1 /*- 2 * Copyright (c) 2007-2014 QLogic Corporation. All rights reserved. 3 * 4 * Redistribution and use in source and binary forms, with or without 5 * modification, are permitted provided that the following conditions 6 * are met: 7 * 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 14 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS' 15 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 17 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS 18 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 19 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 20 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 21 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 22 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 23 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF 24 * THE POSSIBILITY OF SUCH DAMAGE. 25 */ 26 27 #include <sys/cdefs.h> 28 __FBSDID("$FreeBSD$"); 29 30 #define BXE_DRIVER_VERSION "1.78.78" 31 32 #include "bxe.h" 33 #include "ecore_sp.h" 34 #include "ecore_init.h" 35 #include "ecore_init_ops.h" 36 37 #include "57710_int_offsets.h" 38 #include "57711_int_offsets.h" 39 #include "57712_int_offsets.h" 40 41 /* 42 * CTLTYPE_U64 and sysctl_handle_64 were added in r217616. Define these 43 * explicitly here for older kernels that don't include this changeset. 44 */ 45 #ifndef CTLTYPE_U64 46 #define CTLTYPE_U64 CTLTYPE_QUAD 47 #define sysctl_handle_64 sysctl_handle_quad 48 #endif 49 50 /* 51 * CSUM_TCP_IPV6 and CSUM_UDP_IPV6 were added in r236170. Define these 52 * here as zero(0) for older kernels that don't include this changeset 53 * thereby masking the functionality. 54 */ 55 #ifndef CSUM_TCP_IPV6 56 #define CSUM_TCP_IPV6 0 57 #define CSUM_UDP_IPV6 0 58 #endif 59 60 /* 61 * pci_find_cap was added in r219865. Re-define this at pci_find_extcap 62 * for older kernels that don't include this changeset. 63 */ 64 #if __FreeBSD_version < 900035 65 #define pci_find_cap pci_find_extcap 66 #endif 67 68 #define BXE_DEF_SB_ATT_IDX 0x0001 69 #define BXE_DEF_SB_IDX 0x0002 70 71 /* 72 * FLR Support - bxe_pf_flr_clnup() is called during nic_load in the per 73 * function HW initialization. 74 */ 75 #define FLR_WAIT_USEC 10000 /* 10 msecs */ 76 #define FLR_WAIT_INTERVAL 50 /* usecs */ 77 #define FLR_POLL_CNT (FLR_WAIT_USEC / FLR_WAIT_INTERVAL) /* 200 */ 78 79 struct pbf_pN_buf_regs { 80 int pN; 81 uint32_t init_crd; 82 uint32_t crd; 83 uint32_t crd_freed; 84 }; 85 86 struct pbf_pN_cmd_regs { 87 int pN; 88 uint32_t lines_occup; 89 uint32_t lines_freed; 90 }; 91 92 /* 93 * PCI Device ID Table used by bxe_probe(). 94 */ 95 #define BXE_DEVDESC_MAX 64 96 static struct bxe_device_type bxe_devs[] = { 97 { 98 BRCM_VENDORID, 99 CHIP_NUM_57710, 100 PCI_ANY_ID, PCI_ANY_ID, 101 "QLogic NetXtreme II BCM57710 10GbE" 102 }, 103 { 104 BRCM_VENDORID, 105 CHIP_NUM_57711, 106 PCI_ANY_ID, PCI_ANY_ID, 107 "QLogic NetXtreme II BCM57711 10GbE" 108 }, 109 { 110 BRCM_VENDORID, 111 CHIP_NUM_57711E, 112 PCI_ANY_ID, PCI_ANY_ID, 113 "QLogic NetXtreme II BCM57711E 10GbE" 114 }, 115 { 116 BRCM_VENDORID, 117 CHIP_NUM_57712, 118 PCI_ANY_ID, PCI_ANY_ID, 119 "QLogic NetXtreme II BCM57712 10GbE" 120 }, 121 { 122 BRCM_VENDORID, 123 CHIP_NUM_57712_MF, 124 PCI_ANY_ID, PCI_ANY_ID, 125 "QLogic NetXtreme II BCM57712 MF 10GbE" 126 }, 127 #if 0 128 { 129 BRCM_VENDORID, 130 CHIP_NUM_57712_VF, 131 PCI_ANY_ID, PCI_ANY_ID, 132 "QLogic NetXtreme II BCM57712 VF 10GbE" 133 }, 134 #endif 135 { 136 BRCM_VENDORID, 137 CHIP_NUM_57800, 138 PCI_ANY_ID, PCI_ANY_ID, 139 "QLogic NetXtreme II BCM57800 10GbE" 140 }, 141 { 142 BRCM_VENDORID, 143 CHIP_NUM_57800_MF, 144 PCI_ANY_ID, PCI_ANY_ID, 145 "QLogic NetXtreme II BCM57800 MF 10GbE" 146 }, 147 #if 0 148 { 149 BRCM_VENDORID, 150 CHIP_NUM_57800_VF, 151 PCI_ANY_ID, PCI_ANY_ID, 152 "QLogic NetXtreme II BCM57800 VF 10GbE" 153 }, 154 #endif 155 { 156 BRCM_VENDORID, 157 CHIP_NUM_57810, 158 PCI_ANY_ID, PCI_ANY_ID, 159 "QLogic NetXtreme II BCM57810 10GbE" 160 }, 161 { 162 BRCM_VENDORID, 163 CHIP_NUM_57810_MF, 164 PCI_ANY_ID, PCI_ANY_ID, 165 "QLogic NetXtreme II BCM57810 MF 10GbE" 166 }, 167 #if 0 168 { 169 BRCM_VENDORID, 170 CHIP_NUM_57810_VF, 171 PCI_ANY_ID, PCI_ANY_ID, 172 "QLogic NetXtreme II BCM57810 VF 10GbE" 173 }, 174 #endif 175 { 176 BRCM_VENDORID, 177 CHIP_NUM_57811, 178 PCI_ANY_ID, PCI_ANY_ID, 179 "QLogic NetXtreme II BCM57811 10GbE" 180 }, 181 { 182 BRCM_VENDORID, 183 CHIP_NUM_57811_MF, 184 PCI_ANY_ID, PCI_ANY_ID, 185 "QLogic NetXtreme II BCM57811 MF 10GbE" 186 }, 187 #if 0 188 { 189 BRCM_VENDORID, 190 CHIP_NUM_57811_VF, 191 PCI_ANY_ID, PCI_ANY_ID, 192 "QLogic NetXtreme II BCM57811 VF 10GbE" 193 }, 194 #endif 195 { 196 BRCM_VENDORID, 197 CHIP_NUM_57840_4_10, 198 PCI_ANY_ID, PCI_ANY_ID, 199 "QLogic NetXtreme II BCM57840 4x10GbE" 200 }, 201 #if 0 202 { 203 BRCM_VENDORID, 204 CHIP_NUM_57840_2_20, 205 PCI_ANY_ID, PCI_ANY_ID, 206 "QLogic NetXtreme II BCM57840 2x20GbE" 207 }, 208 #endif 209 { 210 BRCM_VENDORID, 211 CHIP_NUM_57840_MF, 212 PCI_ANY_ID, PCI_ANY_ID, 213 "QLogic NetXtreme II BCM57840 MF 10GbE" 214 }, 215 #if 0 216 { 217 BRCM_VENDORID, 218 CHIP_NUM_57840_VF, 219 PCI_ANY_ID, PCI_ANY_ID, 220 "QLogic NetXtreme II BCM57840 VF 10GbE" 221 }, 222 #endif 223 { 224 0, 0, 0, 0, NULL 225 } 226 }; 227 228 MALLOC_DECLARE(M_BXE_ILT); 229 MALLOC_DEFINE(M_BXE_ILT, "bxe_ilt", "bxe ILT pointer"); 230 231 /* 232 * FreeBSD device entry points. 233 */ 234 static int bxe_probe(device_t); 235 static int bxe_attach(device_t); 236 static int bxe_detach(device_t); 237 static int bxe_shutdown(device_t); 238 239 /* 240 * FreeBSD KLD module/device interface event handler method. 241 */ 242 static device_method_t bxe_methods[] = { 243 /* Device interface (device_if.h) */ 244 DEVMETHOD(device_probe, bxe_probe), 245 DEVMETHOD(device_attach, bxe_attach), 246 DEVMETHOD(device_detach, bxe_detach), 247 DEVMETHOD(device_shutdown, bxe_shutdown), 248 #if 0 249 DEVMETHOD(device_suspend, bxe_suspend), 250 DEVMETHOD(device_resume, bxe_resume), 251 #endif 252 /* Bus interface (bus_if.h) */ 253 DEVMETHOD(bus_print_child, bus_generic_print_child), 254 DEVMETHOD(bus_driver_added, bus_generic_driver_added), 255 KOBJMETHOD_END 256 }; 257 258 /* 259 * FreeBSD KLD Module data declaration 260 */ 261 static driver_t bxe_driver = { 262 "bxe", /* module name */ 263 bxe_methods, /* event handler */ 264 sizeof(struct bxe_softc) /* extra data */ 265 }; 266 267 /* 268 * FreeBSD dev class is needed to manage dev instances and 269 * to associate with a bus type 270 */ 271 static devclass_t bxe_devclass; 272 273 MODULE_DEPEND(bxe, pci, 1, 1, 1); 274 MODULE_DEPEND(bxe, ether, 1, 1, 1); 275 DRIVER_MODULE(bxe, pci, bxe_driver, bxe_devclass, 0, 0); 276 277 /* resources needed for unloading a previously loaded device */ 278 279 #define BXE_PREV_WAIT_NEEDED 1 280 struct mtx bxe_prev_mtx; 281 MTX_SYSINIT(bxe_prev_mtx, &bxe_prev_mtx, "bxe_prev_lock", MTX_DEF); 282 struct bxe_prev_list_node { 283 LIST_ENTRY(bxe_prev_list_node) node; 284 uint8_t bus; 285 uint8_t slot; 286 uint8_t path; 287 uint8_t aer; /* XXX automatic error recovery */ 288 uint8_t undi; 289 }; 290 static LIST_HEAD(, bxe_prev_list_node) bxe_prev_list = LIST_HEAD_INITIALIZER(bxe_prev_list); 291 292 static int load_count[2][3] = { {0} }; /* per-path: 0-common, 1-port0, 2-port1 */ 293 294 /* Tunable device values... */ 295 296 SYSCTL_NODE(_hw, OID_AUTO, bxe, CTLFLAG_RD, 0, "bxe driver parameters"); 297 298 /* Debug */ 299 unsigned long bxe_debug = 0; 300 TUNABLE_ULONG("hw.bxe.debug", &bxe_debug); 301 SYSCTL_ULONG(_hw_bxe, OID_AUTO, debug, (CTLFLAG_RDTUN), 302 &bxe_debug, 0, "Debug logging mode"); 303 304 /* Interrupt Mode: 0 (IRQ), 1 (MSI/IRQ), and 2 (MSI-X/MSI/IRQ) */ 305 static int bxe_interrupt_mode = INTR_MODE_MSIX; 306 TUNABLE_INT("hw.bxe.interrupt_mode", &bxe_interrupt_mode); 307 SYSCTL_INT(_hw_bxe, OID_AUTO, interrupt_mode, CTLFLAG_RDTUN, 308 &bxe_interrupt_mode, 0, "Interrupt (MSI-X/MSI/INTx) mode"); 309 310 /* Number of Queues: 0 (Auto) or 1 to 16 (fixed queue number) */ 311 static int bxe_queue_count = 4; 312 TUNABLE_INT("hw.bxe.queue_count", &bxe_queue_count); 313 SYSCTL_INT(_hw_bxe, OID_AUTO, queue_count, CTLFLAG_RDTUN, 314 &bxe_queue_count, 0, "Multi-Queue queue count"); 315 316 /* max number of buffers per queue (default RX_BD_USABLE) */ 317 static int bxe_max_rx_bufs = 0; 318 TUNABLE_INT("hw.bxe.max_rx_bufs", &bxe_max_rx_bufs); 319 SYSCTL_INT(_hw_bxe, OID_AUTO, max_rx_bufs, CTLFLAG_RDTUN, 320 &bxe_max_rx_bufs, 0, "Maximum Number of Rx Buffers Per Queue"); 321 322 /* Host interrupt coalescing RX tick timer (usecs) */ 323 static int bxe_hc_rx_ticks = 25; 324 TUNABLE_INT("hw.bxe.hc_rx_ticks", &bxe_hc_rx_ticks); 325 SYSCTL_INT(_hw_bxe, OID_AUTO, hc_rx_ticks, CTLFLAG_RDTUN, 326 &bxe_hc_rx_ticks, 0, "Host Coalescing Rx ticks"); 327 328 /* Host interrupt coalescing TX tick timer (usecs) */ 329 static int bxe_hc_tx_ticks = 50; 330 TUNABLE_INT("hw.bxe.hc_tx_ticks", &bxe_hc_tx_ticks); 331 SYSCTL_INT(_hw_bxe, OID_AUTO, hc_tx_ticks, CTLFLAG_RDTUN, 332 &bxe_hc_tx_ticks, 0, "Host Coalescing Tx ticks"); 333 334 /* Maximum number of Rx packets to process at a time */ 335 static int bxe_rx_budget = 0xffffffff; 336 TUNABLE_INT("hw.bxe.rx_budget", &bxe_rx_budget); 337 SYSCTL_INT(_hw_bxe, OID_AUTO, rx_budget, CTLFLAG_TUN, 338 &bxe_rx_budget, 0, "Rx processing budget"); 339 340 /* Maximum LRO aggregation size */ 341 static int bxe_max_aggregation_size = 0; 342 TUNABLE_INT("hw.bxe.max_aggregation_size", &bxe_max_aggregation_size); 343 SYSCTL_INT(_hw_bxe, OID_AUTO, max_aggregation_size, CTLFLAG_TUN, 344 &bxe_max_aggregation_size, 0, "max aggregation size"); 345 346 /* PCI MRRS: -1 (Auto), 0 (128B), 1 (256B), 2 (512B), 3 (1KB) */ 347 static int bxe_mrrs = -1; 348 TUNABLE_INT("hw.bxe.mrrs", &bxe_mrrs); 349 SYSCTL_INT(_hw_bxe, OID_AUTO, mrrs, CTLFLAG_RDTUN, 350 &bxe_mrrs, 0, "PCIe maximum read request size"); 351 352 /* AutoGrEEEn: 0 (hardware default), 1 (force on), 2 (force off) */ 353 static int bxe_autogreeen = 0; 354 TUNABLE_INT("hw.bxe.autogreeen", &bxe_autogreeen); 355 SYSCTL_INT(_hw_bxe, OID_AUTO, autogreeen, CTLFLAG_RDTUN, 356 &bxe_autogreeen, 0, "AutoGrEEEn support"); 357 358 /* 4-tuple RSS support for UDP: 0 (disabled), 1 (enabled) */ 359 static int bxe_udp_rss = 0; 360 TUNABLE_INT("hw.bxe.udp_rss", &bxe_udp_rss); 361 SYSCTL_INT(_hw_bxe, OID_AUTO, udp_rss, CTLFLAG_RDTUN, 362 &bxe_udp_rss, 0, "UDP RSS support"); 363 364 365 #define STAT_NAME_LEN 32 /* no stat names below can be longer than this */ 366 367 #define STATS_OFFSET32(stat_name) \ 368 (offsetof(struct bxe_eth_stats, stat_name) / 4) 369 370 #define Q_STATS_OFFSET32(stat_name) \ 371 (offsetof(struct bxe_eth_q_stats, stat_name) / 4) 372 373 static const struct { 374 uint32_t offset; 375 uint32_t size; 376 uint32_t flags; 377 #define STATS_FLAGS_PORT 1 378 #define STATS_FLAGS_FUNC 2 /* MF only cares about function stats */ 379 #define STATS_FLAGS_BOTH (STATS_FLAGS_FUNC | STATS_FLAGS_PORT) 380 char string[STAT_NAME_LEN]; 381 } bxe_eth_stats_arr[] = { 382 { STATS_OFFSET32(total_bytes_received_hi), 383 8, STATS_FLAGS_BOTH, "rx_bytes" }, 384 { STATS_OFFSET32(error_bytes_received_hi), 385 8, STATS_FLAGS_BOTH, "rx_error_bytes" }, 386 { STATS_OFFSET32(total_unicast_packets_received_hi), 387 8, STATS_FLAGS_BOTH, "rx_ucast_packets" }, 388 { STATS_OFFSET32(total_multicast_packets_received_hi), 389 8, STATS_FLAGS_BOTH, "rx_mcast_packets" }, 390 { STATS_OFFSET32(total_broadcast_packets_received_hi), 391 8, STATS_FLAGS_BOTH, "rx_bcast_packets" }, 392 { STATS_OFFSET32(rx_stat_dot3statsfcserrors_hi), 393 8, STATS_FLAGS_PORT, "rx_crc_errors" }, 394 { STATS_OFFSET32(rx_stat_dot3statsalignmenterrors_hi), 395 8, STATS_FLAGS_PORT, "rx_align_errors" }, 396 { STATS_OFFSET32(rx_stat_etherstatsundersizepkts_hi), 397 8, STATS_FLAGS_PORT, "rx_undersize_packets" }, 398 { STATS_OFFSET32(etherstatsoverrsizepkts_hi), 399 8, STATS_FLAGS_PORT, "rx_oversize_packets" }, 400 { STATS_OFFSET32(rx_stat_etherstatsfragments_hi), 401 8, STATS_FLAGS_PORT, "rx_fragments" }, 402 { STATS_OFFSET32(rx_stat_etherstatsjabbers_hi), 403 8, STATS_FLAGS_PORT, "rx_jabbers" }, 404 { STATS_OFFSET32(no_buff_discard_hi), 405 8, STATS_FLAGS_BOTH, "rx_discards" }, 406 { STATS_OFFSET32(mac_filter_discard), 407 4, STATS_FLAGS_PORT, "rx_filtered_packets" }, 408 { STATS_OFFSET32(mf_tag_discard), 409 4, STATS_FLAGS_PORT, "rx_mf_tag_discard" }, 410 { STATS_OFFSET32(pfc_frames_received_hi), 411 8, STATS_FLAGS_PORT, "pfc_frames_received" }, 412 { STATS_OFFSET32(pfc_frames_sent_hi), 413 8, STATS_FLAGS_PORT, "pfc_frames_sent" }, 414 { STATS_OFFSET32(brb_drop_hi), 415 8, STATS_FLAGS_PORT, "rx_brb_discard" }, 416 { STATS_OFFSET32(brb_truncate_hi), 417 8, STATS_FLAGS_PORT, "rx_brb_truncate" }, 418 { STATS_OFFSET32(pause_frames_received_hi), 419 8, STATS_FLAGS_PORT, "rx_pause_frames" }, 420 { STATS_OFFSET32(rx_stat_maccontrolframesreceived_hi), 421 8, STATS_FLAGS_PORT, "rx_mac_ctrl_frames" }, 422 { STATS_OFFSET32(nig_timer_max), 423 4, STATS_FLAGS_PORT, "rx_constant_pause_events" }, 424 { STATS_OFFSET32(total_bytes_transmitted_hi), 425 8, STATS_FLAGS_BOTH, "tx_bytes" }, 426 { STATS_OFFSET32(tx_stat_ifhcoutbadoctets_hi), 427 8, STATS_FLAGS_PORT, "tx_error_bytes" }, 428 { STATS_OFFSET32(total_unicast_packets_transmitted_hi), 429 8, STATS_FLAGS_BOTH, "tx_ucast_packets" }, 430 { STATS_OFFSET32(total_multicast_packets_transmitted_hi), 431 8, STATS_FLAGS_BOTH, "tx_mcast_packets" }, 432 { STATS_OFFSET32(total_broadcast_packets_transmitted_hi), 433 8, STATS_FLAGS_BOTH, "tx_bcast_packets" }, 434 { STATS_OFFSET32(tx_stat_dot3statsinternalmactransmiterrors_hi), 435 8, STATS_FLAGS_PORT, "tx_mac_errors" }, 436 { STATS_OFFSET32(rx_stat_dot3statscarriersenseerrors_hi), 437 8, STATS_FLAGS_PORT, "tx_carrier_errors" }, 438 { STATS_OFFSET32(tx_stat_dot3statssinglecollisionframes_hi), 439 8, STATS_FLAGS_PORT, "tx_single_collisions" }, 440 { STATS_OFFSET32(tx_stat_dot3statsmultiplecollisionframes_hi), 441 8, STATS_FLAGS_PORT, "tx_multi_collisions" }, 442 { STATS_OFFSET32(tx_stat_dot3statsdeferredtransmissions_hi), 443 8, STATS_FLAGS_PORT, "tx_deferred" }, 444 { STATS_OFFSET32(tx_stat_dot3statsexcessivecollisions_hi), 445 8, STATS_FLAGS_PORT, "tx_excess_collisions" }, 446 { STATS_OFFSET32(tx_stat_dot3statslatecollisions_hi), 447 8, STATS_FLAGS_PORT, "tx_late_collisions" }, 448 { STATS_OFFSET32(tx_stat_etherstatscollisions_hi), 449 8, STATS_FLAGS_PORT, "tx_total_collisions" }, 450 { STATS_OFFSET32(tx_stat_etherstatspkts64octets_hi), 451 8, STATS_FLAGS_PORT, "tx_64_byte_packets" }, 452 { STATS_OFFSET32(tx_stat_etherstatspkts65octetsto127octets_hi), 453 8, STATS_FLAGS_PORT, "tx_65_to_127_byte_packets" }, 454 { STATS_OFFSET32(tx_stat_etherstatspkts128octetsto255octets_hi), 455 8, STATS_FLAGS_PORT, "tx_128_to_255_byte_packets" }, 456 { STATS_OFFSET32(tx_stat_etherstatspkts256octetsto511octets_hi), 457 8, STATS_FLAGS_PORT, "tx_256_to_511_byte_packets" }, 458 { STATS_OFFSET32(tx_stat_etherstatspkts512octetsto1023octets_hi), 459 8, STATS_FLAGS_PORT, "tx_512_to_1023_byte_packets" }, 460 { STATS_OFFSET32(etherstatspkts1024octetsto1522octets_hi), 461 8, STATS_FLAGS_PORT, "tx_1024_to_1522_byte_packets" }, 462 { STATS_OFFSET32(etherstatspktsover1522octets_hi), 463 8, STATS_FLAGS_PORT, "tx_1523_to_9022_byte_packets" }, 464 { STATS_OFFSET32(pause_frames_sent_hi), 465 8, STATS_FLAGS_PORT, "tx_pause_frames" }, 466 { STATS_OFFSET32(total_tpa_aggregations_hi), 467 8, STATS_FLAGS_FUNC, "tpa_aggregations" }, 468 { STATS_OFFSET32(total_tpa_aggregated_frames_hi), 469 8, STATS_FLAGS_FUNC, "tpa_aggregated_frames"}, 470 { STATS_OFFSET32(total_tpa_bytes_hi), 471 8, STATS_FLAGS_FUNC, "tpa_bytes"}, 472 #if 0 473 { STATS_OFFSET32(recoverable_error), 474 4, STATS_FLAGS_FUNC, "recoverable_errors" }, 475 { STATS_OFFSET32(unrecoverable_error), 476 4, STATS_FLAGS_FUNC, "unrecoverable_errors" }, 477 #endif 478 { STATS_OFFSET32(eee_tx_lpi), 479 4, STATS_FLAGS_PORT, "eee_tx_lpi"}, 480 { STATS_OFFSET32(rx_calls), 481 4, STATS_FLAGS_FUNC, "rx_calls"}, 482 { STATS_OFFSET32(rx_pkts), 483 4, STATS_FLAGS_FUNC, "rx_pkts"}, 484 { STATS_OFFSET32(rx_tpa_pkts), 485 4, STATS_FLAGS_FUNC, "rx_tpa_pkts"}, 486 { STATS_OFFSET32(rx_soft_errors), 487 4, STATS_FLAGS_FUNC, "rx_soft_errors"}, 488 { STATS_OFFSET32(rx_hw_csum_errors), 489 4, STATS_FLAGS_FUNC, "rx_hw_csum_errors"}, 490 { STATS_OFFSET32(rx_ofld_frames_csum_ip), 491 4, STATS_FLAGS_FUNC, "rx_ofld_frames_csum_ip"}, 492 { STATS_OFFSET32(rx_ofld_frames_csum_tcp_udp), 493 4, STATS_FLAGS_FUNC, "rx_ofld_frames_csum_tcp_udp"}, 494 { STATS_OFFSET32(rx_budget_reached), 495 4, STATS_FLAGS_FUNC, "rx_budget_reached"}, 496 { STATS_OFFSET32(tx_pkts), 497 4, STATS_FLAGS_FUNC, "tx_pkts"}, 498 { STATS_OFFSET32(tx_soft_errors), 499 4, STATS_FLAGS_FUNC, "tx_soft_errors"}, 500 { STATS_OFFSET32(tx_ofld_frames_csum_ip), 501 4, STATS_FLAGS_FUNC, "tx_ofld_frames_csum_ip"}, 502 { STATS_OFFSET32(tx_ofld_frames_csum_tcp), 503 4, STATS_FLAGS_FUNC, "tx_ofld_frames_csum_tcp"}, 504 { STATS_OFFSET32(tx_ofld_frames_csum_udp), 505 4, STATS_FLAGS_FUNC, "tx_ofld_frames_csum_udp"}, 506 { STATS_OFFSET32(tx_ofld_frames_lso), 507 4, STATS_FLAGS_FUNC, "tx_ofld_frames_lso"}, 508 { STATS_OFFSET32(tx_ofld_frames_lso_hdr_splits), 509 4, STATS_FLAGS_FUNC, "tx_ofld_frames_lso_hdr_splits"}, 510 { STATS_OFFSET32(tx_encap_failures), 511 4, STATS_FLAGS_FUNC, "tx_encap_failures"}, 512 { STATS_OFFSET32(tx_hw_queue_full), 513 4, STATS_FLAGS_FUNC, "tx_hw_queue_full"}, 514 { STATS_OFFSET32(tx_hw_max_queue_depth), 515 4, STATS_FLAGS_FUNC, "tx_hw_max_queue_depth"}, 516 { STATS_OFFSET32(tx_dma_mapping_failure), 517 4, STATS_FLAGS_FUNC, "tx_dma_mapping_failure"}, 518 { STATS_OFFSET32(tx_max_drbr_queue_depth), 519 4, STATS_FLAGS_FUNC, "tx_max_drbr_queue_depth"}, 520 { STATS_OFFSET32(tx_window_violation_std), 521 4, STATS_FLAGS_FUNC, "tx_window_violation_std"}, 522 { STATS_OFFSET32(tx_window_violation_tso), 523 4, STATS_FLAGS_FUNC, "tx_window_violation_tso"}, 524 #if 0 525 { STATS_OFFSET32(tx_unsupported_tso_request_ipv6), 526 4, STATS_FLAGS_FUNC, "tx_unsupported_tso_request_ipv6"}, 527 { STATS_OFFSET32(tx_unsupported_tso_request_not_tcp), 528 4, STATS_FLAGS_FUNC, "tx_unsupported_tso_request_not_tcp"}, 529 #endif 530 { STATS_OFFSET32(tx_chain_lost_mbuf), 531 4, STATS_FLAGS_FUNC, "tx_chain_lost_mbuf"}, 532 { STATS_OFFSET32(tx_frames_deferred), 533 4, STATS_FLAGS_FUNC, "tx_frames_deferred"}, 534 { STATS_OFFSET32(tx_queue_xoff), 535 4, STATS_FLAGS_FUNC, "tx_queue_xoff"}, 536 { STATS_OFFSET32(mbuf_defrag_attempts), 537 4, STATS_FLAGS_FUNC, "mbuf_defrag_attempts"}, 538 { STATS_OFFSET32(mbuf_defrag_failures), 539 4, STATS_FLAGS_FUNC, "mbuf_defrag_failures"}, 540 { STATS_OFFSET32(mbuf_rx_bd_alloc_failed), 541 4, STATS_FLAGS_FUNC, "mbuf_rx_bd_alloc_failed"}, 542 { STATS_OFFSET32(mbuf_rx_bd_mapping_failed), 543 4, STATS_FLAGS_FUNC, "mbuf_rx_bd_mapping_failed"}, 544 { STATS_OFFSET32(mbuf_rx_tpa_alloc_failed), 545 4, STATS_FLAGS_FUNC, "mbuf_rx_tpa_alloc_failed"}, 546 { STATS_OFFSET32(mbuf_rx_tpa_mapping_failed), 547 4, STATS_FLAGS_FUNC, "mbuf_rx_tpa_mapping_failed"}, 548 { STATS_OFFSET32(mbuf_rx_sge_alloc_failed), 549 4, STATS_FLAGS_FUNC, "mbuf_rx_sge_alloc_failed"}, 550 { STATS_OFFSET32(mbuf_rx_sge_mapping_failed), 551 4, STATS_FLAGS_FUNC, "mbuf_rx_sge_mapping_failed"}, 552 { STATS_OFFSET32(mbuf_alloc_tx), 553 4, STATS_FLAGS_FUNC, "mbuf_alloc_tx"}, 554 { STATS_OFFSET32(mbuf_alloc_rx), 555 4, STATS_FLAGS_FUNC, "mbuf_alloc_rx"}, 556 { STATS_OFFSET32(mbuf_alloc_sge), 557 4, STATS_FLAGS_FUNC, "mbuf_alloc_sge"}, 558 { STATS_OFFSET32(mbuf_alloc_tpa), 559 4, STATS_FLAGS_FUNC, "mbuf_alloc_tpa"} 560 }; 561 562 static const struct { 563 uint32_t offset; 564 uint32_t size; 565 char string[STAT_NAME_LEN]; 566 } bxe_eth_q_stats_arr[] = { 567 { Q_STATS_OFFSET32(total_bytes_received_hi), 568 8, "rx_bytes" }, 569 { Q_STATS_OFFSET32(total_unicast_packets_received_hi), 570 8, "rx_ucast_packets" }, 571 { Q_STATS_OFFSET32(total_multicast_packets_received_hi), 572 8, "rx_mcast_packets" }, 573 { Q_STATS_OFFSET32(total_broadcast_packets_received_hi), 574 8, "rx_bcast_packets" }, 575 { Q_STATS_OFFSET32(no_buff_discard_hi), 576 8, "rx_discards" }, 577 { Q_STATS_OFFSET32(total_bytes_transmitted_hi), 578 8, "tx_bytes" }, 579 { Q_STATS_OFFSET32(total_unicast_packets_transmitted_hi), 580 8, "tx_ucast_packets" }, 581 { Q_STATS_OFFSET32(total_multicast_packets_transmitted_hi), 582 8, "tx_mcast_packets" }, 583 { Q_STATS_OFFSET32(total_broadcast_packets_transmitted_hi), 584 8, "tx_bcast_packets" }, 585 { Q_STATS_OFFSET32(total_tpa_aggregations_hi), 586 8, "tpa_aggregations" }, 587 { Q_STATS_OFFSET32(total_tpa_aggregated_frames_hi), 588 8, "tpa_aggregated_frames"}, 589 { Q_STATS_OFFSET32(total_tpa_bytes_hi), 590 8, "tpa_bytes"}, 591 { Q_STATS_OFFSET32(rx_calls), 592 4, "rx_calls"}, 593 { Q_STATS_OFFSET32(rx_pkts), 594 4, "rx_pkts"}, 595 { Q_STATS_OFFSET32(rx_tpa_pkts), 596 4, "rx_tpa_pkts"}, 597 { Q_STATS_OFFSET32(rx_soft_errors), 598 4, "rx_soft_errors"}, 599 { Q_STATS_OFFSET32(rx_hw_csum_errors), 600 4, "rx_hw_csum_errors"}, 601 { Q_STATS_OFFSET32(rx_ofld_frames_csum_ip), 602 4, "rx_ofld_frames_csum_ip"}, 603 { Q_STATS_OFFSET32(rx_ofld_frames_csum_tcp_udp), 604 4, "rx_ofld_frames_csum_tcp_udp"}, 605 { Q_STATS_OFFSET32(rx_budget_reached), 606 4, "rx_budget_reached"}, 607 { Q_STATS_OFFSET32(tx_pkts), 608 4, "tx_pkts"}, 609 { Q_STATS_OFFSET32(tx_soft_errors), 610 4, "tx_soft_errors"}, 611 { Q_STATS_OFFSET32(tx_ofld_frames_csum_ip), 612 4, "tx_ofld_frames_csum_ip"}, 613 { Q_STATS_OFFSET32(tx_ofld_frames_csum_tcp), 614 4, "tx_ofld_frames_csum_tcp"}, 615 { Q_STATS_OFFSET32(tx_ofld_frames_csum_udp), 616 4, "tx_ofld_frames_csum_udp"}, 617 { Q_STATS_OFFSET32(tx_ofld_frames_lso), 618 4, "tx_ofld_frames_lso"}, 619 { Q_STATS_OFFSET32(tx_ofld_frames_lso_hdr_splits), 620 4, "tx_ofld_frames_lso_hdr_splits"}, 621 { Q_STATS_OFFSET32(tx_encap_failures), 622 4, "tx_encap_failures"}, 623 { Q_STATS_OFFSET32(tx_hw_queue_full), 624 4, "tx_hw_queue_full"}, 625 { Q_STATS_OFFSET32(tx_hw_max_queue_depth), 626 4, "tx_hw_max_queue_depth"}, 627 { Q_STATS_OFFSET32(tx_dma_mapping_failure), 628 4, "tx_dma_mapping_failure"}, 629 { Q_STATS_OFFSET32(tx_max_drbr_queue_depth), 630 4, "tx_max_drbr_queue_depth"}, 631 { Q_STATS_OFFSET32(tx_window_violation_std), 632 4, "tx_window_violation_std"}, 633 { Q_STATS_OFFSET32(tx_window_violation_tso), 634 4, "tx_window_violation_tso"}, 635 #if 0 636 { Q_STATS_OFFSET32(tx_unsupported_tso_request_ipv6), 637 4, "tx_unsupported_tso_request_ipv6"}, 638 { Q_STATS_OFFSET32(tx_unsupported_tso_request_not_tcp), 639 4, "tx_unsupported_tso_request_not_tcp"}, 640 #endif 641 { Q_STATS_OFFSET32(tx_chain_lost_mbuf), 642 4, "tx_chain_lost_mbuf"}, 643 { Q_STATS_OFFSET32(tx_frames_deferred), 644 4, "tx_frames_deferred"}, 645 { Q_STATS_OFFSET32(tx_queue_xoff), 646 4, "tx_queue_xoff"}, 647 { Q_STATS_OFFSET32(mbuf_defrag_attempts), 648 4, "mbuf_defrag_attempts"}, 649 { Q_STATS_OFFSET32(mbuf_defrag_failures), 650 4, "mbuf_defrag_failures"}, 651 { Q_STATS_OFFSET32(mbuf_rx_bd_alloc_failed), 652 4, "mbuf_rx_bd_alloc_failed"}, 653 { Q_STATS_OFFSET32(mbuf_rx_bd_mapping_failed), 654 4, "mbuf_rx_bd_mapping_failed"}, 655 { Q_STATS_OFFSET32(mbuf_rx_tpa_alloc_failed), 656 4, "mbuf_rx_tpa_alloc_failed"}, 657 { Q_STATS_OFFSET32(mbuf_rx_tpa_mapping_failed), 658 4, "mbuf_rx_tpa_mapping_failed"}, 659 { Q_STATS_OFFSET32(mbuf_rx_sge_alloc_failed), 660 4, "mbuf_rx_sge_alloc_failed"}, 661 { Q_STATS_OFFSET32(mbuf_rx_sge_mapping_failed), 662 4, "mbuf_rx_sge_mapping_failed"}, 663 { Q_STATS_OFFSET32(mbuf_alloc_tx), 664 4, "mbuf_alloc_tx"}, 665 { Q_STATS_OFFSET32(mbuf_alloc_rx), 666 4, "mbuf_alloc_rx"}, 667 { Q_STATS_OFFSET32(mbuf_alloc_sge), 668 4, "mbuf_alloc_sge"}, 669 { Q_STATS_OFFSET32(mbuf_alloc_tpa), 670 4, "mbuf_alloc_tpa"} 671 }; 672 673 #define BXE_NUM_ETH_STATS ARRAY_SIZE(bxe_eth_stats_arr) 674 #define BXE_NUM_ETH_Q_STATS ARRAY_SIZE(bxe_eth_q_stats_arr) 675 676 677 static void bxe_cmng_fns_init(struct bxe_softc *sc, 678 uint8_t read_cfg, 679 uint8_t cmng_type); 680 static int bxe_get_cmng_fns_mode(struct bxe_softc *sc); 681 static void storm_memset_cmng(struct bxe_softc *sc, 682 struct cmng_init *cmng, 683 uint8_t port); 684 static void bxe_set_reset_global(struct bxe_softc *sc); 685 static void bxe_set_reset_in_progress(struct bxe_softc *sc); 686 static uint8_t bxe_reset_is_done(struct bxe_softc *sc, 687 int engine); 688 static uint8_t bxe_clear_pf_load(struct bxe_softc *sc); 689 static uint8_t bxe_chk_parity_attn(struct bxe_softc *sc, 690 uint8_t *global, 691 uint8_t print); 692 static void bxe_int_disable(struct bxe_softc *sc); 693 static int bxe_release_leader_lock(struct bxe_softc *sc); 694 static void bxe_pf_disable(struct bxe_softc *sc); 695 static void bxe_free_fp_buffers(struct bxe_softc *sc); 696 static inline void bxe_update_rx_prod(struct bxe_softc *sc, 697 struct bxe_fastpath *fp, 698 uint16_t rx_bd_prod, 699 uint16_t rx_cq_prod, 700 uint16_t rx_sge_prod); 701 static void bxe_link_report_locked(struct bxe_softc *sc); 702 static void bxe_link_report(struct bxe_softc *sc); 703 static void bxe_link_status_update(struct bxe_softc *sc); 704 static void bxe_periodic_callout_func(void *xsc); 705 static void bxe_periodic_start(struct bxe_softc *sc); 706 static void bxe_periodic_stop(struct bxe_softc *sc); 707 static int bxe_alloc_rx_bd_mbuf(struct bxe_fastpath *fp, 708 uint16_t prev_index, 709 uint16_t index); 710 static int bxe_alloc_rx_tpa_mbuf(struct bxe_fastpath *fp, 711 int queue); 712 static int bxe_alloc_rx_sge_mbuf(struct bxe_fastpath *fp, 713 uint16_t index); 714 static uint8_t bxe_txeof(struct bxe_softc *sc, 715 struct bxe_fastpath *fp); 716 static void bxe_task_fp(struct bxe_fastpath *fp); 717 static __noinline void bxe_dump_mbuf(struct bxe_softc *sc, 718 struct mbuf *m, 719 uint8_t contents); 720 static int bxe_alloc_mem(struct bxe_softc *sc); 721 static void bxe_free_mem(struct bxe_softc *sc); 722 static int bxe_alloc_fw_stats_mem(struct bxe_softc *sc); 723 static void bxe_free_fw_stats_mem(struct bxe_softc *sc); 724 static int bxe_interrupt_attach(struct bxe_softc *sc); 725 static void bxe_interrupt_detach(struct bxe_softc *sc); 726 static void bxe_set_rx_mode(struct bxe_softc *sc); 727 static int bxe_init_locked(struct bxe_softc *sc); 728 static int bxe_stop_locked(struct bxe_softc *sc); 729 static __noinline int bxe_nic_load(struct bxe_softc *sc, 730 int load_mode); 731 static __noinline int bxe_nic_unload(struct bxe_softc *sc, 732 uint32_t unload_mode, 733 uint8_t keep_link); 734 735 static void bxe_handle_sp_tq(void *context, int pending); 736 static void bxe_handle_rx_mode_tq(void *context, int pending); 737 static void bxe_handle_fp_tq(void *context, int pending); 738 739 740 /* calculate crc32 on a buffer (NOTE: crc32_length MUST be aligned to 8) */ 741 uint32_t 742 calc_crc32(uint8_t *crc32_packet, 743 uint32_t crc32_length, 744 uint32_t crc32_seed, 745 uint8_t complement) 746 { 747 uint32_t byte = 0; 748 uint32_t bit = 0; 749 uint8_t msb = 0; 750 uint32_t temp = 0; 751 uint32_t shft = 0; 752 uint8_t current_byte = 0; 753 uint32_t crc32_result = crc32_seed; 754 const uint32_t CRC32_POLY = 0x1edc6f41; 755 756 if ((crc32_packet == NULL) || 757 (crc32_length == 0) || 758 ((crc32_length % 8) != 0)) 759 { 760 return (crc32_result); 761 } 762 763 for (byte = 0; byte < crc32_length; byte = byte + 1) 764 { 765 current_byte = crc32_packet[byte]; 766 for (bit = 0; bit < 8; bit = bit + 1) 767 { 768 /* msb = crc32_result[31]; */ 769 msb = (uint8_t)(crc32_result >> 31); 770 771 crc32_result = crc32_result << 1; 772 773 /* it (msb != current_byte[bit]) */ 774 if (msb != (0x1 & (current_byte >> bit))) 775 { 776 crc32_result = crc32_result ^ CRC32_POLY; 777 /* crc32_result[0] = 1 */ 778 crc32_result |= 1; 779 } 780 } 781 } 782 783 /* Last step is to: 784 * 1. "mirror" every bit 785 * 2. swap the 4 bytes 786 * 3. complement each bit 787 */ 788 789 /* Mirror */ 790 temp = crc32_result; 791 shft = sizeof(crc32_result) * 8 - 1; 792 793 for (crc32_result >>= 1; crc32_result; crc32_result >>= 1) 794 { 795 temp <<= 1; 796 temp |= crc32_result & 1; 797 shft-- ; 798 } 799 800 /* temp[31-bit] = crc32_result[bit] */ 801 temp <<= shft; 802 803 /* Swap */ 804 /* crc32_result = {temp[7:0], temp[15:8], temp[23:16], temp[31:24]} */ 805 { 806 uint32_t t0, t1, t2, t3; 807 t0 = (0x000000ff & (temp >> 24)); 808 t1 = (0x0000ff00 & (temp >> 8)); 809 t2 = (0x00ff0000 & (temp << 8)); 810 t3 = (0xff000000 & (temp << 24)); 811 crc32_result = t0 | t1 | t2 | t3; 812 } 813 814 /* Complement */ 815 if (complement) 816 { 817 crc32_result = ~crc32_result; 818 } 819 820 return (crc32_result); 821 } 822 823 int 824 bxe_test_bit(int nr, 825 volatile unsigned long *addr) 826 { 827 return ((atomic_load_acq_long(addr) & (1 << nr)) != 0); 828 } 829 830 void 831 bxe_set_bit(unsigned int nr, 832 volatile unsigned long *addr) 833 { 834 atomic_set_acq_long(addr, (1 << nr)); 835 } 836 837 void 838 bxe_clear_bit(int nr, 839 volatile unsigned long *addr) 840 { 841 atomic_clear_acq_long(addr, (1 << nr)); 842 } 843 844 int 845 bxe_test_and_set_bit(int nr, 846 volatile unsigned long *addr) 847 { 848 unsigned long x; 849 nr = (1 << nr); 850 do { 851 x = *addr; 852 } while (atomic_cmpset_acq_long(addr, x, x | nr) == 0); 853 // if (x & nr) bit_was_set; else bit_was_not_set; 854 return (x & nr); 855 } 856 857 int 858 bxe_test_and_clear_bit(int nr, 859 volatile unsigned long *addr) 860 { 861 unsigned long x; 862 nr = (1 << nr); 863 do { 864 x = *addr; 865 } while (atomic_cmpset_acq_long(addr, x, x & ~nr) == 0); 866 // if (x & nr) bit_was_set; else bit_was_not_set; 867 return (x & nr); 868 } 869 870 int 871 bxe_cmpxchg(volatile int *addr, 872 int old, 873 int new) 874 { 875 int x; 876 do { 877 x = *addr; 878 } while (atomic_cmpset_acq_int(addr, old, new) == 0); 879 return (x); 880 } 881 882 /* 883 * Get DMA memory from the OS. 884 * 885 * Validates that the OS has provided DMA buffers in response to a 886 * bus_dmamap_load call and saves the physical address of those buffers. 887 * When the callback is used the OS will return 0 for the mapping function 888 * (bus_dmamap_load) so we use the value of map_arg->maxsegs to pass any 889 * failures back to the caller. 890 * 891 * Returns: 892 * Nothing. 893 */ 894 static void 895 bxe_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error) 896 { 897 struct bxe_dma *dma = arg; 898 899 if (error) { 900 dma->paddr = 0; 901 dma->nseg = 0; 902 BLOGE(dma->sc, "Failed DMA alloc '%s' (%d)!\n", dma->msg, error); 903 } else { 904 dma->paddr = segs->ds_addr; 905 dma->nseg = nseg; 906 #if 0 907 BLOGD(dma->sc, DBG_LOAD, 908 "DMA alloc '%s': vaddr=%p paddr=%p nseg=%d size=%lu\n", 909 dma->msg, dma->vaddr, (void *)dma->paddr, 910 dma->nseg, dma->size); 911 #endif 912 } 913 } 914 915 /* 916 * Allocate a block of memory and map it for DMA. No partial completions 917 * allowed and release any resources acquired if we can't acquire all 918 * resources. 919 * 920 * Returns: 921 * 0 = Success, !0 = Failure 922 */ 923 int 924 bxe_dma_alloc(struct bxe_softc *sc, 925 bus_size_t size, 926 struct bxe_dma *dma, 927 const char *msg) 928 { 929 int rc; 930 931 if (dma->size > 0) { 932 BLOGE(sc, "dma block '%s' already has size %lu\n", msg, 933 (unsigned long)dma->size); 934 return (1); 935 } 936 937 memset(dma, 0, sizeof(*dma)); /* sanity */ 938 dma->sc = sc; 939 dma->size = size; 940 snprintf(dma->msg, sizeof(dma->msg), "%s", msg); 941 942 rc = bus_dma_tag_create(sc->parent_dma_tag, /* parent tag */ 943 BCM_PAGE_SIZE, /* alignment */ 944 0, /* boundary limit */ 945 BUS_SPACE_MAXADDR, /* restricted low */ 946 BUS_SPACE_MAXADDR, /* restricted hi */ 947 NULL, /* addr filter() */ 948 NULL, /* addr filter() arg */ 949 size, /* max map size */ 950 1, /* num discontinuous */ 951 size, /* max seg size */ 952 BUS_DMA_ALLOCNOW, /* flags */ 953 NULL, /* lock() */ 954 NULL, /* lock() arg */ 955 &dma->tag); /* returned dma tag */ 956 if (rc != 0) { 957 BLOGE(sc, "Failed to create dma tag for '%s' (%d)\n", msg, rc); 958 memset(dma, 0, sizeof(*dma)); 959 return (1); 960 } 961 962 rc = bus_dmamem_alloc(dma->tag, 963 (void **)&dma->vaddr, 964 (BUS_DMA_NOWAIT | BUS_DMA_ZERO), 965 &dma->map); 966 if (rc != 0) { 967 BLOGE(sc, "Failed to alloc dma mem for '%s' (%d)\n", msg, rc); 968 bus_dma_tag_destroy(dma->tag); 969 memset(dma, 0, sizeof(*dma)); 970 return (1); 971 } 972 973 rc = bus_dmamap_load(dma->tag, 974 dma->map, 975 dma->vaddr, 976 size, 977 bxe_dma_map_addr, /* BLOGD in here */ 978 dma, 979 BUS_DMA_NOWAIT); 980 if (rc != 0) { 981 BLOGE(sc, "Failed to load dma map for '%s' (%d)\n", msg, rc); 982 bus_dmamem_free(dma->tag, dma->vaddr, dma->map); 983 bus_dma_tag_destroy(dma->tag); 984 memset(dma, 0, sizeof(*dma)); 985 return (1); 986 } 987 988 return (0); 989 } 990 991 void 992 bxe_dma_free(struct bxe_softc *sc, 993 struct bxe_dma *dma) 994 { 995 if (dma->size > 0) { 996 #if 0 997 BLOGD(sc, DBG_LOAD, 998 "DMA free '%s': vaddr=%p paddr=%p nseg=%d size=%lu\n", 999 dma->msg, dma->vaddr, (void *)dma->paddr, 1000 dma->nseg, dma->size); 1001 #endif 1002 1003 DBASSERT(sc, (dma->tag != NULL), ("dma tag is NULL")); 1004 1005 bus_dmamap_sync(dma->tag, dma->map, 1006 (BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE)); 1007 bus_dmamap_unload(dma->tag, dma->map); 1008 bus_dmamem_free(dma->tag, dma->vaddr, dma->map); 1009 bus_dma_tag_destroy(dma->tag); 1010 } 1011 1012 memset(dma, 0, sizeof(*dma)); 1013 } 1014 1015 /* 1016 * These indirect read and write routines are only during init. 1017 * The locking is handled by the MCP. 1018 */ 1019 1020 void 1021 bxe_reg_wr_ind(struct bxe_softc *sc, 1022 uint32_t addr, 1023 uint32_t val) 1024 { 1025 pci_write_config(sc->dev, PCICFG_GRC_ADDRESS, addr, 4); 1026 pci_write_config(sc->dev, PCICFG_GRC_DATA, val, 4); 1027 pci_write_config(sc->dev, PCICFG_GRC_ADDRESS, 0, 4); 1028 } 1029 1030 uint32_t 1031 bxe_reg_rd_ind(struct bxe_softc *sc, 1032 uint32_t addr) 1033 { 1034 uint32_t val; 1035 1036 pci_write_config(sc->dev, PCICFG_GRC_ADDRESS, addr, 4); 1037 val = pci_read_config(sc->dev, PCICFG_GRC_DATA, 4); 1038 pci_write_config(sc->dev, PCICFG_GRC_ADDRESS, 0, 4); 1039 1040 return (val); 1041 } 1042 1043 #if 0 1044 void bxe_dp_dmae(struct bxe_softc *sc, struct dmae_command *dmae, int msglvl) 1045 { 1046 uint32_t src_type = dmae->opcode & DMAE_COMMAND_SRC; 1047 1048 switch (dmae->opcode & DMAE_COMMAND_DST) { 1049 case DMAE_CMD_DST_PCI: 1050 if (src_type == DMAE_CMD_SRC_PCI) 1051 DP(msglvl, "DMAE: opcode 0x%08x\n" 1052 "src [%x:%08x], len [%d*4], dst [%x:%08x]\n" 1053 "comp_addr [%x:%08x], comp_val 0x%08x\n", 1054 dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo, 1055 dmae->len, dmae->dst_addr_hi, dmae->dst_addr_lo, 1056 dmae->comp_addr_hi, dmae->comp_addr_lo, 1057 dmae->comp_val); 1058 else 1059 DP(msglvl, "DMAE: opcode 0x%08x\n" 1060 "src [%08x], len [%d*4], dst [%x:%08x]\n" 1061 "comp_addr [%x:%08x], comp_val 0x%08x\n", 1062 dmae->opcode, dmae->src_addr_lo >> 2, 1063 dmae->len, dmae->dst_addr_hi, dmae->dst_addr_lo, 1064 dmae->comp_addr_hi, dmae->comp_addr_lo, 1065 dmae->comp_val); 1066 break; 1067 case DMAE_CMD_DST_GRC: 1068 if (src_type == DMAE_CMD_SRC_PCI) 1069 DP(msglvl, "DMAE: opcode 0x%08x\n" 1070 "src [%x:%08x], len [%d*4], dst_addr [%08x]\n" 1071 "comp_addr [%x:%08x], comp_val 0x%08x\n", 1072 dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo, 1073 dmae->len, dmae->dst_addr_lo >> 2, 1074 dmae->comp_addr_hi, dmae->comp_addr_lo, 1075 dmae->comp_val); 1076 else 1077 DP(msglvl, "DMAE: opcode 0x%08x\n" 1078 "src [%08x], len [%d*4], dst [%08x]\n" 1079 "comp_addr [%x:%08x], comp_val 0x%08x\n", 1080 dmae->opcode, dmae->src_addr_lo >> 2, 1081 dmae->len, dmae->dst_addr_lo >> 2, 1082 dmae->comp_addr_hi, dmae->comp_addr_lo, 1083 dmae->comp_val); 1084 break; 1085 default: 1086 if (src_type == DMAE_CMD_SRC_PCI) 1087 DP(msglvl, "DMAE: opcode 0x%08x\n" 1088 "src_addr [%x:%08x] len [%d * 4] dst_addr [none]\n" 1089 "comp_addr [%x:%08x] comp_val 0x%08x\n", 1090 dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo, 1091 dmae->len, dmae->comp_addr_hi, dmae->comp_addr_lo, 1092 dmae->comp_val); 1093 else 1094 DP(msglvl, "DMAE: opcode 0x%08x\n" 1095 "src_addr [%08x] len [%d * 4] dst_addr [none]\n" 1096 "comp_addr [%x:%08x] comp_val 0x%08x\n", 1097 dmae->opcode, dmae->src_addr_lo >> 2, 1098 dmae->len, dmae->comp_addr_hi, dmae->comp_addr_lo, 1099 dmae->comp_val); 1100 break; 1101 } 1102 1103 } 1104 #endif 1105 1106 static int 1107 bxe_acquire_hw_lock(struct bxe_softc *sc, 1108 uint32_t resource) 1109 { 1110 uint32_t lock_status; 1111 uint32_t resource_bit = (1 << resource); 1112 int func = SC_FUNC(sc); 1113 uint32_t hw_lock_control_reg; 1114 int cnt; 1115 1116 /* validate the resource is within range */ 1117 if (resource > HW_LOCK_MAX_RESOURCE_VALUE) { 1118 BLOGE(sc, "resource 0x%x > HW_LOCK_MAX_RESOURCE_VALUE\n", resource); 1119 return (-1); 1120 } 1121 1122 if (func <= 5) { 1123 hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + (func * 8)); 1124 } else { 1125 hw_lock_control_reg = 1126 (MISC_REG_DRIVER_CONTROL_7 + ((func - 6) * 8)); 1127 } 1128 1129 /* validate the resource is not already taken */ 1130 lock_status = REG_RD(sc, hw_lock_control_reg); 1131 if (lock_status & resource_bit) { 1132 BLOGE(sc, "resource in use (status 0x%x bit 0x%x)\n", 1133 lock_status, resource_bit); 1134 return (-1); 1135 } 1136 1137 /* try every 5ms for 5 seconds */ 1138 for (cnt = 0; cnt < 1000; cnt++) { 1139 REG_WR(sc, (hw_lock_control_reg + 4), resource_bit); 1140 lock_status = REG_RD(sc, hw_lock_control_reg); 1141 if (lock_status & resource_bit) { 1142 return (0); 1143 } 1144 DELAY(5000); 1145 } 1146 1147 BLOGE(sc, "Resource lock timeout!\n"); 1148 return (-1); 1149 } 1150 1151 static int 1152 bxe_release_hw_lock(struct bxe_softc *sc, 1153 uint32_t resource) 1154 { 1155 uint32_t lock_status; 1156 uint32_t resource_bit = (1 << resource); 1157 int func = SC_FUNC(sc); 1158 uint32_t hw_lock_control_reg; 1159 1160 /* validate the resource is within range */ 1161 if (resource > HW_LOCK_MAX_RESOURCE_VALUE) { 1162 BLOGE(sc, "resource 0x%x > HW_LOCK_MAX_RESOURCE_VALUE\n", resource); 1163 return (-1); 1164 } 1165 1166 if (func <= 5) { 1167 hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + (func * 8)); 1168 } else { 1169 hw_lock_control_reg = 1170 (MISC_REG_DRIVER_CONTROL_7 + ((func - 6) * 8)); 1171 } 1172 1173 /* validate the resource is currently taken */ 1174 lock_status = REG_RD(sc, hw_lock_control_reg); 1175 if (!(lock_status & resource_bit)) { 1176 BLOGE(sc, "resource not in use (status 0x%x bit 0x%x)\n", 1177 lock_status, resource_bit); 1178 return (-1); 1179 } 1180 1181 REG_WR(sc, hw_lock_control_reg, resource_bit); 1182 return (0); 1183 } 1184 1185 /* 1186 * Per pf misc lock must be acquired before the per port mcp lock. Otherwise, 1187 * had we done things the other way around, if two pfs from the same port 1188 * would attempt to access nvram at the same time, we could run into a 1189 * scenario such as: 1190 * pf A takes the port lock. 1191 * pf B succeeds in taking the same lock since they are from the same port. 1192 * pf A takes the per pf misc lock. Performs eeprom access. 1193 * pf A finishes. Unlocks the per pf misc lock. 1194 * Pf B takes the lock and proceeds to perform it's own access. 1195 * pf A unlocks the per port lock, while pf B is still working (!). 1196 * mcp takes the per port lock and corrupts pf B's access (and/or has it's own 1197 * access corrupted by pf B).* 1198 */ 1199 static int 1200 bxe_acquire_nvram_lock(struct bxe_softc *sc) 1201 { 1202 int port = SC_PORT(sc); 1203 int count, i; 1204 uint32_t val = 0; 1205 1206 /* acquire HW lock: protect against other PFs in PF Direct Assignment */ 1207 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_NVRAM); 1208 1209 /* adjust timeout for emulation/FPGA */ 1210 count = NVRAM_TIMEOUT_COUNT; 1211 if (CHIP_REV_IS_SLOW(sc)) { 1212 count *= 100; 1213 } 1214 1215 /* request access to nvram interface */ 1216 REG_WR(sc, MCP_REG_MCPR_NVM_SW_ARB, 1217 (MCPR_NVM_SW_ARB_ARB_REQ_SET1 << port)); 1218 1219 for (i = 0; i < count*10; i++) { 1220 val = REG_RD(sc, MCP_REG_MCPR_NVM_SW_ARB); 1221 if (val & (MCPR_NVM_SW_ARB_ARB_ARB1 << port)) { 1222 break; 1223 } 1224 1225 DELAY(5); 1226 } 1227 1228 if (!(val & (MCPR_NVM_SW_ARB_ARB_ARB1 << port))) { 1229 BLOGE(sc, "Cannot get access to nvram interface\n"); 1230 return (-1); 1231 } 1232 1233 return (0); 1234 } 1235 1236 static int 1237 bxe_release_nvram_lock(struct bxe_softc *sc) 1238 { 1239 int port = SC_PORT(sc); 1240 int count, i; 1241 uint32_t val = 0; 1242 1243 /* adjust timeout for emulation/FPGA */ 1244 count = NVRAM_TIMEOUT_COUNT; 1245 if (CHIP_REV_IS_SLOW(sc)) { 1246 count *= 100; 1247 } 1248 1249 /* relinquish nvram interface */ 1250 REG_WR(sc, MCP_REG_MCPR_NVM_SW_ARB, 1251 (MCPR_NVM_SW_ARB_ARB_REQ_CLR1 << port)); 1252 1253 for (i = 0; i < count*10; i++) { 1254 val = REG_RD(sc, MCP_REG_MCPR_NVM_SW_ARB); 1255 if (!(val & (MCPR_NVM_SW_ARB_ARB_ARB1 << port))) { 1256 break; 1257 } 1258 1259 DELAY(5); 1260 } 1261 1262 if (val & (MCPR_NVM_SW_ARB_ARB_ARB1 << port)) { 1263 BLOGE(sc, "Cannot free access to nvram interface\n"); 1264 return (-1); 1265 } 1266 1267 /* release HW lock: protect against other PFs in PF Direct Assignment */ 1268 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_NVRAM); 1269 1270 return (0); 1271 } 1272 1273 static void 1274 bxe_enable_nvram_access(struct bxe_softc *sc) 1275 { 1276 uint32_t val; 1277 1278 val = REG_RD(sc, MCP_REG_MCPR_NVM_ACCESS_ENABLE); 1279 1280 /* enable both bits, even on read */ 1281 REG_WR(sc, MCP_REG_MCPR_NVM_ACCESS_ENABLE, 1282 (val | MCPR_NVM_ACCESS_ENABLE_EN | MCPR_NVM_ACCESS_ENABLE_WR_EN)); 1283 } 1284 1285 static void 1286 bxe_disable_nvram_access(struct bxe_softc *sc) 1287 { 1288 uint32_t val; 1289 1290 val = REG_RD(sc, MCP_REG_MCPR_NVM_ACCESS_ENABLE); 1291 1292 /* disable both bits, even after read */ 1293 REG_WR(sc, MCP_REG_MCPR_NVM_ACCESS_ENABLE, 1294 (val & ~(MCPR_NVM_ACCESS_ENABLE_EN | 1295 MCPR_NVM_ACCESS_ENABLE_WR_EN))); 1296 } 1297 1298 static int 1299 bxe_nvram_read_dword(struct bxe_softc *sc, 1300 uint32_t offset, 1301 uint32_t *ret_val, 1302 uint32_t cmd_flags) 1303 { 1304 int count, i, rc; 1305 uint32_t val; 1306 1307 /* build the command word */ 1308 cmd_flags |= MCPR_NVM_COMMAND_DOIT; 1309 1310 /* need to clear DONE bit separately */ 1311 REG_WR(sc, MCP_REG_MCPR_NVM_COMMAND, MCPR_NVM_COMMAND_DONE); 1312 1313 /* address of the NVRAM to read from */ 1314 REG_WR(sc, MCP_REG_MCPR_NVM_ADDR, 1315 (offset & MCPR_NVM_ADDR_NVM_ADDR_VALUE)); 1316 1317 /* issue a read command */ 1318 REG_WR(sc, MCP_REG_MCPR_NVM_COMMAND, cmd_flags); 1319 1320 /* adjust timeout for emulation/FPGA */ 1321 count = NVRAM_TIMEOUT_COUNT; 1322 if (CHIP_REV_IS_SLOW(sc)) { 1323 count *= 100; 1324 } 1325 1326 /* wait for completion */ 1327 *ret_val = 0; 1328 rc = -1; 1329 for (i = 0; i < count; i++) { 1330 DELAY(5); 1331 val = REG_RD(sc, MCP_REG_MCPR_NVM_COMMAND); 1332 1333 if (val & MCPR_NVM_COMMAND_DONE) { 1334 val = REG_RD(sc, MCP_REG_MCPR_NVM_READ); 1335 /* we read nvram data in cpu order 1336 * but ethtool sees it as an array of bytes 1337 * converting to big-endian will do the work 1338 */ 1339 *ret_val = htobe32(val); 1340 rc = 0; 1341 break; 1342 } 1343 } 1344 1345 if (rc == -1) { 1346 BLOGE(sc, "nvram read timeout expired\n"); 1347 } 1348 1349 return (rc); 1350 } 1351 1352 static int 1353 bxe_nvram_read(struct bxe_softc *sc, 1354 uint32_t offset, 1355 uint8_t *ret_buf, 1356 int buf_size) 1357 { 1358 uint32_t cmd_flags; 1359 uint32_t val; 1360 int rc; 1361 1362 if ((offset & 0x03) || (buf_size & 0x03) || (buf_size == 0)) { 1363 BLOGE(sc, "Invalid parameter, offset 0x%x buf_size 0x%x\n", 1364 offset, buf_size); 1365 return (-1); 1366 } 1367 1368 if ((offset + buf_size) > sc->devinfo.flash_size) { 1369 BLOGE(sc, "Invalid parameter, " 1370 "offset 0x%x + buf_size 0x%x > flash_size 0x%x\n", 1371 offset, buf_size, sc->devinfo.flash_size); 1372 return (-1); 1373 } 1374 1375 /* request access to nvram interface */ 1376 rc = bxe_acquire_nvram_lock(sc); 1377 if (rc) { 1378 return (rc); 1379 } 1380 1381 /* enable access to nvram interface */ 1382 bxe_enable_nvram_access(sc); 1383 1384 /* read the first word(s) */ 1385 cmd_flags = MCPR_NVM_COMMAND_FIRST; 1386 while ((buf_size > sizeof(uint32_t)) && (rc == 0)) { 1387 rc = bxe_nvram_read_dword(sc, offset, &val, cmd_flags); 1388 memcpy(ret_buf, &val, 4); 1389 1390 /* advance to the next dword */ 1391 offset += sizeof(uint32_t); 1392 ret_buf += sizeof(uint32_t); 1393 buf_size -= sizeof(uint32_t); 1394 cmd_flags = 0; 1395 } 1396 1397 if (rc == 0) { 1398 cmd_flags |= MCPR_NVM_COMMAND_LAST; 1399 rc = bxe_nvram_read_dword(sc, offset, &val, cmd_flags); 1400 memcpy(ret_buf, &val, 4); 1401 } 1402 1403 /* disable access to nvram interface */ 1404 bxe_disable_nvram_access(sc); 1405 bxe_release_nvram_lock(sc); 1406 1407 return (rc); 1408 } 1409 1410 static int 1411 bxe_nvram_write_dword(struct bxe_softc *sc, 1412 uint32_t offset, 1413 uint32_t val, 1414 uint32_t cmd_flags) 1415 { 1416 int count, i, rc; 1417 1418 /* build the command word */ 1419 cmd_flags |= (MCPR_NVM_COMMAND_DOIT | MCPR_NVM_COMMAND_WR); 1420 1421 /* need to clear DONE bit separately */ 1422 REG_WR(sc, MCP_REG_MCPR_NVM_COMMAND, MCPR_NVM_COMMAND_DONE); 1423 1424 /* write the data */ 1425 REG_WR(sc, MCP_REG_MCPR_NVM_WRITE, val); 1426 1427 /* address of the NVRAM to write to */ 1428 REG_WR(sc, MCP_REG_MCPR_NVM_ADDR, 1429 (offset & MCPR_NVM_ADDR_NVM_ADDR_VALUE)); 1430 1431 /* issue the write command */ 1432 REG_WR(sc, MCP_REG_MCPR_NVM_COMMAND, cmd_flags); 1433 1434 /* adjust timeout for emulation/FPGA */ 1435 count = NVRAM_TIMEOUT_COUNT; 1436 if (CHIP_REV_IS_SLOW(sc)) { 1437 count *= 100; 1438 } 1439 1440 /* wait for completion */ 1441 rc = -1; 1442 for (i = 0; i < count; i++) { 1443 DELAY(5); 1444 val = REG_RD(sc, MCP_REG_MCPR_NVM_COMMAND); 1445 if (val & MCPR_NVM_COMMAND_DONE) { 1446 rc = 0; 1447 break; 1448 } 1449 } 1450 1451 if (rc == -1) { 1452 BLOGE(sc, "nvram write timeout expired\n"); 1453 } 1454 1455 return (rc); 1456 } 1457 1458 #define BYTE_OFFSET(offset) (8 * (offset & 0x03)) 1459 1460 static int 1461 bxe_nvram_write1(struct bxe_softc *sc, 1462 uint32_t offset, 1463 uint8_t *data_buf, 1464 int buf_size) 1465 { 1466 uint32_t cmd_flags; 1467 uint32_t align_offset; 1468 uint32_t val; 1469 int rc; 1470 1471 if ((offset + buf_size) > sc->devinfo.flash_size) { 1472 BLOGE(sc, "Invalid parameter, " 1473 "offset 0x%x + buf_size 0x%x > flash_size 0x%x\n", 1474 offset, buf_size, sc->devinfo.flash_size); 1475 return (-1); 1476 } 1477 1478 /* request access to nvram interface */ 1479 rc = bxe_acquire_nvram_lock(sc); 1480 if (rc) { 1481 return (rc); 1482 } 1483 1484 /* enable access to nvram interface */ 1485 bxe_enable_nvram_access(sc); 1486 1487 cmd_flags = (MCPR_NVM_COMMAND_FIRST | MCPR_NVM_COMMAND_LAST); 1488 align_offset = (offset & ~0x03); 1489 rc = bxe_nvram_read_dword(sc, align_offset, &val, cmd_flags); 1490 1491 if (rc == 0) { 1492 val &= ~(0xff << BYTE_OFFSET(offset)); 1493 val |= (*data_buf << BYTE_OFFSET(offset)); 1494 1495 /* nvram data is returned as an array of bytes 1496 * convert it back to cpu order 1497 */ 1498 val = be32toh(val); 1499 1500 rc = bxe_nvram_write_dword(sc, align_offset, val, cmd_flags); 1501 } 1502 1503 /* disable access to nvram interface */ 1504 bxe_disable_nvram_access(sc); 1505 bxe_release_nvram_lock(sc); 1506 1507 return (rc); 1508 } 1509 1510 static int 1511 bxe_nvram_write(struct bxe_softc *sc, 1512 uint32_t offset, 1513 uint8_t *data_buf, 1514 int buf_size) 1515 { 1516 uint32_t cmd_flags; 1517 uint32_t val; 1518 uint32_t written_so_far; 1519 int rc; 1520 1521 if (buf_size == 1) { 1522 return (bxe_nvram_write1(sc, offset, data_buf, buf_size)); 1523 } 1524 1525 if ((offset & 0x03) || (buf_size & 0x03) /* || (buf_size == 0) */) { 1526 BLOGE(sc, "Invalid parameter, offset 0x%x buf_size 0x%x\n", 1527 offset, buf_size); 1528 return (-1); 1529 } 1530 1531 if (buf_size == 0) { 1532 return (0); /* nothing to do */ 1533 } 1534 1535 if ((offset + buf_size) > sc->devinfo.flash_size) { 1536 BLOGE(sc, "Invalid parameter, " 1537 "offset 0x%x + buf_size 0x%x > flash_size 0x%x\n", 1538 offset, buf_size, sc->devinfo.flash_size); 1539 return (-1); 1540 } 1541 1542 /* request access to nvram interface */ 1543 rc = bxe_acquire_nvram_lock(sc); 1544 if (rc) { 1545 return (rc); 1546 } 1547 1548 /* enable access to nvram interface */ 1549 bxe_enable_nvram_access(sc); 1550 1551 written_so_far = 0; 1552 cmd_flags = MCPR_NVM_COMMAND_FIRST; 1553 while ((written_so_far < buf_size) && (rc == 0)) { 1554 if (written_so_far == (buf_size - sizeof(uint32_t))) { 1555 cmd_flags |= MCPR_NVM_COMMAND_LAST; 1556 } else if (((offset + 4) % NVRAM_PAGE_SIZE) == 0) { 1557 cmd_flags |= MCPR_NVM_COMMAND_LAST; 1558 } else if ((offset % NVRAM_PAGE_SIZE) == 0) { 1559 cmd_flags |= MCPR_NVM_COMMAND_FIRST; 1560 } 1561 1562 memcpy(&val, data_buf, 4); 1563 1564 rc = bxe_nvram_write_dword(sc, offset, val, cmd_flags); 1565 1566 /* advance to the next dword */ 1567 offset += sizeof(uint32_t); 1568 data_buf += sizeof(uint32_t); 1569 written_so_far += sizeof(uint32_t); 1570 cmd_flags = 0; 1571 } 1572 1573 /* disable access to nvram interface */ 1574 bxe_disable_nvram_access(sc); 1575 bxe_release_nvram_lock(sc); 1576 1577 return (rc); 1578 } 1579 1580 /* copy command into DMAE command memory and set DMAE command Go */ 1581 void 1582 bxe_post_dmae(struct bxe_softc *sc, 1583 struct dmae_command *dmae, 1584 int idx) 1585 { 1586 uint32_t cmd_offset; 1587 int i; 1588 1589 cmd_offset = (DMAE_REG_CMD_MEM + (sizeof(struct dmae_command) * idx)); 1590 for (i = 0; i < ((sizeof(struct dmae_command) / 4)); i++) { 1591 REG_WR(sc, (cmd_offset + (i * 4)), *(((uint32_t *)dmae) + i)); 1592 } 1593 1594 REG_WR(sc, dmae_reg_go_c[idx], 1); 1595 } 1596 1597 uint32_t 1598 bxe_dmae_opcode_add_comp(uint32_t opcode, 1599 uint8_t comp_type) 1600 { 1601 return (opcode | ((comp_type << DMAE_COMMAND_C_DST_SHIFT) | 1602 DMAE_COMMAND_C_TYPE_ENABLE)); 1603 } 1604 1605 uint32_t 1606 bxe_dmae_opcode_clr_src_reset(uint32_t opcode) 1607 { 1608 return (opcode & ~DMAE_COMMAND_SRC_RESET); 1609 } 1610 1611 uint32_t 1612 bxe_dmae_opcode(struct bxe_softc *sc, 1613 uint8_t src_type, 1614 uint8_t dst_type, 1615 uint8_t with_comp, 1616 uint8_t comp_type) 1617 { 1618 uint32_t opcode = 0; 1619 1620 opcode |= ((src_type << DMAE_COMMAND_SRC_SHIFT) | 1621 (dst_type << DMAE_COMMAND_DST_SHIFT)); 1622 1623 opcode |= (DMAE_COMMAND_SRC_RESET | DMAE_COMMAND_DST_RESET); 1624 1625 opcode |= (SC_PORT(sc) ? DMAE_CMD_PORT_1 : DMAE_CMD_PORT_0); 1626 1627 opcode |= ((SC_VN(sc) << DMAE_COMMAND_E1HVN_SHIFT) | 1628 (SC_VN(sc) << DMAE_COMMAND_DST_VN_SHIFT)); 1629 1630 opcode |= (DMAE_COM_SET_ERR << DMAE_COMMAND_ERR_POLICY_SHIFT); 1631 1632 #ifdef __BIG_ENDIAN 1633 opcode |= DMAE_CMD_ENDIANITY_B_DW_SWAP; 1634 #else 1635 opcode |= DMAE_CMD_ENDIANITY_DW_SWAP; 1636 #endif 1637 1638 if (with_comp) { 1639 opcode = bxe_dmae_opcode_add_comp(opcode, comp_type); 1640 } 1641 1642 return (opcode); 1643 } 1644 1645 static void 1646 bxe_prep_dmae_with_comp(struct bxe_softc *sc, 1647 struct dmae_command *dmae, 1648 uint8_t src_type, 1649 uint8_t dst_type) 1650 { 1651 memset(dmae, 0, sizeof(struct dmae_command)); 1652 1653 /* set the opcode */ 1654 dmae->opcode = bxe_dmae_opcode(sc, src_type, dst_type, 1655 TRUE, DMAE_COMP_PCI); 1656 1657 /* fill in the completion parameters */ 1658 dmae->comp_addr_lo = U64_LO(BXE_SP_MAPPING(sc, wb_comp)); 1659 dmae->comp_addr_hi = U64_HI(BXE_SP_MAPPING(sc, wb_comp)); 1660 dmae->comp_val = DMAE_COMP_VAL; 1661 } 1662 1663 /* issue a DMAE command over the init channel and wait for completion */ 1664 static int 1665 bxe_issue_dmae_with_comp(struct bxe_softc *sc, 1666 struct dmae_command *dmae) 1667 { 1668 uint32_t *wb_comp = BXE_SP(sc, wb_comp); 1669 int timeout = CHIP_REV_IS_SLOW(sc) ? 400000 : 4000; 1670 1671 BXE_DMAE_LOCK(sc); 1672 1673 /* reset completion */ 1674 *wb_comp = 0; 1675 1676 /* post the command on the channel used for initializations */ 1677 bxe_post_dmae(sc, dmae, INIT_DMAE_C(sc)); 1678 1679 /* wait for completion */ 1680 DELAY(5); 1681 1682 while ((*wb_comp & ~DMAE_PCI_ERR_FLAG) != DMAE_COMP_VAL) { 1683 if (!timeout || 1684 (sc->recovery_state != BXE_RECOVERY_DONE && 1685 sc->recovery_state != BXE_RECOVERY_NIC_LOADING)) { 1686 BLOGE(sc, "DMAE timeout!\n"); 1687 BXE_DMAE_UNLOCK(sc); 1688 return (DMAE_TIMEOUT); 1689 } 1690 1691 timeout--; 1692 DELAY(50); 1693 } 1694 1695 if (*wb_comp & DMAE_PCI_ERR_FLAG) { 1696 BLOGE(sc, "DMAE PCI error!\n"); 1697 BXE_DMAE_UNLOCK(sc); 1698 return (DMAE_PCI_ERROR); 1699 } 1700 1701 BXE_DMAE_UNLOCK(sc); 1702 return (0); 1703 } 1704 1705 void 1706 bxe_read_dmae(struct bxe_softc *sc, 1707 uint32_t src_addr, 1708 uint32_t len32) 1709 { 1710 struct dmae_command dmae; 1711 uint32_t *data; 1712 int i, rc; 1713 1714 DBASSERT(sc, (len32 <= 4), ("DMAE read length is %d", len32)); 1715 1716 if (!sc->dmae_ready) { 1717 data = BXE_SP(sc, wb_data[0]); 1718 1719 for (i = 0; i < len32; i++) { 1720 data[i] = (CHIP_IS_E1(sc)) ? 1721 bxe_reg_rd_ind(sc, (src_addr + (i * 4))) : 1722 REG_RD(sc, (src_addr + (i * 4))); 1723 } 1724 1725 return; 1726 } 1727 1728 /* set opcode and fixed command fields */ 1729 bxe_prep_dmae_with_comp(sc, &dmae, DMAE_SRC_GRC, DMAE_DST_PCI); 1730 1731 /* fill in addresses and len */ 1732 dmae.src_addr_lo = (src_addr >> 2); /* GRC addr has dword resolution */ 1733 dmae.src_addr_hi = 0; 1734 dmae.dst_addr_lo = U64_LO(BXE_SP_MAPPING(sc, wb_data)); 1735 dmae.dst_addr_hi = U64_HI(BXE_SP_MAPPING(sc, wb_data)); 1736 dmae.len = len32; 1737 1738 /* issue the command and wait for completion */ 1739 if ((rc = bxe_issue_dmae_with_comp(sc, &dmae)) != 0) { 1740 bxe_panic(sc, ("DMAE failed (%d)\n", rc)); 1741 }; 1742 } 1743 1744 void 1745 bxe_write_dmae(struct bxe_softc *sc, 1746 bus_addr_t dma_addr, 1747 uint32_t dst_addr, 1748 uint32_t len32) 1749 { 1750 struct dmae_command dmae; 1751 int rc; 1752 1753 if (!sc->dmae_ready) { 1754 DBASSERT(sc, (len32 <= 4), ("DMAE not ready and length is %d", len32)); 1755 1756 if (CHIP_IS_E1(sc)) { 1757 ecore_init_ind_wr(sc, dst_addr, BXE_SP(sc, wb_data[0]), len32); 1758 } else { 1759 ecore_init_str_wr(sc, dst_addr, BXE_SP(sc, wb_data[0]), len32); 1760 } 1761 1762 return; 1763 } 1764 1765 /* set opcode and fixed command fields */ 1766 bxe_prep_dmae_with_comp(sc, &dmae, DMAE_SRC_PCI, DMAE_DST_GRC); 1767 1768 /* fill in addresses and len */ 1769 dmae.src_addr_lo = U64_LO(dma_addr); 1770 dmae.src_addr_hi = U64_HI(dma_addr); 1771 dmae.dst_addr_lo = (dst_addr >> 2); /* GRC addr has dword resolution */ 1772 dmae.dst_addr_hi = 0; 1773 dmae.len = len32; 1774 1775 /* issue the command and wait for completion */ 1776 if ((rc = bxe_issue_dmae_with_comp(sc, &dmae)) != 0) { 1777 bxe_panic(sc, ("DMAE failed (%d)\n", rc)); 1778 } 1779 } 1780 1781 void 1782 bxe_write_dmae_phys_len(struct bxe_softc *sc, 1783 bus_addr_t phys_addr, 1784 uint32_t addr, 1785 uint32_t len) 1786 { 1787 int dmae_wr_max = DMAE_LEN32_WR_MAX(sc); 1788 int offset = 0; 1789 1790 while (len > dmae_wr_max) { 1791 bxe_write_dmae(sc, 1792 (phys_addr + offset), /* src DMA address */ 1793 (addr + offset), /* dst GRC address */ 1794 dmae_wr_max); 1795 offset += (dmae_wr_max * 4); 1796 len -= dmae_wr_max; 1797 } 1798 1799 bxe_write_dmae(sc, 1800 (phys_addr + offset), /* src DMA address */ 1801 (addr + offset), /* dst GRC address */ 1802 len); 1803 } 1804 1805 void 1806 bxe_set_ctx_validation(struct bxe_softc *sc, 1807 struct eth_context *cxt, 1808 uint32_t cid) 1809 { 1810 /* ustorm cxt validation */ 1811 cxt->ustorm_ag_context.cdu_usage = 1812 CDU_RSRVD_VALUE_TYPE_A(HW_CID(sc, cid), 1813 CDU_REGION_NUMBER_UCM_AG, ETH_CONNECTION_TYPE); 1814 /* xcontext validation */ 1815 cxt->xstorm_ag_context.cdu_reserved = 1816 CDU_RSRVD_VALUE_TYPE_A(HW_CID(sc, cid), 1817 CDU_REGION_NUMBER_XCM_AG, ETH_CONNECTION_TYPE); 1818 } 1819 1820 static void 1821 bxe_storm_memset_hc_timeout(struct bxe_softc *sc, 1822 uint8_t port, 1823 uint8_t fw_sb_id, 1824 uint8_t sb_index, 1825 uint8_t ticks) 1826 { 1827 uint32_t addr = 1828 (BAR_CSTRORM_INTMEM + 1829 CSTORM_STATUS_BLOCK_DATA_TIMEOUT_OFFSET(fw_sb_id, sb_index)); 1830 1831 REG_WR8(sc, addr, ticks); 1832 1833 BLOGD(sc, DBG_LOAD, 1834 "port %d fw_sb_id %d sb_index %d ticks %d\n", 1835 port, fw_sb_id, sb_index, ticks); 1836 } 1837 1838 static void 1839 bxe_storm_memset_hc_disable(struct bxe_softc *sc, 1840 uint8_t port, 1841 uint16_t fw_sb_id, 1842 uint8_t sb_index, 1843 uint8_t disable) 1844 { 1845 uint32_t enable_flag = 1846 (disable) ? 0 : (1 << HC_INDEX_DATA_HC_ENABLED_SHIFT); 1847 uint32_t addr = 1848 (BAR_CSTRORM_INTMEM + 1849 CSTORM_STATUS_BLOCK_DATA_FLAGS_OFFSET(fw_sb_id, sb_index)); 1850 uint8_t flags; 1851 1852 /* clear and set */ 1853 flags = REG_RD8(sc, addr); 1854 flags &= ~HC_INDEX_DATA_HC_ENABLED; 1855 flags |= enable_flag; 1856 REG_WR8(sc, addr, flags); 1857 1858 BLOGD(sc, DBG_LOAD, 1859 "port %d fw_sb_id %d sb_index %d disable %d\n", 1860 port, fw_sb_id, sb_index, disable); 1861 } 1862 1863 void 1864 bxe_update_coalesce_sb_index(struct bxe_softc *sc, 1865 uint8_t fw_sb_id, 1866 uint8_t sb_index, 1867 uint8_t disable, 1868 uint16_t usec) 1869 { 1870 int port = SC_PORT(sc); 1871 uint8_t ticks = (usec / 4); /* XXX ??? */ 1872 1873 bxe_storm_memset_hc_timeout(sc, port, fw_sb_id, sb_index, ticks); 1874 1875 disable = (disable) ? 1 : ((usec) ? 0 : 1); 1876 bxe_storm_memset_hc_disable(sc, port, fw_sb_id, sb_index, disable); 1877 } 1878 1879 void 1880 elink_cb_udelay(struct bxe_softc *sc, 1881 uint32_t usecs) 1882 { 1883 DELAY(usecs); 1884 } 1885 1886 uint32_t 1887 elink_cb_reg_read(struct bxe_softc *sc, 1888 uint32_t reg_addr) 1889 { 1890 return (REG_RD(sc, reg_addr)); 1891 } 1892 1893 void 1894 elink_cb_reg_write(struct bxe_softc *sc, 1895 uint32_t reg_addr, 1896 uint32_t val) 1897 { 1898 REG_WR(sc, reg_addr, val); 1899 } 1900 1901 void 1902 elink_cb_reg_wb_write(struct bxe_softc *sc, 1903 uint32_t offset, 1904 uint32_t *wb_write, 1905 uint16_t len) 1906 { 1907 REG_WR_DMAE(sc, offset, wb_write, len); 1908 } 1909 1910 void 1911 elink_cb_reg_wb_read(struct bxe_softc *sc, 1912 uint32_t offset, 1913 uint32_t *wb_write, 1914 uint16_t len) 1915 { 1916 REG_RD_DMAE(sc, offset, wb_write, len); 1917 } 1918 1919 uint8_t 1920 elink_cb_path_id(struct bxe_softc *sc) 1921 { 1922 return (SC_PATH(sc)); 1923 } 1924 1925 void 1926 elink_cb_event_log(struct bxe_softc *sc, 1927 const elink_log_id_t elink_log_id, 1928 ...) 1929 { 1930 /* XXX */ 1931 #if 0 1932 //va_list ap; 1933 va_start(ap, elink_log_id); 1934 _XXX_(sc, lm_log_id, ap); 1935 va_end(ap); 1936 #endif 1937 BLOGI(sc, "ELINK EVENT LOG (%d)\n", elink_log_id); 1938 } 1939 1940 static int 1941 bxe_set_spio(struct bxe_softc *sc, 1942 int spio, 1943 uint32_t mode) 1944 { 1945 uint32_t spio_reg; 1946 1947 /* Only 2 SPIOs are configurable */ 1948 if ((spio != MISC_SPIO_SPIO4) && (spio != MISC_SPIO_SPIO5)) { 1949 BLOGE(sc, "Invalid SPIO 0x%x\n", spio); 1950 return (-1); 1951 } 1952 1953 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_SPIO); 1954 1955 /* read SPIO and mask except the float bits */ 1956 spio_reg = (REG_RD(sc, MISC_REG_SPIO) & MISC_SPIO_FLOAT); 1957 1958 switch (mode) { 1959 case MISC_SPIO_OUTPUT_LOW: 1960 BLOGD(sc, DBG_LOAD, "Set SPIO 0x%x -> output low\n", spio); 1961 /* clear FLOAT and set CLR */ 1962 spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS); 1963 spio_reg |= (spio << MISC_SPIO_CLR_POS); 1964 break; 1965 1966 case MISC_SPIO_OUTPUT_HIGH: 1967 BLOGD(sc, DBG_LOAD, "Set SPIO 0x%x -> output high\n", spio); 1968 /* clear FLOAT and set SET */ 1969 spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS); 1970 spio_reg |= (spio << MISC_SPIO_SET_POS); 1971 break; 1972 1973 case MISC_SPIO_INPUT_HI_Z: 1974 BLOGD(sc, DBG_LOAD, "Set SPIO 0x%x -> input\n", spio); 1975 /* set FLOAT */ 1976 spio_reg |= (spio << MISC_SPIO_FLOAT_POS); 1977 break; 1978 1979 default: 1980 break; 1981 } 1982 1983 REG_WR(sc, MISC_REG_SPIO, spio_reg); 1984 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_SPIO); 1985 1986 return (0); 1987 } 1988 1989 static int 1990 bxe_gpio_read(struct bxe_softc *sc, 1991 int gpio_num, 1992 uint8_t port) 1993 { 1994 /* The GPIO should be swapped if swap register is set and active */ 1995 int gpio_port = ((REG_RD(sc, NIG_REG_PORT_SWAP) && 1996 REG_RD(sc, NIG_REG_STRAP_OVERRIDE)) ^ port); 1997 int gpio_shift = (gpio_num + 1998 (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0)); 1999 uint32_t gpio_mask = (1 << gpio_shift); 2000 uint32_t gpio_reg; 2001 2002 if (gpio_num > MISC_REGISTERS_GPIO_3) { 2003 BLOGE(sc, "Invalid GPIO %d\n", gpio_num); 2004 return (-1); 2005 } 2006 2007 /* read GPIO value */ 2008 gpio_reg = REG_RD(sc, MISC_REG_GPIO); 2009 2010 /* get the requested pin value */ 2011 return ((gpio_reg & gpio_mask) == gpio_mask) ? 1 : 0; 2012 } 2013 2014 static int 2015 bxe_gpio_write(struct bxe_softc *sc, 2016 int gpio_num, 2017 uint32_t mode, 2018 uint8_t port) 2019 { 2020 /* The GPIO should be swapped if swap register is set and active */ 2021 int gpio_port = ((REG_RD(sc, NIG_REG_PORT_SWAP) && 2022 REG_RD(sc, NIG_REG_STRAP_OVERRIDE)) ^ port); 2023 int gpio_shift = (gpio_num + 2024 (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0)); 2025 uint32_t gpio_mask = (1 << gpio_shift); 2026 uint32_t gpio_reg; 2027 2028 if (gpio_num > MISC_REGISTERS_GPIO_3) { 2029 BLOGE(sc, "Invalid GPIO %d\n", gpio_num); 2030 return (-1); 2031 } 2032 2033 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_GPIO); 2034 2035 /* read GPIO and mask except the float bits */ 2036 gpio_reg = (REG_RD(sc, MISC_REG_GPIO) & MISC_REGISTERS_GPIO_FLOAT); 2037 2038 switch (mode) { 2039 case MISC_REGISTERS_GPIO_OUTPUT_LOW: 2040 BLOGD(sc, DBG_PHY, 2041 "Set GPIO %d (shift %d) -> output low\n", 2042 gpio_num, gpio_shift); 2043 /* clear FLOAT and set CLR */ 2044 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS); 2045 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_CLR_POS); 2046 break; 2047 2048 case MISC_REGISTERS_GPIO_OUTPUT_HIGH: 2049 BLOGD(sc, DBG_PHY, 2050 "Set GPIO %d (shift %d) -> output high\n", 2051 gpio_num, gpio_shift); 2052 /* clear FLOAT and set SET */ 2053 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS); 2054 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_SET_POS); 2055 break; 2056 2057 case MISC_REGISTERS_GPIO_INPUT_HI_Z: 2058 BLOGD(sc, DBG_PHY, 2059 "Set GPIO %d (shift %d) -> input\n", 2060 gpio_num, gpio_shift); 2061 /* set FLOAT */ 2062 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS); 2063 break; 2064 2065 default: 2066 break; 2067 } 2068 2069 REG_WR(sc, MISC_REG_GPIO, gpio_reg); 2070 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_GPIO); 2071 2072 return (0); 2073 } 2074 2075 static int 2076 bxe_gpio_mult_write(struct bxe_softc *sc, 2077 uint8_t pins, 2078 uint32_t mode) 2079 { 2080 uint32_t gpio_reg; 2081 2082 /* any port swapping should be handled by caller */ 2083 2084 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_GPIO); 2085 2086 /* read GPIO and mask except the float bits */ 2087 gpio_reg = REG_RD(sc, MISC_REG_GPIO); 2088 gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_FLOAT_POS); 2089 gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_CLR_POS); 2090 gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_SET_POS); 2091 2092 switch (mode) { 2093 case MISC_REGISTERS_GPIO_OUTPUT_LOW: 2094 BLOGD(sc, DBG_PHY, "Set GPIO 0x%x -> output low\n", pins); 2095 /* set CLR */ 2096 gpio_reg |= (pins << MISC_REGISTERS_GPIO_CLR_POS); 2097 break; 2098 2099 case MISC_REGISTERS_GPIO_OUTPUT_HIGH: 2100 BLOGD(sc, DBG_PHY, "Set GPIO 0x%x -> output high\n", pins); 2101 /* set SET */ 2102 gpio_reg |= (pins << MISC_REGISTERS_GPIO_SET_POS); 2103 break; 2104 2105 case MISC_REGISTERS_GPIO_INPUT_HI_Z: 2106 BLOGD(sc, DBG_PHY, "Set GPIO 0x%x -> input\n", pins); 2107 /* set FLOAT */ 2108 gpio_reg |= (pins << MISC_REGISTERS_GPIO_FLOAT_POS); 2109 break; 2110 2111 default: 2112 BLOGE(sc, "Invalid GPIO mode assignment %d\n", mode); 2113 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_GPIO); 2114 return (-1); 2115 } 2116 2117 REG_WR(sc, MISC_REG_GPIO, gpio_reg); 2118 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_GPIO); 2119 2120 return (0); 2121 } 2122 2123 static int 2124 bxe_gpio_int_write(struct bxe_softc *sc, 2125 int gpio_num, 2126 uint32_t mode, 2127 uint8_t port) 2128 { 2129 /* The GPIO should be swapped if swap register is set and active */ 2130 int gpio_port = ((REG_RD(sc, NIG_REG_PORT_SWAP) && 2131 REG_RD(sc, NIG_REG_STRAP_OVERRIDE)) ^ port); 2132 int gpio_shift = (gpio_num + 2133 (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0)); 2134 uint32_t gpio_mask = (1 << gpio_shift); 2135 uint32_t gpio_reg; 2136 2137 if (gpio_num > MISC_REGISTERS_GPIO_3) { 2138 BLOGE(sc, "Invalid GPIO %d\n", gpio_num); 2139 return (-1); 2140 } 2141 2142 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_GPIO); 2143 2144 /* read GPIO int */ 2145 gpio_reg = REG_RD(sc, MISC_REG_GPIO_INT); 2146 2147 switch (mode) { 2148 case MISC_REGISTERS_GPIO_INT_OUTPUT_CLR: 2149 BLOGD(sc, DBG_PHY, 2150 "Clear GPIO INT %d (shift %d) -> output low\n", 2151 gpio_num, gpio_shift); 2152 /* clear SET and set CLR */ 2153 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS); 2154 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS); 2155 break; 2156 2157 case MISC_REGISTERS_GPIO_INT_OUTPUT_SET: 2158 BLOGD(sc, DBG_PHY, 2159 "Set GPIO INT %d (shift %d) -> output high\n", 2160 gpio_num, gpio_shift); 2161 /* clear CLR and set SET */ 2162 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS); 2163 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS); 2164 break; 2165 2166 default: 2167 break; 2168 } 2169 2170 REG_WR(sc, MISC_REG_GPIO_INT, gpio_reg); 2171 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_GPIO); 2172 2173 return (0); 2174 } 2175 2176 uint32_t 2177 elink_cb_gpio_read(struct bxe_softc *sc, 2178 uint16_t gpio_num, 2179 uint8_t port) 2180 { 2181 return (bxe_gpio_read(sc, gpio_num, port)); 2182 } 2183 2184 uint8_t 2185 elink_cb_gpio_write(struct bxe_softc *sc, 2186 uint16_t gpio_num, 2187 uint8_t mode, /* 0=low 1=high */ 2188 uint8_t port) 2189 { 2190 return (bxe_gpio_write(sc, gpio_num, mode, port)); 2191 } 2192 2193 uint8_t 2194 elink_cb_gpio_mult_write(struct bxe_softc *sc, 2195 uint8_t pins, 2196 uint8_t mode) /* 0=low 1=high */ 2197 { 2198 return (bxe_gpio_mult_write(sc, pins, mode)); 2199 } 2200 2201 uint8_t 2202 elink_cb_gpio_int_write(struct bxe_softc *sc, 2203 uint16_t gpio_num, 2204 uint8_t mode, /* 0=low 1=high */ 2205 uint8_t port) 2206 { 2207 return (bxe_gpio_int_write(sc, gpio_num, mode, port)); 2208 } 2209 2210 void 2211 elink_cb_notify_link_changed(struct bxe_softc *sc) 2212 { 2213 REG_WR(sc, (MISC_REG_AEU_GENERAL_ATTN_12 + 2214 (SC_FUNC(sc) * sizeof(uint32_t))), 1); 2215 } 2216 2217 /* send the MCP a request, block until there is a reply */ 2218 uint32_t 2219 elink_cb_fw_command(struct bxe_softc *sc, 2220 uint32_t command, 2221 uint32_t param) 2222 { 2223 int mb_idx = SC_FW_MB_IDX(sc); 2224 uint32_t seq; 2225 uint32_t rc = 0; 2226 uint32_t cnt = 1; 2227 uint8_t delay = CHIP_REV_IS_SLOW(sc) ? 100 : 10; 2228 2229 BXE_FWMB_LOCK(sc); 2230 2231 seq = ++sc->fw_seq; 2232 SHMEM_WR(sc, func_mb[mb_idx].drv_mb_param, param); 2233 SHMEM_WR(sc, func_mb[mb_idx].drv_mb_header, (command | seq)); 2234 2235 BLOGD(sc, DBG_PHY, 2236 "wrote command 0x%08x to FW MB param 0x%08x\n", 2237 (command | seq), param); 2238 2239 /* Let the FW do it's magic. GIve it up to 5 seconds... */ 2240 do { 2241 DELAY(delay * 1000); 2242 rc = SHMEM_RD(sc, func_mb[mb_idx].fw_mb_header); 2243 } while ((seq != (rc & FW_MSG_SEQ_NUMBER_MASK)) && (cnt++ < 500)); 2244 2245 BLOGD(sc, DBG_PHY, 2246 "[after %d ms] read 0x%x seq 0x%x from FW MB\n", 2247 cnt*delay, rc, seq); 2248 2249 /* is this a reply to our command? */ 2250 if (seq == (rc & FW_MSG_SEQ_NUMBER_MASK)) { 2251 rc &= FW_MSG_CODE_MASK; 2252 } else { 2253 /* Ruh-roh! */ 2254 BLOGE(sc, "FW failed to respond!\n"); 2255 // XXX bxe_fw_dump(sc); 2256 rc = 0; 2257 } 2258 2259 BXE_FWMB_UNLOCK(sc); 2260 return (rc); 2261 } 2262 2263 static uint32_t 2264 bxe_fw_command(struct bxe_softc *sc, 2265 uint32_t command, 2266 uint32_t param) 2267 { 2268 return (elink_cb_fw_command(sc, command, param)); 2269 } 2270 2271 static void 2272 __storm_memset_dma_mapping(struct bxe_softc *sc, 2273 uint32_t addr, 2274 bus_addr_t mapping) 2275 { 2276 REG_WR(sc, addr, U64_LO(mapping)); 2277 REG_WR(sc, (addr + 4), U64_HI(mapping)); 2278 } 2279 2280 static void 2281 storm_memset_spq_addr(struct bxe_softc *sc, 2282 bus_addr_t mapping, 2283 uint16_t abs_fid) 2284 { 2285 uint32_t addr = (XSEM_REG_FAST_MEMORY + 2286 XSTORM_SPQ_PAGE_BASE_OFFSET(abs_fid)); 2287 __storm_memset_dma_mapping(sc, addr, mapping); 2288 } 2289 2290 static void 2291 storm_memset_vf_to_pf(struct bxe_softc *sc, 2292 uint16_t abs_fid, 2293 uint16_t pf_id) 2294 { 2295 REG_WR8(sc, (BAR_XSTRORM_INTMEM + XSTORM_VF_TO_PF_OFFSET(abs_fid)), pf_id); 2296 REG_WR8(sc, (BAR_CSTRORM_INTMEM + CSTORM_VF_TO_PF_OFFSET(abs_fid)), pf_id); 2297 REG_WR8(sc, (BAR_TSTRORM_INTMEM + TSTORM_VF_TO_PF_OFFSET(abs_fid)), pf_id); 2298 REG_WR8(sc, (BAR_USTRORM_INTMEM + USTORM_VF_TO_PF_OFFSET(abs_fid)), pf_id); 2299 } 2300 2301 static void 2302 storm_memset_func_en(struct bxe_softc *sc, 2303 uint16_t abs_fid, 2304 uint8_t enable) 2305 { 2306 REG_WR8(sc, (BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(abs_fid)), enable); 2307 REG_WR8(sc, (BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(abs_fid)), enable); 2308 REG_WR8(sc, (BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(abs_fid)), enable); 2309 REG_WR8(sc, (BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(abs_fid)), enable); 2310 } 2311 2312 static void 2313 storm_memset_eq_data(struct bxe_softc *sc, 2314 struct event_ring_data *eq_data, 2315 uint16_t pfid) 2316 { 2317 uint32_t addr; 2318 size_t size; 2319 2320 addr = (BAR_CSTRORM_INTMEM + CSTORM_EVENT_RING_DATA_OFFSET(pfid)); 2321 size = sizeof(struct event_ring_data); 2322 ecore_storm_memset_struct(sc, addr, size, (uint32_t *)eq_data); 2323 } 2324 2325 static void 2326 storm_memset_eq_prod(struct bxe_softc *sc, 2327 uint16_t eq_prod, 2328 uint16_t pfid) 2329 { 2330 uint32_t addr = (BAR_CSTRORM_INTMEM + 2331 CSTORM_EVENT_RING_PROD_OFFSET(pfid)); 2332 REG_WR16(sc, addr, eq_prod); 2333 } 2334 2335 /* 2336 * Post a slowpath command. 2337 * 2338 * A slowpath command is used to propogate a configuration change through 2339 * the controller in a controlled manner, allowing each STORM processor and 2340 * other H/W blocks to phase in the change. The commands sent on the 2341 * slowpath are referred to as ramrods. Depending on the ramrod used the 2342 * completion of the ramrod will occur in different ways. Here's a 2343 * breakdown of ramrods and how they complete: 2344 * 2345 * RAMROD_CMD_ID_ETH_PORT_SETUP 2346 * Used to setup the leading connection on a port. Completes on the 2347 * Receive Completion Queue (RCQ) of that port (typically fp[0]). 2348 * 2349 * RAMROD_CMD_ID_ETH_CLIENT_SETUP 2350 * Used to setup an additional connection on a port. Completes on the 2351 * RCQ of the multi-queue/RSS connection being initialized. 