NULL; 18972 sc->grcdump_started = 0; 18973 sc->grcdump_done = 0; 18974 } 18975 18976 break; 18977 18978 case BXE_RDW_REG: 18979 reg_rdw_p = (bxe_reg_rdw_t *)data; 18980 if((reg_rdw_p->reg_cmd == BXE_READ_REG_CMD) && 18981 (reg_rdw_p->reg_access_type == BXE_REG_ACCESS_DIRECT)) 18982 reg_rdw_p->reg_val = REG_RD(sc, reg_rdw_p->reg_id); 18983 18984 if((reg_rdw_p->reg_cmd == BXE_WRITE_REG_CMD) && 18985 (reg_rdw_p->reg_access_type == BXE_REG_ACCESS_DIRECT)) 18986 REG_WR(sc, reg_rdw_p->reg_id, reg_rdw_p->reg_val); 18987 18988 break; 18989 18990 case BXE_RDW_PCICFG: 18991 cfg_rdw_p = (bxe_pcicfg_rdw_t *)data; 18992 if(cfg_rdw_p->cfg_cmd == BXE_READ_PCICFG) { 18993 18994 cfg_rdw_p->cfg_val = pci_read_config(sc->dev, cfg_rdw_p->cfg_id, 18995 cfg_rdw_p->cfg_width); 18996 18997 } else if(cfg_rdw_p->cfg_cmd == BXE_WRITE_PCICFG) { 18998 pci_write_config(sc->dev, cfg_rdw_p->cfg_id, cfg_rdw_p->cfg_val, 18999 cfg_rdw_p->cfg_width); 19000 } else { 19001 BLOGW(sc, "BXE_RDW_PCICFG ioctl wrong cmd passed\n"); 19002 } 19003 break; 19004 19005 case BXE_MAC_ADDR: 19006 mac_addr_p = (bxe_perm_mac_addr_t *)data; 19007 snprintf(mac_addr_p->mac_addr_str, sizeof(sc->mac_addr_str), "%s", 19008 sc->mac_addr_str); 19009 break; 19010 19011 case BXE_EEPROM: 19012 rval = bxe_eeprom_rd_wr(sc, (bxe_eeprom_t *)data); 19013 break; 19014 19015 19016 default: 19017 break; 19018 } 19019 19020 return (rval); 19021 } 19022