2352 * 2353 * RAMROD_CMD_ID_ETH_STAT_QUERY 2354 * Used to force the storm processors to update the statistics database 2355 * in host memory. This ramrod is send on the leading connection CID and 2356 * completes as an index increment of the CSTORM on the default status 2357 * block. 2358 * 2359 * RAMROD_CMD_ID_ETH_UPDATE 2360 * Used to update the state of the leading connection, usually to udpate 2361 * the RSS indirection table. Completes on the RCQ of the leading 2362 * connection. (Not currently used under FreeBSD until OS support becomes 2363 * available.) 2364 * 2365 * RAMROD_CMD_ID_ETH_HALT 2366 * Used when tearing down a connection prior to driver unload. Completes 2367 * on the RCQ of the multi-queue/RSS connection being torn down. Don't 2368 * use this on the leading connection. 2369 * 2370 * RAMROD_CMD_ID_ETH_SET_MAC 2371 * Sets the Unicast/Broadcast/Multicast used by the port. Completes on 2372 * the RCQ of the leading connection. 2373 * 2374 * RAMROD_CMD_ID_ETH_CFC_DEL 2375 * Used when tearing down a conneciton prior to driver unload. Completes 2376 * on the RCQ of the leading connection (since the current connection 2377 * has been completely removed from controller memory). 2378 * 2379 * RAMROD_CMD_ID_ETH_PORT_DEL 2380 * Used to tear down the leading connection prior to driver unload, 2381 * typically fp[0]. Completes as an index increment of the CSTORM on the 2382 * default status block. 2383 * 2384 * RAMROD_CMD_ID_ETH_FORWARD_SETUP 2385 * Used for connection offload. Completes on the RCQ of the multi-queue 2386 * RSS connection that is being offloaded. (Not currently used under 2387 * FreeBSD.) 2388 * 2389 * There can only be one command pending per function. 2390 * 2391 * Returns: 2392 * 0 = Success, !0 = Failure. 2393 */ 2394 2395 /* must be called under the spq lock */ 2396 static inline 2397 struct eth_spe *bxe_sp_get_next(struct bxe_softc *sc) 2398 { 2399 struct eth_spe *next_spe = sc->spq_prod_bd; 2400 2401 if (sc->spq_prod_bd == sc->spq_last_bd) { 2402 /* wrap back to the first eth_spq */ 2403 sc->spq_prod_bd = sc->spq; 2404 sc->spq_prod_idx = 0; 2405 } else { 2406 sc->spq_prod_bd++; 2407 sc->spq_prod_idx++; 2408 } 2409 2410 return (next_spe); 2411 } 2412 2413 /* must be called under the spq lock */ 2414 static inline 2415 void bxe_sp_prod_update(struct bxe_softc *sc) 2416 { 2417 int func = SC_FUNC(sc); 2418 2419 /* 2420 * Make sure that BD data is updated before writing the producer. 2421 * BD data is written to the memory, the producer is read from the 2422 * memory, thus we need a full memory barrier to ensure the ordering. 2423 */ 2424 mb(); 2425 2426 REG_WR16(sc, (BAR_XSTRORM_INTMEM + XSTORM_SPQ_PROD_OFFSET(func)), 2427 sc->spq_prod_idx); 2428 2429 bus_space_barrier(sc->bar[BAR0].tag, sc->bar[BAR0].handle, 0, 0, 2430 BUS_SPACE_BARRIER_WRITE); 2431 } 2432 2433 /** 2434 * bxe_is_contextless_ramrod - check if the current command ends on EQ 2435 * 2436 * @cmd: command to check 2437 * @cmd_type: command type 2438 */ 2439 static inline 2440 int bxe_is_contextless_ramrod(int cmd, 2441 int cmd_type) 2442 { 2443 if ((cmd_type == NONE_CONNECTION_TYPE) || 2444 (cmd == RAMROD_CMD_ID_ETH_FORWARD_SETUP) || 2445 (cmd == RAMROD_CMD_ID_ETH_CLASSIFICATION_RULES) || 2446 (cmd == RAMROD_CMD_ID_ETH_FILTER_RULES) || 2447 (cmd == RAMROD_CMD_ID_ETH_MULTICAST_RULES) || 2448 (cmd == RAMROD_CMD_ID_ETH_SET_MAC) || 2449 (cmd == RAMROD_CMD_ID_ETH_RSS_UPDATE)) { 2450 return (TRUE); 2451 } else { 2452 return (FALSE); 2453 } 2454 } 2455 2456 /** 2457 * bxe_sp_post - place a single command on an SP ring 2458 * 2459 * @sc: driver handle 2460 * @command: command to place (e.g. SETUP, FILTER_RULES, etc.) 2461 * @cid: SW CID the command is related to 2462 * @data_hi: command private data address (high 32 bits) 2463 * @data_lo: command private data address (low 32 bits) 2464 * @cmd_type: command type (e.g. NONE, ETH) 2465 * 2466 * SP data is handled as if it's always an address pair, thus data fields are 2467 * not swapped to little endian in upper functions. Instead this function swaps 2468 * data as if it's two uint32 fields. 2469 */ 2470 int 2471 bxe_sp_post(struct bxe_softc *sc, 2472 int command, 2473 int cid, 2474 uint32_t data_hi, 2475 uint32_t data_lo, 2476 int cmd_type) 2477 { 2478 struct eth_spe *spe; 2479 uint16_t type; 2480 int common; 2481 2482 common = bxe_is_contextless_ramrod(command, cmd_type); 2483 2484 BXE_SP_LOCK(sc); 2485 2486 if (common) { 2487 if (!atomic_load_acq_long(&sc->eq_spq_left)) { 2488 BLOGE(sc, "EQ ring is full!\n"); 2489 BXE_SP_UNLOCK(sc); 2490 return (-1); 2491 } 2492 } else { 2493 if (!atomic_load_acq_long(&sc->cq_spq_left)) { 2494 BLOGE(sc, "SPQ ring is full!\n"); 2495 BXE_SP_UNLOCK(sc); 2496 return (-1); 2497 } 2498 } 2499 2500 spe = bxe_sp_get_next(sc); 2501 2502 /* CID needs port number to be encoded int it */ 2503 spe->hdr.conn_and_cmd_data = 2504 htole32((command << SPE_HDR_CMD_ID_SHIFT) | HW_CID(sc, cid)); 2505 2506 type = (cmd_type << SPE_HDR_CONN_TYPE_SHIFT) & SPE_HDR_CONN_TYPE; 2507 2508 /* TBD: Check if it works for VFs */ 2509 type |= ((SC_FUNC(sc) << SPE_HDR_FUNCTION_ID_SHIFT) & 2510 SPE_HDR_FUNCTION_ID); 2511 2512 spe->hdr.type = htole16(type); 2513 2514 spe->data.update_data_addr.hi = htole32(data_hi); 2515 spe->data.update_data_addr.lo = htole32(data_lo); 2516 2517 /* 2518 * It's ok if the actual decrement is issued towards the memory 2519 * somewhere between the lock and unlock. Thus no more explict 2520 * memory barrier is needed. 2521 */ 2522 if (common) { 2523 atomic_subtract_acq_long(&sc->eq_spq_left, 1); 2524 } else { 2525 atomic_subtract_acq_long(&sc->cq_spq_left, 1); 2526 } 2527 2528 BLOGD(sc, DBG_SP, "SPQE -> %#jx\n", (uintmax_t)sc->spq_dma.paddr); 2529 BLOGD(sc, DBG_SP, "FUNC_RDATA -> %p / %#jx\n", 2530 BXE_SP(sc, func_rdata), (uintmax_t)BXE_SP_MAPPING(sc, func_rdata)); 2531 BLOGD(sc, DBG_SP, 2532 "SPQE[%x] (%x:%x) (cmd, common?) (%d,%d) hw_cid %x data (%x:%x) type(0x%x) left (CQ, EQ) (%lx,%lx)\n", 2533 sc->spq_prod_idx, 2534 (uint32_t)U64_HI(sc->spq_dma.paddr), 2535 (uint32_t)(U64_LO(sc->spq_dma.paddr) + (uint8_t *)sc->spq_prod_bd - (uint8_t *)sc->spq), 2536 command, 2537 common, 2538 HW_CID(sc, cid), 2539 data_hi, 2540 data_lo, 2541 type, 2542 atomic_load_acq_long(&sc->cq_spq_left), 2543 atomic_load_acq_long(&sc->eq_spq_left)); 2544 2545 bxe_sp_prod_update(sc); 2546 2547 BXE_SP_UNLOCK(sc); 2548 return (0); 2549 } 2550 2551 /** 2552 * bxe_debug_print_ind_table - prints the indirection table configuration. 2553 * 2554 * @sc: driver hanlde 2555 * @p: pointer to rss configuration 2556 */ 2557 #if 0 2558 static void 2559 bxe_debug_print_ind_table(struct bxe_softc *sc, 2560 struct ecore_config_rss_params *p) 2561 { 2562 int i; 2563 2564 BLOGD(sc, DBG_LOAD, "Setting indirection table to:\n"); 2565 BLOGD(sc, DBG_LOAD, " 0x0000: "); 2566 for (i = 0; i < T_ETH_INDIRECTION_TABLE_SIZE; i++) { 2567 BLOGD(sc, DBG_LOAD, "0x%02x ", p->ind_table[i]); 2568 2569 /* Print 4 bytes in a line */ 2570 if ((i + 1 < T_ETH_INDIRECTION_TABLE_SIZE) && 2571 (((i + 1) & 0x3) == 0)) { 2572 BLOGD(sc, DBG_LOAD, "\n"); 2573 BLOGD(sc, DBG_LOAD, "0x%04x: ", i + 1); 2574 } 2575 } 2576 2577 BLOGD(sc, DBG_LOAD, "\n"); 2578 } 2579 #endif 2580 2581 /* 2582 * FreeBSD Device probe function. 2583 * 2584 * Compares the device found to the driver's list of supported devices and 2585 * reports back to the bsd loader whether this is the right driver for the device. 2586 * This is the driver entry function called from the "kldload" command. 2587 * 2588 * Returns: 2589 * BUS_PROBE_DEFAULT on success, positive value on failure. 2590 */ 2591 static int 2592 bxe_probe(device_t dev) 2593 { 2594 struct bxe_softc *sc; 2595 struct bxe_device_type *t; 2596 char *descbuf; 2597 uint16_t did, sdid, svid, vid; 2598 2599 /* Find our device structure */ 2600 sc = device_get_softc(dev); 2601 sc->dev = dev; 2602 t = bxe_devs; 2603 2604 /* Get the data for the device to be probed. */ 2605 vid = pci_get_vendor(dev); 2606 did = pci_get_device(dev); 2607 svid = pci_get_subvendor(dev); 2608 sdid = pci_get_subdevice(dev); 2609 2610 BLOGD(sc, DBG_LOAD, 2611 "%s(); VID = 0x%04X, DID = 0x%04X, SVID = 0x%04X, " 2612 "SDID = 0x%04X\n", __FUNCTION__, vid, did, svid, sdid); 2613 2614 /* Look through the list of known devices for a match. */ 2615 while (t->bxe_name != NULL) { 2616 if ((vid == t->bxe_vid) && (did == t->bxe_did) && 2617 ((svid == t->bxe_svid) || (t->bxe_svid == PCI_ANY_ID)) && 2618 ((sdid == t->bxe_sdid) || (t->bxe_sdid == PCI_ANY_ID))) { 2619 descbuf = malloc(BXE_DEVDESC_MAX, M_TEMP, M_NOWAIT); 2620 if (descbuf == NULL) 2621 return (ENOMEM); 2622 2623 /* Print out the device identity. */ 2624 snprintf(descbuf, BXE_DEVDESC_MAX, 2625 "%s (%c%d) BXE v:%s\n", t->bxe_name, 2626 (((pci_read_config(dev, PCIR_REVID, 4) & 2627 0xf0) >> 4) + 'A'), 2628 (pci_read_config(dev, PCIR_REVID, 4) & 0xf), 2629 BXE_DRIVER_VERSION); 2630 2631 device_set_desc_copy(dev, descbuf); 2632 free(descbuf, M_TEMP); 2633 return (BUS_PROBE_DEFAULT); 2634 } 2635 t++; 2636 } 2637 2638 return (ENXIO); 2639 } 2640 2641 static void 2642 bxe_init_mutexes(struct bxe_softc *sc) 2643 { 2644 #ifdef BXE_CORE_LOCK_SX 2645 snprintf(sc->core_sx_name, sizeof(sc->core_sx_name), 2646 "bxe%d_core_lock", sc->unit); 2647 sx_init(&sc->core_sx, sc->core_sx_name); 2648 #else 2649 snprintf(sc->core_mtx_name, sizeof(sc->core_mtx_name), 2650 "bxe%d_core_lock", sc->unit); 2651 mtx_init(&sc->core_mtx, sc->core_mtx_name, NULL, MTX_DEF); 2652 #endif 2653 2654 snprintf(sc->sp_mtx_name, sizeof(sc->sp_mtx_name), 2655 "bxe%d_sp_lock", sc->unit); 2656 mtx_init(&sc->sp_mtx, sc->sp_mtx_name, NULL, MTX_DEF); 2657 2658 snprintf(sc->dmae_mtx_name, sizeof(sc->dmae_mtx_name), 2659 "bxe%d_dmae_lock", sc->unit); 2660 mtx_init(&sc->dmae_mtx, sc->dmae_mtx_name, NULL, MTX_DEF); 2661 2662 snprintf(sc->port.phy_mtx_name, sizeof(sc->port.phy_mtx_name), 2663 "bxe%d_phy_lock", sc->unit); 2664 mtx_init(&sc->port.phy_mtx, sc->port.phy_mtx_name, NULL, MTX_DEF); 2665 2666 snprintf(sc->fwmb_mtx_name, sizeof(sc->fwmb_mtx_name), 2667 "bxe%d_fwmb_lock", sc->unit); 2668 mtx_init(&sc->fwmb_mtx, sc->fwmb_mtx_name, NULL, MTX_DEF); 2669 2670 snprintf(sc->print_mtx_name, sizeof(sc->print_mtx_name), 2671 "bxe%d_print_lock", sc->unit); 2672 mtx_init(&(sc->print_mtx), sc->print_mtx_name, NULL, MTX_DEF); 2673 2674 snprintf(sc->stats_mtx_name, sizeof(sc->stats_mtx_name), 2675 "bxe%d_stats_lock", sc->unit); 2676 mtx_init(&(sc->stats_mtx), sc->stats_mtx_name, NULL, MTX_DEF); 2677 2678 snprintf(sc->mcast_mtx_name, sizeof(sc->mcast_mtx_name), 2679 "bxe%d_mcast_lock", sc->unit); 2680 mtx_init(&(sc->mcast_mtx), sc->mcast_mtx_name, NULL, MTX_DEF); 2681 } 2682 2683 static void 2684 bxe_release_mutexes(struct bxe_softc *sc) 2685 { 2686 #ifdef BXE_CORE_LOCK_SX 2687 sx_destroy(&sc->core_sx); 2688 #else 2689 if (mtx_initialized(&sc->core_mtx)) { 2690 mtx_destroy(&sc->core_mtx); 2691 } 2692 #endif 2693 2694 if (mtx_initialized(&sc->sp_mtx)) { 2695 mtx_destroy(&sc->sp_mtx); 2696 } 2697 2698 if (mtx_initialized(&sc->dmae_mtx)) { 2699 mtx_destroy(&sc->dmae_mtx); 2700 } 2701 2702 if (mtx_initialized(&sc->port.phy_mtx)) { 2703 mtx_destroy(&sc->port.phy_mtx); 2704 } 2705 2706 if (mtx_initialized(&sc->fwmb_mtx)) { 2707 mtx_destroy(&sc->fwmb_mtx); 2708 } 2709 2710 if (mtx_initialized(&sc->print_mtx)) { 2711 mtx_destroy(&sc->print_mtx); 2712 } 2713 2714 if (mtx_initialized(&sc->stats_mtx)) { 2715 mtx_destroy(&sc->stats_mtx); 2716 } 2717 2718 if (mtx_initialized(&sc->mcast_mtx)) { 2719 mtx_destroy(&sc->mcast_mtx); 2720 } 2721 } 2722 2723 static void 2724 bxe_tx_disable(struct bxe_softc* sc) 2725 { 2726 if_t ifp = sc->ifp; 2727 2728 /* tell the stack the driver is stopped and TX queue is full */ 2729 if (ifp != NULL) { 2730 if_setdrvflags(ifp, 0); 2731 } 2732 } 2733 2734 static void 2735 bxe_drv_pulse(struct bxe_softc *sc) 2736 { 2737 SHMEM_WR(sc, func_mb[SC_FW_MB_IDX(sc)].drv_pulse_mb, 2738 sc->fw_drv_pulse_wr_seq); 2739 } 2740 2741 static inline uint16_t 2742 bxe_tx_avail(struct bxe_softc *sc, 2743 struct bxe_fastpath *fp) 2744 { 2745 int16_t used; 2746 uint16_t prod; 2747 uint16_t cons; 2748 2749 prod = fp->tx_bd_prod; 2750 cons = fp->tx_bd_cons; 2751 2752 used = SUB_S16(prod, cons); 2753 2754 #if 0 2755 KASSERT((used < 0), ("used tx bds < 0")); 2756 KASSERT((used > sc->tx_ring_size), ("used tx bds > tx_ring_size")); 2757 KASSERT(((sc->tx_ring_size - used) > MAX_TX_AVAIL), 2758 ("invalid number of tx bds used")); 2759 #endif 2760 2761 return (int16_t)(sc->tx_ring_size) - used; 2762 } 2763 2764 static inline int 2765 bxe_tx_queue_has_work(struct bxe_fastpath *fp) 2766 { 2767 uint16_t hw_cons; 2768 2769 mb(); /* status block fields can change */ 2770 hw_cons = le16toh(*fp->tx_cons_sb); 2771 return (hw_cons != fp->tx_pkt_cons); 2772 } 2773 2774 static inline uint8_t 2775 bxe_has_tx_work(struct bxe_fastpath *fp) 2776 { 2777 /* expand this for multi-cos if ever supported */ 2778 return (bxe_tx_queue_has_work(fp)) ? TRUE : FALSE; 2779 } 2780 2781 static inline int 2782 bxe_has_rx_work(struct bxe_fastpath *fp) 2783 { 2784 uint16_t rx_cq_cons_sb; 2785 2786 mb(); /* status block fields can change */ 2787 rx_cq_cons_sb = le16toh(*fp->rx_cq_cons_sb); 2788 if ((rx_cq_cons_sb & RCQ_MAX) == RCQ_MAX) 2789 rx_cq_cons_sb++; 2790 return (fp->rx_cq_cons != rx_cq_cons_sb); 2791 } 2792 2793 static void 2794 bxe_sp_event(struct bxe_softc *sc, 2795 struct bxe_fastpath *fp, 2796 union eth_rx_cqe *rr_cqe) 2797 { 2798 int cid = SW_CID(rr_cqe->ramrod_cqe.conn_and_cmd_data); 2799 int command = CQE_CMD(rr_cqe->ramrod_cqe.conn_and_cmd_data); 2800 enum ecore_queue_cmd drv_cmd = ECORE_Q_CMD_MAX; 2801 struct ecore_queue_sp_obj *q_obj = &BXE_SP_OBJ(sc, fp).q_obj; 2802 2803 BLOGD(sc, DBG_SP, "fp=%d cid=%d got ramrod #%d state is %x type is %d\n", 2804 fp->index, cid, command, sc->state, rr_cqe->ramrod_cqe.ramrod_type); 2805 2806 #if 0 2807 /* 2808 * If cid is within VF range, replace the slowpath object with the 2809 * one corresponding to this VF 2810 */ 2811 if ((cid >= BXE_FIRST_VF_CID) && (cid < BXE_FIRST_VF_CID + BXE_VF_CIDS)) { 2812 bxe_iov_set_queue_sp_obj(sc, cid, &q_obj); 2813 } 2814 #endif 2815 2816 switch (command) { 2817 case (RAMROD_CMD_ID_ETH_CLIENT_UPDATE): 2818 BLOGD(sc, DBG_SP, "got UPDATE ramrod. CID %d\n", cid); 2819 drv_cmd = ECORE_Q_CMD_UPDATE; 2820 break; 2821 2822 case (RAMROD_CMD_ID_ETH_CLIENT_SETUP): 2823 BLOGD(sc, DBG_SP, "got MULTI[%d] setup ramrod\n", cid); 2824 drv_cmd = ECORE_Q_CMD_SETUP; 2825 break; 2826 2827 case (RAMROD_CMD_ID_ETH_TX_QUEUE_SETUP): 2828 BLOGD(sc, DBG_SP, "got MULTI[%d] tx-only setup ramrod\n", cid); 2829 drv_cmd = ECORE_Q_CMD_SETUP_TX_ONLY; 2830 break; 2831 2832 case (RAMROD_CMD_ID_ETH_HALT): 2833 BLOGD(sc, DBG_SP, "got MULTI[%d] halt ramrod\n", cid); 2834 drv_cmd = ECORE_Q_CMD_HALT; 2835 break; 2836 2837 case (RAMROD_CMD_ID_ETH_TERMINATE): 2838 BLOGD(sc, DBG_SP, "got MULTI[%d] teminate ramrod\n", cid); 2839 drv_cmd = ECORE_Q_CMD_TERMINATE; 2840 break; 2841 2842 case (RAMROD_CMD_ID_ETH_EMPTY): 2843 BLOGD(sc, DBG_SP, "got MULTI[%d] empty ramrod\n", cid); 2844 drv_cmd = ECORE_Q_CMD_EMPTY; 2845 break; 2846 2847 default: 2848 BLOGD(sc, DBG_SP, "ERROR: unexpected MC reply (%d) on fp[%d]\n", 2849 command, fp->index); 2850 return; 2851 } 2852 2853 if ((drv_cmd != ECORE_Q_CMD_MAX) && 2854 q_obj->complete_cmd(sc, q_obj, drv_cmd)) { 2855 /* 2856 * q_obj->complete_cmd() failure means that this was 2857 * an unexpected completion. 2858 * 2859 * In this case we don't want to increase the sc->spq_left 2860 * because apparently we haven't sent this command the first 2861 * place. 2862 */ 2863 // bxe_panic(sc, ("Unexpected SP completion\n")); 2864 return; 2865 } 2866 2867 #if 0 2868 /* SRIOV: reschedule any 'in_progress' operations */ 2869 bxe_iov_sp_event(sc, cid, TRUE); 2870 #endif 2871 2872 atomic_add_acq_long(&sc->cq_spq_left, 1); 2873 2874 BLOGD(sc, DBG_SP, "sc->cq_spq_left 0x%lx\n", 2875 atomic_load_acq_long(&sc->cq_spq_left)); 2876 2877 #if 0 2878 if ((drv_cmd == ECORE_Q_CMD_UPDATE) && (IS_FCOE_FP(fp)) && 2879 (!!bxe_test_bit(ECORE_AFEX_FCOE_Q_UPDATE_PENDING, &sc->sp_state))) { 2880 /* 2881 * If Queue update ramrod is completed for last Queue in AFEX VIF set 2882 * flow, then ACK MCP at the end. Mark pending ACK to MCP bit to 2883 * prevent case that both bits are cleared. At the end of load/unload 2884 * driver checks that sp_state is cleared and this order prevents 2885 * races. 2886 */ 2887 bxe_set_bit(ECORE_AFEX_PENDING_VIFSET_MCP_ACK, &sc->sp_state); 2888 wmb(); 2889 bxe_clear_bit(ECORE_AFEX_FCOE_Q_UPDATE_PENDING, &sc->sp_state); 2890 2891 /* schedule the sp task as MCP ack is required */ 2892 bxe_schedule_sp_task(sc); 2893 } 2894 #endif 2895 } 2896 2897 /* 2898 * The current mbuf is part of an aggregation. Move the mbuf into the TPA 2899 * aggregation queue, put an empty mbuf back onto the receive chain, and mark 2900 * the current aggregation queue as in-progress. 2901 */ 2902 static void 2903 bxe_tpa_start(struct bxe_softc *sc, 2904 struct bxe_fastpath *fp, 2905 uint16_t queue, 2906 uint16_t cons, 2907 uint16_t prod, 2908 struct eth_fast_path_rx_cqe *cqe) 2909 { 2910 struct bxe_sw_rx_bd tmp_bd; 2911 struct bxe_sw_rx_bd *rx_buf; 2912 struct eth_rx_bd *rx_bd; 2913 int max_agg_queues; 2914 struct bxe_sw_tpa_info *tpa_info = &fp->rx_tpa_info[queue]; 2915 uint16_t index; 2916 2917 BLOGD(sc, DBG_LRO, "fp[%02d].tpa[%02d] TPA START " 2918 "cons=%d prod=%d\n", 2919 fp->index, queue, cons, prod); 2920 2921 max_agg_queues = MAX_AGG_QS(sc); 2922 2923 KASSERT((queue < max_agg_queues), 2924 ("fp[%02d] invalid aggr queue (%d >= %d)!", 2925 fp->index, queue, max_agg_queues)); 2926 2927 KASSERT((tpa_info->state == BXE_TPA_STATE_STOP), 2928 ("fp[%02d].tpa[%02d] starting aggr on queue not stopped!", 2929 fp->index, queue)); 2930 2931 /* copy the existing mbuf and mapping from the TPA pool */ 2932 tmp_bd = tpa_info->bd; 2933 2934 if (tmp_bd.m == NULL) { 2935 BLOGE(sc, "fp[%02d].tpa[%02d] mbuf not allocated!\n", 2936 fp->index, queue); 2937 /* XXX Error handling? */ 2938 return; 2939 } 2940 2941 /* change the TPA queue to the start state */ 2942 tpa_info->state = BXE_TPA_STATE_START; 2943 tpa_info->placement_offset = cqe->placement_offset; 2944 tpa_info->parsing_flags = le16toh(cqe->pars_flags.flags); 2945 tpa_info->vlan_tag = le16toh(cqe->vlan_tag); 2946 tpa_info->len_on_bd = le16toh(cqe->len_on_bd); 2947 2948 fp->rx_tpa_queue_used |= (1 << queue); 2949 2950 /* 2951 * If all the buffer descriptors are filled with mbufs then fill in 2952 * the current consumer index with a new BD. Else if a maximum Rx 2953 * buffer limit is imposed then fill in the next producer index. 2954 */ 2955 index = (sc->max_rx_bufs != RX_BD_USABLE) ? 2956 prod : cons; 2957 2958 /* move the received mbuf and mapping to TPA pool */ 2959 tpa_info->bd = fp->rx_mbuf_chain[cons]; 2960 2961 /* release any existing RX BD mbuf mappings */ 2962 if (cons != index) { 2963 rx_buf = &fp->rx_mbuf_chain[cons]; 2964 2965 if (rx_buf->m_map != NULL) { 2966 bus_dmamap_sync(fp->rx_mbuf_tag, rx_buf->m_map, 2967 BUS_DMASYNC_POSTREAD); 2968 bus_dmamap_unload(fp->rx_mbuf_tag, rx_buf->m_map); 2969 } 2970 2971 /* 2972 * We get here when the maximum number of rx buffers is less than 2973 * RX_BD_USABLE. The mbuf is already saved above so it's OK to NULL 2974 * it out here without concern of a memory leak. 2975 */ 2976 fp->rx_mbuf_chain[cons].m = NULL; 2977 } 2978 2979 /* update the Rx SW BD with the mbuf info from the TPA pool */ 2980 fp->rx_mbuf_chain[index] = tmp_bd; 2981 2982 /* update the Rx BD with the empty mbuf phys address from the TPA pool */ 2983 rx_bd = &fp->rx_chain[index]; 2984 rx_bd->addr_hi = htole32(U64_HI(tpa_info->seg.ds_addr)); 2985 rx_bd->addr_lo = htole32(U64_LO(tpa_info->seg.ds_addr)); 2986 } 2987 2988 /* 2989 * When a TPA aggregation is completed, loop through the individual mbufs 2990 * of the aggregation, combining them into a single mbuf which will be sent 2991 * up the stack. Refill all freed SGEs with mbufs as we go along. 2992 */ 2993 static int 2994 bxe_fill_frag_mbuf(struct bxe_softc *sc, 2995 struct bxe_fastpath *fp, 2996 struct bxe_sw_tpa_info *tpa_info, 2997 uint16_t queue, 2998 uint16_t pages, 2999 struct mbuf *m, 3000 struct eth_end_agg_rx_cqe *cqe, 3001 uint16_t cqe_idx) 3002 { 3003 struct mbuf *m_frag; 3004 uint32_t frag_len, frag_size, i; 3005 uint16_t sge_idx; 3006 int rc = 0; 3007 int j; 3008 3009 frag_size = le16toh(cqe->pkt_len) - tpa_info->len_on_bd; 3010 3011 BLOGD(sc, DBG_LRO, 3012 "fp[%02d].tpa[%02d] TPA fill len_on_bd=%d frag_size=%d pages=%d\n", 3013 fp->index, queue, tpa_info->len_on_bd, frag_size, pages); 3014 3015 /* make sure the aggregated frame is not too big to handle */ 3016 if (pages > 8 * PAGES_PER_SGE) { 3017 BLOGE(sc, "fp[%02d].sge[0x%04x] has too many pages (%d)! " 3018 "pkt_len=%d len_on_bd=%d frag_size=%d\n", 3019 fp->index, cqe_idx, pages, le16toh(cqe->pkt_len), 3020 tpa_info->len_on_bd, frag_size); 3021 bxe_panic(sc, ("sge page count error\n")); 3022 return (EINVAL); 3023 } 3024 3025 /* 3026 * Scan through the scatter gather list pulling individual mbufs into a 3027 * single mbuf for the host stack. 3028 */ 3029 for (i = 0, j = 0; i < pages; i += PAGES_PER_SGE, j++) { 3030 sge_idx = RX_SGE(le16toh(cqe->sgl_or_raw_data.sgl[j])); 3031 3032 /* 3033 * Firmware gives the indices of the SGE as if the ring is an array 3034 * (meaning that the "next" element will consume 2 indices). 3035 */ 3036 frag_len = min(frag_size, (uint32_t)(SGE_PAGES)); 3037 3038 BLOGD(sc, DBG_LRO, "fp[%02d].tpa[%02d] TPA fill i=%d j=%d " 3039 "sge_idx=%d frag_size=%d frag_len=%d\n", 3040 fp->index, queue, i, j, sge_idx, frag_size, frag_len); 3041 3042 m_frag = fp->rx_sge_mbuf_chain[sge_idx].m; 3043 3044 /* allocate a new mbuf for the SGE */ 3045 rc = bxe_alloc_rx_sge_mbuf(fp, sge_idx); 3046 if (rc) { 3047 /* Leave all remaining SGEs in the ring! */ 3048 return (rc); 3049 } 3050 3051 /* update the fragment length */ 3052 m_frag->m_len = frag_len; 3053 3054 /* concatenate the fragment to the head mbuf */ 3055 m_cat(m, m_frag); 3056 fp->eth_q_stats.mbuf_alloc_sge--; 3057 3058 /* update the TPA mbuf size and remaining fragment size */ 3059 m->m_pkthdr.len += frag_len; 3060 frag_size -= frag_len; 3061 } 3062 3063 BLOGD(sc, DBG_LRO, 3064 "fp[%02d].tpa[%02d] TPA fill done frag_size=%d\n", 3065 fp->index, queue, frag_size); 3066 3067 return (rc); 3068 } 3069 3070 static inline void 3071 bxe_clear_sge_mask_next_elems(struct bxe_fastpath *fp) 3072 { 3073 int i, j; 3074 3075 for (i = 1; i <= RX_SGE_NUM_PAGES; i++) { 3076 int idx = RX_SGE_TOTAL_PER_PAGE * i - 1; 3077 3078 for (j = 0; j < 2; j++) { 3079 BIT_VEC64_CLEAR_BIT(fp->sge_mask, idx); 3080 idx--; 3081 } 3082 } 3083 } 3084 3085 static inline void 3086 bxe_init_sge_ring_bit_mask(struct bxe_fastpath *fp) 3087 { 3088 /* set the mask to all 1's, it's faster to compare to 0 than to 0xf's */ 3089 memset(fp->sge_mask, 0xff, sizeof(fp->sge_mask)); 3090 3091 /* 3092 * Clear the two last indices in the page to 1. These are the indices that 3093 * correspond to the "next" element, hence will never be indicated and 3094 * should be removed from the calculations. 3095 */ 3096 bxe_clear_sge_mask_next_elems(fp); 3097 } 3098 3099 static inline void 3100 bxe_update_last_max_sge(struct bxe_fastpath *fp, 3101 uint16_t idx) 3102 { 3103 uint16_t last_max = fp->last_max_sge; 3104 3105 if (SUB_S16(idx, last_max) > 0) { 3106 fp->last_max_sge = idx; 3107 } 3108 } 3109 3110 static inline void 3111 bxe_update_sge_prod(struct bxe_softc *sc, 3112 struct bxe_fastpath *fp, 3113 uint16_t sge_len, 3114 struct eth_end_agg_rx_cqe *cqe) 3115 { 3116 uint16_t last_max, last_elem, first_elem; 3117 uint16_t delta = 0; 3118 uint16_t i; 3119 3120 if (!sge_len) { 3121 return; 3122 } 3123 3124 /* first mark all used pages */ 3125 for (i = 0; i < sge_len; i++) { 3126 BIT_VEC64_CLEAR_BIT(fp->sge_mask, 3127 RX_SGE(le16toh(cqe->sgl_or_raw_data.sgl[i]))); 3128 } 3129 3130 BLOGD(sc, DBG_LRO, 3131 "fp[%02d] fp_cqe->sgl[%d] = %d\n", 3132 fp->index, sge_len - 1, 3133 le16toh(cqe->sgl_or_raw_data.sgl[sge_len - 1])); 3134 3135 /* assume that the last SGE index is the biggest */ 3136 bxe_update_last_max_sge(fp, 3137 le16toh(cqe->sgl_or_raw_data.sgl[sge_len - 1])); 3138 3139 last_max = RX_SGE(fp->last_max_sge); 3140 last_elem = last_max >> BIT_VEC64_ELEM_SHIFT; 3141 first_elem = RX_SGE(fp->rx_sge_prod) >> BIT_VEC64_ELEM_SHIFT; 3142 3143 /* if ring is not full */ 3144 if (last_elem + 1 != first_elem) { 3145 last_elem++; 3146 } 3147 3148 /* now update the prod */ 3149 for (i = first_elem; i != last_elem; i = RX_SGE_NEXT_MASK_ELEM(i)) { 3150 if (__predict_true(fp->sge_mask[i])) { 3151 break; 3152 } 3153 3154 fp->sge_mask[i] = BIT_VEC64_ELEM_ONE_MASK; 3155 delta += BIT_VEC64_ELEM_SZ; 3156 } 3157 3158 if (delta > 0) { 3159 fp->rx_sge_prod += delta; 3160 /* clear page-end entries */ 3161 bxe_clear_sge_mask_next_elems(fp); 3162 } 3163 3164 BLOGD(sc, DBG_LRO, 3165 "fp[%02d] fp->last_max_sge=%d fp->rx_sge_prod=%d\n", 3166 fp->index, fp->last_max_sge, fp->rx_sge_prod); 3167 } 3168 3169 /* 3170 * The aggregation on the current TPA queue has completed. Pull the individual 3171 * mbuf fragments together into a single mbuf, perform all necessary checksum 3172 * calculations, and send the resuting mbuf to the stack. 3173 */ 3174 static void 3175 bxe_tpa_stop(struct bxe_softc *sc, 3176 struct bxe_fastpath *fp, 3177 struct bxe_sw_tpa_info *tpa_info, 3178 uint16_t queue, 3179 uint16_t pages, 3180 struct eth_end_agg_rx_cqe *cqe, 3181 uint16_t cqe_idx) 3182 { 3183 if_t ifp = sc->ifp; 3184 struct mbuf *m; 3185 int rc = 0; 3186 3187 BLOGD(sc, DBG_LRO, 3188 "fp[%02d].tpa[%02d] pad=%d pkt_len=%d pages=%d vlan=%d\n", 3189 fp->index, queue, tpa_info->placement_offset, 3190 le16toh(cqe->pkt_len), pages, tpa_info->vlan_tag); 3191 3192 m = tpa_info->bd.m; 3193 3194 /* allocate a replacement before modifying existing mbuf */ 3195 rc = bxe_alloc_rx_tpa_mbuf(fp, queue); 3196 if (rc) { 3197 /* drop the frame and log an error */ 3198 fp->eth_q_stats.rx_soft_errors++; 3199 goto bxe_tpa_stop_exit; 3200 } 3201 3202 /* we have a replacement, fixup the current mbuf */ 3203 m_adj(m, tpa_info->placement_offset); 3204 m->m_pkthdr.len = m->m_len = tpa_info->len_on_bd; 3205 3206 /* mark the checksums valid (taken care of by the firmware) */ 3207 fp->eth_q_stats.rx_ofld_frames_csum_ip++; 3208 fp->eth_q_stats.rx_ofld_frames_csum_tcp_udp++; 3209 m->m_pkthdr.csum_data = 0xffff; 3210 m->m_pkthdr.csum_flags |= (CSUM_IP_CHECKED | 3211 CSUM_IP_VALID | 3212 CSUM_DATA_VALID | 3213 CSUM_PSEUDO_HDR); 3214 3215 /* aggregate all of the SGEs into a single mbuf */ 3216 rc = bxe_fill_frag_mbuf(sc, fp, tpa_info, queue, pages, m, cqe, cqe_idx); 3217 if (rc) { 3218 /* drop the packet and log an error */ 3219 fp->eth_q_stats.rx_soft_errors++; 3220 m_freem(m); 3221 } else { 3222 if (tpa_info->parsing_flags & PARSING_FLAGS_VLAN) { 3223 m->m_pkthdr.ether_vtag = tpa_info->vlan_tag; 3224 m->m_flags |= M_VLANTAG; 3225 } 3226 3227 /* assign packet to this interface interface */ 3228 if_setrcvif(m, ifp); 3229 3230 #if __FreeBSD_version >= 800000 3231 /* specify what RSS queue was used for this flow */ 3232 m->m_pkthdr.flowid = fp->index; 3233 m->m_flags |= M_FLOWID; 3234 #endif 3235 3236 if_incipackets(ifp, 1); 3237 fp->eth_q_stats.rx_tpa_pkts++; 3238 3239 /* pass the frame to the stack */ 3240 if_input(ifp, m); 3241 } 3242 3243 /* we passed an mbuf up the stack or dropped the frame */ 3244 fp->eth_q_stats.mbuf_alloc_tpa--; 3245 3246 bxe_tpa_stop_exit: 3247 3248 fp->rx_tpa_info[queue].state = BXE_TPA_STATE_STOP; 3249 fp->rx_tpa_queue_used &= ~(1 << queue); 3250 } 3251 3252 static uint8_t 3253 bxe_rxeof(struct bxe_softc *sc, 3254 struct bxe_fastpath *fp) 3255 { 3256 if_t ifp = sc->ifp; 3257 uint16_t bd_cons, bd_prod, bd_prod_fw, comp_ring_cons; 3258 uint16_t hw_cq_cons, sw_cq_cons, sw_cq_prod; 3259 int rx_pkts = 0; 3260 int rc; 3261 3262 BXE_FP_RX_LOCK(fp); 3263 3264 /* CQ "next element" is of the size of the regular element */ 3265 hw_cq_cons = le16toh(*fp->rx_cq_cons_sb); 3266 if ((hw_cq_cons & RCQ_USABLE_PER_PAGE) == RCQ_USABLE_PER_PAGE) { 3267 hw_cq_cons++; 3268 } 3269 3270 bd_cons = fp->rx_bd_cons; 3271 bd_prod = fp->rx_bd_prod; 3272 bd_prod_fw = bd_prod; 3273 sw_cq_cons = fp->rx_cq_cons; 3274 sw_cq_prod = fp->rx_cq_prod; 3275 3276 /* 3277 * Memory barrier necessary as speculative reads of the rx 3278 * buffer can be ahead of the index in the status block 3279 */ 3280 rmb(); 3281 3282 BLOGD(sc, DBG_RX, 3283 "fp[%02d] Rx START hw_cq_cons=%u sw_cq_cons=%u\n", 3284 fp->index, hw_cq_cons, sw_cq_cons); 3285 3286 while (sw_cq_cons != hw_cq_cons) { 3287 struct bxe_sw_rx_bd *rx_buf = NULL; 3288 union eth_rx_cqe *cqe; 3289 struct eth_fast_path_rx_cqe *cqe_fp; 3290 uint8_t cqe_fp_flags; 3291 enum eth_rx_cqe_type cqe_fp_type; 3292 uint16_t len, pad; 3293 struct mbuf *m = NULL; 3294 3295 comp_ring_cons = RCQ(sw_cq_cons); 3296 bd_prod = RX_BD(bd_prod); 3297 bd_cons = RX_BD(bd_cons); 3298 3299 cqe = &fp->rcq_chain[comp_ring_cons]; 3300 cqe_fp = &cqe->fast_path_cqe; 3301 cqe_fp_flags = cqe_fp->type_error_flags; 3302 cqe_fp_type = cqe_fp_flags & ETH_FAST_PATH_RX_CQE_TYPE; 3303 3304 BLOGD(sc, DBG_RX, 3305 "fp[%02d] Rx hw_cq_cons=%d hw_sw_cons=%d " 3306 "BD prod=%d cons=%d CQE type=0x%x err=0x%x " 3307 "status=0x%x rss_hash=0x%x vlan=0x%x len=%u\n", 3308 fp->index, 3309 hw_cq_cons, 3310 sw_cq_cons, 3311 bd_prod, 3312 bd_cons, 3313 CQE_TYPE(cqe_fp_flags), 3314 cqe_fp_flags, 3315 cqe_fp->status_flags, 3316 le32toh(cqe_fp->rss_hash_result), 3317 le16toh(cqe_fp->vlan_tag), 3318 le16toh(cqe_fp->pkt_len_or_gro_seg_len)); 3319 3320 /* is this a slowpath msg? */ 3321 if (__predict_false(CQE_TYPE_SLOW(cqe_fp_type))) { 3322 bxe_sp_event(sc, fp, cqe); 3323 goto next_cqe; 3324 } 3325 3326 rx_buf = &fp->rx_mbuf_chain[bd_cons]; 3327 3328 if (!CQE_TYPE_FAST(cqe_fp_type)) { 3329 struct bxe_sw_tpa_info *tpa_info; 3330 uint16_t frag_size, pages; 3331 uint8_t queue; 3332 3333 #if 0 3334 /* sanity check */ 3335 if (!fp->tpa_enable && 3336 (CQE_TYPE_START(cqe_fp_type) || CQE_TYPE_STOP(cqe_fp_type))) { 3337 BLOGE(sc, "START/STOP packet while !tpa_enable type (0x%x)\n", 3338 CQE_TYPE(cqe_fp_type)); 3339 } 3340 #endif 3341 3342 if (CQE_TYPE_START(cqe_fp_type)) { 3343 bxe_tpa_start(sc, fp, cqe_fp->queue_index, 3344 bd_cons, bd_prod, cqe_fp); 3345 m = NULL; /* packet not ready yet */ 3346 goto next_rx; 3347 } 3348 3349 KASSERT(CQE_TYPE_STOP(cqe_fp_type), 3350 ("CQE type is not STOP! (0x%x)\n", cqe_fp_type)); 3351 3352 queue = cqe->end_agg_cqe.queue_index; 3353 tpa_info = &fp->rx_tpa_info[queue]; 3354 3355 BLOGD(sc, DBG_LRO, "fp[%02d].tpa[%02d] TPA STOP\n", 3356 fp->index, queue); 3357 3358 frag_size = (le16toh(cqe->end_agg_cqe.pkt_len) - 3359 tpa_info->len_on_bd); 3360 pages = SGE_PAGE_ALIGN(frag_size) >> SGE_PAGE_SHIFT; 3361 3362 bxe_tpa_stop(sc, fp, tpa_info, queue, pages, 3363 &cqe->end_agg_cqe, comp_ring_cons); 3364 3365 bxe_update_sge_prod(sc, fp, pages, &cqe->end_agg_cqe); 3366 3367 goto next_cqe; 3368 } 3369 3370 /* non TPA */ 3371 3372 /* is this an error packet? */ 3373 if (__predict_false(cqe_fp_flags & 3374 ETH_FAST_PATH_RX_CQE_PHY_DECODE_ERR_FLG)) { 3375 BLOGE(sc, "flags 0x%x rx packet %u\n", cqe_fp_flags, sw_cq_cons); 3376 fp->eth_q_stats.rx_soft_errors++; 3377 goto next_rx; 3378 } 3379 3380 len = le16toh(cqe_fp->pkt_len_or_gro_seg_len); 3381 pad = cqe_fp->placement_offset; 3382 3383 m = rx_buf->m; 3384 3385 if (__predict_false(m == NULL)) { 3386 BLOGE(sc, "No mbuf in rx chain descriptor %d for fp[%02d]\n", 3387 bd_cons, fp->index); 3388 goto next_rx; 3389 } 3390 3391 /* XXX double copy if packet length under a threshold */ 3392 3393 /* 3394 * If all the buffer descriptors are filled with mbufs then fill in 3395 * the current consumer index with a new BD. Else if a maximum Rx 3396 * buffer limit is imposed then fill in the next producer index. 3397 */ 3398 rc = bxe_alloc_rx_bd_mbuf(fp, bd_cons, 3399 (sc->max_rx_bufs != RX_BD_USABLE) ? 3400 bd_prod : bd_cons); 3401 if (rc != 0) { 3402 BLOGE(sc, "mbuf alloc fail for fp[%02d] rx chain (%d)\n", 3403 fp->index, rc); 3404 fp->eth_q_stats.rx_soft_errors++; 3405 3406 if (sc->max_rx_bufs != RX_BD_USABLE) { 3407 /* copy this consumer index to the producer index */ 3408 memcpy(&fp->rx_mbuf_chain[bd_prod], rx_buf, 3409 sizeof(struct bxe_sw_rx_bd)); 3410 memset(rx_buf, 0, sizeof(struct bxe_sw_rx_bd)); 3411 } 3412 3413 goto next_rx; 3414 } 3415 3416 /* current mbuf was detached from the bd */ 3417 fp->eth_q_stats.mbuf_alloc_rx--; 3418 3419 /* we allocated a replacement mbuf, fixup the current one */ 3420 m_adj(m, pad); 3421 m->m_pkthdr.len = m->m_len = len; 3422 3423 /* assign packet to this interface interface */ 3424 if_setrcvif(m, ifp); 3425 3426 /* assume no hardware checksum has complated */ 3427 m->m_pkthdr.csum_flags = 0; 3428 3429 /* validate checksum if offload enabled */ 3430 if (if_getcapenable(ifp) & IFCAP_RXCSUM) { 3431 /* check for a valid IP frame */ 3432 if (!(cqe->fast_path_cqe.status_flags & 3433 ETH_FAST_PATH_RX_CQE_IP_XSUM_NO_VALIDATION_FLG)) { 3434 m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED; 3435 if (__predict_false(cqe_fp_flags & 3436 ETH_FAST_PATH_RX_CQE_IP_BAD_XSUM_FLG)) { 3437 fp->eth_q_stats.rx_hw_csum_errors++; 3438 } else { 3439 fp->eth_q_stats.rx_ofld_frames_csum_ip++; 3440 m->m_pkthdr.csum_flags |= CSUM_IP_VALID; 3441 } 3442 } 3443 3444 /* check for a valid TCP/UDP frame */ 3445 if (!(cqe->fast_path_cqe.status_flags & 3446 ETH_FAST_PATH_RX_CQE_L4_XSUM_NO_VALIDATION_FLG)) { 3447 if (__predict_false(cqe_fp_flags & 3448 ETH_FAST_PATH_RX_CQE_L4_BAD_XSUM_FLG)) { 3449 fp->eth_q_stats.rx_hw_csum_errors++; 3450 } else { 3451 fp->eth_q_stats.rx_ofld_frames_csum_tcp_udp++; 3452 m->m_pkthdr.csum_data = 0xFFFF; 3453 m->m_pkthdr.csum_flags |= (CSUM_DATA_VALID | 3454 CSUM_PSEUDO_HDR); 3455 } 3456 } 3457 } 3458 3459 /* if there is a VLAN tag then flag that info */ 3460 if (cqe->fast_path_cqe.pars_flags.flags & PARSING_FLAGS_VLAN) { 3461 m->m_pkthdr.ether_vtag = cqe->fast_path_cqe.vlan_tag; 3462 m->m_flags |= M_VLANTAG; 3463 } 3464 3465 #if __FreeBSD_version >= 800000 3466 /* specify what RSS queue was used for this flow */ 3467 m->m_pkthdr.flowid = fp->index; 3468 m->m_flags |= M_FLOWID; 3469 #endif 3470 3471 next_rx: 3472 3473 bd_cons = RX_BD_NEXT(bd_cons); 3474 bd_prod = RX_BD_NEXT(bd_prod); 3475 bd_prod_fw = RX_BD_NEXT(bd_prod_fw); 3476 3477 /* pass the frame to the stack */ 3478 if (__predict_true(m != NULL)) { 3479 if_incipackets(ifp, 1); 3480 rx_pkts++; 3481 if_input(ifp, m); 3482 } 3483 3484 next_cqe: 3485 3486 sw_cq_prod = RCQ_NEXT(sw_cq_prod); 3487 sw_cq_cons = RCQ_NEXT(sw_cq_cons); 3488 3489 /* limit spinning on the queue */ 3490 if (rx_pkts == sc->rx_budget) { 3491 fp->eth_q_stats.rx_budget_reached++; 3492 break; 3493 } 3494 } /* while work to do */ 3495 3496 fp->rx_bd_cons = bd_cons; 3497 fp->rx_bd_prod = bd_prod_fw; 3498 fp->rx_cq_cons = sw_cq_cons; 3499 fp->rx_cq_prod = sw_cq_prod; 3500 3501 /* Update producers */ 3502 bxe_update_rx_prod(sc, fp, bd_prod_fw, sw_cq_prod, fp->rx_sge_prod); 3503 3504 fp->eth_q_stats.rx_pkts += rx_pkts; 3505 fp->eth_q_stats.rx_calls++; 3506 3507 BXE_FP_RX_UNLOCK(fp); 3508 3509 return (sw_cq_cons != hw_cq_cons); 3510 } 3511 3512 static uint16_t 3513 bxe_free_tx_pkt(struct bxe_softc *sc, 3514 struct bxe_fastpath *fp, 3515 uint16_t idx) 3516 { 3517 struct bxe_sw_tx_bd *tx_buf = &fp->tx_mbuf_chain[idx]; 3518 struct eth_tx_start_bd *tx_start_bd; 3519 uint16_t bd_idx = TX_BD(tx_buf->first_bd); 3520 uint16_t new_cons; 3521 int nbd; 3522 3523 /* unmap the mbuf from non-paged memory */ 3524 bus_dmamap_unload(fp->tx_mbuf_tag, tx_buf->m_map); 3525 3526 tx_start_bd = &fp->tx_chain[bd_idx].start_bd; 3527 nbd = le16toh(tx_start_bd->nbd) - 1; 3528 3529 #if 0 3530 if ((nbd - 1) > (MAX_MBUF_FRAGS + 2)) { 3531 bxe_panic(sc, ("BAD nbd!\n")); 3532 } 3533 #endif 3534 3535 new_cons = (tx_buf->first_bd + nbd); 3536 3537 #if 0 3538 struct eth_tx_bd *tx_data_bd; 3539 3540 /* 3541 * The following code doesn't do anything but is left here 3542 * for clarity on what the new value of new_cons skipped. 3543 */ 3544 3545 /* get the next bd */ 3546 bd_idx = TX_BD(TX_BD_NEXT(bd_idx)); 3547 3548 /* skip the parse bd */ 3549 --nbd; 3550 bd_idx = TX_BD(TX_BD_NEXT(bd_idx)); 3551 3552 /* skip the TSO split header bd since they have no mapping */ 3553 if (tx_buf->flags & BXE_TSO_SPLIT_BD) { 3554 --nbd; 3555 bd_idx = TX_BD(TX_BD_NEXT(bd_idx)); 3556 } 3557 3558 /* now free frags */ 3559 while (nbd > 0) { 3560 tx_data_bd = &fp->tx_chain[bd_idx].reg_bd; 3561 if (--nbd) { 3562 bd_idx = TX_BD(TX_BD_NEXT(bd_idx)); 3563 } 3564 } 3565 #endif 3566 3567 /* free the mbuf */ 3568 if (__predict_true(tx_buf->m != NULL)) { 3569 m_freem(tx_buf->m); 3570 fp->eth_q_stats.mbuf_alloc_tx--; 3571 } else { 3572 fp->eth_q_stats.tx_chain_lost_mbuf++; 3573 } 3574 3575 tx_buf->m = NULL; 3576 tx_buf->first_bd = 0; 3577 3578 return (new_cons); 3579 } 3580 3581 /* transmit timeout watchdog */ 3582 static int 3583 bxe_watchdog(struct bxe_softc *sc, 3584 struct bxe_fastpath *fp) 3585 { 3586 BXE_FP_TX_LOCK(fp); 3587 3588 if ((fp->watchdog_timer == 0) || (--fp->watchdog_timer)) { 3589 BXE_FP_TX_UNLOCK(fp); 3590 return (0); 3591 } 3592 3593 BLOGE(sc, "TX watchdog timeout on fp[%02d], resetting!\n", fp->index); 3594 3595 BXE_FP_TX_UNLOCK(fp); 3596 3597 atomic_store_rel_long(&sc->chip_tq_flags, CHIP_TQ_REINIT); 3598 taskqueue_enqueue(sc->chip_tq, &sc->chip_tq_task); 3599 3600 return (-1); 3601 } 3602 3603 /* processes transmit completions */ 3604 static uint8_t 3605 bxe_txeof(struct bxe_softc *sc, 3606 struct bxe_fastpath *fp) 3607 { 3608 if_t ifp = sc->ifp; 3609 uint16_t bd_cons, hw_cons, sw_cons, pkt_cons; 3610 uint16_t tx_bd_avail; 3611 3612 BXE_FP_TX_LOCK_ASSERT(fp); 3613 3614 bd_cons = fp->tx_bd_cons; 3615 hw_cons = le16toh(*fp->tx_cons_sb); 3616 sw_cons = fp->tx_pkt_cons; 3617 3618 while (sw_cons != hw_cons) { 3619 pkt_cons = TX_BD(sw_cons); 3620 3621 BLOGD(sc, DBG_TX, 3622 "TX: fp[%d]: hw_cons=%u sw_cons=%u pkt_cons=%u\n", 3623 fp->index, hw_cons, sw_cons, pkt_cons); 3624 3625 bd_cons = bxe_free_tx_pkt(sc, fp, pkt_cons); 3626 3627 sw_cons++; 3628 } 3629 3630 fp->tx_pkt_cons = sw_cons; 3631 fp->tx_bd_cons = bd_cons; 3632 3633 BLOGD(sc, DBG_TX, 3634 "TX done: fp[%d]: hw_cons=%u sw_cons=%u sw_prod=%u\n", 3635 fp->index, hw_cons, fp->tx_pkt_cons, fp->tx_pkt_prod); 3636 3637 mb(); 3638 3639 tx_bd_avail = bxe_tx_avail(sc, fp); 3640 3641 if (tx_bd_avail < BXE_TX_CLEANUP_THRESHOLD) { 3642 if_setdrvflagbits(ifp, IFF_DRV_OACTIVE, 0); 3643 } else { 3644 if_setdrvflagbits(ifp, 0, IFF_DRV_OACTIVE); 3645 } 3646 3647 if (fp->tx_pkt_prod != fp->tx_pkt_cons) { 3648 /* reset the watchdog timer if there are pending transmits */ 3649 fp->watchdog_timer = BXE_TX_TIMEOUT; 3650 return (TRUE); 3651 } else { 3652 /* clear watchdog when there are no pending transmits */ 3653 fp->watchdog_timer = 0; 3654 return (FALSE); 3655 } 3656 } 3657 3658 static void 3659 bxe_drain_tx_queues(struct bxe_softc *sc) 3660 { 3661 struct bxe_fastpath *fp; 3662 int i, count; 3663 3664 /* wait until all TX fastpath tasks have completed */ 3665 for (i = 0; i < sc->num_queues; i++) { 3666 fp = &sc->fp[i]; 3667 3668 count = 1000; 3669 3670 while (bxe_has_tx_work(fp)) { 3671 3672 BXE_FP_TX_LOCK(fp); 3673 bxe_txeof(sc, fp); 3674 BXE_FP_TX_UNLOCK(fp); 3675 3676 if (count == 0) { 3677 BLOGE(sc, "Timeout waiting for fp[%d] " 3678 "transmits to complete!\n", i); 3679 bxe_panic(sc, ("tx drain failure\n")); 3680 return; 3681 } 3682 3683 count--; 3684 DELAY(1000); 3685 rmb(); 3686 } 3687 } 3688 3689 return; 3690 } 3691 3692 static int 3693 bxe_del_all_macs(struct bxe_softc *sc, 3694 struct ecore_vlan_mac_obj *mac_obj, 3695 int mac_type, 3696 uint8_t wait_for_comp) 3697 { 3698 unsigned long ramrod_flags = 0, vlan_mac_flags = 0; 3699 int rc; 3700 3701 /* wait for completion of requested */ 3702 if (wait_for_comp) { 3703 bxe_set_bit(RAMROD_COMP_WAIT, &ramrod_flags); 3704 } 3705 3706 /* Set the mac type of addresses we want to clear */ 3707 bxe_set_bit(mac_type, &vlan_mac_flags); 3708 3709 rc = mac_obj->delete_all(sc, mac_obj, &vlan_mac_flags, &ramrod_flags); 3710 if (rc < 0) { 3711 BLOGE(sc, "Failed to delete MACs (%d)\n", rc); 3712 } 3713 3714 return (rc); 3715 } 3716 3717 static int 3718 bxe_fill_accept_flags(struct bxe_softc *sc, 3719 uint32_t rx_mode, 3720 unsigned long *rx_accept_flags, 3721 unsigned long *tx_accept_flags) 3722 { 3723 /* Clear the flags first */ 3724 *rx_accept_flags = 0; 3725 *tx_accept_flags = 0; 3726 3727 switch (rx_mode) { 3728 case BXE_RX_MODE_NONE: 3729 /* 3730 * 'drop all' supersedes any accept flags that may have been 3731 * passed to the function. 3732 */ 3733 break; 3734 3735 case BXE_RX_MODE_NORMAL: 3736 bxe_set_bit(ECORE_ACCEPT_UNICAST, rx_accept_flags); 3737 bxe_set_bit(ECORE_ACCEPT_MULTICAST, rx_accept_flags); 3738 bxe_set_bit(ECORE_ACCEPT_BROADCAST, rx_accept_flags); 3739 3740 /* internal switching mode */ 3741 bxe_set_bit(ECORE_ACCEPT_UNICAST, tx_accept_flags); 3742 bxe_set_bit(ECORE_ACCEPT_MULTICAST, tx_accept_flags); 3743 bxe_set_bit(ECORE_ACCEPT_BROADCAST, tx_accept_flags); 3744 3745 break; 3746 3747 case BXE_RX_MODE_ALLMULTI: 3748 bxe_set_bit(ECORE_ACCEPT_UNICAST, rx_accept_flags); 3749 bxe_set_bit(ECORE_ACCEPT_ALL_MULTICAST, rx_accept_flags); 3750 bxe_set_bit(ECORE_ACCEPT_BROADCAST, rx_accept_flags); 3751 3752 /* internal switching mode */ 3753 bxe_set_bit(ECORE_ACCEPT_UNICAST, tx_accept_flags); 3754 bxe_set_bit(ECORE_ACCEPT_ALL_MULTICAST, tx_accept_flags); 3755 bxe_set_bit(ECORE_ACCEPT_BROADCAST, tx_accept_flags); 3756 3757 break; 3758 3759 case BXE_RX_MODE_PROMISC: 3760 /* 3761 * According to deffinition of SI mode, iface in promisc mode 3762 * should receive matched and unmatched (in resolution of port) 3763 * unicast packets. 3764 */ 3765 bxe_set_bit(ECORE_ACCEPT_UNMATCHED, rx_accept_flags); 3766 bxe_set_bit(ECORE_ACCEPT_UNICAST, rx_accept_flags); 3767 bxe_set_bit(ECORE_ACCEPT_ALL_MULTICAST, rx_accept_flags); 3768 bxe_set_bit(ECORE_ACCEPT_BROADCAST, rx_accept_flags); 3769 3770 /* internal switching mode */ 3771 bxe_set_bit(ECORE_ACCEPT_ALL_MULTICAST, tx_accept_flags); 3772 bxe_set_bit(ECORE_ACCEPT_BROADCAST, tx_accept_flags); 3773 3774 if (IS_MF_SI(sc)) { 3775 bxe_set_bit(ECORE_ACCEPT_ALL_UNICAST, tx_accept_flags); 3776 } else { 3777 bxe_set_bit(ECORE_ACCEPT_UNICAST, tx_accept_flags); 3778 } 3779 3780 break; 3781 3782 default: 3783 BLOGE(sc, "Unknown rx_mode (%d)\n", rx_mode); 3784 return (-1); 3785 } 3786 3787 /* Set ACCEPT_ANY_VLAN as we do not enable filtering by VLAN */ 3788 if (rx_mode != BXE_RX_MODE_NONE) { 3789 bxe_set_bit(ECORE_ACCEPT_ANY_VLAN, rx_accept_flags); 3790 bxe_set_bit(ECORE_ACCEPT_ANY_VLAN, tx_accept_flags); 3791 } 3792 3793 return (0); 3794 } 3795 3796 static int 3797 bxe_set_q_rx_mode(struct bxe_softc *sc, 3798 uint8_t cl_id, 3799 unsigned long rx_mode_flags, 3800 unsigned long rx_accept_flags, 3801 unsigned long tx_accept_flags, 3802 unsigned long ramrod_flags) 3803 { 3804 struct ecore_rx_mode_ramrod_params ramrod_param; 3805 int rc; 3806 3807 memset(&ramrod_param, 0, sizeof(ramrod_param)); 3808 3809 /* Prepare ramrod parameters */ 3810 ramrod_param.cid = 0; 3811 ramrod_param.cl_id = cl_id; 3812 ramrod_param.rx_mode_obj = &sc->rx_mode_obj; 3813 ramrod_param.func_id = SC_FUNC(sc); 3814 3815 ramrod_param.pstate = &sc->sp_state; 3816 ramrod_param.state = ECORE_FILTER_RX_MODE_PENDING; 3817 3818 ramrod_param.rdata = BXE_SP(sc, rx_mode_rdata); 3819 ramrod_param.rdata_mapping = BXE_SP_MAPPING(sc, rx_mode_rdata); 3820 3821 bxe_set_bit(ECORE_FILTER_RX_MODE_PENDING, &sc->sp_state); 3822 3823 ramrod_param.ramrod_flags = ramrod_flags; 3824 ramrod_param.rx_mode_flags = rx_mode_flags; 3825 3826 ramrod_param.rx_accept_flags = rx_accept_flags; 3827 ramrod_param.tx_accept_flags = tx_accept_flags; 3828 3829 rc = ecore_config_rx_mode(sc, &ramrod_param); 3830 if (rc < 0) { 3831 BLOGE(sc, "Set rx_mode %d failed\n", sc->rx_mode); 3832 return (rc); 3833 } 3834 3835 return (0); 3836 } 3837 3838 static int 3839 bxe_set_storm_rx_mode(struct bxe_softc *sc) 3840 { 3841 unsigned long rx_mode_flags = 0, ramrod_flags = 0; 3842 unsigned long rx_accept_flags = 0, tx_accept_flags = 0; 3843 int rc; 3844 3845 rc = bxe_fill_accept_flags(sc, sc->rx_mode, &rx_accept_flags, 3846 &tx_accept_flags); 3847 if (rc) { 3848 return (rc); 3849 } 3850 3851 bxe_set_bit(RAMROD_RX, &ramrod_flags); 3852 bxe_set_bit(RAMROD_TX, &ramrod_flags); 3853 3854 /* XXX ensure all fastpath have same cl_id and/or move it to bxe_softc */ 3855 return (bxe_set_q_rx_mode(sc, sc->fp[0].cl_id, rx_mode_flags, 3856 rx_accept_flags, tx_accept_flags, 3857 ramrod_flags)); 3858 } 3859 3860 /* returns the "mcp load_code" according to global load_count array */ 3861 static int 3862 bxe_nic_load_no_mcp(struct bxe_softc *sc) 3863 { 3864 int path = SC_PATH(sc); 3865 int port = SC_PORT(sc); 3866 3867 BLOGI(sc, "NO MCP - load counts[%d] %d, %d, %d\n", 3868 path, load_count[path][0], load_count[path][1], 3869 load_count[path][2]); 3870 load_count[path][0]++; 3871 load_count[path][1 + port]++; 3872 BLOGI(sc, "NO MCP - new load counts[%d] %d, %d, %d\n", 3873 path, load_count[path][0], load_count[path][1], 3874 load_count[path][2]); 3875 if (load_count[path][0] == 1) { 3876 return (FW_MSG_CODE_DRV_LOAD_COMMON); 3877 } else if (load_count[path][1 + port] == 1) { 3878 return (FW_MSG_CODE_DRV_LOAD_PORT); 3879 } else { 3880 return (FW_MSG_CODE_DRV_LOAD_FUNCTION); 3881 } 3882 } 3883 3884 /* returns the "mcp load_code" according to global load_count array */ 3885 static int 3886 bxe_nic_unload_no_mcp(struct bxe_softc *sc) 3887 { 3888 int port = SC_PORT(sc); 3889 int path = SC_PATH(sc); 3890 3891 BLOGI(sc, "NO MCP - load counts[%d] %d, %d, %d\n", 3892 path, load_count[path][0], load_count[path][1], 3893 load_count[path][2]); 3894 load_count[path][0]--; 3895 load_count[path][1 + port]--; 3896 BLOGI(sc, "NO MCP - new load counts[%d] %d, %d, %d\n", 3897 path, load_count[path][0], load_count[path][1], 3898 load_count[path][2]); 3899 if (load_count[path][0] == 0) { 3900 return (FW_MSG_CODE_DRV_UNLOAD_COMMON); 3901 } else if (load_count[path][1 + port] == 0) { 3902 return (FW_MSG_CODE_DRV_UNLOAD_PORT); 3903 } else { 3904 return (FW_MSG_CODE_DRV_UNLOAD_FUNCTION); 3905 } 3906 } 3907 3908 /* request unload mode from the MCP: COMMON, PORT or FUNCTION */ 3909 static uint32_t 3910 bxe_send_unload_req(struct bxe_softc *sc, 3911 int unload_mode) 3912 { 3913 uint32_t reset_code = 0; 3914 #if 0 3915 int port = SC_PORT(sc); 3916 int path = SC_PATH(sc); 3917 #endif 3918 3919 /* Select the UNLOAD request mode */ 3920 if (unload_mode == UNLOAD_NORMAL) { 3921 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS; 3922 } 3923 #if 0 3924 else if (sc->flags & BXE_NO_WOL_FLAG) { 3925 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP; 3926 } else if (sc->wol) { 3927 uint32_t emac_base = port ? GRCBASE_EMAC1 : GRCBASE_EMAC0; 3928 uint8_t *mac_addr = sc->dev->dev_addr; 3929 uint32_t val; 3930 uint16_t pmc; 3931 3932 /* 3933 * The mac address is written to entries 1-4 to 3934 * preserve entry 0 which is used by the PMF 3935 */ 3936 uint8_t entry = (SC_VN(sc) + 1)*8; 3937 3938 val = (mac_addr[0] << 8) | mac_addr[1]; 3939 EMAC_WR(sc, EMAC_REG_EMAC_MAC_MATCH + entry, val); 3940 3941 val = (mac_addr[2] << 24) | (mac_addr[3] << 16) | 3942 (mac_addr[4] << 8) | mac_addr[5]; 3943 EMAC_WR(sc, EMAC_REG_EMAC_MAC_MATCH + entry + 4, val); 3944 3945 /* Enable the PME and clear the status */ 3946 pmc = pci_read_config(sc->dev, 3947 (sc->devinfo.pcie_pm_cap_reg + 3948 PCIR_POWER_STATUS), 3949 2); 3950 pmc |= PCIM_PSTAT_PMEENABLE | PCIM_PSTAT_PME; 3951 pci_write_config(sc->dev, 3952 (sc->devinfo.pcie_pm_cap_reg + 3953 PCIR_POWER_STATUS), 3954 pmc, 4); 3955 3956 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_EN; 3957 } 3958 #endif 3959 else { 3960 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS; 3961 } 3962 3963 /* Send the request to the MCP */ 3964 if (!BXE_NOMCP(sc)) { 3965 reset_code = bxe_fw_command(sc, reset_code, 0); 3966 } else { 3967 reset_code = bxe_nic_unload_no_mcp(sc); 3968 } 3969 3970 return (reset_code); 3971 } 3972 3973 /* send UNLOAD_DONE command to the MCP */ 3974 static void 3975 bxe_send_unload_done(struct bxe_softc *sc, 3976 uint8_t keep_link) 3977 { 3978 uint32_t reset_param = 3979 keep_link ? DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET : 0; 3980 3981 /* Report UNLOAD_DONE to MCP */ 3982 if (!BXE_NOMCP(sc)) { 3983 bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_DONE, reset_param); 3984 } 3985 } 3986 3987 static int 3988 bxe_func_wait_started(struct bxe_softc *sc) 3989 { 3990 int tout = 50; 3991 3992 if (!sc->port.pmf) { 3993 return (0); 3994 } 3995 3996 /* 3997 * (assumption: No Attention from MCP at this stage) 3998 * PMF probably in the middle of TX disable/enable transaction 3999 * 1. Sync IRS for default SB 4000 * 2. Sync SP queue - this guarantees us that attention handling started 4001 * 3. Wait, that TX disable/enable transaction completes 4002 * 4003 * 1+2 guarantee that if DCBX attention was scheduled it already changed 4004 * pending bit of transaction from STARTED-->TX_STOPPED, if we already 4005 * received completion for the transaction the state is TX_STOPPED. 4006 * State will return to STARTED after completion of TX_STOPPED-->STARTED 4007 * transaction. 4008 */ 4009 4010 /* XXX make sure default SB ISR is done */ 4011 /* need a way to synchronize an irq (intr_mtx?) */ 4012 4013 /* XXX flush any work queues */ 4014 4015 while (ecore_func_get_state(sc, &sc->func_obj) != 4016 ECORE_F_STATE_STARTED && tout--) { 4017 DELAY(20000); 4018 } 4019 4020 if (ecore_func_get_state(sc, &sc->func_obj) != ECORE_F_STATE_STARTED) { 4021 /* 4022 * Failed to complete the transaction in a "good way" 4023 * Force both transactions with CLR bit. 4024 */ 4025 struct ecore_func_state_params func_params = { NULL }; 4026 4027 BLOGE(sc, "Unexpected function state! " 4028 "Forcing STARTED-->TX_STOPPED-->STARTED\n"); 4029 4030 func_params.f_obj = &sc->func_obj; 4031 bxe_set_bit(RAMROD_DRV_CLR_ONLY, &func_params.ramrod_flags); 4032 4033 /* STARTED-->TX_STOPPED */ 4034 func_params.cmd = ECORE_F_CMD_TX_STOP; 4035 ecore_func_state_change(sc, &func_params); 4036 4037 /* TX_STOPPED-->STARTED */ 4038 func_params.cmd = ECORE_F_CMD_TX_START; 4039 return (ecore_func_state_change(sc, &func_params)); 4040 } 4041 4042 return (0); 4043 } 4044 4045 static int 4046 bxe_stop_queue(struct bxe_softc *sc, 4047 int index) 4048 { 4049 struct bxe_fastpath *fp = &sc->fp[index]; 4050 struct ecore_queue_state_params q_params = { NULL }; 4051 int rc; 4052 4053 BLOGD(sc, DBG_LOAD, "stopping queue %d cid %d\n", index, fp->index); 4054 4055 q_params.q_obj = &sc->sp_objs[fp->index].q_obj; 4056 /* We want to wait for completion in this context */ 4057 bxe_set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags); 4058 4059 /* Stop the primary connection: */ 4060 4061 /* ...halt the connection */ 4062 q_params.cmd = ECORE_Q_CMD_HALT; 4063 rc = ecore_queue_state_change(sc, &q_params); 4064 if (rc) { 4065 return (rc); 4066 } 4067 4068 /* ...terminate the connection */ 4069 q_params.cmd = ECORE_Q_CMD_TERMINATE; 4070 memset(&q_params.params.terminate, 0, sizeof(q_params.params.terminate)); 4071 q_params.params.terminate.cid_index = FIRST_TX_COS_INDEX; 4072 rc = ecore_queue_state_change(sc, &q_params); 4073 if (rc) { 4074 return (rc); 4075 } 4076 4077 /* ...delete cfc entry */ 4078 q_params.cmd = ECORE_Q_CMD_CFC_DEL; 4079 memset(&q_params.params.cfc_del, 0, sizeof(q_params.params.cfc_del)); 4080 q_params.params.cfc_del.cid_index = FIRST_TX_COS_INDEX; 4081 return (ecore_queue_state_change(sc, &q_params)); 4082 } 4083 4084 /* wait for the outstanding SP commands */ 4085 static inline uint8_t 4086 bxe_wait_sp_comp(struct bxe_softc *sc, 4087 unsigned long mask) 4088 { 4089 unsigned long tmp; 4090 int tout = 5000; /* wait for 5 secs tops */ 4091 4092 while (tout--) { 4093 mb(); 4094 if (!(atomic_load_acq_long(&sc->sp_state) & mask)) { 4095 return (TRUE); 4096 } 4097 4098 DELAY(1000); 4099 } 4100 4101 mb(); 4102 4103 tmp = atomic_load_acq_long(&sc->sp_state); 4104 if (tmp & mask) { 4105 BLOGE(sc, "Filtering completion timed out: " 4106 "sp_state 0x%lx, mask 0x%lx\n", 4107 tmp, mask); 4108 return (FALSE); 4109 } 4110 4111 return (FALSE); 4112 } 4113 4114 static int 4115 bxe_func_stop(struct bxe_softc *sc) 4116 { 4117 struct ecore_func_state_params func_params = { NULL }; 4118 int rc; 4119 4120 /* prepare parameters for function state transitions */ 4121 bxe_set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags); 4122 func_params.f_obj = &sc->func_obj; 4123 func_params.cmd = ECORE_F_CMD_STOP; 4124 4125 /* 4126 * Try to stop the function the 'good way'. If it fails (in case 4127 * of a parity error during bxe_chip_cleanup()) and we are 4128 * not in a debug mode, perform a state transaction in order to 4129 * enable further HW_RESET transaction. 4130 */ 4131 rc = ecore_func_state_change(sc, &func_params); 4132 if (rc) { 4133 BLOGE(sc, "FUNC_STOP ramrod failed. " 4134 "Running a dry transaction\n"); 4135 bxe_set_bit(RAMROD_DRV_CLR_ONLY, &func_params.ramrod_flags); 4136 return (ecore_func_state_change(sc, &func_params)); 4137 } 4138 4139 return (0); 4140 } 4141 4142 static int 4143 bxe_reset_hw(struct bxe_softc *sc, 4144 uint32_t load_code) 4145 { 4146 struct ecore_func_state_params func_params = { NULL }; 4147 4148 /* Prepare parameters for function state transitions */ 4149 bxe_set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags); 4150 4151 func_params.f_obj = &sc->func_obj; 4152 func_params.cmd = ECORE_F_CMD_HW_RESET; 4153 4154 func_params.params.hw_init.load_phase = load_code; 4155 4156 return (ecore_func_state_change(sc, &func_params)); 4157 } 4158 4159 static void 4160 bxe_int_disable_sync(struct bxe_softc *sc, 4161 int disable_hw) 4162 { 4163 if (disable_hw) { 4164 /* prevent the HW from sending interrupts */ 4165 bxe_int_disable(sc); 4166 } 4167 4168 /* XXX need a way to synchronize ALL irqs (intr_mtx?) */ 4169 /* make sure all ISRs are done */ 4170 4171 /* XXX make sure sp_task is not running */ 4172 /* cancel and flush work queues */ 4173 } 4174 4175 static void 4176 bxe_chip_cleanup(struct bxe_softc *sc, 4177 uint32_t unload_mode, 4178 uint8_t keep_link) 4179 { 4180 int port = SC_PORT(sc); 4181 struct ecore_mcast_ramrod_params rparam = { NULL }; 4182 uint32_t reset_code; 4183 int i, rc = 0; 4184 4185 bxe_drain_tx_queues(sc); 4186 4187 /* give HW time to discard old tx messages */ 4188 DELAY(1000); 4189 4190 /* Clean all ETH MACs */ 4191 rc = bxe_del_all_macs(sc, &sc->sp_objs[0].mac_obj, ECORE_ETH_MAC, FALSE); 4192 if (rc < 0) { 4193 BLOGE(sc, "Failed to delete all ETH MACs (%d)\n", rc); 4194 } 4195 4196 /* Clean up UC list */ 4197 rc = bxe_del_all_macs(sc, &sc->sp_objs[0].mac_obj, ECORE_UC_LIST_MAC, TRUE); 4198 if (rc < 0) { 4199 BLOGE(sc, "Failed to delete UC MACs list (%d)\n", rc); 4200 } 4201 4202 /* Disable LLH */ 4203 if (!CHIP_IS_E1(sc)) { 4204 REG_WR(sc, NIG_REG_LLH0_FUNC_EN + port*8, 0); 4205 } 4206 4207 /* Set "drop all" to stop Rx */ 4208 4209 /* 4210 * We need to take the BXE_MCAST_LOCK() here in order to prevent 4211 * a race between the completion code and this code. 4212 */ 4213 BXE_MCAST_LOCK(sc); 4214 4215 if (bxe_test_bit(ECORE_FILTER_RX_MODE_PENDING, &sc->sp_state)) { 4216 bxe_set_bit(ECORE_FILTER_RX_MODE_SCHED, &sc->sp_state); 4217 } else { 4218 bxe_set_storm_rx_mode(sc); 4219 } 4220 4221 /* Clean up multicast configuration */ 4222 rparam.mcast_obj = &sc->mcast_obj; 4223 rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_DEL); 4224 if (rc < 0) { 4225 BLOGE(sc, "Failed to send DEL MCAST command (%d)\n", rc); 4226 } 4227 4228 BXE_MCAST_UNLOCK(sc); 4229 4230 // XXX bxe_iov_chip_cleanup(sc); 4231 4232 /* 4233 * Send the UNLOAD_REQUEST to the MCP. This will return if 4234 * this function should perform FUNCTION, PORT, or COMMON HW 4235 * reset. 4236 */ 4237 reset_code = bxe_send_unload_req(sc, unload_mode); 4238 4239 /* 4240 * (assumption: No Attention from MCP at this stage) 4241 * PMF probably in the middle of TX disable/enable transaction 4242 */ 4243 rc = bxe_func_wait_started(sc); 4244 if (rc) { 4245 BLOGE(sc, "bxe_func_wait_started failed\n"); 4246 } 4247 4248 /* 4249 * Close multi and leading connections 4250 * Completions for ramrods are collected in a synchronous way 4251 */ 4252 for (i = 0; i < sc->num_queues; i++) { 4253 if (bxe_stop_queue(sc, i)) { 4254 goto unload_error; 4255 } 4256 } 4257 4258 /* 4259 * If SP settings didn't get completed so far - something 4260 * very wrong has happen. 4261 */ 4262 if (!bxe_wait_sp_comp(sc, ~0x0UL)) { 4263 BLOGE(sc, "Common slow path ramrods got stuck!\n"); 4264 } 4265 4266 unload_error: 4267 4268 rc = bxe_func_stop(sc); 4269 if (rc) { 4270 BLOGE(sc, "Function stop failed!\n"); 4271 } 4272 4273 /* disable HW interrupts */ 4274 bxe_int_disable_sync(sc, TRUE); 4275 4276 /* detach interrupts */ 4277 bxe_interrupt_detach(sc); 4278 4279 /* Reset the chip */ 4280 rc = bxe_reset_hw(sc, reset_code); 4281 if (rc) { 4282 BLOGE(sc, "Hardware reset failed\n"); 4283 } 4284 4285 /* Report UNLOAD_DONE to MCP */ 4286 bxe_send_unload_done(sc, keep_link); 4287 } 4288 4289 static void 4290 bxe_disable_close_the_gate(struct bxe_softc *sc) 4291 { 4292 uint32_t val; 4293 int port = SC_PORT(sc); 4294 4295 BLOGD(sc, DBG_LOAD, 4296 "Disabling 'close the gates'\n"); 4297 4298 if (CHIP_IS_E1(sc)) { 4299 uint32_t addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 : 4300 MISC_REG_AEU_MASK_ATTN_FUNC_0; 4301 val = REG_RD(sc, addr); 4302 val &= ~(0x300); 4303 REG_WR(sc, addr, val); 4304 } else { 4305 val = REG_RD(sc, MISC_REG_AEU_GENERAL_MASK); 4306 val &= ~(MISC_AEU_GENERAL_MASK_REG_AEU_PXP_CLOSE_MASK | 4307 MISC_AEU_GENERAL_MASK_REG_AEU_NIG_CLOSE_MASK); 4308 REG_WR(sc, MISC_REG_AEU_GENERAL_MASK, val); 4309 } 4310 } 4311 4312 /* 4313 * Cleans the object that have internal lists without sending 4314 * ramrods. Should be run when interrutps are disabled. 4315 */ 4316 static void 4317 bxe_squeeze_objects(struct bxe_softc *sc) 4318 { 4319 unsigned long ramrod_flags = 0, vlan_mac_flags = 0; 4320 struct ecore_mcast_ramrod_params rparam = { NULL }; 4321 struct ecore_vlan_mac_obj *mac_obj = &sc->sp_objs->mac_obj; 4322 int rc; 4323 4324 /* Cleanup MACs' object first... */ 4325 4326 /* Wait for completion of requested */ 4327 bxe_set_bit(RAMROD_COMP_WAIT, &ramrod_flags); 4328 /* Perform a dry cleanup */ 4329 bxe_set_bit(RAMROD_DRV_CLR_ONLY, &ramrod_flags); 4330 4331 /* Clean ETH primary MAC */ 4332 bxe_set_bit(ECORE_ETH_MAC, &vlan_mac_flags); 4333 rc = mac_obj->delete_all(sc, &sc->sp_objs->mac_obj, &vlan_mac_flags, 4334 &ramrod_flags); 4335 if (rc != 0) { 4336 BLOGE(sc, "Failed to clean ETH MACs (%d)\n", rc); 4337 } 4338 4339 /* Cleanup UC list */ 4340 vlan_mac_flags = 0; 4341 bxe_set_bit(ECORE_UC_LIST_MAC, &vlan_mac_flags); 4342 rc = mac_obj->delete_all(sc, mac_obj, &vlan_mac_flags, 4343 &ramrod_flags); 4344 if (rc != 0) { 4345 BLOGE(sc, "Failed to clean UC list MACs (%d)\n", rc); 4346 } 4347 4348 /* Now clean mcast object... */ 4349 4350 rparam.mcast_obj = &sc->mcast_obj; 4351 bxe_set_bit(RAMROD_DRV_CLR_ONLY, &rparam.ramrod_flags); 4352 4353 /* Add a DEL command... */ 4354 rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_DEL); 4355 if (rc < 0) { 4356 BLOGE(sc, "Failed to send DEL MCAST command (%d)\n", rc); 4357 } 4358 4359 /* now wait until all pending commands are cleared */ 4360 4361 rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_CONT); 4362 while (rc != 0) { 4363 if (rc < 0) { 4364 BLOGE(sc, "Failed to clean MCAST object (%d)\n", rc); 4365 return; 4366 } 4367 4368 rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_CONT); 4369 } 4370 } 4371 4372 /* stop the controller */ 4373 static __noinline int 4374 bxe_nic_unload(struct bxe_softc *sc, 4375 uint32_t unload_mode, 4376 uint8_t keep_link) 4377 { 4378 uint8_t global = FALSE; 4379 uint32_t val; 4380 4381 BXE_CORE_LOCK_ASSERT(sc); 4382 4383 BLOGD(sc, DBG_LOAD, "Starting NIC unload...\n"); 4384 4385 /* mark driver as unloaded in shmem2 */ 4386 if (IS_PF(sc) && SHMEM2_HAS(sc, drv_capabilities_flag)) { 4387 val = SHMEM2_RD(sc, drv_capabilities_flag[SC_FW_MB_IDX(sc)]); 4388 SHMEM2_WR(sc, drv_capabilities_flag[SC_FW_MB_IDX(sc)], 4389 val & ~DRV_FLAGS_CAPABILITIES_LOADED_L2); 4390 } 4391 4392 if (IS_PF(sc) && sc->recovery_state != BXE_RECOVERY_DONE && 4393 (sc->state == BXE_STATE_CLOSED || sc->state == BXE_STATE_ERROR)) { 4394 /* 4395 * We can get here if the driver has been unloaded 4396 * during parity error recovery and is either waiting for a 4397 * leader to complete or for other functions to unload and 4398 * then ifconfig down has been issued. In this case we want to 4399 * unload and let other functions to complete a recovery 4400 * process. 4401 */ 4402 sc->recovery_state = BXE_RECOVERY_DONE; 4403 sc->is_leader = 0; 4404 bxe_release_leader_lock(sc); 4405 mb(); 4406 4407 BLOGD(sc, DBG_LOAD, "Releasing a leadership...\n"); 4408 BLOGE(sc, "Can't unload in closed or error state\n"); 4409 return (-1); 4410 } 4411 4412 /* 4413 * Nothing to do during unload if previous bxe_nic_load() 4414 * did not completed succesfully - all resourses are released. 4415 */ 4416 if ((sc->state == BXE_STATE_CLOSED) || 4417 (sc->state == BXE_STATE_ERROR)) { 4418 return (0); 4419 } 4420 4421 sc->state = BXE_STATE_CLOSING_WAITING_HALT; 4422 mb(); 4423 4424 /* stop tx */ 4425 bxe_tx_disable(sc); 4426 4427 sc->rx_mode = BXE_RX_MODE_NONE; 4428 /* XXX set rx mode ??? */ 4429 4430 if (IS_PF(sc)) { 4431 /* set ALWAYS_ALIVE bit in shmem */ 4432 sc->fw_drv_pulse_wr_seq |= DRV_PULSE_ALWAYS_ALIVE; 4433 4434 bxe_drv_pulse(sc); 4435 4436 bxe_stats_handle(sc, STATS_EVENT_STOP); 4437 bxe_save_statistics(sc); 4438 } 4439 4440 /* wait till consumers catch up with producers in all queues */ 4441 bxe_drain_tx_queues(sc); 4442 4443 /* if VF indicate to PF this function is going down (PF will delete sp 4444 * elements and clear initializations 4445 */ 4446 if (IS_VF(sc)) { 4447 ; /* bxe_vfpf_close_vf(sc); */ 4448 } else if (unload_mode != UNLOAD_RECOVERY) { 4449 /* if this is a normal/close unload need to clean up chip */ 4450 bxe_chip_cleanup(sc, unload_mode, keep_link); 4451 } else { 4452 /* Send the UNLOAD_REQUEST to the MCP */ 4453 bxe_send_unload_req(sc, unload_mode); 4454 4455 /* 4456 * Prevent transactions to host from the functions on the 4457 * engine that doesn't reset global blocks in case of global 4458 * attention once gloabl blocks are reset and gates are opened 4459 * (the engine which leader will perform the recovery 4460 * last). 4461 */ 4462 if (!CHIP_IS_E1x(sc)) { 4463 bxe_pf_disable(sc); 4464 } 4465 4466 /* disable HW interrupts */ 4467 bxe_int_disable_sync(sc, TRUE); 4468 4469 /* detach interrupts */ 4470 bxe_interrupt_detach(sc); 4471 4472 /* Report UNLOAD_DONE to MCP */ 4473 bxe_send_unload_done(sc, FALSE); 4474 } 4475 4476 /* 4477 * At this stage no more interrupts will arrive so we may safely clean 4478 * the queue'able objects here in case they failed to get cleaned so far. 4479 */ 4480 if (IS_PF(sc)) { 4481 bxe_squeeze_objects(sc); 4482 } 4483 4484 /* There should be no more pending SP commands at this stage */ 4485 sc->sp_state = 0; 4486 4487 sc->port.pmf = 0; 4488 4489 bxe_free_fp_buffers(sc); 4490 4491 if (IS_PF(sc)) { 4492 bxe_free_mem(sc); 4493 } 4494 4495 bxe_free_fw_stats_mem(sc); 4496 4497 sc->state = BXE_STATE_CLOSED; 4498 4499 /* 4500 * Check if there are pending parity attentions. If there are - set 4501 * RECOVERY_IN_PROGRESS. 4502 */ 4503 if (IS_PF(sc) && bxe_chk_parity_attn(sc, &global, FALSE)) { 4504 bxe_set_reset_in_progress(sc); 4505 4506 /* Set RESET_IS_GLOBAL if needed */ 4507 if (global) { 4508 bxe_set_reset_global(sc); 4509 } 4510 } 4511 4512 /* 4513 * The last driver must disable a "close the gate" if there is no 4514 * parity attention or "process kill" pending. 4515 */ 4516 if (IS_PF(sc) && !bxe_clear_pf_load(sc) && 4517 bxe_reset_is_done(sc, SC_PATH(sc))) { 4518 bxe_disable_close_the_gate(sc); 4519 } 4520 4521 BLOGD(sc, DBG_LOAD, "Ended NIC unload\n"); 4522 4523 return (0); 4524 } 4525 4526 /* 4527 * Called by the OS to set various media options (i.e. link, speed, etc.) when 4528 * the user runs "ifconfig bxe media ..." or "ifconfig bxe mediaopt ...". 4529 */ 4530 static int 4531 bxe_ifmedia_update(struct ifnet *ifp) 4532 { 4533 struct bxe_softc *sc = (struct bxe_softc *)if_getsoftc(ifp); 4534 struct ifmedia *ifm; 4535 4536 ifm = &sc->ifmedia; 4537 4538 /* We only support Ethernet media type. */ 4539 if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER) { 4540 return (EINVAL); 4541 } 4542 4543 switch (IFM_SUBTYPE(ifm->ifm_media)) { 4544 case IFM_AUTO: 4545 break; 4546 case IFM_10G_CX4: 4547 case IFM_10G_SR: 4548 case IFM_10G_T: 4549 case IFM_10G_TWINAX: 4550 default: 4551 /* We don't support changing the media type. */ 4552 BLOGD(sc, DBG_LOAD, "Invalid media type (%d)\n", 4553 IFM_SUBTYPE(ifm->ifm_media)); 4554 return (EINVAL); 4555 } 4556 4557 return (0); 4558 } 4559 4560 /* 4561 * Called by the OS to get the current media status (i.e. link, speed, etc.). 4562 */ 4563 static void 4564 bxe_ifmedia_status(struct ifnet *ifp, struct ifmediareq *ifmr) 4565 { 4566 struct bxe_softc *sc = if_getsoftc(ifp); 4567 4568 /* Report link down if the driver isn't running. */ 4569 if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) == 0) { 4570 ifmr->ifm_active |= IFM_NONE; 4571 return; 4572 } 4573 4574 /* Setup the default interface info. */ 4575 ifmr->ifm_status = IFM_AVALID; 4576 ifmr->ifm_active = IFM_ETHER; 4577 4578 if (sc->link_vars.link_up) { 4579 ifmr->ifm_status |= IFM_ACTIVE; 4580 } else { 4581 ifmr->ifm_active |= IFM_NONE; 4582 return; 4583 } 4584 4585 ifmr->ifm_active |= sc->media; 4586 4587 if (sc->link_vars.duplex == DUPLEX_FULL) { 4588 ifmr->ifm_active |= IFM_FDX; 4589 } else { 4590 ifmr->ifm_active |= IFM_HDX; 4591 } 4592 } 4593 4594 static int 4595 bxe_ioctl_nvram(struct bxe_softc *sc, 4596 uint32_t priv_op, 4597 struct ifreq *ifr) 4598 { 4599 struct bxe_nvram_data nvdata_base; 4600 struct bxe_nvram_data *nvdata; 4601 int len; 4602 int error = 0; 4603 4604 copyin(ifr->ifr_data, &nvdata_base, sizeof(nvdata_base)); 4605 4606 len = (sizeof(struct bxe_nvram_data) + 4607 nvdata_base.len - 4608 sizeof(uint32_t)); 4609 4610 if (len > sizeof(struct bxe_nvram_data)) { 4611 if ((nvdata = (struct bxe_nvram_data *) 4612 malloc(len, M_DEVBUF, 4613 (M_NOWAIT | M_ZERO))) == NULL) { 4614 BLOGE(sc, "BXE_IOC_RD_NVRAM malloc failed\n"); 4615 return (1); 4616 } 4617 memcpy(nvdata, &nvdata_base, sizeof(struct bxe_nvram_data)); 4618 } else { 4619 nvdata = &nvdata_base; 4620 } 4621 4622 if (priv_op == BXE_IOC_RD_NVRAM) { 4623 BLOGD(sc, DBG_IOCTL, "IOC_RD_NVRAM 0x%x %d\n", 4624 nvdata->offset, nvdata->len); 4625 error = bxe_nvram_read(sc, 4626 nvdata->offset, 4627 (uint8_t *)nvdata->value, 4628 nvdata->len); 4629 copyout(nvdata, ifr->ifr_data, len); 4630 } else { /* BXE_IOC_WR_NVRAM */ 4631 BLOGD(sc, DBG_IOCTL, "IOC_WR_NVRAM 0x%x %d\n", 4632 nvdata->offset, nvdata->len); 4633 copyin(ifr->ifr_data, nvdata, len); 4634 error = bxe_nvram_write(sc, 4635 nvdata->offset, 4636 (uint8_t *)nvdata->value, 4637 nvdata->len); 4638 } 4639 4640 if (len > sizeof(struct bxe_nvram_data)) { 4641 free(nvdata, M_DEVBUF); 4642 } 4643 4644 return (error); 4645 } 4646 4647 static int 4648 bxe_ioctl_stats_show(struct bxe_softc *sc, 4649 uint32_t priv_op, 4650 struct ifreq *ifr) 4651 { 4652 const size_t str_size = (BXE_NUM_ETH_STATS * STAT_NAME_LEN); 4653 const size_t stats_size = (BXE_NUM_ETH_STATS * sizeof(uint64_t)); 4654 caddr_t p_tmp; 4655 uint32_t *offset; 4656 int i; 4657 4658 switch (priv_op) 4659 { 4660 case BXE_IOC_STATS_SHOW_NUM: 4661 memset(ifr->ifr_data, 0, sizeof(union bxe_stats_show_data)); 4662 ((union bxe_stats_show_data *)ifr->ifr_data)->desc.num = 4663 BXE_NUM_ETH_STATS; 4664 ((union bxe_stats_show_data *)ifr->ifr_data)->desc.len = 4665 STAT_NAME_LEN; 4666 return (0); 4667 4668 case BXE_IOC_STATS_SHOW_STR: 4669 memset(ifr->ifr_data, 0, str_size); 4670 p_tmp = ifr->ifr_data; 4671 for (i = 0; i < BXE_NUM_ETH_STATS; i++) { 4672 strcpy(p_tmp, bxe_eth_stats_arr[i].string); 4673 p_tmp += STAT_NAME_LEN; 4674 } 4675 return (0); 4676 4677 case BXE_IOC_STATS_SHOW_CNT: 4678 memset(ifr->ifr_data, 0, stats_size); 4679 p_tmp = ifr->ifr_data; 4680 for (i = 0; i < BXE_NUM_ETH_STATS; i++) { 4681 offset = ((uint32_t *)&sc->eth_stats + 4682 bxe_eth_stats_arr[i].offset); 4683 switch (bxe_eth_stats_arr[i].size) { 4684 case 4: 4685 *((uint64_t *)p_tmp) = (uint64_t)*offset; 4686 break; 4687 case 8: 4688 *((uint64_t *)p_tmp) = HILO_U64(*offset, *(offset + 1)); 4689 break; 4690 default: 4691 *((uint64_t *)p_tmp) = 0; 4692 } 4693 p_tmp += sizeof(uint64_t); 4694 } 4695 return (0); 4696 4697 default: 4698 return (-1); 4699 } 4700 } 4701 4702 static void 4703 bxe_handle_chip_tq(void *context, 4704 int pending) 4705 { 4706 struct bxe_softc *sc = (struct bxe_softc *)context; 4707 long work = atomic_load_acq_long(&sc->chip_tq_flags); 4708 4709 switch (work) 4710 { 4711 case CHIP_TQ_START: 4712 if ((if_getflags(sc->ifp) & IFF_UP) && 4713 !(if_getdrvflags(sc->ifp) & IFF_DRV_RUNNING)) { 4714 /* start the interface */ 4715 BLOGD(sc, DBG_LOAD, "Starting the interface...\n"); 4716 BXE_CORE_LOCK(sc); 4717 bxe_init_locked(sc); 4718 BXE_CORE_UNLOCK(sc); 4719 } 4720 break; 4721 4722 case CHIP_TQ_STOP: 4723 if (!(if_getflags(sc->ifp) & IFF_UP) && 4724 (if_getdrvflags(sc->ifp) & IFF_DRV_RUNNING)) { 4725 /* bring down the interface */ 4726 BLOGD(sc, DBG_LOAD, "Stopping the interface...\n"); 4727 bxe_periodic_stop(sc); 4728 BXE_CORE_LOCK(sc); 4729 bxe_stop_locked(sc); 4730 BXE_CORE_UNLOCK(sc); 4731 } 4732 break; 4733 4734 case CHIP_TQ_REINIT: 4735 if (if_getdrvflags(sc->ifp) & IFF_DRV_RUNNING) { 4736 /* restart the interface */ 4737 BLOGD(sc, DBG_LOAD, "Restarting the interface...\n"); 4738 bxe_periodic_stop(sc); 4739 BXE_CORE_LOCK(sc); 4740 bxe_stop_locked(sc); 4741 bxe_init_locked(sc); 4742 BXE_CORE_UNLOCK(sc); 4743 } 4744 break; 4745 4746 default: 4747 break; 4748 } 4749 } 4750 4751 /* 4752 * Handles any IOCTL calls from the operating system. 4753 * 4754 * Returns: 4755 * 0 = Success, >0 Failure 4756 */ 4757 static int 4758 bxe_ioctl(if_t ifp, 4759 u_long command, 4760 caddr_t data) 4761 { 4762 struct bxe_softc *sc = if_getsoftc(ifp); 4763 struct ifreq *ifr = (struct ifreq *)data; 4764 struct bxe_nvram_data *nvdata; 4765 uint32_t priv_op; 4766 int mask = 0; 4767 int reinit = 0; 4768 int error = 0; 4769 4770 int mtu_min = (ETH_MIN_PACKET_SIZE - ETH_HLEN); 4771 int mtu_max = (MJUM9BYTES - ETH_OVERHEAD - IP_HEADER_ALIGNMENT_PADDING); 4772 4773 switch (command) 4774 { 4775 case SIOCSIFMTU: 4776 BLOGD(sc, DBG_IOCTL, "Received SIOCSIFMTU ioctl (mtu=%d)\n", 4777 ifr->ifr_mtu); 4778 4779 if (sc->mtu == ifr->ifr_mtu) { 4780 /* nothing to change */ 4781 break; 4782 } 4783 4784 if ((ifr->ifr_mtu < mtu_min) || (ifr->ifr_mtu > mtu_max)) { 4785 BLOGE(sc, "Unsupported MTU size %d (range is %d-%d)\n", 4786 ifr->ifr_mtu, mtu_min, mtu_max); 4787 error = EINVAL; 4788 break; 4789 } 4790 4791 atomic_store_rel_int((volatile unsigned int *)&sc->mtu, 4792 (unsigned long)ifr->ifr_mtu); 4793 /* 4794 atomic_store_rel_long((volatile unsigned long *)&if_getmtu(ifp), 4795 (unsigned long)ifr->ifr_mtu); 4796 XXX - Not sure why it needs to be atomic 4797 */ 4798 if_setmtu(ifp, ifr->ifr_mtu); 4799 reinit = 1; 4800 break; 4801 4802 case SIOCSIFFLAGS: 4803 /* toggle the interface state up or down */ 4804 BLOGD(sc, DBG_IOCTL, "Received SIOCSIFFLAGS ioctl\n"); 4805 4806 /* check if the interface is up */ 4807 if (if_getflags(ifp) & IFF_UP) { 4808 if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) { 4809 /* set the receive mode flags */ 4810 bxe_set_rx_mode(sc); 4811 } else { 4812 atomic_store_rel_long(&sc->chip_tq_flags, CHIP_TQ_START); 4813 taskqueue_enqueue(sc->chip_tq, &sc->chip_tq_task); 4814 } 4815 } else { 4816 if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) { 4817 atomic_store_rel_long(&sc->chip_tq_flags, CHIP_TQ_STOP); 4818 taskqueue_enqueue(sc->chip_tq, &sc->chip_tq_task); 4819 } 4820 } 4821 4822 break; 4823 4824 case SIOCADDMULTI: 4825 case SIOCDELMULTI: 4826 /* add/delete multicast addresses */ 4827 BLOGD(sc, DBG_IOCTL, "Received SIOCADDMULTI/SIOCDELMULTI ioctl\n"); 4828 4829 /* check if the interface is up */ 4830 if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) { 4831 /* set the receive mode flags */ 4832 bxe_set_rx_mode(sc); 4833 } 4834 4835 break; 4836 4837 case SIOCSIFCAP: 4838 /* find out which capabilities have changed */ 4839 mask = (ifr->ifr_reqcap ^ if_getcapenable(ifp)); 4840 4841 BLOGD(sc, DBG_IOCTL, "Received SIOCSIFCAP ioctl (mask=0x%08x)\n", 4842 mask); 4843 4844 /* toggle the LRO capabilites enable flag */ 4845 if (mask & IFCAP_LRO) { 4846 if_togglecapenable(ifp, IFCAP_LRO); 4847 BLOGD(sc, DBG_IOCTL, "Turning LRO %s\n", 4848 (if_getcapenable(ifp) & IFCAP_LRO) ? "ON" : "OFF"); 4849 reinit = 1; 4850 } 4851 4852 /* toggle the TXCSUM checksum capabilites enable flag */ 4853 if (mask & IFCAP_TXCSUM) { 4854 if_togglecapenable(ifp, IFCAP_TXCSUM); 4855 BLOGD(sc, DBG_IOCTL, "Turning TXCSUM %s\n", 4856 (if_getcapenable(ifp) & IFCAP_TXCSUM) ? "ON" : "OFF"); 4857 if (if_getcapenable(ifp) & IFCAP_TXCSUM) { 4858 if_sethwassistbits(ifp, (CSUM_IP | 4859 CSUM_TCP | 4860 CSUM_UDP | 4861 CSUM_TSO | 4862 CSUM_TCP_IPV6 | 4863 CSUM_UDP_IPV6), 0); 4864 } else { 4865 if_clearhwassist(ifp); /* XXX */ 4866 } 4867 } 4868 4869 /* toggle the RXCSUM checksum capabilities enable flag */ 4870 if (mask & IFCAP_RXCSUM) { 4871 if_togglecapenable(ifp, IFCAP_RXCSUM); 4872 BLOGD(sc, DBG_IOCTL, "Turning RXCSUM %s\n", 4873 (if_getcapenable(ifp) & IFCAP_RXCSUM) ? "ON" : "OFF"); 4874 if (if_getcapenable(ifp) & IFCAP_RXCSUM) { 4875 if_sethwassistbits(ifp, (CSUM_IP | 4876 CSUM_TCP | 4877 CSUM_UDP | 4878 CSUM_TSO | 4879 CSUM_TCP_IPV6 | 4880 CSUM_UDP_IPV6), 0); 4881 } else { 4882 if_clearhwassist(ifp); /* XXX */ 4883 } 4884 } 4885 4886 /* toggle TSO4 capabilities enabled flag */ 4887 if (mask & IFCAP_TSO4) { 4888 if_togglecapenable(ifp, IFCAP_TSO4); 4889 BLOGD(sc, DBG_IOCTL, "Turning TSO4 %s\n", 4890 (if_getcapenable(ifp) & IFCAP_TSO4) ? "ON" : "OFF"); 4891 } 4892 4893 /* toggle TSO6 capabilities enabled flag */ 4894 if (mask & IFCAP_TSO6) { 4895 if_togglecapenable(ifp, IFCAP_TSO6); 4896 BLOGD(sc, DBG_IOCTL, "Turning TSO6 %s\n", 4897 (if_getcapenable(ifp) & IFCAP_TSO6) ? "ON" : "OFF"); 4898 } 4899 4900 /* toggle VLAN_HWTSO capabilities enabled flag */ 4901 if (mask & IFCAP_VLAN_HWTSO) { 4902 4903 if_togglecapenable(ifp, IFCAP_VLAN_HWTSO); 4904 BLOGD(sc, DBG_IOCTL, "Turning VLAN_HWTSO %s\n", 4905 (if_getcapenable(ifp) & IFCAP_VLAN_HWTSO) ? "ON" : "OFF"); 4906 } 4907 4908 /* toggle VLAN_HWCSUM capabilities enabled flag */ 4909 if (mask & IFCAP_VLAN_HWCSUM) { 4910 /* XXX investigate this... */ 4911 BLOGE(sc, "Changing VLAN_HWCSUM is not supported!\n"); 4912 error = EINVAL; 4913 } 4914 4915 /* toggle VLAN_MTU capabilities enable flag */ 4916 if (mask & IFCAP_VLAN_MTU) { 4917 /* XXX investigate this... */ 4918 BLOGE(sc, "Changing VLAN_MTU is not supported!\n"); 4919 error = EINVAL; 4920 } 4921 4922 /* toggle VLAN_HWTAGGING capabilities enabled flag */ 4923 if (mask & IFCAP_VLAN_HWTAGGING) { 4924 /* XXX investigate this... */ 4925 BLOGE(sc, "Changing VLAN_HWTAGGING is not supported!\n"); 4926 error = EINVAL; 4927 } 4928 4929 /* toggle VLAN_HWFILTER capabilities enabled flag */ 4930 if (mask & IFCAP_VLAN_HWFILTER) { 4931 /* XXX investigate this... */ 4932 BLOGE(sc, "Changing VLAN_HWFILTER is not supported!\n"); 4933 error = EINVAL; 4934 } 4935 4936 /* XXX not yet... 4937 * IFCAP_WOL_MAGIC 4938 */ 4939 4940 break; 4941 4942 case SIOCSIFMEDIA: 4943 case SIOCGIFMEDIA: 4944 /* set/get interface media */ 4945 BLOGD(sc, DBG_IOCTL, 4946 "Received SIOCSIFMEDIA/SIOCGIFMEDIA ioctl (cmd=%lu)\n", 4947 (command & 0xff)); 4948 error = ifmedia_ioctl_drv(ifp, ifr, &sc->ifmedia, command); 4949 break; 4950 4951 case SIOCGPRIVATE_0: 4952 copyin(ifr->ifr_data, &priv_op, sizeof(priv_op)); 4953 4954 switch (priv_op) 4955 { 4956 case BXE_IOC_RD_NVRAM: 4957 case BXE_IOC_WR_NVRAM: 4958 nvdata = (struct bxe_nvram_data *)ifr->ifr_data; 4959 BLOGD(sc, DBG_IOCTL, 4960 "Received Private NVRAM ioctl addr=0x%x size=%u\n", 4961 nvdata->offset, nvdata->len); 4962 error = bxe_ioctl_nvram(sc, priv_op, ifr); 4963 break; 4964 4965 case BXE_IOC_STATS_SHOW_NUM: 4966 case BXE_IOC_STATS_SHOW_STR: 4967 case BXE_IOC_STATS_SHOW_CNT: 4968 BLOGD(sc, DBG_IOCTL, "Received Private Stats ioctl (%d)\n", 4969 priv_op); 4970 error = bxe_ioctl_stats_show(sc, priv_op, ifr); 4971 break; 4972 4973 default: 4974 BLOGW(sc, "Received Private Unknown ioctl (%d)\n", priv_op); 4975 error = EINVAL; 4976 break; 4977 } 4978 4979 break; 4980 4981 default: 4982 BLOGD(sc, DBG_IOCTL, "Received Unknown Ioctl (cmd=%lu)\n", 4983 (command & 0xff)); 4984 error = ether_ioctl_drv(ifp, command, data); 4985 break; 4986 } 4987 4988 if (reinit && (if_getdrvflags(sc->ifp) & IFF_DRV_RUNNING)) { 4989 BLOGD(sc, DBG_LOAD | DBG_IOCTL, 4990 "Re-initializing hardware from IOCTL change\n"); 4991 atomic_store_rel_long(&sc->chip_tq_flags, CHIP_TQ_REINIT); 4992 taskqueue_enqueue(sc->chip_tq, &sc->chip_tq_task); 4993 } 4994 4995 return (error); 4996 } 4997 4998 static __noinline void 4999 bxe_dump_mbuf(struct bxe_softc *sc, 5000 struct mbuf *m, 5001 uint8_t contents) 5002 { 5003 char * type; 5004 int i = 0; 5005 5006 if (!(sc->debug & DBG_MBUF)) { 5007 return; 5008 } 5009 5010 if (m == NULL) { 5011 BLOGD(sc, DBG_MBUF, "mbuf: null pointer\n"); 5012 return; 5013 } 5014 5015 while (m) { 5016 BLOGD(sc, DBG_MBUF, 5017 "%02d: mbuf=%p m_len=%d m_flags=0x%b m_data=%p\n", 5018 i, m, m->m_len, m->m_flags, M_FLAG_BITS, m->m_data); 5019 5020 if (m->m_flags & M_PKTHDR) { 5021 BLOGD(sc, DBG_MBUF, 5022 "%02d: - m_pkthdr: tot_len=%d flags=0x%b csum_flags=%b\n", 5023 i, m->m_pkthdr.len, m->m_flags, M_FLAG_BITS, 5024 (int)m->m_pkthdr.csum_flags, CSUM_BITS); 5025 } 5026 5027 if (m->m_flags & M_EXT) { 5028 switch (m->m_ext.ext_type) { 5029 case EXT_CLUSTER: type = "EXT_CLUSTER"; break; 5030 case EXT_SFBUF: type = "EXT_SFBUF"; break; 5031 case EXT_JUMBOP: type = "EXT_JUMBOP"; break; 5032 case EXT_JUMBO9: type = "EXT_JUMBO9"; break; 5033 case EXT_JUMBO16: type = "EXT_JUMBO16"; break; 5034 case EXT_PACKET: type = "EXT_PACKET"; break; 5035 case EXT_MBUF: type = "EXT_MBUF"; break; 5036 case EXT_NET_DRV: type = "EXT_NET_DRV"; break; 5037 case EXT_MOD_TYPE: type = "EXT_MOD_TYPE"; break; 5038 case EXT_DISPOSABLE: type = "EXT_DISPOSABLE"; break; 5039 case EXT_EXTREF: type = "EXT_EXTREF"; break; 5040 default: type = "UNKNOWN"; break; 5041 } 5042 5043 BLOGD(sc, DBG_MBUF, 5044 "%02d: - m_ext: %p ext_size=%d type=%s\n", 5045 i, m->m_ext.ext_buf, m->m_ext.ext_size, type); 5046 } 5047 5048 if (contents) { 5049 bxe_dump_mbuf_data(sc, "mbuf data", m, TRUE); 5050 } 5051 5052 m = m->m_next; 5053 i++; 5054 } 5055 } 5056 5057 /* 5058 * Checks to ensure the 13 bd sliding window is >= MSS for TSO. 5059 * Check that (13 total bds - 3 bds) = 10 bd window >= MSS. 5060 * The window: 3 bds are = 1 for headers BD + 2 for parse BD and last BD 5061 * The headers comes in a seperate bd in FreeBSD so 13-3=10. 5062 * Returns: 0 if OK to send, 1 if packet needs further defragmentation 5063 */ 5064 static int 5065 bxe_chktso_window(struct bxe_softc *sc, 5066 int nsegs, 5067 bus_dma_segment_t *segs, 5068 struct mbuf *m) 5069 { 5070 uint32_t num_wnds, wnd_size, wnd_sum; 5071 int32_t frag_idx, wnd_idx; 5072 unsigned short lso_mss; 5073 int defrag; 5074 5075 defrag = 0; 5076 wnd_sum = 0; 5077 wnd_size = 10; 5078 num_wnds = nsegs - wnd_size; 5079 lso_mss = htole16(m->m_pkthdr.tso_segsz); 5080 5081 /* 5082 * Total header lengths Eth+IP+TCP in first FreeBSD mbuf so calculate the 5083 * first window sum of data while skipping the first assuming it is the 5084 * header in FreeBSD. 5085 */ 5086 for (frag_idx = 1; (frag_idx <= wnd_size); frag_idx++) { 5087 wnd_sum += htole16(segs[frag_idx].ds_len); 5088 } 5089 5090 /* check the first 10 bd window size */ 5091 if (wnd_sum < lso_mss) { 5092 return (1); 5093 } 5094 5095 /* run through the windows */ 5096 for (wnd_idx = 0; wnd_idx < num_wnds; wnd_idx++, frag_idx++) { 5097 /* subtract the first mbuf->m_len of the last wndw(-header) */ 5098 wnd_sum -= htole16(segs[wnd_idx+1].ds_len); 5099 /* add the next mbuf len to the len of our new window */ 5100 wnd_sum += htole16(segs[frag_idx].ds_len); 5101 if (wnd_sum < lso_mss) { 5102 return (1); 5103 } 5104 } 5105 5106 return (0); 5107 } 5108 5109 static uint8_t 5110 bxe_set_pbd_csum_e2(struct bxe_fastpath *fp, 5111 struct mbuf *m, 5112 uint32_t *parsing_data) 5113 { 5114 struct ether_vlan_header *eh = NULL; 5115 struct ip *ip4 = NULL; 5116 struct ip6_hdr *ip6 = NULL; 5117 caddr_t ip = NULL; 5118 struct tcphdr *th = NULL; 5119 int e_hlen, ip_hlen, l4_off; 5120 uint16_t proto; 5121 5122 if (m->m_pkthdr.csum_flags == CSUM_IP) { 5123 /* no L4 checksum offload needed */ 5124 return (0); 5125 } 5126 5127 /* get the Ethernet header */ 5128 eh = mtod(m, struct ether_vlan_header *); 5129 5130 /* handle VLAN encapsulation if present */ 5131 if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) { 5132 e_hlen = (ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN); 5133 proto = ntohs(eh->evl_proto); 5134 } else { 5135 e_hlen = ETHER_HDR_LEN; 5136 proto = ntohs(eh->evl_encap_proto); 5137 } 5138 5139 switch (proto) { 5140 case ETHERTYPE_IP: 5141 /* get the IP header, if mbuf len < 20 then header in next mbuf */ 5142 ip4 = (m->m_len < sizeof(struct ip)) ? 5143 (struct ip *)m->m_next->m_data : 5144 (struct ip *)(m->m_data + e_hlen); 5145 /* ip_hl is number of 32-bit words */ 5146 ip_hlen = (ip4->ip_hl << 2); 5147 ip = (caddr_t)ip4; 5148 break; 5149 case ETHERTYPE_IPV6: 5150 /* get the IPv6 header, if mbuf len < 40 then header in next mbuf */ 5151 ip6 = (m->m_len < sizeof(struct ip6_hdr)) ? 5152 (struct ip6_hdr *)m->m_next->m_data : 5153 (struct ip6_hdr *)(m->m_data + e_hlen); 5154 /* XXX cannot support offload with IPv6 extensions */ 5155 ip_hlen = sizeof(struct ip6_hdr); 5156 ip = (caddr_t)ip6; 5157 break; 5158 default: 5159 /* We can't offload in this case... */ 5160 /* XXX error stat ??? */ 5161 return (0); 5162 } 5163 5164 /* XXX assuming L4 header is contiguous to IPv4/IPv6 in the same mbuf */ 5165 l4_off = (e_hlen + ip_hlen); 5166 5167 *parsing_data |= 5168 (((l4_off >> 1) << ETH_TX_PARSE_BD_E2_L4_HDR_START_OFFSET_W_SHIFT) & 5169 ETH_TX_PARSE_BD_E2_L4_HDR_START_OFFSET_W); 5170 5171 if (m->m_pkthdr.csum_flags & (CSUM_TCP | 5172 CSUM_TSO | 5173 CSUM_TCP_IPV6)) { 5174 fp->eth_q_stats.tx_ofld_frames_csum_tcp++; 5175 th = (struct tcphdr *)(ip + ip_hlen); 5176 /* th_off is number of 32-bit words */ 5177 *parsing_data |= ((th->th_off << 5178 ETH_TX_PARSE_BD_E2_TCP_HDR_LENGTH_DW_SHIFT) & 5179 ETH_TX_PARSE_BD_E2_TCP_HDR_LENGTH_DW); 5180 return (l4_off + (th->th_off << 2)); /* entire header length */ 5181 } else if (m->m_pkthdr.csum_flags & (CSUM_UDP | 5182 CSUM_UDP_IPV6)) { 5183 fp->eth_q_stats.tx_ofld_frames_csum_udp++; 5184 return (l4_off + sizeof(struct udphdr)); /* entire header length */ 5185 } else { 5186 /* XXX error stat ??? */ 5187 return (0); 5188 } 5189 } 5190 5191 static uint8_t 5192 bxe_set_pbd_csum(struct bxe_fastpath *fp, 5193 struct mbuf *m, 5194 struct eth_tx_parse_bd_e1x *pbd) 5195 { 5196 struct ether_vlan_header *eh = NULL; 5197 struct ip *ip4 = NULL; 5198 struct ip6_hdr *ip6 = NULL; 5199 caddr_t ip = NULL; 5200 struct tcphdr *th = NULL; 5201 struct udphdr *uh = NULL; 5202 int e_hlen, ip_hlen; 5203 uint16_t proto; 5204 uint8_t hlen; 5205 uint16_t tmp_csum; 5206 uint32_t *tmp_uh; 5207 5208 /* get the Ethernet header */ 5209 eh = mtod(m, struct ether_vlan_header *); 5210 5211 /* handle VLAN encapsulation if present */ 5212 if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) { 5213 e_hlen = (ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN); 5214 proto = ntohs(eh->evl_proto); 5215 } else { 5216 e_hlen = ETHER_HDR_LEN; 5217 proto = ntohs(eh->evl_encap_proto); 5218 } 5219 5220 switch (proto) { 5221 case ETHERTYPE_IP: 5222 /* get the IP header, if mbuf len < 20 then header in next mbuf */ 5223 ip4 = (m->m_len < sizeof(struct ip)) ? 5224 (struct ip *)m->m_next->m_data : 5225 (struct ip *)(m->m_data + e_hlen); 5226 /* ip_hl is number of 32-bit words */ 5227 ip_hlen = (ip4->ip_hl << 1); 5228 ip = (caddr_t)ip4; 5229 break; 5230 case ETHERTYPE_IPV6: 5231 /* get the IPv6 header, if mbuf len < 40 then header in next mbuf */ 5232 ip6 = (m->m_len < sizeof(struct ip6_hdr)) ? 5233 (struct ip6_hdr *)m->m_next->m_data : 5234 (struct ip6_hdr *)(m->m_data + e_hlen); 5235 /* XXX cannot support offload with IPv6 extensions */ 5236 ip_hlen = (sizeof(struct ip6_hdr) >> 1); 5237 ip = (caddr_t)ip6; 5238 break; 5239 default: 5240 /* We can't offload in this case... */ 5241 /* XXX error stat ??? */ 5242 return (0); 5243 } 5244 5245 hlen = (e_hlen >> 1); 5246 5247 /* note that rest of global_data is indirectly zeroed here */ 5248 if (m->m_flags & M_VLANTAG) { 5249 pbd->global_data = 5250 htole16(hlen | (1 << ETH_TX_PARSE_BD_E1X_LLC_SNAP_EN_SHIFT)); 5251 } else { 5252 pbd->global_data = htole16(hlen); 5253 } 5254 5255 pbd->ip_hlen_w = ip_hlen; 5256 5257 hlen += pbd->ip_hlen_w; 5258 5259 /* XXX assuming L4 header is contiguous to IPv4/IPv6 in the same mbuf */ 5260 5261 if (m->m_pkthdr.csum_flags & (CSUM_TCP | 5262 CSUM_TSO | 5263 CSUM_TCP_IPV6)) { 5264 th = (struct tcphdr *)(ip + (ip_hlen << 1)); 5265 /* th_off is number of 32-bit words */ 5266 hlen += (uint16_t)(th->th_off << 1); 5267 } else if (m->m_pkthdr.csum_flags & (CSUM_UDP | 5268 CSUM_UDP_IPV6)) { 5269 uh = (struct udphdr *)(ip + (ip_hlen << 1)); 5270 hlen += (sizeof(struct udphdr) / 2); 5271 } else { 5272 /* valid case as only CSUM_IP was set */ 5273 return (0); 5274 } 5275 5276 pbd->total_hlen_w = htole16(hlen); 5277 5278 if (m->m_pkthdr.csum_flags & (CSUM_TCP | 5279 CSUM_TSO | 5280 CSUM_TCP_IPV6)) { 5281 fp->eth_q_stats.tx_ofld_frames_csum_tcp++; 5282 pbd->tcp_pseudo_csum = ntohs(th->th_sum); 5283 } else if (m->m_pkthdr.csum_flags & (CSUM_UDP | 5284 CSUM_UDP_IPV6)) { 5285 fp->eth_q_stats.tx_ofld_frames_csum_udp++; 5286 5287 /* 5288 * Everest1 (i.e. 57710, 57711, 57711E) does not natively support UDP 5289 * checksums and does not know anything about the UDP header and where 5290 * the checksum field is located. It only knows about TCP. Therefore 5291 * we "lie" to the hardware for outgoing UDP packets w/ checksum 5292 * offload. Since the checksum field offset for TCP is 16 bytes and 5293 * for UDP it is 6 bytes we pass a pointer to the hardware that is 10 5294 * bytes less than the start of the UDP header. This allows the 5295 * hardware to write the checksum in the correct spot. But the 5296 * hardware will compute a checksum which includes the last 10 bytes 5297 * of the IP header. To correct this we tweak the stack computed 5298 * pseudo checksum by folding in the calculation of the inverse 5299 * checksum for those final 10 bytes of the IP header. This allows 5300 * the correct checksum to be computed by the hardware. 5301 */ 5302 5303 /* set pointer 10 bytes before UDP header */ 5304 tmp_uh = (uint32_t *)((uint8_t *)uh - 10); 5305 5306 /* calculate a pseudo header checksum over the first 10 bytes */ 5307 tmp_csum = in_pseudo(*tmp_uh, 5308 *(tmp_uh + 1), 5309 *(uint16_t *)(tmp_uh + 2)); 5310 5311 pbd->tcp_pseudo_csum = ntohs(in_addword(uh->uh_sum, ~tmp_csum)); 5312 } 5313 5314 return (hlen * 2); /* entire header length, number of bytes */ 5315 } 5316 5317 static void 5318 bxe_set_pbd_lso_e2(struct mbuf *m, 5319 uint32_t *parsing_data) 5320 { 5321 *parsing_data |= ((m->m_pkthdr.tso_segsz << 5322 ETH_TX_PARSE_BD_E2_LSO_MSS_SHIFT) & 5323 ETH_TX_PARSE_BD_E2_LSO_MSS); 5324 5325 /* XXX test for IPv6 with extension header... */ 5326 #if 0 5327 struct ip6_hdr *ip6; 5328 if (ip6 && ip6->ip6_nxt == 'some ipv6 extension header') 5329 *parsing_data |= ETH_TX_PARSE_BD_E2_IPV6_WITH_EXT_HDR; 5330 #endif 5331 } 5332 5333 static void 5334 bxe_set_pbd_lso(struct mbuf *m, 5335 struct eth_tx_parse_bd_e1x *pbd) 5336 { 5337 struct ether_vlan_header *eh = NULL; 5338 struct ip *ip = NULL; 5339 struct tcphdr *th = NULL; 5340 int e_hlen; 5341 5342 /* get the Ethernet header */ 5343 eh = mtod(m, struct ether_vlan_header *); 5344 5345 /* handle VLAN encapsulation if present */ 5346 e_hlen = (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) ? 5347 (ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN) : ETHER_HDR_LEN; 5348 5349 /* get the IP and TCP header, with LSO entire header in first mbuf */ 5350 /* XXX assuming IPv4 */ 5351 ip = (struct ip *)(m->m_data + e_hlen); 5352 th = (struct tcphdr *)((caddr_t)ip + (ip->ip_hl << 2)); 5353 5354 pbd->lso_mss = htole16(m->m_pkthdr.tso_segsz); 5355 pbd->tcp_send_seq = ntohl(th->th_seq); 5356 pbd->tcp_flags = ((ntohl(((uint32_t *)th)[3]) >> 16) & 0xff); 5357 5358 #if 1 5359 /* XXX IPv4 */ 5360 pbd->ip_id = ntohs(ip->ip_id); 5361 pbd->tcp_pseudo_csum = 5362 ntohs(in_pseudo(ip->ip_src.s_addr, 5363 ip->ip_dst.s_addr, 5364 htons(IPPROTO_TCP))); 5365 #else 5366 /* XXX IPv6 */ 5367 pbd->tcp_pseudo_csum = 5368 ntohs(in_pseudo(&ip6->ip6_src, 5369 &ip6->ip6_dst, 5370 htons(IPPROTO_TCP))); 5371 #endif 5372 5373 pbd->global_data |= 5374 htole16(ETH_TX_PARSE_BD_E1X_PSEUDO_CS_WITHOUT_LEN); 5375 } 5376 5377 /* 5378 * Encapsulte an mbuf cluster into the tx bd chain and makes the memory 5379 * visible to the controller. 5380 * 5381 * If an mbuf is submitted to this routine and cannot be given to the 5382 * controller (e.g. it has too many fragments) then the function may free 5383 * the mbuf and return to the caller. 5384 * 5385 * Returns: 5386 * 0 = Success, !0 = Failure 5387 * Note the side effect that an mbuf may be freed if it causes a problem. 5388 */ 5389 static int 5390 bxe_tx_encap(struct bxe_fastpath *fp, struct mbuf **m_head) 5391 { 5392 bus_dma_segment_t segs[32]; 5393 struct mbuf *m0; 5394 struct bxe_sw_tx_bd *tx_buf; 5395 struct eth_tx_parse_bd_e1x *pbd_e1x = NULL; 5396 struct eth_tx_parse_bd_e2 *pbd_e2 = NULL; 5397 /* struct eth_tx_parse_2nd_bd *pbd2 = NULL; */ 5398 struct eth_tx_bd *tx_data_bd; 5399 struct eth_tx_bd *tx_total_pkt_size_bd; 5400 struct eth_tx_start_bd *tx_start_bd; 5401 uint16_t bd_prod, pkt_prod, total_pkt_size; 5402 uint8_t mac_type; 5403 int defragged, error, nsegs, rc, nbds, vlan_off, ovlan; 5404 struct bxe_softc *sc; 5405 uint16_t tx_bd_avail; 5406 struct ether_vlan_header *eh; 5407 uint32_t pbd_e2_parsing_data = 0; 5408 uint8_t hlen = 0; 5409 int tmp_bd; 5410 int i; 5411 5412 sc = fp->sc; 5413 5414 M_ASSERTPKTHDR(*m_head); 5415 5416 m0 = *m_head; 5417 rc = defragged = nbds = ovlan = vlan_off = total_pkt_size = 0; 5418 tx_start_bd = NULL; 5419 tx_data_bd = NULL; 5420 tx_total_pkt_size_bd = NULL; 5421 5422 /* get the H/W pointer for packets and BDs */ 5423 pkt_prod = fp->tx_pkt_prod; 5424 bd_prod = fp->tx_bd_prod; 5425 5426 mac_type = UNICAST_ADDRESS; 5427 5428 /* map the mbuf into the next open DMAable memory */ 5429 tx_buf = &fp->tx_mbuf_chain[TX_BD(pkt_prod)]; 5430 error = bus_dmamap_load_mbuf_sg(fp->tx_mbuf_tag, 5431 tx_buf->m_map, m0, 5432 segs, &nsegs, BUS_DMA_NOWAIT); 5433 5434 /* mapping errors */ 5435 if(__predict_false(error != 0)) { 5436 fp->eth_q_stats.tx_dma_mapping_failure++; 5437 if (error == ENOMEM) { 5438 /* resource issue, try again later */ 5439 rc = ENOMEM; 5440 } else if (error == EFBIG) { 5441 /* possibly recoverable with defragmentation */ 5442 fp->eth_q_stats.mbuf_defrag_attempts++; 5443 m0 = m_defrag(*m_head, M_NOWAIT); 5444 if (m0 == NULL) { 5445 fp->eth_q_stats.mbuf_defrag_failures++; 5446 rc = ENOBUFS; 5447 } else { 5448 /* defrag successful, try mapping again */ 5449 *m_head = m0; 5450 error = bus_dmamap_load_mbuf_sg(fp->tx_mbuf_tag, 5451 tx_buf->m_map, m0, 5452 segs, &nsegs, BUS_DMA_NOWAIT); 5453 if (error) { 5454 fp->eth_q_stats.tx_dma_mapping_failure++; 5455 rc = error; 5456 } 5457 } 5458 } else { 5459 /* unknown, unrecoverable mapping error */ 5460 BLOGE(sc, "Unknown TX mapping error rc=%d\n", error); 5461 bxe_dump_mbuf(sc, m0, FALSE); 5462 rc = error; 5463 } 5464 5465 goto bxe_tx_encap_continue; 5466 } 5467 5468 tx_bd_avail = bxe_tx_avail(sc, fp); 5469 5470 /* make sure there is enough room in the send queue */ 5471 if (__predict_false(tx_bd_avail < (nsegs + 2))) { 5472 /* Recoverable, try again later. */ 5473 fp->eth_q_stats.tx_hw_queue_full++; 5474 bus_dmamap_unload(fp->tx_mbuf_tag, tx_buf->m_map); 5475 rc = ENOMEM; 5476 goto bxe_tx_encap_continue; 5477 } 5478 5479 /* capture the current H/W TX chain high watermark */ 5480 if (__predict_false(fp->eth_q_stats.tx_hw_max_queue_depth < 5481 (TX_BD_USABLE - tx_bd_avail))) { 5482 fp->eth_q_stats.tx_hw_max_queue_depth = (TX_BD_USABLE - tx_bd_avail); 5483 } 5484 5485 /* make sure it fits in the packet window */ 5486 if (__predict_false(nsegs > BXE_MAX_SEGMENTS)) { 5487 /* 5488 * The mbuf may be to big for the controller to handle. If the frame 5489 * is a TSO frame we'll need to do an additional check. 5490 */ 5491 if (m0->m_pkthdr.csum_flags & CSUM_TSO) { 5492 if (bxe_chktso_window(sc, nsegs, segs, m0) == 0) { 5493 goto bxe_tx_encap_continue; /* OK to send */ 5494 } else { 5495 fp->eth_q_stats.tx_window_violation_tso++; 5496 } 5497 } else { 5498 fp->eth_q_stats.tx_window_violation_std++; 5499 } 5500 5501 /* lets try to defragment this mbuf and remap it */ 5502 fp->eth_q_stats.mbuf_defrag_attempts++; 5503 bus_dmamap_unload(fp->tx_mbuf_tag, tx_buf->m_map); 5504 5505 m0 = m_defrag(*m_head, M_NOWAIT); 5506 if (m0 == NULL) { 5507 fp->eth_q_stats.mbuf_defrag_failures++; 5508 /* Ugh, just drop the frame... :( */ 5509 rc = ENOBUFS; 5510 } else { 5511 /* defrag successful, try mapping again */ 5512 *m_head = m0; 5513 error = bus_dmamap_load_mbuf_sg(fp->tx_mbuf_tag, 5514 tx_buf->m_map, m0, 5515 segs, &nsegs, BUS_DMA_NOWAIT); 5516 if (error) { 5517 fp->eth_q_stats.tx_dma_mapping_failure++; 5518 /* No sense in trying to defrag/copy chain, drop it. :( */ 5519 rc = error; 5520 } 5521 else { 5522 /* if the chain is still too long then drop it */ 5523 if (__predict_false(nsegs > BXE_MAX_SEGMENTS)) { 5524 bus_dmamap_unload(fp->tx_mbuf_tag, tx_buf->m_map); 5525 rc = ENODEV; 5526 } 5527 } 5528 } 5529 } 5530 5531 bxe_tx_encap_continue: 5532 5533 /* Check for errors */ 5534 if (rc) { 5535 if (rc == ENOMEM) { 5536 /* recoverable try again later */ 5537 } else { 5538 fp->eth_q_stats.tx_soft_errors++; 5539 fp->eth_q_stats.mbuf_alloc_tx--; 5540 m_freem(*m_head); 5541 *m_head = NULL; 5542 } 5543 5544 return (rc); 5545 } 5546 5547 /* set flag according to packet type (UNICAST_ADDRESS is default) */ 5548 if (m0->m_flags & M_BCAST) { 5549 mac_type = BROADCAST_ADDRESS; 5550 } else if (m0->m_flags & M_MCAST) { 5551 mac_type = MULTICAST_ADDRESS; 5552 } 5553 5554 /* store the mbuf into the mbuf ring */ 5555 tx_buf->m = m0; 5556 tx_buf->first_bd = fp->tx_bd_prod; 5557 tx_buf->flags = 0; 5558 5559 /* prepare the first transmit (start) BD for the mbuf */ 5560 tx_start_bd = &fp->tx_chain[TX_BD(bd_prod)].start_bd; 5561 5562 BLOGD(sc, DBG_TX, 5563 "sending pkt_prod=%u tx_buf=%p next_idx=%u bd=%u tx_start_bd=%p\n", 5564 pkt_prod, tx_buf, fp->tx_pkt_prod, bd_prod, tx_start_bd); 5565 5566 tx_start_bd->addr_lo = htole32(U64_LO(segs[0].ds_addr)); 5567 tx_start_bd->addr_hi = htole32(U64_HI(segs[0].ds_addr)); 5568 tx_start_bd->nbytes = htole16(segs[0].ds_len); 5569 total_pkt_size += tx_start_bd->nbytes; 5570 tx_start_bd->bd_flags.as_bitfield = ETH_TX_BD_FLAGS_START_BD; 5571 5572 tx_start_bd->general_data = (1 << ETH_TX_START_BD_HDR_NBDS_SHIFT); 5573 5574 /* all frames have at least Start BD + Parsing BD */ 5575 nbds = nsegs + 1; 5576 tx_start_bd->nbd = htole16(nbds); 5577 5578 if (m0->m_flags & M_VLANTAG) { 5579 tx_start_bd->vlan_or_ethertype = htole16(m0->m_pkthdr.ether_vtag); 5580 tx_start_bd->bd_flags.as_bitfield |= 5581 (X_ETH_OUTBAND_VLAN << ETH_TX_BD_FLAGS_VLAN_MODE_SHIFT); 5582 } else { 5583 /* vf tx, start bd must hold the ethertype for fw to enforce it */ 5584 if (IS_VF(sc)) { 5585 /* map ethernet header to find type and header length */ 5586 eh = mtod(m0, struct ether_vlan_header *); 5587 tx_start_bd->vlan_or_ethertype = eh->evl_encap_proto; 5588 } else { 5589 /* used by FW for packet accounting */ 5590 tx_start_bd->vlan_or_ethertype = htole16(fp->tx_pkt_prod); 5591 #if 0 5592 /* 5593 * If NPAR-SD is active then FW should do the tagging regardless 5594 * of value of priority. Otherwise, if priority indicates this is 5595 * a control packet we need to indicate to FW to avoid tagging. 5596 */ 5597 if (!IS_MF_AFEX(sc) && (mbuf priority == PRIO_CONTROL)) { 5598 SET_FLAG(tx_start_bd->general_data, 5599 ETH_TX_START_BD_FORCE_VLAN_MODE, 1); 5600 } 5601 #endif 5602 } 5603 } 5604 5605 /* 5606 * add a parsing BD from the chain. The parsing BD is always added 5607 * though it is only used for TSO and chksum 5608 */ 5609 bd_prod = TX_BD_NEXT(bd_prod); 5610 5611 if (m0->m_pkthdr.csum_flags) { 5612 if (m0->m_pkthdr.csum_flags & CSUM_IP) { 5613 fp->eth_q_stats.tx_ofld_frames_csum_ip++; 5614 tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_IP_CSUM; 5615 } 5616 5617 if (m0->m_pkthdr.csum_flags & CSUM_TCP_IPV6) { 5618 tx_start_bd->bd_flags.as_bitfield |= (ETH_TX_BD_FLAGS_IPV6 | 5619 ETH_TX_BD_FLAGS_L4_CSUM); 5620 } else if (m0->m_pkthdr.csum_flags & CSUM_UDP_IPV6) { 5621 tx_start_bd->bd_flags.as_bitfield |= (ETH_TX_BD_FLAGS_IPV6 | 5622 ETH_TX_BD_FLAGS_IS_UDP | 5623 ETH_TX_BD_FLAGS_L4_CSUM); 5624 } else if ((m0->m_pkthdr.csum_flags & CSUM_TCP) || 5625 (m0->m_pkthdr.csum_flags & CSUM_TSO)) { 5626 tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_L4_CSUM; 5627 } else if (m0->m_pkthdr.csum_flags & CSUM_UDP) { 5628 tx_start_bd->bd_flags.as_bitfield |= (ETH_TX_BD_FLAGS_L4_CSUM | 5629 ETH_TX_BD_FLAGS_IS_UDP); 5630 } 5631 } 5632 5633 if (!CHIP_IS_E1x(sc)) { 5634 pbd_e2 = &fp->tx_chain[TX_BD(bd_prod)].parse_bd_e2; 5635 memset(pbd_e2, 0, sizeof(struct eth_tx_parse_bd_e2)); 5636 5637 if (m0->m_pkthdr.csum_flags) { 5638 hlen = bxe_set_pbd_csum_e2(fp, m0, &pbd_e2_parsing_data); 5639 } 5640 5641 #if 0 5642 /* 5643 * Add the MACs to the parsing BD if the module param was 5644 * explicitly set, if this is a vf, or in switch independent 5645 * mode. 5646 */ 5647 if (sc->flags & BXE_TX_SWITCHING || IS_VF(sc) || IS_MF_SI(sc)) { 5648 eh = mtod(m0, struct ether_vlan_header *); 5649 bxe_set_fw_mac_addr(&pbd_e2->data.mac_addr.src_hi, 5650 &pbd_e2->data.mac_addr.src_mid, 5651 &pbd_e2->data.mac_addr.src_lo, 5652 eh->evl_shost); 5653 bxe_set_fw_mac_addr(&pbd_e2->data.mac_addr.dst_hi, 5654 &pbd_e2->data.mac_addr.dst_mid, 5655 &pbd_e2->data.mac_addr.dst_lo, 5656 eh->evl_dhost); 5657 } 5658 #endif 5659 5660 SET_FLAG(pbd_e2_parsing_data, ETH_TX_PARSE_BD_E2_ETH_ADDR_TYPE, 5661 mac_type); 5662 } else { 5663 uint16_t global_data = 0; 5664 5665 pbd_e1x = &fp->tx_chain[TX_BD(bd_prod)].parse_bd_e1x; 5666 memset(pbd_e1x, 0, sizeof(struct eth_tx_parse_bd_e1x)); 5667 5668 if (m0->m_pkthdr.csum_flags) { 5669 hlen = bxe_set_pbd_csum(fp, m0, pbd_e1x); 5670 } 5671 5672 SET_FLAG(global_data, 5673 ETH_TX_PARSE_BD_E1X_ETH_ADDR_TYPE, mac_type); 5674 pbd_e1x->global_data |= htole16(global_data); 5675 } 5676 5677 /* setup the parsing BD with TSO specific info */ 5678 if (m0->m_pkthdr.csum_flags & CSUM_TSO) { 5679 fp->eth_q_stats.tx_ofld_frames_lso++; 5680 tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_SW_LSO; 5681 5682 if (__predict_false(tx_start_bd->nbytes > hlen)) { 5683 fp->eth_q_stats.tx_ofld_frames_lso_hdr_splits++; 5684 5685 /* split the first BD into header/data making the fw job easy */ 5686 nbds++; 5687 tx_start_bd->nbd = htole16(nbds); 5688 tx_start_bd->nbytes = htole16(hlen); 5689 5690 bd_prod = TX_BD_NEXT(bd_prod); 5691 5692 /* new transmit BD after the tx_parse_bd */ 5693 tx_data_bd = &fp->tx_chain[TX_BD(bd_prod)].reg_bd; 5694 tx_data_bd->addr_hi = htole32(U64_HI(segs[0].ds_addr + hlen)); 5695 tx_data_bd->addr_lo = htole32(U64_LO(segs[0].ds_addr + hlen)); 5696 tx_data_bd->nbytes = htole16(segs[0].ds_len - hlen); 5697 if (tx_total_pkt_size_bd == NULL) { 5698 tx_total_pkt_size_bd = tx_data_bd; 5699 } 5700 5701 BLOGD(sc, DBG_TX, 5702 "TSO split header size is %d (%x:%x) nbds %d\n", 5703 le16toh(tx_start_bd->nbytes), 5704 le32toh(tx_start_bd->addr_hi), 5705 le32toh(tx_start_bd->addr_lo), 5706 nbds); 5707 } 5708 5709 if (!CHIP_IS_E1x(sc)) { 5710 bxe_set_pbd_lso_e2(m0, &pbd_e2_parsing_data); 5711 } else { 5712 bxe_set_pbd_lso(m0, pbd_e1x); 5713 } 5714 } 5715 5716 if (pbd_e2_parsing_data) { 5717 pbd_e2->parsing_data = htole32(pbd_e2_parsing_data); 5718 } 5719 5720 /* prepare remaining BDs, start tx bd contains first seg/frag */ 5721 for (i = 1; i < nsegs ; i++) { 5722 bd_prod = TX_BD_NEXT(bd_prod); 5723 tx_data_bd = &fp->tx_chain[TX_BD(bd_prod)].reg_bd; 5724 tx_data_bd->addr_lo = htole32(U64_LO(segs[i].ds_addr)); 5725 tx_data_bd->addr_hi = htole32(U64_HI(segs[i].ds_addr)); 5726 tx_data_bd->nbytes = htole16(segs[i].ds_len); 5727 if (tx_total_pkt_size_bd == NULL) { 5728 tx_total_pkt_size_bd = tx_data_bd; 5729 } 5730 total_pkt_size += tx_data_bd->nbytes; 5731 } 5732 5733 BLOGD(sc, DBG_TX, "last bd %p\n", tx_data_bd); 5734 5735 if (tx_total_pkt_size_bd != NULL) { 5736 tx_total_pkt_size_bd->total_pkt_bytes = total_pkt_size; 5737 } 5738 5739 if (__predict_false(sc->debug & DBG_TX)) { 5740 tmp_bd = tx_buf->first_bd; 5741 for (i = 0; i < nbds; i++) 5742 { 5743 if (i == 0) { 5744 BLOGD(sc, DBG_TX, 5745 "TX Strt: %p bd=%d nbd=%d vlan=0x%x " 5746 "bd_flags=0x%x hdr_nbds=%d\n", 5747 tx_start_bd, 5748 tmp_bd, 5749 le16toh(tx_start_bd->nbd), 5750 le16toh(tx_start_bd->vlan_or_ethertype), 5751 tx_start_bd->bd_flags.as_bitfield, 5752 (tx_start_bd->general_data & ETH_TX_START_BD_HDR_NBDS)); 5753 } else if (i == 1) { 5754 if (pbd_e1x) { 5755 BLOGD(sc, DBG_TX, 5756 "-> Prse: %p bd=%d global=0x%x ip_hlen_w=%u " 5757 "ip_id=%u lso_mss=%u tcp_flags=0x%x csum=0x%x " 5758 "tcp_seq=%u total_hlen_w=%u\n", 5759 pbd_e1x, 5760 tmp_bd, 5761 pbd_e1x->global_data, 5762 pbd_e1x->ip_hlen_w, 5763 pbd_e1x->ip_id, 5764 pbd_e1x->lso_mss, 5765 pbd_e1x->tcp_flags, 5766 pbd_e1x->tcp_pseudo_csum, 5767 pbd_e1x->tcp_send_seq, 5768 le16toh(pbd_e1x->total_hlen_w)); 5769 } else { /* if (pbd_e2) */ 5770 BLOGD(sc, DBG_TX, 5771 "-> Parse: %p bd=%d dst=%02x:%02x:%02x " 5772 "src=%02x:%02x:%02x parsing_data=0x%x\n", 5773 pbd_e2, 5774 tmp_bd, 5775 pbd_e2->data.mac_addr.dst_hi, 5776 pbd_e2->data.mac_addr.dst_mid, 5777 pbd_e2->data.mac_addr.dst_lo, 5778 pbd_e2->data.mac_addr.src_hi, 5779 pbd_e2->data.mac_addr.src_mid, 5780 pbd_e2->data.mac_addr.src_lo, 5781 pbd_e2->parsing_data); 5782 } 5783 } 5784 5785 if (i != 1) { /* skip parse db as it doesn't hold data */ 5786 tx_data_bd = &fp->tx_chain[TX_BD(tmp_bd)].reg_bd; 5787 BLOGD(sc, DBG_TX, 5788 "-> Frag: %p bd=%d nbytes=%d hi=0x%x lo: 0x%x\n", 5789 tx_data_bd, 5790 tmp_bd, 5791 le16toh(tx_data_bd->nbytes), 5792 le32toh(tx_data_bd->addr_hi), 5793 le32toh(tx_data_bd->addr_lo)); 5794 } 5795 5796 tmp_bd = TX_BD_NEXT(tmp_bd); 5797 } 5798 } 5799 5800 BLOGD(sc, DBG_TX, "doorbell: nbds=%d bd=%u\n", nbds, bd_prod); 5801 5802 /* update TX BD producer index value for next TX */ 5803 bd_prod = TX_BD_NEXT(bd_prod); 5804 5805 /* 5806 * If the chain of tx_bd's describing this frame is adjacent to or spans 5807 * an eth_tx_next_bd element then we need to increment the nbds value. 5808 */ 5809 if (TX_BD_IDX(bd_prod) < nbds) { 5810 nbds++; 5811 } 5812 5813 /* don't allow reordering of writes for nbd and packets */ 5814 mb(); 5815 5816 fp->tx_db.data.prod += nbds; 5817 5818 /* producer points to the next free tx_bd at this point */ 5819 fp->tx_pkt_prod++; 5820 fp->tx_bd_prod = bd_prod; 5821 5822 DOORBELL(sc, fp->index, fp->tx_db.raw); 5823 5824 fp->eth_q_stats.tx_pkts++; 5825 5826 /* Prevent speculative reads from getting ahead of the status block. */ 5827 bus_space_barrier(sc->bar[BAR0].tag, sc->bar[BAR0].handle, 5828 0, 0, BUS_SPACE_BARRIER_READ); 5829 5830 /* Prevent speculative reads from getting ahead of the doorbell. */ 5831 bus_space_barrier(sc->bar[BAR2].tag, sc->bar[BAR2].handle, 5832 0, 0, BUS_SPACE_BARRIER_READ); 5833 5834 return (0); 5835 } 5836 5837 static void 5838 bxe_tx_start_locked(struct bxe_softc *sc, 5839 if_t ifp, 5840 struct bxe_fastpath *fp) 5841 { 5842 struct mbuf *m = NULL; 5843 int tx_count = 0; 5844 uint16_t tx_bd_avail; 5845 5846 BXE_FP_TX_LOCK_ASSERT(fp); 5847 5848 /* keep adding entries while there are frames to send */ 5849 while (!if_sendq_empty(ifp)) { 5850 5851 /* 5852 * check for any frames to send 5853 * dequeue can still be NULL even if queue is not empty 5854 */ 5855 m = if_dequeue(ifp); 5856 if (__predict_false(m == NULL)) { 5857 break; 5858 } 5859 5860 /* the mbuf now belongs to us */ 5861 fp->eth_q_stats.mbuf_alloc_tx++; 5862 5863 /* 5864 * Put the frame into the transmit ring. If we don't have room, 5865 * place the mbuf back at the head of the TX queue, set the 5866 * OACTIVE flag, and wait for the NIC to drain the chain. 5867 */ 5868 if (__predict_false(bxe_tx_encap(fp, &m))) { 5869 fp->eth_q_stats.tx_encap_failures++; 5870 if (m != NULL) { 5871 /* mark the TX queue as full and return the frame */ 5872 if_setdrvflagbits(ifp, IFF_DRV_OACTIVE, 0); 5873 if_sendq_prepend(ifp, m); 5874 fp->eth_q_stats.mbuf_alloc_tx--; 5875 fp->eth_q_stats.tx_queue_xoff++; 5876 } 5877 5878 /* stop looking for more work */ 5879 break; 5880 } 5881 5882 /* the frame was enqueued successfully */ 5883 tx_count++; 5884 5885 /* send a copy of the frame to any BPF listeners. */ 5886 if_etherbpfmtap(ifp, m); 5887 5888 tx_bd_avail = bxe_tx_avail(sc, fp); 5889 5890 /* handle any completions if we're running low */ 5891 if (tx_bd_avail < BXE_TX_CLEANUP_THRESHOLD) { 5892 /* bxe_txeof will set IFF_DRV_OACTIVE appropriately */ 5893 bxe_txeof(sc, fp); 5894 if (if_getdrvflags(ifp) & IFF_DRV_OACTIVE) { 5895 break; 5896 } 5897 } 5898 } 5899 5900 /* all TX packets were dequeued and/or the tx ring is full */ 5901 if (tx_count > 0) { 5902 /* reset the TX watchdog timeout timer */ 5903 fp->watchdog_timer = BXE_TX_TIMEOUT; 5904 } 5905 } 5906 5907 /* Legacy (non-RSS) dispatch routine */ 5908 static void 5909 bxe_tx_start(if_t ifp) 5910 { 5911 struct bxe_softc *sc; 5912 struct bxe_fastpath *fp; 5913 5914 sc = if_getsoftc(ifp); 5915 5916 if (!(if_getdrvflags(ifp) & IFF_DRV_RUNNING)) { 5917 BLOGW(sc, "Interface not running, ignoring transmit request\n"); 5918 return; 5919 } 5920 5921 if (if_getdrvflags(ifp) & IFF_DRV_OACTIVE) { 5922 BLOGW(sc, "Interface TX queue is full, ignoring transmit request\n"); 5923 return; 5924 } 5925 5926 if (!sc->link_vars.link_up) { 5927 BLOGW(sc, "Interface link is down, ignoring transmit request\n"); 5928 return; 5929 } 5930 5931 fp = &sc->fp[0]; 5932 5933 BXE_FP_TX_LOCK(fp); 5934 bxe_tx_start_locked(sc, ifp, fp); 5935 BXE_FP_TX_UNLOCK(fp); 5936 } 5937 5938 #if __FreeBSD_version >= 800000 5939 5940 static int 5941 bxe_tx_mq_start_locked(struct bxe_softc *sc, 5942 if_t ifp, 5943 struct bxe_fastpath *fp, 5944 struct mbuf *m) 5945 { 5946 struct buf_ring *tx_br = fp->tx_br; 5947 struct mbuf *next; 5948 int depth, rc, tx_count; 5949 uint16_t tx_bd_avail; 5950 5951 rc = tx_count = 0; 5952 5953 if (!tx_br) { 5954 BLOGE(sc, "Multiqueue TX and no buf_ring!\n"); 5955 return (EINVAL); 5956 } 5957 5958 /* fetch the depth of the driver queue */ 5959 depth = drbr_inuse_drv(ifp, tx_br); 5960 if (depth > fp->eth_q_stats.tx_max_drbr_queue_depth) { 5961 fp->eth_q_stats.tx_max_drbr_queue_depth = depth; 5962 } 5963 5964 BXE_FP_TX_LOCK_ASSERT(fp); 5965 5966 if (m == NULL) { 5967 /* no new work, check for pending frames */ 5968 next = drbr_dequeue_drv(ifp, tx_br); 5969 } else if (drbr_needs_enqueue_drv(ifp, tx_br)) { 5970 /* have both new and pending work, maintain packet order */ 5971 rc = drbr_enqueue_drv(ifp, tx_br, m); 5972 if (rc != 0) { 5973 fp->eth_q_stats.tx_soft_errors++; 5974 goto bxe_tx_mq_start_locked_exit; 5975 } 5976 next = drbr_dequeue_drv(ifp, tx_br); 5977 } else { 5978 /* new work only and nothing pending */ 5979 next = m; 5980 } 5981 5982 /* keep adding entries while there are frames to send */ 5983 while (next != NULL) { 5984 5985 /* the mbuf now belongs to us */ 5986 fp->eth_q_stats.mbuf_alloc_tx++; 5987 5988 /* 5989 * Put the frame into the transmit ring. If we don't have room, 5990 * place the mbuf back at the head of the TX queue, set the 5991 * OACTIVE flag, and wait for the NIC to drain the chain. 5992 */ 5993 rc = bxe_tx_encap(fp, &next); 5994 if (__predict_false(rc != 0)) { 5995 fp->eth_q_stats.tx_encap_failures++; 5996 if (next != NULL) { 5997 /* mark the TX queue as full and save the frame */ 5998 if_setdrvflagbits(ifp, IFF_DRV_OACTIVE, 0); 5999 /* XXX this may reorder the frame */ 6000 rc = drbr_enqueue_drv(ifp, tx_br, next); 6001 fp->eth_q_stats.mbuf_alloc_tx--; 6002 fp->eth_q_stats.tx_frames_deferred++; 6003 } 6004 6005 /* stop looking for more work */ 6006 break; 6007 } 6008 6009 /* the transmit frame was enqueued successfully */ 6010 tx_count++; 6011 6012 /* send a copy of the frame to any BPF listeners */ 6013 if_etherbpfmtap(ifp, next); 6014 6015 tx_bd_avail = bxe_tx_avail(sc, fp); 6016 6017 /* handle any completions if we're running low */ 6018 if (tx_bd_avail < BXE_TX_CLEANUP_THRESHOLD) { 6019 /* bxe_txeof will set IFF_DRV_OACTIVE appropriately */ 6020 bxe_txeof(sc, fp); 6021 if (if_getdrvflags(ifp) & IFF_DRV_OACTIVE) { 6022 break; 6023 } 6024 } 6025 6026 next = drbr_dequeue_drv(ifp, tx_br); 6027 } 6028 6029 /* all TX packets were dequeued and/or the tx ring is full */ 6030 if (tx_count > 0) { 6031 /* reset the TX watchdog timeout timer */ 6032 fp->watchdog_timer = BXE_TX_TIMEOUT; 6033 } 6034 6035 bxe_tx_mq_start_locked_exit: 6036 6037 return (rc); 6038 } 6039 6040 /* Multiqueue (TSS) dispatch routine. */ 6041 static int 6042 bxe_tx_mq_start(struct ifnet *ifp, 6043 struct mbuf *m) 6044 { 6045 struct bxe_softc *sc = if_getsoftc(ifp); 6046 struct bxe_fastpath *fp; 6047 int fp_index, rc; 6048 6049 fp_index = 0; /* default is the first queue */ 6050 6051 /* change the queue if using flow ID */ 6052 if ((m->m_flags & M_FLOWID) != 0) { 6053 fp_index = (m->m_pkthdr.flowid % sc->num_queues); 6054 } 6055 6056 fp = &sc->fp[fp_index]; 6057 6058 if (!(if_getdrvflags(ifp) & IFF_DRV_RUNNING)) { 6059 BLOGW(sc, "Interface not running, ignoring transmit request\n"); 6060 return (ENETDOWN); 6061 } 6062 6063 if (if_getdrvflags(ifp) & IFF_DRV_OACTIVE) { 6064 BLOGW(sc, "Interface TX queue is full, ignoring transmit request\n"); 6065 return (EBUSY); 6066 } 6067 6068 if (!sc->link_vars.link_up) { 6069 BLOGW(sc, "Interface link is down, ignoring transmit request\n"); 6070 return (ENETDOWN); 6071 } 6072 6073 /* XXX change to TRYLOCK here and if failed then schedule taskqueue */ 6074 6075 BXE_FP_TX_LOCK(fp); 6076 rc = bxe_tx_mq_start_locked(sc, ifp, fp, m); 6077 BXE_FP_TX_UNLOCK(fp); 6078 6079 return (rc); 6080 } 6081 6082 static void 6083 bxe_mq_flush(struct ifnet *ifp) 6084 { 6085 struct bxe_softc *sc = if_getsoftc(ifp); 6086 struct bxe_fastpath *fp; 6087 struct mbuf *m; 6088 int i; 6089 6090 for (i = 0; i < sc->num_queues; i++) { 6091 fp = &sc->fp[i]; 6092 6093 if (fp->state != BXE_FP_STATE_OPEN) { 6094 BLOGD(sc, DBG_LOAD, "Not clearing fp[%02d] buf_ring (state=%d)\n", 6095 fp->index, fp->state); 6096 continue; 6097 } 6098 6099 if (fp->tx_br != NULL) { 6100 BLOGD(sc, DBG_LOAD, "Clearing fp[%02d] buf_ring\n", fp->index); 6101 BXE_FP_TX_LOCK(fp); 6102 while ((m = buf_ring_dequeue_sc(fp->tx_br)) != NULL) { 6103 m_freem(m); 6104 } 6105 BXE_FP_TX_UNLOCK(fp); 6106 } 6107 } 6108 6109 if_qflush_drv(ifp); 6110 } 6111 6112 #endif /* FreeBSD_version >= 800000 */ 6113 6114 static uint16_t 6115 bxe_cid_ilt_lines(struct bxe_softc *sc) 6116 { 6117 if (IS_SRIOV(sc)) { 6118 return ((BXE_FIRST_VF_CID + BXE_VF_CIDS) / ILT_PAGE_CIDS); 6119 } 6120 return (L2_ILT_LINES(sc)); 6121 } 6122 6123 static void 6124 bxe_ilt_set_info(struct bxe_softc *sc) 6125 { 6126 struct ilt_client_info *ilt_client; 6127 struct ecore_ilt *ilt = sc->ilt; 6128 uint16_t line = 0; 6129 6130 ilt->start_line = FUNC_ILT_BASE(SC_FUNC(sc)); 6131 BLOGD(sc, DBG_LOAD, "ilt starts at line %d\n", ilt->start_line); 6132 6133 /* CDU */ 6134 ilt_client = &ilt->clients[ILT_CLIENT_CDU]; 6135 ilt_client->client_num = ILT_CLIENT_CDU; 6136 ilt_client->page_size = CDU_ILT_PAGE_SZ; 6137 ilt_client->flags = ILT_CLIENT_SKIP_MEM; 6138 ilt_client->start = line; 6139 line += bxe_cid_ilt_lines(sc); 6140 6141 if (CNIC_SUPPORT(sc)) { 6142 line += CNIC_ILT_LINES; 6143 } 6144 6145 ilt_client->end = (line - 1); 6146 6147 BLOGD(sc, DBG_LOAD, 6148 "ilt client[CDU]: start %d, end %d, " 6149 "psz 0x%x, flags 0x%x, hw psz %d\n", 6150 ilt_client->start, ilt_client->end, 6151 ilt_client->page_size, 6152 ilt_client->flags, 6153 ilog2(ilt_client->page_size >> 12)); 6154 6155 /* QM */ 6156 if (QM_INIT(sc->qm_cid_count)) { 6157 ilt_client = &ilt->clients[ILT_CLIENT_QM]; 6158 ilt_client->client_num = ILT_CLIENT_QM; 6159 ilt_client->page_size = QM_ILT_PAGE_SZ; 6160 ilt_client->flags = 0; 6161 ilt_client->start = line; 6162 6163 /* 4 bytes for each cid */ 6164 line += DIV_ROUND_UP(sc->qm_cid_count * QM_QUEUES_PER_FUNC * 4, 6165 QM_ILT_PAGE_SZ); 6166 6167 ilt_client->end = (line - 1); 6168 6169 BLOGD(sc, DBG_LOAD, 6170 "ilt client[QM]: start %d, end %d, " 6171 "psz 0x%x, flags 0x%x, hw psz %d\n", 6172 ilt_client->start, ilt_client->end, 6173 ilt_client->page_size, ilt_client->flags, 6174 ilog2(ilt_client->page_size >> 12)); 6175 } 6176 6177 if (CNIC_SUPPORT(sc)) { 6178 /* SRC */ 6179 ilt_client = &ilt->clients[ILT_CLIENT_SRC]; 6180 ilt_client->client_num = ILT_CLIENT_SRC; 6181 ilt_client->page_size = SRC_ILT_PAGE_SZ; 6182 ilt_client->flags = 0; 6183 ilt_client->start = line; 6184 line += SRC_ILT_LINES; 6185 ilt_client->end = (line - 1); 6186 6187 BLOGD(sc, DBG_LOAD, 6188 "ilt client[SRC]: start %d, end %d, " 6189 "psz 0x%x, flags 0x%x, hw psz %d\n", 6190 ilt_client->start, ilt_client->end, 6191 ilt_client->page_size, ilt_client->flags, 6192 ilog2(ilt_client->page_size >> 12)); 6193 6194 /* TM */ 6195 ilt_client = &ilt->clients[ILT_CLIENT_TM]; 6196 ilt_client->client_num = ILT_CLIENT_TM; 6197 ilt_client->page_size = TM_ILT_PAGE_SZ; 6198 ilt_client->flags = 0; 6199 ilt_client->start = line; 6200 line += TM_ILT_LINES; 6201 ilt_client->end = (line - 1); 6202 6203 BLOGD(sc, DBG_LOAD, 6204 "ilt client[TM]: start %d, end %d, " 6205 "psz 0x%x, flags 0x%x, hw psz %d\n", 6206 ilt_client->start, ilt_client->end, 6207 ilt_client->page_size, ilt_client->flags, 6208 ilog2(ilt_client->page_size >> 12)); 6209 } 6210 6211 KASSERT((line <= ILT_MAX_LINES), ("Invalid number of ILT lines!")); 6212 } 6213 6214 static void 6215 bxe_set_fp_rx_buf_size(struct bxe_softc *sc) 6216 { 6217 int i; 6218 6219 BLOGD(sc, DBG_LOAD, "mtu = %d\n", sc->mtu); 6220 6221 for (i = 0; i < sc->num_queues; i++) { 6222 /* get the Rx buffer size for RX frames */ 6223 sc->fp[i].rx_buf_size = 6224 (IP_HEADER_ALIGNMENT_PADDING + 6225 ETH_OVERHEAD + 6226 sc->mtu); 6227 6228 BLOGD(sc, DBG_LOAD, "rx_buf_size for fp[%02d] = %d\n", 6229 i, sc->fp[i].rx_buf_size); 6230 6231 /* get the mbuf allocation size for RX frames */ 6232 if (sc->fp[i].rx_buf_size <= MCLBYTES) { 6233 sc->fp[i].mbuf_alloc_size = MCLBYTES; 6234 } else if (sc->fp[i].rx_buf_size <= BCM_PAGE_SIZE) { 6235 sc->fp[i].mbuf_alloc_size = PAGE_SIZE; 6236 } else { 6237 sc->fp[i].mbuf_alloc_size = MJUM9BYTES; 6238 } 6239 6240 BLOGD(sc, DBG_LOAD, "mbuf_alloc_size for fp[%02d] = %d\n", 6241 i, sc->fp[i].mbuf_alloc_size); 6242 } 6243 } 6244 6245 static int 6246 bxe_alloc_ilt_mem(struct bxe_softc *sc) 6247 { 6248 int rc = 0; 6249 6250 if ((sc->ilt = 6251 (struct ecore_ilt *)malloc(sizeof(struct ecore_ilt), 6252 M_BXE_ILT, 6253 (M_NOWAIT | M_ZERO))) == NULL) { 6254 rc = 1; 6255 } 6256 6257 return (rc); 6258 } 6259 6260 static int 6261 bxe_alloc_ilt_lines_mem(struct bxe_softc *sc) 6262 { 6263 int rc = 0; 6264 6265 if ((sc->ilt->lines = 6266 (struct ilt_line *)malloc((sizeof(struct ilt_line) * ILT_MAX_LINES), 6267 M_BXE_ILT, 6268 (M_NOWAIT | M_ZERO))) == NULL) { 6269 rc = 1; 6270 } 6271 6272 return (rc); 6273 } 6274 6275 static void 6276 bxe_free_ilt_mem(struct bxe_softc *sc) 6277 { 6278 if (sc->ilt != NULL) { 6279 free(sc->ilt, M_BXE_ILT); 6280 sc->ilt = NULL; 6281 } 6282 } 6283 6284 static void 6285 bxe_free_ilt_lines_mem(struct bxe_softc *sc) 6286 { 6287 if (sc->ilt->lines != NULL) { 6288 free(sc->ilt->lines, M_BXE_ILT); 6289 sc->ilt->lines = NULL; 6290 } 6291 } 6292 6293 static void 6294 bxe_free_mem(struct bxe_softc *sc) 6295 { 6296 int i; 6297 6298 #if 0 6299 if (!CONFIGURE_NIC_MODE(sc)) { 6300 /* free searcher T2 table */ 6301 bxe_dma_free(sc, &sc->t2); 6302 } 6303 #endif 6304 6305 for (i = 0; i < L2_ILT_LINES(sc); i++) { 6306 bxe_dma_free(sc, &sc->context[i].vcxt_dma); 6307 sc->context[i].vcxt = NULL; 6308 sc->context[i].size = 0; 6309 } 6310 6311 ecore_ilt_mem_op(sc, ILT_MEMOP_FREE); 6312 6313 bxe_free_ilt_lines_mem(sc); 6314 6315 #if 0 6316 bxe_iov_free_mem(sc); 6317 #endif 6318 } 6319 6320 static int 6321 bxe_alloc_mem(struct bxe_softc *sc) 6322 { 6323 int context_size; 6324 int allocated; 6325 int i; 6326 6327 #if 0 6328 if (!CONFIGURE_NIC_MODE(sc)) { 6329 /* allocate searcher T2 table */ 6330 if (bxe_dma_alloc(sc, SRC_T2_SZ, 6331 &sc->t2, "searcher t2 table") != 0) { 6332 return (-1); 6333 } 6334 } 6335 #endif 6336 6337 /* 6338 * Allocate memory for CDU context: 6339 * This memory is allocated separately and not in the generic ILT 6340 * functions because CDU differs in few aspects: 6341 * 1. There can be multiple entities allocating memory for context - 6342 * regular L2, CNIC, and SRIOV drivers. Each separately controls 6343 * its own ILT lines. 6344 * 2. Since CDU page-size is not a single 4KB page (which is the case 6345 * for the other ILT clients), to be efficient we want to support 6346 * allocation of sub-page-size in the last entry. 6347 * 3. Context pointers are used by the driver to pass to FW / update 6348 * the context (for the other ILT clients the pointers are used just to 6349 * free the memory during unload). 6350 */ 6351 context_size = (sizeof(union cdu_context) * BXE_L2_CID_COUNT(sc)); 6352 for (i = 0, allocated = 0; allocated < context_size; i++) { 6353 sc->context[i].size = min(CDU_ILT_PAGE_SZ, 6354 (context_size - allocated)); 6355 6356 if (bxe_dma_alloc(sc, sc->context[i].size, 6357 &sc->context[i].vcxt_dma, 6358 "cdu context") != 0) { 6359 bxe_free_mem(sc); 6360 return (-1); 6361 } 6362 6363 sc->context[i].vcxt = 6364 (union cdu_context *)sc->context[i].vcxt_dma.vaddr; 6365 6366 allocated += sc->context[i].size; 6367 } 6368 6369 bxe_alloc_ilt_lines_mem(sc); 6370 6371 BLOGD(sc, DBG_LOAD, "ilt=%p start_line=%u lines=%p\n", 6372 sc->ilt, sc->ilt->start_line, sc->ilt->lines); 6373 { 6374 for (i = 0; i < 4; i++) { 6375 BLOGD(sc, DBG_LOAD, 6376 "c%d page_size=%u start=%u end=%u num=%u flags=0x%x\n", 6377 i, 6378 sc->ilt->clients[i].page_size, 6379 sc->ilt->clients[i].start, 6380 sc->ilt->clients[i].end, 6381 sc->ilt->clients[i].client_num, 6382 sc->ilt->clients[i].flags); 6383 } 6384 } 6385 if (ecore_ilt_mem_op(sc, ILT_MEMOP_ALLOC)) { 6386 BLOGE(sc, "ecore_ilt_mem_op ILT_MEMOP_ALLOC failed\n"); 6387 bxe_free_mem(sc); 6388 return (-1); 6389 } 6390 6391 #if 0 6392 if (bxe_iov_alloc_mem(sc)) { 6393 BLOGE(sc, "Failed to allocate memory for SRIOV\n"); 6394 bxe_free_mem(sc); 6395 return (-1); 6396 } 6397 #endif 6398 6399 return (0); 6400 } 6401 6402 static void 6403 bxe_free_rx_bd_chain(struct bxe_fastpath *fp) 6404 { 6405 struct bxe_softc *sc; 6406 int i; 6407 6408 sc = fp->sc; 6409 6410 if (fp->rx_mbuf_tag == NULL) { 6411 return; 6412 } 6413 6414 /* free all mbufs and unload all maps */ 6415 for (i = 0; i < RX_BD_TOTAL; i++) { 6416 if (fp->rx_mbuf_chain[i].m_map != NULL) { 6417 bus_dmamap_sync(fp->rx_mbuf_tag, 6418 fp->rx_mbuf_chain[i].m_map, 6419 BUS_DMASYNC_POSTREAD); 6420 bus_dmamap_unload(fp->rx_mbuf_tag, 6421 fp->rx_mbuf_chain[i].m_map); 6422 } 6423 6424 if (fp->rx_mbuf_chain[i].m != NULL) { 6425 m_freem(fp->rx_mbuf_chain[i].m); 6426 fp->rx_mbuf_chain[i].m = NULL; 6427 fp->eth_q_stats.mbuf_alloc_rx--; 6428 } 6429 } 6430 } 6431 6432 static void 6433 bxe_free_tpa_pool(struct bxe_fastpath *fp) 6434 { 6435 struct bxe_softc *sc; 6436 int i, max_agg_queues; 6437 6438 sc = fp->sc; 6439 6440 if (fp->rx_mbuf_tag == NULL) { 6441 return; 6442 } 6443 6444 max_agg_queues = MAX_AGG_QS(sc); 6445 6446 /* release all mbufs and unload all DMA maps in the TPA pool */ 6447 for (i = 0; i < max_agg_queues; i++) { 6448 if (fp->rx_tpa_info[i].bd.m_map != NULL) { 6449 bus_dmamap_sync(fp->rx_mbuf_tag, 6450 fp->rx_tpa_info[i].bd.m_map, 6451 BUS_DMASYNC_POSTREAD); 6452 bus_dmamap_unload(fp->rx_mbuf_tag, 6453 fp->rx_tpa_info[i].bd.m_map); 6454 } 6455 6456 if (fp->rx_tpa_info[i].bd.m != NULL) { 6457 m_freem(fp->rx_tpa_info[i].bd.m); 6458 fp->rx_tpa_info[i].bd.m = NULL; 6459 fp->eth_q_stats.mbuf_alloc_tpa--; 6460 } 6461 } 6462 } 6463 6464 static void 6465 bxe_free_sge_chain(struct bxe_fastpath *fp) 6466 { 6467 struct bxe_softc *sc; 6468 int i; 6469 6470 sc = fp->sc; 6471 6472 if (fp->rx_sge_mbuf_tag == NULL) { 6473 return; 6474 } 6475 6476 /* rree all mbufs and unload all maps */ 6477 for (i = 0; i < RX_SGE_TOTAL; i++) { 6478 if (fp->rx_sge_mbuf_chain[i].m_map != NULL) { 6479 bus_dmamap_sync(fp->rx_sge_mbuf_tag, 6480 fp->rx_sge_mbuf_chain[i].m_map, 6481 BUS_DMASYNC_POSTREAD); 6482 bus_dmamap_unload(fp->rx_sge_mbuf_tag, 6483 fp->rx_sge_mbuf_chain[i].m_map); 6484 } 6485 6486 if (fp->rx_sge_mbuf_chain[i].m != NULL) { 6487 m_freem(fp->rx_sge_mbuf_chain[i].m); 6488 fp->rx_sge_mbuf_chain[i].m = NULL; 6489 fp->eth_q_stats.mbuf_alloc_sge--; 6490 } 6491 } 6492 } 6493 6494 static void 6495 bxe_free_fp_buffers(struct bxe_softc *sc) 6496 { 6497 struct bxe_fastpath *fp; 6498 int i; 6499 6500 for (i = 0; i < sc->num_queues; i++) { 6501 fp = &sc->fp[i]; 6502 6503 #if __FreeBSD_version >= 800000 6504 if (fp->tx_br != NULL) { 6505 struct mbuf *m; 6506 /* just in case bxe_mq_flush() wasn't called */ 6507 while ((m = buf_ring_dequeue_sc(fp->tx_br)) != NULL) { 6508 m_freem(m); 6509 } 6510 buf_ring_free(fp->tx_br, M_DEVBUF); 6511 fp->tx_br = NULL; 6512 } 6513 #endif 6514 6515 /* free all RX buffers */ 6516 bxe_free_rx_bd_chain(fp); 6517 bxe_free_tpa_pool(fp); 6518 bxe_free_sge_chain(fp); 6519 6520 if (fp->eth_q_stats.mbuf_alloc_rx != 0) { 6521 BLOGE(sc, "failed to claim all rx mbufs (%d left)\n", 6522 fp->eth_q_stats.mbuf_alloc_rx); 6523 } 6524 6525 if (fp->eth_q_stats.mbuf_alloc_sge != 0) { 6526 BLOGE(sc, "failed to claim all sge mbufs (%d left)\n", 6527 fp->eth_q_stats.mbuf_alloc_sge); 6528 } 6529 6530 if (fp->eth_q_stats.mbuf_alloc_tpa != 0) { 6531 BLOGE(sc, "failed to claim all sge mbufs (%d left)\n", 6532 fp->eth_q_stats.mbuf_alloc_tpa); 6533 } 6534 6535 if (fp->eth_q_stats.mbuf_alloc_tx != 0) { 6536 BLOGE(sc, "failed to release tx mbufs (%d left)\n", 6537 fp->eth_q_stats.mbuf_alloc_tx); 6538 } 6539 6540 /* XXX verify all mbufs were reclaimed */ 6541 6542 if (mtx_initialized(&fp->tx_mtx)) { 6543 mtx_destroy(&fp->tx_mtx); 6544 } 6545 6546 if (mtx_initialized(&fp->rx_mtx)) { 6547 mtx_destroy(&fp->rx_mtx); 6548 } 6549 } 6550 } 6551 6552 static int 6553 bxe_alloc_rx_bd_mbuf(struct bxe_fastpath *fp, 6554 uint16_t prev_index, 6555 uint16_t index) 6556 { 6557 struct bxe_sw_rx_bd *rx_buf; 6558 struct eth_rx_bd *rx_bd; 6559 bus_dma_segment_t segs[1]; 6560 bus_dmamap_t map; 6561 struct mbuf *m; 6562 int nsegs, rc; 6563 6564 rc = 0; 6565 6566 /* allocate the new RX BD mbuf */ 6567 m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, fp->mbuf_alloc_size); 6568 if (__predict_false(m == NULL)) { 6569 fp->eth_q_stats.mbuf_rx_bd_alloc_failed++; 6570 return (ENOBUFS); 6571 } 6572 6573 fp->eth_q_stats.mbuf_alloc_rx++; 6574 6575 /* initialize the mbuf buffer length */ 6576 m->m_pkthdr.len = m->m_len = fp->rx_buf_size; 6577 6578 /* map the mbuf into non-paged pool */ 6579 rc = bus_dmamap_load_mbuf_sg(fp->rx_mbuf_tag, 6580 fp->rx_mbuf_spare_map, 6581 m, segs, &nsegs, BUS_DMA_NOWAIT); 6582 if (__predict_false(rc != 0)) { 6583 fp->eth_q_stats.mbuf_rx_bd_mapping_failed++; 6584 m_freem(m); 6585 fp->eth_q_stats.mbuf_alloc_rx--; 6586 return (rc); 6587 } 6588 6589 /* all mbufs must map to a single segment */ 6590 KASSERT((nsegs == 1), ("Too many segments, %d returned!", nsegs)); 6591 6592 /* release any existing RX BD mbuf mappings */ 6593 6594 if (prev_index != index) { 6595 rx_buf = &fp->rx_mbuf_chain[prev_index]; 6596 6597 if (rx_buf->m_map != NULL) { 6598 bus_dmamap_sync(fp->rx_mbuf_tag, rx_buf->m_map, 6599 BUS_DMASYNC_POSTREAD); 6600 bus_dmamap_unload(fp->rx_mbuf_tag, rx_buf->m_map); 6601 } 6602 6603 /* 6604 * We only get here from bxe_rxeof() when the maximum number 6605 * of rx buffers is less than RX_BD_USABLE. bxe_rxeof() already 6606 * holds the mbuf in the prev_index so it's OK to NULL it out 6607 * here without concern of a memory leak. 6608 */ 6609 fp->rx_mbuf_chain[prev_index].m = NULL; 6610 } 6611 6612 rx_buf = &fp->rx_mbuf_chain[index]; 6613 6614 if (rx_buf->m_map != NULL) { 6615 bus_dmamap_sync(fp->rx_mbuf_tag, rx_buf->m_map, 6616 BUS_DMASYNC_POSTREAD); 6617 bus_dmamap_unload(fp->rx_mbuf_tag, rx_buf->m_map); 6618 } 6619 6620 /* save the mbuf and mapping info for a future packet */ 6621 map = (prev_index != index) ? 6622 fp->rx_mbuf_chain[prev_index].m_map : rx_buf->m_map; 6623 rx_buf->m_map = fp->rx_mbuf_spare_map; 6624 fp->rx_mbuf_spare_map = map; 6625 bus_dmamap_sync(fp->rx_mbuf_tag, rx_buf->m_map, 6626 BUS_DMASYNC_PREREAD); 6627 rx_buf->m = m; 6628 6629 rx_bd = &fp->rx_chain[index]; 6630 rx_bd->addr_hi = htole32(U64_HI(segs[0].ds_addr)); 6631 rx_bd->addr_lo = htole32(U64_LO(segs[0].ds_addr)); 6632 6633 return (rc); 6634 } 6635 6636 static int 6637 bxe_alloc_rx_tpa_mbuf(struct bxe_fastpath *fp, 6638 int queue) 6639 { 6640 struct bxe_sw_tpa_info *tpa_info = &fp->rx_tpa_info[queue]; 6641 bus_dma_segment_t segs[1]; 6642 bus_dmamap_t map; 6643 struct mbuf *m; 6644 int nsegs; 6645 int rc = 0; 6646 6647 /* allocate the new TPA mbuf */ 6648 m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, fp->mbuf_alloc_size); 6649 if (__predict_false(m == NULL)) { 6650 fp->eth_q_stats.mbuf_rx_tpa_alloc_failed++; 6651 return (ENOBUFS); 6652 } 6653 6654 fp->eth_q_stats.mbuf_alloc_tpa++; 6655 6656 /* initialize the mbuf buffer length */ 6657 m->m_pkthdr.len = m->m_len = fp->rx_buf_size; 6658 6659 /* map the mbuf into non-paged pool */ 6660 rc = bus_dmamap_load_mbuf_sg(fp->rx_mbuf_tag, 6661 fp->rx_tpa_info_mbuf_spare_map, 6662 m, segs, &nsegs, BUS_DMA_NOWAIT); 6663 if (__predict_false(rc != 0)) { 6664 fp->eth_q_stats.mbuf_rx_tpa_mapping_failed++; 6665 m_free(m); 6666 fp->eth_q_stats.mbuf_alloc_tpa--; 6667 return (rc); 6668 } 6669 6670 /* all mbufs must map to a single segment */ 6671 KASSERT((nsegs == 1), ("Too many segments, %d returned!", nsegs)); 6672 6673 /* release any existing TPA mbuf mapping */ 6674 if (tpa_info->bd.m_map != NULL) { 6675 bus_dmamap_sync(fp->rx_mbuf_tag, tpa_info->bd.m_map, 6676 BUS_DMASYNC_POSTREAD); 6677 bus_dmamap_unload(fp->rx_mbuf_tag, tpa_info->bd.m_map); 6678 } 6679 6680 /* save the mbuf and mapping info for the TPA mbuf */ 6681 map = tpa_info->bd.m_map; 6682 tpa_info->bd.m_map = fp->rx_tpa_info_mbuf_spare_map; 6683 fp->rx_tpa_info_mbuf_spare_map = map; 6684 bus_dmamap_sync(fp->rx_mbuf_tag, tpa_info->bd.m_map, 6685 BUS_DMASYNC_PREREAD); 6686 tpa_info->bd.m = m; 6687 tpa_info->seg = segs[0]; 6688 6689 return (rc); 6690 } 6691 6692 /* 6693 * Allocate an mbuf and assign it to the receive scatter gather chain. The 6694 * caller must take care to save a copy of the existing mbuf in the SG mbuf 6695 * chain. 6696 */ 6697 static int 6698 bxe_alloc_rx_sge_mbuf(struct bxe_fastpath *fp, 6699 uint16_t index) 6700 { 6701 struct bxe_sw_rx_bd *sge_buf; 6702 struct eth_rx_sge *sge; 6703 bus_dma_segment_t segs[1]; 6704 bus_dmamap_t map; 6705 struct mbuf *m; 6706 int nsegs; 6707 int rc = 0; 6708 6709 /* allocate a new SGE mbuf */ 6710 m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, SGE_PAGE_SIZE); 6711 if (__predict_false(m == NULL)) { 6712 fp->eth_q_stats.mbuf_rx_sge_alloc_failed++; 6713 return (ENOMEM); 6714 } 6715 6716 fp->eth_q_stats.mbuf_alloc_sge++; 6717 6718 /* initialize the mbuf buffer length */ 6719 m->m_pkthdr.len = m->m_len = SGE_PAGE_SIZE; 6720 6721 /* map the SGE mbuf into non-paged pool */ 6722 rc = bus_dmamap_load_mbuf_sg(fp->rx_sge_mbuf_tag, 6723 fp->rx_sge_mbuf_spare_map, 6724 m, segs, &nsegs, BUS_DMA_NOWAIT); 6725 if (__predict_false(rc != 0)) { 6726 fp->eth_q_stats.mbuf_rx_sge_mapping_failed++; 6727 m_freem(m); 6728 fp->eth_q_stats.mbuf_alloc_sge--; 6729 return (rc); 6730 } 6731 6732 /* all mbufs must map to a single segment */ 6733 KASSERT((nsegs == 1), ("Too many segments, %d returned!", nsegs)); 6734 6735 sge_buf = &fp->rx_sge_mbuf_chain[index]; 6736 6737 /* release any existing SGE mbuf mapping */ 6738 if (sge_buf->m_map != NULL) { 6739 bus_dmamap_sync(fp->rx_sge_mbuf_tag, sge_buf->m_map, 6740 BUS_DMASYNC_POSTREAD); 6741 bus_dmamap_unload(fp->rx_sge_mbuf_tag, sge_buf->m_map); 6742 } 6743 6744 /* save the mbuf and mapping info for a future packet */ 6745 map = sge_buf->m_map; 6746 sge_buf->m_map = fp->rx_sge_mbuf_spare_map; 6747 fp->rx_sge_mbuf_spare_map = map; 6748 bus_dmamap_sync(fp->rx_sge_mbuf_tag, sge_buf->m_map, 6749 BUS_DMASYNC_PREREAD); 6750 sge_buf->m = m; 6751 6752 sge = &fp->rx_sge_chain[index]; 6753 sge->addr_hi = htole32(U64_HI(segs[0].ds_addr)); 6754 sge->addr_lo = htole32(U64_LO(segs[0].ds_addr)); 6755 6756 return (rc); 6757 } 6758 6759 static __noinline int 6760 bxe_alloc_fp_buffers(struct bxe_softc *sc) 6761 { 6762 struct bxe_fastpath *fp; 6763 int i, j, rc = 0; 6764 int ring_prod, cqe_ring_prod; 6765 int max_agg_queues; 6766 6767 for (i = 0; i < sc->num_queues; i++) { 6768 fp = &sc->fp[i]; 6769 6770 #if __FreeBSD_version >= 800000 6771 fp->tx_br = buf_ring_alloc(BXE_BR_SIZE, M_DEVBUF, 6772 M_NOWAIT, &fp->tx_mtx); 6773 if (fp->tx_br == NULL) { 6774 BLOGE(sc, "buf_ring alloc fail for fp[%02d]\n", i); 6775 goto bxe_alloc_fp_buffers_error; 6776 } 6777 #endif 6778 6779 ring_prod = cqe_ring_prod = 0; 6780 fp->rx_bd_cons = 0; 6781 fp->rx_cq_cons = 0; 6782 6783 /* allocate buffers for the RX BDs in RX BD chain */ 6784 for (j = 0; j < sc->max_rx_bufs; j++) { 6785 rc = bxe_alloc_rx_bd_mbuf(fp, ring_prod, ring_prod); 6786 if (rc != 0) { 6787 BLOGE(sc, "mbuf alloc fail for fp[%02d] rx chain (%d)\n", 6788 i, rc); 6789 goto bxe_alloc_fp_buffers_error; 6790 } 6791 6792 ring_prod = RX_BD_NEXT(ring_prod); 6793 cqe_ring_prod = RCQ_NEXT(cqe_ring_prod); 6794 } 6795 6796 fp->rx_bd_prod = ring_prod; 6797 fp->rx_cq_prod = cqe_ring_prod; 6798 fp->eth_q_stats.rx_calls = fp->eth_q_stats.rx_pkts = 0; 6799 6800 if (if_getcapenable(sc->ifp) & IFCAP_LRO) { 6801 max_agg_queues = MAX_AGG_QS(sc); 6802 6803 fp->tpa_enable = TRUE; 6804 6805 /* fill the TPA pool */ 6806 for (j = 0; j < max_agg_queues; j++) { 6807 rc = bxe_alloc_rx_tpa_mbuf(fp, j); 6808 if (rc != 0) { 6809 BLOGE(sc, "mbuf alloc fail for fp[%02d] TPA queue %d\n", 6810 i, j); 6811 fp->tpa_enable = FALSE; 6812 goto bxe_alloc_fp_buffers_error; 6813 } 6814 6815 fp->rx_tpa_info[j].state = BXE_TPA_STATE_STOP; 6816 } 6817 6818 if (fp->tpa_enable) { 6819 /* fill the RX SGE chain */ 6820 ring_prod = 0; 6821 for (j = 0; j < RX_SGE_USABLE; j++) { 6822 rc = bxe_alloc_rx_sge_mbuf(fp, ring_prod); 6823 if (rc != 0) { 6824 BLOGE(sc, "mbuf alloc fail for fp[%02d] SGE %d\n", 6825 i, ring_prod); 6826 fp->tpa_enable = FALSE; 6827 ring_prod = 0; 6828 goto bxe_alloc_fp_buffers_error; 6829 } 6830 6831 ring_prod = RX_SGE_NEXT(ring_prod); 6832 } 6833 6834 fp->rx_sge_prod = ring_prod; 6835 } 6836 } 6837 } 6838 6839 return (0); 6840 6841 bxe_alloc_fp_buffers_error: 6842 6843 /* unwind what was already allocated */ 6844 bxe_free_rx_bd_chain(fp); 6845 bxe_free_tpa_pool(fp); 6846 bxe_free_sge_chain(fp); 6847 6848 return (ENOBUFS); 6849 } 6850 6851 static void 6852 bxe_free_fw_stats_mem(struct bxe_softc *sc) 6853 { 6854 bxe_dma_free(sc, &sc->fw_stats_dma); 6855 6856 sc->fw_stats_num = 0; 6857 6858 sc->fw_stats_req_size = 0; 6859 sc->fw_stats_req = NULL; 6860 sc->fw_stats_req_mapping = 0; 6861 6862 sc->fw_stats_data_size = 0; 6863 sc->fw_stats_data = NULL; 6864 sc->fw_stats_data_mapping = 0; 6865 } 6866 6867 static int 6868 bxe_alloc_fw_stats_mem(struct bxe_softc *sc) 6869 { 6870 uint8_t num_queue_stats; 6871 int num_groups; 6872 6873 /* number of queues for statistics is number of eth queues */ 6874 num_queue_stats = BXE_NUM_ETH_QUEUES(sc); 6875 6876 /* 6877 * Total number of FW statistics requests = 6878 * 1 for port stats + 1 for PF stats + num of queues 6879 */ 6880 sc->fw_stats_num = (2 + num_queue_stats); 6881 6882 /* 6883 * Request is built from stats_query_header and an array of 6884 * stats_query_cmd_group each of which contains STATS_QUERY_CMD_COUNT 6885 * rules. The real number or requests is configured in the 6886 * stats_query_header. 6887 */ 6888 num_groups = 6889 ((sc->fw_stats_num / STATS_QUERY_CMD_COUNT) + 6890 ((sc->fw_stats_num % STATS_QUERY_CMD_COUNT) ? 1 : 0)); 6891 6892 BLOGD(sc, DBG_LOAD, "stats fw_stats_num %d num_groups %d\n", 6893 sc->fw_stats_num, num_groups); 6894 6895 sc->fw_stats_req_size = 6896 (sizeof(struct stats_query_header) + 6897 (num_groups * sizeof(struct stats_query_cmd_group))); 6898 6899 /* 6900 * Data for statistics requests + stats_counter. 6901 * stats_counter holds per-STORM counters that are incremented when 6902 * STORM has finished with the current request. Memory for FCoE 6903 * offloaded statistics are counted anyway, even if they will not be sent. 6904 * VF stats are not accounted for here as the data of VF stats is stored 6905 * in memory allocated by the VF, not here. 6906 */ 6907 sc->fw_stats_data_size = 6908 (sizeof(struct stats_counter) + 6909 sizeof(struct per_port_stats) + 6910 sizeof(struct per_pf_stats) + 6911 /* sizeof(struct fcoe_statistics_params) + */ 6912 (sizeof(struct per_queue_stats) * num_queue_stats)); 6913 6914 if (bxe_dma_alloc(sc, (sc->fw_stats_req_size + sc->fw_stats_data_size), 6915 &sc->fw_stats_dma, "fw stats") != 0) { 6916 bxe_free_fw_stats_mem(sc); 6917 return (-1); 6918 } 6919 6920 /* set up the shortcuts */ 6921 6922 sc->fw_stats_req = 6923 (struct bxe_fw_stats_req *)sc->fw_stats_dma.vaddr; 6924 sc->fw_stats_req_mapping = sc->fw_stats_dma.paddr; 6925 6926 sc->fw_stats_data = 6927 (struct bxe_fw_stats_data *)((uint8_t *)sc->fw_stats_dma.vaddr + 6928 sc->fw_stats_req_size); 6929 sc->fw_stats_data_mapping = (sc->fw_stats_dma.paddr + 6930 sc->fw_stats_req_size); 6931 6932 BLOGD(sc, DBG_LOAD, "statistics request base address set to %#jx\n", 6933 (uintmax_t)sc->fw_stats_req_mapping); 6934 6935 BLOGD(sc, DBG_LOAD, "statistics data base address set to %#jx\n", 6936 (uintmax_t)sc->fw_stats_data_mapping); 6937 6938 return (0); 6939 } 6940 6941 /* 6942 * Bits map: 6943 * 0-7 - Engine0 load counter. 6944 * 8-15 - Engine1 load counter. 6945 * 16 - Engine0 RESET_IN_PROGRESS bit. 6946 * 17 - Engine1 RESET_IN_PROGRESS bit. 6947 * 18 - Engine0 ONE_IS_LOADED. Set when there is at least one active 6948 * function on the engine 6949 * 19 - Engine1 ONE_IS_LOADED. 6950 * 20 - Chip reset flow bit. When set none-leader must wait for both engines 6951 * leader to complete (check for both RESET_IN_PROGRESS bits and not 6952 * for just the one belonging to its engine). 6953 */ 6954 #define BXE_RECOVERY_GLOB_REG MISC_REG_GENERIC_POR_1 6955 #define BXE_PATH0_LOAD_CNT_MASK 0x000000ff 6956 #define BXE_PATH0_LOAD_CNT_SHIFT 0 6957 #define BXE_PATH1_LOAD_CNT_MASK 0x0000ff00 6958 #define BXE_PATH1_LOAD_CNT_SHIFT 8 6959 #define BXE_PATH0_RST_IN_PROG_BIT 0x00010000 6960 #define BXE_PATH1_RST_IN_PROG_BIT 0x00020000 6961 #define BXE_GLOBAL_RESET_BIT 0x00040000 6962 6963 /* set the GLOBAL_RESET bit, should be run under rtnl lock */ 6964 static void 6965 bxe_set_reset_global(struct bxe_softc *sc) 6966 { 6967 uint32_t val; 6968 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG); 6969 val = REG_RD(sc, BXE_RECOVERY_GLOB_REG); 6970 REG_WR(sc, BXE_RECOVERY_GLOB_REG, val | BXE_GLOBAL_RESET_BIT); 6971 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG); 6972 } 6973 6974 /* clear the GLOBAL_RESET bit, should be run under rtnl lock */ 6975 static void 6976 bxe_clear_reset_global(struct bxe_softc *sc) 6977 { 6978 uint32_t val; 6979 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG); 6980 val = REG_RD(sc, BXE_RECOVERY_GLOB_REG); 6981 REG_WR(sc, BXE_RECOVERY_GLOB_REG, val & (~BXE_GLOBAL_RESET_BIT)); 6982 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG); 6983 } 6984 6985 /* checks the GLOBAL_RESET bit, should be run under rtnl lock */ 6986 static uint8_t 6987 bxe_reset_is_global(struct bxe_softc *sc) 6988 { 6989 uint32_t val = REG_RD(sc, BXE_RECOVERY_GLOB_REG); 6990 BLOGD(sc, DBG_LOAD, "GLOB_REG=0x%08x\n", val); 6991 return (val & BXE_GLOBAL_RESET_BIT) ? TRUE : FALSE; 6992 } 6993 6994 /* clear RESET_IN_PROGRESS bit for the engine, should be run under rtnl lock */ 6995 static void 6996 bxe_set_reset_done(struct bxe_softc *sc) 6997 { 6998 uint32_t val; 6999 uint32_t bit = SC_PATH(sc) ? BXE_PATH1_RST_IN_PROG_BIT : 7000 BXE_PATH0_RST_IN_PROG_BIT; 7001 7002 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG); 7003 7004 val = REG_RD(sc, BXE_RECOVERY_GLOB_REG); 7005 /* Clear the bit */ 7006 val &= ~bit; 7007 REG_WR(sc, BXE_RECOVERY_GLOB_REG, val); 7008 7009 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG); 7010 } 7011 7012 /* set RESET_IN_PROGRESS for the engine, should be run under rtnl lock */ 7013 static void 7014 bxe_set_reset_in_progress(struct bxe_softc *sc) 7015 { 7016 uint32_t val; 7017 uint32_t bit = SC_PATH(sc) ? BXE_PATH1_RST_IN_PROG_BIT : 7018 BXE_PATH0_RST_IN_PROG_BIT; 7019 7020 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG); 7021 7022 val = REG_RD(sc, BXE_RECOVERY_GLOB_REG); 7023 /* Set the bit */ 7024 val |= bit; 7025 REG_WR(sc, BXE_RECOVERY_GLOB_REG, val); 7026 7027 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG); 7028 } 7029 7030 /* check RESET_IN_PROGRESS bit for an engine, should be run under rtnl lock */ 7031 static uint8_t 7032 bxe_reset_is_done(struct bxe_softc *sc, 7033 int engine) 7034 { 7035 uint32_t val = REG_RD(sc, BXE_RECOVERY_GLOB_REG); 7036 uint32_t bit = engine ? BXE_PATH1_RST_IN_PROG_BIT : 7037 BXE_PATH0_RST_IN_PROG_BIT; 7038 7039 /* return false if bit is set */ 7040 return (val & bit) ? FALSE : TRUE; 7041 } 7042 7043 /* get the load status for an engine, should be run under rtnl lock */ 7044 static uint8_t 7045 bxe_get_load_status(struct bxe_softc *sc, 7046 int engine) 7047 { 7048 uint32_t mask = engine ? BXE_PATH1_LOAD_CNT_MASK : 7049 BXE_PATH0_LOAD_CNT_MASK; 7050 uint32_t shift = engine ? BXE_PATH1_LOAD_CNT_SHIFT : 7051 BXE_PATH0_LOAD_CNT_SHIFT; 7052 uint32_t val = REG_RD(sc, BXE_RECOVERY_GLOB_REG); 7053 7054 BLOGD(sc, DBG_LOAD, "Old value for GLOB_REG=0x%08x\n", val); 7055 7056 val = ((val & mask) >> shift); 7057 7058 BLOGD(sc, DBG_LOAD, "Load mask engine %d = 0x%08x\n", engine, val); 7059 7060 return (val != 0); 7061 } 7062 7063 /* set pf load mark */ 7064 /* XXX needs to be under rtnl lock */ 7065 static void 7066 bxe_set_pf_load(struct bxe_softc *sc) 7067 { 7068 uint32_t val; 7069 uint32_t val1; 7070 uint32_t mask = SC_PATH(sc) ? BXE_PATH1_LOAD_CNT_MASK : 7071 BXE_PATH0_LOAD_CNT_MASK; 7072 uint32_t shift = SC_PATH(sc) ? BXE_PATH1_LOAD_CNT_SHIFT : 7073 BXE_PATH0_LOAD_CNT_SHIFT; 7074 7075 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG); 7076 7077 val = REG_RD(sc, BXE_RECOVERY_GLOB_REG); 7078 BLOGD(sc, DBG_LOAD, "Old value for GLOB_REG=0x%08x\n", val); 7079 7080 /* get the current counter value */ 7081 val1 = ((val & mask) >> shift); 7082 7083 /* set bit of this PF */ 7084 val1 |= (1 << SC_ABS_FUNC(sc)); 7085 7086 /* clear the old value */ 7087 val &= ~mask; 7088 7089 /* set the new one */ 7090 val |= ((val1 << shift) & mask); 7091 7092 REG_WR(sc, BXE_RECOVERY_GLOB_REG, val); 7093 7094 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG); 7095 } 7096 7097 /* clear pf load mark */ 7098 /* XXX needs to be under rtnl lock */ 7099 static uint8_t 7100 bxe_clear_pf_load(struct bxe_softc *sc) 7101 { 7102 uint32_t val1, val; 7103 uint32_t mask = SC_PATH(sc) ? BXE_PATH1_LOAD_CNT_MASK : 7104 BXE_PATH0_LOAD_CNT_MASK; 7105 uint32_t shift = SC_PATH(sc) ? BXE_PATH1_LOAD_CNT_SHIFT : 7106 BXE_PATH0_LOAD_CNT_SHIFT; 7107 7108 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG); 7109 val = REG_RD(sc, BXE_RECOVERY_GLOB_REG); 7110 BLOGD(sc, DBG_LOAD, "Old GEN_REG_VAL=0x%08x\n", val); 7111 7112 /* get the current counter value */ 7113 val1 = (val & mask) >> shift; 7114 7115 /* clear bit of that PF */ 7116 val1 &= ~(1 << SC_ABS_FUNC(sc)); 7117 7118 /* clear the old value */ 7119 val &= ~mask; 7120 7121 /* set the new one */ 7122 val |= ((val1 << shift) & mask); 7123 7124 REG_WR(sc, BXE_RECOVERY_GLOB_REG, val); 7125 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG); 7126 return (val1 != 0); 7127 } 7128 7129 /* send load requrest to mcp and analyze response */ 7130 static int 7131 bxe_nic_load_request(struct bxe_softc *sc, 7132 uint32_t *load_code) 7133 { 7134 /* init fw_seq */ 7135 sc->fw_seq = 7136 (SHMEM_RD(sc, func_mb[SC_FW_MB_IDX(sc)].drv_mb_header) & 7137 DRV_MSG_SEQ_NUMBER_MASK); 7138 7139 BLOGD(sc, DBG_LOAD, "initial fw_seq 0x%04x\n", sc->fw_seq); 7140 7141 /* get the current FW pulse sequence */ 7142 sc->fw_drv_pulse_wr_seq = 7143 (SHMEM_RD(sc, func_mb[SC_FW_MB_IDX(sc)].drv_pulse_mb) & 7144 DRV_PULSE_SEQ_MASK); 7145 7146 BLOGD(sc, DBG_LOAD, "initial drv_pulse 0x%04x\n", 7147 sc->fw_drv_pulse_wr_seq); 7148 7149 /* load request */ 7150 (*load_code) = bxe_fw_command(sc, DRV_MSG_CODE_LOAD_REQ, 7151 DRV_MSG_CODE_LOAD_REQ_WITH_LFA); 7152 7153 /* if the MCP fails to respond we must abort */ 7154 if (!(*load_code)) { 7155 BLOGE(sc, "MCP response failure!\n"); 7156 return (-1); 7157 } 7158 7159 /* if MCP refused then must abort */ 7160 if ((*load_code) == FW_MSG_CODE_DRV_LOAD_REFUSED) { 7161 BLOGE(sc, "MCP refused load request\n"); 7162 return (-1); 7163 } 7164 7165 return (0); 7166 } 7167 7168 /* 7169 * Check whether another PF has already loaded FW to chip. In virtualized 7170 * environments a pf from anoth VM may have already initialized the device 7171 * including loading FW. 7172 */ 7173 static int 7174 bxe_nic_load_analyze_req(struct bxe_softc *sc, 7175 uint32_t load_code) 7176 { 7177 uint32_t my_fw, loaded_fw; 7178 7179 /* is another pf loaded on this engine? */ 7180 if ((load_code != FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) && 7181 (load_code != FW_MSG_CODE_DRV_LOAD_COMMON)) { 7182 /* build my FW version dword */ 7183 my_fw = (BCM_5710_FW_MAJOR_VERSION + 7184 (BCM_5710_FW_MINOR_VERSION << 8 ) + 7185 (BCM_5710_FW_REVISION_VERSION << 16) + 7186 (BCM_5710_FW_ENGINEERING_VERSION << 24)); 7187 7188 /* read loaded FW from chip */ 7189 loaded_fw = REG_RD(sc, XSEM_REG_PRAM); 7190 BLOGD(sc, DBG_LOAD, "loaded FW 0x%08x / my FW 0x%08x\n", 7191 loaded_fw, my_fw); 7192 7193 /* abort nic load if version mismatch */ 7194 if (my_fw != loaded_fw) { 7195 BLOGE(sc, "FW 0x%08x already loaded (mine is 0x%08x)", 7196 loaded_fw, my_fw); 7197 return (-1); 7198 } 7199 } 7200 7201 return (0); 7202 } 7203 7204 /* mark PMF if applicable */ 7205 static void 7206 bxe_nic_load_pmf(struct bxe_softc *sc, 7207 uint32_t load_code) 7208 { 7209 uint32_t ncsi_oem_data_addr; 7210 7211 if ((load_code == FW_MSG_CODE_DRV_LOAD_COMMON) || 7212 (load_code == FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) || 7213 (load_code == FW_MSG_CODE_DRV_LOAD_PORT)) { 7214 /* 7215 * Barrier here for ordering between the writing to sc->port.pmf here 7216 * and reading it from the periodic task. 7217 */ 7218 sc->port.pmf = 1; 7219 mb(); 7220 } else { 7221 sc->port.pmf = 0; 7222 } 7223 7224 BLOGD(sc, DBG_LOAD, "pmf %d\n", sc->port.pmf); 7225 7226 /* XXX needed? */ 7227 if (load_code == FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) { 7228 if (SHMEM2_HAS(sc, ncsi_oem_data_addr)) { 7229 ncsi_oem_data_addr = SHMEM2_RD(sc, ncsi_oem_data_addr); 7230 if (ncsi_oem_data_addr) { 7231 REG_WR(sc, 7232 (ncsi_oem_data_addr + 7233 offsetof(struct glob_ncsi_oem_data, driver_version)), 7234 0); 7235 } 7236 } 7237 } 7238 } 7239 7240 static void 7241 bxe_read_mf_cfg(struct bxe_softc *sc) 7242 { 7243 int n = (CHIP_IS_MODE_4_PORT(sc) ? 2 : 1); 7244 int abs_func; 7245 int vn; 7246 7247 if (BXE_NOMCP(sc)) { 7248 return; /* what should be the default bvalue in this case */ 7249 } 7250 7251 /* 7252 * The formula for computing the absolute function number is... 7253 * For 2 port configuration (4 functions per port): 7254 * abs_func = 2 * vn + SC_PORT + SC_PATH 7255 * For 4 port configuration (2 functions per port): 7256 * abs_func = 4 * vn + 2 * SC_PORT + SC_PATH 7257 */ 7258 for (vn = VN_0; vn < SC_MAX_VN_NUM(sc); vn++) { 7259 abs_func = (n * (2 * vn + SC_PORT(sc)) + SC_PATH(sc)); 7260 if (abs_func >= E1H_FUNC_MAX) { 7261 break; 7262 } 7263 sc->devinfo.mf_info.mf_config[vn] = 7264 MFCFG_RD(sc, func_mf_config[abs_func].config); 7265 } 7266 7267 if (sc->devinfo.mf_info.mf_config[SC_VN(sc)] & 7268 FUNC_MF_CFG_FUNC_DISABLED) { 7269 BLOGD(sc, DBG_LOAD, "mf_cfg function disabled\n"); 7270 sc->flags |= BXE_MF_FUNC_DIS; 7271 } else { 7272 BLOGD(sc, DBG_LOAD, "mf_cfg function enabled\n"); 7273 sc->flags &= ~BXE_MF_FUNC_DIS; 7274 } 7275 } 7276 7277 /* acquire split MCP access lock register */ 7278 static int bxe_acquire_alr(struct bxe_softc *sc) 7279 { 7280 uint32_t j, val; 7281 7282 for (j = 0; j < 1000; j++) { 7283 val = (1UL << 31); 7284 REG_WR(sc, GRCBASE_MCP + 0x9c, val); 7285 val = REG_RD(sc, GRCBASE_MCP + 0x9c); 7286 if (val & (1L << 31)) 7287 break; 7288 7289 DELAY(5000); 7290 } 7291 7292 if (!(val & (1L << 31))) { 7293 BLOGE(sc, "Cannot acquire MCP access lock register\n"); 7294 return (-1); 7295 } 7296 7297 return (0); 7298 } 7299 7300 /* release split MCP access lock register */ 7301 static void bxe_release_alr(struct bxe_softc *sc) 7302 { 7303 REG_WR(sc, GRCBASE_MCP + 0x9c, 0); 7304 } 7305 7306 static void 7307 bxe_fan_failure(struct bxe_softc *sc) 7308 { 7309 int port = SC_PORT(sc); 7310 uint32_t ext_phy_config; 7311 7312 /* mark the failure */ 7313 ext_phy_config = 7314 SHMEM_RD(sc, dev_info.port_hw_config[port].external_phy_config); 7315 7316 ext_phy_config &= ~PORT_HW_CFG_XGXS_EXT_PHY_TYPE_MASK; 7317 ext_phy_config |= PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE; 7318 SHMEM_WR(sc, dev_info.port_hw_config[port].external_phy_config, 7319 ext_phy_config); 7320 7321 /* log the failure */ 7322 BLOGW(sc, "Fan Failure has caused the driver to shutdown " 7323 "the card to prevent permanent damage. " 7324 "Please contact OEM Support for assistance\n"); 7325 7326 /* XXX */ 7327 #if 1 7328 bxe_panic(sc, ("Schedule task to handle fan failure\n")); 7329 #else 7330 /* 7331 * Schedule device reset (unload) 7332 * This is due to some boards consuming sufficient power when driver is 7333 * up to overheat if fan fails. 7334 */ 7335 bxe_set_bit(BXE_SP_RTNL_FAN_FAILURE, &sc->sp_rtnl_state); 7336 schedule_delayed_work(&sc->sp_rtnl_task, 0); 7337 #endif 7338 } 7339 7340 /* this function is called upon a link interrupt */ 7341 static void 7342 bxe_link_attn(struct bxe_softc *sc) 7343 { 7344 uint32_t pause_enabled = 0; 7345 struct host_port_stats *pstats; 7346 int cmng_fns; 7347 7348 /* Make sure that we are synced with the current statistics */ 7349 bxe_stats_handle(sc, STATS_EVENT_STOP); 7350 7351 elink_link_update(&sc->link_params, &sc->link_vars); 7352 7353 if (sc->link_vars.link_up) { 7354 7355 /* dropless flow control */ 7356 if (!CHIP_IS_E1(sc) && sc->dropless_fc) { 7357 pause_enabled = 0; 7358 7359 if (sc->link_vars.flow_ctrl & ELINK_FLOW_CTRL_TX) { 7360 pause_enabled = 1; 7361 } 7362 7363 REG_WR(sc, 7364 (BAR_USTRORM_INTMEM + 7365 USTORM_ETH_PAUSE_ENABLED_OFFSET(SC_PORT(sc))), 7366 pause_enabled); 7367 } 7368 7369 if (sc->link_vars.mac_type != ELINK_MAC_TYPE_EMAC) { 7370 pstats = BXE_SP(sc, port_stats); 7371 /* reset old mac stats */ 7372 memset(&(pstats->mac_stx[0]), 0, sizeof(struct mac_stx)); 7373 } 7374 7375 if (sc->state == BXE_STATE_OPEN) { 7376 bxe_stats_handle(sc, STATS_EVENT_LINK_UP); 7377 } 7378 } 7379 7380 if (sc->link_vars.link_up && sc->link_vars.line_speed) { 7381 cmng_fns = bxe_get_cmng_fns_mode(sc); 7382 7383 if (cmng_fns != CMNG_FNS_NONE) { 7384 bxe_cmng_fns_init(sc, FALSE, cmng_fns); 7385 storm_memset_cmng(sc, &sc->cmng, SC_PORT(sc)); 7386 } else { 7387 /* rate shaping and fairness are disabled */ 7388 BLOGD(sc, DBG_LOAD, "single function mode without fairness\n"); 7389 } 7390 } 7391 7392 bxe_link_report_locked(sc); 7393 7394 if (IS_MF(sc)) { 7395 ; // XXX bxe_link_sync_notify(sc); 7396 } 7397 } 7398 7399 static void 7400 bxe_attn_int_asserted(struct bxe_softc *sc, 7401 uint32_t asserted) 7402 { 7403 int port = SC_PORT(sc); 7404 uint32_t aeu_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 : 7405 MISC_REG_AEU_MASK_ATTN_FUNC_0; 7406 uint32_t nig_int_mask_addr = port ? NIG_REG_MASK_INTERRUPT_PORT1 : 7407 NIG_REG_MASK_INTERRUPT_PORT0; 7408 uint32_t aeu_mask; 7409 uint32_t nig_mask = 0; 7410 uint32_t reg_addr; 7411 uint32_t igu_acked; 7412 uint32_t cnt; 7413 7414 if (sc->attn_state & asserted) { 7415 BLOGE(sc, "IGU ERROR attn=0x%08x\n", asserted); 7416 } 7417 7418 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port); 7419 7420 aeu_mask = REG_RD(sc, aeu_addr); 7421 7422 BLOGD(sc, DBG_INTR, "aeu_mask 0x%08x newly asserted 0x%08x\n", 7423 aeu_mask, asserted); 7424 7425 aeu_mask &= ~(asserted & 0x3ff); 7426 7427 BLOGD(sc, DBG_INTR, "new mask 0x%08x\n", aeu_mask); 7428 7429 REG_WR(sc, aeu_addr, aeu_mask); 7430 7431 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port); 7432 7433 BLOGD(sc, DBG_INTR, "attn_state 0x%08x\n", sc->attn_state); 7434 sc->attn_state |= asserted; 7435 BLOGD(sc, DBG_INTR, "new state 0x%08x\n", sc->attn_state); 7436 7437 if (asserted & ATTN_HARD_WIRED_MASK) { 7438 if (asserted & ATTN_NIG_FOR_FUNC) { 7439 7440 BXE_PHY_LOCK(sc); 7441 7442 /* save nig interrupt mask */ 7443 nig_mask = REG_RD(sc, nig_int_mask_addr); 7444 7445 /* If nig_mask is not set, no need to call the update function */ 7446 if (nig_mask) { 7447 REG_WR(sc, nig_int_mask_addr, 0); 7448 7449 bxe_link_attn(sc); 7450 } 7451 7452 /* handle unicore attn? */ 7453 } 7454 7455 if (asserted & ATTN_SW_TIMER_4_FUNC) { 7456 BLOGD(sc, DBG_INTR, "ATTN_SW_TIMER_4_FUNC!\n"); 7457 } 7458 7459 if (asserted & GPIO_2_FUNC) { 7460 BLOGD(sc, DBG_INTR, "GPIO_2_FUNC!\n"); 7461 } 7462 7463 if (asserted & GPIO_3_FUNC) { 7464 BLOGD(sc, DBG_INTR, "GPIO_3_FUNC!\n"); 7465 } 7466 7467 if (asserted & GPIO_4_FUNC) { 7468 BLOGD(sc, DBG_INTR, "GPIO_4_FUNC!\n"); 7469 } 7470 7471 if (port == 0) { 7472 if (asserted & ATTN_GENERAL_ATTN_1) { 7473 BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_1!\n"); 7474 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_1, 0x0); 7475 } 7476 if (asserted & ATTN_GENERAL_ATTN_2) { 7477 BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_2!\n"); 7478 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_2, 0x0); 7479 } 7480 if (asserted & ATTN_GENERAL_ATTN_3) { 7481 BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_3!\n"); 7482 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_3, 0x0); 7483 } 7484 } else { 7485 if (asserted & ATTN_GENERAL_ATTN_4) { 7486 BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_4!\n"); 7487 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_4, 0x0); 7488 } 7489 if (asserted & ATTN_GENERAL_ATTN_5) { 7490 BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_5!\n"); 7491 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_5, 0x0); 7492 } 7493 if (asserted & ATTN_GENERAL_ATTN_6) { 7494 BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_6!\n"); 7495 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_6, 0x0); 7496 } 7497 } 7498 } /* hardwired */ 7499 7500 if (sc->devinfo.int_block == INT_BLOCK_HC) { 7501 reg_addr = (HC_REG_COMMAND_REG + port*32 + COMMAND_REG_ATTN_BITS_SET); 7502 } else { 7503 reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_SET_UPPER*8); 7504 } 7505 7506 BLOGD(sc, DBG_INTR, "about to mask 0x%08x at %s addr 0x%08x\n", 7507 asserted, 7508 (sc->devinfo.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr); 7509 REG_WR(sc, reg_addr, asserted); 7510 7511 /* now set back the mask */ 7512 if (asserted & ATTN_NIG_FOR_FUNC) { 7513 /* 7514 * Verify that IGU ack through BAR was written before restoring 7515 * NIG mask. This loop should exit after 2-3 iterations max. 7516 */ 7517 if (sc->devinfo.int_block != INT_BLOCK_HC) { 7518 cnt = 0; 7519 7520 do { 7521 igu_acked = REG_RD(sc, IGU_REG_ATTENTION_ACK_BITS); 7522 } while (((igu_acked & ATTN_NIG_FOR_FUNC) == 0) && 7523 (++cnt < MAX_IGU_ATTN_ACK_TO)); 7524 7525 if (!igu_acked) { 7526 BLOGE(sc, "Failed to verify IGU ack on time\n"); 7527 } 7528 7529 mb(); 7530 } 7531 7532 REG_WR(sc, nig_int_mask_addr, nig_mask); 7533 7534 BXE_PHY_UNLOCK(sc); 7535 } 7536 } 7537 7538 static void 7539 bxe_print_next_block(struct bxe_softc *sc, 7540 int idx, 7541 const char *blk) 7542 { 7543 BLOGI(sc, "%s%s", idx ? ", " : "", blk); 7544 } 7545 7546 static int 7547 bxe_check_blocks_with_parity0(struct bxe_softc *sc, 7548 uint32_t sig, 7549 int par_num, 7550 uint8_t print) 7551 { 7552 uint32_t cur_bit = 0; 7553 int i = 0; 7554 7555 for (i = 0; sig; i++) { 7556 cur_bit = ((uint32_t)0x1 << i); 7557 if (sig & cur_bit) { 7558 switch (cur_bit) { 7559 case AEU_INPUTS_ATTN_BITS_BRB_PARITY_ERROR: 7560 if (print) 7561 bxe_print_next_block(sc, par_num++, "BRB"); 7562 break; 7563 case AEU_INPUTS_ATTN_BITS_PARSER_PARITY_ERROR: 7564 if (print) 7565 bxe_print_next_block(sc, par_num++, "PARSER"); 7566 break; 7567 case AEU_INPUTS_ATTN_BITS_TSDM_PARITY_ERROR: 7568 if (print) 7569 bxe_print_next_block(sc, par_num++, "TSDM"); 7570 break; 7571 case AEU_INPUTS_ATTN_BITS_SEARCHER_PARITY_ERROR: 7572 if (print) 7573 bxe_print_next_block(sc, par_num++, "SEARCHER"); 7574 break; 7575 case AEU_INPUTS_ATTN_BITS_TCM_PARITY_ERROR: 7576 if (print) 7577 bxe_print_next_block(sc, par_num++, "TCM"); 7578 break; 7579 case AEU_INPUTS_ATTN_BITS_TSEMI_PARITY_ERROR: 7580 if (print) 7581 bxe_print_next_block(sc, par_num++, "TSEMI"); 7582 break; 7583 case AEU_INPUTS_ATTN_BITS_PBCLIENT_PARITY_ERROR: 7584 if (print) 7585 bxe_print_next_block(sc, par_num++, "XPB"); 7586 break; 7587 } 7588 7589 /* Clear the bit */ 7590 sig &= ~cur_bit; 7591 } 7592 } 7593 7594 return (par_num); 7595 } 7596 7597 static int 7598 bxe_check_blocks_with_parity1(struct bxe_softc *sc, 7599 uint32_t sig, 7600 int par_num, 7601 uint8_t *global, 7602 uint8_t print) 7603 { 7604 int i = 0; 7605 uint32_t cur_bit = 0; 7606 for (i = 0; sig; i++) { 7607 cur_bit = ((uint32_t)0x1 << i); 7608 if (sig & cur_bit) { 7609 switch (cur_bit) { 7610 case AEU_INPUTS_ATTN_BITS_PBF_PARITY_ERROR: 7611 if (print) 7612 bxe_print_next_block(sc, par_num++, "PBF"); 7613 break; 7614 case AEU_INPUTS_ATTN_BITS_QM_PARITY_ERROR: 7615 if (print) 7616 bxe_print_next_block(sc, par_num++, "QM"); 7617 break; 7618 case AEU_INPUTS_ATTN_BITS_TIMERS_PARITY_ERROR: 7619 if (print) 7620 bxe_print_next_block(sc, par_num++, "TM"); 7621 break; 7622 case AEU_INPUTS_ATTN_BITS_XSDM_PARITY_ERROR: 7623 if (print) 7624 bxe_print_next_block(sc, par_num++, "XSDM"); 7625 break; 7626 case AEU_INPUTS_ATTN_BITS_XCM_PARITY_ERROR: 7627 if (print) 7628 bxe_print_next_block(sc, par_num++, "XCM"); 7629 break; 7630 case AEU_INPUTS_ATTN_BITS_XSEMI_PARITY_ERROR: 7631 if (print) 7632 bxe_print_next_block(sc, par_num++, "XSEMI"); 7633 break; 7634 case AEU_INPUTS_ATTN_BITS_DOORBELLQ_PARITY_ERROR: 7635 if (print) 7636 bxe_print_next_block(sc, par_num++, "DOORBELLQ"); 7637 break; 7638 case AEU_INPUTS_ATTN_BITS_NIG_PARITY_ERROR: 7639 if (print) 7640 bxe_print_next_block(sc, par_num++, "NIG"); 7641 break; 7642 case AEU_INPUTS_ATTN_BITS_VAUX_PCI_CORE_PARITY_ERROR: 7643 if (print) 7644 bxe_print_next_block(sc, par_num++, "VAUX PCI CORE"); 7645 *global = TRUE; 7646 break; 7647 case AEU_INPUTS_ATTN_BITS_DEBUG_PARITY_ERROR: 7648 if (print) 7649 bxe_print_next_block(sc, par_num++, "DEBUG"); 7650 break; 7651 case AEU_INPUTS_ATTN_BITS_USDM_PARITY_ERROR: 7652 if (print) 7653 bxe_print_next_block(sc, par_num++, "USDM"); 7654 break; 7655 case AEU_INPUTS_ATTN_BITS_UCM_PARITY_ERROR: 7656 if (print) 7657 bxe_print_next_block(sc, par_num++, "UCM"); 7658 break; 7659 case AEU_INPUTS_ATTN_BITS_USEMI_PARITY_ERROR: 7660 if (print) 7661 bxe_print_next_block(sc, par_num++, "USEMI"); 7662 break; 7663 case AEU_INPUTS_ATTN_BITS_UPB_PARITY_ERROR: 7664 if (print) 7665 bxe_print_next_block(sc, par_num++, "UPB"); 7666 break; 7667 case AEU_INPUTS_ATTN_BITS_CSDM_PARITY_ERROR: 7668 if (print) 7669 bxe_print_next_block(sc, par_num++, "CSDM"); 7670 break; 7671 case AEU_INPUTS_ATTN_BITS_CCM_PARITY_ERROR: 7672 if (print) 7673 bxe_print_next_block(sc, par_num++, "CCM"); 7674 break; 7675 } 7676 7677 /* Clear the bit */ 7678 sig &= ~cur_bit; 7679 } 7680 } 7681 7682 return (par_num); 7683 } 7684 7685 static int 7686 bxe_check_blocks_with_parity2(struct bxe_softc *sc, 7687 uint32_t sig, 7688 int par_num, 7689 uint8_t print) 7690 { 7691 uint32_t cur_bit = 0; 7692 int i = 0; 7693 7694 for (i = 0; sig; i++) { 7695 cur_bit = ((uint32_t)0x1 << i); 7696 if (sig & cur_bit) { 7697 switch (cur_bit) { 7698 case AEU_INPUTS_ATTN_BITS_CSEMI_PARITY_ERROR: 7699 if (print) 7700 bxe_print_next_block(sc, par_num++, "CSEMI"); 7701 break; 7702 case AEU_INPUTS_ATTN_BITS_PXP_PARITY_ERROR: 7703 if (print) 7704 bxe_print_next_block(sc, par_num++, "PXP"); 7705 break; 7706 case AEU_IN_ATTN_BITS_PXPPCICLOCKCLIENT_PARITY_ERROR: 7707 if (print) 7708 bxe_print_next_block(sc, par_num++, "PXPPCICLOCKCLIENT"); 7709 break; 7710 case AEU_INPUTS_ATTN_BITS_CFC_PARITY_ERROR: 7711 if (print) 7712 bxe_print_next_block(sc, par_num++, "CFC"); 7713 break; 7714 case AEU_INPUTS_ATTN_BITS_CDU_PARITY_ERROR: 7715 if (print) 7716 bxe_print_next_block(sc, par_num++, "CDU"); 7717 break; 7718 case AEU_INPUTS_ATTN_BITS_DMAE_PARITY_ERROR: 7719 if (print) 7720 bxe_print_next_block(sc, par_num++, "DMAE"); 7721 break; 7722 case AEU_INPUTS_ATTN_BITS_IGU_PARITY_ERROR: 7723 if (print) 7724 bxe_print_next_block(sc, par_num++, "IGU"); 7725 break; 7726 case AEU_INPUTS_ATTN_BITS_MISC_PARITY_ERROR: 7727 if (print) 7728 bxe_print_next_block(sc, par_num++, "MISC"); 7729 break; 7730 } 7731 7732 /* Clear the bit */ 7733 sig &= ~cur_bit; 7734 } 7735 } 7736 7737 return (par_num); 7738 } 7739 7740 static int 7741 bxe_check_blocks_with_parity3(struct bxe_softc *sc, 7742 uint32_t sig, 7743 int par_num, 7744 uint8_t *global, 7745 uint8_t print) 7746 { 7747 uint32_t cur_bit = 0; 7748 int i = 0; 7749 7750 for (i = 0; sig; i++) { 7751 cur_bit = ((uint32_t)0x1 << i); 7752 if (sig & cur_bit) { 7753 switch (cur_bit) { 7754 case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_ROM_PARITY: 7755 if (print) 7756 bxe_print_next_block(sc, par_num++, "MCP ROM"); 7757 *global = TRUE; 7758 break; 7759 case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_RX_PARITY: 7760 if (print) 7761 bxe_print_next_block(sc, par_num++, 7762 "MCP UMP RX"); 7763 *global = TRUE; 7764 break; 7765 case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_TX_PARITY: 7766 if (print) 7767 bxe_print_next_block(sc, par_num++, 7768 "MCP UMP TX"); 7769 *global = TRUE; 7770 break; 7771 case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY: 7772 if (print) 7773 bxe_print_next_block(sc, par_num++, 7774 "MCP SCPAD"); 7775 *global = TRUE; 7776 break; 7777 } 7778 7779 /* Clear the bit */ 7780 sig &= ~cur_bit; 7781 } 7782 } 7783 7784 return (par_num); 7785 } 7786 7787 static int 7788 bxe_check_blocks_with_parity4(struct bxe_softc *sc, 7789 uint32_t sig, 7790 int par_num, 7791 uint8_t print) 7792 { 7793 uint32_t cur_bit = 0; 7794 int i = 0; 7795 7796 for (i = 0; sig; i++) { 7797 cur_bit = ((uint32_t)0x1 << i); 7798 if (sig & cur_bit) { 7799 switch (cur_bit) { 7800 case AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR: 7801 if (print) 7802 bxe_print_next_block(sc, par_num++, "PGLUE_B"); 7803 break; 7804 case AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR: 7805 if (print) 7806 bxe_print_next_block(sc, par_num++, "ATC"); 7807 break; 7808 } 7809 7810 /* Clear the bit */ 7811 sig &= ~cur_bit; 7812 } 7813 } 7814 7815 return (par_num); 7816 } 7817 7818 static uint8_t 7819 bxe_parity_attn(struct bxe_softc *sc, 7820 uint8_t *global, 7821 uint8_t print, 7822 uint32_t *sig) 7823 { 7824 int par_num = 0; 7825 7826 if ((sig[0] & HW_PRTY_ASSERT_SET_0) || 7827 (sig[1] & HW_PRTY_ASSERT_SET_1) || 7828 (sig[2] & HW_PRTY_ASSERT_SET_2) || 7829 (sig[3] & HW_PRTY_ASSERT_SET_3) || 7830 (sig[4] & HW_PRTY_ASSERT_SET_4)) { 7831 BLOGE(sc, "Parity error: HW block parity attention:\n" 7832 "[0]:0x%08x [1]:0x%08x [2]:0x%08x [3]:0x%08x [4]:0x%08x\n", 7833 (uint32_t)(sig[0] & HW_PRTY_ASSERT_SET_0), 7834 (uint32_t)(sig[1] & HW_PRTY_ASSERT_SET_1), 7835 (uint32_t)(sig[2] & HW_PRTY_ASSERT_SET_2), 7836 (uint32_t)(sig[3] & HW_PRTY_ASSERT_SET_3), 7837 (uint32_t)(sig[4] & HW_PRTY_ASSERT_SET_4)); 7838 7839 if (print) 7840 BLOGI(sc, "Parity errors detected in blocks: "); 7841 7842 par_num = 7843 bxe_check_blocks_with_parity0(sc, sig[0] & 7844 HW_PRTY_ASSERT_SET_0, 7845 par_num, print); 7846 par_num = 7847 bxe_check_blocks_with_parity1(sc, sig[1] & 7848 HW_PRTY_ASSERT_SET_1, 7849 par_num, global, print); 7850 par_num = 7851 bxe_check_blocks_with_parity2(sc, sig[2] & 7852 HW_PRTY_ASSERT_SET_2, 7853 par_num, print); 7854 par_num = 7855 bxe_check_blocks_with_parity3(sc, sig[3] & 7856 HW_PRTY_ASSERT_SET_3, 7857 par_num, global, print); 7858 par_num = 7859 bxe_check_blocks_with_parity4(sc, sig[4] & 7860 HW_PRTY_ASSERT_SET_4, 7861 par_num, print); 7862 7863 if (print) 7864 BLOGI(sc, "\n"); 7865 7866 return (TRUE); 7867 } 7868 7869 return (FALSE); 7870 } 7871 7872 static uint8_t 7873 bxe_chk_parity_attn(struct bxe_softc *sc, 7874 uint8_t *global, 7875 uint8_t print) 7876 { 7877 struct attn_route attn = { {0} }; 7878 int port = SC_PORT(sc); 7879 7880 attn.sig[0] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + port*4); 7881 attn.sig[1] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 + port*4); 7882 attn.sig[2] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 + port*4); 7883 attn.sig[3] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 + port*4); 7884 7885 if (!CHIP_IS_E1x(sc)) 7886 attn.sig[4] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 + port*4); 7887 7888 return (bxe_parity_attn(sc, global, print, attn.sig)); 7889 } 7890 7891 static void 7892 bxe_attn_int_deasserted4(struct bxe_softc *sc, 7893 uint32_t attn) 7894 { 7895 uint32_t val; 7896 7897 if (attn & AEU_INPUTS_ATTN_BITS_PGLUE_HW_INTERRUPT) { 7898 val = REG_RD(sc, PGLUE_B_REG_PGLUE_B_INT_STS_CLR); 7899 BLOGE(sc, "PGLUE hw attention 0x%08x\n", val); 7900 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR) 7901 BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR\n"); 7902 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR) 7903 BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR\n"); 7904 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN) 7905 BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN\n"); 7906 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN) 7907 BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN\n"); 7908 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN) 7909 BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN\n"); 7910 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN) 7911 BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN\n"); 7912 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN) 7913 BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN\n"); 7914 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN) 7915 BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN\n"); 7916 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW) 7917 BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW\n"); 7918 } 7919 7920 if (attn & AEU_INPUTS_ATTN_BITS_ATC_HW_INTERRUPT) { 7921 val = REG_RD(sc, ATC_REG_ATC_INT_STS_CLR); 7922 BLOGE(sc, "ATC hw attention 0x%08x\n", val); 7923 if (val & ATC_ATC_INT_STS_REG_ADDRESS_ERROR) 7924 BLOGE(sc, "ATC_ATC_INT_STS_REG_ADDRESS_ERROR\n"); 7925 if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND) 7926 BLOGE(sc, "ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND\n"); 7927 if (val & ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS) 7928 BLOGE(sc, "ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS\n"); 7929 if (val & ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT) 7930 BLOGE(sc, "ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT\n"); 7931 if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR) 7932 BLOGE(sc, "ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR\n"); 7933 if (val & ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU) 7934 BLOGE(sc, "ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU\n"); 7935 } 7936 7937 if (attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR | 7938 AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)) { 7939 BLOGE(sc, "FATAL parity attention set4 0x%08x\n", 7940 (uint32_t)(attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR | 7941 AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR))); 7942 } 7943 } 7944 7945 static void 7946 bxe_e1h_disable(struct bxe_softc *sc) 7947 { 7948 int port = SC_PORT(sc); 7949 7950 bxe_tx_disable(sc); 7951 7952 REG_WR(sc, NIG_REG_LLH0_FUNC_EN + port*8, 0); 7953 } 7954 7955 static void 7956 bxe_e1h_enable(struct bxe_softc *sc) 7957 { 7958 int port = SC_PORT(sc); 7959 7960 REG_WR(sc, NIG_REG_LLH0_FUNC_EN + port*8, 1); 7961 7962 // XXX bxe_tx_enable(sc); 7963 } 7964 7965 /* 7966 * called due to MCP event (on pmf): 7967 * reread new bandwidth configuration 7968 * configure FW 7969 * notify others function about the change 7970 */ 7971 static void 7972 bxe_config_mf_bw(struct bxe_softc *sc) 7973 { 7974 if (sc->link_vars.link_up) { 7975 bxe_cmng_fns_init(sc, TRUE, CMNG_FNS_MINMAX); 7976 // XXX bxe_link_sync_notify(sc); 7977 } 7978 7979 storm_memset_cmng(sc, &sc->cmng, SC_PORT(sc)); 7980 } 7981 7982 static void 7983 bxe_set_mf_bw(struct bxe_softc *sc) 7984 { 7985 bxe_config_mf_bw(sc); 7986 bxe_fw_command(sc, DRV_MSG_CODE_SET_MF_BW_ACK, 0); 7987 } 7988 7989 static void 7990 bxe_handle_eee_event(struct bxe_softc *sc) 7991 { 7992 BLOGD(sc, DBG_INTR, "EEE - LLDP event\n"); 7993 bxe_fw_command(sc, DRV_MSG_CODE_EEE_RESULTS_ACK, 0); 7994 } 7995 7996 #define DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED 3 7997 7998 static void 7999 bxe_drv_info_ether_stat(struct bxe_softc *sc) 8000 { 8001 struct eth_stats_info *ether_stat = 8002 &sc->sp->drv_info_to_mcp.ether_stat; 8003 8004 strlcpy(ether_stat->version, BXE_DRIVER_VERSION, 8005 ETH_STAT_INFO_VERSION_LEN); 8006 8007 /* XXX (+ MAC_PAD) taken from other driver... verify this is right */ 8008 sc->sp_objs[0].mac_obj.get_n_elements(sc, &sc->sp_objs[0].mac_obj, 8009 DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED, 8010 ether_stat->mac_local + MAC_PAD, 8011 MAC_PAD, ETH_ALEN); 8012 8013 ether_stat->mtu_size = sc->mtu; 8014 8015 ether_stat->feature_flags |= FEATURE_ETH_CHKSUM_OFFLOAD_MASK; 8016 if (if_getcapenable(sc->ifp) & (IFCAP_TSO4 | IFCAP_TSO6)) { 8017 ether_stat->feature_flags |= FEATURE_ETH_LSO_MASK; 8018 } 8019 8020 // XXX ether_stat->feature_flags |= ???; 8021 8022 ether_stat->promiscuous_mode = 0; // (flags & PROMISC) ? 1 : 0; 8023 8024 ether_stat->txq_size = sc->tx_ring_size; 8025 ether_stat->rxq_size = sc->rx_ring_size; 8026 } 8027 8028 static void 8029 bxe_handle_drv_info_req(struct bxe_softc *sc) 8030 { 8031 enum drv_info_opcode op_code; 8032 uint32_t drv_info_ctl = SHMEM2_RD(sc, drv_info_control); 8033 8034 /* if drv_info version supported by MFW doesn't match - send NACK */ 8035 if ((drv_info_ctl & DRV_INFO_CONTROL_VER_MASK) != DRV_INFO_CUR_VER) { 8036 bxe_fw_command(sc, DRV_MSG_CODE_DRV_INFO_NACK, 0); 8037 return; 8038 } 8039 8040 op_code = ((drv_info_ctl & DRV_INFO_CONTROL_OP_CODE_MASK) >> 8041 DRV_INFO_CONTROL_OP_CODE_SHIFT); 8042 8043 memset(&sc->sp->drv_info_to_mcp, 0, sizeof(union drv_info_to_mcp)); 8044 8045 switch (op_code) { 8046 case ETH_STATS_OPCODE: 8047 bxe_drv_info_ether_stat(sc); 8048 break; 8049 case FCOE_STATS_OPCODE: 8050 case ISCSI_STATS_OPCODE: 8051 default: 8052 /* if op code isn't supported - send NACK */ 8053 bxe_fw_command(sc, DRV_MSG_CODE_DRV_INFO_NACK, 0); 8054 return; 8055 } 8056 8057 /* 8058 * If we got drv_info attn from MFW then these fields are defined in 8059 * shmem2 for sure 8060 */ 8061 SHMEM2_WR(sc, drv_info_host_addr_lo, 8062 U64_LO(BXE_SP_MAPPING(sc, drv_info_to_mcp))); 8063 SHMEM2_WR(sc, drv_info_host_addr_hi, 8064 U64_HI(BXE_SP_MAPPING(sc, drv_info_to_mcp))); 8065 8066 bxe_fw_command(sc, DRV_MSG_CODE_DRV_INFO_ACK, 0); 8067 } 8068 8069 static void 8070 bxe_dcc_event(struct bxe_softc *sc, 8071 uint32_t dcc_event) 8072 { 8073 BLOGD(sc, DBG_INTR, "dcc_event 0x%08x\n", dcc_event); 8074 8075 if (dcc_event & DRV_STATUS_DCC_DISABLE_ENABLE_PF) { 8076 /* 8077 * This is the only place besides the function initialization 8078 * where the sc->flags can change so it is done without any 8079 * locks 8080 */ 8081 if (sc->devinfo.mf_info.mf_config[SC_VN(sc)] & FUNC_MF_CFG_FUNC_DISABLED) { 8082 BLOGD(sc, DBG_INTR, "mf_cfg function disabled\n"); 8083 sc->flags |= BXE_MF_FUNC_DIS; 8084 bxe_e1h_disable(sc); 8085 } else { 8086 BLOGD(sc, DBG_INTR, "mf_cfg function enabled\n"); 8087 sc->flags &= ~BXE_MF_FUNC_DIS; 8088 bxe_e1h_enable(sc); 8089 } 8090 dcc_event &= ~DRV_STATUS_DCC_DISABLE_ENABLE_PF; 8091 } 8092 8093 if (dcc_event & DRV_STATUS_DCC_BANDWIDTH_ALLOCATION) { 8094 bxe_config_mf_bw(sc); 8095 dcc_event &= ~DRV_STATUS_DCC_BANDWIDTH_ALLOCATION; 8096 } 8097 8098 /* Report results to MCP */ 8099 if (dcc_event) 8100 bxe_fw_command(sc, DRV_MSG_CODE_DCC_FAILURE, 0); 8101 else 8102 bxe_fw_command(sc, DRV_MSG_CODE_DCC_OK, 0); 8103 } 8104 8105 static void 8106 bxe_pmf_update(struct bxe_softc *sc) 8107 { 8108 int port = SC_PORT(sc); 8109 uint32_t val; 8110 8111 sc->port.pmf = 1; 8112 BLOGD(sc, DBG_INTR, "pmf %d\n", sc->port.pmf); 8113 8114 /* 8115 * We need the mb() to ensure the ordering between the writing to 8116 * sc->port.pmf here and reading it from the bxe_periodic_task(). 8117 */ 8118 mb(); 8119 8120 /* queue a periodic task */ 8121 // XXX schedule task... 8122 8123 // XXX bxe_dcbx_pmf_update(sc); 8124 8125 /* enable nig attention */ 8126 val = (0xff0f | (1 << (SC_VN(sc) + 4))); 8127 if (sc->devinfo.int_block == INT_BLOCK_HC) { 8128 REG_WR(sc, HC_REG_TRAILING_EDGE_0 + port*8, val); 8129 REG_WR(sc, HC_REG_LEADING_EDGE_0 + port*8, val); 8130 } else if (!CHIP_IS_E1x(sc)) { 8131 REG_WR(sc, IGU_REG_TRAILING_EDGE_LATCH, val); 8132 REG_WR(sc, IGU_REG_LEADING_EDGE_LATCH, val); 8133 } 8134 8135 bxe_stats_handle(sc, STATS_EVENT_PMF); 8136 } 8137 8138 static int 8139 bxe_mc_assert(struct bxe_softc *sc) 8140 { 8141 char last_idx; 8142 int i, rc = 0; 8143 uint32_t row0, row1, row2, row3; 8144 8145 /* XSTORM */ 8146 last_idx = REG_RD8(sc, BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_INDEX_OFFSET); 8147 if (last_idx) 8148 BLOGE(sc, "XSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx); 8149 8150 /* print the asserts */ 8151 for (i = 0; i < STORM_ASSERT_ARRAY_SIZE; i++) { 8152 8153 row0 = REG_RD(sc, BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_OFFSET(i)); 8154 row1 = REG_RD(sc, BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_OFFSET(i) + 4); 8155 row2 = REG_RD(sc, BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_OFFSET(i) + 8); 8156 row3 = REG_RD(sc, BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_OFFSET(i) + 12); 8157 8158 if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) { 8159 BLOGE(sc, "XSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n", 8160 i, row3, row2, row1, row0); 8161 rc++; 8162 } else { 8163 break; 8164 } 8165 } 8166 8167 /* TSTORM */ 8168 last_idx = REG_RD8(sc, BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_INDEX_OFFSET); 8169 if (last_idx) { 8170 BLOGE(sc, "TSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx); 8171 } 8172 8173 /* print the asserts */ 8174 for (i = 0; i < STORM_ASSERT_ARRAY_SIZE; i++) { 8175 8176 row0 = REG_RD(sc, BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_OFFSET(i)); 8177 row1 = REG_RD(sc, BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_OFFSET(i) + 4); 8178 row2 = REG_RD(sc, BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_OFFSET(i) + 8); 8179 row3 = REG_RD(sc, BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_OFFSET(i) + 12); 8180 8181 if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) { 8182 BLOGE(sc, "TSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n", 8183 i, row3, row2, row1, row0); 8184 rc++; 8185 } else { 8186 break; 8187 } 8188 } 8189 8190 /* CSTORM */ 8191 last_idx = REG_RD8(sc, BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_INDEX_OFFSET); 8192 if (last_idx) { 8193 BLOGE(sc, "CSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx); 8194 } 8195 8196 /* print the asserts */ 8197 for (i = 0; i < STORM_ASSERT_ARRAY_SIZE; i++) { 8198 8199 row0 = REG_RD(sc, BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_OFFSET(i)); 8200 row1 = REG_RD(sc, BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_OFFSET(i) + 4); 8201 row2 = REG_RD(sc, BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_OFFSET(i) + 8); 8202 row3 = REG_RD(sc, BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_OFFSET(i) + 12); 8203 8204 if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) { 8205 BLOGE(sc, "CSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n", 8206 i, row3, row2, row1, row0); 8207 rc++; 8208 } else { 8209 break; 8210 } 8211 } 8212 8213 /* USTORM */ 8214 last_idx = REG_RD8(sc, BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_INDEX_OFFSET); 8215 if (last_idx) { 8216 BLOGE(sc, "USTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx); 8217 } 8218 8219 /* print the asserts */ 8220 for (i = 0; i < STORM_ASSERT_ARRAY_SIZE; i++) { 8221 8222 row0 = REG_RD(sc, BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_OFFSET(i)); 8223 row1 = REG_RD(sc, BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_OFFSET(i) + 4); 8224 row2 = REG_RD(sc, BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_OFFSET(i) + 8); 8225 row3 = REG_RD(sc, BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_OFFSET(i) + 12); 8226 8227 if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) { 8228 BLOGE(sc, "USTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n", 8229 i, row3, row2, row1, row0); 8230 rc++; 8231 } else { 8232 break; 8233 } 8234 } 8235 8236 return (rc); 8237 } 8238 8239 static void 8240 bxe_attn_int_deasserted3(struct bxe_softc *sc, 8241 uint32_t attn) 8242 { 8243 int func = SC_FUNC(sc); 8244 uint32_t val; 8245 8246 if (attn & EVEREST_GEN_ATTN_IN_USE_MASK) { 8247 8248 if (attn & BXE_PMF_LINK_ASSERT(sc)) { 8249 8250 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0); 8251 bxe_read_mf_cfg(sc); 8252 sc->devinfo.mf_info.mf_config[SC_VN(sc)] = 8253 MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].config); 8254 val = SHMEM_RD(sc, func_mb[SC_FW_MB_IDX(sc)].drv_status); 8255 8256 if (val & DRV_STATUS_DCC_EVENT_MASK) 8257 bxe_dcc_event(sc, (val & DRV_STATUS_DCC_EVENT_MASK)); 8258 8259 if (val & DRV_STATUS_SET_MF_BW) 8260 bxe_set_mf_bw(sc); 8261 8262 if (val & DRV_STATUS_DRV_INFO_REQ) 8263 bxe_handle_drv_info_req(sc); 8264 8265 #if 0 8266 if (val & DRV_STATUS_VF_DISABLED) 8267 bxe_vf_handle_flr_event(sc); 8268 #endif 8269 8270 if ((sc->port.pmf == 0) && (val & DRV_STATUS_PMF)) 8271 bxe_pmf_update(sc); 8272 8273 #if 0 8274 if (sc->port.pmf && 8275 (val & DRV_STATUS_DCBX_NEGOTIATION_RESULTS) && 8276 (sc->dcbx_enabled > 0)) 8277 /* start dcbx state machine */ 8278 bxe_dcbx_set_params(sc, BXE_DCBX_STATE_NEG_RECEIVED); 8279 #endif 8280 8281 #if 0 8282 if (val & DRV_STATUS_AFEX_EVENT_MASK) 8283 bxe_handle_afex_cmd(sc, val & DRV_STATUS_AFEX_EVENT_MASK); 8284 #endif 8285 8286 if (val & DRV_STATUS_EEE_NEGOTIATION_RESULTS) 8287 bxe_handle_eee_event(sc); 8288 8289 if (sc->link_vars.periodic_flags & 8290 ELINK_PERIODIC_FLAGS_LINK_EVENT) { 8291 /* sync with link */ 8292 BXE_PHY_LOCK(sc); 8293 sc->link_vars.periodic_flags &= 8294 ~ELINK_PERIODIC_FLAGS_LINK_EVENT; 8295 BXE_PHY_UNLOCK(sc); 8296 if (IS_MF(sc)) 8297 ; // XXX bxe_link_sync_notify(sc); 8298 bxe_link_report(sc); 8299 } 8300 8301 /* 8302 * Always call it here: bxe_link_report() will 8303 * prevent the link indication duplication. 8304 */ 8305 bxe_link_status_update(sc); 8306 8307 } else if (attn & BXE_MC_ASSERT_BITS) { 8308 8309 BLOGE(sc, "MC assert!\n"); 8310 bxe_mc_assert(sc); 8311 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_10, 0); 8312 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_9, 0); 8313 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_8, 0); 8314 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_7, 0); 8315 bxe_panic(sc, ("MC assert!\n")); 8316 8317 } else if (attn & BXE_MCP_ASSERT) { 8318 8319 BLOGE(sc, "MCP assert!\n"); 8320 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_11, 0); 8321 // XXX bxe_fw_dump(sc); 8322 8323 } else { 8324 BLOGE(sc, "Unknown HW assert! (attn 0x%08x)\n", attn); 8325 } 8326 } 8327 8328 if (attn & EVEREST_LATCHED_ATTN_IN_USE_MASK) { 8329 BLOGE(sc, "LATCHED attention 0x%08x (masked)\n", attn); 8330 if (attn & BXE_GRC_TIMEOUT) { 8331 val = CHIP_IS_E1(sc) ? 0 : REG_RD(sc, MISC_REG_GRC_TIMEOUT_ATTN); 8332 BLOGE(sc, "GRC time-out 0x%08x\n", val); 8333 } 8334 if (attn & BXE_GRC_RSV) { 8335 val = CHIP_IS_E1(sc) ? 0 : REG_RD(sc, MISC_REG_GRC_RSV_ATTN); 8336 BLOGE(sc, "GRC reserved 0x%08x\n", val); 8337 } 8338 REG_WR(sc, MISC_REG_AEU_CLR_LATCH_SIGNAL, 0x7ff); 8339 } 8340 } 8341 8342 static void 8343 bxe_attn_int_deasserted2(struct bxe_softc *sc, 8344 uint32_t attn) 8345 { 8346 int port = SC_PORT(sc); 8347 int reg_offset; 8348 uint32_t val0, mask0, val1, mask1; 8349 uint32_t val; 8350 8351 if (attn & AEU_INPUTS_ATTN_BITS_CFC_HW_INTERRUPT) { 8352 val = REG_RD(sc, CFC_REG_CFC_INT_STS_CLR); 8353 BLOGE(sc, "CFC hw attention 0x%08x\n", val); 8354 /* CFC error attention */ 8355 if (val & 0x2) { 8356 BLOGE(sc, "FATAL error from CFC\n"); 8357 } 8358 } 8359 8360 if (attn & AEU_INPUTS_ATTN_BITS_PXP_HW_INTERRUPT) { 8361 val = REG_RD(sc, PXP_REG_PXP_INT_STS_CLR_0); 8362 BLOGE(sc, "PXP hw attention-0 0x%08x\n", val); 8363 /* RQ_USDMDP_FIFO_OVERFLOW */ 8364 if (val & 0x18000) { 8365 BLOGE(sc, "FATAL error from PXP\n"); 8366 } 8367 8368 if (!CHIP_IS_E1x(sc)) { 8369 val = REG_RD(sc, PXP_REG_PXP_INT_STS_CLR_1); 8370 BLOGE(sc, "PXP hw attention-1 0x%08x\n", val); 8371 } 8372 } 8373 8374 #define PXP2_EOP_ERROR_BIT PXP2_PXP2_INT_STS_CLR_0_REG_WR_PGLUE_EOP_ERROR 8375 #define AEU_PXP2_HW_INT_BIT AEU_INPUTS_ATTN_BITS_PXPPCICLOCKCLIENT_HW_INTERRUPT 8376 8377 if (attn & AEU_PXP2_HW_INT_BIT) { 8378 /* CQ47854 workaround do not panic on 8379 * PXP2_PXP2_INT_STS_0_REG_WR_PGLUE_EOP_ERROR 8380 */ 8381 if (!CHIP_IS_E1x(sc)) { 8382 mask0 = REG_RD(sc, PXP2_REG_PXP2_INT_MASK_0); 8383 val1 = REG_RD(sc, PXP2_REG_PXP2_INT_STS_1); 8384 mask1 = REG_RD(sc, PXP2_REG_PXP2_INT_MASK_1); 8385 val0 = REG_RD(sc, PXP2_REG_PXP2_INT_STS_0); 8386 /* 8387 * If the olny PXP2_EOP_ERROR_BIT is set in 8388 * STS0 and STS1 - clear it 8389 * 8390 * probably we lose additional attentions between 8391 * STS0 and STS_CLR0, in this case user will not 8392 * be notified about them 8393 */ 8394 if (val0 & mask0 & PXP2_EOP_ERROR_BIT && 8395 !(val1 & mask1)) 8396 val0 = REG_RD(sc, PXP2_REG_PXP2_INT_STS_CLR_0); 8397 8398 /* print the register, since no one can restore it */ 8399 BLOGE(sc, "PXP2_REG_PXP2_INT_STS_CLR_0 0x%08x\n", val0); 8400 8401 /* 8402 * if PXP2_PXP2_INT_STS_0_REG_WR_PGLUE_EOP_ERROR 8403 * then notify 8404 */ 8405 if (val0 & PXP2_EOP_ERROR_BIT) { 8406 BLOGE(sc, "PXP2_WR_PGLUE_EOP_ERROR\n"); 8407 8408 /* 8409 * if only PXP2_PXP2_INT_STS_0_REG_WR_PGLUE_EOP_ERROR is 8410 * set then clear attention from PXP2 block without panic 8411 */ 8412 if (((val0 & mask0) == PXP2_EOP_ERROR_BIT) && 8413 ((val1 & mask1) == 0)) 8414 attn &= ~AEU_PXP2_HW_INT_BIT; 8415 } 8416 } 8417 } 8418 8419 if (attn & HW_INTERRUT_ASSERT_SET_2) { 8420 reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_2 : 8421 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_2); 8422 8423 val = REG_RD(sc, reg_offset); 8424 val &= ~(attn & HW_INTERRUT_ASSERT_SET_2); 8425 REG_WR(sc, reg_offset, val); 8426 8427 BLOGE(sc, "FATAL HW block attention set2 0x%x\n", 8428 (uint32_t)(attn & HW_INTERRUT_ASSERT_SET_2)); 8429 bxe_panic(sc, ("HW block attention set2\n")); 8430 } 8431 } 8432 8433 static void 8434 bxe_attn_int_deasserted1(struct bxe_softc *sc, 8435 uint32_t attn) 8436 { 8437 int port = SC_PORT(sc); 8438 int reg_offset; 8439 uint32_t val; 8440 8441 if (attn & AEU_INPUTS_ATTN_BITS_DOORBELLQ_HW_INTERRUPT) { 8442 val = REG_RD(sc, DORQ_REG_DORQ_INT_STS_CLR); 8443 BLOGE(sc, "DB hw attention 0x%08x\n", val); 8444 /* DORQ discard attention */ 8445 if (val & 0x2) { 8446 BLOGE(sc, "FATAL error from DORQ\n"); 8447 } 8448 } 8449 8450 if (attn & HW_INTERRUT_ASSERT_SET_1) { 8451 reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_1 : 8452 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_1); 8453 8454 val = REG_RD(sc, reg_offset); 8455 val &= ~(attn & HW_INTERRUT_ASSERT_SET_1); 8456 REG_WR(sc, reg_offset, val); 8457 8458 BLOGE(sc, "FATAL HW block attention set1 0x%08x\n", 8459 (uint32_t)(attn & HW_INTERRUT_ASSERT_SET_1)); 8460 bxe_panic(sc, ("HW block attention set1\n")); 8461 } 8462 } 8463 8464 static void 8465 bxe_attn_int_deasserted0(struct bxe_softc *sc, 8466 uint32_t attn) 8467 { 8468 int port = SC_PORT(sc); 8469 int reg_offset; 8470 uint32_t val; 8471 8472 reg_offset = (port) ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 : 8473 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0; 8474 8475 if (attn & AEU_INPUTS_ATTN_BITS_SPIO5) { 8476 val = REG_RD(sc, reg_offset); 8477 val &= ~AEU_INPUTS_ATTN_BITS_SPIO5; 8478 REG_WR(sc, reg_offset, val); 8479 8480 BLOGW(sc, "SPIO5 hw attention\n"); 8481 8482 /* Fan failure attention */ 8483 elink_hw_reset_phy(&sc->link_params); 8484 bxe_fan_failure(sc); 8485 } 8486 8487 if ((attn & sc->link_vars.aeu_int_mask) && sc->port.pmf) { 8488 BXE_PHY_LOCK(sc); 8489 elink_handle_module_detect_int(&sc->link_params); 8490 BXE_PHY_UNLOCK(sc); 8491 } 8492 8493 if (attn & HW_INTERRUT_ASSERT_SET_0) { 8494 val = REG_RD(sc, reg_offset); 8495 val &= ~(attn & HW_INTERRUT_ASSERT_SET_0); 8496 REG_WR(sc, reg_offset, val); 8497 8498 bxe_panic(sc, ("FATAL HW block attention set0 0x%lx\n", 8499 (attn & HW_INTERRUT_ASSERT_SET_0))); 8500 } 8501 } 8502 8503 static void 8504 bxe_attn_int_deasserted(struct bxe_softc *sc, 8505 uint32_t deasserted) 8506 { 8507 struct attn_route attn; 8508 struct attn_route *group_mask; 8509 int port = SC_PORT(sc); 8510 int index; 8511 uint32_t reg_addr; 8512 uint32_t val; 8513 uint32_t aeu_mask; 8514 uint8_t global = FALSE; 8515 8516 /* 8517 * Need to take HW lock because MCP or other port might also 8518 * try to handle this event. 8519 */ 8520 bxe_acquire_alr(sc); 8521 8522 if (bxe_chk_parity_attn(sc, &global, TRUE)) { 8523 /* XXX 8524 * In case of parity errors don't handle attentions so that 8525 * other function would "see" parity errors. 8526 */ 8527 sc->recovery_state = BXE_RECOVERY_INIT; 8528 // XXX schedule a recovery task... 8529 /* disable HW interrupts */ 8530 bxe_int_disable(sc); 8531 bxe_release_alr(sc); 8532 return; 8533 } 8534 8535 attn.sig[0] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + port*4); 8536 attn.sig[1] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 + port*4); 8537 attn.sig[2] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 + port*4); 8538 attn.sig[3] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 + port*4); 8539 if (!CHIP_IS_E1x(sc)) { 8540 attn.sig[4] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 + port*4); 8541 } else { 8542 attn.sig[4] = 0; 8543 } 8544 8545 BLOGD(sc, DBG_INTR, "attn: 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x\n", 8546 attn.sig[0], attn.sig[1], attn.sig[2], attn.sig[3], attn.sig[4]); 8547 8548 for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) { 8549 if (deasserted & (1 << index)) { 8550 group_mask = &sc->attn_group[index]; 8551 8552 BLOGD(sc, DBG_INTR, 8553 "group[%d]: 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x\n", index, 8554 group_mask->sig[0], group_mask->sig[1], 8555 group_mask->sig[2], group_mask->sig[3], 8556 group_mask->sig[4]); 8557 8558 bxe_attn_int_deasserted4(sc, attn.sig[4] & group_mask->sig[4]); 8559 bxe_attn_int_deasserted3(sc, attn.sig[3] & group_mask->sig[3]); 8560 bxe_attn_int_deasserted1(sc, attn.sig[1] & group_mask->sig[1]); 8561 bxe_attn_int_deasserted2(sc, attn.sig[2] & group_mask->sig[2]); 8562 bxe_attn_int_deasserted0(sc, attn.sig[0] & group_mask->sig[0]); 8563 } 8564 } 8565 8566 bxe_release_alr(sc); 8567 8568 if (sc->devinfo.int_block == INT_BLOCK_HC) { 8569 reg_addr = (HC_REG_COMMAND_REG + port*32 + 8570 COMMAND_REG_ATTN_BITS_CLR); 8571 } else { 8572 reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_CLR_UPPER*8); 8573 } 8574 8575 val = ~deasserted; 8576 BLOGD(sc, DBG_INTR, 8577 "about to mask 0x%08x at %s addr 0x%08x\n", val, 8578 (sc->devinfo.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr); 8579 REG_WR(sc, reg_addr, val); 8580 8581 if (~sc->attn_state & deasserted) { 8582 BLOGE(sc, "IGU error\n"); 8583 } 8584 8585 reg_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 : 8586 MISC_REG_AEU_MASK_ATTN_FUNC_0; 8587 8588 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port); 8589 8590 aeu_mask = REG_RD(sc, reg_addr); 8591 8592 BLOGD(sc, DBG_INTR, "aeu_mask 0x%08x newly deasserted 0x%08x\n", 8593 aeu_mask, deasserted); 8594 aeu_mask |= (deasserted & 0x3ff); 8595 BLOGD(sc, DBG_INTR, "new mask 0x%08x\n", aeu_mask); 8596 8597 REG_WR(sc, reg_addr, aeu_mask); 8598 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port); 8599 8600 BLOGD(sc, DBG_INTR, "attn_state 0x%08x\n", sc->attn_state); 8601 sc->attn_state &= ~deasserted; 8602 BLOGD(sc, DBG_INTR, "new state 0x%08x\n", sc->attn_state); 8603 } 8604 8605 static void 8606 bxe_attn_int(struct bxe_softc *sc) 8607 { 8608 /* read local copy of bits */ 8609 uint32_t attn_bits = le32toh(sc->def_sb->atten_status_block.attn_bits); 8610 uint32_t attn_ack = le32toh(sc->def_sb->atten_status_block.attn_bits_ack); 8611 uint32_t attn_state = sc->attn_state; 8612 8613 /* look for changed bits */ 8614 uint32_t asserted = attn_bits & ~attn_ack & ~attn_state; 8615 uint32_t deasserted = ~attn_bits & attn_ack & attn_state; 8616 8617 BLOGD(sc, DBG_INTR, 8618 "attn_bits 0x%08x attn_ack 0x%08x asserted 0x%08x deasserted 0x%08x\n", 8619 attn_bits, attn_ack, asserted, deasserted); 8620 8621 if (~(attn_bits ^ attn_ack) & (attn_bits ^ attn_state)) { 8622 BLOGE(sc, "BAD attention state\n"); 8623 } 8624 8625 /* handle bits that were raised */ 8626 if (asserted) { 8627 bxe_attn_int_asserted(sc, asserted); 8628 } 8629 8630 if (deasserted) { 8631 bxe_attn_int_deasserted(sc, deasserted); 8632 } 8633 } 8634 8635 static uint16_t 8636 bxe_update_dsb_idx(struct bxe_softc *sc) 8637 { 8638 struct host_sp_status_block *def_sb = sc->def_sb; 8639 uint16_t rc = 0; 8640 8641 mb(); /* status block is written to by the chip */ 8642 8643 if (sc->def_att_idx != def_sb->atten_status_block.attn_bits_index) { 8644 sc->def_att_idx = def_sb->atten_status_block.attn_bits_index; 8645 rc |= BXE_DEF_SB_ATT_IDX; 8646 } 8647 8648 if (sc->def_idx != def_sb->sp_sb.running_index) { 8649 sc->def_idx = def_sb->sp_sb.running_index; 8650 rc |= BXE_DEF_SB_IDX; 8651 } 8652 8653 mb(); 8654 8655 return (rc); 8656 } 8657 8658 static inline struct ecore_queue_sp_obj * 8659 bxe_cid_to_q_obj(struct bxe_softc *sc, 8660 uint32_t cid) 8661 { 8662 BLOGD(sc, DBG_SP, "retrieving fp from cid %d\n", cid); 8663 return (&sc->sp_objs[CID_TO_FP(cid, sc)].q_obj); 8664 } 8665 8666 static void 8667 bxe_handle_mcast_eqe(struct bxe_softc *sc) 8668 { 8669 struct ecore_mcast_ramrod_params rparam; 8670 int rc; 8671 8672 memset(&rparam, 0, sizeof(rparam)); 8673 8674 rparam.mcast_obj = &sc->mcast_obj; 8675 8676 BXE_MCAST_LOCK(sc); 8677 8678 /* clear pending state for the last command */ 8679 sc->mcast_obj.raw.clear_pending(&sc->mcast_obj.raw); 8680 8681 /* if there are pending mcast commands - send them */ 8682 if (sc->mcast_obj.check_pending(&sc->mcast_obj)) { 8683 rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_CONT); 8684 if (rc < 0) { 8685 BLOGD(sc, DBG_SP, 8686 "ERROR: Failed to send pending mcast commands (%d)\n", 8687 rc); 8688 } 8689 } 8690 8691 BXE_MCAST_UNLOCK(sc); 8692 } 8693 8694 static void 8695 bxe_handle_classification_eqe(struct bxe_softc *sc, 8696 union event_ring_elem *elem) 8697 { 8698 unsigned long ramrod_flags = 0; 8699 int rc = 0; 8700 uint32_t cid = elem->message.data.eth_event.echo & BXE_SWCID_MASK; 8701 struct ecore_vlan_mac_obj *vlan_mac_obj; 8702 8703 /* always push next commands out, don't wait here */ 8704 bit_set(&ramrod_flags, RAMROD_CONT); 8705 8706 switch (le32toh(elem->message.data.eth_event.echo) >> BXE_SWCID_SHIFT) { 8707 case ECORE_FILTER_MAC_PENDING: 8708 BLOGD(sc, DBG_SP, "Got SETUP_MAC completions\n"); 8709 vlan_mac_obj = &sc->sp_objs[cid].mac_obj; 8710 break; 8711 8712 case ECORE_FILTER_MCAST_PENDING: 8713 BLOGD(sc, DBG_SP, "Got SETUP_MCAST completions\n"); 8714 /* 8715 * This is only relevant for 57710 where multicast MACs are 8716 * configured as unicast MACs using the same ramrod. 8717 */ 8718 bxe_handle_mcast_eqe(sc); 8719 return; 8720 8721 default: 8722 BLOGE(sc, "Unsupported classification command: %d\n", 8723 elem->message.data.eth_event.echo); 8724 return; 8725 } 8726 8727 rc = vlan_mac_obj->complete(sc, vlan_mac_obj, elem, &ramrod_flags); 8728 8729 if (rc < 0) { 8730 BLOGE(sc, "Failed to schedule new commands (%d)\n", rc); 8731 } else if (rc > 0) { 8732 BLOGD(sc, DBG_SP, "Scheduled next pending commands...\n"); 8733 } 8734 } 8735 8736 static void 8737 bxe_handle_rx_mode_eqe(struct bxe_softc *sc, 8738 union event_ring_elem *elem) 8739 { 8740 bxe_clear_bit(ECORE_FILTER_RX_MODE_PENDING, &sc->sp_state); 8741 8742 /* send rx_mode command again if was requested */ 8743 if (bxe_test_and_clear_bit(ECORE_FILTER_RX_MODE_SCHED, 8744 &sc->sp_state)) { 8745 bxe_set_storm_rx_mode(sc); 8746 } 8747 #if 0 8748 else if (bxe_test_and_clear_bit(ECORE_FILTER_ISCSI_ETH_START_SCHED, 8749 &sc->sp_state)) { 8750 bxe_set_iscsi_eth_rx_mode(sc, TRUE); 8751 } 8752 else if (bxe_test_and_clear_bit(ECORE_FILTER_ISCSI_ETH_STOP_SCHED, 8753 &sc->sp_state)) { 8754 bxe_set_iscsi_eth_rx_mode(sc, FALSE); 8755 } 8756 #endif 8757 } 8758 8759 static void 8760 bxe_update_eq_prod(struct bxe_softc *sc, 8761 uint16_t prod) 8762 { 8763 storm_memset_eq_prod(sc, prod, SC_FUNC(sc)); 8764 wmb(); /* keep prod updates ordered */ 8765 } 8766 8767 static void 8768 bxe_eq_int(struct bxe_softc *sc) 8769 { 8770 uint16_t hw_cons, sw_cons, sw_prod; 8771 union event_ring_elem *elem; 8772 uint8_t echo; 8773 uint32_t cid; 8774 uint8_t opcode; 8775 int spqe_cnt = 0; 8776 struct ecore_queue_sp_obj *q_obj; 8777 struct ecore_func_sp_obj *f_obj = &sc->func_obj; 8778 struct ecore_raw_obj *rss_raw = &sc->rss_conf_obj.raw; 8779 8780 hw_cons = le16toh(*sc->eq_cons_sb); 8781 8782 /* 8783 * The hw_cons range is 1-255, 257 - the sw_cons range is 0-254, 256. 8784 * when we get to the next-page we need to adjust so the loop 8785 * condition below will be met. The next element is the size of a 8786 * regular element and hence incrementing by 1 8787 */ 8788 if ((hw_cons & EQ_DESC_MAX_PAGE) == EQ_DESC_MAX_PAGE) { 8789 hw_cons++; 8790 } 8791 8792 /* 8793 * This function may never run in parallel with itself for a 8794 * specific sc and no need for a read memory barrier here. 8795 */ 8796 sw_cons = sc->eq_cons; 8797 sw_prod = sc->eq_prod; 8798 8799 BLOGD(sc, DBG_SP,"EQ: hw_cons=%u sw_cons=%u eq_spq_left=0x%lx\n", 8800 hw_cons, sw_cons, atomic_load_acq_long(&sc->eq_spq_left)); 8801 8802 for (; 8803 sw_cons != hw_cons; 8804 sw_prod = NEXT_EQ_IDX(sw_prod), sw_cons = NEXT_EQ_IDX(sw_cons)) { 8805 8806 elem = &sc->eq[EQ_DESC(sw_cons)]; 8807 8808 #if 0 8809 int rc; 8810 rc = bxe_iov_eq_sp_event(sc, elem); 8811 if (!rc) { 8812 BLOGE(sc, "bxe_iov_eq_sp_event returned %d\n", rc); 8813 goto next_spqe; 8814 } 8815 #endif 8816 8817 /* elem CID originates from FW, actually LE */ 8818 cid = SW_CID(elem->message.data.cfc_del_event.cid); 8819 opcode = elem->message.opcode; 8820 8821 /* handle eq element */ 8822 switch (opcode) { 8823 #if 0 8824 case EVENT_RING_OPCODE_VF_PF_CHANNEL: 8825 BLOGD(sc, DBG_SP, "vf/pf channel element on eq\n"); 8826 bxe_vf_mbx(sc, &elem->message.data.vf_pf_event); 8827 continue; 8828 #endif 8829 8830 case EVENT_RING_OPCODE_STAT_QUERY: 8831 BLOGD(sc, DBG_SP, "got statistics completion event %d\n", 8832 sc->stats_comp++); 8833 /* nothing to do with stats comp */ 8834 goto next_spqe; 8835 8836 case EVENT_RING_OPCODE_CFC_DEL: 8837 /* handle according to cid range */ 8838 /* we may want to verify here that the sc state is HALTING */ 8839 BLOGD(sc, DBG_SP, "got delete ramrod for MULTI[%d]\n", cid); 8840 q_obj = bxe_cid_to_q_obj(sc, cid); 8841 if (q_obj->complete_cmd(sc, q_obj, ECORE_Q_CMD_CFC_DEL)) { 8842 break; 8843 } 8844 goto next_spqe; 8845 8846 case EVENT_RING_OPCODE_STOP_TRAFFIC: 8847 BLOGD(sc, DBG_SP, "got STOP TRAFFIC\n"); 8848 if (f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_TX_STOP)) { 8849 break; 8850 } 8851 // XXX bxe_dcbx_set_params(sc, BXE_DCBX_STATE_TX_PAUSED); 8852 goto next_spqe; 8853 8854 case EVENT_RING_OPCODE_START_TRAFFIC: 8855 BLOGD(sc, DBG_SP, "got START TRAFFIC\n"); 8856 if (f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_TX_START)) { 8857 break; 8858 } 8859 // XXX bxe_dcbx_set_params(sc, BXE_DCBX_STATE_TX_RELEASED); 8860 goto next_spqe; 8861 8862 case EVENT_RING_OPCODE_FUNCTION_UPDATE: 8863 echo = elem->message.data.function_update_event.echo; 8864 if (echo == SWITCH_UPDATE) { 8865 BLOGD(sc, DBG_SP, "got FUNC_SWITCH_UPDATE ramrod\n"); 8866 if (f_obj->complete_cmd(sc, f_obj, 8867 ECORE_F_CMD_SWITCH_UPDATE)) { 8868 break; 8869 } 8870 } 8871 else { 8872 BLOGD(sc, DBG_SP, 8873 "AFEX: ramrod completed FUNCTION_UPDATE\n"); 8874 #if 0 8875 f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_AFEX_UPDATE); 8876 /* 8877 * We will perform the queues update from the sp_core_task as 8878 * all queue SP operations should run with CORE_LOCK. 8879 */ 8880 bxe_set_bit(BXE_SP_CORE_AFEX_F_UPDATE, &sc->sp_core_state); 8881 taskqueue_enqueue(sc->sp_tq, &sc->sp_tq_task); 8882 #endif 8883 } 8884 goto next_spqe; 8885 8886 #if 0 8887 case EVENT_RING_OPCODE_AFEX_VIF_LISTS: 8888 f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_AFEX_VIFLISTS); 8889 bxe_after_afex_vif_lists(sc, elem); 8890 goto next_spqe; 8891 #endif 8892 8893 case EVENT_RING_OPCODE_FORWARD_SETUP: 8894 q_obj = &bxe_fwd_sp_obj(sc, q_obj); 8895 if (q_obj->complete_cmd(sc, q_obj, 8896 ECORE_Q_CMD_SETUP_TX_ONLY)) { 8897 break; 8898 } 8899 goto next_spqe; 8900 8901 case EVENT_RING_OPCODE_FUNCTION_START: 8902 BLOGD(sc, DBG_SP, "got FUNC_START ramrod\n"); 8903 if (f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_START)) { 8904 break; 8905 } 8906 goto next_spqe; 8907 8908 case EVENT_RING_OPCODE_FUNCTION_STOP: 8909 BLOGD(sc, DBG_SP, "got FUNC_STOP ramrod\n"); 8910 if (f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_STOP)) { 8911 break; 8912 } 8913 goto next_spqe; 8914 } 8915 8916 switch (opcode | sc->state) { 8917 case (EVENT_RING_OPCODE_RSS_UPDATE_RULES | BXE_STATE_OPEN): 8918 case (EVENT_RING_OPCODE_RSS_UPDATE_RULES | BXE_STATE_OPENING_WAITING_PORT): 8919 cid = elem->message.data.eth_event.echo & BXE_SWCID_MASK; 8920 BLOGD(sc, DBG_SP, "got RSS_UPDATE ramrod. CID %d\n", cid); 8921 rss_raw->clear_pending(rss_raw); 8922 break; 8923 8924 case (EVENT_RING_OPCODE_SET_MAC | BXE_STATE_OPEN): 8925 case (EVENT_RING_OPCODE_SET_MAC | BXE_STATE_DIAG): 8926 case (EVENT_RING_OPCODE_SET_MAC | BXE_STATE_CLOSING_WAITING_HALT): 8927 case (EVENT_RING_OPCODE_CLASSIFICATION_RULES | BXE_STATE_OPEN): 8928 case (EVENT_RING_OPCODE_CLASSIFICATION_RULES | BXE_STATE_DIAG): 8929 case (EVENT_RING_OPCODE_CLASSIFICATION_RULES | BXE_STATE_CLOSING_WAITING_HALT): 8930 BLOGD(sc, DBG_SP, "got (un)set mac ramrod\n"); 8931 bxe_handle_classification_eqe(sc, elem); 8932 break; 8933 8934 case (EVENT_RING_OPCODE_MULTICAST_RULES | BXE_STATE_OPEN): 8935 case (EVENT_RING_OPCODE_MULTICAST_RULES | BXE_STATE_DIAG): 8936 case (EVENT_RING_OPCODE_MULTICAST_RULES | BXE_STATE_CLOSING_WAITING_HALT): 8937 BLOGD(sc, DBG_SP, "got mcast ramrod\n"); 8938 bxe_handle_mcast_eqe(sc); 8939 break; 8940 8941 case (EVENT_RING_OPCODE_FILTERS_RULES | BXE_STATE_OPEN): 8942 case (EVENT_RING_OPCODE_FILTERS_RULES | BXE_STATE_DIAG): 8943 case (EVENT_RING_OPCODE_FILTERS_RULES | BXE_STATE_CLOSING_WAITING_HALT): 8944 BLOGD(sc, DBG_SP, "got rx_mode ramrod\n"); 8945 bxe_handle_rx_mode_eqe(sc, elem); 8946 break; 8947 8948 default: 8949 /* unknown event log error and continue */ 8950 BLOGE(sc, "Unknown EQ event %d, sc->state 0x%x\n", 8951 elem->message.opcode, sc->state); 8952 } 8953 8954 next_spqe: 8955 spqe_cnt++; 8956 } /* for */ 8957 8958 mb(); 8959 atomic_add_acq_long(&sc->eq_spq_left, spqe_cnt); 8960 8961 sc->eq_cons = sw_cons; 8962 sc->eq_prod = sw_prod; 8963 8964 /* make sure that above mem writes were issued towards the memory */ 8965 wmb(); 8966 8967 /* update producer */ 8968 bxe_update_eq_prod(sc, sc->eq_prod); 8969 } 8970 8971 static void 8972 bxe_handle_sp_tq(void *context, 8973 int pending) 8974 { 8975 struct bxe_softc *sc = (struct bxe_softc *)context; 8976 uint16_t status; 8977 8978 BLOGD(sc, DBG_SP, "---> SP TASK <---\n"); 8979 8980 /* what work needs to be performed? */ 8981 status = bxe_update_dsb_idx(sc); 8982 8983 BLOGD(sc, DBG_SP, "dsb status 0x%04x\n", status); 8984 8985 /* HW attentions */ 8986 if (status & BXE_DEF_SB_ATT_IDX) { 8987 BLOGD(sc, DBG_SP, "---> ATTN INTR <---\n"); 8988 bxe_attn_int(sc); 8989 status &= ~BXE_DEF_SB_ATT_IDX; 8990 } 8991 8992 /* SP events: STAT_QUERY and others */ 8993 if (status & BXE_DEF_SB_IDX) { 8994 /* handle EQ completions */ 8995 BLOGD(sc, DBG_SP, "---> EQ INTR <---\n"); 8996 bxe_eq_int(sc); 8997 bxe_ack_sb(sc, sc->igu_dsb_id, USTORM_ID, 8998 le16toh(sc->def_idx), IGU_INT_NOP, 1); 8999 status &= ~BXE_DEF_SB_IDX; 9000 } 9001 9002 /* if status is non zero then something went wrong */ 9003 if (__predict_false(status)) { 9004 BLOGE(sc, "Got an unknown SP interrupt! (0x%04x)\n", status); 9005 } 9006 9007 /* ack status block only if something was actually handled */ 9008 bxe_ack_sb(sc, sc->igu_dsb_id, ATTENTION_ID, 9009 le16toh(sc->def_att_idx), IGU_INT_ENABLE, 1); 9010 9011 /* 9012 * Must be called after the EQ processing (since eq leads to sriov 9013 * ramrod completion flows). 9014 * This flow may have been scheduled by the arrival of a ramrod 9015 * completion, or by the sriov code rescheduling itself. 9016 */ 9017 // XXX bxe_iov_sp_task(sc); 9018 9019 #if 0 9020 /* AFEX - poll to check if VIFSET_ACK should be sent to MFW */ 9021 if (bxe_test_and_clear_bit(ECORE_AFEX_PENDING_VIFSET_MCP_ACK, 9022 &sc->sp_state)) { 9023 bxe_link_report(sc); 9024 bxe_fw_command(sc, DRV_MSG_CODE_AFEX_VIFSET_ACK, 0); 9025 } 9026 #endif 9027 } 9028 9029 static void 9030 bxe_handle_fp_tq(void *context, 9031 int pending) 9032 { 9033 struct bxe_fastpath *fp = (struct bxe_fastpath *)context; 9034 struct bxe_softc *sc = fp->sc; 9035 uint8_t more_tx = FALSE; 9036 uint8_t more_rx = FALSE; 9037 9038 BLOGD(sc, DBG_INTR, "---> FP TASK QUEUE (%d) <---\n", fp->index); 9039 9040 /* XXX 9041 * IFF_DRV_RUNNING state can't be checked here since we process 9042 * slowpath events on a client queue during setup. Instead 9043 * we need to add a "process/continue" flag here that the driver 9044 * can use to tell the task here not to do anything. 9045 */ 9046 #if 0 9047 if (!(if_getdrvflags(sc->ifp) & IFF_DRV_RUNNING)) { 9048 return; 9049 } 9050 #endif 9051 9052 /* update the fastpath index */ 9053 bxe_update_fp_sb_idx(fp); 9054 9055 /* XXX add loop here if ever support multiple tx CoS */ 9056 /* fp->txdata[cos] */ 9057 if (bxe_has_tx_work(fp)) { 9058 BXE_FP_TX_LOCK(fp); 9059 more_tx = bxe_txeof(sc, fp); 9060 BXE_FP_TX_UNLOCK(fp); 9061 } 9062 9063 if (bxe_has_rx_work(fp)) { 9064 more_rx = bxe_rxeof(sc, fp); 9065 } 9066 9067 if (more_rx /*|| more_tx*/) { 9068 /* still more work to do */ 9069 taskqueue_enqueue_fast(fp->tq, &fp->tq_task); 9070 return; 9071 } 9072 9073 bxe_ack_sb(sc, fp->igu_sb_id, USTORM_ID, 9074 le16toh(fp->fp_hc_idx), IGU_INT_ENABLE, 1); 9075 } 9076 9077 static void 9078 bxe_task_fp(struct bxe_fastpath *fp) 9079 { 9080 struct bxe_softc *sc = fp->sc; 9081 uint8_t more_tx = FALSE; 9082 uint8_t more_rx = FALSE; 9083 9084 BLOGD(sc, DBG_INTR, "---> FP TASK ISR (%d) <---\n", fp->index); 9085 9086 /* update the fastpath index */ 9087 bxe_update_fp_sb_idx(fp); 9088 9089 /* XXX add loop here if ever support multiple tx CoS */ 9090 /* fp->txdata[cos] */ 9091 if (bxe_has_tx_work(fp)) { 9092 BXE_FP_TX_LOCK(fp); 9093 more_tx = bxe_txeof(sc, fp); 9094 BXE_FP_TX_UNLOCK(fp); 9095 } 9096 9097 if (bxe_has_rx_work(fp)) { 9098 more_rx = bxe_rxeof(sc, fp); 9099 } 9100 9101 if (more_rx /*|| more_tx*/) { 9102 /* still more work to do, bail out if this ISR and process later */ 9103 taskqueue_enqueue_fast(fp->tq, &fp->tq_task); 9104 return; 9105 } 9106 9107 /* 9108 * Here we write the fastpath index taken before doing any tx or rx work. 9109 * It is very well possible other hw events occurred up to this point and 9110 * they were actually processed accordingly above. Since we're going to 9111 * write an older fastpath index, an interrupt is coming which we might 9112 * not do any work in. 9113 */ 9114 bxe_ack_sb(sc, fp->igu_sb_id, USTORM_ID, 9115 le16toh(fp->fp_hc_idx), IGU_INT_ENABLE, 1); 9116 } 9117 9118 /* 9119 * Legacy interrupt entry point. 9120 * 9121 * Verifies that the controller generated the interrupt and 9122 * then calls a separate routine to handle the various 9123 * interrupt causes: link, RX, and TX. 9124 */ 9125 static void 9126 bxe_intr_legacy(void *xsc) 9127 { 9128 struct bxe_softc *sc = (struct bxe_softc *)xsc; 9129 struct bxe_fastpath *fp; 9130 uint16_t status, mask; 9131 int i; 9132 9133 BLOGD(sc, DBG_INTR, "---> BXE INTx <---\n"); 9134 9135 #if 0 9136 /* Don't handle any interrupts if we're not ready. */ 9137 if (__predict_false(sc->intr_sem != 0)) { 9138 return; 9139 } 9140 #endif 9141 9142 /* 9143 * 0 for ustorm, 1 for cstorm 9144 * the bits returned from ack_int() are 0-15 9145 * bit 0 = attention status block 9146 * bit 1 = fast path status block 9147 * a mask of 0x2 or more = tx/rx event 9148 * a mask of 1 = slow path event 9149 */ 9150 9151 status = bxe_ack_int(sc); 9152 9153 /* the interrupt is not for us */ 9154 if (__predict_false(status == 0)) { 9155 BLOGD(sc, DBG_INTR, "Not our interrupt!\n"); 9156 return; 9157 } 9158 9159 BLOGD(sc, DBG_INTR, "Interrupt status 0x%04x\n", status); 9160 9161 FOR_EACH_ETH_QUEUE(sc, i) { 9162 fp = &sc->fp[i]; 9163 mask = (0x2 << (fp->index + CNIC_SUPPORT(sc))); 9164 if (status & mask) { 9165 /* acknowledge and disable further fastpath interrupts */ 9166 bxe_ack_sb(sc, fp->igu_sb_id, USTORM_ID, 0, IGU_INT_DISABLE, 0); 9167 bxe_task_fp(fp); 9168 status &= ~mask; 9169 } 9170 } 9171 9172 #if 0 9173 if (CNIC_SUPPORT(sc)) { 9174 mask = 0x2; 9175 if (status & (mask | 0x1)) { 9176 ... 9177 status &= ~mask; 9178 } 9179 } 9180 #endif 9181 9182 if (__predict_false(status & 0x1)) { 9183 /* acknowledge and disable further slowpath interrupts */ 9184 bxe_ack_sb(sc, sc->igu_dsb_id, USTORM_ID, 0, IGU_INT_DISABLE, 0); 9185 9186 /* schedule slowpath handler */ 9187 taskqueue_enqueue_fast(sc->sp_tq, &sc->sp_tq_task); 9188 9189 status &= ~0x1; 9190 } 9191 9192 if (__predict_false(status)) { 9193 BLOGW(sc, "Unexpected fastpath status (0x%08x)!\n", status); 9194 } 9195 } 9196 9197 /* slowpath interrupt entry point */ 9198 static void 9199 bxe_intr_sp(void *xsc) 9200 { 9201 struct bxe_softc *sc = (struct bxe_softc *)xsc; 9202 9203 BLOGD(sc, (DBG_INTR | DBG_SP), "---> SP INTR <---\n"); 9204 9205 /* acknowledge and disable further slowpath interrupts */ 9206 bxe_ack_sb(sc, sc->igu_dsb_id, USTORM_ID, 0, IGU_INT_DISABLE, 0); 9207 9208 /* schedule slowpath handler */ 9209 taskqueue_enqueue_fast(sc->sp_tq, &sc->sp_tq_task); 9210 } 9211 9212 /* fastpath interrupt entry point */ 9213 static void 9214 bxe_intr_fp(void *xfp) 9215 { 9216 struct bxe_fastpath *fp = (struct bxe_fastpath *)xfp; 9217 struct bxe_softc *sc = fp->sc; 9218 9219 BLOGD(sc, DBG_INTR, "---> FP INTR %d <---\n", fp->index); 9220 9221 BLOGD(sc, DBG_INTR, 9222 "(cpu=%d) MSI-X fp=%d fw_sb=%d igu_sb=%d\n", 9223 curcpu, fp->index, fp->fw_sb_id, fp->igu_sb_id); 9224 9225 #if 0 9226 /* Don't handle any interrupts if we're not ready. */ 9227 if (__predict_false(sc->intr_sem != 0)) { 9228 return; 9229 } 9230 #endif 9231 9232 /* acknowledge and disable further fastpath interrupts */ 9233 bxe_ack_sb(sc, fp->igu_sb_id, USTORM_ID, 0, IGU_INT_DISABLE, 0); 9234 9235 bxe_task_fp(fp); 9236 } 9237 9238 /* Release all interrupts allocated by the driver. */ 9239 static void 9240 bxe_interrupt_free(struct bxe_softc *sc) 9241 { 9242 int i; 9243 9244 switch (sc->interrupt_mode) { 9245 case INTR_MODE_INTX: 9246 BLOGD(sc, DBG_LOAD, "Releasing legacy INTx vector\n"); 9247 if (sc->intr[0].resource != NULL) { 9248 bus_release_resource(sc->dev, 9249 SYS_RES_IRQ, 9250 sc->intr[0].rid, 9251 sc->intr[0].resource); 9252 } 9253 break; 9254 case INTR_MODE_MSI: 9255 for (i = 0; i < sc->intr_count; i++) { 9256 BLOGD(sc, DBG_LOAD, "Releasing MSI vector %d\n", i); 9257 if (sc->intr[i].resource && sc->intr[i].rid) { 9258 bus_release_resource(sc->dev, 9259 SYS_RES_IRQ, 9260 sc->intr[i].rid, 9261 sc->intr[i].resource); 9262 } 9263 } 9264 pci_release_msi(sc->dev); 9265 break; 9266 case INTR_MODE_MSIX: 9267 for (i = 0; i < sc->intr_count; i++) { 9268 BLOGD(sc, DBG_LOAD, "Releasing MSI-X vector %d\n", i); 9269 if (sc->intr[i].resource && sc->intr[i].rid) { 9270 bus_release_resource(sc->dev, 9271 SYS_RES_IRQ, 9272 sc->intr[i].rid, 9273 sc->intr[i].resource); 9274 } 9275 } 9276 pci_release_msi(sc->dev); 9277 break; 9278 default: 9279 /* nothing to do as initial allocation failed */ 9280 break; 9281 } 9282 } 9283 9284 /* 9285 * This function determines and allocates the appropriate 9286 * interrupt based on system capabilites and user request. 9287 * 9288 * The user may force a particular interrupt mode, specify 9289 * the number of receive queues, specify the method for 9290 * distribuitng received frames to receive queues, or use 9291 * the default settings which will automatically select the 9292 * best supported combination. In addition, the OS may or 9293 * may not support certain combinations of these settings. 9294 * This routine attempts to reconcile the settings requested 9295 * by the user with the capabilites available from the system 9296 * to select the optimal combination of features. 9297 * 9298 * Returns: 9299 * 0 = Success, !0 = Failure. 9300 */ 9301 static int 9302 bxe_interrupt_alloc(struct bxe_softc *sc) 9303 { 9304 int msix_count = 0; 9305 int msi_count = 0; 9306 int num_requested = 0; 9307 int num_allocated = 0; 9308 int rid, i, j; 9309 int rc; 9310 9311 /* get the number of available MSI/MSI-X interrupts from the OS */ 9312 if (sc->interrupt_mode > 0) { 9313 if (sc->devinfo.pcie_cap_flags & BXE_MSIX_CAPABLE_FLAG) { 9314 msix_count = pci_msix_count(sc->dev); 9315 } 9316 9317 if (sc->devinfo.pcie_cap_flags & BXE_MSI_CAPABLE_FLAG) { 9318 msi_count = pci_msi_count(sc->dev); 9319 } 9320 9321 BLOGD(sc, DBG_LOAD, "%d MSI and %d MSI-X vectors available\n", 9322 msi_count, msix_count); 9323 } 9324 9325 do { /* try allocating MSI-X interrupt resources (at least 2) */ 9326 if (sc->interrupt_mode != INTR_MODE_MSIX) { 9327 break; 9328 } 9329 9330 if (((sc->devinfo.pcie_cap_flags & BXE_MSIX_CAPABLE_FLAG) == 0) || 9331 (msix_count < 2)) { 9332 sc->interrupt_mode = INTR_MODE_MSI; /* try MSI next */ 9333 break; 9334 } 9335 9336 /* ask for the necessary number of MSI-X vectors */ 9337 num_requested = min((sc->num_queues + 1), msix_count); 9338 9339 BLOGD(sc, DBG_LOAD, "Requesting %d MSI-X vectors\n", num_requested); 9340 9341 num_allocated = num_requested; 9342 if ((rc = pci_alloc_msix(sc->dev, &num_allocated)) != 0) { 9343 BLOGE(sc, "MSI-X alloc failed! (%d)\n", rc); 9344 sc->interrupt_mode = INTR_MODE_MSI; /* try MSI next */ 9345 break; 9346 } 9347 9348 if (num_allocated < 2) { /* possible? */ 9349 BLOGE(sc, "MSI-X allocation less than 2!\n"); 9350 sc->interrupt_mode = INTR_MODE_MSI; /* try MSI next */ 9351 pci_release_msi(sc->dev); 9352 break; 9353 } 9354 9355 BLOGI(sc, "MSI-X vectors Requested %d and Allocated %d\n", 9356 num_requested, num_allocated); 9357 9358 /* best effort so use the number of vectors allocated to us */ 9359 sc->intr_count = num_allocated; 9360 sc->num_queues = num_allocated - 1; 9361 9362 rid = 1; /* initial resource identifier */ 9363 9364 /* allocate the MSI-X vectors */ 9365 for (i = 0; i < num_allocated; i++) { 9366 sc->intr[i].rid = (rid + i); 9367 9368 if ((sc->intr[i].resource = 9369 bus_alloc_resource_any(sc->dev, 9370 SYS_RES_IRQ, 9371 &sc->intr[i].rid, 9372 RF_ACTIVE)) == NULL) { 9373 BLOGE(sc, "Failed to map MSI-X[%d] (rid=%d)!\n", 9374 i, (rid + i)); 9375 9376 for (j = (i - 1); j >= 0; j--) { 9377 bus_release_resource(sc->dev, 9378 SYS_RES_IRQ, 9379 sc->intr[j].rid, 9380 sc->intr[j].resource); 9381 } 9382 9383 sc->intr_count = 0; 9384 sc->num_queues = 0; 9385 sc->interrupt_mode = INTR_MODE_MSI; /* try MSI next */ 9386 pci_release_msi(sc->dev); 9387 break; 9388 } 9389 9390 BLOGD(sc, DBG_LOAD, "Mapped MSI-X[%d] (rid=%d)\n", i, (rid + i)); 9391 } 9392 } while (0); 9393 9394 do { /* try allocating MSI vector resources (at least 2) */ 9395 if (sc->interrupt_mode != INTR_MODE_MSI) { 9396 break; 9397 } 9398 9399 if (((sc->devinfo.pcie_cap_flags & BXE_MSI_CAPABLE_FLAG) == 0) || 9400 (msi_count < 1)) { 9401 sc->interrupt_mode = INTR_MODE_INTX; /* try INTx next */ 9402 break; 9403 } 9404 9405 /* ask for a single MSI vector */ 9406 num_requested = 1; 9407 9408 BLOGD(sc, DBG_LOAD, "Requesting %d MSI vectors\n", num_requested); 9409 9410 num_allocated = num_requested; 9411 if ((rc = pci_alloc_msi(sc->dev, &num_allocated)) != 0) { 9412 BLOGE(sc, "MSI alloc failed (%d)!\n", rc); 9413 sc->interrupt_mode = INTR_MODE_INTX; /* try INTx next */ 9414 break; 9415 } 9416 9417 if (num_allocated != 1) { /* possible? */ 9418 BLOGE(sc, "MSI allocation is not 1!\n"); 9419 sc->interrupt_mode = INTR_MODE_INTX; /* try INTx next */ 9420 pci_release_msi(sc->dev); 9421 break; 9422 } 9423 9424 BLOGI(sc, "MSI vectors Requested %d and Allocated %d\n", 9425 num_requested, num_allocated); 9426 9427 /* best effort so use the number of vectors allocated to us */ 9428 sc->intr_count = num_allocated; 9429 sc->num_queues = num_allocated; 9430 9431 rid = 1; /* initial resource identifier */ 9432 9433 sc->intr[0].rid = rid; 9434 9435 if ((sc->intr[0].resource = 9436 bus_alloc_resource_any(sc->dev, 9437 SYS_RES_IRQ, 9438 &sc->intr[0].rid, 9439 RF_ACTIVE)) == NULL) { 9440 BLOGE(sc, "Failed to map MSI[0] (rid=%d)!\n", rid); 9441 sc->intr_count = 0; 9442 sc->num_queues = 0; 9443 sc->interrupt_mode = INTR_MODE_INTX; /* try INTx next */ 9444 pci_release_msi(sc->dev); 9445 break; 9446 } 9447 9448 BLOGD(sc, DBG_LOAD, "Mapped MSI[0] (rid=%d)\n", rid); 9449 } while (0); 9450 9451 do { /* try allocating INTx vector resources */ 9452 if (sc->interrupt_mode != INTR_MODE_INTX) { 9453 break; 9454 } 9455 9456 BLOGD(sc, DBG_LOAD, "Requesting legacy INTx interrupt\n"); 9457 9458 /* only one vector for INTx */ 9459 sc->intr_count = 1; 9460 sc->num_queues = 1; 9461 9462 rid = 0; /* initial resource identifier */ 9463 9464 sc->intr[0].rid = rid; 9465 9466 if ((sc->intr[0].resource = 9467 bus_alloc_resource_any(sc->dev, 9468 SYS_RES_IRQ, 9469 &sc->intr[0].rid, 9470 (RF_ACTIVE | RF_SHAREABLE))) == NULL) { 9471 BLOGE(sc, "Failed to map INTx (rid=%d)!\n", rid); 9472 sc->intr_count = 0; 9473 sc->num_queues = 0; 9474 sc->interrupt_mode = -1; /* Failed! */ 9475 break; 9476 } 9477 9478 BLOGD(sc, DBG_LOAD, "Mapped INTx (rid=%d)\n", rid); 9479 } while (0); 9480 9481 if (sc->interrupt_mode == -1) { 9482 BLOGE(sc, "Interrupt Allocation: FAILED!!!\n"); 9483 rc = 1; 9484 } else { 9485 BLOGD(sc, DBG_LOAD, 9486 "Interrupt Allocation: interrupt_mode=%d, num_queues=%d\n", 9487 sc->interrupt_mode, sc->num_queues); 9488 rc = 0; 9489 } 9490 9491 return (rc); 9492 } 9493 9494 static void 9495 bxe_interrupt_detach(struct bxe_softc *sc) 9496 { 9497 struct bxe_fastpath *fp; 9498 int i; 9499 9500 /* release interrupt resources */ 9501 for (i = 0; i < sc->intr_count; i++) { 9502 if (sc->intr[i].resource && sc->intr[i].tag) { 9503 BLOGD(sc, DBG_LOAD, "Disabling interrupt vector %d\n", i); 9504 bus_teardown_intr(sc->dev, sc->intr[i].resource, sc->intr[i].tag); 9505 } 9506 } 9507 9508 for (i = 0; i < sc->num_queues; i++) { 9509 fp = &sc->fp[i]; 9510 if (fp->tq) { 9511 taskqueue_drain(fp->tq, &fp->tq_task); 9512 taskqueue_free(fp->tq); 9513 fp->tq = NULL; 9514 } 9515 } 9516 9517 if (sc->rx_mode_tq) { 9518 taskqueue_drain(sc->rx_mode_tq, &sc->rx_mode_tq_task); 9519 taskqueue_free(sc->rx_mode_tq); 9520 sc->rx_mode_tq = NULL; 9521 } 9522 9523 if (sc->sp_tq) { 9524 taskqueue_drain(sc->sp_tq, &sc->sp_tq_task); 9525 taskqueue_free(sc->sp_tq); 9526 sc->sp_tq = NULL; 9527 } 9528 } 9529 9530 /* 9531 * Enables interrupts and attach to the ISR. 9532 * 9533 * When using multiple MSI/MSI-X vectors the first vector 9534 * is used for slowpath operations while all remaining 9535 * vectors are used for fastpath operations. If only a 9536 * single MSI/MSI-X vector is used (SINGLE_ISR) then the 9537 * ISR must look for both slowpath and fastpath completions. 9538 */ 9539 static int 9540 bxe_interrupt_attach(struct bxe_softc *sc) 9541 { 9542 struct bxe_fastpath *fp; 9543 int rc = 0; 9544 int i; 9545 9546 snprintf(sc->sp_tq_name, sizeof(sc->sp_tq_name), 9547 "bxe%d_sp_tq", sc->unit); 9548 TASK_INIT(&sc->sp_tq_task, 0, bxe_handle_sp_tq, sc); 9549 sc->sp_tq = taskqueue_create_fast(sc->sp_tq_name, M_NOWAIT, 9550 taskqueue_thread_enqueue, 9551 &sc->sp_tq); 9552 taskqueue_start_threads(&sc->sp_tq, 1, PWAIT, /* lower priority */ 9553 "%s", sc->sp_tq_name); 9554 9555 snprintf(sc->rx_mode_tq_name, sizeof(sc->rx_mode_tq_name), 9556 "bxe%d_rx_mode_tq", sc->unit); 9557 TASK_INIT(&sc->rx_mode_tq_task, 0, bxe_handle_rx_mode_tq, sc); 9558 sc->rx_mode_tq = taskqueue_create_fast(sc->rx_mode_tq_name, M_NOWAIT, 9559 taskqueue_thread_enqueue, 9560 &sc->rx_mode_tq); 9561 taskqueue_start_threads(&sc->rx_mode_tq, 1, PWAIT, /* lower priority */ 9562 "%s", sc->rx_mode_tq_name); 9563 9564 for (i = 0; i < sc->num_queues; i++) { 9565 fp = &sc->fp[i]; 9566 snprintf(fp->tq_name, sizeof(fp->tq_name), 9567 "bxe%d_fp%d_tq", sc->unit, i); 9568 TASK_INIT(&fp->tq_task, 0, bxe_handle_fp_tq, fp); 9569 fp->tq = taskqueue_create_fast(fp->tq_name, M_NOWAIT, 9570 taskqueue_thread_enqueue, 9571 &fp->tq); 9572 taskqueue_start_threads(&fp->tq, 1, PI_NET, /* higher priority */ 9573 "%s", fp->tq_name); 9574 } 9575 9576 /* setup interrupt handlers */ 9577 if (sc->interrupt_mode == INTR_MODE_MSIX) { 9578 BLOGD(sc, DBG_LOAD, "Enabling slowpath MSI-X[0] vector\n"); 9579 9580 /* 9581 * Setup the interrupt handler. Note that we pass the driver instance 9582 * to the interrupt handler for the slowpath. 9583 */ 9584 if ((rc = bus_setup_intr(sc->dev, sc->intr[0].resource, 9585 (INTR_TYPE_NET | INTR_MPSAFE), 9586 NULL, bxe_intr_sp, sc, 9587 &sc->intr[0].tag)) != 0) { 9588 BLOGE(sc, "Failed to allocate MSI-X[0] vector (%d)\n", rc); 9589 goto bxe_interrupt_attach_exit; 9590 } 9591 9592 bus_describe_intr(sc->dev, sc->intr[0].resource, 9593 sc->intr[0].tag, "sp"); 9594 9595 /* bus_bind_intr(sc->dev, sc->intr[0].resource, 0); */ 9596 9597 /* initialize the fastpath vectors (note the first was used for sp) */ 9598 for (i = 0; i < sc->num_queues; i++) { 9599 fp = &sc->fp[i]; 9600 BLOGD(sc, DBG_LOAD, "Enabling MSI-X[%d] vector\n", (i + 1)); 9601 9602 /* 9603 * Setup the interrupt handler. Note that we pass the 9604 * fastpath context to the interrupt handler in this 9605 * case. 9606 */ 9607 if ((rc = bus_setup_intr(sc->dev, sc->intr[i + 1].resource, 9608 (INTR_TYPE_NET | INTR_MPSAFE), 9609 NULL, bxe_intr_fp, fp, 9610 &sc->intr[i + 1].tag)) != 0) { 9611 BLOGE(sc, "Failed to allocate MSI-X[%d] vector (%d)\n", 9612 (i + 1), rc); 9613 goto bxe_interrupt_attach_exit; 9614 } 9615 9616 bus_describe_intr(sc->dev, sc->intr[i + 1].resource, 9617 sc->intr[i + 1].tag, "fp%02d", i); 9618 9619 /* bind the fastpath instance to a cpu */ 9620 if (sc->num_queues > 1) { 9621 bus_bind_intr(sc->dev, sc->intr[i + 1].resource, i); 9622 } 9623 9624 fp->state = BXE_FP_STATE_IRQ; 9625 } 9626 } else if (sc->interrupt_mode == INTR_MODE_MSI) { 9627 BLOGD(sc, DBG_LOAD, "Enabling MSI[0] vector\n"); 9628 9629 /* 9630 * Setup the interrupt handler. Note that we pass the 9631 * driver instance to the interrupt handler which 9632 * will handle both the slowpath and fastpath. 9633 */ 9634 if ((rc = bus_setup_intr(sc->dev, sc->intr[0].resource, 9635 (INTR_TYPE_NET | INTR_MPSAFE), 9636 NULL, bxe_intr_legacy, sc, 9637 &sc->intr[0].tag)) != 0) { 9638 BLOGE(sc, "Failed to allocate MSI[0] vector (%d)\n", rc); 9639 goto bxe_interrupt_attach_exit; 9640 } 9641 9642 } else { /* (sc->interrupt_mode == INTR_MODE_INTX) */ 9643 BLOGD(sc, DBG_LOAD, "Enabling INTx interrupts\n"); 9644 9645 /* 9646 * Setup the interrupt handler. Note that we pass the 9647 * driver instance to the interrupt handler which 9648 * will handle both the slowpath and fastpath. 9649 */ 9650 if ((rc = bus_setup_intr(sc->dev, sc->intr[0].resource, 9651 (INTR_TYPE_NET | INTR_MPSAFE), 9652 NULL, bxe_intr_legacy, sc, 9653 &sc->intr[0].tag)) != 0) { 9654 BLOGE(sc, "Failed to allocate INTx interrupt (%d)\n", rc); 9655 goto bxe_interrupt_attach_exit; 9656 } 9657 } 9658 9659 bxe_interrupt_attach_exit: 9660 9661 return (rc); 9662 } 9663 9664 static int bxe_init_hw_common_chip(struct bxe_softc *sc); 9665 static int bxe_init_hw_common(struct bxe_softc *sc); 9666 static int bxe_init_hw_port(struct bxe_softc *sc); 9667 static int bxe_init_hw_func(struct bxe_softc *sc); 9668 static void bxe_reset_common(struct bxe_softc *sc); 9669 static void bxe_reset_port(struct bxe_softc *sc); 9670 static void bxe_reset_func(struct bxe_softc *sc); 9671 static int bxe_gunzip_init(struct bxe_softc *sc); 9672 static void bxe_gunzip_end(struct bxe_softc *sc); 9673 static int bxe_init_firmware(struct bxe_softc *sc); 9674 static void bxe_release_firmware(struct bxe_softc *sc); 9675 9676 static struct 9677 ecore_func_sp_drv_ops bxe_func_sp_drv = { 9678 .init_hw_cmn_chip = bxe_init_hw_common_chip, 9679 .init_hw_cmn = bxe_init_hw_common, 9680 .init_hw_port = bxe_init_hw_port, 9681 .init_hw_func = bxe_init_hw_func, 9682 9683 .reset_hw_cmn = bxe_reset_common, 9684 .reset_hw_port = bxe_reset_port, 9685 .reset_hw_func = bxe_reset_func, 9686 9687 .gunzip_init = bxe_gunzip_init, 9688 .gunzip_end = bxe_gunzip_end, 9689 9690 .init_fw = bxe_init_firmware, 9691 .release_fw = bxe_release_firmware, 9692 }; 9693 9694 static void 9695 bxe_init_func_obj(struct bxe_softc *sc) 9696 { 9697 sc->dmae_ready = 0; 9698 9699 ecore_init_func_obj(sc, 9700 &sc->func_obj, 9701 BXE_SP(sc, func_rdata), 9702 BXE_SP_MAPPING(sc, func_rdata), 9703 BXE_SP(sc, func_afex_rdata), 9704 BXE_SP_MAPPING(sc, func_afex_rdata), 9705 &bxe_func_sp_drv); 9706 } 9707 9708 static int 9709 bxe_init_hw(struct bxe_softc *sc, 9710 uint32_t load_code) 9711 { 9712 struct ecore_func_state_params func_params = { NULL }; 9713 int rc; 9714 9715 /* prepare the parameters for function state transitions */ 9716 bit_set(&func_params.ramrod_flags, RAMROD_COMP_WAIT); 9717 9718 func_params.f_obj = &sc->func_obj; 9719 func_params.cmd = ECORE_F_CMD_HW_INIT; 9720 9721 func_params.params.hw_init.load_phase = load_code; 9722 9723 /* 9724 * Via a plethora of function pointers, we will eventually reach 9725 * bxe_init_hw_common(), bxe_init_hw_port(), or bxe_init_hw_func(). 9726 */ 9727 rc = ecore_func_state_change(sc, &func_params); 9728 9729 return (rc); 9730 } 9731 9732 static void 9733 bxe_fill(struct bxe_softc *sc, 9734 uint32_t addr, 9735 int fill, 9736 uint32_t len) 9737 { 9738 uint32_t i; 9739 9740 if (!(len % 4) && !(addr % 4)) { 9741 for (i = 0; i < len; i += 4) { 9742 REG_WR(sc, (addr + i), fill); 9743 } 9744 } else { 9745 for (i = 0; i < len; i++) { 9746 REG_WR8(sc, (addr + i), fill); 9747 } 9748 } 9749 } 9750 9751 /* writes FP SP data to FW - data_size in dwords */ 9752 static void 9753 bxe_wr_fp_sb_data(struct bxe_softc *sc, 9754 int fw_sb_id, 9755 uint32_t *sb_data_p, 9756 uint32_t data_size) 9757 { 9758 int index; 9759 9760 for (index = 0; index < data_size; index++) { 9761 REG_WR(sc, 9762 (BAR_CSTRORM_INTMEM + 9763 CSTORM_STATUS_BLOCK_DATA_OFFSET(fw_sb_id) + 9764 (sizeof(uint32_t) * index)), 9765 *(sb_data_p + index)); 9766 } 9767 } 9768 9769 static void 9770 bxe_zero_fp_sb(struct bxe_softc *sc, 9771 int fw_sb_id) 9772 { 9773 struct hc_status_block_data_e2 sb_data_e2; 9774 struct hc_status_block_data_e1x sb_data_e1x; 9775 uint32_t *sb_data_p; 9776 uint32_t data_size = 0; 9777 9778 if (!CHIP_IS_E1x(sc)) { 9779 memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2)); 9780 sb_data_e2.common.state = SB_DISABLED; 9781 sb_data_e2.common.p_func.vf_valid = FALSE; 9782 sb_data_p = (uint32_t *)&sb_data_e2; 9783 data_size = (sizeof(struct hc_status_block_data_e2) / 9784 sizeof(uint32_t)); 9785 } else { 9786 memset(&sb_data_e1x, 0, sizeof(struct hc_status_block_data_e1x)); 9787 sb_data_e1x.common.state = SB_DISABLED; 9788 sb_data_e1x.common.p_func.vf_valid = FALSE; 9789 sb_data_p = (uint32_t *)&sb_data_e1x; 9790 data_size = (sizeof(struct hc_status_block_data_e1x) / 9791 sizeof(uint32_t)); 9792 } 9793 9794 bxe_wr_fp_sb_data(sc, fw_sb_id, sb_data_p, data_size); 9795 9796 bxe_fill(sc, (BAR_CSTRORM_INTMEM + CSTORM_STATUS_BLOCK_OFFSET(fw_sb_id)), 9797 0, CSTORM_STATUS_BLOCK_SIZE); 9798 bxe_fill(sc, (BAR_CSTRORM_INTMEM + CSTORM_SYNC_BLOCK_OFFSET(fw_sb_id)), 9799 0, CSTORM_SYNC_BLOCK_SIZE); 9800 } 9801 9802 static void 9803 bxe_wr_sp_sb_data(struct bxe_softc *sc, 9804 struct hc_sp_status_block_data *sp_sb_data) 9805 { 9806 int i; 9807 9808 for (i = 0; 9809 i < (sizeof(struct hc_sp_status_block_data) / sizeof(uint32_t)); 9810 i++) { 9811 REG_WR(sc, 9812 (BAR_CSTRORM_INTMEM + 9813 CSTORM_SP_STATUS_BLOCK_DATA_OFFSET(SC_FUNC(sc)) + 9814 (i * sizeof(uint32_t))), 9815 *((uint32_t *)sp_sb_data + i)); 9816 } 9817 } 9818 9819 static void 9820 bxe_zero_sp_sb(struct bxe_softc *sc) 9821 { 9822 struct hc_sp_status_block_data sp_sb_data; 9823 9824 memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data)); 9825 9826 sp_sb_data.state = SB_DISABLED; 9827 sp_sb_data.p_func.vf_valid = FALSE; 9828 9829 bxe_wr_sp_sb_data(sc, &sp_sb_data); 9830 9831 bxe_fill(sc, 9832 (BAR_CSTRORM_INTMEM + 9833 CSTORM_SP_STATUS_BLOCK_OFFSET(SC_FUNC(sc))), 9834 0, CSTORM_SP_STATUS_BLOCK_SIZE); 9835 bxe_fill(sc, 9836 (BAR_CSTRORM_INTMEM + 9837 CSTORM_SP_SYNC_BLOCK_OFFSET(SC_FUNC(sc))), 9838 0, CSTORM_SP_SYNC_BLOCK_SIZE); 9839 } 9840 9841 static void 9842 bxe_setup_ndsb_state_machine(struct hc_status_block_sm *hc_sm, 9843 int igu_sb_id, 9844 int igu_seg_id) 9845 { 9846 hc_sm->igu_sb_id = igu_sb_id; 9847 hc_sm->igu_seg_id = igu_seg_id; 9848 hc_sm->timer_value = 0xFF; 9849 hc_sm->time_to_expire = 0xFFFFFFFF; 9850 } 9851 9852 static void 9853 bxe_map_sb_state_machines(struct hc_index_data *index_data) 9854 { 9855 /* zero out state machine indices */ 9856 9857 /* rx indices */ 9858 index_data[HC_INDEX_ETH_RX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID; 9859 9860 /* tx indices */ 9861 index_data[HC_INDEX_OOO_TX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID; 9862 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags &= ~HC_INDEX_DATA_SM_ID; 9863 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags &= ~HC_INDEX_DATA_SM_ID; 9864 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags &= ~HC_INDEX_DATA_SM_ID; 9865 9866 /* map indices */ 9867 9868 /* rx indices */ 9869 index_data[HC_INDEX_ETH_RX_CQ_CONS].flags |= 9870 (SM_RX_ID << HC_INDEX_DATA_SM_ID_SHIFT); 9871 9872 /* tx indices */ 9873 index_data[HC_INDEX_OOO_TX_CQ_CONS].flags |= 9874 (SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT); 9875 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags |= 9876 (SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT); 9877 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags |= 9878 (SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT); 9879 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags |= 9880 (SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT); 9881 } 9882 9883 static void 9884 bxe_init_sb(struct bxe_softc *sc, 9885 bus_addr_t busaddr, 9886 int vfid, 9887 uint8_t vf_valid, 9888 int fw_sb_id, 9889 int igu_sb_id) 9890 { 9891 struct hc_status_block_data_e2 sb_data_e2; 9892 struct hc_status_block_data_e1x sb_data_e1x; 9893 struct hc_status_block_sm *hc_sm_p; 9894 uint32_t *sb_data_p; 9895 int igu_seg_id; 9896 int data_size; 9897 9898 if (CHIP_INT_MODE_IS_BC(sc)) { 9899 igu_seg_id = HC_SEG_ACCESS_NORM; 9900 } else { 9901 igu_seg_id = IGU_SEG_ACCESS_NORM; 9902 } 9903 9904 bxe_zero_fp_sb(sc, fw_sb_id); 9905 9906 if (!CHIP_IS_E1x(sc)) { 9907 memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2)); 9908 sb_data_e2.common.state = SB_ENABLED; 9909 sb_data_e2.common.p_func.pf_id = SC_FUNC(sc); 9910 sb_data_e2.common.p_func.vf_id = vfid; 9911 sb_data_e2.common.p_func.vf_valid = vf_valid; 9912 sb_data_e2.common.p_func.vnic_id = SC_VN(sc); 9913 sb_data_e2.common.same_igu_sb_1b = TRUE; 9914 sb_data_e2.common.host_sb_addr.hi = U64_HI(busaddr); 9915 sb_data_e2.common.host_sb_addr.lo = U64_LO(busaddr); 9916 hc_sm_p = sb_data_e2.common.state_machine; 9917 sb_data_p = (uint32_t *)&sb_data_e2; 9918 data_size = (sizeof(struct hc_status_block_data_e2) / 9919 sizeof(uint32_t)); 9920 bxe_map_sb_state_machines(sb_data_e2.index_data); 9921 } else { 9922 memset(&sb_data_e1x, 0, sizeof(struct hc_status_block_data_e1x)); 9923 sb_data_e1x.common.state = SB_ENABLED; 9924 sb_data_e1x.common.p_func.pf_id = SC_FUNC(sc); 9925 sb_data_e1x.common.p_func.vf_id = 0xff; 9926 sb_data_e1x.common.p_func.vf_valid = FALSE; 9927 sb_data_e1x.common.p_func.vnic_id = SC_VN(sc); 9928 sb_data_e1x.common.same_igu_sb_1b = TRUE; 9929 sb_data_e1x.common.host_sb_addr.hi = U64_HI(busaddr); 9930 sb_data_e1x.common.host_sb_addr.lo = U64_LO(busaddr); 9931 hc_sm_p = sb_data_e1x.common.state_machine; 9932 sb_data_p = (uint32_t *)&sb_data_e1x; 9933 data_size = (sizeof(struct hc_status_block_data_e1x) / 9934 sizeof(uint32_t)); 9935 bxe_map_sb_state_machines(sb_data_e1x.index_data); 9936 } 9937 9938 bxe_setup_ndsb_state_machine(&hc_sm_p[SM_RX_ID], igu_sb_id, igu_seg_id); 9939 bxe_setup_ndsb_state_machine(&hc_sm_p[SM_TX_ID], igu_sb_id, igu_seg_id); 9940 9941 BLOGD(sc, DBG_LOAD, "Init FW SB %d\n", fw_sb_id); 9942 9943 /* write indices to HW - PCI guarantees endianity of regpairs */ 9944 bxe_wr_fp_sb_data(sc, fw_sb_id, sb_data_p, data_size); 9945 } 9946 9947 static inline uint8_t 9948 bxe_fp_qzone_id(struct bxe_fastpath *fp) 9949 { 9950 if (CHIP_IS_E1x(fp->sc)) { 9951 return (fp->cl_id + SC_PORT(fp->sc) * ETH_MAX_RX_CLIENTS_E1H); 9952 } else { 9953 return (fp->cl_id); 9954 } 9955 } 9956 9957 static inline uint32_t 9958 bxe_rx_ustorm_prods_offset(struct bxe_softc *sc, 9959 struct bxe_fastpath *fp) 9960 { 9961 uint32_t offset = BAR_USTRORM_INTMEM; 9962 9963 #if 0 9964 if (IS_VF(sc)) { 9965 return (PXP_VF_ADDR_USDM_QUEUES_START + 9966 (sc->acquire_resp.resc.hw_qid[fp->index] * 9967 sizeof(struct ustorm_queue_zone_data))); 9968 } else 9969 #endif 9970 if (!CHIP_IS_E1x(sc)) { 9971 offset += USTORM_RX_PRODS_E2_OFFSET(fp->cl_qzone_id); 9972 } else { 9973 offset += USTORM_RX_PRODS_E1X_OFFSET(SC_PORT(sc), fp->cl_id); 9974 } 9975 9976 return (offset); 9977 } 9978 9979 static void 9980 bxe_init_eth_fp(struct bxe_softc *sc, 9981 int idx) 9982 { 9983 struct bxe_fastpath *fp = &sc->fp[idx]; 9984 uint32_t cids[ECORE_MULTI_TX_COS] = { 0 }; 9985 unsigned long q_type = 0; 9986 int cos; 9987 9988 fp->sc = sc; 9989 fp->index = idx; 9990 9991 snprintf(fp->tx_mtx_name, sizeof(fp->tx_mtx_name), 9992 "bxe%d_fp%d_tx_lock", sc->unit, idx); 9993 mtx_init(&fp->tx_mtx, fp->tx_mtx_name, NULL, MTX_DEF); 9994 9995 snprintf(fp->rx_mtx_name, sizeof(fp->rx_mtx_name), 9996 "bxe%d_fp%d_rx_lock", sc->unit, idx); 9997 mtx_init(&fp->rx_mtx, fp->rx_mtx_name, NULL, MTX_DEF); 9998 9999 fp->igu_sb_id = (sc->igu_base_sb + idx + CNIC_SUPPORT(sc)); 10000 fp->fw_sb_id = (sc->base_fw_ndsb + idx + CNIC_SUPPORT(sc)); 10001 10002 fp->cl_id = (CHIP_IS_E1x(sc)) ? 10003 (SC_L_ID(sc) + idx) : 10004 /* want client ID same as IGU SB ID for non-E1 */ 10005 fp->igu_sb_id; 10006 fp->cl_qzone_id = bxe_fp_qzone_id(fp); 10007 10008 /* setup sb indices */ 10009 if (!CHIP_IS_E1x(sc)) { 10010 fp->sb_index_values = fp->status_block.e2_sb->sb.index_values; 10011 fp->sb_running_index = fp->status_block.e2_sb->sb.running_index; 10012 } else { 10013 fp->sb_index_values = fp->status_block.e1x_sb->sb.index_values; 10014 fp->sb_running_index = fp->status_block.e1x_sb->sb.running_index; 10015 } 10016 10017 /* init shortcut */ 10018 fp->ustorm_rx_prods_offset = bxe_rx_ustorm_prods_offset(sc, fp); 10019 10020 fp->rx_cq_cons_sb = &fp->sb_index_values[HC_INDEX_ETH_RX_CQ_CONS]; 10021 10022 /* 10023 * XXX If multiple CoS is ever supported then each fastpath structure 10024 * will need to maintain tx producer/consumer/dma/etc values *per* CoS. 10025 */ 10026 for (cos = 0; cos < sc->max_cos; cos++) { 10027 cids[cos] = idx; 10028 } 10029 fp->tx_cons_sb = &fp->sb_index_values[HC_INDEX_ETH_TX_CQ_CONS_COS0]; 10030 10031 /* nothing more for a VF to do */ 10032 if (IS_VF(sc)) { 10033 return; 10034 } 10035 10036 bxe_init_sb(sc, fp->sb_dma.paddr, BXE_VF_ID_INVALID, FALSE, 10037 fp->fw_sb_id, fp->igu_sb_id); 10038 10039 bxe_update_fp_sb_idx(fp); 10040 10041 /* Configure Queue State object */ 10042 bit_set(&q_type, ECORE_Q_TYPE_HAS_RX); 10043 bit_set(&q_type, ECORE_Q_TYPE_HAS_TX); 10044 10045 ecore_init_queue_obj(sc, 10046 &sc->sp_objs[idx].q_obj, 10047 fp->cl_id, 10048 cids, 10049 sc->max_cos, 10050 SC_FUNC(sc), 10051 BXE_SP(sc, q_rdata), 10052 BXE_SP_MAPPING(sc, q_rdata), 10053 q_type); 10054 10055 /* configure classification DBs */ 10056 ecore_init_mac_obj(sc, 10057 &sc->sp_objs[idx].mac_obj, 10058 fp->cl_id, 10059 idx, 10060 SC_FUNC(sc), 10061 BXE_SP(sc, mac_rdata), 10062 BXE_SP_MAPPING(sc, mac_rdata), 10063 ECORE_FILTER_MAC_PENDING, 10064 &sc->sp_state, 10065 ECORE_OBJ_TYPE_RX_TX, 10066 &sc->macs_pool); 10067 10068 BLOGD(sc, DBG_LOAD, "fp[%d]: sb=%p cl_id=%d fw_sb=%d igu_sb=%d\n", 10069 idx, fp->status_block.e2_sb, fp->cl_id, fp->fw_sb_id, fp->igu_sb_id); 10070 } 10071 10072 static inline void 10073 bxe_update_rx_prod(struct bxe_softc *sc, 10074 struct bxe_fastpath *fp, 10075 uint16_t rx_bd_prod, 10076 uint16_t rx_cq_prod, 10077 uint16_t rx_sge_prod) 10078 { 10079 struct ustorm_eth_rx_producers rx_prods = { 0 }; 10080 uint32_t i; 10081 10082 /* update producers */ 10083 rx_prods.bd_prod = rx_bd_prod; 10084 rx_prods.cqe_prod = rx_cq_prod; 10085 rx_prods.sge_prod = rx_sge_prod; 10086 10087 /* 10088 * Make sure that the BD and SGE data is updated before updating the 10089 * producers since FW might read the BD/SGE right after the producer 10090 * is updated. 10091 * This is only applicable for weak-ordered memory model archs such 10092 * as IA-64. The following barrier is also mandatory since FW will 10093 * assumes BDs must have buffers. 10094 */ 10095 wmb(); 10096 10097 for (i = 0; i < (sizeof(rx_prods) / 4); i++) { 10098 REG_WR(sc, 10099 (fp->ustorm_rx_prods_offset + (i * 4)), 10100 ((uint32_t *)&rx_prods)[i]); 10101 } 10102 10103 wmb(); /* keep prod updates ordered */ 10104 10105 BLOGD(sc, DBG_RX, 10106 "RX fp[%d]: wrote prods bd_prod=%u cqe_prod=%u sge_prod=%u\n", 10107 fp->index, rx_bd_prod, rx_cq_prod, rx_sge_prod); 10108 } 10109 10110 static void 10111 bxe_init_rx_rings(struct bxe_softc *sc) 10112 { 10113 struct bxe_fastpath *fp; 10114 int i; 10115 10116 for (i = 0; i < sc->num_queues; i++) { 10117 fp = &sc->fp[i]; 10118 10119 fp->rx_bd_cons = 0; 10120 10121 /* 10122 * Activate the BD ring... 10123 * Warning, this will generate an interrupt (to the TSTORM) 10124 * so this can only be done after the chip is initialized 10125 */ 10126 bxe_update_rx_prod(sc, fp, 10127 fp->rx_bd_prod, 10128 fp->rx_cq_prod, 10129 fp->rx_sge_prod); 10130 10131 if (i != 0) { 10132 continue; 10133 } 10134 10135 if (CHIP_IS_E1(sc)) { 10136 REG_WR(sc, 10137 (BAR_USTRORM_INTMEM + 10138 USTORM_MEM_WORKAROUND_ADDRESS_OFFSET(SC_FUNC(sc))), 10139 U64_LO(fp->rcq_dma.paddr)); 10140 REG_WR(sc, 10141 (BAR_USTRORM_INTMEM + 10142 USTORM_MEM_WORKAROUND_ADDRESS_OFFSET(SC_FUNC(sc)) + 4), 10143 U64_HI(fp->rcq_dma.paddr)); 10144 } 10145 } 10146 } 10147 10148 static void 10149 bxe_init_tx_ring_one(struct bxe_fastpath *fp) 10150 { 10151 SET_FLAG(fp->tx_db.data.header.header, DOORBELL_HDR_DB_TYPE, 1); 10152 fp->tx_db.data.zero_fill1 = 0; 10153 fp->tx_db.data.prod = 0; 10154 10155 fp->tx_pkt_prod = 0; 10156 fp->tx_pkt_cons = 0; 10157 fp->tx_bd_prod = 0; 10158 fp->tx_bd_cons = 0; 10159 fp->eth_q_stats.tx_pkts = 0; 10160 } 10161 10162 static inline void 10163 bxe_init_tx_rings(struct bxe_softc *sc) 10164 { 10165 int i; 10166 10167 for (i = 0; i < sc->num_queues; i++) { 10168 #if 0 10169 uint8_t cos; 10170 for (cos = 0; cos < sc->max_cos; cos++) { 10171 bxe_init_tx_ring_one(&sc->fp[i].txdata[cos]); 10172 } 10173 #else 10174 bxe_init_tx_ring_one(&sc->fp[i]); 10175 #endif 10176 } 10177 } 10178 10179 static void 10180 bxe_init_def_sb(struct bxe_softc *sc) 10181 { 10182 struct host_sp_status_block *def_sb = sc->def_sb; 10183 bus_addr_t mapping = sc->def_sb_dma.paddr; 10184 int igu_sp_sb_index; 10185 int igu_seg_id; 10186 int port = SC_PORT(sc); 10187 int func = SC_FUNC(sc); 10188 int reg_offset, reg_offset_en5; 10189 uint64_t section; 10190 int index, sindex; 10191 struct hc_sp_status_block_data sp_sb_data; 10192 10193 memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data)); 10194 10195 if (CHIP_INT_MODE_IS_BC(sc)) { 10196 igu_sp_sb_index = DEF_SB_IGU_ID; 10197 igu_seg_id = HC_SEG_ACCESS_DEF; 10198 } else { 10199 igu_sp_sb_index = sc->igu_dsb_id; 10200 igu_seg_id = IGU_SEG_ACCESS_DEF; 10201 } 10202 10203 /* attentions */ 10204 section = ((uint64_t)mapping + 10205 offsetof(struct host_sp_status_block, atten_status_block)); 10206 def_sb->atten_status_block.status_block_id = igu_sp_sb_index; 10207 sc->attn_state = 0; 10208 10209 reg_offset = (port) ? 10210 MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 : 10211 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0; 10212 reg_offset_en5 = (port) ? 10213 MISC_REG_AEU_ENABLE5_FUNC_1_OUT_0 : 10214 MISC_REG_AEU_ENABLE5_FUNC_0_OUT_0; 10215 10216 for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) { 10217 /* take care of sig[0]..sig[4] */ 10218 for (sindex = 0; sindex < 4; sindex++) { 10219 sc->attn_group[index].sig[sindex] = 10220 REG_RD(sc, (reg_offset + (sindex * 0x4) + (0x10 * index))); 10221 } 10222 10223 if (!CHIP_IS_E1x(sc)) { 10224 /* 10225 * enable5 is separate from the rest of the registers, 10226 * and the address skip is 4 and not 16 between the 10227 * different groups 10228 */ 10229 sc->attn_group[index].sig[4] = 10230 REG_RD(sc, (reg_offset_en5 + (0x4 * index))); 10231 } else { 10232 sc->attn_group[index].sig[4] = 0; 10233 } 10234 } 10235 10236 if (sc->devinfo.int_block == INT_BLOCK_HC) { 10237 reg_offset = (port) ? 10238 HC_REG_ATTN_MSG1_ADDR_L : 10239 HC_REG_ATTN_MSG0_ADDR_L; 10240 REG_WR(sc, reg_offset, U64_LO(section)); 10241 REG_WR(sc, (reg_offset + 4), U64_HI(section)); 10242 } else if (!CHIP_IS_E1x(sc)) { 10243 REG_WR(sc, IGU_REG_ATTN_MSG_ADDR_L, U64_LO(section)); 10244 REG_WR(sc, IGU_REG_ATTN_MSG_ADDR_H, U64_HI(section)); 10245 } 10246 10247 section = ((uint64_t)mapping + 10248 offsetof(struct host_sp_status_block, sp_sb)); 10249 10250 bxe_zero_sp_sb(sc); 10251 10252 /* PCI guarantees endianity of regpair */ 10253 sp_sb_data.state = SB_ENABLED; 10254 sp_sb_data.host_sb_addr.lo = U64_LO(section); 10255 sp_sb_data.host_sb_addr.hi = U64_HI(section); 10256 sp_sb_data.igu_sb_id = igu_sp_sb_index; 10257 sp_sb_data.igu_seg_id = igu_seg_id; 10258 sp_sb_data.p_func.pf_id = func; 10259 sp_sb_data.p_func.vnic_id = SC_VN(sc); 10260 sp_sb_data.p_func.vf_id = 0xff; 10261 10262 bxe_wr_sp_sb_data(sc, &sp_sb_data); 10263 10264 bxe_ack_sb(sc, sc->igu_dsb_id, USTORM_ID, 0, IGU_INT_ENABLE, 0); 10265 } 10266 10267 static void 10268 bxe_init_sp_ring(struct bxe_softc *sc) 10269 { 10270 atomic_store_rel_long(&sc->cq_spq_left, MAX_SPQ_PENDING); 10271 sc->spq_prod_idx = 0; 10272 sc->dsb_sp_prod = &sc->def_sb->sp_sb.index_values[HC_SP_INDEX_ETH_DEF_CONS]; 10273 sc->spq_prod_bd = sc->spq; 10274 sc->spq_last_bd = (sc->spq_prod_bd + MAX_SP_DESC_CNT); 10275 } 10276 10277 static void 10278 bxe_init_eq_ring(struct bxe_softc *sc) 10279 { 10280 union event_ring_elem *elem; 10281 int i; 10282 10283 for (i = 1; i <= NUM_EQ_PAGES; i++) { 10284 elem = &sc->eq[EQ_DESC_CNT_PAGE * i - 1]; 10285 10286 elem->next_page.addr.hi = htole32(U64_HI(sc->eq_dma.paddr + 10287 BCM_PAGE_SIZE * 10288 (i % NUM_EQ_PAGES))); 10289 elem->next_page.addr.lo = htole32(U64_LO(sc->eq_dma.paddr + 10290 BCM_PAGE_SIZE * 10291 (i % NUM_EQ_PAGES))); 10292 } 10293 10294 sc->eq_cons = 0; 10295 sc->eq_prod = NUM_EQ_DESC; 10296 sc->eq_cons_sb = &sc->def_sb->sp_sb.index_values[HC_SP_INDEX_EQ_CONS]; 10297 10298 atomic_store_rel_long(&sc->eq_spq_left, 10299 (min((MAX_SP_DESC_CNT - MAX_SPQ_PENDING), 10300 NUM_EQ_DESC) - 1)); 10301 } 10302 10303 static void 10304 bxe_init_internal_common(struct bxe_softc *sc) 10305 { 10306 int i; 10307 10308 if (IS_MF_SI(sc)) { 10309 /* 10310 * In switch independent mode, the TSTORM needs to accept 10311 * packets that failed classification, since approximate match 10312 * mac addresses aren't written to NIG LLH. 10313 */ 10314 REG_WR8(sc, 10315 (BAR_TSTRORM_INTMEM + TSTORM_ACCEPT_CLASSIFY_FAILED_OFFSET), 10316 2); 10317 } else if (!CHIP_IS_E1(sc)) { /* 57710 doesn't support MF */ 10318 REG_WR8(sc, 10319 (BAR_TSTRORM_INTMEM + TSTORM_ACCEPT_CLASSIFY_FAILED_OFFSET), 10320 0); 10321 } 10322 10323 /* 10324 * Zero this manually as its initialization is currently missing 10325 * in the initTool. 10326 */ 10327 for (i = 0; i < (USTORM_AGG_DATA_SIZE >> 2); i++) { 10328 REG_WR(sc, 10329 (BAR_USTRORM_INTMEM + USTORM_AGG_DATA_OFFSET + (i * 4)), 10330 0); 10331 } 10332 10333 if (!CHIP_IS_E1x(sc)) { 10334 REG_WR8(sc, (BAR_CSTRORM_INTMEM + CSTORM_IGU_MODE_OFFSET), 10335 CHIP_INT_MODE_IS_BC(sc) ? HC_IGU_BC_MODE : HC_IGU_NBC_MODE); 10336 } 10337 } 10338 10339 static void 10340 bxe_init_internal(struct bxe_softc *sc, 10341 uint32_t load_code) 10342 { 10343 switch (load_code) { 10344 case FW_MSG_CODE_DRV_LOAD_COMMON: 10345 case FW_MSG_CODE_DRV_LOAD_COMMON_CHIP: 10346 bxe_init_internal_common(sc); 10347 /* no break */ 10348 10349 case FW_MSG_CODE_DRV_LOAD_PORT: 10350 /* nothing to do */ 10351 /* no break */ 10352 10353 case FW_MSG_CODE_DRV_LOAD_FUNCTION: 10354 /* internal memory per function is initialized inside bxe_pf_init */ 10355 break; 10356 10357 default: 10358 BLOGE(sc, "Unknown load_code (0x%x) from MCP\n", load_code); 10359 break; 10360 } 10361 } 10362 10363 static void 10364 storm_memset_func_cfg(struct bxe_softc *sc, 10365 struct tstorm_eth_function_common_config *tcfg, 10366 uint16_t abs_fid) 10367 { 10368 uint32_t addr; 10369 size_t size; 10370 10371 addr = (BAR_TSTRORM_INTMEM + 10372 TSTORM_FUNCTION_COMMON_CONFIG_OFFSET(abs_fid)); 10373 size = sizeof(struct tstorm_eth_function_common_config); 10374 ecore_storm_memset_struct(sc, addr, size, (uint32_t *)tcfg); 10375 } 10376 10377 static void 10378 bxe_func_init(struct bxe_softc *sc, 10379 struct bxe_func_init_params *p) 10380 { 10381 struct tstorm_eth_function_common_config tcfg = { 0 }; 10382 10383 if (CHIP_IS_E1x(sc)) { 10384 storm_memset_func_cfg(sc, &tcfg, p->func_id); 10385 } 10386 10387 /* Enable the function in the FW */ 10388 storm_memset_vf_to_pf(sc, p->func_id, p->pf_id); 10389 storm_memset_func_en(sc, p->func_id, 1); 10390 10391 /* spq */ 10392 if (p->func_flgs & FUNC_FLG_SPQ) { 10393 storm_memset_spq_addr(sc, p->spq_map, p->func_id); 10394 REG_WR(sc, 10395 (XSEM_REG_FAST_MEMORY + XSTORM_SPQ_PROD_OFFSET(p->func_id)), 10396 p->spq_prod); 10397 } 10398 } 10399 10400 /* 10401 * Calculates the sum of vn_min_rates. 10402 * It's needed for further normalizing of the min_rates. 10403 * Returns: 10404 * sum of vn_min_rates. 10405 * or 10406 * 0 - if all the min_rates are 0. 10407 * In the later case fainess algorithm should be deactivated. 10408 * If all min rates are not zero then those that are zeroes will be set to 1. 10409 */ 10410 static void 10411 bxe_calc_vn_min(struct bxe_softc *sc, 10412 struct cmng_init_input *input) 10413 { 10414 uint32_t vn_cfg; 10415 uint32_t vn_min_rate; 10416 int all_zero = 1; 10417 int vn; 10418 10419 for (vn = VN_0; vn < SC_MAX_VN_NUM(sc); vn++) { 10420 vn_cfg = sc->devinfo.mf_info.mf_config[vn]; 10421 vn_min_rate = (((vn_cfg & FUNC_MF_CFG_MIN_BW_MASK) >> 10422 FUNC_MF_CFG_MIN_BW_SHIFT) * 100); 10423 10424 if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE) { 10425 /* skip hidden VNs */ 10426 vn_min_rate = 0; 10427 } else if (!vn_min_rate) { 10428 /* If min rate is zero - set it to 100 */ 10429 vn_min_rate = DEF_MIN_RATE; 10430 } else { 10431 all_zero = 0; 10432 } 10433 10434 input->vnic_min_rate[vn] = vn_min_rate; 10435 } 10436 10437 /* if ETS or all min rates are zeros - disable fairness */ 10438 if (BXE_IS_ETS_ENABLED(sc)) { 10439 input->flags.cmng_enables &= ~CMNG_FLAGS_PER_PORT_FAIRNESS_VN; 10440 BLOGD(sc, DBG_LOAD, "Fairness disabled (ETS)\n"); 10441 } else if (all_zero) { 10442 input->flags.cmng_enables &= ~CMNG_FLAGS_PER_PORT_FAIRNESS_VN; 10443 BLOGD(sc, DBG_LOAD, 10444 "Fariness disabled (all MIN values are zeroes)\n"); 10445 } else { 10446 input->flags.cmng_enables |= CMNG_FLAGS_PER_PORT_FAIRNESS_VN; 10447 } 10448 } 10449 10450 static inline uint16_t 10451 bxe_extract_max_cfg(struct bxe_softc *sc, 10452 uint32_t mf_cfg) 10453 { 10454 uint16_t max_cfg = ((mf_cfg & FUNC_MF_CFG_MAX_BW_MASK) >> 10455 FUNC_MF_CFG_MAX_BW_SHIFT); 10456 10457 if (!max_cfg) { 10458 BLOGD(sc, DBG_LOAD, "Max BW configured to 0 - using 100 instead\n"); 10459 max_cfg = 100; 10460 } 10461 10462 return (max_cfg); 10463 } 10464 10465 static void 10466 bxe_calc_vn_max(struct bxe_softc *sc, 10467 int vn, 10468 struct cmng_init_input *input) 10469 { 10470 uint16_t vn_max_rate; 10471 uint32_t vn_cfg = sc->devinfo.mf_info.mf_config[vn]; 10472 uint32_t max_cfg; 10473 10474 if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE) { 10475 vn_max_rate = 0; 10476 } else { 10477 max_cfg = bxe_extract_max_cfg(sc, vn_cfg); 10478 10479 if (IS_MF_SI(sc)) { 10480 /* max_cfg in percents of linkspeed */ 10481 vn_max_rate = ((sc->link_vars.line_speed * max_cfg) / 100); 10482 } else { /* SD modes */ 10483 /* max_cfg is absolute in 100Mb units */ 10484 vn_max_rate = (max_cfg * 100); 10485 } 10486 } 10487 10488 BLOGD(sc, DBG_LOAD, "vn %d: vn_max_rate %d\n", vn, vn_max_rate); 10489 10490 input->vnic_max_rate[vn] = vn_max_rate; 10491 } 10492 10493 static void 10494 bxe_cmng_fns_init(struct bxe_softc *sc, 10495 uint8_t read_cfg, 10496 uint8_t cmng_type) 10497 { 10498 struct cmng_init_input input; 10499 int vn; 10500 10501 memset(&input, 0, sizeof(struct cmng_init_input)); 10502 10503 input.port_rate = sc->link_vars.line_speed; 10504 10505 if (cmng_type == CMNG_FNS_MINMAX) { 10506 /* read mf conf from shmem */ 10507 if (read_cfg) { 10508 bxe_read_mf_cfg(sc); 10509 } 10510 10511 /* get VN min rate and enable fairness if not 0 */ 10512 bxe_calc_vn_min(sc, &input); 10513 10514 /* get VN max rate */ 10515 if (sc->port.pmf) { 10516 for (vn = VN_0; vn < SC_MAX_VN_NUM(sc); vn++) { 10517 bxe_calc_vn_max(sc, vn, &input); 10518 } 10519 } 10520 10521 /* always enable rate shaping and fairness */ 10522 input.flags.cmng_enables |= CMNG_FLAGS_PER_PORT_RATE_SHAPING_VN; 10523 10524 ecore_init_cmng(&input, &sc->cmng); 10525 return; 10526 } 10527 10528 /* rate shaping and fairness are disabled */ 10529 BLOGD(sc, DBG_LOAD, "rate shaping and fairness have been disabled\n"); 10530 } 10531 10532 static int 10533 bxe_get_cmng_fns_mode(struct bxe_softc *sc) 10534 { 10535 if (CHIP_REV_IS_SLOW(sc)) { 10536 return (CMNG_FNS_NONE); 10537 } 10538 10539 if (IS_MF(sc)) { 10540 return (CMNG_FNS_MINMAX); 10541 } 10542 10543 return (CMNG_FNS_NONE); 10544 } 10545 10546 static void 10547 storm_memset_cmng(struct bxe_softc *sc, 10548 struct cmng_init *cmng, 10549 uint8_t port) 10550 { 10551 int vn; 10552 int func; 10553 uint32_t addr; 10554 size_t size; 10555 10556 addr = (BAR_XSTRORM_INTMEM + 10557 XSTORM_CMNG_PER_PORT_VARS_OFFSET(port)); 10558 size = sizeof(struct cmng_struct_per_port); 10559 ecore_storm_memset_struct(sc, addr, size, (uint32_t *)&cmng->port); 10560 10561 for (vn = VN_0; vn < SC_MAX_VN_NUM(sc); vn++) { 10562 func = func_by_vn(sc, vn); 10563 10564 addr = (BAR_XSTRORM_INTMEM + 10565 XSTORM_RATE_SHAPING_PER_VN_VARS_OFFSET(func)); 10566 size = sizeof(struct rate_shaping_vars_per_vn); 10567 ecore_storm_memset_struct(sc, addr, size, 10568 (uint32_t *)&cmng->vnic.vnic_max_rate[vn]); 10569 10570 addr = (BAR_XSTRORM_INTMEM + 10571 XSTORM_FAIRNESS_PER_VN_VARS_OFFSET(func)); 10572 size = sizeof(struct fairness_vars_per_vn); 10573 ecore_storm_memset_struct(sc, addr, size, 10574 (uint32_t *)&cmng->vnic.vnic_min_rate[vn]); 10575 } 10576 } 10577 10578 static void 10579 bxe_pf_init(struct bxe_softc *sc) 10580 { 10581 struct bxe_func_init_params func_init = { 0 }; 10582 struct event_ring_data eq_data = { { 0 } }; 10583 uint16_t flags; 10584 10585 if (!CHIP_IS_E1x(sc)) { 10586 /* reset IGU PF statistics: MSIX + ATTN */ 10587 /* PF */ 10588 REG_WR(sc, 10589 (IGU_REG_STATISTIC_NUM_MESSAGE_SENT + 10590 (BXE_IGU_STAS_MSG_VF_CNT * 4) + 10591 ((CHIP_IS_MODE_4_PORT(sc) ? SC_FUNC(sc) : SC_VN(sc)) * 4)), 10592 0); 10593 /* ATTN */ 10594 REG_WR(sc, 10595 (IGU_REG_STATISTIC_NUM_MESSAGE_SENT + 10596 (BXE_IGU_STAS_MSG_VF_CNT * 4) + 10597 (BXE_IGU_STAS_MSG_PF_CNT * 4) + 10598 ((CHIP_IS_MODE_4_PORT(sc) ? SC_FUNC(sc) : SC_VN(sc)) * 4)), 10599 0); 10600 } 10601 10602 /* function setup flags */ 10603 flags = (FUNC_FLG_STATS | FUNC_FLG_LEADING | FUNC_FLG_SPQ); 10604 10605 /* 10606 * This flag is relevant for E1x only. 10607 * E2 doesn't have a TPA configuration in a function level. 10608 */ 10609 flags |= (if_getcapenable(sc->ifp) & IFCAP_LRO) ? FUNC_FLG_TPA : 0; 10610 10611 func_init.func_flgs = flags; 10612 func_init.pf_id = SC_FUNC(sc); 10613 func_init.func_id = SC_FUNC(sc); 10614 func_init.spq_map = sc->spq_dma.paddr; 10615 func_init.spq_prod = sc->spq_prod_idx; 10616 10617 bxe_func_init(sc, &func_init); 10618 10619 memset(&sc->cmng, 0, sizeof(struct cmng_struct_per_port)); 10620 10621 /* 10622 * Congestion management values depend on the link rate. 10623 * There is no active link so initial link rate is set to 10Gbps. 10624 * When the link comes up the congestion management values are 10625 * re-calculated according to the actual link rate. 10626 */ 10627 sc->link_vars.line_speed = SPEED_10000; 10628 bxe_cmng_fns_init(sc, TRUE, bxe_get_cmng_fns_mode(sc)); 10629 10630 /* Only the PMF sets the HW */ 10631 if (sc->port.pmf) { 10632 storm_memset_cmng(sc, &sc->cmng, SC_PORT(sc)); 10633 } 10634 10635 /* init Event Queue - PCI bus guarantees correct endainity */ 10636 eq_data.base_addr.hi = U64_HI(sc->eq_dma.paddr); 10637 eq_data.base_addr.lo = U64_LO(sc->eq_dma.paddr); 10638 eq_data.producer = sc->eq_prod; 10639 eq_data.index_id = HC_SP_INDEX_EQ_CONS; 10640 eq_data.sb_id = DEF_SB_ID; 10641 storm_memset_eq_data(sc, &eq_data, SC_FUNC(sc)); 10642 } 10643 10644 static void 10645 bxe_hc_int_enable(struct bxe_softc *sc) 10646 { 10647 int port = SC_PORT(sc); 10648 uint32_t addr = (port) ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0; 10649 uint32_t val = REG_RD(sc, addr); 10650 uint8_t msix = (sc->interrupt_mode == INTR_MODE_MSIX) ? TRUE : FALSE; 10651 uint8_t single_msix = ((sc->interrupt_mode == INTR_MODE_MSIX) && 10652 (sc->intr_count == 1)) ? TRUE : FALSE; 10653 uint8_t msi = (sc->interrupt_mode == INTR_MODE_MSI) ? TRUE : FALSE; 10654 10655 if (msix) { 10656 val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 | 10657 HC_CONFIG_0_REG_INT_LINE_EN_0); 10658 val |= (HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 | 10659 HC_CONFIG_0_REG_ATTN_BIT_EN_0); 10660 if (single_msix) { 10661 val |= HC_CONFIG_0_REG_SINGLE_ISR_EN_0; 10662 } 10663 } else if (msi) { 10664 val &= ~HC_CONFIG_0_REG_INT_LINE_EN_0; 10665 val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 | 10666 HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 | 10667 HC_CONFIG_0_REG_ATTN_BIT_EN_0); 10668 } else { 10669 val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 | 10670 HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 | 10671 HC_CONFIG_0_REG_INT_LINE_EN_0 | 10672 HC_CONFIG_0_REG_ATTN_BIT_EN_0); 10673 10674 if (!CHIP_IS_E1(sc)) { 10675 BLOGD(sc, DBG_INTR, "write %x to HC %d (addr 0x%x)\n", 10676 val, port, addr); 10677 10678 REG_WR(sc, addr, val); 10679 10680 val &= ~HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0; 10681 } 10682 } 10683 10684 if (CHIP_IS_E1(sc)) { 10685 REG_WR(sc, (HC_REG_INT_MASK + port*4), 0x1FFFF); 10686 } 10687 10688 BLOGD(sc, DBG_INTR, "write %x to HC %d (addr 0x%x) mode %s\n", 10689 val, port, addr, ((msix) ? "MSI-X" : ((msi) ? "MSI" : "INTx"))); 10690 10691 REG_WR(sc, addr, val); 10692 10693 /* ensure that HC_CONFIG is written before leading/trailing edge config */ 10694 mb(); 10695 10696 if (!CHIP_IS_E1(sc)) { 10697 /* init leading/trailing edge */ 10698 if (IS_MF(sc)) { 10699 val = (0xee0f | (1 << (SC_VN(sc) + 4))); 10700 if (sc->port.pmf) { 10701 /* enable nig and gpio3 attention */ 10702 val |= 0x1100; 10703 } 10704 } else { 10705 val = 0xffff; 10706 } 10707 10708 REG_WR(sc, (HC_REG_TRAILING_EDGE_0 + port*8), val); 10709 REG_WR(sc, (HC_REG_LEADING_EDGE_0 + port*8), val); 10710 } 10711 10712 /* make sure that interrupts are indeed enabled from here on */ 10713 mb(); 10714 } 10715 10716 static void 10717 bxe_igu_int_enable(struct bxe_softc *sc) 10718 { 10719 uint32_t val; 10720 uint8_t msix = (sc->interrupt_mode == INTR_MODE_MSIX) ? TRUE : FALSE; 10721 uint8_t single_msix = ((sc->interrupt_mode == INTR_MODE_MSIX) && 10722 (sc->intr_count == 1)) ? TRUE : FALSE; 10723 uint8_t msi = (sc->interrupt_mode == INTR_MODE_MSI) ? TRUE : FALSE; 10724 10725 val = REG_RD(sc, IGU_REG_PF_CONFIGURATION); 10726 10727 if (msix) { 10728 val &= ~(IGU_PF_CONF_INT_LINE_EN | 10729 IGU_PF_CONF_SINGLE_ISR_EN); 10730 val |= (IGU_PF_CONF_MSI_MSIX_EN | 10731 IGU_PF_CONF_ATTN_BIT_EN); 10732 if (single_msix) { 10733 val |= IGU_PF_CONF_SINGLE_ISR_EN; 10734 } 10735 } else if (msi) { 10736 val &= ~IGU_PF_CONF_INT_LINE_EN; 10737 val |= (IGU_PF_CONF_MSI_MSIX_EN | 10738 IGU_PF_CONF_ATTN_BIT_EN | 10739 IGU_PF_CONF_SINGLE_ISR_EN); 10740 } else { 10741 val &= ~IGU_PF_CONF_MSI_MSIX_EN; 10742 val |= (IGU_PF_CONF_INT_LINE_EN | 10743 IGU_PF_CONF_ATTN_BIT_EN | 10744 IGU_PF_CONF_SINGLE_ISR_EN); 10745 } 10746 10747 /* clean previous status - need to configure igu prior to ack*/ 10748 if ((!msix) || single_msix) { 10749 REG_WR(sc, IGU_REG_PF_CONFIGURATION, val); 10750 bxe_ack_int(sc); 10751 } 10752 10753 val |= IGU_PF_CONF_FUNC_EN; 10754 10755 BLOGD(sc, DBG_INTR, "write 0x%x to IGU mode %s\n", 10756 val, ((msix) ? "MSI-X" : ((msi) ? "MSI" : "INTx"))); 10757 10758 REG_WR(sc, IGU_REG_PF_CONFIGURATION, val); 10759 10760 mb(); 10761 10762 /* init leading/trailing edge */ 10763 if (IS_MF(sc)) { 10764 val = (0xee0f | (1 << (SC_VN(sc) + 4))); 10765 if (sc->port.pmf) { 10766 /* enable nig and gpio3 attention */ 10767 val |= 0x1100; 10768 } 10769 } else { 10770 val = 0xffff; 10771 } 10772 10773 REG_WR(sc, IGU_REG_TRAILING_EDGE_LATCH, val); 10774 REG_WR(sc, IGU_REG_LEADING_EDGE_LATCH, val); 10775 10776 /* make sure that interrupts are indeed enabled from here on */ 10777 mb(); 10778 } 10779 10780 static void 10781 bxe_int_enable(struct bxe_softc *sc) 10782 { 10783 if (sc->devinfo.int_block == INT_BLOCK_HC) { 10784 bxe_hc_int_enable(sc); 10785 } else { 10786 bxe_igu_int_enable(sc); 10787 } 10788 } 10789 10790 static void 10791 bxe_hc_int_disable(struct bxe_softc *sc) 10792 { 10793 int port = SC_PORT(sc); 10794 uint32_t addr = (port) ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0; 10795 uint32_t val = REG_RD(sc, addr); 10796 10797 /* 10798 * In E1 we must use only PCI configuration space to disable MSI/MSIX 10799 * capablility. It's forbidden to disable IGU_PF_CONF_MSI_MSIX_EN in HC 10800 * block 10801 */ 10802 if (CHIP_IS_E1(sc)) { 10803 /* 10804 * Since IGU_PF_CONF_MSI_MSIX_EN still always on use mask register 10805 * to prevent from HC sending interrupts after we exit the function 10806 */ 10807 REG_WR(sc, (HC_REG_INT_MASK + port*4), 0); 10808 10809 val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 | 10810 HC_CONFIG_0_REG_INT_LINE_EN_0 | 10811 HC_CONFIG_0_REG_ATTN_BIT_EN_0); 10812 } else { 10813 val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 | 10814 HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 | 10815 HC_CONFIG_0_REG_INT_LINE_EN_0 | 10816 HC_CONFIG_0_REG_ATTN_BIT_EN_0); 10817 } 10818 10819 BLOGD(sc, DBG_INTR, "write %x to HC %d (addr 0x%x)\n", val, port, addr); 10820 10821 /* flush all outstanding writes */ 10822 mb(); 10823 10824 REG_WR(sc, addr, val); 10825 if (REG_RD(sc, addr) != val) { 10826 BLOGE(sc, "proper val not read from HC IGU!\n"); 10827 } 10828 } 10829 10830 static void 10831 bxe_igu_int_disable(struct bxe_softc *sc) 10832 { 10833 uint32_t val = REG_RD(sc, IGU_REG_PF_CONFIGURATION); 10834 10835 val &= ~(IGU_PF_CONF_MSI_MSIX_EN | 10836 IGU_PF_CONF_INT_LINE_EN | 10837 IGU_PF_CONF_ATTN_BIT_EN); 10838 10839 BLOGD(sc, DBG_INTR, "write %x to IGU\n", val); 10840 10841 /* flush all outstanding writes */ 10842 mb(); 10843 10844 REG_WR(sc, IGU_REG_PF_CONFIGURATION, val); 10845 if (REG_RD(sc, IGU_REG_PF_CONFIGURATION) != val) { 10846 BLOGE(sc, "proper val not read from IGU!\n"); 10847 } 10848 } 10849 10850 static void 10851 bxe_int_disable(struct bxe_softc *sc) 10852 { 10853 if (sc->devinfo.int_block == INT_BLOCK_HC) { 10854 bxe_hc_int_disable(sc); 10855 } else { 10856 bxe_igu_int_disable(sc); 10857 } 10858 } 10859 10860 static void 10861 bxe_nic_init(struct bxe_softc *sc, 10862 int load_code) 10863 { 10864 int i; 10865 10866 for (i = 0; i < sc->num_queues; i++) { 10867 bxe_init_eth_fp(sc, i); 10868 } 10869 10870 rmb(); /* ensure status block indices were read */ 10871 10872 bxe_init_rx_rings(sc); 10873 bxe_init_tx_rings(sc); 10874 10875 if (IS_VF(sc)) { 10876 return; 10877 } 10878 10879 /* initialize MOD_ABS interrupts */ 10880 elink_init_mod_abs_int(sc, &sc->link_vars, 10881 sc->devinfo.chip_id, 10882 sc->devinfo.shmem_base, 10883 sc->devinfo.shmem2_base, 10884 SC_PORT(sc)); 10885 10886 bxe_init_def_sb(sc); 10887 bxe_update_dsb_idx(sc); 10888 bxe_init_sp_ring(sc); 10889 bxe_init_eq_ring(sc); 10890 bxe_init_internal(sc, load_code); 10891 bxe_pf_init(sc); 10892 bxe_stats_init(sc); 10893 10894 /* flush all before enabling interrupts */ 10895 mb(); 10896 10897 bxe_int_enable(sc); 10898 10899 /* check for SPIO5 */ 10900 bxe_attn_int_deasserted0(sc, 10901 REG_RD(sc, 10902 (MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + 10903 SC_PORT(sc)*4)) & 10904 AEU_INPUTS_ATTN_BITS_SPIO5); 10905 } 10906 10907 static inline void 10908 bxe_init_objs(struct bxe_softc *sc) 10909 { 10910 /* mcast rules must be added to tx if tx switching is enabled */ 10911 ecore_obj_type o_type = 10912 (sc->flags & BXE_TX_SWITCHING) ? ECORE_OBJ_TYPE_RX_TX : 10913 ECORE_OBJ_TYPE_RX; 10914 10915 /* RX_MODE controlling object */ 10916 ecore_init_rx_mode_obj(sc, &sc->rx_mode_obj); 10917 10918 /* multicast configuration controlling object */ 10919 ecore_init_mcast_obj(sc, 10920 &sc->mcast_obj, 10921 sc->fp[0].cl_id, 10922 sc->fp[0].index, 10923 SC_FUNC(sc), 10924 SC_FUNC(sc), 10925 BXE_SP(sc, mcast_rdata), 10926 BXE_SP_MAPPING(sc, mcast_rdata), 10927 ECORE_FILTER_MCAST_PENDING, 10928 &sc->sp_state, 10929 o_type); 10930 10931 /* Setup CAM credit pools */ 10932 ecore_init_mac_credit_pool(sc, 10933 &sc->macs_pool, 10934 SC_FUNC(sc), 10935 CHIP_IS_E1x(sc) ? VNICS_PER_PORT(sc) : 10936 VNICS_PER_PATH(sc)); 10937 10938 ecore_init_vlan_credit_pool(sc, 10939 &sc->vlans_pool, 10940 SC_ABS_FUNC(sc) >> 1, 10941 CHIP_IS_E1x(sc) ? VNICS_PER_PORT(sc) : 10942 VNICS_PER_PATH(sc)); 10943 10944 /* RSS configuration object */ 10945 ecore_init_rss_config_obj(sc, 10946 &sc->rss_conf_obj, 10947 sc->fp[0].cl_id, 10948 sc->fp[0].index, 10949 SC_FUNC(sc), 10950 SC_FUNC(sc), 10951 BXE_SP(sc, rss_rdata), 10952 BXE_SP_MAPPING(sc, rss_rdata), 10953 ECORE_FILTER_RSS_CONF_PENDING, 10954 &sc->sp_state, ECORE_OBJ_TYPE_RX); 10955 } 10956 10957 /* 10958 * Initialize the function. This must be called before sending CLIENT_SETUP 10959 * for the first client. 10960 */ 10961 static inline int 10962 bxe_func_start(struct bxe_softc *sc) 10963 { 10964 struct ecore_func_state_params func_params = { NULL }; 10965 struct ecore_func_start_params *start_params = &func_params.params.start; 10966 10967 /* Prepare parameters for function state transitions */ 10968 bit_set(&func_params.ramrod_flags, RAMROD_COMP_WAIT); 10969 10970 func_params.f_obj = &sc->func_obj; 10971 func_params.cmd = ECORE_F_CMD_START; 10972 10973 /* Function parameters */ 10974 start_params->mf_mode = sc->devinfo.mf_info.mf_mode; 10975 start_params->sd_vlan_tag = OVLAN(sc); 10976 10977 if (CHIP_IS_E2(sc) || CHIP_IS_E3(sc)) { 10978 start_params->network_cos_mode = STATIC_COS; 10979 } else { /* CHIP_IS_E1X */ 10980 start_params->network_cos_mode = FW_WRR; 10981 } 10982 10983 start_params->gre_tunnel_mode = 0; 10984 start_params->gre_tunnel_rss = 0; 10985 10986 return (ecore_func_state_change(sc, &func_params)); 10987 } 10988 10989 static int 10990 bxe_set_power_state(struct bxe_softc *sc, 10991 uint8_t state) 10992 { 10993 uint16_t pmcsr; 10994 10995 /* If there is no power capability, silently succeed */ 10996 if (!(sc->devinfo.pcie_cap_flags & BXE_PM_CAPABLE_FLAG)) { 10997 BLOGW(sc, "No power capability\n"); 10998 return (0); 10999 } 11000 11001 pmcsr = pci_read_config(sc->dev, 11002 (sc->devinfo.pcie_pm_cap_reg + PCIR_POWER_STATUS), 11003 2); 11004 11005 switch (state) { 11006 case PCI_PM_D0: 11007 pci_write_config(sc->dev, 11008 (sc->devinfo.pcie_pm_cap_reg + PCIR_POWER_STATUS), 11009 ((pmcsr & ~PCIM_PSTAT_DMASK) | PCIM_PSTAT_PME), 2); 11010 11011 if (pmcsr & PCIM_PSTAT_DMASK) { 11012 /* delay required during transition out of D3hot */ 11013 DELAY(20000); 11014 } 11015 11016 break; 11017 11018 case PCI_PM_D3hot: 11019 /* XXX if there are other clients above don't shut down the power */ 11020 11021 /* don't shut down the power for emulation and FPGA */ 11022 if (CHIP_REV_IS_SLOW(sc)) { 11023 return (0); 11024 } 11025 11026 pmcsr &= ~PCIM_PSTAT_DMASK; 11027 pmcsr |= PCIM_PSTAT_D3; 11028 11029 if (sc->wol) { 11030 pmcsr |= PCIM_PSTAT_PMEENABLE; 11031 } 11032 11033 pci_write_config(sc->dev, 11034 (sc->devinfo.pcie_pm_cap_reg + PCIR_POWER_STATUS), 11035 pmcsr, 4); 11036 11037 /* 11038 * No more memory access after this point until device is brought back 11039 * to D0 state. 11040 */ 11041 break; 11042 11043 default: 11044 BLOGE(sc, "Can't support PCI power state = %d\n", state); 11045 return (-1); 11046 } 11047 11048 return (0); 11049 } 11050 11051 11052 /* return true if succeeded to acquire the lock */ 11053 static uint8_t 11054 bxe_trylock_hw_lock(struct bxe_softc *sc, 11055 uint32_t resource) 11056 { 11057 uint32_t lock_status; 11058 uint32_t resource_bit = (1 << resource); 11059 int func = SC_FUNC(sc); 11060 uint32_t hw_lock_control_reg; 11061 11062 BLOGD(sc, DBG_LOAD, "Trying to take a resource lock 0x%x\n", resource); 11063 11064 /* Validating that the resource is within range */ 11065 if (resource > HW_LOCK_MAX_RESOURCE_VALUE) { 11066 BLOGD(sc, DBG_LOAD, 11067 "resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n", 11068 resource, HW_LOCK_MAX_RESOURCE_VALUE); 11069 return (FALSE); 11070 } 11071 11072 if (func <= 5) { 11073 hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8); 11074 } else { 11075 hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8); 11076 } 11077 11078 /* try to acquire the lock */ 11079 REG_WR(sc, hw_lock_control_reg + 4, resource_bit); 11080 lock_status = REG_RD(sc, hw_lock_control_reg); 11081 if (lock_status & resource_bit) { 11082 return (TRUE); 11083 } 11084 11085 BLOGE(sc, "Failed to get a resource lock 0x%x\n", resource); 11086 11087 return (FALSE); 11088 } 11089 11090 /* 11091 * Get the recovery leader resource id according to the engine this function 11092 * belongs to. Currently only only 2 engines is supported. 11093 */ 11094 static int 11095 bxe_get_leader_lock_resource(struct bxe_softc *sc) 11096 { 11097 if (SC_PATH(sc)) { 11098 return (HW_LOCK_RESOURCE_RECOVERY_LEADER_1); 11099 } else { 11100 return (HW_LOCK_RESOURCE_RECOVERY_LEADER_0); 11101 } 11102 } 11103 11104 /* try to acquire a leader lock for current engine */ 11105 static uint8_t 11106 bxe_trylock_leader_lock(struct bxe_softc *sc) 11107 { 11108 return (bxe_trylock_hw_lock(sc, bxe_get_leader_lock_resource(sc))); 11109 } 11110 11111 static int 11112 bxe_release_leader_lock(struct bxe_softc *sc) 11113 { 11114 return (bxe_release_hw_lock(sc, bxe_get_leader_lock_resource(sc))); 11115 } 11116 11117 /* close gates #2, #3 and #4 */ 11118 static void 11119 bxe_set_234_gates(struct bxe_softc *sc, 11120 uint8_t close) 11121 { 11122 uint32_t val; 11123 11124 /* gates #2 and #4a are closed/opened for "not E1" only */ 11125 if (!CHIP_IS_E1(sc)) { 11126 /* #4 */ 11127 REG_WR(sc, PXP_REG_HST_DISCARD_DOORBELLS, !!close); 11128 /* #2 */ 11129 REG_WR(sc, PXP_REG_HST_DISCARD_INTERNAL_WRITES, !!close); 11130 } 11131 11132 /* #3 */ 11133 if (CHIP_IS_E1x(sc)) { 11134 /* prevent interrupts from HC on both ports */ 11135 val = REG_RD(sc, HC_REG_CONFIG_1); 11136 REG_WR(sc, HC_REG_CONFIG_1, 11137 (!close) ? (val | HC_CONFIG_1_REG_BLOCK_DISABLE_1) : 11138 (val & ~(uint32_t)HC_CONFIG_1_REG_BLOCK_DISABLE_1)); 11139 11140 val = REG_RD(sc, HC_REG_CONFIG_0); 11141 REG_WR(sc, HC_REG_CONFIG_0, 11142 (!close) ? (val | HC_CONFIG_0_REG_BLOCK_DISABLE_0) : 11143 (val & ~(uint32_t)HC_CONFIG_0_REG_BLOCK_DISABLE_0)); 11144 } else { 11145 /* Prevent incomming interrupts in IGU */ 11146 val = REG_RD(sc, IGU_REG_BLOCK_CONFIGURATION); 11147 11148 REG_WR(sc, IGU_REG_BLOCK_CONFIGURATION, 11149 (!close) ? 11150 (val | IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE) : 11151 (val & ~(uint32_t)IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE)); 11152 } 11153 11154 BLOGD(sc, DBG_LOAD, "%s gates #2, #3 and #4\n", 11155 close ? "closing" : "opening"); 11156 11157 wmb(); 11158 } 11159 11160 /* poll for pending writes bit, it should get cleared in no more than 1s */ 11161 static int 11162 bxe_er_poll_igu_vq(struct bxe_softc *sc) 11163 { 11164 uint32_t cnt = 1000; 11165 uint32_t pend_bits = 0; 11166 11167 do { 11168 pend_bits = REG_RD(sc, IGU_REG_PENDING_BITS_STATUS); 11169 11170 if (pend_bits == 0) { 11171 break; 11172 } 11173 11174 DELAY(1000); 11175 } while (--cnt > 0); 11176 11177 if (cnt == 0) { 11178 BLOGE(sc, "Still pending IGU requests bits=0x%08x!\n", pend_bits); 11179 return (-1); 11180 } 11181 11182 return (0); 11183 } 11184 11185 #define SHARED_MF_CLP_MAGIC 0x80000000 /* 'magic' bit */ 11186 11187 static void 11188 bxe_clp_reset_prep(struct bxe_softc *sc, 11189 uint32_t *magic_val) 11190 { 11191 /* Do some magic... */ 11192 uint32_t val = MFCFG_RD(sc, shared_mf_config.clp_mb); 11193 *magic_val = val & SHARED_MF_CLP_MAGIC; 11194 MFCFG_WR(sc, shared_mf_config.clp_mb, val | SHARED_MF_CLP_MAGIC); 11195 } 11196 11197 /* restore the value of the 'magic' bit */ 11198 static void 11199 bxe_clp_reset_done(struct bxe_softc *sc, 11200 uint32_t magic_val) 11201 { 11202 /* Restore the 'magic' bit value... */ 11203 uint32_t val = MFCFG_RD(sc, shared_mf_config.clp_mb); 11204 MFCFG_WR(sc, shared_mf_config.clp_mb, 11205 (val & (~SHARED_MF_CLP_MAGIC)) | magic_val); 11206 } 11207 11208 /* prepare for MCP reset, takes care of CLP configurations */ 11209 static void 11210 bxe_reset_mcp_prep(struct bxe_softc *sc, 11211 uint32_t *magic_val) 11212 { 11213 uint32_t shmem; 11214 uint32_t validity_offset; 11215 11216 /* set `magic' bit in order to save MF config */ 11217 if (!CHIP_IS_E1(sc)) { 11218 bxe_clp_reset_prep(sc, magic_val); 11219 } 11220 11221 /* get shmem offset */ 11222 shmem = REG_RD(sc, MISC_REG_SHARED_MEM_ADDR); 11223 validity_offset = 11224 offsetof(struct shmem_region, validity_map[SC_PORT(sc)]); 11225 11226 /* Clear validity map flags */ 11227 if (shmem > 0) { 11228 REG_WR(sc, shmem + validity_offset, 0); 11229 } 11230 } 11231 11232 #define MCP_TIMEOUT 5000 /* 5 seconds (in ms) */ 11233 #define MCP_ONE_TIMEOUT 100 /* 100 ms */ 11234 11235 static void 11236 bxe_mcp_wait_one(struct bxe_softc *sc) 11237 { 11238 /* special handling for emulation and FPGA (10 times longer) */ 11239 if (CHIP_REV_IS_SLOW(sc)) { 11240 DELAY((MCP_ONE_TIMEOUT*10) * 1000); 11241 } else { 11242 DELAY((MCP_ONE_TIMEOUT) * 1000); 11243 } 11244 } 11245 11246 /* initialize shmem_base and waits for validity signature to appear */ 11247 static int 11248 bxe_init_shmem(struct bxe_softc *sc) 11249 { 11250 int cnt = 0; 11251 uint32_t val = 0; 11252 11253 do { 11254 sc->devinfo.shmem_base = 11255 sc->link_params.shmem_base = 11256 REG_RD(sc, MISC_REG_SHARED_MEM_ADDR); 11257 11258 if (sc->devinfo.shmem_base) { 11259 val = SHMEM_RD(sc, validity_map[SC_PORT(sc)]); 11260 if (val & SHR_MEM_VALIDITY_MB) 11261 return (0); 11262 } 11263 11264 bxe_mcp_wait_one(sc); 11265 11266 } while (cnt++ < (MCP_TIMEOUT / MCP_ONE_TIMEOUT)); 11267 11268 BLOGE(sc, "BAD MCP validity signature\n"); 11269 11270 return (-1); 11271 } 11272 11273 static int 11274 bxe_reset_mcp_comp(struct bxe_softc *sc, 11275 uint32_t magic_val) 11276 { 11277 int rc = bxe_init_shmem(sc); 11278 11279 /* Restore the `magic' bit value */ 11280 if (!CHIP_IS_E1(sc)) { 11281 bxe_clp_reset_done(sc, magic_val); 11282 } 11283 11284 return (rc); 11285 } 11286 11287 static void 11288 bxe_pxp_prep(struct bxe_softc *sc) 11289 { 11290 if (!CHIP_IS_E1(sc)) { 11291 REG_WR(sc, PXP2_REG_RD_START_INIT, 0); 11292 REG_WR(sc, PXP2_REG_RQ_RBC_DONE, 0); 11293 wmb(); 11294 } 11295 } 11296 11297 /* 11298 * Reset the whole chip except for: 11299 * - PCIE core 11300 * - PCI Glue, PSWHST, PXP/PXP2 RF (all controlled by one reset bit) 11301 * - IGU 11302 * - MISC (including AEU) 11303 * - GRC 11304 * - RBCN, RBCP 11305 */ 11306 static void 11307 bxe_process_kill_chip_reset(struct bxe_softc *sc, 11308 uint8_t global) 11309 { 11310 uint32_t not_reset_mask1, reset_mask1, not_reset_mask2, reset_mask2; 11311 uint32_t global_bits2, stay_reset2; 11312 11313 /* 11314 * Bits that have to be set in reset_mask2 if we want to reset 'global' 11315 * (per chip) blocks. 11316 */ 11317 global_bits2 = 11318 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CPU | 11319 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CORE; 11320 11321 /* 11322 * Don't reset the following blocks. 11323 * Important: per port blocks (such as EMAC, BMAC, UMAC) can't be 11324 * reset, as in 4 port device they might still be owned 11325 * by the MCP (there is only one leader per path). 11326 */ 11327 not_reset_mask1 = 11328 MISC_REGISTERS_RESET_REG_1_RST_HC | 11329 MISC_REGISTERS_RESET_REG_1_RST_PXPV | 11330 MISC_REGISTERS_RESET_REG_1_RST_PXP; 11331 11332 not_reset_mask2 = 11333 MISC_REGISTERS_RESET_REG_2_RST_PCI_MDIO | 11334 MISC_REGISTERS_RESET_REG_2_RST_EMAC0_HARD_CORE | 11335 MISC_REGISTERS_RESET_REG_2_RST_EMAC1_HARD_CORE | 11336 MISC_REGISTERS_RESET_REG_2_RST_MISC_CORE | 11337 MISC_REGISTERS_RESET_REG_2_RST_RBCN | 11338 MISC_REGISTERS_RESET_REG_2_RST_GRC | 11339 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_REG_HARD_CORE | 11340 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_HARD_CORE_RST_B | 11341 MISC_REGISTERS_RESET_REG_2_RST_ATC | 11342 MISC_REGISTERS_RESET_REG_2_PGLC | 11343 MISC_REGISTERS_RESET_REG_2_RST_BMAC0 | 11344 MISC_REGISTERS_RESET_REG_2_RST_BMAC1 | 11345 MISC_REGISTERS_RESET_REG_2_RST_EMAC0 | 11346 MISC_REGISTERS_RESET_REG_2_RST_EMAC1 | 11347 MISC_REGISTERS_RESET_REG_2_UMAC0 | 11348 MISC_REGISTERS_RESET_REG_2_UMAC1; 11349 11350 /* 11351 * Keep the following blocks in reset: 11352 * - all xxMACs are handled by the elink code. 11353 */ 11354 stay_reset2 = 11355 MISC_REGISTERS_RESET_REG_2_XMAC | 11356 MISC_REGISTERS_RESET_REG_2_XMAC_SOFT; 11357 11358 /* Full reset masks according to the chip */ 11359 reset_mask1 = 0xffffffff; 11360 11361 if (CHIP_IS_E1(sc)) 11362 reset_mask2 = 0xffff; 11363 else if (CHIP_IS_E1H(sc)) 11364 reset_mask2 = 0x1ffff; 11365 else if (CHIP_IS_E2(sc)) 11366 reset_mask2 = 0xfffff; 11367 else /* CHIP_IS_E3 */ 11368 reset_mask2 = 0x3ffffff; 11369 11370 /* Don't reset global blocks unless we need to */ 11371 if (!global) 11372 reset_mask2 &= ~global_bits2; 11373 11374 /* 11375 * In case of attention in the QM, we need to reset PXP 11376 * (MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR) before QM 11377 * because otherwise QM reset would release 'close the gates' shortly 11378 * before resetting the PXP, then the PSWRQ would send a write 11379 * request to PGLUE. Then when PXP is reset, PGLUE would try to 11380 * read the payload data from PSWWR, but PSWWR would not 11381 * respond. The write queue in PGLUE would stuck, dmae commands 11382 * would not return. Therefore it's important to reset the second 11383 * reset register (containing the 11384 * MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR bit) before the 11385 * first one (containing the MISC_REGISTERS_RESET_REG_1_RST_QM 11386 * bit). 11387 */ 11388 REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR, 11389 reset_mask2 & (~not_reset_mask2)); 11390 11391 REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 11392 reset_mask1 & (~not_reset_mask1)); 11393 11394 mb(); 11395 wmb(); 11396 11397 REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET, 11398 reset_mask2 & (~stay_reset2)); 11399 11400 mb(); 11401 wmb(); 11402 11403 REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, reset_mask1); 11404 wmb(); 11405 } 11406 11407 static int 11408 bxe_process_kill(struct bxe_softc *sc, 11409 uint8_t global) 11410 { 11411 int cnt = 1000; 11412 uint32_t val = 0; 11413 uint32_t sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1, pgl_exp_rom2; 11414 uint32_t tags_63_32 = 0; 11415 11416 /* Empty the Tetris buffer, wait for 1s */ 11417 do { 11418 sr_cnt = REG_RD(sc, PXP2_REG_RD_SR_CNT); 11419 blk_cnt = REG_RD(sc, PXP2_REG_RD_BLK_CNT); 11420 port_is_idle_0 = REG_RD(sc, PXP2_REG_RD_PORT_IS_IDLE_0); 11421 port_is_idle_1 = REG_RD(sc, PXP2_REG_RD_PORT_IS_IDLE_1); 11422 pgl_exp_rom2 = REG_RD(sc, PXP2_REG_PGL_EXP_ROM2); 11423 if (CHIP_IS_E3(sc)) { 11424 tags_63_32 = REG_RD(sc, PGLUE_B_REG_TAGS_63_32); 11425 } 11426 11427 if ((sr_cnt == 0x7e) && (blk_cnt == 0xa0) && 11428 ((port_is_idle_0 & 0x1) == 0x1) && 11429 ((port_is_idle_1 & 0x1) == 0x1) && 11430 (pgl_exp_rom2 == 0xffffffff) && 11431 (!CHIP_IS_E3(sc) || (tags_63_32 == 0xffffffff))) 11432 break; 11433 DELAY(1000); 11434 } while (cnt-- > 0); 11435 11436 if (cnt <= 0) { 11437 BLOGE(sc, "ERROR: Tetris buffer didn't get empty or there " 11438 "are still outstanding read requests after 1s! " 11439 "sr_cnt=0x%08x, blk_cnt=0x%08x, port_is_idle_0=0x%08x, " 11440 "port_is_idle_1=0x%08x, pgl_exp_rom2=0x%08x\n", 11441 sr_cnt, blk_cnt, port_is_idle_0, 11442 port_is_idle_1, pgl_exp_rom2); 11443 return (-1); 11444 } 11445 11446 mb(); 11447 11448 /* Close gates #2, #3 and #4 */ 11449 bxe_set_234_gates(sc, TRUE); 11450 11451 /* Poll for IGU VQs for 57712 and newer chips */ 11452 if (!CHIP_IS_E1x(sc) && bxe_er_poll_igu_vq(sc)) { 11453 return (-1); 11454 } 11455 11456 /* XXX indicate that "process kill" is in progress to MCP */ 11457 11458 /* clear "unprepared" bit */ 11459 REG_WR(sc, MISC_REG_UNPREPARED, 0); 11460 mb(); 11461 11462 /* Make sure all is written to the chip before the reset */ 11463 wmb(); 11464 11465 /* 11466 * Wait for 1ms to empty GLUE and PCI-E core queues, 11467 * PSWHST, GRC and PSWRD Tetris buffer. 11468 */ 11469 DELAY(1000); 11470 11471 /* Prepare to chip reset: */ 11472 /* MCP */ 11473 if (global) { 11474 bxe_reset_mcp_prep(sc, &val); 11475 } 11476 11477 /* PXP */ 11478 bxe_pxp_prep(sc); 11479 mb(); 11480 11481 /* reset the chip */ 11482 bxe_process_kill_chip_reset(sc, global); 11483 mb(); 11484 11485 /* Recover after reset: */ 11486 /* MCP */ 11487 if (global && bxe_reset_mcp_comp(sc, val)) { 11488 return (-1); 11489 } 11490 11491 /* XXX add resetting the NO_MCP mode DB here */ 11492 11493 /* Open the gates #2, #3 and #4 */ 11494 bxe_set_234_gates(sc, FALSE); 11495 11496 /* XXX 11497 * IGU/AEU preparation bring back the AEU/IGU to a reset state 11498 * re-enable attentions 11499 */ 11500 11501 return (0); 11502 } 11503 11504 static int 11505 bxe_leader_reset(struct bxe_softc *sc) 11506 { 11507 int rc = 0; 11508 uint8_t global = bxe_reset_is_global(sc); 11509 uint32_t load_code; 11510 11511 /* 11512 * If not going to reset MCP, load "fake" driver to reset HW while 11513 * driver is owner of the HW. 11514 */ 11515 if (!global && !BXE_NOMCP(sc)) { 11516 load_code = bxe_fw_command(sc, DRV_MSG_CODE_LOAD_REQ, 11517 DRV_MSG_CODE_LOAD_REQ_WITH_LFA); 11518 if (!load_code) { 11519 BLOGE(sc, "MCP response failure, aborting\n"); 11520 rc = -1; 11521 goto exit_leader_reset; 11522 } 11523 11524 if ((load_code != FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) && 11525 (load_code != FW_MSG_CODE_DRV_LOAD_COMMON)) { 11526 BLOGE(sc, "MCP unexpected response, aborting\n"); 11527 rc = -1; 11528 goto exit_leader_reset2; 11529 } 11530 11531 load_code = bxe_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0); 11532 if (!load_code) { 11533 BLOGE(sc, "MCP response failure, aborting\n"); 11534 rc = -1; 11535 goto exit_leader_reset2; 11536 } 11537 } 11538 11539 /* try to recover after the failure */ 11540 if (bxe_process_kill(sc, global)) { 11541 BLOGE(sc, "Something bad occurred on engine %d!\n", SC_PATH(sc)); 11542 rc = -1; 11543 goto exit_leader_reset2; 11544 } 11545 11546 /* 11547 * Clear the RESET_IN_PROGRESS and RESET_GLOBAL bits and update the driver 11548 * state. 11549 */ 11550 bxe_set_reset_done(sc); 11551 if (global) { 11552 bxe_clear_reset_global(sc); 11553 } 11554 11555 exit_leader_reset2: 11556 11557 /* unload "fake driver" if it was loaded */ 11558 if (!global && !BXE_NOMCP(sc)) { 11559 bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP, 0); 11560 bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_DONE, 0); 11561 } 11562 11563 exit_leader_reset: 11564 11565 sc->is_leader = 0; 11566 bxe_release_leader_lock(sc); 11567 11568 mb(); 11569 return (rc); 11570 } 11571 11572 /* 11573 * prepare INIT transition, parameters configured: 11574 * - HC configuration 11575 * - Queue's CDU context 11576 */ 11577 static void 11578 bxe_pf_q_prep_init(struct bxe_softc *sc, 11579 struct bxe_fastpath *fp, 11580 struct ecore_queue_init_params *init_params) 11581 { 11582 uint8_t cos; 11583 int cxt_index, cxt_offset; 11584 11585 bxe_set_bit(ECORE_Q_FLG_HC, &init_params->rx.flags); 11586 bxe_set_bit(ECORE_Q_FLG_HC, &init_params->tx.flags); 11587 11588 bxe_set_bit(ECORE_Q_FLG_HC_EN, &init_params->rx.flags); 11589 bxe_set_bit(ECORE_Q_FLG_HC_EN, &init_params->tx.flags); 11590 11591 /* HC rate */ 11592 init_params->rx.hc_rate = 11593 sc->hc_rx_ticks ? (1000000 / sc->hc_rx_ticks) : 0; 11594 init_params->tx.hc_rate = 11595 sc->hc_tx_ticks ? (1000000 / sc->hc_tx_ticks) : 0; 11596 11597 /* FW SB ID */ 11598 init_params->rx.fw_sb_id = init_params->tx.fw_sb_id = fp->fw_sb_id; 11599 11600 /* CQ index among the SB indices */ 11601 init_params->rx.sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS; 11602 init_params->tx.sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS; 11603 11604 /* set maximum number of COSs supported by this queue */ 11605 init_params->max_cos = sc->max_cos; 11606 11607 BLOGD(sc, DBG_LOAD, "fp %d setting queue params max cos to %d\n", 11608 fp->index, init_params->max_cos); 11609 11610 /* set the context pointers queue object */ 11611 for (cos = FIRST_TX_COS_INDEX; cos < init_params->max_cos; cos++) { 11612 /* XXX change index/cid here if ever support multiple tx CoS */ 11613 /* fp->txdata[cos]->cid */ 11614 cxt_index = fp->index / ILT_PAGE_CIDS; 11615 cxt_offset = fp->index - (cxt_index * ILT_PAGE_CIDS); 11616 init_params->cxts[cos] = &sc->context[cxt_index].vcxt[cxt_offset].eth; 11617 } 11618 } 11619 11620 /* set flags that are common for the Tx-only and not normal connections */ 11621 static unsigned long 11622 bxe_get_common_flags(struct bxe_softc *sc, 11623 struct bxe_fastpath *fp, 11624 uint8_t zero_stats) 11625 { 11626 unsigned long flags = 0; 11627 11628 /* PF driver will always initialize the Queue to an ACTIVE state */ 11629 bxe_set_bit(ECORE_Q_FLG_ACTIVE, &flags); 11630 11631 /* 11632 * tx only connections collect statistics (on the same index as the 11633 * parent connection). The statistics are zeroed when the parent 11634 * connection is initialized. 11635 */ 11636 11637 bxe_set_bit(ECORE_Q_FLG_STATS, &flags); 11638 if (zero_stats) { 11639 bxe_set_bit(ECORE_Q_FLG_ZERO_STATS, &flags); 11640 } 11641 11642 /* 11643 * tx only connections can support tx-switching, though their 11644 * CoS-ness doesn't survive the loopback 11645 */ 11646 if (sc->flags & BXE_TX_SWITCHING) { 11647 bxe_set_bit(ECORE_Q_FLG_TX_SWITCH, &flags); 11648 } 11649 11650 bxe_set_bit(ECORE_Q_FLG_PCSUM_ON_PKT, &flags); 11651 11652 return (flags); 11653 } 11654 11655 static unsigned long 11656 bxe_get_q_flags(struct bxe_softc *sc, 11657 struct bxe_fastpath *fp, 11658 uint8_t leading) 11659 { 11660 unsigned long flags = 0; 11661 11662 if (IS_MF_SD(sc)) { 11663 bxe_set_bit(ECORE_Q_FLG_OV, &flags); 11664 } 11665 11666 if (if_getcapenable(sc->ifp) & IFCAP_LRO) { 11667 bxe_set_bit(ECORE_Q_FLG_TPA, &flags); 11668 bxe_set_bit(ECORE_Q_FLG_TPA_IPV6, &flags); 11669 #if 0 11670 if (fp->mode == TPA_MODE_GRO) 11671 __set_bit(ECORE_Q_FLG_TPA_GRO, &flags); 11672 #endif 11673 } 11674 11675 if (leading) { 11676 bxe_set_bit(ECORE_Q_FLG_LEADING_RSS, &flags); 11677 bxe_set_bit(ECORE_Q_FLG_MCAST, &flags); 11678 } 11679 11680 bxe_set_bit(ECORE_Q_FLG_VLAN, &flags); 11681 11682 #if 0 11683 /* configure silent vlan removal */ 11684 if (IS_MF_AFEX(sc)) { 11685 bxe_set_bit(ECORE_Q_FLG_SILENT_VLAN_REM, &flags); 11686 } 11687 #endif 11688 11689 /* merge with common flags */ 11690 return (flags | bxe_get_common_flags(sc, fp, TRUE)); 11691 } 11692 11693 static void 11694 bxe_pf_q_prep_general(struct bxe_softc *sc, 11695 struct bxe_fastpath *fp, 11696 struct ecore_general_setup_params *gen_init, 11697 uint8_t cos) 11698 { 11699 gen_init->stat_id = bxe_stats_id(fp); 11700 gen_init->spcl_id = fp->cl_id; 11701 gen_init->mtu = sc->mtu; 11702 gen_init->cos = cos; 11703 } 11704 11705 static void 11706 bxe_pf_rx_q_prep(struct bxe_softc *sc, 11707 struct bxe_fastpath *fp, 11708 struct rxq_pause_params *pause, 11709 struct ecore_rxq_setup_params *rxq_init) 11710 { 11711 uint8_t max_sge = 0; 11712 uint16_t sge_sz = 0; 11713 uint16_t tpa_agg_size = 0; 11714 11715 if (if_getcapenable(sc->ifp) & IFCAP_LRO) { 11716 pause->sge_th_lo = SGE_TH_LO(sc); 11717 pause->sge_th_hi = SGE_TH_HI(sc); 11718 11719 /* validate SGE ring has enough to cross high threshold */ 11720 if (sc->dropless_fc && 11721 (pause->sge_th_hi + FW_PREFETCH_CNT) > 11722 (RX_SGE_USABLE_PER_PAGE * RX_SGE_NUM_PAGES)) { 11723 BLOGW(sc, "sge ring threshold limit\n"); 11724 } 11725 11726 /* minimum max_aggregation_size is 2*MTU (two full buffers) */ 11727 tpa_agg_size = (2 * sc->mtu); 11728 if (tpa_agg_size < sc->max_aggregation_size) { 11729 tpa_agg_size = sc->max_aggregation_size; 11730 } 11731 11732 max_sge = SGE_PAGE_ALIGN(sc->mtu) >> SGE_PAGE_SHIFT; 11733 max_sge = ((max_sge + PAGES_PER_SGE - 1) & 11734 (~(PAGES_PER_SGE - 1))) >> PAGES_PER_SGE_SHIFT; 11735 sge_sz = (uint16_t)min(SGE_PAGES, 0xffff); 11736 } 11737 11738 /* pause - not for e1 */ 11739 if (!CHIP_IS_E1(sc)) { 11740 pause->bd_th_lo = BD_TH_LO(sc); 11741 pause->bd_th_hi = BD_TH_HI(sc); 11742 11743 pause->rcq_th_lo = RCQ_TH_LO(sc); 11744 pause->rcq_th_hi = RCQ_TH_HI(sc); 11745 11746 /* validate rings have enough entries to cross high thresholds */ 11747 if (sc->dropless_fc && 11748 pause->bd_th_hi + FW_PREFETCH_CNT > 11749 sc->rx_ring_size) { 11750 BLOGW(sc, "rx bd ring threshold limit\n"); 11751 } 11752 11753 if (sc->dropless_fc && 11754 pause->rcq_th_hi + FW_PREFETCH_CNT > 11755 RCQ_NUM_PAGES * RCQ_USABLE_PER_PAGE) { 11756 BLOGW(sc, "rcq ring threshold limit\n"); 11757 } 11758 11759 pause->pri_map = 1; 11760 } 11761 11762 /* rxq setup */ 11763 rxq_init->dscr_map = fp->rx_dma.paddr; 11764 rxq_init->sge_map = fp->rx_sge_dma.paddr; 11765 rxq_init->rcq_map = fp->rcq_dma.paddr; 11766 rxq_init->rcq_np_map = (fp->rcq_dma.paddr + BCM_PAGE_SIZE); 11767 11768 /* 11769 * This should be a maximum number of data bytes that may be 11770 * placed on the BD (not including paddings). 11771 */ 11772 rxq_init->buf_sz = (fp->rx_buf_size - 11773 IP_HEADER_ALIGNMENT_PADDING); 11774 11775 rxq_init->cl_qzone_id = fp->cl_qzone_id; 11776 rxq_init->tpa_agg_sz = tpa_agg_size; 11777 rxq_init->sge_buf_sz = sge_sz; 11778 rxq_init->max_sges_pkt = max_sge; 11779 rxq_init->rss_engine_id = SC_FUNC(sc); 11780 rxq_init->mcast_engine_id = SC_FUNC(sc); 11781 11782 /* 11783 * Maximum number or simultaneous TPA aggregation for this Queue. 11784 * For PF Clients it should be the maximum available number. 11785 * VF driver(s) may want to define it to a smaller value. 11786 */ 11787 rxq_init->max_tpa_queues = MAX_AGG_QS(sc); 11788 11789 rxq_init->cache_line_log = BXE_RX_ALIGN_SHIFT; 11790 rxq_init->fw_sb_id = fp->fw_sb_id; 11791 11792 rxq_init->sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS; 11793 11794 /* 11795 * configure silent vlan removal 11796 * if multi function mode is afex, then mask default vlan 11797 */ 11798 if (IS_MF_AFEX(sc)) { 11799 rxq_init->silent_removal_value = 11800 sc->devinfo.mf_info.afex_def_vlan_tag; 11801 rxq_init->silent_removal_mask = EVL_VLID_MASK; 11802 } 11803 } 11804 11805 static void 11806 bxe_pf_tx_q_prep(struct bxe_softc *sc, 11807 struct bxe_fastpath *fp, 11808 struct ecore_txq_setup_params *txq_init, 11809 uint8_t cos) 11810 { 11811 /* 11812 * XXX If multiple CoS is ever supported then each fastpath structure 11813 * will need to maintain tx producer/consumer/dma/etc values *per* CoS. 11814 * fp->txdata[cos]->tx_dma.paddr; 11815 */ 11816 txq_init->dscr_map = fp->tx_dma.paddr; 11817 txq_init->sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS + cos; 11818 txq_init->traffic_type = LLFC_TRAFFIC_TYPE_NW; 11819 txq_init->fw_sb_id = fp->fw_sb_id; 11820 11821 /* 11822 * set the TSS leading client id for TX classfication to the 11823 * leading RSS client id 11824 */ 11825 txq_init->tss_leading_cl_id = BXE_FP(sc, 0, cl_id); 11826 } 11827 11828 /* 11829 * This function performs 2 steps in a queue state machine: 11830 * 1) RESET->INIT 11831 * 2) INIT->SETUP 11832 */ 11833 static int 11834 bxe_setup_queue(struct bxe_softc *sc, 11835 struct bxe_fastpath *fp, 11836 uint8_t leading) 11837 { 11838 struct ecore_queue_state_params q_params = { NULL }; 11839 struct ecore_queue_setup_params *setup_params = 11840 &q_params.params.setup; 11841 #if 0 11842 struct ecore_queue_setup_tx_only_params *tx_only_params = 11843 &q_params.params.tx_only; 11844 uint8_t tx_index; 11845 #endif 11846 int rc; 11847 11848 BLOGD(sc, DBG_LOAD, "setting up queue %d\n", fp->index); 11849 11850 bxe_ack_sb(sc, fp->igu_sb_id, USTORM_ID, 0, IGU_INT_ENABLE, 0); 11851 11852 q_params.q_obj = &BXE_SP_OBJ(sc, fp).q_obj; 11853 11854 /* we want to wait for completion in this context */ 11855 bxe_set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags); 11856 11857 /* prepare the INIT parameters */ 11858 bxe_pf_q_prep_init(sc, fp, &q_params.params.init); 11859 11860 /* Set the command */ 11861 q_params.cmd = ECORE_Q_CMD_INIT; 11862 11863 /* Change the state to INIT */ 11864 rc = ecore_queue_state_change(sc, &q_params); 11865 if (rc) { 11866 BLOGE(sc, "Queue(%d) INIT failed\n", fp->index); 11867 return (rc); 11868 } 11869 11870 BLOGD(sc, DBG_LOAD, "init complete\n"); 11871 11872 /* now move the Queue to the SETUP state */ 11873 memset(setup_params, 0, sizeof(*setup_params)); 11874 11875 /* set Queue flags */ 11876 setup_params->flags = bxe_get_q_flags(sc, fp, leading); 11877 11878 /* set general SETUP parameters */ 11879 bxe_pf_q_prep_general(sc, fp, &setup_params->gen_params, 11880 FIRST_TX_COS_INDEX); 11881 11882 bxe_pf_rx_q_prep(sc, fp, 11883 &setup_params->pause_params, 11884 &setup_params->rxq_params); 11885 11886 bxe_pf_tx_q_prep(sc, fp, 11887 &setup_params->txq_params, 11888 FIRST_TX_COS_INDEX); 11889 11890 /* Set the command */ 11891 q_params.cmd = ECORE_Q_CMD_SETUP; 11892 11893 /* change the state to SETUP */ 11894 rc = ecore_queue_state_change(sc, &q_params); 11895 if (rc) { 11896 BLOGE(sc, "Queue(%d) SETUP failed\n", fp->index); 11897 return (rc); 11898 } 11899 11900 #if 0 11901 /* loop through the relevant tx-only indices */ 11902 for (tx_index = FIRST_TX_ONLY_COS_INDEX; 11903 tx_index < sc->max_cos; 11904 tx_index++) { 11905 /* prepare and send tx-only ramrod*/ 11906 rc = bxe_setup_tx_only(sc, fp, &q_params, 11907 tx_only_params, tx_index, leading); 11908 if (rc) { 11909 BLOGE(sc, "Queue(%d.%d) TX_ONLY_SETUP failed\n", 11910 fp->index, tx_index); 11911 return (rc); 11912 } 11913 } 11914 #endif 11915 11916 return (rc); 11917 } 11918 11919 static int 11920 bxe_setup_leading(struct bxe_softc *sc) 11921 { 11922 return (bxe_setup_queue(sc, &sc->fp[0], TRUE)); 11923 } 11924 11925 static int 11926 bxe_config_rss_pf(struct bxe_softc *sc, 11927 struct ecore_rss_config_obj *rss_obj, 11928 uint8_t config_hash) 11929 { 11930 struct ecore_config_rss_params params = { NULL }; 11931 int i; 11932 11933 /* 11934 * Although RSS is meaningless when there is a single HW queue we 11935 * still need it enabled in order to have HW Rx hash generated. 11936 */ 11937 11938 params.rss_obj = rss_obj; 11939 11940 bxe_set_bit(RAMROD_COMP_WAIT, ¶ms.ramrod_flags); 11941 11942 bxe_set_bit(ECORE_RSS_MODE_REGULAR, ¶ms.rss_flags); 11943 11944 /* RSS configuration */ 11945 bxe_set_bit(ECORE_RSS_IPV4, ¶ms.rss_flags); 11946 bxe_set_bit(ECORE_RSS_IPV4_TCP, ¶ms.rss_flags); 11947 bxe_set_bit(ECORE_RSS_IPV6, ¶ms.rss_flags); 11948 bxe_set_bit(ECORE_RSS_IPV6_TCP, ¶ms.rss_flags); 11949 if (rss_obj->udp_rss_v4) { 11950 bxe_set_bit(ECORE_RSS_IPV4_UDP, ¶ms.rss_flags); 11951 } 11952 if (rss_obj->udp_rss_v6) { 11953 bxe_set_bit(ECORE_RSS_IPV6_UDP, ¶ms.rss_flags); 11954 } 11955 11956 /* Hash bits */ 11957 params.rss_result_mask = MULTI_MASK; 11958 11959 memcpy(params.ind_table, rss_obj->ind_table, sizeof(params.ind_table)); 11960 11961 if (config_hash) { 11962 /* RSS keys */ 11963 for (i = 0; i < sizeof(params.rss_key) / 4; i++) { 11964 params.rss_key[i] = arc4random(); 11965 } 11966 11967 bxe_set_bit(ECORE_RSS_SET_SRCH, ¶ms.rss_flags); 11968 } 11969 11970 return (ecore_config_rss(sc, ¶ms)); 11971 } 11972 11973 static int 11974 bxe_config_rss_eth(struct bxe_softc *sc, 11975 uint8_t config_hash) 11976 { 11977 return (bxe_config_rss_pf(sc, &sc->rss_conf_obj, config_hash)); 11978 } 11979 11980 static int 11981 bxe_init_rss_pf(struct bxe_softc *sc) 11982 { 11983 uint8_t num_eth_queues = BXE_NUM_ETH_QUEUES(sc); 11984 int i; 11985 11986 /* 11987 * Prepare the initial contents of the indirection table if 11988 * RSS is enabled 11989 */ 11990 for (i = 0; i < sizeof(sc->rss_conf_obj.ind_table); i++) { 11991 sc->rss_conf_obj.ind_table[i] = 11992 (sc->fp->cl_id + (i % num_eth_queues)); 11993 } 11994 11995 if (sc->udp_rss) { 11996 sc->rss_conf_obj.udp_rss_v4 = sc->rss_conf_obj.udp_rss_v6 = 1; 11997 } 11998 11999 /* 12000 * For 57710 and 57711 SEARCHER configuration (rss_keys) is 12001 * per-port, so if explicit configuration is needed, do it only 12002 * for a PMF. 12003 * 12004 * For 57712 and newer it's a per-function configuration. 12005 */ 12006 return (bxe_config_rss_eth(sc, sc->port.pmf || !CHIP_IS_E1x(sc))); 12007 } 12008 12009 static int 12010 bxe_set_mac_one(struct bxe_softc *sc, 12011 uint8_t *mac, 12012 struct ecore_vlan_mac_obj *obj, 12013 uint8_t set, 12014 int mac_type, 12015 unsigned long *ramrod_flags) 12016 { 12017 struct ecore_vlan_mac_ramrod_params ramrod_param; 12018 int rc; 12019 12020 memset(&ramrod_param, 0, sizeof(ramrod_param)); 12021 12022 /* fill in general parameters */ 12023 ramrod_param.vlan_mac_obj = obj; 12024 ramrod_param.ramrod_flags = *ramrod_flags; 12025 12026 /* fill a user request section if needed */ 12027 if (!bxe_test_bit(RAMROD_CONT, ramrod_flags)) { 12028 memcpy(ramrod_param.user_req.u.mac.mac, mac, ETH_ALEN); 12029 12030 bxe_set_bit(mac_type, &ramrod_param.user_req.vlan_mac_flags); 12031 12032 /* Set the command: ADD or DEL */ 12033 ramrod_param.user_req.cmd = (set) ? ECORE_VLAN_MAC_ADD : 12034 ECORE_VLAN_MAC_DEL; 12035 } 12036 12037 rc = ecore_config_vlan_mac(sc, &ramrod_param); 12038 12039 if (rc == ECORE_EXISTS) { 12040 BLOGD(sc, DBG_SP, "Failed to schedule ADD operations (EEXIST)\n"); 12041 /* do not treat adding same MAC as error */ 12042 rc = 0; 12043 } else if (rc < 0) { 12044 BLOGE(sc, "%s MAC failed (%d)\n", (set ? "Set" : "Delete"), rc); 12045 } 12046 12047 return (rc); 12048 } 12049 12050 static int 12051 bxe_set_eth_mac(struct bxe_softc *sc, 12052 uint8_t set) 12053 { 12054 unsigned long ramrod_flags = 0; 12055 12056 BLOGD(sc, DBG_LOAD, "Adding Ethernet MAC\n"); 12057 12058 bxe_set_bit(RAMROD_COMP_WAIT, &ramrod_flags); 12059 12060 /* Eth MAC is set on RSS leading client (fp[0]) */ 12061 return (bxe_set_mac_one(sc, sc->link_params.mac_addr, 12062 &sc->sp_objs->mac_obj, 12063 set, ECORE_ETH_MAC, &ramrod_flags)); 12064 } 12065 12066 #if 0 12067 static void 12068 bxe_update_max_mf_config(struct bxe_softc *sc, 12069 uint32_t value) 12070 { 12071 /* load old values */ 12072 uint32_t mf_cfg = sc->devinfo.mf_info.mf_config[SC_VN(sc)]; 12073 12074 if (value != bxe_extract_max_cfg(sc, mf_cfg)) { 12075 /* leave all but MAX value */ 12076 mf_cfg &= ~FUNC_MF_CFG_MAX_BW_MASK; 12077 12078 /* set new MAX value */ 12079 mf_cfg |= ((value << FUNC_MF_CFG_MAX_BW_SHIFT) & 12080 FUNC_MF_CFG_MAX_BW_MASK); 12081 12082 bxe_fw_command(sc, DRV_MSG_CODE_SET_MF_BW, mf_cfg); 12083 } 12084 } 12085 #endif 12086 12087 static int 12088 bxe_get_cur_phy_idx(struct bxe_softc *sc) 12089 { 12090 uint32_t sel_phy_idx = 0; 12091 12092 if (sc->link_params.num_phys <= 1) { 12093 return (ELINK_INT_PHY); 12094 } 12095 12096 if (sc->link_vars.link_up) { 12097 sel_phy_idx = ELINK_EXT_PHY1; 12098 /* In case link is SERDES, check if the ELINK_EXT_PHY2 is the one */ 12099 if ((sc->link_vars.link_status & LINK_STATUS_SERDES_LINK) && 12100 (sc->link_params.phy[ELINK_EXT_PHY2].supported & 12101 ELINK_SUPPORTED_FIBRE)) 12102 sel_phy_idx = ELINK_EXT_PHY2; 12103 } else { 12104 switch (elink_phy_selection(&sc->link_params)) { 12105 case PORT_HW_CFG_PHY_SELECTION_HARDWARE_DEFAULT: 12106 case PORT_HW_CFG_PHY_SELECTION_FIRST_PHY: 12107 case PORT_HW_CFG_PHY_SELECTION_FIRST_PHY_PRIORITY: 12108 sel_phy_idx = ELINK_EXT_PHY1; 12109 break; 12110 case PORT_HW_CFG_PHY_SELECTION_SECOND_PHY: 12111 case PORT_HW_CFG_PHY_SELECTION_SECOND_PHY_PRIORITY: 12112 sel_phy_idx = ELINK_EXT_PHY2; 12113 break; 12114 } 12115 } 12116 12117 return (sel_phy_idx); 12118 } 12119 12120 static int 12121 bxe_get_link_cfg_idx(struct bxe_softc *sc) 12122 { 12123 uint32_t sel_phy_idx = bxe_get_cur_phy_idx(sc); 12124 12125 /* 12126 * The selected activated PHY is always after swapping (in case PHY 12127 * swapping is enabled). So when swapping is enabled, we need to reverse 12128 * the configuration 12129 */ 12130 12131 if (sc->link_params.multi_phy_config & PORT_HW_CFG_PHY_SWAPPED_ENABLED) { 12132 if (sel_phy_idx == ELINK_EXT_PHY1) 12133 sel_phy_idx = ELINK_EXT_PHY2; 12134 else if (sel_phy_idx == ELINK_EXT_PHY2) 12135 sel_phy_idx = ELINK_EXT_PHY1; 12136 } 12137 12138 return (ELINK_LINK_CONFIG_IDX(sel_phy_idx)); 12139 } 12140 12141 static void 12142 bxe_set_requested_fc(struct bxe_softc *sc) 12143 { 12144 /* 12145 * Initialize link parameters structure variables 12146 * It is recommended to turn off RX FC for jumbo frames 12147 * for better performance 12148 */ 12149 if (CHIP_IS_E1x(sc) && (sc->mtu > 5000)) { 12150 sc->link_params.req_fc_auto_adv = ELINK_FLOW_CTRL_TX; 12151 } else { 12152 sc->link_params.req_fc_auto_adv = ELINK_FLOW_CTRL_BOTH; 12153 } 12154 } 12155 12156 static void 12157 bxe_calc_fc_adv(struct bxe_softc *sc) 12158 { 12159 uint8_t cfg_idx = bxe_get_link_cfg_idx(sc); 12160 switch (sc->link_vars.ieee_fc & 12161 MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_MASK) { 12162 case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_NONE: 12163 default: 12164 sc->port.advertising[cfg_idx] &= ~(ADVERTISED_Asym_Pause | 12165 ADVERTISED_Pause); 12166 break; 12167 12168 case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_BOTH: 12169 sc->port.advertising[cfg_idx] |= (ADVERTISED_Asym_Pause | 12170 ADVERTISED_Pause); 12171 break; 12172 12173 case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_ASYMMETRIC: 12174 sc->port.advertising[cfg_idx] |= ADVERTISED_Asym_Pause; 12175 break; 12176 } 12177 } 12178 12179 static uint16_t 12180 bxe_get_mf_speed(struct bxe_softc *sc) 12181 { 12182 uint16_t line_speed = sc->link_vars.line_speed; 12183 if (IS_MF(sc)) { 12184 uint16_t maxCfg = 12185 bxe_extract_max_cfg(sc, sc->devinfo.mf_info.mf_config[SC_VN(sc)]); 12186 12187 /* calculate the current MAX line speed limit for the MF devices */ 12188 if (IS_MF_SI(sc)) { 12189 line_speed = (line_speed * maxCfg) / 100; 12190 } else { /* SD mode */ 12191 uint16_t vn_max_rate = maxCfg * 100; 12192 12193 if (vn_max_rate < line_speed) { 12194 line_speed = vn_max_rate; 12195 } 12196 } 12197 } 12198 12199 return (line_speed); 12200 } 12201 12202 static void 12203 bxe_fill_report_data(struct bxe_softc *sc, 12204 struct bxe_link_report_data *data) 12205 { 12206 uint16_t line_speed = bxe_get_mf_speed(sc); 12207 12208 memset(data, 0, sizeof(*data)); 12209 12210 /* fill the report data with the effective line speed */ 12211 data->line_speed = line_speed; 12212 12213 /* Link is down */ 12214 if (!sc->link_vars.link_up || (sc->flags & BXE_MF_FUNC_DIS)) { 12215 bxe_set_bit(BXE_LINK_REPORT_LINK_DOWN, &data->link_report_flags); 12216 } 12217 12218 /* Full DUPLEX */ 12219 if (sc->link_vars.duplex == DUPLEX_FULL) { 12220 bxe_set_bit(BXE_LINK_REPORT_FULL_DUPLEX, &data->link_report_flags); 12221 } 12222 12223 /* Rx Flow Control is ON */ 12224 if (sc->link_vars.flow_ctrl & ELINK_FLOW_CTRL_RX) { 12225 bxe_set_bit(BXE_LINK_REPORT_RX_FC_ON, &data->link_report_flags); 12226 } 12227 12228 /* Tx Flow Control is ON */ 12229 if (sc->link_vars.flow_ctrl & ELINK_FLOW_CTRL_TX) { 12230 bxe_set_bit(BXE_LINK_REPORT_TX_FC_ON, &data->link_report_flags); 12231 } 12232 } 12233 12234 /* report link status to OS, should be called under phy_lock */ 12235 static void 12236 bxe_link_report_locked(struct bxe_softc *sc) 12237 { 12238 struct bxe_link_report_data cur_data; 12239 12240 /* reread mf_cfg */ 12241 if (IS_PF(sc) && !CHIP_IS_E1(sc)) { 12242 bxe_read_mf_cfg(sc); 12243 } 12244 12245 /* Read the current link report info */ 12246 bxe_fill_report_data(sc, &cur_data); 12247 12248 /* Don't report link down or exactly the same link status twice */ 12249 if (!memcmp(&cur_data, &sc->last_reported_link, sizeof(cur_data)) || 12250 (bxe_test_bit(BXE_LINK_REPORT_LINK_DOWN, 12251 &sc->last_reported_link.link_report_flags) && 12252 bxe_test_bit(BXE_LINK_REPORT_LINK_DOWN, 12253 &cur_data.link_report_flags))) { 12254 return; 12255 } 12256 12257 sc->link_cnt++; 12258 12259 /* report new link params and remember the state for the next time */ 12260 memcpy(&sc->last_reported_link, &cur_data, sizeof(cur_data)); 12261 12262 if (bxe_test_bit(BXE_LINK_REPORT_LINK_DOWN, 12263 &cur_data.link_report_flags)) { 12264 if_linkstate_change_drv(sc->ifp, LINK_STATE_DOWN); 12265 BLOGI(sc, "NIC Link is Down\n"); 12266 } else { 12267 const char *duplex; 12268 const char *flow; 12269 12270 if (bxe_test_and_clear_bit(BXE_LINK_REPORT_FULL_DUPLEX, 12271 &cur_data.link_report_flags)) { 12272 duplex = "full"; 12273 } else { 12274 duplex = "half"; 12275 } 12276 12277 /* 12278 * Handle the FC at the end so that only these flags would be 12279 * possibly set. This way we may easily check if there is no FC 12280 * enabled. 12281 */ 12282 if (cur_data.link_report_flags) { 12283 if (bxe_test_bit(BXE_LINK_REPORT_RX_FC_ON, 12284 &cur_data.link_report_flags) && 12285 bxe_test_bit(BXE_LINK_REPORT_TX_FC_ON, 12286 &cur_data.link_report_flags)) { 12287 flow = "ON - receive & transmit"; 12288 } else if (bxe_test_bit(BXE_LINK_REPORT_RX_FC_ON, 12289 &cur_data.link_report_flags) && 12290 !bxe_test_bit(BXE_LINK_REPORT_TX_FC_ON, 12291 &cur_data.link_report_flags)) { 12292 flow = "ON - receive"; 12293 } else if (!bxe_test_bit(BXE_LINK_REPORT_RX_FC_ON, 12294 &cur_data.link_report_flags) && 12295 bxe_test_bit(BXE_LINK_REPORT_TX_FC_ON, 12296 &cur_data.link_report_flags)) { 12297 flow = "ON - transmit"; 12298 } else { 12299 flow = "none"; /* possible? */ 12300 } 12301 } else { 12302 flow = "none"; 12303 } 12304 12305 if_linkstate_change_drv(sc->ifp, LINK_STATE_UP); 12306 BLOGI(sc, "NIC Link is Up, %d Mbps %s duplex, Flow control: %s\n", 12307 cur_data.line_speed, duplex, flow); 12308 } 12309 } 12310 12311 static void 12312 bxe_link_report(struct bxe_softc *sc) 12313 { 12314 BXE_PHY_LOCK(sc); 12315 bxe_link_report_locked(sc); 12316 BXE_PHY_UNLOCK(sc); 12317 } 12318 12319 static void 12320 bxe_link_status_update(struct bxe_softc *sc) 12321 { 12322 if (sc->state != BXE_STATE_OPEN) { 12323 return; 12324 } 12325 12326 #if 0 12327 /* read updated dcb configuration */ 12328 if (IS_PF(sc)) 12329 bxe_dcbx_pmf_update(sc); 12330 #endif 12331 12332 if (IS_PF(sc) && !CHIP_REV_IS_SLOW(sc)) { 12333 elink_link_status_update(&sc->link_params, &sc->link_vars); 12334 } else { 12335 sc->port.supported[0] |= (ELINK_SUPPORTED_10baseT_Half | 12336 ELINK_SUPPORTED_10baseT_Full | 12337 ELINK_SUPPORTED_100baseT_Half | 12338 ELINK_SUPPORTED_100baseT_Full | 12339 ELINK_SUPPORTED_1000baseT_Full | 12340 ELINK_SUPPORTED_2500baseX_Full | 12341 ELINK_SUPPORTED_10000baseT_Full | 12342 ELINK_SUPPORTED_TP | 12343 ELINK_SUPPORTED_FIBRE | 12344 ELINK_SUPPORTED_Autoneg | 12345 ELINK_SUPPORTED_Pause | 12346 ELINK_SUPPORTED_Asym_Pause); 12347 sc->port.advertising[0] = sc->port.supported[0]; 12348 12349 sc->link_params.sc = sc; 12350 sc->link_params.port = SC_PORT(sc); 12351 sc->link_params.req_duplex[0] = DUPLEX_FULL; 12352 sc->link_params.req_flow_ctrl[0] = ELINK_FLOW_CTRL_NONE; 12353 sc->link_params.req_line_speed[0] = SPEED_10000; 12354 sc->link_params.speed_cap_mask[0] = 0x7f0000; 12355 sc->link_params.switch_cfg = ELINK_SWITCH_CFG_10G; 12356 12357 if (CHIP_REV_IS_FPGA(sc)) { 12358 sc->link_vars.mac_type = ELINK_MAC_TYPE_EMAC; 12359 sc->link_vars.line_speed = ELINK_SPEED_1000; 12360 sc->link_vars.link_status = (LINK_STATUS_LINK_UP | 12361 LINK_STATUS_SPEED_AND_DUPLEX_1000TFD); 12362 } else { 12363 sc->link_vars.mac_type = ELINK_MAC_TYPE_BMAC; 12364 sc->link_vars.line_speed = ELINK_SPEED_10000; 12365 sc->link_vars.link_status = (LINK_STATUS_LINK_UP | 12366 LINK_STATUS_SPEED_AND_DUPLEX_10GTFD); 12367 } 12368 12369 sc->link_vars.link_up = 1; 12370 12371 sc->link_vars.duplex = DUPLEX_FULL; 12372 sc->link_vars.flow_ctrl = ELINK_FLOW_CTRL_NONE; 12373 12374 if (IS_PF(sc)) { 12375 REG_WR(sc, NIG_REG_EGRESS_DRAIN0_MODE + sc->link_params.port*4, 0); 12376 bxe_stats_handle(sc, STATS_EVENT_LINK_UP); 12377 bxe_link_report(sc); 12378 } 12379 } 12380 12381 if (IS_PF(sc)) { 12382 if (sc->link_vars.link_up) { 12383 bxe_stats_handle(sc, STATS_EVENT_LINK_UP); 12384 } else { 12385 bxe_stats_handle(sc, STATS_EVENT_STOP); 12386 } 12387 bxe_link_report(sc); 12388 } else { 12389 bxe_link_report(sc); 12390 bxe_stats_handle(sc, STATS_EVENT_LINK_UP); 12391 } 12392 } 12393 12394 static int 12395 bxe_initial_phy_init(struct bxe_softc *sc, 12396 int load_mode) 12397 { 12398 int rc, cfg_idx = bxe_get_link_cfg_idx(sc); 12399 uint16_t req_line_speed = sc->link_params.req_line_speed[cfg_idx]; 12400 struct elink_params *lp = &sc->link_params; 12401 12402 bxe_set_requested_fc(sc); 12403 12404 if (CHIP_REV_IS_SLOW(sc)) { 12405 uint32_t bond = CHIP_BOND_ID(sc); 12406 uint32_t feat = 0; 12407 12408 if (CHIP_IS_E2(sc) && CHIP_IS_MODE_4_PORT(sc)) { 12409 feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_BMAC; 12410 } else if (bond & 0x4) { 12411 if (CHIP_IS_E3(sc)) { 12412 feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_XMAC; 12413 } else { 12414 feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_BMAC; 12415 } 12416 } else if (bond & 0x8) { 12417 if (CHIP_IS_E3(sc)) { 12418 feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_UMAC; 12419 } else { 12420 feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_EMAC; 12421 } 12422 } 12423 12424 /* disable EMAC for E3 and above */ 12425 if (bond & 0x2) { 12426 feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_EMAC; 12427 } 12428 12429 sc->link_params.feature_config_flags |= feat; 12430 } 12431 12432 BXE_PHY_LOCK(sc); 12433 12434 if (load_mode == LOAD_DIAG) { 12435 lp->loopback_mode = ELINK_LOOPBACK_XGXS; 12436 /* Prefer doing PHY loopback at 10G speed, if possible */ 12437 if (lp->req_line_speed[cfg_idx] < ELINK_SPEED_10000) { 12438 if (lp->speed_cap_mask[cfg_idx] & 12439 PORT_HW_CFG_SPEED_CAPABILITY_D0_10G) { 12440 lp->req_line_speed[cfg_idx] = ELINK_SPEED_10000; 12441 } else { 12442 lp->req_line_speed[cfg_idx] = ELINK_SPEED_1000; 12443 } 12444 } 12445 } 12446 12447 if (load_mode == LOAD_LOOPBACK_EXT) { 12448 lp->loopback_mode = ELINK_LOOPBACK_EXT; 12449 } 12450 12451 rc = elink_phy_init(&sc->link_params, &sc->link_vars); 12452 12453 BXE_PHY_UNLOCK(sc); 12454 12455 bxe_calc_fc_adv(sc); 12456 12457 if (sc->link_vars.link_up) { 12458 bxe_stats_handle(sc, STATS_EVENT_LINK_UP); 12459 bxe_link_report(sc); 12460 } 12461 12462 if (!CHIP_REV_IS_SLOW(sc)) { 12463 bxe_periodic_start(sc); 12464 } 12465 12466 sc->link_params.req_line_speed[cfg_idx] = req_line_speed; 12467 return (rc); 12468 } 12469 12470 /* must be called under IF_ADDR_LOCK */ 12471 static int 12472 bxe_init_mcast_macs_list(struct bxe_softc *sc, 12473 struct ecore_mcast_ramrod_params *p) 12474 { 12475 if_t ifp = sc->ifp; 12476 int mc_count = 0; 12477 int mcnt, i; 12478 struct ecore_mcast_list_elem *mc_mac; 12479 unsigned char *mta; 12480 12481 mc_count = if_multiaddr_count(ifp, -1);/* XXX they don't have a limit */ 12482 /* should we enforce one? */ 12483 ECORE_LIST_INIT(&p->mcast_list); 12484 p->mcast_list_len = 0; 12485 12486 if (!mc_count) { 12487 return (0); 12488 } 12489 12490 mta = malloc(sizeof(unsigned char) * ETHER_ADDR_LEN * 12491 mc_count, M_DEVBUF, M_NOWAIT); 12492 12493 if(mta == NULL) { 12494 BLOGE(sc, "Failed to allocate temp mcast list\n"); 12495 return (-1); 12496 } 12497 12498 mc_mac = malloc(sizeof(*mc_mac) * mc_count, M_DEVBUF, 12499 (M_NOWAIT | M_ZERO)); 12500 if (!mc_mac) { 12501 free(mta, M_DEVBUF); 12502 BLOGE(sc, "Failed to allocate temp mcast list\n"); 12503 return (-1); 12504 } 12505 12506 if_multiaddr_array(ifp, mta, &mcnt, mc_count); /* mta and mcnt not expected 12507 to be different */ 12508 for(i=0; i< mcnt; i++) { 12509 12510 bcopy((mta + (i * ETHER_ADDR_LEN)), mc_mac->mac, ETHER_ADDR_LEN); 12511 ECORE_LIST_PUSH_TAIL(&mc_mac->link, &p->mcast_list); 12512 12513 BLOGD(sc, DBG_LOAD, 12514 "Setting MCAST %02X:%02X:%02X:%02X:%02X:%02X\n", 12515 mc_mac->mac[0], mc_mac->mac[1], mc_mac->mac[2], 12516 mc_mac->mac[3], mc_mac->mac[4], mc_mac->mac[5]); 12517 12518 mc_mac++; 12519 } 12520 12521 p->mcast_list_len = mc_count; 12522 free(mta, M_DEVBUF); 12523 12524 return (0); 12525 } 12526 12527 static void 12528 bxe_free_mcast_macs_list(struct ecore_mcast_ramrod_params *p) 12529 { 12530 struct ecore_mcast_list_elem *mc_mac = 12531 ECORE_LIST_FIRST_ENTRY(&p->mcast_list, 12532 struct ecore_mcast_list_elem, 12533 link); 12534 12535 if (mc_mac) { 12536 /* only a single free as all mc_macs are in the same heap array */ 12537 free(mc_mac, M_DEVBUF); 12538 } 12539 } 12540 12541 static int 12542 bxe_set_mc_list(struct bxe_softc *sc) 12543 { 12544 struct ecore_mcast_ramrod_params rparam = { NULL }; 12545 int rc = 0; 12546 12547 rparam.mcast_obj = &sc->mcast_obj; 12548 12549 BXE_MCAST_LOCK(sc); 12550 12551 /* first, clear all configured multicast MACs */ 12552 rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_DEL); 12553 if (rc < 0) { 12554 BLOGE(sc, "Failed to clear multicast configuration: %d\n", rc); 12555 return (rc); 12556 } 12557 12558 /* configure a new MACs list */ 12559 rc = bxe_init_mcast_macs_list(sc, &rparam); 12560 if (rc) { 12561 BLOGE(sc, "Failed to create mcast MACs list (%d)\n", rc); 12562 BXE_MCAST_UNLOCK(sc); 12563 return (rc); 12564 } 12565 12566 /* Now add the new MACs */ 12567 rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_ADD); 12568 if (rc < 0) { 12569 BLOGE(sc, "Failed to set new mcast config (%d)\n", rc); 12570 } 12571 12572 bxe_free_mcast_macs_list(&rparam); 12573 12574 BXE_MCAST_UNLOCK(sc); 12575 12576 return (rc); 12577 } 12578 12579 static int 12580 bxe_set_uc_list(struct bxe_softc *sc) 12581 { 12582 if_t ifp = sc->ifp; 12583 struct ecore_vlan_mac_obj *mac_obj = &sc->sp_objs->mac_obj; 12584 struct ifaddr *ifa; 12585 unsigned long ramrod_flags = 0; 12586 int rc; 12587 12588 #if __FreeBSD_version < 800000 12589 IF_ADDR_LOCK(ifp); 12590 #else 12591 if_addr_rlock_drv(ifp); 12592 #endif 12593 12594 /* first schedule a cleanup up of old configuration */ 12595 rc = bxe_del_all_macs(sc, mac_obj, ECORE_UC_LIST_MAC, FALSE); 12596 if (rc < 0) { 12597 BLOGE(sc, "Failed to schedule delete of all ETH MACs (%d)\n", rc); 12598 #if __FreeBSD_version < 800000 12599 IF_ADDR_UNLOCK(ifp); 12600 #else 12601 if_addr_runlock_drv(ifp); 12602 #endif 12603 return (rc); 12604 } 12605 12606 ifa = if_getifaddr(ifp); /* XXX Is this structure */ 12607 while (ifa) { 12608 if (ifa->ifa_addr->sa_family != AF_LINK) { 12609 ifa = TAILQ_NEXT(ifa, ifa_link); 12610 continue; 12611 } 12612 12613 rc = bxe_set_mac_one(sc, (uint8_t *)LLADDR((struct sockaddr_dl *)ifa->ifa_addr), 12614 mac_obj, TRUE, ECORE_UC_LIST_MAC, &ramrod_flags); 12615 if (rc == -EEXIST) { 12616 BLOGD(sc, DBG_SP, "Failed to schedule ADD operations (EEXIST)\n"); 12617 /* do not treat adding same MAC as an error */ 12618 rc = 0; 12619 } else if (rc < 0) { 12620 BLOGE(sc, "Failed to schedule ADD operations (%d)\n", rc); 12621 #if __FreeBSD_version < 800000 12622 IF_ADDR_UNLOCK(ifp); 12623 #else 12624 if_addr_runlock_drv(ifp); 12625 #endif 12626 return (rc); 12627 } 12628 12629 ifa = TAILQ_NEXT(ifa, ifa_link); 12630 } 12631 12632 #if __FreeBSD_version < 800000 12633 IF_ADDR_UNLOCK(ifp); 12634 #else 12635 if_addr_runlock_drv(ifp); 12636 #endif 12637 12638 /* Execute the pending commands */ 12639 bit_set(&ramrod_flags, RAMROD_CONT); 12640 return (bxe_set_mac_one(sc, NULL, mac_obj, FALSE /* don't care */, 12641 ECORE_UC_LIST_MAC, &ramrod_flags)); 12642 } 12643 12644 static void 12645 bxe_handle_rx_mode_tq(void *context, 12646 int pending) 12647 { 12648 struct bxe_softc *sc = (struct bxe_softc *)context; 12649 if_t ifp = sc->ifp; 12650 uint32_t rx_mode = BXE_RX_MODE_NORMAL; 12651 12652 BXE_CORE_LOCK(sc); 12653 12654 if (sc->state != BXE_STATE_OPEN) { 12655 BLOGD(sc, DBG_SP, "state is %x, returning\n", sc->state); 12656 BXE_CORE_UNLOCK(sc); 12657 return; 12658 } 12659 12660 BLOGD(sc, DBG_SP, "if_flags(ifp)=0x%x\n", if_getflags(sc->ifp)); 12661 12662 if (if_getflags(ifp) & IFF_PROMISC) { 12663 rx_mode = BXE_RX_MODE_PROMISC; 12664 } else if ((if_getflags(ifp) & IFF_ALLMULTI) || 12665 ((if_getamcount(ifp) > BXE_MAX_MULTICAST) && 12666 CHIP_IS_E1(sc))) { 12667 rx_mode = BXE_RX_MODE_ALLMULTI; 12668 } else { 12669 if (IS_PF(sc)) { 12670 /* some multicasts */ 12671 if (bxe_set_mc_list(sc) < 0) { 12672 rx_mode = BXE_RX_MODE_ALLMULTI; 12673 } 12674 if (bxe_set_uc_list(sc) < 0) { 12675 rx_mode = BXE_RX_MODE_PROMISC; 12676 } 12677 } 12678 #if 0 12679 else { 12680 /* 12681 * Configuring mcast to a VF involves sleeping (when we 12682 * wait for the PF's response). Since this function is 12683 * called from a non sleepable context we must schedule 12684 * a work item for this purpose 12685 */ 12686 bxe_set_bit(BXE_SP_RTNL_VFPF_MCAST, &sc->sp_rtnl_state); 12687 schedule_delayed_work(&sc->sp_rtnl_task, 0); 12688 } 12689 #endif 12690 } 12691 12692 sc->rx_mode = rx_mode; 12693 12694 /* schedule the rx_mode command */ 12695 if (bxe_test_bit(ECORE_FILTER_RX_MODE_PENDING, &sc->sp_state)) { 12696 BLOGD(sc, DBG_LOAD, "Scheduled setting rx_mode with ECORE...\n"); 12697 bxe_set_bit(ECORE_FILTER_RX_MODE_SCHED, &sc->sp_state); 12698 BXE_CORE_UNLOCK(sc); 12699 return; 12700 } 12701 12702 if (IS_PF(sc)) { 12703 bxe_set_storm_rx_mode(sc); 12704 } 12705 #if 0 12706 else { 12707 /* 12708 * Configuring mcast to a VF involves sleeping (when we 12709 * wait for the PF's response). Since this function is 12710 * called from a non sleepable context we must schedule 12711 * a work item for this purpose 12712 */ 12713 bxe_set_bit(BXE_SP_RTNL_VFPF_STORM_RX_MODE, &sc->sp_rtnl_state); 12714 schedule_delayed_work(&sc->sp_rtnl_task, 0); 12715 } 12716 #endif 12717 12718 BXE_CORE_UNLOCK(sc); 12719 } 12720 12721 static void 12722 bxe_set_rx_mode(struct bxe_softc *sc) 12723 { 12724 taskqueue_enqueue(sc->rx_mode_tq, &sc->rx_mode_tq_task); 12725 } 12726 12727 /* update flags in shmem */ 12728 static void 12729 bxe_update_drv_flags(struct bxe_softc *sc, 12730 uint32_t flags, 12731 uint32_t set) 12732 { 12733 uint32_t drv_flags; 12734 12735 if (SHMEM2_HAS(sc, drv_flags)) { 12736 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_DRV_FLAGS); 12737 drv_flags = SHMEM2_RD(sc, drv_flags); 12738 12739 if (set) { 12740 SET_FLAGS(drv_flags, flags); 12741 } else { 12742 RESET_FLAGS(drv_flags, flags); 12743 } 12744 12745 SHMEM2_WR(sc, drv_flags, drv_flags); 12746 BLOGD(sc, DBG_LOAD, "drv_flags 0x%08x\n", drv_flags); 12747 12748 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_DRV_FLAGS); 12749 } 12750 } 12751 12752 /* periodic timer callout routine, only runs when the interface is up */ 12753 12754 static void 12755 bxe_periodic_callout_func(void *xsc) 12756 { 12757 struct bxe_softc *sc = (struct bxe_softc *)xsc; 12758 int i; 12759 12760 if (!BXE_CORE_TRYLOCK(sc)) { 12761 /* just bail and try again next time */ 12762 12763 if ((sc->state == BXE_STATE_OPEN) && 12764 (atomic_load_acq_long(&sc->periodic_flags) == PERIODIC_GO)) { 12765 /* schedule the next periodic callout */ 12766 callout_reset(&sc->periodic_callout, hz, 12767 bxe_periodic_callout_func, sc); 12768 } 12769 12770 return; 12771 } 12772 12773 if ((sc->state != BXE_STATE_OPEN) || 12774 (atomic_load_acq_long(&sc->periodic_flags) == PERIODIC_STOP)) { 12775 BLOGW(sc, "periodic callout exit (state=0x%x)\n", sc->state); 12776 BXE_CORE_UNLOCK(sc); 12777 return; 12778 } 12779 12780 /* Check for TX timeouts on any fastpath. */ 12781 FOR_EACH_QUEUE(sc, i) { 12782 if (bxe_watchdog(sc, &sc->fp[i]) != 0) { 12783 /* Ruh-Roh, chip was reset! */ 12784 break; 12785 } 12786 } 12787 12788 if (!CHIP_REV_IS_SLOW(sc)) { 12789 /* 12790 * This barrier is needed to ensure the ordering between the writing 12791 * to the sc->port.pmf in the bxe_nic_load() or bxe_pmf_update() and 12792 * the reading here. 12793 */ 12794 mb(); 12795 if (sc->port.pmf) { 12796 BXE_PHY_LOCK(sc); 12797 elink_period_func(&sc->link_params, &sc->link_vars); 12798 BXE_PHY_UNLOCK(sc); 12799 } 12800 } 12801 12802 if (IS_PF(sc) && !BXE_NOMCP(sc)) { 12803 int mb_idx = SC_FW_MB_IDX(sc); 12804 uint32_t drv_pulse; 12805 uint32_t mcp_pulse; 12806 12807 ++sc->fw_drv_pulse_wr_seq; 12808 sc->fw_drv_pulse_wr_seq &= DRV_PULSE_SEQ_MASK; 12809 12810 drv_pulse = sc->fw_drv_pulse_wr_seq; 12811 bxe_drv_pulse(sc); 12812 12813 mcp_pulse = (SHMEM_RD(sc, func_mb[mb_idx].mcp_pulse_mb) & 12814 MCP_PULSE_SEQ_MASK); 12815 12816 /* 12817 * The delta between driver pulse and mcp response should 12818 * be 1 (before mcp response) or 0 (after mcp response). 12819 */ 12820 if ((drv_pulse != mcp_pulse) && 12821 (drv_pulse != ((mcp_pulse + 1) & MCP_PULSE_SEQ_MASK))) { 12822 /* someone lost a heartbeat... */ 12823 BLOGE(sc, "drv_pulse (0x%x) != mcp_pulse (0x%x)\n", 12824 drv_pulse, mcp_pulse); 12825 } 12826 } 12827 12828 /* state is BXE_STATE_OPEN */ 12829 bxe_stats_handle(sc, STATS_EVENT_UPDATE); 12830 12831 #if 0 12832 /* sample VF bulletin board for new posts from PF */ 12833 if (IS_VF(sc)) { 12834 bxe_sample_bulletin(sc); 12835 } 12836 #endif 12837 12838 BXE_CORE_UNLOCK(sc); 12839 12840 if ((sc->state == BXE_STATE_OPEN) && 12841 (atomic_load_acq_long(&sc->periodic_flags) == PERIODIC_GO)) { 12842 /* schedule the next periodic callout */ 12843 callout_reset(&sc->periodic_callout, hz, 12844 bxe_periodic_callout_func, sc); 12845 } 12846 } 12847 12848 static void 12849 bxe_periodic_start(struct bxe_softc *sc) 12850 { 12851 atomic_store_rel_long(&sc->periodic_flags, PERIODIC_GO); 12852 callout_reset(&sc->periodic_callout, hz, bxe_periodic_callout_func, sc); 12853 } 12854 12855 static void 12856 bxe_periodic_stop(struct bxe_softc *sc) 12857 { 12858 atomic_store_rel_long(&sc->periodic_flags, PERIODIC_STOP); 12859 callout_drain(&sc->periodic_callout); 12860 } 12861 12862 /* start the controller */ 12863 static __noinline int 12864 bxe_nic_load(struct bxe_softc *sc, 12865 int load_mode) 12866 { 12867 uint32_t val; 12868 int load_code = 0; 12869 int i, rc = 0; 12870 12871 BXE_CORE_LOCK_ASSERT(sc); 12872 12873 BLOGD(sc, DBG_LOAD, "Starting NIC load...\n"); 12874 12875 sc->state = BXE_STATE_OPENING_WAITING_LOAD; 12876 12877 if (IS_PF(sc)) { 12878 /* must be called before memory allocation and HW init */ 12879 bxe_ilt_set_info(sc); 12880 } 12881 12882 sc->last_reported_link_state = LINK_STATE_UNKNOWN; 12883 12884 bxe_set_fp_rx_buf_size(sc); 12885 12886 if (bxe_alloc_fp_buffers(sc) != 0) { 12887 BLOGE(sc, "Failed to allocate fastpath memory\n"); 12888 sc->state = BXE_STATE_CLOSED; 12889 rc = ENOMEM; 12890 goto bxe_nic_load_error0; 12891 } 12892 12893 if (bxe_alloc_mem(sc) != 0) { 12894 sc->state = BXE_STATE_CLOSED; 12895 rc = ENOMEM; 12896 goto bxe_nic_load_error0; 12897 } 12898 12899 if (bxe_alloc_fw_stats_mem(sc) != 0) { 12900 sc->state = BXE_STATE_CLOSED; 12901 rc = ENOMEM; 12902 goto bxe_nic_load_error0; 12903 } 12904 12905 if (IS_PF(sc)) { 12906 /* set pf load just before approaching the MCP */ 12907 bxe_set_pf_load(sc); 12908 12909 /* if MCP exists send load request and analyze response */ 12910 if (!BXE_NOMCP(sc)) { 12911 /* attempt to load pf */ 12912 if (bxe_nic_load_request(sc, &load_code) != 0) { 12913 sc->state = BXE_STATE_CLOSED; 12914 rc = ENXIO; 12915 goto bxe_nic_load_error1; 12916 } 12917 12918 /* what did the MCP say? */ 12919 if (bxe_nic_load_analyze_req(sc, load_code) != 0) { 12920 bxe_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0); 12921 sc->state = BXE_STATE_CLOSED; 12922 rc = ENXIO; 12923 goto bxe_nic_load_error2; 12924 } 12925 } else { 12926 BLOGI(sc, "Device has no MCP!\n"); 12927 load_code = bxe_nic_load_no_mcp(sc); 12928 } 12929 12930 /* mark PMF if applicable */ 12931 bxe_nic_load_pmf(sc, load_code); 12932 12933 /* Init Function state controlling object */ 12934 bxe_init_func_obj(sc); 12935 12936 /* Initialize HW */ 12937 if (bxe_init_hw(sc, load_code) != 0) { 12938 BLOGE(sc, "HW init failed\n"); 12939 bxe_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0); 12940 sc->state = BXE_STATE_CLOSED; 12941 rc = ENXIO; 12942 goto bxe_nic_load_error2; 12943 } 12944 } 12945 12946 /* attach interrupts */ 12947 if (bxe_interrupt_attach(sc) != 0) { 12948 sc->state = BXE_STATE_CLOSED; 12949 rc = ENXIO; 12950 goto bxe_nic_load_error2; 12951 } 12952 12953 bxe_nic_init(sc, load_code); 12954 12955 /* Init per-function objects */ 12956 if (IS_PF(sc)) { 12957 bxe_init_objs(sc); 12958 // XXX bxe_iov_nic_init(sc); 12959 12960 /* set AFEX default VLAN tag to an invalid value */ 12961 sc->devinfo.mf_info.afex_def_vlan_tag = -1; 12962 // XXX bxe_nic_load_afex_dcc(sc, load_code); 12963 12964 sc->state = BXE_STATE_OPENING_WAITING_PORT; 12965 rc = bxe_func_start(sc); 12966 if (rc) { 12967 BLOGE(sc, "Function start failed!\n"); 12968 bxe_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0); 12969 sc->state = BXE_STATE_ERROR; 12970 goto bxe_nic_load_error3; 12971 } 12972 12973 /* send LOAD_DONE command to MCP */ 12974 if (!BXE_NOMCP(sc)) { 12975 load_code = bxe_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0); 12976 if (!load_code) { 12977 BLOGE(sc, "MCP response failure, aborting\n"); 12978 sc->state = BXE_STATE_ERROR; 12979 rc = ENXIO; 12980 goto bxe_nic_load_error3; 12981 } 12982 } 12983 12984 rc = bxe_setup_leading(sc); 12985 if (rc) { 12986 BLOGE(sc, "Setup leading failed!\n"); 12987 sc->state = BXE_STATE_ERROR; 12988 goto bxe_nic_load_error3; 12989 } 12990 12991 FOR_EACH_NONDEFAULT_ETH_QUEUE(sc, i) { 12992 rc = bxe_setup_queue(sc, &sc->fp[i], FALSE); 12993 if (rc) { 12994 BLOGE(sc, "Queue(%d) setup failed\n", i); 12995 sc->state = BXE_STATE_ERROR; 12996 goto bxe_nic_load_error3; 12997 } 12998 } 12999 13000 rc = bxe_init_rss_pf(sc); 13001 if (rc) { 13002 BLOGE(sc, "PF RSS init failed\n"); 13003 sc->state = BXE_STATE_ERROR; 13004 goto bxe_nic_load_error3; 13005 } 13006 } 13007 /* XXX VF */ 13008 #if 0 13009 else { /* VF */ 13010 FOR_EACH_ETH_QUEUE(sc, i) { 13011 rc = bxe_vfpf_setup_q(sc, i); 13012 if (rc) { 13013 BLOGE(sc, "Queue(%d) setup failed\n", i); 13014 sc->state = BXE_STATE_ERROR; 13015 goto bxe_nic_load_error3; 13016 } 13017 } 13018 } 13019 #endif 13020 13021 /* now when Clients are configured we are ready to work */ 13022 sc->state = BXE_STATE_OPEN; 13023 13024 /* Configure a ucast MAC */ 13025 if (IS_PF(sc)) { 13026 rc = bxe_set_eth_mac(sc, TRUE); 13027 } 13028 #if 0 13029 else { /* IS_VF(sc) */ 13030 rc = bxe_vfpf_set_mac(sc); 13031 } 13032 #endif 13033 if (rc) { 13034 BLOGE(sc, "Setting Ethernet MAC failed\n"); 13035 sc->state = BXE_STATE_ERROR; 13036 goto bxe_nic_load_error3; 13037 } 13038 13039 #if 0 13040 if (IS_PF(sc) && sc->pending_max) { 13041 /* for AFEX */ 13042 bxe_update_max_mf_config(sc, sc->pending_max); 13043 sc->pending_max = 0; 13044 } 13045 #endif 13046 13047 if (sc->port.pmf) { 13048 rc = bxe_initial_phy_init(sc, /* XXX load_mode */LOAD_OPEN); 13049 if (rc) { 13050 sc->state = BXE_STATE_ERROR; 13051 goto bxe_nic_load_error3; 13052 } 13053 } 13054 13055 sc->link_params.feature_config_flags &= 13056 ~ELINK_FEATURE_CONFIG_BOOT_FROM_SAN; 13057 13058 /* start fast path */ 13059 13060 /* Initialize Rx filter */ 13061 bxe_set_rx_mode(sc); 13062 13063 /* start the Tx */ 13064 switch (/* XXX load_mode */LOAD_OPEN) { 13065 case LOAD_NORMAL: 13066 case LOAD_OPEN: 13067 break; 13068 13069 case LOAD_DIAG: 13070 case LOAD_LOOPBACK_EXT: 13071 sc->state = BXE_STATE_DIAG; 13072 break; 13073 13074 default: 13075 break; 13076 } 13077 13078 if (sc->port.pmf) { 13079 bxe_update_drv_flags(sc, 1 << DRV_FLAGS_PORT_MASK, 0); 13080 } else { 13081 bxe_link_status_update(sc); 13082 } 13083 13084 /* start the periodic timer callout */ 13085 bxe_periodic_start(sc); 13086 13087 if (IS_PF(sc) && SHMEM2_HAS(sc, drv_capabilities_flag)) { 13088 /* mark driver is loaded in shmem2 */ 13089 val = SHMEM2_RD(sc, drv_capabilities_flag[SC_FW_MB_IDX(sc)]); 13090 SHMEM2_WR(sc, drv_capabilities_flag[SC_FW_MB_IDX(sc)], 13091 (val | 13092 DRV_FLAGS_CAPABILITIES_LOADED_SUPPORTED | 13093 DRV_FLAGS_CAPABILITIES_LOADED_L2)); 13094 } 13095 13096 /* wait for all pending SP commands to complete */ 13097 if (IS_PF(sc) && !bxe_wait_sp_comp(sc, ~0x0UL)) { 13098 BLOGE(sc, "Timeout waiting for all SPs to complete!\n"); 13099 bxe_periodic_stop(sc); 13100 bxe_nic_unload(sc, UNLOAD_CLOSE, FALSE); 13101 return (ENXIO); 13102 } 13103 13104 #if 0 13105 /* If PMF - send ADMIN DCBX msg to MFW to initiate DCBX FSM */ 13106 if (sc->port.pmf && (sc->state != BXE_STATE_DIAG)) { 13107 bxe_dcbx_init(sc, FALSE); 13108 } 13109 #endif 13110 13111 /* Tell the stack the driver is running! */ 13112 if_setdrvflags(sc->ifp, IFF_DRV_RUNNING); 13113 13114 BLOGD(sc, DBG_LOAD, "NIC successfully loaded\n"); 13115 13116 return (0); 13117 13118 bxe_nic_load_error3: 13119 13120 if (IS_PF(sc)) { 13121 bxe_int_disable_sync(sc, 1); 13122 13123 /* clean out queued objects */ 13124 bxe_squeeze_objects(sc); 13125 } 13126 13127 bxe_interrupt_detach(sc); 13128 13129 bxe_nic_load_error2: 13130 13131 if (IS_PF(sc) && !BXE_NOMCP(sc)) { 13132 bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP, 0); 13133 bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_DONE, 0); 13134 } 13135 13136 sc->port.pmf = 0; 13137 13138 bxe_nic_load_error1: 13139 13140 /* clear pf_load status, as it was already set */ 13141 if (IS_PF(sc)) { 13142 bxe_clear_pf_load(sc); 13143 } 13144 13145 bxe_nic_load_error0: 13146 13147 bxe_free_fw_stats_mem(sc); 13148 bxe_free_fp_buffers(sc); 13149 bxe_free_mem(sc); 13150 13151 return (rc); 13152 } 13153 13154 static int 13155 bxe_init_locked(struct bxe_softc *sc) 13156 { 13157 int other_engine = SC_PATH(sc) ? 0 : 1; 13158 uint8_t other_load_status, load_status; 13159 uint8_t global = FALSE; 13160 int rc; 13161 13162 BXE_CORE_LOCK_ASSERT(sc); 13163 13164 /* check if the driver is already running */ 13165 if (if_getdrvflags(sc->ifp) & IFF_DRV_RUNNING) { 13166 BLOGD(sc, DBG_LOAD, "Init called while driver is running!\n"); 13167 return (0); 13168 } 13169 13170 bxe_set_power_state(sc, PCI_PM_D0); 13171 13172 /* 13173 * If parity occurred during the unload, then attentions and/or 13174 * RECOVERY_IN_PROGRES may still be set. If so we want the first function 13175 * loaded on the current engine to complete the recovery. Parity recovery 13176 * is only relevant for PF driver. 13177 */ 13178 if (IS_PF(sc)) { 13179 other_load_status = bxe_get_load_status(sc, other_engine); 13180 load_status = bxe_get_load_status(sc, SC_PATH(sc)); 13181 13182 if (!bxe_reset_is_done(sc, SC_PATH(sc)) || 13183 bxe_chk_parity_attn(sc, &global, TRUE)) { 13184 do { 13185 /* 13186 * If there are attentions and they are in global blocks, set 13187 * the GLOBAL_RESET bit regardless whether it will be this 13188 * function that will complete the recovery or not. 13189 */ 13190 if (global) { 13191 bxe_set_reset_global(sc); 13192 } 13193 13194 /* 13195 * Only the first function on the current engine should try 13196 * to recover in open. In case of attentions in global blocks 13197 * only the first in the chip should try to recover. 13198 */ 13199 if ((!load_status && (!global || !other_load_status)) && 13200 bxe_trylock_leader_lock(sc) && !bxe_leader_reset(sc)) { 13201 BLOGI(sc, "Recovered during init\n"); 13202 break; 13203 } 13204 13205 /* recovery has failed... */ 13206 bxe_set_power_state(sc, PCI_PM_D3hot); 13207 sc->recovery_state = BXE_RECOVERY_FAILED; 13208 13209 BLOGE(sc, "Recovery flow hasn't properly " 13210 "completed yet, try again later. " 13211 "If you still see this message after a " 13212 "few retries then power cycle is required.\n"); 13213 13214 rc = ENXIO; 13215 goto bxe_init_locked_done; 13216 } while (0); 13217 } 13218 } 13219 13220 sc->recovery_state = BXE_RECOVERY_DONE; 13221 13222 rc = bxe_nic_load(sc, LOAD_OPEN); 13223 13224 bxe_init_locked_done: 13225 13226 if (rc) { 13227 /* Tell the stack the driver is NOT running! */ 13228 BLOGE(sc, "Initialization failed, " 13229 "stack notified driver is NOT running!\n"); 13230 if_setdrvflagbits(sc->ifp, 0, IFF_DRV_RUNNING); 13231 } 13232 13233 return (rc); 13234 } 13235 13236 static int 13237 bxe_stop_locked(struct bxe_softc *sc) 13238 { 13239 BXE_CORE_LOCK_ASSERT(sc); 13240 return (bxe_nic_unload(sc, UNLOAD_NORMAL, TRUE)); 13241 } 13242 13243 /* 13244 * Handles controller initialization when called from an unlocked routine. 13245 * ifconfig calls this function. 13246 * 13247 * Returns: 13248 * void 13249 */ 13250 static void 13251 bxe_init(void *xsc) 13252 { 13253 struct bxe_softc *sc = (struct bxe_softc *)xsc; 13254 13255 BXE_CORE_LOCK(sc); 13256 bxe_init_locked(sc); 13257 BXE_CORE_UNLOCK(sc); 13258 } 13259 13260 static int 13261 bxe_init_ifnet(struct bxe_softc *sc) 13262 { 13263 if_t ifp; 13264 int capabilities; 13265 13266 /* ifconfig entrypoint for media type/status reporting */ 13267 ifmedia_init(&sc->ifmedia, IFM_IMASK, 13268 bxe_ifmedia_update, 13269 bxe_ifmedia_status); 13270 13271 /* set the default interface values */ 13272 ifmedia_add(&sc->ifmedia, (IFM_ETHER | IFM_FDX | sc->media), 0, NULL); 13273 ifmedia_add(&sc->ifmedia, (IFM_ETHER | IFM_AUTO), 0, NULL); 13274 ifmedia_set(&sc->ifmedia, (IFM_ETHER | IFM_AUTO)); 13275 13276 sc->ifmedia.ifm_media = sc->ifmedia.ifm_cur->ifm_media; /* XXX ? */ 13277 13278 /* allocate the ifnet structure */ 13279 if ((ifp = if_gethandle(IFT_ETHER)) == NULL) { 13280 BLOGE(sc, "Interface allocation failed!\n"); 13281 return (ENXIO); 13282 } 13283 13284 if_setsoftc(ifp, sc); 13285 if_initname_drv(ifp, device_get_name(sc->dev), device_get_unit(sc->dev)); 13286 if_setflags(ifp, (IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST)); 13287 if_setioctlfn(ifp, bxe_ioctl); 13288 if_setstartfn(ifp, bxe_tx_start); 13289 #if __FreeBSD_version >= 800000 13290 if_settransmitfn(ifp, bxe_tx_mq_start); 13291 if_setqflushfn(ifp, bxe_mq_flush); 13292 #endif 13293 #ifdef FreeBSD8_0 13294 if_settimer(ifp, 0); 13295 #endif 13296 if_setinitfn(ifp, bxe_init); 13297 if_setmtu(ifp, sc->mtu); 13298 if_sethwassist(ifp, (CSUM_IP | 13299 CSUM_TCP | 13300 CSUM_UDP | 13301 CSUM_TSO | 13302 CSUM_TCP_IPV6 | 13303 CSUM_UDP_IPV6)); 13304 13305 capabilities = 13306 #if __FreeBSD_version < 700000 13307 (IFCAP_VLAN_MTU | 13308 IFCAP_VLAN_HWTAGGING | 13309 IFCAP_HWCSUM | 13310 IFCAP_JUMBO_MTU | 13311 IFCAP_LRO); 13312 #else 13313 (IFCAP_VLAN_MTU | 13314 IFCAP_VLAN_HWTAGGING | 13315 IFCAP_VLAN_HWTSO | 13316 IFCAP_VLAN_HWFILTER | 13317 IFCAP_VLAN_HWCSUM | 13318 IFCAP_HWCSUM | 13319 IFCAP_JUMBO_MTU | 13320 IFCAP_LRO | 13321 IFCAP_TSO4 | 13322 IFCAP_TSO6 | 13323 IFCAP_WOL_MAGIC); 13324 #endif 13325 if_setcapabilitiesbit(ifp, capabilities, 0); /* XXX */ 13326 if_setbaudrate(ifp, IF_Gbps(10)); 13327 /* XXX */ 13328 if_setsendqlen(ifp, sc->tx_ring_size); 13329 if_setsendqready(ifp); 13330 /* XXX */ 13331 13332 sc->ifp = ifp; 13333 13334 /* attach to the Ethernet interface list */ 13335 ether_ifattach_drv(ifp, sc->link_params.mac_addr); 13336 13337 return (0); 13338 } 13339 13340 static void 13341 bxe_deallocate_bars(struct bxe_softc *sc) 13342 { 13343 int i; 13344 13345 for (i = 0; i < MAX_BARS; i++) { 13346 if (sc->bar[i].resource != NULL) { 13347 bus_release_resource(sc->dev, 13348 SYS_RES_MEMORY, 13349 sc->bar[i].rid, 13350 sc->bar[i].resource); 13351 BLOGD(sc, DBG_LOAD, "Released PCI BAR%d [%02x] memory\n", 13352 i, PCIR_BAR(i)); 13353 } 13354 } 13355 } 13356 13357 static int 13358 bxe_allocate_bars(struct bxe_softc *sc) 13359 { 13360 u_int flags; 13361 int i; 13362 13363 memset(sc->bar, 0, sizeof(sc->bar)); 13364 13365 for (i = 0; i < MAX_BARS; i++) { 13366 13367 /* memory resources reside at BARs 0, 2, 4 */ 13368 /* Run `pciconf -lb` to see mappings */ 13369 if ((i != 0) && (i != 2) && (i != 4)) { 13370 continue; 13371 } 13372 13373 sc->bar[i].rid = PCIR_BAR(i); 13374 13375 flags = RF_ACTIVE; 13376 if (i == 0) { 13377 flags |= RF_SHAREABLE; 13378 } 13379 13380 if ((sc->bar[i].resource = 13381 bus_alloc_resource_any(sc->dev, 13382 SYS_RES_MEMORY, 13383 &sc->bar[i].rid, 13384 flags)) == NULL) { 13385 #if 0 13386 /* BAR4 doesn't exist for E1 */ 13387 BLOGE(sc, "PCI BAR%d [%02x] memory allocation failed\n", 13388 i, PCIR_BAR(i)); 13389 #endif 13390 return (0); 13391 } 13392 13393 sc->bar[i].tag = rman_get_bustag(sc->bar[i].resource); 13394 sc->bar[i].handle = rman_get_bushandle(sc->bar[i].resource); 13395 sc->bar[i].kva = (vm_offset_t)rman_get_virtual(sc->bar[i].resource); 13396 13397 BLOGI(sc, "PCI BAR%d [%02x] memory allocated: %p-%p (%ld) -> %p\n", 13398 i, PCIR_BAR(i), 13399 (void *)rman_get_start(sc->bar[i].resource), 13400 (void *)rman_get_end(sc->bar[i].resource), 13401 rman_get_size(sc->bar[i].resource), 13402 (void *)sc->bar[i].kva); 13403 } 13404 13405 return (0); 13406 } 13407 13408 static void 13409 bxe_get_function_num(struct bxe_softc *sc) 13410 { 13411 uint32_t val = 0; 13412 13413 /* 13414 * Read the ME register to get the function number. The ME register 13415 * holds the relative-function number and absolute-function number. The 13416 * absolute-function number appears only in E2 and above. Before that 13417 * these bits always contained zero, therefore we cannot blindly use them. 13418 */ 13419 13420 val = REG_RD(sc, BAR_ME_REGISTER); 13421 13422 sc->pfunc_rel = 13423 (uint8_t)((val & ME_REG_PF_NUM) >> ME_REG_PF_NUM_SHIFT); 13424 sc->path_id = 13425 (uint8_t)((val & ME_REG_ABS_PF_NUM) >> ME_REG_ABS_PF_NUM_SHIFT) & 1; 13426 13427 if (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) { 13428 sc->pfunc_abs = ((sc->pfunc_rel << 1) | sc->path_id); 13429 } else { 13430 sc->pfunc_abs = (sc->pfunc_rel | sc->path_id); 13431 } 13432 13433 BLOGD(sc, DBG_LOAD, 13434 "Relative function %d, Absolute function %d, Path %d\n", 13435 sc->pfunc_rel, sc->pfunc_abs, sc->path_id); 13436 } 13437 13438 static uint32_t 13439 bxe_get_shmem_mf_cfg_base(struct bxe_softc *sc) 13440 { 13441 uint32_t shmem2_size; 13442 uint32_t offset; 13443 uint32_t mf_cfg_offset_value; 13444 13445 /* Non 57712 */ 13446 offset = (SHMEM_RD(sc, func_mb) + 13447 (MAX_FUNC_NUM * sizeof(struct drv_func_mb))); 13448 13449 /* 57712 plus */ 13450 if (sc->devinfo.shmem2_base != 0) { 13451 shmem2_size = SHMEM2_RD(sc, size); 13452 if (shmem2_size > offsetof(struct shmem2_region, mf_cfg_addr)) { 13453 mf_cfg_offset_value = SHMEM2_RD(sc, mf_cfg_addr); 13454 if (SHMEM_MF_CFG_ADDR_NONE != mf_cfg_offset_value) { 13455 offset = mf_cfg_offset_value; 13456 } 13457 } 13458 } 13459 13460 return (offset); 13461 } 13462 13463 static uint32_t 13464 bxe_pcie_capability_read(struct bxe_softc *sc, 13465 int reg, 13466 int width) 13467 { 13468 int pcie_reg; 13469 13470 /* ensure PCIe capability is enabled */ 13471 if (pci_find_cap(sc->dev, PCIY_EXPRESS, &pcie_reg) == 0) { 13472 if (pcie_reg != 0) { 13473 BLOGD(sc, DBG_LOAD, "PCIe capability at 0x%04x\n", pcie_reg); 13474 return (pci_read_config(sc->dev, (pcie_reg + reg), width)); 13475 } 13476 } 13477 13478 BLOGE(sc, "PCIe capability NOT FOUND!!!\n"); 13479 13480 return (0); 13481 } 13482 13483 static uint8_t 13484 bxe_is_pcie_pending(struct bxe_softc *sc) 13485 { 13486 return (bxe_pcie_capability_read(sc, PCIR_EXPRESS_DEVICE_STA, 2) & 13487 PCIM_EXP_STA_TRANSACTION_PND); 13488 } 13489 13490 /* 13491 * Walk the PCI capabiites list for the device to find what features are 13492 * supported. These capabilites may be enabled/disabled by firmware so it's 13493 * best to walk the list rather than make assumptions. 13494 */ 13495 static void 13496 bxe_probe_pci_caps(struct bxe_softc *sc) 13497 { 13498 uint16_t link_status; 13499 int reg; 13500 13501 /* check if PCI Power Management is enabled */ 13502 if (pci_find_cap(sc->dev, PCIY_PMG, ®) == 0) { 13503 if (reg != 0) { 13504 BLOGD(sc, DBG_LOAD, "Found PM capability at 0x%04x\n", reg); 13505 13506 sc->devinfo.pcie_cap_flags |= BXE_PM_CAPABLE_FLAG; 13507 sc->devinfo.pcie_pm_cap_reg = (uint16_t)reg; 13508 } 13509 } 13510 13511 link_status = bxe_pcie_capability_read(sc, PCIR_EXPRESS_LINK_STA, 2); 13512 13513 /* handle PCIe 2.0 workarounds for 57710 */ 13514 if (CHIP_IS_E1(sc)) { 13515 /* workaround for 57710 errata E4_57710_27462 */ 13516 sc->devinfo.pcie_link_speed = 13517 (REG_RD(sc, 0x3d04) & (1 << 24)) ? 2 : 1; 13518 13519 /* workaround for 57710 errata E4_57710_27488 */ 13520 sc->devinfo.pcie_link_width = 13521 ((link_status & PCIM_LINK_STA_WIDTH) >> 4); 13522 if (sc->devinfo.pcie_link_speed > 1) { 13523 sc->devinfo.pcie_link_width = 13524 ((link_status & PCIM_LINK_STA_WIDTH) >> 4) >> 1; 13525 } 13526 } else { 13527 sc->devinfo.pcie_link_speed = 13528 (link_status & PCIM_LINK_STA_SPEED); 13529 sc->devinfo.pcie_link_width = 13530 ((link_status & PCIM_LINK_STA_WIDTH) >> 4); 13531 } 13532 13533 BLOGD(sc, DBG_LOAD, "PCIe link speed=%d width=%d\n", 13534 sc->devinfo.pcie_link_speed, sc->devinfo.pcie_link_width); 13535 13536 sc->devinfo.pcie_cap_flags |= BXE_PCIE_CAPABLE_FLAG; 13537 sc->devinfo.pcie_pcie_cap_reg = (uint16_t)reg; 13538 13539 /* check if MSI capability is enabled */ 13540 if (pci_find_cap(sc->dev, PCIY_MSI, ®) == 0) { 13541 if (reg != 0) { 13542 BLOGD(sc, DBG_LOAD, "Found MSI capability at 0x%04x\n", reg); 13543 13544 sc->devinfo.pcie_cap_flags |= BXE_MSI_CAPABLE_FLAG; 13545 sc->devinfo.pcie_msi_cap_reg = (uint16_t)reg; 13546 } 13547 } 13548 13549 /* check if MSI-X capability is enabled */ 13550 if (pci_find_cap(sc->dev, PCIY_MSIX, ®) == 0) { 13551 if (reg != 0) { 13552 BLOGD(sc, DBG_LOAD, "Found MSI-X capability at 0x%04x\n", reg); 13553 13554 sc->devinfo.pcie_cap_flags |= BXE_MSIX_CAPABLE_FLAG; 13555 sc->devinfo.pcie_msix_cap_reg = (uint16_t)reg; 13556 } 13557 } 13558 } 13559 13560 static int 13561 bxe_get_shmem_mf_cfg_info_sd(struct bxe_softc *sc) 13562 { 13563 struct bxe_mf_info *mf_info = &sc->devinfo.mf_info; 13564 uint32_t val; 13565 13566 /* get the outer vlan if we're in switch-dependent mode */ 13567 13568 val = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].e1hov_tag); 13569 mf_info->ext_id = (uint16_t)val; 13570 13571 mf_info->multi_vnics_mode = 1; 13572 13573 if (!VALID_OVLAN(mf_info->ext_id)) { 13574 BLOGE(sc, "Invalid VLAN (%d)\n", mf_info->ext_id); 13575 return (1); 13576 } 13577 13578 /* get the capabilities */ 13579 if ((mf_info->mf_config[SC_VN(sc)] & FUNC_MF_CFG_PROTOCOL_MASK) == 13580 FUNC_MF_CFG_PROTOCOL_ISCSI) { 13581 mf_info->mf_protos_supported |= MF_PROTO_SUPPORT_ISCSI; 13582 } else if ((mf_info->mf_config[SC_VN(sc)] & FUNC_MF_CFG_PROTOCOL_MASK) == 13583 FUNC_MF_CFG_PROTOCOL_FCOE) { 13584 mf_info->mf_protos_supported |= MF_PROTO_SUPPORT_FCOE; 13585 } else { 13586 mf_info->mf_protos_supported |= MF_PROTO_SUPPORT_ETHERNET; 13587 } 13588 13589 mf_info->vnics_per_port = 13590 (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) ? 2 : 4; 13591 13592 return (0); 13593 } 13594 13595 static uint32_t 13596 bxe_get_shmem_ext_proto_support_flags(struct bxe_softc *sc) 13597 { 13598 uint32_t retval = 0; 13599 uint32_t val; 13600 13601 val = MFCFG_RD(sc, func_ext_config[SC_ABS_FUNC(sc)].func_cfg); 13602 13603 if (val & MACP_FUNC_CFG_FLAGS_ENABLED) { 13604 if (val & MACP_FUNC_CFG_FLAGS_ETHERNET) { 13605 retval |= MF_PROTO_SUPPORT_ETHERNET; 13606 } 13607 if (val & MACP_FUNC_CFG_FLAGS_ISCSI_OFFLOAD) { 13608 retval |= MF_PROTO_SUPPORT_ISCSI; 13609 } 13610 if (val & MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD) { 13611 retval |= MF_PROTO_SUPPORT_FCOE; 13612 } 13613 } 13614 13615 return (retval); 13616 } 13617 13618 static int 13619 bxe_get_shmem_mf_cfg_info_si(struct bxe_softc *sc) 13620 { 13621 struct bxe_mf_info *mf_info = &sc->devinfo.mf_info; 13622 uint32_t val; 13623 13624 /* 13625 * There is no outer vlan if we're in switch-independent mode. 13626 * If the mac is valid then assume multi-function. 13627 */ 13628 13629 val = MFCFG_RD(sc, func_ext_config[SC_ABS_FUNC(sc)].func_cfg); 13630 13631 mf_info->multi_vnics_mode = ((val & MACP_FUNC_CFG_FLAGS_MASK) != 0); 13632 13633 mf_info->mf_protos_supported = bxe_get_shmem_ext_proto_support_flags(sc); 13634 13635 mf_info->vnics_per_port = 13636 (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) ? 2 : 4; 13637 13638 return (0); 13639 } 13640 13641 static int 13642 bxe_get_shmem_mf_cfg_info_niv(struct bxe_softc *sc) 13643 { 13644 struct bxe_mf_info *mf_info = &sc->devinfo.mf_info; 13645 uint32_t e1hov_tag; 13646 uint32_t func_config; 13647 uint32_t niv_config; 13648 13649 mf_info->multi_vnics_mode = 1; 13650 13651 e1hov_tag = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].e1hov_tag); 13652 func_config = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].config); 13653 niv_config = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].afex_config); 13654 13655 mf_info->ext_id = 13656 (uint16_t)((e1hov_tag & FUNC_MF_CFG_E1HOV_TAG_MASK) >> 13657 FUNC_MF_CFG_E1HOV_TAG_SHIFT); 13658 13659 mf_info->default_vlan = 13660 (uint16_t)((e1hov_tag & FUNC_MF_CFG_AFEX_VLAN_MASK) >> 13661 FUNC_MF_CFG_AFEX_VLAN_SHIFT); 13662 13663 mf_info->niv_allowed_priorities = 13664 (uint8_t)((niv_config & FUNC_MF_CFG_AFEX_COS_FILTER_MASK) >> 13665 FUNC_MF_CFG_AFEX_COS_FILTER_SHIFT); 13666 13667 mf_info->niv_default_cos = 13668 (uint8_t)((func_config & FUNC_MF_CFG_TRANSMIT_PRIORITY_MASK) >> 13669 FUNC_MF_CFG_TRANSMIT_PRIORITY_SHIFT); 13670 13671 mf_info->afex_vlan_mode = 13672 ((niv_config & FUNC_MF_CFG_AFEX_VLAN_MODE_MASK) >> 13673 FUNC_MF_CFG_AFEX_VLAN_MODE_SHIFT); 13674 13675 mf_info->niv_mba_enabled = 13676 ((niv_config & FUNC_MF_CFG_AFEX_MBA_ENABLED_MASK) >> 13677 FUNC_MF_CFG_AFEX_MBA_ENABLED_SHIFT); 13678 13679 mf_info->mf_protos_supported = bxe_get_shmem_ext_proto_support_flags(sc); 13680 13681 mf_info->vnics_per_port = 13682 (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) ? 2 : 4; 13683 13684 return (0); 13685 } 13686 13687 static int 13688 bxe_check_valid_mf_cfg(struct bxe_softc *sc) 13689 { 13690 struct bxe_mf_info *mf_info = &sc->devinfo.mf_info; 13691 uint32_t mf_cfg1; 13692 uint32_t mf_cfg2; 13693 uint32_t ovlan1; 13694 uint32_t ovlan2; 13695 uint8_t i, j; 13696 13697 BLOGD(sc, DBG_LOAD, "MF config parameters for function %d\n", 13698 SC_PORT(sc)); 13699 BLOGD(sc, DBG_LOAD, "\tmf_config=0x%x\n", 13700 mf_info->mf_config[SC_VN(sc)]); 13701 BLOGD(sc, DBG_LOAD, "\tmulti_vnics_mode=%d\n", 13702 mf_info->multi_vnics_mode); 13703 BLOGD(sc, DBG_LOAD, "\tvnics_per_port=%d\n", 13704 mf_info->vnics_per_port); 13705 BLOGD(sc, DBG_LOAD, "\tovlan/vifid=%d\n", 13706 mf_info->ext_id); 13707 BLOGD(sc, DBG_LOAD, "\tmin_bw=%d/%d/%d/%d\n", 13708 mf_info->min_bw[0], mf_info->min_bw[1], 13709 mf_info->min_bw[2], mf_info->min_bw[3]); 13710 BLOGD(sc, DBG_LOAD, "\tmax_bw=%d/%d/%d/%d\n", 13711 mf_info->max_bw[0], mf_info->max_bw[1], 13712 mf_info->max_bw[2], mf_info->max_bw[3]); 13713 BLOGD(sc, DBG_LOAD, "\tmac_addr: %s\n", 13714 sc->mac_addr_str); 13715 13716 /* various MF mode sanity checks... */ 13717 13718 if (mf_info->mf_config[SC_VN(sc)] & FUNC_MF_CFG_FUNC_HIDE) { 13719 BLOGE(sc, "Enumerated function %d is marked as hidden\n", 13720 SC_PORT(sc)); 13721 return (1); 13722 } 13723 13724 if ((mf_info->vnics_per_port > 1) && !mf_info->multi_vnics_mode) { 13725 BLOGE(sc, "vnics_per_port=%d multi_vnics_mode=%d\n", 13726 mf_info->vnics_per_port, mf_info->multi_vnics_mode); 13727 return (1); 13728 } 13729 13730 if (mf_info->mf_mode == MULTI_FUNCTION_SD) { 13731 /* vnic id > 0 must have valid ovlan in switch-dependent mode */ 13732 if ((SC_VN(sc) > 0) && !VALID_OVLAN(OVLAN(sc))) { 13733 BLOGE(sc, "mf_mode=SD vnic_id=%d ovlan=%d\n", 13734 SC_VN(sc), OVLAN(sc)); 13735 return (1); 13736 } 13737 13738 if (!VALID_OVLAN(OVLAN(sc)) && mf_info->multi_vnics_mode) { 13739 BLOGE(sc, "mf_mode=SD multi_vnics_mode=%d ovlan=%d\n", 13740 mf_info->multi_vnics_mode, OVLAN(sc)); 13741 return (1); 13742 } 13743 13744 /* 13745 * Verify all functions are either MF or SF mode. If MF, make sure 13746 * sure that all non-hidden functions have a valid ovlan. If SF, 13747 * make sure that all non-hidden functions have an invalid ovlan. 13748 */ 13749 FOREACH_ABS_FUNC_IN_PORT(sc, i) { 13750 mf_cfg1 = MFCFG_RD(sc, func_mf_config[i].config); 13751 ovlan1 = MFCFG_RD(sc, func_mf_config[i].e1hov_tag); 13752 if (!(mf_cfg1 & FUNC_MF_CFG_FUNC_HIDE) && 13753 (((mf_info->multi_vnics_mode) && !VALID_OVLAN(ovlan1)) || 13754 ((!mf_info->multi_vnics_mode) && VALID_OVLAN(ovlan1)))) { 13755 BLOGE(sc, "mf_mode=SD function %d MF config " 13756 "mismatch, multi_vnics_mode=%d ovlan=%d\n", 13757 i, mf_info->multi_vnics_mode, ovlan1); 13758 return (1); 13759 } 13760 } 13761 13762 /* Verify all funcs on the same port each have a different ovlan. */ 13763 FOREACH_ABS_FUNC_IN_PORT(sc, i) { 13764 mf_cfg1 = MFCFG_RD(sc, func_mf_config[i].config); 13765 ovlan1 = MFCFG_RD(sc, func_mf_config[i].e1hov_tag); 13766 /* iterate from the next function on the port to the max func */ 13767 for (j = i + 2; j < MAX_FUNC_NUM; j += 2) { 13768 mf_cfg2 = MFCFG_RD(sc, func_mf_config[j].config); 13769 ovlan2 = MFCFG_RD(sc, func_mf_config[j].e1hov_tag); 13770 if (!(mf_cfg1 & FUNC_MF_CFG_FUNC_HIDE) && 13771 VALID_OVLAN(ovlan1) && 13772 !(mf_cfg2 & FUNC_MF_CFG_FUNC_HIDE) && 13773 VALID_OVLAN(ovlan2) && 13774 (ovlan1 == ovlan2)) { 13775 BLOGE(sc, "mf_mode=SD functions %d and %d " 13776 "have the same ovlan (%d)\n", 13777 i, j, ovlan1); 13778 return (1); 13779 } 13780 } 13781 } 13782 } /* MULTI_FUNCTION_SD */ 13783 13784 return (0); 13785 } 13786 13787 static int 13788 bxe_get_mf_cfg_info(struct bxe_softc *sc) 13789 { 13790 struct bxe_mf_info *mf_info = &sc->devinfo.mf_info; 13791 uint32_t val, mac_upper; 13792 uint8_t i, vnic; 13793 13794 /* initialize mf_info defaults */ 13795 mf_info->vnics_per_port = 1; 13796 mf_info->multi_vnics_mode = FALSE; 13797 mf_info->path_has_ovlan = FALSE; 13798 mf_info->mf_mode = SINGLE_FUNCTION; 13799 13800 if (!CHIP_IS_MF_CAP(sc)) { 13801 return (0); 13802 } 13803 13804 if (sc->devinfo.mf_cfg_base == SHMEM_MF_CFG_ADDR_NONE) { 13805 BLOGE(sc, "Invalid mf_cfg_base!\n"); 13806 return (1); 13807 } 13808 13809 /* get the MF mode (switch dependent / independent / single-function) */ 13810 13811 val = SHMEM_RD(sc, dev_info.shared_feature_config.config); 13812 13813 switch (val & SHARED_FEAT_CFG_FORCE_SF_MODE_MASK) 13814 { 13815 case SHARED_FEAT_CFG_FORCE_SF_MODE_SWITCH_INDEPT: 13816 13817 mac_upper = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].mac_upper); 13818 13819 /* check for legal upper mac bytes */ 13820 if (mac_upper != FUNC_MF_CFG_UPPERMAC_DEFAULT) { 13821 mf_info->mf_mode = MULTI_FUNCTION_SI; 13822 } else { 13823 BLOGE(sc, "Invalid config for Switch Independent mode\n"); 13824 } 13825 13826 break; 13827 13828 case SHARED_FEAT_CFG_FORCE_SF_MODE_MF_ALLOWED: 13829 case SHARED_FEAT_CFG_FORCE_SF_MODE_SPIO4: 13830 13831 /* get outer vlan configuration */ 13832 val = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].e1hov_tag); 13833 13834 if ((val & FUNC_MF_CFG_E1HOV_TAG_MASK) != 13835 FUNC_MF_CFG_E1HOV_TAG_DEFAULT) { 13836 mf_info->mf_mode = MULTI_FUNCTION_SD; 13837 } else { 13838 BLOGE(sc, "Invalid config for Switch Dependent mode\n"); 13839 } 13840 13841 break; 13842 13843 case SHARED_FEAT_CFG_FORCE_SF_MODE_FORCED_SF: 13844 13845 /* not in MF mode, vnics_per_port=1 and multi_vnics_mode=FALSE */ 13846 return (0); 13847 13848 case SHARED_FEAT_CFG_FORCE_SF_MODE_AFEX_MODE: 13849 13850 /* 13851 * Mark MF mode as NIV if MCP version includes NPAR-SD support 13852 * and the MAC address is valid. 13853 */ 13854 mac_upper = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].mac_upper); 13855 13856 if ((SHMEM2_HAS(sc, afex_driver_support)) && 13857 (mac_upper != FUNC_MF_CFG_UPPERMAC_DEFAULT)) { 13858 mf_info->mf_mode = MULTI_FUNCTION_AFEX; 13859 } else { 13860 BLOGE(sc, "Invalid config for AFEX mode\n"); 13861 } 13862 13863 break; 13864 13865 default: 13866 13867 BLOGE(sc, "Unknown MF mode (0x%08x)\n", 13868 (val & SHARED_FEAT_CFG_FORCE_SF_MODE_MASK)); 13869 13870 return (1); 13871 } 13872 13873 /* set path mf_mode (which could be different than function mf_mode) */ 13874 if (mf_info->mf_mode == MULTI_FUNCTION_SD) { 13875 mf_info->path_has_ovlan = TRUE; 13876 } else if (mf_info->mf_mode == SINGLE_FUNCTION) { 13877 /* 13878 * Decide on path multi vnics mode. If we're not in MF mode and in 13879 * 4-port mode, this is good enough to check vnic-0 of the other port 13880 * on the same path 13881 */ 13882 if (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) { 13883 uint8_t other_port = !(PORT_ID(sc) & 1); 13884 uint8_t abs_func_other_port = (SC_PATH(sc) + (2 * other_port)); 13885 13886 val = MFCFG_RD(sc, func_mf_config[abs_func_other_port].e1hov_tag); 13887 13888 mf_info->path_has_ovlan = VALID_OVLAN((uint16_t)val) ? 1 : 0; 13889 } 13890 } 13891 13892 if (mf_info->mf_mode == SINGLE_FUNCTION) { 13893 /* invalid MF config */ 13894 if (SC_VN(sc) >= 1) { 13895 BLOGE(sc, "VNIC ID >= 1 in SF mode\n"); 13896 return (1); 13897 } 13898 13899 return (0); 13900 } 13901 13902 /* get the MF configuration */ 13903 mf_info->mf_config[SC_VN(sc)] = 13904 MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].config); 13905 13906 switch(mf_info->mf_mode) 13907 { 13908 case MULTI_FUNCTION_SD: 13909 13910 bxe_get_shmem_mf_cfg_info_sd(sc); 13911 break; 13912 13913 case MULTI_FUNCTION_SI: 13914 13915 bxe_get_shmem_mf_cfg_info_si(sc); 13916 break; 13917 13918 case MULTI_FUNCTION_AFEX: 13919 13920 bxe_get_shmem_mf_cfg_info_niv(sc); 13921 break; 13922 13923 default: 13924 13925 BLOGE(sc, "Get MF config failed (mf_mode=0x%08x)\n", 13926 mf_info->mf_mode); 13927 return (1); 13928 } 13929 13930 /* get the congestion management parameters */ 13931 13932 vnic = 0; 13933 FOREACH_ABS_FUNC_IN_PORT(sc, i) { 13934 /* get min/max bw */ 13935 val = MFCFG_RD(sc, func_mf_config[i].config); 13936 mf_info->min_bw[vnic] = 13937 ((val & FUNC_MF_CFG_MIN_BW_MASK) >> FUNC_MF_CFG_MIN_BW_SHIFT); 13938 mf_info->max_bw[vnic] = 13939 ((val & FUNC_MF_CFG_MAX_BW_MASK) >> FUNC_MF_CFG_MAX_BW_SHIFT); 13940 vnic++; 13941 } 13942 13943 return (bxe_check_valid_mf_cfg(sc)); 13944 } 13945 13946 static int 13947 bxe_get_shmem_info(struct bxe_softc *sc) 13948 { 13949 int port; 13950 uint32_t mac_hi, mac_lo, val; 13951 13952 port = SC_PORT(sc); 13953 mac_hi = mac_lo = 0; 13954 13955 sc->link_params.sc = sc; 13956 sc->link_params.port = port; 13957 13958 /* get the hardware config info */ 13959 sc->devinfo.hw_config = 13960 SHMEM_RD(sc, dev_info.shared_hw_config.config); 13961 sc->devinfo.hw_config2 = 13962 SHMEM_RD(sc, dev_info.shared_hw_config.config2); 13963 13964 sc->link_params.hw_led_mode = 13965 ((sc->devinfo.hw_config & SHARED_HW_CFG_LED_MODE_MASK) >> 13966 SHARED_HW_CFG_LED_MODE_SHIFT); 13967 13968 /* get the port feature config */ 13969 sc->port.config = 13970 SHMEM_RD(sc, dev_info.port_feature_config[port].config), 13971 13972 /* get the link params */ 13973 sc->link_params.speed_cap_mask[0] = 13974 SHMEM_RD(sc, dev_info.port_hw_config[port].speed_capability_mask); 13975 sc->link_params.speed_cap_mask[1] = 13976 SHMEM_RD(sc, dev_info.port_hw_config[port].speed_capability_mask2); 13977 13978 /* get the lane config */ 13979 sc->link_params.lane_config = 13980 SHMEM_RD(sc, dev_info.port_hw_config[port].lane_config); 13981 13982 /* get the link config */ 13983 val = SHMEM_RD(sc, dev_info.port_feature_config[port].link_config); 13984 sc->port.link_config[ELINK_INT_PHY] = val; 13985 sc->link_params.switch_cfg = (val & PORT_FEATURE_CONNECTED_SWITCH_MASK); 13986 sc->port.link_config[ELINK_EXT_PHY1] = 13987 SHMEM_RD(sc, dev_info.port_feature_config[port].link_config2); 13988 13989 /* get the override preemphasis flag and enable it or turn it off */ 13990 val = SHMEM_RD(sc, dev_info.shared_feature_config.config); 13991 if (val & SHARED_FEAT_CFG_OVERRIDE_PREEMPHASIS_CFG_ENABLED) { 13992 sc->link_params.feature_config_flags |= 13993 ELINK_FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED; 13994 } else { 13995 sc->link_params.feature_config_flags &= 13996 ~ELINK_FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED; 13997 } 13998 13999 /* get the initial value of the link params */ 14000 sc->link_params.multi_phy_config = 14001 SHMEM_RD(sc, dev_info.port_hw_config[port].multi_phy_config); 14002 14003 /* get external phy info */ 14004 sc->port.ext_phy_config = 14005 SHMEM_RD(sc, dev_info.port_hw_config[port].external_phy_config); 14006 14007 /* get the multifunction configuration */ 14008 bxe_get_mf_cfg_info(sc); 14009 14010 /* get the mac address */ 14011 if (IS_MF(sc)) { 14012 mac_hi = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].mac_upper); 14013 mac_lo = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].mac_lower); 14014 } else { 14015 mac_hi = SHMEM_RD(sc, dev_info.port_hw_config[port].mac_upper); 14016 mac_lo = SHMEM_RD(sc, dev_info.port_hw_config[port].mac_lower); 14017 } 14018 14019 if ((mac_lo == 0) && (mac_hi == 0)) { 14020 *sc->mac_addr_str = 0; 14021 BLOGE(sc, "No Ethernet address programmed!\n"); 14022 } else { 14023 sc->link_params.mac_addr[0] = (uint8_t)(mac_hi >> 8); 14024 sc->link_params.mac_addr[1] = (uint8_t)(mac_hi); 14025 sc->link_params.mac_addr[2] = (uint8_t)(mac_lo >> 24); 14026 sc->link_params.mac_addr[3] = (uint8_t)(mac_lo >> 16); 14027 sc->link_params.mac_addr[4] = (uint8_t)(mac_lo >> 8); 14028 sc->link_params.mac_addr[5] = (uint8_t)(mac_lo); 14029 snprintf(sc->mac_addr_str, sizeof(sc->mac_addr_str), 14030 "%02x:%02x:%02x:%02x:%02x:%02x", 14031 sc->link_params.mac_addr[0], sc->link_params.mac_addr[1], 14032 sc->link_params.mac_addr[2], sc->link_params.mac_addr[3], 14033 sc->link_params.mac_addr[4], sc->link_params.mac_addr[5]); 14034 BLOGD(sc, DBG_LOAD, "Ethernet address: %s\n", sc->mac_addr_str); 14035 } 14036 14037 #if 0 14038 if (!IS_MF(sc) && 14039 ((sc->port.config & PORT_FEAT_CFG_STORAGE_PERSONALITY_MASK) == 14040 PORT_FEAT_CFG_STORAGE_PERSONALITY_FCOE)) { 14041 sc->flags |= BXE_NO_ISCSI; 14042 } 14043 if (!IS_MF(sc) && 14044 ((sc->port.config & PORT_FEAT_CFG_STORAGE_PERSONALITY_MASK) == 14045 PORT_FEAT_CFG_STORAGE_PERSONALITY_ISCSI)) { 14046 sc->flags |= BXE_NO_FCOE_FLAG; 14047 } 14048 #endif 14049 14050 return (0); 14051 } 14052 14053 static void 14054 bxe_get_tunable_params(struct bxe_softc *sc) 14055 { 14056 /* sanity checks */ 14057 14058 if ((bxe_interrupt_mode != INTR_MODE_INTX) && 14059 (bxe_interrupt_mode != INTR_MODE_MSI) && 14060 (bxe_interrupt_mode != INTR_MODE_MSIX)) { 14061 BLOGW(sc, "invalid interrupt_mode value (%d)\n", bxe_interrupt_mode); 14062 bxe_interrupt_mode = INTR_MODE_MSIX; 14063 } 14064 14065 if ((bxe_queue_count < 0) || (bxe_queue_count > MAX_RSS_CHAINS)) { 14066 BLOGW(sc, "invalid queue_count value (%d)\n", bxe_queue_count); 14067 bxe_queue_count = 0; 14068 } 14069 14070 if ((bxe_max_rx_bufs < 1) || (bxe_max_rx_bufs > RX_BD_USABLE)) { 14071 if (bxe_max_rx_bufs == 0) { 14072 bxe_max_rx_bufs = RX_BD_USABLE; 14073 } else { 14074 BLOGW(sc, "invalid max_rx_bufs (%d)\n", bxe_max_rx_bufs); 14075 bxe_max_rx_bufs = 2048; 14076 } 14077 } 14078 14079 if ((bxe_hc_rx_ticks < 1) || (bxe_hc_rx_ticks > 100)) { 14080 BLOGW(sc, "invalid hc_rx_ticks (%d)\n", bxe_hc_rx_ticks); 14081 bxe_hc_rx_ticks = 25; 14082 } 14083 14084 if ((bxe_hc_tx_ticks < 1) || (bxe_hc_tx_ticks > 100)) { 14085 BLOGW(sc, "invalid hc_tx_ticks (%d)\n", bxe_hc_tx_ticks); 14086 bxe_hc_tx_ticks = 50; 14087 } 14088 14089 if (bxe_max_aggregation_size == 0) { 14090 bxe_max_aggregation_size = TPA_AGG_SIZE; 14091 } 14092 14093 if (bxe_max_aggregation_size > 0xffff) { 14094 BLOGW(sc, "invalid max_aggregation_size (%d)\n", 14095 bxe_max_aggregation_size); 14096 bxe_max_aggregation_size = TPA_AGG_SIZE; 14097 } 14098 14099 if ((bxe_mrrs < -1) || (bxe_mrrs > 3)) { 14100 BLOGW(sc, "invalid mrrs (%d)\n", bxe_mrrs); 14101 bxe_mrrs = -1; 14102 } 14103 14104 if ((bxe_autogreeen < 0) || (bxe_autogreeen > 2)) { 14105 BLOGW(sc, "invalid autogreeen (%d)\n", bxe_autogreeen); 14106 bxe_autogreeen = 0; 14107 } 14108 14109 if ((bxe_udp_rss < 0) || (bxe_udp_rss > 1)) { 14110 BLOGW(sc, "invalid udp_rss (%d)\n", bxe_udp_rss); 14111 bxe_udp_rss = 0; 14112 } 14113 14114 /* pull in user settings */ 14115 14116 sc->interrupt_mode = bxe_interrupt_mode; 14117 sc->max_rx_bufs = bxe_max_rx_bufs; 14118 sc->hc_rx_ticks = bxe_hc_rx_ticks; 14119 sc->hc_tx_ticks = bxe_hc_tx_ticks; 14120 sc->max_aggregation_size = bxe_max_aggregation_size; 14121 sc->mrrs = bxe_mrrs; 14122 sc->autogreeen = bxe_autogreeen; 14123 sc->udp_rss = bxe_udp_rss; 14124 14125 if (bxe_interrupt_mode == INTR_MODE_INTX) { 14126 sc->num_queues = 1; 14127 } else { /* INTR_MODE_MSI or INTR_MODE_MSIX */ 14128 sc->num_queues = 14129 min((bxe_queue_count ? bxe_queue_count : mp_ncpus), 14130 MAX_RSS_CHAINS); 14131 if (sc->num_queues > mp_ncpus) { 14132 sc->num_queues = mp_ncpus; 14133 } 14134 } 14135 14136 BLOGD(sc, DBG_LOAD, 14137 "User Config: " 14138 "debug=0x%lx " 14139 "interrupt_mode=%d " 14140 "queue_count=%d " 14141 "hc_rx_ticks=%d " 14142 "hc_tx_ticks=%d " 14143 "rx_budget=%d " 14144 "max_aggregation_size=%d " 14145 "mrrs=%d " 14146 "autogreeen=%d " 14147 "udp_rss=%d\n", 14148 bxe_debug, 14149 sc->interrupt_mode, 14150 sc->num_queues, 14151 sc->hc_rx_ticks, 14152 sc->hc_tx_ticks, 14153 bxe_rx_budget, 14154 sc->max_aggregation_size, 14155 sc->mrrs, 14156 sc->autogreeen, 14157 sc->udp_rss); 14158 } 14159 14160 static void 14161 bxe_media_detect(struct bxe_softc *sc) 14162 { 14163 uint32_t phy_idx = bxe_get_cur_phy_idx(sc); 14164 switch (sc->link_params.phy[phy_idx].media_type) { 14165 case ELINK_ETH_PHY_SFPP_10G_FIBER: 14166 case ELINK_ETH_PHY_XFP_FIBER: 14167 BLOGI(sc, "Found 10Gb Fiber media.\n"); 14168 sc->media = IFM_10G_SR; 14169 break; 14170 case ELINK_ETH_PHY_SFP_1G_FIBER: 14171 BLOGI(sc, "Found 1Gb Fiber media.\n"); 14172 sc->media = IFM_1000_SX; 14173 break; 14174 case ELINK_ETH_PHY_KR: 14175 case ELINK_ETH_PHY_CX4: 14176 BLOGI(sc, "Found 10GBase-CX4 media.\n"); 14177 sc->media = IFM_10G_CX4; 14178 break; 14179 case ELINK_ETH_PHY_DA_TWINAX: 14180 BLOGI(sc, "Found 10Gb Twinax media.\n"); 14181 sc->media = IFM_10G_TWINAX; 14182 break; 14183 case ELINK_ETH_PHY_BASE_T: 14184 if (sc->link_params.speed_cap_mask[0] & 14185 PORT_HW_CFG_SPEED_CAPABILITY_D0_10G) { 14186 BLOGI(sc, "Found 10GBase-T media.\n"); 14187 sc->media = IFM_10G_T; 14188 } else { 14189 BLOGI(sc, "Found 1000Base-T media.\n"); 14190 sc->media = IFM_1000_T; 14191 } 14192 break; 14193 case ELINK_ETH_PHY_NOT_PRESENT: 14194 BLOGI(sc, "Media not present.\n"); 14195 sc->media = 0; 14196 break; 14197 case ELINK_ETH_PHY_UNSPECIFIED: 14198 default: 14199 BLOGI(sc, "Unknown media!\n"); 14200 sc->media = 0; 14201 break; 14202 } 14203 } 14204 14205 #define GET_FIELD(value, fname) \ 14206 (((value) & (fname##_MASK)) >> (fname##_SHIFT)) 14207 #define IGU_FID(val) GET_FIELD((val), IGU_REG_MAPPING_MEMORY_FID) 14208 #define IGU_VEC(val) GET_FIELD((val), IGU_REG_MAPPING_MEMORY_VECTOR) 14209 14210 static int 14211 bxe_get_igu_cam_info(struct bxe_softc *sc) 14212 { 14213 int pfid = SC_FUNC(sc); 14214 int igu_sb_id; 14215 uint32_t val; 14216 uint8_t fid, igu_sb_cnt = 0; 14217 14218 sc->igu_base_sb = 0xff; 14219 14220 if (CHIP_INT_MODE_IS_BC(sc)) { 14221 int vn = SC_VN(sc); 14222 igu_sb_cnt = sc->igu_sb_cnt; 14223 sc->igu_base_sb = ((CHIP_IS_MODE_4_PORT(sc) ? pfid : vn) * 14224 FP_SB_MAX_E1x); 14225 sc->igu_dsb_id = (E1HVN_MAX * FP_SB_MAX_E1x + 14226 (CHIP_IS_MODE_4_PORT(sc) ? pfid : vn)); 14227 return (0); 14228 } 14229 14230 /* IGU in normal mode - read CAM */ 14231 for (igu_sb_id = 0; 14232 igu_sb_id < IGU_REG_MAPPING_MEMORY_SIZE; 14233 igu_sb_id++) { 14234 val = REG_RD(sc, IGU_REG_MAPPING_MEMORY + igu_sb_id * 4); 14235 if (!(val & IGU_REG_MAPPING_MEMORY_VALID)) { 14236 continue; 14237 } 14238 fid = IGU_FID(val); 14239 if ((fid & IGU_FID_ENCODE_IS_PF)) { 14240 if ((fid & IGU_FID_PF_NUM_MASK) != pfid) { 14241 continue; 14242 } 14243 if (IGU_VEC(val) == 0) { 14244 /* default status block */ 14245 sc->igu_dsb_id = igu_sb_id; 14246 } else { 14247 if (sc->igu_base_sb == 0xff) { 14248 sc->igu_base_sb = igu_sb_id; 14249 } 14250 igu_sb_cnt++; 14251 } 14252 } 14253 } 14254 14255 /* 14256 * Due to new PF resource allocation by MFW T7.4 and above, it's optional 14257 * that number of CAM entries will not be equal to the value advertised in 14258 * PCI. Driver should use the minimal value of both as the actual status 14259 * block count 14260 */ 14261 sc->igu_sb_cnt = min(sc->igu_sb_cnt, igu_sb_cnt); 14262 14263 if (igu_sb_cnt == 0) { 14264 BLOGE(sc, "CAM configuration error\n"); 14265 return (-1); 14266 } 14267 14268 return (0); 14269 } 14270 14271 /* 14272 * Gather various information from the device config space, the device itself, 14273 * shmem, and the user input. 14274 */ 14275 static int 14276 bxe_get_device_info(struct bxe_softc *sc) 14277 { 14278 uint32_t val; 14279 int rc; 14280 14281 /* Get the data for the device */ 14282 sc->devinfo.vendor_id = pci_get_vendor(sc->dev); 14283 sc->devinfo.device_id = pci_get_device(sc->dev); 14284 sc->devinfo.subvendor_id = pci_get_subvendor(sc->dev); 14285 sc->devinfo.subdevice_id = pci_get_subdevice(sc->dev); 14286 14287 /* get the chip revision (chip metal comes from pci config space) */ 14288 sc->devinfo.chip_id = 14289 sc->link_params.chip_id = 14290 (((REG_RD(sc, MISC_REG_CHIP_NUM) & 0xffff) << 16) | 14291 ((REG_RD(sc, MISC_REG_CHIP_REV) & 0xf) << 12) | 14292 (((REG_RD(sc, PCICFG_OFFSET + PCI_ID_VAL3) >> 24) & 0xf) << 4) | 14293 ((REG_RD(sc, MISC_REG_BOND_ID) & 0xf) << 0)); 14294 14295 /* force 57811 according to MISC register */ 14296 if (REG_RD(sc, MISC_REG_CHIP_TYPE) & MISC_REG_CHIP_TYPE_57811_MASK) { 14297 if (CHIP_IS_57810(sc)) { 14298 sc->devinfo.chip_id = ((CHIP_NUM_57811 << 16) | 14299 (sc->devinfo.chip_id & 0x0000ffff)); 14300 } else if (CHIP_IS_57810_MF(sc)) { 14301 sc->devinfo.chip_id = ((CHIP_NUM_57811_MF << 16) | 14302 (sc->devinfo.chip_id & 0x0000ffff)); 14303 } 14304 sc->devinfo.chip_id |= 0x1; 14305 } 14306 14307 BLOGD(sc, DBG_LOAD, 14308 "chip_id=0x%08x (num=0x%04x rev=0x%01x metal=0x%02x bond=0x%01x)\n", 14309 sc->devinfo.chip_id, 14310 ((sc->devinfo.chip_id >> 16) & 0xffff), 14311 ((sc->devinfo.chip_id >> 12) & 0xf), 14312 ((sc->devinfo.chip_id >> 4) & 0xff), 14313 ((sc->devinfo.chip_id >> 0) & 0xf)); 14314 14315 val = (REG_RD(sc, 0x2874) & 0x55); 14316 if ((sc->devinfo.chip_id & 0x1) || 14317 (CHIP_IS_E1(sc) && val) || 14318 (CHIP_IS_E1H(sc) && (val == 0x55))) { 14319 sc->flags |= BXE_ONE_PORT_FLAG; 14320 BLOGD(sc, DBG_LOAD, "single port device\n"); 14321 } 14322 14323 /* set the doorbell size */ 14324 sc->doorbell_size = (1 << BXE_DB_SHIFT); 14325 14326 /* determine whether the device is in 2 port or 4 port mode */ 14327 sc->devinfo.chip_port_mode = CHIP_PORT_MODE_NONE; /* E1 & E1h*/ 14328 if (CHIP_IS_E2E3(sc)) { 14329 /* 14330 * Read port4mode_en_ovwr[0]: 14331 * If 1, four port mode is in port4mode_en_ovwr[1]. 14332 * If 0, four port mode is in port4mode_en[0]. 14333 */ 14334 val = REG_RD(sc, MISC_REG_PORT4MODE_EN_OVWR); 14335 if (val & 1) { 14336 val = ((val >> 1) & 1); 14337 } else { 14338 val = REG_RD(sc, MISC_REG_PORT4MODE_EN); 14339 } 14340 14341 sc->devinfo.chip_port_mode = 14342 (val) ? CHIP_4_PORT_MODE : CHIP_2_PORT_MODE; 14343 14344 BLOGD(sc, DBG_LOAD, "Port mode = %s\n", (val) ? "4" : "2"); 14345 } 14346 14347 /* get the function and path info for the device */ 14348 bxe_get_function_num(sc); 14349 14350 /* get the shared memory base address */ 14351 sc->devinfo.shmem_base = 14352 sc->link_params.shmem_base = 14353 REG_RD(sc, MISC_REG_SHARED_MEM_ADDR); 14354 sc->devinfo.shmem2_base = 14355 REG_RD(sc, (SC_PATH(sc) ? MISC_REG_GENERIC_CR_1 : 14356 MISC_REG_GENERIC_CR_0)); 14357 14358 BLOGD(sc, DBG_LOAD, "shmem_base=0x%08x, shmem2_base=0x%08x\n", 14359 sc->devinfo.shmem_base, sc->devinfo.shmem2_base); 14360 14361 if (!sc->devinfo.shmem_base) { 14362 /* this should ONLY prevent upcoming shmem reads */ 14363 BLOGI(sc, "MCP not active\n"); 14364 sc->flags |= BXE_NO_MCP_FLAG; 14365 return (0); 14366 } 14367 14368 /* make sure the shared memory contents are valid */ 14369 val = SHMEM_RD(sc, validity_map[SC_PORT(sc)]); 14370 if ((val & (SHR_MEM_VALIDITY_DEV_INFO | SHR_MEM_VALIDITY_MB)) != 14371 (SHR_MEM_VALIDITY_DEV_INFO | SHR_MEM_VALIDITY_MB)) { 14372 BLOGE(sc, "Invalid SHMEM validity signature: 0x%08x\n", val); 14373 return (0); 14374 } 14375 BLOGD(sc, DBG_LOAD, "Valid SHMEM validity signature: 0x%08x\n", val); 14376 14377 /* get the bootcode version */ 14378 sc->devinfo.bc_ver = SHMEM_RD(sc, dev_info.bc_rev); 14379 snprintf(sc->devinfo.bc_ver_str, 14380 sizeof(sc->devinfo.bc_ver_str), 14381 "%d.%d.%d", 14382 ((sc->devinfo.bc_ver >> 24) & 0xff), 14383 ((sc->devinfo.bc_ver >> 16) & 0xff), 14384 ((sc->devinfo.bc_ver >> 8) & 0xff)); 14385 BLOGD(sc, DBG_LOAD, "Bootcode version: %s\n", sc->devinfo.bc_ver_str); 14386 14387 /* get the bootcode shmem address */ 14388 sc->devinfo.mf_cfg_base = bxe_get_shmem_mf_cfg_base(sc); 14389 BLOGD(sc, DBG_LOAD, "mf_cfg_base=0x08%x \n", sc->devinfo.mf_cfg_base); 14390 14391 /* clean indirect addresses as they're not used */ 14392 pci_write_config(sc->dev, PCICFG_GRC_ADDRESS, 0, 4); 14393 if (IS_PF(sc)) { 14394 REG_WR(sc, PXP2_REG_PGL_ADDR_88_F0, 0); 14395 REG_WR(sc, PXP2_REG_PGL_ADDR_8C_F0, 0); 14396 REG_WR(sc, PXP2_REG_PGL_ADDR_90_F0, 0); 14397 REG_WR(sc, PXP2_REG_PGL_ADDR_94_F0, 0); 14398 if (CHIP_IS_E1x(sc)) { 14399 REG_WR(sc, PXP2_REG_PGL_ADDR_88_F1, 0); 14400 REG_WR(sc, PXP2_REG_PGL_ADDR_8C_F1, 0); 14401 REG_WR(sc, PXP2_REG_PGL_ADDR_90_F1, 0); 14402 REG_WR(sc, PXP2_REG_PGL_ADDR_94_F1, 0); 14403 } 14404 14405 /* 14406 * Enable internal target-read (in case we are probed after PF 14407 * FLR). Must be done prior to any BAR read access. Only for 14408 * 57712 and up 14409 */ 14410 if (!CHIP_IS_E1x(sc)) { 14411 REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1); 14412 } 14413 } 14414 14415 /* get the nvram size */ 14416 val = REG_RD(sc, MCP_REG_MCPR_NVM_CFG4); 14417 sc->devinfo.flash_size = 14418 (NVRAM_1MB_SIZE << (val & MCPR_NVM_CFG4_FLASH_SIZE)); 14419 BLOGD(sc, DBG_LOAD, "nvram flash size: %d\n", sc->devinfo.flash_size); 14420 14421 /* get PCI capabilites */ 14422 bxe_probe_pci_caps(sc); 14423 14424 bxe_set_power_state(sc, PCI_PM_D0); 14425 14426 /* get various configuration parameters from shmem */ 14427 bxe_get_shmem_info(sc); 14428 14429 if (sc->devinfo.pcie_msix_cap_reg != 0) { 14430 val = pci_read_config(sc->dev, 14431 (sc->devinfo.pcie_msix_cap_reg + 14432 PCIR_MSIX_CTRL), 14433 2); 14434 sc->igu_sb_cnt = (val & PCIM_MSIXCTRL_TABLE_SIZE); 14435 } else { 14436 sc->igu_sb_cnt = 1; 14437 } 14438 14439 sc->igu_base_addr = BAR_IGU_INTMEM; 14440 14441 /* initialize IGU parameters */ 14442 if (CHIP_IS_E1x(sc)) { 14443 sc->devinfo.int_block = INT_BLOCK_HC; 14444 sc->igu_dsb_id = DEF_SB_IGU_ID; 14445 sc->igu_base_sb = 0; 14446 } else { 14447 sc->devinfo.int_block = INT_BLOCK_IGU; 14448 14449 /* do not allow device reset during IGU info preocessing */ 14450 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RESET); 14451 14452 val = REG_RD(sc, IGU_REG_BLOCK_CONFIGURATION); 14453 14454 if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) { 14455 int tout = 5000; 14456 14457 BLOGD(sc, DBG_LOAD, "FORCING IGU Normal Mode\n"); 14458 14459 val &= ~(IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN); 14460 REG_WR(sc, IGU_REG_BLOCK_CONFIGURATION, val); 14461 REG_WR(sc, IGU_REG_RESET_MEMORIES, 0x7f); 14462 14463 while (tout && REG_RD(sc, IGU_REG_RESET_MEMORIES)) { 14464 tout--; 14465 DELAY(1000); 14466 } 14467 14468 if (REG_RD(sc, IGU_REG_RESET_MEMORIES)) { 14469 BLOGD(sc, DBG_LOAD, "FORCING IGU Normal Mode failed!!!\n"); 14470 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RESET); 14471 return (-1); 14472 } 14473 } 14474 14475 if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) { 14476 BLOGD(sc, DBG_LOAD, "IGU Backward Compatible Mode\n"); 14477 sc->devinfo.int_block |= INT_BLOCK_MODE_BW_COMP; 14478 } else { 14479 BLOGD(sc, DBG_LOAD, "IGU Normal Mode\n"); 14480 } 14481 14482 rc = bxe_get_igu_cam_info(sc); 14483 14484 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RESET); 14485 14486 if (rc) { 14487 return (rc); 14488 } 14489 } 14490 14491 /* 14492 * Get base FW non-default (fast path) status block ID. This value is 14493 * used to initialize the fw_sb_id saved on the fp/queue structure to 14494 * determine the id used by the FW. 14495 */ 14496 if (CHIP_IS_E1x(sc)) { 14497 sc->base_fw_ndsb = ((SC_PORT(sc) * FP_SB_MAX_E1x) + SC_L_ID(sc)); 14498 } else { 14499 /* 14500 * 57712+ - We currently use one FW SB per IGU SB (Rx and Tx of 14501 * the same queue are indicated on the same IGU SB). So we prefer 14502 * FW and IGU SBs to be the same value. 14503 */ 14504 sc->base_fw_ndsb = sc->igu_base_sb; 14505 } 14506 14507 BLOGD(sc, DBG_LOAD, 14508 "igu_dsb_id=%d igu_base_sb=%d igu_sb_cnt=%d base_fw_ndsb=%d\n", 14509 sc->igu_dsb_id, sc->igu_base_sb, 14510 sc->igu_sb_cnt, sc->base_fw_ndsb); 14511 14512 elink_phy_probe(&sc->link_params); 14513 14514 return (0); 14515 } 14516 14517 static void 14518 bxe_link_settings_supported(struct bxe_softc *sc, 14519 uint32_t switch_cfg) 14520 { 14521 uint32_t cfg_size = 0; 14522 uint32_t idx; 14523 uint8_t port = SC_PORT(sc); 14524 14525 /* aggregation of supported attributes of all external phys */ 14526 sc->port.supported[0] = 0; 14527 sc->port.supported[1] = 0; 14528 14529 switch (sc->link_params.num_phys) { 14530 case 1: 14531 sc->port.supported[0] = sc->link_params.phy[ELINK_INT_PHY].supported; 14532 cfg_size = 1; 14533 break; 14534 case 2: 14535 sc->port.supported[0] = sc->link_params.phy[ELINK_EXT_PHY1].supported; 14536 cfg_size = 1; 14537 break; 14538 case 3: 14539 if (sc->link_params.multi_phy_config & 14540 PORT_HW_CFG_PHY_SWAPPED_ENABLED) { 14541 sc->port.supported[1] = 14542 sc->link_params.phy[ELINK_EXT_PHY1].supported; 14543 sc->port.supported[0] = 14544 sc->link_params.phy[ELINK_EXT_PHY2].supported; 14545 } else { 14546 sc->port.supported[0] = 14547 sc->link_params.phy[ELINK_EXT_PHY1].supported; 14548 sc->port.supported[1] = 14549 sc->link_params.phy[ELINK_EXT_PHY2].supported; 14550 } 14551 cfg_size = 2; 14552 break; 14553 } 14554 14555 if (!(sc->port.supported[0] || sc->port.supported[1])) { 14556 BLOGE(sc, "Invalid phy config in NVRAM (PHY1=0x%08x PHY2=0x%08x)\n", 14557 SHMEM_RD(sc, 14558 dev_info.port_hw_config[port].external_phy_config), 14559 SHMEM_RD(sc, 14560 dev_info.port_hw_config[port].external_phy_config2)); 14561 return; 14562 } 14563 14564 if (CHIP_IS_E3(sc)) 14565 sc->port.phy_addr = REG_RD(sc, MISC_REG_WC0_CTRL_PHY_ADDR); 14566 else { 14567 switch (switch_cfg) { 14568 case ELINK_SWITCH_CFG_1G: 14569 sc->port.phy_addr = 14570 REG_RD(sc, NIG_REG_SERDES0_CTRL_PHY_ADDR + port*0x10); 14571 break; 14572 case ELINK_SWITCH_CFG_10G: 14573 sc->port.phy_addr = 14574 REG_RD(sc, NIG_REG_XGXS0_CTRL_PHY_ADDR + port*0x18); 14575 break; 14576 default: 14577 BLOGE(sc, "Invalid switch config in link_config=0x%08x\n", 14578 sc->port.link_config[0]); 14579 return; 14580 } 14581 } 14582 14583 BLOGD(sc, DBG_LOAD, "PHY addr 0x%08x\n", sc->port.phy_addr); 14584 14585 /* mask what we support according to speed_cap_mask per configuration */ 14586 for (idx = 0; idx < cfg_size; idx++) { 14587 if (!(sc->link_params.speed_cap_mask[idx] & 14588 PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_HALF)) { 14589 sc->port.supported[idx] &= ~ELINK_SUPPORTED_10baseT_Half; 14590 } 14591 14592 if (!(sc->link_params.speed_cap_mask[idx] & 14593 PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_FULL)) { 14594 sc->port.supported[idx] &= ~ELINK_SUPPORTED_10baseT_Full; 14595 } 14596 14597 if (!(sc->link_params.speed_cap_mask[idx] & 14598 PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_HALF)) { 14599 sc->port.supported[idx] &= ~ELINK_SUPPORTED_100baseT_Half; 14600 } 14601 14602 if (!(sc->link_params.speed_cap_mask[idx] & 14603 PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_FULL)) { 14604 sc->port.supported[idx] &= ~ELINK_SUPPORTED_100baseT_Full; 14605 } 14606 14607 if (!(sc->link_params.speed_cap_mask[idx] & 14608 PORT_HW_CFG_SPEED_CAPABILITY_D0_1G)) { 14609 sc->port.supported[idx] &= ~ELINK_SUPPORTED_1000baseT_Full; 14610 } 14611 14612 if (!(sc->link_params.speed_cap_mask[idx] & 14613 PORT_HW_CFG_SPEED_CAPABILITY_D0_2_5G)) { 14614 sc->port.supported[idx] &= ~ELINK_SUPPORTED_2500baseX_Full; 14615 } 14616 14617 if (!(sc->link_params.speed_cap_mask[idx] & 14618 PORT_HW_CFG_SPEED_CAPABILITY_D0_10G)) { 14619 sc->port.supported[idx] &= ~ELINK_SUPPORTED_10000baseT_Full; 14620 } 14621 14622 if (!(sc->link_params.speed_cap_mask[idx] & 14623 PORT_HW_CFG_SPEED_CAPABILITY_D0_20G)) { 14624 sc->port.supported[idx] &= ~ELINK_SUPPORTED_20000baseKR2_Full; 14625 } 14626 } 14627 14628 BLOGD(sc, DBG_LOAD, "PHY supported 0=0x%08x 1=0x%08x\n", 14629 sc->port.supported[0], sc->port.supported[1]); 14630 } 14631 14632 static void 14633 bxe_link_settings_requested(struct bxe_softc *sc) 14634 { 14635 uint32_t link_config; 14636 uint32_t idx; 14637 uint32_t cfg_size = 0; 14638 14639 sc->port.advertising[0] = 0; 14640 sc->port.advertising[1] = 0; 14641 14642 switch (sc->link_params.num_phys) { 14643 case 1: 14644 case 2: 14645 cfg_size = 1; 14646 break; 14647 case 3: 14648 cfg_size = 2; 14649 break; 14650 } 14651 14652 for (idx = 0; idx < cfg_size; idx++) { 14653 sc->link_params.req_duplex[idx] = DUPLEX_FULL; 14654 link_config = sc->port.link_config[idx]; 14655 14656 switch (link_config & PORT_FEATURE_LINK_SPEED_MASK) { 14657 case PORT_FEATURE_LINK_SPEED_AUTO: 14658 if (sc->port.supported[idx] & ELINK_SUPPORTED_Autoneg) { 14659 sc->link_params.req_line_speed[idx] = ELINK_SPEED_AUTO_NEG; 14660 sc->port.advertising[idx] |= sc->port.supported[idx]; 14661 if (sc->link_params.phy[ELINK_EXT_PHY1].type == 14662 PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM84833) 14663 sc->port.advertising[idx] |= 14664 (ELINK_SUPPORTED_100baseT_Half | 14665 ELINK_SUPPORTED_100baseT_Full); 14666 } else { 14667 /* force 10G, no AN */ 14668 sc->link_params.req_line_speed[idx] = ELINK_SPEED_10000; 14669 sc->port.advertising[idx] |= 14670 (ADVERTISED_10000baseT_Full | ADVERTISED_FIBRE); 14671 continue; 14672 } 14673 break; 14674 14675 case PORT_FEATURE_LINK_SPEED_10M_FULL: 14676 if (sc->port.supported[idx] & ELINK_SUPPORTED_10baseT_Full) { 14677 sc->link_params.req_line_speed[idx] = ELINK_SPEED_10; 14678 sc->port.advertising[idx] |= (ADVERTISED_10baseT_Full | 14679 ADVERTISED_TP); 14680 } else { 14681 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x " 14682 "speed_cap_mask=0x%08x\n", 14683 link_config, sc->link_params.speed_cap_mask[idx]); 14684 return; 14685 } 14686 break; 14687 14688 case PORT_FEATURE_LINK_SPEED_10M_HALF: 14689 if (sc->port.supported[idx] & ELINK_SUPPORTED_10baseT_Half) { 14690 sc->link_params.req_line_speed[idx] = ELINK_SPEED_10; 14691 sc->link_params.req_duplex[idx] = DUPLEX_HALF; 14692 sc->port.advertising[idx] |= (ADVERTISED_10baseT_Half | 14693 ADVERTISED_TP); 14694 } else { 14695 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x " 14696 "speed_cap_mask=0x%08x\n", 14697 link_config, sc->link_params.speed_cap_mask[idx]); 14698 return; 14699 } 14700 break; 14701 14702 case PORT_FEATURE_LINK_SPEED_100M_FULL: 14703 if (sc->port.supported[idx] & ELINK_SUPPORTED_100baseT_Full) { 14704 sc->link_params.req_line_speed[idx] = ELINK_SPEED_100; 14705 sc->port.advertising[idx] |= (ADVERTISED_100baseT_Full | 14706 ADVERTISED_TP); 14707 } else { 14708 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x " 14709 "speed_cap_mask=0x%08x\n", 14710 link_config, sc->link_params.speed_cap_mask[idx]); 14711 return; 14712 } 14713 break; 14714 14715 case PORT_FEATURE_LINK_SPEED_100M_HALF: 14716 if (sc->port.supported[idx] & ELINK_SUPPORTED_100baseT_Half) { 14717 sc->link_params.req_line_speed[idx] = ELINK_SPEED_100; 14718 sc->link_params.req_duplex[idx] = DUPLEX_HALF; 14719 sc->port.advertising[idx] |= (ADVERTISED_100baseT_Half | 14720 ADVERTISED_TP); 14721 } else { 14722 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x " 14723 "speed_cap_mask=0x%08x\n", 14724 link_config, sc->link_params.speed_cap_mask[idx]); 14725 return; 14726 } 14727 break; 14728 14729 case PORT_FEATURE_LINK_SPEED_1G: 14730 if (sc->port.supported[idx] & ELINK_SUPPORTED_1000baseT_Full) { 14731 sc->link_params.req_line_speed[idx] = ELINK_SPEED_1000; 14732 sc->port.advertising[idx] |= (ADVERTISED_1000baseT_Full | 14733 ADVERTISED_TP); 14734 } else { 14735 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x " 14736 "speed_cap_mask=0x%08x\n", 14737 link_config, sc->link_params.speed_cap_mask[idx]); 14738 return; 14739 } 14740 break; 14741 14742 case PORT_FEATURE_LINK_SPEED_2_5G: 14743 if (sc->port.supported[idx] & ELINK_SUPPORTED_2500baseX_Full) { 14744 sc->link_params.req_line_speed[idx] = ELINK_SPEED_2500; 14745 sc->port.advertising[idx] |= (ADVERTISED_2500baseX_Full | 14746 ADVERTISED_TP); 14747 } else { 14748 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x " 14749 "speed_cap_mask=0x%08x\n", 14750 link_config, sc->link_params.speed_cap_mask[idx]); 14751 return; 14752 } 14753 break; 14754 14755 case PORT_FEATURE_LINK_SPEED_10G_CX4: 14756 if (sc->port.supported[idx] & ELINK_SUPPORTED_10000baseT_Full) { 14757 sc->link_params.req_line_speed[idx] = ELINK_SPEED_10000; 14758 sc->port.advertising[idx] |= (ADVERTISED_10000baseT_Full | 14759 ADVERTISED_FIBRE); 14760 } else { 14761 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x " 14762 "speed_cap_mask=0x%08x\n", 14763 link_config, sc->link_params.speed_cap_mask[idx]); 14764 return; 14765 } 14766 break; 14767 14768 case PORT_FEATURE_LINK_SPEED_20G: 14769 sc->link_params.req_line_speed[idx] = ELINK_SPEED_20000; 14770 break; 14771 14772 default: 14773 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x " 14774 "speed_cap_mask=0x%08x\n", 14775 link_config, sc->link_params.speed_cap_mask[idx]); 14776 sc->link_params.req_line_speed[idx] = ELINK_SPEED_AUTO_NEG; 14777 sc->port.advertising[idx] = sc->port.supported[idx]; 14778 break; 14779 } 14780 14781 sc->link_params.req_flow_ctrl[idx] = 14782 (link_config & PORT_FEATURE_FLOW_CONTROL_MASK); 14783 14784 if (sc->link_params.req_flow_ctrl[idx] == ELINK_FLOW_CTRL_AUTO) { 14785 if (!(sc->port.supported[idx] & ELINK_SUPPORTED_Autoneg)) { 14786 sc->link_params.req_flow_ctrl[idx] = ELINK_FLOW_CTRL_NONE; 14787 } else { 14788 bxe_set_requested_fc(sc); 14789 } 14790 } 14791 14792 BLOGD(sc, DBG_LOAD, "req_line_speed=%d req_duplex=%d " 14793 "req_flow_ctrl=0x%x advertising=0x%x\n", 14794 sc->link_params.req_line_speed[idx], 14795 sc->link_params.req_duplex[idx], 14796 sc->link_params.req_flow_ctrl[idx], 14797 sc->port.advertising[idx]); 14798 } 14799 } 14800 14801 static void 14802 bxe_get_phy_info(struct bxe_softc *sc) 14803 { 14804 uint8_t port = SC_PORT(sc); 14805 uint32_t config = sc->port.config; 14806 uint32_t eee_mode; 14807 14808 /* shmem data already read in bxe_get_shmem_info() */ 14809 14810 BLOGD(sc, DBG_LOAD, "lane_config=0x%08x speed_cap_mask0=0x%08x " 14811 "link_config0=0x%08x\n", 14812 sc->link_params.lane_config, 14813 sc->link_params.speed_cap_mask[0], 14814 sc->port.link_config[0]); 14815 14816 bxe_link_settings_supported(sc, sc->link_params.switch_cfg); 14817 bxe_link_settings_requested(sc); 14818 14819 if (sc->autogreeen == AUTO_GREEN_FORCE_ON) { 14820 sc->link_params.feature_config_flags |= 14821 ELINK_FEATURE_CONFIG_AUTOGREEEN_ENABLED; 14822 } else if (sc->autogreeen == AUTO_GREEN_FORCE_OFF) { 14823 sc->link_params.feature_config_flags &= 14824 ~ELINK_FEATURE_CONFIG_AUTOGREEEN_ENABLED; 14825 } else if (config & PORT_FEAT_CFG_AUTOGREEEN_ENABLED) { 14826 sc->link_params.feature_config_flags |= 14827 ELINK_FEATURE_CONFIG_AUTOGREEEN_ENABLED; 14828 } 14829 14830 /* configure link feature according to nvram value */ 14831 eee_mode = 14832 (((SHMEM_RD(sc, dev_info.port_feature_config[port].eee_power_mode)) & 14833 PORT_FEAT_CFG_EEE_POWER_MODE_MASK) >> 14834 PORT_FEAT_CFG_EEE_POWER_MODE_SHIFT); 14835 if (eee_mode != PORT_FEAT_CFG_EEE_POWER_MODE_DISABLED) { 14836 sc->link_params.eee_mode = (ELINK_EEE_MODE_ADV_LPI | 14837 ELINK_EEE_MODE_ENABLE_LPI | 14838 ELINK_EEE_MODE_OUTPUT_TIME); 14839 } else { 14840 sc->link_params.eee_mode = 0; 14841 } 14842 14843 /* get the media type */ 14844 bxe_media_detect(sc); 14845 } 14846 14847 static void 14848 bxe_get_params(struct bxe_softc *sc) 14849 { 14850 /* get user tunable params */ 14851 bxe_get_tunable_params(sc); 14852 14853 /* select the RX and TX ring sizes */ 14854 sc->tx_ring_size = TX_BD_USABLE; 14855 sc->rx_ring_size = RX_BD_USABLE; 14856 14857 /* XXX disable WoL */ 14858 sc->wol = 0; 14859 } 14860 14861 static void 14862 bxe_set_modes_bitmap(struct bxe_softc *sc) 14863 { 14864 uint32_t flags = 0; 14865 14866 if (CHIP_REV_IS_FPGA(sc)) { 14867 SET_FLAGS(flags, MODE_FPGA); 14868 } else if (CHIP_REV_IS_EMUL(sc)) { 14869 SET_FLAGS(flags, MODE_EMUL); 14870 } else { 14871 SET_FLAGS(flags, MODE_ASIC); 14872 } 14873 14874 if (CHIP_IS_MODE_4_PORT(sc)) { 14875 SET_FLAGS(flags, MODE_PORT4); 14876 } else { 14877 SET_FLAGS(flags, MODE_PORT2); 14878 } 14879 14880 if (CHIP_IS_E2(sc)) { 14881 SET_FLAGS(flags, MODE_E2); 14882 } else if (CHIP_IS_E3(sc)) { 14883 SET_FLAGS(flags, MODE_E3); 14884 if (CHIP_REV(sc) == CHIP_REV_Ax) { 14885 SET_FLAGS(flags, MODE_E3_A0); 14886 } else /*if (CHIP_REV(sc) == CHIP_REV_Bx)*/ { 14887 SET_FLAGS(flags, MODE_E3_B0 | MODE_COS3); 14888 } 14889 } 14890 14891 if (IS_MF(sc)) { 14892 SET_FLAGS(flags, MODE_MF); 14893 switch (sc->devinfo.mf_info.mf_mode) { 14894 case MULTI_FUNCTION_SD: 14895 SET_FLAGS(flags, MODE_MF_SD); 14896 break; 14897 case MULTI_FUNCTION_SI: 14898 SET_FLAGS(flags, MODE_MF_SI); 14899 break; 14900 case MULTI_FUNCTION_AFEX: 14901 SET_FLAGS(flags, MODE_MF_AFEX); 14902 break; 14903 } 14904 } else { 14905 SET_FLAGS(flags, MODE_SF); 14906 } 14907 14908 #if defined(__LITTLE_ENDIAN) 14909 SET_FLAGS(flags, MODE_LITTLE_ENDIAN); 14910 #else /* __BIG_ENDIAN */ 14911 SET_FLAGS(flags, MODE_BIG_ENDIAN); 14912 #endif 14913 14914 INIT_MODE_FLAGS(sc) = flags; 14915 } 14916 14917 static int 14918 bxe_alloc_hsi_mem(struct bxe_softc *sc) 14919 { 14920 struct bxe_fastpath *fp; 14921 bus_addr_t busaddr; 14922 int max_agg_queues; 14923 int max_segments; 14924 bus_size_t max_size; 14925 bus_size_t max_seg_size; 14926 char buf[32]; 14927 int rc; 14928 int i, j; 14929 14930 /* XXX zero out all vars here and call bxe_alloc_hsi_mem on error */ 14931 14932 /* allocate the parent bus DMA tag */ 14933 rc = bus_dma_tag_create(bus_get_dma_tag(sc->dev), /* parent tag */ 14934 1, /* alignment */ 14935 0, /* boundary limit */ 14936 BUS_SPACE_MAXADDR, /* restricted low */ 14937 BUS_SPACE_MAXADDR, /* restricted hi */ 14938 NULL, /* addr filter() */ 14939 NULL, /* addr filter() arg */ 14940 BUS_SPACE_MAXSIZE_32BIT, /* max map size */ 14941 BUS_SPACE_UNRESTRICTED, /* num discontinuous */ 14942 BUS_SPACE_MAXSIZE_32BIT, /* max seg size */ 14943 0, /* flags */ 14944 NULL, /* lock() */ 14945 NULL, /* lock() arg */ 14946 &sc->parent_dma_tag); /* returned dma tag */ 14947 if (rc != 0) { 14948 BLOGE(sc, "Failed to alloc parent DMA tag (%d)!\n", rc); 14949 return (1); 14950 } 14951 14952 /************************/ 14953 /* DEFAULT STATUS BLOCK */ 14954 /************************/ 14955 14956 if (bxe_dma_alloc(sc, sizeof(struct host_sp_status_block), 14957 &sc->def_sb_dma, "default status block") != 0) { 14958 /* XXX */ 14959 bus_dma_tag_destroy(sc->parent_dma_tag); 14960 return (1); 14961 } 14962 14963 sc->def_sb = (struct host_sp_status_block *)sc->def_sb_dma.vaddr; 14964 14965 /***************/ 14966 /* EVENT QUEUE */ 14967 /***************/ 14968 14969 if (bxe_dma_alloc(sc, BCM_PAGE_SIZE, 14970 &sc->eq_dma, "event queue") != 0) { 14971 /* XXX */ 14972 bxe_dma_free(sc, &sc->def_sb_dma); 14973 sc->def_sb = NULL; 14974 bus_dma_tag_destroy(sc->parent_dma_tag); 14975 return (1); 14976 } 14977 14978 sc->eq = (union event_ring_elem * )sc->eq_dma.vaddr; 14979 14980 /*************/ 14981 /* SLOW PATH */ 14982 /*************/ 14983 14984 if (bxe_dma_alloc(sc, sizeof(struct bxe_slowpath), 14985 &sc->sp_dma, "slow path") != 0) { 14986 /* XXX */ 14987 bxe_dma_free(sc, &sc->eq_dma); 14988 sc->eq = NULL; 14989 bxe_dma_free(sc, &sc->def_sb_dma); 14990 sc->def_sb = NULL; 14991 bus_dma_tag_destroy(sc->parent_dma_tag); 14992 return (1); 14993 } 14994 14995 sc->sp = (struct bxe_slowpath *)sc->sp_dma.vaddr; 14996 14997 /*******************/ 14998 /* SLOW PATH QUEUE */ 14999 /*******************/ 15000 15001 if (bxe_dma_alloc(sc, BCM_PAGE_SIZE, 15002 &sc->spq_dma, "slow path queue") != 0) { 15003 /* XXX */ 15004 bxe_dma_free(sc, &sc->sp_dma); 15005 sc->sp = NULL; 15006 bxe_dma_free(sc, &sc->eq_dma); 15007 sc->eq = NULL; 15008 bxe_dma_free(sc, &sc->def_sb_dma); 15009 sc->def_sb = NULL; 15010 bus_dma_tag_destroy(sc->parent_dma_tag); 15011 return (1); 15012 } 15013 15014 sc->spq = (struct eth_spe *)sc->spq_dma.vaddr; 15015 15016 /***************************/ 15017 /* FW DECOMPRESSION BUFFER */ 15018 /***************************/ 15019 15020 if (bxe_dma_alloc(sc, FW_BUF_SIZE, &sc->gz_buf_dma, 15021 "fw decompression buffer") != 0) { 15022 /* XXX */ 15023 bxe_dma_free(sc, &sc->spq_dma); 15024 sc->spq = NULL; 15025 bxe_dma_free(sc, &sc->sp_dma); 15026 sc->sp = NULL; 15027 bxe_dma_free(sc, &sc->eq_dma); 15028 sc->eq = NULL; 15029 bxe_dma_free(sc, &sc->def_sb_dma); 15030 sc->def_sb = NULL; 15031 bus_dma_tag_destroy(sc->parent_dma_tag); 15032 return (1); 15033 } 15034 15035 sc->gz_buf = (void *)sc->gz_buf_dma.vaddr; 15036 15037 if ((sc->gz_strm = 15038 malloc(sizeof(*sc->gz_strm), M_DEVBUF, M_NOWAIT)) == NULL) { 15039 /* XXX */ 15040 bxe_dma_free(sc, &sc->gz_buf_dma); 15041 sc->gz_buf = NULL; 15042 bxe_dma_free(sc, &sc->spq_dma); 15043 sc->spq = NULL; 15044 bxe_dma_free(sc, &sc->sp_dma); 15045 sc->sp = NULL; 15046 bxe_dma_free(sc, &sc->eq_dma); 15047 sc->eq = NULL; 15048 bxe_dma_free(sc, &sc->def_sb_dma); 15049 sc->def_sb = NULL; 15050 bus_dma_tag_destroy(sc->parent_dma_tag); 15051 return (1); 15052 } 15053 15054 /*************/ 15055 /* FASTPATHS */ 15056 /*************/ 15057 15058 /* allocate DMA memory for each fastpath structure */ 15059 for (i = 0; i < sc->num_queues; i++) { 15060 fp = &sc->fp[i]; 15061 fp->sc = sc; 15062 fp->index = i; 15063 15064 /*******************/ 15065 /* FP STATUS BLOCK */ 15066 /*******************/ 15067 15068 snprintf(buf, sizeof(buf), "fp %d status block", i); 15069 if (bxe_dma_alloc(sc, sizeof(union bxe_host_hc_status_block), 15070 &fp->sb_dma, buf) != 0) { 15071 /* XXX unwind and free previous fastpath allocations */ 15072 BLOGE(sc, "Failed to alloc %s\n", buf); 15073 return (1); 15074 } else { 15075 if (CHIP_IS_E2E3(sc)) { 15076 fp->status_block.e2_sb = 15077 (struct host_hc_status_block_e2 *)fp->sb_dma.vaddr; 15078 } else { 15079 fp->status_block.e1x_sb = 15080 (struct host_hc_status_block_e1x *)fp->sb_dma.vaddr; 15081 } 15082 } 15083 15084 /******************/ 15085 /* FP TX BD CHAIN */ 15086 /******************/ 15087 15088 snprintf(buf, sizeof(buf), "fp %d tx bd chain", i); 15089 if (bxe_dma_alloc(sc, (BCM_PAGE_SIZE * TX_BD_NUM_PAGES), 15090 &fp->tx_dma, buf) != 0) { 15091 /* XXX unwind and free previous fastpath allocations */ 15092 BLOGE(sc, "Failed to alloc %s\n", buf); 15093 return (1); 15094 } else { 15095 fp->tx_chain = (union eth_tx_bd_types *)fp->tx_dma.vaddr; 15096 } 15097 15098 /* link together the tx bd chain pages */ 15099 for (j = 1; j <= TX_BD_NUM_PAGES; j++) { 15100 /* index into the tx bd chain array to last entry per page */ 15101 struct eth_tx_next_bd *tx_next_bd = 15102 &fp->tx_chain[TX_BD_TOTAL_PER_PAGE * j - 1].next_bd; 15103 /* point to the next page and wrap from last page */ 15104 busaddr = (fp->tx_dma.paddr + 15105 (BCM_PAGE_SIZE * (j % TX_BD_NUM_PAGES))); 15106 tx_next_bd->addr_hi = htole32(U64_HI(busaddr)); 15107 tx_next_bd->addr_lo = htole32(U64_LO(busaddr)); 15108 } 15109 15110 /******************/ 15111 /* FP RX BD CHAIN */ 15112 /******************/ 15113 15114 snprintf(buf, sizeof(buf), "fp %d rx bd chain", i); 15115 if (bxe_dma_alloc(sc, (BCM_PAGE_SIZE * RX_BD_NUM_PAGES), 15116 &fp->rx_dma, buf) != 0) { 15117 /* XXX unwind and free previous fastpath allocations */ 15118 BLOGE(sc, "Failed to alloc %s\n", buf); 15119 return (1); 15120 } else { 15121 fp->rx_chain = (struct eth_rx_bd *)fp->rx_dma.vaddr; 15122 } 15123 15124 /* link together the rx bd chain pages */ 15125 for (j = 1; j <= RX_BD_NUM_PAGES; j++) { 15126 /* index into the rx bd chain array to last entry per page */ 15127 struct eth_rx_bd *rx_bd = 15128 &fp->rx_chain[RX_BD_TOTAL_PER_PAGE * j - 2]; 15129 /* point to the next page and wrap from last page */ 15130 busaddr = (fp->rx_dma.paddr + 15131 (BCM_PAGE_SIZE * (j % RX_BD_NUM_PAGES))); 15132 rx_bd->addr_hi = htole32(U64_HI(busaddr)); 15133 rx_bd->addr_lo = htole32(U64_LO(busaddr)); 15134 } 15135 15136 /*******************/ 15137 /* FP RX RCQ CHAIN */ 15138 /*******************/ 15139 15140 snprintf(buf, sizeof(buf), "fp %d rcq chain", i); 15141 if (bxe_dma_alloc(sc, (BCM_PAGE_SIZE * RCQ_NUM_PAGES), 15142 &fp->rcq_dma, buf) != 0) { 15143 /* XXX unwind and free previous fastpath allocations */ 15144 BLOGE(sc, "Failed to alloc %s\n", buf); 15145 return (1); 15146 } else { 15147 fp->rcq_chain = (union eth_rx_cqe *)fp->rcq_dma.vaddr; 15148 } 15149 15150 /* link together the rcq chain pages */ 15151 for (j = 1; j <= RCQ_NUM_PAGES; j++) { 15152 /* index into the rcq chain array to last entry per page */ 15153 struct eth_rx_cqe_next_page *rx_cqe_next = 15154 (struct eth_rx_cqe_next_page *) 15155 &fp->rcq_chain[RCQ_TOTAL_PER_PAGE * j - 1]; 15156 /* point to the next page and wrap from last page */ 15157 busaddr = (fp->rcq_dma.paddr + 15158 (BCM_PAGE_SIZE * (j % RCQ_NUM_PAGES))); 15159 rx_cqe_next->addr_hi = htole32(U64_HI(busaddr)); 15160 rx_cqe_next->addr_lo = htole32(U64_LO(busaddr)); 15161 } 15162 15163 /*******************/ 15164 /* FP RX SGE CHAIN */ 15165 /*******************/ 15166 15167 snprintf(buf, sizeof(buf), "fp %d sge chain", i); 15168 if (bxe_dma_alloc(sc, (BCM_PAGE_SIZE * RX_SGE_NUM_PAGES), 15169 &fp->rx_sge_dma, buf) != 0) { 15170 /* XXX unwind and free previous fastpath allocations */ 15171 BLOGE(sc, "Failed to alloc %s\n", buf); 15172 return (1); 15173 } else { 15174 fp->rx_sge_chain = (struct eth_rx_sge *)fp->rx_sge_dma.vaddr; 15175 } 15176 15177 /* link together the sge chain pages */ 15178 for (j = 1; j <= RX_SGE_NUM_PAGES; j++) { 15179 /* index into the rcq chain array to last entry per page */ 15180 struct eth_rx_sge *rx_sge = 15181 &fp->rx_sge_chain[RX_SGE_TOTAL_PER_PAGE * j - 2]; 15182 /* point to the next page and wrap from last page */ 15183 busaddr = (fp->rx_sge_dma.paddr + 15184 (BCM_PAGE_SIZE * (j % RX_SGE_NUM_PAGES))); 15185 rx_sge->addr_hi = htole32(U64_HI(busaddr)); 15186 rx_sge->addr_lo = htole32(U64_LO(busaddr)); 15187 } 15188 15189 /***********************/ 15190 /* FP TX MBUF DMA MAPS */ 15191 /***********************/ 15192 15193 /* set required sizes before mapping to conserve resources */ 15194 if (if_getcapenable(sc->ifp) & (IFCAP_TSO4 | IFCAP_TSO6)) { 15195 max_size = BXE_TSO_MAX_SIZE; 15196 max_segments = BXE_TSO_MAX_SEGMENTS; 15197 max_seg_size = BXE_TSO_MAX_SEG_SIZE; 15198 } else { 15199 max_size = (MCLBYTES * BXE_MAX_SEGMENTS); 15200 max_segments = BXE_MAX_SEGMENTS; 15201 max_seg_size = MCLBYTES; 15202 } 15203 15204 /* create a dma tag for the tx mbufs */ 15205 rc = bus_dma_tag_create(sc->parent_dma_tag, /* parent tag */ 15206 1, /* alignment */ 15207 0, /* boundary limit */ 15208 BUS_SPACE_MAXADDR, /* restricted low */ 15209 BUS_SPACE_MAXADDR, /* restricted hi */ 15210 NULL, /* addr filter() */ 15211 NULL, /* addr filter() arg */ 15212 max_size, /* max map size */ 15213 max_segments, /* num discontinuous */ 15214 max_seg_size, /* max seg size */ 15215 0, /* flags */ 15216 NULL, /* lock() */ 15217 NULL, /* lock() arg */ 15218 &fp->tx_mbuf_tag); /* returned dma tag */ 15219 if (rc != 0) { 15220 /* XXX unwind and free previous fastpath allocations */ 15221 BLOGE(sc, "Failed to create dma tag for " 15222 "'fp %d tx mbufs' (%d)\n", 15223 i, rc); 15224 return (1); 15225 } 15226 15227 /* create dma maps for each of the tx mbuf clusters */ 15228 for (j = 0; j < TX_BD_TOTAL; j++) { 15229 if (bus_dmamap_create(fp->tx_mbuf_tag, 15230 BUS_DMA_NOWAIT, 15231 &fp->tx_mbuf_chain[j].m_map)) { 15232 /* XXX unwind and free previous fastpath allocations */ 15233 BLOGE(sc, "Failed to create dma map for " 15234 "'fp %d tx mbuf %d' (%d)\n", 15235 i, j, rc); 15236 return (1); 15237 } 15238 } 15239 15240 /***********************/ 15241 /* FP RX MBUF DMA MAPS */ 15242 /***********************/ 15243 15244 /* create a dma tag for the rx mbufs */ 15245 rc = bus_dma_tag_create(sc->parent_dma_tag, /* parent tag */ 15246 1, /* alignment */ 15247 0, /* boundary limit */ 15248 BUS_SPACE_MAXADDR, /* restricted low */ 15249 BUS_SPACE_MAXADDR, /* restricted hi */ 15250 NULL, /* addr filter() */ 15251 NULL, /* addr filter() arg */ 15252 MJUM9BYTES, /* max map size */ 15253 1, /* num discontinuous */ 15254 MJUM9BYTES, /* max seg size */ 15255 0, /* flags */ 15256 NULL, /* lock() */ 15257 NULL, /* lock() arg */ 15258 &fp->rx_mbuf_tag); /* returned dma tag */ 15259 if (rc != 0) { 15260 /* XXX unwind and free previous fastpath allocations */ 15261 BLOGE(sc, "Failed to create dma tag for " 15262 "'fp %d rx mbufs' (%d)\n", 15263 i, rc); 15264 return (1); 15265 } 15266 15267 /* create dma maps for each of the rx mbuf clusters */ 15268 for (j = 0; j < RX_BD_TOTAL; j++) { 15269 if (bus_dmamap_create(fp->rx_mbuf_tag, 15270 BUS_DMA_NOWAIT, 15271 &fp->rx_mbuf_chain[j].m_map)) { 15272 /* XXX unwind and free previous fastpath allocations */ 15273 BLOGE(sc, "Failed to create dma map for " 15274 "'fp %d rx mbuf %d' (%d)\n", 15275 i, j, rc); 15276 return (1); 15277 } 15278 } 15279 15280 /* create dma map for the spare rx mbuf cluster */ 15281 if (bus_dmamap_create(fp->rx_mbuf_tag, 15282 BUS_DMA_NOWAIT, 15283 &fp->rx_mbuf_spare_map)) { 15284 /* XXX unwind and free previous fastpath allocations */ 15285 BLOGE(sc, "Failed to create dma map for " 15286 "'fp %d spare rx mbuf' (%d)\n", 15287 i, rc); 15288 return (1); 15289 } 15290 15291 /***************************/ 15292 /* FP RX SGE MBUF DMA MAPS */ 15293 /***************************/ 15294 15295 /* create a dma tag for the rx sge mbufs */ 15296 rc = bus_dma_tag_create(sc->parent_dma_tag, /* parent tag */ 15297 1, /* alignment */ 15298 0, /* boundary limit */ 15299 BUS_SPACE_MAXADDR, /* restricted low */ 15300 BUS_SPACE_MAXADDR, /* restricted hi */ 15301 NULL, /* addr filter() */ 15302 NULL, /* addr filter() arg */ 15303 BCM_PAGE_SIZE, /* max map size */ 15304 1, /* num discontinuous */ 15305 BCM_PAGE_SIZE, /* max seg size */ 15306 0, /* flags */ 15307 NULL, /* lock() */ 15308 NULL, /* lock() arg */ 15309 &fp->rx_sge_mbuf_tag); /* returned dma tag */ 15310 if (rc != 0) { 15311 /* XXX unwind and free previous fastpath allocations */ 15312 BLOGE(sc, "Failed to create dma tag for " 15313 "'fp %d rx sge mbufs' (%d)\n", 15314 i, rc); 15315 return (1); 15316 } 15317 15318 /* create dma maps for the rx sge mbuf clusters */ 15319 for (j = 0; j < RX_SGE_TOTAL; j++) { 15320 if (bus_dmamap_create(fp->rx_sge_mbuf_tag, 15321 BUS_DMA_NOWAIT, 15322 &fp->rx_sge_mbuf_chain[j].m_map)) { 15323 /* XXX unwind and free previous fastpath allocations */ 15324 BLOGE(sc, "Failed to create dma map for " 15325 "'fp %d rx sge mbuf %d' (%d)\n", 15326 i, j, rc); 15327 return (1); 15328 } 15329 } 15330 15331 /* create dma map for the spare rx sge mbuf cluster */ 15332 if (bus_dmamap_create(fp->rx_sge_mbuf_tag, 15333 BUS_DMA_NOWAIT, 15334 &fp->rx_sge_mbuf_spare_map)) { 15335 /* XXX unwind and free previous fastpath allocations */ 15336 BLOGE(sc, "Failed to create dma map for " 15337 "'fp %d spare rx sge mbuf' (%d)\n", 15338 i, rc); 15339 return (1); 15340 } 15341 15342 /***************************/ 15343 /* FP RX TPA MBUF DMA MAPS */ 15344 /***************************/ 15345 15346 /* create dma maps for the rx tpa mbuf clusters */ 15347 max_agg_queues = MAX_AGG_QS(sc); 15348 15349 for (j = 0; j < max_agg_queues; j++) { 15350 if (bus_dmamap_create(fp->rx_mbuf_tag, 15351 BUS_DMA_NOWAIT, 15352 &fp->rx_tpa_info[j].bd.m_map)) { 15353 /* XXX unwind and free previous fastpath allocations */ 15354 BLOGE(sc, "Failed to create dma map for " 15355 "'fp %d rx tpa mbuf %d' (%d)\n", 15356 i, j, rc); 15357 return (1); 15358 } 15359 } 15360 15361 /* create dma map for the spare rx tpa mbuf cluster */ 15362 if (bus_dmamap_create(fp->rx_mbuf_tag, 15363 BUS_DMA_NOWAIT, 15364 &fp->rx_tpa_info_mbuf_spare_map)) { 15365 /* XXX unwind and free previous fastpath allocations */ 15366 BLOGE(sc, "Failed to create dma map for " 15367 "'fp %d spare rx tpa mbuf' (%d)\n", 15368 i, rc); 15369 return (1); 15370 } 15371 15372 bxe_init_sge_ring_bit_mask(fp); 15373 } 15374 15375 return (0); 15376 } 15377 15378 static void 15379 bxe_free_hsi_mem(struct bxe_softc *sc) 15380 { 15381 struct bxe_fastpath *fp; 15382 int max_agg_queues; 15383 int i, j; 15384 15385 if (sc->parent_dma_tag == NULL) { 15386 return; /* assume nothing was allocated */ 15387 } 15388 15389 for (i = 0; i < sc->num_queues; i++) { 15390 fp = &sc->fp[i]; 15391 15392 /*******************/ 15393 /* FP STATUS BLOCK */ 15394 /*******************/ 15395 15396 bxe_dma_free(sc, &fp->sb_dma); 15397 memset(&fp->status_block, 0, sizeof(fp->status_block)); 15398 15399 /******************/ 15400 /* FP TX BD CHAIN */ 15401 /******************/ 15402 15403 bxe_dma_free(sc, &fp->tx_dma); 15404 fp->tx_chain = NULL; 15405 15406 /******************/ 15407 /* FP RX BD CHAIN */ 15408 /******************/ 15409 15410 bxe_dma_free(sc, &fp->rx_dma); 15411 fp->rx_chain = NULL; 15412 15413 /*******************/ 15414 /* FP RX RCQ CHAIN */ 15415 /*******************/ 15416 15417 bxe_dma_free(sc, &fp->rcq_dma); 15418 fp->rcq_chain = NULL; 15419 15420 /*******************/ 15421 /* FP RX SGE CHAIN */ 15422 /*******************/ 15423 15424 bxe_dma_free(sc, &fp->rx_sge_dma); 15425 fp->rx_sge_chain = NULL; 15426 15427 /***********************/ 15428 /* FP TX MBUF DMA MAPS */ 15429 /***********************/ 15430 15431 if (fp->tx_mbuf_tag != NULL) { 15432 for (j = 0; j < TX_BD_TOTAL; j++) { 15433 if (fp->tx_mbuf_chain[j].m_map != NULL) { 15434 bus_dmamap_unload(fp->tx_mbuf_tag, 15435 fp->tx_mbuf_chain[j].m_map); 15436 bus_dmamap_destroy(fp->tx_mbuf_tag, 15437 fp->tx_mbuf_chain[j].m_map); 15438 } 15439 } 15440 15441 bus_dma_tag_destroy(fp->tx_mbuf_tag); 15442 fp->tx_mbuf_tag = NULL; 15443 } 15444 15445 /***********************/ 15446 /* FP RX MBUF DMA MAPS */ 15447 /***********************/ 15448 15449 if (fp->rx_mbuf_tag != NULL) { 15450 for (j = 0; j < RX_BD_TOTAL; j++) { 15451 if (fp->rx_mbuf_chain[j].m_map != NULL) { 15452 bus_dmamap_unload(fp->rx_mbuf_tag, 15453 fp->rx_mbuf_chain[j].m_map); 15454 bus_dmamap_destroy(fp->rx_mbuf_tag, 15455 fp->rx_mbuf_chain[j].m_map); 15456 } 15457 } 15458 15459 if (fp->rx_mbuf_spare_map != NULL) { 15460 bus_dmamap_unload(fp->rx_mbuf_tag, fp->rx_mbuf_spare_map); 15461 bus_dmamap_destroy(fp->rx_mbuf_tag, fp->rx_mbuf_spare_map); 15462 } 15463 15464 /***************************/ 15465 /* FP RX TPA MBUF DMA MAPS */ 15466 /***************************/ 15467 15468 max_agg_queues = MAX_AGG_QS(sc); 15469 15470 for (j = 0; j < max_agg_queues; j++) { 15471 if (fp->rx_tpa_info[j].bd.m_map != NULL) { 15472 bus_dmamap_unload(fp->rx_mbuf_tag, 15473 fp->rx_tpa_info[j].bd.m_map); 15474 bus_dmamap_destroy(fp->rx_mbuf_tag, 15475 fp->rx_tpa_info[j].bd.m_map); 15476 } 15477 } 15478 15479 if (fp->rx_tpa_info_mbuf_spare_map != NULL) { 15480 bus_dmamap_unload(fp->rx_mbuf_tag, 15481 fp->rx_tpa_info_mbuf_spare_map); 15482 bus_dmamap_destroy(fp->rx_mbuf_tag, 15483 fp->rx_tpa_info_mbuf_spare_map); 15484 } 15485 15486 bus_dma_tag_destroy(fp->rx_mbuf_tag); 15487 fp->rx_mbuf_tag = NULL; 15488 } 15489 15490 /***************************/ 15491 /* FP RX SGE MBUF DMA MAPS */ 15492 /***************************/ 15493 15494 if (fp->rx_sge_mbuf_tag != NULL) { 15495 for (j = 0; j < RX_SGE_TOTAL; j++) { 15496 if (fp->rx_sge_mbuf_chain[j].m_map != NULL) { 15497 bus_dmamap_unload(fp->rx_sge_mbuf_tag, 15498 fp->rx_sge_mbuf_chain[j].m_map); 15499 bus_dmamap_destroy(fp->rx_sge_mbuf_tag, 15500 fp->rx_sge_mbuf_chain[j].m_map); 15501 } 15502 } 15503 15504 if (fp->rx_sge_mbuf_spare_map != NULL) { 15505 bus_dmamap_unload(fp->rx_sge_mbuf_tag, 15506 fp->rx_sge_mbuf_spare_map); 15507 bus_dmamap_destroy(fp->rx_sge_mbuf_tag, 15508 fp->rx_sge_mbuf_spare_map); 15509 } 15510 15511 bus_dma_tag_destroy(fp->rx_sge_mbuf_tag); 15512 fp->rx_sge_mbuf_tag = NULL; 15513 } 15514 } 15515 15516 /***************************/ 15517 /* FW DECOMPRESSION BUFFER */ 15518 /***************************/ 15519 15520 bxe_dma_free(sc, &sc->gz_buf_dma); 15521 sc->gz_buf = NULL; 15522 free(sc->gz_strm, M_DEVBUF); 15523 sc->gz_strm = NULL; 15524 15525 /*******************/ 15526 /* SLOW PATH QUEUE */ 15527 /*******************/ 15528 15529 bxe_dma_free(sc, &sc->spq_dma); 15530 sc->spq = NULL; 15531 15532 /*************/ 15533 /* SLOW PATH */ 15534 /*************/ 15535 15536 bxe_dma_free(sc, &sc->sp_dma); 15537 sc->sp = NULL; 15538 15539 /***************/ 15540 /* EVENT QUEUE */ 15541 /***************/ 15542 15543 bxe_dma_free(sc, &sc->eq_dma); 15544 sc->eq = NULL; 15545 15546 /************************/ 15547 /* DEFAULT STATUS BLOCK */ 15548 /************************/ 15549 15550 bxe_dma_free(sc, &sc->def_sb_dma); 15551 sc->def_sb = NULL; 15552 15553 bus_dma_tag_destroy(sc->parent_dma_tag); 15554 sc->parent_dma_tag = NULL; 15555 } 15556 15557 /* 15558 * Previous driver DMAE transaction may have occurred when pre-boot stage 15559 * ended and boot began. This would invalidate the addresses of the 15560 * transaction, resulting in was-error bit set in the PCI causing all 15561 * hw-to-host PCIe transactions to timeout. If this happened we want to clear 15562 * the interrupt which detected this from the pglueb and the was-done bit 15563 */ 15564 static void 15565 bxe_prev_interrupted_dmae(struct bxe_softc *sc) 15566 { 15567 uint32_t val; 15568 15569 if (!CHIP_IS_E1x(sc)) { 15570 val = REG_RD(sc, PGLUE_B_REG_PGLUE_B_INT_STS); 15571 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN) { 15572 BLOGD(sc, DBG_LOAD, 15573 "Clearing 'was-error' bit that was set in pglueb"); 15574 REG_WR(sc, PGLUE_B_REG_WAS_ERROR_PF_7_0_CLR, 1 << SC_FUNC(sc)); 15575 } 15576 } 15577 } 15578 15579 static int 15580 bxe_prev_mcp_done(struct bxe_softc *sc) 15581 { 15582 uint32_t rc = bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_DONE, 15583 DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET); 15584 if (!rc) { 15585 BLOGE(sc, "MCP response failure, aborting\n"); 15586 return (-1); 15587 } 15588 15589 return (0); 15590 } 15591 15592 static struct bxe_prev_list_node * 15593 bxe_prev_path_get_entry(struct bxe_softc *sc) 15594 { 15595 struct bxe_prev_list_node *tmp; 15596 15597 LIST_FOREACH(tmp, &bxe_prev_list, node) { 15598 if ((sc->pcie_bus == tmp->bus) && 15599 (sc->pcie_device == tmp->slot) && 15600 (SC_PATH(sc) == tmp->path)) { 15601 return (tmp); 15602 } 15603 } 15604 15605 return (NULL); 15606 } 15607 15608 static uint8_t 15609 bxe_prev_is_path_marked(struct bxe_softc *sc) 15610 { 15611 struct bxe_prev_list_node *tmp; 15612 int rc = FALSE; 15613 15614 mtx_lock(&bxe_prev_mtx); 15615 15616 tmp = bxe_prev_path_get_entry(sc); 15617 if (tmp) { 15618 if (tmp->aer) { 15619 BLOGD(sc, DBG_LOAD, 15620 "Path %d/%d/%d was marked by AER\n", 15621 sc->pcie_bus, sc->pcie_device, SC_PATH(sc)); 15622 } else { 15623 rc = TRUE; 15624 BLOGD(sc, DBG_LOAD, 15625 "Path %d/%d/%d was already cleaned from previous drivers\n", 15626 sc->pcie_bus, sc->pcie_device, SC_PATH(sc)); 15627 } 15628 } 15629 15630 mtx_unlock(&bxe_prev_mtx); 15631 15632 return (rc); 15633 } 15634 15635 static int 15636 bxe_prev_mark_path(struct bxe_softc *sc, 15637 uint8_t after_undi) 15638 { 15639 struct bxe_prev_list_node *tmp; 15640 15641 mtx_lock(&bxe_prev_mtx); 15642 15643 /* Check whether the entry for this path already exists */ 15644 tmp = bxe_prev_path_get_entry(sc); 15645 if (tmp) { 15646 if (!tmp->aer) { 15647 BLOGD(sc, DBG_LOAD, 15648 "Re-marking AER in path %d/%d/%d\n", 15649 sc->pcie_bus, sc->pcie_device, SC_PATH(sc)); 15650 } else { 15651 BLOGD(sc, DBG_LOAD, 15652 "Removing AER indication from path %d/%d/%d\n", 15653 sc->pcie_bus, sc->pcie_device, SC_PATH(sc)); 15654 tmp->aer = 0; 15655 } 15656 15657 mtx_unlock(&bxe_prev_mtx); 15658 return (0); 15659 } 15660 15661 mtx_unlock(&bxe_prev_mtx); 15662 15663 /* Create an entry for this path and add it */ 15664 tmp = malloc(sizeof(struct bxe_prev_list_node), M_DEVBUF, 15665 (M_NOWAIT | M_ZERO)); 15666 if (!tmp) { 15667 BLOGE(sc, "Failed to allocate 'bxe_prev_list_node'\n"); 15668 return (-1); 15669 } 15670 15671 tmp->bus = sc->pcie_bus; 15672 tmp->slot = sc->pcie_device; 15673 tmp->path = SC_PATH(sc); 15674 tmp->aer = 0; 15675 tmp->undi = after_undi ? (1 << SC_PORT(sc)) : 0; 15676 15677 mtx_lock(&bxe_prev_mtx); 15678 15679 BLOGD(sc, DBG_LOAD, 15680 "Marked path %d/%d/%d - finished previous unload\n", 15681 sc->pcie_bus, sc->pcie_device, SC_PATH(sc)); 15682 LIST_INSERT_HEAD(&bxe_prev_list, tmp, node); 15683 15684 mtx_unlock(&bxe_prev_mtx); 15685 15686 return (0); 15687 } 15688 15689 static int 15690 bxe_do_flr(struct bxe_softc *sc) 15691 { 15692 int i; 15693 15694 /* only E2 and onwards support FLR */ 15695 if (CHIP_IS_E1x(sc)) { 15696 BLOGD(sc, DBG_LOAD, "FLR not supported in E1/E1H\n"); 15697 return (-1); 15698 } 15699 15700 /* only bootcode REQ_BC_VER_4_INITIATE_FLR and onwards support flr */ 15701 if (sc->devinfo.bc_ver < REQ_BC_VER_4_INITIATE_FLR) { 15702 BLOGD(sc, DBG_LOAD, "FLR not supported by BC_VER: 0x%08x\n", 15703 sc->devinfo.bc_ver); 15704 return (-1); 15705 } 15706 15707 /* Wait for Transaction Pending bit clean */ 15708 for (i = 0; i < 4; i++) { 15709 if (i) { 15710 DELAY(((1 << (i - 1)) * 100) * 1000); 15711 } 15712 15713 if (!bxe_is_pcie_pending(sc)) { 15714 goto clear; 15715 } 15716 } 15717 15718 BLOGE(sc, "PCIE transaction is not cleared, " 15719 "proceeding with reset anyway\n"); 15720 15721 clear: 15722 15723 BLOGD(sc, DBG_LOAD, "Initiating FLR\n"); 15724 bxe_fw_command(sc, DRV_MSG_CODE_INITIATE_FLR, 0); 15725 15726 return (0); 15727 } 15728 15729 struct bxe_mac_vals { 15730 uint32_t xmac_addr; 15731 uint32_t xmac_val; 15732 uint32_t emac_addr; 15733 uint32_t emac_val; 15734 uint32_t umac_addr; 15735 uint32_t umac_val; 15736 uint32_t bmac_addr; 15737 uint32_t bmac_val[2]; 15738 }; 15739 15740 static void 15741 bxe_prev_unload_close_mac(struct bxe_softc *sc, 15742 struct bxe_mac_vals *vals) 15743 { 15744 uint32_t val, base_addr, offset, mask, reset_reg; 15745 uint8_t mac_stopped = FALSE; 15746 uint8_t port = SC_PORT(sc); 15747 uint32_t wb_data[2]; 15748 15749 /* reset addresses as they also mark which values were changed */ 15750 vals->bmac_addr = 0; 15751 vals->umac_addr = 0; 15752 vals->xmac_addr = 0; 15753 vals->emac_addr = 0; 15754 15755 reset_reg = REG_RD(sc, MISC_REG_RESET_REG_2); 15756 15757 if (!CHIP_IS_E3(sc)) { 15758 val = REG_RD(sc, NIG_REG_BMAC0_REGS_OUT_EN + port * 4); 15759 mask = MISC_REGISTERS_RESET_REG_2_RST_BMAC0 << port; 15760 if ((mask & reset_reg) && val) { 15761 BLOGD(sc, DBG_LOAD, "Disable BMAC Rx\n"); 15762 base_addr = SC_PORT(sc) ? NIG_REG_INGRESS_BMAC1_MEM 15763 : NIG_REG_INGRESS_BMAC0_MEM; 15764 offset = CHIP_IS_E2(sc) ? BIGMAC2_REGISTER_BMAC_CONTROL 15765 : BIGMAC_REGISTER_BMAC_CONTROL; 15766 15767 /* 15768 * use rd/wr since we cannot use dmae. This is safe 15769 * since MCP won't access the bus due to the request 15770 * to unload, and no function on the path can be 15771 * loaded at this time. 15772 */ 15773 wb_data[0] = REG_RD(sc, base_addr + offset); 15774 wb_data[1] = REG_RD(sc, base_addr + offset + 0x4); 15775 vals->bmac_addr = base_addr + offset; 15776 vals->bmac_val[0] = wb_data[0]; 15777 vals->bmac_val[1] = wb_data[1]; 15778 wb_data[0] &= ~ELINK_BMAC_CONTROL_RX_ENABLE; 15779 REG_WR(sc, vals->bmac_addr, wb_data[0]); 15780 REG_WR(sc, vals->bmac_addr + 0x4, wb_data[1]); 15781 } 15782 15783 BLOGD(sc, DBG_LOAD, "Disable EMAC Rx\n"); 15784 vals->emac_addr = NIG_REG_NIG_EMAC0_EN + SC_PORT(sc)*4; 15785 vals->emac_val = REG_RD(sc, vals->emac_addr); 15786 REG_WR(sc, vals->emac_addr, 0); 15787 mac_stopped = TRUE; 15788 } else { 15789 if (reset_reg & MISC_REGISTERS_RESET_REG_2_XMAC) { 15790 BLOGD(sc, DBG_LOAD, "Disable XMAC Rx\n"); 15791 base_addr = SC_PORT(sc) ? GRCBASE_XMAC1 : GRCBASE_XMAC0; 15792 val = REG_RD(sc, base_addr + XMAC_REG_PFC_CTRL_HI); 15793 REG_WR(sc, base_addr + XMAC_REG_PFC_CTRL_HI, val & ~(1 << 1)); 15794 REG_WR(sc, base_addr + XMAC_REG_PFC_CTRL_HI, val | (1 << 1)); 15795 vals->xmac_addr = base_addr + XMAC_REG_CTRL; 15796 vals->xmac_val = REG_RD(sc, vals->xmac_addr); 15797 REG_WR(sc, vals->xmac_addr, 0); 15798 mac_stopped = TRUE; 15799 } 15800 15801 mask = MISC_REGISTERS_RESET_REG_2_UMAC0 << port; 15802 if (mask & reset_reg) { 15803 BLOGD(sc, DBG_LOAD, "Disable UMAC Rx\n"); 15804 base_addr = SC_PORT(sc) ? GRCBASE_UMAC1 : GRCBASE_UMAC0; 15805 vals->umac_addr = base_addr + UMAC_REG_COMMAND_CONFIG; 15806 vals->umac_val = REG_RD(sc, vals->umac_addr); 15807 REG_WR(sc, vals->umac_addr, 0); 15808 mac_stopped = TRUE; 15809 } 15810 } 15811 15812 if (mac_stopped) { 15813 DELAY(20000); 15814 } 15815 } 15816 15817 #define BXE_PREV_UNDI_PROD_ADDR(p) (BAR_TSTRORM_INTMEM + 0x1508 + ((p) << 4)) 15818 #define BXE_PREV_UNDI_RCQ(val) ((val) & 0xffff) 15819 #define BXE_PREV_UNDI_BD(val) ((val) >> 16 & 0xffff) 15820 #define BXE_PREV_UNDI_PROD(rcq, bd) ((bd) << 16 | (rcq)) 15821 15822 static void 15823 bxe_prev_unload_undi_inc(struct bxe_softc *sc, 15824 uint8_t port, 15825 uint8_t inc) 15826 { 15827 uint16_t rcq, bd; 15828 uint32_t tmp_reg = REG_RD(sc, BXE_PREV_UNDI_PROD_ADDR(port)); 15829 15830 rcq = BXE_PREV_UNDI_RCQ(tmp_reg) + inc; 15831 bd = BXE_PREV_UNDI_BD(tmp_reg) + inc; 15832 15833 tmp_reg = BXE_PREV_UNDI_PROD(rcq, bd); 15834 REG_WR(sc, BXE_PREV_UNDI_PROD_ADDR(port), tmp_reg); 15835 15836 BLOGD(sc, DBG_LOAD, 15837 "UNDI producer [%d] rings bd -> 0x%04x, rcq -> 0x%04x\n", 15838 port, bd, rcq); 15839 } 15840 15841 static int 15842 bxe_prev_unload_common(struct bxe_softc *sc) 15843 { 15844 uint32_t reset_reg, tmp_reg = 0, rc; 15845 uint8_t prev_undi = FALSE; 15846 struct bxe_mac_vals mac_vals; 15847 uint32_t timer_count = 1000; 15848 uint32_t prev_brb; 15849 15850 /* 15851 * It is possible a previous function received 'common' answer, 15852 * but hasn't loaded yet, therefore creating a scenario of 15853 * multiple functions receiving 'common' on the same path. 15854 */ 15855 BLOGD(sc, DBG_LOAD, "Common unload Flow\n"); 15856 15857 memset(&mac_vals, 0, sizeof(mac_vals)); 15858 15859 if (bxe_prev_is_path_marked(sc)) { 15860 return (bxe_prev_mcp_done(sc)); 15861 } 15862 15863 reset_reg = REG_RD(sc, MISC_REG_RESET_REG_1); 15864 15865 /* Reset should be performed after BRB is emptied */ 15866 if (reset_reg & MISC_REGISTERS_RESET_REG_1_RST_BRB1) { 15867 /* Close the MAC Rx to prevent BRB from filling up */ 15868 bxe_prev_unload_close_mac(sc, &mac_vals); 15869 15870 /* close LLH filters towards the BRB */ 15871 elink_set_rx_filter(&sc->link_params, 0); 15872 15873 /* 15874 * Check if the UNDI driver was previously loaded. 15875 * UNDI driver initializes CID offset for normal bell to 0x7 15876 */ 15877 if (reset_reg & MISC_REGISTERS_RESET_REG_1_RST_DORQ) { 15878 tmp_reg = REG_RD(sc, DORQ_REG_NORM_CID_OFST); 15879 if (tmp_reg == 0x7) { 15880 BLOGD(sc, DBG_LOAD, "UNDI previously loaded\n"); 15881 prev_undi = TRUE; 15882 /* clear the UNDI indication */ 15883 REG_WR(sc, DORQ_REG_NORM_CID_OFST, 0); 15884 /* clear possible idle check errors */ 15885 REG_RD(sc, NIG_REG_NIG_INT_STS_CLR_0); 15886 } 15887 } 15888 15889 /* wait until BRB is empty */ 15890 tmp_reg = REG_RD(sc, BRB1_REG_NUM_OF_FULL_BLOCKS); 15891 while (timer_count) { 15892 prev_brb = tmp_reg; 15893 15894 tmp_reg = REG_RD(sc, BRB1_REG_NUM_OF_FULL_BLOCKS); 15895 if (!tmp_reg) { 15896 break; 15897 } 15898 15899 BLOGD(sc, DBG_LOAD, "BRB still has 0x%08x\n", tmp_reg); 15900 15901 /* reset timer as long as BRB actually gets emptied */ 15902 if (prev_brb > tmp_reg) { 15903 timer_count = 1000; 15904 } else { 15905 timer_count--; 15906 } 15907 15908 /* If UNDI resides in memory, manually increment it */ 15909 if (prev_undi) { 15910 bxe_prev_unload_undi_inc(sc, SC_PORT(sc), 1); 15911 } 15912 15913 DELAY(10); 15914 } 15915 15916 if (!timer_count) { 15917 BLOGE(sc, "Failed to empty BRB\n"); 15918 } 15919 } 15920 15921 /* No packets are in the pipeline, path is ready for reset */ 15922 bxe_reset_common(sc); 15923 15924 if (mac_vals.xmac_addr) { 15925 REG_WR(sc, mac_vals.xmac_addr, mac_vals.xmac_val); 15926 } 15927 if (mac_vals.umac_addr) { 15928 REG_WR(sc, mac_vals.umac_addr, mac_vals.umac_val); 15929 } 15930 if (mac_vals.emac_addr) { 15931 REG_WR(sc, mac_vals.emac_addr, mac_vals.emac_val); 15932 } 15933 if (mac_vals.bmac_addr) { 15934 REG_WR(sc, mac_vals.bmac_addr, mac_vals.bmac_val[0]); 15935 REG_WR(sc, mac_vals.bmac_addr + 4, mac_vals.bmac_val[1]); 15936 } 15937 15938 rc = bxe_prev_mark_path(sc, prev_undi); 15939 if (rc) { 15940 bxe_prev_mcp_done(sc); 15941 return (rc); 15942 } 15943 15944 return (bxe_prev_mcp_done(sc)); 15945 } 15946 15947 static int 15948 bxe_prev_unload_uncommon(struct bxe_softc *sc) 15949 { 15950 int rc; 15951 15952 BLOGD(sc, DBG_LOAD, "Uncommon unload Flow\n"); 15953 15954 /* Test if previous unload process was already finished for this path */ 15955 if (bxe_prev_is_path_marked(sc)) { 15956 return (bxe_prev_mcp_done(sc)); 15957 } 15958 15959 BLOGD(sc, DBG_LOAD, "Path is unmarked\n"); 15960 15961 /* 15962 * If function has FLR capabilities, and existing FW version matches 15963 * the one required, then FLR will be sufficient to clean any residue 15964 * left by previous driver 15965 */ 15966 rc = bxe_nic_load_analyze_req(sc, FW_MSG_CODE_DRV_LOAD_FUNCTION); 15967 if (!rc) { 15968 /* fw version is good */ 15969 BLOGD(sc, DBG_LOAD, "FW version matches our own, attempting FLR\n"); 15970 rc = bxe_do_flr(sc); 15971 } 15972 15973 if (!rc) { 15974 /* FLR was performed */ 15975 BLOGD(sc, DBG_LOAD, "FLR successful\n"); 15976 return (0); 15977 } 15978 15979 BLOGD(sc, DBG_LOAD, "Could not FLR\n"); 15980 15981 /* Close the MCP request, return failure*/ 15982 rc = bxe_prev_mcp_done(sc); 15983 if (!rc) { 15984 rc = BXE_PREV_WAIT_NEEDED; 15985 } 15986 15987 return (rc); 15988 } 15989 15990 static int 15991 bxe_prev_unload(struct bxe_softc *sc) 15992 { 15993 int time_counter = 10; 15994 uint32_t fw, hw_lock_reg, hw_lock_val; 15995 uint32_t rc = 0; 15996 15997 /* 15998 * Clear HW from errors which may have resulted from an interrupted 15999 * DMAE transaction. 16000 */ 16001 bxe_prev_interrupted_dmae(sc); 16002 16003 /* Release previously held locks */ 16004 hw_lock_reg = 16005 (SC_FUNC(sc) <= 5) ? 16006 (MISC_REG_DRIVER_CONTROL_1 + SC_FUNC(sc) * 8) : 16007 (MISC_REG_DRIVER_CONTROL_7 + (SC_FUNC(sc) - 6) * 8); 16008 16009 hw_lock_val = (REG_RD(sc, hw_lock_reg)); 16010 if (hw_lock_val) { 16011 if (hw_lock_val & HW_LOCK_RESOURCE_NVRAM) { 16012 BLOGD(sc, DBG_LOAD, "Releasing previously held NVRAM lock\n"); 16013 REG_WR(sc, MCP_REG_MCPR_NVM_SW_ARB, 16014 (MCPR_NVM_SW_ARB_ARB_REQ_CLR1 << SC_PORT(sc))); 16015 } 16016 BLOGD(sc, DBG_LOAD, "Releasing previously held HW lock\n"); 16017 REG_WR(sc, hw_lock_reg, 0xffffffff); 16018 } else { 16019 BLOGD(sc, DBG_LOAD, "No need to release HW/NVRAM locks\n"); 16020 } 16021 16022 if (MCPR_ACCESS_LOCK_LOCK & REG_RD(sc, MCP_REG_MCPR_ACCESS_LOCK)) { 16023 BLOGD(sc, DBG_LOAD, "Releasing previously held ALR\n"); 16024 REG_WR(sc, MCP_REG_MCPR_ACCESS_LOCK, 0); 16025 } 16026 16027 do { 16028 /* Lock MCP using an unload request */ 16029 fw = bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS, 0); 16030 if (!fw) { 16031 BLOGE(sc, "MCP response failure, aborting\n"); 16032 rc = -1; 16033 break; 16034 } 16035 16036 if (fw == FW_MSG_CODE_DRV_UNLOAD_COMMON) { 16037 rc = bxe_prev_unload_common(sc); 16038 break; 16039 } 16040 16041 /* non-common reply from MCP night require looping */ 16042 rc = bxe_prev_unload_uncommon(sc); 16043 if (rc != BXE_PREV_WAIT_NEEDED) { 16044 break; 16045 } 16046 16047 DELAY(20000); 16048 } while (--time_counter); 16049 16050 if (!time_counter || rc) { 16051 BLOGE(sc, "Failed to unload previous driver!\n"); 16052 rc = -1; 16053 } 16054 16055 return (rc); 16056 } 16057 16058 void 16059 bxe_dcbx_set_state(struct bxe_softc *sc, 16060 uint8_t dcb_on, 16061 uint32_t dcbx_enabled) 16062 { 16063 if (!CHIP_IS_E1x(sc)) { 16064 sc->dcb_state = dcb_on; 16065 sc->dcbx_enabled = dcbx_enabled; 16066 } else { 16067 sc->dcb_state = FALSE; 16068 sc->dcbx_enabled = BXE_DCBX_ENABLED_INVALID; 16069 } 16070 BLOGD(sc, DBG_LOAD, 16071 "DCB state [%s:%s]\n", 16072 dcb_on ? "ON" : "OFF", 16073 (dcbx_enabled == BXE_DCBX_ENABLED_OFF) ? "user-mode" : 16074 (dcbx_enabled == BXE_DCBX_ENABLED_ON_NEG_OFF) ? "on-chip static" : 16075 (dcbx_enabled == BXE_DCBX_ENABLED_ON_NEG_ON) ? 16076 "on-chip with negotiation" : "invalid"); 16077 } 16078 16079 /* must be called after sriov-enable */ 16080 static int 16081 bxe_set_qm_cid_count(struct bxe_softc *sc) 16082 { 16083 int cid_count = BXE_L2_MAX_CID(sc); 16084 16085 if (IS_SRIOV(sc)) { 16086 cid_count += BXE_VF_CIDS; 16087 } 16088 16089 if (CNIC_SUPPORT(sc)) { 16090 cid_count += CNIC_CID_MAX; 16091 } 16092 16093 return (roundup(cid_count, QM_CID_ROUND)); 16094 } 16095 16096 static void 16097 bxe_init_multi_cos(struct bxe_softc *sc) 16098 { 16099 int pri, cos; 16100 16101 uint32_t pri_map = 0; /* XXX change to user config */ 16102 16103 for (pri = 0; pri < BXE_MAX_PRIORITY; pri++) { 16104 cos = ((pri_map & (0xf << (pri * 4))) >> (pri * 4)); 16105 if (cos < sc->max_cos) { 16106 sc->prio_to_cos[pri] = cos; 16107 } else { 16108 BLOGW(sc, "Invalid COS %d for priority %d " 16109 "(max COS is %d), setting to 0\n", 16110 cos, pri, (sc->max_cos - 1)); 16111 sc->prio_to_cos[pri] = 0; 16112 } 16113 } 16114 } 16115 16116 static int 16117 bxe_sysctl_state(SYSCTL_HANDLER_ARGS) 16118 { 16119 struct bxe_softc *sc; 16120 int error, result; 16121 16122 result = 0; 16123 error = sysctl_handle_int(oidp, &result, 0, req); 16124 16125 if (error || !req->newptr) { 16126 return (error); 16127 } 16128 16129 if (result == 1) { 16130 sc = (struct bxe_softc *)arg1; 16131 BLOGI(sc, "... dumping driver state ...\n"); 16132 /* XXX */ 16133 } 16134 16135 return (error); 16136 } 16137 16138 static int 16139 bxe_sysctl_eth_stat(SYSCTL_HANDLER_ARGS) 16140 { 16141 struct bxe_softc *sc = (struct bxe_softc *)arg1; 16142 uint32_t *eth_stats = (uint32_t *)&sc->eth_stats; 16143 uint32_t *offset; 16144 uint64_t value = 0; 16145 int index = (int)arg2; 16146 16147 if (index >= BXE_NUM_ETH_STATS) { 16148 BLOGE(sc, "bxe_eth_stats index out of range (%d)\n", index); 16149 return (-1); 16150 } 16151 16152 offset = (eth_stats + bxe_eth_stats_arr[index].offset); 16153 16154 switch (bxe_eth_stats_arr[index].size) { 16155 case 4: 16156 value = (uint64_t)*offset; 16157 break; 16158 case 8: 16159 value = HILO_U64(*offset, *(offset + 1)); 16160 break; 16161 default: 16162 BLOGE(sc, "Invalid bxe_eth_stats size (index=%d size=%d)\n", 16163 index, bxe_eth_stats_arr[index].size); 16164 return (-1); 16165 } 16166 16167 return (sysctl_handle_64(oidp, &value, 0, req)); 16168 } 16169 16170 static int 16171 bxe_sysctl_eth_q_stat(SYSCTL_HANDLER_ARGS) 16172 { 16173 struct bxe_softc *sc = (struct bxe_softc *)arg1; 16174 uint32_t *eth_stats; 16175 uint32_t *offset; 16176 uint64_t value = 0; 16177 uint32_t q_stat = (uint32_t)arg2; 16178 uint32_t fp_index = ((q_stat >> 16) & 0xffff); 16179 uint32_t index = (q_stat & 0xffff); 16180 16181 eth_stats = (uint32_t *)&sc->fp[fp_index].eth_q_stats; 16182 16183 if (index >= BXE_NUM_ETH_Q_STATS) { 16184 BLOGE(sc, "bxe_eth_q_stats index out of range (%d)\n", index); 16185 return (-1); 16186 } 16187 16188 offset = (eth_stats + bxe_eth_q_stats_arr[index].offset); 16189 16190 switch (bxe_eth_q_stats_arr[index].size) { 16191 case 4: 16192 value = (uint64_t)*offset; 16193 break; 16194 case 8: 16195 value = HILO_U64(*offset, *(offset + 1)); 16196 break; 16197 default: 16198 BLOGE(sc, "Invalid bxe_eth_q_stats size (index=%d size=%d)\n", 16199 index, bxe_eth_q_stats_arr[index].size); 16200 return (-1); 16201 } 16202 16203 return (sysctl_handle_64(oidp, &value, 0, req)); 16204 } 16205 16206 static void 16207 bxe_add_sysctls(struct bxe_softc *sc) 16208 { 16209 struct sysctl_ctx_list *ctx; 16210 struct sysctl_oid_list *children; 16211 struct sysctl_oid *queue_top, *queue; 16212 struct sysctl_oid_list *queue_top_children, *queue_children; 16213 char queue_num_buf[32]; 16214 uint32_t q_stat; 16215 int i, j; 16216 16217 ctx = device_get_sysctl_ctx(sc->dev); 16218 children = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev)); 16219 16220 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "version", 16221 CTLFLAG_RD, BXE_DRIVER_VERSION, 0, 16222 "version"); 16223 16224 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "bc_version", 16225 CTLFLAG_RD, &sc->devinfo.bc_ver_str, 0, 16226 "bootcode version"); 16227 16228 snprintf(sc->fw_ver_str, sizeof(sc->fw_ver_str), "%d.%d.%d.%d", 16229 BCM_5710_FW_MAJOR_VERSION, 16230 BCM_5710_FW_MINOR_VERSION, 16231 BCM_5710_FW_REVISION_VERSION, 16232 BCM_5710_FW_ENGINEERING_VERSION); 16233 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "fw_version", 16234 CTLFLAG_RD, &sc->fw_ver_str, 0, 16235 "firmware version"); 16236 16237 snprintf(sc->mf_mode_str, sizeof(sc->mf_mode_str), "%s", 16238 ((sc->devinfo.mf_info.mf_mode == SINGLE_FUNCTION) ? "Single" : 16239 (sc->devinfo.mf_info.mf_mode == MULTI_FUNCTION_SD) ? "MF-SD" : 16240 (sc->devinfo.mf_info.mf_mode == MULTI_FUNCTION_SI) ? "MF-SI" : 16241 (sc->devinfo.mf_info.mf_mode == MULTI_FUNCTION_AFEX) ? "MF-AFEX" : 16242 "Unknown")); 16243 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "mf_mode", 16244 CTLFLAG_RD, &sc->mf_mode_str, 0, 16245 "multifunction mode"); 16246 16247 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "mf_vnics", 16248 CTLFLAG_RD, &sc->devinfo.mf_info.vnics_per_port, 0, 16249 "multifunction vnics per port"); 16250 16251 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "mac_addr", 16252 CTLFLAG_RD, &sc->mac_addr_str, 0, 16253 "mac address"); 16254 16255 snprintf(sc->pci_link_str, sizeof(sc->pci_link_str), "%s x%d", 16256 ((sc->devinfo.pcie_link_speed == 1) ? "2.5GT/s" : 16257 (sc->devinfo.pcie_link_speed == 2) ? "5.0GT/s" : 16258 (sc->devinfo.pcie_link_speed == 4) ? "8.0GT/s" : 16259 "???GT/s"), 16260 sc->devinfo.pcie_link_width); 16261 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "pci_link", 16262 CTLFLAG_RD, &sc->pci_link_str, 0, 16263 "pci link status"); 16264 16265 sc->debug = bxe_debug; 16266 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "debug", 16267 CTLFLAG_RW, &sc->debug, 0, 16268 "debug logging mode"); 16269 16270 sc->rx_budget = bxe_rx_budget; 16271 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "rx_budget", 16272 CTLFLAG_RW, &sc->rx_budget, 0, 16273 "rx processing budget"); 16274 16275 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "state", 16276 CTLTYPE_UINT | CTLFLAG_RW, sc, 0, 16277 bxe_sysctl_state, "IU", "dump driver state"); 16278 16279 for (i = 0; i < BXE_NUM_ETH_STATS; i++) { 16280 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, 16281 bxe_eth_stats_arr[i].string, 16282 CTLTYPE_U64 | CTLFLAG_RD, sc, i, 16283 bxe_sysctl_eth_stat, "LU", 16284 bxe_eth_stats_arr[i].string); 16285 } 16286 16287 /* add a new parent node for all queues "dev.bxe.#.queue" */ 16288 queue_top = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "queue", 16289 CTLFLAG_RD, NULL, "queue"); 16290 queue_top_children = SYSCTL_CHILDREN(queue_top); 16291 16292 for (i = 0; i < sc->num_queues; i++) { 16293 /* add a new parent node for a single queue "dev.bxe.#.queue.#" */ 16294 snprintf(queue_num_buf, sizeof(queue_num_buf), "%d", i); 16295 queue = SYSCTL_ADD_NODE(ctx, queue_top_children, OID_AUTO, 16296 queue_num_buf, CTLFLAG_RD, NULL, 16297 "single queue"); 16298 queue_children = SYSCTL_CHILDREN(queue); 16299 16300 for (j = 0; j < BXE_NUM_ETH_Q_STATS; j++) { 16301 q_stat = ((i << 16) | j); 16302 SYSCTL_ADD_PROC(ctx, queue_children, OID_AUTO, 16303 bxe_eth_q_stats_arr[j].string, 16304 CTLTYPE_U64 | CTLFLAG_RD, sc, q_stat, 16305 bxe_sysctl_eth_q_stat, "LU", 16306 bxe_eth_q_stats_arr[j].string); 16307 } 16308 } 16309 } 16310 16311 /* 16312 * Device attach function. 16313 * 16314 * Allocates device resources, performs secondary chip identification, and 16315 * initializes driver instance variables. This function is called from driver 16316 * load after a successful probe. 16317 * 16318 * Returns: 16319 * 0 = Success, >0 = Failure 16320 */ 16321 static int 16322 bxe_attach(device_t dev) 16323 { 16324 struct bxe_softc *sc; 16325 16326 sc = device_get_softc(dev); 16327 16328 BLOGD(sc, DBG_LOAD, "Starting attach...\n"); 16329 16330 sc->state = BXE_STATE_CLOSED; 16331 16332 sc->dev = dev; 16333 sc->unit = device_get_unit(dev); 16334 16335 BLOGD(sc, DBG_LOAD, "softc = %p\n", sc); 16336 16337 sc->pcie_bus = pci_get_bus(dev); 16338 sc->pcie_device = pci_get_slot(dev); 16339 sc->pcie_func = pci_get_function(dev); 16340 16341 /* enable bus master capability */ 16342 pci_enable_busmaster(dev); 16343 16344 /* get the BARs */ 16345 if (bxe_allocate_bars(sc) != 0) { 16346 return (ENXIO); 16347 } 16348 16349 /* initialize the mutexes */ 16350 bxe_init_mutexes(sc); 16351 16352 /* prepare the periodic callout */ 16353 callout_init(&sc->periodic_callout, 0); 16354 16355 /* prepare the chip taskqueue */ 16356 sc->chip_tq_flags = CHIP_TQ_NONE; 16357 snprintf(sc->chip_tq_name, sizeof(sc->chip_tq_name), 16358 "bxe%d_chip_tq", sc->unit); 16359 TASK_INIT(&sc->chip_tq_task, 0, bxe_handle_chip_tq, sc); 16360 sc->chip_tq = taskqueue_create(sc->chip_tq_name, M_NOWAIT, 16361 taskqueue_thread_enqueue, 16362 &sc->chip_tq); 16363 taskqueue_start_threads(&sc->chip_tq, 1, PWAIT, /* lower priority */ 16364 "%s", sc->chip_tq_name); 16365 16366 /* get device info and set params */ 16367 if (bxe_get_device_info(sc) != 0) { 16368 BLOGE(sc, "getting device info\n"); 16369 bxe_deallocate_bars(sc); 16370 pci_disable_busmaster(dev); 16371 return (ENXIO); 16372 } 16373 16374 /* get final misc params */ 16375 bxe_get_params(sc); 16376 16377 /* set the default MTU (changed via ifconfig) */ 16378 sc->mtu = ETHERMTU; 16379 16380 bxe_set_modes_bitmap(sc); 16381 16382 /* XXX 16383 * If in AFEX mode and the function is configured for FCoE 16384 * then bail... no L2 allowed. 16385 */ 16386 16387 /* get phy settings from shmem and 'and' against admin settings */ 16388 bxe_get_phy_info(sc); 16389 16390 /* initialize the FreeBSD ifnet interface */ 16391 if (bxe_init_ifnet(sc) != 0) { 16392 bxe_release_mutexes(sc); 16393 bxe_deallocate_bars(sc); 16394 pci_disable_busmaster(dev); 16395 return (ENXIO); 16396 } 16397 16398 /* allocate device interrupts */ 16399 if (bxe_interrupt_alloc(sc) != 0) { 16400 if (sc->ifp != NULL) { 16401 ether_ifdetach_drv(sc->ifp); 16402 } 16403 ifmedia_removeall(&sc->ifmedia); 16404 bxe_release_mutexes(sc); 16405 bxe_deallocate_bars(sc); 16406 pci_disable_busmaster(dev); 16407 return (ENXIO); 16408 } 16409 16410 /* allocate ilt */ 16411 if (bxe_alloc_ilt_mem(sc) != 0) { 16412 bxe_interrupt_free(sc); 16413 if (sc->ifp != NULL) { 16414 ether_ifdetach_drv(sc->ifp); 16415 } 16416 ifmedia_removeall(&sc->ifmedia); 16417 bxe_release_mutexes(sc); 16418 bxe_deallocate_bars(sc); 16419 pci_disable_busmaster(dev); 16420 return (ENXIO); 16421 } 16422 16423 /* allocate the host hardware/software hsi structures */ 16424 if (bxe_alloc_hsi_mem(sc) != 0) { 16425 bxe_free_ilt_mem(sc); 16426 bxe_interrupt_free(sc); 16427 if (sc->ifp != NULL) { 16428 ether_ifdetach_drv(sc->ifp); 16429 } 16430 ifmedia_removeall(&sc->ifmedia); 16431 bxe_release_mutexes(sc); 16432 bxe_deallocate_bars(sc); 16433 pci_disable_busmaster(dev); 16434 return (ENXIO); 16435 } 16436 16437 /* need to reset chip if UNDI was active */ 16438 if (IS_PF(sc) && !BXE_NOMCP(sc)) { 16439 /* init fw_seq */ 16440 sc->fw_seq = 16441 (SHMEM_RD(sc, func_mb[SC_FW_MB_IDX(sc)].drv_mb_header) & 16442 DRV_MSG_SEQ_NUMBER_MASK); 16443 BLOGD(sc, DBG_LOAD, "prev unload fw_seq 0x%04x\n", sc->fw_seq); 16444 bxe_prev_unload(sc); 16445 } 16446 16447 #if 1 16448 /* XXX */ 16449 bxe_dcbx_set_state(sc, FALSE, BXE_DCBX_ENABLED_OFF); 16450 #else 16451 if (SHMEM2_HAS(sc, dcbx_lldp_params_offset) && 16452 SHMEM2_HAS(sc, dcbx_lldp_dcbx_stat_offset) && 16453 SHMEM2_RD(sc, dcbx_lldp_params_offset) && 16454 SHMEM2_RD(sc, dcbx_lldp_dcbx_stat_offset)) { 16455 bxe_dcbx_set_state(sc, TRUE, BXE_DCBX_ENABLED_ON_NEG_ON); 16456 bxe_dcbx_init_params(sc); 16457 } else { 16458 bxe_dcbx_set_state(sc, FALSE, BXE_DCBX_ENABLED_OFF); 16459 } 16460 #endif 16461 16462 /* calculate qm_cid_count */ 16463 sc->qm_cid_count = bxe_set_qm_cid_count(sc); 16464 BLOGD(sc, DBG_LOAD, "qm_cid_count=%d\n", sc->qm_cid_count); 16465 16466 sc->max_cos = 1; 16467 bxe_init_multi_cos(sc); 16468 16469 bxe_add_sysctls(sc); 16470 16471 return (0); 16472 } 16473 16474 /* 16475 * Device detach function. 16476 * 16477 * Stops the controller, resets the controller, and releases resources. 16478 * 16479 * Returns: 16480 * 0 = Success, >0 = Failure 16481 */ 16482 static int 16483 bxe_detach(device_t dev) 16484 { 16485 struct bxe_softc *sc; 16486 if_t ifp; 16487 16488 sc = device_get_softc(dev); 16489 16490 BLOGD(sc, DBG_LOAD, "Starting detach...\n"); 16491 16492 ifp = sc->ifp; 16493 if (ifp != NULL && if_vlantrunkinuse(ifp)) { 16494 BLOGE(sc, "Cannot detach while VLANs are in use.\n"); 16495 return(EBUSY); 16496 } 16497 16498 /* stop the periodic callout */ 16499 bxe_periodic_stop(sc); 16500 16501 /* stop the chip taskqueue */ 16502 atomic_store_rel_long(&sc->chip_tq_flags, CHIP_TQ_NONE); 16503 if (sc->chip_tq) { 16504 taskqueue_drain(sc->chip_tq, &sc->chip_tq_task); 16505 taskqueue_free(sc->chip_tq); 16506 sc->chip_tq = NULL; 16507 } 16508 16509 /* stop and reset the controller if it was open */ 16510 if (sc->state != BXE_STATE_CLOSED) { 16511 BXE_CORE_LOCK(sc); 16512 bxe_nic_unload(sc, UNLOAD_CLOSE, TRUE); 16513 BXE_CORE_UNLOCK(sc); 16514 } 16515 16516 /* release the network interface */ 16517 if (ifp != NULL) { 16518 ether_ifdetach_drv(ifp); 16519 } 16520 ifmedia_removeall(&sc->ifmedia); 16521 16522 /* XXX do the following based on driver state... */ 16523 16524 /* free the host hardware/software hsi structures */ 16525 bxe_free_hsi_mem(sc); 16526 16527 /* free ilt */ 16528 bxe_free_ilt_mem(sc); 16529 16530 /* release the interrupts */ 16531 bxe_interrupt_free(sc); 16532 16533 /* Release the mutexes*/ 16534 bxe_release_mutexes(sc); 16535 16536 /* Release the PCIe BAR mapped memory */ 16537 bxe_deallocate_bars(sc); 16538 16539 /* Release the FreeBSD interface. */ 16540 if (sc->ifp != NULL) { 16541 if_free_drv(sc->ifp); 16542 } 16543 16544 pci_disable_busmaster(dev); 16545 16546 return (0); 16547 } 16548 16549 /* 16550 * Device shutdown function. 16551 * 16552 * Stops and resets the controller. 16553 * 16554 * Returns: 16555 * Nothing 16556 */ 16557 static int 16558 bxe_shutdown(device_t dev) 16559 { 16560 struct bxe_softc *sc; 16561 16562 sc = device_get_softc(dev); 16563 16564 BLOGD(sc, DBG_LOAD, "Starting shutdown...\n"); 16565 16566 /* stop the periodic callout */ 16567 bxe_periodic_stop(sc); 16568 16569 BXE_CORE_LOCK(sc); 16570 bxe_nic_unload(sc, UNLOAD_NORMAL, FALSE); 16571 BXE_CORE_UNLOCK(sc); 16572 16573 return (0); 16574 } 16575 16576 void 16577 bxe_igu_ack_sb(struct bxe_softc *sc, 16578 uint8_t igu_sb_id, 16579 uint8_t segment, 16580 uint16_t index, 16581 uint8_t op, 16582 uint8_t update) 16583 { 16584 uint32_t igu_addr = sc->igu_base_addr; 16585 igu_addr += (IGU_CMD_INT_ACK_BASE + igu_sb_id)*8; 16586 bxe_igu_ack_sb_gen(sc, igu_sb_id, segment, index, op, update, igu_addr); 16587 } 16588 16589 static void 16590 bxe_igu_clear_sb_gen(struct bxe_softc *sc, 16591 uint8_t func, 16592 uint8_t idu_sb_id, 16593 uint8_t is_pf) 16594 { 16595 uint32_t data, ctl, cnt = 100; 16596 uint32_t igu_addr_data = IGU_REG_COMMAND_REG_32LSB_DATA; 16597 uint32_t igu_addr_ctl = IGU_REG_COMMAND_REG_CTRL; 16598 uint32_t igu_addr_ack = IGU_REG_CSTORM_TYPE_0_SB_CLEANUP + (idu_sb_id/32)*4; 16599 uint32_t sb_bit = 1 << (idu_sb_id%32); 16600 uint32_t func_encode = func | (is_pf ? 1 : 0) << IGU_FID_ENCODE_IS_PF_SHIFT; 16601 uint32_t addr_encode = IGU_CMD_E2_PROD_UPD_BASE + idu_sb_id; 16602 16603 /* Not supported in BC mode */ 16604 if (CHIP_INT_MODE_IS_BC(sc)) { 16605 return; 16606 } 16607 16608 data = ((IGU_USE_REGISTER_cstorm_type_0_sb_cleanup << 16609 IGU_REGULAR_CLEANUP_TYPE_SHIFT) | 16610 IGU_REGULAR_CLEANUP_SET | 16611 IGU_REGULAR_BCLEANUP); 16612 16613 ctl = ((addr_encode << IGU_CTRL_REG_ADDRESS_SHIFT) | 16614 (func_encode << IGU_CTRL_REG_FID_SHIFT) | 16615 (IGU_CTRL_CMD_TYPE_WR << IGU_CTRL_REG_TYPE_SHIFT)); 16616 16617 BLOGD(sc, DBG_LOAD, "write 0x%08x to IGU(via GRC) addr 0x%x\n", 16618 data, igu_addr_data); 16619 REG_WR(sc, igu_addr_data, data); 16620 16621 bus_space_barrier(sc->bar[BAR0].tag, sc->bar[BAR0].handle, 0, 0, 16622 BUS_SPACE_BARRIER_WRITE); 16623 mb(); 16624 16625 BLOGD(sc, DBG_LOAD, "write 0x%08x to IGU(via GRC) addr 0x%x\n", 16626 ctl, igu_addr_ctl); 16627 REG_WR(sc, igu_addr_ctl, ctl); 16628 16629 bus_space_barrier(sc->bar[BAR0].tag, sc->bar[BAR0].handle, 0, 0, 16630 BUS_SPACE_BARRIER_WRITE); 16631 mb(); 16632 16633 /* wait for clean up to finish */ 16634 while (!(REG_RD(sc, igu_addr_ack) & sb_bit) && --cnt) { 16635 DELAY(20000); 16636 } 16637 16638 if (!(REG_RD(sc, igu_addr_ack) & sb_bit)) { 16639 BLOGD(sc, DBG_LOAD, 16640 "Unable to finish IGU cleanup: " 16641 "idu_sb_id %d offset %d bit %d (cnt %d)\n", 16642 idu_sb_id, idu_sb_id/32, idu_sb_id%32, cnt); 16643 } 16644 } 16645 16646 static void 16647 bxe_igu_clear_sb(struct bxe_softc *sc, 16648 uint8_t idu_sb_id) 16649 { 16650 bxe_igu_clear_sb_gen(sc, SC_FUNC(sc), idu_sb_id, TRUE /*PF*/); 16651 } 16652 16653 16654 16655 16656 16657 16658 16659 /*******************/ 16660 /* ECORE CALLBACKS */ 16661 /*******************/ 16662 16663 static void 16664 bxe_reset_common(struct bxe_softc *sc) 16665 { 16666 uint32_t val = 0x1400; 16667 16668 /* reset_common */ 16669 REG_WR(sc, (GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR), 0xd3ffff7f); 16670 16671 if (CHIP_IS_E3(sc)) { 16672 val |= MISC_REGISTERS_RESET_REG_2_MSTAT0; 16673 val |= MISC_REGISTERS_RESET_REG_2_MSTAT1; 16674 } 16675 16676 REG_WR(sc, (GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR), val); 16677 } 16678 16679 static void 16680 bxe_common_init_phy(struct bxe_softc *sc) 16681 { 16682 uint32_t shmem_base[2]; 16683 uint32_t shmem2_base[2]; 16684 16685 /* Avoid common init in case MFW supports LFA */ 16686 if (SHMEM2_RD(sc, size) > 16687 (uint32_t)offsetof(struct shmem2_region, 16688 lfa_host_addr[SC_PORT(sc)])) { 16689 return; 16690 } 16691 16692 shmem_base[0] = sc->devinfo.shmem_base; 16693 shmem2_base[0] = sc->devinfo.shmem2_base; 16694 16695 if (!CHIP_IS_E1x(sc)) { 16696 shmem_base[1] = SHMEM2_RD(sc, other_shmem_base_addr); 16697 shmem2_base[1] = SHMEM2_RD(sc, other_shmem2_base_addr); 16698 } 16699 16700 BXE_PHY_LOCK(sc); 16701 elink_common_init_phy(sc, shmem_base, shmem2_base, 16702 sc->devinfo.chip_id, 0); 16703 BXE_PHY_UNLOCK(sc); 16704 } 16705 16706 static void 16707 bxe_pf_disable(struct bxe_softc *sc) 16708 { 16709 uint32_t val = REG_RD(sc, IGU_REG_PF_CONFIGURATION); 16710 16711 val &= ~IGU_PF_CONF_FUNC_EN; 16712 16713 REG_WR(sc, IGU_REG_PF_CONFIGURATION, val); 16714 REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0); 16715 REG_WR(sc, CFC_REG_WEAK_ENABLE_PF, 0); 16716 } 16717 16718 static void 16719 bxe_init_pxp(struct bxe_softc *sc) 16720 { 16721 uint16_t devctl; 16722 int r_order, w_order; 16723 16724 devctl = bxe_pcie_capability_read(sc, PCIR_EXPRESS_DEVICE_CTL, 2); 16725 16726 BLOGD(sc, DBG_LOAD, "read 0x%08x from devctl\n", devctl); 16727 16728 w_order = ((devctl & PCIM_EXP_CTL_MAX_PAYLOAD) >> 5); 16729 16730 if (sc->mrrs == -1) { 16731 r_order = ((devctl & PCIM_EXP_CTL_MAX_READ_REQUEST) >> 12); 16732 } else { 16733 BLOGD(sc, DBG_LOAD, "forcing read order to %d\n", sc->mrrs); 16734 r_order = sc->mrrs; 16735 } 16736 16737 ecore_init_pxp_arb(sc, r_order, w_order); 16738 } 16739 16740 static uint32_t 16741 bxe_get_pretend_reg(struct bxe_softc *sc) 16742 { 16743 uint32_t base = PXP2_REG_PGL_PRETEND_FUNC_F0; 16744 uint32_t stride = (PXP2_REG_PGL_PRETEND_FUNC_F1 - base); 16745 return (base + (SC_ABS_FUNC(sc)) * stride); 16746 } 16747 16748 /* 16749 * Called only on E1H or E2. 16750 * When pretending to be PF, the pretend value is the function number 0..7. 16751 * When pretending to be VF, the pretend val is the PF-num:VF-valid:ABS-VFID 16752 * combination. 16753 */ 16754 static int 16755 bxe_pretend_func(struct bxe_softc *sc, 16756 uint16_t pretend_func_val) 16757 { 16758 uint32_t pretend_reg; 16759 16760 if (CHIP_IS_E1H(sc) && (pretend_func_val > E1H_FUNC_MAX)) { 16761 return (-1); 16762 } 16763 16764 /* get my own pretend register */ 16765 pretend_reg = bxe_get_pretend_reg(sc); 16766 REG_WR(sc, pretend_reg, pretend_func_val); 16767 REG_RD(sc, pretend_reg); 16768 return (0); 16769 } 16770 16771 static void 16772 bxe_iov_init_dmae(struct bxe_softc *sc) 16773 { 16774 return; 16775 #if 0 16776 BLOGD(sc, DBG_LOAD, "SRIOV is %s\n", IS_SRIOV(sc) ? "ON" : "OFF"); 16777 16778 if (!IS_SRIOV(sc)) { 16779 return; 16780 } 16781 16782 REG_WR(sc, DMAE_REG_BACKWARD_COMP_EN, 0); 16783 #endif 16784 } 16785 16786 #if 0 16787 static int 16788 bxe_iov_init_ilt(struct bxe_softc *sc, 16789 uint16_t line) 16790 { 16791 return (line); 16792 #if 0 16793 int i; 16794 struct ecore_ilt* ilt = sc->ilt; 16795 16796 if (!IS_SRIOV(sc)) { 16797 return (line); 16798 } 16799 16800 /* set vfs ilt lines */ 16801 for (i = 0; i < BXE_VF_CIDS/ILT_PAGE_CIDS ; i++) { 16802 struct hw_dma *hw_cxt = SC_VF_CXT_PAGE(sc,i); 16803 ilt->lines[line+i].page = hw_cxt->addr; 16804 ilt->lines[line+i].page_mapping = hw_cxt->mapping; 16805 ilt->lines[line+i].size = hw_cxt->size; /* doesn't matter */ 16806 } 16807 return (line+i); 16808 #endif 16809 } 16810 #endif 16811 16812 static void 16813 bxe_iov_init_dq(struct bxe_softc *sc) 16814 { 16815 return; 16816 #if 0 16817 if (!IS_SRIOV(sc)) { 16818 return; 16819 } 16820 16821 /* Set the DQ such that the CID reflect the abs_vfid */ 16822 REG_WR(sc, DORQ_REG_VF_NORM_VF_BASE, 0); 16823 REG_WR(sc, DORQ_REG_MAX_RVFID_SIZE, ilog2(BNX2X_MAX_NUM_OF_VFS)); 16824 16825 /* 16826 * Set VFs starting CID. If its > 0 the preceding CIDs are belong to 16827 * the PF L2 queues 16828 */ 16829 REG_WR(sc, DORQ_REG_VF_NORM_CID_BASE, BNX2X_FIRST_VF_CID); 16830 16831 /* The VF window size is the log2 of the max number of CIDs per VF */ 16832 REG_WR(sc, DORQ_REG_VF_NORM_CID_WND_SIZE, BNX2X_VF_CID_WND); 16833 16834 /* 16835 * The VF doorbell size 0 - *B, 4 - 128B. We set it here to match 16836 * the Pf doorbell size although the 2 are independent. 16837 */ 16838 REG_WR(sc, DORQ_REG_VF_NORM_CID_OFST, 16839 BNX2X_DB_SHIFT - BNX2X_DB_MIN_SHIFT); 16840 16841 /* 16842 * No security checks for now - 16843 * configure single rule (out of 16) mask = 0x1, value = 0x0, 16844 * CID range 0 - 0x1ffff 16845 */ 16846 REG_WR(sc, DORQ_REG_VF_TYPE_MASK_0, 1); 16847 REG_WR(sc, DORQ_REG_VF_TYPE_VALUE_0, 0); 16848 REG_WR(sc, DORQ_REG_VF_TYPE_MIN_MCID_0, 0); 16849 REG_WR(sc, DORQ_REG_VF_TYPE_MAX_MCID_0, 0x1ffff); 16850 16851 /* set the number of VF alllowed doorbells to the full DQ range */ 16852 REG_WR(sc, DORQ_REG_VF_NORM_MAX_CID_COUNT, 0x20000); 16853 16854 /* set the VF doorbell threshold */ 16855 REG_WR(sc, DORQ_REG_VF_USAGE_CT_LIMIT, 4); 16856 #endif 16857 } 16858 16859 /* send a NIG loopback debug packet */ 16860 static void 16861 bxe_lb_pckt(struct bxe_softc *sc) 16862 { 16863 uint32_t wb_write[3]; 16864 16865 /* Ethernet source and destination addresses */ 16866 wb_write[0] = 0x55555555; 16867 wb_write[1] = 0x55555555; 16868 wb_write[2] = 0x20; /* SOP */ 16869 REG_WR_DMAE(sc, NIG_REG_DEBUG_PACKET_LB, wb_write, 3); 16870 16871 /* NON-IP protocol */ 16872 wb_write[0] = 0x09000000; 16873 wb_write[1] = 0x55555555; 16874 wb_write[2] = 0x10; /* EOP, eop_bvalid = 0 */ 16875 REG_WR_DMAE(sc, NIG_REG_DEBUG_PACKET_LB, wb_write, 3); 16876 } 16877 16878 /* 16879 * Some of the internal memories are not directly readable from the driver. 16880 * To test them we send debug packets. 16881 */ 16882 static int 16883 bxe_int_mem_test(struct bxe_softc *sc) 16884 { 16885 int factor; 16886 int count, i; 16887 uint32_t val = 0; 16888 16889 if (CHIP_REV_IS_FPGA(sc)) { 16890 factor = 120; 16891 } else if (CHIP_REV_IS_EMUL(sc)) { 16892 factor = 200; 16893 } else { 16894 factor = 1; 16895 } 16896 16897 /* disable inputs of parser neighbor blocks */ 16898 REG_WR(sc, TSDM_REG_ENABLE_IN1, 0x0); 16899 REG_WR(sc, TCM_REG_PRS_IFEN, 0x0); 16900 REG_WR(sc, CFC_REG_DEBUG0, 0x1); 16901 REG_WR(sc, NIG_REG_PRS_REQ_IN_EN, 0x0); 16902 16903 /* write 0 to parser credits for CFC search request */ 16904 REG_WR(sc, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0); 16905 16906 /* send Ethernet packet */ 16907 bxe_lb_pckt(sc); 16908 16909 /* TODO do i reset NIG statistic? */ 16910 /* Wait until NIG register shows 1 packet of size 0x10 */ 16911 count = 1000 * factor; 16912 while (count) { 16913 bxe_read_dmae(sc, NIG_REG_STAT2_BRB_OCTET, 2); 16914 val = *BXE_SP(sc, wb_data[0]); 16915 if (val == 0x10) { 16916 break; 16917 } 16918 16919 DELAY(10000); 16920 count--; 16921 } 16922 16923 if (val != 0x10) { 16924 BLOGE(sc, "NIG timeout val=0x%x\n", val); 16925 return (-1); 16926 } 16927 16928 /* wait until PRS register shows 1 packet */ 16929 count = (1000 * factor); 16930 while (count) { 16931 val = REG_RD(sc, PRS_REG_NUM_OF_PACKETS); 16932 if (val == 1) { 16933 break; 16934 } 16935 16936 DELAY(10000); 16937 count--; 16938 } 16939 16940 if (val != 0x1) { 16941 BLOGE(sc, "PRS timeout val=0x%x\n", val); 16942 return (-2); 16943 } 16944 16945 /* Reset and init BRB, PRS */ 16946 REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03); 16947 DELAY(50000); 16948 REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03); 16949 DELAY(50000); 16950 ecore_init_block(sc, BLOCK_BRB1, PHASE_COMMON); 16951 ecore_init_block(sc, BLOCK_PRS, PHASE_COMMON); 16952 16953 /* Disable inputs of parser neighbor blocks */ 16954 REG_WR(sc, TSDM_REG_ENABLE_IN1, 0x0); 16955 REG_WR(sc, TCM_REG_PRS_IFEN, 0x0); 16956 REG_WR(sc, CFC_REG_DEBUG0, 0x1); 16957 REG_WR(sc, NIG_REG_PRS_REQ_IN_EN, 0x0); 16958 16959 /* Write 0 to parser credits for CFC search request */ 16960 REG_WR(sc, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0); 16961 16962 /* send 10 Ethernet packets */ 16963 for (i = 0; i < 10; i++) { 16964 bxe_lb_pckt(sc); 16965 } 16966 16967 /* Wait until NIG register shows 10+1 packets of size 11*0x10 = 0xb0 */ 16968 count = (1000 * factor); 16969 while (count) { 16970 bxe_read_dmae(sc, NIG_REG_STAT2_BRB_OCTET, 2); 16971 val = *BXE_SP(sc, wb_data[0]); 16972 if (val == 0xb0) { 16973 break; 16974 } 16975 16976 DELAY(10000); 16977 count--; 16978 } 16979 16980 if (val != 0xb0) { 16981 BLOGE(sc, "NIG timeout val=0x%x\n", val); 16982 return (-3); 16983 } 16984 16985 /* Wait until PRS register shows 2 packets */ 16986 val = REG_RD(sc, PRS_REG_NUM_OF_PACKETS); 16987 if (val != 2) { 16988 BLOGE(sc, "PRS timeout val=0x%x\n", val); 16989 } 16990 16991 /* Write 1 to parser credits for CFC search request */ 16992 REG_WR(sc, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x1); 16993 16994 /* Wait until PRS register shows 3 packets */ 16995 DELAY(10000 * factor); 16996 16997 /* Wait until NIG register shows 1 packet of size 0x10 */ 16998 val = REG_RD(sc, PRS_REG_NUM_OF_PACKETS); 16999 if (val != 3) { 17000 BLOGE(sc, "PRS timeout val=0x%x\n", val); 17001 } 17002 17003 /* clear NIG EOP FIFO */ 17004 for (i = 0; i < 11; i++) { 17005 REG_RD(sc, NIG_REG_INGRESS_EOP_LB_FIFO); 17006 } 17007 17008 val = REG_RD(sc, NIG_REG_INGRESS_EOP_LB_EMPTY); 17009 if (val != 1) { 17010 BLOGE(sc, "clear of NIG failed\n"); 17011 return (-4); 17012 } 17013 17014 /* Reset and init BRB, PRS, NIG */ 17015 REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03); 17016 DELAY(50000); 17017 REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03); 17018 DELAY(50000); 17019 ecore_init_block(sc, BLOCK_BRB1, PHASE_COMMON); 17020 ecore_init_block(sc, BLOCK_PRS, PHASE_COMMON); 17021 if (!CNIC_SUPPORT(sc)) { 17022 /* set NIC mode */ 17023 REG_WR(sc, PRS_REG_NIC_MODE, 1); 17024 } 17025 17026 /* Enable inputs of parser neighbor blocks */ 17027 REG_WR(sc, TSDM_REG_ENABLE_IN1, 0x7fffffff); 17028 REG_WR(sc, TCM_REG_PRS_IFEN, 0x1); 17029 REG_WR(sc, CFC_REG_DEBUG0, 0x0); 17030 REG_WR(sc, NIG_REG_PRS_REQ_IN_EN, 0x1); 17031 17032 return (0); 17033 } 17034 17035 static void 17036 bxe_setup_fan_failure_detection(struct bxe_softc *sc) 17037 { 17038 int is_required; 17039 uint32_t val; 17040 int port; 17041 17042 is_required = 0; 17043 val = (SHMEM_RD(sc, dev_info.shared_hw_config.config2) & 17044 SHARED_HW_CFG_FAN_FAILURE_MASK); 17045 17046 if (val == SHARED_HW_CFG_FAN_FAILURE_ENABLED) { 17047 is_required = 1; 17048 } 17049 /* 17050 * The fan failure mechanism is usually related to the PHY type since 17051 * the power consumption of the board is affected by the PHY. Currently, 17052 * fan is required for most designs with SFX7101, BCM8727 and BCM8481. 17053 */ 17054 else if (val == SHARED_HW_CFG_FAN_FAILURE_PHY_TYPE) { 17055 for (port = PORT_0; port < PORT_MAX; port++) { 17056 is_required |= elink_fan_failure_det_req(sc, 17057 sc->devinfo.shmem_base, 17058 sc->devinfo.shmem2_base, 17059 port); 17060 } 17061 } 17062 17063 BLOGD(sc, DBG_LOAD, "fan detection setting: %d\n", is_required); 17064 17065 if (is_required == 0) { 17066 return; 17067 } 17068 17069 /* Fan failure is indicated by SPIO 5 */ 17070 bxe_set_spio(sc, MISC_SPIO_SPIO5, MISC_SPIO_INPUT_HI_Z); 17071 17072 /* set to active low mode */ 17073 val = REG_RD(sc, MISC_REG_SPIO_INT); 17074 val |= (MISC_SPIO_SPIO5 << MISC_SPIO_INT_OLD_SET_POS); 17075 REG_WR(sc, MISC_REG_SPIO_INT, val); 17076 17077 /* enable interrupt to signal the IGU */ 17078 val = REG_RD(sc, MISC_REG_SPIO_EVENT_EN); 17079 val |= MISC_SPIO_SPIO5; 17080 REG_WR(sc, MISC_REG_SPIO_EVENT_EN, val); 17081 } 17082 17083 static void 17084 bxe_enable_blocks_attention(struct bxe_softc *sc) 17085 { 17086 uint32_t val; 17087 17088 REG_WR(sc, PXP_REG_PXP_INT_MASK_0, 0); 17089 if (!CHIP_IS_E1x(sc)) { 17090 REG_WR(sc, PXP_REG_PXP_INT_MASK_1, 0x40); 17091 } else { 17092 REG_WR(sc, PXP_REG_PXP_INT_MASK_1, 0); 17093 } 17094 REG_WR(sc, DORQ_REG_DORQ_INT_MASK, 0); 17095 REG_WR(sc, CFC_REG_CFC_INT_MASK, 0); 17096 /* 17097 * mask read length error interrupts in brb for parser 17098 * (parsing unit and 'checksum and crc' unit) 17099 * these errors are legal (PU reads fixed length and CAC can cause 17100 * read length error on truncated packets) 17101 */ 17102 REG_WR(sc, BRB1_REG_BRB1_INT_MASK, 0xFC00); 17103 REG_WR(sc, QM_REG_QM_INT_MASK, 0); 17104 REG_WR(sc, TM_REG_TM_INT_MASK, 0); 17105 REG_WR(sc, XSDM_REG_XSDM_INT_MASK_0, 0); 17106 REG_WR(sc, XSDM_REG_XSDM_INT_MASK_1, 0); 17107 REG_WR(sc, XCM_REG_XCM_INT_MASK, 0); 17108 /* REG_WR(sc, XSEM_REG_XSEM_INT_MASK_0, 0); */ 17109 /* REG_WR(sc, XSEM_REG_XSEM_INT_MASK_1, 0); */ 17110 REG_WR(sc, USDM_REG_USDM_INT_MASK_0, 0); 17111 REG_WR(sc, USDM_REG_USDM_INT_MASK_1, 0); 17112 REG_WR(sc, UCM_REG_UCM_INT_MASK, 0); 17113 /* REG_WR(sc, USEM_REG_USEM_INT_MASK_0, 0); */ 17114 /* REG_WR(sc, USEM_REG_USEM_INT_MASK_1, 0); */ 17115 REG_WR(sc, GRCBASE_UPB + PB_REG_PB_INT_MASK, 0); 17116 REG_WR(sc, CSDM_REG_CSDM_INT_MASK_0, 0); 17117 REG_WR(sc, CSDM_REG_CSDM_INT_MASK_1, 0); 17118 REG_WR(sc, CCM_REG_CCM_INT_MASK, 0); 17119 /* REG_WR(sc, CSEM_REG_CSEM_INT_MASK_0, 0); */ 17120 /* REG_WR(sc, CSEM_REG_CSEM_INT_MASK_1, 0); */ 17121 17122 val = (PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_AFT | 17123 PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_OF | 17124 PXP2_PXP2_INT_MASK_0_REG_PGL_PCIE_ATTN); 17125 if (!CHIP_IS_E1x(sc)) { 17126 val |= (PXP2_PXP2_INT_MASK_0_REG_PGL_READ_BLOCKED | 17127 PXP2_PXP2_INT_MASK_0_REG_PGL_WRITE_BLOCKED); 17128 } 17129 REG_WR(sc, PXP2_REG_PXP2_INT_MASK_0, val); 17130 17131 REG_WR(sc, TSDM_REG_TSDM_INT_MASK_0, 0); 17132 REG_WR(sc, TSDM_REG_TSDM_INT_MASK_1, 0); 17133 REG_WR(sc, TCM_REG_TCM_INT_MASK, 0); 17134 /* REG_WR(sc, TSEM_REG_TSEM_INT_MASK_0, 0); */ 17135 17136 if (!CHIP_IS_E1x(sc)) { 17137 /* enable VFC attentions: bits 11 and 12, bits 31:13 reserved */ 17138 REG_WR(sc, TSEM_REG_TSEM_INT_MASK_1, 0x07ff); 17139 } 17140 17141 REG_WR(sc, CDU_REG_CDU_INT_MASK, 0); 17142 REG_WR(sc, DMAE_REG_DMAE_INT_MASK, 0); 17143 /* REG_WR(sc, MISC_REG_MISC_INT_MASK, 0); */ 17144 REG_WR(sc, PBF_REG_PBF_INT_MASK, 0x18); /* bit 3,4 masked */ 17145 } 17146 17147 /** 17148 * bxe_init_hw_common - initialize the HW at the COMMON phase. 17149 * 17150 * @sc: driver handle 17151 */ 17152 static int 17153 bxe_init_hw_common(struct bxe_softc *sc) 17154 { 17155 uint8_t abs_func_id; 17156 uint32_t val; 17157 17158 BLOGD(sc, DBG_LOAD, "starting common init for func %d\n", 17159 SC_ABS_FUNC(sc)); 17160 17161 /* 17162 * take the RESET lock to protect undi_unload flow from accessing 17163 * registers while we are resetting the chip 17164 */ 17165 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RESET); 17166 17167 bxe_reset_common(sc); 17168 17169 REG_WR(sc, (GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET), 0xffffffff); 17170 17171 val = 0xfffc; 17172 if (CHIP_IS_E3(sc)) { 17173 val |= MISC_REGISTERS_RESET_REG_2_MSTAT0; 17174 val |= MISC_REGISTERS_RESET_REG_2_MSTAT1; 17175 } 17176 17177 REG_WR(sc, (GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET), val); 17178 17179 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RESET); 17180 17181 ecore_init_block(sc, BLOCK_MISC, PHASE_COMMON); 17182 BLOGD(sc, DBG_LOAD, "after misc block init\n"); 17183 17184 if (!CHIP_IS_E1x(sc)) { 17185 /* 17186 * 4-port mode or 2-port mode we need to turn off master-enable for 17187 * everyone. After that we turn it back on for self. So, we disregard 17188 * multi-function, and always disable all functions on the given path, 17189 * this means 0,2,4,6 for path 0 and 1,3,5,7 for path 1 17190 */ 17191 for (abs_func_id = SC_PATH(sc); 17192 abs_func_id < (E2_FUNC_MAX * 2); 17193 abs_func_id += 2) { 17194 if (abs_func_id == SC_ABS_FUNC(sc)) { 17195 REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1); 17196 continue; 17197 } 17198 17199 bxe_pretend_func(sc, abs_func_id); 17200 17201 /* clear pf enable */ 17202 bxe_pf_disable(sc); 17203 17204 bxe_pretend_func(sc, SC_ABS_FUNC(sc)); 17205 } 17206 } 17207 17208 BLOGD(sc, DBG_LOAD, "after pf disable\n"); 17209 17210 ecore_init_block(sc, BLOCK_PXP, PHASE_COMMON); 17211 17212 if (CHIP_IS_E1(sc)) { 17213 /* 17214 * enable HW interrupt from PXP on USDM overflow 17215 * bit 16 on INT_MASK_0 17216 */ 17217 REG_WR(sc, PXP_REG_PXP_INT_MASK_0, 0); 17218 } 17219 17220 ecore_init_block(sc, BLOCK_PXP2, PHASE_COMMON); 17221 bxe_init_pxp(sc); 17222 17223 #ifdef __BIG_ENDIAN 17224 REG_WR(sc, PXP2_REG_RQ_QM_ENDIAN_M, 1); 17225 REG_WR(sc, PXP2_REG_RQ_TM_ENDIAN_M, 1); 17226 REG_WR(sc, PXP2_REG_RQ_SRC_ENDIAN_M, 1); 17227 REG_WR(sc, PXP2_REG_RQ_CDU_ENDIAN_M, 1); 17228 REG_WR(sc, PXP2_REG_RQ_DBG_ENDIAN_M, 1); 17229 /* make sure this value is 0 */ 17230 REG_WR(sc, PXP2_REG_RQ_HC_ENDIAN_M, 0); 17231 17232 //REG_WR(sc, PXP2_REG_RD_PBF_SWAP_MODE, 1); 17233 REG_WR(sc, PXP2_REG_RD_QM_SWAP_MODE, 1); 17234 REG_WR(sc, PXP2_REG_RD_TM_SWAP_MODE, 1); 17235 REG_WR(sc, PXP2_REG_RD_SRC_SWAP_MODE, 1); 17236 REG_WR(sc, PXP2_REG_RD_CDURD_SWAP_MODE, 1); 17237 #endif 17238 17239 ecore_ilt_init_page_size(sc, INITOP_SET); 17240 17241 if (CHIP_REV_IS_FPGA(sc) && CHIP_IS_E1H(sc)) { 17242 REG_WR(sc, PXP2_REG_PGL_TAGS_LIMIT, 0x1); 17243 } 17244 17245 /* let the HW do it's magic... */ 17246 DELAY(100000); 17247 17248 /* finish PXP init */ 17249 val = REG_RD(sc, PXP2_REG_RQ_CFG_DONE); 17250 if (val != 1) { 17251 BLOGE(sc, "PXP2 CFG failed\n"); 17252 return (-1); 17253 } 17254 val = REG_RD(sc, PXP2_REG_RD_INIT_DONE); 17255 if (val != 1) { 17256 BLOGE(sc, "PXP2 RD_INIT failed\n"); 17257 return (-1); 17258 } 17259 17260 BLOGD(sc, DBG_LOAD, "after pxp init\n"); 17261 17262 /* 17263 * Timer bug workaround for E2 only. We need to set the entire ILT to have 17264 * entries with value "0" and valid bit on. This needs to be done by the 17265 * first PF that is loaded in a path (i.e. common phase) 17266 */ 17267 if (!CHIP_IS_E1x(sc)) { 17268 /* 17269 * In E2 there is a bug in the timers block that can cause function 6 / 7 17270 * (i.e. vnic3) to start even if it is marked as "scan-off". 17271 * This occurs when a different function (func2,3) is being marked 17272 * as "scan-off". Real-life scenario for example: if a driver is being 17273 * load-unloaded while func6,7 are down. This will cause the timer to access 17274 * the ilt, translate to a logical address and send a request to read/write. 17275 * Since the ilt for the function that is down is not valid, this will cause 17276 * a translation error which is unrecoverable. 17277 * The Workaround is intended to make sure that when this happens nothing 17278 * fatal will occur. The workaround: 17279 * 1. First PF driver which loads on a path will: 17280 * a. After taking the chip out of reset, by using pretend, 17281 * it will write "0" to the following registers of 17282 * the other vnics. 17283 * REG_WR(pdev, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0); 17284 * REG_WR(pdev, CFC_REG_WEAK_ENABLE_PF,0); 17285 * REG_WR(pdev, CFC_REG_STRONG_ENABLE_PF,0); 17286 * And for itself it will write '1' to 17287 * PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER to enable 17288 * dmae-operations (writing to pram for example.) 17289 * note: can be done for only function 6,7 but cleaner this 17290 * way. 17291 * b. Write zero+valid to the entire ILT. 17292 * c. Init the first_timers_ilt_entry, last_timers_ilt_entry of 17293 * VNIC3 (of that port). The range allocated will be the 17294 * entire ILT. This is needed to prevent ILT range error. 17295 * 2. Any PF driver load flow: 17296 * a. ILT update with the physical addresses of the allocated 17297 * logical pages. 17298 * b. Wait 20msec. - note that this timeout is needed to make 17299 * sure there are no requests in one of the PXP internal 17300 * queues with "old" ILT addresses. 17301 * c. PF enable in the PGLC. 17302 * d. Clear the was_error of the PF in the PGLC. (could have 17303 * occurred while driver was down) 17304 * e. PF enable in the CFC (WEAK + STRONG) 17305 * f. Timers scan enable 17306 * 3. PF driver unload flow: 17307 * a. Clear the Timers scan_en. 17308 * b. Polling for scan_on=0 for that PF. 17309 * c. Clear the PF enable bit in the PXP. 17310 * d. Clear the PF enable in the CFC (WEAK + STRONG) 17311 * e. Write zero+valid to all ILT entries (The valid bit must 17312 * stay set) 17313 * f. If this is VNIC 3 of a port then also init 17314 * first_timers_ilt_entry to zero and last_timers_ilt_entry 17315 * to the last enrty in the ILT. 17316 * 17317 * Notes: 17318 * Currently the PF error in the PGLC is non recoverable. 17319 * In the future the there will be a recovery routine for this error. 17320 * Currently attention is masked. 17321 * Having an MCP lock on the load/unload process does not guarantee that 17322 * there is no Timer disable during Func6/7 enable. This is because the 17323 * Timers scan is currently being cleared by the MCP on FLR. 17324 * Step 2.d can be done only for PF6/7 and the driver can also check if 17325 * there is error before clearing it. But the flow above is simpler and 17326 * more general. 17327 * All ILT entries are written by zero+valid and not just PF6/7 17328 * ILT entries since in the future the ILT entries allocation for 17329 * PF-s might be dynamic. 17330 */ 17331 struct ilt_client_info ilt_cli; 17332 struct ecore_ilt ilt; 17333 17334 memset(&ilt_cli, 0, sizeof(struct ilt_client_info)); 17335 memset(&ilt, 0, sizeof(struct ecore_ilt)); 17336 17337 /* initialize dummy TM client */ 17338 ilt_cli.start = 0; 17339 ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1; 17340 ilt_cli.client_num = ILT_CLIENT_TM; 17341 17342 /* 17343 * Step 1: set zeroes to all ilt page entries with valid bit on 17344 * Step 2: set the timers first/last ilt entry to point 17345 * to the entire range to prevent ILT range error for 3rd/4th 17346 * vnic (this code assumes existence of the vnic) 17347 * 17348 * both steps performed by call to ecore_ilt_client_init_op() 17349 * with dummy TM client 17350 * 17351 * we must use pretend since PXP2_REG_RQ_##blk##_FIRST_ILT 17352 * and his brother are split registers 17353 */ 17354 17355 bxe_pretend_func(sc, (SC_PATH(sc) + 6)); 17356 ecore_ilt_client_init_op_ilt(sc, &ilt, &ilt_cli, INITOP_CLEAR); 17357 bxe_pretend_func(sc, SC_ABS_FUNC(sc)); 17358 17359 REG_WR(sc, PXP2_REG_RQ_DRAM_ALIGN, BXE_PXP_DRAM_ALIGN); 17360 REG_WR(sc, PXP2_REG_RQ_DRAM_ALIGN_RD, BXE_PXP_DRAM_ALIGN); 17361 REG_WR(sc, PXP2_REG_RQ_DRAM_ALIGN_SEL, 1); 17362 } 17363 17364 REG_WR(sc, PXP2_REG_RQ_DISABLE_INPUTS, 0); 17365 REG_WR(sc, PXP2_REG_RD_DISABLE_INPUTS, 0); 17366 17367 if (!CHIP_IS_E1x(sc)) { 17368 int factor = CHIP_REV_IS_EMUL(sc) ? 1000 : 17369 (CHIP_REV_IS_FPGA(sc) ? 400 : 0); 17370 17371 ecore_init_block(sc, BLOCK_PGLUE_B, PHASE_COMMON); 17372 ecore_init_block(sc, BLOCK_ATC, PHASE_COMMON); 17373 17374 /* let the HW do it's magic... */ 17375 do { 17376 DELAY(200000); 17377 val = REG_RD(sc, ATC_REG_ATC_INIT_DONE); 17378 } while (factor-- && (val != 1)); 17379 17380 if (val != 1) { 17381 BLOGE(sc, "ATC_INIT failed\n"); 17382 return (-1); 17383 } 17384 } 17385 17386 BLOGD(sc, DBG_LOAD, "after pglue and atc init\n"); 17387 17388 ecore_init_block(sc, BLOCK_DMAE, PHASE_COMMON); 17389 17390 bxe_iov_init_dmae(sc); 17391 17392 /* clean the DMAE memory */ 17393 sc->dmae_ready = 1; 17394 ecore_init_fill(sc, TSEM_REG_PRAM, 0, 8, 1); 17395 17396 ecore_init_block(sc, BLOCK_TCM, PHASE_COMMON); 17397 17398 ecore_init_block(sc, BLOCK_UCM, PHASE_COMMON); 17399 17400 ecore_init_block(sc, BLOCK_CCM, PHASE_COMMON); 17401 17402 ecore_init_block(sc, BLOCK_XCM, PHASE_COMMON); 17403 17404 bxe_read_dmae(sc, XSEM_REG_PASSIVE_BUFFER, 3); 17405 bxe_read_dmae(sc, CSEM_REG_PASSIVE_BUFFER, 3); 17406 bxe_read_dmae(sc, TSEM_REG_PASSIVE_BUFFER, 3); 17407 bxe_read_dmae(sc, USEM_REG_PASSIVE_BUFFER, 3); 17408 17409 ecore_init_block(sc, BLOCK_QM, PHASE_COMMON); 17410 17411 /* QM queues pointers table */ 17412 ecore_qm_init_ptr_table(sc, sc->qm_cid_count, INITOP_SET); 17413 17414 /* soft reset pulse */ 17415 REG_WR(sc, QM_REG_SOFT_RESET, 1); 17416 REG_WR(sc, QM_REG_SOFT_RESET, 0); 17417 17418 if (CNIC_SUPPORT(sc)) 17419 ecore_init_block(sc, BLOCK_TM, PHASE_COMMON); 17420 17421 ecore_init_block(sc, BLOCK_DORQ, PHASE_COMMON); 17422 REG_WR(sc, DORQ_REG_DPM_CID_OFST, BXE_DB_SHIFT); 17423 if (!CHIP_REV_IS_SLOW(sc)) { 17424 /* enable hw interrupt from doorbell Q */ 17425 REG_WR(sc, DORQ_REG_DORQ_INT_MASK, 0); 17426 } 17427 17428 ecore_init_block(sc, BLOCK_BRB1, PHASE_COMMON); 17429 17430 ecore_init_block(sc, BLOCK_PRS, PHASE_COMMON); 17431 REG_WR(sc, PRS_REG_A_PRSU_20, 0xf); 17432 17433 if (!CHIP_IS_E1(sc)) { 17434 REG_WR(sc, PRS_REG_E1HOV_MODE, sc->devinfo.mf_info.path_has_ovlan); 17435 } 17436 17437 if (!CHIP_IS_E1x(sc) && !CHIP_IS_E3B0(sc)) { 17438 if (IS_MF_AFEX(sc)) { 17439 /* 17440 * configure that AFEX and VLAN headers must be 17441 * received in AFEX mode 17442 */ 17443 REG_WR(sc, PRS_REG_HDRS_AFTER_BASIC, 0xE); 17444 REG_WR(sc, PRS_REG_MUST_HAVE_HDRS, 0xA); 17445 REG_WR(sc, PRS_REG_HDRS_AFTER_TAG_0, 0x6); 17446 REG_WR(sc, PRS_REG_TAG_ETHERTYPE_0, 0x8926); 17447 REG_WR(sc, PRS_REG_TAG_LEN_0, 0x4); 17448 } else { 17449 /* 17450 * Bit-map indicating which L2 hdrs may appear 17451 * after the basic Ethernet header 17452 */ 17453 REG_WR(sc, PRS_REG_HDRS_AFTER_BASIC, 17454 sc->devinfo.mf_info.path_has_ovlan ? 7 : 6); 17455 } 17456 } 17457 17458 ecore_init_block(sc, BLOCK_TSDM, PHASE_COMMON); 17459 ecore_init_block(sc, BLOCK_CSDM, PHASE_COMMON); 17460 ecore_init_block(sc, BLOCK_USDM, PHASE_COMMON); 17461 ecore_init_block(sc, BLOCK_XSDM, PHASE_COMMON); 17462 17463 if (!CHIP_IS_E1x(sc)) { 17464 /* reset VFC memories */ 17465 REG_WR(sc, TSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST, 17466 VFC_MEMORIES_RST_REG_CAM_RST | 17467 VFC_MEMORIES_RST_REG_RAM_RST); 17468 REG_WR(sc, XSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST, 17469 VFC_MEMORIES_RST_REG_CAM_RST | 17470 VFC_MEMORIES_RST_REG_RAM_RST); 17471 17472 DELAY(20000); 17473 } 17474 17475 ecore_init_block(sc, BLOCK_TSEM, PHASE_COMMON); 17476 ecore_init_block(sc, BLOCK_USEM, PHASE_COMMON); 17477 ecore_init_block(sc, BLOCK_CSEM, PHASE_COMMON); 17478 ecore_init_block(sc, BLOCK_XSEM, PHASE_COMMON); 17479 17480 /* sync semi rtc */ 17481 REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 17482 0x80000000); 17483 REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 17484 0x80000000); 17485 17486 ecore_init_block(sc, BLOCK_UPB, PHASE_COMMON); 17487 ecore_init_block(sc, BLOCK_XPB, PHASE_COMMON); 17488 ecore_init_block(sc, BLOCK_PBF, PHASE_COMMON); 17489 17490 if (!CHIP_IS_E1x(sc)) { 17491 if (IS_MF_AFEX(sc)) { 17492 /* 17493 * configure that AFEX and VLAN headers must be 17494 * sent in AFEX mode 17495 */ 17496 REG_WR(sc, PBF_REG_HDRS_AFTER_BASIC, 0xE); 17497 REG_WR(sc, PBF_REG_MUST_HAVE_HDRS, 0xA); 17498 REG_WR(sc, PBF_REG_HDRS_AFTER_TAG_0, 0x6); 17499 REG_WR(sc, PBF_REG_TAG_ETHERTYPE_0, 0x8926); 17500 REG_WR(sc, PBF_REG_TAG_LEN_0, 0x4); 17501 } else { 17502 REG_WR(sc, PBF_REG_HDRS_AFTER_BASIC, 17503 sc->devinfo.mf_info.path_has_ovlan ? 7 : 6); 17504 } 17505 } 17506 17507 REG_WR(sc, SRC_REG_SOFT_RST, 1); 17508 17509 ecore_init_block(sc, BLOCK_SRC, PHASE_COMMON); 17510 17511 if (CNIC_SUPPORT(sc)) { 17512 REG_WR(sc, SRC_REG_KEYSEARCH_0, 0x63285672); 17513 REG_WR(sc, SRC_REG_KEYSEARCH_1, 0x24b8f2cc); 17514 REG_WR(sc, SRC_REG_KEYSEARCH_2, 0x223aef9b); 17515 REG_WR(sc, SRC_REG_KEYSEARCH_3, 0x26001e3a); 17516 REG_WR(sc, SRC_REG_KEYSEARCH_4, 0x7ae91116); 17517 REG_WR(sc, SRC_REG_KEYSEARCH_5, 0x5ce5230b); 17518 REG_WR(sc, SRC_REG_KEYSEARCH_6, 0x298d8adf); 17519 REG_WR(sc, SRC_REG_KEYSEARCH_7, 0x6eb0ff09); 17520 REG_WR(sc, SRC_REG_KEYSEARCH_8, 0x1830f82f); 17521 REG_WR(sc, SRC_REG_KEYSEARCH_9, 0x01e46be7); 17522 } 17523 REG_WR(sc, SRC_REG_SOFT_RST, 0); 17524 17525 if (sizeof(union cdu_context) != 1024) { 17526 /* we currently assume that a context is 1024 bytes */ 17527 BLOGE(sc, "please adjust the size of cdu_context(%ld)\n", 17528 (long)sizeof(union cdu_context)); 17529 } 17530 17531 ecore_init_block(sc, BLOCK_CDU, PHASE_COMMON); 17532 val = (4 << 24) + (0 << 12) + 1024; 17533 REG_WR(sc, CDU_REG_CDU_GLOBAL_PARAMS, val); 17534 17535 ecore_init_block(sc, BLOCK_CFC, PHASE_COMMON); 17536 17537 REG_WR(sc, CFC_REG_INIT_REG, 0x7FF); 17538 /* enable context validation interrupt from CFC */ 17539 REG_WR(sc, CFC_REG_CFC_INT_MASK, 0); 17540 17541 /* set the thresholds to prevent CFC/CDU race */ 17542 REG_WR(sc, CFC_REG_DEBUG0, 0x20020000); 17543 ecore_init_block(sc, BLOCK_HC, PHASE_COMMON); 17544 17545 if (!CHIP_IS_E1x(sc) && BXE_NOMCP(sc)) { 17546 REG_WR(sc, IGU_REG_RESET_MEMORIES, 0x36); 17547 } 17548 17549 ecore_init_block(sc, BLOCK_IGU, PHASE_COMMON); 17550 ecore_init_block(sc, BLOCK_MISC_AEU, PHASE_COMMON); 17551 17552 /* Reset PCIE errors for debug */ 17553 REG_WR(sc, 0x2814, 0xffffffff); 17554 REG_WR(sc, 0x3820, 0xffffffff); 17555 17556 if (!CHIP_IS_E1x(sc)) { 17557 REG_WR(sc, PCICFG_OFFSET + PXPCS_TL_CONTROL_5, 17558 (PXPCS_TL_CONTROL_5_ERR_UNSPPORT1 | 17559 PXPCS_TL_CONTROL_5_ERR_UNSPPORT)); 17560 REG_WR(sc, PCICFG_OFFSET + PXPCS_TL_FUNC345_STAT, 17561 (PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT4 | 17562 PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT3 | 17563 PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT2)); 17564 REG_WR(sc, PCICFG_OFFSET + PXPCS_TL_FUNC678_STAT, 17565 (PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT7 | 17566 PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT6 | 17567 PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT5)); 17568 } 17569 17570 ecore_init_block(sc, BLOCK_NIG, PHASE_COMMON); 17571 17572 if (!CHIP_IS_E1(sc)) { 17573 /* in E3 this done in per-port section */ 17574 if (!CHIP_IS_E3(sc)) 17575 REG_WR(sc, NIG_REG_LLH_MF_MODE, IS_MF(sc)); 17576 } 17577 17578 if (CHIP_IS_E1H(sc)) { 17579 /* not applicable for E2 (and above ...) */ 17580 REG_WR(sc, NIG_REG_LLH_E1HOV_MODE, IS_MF_SD(sc)); 17581 } 17582 17583 if (CHIP_REV_IS_SLOW(sc)) { 17584 DELAY(200000); 17585 } 17586 17587 /* finish CFC init */ 17588 val = reg_poll(sc, CFC_REG_LL_INIT_DONE, 1, 100, 10); 17589 if (val != 1) { 17590 BLOGE(sc, "CFC LL_INIT failed\n"); 17591 return (-1); 17592 } 17593 val = reg_poll(sc, CFC_REG_AC_INIT_DONE, 1, 100, 10); 17594 if (val != 1) { 17595 BLOGE(sc, "CFC AC_INIT failed\n"); 17596 return (-1); 17597 } 17598 val = reg_poll(sc, CFC_REG_CAM_INIT_DONE, 1, 100, 10); 17599 if (val != 1) { 17600 BLOGE(sc, "CFC CAM_INIT failed\n"); 17601 return (-1); 17602 } 17603 REG_WR(sc, CFC_REG_DEBUG0, 0); 17604 17605 if (CHIP_IS_E1(sc)) { 17606 /* read NIG statistic to see if this is our first up since powerup */ 17607 bxe_read_dmae(sc, NIG_REG_STAT2_BRB_OCTET, 2); 17608 val = *BXE_SP(sc, wb_data[0]); 17609 17610 /* do internal memory self test */ 17611 if ((val == 0) && bxe_int_mem_test(sc)) { 17612 BLOGE(sc, "internal mem self test failed\n"); 17613 return (-1); 17614 } 17615 } 17616 17617 bxe_setup_fan_failure_detection(sc); 17618 17619 /* clear PXP2 attentions */ 17620 REG_RD(sc, PXP2_REG_PXP2_INT_STS_CLR_0); 17621 17622 bxe_enable_blocks_attention(sc); 17623 17624 if (!CHIP_REV_IS_SLOW(sc)) { 17625 ecore_enable_blocks_parity(sc); 17626 } 17627 17628 if (!BXE_NOMCP(sc)) { 17629 if (CHIP_IS_E1x(sc)) { 17630 bxe_common_init_phy(sc); 17631 } 17632 } 17633 17634 return (0); 17635 } 17636 17637 /** 17638 * bxe_init_hw_common_chip - init HW at the COMMON_CHIP phase. 17639 * 17640 * @sc: driver handle 17641 */ 17642 static int 17643 bxe_init_hw_common_chip(struct bxe_softc *sc) 17644 { 17645 int rc = bxe_init_hw_common(sc); 17646 17647 if (rc) { 17648 return (rc); 17649 } 17650 17651 /* In E2 2-PORT mode, same ext phy is used for the two paths */ 17652 if (!BXE_NOMCP(sc)) { 17653 bxe_common_init_phy(sc); 17654 } 17655 17656 return (0); 17657 } 17658 17659 static int 17660 bxe_init_hw_port(struct bxe_softc *sc) 17661 { 17662 int port = SC_PORT(sc); 17663 int init_phase = port ? PHASE_PORT1 : PHASE_PORT0; 17664 uint32_t low, high; 17665 uint32_t val; 17666 17667 BLOGD(sc, DBG_LOAD, "starting port init for port %d\n", port); 17668 17669 REG_WR(sc, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0); 17670 17671 ecore_init_block(sc, BLOCK_MISC, init_phase); 17672 ecore_init_block(sc, BLOCK_PXP, init_phase); 17673 ecore_init_block(sc, BLOCK_PXP2, init_phase); 17674 17675 /* 17676 * Timers bug workaround: disables the pf_master bit in pglue at 17677 * common phase, we need to enable it here before any dmae access are 17678 * attempted. Therefore we manually added the enable-master to the 17679 * port phase (it also happens in the function phase) 17680 */ 17681 if (!CHIP_IS_E1x(sc)) { 17682 REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1); 17683 } 17684 17685 ecore_init_block(sc, BLOCK_ATC, init_phase); 17686 ecore_init_block(sc, BLOCK_DMAE, init_phase); 17687 ecore_init_block(sc, BLOCK_PGLUE_B, init_phase); 17688 ecore_init_block(sc, BLOCK_QM, init_phase); 17689 17690 ecore_init_block(sc, BLOCK_TCM, init_phase); 17691 ecore_init_block(sc, BLOCK_UCM, init_phase); 17692 ecore_init_block(sc, BLOCK_CCM, init_phase); 17693 ecore_init_block(sc, BLOCK_XCM, init_phase); 17694 17695 /* QM cid (connection) count */ 17696 ecore_qm_init_cid_count(sc, sc->qm_cid_count, INITOP_SET); 17697 17698 if (CNIC_SUPPORT(sc)) { 17699 ecore_init_block(sc, BLOCK_TM, init_phase); 17700 REG_WR(sc, TM_REG_LIN0_SCAN_TIME + port*4, 20); 17701 REG_WR(sc, TM_REG_LIN0_MAX_ACTIVE_CID + port*4, 31); 17702 } 17703 17704 ecore_init_block(sc, BLOCK_DORQ, init_phase); 17705 17706 ecore_init_block(sc, BLOCK_BRB1, init_phase); 17707 17708 if (CHIP_IS_E1(sc) || CHIP_IS_E1H(sc)) { 17709 if (IS_MF(sc)) { 17710 low = (BXE_ONE_PORT(sc) ? 160 : 246); 17711 } else if (sc->mtu > 4096) { 17712 if (BXE_ONE_PORT(sc)) { 17713 low = 160; 17714 } else { 17715 val = sc->mtu; 17716 /* (24*1024 + val*4)/256 */ 17717 low = (96 + (val / 64) + ((val % 64) ? 1 : 0)); 17718 } 17719 } else { 17720 low = (BXE_ONE_PORT(sc) ? 80 : 160); 17721 } 17722 high = (low + 56); /* 14*1024/256 */ 17723 REG_WR(sc, BRB1_REG_PAUSE_LOW_THRESHOLD_0 + port*4, low); 17724 REG_WR(sc, BRB1_REG_PAUSE_HIGH_THRESHOLD_0 + port*4, high); 17725 } 17726 17727 if (CHIP_IS_MODE_4_PORT(sc)) { 17728 REG_WR(sc, SC_PORT(sc) ? 17729 BRB1_REG_MAC_GUARANTIED_1 : 17730 BRB1_REG_MAC_GUARANTIED_0, 40); 17731 } 17732 17733 ecore_init_block(sc, BLOCK_PRS, init_phase); 17734 if (CHIP_IS_E3B0(sc)) { 17735 if (IS_MF_AFEX(sc)) { 17736 /* configure headers for AFEX mode */ 17737 REG_WR(sc, SC_PORT(sc) ? 17738 PRS_REG_HDRS_AFTER_BASIC_PORT_1 : 17739 PRS_REG_HDRS_AFTER_BASIC_PORT_0, 0xE); 17740 REG_WR(sc, SC_PORT(sc) ? 17741 PRS_REG_HDRS_AFTER_TAG_0_PORT_1 : 17742 PRS_REG_HDRS_AFTER_TAG_0_PORT_0, 0x6); 17743 REG_WR(sc, SC_PORT(sc) ? 17744 PRS_REG_MUST_HAVE_HDRS_PORT_1 : 17745 PRS_REG_MUST_HAVE_HDRS_PORT_0, 0xA); 17746 } else { 17747 /* Ovlan exists only if we are in multi-function + 17748 * switch-dependent mode, in switch-independent there 17749 * is no ovlan headers 17750 */ 17751 REG_WR(sc, SC_PORT(sc) ? 17752 PRS_REG_HDRS_AFTER_BASIC_PORT_1 : 17753 PRS_REG_HDRS_AFTER_BASIC_PORT_0, 17754 (sc->devinfo.mf_info.path_has_ovlan ? 7 : 6)); 17755 } 17756 } 17757 17758 ecore_init_block(sc, BLOCK_TSDM, init_phase); 17759 ecore_init_block(sc, BLOCK_CSDM, init_phase); 17760 ecore_init_block(sc, BLOCK_USDM, init_phase); 17761 ecore_init_block(sc, BLOCK_XSDM, init_phase); 17762 17763 ecore_init_block(sc, BLOCK_TSEM, init_phase); 17764 ecore_init_block(sc, BLOCK_USEM, init_phase); 17765 ecore_init_block(sc, BLOCK_CSEM, init_phase); 17766 ecore_init_block(sc, BLOCK_XSEM, init_phase); 17767 17768 ecore_init_block(sc, BLOCK_UPB, init_phase); 17769 ecore_init_block(sc, BLOCK_XPB, init_phase); 17770 17771 ecore_init_block(sc, BLOCK_PBF, init_phase); 17772 17773 if (CHIP_IS_E1x(sc)) { 17774 /* configure PBF to work without PAUSE mtu 9000 */ 17775 REG_WR(sc, PBF_REG_P0_PAUSE_ENABLE + port*4, 0); 17776 17777 /* update threshold */ 17778 REG_WR(sc, PBF_REG_P0_ARB_THRSH + port*4, (9040/16)); 17779 /* update init credit */ 17780 REG_WR(sc, PBF_REG_P0_INIT_CRD + port*4, (9040/16) + 553 - 22); 17781 17782 /* probe changes */ 17783 REG_WR(sc, PBF_REG_INIT_P0 + port*4, 1); 17784 DELAY(50); 17785 REG_WR(sc, PBF_REG_INIT_P0 + port*4, 0); 17786 } 17787 17788 if (CNIC_SUPPORT(sc)) { 17789 ecore_init_block(sc, BLOCK_SRC, init_phase); 17790 } 17791 17792 ecore_init_block(sc, BLOCK_CDU, init_phase); 17793 ecore_init_block(sc, BLOCK_CFC, init_phase); 17794 17795 if (CHIP_IS_E1(sc)) { 17796 REG_WR(sc, HC_REG_LEADING_EDGE_0 + port*8, 0); 17797 REG_WR(sc, HC_REG_TRAILING_EDGE_0 + port*8, 0); 17798 } 17799 ecore_init_block(sc, BLOCK_HC, init_phase); 17800 17801 ecore_init_block(sc, BLOCK_IGU, init_phase); 17802 17803 ecore_init_block(sc, BLOCK_MISC_AEU, init_phase); 17804 /* init aeu_mask_attn_func_0/1: 17805 * - SF mode: bits 3-7 are masked. only bits 0-2 are in use 17806 * - MF mode: bit 3 is masked. bits 0-2 are in use as in SF 17807 * bits 4-7 are used for "per vn group attention" */ 17808 val = IS_MF(sc) ? 0xF7 : 0x7; 17809 /* Enable DCBX attention for all but E1 */ 17810 val |= CHIP_IS_E1(sc) ? 0 : 0x10; 17811 REG_WR(sc, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, val); 17812 17813 ecore_init_block(sc, BLOCK_NIG, init_phase); 17814 17815 if (!CHIP_IS_E1x(sc)) { 17816 /* Bit-map indicating which L2 hdrs may appear after the 17817 * basic Ethernet header 17818 */ 17819 if (IS_MF_AFEX(sc)) { 17820 REG_WR(sc, SC_PORT(sc) ? 17821 NIG_REG_P1_HDRS_AFTER_BASIC : 17822 NIG_REG_P0_HDRS_AFTER_BASIC, 0xE); 17823 } else { 17824 REG_WR(sc, SC_PORT(sc) ? 17825 NIG_REG_P1_HDRS_AFTER_BASIC : 17826 NIG_REG_P0_HDRS_AFTER_BASIC, 17827 IS_MF_SD(sc) ? 7 : 6); 17828 } 17829 17830 if (CHIP_IS_E3(sc)) { 17831 REG_WR(sc, SC_PORT(sc) ? 17832 NIG_REG_LLH1_MF_MODE : 17833 NIG_REG_LLH_MF_MODE, IS_MF(sc)); 17834 } 17835 } 17836 if (!CHIP_IS_E3(sc)) { 17837 REG_WR(sc, NIG_REG_XGXS_SERDES0_MODE_SEL + port*4, 1); 17838 } 17839 17840 if (!CHIP_IS_E1(sc)) { 17841 /* 0x2 disable mf_ov, 0x1 enable */ 17842 REG_WR(sc, NIG_REG_LLH0_BRB1_DRV_MASK_MF + port*4, 17843 (IS_MF_SD(sc) ? 0x1 : 0x2)); 17844 17845 if (!CHIP_IS_E1x(sc)) { 17846 val = 0; 17847 switch (sc->devinfo.mf_info.mf_mode) { 17848 case MULTI_FUNCTION_SD: 17849 val = 1; 17850 break; 17851 case MULTI_FUNCTION_SI: 17852 case MULTI_FUNCTION_AFEX: 17853 val = 2; 17854 break; 17855 } 17856 17857 REG_WR(sc, (SC_PORT(sc) ? NIG_REG_LLH1_CLS_TYPE : 17858 NIG_REG_LLH0_CLS_TYPE), val); 17859 } 17860 REG_WR(sc, NIG_REG_LLFC_ENABLE_0 + port*4, 0); 17861 REG_WR(sc, NIG_REG_LLFC_OUT_EN_0 + port*4, 0); 17862 REG_WR(sc, NIG_REG_PAUSE_ENABLE_0 + port*4, 1); 17863 } 17864 17865 /* If SPIO5 is set to generate interrupts, enable it for this port */ 17866 val = REG_RD(sc, MISC_REG_SPIO_EVENT_EN); 17867 if (val & MISC_SPIO_SPIO5) { 17868 uint32_t reg_addr = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 : 17869 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0); 17870 val = REG_RD(sc, reg_addr); 17871 val |= AEU_INPUTS_ATTN_BITS_SPIO5; 17872 REG_WR(sc, reg_addr, val); 17873 } 17874 17875 return (0); 17876 } 17877 17878 static uint32_t 17879 bxe_flr_clnup_reg_poll(struct bxe_softc *sc, 17880 uint32_t reg, 17881 uint32_t expected, 17882 uint32_t poll_count) 17883 { 17884 uint32_t cur_cnt = poll_count; 17885 uint32_t val; 17886 17887 while ((val = REG_RD(sc, reg)) != expected && cur_cnt--) { 17888 DELAY(FLR_WAIT_INTERVAL); 17889 } 17890 17891 return (val); 17892 } 17893 17894 static int 17895 bxe_flr_clnup_poll_hw_counter(struct bxe_softc *sc, 17896 uint32_t reg, 17897 char *msg, 17898 uint32_t poll_cnt) 17899 { 17900 uint32_t val = bxe_flr_clnup_reg_poll(sc, reg, 0, poll_cnt); 17901 17902 if (val != 0) { 17903 BLOGE(sc, "%s usage count=%d\n", msg, val); 17904 return (1); 17905 } 17906 17907 return (0); 17908 } 17909 17910 /* Common routines with VF FLR cleanup */ 17911 static uint32_t 17912 bxe_flr_clnup_poll_count(struct bxe_softc *sc) 17913 { 17914 /* adjust polling timeout */ 17915 if (CHIP_REV_IS_EMUL(sc)) { 17916 return (FLR_POLL_CNT * 2000); 17917 } 17918 17919 if (CHIP_REV_IS_FPGA(sc)) { 17920 return (FLR_POLL_CNT * 120); 17921 } 17922 17923 return (FLR_POLL_CNT); 17924 } 17925 17926 static int 17927 bxe_poll_hw_usage_counters(struct bxe_softc *sc, 17928 uint32_t poll_cnt) 17929 { 17930 /* wait for CFC PF usage-counter to zero (includes all the VFs) */ 17931 if (bxe_flr_clnup_poll_hw_counter(sc, 17932 CFC_REG_NUM_LCIDS_INSIDE_PF, 17933 "CFC PF usage counter timed out", 17934 poll_cnt)) { 17935 return (1); 17936 } 17937 17938 /* Wait for DQ PF usage-counter to zero (until DQ cleanup) */ 17939 if (bxe_flr_clnup_poll_hw_counter(sc, 17940 DORQ_REG_PF_USAGE_CNT, 17941 "DQ PF usage counter timed out", 17942 poll_cnt)) { 17943 return (1); 17944 } 17945 17946 /* Wait for QM PF usage-counter to zero (until DQ cleanup) */ 17947 if (bxe_flr_clnup_poll_hw_counter(sc, 17948 QM_REG_PF_USG_CNT_0 + 4*SC_FUNC(sc), 17949 "QM PF usage counter timed out", 17950 poll_cnt)) { 17951 return (1); 17952 } 17953 17954 /* Wait for Timer PF usage-counters to zero (until DQ cleanup) */ 17955 if (bxe_flr_clnup_poll_hw_counter(sc, 17956 TM_REG_LIN0_VNIC_UC + 4*SC_PORT(sc), 17957 "Timers VNIC usage counter timed out", 17958 poll_cnt)) { 17959 return (1); 17960 } 17961 17962 if (bxe_flr_clnup_poll_hw_counter(sc, 17963 TM_REG_LIN0_NUM_SCANS + 4*SC_PORT(sc), 17964 "Timers NUM_SCANS usage counter timed out", 17965 poll_cnt)) { 17966 return (1); 17967 } 17968 17969 /* Wait DMAE PF usage counter to zero */ 17970 if (bxe_flr_clnup_poll_hw_counter(sc, 17971 dmae_reg_go_c[INIT_DMAE_C(sc)], 17972 "DMAE dommand register timed out", 17973 poll_cnt)) { 17974 return (1); 17975 } 17976 17977 return (0); 17978 } 17979 17980 #define OP_GEN_PARAM(param) \ 17981 (((param) << SDM_OP_GEN_COMP_PARAM_SHIFT) & SDM_OP_GEN_COMP_PARAM) 17982 #define OP_GEN_TYPE(type) \ 17983 (((type) << SDM_OP_GEN_COMP_TYPE_SHIFT) & SDM_OP_GEN_COMP_TYPE) 17984 #define OP_GEN_AGG_VECT(index) \ 17985 (((index) << SDM_OP_GEN_AGG_VECT_IDX_SHIFT) & SDM_OP_GEN_AGG_VECT_IDX) 17986 17987 static int 17988 bxe_send_final_clnup(struct bxe_softc *sc, 17989 uint8_t clnup_func, 17990 uint32_t poll_cnt) 17991 { 17992 uint32_t op_gen_command = 0; 17993 uint32_t comp_addr = (BAR_CSTRORM_INTMEM + 17994 CSTORM_FINAL_CLEANUP_COMPLETE_OFFSET(clnup_func)); 17995 int ret = 0; 17996 17997 if (REG_RD(sc, comp_addr)) { 17998 BLOGE(sc, "Cleanup complete was not 0 before sending\n"); 17999 return (1); 18000 } 18001 18002 op_gen_command |= OP_GEN_PARAM(XSTORM_AGG_INT_FINAL_CLEANUP_INDEX); 18003 op_gen_command |= OP_GEN_TYPE(XSTORM_AGG_INT_FINAL_CLEANUP_COMP_TYPE); 18004 op_gen_command |= OP_GEN_AGG_VECT(clnup_func); 18005 op_gen_command |= 1 << SDM_OP_GEN_AGG_VECT_IDX_VALID_SHIFT; 18006 18007 BLOGD(sc, DBG_LOAD, "sending FW Final cleanup\n"); 18008 REG_WR(sc, XSDM_REG_OPERATION_GEN, op_gen_command); 18009 18010 if (bxe_flr_clnup_reg_poll(sc, comp_addr, 1, poll_cnt) != 1) { 18011 BLOGE(sc, "FW final cleanup did not succeed\n"); 18012 BLOGD(sc, DBG_LOAD, "At timeout completion address contained %x\n", 18013 (REG_RD(sc, comp_addr))); 18014 bxe_panic(sc, ("FLR cleanup failed\n")); 18015 return (1); 18016 } 18017 18018 /* Zero completion for nxt FLR */ 18019 REG_WR(sc, comp_addr, 0); 18020 18021 return (ret); 18022 } 18023 18024 static void 18025 bxe_pbf_pN_buf_flushed(struct bxe_softc *sc, 18026 struct pbf_pN_buf_regs *regs, 18027 uint32_t poll_count) 18028 { 18029 uint32_t init_crd, crd, crd_start, crd_freed, crd_freed_start; 18030 uint32_t cur_cnt = poll_count; 18031 18032 crd_freed = crd_freed_start = REG_RD(sc, regs->crd_freed); 18033 crd = crd_start = REG_RD(sc, regs->crd); 18034 init_crd = REG_RD(sc, regs->init_crd); 18035 18036 BLOGD(sc, DBG_LOAD, "INIT CREDIT[%d] : %x\n", regs->pN, init_crd); 18037 BLOGD(sc, DBG_LOAD, "CREDIT[%d] : s:%x\n", regs->pN, crd); 18038 BLOGD(sc, DBG_LOAD, "CREDIT_FREED[%d]: s:%x\n", regs->pN, crd_freed); 18039 18040 while ((crd != init_crd) && 18041 ((uint32_t)((int32_t)crd_freed - (int32_t)crd_freed_start) < 18042 (init_crd - crd_start))) { 18043 if (cur_cnt--) { 18044 DELAY(FLR_WAIT_INTERVAL); 18045 crd = REG_RD(sc, regs->crd); 18046 crd_freed = REG_RD(sc, regs->crd_freed); 18047 } else { 18048 BLOGD(sc, DBG_LOAD, "PBF tx buffer[%d] timed out\n", regs->pN); 18049 BLOGD(sc, DBG_LOAD, "CREDIT[%d] : c:%x\n", regs->pN, crd); 18050 BLOGD(sc, DBG_LOAD, "CREDIT_FREED[%d]: c:%x\n", regs->pN, crd_freed); 18051 break; 18052 } 18053 } 18054 18055 BLOGD(sc, DBG_LOAD, "Waited %d*%d usec for PBF tx buffer[%d]\n", 18056 poll_count-cur_cnt, FLR_WAIT_INTERVAL, regs->pN); 18057 } 18058 18059 static void 18060 bxe_pbf_pN_cmd_flushed(struct bxe_softc *sc, 18061 struct pbf_pN_cmd_regs *regs, 18062 uint32_t poll_count) 18063 { 18064 uint32_t occup, to_free, freed, freed_start; 18065 uint32_t cur_cnt = poll_count; 18066 18067 occup = to_free = REG_RD(sc, regs->lines_occup); 18068 freed = freed_start = REG_RD(sc, regs->lines_freed); 18069 18070 BLOGD(sc, DBG_LOAD, "OCCUPANCY[%d] : s:%x\n", regs->pN, occup); 18071 BLOGD(sc, DBG_LOAD, "LINES_FREED[%d] : s:%x\n", regs->pN, freed); 18072 18073 while (occup && 18074 ((uint32_t)((int32_t)freed - (int32_t)freed_start) < to_free)) { 18075 if (cur_cnt--) { 18076 DELAY(FLR_WAIT_INTERVAL); 18077 occup = REG_RD(sc, regs->lines_occup); 18078 freed = REG_RD(sc, regs->lines_freed); 18079 } else { 18080 BLOGD(sc, DBG_LOAD, "PBF cmd queue[%d] timed out\n", regs->pN); 18081 BLOGD(sc, DBG_LOAD, "OCCUPANCY[%d] : s:%x\n", regs->pN, occup); 18082 BLOGD(sc, DBG_LOAD, "LINES_FREED[%d] : s:%x\n", regs->pN, freed); 18083 break; 18084 } 18085 } 18086 18087 BLOGD(sc, DBG_LOAD, "Waited %d*%d usec for PBF cmd queue[%d]\n", 18088 poll_count - cur_cnt, FLR_WAIT_INTERVAL, regs->pN); 18089 } 18090 18091 static void 18092 bxe_tx_hw_flushed(struct bxe_softc *sc, uint32_t poll_count) 18093 { 18094 struct pbf_pN_cmd_regs cmd_regs[] = { 18095 {0, (CHIP_IS_E3B0(sc)) ? 18096 PBF_REG_TQ_OCCUPANCY_Q0 : 18097 PBF_REG_P0_TQ_OCCUPANCY, 18098 (CHIP_IS_E3B0(sc)) ? 18099 PBF_REG_TQ_LINES_FREED_CNT_Q0 : 18100 PBF_REG_P0_TQ_LINES_FREED_CNT}, 18101 {1, (CHIP_IS_E3B0(sc)) ? 18102 PBF_REG_TQ_OCCUPANCY_Q1 : 18103 PBF_REG_P1_TQ_OCCUPANCY, 18104 (CHIP_IS_E3B0(sc)) ? 18105 PBF_REG_TQ_LINES_FREED_CNT_Q1 : 18106 PBF_REG_P1_TQ_LINES_FREED_CNT}, 18107 {4, (CHIP_IS_E3B0(sc)) ? 18108 PBF_REG_TQ_OCCUPANCY_LB_Q : 18109 PBF_REG_P4_TQ_OCCUPANCY, 18110 (CHIP_IS_E3B0(sc)) ? 18111 PBF_REG_TQ_LINES_FREED_CNT_LB_Q : 18112 PBF_REG_P4_TQ_LINES_FREED_CNT} 18113 }; 18114 18115 struct pbf_pN_buf_regs buf_regs[] = { 18116 {0, (CHIP_IS_E3B0(sc)) ? 18117 PBF_REG_INIT_CRD_Q0 : 18118 PBF_REG_P0_INIT_CRD , 18119 (CHIP_IS_E3B0(sc)) ? 18120 PBF_REG_CREDIT_Q0 : 18121 PBF_REG_P0_CREDIT, 18122 (CHIP_IS_E3B0(sc)) ? 18123 PBF_REG_INTERNAL_CRD_FREED_CNT_Q0 : 18124 PBF_REG_P0_INTERNAL_CRD_FREED_CNT}, 18125 {1, (CHIP_IS_E3B0(sc)) ? 18126 PBF_REG_INIT_CRD_Q1 : 18127 PBF_REG_P1_INIT_CRD, 18128 (CHIP_IS_E3B0(sc)) ? 18129 PBF_REG_CREDIT_Q1 : 18130 PBF_REG_P1_CREDIT, 18131 (CHIP_IS_E3B0(sc)) ? 18132 PBF_REG_INTERNAL_CRD_FREED_CNT_Q1 : 18133 PBF_REG_P1_INTERNAL_CRD_FREED_CNT}, 18134 {4, (CHIP_IS_E3B0(sc)) ? 18135 PBF_REG_INIT_CRD_LB_Q : 18136 PBF_REG_P4_INIT_CRD, 18137 (CHIP_IS_E3B0(sc)) ? 18138 PBF_REG_CREDIT_LB_Q : 18139 PBF_REG_P4_CREDIT, 18140 (CHIP_IS_E3B0(sc)) ? 18141 PBF_REG_INTERNAL_CRD_FREED_CNT_LB_Q : 18142 PBF_REG_P4_INTERNAL_CRD_FREED_CNT}, 18143 }; 18144 18145 int i; 18146 18147 /* Verify the command queues are flushed P0, P1, P4 */ 18148 for (i = 0; i < ARRAY_SIZE(cmd_regs); i++) { 18149 bxe_pbf_pN_cmd_flushed(sc, &cmd_regs[i], poll_count); 18150 } 18151 18152 /* Verify the transmission buffers are flushed P0, P1, P4 */ 18153 for (i = 0; i < ARRAY_SIZE(buf_regs); i++) { 18154 bxe_pbf_pN_buf_flushed(sc, &buf_regs[i], poll_count); 18155 } 18156 } 18157 18158 static void 18159 bxe_hw_enable_status(struct bxe_softc *sc) 18160 { 18161 uint32_t val; 18162 18163 val = REG_RD(sc, CFC_REG_WEAK_ENABLE_PF); 18164 BLOGD(sc, DBG_LOAD, "CFC_REG_WEAK_ENABLE_PF is 0x%x\n", val); 18165 18166 val = REG_RD(sc, PBF_REG_DISABLE_PF); 18167 BLOGD(sc, DBG_LOAD, "PBF_REG_DISABLE_PF is 0x%x\n", val); 18168 18169 val = REG_RD(sc, IGU_REG_PCI_PF_MSI_EN); 18170 BLOGD(sc, DBG_LOAD, "IGU_REG_PCI_PF_MSI_EN is 0x%x\n", val); 18171 18172 val = REG_RD(sc, IGU_REG_PCI_PF_MSIX_EN); 18173 BLOGD(sc, DBG_LOAD, "IGU_REG_PCI_PF_MSIX_EN is 0x%x\n", val); 18174 18175 val = REG_RD(sc, IGU_REG_PCI_PF_MSIX_FUNC_MASK); 18176 BLOGD(sc, DBG_LOAD, "IGU_REG_PCI_PF_MSIX_FUNC_MASK is 0x%x\n", val); 18177 18178 val = REG_RD(sc, PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR); 18179 BLOGD(sc, DBG_LOAD, "PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR is 0x%x\n", val); 18180 18181 val = REG_RD(sc, PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR); 18182 BLOGD(sc, DBG_LOAD, "PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR is 0x%x\n", val); 18183 18184 val = REG_RD(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER); 18185 BLOGD(sc, DBG_LOAD, "PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER is 0x%x\n", val); 18186 } 18187 18188 static int 18189 bxe_pf_flr_clnup(struct bxe_softc *sc) 18190 { 18191 uint32_t poll_cnt = bxe_flr_clnup_poll_count(sc); 18192 18193 BLOGD(sc, DBG_LOAD, "Cleanup after FLR PF[%d]\n", SC_ABS_FUNC(sc)); 18194 18195 /* Re-enable PF target read access */ 18196 REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1); 18197 18198 /* Poll HW usage counters */ 18199 BLOGD(sc, DBG_LOAD, "Polling usage counters\n"); 18200 if (bxe_poll_hw_usage_counters(sc, poll_cnt)) { 18201 return (-1); 18202 } 18203 18204 /* Zero the igu 'trailing edge' and 'leading edge' */ 18205 18206 /* Send the FW cleanup command */ 18207 if (bxe_send_final_clnup(sc, (uint8_t)SC_FUNC(sc), poll_cnt)) { 18208 return (-1); 18209 } 18210 18211 /* ATC cleanup */ 18212 18213 /* Verify TX hw is flushed */ 18214 bxe_tx_hw_flushed(sc, poll_cnt); 18215 18216 /* Wait 100ms (not adjusted according to platform) */ 18217 DELAY(100000); 18218 18219 /* Verify no pending pci transactions */ 18220 if (bxe_is_pcie_pending(sc)) { 18221 BLOGE(sc, "PCIE Transactions still pending\n"); 18222 } 18223 18224 /* Debug */ 18225 bxe_hw_enable_status(sc); 18226 18227 /* 18228 * Master enable - Due to WB DMAE writes performed before this 18229 * register is re-initialized as part of the regular function init 18230 */ 18231 REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1); 18232 18233 return (0); 18234 } 18235 18236 #if 0 18237 static void 18238 bxe_init_searcher(struct bxe_softc *sc) 18239 { 18240 int port = SC_PORT(sc); 18241 ecore_src_init_t2(sc, sc->t2, sc->t2_mapping, SRC_CONN_NUM); 18242 /* T1 hash bits value determines the T1 number of entries */ 18243 REG_WR(sc, SRC_REG_NUMBER_HASH_BITS0 + port*4, SRC_HASH_BITS); 18244 } 18245 #endif 18246 18247 static int 18248 bxe_init_hw_func(struct bxe_softc *sc) 18249 { 18250 int port = SC_PORT(sc); 18251 int func = SC_FUNC(sc); 18252 int init_phase = PHASE_PF0 + func; 18253 struct ecore_ilt *ilt = sc->ilt; 18254 uint16_t cdu_ilt_start; 18255 uint32_t addr, val; 18256 uint32_t main_mem_base, main_mem_size, main_mem_prty_clr; 18257 int i, main_mem_width, rc; 18258 18259 BLOGD(sc, DBG_LOAD, "starting func init for func %d\n", func); 18260 18261 /* FLR cleanup */ 18262 if (!CHIP_IS_E1x(sc)) { 18263 rc = bxe_pf_flr_clnup(sc); 18264 if (rc) { 18265 BLOGE(sc, "FLR cleanup failed!\n"); 18266 // XXX bxe_fw_dump(sc); 18267 // XXX bxe_idle_chk(sc); 18268 return (rc); 18269 } 18270 } 18271 18272 /* set MSI reconfigure capability */ 18273 if (sc->devinfo.int_block == INT_BLOCK_HC) { 18274 addr = (port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0); 18275 val = REG_RD(sc, addr); 18276 val |= HC_CONFIG_0_REG_MSI_ATTN_EN_0; 18277 REG_WR(sc, addr, val); 18278 } 18279 18280 ecore_init_block(sc, BLOCK_PXP, init_phase); 18281 ecore_init_block(sc, BLOCK_PXP2, init_phase); 18282 18283 ilt = sc->ilt; 18284 cdu_ilt_start = ilt->clients[ILT_CLIENT_CDU].start; 18285 18286 #if 0 18287 if (IS_SRIOV(sc)) { 18288 cdu_ilt_start += BXE_FIRST_VF_CID/ILT_PAGE_CIDS; 18289 } 18290 cdu_ilt_start = bxe_iov_init_ilt(sc, cdu_ilt_start); 18291 18292 #if (BXE_FIRST_VF_CID > 0) 18293 /* 18294 * If BXE_FIRST_VF_CID > 0 then the PF L2 cids precedes 18295 * those of the VFs, so start line should be reset 18296 */ 18297 cdu_ilt_start = ilt->clients[ILT_CLIENT_CDU].start; 18298 #endif 18299 #endif 18300 18301 for (i = 0; i < L2_ILT_LINES(sc); i++) { 18302 ilt->lines[cdu_ilt_start + i].page = sc->context[i].vcxt; 18303 ilt->lines[cdu_ilt_start + i].page_mapping = 18304 sc->context[i].vcxt_dma.paddr; 18305 ilt->lines[cdu_ilt_start + i].size = sc->context[i].size; 18306 } 18307 ecore_ilt_init_op(sc, INITOP_SET); 18308 18309 #if 0 18310 if (!CONFIGURE_NIC_MODE(sc)) { 18311 bxe_init_searcher(sc); 18312 REG_WR(sc, PRS_REG_NIC_MODE, 0); 18313 BLOGD(sc, DBG_LOAD, "NIC MODE disabled\n"); 18314 } else 18315 #endif 18316 { 18317 /* Set NIC mode */ 18318 REG_WR(sc, PRS_REG_NIC_MODE, 1); 18319 BLOGD(sc, DBG_LOAD, "NIC MODE configured\n"); 18320 } 18321 18322 if (!CHIP_IS_E1x(sc)) { 18323 uint32_t pf_conf = IGU_PF_CONF_FUNC_EN; 18324 18325 /* Turn on a single ISR mode in IGU if driver is going to use 18326 * INT#x or MSI 18327 */ 18328 if (sc->interrupt_mode != INTR_MODE_MSIX) { 18329 pf_conf |= IGU_PF_CONF_SINGLE_ISR_EN; 18330 } 18331 18332 /* 18333 * Timers workaround bug: function init part. 18334 * Need to wait 20msec after initializing ILT, 18335 * needed to make sure there are no requests in 18336 * one of the PXP internal queues with "old" ILT addresses 18337 */ 18338 DELAY(20000); 18339 18340 /* 18341 * Master enable - Due to WB DMAE writes performed before this 18342 * register is re-initialized as part of the regular function 18343 * init 18344 */ 18345 REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1); 18346 /* Enable the function in IGU */ 18347 REG_WR(sc, IGU_REG_PF_CONFIGURATION, pf_conf); 18348 } 18349 18350 sc->dmae_ready = 1; 18351 18352 ecore_init_block(sc, BLOCK_PGLUE_B, init_phase); 18353 18354 if (!CHIP_IS_E1x(sc)) 18355 REG_WR(sc, PGLUE_B_REG_WAS_ERROR_PF_7_0_CLR, func); 18356 18357 ecore_init_block(sc, BLOCK_ATC, init_phase); 18358 ecore_init_block(sc, BLOCK_DMAE, init_phase); 18359 ecore_init_block(sc, BLOCK_NIG, init_phase); 18360 ecore_init_block(sc, BLOCK_SRC, init_phase); 18361 ecore_init_block(sc, BLOCK_MISC, init_phase); 18362 ecore_init_block(sc, BLOCK_TCM, init_phase); 18363 ecore_init_block(sc, BLOCK_UCM, init_phase); 18364 ecore_init_block(sc, BLOCK_CCM, init_phase); 18365 ecore_init_block(sc, BLOCK_XCM, init_phase); 18366 ecore_init_block(sc, BLOCK_TSEM, init_phase); 18367 ecore_init_block(sc, BLOCK_USEM, init_phase); 18368 ecore_init_block(sc, BLOCK_CSEM, init_phase); 18369 ecore_init_block(sc, BLOCK_XSEM, init_phase); 18370 18371 if (!CHIP_IS_E1x(sc)) 18372 REG_WR(sc, QM_REG_PF_EN, 1); 18373 18374 if (!CHIP_IS_E1x(sc)) { 18375 REG_WR(sc, TSEM_REG_VFPF_ERR_NUM, BXE_MAX_NUM_OF_VFS + func); 18376 REG_WR(sc, USEM_REG_VFPF_ERR_NUM, BXE_MAX_NUM_OF_VFS + func); 18377 REG_WR(sc, CSEM_REG_VFPF_ERR_NUM, BXE_MAX_NUM_OF_VFS + func); 18378 REG_WR(sc, XSEM_REG_VFPF_ERR_NUM, BXE_MAX_NUM_OF_VFS + func); 18379 } 18380 ecore_init_block(sc, BLOCK_QM, init_phase); 18381 18382 ecore_init_block(sc, BLOCK_TM, init_phase); 18383 ecore_init_block(sc, BLOCK_DORQ, init_phase); 18384 18385 bxe_iov_init_dq(sc); 18386 18387 ecore_init_block(sc, BLOCK_BRB1, init_phase); 18388 ecore_init_block(sc, BLOCK_PRS, init_phase); 18389 ecore_init_block(sc, BLOCK_TSDM, init_phase); 18390 ecore_init_block(sc, BLOCK_CSDM, init_phase); 18391 ecore_init_block(sc, BLOCK_USDM, init_phase); 18392 ecore_init_block(sc, BLOCK_XSDM, init_phase); 18393 ecore_init_block(sc, BLOCK_UPB, init_phase); 18394 ecore_init_block(sc, BLOCK_XPB, init_phase); 18395 ecore_init_block(sc, BLOCK_PBF, init_phase); 18396 if (!CHIP_IS_E1x(sc)) 18397 REG_WR(sc, PBF_REG_DISABLE_PF, 0); 18398 18399 ecore_init_block(sc, BLOCK_CDU, init_phase); 18400 18401 ecore_init_block(sc, BLOCK_CFC, init_phase); 18402 18403 if (!CHIP_IS_E1x(sc)) 18404 REG_WR(sc, CFC_REG_WEAK_ENABLE_PF, 1); 18405 18406 if (IS_MF(sc)) { 18407 REG_WR(sc, NIG_REG_LLH0_FUNC_EN + port*8, 1); 18408 REG_WR(sc, NIG_REG_LLH0_FUNC_VLAN_ID + port*8, OVLAN(sc)); 18409 } 18410 18411 ecore_init_block(sc, BLOCK_MISC_AEU, init_phase); 18412 18413 /* HC init per function */ 18414 if (sc->devinfo.int_block == INT_BLOCK_HC) { 18415 if (CHIP_IS_E1H(sc)) { 18416 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0); 18417 18418 REG_WR(sc, HC_REG_LEADING_EDGE_0 + port*8, 0); 18419 REG_WR(sc, HC_REG_TRAILING_EDGE_0 + port*8, 0); 18420 } 18421 ecore_init_block(sc, BLOCK_HC, init_phase); 18422 18423 } else { 18424 int num_segs, sb_idx, prod_offset; 18425 18426 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0); 18427 18428 if (!CHIP_IS_E1x(sc)) { 18429 REG_WR(sc, IGU_REG_LEADING_EDGE_LATCH, 0); 18430 REG_WR(sc, IGU_REG_TRAILING_EDGE_LATCH, 0); 18431 } 18432 18433 ecore_init_block(sc, BLOCK_IGU, init_phase); 18434 18435 if (!CHIP_IS_E1x(sc)) { 18436 int dsb_idx = 0; 18437 /** 18438 * Producer memory: 18439 * E2 mode: address 0-135 match to the mapping memory; 18440 * 136 - PF0 default prod; 137 - PF1 default prod; 18441 * 138 - PF2 default prod; 139 - PF3 default prod; 18442 * 140 - PF0 attn prod; 141 - PF1 attn prod; 18443 * 142 - PF2 attn prod; 143 - PF3 attn prod; 18444 * 144-147 reserved. 18445 * 18446 * E1.5 mode - In backward compatible mode; 18447 * for non default SB; each even line in the memory 18448 * holds the U producer and each odd line hold 18449 * the C producer. The first 128 producers are for 18450 * NDSB (PF0 - 0-31; PF1 - 32-63 and so on). The last 20 18451 * producers are for the DSB for each PF. 18452 * Each PF has five segments: (the order inside each 18453 * segment is PF0; PF1; PF2; PF3) - 128-131 U prods; 18454 * 132-135 C prods; 136-139 X prods; 140-143 T prods; 18455 * 144-147 attn prods; 18456 */ 18457 /* non-default-status-blocks */ 18458 num_segs = CHIP_INT_MODE_IS_BC(sc) ? 18459 IGU_BC_NDSB_NUM_SEGS : IGU_NORM_NDSB_NUM_SEGS; 18460 for (sb_idx = 0; sb_idx < sc->igu_sb_cnt; sb_idx++) { 18461 prod_offset = (sc->igu_base_sb + sb_idx) * 18462 num_segs; 18463 18464 for (i = 0; i < num_segs; i++) { 18465 addr = IGU_REG_PROD_CONS_MEMORY + 18466 (prod_offset + i) * 4; 18467 REG_WR(sc, addr, 0); 18468 } 18469 /* send consumer update with value 0 */ 18470 bxe_ack_sb(sc, sc->igu_base_sb + sb_idx, 18471 USTORM_ID, 0, IGU_INT_NOP, 1); 18472 bxe_igu_clear_sb(sc, sc->igu_base_sb + sb_idx); 18473 } 18474 18475 /* default-status-blocks */ 18476 num_segs = CHIP_INT_MODE_IS_BC(sc) ? 18477 IGU_BC_DSB_NUM_SEGS : IGU_NORM_DSB_NUM_SEGS; 18478 18479 if (CHIP_IS_MODE_4_PORT(sc)) 18480 dsb_idx = SC_FUNC(sc); 18481 else 18482 dsb_idx = SC_VN(sc); 18483 18484 prod_offset = (CHIP_INT_MODE_IS_BC(sc) ? 18485 IGU_BC_BASE_DSB_PROD + dsb_idx : 18486 IGU_NORM_BASE_DSB_PROD + dsb_idx); 18487 18488 /* 18489 * igu prods come in chunks of E1HVN_MAX (4) - 18490 * does not matters what is the current chip mode 18491 */ 18492 for (i = 0; i < (num_segs * E1HVN_MAX); 18493 i += E1HVN_MAX) { 18494 addr = IGU_REG_PROD_CONS_MEMORY + 18495 (prod_offset + i)*4; 18496 REG_WR(sc, addr, 0); 18497 } 18498 /* send consumer update with 0 */ 18499 if (CHIP_INT_MODE_IS_BC(sc)) { 18500 bxe_ack_sb(sc, sc->igu_dsb_id, 18501 USTORM_ID, 0, IGU_INT_NOP, 1); 18502 bxe_ack_sb(sc, sc->igu_dsb_id, 18503 CSTORM_ID, 0, IGU_INT_NOP, 1); 18504 bxe_ack_sb(sc, sc->igu_dsb_id, 18505 XSTORM_ID, 0, IGU_INT_NOP, 1); 18506 bxe_ack_sb(sc, sc->igu_dsb_id, 18507 TSTORM_ID, 0, IGU_INT_NOP, 1); 18508 bxe_ack_sb(sc, sc->igu_dsb_id, 18509 ATTENTION_ID, 0, IGU_INT_NOP, 1); 18510 } else { 18511 bxe_ack_sb(sc, sc->igu_dsb_id, 18512 USTORM_ID, 0, IGU_INT_NOP, 1); 18513 bxe_ack_sb(sc, sc->igu_dsb_id, 18514 ATTENTION_ID, 0, IGU_INT_NOP, 1); 18515 } 18516 bxe_igu_clear_sb(sc, sc->igu_dsb_id); 18517 18518 /* !!! these should become driver const once 18519 rf-tool supports split-68 const */ 18520 REG_WR(sc, IGU_REG_SB_INT_BEFORE_MASK_LSB, 0); 18521 REG_WR(sc, IGU_REG_SB_INT_BEFORE_MASK_MSB, 0); 18522 REG_WR(sc, IGU_REG_SB_MASK_LSB, 0); 18523 REG_WR(sc, IGU_REG_SB_MASK_MSB, 0); 18524 REG_WR(sc, IGU_REG_PBA_STATUS_LSB, 0); 18525 REG_WR(sc, IGU_REG_PBA_STATUS_MSB, 0); 18526 } 18527 } 18528 18529 /* Reset PCIE errors for debug */ 18530 REG_WR(sc, 0x2114, 0xffffffff); 18531 REG_WR(sc, 0x2120, 0xffffffff); 18532 18533 if (CHIP_IS_E1x(sc)) { 18534 main_mem_size = HC_REG_MAIN_MEMORY_SIZE / 2; /*dwords*/ 18535 main_mem_base = HC_REG_MAIN_MEMORY + 18536 SC_PORT(sc) * (main_mem_size * 4); 18537 main_mem_prty_clr = HC_REG_HC_PRTY_STS_CLR; 18538 main_mem_width = 8; 18539 18540 val = REG_RD(sc, main_mem_prty_clr); 18541 if (val) { 18542 BLOGD(sc, DBG_LOAD, 18543 "Parity errors in HC block during function init (0x%x)!\n", 18544 val); 18545 } 18546 18547 /* Clear "false" parity errors in MSI-X table */ 18548 for (i = main_mem_base; 18549 i < main_mem_base + main_mem_size * 4; 18550 i += main_mem_width) { 18551 bxe_read_dmae(sc, i, main_mem_width / 4); 18552 bxe_write_dmae(sc, BXE_SP_MAPPING(sc, wb_data), 18553 i, main_mem_width / 4); 18554 } 18555 /* Clear HC parity attention */ 18556 REG_RD(sc, main_mem_prty_clr); 18557 } 18558 18559 #if 1 18560 /* Enable STORMs SP logging */ 18561 REG_WR8(sc, BAR_USTRORM_INTMEM + 18562 USTORM_RECORD_SLOW_PATH_OFFSET(SC_FUNC(sc)), 1); 18563 REG_WR8(sc, BAR_TSTRORM_INTMEM + 18564 TSTORM_RECORD_SLOW_PATH_OFFSET(SC_FUNC(sc)), 1); 18565 REG_WR8(sc, BAR_CSTRORM_INTMEM + 18566 CSTORM_RECORD_SLOW_PATH_OFFSET(SC_FUNC(sc)), 1); 18567 REG_WR8(sc, BAR_XSTRORM_INTMEM + 18568 XSTORM_RECORD_SLOW_PATH_OFFSET(SC_FUNC(sc)), 1); 18569 #endif 18570 18571 elink_phy_probe(&sc->link_params); 18572 18573 return (0); 18574 } 18575 18576 static void 18577 bxe_link_reset(struct bxe_softc *sc) 18578 { 18579 if (!BXE_NOMCP(sc)) { 18580 BXE_PHY_LOCK(sc); 18581 elink_lfa_reset(&sc->link_params, &sc->link_vars); 18582 BXE_PHY_UNLOCK(sc); 18583 } else { 18584 if (!CHIP_REV_IS_SLOW(sc)) { 18585 BLOGW(sc, "Bootcode is missing - cannot reset link\n"); 18586 } 18587 } 18588 } 18589 18590 static void 18591 bxe_reset_port(struct bxe_softc *sc) 18592 { 18593 int port = SC_PORT(sc); 18594 uint32_t val; 18595 18596 /* reset physical Link */ 18597 bxe_link_reset(sc); 18598 18599 REG_WR(sc, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0); 18600 18601 /* Do not rcv packets to BRB */ 18602 REG_WR(sc, NIG_REG_LLH0_BRB1_DRV_MASK + port*4, 0x0); 18603 /* Do not direct rcv packets that are not for MCP to the BRB */ 18604 REG_WR(sc, (port ? NIG_REG_LLH1_BRB1_NOT_MCP : 18605 NIG_REG_LLH0_BRB1_NOT_MCP), 0x0); 18606 18607 /* Configure AEU */ 18608 REG_WR(sc, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, 0); 18609 18610 DELAY(100000); 18611 18612 /* Check for BRB port occupancy */ 18613 val = REG_RD(sc, BRB1_REG_PORT_NUM_OCC_BLOCKS_0 + port*4); 18614 if (val) { 18615 BLOGD(sc, DBG_LOAD, 18616 "BRB1 is not empty, %d blocks are occupied\n", val); 18617 } 18618 18619 /* TODO: Close Doorbell port? */ 18620 } 18621 18622 static void 18623 bxe_ilt_wr(struct bxe_softc *sc, 18624 uint32_t index, 18625 bus_addr_t addr) 18626 { 18627 int reg; 18628 uint32_t wb_write[2]; 18629 18630 if (CHIP_IS_E1(sc)) { 18631 reg = PXP2_REG_RQ_ONCHIP_AT + index*8; 18632 } else { 18633 reg = PXP2_REG_RQ_ONCHIP_AT_B0 + index*8; 18634 } 18635 18636 wb_write[0] = ONCHIP_ADDR1(addr); 18637 wb_write[1] = ONCHIP_ADDR2(addr); 18638 REG_WR_DMAE(sc, reg, wb_write, 2); 18639 } 18640 18641 static void 18642 bxe_clear_func_ilt(struct bxe_softc *sc, 18643 uint32_t func) 18644 { 18645 uint32_t i, base = FUNC_ILT_BASE(func); 18646 for (i = base; i < base + ILT_PER_FUNC; i++) { 18647 bxe_ilt_wr(sc, i, 0); 18648 } 18649 } 18650 18651 static void 18652 bxe_reset_func(struct bxe_softc *sc) 18653 { 18654 struct bxe_fastpath *fp; 18655 int port = SC_PORT(sc); 18656 int func = SC_FUNC(sc); 18657 int i; 18658 18659 /* Disable the function in the FW */ 18660 REG_WR8(sc, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(func), 0); 18661 REG_WR8(sc, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(func), 0); 18662 REG_WR8(sc, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(func), 0); 18663 REG_WR8(sc, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(func), 0); 18664 18665 /* FP SBs */ 18666 FOR_EACH_ETH_QUEUE(sc, i) { 18667 fp = &sc->fp[i]; 18668 REG_WR8(sc, BAR_CSTRORM_INTMEM + 18669 CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET(fp->fw_sb_id), 18670 SB_DISABLED); 18671 } 18672 18673 #if 0 18674 if (CNIC_LOADED(sc)) { 18675 /* CNIC SB */ 18676 REG_WR8(sc, BAR_CSTRORM_INTMEM + 18677 CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET 18678 (bxe_cnic_fw_sb_id(sc)), SB_DISABLED); 18679 } 18680 #endif 18681 18682 /* SP SB */ 18683 REG_WR8(sc, BAR_CSTRORM_INTMEM + 18684 CSTORM_SP_STATUS_BLOCK_DATA_STATE_OFFSET(func), 18685 SB_DISABLED); 18686 18687 for (i = 0; i < XSTORM_SPQ_DATA_SIZE / 4; i++) { 18688 REG_WR(sc, BAR_XSTRORM_INTMEM + XSTORM_SPQ_DATA_OFFSET(func), 0); 18689 } 18690 18691 /* Configure IGU */ 18692 if (sc->devinfo.int_block == INT_BLOCK_HC) { 18693 REG_WR(sc, HC_REG_LEADING_EDGE_0 + port*8, 0); 18694 REG_WR(sc, HC_REG_TRAILING_EDGE_0 + port*8, 0); 18695 } else { 18696 REG_WR(sc, IGU_REG_LEADING_EDGE_LATCH, 0); 18697 REG_WR(sc, IGU_REG_TRAILING_EDGE_LATCH, 0); 18698 } 18699 18700 if (CNIC_LOADED(sc)) { 18701 /* Disable Timer scan */ 18702 REG_WR(sc, TM_REG_EN_LINEAR0_TIMER + port*4, 0); 18703 /* 18704 * Wait for at least 10ms and up to 2 second for the timers 18705 * scan to complete 18706 */ 18707 for (i = 0; i < 200; i++) { 18708 DELAY(10000); 18709 if (!REG_RD(sc, TM_REG_LIN0_SCAN_ON + port*4)) 18710 break; 18711 } 18712 } 18713 18714 /* Clear ILT */ 18715 bxe_clear_func_ilt(sc, func); 18716 18717 /* 18718 * Timers workaround bug for E2: if this is vnic-3, 18719 * we need to set the entire ilt range for this timers. 18720 */ 18721 if (!CHIP_IS_E1x(sc) && SC_VN(sc) == 3) { 18722 struct ilt_client_info ilt_cli; 18723 /* use dummy TM client */ 18724 memset(&ilt_cli, 0, sizeof(struct ilt_client_info)); 18725 ilt_cli.start = 0; 18726 ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1; 18727 ilt_cli.client_num = ILT_CLIENT_TM; 18728 18729 ecore_ilt_boundry_init_op(sc, &ilt_cli, 0, INITOP_CLEAR); 18730 } 18731 18732 /* this assumes that reset_port() called before reset_func()*/ 18733 if (!CHIP_IS_E1x(sc)) { 18734 bxe_pf_disable(sc); 18735 } 18736 18737 sc->dmae_ready = 0; 18738 } 18739 18740 static int 18741 bxe_gunzip_init(struct bxe_softc *sc) 18742 { 18743 return (0); 18744 } 18745 18746 static void 18747 bxe_gunzip_end(struct bxe_softc *sc) 18748 { 18749 return; 18750 } 18751 18752 static int 18753 bxe_init_firmware(struct bxe_softc *sc) 18754 { 18755 if (CHIP_IS_E1(sc)) { 18756 ecore_init_e1_firmware(sc); 18757 sc->iro_array = e1_iro_arr; 18758 } else if (CHIP_IS_E1H(sc)) { 18759 ecore_init_e1h_firmware(sc); 18760 sc->iro_array = e1h_iro_arr; 18761 } else if (!CHIP_IS_E1x(sc)) { 18762 ecore_init_e2_firmware(sc); 18763 sc->iro_array = e2_iro_arr; 18764 } else { 18765 BLOGE(sc, "Unsupported chip revision\n"); 18766 return (-1); 18767 } 18768 18769 return (0); 18770 } 18771 18772 static void 18773 bxe_release_firmware(struct bxe_softc *sc) 18774 { 18775 /* Do nothing */ 18776 return; 18777 } 18778 18779 static int 18780 ecore_gunzip(struct bxe_softc *sc, 18781 const uint8_t *zbuf, 18782 int len) 18783 { 18784 /* XXX : Implement... */ 18785 BLOGD(sc, DBG_LOAD, "ECORE_GUNZIP NOT IMPLEMENTED\n"); 18786 return (FALSE); 18787 } 18788 18789 static void 18790 ecore_reg_wr_ind(struct bxe_softc *sc, 18791 uint32_t addr, 18792 uint32_t val) 18793 { 18794 bxe_reg_wr_ind(sc, addr, val); 18795 } 18796 18797 static void 18798 ecore_write_dmae_phys_len(struct bxe_softc *sc, 18799 bus_addr_t phys_addr, 18800 uint32_t addr, 18801 uint32_t len) 18802 { 18803 bxe_write_dmae_phys_len(sc, phys_addr, addr, len); 18804 } 18805 18806 void 18807 ecore_storm_memset_struct(struct bxe_softc *sc, 18808 uint32_t addr, 18809 size_t size, 18810 uint32_t *data) 18811 { 18812 uint8_t i; 18813 for (i = 0; i < size/4; i++) { 18814 REG_WR(sc, addr + (i * 4), data[i]); 18815 } 18816 } 18817 18818